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Abstract 

This thesis focuses on practical condition monitoring of wind turbines. With 

offshore wind playing an increasing part in UK electricity generation, prompt fault 

detection leading to preventative maintenance is gaining in importance. This work 

describes the development of a condition monitoring test rig and the innovation and 

application of signal processing techniques for the detection of faults in non-stationary 

signals. Work is supported throughout by information from wind turbine operators 

and their experiences of variable speed, variable load wind turbines in the field. 

Experimental work is carried out on a condition monitoring test rig comprising 

a wound rotor induction generator, gearbox and DC driving motor. The test rig 

operates at variable speed and allows the implementation of a number of fault-like 

conditions including rotor electrical asymmetry, shaft mass unbalance and gear tooth 

failure. Test rig instrumentation was significantly developed during this research and 

both electrical and mechanical condition signals are monitored. 

A signal processing algorithm was developed based on experience with analysis 

techniques and their relationship with the characteristics of a wind turbine. The 

algorithm is based on Fourier analysis and allows the analysis of fault-related speed-

dependent frequencies within non-stationary signals such as those encountered on a 

wind turbine. 

The detection of different faults is discussed and conclusions drawn on the 

applicability of frequency tracking algorithms. The newly developed algorithm is 

compared with a published method to establish its advantages and limitations. 
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A Amplitude modulation constant (Chapter 4) 

A Fault frequency component amplitude (Chapter 5) 

Ac , Am General amplitude modulation constants of signal and modulation 
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c(t) Function under amplitude modulation 

CWT(c, τ) Continuous wavelet transform of signal s(t) 

d(t) Shaft absolute displacement, mm 

e Residual specific unbalance, mm 

eper Permissible residual specific unbalance, mm 

E Maximum wavelet scale parameter or component amplitude within 

scale/frequency window 

f Supply (stator) fundamental frequency, Hz (Chapter 4) (see fse ) 

fc Central frequency of interest, Hz 

     
  Rotational frequency of fault with respect to field, Hz 

    
   Induction machine spectral component with index k, Hz 

flower Lower frequency of analysis window, Hz 

frm Shaft/rotor rotational frequency, Hz 

      Shaft rotational frequency with respect to field, Hz 
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k Air-gap field space harmonic constant (Chapter 4) 
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l Supply time harmonic constant 

m Unbalance mass, kg 

m1, m2, m3 Blade mass (blades 1, 2, 3), kg 

mR Equivalent unbalance mass, kg 

m(t) Amplitude modulation function 



xii 
 

M Rotor mass, kg 

n Time interval multiple (Chapter 5) 

N Signal length, samples (Chapter 5) 

N Gear ratio (Chapter 6) 

p Induction machine pole pairs 

PE Electrical power, W 

r Number of shaft revolutions 
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1 Introduction 

“Blow, blow, thou winter wind, 

Thou art not so unkind 

As man's ingratitude” 

‘As You Like It’, Act II, Scene vii 

William Shakespeare 

William Shakespeare’s reference to man’s ingratitude is probably more 

relevant now than it was when published in 1623. Whether or not he is referring to the 

wind itself could no doubt be the subject of a much heated literary debate however it 

could certainly be argued that, if written today, the quotation could easily apply to 

man’s current worries about climate change and security of energy supply. 

As concerns over climate change and energy security increase there is growing 

interest in renewable energy systems. Wind turbines (WT) in particular have been 

earmarked to play an important role in the generation of cleaner energy in the UK, the 

technology having proved itself over the last 20 years. WT technology is a rapidly 

developing sector of industry and large turbines up to 6MW are being constructed both 

onshore and offshore. The benefits of moving to the offshore environment are apparent 

from improved wind conditions. However there is a price to pay in terms of a harsher 

operating environment and reduced accessibility. 

This chapter briefly introduces the fundamental concerns about climate change 

and energy security, explaining our growing interest in renewable energy systems and 

wind energy. This is followed by a short discussion of WT reliability and the resulting 

interest in effective condition monitoring (CM). A sub-section is also included 

introducing the Supergen Wind Energy Technologies Consortium and the position of 

this thesis within the Consortium. Finally an outline of the thesis is given at the end of 

the chapter with a presentation of its original contribution. 
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1.1 Climate Change and Energy Security 

Over recent years there has been increasing concern over the threat of climate 

change and the effect that mankind is having on the environment though our methods 

of electricity generation and our increasing level of energy consumption. This topic is 

discussed in many publications and theses and so will only be summarised briefly in 

this work. 

 Figure 1 [1] shows historical levels of CO2 in the atmosphere over the last 1000 

years. It is clear that there has been a significant increase in the atmospheric 

concentration of CO2, particularly since the year 1769; the year James Watt patented 

his efficient steam engine. With this invention the Industrial Revolution began in 

earnest and coal was being extracted from the ground at a previously unseen rate. 

Between 1769 and 1800 Britain’s annual coal production doubled and over the next 30 

years doubled once more [2], a trend which has continued or worsened in recent years. 

The annual production of UK and world coal in giga-tons of CO2 is shown in 

Figure 2. If we directly compare Figure 1 for atmospheric CO2 concentrations and 

Figure 2 for annual production of coal it becomes difficult to deny that industrialisation 

has most likely had an effect on CO2 levels and other greenhouse gases. 

The Intergovernmental Panel on Climate Change notes the changing world 

temperature as a result of global warming from greenhouse gasses. Their fourth 

assessment report in 2007 [3] states that the average global surface temperature has 

risen by 0.74°C in the 100 years between 1906 and 2005 with an increasing rate of 

warming occurring in the last 25 years. The report also highlights the fact that 11 of the 

12 warmest recorded years occurred within a 12 year period from 1995 to 2006. 

However, despite evidence as presented by climate scientists, climate change 

has proven to be a subject of much debate over the years and the issue is often seen by 

sceptics as a natural, periodic change and not a result of the intervention of mankind. 

One fact which must be considered, regardless of individual opinion on climate 

change, is the level of depletion of fossil fuels. Security of fossil fuel supply is gaining 

greater publicity as the availability of fuels forces domestic electricity and gas bills 

higher. Questions should perhaps be being asked about how long we can sustain our 

current way of living and what action can now be taken to help the situation. On this 

basis one of the greatest aspects to be addressed is that of UK electricity supply. 
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Figure 1: Atmospheric CO2 concentration over 1000 years [1] 

 

Figure 2: Coal extracted in GtCO2 per year [1] 

1.2 UK Electricity Supply and the Role of Wind Energy 

The UK electricity demand since 1980 is shown in Figure 3, from the UK 

Department of Energy and Climate Change (DECC) [4]. With concern about climate 

change, levels of CO2 and the development of cleaner generating technologies, there has 

been a significant shift away from coal over the last three decades. Although the 

greatest move has been towards gas as our primary energy source there has been a 

large increase in the electricity capacity generated from renewable sources. Figure 4, 

based on data from the UK Department for Business, Enterprise and Regulatory Reform 

(BERR), illustrates the changing make up of UK electricity generation and shows a clear 
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increase from 3% of supply from hydro and other fuels to 6% [5] with 2% being 

generated by wind. However, this is still a very small part of total UK capacity. 

 

Figure 3: UK electricity consumption from 1980 to 2008 [4] 

 

Figure 4: Electrical energy supplied by fuel type, 1980 to 2008 

Until recently the UK government’s target for CO2 emissions was a 60% 

reduction on 1990 levels by 2050 however the Climate Change and Energy Secretary 

announced in October 2008 [6] a new target for an 80% reduction by the middle of the 

century. This is a significant overall target which will require a large increase in the use 

of renewable energy sources as well as the development of clean coal, nuclear and 
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other facilities in order for it to be achieved. In response to this, the UK government set 

a target to generate 10% of electricity from renewable sources by 2010 with aspiration 

towards 20% of capacity by 2015 [7] and it is likely that electricity generation from 

wind energy will play a significant part in this. Figure 5 shows the increase in WT 

capacity over the last 14 years as given by BERR [8] and the British Wind Energy 

Association (BWEA). It is clear that this trend of increasing capacity is set to continue 

into the future as technologies improve and develop. According to the BWEA UK Wind 

Energy Database (UKWED) [9] there are more than 3100 WTs installed in the UK with 

a capacity of over 5.1GW. The BWEA claims that this is enough to power 2.8 million 

homes and displace 5.8 million tonnes of CO2 per year [9]. At the time of writing the 

BWEA UKWED states that 2.2GW of WT capacity is currently under construction in the 

UK with a further 15.7GW either consented (6.1GW) or in planning stages (9.6GW). 

 

Figure 5: Total operational UK wind generation capacity 1996 to 2009 based on 

data from [8]and [9] 

Despite suggestions from many critics that tens of thousands of WTs would be 

required to reach the target of 10% of electricity from wind, the BWEA claims that an 

8% target could be reached by 2010 with around 3500 additional turbines; 2000 

onshore and 1500 offshore [10]. As WT technology develops this figure should 

decrease. Figure 6 shows how turbine size and power has increased from early designs 

with the largest commercial turbine currently in operation being the Enercon E-126. 

This is a direct drive turbine with a rotor diameter of 126 metres and is rated at 7MW. 
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Building further on this, the WT manufacturer Clipper Windpower is developing a 

10MW Turbine, known as the Britannia Project, specifically designed for the offshore 

environment [11]. 

 

Figure 6: Growth in size of commercial wind designs [12] 

1.3 Reliability of Wind Turbines 

1.3.1 Introduction to Reliability 

As seen in Figure 6, the physical size and electrical rating of WTs is increasing 

as technologies develop. Coupled with this, there is also a significant move towards 

offshore wind energy where planning considerations and public objection are less of an 

issue for developers. Furthermore, the main drive towards offshore wind farms is the 

increased wind resource. Figure 7 shows a wind speed chart for the UK illustrating the 

much greater wind resource available in certain offshore environments. 
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Figure 7: Annual mean wind speeds for the UK 

However, the move to offshore environments highlights significant issues as 

regards turbine maintenance. Firstly, increased wind speeds will lead to not only 

higher capacity factors than for onshore turbines but also much greater mechanical 

loading of machine components. Secondly, the offshore environment reduces 

accessibility for maintenance. When onshore, small component failures are relatively 

simple to solve with an engineer able to visit the turbine and perform a maintenance 

action with minimal interference from environmental conditions. Once offshore, each 

small turbine failure could carry a very high cost not only in terms of components 

purchased but also in accessibility and personnel costs which can amount to €1000 per 

man-day [13]. In addition, poor weather could in fact mean that access is impossible 

during some periods of the year, for example over winter. In this case the very smallest 

of turbine component failures could lead to large downtimes and large resultant losses 

from prolonged periods of no generation. These issues have led to various studies 

being carried out to examine the reliability of WTs. 
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1.3.2 Reliability Studies and Results 

Several quantitative studies of WT reliability have been carried out over recent 

years using publically available data. Work by Tavner et al. [14] demonstrated onshore 

failure rates of around 1-3 failures per turbine per year using data from Germany and 

Denmark. Bearing in mind concerns about accessibility and possible long periods of no 

generation resulting from this it would be reasonable to say that this failure rate is 

unacceptably high for cost effective offshore generation. Furthermore, the offshore 

environment is more likely to increase the number of failures so it would be expected 

that the initial failure rate could be higher still. This is commented on in a later paper 

[15] which suggests that a maximum failure rate of 0.5 failures per turbine per year 

would be required offshore in order to allow planned maintenance visits to occur no 

more than once each year. 

A study by Spinato et al. [15] carried out a failure analysis based on turbine 

type as specified in the LWK data for onshore WTs, the result of which is shown by 

Figure 8. It is apparent that there is a general trend of increasing failure rate with 

turbine rating. This causes concern with regard to the move to offshore locations. To 

justify offshore installation costs and to increase energy production, ratings for 

offshore WTs are increasing, the largest proposed turbine currently rated at 10MW 

[11]. Based on Figure 8 we can assume that it will be difficult to decrease the initial 

failure rate as turbines continue to grow in capacity. 

The study also carried out analysis for the reliability of drive train 

subassemblies. Figure 9 from [16] shows the failure frequency and downtime for two 

surveys of operational onshore WTs. When looking at the failure frequency we 

naturally assume that the worst contributors to WT downtime are the electrical system 

and electrical control areas with the mechanical subassemblies, gearbox, generator and 

blades, having a low impact. However, once the downtime per failure has been taken 

into account the gearbox, generator and blades become the most damaging in terms of 

lost operational hours. 

These analyses were carried out for onshore turbines so it would be expected 

that the combination of decreased reliability and increased downtime per failure, 

resulting from restricted access, would very quickly make offshore wind an expensive 

and unattractive option. According to [17], 75% of onshore WT failures cause 5% of 

downtime while only 25% of failures cause 95% of downtime. Work by Tavner et al. 

[18] notes that the 75% of failures, where downtime is normally short, will have a 
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significant effect in the move to offshore wind as quick repairs will not be possible due 

to access issues. 

 

Figure 8: Failure rates of different WT models by turbine capacity [15] 

 

Figure 9: WT sub-assembly failure rate and downtime per failure for two surveys 

including over 20000 turbine years of data as published in [16] 
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Another study of subassembly reliability was carried out by Alewine on WT 

generators [19]. Figure 10 shows the results of this analysis alongside a reliability 

analysis of other rotating machines by Tavner [20]. It can be seen that, especially in 

WTs, rotor related faults and slip rings contribute significantly to total generator 

failures, particularly in small and medium WT generators, although bearing faults are 

dominant. 

 

Figure 10: Comparison of failure contribution of WT generator components 

according to [19] and [20] 

1.3.3 Summary 

As a result of accessibility issues offshore it seems apparent that the number of 

site visits per year should be kept to a minimum to keep costs down however this will 

not be possible if failure rates remain high. In order to prevent catastrophic failure and 

reduce resulting downtime there must be suitable methods for detecting incipient 

faults in WT subassemblies well in advance of failure. This would allow the operator to 

incorporate any maintenance actions into a planned site visit and should negate the 

need for unplanned maintenance. 

This will be the role of CM within the wind industry. 
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1.4 The Supergen Wind Energy Technologies Consortium 

This research has been funded by a UK EPSRC doctoral training award as part 

of the Supergen Wind Energy Technologies Consortium, EP/D034560/1 [21]. 

The first of thirteen Supergen Consortia was launched by the EPSRC in 

November 2003 in response to the targets and objectives set out in the 2003 Energy 

White Paper. The Consortia were constructed so as to engage the user and stakeholder 

community with academic institutions and to enable greater interaction and 

dissemination of information between academic and industrial players. This structure 

was designed to increase the potential for the generation of ideas and allow for step 

changes in tackling challenges rather than incremental progress. 

The Supergen Wind Energy Technologies Consortium is a diverse research 

body consisting of academic and industrial partners led by the University of 

Strathclyde and Durham University. The overall objective of the Consortium is “to 

undertake research to improve the cost-effective reliability and availability of existing 

and future large-scale WT systems in the UK“. This is enabled through the division of 

research into four distinct themes: 

 Theme W –Base-lining WT performance; 

 Theme X – Drive-train loads and monitoring; 

 Theme Y – Structural loads and materials, and; 

 Theme Z – Environmental issues. 

This thesis is written under the CM aspect of Theme X. Throughout this thesis, 

the author had the opportunity to work with a number of academic and industrial 

partners involved in Theme X including: 

 The University of Manchester 

 Loughborough University 

 The University of Strathclyde 

 E.ON Engineering Ltd. 

 Romax Technology Ltd. 

During the preparation of this thesis, there was a large amount of collaborative 

work and discussion with the Supergen Wind Energy Technologies Consortium 

industrial partners, primarily E.ON Engineering Ltd and Romax Technology Ltd. 
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E.ON Engineering [22], based at Ratcliffe-on-Soar fossil-fired, thermal power 

station near Nottingham, are responsible for CM conventional plant at power stations. 

As E.ON acquired wind farms into their generation portfolio, the Condition Monitoring 

Group at E.ON Engineering became involved in WT CM alongside monitoring 

conventional plant. 

Their contribution has been significant through the provision of expert 

knowledge and information on WT CM from David Futter, Neil Brinkworth and Ian 

Mayes. E.ON Engineering has also allowed Durham University to examine data from 

their WT population so we could learn some of the practicalities and issues that have to 

be understood for practical CM to be successful. 

Romax Technology [23] is a world leading drive train technical consultancy 

with over 20 years experience in the design of gearboxes, bearings and drive trains. 

The company’s original products were based on the automotive industry but they have 

since expanded rapidly into the design and analysis of WT drive trains and gearboxes. 

Discussion and work with Romax Technology has led to a much greater 

understanding of the dynamics of the Durham test rig as well giving the opportunity to 

learn from their modelling expertise. In particular, interaction with Ashley Crowther 

and Nathan Wilson has provided many points for thought as well as answers resulting 

from their experience in design and modelling. 

Both E.ON Engineering and Romax Technology have played an important part 

in this work and we have been glad to have had the opportunity to learn from those 

working in the field and discuss and impart out own opinions and findings with two 

leading industrial partners. 

1.5 Structure of the Thesis 

This thesis is structured to reflect the direction, progress and results of 

research since December 2007. As such, it is divided into chapters based on different 

areas of research. 

This introduction, Chapter 1, has briefly discussed the basis for interest in wind 

power and introduced the reader to WT reliability. In Chapter 2, this is taken forward 

with a review and discussion of CM techniques based on experiences and development 

of systems over time. 
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Chapter 3 then discusses practical wind farm CM based on collaborative work 

with an industrial partner. This section examines the practicalities and problems of 

monitoring WTs and how this has been overcome to an extent by the Condition 

Monitoring Group and their chosen monitoring systems. 

In Chapter 4, the focus moves from background literature and examples in the 

field to describe CM research methods at Durham University. This includes detailed 

information on and justification for a CM test rig and the work which has been 

completed to ensure a worthwhile and advantageous experimental system. This 

chapter also leads to the theory of faults in electrical machines and drive trains, and the 

derivation of fundamental fault equations for various fault-like conditions including a 

selection of electrical and mechanical faults used in this thesis. 

In Chapter 5 the analytical methods relevant to this thesis are described. This 

includes the comparison of spectral analysis methods and their application to the WT 

environment, including a previously published wavelet-based frequency tracking 

algorithm. Finally in Chapter 5, a Fourier-based algorithm for the analysis of WT CM 

signals is proposed and introduced mathematically. 

Chapter 6 contains the results of test rig experimentation including the analysis 

of signals using the new Fourier-based algorithm. Results from rotor electrical 

asymmetry, shaft mass unbalance and gear tooth damage are presented for discussion. 

The Fourier-based algorithm is compared with the previously published wavelet-based 

method to aid discussion of its advantages and disadvantages. 

Finally, Chapter 7 draws conclusions from this research. It also proposes 

possibilities for further research based on experiences from this project. 

There are a number of appendices containing information and results, 

published and submitted papers in which the author has been involved, detailed test 

rig specifications not included in the main body of this text and enlarged figures for 

reference. There is also an expanded selection of results from Chapter 6. 

Each Chapter concludes with a list of its references with reference numbers 

continuous throughout the thesis. 
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1.6 Original Contribution 

Over the last few years, condition monitoring systems (CMS) have become a 

commonplace feature of WTs. In fact, all new WTs are fitted with some form of CMS by 

either the manufacturer or user. These systems have advanced significantly over recent 

years and a wider variety of signal processing techniques have been incorporated into 

both hardware and software. 

However, as will be shown in Chapters 2 and 3, many commercially available 

CMSs are still highly dependent on the basic Fourier transform as applied in industries 

where stationary conditions are standard. For WTs, the situation is somewhat different 

with variable load and variable speed conditions being unavoidable features. While 

some effort has been made to adapt systems to their new environment, there is still a 

large degree of manual analysis required to interpret results. 

Put simply, the original contribution of this thesis is the development of a 

potential method for the automation of CM. This is based on the understanding of 

signal processing techniques, the non-stationary operating conditions of WTs and 

faults themselves. This thesis describes the progressive process of algorithm 

development and testing through the use of industrial information and knowledge; 

data from a test rig and operational WTs; and reliability and failure data. 

The case study of CM in industry and the use of both test rig and industrial data 

is also a significant contribution as the volume of publicly available industrial data and 

information on the subject of CM and the practicalities of its application is severely 

limited. 

To summarise, the author contends that the collection of all these different 

items into a single piece of research in order to aid the development of an applicable 

and realisable signal processing algorithm stands as an important contribution to the, 

as yet, small body of information available to the wider CM and renewable energy 

community. 
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2 Monitoring of Wind Turbines 

 “I have only one eye; I have a right to be blind 

sometimes... I really do not see the signal!” 

Vice Admiral Horatio Lord Nelson 

1758 – 1805 

As has been noted in the summary of reliability data in §1.3.3, the detection of 

WT faults, particularly offshore, is gaining greater importance. This idea of successfully 

detecting incipient faults before they develop into failures has led to the development 

of a large number of WT CMSs [24][25]. Many of these systems are based on concepts 

already used in other rotating machine industries and the adaptation of systems to suit 

the WT environment. A survey of commercially available CMSs was carried out early in 

Phase 1 of the Supergen Wind Energy Technologies Consortium [24]. The survey was 

then added to continuously until early 2009. However, with the development of more 

systems and increasing industrial interest, a new survey was produced by this author. 

This survey [25] provides an up to date, at the time of writing, insight into the current 

state of the art of CM and shows the range of systems currently available to WT 

manufacturers and operators. 

This chapter begins by defining various terms used throughout this thesis to 

describe the relationship between manufacturers, owners, operators, monitoring 

engineers, and maintenance managers and staff. This is followed by a discussion of the 

overall architecture, such as it is, for monitoring of WTs as a whole and the position of 

CM and diagnosis systems within the structure. The survey of CM and diagnosis 

systems is summarised to show the current position of the industry before conclusions 

are drawn about current systems and the future direction of CM. 

2.1 Definitions 

The structure of ownership and management of WTs, their warranties and any 

data recorded from them is not always clear so the format used throughout this thesis 

is presented here. 
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2.1.1 Original Equipment Manufacturer 

The Original Equipment Manufacturer (OEM) is the company who designed, 

constructed and supplied the WT. In some cases there may be several OEMs for a 

particular turbine where, for example, the gearbox is manufactured under contract by 

another company. In this case it is assumed that there is a single WT OEM. 

The OEM supplies a warranty with their WT and this generally includes all 

maintenance and monitoring functions during a certain period, normally 2-5 years. 

However, this comes at a price to the Owner Operator, who will be defined later, in that 

the OEM is normally reluctant to have any monitoring system fitted other than their 

own, and owns any data recorded during the warranty period. This means that the 

Owner Operator loses valuable information that may be useful after the warranty 

period when they begin monitoring the turbine themselves. After the warranty period, 

monitoring and maintenance responsibilities fall to the Owner Operator. 

2.1.2 Owner Operator 

This is the company or group that owns the turbine and is responsible for its 

operation. During the warranty period the Owner Operator has little to do with the 

turbine itself apart from wanting to ensure that it is operational and generating 

saleable energy. However, as stated, maintenance aspects during the warranty period 

fall to the OEM [26]. Later in this thesis, the term Owner Operator will be abbreviated 

for conciseness to Operator, although the full term will be used throughout these 

definitions. On occasion, the Owner and Operator may be different however it is 

assumed here that they are the same. 

After the warranty period the Owner Operator becomes responsible for all 

monitoring and maintenance unless they pursue an extended maintenance contract 

with the OEM [26]. This is only likely to happen with small, local consortia owning few 

turbines. Large Owner Operators may install their own monitoring or data acquisition 

systems after the warranty to bring systems into line with their own requirements. In 

the case of large Owner Operators, the monitoring of turbines may fall to a group 

within the company or to an external monitoring contractor, for example SKF, since the 

main concern of the Owner Operator is not the details of a particular turbine but that 

their turbine fleet is healthy and generating energy. 
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2.1.3 Operations Staff 

While this area may be quite broad, our main consideration is CM engineers or 

those who will make diagnoses and recommendations regarding WT condition. 

Operations Staff may be either a group within the Owner Operator structure or an 

external monitoring contractor, depending on the experience or expertise of the Owner 

Operator. Operations Staff working as a group within an Owner Operator are referred 

to as the Operations Group in this thesis. 

Operations Staff are responsible for CM and fault diagnosis and will generally 

be monitoring engineers with some expertise in the field. Operations Staff responsible 

for monitoring and diagnosis will have expertise in machines and signal processing in 

order to examine time series data, spectra or results from other analyses and relate 

them successfully to components and sub-assemblies within the WT. 

Once a fault has been detected and a diagnosis made, Operations staff will 

inform Maintenance Management Staff of their findings. In particular, they may make 

recommendations concerning the severity of the fault, the best course of action and the 

urgency of the problem. 

2.1.4 Maintenance Management Staff 

Maintenance Management Staff may either be a group within the Owner 

Operator or be an external contractor. This can be combined with an external contract 

for Operations Staff. 

There are several tasks covered by WT Maintenance Management Staff, 

introduced in [27]. Firstly, they manage a general maintenance strategy for the Owner 

Operator’s WTs such as an annual visit to the turbines to check oil, replace worn parts 

and carry out other smaller, less critical tasks. Secondly, Maintenance Management 

Staff coordinate condition-based maintenance based on recommendations from 

Operations Staff. This may either be an immediate response, shutting down a turbine to 

perform maintenance, or the decision to carry out maintenance after a certain time 

period based on CM and diagnoses from Operations Staff. Thirdly, a reactive 

maintenance strategy, while undesirable, may sometimes be required in the case of 

unpredicted, catastrophic failure of a turbine or component. 
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2.1.5 Maintenance Staff 

Maintenance Staff, or Technicians, will be either part of the Owner Operator 

company structure or an external contractor and will act under instruction from 

Maintenance Management Staff. In the case of certain components, for example the 

gearbox, the Maintenance Staff employed may be from the component OEM. The job of 

maintenance staff is to examine a component on site and carry out maintenance as 

required. 

2.2 Monitoring Structure 

A WT Owner Operator is likely to want CM carrying out for a variety of different 

operational reasons, listed below. 

 To obtain commercially important information such as confirmation that 

the turbine is operating and the amount of energy being generated. 

 To confirm the health of the overall WT structure and its safety. 

 To detect subassembly faults or failures through alarms systems. 

 To find the exact nature and location of any fault or failure and schedule 

maintenance. 

Conveniently each of these four points can be answered by splitting turbine 

monitoring into four classes of system. These are summarised by Figure 11 showing 

them and their approximate data rates that need to be transferred to the operator or, in 

some cases, the monitoring engineer. This overall architecture is beginning to be found 

in a larger number of WTs and is likely to be essential in the offshore environment. 

While there are four classes of monitoring system described, they are 

considered in three sections due to the level of interaction between CM and diagnosis. 

The reasons for this are discussed. 
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Figure 11: Structural health and condition monitoring of a wind turbine 

2.2.1 Supervisory Control and Data Acquisition 

The first class of system is the Supervisory Control and Data Acquisition 

(SCADA) system. This type of system is required on all modern WTs to monitor energy 

generated and confirm the operation of the turbine, measurements that are generally 

recorded in the turbine’s controller. The data is also used by the OEM to provide useful 

information during the warranty period. While measurements are often recorded using 

high frequency sampling, they are averaged over time and a single 5-10 minute 

averaged value [28] is transmitted back to the operator. The SCADA system also 

triggers alarms as and when they occur. However, SCADA systems have developed to 

also provide alarms for malfunctions of the WT. According to Zaher et al. [29], 10 

minute averaged signals often monitored in more recent SCADA systems include: 

 Active power output (and standard deviation over 10 min interval); 

 Anemometer-measured wind speed (and standard deviation over 10 min 

interval); 

 Gearbox bearing temperatures; 

 Gearbox lubrication oil temperature; 

 Generator winding temperature; 

 Generator bearing temperatures; 

 Power factor; 
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 Reactive power; 

 Phase currents, and; 

 Nacelle temperature (1 hour average). 

These SCADA systems are able to transmit alarms to the operator but are not 

currently able to provide detailed information on the health of a turbine. However, 

more recent SCADA systems are increasingly able to provide alarm signals based on 

time domain amplitude of temperature transducers [28] and on measurements from 

drive train vibration transducers. The alarms are generally based on the average or 

peak value for vibration during the 5-10 minute period. 

Research is being carried out into the CM of WTs through SCADA analysis in the 

EU FP7 project ReliaWind [30]. The research consortium consists of a number of 

University partners alongside industrial consultants and WT manufacturers. 

2.2.2 Structural Health Monitoring 

The second class of system covers the area of structural health monitoring 

(SHM). These systems aim to determine the integrity of the WT tower, structure and 

foundations for faults driven by blade-passing frequencies, through low frequency 

sampling, below 5Hz, of accelerometers and similar low frequency transducers. Other 

monitoring technologies increasingly found for structural health monitoring of blades 

include fibre optic stain measurement and acoustic emission sensing. Acoustic 

emission sensing has not found great interest in the wind industry up to now because 

of its expense and equipment complexity, whereas fibre optic measurement systems 

have gained interest as will be discussed later in this chapter. 

While structural health monitoring systems could be presented as a separate 

section in this thesis, it is clear that the monitoring of WT blades should be classed as 

CM, despite being carried out in a different fashion from rotating machinery CM. 

Therefore, structural health monitoring systems are grouped in with CMSs from this 

point forward. 

2.2.3 Condition Monitoring and Diagnosis 

The third and fourth classes of system are the two areas of CM and diagnosis. 

These are considered together as, for WT monitoring to be most effectively carried out, 

interaction of the CM and diagnosis systems is required. As will be shown, the two 
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classes of system consist of similar transducer inputs but with different internal 

functions and outputs. 

CM itself may be considered as a broad method for determining the overall 

operational health of the WT. The key function of a successful CMS should be firstly to 

provide a reliable indication of the presence of a fault within the WT system and 

secondly to indicate the location and severity of the situation. This second point is 

important as the severity of the fault will be the trigger for further, more detailed 

investigation by monitoring engineers with the aim of diagnosing the fault. This point is 

the link between CM and diagnostic systems where CM leads to diagnosis. 

The turbine Operator may not necessarily be interested in the early signals 

from the CMS. These signals are most useful to a monitoring engineer with many 

turbines to prioritise in terms of fault severity. The Operator’s main interest is that 

alarms are reliable so that they can take confident action with regard to limiting power 

or shutting down a turbine to avoid serious or dangerous failure. The Operator, as 

opposed to the monitoring engineer, will not have a central interest in the exact nature 

of faults, according to discussions with industrial partners. A CM engineer is interested 

in alarms well in advance of failure in order to observe the progress of a fault from an 

early stage and plan for remedial action with the Operator. As the number of turbines 

increases, reliable CM alarms will be essential to direct monitoring engineers in the 

prioritisation of faults and WTs within an increasingly large WT population. 

Since the main requirement is to provide alarms with a high degree of 

confidence, CM signals need not necessarily be output to the monitoring database on a 

high frequency basis and the system can carry out the required analysis on an 

intermittent basis. 

Once an alarm has been triggered by the CMS, a diagnostic process could be 

activated automatically to give an initial indication of the fault. The monitoring 

engineer could then begin high frequency analysis in order to identify the exact 

location and nature of the fault. With these aims in mind, a suitable system 

configuration is required where the system provides enough data for reliable 

monitoring but not so much as to flood the monitoring engineer or data transmission 

network with excess information. 
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To conclude on CM and diagnosis, Figure 12 gives an indication of the three 

main subassemblies of a WTs which may require CM and diagnosis based on reliability 

data such as that given in §1.3.2. 

