
Durham E-Theses

Software maintenance: generating front ends for cross

referencer tools

Turver, Richard John

How to cite:

Turver, Richard John (1989) Software maintenance: generating front ends for cross referencer tools,
Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/6483/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/6483/
 http://etheses.dur.ac.uk/6483/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

Software Maintenance:

Generating Front Ends for Cross Referencer Tools

Richard John Turver

Thesis submitted for the degree of

Master of Science

University of Durham

School of Engineering and Applied Science

Computer Science

11th October 1989

MAY 1990

A b s t r a c t

This thesis surveys the activities performed in software maintenance and identifies some of the

software tools which can be utilised by the maintenance programmer. The most expensive phase

of software maintenance is surveyed in more detail and tools to support this activity are identified.

A new class of cross referencer tool was designed and investigated. The novel aspect of the cross

referencer is that i t can be used on more than one language, by ut i l iz ing grammar driven gener­

ators to customize and make maximum re-use of the language independent components, allowing

language specific implementations to be generated wi th min imal effort . The cross referencer also

extends an idea of having different levels of detail in cross reference listings by allowing the tool

implementor to specify the contents of each level of detail. A proposed experimental toolki t for the

automatic construction of these cross referencer f ront end tools, f r o m non procedural specifications,

is designed and investigated.

"The copyright of this thesis rests w i th the author. No quotation f rom i t should be published

wi thou t his wr i t t en consent and informat ion derived f rom i t should be acknowledged."

Acknowledgements

I am grateful to my supervisor Malcolm Munro for his encouragement and guidance throughout

this study. I am grateful to Professor K . H . Bennett for the facilities provided. I am grateful to my

parents who have supported me throughout this venture.

Contents

1 Sof tware M a i n t e n a n c e 1

1.1 In t roduct ion 1

1.2 Software Maintenance Act ivi t ies 1

1.3 Program Comprehension 3

1.4 Models of Program Comprehension 5

1.5 Tools for Program Comprehension 6

1.5.1 Code Analysis Tools 8

1.5.2 Program Documentation Tools 8

1.5.3 Cross Reference Tools 8

1.6 Summary 9

2 C r o s s R e f e r e n c e Tool s 10

2.1 In t roduc t ion 10

2.2 Commercially Available Tools 10

111

I V

2.3 Language Independent Tools 13

2.4 Interfaces and Structures 18

2.5 Cross Referencer Internal Structure 18

2.6 Symbol Processing 19

2.7 Summary 21

3 C r o s s R e f e r e n c i n g L a n g u a g e Features 22

3.1 In t roduct ion 22

3.2 Cross Referencing Different Languages 22

3.3 Programming Language Features 23

3.4 Language Features to be included 35

3.5 Summary 36

4 A p p l i c a t i o n G e n e r a t o r s 37

4.1 In t roduct ion 37

4.2 Appl ica t ion Generators 37

4.3 Compiler and Language Processor Generators 40

4.4 L E X 42

4.5 Y A C C 42

4.6 Producing Complete f ront ends 46

4.7 Summary 50

5 A F r o n t E n d G e n e r a t o r F o r C r o s s Reference Tools 51

5.1 In t roduct ion 51

5.2 Requirements of the Tool 51

5.3 The Cross Referencer Model 57

5.4 A n Example 87

5.5 Summary 94

6 C o n c l u s i o n 95

6.1 Project Description 95

6.2 Review of M a j o r Points in each chapter 96

6.3 Achievement of Objectives Set 97

6.4 Future Developments 98

A P a s c a l L e x i c a l A n a l y s e r Spec i f icat ion 101

B A P a s c a l P a r s e r Spec i f icat ion 105

C P a s c a l C r o s s R e f e r e n c e r Speci f icat ion 120

D L e x i c a l A n a l y s e r Spec i f i cat ion for the C r o s s R e f e r e n c e r Notat ion 128

E G r a m m a r of the C r o s s R e f e r e n c e Speci f icat ion 132

F A S y m b o l T a b l e T e m p l a t e 139

VI

G A G e n e r a t e d S y m b o l T a b l e 141

Chapter 1

Software Maintenance

1.1 Introduction

This chapter surveys the activities performed in software maintenance and identifies some of the

tools which can be uti l ized by the maintenance programmer. The most expensive phase of soft­

ware maintenance, program understanding, is examined and models of program comprehension are

evaluated. Tools to support these models are identified. The importance and use of maintenance

tools to capture static informat ion f r o m source code are also discussed.

1.2 Software Maintenance Activities

Maintenance is the most expensive phase of the software life cycle. A survey by Lientz and Swanson

[24] showed tha t frequently more than 50% of the budget was spent on the maintenance phase. I t is

estimated tha t there are 77 bi l l ion lines of C O B O L worldwide and that 30 bi l l ion dollars are being

spent annually in the USA on maintenance. The US Federal Government owns about 25 bil l ion lines

of code and is spending 3.75 bi l l ion dollars of its Informat ion Technology budget on maintenance.

Software maintenance has t radi t ional ly been seen as the tai l end product of the software hfe cycle

where the development steps of Requirements, Design, Implementation and Testing have been given

greater prominence. The main reason tha t there is a maintenance problem is because people regard

maintenance as a "necessary ev i l " and think that software maintenance is just the correction of

errors resident in a program when i t is released. Planning is also cited as another major problem,

people do not th ink they need to plan maintenance. The name of the discipline is not professionally

appealing.

Software maintenance has been defined by the IEEE[2] as:

The modification of a software product after delivery to correct faults, to improve per­

formance or other attributes or to adapt the product to changed environment.

Whi l s t this def ini t ion gives a view of maintenance as any activi ty performed after delivery, i t

does not reflect the impact on users by changing the requirements of a software system. Another

def ini t ion given by Foster[17] is :

Software maintenance is the set of activities associated with keeping operational software

in tune with the requirements of its users and operators, and all of the people and systems

with which the operational system interacts.

The maintenance activities can be classified by their type[24], as follows:

• Perfective Maintenance which changes the requirements, design and source code of a software

system.

• Adapt ive Maintenance which changes the design and the source code of a software system.

• Corrective Maintenance which changes the source code of a software system.

• Preventive Maintenance which can change both the design and the code of a system.

Corrective maintenance is defined as bug f ix ing or the correction of software errors and represents

17% of the software maintenance effort . These are usually emergency program fixes. Adaptive

maintenance can be defined as changing the software to deal w i th environmental changes and

accounts for 18% of the software maintenance effort . These usually are changes to data inputs

and files, and to hardware and system software. Perfective maintenance is defined as improving

the software's func t ion by responding to customer defined changes and constitutes 60% of the

software maintenance act ivi ty. Preventive maintenance is defined as enhancing processing system

main ta inabi l i ty and accounts for 5% of the maintenance effort . This is done by improvement of

documentat ion and recoding of the source code to produce well structured programs.

Maintenance is seen as the last phase in the conventional l ife cycle, which consists of Require­

ments, Design, Implementat ion, Testing and Maintenance. Given that maintenance is an important

par t of the software product l ife cycle we can ident i fy several phases in its own life cycle, thus de­

veloping a simple model of the maintenance process. Elements i n the model are

• Def ining the requirements for change

• Designing the change

• Implement ing the change

• Testing the modif ied software

• Qual i ty assurance on the modif icat ion

• Managing the software configuration and classes of the new versions

This simple model reflects a change driven view of the maintenance process where the request for

a change invokes the rest of the activities.

1.3 Program Comprehension

Software engineering research resources have been devoted to earlier stages in the software life cycle.

This has led to research into formal specification techniques, design methodologies and program

correctness proofs. The emphasis in all these approaches has been to reduce the amount of resources

dedicated to corrective maintenance. However corrective maintenance only accounts for 17% of the

maintenance cost, and perfective maintenance has the greatest cost. Given the simple maintenance

model described above, i t has been shown that up to 40% of the maintenance effort is spent in

t r y i n g to understand how the existing software works. This is the most expensive phase of the

software life cycle[39]. I t seems worthwhile then to investigate tools and techniques to reduce these

costs.

A program as understood by a programmer, consists of a considerably larger body of knowledge

than that which is contained in the source code. This information is described in the cognitive

psychological terms of knowledge domains. A knowledge domain consists of a closed set of primit ive

objects, relations among objects, and operators which manipulate these properties or relations.

When a programmer completely understands a program, what he knows can be described as a

succession of knowledge domains that bridge the gap between the problem being solved and the

program in execution. I n performing this reconstruction, the programmer makes use of a variety of

different sources of informat ion which can be categorised as those which are present in the program

text and those which are external to it[25].

The lists below contain examples of the two categories of knowledge. The sources of this

knowledge can be f r o m the fol lowing:

Internal to the program text :

1. Prologue comments, including data and variable dictionaries.

2. Variable, structure, procedure and label names.

3. Declarations or data divisions.

4. Comments.

5. Indentat ion or pret ty pr in t ing .

6. Subroutine and module structure.

7. I / O formats , headers, a,nd device or channel assignments.

8. Ac t ion of statements, including organisation.

External to the program text .

1. User's manuals

2. Program logic manuals

3. Diagrammatic representations of programs.

4. Cross reference listings.

5. Published description of algorithms or techniques.

The process of using these two categories of informat ion to reconstruct the knowledge domains

is based on successive refinement of hypotheses made by the maintenance programmer and has

been reported by Luckey[25].

I t is of ten the case tha t the sources of informat ion , listed above, are non-existent. A programmer

may design a program using structured design techniques but after the program has been tested and

altered, the documentation no longer reflects the program[25]. I f the program is fifteen years old the

documentation may be out of date; for example i f one person makes changes and does not record this

i n the documentation, the next maintenance programmer may discard the documentation i f i t does

not accurately represent the program. I f the development programmer did not have maintenance

i n m i n d he may not have documented the program at a l l .

A programmer may only have a program list ing as the source of information to build up their

understanding. I f the program is poorly annotated and poorly structured a great deal of effort wi l l

be spent t r y ing to understand how the program works. Methods and tools to support program

comprehension, need to be researched in order to reduce the cost of program comprehension.

1.4 Models of Program Comprehension

Most existing models of program comprehension fa l l into two categories: those based on a code

driven approach and those based on a problem driven approach. In the code driven approach,

programmers begin by associating small groups of individual instructions wi th higher level inter­

pretations. These i n t u r n are grouped together and are associated w i t h s t i l l higher level interpre­

tat ions. The understanding process continues in a bo t tom up manner unt i l overall interpretation

is achieved.

The problem driven approach in contrast is a successive top down process of hypotheses gen­

eration, and verif icat ion. The maintenance programmer starts by forming a primary hypothesis

concerning the highest level functions of the program based on whatever informat ion is available.

From this hypothesis a cascade of lower level hypotheses are generated and verified against the code.

The process continues in this manner un t i l each segment of the program is bound to a subsidiary

process.

Knowledge based systems have been implemented to assist and emulate these two approaches

to program comprehension. Both these approaches have been tackled in previous projects, the

Proust project uses the top down approach and the Pudsy approach uses the bot tom up approach.

The Proust approach [38] starts by acquiring high level program goals f r o m the maintenance

programmer and then i t attempts to match its stored plans wi th the goals of the program. Plans

may contain subgoals. The process is repeated unt i l all the goals have been instantiated.

The Pudsy approach [25] also employs a knowledge base to emulate the problem driven approach

by matching standard programming schema.s stored in its knowledge base to progressively larger

chunks of the program.

Most models of program comprehension, whether bo t tom up or top down make many assump­

tions and hypotheses which have not been validated adequately because i t is very di f f icul t to prove

how a programmer understands a program. However, i t is possible to identify certain types of

in fo rmat ion that a programmer needs to know in order to gain an understanding of how a program

works.

1.5 Tools for Program Comprehension

I t is possible to ident i fy the sort of informat ion , related to the source code, that a maintenance

programmer needs to know in order to change a program even i f methods for systematically gain­

ing understanding have not yet been validated. Several categories of tools to facilitate program

comprehension have been identified by Wilde[45].

• C o d e ana lysers : These are programs that statically analyse a program's control structure

and data flow. Statically means that the program is not executed, therefore the run time

behaviour is not analysed.

• D o c u m e n t a t i o n aids: These are tools that generate program documentation that can

i l lustrate the logic at various levels of abstraction. Examples are JSP, Warnier-Orr diagrams

and call graphs.

• C r o s s referencers: These tools trace the use of source code objects through a program.

Objects are represented by their name and the line number on which they occur. The type

of operation associated wi th the object on the line referenced is also recorded.

• R e s t r u c t u r e r s : These tools accept badly structured program code and produce a well

s tructured program wi th equivalent funct ional i ty.

• R e f o r m a t t e r s : These tools are intelligent text editors, which enhance program under­

standing by manipula t ing the pagination, spacing and indentation of program source code.

Reformatters can arrange the source code so that the maintenance programmer can easily

depict complex control flow.

• E x e c u t i o n moni tors a n d debuggers: These tools monitor and manipulate progress of a

program as i t executes. They can also be used to determine the effects of various inputs.

• Tes t case coverage tools: This type of tool wi l l tell the programmer which part of the

source code was executed for a given set of test data. I t associates code segments wi th user

orientated functions.

• Source C o d e C o m p a r a t i v e Tools: These types of tools can ident i fy changes between

program versions.

The thesis focuses its at tention on code analysers, documentation aids and cross referencers, as

these tools provide a cost effective way to aid redocumentation .

1.5.1 Code Analysis Tools

T w o types of code analysis tools are commercially available, batch oriented metric generators and

interactive logic browsers. The output f r o m a batch oriented metric generator output can be

compared to predefined standards in order to assess the complexity of a piece of software.

The tools par t icular ly relevant to program understanding are tools such as Via/Insight and

FastBol. These can assist a maintenance programmer or software tester to navigate through a

program's logic or data flow by isolating specified classes of source statements, such as input

conditions, or pai'ticular control structuies[45].

1.5.2 Program Documentation Tools

These types of tool are useful to the maintenance programmer as they often at tempt to represent

static in fo rmat ion graphically. However many old programs were developed using ad hoc ap­

proaches. Therefore i f the programs produced were badly structured, a badly structured diagram

w i l l be produced by the tool . .A.s well as diagrams, other types of documentation aie produced

such as file structure analysis (eg Meta Systems -Reverse Engineering). The data structures in

commercial software are much larger than technical software, so perhaps tools which focus on data

structure redocumentation w i l l be useful to commercial systems in change[45].

1.5.3 Cross Reference Tools

These tools trace the use of names through a program. Object references are identified by source

statement numbers. Many cross referencers give additional informat ion such as the way in which

an object was referenced (eg where a name is set, assigned to, used in loop etc). The use of a tool

to produce static in format ion about the names in a program w i l l make the program understanding

process less t ime consuming and less prone to error[5]. Some tools such as Via/ Ins ight , facilitate

on line access to static facts. As .software maintenance methods are established, people wi l l become

more concerned w i t h tools and cross referencers wi l l become an important i tem in the maintenance

toolk i t [45] .

Static facts are very useful for input to redocumentation tools as they can provide a large amount

of information about all names used in a piece of softwai'e. Any tool that requires information of

this type v/ill need a front end such as a cross referencer connected to i t . A static program analysis

toolkit to facilitate program understanding will contain tools such as cross referencers, data flow

analysers and control flow analysers. The cross referencer will provide input for data flow and

control analysers.

Even after a program has been restructured a maintenance programmer will require a list of all

objects and their properties to get some insight into the inputs and outputs of a particulai- program.

A tool that produces static facts may be utilised for constructing preconditions and postconditions.

A toolkit for building front ends could also have other applications for example the collection

of metrics. A cross referencer could be made to capture static facts concerning anything in a piece

of source code.

1.6 Summary

Software maintenance has been defined and an important aspect, that of program comprehension

highlighted. Software maintenance tools were briefly discussed and cross referencers were identified

as being a useful tool to facilitate program understanding.

Chapter 2

Cross Reference Tools

2.1 Introduction

This chapter investigates available cross reference tools and identifies their strengths and weak­

nesses. The state of the art in cross reference tools and the ideal cross reference tool is described.

The difficulties facing cross referencers are investigated and the cross reference tools developed at

the Centre for Software Maintenance (CSM) and British Telecom Research Laboratories (BTRL)

are evaluated. The importance of language independent cross referencers is identified and the

benefits are described. The external and internal structures necessary for cross reference tools are

also described.

2.2 Commercially Available Tools

A survey of literature was carried out and a count of the commercially available cross reference

tools was made. This gave a total of 44 cross referencer tools and 12 different languages that could

be cross referenced[45]. An analysis of this information revealed that

10

11

• 24 of the cross reference tools supported only one language.

• 2 of the cross reference tools supported only two languages.

• 3 of the cross reference tools supported only three languages.

• 1 of the cross reference tools supported four languages.

• 1 of the cross reference tools supported five languages.

• 1 of the cross reference tools supported six languages.

12 of the cross reference tools did not specify the language. This may be because they aje not fully

on the market yet.

The data was then analysed in terms of which language was cross referenced, with the following

results.

• Cobol was cross referenced by 16 of the tools.

• Fortran was cross referenced by 7 of the tools.

• JCL was cross referenced by 4 of the tools.

• Basic was cross referenced by 4 of the tools.

• C was cross referenced by 4 of the tools.

• Forth was cross referenced by 3 of the tools.

• RPG was cross referenced by 2 of the tools.

• Pascal was cross referenced by 2 of the tools.

• APL was cross referenced by 1 of the tools.

• Modula-2 was cross referenced by 1 of the tools.

• DBase was cross referenced by 1 of the tools.

• Assembler was cross referenced by 2 of the tools.

12

This analysis shows that most of the cross reference tools are neither multi-language or language
independent.

Most of the cross reference tools commercially available have been built to cross reference one

programming language only. Some companies have released more than one version of the same

tool, to cross reference other languages. The cross reference tools surveyed are stand alone tools,

and it may therefore be difliicult to connect them to other tools such as dataflow or control flow

analysers.

Many cross referencers provide static facts which can be used by other back end tools for

subsequent analysis. One such tool is Via/Insight manufactured by Viasoft. This is a code analysis

tool for the programming language Cobol which required ninety man years to build. Much of this

tool is based on the Cobol symbol table. If they required to change this tool to process another

programming language, apart from having to change the syntax analyser, many of the language

dependent components of the tool would have to be changed to accommodate new language features.

I f the tool were based on some static representation which was language independent then only the

front end of the tool would need changing. I f the front end analyser were language independent

or i f i t were relatively easy to add new programming languages features, such as new types of

objects and a method of representing their properties and relationships to other objects then the

tool would become much more versatile as it could be converted to other programming languages

in considerably less than ninety man years. Most of the literature surveyed revealed that most

tools were language dependent yet most computer installations use more than one language and

some installations still produce their specialist languages.

If a company purchases a particular cross referencer tool, for example Cobol, and a new revision

of the Cobol language is released then the cross referencer may not cope with the features. The

company may have to wait for the manufacturer of the cross referencer to update the cross referencer

tool. Altering a language dependent cross referencer to operate on another language would mean

a complete re-write. This would mean that the lexer, parser and symbol table would have to be

modified to accommodate the different types of grammar rules, different scopes and visibility rules

and also the classes of identifier in the language. This would be a very expensive activity.

Some cross reference tools do claim to be language independent, however they are general

purpose file searching tools and do not include information about visibility and scope rules that are

13

features of programming languages. They make no attempt to distinguish between different uses of
the same name which may cause the maintenance programmer to make many mistakes. A general
file searching cross referencer, whilst being useful, will not provide the maintenance programmer
with the complete information required.

The minimum cross referencing tool is nothing more than a general file searching tool that

would indicate where symbols were used i.e., the line numbers. The tools might provide some

textual context in which the name appears, although the main problem would be that it would not

distinguish between variables of the same name in different contexts (diflFerent scopes).

Many organisations use more than one language, for specialist applications many companies

may have their own language or customise a particular language. Currently a tool is needed for

every language. Unfortunately there may not be tools available for specialist languages.

Researchers at the Centre for Software Maintenance have experimented and reflected on the

feasibility of producing a language independent cross referencer that would be more than just a

general file searching tool. I t would provide the same level of detail of static facts that language

dependent tools currently produce. This would make the connection to other tools (possibly reverse

engineering tools) much simpler as there would be a consistent internal interface to deal with (i.e.,

a consistent symbol table structure).

This type of system would need to exhibit two main features. There would have to be a simple

connection between the source language translator and the tool, or an intermediate representation

of the static information. The intermediate representation must cater for all features of a set of

languages or must be capable of easily being extended with the minimum of work. The second

feature would be a framework to hold all classes of names discovered in a source program.

If a tool like this could be built it would make all the language dependent tools obsolete.

2.3 Language Independent Tools

In order to study the problems of producing language independent cross referencers the internal

structure of existing cross referencers had to be looked a.t. Since the internal structure of commer-

14

cially available cross referencers are confidential, the study ha,d to restrict itself to those available

at the Centre for Software Maintenance and the British Telecom Research Laboratories.

Over a period of time the Centre for Software Maintenance has developed a number of experi­

mental cross reference tools. The objective behind this development was to ascertain the usefulness

of cross reference tools for software maintenance and to identify the language independent parts.

The main CSM cross referencer projects were as follows:

1. PXR: a stand alone tool for the language Pascal

2. CXR: a stand alone tool for the language C

3. An Interactive Tool Cross Referencer

4. An Intermediate Output Merger

The P X R tool is a context sensitive cross referencer that will produce a cross reference listing of

identifiers used in a Pascal program, along with the lines on which they appear. It can differentiate

between declarations of the same identifier in different scopes and correctly identify any identifier

being used at any time. It will also record the different ways in which an identifier can be used e.g.

set, used, called etc. There are two types of cross reference listing available, an alphabetic listing

and a structured]isting[6].

The cross referencer takes as input a Pascal program together with a set of flags to specify

the user options. The user options are designed to let the maintenance programmer regulate the

amount of detail which is output from the cross referencer and also the way in which i t is presented.

There are three flags which can be set:

1. I f the '1' flag is set this suppresses a line numbered listing, otherwise a line numbered listing

of the source is produced by default.

2. Flags can be set to specify the level of detail required in the cross reference listing. These

flags are ' t ' , ' i ' or ' f for a terse listing, intermediate listing or fuU listing respectively.

3. Another flag indicates the type of listing required. This can be set to 'a' for an alphabetic

listing, in which all identifiers are printed in alphabetic order, or 's ' for a structured listing in

15

which the identifiers are presented alphabetically in sections according to the class of objects
represented.

The purpose of the two types of listing is to enable the maintenance programmer to make quick

access to an object's static information. A maintenance programmer may only be making changes

to a particular section of a program, and therefore will only require a section of the cross reference

listing. The purpose of the structured listing is to enable the maintenance programmer to quickly

identify a particular section of the cross reference listing. Each section in a cross reference listing has

a heading to identify the types of object in that part of the cross reference listing. These headings

correspond to the diflferent classes of identifier found in the Pascal Language. The structured

listing also distinguishes between new blocks within a function by indenting the information about

identifiers in this new block. Some identifiers may be used in specific parts of a program listing and

may be affected by change to the code. However they may declared as global variables, which will

mean they will not be declared in the same section of the structured listing as variables local to a

procedure. Therefore the maintenance programmer can quickly locate those external variables by

consulting the alphabetic cross reference listing.

The PXR cross referencer only accepts compilable programs as input. I f the Pascal program

input to the cross referencer has syntactical errors resident in i t , the PXR tool will identify the

first error and then terminate cross referencing the source code.

The C X R tool is a context sensitive cross referencer for the language C. This tool is very similar

to the PXR tool described above. The CXR tool re-uses many modules from the PXR tool[10].

The general philosophy when producing these two tools was to develop a general cross reference

tool containing a precise division between language dependent and language independent areas.

The CXR tool takes as input, a C program and flags to specify user options. The user options

are the same as those in the PXR program. The CXR program produces as output, the two types

of listing that the PXR tool produces i.e., structured and alphabetic with three levels of detail of

static information terse, intermediate and ful l .

The Interactive cross reference tool provides the maintenance programmer with quick access

to specific static information[28]. One of the main problems with the CXR and PXR cross refer­

encer tools is the large amount of cross reference information generated when cross referencing an

industrial scale piece of software. It is quite probable that the maintenance programmer will only

16

need a smaD amount of information about a program, perhaps locally to the change that is being
made in the program. A maintenance programmer may require detailed information concerning
one particular data structure or program block. The interactive cross referencer that has been
constructed will operate on programs written in the language Pascal, although the tool has been
designed so that i t can be easily extended to operate on other languages. The tool consists of
several parts:

• A Syntax Analyser for the language to be cross referenced.

• A Symbol Table and Symbol Table Routines. The structure of the symbol table has

been implemented as a tree and uses the names of the blocks in the source code as names

which make up path names to identify which scope a variable is resident in. Therefore the

maintenance programmer can specify a particular block to which queries will relate.

• The Interface Routines which extract information from the symbol table and also hide the

internal structure of the symbol table.

• An Interactive Query Processor which processes maintenance programmers' queries.

