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AB§TRACT 

The conventional Distinct Element Analysis of Cundall and Belytschko and 

their respective co-workers are prone to vibrations which must be damped out 

artificially if numerical problems are to be avoided. An alternative approach to 

this method is developed which eliminates such problems by allowing the elements 

to consolidate without gain in velocity. In the method employed here the contact 

forces, together with body forces due to gravity give rise to accelerations of the 

elements which in turn cause them to change position. Normally this change in 

position will produce an increase in the contact forces. Once these new contact 

forces have been calculated the elements are then returned to their original posi

tions prior to the next iteration. The contact forces, therefore, increase during the 

analysis to counter the effects of gravity. Two methods using this new approach 

are described, for which computer programs have been written. 

The first program, SLICES, is designed to analyse slopes divided in to slices 

with a predetermined failure arc. During the analysis the program generates the 

stress profile acting on the failure arc and predicts the stability or otherwise of the 

slope. Program SLICES is compared with a traditional slice method under con

ditions of total and effective stress with cohesive and frictional soils. An analysis 

using a non-linear failure criterion is also carried out with program SLICES. The 

second program, CIRCLES, uses circles as the distinct element type and does not 

require a predetermined failure arc. It is shown that edge effects cause an incorrect 

stress regime to be set up that masks the failure process. However a sliding type 

failure is demonstrated where the edge effects do not mask the analysis. 
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Chaptell' ]_ Intll'od uction 

CHAPTER 1 

JINTRODUCTION 

1.1 Distinct eliement analysis 

1.1.1 The need for Distinct Element Analysis 

It may appear strange that a thesis principally concerned with the analysis 

of the stability of soil masses should begin by discussing rock masses. Indeed 

discontinuous rock masses shall frequently be referred to throughout the theoretical 

sections of this discussion. The reason for this hybridisation is simply that the 

analysis techniques developed here are abstract formulations of those used for 

some years for the analysis of discontinuous rock masses, namely the Distinct (or 

Discrete) Element Analysis (DEA). 

Distinct Element Analysis is a numerical model which utilises the time explicit 

integration of the second order difference equations for reduced degrees of freedom 

of distinct geometric elements, for example rectangular blocks, within the problem. 

Normally the reduction in the degrees of freedom is due to ignoring the internal 

deformation of the elements, the elements being connected by their boundaries 

across which deformation of the mass is considered to take place. 

The major advantages of Distinct Element Analysis over finite element anal

ysis are speed of execution, ease of incorporation of non-linear material properties 

and its explicit relation to time allowing the progressive failure of the system to 

be studied. These three properties make Distinct Element Analysis a tool worth 

developing for the analysis of soil masses. 

1 
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1.1.2 Distinct Element Analysis and discontinuous rock masses 

Distinct Element Analysis was originally developed for the analysis of discon

tinuous rock masses by Cundall (1971), this model was known as the Rigid Block 

Model (RBM) due to the reduction of the degrees of freedom by elimination of 

the internal deformation of the elements. In terms of rock masses, the problem 

elements are bounded by the joints and bedding planes to form blocks. Each block 

is allowed rotational and translational displacements and move under the influence 

of gravity and the forces between neighbouring blocks at contacts. 

The contact is fundamental to the ·understanding of the Distinct Element 

Analysis as it is these which govern the behaviour of the mass as a whole. The 

Distinct Element Analysis or Rigid Block Model is a dynamic relaxation method 

for it is at the contacts that inter-element forces are produced b:y multiplying the 

small overlaps of the elements (due to previous movements) by the relaxation con

stant (or stiffness). These new inter-element forces are summed for each element 

to give rise to new accelerations, velocities and displacements, and hence to new 

inter-element forces. As it is the contacts which govern the overall behaviour of 

the model, and the contact conditions are recalculated at the end of each time 

step, it can readily be seen that this technique lends itself to the modelling of 

large scale movements. 

