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Abstract 

This thesis is concerned with exact solutions to various massive field theories in 1 + 1 

dimensions. 

Two approaches are described. The first, abstract and non-lagrangian, relies on the 

considerable understanding that there now is of massless two-dimensional field theories. 

A perturbative scheme can be developed within which various exact statements may be 

made. Chapter 1 contains a review of this technique, together with some work applying 

it in various simple situations. The particular structures studied turn out to have a deep 

connection with certain Lie algebras, a fact which is discussed in the concluding three 

sections of the chapter. 

A complementary approach is to study specific, classically integrable, lagrangians in 

the hope that their quantum versions will also permit an exact treatment. Motivated 

to some extent by the findings of chapter 1, the remainder of the thesis is devoted to a 

particular class of models known as affine Toda field theories. A mixture of perturbative 

and non-perturbative ideas are employed. The non-perturbative elements are to be found 

in analytic S-matrix theory, reviewed in chapter 2, while various features of the classical 

theory necessary for a perturbative quantum treatment are derived in chapter 3. Making 

use of this information, chapter 4 proposes exact expressions for the S-matrices for a large 

subset of the Toda theories, which are then checked in perturbation theory. 

Finally, the relevance or otherwise of the Toda S-matrices to the perturbations of 

massless theories studied in chapter 1 is discussed, and some possible directions for future 

work are mentioned. 



Preface 

This thesis is the result of work carried out in the Department of Mathematical Sci­

ences at the University of Durham, between October 1987 and September 1990, under 

the supervision of Dr. E. Corrigan. No part of it has been previously submitted for any 

degree, either in this or any other university. 

The motivation for the work in chapter 1 came from some papers by Zamolodchikov|'' 

and much of the chapter is a review of his work. The computer algebra calculations 

and their possible interpretations in terms of W-algebras are original, although similar 

conclusions were reached by a number of other authors'^""' from a variety of starting 

points. 

No claim of originality is made for the review in chapter 2, apart from the connection 

between S-matrix and conserved charge bootstraps described in the final section, which 

was included in an article in Nuclear Physics Bf^ 

Most of the remainder of the thesis is based on work carried out with Harry Braden, 

Ed Corrigan and Ryu Sasaki, which can be found in a number of joint papers,'*"'' although 

sections 4.1 and 4.5 contain new material. Section 4.1, giving a detailed description of the 

conserved charges, is due solely to the author, as are the ideas of dualising and higher-pole 

bootstrap structure contained in section 4.5. However the explicit evaluations of higher 

pole residues mentioned in that section were carried out by Harry Braden, Ed Corrigan 

and Ryu Sasaki. 

There has been much interest in the S-matrices of affine Toda field theories during the 

last year,'"~^°' and many results have been obtained by a number of groups, all working 

to a large extent independently. For this reason there seems to be little point in trying to 

give detailed credit for every feature to be mentioned below; this paragraph is intended 

to provide a general reference to all of this material. However one item should perhaps 

be mentioned separately, namely that the main result of section 4.1 was also noted by 

Klassen and Melzer, and is published in [14]. 

I would like to thank Ed Corrigan for all his help, and also Harry Braden and Ryu 

Sasaki for many interesting discussions during an enjoyable collaboration. In addition 

I would like to mention with thanks Robert Leese, Paul Fletcher, Hisham Zainuddin, 

Ian Strachan and Tim Hollowood. Financial support was provided by the Science and 

Engineering Research Council, whom I acknowledge and thank. 
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Chapter 1 

Perturbations of Conformal Field Theories 

1.1 Introduction: The Ising Model 

The Ising model is a particularly simple statistical system, and yet it embodies most 

of the features that wil l be relevant in this chapter. Picture a square c^-dimensional lattice, 

on each site of which sits a spin cr taking the values ± 1 ('up' or 'down'). The energy of a 

configuration {cr} is given by 

<ij> 

the summation running over all pairs of nearest neighbour sites < ij >. (The unit of 

energy is taken to be one.) A simple generahzation with non-trivial consequences is to 

add a term representing an external magnetic field h, in which case the energy becomes 

E{W})= Y.aia^ + Y^hai. (1.2) 
<ij> i 

For the time being this possibility will be ignored, so that the model has a symmetry 

between spin up and spin down. 

The aim is to study this classical system when in statistical equihbrium at some finite 

temperature T. The relative probabilities of the different configurations are then given 

by the Boltzman distribution, and the partition function is simply 

Z = ^ e - ^ ( { " J ) / ^ . (1.3) 

Configurations of higher energy are less likely to occur, this suppression becoming weaker 

as T is increased. 

Physically, the Ising model is motivated as an attempt to understand various aspects 

of magnetism. Each spin variable is to be thought of as a microscopic magnet. The 

energy function, by penalizing any disagreement between neighbouring spins, captures 
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the tendency of these small magnets to line up, leading to overall magnetisation of the 
whole solid. For d > 1 this penalty is the dominant eflfect at low temperatures and the 
system is said to be in an ordered phase. Note that the magnetisation breaks the up-down 
symmetry in spin space - an example of spontaneous symmetry breaking. 

As T is increased another factor comes into play, in that there are many more available 

states for the system if the spins do not all agree, and despite their individually smaller 

probability such configurations eventually come to dominate sums such as (1.3). The 

system is then in a disordered phase, up-down symmetry has been restored, and it has 

undergone a phase transition. This lack of long-range order is seen most clearly in the 

behaviour of correlation functions, which give the expectation values of measurements on 

the system in equilibrium (as averages over all possible states, weighted by the Boltzman 

distribution). For example, the correlation function of two Ising spins at sites a and b is 

(a„a,) = Z - ^ ( 5 ] a . a , e - ^ ( { ' ^ } ) / ^ ) . (1.4) 

For T large enough, an expansion of the exponential in 1/T (using the expression (1.1) for 

the energy) is appropriate.'^'' Each element in this expansion contains a product of terms 

aiCTj with i and j neighbouring sites, and so the element may be drawn as a collection 

of nearest-neighbour links on the lattice. (This representation of an element in the high-

temperature expansion should not, of course, be confused with a possible configuration 

{cr} of the model, although it is interesting to note that iov d = 2 this 'confusion' forms the 

basis for the Krammers-Wannier duality of the 2-dimensionaI Ising model, relating the low 

and high temperature phases of the theory.''*' ) In the summation over all configurations, 

only products in which every spin appears to an even power contribute. Pictorially, this 

means that the links must form a chain between sites a and b (since the right hand side 

of (1.4) contains the product aa<yb outside the exponential), along with any number of 

closed loops. As each link carries with i t a factor l / T , at high temperatures the most 

important term will have the smallest number of hnks possible, and so will be a chain of 

links connecting a and b by the shortest path. Hence (taking the lattice spacing to be 1 

for now), 

{aaat) « T-\--Hz-' aaiaaCTi)... ((7^^^)^^) 
M (1.5) 

_ rp-\a-b\ 

(where < ai > , . . . , < A;6 > are all nearest neighbour pairs). So in the high temperature 
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phase the absence of long range order manifests itself in the exponential decay of corre­
lation functions over distances of the order of C = (InT)" '- . C is known as the correlation 
length, and measures the distance scale over which degrees of freedom are coupled. As T 
decreases ( increases and the phase transition is approached, this time from above. Even­
tually the approximation of only considering the shortest path between a and b breaks 
down as the factors of l/T become insufficient to overcome the combinatorial fact that 
many more paths of greater length may be drawn on the lattice. At some temperature 
T = Tc (the critical temperature) C becomes infinite, signalling the transition to the phase 
discussed earlier, with long range order prevailing. 

There are a number of lessons to be drawn from this admittedly crude treatment. The 

correlation length signals the appearance of a new (temperature-dependent) length scale 

in the system, in addition to the lattice spacing. If the lattice spacing is a in some physical 

units, this new scale is (a. It is this length which governs the decay of correlation functions 

at large distances, and not the lattice spacing. When T is close to Tc the correlation 

length is very many times the lattice spacing, and on the scale of this length the fact that 

the spin variables live on a discrete lattice rather than at every point in space becomes 

unimportant. Given this, the correlation function defined by (1.5) looks very much Uke 

that of a continuum quantum field theory involving particles of mass l / C - This should not 

be too surprising; the definition (1.4) of the correlation function is exactly what would be 

written for a lattice-regularized definition of a (Euclidean) functional integral, with the 

action given by the energy function (1.1). 

Some of the limitations of the particular high temperature expansion employed above 

are also clear: for example, if the correlation functions of the Ising model near Tc really 

are approximated by those of a suitable quantum field theory, then one would expect 

them to possess approximate rotational invariance, while the approximation involved in 

(1.5) preserves the special nature of the directions defined by the axes of the lattice. To 

see the way in which short-distance details such as the precise structure of the lattice are 

'lost' as T approaches Tc requires a more sophisticated analysis, and the framework for 

this is provided by the renormalization group. 
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1.2 The Renormalization Group'̂ *~**' 

To generalize the discussion above, this section begins with a few definitions. The 

two phases of the Ising model were distinguished by the expectation value of the spin 

variable a\ if m = | ( f ) |, then m = 0 in the high temperature (disordered) phase while 

m 7̂  0 at low temperatures. The variable a is called an order parameter. The possible 

behaviour of the order parameter actually at the transition temperature serves to divide 

phase transitions into two types. A transition is first order i f the order parameter has 

a discontinuity there, while i f the parameter (though not necessarily its derivatives) is 

a continuous function of T at Tc, then the transition is second order. This is known as 

Landau's classification. 

Near the phase transition one phase is only marginally favoured over the other, so 

large patches of the 'wrong' phase will tend to persist. For second order transitions these 

large scale fluctuations come to dominate completely at criticality, and this is reflected 

in a divergence of the correlation length. First order transitions generally lead to a finite 

correlation length even at the transition, fluctuations never dominating completely. The 

classification according to the behaviour of the correlation length is the more directly 

relevant one in the study of critical phenomena. 

Near a second order transition, a plot of the order parameter against T looks like 

X 

For 7" just below Tc, a power law behaviour is commonly found: 

m oc (Tc - T f . 

The number /5, defined in the vicinity of a critical point, is an example of a critical 

exponent. While the precise value of Tc depends on the microscopic details of the model, 

that of P tends not to, being sensitive only to bulk features such as the dimensionality 

of the system or the symmetry properties of the order parameter. For example, the Ising 

model in two dimensions can be solved exactly for square or triangular lattices, and in 
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both cases /3 has the value 1/8. This property is known as universality, cind reflects the 
'washing out' of short distance structure in the fluctuation-dominated regime. 

I t should be noted that 1/8 is not an integer, and so the order parameter depends 

non-analytically on the temperature at the transition. Such behaviour is at first sight 

unexpected given the simple ('anaJytic') way in which T appears in expressions for ex­

pectation values such as (1.4). Indeed any perturbative treatment to finite order in T or 

l / T will always give analytic results. The resolution of this puzzle is that the transition 

is occurring at precisely the point where perturbation methods, seeing only finitely many 

of the degrees of freedom, cease to apply. At the phase transition the correlation length 

has diverged, and infinitely many degrees of freedom are coupled together. Even near the 

phase transition, there are still so many degrees of freedom within one correlation length 

that an alternative to perturbation theory is needed. 

Given the difficulty in these situations of evaluating expressions such as (1.3) or (1.4) 

directly, some progress might be made by performing the part of the summation involving 

short-distance degrees of freedom, leaving the longer distance modes for later. This idea, 

coupled with the observation that the residual summation will be of much the same form 

as the initial one, is the motivation for the transformations making up the renormalization 

group. 

There are two stages to a renormalization group transformation. In real space, the 

first step is to 'lose' some short distance structure by the introduction of block variables. 

For example, on a square lattice form 2 x 2 blocks as shown: 

I • » I • • I 
I . I ^ 1 

1 + + 
• • • 1 • • > • 

I i 
I • • '• • • 

I 

- - 1 -

• I 
I 

To each block assign a single 'block spin', representing the net behaviour of all the 

spins in that block: 

a'(x') = <7l(ll) + <T2(X2) + <^ZM + <^4M 

(where x' = ^ ( x i +X2 + xz+ x^)). 
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Now the sum over all configurations can happen in two stages: first holding the 

block spins constant, and only then over the block spins. The final sum over the block 

spins is governed by an 'effective' probability distribution induced by that of the original 

spins. To preserve the form of the equations, this distribution can be written as the 

exponential of some new energy function, the effective Hamiltonian for the block spins. 

(It is convenient to treat the temperature as just another parameter in the Hamiltonian, 

and write H = E/T.) Thus 

Z = ^ e - ^ ' ( ^ - ' > ) (1.6) 

where 

{ f f ] blocks 

Equation (1.6) looks much the same as (1.3), albeit with a modified Hamiltonian. 

However the lattice spacing has doubled, as the new lattice sites sit in the middle of each 

2 x 2 block. The second stage of the renormalization group transformation consists of 

rescaling the x' coordinates, in this case by a factor of a half, to restore the lattice spacing 

to its original value. The whole process is illustrated below. 

• • • • 

• • • • 

• • • • 
X ^ 

• • • • 

K X K X 

X X x X 

X X X X 

X X X < 

The new. lattice model is equivalent to the old so long as there is no interest in features 

on scales smaller than the blocks. I f the original Hamiltonian involved only short-range 

couplings, then the same is expected to be true of the new one. I t may however contain 

new short-range couplings, generated by the transformation. I t is important to note that, 

due to the rescaling, this new Hamiltonian has a correlation length half that of the old -

a reflection of the work that has been done in evaluating part of the configuration sum. 

In momentum space things work in much the same way, the highest momentum modes 

are summed over, and then a rescaling is performed to restore the momentum cutoff to 

its original value. 
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The above can be formalized by considering the space of all possible short-range 

Hamiltonians defined on the lattice. This is an infinite-dimensional space, spanned by 

coupling constants for all the (local) interaction terms that can be defined between the 

basic fields. Thus the point (Ai, A 2 , . . . ) would label the Hamiltonian 

H^.X.... = X^Y:4'^ + ^ 2 ^ 4 ' ^ + --- (1-8) 
i i 

where the summations run over all lattice sites, and i / ' l "^ is a possible local interaction 

term, depending only on the lattice variables in the immediate vicinity of the point i and 

corresponding to a (perhaps composite) local field in continuum field theory. The term 

^'4>^°'^ is conjugate to the variable A^. As an example, the Hamiltonian for the Ising 

model of (1.2) and (1.3) would be written as 

H{{a}) = E{{a})/T^H^4-^-{{a}) 

with 

2 
^ f U i ^ ' a . . , , ^f' = ... (1.9) 

3 

(•^1^' is usually written ej-; the sum over j is restricted to lattice sites adjacent to i.) 

I t is sufficient to restrict attention to a finite-dimensional submanifold so long as it is 

large enough to include the interaction terms generated by transformations of the initial 

Hamiltonian. In this space, the renormalization group transformation acts as a nonlinear 

operator R: 

H' = R{H) (with C ' = C / 2 ) (1.10) 

The transformation can be iterated, yielding a succession of equivalent Hamiltonians, 

^(n+l) ^ i?(/f(")) where = H. (To keep expectation values finite under repeated 

iterations, it may be necessary to add a rescaling of fields into the definition of R.) It 

is convenient to assume that an infinitesimal transformation T can be defined such that 

R{H) = {e^)H. T will then generate a flow in the space of possible Hamiltonians, called 

the renormalization group flow. A line of equivalent Hamiltonians, generated from a 

given initial system, is called a renormalization group trajectory. Since each renormaliza­

tion group transformation involves a rescaling of distances, moving further down the fine 

corresponds to viewing the system at a larger scale. 
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Extra structure can be given to the space of possible Hamiltonians by drawing the 
surfaces of constant correlation length C- A system at a second order transition will 
correspond to a point on 5oc, the critical surface. From (1.10) it is clear that a trajectory 
starting on wil l remain on that surface, while other trajectories cut through surfaces 
with successively lower C values. 

An important concept is that of a fixed point. This is a Hamiltonian H such that 

R{H) = H, or equivalently T{H) = 0, and it must lie on 5o or 5oc- The main interest is 

in fixed points which lie on Sooi as these turn out to classify the possible types of critical 

behaviour. The reason for this is easily seen, given the assumption, well-supported in prac­

tice, that all trajectories ultimately converge to a fixed point (this rules out the existence 

of limiting cycles). Thus a suitable number of renormalization group transformations AviU 

bring any critical system into the vicinity of a fixed point. Conversely, a 'basin of attrac­

tion' on the critical surface can be associated to each fixed point, consisting of all systems 

whose renormalization group trajectories tend to that point. Al l systems in a given basin 

exhibit the same critical behaviour, and are said to lie in the same universality class. This 

'topological' picture provides an appealing explanation of universality in general. 

Near the fixed point, the renormalization group transformation may be linearized, 

and local axes defined by diagonalizing the transformation matrix. These axes define 

the scaling variables which, near the fixed point, simply change in scale under a group 

transformation. I f the transformation involves a dilation s in the unit of length, then 

the scaling variable is multiplied by a factor for some number y, called the anomalous 

dimension of that variable. An important distinction can be made according to the sign 

of the anomalous dimension: i f positive, then renormalization group transformations will 

magnify the corresponding variable, and that variable is called relevant; i f negative then 

small variations are made smaller and the variable is irrelevant. This is illustrated below. 

relevant 

ifre!e*«nt 

As an aside, note that these ideas can explain the way in which details such as the 

direction of the lattice axes are lost near criticality at large distances - the variables 

encoding such effects turn out to be irrelevant. 
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There are generally finitely many relevant variables associated with a given fixed point 
- they correspond to unstable directions with respect to the renormaUzation group flow 
near that point, and must be fine-tuned to zero if the critical behaviour associated to that 
fixed point is to be observed. Such ideas will be important later. 

For each scaling variable there is a conjugate local field with a well-defined scaling 

dimension (also called a scaling operator, borrowing language from quantum field theory). 

There is room for confusion in the terminology here, as the scaling variables are often called 

scaling fields in the statistical mechanics hterature. Below, the word field will be reserved 

for objects corresponding to local fields in quantum field theory which are conjugate to the 

coupling constants. Anticipating the discussion of the continuum Umit, it is convenient 

to replace the summations over lattice sites in (1.8) by integrals of local densities: 

ffXi^2... ^ Jd'^x(AiOi(x) + A 2 0 2 ( x ) + . . . ) (1.11) 

where d is the dimensionality of the lattice. Changing the origin in parameter space if 

necessary so that the fixed point of interest is at Ai = A2 = . . . = 0, a dilation 

X ^ x ' = x / s 

renormalizes both the scaling variable AQ and its conjugate field Oa (x ) : 

AQ, —> AQ = S^"AQ, 

Purely on dimensional grounds, X Q , the scaling dimension of the field Oa, is related to 

the already-defined ya by Xa + Va = d (the Hamiltonian H defined by ( M l ) must be 

dimensionless at the fixed point). Thus the relevant fields are those of scaling dimension 

less than d, the dimension of the lattice. 

The scaling axes associated to a fixed point on the critical surface don't all He in that 

surface - some will correspond to directions which take the system away from criticality. 

Since trajectories not starting on the critical surface all diverge away from it , any such 

axis is associated with a relevant scaling variable at the fixed point, the obvious example 

being temperature. (The external magnetic field in the Ising model, introduced in (1.2), is 
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another example and will be significant later.) The renormalization group trajectory for a 
system just off the critical surface will eventually be near a fixed point on So, in a region 
where the correlation length is very small. Perturbation theory will be adequate in this 
region, and by running the renormalization group 'backwards', the critical exponents of 
the model may be deduced in terms of the anomalous dimensions of the scaling operators. 
There is no space to go into this here, but suffice it to say that very complete information 
on the critical behaviour of a system is provided once the relevant fixed point, scaling 
variables and anomalous dimensions are identified. 

This section concludes with the idea of a continuum limit, already mentioned in pass­

ing following the discussion of the Ising model. Near the critical surface the correlation 

length is very large in lattice units, and furthermore it is this length rather than the lattice 

length which is governing the long-distance phenomena. Hence it makes sense to rescale 

so that distances are measured in the 'physical' units of the correlation length, so that 

the lattice spacing becomes a variable quantity, smaller the nearer the critical surface the 

system is. The limit of a series of models, all with the same 'physical' correlation length 

but getting nearer to the critical surface so that the lattice spacing is tending to zero, 

can now be taken. The hope is that this limit can be taken in such a way that correla­

tion functions also have a finite limit, by suitably adjusting normalizations if necessary 

as the limit is taken. In field theory taking the lattice spacing to zero corresponds to 

removing the cutoff, and fiddling normalizations to ensure finite physical quantities to the 

renormalization of the bare quantities in the theory. The correlation functions obtained 

by such a Umiting process will then be good approximations to the lattice correlators in 

a neighbourhood of the critical surface known as the scaling region. All of the universal 

physics is found here. 

Keeping the physical correlation length finite as the lattice spacing tends, to zero 

will result in a massive continuum theory. Alternatively the limit can be taken with 

a sequence of theories actually on the critical surface (so that the correlation length 

is infinite throughout), or in such a way that the physical correlation length diverges. 

(The latter case might also be thought of as studying the long-distance asymptotics of a 

massive continuum theory.) For such limits, renormalization must still happen to keep 

the correlation functions finite over physical distances, although of course the correlation 

length itself does become infinite. The exponential decay of some correlation functions 

is modified to a power-law, and the 'physical' distance scale of the correlation length 

disappears. Thus degrees of freedom in these theories can couple over long distances, 
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a fact which can be traced to the presence of massless particles in the spectrum of the 
theory - the mass gap is zero, the mass gap being the mass of the lightest particle in the 
spectrum. The simplest such theories correspond to taking the limit of theories on the 
critical surface at or towards a fixed point; these essentially have only massless degrees 
of freedom and in two dimensions are the conformal field theories to be discussed in 
the next section. However i t should be reahzed that continuum field theories do exist 
corresponding to parts of the critical surface which are not fixed points, these possessing 
both massive and massless degrees of freedom. Such theories will be briefly touched on in 
a later section when perturbations of conformal field theories corresponding to directions 
lying in the critical surface are mentioned. 

1.3 Conformal Field Theory 

The first step towards understanding critical phenomena in general is to study, and 

perhaps classify, the possible fixed points of the renormalization group in their continuum 

limits. The Hamiltonians of such theories will be scale invariant and hence involve only 

massless particles (any other particle in the theory would introduce a length scale via the 

reciprocal of its mass). Correlation functions will then be long-range; two-point functions 

will decay by a simple power law determined from dimensional considerations. Polyakov'"' 

noticed that if the rescaling is allowed to depend on some local factor and invariance under 

this increased symmetry group is assumed, rather more can be deduced. One reason why 

such local rescalings should be good symmetries of the fixed point Hamiltonian is that 

the renormalization group transformation is essentially local in character. Hence a fixed 

point for the 'global' blocking transformations will also be a fixed point for more general 

transformations where the size (though not the shape) of a block varies with position. In 

the continuum this becomes invariance under local rescalings. 

The group of such local rescalings (along with translations and rotations) is called 

the conformal group, and consists of all transformations which multiply the metric by a 

scale factor. In dimensions d > 3, the group is finite dimensional, but not for d = 2. I t 

is useful to use complex coordinates z,z where z = + ix^. The metric is ds^ = dzdz, 

which transforms to 

, , ,dz' dz'_.,dz' , d z ' . 
dz'dz'={-dz + - d z ) ( - d z + - d z ) . 
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This is a multiple of the old metric i f 

dz' dz' ^ 

Hence at least locally any analytic funct ion z' = f { z ) w i l l do, and the conformal group in 

two dimensions is inf ini te dimensional. The global conformal transformations, regular on 

the complex plane together w i t h the point at infinity, fo rm the finite dimensional subgroup 

of Mobius transformations. The consequences of this symmetry group were worked out 

by Belavin, Polyakov and Zamolodchikovf^^' The important feature is the very strong 

control over the field content of the theory that the infini te symmetry provides, reducing 

many calculations to group theory. The viewpoint is non-perturbative and non-lagrangian, 

as much as possible being deduced on general grounds. Many detailed introductions to 

these ideas are available,'^""' and the brief review below is included mainly to establish 

notation. 

The theory is completely specified once all correlation functions 

( O i ( x i ) 0 2 ( x 2 ) . . . ) (1.12) 

are known. The local fields O Q ( X ) for each x belong to an infinite dimensional vector space 

A, assumed to be complete i n the sense that any state can be generated by the linear 

action of these operators acting at, for example, the origin. This implies the operator 

product expansion: 

Oa(x)Oi3(0) = ^Cl^{x)O,(Q). (1.13) 
7 

Equations such as (1.13), and any other equalities involving operators and states, are 

always given meaning as holding wi th in any correlation function (1.12), the expansion 

implied being convergent for x in some domain depending on the location of the other 

fields in that correlator. The numbers C'2/3(^) structure constants of the operator 

product algebra. 

The set of fields includes certain basic operators (pi(x) (the primary fields) which 

transform covariantly under conformal transformations z z' = f{z), z z' = j{z) as 

Uzrz) - (f\z)f'(7{7)f'ct>i{z',z'). (1.14) 

(Complex coordinates w i l l be used f rom this point on.) The pair of real numbers ( A i , A , ) 
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are called the left and right dimensions of (pi. The scaling dimension of is A i + A i , the 
spin Ai — Aj- . 

There must be at least one further field in the theory, namely the energy-momentum 

tensor T^^. Scale invariance implies that the trace of this tensor vanishes, so in the complex 

coordinates there are just two independent components, Tzz and Tzz- Conservation of T, 

d^Tfjiu = 0, then implies that Tzz depends only on z, Tzz only on z, and they wi l l be wri t ten 

as T{z) and T{z) respectively. T^^, should generate the conformal transformations (1-14), 

and this requirement fixes the singular part of the operator product expansion of T and 

T w i t h the pr imary fields: 

+#<-'Vi) + (z---i)*S""(.-i) + . . . 

(A similar, 'barred', equation holds for T.) The non-singular terms in the expansion are 

new fields which must also be i n A, by completeness. Operators L-n, acting in A, can be 

defined which generate these fields f rom the primary field : 

^ ; - " ) ( z i ) = i _ „ ( z i ) ^ , - ( z i ) . 

I n fact, w i th in correlation functions 

L-n{zi)M^i) = ^ /'^C(C - ^ i ) " + ' r ( 0 ^ ( ^ i ) , (1-16) 

the contour of integration surrounding only the point 2 1 . From (1.15) i t also follows that 

Ln{zi)M^i) =^ 0 ( n > 1) 

Lo{zi)<i)i{zi) = Ai<pi{zi) 

L-i{zi)<t>i{zi) = 9 i < / ) i ( 2 i ) . 

Analogous operators Ln can be defined f rom T, corresponding to the transformations of 

the z coordinate. Note, the LQ and LQ eigenvalues are the left and right scaling dimensions. 
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Further operator product expansions wi th T and T generate a whole family of further 
fields, known as the descendants of (t>i : 

,(-ni.. .-n.v.-fii. . .-n,v/) j- j j 7 M 

(Descendant fields involving just £ _ „ w i l l be called left descendants; those involving just 

L-m right descendants.) A l l have well-defined left and right dimensions: 

but no longer t ransform simply under more general conformal transformations. The set 

consisting of the pr imary field (pi together w i t h all of its descendants is called the conformal 

fami ly of ^ j , and w i l l be wr i t t en [(pi]. A l l fields in the theory are either primary or descend 

f r o m a primary field, so 

i 

Since T and T , or equivalently {Ln} and { Z n } , generate the conformal transformations 

in the quantum theory, each conformal family forms a representation of the group of 

such transformations. In fact there is an anomaly, owing to the fact that T and T are not 

themselves primary. However this is completely controlled once the commutation relations 

of the L and L operators are known. These follow f rom the operator product expansions 

between the components of T^iu-

T{z)nz,) = + + -^d,T{z,) + ... , 
( 2 - 2 l ) * * ( 2 - Z l Y Z -

a similar expression holding for TT, while TT is regular. Note the extra term proportional 

to c, compared to the operator product expansion (1-15) of T ( 2 ) w i th a primary field. This, 

the most general possible additional singular term, is responsible for the anomaly. The 

real number c is called the central charge, and is a characteristic of the the theory under 

consideration. The regularity of T T means that [L,L] = 0, while manipulation of contour 

integrals shows that 

[Ln, Lm] = (n - m)Ln-m + ^^("^ -12 

and similariy for L. There are thus two mutually commuting copies of this, the Virasoro 

algebra, at work i n the theory (one for T and one for f ) , and the conformal family can 
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be considered as the direct product 

[4>i] = ® ¥, 

of left and right representations, $ i being the space of left descendants of ^ i , the space 

of right descendants. The fact that the left and right algebras commute means that they 

can be treated to a large extent independently, and it is frequently possible to ignore the 

r ight algebra temporarily, so long as i t is remembered to restore the I-dependence at the 

end of a calculation. Hence the term 'conformal family ' wi l l often be used for the space 

$ of left descendants alone; i t should be clear f rom the context when this meaning is 

intended. 

The identi ty operator I is the unique primary field of dimensions (0, 0), and its con­

formed family w i l l be wr i t ten as 

7] = A (g) A . 

Since T = and f = L-2I, i t follows that T £ A and f 6 A. I t has already been 

remarked that T^^ is a conserved current; in fact the other fields in A and A give rise to 

inf ini te ly many further conserved currents, as wi l l now be explained. Only the space A 

w i l l be addressed, the discussion being identical for A. 

The first point to note is that translational invariance of the vacuum, L-iI = L-iI = 

0, together w i t h the fact that [L,L] — 0, means that L _ i A = 0, or in other words that 

for any field S E A, dS = 0. (For this reason A is often called the space of holomorphic 

fields.) Now consider a general current, a one-form which in complex coordinates can be 

wr i t t en 

J{z,z) = a(z,z)dz + P{z,z)dz. 

Conservation of J, dJ = 0 ( in components, d^J^ = 0) becomes 

da = dp . 

(Recall d{adz) = {da)dz = (dadz + Badz)dz = -{da)dzdz.) Hence i f BS = 0, then 

the one-form S{z)dz w i l l by itself be conserved, and there is hence a conserved current 

for every field in A. Conserved currents should give conserved charges as their integrals 

over spacelike hypersurfaces. When developing an operator formulation of (Euclidean) 
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conformal field theories, i t is most convenient to adopt a radial quantization scheme 
in which the inf ini te past corresponds to some finite position, for example the origin, 
and Euclidean t ime flows outwards f rom that point. I n such a situation a spacelike 
hypersurface is just a contour enclosing the origin, and charges can be defined as 

Qf = f d z f { z ) S ( z ) 

0 

for any analytic / , conserved in that they are independent of the hypersurface, or contour, 

used to define them. For these purely holomorphic currents, this independence is just a 

consequence of Cauchy's theorem. The Virasoro generators (1.16) are the first set of such 

operators; there are many more, though all may be expressed as sums of products of the 

Virasoro generators. I n the next section i t w i l l be shown that some of the 'zero-mode' {ie 

/ = 1) charges survive for certain perturbations. These charges are 

Q = j d z S { z ) , (1.17) 

0 

and i f S has spin s -h 1, the charge has spin s. (To call S{z)dz a one-form is therefore 

slightly questionable, as the integral of a one-form ought to be a scalar, but the meaning 

intended should be clear.) Geometrically, that Q has spin s is easily seen, but i t is helpful 

to see this f r o m another point of view. The spin s of the operator Q is defined by 

[M,Q\ = sQ, 

where M is the generator of Euclidean rotations, M = LQ — LQ. Since S in (1.17) 

is holomorphic, LQ plays no part and, recalling that Lo(0) = l/2m f dw wT{w), the 

commutator is 

-^.(^jdz j d w - j d z j> dw^wT{w)S{z) = - ^ ^ j dz j dwwT{w)S{z) 

0 0 0 0 Q z 
| u . | > | j | |u. |<| . - | 

= j> dz^. j d w { w - z + z)T{w)S{z) 

0 z 

= j>dz{LQ{z)-zL-i{z))S{z) 

0 

= j d z { s + \ - l)S{z) = sQ, 

0 

as required. (The relations Lo{z)S{z) = {s + l)S{z), L-i{z)S{z) = dS{z), true even for 
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non-primary S of dimensions (s - I - 1 , 0), were used.) 

A l l the holomorphic fields so far considered owe their existence to the spin two field 

T{z), and are descendants of the identity operator. The possibility of there being further 

holomorphic fields was in i t ia l ly investigated by Zamolodchikovj^'^ and wi l l be very briefly 

described in the remainder of this section. When such fields are present, the idea of a 

descendant can be extended to encompass terms generated in operator, product expansions 

wi th the extra holomorphic field, and the resulting conformal families are rather larger, 

containing a number of Virasoro families. W i t h respect to the enlarged symmetry algebra 

of these models, there are correspondingly fewer pr imary fields. The simplest possibility 

is for there to be a field w i th dimensions ( 1 , 0), a holomorphic current. This extends the 

Virasoro symmetry to that of a Kac-Moody algebra, and the resulting theories have been 

much studied!^"*^ Beyond this, and more relevant for subsequent sections, there are also 

models w i t h holomorphic fields of spins higher than two, w i t h symmetries described by 

the so-called W-algebras. These turn out to be associated w i t h certain types of coset'^^' 

conformal theories, namely those of the fo rm ^'^^ x g^^^/g^^'^^\ Only the cases wi th g 

simply-laced w i l l be needed below. K g has rank r , and (dual) Coxeter number h, then 

the central charge of such a theory is 

( . hjh + l ) X 
""V (^k + h){k + h+l)J' 

Furthermore, for these models, there is a formula for the conformal dimensions of the 

primary fields w i t h respect to the W-algebra!^^' They are labelled by a pair of representa­

tions of g, w i t h weights p and q, say, of levels less than or equal to k and ^-|-1 respectively. 

The dimension of the corresponding field is then 

A ((A: + / I + l ) p - { k + h)q,ik + h+ l ) p -{k + h)q + 26] 

^ P ^ - {k + h){k + h + \) • ^^•^^> 

The scalar product is in the metric provided by the inverse Cartan matrix, and 6 is the 

sum of the fundamental weights. For more details the original papers should be consulted; 

this formula is reproduced here mainly because i t w i l l be needed below. 