The interactive cross referencer has five types of commands for extracting static information:

1. The W h a t I S command will display information concerning a particular identifier.

2. The Path command sets the current search path to the path name given.

3. The Set command allows the maintenance programmer to set certain program flags such as

output redirection file names and format control flags.

4. The Print command allows the maintenance programmer to view the program source text

between the line numbers that they specify.

5. The Calls command displays the calls made to a routine or the calls out of the routine.

This interactive tool allows the maintenance programmer to gain static information about identifiers

used in a program without being swamped with other information.

The Intermediate Output Merger tool takes a machine readable file (produced by the front

end tool) representing the cross reference listing and merges this file with other files of the same

17

type. This project extends the functionality of previous projects by allowing the cross referencing
of separately compilable software. The merger accepts as input, two intermediate files (produced
by a cross referencer) and outputs a single intermediate file. This file contains the combined output
of the two input files. The input and output of the merger tool are of the same type so that N files
can be merged in N-1 times.

This proved to be a very efficient method of combining cross reference listings, as only one pass

is required for each input file and also means that no symbol table has to be built during this

merging process[23].

The main BTRL cross referencer projects were as follows:

1. X R E F which is a stand alone tool for the language C

2. Multi-language front ends for the languages C , Coral 66, P L M , Assembler 8080

3. Intermediate File Output Merger Tool

The X R E F cross referencer tool is a British Telecom Development. The XREF cross referencer was

designed to satisfy a specific need: to help in the comprehension of a large body of lines (300 000)

of largely undocumented code. There are three main sections to the XREF tool:

• The XREF Front end

• The XREF Back end

• The XREF Formatter

The front end contains the language dependent sections of the system. The front end takes as input

a program source file and produces as output an intermediate cross reference representation of the

source. The output file consists of all the information needed by the XREF back end tool. The

back end tool provided by XREF is called XMERGE. This tool takes as input, several intermediate

files produced by the front end. The output file contains all the merged input files. This is one

solution to dealing with industrial scale software that is written in separately compiled modules.

There are two formatters that produce user readable output, XFORMTEX and XFORM. The

XFORMTEX produces a file with text formatting commands resident in i t , which can then be

18

subsequently processed by a text processor. The XFORM tool produces a cross reference listing
without the textformatter commands resident in it . The XREF tool has been designed so that it
can be extended to form part of an interactive system.

The Multi-language front ends provide facilities for cross referencing more than one pro­

gramming language. The original front end to the XREF tool was written for the programming

language Coral 66. However the range of front ends has now been extended to include the languages

C, PLM and Assembler(8080), to solve the problem of cross referencing software systems written

in different languages[22].

2.4 Interfaces and Structures

The need for an interactive cross referencer to control the level of output from a cross referencer

was identified by Munro and Robson [28].

In the computer industry there is much research being cai-ried out in the field of human computer

interfaces[29,16,14,20] which will certainly have an effect on software tools of the future. Any cross

referencer interface would have to be simple and consistent. I t may be that future cross reference

tools can be dynamically reconfigurable, allowing the maintenance programmer to change the tool

as required, by providing pull down and pop up menus, iconic menus and tear off" menus, or by

utilizing command language macros. Maintenance programmer performance could be optimised

by evaluating a suitable screen layout for cross referencers. Different types of windows may be

employed e.g., tiles, overlapped, multiple views provided by Suntools, MS Windows, X windows

systems and products from Apple, Apollo and IBM etc. However one observation made by Viasoft

is that users prefer old interfaces, with which they are familiar, such as the ISPF interface.

2.5 Cross Referencer Internal Structure

The internal structure of an ideal cross referencer should be structured in such a way that the

number of interconiiections between the components is minimized. This could be achieved by using

a combination of stamp and data coupling and also a mixture of functional and informational cohe-

19

sion between the elements within the cross referencer components. A stand alone cross referencer
would probably iiiclude the following parts :

1. Main control Handler

2. User Argument Input Handler

3. Compiler Directive Handler

4. Lexical Analyser

5. Syntax Analyser

6. Symbol Processor

7. Listing Generator

2.6 Symbol Processing

The symbol table is a central place where a cross referencer keeps all the information about the

user defined names and constants. Often the design of the symbol table depends on the information

required by the cross referencer and on how much information can be gained from symbol decla­

rations in a program. The organisation for storing and retrieving elements from a symbol table

reflects the scope rules of the langua,ge[l]. A compiler uses a symbol table in the same way as a

cross referencer to keep track of scope and binding information about names. The symbol table is

searched every time a name is encountered. Changes to the symbol table occur i f a name or new

information about an existing name is discovered[1].

A symbol table mechanism must allow the cross referencer to add new information concerning

names in the source code to the symbol table efficiently. There are three common ways of storing

symbols namely in linear lists, in hash tables and in tree structures.

Each entry in a symbol table is for the declaration of a name. The format for entries does not

have to be uniform, because the information saved about a particular name depends on the usage

of the name. Each entry ca.n be implemented as a record consisting of a sequence of consecutive

words in memory. These words can be regarded as slots which can hold information. In order to

20

keep symbol records uniform, i t may be convenient to keep some of the information outside those
records with a pointer to them.

A declaration of a symbol in a language is a syntactic construct that associates semantic in­

formation with a name. Declarations may be explicit or they may be implicit. For example a

variable can be implicitly defined in Fortran as an integer if the first letter is an I , unless there is an

IMPLICIT statement which overrides this default. The scope rules of a language determiire which

declaration of a name applies when the name appears in a program construct. The portion of the

program in a declaration applies is called the scope of that declaration. An occurrence of a name

in a procedure is said to be local to that procedure if i t is in the scope of a declaration within the

procedure, otherwise the occurrence is said to be non local. A separate symbol table can be kept

for each of the scopes. The organisation of the symbol table entries depends on the scope rules of

the language:

• Basic can be handled with a table for the outer program and additional separate tables for

each subroutine. Variables declared local to a subroutine are only visible in that subroutine.

• Fortran requires a symbol table for each block.

• The programming language Pascal has a strict declare before use rule. Nested scopes are

reflected by using a stack as a symbol table, new names are pushed on top of the stack and

the stack is appropriately popped at the end of the scope. Whenever a symbol is discovered,

the stack is searched top down, this locates the innermost definition of the name.

• Other members of the Algol family do not necessarily require that names are declared before

they are used, as long as a declaration occurs within the scope of the name.

• The programming language C permits nested scopes for variables, but functions cannot be

nested. There is a declare before use rule, except that functions with integer result need not

be declared. A stack of names and a global table of functions will be sufficient for the C

language.

This shows that symbol processing mechanism is not uniform in shape and that many types of

symbol access rules exist. The programming language features will be looked at in more detail in

the next chapter.

21

The Durham cross referencers PXR and CXR all use the same scheme for holding symbol table
information, a tree approach. The tree matches the recursive hierarchy in the attribute grammar
of the language the symbol table is designed for. PXR was constructed first although CXR reuses
much of the ideas and code used in PXR[10]. The main features of the symbol table tree are as
follows:

1. The main structure is a recursive data structure called symbol node which has three compo­

nents: symbol, less or equal pointer and greater than pointer.

2. A symbol contains the name, owner, block start, block count, symbol class type, the line on

which the symbol was declared, a,nd a variant record depending on the class of identifier.

3. The variant record holds all properties of the class of object in question i.e., all the ways in

which an object can be manipulated. If one of these variant records is a record for containing

a function, sub program or procedure then one of the fields will be a pointer to a new symbol

table for all symbols inside this scope.

The syntax analysers are language dependent and the other components are language indepen­

dent so the CXR and PXR tools can be extended or slightly changed to include other languages[28].

However an enhancement to CXR and PXR will require explicit programming skills and the tool

implementor must understand the internals of the symbol table in order to design and implement

the new feature.

2.7 Summary

The state of the art in cross reference tools was described and the detailed design of cross reference

tools analysed. The language independent components of these tools were also identified.

Chapter 3

Cross Refereeciirig Laeguiage Features

3.1 Introduction

Building a software tool that can operate on many diflferent languages requires the tool implementor

to understand the evolution of programming languages in order to appreciate why certain features

are present in modern languages. Also, in order to identify a set of language features which should

be supported by a language independent cross referencer, a survey of languages should be carried

out. This chapter examines the main features relevant to cross reference tools, particularly the

symbol processing requirements.

3.2 Cross Referencing Different Languages

Tracing the use of objects within a software system can be difficult as each program may be written

in a different language. Each language has its own grammar rules, classes of symbols and scope rules.

There are commercially available cross reference tools that claim to be language independent[45].

This is because they do not address the different types of language features, instead they ai-e general

file searching tools. Fortunately, although two languages may seem different, they often have more

similarities than differences. Individual programming languages are not usually built on separate

22

23

principles; in fact their differences are often due to minor variations of the same principle[47].

Studies in the way programming languages are used (and misused) have led to a number of

design considerations[37]. The influence of these design considerations can be found in the definition

of programming languages. Programming languages in general are the result of the realisation that

abstraction is the most essential ingredient in programming. Every programming language more

or less reflects the depth to which the understanding of the programming activity had evolved at

the time of its conception.

There are many languages designed for specific purposes and that is both their strong point

and is also often their limitation (eg Algol, FORTRAN - numerical computation, COBOL - data

processing). I t is unlikely that all the concepts will be integrated in one properly designed language

as it would be very complex. Language designers have designed complex languages and then

simphfied them again (e.g., CPL and BCPL). So perhaps there will always be a need for tools that

operate on more than one language.

3.3 Programming Language Features

For a tool implementor to design a tool for current and future languages the historical evolution

of languages must be understood in order to appreciate why different features are present. Also

there is a huge inertia in the programming environment to the use of new languages, which means

that once a language has been successful, it is difficult to supersede it by a newer language. The

large investment in established systems ensures the continued use of old languages. This section of

the thesis surveys the main programming languages that have been used between the 1950's and

1980's, in order to get a satisfactory knowledge of language features so that a prototype language

independent cross referencer could be designed. The following languages have been analysed:

Assembler, F O R T R A N , Algol, C O B O L , P L / 1 , B A S I C , S I M U L A , Pascal, C , Modula-

2, and Ada . For each programming language discussed, the main features are described and

the facihties that a language independent cross referencer needs to provide are identified. The

features that a language independent cross referencer must provide are summarized at the end of

this chapter.

24

Assembler

Other approaches to programming language processing [33,34,21] do not seem to have addressed

software features found in assembly language programs. Many technical, scientific and real-time

projects, such as avionic software, have components which are written in assembly code. These

software systems may be very large. For example the European Fighter softwai-e system consists

of 10,000,000 lines of assembler code. Therefore a language independent cross referencer should be

capable of dealing with objects found in assembler programs. To cross reference software which

runs a particular processor, the architecture of the processor would have to be understood by the

cross referencer in order to deal with the instruction set. Although there are many different types

of processors they do have some similarities[46]. For example most processors can be categorised

by the following criteria:

• The number and type of registers tha,t may be used by the programmer in writing software.

• How the data is organised in memory, and what data types are supported with hardware

instructions.

• How memory is addressed by an instruction.

• Special hardware features such as hardware support for stacks.

I t is very important to be able to cross reference assembly language programs as they are often

called from high level languages. When cross referencing programs written in assembler, the scope

and visibility problems of high level languages do not apply. However assembler has many different

addressing modes. Often assemblers have built into them macroprocessors. This can cause a

problem in deciding whether to cross reference the original program code or the macro expanded

code.

To summarize, when cross referencing programs written in assembler the following features will

have to be dealt with:

• The use of address registers

• The use of data registers

25

• The use of the status register

• The data formats in memory

• The many different modes of addressing

• Recording the use of different instructions

F O R T R A N

The first attempts to improve machine code were SHORTCODE for the UNIVAC, Speedcode for

the IBM 701. The first big breakthrough was the development of 'THE IBM Mathematical FOR-

mula TRANsIating system FORTRAN' in 1958[47]. It was developed to allow programming in a

mathematical notation which when compiled produced efficient object code which would run faster

than a hand coded version. FORTRAN was designed for scientific computations and consequently

string handling facilities are non-existent and the only data structure was the array. FORTRAN

was a big step forward from SHORTCODE as it included assignment statements that allowed math­

ematical expression of some complexity on the right-hand side, simple iterative constructs using the

DO statement, and subroutines and functions. Formats for input and output were also included.

FORTRAN programs are also portable between different machines. One of the main problems in

the 1950's was that programmers would not use any other languages and consequently FORTRAN

was used in other applications for which it was not particularly suited, such as business data pro­

cessing. One of the other main problems was that there was no precise standard for FORTRAN. In

1966 this problem was solved when the American National Standards Institute(ANSI) published

a standard for FORTRAN. In 1978 a new standard was published, namely FORTRAN 77. FOR­

T R A N data types are INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL and

CHARACTER. The cross referencer must be able to store a type associated with each identifier.

A cross referencer must also be able to deaJ with any data structuring facilities. In FORTRAN

there is only one, namely the array, which can be up to seven dimensions. A cross referencer must

be able to store this in its symbol table. Fortran statements fall into two classes executable and

non executable . The non executable statements are declarative in nature. A cross referencer must

record all of the declarations of names. The executable statements which affect the use of names

must also be recorded.

26

FORTRAN programs are divided into functional units called functions and subroutines. FOR­
T R A N subprograms may communicate with other subprograms by using a COMMON area or
by using parameters. The cross referencer symbol table must provide an area which represents a
COMMON area. Also in a FORTRAN program two variables can be made synonymous, sharing
the same location in memory by the use of the equivalence statement. This should also be included
in a cross reference listing. To summarize, when cross referencing programs written in FORTRAN
the following features will have to be dealt with:

• Data types namely INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL and

CHARACTER.

• The use of array structures with one to seven dimensions.

• Recording the use of executable and non executable statements.

• The use of functions and subroutines

• The use of arguments and common areas

• The use of equivalence

• The segments of a FORTRA.N program are independent of each other. Variables are only

visible in the main subprogram where they were declared, unless their visibility is transferred

to another part of the program using arguments or the common block.

Algol

Algol has had a large influence on many successive languages for example Pascal, SIMULA 67,

C, Modula-2 and Ada[47,44]. Algol was the original block structured language and variables were

only valid in the block they were declared in. Arrays can have variable bounds at compile time.

There is more than one version of Algol for example: Algol 60, Algol W and Algol 68. The

language Algol W was the immediate successor to Algol 60 and contained some new features such

as record structures, a case statement, long real and complex data types and complex arithmetic,

bits data type and some basic string manipulation facilities. This language was the predecessor

to the language Pascal. Algol 68 was produced in 1968 and aimed to be a universal programming

27

language, suited for scientific and commercial data processing applications. However it made little
impact on practising programmers.

A cross referencer would have to support the classical block structure of Algol. Also the cross

referencer should support arrays, records and references. Facilities for representing the different

parameter mechanisms such as call by value, result, name and value-result would have to be pro­

vided. To summarize, when cross referencing programs written in Algol, the following features wiU

have to be dealt with:

o The use of block structure

o The use of data types

0 The use of records, arrays and references

o The use of call by value

o The use of call by name

0 The use of call by value-result

o The use of call by result

o The use of an identifier need not be declared before i t is used provided it is declared within

the same block.

C O B O L

COBOL is a data processing language, and is quite different from Algol and FORTRAN which

emerged around the same time. A COBOL program is divided into four parts:

o The identification division, which is essentially a program prologue which provides commen­

tary and documentation.

0 The environment division, which contains machine dependent program specifications. This

specifies the connections between the Cobol program and the external data files.

0 The data division, which gives a logical description of the data.

28

• The procedure division which contains the algorithms necessary to solve the problem.

The three main objects found in COBOL programs are files, records and fields.

COBOL, although a language with over 250 verbs, is a relatively easy language to cross reference

with the exception of a few features. One difficult feature to deal with is a text substitution facility,

a compile time activated utility, the REPLACE statement[3]. Another feature is the redefine

command which instructs the compiler that more than one identifier can use the same piece of

storage. This is similar to the FORTRAN equivalence statement. This means that more than one

name in the source code will be associated with one object in the symbol table. One feature which

makes cross referencing simple is that there is only one scope to deal with.

To summarize, when cross referencing programs written in COBOL the following features will

have to be dealt with:

• The use of file structures

• The use of record structures

• The use of inter-program communication

• The use of text substitution

• The use of redefinition of identifiers

P L / 1

The final version of PL/1 which appeared was based on a combination of ideas found in FORTRAN,

Algol and COBOL and was the first attempt at designing a universal programming language. The

FORTRAN elements are the parameter passing mechanisms, separately compilable subprograms,

common blocks and formated input and output. The block structure and statement structure

are taken from Algol. The COBOL features included are the record declaratives[47,35]. A crpss

referencer would have to support multi-dimensional arrays and structures. Every element in these

data structures must be represented in the symbol processing component in the cross referencer.

PL/1 has procedures, information is passed between calling subprograms by using parameters and

29

corresponding arguments. Variables can be declared EXTERNAL in several procedures and each
procedure wil l share the variable in common. This is very similar to the FORTRAN common
statement and therefore a facility for representing common variables must be provided by the cross
referencer.

To summarize, when cross referencing programs written in PL/1 the following features will have

to be dealt with:

o The use of parameter passing mechanisms

o The use of separately compilable subprograms

0 The use of common areas

o The use of block structure

o The use of record declarations

0 The use of reserved words as identifiers

o The use of multi-dimensional arrays

0 The use of structures

B A S I C

Basic contains elements of FORTRAN IV in its definition[47] and is a language designed for com­

puters with a small amount of memory and consequently is a small language. Only recent dialects

of Basic have included procedures and functions sharing the same visibility rules as other block

structured languages such as Pascal. This would be a quite simple language to cross reference, the

major problem being the vast number of dialects[47].

To summarize, when cross referencing programs written in BASIC the following features will

have to be dealt with:

o The use of procedures and functions

30

o The use of block structure
o The use of global and local variables
0 The use of multi-dimensional arrays
0 The use of record structures

0 The use of variables that do not need to be declared before use

S I M U L A

SIMULA is based on Algol 60 with one very important addition - the class concept[47,31]. The class

concept can be found in modern languages such as Concurrent Pascal and CLU. SIMULA classes

are based on procedure declarations and the block structure of Algol 60. I t is possible to declare

a class and generate objects of that class, name these objects and form a hierarchical structure of

class declarations. The cross referencer symbol table would have to be capable of holding those

hierarchical structures.

To summarize, when cross referencing programs written in SIMULA, the following features will

have to be dealt with:

o Classes of objects

0 Hierarchical structure of class declarations

o Block structure similar to ALGOL 60

P a s c a l

The first official language description for Pascal was published in 1971. The Pascal language has

elements of Algol 60 and FORTRAN in its design, although it was influenced more by Algol 60.

The FORTRAN influence was to make Pascal produce efficient run time implementations. Pascal

has static arrays like FORTRAN, although most of the Algol like languages have dynamic arrays,

making them less efficient at run-time but more flexible for the programmer. Structured types need

31

to be considered when designing a cross referencer and these are a prominent feature of Pascal.
These types can be built from the primitive types integer, real, boolean and char. The structured,
user defined types include arrays, records, sets and files. In addition pointer types may also be
used in conjunction with data types. One feature difficult to deal with is the nested record. Field
designators are used to descend a level of nesting in the record structure. Another problem is the
fact that fields can be given the same name on different levels of record nesting. Therefore the
cross referencer must store each level of nesting as a scope and when a nested record structure is
being accessed, the correct field identifier must be located. A mechanism is needed to deal with
Pascal w i t h statement which allows the programmer to reference fields deep within record nesting
without specifying a long list of field identifiers. Another problem to be dealt with is the passing
of Pascal procedures as parameters.

To summarize, when cross referencing programs written in Pascal the following features wiD

have to be dealt with:

o The use of arrays, sets and records

0 The use of procedures and functions

0 The use of block structure

0 The use of global and local variables

o The use of nested record structures

o The use of pointer types

o The use of the w i t h statement

o The use of textual parameterisation

C is a programming language developed at A T & T Bell Laboratories around 1972. The C language

is made up of functions, data types and program control structures. Like Pascal, C contains pointers

and an equivalent of Pascal records, called structures. The basic C data types are numbers which

32

may be int, float or double; or single characters which are called char. Int numbers may be short,

long or unsigned. Each C variable is a storage type and also a storage class (auto, extern, static

and register). The cross referencer must be capable of holding these data types and classes. A

UNION is a characteristic of C which permits a variable to have different types of values. The cross

referencer must be able to hold the definition of each type in the symbol table. A program may

be segmented into functions with local variables declared inside them. Function definitions cannot

be nested. The cross referencer must store each function in a different scope and allow parameters

to be passed to functions. Parameters are, by default, called by value in C, although there is a

specific mechanism which allows an argument to be called by reference, by passing the address of

the argument, rather than its name.

To summarize, when cross referencing programs written in C the following features will have

to be dealt with:

• The use of structures like Pascal records

• The use of unions: variables with more than one type

• The use of data types and storage classes

• The use of functions

• The use of local variables in functions, a scope for each function

• The use of function parameters: call by value or called by reference

Modula-2

Modula-2 is a descendent of the language Pascal[43]. Modula-2 is in effect Pascal with the module

concept. The basic Modula-2 data types are numbers, which may be INTEGER, CARDINAL or

REAL; logical values, which are called BOOLEAN; and .single characters which are called CHAR.

A variable need not be declared before it is used. The three internal data structures are caUed

arrays, records and structures.

Modula-2 programs may be segmented by the use of procedures and modules. Modules allow

collections of procedures and data declarations to be grouped and separately compiled, and selec-

33

tively used by other programs as they are needed. A cross reference listing merger tool would be
able to merge the cross reference listings produced from each of the module files.

To summarize, when cross referencing programs written in Modula-2, the following features wiU

have to be dealt with:

0 The use of data types: INTEGER, CARDINAL, CHAR, BOOLEAN and REAL

o The use of local and global variables

o The use of modules

o The use of nested blocks

A d a

Ada like Modula-2 is also Pascal based, however it is a much more complex language. I t extends

Pascal constructs but contains features that have no analogue in Pascal. One of the key features

is the Package which is designed foi- the description of large software components and has affinities

with the class concept of SIMULA 67 and the module of Modula-2. The procedures and functions

are similar to those in Pascal, but the parameter passing mechanism using in, out and in out

correspond to Algol W's value, result and value result. Packages allow the programmer to collect

several related procedures, functions and type declarations into a single separately compiled unit.

Packages have two components: a package specification, which is visible to the user of the package

and package body which contains the implementation of the package. The program which uses

procedures in the package must be augmented by the prefix

w i t h package.name;

and all the functions and procedures defined therein are immediately accessible to the program.

The cross referencer must have some mechanism for dealing with this facility.

Ada also has tasks to permit parallel processing and contains an extensive set of features for

interrupt and exception handling. These are similar to the PL/1 ON-conditions[47,32].

34

A major problem would be how to cross reference generic packages. Generic program units
define a unit template, along with generic parameters that provide the facility for tailoring that
template to particular needs at translation time. The template could be for example a queue of
items, of some type. The type may not be instantiated until the program is compiled. The notion
of generics in Ada is very like macros in conventional assembly languages. A front end will be
needed for the cross referencer to do the instantiation.

A cross referencer must associate an identifier in the source code with an object in the cross

referencer. A program written in the language Ada can have more than one identifier in the same

scope with the same name. Therefore some context other than visibility must be used to distinguish

them.

To summarize, when cross referencing programs written in .A.da, the following features will have

to be dealt with:

• The use of scalar data types: FLOAT or INTEGER and the various forms of precision

• The use of enumeration types: BOOLEAN, CHARACTER or predefined values

• The use of arrays (constrained and unconstrained)

• The use of records

• The use of nested blocks

• The use of global and local identifiers

• The use of packages

• The use of generics

• The use of overloading of previously defined objects

S u m m a r y of His tor ica l Survey

Fortran was the first widely used high level language. The next language to appear was Algol 60, the

language which greatly influenced Pascal and Ada. The languages Algol 60 , Pascal and Ada are all

35

block structured. COBOL the main business data processing language allows hierarchical record
structures however they are not recursive. PL/1 is a general purpose language which combines
many features of FORTRAN, Algol 60 and COBOL. Basic became popular in the 1960's as it
was an interactive language and its interpreter would fit into a small machine. Pascal has become
very popular as a teaching language as it has structured and primitive types, user defined types,
data abstraction and it is block structured. Some dialects of Pascal have information hiding and
modularity such MS-Pascal. Modern languages such as Modula-2 and Ada are based on Pascal.
Ada includes many more visibility rules than Pascal and can have features such as overloading[42].

