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A study was carried out on phosphatase activity, phosphate uptake and its 

relationship to hair formation in the Rivulariaceae. The Rivulariaceae was 

chosen as it is a widespread taxon, where hair formation is a common occurrence, 

and previous studies indicated that they originate from environments where a 

large proportion of the phosphorus (P) is present as organic P. It seems 

possible that hair-forming Rivulariaceae are especially well adapted to utilize 

organic P. 

Initially 51 axenic cyanobacterial strains, from 10 genera, were screened for 

yields using organic P sources and for cell-bound and extracellular 

phosphomonoesterase (PMEase) and phosphodiesterase (PDEase) activities. All 

strains exhibited detectable inducible PMEase activities, and highest cell-bound 

PMEase activities were in hair-forming Rivulariaceae. Svnechococcus had 

significantly low cell-bound phosphatase activities and five strains were unable 

to hydrolyze phytic acid. PDEase activities were lower compared to PMEase 

activities in all strains. Strains isolated from deepwater rice habitats had 

significantly higher levels of PDEase activity. 

In the three Calothrix strains tested, Calothrix 202, 550 and 603, inducible 

phosphatase activities were similar whether the P source was inorganic or 

organic. PMEase synthesis in these strains began when cellular P (% dry wt) 

values were in the range 0.60 - 1.0%. 

Differences in the influence of environmental variables on cell-bound and 

extracellular PMEase activities in hair-forming Calothrix 550 were slight, 

suggesting that PMEases in the two fractions had a common origin. Of the eleven 

ions tested Ca had the most pronounced stimulatory effect on PMEase activity. 

Localization of enzyme activity in Calothrix 550 suggested that the enzyme was 

bound to a surface. Partial purification of an extracellular PMEase fraction 

detected four bands of PMEase activity on a non-denaturing polyacrylamide gel. 

Three of the four bands were associated with carbohydrate and the bands were not 

extractable by mechanical means. 

Localization of PMEase activity in hair-forming strains by azo dye (naphthol 

AS-MX) and 5-bromo-4-chloro-3-indolyl phosphate (BCIP) showed that PMEase 

activity was associated with hair cells. Phosphate uptake experiments with 

Calothrix 253 and 550 suggested that uptake at high external phosphate 

concentrations was located in hair cells. 

NaCl, above 67.5 mM, inhibited hair formation and subsequently phosphatase 

activity in Calothrix 253 and 690. Addition of mannitol or sorbitol had no 

effect on hair formation, suggesting inhibition of hair formation was not an 

osmotic effect. Removal of P-deficient cultures from saline to freshwater media 

led to a marked synchronization of hair formation (in 90% of trichomes) and 

increase in cell-bound PMEase activity. Localization of cell-bound PMEase 

activity by light microscopy, using naphthol AS-MX, detected activity in the hair 
cells. 
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1~1 GENERAL INTRODUCTION 

C~T~R 1 

INTRODUCTION 

The Rivulariaceae are one of the most morphologically diverse families in 

the cyanobacteria. Many filamentous forms in the Rivulariaceae have the 

ability to form hair cells at a particular stage in their life cycle. 

16 

Sinclair (1977) and Livingstone et al. (1983) suggested that hairs and 

possible associated phosphatase activities resulted from phosphate deficiency, 

although no one role has been attributed to hairs in the Rivulariaceae or any 

other cyanobacteria. 

1 • 2 RIVULARIACEAE 

The most recent description of the Rivulariaceae is in Bergey's Manual of 

Systematic Bacteriology volume III (Staley et al., 1989), which uses Calothrix 

parietina (0550) as the reference strain. Desikachary (1959) defined the 

Rivulariaceae as, "trichomes with a single row of cells, apices generally 

attenuated or tapering in a hair, unbranched or false branched, sometimes with 

a distinct intercalary meristematic zone and trichothallic growth; hair with 

elongated more or less vacuolated cells; heterocysts present or absent, when 

present basal, intercalary heterocysts also present in some; hormogonia 

present; akinetes present or absent, when present single or in series." 

Geitler (1932) used a similar definition and included 12 genera in his 

description. This is summarized in Table 1.1 (Whitton 1987). 



Table 1.1 
1987) 

The principal features of genera in the Rivulariaceae; status of genera in brackets doubtful (Whitton, 

Amphithrix 

Calothrix 

Dichothrix 

Gardnerula 

Gloeotrichia 

Hammatoidea 

Homoeothrix 

Isactis 

(Leptochaete) 

Rivularia 

Sacconema 

(Tapinothrix) 

Heterocyst Mature trichome 
tapered at both 
ends 

+ + + 

+ + + 

+ + + 

+ + + 

+ + + 

+ + + 

+ + + 

+ + + 

Cellular hair Akinete 

? + 

+ + + 

+ + + 

+ + + 

+ + + + + + 

? -

+ + 

+ + + 

+ 

+ + + 

+ + + + 

+ + +, feature of genus: requires observation for identification. 

Filaments in a 
common gelatinous 
mucilage 

+ 

+ + + 

+ + + 

+ + + 

+ + + 

Hemispherical or 
spherical colony 

+ 

+ 

+ + + 

+ + 

+ + 

+ +, widespread feature in genus, but sometimes absent; absence in at least some cases probably genetic. 
+, occasional feature in genus. 
-, feature absent in genus. 

. 1-' 
-.J 
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1.21 Morphological features of the Rivulariaceas 

All species·· are tho1,1ght to be able to form hormogonia. The hormogonia 

develop into tapered trichomes, which are aggregated in some way and in 

Gloeotrichia and Rivularia well ordered spherical and hemispherical colonies 

are formed. A hair may eventually develop at the end of the tapered 

trichomes. Population growth in the form of new trichomes mainly takes place 

through the release of hormogonia from the apical part of a mature trichome. 

However in forms with spherical or hemispherical colonies false branching can 

lead to the formation of new tapered trichomes. 

The presence of a hair at the end of a trichome is the nearest to a 

distinctive feature within the family. However, hairs are also present in 

some or all species of Mastigocoleus, Nostochopsis, Brachytrichia and 

Kyrtuthrix (Whitton, 1987) . 

1.211 Ho.anogonia 

The hormogonia are parallel lengths of cells, which exhibit gliding 

motility and develop in the meristematic zone at the apex of the trichome 

(Geitler, 1932) . Hormogonia are released by the production of biconcave 

separation discs (Fritsch, 19A5) . During hormogonial release, the hairs, if 

present, are shed. After release, few, i-f any, cell divisions occur before 

further differentiation of the hormogonia into a mature trichome takes place. 

Gas vacuoles are present in young hormogonia of Calothrix and Gloeotrichia, 

although they are lost during differentiation. 

1.212 Trichome growth 

Growth in Rivulariaceae is typically meristematic, i.e. cell division is 

confined to a particular part of the trichome. In forms with heterocysts and 

hairs division occurs between the two, often just below the hair 

(trichothallic growth - Fritsch, 1945). The cells of the meristematic region 



in some forms are wider than the basal cells giving,the appearance of a 

spindle shaped swelling below the hair (Whitton, 1987). 

Morphological polarity was largely or entirely lost when heterocystous 
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Rivulariaceae were transferred to a medium with combined nitrogen. 33 out of 

34 strains studied by Sinclair and Whitton (1977b) stopped heterocyst 

formation in the presence of combined nitrogen. 19 strains lost their taper 

and in the remaining strains there was a mixture of tapered and non-tapered 

trichomes. Hair frequency and length were reduced markedly in three strains. 

1.213 Heterocyst. 

The presence of a heterocyst is a diagnostic feature at the generic level 

(Table 1.1), although a high concentration of combined nitrogen can suppress 

its formation (Sinclair and Whitton, 1977b) . Where heterocysts are present, 

they are mostly terminal, i.e. with a polar nodule on one side. The terminal 

heterocyst developing at the end of a hormogonium in several strains of 

Calothrix parietina differentiate from the cell which ,\s nearest the parent 

trichome before the hormogonium .. is released (Whitton, 1987). This polarity 

of the trichome is therefore established before it is observable with the 

light microscope. 

Intercalary heterocysts develop occasionally in some Calothrix species 

(Geitler, 1932) . In Q. brevissima (Rai et al., 1978) bipolar heterocysts 

developed in trichomes which had grown in the presence of ammonia and then 

deprived of it. Subsequently one polar nodule flattened and the adjoining 

cell died, forming a separation disc which caused fragmentation of the 

filament. In comparison with other heterocystous families, heterocysts tend 

to form a smaller proportion of the total cells in the Rivulariaceae. 

A widespread feature in the Rivulariaceae is the presence of green and 

blue-green heterocysts. This is particularly common in Calothrix and 

Gloeotrichia isolates from rice fields (Whitton et al., 1987). Other 
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differences also occur among heterocysts in the Rivulariaceae. In a 

Bangladesh Calothrix (D603) strain carboxysomes occurred in mature heterocysts 

(Whitton et al., 1987). There are a number of records of heterocyst 

germination in the Rivulariaceae (Desikachary, 1946), although this feature 

has been noted in other families. 

1.21~ Hair 

Bornet and Flahault (1886a,b) defined the cyanobacterial hair as "a series 

of narrow, elongated cells, containing very little protoplasm, and incapable 

of further growth". As this definition confuses different features, Sinclair 

and Whitton (1977a) redefined the hair as a region of the trichome where the 

cells are narrow, elongated, highly vacuolated and usually apparently 

colourless. Geitler (1932) described the presence of hairs in the genera 

Calothrix, Dichothrix, Gloeotrichia, Isactis, Polythrix, Rivularia, Sacconema, 

Ammatoidea, Homoeothrix, and Leptochaete of the Rivulariaceae. Hairs are 

also present in a number of genera not in the Rivulariaceae, Loefgrenia 

(Loefgreniaceae), Mastigocoleus and Nostochopsis (Nostocnopsidaceae) and 

Brachytrichia and Kyrtuthrix (Mastigocladaceae) . 

Of 36 strains of Rivulariaceae in culture (Sinclair and Whitton, 1977a) 13 

formed hairs. In all cases abundant hair increase occurred under conditions 

of phosphate deficiency. Fe deficiency led to hair formation in 8 strains 

and Mg deficiency in one strain. Of 78 strains with quite detailed 

descriptions in the taxonomic literature, hairs are present in 52 strains, 

absent in 16 and data inadequate for comment in 10 (Kirkby and Whitton, 1976). 

The question arises as to what extent the lack of hairs is merely an 

environmental effect. Hairs were formed in Calothrix parietina when the 

average value of cellular phosphorus (P) fell below 1% dry weight, which is a 

concentration found in healthy filaments (Livingstone et al., 1983). 



The effect of P qn hair form~tion and Rivulariaceae morphology is quite 

dramatic and it has been suggested that the P status of the environment may 

play an important role in the growth of Rivulariaceae (Whitton, 1987) . The 

changes in morphology related to the P status of ~. parietina have.;been 

described by Livingstone and Whitton (1984) . Four distinct morphological 
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stages were recognised. Stage I commenced with the release of a hormogonium 

and ended· with the formation of a heterocyst. Stage II commenced with 

formation of a mature heterocyst, followed by tapering of the trichome. 

Under P rich conditions this tapered trichome can continue to give rise to 

hormogonia, but with increasing P deficiency the terminal cells begin to 

differentiate into a hair (Stage III). When phosphate is added to trichomes 

with hairs (Stage IV) a further characteristic stage of events takes place. 

Hormogonia develop at the apical end of the chlorophyll containing part of the 

trichome; the hair falls off and hormogonia are released by gliding from the 

sheaths. 

Cytological and ultrastructural studies of the hair mainly describe a 

progressive loss of cell constituents from "vegetative" to typical hair cell. 

Geitler (1932) suggested that a gradual transition was common, however the 

transition can be very abrupt with elongation and vacuolation occurring over a 

short distance (Sinclair, 1971). Ueda (1971b) showed that the hair cell 

adjacent to the vegetative cells had between two to five times less DNA. 

Miller and Lang (1971) showed that the hair cell was mainly intrathylakoidal 

space, with the remaining part of the thylakoid system existing as single 

membranes bounding the remaining interthylakoidal cytoplasm in Gloeotrichia 

sp. There was an increase in cyanophycin granulation, and a decrease in 

polyglucoside granulation as the cells aged; in the oldest cells all 

inclusions except lipid globules and carboxysomes were absent. 

Douglas (1979) and Wood (1984) showed that all cytoplasmic inclusions other 

than membranes were absent in a range of Calothrix and Rivularia strains. 



However it was showq. by Smith .and, Peat (1967) that gas vacuoles persist in 

hairs of Gloeotrichia echinu1ana. 

Although cell vacuolation is the dominant feature in the hairs of 

Rivulariaceae, it can occur in other cyanobacteria. The formation of 
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vacuoles is a common response in older cells in response to extreme conditions 

(Desikachary, 1959). The apical cells of subaerial species are sometimes 

vacuolated, perhaps as a result of desiccation, since vacuoles are not present 

in submerged fonns. In Oscillatoria borneti and Q. pseudoqeminata (Ueda, 

1971a) small vacuoles developed giving the cytoplasm an alveolate appearance. 

These keritomic vacuoles (Keritomie: Geitler, 1960) were caused by swelling of 

t·he intrathylakoidal space, and their development was accelerated l:;>y 

increasing the light intensity. Keritomie occurs as a pathological symptom 

in otherwise normal cells, still capable of division, and it is reversible. 

However vacuolation in Rivulariaceae is a normal stage in their life cycle, 

and is irreversible after a certain stage. A reduction in granulation and 

colour has also been noted in lateral branches of members of the 

Stigonemataceae (Thurston and Ingram, 1971). 

From the above examples it shows that hair formation is not unique to the 

Rivulariaceae. However the Rivulariaceae are the family of cyanobacteria 

which show the greatest tendency towards hair formation, and are also one of 

the most widespread cyanobacterial families. 

1.3 HAIRS IN EUKARYOTIC ALGAE 

A brief review of the occurrence of hairs in eukaryotic algae will be 

considered as a comparison to the presence of hairs in cyanobacteria. Hairs 

in members of the green, brown and red algae are well known to phycologists 

(Whitton, 1988). These hairs are easily recognizable and have an important 

taxonomic function. The hairs are divided into a multicellular hair, 

unicellular hair and a prolongation from a vegetative cell known as a seta 

J' 



(Whitton, 1988). The occurrence of different types of hair in eukaryotic 

algae are summarized below (Whitton, 1988). In Chapter 8 a brief study of 

the localization of phosphatase activity in eukaryotic hairs will be 1"'\?l>oftecL. 

Table 1.2 The occurrence of various types of hair in eukaryotic algae. 

Taxonomy 

CHLOROPHYTA 
Chaetophorales 

Chaetophoraceae 

Feature of hair 

Multicellular, usually showing decrease or loss of 
chloroplast on passing towards apex and often (e.g. 
Stigeoclonium) tapered from base to apex. 

Aphanochaeteceae 1-cellular, simple, no chloroplast, sometimes bulbous 
at base, no sheath; detailed morphology is diagnostic 
feature for many genera. 

Chaetosphaeridiaceae Probably always a cytoplasmic process (seta), but 
ultrastructural studies needed: very narrow, often 
single or double sheath at oase, sometimes with 
several (e.g. Conochaete) setae arising from one 
basal cell. 

Coleochaetaceae Cytoplasmic process (seta), with sheath at base; 
extension of chloroplast present in seta. 

Dicranochaetaceae Probably cytoplasmic process (seta), but 
ultrastructural studies needed; branched. 

Oedogoniales 
Bulbochaete 1-cellular, no chloroplast, bulbous base. 

Caulerpales 1-cellular hairs on some species of Codium. 
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Dasycladales Acetabularia has whorls of branching hairs arising from 
main axis below cap. 

PHAEOPHYTA Hairs are present in all orders, with examples from 
many genera or species. 

Ectocarpales 

Sphacelariales 

RHODOPHYTA 

Multicellular, typically with chloroplasts showing 
decreasing prominence from base to apex (e.g. 
Pleurocladia) . 

Multicellular, no chloroplast, sheathed at base (e.g. 
some Sphacelaria spp.). 

Common among Florideae (see Fritsch, 1945) : mostly 
1-cellular, narrow and often very long, no chloroplast, 
but often (always?) with plug of cytoplasm at tip 
(e.g. Lemanea), which at least in Gelidium 
caulacantheum contains a nucleus. 
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1.~ POSSIBLE FUNCTIONS OF HAIRS 

Most of the literature has ascribed possible functions to eukaryotic hairs, 

these roles could be used for cyanobacterial hairs. Previously it 

was suggested that hairs may function as a light screen, although DeBoer and 

Whoriskey (1983) showed that light had no effect on abundance, length or 

distribution of hairs in Ceramium rubrum. Drumgole and Booth (1985) 

suggested that hairs in Gelidium caulacantheum might aid in water retention, 

and that the water holding capacity of the hair zone may be as much as 300% 

more than the internal water content of the thallus. 

The frequent finding that hairs are associated with nutrient deficiency has 

led most authors to speculate that hairs are associated with nutrient uptake 

(Whitton, 1988). Gibor (1973) has provided direct evidence for hairs playing 

a role in uptake of vital dyes (neutral red and methylene blue) in 

Acetabularia and that the uptake was under metabolic control. 

The most convincing evidence for hairs specializing in nutrient uptake is 

supplied by DeBoer and Whoriskey (1983) for Ceramium rubrum. A two component 

model can be used to fit ammonium uptake by Q. rubrum at external NH 4-N 

concentrations below 40 ~· At concentrations less than 10 ~. a high 

affinity uptake system (component one) predominates and at concentration 

between 10 - 40 ~ a strong "diffusive" system (component two) predominates; 

this "diffusive" component may be a system with a high K - half saturation 

values and high Vmax - maximum rates of uptake (D'Elia and DeBoer, 1978). 

Component one uptake was independent of the hairs, whereas component two 

uptake was markedly enhanced by the presence of hairs, suggesting separate 

sites for components one and two. The authors postulated that hairs function 

primarily by increasing the uptake sites for component two and that they are 

adapted to taking full advantage of intermittent bursts of high concentrations 

of nutrients. 
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Sinclair and Whitton (1977a) demonstrated that hair formation in 13 

Rivulariaceae strains was stimulated by phosphate deficiency. Livingstone et 

al., (1983) demonstrated that phosphomonoesterase activity (1.61) commenced at 

the same time as hair formation in Calothrix parietina DSSO. 

Phosphomonoesterase activity was localized on the hair cells, vegetative cells 

adjacent to the hair cells and on the sheath furthest from the heterocyst. 

Phosphatase activity may be very important to this alga in nature, as it was 

isolated from a stream where most of the soluble phosphate is organic 

(Livingstone and Whitton, 1984). Rivularia colonies taken from this stream 

and other similar environments also showed marked phosphatase activity and 

phosphate uptake from p-glycerophosphate was 86% of that from inorganic 

phosphate. Further indication that hairs may be sites of phosphatase 

activity in the Chlorophyta was demonstrated by Gibson and Whitton (1987) for 

phosphate deficient strains of Chaetophoraceae. Hair formation commenced 

when the P level had fallen below 1% dry weight and phosphatase activity was 

localized on the hairs using the lead capture technique. 

The most likely role of hairs in the Rivulariaceae seems to be as sites of 

phosphatase activity and phosphate uptake, which will possibly be related to 

the P status of the environment. Therefore, the study concentrated on the 

relationship between trichome morphology, physiology, phosphatase activity and 

phosphate uptake in the Rivulariaceae. 

1.5 PHOSPHORUS OCCURRENCE AND FORMS IN THE ENVIRONMENT 

Phosphorus (P) is the eleventh most abundant element in nature. Its 

'"' '\'1\Q.. \\t"'o..,~\\~(t. 
concentration is estimated as 0.1% by weight"and is thus classed as a trace 

element. 80% of the P reserves are contained in phosphorite deposits in 

ocean sediments and 15% in igneous and metamorphic rocks. Phosphorus is a 

necessary plant nutrient and is defined as a rate limiting element. 
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Phosphorus generally occurs in the oxidized form, either as phosphates or 

organic P compounds. Phosphates can be divided into: 

1. Orthophosphates 

2. Polyphosphates (chain phosphates) 

3. Metaphosphates (ring phosphates) 

4. Ultraphosphates (branched ring phosphates) 

Orthophosphates are generated from the weathering of rocks or from 

biological metabolism or degradation. Polyphosphates and metaphosphates are 

produced by biological activity. Orthophosphates and polyphosphates are 

frequently introduced into waters by man (Broberg and Persson, 1988). 

Analytically defined P fractions are categorized in the following manner: 

Table 1.3 Analytically defined phosphorus fractions {Rigler, 1973) . 

pp Tot p Total phosphorus 

pp Particulate phosphorus >0.45 ~ 

SP Soluble phosphorus <0.45 ~ 

Tot P SRP Soluble reactive phosphorus 
0.45 ~ 

SUP Soluble unreactive phosphorus 
s~ 

SP 

SUP 

Particulate P (colloidal P)is derived from five sources: 

1. Cells of plants, bacteria and animals. 

2. Weathering products such as primary or secondary minerals. 

3. Direct precipitation of inorganic P or adsorption onto other precipitates. 

4. Degradation and fragmentation of cells, providing organic detritus. 

5. Flocculation of organic macromolecules, resulting in larger sized 

aggregates. 
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Particulate organic P in aquatic ecosystems dominates total organic P, and 

is comprehensively reviewed by Broberg and Persson (1988) . Although 

particulate organic P is the major constituent of organic P forms it is not 

readily available. Dissolved organic P (DOP) can be regarded as a more 

important fraction as it is readily available to the biota and is rapidly 

turned over. It is not known whether DOP is primarily released by active 

cell metabolism or by cell death and decay. 

Some pools of DOP do not undergo rapid hydrolysis by phosphatases, and 

these compounds may constitute a major part of the DOP pool. One such pool 

of DOP compounds are the nucleotides or polynucleotides. Phillips (1964) 

obtained six DOP fractions from sea water, three of which were identified as 

nucleotides or polynucleotides. Broberg and Persson (1988) reported that up 

to 4.2% of the total P in bogs was attributed to nucleic acid. Minear (1972) 

found that up to 50% of high molecular weight DOP excreted from organisms was 

DNA or its fragments. Hino (1989) found that 65% of DOP in lake waters was 

composed of compounds between 300 to 10000 daltons. Addition of 

phosphodiesterases (1.612) to high molecular weight DOP compounds did not 

release any measur~ble Pi, although a combination of phosphodiesterases and 

phosphomonoesterases increased the amount of Pi released by 30% when compared 

to release of P1 by PMEases alone. 

A major component of colloidal P in aquatic systems are the inositol 

phosphates or phytates, which are hydrolyzed by the group of phosphatases 

known as phytases (Mitchell and Read, 1981). The phytates are esters of 

inositol and phosphoric acid. Phytates e~\st . \n· many PH ms . as there 

are many different isomers of inositol and each isomer exists with one to six 

esterified phosphate groups per molecule. Phytates can comprise up to 35% of 

the colloidal P, which is mainly derived from microbial storage and structural 

compounds. 
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1.6 ~HOSPHATASES 

1.61 INTRODUCTION 

Phosphatases are enzymes which promote the degradation of a wide variety of 

complex P compounds into orthophosphate (Pi) and an organic moiety (Jansson et 

al., 1988). Phosphatases are thought to have an essential function in the 

nutrient dynamics of the environment. 

1.611 Phosphomonosstarass 

Most often the term "phosphatase" is used synonymously with 

phosphomonoesterase, abbreviated to PMEase (Flynn et al., 1986). Similar but 

functionally different enzymes are the phosphodiesterases, abbreviated to 

PDEase, which include the nucleases. General formulae for phosphate esters 

are in Fig. 1.1 (below). 

Fig. 1.1 Formulae for phosphate esters. 

~ ~ 
R-0-l-QH R-Q-l-0-R' 

OH OH 

R" 

PHOSPHOMONOESTER PHOSPHODIESTER PHOSPHOTRIESTER 

R represents the organic part of the phosphate esters. 
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The most common catalytic breakdown studied is the breakdown of 

phosphornonoesters by PMEases. The reaction mechanism (Fig. 1.2) is divided 

into four steps (McComb et al., 1979): 

1. Non-covalent binding of the substrate to the enzyme (EH). 

2. Alcohol release from the complex and Pi becomes covalently bound to the 

enzyme forming a phosphoryl-enzyme compound. 

3. Conversion of the phosphoryl-enzyme compound, through uptake of water, to a 

non-covalent complex. 

~. Release of Pi and regeneration of free enzyme. 

Any of the steps 2-3 can be rate limiting for the overall reaction (McComb 

et al., 1979). 

Fig. 1.2 Reaction scheme for the enzyme catalyzed P of phosphate esters as 

described by McComb et al. (1979). 

R 

r "'o o- o-
1 EH¥a 2 I 

EH + R-Q-1 0 E-P=O + R-QH 
I 

o- o- o-

r OH o- o-
3 \/ 4 I 

E-1==0 + H20 "" EH · P=O ~ EH + HO-P=O ..... 
I 

..... 
I 

o- o- o-

PMEase activity will primarily depend on the type and concentration of 

substrate and enzyme. Other factors which affect PMEase activity are 

temperature, ionic strength, pH and metal ions (McComb et al., 1979). 

Alkaline PMEases have been characterized as metallo-enzymes with an essential 
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metal ion, which has been reported to be zinc in many cases (Spiro, 1973; 

McComb et al., 1979 and Torriani-Gorrini et al., 1987). 

1.612 Phosphodisstsrasss 

PDEases or nucleases have been isolated in a wide range of organisms 

(Razzel and Khorana, 1959) e.g. in snake venom (Razzel and Khorana, 1959), hog 

(Razzel, 1959), cow (Kelly et al., 1975), rat (Futai and Mizuno, 1967), carrot 

(Harvey et al., 1970) and in human urine (Ito et al., 1987). PDEases are 

able to hydrolyze a wide range of nucleo\:,,J.es. PDEases are distinguished into 

two categories on their ability to hydrolyze 3' and 5' nucleotides. 

Phosphodiesterase I hydrolyzes nucleic acids to nucleoside 5'-phosphates and 

phosphodiesterase II hydrolyzes nucleic acids to nucleoside 3'-phosphates 

(Kelly et al., 1975). The ability of PDEases to hydrolyze nucleic acids is 

incorporated as a tool in molecular biology. 

PDEases are typically alkaline and inhibited by EDTA. The activity of 

EDTA treated PDEases is completely restored by zinc and partially by calcium 

and magnesium (Ito et al., 1987), which suggests that PDEases are also zinc-

metallo enzymes like PMEases. However the amino acid composition of PDEases 

differs markedly from PMEases localized from the same tissue (Kelly et al., 

19 75) . PDEases in all cases are inhibited by Pi and in most cases PDEases 

are inhibited by ascorbic acid. It has been demonstrated that preparations 

of supposedly purified PMEases have diesterase activity. 

attributed to contaminating PDEases. 

1.62 Bacterial phosphatase activity 

This activity was 

A large amount of work has concentrated on PMEases in heterotrophic 

bacteria, with most research on PMEase structure and function in K. coli 

(McComb et al., 1979). PMEase activity in freshwater heterotrophic bacteria 

has been demonstrated in lake waters (Reichardt et al., 1967; Jones, 1972,a; 

Pettersson, 1980; Chrost et al., 1984; Hallemejko and Chrost, 1984). The 
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majority of work on aquatic bacterial PMEases has been carried out with marine 

forms. Marine bacteria, in general, appear to have PMEases that are located 

in the periplasmic space (Thompson and MacLeod, 1974a, b) . The production of 

extracellular PMEases in heterotrophic bacteria is less common than in algae 

(Jansson et al., 1988). 

1.63 ~gal phosphatase activity 

Cell-bound PMEase activity in algae is widespread, though not universal 

(Healey, 1982). PMEase activity has been demonstrated for many genera of 

cultured algae (Kuenzler, 1965; Kuenzler and Perras, 1965; Healey, 1973; 

Healey and Hendzel, 1975; Flynn et al., 1986; Doonan and Jensen, 1980; Wynne, 

1981; Smith and Kalff, 1981). PMEases have been located on the cell surface 

(Brandes and Elston, 1956); in cell membranes (Kuenzler and Perras, 1965; 

M0ller et al., 1975; Flynn et al., 1986) and extracellular enzymes in cultured 

algae are frequently reported (Aaronson, 1971; Healey, 1973; Aaronson and 

Patni, 1976; Patni et al., 1977; Healey and Hendzel, 1979; Wynne, 1981). 

The synthesis of PMEases in algae is influenced mainly by substrate supply 

and reaction products. In most cases algal PMEases are inducible and 

activity increases with the onset of P-deficiency, although no significant 

increases in PMEase activity were detected in P-deficient Synechococcus 

(Kuenzler, 1965), Coccochloris (Kuenzler and Perras, 1965) and Pseudanabaena 

catenata (Healey and Hendzel, 1979). In these algae the PMEases are probably 

constitutive, i.e. they are more or less constantly synthesized in the cell. 

PMEase activities in aquatic environments have often been ~tbributed to 

algae (Heath and Cooke, 1975; Pettersson, 1980) . The major amount of work on 

activity in aquatic environments has concentrated on extracellular PMEases 

(Jansson et al., 1988), which can make up a substantial amount of the activity 

in lake waters. Extracellular PMEases are generally defined as those which 

pass through 0.45 ~membrane filters. The characteristics of extracellular 



PMEases do not differ from "cell-bound" PMEases (Glew and Heath, 1971 and 

Flynn et al., 1986). It is not clear how, or to what extent, active 

secretion of PMEases takes place and whether it is more beneficial to release 

PMEases or to localize them on the external cell surface (Jansson et al., 

1988). 

1.6~ Cha~acte~istics of algal phosphatasea 

1.6~1 Acid and alkaline 
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Optimum PMEase activity occurs at different pH values and hence the common 

separation into acid and alkaline PMEases. Acid PMEases generally have the 

highest activity between pH 4 - 6 and alkaline PMEases between pH 8 - 11. 

Both alkaline and acid PMEases have been found as extracellular and cell-bound 

enzymes in algae (Siuda, 1984). 

Acid and alkaline PMEases are similar in that they have a broad specificity 

against different substrates, i.e. their activity is only restricted to the 

P-O bond on the phosphomonoesters. However, alkaline PMEases differ in that 

they require cations for activity and are inhibited by chelators such as EDTA 

(Whitt and Savage, 1988), whereas acid PMEases have no cationic requirement 

and are specifically inhibited by fluoride (Cembella et al., 1984a). 