1.1.3 Relation of Distinct Element Analysis to other analysis methods 

There are several possible classes of techniques facing the Engineer, deciding 

which analysis to choose can often be difficult. There are finite elements, bound

ary elements, distinct elements, displacement discontinuity methods and various 

hybrid versions. As Meek and Beer (1984) point out, all these methods should 

provide reasonable approximations to the elastic stress around an excavation. 

2 
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For excavations in blocky rock systems the problem of choice is further com

pounded by the fact that the near field and far field behave very differently. The 

near field is non-linear, non-elastic in its behaviour while the far field is linear 

elastic. No individual technique can accurately model both behaviour types at 

once. The Distinct Element Analysis requires all geometric data to be known 

throughout the model domain which is a major problem for large excavations. It 

is ideally suited to model the near field where the data is normally the most read

ily available. To incorporate both behaviour types Distinct Element Analysis may 

be coupled to a far field modelled by either Finite Element or Boundary Element 

methods. 

1.2 A Rigid Block Model :for :rock masses 

The Rigid Block Model has undergone much work since its inception in 1971, 

most published work concentrates upon modelling the behaviour and estimating 

the support requirements of underground openings in jointed rock masses, almost 

all the literature concerns itself with promoting the technique in a theoretical 

fashion and rarely presents the analysis of real cases. There are three types of 

Rigid Block Model, which shall be referred to here as Corner, Edge and Hybrid 

formulations. 

1.2.1 Corner formulations 

The corner formulation is the original two dimensional formulation as devel

oped by Cundall. It is so named because the contacts are defined when a corner 

of one block touches the edge of another. The contact of two blocks along an 

edge was defined simply as two contacts, unfortunately this gave rise to multiple 

contact problems, and hence multiple force problems, Rouse (1982). This formula

tion led to straightforward housekeeping algorithms for contacts allowing them to 

be made, broken, and remade as necessary. Corner formulations were used in all 

3 
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cases where large displacements required to ·be modelled, Cundall (1976), Voegele 

(1978). 

1.2.2 Edge formulations 

In response to work with a Cundall corner formulation by Dowding et al. 

(1983), to model the transient behaviour of rock caverns, the edge formulation was 

developed, Belytschko et al. (1983). Here the definition of a contact was always 

as two edges, one from each block. The physical length of contact allows the 

calculations to be in terms of stress, a major advantage over corner formulations. 

The rationale behind this work argued that the initial failure of the mass was the 

most important feature and that the contacts could not be modelled accurately 

over large displacements due to the simple failure criteria in use. It was also 

pointed out that failure may take place at two to three percent strain rendering 

large strain modelling inappropriate. Due to this the housekeeping of the corner 

formulation could be dropped to give a much more compact code. 

1.2.3 Hybrid formulations 

In the same way as Finite Element analysis has difficulty analysing the far 

field around an excavation due to the number of elements required to model it, so 

too does Distinct Element Analysis, a further complication for Distinct Element 

Analysis was how to model the behaviour of excavation support satisfactorily. This 

led to hybrid formulations of Distinct Element Analysis with Boundary Elements 

and Finite Elements. 

4 
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1.2.3.1 The Distinct Element -Boundary Element hybrid 

Lorig and Brady published work in 1982, 1983 and 1984 coupling Boundary 

Elements with Distinct Elements. Lorig, Brady and Cundall (1986) discuss this 

method utilising a sophisticated form of Rigid Block Model. 

Much of the work enhancing the Distinct Element Analysis was concerned 

with increasing efficiency and combating problems discovered during use. Corner 

formulations are subject to interlocking at corners as corner to corner contacts 

may often lead to abnormally high forces. These forces can then be propagated 

throughout the Distinct Element mesh. To overcome this problem an edge for

mulation was adopted in addition to the corner formulation allowing edge to edge 

and corner to edge contacts. It is assumed here that corner to corner contacts 

were not entertained but it is not explicitly stated. A new damping regime was 

also introduced, that of adaptive density scaling, whereby the element densities 

are modified to allow the application of the mass proportional part of the damping 

system across a greater spread of element masses. The contact housekeeping rou

tines have been modified to transfer the contact between a sliding block and each 

successive neighbour across which it slides, thus preventing the sudden collapse of 

the forces on a block as previously described by Watson (1983). 