3.4 Language Features to be included

I f the common features of languages were included in a cross referencer then perhaps a multi-

language or language independent cross referencer could be designed. The following features are

the characteristics of programming languages which should be included or covered in some way by

a language independent cross referencer, since they are found in most programming languages:

• Primitive types

• Structured types

• Manipulation of structured data types

• User defined types

• Data abstraction

• Program block structure

• Visibility rules of names

• Statement and statement sequencing

• Subprograms

• Subprogram sequencing and communication

• Renaming and redefinition of objects

36

• Generics

• Macro definition and expansion

• Overloading of objects

Chapter 2 described cross referencers such as CXR and PXR which were designed to facilitate

the re-use of as much of the program code as possible in a future language dependent implementation

of a cross referencer tool. This survey of language features should extend the domain in which a

language independent cross referencer can be used. However, the tool implementor will still have

to change the language dependent components of the tool. This task will require some effort as the

tool implementor will need to understand the internals of the cross referencer tool.

3.5 Summary

A small survey of programming languages was carried out to identify and understand why certain

language features are present today. A set of programming language features common to many

programming languages, was identified. These features could be supported by a cross referencer

tool and would form a language independent nucleus skeleton of a front end to a cross referencer.

Chapter 4

Applicat ion Generators

4.1 Introduction

Application generators have been used in many application areas such as user interfaces, databases,

commercial data processing and the production of syntax analysers. This chapter investigates the

possibility of using a program generator to reduce the amount of effort in producing front ends for

software maintenance tools. Few have attempted to generate software maintenance tool front ends,

although other researcher's ideas and opinions are evaluated and the important features of their

work described.

4.2 Application Generators

Program generators translate specifications into application programs. The specifications describe

the work to be performed by the generated program. Specifications of applications programs can

be written in a meta language such as Backus Naur Form, expressed graphically or specification

can be performed by selecting from a series of menus[9]. Whether the specifications ai'e text or

graphics the application generator will generate the program code which is capable of performing

the task described. To change or modify the product the input specification would be changed and

37

38

processed by the generator again.

The main benefit of application generators is that they offer increased productivity through

customized re-usable software. For example, a generator for generating database tables will have

re-usable components within i t such as functions for generating tuples and domains, assigning types

to the tuples and also a dictionary to store the database structure. These main generic parts will

have application specific details added to them supplied by the user in some sort of schematic

description. The main benefit in this example is that the user does not need to construct these

items for each new database and also does not understand the internal details of the generic parts.

Application generators allow the user of the generator to customize and re-use a software design

easily. Since software system can be automatically produced, application generators can increase

productivity in the design of a product, and will not need to concern themselves with low level design

detail. Specifications are far easier to write tha,n the a,ctual program code itself. This is because

the user is specifying what is required rather than describing the process needed to achieve what is

required. Generators also facilitate rapid prototyping of products. Another advantage is that they

provide many projects with a uniform consistent interface and thus can prevent misinterpretations.

The main disadvantage of generators are that they are difficult to build as they require the

builder to have knowledge of the application domain and also knowledge of parsers and translators.

It is often difficult to identify generic re-usable pieces of program code in the application domain.

Generators are often built for very specific application domains and are only useful within those

domains. A generator designed for generating a database form interfaces is probably of little use

in real time software production.

Generators have been applied to user interfaces for telecommunications equipment, software

tools, administrative tools and design processes. Finite state machine based generators use a high

level description of the behaviour of a system and produce table driven software. These types of

tools have been apphed to switching and security software for telephones. They have also been used

successfully in the production of parsers for example YACC (Yet Another Compiler Compiler), a

L A L R (l) parser generator.

Building application generators consists of several tasks such as recognising application domains,

defining domain boundaries, defining the underlying model, defining the variant and invariant parts.

39

defining the specification of the input and implementing the generator[9].

One of the most difficult tasks to be performed when building generators is recognising where

to utilize an application generator. The key is to recognise patterns or repetition of constructs in

program data structures and program code. Pattern recognition is the most common method used

to identify potential application domains.

Defining the domain boundaries can be quite difficult. The generated program may need to

connect to other software systems and therefore must interface with i t . The difficult aspect of

defining domain boundaries is in trying to establish which features should be included and which

excluded. Future modifications to the application domain must be anticipated and the application

generator must be built in such a way that it can be enhanced easily. The designer of the generator

must specify the range of facilities which it is capable of providing.

A generator is likely to be complete, comprehensible and consistent i f based on an underlying

model. A model will provide the foundation for describing the domain meaning consistently. Each

feature can be explained in terms of the model and the specification should be used in terms of the

underlying model. Examples of some models are sets, directed graphs, formal logic systems and

finite state machines.

Identifying and designing the generic parts or invariant parts is another major step in the

process of building a generator. These are features of the generator that do not change and can be

re-used by an application. The program generator's variant parts usually correspond to the parts

that the user of the generator specifies.

Another feature used for adding variant information is the facility to add user supplied code

written in the implementation language. The main problems are that the user needs to understand

the implementation language and also how the invariant features work. The feature of adding user

supplied code can be used to add functionality to the generator for a variety of unanticipated needs.

A drawback of this feature is that it degrades the readability of the specification and also reduces

the reliability of the product generated.

Designing the input specification is a difficult task. The design depends upon the application

of the generator. Some generators use menus, text, forms, icons and diagrams. Diagrams are used

less frequently as many specifications are not naturally pictorial. However some are, for example

40

networks. I t would be interesting to see if the scopes and visibihty rules of programming languages
could be represented pictorially. For example perhaps the rules that influence a symbol table
searching mechanism could be modelled with a simple list of productions. These productions could
be generated from a state transition diagram[l] drawn with a diagramming tool.

Implementing the generator is the last task, performed when producing application generators.

This task involves writing a program which translates the input into the desired product. The

final generator will include a lexical analyser and syntax analyser, a semantic analyser and a

product generator. Most generators merge input text, taken or derived from the specification, with

templates of program code.

4.3 Compiler and Language Processor Generators

Language processor generators are systems that produce source code analysers for checking the

syntax and semantics of computer programs, from a high level specification of the language. The

techniques and tools of automatic language implementation have been researched actively for nearly

three decades[7]. In spite of the voluminous research effort[13], very few truly usable compiler writ­

ing systems have emerged. Probably the most successful system has been YACC[36]. Many later

sophisticated systems have not succeeded in breaking through the barrier between the academic

and the commercial world.

In order to produce a language processor the first step is to produce a specification of the

language. Two aspects constitute a language specification, namely syntax and semantics. The

syntax deals with the mechanical aspects, whether or not a sequence of words(or letters) is a

sentence in a language. The semantics of a language determine the meaning and legitimacy of the

sentence.

Formal notations exist for both parts of the language definition. The syntax is usually defined

through a sequence of models, usually in terms of productions. The syntax definition of program­

ming languages is well understood a.nd numerous grammars and notations exist. Describing the

semantics of a language is much harder. If a formalism is employed then one method is to simulate

the execution of a sentence on a well defined theoretical machine model. The resulting state of the

41

machine defines the meaning of the sentence, or indicates that it is meaningless.

The syntax of a programming language is usually represented by a context free grammar which

consists of a sequence of rules, each rule having a left hand side and a right hand side. Symbols

in the rules are terminal or non-terminal symbols. The terminal symbols (lexemes) ai-e the basic

building blocks of the language

A grammar defines a language by describing which sentences may be formed. The start symbol

of the grammar is a non-terminal symbol from which all possible sentences can be generated. For

each non-terminal symbol a production rule must exist, and any one of the formulations of the rule

can be substituted for the non-terminal symbol. A sentence is defined to be a sequence of terminal

symbols.

It can be seen that a language is a set of sentences, which in turn is a sequence of terminal

symbols. Terminal symbols in a programming language usually come in four varieties:

1. operators that are represented as short sequences of chai'acters,

2. reserved words that are represented as sequences of letters whose meaning cannot vary,

3. punctuation marks in the programming language,

4. user defined terminal symbols.

To assemble these tokens from an unstructured stream of input characters a lexical analyser is used.

Lexical analysis is the classical application of the theory of finite state automata[l]. A transition

diagram is generally quite easy to derive from a lexical specification of a programming language.

An example of a lexical analyser generator is LEX which takes as input a set of regular expressions

which defines the terminal symbols or tokens in a programming language and produces a lexical

analyser. For example in the language Pascal, an identifier can be defined as follows:

{ l e t t e r } [a-zA-Z]

{ l e t t e r _ o r _ d i g i t > Ca-zA-Z_0-9]

{ l e t t e r } { l e t t e r _ o r _ d i g i t } * t o k e n (I d e n t i f i e r) ;

42

The letter is defined as a. single alphabetic character, in upper of lower case. The letter_or_digit

is defined as a single alphabetic character, in upper or lower case, an underscore, or digit in the

range of 0 to 9. The third definition is defined as being a single alphabetic chaiacter, in upper or

lower case followed by an infinite number of letters or digits. The token(Identifier) is a function

that returns the sequence of characters or digits when they are detected.

4.4 L E X

A LEX specification consists of three parts:

1. declarations,

2. translation rules,

3. auxiliary procedures.

The declarations section includes declarations of variables, manifest constants, and regular defini­

tions.

The translation rules of a LEX specification consist of a regular expression and an action. These reg­

ular expresssions describe which action the lexical analyser should take when the pattern matches

the lexeme. In LEX the actions are written in C. The third section holds whatever auxiliary proce­

dures are needed by the actions. Alternatively these actions can be compiled separately and loaded

with the lexical analyser.

4,5 Y A C C

A parser can operate with or without a lexical analyser. I f the parser does not use a lexical analyzer

i t wil l have to recognise the operators, reserved words, punctuation marks and user defined symbols

itself. Alternatively a parser can obtain a series of tokens from the lexical analyser and verify that

the string can be generated by the language. This can be thought of as deriving a parse tree.

The methods of parsing commonly used in compilers are top down or bottom up. As indicated

43

by their names, top down parsers build pajse trees from the top root to the bottom leaves, while
the bottom up parsers start from the leaves and work up to the root. In both cases input to the
parser is scanned the same way left to right, one symbol at a time. The popularity of top down
parsers is due to the fact that efficient parsers can be constructed more easily by hand using top
down methods. Bottom up parsing can handle a wide class of grammars therefore software tools
for developing parsers tend to use bottom up methods[18,36].

The top down parsing method is performed by starting with the root, labelled with the starting

non-terminal and repeatedly performing the following two steps:

1. At node n, labelled with non-terminal A, select one of the productions for A and construct

children at n for the symbols on the right side of the production.

2. Find the next node at which a subtree is to be constructed.

For some grammars, the above steps can be implemented during a single left to right scan of the

string. The current token being scanned in the input is frequently referred to as the look ahead

symbol. Initially, the look ahead symbol is the first leftmost, token of the input string.

Bottom up parsing is known as shift reduce parsing. Shift-reduce parsing attempts to construct

a parse tree for an input string beginning at the leaves (the bottom) and working up towards the

root. The process can be thought as reducing a string to the start symbol of the grammar. At

each reduction step a particular substring matching the right side of the production is replaced by

the symbol on the left of that production, and if the substring is chosen correctly at each step, a

rightmost derivation is traced out in reverse.

A YACC specification has three parts:

1. declarations,

2. translation rules,

3. supporting C routines.

The declarations part contains the declarations of all tokens that will be passed from the lexical

analyser and used in the YACC second and third sections.

44

The second section contains the translation rules. Each rule consists of a grammar rule and
the associated semantic action. In a YACC production the left side is separated from the right
side by a colon and alternative right hand sides are separated by a vertical bar. The end of each
rule is specified by a semi colon. In a YACC production, a quoted single character is taken to
be a symbol, and unquoted strings of letters and digits not declared as tokens are taken to be
non-terminal symbols. The left side of the first rule is the start symbol of the grammar.

The third section of the YACC specification consists of supporting C-routines. A lexical analyser

by the name yylex() must be provided. The lexical analyser yylex() returns tokens consisting

of token type and attribute value pairs. If a token type value is returned, such as DIGIT, the

token type must be declared in the first section of the YACC specification. The attribute value is

communicated to the parser by a YACC defined variable yyval.

If a language is defined to be a set of sentences, i.e., of sequences of terminal symbols, there

are usually many ways to define a grammar describing the language. While the language need not

be finite, the grammar must have a, finite number of production rules. An important part of the

grammar is the recursive constructs which caji be used to describe the repetition of production

rules.

A grammar for language recognition must not only be unambiguous, but also deterministic.

That is the the rest of the input terminal symbols must enable the parser to uniquely decide which

rule to use in order to complete the parse tree, if it exists, or to discover that no tree can be

constructed to accommodate the next input symbol. There are a number of different classes of

grammer that can be written. Some of these lead to parsers which require a number of look aliead

symbols.

The grammars of modern programming languages tend to be restricted in form to allow for

efficient parsing. They usually possess the LL(1) or LR(1) property, or vai'iations of these. In the

first case a parse tree can be built top down without backtracking; in the second case the parse tree

can be built bottom up without backtiacking. In each case it is only necessary to know, at most

the next input symbol to determine which production rule to apply, i.e., one symbol look ahead is

required.

A parser specification is prepared for input to the YACC tool and is checked to make sure that

45

there are rules for all non-terminals. All non-terminals should be reachable from the start symbol

and the grammar should satisfy the property of an L A L R (l) grammar.

The YACC parser is an LR type of parser and it employs a bottom up syntax analysis technique.

L is for left to right scanning of the input, and R is for constructing a rightmost derivation tree in

reverse. The driver program is the same for all LR parsers, only the parsing table changes from one

parser to another. There are three types of LR parser, SLR, canonical LR and LALR. The SLR is

a simple LR parser and is very easy to implement and is the least powerful of the three. The second

method, canonical LR, is the most powerful, in that i t can describe a lai-ge class of languages. The

third method, look ahead LR (LALR) is intermediate in cost and power between the other two.

YACC is an LALR parser and can be used on most programming language grammars and, with

some effort, can be implemented efficiently.

Y A C C Internals

YACC builds a set of parser ta.bles while analysing the grammar. The parser is a push down

automaton. This is a stack machine which consists of a large stack to hold current states and a

transition state matrix to derive a new state for each possible combination of current state and the

next input symbol. It also contains a table of user defined actions which are performed at certain

stages in the recognition and finally an interpreter to actually permit execution.

The internal workings are as follows: the top of the stack contains the current state, the next

terminal symbol is produced by the lexical analyser, the parser reads the top of the stack and using

the transition matrix selects an operation. The transition matrix consists of five types of operation:

1. ACCEPT: This operation happens only once when a successful recognition is nearly complete.

2. ERROR: This operation happens for all those next terminal symbols which must not be seen

in a particular current state.

3. SHIFT NEW STATE: This operation indicates that the next terminal symbol is acceptable in

the current state. The new state is pushed or shifted onto the stack and becomes the current

state.

46

4. REDUCE: A reduce takes place when the parser detects a string which matches the right

side of a production. This string is replaced by the symbol on the left of the production.

5. GOTO NEW STATE: The reduce action leaves a non-terminal on top of the stack. Goto is

the shift operation for this non-terminal symbol. The new state is left on top of the stack.

4.6 Producing Complete front ends

The automation of compiler production has been very popular, however only recently have serious

attempts been made to fully automate the process. The recent efforts are the production qual­

ity compiler compiler project (PQCC) at Carnegie-Mellon University [30] and the experimental

compiler project at I B M . Most other tools are directed at simplifying particular parts of compiler

writing , particularly parsing. Little work has been done on generating symbol processing mech­

anisms as this has become increasingly complex during the evolution of programming languages.

Symbol tables are usually based on a model, scheme or some strategy like the Acorn compiler

production system developed by Reiss[33,34]. This model must support a variety of entities with

different types of names. The scoping rules must also be included. Those two aspects of the model

describe the process of mapping an identifier or entity from a piece of source code to an entry in

the symbol table. The model is built from a study of the roles which symbols play in programming

languages and compilers. The model is different for every programming language. Although some

languages do have similar features making certain aspects of the models similar.

The design of the symbol processing facilities is the most difficult aspect of generating front

ends. This is because the semantic routines for the various programming languages are not the same

and there are no widely used formalisms for describing them. Consequently the resulting features

of generated symbol processing mechansims are often of a somewhat experimental chaiacter like

the HL P84 developed by Koskimies, Nurmi and Paakki[2l].

The following describes two existing approaches to the specific problem of generating symbol

processing mechanisms. One approach is a model based on set theory and makes no assumptions

about the symbol tables to be generated. This makes the specification quite large. Often when

generating symbol tables with similar features, the implementor must specify these similar features

for each symbol table in which they occur. This suggests that the variant and invariai^t aspects of

47

the system were not analysed thoroughly or more likely that a more flexible system was required.
The other approach that is discussed is a simple facility for generating language processors which
provides a high level of automation. An analysis of these two approaches helped formulate a general
design philosophy for reducing the effort required to re-use and customize a language independent
cross referencer skeleton.

Koskimies's, Nurmi's and Paakki's general design philosophy was to provide a simple facility

with a high degree of automation. They tried to address the problem of generality and whether they

should provide facilities for common languages, existing languages or future languages[21]. They

concluded that there was no positive answer to this problem as languages are ful l of particular

details. They say that future designers will always design features which are difficult to automate.

Their approach was to try and isolate the essence of current languages, design tools to support

these essential features, and leave the possibility of resorting to a general purpose language for

describing some more elaborate features.

They regarded the following scope features as essential:

1. Entities are defined or declared in the source text before they are used.

2. Entities are associated with textual units that form a tree hierarchy on the basis of textual

enclosing.

3. Basic visibility pattern follows this hierarchy, the entities in the current unit and all the

enclosing units are potentially visible, in the case of ambiguous naming the entity nearest the

unit is selected.

4. The visibility of entities may be restricted up to enclosing units (e.g., modules).

5. The visibility of a set of entities may be transferred from the declarative unit to other textual

regions, (e.g., field descriptors, named parameters).

6. The visibility rules may be different for different classes of entities.

Koskimies, Nurmi and Paakki designed their language processor according to these rules. The

basic idea is that certain nodes in the derivation tree will be the representation for the entities used

in the source text.

48

The symbol processing component of their language processor stores the entities (called entity
nodes) in groups, so that the visibility of a group of related entities can be restricted.

The entity nodes in the symbol table are arranged in a tree structure. Hence the node oriented

approach is a natural abstraction of the usual way that symbol tables are constructed in an attribute

grammar. The properties of an entity are collected as attributes of the root node of the subtree

corresponding to the definition of the entity, and a descriptor of the entity is stored into a symbol

table using these attributes. The entities are defined through class definitions. Each class definition

defines a class of entities which share the same visibility rules. The entities described in a class

may be of different sorts each having a different set of attributes. A class can be viewed as an

abstraction of the symbol table.

The visibility of entity nodes is specified with the help of families. A family is a set of entity

nodes associated with a branch of their derivation tree. Each family can hold entities of a particular

class only. Families are constructed automatically and each entity node will be a member of the

nearest family found above the creation point. Families have the visibility options open and closed

for regulating the searching mechanism. The search for an entity with a particular key is caused by

a pseudo token appearing in a production rule or by a call to a predefined function in an attribute

assignment. In either case the searching mechanism looks at the nearest family first then the next

family above that one and so on until the entity is found. A closed family breaks oflF the search.

The system also provides a facility called adoption. This means that a family can be transferred

from the place where i t was created to another place.

This approach to the automatic production of symbol processing mechanisms is general as i t

only provides common features found in languages. For example, this particular model will not

cope with the Ada overloading mechanism. However this model is simplistic and facilitates easy

automation. I f a particular model tries to include all the divergent scope features in programming

languages i t becomes very much more diflicult to automate and the specification for the symbol

processing mechanism becomes longer. A possible other approach would be to analyse a particular

class of languages and develop a model of the scope features and visibility rules. This would be

complex, and would not be language independent but multi-language. A simple model for a class

of languages would facilitate easier automation but the cost would be the loss of generality. This

is really the approach that Koskimies, Nurmi and Paakki have taken[21].

49

Reiss built a model of symbol processing based on the role that symbols play in compilers
and programming languages. He attempted to address a wide class of languages and hence his
model is complex. Modern languages provide a sophisticated view of symbols and require complex
processing[33,34].

The symbol processing mechanism is part of a complete compiler production system. Reiss has

accommodated the various roles that symbols play in a compiler and produced a comphcated model

based on sets. I t supports a symbol table to store a variety of information with a variety of access,

definition, and control functions. It supports both a view of scoping and supports a signature

mechanism for semantic information. The model is based on a set of particular languages, namely

FORTRAN, BASIC, Algol 68, Modula-2, Pascal, EUCLID and CLU. This model addresses more

symbol processing features than the Helsinki project and it is therefore much more comphcated.

The specification of a symbol processing mechanism using this model makes the specification large

as the generator makes no assumptions concerning the visibility of objects. For example, as all the

languages above have an outer scope then it does not appear necessary to specify this feature each

time. BASIC, Algol 68, Modula.-2 and Pascal can all have block structured scopes, therefore there

is no need to specify this when generating symbol processing mechanisms for these languages.

Reiss produced a symbol table package from a symbol table specification. This makes this

component a self contained piece of software which is a good feature to have, since a modular

system will be much easier to maintain.

The symbol table has a novel searching mechanism which is based on sets of visible objects. It

is similar to the block stack mechanism although it has a much more complicated procedure for

resolvipg identifiers with the same name. If a method of adding visibility rules for any unanticipated

scope features could be identified this would allow the symbol table to grow. Reiss developed a

tool for a specific class of languages although the symbol table will have to change to include future

language features.

In conclusion, two approaches have been discussed. One approach aims at a specific class of

languages (multi language) and the other approach is a simple facility that may compile FORTRAN,

BASIC, Algol 68, PROLOG language processors. However it may not generate all the facihties

needed by a language processor. For example i t may not deal with FORTRAN equivalence or Ada

overloading but may provide most of the facilities needed.

50

An Abstract View of a Cross Referencer Generator

An application generator was constructed at the Centre for Software Maintenance. Its purpose was

to re-use and customise a language independent cross referencer tool skeleton and also to enable

language specific implementations of cross reference tools to be produced by a tool implementor

with the minimum of effort.

The system is based on a model of symbol processing in compiler front ends and the production

of cross reference listings. The approach taken was to produce cross reference tools for a wide

class of languages including Ada and also to produce detailed cross reference listings that would

be useful to the maintenance programmer. The meta tool, that is the tool for generating the

cross referencers, takes as input, a nonprocedural specification of the symbol processing and cross

reference listing requirements, and outputs compilable source code tool components The source

code is the cross referencer tool components. The difference between this approach and that taken

by Reiss [33,34] and Koskimies, Nurmi and Paakki [21], is that this cross referencer model has many

assumptions built into it concerning the role that symbols play in programming languages. This

feature makes the specification much shorter and simpler thus reducing the time taken to produce

a new cross reference tool. The tool components produced are then connected to a parser for the

programming language to be cross referenced. The parser can be generated using the compiler

compiler YACC. The capability of a meta tool such as a cross referencer generator, was illustrated

using the language Pascal as an example.

4.7 Summary

Program generators were surveyed and in particular the generation of symbol processing mech­

anisms of compilers. Two approaches to generating symbol processing modules were analysed

and their differences were discussed. A software tool for generating cross reference tools was also

described.

Chapter 5

A Front End Generator For Cross

Reference Tools

5.1 Introduction

This chapter describes the requirements of a cross referencer tool. It also describes an underlying

model for a toolkit for the automatic construction of cross referencer tools. The tools which were

constructed are described and an example of the use of the toolkit is also described.

5.2 Requirements of the Tool

The analysis of some computer programming language features, some existing approaches to front

end generators and of language independent cross referencer components helped formulate a series

of requirements for designing a front end generator for cross reference tools.

The requirements are as follows:-

1. The generated cross referencer should be parser independent.

51

52

2. The generated cross referencer should be operating system independent.

3. The generated cross referencer should provide a helpful interface that can either be used in a

normal terminal or a windows environment.

4. The output from the cross referencer must represent the contents of the symbol table and be

capa.ble of being merged with other output to deal with a multifile environment.

5. The generated cross referencer should produce an output which could be an interface between

it and a CASE architecture or used for subsequent processing by another tool.

6. The generated cross referencer should be capable of being used as a stand alone tool.

7. The cross referencer should be capable of dealing with source text which is larger than the

available memory by proving an external symbol store. For example if a programmer down

loads a large COBOL program for redocumentation or maintenance on a small microcom­

puter.

8. The cross referencer generator should be simple in design, utifising a series of subtools. Speed

and efficiency are not so important since the generator will seldom be used in comparison

to other tools like a text editor. The simplicity of design will facilitate easier perfective

maintenance of the tool.

9. The cross referencer should consist of discrete components each with a weU defined function.

For example lexer, parser, variant functions, invai'iant functions, symbol table and listing

generator.

10. The generated symbol table code must not be visible to the parser. Only a set of semantic

routines should be visible.

11. The symbol table should be as abstract as possible. Earlier attempts at front ends made the

internals of the symbol table visible to the parser. I f this processing was hidden from the

parser i t would simplify the connection between the parser and the cross referencer.

12. The symbol table should be viewed as a series of scopes, consisting of different types of

identifiers. Scope sections should be groups of the same class of identifier. Each identifier

in the source listing which is being cross referenced will be represented by an object in the

symbol table.

