
Durham E-Theses

The quenching of nonlinear oscillations by dither

Mahmood, Durray-Shahwar Iqbal.

How to cite:

Mahmood, Durray-Shahwar Iqbal. (1990) The quenching of nonlinear oscillations by dither, Durham
theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/6471/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/6471/
 http://etheses.dur.ac.uk/6471/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Durray-Shahwar Iqbal Mahmood 
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Abstract 

The suppression of unwanted vibrations in a system by the injection of a high-
frequency dither is a well-known engineering technique. Very little has been pub­
lished about the theory of this method and what has been published has often been 
lacking in mathematical rigour. This work is an attempt to correct this situation. 

Chapter I discusses the background of the problem. Chapter I I uses small 
parameter theory to examine the mechanism of quenching in certain special cases. 
In Chapter I I I an interesting aspect of quenching is discussed in some depth for 
a special 2-dimensional problem. Chapter IV discusses sufficient conditions for 
quenching to occur in general systems. 
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Abstract 

The suppression of unwanted vibrations in a system by the injection of a high-
frequency dither is a well-known engineering technique. Very little has been pub­
lished about the theory of this method and what has been published has often been 
lacking in mathematical rigour. This work is an attempt to correct this situation. 

Chapter I discusses the background of the problem. Chapter I I uses small 
parameter theory to examine the mechanism of quenching in certain special cases. 
In Chapter I I I an interesting aspect of quenching is discussed in some depth for 
a special 2-dimensional problem. Chapter IV discusses sufficient conditions for 
quenching to occur in general systems. 



Chapter I 

A N A L Y S I S O F A L I N E A R P L A N T 

1.1 Model of a Physical System. 

A quantitative understanding of the functioning of any system is not possible 
without a mathematical model. Such models must be able to predict the behaviour 
of the system once the initial conditions and external influences are known. The 
mathematical structure of differential equations is most suited for this purpose. 

Let us think of a set of variables which describe the state of the system, and 
collect them in a 'state vector' denoted by x(f). Now if at a particular time the 
values of the state variables are known, we should be able to predict the future 
behaviour of the system using our mathematical model, provided that we also 
know the external influences acting on the system. These external influences can 
be collected into an 'input vector' u(i). 

The argument above impHes that the differential equations should be of the 
first order in time derivative. In a convenient notation these can be written as 

x = f{x,u,0. (1.1) 

In general the function f is nonlinear. Such a representation of the physical system 
is called the state-space description. 

Another representation of the physical system is the input-output description. 
In this picture one has to define another set of quantities called the output variables. 
These are generally a subset of the state variables and describe aspects of the 
system's behaviour that can be measured and controlled. These are collected in 
an 'output vector' y{t), 

y = h(x,u,t), (1.2) 

where h is another function which can be nonhnear. Consequently x can be ehm-
inated from equations (1.1) and (1.2), and a differential equation relating output 
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Figure 1.1: Block representation of a system. 

directly to the input can be written down. Diagrammatically a system can be 
pictured as in Figure 1.1 . 

From the point of view of mathematics, the abihty to accurately predict the 
future state of a system places conditions on the differential equations of the form of 
(1.1). Specifically it is required that solutions exist and are unique. For differential 
equations of the form under discussion, a theorem due to Picard which guarantees 
the existence and uniqueness of solutions is stated by Cronin [4,p. 14] as follows. 

Theorem 1-1. Picard's Theorem; Let V be an open set in {x,t) space. Let 
(xo,to) be in V, and a, h be positive real numbers such that the set 

n = {(x, 0 - ^o| < a, |x - X o | < 6} 

is contained in V. Suppose that a function f is defined and is continuous on V and 
satisfies a Lipschitz condition with respect to x on TZ. Let 

M= max f(x,t) 



and 
A • r ^ 1 A = mm a, — . 

M 

Then the differential equation 
X = f (x, t) 

has a unique solution on (to — A,to + A), such that x{to) = Xo . This solution is 
such that 

x(0 - X o i < MA 

for all t in the interval {to — A,to + A). 

Picard's theorem places no bound or limitation on the domain of the solution. 
It merely states that the interval (to — A,to + A) is contained in the domain of 
solution x(t). Thus for a particular equation the solution may be defined for all 
real t even though the theorem only guarantees existence on a finite interval. This 
indeed is the case for 'well behaved' linear systems [4,p.67 . 

Ideally a physical system should operate in a steady state. In the state-space 
representation this means that if the external influences or the input is constant 
then the system's state should not change. This can be expressed as 

x = f ( X o , U o , i ) 

where we have denoted the constant input as Uo and Xo is the state of the system 
at initial time to-

In actual practice, during the operation of a system, a small fluctuation in 
the input Uo may cause the system to move away from the steady state Xo and 
therefore the output changes. For this reason the system design has to provide a 
mechanism to control the perturbation so that the system keeps on operating at a 
steady state. In other words the system has to be controlled. 

The key concept in control devices is that of feedback. The feedback is mo­
tivated by a 'controller', and deviations from a steady state output activate a 
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Figure 1.2: A system with a feedback! 

correcting signal which forces the system back to the desired steady state. Figure 
1.2 gives a block diagram for the situation described above. 

1.2 A Linear Plant. 

A system which is to be controlled is called a plant. A plant is said to be Hnear 
if the state variable x{t) is related to the input u(t) through a hnear differential 
equation of the form 

x = Ax-|-Bu (1.4) 

where A and B are matrices which in general depend on time. If x is of dimension 
n and u is of dimension r, then A is an n x n matrix and B is an n x r matrix. 
Further, the output variable y can be written quite generally as 

y = Cx + Du. 

9 
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In the special case where A and B are time independent we have what is 
called a linear autonomous plant. One can, without loss of much generality drop 
the term D u in equation (1.5) as it is simply proportional to the input and hence 
independent of the system dynamics. Further, one can, in certain cases assume 
the output of the system to be the entire state, that is 

y(0 = x(0, 

in which case the output equation (1.5) is omitted. 

Thus for the steady state of the Unear autonomous plant (1.4) we have 

Axo -f Buo = 0 (1.6) 

or if A has an inverse 
Xo = -A-^Buo (1.7) 

Assuming that at time t, the output (or state) has changed to x(t), one can write 
an equation for the deviation 

^ = x { t ) - X o { t ) 

as 

1 = A | + B [ u ( t ) - U o ] . (1.8) 

In case the input does not change, that is \i{t) = Uo then 

i = A | . (1.9) 

For such a homogeneous linear differential equation, the trivial solution 

f = 0 (1.10) 

represents an equilibrium or steady state. 
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1.3 Stability. 

Qualitatively an undisturbed motion of equation (1.9), which depicts an 
autonomous system, is considered to be stable if the application of a small dis­
turbance results in a (disturbed) motion which remains close to the unperturbed 
motion for all later times. If for small disturbances the effect on the motion tends 
to disappear, the undisturbed motion is caUed 'asymptotically stable'. Further, 
if regardless of the magnitude of the perturbation the effect tends to disappear, 
the undisturbed motion is said to be 'asymptotically stable in the large'. 

The linearity of equation (1.9) ensures that if the condition 

i{t) —> 0 as t —> +00, (1.11) 

holds the solution ^ = 0 is asymptotically stable. 

For a linear autonomous system straightforward arguments (see for example 
Jordan and Smith [9,p.227]) lead to the conclusion that the dynamic behaviour of 
the system is determined by the eigenvalues A of the matrix A. As regards stability 
of a system one can state a theorem as follows. 

Theorem 1-2. Let Re{X) denote the real part of X, the eigenvalue of the constant 
matrix A in 

X = Ax. 

The solution x = 0 is asymptotically stable if and only if 

Re{X) < 0 

for all eigenvalues X. 

(For a detailed discussion on this aspect the reader is referred to Cronin [4,p. 156], 
Hayashi [8,p.33] and Sanchez [14,p.73].) 

Note that the foregoing theorem has reduced the problem of determining the 
stability of the system to the problem of studying the real part of the eigenvalues 
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of the matrix A. This in itself is not a simple problem especially if the system is 
of high dimensions. 

The problem of stability of a system of differential equations was considered 
by A. M. Liapunov. In his famous second method, as given by Zubov [18,p.14], 
Liapunov defined a quadratic function, known as Liapunov function. This is a 
generalisation of the concept of energy in a conservative dynamical system where 
the energy decreases to zero for an equilibrium or stable state. In the matrix 
notation being followed, the properties attributed to the Liapunov functions can 
be satisfied by quadratic forms of matrices (see for example Barnett and Storey 
[2,p.71,77]). 

Theorem 1-3. For the system 
X = Ax 

the solution 
X = 0 

is asymptotically stable if there exists a symmetric positive definite matrix P such 
that 

Q = - (A^P + PA) 

is positive definite. 

Proof: 

If 

are eigenvalues of P then 

Ai > A2 > . . . > A„ > 0 

Ai > ^ > An > 0 (1.12) 

for nonzero x, where we have written the Liapunov function 

V{x) = x^Px. 

Similarly if 

^1 > M2 > • • • > /in > 0 
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are eigenvalues of Q then 

- x ^ ( A ^ P - f PA)x ^ , 

Ml > ^^^^|2 > /Xn > 0. (1.13) 

If x(i) is any solution then from equation (1.13) we get 

= x^(A^P + PA)x 

that is 
F ( X ) < -lln\x\\ 

Also using equation (1.12) we can write 

y ( x ) < ^ A i | x | 2 
Xi 

< ^ ( x ^ P x ) 

and thus we have 

or 

F(x) + ^ V{x) < 0 
Ai 

dt 

for all t. 

Thus we conclude that the term in the square brackets is a monotonicaUy 
decreasing function of t which implies that 

e^nt/Ai v{x{t)) < F(x(0)). 

Now it is straightforward to write 

| x ( t ) | < y ^ | x ( 0 ) ( e - ^ " V 2 A , _ 
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0[C(x(t)-Xo)] 

CONTROLLER 

C[x(t)-xo] 

Figure 1.3: Block diagram of feedback control of a plant. 

Since the exponential decreases for increasing time we conclude that 

x(t) | —> 0 as t —>• CO 

which is the condition required. 

We note here that K;(P) = Ai/A„ is called the condition number of P . 

1.4 Feedback Control of Unstable Plant. 

In general the steady state of a system, that is the equilibrium solution to the 
mathematical model involved is not stable. Stabihty is then achieved by involving 
a feedback as was shown in Figure 1.2. 