The boundary element method determines the behaviour of the mass from 

the boundary conditions imposed on surfaces within it. This allows for the mod

elling of semi-infinite regimes as the far field boundaries need not be known. The 

Boundary Element Analysis is an elastic analysis and it has been found from field 

measurements that the far field domain (two to three excavation radii from the 

excavation) does indeed act elastically with the discontinuities playing little or no 

part. Boundary Element Analysis is therefore used to model the far field and the 

Distinct Element Analysis to model the near field. To couple the two methods care 

5 
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has been taken by Lorig et al. to preserve kinematic continuity at the interface, by 

equating block corner and nodal displacements in the Boundary Element domain. 

1.2.3.2 The Distinct Element - Finite Element hybrid 

The work of Dowding et al. (1983a,b) and Belytschko et al. (1983) coupled 

Distinct Elements with Finite elements. The aim of their work was to model the 

transient behaviour of caverns under the influence of seismic activity. The propa

gation of waveforms through large stacks of Distinct Element was problematic as 

the mechanism was not understood and was also expensively time consuming. The 

excitation therefore, was propagated from the far field Finite Elements to the near 

field Distinct Elements. The Finite Element and Distinct Element domains were 

coupled by silent boundaries, (that is producing no reflection), after the Lysmer 

and Kuhlemeyer method (1969), while the cavern linings were modelled by beam 

elements. 

1.2.3.3 Explicit - Implicit time integration 

Explicit time integration schemes as utilised in the Distinct Element Analysis 

as described so far have a low over-head per time step compared with Finite Ele

ment or Boundary Element analyses. However for long duration analysis requiring 

small time steps, the cost of simulation may still be prohibitive. As will be seen 

later the time step size is critical for numerical stability and the Distinct Element 

Analysis has been found to be non convergent for many parameter combinations, 

Lorig et al. (1986). 

Plesha (1986) has proposed that simulations utilise a constitutive implicit -

explicit time splitting operator, whereby the linear portion of the analysis is mod

elled using an implicit time integrator and the non-linear portions (for example 

post contact failure) use the standard explicit, time marching integration of the 

6 
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normal Distinct Element Analysis. He found that under certain long duration 

simulation conditions, considerable computer cost savings could be made with lit

tle difference in the general behaviour of the rock mass. He also suggested that 

transient behaviour could be modelled by changing to and from the usual methods 

when necessary throughout the simulation. 

1.3 A Rigid BaH Model f'or soil 

The Distinct Element Analysis is not restricted to the Rigid Block Model or 

derivatives and as a general concept has applications elsewhere. From the be

ginning Cundall developed a program where the calculation elements were simple 

discs or circles. The same degrees of freedom were allowed to the discs as to the 

blocks enabling them to be used to model the collapse of a set of cylinders for 

instance, as in Cundall (1971). It appears that this BALL program was the de

velopment route to the Rigid Block Model as the elements are significantly less 

complex due to them having no corners. 

1.3.1 Soil particle modelling 

By equating disk elements with soil particles Cundall used Program BALL 

as an easily controlled test apparatus to investigate the properties of soil particles 

under various loading conditions. From the data collected from this computer 

model he hoped to develop continuum constitutive laws governing soil particle 

behaviour, Cundall and Strack (1979). Although using a model for the basis 

of this research he argued that the superior control of loading conditions in the 

program over that of an experimental situation gave the program a valid role. 