53

13. The cross referencer tool must be based on a language independent skeleton which can be

re-used and customised.

14. The variant features which will be added to the skeleton must be added using a generator to

reduce the effort required and also to achieve a form of information hiding.

15. The variant features must be specified using a textual schematic definition of the semantic

routines needed by the tool implementor. This must be translated into a symbol processing

module which maintains the symbol table. The specification must include the class of tokens

which designate names of symbols and reserved words. I t is not important to specify editing

facilities as the source is assumed to be compilable. The specification must describe the

entities in the source language, and the routines to enter object usage into the symbol store.

16. The invariant language independent skeleton will consist of facilities for the features common

to many languages. It is inefficient to specify this information every time a cross referencer is

generated, so the generator will make some assumptions about the language front ends which

it is required to build.

17. The cross referencer must be capable of providing different levels of detail in the hstings. This

should be achieved by passing fiags to the cross referencer. The specification of a particular

level of detail could be included in the cross referencer specification.

18. The symbol table skeleton must make some assumptions about entities with the same name

in the same scope. The new definition can redefine or hide objects; the new definition can

overload old objects; the new definition can refer to the old object as it occurs with a forward

or incomplete definition; or conflicting names could be an error.

19. Other facilities could be selected by passing flags to the cross referencer, such as whether the

cross referencer should distinguish between upper case and lower case identifiers. If there is

some aspect of the skeleton which is not required, then a flag may be set which instructs the

tool to ignore or include this feature.

20. The skeleton may contain one or more searching mechanisms. I t may be possible to influence

the search mechanisms by changing the cross referencer specification or by setting some flags.

21. Objects will be associated with a particular class or scope section.

22. Objects will be identified by a path name and its symbolic name in the source.

54

23. Object sections will be associated with a textual unit or scope. These might be for example
packages, modules, functions, procedures, loop scopes or tasks.

24. Scopes can be nested. The visibility follows the nesting.

25. Scopes can be added to the list of visible scopes by using a module or for example by entering

a language construct such as the Pascal W I T H statement.

26. The visibility of a set of entities may be transferred to another scope by passing parameters.

The design philosophy is to develop a simple facility with a high degree of automation. The

approach adopted was to try to generalise a number of concepts into one and to minimize the

number of operations and axioms of the system in order to provide a multi language tool based on

a few foundations. The project focused on reducing the effort required by the tool implementor

to add extra programming language features. A tool implementor could implement a Pascal cross

referencer and then might wish to produce a Modula-2 cross referencer. I t should be possible to

achieve this by changing the specification for the lexical analyser and pai'ser for Pascal and by also

changing the specification for the Pascal symbol table. A new tool could thus be produced without

the need for additional coding.

The next section describes the prototype cross referencer generator. I f this generalised approach

is capable of providing the same level ofdeta.il of static information and with less effort, then a cross

referencer that works for only one language will become obsolete. It may be that the generated

code is slower to execute than hand written code but generated code can be changed quickly by

running a modified specification through the generator. I t is a trade off between speed of execution

and ease of maintenance.

If the cross referencer generator model were based on the common features of programming

languages, and for example, a language processor were required to be built for a very specialised

language then the general approach may only cope with half of the language semantics.

I f a cross referencer model is based on a set of eight languages and a very speciafised language

is not in this set, then the tool implementor may have to hand code the entire symbol processing

mechanism for this specialist language. With the common features approach, the specialised lan­

guage symbol table will not be complete, but a 50% saving will have been made. I t will be quicker

to use the general approach. I f a tool implementor requires to mass produce front ends then the

55

general approach will be more profitable. If a company uses nothing but COBOL perhaps the
specific approach would be more economical.

The general approach taken was to delay commitment as long as possible since even if the design

phase fails to produce a successful approach to producing language independent tools, it will have

at least led to a better understanding of the problem.

Major design decisions were delayed until all the constraints were known. This was why an

extra survey of languages was included in the project. I t was very important to perform a language

feature survey of some magnitude in order that decisions were not made when there was insufficient

information on the symbol processing aspects of languages. When designing the cross referencer

model, care had to be taken not to make it too specific. It was also important not to make early

design decisions in order to facilitate iterative design. The original generator idea was to have

one tool which would perform the generation of the symbol table and semantic routines. This is

convenient for the tool implementor using this type of tool. However it was thought that perhaps

i f the generator was split into a tool kit in which each subtool customised a particular part of the

cross referencer i t would make the implementation of the tool simpler.

The approach taken by compiler writers coidd be adopted, that is, subdividing the program

code into components with a well defined function. Sub-dividing the task of writing compilers

or cross referencers will also provide a basis for re-using these sub-components. As programming

languages have common features it is fairly likely that re-use will take place in symbol processing

and cross referencing mechanisms.

Overview

The main feature of this new tool is that it is a high level solution to the problem of producing

a language independent cross referencer. Detailed cross reference listings will still be produced

despite the tool being language independent. This will be achieved by customising and re-using

three skeletons, one for the lexical analyser, one for the parser and one for the symbol table. If a

change to the tool is required, then the specification is changed, not the underlying code. This will

relieve the programmer from understanding the internals of the tool. This approach to language

independent cross referencers allows the tool to be configured for different languages without doing

56

any programming. The diagram following, fig. 1, shows the three skeletons which are to be

customised, the lexical analyser, the parser and the cross referencer skeleton. The two sets of tables

and the schema are the specifications of the variant parts of the tool. One set of tables is produced

for the lexical analyser and the other set is produced for the parser using existing technology. The

schema describes the symbol table, semantic routines and listing generator which is labelled as the

cross referencer skeleton. The arrows from the lexical analyser skeleton and the parser skeleton

represent the parser invoking the lexical analyser and the lexical analyser returning the current

token to the parser. The arrow between the parser and the cross referencer represents the function

calls made to the semantic routines. The rectangular box labelled as the Cross Referencer Skeleton

represents the language independent cross referencer components. Al l the rectangular boxes link

together to form the cross reference tool.

source

Lexical
Analyser
Skeleton

Parser
Skeleton

Cross
Referencer
Skeleton

Intermedia.te
Cross
Reference
Listing

Tables

Tables

Schema

fig.l A High Level View of the System

The cross referencer tool has this structure as it facihtates easier modification of each of the

components because the tool implementor can concentrate on one particular aspect of the system.

57

5.3 The Cross Referencer Model

Program generators are usually based on some kind of model [9]. The cross referencer model has

two main components which are a symbol table and cross reference listing printer. The symbol

table can store different classes of symbol, each having different access and definition characteristics

as well as scoping features. When activated the printer will extract and output the objects stored in

the symbol table together with all of their associated properties. This section of the thesis describes

informally the language independent symbol table model. The model is based on language features

and symbols in programming languages. It includes common symbol processing methods. The

symbol table mechanism may also be able to deal with objects and scopes.

Objects represent identifiers found in source code. The identifier or symbol is the lexical token

associated with the object. In programming languages many different types of identifiers can be

found and they all have different scope, definition and access rules. When a piece of source code

makes reference to an identifier, a cross referencer must determine which object is to be used. This

is achieved by using the context in which the identifier has been referenced.

AU symbols need to have their usage recorded. One aspect recorded would be a description of

the object used. The aspect would be the line number or file name, where the usage was recorded.

An object could be stored as a frame of slots. Each slot would contain a meta slot value which

would describe the object usage and a slot value which would contain a hne number or source file.

For example:- for the identifier T defined in a Pascal procedure 'Writename' in the file 'write.p'

M E T A S L O T V A L U E S L O T V A L U E

object I

name space Writen ame

class var

type integer

declared on write.p: 11

used on write.p: 14,15,34

in F O R loop on write.p: 13

58

The actual slot value can be single value or multiple slot values and can have an alphabetic or
numeric type. Any number of slots can be stored in an object frame. The main structure of an
object will be invariant. The variant part which contains the static information will be specified in
the tool specification.

This object structure can be viewed as an abstraction of a symbol table and provides a high

level view of the storage of symbol information, rather than the parser having knowledge of the

detailed physical record structures, as with earlier Durham cross referencers [6,10].

A scope is a region in the source code which defines the visibihty and hfetime of an object.

A n Index Sys tem for the Objects

The model supports two types of index. These indexes are for direct access to the objects in a

particular order. The two types of listing are:

• Alphabetic index

• Block structured index

The alphabetic index will be used to produce the alphabetic cross reference listing, while the

block structured index will produce a list of objects grouped by their object class. The objects

within a particular class are listed in alphabetic order.

Each list contains the object name and its path name. The path name is a list of scope names

which are visible from the point where the object was discovered. The listing wiU contain the

pointer to the object in the symbol store and also the class of object, so the printer will call the

correct print routine for the different types of objects.

A M e c h a n i s m for Remember ing Objects

One feature found in many programming languages is the facility to assign the same type to a list

of identifiers. For example in the language Pascal:

59

• VAT,PRICE,POSTAGE: real;

This leads to the problem of not knowing the type of 'VAT' until the end of the declaration is

recorded. A solution to this problem can be a symbol stack to contain VAT,PR1CE,P0STAGE.

When the parser encounters the type identifier, it assigns the text "real" to all objects on the

symbol stack. In fact, when an identifier is discovered, an object is associated with i t or an object

is automatically created and all messages concerning this identifier are sent to this object, until

the command disconnect is called. Therefore the symbol stack contains all the objects to which

messages axe to be sent until the disconnect command is issued.

Scopes can be described in terms of their extent, that is, the region of code an object can be

referenced. Visibility rules determine which objects are visible from a particular scope.

Symbol Table Interface

I t was observed that some kind of abstract interface was needed between the different cross refer-

encer components in order to reduce the effort to put them together. To make the idea of using

a grammar driven program generator to re-use and customise a language independent nucleus at­

tractive, the cross referencer component must conform to some kind of user model of the tool under

development. This allows the tool implenientor to be relieved of the detailed coding concerns and

to view available components in terms of some kind of simplified model of the cross referencer

under construction. The internals of the symbol table are shielded from the other components

which are part of the cross referencer by using an interface. The symbol table interface is a text

file of symbol processing functions which manipulate the symbol table. To make the symbol table

interface as simple as possible the source code being cross referenced is assumed compilable(i.e. it

contains no synta,ctic or semantic errors). This reduces the coupling between the symbol table and

the parser. The symbol table access routines does not return anything to the parser, as all the

decision making is done within the symbol table. As the cross referencer is designed to cope with

Ada the symbol table interface will contain some facilities that are not required by other languages.

The tool implementor should choose the facilities required and ignore the other functions in the

interface. The symbol table interface for the language Pascal would be as follows:

60

Interface CROSS-REFERENCER is;

type CHARACTER_STRING-TYPE is private;

type LINE_NUMBER.TYPE is private;

funct ion

funct ion

funct ion

funct ion

funct ion

funct ion

funct ion

funct ion

funct ion

funct ion

funct on

funct on

funct ion

funct ion

funct ion

funct on

funct ion

funct ion

funct ion

funct on

funct on

funct J on

funct i on

funct: on

funct: on

funct: on

funct: on

funct i on

61

function DECLARED.ON(line_number:LINE_NUMBER_TYPE);
function SET_ON(line_number:LlNE-NUMBER-TYPE);
function USED_ON(linejiumber:LINE.NUMBER.TYPE);
function IN_FOR-LOOP_ON(line_number:LINE_NUMBER_TYPE);
function PARAMETER-ON(line-number:LINE-NUMBER.TYPE);
function IN_WITH_ON(line.number:LINE.NUMBER.TYPE);
function CALLED_ON(line.number:LINE_NUMBER_TYPE);
function IN_GOTO(line-number:LINE-NUMBER.TYPE);
function Print_CNTRL(character);

end CROSS-REFERENCER;

The interface to the symbol table has three main sets of functions:

1. Object Management functions: which provide facilities for creating or finding objects in

the symbol table guided by a set of visibility rules.

2. Scope Management functions: which manage the scopes in a program and regulate the

visibility of objects.

3. Object Usage functions: which provide facilities for recording objects usage information

(defined on, set on, used on) these are generated by meta tool.

The object management functions are the following:

1. function CONNECT.TO-OB.lECT(Identifier:CHARACTER.STRING-TYPE);

2. function DISCONNECT-FROM_OBJECT();

The CONNECT-TO-OBJECT function locates -an object in the symbol table or if i t does not

already exist i t creates an object. Once an object has been located all information sent to the

symbol table is sent to this object until the DISCONNECT-FROM-OBJECT function is activated

by the parser.

The scope management functions are the following:

62

1. function ENTER-SCOPE(). The ENTER-SCOPE facility instructs the symbol table that
the parser has identified a new scope.

2. function USE.SCOPE(Identifier:CHARACTER.STRING-TYPE). The USE-SCOPE func­

tion adds the scope with the name stored in the parameter to the list of currently visible

scopes.

3. function FINISHED_WITH.SCOPE(). This function removes the scope that was added to

the list of visible scopes.

4. function EXIT-CURRENT-SCOPE(). The function removes the scope that was last added

to the list of visible scopes using the ENTER-SCOPE facility.

5. function MAKE.OBJECT-PUBLIC(Identifier:CHARACTER_STRlNG-TYPE). This func­

tion labels an object as being visible to scopes that use this scope.

6. function MAKE_OBJECT-PRIVATE(ldentifier:CHARACTER_STRING_TYPE). This func­

tion labels an object as being not visible to scopes that use this scope.

The object usage functions are the following:

1. function PARAMETER-CLASSO;

2. function LABEL_CLASS();

3. function VAR.CLASS();

4. function CONST-CLASS();

5. function TYPE.CLASS();

6. function FUNCT10N.CLASS();

7. function PROCEDURE-CLASS();

8. function NAMESPACE(Source-file_name:CHARACTER.STRING-TYPE);

9. function VAR_AS-PARAMETER(line_number:LINE.NUMBER.TYPE);

10. function CLASS();

63

11. function PASCAL-TYPEO;

12. function FUNCTION-TYPE(Identifier:CHARACTER-STRING-TYPE);

13. function EXTERNAL-ON(line_number:LlNE-NUMBER-TYPE);

14. function FORWARD-DECLARED-ON(line-number:LINE-NUMBER-TYPE);

15. function CONSTANT-VALUE();

16. function NON_LOCAL(line-number:LINE.NUMBER_TYPE);

17. function DECLARED_ON(line_number:LINE_NUMBER-TYPE);

18. function SET-ON(line_number:LINE-NUMBER-TYPE);

19. function USED-ON(line_number:LlNE-NUMBER-TYPE);

20. function IN_FOR-LOOP_ON(line_number:LINE-NUMBER.TYPE);

21. function PARAMETER-ON(line-number:LlNE-NUMBER-TYPE);

22. function IN-WITH-ON(line-number:LlNE-NUMBER-TYPE);

23. function CALLED-ON(line_number:LINE-NUMBER-TYPE);

24. function IN-GOTO(line_number:LlNE-NUMBER-TYPE);

The function names which end in -CLASS , such as VAR-CLASS are activated when a new class

of object is encountered. For example wlien parsing the language Pascal and a VAR declaration

is detected, the VAR-CLASS function should be activated informing the cross referencer tool that

the next declaration will be of the class VAR. The function CLASS records the current class in

the object that has been connected to with the CONNECT-TO_OB JECT function. The remaining

functions described will record the use of objects. For example, i f an object is declared the following

functions should be activated:

1. CONNECT-TO-OBJECT(Identifier);

2. DECLARED-ON(line_number);

3. DISCONNECT-FROM.OBJECTQ;

64

Another important feature of this system is the function A D D _ T O _ T E X T _ B U F F E R which
is a facility to add the current token, taken from the parser to a text buifer. This facihty is useful as
i t can be used to place a sequence of tokens into an objects slot. For example when cross referencing
this Pascal declaration:

Var X: array [1 . . 10] of r e a l ;

the tokens 'array [1..10] of real' will have to be stored in a buffer and when the parser has detected

the end of the type definition for the variable X the tokens stored will have to be stored in the

object associated with the identifier X.

One of the main objectives other than making the model language independent is to simphfy

the symbol table routines, for example, looking up and defining objects. This particular model

has a function called CONNECT_TO-OB.JECT which locates an object associated with identifier

passed to the symbol table, or it will automatically create an object of the structure of the current

class of symbol.

Vis ib i l i ty R u l e s

Visibility is the main criterion for finding an object associated with an identifier. Each object

belongs to a particular class of identifiers or symbols which it describes. The class of the object

determines the properties of the object, for example, the object usage or its location in the symbol

table. The rules for locating objects in a symbol table are determined by considering the class

of a particular object and also the visibility assumptions built into the cross referencer tool. The

process of finding an object associated with an identifier found by the parser should be deterministic,

although during the process of finding an object there may be several possible candidates. This

is because a program may have many contexts or scopes in which identifiers with the same name

can exist. Therefore the visible objects must be analysed in order to determine which object is

visible from the point where i t was referenced in the source code. The resolution process eliminates

candidates by consulting the visibility rules and the particular object classes. This process can be

65

quite complex as the visibility differs for different classes of objects.

I t was decided that this particular model would make many assumptions about visibility rules

and has two main advantages:

1. The specification is kept concise and easy to understand.

2. The specification will also be non procedural.

The main part of the model to deal with visibility is a scope stack which will contain a series

of pointers to symbol tables. Each scope has a symbol table and when the parser enters a scope

this scope is pushed on to the stack using the function ENTER_SCOPE. Therefore at any given

time the scope stack will contain the set of objects that are visible from a particular point. To

find an object associated with an identifier the function CONNECT-TO_OBJECT is used and this

function searches the scope stack top down. The first object found is assumed to be the object

visible from that particular point in the program where it was referenced. Therefore the CON-

NECT-TO-OBJECT function will search the rest of the scopes until an object can be associated

with the identifier. There will be only one object visible or none at all. Associating an object with

an identifier is more easily understood if separated into its constituent phases.

1. The identifier to be looked up, the identifier's class and the identifier's expected type are

passed to the symbol table for lookup.

2. The only editing of identifiers is case conversion and this can be switched on and off as

required.

3. The scope stack contains the group of objects which are visible from the point where the look

up function CONNECT-TO-OBJECT() was activated.

4. These scopes will contain all the possible object candidates which can be associated with an

identifier.

5. The searching follows the path of nesting except, when a module has been included, from the

innermost scope to the outer program main scope.

6. I f one or more objects are found in the same scope they can be forward declared or overloaded.

66

7. Some objects will be ignored i f not publicly visible.

8. Objects can be made visible to other scopes by exporting them. The import facility would

add the named object to the symbol table associated with the scope, where the import facility

was requested.

A u t o m a t i c C r e a t i o n of Objects

I f an object is not found then this reference to the identifier must therefore be the first and CON-

NECT_TO_OBJECT automatically creates an object of the current class in the current scope. The

assumptions made, concerning object definition are the following:

1. The new definition can hide old ones.

2. The new definition can be an overloading of old ones. Before any object is looked up by

the symbol processor, the parser sends a message to the symbol table defining the class of

object containing the identifier and also the expected type of the identifier. This aids the

cross referencer to locate the correct object.

3. I f a forward definition is discovered the second occurrence of the identifier is moved to the

first occurrence, replacing it and ma.king it visible at the point where it is forward declared.

As the source code is assumed to be compilable then conflicting definitions should be resolved

using these three assumptions. Another feature supported by the model is the type of construct

such as the Pascal language's W I T H statement. This fea.ture is used for nested data structures and

is very similar to the way nested scopes are handled, using a scope stack. Other assumptions are

made about scopes as it was discovered in the survey that there are many different types of scopes

in programming languages.

As the model assumes that source code being cross referenced is compilable, then Ada over­

loading will only be found when processing Ada and the W I T H statement will only be found when

parsing Pascal. Therefore it is not necessary to include in the cross referencer specification a pro­

cedural description of what to do. This makes the specification much simpler than the approach

67

taken by [32,33]. This model is a very simple model designed specifically for the problem of produc­
ing language independent static analysis tools and does not provide facilities for binding internal
storage to objects.

A n A b s t r a c t Cross Reference Lis t ing Pr inter

One of the original objectives of this project was to capture the basic cross referencer algorithm

into an abstract form, to make the tool a more versatile tool. The most desirable form of coupling

between modules is a combination of stamp and data coupling and the most desirable form of

cohesion is informational [12].

A cross referencer produces a list of objects and their properties. The intermediate cross

reference listing printer could be separated from the other components resulting in a printer which

is not bound to the symbol table by global data structures like CXR and PXR [6,10]. This was the

approach adopted during the design of the printer for the generated cross referencer.

There are two main tools used in printing a cross reference listing:

1. A Printer: for emptying the contents of cross reference symbol table into a text file in an

intermediate representation. This is a machine readable file with printer control characters

embedded into i t .

2. A Formatter: for scanning this intermediate listing of cross reference information and pro­

ducing the formatted readable listing.

This project focuses on the Printer tool for producing an intermediate representation. This printer

tool is part of the cross referencer and would be automatically activated.

The method of printing would be the following:

1. The user would select the style of listing required, structured or alphabetic, by requesting

this on the command line when the cross referencer was executed.

2. The objects and their property lists would be printed in the particular order specified, either

structured or alphabetic lists.

68

The call from the parser to the intermediate listing printer, to print the fisting, would be made

with a single procedure call. The lower level details will be left to the printer.

One type of listing will be the machine readable listing which will be stored in a file for subse­

quent use by another tool. The other listing will be a readable formatted listing sent to standard

output. Each object slot value will be preceded by a meta slot value, that is, a piece of text

describing the meaning of the slot value. This can be customised by the tool implementor when

generating the cross reference tool by a merger tool.

One of the primary functions of the formatting tool is to format the cross reference listing by

inserting spaces and linefeeds between the tokens and also to break up the lines which are too long.

Two approaches to formatting the listing were investigated. One approach would be to parse

the source code file to and produce a parse tree. A set of routines called by the parser could insert

line breaks and indentation into the parse tree as it was being constructed. This approach would

be syntax directed and a separate tool could be employed. The printer would have a knowledge of

the constructs of the cross reference listing and also any punctuation. The specification would be a

context free grammar which would include information about the spaces, indentation and hnefeeds.

The other approach would be to insert formatting commands into the object property lists in the

symbol table as the objects were created. For example:

C O N T R O L C H A R A C T E R F U N C T I O N

n newline

i indent if not page overflow

s set tab to previous tab

m set indentation to margin

b insert blank line

When the printer is printing the object property list for an object i t checks for control characters

and when found performs a formatting option. The second approach is more efficient than the first

as less parsing would have to be performed in order to produce a cross reference listing from a piece

of source code. This is important when dealing with industrial scale software as a detailed cross

69

referencer listing can be twice as long as the source code. In the event of a new type of object being
added to the cross referencer, the cross reference listing produced would now have a new structure
to accommodate this new object. Therefore the parser would have to be modified. The control
characters approach was adopted as it is the more efficient.

If the maintenance programmer is using a printer tool i t may be convenient to print the listing on

a printer. I t would be quite possible to construct a printer that includes text processor commands

in its output. So commands to bold face key words and to italicize object names could be inserted

into the cross reference listing. This would improve the readability of the cross reference listing. I t

may also be possible to print paginated listings complete with hne numbers, page numbers, page

titles and numbers, and an index of objects.

If the maintenance programmer is using a windows environment with a bit mapped screen, the

formatter tool can be made even more efficient by only formatting those lines that fall within the

window.

To summarize the formatter takes an intermediate representation of the cross reference listing

produced by the printer tool which can be alphabetic or structured, then it prints each object

property list, and the contents of all the slots associated with each object. Each slot in the

intermediate listing is traversed left to right and top down and the formatter functions are called

each time a control character is discovered. A control character is indicated by a back slash followed

by a letter. There is also a plug in file containing pairs of records, the first of the pair is the control

character and the second record is what is to be printed. By using this very simple file the formatter

can also be customised easily without doing any coding.

A routine called Print_CNTRL(chajacter) ; inserted in the parser grammar will insert the

control character passed, into the object which is currently connected and is written in the slot

value that was written to last. More than one control character can be inserted into a slot forming

a command list of formatter control characters which will be encapsulated in square brackets. The

square brackets will facilitate easy detection of groups of control characters in the intermediate

cross reference listing by the formatter tool.

70

Defining the Specif ication Input

The approach taken by Reiss[32] and by Koskimies, Nurmi and Paakki[21] is to present all the details

at once. This toolkit uses a top down approach which makes i t easier for the tool implementor

to describe his symbol table, however i t becomes slightly harder to transform the specification

into some sort of intermediate representation. A top down approach was used when designing the

notation for describing the cross referencer tool, rather than a flat specification. The specification

consists of nine sections:

1. Object classes

2. Data items passed from the parser

3. Semantic Routines

4. Semantic Routine Usage

5. Text Buffer Usage

6. Cross Referencer Object Structures

7. Object Slot Descriptions

8. Source Code Identifiers to be ignored

9. Listing Specification

The Object classes section describes the different types of object to be stored in the symbol

table. An example of an object class description is given below:

<procedure_class>

selected_by_routine procedure_class0 ;

intermediate_rep_name ".9procedure";

when_same forward_def;

When an object is declared i t must be stored according to its class. Therefore a function must

be used to select the appropriate class. The purpose of the "selected_by_i-outine" statement in the

71

cross referencer specification is to choose the right class for a particular object. A l l objects will
appear in the intermediate cross reference listing and will have an intermediate name. The clause
in the specification "intermediate-rep-name" describes this intermediate name. Therefore when
a parameter is referred to in the cross reference listing i t will be referred to by its intermediate
name. Another clause which can be used when specifying objects is the "when_same forward_def"
statement. This instructs the cross referencer that when an object is is declai'ed more than once in
the same scope, i t is to be forward declared.