For simplicity let us consider a linear system modelled by equation (1.4), that 
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X — Ax + Bu, 

with 
xe3?" 

ue5^^ 

The steady state would then satisfy equation (1.6). Consider now Figure 1.3 which 
represents a plant with an external input u(t) and output x(t). It is desired to 
operate the system at the steady state (uo,Xo). The block diagram depicts three 
stages in the feedback control. At the output a measuring device measures the 
deviation from the steady state output Xo, generally giving a value 

C(x(0 - X o ) , 

where C is a constant matrix of dimension, say s x n to the controller. The con­
troller in turn adds to (or subtracts from) the input a function which is continuous 
and may be written as 

$ [ C ( x ( t ) - X o ) ] . 

The function $ in effect maps the real space of dimension s to the r-dimensional 
real space. 

The addition of the feedback signal $ changes our plant equation (1.4) to 

i = Ax + B[u + $[C(x(t) - Xo)]] (1.15). 

The equation for the deviation f = x(t) - Xo then becomes 

i = Ae + B [ ( u - U o ) - h $ ( C O ] . (1.16) 

Once again we can limit to a constant input condition 

u{t) = Uo 

for all 
t > to 

15 



to get 

i = A | - f - B $ ( c | ) . (1.17) 

Now it is clear that the plant will be stable provided that the steady state solution 

1=0 
is an asymptotically stable solution of equation (1.17). 

It is to be noticed that the system of equations is no longer necessarily linear. 
However the investigation of stability via quadratic forms (Liapunov functions) 
discussed earlier can be extended to a general (re x n) system of the form 

i = f ( i , ^ ) (1.18) 

with the requirement that Picard's condition (Theorem 1-1) holds throughout the 
real space 3? x K*̂ . 

Theorem 1-4. If there exists a positive real constant e and a constant real sym­
metric and positive definite n x n matrix P with eigenvalues 

A i > A2 > . . . > An 

sucii that 
{ f { l t ) f p U f P t { l t ) + 2efP(<0 (1.19) 

for all points 

(t,0 eSRx SR", 

then every solution ((t) of equation (1.18) satisfies 

\ m < le(^o)|/|^e^(*°-*) 

for aJi t later than to- Hence 

f ( t ) | —> 0 as t —> 00. 

The proof of this assertion runs parallel to the proof of Theorem 1-3. An 
alternative statement of the theorem and proof can be found in Cronin [4,p. 195 
and a discussion is also given by Porter [13,p.63-65]. The above theorem has an 
important corollary which we now state. 
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Corollary. Suppose that the Jacobian matrix 

J ( ' . f ) = ^ (1.20) 

exists and has continuous elements. If f(t, 0) = 0 for all t and there exists a 
constant (real) number e > 0 and a constant, symmetric positive definite matrix 
P such that 

{3{t, O f P + PJ{t, 1) + 2eP < 0 (1.21) 

for aii points Then f ( i , ^) satisfies equation (1.19) and hence ^ = 0 is an 
asymptotically stable solution. 

Proof; 

We can write 

or introducing a scalar 6 with 

0 < ^ < 1 

0 

which can be written using equation (1.20) and the chain rule as 
1 

f ( t , 0 = j3{tM)id&-

0 

Multiplying both sides by ^ P we have, 

1 

f P f ( i , 0 = / I^PJ( i> ^0^^^^- (1-22) 
0 

Now if we take its transpose and add the two we can write 

1 
f ^ ( i i ) P f + f ^ P f ( ^ , 0 + 2 6 r P | = / f [ J^ ( i , ^0P + P J ( i , ^ 0 + 2€P]e^i^. (1-23) 

0 
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The integrand on the right hand side is negative semidefinite and hence the con­

dition of the theorem follows. 

Now let us consider again the feedback control equation (1.17). In practice a 

systems designer will desire the controller B $ to have 

$(0) = 0 (1.24) 

and Re(\) < 0 for all eigenvalues A of the Jacobian matrix 

J/(0) = A + BJ$(0)C. (1.25) 

Equations (1.24) and (1.25) ensure that ^ = 0 is a locally asymptotically stable 

solution of equation (1-17). However, significantly i t does not ensure that 

lim \m) = 0 

for every solution ^(t) of equation (1.17). 

Theorem 1-5. U l t i m a t e Boundedness Theorem: Suppose that there exist 

positive constants e and Tq and a constant positive definite matrix P such that 

equation (1.19) holds for all {t,() with 

1̂1 > ro. 

I f r i > To then every solution ^(t) of equation (1.18) with 

k ( i o ) | < n 

satisfies the following conditions: 

1. \i{t)\<ri^/K(yj for aJlt>to. 
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2. | | ( t ) | < ro^K{P) for all t when 

t > t o + - log [ -v /^] -
e To 

That is every solution has 

m \ < roV«(P) 

for aJi sufficiently large t. 

[Here k ( P ) is the condition number of the matrix P and the number ro ̂ ^ (P ) is 

called an ultimate bound of the solution of equation (1-18). 

Proof: 

From Theorem 1-4 we can see that if a solution ^(t) of equation (1.18) is such 

that for 
to < t <ti 

we have 

then in the same interval 

< r i y 4 P ) e < * ° - * ) . 

This would give the contradiction 

t i > t o + - l o g P v ^ ] -e To 

Hence we conclude that the solution f ( t ) must enter the ball 

III < ro (1.26) 
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within a time interval 

At = -log[^J^)]. (1.27) 
e To 

Further during this time interval the solution ^ of equation (1.18) is bounded by 

m\<ris/<P). (1.28) 

In case the function ^ leaves the region (1.26) again we take to to be the time at 
which i t does so. Then | f ( io ) | = t ' o and the above argument shows that it can 
remain outside the region (1.26) for a time no longer than (1.27) and satisfies 

\m\<ro^/KiP). (1.29) 

throughout this interval. 

1.5 Periodic Solutions and Hunt. 

We have seen above that provided the solution ^{t) to equation (1.18) lies in 

a small spherical region of radius r i at some initial time to (and the conditions 

of Theorem 1-5 hold), i t will stay bounded for all later times t. At this point 

it is of interest to consider the existence of periodic solutions. For autonomous 

ordinary differential equations of second order, the Poincare-Bendixon theorem 

(see for example Hartman [7,p.l5l]) lays down the conditions for the existence of 

periodic solutions. It has been shown that this theorem can be extended under 

additional conditions to higher order systems [16,17]. A further question which 

can be asked at this stage is about the stability of the periodic solution or the 

closed trajectory [18 . 

The existence of a periodic solution for the feedback control equation (1.17) 

has important consequences. Suppose that equation (LIT) has a periodic solution 

or in other words a closed trajectory, say F which Hes completely outside the region 

I < n (see Figure 1.4). Such an isolated closed trajectory is called a limit cycle. 

In case all nearby trajectories approach it asymptotically then it is called a stable 

limit cycle. It is possible that some error in design of the plant or a perturbation 
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Figure 1.4: A l i m i t cycle T. 

in the input results in driving | ( t ) onto (or near to) T. In such an event the output 
(or state) of the plant acquires an oscillatory character 

x(t) = Xo -I- l[t) (1.30) 

which is not desired. These so called "self-oscillations" in a physical system are 
dangerous ."ind need to be "hunted" and overcome. 

I t was observed by Oldenberger [9] that the 'hunt' or self-oscillation of some 
non-linear systems can be reduced or even completely ehminated by injecting into 
the control element an additional high frequency sinusoidal signal. 

1.6 Dither. 

The hic:i frequency signal used to stabilize the plant is called 'dither'. The 
block diagr.yn (Figure 1.5) shows its injection just before the control device. The 
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Figure 1.5: I n t r o d u c t i o n of dither to a feedback control plant. 

feedback control equation (1.17) is now modified to 

dt 
= A f + B $ ( C ^ + k s i n w O , (1.31) 

where we have a constant vector k (e 3?̂ ) and a large constant frequency uj. The 
aim of introducing the high frequency dither is to ensure that the condition (1.24) 
holds for all solutions of equation (1.31). This is attempted by appropriately 
choosing the vector k and frequency u. I f success is achieved the hunt or the 
parasitic oscillation is said to have been quenched. 

In addition to the sinusoidal dither mentioned above other forms are also ap­

plied. Cook [3,p.149] gives details of various types of dither signals used. The 

problem then is to study the response of a nonhnear system to a high frequency 

input. This is the aim of engineering studies such as those by Oldenberger and 

Boyer [12] and Simpson and Power [15 . 
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Engineering studies, such as in referances [12] and [15], focus on analysing the 

response of a system using an approximate method. The method used is called the 

describing function approach. The main idea is that since the behaviour is periodic, 

one can use Fourier or Laplace transforms. Further as the oscillatory character is 

usually dominated by a small number of frequencies one can approximate the input-

output relation by a function known as the describing function. The method is also 

outHned by Cook [3,p.49] and extensively applied by Atherton [1]. The method 

has been widely used to predict nonlinear effects such as the excitation of limit 

cycles. However it can be misleading, particularly for low frequencies and larger 

time periods. 

Our aim in this work is to make use of the qualitative theory of differential 

equations and the method of averaging, which we will now describe, to undertake 

a more rigorous study of quenching the hmit cycle. 

1.7 Method of Averaging. 

Consider the system given by equation (1.31). Let us define a function 

* k ( 0 = ^ / ' ^ ( e + ksine)^^ (1-34) 
— TT 

for every | and k in the real space of dimension s. Then the autonomous system 

^ = A | + B * , ( C | ) (1.35) 

is called the averaged version of equation (1.31). 

Theorem 1-6. If f ( t ) and \{t) are solutions of equations (1.31) and (1.35) respec­

tively such that at initial time to 

ato) = ho), 

then for any finite number T, there exists a number a;o(T) such that the distance 

\[i{t) - | ( t ) ] | is of order T/LO, throughout the interval 

to<t<to+T 
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provided that u > u>oiT). 

From the above theorem it can be concluded that if every solution of the 

autonomous system (1.35) satisfies the condition of asymptotic stabihty, that is 

C{t)\ —^ 0 as t —> CO (1.36) 

then the solutions of equation (1-31) will follow those of the averaged version into 

a small neighbourhood, say 6 of the origin and will remain in this neighbourhood 

thereafter provided that u is sufficiently large. 

As mentioned earlier there are various types of dither signals injected into the 

control device of a plant. In a general form a dither can be denoted by kp(wt) 

where p(t) is some continuous real function periodic in a variable t with period 

denoted by A. Thus a general dither equation is 

^ = A I + B $ [ C f + kp{ujT)] (1.37) 

and the corresponding averaged equation is 

4 = Ae + B*k(CO 

where 
A 

*k(y) = ^ / * ( y + k K ^ ) ) ^ ^ (1-38) 

for all y and k in R^. 

1.8 Some Formal Computations of Averages. 

In this section we suppose that y,k are real numbers and that $(?/) is an 

analytic function whose Taylor expansion has an infinite radius of convergence. 