Jansson et al. (1981) found four different acid PMEases, based on their 

molecular weights, in Lake Gardsjon. They were all inhibited by Pi and had 

~values similar to alkaline PMEases. It was proposed that these PMEases 

had adapted to acid conditions and had the same functions as typical alkaline 

PMEases from lakes with a higher pH. 

Acid and alkaline PMEases have an essential difference concerning their 

location in the cell and mode of synthesis. Acid PMEases are intra-cellular 

(cellular) whereas alkaline PMEases are in contact with the surrounding medium 

i.e. bound to the cell membrane, wall or sheath (M0ller et al., 1975; Wynne, 
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1977; Schmitter and Jurkiewicz, 1981; Siuda, 1984). In contrast to alkaline 

PMEases acid PMEase synthesis is generally not inhibited by Pi (Wynne, 1977) . 

It has therefore been hypothesized that acid PMEases are constitutive enzymes 

produced for internal P-metabolism (cellular PMEases), whilst alkaline PMEases 

have external functions and a synthesis which is induced or repressed 

depending upon the P status of the alga (Jansson et al., 1988). 

1.6~2 Tempera~ure dependence 

Algal PMEases have Q10 values between 1.5 and 3 and temperature optima 

between 30 - 60°C, which is usually above the temperature of the original 

environment. Huber and Kidby (1984) showed that temperature optima of algal 

cultures and field populations were between 25 - 50°C. 

1.6~3 Effec~ of ions 

The ionic requirements for algal PMEases var~ considerably. Calcium has 

the greatest stimulatory effect on algal PMEases (Glew and Heath, 1971; 

Healey, 1973; Doonan and Jensen, 1980). Glew and Heath (1971) determined 

that there were 8 g atoms of ca++; mole of PMEase in Micrococcus sodenensis. 

Magnesium has little or no effect on algal PMEases, although it has been 

reported to have a stimulatory effect on a wide range of heterotrophic 

bacterial PMEases (Schlesinger et al ., 1969; Day and Ingram, 1973; Thompson 

and MacLeod, 1974a) . 

Zinc inhibited alkaline PMEase activity in Plectonema boryanum (Doonan and 

Jensen, 1980) and Anacystis nidulans (Ihlenfeldt and Gibson, 1975). Walther 

and Fries (1976) showed enhancement of extracellular alkaline PMEase activity 

by zn++ in a multicellular marine alga. zn++ enhanced activity in a wide 

range of heterotrophic bacteria in direct contrast to its effect on 

cyanobacteria (Schlesinger et al., 1969; Sakaguchi et al., 1972; Day and 

Ingram, 1973) . 



Manganese and cobalt slightly enhanced activity in Plectonema boryanum, 

Anacystis nidulans and Vibrio parahaemolyticus (Sakaguchi et al., 1972; 
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Ihlenfeldt and Gibson, 1975; Doonan and Jensen, 1980). Sodium and potassium 

had a negligible effect on PMEase activity. Pi inhibited most inducible 

alkaline PMEase systems (Healey, 1973; Ingram et al., 1973; Ihlenfeldt and 

Gibson, 1975; Doonan and Jensen, 1980). EDTA inhibits alkaline PMEase 

activity (Whitt and Savage, 1988), which suggests the importance of one or 

more metals in algal PMEases, although no algal PMEases have been isolated to 

confirm this. 

1.64~ Substrate affinity 

The ability for PMEases to hydrolyze substrates is given by the Km value 

(Michaelis-Menten constant) . Km is the substrate concentration when the 

reaction proceeds at half its maximum speed. A low Km means that the enzyme 

has a high affinity to the substrate and the opposite for a high Km. 

Therefore, the use of the Michaelis-Menten equation for a mixture of enzymes, 

which has been carried on algal PMEases, is theoretically incorrect. 

However, from a practical standpoint, a group of enzymes can be characterized 

by ~olving a Michaelis-Menten equation. 

~ varies with substrate structure, indicating that PMEases are not 

substrate specific (Jansson et al., 1988). Other factors which significantly 

affect Km are pH and temperature. Usually the Km values reported are between 

10-6 to 10-4 M for acid and alkaline PMEases. 

Pettersson (1980) demonstrated that the Km varied annually by an order of 

magnitude in Lake Erken, with the lowest values during periods of extreme P-

deficiency. He hypothesized that phytoplankton adapted to P-deficiency by 

increasing enzyme production and producing enzymes with an improved ability to 

utilize lower substrate concentrations. 
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1.6~5 Stability 

Extracellular PMEases are functional for long periods under axenic 

conditions. Alkaline PMEases when incubated with chloroform-saturated water, 

decreased in activity by 20% over 10 d (Berman, 1970) . Jansson et al., 

(1981) found that extracellular acid PMEases remained active after 20 d and 

10% of the original activity remained after 69 d. Halemejko and Chrost 

(1984) reported that extracellular PMEase activity in lake waters remained 

unaffected after 4 d. However, the mechanism for the inactivation or 

breakdown of phosphatases in situ remains unclear. 

1.6~6 Control of synthesis 

Inducible PMEases are those where synthesis starts in the presence of 

suitable substrates, and constitutive PMEases are enzymes produced 

independently of an activator, i.e. they are more or less constantly 

synthesized in the cell. Induction, where PMEase activity is enhanced by the 

addition of a substrate, seems uncommon or rarely investigated. Aaronson and 

Patni (1976) demonstrated that the secretion of acid PMEases in Ochromonas 

danica increased after addition of glucose-1-phosphate and glucose-6-

phosphate. 

Algal acid PMEases are generally constitutive whilst alkaline PMEases are 

inducible. Acid PMEases are located internally, whilst alkaline PMEases have 

external functions (1.341). Therefore, alkaline PMEases supply algae with Pi 

from outside the cell and are regulated by the internal Pi pool (Fitzgerald 

and Nelson, 1966; Wynne, 1977; Pettersson, 1980, 1985 and Livingstone et al., 

1983). When the internal Pi pool is filled synthesis of alkaline PMEases is 

stopped, and when the pool is depleted to a particular level, alkaline PMEase 

synthesis is induced. 
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1.65 Alkaline phosphatase activity as a phosphorus-deficiency indicator 

Kuenzler and Perras (1965) and Fitzgerald and Nelson (1966) stated that P

limited marine and freshwater algae produced alkaline PMEases and the 

production stopped when the algae were P-sufficient. These two papers were 

the basis for the use of algal alkaline PMEases as biological indicators of 

the P-status of the environment. Healey (1982) confirmed that many algal 

species respond in a similar manner to P-deficiency that it was possible to 

measure PMEase activity in natural mixed populations. 

The potential PMEase activity and its variation has been used by several 

investigators as an indicator of P-deficiency. These investigations 

demonstrated an inverse relationship between alkaline PMEase activity and the 

following variables (Jansson et al., 1988): 

1. Cell-bound alkaline PMEase activity and P1 concentration (Pettersson, 1980, 

1985; Francke, 1984; Chrost et al., 1984). 

2. Extracellular alkaline PMEase activity and Pi concentration (Reichardt, 

1971). 

3. Alkaline PMEase activity and total P concentration (Berman, 1970; Smith and 

Kalff, 1981). 

4. Alkaline PMEase activity and total cellular surplus P (Pettersson, 1980, 

1985). 

5. Cellular alkaline PMEase activity and total cellular P (Wynne, 1977). 

In each case low alkaline PMEase activity was associated with high 

concentrations of P. High alkaline PMEase activity was only detected when 

the P concentration was low. 

PMEase activity is always related to biomass of the PMEase producing 

organisms in the assay, giving the specific potential PMEase activity. 

Several biomass estimators have been used, dry weight (dry wt), particulate 

carbon, adenosine triphosphate (ATP) and chlorophyll ~ (Pettersson, 1980). 

Biomass estimators such as chlorophyll ~ can vary due to interspecific or 
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environmental variations. In situations where there are large amounts of 

detrit-us, ATP may be preferable in order to estimate activity from the living 

biomass (Pettersson, 1980) . Healey (1982) quoted that the specific level of 

alkaline PMEase activity for P-deficient cyanobacterial cultures is above 2 

J.lffiOl P hydrolyzed (a 2 J.lffiOl pNP) mg dry wt -1 h~1. 

Induction of alkaline PMEase activity is often associated with low total 

cellular P concentration, low polyphosphate concentration and high 

polyphosphate synthetase activity (Healey, 1982). Therefore, alkaline PMEase 

activity, total cellular P, polyphosphate concentration and polyphosphate 

synthetase activity are in themselves P~deficiency indicators. However, they 

are not independent of each other since repression-induction of alkaline 

PMEase activity is controlled by cellular P fractions, probably polyphosphate 

(Cembella et al., 1984a). 

Olsen et al. (1983) showed that induction of the synthesis of alkaline 

PMEase in Chlamydomonas reinhardtii started below an internal P level of 3 -

3.5 ~g P mg dry wt-1. Fitzgerald and Nelson (1966) concluded that a surplus 

P (polyphosphate) level of 0.8 ~g P mg dry wt-1 or lower indicated a 

likelihood for induction of phosphatase synthesis. This observation was 

confirmed by Healey (1973) for Anabaena variabilis. Pettersson (1980, 1985) 

reported values between 0.2 - 1.0 ~g P mg dry wt-1 for spring phytoplankton in 

Lake Erken with high alkaline PMEase activity and a threshold value of 0.5 ~g 

P mg dry wt-1 . 

Cembella et al. (1984a) .-__ o.;rju~ed that "the current practice of using 

assays of alkaline PMEase as bio-indicators of the nutritional status of the 

environment is probably reckless and fraught with undesirable complications". 

They agreed that PMEases from zooplankton (Boavida and Heath, 1984), bacteria, 

degenerating cells, external input of PMEases (Stevens and Parr, 1977), 

dissolved PMEases (Jansson et al., 1981) and constitutive PMEases (Fitzgerald 

and Nelson, 1966) could all severely decrease the significance of the assay as 
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an indicator of P-deficiency. Increased PMEase activity can also be induced 

by factors other than P-deficiency. Wilkins (1972) showed that alkaline 

PMEase activity in ~. coli was induced by a deficiency in pyrimidines and 

guanine and not a lowering of the internal Pi pool. Francko (1984) showed 

that increases of 525% or decreases of 58% in alkaline PMEase activity can be 

induced by the addition of 0.2 - 10 nmol 1-1 of cyclic adenosine monophosphate 

(cAMP) . Francko and Wetzel (1982) showed that cAMP was in the range 16 - 324 

pmol 1-1 in freshwater environments. Variations in PMEase activity during 

the day have also been demonstrated (Reichardt, 1971; Wynne, 1981; Chrost et 

al., 1984; Huber and Hamel, 1985). This stresses the problem that even the 

time of sampling is a factor influencing PMEase activity. 

1.66 Measurement of phosphatase activity 

Phosphatase activity is assayed by hydrolysis of a suitable artificial 

substrate and the subsequent detection of the increase "over time of an organic 

product or orthophosphate. The substrate concentration used is high enough 

so that the reaction proceeds at maximum velocity for a reasonable length of 

time. 

Phosphatase activity can be separated into many different fractions. 

Phosphatase activity can be measured as the total without pre-treatment of the 

sample, which represents extracellular and cell-bound phosphatases. 

Differential filtration determines activity associated with varying sizes of 

particles. The activity can be measured in the filtrate giving the 

particulate activity as the difference between total and extracellular 

activity. Analysis of cellular phosphatases is achieved after sonical 

(Reichardt, 1971; Rivkin and Swift, 1980; Klotz, 1985), mechanical (Lin, 

1977), chemical (McComb et al., 1979 and Marco and Orus, 1988) or enzymatic 

(Ihlenfeldt and Gibson, 1975) rupturing of the cell contents. However the 

release of cellular phosphatases into a new environment may result in 
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inactivation of enzyme activity (Talpasayi, 1962). Phosphat~se activity 

measured routinely in the laboratory cannot be used for predictions of in situ 

hydrolytic activity. This is because: 

1. Substrate concentrations are lower in nature than those used in routine 

phosphatase assays. 

2. Standardized temperature and pH are often not representative of the 

Ol;'iginal environment. 

3. The structure of natural substrates is unknown. Although activity is 

restricted to the P--0 bond of phosphate esters, the affinity to the substrate 

can vary depending on the structure of the organic moiety. 

The six most common substrates used to detect activity are 

methylurnbelliferyl phosphate (MUP), methylfluorescein phosphate (MFP), 

p-nitrophenyl phosphate (pNPP), glycerophosphate, phenolphthalein phosphate 

and 1-naphthol phosphate (Pettersson and Jansson, 1978) . The most sensitive 

substrates are the fluorogenic compounds MUP and MFP (Perry, 1972; Jansson, 

1976, 1977; Kobori and Taga, 1979; Healey and Hendzel, 1979, 1980; Smith and 

K~lff, 1981; Francke, 1983, 1984; Currie and Kalff, 1984; Bothwell, 1985). 

The problem with MFP is that it has a high background fluorescence and a lower 

MFP concentration is needed to reduce this interference. The most coriunon 

substrate used is pNPP, where the product p-nitrophenol (pNP) is detected 

calorimetrically between 400 - 415 nm (Reichhardt et al., 1967; Berman, 1969, 

1970; Reichardt, 1971; Jones, 1972a,b; Heath and Cooke, 1975; Stevens and 

Parr, 1977; Wynne, 1977,1981; Doonan and Jensen, 1980; Tiwari and Mishra, 

1982; Livingstone et al., 1983; Livingstone and Whitton, 1984; Chrest et al., 

1984, Klotz, 1985a,b) . pNPP is suitable for long incubations or where there 

is high activity and fluorogenic substrates are superior for assays where 

activity is low. 
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It must be stressed that PMEase activity is dependent on the substrate 

use~E~pNPP is easily hydrolyzed by PMEases and may give misleading 

representation of the naturally occurring hydrolytic activity. 

1.7 PHOSPHATE UPTAKE 

Phosphatases hydrolyze phosphomonoesters into Pi and an organic moiety. 

Combined with the ability to rapidly hydrolyze a wide range of 

phosphomonoesters efficient consumers of organic P, such as the Rivulariaceae 

under study, must have an efficient uptake system to utilize the Pi released. 

For this reason a brief overview of the status of knowledge of Pi uptake in 

bacteria is included. 

1.71 Phosphate uptake in bacteria 

Phosphate uptake in heterotrophic bacteria has been studied ~rrtensively 

with most of the work concentrating on ~- coli. The principal features of Pi 

uptake were described by Medveszky and Rosenberg (1971) who confirmed the 

presence of a high and low affinity uptake system. The high affinity system 

was activated only when the internal Pi pool was depleted. The high affinity 

system functioned simultaneously with the low affinity system to rapidly fill 

the Pi pool. Once the pool was filled only the low affinity system remained 

active. The low affinity system would supply Pi at the rate at which it was 

being metabolized. The internal Pi pool had a defined capacity and all Pi 

entering the cell passed this pool before utilization. 

In a series of investigations (Medveszky and Rosenberg, 1971; Gerdez and 

Rosenberg, 1974; Gerdes et al., 1977) a membrane bound protein was found to be 

associated with the high affinity system. This protein had a molecular 

weight of 42000, and one molecule of protein bound one molecule of Pi. It 

was possible to restore P transport in P-deficient cells by addition of the 
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protein alone. During P-deficienc1 the concentration of this protein 

increased 100 fold (Willsky and Malamy, 1976). 

The genetic regulation of the two transport systems was characterized by 

Willsky et al. (1973). and they termed them Pit (phosphate inorganic transport) 

and·P.st (phosphate specific transport). The Pit corresponded to low a'ffinity 

uptake and Pst to high affinity uptake. These terms are now generally 

accepted. 

Willsky and Malamy (1980) described kinetically the two systems. Pit was 

a low affinity, high velocity system (high Km and high Vmax> and the Pst system 

was a high affinity, low velocity system (low Km and low Vmax>. This implied 

that Pst is adapted to transport Pi at low external concentrations and the Pit 

system to high Pi concentrations. Willsky and Mallamy (1980) also found that 

growth in high Pi medium led to Pit contributing 90% and Pst 10% to uptake. 

Pst is inducible and repressible by Pi and Pit is constitutive (~osenberg 

et al., 1978). The energy source for Pst is suggested to be ATP, whilst Pit 

is thought. to be driven by the proton motive force (Rosenberg et al., 1979). 

A close connection between Pi uptake and K+ was reported by Russel and 

Rosenberg (1979), who stated that Pi and K+ were taken up simultaneously. 

When the internal pool is saturated with P1 , uptake is not switched off, 

instead it continuously exchanges Pi between the external medium and the 

internal pool of Pi (Medveszky and Rosenberg, 1971) . 

1.72 Phosphate uptake in algae 

A number of investigations have measured Pi uptake in algae, but have 

failed to d,_tSc.'rtbG- ~ Cft·tt61[1~: the mechanisms involved. Healey (1982) stated 

Vmax values of P04 uptake in P-deficient cyanobacteria between 0. 6 J.UllOl P mg-1 

h-1 in Plectonema boryanum to 1.8 J.UllOl P mg-1 h-1 in Anabaena flos-aguae. 

In algae monophasic uptake systems predominate (Perry, 1976; Chisholm and 

Stress, 1976a,b; Nyholm, 1977; Tilman and Kilham, 1976). However multiphasic 
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uptake systems have been described. JeanJean (1976) suggested a high and low 

affinity system in Chlorella pvrenoidosa after studying the effects of 

metabolic inhibitors on Pi uptake. The systems described were very similar 

to ~. coli although no transport protein was found. 

Two affinity systems were described for Euglena gracilis (Chisholm and 

Stress, 1976a,b) and triphasic systems were reported for Pyrocystis noticula 

(Rivkin and Swift, 1982) and Anacystis nidulans (Simonis et al.,1974). 

However these investigations are insufficient for suggesting that multiphasic 

uptake systems are general in algae. 

The lack of multiphasic algal uptake could reflect improper experimentation 

as uptake kinetics can be influenced by many variables: 

1. The ratio of cell number to Pi concentration i.e. Pi availability per cell. 

2. The physiological status of the algae. 

3. The concentration of cations in the medium, Mg++ (Healey, 1973) and ca++ 

(Falkner et al., 1976), affect Pi uptake. 

4. Between pH 7.5- 8.5 uptake is optimal for cyanobacteria, suggesting that 

HP02- is the major species taken up. 

P-deficient algae take up P faster than P-sufficient algae. Uptake rates 

can increase up to 100 fold in P-deficient cells (Rhee, 1973; Brown et al., 

1978; Brown and Button, 1979) . It appears this response is controlled by the 

internal Pi pool, particularly the polyphosphates (Blum, 1966; Healey, 1973). 

The polyphosphate pool is common in many algae (Cembella et al., 1984b) and is 

filled during periods of high P supply. Storage of P as polyphosphate can 

continue until the P content of the cells greatly exceeds that of 

exponentially growing cells (Stewart et al., 1978). The rapid formation of 

polyphosphate is mediated by the enzyme polyphosphate synthetase, which 

increases during P-deficiency (Grillo and Gibson, 1979). The deposition of 

polyphosphate is also dependent on calcium, which is deposited along with 

polyphosphate (Stewart et al., 1978). This phenomenon of excessive storage 



of P is known as luxury consumption (Healey, 1982). The polyphosphate pool 

can sustain growth for several generations in the absence of external P. 

The content of the polyphosphate pool is a reflection of the external P 

supply and polyphosphate content has been used as a P-deficiency indicator 

(Fitzgerald and Nelson, 1966) . Rhee (1973) studied the role of 

polyphosphates in algae and suggested that one fraction (polyphosphate A) 

served as a non-competitive inhibitor in the transport system. 

1.8 AIMS 

Sinclair (1977) concluded that hairs in the Rivulariaceae were a response 
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to P-deficiency, although no specific role was ascribed to them. The overall 

emphasis of the research was to discover if hairs in the Rivulariaceae were 

the major sites of phosphatase activity and phosphate uptake, and if so were 

hair cells specifically adapted to utilize high concentrations of organic P 

sources in the environment. 

The initial aim was to survey all axenic Rivulariaceae isolates in the 

Durham Culture Collection and some non-Rivulariaceae isolates for comparison, 

concentrating on P-deficiency, possible associated phosphatase activities and 

hair formation. This would determine if there were major patterns or 

differences within the Rivulariaceae. Further work concentrating on hair-

forming Rivulariaceae strains would determine the role of trichome structure 

and hair cells. 

A further aim was to establish the relationship between the presence or 

absence of hairs and the nutrient status and or cycling of nutrients in the 

environment, i.e. are hair-forming strains associated or adapted to a 

particular environment? 

Most studies would concentrate on laboratory isolates, although 

localization of phosphatase activity in a wide range of hair-forming algae 

would include field material. 
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2.1 CQ))IlpUT!NG 

Three computer systems were used during this study. Routine calculations 

were performed on a Research Machines Nimbus XN16 using the MULTIPLAN 

spreadsheet program (Microsoft) . Statistical analyses were carried out using 

SPSSX running on an AMDAHL 470/V8 mainframe operating under the Michigan 

Terminal System. Graphical output was carried out using the UNIRAS suite of 

software; incorporating UNIGRAPH and UNIEDIT, running on a SUN minicomputer 

operating under UNIX. 

2.11 Durham Culture Collection 

All unialgal strains in the Durham Culture Collection are assigned a unique 

three digit number. The Durham Culture Collection records are held on a 

Research Machines Nimbus XN16 operating under MS-DOS; the database software 

used was Superfile (Southdata, London) . 

2 . 2 CYANOBACTERIA USED IN THE STUDY 

A list of the 51 cyanobacterial strains used in the study is presented in 

Table 2.1 along with their origins, habitats, taxon and the presence or 

absence of hairs. 

Table 2.1 List of the 51 Cyanobacteria used in the study. 

No. Location Genus Taxon Habitat Env Hair 

750 Thailand Anabaena N deepwater rice NO 
669 North America Anabaena N pond NO 
217 Aldabra Anabaena N pond CA 
746 Thailand Anabaena N deepwater rice NO 
255 North America Calothrix y pond NO 
251 North America Calothrix y stream NO + 
794 Nepal Calothrix y paddy rice NO 
182 India Calothrix y paddy rice NO 
184 England Calothrix y stream CA + 
796 Nepal Calothrix y paddy rice NO 
253 Cuba Calothrix y marine MAR + 
624 Bangladesh Calothrix y deepwater rice NO 



No. 
764 
550 
802 
254 
795 
690 
730 
266 
786 
603 
688 
202 
694 
684 
809 
808 
689 
612 
572 
626 
743 
281 
602 
613 
627 
608 
611 
734 
614 
800 
201 
767 
807 
769 
838 

Location 
Bangladesh 
England 
Bangladesh 
Shri Lanka 
Nepal 
Saudi Arabia 
Thailand 
France 
India 
Bangladesh 
Saudi Arabia 
Aldabra 
Thailand 
West Germany 
New zealand 
Albania 
Saudi Arabia 
Bangladesh 
Philippines 
Bangladesh 
Thailand 
North America 
Bangladesh 
Bangladesh 
Bangladesh 
Bangladesh 
Bangladesh 
Thailand 
Bangladesh 
England 
Aldabra 

Genus Taxon 
Calothrix Y 
Calothrix Y 
Calothrix Y 
Calothrix Y 
Calothrix Y 
Calothrix Y 
Calothrix Y 
Calothrix Y 
Calothrix Y 
Calothrix Y 
Calothrix Y 

Calothrix Y 
Calothrix Y 
Cylindrospermum N 
Dichothrix Y 
Dichothrix Y 
Dichothrix 
Fischerella 
Gloeotrichia 
Gloeotrichia 
Gloeotrichia 
Gloeotrichia 
Gloeotrichia 
Gloeotrichia 
Lyngbya 
Nostoc 
Nostoc 
Nostoc 
Nostoc 
Nostoc 
Nostoc 

Bangladesh Synechococcus 
Bangladesh Synechococcus 
Bangladesh Synechococcus 
North America Synechococcus 

562 North America Synechococcus 
33 North America Synechococcus 

y 

N 
y 

y 

y 
y 

y 

y 

N 

N 

N 

N 

N 

N 

N 

s 
s 
s 
s 
s 
s 
s 
N 

797 Nepal Synechococcus 
585 Iraq Tolypothrix 

Abbreviations 

Habitat 
deepwater rice 
stream 
deepwater rice 
pond 
paddy rice 
stream 
deepwater rice 
stream 
soil 
deepwater rice 
stream 
pond 
paddy rice 
pond 
stream 
stream 
stream 
deepwater rice 
paddy rice 
deepwater rice 
deepwater rice 
pond 
deepwater rice 
deepwater rice 
deepwater rice 
deepwater rice 
deepwater rice 
deepwater rice 
deepwater rice 
pond 
pond 
deepwater rice 
deepwater rice 
deepwater rice 
lake 
pond 
pond 
paddy rice 
paddy rice 

Env 
NO 
CA 
NO 
NO 
NO 
CA 
NO 
HM 

NO 
NO 
CA 
CA 
NO 
NO 
NO 
CA 
CA 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
CA 
NO 
NO 
NO 
NO 
HM 
NO 
NO 
CA 

Taxa: N - non-Rivulariaceae, S - Synechococcus, Y - Rivulariaceae. 
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Hair 

+ 

+ 

+ 

+ 
+ 

+ 

Env (environment) : HM - heavy metal, CA - calcareous, No - non-calcareous, 

MAR - marine. 

Hair: - absent, + present. 



2.21 Eukaryotic algae 

Three eukaryotic algal strains were used to compare localization of PMEase 

activity on eukaryotic and cyanobacterial hairs. Batrachospermum and 

Draparnaldia sp. were collected from Middleton Quarry, Teesdale and Lemanea 

was collected from Stanhope ford, Teesdale. The algae were washed in assay 

medium (2.532) and PMEase activity was localized using naphthol AS-MX 

phosphate (2.732). 

2. 3 CHEMICALS 

2.31 Media 

Reagents used in the preparation of media were of AnalaR grade, obtained 

from British Drug Houses Ltd. (BDH), Poole, Dorset. 

2.32 Substrates used for assaying phosphatase activity 

Table 2.2 Substrates used for assaying phosphatase activity. 

Reagent 

(p-nitrophenyl phosphate disodium) (pNPP) 

bis (p-nitrophenyl) phosphate 

sodium salt (bis-pNPP) 

bispyridinium 2-methoxy-4-

(2'-nitrovinyl)-phenyl phosphate (MNP) 

2.4 COMMON PROCEDURES 

2.41 pH 

Supplier 

Sigma Chemical co., USA. 

Sigma Chemical co., USA. 

King's College, London 

46 

All pH measurements with a liquid volume of more than 2 ml, were carried 

out using an Ingold combination electrode and EIL pH meter (model 7050) . For 

volumes below 2 ml, a Cardy compact pH meter Cl (Horiba, Ltd., Japan) was 

used. All probes were calibrated with BDH standard buffer solutions before 

measurements were taken. The buffers were arranged so that one was higher 
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and one lower than the pH of the solution under investigation. 

buffer solutions were used at room temperature. 

All standard 

2.~2 Light 

Light measurements were taken with a Macam Lightmeter (model Q101). All 

incident light was measured as photosynthetically active radiation (PAR), and 

readings were recorded as photon flux density (~ol photon m-2 s-1 ) . The 

absence of light for Pi uptake experiments was achieved by covering flasks 

with 2 layers of aluminium foil followed by 2 layers of black polythene. 

2.43 Adsorption 

2.431 Shimadzu spectrophotometer 

All large volume i.e. more than 300 ~l colorimetric analyses were carried 

out using a Shimadzu Digital Double-Beam Spectrophotometer (model UV-150-2). 

Glass cuvettes with a path length between 1-10 em were used for all readings 

between the visible and infra-red range of the spectrum. 

2.432 MCC Plate Reader 

The MCC Plate Reader was used for a large percentage of colorimetric 

analysis on alkaline phosphatase activity (APA) . Assays using pNPP and bis-

pNPP as substrates, Absorbance Program 1 and Filter Code 1 (405 nm) were used. 

Assays using MNP, Absorbance Program 1 and Filter Code 5 (510 nm) were used. 

2.44 Assay for alkaline phosphatase activity 

2.441 Preparation of material for analysis of alkaline phosphatase assays 

Algae in batch culture were removed at 4-d intervals to investigate APA and 

cellular P content. Algae were removed carefully from the sides of the flask 

with a glass stirring rod, coated with silicon tubing. This procedure 

reduced cellular damage and prevented the release of cellular phosphatases 
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into the medium. The algae were centrifuged in 50 ml MSE non-sealable 

polyethylene centrifuge tubes, in a SS-34 8 x 100 ml angle head rotor, using a 

Sorvall RC-58 refrigerated superspeed centrifuge at 8000 x g for 20 min. The 

supernatant was decanted and made up to the required volume with MilliQ water, 

a 25 ml aliquot was stored at -20°C for future P analysis (2.61). The 

remaining medium was filtered via a GF/C filter (Whatman) and regarded as the 

extracellular phosphatase fraction. 

The algal pellet was washed twice and resuspended in assay medium (2.533), 

which was 1.4 times its normal concentration This allowed for the dilution 

effect in the assay. The volume required to resuspend the algal pellet would 

vary depending upon the concentration of algae required in the assay. The 

algae were homogenized by passing them through a graded series of sterile 

syringe needles (Gillette Surgical Ltd., U.K.). The algae were sonicated in 

a MSE Soniprep 150 at an amplitude of 26 ~ for 2 min. During sonication the 

algal homogenate was cooled with an ice jacket. The algal suspension was 

examined under the light microscope for cellular damage, previous results 

showed minimal cellular damage. The extensive homogenization procedure was 

required for two reasons. The first was repeatability, as the coefficient of 

variation in readings were between 5-10%, whereas in lightly homogenized 

material they were between 10-20%. Secondly non-homogenized material could 

interfere with the beam of light in the MCC Plate Reader. An aliquot of 

algal homogenate was washed in MilliQ and removed for dry wt (2.57) and P 

analysis (2.61), the remaining homogenate was assayed for APA. 