The Data items passed from the parser section describes the type of data items passed

from the parser. The cross referencer model currently has three data types defined as:

DATA_ITEMS_PASSED_FROM_PARSER;
<char *> character_string;
<char *> source_file.name;
<int> line.number;
end;

The Semantic Routines section describes all the routines that record the use of objects

in a source program. They are numbered so they can be quickly referenced further on in the

specification. Each function has a name and the type of data item that is passed to i t .

SEMANTIC.ROUTINES;

[1] o b j e c t (c h a r a c t e r _ s t r i n g) ;
[2] namespace(source_file.narae);

The Semantic Routine Usage section describes which of the semantic routines ai-e used by

the various objects in a program. The semantic routines used are listed for each object.

<var_class> uses_semantic_routines [1,2,3,4,5,11,12,14,16]

72

The Text Buffer Usage section describes lists the semantic routines which take text from the

text buifer and place i t in an objects slot structure. For example:

TEXT_BUFFER_USAGE;

const_value();
pascal_type();
end;

The Cross Referencer Object Structures section describes the list of slots that each object

structure has. For example:

<var_class> s l o t _ s t r u c t u r e _ i s
(object,
namespace,
class,

pascal_type,
declared,
used
var_as.parameter
inw i t h
i n f e r)

The slots have the same names as the semantic routines. This is because for example the function

called will deposit a data item of type linenumber in a slot with the name 'called'.

The Object Slot Descriptions section describe the characteristics of each slot in an object.

For example:

73

set :

t y p e . i d i s line_nuinber

type i s i n t

s l o t . v a l u e i s m u l t i

meta_slot_value i s +04set

A slot has a type identifier and actual type. A slot can be single or multiple value. Therefore

a slot could contain one or more line numbers. The name describing it in the intermediate cross

reference listing is also described as the meta_slot_va.lue.

The Source Code Identifiers to be ignored section describes any reserved words which

should not be stored in the cross reference listing if any.

The Listing Specification section describes the slots which are to be included in a particular

level of cross reference listing. There are three levels of detail fu l l , intermediate and terse. The tool

implementor can specify the various slots to be included and the printer will filter out the rest. For

example the terse listing specification:

TERSE.SPEC;
objec t ;

namespace;

c lass;

declared;

set;

used;

end;

The appendix D has the lexical analyser specification for this notation and appendix E contains

the grammar of the cross refeiencer specification. The appendix C contains a cross referencer

specification for the programming language Pascal.

Often generator specifications allow user code called 'escapes' to be supphed to add extra

functionality to the program geneiated[9]. This facility was not included in order to maintain a

74

non procedural high level solution.

Designing a code generating method

Since much of the variant code in a cross referencer has a pattern, the specification of i t can be

mechanically translated into program source code. The generator can be guided by using a template

and by extracting the necessary information from the specification of the cross referencer. The code

generator tool will be guided like any other tool which uses a template, such as a tool which uses

a guide for cutting or drilling material.

Many parts of the template will need to be replicated, therefore some mechanism for iterating

the code patterns is necessary. The template will consist of an implementation code and indication

of the text to be inserted into this. The location of the text insertion could be marked by a cell i.e.

the source of the text to be insei ted enclosed in angular brackets.

The generator will essentially be a macro substitution tool which will emit compilable code.

The generator will be a series of small subtools which will initially form an experimental toolkit

for producing a tool for automating the production of front ends.

The template approach will allow the tool implementor to alter the template. This would

facilitate easier modification of the code and also i t may allow the underlying implementation

language to be changed since the text substitution tool is language independent.

This type of generator is of an experimental character. The generating method was deter­

mined by looking at the application domain. The application domain was designed by looking at

the requirements provided by the domain analysis i.e. chapter 4 Language Features to be Cross

Referenced.

75

Code templates

A code template is a text file of program code which contains areas designated for textual substi­

tution. This inserted text comes from the textual specification of the cross referencer. The code

templates will be set up each time the language emitted from the substitution tool needs to be

changed to another language. However it is unlikely that the underlying language of the cross

referencer tool would change to another language so the templates will not need to be altered

frequently. The templates ai-e essentially program fragments with areas designated for textual

substitution. The text is taken from the cross referencer specification.

Appendix F contains a code template for the cross referencer symbol table. Each template has

an identifier as the first token "macrolist" followed by a number which represents the number of the

subtool which uses this template. The templates constructed consist of program code written in

the programming langua.ge C. Areas for textual substitution are designated with the use of angular

brackets called cells. The following Is an example:

s t r u c t «SAME>> <OBJECT_CLASSES>_section

{

s t r u c t <<SAME» <OBJECT_CLASSES>_object * «SAME» <OBJECT_CLASSES>;

s t r u c t <<SAME>> <OBJECT_CLASSES>_section • l e f t ;

s t r u c t <<SAME>> <OBJECT_CLASSES>_section * r i g h t ;

>;

The cell indicates to the textual substitution tool where to obtain the text from. There are

twelve possible sources of text. These are the cross reference product description files. These are

extracted from the cross referencer specification and the substitution tool merges this text with the

templates to produce a compilable piogram. So each cell is essentially a the name of a file from

which text is to be taken. Each cell is preceded by a cell with double angular brackets. The purpose

of this cell is to indicate whether to take the next piece of text from the product description files or

whether to use the same piece of text that was last read from the product description files. These

cells are either NEXT or SAME respectively.

76

The Intermediate Files

The product description files are an intermediate representation of the cross referencer tool speci­

fication. They are summarised below:

1. object-classes: a list of object classes

2. intermediate_names:a list of names that will be used in the cross reference listing

3. typeJdentifiers: the identifiers for the data types of the items passed from the parser to the

symbol table.

4. routine-usage: a fist of routines used by each class

5. object-Structure: a Ust of object structures

6. terse-spec: list of slots to be included in the cross reference listing of the terse level of detail

7. class-selection: the routines to indicate the class of an object

8. data-types: a list of the data types used in the object structures

9. semantic-routines: a list of the semantic routines

10. text_buffer_usage: a. list of the routines that use the text buffer

11. slot-types: a list of the slot types

12. intermediate-spec: list of slots to be included in the cross reference listing of the intermediate

level of detail

Toolkit

A single generator tool could be constructed and its user interface may look like the following:

$ gen pascal.xref

77

Cross Referencer Generator (Version 0.1)

Phase 1 Parsing Cross Referencer Specification
End of f i l e encountered l i n e : 346
Total Errors (0)
Intermediate Files Created

Phase 2 Generating Cross Referencer Object Structures
Object Structures Created

Phase 3 Generating Object Manipulation Code
Object Manipulation Code Generated

Phase 4 Generating Tool Interface
Interface Created i n f i l e XRGen.Interface

Phase 5 Linking Generated Code with Tool core
Linked
Cross Referencer i n f i l e xref.c

Done

$

The above user interface was added to the generator tool.

1. Phase 1: This phase analyses the cross referencer specification and produces intermediate

files which will be used by the generator to produce the cross referencer.

2. Phase 2: This phase generates a symbol table.

3. Phase 3: This pha,se generates the code for recording object usage and for printing the

contents of the symbol table as an intermediate cross reference listing.

4. Phase 4: This phase generates an interface to the cross reference tool

5. Phase 5: This phase links the generated code with the cross reference code.

I t was decided that the general approach would be to build a series of subtools rather than one

complex tool. I f each variant aspect of the cross referencer could be addressed with a single tool

this would make the design and construction much simpler than having one complex tool.

Code Generation Process

The following diagrams overleaf, show the proposed cross referencer tool generation process. The

process consists of three phases:

1. Analysing the cross referencer specification

2. Generating the tool components

3. Integrating the tool components into a single tool

79

The first phase shown in fig 2 is the Cross Referencer Specification Analysis made by parsing

the cross referencer specification, and producing an intermediate representation of the specification

which can be processed by the code generating tools.

Cross
Referencer
Specification

Specification
Analyser

Intermediate
Representation

fig. 2 SPECIFICATION ANALYSIS

80

The second phase shown in fig. 3, Code Generation, includes the use of three subtools to

produce the cross referencer variant components, the Semantic Routines, the Printer Routines and

the Symbol Table Structure itself. Subtool one is the tool that produces the symbol table for the

cross referencer. Subtool two is the tool for producing the semantic routines for storing static

information into the symbol table and subtool three is the tool for generating the variant parts of

the printer.

Subt(
One

3 0 l

Symbol
Table

Intermediate
Representation

Subtc
Two

30l

Semantic
Routines

Subtc
Thre

DOI

Printing
Routines

fig. 3 CODE GENERATION

81

The final phase shown in fig. 4, connects the variant and the invariant code, the language

independent portion of the tool by compiling these files with compiler to produce one executable

object code file. The single object code file produced is the Cross Referencer.

Semantic
Routines

Printing
Routines

Symbol
Table

Language
Independent
Code

Comp iler

Cross
Referencer

fig. 4 TOOL CONNECTION

82

Generating a Cross Referencer

A code generation tool would re-use the language independent parts of the cross referencer and

customise the variant parts of the cross referencer using the cross referencer model as a basis for

doing this. The generation process from specification to usable tool would consist of the following:

1. Produce Lexical Analyser Specification

2. Generate Lexical Analyser

3. Produce Parser Specification

4. Generate Parser

5. Debug the Parser

6. Produce Cross Referencer Specification

7. Generate Intermediate Specification Files

8. Generate Symbol Table Data Structure Code

9. Generate Printer Code

10. Generate Semantic Routines

11. Add language Independent Code

12. Compile Cross Reference Tool

Meta Tools constructed

Meta tools are tools for generating other software tools. This type of tool was used during stages

seven to ten above. The four main tools constructed are:

1. Cross Referencer Specification Analyser Tool

2. Component Template Preprocessor Tool

83

3. Intermediate File Modifier Tool

4. Text Substitution Tool

The function of the Cross Reference Specification Analyser Tool is to parse a text file

containing the cross reference specification notation described earlier. See appendix E for the

grammar of the cross reference specification. During the parsing of the specification routines

are called by the parser to store pieces of text in the text files called intermediate files. Twelve

intermediate files are produced for subsequent use by the text substitution tool. These intermediate

files contain text to be inserted into the component templates. This tool was written using YACC

and the routines to create the intermediate files were written in the programming language C.

For example the following is an extract from the YACC specification of specification analyser. I t

contains the gra.mma.r for the specification for a.n object structure and the actions which produce

the intermediate files.

s t r u c t u r e _ d e f i n i t i o n s
: s t r u c t u r e . d e f i n i t i o n
I s t r u c t u r e _ d e f i n i t i o n s s t r u c t u r e . d e f i n i t i o n

s t r u c t u r e . d e f i n i t i o n
: '<' IDENTIFIER.TOKEN { s t o r e _ i n _ o b j e c t _ s t r u c t u r e (y y t e x t) ; }
I '>' SLOT_STRUCTURE_IS_TOKEN

' (' { s t o r e _ i n _ o b j e c t _ s t r u c t u r e (y y t e x t) ; }
s l o t s ') ' -[store.in.object.structureCyytext);}

The function storeJn_object-structure(yytext) sends the text which is the current token at that

instant, to an intermediate file called object structures. The YACC specification for this tool can be

seen in appendix E. I t was a general strategy to try an implement these meta tools using the YACC

compiler compiler as i t will mean that the meta tool can be changed by cha.nging its specification

rather than the underlying source code.

84

The function of the Component Template Preprocessor Tool is to modify the templates
used by the text substitution tool. For example a template may represent a record structure,
however the number of fields may not be known until the specification has been parsed. So if
there were seven fields required in the record structure then the field part of the template would be
replicated seven times. The purpose of this tool is to modify the parts of the template that can not
be known until a cross reference specification has been parsed. Appendix F shows a symbol table
template. The template fragment below is one such part of the template that must be replicated.
It is the skeleton for a binary tree of objects. Each class of objects must have a structure like the
following:

s t r u c t <<SAME>> <OBJECT_CLASSES>-section

{

s t r u c t «SAME>> <OBJECT_CLASSES>.object * «SAME>> <OBJECT_CLASSES>;

s t r u c t <<SAME>> <OBJECT_CLASSES>_section * l e f t ;

s t r u c t <<SAME>> <OBJECT_CLASSES>_section * r i g h t ;

};

I f a programming language had two classes of identifier then this part of the template must

appear- twice.

The function of the Intermediate File Modifier Tool is to modify some of the intermedi­

ate files produced by the specification analyser. The notation for describing the cross referencer

requirements was designed for the tool implementor rather than designing it for easy analysis by a

tool. Consequently when some text is is extracted from the specification i t is not immediately in

a form suitable for merging with component templates. Therefore some intermediate file modifier

tools were invented. For example one intermediate file contains a list of variable identifiers and

their actual type in the programming language C:

character_string char*

linenumber i n t

85

As the program code emitted from the generator is in the language C the type must come before
the variable name. This tool swaps the order of text .

The function of the Text Substitution Tool is to merge text from the intermediate files with

a component template. I t is a simple tool constructed with the Unix tool YACC. This grammar

for the templates is described as a YACC specification and the program was generated using the

compiler compiler YACC. Actions were also written and inserted into the YACC grammar. These

routines will take tokens in the template and text from the intermediate files and write them to

the file containing the compilable tool components written in C. This tool is the same in design

and the way it operates as the tool that analyses the cross referencer specification and produces

the intermediate files(product description files).

Connecting the Parser to Symbol Processor

The functions in the interface file to the symbol processor should be inserted into the programming

language parser YACC grammar. Also, items passed from the parser to the cross referencer usually

originate from the lexer. These data items should be made visible in the parser specification so

they can be passed as parameters to the cross referencer. For example the current line number,

the source file being cross referenced and the current token. Few have attempted to automate this

aspect, perhaps because little research has been done in generating symbol processing mechanisms

from specifications.

A Tool to Connect the Par t s

Two possible ways of reducing the effort to connect these two parts of the tool:

1. A tool which automatically inserts the function calls, guided by a specification.

2. The use of a windows environment with a, tool to transfer text from one window to another.

This is an example of a parser grammar rule without any symbol processing functions embedded

in i t . I t is written to parse a Pascal Var declaration such as Var x,y,z: integer; :

86

variable_declaration_part

: VAR-TOKEN v a r i a b l e . i d e n t i f i e r . p a r t ';'

1

v a r i a b l e . i d e n t i f i e r _ p a r t
: i d e n t i f i e r . l i s t ':' type
I v a r i a b l e . i d e n t i f i e r . p a r t ';' i d e n t i f i e r . l i s t ': ' type
t

i d e n t i f i e r - l i s t
: IDENTIFIER.TOKEN
I i d e n t i f i e r . l i s t ',' IDENTIFIER.TOKEN

The same example with the symbol processing functions embedded in the grammar is:

variable.declaration.part

: VAR-TOKEN {VAR.CLASSO ;}
v a r i a b l e . i d e n t i f i e r . p a r t ';'

v a r i a b l e - i d e n t i f i e r . p a r t

: i d e n t i f i e r . l i s t ' : '
type {TYPE-CLASSO;}

I v a r i a b l e . i d e n t i f i e r . p a r t
';' i d e n t i f i e r . l i s t ' : '
type {TYPE.CLASSO;}

>

i d e n t i f i e r . l i s t

: IDENTIFIER.TOKEN {CONNECT.TO.OBJECT(Identifier);

NAMESPACE(source_file.name);
DECLARED.ON(line.number);
DISCONNECT.FROM.OBJECTO;}

87

I i d e n t i f i e r . l i s t ','

IDENTIFIER.TOKEN {CONNECT.TO.OBJECT(Identifier);
NAMESPACE(source_file.name);
DECLARED.ON(line.number);
DISCONNECT.FROM.OBJECTO ;>

The VAR_CLASS function would be called when the VAR-TOKEN is detected by the parser. This

will inform the symbol table that the current next object to be inserted into the symbol table will

be of VAR class. As an IDENTIFIER is detected by the parser the object is created or located

in the symbol table with the CONNECT-TO-OBJECT function. The name of the source file the

Identifier is resident in is stored using the NAMESPACE function and the line it is declared on is

recorded in the symbol table with the DECLARED-ON function.

I t is technically feasible to write a.n automated tool to insert these symbol processing functions

guided by a specification, which may contain the rule name, the token name and the commands

to be inserted. However in creating this specification, text from the cross referencer interface has

been transported to this specification file, therefore i t might as well be transferred straight to the

parser.

5.4 An Example

An example of the use of the toolkit is described in this section. The toolkit was used to generate

compilable program code written in the programming C. The programming language Pascal was

used as an example language on which a cross referencer may operate. The following is described:

1. A Pascal Cross Referencer Specification

2. The Production of Intermediate Files

3. The Modification of the Intermediate Files

4. The Use of the Text Substitution Tool

5. The Generated Symbol Table Data Structure

A Pascal Cross Referencer Specification was created using the notation described earlier.

This can be seen in appendix C. The specification has nine sections whose content are specific to

the programming language Pascal. For example the first section contains the specification for the

classes of objects that will represent the different types of identifier found in Pascal. A fragment

of this section is shown below:

OBJECT.CLASSES;

<parameter_class>
selected_by_routine parameter_class();
intennediate_rep_naine " .Oparameter";

<label_class>
selected_by_routine l a b e l _ c l a s s () ;
intennediate_rep_name ".41abel";

<var_class>

selected_by_routine v a r _ c l a s s () ;
intermediate_rep_name ".7variable";

The identifier in the angular brackets represents the name of the identifier. The selected.by.routine

clause indicates how the parser will inform the symbol table which type of object i t is processing and

the intermedia,te_rep_name clause indicates the name to be given to this object in the intermediate

cross reference listing produced. There are seven types of identifiers described.

The next section describes the text items which are to be transferred from the source code to

the symbol table. These data items are used as parameters in the semantic routines described

earlier. For example :

89

DATA_ITEMS_PASSED_FROM_PARSER;

<char *> character.string;
<char *> source.file.name;
<int> line_number;
end;

The next section in the Pascal cross leferencer specification is the description of the semantic

routines. These aJl have the same function, that is, they insert text into the object slot structures.

Their names are the same as the names of object slot structures and the parameters used are also

identified. For example the fragment below shows how text wiU be mapped to object slots whose

names are object, namespace and var_as_parameter:

SEMANTIC.ROUTINES;

[1] ob j ec t (cha rac t e r_s t r i ng) ;

[2] namespace(source.file.name);

[3] var_as.parameter(line.number);

The numbers in square brackets are a means of quickly referencing this function in other places

in the specification. For example the next section in the cross reference specification represents the

use of the semantic routines. Each object will use specific routines depending on its slot structure.

For example:

SEMANTIC_ROUTINE_USAGE;

<parameter_class> uses_semantic_routines [1,2,4,12,15,16]
<label_class> uses_semantic_routines [1,2,4,11,18,19]
<var_class> uses_semantic_routines [1,2,3,4,5,11,12,14,16]

90

Therefore the object class parameter-class will use the semantic routines whose numbers are
1,2,4,12,15,16. The semantic routines which use the text buffer are indicated in the next section of
the cross reference specification by listing the semantic routine names. The next major section of
the cross reference specification is the object slot structures. For example the object structure for
a var class object is given below.

CROSS_REFERENCER_OBJECT_STRUCTURES;

<var_class> s l o t _ s t r u c t u r e _ i s
(object,
namespace,
class,

pascal_type,
declared,
used,
var_as.parameter,
i n w i t h ,
i n f e r)

The name of the object class is given in angular brackets. The identifiers enclosed by round brackets

are the names of slots. These slot names can be thought as being similar to field identifiers in the

record construct.

The next section describes the actual slot itself. Each slot has a type which can be charac­

ter-string and each slot holding line numbers can be a multiple value slot. Also each slot has

a meta slot value which is the identifier representing this slot in the cross reference listing. An

example of the used slot is given below:

used :
type-id i s line_number
type i s i n t

91

slot-value i s m u l t i
meta_slot_value i s +05used
end used

The next section of the cross reference specification is the list of identifiers whose use is not to be

recorded in the symbol table. For example in the language Pascal the function "abs" will be detected

as a function identifier although it is not to be recorded in the symbol table. The final section of the

cross referencer specification is the cross referencer listing specification. Each language dependent

implementation will have certain slots that will only be needed by that particular language. The

tool implementor can choose which slots shall be output in the different types of intermediate cross

reference information. There are three levels of detail, described earlier. An example of this part

of the specification is shown below:

LISTING-SPECIFICATION; /* Object packets t o be included i n l i s t i n g */

TERSE-SPEC;
object;
namespace;
class;
declared;
set;
used;
end;

INTERMEDIATE-SPEC;
object;
namespace;
class;
declared;
set;
used;

undefined;

92

i n w i t h ;
i n f e r ;
ingoto;
end;

end; /* l i s t i n g s p e c i f i c a t i o n */

The Production of Intermediate Files follows after the specification has been produced.

The specification analyser produces these files. This tool will also detect any syntax errors in

the specification. The system is not capable of producing program code until the cross referencer

specification is syntax error free. The Modification of the Intermediate Files is performed

and the new files are then automatically copied back to the originals before using them in the

next phase of the tool generation. The Text Substitution Tool is invoked and the name of the

template "macrolistl", which describes the variant symbol table structure, is passed as an argument

to this tool. The symbol table component is then produced. The Generated Symbol Table
Data Structure is written in the programming language C, shown in appendix G. It consists of

pointers to data structures wliich represent program scope sections.

s t r u c t scope

i

s t r u c t parameter_class_section * parameter_class_ptr ;
s t r u c t label_class_section * label_class_ptr ;
s t r u c t constant_class_section * constant_class_ptr ;
s t r u c t type_class_section * type_class_ptr ;
s t r u c t var_class_section * var_class_ptr ;
s t r u c t function_class_section * function_class_ptr ;
s t r u c t procedure_class_section * procedure_class_ptr ;
s t r u c t scope * next; /* order of scopes */ };
}

In each scope there are different classes of objects. Each struct will hold all the objects of that

particular class. Each data structure for storing pointers to objects is implemented as a binary tree.

93

The reason for this is so that all of the objects can be printed in a structured listing by traversing
this data structure and printing each element of the data structure. For example the following is
one such binary tree of pointers to objects of the var class.

s t r u c t var-class_section
{
s t r u c t var_class_object * var_class_ptr ;
s t r u c t var-class-section * l e f t . p t r ;
s t r u c t var-class-section * r i g h t - p t r ;

} ;

Each of these pointers will point to a particular object holding symbol usage information. Each

class of objects is used in different ways so the object structures are not uniform in structure. For

example:

s t r u c t var-class-Object

{

char object[256];
char namespace[256];
char class [256];
char pascal-type[256];
s t r u c t linenumbers * declared;
s t r u c t linenumbers * used;
s t r u c t linenumbers * var_as_parameter
s t r u c t linenumbers * in w i t h ;
s t r u c t linenumbers * i n f o r ;

>;

s t r u c t function_class-obj ect

{

char object [256];

94

char namespace[256] ;
char class[256];
s t r u c t linenumbers * parameter_on;
s t r u c t linenumbers * external;
s t r u c t linenumbers * forward;
char non-local[256];
s t r u c t linenumbers * called;

} ;

5.5 Summary

The language independent cross leferencer model produced was described and a method of cus­

tomising and making maximum re-use of this model was investigated. Meta tools were constructed

to illustrate this particular idea. An increase in the productivity of building static analysis front

end tools can be gained through customised re-usable software.

Chapter 6

Conclusion

6.1 Project Description

Software Maintenance has been identified as the most expensive phase of the software life cycle and

wiU continue to devour resources even if forma] methods of software development are widely used.

Research is needed into development of tools for use by the maintenance programmer. I t caii be

envisaged that static program analysis tools such as cross referencers, control flow and data flow

analysers will be developed together as a complete package to facilitate program understanding.

The main problem perceived with these tools is that they will currently only operate on software

written in one language. Software systems are written in many different languages. Many tool

vendors have reflected on the idea of producing language independent tools but few have attempted

to produce language independent front end tools. The proposal was a one year research activity to

produce language independent front ends for static analysis tools.

95

96

6.2 Review of Major Points in each chapter

Chapter 1 Software Maintenance: This chapter surveys the maintenance activities and tools

which can be used to support these activities. The most expensive phase of maintenance is surveyed

in more detail and the problem of trying to understand how programs operate is described. Models

of program comprehension are identified and the potential use of cross reference tools to aid the

maintenance programmer construct hypotheses about the workings of a program are investigated.