Whatever the extended algebra happens to be, group theory alone allows correlators 

containing descendant fields to be evaluated in terms of those of primary fields alone. A 

theory is said to be minimal i f i t possesses only finitely many primary fields wi th respect 

to the possibly enlarged symmetry algebra. For such a model, exact expressions may be 
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obtained for the pr imary field correlators, and the theory can thus be completely solved. In 
particular, the operator product expansion coeflficients appearing in (1.13) can be found, 
and 'fusion rules' obtained giving the conformal families which appear on the right-hand 
side of the expansion for any given pair of families on the left . The coset theories described 
above are all minimal in this sense. The simplest cases, w i t h g = a\, have no additional 
symmetries over Virasoro and only finitely many Virasoro-primary fields, and were studied 
in the in i t i a l paper of Belavin, Polyakov and Zamoodchikov.'^^^ While attention below wi l l 
first be concentrated on such models, i t w i l l become clear that larger algebras must also 
be considered in order to understand certain features that emerge f rom their study. 

1.4 P e r t u r b i n g a C o n f o r m a l F i e l d T h e o r y 

Equipped w i t h a rather complete understanding of at least some of the fixed points 

of the renormalization group i n two dimensions, i t is natural to explore their immediate 

vicinity. For the study of cri t ical phenomena this is important as an understanding of the 

positions of these fixed points, their basins of attraction and the renormalization group 

flows between them is required. In general these 'non-conformal' field theories are much 

harder to treat, as the integrable structure described above w i l l be lost as soon as the 

fixed point is left . However Zamblodchikov'*^ pointed out that there are some directions 

away f r o m a fixed point for which at least some of the integrals of motion survive, making 

the resulting theories much more tractable. The aim of this section is to describe his 

reasoning, together w i t h a few of its implications. 

A first point to note is that all the work below is done in the context of continuum 

field theory. Thus the continuum limits of lattice models are being described, and the 

results are only directly relevant to lattice models in the scaling region near to the critical 

surface. 

Consider a particular fixed point, corresponding to a conformal field theory wi th 

Hamiltonian Heft, say. The expHcit fo rm of this Hamiltonian w i l l not be needed. A 

nearby point w i l l have a Hamiltonian Heft + '^H\, where A is small and XHi can be 

thought of as a perturbation of the original Hamiltonian. I n particular the perturbation 

might be by one of the scaling fields, in which case 

Hpert = H,ft + X J cl>{z,z)dh (1.19) 

where ^ is a field w i t h dimensions {h, h). The coupling constant A is one of the scaling 
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variables for the fixed point, and has dimensions (1 - h,l — h). For the perturbation 
to influence the long-distance physics, i t should be relevant and so h < I. Note, this is 
consistent w i t h the discussion in the section on the renormalization group, as the scaling 
dimension of (p is 2h, and the dimensionality of space is 2, so the earlier criterion for 
relevance is just 2h < 2. The ultraviolet l imi t of this new theory is the original confor­
mal theory - short-distance physics is not affected by such a perturbation - and so the 
fields i n the theory may be classified, via their short-distance behaviour, into the same 
conformal families as for the unperturbed model. In field theoretic language a relevant 
perturbat ion is super-renormalizable, requiring only a finite number of counterterms to 
remove divergences, and so i t does not change the structure of the space of fields. 

This observation is the basis of the counting argument used by Zamolodchikov to 

establish the persistence of some integrals of motion, for certain perturbations. 

As described in the last section, the integrals of motion for the conformal theory 

are obtained as line integrals of the purely holomorphic or purely antiholomorphic fields. 

Assuming reflection symmetry, no new information comes f rom the antiholomorphic fields, 

so only holomorphic fields (independent of z) wi l l be discussed below. These fields are 

conserved currents, and the line integrals simply generate the corresponding conserved 

charges, acting as operators in the space of states. The algebra of these operators (the 

chiral algebra), by vir tue of the conformal symmetry of the theory, always contains the 

Virasoro algebra, but i t may well be larger. This fact wi l l be important later, though for 

the t ime being i t w i l l be ignored. 

Once the conformal symmetry is broken, the holomorphic fields wi l l usually pick up 

some dependence on f , and so the fine integral (1.17) w i l l depend on the contour chosen -

the charge is no longer conserved. However there is no reason why a conserved current in 

the perturbed model, thought of as a one-form, should only contain the dz component. In 

other words, i f the conserved one-form in the original theory was S{z, z)dz w i th dS = 0, 

this may survive the perturbation as S ( 2 , 2 ) ^ 2 + ^ ( 2 , 2 ) ^ 2 , w i t h BS = dA. I n such a case, 

the combined integral / Sdz -f- Adz is independent of the contour and one can say that 

the conserved charge remains in the perturbed theory. 

Some more notations are needed for the details of Zamolodchikov's argument. Let A 

be the space spanned by the holomorphic fields in the conformal field theory, that is all 

the left descendants of the identity operator wi th respect to the chiral algebra. Then A 

can be decomposed by the spin s which, given that all fields in A are independent of 2 , is 
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the same as spl i t t ing i t into eigenspaces of LQ: 

A = © A 
3=0 

A 

where 

LQAS = sAs ; LQAS = 0. 

The charges obtained f r o m elements of A w i l l not be linearly independent, as some of the 

fields are tota l derivatives. To account for this, these derivatives are divided out yielding 

the factor space A = A/L-iA, also decomposable by spin: 

CO 
A = 0 A , ; LQAS = sAs. (1-20) 

s=Q 

Now let Ss be some field i n A^. I n the perturbed theory, BSg ^ 0. Instead, 

BS, = \R[^2I + ^^R[^\ + ... (1-21) 

where i^^^^. '^ are some other local fields i n the theory, all belonging to the operator subalge-

bra generated by the perturbing field. I f the right hand side of (1.21) is a total 2-derivative, 

then the conserved current has survived the perturbation. I t is possible in some cases to 

find the fields explicitly, but an indirect argument based on dimensions is quicker. 

The couphng constant A has dimensions {\ — h,l~ h) while dSs is (s, 1) - all these dimen­

sions being defined in terms of the short-distance scahng regime where the model looks 

like the original conformal theory. Hence R["^I has dimensions (s — n ( l — / i ) , 1 - n ( l - h)). 

I n a uni tary theory al l dimensions are positive, so the first deduction is that the series 

(1.21) must terminate after a finite number of terms, I — h being positive for a relevant 

perturbation. The classification of all possible scaling dimensions in the conformal theory 

allows rather more to be said. Unless 

l - n ( l - / i ) = A (1.22) 

for some dimension A in the unperturbed theory, must vanish as there is no field 

of suitable dimension in the model. For n = 1, the perturbing field has the correct right-

dimension and one of its descendants w i l l then provide a candidate for R[^1I- I f n > 1 
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then a solution A to (1.22) w i l l be smaller than h, so the field (p^ w i l l be more relevant 
than ^it,. Recalling that must belong to the subalgebra generated by (ph, i t is clear 

that i f cph is the most relevant operator in some operator subalgebra then the only possible 

terms in (1.21) beyond the first order ( n = 1) are descendants of the identity operator, 

for which A = 0. I n fact i f there are other terms than these, counterterms have to be 

added to the Hamil tonian (1.19) proportional to the more relevant field <?Ĵ , destroying the 

in i t i a l assumption of a single perturbing field. This unfortunate possibihty wi l l therefore 

be ignored, as for the t ime being w i l l the chance of a solution to (1.22) for n > 1 and 

A = 0. Hence the expansion (1-21) terminates after a single term: 

dSs = XRs-i, (1.23) 

where Rs-i has dimensions {h + s — l,h). A left descendant of (p wi l l certainly fit the bil l 

on dimensional grounds. However care must be taken before jumping to conclusions, as 

there may be fur ther candidates for Rs~i- When considering minimal theories there are 

frequently other pr imary fields w i t h scaling dimensions diff"ering by integers f rom those 

of the perturbing field, which could equally well contribute to Rs-i for large enough s. 

This fact seems to be linked to the presence of chiral algebras larger than Virasoro, and 

w i l l be discussed in more detail i n a later section. For now i t is enough to know that 

a more careful study shows that i f the field Ss is a Virasoro descendant of the identity 

(rather than a descendant only in some extended algebra) then Rg must indeed be a left 

descendant of (p. This situation wi l l be assumed to start wi th ; for the next two sections, 

only the Virasoro algebra w i l l be involved. The space of left (Virasoro) descendants of (p, 

may be decomposed in the same way as A: 

oo 

$ = 0 < l ' 3 ; LQ^s = {h + s)^s, Lo^s = h^,. (1.24) 
s=0 

Matching dimensions shows that Rg^i 6 ^s-i- Hence B can be thought of as a linear 

operator 

B : As-^ ^s-l 

or, after suitable restriction and projection, 

B : As-- ^s-h (1-25) 

where the factor space l» = ^ / L - i ^ has been introduced. For a conserved current, 
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must be a 2-derivative and so must lie in (recall that L _ i = d) and be zero after 

projection into $ . I n other words, for to be part of a nontrivial conserved current in 

the perturbed theory i t must lie in the kernel of the restricted projected mapping defined 

by (1.25), and conversely whenever this mapping does have a nonzero kernel the existence 

of a conserved current can be inferred w i t h no fur ther elfort. The corresponding conserved 

charge w i l l then have spin s — 1. 

Since 5 is a linear mapping, the kernel w i l l certainly be nonzero i f the dimension of 

the space on the left hand side of (1.25) is greater than that of the space on the right 

(this is Zamolodchikov's counting argument). For the minimal conformal theories, these 

dimensions may be obtained f r o m a simple character formula. The next section describes 

some work that was done to investigate the implications of this. 

1.5 I m p l e m e n t i n g t h e C o u n t i n g A r g u m e n t 

The field content of a conformal theory wi th central charge less than one is completely 

accounted for by finitely many representations of the left and right Virasoro algebras. 

Hence for these theories i t is safe to apply Zamolodchikov's argument wi th the assumption 

that the chiral algebra consists of the Virasoro algebra alone - all the states of a given 

scaling dimension can be counted just by using the Virasoro characters. There may in fact 

be a larger algebra present i n some Virasoro-minimal models, in which case some further 

conserved currents might exist. A signal of a larger algebra is a non-diagonal parti t ion 

function, and i t is important to reahze that to specify a theory more is needed than just the 

central charge - the way in which left and right Virasoro representations are glued together 

to make up the field content must also be known. These issues can be ignored to start 

w i t h . Furthermore, the counting argument only needs information on the spaces of left 

descendants of pr imary fields, and so only the left Virasoro algebra needs consideration. 

Proving the existence of conserved currents then reduces to a 'mathematical' question of 

comparing the degeneracies in various pieces of representations of this single algebra. 

Unitary theories w i t h c < 1 are labelled by an integer m , m = 3 ,4 , . . . , the m}^ theory 

having central charge 

m ( m -I-1) 

For each value of m , the possible unitary representations are indexed by a pair of integers 
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a and b, 1 < a,b < m, their highest weights having LQ eigenvalues 

4m(m -1-1) 

(Note that ab and m — a , m - | - l — 6 i n fact label the same representation.) This formula 

is just the ^ = a i case of (1.18), w i t h k = m — 2. 

The Virasoro character, encoding the number of descendant states at each level {ie 

spin) in the representation wi th highest weight hat, is defined as 

Xa6(?) = E ? ^ d i m ( $ f ) 
s=0 

where is the conformal family w i t h highest weight hab, and "J""* is the spin s sub-

space, as in equation (1-24). The character Xh is usually defined multiplied by an extra 

factor c^~'^l'^^ which gives i t nice properties under modular transformations (and can be 

physically motivated by considering the conformal theory on a torus). Purely as a 'math­

ematical' device to count dimensions, though, the definition without this factor is more 

convenient. For the uni tary representations, the characters are given by 

Xa6(g) = g- ' ' " ' 11(1 - g ' ) - i {q'''""^'- '' - g^'""^"-'). (1.27) 
Z=l k=~o& 

The real interest is in the factor space < i > / I _ i $ . The states 'removed' f rom $ 3 by this 

factoring are precisely the elements of L-i^s-i, so the appropriate generating function 

for these dimensionalities is in fact 

Xhil) = E 9 ' d i m ( d . ) = (1 - q)xh(q) . (1-28) 
3=0 

The chiral algebra is (for now) just Virasoro, so A = the conformal family of the 

identi ty operator / . I n this case alone, there is a slight modification to (1.28) as L-iI = 0 

and d i m ( $ } ^ ) = 0 even before going to the factor space. This is easily taken into account: 

Ui) = {^-i)xoiq) + q- (1-29) 

Armed w i t h (1.28) and (1.29), (and a computer algebra program) i t is now straight­

forward to search for conserved currents in various perturbations of minimal models. As 
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explained i n the last section, the perturbing field c/)ab should be relevant [hat < I), and 
furthermore i t should be the most relevant field, at least in some subalgebra of the oper­
ator product algebra. This focuses attention on perturbations by the operators 022 (the 
most relevant of a l l ) , 4>i2, ^12 and <p2i-

Using R E D U C E , the polynomials 

Xabiq) - r^xo(g) 

were evaluated up to order 35, for m = 3 . . . 12. Appendix 1 gives the relevant REDUCE 

programs. A term appearing wi th a negative coefficient shows that the counting argu­

ment has 'worked', signalling the presence of a conserved quantity of spin s. The pattern 

found was that in all but two 'exceptional' cases any negative coeflBcients died out long 

before spins as high as 35 were encountered, so i t is reasonably safe that nothing was 

missed by the l imi ta t ion on the order. The fact that the counting argument fails to show 

conserved currents of high spin does not of course rule them out, the comparison of di­

mensions in (1.25) giving a sufficient but not necessary condition for B to have a nontrivial 

kernel. 

For what i t was wor th , all possible perturbing fields, relevant and irrelevant, were 

considered. Table 1 records the outcome, showing only cases where signs of a conserved 

current of spin greater than one were discovered and ordering these cases by increasing 

dimension of the per turbing field. Note, for any perturbing field the resulting theory is 

translation invariant and so there w i l l always be a conserved, spin one, charge correspond­

ing to momentum - the hint of integrability lies in any fur ther conserved charges beyond 

this. 

1.6 G e n e r a l D i s c u s s i o n o f t h e Resu l t s 

To start w i t h the relevant perturbations {hab < 1) w i l l be addressed. The first point to 

note is that of all the possible relevant perturbations only those by (;/ii3, (/>i2 and <p2i show 

any sign of preserving some higher spin integrals of motion. Before proceeding further, a 

check should be made to ensure that even these are not destroyed by solutions to (1.22) 

w i t h n > 1 and A = 0. The condition for there to be a solution here is just that I - h 

should be an inverse integer; for the m*'' minimal theory (1.26) gives that 

2 3(m + 2) 3 ( m - l ) 

171 +1 4 ( m - | - l ) 4m 
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Hence there is never any danger for (pi2, and for (p2i there is only potential for trouble 
when m = 3, for which case (p2i = (pu. For (pu, the condition (1.22) is met whenever 
m is odd, in such cases there being the possibility of a term of order A''"'^^^''^ in (1.21). 
However as Zamolodchikov pointed out,'^' this does not spoil the conclusions of the counting 
argument which (see the table) predicts conserved charges of spin 1, 3, .5 and 7 for the (pi^ 
perturbation, at least for m > 5. (The one remaining case to worry about, m = 3, wi l l 
receive a mention below.) The possible extra term, must belong to 

A a - i , 5 — 1 being the spin of the potential conserved charge. The character formula (1.29) 

can be used to show that for s — 1 = 1,3,5,7, d i m ( A 3 _ i ) = 0. Thus the extra term is 

a to ta l 2 derivative and the conserved charge survives, although wi th an extra piece of 

order A ( "^+^ ' / ^ over what might have been expected. 

Finally to the case of the ^13 perturbation of the m = 3, c = ^ model, for which 

the counting argument predicts a wealth of conserved charges (see table 1). This is a 

thermal perturbation of the Ising model described in the introductory section, or more 

precisely (given that the discussion has all along been in the context of continuum field 

theory) to taking the continuum l imi t of the theory (1.3) w i t h zero external magnetic 

field but in i t ia l ly non-critical temperature. This is known to be a theory of a free massive 

Majorana fermion, and conserved charges of all odd spins can be explicitly constructed 

starting f rom fermion bilinears!'' 

Beyond m = 4 the pattern of conserved charges predicted by the characters settles 

down, w i t h spins 1,5, 7,11 for ^12 and cpoi, and 1,3,5, 7 for ^13. This is not unexpected!^' 

The structure of a conformal family $ is influenced by the presence of null states -

descendant states which are 'unexpectedly' zero owing to a linear dependence between 

the descendant states at that level. For the unitary representations there are in 

fact two independent nul l states {ie neither occurs as a descendant of the other), found 

at levels ab and ( m - a ) ( m + 1 - b) (note that this reflects the degeneracy in labelling 

mentioned after (1.26)). These null states control the characters, dim(<E>f') being smaller 

than expected for all s larger than or equal to the level of the null state. Indeed, in 

(1.27) the product part gives the correct counting of states i f a//descendant states at each 

level are independent; the other factor corrects this for the influence of the null states. 

I t is not too hard to check directly that the first two correction terms in (1.27) are 

and q{m-a)(m+l-b)^ consistent w i th the levels of the two independent null states. This 

is important as i t means that Xab^ the character Xab for the m}^ theory, is independent 

of m up to order ( m - a)(7n -|- 1 - 6). For m larger than 4, all the predicted conserved 
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charges for the (/>i3, (pi2 and (̂ 21 perturbations he below this level and hence do not owe 
their existence to the particular value of m . (Note, this also explains why the patterns 
of spins for 4>ab and (f>ba perturbations often coincide, as the first correction term in the 
character formula is in both cases.) 

The reader might now question the need for the R E D U C E computations at all, apart 

perhaps f rom a single 'universal' calculation of the m-independent characters obtained by 

disregarding all but the first correction term in (1.27). To answer this a couple of points 

can be made. First , the extra degeneracy caused by the second null state increases the 

chance that the comparison of dimensions in (1.25) wi l l be favourable, so i t is possible that 

there are some extra successes of the counting argument lurking at or above the level of this 

state; indeed, this is what happens for m = 3 and m = 4 although not, as i t turns out, for 

any higher values of m (at least up to m = 12, and the chances of anything happening get 

progressively smaller as m increases). Second, all possible perturbations were examined, 

and so the main, i f somewhat negative, result of the computer investigation is that already 

mentioned at the beginning of this section - there are no signs of integrability in any 

relevant perturbations apart f r o m those by ^13, (f)i2 and 021-

The implications, i f any, of the results i n table 1 for irrelevant perturbations are un­

clear. The vaUdity of the counting argument depends on the perturbation leaving the 

structure of the space of states unchanged, and this is certainly not true of an irrelevant 

perturbation which radically changes the short-distance properties of the theory (in con­

trast to a relevant perturbation which is felt in the behaviour of long-distance degrees of 

freedom). Perhaps the only 'physical' remark that can be made is that there may in fact 

be some sense in the idea that the 3̂1 perturbation has conserved charges of spins 1,3, 5 

and 7, and i t is worth pausing briefly to explain why. 

I n his in i t i a l study of perturbations of conformal field theories|^^' Zamolodchikov was 

able to show that , at least for large m , the <piz perturbation of the m*'' minimal theory 

w i t h A > 0 generates a renormalization group trajectory which terminates at the (m-1)* '* 

theory. Thus the perturbed theory has ultraviolet and infrared asymptotics governed by 

two neighbouring minimal conformal field theories, while at intermediate scales there 

are also massive excitations i n the model. The renormalization group flow stays on the 

crit ical surface jo in ing two fixed points, and the continuum theory is an example of the 

non-conformal field theories w i t h zero mass gap mentioned at the end of the discussion 

of the renormalization group. This picture is expected to hold true all the way down to 

m = 4. Zamolodchikov was also able to show that along this t rajectory the operator (̂ 13 
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i n the in i t ia l (short-distance) minimal model flows to the operator 3̂1 in the (m - 1)*'' 
min ima l model ly ing at the far end of the trajectory. Thus in this case sense can possibly 
be made of the (pzi per turbat ion, though not f rom wi th in a perturbative treatment based 
on the unperturbed model. Rather, the perturbed theory has a field structure different 
f r o m the unperturbed model, being tha t of the minimal theory one place higher. A n 
at tempt to i l lustrate this idea is given below. 

Hence the ^31 per turba t ion of the m*' ' model is expected to have the same set of con­

served charges as the (pi^ per turbat ion of the (m-l-1)*'* model, as the two perturbed theories 

are i n fact identical. Thus conserved charges of spins 1, 3, 5 and 7 might indeed be found. 

However, there seems to be no direct l i nk between this fact and the success of the counting 

argument. These successes are better explained, at least for m > 5, by the remark above 

tha t the pat tern of spins for (p^b and (pba perturbations often coincide, merely because 

their respective characters are equal up to a suitably high order - a 'mathematical' fact 

w i t h no obvious physical impor t . For the record, the successes of the 3̂1 perturbation of 

the m = 4 model occurred at spins 1, 3, 5, 7^, 9,11^, 13^, I52,173,194^ 21^, 23^ 25"̂ , 27^, 29^ 

and 31^ (superscripts indicate spins for which the difference of dimensions was greater 

than one). The characters were evaluated up to order 45 here, wi thout finding any more 

cases. 

L i t t l e can be said about the (pi^ and 1̂ 51 perturbations. Once there has been a success 

fo r 5 = 5 i n the m = 6 theory, this must persist for the same reasons of character structure 

cJready described. 

Finally re turning to the relevant perturbations, i t is worth stressing that a 'failure' 

of the counting argument at a certain spin does not forbid the existence of a conserved 

charge of that spin, and fo r high spins the characters behave in such a way that the 

counting is bound to be too crude to see any charges. Z a m o l o d c h i k o v h a s conjectured 

the general pat tern tha t the (piz perturbat ion preserves conserved charges of all odd spins, 

while conserved charges w i t h all spins having no common divisor w i t h 6 survive the (pi2 

and (p2i perturbations. For small m this breaks down somewhat, as can be seen f rom 



Perturbations of Conformal Field Theories 28 

135] table 1. Some light is shed on the early discrepancies when the coset constructions 

of these theories are considered, together with the hints of extended algebras at work in 

them. This will be the subject of the next two sections. 

1.7 The Role of Lie Algebras 

As background to the considerations of this section, it is worth going back to Zamolod-

chikov's original motivations.'̂ ' While the Ising model with zero external field (1.1) has 

long been solved at arbitrary temperature, the exact evaluation of quantities in the large-

lattice limit once an external magnetic field is introduced is a famous unsolved problem. 

The introduction of a magnetic field, even at T = Tc, shifts the Ising model away from 

the critical surface, so it has a finite correlation length in lattice units for any nonzero 

value of h in (1.2). A step towards solving the lattice problem would be to understand its 

continuum limit, in other words the massive field theory that results as a suitable limit 

of Ising models with smaller and smaller external magnetic fields, viewed at successively 

larger scales in lattice units. Such an understanding would give information on the long­

distance properties of the lattice model when h is small. This is precisely the situation 

in which the techniques of perturbed conformal field theory described above should be 

useful. The m = 3, c = | minimal model is the continuum limit of the Ising model at 

T = Tc, h = 0 and perturbing by <pi2 and ^12 allows the neighbourhood of this fixed point 

to be explored. As touched on earher, the (pi^ perturbation corresponds to a shift in the 

temperature, the field ^13 being the continuum limit of the interaction term e,- defined in 

(1.9) (for this reason ^13 is usually called the energy operator when m = 3, and written e). 

The field ^12 corresponds to ^'^^ in (1.9), ie to the order parameter a (indeed, (pui^,^) 

is usually written as cr(z, 2) here). Hence taking <p = 4>12 in (1.19) (with Heft the m = 3 

conformal field theory) should give the continuum limit of (1.2) at T = Tc- Note, from the 

point of view of the continuum field theory h in (1.2) is the 'bare' value of the magnetic 

field while A in (1.19) corresponds to the renormalized or 'physical' quantity. 

Continuum limits in which h and T — Tc simultaneously tend to zero could also be 

taken; these correspond to perturbing the conformal theory with a and e simultaneously, 

so that (1.19) would have two perturbing terms on the right hand side. However signs of 

a nice integrable structure have only been seen in perturbations by a single scaling field, 

and the more general problem will not be discussed below. 

A glance at table 1 shows that the magnetic perturbation of the Ising model might 
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indeed be integrable, the counting argument showing that there are conserved charges 
of spins 1,7,11,13,17 and 19. This is slightly fewer than would be expected from the 
general pattern for ^12 perturbations - the spin 5 charge is missing, an example of the 
'exceptional' nature of the first few theories. Nevertheless Zamolodchikov conjectured that 
here also there is an infinite sequence of conserved charges only the first few members of 
which are spotted by the counting argument. Rather than having all spins that have no . 
common divisor with 6, the simplest rule that fits the data of table 1 is that the spins 
should have no common divisor with 30. 

Zamolodchikov went on to use this information to make a conjecture for the scattering 

theory of the Minkowski version of the massive perturbed theory. More information on 

these ideas will be given in subsequent chapters, but the relevant facts for now are that 

the theory comprised eight massive particles, their masses being related to the Cartan 

matrix of the rank eight Lie algebra Es. Add to this the facts that the proposed set 

of conserved spins makes up precisely the exponents* of Es repeated modulo 30 (the 

Coxeter number of E&) and that the c = ^ conformal field theory can be obtained from 

the coset Cĝ ' x eg'̂ '/cg^^ and there are strong hints of a deep connection between this 

perturbed theory and Eg, though at the time there was no explanation for this. 

Zamolodchikov also stated that similar hints of Lie algebra structure emerged from 

study of the ^12 perturbations of the m = 4 and m = 6 conformal field theories, involving 

the algebras E7 and EQ respectively. Table 4 (taken from [38]) lists a selection of coset 

constructions for c < 1 (for current purposes it seems to be cosets of the form 5̂ ^̂  x 

that are important, so only these are shown). Consider first the m = 4 

theory. This does indeed have an ej coset construction, and table 1 shows that the (̂ 12 

perturbation has conserved charges of spins 1,5,7,9,11 and 13, consistent with the £̂ 7 

exponents shown in table 3. 

There are a number of problems when going beyond this case. The m = 6 theorj' does 

have an CQ coset construction, but the conserved charges found for the <l)i2 perturbation 

do not include spins 4 and 8, while these are exponents of EQ. Similarly, one might expect 

to find evidence of A2 in the (/>i2-perturbed m = 5 model, given the /a^2^ coset 

for the unperturbed theory shown in table 4. The A2 exponents are 1, 2, 4, 5, 7,... while 

the only spins seen in table 1 for this particular perturbed model are 1,5,7,11. Thus 

spins 2,4,... are missing. One explanation might be that they were simply missed by the 

• The exponents of the simple L ie algebras are listed in table 3. They are one less than the orders of 

the independent Casimir operators. 
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counting argument, but it is possible to show, using the explicit formula for the d operator 
to be given below, that there is for example no spin 3 descendant of the indentity (as would 
give a conserved charge of spin 2) that remains conserved after the /̂>i2 perturbation of 
the m = 5 model. 

These two puzzles have related resolutions, and the A2 case will be discussed first. 

One aspect of a more general understanding of the Lie algebra connection would be to 

understand why the particular perturbation ^12 should be important. As mentioned in 

the review of conformal field theory, a coset of the form g^^^ x g^^"*/g^^"^^^ is thought to be 

associated with a particular extension of the Virasoro algebra, the Wg algebra, the primary 

fields with respect to this extended algebra being indexed by a pair of representations 

(7),?) of the Lie algebra, their conformal weights being given by (1.18). It is naturcd 

to ask how the perturbing field looks in terms of this alternative classification of fields 

provided by the extended algebra. The finding is that for m = 3,4 and 6, the pair of 

representations (0,adj) (of Es, Ej and EQ respectively) corresponds to the primary field 

of conformal weight /112, ie to (f)i2. (Here 0 refers to the trivial representation, and adj to 

the adjoint.) Furthermore (1.18) used for g = a\ (the 'pure Virasoro' case) with the same 

pair of representations gives the field (/113, and the conjectured conserved spins for the (̂ 13 

perturbation of a minimal theory are the odd integers. The exponent of A\ (1) repeated 

modulo the Coxeter number (2) gives precisely the odd integers. Now to return to j42-
The formula (1.18) used with the pair of A2 representations (0, adj) gives a conformal 

weight / i = | , which is not the conformal weight of 4>\2. Rather it is equal to /121, and 

so a possible resolution of the A2 puzzle is that the 'correct' perturbation to consider is 

not by 4)12 at all, but by (t)2\. This is the case, although there is one further subtlety. 

Table 1 shows that the ^21 perturbation also misses the spin 2 and spin 4 conserved 

charges. However earlier work by Zamolodchikov'̂ *' (before the study of the Ising model 

had given hints of Lie algebra structure) had been on exactly this perturbation of the 

m = 5 model. He discovered that in addition to the conserved charges sitting in the 

conformal family of the identity, there were charges which survived the (̂ 21 perturbation 

in the extended algebra of the model, the Wa^^ (or Wz) algebra generated by the spin 3 

field ^15. ExpUcitly exhibited were conserved charges of spins 2 and 4, exactly the spins 

missing from table 1. 

Thus a tentative (though very natural-looking) hypothesis can be made that a Lie 

algebra structure - in particular, conserved charges at spins given by the relevant set of 

exponents - will emerge in the perturbation of any x g^^^/g^^'^^^ coset by the primary 
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field labelled by the pair of G representations (0, adj). Further support for this will come 
from the m = 6 theory, but rather than look at this directly the discussion will now 
be widened slightly to describe some work that was done to look at possible extended 
algebras in general. 

1.8 The Role of Extended Algebras 

Whenever there are holomorphic fields in a conformal field theory in addition to those 

provided by the Virasoro algebra acting on the identity, there are further candidates for 

conserved quantities when that theory is perturbed. There is also a need to be careful 

when drawing conclusions from comparisons of dimensions, as discussed in the paragraph 

following (1.23), arising from the presence of Virasoro primary fields with dimensions 

differing by integers. The reason for this is that the field content of the theory can now be 

arranged into representations of the higher algebra generated by the extra holomorphic 

fields. Within any given representation of this extended algebra there will usually be a 

number of Virasoro representations, one of which will be the primary field with respect 

to the full algebra, the others being descendants of this field. The scaling dimension of 

a descendant field, even with respect to an enlarged algebra, always differs by an integer 

from its primary, so these other Virasoro-primary fields will always have dimensions an 

integer away from that of the 'full ' primary field, highest-weight for the full extended 

algebra. 

An extended algebra can be used to generate a modular invariant partition function, 

simply by taking the diagonal combination of characters of the extended algebra. When 

expanded out into Virasoro characters, this will of course be non-diagonal. Conversely, 

given a non-diagonal combination of Virasoro characters one can look to 'explain' this by 

finding an extended algebra. This can be illustrated within the minimal series, for which 

there exists the famous 'ADE' classification of all possible modular invariant partition 

functions!*"' In terms of Virasoro characters Xh> write the partition function as 

Z{q,q) = J^Nt,j,Xh{q)Xh{q) 

h.h 

Taking N^j^ = 6f^ /- always gives a modular invariant Z, but for m > 5 there's always at 

least one further possibility. The diagonal sum corresponds to the A series of Lie algebras, 

the extra option present for all m > 5 is associated with the D series, and there are three 
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further ('exceptional') pairs of solutions, for EQ, E-J and E%. Thus for m = 5, the grid of 
dimensions of Virasoro primary fields (calculated using (1-26)) is: 

3 ¥ § i 0 
1 21 J . i 2 
5 40 15 40 5 
2 _L J_ 21 7 
5 40 15 40 5 

0 i § ¥ 3 

and in addition to the diagonal sum, Z can also be 

Z = \XQ + XZ? + IXf + XI? + 2|x2|^ + 2 |x^|^ (1.30) 

Note that this is a different physical theory to the one with Virasoro-diagonal partition 

function. In particular, some scaling dimensions of that theory are missing completely 

here (for example, there is no X - l ) the corresponding Virasoro primaries appearing neither 

as primary nor secondary fields with respect to the larger algebra. The extended algebra 

in this case is the above-mentioned VF3 algebra, one of the first higher-spin algebras to be 

studied.'̂ '̂ I t is generated by the spin 3 field 4>i^, and this field appears in the partition 

function in the same term as the identity, as would be expected if (1.30) were indeed the 

diagonal combination of extended characters. The BPZ fusion rules'"' for minimal theories 

give that <6i5 x = <pa,6-b, so it is easy to check that this interpretation holds good 

for the other terms, the Virasoro primary field corresponding to the first character (that 

of lowest dimension) in each term being the fuU primary, and the rest descendants with 

respect to W^. Note that the dimensions appearing in a given term do differ by integers, 

as has to be not only because of the extended algebra but also to ensure invariance under 

the T modular transformation, q —> e^'^'q. 

The picture obtained here persists for higher m, although only in the cases m = 5 

and m = 6 are the algebras involved at all studied. For the m''* theory, (1.26) shows that 

him = ^{m - l)(m - 2). 

Thus for m = 1 or 2 modulo 4, him € Z, and in general him 6 ^Z- Now one further fact 

about the ADE partition functions must be quoted: the partition functions associated 

with Devem EQ and ^8 can all be written as a ('diagonal') sum of the squared moduli of 

a linear combination of Virasoro characters, while the others (apart- of course from the A 
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series) can not. The above example fits this pattern, (1.30) being one of the two partition 
functions connected with Z?4 (the other is the alternative m = 6 partition function). In 
general, the algebra Z)„ labels partition functions for minimal theories with m = 2n - 2 
and m = 2n —3. Thus the Deven theories, with 'diagonal' partition functions, are precisely 
those for which him is an integer. The speculation that the Deven partition functions are 
explained by some algebra generated by 0im is further supported by the facts that (j>irn 
and the identity form a closed operator algebra, and that the Deven partition functions 
start with a term |xo + Xlm|^- (One might speculate further that the non-diagonal nature 
of the Dodd partition functions is connected with the algebra responsible in these cases 
being again generated by ^ im, which now has half integer spin, so that the diagonal sum 
would fail to respect T invariance.) 

There is certainly evidence for some larger algebra based on the field (pim, holomorphic 

for m = 1 or 2 modulo 4, and so it seemed worthwhile to investigate the general question 

as to whether these fields lead to additional conserved charges on perturbation. 