Apart from investigating the general non-linear properties of assemblies of soil 

particles, Cundall and Strack turned their attention to modelling the process of soil 

consolidation. Here a circular assembly of discs was subjected to two orthogonal 

7 
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forces, firstly in an isotropic state and then under a deviatoric load. The velocities 

and displacements of the particles were plotted so that changes in the fabric could 

easily be seen. 

All Distinct Element Analysis work as far as can be found dealing with soils 

concerns the modelling of assemblies of individual particles and not with soil 

masses. This thesis aims to do so. 

1.4 Initial aims of this wo!t'k 

As pointed out in section 1.2 most published work uses idealised theoreti

cal problems to promote the latest development in the analysis technique. Very 

little uses the Distinct Element Analysis / Rigid Block Model to solve a real de

sign problem. This is perhaps, as Meek and Beer (1984) point out, because the 

technique has been extensively used in the commercial environment. 

The initial aims of this work were to continue the development of Distinct 

Element Analysis theory and an edge formulation derived from Dames and Moore 

(1978) with a view to validation against simple physical models and then real situ

ations. To understand the starting point of this work it is necessary to appreciate 

the development of the Rigid Block Model at Durham. 

1.4.1 Development of the Rigid Block Model at Durham 

The beginning of the work at Durham was with the Rigid Block Model im

plementation of Dames and Moore report (1978). This work, by Rouse (1982), 

utilised a corner formulation as described above which was initially unusable due 

to it being in single precision. The program was therefore modified to double 

precision, whereupon several unexpected effects were found. 

8 



Clhapier 1 Kntrod udion. 

The first of these effects was noted when a simple tower of blocks was mod

elled. Figure 1.1 shows the tower before analysis and after 7000 calculation cycles. 

A tower is expected to topple rigidly to begin with and then break one third up 

the height with the lower third rotating more rapidly than the upper part. In this 

simulation Rouse found that the tower broke in more than one place and therefore 

fell incorrectly. 

It was proposed that the original damping regime employed was at fault. This 

regime consists of two separately controllable viscous damping factors. Firstly 

a stiffness-proportional damping to control contact vibration and analogous to 

dashpots at the contacts between blocks both in the shear and normal directions. 

Then secondly, a mass-proportional damping representing dashpots from the block 

centroids to the coordinate origin. The damping regimes are provided to remove 

the kinectic energy of the system generated during collapse, if this did not take 

place the elements would continue moving perpetually. The cause of the incorrect 

tower collapse was attributed to the stiffness-proportional damping giving rise to 

a standing wave lying the length of the tower, in turn causing localised high stress 

where the tower broke. 

Rouse also reported the 'locking up' of certain configurations of blocks before 

equilibrium could be reached. This was caused by corner to corner contacts as 

well as corner to edge contacts being used in the formulation. 

At this stage it was realised that this version of the Rigid Block Model, at 

least contained some very serious fundamental inaccuracies and could not be used 

to reliably model real situations. 

An investigation by Watson (1983) showed that the corner to corner contact 

problem led to some pairs of blocks having up to eight contacts between them 

and so was remedied first. This was achieved by allowing a pair of blocks to 
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Figure 1.1 Analysis of a tower. After Rouse {1982) 
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have either, a single corner to edge contact or, two such contacts forming an edge 

contact or, a corner to corner contact. In the case of the latter contact type, the 

corner combination promoting the greatest ease of movement was chosen to reduce 

the risk of 'locking up'. Finally a comparison of Distinct Element Analysis with 

simple sliding physical models was carried out. 

For a complete discussion of the problems encountered, together with the 

Rigid Block Model program versions used, reference is made to Rouse (1982) and 

Watson (1983). The next problems on the agenda and hence the beginning position 

for this work were those caused by the original Distinct Element Analysis damping 

regime. It was reported by Rouse (1982) that blocks that differed in mass by a 

factor of two from the mean were effectively undamped, even if the mean masses 

were heavily damped. 