While each of these subassemblies are shown as separate entities it is likely 

that a good CMS will blur the boundaries between them depending on available signals, 

to provide reliable alarms with a high degree of confidence, subsequently giving 

similarly reliable diagnostic information. 

Many of the systems included in §2.3 combine CM with diagnostics as a result 

of the high level of interaction that has been discussed and this seems like an intelligent 

step towards providing successful CM and diagnosis systems for a large number of 

WTs. 

  

Figure 12: General layout of three areas for condition monitoring and diagnosis 

within the nacelle 

2.3 Commercially Available Monitoring Systems 

The table from the Supergen Wind Energy Technologies Consortium survey 

Commercially Available Condition Monitoring Systems for Wind Turbines [25] is 

provided in Appendix A. The survey lists 20 widely available and popular CMSs that are 

specifically targeted for WT CM. The information in the table has been collected 

through interaction with monitoring system and turbine manufacturers, and various 

product brochures over recent years, and includes information obtained through 
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personal interaction with sales and technical personnel at the European Wind Energy 

Conferences from 2008 to 2010. The summary and details of each system are believed 

to be correct at the time of writing. However, since some information has been 

acquired through direct discussion with sales and product representatives and not 

from published brochures and handbooks, it should be noted that the table may not be 

fully definitive and is as accurate as possible given the available information. The 

systems are grouped by monitoring technology and then alphabetically by product 

name. 

The first observation to make is that the CMSs listed tend to focus on very 

similar areas and WT subassemblies. Moving through the turbine these are the: 

 Blades; 

 Main bearing; 

 Gearbox internals; 

 Gearbox bearings, and; 

 Generator bearings. 

However, there are a few systems that have branched out to investigate other 

signals and technologies. These include the use of techniques to monitor generator 

windings, converters and pitch control mechanisms. 

The products in the survey can be summarised as: 

 14 systems primarily based on drive train vibration analysis (1 – 14) 

 3 systems solely for oil debris monitoring (15 – 17) 

 1 system using vibration analysis for WT blade monitoring (18) 

 2 systems based on fibre optic strain measurement in WT blades (19, 20) 

It is clear from this distribution that the industry is currently favouring systems 

based on methods originating from other, traditional rotating machinery applications. 

Indeed fourteen of the twenty systems given are based on vibration monitoring of the 

turbine drive train and are generally using a configuration similar to that in Figure 13 

for the Mita-Teknik WP4086 CMS (14). 
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Figure 13: Typical accelerometer positions in a WT nacelle based on [33] 

Of the 14 vibration-based systems, all have the capacity to provide diagnostic 

information once a fault has been detected. In the majority of cases this is done through 

fast Fourier transform (FFT) analysis of high frequency data, the aim being to identify 

frequencies or harmonic patterns indicative of a specific fault. In the case of the SKF 

WindCon 3.0 CMS (11), the Areva OneProd Wind system (7) and several others, high 

speed data acquisition is triggered by the operational state of the WT. For example, the 

SKF WindCon 3.0 CMS can be configured to carry out vibration analysis on either a 

fixed time basis or when a specific load and speed condition is achieved. The aim of 

selecting certain fixed measurement points is to acquire results that are directly 

comparable between each measurement point and, importantly, to allow spectra to be 

calculated under conditions where signals are close to stationary in time across a 

sample. 

When using the traditional FFT it is essential that signals are stationary within 

the analysis time window in order that a clearly defined spectrum can be calculated 

without frequency ‘smearing’. However, discussion with technical personnel suggests 

that the Mita-Teknik WP4086 system (14) incorporates advanced signal processing 

techniques to overcome the effects of small variations in WT speed. These include 

comb filtering [31], whitening for noise reduction and Kurtogram [32] analysis 

techniques. 

Further to the use of traditional vibration monitoring techniques, three of these 

systems also state that they allow the inclusion of debris in oil transducers to monitor 

material breakout in gearbox lubrication oil systems. As a result of this, three oil 

quality monitoring transducers are included in the survey (15 – 17). While these are 

Generator Gearbox

Main Bearing
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not complete CMSs in themselves, discussion with industrial partners suggests that oil 

monitoring is gaining greater interest within the wind industry and, as such, is worthy 

of note in the survey. From the available literature, it appears that one of the most 

advanced of these oil quality monitoring systems is the MACOM TechAlert 10 (17) 

system. This system uses an inductive transducer to count both ferrous and non-

ferrous particles in the oil circulation system and provide count outputs for the number 

of particles in various particle size ‘bins’. The systems using debris in oil transducers 

are using either cumulative particle counts or particle count rates alongside vibration 

monitoring results. 

From the survey, there is also a clear interest in the use of operational 

parameters to assist CM. Several of the thirteen vibration-based monitoring systems 

allow operational parameters such as load, wind speed, generator speed and 

temperature to be recorded alongside vibration and other monitoring signals; however 

the overall capability of some systems is unclear from the available information. The 

level of interest in operational parameters appears to have stemmed from the fact that 

the most widely used analysis techniques, for example the FFT, have been developed in 

constant speed, constant load environments. Given the variable speed, variable load 

nature of the WT, it has been suggested that traditional methods may encounter 

difficulties during analysis due to the non-stationary signals involved. However, 

experienced CM engineers are able to use these techniques to successfully detect faults 

by comparing spectra at specific speeds and loads. This relies on the monitoring 

engineer being always aware of the different operational conditions in which the 

analysis techniques are operating. 

It is also apparent from the presence of three blade CMSs in the survey that WT 

blade monitoring, originally referred to in structural health monitoring, is gaining more 

industry interest. Two of the systems in the survey (19, 20) are based on blade strain 

measurement through the use of fibre optic transducers originally intended to provide 

signals for the blade pitch system. The principle aim of these systems is to detect 

damage to the blade itself and, in the case of the Moog Insensys system (20), detect the 

build up of ice or a lightning strike on a blade. The third system, from IGUS (18), uses 

accelerometers mounted within the blade to detect blade damage, icing and lightning 

strikes.  All three of these systems can be fitted to WT blades retrospectively. 

The two fibre optic systems (19, 20) can operate at very low sampling 

frequencies compared to vibration-based systems as their analysis relies solely on 
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changes in the time domain signal. Since the IGUS monitoring system (18) is based on 

vibration analysis its sampling frequency has to be much higher than that of the fibre 

optic strain measurement systems. The system compares the blade accelerometer FFT 

with spectra recorded for similar operating conditions to make a diagnosis. As opposed 

to the other systems discussed, the IGUS system has the power to automatically shut 

down or restart the WT based on the results of its analysis. This system appears to be 

particularly popular within the wind industry. 

2.4 The Future of Wind Turbine Condition Monitoring 

As has been shown by the wide range of CM and diagnosis systems included in 

§2.3, there is clear industry interest in applying CM to WTs. However, the concept of 

CM of variable speed, variable load machines like the WT is still very much under 

development. 

2.4.1 How Far Do We Need To Go? 

Since there is much less expertise present with regard to these variable speed 

and load machines, the current trend appears to be that of instrumenting a turbine 

heavily in order to collect as much data as possible but is this really the best way 

forward? In the conventional rotating machine industry the number of required 

transducers has reduced significantly as knowledge about monitoring has increased.  

One of the best examples of this reduction in transducers is that of the Rolls 

Royce military aircraft engines. The RB119 turbofan, used on Tornado combat aircraft 

since 1980 [34], has a three shaft design with high (HP), intermediate (IP) and low 

pressure (LP) systems. Rolls Royce is able to monitor these highly popular jet engines 

through their Engine Health Monitoring (EHM) system. Naturally one would expect a 

highly detailed range of transducers to be installed on such a safety critical component 

of an aircraft however personal communication with Rolls Royce has shown that a 

RB119 engine uses only two accelerometers: one at the front (HP) and one at the rear 

(LP). The system also measures the shaft speed at the front and rear alongside the IP 

blade temperature, air speed and altitude of the aircraft. While there are other 

parameters measured from the aircraft itself, it is these parameters that are used for 

engine monitoring. The system segregates data by operating conditions such as climb, 

cruise and land to allow monitoring under different load conditions. 
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The twin-rotor Chinook helicopter uses a much greater number of 

accelerometers to monitor its two gearboxes however a similar strategy is carried out 

whereby data is only recorded during level flight, according to private communication 

from Qinetiq. 

The Rolls Royce example suggests that, given careful planning and research, the 

number of transducers required to monitor a relatively slow speed WT drive train may 

not need to be that high. However, while the monitoring of a reduced number of 

parameters would be preferable, there does not appear to be the required level of 

knowledge about the drive train available to decide the best places to monitor to 

achieve clear, reliable results. 

2.4.2 Defining a Direction for Development 

Based on observations of CM for the safety-critical Rolls Royce RB119 turbofan 

engine, it would seem that reducing the number of transducers required for CM of WTs 

should be an achievable goal. However, the success of the Rolls Royce Engine Health 

Monitoring system is likely to have derived from easily accessible information owned 

and worked upon within the Company itself. In the wind industry the availability of 

information could be one of the limiting factors to the development of CMSs. 

This data confidentiality appears to stem from the structure of the wind 

industry in that turbine operators rarely have access to any turbine CM data during the 

initial WT warranty period. It is also common that Operators cannot retrofit their own 

preferred monitoring systems to turbines until the turbine is out of the manufacturer’s 

warranty period. Both these issues stem from OEM concerns about their initial 

warranty being invalidated. This means that valuable data may never be accessible to 

the operator and, less likely still, to those researching CM. 

Despite this, some information can be gained from WT Operators about their 

preferred methods for CM. Discussion with Operators has suggested that existing 

systems are able to successfully monitor and diagnose drive train failures, although the 

best results are currently found amongst those Operators with CM expertise. 

Perhaps the most obvious direction for the development of CMSs is not to 

‘reinvent the wheel’ but to take existing systems and incorporate refined monitoring 

algorithms and techniques into them to increase the clarity of results and simplify or 

increase confidence in alarm signals generated. This concept is already visible in those 
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WT CMSs which have developed from other, vibration-based systems. The adaptation 

of analogue inputs to allow for oil debris particle counters, for example, demonstrates 

how new analysis methods can be incorporated into existing systems. The same may 

be true for many other transducers, for example current and voltage probes, which 

produce signals that are essentially composed of low frequency vibrations. 

In addition, the industry is already noting the importance of operational 

parameters, such as load, speed and wind speed, when monitoring WTs so techniques 

will begin to adapt further to include these signals within analysis techniques. This 

should lead to more reliable CM, diagnostics and alarm signals. 

Finally, possibly the most important development will be that of automating CM 

and diagnostic systems to reduce the management load resulting from operating large 

numbers of WTs. Some systems included in the survey are already able to do this to an 

extent and one system in particular, the SKF WindCon 3.0 system, will be discussed in 

Chapter 3. The impact of automated monitoring will be most significant for Operators 

with many wind farms and large numbers of turbines where manual data 

interpretation would be time consuming and costly. This point is further enhanced by 

the need for reliable monitoring offshore where availability is at a premium. 

 

2.5 Justifying Condition Monitoring of Wind Turbines 

CM of large rotating plant has been seen as essential for many years. However, 

there was initially little interest in the area as operators did not see the need for them 

to monitor their machines, largely because of difficulties in interpretation of data. The 

first edition of Condition Monitoring of Electrical Machines by Tavner and Penman [35] 

noted that advanced warning of developing faults would be desirable in order to allow 

maintenance staff “greater freedom to schedule outages” with the aim of reducing 

downtime and capital losses [35]. But, importantly, the text also highlights the need for 

justification for CM given the considerable expenditure required of the Operator for 

implementation. 

Tavner and Penman suggest that the monitoring of small electrical machines 

with outputs below 20kW is unlikely to be beneficial although it is also noted that 

monitoring even a small machine can be worthwhile where the loss of the machine will 

impact the performance of a larger system [35]. The text goes on to suggest that the 
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cost of lost output from a failed high merit turbogenerator could exceed £500k per day. 

Although the text does not include figures for the cost of monitoring itself, it seems 

clear that saving one day’s outage on a large turbogenerator, say 500MW, could easily 

cover the capital cost of a CMS. 

There is, of course, debate as to whether the monitoring of WTs is justified 

when we consider the capacity of a WT at 3MW compared to a turbogenerator at 

500MW. Despite the obvious importance of this question it does not appear that a 

publicly available study has been carried out to answer it. This is no doubt the result of 

data confidentiality within the industry and, as a result, it can be difficult to obtain 

exact figures. Below is a brief cost justification for WT CM based on discussion with a 

Supergen Wind industrial partner and, although exact figures could not be included, 

suitably realistic figures based on experience are used. 

Firstly, the example of a fossil or nuclear fired 500MW turbogenerator set was 

discussed using approximate figures. Assuming that the 500MW set is unavailable for 

24 hours, the operator could have lost the cost of 12,000MWh of energy sales. So, if the 

operator were earning, say, £30/MWh, an unplanned 24 hours outage would cost 

£360k in lost energy revenue. In this case the operator has used several SKF MasCon 

CMSs on turbogenerators, on which the SKF WindCon WT CMS is based. This system 

typically costs around £14k to install, including £7k for transducers and other 

installation costs. These figures suggest that this CMS could be paid for in as little as 1 

hour of saved downtime, provided the CMS can give prior warning of impending 

failure. In fact, for a 4 unit power station at 500MW per unit, the CMSs for all sets could 

still be paid for through the prevention of less than 5 hours unplanned downtime. It is 

quite clear that, even with approximate figures, CM of large plant is entirely justified 

through the reduction of even a small amount of unplanned downtime. 

Secondly, the same calculation for a 3MW WT is applied. The Operator is using 

the SKF WindCon system with an approximate installation cost of £14k and the cost of 

energy, including Renewable Obligation Certificates (ROCs) is assumed to be 

£60/MWh. In this case, despite the increased price for energy, a 24 hour stoppage will 

only cost the Operator £4.32k per day assuming 100% capacity factor. On this basis, a 

single CMS would take over 3 days downtime to pay itself back and this would be 

applied to each turbine with a monitoring system. Therefore, the cost of CM of WTs is 

not necessarily justified in terms of reduced downtime directly, especially once the 

actual capacity factors are considered. However, the Operator was able to give an 
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example of two gearbox faults experienced, one of which resulted in compete gearbox 

failure while the other was detected in advance through CM and only a bearing 

replacement was required. The cost of the replacement refurbished gearbox was 

approximately £170k without consideration of the cost of labour and, importantly, 

access equipment and downtime, both of which will be large to allow for the 

replacement gearbox lead time. This is compared to the cost of a planned bearing 

replacement at approximately £10k with low equipment costs and downtime, which 

can be kept down to a few hours. The overall saving from the detection of this fault at 

an early stage is consequently more than £170,000 once other costs are taken into 

consideration. Through the early detection of this fault, resulting in bearing rather than 

gearbox replacement, the Operator has paid for monitoring systems at £14k each on up 

to 12 turbines. 

Therefore, we can see that the cost of WT CM may not be justified by downtime 

prevention alone but is more than justified in terms of the cost of repair should a 

significant fault on a large subassembly go undetected. 

This point was further emphasised by Olivier Gaget of RES in a presentation at 

the Operation and Maintenance Forum in London, 2010 [36]. Figure 14 shows a 

comparison of maintenance costs of different WT subassemblies. There are two points 

to note from this figure. Firstly, for each subassembly the lost production cost is a small 

percentage of the overall cost. This is clearest for gearbox and generator faults. This 

follows from the Operator case study point above in that costs resulting from 

downtime directly do not necessarily justify CM. Secondly, however, Figure 14, also 

shows very clearly that maintenance costs are very high for certain subassemblies, 

although no actual cost values are given on the figure. In fact, for gearbox damage, the 

maintenance cost is nearly twenty times greater than the lost production cost. This is 

due to the long lead time for replacement gearboxes, their high capital cost and their 

high installation costs. This further enhances the need for early detection of faults 

through CM. We see similar results for the generator and yaw systems although in 

these cases the lost production costs increase to contribute about 20% of the total 

subassembly cost. 
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Figure 14: Comparison of unscheduled maintenance costs of certain wind turbine 

subassemblies [36] 

2.6 Conclusions 

This Chapter leads to a number of interesting conclusions about CM and its 

current standing within the wind industry. 

It is important to recognise the clear links between the traditionally separate 

areas of WT monitoring. SCADA systems have a clear and important role in the 

transmission of operational and health information for WTs although they themselves 

are not currently designed to provide detailed diagnostic information. 

There are a large number of CMSs currently available to operators, 

manufacturers and developers. The majority of these systems are developments of 

systems or concepts that have been widely used in other conventional rotating 

machine applications. In particular, vibration monitoring of drive trains has a large 

influence on the WT CM market due to the great amount of research that has been 

carried out and knowledge already gained. However, few of these systems have made 

the diagnostic link between monitoring signals and turbine operating conditions. 

Many of the systems are also based on the idea of installing many transducers 

on the WT drive train although it has been shown by Rolls Royce that it is possible to 

successfully monitor a complex machine using few transducers. 

It is apparent that WT CM is developing, as can be seen from the survey of 

monitoring systems where new technologies are encroaching on traditional methods. 

This suggests that the direction for research of CM should not be to ‘build from scratch’ 

but to develop or refine techniques to suit their new working environment. These 

techniques could then be incorporated into successful existing systems to enhance 
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their capabilities and above all, increase the accuracy and user confidence in alarm 

signals. 

Finally, the financial case for CM has been explored. Although it is difficult to 

obtain exact cost figures, the conservative values obtained from discussion with an 

experienced Operator clearly indicate that WT CM is justified. It is important to note 

that its justification does not lie in the saving of downtime directly, as was the case for 

fossil and nuclear-fired units, but in the saving of maintenance costs through 

prevention of serious failure. Undetected faults in WTs lead to large maintenance costs 

which are further compounded by downtime. In particular, it should be mentioned that 

these figures were given for an onshore WT. If CM onshore can be justified through the 

detection of a single gearbox fault, offshore it will be essential. Onshore the operation 

and maintenance activities account for around 15% of the energy price rising to double 

that offshore, around 30%, of the energy cost [37]. A study of UK round one offshore 

wind farms [38] has, however, shown a lower cost for operation and maintenance 

varying between 12% and 22% of the cost of energy depending on the wind farm and 

its operator. However, on average, this is still higher than costs onshore. 

Effective CM will be essential to reduce this large, restricting figure. 

We can now clearly state that CM of WTs is a worthwhile endeavour and 

discussion with Operators and monitoring companies has suggested that it is also 

widely successful. However, much of the success lies in the ability of expert monitoring 

engineers rather than in the systems directly. Chapter 3 will show case studies of CM 

based on the experience of a large WT Operator with a wide experience of CM of 

rotating machines. 
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3 A Case Study of Wind Farm 

Condition Monitoring 

“Faults and defects every work of man must have” 

Samuel Johnson 

English critic and writer 

In this Chapter an example of CM applied to a specific wind farm is presented to 

give a view of the current state of the art in WT CM. The Chapter aims to present an 

overview of how CM could be applied practically, the structure required and examples 

of faults that have been successfully detected by WT Operations Staff. 

3.1 Introduction 

During this research there has been a significant degree of industrial 

interaction with links being built between Universities, WT Owner Operators, 

Operations Staff and consultants through the Supergen Wind Energy Technologies 

Consortium. 

As a result of this interaction there has been the opportunity to examine how 

the process of CM is carried out in an industrial environment. In this case the Owner 

Operator does not monitor the turbines directly but subcontracts to their Operations 

Staff or Operations Group where a team of experienced CM engineers manages the 

monitoring strategy. 

While data and information confidentiality must be maintained, this Chapter 

discusses in as much detail as possible points relating to the practical application of 

CMSs in the field. In particular it describes the system and measurement configuration 

used by a particular Operations Group alongside their fault detection successes. The 

results presented were extracted by the author based on discussion with the 

Operations Group. The difficulties of CM are also discussed as appropriate to the 

available results and conclusions drawn about the success and future direction of CM in 

the field. 
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3.1.1 The Wind Farm 

The Owner Operator who provided the information used in this study operates 

a number of wind farms across the UK and, consequently, a wide range of turbine types 

and configurations. The WTs featured in this study are rated at 1.3MW and are of 

conventional two-speed, stall-regulated design. The two-speed squirrel cage induction 

generator configuration allows the turbine to operate at either 1500rpm or 1000rpm, 

4-pole and 6-pole respectively. The shaft speed is controlled through active stall, 

pitching the blades to maintain an approximately constant shaft speed at the selected 

generator synchronous speed. 

For confidentiality no additional description is given here of the finer details of 

the turbines under study however they were chosen due to the presence of a number 

of different faults therefore offering a range of results for presentation. 

3.1.2 Selecting a Condition Monitoring System 

The turbines themselves have been in operation for over 5 years however CMSs 

were not commissioned until a later date after the warranty had expired. Before 

beginning their monitoring campaign, around four years ago, the Operations Group 

carried out an internal study to establish the CMS best suited to their needs, defining 

their own requirements, beginning from the decision of whether hand-held or 

permanent monitoring was the best route forward. It was concluded that permanent 

monitoring was required given the access issues with large WTs, immediately 

indicating the Group’s understanding of the challenges of remote monitoring of plant 

and WTs in particular. This decision appears also to have been based on their 

experience in monitoring pumps and drives in other inaccessible locations. 

The study also examined those faults that had previously been experienced on 

the Owner Operator’s WT fleet which formed the basis for the selection of an 

appropriate monitoring system, with specific analysis requirements in mind. The 

required analysis methods were primarily based on the Operations Group’s experience 

in fault diagnosis for conventional rotating machines. The range of faults that had been 

experienced on turbines was considerable, largely as a result of the number of different 

turbine configurations represented within the fleet. Faults included blade damage due 

to lightning strikes; blade cracking or imbalance; main bearing damage; and generator 

faults in bearings or rotor bars. 
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As a result of the initial survey of fifteen CMSs, the Owner Operator and 

Operations Group selected two systems for trial and tested them for a period in the 

field. Both the SKF WindCon and its rival were based on vibration monitoring and 

following the trial period a number of points led the Owner Operator to select the SKF 

WindCon system over the other option. One point of particular interest is the number 

of available channels on the two systems. The SKF has 16 analogue channels compared 

to the alternative, which had 8. The Operations Group in fact stated that 8 analogue 

channels was sufficient to monitor most WTs however it was felt that some turbines in 

the fleet may require a larger number of channels due to their configurations. This 

careful selection means that the Owner Operator is able to implement the same system 

across its WT fleet, potentially simplifying the monitoring strategy. 

It was also felt that the SKF WindCon system had superior functionality when 

compared to the alternative. The superiority came chiefly in terms of the alarm signals 

generated by the two systems, in that the SKF system has individual alarm logs for each 

channel and each alarm can be set quickly and easily. Additionally, the Operations 

Group had successful operational experience with the SKF MasCon monitoring system 

from which WindCon was derived. 

Following the period of testing and selection the SKF WindCon CMS was 

retrofitted to number of wind farms. Overall it was felt that of the two systems trialled, 

the SKF WindCon system met the requirements of the Operations Group to a greater 

degree than did the alternative. 

3.2 Monitoring Configuration 

3.2.1 Transducers and Physical Channels 

The SKF WindCon hardware has 16 analogue and 2 digital inputs. For operation 

and analysis purposes the system requires that a pulsed speed signal be applied to one 

of the digital inputs as a reference signal for other measurements and as a trigger for 

Fourier transform analysis. In this example two speed signals are recorded, one from 

the generator shaft and one from the low speed shaft; 1 pulse/rev and 24 pulses/rev 

respectively. The operational measurements taken are: 

 Generator speed (rpm) (digital) 

 Low speed shaft speed (rpm) (digital) 
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 Load (kW) 

 Wind speed (m/s) 

The drive trains of WTs fitted with WindCon are instrumented with nine 

accelerometers in positions that are widely accepted between different WT CMSs as 

mentioned in §2.3. In detail, they are: 

 Main bearing, vertical 

 Main bearing, transverse 

 Main bearing, axial 

 Gearbox low speed shaft, transverse 

 Gearbox high speed shaft, vertical 

 Gearbox high speed shaft, transverse 

 Gearbox high speed shaft, axial 

 Generator drive end, transverse 

 Generator non-drive end, transverse 

The gearboxes are also instrumented with a Macom TechAlert 10 oil debris 

monitoring system. This transducer, shown in the survey in Appendix A, uses an 

inductive sensor to detect the presence and size of ferrous and non-ferrous particles, 

before the oil is filtered. A count output is provided for each type and size of particle to 

show the level of severity of the amount of debris in the lubrication oil. As a result, a 

large number of measurements are possible so in this case the SKF WindCon hardware 

has ten virtual channels connected for oil debris monitoring as shown below. The 

virtual channels, including cumulative particle count data, are transmitted digitally 

from the transducer to the WindCon unit via a Modbus interface. 

 Ferrous particles, 50-100µm 

 Ferrous particles, 100-200µm 

 Ferrous particles, 200-400µm 

 Ferrous particles, 400-800µm 

 Ferrous particles, > 800µm 

 Non-ferrous particles, 150-200µm 

 Non-ferrous particles, 200-400µm 

 Non-ferrous particles, 400-800µm 

 Non-ferrous particles, 800-1600µm 

 Non-ferrous particles, > 1600µm 
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Apart from the initial setting of a unit address, the SKF WindCon hardware is 

configured remotely. This gives the obvious advantage of being able to reconfigure 

systems without having to return to site, an important benefit for WTs in remote 

locations. The software used for configuration and analysis of the data is SKF ProCon 

and allows the user to access different WindCon units remotely as well as any other 

databases stored by the Operations Group. The operational structure of the SKF 

WindCon/ProCon system is shown in Figure 15. 

  

Figure 15: Schematic Diagram of SKF WindCon Monitoring based on [39] 

WindCon channels are configured via remote connection through a ProCon 

client. The user selects the required online unit from the list given in the ‘MasCon units’ 

dialogue (Figure 16), chooses to initiate either a digital or analogue channel and is 

presented with the relevant dialogue box. As an example, the configuration of an 

analogue vibration channel is given using the ‘Analogue Channel’ dialogue box shown in 

Figure 17. 
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Figure 16: 'MasCon units' configuration dialogue 

The ‘Analogue channel’ dialogue lists the available channels, that is those which 

are not already configured for the unit, and the user can then allocate their own 

channel name for clarity. The type of sensor is selected from a predefined list: 

 Acceleration (g) 

 Velocity (mm/s) 

 Displacement (µm) 

 TBU Temperature (°C) 

 Other 

The engineering units for each type of sensor are predefined as shown except 

for ‘Other’ where the user may define their own unit of measurement. Each channel can 

also provide a 4mA current feed to the transducer if required. 

Analogue channels have their own linear calibration, here called ‘Sensitivity’, 

which is manually defined. Now the channel configuration is complete but can be 

edited at any point, with the exception of changing the channel number. 
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Figure 17: 'Analogue channel' configuration dialogue 

A similar but simpler process is carried out for digital channels. Since the digital 

channels are generally used for speed measurement, all that has to be defined is the 

channel, name and number of pulses per revolution as shown in the digital channel 

configuration dialogue box shown in Figure 18. 

  

Figure 18: 'Speed/Digital channel' configuration dialogue 
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As mentioned, a digital speed signal is required by the WindCon system to 

trigger analysis within ProCon software, as all frequency analysis and diagnosis is 

reliant on the machine operating condition. For example, when setting up a vibration 

measurement point in ProCon the user is asked to specify the ‘active range’ of the 

measurement point in terms of speed, load and the allowable change in these during 

the measurement period. By allowing the user to set these limits for operating 

conditions under which measurements are recorded, the ProCon software aims to 

produce stationary, directly comparable Fast Fourier Transform (FFT) results to 

increase the accuracy and reliability of alarms and diagnoses. 

Having configured the hardware aspect of the system the user must now 

specify the measurements they wish to record and analyse. 

3.2.2 Measurement Hierarchy 

The ProCon measurement hierarchy is shown in Figure 19. 

  

Figure 19: ProCon measurement hierarchy 

This structure is particularly suited to operators with large numbers of 

turbines in different wind farms and also those with a varied portfolio of WT 

Company

Plant 1

Division 1

Machine 1

Machine 2

Division 2

Plant 2

Measurement Point 1

Measurement Point 2
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configuration or generation technologies, since the ProCon software is able to connect 

to all units on other plant reporting to the same database. In this example case the 

structure is broken down as given in Table 1. It should be noted that the user can also 

switch between any other connected databases as required. 

Hierarchy Position Example(s) 

Company Owner Operator / Company name 

Plant Geographic location 

Division 
Wind turbines / Turbo generators / 
Coal conveyers 

Machine Turbine 1 / Unit 1 

Measurement Point 
Gearbox high speed accelerometer / 
Ferrous oil debris 

Table 1: Example hierarchy items 

Once the core structure has been established it can be added to or edited at 

future dates using the configuration tool and without losing previous any measurement 

points or data. 

Before the user progresses to the ‘measurement point’ level it is worth 

considering carefully what data and analyses are required to successfully monitor the 

WT. In this example the number of ProCon (software) measurement points is more 

than double the number of transducers fitted to the turbine as multiple ProCon 

measurement points can be requested from each physical or virtual channel on a 

WindCon unit. 

3.2.3 Measurement Configuration 

The Operations Group featured in this study has particular experience in 

monitoring of conventional rotating machinery in the power generation sector and as 

such had a clear view of what measurements they required for successful WT CM and 

fault diagnosis. 
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Initial ‘operational’ measurement points configured were generator speed, 

turbine speed, load and wind speed. These are configured by selecting either the 

‘Speed’ or ‘Process’ measurement point, both of which have similar settings. Firstly the 

user configures the channels settings for a measurements point. The load measurement 

settings are given as an example in Figure 20 with the turbine location and number 

removed for confidentiality. 

Here the Operations Staff chose to take a simultaneous measurements for wind 

speed as this allows direct comparison without concern for timestamp errors between 

channels. Each measurement point is allocated a specific point number to distinguish it 

from the same measurement made on a different turbine. Next, the user configures 

‘trend’ settings for the measurement point. Figure 21 shows the ‘trend’ settings for the 

load measurement point. It can be seen that the Operations Group is requesting the 

maximum value within a 30 second sampling period and that data is to be recorded 

continuously as opposed to measurement only when turbine operating conditions 

match a defined ‘active range’. This process is carried out for each speed or process 

measurement and each can be reconfigured by reopening the dialogue at a later date. 

Upon leaving the dialogue, the settings are transmitted to the relevant WindCon unit 

and data acquisition can begin. 

 

Figure 20: Load measurement settings - 'General' tab 

Wind Farm and Turbine Number

(Plant \ Division \ Machine
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Figure 21: Load measurement settings - 'Trend' tab 

Once the speed and load measurement points are defined the Operations Staff 

can configure vibration measurement points. The general settings are configured in 

much the same manner, with simultaneous measurements being recorded for 

generator speed and load and taken continuously rather than in a specific ‘active 

range’. 

However, the particular difference when configuring vibration channels is in 

the spectral analysis settings. An example of vibration spectral analysis settings for the 

gearbox high speed shaft, transverse, overall vibration measurement point is 

illustrated in Figure 22. 

The Operations Group is able to set the frequency range required as well as the 

lower frequency limit and recording interval. The measurement time and frequency 

resolution are calculated by the ProCon software based on the other settings selected 

by the Operator. 