Since a given field may belong to different left and right Virasoro representations in 

the theories with alternative partition functions, more care than has been used up to 

now will be taken in specifying both left and right transformation properties of any fields 

considered. The general idea is to look at fields in x and in particular left 

Virasoro descendants of the 'Virasoro x Virasoro-bar' primary field. Note that such a 

primary field, with dimensions (/iim ,0), is present in the theory with D-type partition 

function, though not in the ^-type. For convenience, set him = n, an integer for the 

theories under consideration. A level-fc descendant will have dimensions {n + k, 0), so it is 

certainly holomorphic. The space of left descendants will be written simply as the 

transformation properties of such fields with respect to the right hand ('barred') Virasoro 

algebra being simply that of the identity operator. This space may be decomposed by the 

level, exactly as in (1.24). In this case though the level is not equal to the spin, as even 

the level zero field has spin n. Thus if has spin 5, it lies in Aping the earUer 

discussion, the question now is whether this field remains part of some conserved current 

after perturbation, and to answer it BSs should be calculated in the perturbed theory. As 

before, 

BSs = XRs-i. (1-31) 

(The possibility of higher order terms will be ignored.) The earlier discussion assumed 

Ra-i G the conformal family of the perturbing field (f)^^. Here this turns out not 



Perturbations of Conformal Field Theories 34 

to be the case, so a more careful derivation is required. On the basis of a 'perturbative' 
evaluation of correlators in the perturbed theory in terms of those in the conformal theory, 
Zamolodchikov'*' was able to show that the first order contribution to dSs (appUcable in 
both (1.23) and (1.31)) is given by 

dS,{z, f ) = A y ci>ab{C, ^)Ss{z)^.. (1.32) 
z 

The right hand side of this equation is understood to be evaluated using the operator 

product expansion in the original conformal theory. The small contour about z closes 

owing to the relative locality of the fields 5^(2) and 4>ab{z>^) in the (modular invariant) 

conformal theory. 

Equation (1.32) can be used to obtain a further 'selection rule' on the possibiUties for 

Rs-i, in addition to the comparison of dimensions already used. The BPZ fusion rules 

give the conformal families to which fields appearing in the operator product expansion 

of 5s and must belong, and only such fields will contribute to right hand side of 

(1.32). The simplest case justifies the assumptions made in an earUer section: if Sg is 

in the conformal family of the identity then the fusion rule 4>ii x ^̂ fe = (pab is enough 

to prove that R3-1 must belong to as claimed. (Being more careful about left and 

right algebras, Rs-i G x <S>"̂, the right hand algebra going through equally trivially.) 

Slightly more compUcated is the case under current consideration, namely Sg € (or, 

more pedantically, S3 G x The relevant fusion rule here is ^i,„ x ({>ab = <;̂ o.m-i-i-6 

and hence 

Rs-i e x ¥"^ (1.33) 

Now this rule can be 'intersected' with the comparison of dimensions argument. As before, 

the left hand side of (1.31) has dimensions (s, 1), A has dimensions (1 - h^b, 1 - hab) and so 

R3-1 must have dimensions {s — l + hab, hab)- The available dimensions for left descendants 

in ^a,m+i-b ^ 3̂ j.g {ha,m+l-b + hab), where A; 6 Z is the level of the descendant. 

Comparing dimensions, the requirement is /: = s - 1 -f /ia6 - hajn+\-h- Note that it is not a 

priori obvious that k so defined will be an integer; however this is ensured by the fact that 

the pair of conformal families on the right hand side of (1.33) appears in the -Deuen-type 

partition functions under consideration, and modular invariance under T requires that 

left and right conformal dimensions must differ by an integer; hence, hab - h 

indeed an integer. (Alternatively, it is easy to check that hab - ha,m+l-b is an integer if 
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(and only if) m is equal to 1 or 2 modulo 4, as is being assumed.) Recalling the remark 
that spin and level differ by n = him in it is clear that d defines a mapping 

d : _> ^a.m+l-b 
3 — n 3—li-hab — ha.m + l-b' 

Total z derivatives may be discarded on left and right by restriction and projection, and 

the counting argument then gives a non-zero kernel for B and a conserved charge of spin 

s whenever 

d im(^: r , : ;_ t ,„^ ,_J - dim($lTi_J (1.34) 

is negative. (Note, in (1.34) s has been substituted for s — 1 so as to be equal to the spin 

of the conserved charge rather than the spin of the current 5.) 

Thus the relevant character calculation is to look for negative coefficients in 

^h„,n,+i-b-h„i~ 
H Xa,m+l-b 1 Aim-

The details of the REDUCE calculation are given in appendix 1; again, all possible per­

turbing fields were examined. The successful results for m = 5,6,9,10,13 and 14 are 

recorded in table 2. Somewhat disappointingly, only two cases were found, one for m = 5 

and one for m = 6 (the irrelevant perturbation for m = 5 will be ignored). In retrospect 

this is not too surprising, and one certainly shouldn't expect any more successes of the 

counting argument for higher values of m. The reason is the discrepancy of the levels 

involved in the comparison (1.34), which gets worse as m is increased, in contrast to the 

earher situation (see equation (1.25)) where the levels involved always differed only by 

one. The extreme growth in the number of states at higher levels means that this fact 

quickly swamps any other effects that may occur. As before, this failure does not rule out 

the existence of further conserved currents, here associated with the (j>im field, but more 

powerful methods will have to be developed to answer this question. 

Returning to the successes of table 2, the first case is just the A2 related perturbation 

of the m = 5 theory already described, and the charges at spins 2,4 and 8 fill out the 

first few terms previously missing from the A2 exponents. The second, at m = 6, is the 

(0,adj) perturbation of the e^^ x Cĝ '/̂ Ĝ ^ coset, and the observed spins of 4 and 8 are 

indeed those required to complete the set of EQ exponents. 
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1.9 Discussion and Conclusions 

The most specific claim that can be made on the basis of the above results is that a 

perturbation of the g^^^ x g^^^/g^^^ coset conformal field theory by the field labelled by the 

pair of G representations (0, adj) yields, at least for simply-laced G, an integrable field 

theory with conserved currents at spins given by the exponents of G, repeated modulo 

the Coxeter number. 

However all the evidence that has been gathered is essentially circumstantial, and 

gives no real understanding of why the claim should be true. One direction to look in 

this context is that of affine and non-affine Toda field theory, and this will be mentioned 

in a later chapter. Alternatively, there might be hope to find more insight purely within 

the ideas of conformal field theory. Here, the extended algebras should play a more 

central part. It has already been mentioned that for any Lie algebra G, the coset models 

^(1) X g^''^/g'^'^'^^^ form a sequence (a 'discrete series') connected with the extended algebra 

Wg. The k oo limit of such a sequence is just the g^^^ WZW model, within which the 

W algebra appears as the algebra generated by the Casimirs in the basic currents. For k 

suflaciently large, the coset model will still possess extra holomorphic primary fields of the 

same spins, generating the W algebraf̂ '̂*̂ ^ The orders of the Casimirs, giving the spins of 

the PF-currents (the basic currents being of course spin one), are just one greater than the 

exponents so any charges obtained from these currents would have spins at the exponents 

of G. Thus it is tempting to conjecture that the currents which survive perturbation are 

those generating the W algebra, although I know of no proof of this. One further point 

needs to be made in this connection: for k small the VK-algebra structure is certainly 

'hidden' - for example, in the m = 3 theory there are no integer spin primary fields, while 

one of spin eight might be expected on the basis of the Eg coset. However for current 

needs the traditional definition of a VK-algebra in terms of primary fields seems unduly 

restrictive, and it is quite possible that vestiges of the Wg^ algebra might be found within 

the conformal family of the identity for m = 3. Indeed this seems plausible given that the 

exponents of Es were 'derived' from a suitable comparison of m = 3 Virasoro characters. 

More ambitiously, one might hope that a productive way to study these extended algebras 

in conformal theories in general might be to take an indirect route and look at the suitable 

perturbation first, a process that seems to freeze out symmetries of the conformal theory 

not directly related to the particular Lie algebra under discussion. 

One might ask about cosets with values of k greater than one. Looking at table 4, 
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there is only one case with c < 1, namely the m = 11 eĝ ^ x Cĝ V̂ Ŝ ^ theory. The pair 
of Eg representations (0, adj) labels the h = primary field ^45 and so a conjecture 
can be made that perturbation by this field would give conserved charges at the Eg 
exponents. This would be especially interesting as it would be the first perturbing field 
outside the set ^12, 4>2i and (/>i3 seen to preserve some of the integrability of the minimal 
models. However little conclusive can be said on this point. Certainly the counting 
argument within the conformal family of the identity doesn't help, as otherwise the ^45 
perturbation would appear in table 1 for m = 11. There is however a potential extra 
holomorphic field in the conformal grid, (/117 of conformal weight eight. Evidence from the 
coset construction, including the fact that this coset corresponds to an E-type modular 
invariant partition functions (in fact, one of the two associated with EQ^^^^ ), can be used 
to support the idea that this field is part of an extended algebra, even though it is not one 
of the 4>im fields connected with the D partition functions discussed in the last section. 
If this was preserved after perturbation, it would indeed give a charge of suitable spin for 
an £'8 exponent. Repeating the operator product expansion and dimension comparison 
arguments demonstrates that B(l>i7 must be a descendant of the perturbing field at level 
7, but there are far too many states here to know by counting alone that this field is a 
total 2-derivative. 

Finally, to the possible physical impUcations of these results for the perturbed theories. 

The key question here is the ultimate destination of the renormaUzation group trajectory. 

If it remains on the critical surface and hits another fixed point there, the long-distance be­

haviour will again be a conformal field theory (with smaller central cha rge) . Otherwise 

it will develop a finite correlation length and questions can be asked about the resulting 

massive field theory, as Zamolodchikov did in the case of the magnetic perturbation of the 

Ising model. The difficulty here is that the original theory provides only short-distance 

information after perturbation, while objects such as S-matrices that might be of interest 

in the massive theory are only seen in the long-distance asymptotics. Zamolodchikov was 

able to show that an important aid to gluing together short and long distance behaviour 

is provided by the conserved charges, which will of course be respected by the S-matrix 

of the massive theory, even though they were derived purely from short-distance confor­

mal field theory considerations. (One way of seeing the truth of this is to note that the 

expansion (1.21) terminated at finite order and hence could be evaluated exactly.) 

This motivates a general study of S-matrices which conserve higher spin charges, and 
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this will be the main subject of the rest of this thesis. Such S-matrices, as has been 
known for some time, should be exactly soluble. The next chapter is a review of the 
general technology involved in their study. 
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Chapter 2 

Exact S-Matrices 

2.1 Introduction 

The theories seen up to this point have all been formulated in Euclidean space and 

studied via their correlation functions. For massless theories in two dimensions this is 

the only satisfactory approach known, but once a theory has been perturbed in such a 

way that a non-zero mass gap develops it becomes legitimate to ask questions of the 

Wick-rotated theory living in Minkowski space, and to study the S-matrix of the model. 

As the S-matrix deals with long-distance asymptotics of the model, this approach reveals 

interesting features not previously visible. For most of the rest of this thesis the emphasis 

will be on massive quantum field theories in Minkowski space. 

The general S-matrix is a very complicated object, even in 1-f-l dimensions. A two-

particle scattering process at sufficiently high energy will produce a plethora of outgoing 

particles, and the analytic structure of the S-matrix will be exceedingly complicated, a 

situation which only gets worse as more incoming particles are allowed. It is a remarkable 

fact that for some 1-f-l dimensional theories, an exact expression for the multiparticle 

S-matrix can be postulated. These are the theories with so-called exact, or factorized, 

S-matrices (the reason for the latter terminology will be seen below). The key property 

shared by all such theories appears to be their integrability, in the sense that they all 

possess, in addition to the momentum of spin one, infinitely many conserved charges 

of higher spin. This was exactly the feature observed in the perturbed conformal theories 

of the previous chapter. 

The emphasis of the following sections will be on the role of the conserved charges in 

ensuring the factorizability of the S-matrix, and on the various consistency requirements 

that should be imposed. 
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2.2 Conserved Charges in 1-1-1 Dimensions 

A theory with N types of particle will be assumed, labelled AI,...AN. For later 

convenience, define a charge conjugation operation on the labels so that the antiparticle 

of Ai is Ai (and if Ai is neutral, i = i). Any internal quantum numbers are incorporated 

into the particle label, so all that remains to characterize an asymptotic one particle state 

is to specify its two-momentum pa, satisfying 

ip'a)' = ipD' - {ia? = ml (2.1) 

where nia is the mass of particle type Aa- Multiparticle asymptotic states will be written 

as 

\MPl),Ai2iP2),---)in,out^ (2-2) 

and may be taken to be simultaneous eigenstates of all the (commuting) conserved charges. 

A slight smearing of each momentum results in a collection of wave packets; given that 

the theory is massive all interactions are short range, and so long as the particles are well 

separated the multiparticle state behaves as a superposition of one-particle states, each 

moving freely. 

The form of Lorentz transformations in 1-1-1 dimensions permits a very simple char­

acterization of higher spin conserved quantities. Writing the momentum of a particle in 

terms of its rapidity 6, 

pi^ = 7na(cosh^a)Sinh^a)-

Lorentz covariance implies that a charge Pg of spin s acts on a one particle eigenstate as 

Ps\Me))=jie-^'lAi{9)), 

where 7] is a scalar depending only on the spin s and the particle type i. Since we can 

always deal with locaUzed, separated wave packets and the charges are all integrals of 

local conserved currents (this is certainly true of the charges defined in the last chapter), 

Ps acts additively on multiparticle states: 

Ps\AiM,AiM, •••) = ( 7 ^ ^ ' ' + + •••)\Ai,{di),AiM. •••)• (2.3) 

The simplest example, found in all translationally invariant theories, is of course the 
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momentum operator P^. The light-cone components are 

Pi = P^ + P^ , P-i = P^-P\ 

and 

Hence 

Pi \AaiO)) = rriae^\Aa{e)) 

7f = 7 ° , = ma. (2.4) 

(Note that in 1-1-1 dimensions the Lorentz group acts independently on left and right 

light-cone coordinates enabling conserved quantities at each spin to be spht into positive 

and negative parts, paralleHng the left and right algebras in the conformal theory. As 

before, assuming reflection symmetry the right half can be ignored.) 

Equation (2.3) shows that the action of Ps on asymptotic states is completely specified 

by the numbers 7^. If they are all zero then, assuming asymptotic completeness, Ps =. 0 
and there is no nontrivial conserved charge at that spin. Such a situation can often arise 

as there are very strong restrictions on the {7°}, coming from the bootstrap requirement 

that they be consistent with the singularity structure of the S-matrix. However even 

conserved charges at a subset of the possible spins are sufficient to deduce factorizability 

of the S-matrix, and this will be described in the next section. 

2.3 Factorization'""' 

A general process might involve the n-particle state \Ai^{di), Ai^{92), •. • ^ i „ ( ^ n ) ) scat­

tering into the m-particle state \Aj^{6[), ^^2(^2)' • • • ^;n,(^m))> ^ shown in figure 1. 

Conservation of momentum requires that 

k=i «=i 

This is usual; the special feature of the models under discussion is the presence of higher 

spin charges, also conserved. Imposing that each nontrivial Pg has the same value on 
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Figure 1 : n-particle scattering, 

initial and final states leads to an infinite set of further equations to be satisfied; 

n m 

fc=i ;=i 

For general initial momenta these can be simultaneously satisfied only if m = n and, after 

suitable reordering, O/. = 0'^. and 7]* = 7^*. (The discussion of the bootstrap will show 

that there are some isolated values of momenta for which there are other solutions, but 

analyticity of the S-matrix can be invoked to see that the corresponding S-matrLx elements 

must vanish even at these points.) Thus particle production is forbidden and the set of 

final momenta must be the same as the set of initial momenta. The particle types may 

alter, but only if the values of 7] are preserved for all s 7̂  0 — in other words, 'internal' 

quantum numbers may be changed, so long as they correspond to scalar quantities. These 

selection rules imply that an in state can be expanded as a finite superposition of out 

states: 
\Ai,{ei),Ai,{92),...Ai„{dn)),,= 

S i l t t ( ^ 1 ' ^ 2 , . . . ^ n ) \ A j , ( e i ) , Aj, (92),... Aj„ {9„))^,, ^'^ 

with the condition that 7]* = 7̂ * for all nonzero s. 

Note that in more than one space dimension, the deduction would have been that 

the S-matrix must be trivial, if it satisfies the usual analyticity requirements; this is the 

Coleman-Mandula theorem. To see why, it is best to consider a 2 -* 2 process, the space 

part of which is shown in figure 2. 

The S-matrix (or, to be more precise, the T matrix defined by S = 1-f-iT containing 

the nontrivial scattering amplitudes) is expected to be analytic in the angle /? made by 
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Figure 2. 

outgoing particles relative to the incoming track. The selection rule on the momenta 

requires that the scattering amplitude should vanish for 0 not equal to 0 or TT, and hence 

for all /?, by analyticity. This leaves only the trivial part of the S-matrix. The situation 

is different in one spatial dimension since then 0 and TT are the only possible values for 

It might appear that even in one space dimension such an S-matrix is effectively 

trivial, especially if there are no degeneracies in the particle spectrum allowing mixing 

in scattering, as it is then nothing but a collection of phases. However these phases 

may depend on the relative momenta of the incoming particles. Such a momentum-

dependent phase shift will produce a finite displacement of a wave packet, so a scattering 

process, while preserving particle types within multiplets sharing the same values of 7 3 

and leaving momenta unchanged, may induce time delays as compared to the free motion 

of the particles involved - a situation very similar to that in classical soUton scattering. 

As the most intuitive way to think about scattering is to work consistently with wave 

packets, it is worth pausing briefly to see this finite displacement exphcitly. Consider a 

Gaussian wave packet with (un-normalized) wave function 

•30 

—00 

The momentum is approximately po, the position approximately XQ and the width a. Now 

multiply this by a momentum-dependent phase factor, e-'^^P). The new wave function is 

00 
- 2 , _ _ n2 

—70 

If a is small the momentum of the packet is sharply peaked about po and <i>{p) can be 
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expanded in powers of (p — po)- Hence 

— 00 

oo 
_ y ^p^-a^ip-pof ^ip{x-XD-4>'{po))^-i{<l>(po)-po4>'{po))_ 

So i) is approximately Gaussian, but now centred at XQ + 4>'{po). (Expanding (j) to one 

higher order, i t is easy to see that the new width^ is a2 + | ^ . ) 

Now consider the time-dependent wave function. 

oo 
-a^{p-pof Jpix-xo) -iy/m'^+p^t dpe' 

Time-dependence enters as a phase factor in the fo rm already treated, taking (j){p) = 

t\rm^ + p^. The result above then gives that at t ime t the packet is centred at XQ + 

po^/Y"^2 + pI, as expected, and an additional phase shift e~'^°'^P^ just shifts this by a 

fur ther amount a'(po)-

To deal w i th a scattering process, the wave function for a multiparticle state must 

be used. This does not cause problems for asymptotic states when all particles are well 

separated, and a product of one-particle wave functions can be used to a good approxima­

tion. For simplicity, consider the scattering of a pair of non-degenerate particles (so the 

outgoing state consists of the same two particles). In i t i a l ly one is near XQ and one near 

yo w i t h mean momenta po and qo respectively, (both packets w i t h wid th a < - y\) and 

the wave funct ion is 

-a^ip-pof Jp{x-xo) -a'{g-gof Jqiy-yo) _ 
oo oo 

An{x, y)= j j ̂ 'i^ 

A momentum dependent phase factor wiU have the fo rm 6"*^^ '̂'''̂  and the above discussion 

generalizes easily to see that this shifts the first particle f r o m X Q to X Q + 5i(^(po,9o), and 

the second f rom yo to yo + 52^^(P0,9o)- To discuss scattering, time-dependence should also 
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be incorporated and the out wave funct ion, correct when t is large, is 

•30 OO 

iJout(x,y)= J J ^1^'" 

where 

•30 OO 

-a'^(p-po)'^ ^ip(x-xo)f,-a}{q-qof piq(.y-yo)p-i4>(P-q^t) 

— OC —OO 

< (̂P, 9, 0 = m f + p2 + tyjml + g2 + a(p, g), 

the final t e rm coming f r o m the two-particle S-matrix: 

Subsequent discussion w i l l show that i t is most convenient to work in terms of the rapidities 

9\ and Q2 and that the S-matrix depends only on their difference 9 = 9\-92- (This is due 

to Lorentz invariance, but note that the rest of the expression for (p does depend on the 

Lorentz frame; this is no surprise as to specify the wave function a frame must be chosen.) 

The rapidities are related to the spatial momenta by pQ = m i s i n h ^ i , qo = m2sinh^2, 

and so, using all the above results (and taking XQ < yQ, po > qo), for t large enough the 

interaction has occurred, particle 1 is at 

, w i 3'{9). 
XQ+t^nh9i{t + • • . ' ! ) 

^ mi smh^l S[d) 

and particle 2 at 

Now move to the centre of mass frame. Then m i s i n h ^ i = —m2sinh^2 = P, and the 

particles are at 

xo + tanh9it' and yo + ta.nh 92t', (2.7) 

where 

This is exactly as claimed: i f there were no interaction the particle positions would be 

given by (2.7) w i t h t' = t, and so the effect of the S-matrix has been to cause a time 

delay given by (2.8). The result is also interesting for the fo rm of the dependence on 

the S-matrix - the logarithmic derivative of 5 that appears in (2.8) wi l l occur in a very 

different context when the bootstrap is discussed. 
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Returning now to the discussion of general scattering processes, the above information 

can also be put to use to see the effect of the higher spin conserved charges on wave 

packets!**' 

For simplicity, consider the purely spatial component of the spin s charge, and denote 

this by P^^\ Ignoring any constant factor, this multiplies a state w i t h momentum p by 

and so acting on a wave packet w i th e"*'̂ "̂ "' inserts a momentum dependent phase 

factor e~'^^'. In other words, a{p) = cp', and a wave packet of momentum po is shifted 

by an amount a'(po) = csp^^'^K For s = 1 this is jus t the fact that the momentum 

operator generates spatial translations, packets of all momenta being shifted by an equal 

amount. The important point to note is that any conser\'ed charge of higher spin generates 

a translation by an amount which depends on the mean momentum po of the wave packet 

being acted on. Ac t ing on a multipart icle state i t w i l l move the particles relative to each 

other. 

Now t u r n to the scattering of three particles, each represented by a wave packet 

localized i n position and momentum. Depending on the relative in i t ia l positions of the 

particles, the interaction may happen in three different ways: the collision may be roughly 

simultaneous, or i t may occur as a sequence of well separated two-body collisions. The 

possibilities are il lustrated in figure 3. 

Figure 3. 

The amplitudes for processes (a) and (c) are simply products of two-particle ampU-

tudes, but (b) is not fixed a pr io r i . However when a higher spin charge is present in the 

theory, i t can be used to translate the in i t i a l particles relative to each other, and hence to 

shift between the three diagrams. Conser%'ation of the charge means that the amplitude 

is unchanged by this, and so for the theories under study the three particle scattering 
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amplitudes (and, by a t r iv ia l extension of the above argument, all multiparticle ampli­

tudes) are completely determined once the two-particle S-matrix is known. Furthermore 

there is a restriction on the two-particle S-matrix, coming f rom the requirement that the 

amplitudes for diagrams (b) and (c) be the same. I t is: 

5 5 ^ ( ^ 1 2 ) 5 i : S ( ^ 1 3 ) 5 S ( ^ 2 3 ) = 5 ^ : £ ( ^ 1 2 ) 5 ^ t ( ^ 1 3 ) 5 5 ^ ^ ( ^ 2 3 ) . 

(Lorentz invariance dictates that the momentum dependence is only through the rapidity 

differences 9ij = 9i-9j.) This is the Yang-Baxter equationj^^' also called the factorization 

equation, ensuring as i t does that the three-particle S-matrix can be 'factorized' into a 

product of two-particle S-matrices. I t is straightforward to see that no further consistency 

conditions arise f rom the factorization of amplitudes involving larger numbers of particles. 

I n many models, combining the factorization equations w i t h the imposition of a suit­

able symmetry structure on the multiplets allows a 'minimal ' hypothesis for the S-matrix 

to be inferred. A n example is the sine-Gordon model: the soliton and antisoliton are 

assumed to lie in one multiplet (being distinguished only by a scalar, the s = 0 soUton 

number), t ransforming as a vector under 0 ( 2 ) rotations, and f rom this Zamolodchikov's 

soliton scattering amplitudes can be deduced!*^^ 

However i f the particle spectrum contains no multiplets, the two particle S-matrices 

are diagonal and the Yang-Baxter equation is t r iv ia l ly satisfied. For this reason such 

theories were often thought uninteresting,'*^' but they w i l l be the main topic of discussion 

below. As later stressed by Zamolodchikov|^' there are other constraints which can be 

imposed in situations where no information is provided by the Yang-Baxter equation. 

However before moving on to these, some more details of the analytic structure of the 

S-matrix are required. 

2.4 General Properties of the Two-Particle S-Matrix 

The conclusion of the last section was that the problem of finding the complete S-

matr ix is solved once the two particle mat r ix elements are knowTi. This section wi l l 

describe some of the constraints on these coming f rom general field-theoretic principles, 

i n particular ana l j l i c i ty , uni tar i ty and crossing symmetry. 

The two-particle S-matrix, defined by 

\M&i)M^2)),r. = 4 ' ( ^ 1 2 ) \ A k { e i ) A i i 9 2 ) l , , , (2.9) 



Exact S-Matricea 48 

Figure 4 : 5g'(5i2). 

is depicted i n figure 4, w i t h t ime running up the page. 

Pari ty invariance implies that 5,*' = 5 j f ; invariance under CT that S f j = S^. 

Analy t i c i ty is usually expressed in terms of the Mandelstam variables s, t and u. A n 

important s impl i fy ing feature of theories in H - l dimensions is that only one independent 

variable enters into the discussion, which can be taken to be s, the momentum in the 

forward channel: 

s = {pi+ po)^ = m? 4- 2m,my cosh du- (2.10) 

For a physical process $12 is real (since both p i and p2 are real), and hence s must also 

be real and satisfy s > (m,- + mj)"^. The postulate of analytici ty states that the matr ix 

S^j(s) can be continued up f r o m this segment of the real axis to an analytic (matrix-valued) 

funct ion defined on the complex s plane, single-valued after suitable cuts have been made. 

For the theories under discussion only two cuts are needed, bo th running along the real 

axis. The complex s plane is shown in figure 5, and the fol lowing paragraphs describe and 

at tempt to j u s t i f y some of i ts features. This cut plane is called the physical sheet; other, 

'unphysical' , sheets may be reached by continuing 5 through the cuts. 

The edges of the branch cuts are labelled A,B,C and D. Given that the physical 

amplitude was continued up into the complex plane, i t is clear that the physical ajnpUtudes 

are found on the upper edge of the right hand cut, ie along C. The crosses for real s 

between {mi — m j ) ^ and ( m j + ru j ) ^ correspond to possible bound-state poles occurring 

below threshold; these are the only other singularities expected on the physical sheet. 

The general requirement of unitari ty, required to hold for all physical values of 5, is 

S{s)S^{s) = 1. The usual situation is tha t as s is increased beyond thresholds allowing 

additional decay products, new terms enter into the uni tar i ty equation giving rise to 
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A X- • x - • • 1-

Figure 5 : The complex s plane. 

fur ther branch points along the real axis. However for the integrable theories under 

discussion, i t has already been shown that the amplitudes for 2 -+ 3 and higher processes 

vanish. Hence no fur ther branch cuts are expected, and for al l real s > (rn; - I - m j ) ^ the 

uni tar i ty equation involves only the 2 —> 2 S-matrix elements: 

SS{s)S-r{^) = 6^6f. (2.11) 

Since s i n this equation is real, S[s) can be replaced by S[s). I t follows that S(s) is also 

a boundary value of an analytic funct ion, S~{s) say, given the theorem that i f f [ z ) is 

analytic then so is g{z) = f { z ) . I t is natural to continue this funct ion down from the real 

axis, so tha t there are now two analj-tic functions in play: 5 ( s ) , defined in some domain 

bordering on C (the upper edge of the right-hand cut ) , and S~{s), defined in a domain 

which borders on D, the lower edge of the same cut. However i t can be shown that 

these two functions are i n fact the same, sharing a common analytic continuation into the 

below-threshold region (m,- — mj)^ < s < [rrii - I - m j ) ^ . This property is called Hermitian 

analyticity; a proof can be found in [46], page 226. The threshold s = (m,- + rrij)^ must 

then be a square-root branch point . To see why, let S(s.y) denote the analytic continuation 

of the ma t r ix S up f r o m the point s on the real axis, anticlockwise around the branch 

point and back to the point s f r o m below. Hermitian analyt ici ty amounts to the statement 

that 

the lat ter equality coming f r o m (2.11). Invert ing all the matrices (and noting that i f M 

continues to M', certainly continues to ( M ' ) ~ ^ ) shows tha t S~^{sj) = 5 ( s ) , and 
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Figure 6 : Crossing. 

hence that S{{s~^)^) = S{s). I n other words circling the branch point twice returns the 

variable to the original sheet, and the branch point is indeed of square root type. 

The fact tha t S and S~ are the same function allows the uni tar i ty equation to be 

rewri t ten. Taking 5 to be real, larger than (mi - I - m j ) ^ and above the branch cut, (2.11) 

becomes 

S\i{s)Sim = S^lSf, (2.12) 

where s is again real, but now just below the cut. This fo rm is more appropriate for 

analytic continuation. 

The right hand half of figure 5 has now been justified; to see the need for the second 

branch cut, crossing must be discussed. Figure 4 may be viewed f rom the side, becoming 

the diagram of a scattering process AiAi —* AkAj. The forward channel variable is now 

t, 

t = {Pi- P2f = 2m? + 2 m j - s. (2.13) 

(Note, w = 0, consistent w i t h s -\-1 -\- u = 2Tn^ -|- 2 m j . ) Crossing symmetry states that 

the ampUtude fo r this process may be obtained f r o m the previous amplitude by analytic 

continuation to the region o f the s plane where t becomes physical. So t must be real and 

larger than ( m , + m j ) 2 , physical amplitudes corresponding to approaching this Une segment 

f r o m above in the t plane. Converting this into a statement about 5, the ampUtudes for 

the cross-channel process are found on the lower edge of a cut i n the s plane running along 

the real axis f r o m (mf - rrij)'^ to - o o , tha t is along B in figure 5. Hence for s on C, 

5 j ( 5 ) = 5^(2m2 + 2 m 2 - 5 ) , (2.14) 

the path of analytic continuation being shown in figure 6. 



Exact S-Matrices 51 

The second branch point must also be of square root type. Note though that this does 
not imply that the Riemann surface of the funct ion S is just a double cover of the physical 
sheet, since the unphysical sheet reached by going once round the left hand branch point 
is not necessarily the same as that coming f rom a single circuit on the right. The general 
5, even in these integrable theories, lives on an infini te cover of the physical sheet. 

This apparently very complicated situation is dramatically simplified if, following 

Zamolodchikov, the rap id i ty variable 9 ( = ^12) is used instead of 5. The transformation 

2 2 

9 = cosh-^ —5 
'ZmiTTij 

the inverse of (2.10), maps the s plane into the strip 0 < I m ^ < T T , known as the physical 

strip. Furthermore this transformation opens up the two cuts, so that 5 (^ ) is analytic at 

the images 0 and ZTT of the two branch points, given that i t had a square root singularity 

in s at these points. Since these are the only thresholds, 5 w i l l be a meromorphic funct ion 

of 9. The other sheets of the cover of the 5 plane simply map to a succession of strips 

n-TT < I m ^ < (n4- l )7r . The reali ty of S{s) for real s between the branch points means that 

S{9) must be real for purely imaginary 9. The 9 plane is shown in figure 7, together w i t h 

the images of the lines A, B, C and D. Possible bound state poles lie in the physical strip 

between 0 and iTr; there may be (and in general are) many further poles off the physical 

str ip. 

7. B 

X 

k 
X 

•0 

Figure 7 : The complex 9 plane. 

The un i ta r i ty and crossing equations (2.12) and (2.14) were previously defined only for 

s ly ing on the line C corresponding to physical momenta. When converted into equations 

in the e variable ( this is straightforwardly done, given the positions of the images of 
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A, By C and D shown in figure 7), both equations are of a form that can be analytically 
continued (in particular, the uni tar i ty equation no longer involves a complex conjugation) 
and hence should hold for all complex 0. They are: 

Uni ta r i ty : 5,2-(^)5^L(-^) = ̂ f-^j, 
(2.15) 

Crossing : S f / ( 0 ) = SjfiiTr - d). 

2.5 Purely Elastic S-Matrices and the Bootstrap 

The discussion up to now has been very general, applying to any theory possessing 

a factorizable S-matrix. However i t turns out that the issues to be described below are 

considerably more complicated in theories possessing multiplets, wi th in which particles 

mix during scattering. The Toda theories which w i l l be the main concern of the remainder 

of this thesis do not appear to possess these niultiplets (in other words, each asymptotic 

particle type a is uniquely distinguished by the numbers 7", s ^ 0). Hence f rom this point 

onwards a simplification w i l l be made, and only theories possessing no multiplets wi l l be 

considered. As remarked earlier, for such theories the S-matrix is diagonal, and for this 

reason the scattering is often said to be 'purely elastic'. The Yang-Baxter equation is no 

help here, and the purpose of this section is to discuss an alternative set of constraints 

which can be employed. 

The notat ion can now be somewhat simplified: given that the only scattering processes 

are AaA}, AaAi there is no need for the upper pair of indices in (2.9) and the relevant 

S-matrix element w i l l be wr i t ten Sah{0). Factorization of multiparticle amplitudes implies 

that the problem of finding the complete S-matrix of the theory has been solved once this 

funct ion is known for each pair of particle types in the theory. The unitarity and crossing 

equations now become: 

Uni ta r i ty : S^b{S)Sab{-0) = 1, 

(2.16) 

Crossing : S^i(9) = 5afc(i7r - 6). 