To begin this investigation of the effects of damping on elements, and towers 

of elements, a Pascal Distinct Element Analysis program was written. This im

plementation was extremely simple in nature allowing each element one degree of 

freedom. These point mass elements were all positioned at a common origin, each 

having one contact with the next created element. Obviously, the last formed had 

no contacts. This regime represents a set of elements which form a tower of con

tacts. The program shall be referred to as Program CVS, a mnemonic representing 

Contact Vibration Simulation. 

It was during this stage of the clamping investigation that a final approach 

was conceived. 
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]..5 A final approach 

1.5.1 The relevance of Distinct Element Analysis to soil masses 

For some time before Distinct Element Analysis, boundary elements and finite 

elements were used to analyse blocky rock systems, despite these being discontinu

ous systems and quite unlike the continuum systems more suited to these methods. 

Some attempts were made to include the discontinuities by slide lines in finite dif

ference, Wilkins (1969) and by joint finite elements as described by Goodman 

(1976). To use a method designed for discontinuous materials and include increas

ing degrees of continuum to solve a continuum problem is simply the reverse of 

this. 

The advantages of using a Distinct Element Analysis based solution for soil 

mass stability analysis are similar to the main advantages of Distinct Element 

Analysis for blocky rock systems, namely a low overhead per iteration, a time 

explicit integrator leading to easy analysis of progressive failure and easy inclusion 

of non-linear material properties. It is for these three reasons that an attempt 

has been made to develop Distinct Element Analysis programs suitable for the 

analysis of soil slopes and their progressive failure. 

There are two such Distinct Element Analysis programs designed to model 

the behaviour of soil masses, developed during this work, namely SLICES and 

CIRCLES. The names referring to the fundamental calculation element. Program 

SLICES is most akin to a traditional Rigid Block Model and to a traditional limit 

equilibrium analysis such as Bishop (1955), Fellenius (1936) or Janbu (1973), while 

Program CIRCLES, the more general of the two, is quite unlike either. 

12 
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1.5.2 Soil slices as rigid blocks 

Like limit equilibrium analyses, the user is expected to provide a surface 

slope topography and a proposed failure surface. The failure sector is divided 

into vertical slices which are interpreted as rigid blocks. The blocks have reduced 

degrees of freedom, those of body displacements only. The removal of rotation 

is desirable as the slices often have an high aspect ratio, which would lead to 

problems tracing the positions of the corners. Furthermore, toppling of the slices 

high on the failure arc would tend to occur, which is problematic in a analysis 

designed to model sliding only. 

Unlike limit equilibrium analysis inter-slice forces are fully incorporated. 

SLICES provides graphical and written output allowing the build up of stresses 

on the failure arc to be monitored. From this it can readily be seen which portions 

have reached their limit and so the progress of the failure can be traced, and the 

mechanisms inferred. 

1.5.3 Soil masses as circles of influence 

Program Circles is not a limit equilibrium analysis and employs a Distinct 

Element Analysis where the elements are circles of influence. The circles are 

not particles and have reduced degrees of freedom, rotation being ignored. As 

areas of influence the circles may overlap to a large extent. CIRCLES is far more 

sophisticated than SLICES as it is not limited to a predetermined failure arc. If 

failure occurs then the failure zones are displayed as they form. 

1.5.4 Organisation of this work 

There is much in common between CIRCLES and SLICES, both in the theory 

and the implementation of the Distinct Element Analysis techniques employed. 
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Both have similar degrees of user friendliness, input and output requirements and 

other features. The areas of common theory can be found in the next chapter. 

Information for programs SLICES and CIRCLES is contained in Chapters 

three and four respectively. These chapters contain information on extensions 

to the theory specific to the program, its use, structure, memory requirements 

and validation. Finally Chapter five draws the discussion to a close containing a 

summary of conclusions. 
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2.]. Cundall's Cyclic Process 

2.1.1 Cundall's Concept 

2.1.1.1 The Cyclic Process 

The underlying aim of Distinct Element Analysis is to model the displacement 

of individual elements with time. This is cyclic or iterative in nature and allows 

the use of simple force displacement laws using an explicit integration scheme. 