The Operations Group’s understanding of CM of variable speed and load 

machines is visible from the ‘active range’ settings for the vibration spectra. In this case 

a spectrum will only be recorded within a speed range of 1490-1550rpm and if the 

speed varies by no more than 5rpm during the measurement time. If these conditions 

are not met the spectrum is discarded by the WindCon unit. The selected configuration 

(Plant \ Division \ Machine
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means that no spectra are recorded when the generator is running as a 6-pole machine. 

Furthermore, the turbine load must be within the range 1290-1500kW and vary by no 

more than 5kW. By setting these tight limits on the conditions under which spectra are 

sampled the Operations Staff can be confident that they are observing directly 

comparable, stationary spectra. In addition to this, spectral analysis is carried out using 

the FFT, a requirement of which is to have a stationary input signal. If the active range 

is too wide, a non-stationary signal will be presented for analysis causing spectral 

peaks to become smeared and indistinct, making interpretation difficult. 

 

Figure 22: Vibration measurement settings - 'Spectra' tab 

During discussions with the Operations Group it became apparent that the use 

of signal enveloping is of great importance in conventional rotating machine CM. It is of 

particular interest for the detection of faults with impulsive characteristics. Bearing 

faults, for example, produce very short impulses in the times domain with a 

comparatively lengthy interval between impulses [40]. The impulsive feature has very 

low energy, distributed across a wide frequency range, making detection difficult 

against the noisy spectrum generated by multiple bearings, gears and shaft speeds. 

More detailed information on vibration analysis and envelope spectra can be found in 

[40]. 

(Plant \ Division \ Machine
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In this case, the Operations Group has an enveloped measurement point for 

each vibration transducer as well as an overall point. For reference, a typical envelope 

range used by the Operations Group for gearbox vibration enveloping is 0.5-1kHz. 

Setting envelope frequency ranges is a task for experienced vibration monitoring 

engineers and some of the issues associated with it are discussed in [41], where a 

detailed review of vibration monitoring methods is given. 

The envelope measurement points are configured in much the same way as the 

overall vibration except that an additional setting is required to specify the envelope 

frequency range. Just as for the trend measurement points, generator speed and load 

are recorded simultaneously. 

Finally, the gearbox lubrication oil debris measurement points are considered. 

The settings for these are much simpler than those for vibration signals due to the 

discrete nature of the measurements. Two different measurements are taken for the 

debris in oil. The first is the cumulative count of both ferrous and non ferrous particles 

in each particle size ‘bin’ and the second is the count rate per hour. The count rate gives 

the rate at which particles are being generated although it does not in itself take 

account of the loading condition of the turbine. The cumulative particle count records 

the turbine load simultaneously. 

While more measurement point types are possible within the WindCon/ProCon 

system, they are not described here as they were not used in the following examples. 

3.2.4 Diagnosis Configuration 

For even the most experienced CM engineer, vibration spectra can be complex 

and difficult to interpret. A WT gearbox comprising three or more shafts contains 

several rolling element bearings, each contributing many frequency components to 

vibration signals. With the addition of meshing frequencies from multiple gear stages, 

the spectrum soon becomes difficult for both interpretation and diagnosis purposes. 

To deal with this, the SKF ProCon software features a machine diagram 

function. The diagram, an example section being shown in Figure 23, is built up as a 

block diagram with blocks for shafts, bearings, gears and blades. The components are 

then specified for each turbine or type of turbine; setting gear tooth number, for 

example. The software contains a large database of known bearings from major 

manufacturers so detailed, exact bearing specifications can be attached to each 
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individual bearing. However, should a bearing not be listed in the library, the 

Operations Group can insert outer race, inner race, roller and cage dimensions 

manually. 

Once the machine diagram is complete, the ProCon software is able to calculate 

fault frequencies for an given speed point. This means that for a given spectrum, the 

frequency signature of each component can be identified by selecting it from a menu of 

all possible components in the machine diagram and deployed on the FFT spectrum as 

a cursor. The user is also able to select an unidentified peak in the spectrum and data 

from the ProCon machine diagram will show whether it is a known frequency of 

interest, a harmonic or unknown. As a result, the Operations Staff, however 

inexperienced, have a much improved ability to understand vibration spectra from the 

complex drive train. 

 

Figure 23: Example section from an SKF ProCon machine diagram including the 

main features of a wind turbine drive train 

Once the machine diagram is complete, the Operations Staff can configure 

individual alarm settings for each measurement point. 
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The basic alarm setting for a measurement point consists of two levels: a 

warning and an alarm for the vibration level within a given frequency range, specified 

by the Operations Staff. If either level is exceeded, the relevant warning or alarm is 

triggered. These alarms are based on experience of acceptable vibration and can be 

easily adjusted to suit each turbine. There are no standardised vibration limits for 

machines however some Groups may refer to standards such as the German standard 

VDI 2056 [42] (no longer issued) or the more up to date ISO 10816-1:1995 [43]. 

The alarms can be used to give an overall picture of the health of a turbine or 

component but do not necessarily indicate the exact location of a fault, due to their 

general nature. In order to speed up the diagnostic process, alarms can be set based on 

the fault frequencies for different components within the drive train. 

Figure 24 shows detailed diagnostic settings from ProCon for the gearbox high 

speed shaft, transverse, overall vibration measurement point. 

Each item in the list refers to a component-specific, speed dependent fault 

frequency as derived from the machine diagram. An individual diagnostic list can be 

created for each overall or enveloped vibration measurement. When a spectrum is 

recorded, the amplitude of each chosen frequency is automatically extracted and 

plotted with respect to time. These frequency-specific graphs, for example Figure 25, 

can be opened by the Operations Group and the trend with time observed more simply 

than the alternative of manually inspecting each spectrum. It can be seen from Figure 

24 that the Operations Group has set warning and alarm levels for each fault frequency 

on the diagnostic list. The alarm is activated if its level is exceeded by the amplitude of 

the fault frequency in question, such as the final data point in Figure 25. By careful 

selection of fault frequencies and alarm levels the Operator is able to gain effective 

diagnostic information in a semi-automatic fashion. 
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Figure 24: Vibration measurement settings - 'Diagnoses' tab 

 

Figure 25: Example diagnostic plot - gearbox intermediate shaft bearing 

envelope 
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Figure 26: Two spectra contributing to the diagnostic plot, Figure 25. The 

component extracted to produce the diagnostic plot is labelled (a) early in fault 

development and (b) as fault severity increased. 

Enlarged trend and spectral figures from this Chapter are given in Appendix B. 

3.2.5 Data Communication 

Communication with the SKF WindCon units is managed through a GPRS 

modem transmitting back to the Operations Group’s central database. Little is known 

about the communication network however it is understood that there have been few 

issues with using GPRS communication. A particular point to note is the cost of data 

transmission. It would be expected that using GPRS transmission would be an 

expensive means of data communication however the SKF system requires the 

transmission of remarkably little data. This is a result of the structure of the WindCon 

system where data acquisition and analysis are carried out in the WindCon unit itself 

and only the resulting trend and spectral data are transmitted rather than lengthy 

sections of raw data. These results can be transmitted in packets whereas a raw data 

stream would require a significant bandwidth, especially where large numbers of 

signals and turbines are monitored. Therefore, GPRS data transmission has proved cost 

effective and successful. 
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3.3 Results 

Having discussed the configuration and overall structure of WindCon for WT 

CM in the field, a selection of CM results are now given from the field. The examples 

included here are detections made by the Operations Group for gearbox and generator 

bearing faults on operational WTs. The author extracted and collated these results in 

discussion with the Operations Group. 

3.3.1 Turbine X Gearbox Bearing Damage 

During autumn 2008, one WT, here called Turbine X, was shut down for 

maintenance on the basis of a report from the Operations Group. A number of different 

indicators of damage were visible in data from the SKF WindCon system installed on 

Turbine X and a combination of these signals allowed a confident decision to be made 

with regard to shutting down the turbine. 

The first indication of some form of gearbox damage came from an enveloped 

signal from the axial vibration transducer mounted on the high speed shaft end of the 

gearbox casing. Its envelope amplitude is plotted with time in Figure 27. 

From Figure 27 a clear rise in the amplitude of the vibration envelope can be 

seen in the period leading up to point ‘A’. This trend suggested to the Operations Staff 

that the gearbox required further investigation. In fact, the Group observed this trend 

some time before this data set begins however this data was unavailable for this thesis. 

After point ‘A’ there was a drop in the vibration envelope level, an explanation of which 

will be included later. 

The upwards vibration trend prompted the Operations Group to examine the 

gearbox oil debris particle counts recorded by the WindCon system. Figure 28 shows 

the cumulative count for ferrous particles within the 50µm – 100µm range. In the 

period to point ‘A’ the particle generation rate remains fairly constant, the large step 

down being a reset point for the transducer. However, in the period between points ‘A’ 

and ‘B’ there is an increase in the particle generation rate. This change is also visible in 

the count of larger particles such as the 400µm – 800µm bin shown in Figure 29, 

suggesting significant damage causing material breakout. 
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Figure 27: Turbine X gearbox high speed shaft axial vibration envelope 

 

Figure 28: Turbine X ferrous 50-100µm particle count 

 

Figure 29: Turbine X ferrous 400-800µm particle count 
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By comparing the vibration and particle trends the Operations Group 

concluded that the increase in vibration envelope was a result of ferrous material 

breaking away from a gearbox component. The Group was also able to make an initial 

observation on the extent of gearbox damage. As has been observed, the magnitude of 

the gearbox axial vibration envelope decreased during the period ‘A’ to ‘B’, 

corresponding to an increase in the count rate for both small and large ferrous 

particles. They concluded that this combination of trends suggested a serious 

deterioration of the vibration transmission path between the faulty component and the 

gear case and, therefore, significant deterioration of the component itself. 

However, the trend data presented does not in itself provide exact location 

information for the fault, except that it is within the gearbox of Turbine X. In order to 

establish the root cause of the trend, the Operations Group examined the enveloped 

axial vibration spectrum to identify fault-specific frequency components. 

At the start of this data set, before point ‘A’, the enveloped axial vibration 

spectrum was as shown in Figure 30. The first major harmonic component corresponds 

to the gearbox, intermediate shaft, generator side, inner race ball passing frequency as 

calculated by the ProCon software using the machine diagram. The frequency 

component is clearly present however the Operations Staff would not necessarily be 

able to confirm a fault based on this spectrum alone. However, Figure 31 shows the 

same spectrum but recorded at the peak enveloped axial vibration, around point ‘A’. 

The fault frequency is now more pronounced with high magnitude harmonic 

components indicated in Figure 31(a). To avoid overcrowding the figure, the same 

spectrum is shown in Figure 31(b) with sideband cursors applied to the third harmonic 

of the fault frequency for clarity. With the combination of a clear component-related 

fault frequency, its high magnitude harmonic components and significant sidebands 

around each harmonic, the Operations Group was able to confirm that Turbine X had 

damage to the inner race of the gearbox, generator-end, intermediate shaft bearing. 

As a result of this detection, Maintenance Management shut down the turbine 

to replace the damaged bearing and carry out an inspection to confirm the diagnosis. 

Figure 32 is a photograph taken by the Maintenance Staff of the damaged bearing to 

show the extent of the damage. As can be seen, the inner race shows signs of 

asymmetrical loading leading to spalling of material from the race surface.  
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Figure 30: Turbine X enveloped gearbox high speed shaft axial vibration 

spectrum early in fault development, before point ‘A’ 

 

Figure 31: Turbine X enveloped gearbox high speed shaft axial vibration 

spectrum at peak enveloped vibration level, around point ‘A’ showing four 

bearing cursors: (a) labelled to show harmonics; (b) labelled to show sidebands 
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Figure 32: Turbine X intermediate shaft bearing inner race under inspection 

following its replacement 

 

Figure 33: Turbine X enveloped gearbox high speed shaft axial vibration 

spectrum after bearing replacement 

Having replaced the bearing, the enveloped axial vibration dropped 

significantly, as can be seen from the period after point ‘C’ in Figure 27. Figure 33 

shows a spectrum of the same enveloped vibration signal but following the bearing 

replacement, using the same scales for clarity. By examining the magnitude of the 

component-related fault frequencies marked on the figure it is clear that healthy levels 

of vibration have been restored and the fault is clear. However, another peak is now 

visible, possibly indicating a fault with a different component, and there is a continuing 
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increase is small debris production, probably due to the running in of the new bearing, 

although this is not investigated in this thesis. 

3.3.2 Turbine Y Gearbox Bearing Damage 

Around the same time as signs of an intermediate bearing fault were found for 

Turbine X, similar conditions, although less severe, were noticed on a second turbine, 

Turbine Y, at the same wind farm. 

It can be seen from comparing Figure 34 for Turbine Y and Figure 27 for 

Turbine X that, prior to a communication fault, Turbine Y was showing similar levels in 

the axial vibration envelope. Once communication to the Turbine Y WindCon unit was 

restored it was clear that the turbine was following a very similar vibration trend. 

 

Figure 34: Turbine Y gearbox high speed shaft axial vibration envelope 

 

Figure 35: Turbine Y ferrous 50-100µm particle count 
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Figure 36: Turbine Y ferrous 400-800µm particle count 

In this case the change in ferrous 50µm – 100µm oil debris count rate, Figure 

35, was less clear than that for Turbine X however, when the Operations Group 

examined the counts for larger particles, for example the 400µm – 800µm count shown 

in Figure 36, it was clear that a large number of particles were being generated. 

To confirm the diagnosis the Operations Group examined the enveloped axial 

vibration spectrum for fault-related harmonics to see how Turbine Y compared with 

Turbine X. The spectrum early in fault development is shown in Figure 37 and signs of 

an intermediate bearing inner race defect are already becoming apparent, the first 

harmonic being similar in magnitude to that early in fault development on Turbine X, 

Figure 30. Looking at Figure 38 recorded just prior to the bearing being replaced, it is 

clear that the diagnosis is correct. In particular, it can be seen that the harmonic 

content of the spectrum is very similar to that for Turbine X, Figure 31, except that the 

fault frequency and its harmonics are consistently lower in magnitude. As for Turbine 

X, Figure 38(a) and Figure 38(b) show the same spectrum with harmonics and 

sidebands respectively to avoid overcrowding the figure. This suggests that the 

Operations Group had been able to make the diagnosis at an earlier stage in Turbine Y 

and this can be seen from photographs taken of the two replaced bearings. Figure 

39(a) and Figure 39(b) show the Turbine X and Turbine Y bearings respectively 

showing clearly that Operations Group made the Turbine Y diagnosis at an earlier stage 

in fault development. 
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Figure 37: Turbine Y enveloped gearbox high speed shaft axial vibration 

spectrum early in fault development 

 

Figure 38: Turbine Y enveloped gearbox high speed shaft axial vibration 

spectrum at peak enveloped vibration level, around point ‘A’ showing four 

bearing cursors: (a) labelled to show harmonics; (b) labelled to show sidebands 
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Figure 39: Damaged intermediate shaft bearing inner races of (a) Turbine X and 

(b) Turbine Y 

3.3.3 Turbine Z Generator Bearing Damage 

Early in the monitoring campaign Operations Staff noticed that the enveloped 

vibration level of the generator non-drive end bearing of Turbine Z at the same wind 

farm was significantly higher than that for other turbines of the same type. Figure 40 

and Figure 41 show two non-drive end, transverse envelope vibration signals from 

Turbine Z and Turbine X respectively. The Group decided that although the envelope 

vibration was much higher on Turbine Z, it was not changing and therefore any bearing 

fault was not worsening with time. However, the Operations Group decided to examine 

the signal in more detail to establish the extent of any fault present. 

 

Figure 40: Turbine Z generator non-drive end bearing transverse vibration 

envelope 
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Figure 41: Turbine X generator non-drive end bearing transverse vibration 

envelope 

The Operations Group examined Turbine Z vibration spectra to compare with 

Turbine X. Figure 42(a) shows the Turbine Z spectrum of enveloped generator non-

drive end vibration. By including the cursors for the generator non-drive end bearing it 

can be seen that bearing inner race ball passing frequency and its harmonics are clearly 

defined suggesting an inner race defect. However, the outer race component is also 

visible, as are its harmonics which are shown in Figure 42(b). When compared against 

a spectrum from the healthy Turbine X, Figure 43, it is clear that a bearing fault is 

present on Turbine Z as harmonic amplitudes in Figure 42 are much higher than 

Turbine X, where components were barely visible. 

On this basis Maintenance Management took the decision to change both the 

generator non-drive and drive end bearings on Turbine Z as a precaution against 

further damage. The result of this is clear in the time and frequency domains, Figure 40 

and Figure 44 respectively. The decision to change both bearings was taken as similar 

characteristics were visible at both ends of the generator and because the two sets of 

fault frequency cursors align, due to the bearing type and generator speed being the 

same for both. 

Unfortunately no photograph was available to show the extent of the bearing 

damage. 
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Figure 42: Turbine Z enveloped generator non drive end bearing transverse 

vibration spectrum at peak enveloped vibration level, showing four bearing 

cursors: (a) labelled to show harmonics; (b) labelled to show sidebands 

 

Figure 43: Turbine X enveloped generator non drive end bearing transverse 

vibration spectrum - healthy machine 

a) Turbine Z spectrum with 
harmonics for an inner race defect

b) Turbine Z spectrum with 
harmonics for an outer race defect
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Figure 44: Turbine Z enveloped generator non drive end bearing transverse 

vibration spectrum following bearing replacement 

3.4 Discussion 

Having spent time in discussion with the Operations Group and given the 

example results shown here it is clear that practical CM of WTs is a viable and 

successful endeavour. 

The Operations Group has, to date, had a positive experience in using the SKF 

WindCon system in the field and this appears to be for several reasons. 

Firstly, the usefulness of the ProCon machine diagram. Since a WT is a complex 

drive train with two or three gearbox stages, slow, intermediate and high speed shafts 

and many different bearings, the resulting spectra from FFT analysis can be very 

complex, such as those in Figure 31 or Figure 38. The cursors produced by the machine 

diagram allow Operations Staff to pick out and identify harmonics within the spectra 

and relate them quickly and easily to the components which have generated them. 

Secondly, the Operations Group’s experience from other types of rotating 

machinery appears to be of great importance in that there is prior understanding of 

what measurement channels should be configured to allow for successful fault 

diagnosis. 

Furthermore, the Operations Group has a clear understanding of healthy 

vibration levels and the need for comparison between machines of similar types. This 

is borne out by the Turbine Z generator bearing fault where the vibration level had not 
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changed but the observation that the vibration level was higher than for other 

machines prompted further investigation. While this may seem like a simple point it is 

unlikely that an inexperienced operator would notice such an indicator when operating 

a large number of turbines, particularly if alarm levels are configured automatically. 

However, this raises an important point, which is that much of this work still 

has to be carried out manually by experienced monitoring engineers in order to gain 

confidence in a result. In each of the cases given in this Chapter, the faults were 

investigated manually, albeit following an alarm signal. However, if this operation is 

carried out each day on an increasingly large WT population, the resulting man-power 

costs will be inappropriate to justify WT CM. This point will be further exaggerated 

when considering large, offshore development where maintenance decisions will need 

to be made on the basis of very confident diagnoses in order to avoid large access and 

maintenance costs for unnecessary visits. In this case an increasing degree of 

automation is vital to reduce false alarms and increase confidence. There is also the 

issue of variable speed and load included in this point where alarm levels are not 

related to turbine operating condition. An example of this issue can be seen in Figure 

25 where the diagnosis figure was very noisy and confidence may not be given that the 

signal has crossed an alarm threshold as a result of the presence of a fault or changes in 

operating condition. In this case, the fault was real however only further investigation 

was able to confirm it. 

In conclusion, it can be said that WT CM has proved successful in the field when 

applied by an Operations Group of experienced CM engineers given the examples 

presented here, as faults have been detected and major failures avoided. However, it 

seems clear that manual analysis still holds an important role for successful detection 

while alarms cannot be relied upon with any great confidence. Increasing confidence in 

alarm signals in this noisy variable speed, variable load environment is the key to the 

future success of WT CM, particularly with the increasing number of turbines in need of 

monitoring and their installation offshore. 

The author has therefore identified this as an area where research must be 

carried out to develop methods to successfully analyse non-stationary, variable speed 

and load signals generated by WTs. This is one of the focus points of the work 

presented in this thesis. 
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3.5 Time-Domain Analysis using Operational Signals 

As has been mentioned, the results of analysis depend upon the careful 

consideration of operational parameters such as generator speed, wind speed or load. 

This study of the importance of multi-parameter analysis and consideration of 

operational parameters was carried out after the event on time domain data from the 

Operator’s SKF WindCon system. A summary of the work is given here and more 

detailed information can be found in [44]. 

Since a WT is a variable load machine with loading almost entirely dependent 

on wind conditions, it is logical that signals such as oil debris particle count are unlikely 

to be directly related to time. For example, high load conditions over a short period 

would cause a step increase in the particle count rate at a given point in time while low 

loading or periods of no generation appear as periods of no particle generation in time. 

This may make time domain figures difficult to interpret as steps at high load may be 

read as gearbox faults causing increased particle generation. 

An example of this, taken from [44], uses ferrous particle count data from an 

operational WT gearbox and gearbox enveloped high speed end axial vibration. 

When plotted in the time domain, Figure 45, the particle count did not yield 

much in terms of a change to indicate a fault. However, following the event it is known 

that a gearbox intermediate shaft bearing fault had occurred, as depicted in Figure 32. 

When the debris count was plotted against the energy generated by the turbine, 

changes in the rate of generation of particles, the gradient, were much more visible and 

the figure shows a steady increase in the rate of particle generation in region ‘B’ 

compared to region ‘A’. 

It is clear that on its own this figure does not give the Operator grounds to carry 

out an inspection as it is a single signal. The author proposed that comparison between 

signals may produce a more conclusive result. As such, the gearbox axial enveloped 

high speed end vibration signals was plotted against energy generated in MWh, Figure 

46. 

Again, despite the changes occurring in the enveloped vibration signal, the 

Operator couldn’t be certain that a fault was present as the signal was not being 

compared with another, independent signal. 
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Figure 45: Gearbox oil debris particle count for ferrous 50-100μm particles in 

the gearbox of an operational wind turbine against energy generated 

 

Figure 46: Gearbox high speed end enveloped axial vibration signal for the 

gearbox of an operational wind turbine against energy generated 

If Figure 45 and Figure 46 are compared, it is apparent that the two 

independent signals are experiencing changes at the same position in the energy scale. 

During period ‘A’ there is a steady increase in particle count coupled with an increase 

in vibration. As the turbine energy passes into region ‘B’, the particle count rate began 

to rise, corresponding with a marked change in the vibration as it begins to decrease. 

The Operator’s knowledge of bearings suggested that the reduction in vibration was a 

result of breakdown of the vibration transmission path due to material breakout, also 

explaining the increase in particle generation rate. 
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The gearbox bearing was inspected and replaced at point ‘X’ in the energy 

domain and a pronounced drop in vibration is seen in Figure 46. The particle count 

rate continues to rise for a period after bearing replacement as the new bearing took 

time to settle and break-in, continuing to generate particles for a short time. 

This study, while brief, indicates the useful nature of multi-parameter 

monitoring of machines in terms of comparison of signals and analysis against 

operational parameters such as turbine load. 
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4 Experimental and Analytical 

Tools 

“The true method of knowledge is experiment.” 

William Blake 

1757 - 1827 

In previous Chapters the difficulties involved in CM in the field have been 

noted. This is not an issue that can be easily resolved as the opportunities for testing 

large machines of several megawatts capacity are limited due to the scale of the test rig 

required. The work in this thesis is, as a result, carried out on a small scale test rig at 

Durham University. 

The CM Test Rig at Durham has been developed over several years, initially as a 

test bed for slow speed rotating machines. It’s conversion to a variable speed CM test 

rig for WTs was initiated by Michael Wilkinson, as part of his EngD research, and is 

described in [45] where a permanent magnet generator [46][47] was used and, later, 

an induction machine [45]. As part of the work presented in this thesis, the test rig was 

substantially modified by the author to reflect the increased volume of knowledge on 

CM. The test rig in its current form is described briefly in several publications including 

[48], [49] and [50], however this Chapter will describe in detail the current machines 

configuration, transducers, data acquisition and control systems including the 

improvements which have been made. A full specification of the test rig is given in 

Appendix D. 

The Chapter firstly discusses the reasons for and origins of the test rig, going on 

to briefly describe its original configuration. Secondly, the current test rig configuration 

is described in detail including the machines and components as well as 

instrumentation and signal conditioning hardware. As has been previously mentioned, 

a modern, large WT is a variable speed, variable load machine and so the appropriate 

driving conditions derived from a detailed WT model are presented. Finally, the data 

acquisition and control systems are described to give a complete picture of the test rig, 

its function and its operation. 
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4.1 Introduction 

4.1.1 Justification 

There are significant issues associated with experimental research on 

operational WTs, largely as a result of constraints from OEMs . 

As has been briefly mentioned in Chapter 2, WT OEMs are reluctant to allow 

Owner Operators to fit their own CMSs to turbines during the warranty period. This is 

primarily because the OEM is responsible for monitoring and maintenance of the 

turbine during this period and wishes to have a CMS which is developed with and 

approved by them. There is also a degree of confidentiality with regard to any failures 

occurring during the warranty period that influences their decision. It is clear from this 

position on commercial CMSs that the installation of non-commercial, bespoke data 

acquisition hardware on a turbine within its warranty is not recommended. 

Following the warranty period CM responsibilities will fall to the Owner 

Operator, unless they sub-contract the work to a specialist monitoring body. In this 

case there are still confidentiality issues associated with data collection and analysis as 

an Owner Operator is unlikely to want information on failures or downtime to be 

widely known to their competitors. 

However, in the event that an Owner Operator allows the installation of a data 

acquisition system for research, there is the major issue of accessibility given that 

many new, large turbines are situated in remote locations. This is likely to be an issue 

where large volumes of high frequency data are being recorded and cannot easily be 

transmitted via a remote communications network. 

The final major restriction on experimental CM in the field is the certainty of 

obtaining useful data. If a system is installed on a single turbine it is likely to record 

large amounts of data during which no faults are present. In fact, there is a great risk 

that no faults will occur and the system will simply be overrun with data. 

The combined result of these issues makes the idea of experimental monitoring 

in the field a difficult and impractical task, however desirable it might appear. 

However, a bespoke data acquisition system has been designed and built by a Supergen 

Wind partner, Strathclyde University, with the aim of acquiring data from an 

operational WT. The system is installed on a Vestas V47, 660kW turbine at Scottish 
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Power’s Hare Hill wind farm in Scotland. As expected from the discussion above, the 

turbines are out of their warranty period, having been installed in 2000, and as a 

consequence are smaller machines than those currently being installed.  

The Durham test rig was conceived as a facility for the creation of signals 

comparable to those encountered on a WT where fault-like conditions could be 

implemented repeatedly and under controlled conditions. Then, algorithms could be 

developed using these fault-like conditions in the controllable laboratory environment. 

Confidence should then be increased when applying these algorithms to field data from 

operational WTs, reducing uncertainty and risk in applying CM techniques 

automatically in the field. 

4.1.2 Introduction to the Test Rig 

Figure 47 shows a schematic diagram of the CM test rig in its current 

configuration. 

 

Figure 47: Schematic diagram of the condition monitoring test rig 

The initial focus of this research was the design and implementation of a 

refined test rig for use throughout this thesis and it is this rig that is the focus here. The 

test rig was also implemented with an SKF WindCon 3.0 CMS for future comparison 

with industrial data and results. To give an idea of the physical size of the test rig, 
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Figure 48 shows two photographs of the test rig for comparison with the schematic 

diagram. 

 

Figure 48: Annotated photograph of the condition monitoring test rig 

A summary of the main test rig components is given in §4.2 to §4.4 and 

specifications of components are given in Appendix D. In summary, the test rig 

comprises a 4-pole, 30kW wound rotor induction generator driven through a 5:1 

gearbox by a 54kW DC motor. The speed of the driving motor is controlled through a 

variable speed drive, either manually or remotely using a National Instruments 

LabVIEW environment, allowing the test rig to be driven under either constant or 
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variable, transient conditions. The wound rotor induction generator can be 

synchronised with the grid through a contactor circuit. 

Signals from transducers positioned along the drive train are transmitted to 

two National Instruments data acquisition pads (DAQ pads) which are in turn 

connected by USB connection to the LabVIEW control and data acquisition 

environment. Certain signals, discussed later, are instrumented with signal 

conditioning circuitry in order to remove noise artefacts generated from the laboratory 

environment. All signals can also be connected to the SKF WindCon system. 

Fault-like conditions can be induced or removed from the drive train as 

required enabling several electrical and mechanical fault conditions to be emulated on 

demand. 

While the test rig is not by any means a replica of a WT drive train, it contains 

similar components and characteristics including low and high speed shafts, a gearbox, 

grid connection and flexible foundations. 

In essence, the test rig is designed to produce signals with characteristics 

similar to those encountered on operational WTs. 

4.2 Mechanical and Electrical Components 

The test rig drive train consists of a number of mechanical and electrical 

components which are described here to give a complete view of the drive train 

configuration. 

4.2.1 Induction Generator 

The generator used is a 4-pole, 30kW, wound rotor induction generator (WRIG) 

by Marelli Motori. The most favoured machine on modern WTs with ratings in excess 

of 1MW is currently the doubly-fed induction generator (DFIG) [51], which is based on 

the WRIG. However, it requires complex operation and control systems. In order to 

gain a good grounding in monitoring it is sensible to begin with a more simple machine 

layout and so the wound rotor machine is operated with a resistive load bank 

connected to the rotor circuit rather than as a fully controlled DFIG. 
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Figure 49: Generator rotor circuit diagram 

The rotor circuit of the WRIG is shown in Figure 49. There are two reasons for 

including rotor external resistors on the rotor circuit rather than shorting the rotor 

circuit and using the machine as a squirrel cage induction generator. 

Firstly, the external resistors allow the balanced phase resistance of the rotor 

to be increased. The rotor itself has a resistance on 0.06Ω per phase and as a result the 

possible slip speed variation is very small, given the limitations of the driving motor. A 

balanced rotor phase resistance of 1.3Ω is used throughout this thesis as this allows a 

super-synchronous speed variation of 100rpm (1500-1600rpm) before the driving DC 

motor armature current limit is reached. If was felt that a speed range of 100rpm was 

sufficient to allow realistic speed variation to challenge and test signal processing 

techniques. From Figure 49, the balanced rotor phase resistances are given by: 
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Secondly, the external resistors allow rotor electrical asymmetry to be 

introduced or removed as required for fault testing. Rotor electrical fault conditions 

used in this thesis are discussed in §6.1.1. 

4.2.2 Gearbox 

The gearbox is a Hansen two-stage, parallel shaft, helical unit with exact ratio 

4.9894:1 between input and output shafts, referred to as 5:1 for simplicity. Detailed 

information can be found in [52] and [53]. As shown in Figure 50, the high speed pinion 

is mounted on the output shaft of the gearbox, shaft 3. The gearbox construction allows 

this shaft and pinion to be removed as one assembly without the need to remove the 

complete gearbox from the test rig. It was therefore chosen for experimentation. 

 

Figure 50: Gearbox components including high speed shaft and pinion on the 

right 

While the investigation in this thesis incorporates faults onto the high speed 

pinion, it will be referred to as the high speed gear throughout. 