2.~~2 Assay procedure for alkaline phosphatase activity using the MCC Plate 

~a~r 

For cell-bound and extracellular APA a 30 ~1 algal sample was pipetted via 

a Titertek 8-channel pipettman (EFLAB, Finland) into a 2% Decon washed (2.51) 

96 microwell plate (no. 96F, Inter Med, NUNC, Denmark). Each sample had 8 
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replicates. All the microwell plates had lids (no. 96L, Inter Med, NUNC, 

Denmark), which reduced contamination, prevented evaporation and acted as an 

insulator against heat-loss. 90 ~l of standard buffer was pipetted into the 

microwells i.e. glycine-NaOH, pH 10.3 (50 mM final concentration). The plate 

was then incubated at 32oc for 30 min. Then 180 ~l of 0.25 mM pNPP or 0.5 mM 

bis-pNPP (7.75 mg 1-1 P final concentration) was pipetted into the microwells. 

A T = 0 min reading was taken and subsequent readings at 10 min intervals for 

30 min. There was no termination of APA. Subsequently a time course was 

plotted from the readings, and a value for APA was taken from the linear part 

of the constructed graph. A calibration curve using p-nitrophenol (pNP) at 

pH 10.3 was constructed between 0.002-0.2 ~ol. Activity was expressed as 

~ol pNP mg dry wt-1 h-1. 

Alkaline phosphatase assays using MNP were similar to pNPP and bis-pNPP 

except the buffer used was 60 mM 2-amino-2-(hydroxymethyl) propane-1,3-diol 

(Tris), containing 0.3 mM MgS04, 3 ~ znso4 and 0.03% Bovine Serum Albumin 

(BSA) (final concentrations) . The buffer was at pH 9.5, which was the 

optimum pH for the colour formation of the 2-methoxy-4-(2'-nitrovinyl)-phenol 

ring system released via hydrolysis by PMEases. The final concentration of 
\n \\tis cu.sa.~ 

MNP was 0.15 mM (4.65 mg l-1 P). There was no termination of APA~ A 

calibration curve was constructed using 2-methoxy-4-(2'-nitrovinyl)-phenol 

between 0.01-2 ~ol at pH 9.5. Activity was expressed as ~ol P04-P 

hydrolyzed mg dry wt-1 h-1. 

2.45 Effect of pH on phosphatase activity 

All assays were carried out using the MCC plate reader. The algae were 

prepared for analysis as in 2.441. At each pH unit duplicate buffers were 

used to compensate for any inhibition of APA by the buffers used (Table 2.3). 

The buffers were 50 mM (final concentration), which was chosen as a suitable 

concentration for buffering physiological media (Dawson et al., 1986). The 
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effectiveness of each buffer was tested during the assay run, using the Cardy 

compact pH meter C1 (2.41). The pH of each buffer varied+/- 0.05 of a pH 

unit. PMEase activity was monitored using pNPP. For assaying PMEases 20 Jll 

of alga and 70 J.Ll of buffer were used. This was incubated at 32oc for 30 

min. After the incubation period 140 J.Ll of pNPP substrate (pre-incubated to 

32°C) was added. The assay ran for 30 min and was terminated by the addition 

of 100 J.Ll of 4.95 M NaOH, resulting in a final pH of c. 12.8 +/- 0.1. At 

each pH a T = 0 line was set up by the addition of NaOH before pNPP, which 

compensated for any optical variation. 

A different protocol was used to assay for PDEase activity, because the 

addition of 100 J.Ll of 4.95 M NaOH resulted in bis-pNPP hydrolysis. To screen 

for PDEase activity 30 J.Ll of alga; 90 J.Ll of buffer and 180 J.Ll of substrate 

were used. The assay was terminated with 30 J.Ll of 0.33 M NaOH, resulting in 

a final pH of 12.3. For each of the above procedures calibration curves were 

set up at the requisite pHv~~using pNP between 0.0002-0.2 ~· 
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Table 2.3 Buffers used to investigate the effect of pH on phosphatase 

activity. lwo 0\lff~" s w~~~ \J,.S~Q, Q\: ~O.('n. ?\-\ \Ju\u_t (AtB). 

pH buffer final cone. (rnM) set buffering capacity pKa at 20oc 

3.0 DMG-NaOH so A 3.2-7.6 3.66 and 6.20 

3.0 glycine-HCL 50 B 2.2-3.6 2.35 and 9.60 

4.0 DMG-NaOH so A 3.2-7.6 3.66 and 6.20 

4.0 succinic acid 50 B 3.8-6.0 4.18 and 5.60 

5.0 DMG-NaOH so A 3.2-7.6 3.66 and 6.20 

5.0 succinic acid-NaOH so B 3.8-6.0 4.18 and 5.60 

6.0 DMG-NaOH 50 A 3.2-7.6 3.66 and 6.20 

6.0 succinic acid-NaOH so B 3.8-6.0 4.18 and S.60 

7.0 DMG-NaOH so A 3.2-7.6 3.66 and 6.20 

7.0 HEPES-NaOH so B 6.8-8.2 7.50 

8.0 TES-NaOH so A 6.8-8.2 7.50 

8.0 HEPES-NaOH 50 B 6.8-8.2 7.50 

9.0 AMeP-NaOH so A 9.0-lO.S 9.69 

9.0 glycine-NaOH so B 8.6-10.6 2.3S and 9.60 

10.0 AMeP-NaOH so A 9.0-lO.S 9.69 

10.0 glycine-NaOH so B 8.6-10.6 2.3S and 9.60 

10.3 AMeP-NaOH so A 9.0.,-10.5 9.69 

10.3 glycine-NaOH so B 8.6-10.6 2.3S and 9.60 

11.0 CAPS-NaOH so A 9.8-11.1 10.40 

11.0 Na 2co3-NaHC03 so B 9.2-10.8 10.33 



2.5 STANDARD CULTURING TECHNIQUES 

2.51 Cleaning of apparatus 
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All glassware and plastic apparatus were cleaned by soaking in 2% Decon 90, 

a phosphate free detergent, (Decon Laboratories Ltd.,England) for 20 min. 

The apparatus were rinsed six times in distilled water. All volumetric 

glassware was dried at room temperature, plastics were dried at 40°C and 

glassware at 100°C. Any appara~ which were difficult to clean were placed 

in hot Decon c. sooc for 1 h and scrubbed clean. 

2.52 Sterilization 

Culture media and apparatus were sterilized by autoclaving at 121°C (10.35 

KN m- 2 ; 15 psi) for 15 min. Solutions destabilized by heat were filter-

sterilized through pre-sterilized 0.2 ~ Millipore cellulose acetate filters. 

Isolation needles were sterilized by dipping in ethanol and flaming briefly. 

2. 53 Media 

2.531 Chu lOD 

The medium for the culturing of all cyanobacteria used was a modification 

of the number 10 of Chu (1942) as given by Gerloff et al. (1950). This 

medium is referred to as Chu 10D. To induce heterocyst formation the medium 

was made nitrogen free by the substitution of 35.83 mg 1-1 CaC1 2 .2H2o for 

Ca(N03 ) 2 .4H2o this medium was referred to as Chu 10D-N. For the growth of 

all strains 1 mg 1-1 P-P04 was used as a low phosphate medium and 10 mg 1-1 P-

P0 4 as high phosphate medium. The chelator ethylene diamine tetra-acetic 

acid (EDTA) was added to increase the availability of Fe 3+ and decrease the 

precipitation of iron-phosphate salts. 

and 2.5. 

Media compositions are in Tables 2.4 



2.532 Assay medium 

This was a further modification of Chu 10D-N medium, where 

N-2-hydroxyethylpiperazine-N'-2-ethanesulphonic acid (HEPES) was removed, 

KH2Po4 was replaced with KCL and the iron-EDTA concentration was halved. 

Table 2.4 Concentration of mineral salts in Chu 10D (Harding and Whitton, 

1976) and assay medium. 

Salt Chu 10D-N assay medium 

mg r 1 mg 1-1 ~ 

NaN03 

Ca(N03) 2 .4H20 

KH2P04 4.3942 32.20 

MgS04. 7H20 25.0000 101.40 25.0000 101.40 

Na 2Si03. 5H20 

NaHC03 15.8500 188.60 15.8500 188.60 

FeC1 3.6H20 2.4250 8.97 1. 2125 4.45 

Na2EDTA.3H20 3.3371 8.97 1. 6685 4.45 

MnC12 . 4H20 0.4525 2.28 0.4525 2.28 

H3B03 0. 7150 115.60 0. 7150 11.56 

Na2Mo02 . 2H20 0.0067 0.02 0.0067 0.02 

ZnS04 . 7H20 0.0555 0.19 0.0555 0.19 

CuS04. 5H20 0.0197 0.07 0.0197 0.07 

CoS04 . 7H20 0.0105 0.03 0.0105 0.03 

NiS04 .7H20 0.0380 0.03 0.0380 0.03 

NaOH c. 60 1500.00 

HEPES 600.0000 2517.00 

KCl 1. 8718 25.10 4.2784 57.38 

CaC1 2 . 2H20 35.8300 243.70 35.8300 243.70 
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Table 2.5 Elemental compositions of media used. 

Element Chu 100-N assay medium 

mg 1-1 J.IM mg 1-1 J.IM 

Cl 18.8812 532.50 20.4300 562.80 

N 

Ca 9.7674 243.70 9.7674 243.70 

Na 39.2341 167.00 4.5432 197.60 

s 3.2607 101.70 3.2607 101.70 

Mg 2.4645 101.40 2.4645 101.40 

K 2.2431 57.38 2.2431 57.38 

Si 

p 1.0000 32.28 

B 0.1249 11.56 0.1249 11.56 

Fe 0.5010 8.97 0.2505 4.48 

Mn 0.1255 2.28 0.1255 2.28 

Zn 0.0126 0.19 0.0126 0.19 

Cu 0.0050 0.07 0.0050 0.07 

Co 0.0022 0.03 0.0022 0.03 

Ni 0.0019 0.03 0.0019 0.03 

Mo 0.0026 0.02 0.0026 0.02 

2.5~ Preparation of media for batch cu1ture 

To prepare 1 litre of medium, 400 ml of MilliQ water was buffered with 0.6g 

(0.25 mM) of HEPES. HEPES was chosen because of its reported lack of 

interference in biological systems (Smith and Foy, 1974). Upon addition of 

HEPES the pH dropped to c. 5.0. This was adjusted to ph 7.6 by the gradual 

addition of 1.0 M NaOH. The buffered solution was transferred to a 1-litre 

volumetric flask. The media mineral salts were pipetted in a specific order 

(Table 2.4) to the buffered solution. Upon addition of each salt, the flask 
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was shaken gently to mix the salts and prevent any reaction due to an 

unusually high local concentration of salts. After addition of the salts the 

final volume was adjusted to 1 litre with MilliQ water. 

as it was required, from stock solutions stored at 4"C. 

Medium was made up 

Aliquots of 50 ml of 

medium were dispensed into 100 ml conical flasks. The flasks were plugged 

with silicon bungs (type S28, SANKO Plastic co. Ltd., Japan) and autoclaved. 

2.55 Subculturing 

All subculturing was carried out using standard aseptic techniques in a 

Microflow Pathfinder laminar flow cabinet conforming to B.S. 5295 class 1. 

The cabinet was sprayed with ethanol (98%) 15 min before use to reduce the 

possibility of contamination by air-borne bacteria and fungi. For routine 

subculturing clumps of algae were transferred to fresh medium via a sterile 

pasteur pipette. For experimental work a standard homogenous inoculum was 

used, which had been passed through a graded series of sterile syringe needles 

(2.441). From this suspension aliquots were transferred aseptically to each 

flask by automatic pipettman to give 10 mg dry wt 1-1 concentration. All 

inocula, unless otherwise stated, were grown for 7 d in Chu 10D-N 1 mg 1-1 P

P04 at 32"C and 100 J.lffiOl photon m-2 s-1. 

2.56 Incubation conditions 

2.561 Stock cultures 

Stock cultures were maintained in thermostatically controlled growth rooms 

at 25°C, with continuous overhead illumination (60 J.lffiOl photon m-2 s-1 PAR 

supplied by Phillips warm white fluorescent tubes) . Stocks were also 

maintained at 10"C under continuous illumination (15 J.UilOl m-2 s-1 PAR) . 

Subculturing was carried out every 6 months. 
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2.562 Batch cultures 

All of the experimental cultures, unless stated otherwise, were incubated 

in thermostatically controlled Gallenkamp shaker tanks, illuminated 

continuously from below by Phillips warm white fluorescent tubes. A shaking 

mechanism moved the flasks through a horizontal distance of 40 mm, 66 times 

. -1 mJ.n . Incubation temperature was 32°C, unless otherwise stated. Flasks 

were suspended by the neck until approximately 1 em of the base was submerged, 

giving a light intensity between 80-100 ~ol photon m-2 s-1 depending upon the 

position of the flasks in the tank relative to the fluorescent tubes below. 

In order that each flask received an equal amount of light, positions were 

randomized every 2 d. 

2.563 Phosphatase assays 

Assays performed in universal bottles were incubated in the Gallenkamp 

growth tanks at 32°C or 25°C. Assays using microwell plates were incubated in 

a thermostatically controlled incubator. 

2.57 Analysis of yield by dry ~eight and observation 

For routine morphological studies algal material was collected via sterile 

pipette tips. To determine the dry wt and cellular P content an algal 

homogenate was prepared (2.441). A sample (>10 ml) was removed from the 

homogenate, centrifuged and washed twice with MilliQ water. The resultant 

algal pellet from the second washing was resuspended in 5 ml of MilliQ water. 

This suspension was placed in a 6 ml porcelain crucible (BDH) . The crucible 

was previously 2% decon washed, dried at 105°C for 1 h, cooled in a desiccator 

and its weight determined to 5 decimal places on an Oertling balance (model 

R51). The algal suspension was dried at 105°C for 24 h and cooled in a 

desiccator for 1 h before determining the dry wt. The dried alga was then 

used for the determination of cellular P (2.61). 
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Observation of yield was scored between 0 - 5 every 4 d. Minimum growth, 

i.e. in -P, was scored 0 and maximum growth in P-P04 was scored 5 (Table 4.2). 

Death in batch culture was represented as -

on morphology was also carried out. 

Brief light microscope analysis 

2.6 CHEMICAL ~YSIS 

2.61 Total filtrable phosphorus 

Algal and media samples were determined for total filtrable phosphorus 

according to the method of Eisenreich et al. (1975). Samples were digested 

in 125 ml Erlenmeyer flasks, capped with aluminium foil and autoclaved at 10 5 

Pascal for 30 min. Mean %recovery for phosphorus using this method was 

94.2%. 

2.62 Total carbohydrate content 

The method of Dubois et al. (1956) was used to determine the carbohydrate 

content of extracellular fractions used in the purification of an 

extracellular phosphatase from Calothrix 550 (5.3). A 2 ml aqueous solution 

for carbohydrate determination, containing c. 10-80 ~g sugar + 50 ~1 phenol 

solution (80 g phenol+ 20 ml MilliQ water), was carefully added to 5 ml 

This whole procedure was carried out in a fume cupboard 

at 4°C. The solution stood for 30 min at room temperature. The orange-

yellow colour formed was stable for several hours and was read at 480-490 nm. 

A calibration curve was constructed using glucose in the range 0-100 ~g. 

This method was chosen as it is sensitive, quantitative, reproducible and 

there was no interference from protein. 
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2.7 MICROSCOPY 

2.71 Light microscopy 

In the laboratory material was examined using a type 109 Nikon Fluophot 

microscope, fitted with a Nikon micrometer eyepiece. 

taken using a Nikon M-350 automatic exposure camera. 

Light micrographs were 

Kodak Technical Pan 

film was used for black and white pictures and Kodak Ektachrome Tungsten 

Professional film was used for colour pictures. 

To avoid osmotic effects live samples were mounted in the media they 

originated from. Fixed material was mounted in distilled water. Cell 

counts were made as random as possible by indiscriminate moving of the slide 

under investigation. 

2.72 Morphology 

2.721 Definition of a hair 

Hairs were identified using the definition of Sinclair and Whitton (1977) 

as "a region of the trichome where the cells are narrow, elongated, highly 

vacuolated and usually apparently colourless". 

2.722 Morphological scoring 

The %hairiness of a sample was defined as the percentage of trichomes which 

possessed hairs, and was determined from a count of 100 trichomes selected at 

random. 

2.73 Localization of phosphatase activity 

2.731 Localization of phosphomonoesterase activity using 5-bromo-4-chloro-3-

indolyl phosphate (BCIP) 

Localization of PMEase activity was carried out using 5-bromo-4-chloro-3-

indolyl phosphate (BCIP) as an organic P substrate (Coston and Holt, 1958; 

Holt and Withers, 1958) . Material was washed three times and resuspended in 
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1 mM BCIP in assay medium (2.533) at pH 10.3 (50 mM glycine-NaOH) in a glass 

vial. The material was shaken frequently for 15 min at 32°C and then washed 

three times and examined under the microscope. This assay was usually 

carried out in a shaken glass vial as oxygen is required for formation of the 

insoluble blue indigoid. 

2.732 Localization of phosphomonoesterase activity using naphthol AS-MX 

phosphate 

Localization of PMEase activity was tested by microscopy using 3-hydroxy-2-

naphthoic acid 2,4-dimethlyanilide phosphate sodium salt (naphthol AS-MX 

phosphate) as the organic P source and diazotized 4-benzoylamino-2,5-

dimethoxyanilide zinc chloride salt (Fast Blue RR diazonium salt) as the 

coupling agent; the product is a violet insoluble dye. The staining medium 

consisted of 12.0 ml of assay medium (2.533), 0.5 ml naphthol AS-MX phosphate 

alkaline solution (SIGMA technical bulletin 85) and 7.5 mg of Fast Blue RR 

diazonium salt; a magnetic stirrer was used during the preparation. The 

staining medium was adjusted to pH 9.0 using 1 M NaOH and then filtered 

through a GF/C glass microfibre filter (Whatman); it was used immediately 

after preparation. Material was washed three times with assay medium, 

resuspended in the staining medium, left for 15 min at 32oc, washed three 

times in assay medium and examined under the microscope. 

2.733 Localization of phosphodiesterase and 5'-nucleotide phosphodiesterase 

activity using p-naphthyl phenylphosphonate 

Localization of PDEase and 5'-NDEase activity was achieved using p-naphthyl 

phenylphosphonate as the organic P source (Kelly et al., 1975) and diazotized 

2-methyl-4-[(2-methylphenyl)azo]benzenediazonium sulphate salt (Fast Garnet 

GBC sulphate salt) as the coupling agent; the product is an orange insoluble 

dye. The staining medium consisted of assay medium at pH 9.0 (5 mM AMeP-
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NaOH), 1 mM naphthyl phenylphosphonate and 0.1% Fast Garnet GBC sulphate salt. 

The staining medium was filtered through a 0.22 flit\ nitro-cellulose filter 

(Millipore) and used immediately after preparation. Material was washed 

three times in assay medium and resuspended in the staining medium, left for 

15 min at 32°C, washed three times in assay medium and examined under the 

microscope. Truetouch gloves (Surgikos) were used throughout as Fast Garnet 

GBC sulphate salt is a possible carcinogen. 



CHAPTER 3 

UTILIZATION OF ORGANIC ~HOSPHORUS SOURCES .AND 

PHOSPHATASE ACTIVITIES IN 51 ~ENIC CY~OBACTERIA 

3.1 INTRODUCTION 

Inducible phosphatase activity has been detected in a range of 

cyanobacterial strains (1.6). However, there has been no comparison of 

organic P utilization and phosphatase activities in different taxa and 

environments. Therefore a survey was carried on 51 cyanobacterial strains, 

which had been isolated from known physical and chemical environments, with 

the main emphasis on the Rivulariaceae. The survey comprised 30 

Rivulariaceae, 14 filamentous non-Rivulariaceae and seven Synechococcus 

strains. 

In order to distinguish between strains they were categorized into large 
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taxon, genus, physical environment and chemical environment. As the role of 

hair cells was the main aim of the overall research, a further sub-category of 

hair-forming Rivulariaceae strains was included. 

3.2 Method 

The 51 cyanobacterial strains used are described in Table 2.1, which 

includes for each strain a list of the large taxon, genus, location, physical 

environment, chemical environment and the presence or absence of a hair. All 

cultures were grown in 10 ml of Chu 100-N (P 1 mg 1 ~1) in 60-ml capacity 

boiling tubes slanted at 45° to increase gaseous exchange, capped with Axa 

closures (Axa Ltd.) and incubated at 32°C and 100 ~ol photon m-2 s-1. It was 

possible to grow all strains under these standard incubation conditions. 

However, it was taken into consideration, when analyzing the data, that this 

could lead to increased yields in some strains that were closer to their 

optimum growing conditions. 



Material was subcultured at two four-d intervals, centrifuged (a000 X g), 

washed twice, resuspended in Chu 10D-N,-P (2.531) and inoculated at ca 10 mg 

1-1 dry wt. Four replicates were used for each experiment. 

All organic P sources were filter sterilized through 0.22 ~ Nuclepore 

filters and added at 1 mg 1-1 P (Table 3.1). P sources were stored at -20°C. 

Cultures were grown to moderate P deficiency (16 d), harvested (2.441, 2.57) 

and the cultures grown in P1 were assayed at pH 7.6 (HEPES- NaOH buffer) and 

pH 10.3 (glycine - NaOH buffer) for cell-bound and extracellular PMEase and 

PDEase activities (2.45). Assays were run for 30 min or until yellow 

colouration of pNP was observed; phosphatase substrates used were pNPP (0.25 

mM final concentration) and bis-pNPP (0.5 mM final concentration). 

Localization of cell-bound PMEase and PDEase activity was carried out (when 

detectable) using naphthol AS-MX phosphate (2.732) and 13-naphthyl 

phenylphosphonate (2.733), respectively. 

mg dry wt -1 h-1. 

Activity was expressed as ~ol pNP 

The yields in different P sources and phosphatase activities for each 

strain were placed in sequence and organized into groups (Fig. 3.1) based on 

taxonomic and environmental criteria. The meansof the ranks of the groups 

were then compared. When the sample number was above five the Mann-Whitney 

U-test (Elliott, 1977) was used to compare two populations. The power 

efficiency of this test is never less than 86% (Elliott, 1977). A null 

hypothesis was drawn up that the two independent random samples were drawn 

from populations having the same parent distributions and the same medians. 

The significance of this hypothesis was rejected at the P <0.05 level. 

When there w-C~.ie less than two significant values between the different 

categories tested the values are not tabulated. The Kruskal-Wallis one-way 

analysis by ranks was also used to compare more than two populations. The 

power efficiency of this test is ca. 96% (Elliott, 1977). 
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Table 3.1 Organic phosphorus sources used to screen 51 cyanobacterial 

strains 

organic P source 

sodium-~-glycerophosphate (~-gly) 

p-nitrophenyl phosphate (pNPP) 

2-methoxy-4-(2'-nitrovinyl)-phenyl phosphate (MNP) 

ATP 

bis (p-nitrophenyl) phosphate (bis-pNPP) 

DNA 

phytic acid (phy) 
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Fig. 3.1 Representation of the categories selected for the survey of yields and phosphatase activities in 

51 cyanobacterial strains. 
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Table 3.2 Yields in 8 different phosphorus sources for 51 cyanobacterial strains. Pos = position relative to the 51 strains, 
no. = Durham Culture Collection number, loc = origin (country) of strain, gen = genus, tax = large taxon, phy = physical 
environment, che =chemical environment, ALB = Albania, ALD = Aldabra, BAN = Bangladesh, CUB = Cuba, FRA = France, FRG = West 
Germany, IND = India, IRQ = Iraq, NEP = Nepal, NZ = New Zealand, PHI = Philippines, SAU = Saudi Arabia, SL = Sri Lanka, TAI 
Taiwan, THA = Thailand, UK = United Kingdom, USA = United States of America, ANA = Anabaena, CAL = Calothrix, CYL = 
Cylindrospermum, DIC = Dichothrix, FIS = Fischerella, GLO = Gloeotrichia, LYN = Lyngbya, NOS = Nostoc, SYN = Synechococcus, TOL 
Tolypothrix, N = filamentous non-Rivulariaceae, R = Rivulariaceae, S = Synechococcus, CA = calcareous, HM = heavy metal, MAR = 
marine, NO = non-calcareous (others) DWR = deepwater rice, LAK = lake, PAD = paddy rice, PON = pond, SOI = soil, STR = stream, Y = 
yield and SD = standard deviation. Underlined strains form hairs when phosphorus deficient. 
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769 BAN 
797 NEP 
562 USA 

DIC 
ANA 
GLO 
CAL 
CAL 
CAL 
FIS 
CAL 
CAL 
ANA 
CAL 
TOL 
CAL 
GLO 
CAL 
CAL 
NOS 
CAL 
SYN 
SYN 
ANA 
DIC 
CYL 
SYN 
SYN 
SYN 
SYN 

y 

N 
y 

y 

y 

y 

N 
y 

y 

N 
y 

N 
y 

y 

y 

y 

N 
y 

s 
s 
N 
y 

N 

s 
s 
s 
s 

STR 
DWR 
DWR 
PON 
DWR 
PON 
DWR 
STR 
SOI 
PON 
DWR 
PAD 
STR 
PAD 
STR 
PAD 
PON 
STR 
DWR 
DWR 
PON 
STR 
PON 
LAK 

DWR 
PAD 
PON 

NO 
NO 
NO 
NO 
NO 
CA 
NO 
CA 
NO 
CA 
NO 
CA 
CA 
NO 
CA 
NO 
CA 
CA 
NO 
NO 
NO 
CA 
NO 
NO 
NO 
NO 
HM 

-P 

Y SD 
88.10 
28.03 
10.02 

130.29 
41.06 
47.06 
70.12 
81.04 
64.07 
70.09 
90.11 
58.08 
13.02 
30.02 
52.05 
24.04 
64.08 
40.07 
15.00 
17.00 
41.04 
13.02 
28.03 
15.00 
15.00 
18.00 

9.00 

P04 ~-gly 

Y SD Y SD 
318.23 258.27 
318.22 115.13 
314.23 234.32 
310.23 319.13 
308.17 
304.28 
301.29 
300.31 
293.24 
287.29 
281.36 
277.22 
272.26 
268.13 
262.21 
254.24 
250.17 
248.23 
227.00 
200.00 
181.07 
153.08 
143.13 
128.00 
114.00 
104.00 

78.00 

281.21 
317.18 
281.17 
258.17 
248.17 
201.11 
270.22 
205.15 
248.28 
263.40 
291.24 
170.15 
220.21 
231.13 

69.00 
160.00 
158.12 
189.22 
118.11 
107.00 
107.00 
128.00 

57.00 

pNPP MNP 

Y SD Y SD 
288.34 263.27 

68.07 63.11 
224.35 195.29 
293.13 313.28 
234.17 
216.17 
290.32 
243.06 
265.12 
238.16 
258.29 
277.12 
257.31 
250.31 
233.13 
207.19 
129.13 
174.31 
166.00 

81.00 
130.07 
174.09 
128.14 

83.00 
87.00 

150.00 
83.00 

194.15 
228.21 
288.17 
226.22 
263.22 
156.17 
252.13 
267.16 
245.19 
267.47 
203.18 
152.10 
216.24 
176.15 
179.00 
200.00 
139.11 
180.13 
138.07 
151.00 

47.00 
58.00 
62.00 

DNA 

Y SD 
187.29 

60.06 
254.09 
326.30 
241.25 
241.16 
249.19 
288.17 
189.11 
191.12 
290.13 
264.27 
291.35 
250.09 
250.21 
188.14 
159.16 
186.17 

39.00 
41.00 

143.14 
103.11 

94.09 
96.00 
68.00 
56.00 
77.00 

bis 

Y SD 
274.21 

78.09 
169.33 
242.21 
228.17 
108.06 
218.22 
168.09 
253.17 
182.13 
176.04 
266.21 
231.27 
189.12 
216.24 
161.15 
199.22 
151.14 

72.00 
27.00 

130.17 
153.07 
102.12 

37.00 
74.00 
83.00 
15.00 

ATP phy 

Y SD Y SD 
271.29 205.20 
126.15 105.. 07 

26.02 19.03 
325.31 291.37 
228.19 
228.11 
303.27 
299.16 
15.01 

265.22 
248.23 
257.29 

51. OS 
220.10 
15.02 

150.30 
181.11 

35.05 
204.00 
189.00 
142.08 

63.07 
137.14 

29.00 
108.00 

10.00 
13.00 

108.09 
33.02 
98.08 

122.08 
110.13 
131.11 
165.09 
163.15 
244.22 
167.10 
167.08 
23.05 
97.07 
33.04 
34.00 
10.00 

172.07 
101.09 

78.05 
10.00 
10.00 
10.00 
10.00 

Cf\ 
Cf\ 



Table 3.3 Cell-bound and extrac~llular phosphomonoesterase ~md. phosphodiesterase activity .. at pH 7.6 and pH 10.3 for 51 
cyanobacterial strains. Pos = position relative to t:he 51 strains, no. = Durham Culture Collection number, loc = country of 
strain, gen = genus, tax = large taxon, phy = physical environment, che = chemical environment, ALB = Albania, ALD =. Alda1?ra, BAN,;= 
Bangladesh, CUB= Cuba, FRA =France, FRG =.West Germany, IND·= India,.IRQ = I;raq, NEP =Nepal, NZ =New Zealand, PHf =Philippines 
SAU =Saudi Arabia, SL =Sri Lanka,TAI =Taiwan, THA =Thailand, UK= United Kingdom, USA= United States of America, ANA= 
'Anabaena, CAL = Calothrix, CYL = Cylindrospermuin, DIC = Dichothrix, FIS = Fische~ella, GLO = Gloeotrichia, LYN = Lyngbya, NOS 
.Nostoc, SYN = Synechococcus, TOL = Tolypothrix, N = filafi\ent<:>Us non-Rivulariaceae, R = RivulariaCeae, s = Synechococcus; CA = 
calcareous, HM = heavy metal, MAR = marine, NO = non-calcareous (others) DWR = deepwater rice, LAK = lake, PAn = paddy rice, PON == 
pond, SOI = soil, STR = stream, PME 10.3 =cell-bound phosphomonoesterase activity at pH 10.3, PME 7.6 =cell-bound 
phosphomonoesterase at pH 7.6, XC= extracellular, PDE 10.3 =cell-bound phosphodiesterase activity at pH 10.3 and PDE 7.6 =cell
bound· phosphodiesterase activity at pH 7.6., A= phosphatase activity, SD =standard deviation. Underlined strains form hairs whe 
phosphorus deficient. 