I n contrast to the general situation, the lack of a matrix structure in (2.16) as compared 

to (2.15) means that here the f u l l s Riemann surface is just a double cover of the physical 
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sheet: this follows f rom the implicat ion of (2.16) that Sab{9) is 27r{-periodic. Periodicity in 

id means that al l S-matrix elements can be made f rom products of hyperboHc functions; 

a basic 27ri-periodic bui lding block satisfying the uni tar i ty equation can be defined as: 

s i n h ( f + i ^ ) 

s i n h ( f - ^ ) 
(2.17) 

(The constant h is inserted into the definit ion for later convenience.) The crossed version 

of (x) is -{h - x), and some other useful properties of this funct ion are: 

(0) = 1 (/i) = - l ( x ) - i = ( - x ) {x) = {x±2h) (2.18) 

Now to the bootstrap itself.''*"^' As already stated, the S-matrix may have poles in 

the physical strip between 0 and ITT. Simple poles correspond to possible bound states, 

while any higher order poles are explained i n terms of anomalous thresholds i n a way to 

be explained later. The bootstrap hypothesis is that any bound state is itself one of the 

possible asymptotic particles appearing in (2.2), of type c, say (the antiparticle label is 

used for convenience only) . I n a perturbative treatment the pole can then be traced to 

the Feynman diagram shown in figure 8, and for the bound state to form there must be 

a non-zero three point couphng C"''^. 

a 

a 

Figure 8. 

The intermediate particle c is i n the forward channel and so has momentum^ equal to 

s. The pole in the amplitude occurs when c is on shell, at s = m?. This corresponds to a 
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rapidi ty difference 9ab = iU^. From (2.10), must then satisfy 

ml = m\-\-ml + 2manib cos Ul^- (2.19) 

Note that i f the fusing ab 

ca b, and 

c is allowed (so C'^'"'- # 0) then so are the fusings 6c a and 

Kb + Kc + = 2^- (2.20) 

The real numbers U w i l l be called fusing angles, and as a consequence of (2.20) can be 

drawn as in figure 9. 

Figure 9. 

Note also tha t (2.19) implies that the 'dual ' diagram to figure 9 is a triangle wi th 

sides given by the masses of the participating particles, shown in figure 10. 

Figure 10. 
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The internal angles marked in the triangle are defined by 

Kb = ^ - l^^b- (2.21) 

(Since rUc = rric, i t is acceptable to be fa i r ly cavalier about the distinction between particle 

and antiparticle in this particular context.) Viewing figure 5 f rom the side shows that 5^^ 

is expected to have a pole ( w i t h opposite residue) at U^, given that Sab has a pole at U^, 

exactly i n agreement w i t h the crossing relation (2.16). 

The reality of all fusing angles U, equivalent to the closing of the triangle drawn in 

figure 10 whenever C"*'̂  is nonvanishing, is necessary to ensure stability of the particles in 

the theory. Otherwise, a fusing ah c would occur above threshold, in a kinematically 

accessible region, and there would be nothing to prevent the decay of particle c into an 

a, h pair, in violat ion of the assumption that c was a possible asymptotic state. 

Note that i f such a fusing were permitted, then near the resonance pole a long-Uved 

intermediate particle would be formed, and the two-particle state wi th appropriate rapid­

i ty difference should be dominated for a time by the corresponding one-particle state. ( I t 

is helpful to th ink i n terms of wave packets at this stage.) The idea behind the bootstrap 

equations is that this picture can be analytically continued to the below-threshold rapid­

i ty differences corresponding to the bound state poles actually observed in the integrable 

theories. 

I n other words, near 9ab = ^^^^6' particle state \Aa{9a.)Ab{9b)) should be 

dominated by the one particle state \Ac{9c)), w i t h 9c — 9a-\- iUac- (The value of 9c is fixed 

by momentum conservation.) This has consequences both for the S-matrix elements and 

the conserved charges. 

First, the S-matrix. The idea of the two-particle state being dominated for a time by 

a one-particle state allows diagram (b) of figure 3 to be 'expanded', as shown in figure 11. 

Using the conserved charges to move f rom this picture to that represented by figure 

3(a) and equating the corresponding two expressions yields 

Sdcie) = Sa,(9 - iUl)Sdb{9 + iU^). (2.22) 

( In fact (2.22) corresponds to equating two expressions for the residue of a pole in the 

three-particle S-matrix, as a common pole factor of Sabi^ah) has been cancelled f rom both 

sides.) Equation (2.22) is represented pictorially in figure 12. 
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Figure 11. 

Figure 12. 

Furthermore, any conserved charge can be evaluated either before or after the fusing 

of the two particles i n figure 12, and at resonance the result should be the same. A n 

analyticity assumption for the conserved quantities allows (2.3) to be continued to the 

relevant region of 6, g iving the bootstrap condition for the conserved charges: 

7f = 7 ^ - ^ ^ ^ " + 7 y ^ ^ - (2.23) 

Taking (2.23) fo r a l l possible fusings yields an overdetermined set of linear equations 

between the constants 7" at given s. These may well have no solution, in which case 

Pa = 0. For s = 1, (2.23) is automatically satisfied as i t is jus t the condition of momentum 

conservation already used i n the derivation of (2.19). The surprise is that there are sets 

of masses {ie values fo r 7 ° ) such that nontr ivia l solutions to (2.23) exist for larger values 

of s, these values being the spins at which conserved charges might consistently exist in 

the theory. Note also tha t (2.23) shows that there are solutions to (2.5) other than the 

' t r i v i a l ' case for which m = n , but since these solutions only exist for isolated values of 
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momenta, and unphysical ones to boot, this does not affect the conclusion that inelastic 

scattering is forbidden by the conserved quantities. 

Similarly (2.22) yields an overdetermined set of functional equations for the two-

particle S-matrix elements. I t reduces the problem of finding the f u l l S-matrix one stage 

further, as now only members of a suitable subset of 'fundamental ' S-matrix elements 

need to be found, the others following via (2.22). Often 5 i i , the S-matrix element for the 

scattering of two lightest particles, is enough. Checks on any ansatz for 5 i i come f rom 

the many equations left i n the set (2.22) even after some have been used to deduce the 

rest of the S-matrix. 

Based as they are on a single physical idea, i t would be surprising indeed i f (2.22) 

and (2.23) were unrelated. In fact a formal connection between the two sets of equations 

can be estabUshed, and the remainder of this section w i l l be devoted to showing how this 

works 

First, define a new matr ix T: 

T^{e) = ^^inSab{e). 

Taking the logarithmic derivative of (2.22), 

Tcic{0) = Taa{e - iUl) + T^{e - f iU^,). (2.24) 

Now T is 27rz periodic, so at least formally i t can be expanded as a fourier series in iO: 

oo 
Tab{d) = Yltfe'". 

—oo 

As a consequence of (2.24), the coefficients tf' must satisfy 

i f = i f e - " ^ " + i f e"^'-, (2.25) 

an equation which has the same form as (2.23). Hence for any particle type d in the theory, 

the set of numbers {t'^)s, found as fourier components of the logarithmic derivative of the 

S-matrix, solve the bootstrap equations for the conserved quantities and hence provide 

candidates for the numbers 7^. 

(j 
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The appearance of the S-matrix in this context is reminiscent of the situation in lattice 
models where conserved quantities appear as the logarithmic derivative of the transfer 
matr ix . This similari ty is all the more marked i f the correspondence between factorized 
S-matrices and latt ice models'*^' is recalled, in which the transfer matr ix is produced by 
scattering one particular particle across all the others. Of course, these are all models wi th 
non-trivial Yang-Baxter structure, and the conserved quantities are thought of in a rather 
different sense. Despite these provisos, i t would be interesting to pursue this connection, 
and perhaps find some alternative physical insights into the bootstrap equations f rom the 
lattice analogy. 

Leaving such speculations to one side, there are s t i l l a number of immediate implica­

tions. These come f rom the uni tar i ty and crossing relations (2.16). Unitar i ty gives 

TabiO) = Tab{-9) ; = t ^ „ 

while crossing symmetry becomes 

T^iO) = -Tabii^ - 0) ; t f = i-y+Hi. 

Taken together these two equations hint that 7^ = (-)*" ' '^7s. However this does not 

provide a proof, as i n particular the overall normalization of 7 ° may well differ f rom that 

of {t'^)s- Fortunately a direct proof f rom (2.23) is easily found: 

First, note that i f C^"^ is non-zero, then so also is C"^^. Taking (2.23) for the fusings 

ab c and ac ^ b gives 

7 l = 7 f e - ^ ^ ^ ^ - f 7 f e ^ ^ ^ ^ 

Substituting for 7^ f r o m the second equation into the first, subtracting 7^ f rom both sides 

and using the consequence of (2.20) that Ul^^-\-U^^ + U^ = ''^ then gives the desired result: 

Tf = {-y^'ls- (2.26) 

Note in particular that for a theory w i t h only self-conjugate particles, all even spin con­

served charges should vanish. This matches well w i t h the results in specific models to be 

described below. 
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Finally, i t should be noticed that while a solution of (2.22) impUes a solution of (2.23), 
the reverse does not hold. This is because in taking the logarithmic derivative of S the 
normalization has been lost, and so a solution of (2.24) wi l l not necessarily integrate up to 
solve the f u l l bootstrap relation (2.22). This is unfortunate because, at least for the Toda 
theories to be treated below, the form of the conserved charges is better understood than 
that of the S-matrix. In some senses (2.23) is a classical equation, while (2.22) involves 
some of the essentially quantum mechanical aspects of the problem. More wUl be said 
on this question later, when some of the problems encountered when trying to construct 
consistent S-matrices for specific models are described. 
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Chapter 3 

Classical Affine Toda Field Theory 

3.1 Introduction 

The previous two chapters were concerned with non-perturbative approaches to field 

theories. Both dealt with attempts to use very general properties to deduce constraints 

on possible models. In each case, there remains the problem of identifying any solution 

to the constraints with a particular field theory, and the question as to whether the 

general properties assumed actually hold. For these reasons it is of interest to find explicit 

examples. The afEne Toda theories to be described below are particularly well suited to 

studying the bootstrap equations, as they seem to be free from any multiplet structure. 

Furthermore, the coupling constant allows the development of a perturbative treatment 

for comparison with any non-perturbative hypothesis for an exact S-matrix. In addition 

to providing a check for the non-perturbative results, such studies may eventually yield 

new insights into the workings of perturbation theory, applicable in situations where 

integrability does not hold. 

One further remark before entering into details. In conformal field theory, the stan­

dard illustrative example is a theory of free massless bosons, perhaps compactified on a 

torus. It is tempting to claim a similar role in the context of exact S-matrices for the 

Toda theories — in particular, their lack of Yang-Baxter structure mirrors the trivial 

monodromy properties of the free boson theory, and in both cases standard field-theoretic 

techniques based on an explicit lagrangian seem to be reliable. This point is of some 

importance, as a further motivation for the study of the Toda theories was the thought 

that they might provide explicit realizations for some of the perturbed conformal theories 

discussed in chapter one. As will become clear below, it seems that they are indeed exam­

ples of theories possessing exact S-matrices with the correct spin-spectrum of conserved 

charges. However the fact that the relevant conformal theories belong to the minimal 

sequences — in particular, they do not have a straightforward lagrangian formulation — 

is perhaps a first sign that there may be some difficulties with the hoped-for identification. 

This chapter deals with certain classical features of the theory, while the next chapter 
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goes on to use these results in a discussion of the quantum theory. 

3.2 The Classical Lagrangian 

Classically, affine Toda field t h e o r y i s a massive integrable 1+1 dimensional 

theory of r (say) scalar fields with lagrangian 

c = h,rd^r-^j2^ie^'""^. (3.1) 

The set of r-dimensional vectors {a ,} is described by one of the affine Dynkin diagrams, 

and integers n,- can always be found such that ^ niOti = 0. The possible diagrams can be 

found in [52] and are listed in tables 5 and 6, together with the set {nj} for each case. 

A feature of these diagrams is that in each case the removal of a suitably chosen spot 

results in a non-affine Dynkin diagram. It is convenient to label the vectors so that ao 

corresponds to the removed spot, candidates for which can then be found using the facts 

that no = 1 and that the residual diagram is connected. The remaining vectors { a i , . . . O r } 

are the simple roots for one of the simple Lie algebras. For the untwisted affine diagrams, 

ao is the lowest root of the algebra, and so given that no = 1 the numbers n i , . . . nr also 

appear as the coefficients of the highest root tp = Yli=i "jcti-

The lagrangian can now be split into two pieces, 

where £ i is the final term containing ao and CQ the rest. This split is interesting because 

the piece CQ is the lagrangian for a non-affine Toda theory, which has a form of conformal 

invariance. To see this, consider a conformal transformation which acts on the light cone 

coordinates = x ±t as 

If this is accompanied by a shift in the fields 

ci>^<f>'{x') = 4>{x)--^Hd^f^d.ri 

where 6 is the sum of the fundamental weights, then up to total derivatives CQ is multiplied 

by d + f ^ d - f . This is exactly the local scale factor, so the integrated lagrangian is indeed 
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invariant. The key property of S which ensures that the potential term scales correctly is 

^ - a , = 1 i = l , . . . r . (3.3) 

Alternatively, note that the potential term in CQ is always positive, but that the linear 

independence of a i , . . . ar means that a direction in field space may be found along which 

ai • (f> — > — D O for i = 1,... r. Along this direction the potential tends towards its lower 

bound of zero, becoming flatter and flatter as it does so. In an intuitive sense, the classical 

ground state is at infinite distance from the origin in field space, and about that point the 

potential is flat in all directions — a sign of conformal invariance. However the lack of a 

true classical ground state makes quantization of this model in a perturbative framework 

difficult. It turns out that the quantum theory is conformal, with a central charge given 

by'"'"' 

c = r-t-487r|5|2(i + A ) 2 . ( 3 4 ) 

(Even classically, the Poisson bracket algebra of conformal transformations has a central 

charge — this arises from the total derivative terms in the transformation of £.) A hnk 

can be made between each non-affine Toda theory and the series of minimal conformal 

theories based on the corresponding Lie algebra. To obtain the correct central charge, 

the coupling constant /? must be tuned correctly, and in fact one must indulge in some 

kind of analytic continuation in /3 before (3.4) will yield a value small enough. Hence, 

Co does not provide a straightforward lagrangian framework for the minimal models, and 

the subtleties encountered wiU not be entered into here. The reason for mentioning this 

splitting of the affine lagrangian at all is that it provided one of the original motivations 

for looking at the affine Toda theories in the context of perturbed conformal field theory.'̂ ' 

To see why this should be so, consider the reverse procedure, of starting with the 

non-affine lagrangian CQ and then adding an extra ('perturbing') piece Ci. (Any small 

coefficient multiplying the perturbation can be absorbed into a shift of origin in field 

space.) Classically both non-affine and affine theories are integrable, and furthermore the 

affine theories are known to possess conserved charges with spins given by the exponents 

of the relevant Lie algebra. Conformal invariance is lost in the perturbation, the affine 

theory having a well defined ground state about which there are only massive excitations. 

This can also be seen in the fact that Ci does not scale in the same way as the other 
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terms in the potential under the combined conformal transformation and field shift defined 
above, since instead of (3.3) ao satisfies 

r 

^ • ao = — ^ ^ n,- = 1 — h, 
i=l 

where h is the Coxeter number of the algebra. * Thus, this picture certainly provides 

a classical model for the idea of an integrable perturbation of a conformal theory. The 

unanswered question is whether this remains valid in the quantum domain. A promising 

sign is that in the non-affine theories thought to be related to the minimal coset models, 

the perturbing term £ i represents the primary field associated with the (0, adj) pair of 

representations, already mentioned above as important. Furthermore the spectrum of 

conserved spins possessed by the classical affine theory is given by the exponents of the 

relevant Lie algebral**' and if preserved on quantization is exactly that hypothesised 

for such perturbations at the end of chapter one. However the necessity to choose /3 to 

be imaginary is a hint of potential trouble ahead. 

If one is merely interested in a lagrangian model for theories possessing purely elastic 

S-matrices with which to check the assumptions made in the last chapter, then such 

questions should not be a worry. Putting aside the issue as to whether they correspond to 

precisely the perturbed theories considered in chapter one, there remains the question of 

the quantum integrability and S-matrix of the affine Toda theories defined by (3.1) (with 

j3 real). A perturbative treatment of these theories appears to be perfectly valid, and 

when it is combined with some non-perturbative hypotheses culled from the last chapter 

a number of interesting features emerge. The remainder of this chapter and all of the 

next will be devoted to this task, with other questions only being returned to in the final 

chapter. 

3.3 Classical Data for the Simply-Laced Theories 

The coupling constant /? will henceforth be taken to be a small, real, parameter, so 

the usual perturbative techniques of quantum field theory should apply. Before going into 

this, some classical information must be extracted from (3.1). 

• Note that this does not of itself imply any asymmetry between Qq and the other vectors ai once the 
full lagrangian (3.1) is considered, as the field shift was defined with Co specifically in mind. 
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The first step is to expand the potential term perturbatively in /3 (the coupling con­
stant) about its minimum at = 0, a = 1, ...r : 

.=0 ,=0 (35) 

This results in a (mass)^ matrix 

{M'-)'^ = m^Y,niafal (3.6) 
i=0 

a set of three-point couplings 

C"^'- = / 3 m 2 ^ n i a f a . ^ a ^ , (3.7) 

i=0 

and infinitely many higher couplings, of successively higher orders in /3. 

Low order perturbation theory will be simplest if a basis of fields is taken for which 

the bare propagator is diagonal. This diagonalizes (M^), the classical masses emerging as 

the eigenvalues of (M^). To compute the three point couplings (3.7) in this basis of mass 

eigenstates is a lengthy task, but answers in closed form can be obtained for all the affine 

Toda field theories. 

A simphfication comes from the fact that detailed calculations need only be carried 

out for the simply laced theories (associated to the untwisted a, e affine diagrams for 

which all roots have equal length), results for the other theories followdng from a folding 

procedure to be described in a later section. The remainder of this section will concen­

trate on the simply laced theories, the results for which reveal a number of particularly 

simple 'universal' features. No real understanding exists for these features — they were 

only observed after a case-by-case examination of the individual theories. However they 

seem to be vital for quantum integrability, and before giving details of each theory in 

turn, these general results will be described. 

The first surprise is that the classical masses computed as the r eigenvalues of the 

(mass)^ matrix (3.6) form an eigenvector of the Cartan matrix of the associated Lie 
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algebra. (Note that for the simply-laced theories, each affine diagram is an extension of 
one and only one non-affine diagram, so there is no ambiguity here.) More precisely, they 
form the eigenvector of lowest eigenvalue, 2 — 2cos^, the Perron-Frobenius eigenvector 
of the adjacency matrix of the non-affine diagram. (As usual, h is the Coxeter number of 
the algebra.) Thus if (with a suitable ordering) 

m = (mi, 7712, • • • "^r) 

then 

Cm = Xminia = {2-2 cos ^)m, (3.8) 

C being the Cartan matrix 

_ 2 a ^ 

The Perron-Frobenius theorem guarantees that all the components of this vector can be 

taken positive, consistent Avith their identification with the particle masses. 

This result is particularly curious since it shows that the affine diagram involved in the 

definition of (M^) somehow 'knows' about its non-affine subdiagram. This feature allows 

the masses to be associated unambiguously to spots on the appropriate non-affine diagram. 

Table 7 shows how this works, the labels being in increasing order of mass with the 

convention of chapter 2 applying, that a labels the antiparticle of a. The masses themselves 

can be extracted from table 8, which gives all the eigenvectors of the Cartan matrices, 

by setting 5 = 1. (The other eigenvectors will be needed later, for a generalization of 

(3.8).) Note though that the eigenvector result only gives information on the ratios of the 

classical masses, but not on their overall normalization which is fixed in terms of 7n̂  in 

the classical affine Toda theory. Since vn? is arbitrary and plays no part in subsequent 

calculations (and is in any case renormalized in the quantum theory), the eigenvectors 

in table 8 have been given a simple form by assuming 77î  to have been set to a suitable 

value in each case. For reference, the 'raw' values for the squared masses, obtained from 

the characteristic equation for (M"), are listed below. 
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An series ml = \rr? sin^ , , 
n -f-1 

Dn series = = Irn}" 

= Sm^ sin^ 
O T T 

2 ( n - l ) 

Ee = mf = (3 - v/s)^^ 

= 2(3 - \[l)m^ 

mf = m| = (3 -F %/3)m2 

m| = 2(3 -f V3)m2 

E t = Sm^ sin^ ^ 

2 ^̂  yCr 2 • ^ • 27r 
ml — 8 V 3rTi sm — sm — 

9 ^ 9 . 9 27r 
mi = Sm^ sui^ — 

^ 9 
9 „ / T T 9 . S T T . T T 

ml = 8v3Tn sm — sm -
J. o y 

ml = Qm^ 

9 
9 « 9 . 2 47r = 8m^ sm^ — 

-2 - 16A/3m2sin7r/30sin7r/5cos2 7r/30 

-2 - 64v/3m2 sin 7r/30 sin T T / S C O S ^ 7r/5 coŝ  77r/30 

,2 _ ^ /o^2 

9 ^ A : 2 • ^ T T . 47r 
my = 8 v3m sm — sm -— 

Eg m\ = 4v/3m2sin7r/30sin7r/5 

m\ = 16v/37Ti2 sin7r/30sin7r/5cos2 7r/5 

m\ = 

ml = 

mg = 4-y/3m2 sin ll7r/30sin7r/5 

m| = 4v'3m2 sin 77r/30sin27r/5 

my = 4v/3m2 sin 137r/30sin27r/5 

ml = 256-/3m2sin7r/30sin7r/5cos2 27r/15cos^7r/5. 

One final observation is that the mass ratios above coincide with those found by 

Ogievetsky and Wiegmann'* '̂ for some rather different S-matrices, namely those pos­

sessing a Lie group symmetry. In contrast to the affine Toda models, these have a mul­

tiplet structure, and a non-trivial Yang-Baxter equation to be satisfied. Each multiplet 

is taken to belong to a (fundamental) representation of the Lie group, and scattering 

amplitudes are required to be invariant under simultaneous group transformations of all 
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particles involved. This fixes the mass ratios to be equal to those found for the Toda the­
ories. Furthermore, since each fundamental representation is associated with a single spot 
on the Dynkin diagram (the highest weight A" of a fundamental representation satisfies 
A" • afo = (5̂ , 6 = 1,... r) , each multiplet of the Lie group invariant S-matrices can also be 
assigned unambiguously to a spot on a non-affine diagram; this assignation agrees with 
that given above for the Toda particles.* Note that the appearance of non-affine diagrams 
is much less surprising here than it was in the affine Toda theory, given that the expUcit 
symmetry of the theory is described by the non-affine algebra. The coincidence of the two 
sets of masses may well lead to deeper insights into the bootstrap, if properly understood. 

The three point couplings C"'^'^ also exhibit 'unreasonably' simple features when given 

in a basis of mass eigenstates. Many vanish; for those that don't, the masses involved 

form a triangle and the magnitude of the coupling is given by'"'*' 

|^a6c| ^ i | ^ a 6 c ^ ^ m a T T l f c sin U'^,, (3.9) 

where A'̂ ''̂  is the area of the triangle in question and U^^ the fusing angle defined in 

(2.20). The triangle is exactly that drawn in figure 10; the fact that objects of interest 

in the bootstrap equations of the last chapter are also emerging from the Toda theory is 

a promising sign. Even better, the fusing angles obtained from the non-vanishing Toda 

couplings have a particularly nice form: they, and hence all the angles in the triangle 

mamirrici are all multiples of 7r//i: 

U'^ = -f^ , nelL. (3.10) 

This empirical rule in fact characterizes the non-vanishing coupHngs, at least when there 

are no mass degeneracies (when there are, the Clebsch-Gordon rule below must also be 

used). Note though that the signs of the couplings have not yet been given. These are 

important but to date no general rule has been found for their determination, so reference 

must be made to the individual tables for these. 

An alternative and perhaps deeper selection rule can be given for the allowed coupHngs. 

Recall from above the association of particles with fundamental representations. In the 

* Actually, this description is something of an oversimplification. Particles in fact transform under 
(isomorphic) left and right representations of the group, and furthermore some of these represen­
tations are reducible. However each reducible representation may be associated with a unique 
fundamental representation, so the correspondence with Toda particles can still be made. 



Classical Affine Toda Field Theory 68 

context of group-invariant S-matrices it is expected that a three-point coupling will only 
be found between multiplets when a singlet can be found in the tensor product of their 
three representations. The same rule holds for the Toda c o u p l i n g s ; in symbols 

C«*=^0 ( a ) ® ( 6 ) D ( c ) (3.11) 

where (a),(6) and (c) are the three fundamental representations associated with particles 

a,b and c. (Note that (c) = (c); the antiparticle is always associated with the conjugate 

representation.) The imphcation does not hold in the reverse direction except for the An 

and D4 theories, and the 'holes' in the Clebsch-Gordon series that this entails are not well 

understood, except to say that in every case, allowing the coupUng would violate (3.10). 

The first example appears in the theory: in the Clebsch-Gordon series (2) (gi (2) D (2), 

but according to the rules to be given below, the 2 2 -+ 2 fusing does not occur. The fusing 

angle such a coupling would imply is 27r/3, which is not an integer multiple of 7r/h since 

for D^, h = 8. Such holes do not seem to have been emphasised in the work of Ogievetsky 

and Wiegmann, possibly because the bootstrap is so much harder to carry through when 

multiplets are present. They are perhaps a sign that group theory alone is not enough to 

unravel the bootstrap, and at the verj' least some form of truncation rule must be defined 

when fusing particles or multiplets. This would be reminiscent of, although it cannot be 

the same as, the situation found in the Wess-Zumino-Witten models.'"' 

In the absence of general proofs for any of the above, a case-by-case treatment is the 

best that can be achieved, and this will now be given. Before detailing the individual 

cases, there is one more general comment to be made. A number of theories turn out to 

have degeneracies in their mass spectrum, so the basis for fields is not completely fixed 

by the requirement that the (mass)^ matrix be diagonal — there remains the freedom to 

rotate the basis within the mass eigenspaces. However this symmetry does not persist 

when higher terms in (3.5) are examined, and in particular the three-point couplings do 

depend on the particular basis chosen in each eigenspace. To resolve the ambiguity in 

the couplings that this impUes, the higher spin conserved charges must be considered. 

Diagonalizing the (mass)^ matrix amounts to ensuring that the spin 1 conserved charge 

— the momentum — is diagonal, but for the discussion of purely elastic scattering in 

the last chapter to apply, a basis of eigenstates of all the higher spin charges is needed. 

The assumption made in that discussion, that all particles may be distinguished by these 

charges, is precisely the requirement that any ambiguities of basis are resolved once all 
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charges are diagonalized. However there is Uttle detailed information on the form of these 
charges, so in practice one must work 'backwards' via the bootstrap consistency conditions 
(2.24). This set of equations is dependent on the non-vanishing three couplings and hence 
feels the efi"ect of the basis taken for the mass-degenerate fields. The choices made below 
were motivated by the requirement that (2.24) should have nontrivial solutions for as 
many values of the spin s as possible, and will only be fully justified in a later section. 
There it will be shown that these choices allow conserved charges corresponding to all spins 
found in the classical theory [ie the exponents of the algebra) and that these charges do 
distinguish all the particles. 

In fact, a complex basis will occasionally be necessary, leading to non self-conjugate 

particles (recall the remark at the end of the last chapter that only on such particles can a 

(diagonal) even spin charge be non-zero). In these cases, it is natural to define the (mass)^ 

matrix to connect particle with antiparticle (in other words, to consider one of its indices 

to be outgoing rather than ingoing). However three point couplings will always refer to 

all particles as ingoing, a point to be borne in mind when considering possible fusings. 

aj^) = D{An) 

Easiest to describe is the TI = 1 case, for which (3.1) is just the sinh-Gordon lagrangian. 

There is a single massive particle and zero three point coupling. For this reason the theory 

is rather special, and the techniques of later sections cannot be applied directly — certainly 

higher order couplings do not vanish, so a trivial S-matrix is not expected, but equally 

perturbation theory does not predict any bound state poles. This case will therefore 

receive a separate mention when the quantum theory is discussed, and for now it will not 

be considered further. 

In all other cases, a basis must be chosen so that the (mass)^ matrix (3.6) is diagonal. 

For an \ this is relatively easy because of a special relationship with the roots of unity. 

Let ui = ê "̂ /'*'̂ ^ so that a;""*"̂  = 1, and consider the spray of vectors 7,- with complex 

components given by 

7 f = u;''' i = 0,l,...,n a = l,...,n. (3.12) 

Then their inner products, using the fundamental property of u, = 0' 



Classical Affine Toda Field Theory 70 

and hence setting 

«^ = - 7 = ^ ( 7 m - 7i)* (3-13) 
Vn -1- 1 

gives a complex representation of the simple roots of An, together with the extra root Q Q . 

It is easy to check that Yl7=o oci = ^ and 

0 i 4 j , j ± l 

as desired. Note too, that a choice of complex basis for the scalar fields in which 

has the nice property 

{a* • <i>y = a*-,f> (3.14) 

as a consequence of the definitions (3.12) and (3.13). Property (3.14) impUes that the 

potential term in the Lagrangian is real when Lagrangian is taken to be 

^ 1=0 

In this basis, the (mass)^ matrix (3.6) is 

0 a 7̂  6 

4m sm a = 0 
n + 1 

and is diagonal, the masses being 

ma = 2m sin a = l,...,n. (3.15) 
n -f-1 

Thus, each particle (except for one when n is odd), occurs with its mass degenerate con­

jugate partner. When n is odd, the heaviest particle occurs as a singlet. This degeneracy 
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is a reflection of the obvious Z2 symmetry of the An Dynkin diagram. The choice of a 
complex basis, with degenerate particles occurring in conjugate pairs, leaves open the pos­
sibility of these particles being eigenstates of an even spin charge in the quantum theory 
(making the charge diagonal in this basis). This is desirable, given the fact that some of 
the exponents of An are even. 

The three-point couplings of the mass eigenstates are also easily computable from 

n ( 0 a + b + Cy^O mod n + 1 

X ; a = r a - V = < l _ ( ^ a _ i ) ( ^ 6 _ i ) ( ^ c _ i ) a + 6 + c = 0modn + L ^̂ "̂ ^̂  

Noting from (3.15) that 

a+b 
m' •{u'^ - l){uj'^ - 1) = - a ; 2 TTlaTTlb, 

it is clear that provided c = ^(n -|- 1) - (a -I- 6) (for k = 1 ox 2) the product combination 

in (3.16) may be re-expressed as 

7712(0/-̂  - l)(a;^ - l)(a''^ - 1) = ma7n62f sin (3.17) 

ft ~}~ 1 

The fusing angles, found from (2.20), are 

a + 6 
-TT a-\-b-\- c = n+l 

Ui,= \ " + 1 (3.18) 
(2 )7r a-f 6 + c = 2(71+1). 

n-\-l 

Thus the magnitude of the coupling constant is given by 

|^abc| ^ -lS==m„m,sm U',^, (3.19) 
Vn + 1 

verifying (3.9) in this case, since the Coxeter number of >1„ is T Z -I- 1. Finally, (3.11) is 

easily verified given that the fundamental representations appearing in the decomposition 

of the relevant An tensor products are 

( (a + b) + ..., a + 6 < 71, 

[ (a + 6 - 7i) + . . . , a + b>n. 
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= D{Dn) 

In this case there is rather less mass degeneracy and initially a real basis will be taken. 

Labelling the affine diagram as follows 

n-l 

o— • • —o 
3 n-3 

the roots are expressible in terms of n orthonormal vectors ê : 

Q:o = - ( e i + e2) a „ = 6 -̂1 + en 

ai = Cj - ej+i i = 1, 2,..., n - 1. 
(3.20) 

These orthonormal vectors must now be re-expressed in a basis for which the (mass)^ 

matrix is diagonal. One way is to take 

(3.21) 

= (0,0,.. . ,1,0) 

fin = (0,0,.. . ,0,1) 

= (^L • 
m-2 

• • ' 'fc 

where 
2 . â TT 

It = \ 7 sin 
n — 1 n — 1 

It is then easy to check that the mass matrix is diagonal with (mass)^ eigenvalues 

(a) m^_i = m\ = 2rr? 

(6) ml = 8 m 2 s i n 2 ^ ^ A: = 1.2,... ,n - 2. ^''''^ 

Note with reference to the assignment of masses to. the Dynkin diagram, table 7, that the 

masses of the particles increase along the long arm of the diagram towards the fork in 

the same sense as the dimensions of the fundamental representations. Occasionally (for 

n = 1 mod 3) the mass of the degenerate pair (3.22)(a) coincides with one of the masses 

on the arm of the diagram, but in general the dimension of the corresponding spinor 
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representations does not coincide with any of the others. The algebra D4 is the exception. 
It is a particularly symmetrical case with three light particles of mass y/2m, and a heavy 
particle of mass ^/Sm. In this case the light particles are associated with the vector, 
spinor and conjugate spinor representations, which do have the same dimensionality — a 
reflection of the triality symmetry of D4. 

The discrepancy of dimensions mentioned above suggests that the extra degeneracy 

for n = 1 mod 3 is purely accidental, and that the only real freedom left in the choice of 

basis is a rotation in the space spanned by <̂ "~̂  and (̂ ". This turns out to suffice in the 

case of D4 also. A distinction can be made between n even and n odd. For n even it is 

natural to take the degenerate particles to be self-conjugate and set 

= -^ir-' + r) / = ^(^"-' - n- (3.23) 

In contrast for n odd, Z)„ has an even exponent (cf table 3), and furthermore the spinor 

representations are conjugate to each other. These two facts suggest that the correspond­

ing particles should be taken with respect to a complex basis, and motivate the choice 

These choices will only be properly justified later, when conserved charges are discussed 

and they will be seen to be diagonal in the above bases. 