To allow the investigation of gear tooth damage, a replica gear was 

manufactured externally to exactly replace the original Hansen gear. The original gear 

and high speed assembly and its removal are shown in Figure 51(a) and Figure 51(b) 
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respectively. Part of the internal gearbox structure is shown in Figure 52. The gear case 

is particularly rigid, as can be seen from the significant internal webbing in Figure 52. 

Coupled with the relatively low load that is transferred by the gearbox, it is likely that 

the case will not vibrate to any great extent, potentially hindering fault detection. 

 

Figure 51: Gearbox showing (a) high speed shaft and pinion assembly with 

original Hansen gear and (b) its installation 

 

Figure 52: Internal construction of the 5:1 gearbox with high speed shaft and 

pinion assembly removed showing the substantial, cast structural internal 

webbing of the gearbox 
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4.2.3 Torsional Characteristic and Response 

During the course of this thesis, several researchers have been involved in the 

development of a test rig model, under the same supervisor as the author and at the 

direction of the author. 

In 2008 a three-degree of freedom model study [52] was carried out by an MSc 

student, Hsu Wen-Ko, to model and examine the torsional response of the test rig. The 

overall test rig configuration has remained unchanged from that used in his report 

[52]. 

Constants such as the wound rotor induction generator, DC motor and gearbox 

lumped inertias could be calculated to a reasonable accuracy from machine drawing 

data however some parameters, particularly shaft stiffness and damping, were not 

known or directly measurable. Tests were carried out by the author to allow the model 

to be compared to the physical response of the test rig to step speed demands. Values 

for stiffness and damping were calculated by the student [52] based on dynamic 

responses to different step inputs. 

However, it was felt that verification of the model through testing was required 

and so a simple, repeatable rotational frequency characterisation test was developed 

by this author. 

In order to excite torsional frequencies encountered during normal operation, 

the DC drive was controlled to run the test rig steadily through high speed shaft speeds 

of 0-2000rpm, the extremes of normal operation. The ramped speed profile is shown in 

Figure 53 and the resulting high speed shaft torque spectrum is shown in Figure 54. 

Several natural frequencies were observed, specifically 0.35Hz, 2.01Hz and 121.1Hz, 

corresponding closely to results from the test rig model in the report by Hsu Wen Ko 

[52]. The report [52] concluded from sensitivity analysis that the 2Hz component 

depends on the generator inertia and high speed shaft stiffness while the 121Hz 

component is linked to the low speed shaft stiffness and the gearbox inertia. No 

conclusions were reached as regards the 0.35Hz component as the model was limited 

by a fixed boundary condition. 
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Figure 53: High speed shaft speed demand for torsional characterisation 

 

Figure 54: Power spectral density resulting from Figure 53 driving 

The test rig model was further developed by undergraduate MEng student 

Julian Emslie in 2009/2010. Again, tests were carried out by this author to allow a 

study of the time domain response of the test rig. It was discovered during this study 

that the time domain response and some parameters in the earlier model were 

uncertain so further investigation was required. The updated model, described in 

Emslie’s report [53], included the controller of the DC machine due to its significant 

influence on the time domain response of the test rig. In particular, the model 

complexity was increased to five-degrees of freedom, including the gearbox tooth 

compliance and backlash. 
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Results from the report [53] show that a reasonable time domain response for 

both torque and speed was achieved. The torsional time domain response is shown in 

Figure 55, however the torsional frequency domain response was not investigated. 

 

Figure 55: Comparison of model and test rig time domain torque responses [53] 

Current MATLAB SIMULINK model development is being carried out by 

Mahmoud Zaggout, a PhD student in the School of Engineering. This work focuses on 

detailed modelling of all components in the test rig and, as such, measurement of many 

parameters was required. At the time of writing the model comprises: 

 Electro-mechanical wound rotor induction generator model 

 Electro-mechanical DC motor model 

 DC motor PI controller/drive with control loop to match rig 

 Gearbox model including gear tooth meshing and backlash 

 Grid connection 

 Time variable speed control and grid synchronisation 

With this author’s assistance, various tests were carried out to verify the model 

at each stage of its development. Again, step tests were carried out to examine the time 

domain response of the model against the physical test rig. Most recently, a test 
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programme was devised to show both the test rig and model moving through different 

stages of the same operation cycle. The cycle included a rapid speed increase up to 

synchronous speed followed by a settling time before the grid synchronisation 

occurred. Step speed changes were made with the generator connected to the grid 

before the grid was disconnected and the machine run down. At the time of writing, the 

model time domain response was that shown in Figure 56, produced by Mahmoud 

Zaggout [54]. Figure 56(a) and Figure 56(b) show, respectively, the generator speed 

signals and high speed shaft torque signals. 

Several observations can be made from Figure 56. Firstly, the simulated speed 

signal high very close correlation with the measured signal except at grid 

synchronisation. This may be as a result of the response time of the transducer or the 

frequency to voltage conversion. 

 

Figure 56: Time domain response of a model of the Durham test rig 

Secondly, the torsional response of the signal is also accurate. There is a clear 

discrepancy during the early part of the test, while the machine is running up to 

synchronous speed however this may not be too serious due to the small torque 
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magnitude. Once again, a discrepancy is observed at grid synchronisation. In this case, 

the error is known to be due to the frequency cut-off of the torque transducer low pass 

filter. Experimentation with the transducer’s settings demonstrated this to be the case 

however the overall background noise level of the signal was significantly increased 

causing a loss in other, more useful information. 

However, it is clear that the characterisation and parameter measurements 

made under the author’s guidance have allowed the model to accurately emulate test 

rig time domain behaviour. 

Most recently, the model has been tested in the frequency domain to examine 

its torsional response and compare it with the test rig response. The model was driven 

with the run up, run down characteristic given in Figure 53. Both the test rig response 

and model response are shown in Figure 57. It is clear that the model has now achieved 

good accuracy in both the torsional time and frequency domains with peaks 

corresponding closely for between the model and physical test rig. 

 

Figure 57: Frequency domain comparison of the torsional responses of the test 

rig and model driven by run up, run down conditions in Figure 53 

While these results are not directly linked to this thesis, it is important that the 

test rig can be characterised and modelled to ensure that tests are being carried out 

under comparable mechanical conditions. 
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4.3 Instrumentation and Control 

The original test rig instrumentation, described in [45], was deemed suitable 

for use in this research however a major project was undertaken as part of this 

research to refine the instrumentation and control systems and reconfigure the test rig 

to be more robust but adaptable. This project, coordinated by the author, aimed to 

isolate instrumentation for different test rig functions to minimise experimental noise 

and improve the quality of the signals recorded by the data acquisition system. The 

final system layout of the instrumentation is shown in Figure 58 and is logical given the 

nature of the machines and requirements of instrumentation. It also resulted in 

improved safety for the operator as mains voltage and current systems were isolated in 

separate cabinets to low voltage control and instrumentation systems. In order to 

reduce electrical noise from the laboratory environment, all instrumentation is isolated 

from mains voltage electrical signals and power supplies by steel cabinets. 

 

Figure 58: Physical layout of test rig instrumentation as shown in photograph, 

Figure 48 

The transducers, signal conditioning, data acquisition and driving conditions 

are described in this section, including a brief description of a recently installed SKF 

WindCon monitoring system. 
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4.3.1 Transducers and Signal Conditioning 

As seen from Figure 47, there is a wide range of transducers and 

instrumentation applied to the test rig. A number of signals required an amount of 

signal condition for either data acquisition or noise reduction purposes. 

4.3.1.1 High Speed Shaft Tachometer 

The high speed shaft is instrumented with a Magtrol TMB 313 torque 

transducer, capable of outputting a 60 pulse per revolution. Although the LabVIEW 

control environment could be adapted to perform a digital to analogue conversion for 

speed, it was felt more appropriate to carry out the conversion in hardware. A 

frequency to voltage converter was implemented giving linear operation over the 

required speed range. Additionally, a frequency divider circuit was included to ensure 

the speed pulse signal was within range for the SKF WindCon digital input. 

4.3.1.2 High Speed Shaft Torque 

Early examination of the torque signal suggested that there was significant 

noise being picked up by the torque transducer cabling and data acquisition hardware. 

Although instrumentation was cased in steel cabinets, a low pass filter to remove high 

frequency noise was designed. Frequency analysis showed significant noise above 

4kHz so this was set as the cut-off frequency. A clear improvement was seen in the 

quality of the torque signal. The transducer itself has an internal low pass cut-off 

frequency of 40Hz so the 4kHz filter did not significantly change the overall signal. 

4.3.1.3 DC Motor Tachometer 

In addition to noise at high frequencies, the signal from the DC tachometer, 

which is a simple DC generator, included a large amount at low frequencies due to its 

commutation noise. Since this tachometer is primarily for reference rather than 

analysis, it was felt appropriate to heavily filter the signal with a 20Hz low pass filter. 

4.3.1.4 Accelerometers 

Two Bruel and Kjaer accelerometers are available on the test rig and can be 

placed at various points on either the gearbox or generator. These transducers do not 

require any additional signal conditioning apart from their standard charge amplifiers. 
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For the high speed shaft unbalance experiments in Chapter 6, accelerometers 

are positioned on the generator drive-end bearing end shield and gearbox high speed 

end gear case. Both accelerometers are mounted vertically, at positions radial to the 

shaft. 

4.3.1.5 Shaft Displacement Transducers (Proximeters) 

The high speed shaft is instrumented at the generator end with vertical and 

horizontal Kaman proximeters measuring the shaft displacement. Once again, these 

eddy current sensors do not require additional signal conditioning other than their 

standard charge amplifiers. 

The absolute shaft displacement, d(t), is used in this thesis rather than the 

vertical, v(t), and horizontal, h(t), components of vibration, where the absolute 

displacement, d(t) is calculated from the orthogonal time vectors v(t) and h(t) as: 

                  

4.3.2 Control and Data Acquisition 

The test rig is controlled from a National Instruments LabVIEW environment 

developed from that described in [45]. The environment allows the operator to run the 

machine to its synchronous speed before waiting for confirmation of grid connection. 

Once the operator confirms grid synchronisation the machine is run up to the test 

starting speed at which point data acquisition begins. 

The driving conditions are read from a spreadsheet containing a time and 

speed vector as defined by the operator. The control environment then transmits a 

control signal, 0-10V proportional to speed demand, to the Eurotherm variable speed 

DC drive in real time. 

The data acquisition aspect of the control environment runs in parallel with 

speed control at a defined sampling frequency. A sampling frequency of 5kHz is used 

throughout this thesis. The DAQ pads sample 500ms of data from each channel at 5kHz 

before transmitting the packet via USB to the data acquisition environment. Data is 

saved to a temporary file that is converted to a comma-separated variable at the end of 

data acquisition. 
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The environment is configured to record 15 data channels as listed below: 

 Timestamp 

 DC motor speed (§4.3.1.3) 

 High speed shaft speed (§4.3.1.1) 

 High speed shaft torque (§4.3.1.2) 

 3 x stator phase voltage waveform 

 3 x stator line current waveform 

 Vertical and horizontal shaft proximeter 

 2 x accelerometer 

 DC motor armature current 

The test rig is operated such that tests are carried out for each healthy or 

faulted condition for each driving condition. The driving conditions are described in 

§4.3.4. 

4.3.3 SKF WindCon 3.0 

A WindCon 3.0 system, the same as that examined in Chapter 3, has recently 

been installed on the Durham test rig under the direction of the author. While it is not 

used for analysis purposes in this work, having been installed towards the end of this 

research, it is worth noting its presence. The system is currently being investigated by 

another PhD student at Durham. 

The system is configured to record: 

 Timestamp 

 High speed shaft speed (digital) 

 High speed shaft torque (§4.3.1.2) 

 1 x stator line current amplitude 

 Vertical and horizontal shaft proximeter 

 2 x accelerometer 

 DC motor armature current 

Just as in the commercial system described in Chapter 2, a machine diagram, 

Figure 59, has been incorporated to aid analysis and diagnosis in the future. The 

system records time series data at 10s intervals and records spectra from the vibration 

signals at regular intervals. 
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Figure 59: SKF WindCon 3.0 machine diagram of the Durham test rig including 

main components of interest 

4.3.4 Driving Conditions 

The test rig can be controlled at either constant or variable speed depending on 

the user’s requirements. While a number of different constant speed and variable 

speed driving conditions were available, the results in this thesis are limited to two 

variable speed driving conditions representing known WT driving conditions. The 

number of different driving conditions was kept to a minimum to reduce the volume of 

data recorded. The two conditions selected for testing were: 

 7.5m/s mean, 6% turbulence intensity 

 15m/s mean, 20% turbulence intensity 

The turbulence intensity, I, is defined in [55] as: 

  
 

  
 

where σ is the standard deviation of variations in wind speed about a mean 

wind speed,   . In practice, the mean wind speed is generally taken as the mean speed 

of a 10 minute period. 

The data was produced from a WT model developed by the University of 

Strathclyde as part of the Supergen Wind Energy Technologies Consortium. A highly 

detailed 2MW exemplar turbine model was created and wind speed profiles, as listed 
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above, input to the model. The final driving conditions were scaled to the test rig based 

on the generator speed data from the model. 

These two conditions represent a low mean wind speed, below turbine rated 

speed, with low turbulence and a high mean wind speed, above turbine rated wind 

speed, with high turbulence, Figure 60 and Figure 61 respectively. Further to this, the 

Strathclyde model configuration results in these two conditions being effectively in the 

turbine’s generator control and speed control regions respectively. Each healthy and 

faulted test is run for 150 seconds using a segment from the 450s driving profile, as 

indicated in the figures. 

Variable speed machine testing has not been widely reported in literature so 

this work is largely new and independent. The use of more than one variable speed 

driving condition is also essential to the testing of algorithms developed later in this 

thesis. 

 

Figure 60: Driving condition based on 7.5m/s, 6% turbulence data 

 

Figure 61: Driving condition based on 15m/s, 20% turbulence data 

1500

1520

1540

1560

1580

1600

0 50 100 150 200 250 300 350 400 450

G
e

n
e

ra
to

r 
S

p
e

e
d

 (
rp

m
)

Time (s)

7.5m/s, 6% Turbulence

Part 1

Part 2

Part 3

1500

1520

1540

1560

1580

1600

0 50 100 150 200 250 300 350 400 450

G
e

n
e

ra
to

r 
S

p
e

e
d

 (
rp

m
)

Time (s)

15m/s, 20% Turbulence

Part 1

Part 2

Part 3



89 
 

4.4 Test Rig Faults 

The purpose of the test rig was to produce signals of similar noise, variability 

and frequency content as those encountered on operational WTs. To do this, fault-like 

conditions can be induced which, while not exact replicas of faults, produce similar 

responses in the system. Wilkinson [45] called these “fault-like perturbations”. Signal 

processing techniques can subsequently be applied to these noisy, variable signals to 

investigate and test fault detection algorithms. 

4.4.1 Rotor Electrical Asymmetry 

A large volume of work has been published over the last 20 to 30 years on the 

detection of rotor faults in induction motors. Works including [57], [58] and [59] 

focussed on the characteristics of rotor bar failures in squirrel cage induction motors 

and the development of motor current signature analysis (MCSA) methods for fault 

detection in the frequency domain [59]. The focus of work has expanded into the 

detection of other induction motor faults using MCSA including motor bearing failure 

[60][61], air-gap eccentricity [61] and static and dynamic eccentricity [62]. It has been 

suggested that, while stator current monitoring has proved successful, monitoring the 

instantaneous power signal may be a viable alternative [63]. Instantaneous power was 

proven to be a suitable signal for WT fault detection in a paper by Caselitz and 

Giebhardt [64] where rotor unbalance faults were successfully detected on an 

operational 33kW machine. 

There are a number of conflicting arguments as to whether current or power 

analysis is preferred. One of the major advantages of current monitoring is the ease of 

access to and wealth of literature available on the detection of various faults, such as 

listed above. However, it has been suggested that monitoring line or phase current only 

gives information about the specific phase or line under analysis while total power can 

offer an equal contribution from all phases. In [65] a brief discussion of the advantages 

and disadvantages is given. One disadvantage of power monitoring is the increased 

number of transducers required compared to those required for current monitoring. As 

a result, care must be taken to minimise measurement errors that will be compounded 

by the power calculation.  However, [65] shows that the total instantaneous power 

yields a higher spectral content than the current during fault conditions as well as 

removing the intrusive 50Hz component that dominates the current spectrum. In 

addition to these measurement-orientated points there will be others that can be 
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brought out to defend either current or power as the most appropriate measurement. 

However, it is likely that best method for a given situation will remain the choice of the 

engineer based on their requirements. 

The previous references focus on the detection of known fault frequencies in 

the current or power signal, as does this thesis. However, in previous work, only steady 

state machine operation was considered and, as previously mentioned, this is not the 

case with WT generators. 

In this thesis, rotor asymmetry was applied to the test rig induction generator 

by means of external variable resistors connected into the rotor circuit via the machine 

slip rings. The original test rig used switched load banks for this however fully variable, 

0-4Ω resistors were introduced to allow smaller asymmetry to be introduced in a more 

controllable fashion. 

Rotor electrical asymmetry was introduced when the faulted resistance, Rf, is 

greater than zero so, assuming the fault to be in phase 1 of the three-phase rotor 

circuit, the faulted phase resistance is given by: 

   
    

    
    

    

Since the rotor is STAR connected, the absolute rotor asymmetry in this case is 

given by: 

       
        

        
      

where      ,      
  

 
,      

  

 
 . 

For clarity, the rotor resistance is given as a percentage of the balanced phase 

resistance so that the rotor asymmetry, ΔR, in percent, is given by: 

   
  

   

 
  

   

 
  

   

 

where R1H, R2H and R3H, are the balanced phase resistances. 
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4.4.1.1 Basic Derivation of Fault Frequencies 

For an induction generator: 

   
   
 

 

  
        

  
 

The induction generator flux field rotates at the stator electrical frequency, fse. 

When the rotor rotates at synchronous speed it is effectively stationary with respect to 

the flux. At other speeds the rotor windings move through the rotating flux field at the 

slip speed, the difference between the mechanical speed of the rotor and the 

synchronous speed. The rotor speed relative to the flux,      , is therefore given by: 

          

This is the speed at which the flux field is cut by the rotor windings. 

Since a winding is a complete circuit it must appear at two points on the rotor, 

180°/p mechanical degrees apart. Therefore any form of rotor electrical asymmetry 

has a two pole effect on the flux and the rotational frequency of the fault with respect 

to the flux is given by: 

     
       

In the case of an induction machine a rotor winding fault or brush gear 

unbalance is altering how the flux is cut and will therefore be modulating the 

amplitude of both the rotor and the stator electrical waveforms. Descriptions of the 

origins of rotor and stator fault frequencies can be found in [57]. The modulation 

frequency is therefore the frequency of the fault relative to the field,      
 , as given 

above, while the carrier frequency undergoing modulation is the stator supply 

fundamental frequency, fse. Referred to the rotor side, the stator electrical frequency is 

the synchronous frequency, fs. 

This gives time domain amplitude modulation equations on the rotor side of: 
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where c(t) is the function undergoing modulation and m(t) is the modulation 

function. 

The equation for ordinary amplitude modulation is: 

                   

where y(t) is the general function resulting from amplitude modulation. We will 

use r(t) to represent the waveform on the rotor side and s(t) to represent the 

waveform on the stator side which, through substitution gives: 

                                

Using the standard trigonometric identity for sine and cosine multiplication, 

the resulting rotor-side waveform is: 

                  
                               

 
  

Substituting for the synchronous frequency, fs, we obtain the rotor side faulted 

waveform in terms of the stator supply fundamental, fse, as: 

           
   
 

    

 

 
 

          
   
               

   
    

 

 

 
 

 

Now converting from the rotor side waveform to the stator side using the pole 

pair relationship, we get the stator current waveform given by: 

                   
                                 

 
  

Extracting the frequency components from this equation we see that rotor 

electrical asymmetry results in stator current harmonic components at    , the supply 

fundamental and          , transforming to       in the total instantaneous power. 

However, this derivation only includes the basic harmonic components. As part 

of this research, a valuable collaborative relationship has been forged within the 

Supergen Wind Energy Technologies Consortium with the University of Manchester 

who investigated the other harmonics in the power and current spectra. 
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4.4.1.2 Collaborative Work on Induction Generator Monitoring 

Research at The University of Manchester began by focussing on the 

construction of a detailed model of an induction generator and its verification against a 

test rig. The Manchester test rig features a 30kW, 4-pole, WRIG of identical 

construction to that on the Durham test rig except the generator has been rewound to 

allow greater access to winding connections on both the rotor and stator so winding 

faults can be applied. The Manchester test rig has the ability to be run as a DFIG or as a 

WRIG, as for the Durham test rig, however although it is not configured for variable 

speed, transient driving. The two test rigs are described and compared in [49] and [50]. 

The University of Manchester has developed a time-stepped model of the 

machine including its construction, air gap field and harmonic conductor distributions. 

It is described in detail in [66], [67] and [68]. The model incorporates a set of analytical 

expressions which were derived which represent all frequencies in the current and 

power spectra of both wound rotor and doubly-fed induction machines, given in full in 

[68]. These expressions not only take into account basic fault frequencies present in 

the machine but also those that are dependent on air-gap field space harmonics from 

the machine layout and supply time harmonics in the stator current. 

The equations describing the stator current spectral content for the healthy and 

faulty machines respectively are: 

    
               

    
   

 

 
          

where f is the fundamental supply frequency, s is the induction generator 

fractional slip, k = 0, 1, 2, 3, ... and l = 0, 1, 2, 3, ... . Constants k and l relate respectively 

to air-gap field space harmonics resulting from the layout of the machine and supply 

time harmonics in the current. 

For the total instantaneous power signal, these expressions transform to the 

two equations below for healthy and faulty machines respectively: 
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where j = 0, 1, 2, 3, ..., k = 0, 1, 2, 3, ... and l = 0, 1, 2, 3, ... . The additional constant 

j relates to supply voltage harmonic order. Additional information on these equations 

can be found in [69]. 

Since these equations lead to a large number of harmonic components in the 

current and power spectra, such that monitoring all components would be impractical 

in an industrial environment, the author, in collaboration with Dr Sinisa Djurovid of 

The University of Manchester, has established a reduced set of fault-related frequencies 

to give a clear indication of rotor electrical asymmetry in induction machines. Tests 

have been carried out by the author on both the Durham and Manchester test rigs to 

allow a comparison between the machines and the time-stepped model. A summary of 

the work relevant to this thesis is given here. The work can be followed in detail in a 

number of published conference papers including [49][50], for which the author was 

first author. Published papers and those submitted for peer review on this subject are 

included in Appendix E. 

In order to establish a reduced, more practical set of fault-related frequencies, 

steady state studies were carried out on both the Manchester and Durham test rigs. 

Two test rigs were used in order that only those fault frequencies consistent between 

different machines and environments were selected. 

For conciseness, only results for the instantaneous power signal are presented 

here. An example of total instantaneous power data from the healthy Manchester test 

rig is given in Figure 62 for two operating speeds of the machine. It can be seen that the 

spectra are rich in harmonic content even for a healthy machine as a result of supply 

unbalance and inherent electrical unbalances. 

 Machine dependent frequencies ‘a’ and ‘b’ were found to be present in both 

machines and both power and current. These components are a result of 

machine layout and are present for both healthy and faulty machines. 

Rotor electrical asymmetry was then introduced into the machine and spectra 

rerecorded at the two operating points. These spectra, shown in Figure 63, now show 

the additional frequency components and were found to be consistent between both 

the Durham and Manchester test rigs. 

 Component frequencies ‘c’ and ‘d’ are 2sfse sidebands around zero and 

100Hz in power and the fundamental and 3rd harmonic of supply in current. 
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 Component frequencies ‘e’ and ‘f’ are also 2sfse sidebands but now around 

the machine dependent components ‘a’ and ‘b’. 

 

Figure 62: Spectrum of healthy total instantaneous power from the Manchester 

test rig at (a) 1560rpm and (b) 1590rpm 

 

Figure 63: Spectrum of faulty total instantaneous power from the Manchester 

test rig at (a) 1560rpm and (b) 1590rpm 
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Steady state results from the Durham test rig were found to be very consistent 

with those from Manchester. The healthy Durham test rig spectra, shown in Figure 64, 

appear noisier as a result of the laboratory environment. However, components ‘a’ and 

‘b’ are visible as expected. 

The Durham faulted spectra, Figure 65, also show consistency with Manchester 

results with the 2sfse components clearly visible around zero and 100Hz. The higher 

frequency components have however been severely attenuated and are not labelled 

due to their low magnitude. This results from the different test rig environment where 

the Durham test rig has a larger rotor resistance reducing the magnitude of certain 

speed ripple-dependent harmonics. 

A study of the effect of rotor resistance and machine configuration is forming 

part of the ongoing collaborative relationship with the University of Manchester. 

 

Figure 64: Spectrum of healthy total instantaneous power from the Durham test 

rig at (a) 1560rpm and (b) 1590rpm 
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Figure 65: Spectrum of faulty total instantaneous power from the Durham test rig 

at (a) 1560rpm and (b) 1590rpm 

The constants and equations required to calculate these speed dependent, 

fault-related frequencies are given in Table 2 for total power and Table 3 for current. 

Frequency 
Label 

Equation j k l 

 
50Hz Multiples 

 
    

                 1, 2, 3, ... 0 1, 2, 3, ... 

 
a, b (Healthy) 

 
    

                 1 1 1 

 
a, b (Faulty) 

 
    

     
 

 
          1 12 1 

 
c, d 

 
    

     
 

 
          1 4 1 

 
e 
 

    
     

 

 
          1 8 1 

 
f 
 

    
     

 

 
          1 16 1 

Table 2: Equations and constants for fault-related harmonic components in 

stator line current 
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Frequency 
Label 

Equation k l 

 
50Hz Multiples 

 
    

               0 1, 2, 3, ... 

 
a, b (Healthy) 

 
    

               1 1 

 
a, b (Faulty) 

 
    

   
 

 
          12 1 

 
c, d 

 
    

   
 

 
          4 1 

 
e 
 

    
   

 

 
          8 1 

 
f 
 

    
   

 

 
          16 1 

Table 3: Equations and constants for fault-related harmonic components in total 

instantaneous power 

A journal paper has been submitted for peer review following from [50], 

presented at the IEEE 19th International Conference on Electrical Machines in March 

2010. 

4.4.2 High Speed Shaft Mass Unbalance 

During the course of this research, the Durham test rig has been fitted with 

experimental balance planes to examine high speed shaft mass unbalance. The high 

speed shaft plane is pictured in Figure 66 and is normally fully encased within a sheet 

metal safety cover. 

Holes at four different radii are drilled at 60° intervals around the balance 

plane allowing mass to be applied at various positions as required. The masses 

themselves are small metal discs are varying diameter which are fitted in pairs with 

one mass either side of the plane so as to avoid the introduction of axial vibration. 
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Figure 66: High speed shaft experimental balance plane during installation 

The British and International Standard BS ISO 1940-1 [70] defines acceptable 

limits for machine balance according to a general description for machine size, speed 

and type. The balance quality grade, G, is given as the product of the residual specific 

unbalance, e, and the machine rotational speed, ω, so that: 

  
   

 
 

      

where m is the unbalance mass (kg), r is the radial position of the unbalance 

mass (mm), M is the rotor mass (kg) and ω is the rotational speed (rad/s). 

Guidance on the maximum acceptable balance quality grade, G, for various 

different machine types is given in Table 4 [70]. 
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Table 4: Guidance for balance quality grades for rotors in a constant (rigid) state, 

adapted from [70]. 

From Table 4 we can see that the 4-pole WRIG on the test rig has a 

recommended acceptable balance quality grade of G 2.5. However, the standard makes 

no mention of two speed, geared systems with short, rigid shafts. It is assumed in this 

thesis that the acceptable balance grade in the case of the Durham test rig is slightly 

higher than the recommended G 2.5 however no information was found to confirm or 

refute this. The balance quality grades used in this work are given alongside results for 

high speed mass unbalance in Chapter 6. 

In the case of a large WT, it is expected that the balance quality grades may not 

be directly applicable due to the nature of the mechanical system where a large ratio, 

multistage gearbox and very low speed hub will undoubtedly affect the system 

dynamics. 

An alternative method for describing machine unbalance is to use the absolute 

centrifugal force generated by the unbalance. Figure 67, taken from [64], shows a 

simplified model of the balanced three blade system with unbalance mass, mR. 

Machinery types: General examples 
Balance 
quality 

grade, G 

Magnitude 
eper.ω 

(mm/s) 
 

- Agricultural machinery 
- Crankshaft drives, inherently balanced, rigidly 

mounted 
- Drive shafts (cardan shafts, propeller shafts) 

 

G 16 
 

16 
 

 
- Aircraft gas turbines 
- Electric motors, generators (at least 80mm shaft 

height), maximum rated speeds up to 950rpm 
- Electric motors, shaft heights smaller than 80mm 
- Gears 
- Machinery, general 

 

G 6.3 
 

6.3 
 

 
- Compressors 
- Electric motors, generators (at least 80mm shaft 

height), maximum rated speeds above 950rpm 
- Gas and steam turbines 

 

G 2.5 
 

2.5 
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Figure 67: Simplified model of rotor mass unbalance [64] 

For a healthy machine it can be assumed that the three blades are of equal mass 

where the three centres of mass are at the same radius and spaced by 120°. Therefore 

the resulting centrifugal force is equal to zero: 

   
    

    
   

                         
    

As a result, any unbalance can be represented by an equivalent mass, mR, and 

an equivalent radius rR [64]: 

   
          

A value for the centrifugal force resulting from unbalance will be given 

alongside the balance quality grade for results in Chapter 6. 

4.4.2.1 Basic Derivation of Electrical Fault Frequencies 

Following from the derivation for rotor electrical unbalance, §4.4.1.1, a similar 

amplitude modulation-based derivation is given here for generator rotor mass 

unbalance. 

An unbalanced mass on the rotor shaft will lead to a dynamic eccentricity of the 

rotor within the air gap. This air gap distortion rotates at the rotational frequency of 

the rotor leading to an amplitude modulation of the air gap flux and therefore the rotor 

m1, r1

m2, r2 m3, r3

mR, rR

φ
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and stator current waveforms. The rotational frequency of the fault is equal to the 

rotational frequency of the stator flux: 

     
      

In the case of an induction machine the dynamic eccentricity can be said to be 

modulating the amplitude of the stator electrical frequency. As for rotor electrical 

asymmetry, the modulation frequency is therefore the frequency of the fault relative to 

the field as given above and the signal undergoing modulation is the stator sypply 

fundamental, fse. 

This gives us the amplitude modulation equations on the rotor side: 

                  

                    

where c(t) is the function undergoing modulation and m(t) is the modulation 

function. 

Again taking the equation for ordinary amplitude modulation is: 

                   

where y(t) is the waveform resulting from amplitude modulation. We will use 

r(t) to represent the waveform on the rotor side and s(t) to represent the waveform on 

the stator side. 

Substituting into and expanding for y(t), we find the rotor-side waveform to be: 

              
   
 

         

 

 
 

          
   
               

   
    

 

 

 
 

 

 Multiplying the rotor-side function by the number of pole pairs, p, we 

find the amplitude modulated stator-side waveform, s(t), to be: 
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Extracting the frequency components from this equation we can see that a 

dynamic eccentricity on the rotor results in harmonic components at    , the supply 

fundamental and          in the stator current or       in the total instantaneous 

power. 