We also suppose that 
1 ^ 

^M = —jHy + ksme)d9 
— TT 
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Expanding $(y -|- ksin^) by Taylor's theorem we get 

$(y + ksin^) = $(2/) + (ksin^)*. (1.39) 
i=l 

Integrating both sides of equation (1.39) we get 

*k(y) = Hy) + Jsin'e do (i.40) 

We know that for odd i 
7r 

y sin''^ dQ = 0, 

and for even i [i = 2r] we have 

Substituting back in equation (1.40) we get 

^M = m+E-^m?' (1-42) 

(1.) Now consider the special case when 

$(2/) = siny. 

Then 

$(2'-)(y) = ( - l ) ' -s in2/ , 

and equation (1.42) reduces to 

*k(y) = ( s iny){ l + E w ^ / 2 ] ' ^ > 
r=l (^ ' ) ' (1.43) 

= (sin2/)Jo(k) 
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where Jo(k) denotes the Bessel function of order zero. 

Similarly for the case ^{y) = cosy we deduce that 

My) = (cos2/)Jo(k). 

(2.) Now we take 

$(y) = ^ 

so that 

where C, k, and y are real constants with C 7̂  0. The integral can be written as 

a contour integral in the complex plane as 

c 

where z = e'̂  and the contour c is the circle l^l = 1- The integrand has singularities 

at the roots of the equation 

-4Ch^ + (kz2 + 2iyz - k)2 = 0 (1.47) 

which further yeilds 

(1.48) 

^,^2{iy-C)z_^^^ 
k 

k 

where we change 2 to —2 in the second equation. 

Thus the integral can be written as 

^ ~ i k 2 / {z - ai){z - a2){z + ai){z + 02) ^^'^^^ 

where we have denoted the roots of equations (1.48) by ai,02,01 and 0:2 respec­

tively. I t can be evaluated using the Cauchy theorem which requires the sum of the 

residues at isolated singularities inside the contour c, in this case a circle |z| = 1. 
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Since 
aiQ2| = +1 

one of the roots, say a i lies inside the contour while the other will not contribute 

to the integral. Similarly ai will contribute while 0:2 will not. Thus for the integral 

we have 

j = Z^\ 1̂ 4. 1̂ 1 (150) 
K"^ \ai - a2){ai + ai){ai + 02) (a i + a!i)(ai-f a2)(a:i - 02) ' 

Note that we have 

where we now substitute 2 = a i to get 

(ai + ai)(ai + a2) = ^ ^ (1.51) 

and taking the complex conjugate we have also 

iai + a,){ai + a2) = ^ . (1-52) 

Substituting equations (1.51)and (1.52) back in the results (1.50) we can write 

- 8 7 r . a i , a i , 
k2 \ a , - a 2 ) i f a , ) ^ {a,-a2){ f a i y 

27r r „ , 1 ^^-^^^ 

which is solely in terms of the root a i of the first of equation (1.48). Using the 

fact that the roots a i and 02 satisfy 

-2{iy - C) 
ai + a2 = , aiQ!2 = - 1 , 

we deduce that 
1 ± 2 y k 2 + ( i y - C ) 2 

ai + — = -̂ • , (1-54) 
a i K 
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and hence 
I = -^[Re , ^ ]• (1.55) 

Let us put 

u; = (k2 -}- _ 2̂ _ 2^^^-) 

cosy = . 

Then using trigonometric relations we get 

; = ±H^£5f£^. (1.56) 
G 

Thus 

with 

A = ( 5 2 - h 4 C V ) ^ B = (k2-F C2 - 2/2). 

When y = 0 we get 

3'k(0) = , ^ (1.57) 
c / ( k ^ T c ^ 

(3.) When equation (1.57) is differentiated partially with respect to C we can 

differentiate equation (1.44) under the integral sign to get 

k2-h2C2 1 } „^ ,^2 , n . . :_m2i-2^^ 
2C3(k2 + C 2 ) ^ 

When divided by 2C this shows that if 

$(y) = 

— = — / - 2 C [ C 2 - f (ksine)2]-
-o- 27r 7 

1 
(C2+2/2)2 

then 

^ .0) = ^ " ^ ^ ^ ^ 3 • (1-59) 
^ 2C3(k2 + C2 ) f 
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1.9 Equations with Generalised Dither. 

With j / , k G 3ff we now discuss dither of the form kp(u;f). Let us restrict to 

functions p{t) which satisfy: 

i . p{t) is continuous, A periodic real function of t. 

i i . p{t) is twice difFerentiable and p{t) is continuous in $ft. 

i i i . The equation p{t) = 0 has only a finite number N of roots in the period interval 

0 <t < X. 

As an example the above conditions are obviously satisfied by p{t) = sin t. We 

shall now propose 

Lemma 1-1. Suppose that a function 

has continuous derivatives and we write 

A 

0 

for aiJ k. If \f{y)\ and \f'{y)\ are both bounded in U and the function p{t) satisfies 

the three conditions listed above then 

satisfies 
/ 'k(y) - ^ 0 as k CO 

uniformij for y € SR. 

P roo f 

Since | / ' ( y ) | and \f{y)\ are both bounded in 3? therefore for some constants £ 

and M, 
\f{y)\<M 
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l/'(2/)l<'C 

for all y. 

Since p{t) = 0 has only a finite number iV of roots in the period interval 

0 < t < \ , each, of these can be enclosed in a small open interval such that the 

union £ of these non-overlapping intervals has total length less than eA/2£. Then 

0, X] — S consists of -|-1 closed intervals [a^, 6̂ ] with u = 1,2,..., N. 

Thus we can write 

1 r ^+1*/ ' 

fLiy) = j[J f'(y + kp(^)) dd+J2J f'{y + kpie)) de]. (i.eo) 

Since \ f(y)\<li we have 

I /^/'fo + kpW)d9|</^£<i« 

< i « . 

Focus now on the second term of equation (1.60). Since |p(^)| is continuous 

and nonzero in each closed interval \ax,, 6̂ ] therefore there exists a constant h such 

that 

|P(»)I 
for all 6 in [0, A] - £. Integration by parts gives 

•fiy + Mm"'^ 
1 /(2/ + M^))'^^=[ k-(^) J. 

(1.61) 

Since | / | < A ^ and ]p(o)\<h this gives 

2Mh 
/ / ' ( 2 / + W ) l < ^ 

|k Jai, k 
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This, equations (1.60) and (1.61) now give 

+ 

2 Ak 

Ak ' 

where 

I f 

C = J \pie)\d9. 

[i{N + l)h + 2h'^C]M 
= A^ 

(1.62) 

then equation (1-62) gives 

l/k(y)l < ,̂ 

for all k with k > ^ i . That is 

fl —^ 0 as |k| —> oo 

uniformly for y G 3?. This establishes Lemma 1-1. 

If we take 
. 1 y 

f i y ) = c^^'^^^^Q 

then f'{y) = l/(C^ + y"^) and these satisfy the hypothesis of Lemma 1-1 because 

f{y)\ < (7r/2C) and \f{y)\ < l / C ^ . So Lemma 1-1 gives 

uniformly for y G 5? provided that p(t) satisfies the three conditions listed above. 

Now we are in a position to prove the following theorem. 
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Theorem 1-7. Suppose f : 3?'' — > is continuous and k G 3?̂  so that we can 

write 

Uy) = jJ f(y + W ) ^ ^ . 
0 

I f f ( y ) —*• 0 as |y| CO then /k(y) —> 0 as |k| ^ oo uniformly for y G 5?'. 

P roo f 

For any given e we must prove that there exists a number ki{e) independent 

of y , such that | /k (y) | < e for all y , k G 3̂ ?' with |k| > ki{e). 

Since f (y) —* 0 as |y| —> oo there exists a number C such that | f (y) | < (e/2) 

for all y with |y i > C. 

Let Ai be the maximum value of the continuous function | f ( y ) | for all y in a 

bounded closed ball |y| < C, then 

for all y G 3?* and a > 0 is a constant. Further 

A 
| A ( y ) l < ^ / l / ( y + M ^ ) ) | d ^ 

0 

e M{Cl+a^ ) 1 
- 2 + A / a2 -t- |y + kp(^)|2 

We know that 

a2-K|y + kp(^)|2>a2 + (Z-H|k|p(^))2 

where Z = |k|~'^(k • y) and therefore 

M{a? + C^) } dd 
2 + ( ^ + |k|p(^))2 • | / K ( y ) | < 2 + A / a 

By equation (1.63) we can choose a number ki independent of Z such that 

^ dd , ^ eA 
^ 2 + ( ^ + |k|p(5))2i - 2M (a2 - f -C2) 
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for all Z , k w i t h | k | > ki and therefore 

| A ( y ) | < ^ + ^ 

= e 

for al l k,y w i t h | k | > ki. Hence the conclusion that 

/ k ( y ) - ^ 0 as k oo 

uniformly for y e R^. This establishes Theorem 1-7. 
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Chapter II 

T H E USE OF SMALL PARAMETERS 

2.1 The Theory of Small Parameters. 
A classical problem in the study of differential equations is the analysis of a 

system given as 

x = XF{t,x,X), (2.1) 

where A is a parameter usually considered to be small. I t is clear f rom the above 

equation that when A approaches zero we would expect a solution x{t) to approach 

a constant value. Let us define a finite interval £ in ( t , x , A) space, 

e = {{t, X, A) : 0 < * < a, X < 6, - c < A < c} (2.2) 

where our solution x{t) is approximately constant. Further we demand that Pi-

card's theorem (Theorem 1.1) is satisfied and 

= m a x | F ( i , x , A ) | for {t,x,X) e S 

. • r ^ 1 n ^^-^^ 

The above result allows us to state a theorem (for example Sanchez [14,p.l36]). 

T h e o r e m 2-1. S m a l l P a r a m e t e r T h e o r e m : Jf |A| is iess tiian a small positive 

number 8 then the solution x{t) of the dilferential equation (2.1) with x(0) = 0 

can be extended throughout the region 0 < t < a and satisfies 

x{t) < \X\aM 

throughout this interval. In other words the magnitude \x{t) \ is of order X through­

out the time interval [0,a]. 
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The above discussion can be generalised to the case of periodic solutions. Con­

sider that the equation 

x = G ( f , x , A ) (2.4) 

has a periodic solution for a fixed value of the parameter A, say A = 0. A n 

important question then is : Does equation (2.4) have a periodic solution for small 

IA I? , and fur ther is this periodic solution sufficiently 'close' to the given periodic 

solution? 

I f equation (2.4) models an autonomous system, the appearance of periodic 

solutions for small |A| is called the b i f u r c a t i o n of periodic solutions. As we shall 

be concerned w i t h autonomous systems, i t is appropriate here to illustrate the 

general method involved (see also Jordan and Smith [9,p.101]). 