pos 

1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

no. loc 

602 BAN 
585 IRQ 
611 BAN 
281 USA 
802 BAN 
613 BAN 
794 NEP 
184 UK 
182 IND 
550 UK 
255 USA 
562 USA 
202 ALD 
690 SAU 
808 ALB 
626 BAN 
266 FRA 
251 USA 
254 SL 

gen tax 

GLO Y 
TOL N 
NOS N 
GLO Y 
CAL Y 
GLO Y 
CAL Y 
CAL Y 
CAL Y 

CAL Y 
CAL Y 
SYN S 
CAL Y 
CAL Y 
DIC Y 
GLO Y 
CAL Y 
CAL Y 
CAL Y 

phy che 

DWR NO 
PAD CA 
DWR NO 
PON NO 
DWR NO 
DWR NO 
PAD NO 
STR CA 
PAD NO 
STR CA 
PON NO 
PON HM 
PON CA 
STR CA 
STR CA 
DWR NO 
STR CA 
STR NO 
PON NO 

PME 10.3 

A SD 
15.73 ,0.412 
15.58 ,0.145 
13.54 ,1.107 
12.35 ,0.064 
12.19 ,1.001 
12.09 ,0.549 
10.83 ,0.215 
10.65 ,0.550 

9.45 ,0.743 
8.95 ,0.425 
8.86 ,0.092 
8.54 ,0.086 
8.15 ,0.983 
7.68 ,0.218 
7.18 ,0.291 
6.83 ,0.360 
6.65 ,0.327 
6.19 ,0.363 
5.70 ,0.096 

PME 7.6 

A SD 
8.17 ,0.264 
1.70 ,0.130 
6.31 ,0.242 
0.68 ,0.107 
7.28 ,1.096 
5.50 ,0.583 
1.44 ,0.020 
3.16 ,0.433 
3.22 ,0.018 
0.98 ,0.111 
0.98 ,0.072 
0.66 ,0.020 
2.24 ,0.312 
0.28 ,0.002 
0.94 ,0.016 
5.55 ,0.015 
0.90 ,0.012 
4.72 ,0.133 
1.21 ,0.133 

XCPME 10.3 

A SD 
0.14 ,0.012 
0.55 ,0.011 
3.50 ,0.265 

19.94 ,0.152 
2. 52 '0. 326 
0.17 ,0.027 
1.44 ,0.021 
0.75 ,0.041 
0.94 ,0.077 
1.09 ,0.118 

15.05 ,1.033 
28.35 ,0.222 

0.001,0.001 
0.76 ,0.087 
0.27 ,0.018 
0.52 ,0.033 
0.11 '0. 003 
0.50 ,0.02.5 
0.65 ,0.045 

XCPME 7.6 

A SD 
0.001,0.001 
0.021,0.001 
1.70 ,0.054 
2.19 ,0.079 
0.48 ,0.017 
0.001,0.001 
0.15 ,0.013 
0.30 ,0.007 
0.07 ,0.001 
0.61 ,0.016 
1. 94 , 0. 012 
1.83 ,0.083 
0.001,0.00.1 
0.001,0.001 
0.06 ,0.004 
0.45 ,0.041 
0.001,0.001 
0.22 ,0.023 
0.14 ,0.002 

PDE 10.3 

A SD 
2.56 ,0.029 
2.12 ,0.161 
2.08 ,0.085 
0.001,0.001 
1. 9.6 , 0 . 0 4 8 
3.20 ,0.043 
0.54 ,0.026 
0.08 ,0.002 
1.94 ,0.142 
L 02 , 0. 045 
0.001,0.001 
0.26 ,0.024 
0.96 ,0.023 
0.001,0.091 
0.28 , 0. 012 
1.92 ,0.124 
0.14 ,0.008 
0.10 ,0.016 
0.16 , 0. 024 

PDE 7.6 

A SD 
1..16 , 0. 026 
0.62 ,0.065 
0.54 ,0.043 
0. 00·1,,0. 001 
0.56 ,0.021 
1. 20 i.O. 042 
0.92 ,0.037 
0.18 ,0 .. 004 
0. 001,0 .. 001 
1.48 ,0.9.46 
0.001,0.001 
0.001,0.001 
0. 0'01, 0. 001 
0.074,0.002 
0. 36 , 0. 004 
0.40 ,0.022 
0.16 ,o.o6Z. 
0. 092,0 .. 012 
0.001,0.001 

CTI 
...J 



pos no. 1oc gen tax phy che 

20 253 CUB CAL y MAR MAR 
21 795 NEP CAL y PAD NO 
22 807 BAN SYN s DWR NO 
23 688 SAU CAL y STR CA 
24 734 THA NOS N DWR NO 
25 572 PHI GLO y PAD NO 
26 217 ALD ANA N PON CA 
27 603 BAN CAL y DWR NO 

.28 764 BAN CAL y DWR NO 
29 624 BAN CAL y DWR NO 
30 730 THA CAL y DWR NO 
31 689 SAU DIC y STR CA 
32 743 THA GLO y DWR NO 
33 796 NEP CAL y PAD NO 
34 201 ALD NOS N PON CA 
35 612 BAN FIS N DWR NO 
36 669 USA ANA N PON NO 
37 684 FRG CYL N PON NO 
38 769 BAN SYN s DWR NO 
39 694 TAI CAL y PAD NO 
40 614 BAN NOS N DWR NO 
41 786 IND CAL y SOI NO 
42 809 NZ DIC y STR NO 
43 608 BAN NOS N DWR NO 
44 797 NEP SYN s PAD ~0 

45 33 USA SYN s PON NO 
46 750 THA ANA N DWR NO 
47 838 USA SYN s LAK NO 
48 627 BAN LYN N DWR NO 
4.9 746 THA ANA N DWR NO 
50 767 BAN SYN s DWR NO 
51 800 UK NOS N PON NO 

PME 10.3 PME 7.6 XCPME 10.3 

A SD A SD A SD 
5.25 ,0.485 0.001,0.005 0.001,0.001 
5.12 ,0.300 1.40 ,0.130 0.19 ,0.022 
4.33 ,0.172 0. 58 , 0. 015 0.31 ,0.013 
4.32 ,0.110 0.15 ,0.011 2.91 ,0.077 
4.29 ,0.146 2.04 ,0.172 0.91 ,0.017 
4.25 ,0.061 0.19 ,0.004 1.14 ,0,063 
4.11 ,0.299 0.77 ,0.017 0.89 ,0.022 
4.09 ,0.080 6.94 ,0.240 1.25 ,0.018 
4.00 ,0.502 2.29 ,0.216 0.50 ,0.012 
3.90 ,0.031 2. 91 , 0. 012 1.58 ,0.079 
3.33 ,0.201 5.11 ,0.084 0.21 ,0.026 
2.73 ,0.300 0.001,0.001 0.98 ,0.001 
2.37 ,0.067 2.44 ,0.012 0.66 ,0.021 
2.12 ,0.057 1.88 ,0.028 0.12 ,0.011 
1.99 ,0.019 0.73 ,0.067 3.48 ,0.092 
1.29 ,0.010 0.001,0.001 0.11 ,0.013 
1.29 ,0.011 0.46 ,0.090 3.32 ,0.292 
1.29 ,0.010 1.77 ,0.087 0.39 ,0.017 
1.26 ,0.010 0.77 ,0.013 0.20 ,0.004 
1.25 ,0.047 1.8.4 ,0.155 0.42 ,0.034 
1.11 ,0.057 1.10 ,0.011 0.67 ,0.058 
1.11 ,0.039 0.001,0.001 0 . 0 0 1 , 0 . 0 0.1 
1.10 ,0.090 0.11 ,0.022 0 . 0 9 , 0 . 0 0.1 
1.06 ,0.011 1.20 ,0.049 0.87 ,0.082 
1.03 ,0.034 0.29 ,0.010 0.93 ,0.004 
0.46 ,0.021 0. 31 , 0:019 1. 91 , 0. 071 
0.26 ,0.010 0.26 ,0.005 0.074,0.007 
0.22 ,0.034 0.38 ,0.013 0.051,0.002 
0.084,0.001 0.23 ,0.016 0.15 ,0.015 
0.081,0.001 0.001,0.001 0.04 ,0.005 
0.073,0.001 0. ~1 , 0. 024 0.45 ,0.007 
0.041,0.002 0.29 ,0.005 0.024,0.001 

XCPME 7.6 PDE 10.3 

A SD A SD 
0.001,0.001 0.82 ,0.021 
0.001,0.001 0.001,0.001 
0.089,0.004 0.001,0.001 
0.37 ,0.024 0.001,0.001 
0.63 ,0.012 0.26 ,0.022 
0.001,0.001 0.001,0.001 
0.018,0.001 0.66 ,0.037 
1.98 ,0.082 3.02 ,0.202 
0.001,0.001 4. so , 0. 504 
1.70 ,0.087 1. 90 , 0. 042 
0.15 ,0.034 1.78 ,0.028 
0.001,0.001 0.001,0.001 
1.28 ,0.041 1.84 ,0.084 
0.15 ,0.037 0.001,0.001 
0.42 ,0.012 0.001,0.001 
0.001,0.001 0.18 ,0.023 
0.56 ,0.004 0.001,0.001 
0.001,0.001 0.001,0.001 
0.24 ,0.002 0.368,0.038 
0.53 ,0.035 0.52 .,0.042 
0.75 ,0.017 0.22 ,0.021 
0.001,0.001 0.001,0.001 
0.001,0.001 0.22 ,0.002 
3.02 ,0.313 0.40 ,0.023 
0.24 ,0.004 0.22 ,0.016 
0.17 ,0.018 0 .138, 0.003 
0.202,0.013 0 .. 001,0.001 
0.041,0.001 0.001,0.001 
0. 32 , 0. 061 0. 001., 0. 001 
0 .'001, 0. 001 0.001,0.001 
0.46 ,0.002 0.204,0.028 
0.18 ,0.008 0.10 ,0.007 

PDE 7.6 

A SD 
0.001,0.001 
0.001,0.001 
0.262,0.002 
0.001,0.001 
0.06 ,0.001 
0.074,0.003 
0.42 ,0.034 
1.08 ,0.082 
2.02 ~0.280 
0.64 ,0.023 
1.36 ,0.066 
0.076,0.003 
Li4 ,0.024 
0.001,0.001 
0.18 ,0.002 
0 .. 34 ,0.020 
0.001,0.001 
o.ool',o.oo1 
0.001,0.001 
0.20 ,0.040 
0.14 ,.0.002 
0 . 0 0 1 , .0 . 0 0 1 
0.001,0.001 
0.28 ,0.032 
0.148,0.016 
0.001,0.001 
0.038,0.003 
0. 404,0. 0.08 
0.001,0.001 
0.001,0.00i 
0. 001, 0. 0.01 
0.21 ,0.015 

0\ 
a:> 
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3.3 Results 

The mean yields in the organic P sources and phosphatase activities for the 

51 cyanobacterial strains are presented in Tables 3.2 and 3.3, respectively. 

The meansof the yields were used instead of the original four samples to 

calculate the mean rank of the different categories selected, because the 

coefficient of variation amongst the four samples was low (<15%). Yields in 

the 51 strains ranged between 572 mg 1-1 dry wt in Gloeotrichia 743 (Pi, Table 

3.2) to 10 mg 1-1 dry wt (no detectable growth) in five out of the seven 

Synechococcus strains cultured in phytic acid (Table 3.2). Cell-bound PMEase 

activity at pH 10.3 was detected in all strains and activity ranged from 15.73 

to 0.041 ~ol pNP mg dry wt-1 h-1. In all cases the level of cell-bound 

PMEase activity was higher than cell-bound PDEase activity (Table 3.3). 

Extracellular PMEase activity was detected in 48 strains at either pH 10.3 

and/or pH 7.6, whereas extracellular PDease activity was only detected in six 

strains. 

One pattern analyzed was the relationship between large taxon and yield 

(Table 3.4) and large taxon and phosphatase activities (Table 3.5). The 

taxonomic groupings were filamentous non-Rivulariaceae (N, n = 14), 

Rivulariaceae (Y, n 30), Synechococcus (S, n = 7) and hair-forming 

Rivulariaceae (H, n = 9) . 
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Table 3.4 Large taxon versus yield in organic phosphorus sources for 51 

cyanobacterial strains. 

mean rank of-large taxon 

P-source N(n = 14) Y(n = 30) S(n 7) H(n = 9) 

~-gly 24.6 22.7 42.8 21.3 
pNPP 25.3 22.8 41.0 24.3 
MNP 27.0 22.3 39.7 21.8 
ATP 21.5 25.6 36.2 30.4 
bis-pNPP 21.9 24.0 42.5 26.0 
DNA 26.5 22.0 42.1 23.4 
phy 19.9 24.1 46.1 16.0 

Table 3.5 Large taxon versus cell-bound and extracellular phosphatase 

activities for 51 cyanobacterial strains. Cultures grown in inorganic 

phosphorus for 16 d (phosphorus deficient). XC = extracellular, CB = cell-

bound. 

mean rank of large taxon 

phosphatases N(n = 14) Y.(n = 30) S(n 7) H(n = 9) 

CB PMEase, pH 10.3 33.9 19.7 36.8 18.7 
CB PMEase, pH 7.6 30.2 21.8 35.2 30.6 
XC !?MEase, pH 10.3 26.7 25.9 24.5 29.7 
XC PMEase, pH 7.6 23.5 28.1 22.0 33.8 
CB PDEase, pH 10.3 29.6 23.1 30.8 29.6 
CB PDEase, pH 7.6 27.8 24.0 30.5 25.0 

Table 3.6 Comparison of large taxon versus yield using the Mann-Whitney u-

test. 

significance 

P-source N vs y Y VS s s VS N H vs non-H 

~-gly N.S. <0.01 N.S. N.S. 
pNPP N.S. <0.01 N.S. N.S. 
MNP N.S. <0.01 N.S N.S. 
ATP N.S. N.S. N.S. <0 .. 05 
bis-pNPP N.S. <0.01 <0.01 N.S. 
DNA N.S. <0.01 <0.01 N.S. 
phy N.S. <0.001 <0.001 <0.05 
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Table 3.7 Comparison of large taxon versus phosphatase activity using the 

Mann-Whitney U-test. 

significance 

phosphatases N VS y y vs s s vs N H vs non-H 

CB PMEase, pH 10.3 <0.01 <0.01 N.S. N.S. 
CB PMEase, pH 7.6 N.S. <0.05 N.S .. <0.05 
XC PMEase, pH 10.3 N.S. N.S. N.S. N.S. 
XC PMEase, pH 7.6 N.S. N.S. N.S. N;S. 
CB, PDEase, pH 10.3 N.S. N.S. N.S. N.S. 
CB PDEase, pH 7.6 N.S. N.S. N.S. N.S. 

Synechococcus was the least effective large taxon at utilizing 6 of the 

organic P sources·, except for ATP, where no differences between large taxa,· 

were detected (Tabl~ 3.4 and 3.6). Comparisons of the mean, ranks for yields 

in ATP (Table 3.4) suggest there is an improved ability for Synechococcus and 

non-Rivulariaceae strains to utilize ATP and a corresponding reduction in the 

efficiency of Rivulariaceae strains to utilize ATP. The inability of 

Synechococcus to hydrolyze the phosphodiesters DNA and bis-pNPP and phytic 

acid was very significant (P = <0.001). No significant differences were 

shown in the utilization of the organic P sources between Rivulariaceae and 

non-Rivulariaceae (Table 3.4 and 3.6). Hair-forming Rivulariaceae were 

significantly more effective at utilizing phytic acid than non hair-forming 

Rivulariaceae (P = <0.05) and significantly less effective at utilizing ATP (P 

<0. 05) (Table 3. 7) . 

From the data in Tables 3.2, 3.4 and 3.6 five out of the Synechococcus 

strains were unable to grow in phytic acid and Synechocoocus as a taxon was 

the least effective at hydrolyzing phytic acid. As the yields in the 

Synechococcus strains were low (Table 3.2) it was possible that the incubation 

conditions used were unsuitable for growth of these strains. Therefore, 

under more favourable incubation conditions the strains may then be able to 

grow using phytic acid as a P source. However, when the strains were grown 
to \nctta..~t co~, 

under shaken, stirring and aerated conditions:with-phytic acid there was no 

increase in yield. 
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The Rivulariaceae had significantly greater cell-bound PMEase activity at 

pH 10.3 than non-Rivulariac::eae (P = <0.01, Table 3.7) and Synechococcus (P = 

<0.01, Table 3.7). However, at pH 7.6 the differences in cell-bound PMEase 

activity were not significant between the Rivulariaceae and non-Rivulariaceae, 

and the difference between Synechococcus and Rivulariaceae was reduced (P = 

<0.05, Table 3.7). There was no significant difference in cell-bound PMEase 

activity at pH 10.3 between hair-forming and non hair-forming Rivulariaceae 

(Table 3. 7). However cell-bound PMEase activity at pH 7.6 significantly 

decreased in hair-forming strains (P = <0.05). 

Rivulariaceae had the highest rank in terms of cell-bound PDEase activity 

(Table 3.5), although no significant differences in PDEase activities between 

large taxon were shown. Extracellular PDEase activity was only detected in 

Calothrix 603 and 624, Gloeotrichia 743 and in Nostoc 608, 611 and 614. Due 

to the absence of extracellular PDEase activity in the majority of strains it 

was not included as a criterion in the screen. Comparisons of yield and 

activity between the large taxon were not significant using the Kruskal-Wallis 

test, which suggests that there was a large overlap between the taxa. 

Further trends were analyzed between yield and genus (Table 3.6) and 

phosphatase activity and genus (Table 3.7). Genera used were Anabaena (Ana, 

n = 4), Calothrix (Cal, n = 21), Cylindrospermum (Cyl, n = 1), Dichothrix 

(Die, n 3), Fischerella (Fis, n = 1), Gloeotrichia (Glo, n = 6), Lyngbya 

(Lyn, n 1), Nostoc (Nos, n = 6), Synechococcus (Syn, n 7), Tolypothrix 

(Tal, n = 1). 
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Table 3.8 Genus versus yield in organic phosphorus sources for 51 

cyanobacterial strains. 

mean rank of genus 

P-source Ana Cal Cyl Die Fis Glo Lyn Nos Syn Tol 
n=4 n=21 n=1 n=3 n=1 n=6 n=1 n=6 n=7 n=1 

~-gly 34.0 21.8 46.0 31.3 27.0 21.3 9.0 14.3 42.8 39.0 
pNPP 32.5 23.1 46.0 31.3 27.0 21.3 4.0 21.6 41.0 24.0 
MNP 41.5 22.6 46.0 26.0 17.0 19.5 6.0 20.3 39.7 21.0 
ATP 26.2 26.1 38.0 25.0 14.0 24.3 2.0 20.0 36.2 23.0 
bis-pNPP 31.0 23.8 44.0 27.0 27.0 23.3 4.0 15.5 49.6 15.0 
DNA 32.0 21.2 44.0 30.3 29.0 20.5 12.0 22.3 42.1 24.0 
phy 19.5 21.2 40.0 24.6 35.0 32.1 20.0 14.1 46.1 21.0 

Table 3.9 Genus versus cell-bound and extracellular phosphomonoesterase and 

phosphodiesterase activities at pH 10.3 and 7.6 for 51 cyanobacterial strains. 

mean rank of genus 

phosphatase Ana Cal Cyl Die Fis Glo Lyn Nos Syn Tol 
n=4 n=21 n=1 n=3 n=1 n=6 n=1 n=6 n=7 n=1 

CB PMEase, pH 10.3 39.0 20.0 36.0 29.3 37.0 14.0 48.0 32.6 36.8 2.0 
CB PMEase, pH 7.6 39.0 20.7 18.0 40.3 49.0 16.6 43.0 22.8 35.2 19.0 
XC PMEase, pH 10.3 29.2 25.8 32.0 31.0 43.0 24.0 39.0 19.6 24.5 26.0 
XC PMEase, pH 7.6 30.0 27.3 41.0 39.3 46.0 25.0 19.0 11.3 22.0 35.0 
CB PpEase, pH 10.3 36.2 23.4 48.0 31.6 29.0 18.0 40.0 24.5 30.8 6.0 
CB PDEase, pH 7.6 34.7 25.6 48.0 27.6 17.0 16.8 46.0 21.6 35.6 10.0 

No significant differences were detected between genus (Calothrix, 

Gloeotrichia and Nostoc) and yield and genus and activity using either the 

Mann-Whitney U-test and the Kruskal-Wallis one-way analysis, except for 

significantly higher extracellular PMEase activity at pH 7.6 in Nostoc 

compared to Calothrix (P = <0.05). Therefore when differences are discussed 

they are based only on a comparison of the mean rank values (Table 3.8 and 

3.9. Nostoc had the highest yields in organic P sources and Synechococcus 

had the lowest yields (Table 3.8). Anabaena was effective at utilizing 

phytic acid, although Gloeotrichia was not. Calothrix was effective at 

utilizing all of the organic P sources, except for ATP (cf hairs, Table 3.5). 
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Highest cell-bound PMEase activities at pH 7.6 and pH 10.3 were in 

Gloeotrichia and Calothrix (Table 3.9). Nostoc had higher levels of cell-

bound and extracellular PMEase activity at pH 7. 6 compared w\th. pH 10.3. 

Yields in organic P sources and phosphatase activities were compared 

the isolates original physical and chemical environment. Physical 

environments were categorized into deepwater rice, lake, marine, paddy rice, 

pond, soil and stream. Chemical environments were separated into calcareous, 

heavy metal sites, marine and non-calcareous (others). 

Table 3.10 Physical (a) and chemical (b) environment versus yield in organic 

phosphorus sources for 51 cyanobacterial strains. cal = calcareous, DWR = 

deepwater rice, HM = heavy metal, mar = marine, non = non-calcareous (others). 

(a) mean rank of physical environment 

P-source DWR lake marine paddy pond soil stream 
n= 20 n= 1 n= 1 n= 8 n= 11 n= 1 n= 9 

~-gly 23.1 49.0 38.0 25.1 28.1 33.0 25.2 
pNPP 23.3 48.0 38.0 25.8 28.0 26.0 25.7 
MNP 25.7 45.0 42.0 23.7 26.8 24.0 19.5 
ATP 22.9 45.0 37.0 23.0 23.4 48.0 32.8 
bis-pNPP 21.5 49.0 41.0 24.0 32.1 21.0 26.5 
DNA 26.4 43.0 40.0 20.8 26.5 34.0 24.6 
phy 25.8 47.0 14.0 23.3 30.9 31.0 21.1 

(b) mean rank of chemical environment 

P-source cal HM mar non 
n = 11 n = 1 n = 1 n = 38 

~-gly 29.6 51.0 38.0 23.9 
pNPP 31.3 49.0 38.0 23.5 
MNP 28.6 49.0 42.0 24.2 
ATP 32.1 50.0 37.0 23.2 
bis-pNPP 29.4 51.0 41.0 23.9 
DNA 26.0 46.0 40.0 25.0 
phy 27.4 48.0 14.0 25.0 
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Table 3.11 Physical (a) and chemical (b) environment versus cell-bound and 

extracellular phosphatase activities for 51 cyanobacterial strains. 

(a) mean rank of physical environment 

phosphatases DWR lake marine paddy pond soil stream 
n= 20 n= 1 n= 1 n= 8 n= 11 n= 1 n=· 9 

CB PMEase, pH 10.3 28.0 41.0 20.0 22.5 26.0 40.0 16.1 
CB PMEase, pH 7.6 20.6 36.0 47.0 23.1 28.8 50.0 30.8 
XC PMEase, pH 10.3 28.0 46.0 50.0 24.0 18.0 51.0 25.2 
XC PMEase, pH 7.6 21.7 34.0 50.0 29.5 22.4 51.0 30.4 
CB PDEase, pH 10.3 19.6 44.0 16.0 26.7 28.9 51.0 32.3 
CB PDEase, pH 7.6 19.4 14.0 36.0 27.8 34.5 51.0 25.8 

(b) mean rank of chemical environment 

phosphatases cal HM mar non 
n = 11 n = 1 n = 1 n = 38 

CB PMEase, pH 10.3 17.5 12.0 20.0 28.9 
CB PMEase, pH 7.6 28.8 33.0 47.0 24.4 
XC PMEase, pH 10.3 23.0 1.0 50.0 26.8 
XC PMEase, pH 7.6 31.0 5.0 50.0 24.4 
CB PDEase; pH 10.3 28.0 23.0 16.0 25.7 
CB PDEase, pH 7.6 22.5 38.0 36.0 26.4 

Table 3.12 Comparison of physical environment versus phosphatase activity 

using the Mann-Whitney U-test 

significance 

phosphatases DWR v PAD PAD v PON PON v STR STR V PAD STR V DWR DWR V PON 

CB PMEase, pH 10.3 N.S. N.S. N.S. N.S. N.S. N.S. 
CB PMEase, pH 7.6 N.S. N.S. N.S. N.S. N.S. N.S. 
XC PMEase, pH 10.3 N.S. <0.05 <0.05 N.S. N.S. <0.01 
XC PMEase, pH 7.6 N.S. N.S. N.S. N.S. N.S. N.S. 
CB PDEase, pH 10.3 N.S. N.S. N.S. N.S. <.0. 01 <0.05 
CB PDEase, pH 7.6 N.S. N.S. N.S. N.S. N.S. <0.01 

No significant differences were shown between environment and yield or 

chemical environment and activity using the Mann-Whitney U-test or Kruskal-

Wallis one way analysis. The highest ranks for yields in the phosphodiesters 

bis-pNPP and DNA were in deepwater and paddy rice isolates, although they were 

not highly significant (Table 3.10a). Stream isolates were the least 



effective of the strains at utilizing ATP. This pattern in stream isolates 

is very similar to the trend in hair-formin_g Rivulariaceae (Table 3. 4 and 3. 7) 

as seven of the hair-forming Rivulariaceae strains originate from streams. 

Stream isolates had the highest rank of cell-bound PMEase activity at pH 10.3 

(c.f. hair-forming strains Table 3.3) and reduced PMEase activities at pH 7.6 

(Table 3.11a). 

Deepwater rice isolates had significantly higher cell-bound PDEase 

activities than stream (P = <0.01) and pond (P = <0.01) isolates (Table 3.12). 

Pond isolates had significantly higher levels of extracellular PMEase activity 

at pH 10.3 than deepwater rice ( P = 0.01), paddy rice (P = 0.05) and stream 

(P = 0.05) isolates (Table 3.12). 

Non-calcareous strains were slightly more effective at hydrolyzing organic 

P sources than strains originating from calcareous environments (Table 3.10b). 

However, calcareous cell-bound PMEase (pH 10.3) and PDEase (pH 7.6) activities 

had higher ranks than non-calcareous activities (Table 3.11b). 

Two broad patterns of PMEase localization were found amongst the strains 

able to hydrolyze naphthol AS-MX phosphate (Table 3.13). Seven of the nine 

hair-forming strains had PMEase activity localized only on the hairs. 

However, in Calothrix ·parietina 550 and 184 the reverse staining pattern 

occurred, where the basal end of the trichome stained and the hair cells did 

not. All other non hair-forming cyanobacterial strains had PMEase activity 

localized throughout the trichomes/cells with no distinct localization on 

certain areas or cells. PDEase activity, when detected, had no specific areas 

of localization in any of the cyanobacterial strains tested. 



Table 3.13 ·"~-~tQ.\n \T\3 of PMEase and PDEase activity using naphthol AS-MX 

phosphate (PMEase) and 13-naphthyl phenylphosphonate (PDEase) in 51 

cyanobacterial strains. Assays at 32°C for 15 min. 

No. Genus PMEase PDEase No. Genus 

750 Anabaena 
669 Anabaena 
217 Anabaena 
746 Anabaena 
255 Calothrix 
251 
794 
182 
184 
796 
253 
624 
764 
550 
802 
254 
795 
690 
730 
266 
786 
603 
688 
202 
694 

Calothrix 
Calothrix 
Calothrix 
Calothrix 
Calothrix 
Calothrix 
Calothrix 
Calothrix 
Calothrix 
Calothrix 
Calothrix 
Calothrix 
Calothrix 
Calothrix 
Calothrix 
Calothrix 
Calothrix 
Calothrix 
calothrix 
Calothrix 

585 Tolypothrix 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 

+ 

+ 
+ 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 

+ 

+ 
+ 
+ 

+ staining oetected after 15 min. 
staining not detected after 15 min. 

684 Cylindrospermum 
809 Dichothrix 
808 Dichothrix 
689 Dichothrix 
612 Fischerella 
572 
626 
743 
281 
602 
613 
627 
608 
611 
734 
614 
800 
201 
767 
807 
769 
838 
562 

33 
797 

Gloeotrichia 
G1oeotrichia 
Gloeotrichia 
Gloeotrich.ia 
Gloeotrichia 
Gloeotrichia 
Lyngbya 
Nostoc 
Nostoc 
Nostoc 
Nostoc 
Nostoc 
Nostoc 
Synechococcus 
Synechococcus 
Synechococcus 
Synechococcus 
Synechococcus 
Synechococcus 
Synechococcus 

PMEase PDEase 

+ 
+ 

+ 
+ 

+ 

+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 

+ 

+ 
+ 

+ 
+ 

+ 
+ 
+ 
+ 
+ 

+ 

+ 

+ 
+ 
+ 
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~.1 EFFECT OF NINE PHOSPHORUS SOURCES ON YIELD, HAIR FORMATION AND ALKALINE 

PHOSPHATASE ACTIVITY IN Calothrix 202, 550 and 603 

~.11 Introduction 

In Chapter 3 the hair-forming Rivulariaceae strains were shown to have the 

highest levels of cell-bound PMEase activity at pH 10.3 and overall these 

strains were very effective at utilizing various organic P sources. The 

aims of these experiments were to 1n~ebt13~t~ f~r\hLr if there was any 

correlation between trichome structure, hair formation and alkaline 

phosphatase activity (APA), the utilization of various organic P sources and 

the effects of organic P sources on APA synthesis (1.646) in Calothrix 202, 

550 and 603. The reasons for choosing these particular cyanobacteria are 

explained in 4.111. 

4.111 Origin and morphology of Calothrix 202, 550 and 603 

Three cyanobacterial strains were chosen for the following studies: 

Calothrix sp. 202: 

This strain originates from a freshwater pool in Aldabra and never forms 

hairs in the field or in the laboratory. 

control to hair-forming Rivulariaceae. 