It is now straightforward to read off" the three point couplings. Clearly, the coupling 

between three particles chosen from s or s' is zero whatever the choice of basis in the 

degenerate subspace, but one effect of the choices (3.24) and (3.23) is to render zero half 

of the couplings between a pair such as s and 5 or s' and one of the others. Thus for even 

n: 

0 a odd 
(^saa ^ Qs s a ^ , 2^ 

mams sin 7̂"̂  a even 
y / 2 { ^ ) 

0 a even 

771^7713- sin Uggi a odd 
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On the other hand, for n odd: 

2/3 
^ssa _ Qssa _ i y/2{n - 1) :m. sms sin Ugg a odd 

a even 

a odd 
^ssa ^ 2/3 

\/2(n - 1) 
m^mj sin Ugg a even 

In each case, the fusion angles are, in multiples of 7r/2(n - 1), 

(3.26) 

f/« = 2(n - 1 - a) = U^,. Ut, = n - l + a = UP, = U!„. (3.27) 

For the other particles, the coupUngs are given by 

(jabc ^ , 

2/3 
y/2{n - 1) 

2/3 

y2(n - 1) 

mambsinU^l, a + b + c = 2{n-l) 

mamb sin f/^j, a ± b ± c = 0 

0 otherwise 

where the fusion angles are, again in multiples of 7r/2(n - 1), 

(3.28) 

U'^f^ = a + b U^, = a-\-c U^, = b + c if a-h 6 + c = 2(n - 1) 

and 
Ĉ a6 = 2 ( n - l ) + a - 6 ) 

Ul = 2{n-\)-^c-b > i f a - 6 - f c = 0. 

Ul = a + c 

(3.29) 

Again, the area formula (3.9) can be verified in equations (3.25), (3.26) and (3.28). The 

Clebsch-Gordon decompositions for Dn are considerably more involved than for An, but 

again (3.11) is found to hold good. The hst below is extracted from appendix C3 of 

56] . ((-h) and ( - ) denote the representations {s) and (5 ' ) or ( 5 ) and (s) for n even 

or odd respectively, (0) denotes the scalar representation, and all other non-fundamental 

representations are omitted.) 
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b 

(a )®(6 ) = J ] (a-f6-2p) , a > b, 

(0) 4-(2)+ . . . + ( 7 1 - 2 ) , feeven, 

( ± ) ® ( ± ) = . 

(1) + (3) + . . . + ( 7 i - 2 ) , A: odd, 

(1) + (3) + . . . + (n - 3), k even, 
(± ) ® (=F) = . 

(0) + (2) + . . . + ( 7 i - 3 ) , A; odd. 

e(^),e?> and ê ^̂  

The particle masses for these theories have been given above, and their assignments to 

the relevant Dynkin diagrams are shown in table 7. One feature to note is that the algebra 

EQ has an even exponent and so, just as for the â ^̂  and d^^Jj^ theories, the appropriate 

choice of basis for the mass degenerate fields of the eĝ ^ theory is complex, the scalar fields 

satisfying the conjugation relations 

Note that the conjugation properties again reflect the symmetry of the non-affine diagram. 

Calculational details for these theories will be omitted; the results for the three point 

couplings are summarized in the upper right halves of tables 9, 10 and 11. The conventions 

adopted in the tables are as follows. The rows and columns are labelled by the particle 

labels, running from the top left in ascending mass order. The first row in each box lists 

the possible fusions for the row-column pair corresponding to the box, so for example the 

top left box of table 9 shows that in the EQ theory the fusings 1 1 -+ 1 and 1 1 —»• 3 

may occur, the couplings C^^^ and C^^'' being nonzero (note that couplings consider all 

particles to be incoming so a charge conjugation is necessary for the outgoing particle of 

a fusing). The superscript refers to the phase of the coupling (+1 if the superscript is 

absent) and in all cases, the magnitude of the coupUng is given by the area formula (3.9). 

The second row lists the fusion angles in multiples of TT/ZI, the Coxeter number h being 

12, 18 and 30 for EQ, EJ and Es respectively. Thus, referring again to table 9, the second 

row of the top left box shows that = 27r/3 and Ufi = 7r/6 in the EQ theory. 
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The two rules (3.9) and (3.10) are almost implicit in the construction of these tables, 
but they were of course verified by explicit calculations. It is also possible to verify (3.11) 
for these theories: the relevant data on the Clebsch-Gordon series is contained in the 
lower left halves of the tables, which list the fundamental representations appearing in 
the decomposition of each tensor product. 

3.4 Folding and the Non Simply-Laced Cases 

It would in principle be possible to proceed for these theories in the same manner as 

above, explicitly diagonalizing the relevant mass matrix in each case and computing the 

three-point coupUngs. However, all the necessary information has already been gathered. 

This follows from the fact that the Dynkin diagrams of these theories may each be obtained 

by 'folding' one and only one of the simply-lziced diagrams!'*' The idea is as follows: a 

symmetry of the Dynkin diagram, permuting the points as a —> p{a), corresponds to a 

mapping of the field space to itself, ^ —̂  p{<P), which is a symmetry of the classical field 

equations derived from the Lagrangian with the potential (3.1). This means that if the 

fields initially take values in the subspace invariant under p, they will remain there, at least 

classically. Since the subspace is of smaller dimension than the original field space, the 

evolution of fields within it can be described in terms of an equation with fewer variables 

than the original equation. The latter is obtained by projecting the variables Oj in (3.1) 

onto the invariant subspace. This process of obtaining new equations and their solutions 

from old, by exploiting diagram symmetries, is known as reduction. The so-called direct 

reductions are those such that a • p{a) = 0 for each root a {ie the symmetry does not 

relate points linked by a line on the Dynkin diagram), and these yield the equations for all 

the non simply-laced and twisted affine theories. 'Folding' will be taken to mean a direct 

reduction of this type, and only these will be considered below, as non-direct reductions 

in fact lead to nothing new, as explained by Olive and Turok. 

For the direct reductions, the projection of the roots of the simply-laced theories onto 

the invariant subspace under the relevant automorphism yields the roots of the 'reduced' 

theory together with the correct multiplicities Ui. If the fields are themselves invariant 

under the automorphism the projection has no effect—the value of a • (/> is unchanged* 

—and so the masses and three-point couplings arising from (3.5) for the new theory may be 

obtained from those of the parent simply by substituting the invariant part of the mass 

But note, when a complex ba.sis is used, for example in the a„ theories, it is a" -0 that is unchanged. 
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eigenstates into the results already derived. This is the strategy that will be adopted 
below. One immediate observation is that since the automorphism commutes with the 
(mass)^ matrix, the set of masses in the reduced theory is always a subset of those in the 
parent. In fact, rather more can be said, based on the distinction between twisted and 
untwisted diagrams. Before going into details, this will be described. 

A symmetry of an extended Dynkin diagram which is also a symmetry of the unex-

tended subdiagram will yield one of the untwisted non simply-laced diagrams shown in 

table 5, corresponding to the extension of a non-affine diagram by the highest root. In fact 

the symmetry group of the extended diagram is is always at least that of the unextended 

diagram, as shown by Olive and Turok, and so there may be further possibilities for reduc­

tions. These result in affine Toda theories based on the twisted affine Dynkin diagrams, 

shown in table 6. The various possible 'parent-child' relationships are summarized below. 

(Details of the specific foldings will be given later.) 

Untwisted Twisted 

- ' ^ fi(s„) 41,' - o £ L , ̂  5^(f l„) 

4 " - / < " s D(F,) 4 " ^ 4 " H DHG,) 

4n+2 ^2n =GD{Hn) 

4^* - 4^' = GD{BD) 

The foldings leading to untwisted theories turn out merely to remove degeneracies 

from the mass spectrum, and the resulting non degenerate particles are always linear 

combinations of the degenerate particles in the parent theory. The 'rediagonalization' of 

the original (mass)^ matrix that this necessitates means that some work is required to 

extract the new couplings as linear combinations of the old. Note also that this change 

will tend to spoil some of the special properties of the original basis. More will be Sciid 

on this point later, but the net effect is that some conserved charges are 'lost', the set of 

equations (2.24) implied by the new three point couplings having rather fewer solutions 

than was the case in the parent theory. The charges lost are exactly so as to reduce 

the set of conserved spins to the exponents of the non simply-laced algebra. As in the 

simply-laced cases, the masses for these untwisted theories may assigned to the relevant 
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non-affine diagram via an eigenvector of the Cartan matrix (see equation (3.8)). This 
is shown in the continuation of table 7, the labelling being chosen to match that in the 
parent theory. 

In contrast, foldings leading to twisted diagrams remove some particles from the spec­

trum altogether, and leave the others unchanged. The couplings of these particles are thus 

the same as those in the unfolded theory, and always form a subalgebra of the algebra of 

three-point couplings. In fact all possible subalgebras can be found in this way. Note that 

the first four of the twisted diagrams Usted above may again be associated with non-affine 

algebras: the alternative labelling for these models indicates that their (extended) Cartan 

matrices are just the transposes of the usual extended Cartan matrix appropriate to the 

non simply-laced algebra. It is a curious and unexplained fact that the coincidence of 

simply-laced mass spectra with those derived by Ogievetsky and Weigmann, commented 

on above, extends to these four twisted theories rather than to the untwisted ones when 

S-matrices possessing a non simply-laced Lie algebra symmetry are examined. 

There turn out to be problems in the quantum treatment of all these non simply-laced 

theories, and so their treatment will be fairly brief. The following subsections derive the 

results for masses and couplings, starting with the untwisted cases. 

bSJ) = D{Bn) 

This is obtained from S^l^ using the automorphism which interchanges the prongs of 

the fork on the Dn+i diagram: 

- O — • • • — O - =^ 6 O — • • • —o=^ 

From (3.20) it is clear that to interchange the roots corresponding to the prongs, only the 

sign of e„+i needs to be changed leaving the rest of the basis the same. Whatever the 

orientation chosen in the subspace of the two mass degenerate particles corresponding to 

the fork, the subspace spanned by 6 2 , . . . , e „ , or equivalently, the non-degenerate fields 

</i \ . . . , (^"~\ see (3.21), is preserved. Thus, the masses and mutual couplings of these 

particles are exactly the same in the bil^ theory as they are in the 4i+i theory and are given 
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by equations (3.22) (b) and (3.28) with n replaced by n -I- 1. The invariant combination 
in the degenerate subspace is simply ei, so the 6̂  ^ theory has just one further particle, of 
mass •^/2m. This is associated with the short root of the non-affine diagram (see table 7). 
Using (3.24) and (3.23), in either the odd or even cases the invariant combination is a 
mixture of and : 

UnUke the degenerate particles in the cj'^' theories, this couples to all of the others: 

Qnnn q Quah 

23 (3.30) 
C " " " = - - ^ m „ m n s i n C / « „ . ^ ' 

Note that these couplings all obey the area formula (3.9), the Coxeter number of Bn being 

2n. 

This may be obtained by exploiting a X2 symmetry of the non-affine diagram A2n-l, 

which is also a symmetry of Oj^Li: 

2n-2 2n-l 0 1 2 n-1 n 

The automorphism of the roots is 

ocia2n-i i = 1, 2 , . . . , 2n - 1 ao and fixed. (3.31) 

The two roots QQ and a „ form the long roots of CnK Recalling the basis (3.13), 

it is clear that the transformation 

* 7i - 7 2 n + l -
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will have the desired effect on the roots. It is implemented by the matrix = -^2n-6'^~"' 

i r - Atlf = - a ; - « 7 * 2 n - a ^ _^-a^-(2n-a)i ^ _ ^ * a ^ ^ _ , (3 32) 

Clearly, A"^ = 1. The effect on the particles of the agli-i theory is, up to a phase, just 

to swap particle with antiparticle. The particles of the c|î ' theory are to be found in the 

subspace invariant under the transformation (3.32). As A preserves each eigenspace of 

the mass^ matrix and each eigenspace has a one-dimensional A-invariant subspace, the 

particle spectrum of the ĉ î ^ theory is just that of the a2n-i theory, with the degeneracy 

removed. Explicitly, the real A-invariant combinations of the fields of the a2^'_j theory 

are: 

-^^{4> + A<t>)'' = -^^{r-^"'<p'^''~'') a = l , 2 , . . . n - l , and<^" 
\/2 v 2 

with associated particle masses: 

TUa = 2m sm — , 
2n 

which may be attached to the non-affine diagram as shown in table 7. The three-point 

couplings being trilinear in the fields may now be found as combinations of the couplings 

in the a2̂ _̂2 theory. After some algebra the c|î ' couplings among the first n - 1 particles 

are found to be 

1 23 
C«̂ <̂  = — —^mamfesiniJ^t if a ± 6 ± c = 0 mod 2n a, 6, c = 1, . . . , n - 1 (3.33) 

v2 v 2 n 

while those involving the extra particle n, invariant under the automorphism, are 

fjabn ^ Z ^ ^ ^ ^ j sin U^i, if a + 6 + n = 0 mod 2n 
v 2 n (3.34) 

nnn 

The Coxeter number of Cn is 2n, so (3.34) obeys the area rule (3.9), while there is an 

extra factor of 1/^2 in (3.33). 
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The Z2 symmetry of the Eq Dynkin diagram. 

o o 0=^ 

yields the / j ^ ^ theory. The degeneracy in the ee masses is removed leaving four self-

conjugate particles. Their couplings are (in multiples of 7r/12): 

1 2 4 

1* 2 3* 1 3 r 2 3* 4 3 1 
8 6 2 9 5 11 9 7 3 10 

2 4 1 2 4-
2 2 

8 2 10 11 7 

1* 3* 4- 1 3-

10 8 6 11 9 J 

2" 4 

10 8 

In this table the couplings follow the rule (3.9) with h = 12 (the Coxeter number of F 4 ) , 

apart from an overall sign and a factor of 1/v^ in the cases marked with a *. 

g^^^ = D{G2) 

Finally in the untwisted sector, the Dynkin diagram posesses a three-fold symmetry 

in addition to the symmetry used earlier. This reflects the three-fold degeneracy of fight 

particles in this theory. The invariant subspace under this symmetry yields the g^^ 
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theory: 

O 

The result is a theory containing one fight and one heavy particle of masses -̂ 2771 and 

y/6m, respectively. The invariant combination of the degenerate ^4 particles is simply 

while (f>^ remains unchanged. The corresponding non-zero coupfings are 

= ^ ^ 2 ^2^ ^112 ^ zM-mj Sin Uh C''' = ^ ^ m ? sin Uh, 

where U22 = = 27r/3 and = 7r /3 . The first two coupfings obey (3.9); for the last 

there is an additional factor of 2 / \ / 3 . 

Note the general rule for all untwisted theories that the area formula (3.9) only fails for 

couplings between three particles all of which are associated with short roots on the non-

affine diagram. The correction factor required is l/-v/2 when the length of the short roots 

is 1, and 2/y/Z when the length is y^2/3, corresponding to second and third order diagram 

automorphisms respectively. It is hard to see why such a universal rule should apply — 

the signs of the simply-laced coupfings being combined to make up the non-simply laced 

answers must conspire in exactly the right way in each case. 

Next, the twisted diagrams. For these the area formula always holds, as the couplings 

are always a subset of those in the relevant simply-laced theory, with the value of h always 

being the Coxeter number of the non-affine algebra for the parent, untwisted, theory. 

4 1 , = D^iBn) 

This theory is obtained from the d!^,] theory by folding the diagram using an auto­

morphism which interchanges the two forks: 
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4=^ 

The automorphism of the roots is 

Oli —̂  CC2n-i 

with an remaining fixed; this becomes the long root of a2n-l- ^he automorphism is 

implemented by mapping the basis vectors of (3.20) as follows. 

ei —> -e2n+l-i 

which in turn, given the particular basis (3.21), corresponds to 

;a , la 
''k-l -hn-k 

Noting that l2n-k = {-T'^^^l-v ^l-i component of tk, the mapping 

on the fields is just 

^ • ' ^ ( _ ) ^ ^ i i = l , 2 , . . . , 2 n - 2 . 

Hence, particles corresponding to the fields (j)^ for i even survive the folding, and their 

three-point couplings are unchanged since they already lie in the invariant subspaces. In 

addition, the vector-^(0, 0 , . . . , 1, - 1 ) in the subspace of mass y/2m also remains. This 

is precisely the particle s' used in the 4 n theory (2n is even, so the real basis is natural). 

In other words, the spectrum is 

,2 _ „;„2 jfc = i , 2 , . . . , n - l a n d m 2 = 2 m 2 Tn| = 8m sin 
2 n - l 

with couplings extracted from (3.25) and (3.28), with n replaced by 2n. 
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This, the simplest case, comes from the symmetry of the extended diagram d̂ ^̂ j which 
flips the two forks, leaving everything else alone: 

O — • • O :3̂ _0 o • • —0=^ 

In order to interchange QQ with cti and with an+2, the sign of both ei and e„+2 must 

be reversed. As in the case of bn \ the nondegenerate particles cj)^,..., (j)^ are unaffected 

by this and so survive unchanged in the truncated theory. However, there are now no 

invariant vectors in the subspace spanned by e\ and e„+2, so the degenerate pair of 

particles s and s' are lost. Hence, the masses are given by (3.22) (b) and the couplings 

by (3.28) with n replaced hy n + 2. 

The Z2 symmetry of the 67̂ ' diagram yields ê '̂  (2). 

O 0=^ 

whose masses are a subset of those for 67, i.e. 

TT 2-K 
mi - ^y/Zm'- sm — sm — -

lo y 

m\ = 8v/3m'' sin — sin -
lo y 

7715 = 6m^ 
<> „ 2 • T̂T . 47r 

mf = 8v3m'' sm — sm — 
lo y 

and whose coupfings are given in the table: 
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4- 7 
2" 4 5" 2 5 2" 4 7" 5- 7 2 
12 8 2 14 8 17 13 3 16 10 

4 5 7- 2 4 7- 4 5" 4 
12 10 4 15 13 7 16 14 

4 

5 2" 4" 7" 5 
12 17 15 11 

2 5 - 7 7 7 
16 14 12 

This is a subset of table 10. 

The e^}^ diagram has a threefold symmetry: 

The resulting theory contains just the two heavy particles 2,4 of the Cĝ ^ theory, with the 

couplings given in table 9. 

= GD{Hn) 

This case comes from the 4n+2 theory via the folding: 

0=^=0 o— • —0=^ 
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Alternatively, for n > 1 this can be viewed differently, exploiting the residual symmetry 
(2) 

of the a2n+i diagram: 

4 = o 

This way of looking at the folding makes it easy to see that the effect is simply to remove 

the particle with mass V ^ m from the a^n+l theory, leaving all else unchanged. 

= GD{BD) 

The picture here is: 

O O O 

giving a^^\ the BuUough-Dodd theory, which contains just one particle with a three point 

coupling equal to C^^^ in the d}^' theory. (1) 
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Chapter 4 

The Quantum Theory 

4.1 Conserved Charges in Affine Toda Theories 

The aim of this chapter is to find, if possible, the S-matrices for the affine Toda 

theories described above. Higher spin conserved charges played a very important part in 

the considerations of chapter two, and so the first step must be to look at these. This first 

section will describe the results of such a study, using the bootstrap consistency conditions 

(2.24): 

7f = 7 ^ - " ^ - + 7fe"^'". (4.1) 

For the Toda theories it turns out to be possible to obtain the complete solution to these 

equations. 

In some senses this section is still dealing with classical issues: the process leading to 

(4.1), illustrated in figure 12, is at tree level when the non-vanishing three point couplings 

C°^'^ are the lowest order couplings obtained in the last chapter. It is important to 

realize that in the quantum theory the consistency conditions may be modified. First, the 

masses will renormalize, and this may change the fusing angles. This will be discussed 

to one loop in a subsequent section, with the conclusion that while for the simply-laced 

theories the angles do not change, there are difficulties for all non simply-laced cases. 

Secondly, ail vertices should be 'dressed' since loop diagrams coupling three particles 

also contribute, and there may be extra couplings arising from such diagrams even when 

the direct three point couplings vanish, giving further consistency conditions. Such a 

possibihty will be ignored below — only 'classical' three point couplings will be used — 

but for the quantum theory to be consistent with the results presented, some form of 

'topological' non-renormaUzation theorem is needed, stating that couplings zero to lowest 

order in the coupling constant remain zero at higher orders where loop diagrams are 

present. (Note that for the consistency conditions (4.1) it is only the fact that a coupling 

is non-vanishing that is relevant.) This has now been checked in a few casesj '̂ "' but 

for now the only general statement that can be made is that any extra vertices arising 
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from quantum corrections would be felt in the S-matrix in the appearance of 'unexpected' 
simple poles in the physical strip. Below it wiU be shown that for the simply-laced theories, 
consistent S-matrices can be postulated which do not have any extra simple poles beyond 
those predicted by the classical data.* The consistency conditions (2.23) for S-matrices do 
seem to be essentially quantum mechanical — this Wcis remarked on at the end of chapter 
two and can be given intuitive justification from the fact that.the diagram in figure 11 
involves a loop. Thus for the simply-laced models, the conserved charges are involved in a 
circle of consistency checks which at least at some stages involves the quantum aspects of 
the problem. These theories wiU be treated first and in some detail, with the non-simply 
laced cases receiving a mention at the end of the section. 

Thus the initial concern will be with the affine Toda theory bcised on a simply-laced 

affine diagram itself the extension of one and only one non-affine diagram G by the 

highest root. Two features of the affine Toda theories will be relevant, and wiU be restated 

here. 

The first is given by equation (3.10). The non-zero three point coupfings are such that 

the angles are always 'nice' numbers: for afi allowed fusions ab c, 

U'l, = ^.integer, (4.2) 

where h is the Coxeter number of G. Together with (4.1), this impfies that a solution 

{ 7 " } at spin 5 will also satisfy the consistency conditions pertaining to spin s -)- 2h. Since 

this set of numbers also solves the equations for - s (true independently of (4.2)), this 

demonstrates that all solutions to (4.1) are known once spins in the range 1 to /i have 

been examined. 

The second feature to note is (3.8), that if the particle masses are arranged into a 

vector (mi , m 2 , . . . rUr), this turns out to be an eigenvector of the Cartan matrix of G , the 

eigenvector of lowest eigenvalue, 2 — 2 cos ^. 

Given that the particle masses are just the numbers { 7 ^ } (equation (2.4)), it is natural 

to hope that the higher spin conserved charges might have a similar characterization, and 

this is indeed the case. The result (independently noted for the simply-laced cases in 

[14]) is that the spin s, modulo the Coxeter number of G , must be an exponent of G 

* For reasons to be described later, the simple poles are occasionally masked by higher order odd poles; 
a fuller statement is that no odd-order poles ever occur at rapidities other than those predicted from 
the fusing angles given in the last chapter. 
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for there to be a nontrivial solution to (4.1), and for such an s the vector ( 7 ] , 7 a , •. . 7 ^ ) 

is the eigenvector of the Cartan matrix of G with eigenvalue 2 — 2cosiTs/h. Together 

with the observation above that only the first h spins need to be examined, this serves 

to characterize the ratios of conserved quantities at all possible values of spin. This is 

the most one can hope for, (4.1) being a set of homogeneous equations. Information on 

overall normalization would probably need more specific details of the theory concerned. 

The result will be estabUshed for each algebra in turn, though obviously it would be 

preferable to have a general understanding. Also, while every relation implied by (4.1) 

could be checked for consistency, without this general understanding this would not be 

very edifying. Rather, a convenient route through the bootstrap will be indicated for each 

case. Different choices often lead to apparently very diff"erent expressions; it is interesting 

to check that for s an exponent of G the values of these expressions are indeed the same. 

It is convenient to take real and imaginary parts of (4.1). This yields: 

7 f = 7 « cos sU',, + 75 cos sU^, (4.3) 

^^smsU',, = ^',smsU^, (4.4) 

All angles appearing in these equations will be integer multiples of 63 = -Ks/h, by (4.2). 

The spin s will be taken in the range 1... h, and to be an exponent of G. 

An, 0s = -^s/in + l ) 

This case is particularly simple as 

l a — * a-|-l 

is always an allowed fusing. Equation (4.4) becomes 

7 " sin 83 = 7 ] sin a9s 

so picking 7 ] = sin 9s gives 7^ = sin a^^ and the eigenvectors of the An Cartan matrix are 

reproduced for 5 = 1 ,2 , . . . n. 
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Dn, 03 = 7rs /2(n - 1) 

The cases n even and n odd are slightly different. 

(a) n odd: 

Let a be an odd integer between 1 and n - 2. Equation (4.3) for 

s s —>• a and s J —>• a 

is 

73̂  = 27," cos(n - 1 - a)^, 

= 27f cos(n - 1 - a)^5. 

Hence for 5 7̂  n — 1, 7 I = 7 , , while for s = n — 1, 7" = 0 and the 'crossed' process s a —* s 

is sufficient to show that 7^,^ = -In-l- ^^^t let b be an even integer. The fusing 

s s b 

together with equation (4.3) shows that 

7* = (7 . ' + 7 f ) c o s ( n - l - 6 ) ^ . . 

So for s = 1, 3 , . . . 2n — 3 the conserved quantities are 

( 2 c o s ( n - 2 ) ^ 5 , . . . 2 c o s ^ 5 , l , l ) 

while for s = n — 1, the result is 

( 0 , 0 , . . . 1 , - 1 ) . 

(b) n even: 

The story is much the same here. The fusings s 5 —> even, s's' —> even and s s' —)• odd 

give, for s 7^ n — 1 , 

7s 7s > 

7« = 2 7 ; c o s ( n - l - a ) ^ „ 

where a is any integer from 1 to n — 2. There turns out to be no constraint between j^-i 

and 7^_i (this reflects the doubfing up of the Dn exponent at n — 1 for even n). It is 

convenient to take them to be ( 1 , 1 ) and ( 1 , —1), in which case the pattern of conserved 

quantities already found for n odd is reproduced. 
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E6, Ba = TV3/12 

Setting 7] = sin ^ 3 , 

1 3 ^ 4 7J = sin 2^ ,̂ 

1 4 - ^ 3 7^ = sin9^3 = sin3^a, 

(the last equaUty holding for all relevant values of s) 

1 3 ^ 1 7J = sin 100,, 

1 3 - ^ 4 =^ 7] = sin 11^3, 

4 4 - ^ 2 =^ 7^ = sin80, - sin203. 

Equation (4.3) is needed for the final equality, (4.4) being used for all the rest. 

E7, ds = 18 

Take 7] = sin^,. Using (4.4), 

1 4 ^ 6 7,̂  = sin20,, 

1 6 ^ 4 => 7̂^ = sin 1503 = sin 30,, 

1 6 7 =^ 7J = sin 140, = s i n 4 0 „ 

the second equaUties in the last two equations holding for all odd s. Next (4.3) is used, 

as follows: 

4 4 ^ 5 7,̂  = sin 70, - sin 30„ 

1 1 ^ 2 7̂  = sin 60, - sin 40„ 

5 6 3 7̂  = -^(sin 90, - sin 70, + sin 50, - sin 0,). 

Es, Oa = 30 

Again, set 7] = sin0,. Using (4.4), and assuming s to be odd since this is true of all 

the £'8 exponents, 

1 3 - * 5 = » 7 j = s i n 2 0 „ 

1 5 3 7f = sin30,, 

1 7 ^ 8 = > 7 j = s i n 4 0 „ 

18-^7=>7.? = sin5^,. . 
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For the final cases, (4.3) is simpler. 

3 3 -> 6 7^ = sin 8̂ 5 - sin4^s, 

1 1 2 =J> 7̂  = sin - sin 5^ ,̂ 

5 5 4 7^ = sin 14^^ - sin 8^ .̂ 

Reference should be made to table 8 for the full set of results. Note that these are 

in agreement with the result (2.27) for charge-conjugation properties — in particular, the 

even-spin charges are always zero on self-conjugate particles. Either by explicit calculation 

or by comparison with the table in [59], i t is easy to check the claimed result that these 

are the eigenvectors of the relevant Cartan matrices, each with eigenvalue 2 — 2cos^s. 

Non simply-laced theories 

The nature of these cases has already been mentioned in the discussion of folding. 

Briefly, the situation is that for the untwisted theories, the folding increases the number of 

couplings among the remaining particles and the consequently more stringent consistency 

conditions reduce the set of conserved spins down to the exponents of the non simply-laced 

algebra. The twisted theories have no new consistency conditions among the remaining 

particles, as their couplings are the same as those of the parent theory, but as the conserved 

charges are realized on a smaller set of particles, some become trivial. Thus the set of 

spins is again reduced, this time down to the set of exponents relevant for the twisted 

affine diagram. This has not been mentioned before, but in fact exponents can be defined 

directly for the aflSne diagrams!"^ For the untwisted affine diagrams, these exponents are 

the same as those of the corresponding non-affine diagram listed in table 3. For reference, 

the exponents for the twisted diagrams are given in figure 13, and for the classical twisted 

affine Toda theories, these are known to be the spins of the conserved charges. Thus the 

conclusion is that in all cases the bootstrap consistency conditions (4.1), when used with 

the tree level three point couplings, give results in accordance with those known for the 

classical theories. 

The remainder of this section deals with the non simply-laced theories in turn. In all 

cases, the actual values of the charges may be extracted from those for the parent theory 

shown in table 8. 
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Diagram Coxeter 

Number 

Exponents 

4 n - 2 1,3,5,... 4n - 3. 

.(2) 2n + 2 1,3,5,... 2 n + 1. 

12 1,5,7,11 

^6 18 1,5,7,11 13,17. 

^2n 4n + 2 1,3,5,... 2 n - l , 2n + 3 , . . . 4 n + 1. 

Figure 13 : Exponents for the twisted diagrams. 

First, the untwisted theories. For these, the eigenvalue result for the masses generalizes 

to the higher spin charges just as for the simply-laced theories. 

6jJ \ Os = x s / 2 n 

This theory descends from d^^l^, the only changes being that rather than two degen­

erate particles s, s' there is now a single particle n, of the same mass, with rather more 

couplings than either s or s' individually (see (3.30)). The effect of these changes is to 

remove the 'extra' conserved charge of spin n possessed by the theory (the second 

vector of the D entry in table 8). The mechanism is slightly different for n odd or even. 

When n is odd, there are two independent charges of spin n in the d''^^^^ theory. 

However they are both zero on particles 1,2,.. . n - 1, being distinguished only by their 

values for the 5 and s' particles. With only a single particle (n) remaining of these two in 

the bn^ theory, this distinction vanishes and the two charges become identical. 

For n even, the 'extra' charge has even spin. Al l particles in the bn^ theory are self-

conjugate, so the result (2.27) can be used to see that this charge must vanish in the 

folded theory. Alternatively, the fact that the fusings n n —* a and n a n both occur 
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establishes the result directly. 
<4^\ da = 7rs/2n 

This case comes from a 2 n - l ' which has charges at spins 1, 2 , . . . 2n - 1. All particles 

in the folded theory are self-conjugate so (2.27) can be used again to see that the even 

spins in this list must be lost, leaving the charges with spins 1,3,... 2n - 1, the exponents 

o f C „ . 

The same reasoning applies here: all particles are self-conjugate, so spins 4 and 8 of 

the parent ê ^̂  theory are removed leaving 1,5, 7 and 11, the exponents. 

The parent theory is d!"^^ here, which has three mass-degenerate Hght particles. These 

three are replaced by a single particle (f)^ in the g^^ theory, which now has the '0^ property': 

there is a three-point coupling C^^^, in contrast to the situation in the original theory. The 

other, heavy, particle is unchanged from that in the parent and also has the (j)^ property. 

The bootstrap equation (4.3) for such a particle becomes 

( 1 - 2 cos ^5)7] = 0, 

from which i t is clear that conserved charges can only be non-trivial on the g^2^ particles 

if s = 1 or 5 modulo 6, precisely the G2 exponents. 

Finally, the twisted theories. 

4 n - i ' 0. = W ( 4 n - 2 ) 

This comes from 4 n > particles 2 ,4 , . . . 2n - 2 and s surviving from the original 

set { 1 , 2 , . . . 2n - 2, s, s'}. The extra charge of spin 2n - 1 is lost in the same way as 

happened for 6̂ ^̂  above, leaving spins 1, 3,5, . . . 4n - 3. 
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The parent here is (i^^^j ' " ^ i ^ ^ both mass-degenerate particles being lost. Again, this 
removes the extra charge at spin n -t- 1 so the spectrum of spins is 1, 3, 5,. . . 2n + 1. 

d[^\ es = iT3/i2 

Only the two self-conjugate particles 2 and 4 remain from the ê *̂ parent. As is easily 

checked from table 8, the even spin charges P4 and Pg vanish on these (as of course they 

should, given (2.27)). The remaining charges, which are non-vanishing here, have spins 
(3) 

1,5, 7 and 11, the exponents of 0̂4 . 

e^^\ es = ir3/18 

Particles 2,4,5 and 7 remain from the parent theory, ê ^̂  This theory had charges 

of spin 1,5,7,9,11,13 and 17, but from the explicit expression in table 8, the charge 

of spin 9 vanishes for these particles leaving the exponents of eĝ ^ shown in figure 13. 

Alternatively, note that all four remaining particles have the <f)^ property, and so can only 

support charges of spin 1 or 5 modulo 6, which rules out the spin 9 charge. 

This theory comes from t^2n+2' alternatively by a further folding of a2n+i- "^^^^ 

removes the remaining particle of mass y/2m, and the charge at spin 2n -|- 1 becomes 

trivial. The conserved spins are thus 1, 3, 5,. . . 2n - 1, 2n -I- 3 , . . . 4n + 1, as required. 

4.2 Fundamental S-Matrix Elements 

Assuming that the results of the last section hold good when vertices receive their 

quantum corrections, i t is easily checked from table 8 that the conserved charges distin­

guish all particles in the Toda theories, even when there are mass degeneracies. Hence, 

in the absence of any further subtleties the scattering theories are expected to be of the 

purely elastic type described at the end of chapter two. At this stage, such a claim rests 

on only a small amount of evidence, none of which probes the quantum aspects of the 
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problem, and so it is best thought of as a working hypothesis to be justified or otherwise 
later, by the consistency of its consequences. In fact, there turn out to be difficulties for 
the non simply-laced theories, indicating that the claim that all scattering is purely elastic 
is indeed non trivial. These problems will be commented on as they arise, and are most 
apparent for the untwisted non simply-laced cases. 

However, i f the scattering is purely elastic, i t should be possible to postulate a 'fun­

damental' S-matrix element between two suitably chosen particles of the theory, and then 

deduce the rest by use of the S-matrix bootstrap equations, (2.23). The object of this 

section is to obtain the fundamental S-matrix elements, while in the next the remainder 

of the S-matrices will be computed, a process which will provide numerous consistency 

checks. 