As reported by Cundall (1971) several procedures are followed during each cycle. 

In the broadest sense these procedures are a force displacement relation to give 

the forces in the system, followed by a motion law to give the displacements. 

Furthermore the forces may be modified by force boundary conditions and the 

displacements by displacement boundary conditions. Figure 2.1 illustrates the 

process. Each complete cycle around these procedures takes one time step. So, 

in theory, as the values for all degrees of freedom are known at each time step 

the displacement state at any time can be found by cycling round an appropriate 

number of times. 

To illustrate this cyclic process the laws used by Cundall {1971) are followed. 

The force displacement law is determined for each contact for each block for each 

cycle and the motion law for each block in each cycle. Figure 2.2 shows the forces 

associated with a contact. The force displacement relator is the contact stiffness, 
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Figure 2.1 The Distinct Element Analysis Calculation Cycle 

After Cundall ( 1971) 
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Figure 2.2 The forces associated with a contact 
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so that the normal force on the contact is given by the normal penetration (for 

example the movement of one block edge into another) multiplied by the contact 

stiffness, as in equation ( 1). A list of the mathematical notation used throughout 

this discussion is contained in Appendix A. 

(1) 

Likewise the shear force is given by the product of the shear movement and shear 

stiffness, equation (2). 

(2) 

If the dashpot contact damping is in force the normal and shear dashpot forces 

are calculated in like manner, equations (3) and ( 4). 

(3) 

(4) 

These normal and shear forces are constrained by the following failure criteria. 

Firstly if the contact is in tension, that is Fn < 0 then Fn, Hn, F8 , and Hs are 

set to zero. Secondly the shear forces are restrained by a friction law so that if 

IF s I > J-L X F n then Fs = J-L X F n JFs I / Fs where J-L is the coefficient of friction of 

the contact. 

Having obtained the contact forces, they are resolved to give forces in the x 

and y directions which are then summed onto the blocks involved. The moment 

about the block centroid is also calculated and summed. 

Once the force displacement law has been executed for all of the contacts on 

an element, the forces on the element are known. The motion law can relate these 

forces to element movements. 
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The facility for imposing force boundary conditions on the problem allows for 

modelling of systems including rock bolts, these being simulated as constant body 

forces on certain blocks. Displacement boundary conditions permit some blocks to 

be immovable for either the whole or part of the simulation, enabling the system 

to consolidate and preventing it from acting as a rigid body under gravity. 

The time step, the unit of time that each cycle is deemed to have. modelled, 

cannot be made arbitrarily large in the hope of reducing the number of iterations 

required for the simulation time, for, in doing so numerical instability will be 

encountered. This instability manifests itself as small contact oscillations. To 

control these oscillations numerical damping has been used, although this removed 

energy from the system in an apparently arbitrary fashion, Rouse (1982). 

In dealing with these problems an observational investigation was carried out, 

the findings of which are presented in the following sections. This investigation 

was carried out using the Program CVS and a graphical module SOP (simulated 

output program) written especially for plotting the output from CVS. Program 

CVS uses the same undamped motion and force displacement laws as Cundall. 

Basic input is the number of elements, the particle mass, the stiffness and the 

time step size. Options include Simple Harmonic Motion simulation, Contact 

simulation, shear force inclusion or exclusion, contact slope angle, and the number 

of iterations. 

2.1.1.2 A Simple Implementation 

The essential feature of Distinct Element Analysis is the force, acceleration, 

velocity, displacement cycle. In this case the force - displacement law is executed 

as the starting point in the cycle. Part of the elegance of a Distinct Element 

Analysis solution is the simplicity with which these quantities can be calculated at 

each cycle in rotation. It is not easy to calculate them independently of previous 
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cycles, but a general formula may be derived for very simple cases in terms of 

solutions to sums of series and difference equations. 