Calothrix parietina 550: 

This species was chosen to act as a 

This species forms very striking hairs (Sinclair, 1977) in response to 

various elemental deficiencies as demonstrated by Sinclair and Whitton (1977). 



Calothrix sp. 603: 

This strain originated from the stem of a deepwater rice plant in 

Bangladesh and forms hairs in the field but never formed hairs under various 

laboratory conditions. 

~.12 Method 

Growth in batch culture was investigated using eight different P-sources. 
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Inocula were prepared (2.55) and all cultures were grown in Chu 10D-N (2.531), 

for 36 d at 32oc and 100 ~ol photon m-2 s-1 and P was 1 mg 1-1 .. Yield was 

investigated either by dry wt or by observation (2.57), samples being 

harvested every four d. 

Table 4.1 Phosphorus sources and method used for measurement of yield. 

P source method 

Potassium dihydrogen orthophosphate 

Sodium-p-glycerophosphate 

p-nitrophenyl phosphate (pNPP) 

2-methoxy-4-(2'-nitrovinyl)-phenyl phosphate (MNP) 

bis (p~nitrophenyl) phosphate (bis-pNPP) 

Phytic acid 

DNA 

ATP 

Dry weight 

Dry weight 

Dry weight 

Dry weight 

Dry weight 

visual 

visual 

visual 

Observation of yield was scored between 0-5 every four d. Minimum growth, 

i.e. in -P, was scored 0 and maximum growth in P-P04 was scored 5. Death in 

batch culture was represented as - After 36 d the dry wt was determined 

(Table 4.2). 
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4.121 Analysis of cellular and media phosphorus 

From samples harvested every four d a 25 ml algal sample was prepared for 

dry wt (2.57). After dry wt determination the algae were stored in a 

desiccated state for TFP analysis (2.6). Media samples (25 ml) were also 

collected at four-d intervals (2.441) for TFP analysis. 

4.122 Analysis of alkaline phosphatase activity 

Cell-bound and extracellular PMEase and PDEase activities were determined 

at four-d intervals for 36 d using pNPP, bis-pNPP and MNP as substrates {2.441 

and 2.442). MNP was a new substrate on the market and was incorporated in a 

comparative study with pNPP. MNP and pNPP are hydrolyzed by PMEases and bis-

pNPP is hydrolyzed by PDEases. 

4.13 Results 

4.131 Dry ~eight 

The yields were similar in Calothrix 550 and 603. However in Calothrix 

202 there were enhanced yields in p-glycerophosphate and MNP and a lower yield 

in bis-pNPP. Calothrix 202 and 603 showed no lag in growth. Stationary 

growth was at 32 or 36 d (Fig. 4.1). 

4.132 Observation of gro~th 

Yields were reduced, with the lowest yields in phytic acid and ATP. In 

Calothrix 550 there was no growth in ATP and after eight d (Table 4.2) the 

cultures were bleached. In Calothrix 202 and 603 there was no induction of 



hair formation in any P source. At eight d there were 

in %hairiness in different P-sources in Calothrix 550. 
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distinct differences 
vrod.u_t<!.(\,\n. P~P04 v . 

Hairs were 75-

100 ~ long and %hairiness = 5; pNPP hairs were 75-500 ~ and %hairiness = 20; 

there were similar observations in P-P04 and p-glycerophosphate; greatest hair 

formation was in bis-pNPP, hairs were 100-500 ~ long and %hairiness = 50 and 

in MNP hairs were 20 ~ long and %hairiness = 3. 



Fig. 4.1 Utilization of P-P04 , ~-glycerophosphate, pNPP, MNP, bis-pNPP by 

Calothrix 202, 550 and 603. Cultures were grown at 32oc and 100 ~ol photon 
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Table 4.2 Utilization of phytic acid (A), DNA (B) and ATP (C) by Calothrix 

202, 550 and 603 at 32°C and 100 llffiOl photon m-2 s-1. 

P-source 4 8 12 16 20 24 28 32 36 (day) 

dry wt 1-1 

A 550 5 2 2 2 2 2 2 3 352.50 
A 603 4 4 3 3 4 4 4 4 559.75 
A 202 4 3 2 1 2 3 3 3 199.75 

B 550 4 4 4 5 5 5 5 5 592.50 
B 603 4 4 4 4 5 5 5 5 644.75 
B 202 3 4 4 3 4 4 5 5 701.50 

c 550 0 0 
c 603 3 4 4 4 5 5 5 5 630.25 
c 202 0 0 0 1 2 3 3 5 614.25 

KEY 

Death of alga 

0 0% growth or less than 0% growth 

1 0-20% growth 

2 20-40% growth 

3 40-60% growth 

4 60-80% growth 

5 80-100% growth 

0% growth is represented as growth in media -P and 100% growth is growth in 
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~.133 Cellular phosphorus 

The highest cellular P was 1.6% in Calothrix 550 at day 4. After four d 

there was a rapid decline in cellular P. The lowest cellular P values were 

in bis-pNPP (Fig. 4.2). 

~.13~ Alkaline phosphatase activity 

(1) Cell-bound PMEase activity, pNPP assay (Fig. 4.3) 

Growth in bis-pNPP led to increased activity at four d in Calothrix 202 and 

550. Lowest activities were in P-P04 • In each species there were marked 

rises in activities after day 4, with a corresponding reduction in activity 

noted between days 24 - 32. 

(2) Extracellular PMEase activity, pNPP assay (Fig. 4.4) 

Extracellular activities in Calothrix 550 and 603 were lower than cell-

bound activities. The same pattern of increased activity in bis-pNPP and 

lowest activity in P-P04 was noted. There was no detectable extracellular 

activity in Calothrix 202. 

(3) Cell-bound and extracellular PMEase activity, MNP assay (Fig. 4.5 and 

4. 6) 

The patterns of activities were the same as in the pNPP assays, but the 

levels of P hydrolyzed were 15 fold greater. This suggests that MNP was more 

sensitive than pNPP for assaying PMEase activity. The increased sensitivity 

was an advantage for detecting the lower levels of extracellular PMEase 

A\tMV{\h. 
activity. v the major drawback with MNP was that above pH 9.5 the 

chromatophore 2-methoxy-4-(2-nitrovinyl)-phenol was irreversibly degraded. 

Therefore, using MNP for assaying PMEases, with a pH optimum above 9.5 was 

inadvisable. However, alkaline PMEase activity in heterotrophic bacteria 

rarely has an optimum above pH 9.0 (1.62). 
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(4) Cell-bound PDEase activity, bis-pNPP assay (Fig. 4.7) 

The highest levels of PDEase activity were in Calothrix 603. There were 

no differences in activities between the five P-sources for each species. In 

Calothrix 202 and 550 highest activities were at day four and day eight 

respectively. 

(5) Extracellular PDEase activity, bis-pNPP assay (Fig. 4.8) 

The only species which exhibited extracellular PDEase activity was 

Calothrix 603. The levels of activities were low. 



Fig. 4.2 Change in cellular P status with time in Calothrix 202, 550 and 
603. P-sources used were P-P04 , p-glycerophosphate, pNPP, MNP and bis-pNPP. 
Cultures were grown at 32oc and 100 J.lltlOl photon m-2 s-1 . 
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Fig. ~.3 Cell-bound PMEase activity in Calothrix 202, 550 and 603 assayed at 
32oc using pNPP. Cu1tures were grown in 5 P-sources P-P04, ~-g1ycerophosphate, 

pNPP, MNP and bis-pNPP at 32°C and 100 j.lil\01 photon m-2 s-1. 
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Fig. ~-~ Extracellular PMEase activity in Calothrix 550 and 603 assayed at 

32oc using pNPP. Cultures were grown in 5 P-sources P-P04 , ~-glycerophosphate, 

pNPl?, MN1? and bis-pNPP at 32oc and 100 J.W!Ol photon m-2 s-1. 
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Fig. ~.5 Cell-bound PMEase activity in Calothrix 202, 550 and 603 assayed at 

32oc using MNP. Cultures ~ere gro~n in 5 P-sources P-P04, ~-glycerophosphate, 

pNPP, lliiNP and bis-pNPP ~t 32oc and 100 J.IXD.Ol photon m-2 a-l. 
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Fig. ~.6 Extracellular PMEase activity in Calothrix 550 and 603 assayed at 

32•c using MNP. Cultures ware gro~n in 5 P-sourcss P-P04 , ~-glycerophosphate, 

pl.\1PP, lV1NP and bis-pNPP at 32•c ~nd 100 ~1 photon m-2 s-1. 
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Fig. ~.7 Cell-bound PDEase activity in Calothrix 202, 550 and 603 assayed at 
32°C using bis-pNPP. Cultures ~ere gro~n in 5 P-sources P-P04 , ~

glycerophosphate, pNPP, MNP and bis-pNPP at 32°C and 100 j.II[IOl photon m-2 s-1. 

3.5 0550 Cell-bound POEase activity 
i bis-pNPP assay 
.E:. 3.0 1}s bis-pNPP 'L 
~ 2.5 0 MNP 
i::' a pNPP 

"0 2.0 
iJl p-glycerophosphate 0'1 

E 1.5 + PO~~P 
D... 
z 
Q.. 1.0 
0 
E 0.5 
:t 

0.0 
0 4 8 12 16 20 24 28 32 36 

Day 

3.5 0603 Cell-bound POEase activity 
i bis-pNPP assay 
.s= 3.0 
"j ...... 
~ 2.5 
i::' 

"0 2.0 
0'1 

E 1.5 
a_ 
z 
Q... 1.0 
0 
E 0.5 
:t 

0.0 
0 4 8 12 16 20 24 28 32 36 

Day 

3.5 0202 Cell-bound PDEase activity 
'i bis-pNPP assay 
.s= 3.0 
"j ...... 
~ 2.5 
~ 

"C 2.0 
0'1 

E 1.5 
a_ 
z 
Q... 1.0 
0 
E 0.5 
:t 

0.0 ii 
0 4 a 12 16 20 24 28 32 36 

Day 



92 

Fig. 4.8 Ext~acellula~ PDEase activity in Calothrix 603 assayed at 32°C 

using bis-pNPP. Cultures were grown in 5 P-sources P-P04 , ~-

glycerophosphate, pNPP, MNP and bis-pNPP at 32oc and 100 ~ol photon m-2 s-1. 

There was no detectable &ctivity in Calothrix 202 and 550. 
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4.2 INFLUENCE OF pH ON PHOSPHATASE ACTIVITY IN Calothrix 202, 550 and 603 

~.21 Introduction 

In 4.1 no major differences in the utilization of organic P sources were 

shown between Calothrix 202, 550 and 603. However, in Chapter 3 one major 

difference between hair-forming and non hair-forming Rivulariaceae was the 

effect of pH on PMEase activity. Hair-forming Rivulariaceae had greater 

activity at pH 10.3 than pH 7.6, whereas there was little difference in 

activity in non hair-forming Rivulariaceae. Therefore, it was decided to see 

if there were differences in the influence of pH and to see if acid 

phosphatases were present (1.641). Differences or similarities in the 

influence of pH on activity of cell-bound and extracellular PMEases and 

PDEases in Calothrix 202, 550 and 603 may suggest that the fractions have 

phosphatases of a common origin. 

4.22 Method 

To determine the effects of pH, assays were carried out between pH 3-11, 

using duplicate buffers at each pH value (2.45 and Table 2.3). The algae 

used were 16 d old grown in Chu 10D-N, Pi 1 mg 1-1, at 32oc and 100 ~ol photon 

Algae were prepared for assays as in 2.441. Assays ran for 30 min 

and were terminated by the addition of 100 ~1 of 4.95 M NaOH. A different 

protocol was used for PDEase activity (2.45), because the addition of 100 ~1 

of 4.95 M NaOH resulted in bis-pNPP hydrolysis. The levels of cell-bound and 

extracellular PDEase activity in Calothrix 202 and 603, respectively, were too 

low to accurately measure any changes due to pH. 
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4.23 Results 

(1) Cell-bound PMEase activity (Fig. 4.9) 

PMEase activities in Calothrix 202 and 550 were detectable between pH 7-11 

with greatest activity at pH 10.3. In Calothrix 603 optimum activity was 

between pH 7 and 8. 

(2) Extracellular PMEase activity (Fig. 4.10) 

In Calothrix 550 and 603 extracellular PMEase activity was lower than cell-

bound activity, although the response to pH was the same. This suggests that 

the PMEases in the two fractions may have a common origin. There was no 

detectable extracellular activity in Calothrix 202. 

(3) Cell-bound PDEase activity (Fig 4.11) 

The patterns of activity in Calothrix 550 and 603 were significantly 

different. In Calothrix 550 and 603 optimum activity was at pH 10.3 and 8 

respectively. PDEase activity was overall much lower than PMEase activity at 

'Ja.\u..e.s 
all pH~ , which agrees with previous results for PDEase activity. 
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Fig. ~.9 Influence of pH on cell-bound PMEase activity in Calothrix 202, 550 
and 603, assayed at 32"C using pNPP. Cultures were grown in 1 mg 1-1 P-P04 at 
32oc and 100 IJ.IILOl photon m-2 s-1. 
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Fig . .(1,.10 Influence of pH on extracellular PMEase activity in Calothrix 550 

and 603, assayed at 32°C using pNPP. 

32°C and 100 f.IXD.Ol photon m-2 s-1. Ther® ~as no detectable extracellular 
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Fig. ~.11 Influence of pH on cell-bound PDEase 8C~ivi~y in Calo~hrix 550 and 

'o\S-
603, assayed a~ 32"C using"pNPP. Cul~ures w@r!S! grotrn in 1 mq 1-1 P-P04 a~ 32"C 

a>.nd 100 J.!XnOl photon m-2 a-1. 
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CHAPTER 5 

INFLUENCE OF TEMPERATURE 1 pH, IONS AND SUBSTRATE 

CONCENTRATION ON CELL-~OUND ~ EXTRACELLULAR 

~HOS~HOMONOESTER£SE ~CTIVITX IN Celothzi~ 550 

5.1 INFLUENCE OF TEMPERATURE ON CELL-BOUND AND EXTRACELLULAR 

PHOSPHOMONOESTERASE ACTIVITY IN Calothrix 550 

5.11 Introduction 

Extracellular PMEase activity has been reported in varying amounts in 

micro-organisms (1.6). Doonan and Jensen (1980) investigated 18 
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If in cyanobacterialisolates and 10 exhibited extracellular PMEase activity. 

Calothrix 550 there were no significant differences in response to 

temperature, pH and ions for cell-bound and extracellular PMEase activity, it 

may suggest that the same enzyme is in the cell-bound and extracellular 

fraction. The aim of these experiments were to establish to what extent 

PMEase activities in a hair forming rivulariaceaen> Calothrix 550, resembled 

those reported in other cyanobacteria and to what extent cell-bound and 

extracellular PMEase activities differ in their response to environmental 

factors. 

5.12 Method 

Calothrix 550 was grown in batch culture at 25oc and 60 ~ol photon m-2 s-1 

in Chu 10D-N (P lmg 1-1). Flasks were agitated daily to prevent Co2 

limitation. Cultures were harvested at a late growth stage (28 d) when 

markedly P-limited. Cellular material was obtained by centrifugation at 8000 

x g for 20 min, washed twice, resuspended in assay medium (2.533) and 

homogenized (2.441). Further assays on extracellular activity were based on 

material harvested on this occasion and subsequently stored at -20°C. 
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Storage over periods up to seven d at 4°C and for longer periods (up to 12 

months) at -20°C led to no detectable change in activity. Three litres were 

rotary evaporated to 150 ml, centrifuged at 8000 x g for 20 min to remove cell 

debris and the supernatant dialyzed against assay medium, with three changes 

over 24 h. 

To test the effect of temperature on cell-bound and extracellular PMEase 

activity, aliquots of homogenate or medium were pre-incubated for 30 min at 

soc intervals between 5 and 85°C. Deviations in pH from 10.3 due to 

temperature were compensated by the addition of 1 M NaOH or HCL. 

Temperatures above 85°C could not be tested directly because of the 

spontaneous hydrolysis of pNPP; the ability of the enzyme to tolerate 

temperatures above 85°C was tested by again lowering the temperature to 32°C 

and testing with pNPP. Activity was terminated after 30 min. 

5.13 Results 

Temperature optima for cell-bound and extracellular PMEase activity were 

45°C and 30oc,respectively, and maximum temperatures with detectable activity 

were at 80°C and 65oc, respectively (Fig. 5.1). Both enzyme systems were 

denatured above 90oc. Only PMEase activity in toluenized suspensions of ~. 

coli are stable at 90°C (Torriani, 1960). Doonan and Jensen (1980) found a 

similar temperature optimum (40°C) for cell-bound PMEase activity in 

Plectonema boryanum. Doonan and Jensen (1980) showed that the cell free 

enzyme extract had a higher temperature optimum (70°C) than the cell-bound 

fraction, although they supplied no explanation for this occurrence. 

Further experiments on PMEase activity were carried out at 32°C. 
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5.2 INFLUENCE OF pH ON CELL-BOUND AND EXTRACELLULAR PHOSPHOMONOESTERASE 

ACTIVITY IN Calothrix 550 

5.21 Introduction 

In Chapter 4 cell-bound and extracellular PMEase activity had a similar 

response to pH. The exact pH optima for the two systems were needed for 

further proof of the similarities between the two enzyme systems. 

5.22 Method 
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Cell-bound and extracellular PMEase activity was assayed using pNPP at 32•c 

(2.443). The influence of pH between pH 7.0 - 11.0 was tested using a range 

of buffers (Table 5.1). Two different buffers were tested at each pH value. 

Quite similar results were obtained with each buffer, except for pH 9.0 

(glycine much higher than 2-amino-2-methyl-1-propanol) and pH 11.0 (3-

cyclohexylamino-1-propanesulphonic acid much higher than Na 2co3 - NaHC03 ) • 

5.23 Results 

There were no marked changes in activity between pH 9.8-10.2 (Fig. 5.2) and 

activity decreased above pH 10.2 in each enzyme system. As the exact pH 

optimum was not defined, the initial pH buffering system of glycine-NaOH (50 

mM) pH 10.3 (SIGMA Technical Bulletin no. 104) was used for further 

experiments. 



Table 5.1 Buffers used for testing the effect of pH on cell-bound and 

extracellular phosphomonoesterase activity in Calothrix 550. The buf.fer 

which led to the higher activity and was used for data in Fig. 5.2 is 

indicated here, unless activity was below the detection limit 

(< 0.02 ~ol pNPP hydrolyzed mg dry wt-1 h-1). 

Abbreviations: 

DMG, 3,3-dimethylglutaric acid; 

HEPES, N-2-hydroxymethylpiperazine-N'-2-ethanesulphonic acid; 

TES, N-tris(hydroxymethyl)methyl-2-arninoethane sulphon:ic acid; 

AMeP, 2-arnino-2-methyl-1-propanol; 

CAPS, 3-(cyclohexylarnino)-1-propanesulphonic acid. 

pH buffer A buffer B buffer giving higher activity 

cellular extracellular 

7.0 DMG - NaOH HEPES - NaOH 

8.0 TES - NaOH HEPES - NaOH TES TES 

9.0 AMeP - NaOH glycine - NaOH glycine glycine 

9.8 AMeP - NaOH glycine - NaOH glycine glycine 

10.0 AMeP - NaOH glycine - NaOH glycine glycine 

10.2 AMeP - NaOH giycine - NaOH glycine glycine 

10.3 AMeP - NaOH glycine - NaOH glycine glycine 

10.4 AMeP - NaOH glycine - NaOH glycine AMeP 

10.6 AMeP - NaOH glycine - NaOH AMeP AMeP 

11.0 CAPS - NaOH Na 2C03 - NaHC03 CAPS 

102 
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Fig. 5.2 In~~uence o£ pH (7-11) on cell-bound and extracellular PMEase 

activity in Calothrix 550. Cultures were grown for 28 d at 25•c and 60 ~ol 
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5.3 INFLUENCE OF IONIC COMPOSITION, LOCALIZATION AND PARTIAL PURIFICATION OF 

PHOSPHOMONOESTERASE ACTIVITY IN Caloth~ix 550 

5.31 In~~oduction 

The function of alkaline phosphatases with regard to their requirements for 

particular ions varies in different micro-organisms. If cell-bound and 

extracellular PMEase activity in Calothrix 550 had a similar response to 

different ions it may suggest that each system contained the same enzyme. 

Only one other study by Doonan and Jensen (1979) for Plectonema boryanum has 

investigated the effect of ions, over a range of concentrations, on PMEase 

activity. In Chapter 3 localization of cell-bound PMEase activity in 51 

cyanobacterial strains was carried out. Further localization of cell-bound 

PMEase activity may conclude that hairs in Calothrix parietina contain a large 

proportion of the phosphatase activity. Purification of extracellular PMEase 

activity, using biochemical protein extractions and electrophoretic analysis 

of the proteins, would eventually lead to conclusive proof using immuno

cytochemical localization that PMEase activity was located on and/or in hair 

cells. Extracellular PMEase fraction was used for purification, as previous 

experiments (4.23, 5.1 and 5.2) showed there were no significant differences 

between cell-bound and extracellular PMEase activities and it was likely that 

the same PMEase or PMEases were present in both systems (Grainger et al., 

1989). 

5.32 Method 

Cell-bound and extracellular PMEase activities were assayed using pNPP at 

pH 10.3 (glycine-NaOH, 50 mM) and 32°C. Cellular material was harvested as 

in 5.12. The assays were carried out as in 2.443 and enzyme activity was 

terminated after 15 min. The ions were The range of 

concentrations WQS 0.001 mM, 0.01 mM, 0.1 mM, 1 mM and 10 mM. The ions 



tested were ca++, Mg++, co++, Feiii-chelate, zn++, Curr, Na+, K+, phosphate, 

borate and molybdate. Cations were added as the relevant chloride or 

sulphate, which have no reported effect on PMEase activity; NaOH used for 

buffering glycine was replaced by KOH in the case of the Na assay. 

were added as the sodium salt. 

Anions 

The influence of EDTA on PMEase activity was tested in two ways: its 

inclusion during an assay (medium, substrate and EDTA at 0.09, 1, 10 and 20 

105 

mM) and by washing followed by resuspension in assay medium. For the latter, 

material was harvested (5.12), resuspended in medium or medium with increased 

EDTA (1, 10 or 20 mM) for 30 min, washed twice again to remove EDTA and then 

assayed for PMEase activity (in medium). The presence of 20 mM EDTA reduced 

the pH of assay medium to 9.78. The effect of sodium dodecyl sulphate (SDS) 

and NaOH on cell-bound and extracellular PMEase activity was also tested. 

A fraction consisting almost entirely of detached hairs was obtained by 

sonicating a washed culture for five s, centrifuging at a .low speed (500 x g) 

for 10 min and retaining the supernatant. The supernatant was then 

centrifuged at 8000 x g for 20 min and the pellet retained. At least 95% of 

the contents of the pellet consisted of hairs. This fraction was used to 

test the ability of hairs to hydrolyze pNPP, bis-pNPP, BCIP (2.731) and 

naphthol AS-MX phosphate (2.732). 

Carbohydrate in medium from 28-d cultures was assayed by the method of 

Dubois et al. (1956), in order to establish whether there was a correlation 

between extracellular PMEase activity and carbohydrate (2.62). Localization 

of enzyme activity was studied by the use of various methods likely to release 

PMEase: trichloroethane; 20% sucrose; lysozyme-treated material previously 

exposed to 20% sucrose (Ingram et al., 1973). Localization was also tested 

by microscopy using BCIP (2.731) as an organic P substrate. 

Carbohydrates were also localized on gels using danzyl hydrazine. Gels 

were fixed overnight in 40% ethanol 5% acetic acid, all solutions were diluted 



106 

01-'S 
in MilliQ water. Gels were oxidized for two~ in 5% acetic acid and 0.7% 

periodic acid and then washed in MilliQ water. Periodic acid was removed 

with 0.5% sodium meta-bisulphite in 5% acetic acid for one h, gels were washed 

twice in MilliQ. Gels were then stained with 600 ~1 of concentrated HCL in 

one litre of dimethyl sulphoxide (DMSO) containing two mg ml-1 danzyl 

hydrazine. This was incubated at 60oc for two h. Five ml of 0.2 mg NaBH4 

ml-1 DMSO was added and incubated at room temp for 30 min. The gel was 

rinsed with MilliQ water and destained overnight in 1% acetic acid. Gels 

were illuminated at 366 nm (UV light) to detect carbohydrate. 

Further purification of extracellular PMEase in Calothrix 550 was carried 

out using the extracellular fraction from 5.12, which was the most suitable 

fraction for purification. This extracellular PMEase fraction was 

ultracentrifuged at 110,000 x g for one h and then two ml aliquots of the 

supernatant and pellet (resuspended in an equivalent volume of assay medium) 

were vacuum centrifuged to 50 ~1. 50 ~1 samples were electrophoresed on non-

denaturing polyacrylamide gels and stained with BCIP. Filter paper saturated 

with 1 mM BCIP (2.731) was positioned on top of the gel. Gels were sealed in 

a polyethene bag and left for c. one h. Protein bands containing active 

PMEase were located as discrete blue bands on the gel. 

Protein bands located with BCIP were cut out, placed in 2 ml of assay 

medium (2.532), homogenised with a polytron for 5 min, sonicated for 15 min, 

centrifuged at 5000 x g and the supernatant assayed for PMEase activity using 

pNPP at pH 10.3 and 32°C (2.45). This procedure would .release PMEase if 

physically attached to the gel. 

Column chromatography, using various ion-exchange matrices; acetone 

precipitation of proteins (Ahmed and King, 1960); ammonium sulphate and 

butanol extraction of proteins (Morton, 1950) combined with electrophoresis of 

denaturing (5 - 10% SDS) and non-denaturing polyacrylamide and agarose gels 

using extracellular and cellular material harvested at different stages of 



growth, which are standard methods used in extraction of PMEases (McComb et 

al., 1979), did not produce discrete protein bands. 

5.33 Results 

The responsesof cell-bound and extracellular PMEase are depicted in Fig. 

5.3. Calcium had the greatest stimulatory effect, with a 50% increase in 

activity at 10 mM for both systems (Fig. 5.3). 0.01 mM K+ increased 

extracellular activity (Fig. 5.3) and a lack of Na+ enhanced extracellular 
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activity (Fig. 5.3). Zinc stimulated extracellular activity up to 0.1 mM and 

inhibited activity at higher concentrations (Fig. 5.3). Molybdate had a 

slight inhibitory effect at 1 mM and a marked inhibitory effect at 10 mM; 

magnesium and borate also had marked inhibitory effects at 10 mM. Phosphate 

at 0.01 mM had no inhibitory effect, but in the range 0.1 - 10 mM it had the 

greatest effect of any ion (Fig. 5.3). 

effect on activity (Fig. 5.3). 

Iron, copper and cobalt showed little 

The presence of EDTA at concentrations of 1 mM and above in assay medium 

led to complete inhibition of PMEase activity (Table 5.2). However when 

filaments, which had been suspended in EDTA solutions of the same molarity, 

were resuspended in normal assay medium, there was only a slight, decrease in 

PMEase activity (Table 5.2). 

A higher concentration of NaOH was required to terminate cell-bound than 

extracellular activity. 0.3 M NaOH terminated extracellular activity, but 

reduced cell-bound activity by only 85%. 1.5 M NaOH was required to 

terminate the latter effectively. 1% SDS inhibited extracellular activity 

completely, but reduced cell-bound activity by only 20%. 
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Table 5.2 Effect of EDTA on cell-bound phosphomonoesterase activity in 

Calothrix 550 during and prior to assay; n = 8. (The slight decrease in 

activity associated with the pH drop at 20 mM EDTA is negligible) . 

EDTA (mM) 0.09 1 10 20 

~ol pNPP hydrolyzed mg dry wt-1 h-1 

treatment x SD x SD x SD x SD 

during assay 5.82 0.27 <0.02 <0.02 <0.02 

prior to assay 6.02 0.08 5.75 0.64 5.18 1. 07 4.64 0.34 

Evidence that hairs are an important site of enzyme activity was obtained 

by use of a cellular fraction consisting of detached hairs (5.32). This 

fraction showed very high activity with pNPP, bis-pNPP and BCIP, although the 

mass of hairs available was too low to obtain a rate. There was no 

detectable activity with naphthol AS-MX phosphate when observed under the 

microscope. 

Several tests were carried out to establish whether cell-bound enzyme was 

attached to a surface (such as cell wall or plasma membrane) or present in the 

periplasmic space. No significant increase in extracellular activity 

occurred when cell-bound material was exposed to trichloroethane (0.1 mM - 100 

mM), 20% sucrose or lysozyme treatment. 

bound to a surface. 

These all suggest that the enzyme is 

It seemed possible that extracellular PMEase may be bound to colloidal 

carbohydrate material related to sheath carbohydrates (Weckesser et al., 1988) 

Ultracentrifugation (110,000 x g) of the extracellular PMEase fraction (5.12) 

for 1 h removed 80% of the carbohydrate from the supernatant, but only 45% of 

enzyme activity, suggesting that at least part of the extracellular enzyme is 

possibly soluble. 

Four distinct blue bands (Fig 5.4a,) using BCIP were detected on a non

denaturing polyacrylamide gel using the pellet from 110,000 x g centrifugation 
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and one PMEase band was located in the supernatant. However, these PMEase 

bands were not removable by physical means for the production of antibodies at 

a later stage. If PMEases were left on polyacrylamide gels overnight, before 

BCIP staining, no activity was then detected. Carbohydrate staining also 

suggested that PMEase bands 1, 2 and 4 were associated with carbohydrate (Fig 

5.4b). 