The first question is which S-matrix elements are fundamental, in the sense of fully 

determining the complete S-matrix via the bootstrap. It is helpful to think of the rather 

better-understood situation of the conserved charges first. Given that the bootstrap de­

termines the values of a given charge Qs on all particles up to an overall normalization, 

specifying the value of Qs on any single particle a for which it is not identically zero serves 

to fix that charge completely — the value of 7̂  for any other particle b must follow from 

73 via the bootstrap, and can be found using table 8. In view of the close correspon­

dence between the S-matrix and conserved charge bootstraps, a reasonable hypothesis is 

that the S-matrix element 5aa of any particle possessing the full set of conserved charges 

will be fundamental. For example, in the ê ^̂  theory, only particles 1,3 and 6 have a 

non-vanishing value for the spin 9 conserved charge, but any one of these should do as 

a starting point for the bootstrap. The only subtlety comes when there is a repeated 

exponent, say r, and only arises for the diWn theories. In such cases, knowledge of the 

single fourier component (see (2.26)) of the logarithmic derivative of the S-matrix 

does not fix the value of t"'' for all the other particles, since there are two independent 

solutions to the spin r bootstrap equations, one for each exponent. Hence it would be 

expected that a single S-matrix element, even involving a fundamental particle, does not 

contain sufficient information. For these theories it is better to view the situation as there 

being two fundamental particles, a and 6 say, with 7" = 7̂  when s ^ r, while 7" and 

7r are independent. The algebraic structure of the bootstrap then permits 5aa, Sab and 

Sbb to be postulated with some degree of independence, corresponding to the freedom to 

specify certain fourier components of their logarithmic derivatives independently. In fact 

the two fundamental particles for the deven theories are s and s', and it is interesting to 
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see that from a purely algebraic point of view, there is indeed some freedom to specify 
the corresponding S-matrix elements independently. However, physically i t is aiways clear 
what should be postulated, so there are no problems arising from this extra freedom. 

Having chosen a particular fundamental particle, a say, a hypothesis must be made for 

the meromorphic function 5'aa(^)- The key idea here is to use both perturbative and non-

perturbative information for this — the perturbative input coming in the form of low-order 

Feynman graphs which are expected to dominate for small values of the coupling constant, 

the non-perturbative information being the requirements of crossing and unitarity. As 

explained in the final section of chapter two, crossing and unitarity together imply that 

purely elastic S-matrices are built from quotients of hyperbolic functions, the basic block 

(x) being defined in equation (2.18). 

Simple poles with positive residue in the physical strip are expected to correspond 

to bound states, themselves possible asymptotic states, and in perturbation theory such 

poles may be found in tree level diagrams as drawn in figure 8. The pole is at 5 = iU^^, 

where is the fusing angle and c is the intermediate bound state. Cross-channel poles 

are also to be expected, with opposite residue. If perturbation theory is valid then at least 

for small values of the coupling constant it should be possible to predict the positions of 

all physical poles in Saaj by examining a finite number of Feynman diagrams. 

As will be explained in more detail later, there is also a possibility of higher order 

physical poles. These have a straightforward explanation in perturbation theory, but are 

rather harder to spot. For this reason it is most convenient to choose the lightest of the 

fundamental particles as a base for the bootstrap, as a simple argument shows that the 

S-matrix elements of such particles are never expected to have higher physical poles of 

this type. 

Assuming this to be the situation, the physical pole structure is easy to predict, and 

can be encoded into a 'minimal' S-matrix element possessing no further poles, even off 

the physical strip. There will be one building block (x) for each pole, ( i ) having a single 

simple pole in 9, at iTx/h. (The reason for the appearance of the factor Tr/h in the 

definition (2.18) should now be clear — the poles occur at the relevant fusing angles, 

themselves integer multiples of 7r//i by (3.10). Inserting this factor ensures that x is an 

integer.) 

For example, particle 1 in the a j / ' theories can be taken as fundamental. From (3.16), 

there is a fusing 1 1 n - 1 = 2, with fusing angle 27r/A, and no further poles are 
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expected in either forward or crossed channels. Hence the postulated minimal S-matrix 

element for 1 1 scattering in the an ' theory is 

ST = (2), 

an S-matrix which was examined independently of Toda theory by Koberle and Swieca.'*"' 

The residue here is of the correct sign — this follows immediately from the correctness of 

the residues in the modification of this S-matrix to take account of the coupUng constant, 

a result to be established in a later section. 

A more complicated case is the s s scattering in the dn^ theories (for which h = 

2(n - 1)). I f n is even, there are fusings 5 5 a for a = 2, 4 , . . . n - 2 at fusing angles 

2(n — 3)7r//i, 2(n — 5)7r//i , . . . Gir/h and 2TT/h respectively. Al l particles are self-conjugate 

so the crossed channel poles occur at i-K minus the forward channel rapidity, ie with angles 

4Tr/h,8n/h,...2{n - 2)7r//i. Note the neat way in which forward and crossed channels 

mesh together, their poles alternating across the physical strip. This means that the signs 

of the residues of a simple product of building blocks will behave correctly: 

n-2 

The same form (although without the minus sign) turns out to be correct when n is odd, 

noting that s is no longer self-conjugate so the fusings relevant to the crossed channel in 

s s scattering are between s and s. 

When the untwisted non simply-laced theories are considered, difficulties start to 

emerge. Rather than going through each case, the bn^ theory, which descends from 

the cf|j''|j theory treated in the last paragraph, will serve as an example of the prob­

lems found. Particle n, the folded remnant of s and s', should still be taken as fun­

damental (no other particle has all conserved quantities nonvanishing). Referring to 

(3.30), this couples to all the other particles, so forward channel poles are expected at 

2(n — l)7r//i, 2(n —2)7r//i,.. An/h and 2x / / i . The problem becomes clear when the crossed 

channel is considered, as the same set of angles appears, this time requiring poles with 

opposite residues. Thus the forward and crossed channels 'clash', and the simple reasoning 

given above cannot be used to postulate a minimal S-matrix. There are other reasons why 

the non simply-laced theories are expected to have difficulties, to be mentioned below. 
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For now, suffice it to say that similar problems of clashing channels occur in all untwisted 
cases. The twisted theories, their particle contents being simple truncations of those of 
the parent theory, do not run into the same immediate trouble, and their S-matrices can 
be postulated to be suitable sub-matrices of the simply-laced ones. However other prob­
lems, in particular renormalization difficulties, occur here also. Hence for the time being, 
discussion will be restricted to the simply-laced cases. 

Minimal S-matrices can be found for the e series theories in a similar fashion to that 

described above for a and d. By (2.17), they are (up to a sign) fully determined by the 

locations of their poles and zeroes in the physical strip, and this information is most 

simply given in pictorial form. Figure 14 collects together the results for all simply-laced 

theories, showing representative examples for a, dodd and d^ven- The complex plane has 

been rotated by 90 degrees, the imaginary axis being marked in units of ir/h in each case. 

Double arrows denote forward channel poles, single ones crossed channel poles wdth the 

opposite residue. The crosses above the imaginary axis show zeroes in the physical strip 

which are not present in the minimal S-matrices, since by the unitarity equation (2.17) 

a zero on the physical strip must be accompanied by a pole on the 'unphysical strip', 

while the minimal S-matrices have been specified to have no additional poles. The zeroes 

are relevant to a correction factor incorporating the coupling constant, to be introduced 

below. 

The bootstrap equations (2.23) may now be used for each forward channel pole to 

deduce further S-matrix elements, and from these more still. This will be described in 

detail in the next section, the result being that the whole process closes on a finite set of 

S-matrix elements, revealing the presence of exactly the expected number of particles on 

the basis of the Toda theory, with precisely the classical mass ratios and fusing structure. 

This is an important consistency check. 

The minimal S-matrices, with no further poles or zeroes over those demanded by 

the bound state fusings, are precisely those that have been linked with perturbations 

of conformal field theories — for example, the minimal eĝ ^ S-matrix for the magnetic 

perturbation of the Ising modelj^' or the minimal Cĝ ^ S-matrix for the (f>2i perturbation 

of the three-state Potts model.'̂ '̂ Since the fusing structure implied by the poles of each 

minimal S-matrix is exactly that following from the three point couplings in the classical 

Toda theory, the calculations in the last section demonstrate that these theories can 

indeed have conserved charges with spins at the exponents of the relevant algebra. Thus 

they form perfectly acceptable candidates for the S-matrices of the particular perturbed 
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Figure 14 : Poles and zeroes of 5 i i (^ ) in the physical strip. 

f|- : forward pole; T : crossed pole; x : zero; : movement of the zero for small /?. 
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conformal theories discussed at the end of chapter one. 

However they cannot be quite right for the Toda theories, as they contain no mention 

of the coupling constant. The perturbative approach adopted here requires that as /3 —+ 0, 

the theory becomes free and the S-matrix trivial. It might also be expected that quantum 

corrections would give the mass ratios some coupling-constant dependence, and hence 

that the positions of the physical poles would change from that encoded in S°^^°. It seems 

that this does not occur— for example, a one-loop check of the mass corrections for the 

simply-laced Toda theories reveals that the masses renormalize together in such a way 

that their ratios are unchanged (this will be described in a later section). The algebraic 

structure of the bootstrap equations (2.24) and (2.23) appears to be so tight that any 

continuous change in their parameters {ie the numbers U^^, determined from the mass 

ratios) destroys their solubility, and so the mass ratios are 'frozen' at their classical values 

even in the quantum theory (this situation can be compared with that in conformal field 

theory where the scaling dimension of the energy-momentum tensor does not renormalize). 

Hence, it is natural to a s s u m e t h a t the ful l S-matrix element can be written as: 

S(e- (3) = S"'^{e)F{e, P) where F{e, 0) = {S'^^{0))-\ 

the condition on F arising from the requirement that S{0, 0) = 1. There are a number of 

further conditions on F which turn out to determine i t almost completely. 

First, the unitarity and crossing equations holding for S'^^"^ must also hold for F, 

so that they hold for the full S-matrix. This means that F is also built from the ( i ) 

functions. 

Next, note that 5'""* already contains all the bound state poles required by pertur­

bation theory. Hence F(6, (3) should not have any physical strip poles in 6, at least for (5 

smcdl enough that perturbation theory applies. 

Furthermore, the signs of the pole residues in 5™'" identify forward and crossed chan­

nel poles correctly, so F must not change these. In particular F can never introduce an 

odd number of zeroes into any segment of the physical strip between two physical poles. 

F must respect the bootstrap. Since it has no physical poles, it does not give rise 

to any new bootstrap equations, but once Fw has been proposed, the correction factors 

for all other S-matrix elements follow via the existing bootstrap, in an overdetermined 

fashion which must be consistent. The other factors so deduced must then respect all the 

consistency conditions already given. 
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Finally, for small 0 perturbative checks can be made against tree level Feynman 
diagram calculations. Details of this will be given later — the area formula (3.9) turns 
out to be important. 

Now let have poles at iuji,iuj2,. •. iijJp. F is expected to introduce a set of zeroes 

into the physical strip, with positions that vary continuously with /?. At /3 = 0, there 

must only be zeroes at iuji,.. Aup, cancelling the poles of Sai\n- Hence as /3 0, the 

zeroes of F must either tend to these points, or migrate to the edge of the physiccd strip, 

where they will cancel against unphysical poles impUed by (2.17). Thus at least for small /3, 

F{9,/3) has zeroes at i{u!i + bi{f3)),... i{ujp + bp[l3)), where each bi{(3) tends to zero with (3, 

together with some number of zeroes near 0 and iir. To preserve the signs of the residues, 

the signs of the derivatives of the bi's at /3 = 0 must alternate. In fact cancellations needed 

for the consistency of the bootstrap require that the zeroes at different locations behave 

consistently, with 6i = 63 = . . . = -B{P), say, and 62 = "̂4 = • • • = C{I3). Tree-level 

perturbation theory confirms this, and establishes that C'(0) = B'{0). (Actually, since 

the theory is unchanged by sending p to —(3, there is no linear term in B or C, and 

the derivatives here are with respect to /3^.) Once the crossed channel process has been 

deduced via the bootstrap, the additional input of crossing symmetry (2.17) implies that 

C{P) = B{0). The fact that the first pole (at u/i) is forward channel in each case means 

that B'{0) > 0. 

The bootstrap also determines the positions of any zeroes which leave the physical strip 

as /3 —»• 0, using the fact that each fundamental S-matrix element has a forward channel 

pole at 2iTr/h. The bootstrap equations (2.23) appropriate to this fusing angle yield an 

S-matrix element with a cross-channel pole at iir/h. The logic of the last paragraph also 

applies to this new function and requires that the pole at ZTT/ZI be accompanied by a zero 

at iir/h + iB, which in turn implies that the original, fundamental, S-matrix must have 

had a single zero near 0, at iC{f3). For self-conjugate theories, there must also be a zero 

at i(7r — B), but that is all — anything more would be violate the restrictions on F given 

above. 

These results are shown for each theory in figure 14, the zeroes being marked by 

crosses above the imaginary axis together with their direction of travel as increases 

from zero. A particularly simple structure is visible in the completed picture, namely that 

the zeroes of F always occur in pairs, 2Tri/h apart when (3 = 0. When following through 

the bootstrap it turns out that these pairs are always preserved, cancelling against each 

other as single units; this is where the requirements that 61 = 63 = . . . = - 5 and 
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62 = 64 = . . . = C came from. Once these conditions have been met, the bootstrap will 
work for any value of B and C, and hence for all (3. Note that for the coupUng-constant 
dependent piece F to be consistent with the bootstrap in this way, pole structure of the 
minimal S-matrix, derived before the coupling constant was mentioned, had to be of just 
the right form. 

This pairing of the zeroes motivates the introduction of a new building block for the 

Toda S-matrices, defined in terms of (x) as follows: 

(For convenience, the normalization of B has been changed by a factor of I//1 from that 

of the last paragraph.) This block seems to be more than a mere book-keeping device — 

it has many useful properties, and is the largest portion of the S-matrix which maintains 

its integrity throughout the bootstrap. 

As a function of 9, {x} has poles in the physical strip at 27r(x - l ) / / i and i7r{x + 1)1 h, 

though recall that (0) = 1, {h) = - 1 , and so {1} has only a single physical pole at 

2mIh, and {/i — 1} a single physical pole at {h — 2)iir/h. Thus the full (coupUng-constant 

dependent) S-matrix element for 1 1 scattering in the a theories is simply {1} . {x} crosses 

to {h — x } , and using (2.19) it is possible to gather together other useful properties: 

{Q} = {h} = l { x } - ^ = { - x } {x} = {x±2h}. (4.6) 

One more property of this block will be remarked on here: in obvious notation, 

{X}B = {x}2-B. (4.7) 

This feature is inherited by any S-matrix built from these blocks, and is easy to see for the 

fundamental S-matrices in the pictures of figure 14. It has a bearing on the one remaining 

ambiguity in the proposed S-matrices: the dependence of B on /?. I f there are to be no 

extra physical poles for any real /3, then it is easily seen that 5(/3) must lie between 0 and 

2. Given (4.7), it is tempting to suppose that B(/3) ^ 2 as /3 ^ 00, so that the theory 

becomes free again in the strong coupling limit. The function 
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has the desired property, 'duality' between strong and weak coupUngs appearing as 

B { j ) = 2-B{p) 

so that 

{^}4.//? = {xh- (4.9) 

The overall factor l/27r in (4.8) is fixed by tree level diagrams (its universality for all 

Toda theories is a curious fact), but beyond this the hypothesis is highly non-perturbative 

and rather hard to check. For the a theories it was proposed years ago by Arinshtein, 

Fateev and Zamolodchikov,'"' and this section concludes with a description of one of the 

motivations for their hypothesis. 

In the initial discussion of the On theories, i t was stated that the ai theory (the sinh-

Gordon model) appeared to be special in that there were no three point couplings in the 

model. However it is possible to consider the a,i S-matrix proposed above for n = 1, 

at least formally. For h = 2 (the Coxeter number of ^ i ) , {1} has no physical poles, 

just a pair of zeroes at i'KB/2 and i7r(l — 5/2) . This is certainly consistent with the 

absence of three point couplings, and indeed has been postulated independently to be 

the S-matrix for the sinh-Gordon model (see, for example, [62]). The coupling-constant 

dependence proposed there agrees with that given in (4.8). One other interesting remark 

is that the sinh-Gordon model can be thought of as the analytic continuation of the sine-

Gordon theory to imaginary values of the coupling constant. The natural candidate to 

correspond to the single sinh-Gordon particle is the lowest sine-Gordon breather, and the 

analytic continuation of this breather-breather S-matrix element is exactly {1}, with the 

hypothesised coupling-constant dependence. This is an example where 'naive' analytic 

continuation of S-matrix elements in the coupling constant seems to be valid. Things are 

not always this simple. 

4.3 Following Through the Bootstrap 

This section contains the ful l results for the simply-laced Toda S-matrices. These 

provide many checks on the fundamental S-matrices proposed above, since each individual 

S-matrix element can be compared against predictions coming directly from perturbation 
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theory with the original Toda lagrangian. These other S-matrix elements are found by 
use of the bootstrap equations (2.23): 

Sdc{9) = Sda{9 - iUL)Sdb{0 + iU^c)-

For practical calculations, i t is convenient to develop the notation somewhat. First, 

define a shift operator Ty acting in the space of functions on C as 

{ T y i m = f{9 + ^ ) , 

the factor iir/h being inserted for later convenience. The bootstrap equations can now be 

rewritten, without explicit mention of 9: 

Sdc = {r^huL^da){ruu^^Sdb). (4.10) 

A slight subtlety arises here in that Ty does not preserve the unitarity property (2.17), 

and so does not map the functions (x) to other such functions. To get round this problem, 

define 

(x)^ = -"hCj + — ) , 

SO that 

Then 

( - ^ ) + 

Ty{xr = {x + y)+. 

Similarly define { x } ' ' " , exactly as { x } but built from (x)"^ instead of (x). Clearly 

{ x } = - i ^ and Ty{xy = {x + yy. 

Note also that 

( x ) + = - ( x ± 2/i)+ , {x}+ = {x±2h} + . (4.11) 

Bearing in mind that Ty acts distributively on products and quotients, it is now 

straightforward to use these deconstructed blocks to check any given bootstrap relation 

(4.10). The left-hand side of (4.10), Sdc, always turns out to be unitary (as has to be), but 

this relies on sometimes quite involved cross-cancellations between the two individually 

non-unitary terms on the right-hand side of the equation. 
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The On ^ case will be used to illustrate the use of the above, while for the other theories 
only the final results wil l be given. 

As stated earlier, the fundamental S-matrix element here is 5 i i = {1} . This has a 

forward channel pole at iir/h, corresponding to the 1 1 —* 2 fusing. Since = T^I^I 

(4.10) becomes 

Sn = (T_i{l})(Ti{l}) 
. {1}+ {1}+ . 

{0}+ {2}+ 
{ - 2 } + {0}+ 

{2}+ 

{ - 2 } + 
= {2} . 

This has a forward channel pole at Siir/h, and a cross channel pole at iir/h, exactly as 

expected given that the Toda lagrangian predicts fusings 1 2 —> 3 and 1 2 —»• I with fusing 

angles 37r/A and x — ir/h respectively. 

Next, the same 1 1 2 fusing can be used to find ^22: 

522 = (T_i5i2)(Ti5i2) 
_ {2}+ {2}+ 

{3}+ 
- { - 3 } + { - l } + 
= { 1 } { 3 } . 

The simple pole at 4i7r//i is again as expected, given the 2 2 —» 4 fusing, but note that 

this S-matrix element also has a double pole in the physical strip, at 2iTr/h. This is also 

predicted by perturbation theory, as will be explained in the final section of this chapter. 

One more example should make the method clear. The 1 2 - ^ 3 fusing can be used 



The Quantum Theory 107 

to deduce 5 2 3 . = 27r/h, C/23 = TT/ZI , so 

523 = (^2'S'i2)(Ti522) 

-(T J 2 i l u r - l l i l £ i l _ i 
y'-\^2}+'^ ^{-l}+{-3}+> 

^ {Q}+ { 2 } + { 4 } + 

{ - 4 } + { 0 } + { - 2 } + 

= { 2 } { 4 } . 

Note the intricate way in which the terms on the right-hand side of the equation gather 

themselves up into unitary combinations. 

Eventually, additional cancellations occur owing to the periodicity of {x}"*" in x, equa­

tion (4.11), and the bootstrap closes, on exactly n particles. The general S-matrix element 

is 
Sab = {|a - 6| + l } { | a - 6| + 3} . . . {|a -h 6| - 1} 

= n w -

s t e p 2 

The closing of the bootstrap can be seen in the cancellations that occur within this 

expression i f both a and b are larger than n/2. For example, consider Sn = Snn- The 

expression (4.12) gives this to be 

{ l } { 3 } . . . { 2 n - 3 } { 2 n - l } , 

but, recalling that h = n + 1, (4.11) (or, in this case, (4.6)) implies that 

{2n -p} = {2n-p- 2{n + I)} = { - p - 2} = ({p + 2])~\ 

Hence all terms but the first cancel in pairs, leaving 

Snn = {1} = 5n, 

the result expected on the basis of CT invariance. 

The minimal S-raatrices are obtained from (4.12) simply by omitting the 5-dependent 

part, that is by substituting 

{ x } ' = (x - l ) (x + 1) (4.13) 

for { x } throughout. 
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The fundamental matrix element shown in figure 14 for d'^n^ can be re-expressed in 

terms of the new building block. The result is slightly different for n even or odd: 

5lr '^^ = { l } { 5 } { 9 } . . . { 2 n - 3 } 
h-l 

= n w 
step 4 

Si;'''" = { l } { 5 } { 9 } . . . { 2 n - 5 } 

p = l 
step 4 

If n is even, it turns out not to be possible to deduce all the rest of the S-matrix from 

this information and the bootstrap alone. As remarked earlier, this is a reflection of the 

doubled up exponent of Deven- However, physically there is no doubt what the answers 

should be. Exactly the same reasoning as led to can be used to derive 

Q(even) _ (-•(even) 

5 i : r ' = { 3 } { 7 } { l l } . . . { 2 n - 5 } 

= n 
Step 4 

In contrast, for n odd the fusings 5 s —> 1 and 1 5 —*• s allow the bootstrap to determine 

the corresponding two matrix elements with no further physical input. The results of this 

are: 
C,(odd) _ o(odd) 

5 i f ' ^ = { 3 } { 7 } { l l } . . . { 2 n - 3 } 

h-l 

= n w 
p=3 

step 4 

In fact, both of these could have been predicted in advance. The first follows from CT 

invariance, while the second is just the crossed version of s['f'^^ (recall that [x] crosses 



The Quantum Theory 109 

to {h — x}), in agreement with the charge conjugation properties already assigned to s 
and 5. 

Whatever the vedue of n, the above three matrix elements are sufficient to deduce the 

rest of the S-matrix. The results are of the same form for n even or odd. Letting s stand 

for s' or s as appropriate, 

Ssa = Ssa = { n - a}{n - a + 2} . . . {n + a - 2} 
h/2+a-l 

= n M, 
h/2-a + l 

step 2 

a + i > - l 

5a6= n {P}{h-P}-
-step 2 

Note that the last S-matrix element is just the crossing symmetric version of (4.12). 

As above, the minimal S-matrix can be obtained by substituting {x}', defined by 

(4.13), for {x} in all expressions. A point which will not be expanded on here is that 

these minimal S-matrix elements are very nearly those of the sine-Gordon model at specific 

values of the coupling constant!'*'*'̂ ' 

e ei'^ and e^^ 6 '*̂ 7 

The results for these theories can be found in tables 9a,10a and 11a. To ease the 

comparison of the physical pole structure of these theories with the classical data given 

in tables 9,10 and 11, the minimal S-matrices are shown in the upper right halves of the 

tables, along with the full object in the lower left. All of the 67 and eg S-matrix elements 

are self-conjugate (as are many in CQ), and in order to save space, crossing symmetric 

versions of the two basic blocks have been used whenever possible. These are: 

x] = {x){h-x) and x = {x}{h-x-. 
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4.4 Perturbative Checks of the Proposed S-Matrices 

This section describes some of the progress that has been made in checking the results 

of the last section against perturbation theory based on the affine Toda lagrangian. Such 

calculations will never provide a complete proof of the ansatze made above, but they 

do provide strong evidence for their correctness, as well as revealing many interesting 

features. 

The first task is to justify some of the claims made in earlier sections by checking the 

residues of the simple poles. The exact S-matrices above predict these to be particularly 

simple, as can be seen from the following nice feature of the building block {a;}: from the 

definitions (2.18) and (4.5), it is immediate that 

{-m = 1 + ^ _ _ i)ih + e - +i)/h • • •)' ^'-''^ 

the dots standing for terms which are regular when 6 is in the physical strip. Thus to 

lowest order in /5, the poles in {x} at iir(x ± l)/h have residues ±ip^/2h, independent 

of X, and furthermore within an S-matrix {x} has no effect on the residues of any other 

poles. 

In perturbation theory, the lowest-order contributions to these residues must come 

from tree level diagrams; any corrections will be of higher order in p. In the forward 

channel, the internal propagator and vertices of a diagram such as that shown in figure 8 

will contribute, by the standard Feynman rules, an amount 

Pi -

where, using equations (2.10) and (2.20), 

pI - ml = s - ml = ml-i-ml + 2mamb cosh Oab - ml 

= 2mamb{cosh. Oab - cos U^) 

= -imaTni, s in -{6 + ill) s in -{9 - iU) 

~ 2imamfc sin Vl^iKh - iKh) ^ ^ah iU'^. (4.15) 

Before comparison with the S-matrix is made, the normalization of the external wave-

functions and the flux factor must be taken into account. Near = iC/̂ j, this yields an 
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overall factor 

(4.16) 
Aimamb sin J/^j, 

and so the correctly normalized contribution is 

Now the area formula (3.9) can be used, to find 

03^ 1 
Sab = JffT > (4.17) 

in perfect agreement with (4.14). The crossed residue turns out to be the same same in 

magnitude, but of opposite sign. This justifies the claim made in the discussion of the 

fundamental S-matrix elements that the zeroes associated to forward and crossed channel 

poles moved by equal but opposite amounts for small /? (ie C'(0) = 5'(0)), while the 

correct normalization of the above residues verifies the leading ^-dependence of B{P) 

implied by the hypothesis (4.8). 

This provides a 'universal' proof of the correctness of the leading-order residues of the 

simple poles in all Toda theories. The situation for the higher poles is much more com­

plicated, involving the evaluation of loop diagrams in perturbation theory, and discussion 

of the relevant issues will be postponed until the next section. 

However there remains one question at tree level. Above it was verified that for 

diagonal scattering, the residues of the poles agree with tree level calculations. It should 

also be checked that the amplitudes for non-diagonal {ie inelastic) scattering do indeed 

vanish. It is often possible to find Feynman diagrams contributing to such processes, and 

a check should be made (at least at tree level) that the sum of all relevant contributions is 

zero. Verification of this in all cases would give a 'tree level no-production theorem' and, 

if achieved in a similarly universal way to the above 'residue theorem', would probably 

be very illuminating. Unfortunately, the kinematics becomes much more compHcated 

when the outgoing particles are of diff'erent masses to those incoming, and furthermore 

the cancellations rely on precise relationships among the different non-zero coupUngs, 

and so such a universal understanding of non-production is lacking. However in all cases 

that have been checked to date (including all the An^ theories'"' ) the theorem holds. 
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so there seems little reason to doubt its truth. In fact, it also holds in non simply-laced 
theories, perhaps implying that this, like the solution to the conserved charges bootstrap, 
is essentially a classical result. 

Rather than go into details, the d^^^ theory will be used to illustrate some features 

found in all cases. This is a theory with three light particles, and one heavy. There is 

complete symmetry between the light particles and so, in contrast to the usual notation 

for d theories, these will be labelled /, and I". They each have mass ^y2m, while h, the 

single heavy particle, has mass y/6m. The non-vanishing three-point couplings are: 

(4.18) 

(The discrepancy with the set of couplings quoted in [7j and [8] is explained by the fact 

that combinatorial factors have been omitted in the definition (3.7) of the Toda couplings 

— if such factors had been included, they would have been reabsorbed into symmetry 

factors when evaluating Feynman graphs, so the conventions chosen here are simpler in 

practice.) The fusing angles are all multiples of tt/A = 7r/6; a representative subset is: 

(4.19) 

This data is illustrated in figure 15. 

Figure 15 : couplings and fusing angles. 

For a full tree level calculation of 2 ^ 2 scattering, diagrams involving a four point 

coupling should also be included, contributing a constant factor. These are found in the 
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order 0^ term in the expansion (3.7), and the results that will be needed below are: 

(4.20) 

The scattering of two light particles is described by the matrix element Su = {1}{5}, 

with a pole in the forward channel at i7r/3, and in the crossed channel at 2f7r/3. These 

appear in perturbation theory in the two diagrams shown in figure 16. 

L L 

5-(jof»J0JtL)clKiwL 
t- (̂ oro55al}cKaj\neL 

Figure 16 : n / / scattering. 

This much is perfectly satisfactory, but it might appear that there should also be a 

forward channel pole in I I —* I' I' scattering, given that the upper vertex in the first 

diagram could be replaced by the C''^'^ coupling. This would imply a non-zero amplitude 

for a supposedly disallowed process, so certainly ought to cancel against something. In 

fact it does: the C"'^" coupling implies that there is a crossed channel pole at exactly the 

same location. This cancels the forward pole, since (C"'̂ ")2 = and the crossed 

nature of the pole negates its residue relative to the forward channel. The diagrams are 

drawn in figure 17. 

I ' 

K 

1 / \ ^ 
t-channel a-cWuwel 

Figure 17 : I I ^ I' I' scattering. 
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The figure also includes the two other contributions to the H -+ /' /' scattering to 
order 0^. Neither of these is singular (note that the u-channel momentum is identically 
zero), which is why they were ignored before, but of course even a constant term would 
violate the no-production theorem. Note that the kinematics here is exactly that of an 
elastic process, since / and /' are of equal mass. For this reason it is easy to see that the 
first two diagrams of figure 17 cancel exactly (not even a constant term is left). Hence 
the last two diagrams should aJso cancel. This is easily verified: the u-channel process 
contributes 

(C"'̂ ")2 ^ 
Pl„ - nrf,, -2vn? 

which is exactly cancelled by the contribution of C'^'' = /3̂ m^ coming from the last 

diagram. 

The crossed process to that shown in figure 17 is the scattering I I' —* I' I involving 

the reflection of particles / and and rotating all the diagrams by 90 degrees shows that 

this amplitude also vanishes to order as expected. 

An interesting feature of the above, apart from the impHed interrelationship between 

the various three-point couplings, is the necessity of the four-point coupling to cancel an 

unwanted amplitude completely. One could envisage starting with just the three-point 

couplings and then generating the higher order terms iteratively, an n point couphng being 

needed to cancel the constant term remaining after all other tree level contributions to a 

(forbidden) 2 —»• (n — 2) process had been summed. Such a mechanism has been claimed 

to work for the sine-Gordon model'"' ; its detailed verification would of course be much 

more complicated for a general Toda theory. 

Useful though the above example was, it misses most of the complexities that beset 

the cancellation of a general amplitude, since the kinematics was that of a diagonal process 

and the u-channel diagram consequently trivial. A more representative example is easily 

found: rather than have the heavy intermediate particle of the first process in figure 16 

decay into two further light particles, it can decay into a pair of heavy particles. This 

gives a diagram contributing to I I h h scattering, with a pole at z7r/3 in the forward 

channel rapidity. The other diagrams involved in this process are shown in figure 18. 

It is easy to verify geometrically (using the fusing angle data illustrated in figure 15) 

that there is indeed a candidate to cancel the undesirable pole, namely the u-channel 

process with another particle of type / as the intermediate state. (Note that the fusing 
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Figure 18 : I I h h scattering. 

angles give precisely the relative rapidity at which the propagator is singular, the inter­

mediate (fused) particle then being on shell.) To say more is much harder, since there 

is no longer a simple relation such as (2.14) to fix the Mandelstam variable t (and hence 

u) in terms of s. A detailed calculation shows that the full amplitude does vanish, but is 

not very instructive, and it would be very useful to obtain a more general understanding 

of how the cancellation comes about. (In fact in this particular case the 'classical' tree 

level cancellation is in any case masked in the quantum theory by a higher pole arising 

from a loop diagram; more will be said on this in the next section.) However one general 

point can be made, which will turn out to be important in the discussion of higher poles. 

Assuming that the tree level no-production theorem does hold, then every forward channel 

diagram corresponding to a disallowed process must be accompanied by one in the u- or 

t- channels which has a pole at exactly the same place, for there to be any chance of a 

cancellation. It is helpful to think of this in terms of 'on-shell diagrams', that is diagrams 

constructed by gluing together vertices with legs at the relevant fusing angles, of the type 

shown in figure 15. Such diagrams correspond to Feynman graphs with all external and 

internal lines on-shell. For tree diagrams there is only one internal fine, and it is on-shell 

exactly when the diagram has a pole in the relative rapidity of the incoming particles. The 

pairs of on-shell diagrams relevant to the cancellations already seen are shown in figure 

19, together with their duals (made up of triangles with sides the corresponding masses). 

The deficit in the second dual diagram can be traced to the crossing of two particle tracks 

in the corresponding on-shell picture. 

On the basis of a somewhat tenuous analogy with string theory, the process of swap­

ping between two on-shell diagrams with the same external momenta will be called 'dual­

ising' (not, of course, to be confused with the geometrical procedure of drawing the dual 
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Figure 19 : Dualising forbidden tree level processes. 

diagram). It is important to realize that it must be possible to find the dualised diagram 

for any non-diagonal tree level diagram, if the tree level no-production theorem is true. 

The procedure has been checked in many cases, but just as for the full theorem, no general 

proof exists as yet. Indeed it is possible that the full theorem will be proved by an entirely 

different route, in which case this 'dualising theorem' would be an interesting corollary. 

More will be said on the potential uses of this theorem in the next section. 

The final subject to be mentioned here is that of renormalization. So far the per­

turbative treatment has been at tree level only, and the consistency checks on conserved 

charges and non-production have failed to distinguish between the simply-laced and non 

simply-laced theories. It is only when the tree level data is used with the S-matrix boot­

strap equations that differences emerge, in the difficulties mentioned above for the non 

simply-laced theories. It would be helpful to see these differences directly within pertur­

bation theory, and for this reason it is worth pushing the perturbative treatment one stage 

further. This involves the calculation of diagrams containing loops, and so questions of 

renormalization, avoided up to now, must be addressed. 