4.4.2.2 Fault Frequencies in Mechanical Signals 

In the case of high speed shaft mass unbalance, the fault frequency in signals 

such as accelerometer and shaft vibration signals will simply be the rotational 

frequency of the machine, frm, as the mass is directly coupled to the shaft. 

4.4.3 High Speed Pinion Tooth Damage 

Since the high speed assembly of the gearbox was so readily accessible, it was 

chosen as the subject for tooth damage investigations. It also has the advantage of 

being directly coupled to the high speed shaft therefore rotating at the same speed as 

the generator. A number of operators and monitoring engineers suggested that gear 

tooth damage was a particular challenge in many situations, from WTs to helicopters. 

As such, it was appropriate to examine the most accessible pinion in the controlled 

laboratory environment. 

Just as for high speed mass unbalance, a single damaged tooth on a pinion or 

gear directly coupled to a shaft will have a once per revolution effect on mechanical 

vibration signals. In this case, the pinion is mounted on the high speed shaft and has the 

same rotational speed as the generator. The frequency induced in mechanical vibration 

signals as a result of single tooth damage is therefore frm, the rotational speed of the 

high speed shaft. 

The major difference between gear tooth damage and the other faults 

introduced in this chapter is the impulsive nature of the response. Rotor electrical 

asymmetry and mass unbalance both cause continuous sinusoidal responses in various 

monitoring signals, whether electrical or mechanical, whereas the effect of tooth 

damage is a one per revolution pulse when the tooth meshes with its driving gear. This 

point will be investigated later in §6.2. 
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4.5 Conclusions 

It can be seen from this Chapter that the Durham CM test rig represents a 

substantial investment in WT CM and has been significantly improved from previous 

work. The test rig is now capable of operating under a variety of operating conditions 

with data recorded from a large number of transducers along the drive train under 

both steady state and transient, variable speed driving conditions. 

In this Chapter, three possible test rig fault-like conditions have been 

introduced: 

 Rotor electrical asymmetry; 

 High speed shaft mass unbalance, and; 

 High speed pinion tooth damage. 

The levels of fault used in this work will be introduced alongside their 

respective results in Chapter 6. However, it is important to note that the primary aim of 

the test rig is to generate signals of similar harmonic content to those encountered in a 

real WT. The resulting signals from each fault-like condition contain different harmonic 

content and are therefore suitable for verifying algorithms under transient, non-

stationary conditions. 

A summary of collaborative work with the University of Manchester has been 

discussed which is a significant advance in machine CM and should be noted. Further 

information can be found in [49][50] and further journal publications are in 

preparation. The next stage in this work is to examine the detectability of rotor 

electrical asymmetry, an analysis of which was submitted for peer review in 2010. The 

author has led the testing work in this area, while the model work was carried out at 

the University of Manchester. 

Having introduced the test rig and its capabilities for variable speed fault 

testing, Chapter 5 goes on to discuss signal processing techniques and introduce a new 

algorithm for CM and fault detection in variable speed signals.  
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5 Signal Processing 

“Mathematical Analysis is as extensive as nature herself” 

Joseph Fourier 

1768 – 1830 

WT CM has been shown to be a complex task, because of both the rotating 

machine itself and the nature of the wind, requiring a clear understanding of the effects 

of variable speed and variable load conditions. It therefore follows that signal 

processing techniques and algorithms for CM need to be developed with non-

stationary and highly variable, stochastic signals in mind. 

This Chapter initially discusses two commonly encountered signal processing 

techniques: the Fourier transform and the wavelet transform. The advantages and 

disadvantages of these techniques are summarised and conclusions drawn about their 

suitability for analysis of non-stationary WT signals. The concept of frequency tracking 

is introduced using a previously published wavelet-based algorithm. This is discussed 

as it will be useful for comparison later in the thesis. Finally, a new frequency tracking 

algorithm will be introduced, based on the principles of the Fourier transform, capable 

of tracking fault-related frequencies in non-stationary monitoring signals. 

This new algorithm will be used throughout Chapter 6 and its results will be 

subsequently compared with the proven and previously published wavelet-based 

tracking algorithm. 

5.1 Common Signal Processing Techniques 

In this section, the principles and applications of a number of common signal 

processing techniques are introduced. The techniques discussed here have been 

chosen as they lead to a number of useful conclusions for CM WTs. 

While there have been many more signal processing techniques developed over 

recent years, we limit this introduction and discussion to the Fourier transform, its 

development into the short-time Fourier transform and the wavelet transform. The 
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discrete Fourier transform is given the most detailed emphasis as this is the basis for 

the signal processing developments undertaken in this thesis and introduced in §5.2. 

Should the reader require more information on wavelet transforms, they are directed 

to the referenced literature. 

5.1.1 The Fourier Transform 

The Fourier transform has been well documented in engineering and 

mathematics texts since research was initiated by Joseph Fourier’s work on heat 

transfer in the early 1800s. Coincidentally, for a thesis related to renewable energy, 

Fourier is also credited with the discovery of the greenhouse effect [71]. 

The essence of Fourier analysis can be concisely described by the statement 

that “a periodic function can be broken down into its harmonic components” [72]. This 

statement is graphically illustrated by Figure 68(a). Here, a periodic square wave is 

broken down into its Fourier sine components. Each sine component makes a different 

contribution to the reconstructed square wave and this contribution is indicated by its 

amplitude in Figure 68(a). The odd sine components up to the 13th harmonic are shown 

and make a contribution to the reconstructed signal. 

Having seen the individual sine components of the square wave function, 

Figure 68(b) shows the incremental reconstruction of the square wave from the 

Fourier sine components in Figure 68(a). In each subplot, the next odd harmonic is 

added to the waveform as indicated. It is apparent that the reconstruction is not 

perfect. However, an important characteristic of the Fourier transform is visible in that 

the quality of the reconstruction improves steadily as the number of harmonic 

components is increased. 
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Figure 68: (a) Fourier sine components of a square wave up to the 13th 

harmonic; (b) Incremental reconstruction of a square wave from sine 

components given in Figure 68 (a) 

For a continuous signal, s(t), the continuous Fourier transform is given by [73]: 

                 
 

  

   

From a practical calculation point of view, the signal, s(t), is effectively 

evaluated against sine and cosine functions of positive and negative frequencies over 

the entire function length, -∞ to ∞. 

This mathematical form is, however, not suitable for use in the large majority of 

engineering applications. As signals have been sampled in time at a certain sampling 
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frequency they are therefore no longer strictly continuous in time. In this case, the 

discrete Fourier transform (DFT) must be used . 

For discrete analysis, the continuous signal, s(t), is replaced by a discrete signal, 

s(nT), a sampled signal of finite length N and sampling period T, giving the transform: 

                    

   

   

 

The discrete time domain nature of the signal implies that the signal is now 

discrete in the frequency domain with a frequency resolution of Δf. The DFT of the 

discrete signal is therefore given as: 

                        

   

   

 

where kΔf defines the frequency components under analysis. 

Full mathematical derivations can be found in [72], [74] and [75] however only 

these equations are required in this thesis. 

One of the primary issues surrounding the use of the DFT for WT CM is its 

reliance on stationary signals. Since the transform is applied across a complete signal, 

small, time-localised signatures are likely to be insignificant compared to the overall 

signal content. In a broader sense, this means that, using the DFT, the time location of 

characteristic frequency components or impulsive responses cannot be examined. This 

is illustrated by Figure 69 where two linear chirp signals are analysed using the Fourier 

transform, based on [75]. In the left-hand plot the frequency increases with time, from 

left to right, while in the right-hand plot the signal is reversed with its frequency 

decreasing with time. The spectra of these two signals, calculated by a basic FFT 

implementation of the DFT, are similar despite the significantly different time 

waveforms. Put simply, the DFT and its FFT implementation take no account of the 

time localisation of frequency components. 
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Figure 69: Comparison of chirp spectra, based on [75] 

It is apparent in most situations that time information is an essential 

component in the complete understanding of a signal. In an engineering sense, time-

localised frequency analysis can increase diagnosis capability since impulsive, short-

time, transient characteristics can be examined. 

In an effort to allow time-frequency analysis of signals, the short-time Fourier 

transform (STFT) was developed as a means of adapting the Fourier transform concept 

for use on non-stationary, time varying signals. 

5.1.2 The Short-Time Fourier Transform 

As a result of its availability in analysis software such as MATLAB, the 

spectrogram implementation of the STFT will be considered. The spectrogram is 

computed as the squared magnitude of the STFT [75]. 

As the name suggests, the STFT calculates the spectral content for a short time 

sample of a particular signal. This process is continued iteratively in the time domain 

until the entire signal has been processed in these short samples. The spectra from the 

short time samples are then plotted in time to produce a 3D (time, frequency, 

amplitude) representation of the signal’s spectral content. 

To illustrate this, Figure 70(a) shows the FFT of a 60 second signal sampled at 

1kHz. The information available from the FFT suggests that three frequency 
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components are present throughout the entire length of the signal with equal 

magnitudes. If the STFT spectrogram is examined, Figure 70(b), it can be seen that the 

frequencies themselves are correct but they are not present throughout the entire 

signal. The FFT loses all time information contained in the original signal by analysing 

over the entire signal length. The STFT has the advantage of giving a certain degree of 

time-frequency information by iteratively analysing short time segments of the signal. 

 

Figure 70: Time varying sinusoidal signal analysed using the (a) FFT and (b) 

spectrogram 

Since the STFT is essentially an iterative DFT process, certain limitations on 

frequency resolution are applied, in that a longer time window allows for a greater 

frequency resolution. In the STFT, however, the process cannot consider only the 

frequency resolution and a certain degree of compromise is required. While a longer 

time window allows for a high frequency resolution, and therefore an accurate 

representation of frequency content, it will blur and reduce resolution in the time 

domain. To improve the time accuracy of analysis, a shorter window is required such 

that the signal is effectively stationary during analysis. It is largely down to the user to 

select the most suitable time window or frequency resolution for their individual 

(a)

(b)
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application based on knowledge of the signal under analysis and the requirements of 

analysis. 

5.1.3 The Continuous Wavelet Transform 

In recent years, the continuous wavelet transform (CWT) has gained popularity 

in a number of engineering applications including turbulence analysis [77] and damage 

detection [78] amongst many others. One of its most popular uses is in image 

compression however its ability to carry out signal decomposition has led to its 

application to signal analysis. In particular, the CWT has been used as a method for CM 

and fault detection for certain non-stationary electrical and mechanical signals. The 

CWT is designed to include both time and frequency information, resulting in similar 

figures to those from the STFT. However the analysis process is very different. 

On a fundamental level, the DFT and STFT both calculate spectral content by 

comparing a time domain signal with sine and cosine waves of different frequencies. 

The CWT, however, compares the signal against a particular function called a wavelet, 

which may assume a variety of standardised shapes. By ‘stretching’ the wavelet in the 

time domain, a process known as dilation, the spectral content of the wavelet it altered. 

The correlation between the signal and analysing wavelet at each stage indicates the 

wavelet content of the signal. 

According to [76], the basic wavelet, known as the mother wavelet, should be 

oscillatory, have no DC component, be a band-pass filter, decay rapidly towards zero 

with time and be invertible. An example of this is the Morlet wavelet where the mother 

wavelet is defined as: 

                  

and has the Fourier transform: 

                     

This wavelet and its Fourier transform are given in Figure 71(a) and Figure 

71(b) respectively. 
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Figure 71: (a) Modified Gaussian or Morlet mother wavelet, Ψ(t), and (b) its 

Fourier transform, H(ω), from [76] 

The mother wavelet is scaled to give a family of mother and baby wavelets so 

that each baby wavelet is given by: 

 

  
           

where c is a variable scaling constant and τ is a constant of translation. The 

scaling parameter, c, is approximately inversely related to its frequency such that high 

values of c correspond to low frequencies and vice versa. 

If c is increased, the wavelet is dilated in time and therefore contains lower 

frequencies. Increasing the value of τ moves the wavelet in time along the x-axis such 

that the CWT is given as: 

          
 

  
                   

An example of the use of the CWT for fault detection is given in Figure 72, taken 

from [79]. Here, the authors were examining short, transient fault-related sidebands in 

the supply current of a 15kW induction machine. During constant speed operation, the 

data was analysed using a Fourier method. However, as fault-related components were 

expected to be prominent during machine start up, this method was unsuitable as the 

conditions and signals were non-stationary. The wavelet transform was therefore 

applied to the stator current data recorded during machine start up. Figure 72(a) 

shows the starting current time waveform. Very little change is observed in the time 

waveform during faulty behaviour however the result of the wavelet transform, shown 

in Figure 72(b) shows a clear peak at the sideband frequency indicating not only that a 

fault is present but also showing its location in time. 

Re{Ψ(t)}

t

H(ω)}

ω

(a) (b)
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Figure 72: Detection of fault-related frequencies using a wavelet transform 

during transient operation of an induction machine, from [79] 

5.1.4 Comparison of Techniques 

Figure 72 demonstrated that it is possible to detect and observe fault-related 

frequency components during transient operation of electrical machines. In this case, 

interest was confined to a short period of variable speed operation with the machine 

generally operating at constant speed except during run up and run down. 

The issue of transient, non-stationary conditions is somewhat exaggerated in 

the WT as there are few occasions when the turbine is operating at constant speed and 

load. As a result, transient CM becomes unavoidable. Techniques such as the STFT and 

CWT are therefore strong candidates when it comes to CM and fault detection in the 

constantly varying, highly non-stationary signals generated by WT drive trains. 

While the selection of the most appropriate technique it likely to be highly 

subjective, the merits of each technique are discussed here. 

One issue to be considered is the ease of understanding the output of each 

technique. The CWT offers a result in the time-scale domain. While scale is linked to 

frequency, there is a degree of work involved to understand the result. For example, 

the fact that the scale parameter is inversely related to frequency easily leads to 

confusion when presenting results to non-specialist staff. The STFT has an advantage in 

this respect since it produces result directly in the time-frequency domain. It may also 

be argued that many of the signals analysed for WT CM are of a sinusoidal nature and, 

as such, may be more suited to detection by a Fourier method, such as the STFT, rather 

than a wavelet method, such as the CWT, which is based on impulsive mother 

functions. 
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A subjective issue is the clarity of results. Figure 73 shows the STFT 

spectrogram and CWT of a sinusoidal signal containing three distinct frequency 

components present at different times in the signal. The STFT result, Figure 73(a), is 

easier to interpret than the corresponding CWT result Figure 73(b). However, results 

are strongly dependent on the parameters of the analysis method and so this point 

should not be taken as a reason for discounting the CWT. 

 

Figure 73: Time varying sinusoidal signal analysed using the (a) STFT and (b) 

CWT 

A key consideration in the selection of a processing method is its computational 

intensity or the computing time required to produce a suitable result. Despite their 

clear advantages over the conventional FFT, both the STFT and CWT, when applied 

over long periods of time and wide frequency or scale ranges, are computationally 

intensive. A number of repeat calculations were carried out in MATLAB using the STFT 

and CWT and each time the result showed the CWT taking significantly longer to 

calculate than the STFT, in turn taking longer than the FFT. The parameters and 

functions used were those used to calculate Figure 70 and Figure 73 so as to give the 

values some meaning in terms of the quality of result obtained. 

(a)

(b)
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Processing 
Method 

Processing 
Time 

Multiple of 
FFT Time 

   
FFT 

(entire data length) 
0.13 s 1 

   
STFT 0.46 s 3.5 

   
CWT 

(DB4 wavelet) 
1.77 s 13.6 

   

Table 5: Example processing times for the FFT, STFT and CWT applied to a 10s 

data record at 5kHz as used to produce Figure 70 and Figure 73 

It is could be suggested that the increased processing time required by the CWT 

is unjustified by the quality of result obtained, Figure 73(a), when compared to the 

faster STFT, Figure 73(b). 

Nevertheless, both methods may be subject to refinement to reduce their 

processing requirements. One possible methodology for the reduction of processing 

times is the idea of frequency tracking. 

5.1.5 Wavelet-Based Frequency Tracking 

Successful CM using frequency analysis on highly non-stationary WT signals 

depends on techniques which maintain the time-frequency nature of the signals 

themselves. As such, the STFT and CWT have an important role in CM by frequency 

analysis. However, there is significant redundancy in the calculations when it comes to 

useful frequency information, highlighted by the extensive processing times given in 

Table 5. This must be addressed when considering online CM of large numbers of 

remote WTs. 

The idea of speed-dependent fault-related frequencies has been introduced and 

discussed in Chapter 4 of this thesis and has been taken as a starting point for the 

development of a frequency tracking algorithm. The fundamental idea of frequency 

tracking is to reduce the processing needed, extracting only the frequency information 

of interest rather than analysing wide frequency bands. One algorithm, discussed in 

detail in [80], a copy of which is given in Appendix E, was based on the CWT. 
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The algorithm, CWTlocal, requires two signals for computation: a machine speed 

signal and the monitoring signal itself. Just as for the STFT, the algorithm carries out its 

calculations on small samples of data, progressing iteratively until the entire data set 

has been analysed. At each step, the fault frequency of interest is recalculated based on 

the corresponding machine speed signal and the relevant CWT scale constants 

calculated accordingly. The wavelet coefficients for the particular short sample are 

calculated using the reduced set of scaling constants before the algorithm moves to the 

next short sample and repeats the process. 

To minimise the effect of speed signal calibration error and therefore ensure a 

good quality of result, a small range of scaling constants is applied at each step, 

effectively representing a narrow frequency band. The signal is analysed for each of 

these scaling constants and then the maximum correlation coefficient is taken. This 

should result in the detection of a sideband peak alone and reduce the effect of 

background noise within a signal. The process is illustrated graphically in Figure 74. It 

should be noted from the figure that the time window length is fixed for every step of 

the analysis. 

 

Figure 74: Graphical illustration of the CWTlocal frequency tracking algorithm 

proposed by Yang in [80] with fixed time windows 
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The algorithm shown graphically in Figure 74 and detailed in [80] can be 

summarised as: 

 Extract speed and monitoring signal samples of defined length 

 Calculate the mean speed for the sample,    

 Calculate frequencies of interest from    

 Calculate wavelet scale parameters, c, from frequencies of interest 

 Calculate wavelet coefficients for each scale parameter 

 Extract maximum scale parameter, E, representing the signal energy 

 Repeat for next sample in time 

In [80], the CWTlocal algorithm is applied to data recorded for rotor electrical 

asymmetry on a WRIG and mass unbalance on a permanent magnet synchronous 

generator. In both cases, good results were produced. Figure 75 shows the result 

presented for frequency tracking of a rotor electrical asymmetry in the power signal. A 

smaller fault was undetected by the algorithm however it performed well for the larger 

fault, details of which are available in [80]. 

 

Figure 75: CWTlocal frequency tracking of the 2sfse component of total 

instantaneous power as shown in [80] 

The variability in the result led to the consideration of an adaptable analysis 

window rather than the fixed time window that was originally used. The author 

adjusted the algorithm such that the initial speed point is extracted and the time 
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window length defined by the machine speed in terms of a fixed number of machine 

rotations rather than a fixed time. The samples are then extracted and analysed as 

before. The next unanalysed speed point is then taken as the starting point for the next 

iteration and the process is repeated. 

This variable time window implementation of the algorithm is used later in 

§6.2 when a proposed new frequency tracking algorithm is examined against the 

published CWTlocal algorithm. 

One particular issue that was still encountered using the CWTlocal tracking 

algorithm was that of the length processing times required for analysis. While this was 

significantly reduced when compared to carrying out a full CWT, the calculation time 

remained significant if clear results were required. This was further exaggerated when 

large data sets of high sampling rate data were processed. Processing times will be 

discussed and compared in §6.2.3. 

5.1.6 Summary 

Two standard signal processing techniques have been introduced and 

discussed in terms of their applicability, ease of interpretation of results and 

complexity in terms of processing requirements. In addition, a method for reducing 

processing power demand, the CWTlocal frequency tracking algorithm, has been 

introduced. 

Having examined these methods, including the frequency tracking method, 

several conclusions were drawn regarding the way forward for analysis. 

STFTs and CWTs appear to be inappropriate in their raw forms for WT CM due 

to the complex result figures they produce. These require a significant amount of 

interpretation before conclusions can be drawn from them. However, the STFT can 

arguably be said to give more direct and accessible information given the results seen 

so far. 

The idea of frequency tracking is very attractive when it comes to analysis of 

many turbine signals. The method reduced processing times and produced figures 

showing information about a specific fault-related frequency. In terms of the amount of 

manual interpretation required, this is a significant improvement. The addition of a 
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variable time window length based on machine parameters should help to refine 

results further. 

Finally, one should return to examine the operational conditions of WT drive 

trains alongside their fault mechanisms. In addition, one should also consider 

operational parameters such as machine speed, as introduced in the multi-parameter 

example in §3.5. When looked at more closely, a large number of WT faults produce 

sinusoidal responses in monitoring signals and are a function of the rotational speed of 

the machine. 

Given the points discussed above, it seems sensible to point this work in the 

direction of a Fourier transform-based method with frequency tracking. In §5.2, an 

algorithm is conceived and developed to incorporate the advantages of the CWTlocal 

frequency tracking algorithm and sinusoidal, Fourier-based analysis. 

5.2 Fourier Transform-Based Frequency Tracking 

The proposed algorithm uses a development of the DFT as a basis for frequency 

tracking with the signal being broken into short time segments for analysis in a similar 

fashion to the STFT, CWT and CWTlocal tracking algorithm. 

The analysis of short time samples of data is essential to the successful 

application of a Fourier transform-based method as signals are assumed to be, and 

therefore must be, stationary. Under variable speed, variable load conditions, signals 

can only be said to be stationary over short periods of time. The algorithm adapts the 

time window to the machine speed by calculating the amount of data required for 

analysis as a function of machine rotational period such that a fixed number of 

revolutions are analysed at each stage, assuming the machine speed remains constant 

over a short number of revolutions. The algorithm is illustrated graphically in Figure 

76. Due to its iterative and frequency-localised nature, the final algorithm will be 

referred to as the iterative localised discrete Fourier transform (IDFTlocal) throughout 

this thesis. The complete derivation of the IDFTlocal algorithm is given in §5.2.1 and 

§5.2.2. 
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Figure 76: Graphical illustration of the Fourier transform-based frequency 

tracking algorithm with variable time and frequency windows 

The algorithm process shown in Figure 76 can be summarised as: 

 Extract the initial speed signal data point 

 Calculate the time length of the required number of machine revolutions 

and extract the relevant amount of data 

 Calculate the mean speed for the sample,    

 Calculate the frequencies of interest, f 

 Calculate discrete constants from frequencies of interest, k 

 Calculate amplitudes for each constant k 

 Extract maximum amplitude, E 

 Repeat the process starting with next unanalysed speed data point 

5.2.1 Derivation of a Localised Discrete Fourier Transform 

Before the full IDFTlocal is derived, the calculations necessary for a single 

iteration, the localised DFT, are introduced. 

From §5.1.1 we know that the discrete Fourier transform is given by: 

                        

   

   

 

where the equation is discrete in both time and frequency. 
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As for the CWTlocal frequency tracking algorithm in §5.1.5, two signals, 

continuous in time, are required for analysis. A monitoring signal of interest is given by 

x(t) and the machine rotational frequency, in Hz, by y(t). The signals are sampled at a 

frequency fs, converting them to discrete signals x(nT) and y(nT) where n = 0, 1, 2, ... 

and T = 1/fs. For analysis, a series of N samples is required where N is a function of a 

specified number of machine revolutions, r, giving: 

  
    
    

 

where y(0) is the initial value of machine rotational frequency. 

A central frequency of interest, fc, is defined as a function of the mean machine 

rotational frequency,   , across the series of length N. 

   
 

 
      

   

   

 

         

The frequency window width, fw, is defined so that the window is bounded by: 

          
  
 

 

          
  
 

 

If the frequency resolution is Δf, the frequencies of interest are given by: 

                     

This implies that for a fixed Δf: 

               

 
 
 

 
      

      

  

     
      

  

  

where k is an integer. 
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In order that sideband fault frequencies are unaffected by their carrier 

frequency, or other background noise within the frequency window, the maximum 

amplitude within that window is extracted such that only the fault frequency 

component amplitude, A, is found. 

     
              

                 

   

   

  

This function allows the analysis of a localised frequency range based on 

Fourier analysis. However, it is not as yet and iterative procedure and a single analysis 

is carried out over the entire signal length. In order to analyse non-stationary, variable 

speed signals, an iterative process much be derived to apply the localised DFT over 

short time windows along the signal length. This is carried out through use of an 

iterative localised DFT, abbreviated to IDFTlocal, the derivation of which is presented in 

§5.2.2. 

5.2.2 Realisation of the IDFTlocal 

For a non-stationary discrete signal, the localised DFT from §5.2.1 must be 

applied through a sliding time-sample window such that the signal is stationary within 

each sample, leading to the complete IDFTlocal algorithm. 

The reference a denotes the data point number whereby the discrete signal for 

analysis is given by x(aT) with a corresponding machine rotational frequency signal 

y(aT) representing two finite series of length A with sampling period T. 

A moving reference point, ai, denotes the starting data point of each iteration of 

the IDFTlocal so the series length, Ni, is defined by: 

   
    
     

 

where i = 0, 1, 2, ..., imax such that imax is defined so that: 

            

and for each iteration: 
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Now the central frequency of interest, fci, is defined by a function of the mean 

machine rotational frequency in the particular series. 

    
 

  
           

    

   

 

   
        

The particular frequency window width, fwi, is defined so that the window is 

bounded by: 

       
    

   

 
 

       
    

 
   

 
 

If the frequency resolution is Δf, the frequencies of interest are given by: 

            
         

  

Implying that for a fixed Δf: 

        
       

  

 
 
 

 
      

 
       

  

     
 

       

  

  

Again, the maximum value within the frequency window is taken so the 

amplitude of the frequency of interest, Ai, in the frequency window for the particular 

series i is given by: 
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From a practical point of view, to observe any changing trend with time, the 

output IDFTlocal must include a corresponding time vector since the iterative process 

may not necessarily carried out on series of equal length, because of changing 

rotational speed. Therefore the time value, ti, corresponding to each Ai is given by: 

       

For MATLAB analysis, the resulting IDFTlocal of the time-varying signal is given 

in the matrix form: 

          

 
 
 
 
 

     
  

     
  

   
     

      
      

 
 
 
 

 

5.3 Conclusions 

In this Chapter, the time-frequency nature of the STFT and CWT has been 

discussed and its relevance to the detection of faults in non-stationary CM signals has 

been demonstrated and compared. Discussion and investigation has demonstrated that 

full frequency or scale range analysis is highly computer intensive and therefore 

unsuitable for automatic WT CM. 

The concept of a frequency tracking algorithm was introduced and the 

previously published CWTlocal method was used as an example. This method proved 

successful on data from the Durham test rig however the processing times required 

were still significant and considered to be impractical for continuous application on 

large WT populations. The nature of CMSs themselves suggests that the CWT may not 

be the only option for frequency analysis and the sinusoidal features of monitoring 

signals suggested that a Fourier-based method could be more applicable, given careful 

application. 

The IDFTlocal algorithm was proposed as a means of combining frequency 

tracking and Fourier analysis. The short time samples used in this method allow the 

IDFTlocal to be applied to signals that are effectively stationary, avoiding issues 

associated with the standard FFT. The time window is also adapted to the machine 

speed in order to ensure comparable frequency amplitudes between samples. This 

algorithm will be used throughout Chapter 6 when processing data and, in §6.2, will be 

compared with the CWTlocal frequency tracking algorithm. 
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Having established the algorithm, Chapter 6 shows results from the CM test rig, 

processed using the IDFTlocal. 

5.4 References 

[71] Cowie, J., Climate Change: Biological and Human Aspects, Cambridge 

University Press, 2007. 

[72] Newland, D. E., Random Vibrations, Spectral and Wavelet Analysis, Third 

Edition, Longman Scientific & Technical, p. 33, 1993. 

[73] Bellanger, M., Digital Processing of Signals: Theory and Practice, 2nd Edition, 

John Wiley & Sons Ltd, p9. 39-40, 1989. 

[74] Kreyszig, E., Advanced Engineering Mathematics, 9th Edition, John Wiley & 

Sons Ltd, 2006. 

[75] Qian, S., Introduction to Time-Frequency and Wavelet Transforms, Pearson 

Education Asia Limited and China Machine Press, 2005. 

[76] Ifeachor, E. C., Jervis, B. B., Digital Signal Processing: A Practical Approach, 2nd 

Edition, Pearson Education Limited, 2002. 

[77] Farge, M., Wavelet Transforms and their Applications to Turbulence, Annual 

Review of Fluid Mechanics, Vol. 24, pp. 395-457, 1992. 

[78] Rucka, M., Wilde, K., Application of Continuous Wavelet Transform in Vibration 

Based Damage Detection Method for Beams and Plates, Journal of Sound and 

Vibrations, Vol. 297, Iss. 3-5, pp. 536-550, 2006. 

[79] Yacamini, R., Smith, K. S., Ran, L., Monitoring Torsional Vibrations of Electro-

Mechanical Systems using Stator Currents, Journal of Vibration and Acoustics, 

Transactions of the ASME, Vol. 120, Issue 1, pp. 72-79, 1998. 

[80] Yang, W., Tavner, P. J., Crabtree, C. J., Wilkinson, M., Cost Effective Condition 

Monitoring for Wind Turbines, IEEE Transactions on Industrial Electronics, 

Vol. 57, No. 1, pp. 263-271, 2010. 

 



129 
 

6 Application and Results 

“However beautiful the strategy, you should occasionally 

look at the results.” 

Winston Churchill 

1874 – 1965 

A number of different results are shown in this Chapter. Initially, data from the 

Durham CM test rig was analysed using both the new IDFTlocal algorithm and the 

CWTlocal algorithm. A number of fault-like conditions were investigated to demonstrate 

the detection of faults with different characteristics and in different signals. The fault 

conditions were: 

 Rotor electrical asymmetry; 

 High speed shaft mass unbalance, and; 

 Gear tooth damage leading to failure. 

In addition to test rig results, the use of electrical power in the time domain as 

an indicator of torsional drive train characteristics is examined using industrial data 

from an operational 1.3MW WT. This is believed to be one of the few examples of 

published field data. 

All frequency tracking results in this Chapter are in the same format: subplot 

(a) shows the tracked frequency of interest; subplot (b) shows the amplitude of the 

frequency of interest, the raw result obtained from frequency tracking; and subplot (c) 

shows results filtered by a low pass filter. Each result figure includes its calculation 

time for later comparison. The absolute calculation time is given in seconds alongside a 

percentage calculation time, calculated as: 

                            
  

  
     

where TA is the analysis time and TS is the time length of the analysed signal, 

both in seconds. 
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6.1 Test Rig Faults 

Consistency of parameters is maintained throughout this section for each 

IDFTlocal analysis and, later, each CWTlocal analysis. However, the number of rotations in 

the time window is reduced for gear tooth damage to reduce noise due to small speed 

variations across the time window. The parameters used are given in Table 6. 