2.2 Harmonic Oscillator with a Small Perturbation. 

Let us consider an autonomous system in two dimensions, 

^ = 2 / - A / ( x , y ) 

dy ^^-^^ 
^ = - x - A 5 ( x , 2 / ) 

where A is a small positive parameter, and f(x, y), g{x, y) are polynomials in x 

and y. When the small parameter A is taken to be zero, equation (2.5) reduces to 

the famil iar harmonic system, 
X - y 

(2.6) 
?/ = - X , 

whose t ra jectory is given by a circle of radius r",,, 

x ' + y ' = rl (2.7) 

For small A we intui t ively expect the trajectories of the system (2.5) to be near 

the circle (2.7) and they may be simple closed curves or spirals. 
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I n order to fur ther analyse the behaviour of trajectories we transform to polar 

coordinates to wri te 

r = (xx + yy)r~^ 

= -A[ / ( rcos^ , rs in^)cos^ + ^(rcos^, rsin^)sin^], 
(2.8) 

(2.9) 

and 
6 = [xy — yx) 

= —1 + Ar~-^ [/(rcos 6, r s in ^)sin & — g{rcos &, rsin 0)sin 9]. 

Thus we get 
dr _ du 
de~ dd 

where we have substituted 

r = To + Xu(d) 

w i t h constant Tq. I t is clear that for small A 

^—p- = f{rcose, rsme)cose + g{rcose, rsin^)sin^ + 0 (A) . (2.11) 
da 

We can fur ther write 

u{e) = u{ro,e) + v{e), 

where 
e 

U{ro, e) = J [ f o C o s < f ) + gosin(f)] d(f), (2.12) 
0 

w i t h 

fo = /(roCos(/i,rosin(/»). 

A n d also 
^ = ^ + ^ . (2.13) 
d9 de ^ dd ^ ^ 

Comparing equations (2.11) and (2.13) we conclude that dv/dO is of order A where 

A is small. We use the small parameter theorem (Theorem 2.1) to say that v{6) is 

of order A in the region 0 < 9 < 27T provided that 

v{0) = 0. 
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The polar equation of the t rajectory can thus be wr i t ten as 

r{9) = ro + Xu{9) 

= ro + XU{ro,e) + 0{\') 
(2-14) 

i n 0 < ^ < 27r w i t h r (0 ) = ro. 

From equation (2.9) we find tha t 6 decreases as t increases. Further i f 

r(27r) - To > 0 (2.15) 

the t ra jectory spirals inwards and i f 

r(27r) - ro < 0 (2.16) 

the t ra jectory spirals outwards. Now, since 

r ( 2 7 r ) - r o = A[C/(ro,27r) + 0(A)] (2.17) 

we can restate the conditions (2.15) and (2.16) as conditions on U{ro, 2TT). I n other 

words i f 

U{ro,2Tr) > 0 

the t ra jectory spirals inwards and i f 

they spiral outwards, provided that A is sufficiently small and positive. 

I t is easy to observe f rom equations (2.12) and (2.13) that i f r i is a root of the 

polynomial equation 

U{r,9) = Q 

at which 
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then a closed t ra jectory exists w i th in a distance of order A of the circle 

x^ - f 2/̂  = 

2.3 Applications. 

I n the fol lowing we w i l l make use of the method of averaging outhned in Chap­

ter I and the small parameter approach given above to analyse two model systems. 

First we consider a system modelled by a second order equation: 

X + eax-f e*k(a;) + X = 0 (2.18) 

w i t h 

^(y) = y^ - by^ + cy 

where a, 6, c and e are positive and e is small. We wish to find the radii of closed 

trajectories and examine what happens to them as the number k increases f rom 

zero. 

Recall that 
1 

ITT J , ^ 
(2.19) —TT 

where we have used equation (1.42). Calculating the derivatives involved and 

rearranging we get 

M y ) = y ' + y ' (sk̂  - )̂ + J / ( f - + c)- ( 2 . 2 0 ) 

We can wri te equation (2 . 18 ) as 

x = y 

.-r - Ai^ ^ 7/3 r.^k2 -h\^^ F,( 
8 

15 3 (2-21) 
y = - x - e[y' + y' {bk' - b) + 5 ( - k ' * - -bk' + a + c)], 
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and a comparison w i t h equation (2.5) yields 

f{x,y) = 0 

g{x, y) = y' + y' (Sk^ _ 6) + ^/(a - f c + ^ k ^ - ^bk'). 

Further to analyse the behaviour of trajactories we transform to polar coordinates 

and follow the procedure outHned i n the example above. We have 

U{r) = / [r̂  sinV + sinV(5k2 - b) + rsin^(f>{a 4- c + ^k^ - hk^)] d4> 
J 8 2 

—IT 

= lIL[5r^ + 6r.2(5k2 _ 6) + 8(a + c + _ ^ ^ k ^ ) ] . 
8 o ^ 

For a closed periodic trajectory w i t h radius r we require 

U{r) = 0 

which can be solved for and gives two roots 

(2.22) 

2̂ _ - 3 ( 5 k ^ - b)±^9i5k^ - 6) - 5[8(a + c) + 15k^ + 2bk^] ^^^^^ 

5 

Let us first consider the case when k is zero, then equation (2.23) reduces to 

2 +36 ± 7962 _ 4o(a + c) 
r = 

5 

and the roots are real i f 
b ' > j { a + c). (2.24) 

Further i f 
(a + c) > 0 

then both roots are positive, which means that we have two closed trajectories. I n 

case 
(a + c) < 0 
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then one root w i l l be positive and the other negative. The negative root corre­

sponds to an imaginary radius, so we wi l l have one periodic trajectory. 

For nonzero k, we can write the discriminant in equation (2.23) as 

D = ^b'^- 40(a + c) + 6(5k2 - 6̂)2 (2.25) 

and observe that i t decreases in the interval 0 < < 6/10 and increases for 

^ < k^ < CO. The minimum value of the discriminant is thus at k'̂  = ^ , and for 

real roots we require 

6 2 > | ( a + c). (2.26) 

For this condition the roots (2.23) and their average are plotted as a function of k^ 

in Figure 2.1 for given values of the parameters. From equations (2.24) and (2.26) 

i t is of interest to focus on the region 

| ( a + c ) > 6 2 > ^ ( a + c). (2.27) 

In this region we again plot the roots r ^ , r | and their average as a function of k^ 

in Figure 2.2. We note that for large k^ the radii squared of the orbits become 

negative — the dither has been quenched. 

We next consider a special equation of the fo rm 

i + e f { i ) + x = 0 (2.28) 

which can be wr i t t en as 
X = y 

y = - x - e f { y ) 
(2.29) 

In the case when 
f { y ) = ay - siny (2.30) 

we can wri te the averaged version of equation (2.29) as 

X = y 

y = - x - e/k(2/), 
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F i g u r e 2.1: T h e rea l roots of equation (2.18) wi th 6̂  > 16(a + c) /3 . 
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where equation (1.43) gives 

/k(2/) = a2 / - s inyJo (k ) , (2.32) 

Jo(k) denoting a Bessel function. Hence for our 2 x 2 system (2.31) we get 

5(2;,2/) = 0 

f{x,y) = ay- Jo{k)siny, 
(2.33) 

and we can now apply the method of small parameters to write 

U{r) = J [arsin^c^ - sin(rsin ^)(sin (^) Jo(k)] d<p (2.34) 
—7r 

which can be wr i t t en as 

where we have used the expansion 

which after integration gives 

U{r) = — - Jc(k)7r E (2)2.+2((, + i),)2 • (2-37) 

I t is easy to show that 

dr h ( ( - + l)!)222-+2. ^2.38) 

= J'oir) 

and hence 

U{r) = ^ + Jo(k)4(r)7r. (2.39) 
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Further as 

Mr) = -J'oir) 

we have 

C/(r) = ^ - 7 r J o ( k ) J i ( r ) . (2.40) 

Closed trajectories occur when U{r) = 0 or 

a Ji{r) 
2Jo(k) 

To get the radi i of the closed trajectories we plot 

(2.41) 

Z = ^ (2.42) 
r 

versus r . Next we draw the hne (see Figure 2.3) 

for diff'erent values of k. The points of intersection give us the radii of the closed 

trajectories. Since Ji{r) is bounded i t is clear that for large values of r we have 

U{r) > 0 (assuming that a is positive). This condition means that all trajectories 

spiral i n f r o m in f in i ty and wind up to the outermost closed trajectory. On the 

other hand i f we have 

then for small values of r we get U{r) < 0 , and thus the trajectories spiral outwards 

f r o m origin to the first closed trajectory. Else i f for small r 

a 1 
> 

2Jo(k) " 2 

then U{r) is positive and the trajectories would spiral inwards to origin because 

in this case there are no closed trajectories. 

Next we wish to analyse the behaviour of the closed trajectories as the value 

of the parameter k increases f rom zero. As in Figure 2.3 let us fix the value of a 
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F i g u r e 2.3: T h e funct ion Z a longwith the line Z ' . Here k = 0 and 

a = 0.02. 

45 



0 1 10 11 12 13 lA 

F i g u r e 2.4: T h e radi i r of closed trajectories plotted agednst k. 
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as 0 .02. First we take k to be zero. From Figure 2 .3 we conclude that there are 

five points where the line ( 2 . 4 3 ) intersects the curve ( 2 . 4 2 ) . These are denoted 

as r i , r2, ^3, r4, and r^. I n Figure 2.4 we plot the radii r of the closed trajectories 

against k. I t maybe noted that for large enough values of k, Jo (k ) is small and 

either the condition ( 2 . 4 5 ) holds or 

^ < - 0 . 0 6 9 , 
2 J o ( k ) 

and U{r) > 0, so that all trajectories spiral in f rom inf in i ty to the origin. I n 

other words by making k sufficiently large we can make the averaged equation 

asymptotically stable in the large. 
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Chapter III 

HARD AND SOFT QUENCHING 

3.1 Hard and Soft Quenching. 

I n Chapter I I above we studied quenching of unwanted oscillations by the 

injection of a sinusoidal dither. The systems considered can be represented by 

equations of the fo rm 

x + eF{x) + x = 0, (3.1) 

w i t h a small parameter 6. We considered the functions 

( i ) F{y) = ay — sin y w i t h a constant and positive. 

( i i ) F{y) = y^ - by^ + cy w i t h 6 and c constant and positive. 

I n both cases we found that as the amplitude k of the sinusoidal dither signal 

increased the oscillations were f inal ly quenched. In fact the closed trajectories 

in the phase plane disappear and reappear later but the f inal stage of quenching 

involved a stable closed trajectory shrinking down to the critical point. Thereafter 

no closed t ra jec tory appears for any large value of k. This sequence of events is 

known as 'soft quenching'. 