Perturbation theory in (3 takes the free part of the lagrangian (3.1) to be the kinetic 

term plus the mass term (3.6) extracted from the expansion of the potential V [ f ) \ the 

remainder of the potential is then the sum of higher order interaction terms (a different 

point of view, having more in common with the ideas of perturbed conforraal field theories, 

will be mentioned in the next chapter). In two dimensions the only ultraviolet divergences 

come from tadpole diagrams, and are removed by normal-ordering. In [12] it is shown that 

any finite parts of these tadpoles that might remain after normal-ordering will respect the 

classical mass ratios, for both simply and non-simply laced theories (a discussion of the 

tadpoles in the simpler situation of the sine-Gordon model can be found in [64] , [65] ). 
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However there axe still finite wave function and mass renormalizations required owing to 
other propagator insertions. 

These mass renormalizations allow an immediate check to be made on the validity 

of many of the assumptions made above. For example, in the quantum theory the boot­

strap equations (2.24) for conserved charges should use fusing angles derived from 

the renormalized masses. For the set of conserved quantities derived above to survive 

quantization, these angles should retain their classical values, and hence the mass ratios 

should not renormalize. 

The renormalized masses are found by considering the corrections to the propagator. 

The bare propagator is 

d (27r)2 \p 

Here is the (mass)^ matrix, given by (3.6); in the basis of classical mass eigenstates 

it is simply 

There are corrections to the bare propagator from all (amputated) IPI diagrams; the sum 

of these will be denoted by the matrix S(p2): 

= S,,(p2). 

Some of these diagrams will connect particles of different types, so E has off-diagonal 

entries. The full propagator is 

+ m + - r a — m - + 

* ^ 2 

^ + ^ ( ^ ' ^ ( ^ ? ^ + ( ' ' ^ ^ ' ^ ( ^ ? ^ ) ^ ( 2 7 r ) 2 p 2 _ M 2 I '{2irYp 

- ( 2 7 r ) 2 p 2 _ M 2 - ^ S ( ; , 2 ) 

and it should be remembered that the denominator is again a matrix. The renormalized 
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masses and mass eigenstates are found by looking for the zeroes of this denominator, that 
is by solving 

for p2. In perturbation theory this can be done iteratively, since S is of order /S ,̂ while 

M"^ is of order (5^. For particle c, = to lowest order, and substituting this into the 

right-hand side, the renormalized mass to order is the eigenvalue of 

which as —s. 0 tends to m .̂ Off-diagonal entries in S only contribute at the next order, 

so the simple result for the first correction to the particle masses is 

where Sec should only be evaluated to order Higher corrections are much harder to 

evaluate, as the rediagonalization of the (mass)2 matrix needs to be taken into account, 

but all that remains for the current calculation is to find the order /32 contributions to 

Ecc- These are just bubble diagrams containing a pair of three point couplings, with 

intermediate particles a and b, say: 

a 

Sif'(p^). 

The value of this elementary bubble (computed after a Wick rotation) is given by the 

formula 

S(?)(p^) = |C"^^pi^tan-i [ „ 2 

where 

, 2p\ml + m l ) - { m l - m l f - v ' 
^ ~ 4p2 

Substituting = m\ simplifies the result considerably: 

Sa.(m?) = .''f^ • (4.21) 

Recalling the area rule (3.9) for the magnitude of the coupling constant, for all but the 
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untwisted non simply-laced theories this becomes 

# V c ) = ^ f / a > a m f c S i n f / ^ 

= —r—^cUah—r^ZTTc 

(4.22) 

This form turns out to be the most convenient. 

In general, there will be many intermediate contributions a, b to the bubble* , and the 

calculation is quite involved. Remarkably, for all the simply-laced theories the final result 

is very simple, and leads to a universal formula for 6ml, the one-loop correction to m :̂ 

- ^ % o t ? . (4.23) 
2 4/i h' 

Thus to one loop in the simply-laced theories, the mass ratios do not renormalize, the 

fusing angles retain their classical values and the bootstrap equations used earlier remain 

valid. 

For the non simply-laced theories, no such result is found — even to order /?2 the 

masses do not renormalize together. This is an important result, confirming the difficulties 

that were found above for the untwisted cases. For the twisted theories, it demonstrates 

that simply truncating the appropriate simply-laced S-matrix, a prescription that up to 

now has seemed perfectly consistent, cannot be correct. The problem with the truncation 

is that while the twisted particles form a subalgebra in the couplings, thus forbidding 

their fusing to form one of the omitted ('untwisted') particles, this does not prevent one 

twisted particle splitting into two untwisted ones, which might then recombine to form 

a bubble and contribute to the mass renormahzation, for example. Hence the quantum 

properties of a theory containing just the twisted particles and those of the parent may be 

very different, even when one tries to restrict attention to the subset of twisted particles 

in the parent theory. 

For the simply-laced theories the result is also very significant, providing strong evi­

dence for the quantum integrability of these models. Unfortunately there is no universal 

understanding of the final result (4.23), the summation of contributions differing in details 

from case to case. The nature of the calculation will be illustrated with the On theory. 

• In fact /i - 2, counting a,h and 6,a separately when a and h are different. 
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In this case, the coupling rule (3.16) shows that for given c the allowed choices for a, b 

are 
k,n + l - c - k for k = l,...,n- c 

n + 1 - k, n + 1 - c +k for ^ = l , . . . , c - l , 

a total oin-l = h-2 possibilities. Summing (4.22) over all these possibilities yields 

(setting A = UirP^ml/h and 9 = 7r/(n + 1)), 

sm{c+k)esmke c - l 

sin c9 E ^sin(c - k)9 sin k9 
{n + 1- c)—^ r-^ 
^ ^ sm c9 

k=i 

1 
2 sin c9 

c ^ sin(c + k)9 sin A:̂  - (n -f 1) sin(c - k)9 sin 
fc=0 fc=0 

where in the last expression some extra (zero) terms have been added for convenience. The 

factor of 112 comes about in one of two ways: if a 7̂  6 then the a, 6 bubble is otherwise 

counted twice, while if a = 6, 1/2 is the required symmetry factor for the bubble graph. 

(Note, the normalization of the three point couplings adopted in (3.9) is such that extra 

combinatorial factors are only ever required for graphs having such additional symmetry.) 

The sums are performed using the identity 

E"" / cos(c-1-m)^sin(m +1)^ 
cos(c - 1 - 2k)9 = ^ '-—^ 

Jfc=0 

to yield 

from which the formula (4.23) for the mass shift follows immediately. 

For dn the calculation is much the same, if a little more involved, and the details can 

be found in [6]. For ee the result has also been obtained analytically, while for 67 and eg 

it has been verified numerically by computer. Clearly, a universal understanding would 

be highly desirable, as would some understanding of how the result generalizes to higher 

orders. 
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4.5 Higher Poles 

A feature of the S-matrices derived above is the frequent occurrence of higher order 

poles. This phenomenon was first observed in the exact S-matrix of the sine-Gordon 

model and was initially unexplained, thought maybe to be connected with the integra-

bihty of the model. However Coleman and Thun'̂ '̂ showed that the higher sine-Gordon 

poles, surprising to those accustomed to dealing with scattering in 3-M dimensions, have 

a straightforward field-theoretic explanation in 1-1-1 dimensions as ordinary Landau singu­

larities, and indeed would be seen in the perturbative treatment of any 1 + 1 dimensional 

field theory with suitable mass spectrum. 

At generic values of the coupling constant the sine-Gordon model has poles only up to 

the second order, while the poles in Toda S-matrices can be of much higher order, in fact 

up to 12 in the case of 8 8 scattering in the eĝ ^ theory. This section will explain how the 

mechanism of Coleman and Thun generalizes to these cases, and the possible imphcations 

of this for the bootstrap equations. A very rich structure will be seen to emerge, only 

small parts of which are currently understood. 

Singularities in Feynman integrals are identified by the Landau rules. These rules 

are equivalent to the intuitively appealing criterion that a singularity in the external 

momenta is expected when the relevant Feynman diagram can be viewed as an energy-

and momentum- conserving process occurring in spacetime with all internal particles on 

shell!̂ '̂  In other words a large amplitude occurs when the intermediate particles are all 

long-Hved, an idea that is the natural generalization of the tree level situation. (To be 

more precise, an internal particle may be off shell, but then its line should be contracted 

to a point when drawing the space-time diagram, corresponding to the short hfetime of 

such a state. When all such lines have been contracted, the resulting 'short-circuited' 

diagram will have all particles on shell.) 

As stated, these rules apply to poles occurring for physical values of the external 

momenta — the diagram to be drawn involves real particles in Minkowski space-time 

— and so should not be directly relevant to scattering in integrable theories such as 

the sine-Gordon or Toda models. However just as happened with the simple poles, the 

singularities are still found, but pushed to unphysical values of momenta below the two-

particle threshold. The positions of the singularities are still given by the Landau rules, 

but now the relative momenta in the on-shell diagram are all eucUdean. For a graph 

constructed from the Toda three-point couplings this is easily seen: at any vertex, the 
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conditions that momentum be conserved and that all three particles be on-shell are exactly 
those that went into the derivation of formula (2.20) for the fusing angles. These always 
correspond to euclidean relative momenta, as has to be the case given that all particles 
are stable. Being true at each vertex, the same conclusion must hold across the entire 
diagram, with the result that the figure can be drawn using straight fines in Euclidean 
space, with the angles at each vertex being the appropriate fusing angles. Sometimes it 
is more helpful to draw the corresponding dual diagram, but in any event, the location of 
singularities is reduced to a question of plane geometry. 

Note how naturally all the above generalizes the discussion of the simple poles, where 

the on-shell diagram is just the tree level Feynman diagram of figure 8 with the single 

intermediate particle on shell, exactly the point at which the propagator has a pole. It 

is natural to ask whether the bootstrap ideas associated to the simple poles can also be 

extended, and this question will be addressed towards the end of this section. 

Before discussing such general issues, some specific cases will be examined starting 

with one of the simplest, the d^^^ theory. The fusing angles for this model have already 

been given in figure 15, and are sufficiently small in number that it is perfectly feasible 

to ennumerate all the possible on-shell diagrams that can be formed. However it is easier 

to start with the S-matrix, to find when such diagrams might be expected to occur. To 

facilitate the location of poles in S-matrix elements, it is helpful to introduce a streamlined 

version of the pictorial notation used in figure 14. The building block {x} is represented 

by a rectangle above the imaginary axis, stretching from (x — l)Tri/h to (x + l)'P:i/h: 

[-il3y2h] [+ip^/2h] 

{x-l)TTi/h ' ( x + i ) v i / h 

The residues of the poles at (x ± l)TTi/h, given by equation (4.14) to lowest order in p, are 

shown above the block. A product of blocks making up an S-matrix element is represented 

by stacking the rectangles; for example. 

{3}2{5} = 
2iri/h 47ri/h Giri/h 

Poles occur at the ends of the blocks, and higher order poles where the ends of blocks 

coincide. Thus in the above example there is a pole of order three at ^ = Ain/h, coming 
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from the two blocks to the left and one to the right. A feature of the notation is the 

ease with which the residue* in d can be read off the diagrams: the residues from each 

contributing block multiply, and furthermore the contribution from two directly abutting 

blocks (one to the left and one to the right of the pole) is 

4 

2h ^ 2h 4/i2 • 

Hence the sign of the residue is determined solely by the difference in the number of blocks 

immediately to the left and right of the pole, that is by the change in height of the wall 

of blocks at the position of the pole. In fact the change in the height is never by more 

than plus or minus one, though I know of no explanation for this fact. It is clear that, 

travelling from left to right, an 'uphill' pole has residue proportional to - i , while for a 

'downhill' pole the residue is proportional to +i: 

{x + 1} 

{ ^ - 1 } 1 {x + 1} 

{x-1} 
{ x - 1 } 1 {x + 1} 

-i 
{9 - ix/hy 

f3'^\m +i 

\2h {9 - ix/h)^ ' 

(4.24) 

(4.25) 

Note that m, the total number of blocks to left and right of the pole, is odd in both of 

these cases. These odd order poles always seem to have an interpretation in terms of the 

production of a bound state. More will be said on this below: it turns out that the second 

case above, the downhill pole with a positive residue, is always forward channel, while the 

first, uphill, case is crossed channel. For the simple poles this is immediate from the field 

theory, as (4.17) shows, but for the higher poles it is far from clear why such a simple rule 

should hold. 

Even order poles occur if (and only if, given that height changes of two or more never 

occur) the height of the wall remains constant at the pole position, and thus always have 

positive (real) residue. 

The d^^^ theory is so simple that all this notation may seem to be unnecessary, but it 

becomes useful when more complicated theories are examined. As an example, appendix 

* The term residue is being used somewhat loosely here to mean the coefficient of the highest-order 
term in the Laurent expansion about the pole. 
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2 shows the block structure of the f u l l Cĝ ^ S-matrix: the forward channel poles are easily 
identified by looking for downhil l stretches of wall . Note that such pictures and their 
interpretation work equally well for the minimal S-matrices on substituting {2 ; } ' for { x } 
throughout; in part icular the uphi l l /downhi l l rule for the signs of the residues is the same, 
although there is no longer a simple expression for the magnitudes of the residues. 

One further property of the Toda S-matrices is made apparent by the brick wall 

notation: i f {x} and { y } are part of a single S-matrix element, then x — y must be even, 

so each mat r ix element is made either entirely f rom even-indexed blocks or entirely from 

odd-indexed ones, but never both. I n wall-building language the blocks are always stacked 

directly on top of one another, and never ofF-set — the walls are buil t in stack rather than 

stretcher bond!^*' This feature is reasonably easy to prove. First, i t is clear from figure 1 4 

that i t holds for al l fundamental matr ix elements. Now consider the S-matrix bootstrap 

equation (4 .10 ) , and assume that the property holds for the two matrix elements Sda and 

Sdb on the right-hand side. Then i t must also hold separately for all sub-blocks { x } " ^ and 

{?/}•*" w i th in T_f^fjb^Sda and Tf^fja Sdb respectively, since these are just translates of the 

original matr ix elements. The only possibility of failure is for x — y to be odd, in which 

case X - y would be odd for all { x } + € {T_h^h^Sda), {v}'^ £ i'^hU^^Sdb)- In particular 

X — y could never be zero, and so there could be no cross-cancellations between the two 

terms making up the right-hand side of (4 .10) . However such cancellations must occur 

for the final result, Sds, to be unitary ( i t is easily seen that the two translates cannot 

individually satisfy the uni tar i ty constraint). Hence this possibility is ruled out, x - y is 

even for all pairs of blocks on the right-hand side, and the property holds for Sdc also. 

Since all S-matrix elements can be derived f rom the fundamental one by use of (4 .10) , 

this is enough to establish the result. Note that this explains an otherwise surprising 

constraint on the 'classical' fusing angle data, that U^f^ - U^^ be an even multiple of TT/ZI 

for all c and d. 

Returning to the d!"^^ example, fundamental S-matrix elements can be taken to be 

those between two of the light particles, / and I': 

Sii = Si'i' = ^ 

Siv = 
(S ' ' f 

(Recall that the doubled up exponent means that there are actually three fundamental S-

matr ix elements to be specified.) A l l poles are simple, and can be traced to tree diagrams 
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involving the couplings C"' ' , C^''''' and C"' '" for 5//, 5/-/- and 5/2" respectively. The S-
mat r ix elements between these two and the other Hght particle, follow by the bootstrap, 
or alternatively can be deduced f r o m the complete symmetry between the light particles. 
Thus the poles are again simple, and are also explained by tree diagrams. 

There are essentially only two fur ther S-matrix elements, and both have higher poles. 

Firs t , the heavy particle scatters w i t h any l ight particle as: 

(T tTT 

The forward channel pole at 57ri/6 can be seen in a tree diagram w i t h I appearing as 

a bound state, but the double pole at 'iri/2 is new. I t is explained by an on-shell box 

diagram, shown together w i t h i ts dual i n figure 20. 

Figure 20 : the double pole i n Sik-

There is also a similar diagram w i t h / ' and / " exchanged, but these are the only 

diagrams expected to contribute to the double pole to the relevant order i n /3^. Note 

that an w}^ order pole always has a residue proportional to i n the S-matrix, and for 

topological reasons, no diagram involving four or more point couplings can have sufficiently 

many on-shell loops to contribute at this order i n P^. This justifies restricting attention to 

on-shell diagrams w i t h only three point couplings when seeking a perturbative explanation 

for the higher poles. Coleman and Thun used on-shell box diagrams in their explanation of 

the sine-Gordon poles, and in two dimensions they do indeed have a double pole. For the 

di Toda theory the to ta l residue f r o m the relevant two diagrams has been calculated,'"'"^ 

and i t is found to agree wi th the order prediction coming f r o m the exact S-matrix. 

One other point w i t h reference to the double pole: note that figure 20 gives no support 



The Quantum Theory 126 

to the idea tha t this might be connected w i t h a single bound state, a fact consistent w i t h 
the absence of any classical fusing between / and h at 7ri/2, the position of the pole. 

Finally there is the heavy-heavy S-matrix element: 

Shh = 
tTT 

This only has t r ip le poles, at TTZ'/S and 2-Ki/Z, w i t h residues proportional to -i and +i re­

spectively. The most obvious contribution to these residues comes f r o m on-shell diagrams 

obtained f r o m the tree level graph w i t h an h intermediate state by replacing the C^^^ 

couplings by a pair of 'vertex corrections'. One of the resulting expanded graphs is shown 

i n figure 21, together w i t h its dueJ; each vertex can be made f rom l, I', or I" propagators 

so there are nine such graphs i n all. 

Figure 21 : the double vertex part of the Shh t r iple pole. 

Note that i n this case there is a sense i n which this pole has an associated bound state, 

namely a particle of type h, and furthermore the forward channel pole for this particle 

has residue +if3^/{2m)^, i n agreement w i t h the 'uph i l l /downhi l l ' rule formulated above 

fo r the ident i f icat ion of the forward channel. No new consistency checks are impUed by 

this pole over those already checked, though, since the classical fusing implied by the C'*'*'* 

coupling occurs at exactly the same angle as the new fusing. Of course, this had to be 

the case given tha t the diagrams arose v ia vertex corrections to the tree level picture. I n 

fact i t w i l l be argued later tha t a reverse si tuat ion holds, i n that a higher pole tends to 

be the sign of a reduction i n the number of independent consistency conditions. 

However this cannot be the whole story for the th i rd order pole. The structure of the 

double vertex Feynman integral is sufficiently simple that i t is possible to see this without 
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any detailed calculations. The double integral over the two free internal momenta of any 
graph with the topology shown in figure 21 separates into two independent parts, one 
for each vertex, together with the propagator for the intermediate particle, fixed by the 
external momenta. Let the contribution to the whole coming from just one corrected 
vertex with, say, particle / propagating round the loop be denoted by iVi{s), a function 
of 5, the squared rapidity difference of the two (incoming or outgoing) on-shell particles 
at the corrected vertex. Now Vi[s) must be real, since in the integral each propagator 
has a factor of i , as does each vertex, and there is an additional i coming from the Wick 
rotation which takes care of the i in the definition of V. The Landau rules state that a 
singularity in this integral is expected when s is such that all the internal propagators 
in the integral can be simultaneously on shell; in the case at hand this happens when 
the corresponding rapidity difference is 2-Ki/Z. A first order pole in s is expected; let the 
residue of this pole be iRi. The fact that the entire diagram goes on-shell together means 
that the other vertex, involving say particle /', is also on-shell at this value of s, as is the 
propagator for the intermediate h particle (so the pole actually occurs at s = m^). Thus 
the total order of the pole is three (as predicted by the S-matrix), and the contribution 
to the residue in the s variable from the I, I' vertex-corrected graph is iRi • iR^ • i/{27r)^ 
(the last piece coming from the h propagator). Adding all nine such graphs together, the 
total contribution due to the vertex graphs, near to the pole at s = m\, is 

^(vert) [Rl + Rl'+RvY 
(27r)2(s - m2)3 • 

Just as at tree level this must be multiplied by the normalization factor (4.16) before 

comparison with the S-matrix is made, yielding 

^(vert) 
{s - m2)3 ' 

where R is some real number. The residue in s is of the same sign as at tree level; this 

is expected since the vertex correction is proportional to i / { s — m^), and the original 

vertex was proportional to i. However in 6, the third-order residue must therefore be of 

the opposite sign to the tree-level residue, since (4.15) shows that near the pole ^ is a 

purely imaginary multiple of s (this fact is also obvious from looking at the pictures of 
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the complex s- and 9- planes, figures 5 and 7). Thus 

5(vert) 
{9 - iC/J)3 ' 

where TZ is another real constant. This is in conflict with the residue found in the S-matrix 

at 27rz73, which, in agreement with the general rule (4.25) for forward channel S-matrix 

poles, is a positive real multiple of i. 

The above reasoning is perfectly general, and applies to any third order pole. The 

conclusion is that if the S-matrix is correct, there have to be further graphs in addition 

to the vertex corrections, to remedy the sign of the residue. Even more generally, it is 

possible to see that any pole of order im + 3 cannot be accounted for by vertex corrections 

alone, given that (4.25) always gives the residue for a forward channel fusing angle. 

For the third order poles, the residues of the vertex corrections have been evaluated 

explicitly, and using this information the contributions of the double vertex diagrams to 

many third-order poles have been evaluated. The surprising result'^'' is that the magnitude 

of this contribution is always exactly the desired amount — it is only the sign that is 

incorrect. Thus the other diagrams must yield precisely twice the residue of the S-matrbc 

pole for agreement to be found. There is no explanation as yet for this observation, but in 

a number of the simplest cases it has been found that other diagrams do indeed conspire 

to give the correct contribution. 

There remains the question of identifying these extra diagrams, and it is here that 

the dualising idea can be employed. Consider an off-diagonal double vertex diagram, for 

example the di diagram involving particle / in one vertex correction, particle in the other. 

Now remove the central portion of this diagram, containing the C " ' ' and ' ^ couplings. 

This by itself forms an on-shell diagram for the non-diagonal scattering process I I ^ I' I', 

and so by the tree level no-production theorem it must be possible to dualise it, yielding 

another tree diagram with the same external momenta as the original subdiagram. This 

was discussed in the last section, and is illustrated in figure 19; the dualised diagram 

involves particle I" in the crossed channel. Since the external momenta are unchanged, 

it must be possible to fit this new diagram back into the double vertex picture, into the 

space left by the old subdiagram. The result is a double-box diagram, also expected to 

contribute to the third-order pole. The whole process is illustrated in figure 22. 

This idea is very general, and can be tried at every internal line of a given on-shell 

diagram. There are two situations when it may fail to yield another on-shell diagram. 
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V" 

A, 
L L 

Figure 22 : Dualising wi th in a higher diagram. 

First , the tree level subdiagram containing the chosen internal line may in fact be an 

allowed scattering, so that no dualised diagram is expected — this would happen when 

considering the h internal line of one of the diagonal double vertex diagrams, for example. 

The second s i tuat ion occurs when the momenta of the dualised diagram are wrongly 

ordered for a fit to be possible. A n example is the attempt to dualise the lowest / internal 

line i n the double vertex shown in figure 21 ; the tree level scattering process involved is 

h h —* I 1. This scattering was also discussed in the last section, and the duaUsed diagram 

involves another h particle, i n the forward channel. However the two outgoing / particles 

f r o m this dualised diagram are diverging, while they must be converging i f the picture is 

to be fitted back in to the larger diagram. The problem is illustrated in figure 23. Also 

shown are the dual diagrams, which gives an alternative interpretation of the difficulty, 

namely that the dual of the dualised diagram is larger than the original dual diagram, and 

so cannot fit in to the space lef t by removing that diagram. The problem is also related to 

the fact that the relevant forbidden tree level process in this case is masked by a higher 

pole, an issue tha t w i l l be mentioned below. 

U A 

? 

Figure 23 : A si tuat ion where dualising fails. 
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The one remaining subtlety to mention is that occasionally the outgoing particles in a 
forbidden process may be travelling in parallel, i n which case the dualised process involves 
the two particles swapped over, and a complementary dualising w i l l be needed somewhere 
else i n the larger picture to ensure that everj^hing matches up. This occurs in the d^ 
double box diagrams, for example. 

Thus start ing f r o m a given on-shell diagram i t is possible to generate a whole set of 

fur ther diagrams, all w i t h the same external momenta and all expected to contribute to 

the higher pole. The network for ^4 is shown in figure 24. 

Figure 24 : The network of diagrams for the d^ t h i r d order pole. 

The diagonal double vertex diagrams are isolated points, but all the rest may be 

generated start ing f r o m any one of their number. A n expUcit calculation'"'^'^ has shown 

that the six double box diagrams give a to ta l contribution of twice the S-matrix residue, 

so after adding all fifteen diagrams together, perturbation theory is in complete agreement 

w i t h the hypothesised exact result. The double Unes mark occasions where some relevant 

particle tracks are parallel, the subtlety referred to above occurs, and two simultaneous 

dualisings are required. This has the effect of closing the network off on fewer diagrams 

than is found for other third-order poles; a more general si tuation w i l l be encountered 

below in the es theory, when the network for 3 4 scattering is exhibited. 
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There is one more point that can be examined wi th in the example of the d^^^ theory, 
though, and tha t is the question of higher-level non-production. Just as was the case 
at tree level, i t is of ten possible to draw on-shell diagrams for ofF-diagonal scattering 
processes. B y the Landau rules these certainly should contribute poles to the relevant 
amplitudes, and i f the proposed S-matrices are correct these poles must cancel amongst 
themselves to enable the to t a l amplitude for the forbidden process to be zero. Thus 
wi thout gett ing into the f u l l complexities of higher-loop non-production, i t should at least 
be checked tha t candidate on-shell diagrams are available to give such cancellations a 
chance. This can be i l lus t ra ted wi th an example already considered, that of I I h h 
scattering. Referring back to figure 18, i t should now be clear that the diagram drawn there 
is masked by at least one on-shell diagram w i t h a higher pole, obtained by 'correcting' 
the upper C'^'^^ vertex w i t h a triangle containing three /, I' or /" propagators, just as was 
done for both vertices i n the h h h h scattering. I f scattering is purely elastic, there 
must therefore be some fur ther diagrams to cancel this one. As before, the dualising idea 
can be used to find them. The resulting network (which is a subset of the network for h h 
diagonal scattering) is shown in figure 25. 

Figure 25 : The network of diagrams contributing to a disallowed process. 

This part icular calculation has yet to be performed, but should not present any great 

difficulties. However, the general question of higher loop non-production, even in the 

simplified f o r m of requir ing the leading order poles to cancel, is much harder to check 

than at tree level, and a general understanding is absent. 
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Returning to allowed scattering, for the a and d series the poles are of suflSciently 
low order that i t should be possible to obtain general results on the correctness of their 
residues. For an \ the highest poles are i n fact only of second order. I n the 5a6 S-matrix 
element they are found where the blocks i n (4.12) adjoin, that is at 

9 = - ^ ^ { a + b - 2 k ) , k = 1,.. .min{a,b) - 1. 
n -h 1 

(a and b are taken to be less than or equal to A/2 , results for other values following via 

crossing. I f either a or 6 is 1, there are no double poles.) Generically there are four 

diagrams to explain this pole, as shown i n figure 26. 

(aivjlft orz in 

•V; JPTCL 

Figure 26 : The double poles of the a„ S-matrices. 

Sometimes the exceptional si tuation referred to above occurs, i n that one of the crossed 

boxes above fails to work, the relevant two particle tracks being parallel, forcing a double 

dualising. From the angles on the diagrams, this happens either when a = 6 or when 

a + b = h (note, the second case is jus t the crossed version of the first). Thus the 522 

double pole mentioned in the bootstrap discussion only involves three diagrams, shown in 

figure 27 . 

When n is odd, the heaviest particle, ( n 4 - 1 ) / 2 , is a singlet and for a = 6 = (n - t -1 ) /2 , 

bo th possibilities occur. The other diagram wi th a cross-over is also lost, the two remaining 

diagrams involving rectangular boxes. 
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I 

Figure 27 : The double pole i n the an S22 S-matrix. 

For the d series the s i tuat ion is a b i t more complicated, as poles up to order 4 arise (̂ 4 

was a special case, w i t h the highest pole of order three). Rather than going into details 

of this, the ê ^̂  theory w i l l be briefly touched on to show how much more involved things 

can become. 

Appendix 2 lists the block structure of all the eg S-matrix elements, and i t is clear 

that poles of much higher order are found, up to order twelve for 8 8 scattering. For these 

very high order poles i t is something of a challenge to find even one candidate on-shell 

diagram, let alone to classify and evaluate all the relevant contributions. To show that 

candidates do always seem to be present, appendix 3 shows some examples for the higher 

poles i n the 588 S-matrix element, the block structure of which is: 

This had a sequence of odd-order higher poles, w i t h those at 20, 22, 24, 26 and 28 iri/3Q 

expected to be forward channel. This expectation is supported by the fact that these poles 

mask forward channel tree level fusings involving particles 8, 7, 5, 3 and 1 respectively 

(reference should be made to table 11, showing the classical fusing data for this theory). 

I t is natural to start by looking for the corresponding vertex corrections, and examples 

for each case are given in the appendix. Note that once a single example is known, many 

more can be constructed by the dualising idea. The other poles are all twelf th order, 

and the final picture shows that candidates for these can also be found. Again, once 

this on-shell diagram is known it is relatively easy to construct a whole string of further 

examples by dualising ( in particular, the cross-over in the middle of the diagram can be 

removed, at the expense o f some loss of symmetry) . However the systematics of this are 
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not yet worked out i n general, and this discussion of the eg theory concludes wi th another 
example which does at least seem to exhibi t the generic behaviour for th i rd order poles. 

The block structure of 534 in the eg theory is: 

There is a single fo rward channel t h i r d order pole, at 87:^/15, which masks the classical 

fusing 3 4 - ^ 5 . Three on-sheU vertex corrections to the C ^ ^ coupling can be found, and 

their dual diagrams are shown in figure 28. 

(aU oToIss in unih 

Figure 28 : On shell corrections to C 345 

Nine double vertex graphs result direct ly f rom these, all contributing to the triple pole. 

Just as happened i n the d^ case, the six non-diagonal pairings of vertex corrections can 

each be dualised, yielding six double box diagrams. However fur ther dualising is possible 

here, leading to new graphs involving the crossing of particle tracks. The complete network 

is shown in figure 29. 

The structure seems clearest when the dual diagrams are used. The labelling scheme 

adopted is based on the observation tha t couplings involving an external particle are 

always drawn f r o m the set appearing i n the vertex corrections. For the dual diagrams, 

this means that any tr iangle bordering on the edge of a diagram must be one of the six 

subtriangles which border on particles 3 or 4 i n figure 28, and can be uniquely specified 

by the label A, B or C of the particular vertex correction where i t can be found. These 

labels are marked round the edge of each dual diagram of figure 29. Thus in the top left 

diagram, the upper le f t triangle borders on particle 3 and comes f rom vertex correction 

A, so must be made up of particles 1, 1 and 3, while the lower left triangle again comes 
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from the A vertex correction but this time involves particle 4, so consists of particles 1, 4 
and 4. Using the dualising relationships between diagrams, it is straightforward to work 
out the remaining internal particles in each case, so this information is omitted. 

Diagrams related by dualising are linked by a soUd fine, and for clarity the leftmost 

diagram in the top two rows is repeated on the right, so the figure shows a total of 26 

distinct diagrams. The three isolated diagrams are diagonal double vertex corrections, 

the top row shows the non-diagonal double vertex corrections, and the second row the 

double boxes that are found by dualising these. The extra diagrams over those found for 

d^ make up the rest of the network. Their dual diagrams all contain holes, corresponding 

to the crossing of particle tracks in the space-time diagram of the relevant process - one 

crossing for the diagrams in the third row, two for those in the fourth and three for the 

single diagram in the fifth row. 

The symmetry properties of the network are explained once it is noticed that there is 

a natural ordering on the dual diagrams of the three initial vertex corrections. Refer back 

to figure 28, and consider the intermediate particle which couples with the incoming 3 and 

4 particles, corresponding to the leftmost internal line in each dual diagram. The angle 

that this Une makes with the vertical provides the ordering, diagram B being distinguished 

from the other two as the middle case. The effect that this has on the dualising possibiUties 

can be seen on examining figure 29. 

Given that third order poles always seem to have just three vertex correctionsl^'' figure 

29 should give the generic situation for third order poles. Of course, the network may 

occassionally be truncated, as happened in the d^ theory. 

The residues of all these graphs have now been evaluated,'"' and the total has been 

found to be in agreement with the S-matrLx prediction. However the calculation is very 

laborious, and it seems likely that there is a more elegant way to understand how pertur­

bation theory conspires to give such a simple result. Certainly, some form of systematics 

will have to be uncovered for there to be any hope of checking the higher poles shown in 

appendix 3, and in fact the initial motivation behind the dualising idea was the hope that 

the residues of any two diagrams related by dualising would cancel (this would be the 

direct generalization of the tree-level situation). Unfortunately this turns out not to be 

the case, but it is still possible that dualising will be of use to uncover some more subtle 

cancellations, and thus have implications for the calculation of residues as well as for the 

classification of contributing diagrams. The dualising networks for the higher poles will 
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be very complicated, and understanding their general structure remains an interesting 

problem. 

Finally, to a couple of more general questions. First, some of the considerations of 

section 4.2 should be re-examined, since many of the classical three point coupUngs have 

been seen to receive on-shell vertex corrections (which should not be ignored, even for 

small ^ ) . It is natural to wonder whether this possibility should have been taken into 

account when postulating the fundamental S-raatrix elements. However it is easily seen 

that if the chosen fundamental particle is also the lightest particle in the model, then 

there is no need to worry. Consider first the situation where all external particles couple 

separately with internal lines in the on-shell diagram, so thinking of all four particles as 

ingoing, each initially splits into two. Each lightest particle can only split into two others 

with a (de-) fusing angle of at least 27r/3, and so there is no possibility of the particles so 

produced meeting to form the outer edges of an on-shell diagram. (The situation is even 

worse if the trajectories of these particles head inside the diagram.) Similarly, the angles 

fail to work if two external particles couple separately before interacting with the others, 

leaving only the possibility of the external particles fusing in pairs to form a common 

bound state, which is exactly the tree level situation already taken into account. For the 

d series this argument cannot be applied directly, since the fundamental particle is not the 

lightest in the theory. However on noticing that there are no couplings in the d theories 

involving just a single s or s' particle, it is clear that the defusing angle referred to above 

must be greater than 7r/2, after which the argument goes through as before. 