Tools to facilitate program comprehension were analysed and a research objective was estabhshed

to investigate a new cross reference tool front end which can be used to process any language.

Chapter 2 Survey of Cross Reference Tools: The strengths and weaknesses of commercially

available tools were analysed and the state of the art in cross reference tools was identified. The

ideal cross referencer was also described. The British Telecom Research Laboratories and the Centre

for Software Maintenance cross reference tools were used and evaluated and the difficulties facing

cross referencers were identified. The external interfaces and the construction of cross reference

tools were also analysed .

Chapter 3 Cross Referencing Language Features: This chapter discusses particular fea­

tures which are present in programming languages which are relevant to cross reference tools. The

symbol processing functions needed was analysed and the common features in programming lan­

guages were identified as a possible language independent skeleton. A method of reducing the

amount of programmer effort to add other tool components to this skeleton was examined and a

program generator was identified as a possible solution.

Chapter 4 Program Generators: This chapter surveys the major benefits and applications of

generators. The process of generating a program using a generator is described and the advantages

and disadvantages of using generators was made distinct. Two approaches to developing generators

were evaluated. The literature on parsing theory, compiler techniques, compiler engineering and

lajiguage processor front ends was surveyed.

Chapter 5 The Design of a Fi-ont End Generator for Cross Referencer Tools: This

chapter contains a description of a high level solution to building cross reference tools and also

describes the process of using the experimental toolkit.

97

6.3 Achievement of Objectives Set

The following achievements were made during the project:

• The language dependent weakness of maintenance tools was identified.

• One of the most useful cost effective tools was identified, a cross referencer. A survey was

conducted, which analysed the strengths and weaknesses, the state of the art and the ideal

cross referencing tool.

• The need for more than just a simple text file searching tool for cross referencing source code

was identified.

• Several British Telecom Research Laboratories and CSM cross reference tools were used and

their construction was evaluated.

• A solution to the problem of dealing with a multifile environment was also identified.

• Cross referencer symbol table management was investigated and a set of functions were iden­

tified to transfer information from program source code into the cross referencer symbol table.

• The language independent components of a cross referencer were identified.

• A parser was constructed for the language Pascal to develop a more advanced knowledge of

tool front ends.

• A survey of programming language features was conducted to identify the features that must

be included in a language independent cross referencer and also to appreciate why certain

features are present.

• The common features in languages such as classes of symbol, visibility rules, symbol searching

mechanisms and symbol usage were identified, and the skeleton or nucleus to which other

features could be added if the situation arose was identified.

• A method of reducing the effort to change features internal to the cross referencer was inves­

tigated and the use of a generator identified.

• A design decision was made that this pai-ticular generator will make assumptions concerning

the common features of languages, rather than having a very complex specification input.

This approach also makes the specification non-procedural.

98

• A specification language was designed for a generator.

• A code generation method was designed which utilizes macro substitution and code templates.

This means that the language emitted from the generator can be altered by changing the

template.

• Four meta tools were constructed.

t Compilable symbol table da.ta structures were successfully generated in the programming

language C.

• A solution to language independent tools was identified, designed and investigated. The

solution uses a table driven syntax analyser, lexical analyser, symbol table and cross refer­

encer which is based on common features of languages. All four components can be re-used

and customised by changing the high level specifications and re-running them through the

generator.

• It was observed that the use of a generator facihtates easier integration of re-usable cross

referencer tool components into future implementations.

• It was observed that some kind of abstract interface was needed between the different cross

referencer components in order to reduce the effort required to put them together. In order to

make the idea of using program generators to re-use and customise a language independent

nucleus attractive, the cross referencer components must conform to some kind of "user

model" of the tool under development. Thus the user of the components is relieved of detailed

coding concerns and can instead view the available components in terms of some kind of

simplified model of the cross referencer under construction.

• This is one approach to language independent cross referencers and could serve as a foundation

for future work.

6.4 Future Developments

Further work needs to be done on the underlying model of a cross referencer generator which would

include a more detailed analysis of language features. New languages containing features such as

knowledge representation will play an important part in fifth generation computing. These type

99

of features will need to be included in future maintenance tools. Perhaps the features of Prolog
should be included in the cross referencer model.

The field of compiler construction is a specialised field in which a large amount of re-use has

already occurred, for example in the customising and re-using of the finite state automaton algo­

ri thm. The front and back end division is often used as a basis for tailoring an existing compiler

to a new machine. Similarly, division into further phases such as lexical analysis, parsing, error re­

covery, memory allocation, code generation and code optimization provides a basis for subdividing

the task of writing and understanding compilers and a basis for using parts of an existing compiler

in generating new compilers. The understanding of compilers gained by experience provides an

accepted 'user model' of compiler construction that is of great use in simphfying the production of

new compilers.

Future work could include subdivision of the symbol processing mechanism into separate func­

tions. It might be possible to generate each individual component with a generator similar to the

components of a compiler front end. Lexical analysers or parsers are generated in this manner.

When designing a cross referencer generator there are some compromises to be made. For

example, i f the underlying model attempts to address many programming languages i t may be that

the generator becomes general purpose and the tool implementor may be required to add some

features to the code emitted from the generator. This would increase the effort required to produce

a language independent implementation. However the generator would have a wide application

domain. I f the generator model is aimed at a small application domain then it may possible to

produce a language independent implementation without the tool implementor adding any program

code. This type of generator will generate more of the cross referencer but for only a small number

of languages. A company only using two or three languages would be better using the hmited

domain approach. A tool vendor which produces tools for ten languages may benefit from the more

general approach.

There is much scope for research in producing specification languages or any other formalisms

for describing cross referencer components. This project may precipitate research into software

re-use in the production of software maintenance tools. The re-use of tool components in any tool

will depend on how difficult they are to modify. I t is unlikely that a generic tool will be able to

recognize any programming language, however i t may be possible to tailor a generic design for each

100

language. Therefore the generated program is not a generic tool which can process many languages,
but i t is a processor of the language features described in the specification.

Another possible project would be to be to investigate more closely which aspects of a cross

referencer may be amenable to change and produce a grammar based specification for each aspect.

Tools such as an editor could be used for assisting in modifying those specifications to reconfigure

the cross reference tool. This would not be complete regeneration of the whole tool. Just the

components that need modification would be changed.

To summarize there are at least four approaches to language independent cross referencer tools:

U N I V E R S A L : This approach requires one cross referencer to provide facihties for a wide class of

programming languages. The deficiency is that i t will be very large and complicated to implement.

L A N G U A G E I N D E P E N D E N T C O M P O N E N T S : This approach requires exphcit use of

programming skills to integrate the components into new tools.

A U T O M A T I C A L L Y G E N E R A T E D : This approach utihzes grammar driven generators to

re-use and customise a generic skeleton.

D Y N A M I C A L L Y R E C O N F I G U R A B L E : This approach intelligently modifies specific com­

ponents of a language independent cross referencer without performing a complete regeneration of

the cross referencer tool.

Appendix A

Pascal Lexical Analyser Specification

*
*/

p a s c a l — l e x i c a l a n a l y s i s

i n t l i n e n u m b e r =1;
c h a r loweryytext[YYLMAX];
s t a t i c i n t s c r e e n O ;
yj

l e t t e r
d i g i t
l e t t e r - o r _ d i g i t
w h i t e _ s p a c e
b l a n k
r e t u r n
d o uble.quote
s c a l e - f a c t o r
•/.'/.

[a-zA-Z]
[0-9]
[a-2A-Z-0-9]
[\ t \ n]
[\ t]
[\n]
["]
[{ d i g i t * }] I ["+"-Cdigit}*] I [" " { d i g i t } *]

\ " ([- " \ n] | \ " \ ") + \ "
\ ' ([- ' \ n] | \ ' \ ') + \ '
{ d i g i t } + " . " { d i g i t } +
{ d i g i t } + " . " { d i g i t } + " E " { d i g i t } *
{ d i g i t } + " . " { d i g i t } + " E " " + " { d i g i t } *
{ d i g i t } + " . " { d i g i t } + " E " " - " { d i g i t } *

r eturn token(EL_TOKEN);
return token(STRING-TOKEN);
return token(STRING-TOKEN);
return token(REAL.TOKEN)
return token(REAL_TOKEN)
return token(REAL.TOKEN)
return token(REAL_TOKEN)

101

102

{ d i g i t > + " . " { d i g i t } + " e " { d i g i t } *
{ d i g i t > + " . " { d i g i t > + " e " " + " { d i g i t } *
{ d i g i t } + " . " { d i g i t } + " e " " - " { d i g i t } *
{ d i g i t } + " e " { d i g i t } +
{ d i g i t > + " e " " + " { d i g i t > +
{ d i g i t } + " e " " - " - [d i g i t } +
{ d i g i t > + " E " { d i g i t } +
{ d i g i t } + " E " " + " { d i g i t } +
{ d i g i t } + " E " " - " { d i g i t } +
[0 - 9] *
"<>'
"<=

">=
I I , —

"\n'
{ r e t u r n }
{ l e t t e r > { l e t t e r _ o r _ d i g i t } *
{ l e t t e r } (a e t t e r _ o r _ d i g i t > | "-" I " _ ") *
{ d i g i t > +
{blank}
{white.space}
I I) I I

-"#"{blank}*"include"
-"•/."{blank}*"include"

> ' (* n i l (M , ^ (| - - , ^)] I I [] | l l (M | l l * M [- -)]) * l . + M ^ I , ^) ,

" { " " { " * ([- }] I [- *] " { " I " * " [- }]) * " * " * " } "

return token(REAL_TOKEN)
return token(REAL.TOKEN)
retu r n token(REAL_TOKEN)
retu r n token(REAL_TOKEN)
retu r n token(REAL_TOKEN)
re t u r n token(REAL.TOKEN)
re t u r n token(REAL.TOKEN)
re t u r n token(REAL_TOKEN)
retu r n token(REAL_TOKEN)
re t u r n token(INTEGER.TOKEN);
retu r n token(NE_TOKEN)
retu r n token(LE_TOKEN)
return token(GE.TOKEN)
retu r n token(AS.TOKEN)
{ linenumber = linenumber + 1; }
{ linenumber = linenumber + 1;}
{ r e t u r n screenO ;}
{ r e t u r n token(IDENTIFIER.TOKEN);}
{ ret u r n token(CONSTANT_TOKEN); }
{ }
{ linenumber = linenumber + 1; }
{ r e t u r n token(QUOTE.TOKEN); }
{ ret u r n token(INCLUDE.TOKEN);}
{ r e t u r n token(INCLUDE_TOKEN);}
{ ret u r n t o k e n (y y t e x t [0]) ; }
{ }
{ }

11

/*
*
*/

reserved word screener

s t a t i c s t r u c t rwtable {
char * rw.name;
i n t rw.yylex;
} rwtable [] = {

/* reserved word table */
/* representation */
/* yylexO value */
/* sorted */

and". token(AND_TOKEN),
array", token(ARRAY_TOKEN),
begin", token(BEGIN.TOKEN),
case", token(CASE_TOKEN),
const", token(CONST_TOKEN),
di v " . token(DIV_TOKEN),
do". token(DO.TOKEN),
downto", token(DGWNTO.TOKEN),
else", token(ELSE.TOKEN),

103

"end",
"external",
"extern",
" f i l e " ,
" f o r " ,
"forward",
" f u n c t i o n " ,
"goto",
" i f " ,
" i n " ,
" l a b e l " ,
"mod",
" n i l " ,
"not",
"of",
"or".
"packed",
"procedure",
"program",
"record",
"repeat",
"set",
"then",
" t o " ,
"type",
" u n t i l " ,
"var",
"while",
"with".

token(END_TOKEN),
token(EXTERNAL-TOKEN),
token(EXTERNAL.TOKEN),
token(FILE_TOKEN),
token(FOR-TOKEN),
token(FORWARD_TOKEN),
token(FUNCTION.TOKEN).
token(GOTO_TOKEN),
token(IF-TOKEN).
token(IN_TOKEN),
token(LABEL-TOKEN).
token(MOD_TOKEN),
token(NIL_TOKEN),
token(NOT-TOKEN),
token(OF-TOKEN).
token(OR_TOKEN).
token(PACKED-TOKEN),
token(PROCEDURE-TOKEN).
token(PROGRAM-TOKEN),
token(RECORD-TOKEN),
token(REPEAT-TOKEN),
token(SET-TOKEN),
token(THEN-TOKEN),
token(TO-TOKEN),
token(TYPE-TOKEN),
token(UNTIL.TOKEN),
token(VAR_TOKEN),
token(WHILE_TOKEN),
token(WITH_TOKEN),

} ;

s t a t i c i n t screenO
{ s t r u c t rwtable * low = rwtable,

* high = END(rwtable),
* mid;

i n t c;
i n t subscript;
chcir character;
/* convert yytext t o lower case i f necessary */

subscript = 0;
while (subscript < (YYLMAX+1))
{
character = yytext [s u b s c r i p t] ;
i f (character >= 'A' && character <= ' Z ') / * i t i s i n uppercase*/
{

character = (character + 'a' - 'A') ;

104

loweryytext [subscript] = character;
}
loweryytext[subscript] = character;
subscript = subscript + 1;

}
while (low <= high)
{ mid = low + (high-low)/2;

i f ((c = strcmp(raid->rw-name,loweryytext)) == 0)
ret u r n mid->rw_yylex;

else i f (c < 0)
low = mid+1;

else
high = mid-1;

}
r e t u r n token(IDENTIFIER-TOKEN);

yywrapO
{

p r i n t f ("\nEnd of f i l e encountered l i n e : '/.d\n" .yylineno);
}

Appendix B

A Pascal Parser Specification

/*
*
*
*

*
*
*

Yacc Grammar
Backus Naur Form Specification f o r
Computer programming language Pascal

Date : 12/1/89
Project : S t a t i c Analysis Tools f o r use i n Software Maintenance
(shift/reduce c o n f l i c t s : one on ELSE.TOKEN)

/*
*
*/

'/.token
'/.token
'/token
'/.token
'/token
'/.token
'/token
'/token
'/token
'/token
'/token
'/token
'/token
'/token

terminal symbols

IDENTIFIER.TOKEN
CONSTANT.TOKEN
END_OF_FILE_TOKEN
QUOTE.TOKEN
EXTERNAL.TOKEN
EXTERN.TOKEN
STRING.TOKEN
REAL.TOKEN
INTEGER.TOKEN
NE.TOKEN
LE.TOKEN
GE.TOKEN
AS.TOKEN
EL.TOKEN

/* ' */

/* <> */
/* <= */
/* >= */
/• : = */
/* */

105

106

'/.token AND.TOKEN
'/.token ARRAY.TOKEN
'/token BEGIN.TOKEN
'/.token CASE.TOKEN
'/.token CONST.TOKEN
'/.token DIV.TOKEN
'/.token DO.TOKEN
'/.token DOWNTO.TOKEN
'/.token ELSE_TOKEN
'/.token END.TOKEN
'/token EXTERNAL.TOKEN
'/.token FILE.TOKEN
'/token FOR.TOKEN
'/token FORWARD.TOKEN
'/token FUNCTION.TOKEN
'/token GOTO.TOKEN
'/token IF.TOKEN
'/token IN.TOKEN
'/token INCLUDE.TOKEN
'/token LABEL.TOKEN
'/token MOD.TOKEN
'/token NIL.TOKEN
'/token NOT.TOKEN
'/token OF.TOKEN
'/token OR.TOKEN
'/token PACKED.TOKEN
'/token PROCEDURE.TOKEN
'/token PROGRAM.TOKEN
'/token RECORD.TOKEN
'/.token REPEAT.TOKEN
'/token SET.TOKEN
'/token THEN.TOKEN
'/token TO.TOKEN
'/token TYPE.TOKEN
'/token UNTIL.TOKEN
'/token VAR.TOKEN
'/token WHILE.TOKEN
'/token WITH.TOKEN

/*
* precedence table

' / l e f t
' / l e f t
' / l e f t
' / l e f t
• / l e f t

'=' NE.TOKEN
'<' GE.TOKEN LE.TOKEN

'*> >/'
NOT.TOKEN

'/start program

107

•/'/ /* beginning of rules section */

program
: program_heading

block '.' /* END_OF_FILE_TOKEN*/
I declarations

{INITIALISE.CROSS.REFERENCERO;>
{PRINT_INTERMEDIATE_LISTING();}

block
: {ENTER.SCOPEO ; }

declarations statement.part {FINISHED_WITH_SCOPE();}
I statement.part
>

declarations
: declaration.part
I declarations declaration.part
t

declaration.part
: label.declaration.part
I c o n s t a n t . d e f i n i t i o n . p a r t
I t y p e . d e f i n i t i o n . p a r t
I variable.declaration.part
I procedure.and.function.declaration.part
I includes

l a b e l . d e c l a r a t i o n . p a r t
: LABEL.TOKEN {LABEL.CLASSO ; }

l a b e l . p a r t ';'

lab e l . p a r t
INTEGER.TOKEN {CONNECT_TO.OBJECT(current.text);

NAMESPACE(source.file.name);
CLASSO;
DISCONNECT.FROM.OBJECTO ;}

I l a b e l . p a r t INTEGER.TOKEN {CONNECT.TO.OBJECT(current.text);
NAMESPACE(source.file.name);
CLASSO;
DISCONNECT.FROM.OBJECTO;}

con s t a n t . d e f i n i t i o n . p a r t
: CONST.TOKEN

constant.part
{CONSTANT.CLASSO ;}

constant.part
: IDENTIFIER.TOKEN •CCONNECT.TO.OBJECTCcurrent.text);

108

'=' constant
I constant.part '
IDENTIFIER.TOKEN

NAMESPACECsource.file.name);}
{CONSTANT.VALUE(text.buffer;}

{CONNECT.TO.OBJECT(current.text);
NAMESPACECsource.file);
DISCONNECT.FROM.OBJECTO;}

{ADD.TO.TEXT.BUFFERCcurrent.text);}
constant

constant

sign

sign INTEGER.TOKEN
INTEGER.TOKEN
sign IDENTIFIER.TOKEN
IDENTIFIER.TOKEN
STRING.TOKEN

REAL.TOKEN
'-' REAL.TOKEN
REAL.TOKEN

{ADD_TO.TEXT_BUFFER(current.text);}
{ADD.TO.TEXT.BUFFER(current.t e x t) ; }
{ADD_TO_TEXT.BUFFER(current.text);}
{ADD.TO.TEXT.BUFFER(current _ t e x t) ; }
{ADD.TO_TEXT.BUFFER(current.text);}
{ADD.TO.TEXT.BUFFER(current.t ext);>
{ADD.TO.TEXT _BUFFER(current.text);}
{ADD.TO.TEXT.BUFFER(current.text);}

' +' {ADD.TO.TEXT.BUFFER(current_text);}
'-' {ADD.TO.TEXT.BUFFERCcurrent.text);}

t y p e . d e f i n i t i o n . p a r t
: TYPE.TOKEN. {TYPE.CLASSO ;}

type.part ';'

type.part
: IDENTIFIER.TOKEN

type
I type.part

{CONNECT.TO.OBJECTCldentifier);
NAMESPACECsource.file.name);
CLASSC);
ADD.TO.TEXT.BUFFER C current.t ext);>
{ADD.TO.TEXT.BUFFERCcurrent.text);}

type

{ADD.TO.TEXT.BUFFERCcurrent.text);}
IDENTIFIER.TOKEN {CONNECT.TO.OBJECTCcurrent.text);

NAMESPACECsource.file.name);
CLASSC);
DECLARED.ONCline.number);}
{ADD.TO.TEXT.BUFFERCcurrent.text);}
{TYPE.VALUEO;}

type
: simple.type
I structured.type
I pointer.type

simple.type
scalar.type

109

I subrange.type
I IDENTIFIER.TOKEN {CONNECT.TO.OBJECTCldentifier);

USED.ON(line.number);}

scalar.type

scalar.part ') '
{ADD.TO.TEXT.BUFFER(Current.text);}
{ADD.TO.TEXT.BUFFER(Current.text);>

scalar.part
: IDENTIFIER.TOKEN

I scalar.part ','
IDENTIFIER.TOKEN

{CONNECT.TO.OBJECTCldentifier);
USED.ON(line.number);}
{ADD.TO.TEXT.BUFFER(Current.text);}
{CONNECT.TO.OBJECTddentif i e r) ;
USED.ON(line.number);>

subrange.type
: constant EL.TOKEN

constant
{ADD.TO.TEXT.BUFFER(Current.text);}

structured.type
: packed array.type
I packed record.type
I packed set.type
I packed f i l e . t y p e
I array.type
I record.type
I set.type
I f i l e . t y p e

packed
: PACKED.TOKEN {ADD.TO.TEXT.BUFFER(Current.text);}

array.type
{ADD.TO.TEXT.BUFFER(Current.text);}
{ADD.TO.TEXT.BUFFER(Current.text);>

: ARRAY.TOKEN

simple.type.part
'] ' {ADD.TO.TEXT.BUFFER(Current.text);}
OF.TOKEN {ADD.TO.TEXT.BUFFER(Current.text);}
type

simple.type.part
: simple.type
I simple.type.part {ADD.TO.TEXT.BUFFER(Current.text);>

simple.type

record.type
: RECORD.TOKEN {ADD.TO.TEXT.BUFFER(Current.text);}

f i e l d . l i s t end.part

no

f i e l d . l i s t
: f i x e d . p a r t
I f i x e d . p a r t ';'

var i a n t . p a r t
I v a r i a n t . p a r t

{ADD.TO.TEXT.BUFFERCcurrent.text);}

f i x e d . p a r t
: f i e l d . i d e n t i f i e r

type
I f i x e d . p a r t ';'

f i e l d . i d e n t i f i e r
type

{ADD.TO.TEXT.BUFFERCCurrent.text);}

{ADD.TO.TEXT.BUFFERCCurrent.text);}
{ADD.TO.TEXT.BUFFERCcurrent.text);}

f i e l d . i d e n t i f i e r
: IDENTIFIER.TOKEN {ADD_TO.TEXT.BUFFERCCurrent.text);

CONNECT.TO.OBJECTCldentifier);
NAMESPACECsource.file.name);
CLASSC);>

I f i e l d . i d e n t i f i e r
IDENTIFIER.TOKEN

' {ADD.TO.TEXT.BUFFERCCurrent.text);>
{ADD.TO.TEXT.BUFFERCCurrent.text);
CONNECT.TO.OBJECTCldentifier);
NAMESPACECsource.file.name);
CLASSC);}

va r i a n t . p a r t
: CASE.TOKEN {ADD.TO.TEXT.BUFFERCldentifier);}

case.variant.selector
OF.TOKEN {ADD.TO.TEXT.BUFFERCldentifier);}
variant.component

case.variant.selector
: IDENTIFIER.TOKEN {CONNECT.TO.OBJECTCldentifier);

NAMESPACECsource.file.name);
CLASSC);
DISCONNECT.FROM.OBJECTC);}

':' {ADD.TO.TEXT.BUFFFERCldentifier);>
IDENTIFIER.TOKEN {CONNECT.TO.OBJECTCldentifier);

NAMESPACECsource.file.name);
CLASSC);
DISCONNECT.FROM.OBJECTC);>

I IDENTIFIER.TOKEN {CONNECT.TO.OBJECTCldentifier);
NAMESPACECsource.file.name);
CLASSC);
DISCONNECT.FROM.OBJECTC);}

I l l

variant.component
: variant

v a r i a n t ';' {ADD.TO.TEXT_BUFFER(Identifier);>
variant.component

va r i a n t
: c a s e . l a b e l . l i s t {ADD.TO.TEXT.BUFFER(Identifier);>
' (' {ADD.TO.TEXT.BUFFERCldentifier);}
f i e l d . l i s t ') ' {ADD.TO.TEXT.BUFFERddentifier) ;>

c a s e . l a b e l . l i s t
: constant
I c a s e . l a b e l . l i s t {ADD.TO.TEXT.BUFFER(Identifier);}

constant

set.type
SET.TOKEN {ADD.TO.TEXT.BUFFER(Identifier);}
OF.TOKEN {ADD.TO.TEXT.BUFFERddentifier);}
simple.type

f i l e . t y p e
: FILE.TOKEN {ADD.TO.TEXT.BUFFER(Identifier);}
OF.TOKEN {ADD.TO.TEXT.BUFFERddentifier);}
type

pointer.type
: IDENTIFIER.TOKEN {ADD.TO.TEXT.BUFFERddentifier);

CONNECT.TO.OBJECTddentif i e r) ;
NAMESPACE(source.file.name);
DECLARED.ON(line.number);
DISCONNECT.FROM.OBJECTO ;>

variable.declaration.part
: VAR.TOKEN {VAR.CLASSO ;>

v a r i a b l e . i d e n t i f i e r . p a r t ';'

v a r i a b l e . i d e n t i f i e r . p a r t
: i d e n t i f i e r . l i s t ':*
type {TYPE.CLASSO;}

I v a r i a b l e . i d e n t i f i e r . p a r t
';' i d e n t i f i e r . l i s t ':'
type {TYPE.CLASSO;}

t

i d e n t i f i e r . l i s t
: IDENTIFIER.TOKEN {CONNECT.TO.OBJECTddentif i e r) ;