There also exist mathematical solutions for systems using non discrete in

tegrating operators, but again they are extremely complex for anything but the 

simplest cases. The principal difference in these two approaches is the period of 

time step, in the Distinct Element Analysis this is the time step size whilst in the 

Calculus it can be considered as zero. These two types of solution therefore deal 

with quantised and continuous time respectively. 

It follows that any system with constant acceleration shall have equal solutions 

in quantised and continuous time and that the quantised solution to a system 

with variable acceleration shall be an approximation to the true solution found in 

continuous time. 

2.1. 2 The Behaviour of a Single Contact 

Figure 2.3 shows the behaviour of a single contact between two point masses. 

The 'lower' mass is fixed and has a zero initial overlap with the 'upper' which is 

allowed to move under the influence of both gravity and the contact force. The 

contact force is given by the product of the overlap and the stiffness and acts to 

separate the masses. In this case it directly opposes gravity. The waveform can 

be split into two portions, firstly a simple harmonic motion and secondly a freefall 

condition. 

For such a simple case it can be seen that a contact force equal to the weight 

would counter gravity and thus represents an equilibrium condition (acceleration 

= 0). This contact force corresponds to an overlap of mg/k. In an undamped 

system this is never attainable because to gain an overlap of mg / k the particle 
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must have a downwards velocity, which will carry it beyond mg I k during the 

following cycles. 

The non-zero velocity at zero acceleration positions leads the particle always 

to overshoot this crucial position. The contact force gives rise to an acceleration 

larger than gravity, causing the mass to decelerate, the velocity eventually becomes 

zero and then changes direction. The mass moves upwards towards the mg I k 

position, and for the same reason the mass overshoots on its return and again 

begins to decelerate. The velocity changes direction again when there is no overlap 

and the mass moves down to begin a new period of oscillation. 

This motion would continue indefinitely for continuous time with constant 

period and amplitude. However the time is quantised and it is unlikely that the 

incremental displacements would sum exactly to mglk, 2mglk, mglk and 0 during 

the first period. So then, the change of direction of the acceleration and velocity do 

not occur precisely at these overlaps but rather at those corresponding to the end 

of the time step which includes these overlap values. The overlaps are therefore a 

little greater than mglk, 2mglk, and a little less than mglk and 0. In the case 

of the last value the masses have separated and freefall ensues until contact is 

regained. This ·inaccuracy applies during freefall as well, so that the upper mass 

regains contact with the lower at a slightly higher velocity than expected. 

The second period of oscillation is slightly different from the first, in that the 

particle begins this period with a downwards velocity. It therefore travels further 

in the first time step of the new period than in the old one. The particle decelerates 

more rapidly due to the increased overlap and as it approaches mg / k it does so 

with a lower velocity and does not overshoot as far. Consequently at the end of 

second period the separation or 'jump' is less. 
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Successive periods of oscillation alternate those similar to the first, that is 

beginning with a small or zero jump, and those like the second with a larger jump. 

Assuming suitable parameters for mass, gravity, time step and stiffness will 

lead to the jump being restricted to a small value, the separation occurring for a 

single calculation cycle. In this case the motion is essentially that of Simple Har

monic Motion. However each of the parameters will affect the motion principally 

by increasing the size of the jump. 

The finite difference method gives rise to a movement of g0t2 in the first cycle 

if the initial velocity is zero. This is true for all cases here. Consider the motion 

after the first cycle if bt2 > m/ k. The initial contact force will be greater than 

mg. In this case the particles will separate, free fall and regain contact. The 

high regain velocity will cause a larger overlap than that of the first period. It is 

clear that both the amplitude and wavelength of this asymmetric oscillation will 

increase with successive periods. 