The last question to be discussed here is the meaning that should be given to the 

bootstrap equations in the presence of higher poles. The initial argument in chapter 2 

assumed there to be only a simple pole in the S-matrix element Sab at the fusing angle 

where the bootstrap was to be applied. The reasoning then was that at that angle, 

the process would be dominated by the tree-level Feynman graph of figure 8. There would 

therefore be a long-lived intermediate state |c), and after suitable analytic continuation 

the bootstrap equations (2.23) and (2.24) followed from the requirement that this state 

should reproduce quantities found in terms of the state |a6), as depicted in figures 11 

and 12. However if there is a higher order pole, then the dominant diagram is no longer 

at tree level. Rather, it is a loop diagram in which all internal lines may be simulta­

neously on shell. As stated above, this can be viewed as the production of a variety of 

long-lived intermediate particles, which scatter off each other in complicated ways, the to­

tality of their trajectories forming the on-shell diagram. There will therefore be a variety 



The Quantum Theory 138 

of (mult ipart ic le) intermediate states, depending on how many rescatterings have taken 
place, each of which w i l l dominate the wavefunction for a t ime. (As at tree level, i t is 
helpful to th ink i n terms of wavepackets here, so that some meaning can be given to the 
particle trajectories.) The natural generalization of the tree-level bootstrap argument to 
this situation is to require consistency of the S-matrix and conserved quantities w i th all 
of the possible long-lived intermediate states. The reasoning is best illustrated wi th an 
example, taken f r o m the d^ theory already discussed. Consider a three body scattering 
process, as i l lustrated in figure 3, w i t h two of the particles being heavy. Repeating the 
arguments of chapter 2, when the relative rapidi ty of these two particles is 2'iri/3 the point 
i n figure 3(a) corresponding to their scattering can be expanded to show the long-lived 
intermediate particles. However this expansion process can now go rather further than 
before. Figure 30 shows one possibilty for the expansion of figure 3(a) i n this situation, 
replacing figure 11. 

Figure 30 

As before, the conserved charges should allow the impact parameter of the th i rd 

particle to be changed continuously, so that i t interacts w i t h some of the intermediate 

particles drawn i n figure 30, a scattering process corresponding to figure 3(b). There are 

now a variety of different consistency conditions that can be deduced, depending on the 

particular value o f the impact parameter. These possibilities are shown in figure 31, the 

replacement for figure 12. 
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Figure 31 . 

Making use of the d^ fusing angle data of equation (4.19), the f u l l set of equalities 

implied by these diagrams is: 

Sdh{d - iTr/Z)Sdh{& + iV /3) = Sdhid - ir/Z)Sdi{d + iTT/2)Sdi{9 + i7r/6) 

= SdiiO - iTT/6)Sdi{d + iTT/Q) 

= Sdh{0) (4.26) 

= Sdi'{9 + iTr/Q)Sdi'{9 - i7r/6) 

= Sdi'{9 + iir/2)Sdi'{0 - iTr/6)Sdh{9 - IT^I^)-

I t should be clear that a similar set of conditions can be read off any on-shell diagram 

in any of the theories under consideration, sometimes leading to a very large number of 

identities to be satisfied — recall for example some of the diagrams shown in appendix 3. 

Considering these other diagrams exhibits one subtlety that has so far been ignored, 

namely that figure 30 showed only one possibility for the expansion of the h h scattering 

at the 27ri/3 pole, while nine are shown in figure 24. A l l such diagrams contribute a th i rd 

order pole at the same location, and so no one can be said to dominate over the others. 

This might cast some doubt on the derivation of (4.26), where only the single on-shell 

diagram was examined. However i f the analogous equations to (4.26) were to hold for each 

on-shell diagram individual ly , then the S-matrix would certainly be consistent wi th any 
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superposition of mult ipart ic le states coming f rom a combination of the different diagrams. 
Thus the (at this stage possibly over-stringent) requirement for the higher-pole bootstrap, 
corresponding to the tree level requirements of (2.23), is that for every on-shell diagram 
that can be drawn at the pole under consideration, all consistency conditions derived f rom 
that diagram should hold. The corresponding set of equations for the conserved charges 
emerge in exactly the same way, and generalize (2.24). A l l the following applies in equal 
measure to the conserved charge equations. 

This associates to every higher pole a large set of new identities, and a worry might 

be that this would invalidate some of the earlier work. However all of these identities 

are automatically satisfied once the tree-level bootstrap has been verified, as wi l l now 

be shown. The key idea is to consider changing the impact parameter of particle d in 

suitably small steps. The t rajectory of particle d w i l l then be swept slowly across the 

picture, passing over one three-point vertex in the on-shell diagram at each step. The fu l l 

set of identities for that diagram w i l l be obtained when the sweep is complete. In the above 

example, the steps are the successive diagrams of figure 31, and generate the equations of 

(4.26) in tu rn . Now the desired result follows on noting that two 'neighbouring' equations, 

a single step apart, diff'er only by a single three-point coupling and their equality follows 

f r o m the tree-level result involving that coupling. The more involved equalities then 

follow automatically, as the result of several steps each of which uses a tree-level result. 

For example, consider the di case again. The step between the first two diagrams of figure 

31 involves passing the t rajectory of particle d over a single C ' " * coupling, and the first 

equality of (4.26) follows f r o m the tree-level fusing I I h, w i th bootstrap equation 

Sdh{0) = Sai{0 - iiT/6)Sdi{9 + i7r/6), 

on shif t ing 9 by an amount JTT/S . The next step again involves a C ' " * coupling, but this 

t ime the equation following f rom the I h I fusing, 

SdliO) = Sdh{0 - iir/e)Sdii& + 2i7r/3), 

should be used, and 6 shifted by -iir/S. 

The way in which the process continues should now be obvious, but i t is worth pressing 

on one more step, to see that the t h i r d equality follows f rom the second via the bootstrap 
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equation for the I I h fusing, 

Sdh{0) = Sdi{e - i7T/6)Sdi{e + iir/G). 

This is interesting, because the 'composite' equality that has been deduced by putt ing 

these three stages together is just 

SdhiO) = Sdhie - i'rr/3)Sdh{0 + irr/Z), 

which is the tree-level bootstrap constraint following f rom the h h h fusing. Previously 

this had been considered to be an independent restriction on the S-matrix elements, but 

the above has shown that i t follows identically f rom a suitable combination of the / / —> / i 

and I h —* I constraints. 

Thus in contrast to in i t i a l expectations, the higher pole has actually led to a reduction 

in the number of independent bootstrap equations. This is clearly a rather general situa­

t ion: whenever a classical three-point coupling is masked by an on-shell vertex correction, 

the bootstrap equations for that coupling can be deduced f rom those for the couplings 

that make up the vertex correction. Hence there is a direct Hnk between higher order 

poles in the S-matrices and algebraic degeneracies among the bootstrap equations. 

Previously, the bootstrap consistency conditions were checked for every classical cou­

pling, even when in the S-matrix its amplitude was masked by a higher (odd) order pole. 

I t might now be wondered whether this was necessary. Certainly i f i t could be shown that 

all odd-order poles involve at least one on-shell diagram wi th a pair of vertex corrections 

masking the classical coupling for that fusing angle, then the above arguments would show 

that the corresponding bootstrap equations were redundant. While there is no reason to 

doubt the t r u t h of this hypothesis, I have been unable to f ind a general proof. I f the 

hypothesis failed, and a situation did arise in which there were no double vertex graph, i t 

might be argued that there would be no need on physical grounds to impose the bootstrap 

conditions for the classical coupling anyway, its tree-level on-shell diagram being masked 

by the higher-order process. However the classical coupling might appear singly wi th in 

some other on-shell diagram, and so i t is possible that there is some dominant physical 

process for which these bootstrap conditions are required. Hence a proof of the 'double-

vertex' hypothesis does seem to be required before the higher poles can be completely 

disregarded when checking the bootstrap. 
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Chapter 5 

Conclusions 

One of the in i t i a l motivations for studying the Toda theories was the hope that they 

would provide explicit lagrangian models for the perturbed conformal field theories dis­

cussed in chapter 1, and this question w i l l be examined first. As seen in section 4.2, the 

f u l l Toda S-matrices are a product of two pieces: a 'minimal ' part containing all the phys­

ical pole structure, together w i th an extra factor which encodes the coupUng-constant 

dependence. The minimal and the f u l l S-matrices are both consistent solutions of the 

bootstrap equations, and share the same set of conserved spins, namely the exponents of 

the relevant Lie algebra. Hence they provide two distinct candidates for each perturbed 

coset conformal theory of the type discussed in the final sections of chapter 1, and i t is 

important to decide which one is correct. 

The most direct evidence on this issue comes from work by Klassen and Melzer.'^*' 

A method known as the thermodynamic Bethe Ansatz, developed in this context by A l . 

Zamolodchikovj'"' allows the central charge of the ultraviolet l imi t of a theory to be 

computed solely f r o m its S-matrix. Since the ultra-violet l imi t of a relevant perturbation 

of a conformal theory is the original theory again, this enables a direct check to be made 

on the various proposals. This approach was used by Klassen and Melzer, who computed 

the central charges arising f rom both the minimal and the fu l l S-matrices for each simply-

laced Toda theory. They found that the central charge for the ^'^^ x g^^^/g^^^ coset was 

reproduced in each case by the minimal candidate, while the fu l l S-matrix yielded a central 

charge equal to the rank of the corresponding finite algebra. This is strong evidence that 

the original proposals of Zamolodchikov in certain cases'"'^' were indeed correct, and the 

S-matrices for the perturbed conformal field theories are the minimal rather than the fuU 

candidates. 

Hence the affine Toda field theories w i t h real couphng constant do not provide a 

straightforward lagrangian framework for the perturbed minimal conformal field theories. 

As remarked at the beginning of chapter 3, this is perhaps not too surprising given the 

absence of such a formulat ion for the unperturbed models. In fact, the value of the 

central charge found by Klassen and Melzer for the f u l l S-matrices, namely the rank r 

of the algebra, is not unexpected. Recall that r is also equal to the number of bosonic 
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fields in the theory. The perturbative approach used in this thesis to derive the Toda 

S-matrices impl i c i t ly assumed the Hilbert space structure of the theory to be that of a 

theory w i t h the same number of free massive bosons. Given that the central charge is in 

some senses a measure of the number of degrees of freedom in the model, the Toda theory 

might therefore be expected to share the same ultraviolet central charge as a theory of r 

massive bosons, and this is certainly given by r . However the nature of the ultraviolet l imi t 

seems to be rather puzzling for the Toda theories w i th real coupling constant. I t might 

be thought that at very short distances the effect of the exponential term in the Toda 

lagrangian would be lost, leaving just the kinetic term describing a (conformal) theory of 

r massless bosons for which the central charge is indeed r. However i f this were correct, 

then i t would be possible to view affine Toda theory as a perturbation of the theory of r 

massless bosons by an operator corresponding to the exponential potential. The problem 

is that f rom the point of view of the free massless boson theory, the exponential wi th 

real coupling constant has negative scaling dimension, so i t is hard to see how i t can be 

considered as a sensible local interaction term. This could be viewed as a particularly 

extreme case of the infra-red problems that afflict even the attempt to view a free massive 

theory in 1 + 1 dimensions in terms of a perturbation of a massless model. Note this 

problem does not arise in the more-studied case of the sine-Gordon model,'^^ ' ' ' where 

the corresponding exponential involves an imaginary multiple of the basic field, and the 

scaling dimension of the perturbation is therefore positive. Recently there has been some 

work on renormalization group flows in Toda theories,''^' but again for imaginary values 

of the coupling constant. The rather different situation for real values of the coupling 

constant w i l l require independent investigation. 

Even i f the Toda theories are not perturbations of minimal models, there are st i l l 

many things to be learnt f r o m them, and they are certainly interesting in their own right. 

The structure of the bootstrap is not well understood, and i t is helpful to have simple 

models available which allow many of the bootstrap axioms to be checked. A number of 

features of the bootstrap equations have already emerged f r o m the studies of Toda theory 

which tu rn out to have more general applicability. I n particular the conserved charge 

result of section 4.1 relies only on the physical pole structure and hence also holds for 

the minimal S-matrices, and much of the discussion of the implications of higher poles in 

section 4.5 was of a very general nature, and should apply to any purely elastic scattering 

theory. 

I n fact, no other uni tary purely elastic S-matrices seem to be known beyond those 
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already described in this thesis. I t is possible that i f the bootstrap is to close on a finite 

number of particles i n a uni tary theory w i t h only elastic scattering, then a minimal or 

f u l l simply-laced Toda S-matrix is the only option. I f no further conditions were imposed, 

then the sub-S-matrices identified by the twisted foldings would also be permitted, but 

the physical requirement that all higher poles be explicable in terms of suitable on-shell 

diagrams may well be enough to rule these out. For example, consider the twisted foldings 

of the theory, the higher poles of which were extensively discussed in section 4.5 . The 
to) (2) 

twisted folding to 03 = 0(3 preserves a light and a heavy particle, / and h say, and so 

the sub-S-matrix consists of the elements 5;/, Su, and Shh f rom the parent theory. These 

fo rm a closed set under the bootstrap equations, but the double pole in Sih, accounted 

for in the d^^' theory by two diagrams of the type shown in figure 20, both involving 

the other two l ight particles, cannot be explained in terms of particles / and h alone. 
(2) 

Similarly, the folding to , leaving just the heavy particle, results in an S-matrix element 

Shh w i t h a third-order pole that has no explanation wi th in the particle spectrum of the 

model. Encouraged by such examples, a conjecture can be made that unitary purely 

elastic scattering theories for which the bootstrap closes on finitely many particles, wi th 

all higher physical S-matrix poles having an explanation in terms of on-shell diagrams 

involving three-point couplings already deduced f r o m the simple poles, can only be of the 

simply-laced Toda type. This differs f rom an earlier p r o p o s a l ' " ' i n the imposition of the 

higher pole condition and consequent hypothesised restriction to the simply-laced theories. 

This restriction, i f correct, has the appealing feature that the physical pole structure of 

the allowed S-matrices would then be uniquely characterized by the spectrum of conserved 

spins, confirming a conjecture of Zamolodchikov.''' ' A n examination of table 3 and figure 

13 shows that this would fa i l to be the case i f any of the non simply-laced theories were 

permitted (recall, i n all cases the spins repeat modulo the Coxeter number). A general 

proof of this conjecture would provide an interesting alternative characterization of the 

ubiquitous ADE series of simply-laced Dynkin diagrams. 

Finally, i t is wor th recalling that the bootstrap idea has applicability beyond the 

purely elastic scattering theories: i t is also found in theories which possess non-trivial 

multiplets!^'' The Yang-Baxter structure of these models may shed hght on aspects of the 

bootstrap; conversely, i t would be interesting to see how many of the 'pure bootstrap' 

ideas contained in the last chapter can be generalized. Given an ini t ia l solution to the 

Yang-Baxter equation, the bootstrap (or fusion) procedure is often used to generate fur­

ther solutions, w i t h multiplets transforming under higher representations, and is hence of 
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considerable practical importance. One question to be answered concerns the extent to 
which the algebraic structure of the 'singlet' bootstrap found i n Toda theory is repeated 
in these more complicated situations, and in particular whether the algebraic degeneracy 
induced by higher poles has any role to play. In addition, the fact that the mass ratios 
found in the group-invariant S-matrices of Ogievetsky and Wiegmann'**' are the same as 
those for the Toda theories is perhaps a hint that there is a generalization of the result in 
section 4.1 relating higher Toda conserved charges to eigenvectors of Cartan matrices. In 
fact these sets of numbers seem to be of rather general significance, and i t is possible that 
the conjecture of the previous paragraph can be widened, the hope being that an appro­
priate finiteness condition on the bootstrap in any scattering theory would always select 
a mass and conserved charge spectrum related to one of the simply-laced Lie algebras. 
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Appendix 1 

R E D U C E Listings for Character Calculations 

procedure h ( r , s , m ) ; 
begin 

re turn ( ( (m+l)*r - m*s)**2 - 1) / (4*in*(m+l)) 
end; 

procedure c(ni); 
begin 

r e t u r n 1- 6/(m*(m+l)) 
end; 

procedure p ( b ) ; 
begin 

q**(b+l):=0; 
r e t u r n f o r k:= l : b product ( f or 1:= 0:b sum q**(k*l) ) 

end; 

procedure t m p ( k , r , s , m ) ; 
begin 

re turn q**(k*(k*m*(m+1) + (m+1)*r-ra*s))-q**((k*m+r)*(k*(m+1)+s)) 

end; 

procedure c h a x ( r , s , i n , b ) ; 
begin 

q**(b+l):=0; 
1:= 0; 
t o t := t m p ( l , r , 3 , m ) ; 
while ( ( m + l ) * l ) * * 2 - l < b do 

begin 
1:= 1+1; 
to t := tot+ t m p ( l , r , s , i n ) + t m p ( - l * l , r , 3 , m ) 

end; 
r e t u r n p(b) * tot 

end; 
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procedure negpaxt(w); 
begin 

res:=0; 
f o r n l : = 0:deg(w,q) do 

i f coef fn(w,q ,n l )<0 then re s :=re3 -coe f fn (w ,q ,n l )* (q**n l ) ; 
re turn res 

end; 

procedure po ly(w); 
begin 

nn:= deg(den(w),q); 
i f nn=0 then r e t u r n w e l s e 
begin 

ptmp:=num(w); 
f o r p l : = 0 : n n - l do ptmp:=ptmp-coeffn(ptmp,q,pl)*q**pl 

end; 
r e t u r n ptmp/den(w) 

end; 

procedure c h a r g e s ( l , u , b ) ; 
begin 

of f a l l f a c ; 
b:=b+l; 
f o r m:= l : u do 
begin 

w r i t e ; 
wr i te "====================================="; 
wri te "m = ",m," c = " ,c(m); 
wO:= ( ( l - q ) * c h a r ( l , l , m , b ) + q - l ) / q ; 
f o r s:=2:m do f o r r : = l : s - l do 
i f h ( r , 3 , m ) neq 0 then 
begin 

w l : = ( l - q ) * c h a r ( r , 3 , m , b ) ; q**b:=0; w3:=negpart(wl-wO); 
i f deg(w3,q)>l then 
begin 

wri te " "; 
wri te " r , s = " , r , " , " . s , " ; ra-r,m+l-s = " ,m-r ," ," .m+l-s ; 
wr i te "h = " , h ( r , s , m ) ; 
wr i te w3; 

end; 
end; 

end; 
end; 
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procedure e x t r a c h a r g e s ( 1 , u , b ) ; 
begin 

o f f a l l f a c ; 
b:=b+l; 
f o r m:= l : u do 

i f remainder(m-1,4)=0 or remainder(m-2,4)=0 then 
begin 

w r i t e ; 
wr i te '•======================================"; 
wri te "m = ",m; wr i te "Spin of f i r s t extra charge = " , h ( l , m , m ) - l ; 
wO:=( l -q )*char ( l ,m,m,b)*q**(h( l ,m,m) - l ) ; 
i f remainder(m-1,4)=0 then « l s : = 3 ; s s : = 2 ; s r : = l » 

e l se « l s : = 2 ; s s : = l ; s r : = 2 » ; 
f o r s:= I s step ss u n t i l m do f o r r := 1 step s r i m t i l s-1 do 

i f h ( r , s , m ) neq 0 then 
begin 

w l : = ( l - q ) * c h a r ( r , m + l - s , m , b ) * q * * ( h ( r , m + l - s , m ) - h ( r , s , m ) ) ; 
q**b:=0; w3:=negpart(poly(wl-w0)); 
i f deg(w3,q)>l then 
begin 

wr i te " 
wr i te " r . s = " , r , " , " , s , " ; m-r,m+l-s = " ,m-r ," ." ,m+l-s ; 
wr i te "h = " , h ( r , s , m ) ; 
wr i te w3; 

end ; 
end; 

end; 
end; 

end; 

In the above, c h a r g e s ( l . u . b ) lists the polynomials of interest for the calculation 

described in section 1.5, for m = 1 . . . u, with b specifying the degree of the polynomial, 

while extracharges performs a similar function for the particular candidate higher-spin 

charges discussed in a section 1.8. 
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Appendix 2 

Block Structure of the e^^^ S-Matrix 

Sn 
- I 1 I -T 1 r - - T 1 1 1 1 

, , , , - 1 1 1 r - I 1 1 1 r -

- 1 1 1 r - -I ' 1 r - 4 = ^ 

Su 
1 1 1 1 r - rT~i , r - t — \ — I — . — > — . — I 

Sib : 
1 , r 

Sie: 
1 I r 

Sn: 
- 1 1 r -

- 1 1 1 1 1 i r - ' I 

Su: 

S22 : 

, r r 



526 

'S'34 : 

S25 

S36 
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523 : 

1 I r r I — ' — ' — ^ - 1 r r -

524 : 

525 

, r- 1 , 

527 

- 1 V r -

528 : 

-I » 1 i 1 1 r -

533 

- 1 1 r -

- 1 i r - - 1 1 1 * 1 » 1 r r -



Szs : 
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1 V 1 1 r -

- 1 1 r -

S44 

1 . r - . » 1 * r -

"S'45 : 

- I — I — I 
- 1 1 1 1 r -

546 

• l| • \ 
- 1 1 r -

547 

548 : 

i , ^ , r I) , ij , 4 -

555 : 

- 1 1 1 * r -

556 



557: 
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4 ^ r i 1 T r -

558 : 

566 : 

567 

- 1 i 1 i r -

568 

4=^ f 1 1 1 V 1 V r * 1 i 1 T 

577 

- 1 1 r 

578 

- 1 — i — I — 
- 1 1 1 1 1 Y 1 » -

588 : 

- V — • — t -
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Appendix 3 

On-shell Diagrams for Scattering in the ê"*̂^ Theory 

T h i r d and fifth order poles 
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Seventh and ninth order poles 
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Eleventh and twelf th order poles 
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m c Perturbing Dimension Spins of 
Field Conserved Charges 

\ 4>u = <i>22 ^ 1,7,11,13,17,19. 

<t>\Z = <t>2i \ 1,3,5,9,11^,... (see text) 

<̂ 12 = 033 1^ 1,5,7,9,11,13. 

<t>2\ = 024 1̂  1>5,7,11,13. 

013 = 032 f 1,3,5,7,9,11. 

031 = 014 i 1,3,5,72,... (see text) 

I 012 = 044 I 1,5,7,11. 

021 = 035 5 1,5,7,11. 

013 = 043 I 1,3,5,7. 

031 = 025 I 1,3,5,7. 

015 = 041 3 1,5,7. 

f 012 = 055 J 1,5,7,11. 

021 = 046 I 1,5,7,11. 

013 = 054 f 1,3,5,7. 

031 = 036 I 1,3,5,7. 3 
22 
7 

051 = 016 5 1,5. 

015 = 052 ¥ 1'^-

Table 1 

Fields (f)ab and spins s for which dim(As+i) > dim($^ ) 
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m c Perturbing Dimension Spins of 
Field Conserved Charges 

i <f>i2 = <Pm i 1,5,7,11. 

<f>2l = 4>b7 Y4 1) 5> '̂1 

<̂ 13 = ^̂ 65 I l i 3,5,7. 

^31 = '^47 f 1,3,5, 7. 

ŜilS = ^63 ^ 

051 = 4>27 Y ^" 

<̂12 = </'77 i 1,5,7,11. 

(/>21 = !̂>68 35 •'•) ^' 

<?i'i3 = '?!*76 5 1,3,5,7. 

(/•si = <i>b8 4 ^' 2' ^ ' 

4>lb = 4>7A ^ i>5-

i f <Al2 = </'88 io 1,5,7,11. 

?i'21 = </'79 3 1)5,7, 11. 

^̂ 13 = '?̂ 87 t 1,3,5,7. 

</>3i = ^69 T 1,3,5,7. 

Table 1, continued 
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m Perturbing 

Field 

Dimension Spins of 
Conserved Charges 

10 

11 

12 

52 
55 

21 
22 

25 
26 

012 = 099 
2 
11 1,5,7,11. 

021 = 08.10 
13 
40 1,5,7,11. 

013 = 098 
9 
11 1,3,5, 7. 

031 = 07.10 
6 
5 1,3,5,7. 

015 = 096 
38 
11 1,5. 

051 = 05.10 
23 
5 1,5. 

012 = 01OJO 
3 
16 

1,5,7,11. 

021 = 09.11 
7 
22 1,5,7,11. 

013 = 010,9 
5 
6 1,3,5, 7. 

031 = 08.11 
13 
11 1,3,5,7. 

015 = 010.7 
7 
2 1,5. 

051 = 06.11 
50 
11 1,5. 

013 = 011.10 
11 
13 1,3,5,7. 

012 = 011,11 
5 
26 

1,5,7,11. 

021 = 010,12 
5 
16 

1,5,7,11. 

013 = 011.10 
11 
13 1,3,5,7. 

031 = 09.12 
7 
6 1,3,5,7. 

015 = 011.8 
46 
13 1,5. 

051 = 07.12 
9 
2 1,5. 

Table 1, continued 
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m ^Im Perturbing Dimension Spins of 

Field Conserved Charges 

5 3 021 = 035 2 
5 2,4,8. 

015 = 041 3 2,4,8,10. 

6 5 012 = 055 1 
7 

4,8. 

Table 2 
F,a,m+1—6 Fields 0a6 and spins s for which dim($]:^i_;^^^) > dim{^'';^j^^^_^^ _^^^J 
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Lie 

Algebra 

Coxeter 

Number 

Exponents 

n + 1 1,2,...n. 

Bn 2n l , 3 , . . . 2 n - 1. 

Cfi 2n l , 3 , . . . 2 n - 1. 

Dn 2 ( n - 1) 1,3, . . . 2 n - l , n . 

12 1,4,5,7,8,11. 

El 18 1,5,7,9,11,13,17. 

Es 30 1,7,11,13,17,19,23,29. 

Fi 12 1,5, 7,11 

G2 6 1,5 

Table 3 

Exponents of the simple Lie algebras 
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Coset m 

k + 2 1 1 
^ (fc+2)(fc+3) 

X e < " / e f 3 
1 
2 

4 
7 
10 

5 4 
5 

eg X fig / eg 6 
6 
7 

9 
14 
15 

4 " X 4 " / / f ' 10 
52 
55 

4 " X 4 ' V 4 ' ' 11 21 
22 

Table 4 

p(l) X g^^^/g^'''^^'' cosets for which c < 1 
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a['^ = D{Ai) 

bl'^ = D{Bn) 

1 1 

2 2 

C^i^ = D{Cn) 

1 2 2 2 1 

d^r^^ = D(I>„) 

-o— 
2 

Table 5 

Untwisted affine Dynkin diagrams 
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e['^ = D{E,) 

Q 1 

0 2 

o-
1 

-o-
2 

-o-
3 -o 

2 

-o 
1 

e^7^ = ^ ( ^ ^ 7 ) 

Q 2 

O 
1 

• o 
2 

• o 
3 

-o-
4 

-o 
3 

-o-
2 

-o 
1 

ei'^ = D{Es) 

0 3 

o 
2 

-o-
4 •o-

6 
-o o o o o 

5 4 3 2 1 

9^2^ = D{G2) 

o o o=^=m • 
1 2 3 4 2 

1 " 3 

Table 5, continued 
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2 1 

• ( o o— • • —o > • 
1 1 1 1 1 

O 0 = ^ 
1 2 3 1 2 

_ W3) 

• 
1 ^ 2 1 

4 ^ ' = GZ?(J7n) = 5C„ 

1 2 2 2 

s GZ?(BD) 

Table 6 

Twisted affine Dynkin diagrams 
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a!." 

-o— • • — o 
m i m2 771̂  m j 

o o— • • —o— 
m i m2 mn-3 

mn-2 

6̂ 

o-
m i 

-o-
ms 

O m2 

T7l4 m j 
-o 
mi 

,(1) 

,(1) 

Q mi 

7712 "^5 '"6 

o-
7T%2 

O -
7716 

Q " l4 

ms 7717 »15 "^1 

Table 7 

Assignments of masses to Dynkin diagrams for the simply-laced theories 
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-o— . —0=4= 
m i 7712 Tn3 T l n - l Tin 

4 = o 
7711 m2 7713 77i„_i TTln 

T7l2 TTll 

O 0=4= 
m2 77l4 T7l3 TJlj 

Table 7, continued 
Assignments of masses to Dynkin diagrams for the 

untwisted non simply-laced theories 
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( sin 

sin 2^3 

sin(n — 

\ sin nBs ) 

Dn 

/2cos(n - 2)^3 \ 

2 cos(n — 3)^3 

^n-2 
IS 

= 
2 cos 63 

it 1 

V l i ) I 1 / 

/ 0 \ 
0 

0 

1 

V - 1 / 

^6 

/ 7 l \ sin 9 s 

7.̂  sin 2O3 

7.̂  sin 30s 

7? sin 10̂ 3 

7I sin 11̂ 3 

Ws) \ sin 8^3 — sin 2 ^ 3 / 

E7 

/ 7 i \ 

73̂  

7 f 

7 l 

7f 

7f 

V73V 

/ sin ^3 \ 

sin 2^3 

sin 3^3 

sin 4^3 

sin 7^3 - sin 3^3 

sin 6^3 - sin 4^3 

V ^(sin 9^3 - sin 7^3 + sin 5^3 - sin ^3) / 

^ 8 

/ 7 l \ f sin ^3 \ 

73^ sin 2^3 

7 f sin 3^3 

7 j sin 4^3 

7 f sin 5^3 

1! sin 8^3 — sin 4^3 

ll sin 7^3 — sin 5^3 

WsJ \ sin 14̂ 3 — sin 8^3 / 

Table 8 

Cartan matrix eigenvectors with eigenvalue 2 - 2cos^3, ^3 = f s, s an exponent 

(second vector for I )^ is ^3 = f , s = n - 1) 



Table 9 168 

« 2 2 
1 a> m TS< 00 

1 o 

^ -H 
2 T 00 n 

o 

CO ICO 

T t -
^ o 

CO ICO CO 

—H 

-H a> 

ICO o 

cs so 

CO ICO 

CO ICS CO 
ICO 

T CN 

ttr> 
1 - ^ 

CO iro 
CO 

03 

to 

o 
o 

U 

O 

CO 

3 
O 

05 

- I -



Table 9a 169 

— 1 — ICO 

n 

'co' 'co' 
.SI CO. 

l O 

oo. 
cs 
00. 

"o" 

q>. q> 2L 

•f-4 

00. 

« 
o 

T 

CO 

"co* 
•o" To" 

CO 

cs 
.00. 

, , t*! 
CO_ 35 —, e.1 

CO 05 CN 
•«TI 

•o" 'S' — 
T — 

CM 

'co" 
CO 

CM 

—< ^ 
00 

'o" 

—. 
2- =£. 

00 S 

CO C I 

CN 

~ t~ 

— 
i C — 

CO O i 

CO 

CM 

'5" 
CO 

'oo' 

T 

CO CO 
CM 

-(
10

) 
(6

) 
(4

) 

CO 

0? 

• V 

ao 

CO 

ir̂  

o 

CO 
CO 

'o" 00 

1 
(9) 

(8) 

t -
'co" 

CM 

CO 

£3 
(—• 
C 

a 

- I — O) CO I<<1 
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- C< 

I f ) 
!0 00 

CO n 

I « 

I o 

I 

1 

I 

eo 

_ l O 

L w 

I CO 

- 2 

I 

"5 2 

I CO 
CO 

1 o 

I 

CO 

CO 

CO 

CO 

CO 

CO 

CO 

CO 

CO 

CO 

CO 

CO 

CO 

CO 

CO 

CO 

•«r 

CO 

CO 

CO 

CO 

CO 

CO 

cn 

O 
-o 
u 
o 
O 

u 

o 
-a 
;5 
CO 

s 

3 
O 
W 
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CO 

CO 

" 3 ~ 

- S 
— 0 0 

CO. 

2 S 

0 0 J?" 

2 

2 S 

CO 

T 

>a n 
oo 

0 0 

— cj> 

3 0 

CO 

ao 

OS 

t -

CO 

0 0 

CO 

CM 

CO 

0 0 

CO 

CO 

0 0 

CO 

_ 0< CO Ti- i n 

eo 

00 

CO 

CO 

CO 

CO 

0 0 

CO 

•r-

Cfi 

s 

I 

o 



to CD 

CD 

00 X5 

|<5 

in 
o ^ 

I CO 

00 „ 

00 C-5 

•n 2 

M CM 

o is 

to 00 

00 U5 

„ 00 

00 

_ 00 

O ?3 

" O S 

o CM 
CM 

I C4 

_ CO 

0 CM 

1 -a 

_ Cl 

I o 
C-1 CM 

n CM 

CM 

CM « 

C M ^ 

CM m 

n 
CM 

« o 

vn 

CM O 

CM 

•<r 00 

W3 

lO 00 

CM 

CO CD 
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CO 
4> 

CO 

O 
O 

' a 

CO 
to 

O 

— 00 
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CD 

CO 

— <0 Vn Co r - CP 

C M n 

. g ^ . ^'^^^ 
" 0 —« 
C M .1. 

" " 
^ 2 E : 
, , 3 

C M ^ ' ^ l . 

y» ^ ^ 

. C M . ^CM_ . - ^ . 

, S 

— £lH-

r» a N/̂  

CI 
C M 

f- 2 

- 2 

rr 0 
.•—', 

n y 

ao 0 

r-i 

cvj Z ;^ 

— - 1 

£1 — 

J- »o 

>a 0 
C M " 0 
CM^. . C ^ . 

C I C I 

0 0 "o* C M * 
C M S -H 

— 0 
C M 

CM « CM 

•J , "Is 

« 2 
— 

. n 
^ CI 

_ ^ 

CM S 

2 S oo" c - S 
C M 

„ M 

r» 
0 0 

C M 0 
C M — ' rj 

rt •2=2 "^r 2 

7-^ — . w —. C M S 

^ «; 
n — n M 

C I 0 

' I 
t - 2 0 0 c. n — 

0 0 
'3- ?-2 

CM — n 

n ^ 
• V C M 

" •0 2 

g = CM 0 V? CI 
N 
C M 

r» 
C M — —< 

In' —S s » 

2 si 

0 'Is' 

Ĉ 4 ' 

r* 
00 

CI 0 0 

„ rt 

r» 
CM 

• ^ " ^ 

£L 5-
N 
CM <n —• — C M S 

"ST 
, ~l 
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0 
.CM ' ' 

00 

z 1.-3 rt 

?* 

CO 

n 
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