Fault-like 
Condition 

Number of 
Rotations 

Frequency 
Window 

Frequency 
Resolution 

Sampling 
Frequency 

     
Rotor 

Asymmetry 
15 fc  0.1 Hz 0.1 Hz 5 kHz 

     
High Speed 

Mass Unbalance 
15 fc  0.1 Hz 0.1 Hz 5 kHz 

     
Gear Tooth 

Damage 
10 fc  0.1 Hz 0.1 Hz 5 kHz 

     

Table 6: Parameters for IDFTlocal and CWTlocal frequency tracking algorithm 

6.1.1 Rotor Electrical Asymmetry 

As introduced in §4.4.1, rotor electrical asymmetry in the steady state has been 

examined in a number of previous works. However, fault detection under variable 

speed driving conditions has not been considered. 

Rotor electrical asymmetry in a WRIG may be caused by a number of different 

fault conditions including inter-turn, winding insulation and brush gear faults. 

According to a study of WT generator failures [81], brush gear and slip ring damage are 

the source of 16% of faults in medium scale WTs (1-2MW), second only to bearing 

faults. 

Brush gear damage has the effect of increasing the resistance of one rotor 

phase compared to the healthy phase resistance as described in §4.2.1. The level of 

unbalance can be described by: 
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Where R1f =faulted phase resistance, R2H = R3H = balanced phase resistance,  

    ,      
  

 
,      

  

 
 . This can be defined (§4.4.1) as a percentage unbalance 

using: 

   
  

   

 
  

   

 
  

   

 

where R1H, R2H and R3H are the balanced phase resistances. 

For experimental purposes, two fault levels were implemented on the test rig. 

The healthy rotor resistance, including winding resistance, was 1.3Ω per phase and 

additional resistances of 0.3Ω and 0.6Ω were successively added to one phase to give 

two fault levels. These gave 23% and 46% unbalance respectively. While acceptable 

levels of unbalanced are undefined, these values were considered reasonable for the 

emulation of brush gear damage, based on experience. Indeed, for a machine with low 

rotor resistance, unbalance resulting from brush gear damage may easily exceed 100% 

of the balanced phase resistance. 

Figure 77 and Figure 78 show the generator speed, stator line current and 

stator total instantaneous power data, hereinafter referred to as ‘power’, recorded for 

two wind driving conditions based on 7.5m/s, 6% turbulence and 15m/s, 20% 

turbulence respectively. Data recorded for balanced operation and the two fault 

conditions of 23% and 46% unbalance were stitched together to form a continuous 

signal, with fault-like conditions occurring as indicated. Only one line current signal is 

presented and analysed here, as is often the case for MCSA, and the power signal was 

calculated using two-wattmeter method. It can be seen that in the time domain neither 

the line current nor the power signals give any indication of the presence of a fault. The 

large amplitude of the power signal is 100Hz noise resulting from unbalance in the 

stator grid supply voltage to which the generator was connected. 
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Figure 77: Raw data used in the analysis of electrical signals for the detection of 

rotor electrical asymmetry Driven by 7.5m/s, 6% turbulence conditions. 

 

Figure 78: Raw data used in the analysis of electrical signals for the detection of 

rotor electrical asymmetry Driven by 15m/s, 20% turbulence conditions. 

Based on collaborative research described in §4.4.1.2, four fault-related slip-

dependent frequencies in line current and four in power were tracked using the 

IDFTlocal. As a graphical summary, the four frequencies of interest (‘c’, ‘d’, ‘e’ and ‘f’) are 

shown in Figure 79 for line current and Figure 80 for power. Components ‘a’ and ‘b’ are 

present under healthy and faulty operation, as previously discussed. 
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Figure 79: Line current spectrum indicating fault-related harmonic components 

 

Figure 80: Total instantaneous power spectrum indicating fault-related 

harmonic components 

6.1.1.1 Line Current 

Figure 81 shows the results of IDFTlocal tracking of component ‘c’, the widely 

reported (1-2s)fse component in line current. The test rig was driven using the 7.5m/s, 

6% turbulence driving condition. The amplitude of the fault-related frequency jumps 

sharply when the 23% fault is introduced at 150s. A similar jump occurs for the 46% 

unbalance condition introduced at 300s. There is clearly a degree of noise in the raw 
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result, subplot (b), however the detection remains clear. It is apparent from subplot (c) 

that low pass filtering improved the result still further. 

Since the algorithm showed a result for the (1-2s)fse component, processing was 

extended to the other fault-related harmonic components from §4.4.1.2; components 

‘d’, ‘e’ and ‘f’. The results of analysis of these harmonic components are shown in Figure 

82, Figure 83 and Figure 84 respectively. 

It can be seen from Figure 82 that the 2sfse component ‘d’ around the third 

supply harmonic of current gives a detection signal very comparable to that from 

component ‘c’ shown in Figure 81. It is even arguable that the detection is improved 

using analysis of this harmonic component. 

The result from component ‘e’ may also be useful as an indicator of fault 

severity. In Figure 83 it can be seen that the amplitude of component ‘e’ does not 

change significantly until the larger, 46% unbalance is introduced, possibly suggesting 

it does not appear until higher levels of fault are introduced. 

It is interesting to note that component ‘f’ in current, Figure 84, does not yield a 

result for this level of unbalance. 

In order to illustrate the algorithm’s ability to function under different driving 

conditions, the second variable speed driving condition, 15m/s and 20% turbulence, 

was applied to the test rig and the same fault-like conditions introduced. 

Figure 85 shows the IDFTlocal result from tracking frequency ‘c’ in stator current 

with the higher turbulence, 15m/s, 20% turbulence driving conditions. It can be seen 

that the result is as clear as that shown in Figure 81 for the less turbulent 7.5m/s, 6% 

driving condition. Since the results from the second driving condition are comparable 

to those already presented, they are not included in the main body of the thesis. 

Instead, an extended set of results from the analysis of stator current for both driving 

conditions can be found in Appendix C.1. 
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Figure 81: IDFTlocal analysis of generator line current frequency component ‘c’ for 

the detection of rotor electrical asymmetry: (a) Frequency of interest; (b) 

amplitude of frequency of interest; (c) filtered result. Driven by 7.5m/s, 6% 

turbulence conditions. Calculation time = 0.98s = 0.22%. 

 

Figure 82: IDFTlocal analysis of generator line current frequency component ‘d’ for 

the detection of rotor electrical asymmetry: (a) Frequency of interest; (b) 

amplitude of frequency of interest; (c) filtered result. Driven by 7.5m/s, 6% 

turbulence conditions. Calculation time = 1.05s = 0.24%. 
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Figure 83: IDFTlocal analysis of generator line current frequency component ‘e’ for 

the detection of rotor electrical asymmetry: (a) Frequency of interest; (b) 

amplitude of frequency of interest; (c) filtered result. Driven by 7.5m/s, 6% 

turbulence conditions. Calculation time = 1.09s = 0.25%. 

 

Figure 84: IDFTlocal analysis of generator line current frequency component ‘f’ for 

the detection of rotor electrical asymmetry: (a) Frequency of interest; (b) 

amplitude of frequency of interest; (c) filtered result. Driven by 7.5m/s, 6% 

turbulence conditions. Calculation time = 1.11s = 0.25%. 
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Figure 85: IDFTlocal analysis of generator line current frequency component ‘c’ for 

the detection of rotor electrical asymmetry: (a) Frequency of interest; (b) 

amplitude of frequency of interest; (c) filtered result. Driven by 15m/s, 20% 

turbulence conditions. Calculation time = 0.97s = 0.22%. 

 

6.1.1.2 Total Instantaneous Power (Power) 

Following successful fault detection in the line current signal, attention is now 

turned to analysis of the total instantaneous power signal. As before, four results are 
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result, possibly a result of the significant changes in the magnitude of the DC power 
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As before, component ‘e’, Figure 88, shows a certain amount of change but the 

main increase in its amplitude occurs only when the fault severity is increased to 46%. 

This, again, suggests that component ‘e’ may be a useful indicator of fault severity 

rather than an earlier fault indicator. 

Analysis showed a minor change in the amplitude of component ‘f’, contrary to 

the equivalent component in current, Figure 84. However the change was not 

significant. The algorithm was also able to demonstrate correct operation when applied 

to power data obtained under different driving conditions, just as has previously been 

indicated for analysis of stator current. The results from the 15m/s, 20% turbulence 

condition are included in Appendix C.1.2 although are not in the main body of the text. 

 

 

Figure 86: IDFTlocal analysis of generator total power frequency component ‘c’ for 

the detection of rotor electrical asymmetry: (a) Frequency of interest; (b) 

amplitude of frequency of interest; (c) filtered result. Driven by 7.5m/s, 6% 

turbulence conditions. Calculation time = 0.91s = 0.20%. 
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Figure 87: IDFTlocal analysis of generator total power frequency component ‘d’ for 

the detection of rotor electrical asymmetry: (a) Frequency of interest; (b) 

amplitude of frequency of interest; (c) filtered result. Driven by 7.5m/s, 6% 

turbulence conditions. Calculation time = 1.02s = 0.23%. 

 

Figure 88: IDFTlocal analysis of generator total power frequency component ‘e’ for 

the detection of rotor electrical asymmetry: (a) Frequency of interest; (b) 

amplitude of frequency of interest; (c) filtered result. Driven by 7.5m/s, 6% 

turbulence conditions. Calculation time = 1.09s = 0.25%. 
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6.1.2 High Speed Shaft Mass Unbalance 

As previously stated, individual fault mechanisms and conditions induce their 

own, different characteristic frequencies in monitoring signals. Monitoring of electrical 

signals to detect rotor electrical asymmetry has proved successful using the IDFTlocal 

however a significant proportion of WT drive train faults stem from mechanical 

unbalances rather than electrical. Traditional vibration monitoring has been based on 

the examination of complex spectra recorded from vibration transducers including 

accelerometers and proximity sensors. Both of these types of transducers are installed 

on the Durham test rig and so were considered for investigation. 

As shown in Chapter 3, real vibration spectra can be complex, noisy and 

difficult to interpret. The frequency ranges of the spectra have to be kept wide to 

ensure all relevant harmonics are visible, resulting in unwieldy figures containing a 

forest of harmonics. In addition, individual spectra have to be examined manually to 

observe a trend over time. It makes sense, therefore, to analyse these signals using a 

frequency tracking technique. Here, the IDFTlocal algorithm is applied to test its 

capabilities on high noise signals from vibration transducers. 

Many mechanical unbalances or faults cause fault frequencies that are a 

function of rotational speed so the fundamental of this was investigated: high speed 

shaft mass unbalance. This unbalance causes a once-per-revolution, frm, component in 

vibration signals so this frequency will be tracked. 

Here, a small mass of 92g was fitted to the high speed shaft experimental 

balance plane successively at two different radii (80mm and 230mm) to give two 

different fault levels. Using the International Standard formulae for balance quality 

given in §4.4.2, these two fault levels correspond to G 13.4 and G 38.5 respectively, at 

1600rpm. These levels of unbalance both appear at first glance to be very large 

however it is important to note that the grades given in §4.4.2 are the limits for healthy 

machine operation and consequently it should be expected that they will be 

significantly increased during faulted operation. 

Figure 89 shows data recorded for generator speed, high speed shaft 

displacement, generator vertical (radial) acceleration and gearbox high speed end 

vertical (radial) vibration under the 7.5m/s, 6% turbulence conditions. Very little 

change can be observed in the time domain signals when the two levels of fault are 

introduced. The only apparent change is the increased level of noise on the 
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displacement measurement during the high fault level. This is thought to be 

instrumentation noise from the laboratory environment rather than an indication of a 

fault-like condition. Similar characteristics are observed in raw data recorded using the 

15m/s, 20% turbulence driving condition. This data is given in Appendix C.2.2 since 

these additional results are not in the main body of the thesis. 

 

Figure 89: Raw data used in the analysis of mechanical signals for the detection 

of high speed shaft mass unbalance Driven by 7.5m/s, 6% turbulence conditions. 

The once-pre-revolution frequency, frm, was tracked in each of these vibration 

signals using the IDFTlocal. The displacement signal was analysed first as the 

transducers were placed near the high speed shaft mass unbalance plane and a clear 

result was expected. Figure 90 shows the result obtained from analysis of the 

displacement signal. The step to the smaller mass unbalance is quite small but is still 

quite distinct. The larger unbalance has had a much more significant effect, generating 

a clear step change in the amplitude of the frm component. Importantly, the result does 

not appear to have been affected by the noise apparently present in the signal itself. 

The amplitude of the frm component in the generator accelerometer signal is 

analysed in Figure 91. Again, we see a marked change in vibration between the healthy 

and two faulty conditions, the magnitude increasing with fault severity. It has already 

been noted that vibration signals are often noisy and it can be seen that the 

accelerometer signal has a higher variability in its result than displacement, suggesting 

acceleration is a noisier signal. Nevertheless, a step change is visible. 
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This is highlighted by Figure 92 which shows the result of IDFTlocal analysis of 

the gearbox accelerometer signal. While there is a change in the amplitude of the fault-

related frequency component, it is much less marked than the displacement and 

generator accelerometer results in terms of noise. It is also noticeable that the 

amplitude of the fault frequency is much lower. This is thought to be the result of two 

conditions. Firstly, the vibration transducer is further from the fault, suggesting that 

accurate vibration monitoring may be heavily dependent on careful positioning of 

transducers. Secondly, the gearbox casing is very stiff, particularly around its bearings, 

due to the solid, cast internal structure. Nevertheless, a change is still apparent despite 

the noise and decreased signal magnitude. 

Results recorded using the second driving condition showed very similar 

trends and are included in Appendix C.2.2 for completeness. 

 

Figure 90: IDFTlocal analysis of high speed shaft displacement frequency 

component frm for the detection of high speed shaft mass unbalance: (a) 

Frequency of interest; (b) amplitude of frequency of interest; (c) filtered result. 

Driven by 7.5m/s, 6% turbulence conditions. Calculation time = 0.95s = 0.21%. 
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Figure 91: IDFTlocal analysis of generator vertical vibration frequency component 

frm for the detection of high speed shaft mass unbalance: (a) Frequency of 

interest; (b) amplitude of frequency of interest; (c) filtered result. Driven by 

7.5m/s, 6% turbulence conditions. Calculation time = 0.97s = 0.22%. 

 

Figure 92: IDFTlocal analysis of gearbox high speed end vibration frequency 

component frm for the detection of high speed shaft mass unbalance: (a) 

Frequency of interest; (b) amplitude of frequency of interest; (c) filtered result. 

Driven by 7.5m/s, 6% turbulence conditions. Calculation time = 0.97s = 0.22%. 
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6.1.3 Gear Tooth Failure 

Based on a photos supplied by a WT operator, progressive damage was 

introduced to the leading contact edge of the gearbox high speed pinion. A typical fault 

is shown in Figure 93 where a significant portion of a gear tooth has broken away 

leaving a short amount of the tooth root visible. 

 

Figure 93: Gear tooth failure from an operational wind turbine, taken from [82] 

A damaged tooth will cause mechanical vibrations at its rotational frequency 

(§4.4.3). As the gear speed is equal to the generator rotational speed, the fault 

frequency of interest is, again, the rotational frequency frm. The difficulties of 

monitoring had already been understood, so both accelerometers were placed on the 

gearbox: one on the high speed end and one centrally on top of the gear case. 

The gearbox high speed assembly was removed between each test and the next 

fault ground by hand to give eight faults of increasing severity. Figure 94(a), (b) and (c) 

show the healthy pinion, fault level 3 and fault level 8 respectively. The full set of fault 

images can be found in Appendix C.3.1. The fault was progressively moved across the 

tooth face until the while face was missing (fault level 7). The entire tooth was removed 

except for a small amount of the root in fault level 8. 
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Figure 94: Test rig gearbox high speed pinion damage introduced for fault 

testing: (a) healthy, (b) fault level 3 and (c) fault level 8 

Figure 95 shows raw accelerometer signals recorded for each fault 

subsequently stitched together in order of severity. The accelerometers were located 

on the gearbox casing and on the high speed end, as shown in Appendix D, Figure 4. 

Fault level 4 is missing due to a data file error. It is apparent that there is large 

variability in the level of vibration signal noise, illustrating one of the issues 

encountered with vibration monitoring. It is thought much of this variability results 

from fault incorporation methods. Since the gearbox high speed section was removed 

at each testing stage, the gearbox vibration characteristic was disrupted by small 

dimensional errors introduced during successive reassembly. Nevertheless, frequency 

tracking was still thought to be a worthwhile endeavour. 

Figure 96 shows the result of IDFTlocal analysis of the frm component in the 

gearbox high speed end accelerometer signal. As expected from earlier information, the 

majority of tooth faults yielded no change as a result of either the fault itself or the 

variation in the overall signal. 
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Figure 95: Raw data used in the analysis of mechanical signals for the detection 

of gear tooth damage (7.5m/s, 6% turbulence) 

However, the result shows a step change where fault levels 7 and 8 were 

incorporated, suggesting detection has occurred. A number of reasons for the lack of 

detection up to this point are proposed. Firstly, the gears are of helical form meaning 

that at least two teeth per gear are meshing at any one time and no single tooth carries 

the full load alone. Secondly, the overall gearbox load is quite low. This may mean that 

individual tooth faults are not excited to a great extent. Finally, the gearbox 

construction is very rigid. The gear case has a strong, cast structure with significant 

internal webbing, shown in §4.2.2, Figure 52. It is thought that vibration resulting from 

tooth faults is not easily transmitted to the external accelerometers because of this stiff, 

rigid structure. In an operational WT, the gear case is likely to be much more flexible 

compared to its loading and the large load being driven through the gearbox will allow 

greater transmission of healthy and faulty vibrations to the external transducers. 

Figure 97 shows the same processing applied to the second accelerometer 

signal. The accelerometer is mounted on the top of the gear case. The figure does not 

give a result until the tooth has been fully removed for fault 8. At this point, a change in 

the amplitude of the frm component is observed, albeit slight. 
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Figure 96: IDFTlocal analysis of gearbox high speed end vertical vibration 

frequency component frm for the detection of gear tooth damage: (a) Frequency of 

interest; (b) amplitude of frequency of interest; (c) filtered result. Driven by 

7.5m/s, 6% turbulence conditions. Calculation time = 3.34s = 0.28%. 

 

Figure 97: IDFTlocal analysis of gearbox casing vertical vibration frequency 

component frm for the detection of gear tooth damage: (a) Frequency of interest; 

(b) amplitude of frequency of interest; (c) filtered result. Driven by 7.5m/s, 6% 

turbulence conditions. Calculation time = 2.63s = 0.22%. 
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No further data was analysed for gear tooth damage. It is clear that detection of 

gear tooth damage is difficult, particularly on a small scale where gearbox loading is 

low and the unit itself rigid and inflexible. 

6.2 Comparison of Frequency Tracking Techniques 

Throughout this chapter, the newly developed IDFTlocal algorithm has been 

used. However, it is only sensible to support this method through comparison against 

results obtained using an established, published method. In this section, the IDFTlocal is 

compared with the CWTlocal frequency tracking method introduced in §5.1.5. 

6.2.1 Electrical Signals 

While the IDFTlocal algorithm was able to give results for both current and 

power monitoring, the CWTlocal frequency tracking algorithm was unable to give results 

for current analysis and very limited results for power. The results obtained are not 

included here because of their poor quality when analysing data sampled at 5kHz, as 

has been the case throughout this work. The CWTlocal method has previously been 

shown that it is capable of producing results from power signal analysis however its 

success was dependent on the data sampling rate and the adjustment of parameters. 

This is an inherent issue for wavelet-based methods as the resolution at low 

frequencies is poor for high sampling frequencies unless an extremely large range of 

scale constants is applied, significantly increasing the required processing power. 

6.2.2 Mechanical Signals 

The CWTlocal method saw greater success analysing data from accelerometers 

and displacement transducers. The raw and filtered results for both methods are 

presented. Subplots show: (a) the tracked frequency; (b) the IDFTlocal result; (c) the 

CWTlocal tracking result. Only data from 7.5m/s, 6% turbulence driving conditions are 

presented in the interests of clarity and conciseness. 

Figure 98, shows unfiltered results from analysis of shaft displacement. While 

spectral results are generally very subjective, it is apparent that the IDFTlocal algorithm 

has dealt more effectively with variable speed operation. Its result, Figure 98(b), is 

much less variable than the result from the CWTlocal algorithm, Figure 98(c). As would 

be expected, the filtered result, Figure 99, only serves to highlight this point. 
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Figure 98: Unfiltered analysis of high speed shaft displacement frequency 

component frm for the detection of high speed shaft mass unbalance: (a) 

Frequency of interest; (b) amplitude of frequency of interest using IDFTlocal; (c) 

amplitude of frequency of interest using CWTlocal frequency tracking. Driven by 

7.5m/s, 6% turbulence conditions. 

 

Figure 99: Filtered analysis of high speed shaft displacement frequency 

component frm for the detection of high speed shaft mass unbalance: (a) 

Frequency of interest; (b) amplitude of frequency of interest using IDFTlocal; (c) 

amplitude of frequency of interest using CWTlocal frequency tracking. Driven by 

7.5m/s, 6% turbulence conditions. 
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The algorithms were applied in turn to 7.5m/s, 6% turbulence data for gear 

tooth damage. Under these fault-like conditions, the unfiltered results, Figure 100(b) 

and Figure 100(c), do not differ greatly however the result from the CWTlocal algorithm, 

Figure 100(c), has a significantly reduced level of noise. 

Examining the filtered results, Figure 101, it is clear that the CWTlocal method 

has been more successful, albeit not greatly, in the detection of gear tooth damage. It 

should be noted, however, that neither method can be easily said to have the upper 

hand in this case.  

 

Figure 100: Unfiltered analysis of generator high speed end vibration frequency 

component frm for the detection of gear tooth damage: (a) Frequency of interest; 

(b) amplitude of frequency of interest using IDFTlocal; (c) amplitude of frequency 

of interest using CWTlocal frequency tracking. Driven by 7.5m/s, 6% turbulence 

conditions. 
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Figure 101: Filtered analysis of generator high speed end vibration frequency 

component frm for the detection of gear tooth damage: (a) Frequency of interest; 

(b) amplitude of frequency of interest using IDFTlocal; (c) amplitude of frequency 

of interest using CWTlocal frequency tracking. Driven by 7.5m/s, 6% turbulence 

conditions. 

6.2.3 Summary 

It appears from this comparison that each of the two algorithms has its own 

place in signal analysis. 

The IDFTlocal algorithm proved more successful for analysis of sinusoidal fault 

indicators, such as those from mass unbalance or rotor electrical asymmetry. A large 

number of serious fault conditions, such as shaft unbalance, shaft misalignment and 

blade unbalance among others, will induce a sinusoidal response in monitoring signals. 

The CWTlocal method demonstrated improved results in the detection of more 

impulsive responses from gear tooth damage. This is a useful characteristic of the 

CWTlocal method as certain faults will have an impulsive response in monitoring signals. 

Despite the advantage discussed above, one point that must be taken into 

consideration is that of the processing power required by each method. In all cases, the 

CWTlocal algorithm required significantly more processing power than the IDFTlocal. This 

can be seen from the processing times, representative of the required processing 

power, that are given in Table 7. The CWTlocal method was, in both cases, significantly 

more computer intensive than the IDFTlocal processed on the same computer. 
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Fault-like 
Condition 

IDFTlocal CWTlocal 
  

Processing 
Time 

Percentage 
Signal Time 

Processing 
Time 

Percentage 
Signal Time 

     
High Speed 

Mass Unbalance 
0.953 s 0.21 % 54.232 s 12.21 % 

     
Gear Tooth 

Damage 
3.34 s 0.28 % 121.07 s 10.23 % 

     

Table 7: Processing times for the IDFTlocal and CWTlocal frequency tracking 

algorithms 

6.3 Field Torque Analysis using Power Signals 

6.3.1 Introduction 

Having demonstrated the use of power in fault detection by frequency tracking, 

an amount of data from an operational WT was examined. A total of 4 weeks of data 

was made available by a WT operator however no faults occurred during this period 

and so frequency tracking was not applicable. The data led, however, to an 

investigation of the power as a medium for turbine monitoring without frequency 

tracking. 

One of the major factors in the damage of WT drive trains is that of torque 

pulses due to sudden loading and unloading from wind turbulence and, most 

interestingly, during generator speed changes and synchronisation. 

Pulses occurring during grid synchronisation can be over 100% of the turbine’s 

rated torque and frequent and continued pulses are likely to cause significant stress 

damage over time. The problem is further compounded by negative torque pulses that 

so often occur alongside positive ones. Again, these can be over 100% of the rated 

torque however in the opposite direction. 

Although torsional effects are important, torque measurement on such a large, 

low speed, inaccessible machine is practically and logistically difficult, although it is 
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possible using specialised equipment. The industrial partner referred to in Chapter 3 

carried out a measurement campaign over three weeks to record high sampling 

frequency data from an operational WT. Data from a specially installed low speed shaft 

torque transducer, and for wind speed, generator speed and power were recorded 

alongside machine vibration data. The data was recorded at 7.5kHz but was down-

sampled offline to 500Hz for this work to reduce computing requirements. The turbine 

was a 1.3MW, two speed, active stall machine and had been operating for several years. 

The machine speeds corresponded to 4-pole or 6-pole generator operation. Further 

details are unavailable for confidentiality reasons. 

Due to the difficulties involved in measuring the shaft torques of a WT, it was 

suggested that torque derived from the electrical power signal may be a viable 

alternative. The electrical power has a particular advantage in that it is measured by 

the turbine controller and could be accessed for CM purposes, earlier results in the 

chapter demonstrating how this could be done. 

The low speed shaft torque was measured and will be the mark against which 

the derived torque is compared. 

The derived low speed shaft torque, TLSS, is given by the equation: 

        
  

    
  

where N is the gearbox ratio, Pe is the electrical power of the generator and ωHSS 

is the high speed shaft speed. The gearbox ratio for this turbine is 78.3:1 and the 

turbine speed corresponds to either 4-pole or 6-pole operation. 

In this short study, speed changes from 6-pole to 4-pole operation, starts from 

stationary, and turbine stops will be examined to demonstrate the applicability of the 

power signal as an indicator of mechanical loading. The signals used are shown in 

Figure 102 where a steady state region, turbine starting phase and speed change from 

6-pole to 4-pole operation are visible. A turbine stop is also visible but is not analysed. 
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Figure 102: Signals recorded from the operational wind turbine for (a) wind 

speed, (b) generator speed, (c) low speed shaft torque and (d) generator power 

6.3.2 Results 

Figure 103 shows the measured torque and the torque derived from the 

generator power taken while the turbine is operating at 6-pole constant speed with 

variable load. It appears that the derived torque, Figure 103(b), gives a very close 

approximation to the measured low speed shaft torque, Figure 103(c). 

During the turbine’s start-up period, the measured and derived torques, Figure 

104(b) and Figure 104(c) respectively, can also be seen to have close correlation in 

time. It is, however, apparent that negative torque pulses are not present in the derived 

torque. This is a result of the data acquisition system not allowing negative powers to 

be recorded. Nevertheless, positive torque oscillations are closely represented by the 

electrical power both in terms of their time domain positions and magnitudes. 

Finally, the speed change transient is analysed. During this period the 

generator switches from 6-pole to 4-pole operation at low power. The derived torque, 

Figure 105(c), again closely replicates the measured torque, Figure 105(b) in both time 

and magnitude. It can also be seen that the torsional oscillations during the speed 

change, Figure 105 are considerably larger in magnitude and take longer to decay than 

those for the start-up period, Figure 104. 
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Figure 103: (a) Measured and (b) derived torques during constant speed, 

variable load operation 

 

Figure 104: (a) Generator speed, (b) measured torque and (c) derived torque 

during turbine start from stationary to 6-pole operation 
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Figure 105: (a) Generator speed, (b) measured torque and (c) derived torque 

during speed change from 6-pole to 4-pole operation 

It is clear from figures 103-105 that the torque derived from the measured 

generator power could be a reliable indicator of WT low speed shaft torque and could 

be used as a suitable method for detecting and measuring torque pulsations during 

transient periods. Given improved measurements where negative powers are 

recorded, negative torque pulses may also be measured accurately. 

6.4 Summary 

In this chapter, the IDFTlocal algorithm has been applied to data from three fault-

like conditions on the test rig: 

 Rotor electrical asymmetry; 

 High speed shaft mass unbalance, and; 

 Gear tooth failure. 

In each case the relevant fault frequencies of interest, introduced throughout 

Chapter 4, were analysed by the IDFTlocal algorithm. 

Rotor electrical asymmetry was clearly detected in both the generator stator 

power and current signals, giving step changes in a number of different harmonic 

components. The two fault levels were indicated by the step changes in results. 
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High speed shaft mass unbalance produced a distinct step in mechanical 

monitoring signals with shaft displacement showing a clear step change for each level 

of unbalance. Despite the level of noise present in generator and gearbox vibration 

signals, they too showed a change in the rotational frequency component as fault 

severity increased. 

The algorithm also proved capable of dealing with different variable speed 

driving conditions. In the cases of rotor electrical asymmetry and high speed shaft 

mass unbalance, the IDFTlocal produced consistent results between the two driving 

conditions. 

As expected from discussion with Operators and experienced monitoring 

engineers, gear tooth failure detection proved difficult using vibration signals from the 

gear case. However, a broken tooth was detected in two gearbox vibration signals. 

While the result was not as clear as those from other fault-like conditions, the method 

still proved capable of detecting failure. A number of reasons for this noisier result are 

suggested. In particular, the gearbox loading is very low when compared to the rigid, 

cast gearbox structure suggesting that small vibrations from tooth may not be 

transmitted strongly. The helical gear configuration also means that the faulted tooth 

would never be the sole meshing tooth. This would result in heavy damping of any 

response as loading is always split between at least two teeth. 

Having successfully detected fault-like conditions, the IDFTlocal was compared 

with the published CWTlocal algorithm. The IDFTlocal compared favourably with the 

CWTlocal and produced results of better quality for high speed shaft mass unbalance. 

The CWTlocal was unable to produce results for electrical unbalance using the raw 5kHz 

sampling frequency due to the scale resolution of the CWTlocal discussed in §5.1.5. 

It could well be argued that the CWTlocal was more successful in the detection of 

gear tooth failure, Figure 101, as a step change was clearer than when the IDFTlocal was 

applied. This is expected as gear tooth failure produces a more impulsive response in 

vibration signals, ideally suited to the nature of the CWT. 

However, when processing times were considered, the slight increase in the 

quality of result became insignificant as the IDFTlocal required significantly lower 

processing power, indicated by the reduced calculation times. 
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Finally, an investigation into the derivation of WT shaft torque from the 

generator power signal was presented using high sampling frequency data from an 

operational WT. The derived low speed shaft torque correlated closely with 

measurements for constant speed, variable load operation as well as for larger 

transients including turbine starts and generator pole changes. 
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7 Conclusions 

“Finally, in conclusion, let me say just this.” 

Peter Sellers 

1925 – 1980 

7.1 Conclusions 

In this thesis, the practicalities and challenges of CM in the field have been 

presented. In particular, a case study of the application of a commercially available CMS 

has been discussed. The capabilities of the SKF WindCon system are clear and it is 

apparent that the Operator has achieved success in the field. However, there are 

limitations and issues for the use of CMSs encountered due to the variable speed, 

variable load nature of WTs. 

In order to investigate and resolve these, an existing CM test rig was developed 

further. Its instrumentation and ability to introduce fault-like conditions were 

significantly extended alongside the introduction of realistic wind driving conditions 

based on a highly detailed WT model from within the Supergen Wind Energy 

Technologies Consortium. 