Staining of material for 15 min in a shaken snap-cap vial with BCIP showed 

localization of blue colour on mucilage, sheath and surface of the hair (Fig 

5.5); the blue colour was apparently due to the formation of the insoluble 

indigoid (Coston and Holt, 1958) . Neither the surface of vegetative cells 

nor the cytoplasm were stained. When addition of BCIP was followed 

immediately by the material being placed on a slide under a coverslip, the 

staining reaction was quite different. The first colouration was seen within 

the hair by 5 min; after 15 min there was some blue colour on mucilage, sheath 

and hair surface, but less than when the cells were shaken in a vial. The 

intracellular colouration appeared initially to show a gradient from top to 

bottom of the filament, although it was difficult to be sure due to 

photosynthetic pigments in the "vegetative" cells. 
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Fig. 5.3 Effect of ions on cell-bound and sxtracellular PMEase activity in 

Calothrix 550. Cultures were grown for 28 d at 25°C and 60 mmol photon m-2 s-1 . 
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Fig. 5.4 Detection of four bands of phosphomonoesterase activity in 

Calothrix 550. Extracellular fraction was centrifuged at 110,000 x g for 1h, 

electrophoresed on a non-denaturing polyacrylamide gel and stained with BCIP. 

a) bands 1-4 are phosphomonoesterase activity in the pellet (track 1) and 

supernatant (track 2); b) representation of carbohydrate (shaded area) 

associated with bands 1, 2 and 4. 

a 

. ~ 

b 
track 2 
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Fig. 5.5 Loca1ization of phosphomonoesterase activity on the hairs of 16 d 

o1d Ca1othrix 550 using 5-bromo-4-ch1oro-3-indo1y1 phosphate (BCIP) as the 

organic phosphorus source. Activity is 1oca1ized on the hair as inso1ub1e 

b1ue indigoid, scale bar = 10 ~-
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5.4 INFLUENCE OF pNPP CONCENTRATION ON CELL~BOUND AND EXTRACELLULAR 

PHOSPHOMONOESTERASE ACTIVITY IN Calothrix 550 

5.41 Introduction 
-tiw 0~ '.\c\.1·1i'C.~\ 

In the case of variation invrate~with substrate concentration the reaction 

is represented by the Michaelis-Menten equation: 

v is the rate at any substrate concentration, V is the maximum rate (Vmaxl 

attained by the reaction at high substrate concentrations and Km, the 

Michaelis constant, is the substrate concentration when the rate is half the 

maximum attainable rate. Thus, V and Km are experimentally determinable 

constants, provided the enzyme is studied under controlled conditions, and are 

characteristic and constant for the particular enzyme. Although it is 

possible to obtain the value of Vmax and Km .directly from the graph of rate 

against substrate concentration it is more common to plot the reciprocal of 

the rate 1/v against the reciprocal of the substrate concentration. This 

method of expressing the results is known as the Lineweaver-Burke plot. 

1. Krn + 1. 
s v.s v 

5.4.2 Method 

The dependence of cell-bound and extracellular PMEase on the concentration 

of pNPP can be described on the basis of Michaelis-Menten kinetics. To 

determine the Km and Vmax a Lineweaver-Burke plot was constructed. The assays 

were carried out at pH 10.3 and at 32•c (3.22). Cellular material was 

harvested as in 5.12. 
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5.43 Results 

Use of the Lineweaver-Burke plot, 1/v versus 1/S allowed the calculation of 

half saturation values and concentration of pNPP (Km) required to support half 

the maximum rates. Km for cell-bound and extracellular PMEase was 4.34 x lO

s M and 3.28 x lo-s M, respectively. These values are similar to the values 

reported for some heterotrophic bacteria, a ~of 1.2 x 10-s M in E. coli 

PMEase (Garen and Levinthal, 1960) and 3.6 x lo-s Min Bacillus subtilis 

(Thompson and MacLeod, 1974a) . The similarity in Km values suggests that 

cyanobacterial enzymes may have a similar structure to heterotrophic PMEases, 

even though the influence of ions and pH on PMEase activity was markedly 

different from heterotrophic bacteria. 
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INFLUENCE OF SALINITY ON HAIR FORMATION AND PHOSPHATASE 

6.1 INFLUENCE OF ORGANIC PHOSPHORUS SOURCE, TEMPERATURE, pH, IONIC 

COMPOSITION AND SALINITY ON HAIR FORMATION AND PHOSPHATASE ACTIVITIES IN 

Calothrix 253 

6.11 Introduction 

Location of PMEase activity in hairs of Calothrix 550 was detected using 

BCIP and a fraction containing >95% hairs. However, staining with naphthol 

AS-MX phosphate and location of activity in vegetative cells, sheath and 

mucilage suggests that hairs in Calothrix 550 may not be the only major site 

of phosphatase activity. It was therefore decided to work on other hair-

forming strains to see if conclusive evidence could be obtained to show that 

hair formation and phosphatase activity were linked. 

~~ 
These studies~planned to investigate the properties of PMEase activity in 

Calothrix viguieri (253) and the influence of salinity on PMEase activity, in 

which it had been noted that increased salinity led to reduced hair formation 

(Mahasneh, 1988) . The inhibition of hair formation by increased salinity may 

be used to demonstrate that phosphatase activity is directly linked to hair 

formation. 

Q. viguieri was isolated by J. Komarek (pers. comm.) from the upper part of 

a mangrove root in Cuba at about high tide level, and was probably subject to 

marked differences in salinity in nature. Q. viguieri was obtained from the 

(then) Cambridge Culture Collection of Algae and Protozoa (1410/6) in 1973; a 

clonal axenic isolate has been maintained as Durham culture 253 (D253) . The 
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isolate is maintained in Tiebo~ as ~. viguieri, although listed as Calothrix 

sp. by CCAP. 

6.12 Method 

Initially Calothrix 253 was adapted to a marine medium and eventually it 

grew well in 30% ASP 6 medium (Provasoli et al., 1957). After two years in 

this medium, it showed poor growth and abnormal morphology on initial 

subculture to Chu 10D-N. Further subculturing in the latter medium for three 

months led to a return to normal morphology, but less rapid growth on 

subculturing to saline medium. From this point Calothrix 253 was subcultured 

in freshwater medium (Chu 10D-N) and saline medium (Chu 10D-N + NaCl, see 

below), these strains were referred to as freshwater Calothrix 253a and saline 

Calothrix 253c respectively in the Durham Culture Collection. Material 

subcultured in freshwater medium was the source of inocula for experiments 

unless noted otherwise. 

~. viguieri was grown in batch culture at 32"C and continuous illumination 

at 100 ~ol photon m-2 s-1, with the inoculum at c. 10 mg 1-1. Most 

experiments were made in either Chu 10D-N medium or a version with added NaCl. 

Experiments with added NaCl used 5.6 g 1-1 (= 90 mM NaCl), giving 

approximately 20% of the Na concentration in seawater of salinity 35 °/oo 

(Head, 1983). This medium is referred to as Chu 10D-N + NaCl. 

The ability of the alga to grow in a range of P sources was tested in 

freshwater and saline medium, material was harvested after 16 d (2.441) and 

assayed for cell-bound and extracellular PMEase (2.45) and PDEase (2.442) 

activities. 

The influence of temperature on cell-bound PMEase was tested (5.12). The 

influence of pH (2.45) on activity was tested using a range of buffers (Table 

6.1), with two buffers tested at each pH value. Between pH 10.6-12.6 



different amounts of NaOH were added to either glycine or AMeP. 

monitored during assays using a Cardy compact pH meter (2.41). 

The pH was 
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The effects of Na+, K+, ca++, Mg++, zn++ and phosphate on cell-bound PMEase 

activity were determined using 0.001, 0.01, 0.1, 1 and 10 mM concentrations in 

the assay mixture (5.31). Localization of PMEase activities in freshwater 

and saline versions were tested using naphthol AS-MX phosphate as the organic 

P source (2.731). 

To test the effect of transferring cultures from saline to freshwater 

medium cultures were grown in Chu 100-N + NaCl for 16 d and transferred to 

freshwater medium without added P. Material was assayed for cell-bound 

PMEase activity (2.45) and preserved for microscopical analysis at hourly 

intervals for 24 h. In order to test whether the influence of NaCl on hair 

formation and phosphatase activity was an osmotic effect, cultures were grown 

in the presence of mannitol or sorbitol at concentrations up to 135 mM. 

Polymixin B sulphate at 1, 5, 10, 15 and 20 units/ml was added to cultures 

transferred from saline medium to freshwater medium without added P to 

investigate its effect on hair formation, 

Experiments were carried out to determine whether the response to an 

increase in NaCl could be modified by changing the concentrations of Ca in the 

saline medium. Saline adapted material was grown to P-limitation (16 d) in 

Chu 100-N medium (normal concentration 0.234 mM Ca) with 67.5 mM NaCl and Ca 

at 0.234, 1, 5, 10 and 20 mM. 67.5 mM NaCl was chosen as this was the 

concentration where hair formation just began. 
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Table 6.1 Buffers used in conjunction with NaOH for testing the influence of 

pH on cell-bound PMEase and PDEase activity in Calothrix 253. The buffer 

which led to the higher activity and was used for data in Fig. 6.2 is 

indicated here, unless activity was below the detection limit (< 0.02 ~ol pNP 

hydrolyzed mg dry wt-1 h-1). 

Abbreviations (Table 5.1) 

pH buffer A buffer 

7.0 DMG HEPES 

8.0 TES HEPES 

9.0 AMeP glycine 

10.0 AMeP glycine 

10.3 AMeP glycine 

10.6 AMeP glycine 

10.8 AMeP glycine 

11.0 AMeP glycine 

11.2 AMeP glycine 

11.4 AMeP glycine 

11.6 AMeP glycine 

11.8 AMeP glycine 

12.0 AMeP glycine 

12.2 AMeP glycine 

12.4 AMeP glycine 

12.6 AMeP glycine 

B NaOH (mM- final cone.) 

8 

13 

17 

19 

20 

22 

24 

26 

34 

52 

78 

buffer used 

DMG 

TES 

AMeP 

AMeP 

AMeP 

AMeP 

AMeP 

AMeP 

AMeP 

AMeP 

AMeP 

AMeP 

AMeP 

AMeP 

AMeP 

AMeP 
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6.13 Results 

The ability of the alga to grow in a range of P sources was tested in 

freshwater and saline medium. The yield was in all cases either equal or 

lower in saline medium (Table 6.2). There was a seven-fold increase in yield 
COl'\ po..re.di 

vwith medium lacking any P source (control). In freshwater medium all organic 

P sources tested led to a higher yield than the control, but in saline medium 

ATP, bis-pNPP and DNA led to yields below the control. Use of these three 

organic P sources led to the filaments appearing very unhealthy at the time of 

harvest, with the effect being more marked in the case of saline medium; this 

contrasts to the situation with the control where the filaments still had a 

more or less normal morphology. 

Cell-bound PMEase activity was absent in P-rich cultures, but was induced 

in P-limited cultures. However the difference between cell-bound PMEase 

activities of alga grown in freshwater and saline media (Table 6.2) was much 

greater than that of their yields. Cell-bound PDEase activity was inducible 

in freshwater medium, but was not detected in saline medium. There were 

marked differences in the ratio of (cell-bound) PDEase to PMEase (Table 6.2), 

with the highest values (1 : 10, expressed as pNP released) for cultures grown 

in pNPP or bis-pNPP. In spite of the absence of detectable cell-bound PDEase 

activity in cultures grown with DNA as P source, the yield in freshwater 

medium was twice that of the control. Extracellular PMEase and PDEase 

activities were not detected in any experiment. 

When the same concentration of NaCl as that used in saline growth medium 

was included for assays of cultures grown in freshwater medium, mean decreases 

of 33% and 19% for cell-bound PMEase and PDEase activities, respectively were 

recorded. These differences are much less than those for the activities 
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subsequent to growth in the two different media, showing that the reduced 

activity is not simply due to inhibitory effects of NaCl during this assay. 

Morphological observations on cultures grown to P limitation in freshwater 

and saline media showed that the trichomes in the former ended in long hairs. 

Azo-dye staining in freshwater and saline versions transferred to freshwater 

medium (>12 h) for cell-bound PMEase activity showed that there was a sharp 

transition between the hair with activity and the remainder of the trichome in 
'jfown "to p_ \",11\.\\..cl,,of\J 

both (Fig. 6.1). There was no detectable staining of trichomes:in saline 

medium grown to P limitation. 

PMEase activity of cultures grown in freshwater medium was undetectable 

below pH 7.0 and maximal at pH 12.2 (Fig. 6.2b). Maximum activity was at 

sooc and above sooc activity was undetectable (Fig. 6.2a); these values may be 

compared with growth on a temperature plate, where the optimum was 32oc and 

minimum and maximum temperatures for survival in culture were 13°C and 39oc, 

respectively. The influence of Na+, K+, ca++, Mg++, zn++ and phosphate was 

tested over the concentration range 0 - 10 mM (Fig. 6.3a,b). The most 

obvious effects were a marked rise in activity with increased Ca and decreased 

activity at higher concentrations of Mg and phosphate; there was no detectable 

PMEase activity in the absence of Ca. The decrease in activity due to Na was 

negligible over this range although 90 mM NaCl led to a 33% reduction in 

activity (see above) . 

Transfer of cultures from saline to freshwater medium led to the 

development within 24 h of a long hair at the end of 90% of the trichomes 

(Fig. 6. 4d) . The morphological change was especially well synchronized when 

the inoculum was taken from a culture fully adapted to growth in saline 

medium. The formation of hairs and a rise in PMEase activity shown by 

hydrolysis of pNPP commenced at the same time (Fig. 6.4). 

The addition of P to the P-limited cultures led to release of hormogonia in 

both saline and freshwater media, but whereas in the former the hormogonia 
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were differentiated from the terminal part of the trichome, in the latter they 

formed below the hairs, with the hairs being shed. 

The response of material with long hairs developed in freshwater medium to 

transfer to saline medium was for the hairs to be shed and to float to the 

surface. About half the hairs were shed within 24 h and most within three 

days; no separation disc was formed during the loss of the hair. Increase of 

NaCl also led to the development of intrathylakoidal vacuoles in many 

vegetative cells, especially towards the apical end of the trichome and 

typically with one vacuole adjacent to the cross-wall at the apical end of a 

cell. 

There was an indication that Ca may modify the influence of NaCl on hair 

formation. After 16 d in saline medium hairs were 20 - 30 ~ long and 

%hairiness was 2-5% in 0.234 and 1 mM Ca. However with higher Ca 

concentrations (5-20 mM) %hairiness increased to 80% and hair length was 

between 80-150 ~' but the cultures subsequently became brown and many 

trichomes lyzed. 

There was no detectable effect on hair formation, PMEase and PDEase 

activities,or localization of PMEase activity shown by azo dye staining with 
- ' 

varying concentrations of mannitol or sorbitol. 

There was no effect on hair formation or PMEase activity after 24 h when 

cultures were transferred from saline medium to freshwater medium with 1, 5, 

10 or 15 units ml-1 of polymixin B sulphate. However, with 20 units ml-1 of 

polymixin B sulphate, hair formation and PMEase activity was inhibited after 

24 h. However at 48 h vegetative cells showed signs of bleaching. 
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Fig. 6.1 Tapered part of the trichome in Calothrix 253, showing sharp 

transition between hair cells (h) stained for PMEase activity and vegetative 

cells lacking activity. Staining was carried out with naphthol AS-MX 

phosphate as the organic P source and Fast Blue RR diazonium salt as the 

coupling agent. (Similar results obtained when hairs were formed as a direct 

response to P limitation or due to transfer from saline to freshwater medium) . 

Scale bar = 10 ~-

....... 
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Fig. 6.2 Inf1uence of temperature (a) and pH (b) on cell-bound PMEase 

activity in Calothrix 253. Cultures ~ere gro~n for 16 d at 32°C and 100 ~ol 
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Fig. 6.3 Influence of ionic composition on cell-bound PMEase activity in 

Caloth:rix 253. Cultu:res tore:re g:rotorn fox: 16 d at 32oc and 100 J.!InOl photon m-2 
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Fig. 6 . .(1, Tims course of changes in morphology and csll~bound PMEass activity 

of P l~tad Calothrix 253 follo~ing transfer from saline to freshwater 

medium: a) PMEase activity; b) trichoms length; c) hair length; d) % trichomes 

with hairs. 
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Table 6.2. Influence of salinity on yield and cell-bound PMEase and PDEase activities of Calothrix 253 after batch 

culture with various P sources (all 1 mg 1-1 P). Inoculum 10 mg 1-1 d. wt; cultures grown for 16 d at 32•c and 100 ~ol 

photon m-2 s-1 PAR; n = 4. 

yield PMEase PDEase 

(mg 1-1) (~ol pNP mg d. wt-1 h-1) 

medium - NaCl + NaCl - NaCl + NaCl - NaCl + NaCl 

no added P 74.7 ± 3.9 65.0 ± 8.8 

pi 431.4 ± 21.6 393.7 ± 28.0 5.16 ± 0.38 0.34 ± 0.03 0.06 ± 0.005 < 0.02 

pNPP 216.3 ± 26.1 142.0 ± 12.5 2.42 ± 0.15 0.16 ± 0.01 0.26 ± 0.02 < 0.02 

MNP 170.7 ± 9.7 88.0 ± 2.8 0.73 ± 0.11 < 0.02 0.06 ± 0.003 < 0. 02 

~-glyceroP 209.7 ± 15.2 193.0 ± 12.8 1.70 ± 0.08 0.20 ± 0.01 0.06 ± 0.008 < 0.02 

ATP 139.7 ± 2.0 41.4 ± 4.9 0.44 ± 0.09 < 0.02 < 0. 02 < 0.02 

bis-pNPP 131. 9 ± 7.2 37.0 ± 4.2 5.37 ± 0.58 < 0.02 0.49 ± 0.08 < 0.02 

DNA 143.2 ± 4.9 50.2 ± 3.8 0.14 ± 0.01 < 0.02 < 0.02 < 0.02 

phytic acid 193.7 ± 13.3 191.0 ± 12.1 6.51 ± 0.90 0.18 ± 0.01 0.07 ± 0.007 < 0.02 

I-' 
N 
0'1 



6.2 INFLUENCE OF SALINITY ON 8 HAIR-FORMING RIVULARIACEAE 

6.21 Introduction 

Hair formation in Calothrix 253 (6.1) was inhibited by NaCl (>67.5 mM-), 

which resulted in~~c~~nof the association between hair cells and PMEase 
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activity in Calothrix 253. A further eight hair-forming Rivulariaceae (Table 

2.1) were chosen to see if the effect of NaCl was repeatable in other strains. 

If any strains showed a similar response, further work on the effect of pH on 

cell-bound PMEase activity would be carried out. The effect of pH was 

chosen, as this was the most characteristic feature of cell-bound PMEase 

activity in Calothrix 253. 

6.22 Method 

Eight strains were chosen: 1. Calothrix 184, 2. Calothrix 251, 3. Calothrix 

266, 4. Calothrix 550, 5. Calothrix 572, 6. Calothrix 690, 7. Dichothrix 808, 

8. Dichothrix 809. 

These strains were grown for 16 d in Chu 10D-N + NaCl at 32oc and 100 ~ol 

photon m-2 s-1 (2.562). The concentrations of NaCl used were 45, 67.5, 90, 

112.5 and 135 mM. 

formation (2.72). 

After 16 d the cultures were examined for changes in hair 

The effect of pH between pH 7.0- 12.6 on cell-bound 

PMEase activity was investigated as in 6.12 and duplicate buffers were used at 

each pH value (Table 6.1). 
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6.23 Results 

There was no effect on hair formation in seven of the eight strains tested. 

However, in Calothrix 690 NaCl had a marked effect. There was a gradual 

decrease in hair formation above 45 mM NaCl and no hairs formed at 135 mM 

NaCl. The decrease in hair formation in Calothrix 690 was not as sharp as in 

Calothrix 253. 

The effect of pH on cell-bound PMEase activity in Calothrix 690 was very 

similar to Calothrix 253 with a high pH optimum of 11.8 (Fig. 6.5). Previous 

to this work the highest PMEase pH optima reported were between pH 9.0 - 10.4. 

It is interesting to note that the two major similarities between Calothrix 

253 and 690 are the effect of NaCl on hair formation and the high pH optima of 

cell-bound PMEase activity. 
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Fig. 6.5 Influence of pH (7.0-13.0) on cell-bound PMEase activity in 

Calothrix 690. Culture was grown for 16 d ~t 32°C and 100 ~ol photon m-2 s-1. 
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6.3 EFFECT OF REDUCING NaCl IN CHU 100-N ON HAIR FORMATION IN 12 NON HAIR

FORMING RIVULARIACEAE 

6.31 Introduction 

Hair formation in Calothrix 253 and 690 was inhibited by increasing the 

NaCl concentration above 67.5 rnM in Chu 10D-N. Of the 30 Rivulariaceae 

strains tested in Chapter 3, 21 did not form hairs when P-deficient (3.3), 

although hair formation was .Sil1<i\q:.· in some of the field isolates. Hair 

formation in these strains may be inhibited by the relatively high levels of 
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Na in Chu 10D-N in comparison to the levels of Na in the field Therefore, 12 

selected strains were grown in medium with reduced sodium until P-deficient, 

and observed for hair formation or changes in trichome structure. 

6.32 Method 

In Chu 10D-N (Table 2.4 and 2.6) HEPES was reduced to 0.06g 1-1 and 

buffered at pH 7.6 with 1 M KOH. K increased from 0.057 rnM to 0.511 mM, P 

was reduced from 0.032 rnM to 0.025 mM and 0.23 ml of the NaHC03 stock was 

added to 1 litre of medium. The final concentration of sodium was reduced 

from 1.67 mM to 0.022 mM. Cultures were grown for 16 din the growth room 

(2. 561) at 32°C and 60 f.llllOl photon m-2 s-1 in a 14 h light and 10 h dark cycle. 

This was the closest comparison to field conditions. After day 16, cultures 

were compared against controls for any changes in trichome morphology (2.772). 

Cell-bound PMEase activity at pH 10.3 (2.441) and localization of activity 

using azo-dye (2.731) were determined in strains with a marked response to a 

reduction in NaCl. The non hair-forming strains were Calothrix 603, 624, 

730, 764, 794, 795, 796 and 802 and Gloeotrichia 281, 613, 626 and 743. 

Calothrix 550 was used as a control. 



131 

6.33 Results 

There were no marked changes in trichome morphology except in Calothrix 764 

and Gloeotrichia 281 and 613. In these strains there were marked increases 

in trichome length. The cultures appeared healthy, although vacuolation was 

noted in the tips of the longer trichomes. No cell-bound PMEase activity was 

localized using azo dye in Gloeotrichia 281 and 613, which were similar to the 

results previously obtained for these strains (Table 3.13), suggesting that 

the strains were unable to hydrolyze naphthol AS-MX phosphate. However, in 

Calothrix 764 activity was localized in the tips of the trichomes, where 

extension and vacuolation had occurred (Fig. 6.6). A completely different 

pattern of localization occurred in the control. The entire filament in 

mature trichomes was stained and no specific localizations in the apices were 

noted (Table 3.13, 3.3). 

Assays of cell-bound PMEase activity in Gloeotrichia 281 and 613 and 

Calothrix 764, using pNPP, showed no marked differences to the controls. 

These results suggest that although trichome morphology had changed markedly, 

the type and level of PMEase activity had possibly been redistributed. The 

reduction in Na had no effect on hair formation in Calothrix 550. 
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Fig. 6.6 Cell-bound PMEase activity localized in the tapered part of the 

trichome in Calothrix 764. Culture was grown in reduced sodium for 16 d. 

Staining was carried out with naphthol AS-MX phosphate as the organic P source 

and Fast Blue RR diazonium salt as the coupling agent. Scale bar = 10 ~-

....... 



C~TER 1 

PO~ UPTAKE IN SALINE AND FRESHWATER VERSIONS OF 

C@l©~h~ix 253 AND XN C~loth~ix 550 

7.1 INTRODUCTION 

In Chapters 5 and 6 phosphatase activity and its relationship with hair 

formation and trichome structure in saline Calothrix 253 and freshwater 

Calothrix 253, Calothrix 550 and Calothrix 690 were studied. Previous 
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experiments suggested that hair formation, phosphatase activity and effective 

hydrolysis of external high concentrations of organic P in the environment are 

all linked. In order to utilize effectively Pi released from the hydrolyzed 

organic P sources, these strains must also possess a system for Pi uptake at 

high external concentrations. An uptake system for high NH 4-N concentrations 

was proposed by DeBoer and Whoriskey for Ceramium rubrum (1983, 1.4) and this 

uptake system was located in the hairs of the alga. 

As hairs are sites of organic P hydrolysis and thus the site for release of 

Pi, it is likely that they are also a site for Pi uptake. It was therefore 

decided to conduct P04 uptake experiments in Calothrix 253 and 550, to see if 

there was an association between hair formation and P04 uptake in the 

Rivulariaceae. The Km and Vmax of Pi uptake, the influence of light and dark, 

metabolic inhibitors, pH and ions on Pi uptake were examined. 

Use of saline and freshwater versions of Calothrix 253 provided a means 

whereby direct comparison could be made on P04 uptake (as in phosphatase 

studies, 6.1) in a species with and without hairs and in the same P status. 

Calothrix 550, a marked hair-forming strain, was used to compare Vmax and Km 

values for Pi uptake reported in other cyanobacteria (1.72). 

7.2 METHOD 

Algae were grown in 1-litre flasks, shaken twice a day to prevent co2 

limitation, for 16 d at 32°C and 60 ~ol photon m-2 s-1 and harvested as before 
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(2. 441). They were then resuspended in Chu 10D-N,-P (2.531), buffered at pH 

7.6 with 0.25 mM HEPES (2.54), lightly homogenised through a 50-ml syringe and 

divided into 20-ml aliquots in 100-ml flasks. The flasks were incubated in a 

growth room at 32°C and 60 ~ol photon m-2 s-1 (2.561) on an orbital shaker. 

4 x 20 ml aliquots were used for dry wt (2.57) and cellular P (2.61) 

determination. All flasks were pre-incubated for 1 h before experiments on 

Pi uptake were carried out. Pi (pre-incubated to 32°C) was added at different 

concentrations and experiments ran between 4 and 20 min. Reactions were 

terminated by passing 10-ml aliquots of homogenate through GF/F filters. 

Soluble reactive phosphorus (SRP) remaining in the filtrate was determined 

(2.61) and Pi uptake was recorded as ~ol P mg dry wt-1 h-1. 

The influence of light, dark and 20 ~ 3-(3,4-dichlorophenyl)-1,1-

dimethylurea (DCMU) was tested on Pi uptake. DCMU is a direct inhibitor of 

the Hill reaction and an indirect inhibitor of photosystem I. The effects of 

these variables on Pi uptake were determined using KH 2P04 between 0-60 ~. 

Flasks were incubated in the dark (2.42) for 1 h. 

prior to the addition of Pi. 

DCMU was added 10 min 

The influence of pH, between pH 4-11, was tested at two different 

concentrations of P04 • Duplicate buffers were used at each pH value (Table 

2.3), the buffer which led to the higher Pi uptake value (Table 7.1) was used 

in Figs 7.1 and 7.2. The effect of 0.01 mM, 0.1 mM, 1 mM and 10 mM ca++ and 

Mg++ (5.32) on Pi uptake was determined using 15 ~ P04 . 

were determined from Lineweaver-Burke plots (5.4). 

Km and Vmax values 
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Table 7.1 Buffers, which led to higher P uptake values, used for experiments 

in Figs 7.lc and 7.2c to determine the influence of pH on P04 uptake in a 

freshwater version of Calothrix 253 and in Calothrix 550. 

pH 

4 

5 

6 

7 

7.6 

8 

9 

10 

11 

f/w 253 P04 uptake buffer 

DMG 

HE PES 

HE PES 

HE PES 

AMeP 

AMeP 

7.3 RESULTS 

550 P04 uptake buffer 

DMG 

DMG 

HEPES 

HEPES 

TES 

glycine 

glycine 

Highest Vmax values were in Calothrix 550 and the lowest values were in 

saline Calothrix 253 {Table 7.2). Dark and 20 ~ DCMU reduced Km and Vmax 

values in freshwater Calothrix 253 and Calothrix 550 {Figs 7.1a,b and 7.2a,b). 

P1 uptake was reduced by 60% at concentrations below 20 ~ P04 in freshwater 

Calothrix 253 and Calothrix 550 However, at higher concentrations {20 ~ 

and above) there was no observable inhibition of Pi uptake in the dark or with 

DCMU. 

The highest Vmax value in freshwater Calothrix 253 was 0.852 ~ol P mg-1 h-1 

and in saline Calothrix 253, at a similar state of P-deficiency {Table 7.2), 

the vmax was 0.221 ~ol p mg-1 h-1. The ratio of Km and Vmax in freshwater and 

saline Calothrix 253 is also lower in saline Calothrix 253. It was suggested 

by Healey (1982) that the ratio of Km to Vmax was a better indication of Pi 

uptake in algae. Low Pi uptake, Km (high affinity) and Vmax (low velocity) 



values in saline Calothrix 253, non-hairy (P-deficient), suggest that Pi 

uptake in this version was effective at low Pi concentrations. Pi uptake 

values in hairy freshwater Calothrix 253 were higher at both high and low P1 

concentrations. This suggests that different Pi uptake systems may exist in 

the two versions of Calothrix 253. 

The absence of light and 20 ~ DCMU reduced uptake values between 0-20 ~ 

P0 4, but had no effect at higher P04 concentrations in freshwater Calothrix 

253 and 550. 

The influence of pH and ions on Pi uptake on saline Calothrix 253 was not 

determined as Pi uptake values were very low at standard conditions (Fig. 

7. 2a). The influence of pH was similar at 15 and 50 ~ P04 in freshwater 

Calothrix 253 and 550, except that greater Pi uptake occurred at 50 ~ P04 • 

There was no Pi uptake at pH 4 and 11 in Calothrix 550 and optimal Pi uptake 

was at pH '8 at 15 and 50 ~ P04 (Fig. 7 .1c) . In freshwater Calothrix 253 

optimal Pi uptake was at pH 9, for both 15 and 50 ~ P04 , and there was no 

uptake at pH 4, 5, 10 and 11 (Fig. 7.2c). At pH 9 uptake had increased by 

100% in freshwater Calothrix 253 in comparison to pH 7.6 (Fig. 7.2c). 
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Mg++ concentrations above 0.1 mM inhibited Pi uptake in Calothrix 550 (Fig. 

7.1d), ca++ had no effect on uptake. In freshwater Calothrix 253, ca++ had a 

slight stimulatory effect and Mg++ had no observable effect on uptake (Fig. 

7 .2d). 