I i d e n t i f i e r . l i s t

NAMESPACECsource.file.name);
DECLARED.ONCline.number);
DISCONNECT.FROM.OBJECTC);}

112

IDENTIFIER.TOKEN {CONNECT.TO.OBJECTCldentifier);
NAMESPACECsource.file.name);
DECLARED.ONCline.number);
DISCONNECT.FROM.OBJECTC);>

p a r a m e t e r . i d e n t i f i e r . l i s t
: IDENTIFIER.TOKEN {CONNECT.TO.OBJECTCldentifier);

NAMESPACECsource.file.name);
PARAMETER.ONCline.number);
DISCONNECT.FROM.OBJECTC);>

I p a r a m e t e r . i d e n t i f i e r . l i s t ','
IDENTIFIER.TOKEN {CONNECT.TO.OBJECTCldentifier);

NAMESPACECsource.file.name);
PARAMETER.ONCline.number);
DISCONNECT.FROM.OBJECTC);}

procedure.and.function_declaration.part
: procedure.declaration
I function.declaration
>

procedure.declaration
: procedure.heading {DISCONNECT.FROM.OBJECTC);} ';' block ';'
I procedure.heading {DISCONNECT.FROM.OBJECTC);} ';' external

f u n c t i o n . d e c l a r a t i o n
: function.heading {DISCONNECT.FROM.OBJECTC);} ';' block ';'
I function.heading ';' external {DISCONNECT_FROM_OBJECTC);}
>

external
: EXTERNAL_TOKEN {EXTERNAL.ONClinenumber);} ';'
I EXTERNAL.TOKEN {EXTERNAL.ONClinenumber);}
I FORWARD.TOKEN {FORWARD.ONClinenumber);}
I FORWARD.TOKEN {FORWARD.ONClinenumber);} ';'

procedure.heading
: PROCEDURE.TOKEN IDENTIFIER.TOKEN {CONNECT_TO_OBJECTCldentifier);

PROCEDURE.CLASSC):
NAMESPACECsource.file.name);
DECLARED.ONClinenumber);
}

C parameter.section ')

113

PROCEDURE.TOKEN IDENTIFIER.TOKEN {CONNECT.TO.OBJECTddentifier);
PROCEDURE.CLASSO:
NAMESPACE(source.file.name);
DECLARED.ON(linenumber);
>

parameter.section
: formal.parameter.section

I parameter.section ';' formal.parameter.section

function.heading
: FUNCTION.TOKEN IDENTIFIER.TOKEN {CONNECT.TO.OBJECTddentifier);

FUNCTION.CLASSO :
NAMESPACE(source.file.name);
DECLARED.ON(linenumber);
>

' (' parameter.section ') '
f u n c t i o n . r e s u l t

I FUNCTION.TOKEN IDENTIFIER.TOKEN {CONNECT.TO.OBJECTddentifier);
FUNCTION.CLASSO;
NAMESPACE(source.file.name);
DECLARED.ONdinenumber);
>

f u n c t i o n . r e s u l t
FUNCTION.TOKEN IDENTIFIER.TOKEN {CONNECT.TO.OBJECTddentif i e r) ;

FUNCTION.CLASSO:
NAMESPACE(source.file.name);
DECLARED.ONdinenumber);
DISCONNECT.FROM.OBJECTO;}

fu n c t i o n . r e s u l t
IDENTIFIER.TOKEN {CONNECT.TO.OBJECTddentif i e r) ;

NAMESPACE(source.file.name);
FUNCTION.RETURN.TYPEClinenumber);
DISCONNECT.FROM.OBJECTO ;>

formal.parameter.section
: i d e n t i f i e r . l i s t '
IDENTIFIER.TOKEN

VAR.TOKEN i d e n t i f i e r . l i s t
IDENTIFIER.TOKEN

{CONNECT.TO.OBJECTddentif i e r) ;
NAMESPACE(source_file.name);
PASCAL.TYPEClinenumber);
DISCONNECT.FROM.OBJECTO ;}

{CONNECT.TO.OBJECTddentif i e r) ;

114

NAMESPACECsource.file.name);
PASCAL.TYPEClinenumber);
DISCONNECT.FROM.OBJECTC);}

I procedure.heading
I function.heading

r e s u l t . t y p e
: IDENTIFIER.TOKEN

statement.part
: compound.statement
I

compound.statement
: BEGIN.TOKEN statement.sequence end.part

end.part
END.TOKEN
';' END.TOKEN

statement.sequence
: statement
I statement.sequence ';' statement

statement
: simple.statement
I structured.statement
I l a b e l . p a r t ':' simple.statement
I l a b e l . p a r t ':' structured.statement
I labels
I /* n u l l */

labels
INTEGER.TOKEN {LABEL.CLASSO ;

CONNECT.TO.OBJECTCldentifier)
NAMESPACECsource.file.name);
USED.ONCline.number);
DISCONNECT.FROM.OBJECTC);}

labels INTEGER.TOKEN {LABEL.CLASSO;
CONNECT.TO.OBJECTCldentifier)
NAMESPACECsource.file.name);
USED.ONCline_number);
DISCONNECT.FROM.OBJECTC);}

simple.statement
: assignment.statement

115

I procedure.statement
I goto.statement

structured.statement
: compound.statement
I conditional.statement
I repetitive.statement
I with.statement
t

as s ignment.St atement
: variable AS.TOKEM expression

variable
: variable.head
I variable '.' variable.head
»

variable.head
: IDENTIFIER.TOKEN {CONNECT.TO.OBJECTddentif i e r) ;

NAMESPACE(source.file.name);
SET.ONCline.number);
DISCOUNT.FROM.OBJECTO ;}

' [' subscripts '] '
I IDENTIFIER.TOKEN * only record i d on bottom l e v e l * \

I IDENTIFIER.TOKEN
'0'

I IDENTIFIER.TOKEN {CONNECT.TO.OBJECTddentif i e r) ;
NAMESPACE(source.file.name);
SET.ON(line.number);
DISCOUNT.FROM.OBJECTO ;>

>

subscripts
: expression
I subscripts ',' expression

expression
: simple.expression
I simple.expression simple.expression
I simple.expression NE.TOKEN simple.expression
I simple.expression '<' simple.expression
I simple.expression LE.TOKEN simple.expression
I simple.expression GE.TOKEN simple.expression
I simple.expression '>' simple.expression
I simple.expression IN.TOKEN simple.expression

simple.expression
: simple.expression.term
I '+' simple.expression.term
I '-' simple.expression.term

116

simple.express ion.term
term
simple.expression.term term
simple.expression.terra '-' term
simple.expression.term OR.TOKEN term

term

f a c t o r

f a c t o r
term '*' f a c t o r
term f a c t o r
term DIV.TOKEN f a c t o r
term MOD.TOKEN f a c t o r
term AND.TOKEN fa c t o r

v a r i a b l e . o r . f a c t o r
uns igned.const ant
'C expression ') ' f i e l d . w i d t h
'C expression ') '
set
f a c t o r v a r i a b l e . o r . f a c t o r
NOT.TOKEN fa c t o r

v a r i a b l e . o r . f a c t o r
IDENTIFIER.TOKEN

'C actual.parameter.list
IDENTIFIER.TOKEN

')

{CONNECT.TO.OBJECTCldentifier);
NAMESPACECsource.file.name);
USED.ONClinenumber);
DISCONNECT.FROM.OBJECTC);}

f i e l d . w i d t h
{CONNECT.TO.OBJECTCldentifier);
NAMESPACECsource.file.name);
USED.ONClinenumber);
DISCONNECT.FROM.OBJECTC);}

actual.parameter.list
I variable
I variable f i e l d . w i d t h

f i e l d . w i d t h

I

field.width.parameter
variable
variable ':' variable
variable ':' field.width.parameter
field.width.parameter
field.width.parameter

field.width.parameter
variable

field.width.parameter
: sign INTEGER.TOKEN
I INTEGER.TOKEN

117

unsigned.constant
: NIL.TOKEN
unsigned.number
unsigned.number f i e l d . w i d t h
STRING.TOKEN
STRING.TOKEN f i e l d . w i d t h

set.part ']

: element
I set.part ',' element

set

set.part

element
: expression
I expression EL.TOKEN expression
*

procedure.statement
: IDENTIFIER.TOKEN {CONNECT.TO.OBJECTddentif i e r) ;

CALLED.ON(linenumber);
DISCONNECT.FROM.OBJECTO; }

actual.parameter.list ') '
I IDENTIFIER.TOKEN {CONNECT.TO.OBJECTddentif i e r) ;

CALLED.ON(linenumber);
DISCONNECT.FROM.OBJECTO; }

actual.parameter.list
: actual.parameter
I actual.parameter.list ',' actual.parameter
f

actual.parameter
: expression
f

goto.statement
: GOTO.TOKEN label.part

conditional.Statement
: if.statement
I case.statement
»

if.statement
: IF.TOKEN expression THEN.TOKEN statement
I IF.TOKEN expression THEN.TOKEN statement ELSE.TOKEN statement
»

case.statement

118

CASE.TOKEN expression OF.TOKEN case.list.element.part END.TOKEN

case.list.element.part
: case.list.element
I case.list.element.part ';' case.list.element
9

case.list.element
: c a s e . l a b e l . l i s t ':' statement
»

repetitive.statement
: WHILE.TOKEN expression DO.TOKEN statement
I REPEAT.TOKEN statement.sequence UNTIL.TOKEN expression
I FOR.TOKEN IDENTIFIER.TOKEN {CONNECT.TO.OBJECTCldentifier);

NAMESPACECname.of.source.file);
IN.FOR.LOOP.ONCline.number);
DISCONNECT.FROM.OBJECTC);}

AS.TOKEN f o r . l i s t DO.TOKEN statement
I

f o r . l i s t
: expression TO.TOKEN expression
I expression DOWNTO.TOKEN expression
>

with.statement
: WITH.TOKEN {IN.WITH.ONCline.number);}

w i t h . v a r i a b l e . l i s t DO.TOKEN statement
I

w i t h . v a r i a b l e . l i s t
: variable
I w i t h . v a r i a b l e . l i s t ',' variable

unsigned.number
: INTEGER.TOKEN
I REAL.TOKEN
>

program.heading
: PROGRAM.TOKEN program.name file.assignments ';'

program.name
: IDENTIFIER.TOKEN

file.assignments
: 'C f i l e . i d e n t i f i e r s ')
I

f i l e . i d e n t i f i e r s
: IDENTIFIER.TOKEN

119

I f i l e . i d e n t i f i e r s ',' IDENTIFIER.TOKEN

includes
: INCLUDE.TOKEN STRING.TOKEN
I INCLUDE.TOKEN STRING.TOKEN ';'

Appendix C

Pascal Cross Referencer Specification

CROSS.REFERENCER.SPECIFICATION; /* f o r pascalpar.y version 1.0 */

OBJECT.CLASSES;

<parameter.class>
selected.by.routine parameter.class();
intermediate.rep.name ".Oparameter";

<label.class>
selected.by.routine label.classO;
intermediate.rep.name ".41abel";

<constant.class>
selected.by.routine constant.class();
intermediate.rep.name ".Bconstant";

<type.class>
selected.by.routine type.class();
intermediate.rep.name ".6type";

<var.class>
selected.by.routine var .c lassO;
intermediate.rep.name ".7variable";

<function.class>
selected.by.routine function.classO;
intermediate.rep.name ".8function";
when.same forward.def;

<procedure_class>
selected.by.routine procedure.classO;
intermediate.rep.name ".9procedure";

120

121

when.same forward_def;
end;

DATA_ITEMS_PASSED_FROM_PARSER;

<char *> character.string;
<char *> source.file.name;
<int> line.number;
end;

SEMANTIC.ROUTINES;

[I] obj G c t (c h a r a c t e r _ s t r i n g) ;
[2] namespace(source_file.name);
[3] var_as_paraineter(line_number);
[4] class 0;
[5] pascal_type(character_string);
[6] function_return_type(character);
[7] external(line.number);
[8] forward(line.number);
[9] const_value(character_string);
[10] non_local(non_local_object);
[I I] declared(line_number);
[12] set(line_number);
[13] used(line_number);
[14] inFORloop(line_number);
[15] parameter_on(line_number);
[16] inWITH(line.number);
[17] called(line_number);
[18] undefined(line.number);
[19] ingoto(line_number);
end;

SEMANTIC_ROUTINE_USAGE;

<parameter_class> uses_semantic_routines [1,2,4,12,15,16]
<label_class> uses_semantic_routines [1,2,4,11,18,19]
<const_class> uses_semantic_routines [1,2,4,9,11,13]
<type_class> uses_semantic_routines [1,2,4,5,11,13]
<var_class> uses_semantic_routines [1,2,3,4,5,11,12,14,16]
<function_class> uses_semantic_routines [1,2,3,4,6,7,8,10,15,17]
<procedure_class> uses_semantic_routines [1,2,3,4,7,8,10,17]
end;

122

TEXT_BUFFER_USAGE;

/* functions which get data items via te x t b u f f e r * /
const_value();
pascal_type();
end;

CROSS_REFERENCER_OBJECT_STRUCTURES;

<paramet6r_class> s l o t _ s t r u c t u r e _ i s
(object,
namespace,
class,
pascal_type,
parameter.on,
inwit h)

<label_class> s l o t _ s t r u c t u r e _ i s
(object,
namespace,
class,
declared,
undefined,
ingoto)

<const_class> s l o t _ s t r u c t u r e _ i s
(object,
namespace,
class,
const.value,
declared,
used)

<type_class> s l o t _ s t r u c t u r e _ i s
(object,
namespace,
class,
pascal.type,
declared,
used)

<var_class> s l o t _ s t r u c t u r e _ i s
(object,
namespace,
class,
pascal_type,
declared,
used,
var.as.parameter,
i n w i t h ,
i n f o r)

<procedure_class> s l o t _ s t r u c t u r e _ i s

123

(object,
namespace,
class,
parameter_on,
external,
forward,
non_local,
called)

<function_class> s l o t _ s t r u c t u r e _ i s
(object,
namespace,
class,
parameter_on,
external,
forward,
non.local,
c a l l e d ,
function_return_type)

end;

OBJECT_SLOT_DESCRIPTIONS;

object
t y p e _ i d i s
type i s
slot.value i s
meta_slot_value i s
end object

character_string
char
single
.object

namespace:
type_id i s
type i s
slot_value i s
meta_slot_value i s
end namespace

character.string
char
single
=Onamespace

var.as.parameter :
type_id
type
slot_value

I S
i s
i s

meta_slot_value i s
end var_as_parameter

line_number
i n t
m u l t i
. Oparameter

class
type.id i s
type i s
slot_value i s
meta_slot_value i s

character_string
char
single
=lclass

end class

124

pascal_type :
ty p e . i d i s
type i s
slot_value i s
meta.slot.value i s
end pascal_type

character.string
char
single
=2type

function_return_type :
ty p e _ i d i s
type i s
slot_value i s
meta_slot_value i s

character_string
char
single
+000type

end function_return_type

external :
type_id
type
slot.value

i s
i s
i s

meta_slot_value i s
end external

line.number
i n t
single
+001external

forward :
type_id
type
slot.value
meta_slot_value
end forward

const_value :
ty p e . i d
type
slot_value
meta_slot.value
end const_value

i s line.number
i s i n t
i s single
i s +002forward

i s character.string
i s char
i s single
i s +01value

non.local :
type.id
type
slot.value

I S
i s
i s

meta_slot_value i s
end non_local

character.string
char
single
+02non_local

declared :
type_id i s
type i s
slot.value i s
meta.slot.value i s
end declared

line_number
i n t
single
+03declared

125

set
type_id i s
type i s
slot.value i s
meta_slot_value i s
end set

line.number
i n t
m u l t i
+04set

used
type_id i s
type i s
slot.value i s
meta.slot.value i s
end used

line.number
i n t
raulti
+05used

i n f or
type.id i s
type i s
slot.value i s
meta.slot.value i s
end i n f o r

line.number
i n t
m u l t i
+06infor

parameter.on :
typ e . i d i s
type i s
slot.value i s
meta.slot.value i s
end parameter.on

line.number
i n t
m u l t i

+07parameter

i n w i t h
t y p e . i d i s
type i s
slot.value i s
meta.slot.value i s
end i n w i t h

line.number
i n t
m u l t i
+08inwith

c a l l e d
type.id i s
type i s
slot.value i s
meta.slot.value i s
end c a l l e d

line.number
i n t
m u l t i
+09called

undefined :
type.id
type
slot.value

I S
i s
i s

meta.slot.value i s
end undefined

line.number
i n t
m u l t i
+10undefined

126

ingoto
type_id i s
type i s
slot_value i s
meta_slot_value i s
end ingoto

line.number
i n t
m u l t i
+ l l i n g o t o

end;

SOURCE_CODE_IDENTIFIERS_TO_BE_IGNORED;

odd;
abs;
sqr;
trunc;
round;
s q r t ;
arctan;
cos;
s i n ;
exp;
I n ;
succ;
pred;
ord;
chr;
eof;
reset;
get;
read;
readln;
r e w r i t e ;
put;
w r i t e ;
w r i t e l n ;

new;
dispose;
pack;
unpack;
end;

LISTING.SPECIFICATION; /* Object packets to be included i n l i s t i n g */

TERSE.SPEC;
object;
namespace;

127

class;
declared;
set;
used;

end;

INTERMEDIATE.SPEC;
object;
namespace;
class;
declared;
set;
used;
undefined;
i n w i t h ;
i n f o r ;
ingoto;

end;

end; /* l i s t i n g s p e c i f i c a t i o n */

END.OF.CROSS.REFERENCER.SPECIFICATION /* pascalpar.y version 1.0 */

Appendix D

Lexical Analyser Specification for the

Cross Referencer Notation

'/.{
/*
* Lex s p e c i f i c a t i o n
*
*
* f o r cross referencer s p e c i f i c a t i o n analyser (version 1.0)
* Project : Software Maintenance: Generating Front Ends f o r
* Cross Reference Tools
* Date : 2/5/1989
*/

#define END(v) (v-1 + sizeof v /sizeof v [0])

i n t linenumber =1;
char loweryytextCYYLMAX];
s t a t i c i n t screenO;
•/.>
l e t t e r [a-zA-Z]
d i g i t [0-9]
l e t t e r . o r . d i g i t [a-zA-Z.0-9]
white.space [\ t \ n]
blank [\ t]
r e t u r n C\n]
double.quote ["]

128

129

7.7.
{ l e t t e r } { l e t t e r _ o r _ d i g i t > *
" . " ({ l e t t e r . o r . d i g i t } I " - " I " _ ") +
" = " ({ l e t t e r _ o r _ d i g i t } | " - " I " _ ") +
" + " ({ l e t t e r _ o r _ d i g i t } | " - " I " _ ") +
[0 - 9] *
{ l e t t e r } ({ l e t t e r _ o r _ d i g i t } I " - " I '
{ blank}
{white_space}

') *

>>/*"•</<<*(l~^i/] I [-*] >'/>> I [- /]) * " ^ M ^ „ ^ / ,

{ r e t u r n screenO;}
{ r e t u r n token(META_IDENTIFIER.TOKEN);}
{ r e t u r n token(META.IDENTIFIER.TOKEN);}
{ r e t u r n token(META_IDENTIFIER_TOKEN);}
{ r e t u r n token(INTEGER.TOKEN);}
{ r e t u r n token(IDENTIFIER_TOKEN) ;}
{}
{ linenumber = linenumber + 1; }
{ r e t u r n token(QUOTE_TOKEN); }
{ re t u r n t o k e n (y y t e x t [0]) ; }
{ }

7,7.

/*
* reserved word screener

s t a t i c s t r u c t rwtable {
char * rw_name;
i n t rw_yylex;
} rwtable [] = {
"char",
"character",
"characters",

/* reserved word table */
/* representation */
/* yylexO value */
/* sorted */

token(CHAR.TOKEN),
token(CHARACTER.TOKEN).
token(CHARACTER.TOKEN),

"cross_referencer.object.structures",
token(CROSS_REFERENCER.OBJECT_STRUCTURES_TOKEN),

"cross_referencer.specification"
"data_items_passed_from.parser",
"defined_in_child_scope",
"defined_in_outer_scope",
"defined_in_parent_scope",
" e d i t _ i s " ,
"end".

token(CROSS_REFERENCER_START_TOKEN),
token(DATA_ITEMS_PASSED_FROM_PARSER_TOKEN),
token(DEFINED_IN_CHILD_SCOPE_TOKEN),
token(DEFINED_IN_OUTER_SCOPE_TOKEN),
token(DEFINED_IN_PARENT_SCOPE_TOKEN),
token(EDIT_IS_TOKEN),
token(END.TOKEN),

"end_of.cross_referencer_specification",
token(END_OF_CROSS_REFERENCER.SPECIFICATION_TOKEN),

"forward.def".
" i n t " ,
"intermediate_rep_name",
"intermediate.spec",
" i s " ,
" l i s t i n g _ s p e c i f i c a t i o n " ,
"lowercase",
"meta_slot_value",
" m u l t i " .

tokendNCOMPLETE.DEFINITION.TOKEN),
token(INT_TOKEN),
token(INTERMEDIATE_REP_NAME.TOKEN),
token(INTERMEDIATE.SPEC.TOKEN),
tokendS.TOKEN),
token(LISTING_SPECIFICATION_TOKEN),
token(LOWERCASE_TOKEN),
token(META_SLOT_VALUE_TOKEN),
token(MULTI_TOKEN),

130

"no.truncation",
"object.class",
"object.classes",
" o b j e c t . l o o k . u p . e d i t . d e f i n i t i o n '
" o b j e c t . s l o t . d e s c r i p t i o n s " ,
"redefine",
"same.as.source",
"scope.classes",
"selected.by.routine",
"semantic.routine.usage",
"semantic.routines",
" s i n g l e " ,
" s l o t . s t r u c t u r e . i s " ,
" s lot.value",

token(NO_TRUNCATION.TGKEN),
token(OBJECT.CLASS.TOKEN).
token(OBJECT.CLASSES.TOKEN),
token(OBJECT.LOOK.UP.EDIT.DEFINITION),
token(OBJECT.SLOT.DESCRIPTIONS.TOKEN),
token(REDEFINE.TOKEN),
token(SAME.AS.SOURCE.TOKEN),
token(SCOPE.CLASSES.TOKEN),
token(SELECTED.BY.ROUTINE.TOKEN),
token(SEMANTIC.ROUTINE.USAGE.TOKEN),
token(SEMANTIC.ROUTINES.TOKEN),
token(SIWGLE.TOKEN),
token(SLOT.STRUCTURE.IS.TOKEN),
token(SLOT.VALUE.TOKEN),

"source.code.identifiers.to.be.ignored",
token(SOURCE.CODE.IDENTIFIERS_TO_BE.IGNORED.TOKEN),

"terse.spec",
"text.buffer.usage",
" t r u n c a t i o n . a f t e r " ,
"type",
"type.id",
"uppercase",
"uses.semantic.routines",
"v i s i b l e . i n . c h i l d . s c o p e " ,
"visible.in.outer.scope",
"visible.in.parent.scope"
"visible.in.program",
"when.nested",
"when.same",

token(TERSE.SPEC.TOKEN),
token(TEXT.BUFFER.USAGE.TOKEN),
token(TRUNCATION.AFTER_VALUE.TOKEN),
token(TYPE.TOKEN),
token(TYPE.ID.TOKEN),
token(UPPERCASE.TOKEN),
token(USES.SEMANTIC.ROUTINES.TOKEN),
token(VISIBLE.IN.CHILD.SCOPE.TOKEN).
token(VISIBLE.IN.OUTER.SCOPE.TOKEN),
token(VISIBLE_IN_PARENT.SCOPE.TOKEN),
token(VISIBLE.IN.PROGRAM.TOKEN),
token(WHEN.NESTED.TOKEN),
token(WHEN.SAME.TOKEN),

s t a t i c i n t screenO
{ s t r u c t rwtable * low = rwtable,

* high = END(rwtable),
* mid;

i n t c;
i n t subscript;
char character;
/* convert yytext t o lower case i f necessary */

subscript = 0;
while (subscript < (YYLMAX+D)
{
character = y y t e x t [s u b s c r i p t] ;
i f (character >= 'A' && character <= 'Z') / * i t i s i n uppercase*/
{

character = (character + 'a' - 'A') ;
loweryytext[subscript] = character;

131

}
loweryytext[subscript] = character;
subscript = subscript + 1;
}
while (low <= high)
{ mid = low + (high-low)/2;

i f ((c = strcmp(mid->rw_name,loweryytext)) == 0)
ret u r n mid->rw_yylex;

else i f (c < 0)
low = mid+1;

else
high = mid-1;

}
r e t u r n token(IDENTIFIER_TOKEN);

yywrapO
{

p r i n t f (" End of f i l e encountered l i n e : '/.d\n" .yylineno);