The fault-like conditions which can now be applied to the test rig include: 

 WRIG rotor electrical asymmetry 

 High speed shaft mass unbalance 

 High speed gear tooth damage and ultimate failure 

Several popular and widely applied CMS signal processing methods are 

discussed including the DFT, STFT and CWT. Their relevance to a WT CMS, advantages 

and disadvantages are given, including the application of a previously published 

CWTlocal frequency tracking algorithm. This algorithm was then taken as the basis for 

the development of an improved, practical fault frequency tracking algorithm. 
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Based on this discussion, a DFT-based frequency tracking algorithm, the 

IDFTlocal, was developed. Its mathematical basis and derivation is given and developed 

into an iterative process for the analysis of discretely sampled CM signals. 

The IDFTlocal was applied to data recorded form the CM test rig to test its 

detection capabilities. The results showed that rotor electrical asymmetry and high 

speed shaft mass unbalance conditions were clearly detectable in electrical and 

mechanical signals respectively. This also demonstrated the algorithm’s applicability to 

different types of monitoring signal. 

High speed gear tooth damage involving serious tooth face deterioration and 

subsequent failure, were detected. However, difficulties in the detection of this fault-

like condition occurred due to the relatively low load conditions being applied in a 

relatively rigid, stiff gearbox structure. 

The IDFTlocal was compared to the CWTlocal frequency tracking algorithm in 

terms of clarity of result and computational intensity, indicated by computing time. The 

IDFTlocal algorithm compared favourably against the published CWTlocal method, giving 

comparably clear results for rotor electrical asymmetry, high speed mass unbalance 

and gear tooth damage with very similar processing parameters. Arguably the CWTlocal 

algorithm produced a slightly improved result for tooth fault detection. However, in all 

cases, the computing time of the IDFTlocal algorithm was much reduced against that for 

the CWTlocal algorithm. It did not appear that the CWTlocal algorithm compared well in 

terms of computing time and clarity of results, an issue which is highly important in the 

field. 

Finally, a short study of the electrical power signal from an operational WT has 

shown that WT mechanical torque can be accurately derived from the generator 

electrical power signal, retaining the same features as the measured torque, in 

particular indicating large torque pulses during start-up, speed changes and stops. 

7.2 Future Areas for Investigation and Development 

The CM test rig has undergone significant development over the course of this 

research however further development based on experience is encouraged. This may 

be in terms of refined fault capabilities or further signal conditioning. 
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The WindCon 3.0 system fitted to the test rig could be used to monitor the 

faults applied here but with the suggested algorithms programmed into the WindCon. 

This would demonstrate the transferability of these algorithms into a commercial 

device. 

The test rig is currently undergoing an upgrade to full DFIG operation, bringing 

it yet closer to the most widely installed WT configuration. The aim of this work will be 

to bring about a fully closed control loop on the test rig opening the possibility of 

monitoring the drive train through the error signals in the generator controller. 

An important aim for future work has to be to gain experience in the analysis of 

signals from operational WTs. Once the algorithms and method discussed in this thesis 

have been further tested, their incorporation into the CMS of an operational WT would 

allow complete testing in the field. However, further progress must be made in terms of 

practical algorithm implementation and programming. As it stands, the IDFTlocal 

algorithm is directly implemented. The FFT has been developed as a refined method of 

computing the DFT so it would seem apparent that the same could be applied to the 

IDFTlocal. 

Further work could then be done to link the output of a more automatic CMS to 

Reliability Centred Maintenance packages which schedule maintenance at appropriate 

times of low energy production, after CMS detection, to defer and avoid failure. 
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A.  Survey of Commercially 

Available Condition Monitoring 

Systems for Wind Turbines 
 

This appendix contains a copy of the document “Commercially Available 

Condition Monitoring Systems for Wind Turbines”, available via the Supergen Wind 

Energy Technologies Consortium. The document is cited in Chapter 2 of this thesis. 

Details of copyright are given within the document itself. 
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Abstract 

As wind energy assumes greater importance in remote and offshore locations, effective and reliable 

condition monitoring techniques are required. Failure rate and downtime studies have also 

highlighted a need for condition monitoring of particular wind turbine drive train components. This 

survey discusses the reliability of wind turbines and different monitoring configurations currently in 

use. The document contains a survey of commercially available condition monitoring systems for 

wind turbines including information on their monitoring technologies based on available literature 

and discussion with the companies responsible. Observations are made concerning the nature of 

systems that are currently available and the apparent direction of future monitoring systems. 
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1.    Introduction 

As wind energy assumes greater importance in remote and offshore locations, affective and reliable 

condition monitoring (CM) techniques are required. Conventional CM methods used in the power 

generation industry have been adapted by a number of industrial companies and have been applied 

to wind turbines (WT) commercially. 

This survey discusses commercially available condition monitoring systems (CMS) which are 

currently being applied in the WT industry. Information has been gathered over several years from 

conferences and websites and includes information available from product brochures, technical 

documents and discussion with company representatives. The research was carried out as part of 

Theme X of the Supergen Wind Energy Technologies Consortium [1] whose objective is to devise a 

comprehensive CMS for practical application on WTs. The report also indentifies some of the 

advantages and disadvantages of existing commercial CMSs alongside discussion of access, cost, 

connectivity and commercial issues surrounding the application of WT CMSs. 

2.    Reliability of Wind Turbines 

Quantitative studies of WT reliability have recently been carried out based on publically available 

data [2][3]. These studies have shown WT gearboxes to be a mature technology with constant of 

slightly deteriorating reliability with time. This would suggest that WT gearboxes are not an issue 

however surveys by WMEP and LWK [4] have shown that gearboxes exhibit the highest downtime 

per failure among onshore sub-assemblies. This is shown graphically in Figure 106 where we clearly 

see consistently low gearbox failure rate between two surveys with high downtime per failure. 

Similar results have also been shown for the Egmond aan Zee wind farm [5] where gearbox failure 

rate is not high but the downtime and resulting costs are. The poor early reliabilities for gearbox and 

drive train reliability components has lead to an emphasis in WT CMSs on drive train components 

and therefore on vibration analysis. 

The high downtime for gearboxes derives from complex repair procedures. Offshore WT 

maintenance can be a particular problem as this involves specialist equipment such as support 

vessels and cranes but has the additional issue of potentially unfavourable weather and wave 

conditions. The EU funded project ReliaWind is developing a systematic and consistent process to 

deal with detailed commercial data collected from operational wind farms. This includes the analysis 

of 10 minute average SCADA data as discussed above, automated fault logs and operation and 

maintenance reports. The research aims to identify and understand WT gearbox failure mechanisms 

in greater detail [6]. However, more recent information on WT reliability and downtime, especially 

when considering offshore operation suggests that the target for WT CMSs should be widened from 

the drive train towards WT electrical and control systems. 
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As a result of low early reliability, particularly in large WTs, interest in CMSs has increased. This is 

being driven forward by the insurer Germanischer Lloyd who published guidelines for the 

certification of CMSs [7] and certification of WTs both onshore [8] and offshore [9]. 

 

Figure 106: Wind turbine sub-assembly failure rate and downtime per failure for two surveys 

including over 20000 turbine years of data as published in 0 

3.    Monitoring of Wind Turbines 

WTs are monitored for a variety of reasons. There are a number of different classes into which 

monitoring systems could be placed and these are shown in Figure 107, showing the general layout 

and interaction of the various classes. 

Firstly, we have Supervisory Control and Data Acquisition (SCADA) systems. Initially these systems 

provided measurements for a WT’s energy production and to confirm that the WT was operational 

through 5-10 minute averaged values transmitted to a central database. However, SCADA systems 

can also provide warning of impending malfunctions in the WT drive train. According to Zaher et al. 

[11] 10 minute averaged signals often monitored in modern SCADA systems include: 

 Active power output (and standard deviation over 10 min interval); 

 Anemometer-measured win d speed (and standard deviation over 10 min interval); 

 Gearbox bearing temperature; 
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 Gearbox lubrication oil temperature; 

 Generator winding temperature; 

 Power factor; 

 Reactive power; 

 Phase currents, and; 

 Nacelle temperature (1 hour average). 

This SCADA configuration is designed to show the operating condition of a WT but not necessarily 

give an indication of the health and a WT. However, the much up to date SCADA systems include 

additional alarm settings based not only on temperature transducers mentioned above but also on 

vibration transducers. Often we find several transducers fitted to the WT gearbox, generator 

bearings and the turbine main bearing. The resultant alarms are based on the level of vibration being 

observed over the 10 minute average period. Research is being carried out into the CM of WTs 

through SCADA analysis in the EU project ReliaWind [12]. The research consortium consists of a 

number of University partners alongside industrial consultants and WT manufacturers. 

 

Figure 107: Structural health and condition monitoring of a wind turbine 

Secondly, there is the area of structural health monitoring (SHM). These systems aim to determine 

the integrity of the WT tower and foundations. SHM is generally carried out using low sampling 

frequencies below 5Hz. 

While SCADA and SHM monitoring are key areas for WT monitoring, this survey will concentrate on 

the remaining two classes of CM and diagnosis systems. 

Condition Monitoring

< 50 Hz, Continuous

Diagnosis

> 10 kHz,

On Demand

Structural Health 

Monitoring

< 5 Hz, On Demand

SCADA

< 0.002 Hz, Continuous



 

Survey of Commercially Available 
Condition Monitoring Systems for Wind 

Turbines 

2nd November 2010 
Revision: 05 

Prep: C J Crabtree 

 

171 
 

Monitoring of the drive train is often considered to be most effective through the interaction of 

these two areas. CM itself may be considered as a method for determining whether a WT is 

operating correctly or whether a fault is present or developing. A WT Operator’s main interest is 

likely to be in obtaining reliable alarms based on CM information which can enable them to take 

confident action with regard to shutting down for maintenance. The operator need not know the 

exact nature of the fault but would be alerted to the severity of the issue by the alarm signal. 

Reliable CM alarms will be essential for any operator with a large number of WTs under its 

ownership. On this basis, CM signals should not need to be collected on a high frequency basis as 

this will reduce bandwidth for transmission and space required for storage of data. 

Once a fault has been detected through a reliable alarm signal from the CMS, a diagnosis system 

could be activated either automatically or by a monitoring engineer to determine the exact nature 

and location of the fault. For diagnosis systems, data recorded at a high sampling frequency is 

required for analysis however this need only be collected on an intermittent basis. The operational 

time of the system should be configured to provide enough data for detailed analysis but not to 

flood the monitoring system or data transmission network with excess information. 

Finally, Figure 108 gives an indication of three sections of a WT which may require monitoring based 

on reliability data such as that in Figure 106 0. While each of the three areas are shown as separate 

entities it is possible that CM of the areas may well blur the boundaries between them in order to 

provide clear alarms and, subsequently, diagnostic information. 

 

Figure 108: General layout of three areas for condition monitoring and diagnosis within the nacelle 

Many of the CMSs included in this survey are a combination of CMSs and diagnostic systems due to 

the high level of interaction that can exist between the two types of system. 
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4.    Commercially Available Condition Monitoring Systems 

Table 8, found on page 174 of this survey, provides a summary of a number of widely available and 

popular CMSs for WTs. The information in this table has been collected from interaction with CMS 

manufacturers, WT manufacturers and product brochures over a long period of time and is up to 

date as of the time of writing. However, since some information has been acquired through 

discussion with sales and product representatives and not from published brochures, it should be 

noted that the table may not be fully definitive and is as accurate as possible given the available 

information. The systems in Table 8 are arranged alphabetically by product name. 

The first observation to make from Table 8 is that the CMSs nearly all focus on the same WT 

subassemblies. Moving through the WT these are: 

 Blades 

 Main bearing 

 Gearbox internals 

 Gearbox bearings 

 Generator bearings 

A quick summery of Table 8 shows that there are: 

 14 systems primarily based on drive train vibration analysis (1 – 14) 

 3 systems solely for oil debris monitoring (15 – 17) 

 1 system using vibration analysis for WT blade monitoring (18). 

 2 systems based on fibre optic strain measurement in WT blades (19, 20) 

It is quite clear when reading through the table that the majority of systems are based around 

monitoring methods originating from other, traditional rotating machinery industries. Indeed 14 of 

the 20 systems in the table are based on vibration monitoring using accelerometers typically using a 

configuration similar to that in Figure 109 for the Mita-Teknik WP4086 CMS (14). 

 

Figure 109: Typical accelerometer positions [13] 
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Of these 14 CMSs, all have the capability to carry out some form of diagnostic procedure once a fault 

has been detected. In most cases this is done through fast Fourier transform (FFT) analysis of high 

frequency data in order to detect fault-specific frequencies. In the case of the SKF WindCon 3.0 (11), 

the Areva OneProd Wind CMS (7) and several others, high data acquisition is triggered by 

operational parameters. For example, the SKF WindCon 3.0 CMS can be configured to collect a 

vibration spectrum on either a time basis or when a specific load and speed condition is achieved. 

The aim of this is to acquire data that is directly comparable between each point and, importantly, to 

allow spectra to be recorded in apparently stationary conditions. This is an important point to note 

when using traditional signal processing methods such as the FFT which require stationary signals in 

order to obtain a clear result. The Mita-Teknik WP4086 system (14), however, states that it includes 

advanced signal processing techniques such as comb filtering, whitening and Kurtogram analysis 

which in combination with re-sampling and order alignment approaches, allow the system to 

overcome the effects of WT speed variations. 

Three of the vibration-based CMSs also state that they are able to monitor the level of debris 

particles in the WT gearbox lubrication oil system. Further to this, included in the table are three 

systems which are not in themselves CMSs. These three (15 – 17) are oil quality monitoring systems 

or transducers rather than full CMSs but are included as discussion with industry has suggested that 

debris in oil plays a significant role in the damage and failure of gearbox components. Systems using 

these debris in oil transducers are using either cumulative particle counts or particle count rates. 

Several of the 14 vibration-based CMSs also allow for other parameters to be recorded alongside 

vibration such as load, wind speed, generator speed and temperatures although the capabilities of 

some systems are unclear given the information available. There is some interest being shown as 

regards the importance of operational parameters in WT CM. This arises from the fact that many 

analysis techniques, for example the FFT, have been developed in constant speed, constant load 

environments. This can lead to difficulties when moving to the variable speed, variable load WT 

however experienced CM engineers are able to use these techniques and successfully detect faults. 

Two CMSs in the table (19, 20) are based on strain measurement using fibre optic transducers. These 

are aimed at detection of damage to WT blades and, in the case of the Moog Insensys system (20), 

blade icing, mass unbalance or lightning strikes. Both systems may be fitted to WT blades 

retrospectively. Compared to vibration monitoring techniques, these systems can be operated at low 

sampling rates as they are looking to observe changes in for time domain. In addition to (19) and 

(20) there is the IGUS system (18) using accelerometers to monitor blade damage, icing and lightning 

strikes. This system compares the blade accelerometer FFT with stored spectra for similar operating 

conditions and has the power to automatically shut down or restart a WT based on the results. The 

system appears to be popular within industry. 

 



 

174 
 

Table 8: Table of commercially available condition monitoring systems 

 

Ref. Product

Supplier or 

Manufacturer (Known 

Users)

Country

of Origin
Description

Main Components

Monitored
Monitoring Technology Analysis Method(s)

Data Rate or

Sampling

Frequency

1 Ascent Commtest New Zealand

System available in 3 complexity levels. Level 3 includes 

frequency band alarms, machine template creation, 

statistical alarming.

Main shaft, gearbox, 

generator

Vibration

(Accelerometer)

FFT frequency domain 

analysis

Envelope analysis

Time domain analysis

-

2 Brüel & Kjaer Vibro
Brüel & Kjaer

(Vestas)
Denmark

Vibration and process data automatically monitored at 

fixed intervals and remotely sent to the diagnostic 

server. User-requested time waveforms for frequency 

and time series analysis Time waveform automatically 

stored before and after user-defined event allowing 

advanced vibration post-analysis to identify developing 

faults.

Main bearing, gearbox, 

generator, nacelle.

Nacelle temperature.

Noise in the nacelle

Vibration

Temperature sensor

Accoustic

Time domain

FFT frequency analysis

Variable up to 

40kHz.

25.6kHz.

3 CMS Nordex Germany

Start-up period acquires vibration 'fingerprint' 

components. Actual values automatically compared by 

frequency, envelope and order analysis, with the 

reference values stored in the system. Some Nordex 

turbines also use the Moog Insensys fibre optic 

measurement system.

Main bearing, gearbox, 

generator

Vibration

(Accelerometer)

Time domain based on 

initial 'fingerprint'
-

4

Condition Based 

Maintenance System 

(CBM)

GE

(Bently Nevada)
USA

This is built upon the Bently Nevada ADAPT.wind 

technology and System 1. Basis on System 1 gives 

monitoring and diagnostics of drive train parameters 

such as vibration and temperature. Correlate machine 

information with operational information such as 

machine speed, electrical load, and wind speed. Alarms 

are sent via the SCADA network.

Main bearing, gearbox, 

generator, nacelle

Optional bearing and oil 

temperature

Vibration

(Accelerometer)

FFT frequency domain 

analysis

Acceleration enveloping

-

5
Condition Diagnostics 

System
Winergy Germany

Up to 6 inputs per module. The system analyses 

vibration levels, load and oil to give diagnostics, 

forecasts and recommendations for corrective action. 

Automatic fault identification is provided. Pitch, 

controller, yaw and inverter monitoring can also be 

included.

Main shaft, gearbox, 

generator

Vibration (Accelerometer)

Oil debris particle counter

Time domain

FFT frequency domain 

analysis

96kHz per 

channel

6
Condition 

Management Syetam
Moventas Finland

Compact system measuring temperature, vibration, 

load, pressure, speed, oil aging and oil particle count. 16 

analolgue channels can be extended with adapter. Data 

acessed remotely via TCP/IP. Mobile interface available.

Gearbox, generator, rotor, 

turbine controller

Vibration

Oil quality/particles

Torque

Temperature

Time domain

(Possible FFT)
-

Product and Company Information
Product Details

(based on available literature and contact with industry including EWEC 2008, 2009, 2010)



 

175 
 

 

7 OneProd Wind
Areva

(01dB-Metravib)
France

Instrumentation includes operating condition channels 

to trigger data acquisitions, measurement channels for 

surveillance and diagnosis, optional additional channels 

for extended monitoring.

Main bearing, gearbox, 

generator.

Oil debris, structure, shaft 

displacement, electrical 

signals

Vibration

Oil debris particle counter, 

electrical transducers.

Time domain

FFT frequency analysis
-

8 SMP-8C Gamesa Eolica Spain

Continuous on-line vibration measurement of main 

shaft, gearbox and generator. Comparison of spectra 

trends. Warnings and alarm transmission connected to 

Wind Farm Management System.

Main shaft, gearbox, 

generator
Vibration FFT frequency domain -

9 System 1
Bently Nevada

(GE)
USA

Monitoring and diagnostics of drive train parameters 

such as vibration and temperature. Correlate machine 

information with operational information such as 

machine speed, electrical load, and wind speed.

Main bearing, gearbox, 

generator, nacelle

Optional bearing and oil 

temperature

Vibration

(Accelerometer)

FFT frequency domain

Acceleration enveloping
-

10
TCM (Turbine 

Condition Monitoring)

Gram & Juhl A/S

(Siemens Wind Power 

A/S)

Denmark

Advanced signal analysis on signals such as vibration, 

sound, strain and process signals combined with 

automation rules and algorithms for generating 

references and alarms.

Blade, main bearing, shaft, 

gearbox, generator, nacelle, 

tower

Vibration

(Accelerometer)
FFT frequency domain -

11 WindCon 3.0
SKF

(REpower)
Sweden

Lubrication, blade and gearbox oil systems can be 

remotely monitored through SKF ProCon sofetware. 

WindCon 3.0 collects, analyses, and compiles operating 

data that can be configured to suit management, 

operators or maintenance engineers.

Blade, main bearing, shaft, 

gearbox, generator, tower, 

generator electrical

Vibration

(Accelerometer, proximity 

probe)

Oil debris particle counter

FFT frequency domain 

analysis

Envelope analysis

Time domain analysis

Analogue: DC to 

40kHz

(Variable, 

channel 

dependent)

Digital: 0.1 Hz - 

20kHz

12 WinTControl Flender Service GmbH Germany

Vibration measurements are taken when load and speed 

triggers are realised. Time and frequency domain 

analysis are possible.

Main bearing, gearbox, 

generator.

Vibration

(Accelerometer)

FFT frequency domain

Time domain analysis
32.5kHz

13 WiPro
FAG Industrial 

Services GmbH
Germany

Measurement of vibration and other parameters given 

appropriate sensors. Time and frequency domain 

analysis carried out during alarm situations. Allows 

speed-dependent frequency band tracking and speed-

variable alarm level.

Main bearing, shaft, 

gearbox, generator, 

temperature.

(Adaptable inputs)

Vibration

(Accelerometer)

FFT frequency domain

Time domain analysis

Variable up to 

50kHz

14 WP4086 Mita-Teknik Denmark

Up to 8 accelerometers for real-time frequency and time 

domain analysis. Alarms set for both time and frequency 

domains based on predefined thresholds. Operational 

parameters recorded alongside with vibration 

signals/spectra and complete integration with SCADA 

systems.

Main bearing, gearbox, 

generator

Vibration

(Accelerometer)

FFT amplitude spectra

FFT envelope spectra

Time domain magnitude

Comb filtering, whitening, 

Kurtogram analysis

Variable up to 

10kHz

15 HYDACLab
HYDAC Filtertechnik 

GmbH
Germany

Permanent monitoring system to monitor particles 

(including air bubbles) in hydraulic and lube oil systems.

Lubrication oil & cooling 

fluid quality
Oil debris particle counter N/A -

16 PCM200

Pall Industrial 

Manufacturing

(Pall Europe Ltd)

USA

(UK)

Fluid cleanliness monitor reports test data in real-time 

so ongoing assessments can be made. Can be 

permanently installed or portable.

Lubrication oil cleanliness Oil cleanliness sensor N/A -
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17
TechAlert 10

TechAlert 20
MACOM UK

TechAlert 10 is an inductive sensor to count and size 

ferrous and non-ferrous debris in circulating oil systems.

TechAlert 20 is a magnetic sensor to count ferrous 

particles.

Lubrication oil quality
Inductive or magnetic oil 

debris particle counter
N/A -

18 BLADEcontrol IGUS ITS GmbH Germany

Accelerometers are bonded directly to the blades and a 

hub measurement unit transfers data wirelessly to the 

nacelle. Blades are assesed by comparing spectra with 

those stored for common conditions. Measurement and 

analysis data are stored centrally and blade condition 

displayed using a web browser.

Blades Accelerometer FFT frequency domain ≈ 1kHz

19 FS2500 FiberSensing Portugal

BraggSCOPE measurement unit designed for industrial 

environments to interrogate up to 4 Fiber Bragg Grating 

sensors. Acceleration, tilt, displacement, strain, 

temperature and pressure measurable.

Blades Fibre optic Unknown Up to 2kHz

20
RMS (Rotor 

Monitoring System)
Moog Insensys Ltd. UK

Load measuring system for installation in the turbine 

hub. Can be designed-in during turbine manufacture or 

retrofitted. Monitors blade icing, imbalance, damage 

and lightning strikes.

Blades Fibre optic strain Time domain strain analysis
< 0.002 Hz

(10 minute)
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5.    The Future of Wind Turbine Condition Monitoring 

As can be seen from this survey of current CMSs there is a clear trend towards vibration monitoring 

of WTs. This is presumably a result of the wealth of knowledge gained from many years work in 

other fields. It is likely that this trend will continue however it would be reasonable to assume that 

other CM and diagnostic techniques will be incorporated into existing systems. 

Currently these additions are those such as oil debris monitoring and fibre optic strain 

measurement. However, it is likely that major innovation will occur in terms of developing signal 

processing techniques. In particular, the industry is already noting the importance of operational 

parameters such as load and speed and so techniques may begin to adapt further to the WT 

environment leading to more reliable CMSs, diagnostics and alarm signals. 

Automation of CM and diagnostic systems may also be an important development as WT operators 

acquire a larger number of turbines and manual inspection of data becomes impractical. Further to 

this, it is therefore essential that methods for reliable, automatic diagnosis are developed with 

consideration of multiple signals in order to improve detection and increase operator confidence in 

alarm signals. 

However, it should be noted that a major hindrance to the development of CMSs and diagnostic 

techniques could be data confidentially meaning that few operators are able to divulge or obtain 

information concerning their own WTs. This is an issue which should be addressed if the art of CM is 

to progress quickly. Confidentiality has also led to a lack of publicly available cost justification of WT 

CM, which seems likely to provide overwhelming support for WT CM, particularly in the offshore 

environment where availability is at a premium. 

6.    Conclusions 

From this survey we can conclude that: 

 Current WT reliability is reasonable however in the offshore environment the failure rate will 

be unacceptable; 

 Cost effective and reliable CM is required to enable planned maintenance, reduce unplanned 

WT downtime and improve capacity factors; 

 Successful CMSs must be able to adapt to the non-stationary, variable speed nature of WTs; 

 There is a wide variety of commercially available CMSs currently in use on operational WTs; 

 Monitoring technology is currently based on techniques from other, conventional rotating 

machine industries; 

 Vibration monitoring is currently favoured in commercially available systems using standard 

time and frequency domain techniques for analysis; 
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 These traditional techniques can be applied to detect WT faults but require experienced CM 

engineers for successful data analysis and diagnosis; 

 Some commercially available CMSs are beginning to adapt to the WT environment, and; 

 A diverse range of new or developing technologies are moving into the WT CM market. 

Finally, it should be noted that there is not currently a consensus in the WT industry as to the correct 

route forward for CM of WTs. Work in this document and its references suggest that CM of WTs will 

be important for large onshore WTs, essential for all offshore development and should be 

considered carefully by the industry as a whole. 
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B. Enlarged Figures from Chapter 3 
 

This appendix contains enlarges version of the results figures from Chapter 3 of 

this thesis. The figures are numbered according to their figure numbers in the main 

thesis body as an aid to reference. 
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Enlarged Figure 25 
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Enlarged Figure 30 
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Enlarged Figure 31(a) 

Sideband 

cursors

a) Spectrum with harmonic cursors 
and intermediate bearing fault 

frequency cursors

b) Spectrum with sideband cursors 
and intermediate bearing fault 

frequency cursors
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Enlarge Figure 31(b) 

Sideband 

cursors

a) Spectrum with harmonic cursors 
and intermediate bearing fault 

frequency cursors

b) Spectrum with sideband cursors 
and intermediate bearing fault 

frequency cursors
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Enlarged Figure 33 
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Enlarged Figure 37 
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Enlarged Figure 38(a) 

Sideband 

cursors

a) Spectrum with harmonic cursors 
and intermediate bearing fault 

frequency cursors

b) Spectrum with sideband cursors 
and intermediate bearing fault 

frequency cursors
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Enlarged Figure 38(b) 

Sideband 

cursors

a) Spectrum with harmonic cursors 
and intermediate bearing fault 

frequency cursors

b) Spectrum with sideband cursors 
and intermediate bearing fault 

frequency cursors
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Enlarged Figure 42(a) a) Turbine Z spectrum with 
harmonics for an inner race defect

b) Turbine Z spectrum with 
harmonics for an outer race defect
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Enlarged Figure 42(b) a) Turbine Z spectrum with 
harmonics for an inner race defect

b) Turbine Z spectrum with 
harmonics for an outer race defect
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Enlarged Figure 43 



 

192 
 

 

Enlarged Figure 44 
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C. Extended Results 
 

As stated in Chapter 6, only a reduced selection of results is included in the 

main body of this thesis. This appendix contains a more complete set of results figures 

for reference. In particular, results from both variable speed driving conditions are 

presented. 

C.1  Rotor Electrical Asymmetry 

This section contains a complete set of figures from §6.1.1. 

C.1.1   7.5m/s, 6% Turbulence 

 

 

FigureE.1: Raw data used in the analysis of electrical signals for the detection of 

rotor electrical asymmetry Driven by 7.5m/s, 6% turbulence conditions. 
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Figure C.2: IDFTlocal analysis of generator line current frequency component ‘d’ 

for the detection of rotor electrical asymmetry: (a) Frequency of interest; (b) 

amplitude of frequency of interest; (c) filtered result. Driven by 7.5m/s, 6% 

turbulence conditions. Calculation time = 0.98s = 0.22%. 

 

Figure C.3: IDFTlocal analysis of generator line current frequency component ‘c’ 

for the detection of rotor electrical asymmetry: (a) Frequency of interest; (b) 

amplitude of frequency of interest; (c) filtered result. Driven by 7.5m/s, 6% 

turbulence conditions. Calculation time = 1.05s = 0.24%. 
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Figure C.4: IDFTlocal analysis of generator line current frequency component ‘e’ 

for the detection of rotor electrical asymmetry: (a) Frequency of interest; (b) 

amplitude of frequency of interest; (c) filtered result. Driven by 7.5m/s, 6% 

turbulence conditions. Calculation time = 1.09s = 0.25%. 

 

Figure C.5: IDFTlocal analysis of generator line current frequency component ‘f’ for 

the detection of rotor electrical asymmetry: (a) Frequency of interest; (b) 

amplitude of frequency of interest; (c) filtered result. Driven by 7.5m/s, 6% 

turbulence conditions. Calculation time = 1.11s = 0.25%. 
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Figure C.6: IDFTlocal analysis of generator total power frequency component ‘c’ for 

the detection of rotor electrical asymmetry: (a) Frequency of interest; (b) 

amplitude of frequency of interest; (c) filtered result. Driven by 7.5m/s, 6% 

turbulence conditions. Calculation time = 0.91s = 0.20%. 

 

Figure C.7: IDFTlocal analysis of generator total power frequency component ‘d’ 

for the detection of rotor electrical asymmetry: (a) Frequency of interest; (b) 

amplitude of frequency of interest; (c) filtered result. Driven by 7.5m/s, 6% 

turbulence conditions. Calculation time = 1.02s = 0.23%. 
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Figure C.8: IDFTlocal analysis of generator total power frequency component ‘e’ for 

the detection of rotor electrical asymmetry: (a) Frequency of interest; (b) 

amplitude of frequency of interest; (c) filtered result. Driven by 7.5m/s, 6% 

turbulence conditions. Calculation time = 1.09s = 0.25%. 

 

Figure C.9: IDFTlocal analysis of generator total power frequency component ‘f’ for 

the detection of rotor electrical asymmetry: (a) Frequency of interest; (b) 

amplitude of frequency of interest; (c) filtered result. Driven by 7.5m/s, 6% 

turbulence conditions. Calculation time = 1.09s = 0.25%. 
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C.1.2   15m/s, 20% Turbulence 

 

Figure C.10: Raw data used in the analysis of electrical signals for the detection of 

rotor electrical asymmetry. Driven by 15m/s, 20% turbulence conditions. 

 

Figure C.11: IDFTlocal analysis of generator line current frequency component ‘c’ 

for the detection of rotor electrical asymmetry: (a) Frequency of interest; (b) 

amplitude of frequency of interest; (c) filtered result. Driven by 15m/s, 20% 

turbulence conditions. Calculation time = 0.97s = 0.22%. 
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Figure C.12: IDFTlocal analysis of generator line current frequency component ‘d’ 

for the detection of rotor electrical asymmetry: (a) Frequency of interest; (b) 

amplitude of frequency of interest; (c) filtered result. Driven by 15m/s, 20% 

turbulence conditions. Calculation time = 1.06s = 0.24%. 