137 

Table 7.2 Influence of light, dark, 20 ~ DCMU on Km, Vmax and the ratio of 

Km and Vmax in Calothrix 550 and in saline and freshwater versions of Calothrix 

253. 

cellular P Km Vmax K Vmax m 
(% dry wt) 

light f/w 253 0.42 14.836 0.852 17.413 

light saline 253 0.48 1.353 0.221 6.122 

dark f/w 253 0.42 7.870 0.544 14.466 

DCMU f/w 253 0.42 5.586 0.642 8.700 

light 550 0.37 12.930 1. 757 7.359 

dark 550 0.37 4.421 1. 438 3.074 

DCMU 550 0.37 5.227 1.597 3.273 
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Fig. 7.1 Effect of anvironmsnta1 variab1as on P04 uptake in P-deficient 

Ca1othrix 550: a) light and dark; b) 20 ~ DCMU; c) pH ~-11; d) 0.01-10 mM 

ca++ and Mg++. 
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Fig. 7.2 Effect of environmental variablas on P04 uptake in P-deficient 

freshwater and saline versions of Calothrix 253: a) light and dark; b) 20 ~ 

DCMU; c) pH ~-11; d) 0.01-10 mM ca++ and~+. 
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LOCALIZATION OF PHOSPHOMONOESTERASE ACTIVITY IN HAIR-

8.1 INTRODUCTION 

Localization of cell-bound PMEase activity in hair-forming Rivulariaceae, 

using the azo dye naphthol AS-MX phosphate (2.732), showed that hair cells 

were the major site of cell-bound PMEase activity (3.3, Fig 6.1). Previous 

research (Whitton, 1988) showed that hairs in eukaryotic algae were also 

possible major sites of phosphatase activity, although the staining techniques 

used were not very specific. 

Naphthol AS-MX phosphate had been developed as an efficient substrate to 

localize cell-bound PMEase activity in cyanobacterial strains (2.732). 

However this technique had not been used on eukaryotic algae. Therefore, it 

was decided to see if localization of PMEase activity on hairs, using naphthol 

AS-MX phosphate, also occurred in eukaryotic algae. 

lhrtthair-forming eukaryotic algae Draparnaldia sp., Batrachospermum sp. and 

Lemanea sp. were obtained from calcareous field sites with high concentrations 

of organic P. Draparnaldia sp. and Batrachospermum sp. originated from a 

stream at Middleton Quarry, Teesdale, NE England and Lemanea sp. originated at 

a ford on the River Wear, Stanhope, NE England. The pH optimum of cell-bound 

PMEase activity in Batrachospermum sp. was also tested to compare with the 

optima in hair-forming Rivulariaceae. 

8.2 METHOD 

Field material was collected in source water in glass snap-cap vials and 

C~>... 

stored at"4°C. Material was used immediately after returning from the field 

sites. Material was washed several times in assay medium (2.532) to remove 

debris and stained for cell-bound PMEase activity using naphthol AS-MX 
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phosphate (2.732). The influence of pH on activity of cell-bound PMEase 

activity in Batrachospermum sp. was tested between pH 3-11 in universal 

bottles (2.431, 2.536) at 32•c and 100 ~ol photon m-2 s-1. Duplicate buffers 

were used at each pH value (Table 2.3), the buffer giving the higher activity 

was used in Fig. 8.2. 

8.3 RESULTS 

Distinct localization of PMEase activity was detected only in the hair 

cells in Draparnaldia sp. and Batrachospermum sp. (Fig. 8.1). However, no 

localization was detected in Lemanea sp. Possibly the absence of 

localization in Lemanea sp., as in other algae tested (3.3, Table 3.13), was a 

result of either the inability to hydrolyze the substrate or a combination of 

the short incubation time required by the assay and low activity in the 

sample. Optimal cell bound PMEase activity in Batrachospermum sp. was at pH 

10.3 (Fig. 8.1), which is similar to the significantly high pH optima found in 

hair-forming Rivulariaceae (Table 3.5 and 3.7). 
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Fig. 8 . 1 Localization of cell - bound PMEase activity in the hair cells of 

Batrachospermum sp. Scale bar 1 0 fill\ . 
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9.1 PHOSPHATASE ACTIVITIES AND ORGANIC PHOSPHORUS UTILIZATION IN 51 

CYANOBACTERIA 

All 51 cyanobacterial strains tested exhibited inducible cell-bound PMEase 

activity at either pH 10.3 and/or pH 7.6 (Table 3.10). Amongst these strains 

the Rivulariaceae were the most efficient at organic P utilization (Table 3.6) 

and generally had significantly higher cell-bound PMEase activities at pH 10.3 

(Table 3. 7) . 

Synechococcus compared lll'lt\··. Rivulariaceae had significantly lower yields in 

all the P sources, except ATP (Table 3.6), and significantly lower cell-bound 

PMEase activities at pH 10.3 and pH 7.6 (Table 3.7). Five out of the seven 

Synechococcus strains were unable (P = 0.001) to utilize phytic acid (Table 

3.6), and varying incubation conditions with phytic acid led to no increase in 

yield in any of the Synechococcus strains (3.3). Phytic acid is a major 

component of the colloidal phosphorus present in aquatic environments and is 

hydrolyzed by the group of phosphatases known as phytases (Mitchell and Read, 

1981). As Synechococcus is a genus which is mainly planktonic it may be 

adapted to utilize low external concentrations of Pi and dissolved organic 

phosphorus (DOP) substrates typical of a planktonic environment. Pettersson 

(1980) suggested that Synechococcus strains in Lake Erken adapted to the low 

concentrations of organic P by increasing the substrate affinity (reducing Km 

of their PMEases) . 

However, hair-forming Rivulariaceae were significantly more effective at 

utilizing phytic acid than non hair-forming Rivulariaceae strains (Table 3.6) 

and five out of seven Nostoc strains had high yields in phytic acid (Table 

3.2). These strains may be adapted to environments where a major source of P 

is colloidal or P associated with high molecular weight compounds (Broberg and 
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Persson, 1988) . Seven of the nine hair-forming strains were isolated from 

stream habitats (Table 3.10a) and Calothrix 550 was isolated from an 

environment where organic P in the March-May period (Livingstone and Whitton, 

1984) reached 1.0 mg 1-1 P. Possibly hair-forming strains may be adapted to 

stream environments with high concentrations of colloidal organic P. 

Three hair-forming strains were unable to utilize ATP and the cultures 

became bleached (3.3), which suggests that ATP is toxic to these strains. 

Comparison of the utilization of ATP in hair-forming strains, showed that they 

were significantly less effective than non hair-forming strains at utilizing 

ATP (Table 3.2 and 3.6). Possibly ATP at high concentrations enters the hair 

cell resulting in disruption of cell metabolism and cell death. If this was 

the case organic P at high concentrations may also be hydrolyzed within the 

hair cell. 

Rivulariaceae had significantly higher levels of cell-bound PMEase activity 

at pH 10.3 than the other taxa tested (Table 3.3 and 3.7), which is towards 

the upper end of the range observed for other cyanobacteria (pH 8-10: Healey, 

1973; Ihlenfeldt and Gibson, 1975 and Healey and Hendzel, 1979) . In hair-

forming strains cell-bound PMEase activity significantly declined below pH 

10.3 (Table 3.3 and 3.7). As cell-bound PMEase activity is significantly 

higher in Rivulariaceae strains (Table 3.7) it suggests that high 

concentrations of phosphomonoesters may also be a major P source along with 

phytates and colloidal P utilized by hairy strains. 

Strains isolated from deepwater and paddy rice habitats were effective at 

hydrolyzing the phosphodiesters bis-pNPP and DNA (Table 3.10a). Correlated 

with effective utilization of phosphodiesters are significantly higher levels 

cell-bound PDEase activity in deepwater rice strains compared to isolates from 

streams and ponds (Table 3.12). Phosphodiesters, such as nucleotides, have 

been identified as major pools of DOP in various environments (Broberg and 

Persson, 1988) . Phosphodiesters may therefore be a major organic P fraction 
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available in deepwater and paddy rice habitats. If this is so, it may be one 

reason to explain why cyanobacteria are very successful in these habitats. 

Extracellular PDEase activity was only detected in six strains, all isolated 

from deepwater rice areas, whereas 48 strains had extracellular PMEase 

activity (Table 3.10). It is likely that PDEases are generally cellular and 

cell-bound enzymes, although there are apparently no comparisons of PMEase and 

PDEase activity for micro-organisms. PDEase activity compared v11th PMEase 

activity was always lower, which may suggest that there is less PDEase than 

PMEase enzyme present. However, as suggested by Kelly et al. (1975), the 

lower PDEase activities may be caused by the fact that bis-pNPP is difficult 

to hydrolyze whereas pNPP is easily hydrolyzed (1.66). Precaution must 

therefore be taken when comparing activities, as they can depend on the 

substrate used (1.66). Isolation of PDEases (1.661) in a wide variety of 

organisms proved that PDEase activity is attributed to completely different 

enzymes and is not the result of PMEases acting on phosphodiesters. 

Extracellular PMEase activity at pH 10.3 was significantly higher in pond 

isolates compared to other physical environments tested (Table 3.12). In 

planktonic environments, such as ponds and lakes, the organic P levels may be 

more constant and less prone to fluctuations than in other environments. 

Possibly extracellular PMEases are more effective at utilizing organic P 

sources in planktonic environments compared to environments where phosphatases 

are likely to be carried away from the site of synthesis. 

No major differences were found between strains originating from calcareous 

and non-calcareous environments in the utilization of organic P sources. 

However the mean rank of phosphatase activities were higher in calcareous 

isolates (Table 3.11b). Calothrix and Gloeotrichia were generally the most 

effective genera in the Rivulariaceae at utilizing organic P sources and were 

the genera with the highest phosphatase activities (Table 3.8 and 3.9). 
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Overall the 51 cyanobacterial strains have shown significant patterns of 

phosphatase activities and the utilization of various organic P sources in 

relation to various taxa and physical environments tested. However, further 

work on more taxa would be needed to conclude that the Rivulariaceae is the 

taxon most suited to habitats where organic P is present in high 

concentrations. 

Localization of PMEase activity with naphthol AS-MX phosphate (3.3, Table 

3.13), in the cyanobacterial strains tested, fell into two broad patterns. 

Distinct separation of PMEase activity on the hair and none in the remaining 

trichome was shown for seven hair-forming Rivulariaceae. In Calothrix 

parietina 184 and 550 the opposite staining pattern occurred. However, 

localization of PMEase activity in Calothrix 550 with BCIP showed localization 

of activity on hair cells, sheath and mucilage. It is possible that the 

PMEases located in hair cells of Calothrix 550 and 184 were unable to 

hydrolyze naphthol AS-MX phosphate. The second pattern was found in the 

remaining cyanobacterial strains where no distinct PMEase localization or 

specialization of cells was noted. PDEase activity, when detected in a 15 

min incubation with ~-naphthyl phenylphosphonate (2.733, 3.3), had no specific 

area of localization. The patterns of PMEase and PDease localizations are 

therefore in complete contrast. The differences in localization may suggest 

that PMEase and PDEase activities in the cyanobacterial strains studied are 

the result of different enzymes. 

9.2 EFFECT OF ORGANIC PHOSPHORUS SOURCES ON PHOSPHATASE ACTIVITY AND HAIR 

FORMATION 

Induction of phosphatase activity has been rarely investigated in algae 

(Aaronson and Patni, 1976). Calothrix 202, 550 and 603 (4.1) when grown in a 

range of organic P sources had the highest phosphatase activities in bis-pNPP 

and lowest activities in Pi. Differences in activities in the various 
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organic P sources were probably not caused by induction, but by a variation in 

cellular P values, i.e. bis-pNPP had lower cellular P values than Pi at the 

same time (day) in the growth curve (Fig. 4.1, 4.133, 4.134). Synthesis of 

cell-bound and extracellular PMEase activity started when cellular P values 

were between 0.6%- 1% dry wt (Fig. 4.1, Fig.4.3 and Fig. 4.4)). 

Cell-bound PDEase activities, per unit biomass, in Calothrix 202 and 550 

were highest at 4 d and reduced thereafter (Fig 4.7), which suggests that the 

synthesis of PDEases started when cellular P values were above 1% (Fig. 4.3). 

Possibly PDEases in these strains are constitutive enzymes synthesized 

independently of the P status. This is in direct contrast to PMEases, which 

are generally inducible enzymes where synthesis increases with P-deficiency 

(Healey, 1982). 

Hairs were not observed in Calothrix 202 under various field and laboratory 

conditions, Calothrix 550 formed hairs under P-deficiency in both conditions 

and Calothrix 603 only formed hairs in the field (4.111). Calothrix 202 and 

603 did not form hairs in any organic P source tested, although similar 

patterns of phosphatase activity compared to Calothrix 550 were reported 

(4.134). It was possible that hair formation in Calothrix 603 was inhibited 

by the composition of the medium (6.3, 9.4). Calothrix 202 had no detectable 

extracellular phosphatase activity. Possibly Calothrix 202 was adapted to a 

freshwater pool in Aldabra (Table 2.1) prone to fluctuations of organic P 

(Whitton pers. comm.) and the possession of extracellular PMEases may not have 

confered any advantage (9.1). 

9.3 PROPERTIES AND LOCALIZATION OF CELL-BOUND AND EXTRACELLULAR 

PHOSPHOMONOESTERASES IN HAIR-FORMING RIVULARIACEAE 

In Chapter 5 and 6 effects of environmental variables, ionic composition 

and localization of PMEase activity were tested in hair-forming freshwater 

Calothrix 253 and 550 (6.12). No extracellular PMEase activity was detected 
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strain (3.3). 
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Calothrix 253 and 550 had typical inducible PMEase activity increasing with 

the onset of P-deficiency and synthesis of enzyme was inhibited with addition 

of Pi (McComb et al., 1979). Both algae had high pH optima for cell-bound 

PMEase activity at pH 10.0-10.2 (5.23, Fig. 5.2) and pH 12.2 (6.13, Fig. 6.2), 

respectively. Temperature optima were also high for Calothrix 253 and 550 at 

50°C (6.13, Fig. 6.2) and 45°C (5.13, Fig. 5.1), respectively. These results 

suggest that maximum activities reported in the laboratory (>10 ~ol pNP mg 

dry wt-1 h-1) would not be achieved in field conditions, e.g. Calothrix 550 

originates from an environment with ax pH of 7.8 (Grainger et al., 1989), a 

pH value at which laboratory activity is about 40% of the maximum. 

Temperature optima in Calothrix 550 (45°C) were above temperatures likely 

to be encountered in its original environment (Grainger et al., 1989), and for 

most of the year activity may be expected to be less than 30% of the maximum. 

It is difficult to comment on Calothrix 253 as there are few data on its 

original environment (isolated by J. Komarek, from the upper part of a 

mangrove root in Cuba, see 6.1). However it is unlikely that a temperature 

of 50°C or a pH of 12.2 would be reached. 

Calcium had the greatest stimulatory effect in Calothrix 253 (5.33, Fig. 

5.3) and 550 (6.13, Fig. 6.2b), which matches the results in other 

cyanobacteria (Glew and Heath, 1971; Healey, 1973 and Doonan and Jensen, 

1980). Concentrations of Ca are likely to reach levels in the environment 

(>1 mM, 5.33), which are sufficient to increase phosphatase activities. In 

Calothrix 253, Ca was required for activity, suggesting this element plays a 

vital role in enzyme structure. Possibly Ca is an integral part of the 

active site of the enzyme in Calothrix 253 as in Micrococcus sodenensis (Glew 

and Heath, 1971). PMEase activity in both strains was inhibited by Mg, 

although it has been reported to be stimulatory in ~. coli (Schlesinger et 
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al., 1969), Aspergillus niger (Dorn, 1968) and Pseudomonas aeruginosa (Day and 

Ingram, 1973) . The inhibitory effect of EDTA on PMEase activity in Calothrix 

550 (5.33) and Nostoc commune (Whitton et al., in press) was similar to that 

found in other studies (Whitt and Savage, 1988), which suggests that one or 

more metals are needed for PMEase activity in algae as they are in 

heterotrophic bacteria and mammalian PMEases (Whitt and Savage, 1988) . 

From the above information it is likely that cyanobacterial PMEases are 

similar to PMEases in heterotrophic bacteria in that they are metallo-enzymes; 

have high temperature optima, are inhibited by Pi, are generally alkaline and 

inducible and have an overall similar structure. However, the major 

differences from heterotrophic PMEases are the high pH optima (>pH 10.0) and 

the common stimulatory effect of calcium (Doonan and Jensen, 1979). It is 

possible that the PMEases are glycoproteins bound to a surface (5.33) unlike 

bacterial PMEases which are commonly periplasmic enzymes (1.62). 

Properties of PMEase inN. commune (Whitton et al., in press) contrast with 

most of the properties of PMEase activity in hair-forming Rivulariaceae 

strains. N- commune had a lower pH optimum (pH 7.0) and a lower temperature 

optimum (32°C), which is very similar to the properties of typical 

heterotrophic bacterial PMEases (1.62). Five Nostoc strains tested (3.1) 

also had lower activities at pH 10.3 versus pH 7.6 (Table 3.9). N. commune 

was able to utilize all of the organic P sources except phytic acid (Whitton 

et al., in press); a similar result was also found in Nostoc 201 (Table 3.2 

and 3.8). The above result in these two Nostoc strains, which originated 

from similar environments as hair-forming Rivulariaceae strains (Table 2.1), 

is the direct opposite as hair-forming Rivulariaceae which are effective at 

hydrolyzing phytic acid (9.1). The ability to hydrolyze phytic acid may be 

very important to Rivulariaceae as their environments may have a large 

proportion of available phytic acid. Herbes et al. (1975) suggested that 

phytic acid may be an important organic P source in freshwater environments. 



Effects of ions on phosphatase activity of N. commune were similar to those o5 

Ca1othrix 253 and 550. 
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Evidence that hairs are an important site of phosphatase activity in 

Calothrix 550 was obtained by using a cellular fraction consisting of detached 

hairs (5.32). This fraction showed high activity with pNPP, BCIP and the 

phosphodiester bis-pNPP, but no activity with naphthol AS-MX phosphate (cf. 

9.1) . This experiment concluded that hairs in Calothrix 550 contained high 

levels of cell-bound PMEase and PDEase activity. The procedure for 

detachment and collection of hairs would remove any contaminating cellular 

phosphatases. Localization of activity on the hairs in Calothrix 550 was 

achieved with BCIP (2.731, 5.33, Fig. 5.4). 

The differing responses of Calothrix 550 to BCIP in shaken vials and under 

a coverslip may be due to differing availabilities of 0 2 . Staining by BCIP 

results from two separate reactions (Coston and Holt, 1958) . BCIP is first 

hydrolyzed, releasing one molecule of soluble, colourless indole and one 

molecule of Pi; this is followed by an oxidation step, which leads to the 

formation of the insoluble blue indigoid pigment, 5-bromo-4-chloro-3-indigo, 

localized at the site of PMEase activity (Fig. 5.4). Staining is therefore 

dependent on enzyme activity and presence of o2 (2.731). The initial o2 

concentration is about 15 mM (at 32°C), whereas BCIP is supplied at 1 mM. 

Released indole will scavenge 0 2 . Unless photosynthetic 0 2 evolution 

compensates for this, it will lead to a reduced concentration under the 

coverslip, whereas the saturation concentration will be maintained in the 

shaken vial. It is likely that under the coverslip indole enters the hair 

cell initially and is then oxidized in the cytoplasm by 0 2 resulting from 

photosynthesis. 

Further proof of localization of PMEase activity in hair cells was 

envisaged using antibodies obtained from purified PMEase. PMEases were 

partially purified from the extracellular fraction on a non-denaturing 
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polyacrylamide gel (5.33). Four separate PMEase bands were detected with 

BCIP (Fig. 5.4a); however these bands were not retrievable by physical means 

(5.32) and lost activity when left on polyacrylamide gels for longer than 12 

h. PMEase bands 1, 2 and 4 (Fig. 5.44a,b), which were the major PMEase bands 

present, were bound to carbohydrate (Fig. 5.4b). As PMEases were bound to 

carbohydrate, except for band 3, it is likely this prevented removal of the 

PMEases by mechanical means. 

It is difficult to determine whether the different bands are structurally 

different extracellular PMEases as the association of proteins, a common 

occurrence on non-denaturing gels, may result in bands of different molecular 

weights. Different banding patterns may also be caused by carbohydrate, of 

various molecular weights, bound to PMEase. If antibodies were raised 

against PMEase in Calothrix 550 it is possible the epitope would be on the 

carbohydrate part of the PMEase, which would negate the use of antibodies as a 

useful tool for localizin~ PMEase activity in hair cells. If PMEases in 

Calothrix 550 are bound to carbohydrate it raises two points of discussion: 

i) Are PMEases in Calothrix 550 physically bound to carbohydrate and if so 

are they "truly" extracellular enzymes? 

ii) Or, alternatively, are extracellular and cell-bound PMEases in Calothrix 

550 glycoproteins? 

The most convincing evidence of hair cells as sites of PMEase activity was 

gained using the azo-dye naphthol AS-MX phosphate (2.732) in Calothrix 253 

(6.13, Fig. 6.1) and other hair-forming Rivulariaceae (3.3, Table 3.13). 

Azo-dye staining indicated that there were no detectable PMEase activities 

associated with vegetative cells and there was a sharp transition from 

vegetative cells with no activity to hair cells with PMEase activity. As 

suggested previously, hairy Rivulariaceae are adapted to environments where 

the P is available in pulses of high external concentrations of organic 

phosphoesters and organic colloidal P (phytases, Herbes et al., 1975). If 



the phosphatases in these cyanobacteria are located solely on the hairs it 

suggests that the hairs are adapted to utilize these high concentrations of 

organic P. Therefore, if hairy Rivulariaceae are present it is possible to 

use these organisms as environmental indicators of the P dynamics/cycling of 

particular environments. 

9.~ INFLUENCE OF SALINITY ON HAIR FORMATION IN THE RIVULARIACEAE 
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Hair formation in Calothrix 253 is suppressed when grown in 90 mM NaCl (20% 

seawater salinity, Chapter 6) . Hair formation in Calothrix 253 can occur 

only when the trichomes are P limited and grown under low salinity. However, 

growth does occur in media up to 30% of the salinity value of seawater. Hair 

formation can thus be brought about in two ways: by reduction of Pi content 

during growth in freshwater medium or by reduction of Pi content during growth 

in saline medium, followed by transfer to freshwater medium (Fig. 6.4). 

Under the latter conditions hair formation was largely synchronised. This 

occurrence was used as an effective tool to compare organic P hydrolysis and 

phosphatase activities in Calothrix 253 with and without hairs (6.1). 

In spite of the much lower cell-bound PMEase activity in saline medium 

(Table 6.2), the yield with p-glycerophosphate was similar in saline and 

freshwater medium, but with all other organic P sources, the yield was much 

lower. Azo-dye staining (naphthol AS-MX) indicated that there was no 

detectable cell-bound PMEase activity associated with any part of the cell 

wall, sheath or mucilage in material grown in saline medium. As there was no 

evidence of cell rupture it proposes that hydrolysis of organic P may take 

place inside the cell (cellular PMEases), as suggested for the hydrolysis of 

ATP by three hair-forming Calothrix strains (9.1). This would provide an 

alternative explanation for the presence of high levels of cellular PMEase in 

P-deficient Anabaena PCC 7119 reported by Marco and Orus (1988), who suggested 

that the alga tried to relieve P-deficiency by hydrolyzing its cellular 
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phosphates. If this situation applies to cultures grown in freshwater 

medium, the intense PMEase activity associated with the hair surface may arise 

because hair cells are especially well suited to hydrolyze pulses of high 

concentrations of organic P. Evidence to support the role of hairs in making 

use of pulses of high concentrations of NH 4-N has been provided for Ceramium 

rubrum (D'Elia and DeBoer, 1978; DeBoer and Whoriskey, 1983) and it has been 

suggested that this may occur with respect to organic P in other hair-forming 

eukaryotic algae (Whitton, 1988). 

Added Ca during growth with 67.5 mM NaCl (15% seawater salinity) initially 

enhanced hair development (6.13) and then led to culture lysis. Neither 

mannitol nor sorbitol (6.13) had any effect on hair formation, indicating that 

suppression of hair formation by NaCl is not an osmotic effect. These 

observations suggest that hairs in Calothrix 253 may be unable to control 

uptake of one or more potentially toxic ions such as Na. Apte and Thomas 

(1986) suggested that Na exclusion formed the basis of cyanobacterial salt 

tolerance, so the suppression of hair development at higher salinities (>15% 

seawater salinity) may be an adaptation to avoid Na toxicity. Ca possibly 

effects P04 uptake/metabolism resulting in P-deficiency and enhanced hair 

development at 67.5 mM NaCl. Therefore, increased hair development would 

result in uncontrolled uptake of Na and culture lysis. 

Many other members of the Rivulariaceae occurring in intertidal 

environments can form obvious hairs and there is no indication from the 

taxonomic literature that the tendency to form hairs is less pronounced in 

such environments. Therefore, an explanation is still needed as to why hair 

formation in Calothrix 253 does not take place above 15% seawater salinity. 

A possible ecological explanation may be put forward based on its microhabitat 

on a mangrove root. There may be no physiological advantage in possessing 

hairs when submerged in saline water or under normal emergent conditions. 

However, prolonged rain might not only change the root surface to a more 
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freshwater environment, but lead to a pulse of organic P. If hairs are 

especially adapted to deal with pulses of organic P, the rapid development of 

hairs in Calothrix 253 when transferred from saline to freshwater conditions 

may be a further adaptation to its particular habitat. A somewhat similar 

explanation can be put forward for Calothrix 690 (6.2), which was isolated 

from the edge of a Saudi Arabian waterfall, and showed a similar influence of 

salinity on hair formation. 

A further similarity between Calothrix 253 and 690 was the unusually high 

PMEase pH optima of pH 12.2 (Fig. 6.2) and pH 11.8, respectively (Fig. 6.5). 

Is it likely that the effect of Na and the high pH optima are somehow linked? 

A reduction in Na from 1.67 rnM-0.022 rnM in Chu 10D-N (6.3) resulted in a 

marked increase in trichome length and vacuolation in Calothrix 764 and 

Gloeotrichia 281 and 613. Previously these strains formed hairs in field 

conditions, but not under laboratory conditions. The changes in trichome 

morphology resembled hair formation. Trichomes that responded to reduced Na 

in Calothrix 764 also showed a differential staining pattern with activity 

localized on the apical part of the trichome, similar to the pattern of 

staining in true hair-forming strains (Fig. 6.6, 9.1). As only some 

trichomes showed this pattern, it is likely that trichomes which were P

deficient and formed in the presence of low Na developed this particular 

response. It is suggested that previously hairs did not form in these 

strains, because the relatively high levels of Na present in standard Chu 10D 

inhibited hair formation. Therefore, if further research was to take place 

on hair-forming algae it would be advantageous to reduce the Na level to 0.022 

rnM or at least aNa concentration below 1.67 rnM (6.3). The inhibition of 

hair formation in these strains is similar to the results in Calothrix 253 and 

690, but the concentrations of Na needed for inhibition of hair formation were 

much lower. As the effects of Na occur at a much lower concentration in 

Calothrix 764 and Gloeotrichia 613 it may be because these strains are adapted 



to a deepwater rice habitat (Sonargon, Bangladesh) where elemental 

concentrations are low and the Na level in the environment is below 1 mM 

(Whitton et al., 1988). No comment can be made for G1oeotrichia 281, as no 
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data are available on the nutrient concentrations in its original environment. 

As two of these strains are adapted to an environment with low external 

concentrations of Na (< 1mM), it is possible that they do not possess or 

require an efficient Na extrusion mechanism (Apte and Thomas, 1986) . 

9.5 PHOSPHATE UPTAKE IN HAIR-FORMING RIVULARIACEAE 

High levels of cell-bound PMEase activity, hair formation, originating from 

streams associated with pulses of high concentrations of organic P levels are 

factors associated with the success in growth of hair-forming Rivulariaceae. 

These factors will result in the rapid hydrolysis of high concentrations of 

phosphoesters by hair cells and the subsequent release of Pi at high 

concentrations. Therefore, if these algae are adapted to these particular 

environments, it is likely that they possess a rapid Pi uptake system adapted 

for efficient uptake of Pi at local high external concentrations. If this is 

not the case large amounts of Pi may be lost downstream to other competing 

organisms. 

As hair cells are the sites of PMEase activity and subsequently the site 

where high concentrations of Pi are released it is likely that the hair cells 

are also the sites of Pi uptake at high external concentrations. 

Comparison of versions of freshwater (+ hair) and saline (- hair) Calothrix 

253 was used as a method for evaluating Pi uptake in a P-deficient species 

with and without hairs (7.1). Results from Chapter 7 showed that freshwater 

Calothrix 253 (Fig. 7.2a) had high Pi uptake values and associated high Km 

(low affinity), high Vmax (high velocity) and ratio of Km to Vmax values, which 

are ·values adapted for Pi uptake at high concentrations (Table 7.2). 

However, saline Calothrix 253 (Fig. 7.2a) had negligible Pi uptake and had a 
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low Km (high affinity), Vmax (low velocity) and ratio of Km to Vmax values and 

therefore has a Pi uptake system adapted to low Pi concentrations (Table 7.2). 

As both versions were P-deficient (Table 7.2) the major difference in Pi 

uptake can only be explained by the presence or absence of hairs. A similar 

high velocity nutrient uptake system was described for Ceramium rubrum (DeBoer 

and Whoriskey, 1983), where the hair cells in this alga possessed an uptake 

system with a low affinity (high Km) and high velocity (high Vmax> adapted to 

take up high external concentrations of NH 4-N. 

The above conclusions indicate that hair-forming Rivulariaceae have both 

the high level of PMEase activity and the high velocity Pi uptake system 

required to hydrolyze high concentrations of organic P and then take up the 

resultant high concentrations of Pi released. 

In Calothrix 550 the Vmax of Pi uptake was the second highest reported for 

cyanobacteria next to 1.8 ~ol P mg-1 h-1 in Anabaena flos-aguae (Healey, 

1982). The high Vmax and Km values (Table 7.2) in hairy Calothrix 550 is 

further evidence to support the theory that hairy Rivulariaceae are adapted to 

Pi uptake at high concentrations. In comparison Synechococcus may be adapted 

to utilize low concentrations of DOP (Pettersson, 1980) and Pi in the 

environment (3.3, 9.1) and may have a P1 uptake system with a high affinity 

(low Km) and a low velocity (low Vmax> . 