A different phenomena was observed by Oldenberger and Boyer in the work 

reported in J. Hale [6,p.150] . They considered a th i rd order equation 

^ + 2i + i + $ ( x ) = 0, (3.2) 
at 

where $ ( x ) is a real funct ion sketched in Figure 3.1 . The system has a self 

excited oscillation which is asymptotically stable and the problem is to quench 

this oscillation by replacing $ ( x ) by $(a; + ksinwf), where k and u are large. The 

observation of Oldenberger and Boyer was that as k increased above a certain 

f ini te value the oscillations disappear. However just before its disappearance 
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Figure 3.1: The function used in equation (3.2). 

the amphtude of the oscillation was large. Hence this phenomena is called 'hard 

quenching'. 

Using the non-rigorous method of describing functions, they concluded that 

before the disappearance of the unwanted self-oscillation the system also had an 

unstable oscillation very close to the stable one. Once the oscillations disappear 

the zero solution becomes asymptotically stable. 

In other words, the phenomena observed by Oldenberger and Boyer was dif­

ferent from soft quenching. In this case the final stage of quenching involved a 

stable closed trajectory in 3?̂  which remained at a finite distance from the critical 

point (the origin) as the dither amplitude k increased. As k increases an unstable 

closed trajectory expands out from the origin and destroys the stable trajectory 
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Figure 3.2: As k increases an unstable closed trajectory expands out 
from the origin and destroys the stable trajectory. 

(See Figure 3.2). One could reverse the sequence and say that with the variation 

of k a stable critical point "bifurcates" into a stable limit cycle and an unstable 

singular point. The bifurcation effect of this type was studied by Andronov in his 

famous bifurcation theorem. 

3.2 Andronov's Bifurcation Theorem. 

Let us consider a 2 x 2 autonomous system 

x = fix + y + p{x, y, y) = P{x, y, fx) 

y = -x + fiy + q{x, y, y.) = Q{x, y, y), 
(3.3) 

where / i is a real parameter and p and q are real functions which are analytic at 

the point (0,0,0) . 
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Theorem 3-1. I f tiie anaJytic functions p{x, y, fi) and q{x, y, y) satisfy the condi­

tions 

(i) p{0,0, fi) = q{0, 0, / i ) = 0 for aii fi, that is (0,0) is a critical point for each fj, , 

and 

(ii) The critical derivatives of the functions p and q with respect to x and y are all 

zero at (0, 0) for each p, 

then there exists a constant pi > 0 and a disc D\ C 3?̂  containing the origin 
(0,0) such that one and onJy one of the foiiowing statements is true. 

(A) For -p^ < p < 0 the system (3.3) has no closed trajectory in Di but a stable 
closed trajectory expands from the origin as p increases from 0 to pi. 

(B) There exists a closed trajectory F^ in Z?i which shrinks down to the origin as p 
increases from —pi to zero and £)i contains no closed trajectory forO < p < pi. 

(C) Di contains no closed trajectories when y ^ 0 and —p^< fi < yi, but every 

trajectory in Di is closed when p = 0. 

The three cases (A), (B) and (C) are depicted in Figure 3.3 . (We omit the 
proof but refer the interested reader to Minorsky [10,p. 169] . In general i t is 
very complicated to find out which of the paths is followed in a particular case. 
Sometimes it is possible to arrive at a decision by making use of the Bendixon 
negative criterion (see for example Davies and James[5,p.88]). 

As an example consider the scalar equation 

x-2px + {l + p^)x + (sin xf = 0 (3.4) 

which can be reduced to the 2 x 2 system 

X = px + y 

y = -x + py- {sm{y + px)f 

usmg 

y = X - px. 
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This is of the form of equation (3.3) with 

p{x,y,^) = 0 

q{x,y,fi) = -[sm{y + nx)^ 
3 (3.6) 

and the conditions (i) and (ii) of Andronov's theorem are satisfied. Thus according 

to Andronov's theorem one of the results (A), (B) or (C) holds. In such a situation 

the negative criterion of Bendixon helps. Now 

T T - + = 2/1 - 3sin^(2/ + iix)cos(y + fix). (3.7) 
ox oy 

Since 
s i n ^ a c o s Q > 0 for — < a < - , a 7̂  0, (3.8) 

we conclude that 

in the strips (see Figure 3.4), 

0 < 2 / - f / x x < ^ and <y -\- fix <^ (3.10) 

provided that 
/ i < 0. 

Thus Bendixon's negative criterion tells us that if /x < 0 then there is no closed 

trajectory in the shaded strip of Figure 3.4. Thus the possibilities (B) and (C) 

are excluded and (A) occurs, that is a stable closed trajectory bifurcates from the 

origin as \i increases from zero. 

In general it is not easy to determine a suitable change of coordinates to reduce 

the equations of the system to the form of equation (3.3). We can however restate 

Andronov's theorem in a form which makes it easier to use in practice. Let us 

generally write 
X = P (x ,y , / x ) 

Then we can write the alternative form of Andronov's bifurcation theorem as 

follows. 
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y=JL- ^ lx 

Figure 3.4: I f /x < 0 then there is no closed trajectory in the shaded 
strip. 

Theorem 3-2. If the analytic functions P{x, y, p) and Q{x, y, y) satisfy : 

i. P{0,0, p) = Q{0,0,p) = 0 for all p, 

ii. the Jacobian matrix at the origin J(0, 0) has complex eigenvalues a{p) ± i(3{p) 

Q(0) = 0 

m > 0, 

with 

i i i . and the transversaJity condition 

0 < a'[= da{p)/dp] 
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then there exists a constant / i i > 0 and a disc Di containing the origin (0,0) such 
that one and only one of the statements (A), (B) or (C) above is true. 

Proof 

Since J(0,0) has complex eigenvalues a ± i/?, therefore there exists an invert-

ible 2 x 2 matrix M such that 

M - ^ J ( 0 , 0 ) M = f (3.12) 

If we write equation ( 3 . 3 ) as 

x = F(x , / i ) 

then the substitution 

gives 

X = M z 

JG(0) = M - ^ J F ( 0 ) M 

Now if 

z = 

then we can write equation (3 .14) as 

(3.14) 
z = M - ' F ( M z , / z ) 

=G(z,;x). 

The Jacobian matrices are thus related as 

J G ( Z ) = M - ^ J F ( M Z ) M (3 .15) 

and so 

(3 .16) 

z = JG(0)Z-F ) (3 .17) 
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(3.19) 

where at z = 0 
(v\ = 0. (3.18) 
\<1J 

Thus we get from equations (3.16) and (3.17) 

i = ai + Pr]+p{i,rj,p) 

and that at z = 0 

p(0,0,^) = 5(0,0,/z) = 0 

which meets the first condition of Theorem 3-1. 

From equation (3.16) one can easily verify that at the origin 

dp _ dp _ dq _ dq _ 

for each /x, which meets the second condition of Theorem 3-1. 

However equations (3.19) are not quite of the form of equation (3.3). The form 

is achieved by introducing 
T = f3ip)t 

to get 

where 

And as 

( = e^ + V + ^p{i,V,fJ') 

V = -( + £V + ^<li(,V,fi) 
(3.20) 

a(0) = 0 

m > 0 

we conclude that e is zero when p is zero. Further 

de P{p)a'{y) - a{p)f3'{p) . . 
T p = — i m ' ^ ^ ^ 
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and thus 
^ a^(0) 

^d/x^^=0 /3(0) (3 22) 
> 0 , 

which can be solved to get /i(e) which is strictly increasing in some interval — eo < 

e < eo. Then replacing pL in equations (3.19) by /i(e) wiU give equations of the 

form of (3.3) with e as a parameter. Thus the conclusions (A), (B) and (C) of 

the Andronov theorem follow from equations (3.20). Also as the linear mapping 

X = M z transforms the trajectories of the system (3.20) in the (^, r}) plane to the 

trajectories of system (3.11) in the {x,y) plane, i t follows that (A),(B) and (C) 

also hold for the trajectories of equation (3.11). This completes the proof of the 

alternative form of Theorem 3-1. 

Restating the Andronov theorem does not in any way help us to decide which of 

the possibilities actually occurs. I t just makes its use easier and straightforward. 

In deciding the eventual course of the system one may use Bendixon's negative 

criterion. 

3.3 The Rayleigh Equation. 

To illustrate the whole procedure we will consider a second order system anal­

ogous to equation (3.2) given as, 

x + ax + x - ^ x ) = d. (3.23) 

In this equation a is a positive constant and (i>[y) is a differentiable real function 

with the condition that there exists a constant m such that 

i>\^{y)\ for - oo < y < oo. (3.24) 

The phase system can therefore be written as 

X = y 

y = -X - ay + ^{y). 

57 

(3.25) 



The first thing is to ensure that the system has a proper closed trajectory. For 
this purpose let us assume that the dither is kp{t), where the function p(t) is 

(i) continuous, A periodic and real. 

(ii) twice differentiable and p is continuous in 9? and 

(iii) the equation p(t) = 0 has only a finite number ^N^ of roots in the period 

interval 0 < t < A. 

The averaged equation can then be written as 

X = y 

y = -X - ay + *k(2/), 

with 

(where ^^ (y) = j-^k{y)) and thus the eigenvalues of J(5'k(0),0) are 

(3.26) 

My) = ^ / + MO))de. (3.27) 
0 

From equation (3.24) we have 

*k(2/)| <m for all yE 3?, (3.28) 

and the only critical point of equation (3.26) is 

X = ^ 0 ) ;y = 0. 

Now the Jacobian matrix of the system (3.26) is 

(3.29) 

A = lliKiO) -a)± ^ (a-* ;^(0) )2 - 4 ] . (3.30) 

These have positive real parts and therefore the critical point is an unstable focus 

or node when 

%{0) > a. (3.31) 
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To demonstrate the existence of a closed trajectory we proceed by shifting the 

critical point to the origin by substituting 

z = *k (0) - X , 

which changes equation (3.26) to 

2 = -2/ 

2/ = 2 - F(y), 

where 
F{y) = ay- * k ( y ) + *k (0) 

y (3.33) 
= j f W v . 

0 

with 

fin) = a -

Notice that equations (3.32) represent the Lienard's equation [5,p.96 

y + f{y)y + y = o. (3.34) 

Recalling equation (3.28) and the fact that 'a' is a positive constant we get 

lim F(y) = -|-oo 

lim F{y) = -oo. ^^'^^^ 
y-*-oo 

Theorems by Levinson and also Smith and Dragilev [10,p. 103] then establish the 

existence of at least one closed curve, Tc {Tc C 3?̂ ) encirchng the origin, in 

the phase plane. I t can further be demonstrated (see for example Davies and 

James [5,p.97]) that all the trajectories of equation (3.32) outside of Fc will spiral 

inwards towards the closed curve, and the trajectories inside Tc will spiral outward 

towards i t . A corollary to the Levinson theorem then assures the existence of a 

closed trajectory of equation (3.32) inside Tc provided that the critical point at 
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(0,0) is unstable. In other words this means that > a. In case we now choose 

k to be zero then 

*k(2/) = Hy), 

and our averaged equation (3.26) reduces to the original system. Thus we deduce 

that the system given in equation (3.25) has a closed trajectory encircling its 

critical point ($(0), 0) provided that $'(0) > a and the condition (3.24) holds. 