Appendix E

Grammar of the Cross Reference

Specification

/* Yacc Grammar f o r
*
*

* Cross Referencer Specification Analyser (Version 1.0)
* Project : S t a t i c Analysis Tools f o r Software Maintenance
* Date : 2/5/1989
*

*/

/*
* This i s the f r o n t end of the cross referencer generator
* I t checks the s p e c i f i c a t i o n i s s y n t a c t i c a l l y correct
* and removes the noise words before creating the xref
* product desc r i p t i o n f i l e s .
*
*
* The xref product description f i l e s are the intermediate
* representation of the cross referencer t o be generated.
* They are the input to xref product generator.
* The f i l e s are :
*
* object.classes class_selection
* intermediate_names data.types

132

133

*
*
*
*
*
*/

t y p e . i d e n t i f i e r s
routine.usage
obj ect.structure
terse.spec
r e s e r v e d . i d e n t i f i e r s

semantic.routines
text.buffer.usage
slot.types
intermediate.spec

•/.{
extern
•/.}
/*
*
*/

'/.token
•/.token
'/.token
'/.token
'/.token
'/.token
'/.token
'/.token
'/.token
•/.token
'/.token
•/.token
•/.token
'/.token
'/.token
'/.token
•/.token
'/.token
•/.token
'/.token
•/.token
'/.token
'/.token
'/.token
•/.token
'/.token
•/.token
'/.token
•/.token
'/.token
•/.token
'/.token
•/.token
•/.token
'/.token
'/.token

char y y t e x t [] ; /* make lex.yy.c current token v i s i b l e */

terminal symbols

META.IDENTIFIER.TOKEN
INTEGER.TOKEN
IDENTIFIER.TOKEN
CHAR.TOKEN
CHARACTER.TOKEN
CROSS.REFERENCER.OBJECT.STRUCTURES.TOKEN
CROSS.REFERENCER.START.TOKEN
DATA.ITEMS.PASSED.FROM.PARSER.TOKEN
DEFINED.IN.CHILD.SCOPE.TOKEN
DEFINED.IN.OUTER.SCOPE.TOKEN
DEFINED.IN.PARENT.SCOPE.TOKEN
EDIT.IS.TOKEN
END.TOKEN
END.OF.CROSS.REFERENCER.SPECIFICATION.TOKEN
INCOMPLETE.DEFINITION.TOKEN
INT.TOKEN
INTERMEDIATE.REP.NAME.TOKEN
INTERMEDIATE.SPEC.TOKEN
IS.TOKEN
LISTING.SPECIFICATION.TOKEN
LOWERCASE.TOKEN
META.SLOT.VALUE.TOKEN
MULTI.TOKEN
NO.TRUNCATION.TOKEN
OBJECT.CLASS.TOKEN
OBJECT.CLASSES.TOKEN
OBJECT.LOOK.UP.EDIT.DEFINITION
OBJECT.SLOT.DESCRIPTIONS.TOKEN
QUOTE.TOKEN
REDEFINE.TOKEN
SAME.AS.SOURCE.TOKEN
SCOPE.CLASSES.TOKEN
SELECTED.BY.ROUTINE.TOKEN
SEMANTIC.ROUTINES.TOKEN
SEMANTIC.ROUTINE.USAGE.TOKEN
SINGLE.TOKEN

134

'/.token SLOT_STRUCTURE_IS_TOKEN
•/.token SLOT_VALUE_TOKEN
•/.token SOURCE_CODE_IDENTIFIERS_TO_BE_IGNORED .TOKEN
•/.token TERSE.SPEC.TOKEN
•/.token TEXT.BUFFER.USAGE.TOKEN
•/.token TRUNCATION.AFTER.VALUE.TOKEN
•/.token TYPE.TOKEN
•/token TYPE.ID.TOKEN
•/.token UPPERCASE.TOKEN
•/.token USES.SEMANTIC.ROUTINES.TOKEN
•/.token VISIBLE.IN.CHILD.SCOPE.TOKEN
•/.token VISIBLE.IN.OUTER.SCOPE.TOKEN
•/.token VISIBLE.IN.PARENT.SCOPE.TOKEN
•/.token VISIBLE.IN.PROGRAM.TOKEN
'/token WHEN.NESTED.TOKEN
•/.token WHEN.SAME.TOKEN

'/.start c r o s s . r e f e r e n c e r . s p e c i f ication.grammar

/* b e g i n n i n g of r u l e s s e c t i o n */

c r o s s . r e f e r e n c e r . s p e c i f i c a t i o n . g r a m m a r
: spec.header { i n i t () ; }
body { c l o s e . p r o d u c t . f i l e s O ;}
end.of.spec.token

body
: o b j e c t . c l a s s e s

data.items.passed.from.parser
s e m a n t i c . r o u t i n e s
semantic.routine.usage
t e x t . b u f f e r . u s a g e
obj e c t . s t r u c t u r e s
o b j e c t . s l o t . d e s c r i p t i o n s
s o u r c e . i d e n t i f i e r s _ t o . b e . i g n o r e d
x r e f . l i s t i n g . s p e c i f i c a t i o n

spec.header
: CROSS.REFERENCER.START.TOKEN ';'
1

o b j e c t . c l a s s e s
: OBJECT.CLASSES.TOKEN ';' o b j e c t . c l a s s . d e s c r i p t i o n s END.TOKEN ';'

o b j e c t . c l a s s . d e s c r i p t i o n s
: o b j e c t . d e s c r i p t i o n
I o b j e c t . c l a s s . d e s c r i p t i o n s o b j e c t . d e s c r i p t i o n

135

o b j e c t . d e s c r i p t i o n
: '<' IDENTIFIER.TOKEN { s t o r e . o b j e c t . c l a s s (y y t e x t) ; }

SELECTED.BY.ROUTINE.TOKEN
IDENTIFIER.TOKEN { s t o r e . o b j e c t . c l a s s . s e l e c t i o n (y y t e x t) ; }
' (' ') ' •;'
INTERMEDIATE.REP.NAME.TOKEN '"'
META.IDENTIFIER.TOKEN { s t o r e _ i n t e r m e d i a t e . n a m e (y y t e x t) ; >
J I I > > . y

s ame.def i n i t i o n

s a m e . d e f i n i t i o n
: WHEN.SAME.TOKEN INCOMPLETE.DEFINITION.TOKEN ';'
I /* n u l l */
»

data.items.passed.from.parser
: DATA.ITEMS.PASSED.FROM.PARSER.TOKEN ';' l i n e s END.TOKEN ';'
>

l i n e s
: i t e m . l i n e
I l i n e s i t e m . l i n e

i t e m . l i n e
.: '<' CHAR.TOKEN { s t o r e . d a t a . t y p e (y y t e x t) ; }

'*' '>' IDENTIFIER.TOKEN • C s t o r e _ t y p e . i d (y y t e x t) ; }
] .)

i

I '<' INT.TOKEN { s t o r e . d a t a . t y p e (y y t e x t) ; }
IDENTIFIER.TOKEN { s t o r e . t y p e . i d (y y t e x t) ; }

> . }

s e m a n t i c . r o u t i n e s
: SEMANTIC.ROUTINES.TOKEN ' ; ' s e m a n t i c . r o u t i n e END.TOKEN '; '

s e m a n t i c . r o u t i n e
: name.and.number.definition
I s e m a n t i c . r o u t i n e name.and.nvimber.def i n i t i o n
f

name.and.number.definition
: ' [' INTEGER.TOKEN '] '
IDENTIFIER.TOKEN { s t o r e . i n . r o u t i n e s (y y t e x t) ; >
' (' { s t o r e . i n . r o u t i n e s (y y t e x t) ; }
parameters
') ' { s t o r e . i n . r o u t i n e s 2 (y y t e x t) ; }

parameters
: parameter
I parameters { s t o r e . i n _ r o u t i n e s (y y t e x t) ; }
parameter

136

parameter
: CHARACTER.TOKEN { s t o r e _ i n _ r o u t i n e s (y y t e x t) ; }
I IDENTIFIER.TOKEN { s t o r e _ i n _ r o u t i n e s (y y t e x t) ; }
I /* no parameters */
f

semant i c . r o u t ine.us age
: SEMANTIC.ROUTINE.USAGE.TOKEN ';' lin e s END.TOKEN }. J

l i n e s

l i n e

: l i n e
I l i n e s l i n e

: '<' IDENTIFIER.TOKEN {store.in.routine.usage(yytext);}
'>' USES.SEMANTIC.ROUTINES.TOKEN
' [' routine.numbers '] '

>

routine.numbers
: INTEGER.TOKEN {store_in_routine.usage(yytext);}
I routine.numbers
INTEGER.TOKEN {store_in_routine.usage(yytext);}

»

text.buffer.usage
: TEXT.BUFFER.USAGE.TOKEN ';' t e x t . b u f f e r . l i n e s END.TOKEN ';
>

t e x t . b u f f e r . l i n e s
: IDENTIFIER.TOKEN { s t o r e _ i n . t e x t . b u f f e r (y y t e x t) ; }

,) , ,.,
I t e x t . b u f f e r . l i n e s
IDENTIFIER.TOKEN { s t o r e . i n . t e x t . b u f f e r (y y t e x t) ; }
' (' ') ' ';'

object.structures
: CROSS.REFERENCER.OBJECT.STRUCTURES.TOKEN ';'

s t r u c t u r e . d e f i n i t i o n s
END.TOKEN ';'

>

s t r u c t u r e . d e f i n i t i o n s
: s t r u c t u r e . d e f i n i t i o n
I s t r u c t u r e . d e f i n i t i o n s s t r u c t u r e . d e f i n i t i o n
»

s t r u c t u r e . d e f i n i t i o n
: '<' IDENTIFIER.TOKEN { s t o r e . i n . o b j e c t . s t r u c t u r e (y y t e x t) ; }

'>' SLOT.STRUCTURE.IS.TOKEN
' (' { s t o r e _ i n _ o b j e c t . s t r u c t u r e (y y t e x t) ; }
s l o t s ') ' { s t o r e . i n . o b j e c t . s t r u c t u r e (y y t e x t) ; }

s l o t s
: IDENTIFIER.TOKEN { s t o r e _ i n _ o b j e c t . s t r u c t u r e (y y t e x t) ; }

137

I s l o t s
IDENTIFIER.TOKEN {s t o r e _ i n _ o b j e c t _ s t r u c t u r e (y y t e x t) ; >

o b j e c t _ s l o t . d e s c r i p t i o n s
: OBJECT_SLOT_DESCRIPTIONS_TOKEN slot.descriptions
END.TOKEN

>

s l o t . d e s c r i p t i o n s
: s l o t
I s l o t . d e s c r i p t i o n s s l o t

s l o t

f i r s t . p a r t

IDENTIFIER.TOKEN { s t o r e _ i n _ s l o t _ t y p e (y y t e x t) ; }
':' TYPE.ID.TOKEN IS.TOKEN f i r s t . p a r t
TYPE.TOKEN IS.TOKEN type.part
SLOT.VALUE.TOKEN IS.TOKEN second.part
META.SLOT.VALUE.TOKEN IS.TOKEN
META.IDENTIFIER.TOKEN { s t o r e _ i n _ s l o t . t y p e (y y t e x t) ; }
END.TOKEN IDENTIFIER.TOKEN { store.in.slot.imp.type(yytext);}

IDENTIFIER.TOKEN { s t o r e . i n . s l o t . t y p e (y y t e x t) ; }

type.part
: CHAR.TOKEN { store_in_slot.imp.type(yytext); }
I INT.TOKEN { store_in_slot.imp.type(yytext); }

second.part
: SINGLE.TOKEN { s t o r e . i n . s l o t . t y p e (y y t e x t) ; }
I MULTI.TOKEN { s t o r e _ i n _ s l o t _ t y p e (y y t e x t) ; }
>

source.identifiers.to.be.ignored /* reserved i d e n t i f i e r s */
: SOURCE.CODE.IDENTIFIERS.TO.BE.IGNORED.TOKEN ';' i d e n t i f i e r . l i n e s
END.TOKEN ';'

i d e n t i f i e r . l i n e s
: IDENTIFIER.TOKEN {store.reserved.id(yytext);}

) .)
I i d e n t i f i e r . l i n e s
IDENTIFIER.TOKEN {store_reserved_id(yytext);}

x r e f . l i s t i n g . s p e c i f i c a t i o n
: LISTING.SPECIFICATION.TOKEN ';'
terse.spec intermediate.spec END.TOKEN ';'

I

terse.spec
: TERSE.SPEC.TOKEN ';' terse.packets END.TOKEN

138

intermediate_spec
: INTERMEDIATE.SPEC.TOKEN int.packets END.TOKEN

terse.packets
: IDENTIFIER.TOKEN {store.terse.specCyytext);}

I terse.packets IDENTIFIER.TOKEN {store_terse.spec(yytext);>
> . >

int.packets
: IDENTIFIER.TOKEN {store_intermediate.spec(yytext);}

) .)
I int.packets
IDENTIFIER.TOKEN {store.intermediate_spec(yytext);>

end.of.spec.token
: END.OF.CROSS.REFERENCER.SPECIFICATION.TOKEN

Appendix F

A Symbol Table Template

m a c r o l i s t l
/*
* cross referencer and symbol table structure
*/

s t r u c t symbol.table
{
s t r u c t scope * outer.scope; /* l e v e l 0 */
}

/* scope structure */
s t r u c t scope
{
s t r u c t <<NEXT» <OBJECT.CLASSES>_section* <<SAME» <OBJECT.CLASSES>
s t r u c t scope * next; /* order of scopes */ };
/* scope sections , the d i f f e r e n t classes of i d e n t i f i e r */
s t r u c t <<SAME>> <OBJECT.CLASSES>.section
{
s t r u c t «SAME» <OBJECT_CLASSES>_object * «SAME» <OBJECT_CLASSES> ;
s t r u c t <<SAME>> <OBJECT.CLASSES>_section * l e f t ;
s t r u c t <<SAME>> <OBJECT.CLASSES>_section * r i g h t ;
>;
/* objects , a d i f f e r e n t object description f o r each type of symbol */
s t r u c t «NEXT» <OBJECT.CLASSES>.object
{
«NEXT» <OBJECT_DETAILS> ;
};

s t r u c t linenumbers

139

140

{ /* chain of linenumbers */
i n t source.line.number;
s t r u c t linenumbers * next.line.number;
>

Appendix G

A Generated Symbol Table

/*
* cross referencer and symbol table structure
*/

s t r u c t symbol.table
{
s t r u c t scope * outer.scope; /* l e v e l 0 */

} ;
/* scope structure */
s t r u c t scope

{
s t r u c t parameter.class.section * parameter.class.ptr ;
s t r u c t label.class.section * label.cl a s s . p t r ;
s t r u c t constant.class.section * constant.class.ptr ;
s t r u c t type.class.section * type.class.ptr ;
s t r u c t var.class.section * var.class.ptr ;
s t r u c t function.class.section * function.class.ptr ;
s t r u c t procedure.class.section * procedure.class.ptr ;
s t r u c t scope * next; /* order of scopes */ >;
/* scope sections , the d i f f e r e n t classes of i d e n t i f i e r */
s t r u c t parameter.class.section

s t r u c t parameter.class.object * parameter.class.ptr ;

s t r u c t parameter.class.section * l e f t . p t r ;

141

142

s t r u c t parameter.class.section * r i g h t _ p t r ;

} ;

s t r u c t label.class.section

{

s t r u c t label.class.object * l a b e l . c l a s s . p t r ;

s t r u c t label.class.section * l e f t . p t r ;

s t r u c t label.class.section * r i g h t . p t r ;

};

s t r u c t constant.class.section

{

s t r u c t constant.class.object * constant.class.ptr ;

s t r u c t constant.class.section * l e f t . p t r ;

s t r u c t constant.class.section * r i g h t . p t r ;

>;

s t r u c t type.class.section

{

s t r u c t type.class.object * type.class.ptr ;

s t r u c t type.class.section * l e f t . p t r ;

s t r u c t type.class.section * r i g h t . p t r ;

};

s t r u c t var.class.section

{

s t r u c t var.class.object * var.class.ptr ;

s t r u c t var.class.section * l e f t . p t r ;

s t r u c t var.class.section * r i g h t . p t r ;

143

>;

s t r u c t function.class.section

{

s t r u c t function.class.object * function.class.ptr ;

s t r u c t function.class.section * l e f t . p t r ;

s t r u c t function.class.section * r i g h t _ p t r ;

} ;

s t r u c t procedure.class.section

{

s t r u c t procedure.class.object * procedure.class.ptr ;

s t r u c t procedure.class.section * l e f t . p t r ;

s t r u c t procedure.class.section * r i g h t _ p t r ;

>;

/* objects , a d i f f e r e n t object description f o r each type of symbol */
s t r u c t parameter.class.object
-C
char object [256];
char namespace[256] ;
char class[256];
char pascal.type[256] ;
s t r u c t linenumbers * parameter.on;
s t r u c t linenumbers * i n w i t h ;

} ;
s t r u c t label.class.object
{
char object[256];
char namespace[256] ;
char class[256];
s t r u c t linenumbers * declared;
s t r u c t linenumbers * undefined;
s t r u c t linenumbers * ingoto;

>:
s t r u c t constant.class.object
{
char object[256];

144

char namespace[256];
char class [256];
char const.value[256];
s t r u c t linenumbers * declared;
s t r u c t linenumbers * used;

} ;
s t r u c t type.class.object
{
char object[256];
char namespace[256];
char class[256];
char pascal.type[256];
s t r u c t linenumbers * declared;
s t r u c t linenumbers * used;

>;
s t r u c t var.class.object
{
char object [256];
char namespace[256] ;
char class[256];
char pascal_type[256];
s t r u c t linenumbers * declared;
s t r u c t linenumbers * used;
s t r u c t linenumbers * var.as.parameter;
s t r u c t linenumbers * i n w i t h ;
s t r u c t linenumbers * i n f o r ;

>;
s t r u c t fxmction.class.object
{
char object[256];
char namespace[256];
char class[256];
s t r u c t linenumbers * parameter.on;
s t r u c t linenumbers * external;
s t r u c t linenumbers * forward;
char non.local[256];
s t r u c t linenumbers • c a l l e d ;

>;
s t r u c t procedure.class.object
{
char object [256];
char namespace[256];
char class[256];
s t r u c t linenumbers * parameter.on;
s t r u c t linenumbers * external;
s t r u c t linenumbers * forward;
char non.local[256];
s t r u c t linenumbers • c a l l e d ;
char function_return_type[256];

145

} ;
s t r u c t linenumbers

{ /* chain of linenumbers */
i n t source.line.number;
s t r u c t linenumbers * next.line_number.ptr;

} ;

Bibliography

[1] A .V. Aho, R. Sethi, J.D. Ullman, 1986, Compilers Principles, Techniques and Tools,

Addison- Wesley

[2] IEEE Standards Board and ANSII Standards Institute, 1983, A n American National

Standard and I E E E Standard Glossary of Software Engineering Terminology,

ANSI/IEEE Std 729-1983 pp32

[3] American National Standard, 1989, Programming Language Cobol, ANSI X3.23-1985,

ISO 1989-1985

[A] K . M . Broadey, M . Munro and D.J. Robson, School of Engineering and Applied Science, Com­

puter Science, University of Durham, 1986, A Context Sensitive Cross Reference Tool,

Report 86/1

[5] K . M . Broadey, A. Colbrook, M. Munro and D.J. Robson, 1989, Block Structured Cross

Referencer for Pascal and C , University Computing, 11(3) ppl20-128

[6] K . M . Broadey, School of Engineering and Applied Science, Computer Science, University of

Durham, 1985, A Context Sensitive Cross Referencer for the P A S C A L Programming

Language, Project Report

[7] R.A. Brooker and D. Morris, 1962, A General Translation Program for Phrase Struc­

ture Languages, J. ACM 9 ppl-10

[8] L.Chik, School of Engineering and Applied Science, Computer Science, University of Durham,,

1988, A Replacement C Preprocessor Front End for the C X R Cross Referencer,

Project Report

[9] J.C. Cleveland, 1988, Building Applications Generators, IEEE Software, 5(4) pp25-33

146

147

[10] A. Colbrook, School of Engineering and Applied Science, Computer Science, University of
Durham, 1987, A Context Sensitive Cross Reference Tool for the Language C , Project
Report

[11] S.D. Cooper, School of Engineering and Applied Science, Computer Science, University of

Durham, 1987, Pascal Program Cal l Graph Generator, Project Report

[12] R. Fairley, 1985, Software Engineering Concepts, McGraw-Hill International Editions,

Computer Science Series

[13] J. Feldman and D. Cries, 1968, Translator Writing Systems, Communications of the ACM,

11(2) pp77-113

[14] G. Fischer, 1989, Human-Computer Interaction Software: Lessons Learned, Chal­

lenges Ahead, IEEE Software, 6(1) pp45-52

[15] N. Fletton, 1988, M.Sc . Thesis, Documentation for Software Maintenance and the

Redocumentation of Existing Systems, School of Engineering and Applied Science, Com­

puter Science, University of Durham

[16] J. Foley, W.C. Kim, S. Kovacevic, and K. Murray, 1989, Defining Interfaces at a high

level of abstraction, IEEE Software, 6(1) pp25-36

[17] J.R. Foster, 1986, Software Maintenance - A n Overview Divisional Memorandum

R l l / 8 6 / 0 1 3 , British Telecom Research Laboratories

[18] D. Cries, 1971, Compiler Construction for Digital Computers, John Wiley Sons,Inc

[19] L . Hancock and M . Kriege, 1987, The C Primer Second Edition, McGraw-Hill Book

Company

[20] R. Hartson, 1989, User Interface Management Control and Communication, IEEE

Softiuare, 6(1) pp62-70

[21] K. Koskimies, 0 . Nurmi and J. Paakki, 1988, The Design of a Language Processor

Generator, Software Practice and Experience, 18(2) ppl07-135

[22] G. Lay, School of Engineering and Applied Science, Computer Science, University of Durham,

1987, The Intermediate Representation of Cross Referenced Information with re­

gard to output linkage, Vacation Report

148

[23] G. Lay, School of Engineering a.nd Applied Science, Computer Science, University of Durham,
1988, The Intermediate Representation of Cross Referenced Information, Project
Report

[24] B.P. Lientz and E. Burton Swanson, 1980, Software Maintenance Management, Addison

Wesley

[25] F.J. Luckey, 1989, Understanding and Debugging Programs, Journal of Man Machine

Studies pp 202

[26] C. Marcus, 1986, Prolog Programming, Addison Wesley

[27] W . M . McKeeman, J.J. Horning, D.B. Wortman, 1970, A Compiler Generator, Prentice-

Hall Series in Automatic Computation

[28] M . Munro and D.J. Robson, 1987, A n Interactive Cross Reference Tool for use in

Software Maintenance, Proceedings of the 20th Annual Conference on Systems Science

pp64-70

[29] B.A. Myers, Carnegie Mellon University, 1989, User Interface Tools: Introduction and

Survey, IEEE Software, 6(1) ppl5-24

[30] P. Naur, 1963, Revised Report on the algorithmic language Algol 60, Comm. of the

ACM 6(1) pp 1-17

[31] R.J. Pooley, 1988, A n Introduction to Programming in S I M U L A , Blackwell Scientific

Publications

[32] I.e. Pyle, 1985, The Ada Pi-ogramming Language, Prentice Hall International

[33] S.P. Reiss, 1983, Generation of Compiler symbol processing mechanisms from spec­

ifications, ACM Trans.Programming Lang. Syst., 5(2) ppl27-163

[34] S.P. Reiss, 1987, Automatic Compiler Production: The Front End , IEEE Transactions

on Software Engineering, 13(6) pp607-627

[35] H. Ruston, 1978, Programming with P L / 1 , Addison Wesley

[36] A.T. Schreiner, 1985, A n Introduction to Compiler Construction with U N I X , Prentice

Hall, Inc.

149

[37] C.H. Smedema, P. Medema., M.Boasson, 1983, The Programming Language Pascal,
Modula-2, C H I L L and Ada, Prentice Hall, Inc.

[38] E. Soloway and W.L. Johnson, 1980, Knowledged Based Program Understanding, IEEE

Trans. Software Eng. 11(S) pp265-275

[39] H .M. Sneed, 1988, Software Renewal: A Case Study, IEEE Software, l(3)pY>56-63

[40] B. Stroustrup, 1986, The C + - | - Programming Language, Addison Wesley

[41] H. Thimbleby, 1988, Delaying Commitment, IEEE Software, 5(3) pp78-86

[42] A .B. Tucker, Jr., 1986, Programming Languages, McGraw-Hill

[43] J. Welsh and J. Elder, 1988, Introduction to Programming in Modula-2, Prentice Hall

[44] B.A. Wichmann, 1973, A L G O L 60 Compilation and Assessment, Academic Press London

and New York

[45] N . Wilde, 1989, The Maintenance Assistant Work in Progress, Journal of Systems and

Software, 9(1) pp3-18

[46] S. Williams, 1985, Programming the 68000, SYBEX

[47] L.B. Wilson and R.G. Clark, 1987, Comparative Programming Languages, Addison Wes­

ley