20 ~ DCMU and dark reduced Pi uptake, but only between 0-15 ~ P04 , in 

hairy Calothrix 253 and 550. Possibly two Pi uptake systems are present, one 

active uptake system associated in the vegetative cells, which is adapted to 

transport Pi at low external concentrations (0-15 ~ P0 4). The second Pi 

uptake system is one with a high Km and Vmax' associated with the hair cells, 

and is adapted to transport Pi at high concentrations. This uptake system is 

similar to the two Pi uptake systems (1.7) described in~. coli (Rosenberg et 

al., 1978; Willsky and Malamy, 1980), with the inducible Pi uptake system, 
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adapted to transport Pi at high external concentrations, associated with hair 

cells in cyanobacteria. 

Pi uptake in Calothrix 253 increased 100% at pH 9.0, which is above the pH 

optima, of pH 7-7.6, quoted for Pi uptake in algae (Healey, 1982). This 

result compares directly with the high pH optima for PMEase activity in 

Calothrix 253. Possibly the high pH optima of PMEase activity and Pi uptake 

at high concentrations in the hair cells are linked in Calothrix 253. It is 

possible that the site of the PMEase is directly linked to the site of the 

pore protein associated with Pi uptake (Torriani-Gorini et al., 1987). Also 

ca++ stimulated Pi uptake in Calothrix 253 as it did with PMEase activity 

(Fig. 6.3a), which further backs up the hypothesis that Pi uptake and PMEase 

activity occur at the same site on the hair cell surface. Mg++ above 0.1 mM 

was a potent inhibitor of Pi uptake in Calothrix 550; possibly this is a 

further adaptation to its original habitat where magnesium is present at very 

low concentrations (Livingstone and Whitton, 1984). 

9.6 LOCALIZATION OF PHOSPHOMONOESTERASE ACTIVITY IN HAIR-FORMING EUKARYOTIC 

ALGAE 

The eukaryotic hair-forming algae Draparnaldia sp. and Batrachospermum sp., 

collected from environments with high concentrations of organic P, had 

distinct localization of cell-bound PMEase activity on the hair (Fig. 8.1). 

This is the first report using naphthol AS-MX phosphate to localize PMEase 

activity on eukaryotic hair cells, possibly indicating that this technique may 

be useful to localize PMEase activity in a wide range of organisms. However 

organisms with low PMEase activity, such as Lemanea sp. (8.3), may be unable 

to hydrolyze sufficient amounts of naphthol AS-MX phosphate in the 15 min 

incubation period (2.732). If there is low PMEase activity, BCIP (2.731) may 

be used to localize activity, as there is no limit on incubation time with 

this substrate. BCIP can effectively detect PMEase activity in transparent 
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cells (Fig. 5.5) or gels (5.4) and has been used to localize PMEase activity 

in higher plant roots (A. Slatter, pers. comm.). However, it is worth noting 

that the blue colour of the indigoid is difficult to distinguish from the 

photosynthetic pigments in cyanobacteria (5.33). 

From the results of staining (8.3) and previous research on hair-forming 

eukaryotic algae (Gibson, 1986, Gibson and Whitton, 1987 and Whitton, 1986), 

it is likely that the hypothesis of the adaptation of hair-forming 

Rivulariaceae to environments where P is present in pulses of high 

concentrations of organic P may also encompass hair-forming eukaryotic algae 

(Whitton, 1988) . Pi uptake experiments were not performed on these algae, 

although research on the hair-forming eukaryotic alga Ceramium rubrum (DeBoer 

and Whoriskey, 1983) suggested that low affinity high velocity nutrient uptake 

occurred only in hair cells. 
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1) All 51 cyanobacterial strains studied exhibited inducible alkaline PMEase 

activity at either pH 10.3 and/or pH 7.6. In all cases the level of cell-

bound PDEase activity fi\t\~1.\,(<l~ was lower than cell-bound PMEase activity. 

Extracellular PDEase activity was only detected in six strains, whereas 

extracellular PMEase activity was detected at either pH 10.3 and/or pH 7.6 in 

48 strains. 

2) Rivulariaceae was the most effective large taxon studied at organic P 

utilization (P = <0.01) and Synechococcus the least effective large taxon (P 

<0.01). Synechococcus strains were unable to utilize phytic acid (P = 

<0.001). The addition of ATP resulted in the bleaching of three hair-forming 

strains and significantly reduced yields compared to non hair-forming 

Rivulariaceae (P = <0.05). 

3) Deepwater rice strains had significantly higher levels of PDEase activity 

than pond (P = <0.01) and stream isolates (P = <0.01). It is suggested that 

these strains may originate from environments where phosphodiesters are a 

major source of organic P. 

4) Strains originating from still water habitats and surface waters had 

significantly higher levels of extracellular PMEase activity than deepwater 

rice (P = <0.01), paddy rice (P= <0.05) and stream isolates (P = 0.05). 

5) Rivulariaceae had significantly higher levels of cell-bound PMEase 

activity at pH 10.3 than non-Rivulariaceae and Synechococcus strains tested. 

Hair-forming Rivulariaceae were significantly more effective than non hair-

forming Rivulariaceae at hydrolyzing phytic acid (P = <0.05). Cell-bound 
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PMEase localization using either BCIP and/or the azo dye naphthol AS-MX 

phosphate showed that PMEase activity was confined to the hair cells in all 

nine hair-forming Rivulariaceae strains studied. Cell-bound PMEase activity 

was also localized solely on the hair cells of Batrachospermum sp. and 

Draparnaldia sp. using naphthol AS-MX. Eight of the nine hair-forming 

Rivulariaceae strains studied originated from stream environments prone to 

pulses of organic P. 

6) Pi uptake experiments using freshwater Calothrix 253 and 550 showed that 

both strains had high Km values of 12.930 and 14.83 ~ P04 (low affinity) and 

high Vmax values at 0.852 and 1.757 ~ol P mg dry wt-1 h-l(high velocity), 

respectively. Uptake at high Pi concentrations (>15 mM P04) was confined to 

hair cells in Calothrix 253 and was not affected by the absence of light or by 

20 ~ DCMU. 

7) Addition of various organic P substrates did not modify inducible 

phosphatase activities or hair formation in Calothrix 202, 550 and 603. 

Cell-bound PMEase activity in Calothrix 202, 550 and 603 commenced when 

cellular P values fell below the range 0.6 - 1.0 % cellular P (P as % dry wt). 

8) Optimal cell-bound PMEase activities in hair-forming Calothrix 253 and 

550 were at 50°C and 45°C and pH 12.2 and 10.2, respectively, which were 

conditions unlikely to occur under normal field conditions. The influence of 

11 ions on PMEase activity in Calothrix 253 and 550 was tested. Of the 11 

ions Ca was found to be the only ion most likely to reach concentrations in 

the environment which may influence phosphatase activities in both strains. 



9) No significant increase in extracellular PMEase activity occurred when 

Calothrix 550 material was exposed to trichloroethane (0.1 mM- 100 mM), 20% 

sucrose or lysozyme treatment. 

bound to a surface. 

These all suggest that the PMEase enzyme is 
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10) The response of cell-bound and extracellular PMEase activities in 

Calothrix 550 to environmental variables was the same and it is suggested that 

the two fractions contain the same enzyme. Partial purification of the 

extracellular PMEase fraction in Calothrix 550 resulted in the detection of 

four PMEase bands using BCIP. Three of the four PMEase bands were bound to 

carbohydrate and it is possible that certain PMEases in Calothrix 550 may be 

glycoproteins. 

11) Na, above 67.5 mM (15% seawater salinity), had a marked inhibition on 

hair formation in Calothrix 253 and 690 and had a similar effect at 1.67 mM Na 

in Calothrix 764 and Gloeotrichia 281 and 613. Transfer of P-deficient 

saline Calothrix 253 to freshwater medium led to the rapid (7 h) synchronised 

formation of hairs and the subsequent detection of cell-bound PMEase activity 

in the newly formed hairs. 
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Abstract 

Cellular and extracellular phosphomonoesterase activities were compared in Ca/othrix 
parietina 0550, a strain whose original environment has been studied in detail. Activity 
in both fractions became detectable at about the same stage in batch culture. Differences 
in the influence of environmental factors between the two were slight, suggesting a 
common origin. The optimum temperatures for cellular and extracellular activities were 
40°C and 30°C, respectively, and the upper limits for detectable activity were 80°C 
and 65°C. The pH optimum for both cellular and extracellular activity was 10.0-10. 2. · 
When P-limited cultures were tested with p-nitrophenyl phosphate (pNPP) as substrate, 
Km values for cellular and extracellular activities were 43 and 33J.!M pNPP, respectively. 
Eleven ions were tested for their influence on activity. In most cases the effect was 
low or negligible at concentrations likely to be present in nature or freshwater laboratory 
media. Where obvious effects occurred, these were usually apparent at lower concentra
tions with extracellular than cellular activity. One mM Ca led to a 40% increase in 
extracellular activity in comparison with 0.1 mM Ca, but had no effect on cellular activity. 
However, inorganic phosphate, which had a marked inhibitory effect at concentrations 
above 1 0 J.!M, brought about a similar response with cellular and extracellular activities 
(approximately 60% decrease with 100 J.!M). 

Introduction 

Micro-organisms with phosphatase activity are able to hydrolyse phosphate from 
a variety of organic phosphorus compounds (Healey, 1982; Torriani-Gorini eta/., 
1987). Phosphomonoesterase activity appears to be very widespread among 
P-limited cyanobacteria, though not universal (Healey, 1982). Among eighteen 
strains tested by Doonan and Jensen (1980), all showed activity, this being clearly 
inducible in twelve strains. The most detailed studies have been made on 
Anabaena variabilis (Healey, 1973; Healey and Hendzel, 1975) and Plectonema 
boryanum (Doonan and Jensen, 1977, 1979, 1980). 

Cell-bound enzyme of P. boryanum differed from cell-free enzyme obtained 
by breaking open the cells in its response to several ions (Doonan and Jensen, 
1979). For instance, cell-bound phosphatase was inhibited markedly by zinc at 
all concentrations, whereas the effect was not detected with cell-free enzyme 
in assay medium with zinc below 2 mM. Some phosphomonoesterases are tightly 
retained in the cell wall and lose activity when released (Doonan and Jensen, 
1977), whilst others are active when released into culture medium (Healey and 
Hendzel, 1975). Ten of the strains studied by Doonan and Jensen (1980) showed 
extracellular activity. 
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There is evidence that Rivulariaceae occur in environments where organic 
phosphorus is an important source of phosphate, and that field populations exhibit 
marked phosphatase activity (Whitton, 1987). The enzyme is apparently always 
inducible in this family and activity ofP-deficient G!oeotrichia echinulata is among 
the highest recorded (Fitzgerald and Nelson, 1966; Healey, 1982) for cyano
bacteria. A strain of C. parietina (D550) isolated from an upland stream, where 
it is sometimes a co-dominant (Holmes and Whitton, 1981 ), shows marked cell
bound and extracellular phosphatase activity in P-deficient culture. In batch 
culture phosphatase activity commences at about the same time as hairs develop 
(Livingstone et a!., 1983); evidence from staining suggests that much of the 
phosphatase activity is associated with the surface of the hair. 

The aim of the present study was to establish to what extent phosphomono
esterase activities in this strain of C. parietina resemble those reported for other 
cyanobacteria and to what extent cellular and extracellular activities differ in 
their response to environmental factors. 

Materia~s and methods 

The organism used was an axenic clonal strain of Calothrix parietina Thur. 
(Durham culture 550). The stream from which the strain was isolated combines 
drainage from peat and limestone, with slight enrichment by zinc from earlier 
mining activity; most of the filtrable phosphate is in the organic fraction 
(Livingstone and Whitton, 1984). 

The organism was grown in batch culture at 25°C and 60 limol photon m-2 

s-1 PAR, with the inoculum at c 10 mg 1-1
• The medium was modified from 

the number 10 formula ofChu (1942): viz Na, c 1670 liM; K, 57.3~iM; Mg, 
100 liM; Ca, 243 liM; P, 31~iM; S, 100 liM; Cl, 532~iM; B, 11.5 liM; Co, 0.0373 
liM; Ni, 0.0338; Mn, 2.28 liM; Fe, 8. 97 liM; Cu, 0.0789 liM; Zn, 0.193 liM; 
and Mo, 0.00276 liM. EDT A (0.09 mM) was used as chelating agent and 2.5 mM 
HEPES as buffer, with pH adjusted to 7.0 with NaOH. The Na concentration 
given above is that subsequent to adjusting the pH. 

Cultures were harvested at a late growth stage (28 d) when markedly P-limited. 
Cellular material was obtained by centrifugation at 8,000 x g for 20 min, washed 
twice and resuspended in assay medium (see below). Cultures were homogenised 
using a series of sterile syringes with needles and then sonicated at 4°C using 
an MSE Soniprep 150 at an amplitude of 26 lim for 3 min. Most assays of 
extracellular activity were based on material harvested on one occasion and 
subsequently stored. Medium was separated from cellular material using eight 
layers of muslin. Three litres were rotary evaporated to 150 ml, centrifuged 
at 8,000 x g for 20 min to remove further debris and the supernatant dialysed 
against the assay medium, with three changes over 24 h. Storage over periods 
up to 7 d at 4°C and for longer periods (up to 8 months) at -20°C led to no 
detectable change in activity. 
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A fraction consisting almost entirely of detached hairs was obtained by sonicating 
a washed culture, centrifuging at a slow speed (500 x g) for 10 min and retaining 
the supernatant which was then centrifuged at 8,000 x g for 20 min and the 
pellet retained. This showed that at least 95% of the contents consisted of hairs. 

Standard assays were carried out at pH 10.3 in medium buffered with glycine 
(50 mM) and NaOH and further differing from culture medium in the following: 
phosphate replaced by Cl (raising Cl to 564 fJ-M); HEPES omitted; and Na raised 
to 36 mM. The homogenate (20 J.tl; cellular fraction), culture supernatant 
(extracellular fraction) or inorganic medium (controls) were pipetted into each 
of 96 wells containing 70 f-tl buffer. During the pi petting, the homogenate was 
agitated with a magnetic stirrer to reduce flocculation. Then 140 11-l p-nitrophenyl 
phosphate (pNPP) suspended in assay medium was added to give a final con
centration of250 fJ-M. The reaction proceeded at 32°C for 15 min or until yellow 
coloration was detected. Incubation was carried out without agitation, as agitation 
had no detectable effect during assay periods up to 30 min. Activity in the standard 
assay was terminated by the addition of NaOH to give a final concentration 
of 1.5 M. Measurements were made at 405 nm using a multiscan plate reader 
(Titertek). Activity is reported as 11-mol pNPP hydrolysed mg dry wC1 h -l. 

To test the effect of temperature on phosphomonoesterase activity, aliquots 
of homogenate or medium were pre-incubated for 30 min at 5 degree intervals 
between 5°C and 85°C. Deviations in pH from 10.3 due to temperature were 
compensated for by the addition ofNaOH or HCI. Temperatures above 85°C 
could not be tested directly because of the spontaneous hydrolysis of pNPP; 
the ability of the enzyme to tolerate temperatures above 85°C was tested by 
again lowering the temperature at 32°C and then testing with pNPP. The 
influence of pH on activity was tested using a range of buffers (Table 1 ). Two 
different buffers were tested at each pH value. Similar results were obtained 
with each buffer, except for pH 9.0 (glycine much higher than 2-amino-2-methyl-
1-propanol) and pH 11.0 (3-cyclohexylamino-1-propanesulphonic acid much 
higher than Na2C03 - NaHC03). 

The effects of various substances on phosphomonoesterase activity were 
determined using 0, 0.01, 0.1, 1 or 10 mM concentrations in the assay mixture. 
The ions/molecules tested were Na+, K+, Mg+ +, Ca+ +,Fe III-chelate, Co++, 
Cu II, Zn + +, phosphate, borate and molybdate. Mn was not tested, because 
of precipitation at pH 10.3. Cations were added as the relevant chloride or 
sulphate; NaOH used for buffering glycine was replaced by KOH in the case 
of the Na assay. Anions were added as the sodium salt. The dependence of 
phosphomonoesterase activity on the concentration of pNPP was described on 
the basis of Michaelis-Menton kinetics. To determine the Km a Lineweaver
Burk plot was constructed. 

The influence of EDT A on phosphomonoesterase activity was tested in two 
ways: viz its inclusion during an assay (medium, substrate and EDT A at 0.09, 
1, 10 or 20 mM), and washing followed by resuspension in assay medium. For 
the latter, a 28-d-culture was centrifuged and washed twice, resuspended in 

9 Phosphomonoesterase activity of Calothrix parietina 



medium, or medium with increased EDTA (1, 10 or 20 mM) for 30 min, washed 
twice again to remove EDT A and then assayed for phosphomonoesterase activity 
(in medium). The presence of 20 mM EDT A reduced the pH of the assay 
medium to 9.78. 

Carbohydrate in the medium from 28-d-cultures was assayed by the method 
ofDubois et al. (1956) in order to establish whether there is a correlation between 
phosphomonoesterase activity and the carbohydrate. Localization of enzyme 
activity was studied using various methods likely to release phosphomonoesterase, 
such as trichloroethane, 20o/o sucrose, and lysozyme-treated material previously 
exposed to 20% sucrose (Ingram et al., 1973). Localization was also tested by 
microscopy using 5-bromo-4-chloro-3-indolyl phosphate (BCIP) as an organic 
P substrate (Coston and Holt, 1958; Holt and Withers, 1958). Filaments were 
washed three times, resuspended in 1 mM BCIP in the assay medium at pH 10.3, 
left for 15 min at 32°C and again washed three times. 

Results 

Cellular and extracellular phosphomonoesterase activities were first detected at 
a similar stage (day 7) during growth in batch culture. Activity in the medium 
from 28-d-cultures ranged from 10-20o/o of that in cellular material taken from 
a similar volume of culture (Figure 1). 

The effects of temperature on cellular and extracellular activity were different 
(Figure 1), with optima at 40°C and 30°C, respectively, and maximum tempera
tures with detectable activity at 80°C and 65°C, respectively. When activity 
was assayed at 32°C following incubation for 30 min at elevated temperatures, 
activity was detectable in both fractions which had been incubated at 85°C (0.168 
and 0.067 11M pNPP mg dry wC1 h-1

), but was not detectable at 90°C. 
Incubation of extracellular enzyme with 10 mM Ca at temperatures in the range 
65°C to 75°C led to no greater increase in activity than expected from the 
enhancing effect ofCa (see below). There was no difference in activity between 
dark and light (60 ~tmol photon m-2 s-1

) for either cellular or extracellular 
fractions. The pH optima for cellular and extracellular activities were between 
pH 10.0 and 10.2 (Figure 2). 

The responses of cellular and extracellular activity to the eleven ions/molecules 
are shown in Figure 3; in a number of cases extracellular activity showed a slightly 
greater response. Calcium had the greatest stimulatory effect, with a 50o/o increase 
in activity at 10 mM for both systems. Slight enhancements of extracellular 
activity occurred with 10 ~tM K and 0.01-0.1 mM Zn, but cellular activity 
showed little, if any, response. Phosphate at 0.01 mM had no inhibitory effect, 
but in the range 0.1-10 mM had the greatest effect of any ion. For both cellular 
and extracellular activity, molybdate had a slight inhibitory effect at 1 mM and 
a marked inhibitory effect at 10 mM; Mg, Zn and borate also had marked effects 
at 10 mM. Comparisons were also included of the widely used BG 11 medium 
(omitting combined nitrogen and phosphate) versus standard assay medium. 
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Figure 1 Influence of temperature on cellular and extracellular phosphomonoesterase activity 
in C. parietina 0550 shown by hydrolysis of pNPP. Extracellular activity is related to the dry 
weight of alga from which the material was harvested. Note that the scale for cellular activity 
( 1!1) is ten times that for extracellular activity (0). 
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Figure 2 Influence of pH on cellular (Iii), and extracellular (0) phosphomonoesterase activity 
in C. parietina 0550 shown by hydrolysis of pNPP. Results shown are based on the higher 
of the activities found with the two buffers tested (Table 1) for each pH value. 
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Table 1 Buffers used for testing the effect of pH on cellular and extracellular 
phosphomonoesterase activity in C. parietina 0550 

Buffer giving higher activity: 
pH Buffer A Buffer B Cellular Extracellular 

7.0 DMG- NaOH HEPES- NaOH 

8.0 TES- NaOH HEPES- NaOH TES TES 

9.0 AMeP- NaOH Glycine - NaOH Glycine Glycine 

9.8 AMeP- NaOH Glycine - NaOH Glycine Glycine 

10.0 AMeP- NaOH Glycine - NaOH Glycine Glycine 

10.2 AMeP- NaOH Glycine - NaOH Glycine Glycine 

10.3 AMeP- NaOH Glycine - NaOH Glycine Glycine 

10.4 AMeP- NaOH Glycine - NaOH Glycine AMeP 

10.6 AMeP- NaOH Glycine - NaOH AMeP AMeP 

11.0 CAPS - NaOH Na2C0.1 - NaHC0.1 CAPS 

The buffer which led to the higher activity and was used for data in Figure 2 is indicated here, 
unless activity was below the detection limit ( < 0.02 p.mol pNPP hydrolysed mg dry wC1 h-·1

). 

DMG, 3,3-dimethylglutaric acid; HEPES, N-2-hydroxymethylpiperazine-N' -2-ethanesulphonic 
acid; TES, N-tris{hydroxymethyl)methyl-2-aminoethanesulphonic acid; AMeP, 2-amino-2-methyl-
1-propanol; and CAPS. 3-(cyclohexylamino)-1-propanesulphonic acid. 

The presence of EDT A at concentrations of 1 roM and above in the assay 
medium led to the complete inhibition of phosphomonoesterase activity (Table 2). 
However, when filaments which had been suspended in EDTA solutions ofthe 
same molarity were then tested in the normal assay medium, there was only 
a slight decrease in phosphomonoesterase activity (Table 2). 

A higher concentration of NaOH was required to terminate cellular than 
extracellular activity; 0.3 M NaOH terminated extracellular activity, but reduced 
cellular activity by only 85o/o, and 1.5 M NaOH was required to terminate the 
latter effectively. SDS (lo/o) inhibited extracellular activity completely, but reduced 
cellular activity by only 20%. 

Use of the Lineweaver-Burk plot, 1/v versus 1/s allowed the calculation of 
half-saturation values and concentration of eNPP (Km) required to support half 
the maximum rates. The Km values for cellular and extracellular phosphomono
esterase were 4.34 x 10-5 M and 3.28 x 10-5 M, respectively. 

Evidence that hairs are an important site of enzyme activity was obtained using 
a cellular fraction consisting of detached hairs (see Materials and methods). This 
showed very high activity, but the mass of hairs available was too low to obtain 
a rate. Several tests were carried out to establish whether cellular enzyme was 
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attached to a surface (such as cell wall or plasma membrane) or present in the 
periplasmic space. No significant increase in extracellular activity occurred when 
cellular material was exposed to trichloroethane (0.1 mM to 100 mM), 20o/o 
sucrose or lysozyme treatment. These all suggest that the enzyme is bound to 
a surface. 

It seemed possible that enzyme activity in the extracellular fraction might be 
bound to colloidal carbohydrate material related to sheath carbohydrates. Ultra
centrifugation (110,000 x g) of culture medium for 1 h removed 80% of the 
carbohydrate from the supernatant, but only 45% of enzyme activity, suggesting 
that at least part of the extracellular enzyme is truly soluble. However, staining 
of material for 15 min in a shaken snap-cap vial with BCIP showed localization 
of blue colour on mucilage, sheath and surface of the hair; the blue colour was 
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Figure 3 Influence of eleven ions on cellular and extracellular phosphomonoesterase activity 
in Calothrix parietina 0550 shown by hydrolysis of pNPP. In order to use a logarithmic axis, 
the results for absence of ion are plotted as 0.001 M. 
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Table 2 Effect of EDT A on cellular phosphomonoesterase activity of 
C. parietina 0550 during and prior to assay 

Treatment 

During assay 

Prior to assay 

EDT A concentration (mM): 
0.09 1 10 
gmol pNPP hydrglysed mg dry wt-1_h-1

: 

X SD X SD X 

5.82 0.27 < 0.02 

6.02 0.08 5.75 0.64 

<0.02 

5.18 

20 

SD X SD 

<0.02 

1.07 4.64 0.34 

The slight decrease in activity associated with the pH drop at 20 mM EDTA is negligible. n = 8. 

apparently due to a precipitate. Neither the surface of vegetative cells nor the 
cytoplasm were stained. When addition of BCIP was followed immediately by 
the material being placed on a slide under a coverslip, the staining reaction was 
quite different. The first coloration was seen within the hair by 5 min; by 15 min 
there was some blue colour on mucilage, sheath and hair surface, but less than 
when the cells were shaken in a vial. The intracellular coloration appeared initially 
to show a gradient from top to bottom of the filament, although it was difficult 
to be sure due to the photosynthetic pigments in the 'vegetative' cells. 

IOisc!Ussion 

Phosphomonoesterase in Calothrix parietina is a stable enzyme, with cellular 
activity still detectable at 80°C, though not quite so stable as E. coli, where 
activity is detectable at 90°C (Torriani, 1960). Extracellular enzyme was less 
stable than cellular enzyme at high temperatures and also slightly more sensitive 
to many other environmental factors. Somewhat in contrast, 'cell-free' enzyme 
of Plectonema boryanum (Doonan and Jensen, 1980), obtained by lysis of cellular 
material with polymixin B, had a greater thermal stability than cellular (whole 
filament) activity. The pH optimum of phosphomonoesterase activity in 
C. parietina (pH 10-10.2) is towards the upper end of the range observed for 
other cyanobacteria (pH 8-l 0: Healey, 1973; Ihlenfeldt and Gibson, 1975; 
Healey and Hendzel, 1979), although another strain of Calothrix (C. viguieri) 
isolated from the upper part ofthe surface of a mangrove root has a pH optimum 
for cellular phosphomonoesterase activity of 12.2 (unpublished data). 

The ionic requirements reported for microbial phosphomonoesterases vary 
considerably. In no case did the absence of a particular ion in assay medium 
lead to a marked reduction in activity with C. parietina. Calcium had the greatest 
stimulatory effect, but activity of thoroughly washed cellular and extracellular 
material remained high even in its absence. Calcium has been reported to be 
a requirement for alkaline phosphomonoesterase activity in many micro-organisms, 
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e.g. Micrococcus sodonensis (Glew and Heath, 1971) and Anabaena variabilis 
(Healey, 1973). Magnesium had a slight inhibitory activity at all concentrations 
on extracellular activity of C. parietina, although it has been reported to be 
stimulatory or have no effect in other micro-organisms. Phosphom_onoesterases 
of Escherichia coli (Schlesinger et al., 1969), Aspergillus niger (Dorn, 1968) and 
Pseudomonas aeruginosa (Day and Ingram, 1973) all show enhanced activity in 
the presence of magnesium. The inhibitory effect of EDT A is similar to that 
found in other studies on phosphomonoesterase (e.g. Whitt and Savage, 1988). 

Inorganic phosphate (Pi) inhibited phosphomonoesterase activity in C. parietina, 
which is a feature common to all inducible phosphomonoesterase systems 
(Torriani, 1960; Healey, 1973; Ingram et al., 1973; Ihlenfeldt and Gibson, 1975). 
At 1 mM Pi, 5o/o of activity remained and at 10 mM there was no activity. 
C. parietina is more sensitive to Pi than Plectonema boryanum (Doonan and 
Jensen, 1980) and E. coli (Torriani, 1960) where 30o/o of activity remained at 
10 mM Pi. However, inhibition of activity during routine assays with C. pan·etina 
is negligible, because, even if all Pi released remained in the medium, the 
maximum concentration reached at the end of 20 min assays would be about 
2 fJ.M Pi. The Km values for eNPP of 4.34 x 10-5 M and 3.28 x 10-5 M with 
cellular and extracellular phosphomonoesterase are similar to values for many 
other micro-organisms, e.g. E. coli (1.2 x 10-5 M; Garen and Levinthal, 1960), 
but an order of magnitude less than Anabaena variabilis (7 x 10-4 M; Healey, 
1973). The concentrations at which the environmental variables had a detectable 
effect during assays may be compared with concentrations found in culture media 
and in the stream from which the organism was isolated. The most obvious 
differences are for temperature and pH. Temperature optima in laboratory assays 
(Figure 1) were above temperatures ever likely to be encountered in the stream 
(x = 8.5°C ± 6.2) and for most of the year activity may be expected to be less 
than 30o/o of the maximum. The organism developed phosphomonoesterase 
during growth in medium at a pH (7 .0) at which activity is not expressed. 

The stream, which has been sampled at monthly intervals over 1 year (Holmes 
and Whitton, 1981), showed a 'mean' pH of7.8 (SD ± 0.4), a pH value at which 
laboratory activity is about 40o/o of the maximum (pH 10.2). However, it is 
difficult to relate behaviour in the field to that in the laboratory, because water 
in this stream shows the highest organic phosphate concentration at a season 
when the contribution from peat drainage is highest and pH values are lowest. 
The inhibitory effect of EDT A suggests the importance of one or more metals 
in the enzyme structure, but the only element present in the environment likely 
to influence activity directly is Ca. The concentration of Ca in stream water 
is 1 ± 0.47 mM, sufficient to raise extracellular, but not cellular, activities. 

The differing responses to BCIP in shaken vials and under a coverslip may 
perhaps be due to differing availability of oxygen. Staining by BCIP results from 
two separate reactions (Coston and Holt, 1958). BCIP is first hydrolysed, releasing 
one molecule of soluble, colourless indole and one molecule of phosphate; this 
is followed by an oxidation step, which leads to the insoluble blue indigoid 
pigment, 5-bromo-4-chloro-indigo. Staining is therefore dependent both on 
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enzyme activity and the presence of oxygen. The initial 0 2 concentration is about 
0.15 mM (at 32°C), whereas BCIP is supplied at 1 mM. Released indole will 
scavenge 0 2• Unless photosynthetic oxygen evolution compensates for this, it 
will lead to a reduced concentration under the coverslip, whereas the saturation 
concentration will be maintained in the shaken vial. It is suggested that under 
the coverslip indole enters the cell and is oxidized in cytoplasm by 0 2 resulting 
from photosynthesis. 

This is the first study to compare cellular and extracellular phosphomono
esterase activity in a cyanobacterium. In general the enzymes have very similar 
properties, although extracellular activity is slightly more sensitive to environ
mental factors. Purified enzymes from the two fractions will be required to 
demonstrate whether or not enzyme from both sources has an identical structure. 
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