Thus quenching of the closed trajectories of the system (3.25) does not occur while 

*L(0) > a. 

We now recall Lemma 1-1 which states that if there is a real constant m 

satisfying the condition (3.24) and further there also exists a real constant m i 

such that 
mi > \^'{y)\, (3.36) 

for all y € 3?, then 

*k(2/) —^ 0 as |k| —.DC (3.37) 

uniformly. This ensures that there exists a real positive number ko such that if 

|k| > ko 

then 

^'kl < afor ally 6 3R. 

Now an application of Bendixon's negative criterion to equation (3.26) gives 

9P dQ , 
dx dy (3 38) 

< 0 , 

for all y E 3f?. Thus i t is safe to conclude that no closed trajectory exists when |k| 

is greater than ko. A l l trajectories come in from infinity and tend to the critical 

point (^'k(O), 0) which is stable. 

Summarizing i t can be stated that i f for the Rayleigh equation (3.23) the 

conditions (3.24) and (3.26) hold then all closed trajectories of the averaged system 

(3.26) are quenched for |k| > ko. 
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We now prove that 

k | ^ [ * k ( 0 ) ] < 0 (3.39) 

for all nonzero k, provided that ^"(y) is continuous and 

y^"iy) < 0 (3.40) 

for all real and nonzero y. Notice that from equation (3.27) we can write 

d'My) 1 }d'^y + kp{d)) 
dkdy XJ dkdy ' ^ ^ 

and 

which gives 

0 

k|^[*ic(o)] = ^ / kp{^"ikpie))d9 
0 

< 0 

(3.42) 

because of equation (3.40). Thus the statement (3.39) is true. 

Further we show that if p(t) and $(?/) are odd functions and ^(y) satisfies the 

conditions in equations (3.24), (3.36) and (3.40) and also 

$'(0) > a, 

then there is one and only one number 

k(a) > 0, 

such that a periodic orbit of system (3.25) bifurcates from its critical point as k 

varies across k(a). 

As p{t) and $(y) are odd therefore *k(2/) is an odd function of y, thus 

*k(0) = 0, 
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and the critical point of the system (3.25) is at the origin for all k. The system's 

Jacobian matrix has eigenvalues (at the origin) given by 

\[{M0) -a)± ^ ( n ( 0 ) - a ) 2 - 4 ] , (3.43) 

which are complex when 

( * U 0 ) - < 4, (3.44) 

and their real part 

" = ^ [ * k ( 0 ) - a ] (3.45) 

is zero when 
* U 0 ) = «• (3.46) 

As k increases from zero to infinity the number ^^(0) decreases continuously to 

zero. Now because of equation (3.39) the equation (3.46) has one and only one 

positive root k(a). I f we change from the parameter k to p where 

p = k(a) - k, (3.47) 

then the eigenvalues 
cc{p)±iM 

at the critical point have 

a(0) = 0 , /3(0) = 1 (3.48) 

and 

,da{p) _ 5 1 , 

> 0. 

The above discussion has established the validity of the three hypotheses of 

the alternative form of the Andronov's theorem (Theorem 3-2) and therefore one 

of the statements (A), (B) or (C) of Theorem 3-1 must hold as /x is varied across 

zero (that is as k is varied across k(a)). 

62 



3.4 A Special Case. 

Consider the situation where 

p{t) = smt, (3.50) 

and 

$(y) = ^ a r c t a n ^ . (3.51) 

Such functions often occur in the theory of control. I t follows that 

Now 

2C 
Hy)\ < ^ (3-53a) 

and 

my)\ < ^ , (3-536) 

for all y. Further from equation (3.27) one gets for the averaged version 

0 (3.54) 
_ _b_ 

As equation (3.54) holds for all y G 5R, we can write 

K ( o ) l < ^ . 

From equation (3.37) we recall that as k increases from zero to infinity, ^'^(0) 

decreases continuously from 

*|)(0) = $'(0) 

> a 

to zero. This implies that the equation 

^'k(O) = a (3.55) 
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has one and only one positive root k(a), with 

C2 

From equation (3.52) we can write 

a | < - ^ , or b>aC\ (3.56) 

ny^^sme)=^ I (3.57) 
+ {y + ksinO) 

and thus 

,T,' r.A - ± f 
^ C^ + iy + ksine)^ 

Putting in y to be zero and using equation (1.57) we get 

C V k 2 + C2 

Using equation (3.55) and writing 

k = k(a) 

we find 

*L(0) = ^ J . (3.59) 

= (3.eo) 
aC 

Finally from equations (3.58) and (1.55) we can write 

*k(2/) = ^^e[a;- i /2] (3.61) 

with 

w = k^ - f - y2 _ 2iCy. (3.62) 

Let us write 6 = argo;. Then 

= - c o s - | a ; h . 
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Further as 

we have 

Since 

we have 

e 
cos - < 1 

2 -

*k(2/)l < ^ C|a;|5 • 

|w|2 > (2kC)5 

and hence conclude that 

for all y. Then equation (3.38) shows that quenching occurs for 

k| > kQ 

- J i _ 

3.5 Conditions for Hard Quenching. 

We have seen above that iip{t) and ^{y) are odd functions and the conditions 

given by equations (3.24), (3.36) and (3.40) are satisfied then there exists one and 

only one positive k(a) such that a periodic orbit of the averaged system (3.26) 

bifurcates from the critical point as k varies across the value k(a). In this section 

we wish to focus on the conditions to ensure that hard quenching occurs. Let us 

assume that the conditions Hsted above are satisfied. Then we state: 

Theorem 3 - 3 . If 
'k( *k(a)(0) > 0 

[*k(a)(0) < 0] 

then an unstabie [stable] closed trajectory of (3.26) expands [shrinks] from [to] the 

critical point as k increases from [to] the value k(a). 

Proof 
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As "^liiy) and hence ^'([(j/) is odd we have 

*k(0) = 0 

for every k. Applying Bendixon's negative criterion to the system (3.26) we get 

dx ^ dy ^^^^ 

where 

A k ( ^ ) = %{y) - a. 

In the case ^̂ "(a) (0) is positive we have 

*k(a)(0) = a 

*k(a)(0) = 0 

< *k(a)(0) 

and therefore 

Ak(a)(2/) > Ak(,)(0) = 0, 

for all non zero y in some interval —h < y < h. Also from equation (3.39) 

0 > | ( * t { 0 ) l 

= | A , ( O ) . 

It follows from continuity that this holds for all {y, k) in some small rectangle with 

centre at the point (0,k(a)). The mean value theorem then gives 

Ak(2/) = [Ak(y) - Ak(„ ) (y ) ] + [Ak(„) (y) - Ak(a)(0)] 

= [(k - k ( a ) ) ( ^ ^ ) , J + [Ak(a)(2/) - Ak(a)(0)], 

for Allying between k and k(a). This is positive for for 

k(a) - ^ <k < k(a) 
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That is 

>o, 

for the conditions given in equation (3.66). Hence there are no closed trajectories 

in the strip -h < y < h and Andronov's theorem (Theorem 3-1) then gives a 

closed trajectory near the critical point for 

k(a) < k < k(a) + 6. 

Then k > k(a) implies 
*ic(0) < ^'k(a)(0) 

= a. 

By equation (3.43) we have a stable critical point and an unstable closed trajectory. 

In the case when 
*|,"(0) < 0 

we have 
Ak(a)(2/) < Ak(a)(0) 

= 0 

for all non zero y in (—/i, h). From equation (3.39) and continuity 

5Ak(t/) 
dk 

< 0 

for all {y, k) in some small rectangle with centre at (0, k(a)). The mean value 

theorem gives ki between k and k(a) such that 

AM = (k - + [Ak(a)(^) - Ak(a)(0)] 

which is negative for 

k(a) <k < k(a) + S 

ye{-h, h), 
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and gives 

< 0 

in the strip —h<y<h. Andronov's theorem (Theorem 3-1) then gives a small 
closed trajectory around the critical point when 

k(a) - 6 <k < k(a). 

For k < k(a) we have 

*k(0) > *;e(a)(0) = 0. 

By equation (3.43) the critical point is unstable and the closed trajectory is stable. 

This completes the proof of Theorem 3-3. In this theorem we observe that 
the condition *k(a)(0) > 0 ensures that hard quenching occurs. It is to be noted, 
however, that it is a condition on the funtion ^k(y) which is generally not known. 
There is a case of sufficient general interest for which one can work out '̂̂ "(0). 
The function $(y) given in equation (3.51) occurs quite often in control theory. 
From equations (3.52) and (3.27) 

27r 

It follows that 

= Afle([k' + C ^ ] ^ ( l + - (3.68) 

which yields 
b r, (k^ - 2C^) 21 (3.69) 

Thus we find 

and 
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From equations (3.55) and (3.70) we find 

b 
a = 

C^k2(a) + C2 

or 
( 3 , , ) 

and the condition for hard quenching to occur can be written as 

6(k2(a)-2C2) 
C(k2(a) + C2)V2 

which gives alongwith equation (3.72) the requirement that 

As stated earlier we do not in general know the function '̂k(2/)- It is therefore 

useful to derive conditions for a general odd function $(?/) which is known. 

Theorem 3-4. Suppose that p{t) — sin t and that $(y) is an odd function whicii 
satisHes equation (3.40), and further 

0 < V(y)y < 4 aJi y>a (3.74) 

$"(2/)-> 0,^'iy)^ 0, $(2/ )^ / 35 2/-^ +00, (3.75) 

wiere ,̂ cr, / are positive constants. Then ^k"(0) is positive for all k greater than 

k2 where 

Proof 

By successive integration of equation (3.74) over the interval {y, oo) we get 

6 °° 6 
3 ? = / ^ ^ ^ ^ 

" (3.77) 
oo 

> 
y 
l^"'{v)dv = -^"{y)-
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Using equation (3.75) 

oo 
* f ^ ^ 

OO 

j -$"(7?)d77 = $'(y), > 
y 

and 
b f d 

6y~ J 67?2 
oo 

J ^'{rj)dv = l - ^ y ) , > 

y 

all provided that 

Now 

y>Q-

TT 

< ( 0 ) = ; ^ f ^"'{ksine)de, 
27r J 

and cis $ ( 2 / ) is odd $"'(y) is even and we can write 

where we have written 

u = ksin^. 