 

Figure C.13: IDFTlocal analysis of generator line current frequency component ‘e’ 

for the detection of rotor electrical asymmetry: (a) Frequency of interest; (b) 

amplitude of frequency of interest; (c) filtered result. Driven by 15m/s, 20% 

turbulence conditions. Calculation time = 1.09s = 0.25%. 
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Figure C.14: IDFTlocal analysis of generator line current frequency component ‘f’ 

for the detection of rotor electrical asymmetry: (a) Frequency of interest; (b) 

amplitude of frequency of interest; (c) filtered result. Driven by 15m/s, 20% 

turbulence conditions. Calculation time = 1.13s = 0.25%. 

 

Figure C.15: IDFTlocal analysis of generator total power frequency component ‘c’ 

for the detection of rotor electrical asymmetry: (a) Frequency of interest; (b) 

amplitude of frequency of interest; (c) filtered result. Driven by 15m/s, 20% 

turbulence conditions. Calculation time = 0.91s = 0.20%. 
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Figure C.16: IDFTlocal analysis of generator total power frequency component ‘d’ 

for the detection of rotor electrical asymmetry: (a) Frequency of interest; (b) 

amplitude of frequency of interest; (c) filtered result. Driven by 15m/s, 20% 

turbulence conditions. Calculation time = 1.02s = 0.23%. 

 

Figure C.17: IDFTlocal analysis of generator total power frequency component ‘e’ 

for the detection of rotor electrical asymmetry: (a) Frequency of interest; (b) 

amplitude of frequency of interest; (c) filtered result. Driven by 15m/s, 20% 

turbulence conditions. Calculation time = 1.09s = 0.25%. 
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Figure C.18: IDFTlocal analysis of generator total power frequency component ‘f’ 

for the detection of rotor electrical asymmetry: (a) Frequency of interest; (b) 

amplitude of frequency of interest; (c) filtered result. Driven by 15m/s, 20% 

turbulence conditions. Calculation time = 1.09s = 0.25%. 

0 50 100 150 200 250 300 350 400 450
310

315

320

325

F
re

q
u

e
n

c
y
 [
H

z
]

Result from Iterative DFT
local

   
(Calculation Time = 1.094s (0.2464%))

Fault Frequency, f
f

0 50 100 150 200 250 300 350 400 450
0

2000

4000

6000

A
m

p
lit

u
d

e

Amplitude of Fault Frequency

0 50 100 150 200 250 300 350 400 450
0

2000

4000

6000

Time [s]

A
m

p
lit

u
d

e

Filtered Result

Balanced Rotor 23% Asymmetry 46% Asymmetry

15m/s, 20% Turbulence

Iterative DFTlocal – Power, Component ‘f’

(Calculation Time = 1.09s = 0.25%)

(a)

(b)

(c)



 

203 
 

C.2  High Speed Shaft Mass Unbalance 

This section contains a complete set of figures from §6.1.2. 

C.2.1   7.5m/s, 6% Turbulence 

 

Figure C.19: Raw data used in the analysis of mechanical signals for the detection 

of high speed shaft mass unbalance Driven by 7.5m/s, 6% turbulence conditions. 
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Figure C.20: IDFTlocal analysis of high speed shaft displacement frequency 

component frm for the detection of high speed shaft mass unbalance: (a) 

Frequency of interest; (b) amplitude of frequency of interest; (c) filtered result. 

Driven by 7.5m/s, 6% turbulence conditions. Calculation time = 0.95s = 0.21%. 

 

Figure C.21: IDFTlocal analysis of generator vertical vibration frequency 

component frm for the detection of high speed shaft mass unbalance: (a) 

Frequency of interest; (b) amplitude of frequency of interest; (c) filtered result. 

Driven by 7.5m/s, 6% turbulence conditions. Calculation time = 0.97s = 0.22%. 
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Figure C.22: IDFTlocal analysis of gearbox high speed end vibration frequency 

component frm for the detection of high speed shaft mass unbalance: (a) 

Frequency of interest; (b) amplitude of frequency of interest; (c) filtered result. 

Driven by 7.5m/s, 6% turbulence conditions. Calculation time = 0.97s = 0.22%. 

C.2.2   15m/s, 20% Turbulence 

 

Figure C.23: Raw data used in the analysis of mechanical signals for the detection 

of high speed shaft mass unbalance. Driven by 15m/s, 20% turbulence 

conditions. 
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Figure C.24: IDFTlocal analysis of high speed shaft displacement frequency 

component frm for the detection of high speed shaft mass unbalance: (a) 

Frequency of interest; (b) amplitude of frequency of interest; (c) filtered result. 

Driven by 15m/s, 20% turbulence conditions. Calculation time = 0.98s = 0.22%. 

 

Figure C.25: IDFTlocal analysis of generator vertical vibration frequency 

component frm for the detection of high speed shaft mass unbalance: (a) 

Frequency of interest; (b) amplitude of frequency of interest; (c) filtered result. 

Driven by 15m/s, 20% turbulence conditions. Calculation time = 0.95s = 0.21%. 
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Figure C.26: IDFTlocal analysis of gearbox high speed end vibration frequency 

component frm for the detection of high speed shaft mass unbalance: (a) 

Frequency of interest; (b) amplitude of frequency of interest; (c) filtered result. 

Driven by 15m/s, 20% turbulence conditions. Calculation time = 0.99s = 0.22%. 
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C.3  Gear Tooth Failure 

This section contains a complete set of figures from §6.1.3.  

C.3.1   Gear Tooth Photographs 

 

Figure C.27: Gear tooth faults applied to the test rig: (a) healthy tooth; (b) 3mm x 

2mm; (c) 5mm x 5mm; (d) 7mm x 5mm; (e) 13mm x 6mm; (f) 18mm x 6mm; (g) 

28mm x 6mm; (h) whole tooth. 
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C.3.2   7.5m/s, 6% Turbulence 

 

Figure C.28: Raw data used in the analysis of mechanical signals for the detection 

of gear tooth damage (7.5m/s, 6% turbulence) 

 

Figure C.29: IDFTlocal analysis of gearbox casing high speed end vibration 

frequency component frm for the detection of gear tooth damage: (a) Frequency of 

interest; (b) amplitude of frequency of interest; (c) filtered result. Driven by 

7.5m/s, 6% turbulence conditions. Calculation time = 3.34s = 0.28%. 
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Figure C.30: IDFTlocal analysis of gearbox vertical vibration frequency component 

frm for the detection of gear tooth damage: (a) Frequency of interest; (b) 

amplitude of frequency of interest; (c) filtered result. Driven by 7.5m/s, 6% 

turbulence conditions. Calculation time = 2.63s = 0.22%. 

C.4  Comparison of Frequency Tracking Techniques 

 

Figure C.31: Unfiltered analysis of high speed shaft displacement frequency 

component frm for the detection of high speed shaft mass unbalance: (a) 

Frequency of interest; (b) amplitude of frequency of interest using IDFTlocal; (c) 

amplitude of frequency of interest using CWTlocal frequency tracking. Driven by 

7.5m/s, 6% turbulence conditions. 
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Figure C.32: Filtered analysis of high speed shaft displacement frequency 

component frm for the detection of high speed shaft mass unbalance: (a) 

Frequency of interest; (b) amplitude of frequency of interest using IDFTlocal; (c) 

amplitude of frequency of interest using CWTlocal frequency tracking. Driven by 

7.5m/s, 6% turbulence conditions. 

 

Figure C.33: Unfiltered analysis of generator vertical vibration frequency 

component frm for the detection of high speed shaft mass unbalance: (a) 

Frequency of interest; (b) amplitude of frequency of interest using IDFTlocal; (c) 

amplitude of frequency of interest using CWTlocal frequency tracking. Driven by 

7.5m/s, 6% turbulence conditions. 
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Figure C.34: Filtered analysis of generator vertical vibration frequency 

component frm for the detection of high speed shaft mass unbalance: (a) 

Frequency of interest; (b) amplitude of frequency of interest using IDFTlocal; (c) 

amplitude of frequency of interest using CWTlocal frequency tracking. Driven by 

7.5m/s, 6% turbulence conditions. 

 

Figure C.35: Unfiltered analysis of generator high speed end vibration frequency 

component frm for the detection of gear tooth damage: (a) Frequency of interest; 

(b) amplitude of frequency of interest using IDFTlocal; (c) amplitude of frequency 

of interest using CWTlocal frequency tracking. Driven by 7.5m/s, 6% turbulence 

conditions. 
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Figure C.36: Filtered analysis of generator high speed end vibration frequency 

component frm for the detection of gear tooth damage: (a) Frequency of interest; 

(b) amplitude of frequency of interest using IDFTlocal; (c) amplitude of frequency 

of interest using CWTlocal frequency tracking. Driven by 7.5m/s, 6% turbulence 

conditions. 
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D.  Test Rig Specification 
 

This test rig specification gives extended information on the configuration and 

components comprising the Durham condition monitoring test rig. 

The document was produced by Dr Tianyu Liu in September 2010 with the 

assistance of the Author and Prof. Peter Tavner and, with reference to other, previous 

documents from within the School of Engineering and Computing Sciences, Durham 

University. 

The Author does not claim copyright to this material; it is included as a useful 

repository for extended details concerning the test rig. 
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1.    Introduction  

The Test Rig, Figure 1, was initially constructed using funding from the New & Renewable Energy 

Centre (NaREC), Blyth, Northumberland. This Test Rig is used to simulate the performance of a wind 

turbine and permit the analysis of fault signals from the Test Rig. 

 

Figure 1: Photograph of Durham Test Rig 

2.    Components of Test Rig  

2.1.    Main Drive Train 

 

Figure 2: Photograph of main drive train 
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The components of the Test Rig main drive train, Figure 2, are given in the following sections. 

2.1.1.    DC Drive Motor 

 The Test Rig is driven by a 54kW DC motor, Figure 3, powered from a Eurotherm 590+ variable 

speed drive. The drive is controlled by either the man-machine interface (MMI) or a LabVIEW control 

environment.  

 

Figure 3: Photograph of the DC motor 

2.1.2.    Low Speed Shaft:  

The low speed shaft links the DC motor to the gearbox 

2.1.3.    Gearbox 

The Test Rig can use either a 4.9894:1 or 11.14:1 gearbox, Figure 4, however the 4.9894:1 gearbox is 

generally used as it allows for greater speed variation before the DC motor torque limit or armature 

current limit is reached. The 4.9894:1 gearbox has two helical and two parallel wheel stages: the first 

stage 36/79, the second 57/78.  
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Figure 4: Photograph of the 11.14:1 gearbox showing accelerometer points: (a) high speed end; (b) 

casing, central. 

2.1.4.    High Speed Shaft 

The high speed shaft links the gearbox to the generator. 

2.1.5.    Generator 

The Generator, Figure 5, is manufactured by Marelli Motori, a company owned by FKI Energy 

Technology. It is a four pole machine, rated at 30 kW. 

 

Figure 5: Photograph of the generator 

(a)

(b)
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2.2.    Data Collection and Analysis & Control System 

 

Figure 6: Photograph of the data collection and control system 

The components of Data Collection and Analysis and Control System of Test Rig, Figure 6, are: 

2.2.1.    Torque Transducer 

Two Magtrol torque transducers, Figure 7, can be used, with ratings of 200 or 500 Nm. The 

transducer also outputs 60 pulses per revolution signal, which can be used as a tachometer. 

 

Figure 7: Photograph of the Torque Transducer 
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2.2.2.    Proximeter Sensors  

The generator high speed shaft has a machined coupling located between the Torque Transducer 

and Generator. The accuracy of the final 

proximeters, in the x and y-axes, are fitted adjacent to this coupling, Figure 8. 

  

(a)      (b) 

Figure 8: Photograph of the Proximeter sensors: (a) x-axis; (b) y-axis 

2.2.3.    Mass Balance Plates 

In order to apply simulated mass unbalance faults, two experimental balance planes have been 

fitted to the Test Rig, one on the high speed shaft, towards the generator drive end bearing, and one 

on the low speed shaft between the gearbox and DC motor. The Balance Plates, Figure 9, are fitted 

with precision holes in which precision masses can be inserted. 

 

Figure 9: Photograph of the Balance Plate on the High Speed Shaft 
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2.2.4.    Accelerometers 

Two accelerometers, such as that in figure 10, are available for monitoring and can be mounted at 

various screw-fit locations including: 

• Gearbox casing 

• Gearbox high speed bearing 

• Gearbox low speed bearing 

• Generator drive end bearing 

• Generator non drive end bearing 

These can measure generator vibrations and gearbox meshing frequencies and changes to the 

gearbox condition.  

 

Figure 10: Photograph of an accelerometer on the gearbox high speed end 

2.2.5.    Voltage & Current Cards 

Transducer boards have been installed to measure the three phase Generator terminal voltages and 

currents and each produce a voltage proportional to those voltages and currents. The bandwidth of 

these transducer boards is DC-100K Hz. They can be combined in the Data Acquisition System to give 

the electrical power produced by the Generator. 

 



 

Specification of Durham University 
Wind Turbine Condition Monitoring 

Test Rig 

2nd November 2010 
Revision: 02 
Prep: Liu T Y 

Edited: C J Crabtree 

 

224 
 

2.2.6.    Data Acquisition and Control Cards (DAQ) 

Two National Instruments 6015 DAQ cards were installed for use with a LabVIEW interface, to collect 

data from the transducers described above. The cards were configurable to sample 16 single-ended 

or 8 differential channels at a maximum rate of 200 kHz. The cards each contained one analogue to 

digital (A/D) converter, so the signals were multiplexed, with the maximum sample rate for each 

channel depending on how many channels were in use, but a lower rate (100kHz) could be set if 

required. 

2.2.7.    Control Software 

LabVIEW is a computer program designed specifically to facilitate data acquisition and control tasks. 

It is produced by National Instruments, a company specializing in test and measurement hardware 

and software. The hardware and software exhibits a good level of interoperability and the low level 

tasks for interacting with transducer and other device drivers are included. For these reasons, it was 

decided to use LabVIEW. Programs are constructed in LabVIEW by means of a visual connection 

diagram, which shows how data flows through the program. The program enabled different wind 

profiles to be applied to the drive train, while simultaneously acquiring data giving the system state, 

presented in a graphical format, and saving the data to the PC hard disk, Figure 11.  

 

Figure 11: Front Panel of the LabVIEW DAQ Interface 
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Data is read from the DAQ cards for all the signals described above but is only saved to data files for 

those shown below:  

• Torque;  

• High speed shaft speed;  

• DC machine speed;  

• Generator phase voltage waveform x 3;  

• Generator phase current waveform x 3;  

• X and Y proximeters - high speed shaft vibration; 

• Gearbox or generator accelerometers 1 and 2;  

• Generator three-phase power. 

The LabVIEW software is organized to start the Test Rig in a controlled way using the following 

diagram, Figure 12. 

 

Figure 12: Basic Layout of the LabVIEW Data Acquisition Environment  

2.2.8.    SKF WindCon System  

An SKF WindCon 3.0 condition monitoring system has been installed on the Test Rig as this is the 

commercial equipment used on full size wind turbines by our industrial partners, a large wind 

turbine operator. 

 WindCon 3.0: S/N 4641-001306 08-04 

 ProCon: Version 6.5.3 
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Figure 13: Schematic diagram of the Durham Wind turbine Condition Monitoring Test Rig 
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Appendix A: Machine, Instrument and Component Data 

Parameters of the Test Rig 

Table 1:  Electrical & Mechanical Parameters of the Test Rig 

Component Parameter Symbol Value Units How obtained 

Whole Test Rig 

Damping Ratio  ≥ 0 <1 Ns.m-1 Test 

Resonant 

Frequency 
 0.4 Hz Test 

DC Motor 

Inertia JDC 0.2260 kg.m2 Test 

Inertia with Mass 

Plate 
 0.7594 kg.m2 Test 

Damping Ratio  1 N.s.m-1 Test 

Resonant 

Frequency 
 6.2 Hz Test 

Max Speed  2120 rev.min-1 Nameplate 

Armature 

Inductance 
La 0.00904 H Test 

Armature 

Resistance 
Ra 0.4 Ω Test 

Motor Constant Ke 2.66 N.m.W-0.5 Test 

Controller Reset 

Time 
TI 2 S Test 

windage loss 

coefficient 
 0.001 N.m.s2.rad-2 Test 

Proportional 

gain for speed 

control loop 

Kps 10  Test 

Integral Gain for 

speed control 

loop 

Kis 60  Test 

Proportional 

gain for current 

control loop 

Kpc 22.28  Test 

Integral Gain for 

current control 

loop 

Kic 4.28  Test 

DC Motor & Gearbox Damping Ratio  >1 N.s.m-1 Test 
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(5:1) Friction loss 

coefficient 
 1.222 N.m.s.rad-1 Test 

Stiction torque  7.159 N.m Test 

Resonant 

Frequency 
 25.0 Hz Test 

Gearbox(5:1) 

Total Inertia  0.1068 kg.m2 Calculated 

Gear1 Inertia  0.0663 kg.m2 Calculated 

Pinion1 Inertia  0.001 kg.m2 Calculated 

Gear2 Inertia  0.0384 kg.m2 Calculated 

Pinion2 Inertia  0.0502 kg.m2 Calculated 

Stiffness  5,000,000 N.m-1 Test 

Backlash1  0.0625 mm Test 

Backlash2  0.2825 mm Test 

Gearbox(11:1) 
Inertia  0.015 kg.m2 Test 

Stiffness  5,000,000 N.m-1 Test 

Low Speed Shaft 
Stiffness  14,000 Nm.rad-1 Test 

Damping  10 Nms.rad-1 Test 

High Speed Shaft 
Stiffness  50,000 Nm.rad-1 Test 

Damping  10 Nms.rad-1 Test 

Generator 

Inertia  0.414 kg.m2 Calculated 

Inertia with Mass 

Plate 
 1.0198 kg.m2 Test 

Windage loss 

coefficient 
 0.00006 N.m.s2.rad-2 Test 

Friction loss 

coefficient 
 0.001 N.m.s.rad-1 Test 

Stiction torque  0.298 N.m Calculated 

Generator Stator 

Stator resistance Rs 0.079 Ω Test 

Stator reactance Xs 0.252 Ω Test 

Resistance 

representing 

core loss 

Rm 131.9 Ω Test 

Stator 

magnetizing 

reactance 

Xm 9.39 Ω Test 

Generator  Rotor 
Rotor resistance R’r 0.072 Ω Test 

Rotor reactance X’r 0.408 Ω Test 
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DC Motor 

Table 2: Specification of DC Motor 

Size Manufacturer Power(kW) Rev/min 
Voltage 

(V) 

Armature 

Current 

(A) 

Weight 

(kg) 

160L 
Brook 

Crompton, UK 
54 2120 460 131 284 

 

Gearbox 

 Manufacturer, Hansen Transmissions, Type：SFN64E 

o With the 5:1 ratio gearbox, 66/13 and 57/78 

o With the 11:1 ratio gearbox, 6/13 and 79/36 

 

Generator 

Table 3: Specification of Generator 

Size Manufacturer 
Power 

(kW) 
Rev/min 

Stator 

Voltage 

(V) 

Stator 

Current 

(A) 

Weight 

(kg) 

Frequency 

(Hz) 
Pole 

E4F 225 

M4 B3 

Marelli 

Motori, Italy 
30 1470 400 56 306 50 4 

 

Eddy Current Displacement Transducers: 

 Purpose: to measure shaft displacement. 

 Description: Kaman 4S1 ECS with KD-2300 signal conditioning electronics units 

 Units: 2 - x & y measurement aligned through centre of shaft 

 Measuring Range: 4.0 mm 

 Typical Offset: 0.51 mm 

 Linearity: 0.5 % FS 

 Analogue Voltage: 4.0 V 
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 Sensitivity: 1000 mV / mm 

 Conversion Factor: 1 uV ≡10-6mm 

Torque Transducer 

 Purpose: to measure shaft torque. 

 Description: Torque Master TM212 

 Rated Torque: 200 Nm 

 Range: ±10 V ≡±200 % rated torque 

 Conversion Factor: 1 V ≡ 4 ×10-5 N·m 

 

DC Motor Tachometer 

 Purpose: to measure the drive train DC motor end speed. 

 Description: Supplied by Eurotherm Drives, fitted with DC motor, provides speed feedback to 

drive 

 Range: Full output at drive full speed, 10 V ≡167rpm 

 Conversion Factor: 1 V ≡1.67×10-5 

 

Accelerometer 

 Purpose: to measure vibrations on the rig and on the gearbox in particular. 

 Description: Endevco (Bruel & Kjaer) 4513-002 Deltatron Accelerometer 

 Range: ±10 g 

 Conversion Factor: 500 mV ≡1 g 

 

Cables and Connectors 

 Purpose: there are three distinct types of cables external to the enclosure: mains power, 

signal and USB. 

 The ability to disconnect the leads is to enable the enclosure to be moved either around the 

Test Rig or lab. 
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2.2.9.    Requirements 

 There should only be one mains power lead to the enclosure. This should be via an standard 

connector, e,g, IEC 60320 socket (C14) and plug (C13). 

 Connection between the DAQ and computer should be via a shielded USB cable. Signal 

cables should be shielded and connected to the enclosure via a standard connector e.g. DIN 

sockets and plugs. 

 Signal and chassis grounds should be separated i.e. use two wire for each signal. Sensors 

that require power supply voltages should have this provided in the same cable as the 

sensor signal. This is to reduce the number of wires around the Test Rig. 

 

Computer 

 Purpose: to control the Test Rig and record measurements from rig sensors. 

2.2.10.    Requirements 

 The PC should meet EMC requirements of the electrical machines laboratory. Either a laptop 

or desktop PC could be selected, provided the first requirement can be met. There may be 

EMC issues with a laptop computer. A laptop computer would need to have a locking cable 

for security reasons. It should able to connect to the Engineering Network to enable les to be 

saved to and retrieved from the Group Directory. 

 The mouse input should be optical to ensure it works in the laboratory environment. 

 It should run Microsoft Windows XP for stability and le format compatibility. 

 It should have LabVIEW installed for control and measurement programs to be run. 

 It should be capable of running LabVIEW with multiple input and output signals 

simultaneously i.e. high processor speed (>2 GHz) and large RAM (1 GB). 

 The USB port should be USB2 compatible to increase the data transfer speed. It should have 

MATLAB installed for signal processing programs to be run. 

 A Firewire port may be required if the Firewire DAQ card is selected. 

 

DAQ and Control 

2.2.11.    Purpose 

 DAQ should perform A/D conversion of signals from sensors and D/A conversion of signals 
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from the computer. 

 

2.2.12.    Requirements 

 The DAQ and control device should be connected to the computer via a USB. Previous 

experiments have been conducted with an Eagle Technology USB-30 DAQ device with 16 

A/D and 4 D/A channels. This has proven the benefits of a DAQ unit separate from the 

controlling PC, namely the ability to connect to different PCs that meet the requirements of 

the different tests. 

 Alternatively, a Firewire DAQ card may be selected. 

 The number of A/D channels should not be less than 7 to meet existing requirements and 

should preferably have more channels to enable the connection of additional sensors. 

 The number of D/A channels should be not less than 1 to meet existing requirements and 

should preferably have more channels to enable future expansion of control requirements. 

 LabVIEW will be used to control the rig and the DAQ card should be compatible with it. 

 MATLAB integration would be desirable. 

 

Power Supplies 

 Purpose: sensors and signal conditioning electronics require power supplies with different 

voltages and current capabilities. 

2.2.13.    Requirements 

 The different load requirements of sensors and signal conditioning electronics must be met.  

 The power supply should be from one unit with a cascade of DC-DC converters to provide 

lower voltages. 

 The power supplies should be upgradeable to enable the addition of future, as yet unknown, 

sensors and equipment. 

 DC Voltage (V) Max. Current (mA) Device 

 +20 to +32 100 Torque Transducer 

 +18 CT 

 +15 300 Eddy Current Sensor Conditioning 

 +12 30 Accelerometer Conditioning 

 +9 to +18 VT 

 -15 300 Eddy Current Sensor Conditioning 
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Appendix B: Operation of the Condition Monitoring Test Rig 

This document was produced by Christopher J Crabtree as a complete operating procedure for the 

Durham condition monitoring test rig. 

 

OPERATION OF THE CONDITION MONITORING TEST RIG 

 

This document gives instructions for the safe operation of the test rig under control from the 

LabVIEW control environment. The operating procedure for manual control is not described. 

 

Safety 

 Be aware of EMERGENCY STOP LOCATIONS 

 GUARDS must be LOCKED DOWN during operation 

 The GRID CONTACTOR MUST NOT BE ENGAGED while the rig is operating below 

synchronous speed 

 Power and instrumentation CABINETS MUST NOT BE OPENED while any power supplies are 

connected 

 Rotor resistor and power analyser tap-off CONNECTIONS MUST NOT BE CHANGED while 

power supplies are connected 

 EAR DEFENDERS are recommended during continuous operation 

 This document does not give guidelines on manual operation of the test rig 

 

Test Rig Contacts 

In case of any test rig operational or safety issues, please contact: 

 Christopher Crabtree: 41226, E234 

 Prof. Peter Tavner: 42460, E210 

 David Jones/Paul Jarvis: Mechanical workshop 
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LabVIEW Controlled Operation 

 

A. Initial Setup (LabVIEW Control) 

1. Power on instrumentation, signal conditioning and data acquisition hardware using key 

switch marked “Mains Switch” 

2. Ensure “Selector Switch” key switch is turned to “All Units” 

3. Wait for “New Data Acquisition Device” dialogue – Cancel without taking action – repeat if 

a second dialogue appears. 

4. Start “Measurement and Automation” software 

a. Devices and Interfaces  NI-DAQmx Devices  NI DAQPad-6015: “DAQ1” 

b. Run “Self-Test” > “OK” 

c. Run “Reset Device” > “OK” 

d. Repeat steps a, b and c for NI DAQPad-6015: “DAQ2” 

 

 If either card fails to self test or reset then switch off “MAINS SWITCH” with key, restart computer 

and begin at step 1. 

 

Otherwise: 

5. Start National Instruments LabVIEW 2009 

6. Open “CMDAQ_v2b.vi” 

7. Click the “Run” button (left-pointing arrow) to run the control environment 

8. Ensure “Select Gear Ratio” radio button is set to “5:1” (default) 

9. Ensure “Select Test Type” radio button is set to “Grid Connected” (default) 

10. Ensure “Run Up Rate” is defined as 10rpm/s (default) 

11. Select required “Driving File” from default directory. Ensure choice is from the “.csv” files: 
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a. “7m6t_Part1.csv” (default) 

b. “7m6t_Part2.csv” 

c. “7m6t_Part3.csv” 

d. “15m20t_Part1.csv” 

e. “15m20t_Part2.csv” 

f. “15m20t_Part3.csv” 

12. “Output Folder” should be left as the default value 

13. Define “Output Filename Comment” as required 

The final filename will be in the format date_time_comment.csv and will be ‘zipped’ with the same 

filename format, date_time_comment.zip. 

 

14. Click “OK” to accept settings – a “START” button will appear at the top-left corner. Do not 

start yet. 

 

After every couple of tests or following unexpected system behaviour close LabVIEW and repeat 

step 3 of the above instructions to ensure correct system operation. In the event that either test is 

unsuccessful switch off “MAINS SWITCH” with key, restart computer and begin at step 1. Be aware 

that a serious error may require you to restart the computer. 

 

B. Startup Procedure (LabVIEW Control) 

1. Contact supply to Eurotherm variable speed drive (above desk) 

2. Power on Eurotherm drive – wait for display to show: 

FORWARD 

REF:  0.00 % 

3. Press blue illuminated “EMERGENCY STOP RESET” button – button will go dark. 

If the button remains illuminated, check that all emergency stops are disengaged and repeat step 3. 

 

4. Switch “MAIN DC DRIVE MOTOR” to “OFF” 

5. Press “L/R” button on MMI to enable remote control – display will show: 

DIGITAL DC DRIVE 

DC 4Q 165A 
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6. Switch “MAIN DC DRIVE MOTOR” to “ON” – drive may begin to ‘buzz’ loudly 

7. Press “START” in LabVIEW environment – machine will run up to synchronous speed 

8. Switch “MAIN DC MOTOR FAN COOLING” to “ON” 

9. Dialogue will show “At synchronous speed. DFIG supply connected?” 

10. Switch on 13A supply to contactor 

11. Switch on 63A supply (red lever) to contactor 

12. Switch “Grid Supply Isolator” to “ON” on “Synchronisation Contactor” cabinet 

13. Press green button on “Synchronisation Contactor” cabinet – grid supply is now connected 

14. Click “Yes” – machine will run to test starting speed 

15. Dialogue will show “Click OK to start test” – click “OK” 

 

Test will run until end. It is recommended to leave test to run unless something is seriously wrong. If 

required, press “Controlled Stop” and the following procedure will begin as if the test had completed. 

 

C. Shutdown procedure (LabVIEW Control) 

1. Dialogue shows “Test session ended. Click OK to return to synchronous speed.” – click “OK” 

2. Wait for dialogue displaying “At synchronous speed. DFIG supply disconnected?” 

3. Press red button on “Synchronisation Contactor” cabinet – generator is disconnected 

4. Switch “Grid Supply Isolator” to “OFF” 

5. Switch off 63A supply (red lever) to contactor 

6. Switch off 13A supply to contactor 

7. Click “Yes” – machine will run down 

8. Dialogue displays “Output data will be saved as date_time_comment” – select “OK” or 

“Cancel” 

a. If “OK” – amber “Writing DAQ File” light will show until writing is complete 

b. If “Cancel” – dialogue displays “Data discarded” – click “OK” 

 

Steps 2 to 8 may appear out of sequence depending which stage is reached first. In this case read 

dialogues carefully to ensure safe disconnection. 

 

Once the machine has stopped: 

9. Switch “MAIN DC MOTOR DRIVE” to “OFF” – drive contactor will disengage 
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10. Press “L/R” button on MMI – display will show: 

FORWARD 

REF:  0.00 % 

11. Switch “MAIN DC MOTOR DRIVE” to “ON” 

12. Power off Eurotherm drive 

13. Isolate supply to Eurotherm variable speed drive (above desk) 

 

Do not exit LabVIEW until amber “Writing DAQ File” light has gone dark to ensure data is saved. 

Output data is saved to My Documents  Test Rig  LabVIEW Control  OutputData. 
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The papers in this section are either already published or submitted for peer 

review at the time of writing and are included in the chronological order given below. 

Published Papers 

 Watson, S. J., Xiang, J., Yang, W., Tavner, P. J, Crabtree., C. J., Condition 

Monitoring of the Power Output of Wind Turbine Generators using Wavelets, 

IEEE Trans Energy Conversion, Vol. 25, No. 3, pp. 715-721, 2010. 

 Crabtree, C. J., Djurovic, S., Tavner, P. J., Smith, A. C., Fault Frequency 

Tracking During Transient Operation of Wind Turbine Generators, 19th 

International Conference on Electrical Machines, Rome, September 2010. 

 Yang, W., Tavner, P. J., Crabtree, C. J., Wilkinson, M., Cost Effective Condition 

Monitoring for Wind Turbines, IEEE Trans. Industrial Electronics, Vol. 57, 

No. 1, pp. 263-271, 2010. 

 

Accepted for Peer Review 

 Crabtree, C. J., Djurovic, S., Tavner, P. J., Smith, A. C., Condition Monitoring of 

a Wind Turbine Induction Generator by Current or Power Analysis, IEEE 

Trans. Industry Applications, Awaiting peer review, 2010. 
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