This can be broken up and rewritten as 

where 

a < L < k. 
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Because $"'(«) > 0 for u > cr and $"(u) is odd, we get 

Since -u^"{u) > 0 by equation (3.40) this integral exceeds 

L 

k-3 J -uV{u) du = k-3[$(L) - I$'(Z.)]. 
0 

Using this and equations (3.77), (3.78) and (3.79) we get 

-8 i . 7 _ J_l 

If we choose „ _ 
3, , OCT i = j k , k > -

then CT < L < k and the second of equations (3.83) gives 

This gives *k"(0) > 0 provided that k > 805CT/324/ and 

(3.83) 

i * ™ < ° ) > p l ' - i ( | i ) l - (3.B4) 

Which brings us to the end of the proof. Three corollaries follow. 

Corollary 3-1. U the conditions of Theorems 3-3 and 3-4 hold and 

0 < a < ^̂ 1,̂ (0), (3.86) 

tiien hard quenching occurs. 
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Proof 

We know that bifurcation occurs when 

a = ^[{0). 

It follows from equation (3.40) that ^^(0) is a decreasing function of k so the 

condition (3.86) implies that the root k(a) of the above equation is greater than 

k2. Then Theorem 3-4 gives 

*k(a)(0) > 0 

and bifurcation at k(a) is unstable and hard quenching follows. 

Corollary 3 -2 . If the conditions on $ ( y ) of Theorems 3-3 and 3-4 are satisfied 

and 
$ ' (y ) > ^ 

C2+2 / 2 

for aiJ y then hard quenching occurs provided that 

b 
0 < a < 

where k2 is given in equation (3.85). 

Proof 

The proof follows from Corollary 3-1 if we can prove that 

*fc , (0)>a>0. 

So it is sufficient to prove that 

< (0) > , ^ • (3.87) 

Recall that we can write 

C2 + y2' 
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when ^ 
Hy) = ^arc tan | ; . 

Now equation (3.59) gives 

TT 

^k(0) = ^ / ^'(k^in^) de 
— TT 

> — [ ^'{ksm9)d9 
2ir J 

b 
CVC^ + k2 • 

Therefore equation (3.87) holds and Corollary 3-2 follows from Corollary 3-1. 

Corollary 3 - 3 . If the conditions of ^(y) of Theorems 3-3 and 3-4 are satisfied 

then hard quenching occurs for 

0 < a < ^ 2 M . (3.88) 

Proof: 

Since $(y) is odd, 

2 } 
1̂̂ (0) = - / ^'{ksin6)d9 

TT J 
0 
k 

/ 2 f $'(xi) 
TT y Vk2 - U' 

du. 

From equations (3.40) and (3.75) we deduce that $'(y) > 0 for t/ > 0. Hence, 

, , , 2 Ir $'(u) , 2$(k) 

0 

If equation (3.88) holds then 0 < a < %^{0). This imphes that k(a) > k2 because 

*'k(0) is a decreasing function of k by equation (3.39). Hence > 0 by 

Theorem 3-4. Then hard quenching occurs by Theorem 3-3. 

73 



Chapter IV 

G E N E R A L T H E O R Y OF QUENCHING 

4.1 Systems with Generalised Dither. 

Let us recall the general feedback control equation 

x = A x - F B $ ( C x ) (4.1) 

where in general 

and the averaged equation is 

x = A x + B*k(Cx) . (4.2) 

At the end of Chapter I a dither of the form kp(a;t), where p{t) is some con­

tinuous A periodic function, was discussed. The feedback control equation is then 

modified to read 

X = A x - f B $ ( C a ; k p ( u ; f ) ) . (4.3) 

The function p(t) was required to satisfy the following three conditions : 

I. p{t) is a continuous, A periodic, real function of t. 

II . p{t) is twice difFerentiable and p{t) is continuous in 5?. 

III. the equation p(t). = 0 has only a finite number N of roots in the period interval 

0<t <X. 

Subsequently Lemma 1-1 and Theorem 1-7 were stated and proved. Here we 

wish to further extend the analysis of generalized dither. 
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From the averaged function 

M y ) = A / + ^̂ ^̂ ^̂ "̂ ^ ^̂ -̂ ^ 

0 

and if $ has continuous partial derivatives in we get the Jacobian matrix 

A 

J*. (y) = i ^ / j * ( y + M^))'^^- (4.5) 
0 

Theorem 4-1. Suppose that there exist continuous rxs matrices G(y) and H(y) 

such that 

(i) J$(y) = G(y) 4- H(y) for aiJ y € 

(ii) the spectral norm |H(y)| —> 0 as |y| —> oo, 

(iii) there exists a positive constant e and a positive, constant and symmetric matrix 

P so tJjat 
PN(y) + N^(y)P + 2eP < 0 for aJi y e 

where 
N(y) = A + B G ( y ) C . 

If p{t) satisfies the conditions I, II and III then there exists a number k2 

independent of y such that 

PMk(y) + M j ( y ) P eP < 0 (4.6) 

for aJi y , and k with |k| > k2, where 

Mk(y) = A - f B J * , ( y ) C . 

Proof: 

If Gk(y), Hk(y) are the averaged versions of G(y) , H(y) then equation (4.5) 

gives 

J* . (y ) = G , ( y ) - h H , ( y ) 
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If 
Nk(y) = A - f B G k ( y ) C 

then hypothesis (iii) gives 

A 

P N k + Nk^P + 2eP = ^ y " ( P N + N ^ P -h 2eP) d9 
(4-7) 

< 0. 

We can write 

PMk(y) + M / ( y ) P + eP = (PNk(y) + N J ( y ) P 2eP) + S, 

with 

S = P B H k ( y ) C -f C W ( y ) B ^ P ^ - eP. 

As equation (4.7) holds we only need to prove that S < 0. 

With X e 

x^Sx = 2x^PBHk(y)Cx - ex^Px 

< 2 x 2 p | B Hk(y) | C | - eA„|xr, 
(4.8) 

where A„ is the least eigenvalue of P . 

Since hypothesis (ii) gives 

lim |H(y)! = 0, 
M-oo 

it follows from Theorem 1-7 that 

lim |HK(y)| = 0 
|k|—*oo 

uniformly for all y E R^. So there exists a number k2 independent of y such that 

eA„ 
HK(y)| < 2 |P | |B | |C 
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for all y, k e 5?̂  with |k| > k2. Then 

x ^ S x < |x|2[2|P||B||C||Hk(y)|-6An] 

< 0 

for all y , k 6 3?̂  with |k| > A;2, and it follows that 

PMk(y) + M J ( y ) P + eP < 0, (4.9) 

for all y , k 6 3?̂  with |k| > k2. Thus Theorem 4-1 is established. A corollary 

follows. 

Corollary 4-1. Suppose that $(y) and p(t) are both odd functions which also 

satisfy the hypotheses of Theorem 4-1, then every solution x(t) of the averaged 

equation (4.2) satisfies 

\x{t)\ < y/4P)\x{tQ)\e2<'-'<>^ (4.10) 

for aii t >to. 

In particular this gives |x(t)| — > 0 as t —> oo for every solution of equation 

(4.2).] 

Proof: 

As $(y) and p{t) are odd, equation (4.4) gives 

This and equation (4.6) imply (4.10) by the corollary to Theorem 1-5. 

Corollary 4-2. In the special case r = s = 1 Theorem 4-1 holds when hypothesis 

(ii) is replaced by 
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y 
(ii') the function H{y) and J H{T])dr} are both bounded in 3?. 

0 

Proof: 

The only use made of hypothesis (ii) in the proof of Theorem 4-1 was to show 

that 
Hk(y) —»• 0 as |k| —»• oo 

uniformly for all y G 3?̂ . When r = s = 1, H{y) and H\^{y) are real functions of a 

real variable y and we can deduce that 

Hk{y) —>• 0 as |k| —> oo 

uniformly for y G 3?, by substituting 

y 
f { y ) = jH{ri)dn (4.11) 

0 

in Lemma 1-1. Then 

f'{y) = H{y) 

and |/(2/)|, \f'{y)\ are bounded in 5R by hypothesis (ii'). 

Note that Theorem 4-1 is useful in practice but it does not tell us how to choose 
G(y) and H(y) in the general case. The following theorem avoids this difficulty. 

Theorem 4-2. Suppose that 

has continuous partial derivatives in Also suppose that there exist positive 
constants e, 8 and a constant symmetric matrix P (P > 0), such that 

PM(y) -\- M^(y)P -|- 26P < 0 (4.12) 

for ally edi^ with \y\ > S where 

M(y) = A-h B J $ C . (4.13) 
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If p{t) satisfies conditions I, II, and III, then there exists a constant k^ such that 

PMk(y) + M J ( y ) P + 2eP < 0 

for all y, k e 3?̂  with |k| > k2. 

Proof: 

Define a continuous function 

as follows: 

r 1 for all i<8 

a{0 = J i + ^ _ ^ for 6 <i<8+l (4.14) 

0 for all i>6^-l 

Now choose any vector b with |b| > 8 so that equation (4.12) is satisfied for M(b) 

and define 
G(y) = CT(|y|)J$(b) 4- [1 - CT(|y|)]J$(y), (4.15) 

where b is kept constant. As CT(^) is continuous in 5? so G(y) is continuous 
in W. Using the definition of N(y) as given in Theorem 4-1 and substituting for 
G(y) from equation (4.15) we get 

N(y) = a(|y|)M(b) + [1 - a(|y|)]M(y), (4.16) 

with M(y) as given in equation (4.13). Hence 

PN(y) -h N^(y)P + 2eP =CT[PM(b) + M^(b)P + 2eP 

+ (1 - CT)[PM(y) + M^(y)P -f- 2eP] 
(4.17) 

From equations (4.12) and (4.14) we get 

PN(y) + N^(y)P -f 2eP < 0, (4.18) 

for all y e 3?̂ , which is hypothesis (iii) of Theorem 4-1. 
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Now define 
H(y) = J $ ( y ) - G ( y ) 

= ^( |y | ) lJ*(y) -J*(b) ] . ^̂ -̂ ^̂  

From equation (4.14) we have 
H(y) = 0 

for all y with 
|y| >'5-n. 

Hence |H(y) | —> 0 as |y| —> oo, that is to say that H(y) satisfies hypotheses 
(i) and (ii) of Theorem 4-1 and thus the conclusion of Theorem 4-2 follows. 

The following Corollary has the same proof as Corollary 4-1, 

Corollary 4 - 3 . Suppose $(y) and p{t) are odd functions which also satisfy the 

hypothesis of Theorem 4-2, then every solution x(t) of the averaged equation (4.2) 

satisfies the result (4.10) and therefore 

x(t)| —> 0 as t —> -l-oo 

for every solution. 

Remark: In the above Corollary the fact that $(y) is odd is used to prove that 

*k(0) = 0 for all k. However this assumption ($(y) is odd) is a severe restriction. 

When we abandon this requirement we may have 5'k(0) ^ 0. However if we assume 

that 

$(y) - t -$( -y) ^ 0 as |y| -l-oo 

and that p{t) is odd, then we can deduce that 

*k(0) —^ 0 as |k| — > -l-oo.] 

Proof: 

For any function U{9) which is continuous in 

- a < ^ < a 
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we have 
a a 

j [u{d) + u{-B)]dd =^2 j u{e)de. (4.20) 
—a —a 

Substituting a = A / 2 and U{9) = ^{kp{9)) and using 

9{y) = H y ) + H - y ) and p{e) = p{-e) 

we get 
A/2 

2 A * K ( O ) = j 9{kp{e))de 
- A / 2 

—> 0 as |k | —>• 00 

f r o m Theorem 1-7. 

C o r o l l a r y 4-4. Suppose that p{t) is odd,the hypotheses of Theorem 4-1 or 4-2 

hold and 

$ ( y ) + < J > ( - y ) — > 0 as | y | — > oo, 

then for each rj > 0 there exists a number > ki such that j / | k ) > k^ then every 

solution of equation (4.2) ultimately enters the ball 

SrjiO) = [x e 3?" : |x | < 77] (4.21) 

and remains i n i t thereafter. Furthermore i / | x ( t ) | > rj for to < t < T then 

\x{T)\ < |x( to) | e^^'o-^). (4 .22) 

P r o o f : 

We can choose A;3 so that 

for all l k | > k^. W i t h o u t loss of generahty we can also choose > k2. I f 

f ( x ) = A x + B ^ ' k ( C x ) 
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then 

J f ( x ) = A + B J ^ , ( C x ) C 

= M k ( C x ) . 

Recall that 

f ( x ) - f ( o ) = J Ye^Mde 

0 

and so 

=̂0 
1 

(4.24) 

f{x) = jMi,i9Cx)xde + f{0). (4.25) 
0 

Mul t ip ly ing throughout by 2x-^P and adding ex^ P x we get 

x ^ P f (x ) + f ^ ( x ) P x + e x ^ P x = x ^ P f (0) + F ( 0 ) P x 

1 (4.26) 
+ / x ^ [ P M k + M k ^ P + eP]xd^. 

0 

Since now |k | > > k^, f r o m Theorem 4-1 or 4-2 we get 

P ^ M k ( ^ C x ) + M J ( ^ C X ) - I - eP < 0 

and hence 

x ^ P f ( X ) + f ^ ( x ) P x + ex^Px < x ^ P f ( 0 ) + f ^ ( 0 ) P x 

< 2 | x | | P | | f ( 0 ) 

for all X e SR". I f A„ is the least eigenvalue of P then 

x ^ P x > A„|x|^ 

and we can wri te 

x ^ P f ( x ) -f- f ^ ( x ) P x + ^ e x ^ P x < l e A „ | x | ( ^ f f l M _ | x | ) . (4.28) 
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Hence we have 

x ^ P f ( x ) + f ^ ( x ) P x + ^ e x ^ P x < 0 (4.29) 

for X w i t h | x | > ro where 
4 | P | | f ( 0 ) | 

0̂ = T • 

From the theorem on ult imate boundedness (Theorem 1-5) this ensures that 

every solution x{t) of equation (4.2) ult imately enters the spherical ball of radius 

r o Y « ( P ) and remains in i t thereafter. 

The condition (4.22) also follows when 

x ( i ) | > ro for to<t<T. 

Now using « ( P ) = IPIA"-^ and 

f ( 0 ) = B * k ( 0 ) 

we can wri te 
, „ < M ^ | B * , ( 0 ) | . 

This and equation (4.23) give 

4 K ^ P ) | B | | * K ( 0 ) | 

< V-

« ( P ) r o < 

Now 

5«(p),„(0) C 5^(0) 

and so the conclusion of the corollary is established. 

4.2 Justification of the Method of Averaging 

The main concern of this thesis is w i t h the behaviour of the solutions of the 

dithered equation (4.3). Since Corollaries 4-3, 4-4 only describe the behaviour of 

solutions of the averaged equation (4.2) we need to consider how closely these are 
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followed by corresponding solutions of equation (4.3). Let us write equation (4.3) 

briefly as x = / ( t , x ) , where 

/ ( t , x ) = A x + B $ ( C x + kp(a;t)). (4.31) 

Since p{t + A) = p{t) this satisfies f{t + cr, x ) = / ( t , x ) , where a = X/u. Let us 

also wri te equation (4.2) briefly as u = g(u) where 

^ (u ) = A U + B * K ( C U ) . (4.32) 

From equation (4.4) we deduce that 

0 
b+<T 

= - f{t,n)dt, 
a J 

J t 

for all real h. 

Assuming that $ ( y ) and d^{y)/dy are continuous in R^, there exist constants 

M and C such that 

\f{t,^)\<M (4.34) 

for al l t , x e X 52r(0) , and 

| / ( t , X i ) - / ( t , X 2 ) | < £ | x i - X 2 | (4.35) 

for al l t G 3?, and all x i , X 2 £ S2r{0). Further by making M,C sufficiently large 

we can suppose that 

\9iu)\<M (4.36) 

for all u G 5^(0) and 

| ^ ( u i ) - 5 ( u 2 ) | < £ ( u i - U 2 ) (4.37) 

for all u i , U2 G Sr{0). 

I f a solution x ( t ) of 

x = / ( t , x ) 
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is i n the spherical ball 52r(0) for ti < t < t2 then we find that 

\x{t2)-x{ti)\<Mit2-ti). (4.38) 

A n d by similar arguments i f a solution u ( i ) of the averaged equation (4.2) lies i n 

the spherical ball 57.(0) for a t ime ti < t < t2 it can be shown that 

|u(t2) - n{ti)\ < M{t2 - h). (4.39) 

T h e o r e m 4-3. Suppose that u > UJQ, where 

u;,{T) = ^ { l + e^^CT) (4.40) 
r 

and suppose that a solution u ( t ) o f the averaged equation (4.2) has u ( t ) G Sr{0) 

for 0 < t < T. I f x { t ) is the solution of equation (4.3) having 

x(0) = u(0) 

then 

and 

where 

x(t)e 52 . (0) for o < t < r 

x ( t ) - u ( t ) | < ^ for 0 < t < T 

h = MX{2 + e^^CT). (4.41) 

Note: The importance of the theorem Hes in the fact that ^ can be made as small 

as we please by taking uj sufficiently large.] 

Proof: 

Let Ti{u) denote the statement that 

x(t) e 52r(0) for 0<t<ua (4.42) 
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and that 

x{ua) - u(iya)\ < t^"""CMa^v. (4.43) 

We w i l l prove by induction that E(i / ) is true for all integers v w i th 0 < ^ < ^ . 

Since x (0 ) = u(0) , the statement S(0) is obviously true. We now assume that 

S(j^) is true and deduce f r o m i t that S( i / + 1) is true provided i ' + 1 < ^ . 

As E( j / ) aflSrms equation (4.42) we need to verify that x ( t ) G 52r(0) for va < 

t < (u -\- 1)(7. Now we can wri te 

x ( t ) = [x( t ) - X{UCT)] + [x(i^cr) - u{ua)] + u{ua). (4.44) 

Using equations (4.38), (4.43) and u(z/cr) < r we get 

x ( t ) | < M{t - av) + e'^^'^CMo'^v + r. (4.45) 

Using t < a(u + 1) < T and a = A/w < X/UJQ, we get 

x ( t ) l <M(J + e^''''CM{(Jv)a + r 

< —M + e^'^CMT— + r. 
(4.46) 

Using equation (4.40) this reduces to j x ( t ) | = | r . 

So we find that x ( t ) never reaches the boundary of 52r(0) during the interval 

ua <t < {u-\-l)a and hence we can safely conclude that x ( t ) G 52r(0) throughout 

the interval 

0 < t < (z/ + l)cr. 

Using equation (4.33) we can wri te 
a+ua 

x ( a - f j / a ) - X(2/(T) = J / (<,x)c?x 

a+i/cr cr+ua 

= J f{t,xiua))dt+ J [fit,x{t))-f{t,x{ua))]dt 
ua va 

= ag[x{ya)) + 

(4.47) 
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Using equations (4.35) and (4.38) we get 

dt Ei\< J CM{t-ov) 
(4.48) 

CM 2 
a . 

Similarly for u ( t ) one gets 

u(a- - I - va) - u(i^cr) = ag{\x{va)) + E2 (4.49) 

and 

\E2\ < (4.50) 

From equations (4.47) and (4.49) we now get using (4.37) 

| x ( ( i / -t- \)a) - u ( ( i / - I - l ) a ) | < \x{va) - n{va)\ + aC\x{va) - \x{vo)\ -|- | £ i | - f \E2 . 
(4.51) 

Using equations (4.48), (4.50) and (4.43) we get 

\x{{v + l)a) - vi{{v + l ) a ) | < e^^"^"''^CMa\u + I). (4.52) 

The above proves that T.{v + 1) is true provided that T,{v) is true. Therefore E(i /) 

holds for al l integers v satisfying 

T 
0 < u < - . 

a 

For any t i n the interval 0 < t < T there exists an integer u such that 

i^a <t <(u + l)a. 

Then 

x ( t ) - u ( t ) = [x ( t ) - x{pa)] + [x(i/cr) - U(//(T)] + [u{ua) - u( t ) ] (4.53) 
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and so 
|x(t) - u(t) | < \x{ua) ~ u{ucr)\ + 2A^(a) , (4.54) 

where we have used equations (4.38) and (4.39). Using equation (4.43), au < T, 

and a = X/u we get 

| x ( t ) - u ( t ) | < - , (4.55) 
( j j 

where h is defined in equation (4.41). This concludes the proof of Theorem 4-3. 

To see how Theorem 4-3 can be used to jus t i fy the method of averaging we 

observe that i f the conditions of Corollary 4-4 are satisfied then T can be chosen in 

equation (4.22) to make |u(t)| < ^|u(to)| for every solution u(t) of equation (4.2) 

such that |u(t) | > T) iov t^ < t < T. I t then follows f rom Theorem 4-3 that the 

solution u(t) of equation (4.3) having x(to) = u(to) satisfies 

| x ( r ) | < ^ | x ( t o ) ! + - < J|x(to)| 

provided that a; > c<;o and u > Gh/rj. From this we deduce by iteration that 

every solution x ( t ) of equation (4.3) must ul t imately enter the ball 53^/2(0) 

remain in i t thereafter. Tha t is, for sufficiently large u) all solutions of the dithered 

equation (4.3) w i l l be quenched into a small neighbourhood of the steady state. 

In this way, the study of the averaged equation can yield the desired result for the 

dithered system. 
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