This instability may be caused by a time step and / or stiffness that is too 

big, or alternatively by a too small a mass. The gravity determines the time that 

the particles are separate. The two extremes of motion described, the quasi-stable 

oscillations and these large jumps are end members of a series of oscillation types. 

2.1. 3 Controlling Numerical Instability 

In an undamped system the large oscillations may be avoided by shrewd use of 

the problem parameters. The quasi stable oscillations, however, cannot. Damping 

is required to control the quasi stable oscillations for the following reason. As 

collapse of a real system occurs, the energy release due to collapse is absorbed 

through noise, heating, grinding, breakage of material and loss by vibration to the 

far field. Unless a damping regime is imposed on the numerical analysis the system 
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energy will never decrease, and not reflect reality. In particular the analysis will 

be too liberal in passing effects from one area to another. 

Although we have only considered oscillations in the contact normal direction, 

for an inclined contact they exist in the contact shear direction as well. These 

oscillations are in phase, the stresses varying from zero to the maximum values at 

the same time. When a failure law is imposed on the shear stress the oscillations 

distort. What is of greatest importance is that the stress path followed by the 

contact will be cyclic and unlike the correct, or even a sensible one. 

Cundall's implementations of Distinct Element Analysis involve the use of 

damping factors to control these oscillations, the processes of which have been 

adequately described by Cundall (1976), Rouse (1982) and referred to in section 

1.4.1. Rouse reports that these damping regimes are unsatisfactory on two counts. 

Firstly that the mass proportional damping factors for the whole mesh do not 

damp masses differing by a factor of two from the mean. Standing waves were 

also encountered in towers of contacts, and finally self exciting oscillations were 

easily produced by the viscous damping, the use of which she strongly discouraged. 

2.1.4 Towers of Contacts 

A tower of contacts is a set of elements with each resting on one immediately 

below, the bottom one being immovable. In the first time step, all the movable 

elements fall by ght2 • In the second, the lowest contact is in compression, so 

the first movable particle moves down less than g6t2 . All of the other elements 

move down by the same amount as in the first cycle. In the third, the bottom 

two contacts are in compression. It can be seen readily that the onset of contact 

compression travels up the tower at the rate of one contact per calculation cycle. 

It is for this reason that all effects propagate through the mesh at the same rate 

as this. 
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In this system an element's oscillations are coupled to its neighbours only 

while the contacts are compressive. If jumping should occur at any stage, the jump 

would cause a compression wave to travel up the contacts above the element. The 

top element would separate from the column, free fall and begin a compression 

wave travelling down the column. It is this effect which gives rise to the possibility 

of standing waves. 

2.1.5 Some Recommendations 

In deciding the values of the parameters, care should be exercised to ensure 

the following conditions: 

(i) that g8t2 is modest. 

(ii) that the time step is sufficiently small for the oscillations to be traced with a 

reasonable degree of accuracy. 

(iii) that the contact overlaps are small relative to the size of the elements at all 

times. 

(iv) that the time step is sufficiently large for the computing cost to be acceptable. 

(v) that the damping quenches all quasi stable oscillations in a reasonable fashion. 

(vi) that energy is dissipated from the system during collapse. 

A new approach was researched because current Distinct Element Analysis 

implementations seem to be oscillation prone. These oscillations lead to incorrect 

stress paths being followed and the oscillations are difficult to adequately damp. 

2.2 An Alternative Approach 

2.2.1 Consolidation 

Consolidation, in this context, is the relaxation of a stable configuration of 

elements until equilibrium is attained. Cundall (1971) recommends that a problem 
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be analyzed in two parts, firstly by allowing consolidation to take place and then by 

collapse. The process of consolidation must take place under different conditions 

to that of collapse, otherwise both processes would prove to be identical. The aim 

of consolidation is to stabilise the contact forces to values which counter the self 

weight of the mesh so that during collapse the initial contact normal forces give 

rise to the correct limiting shear forces and that shearing may take place under 

the correct conditions. 

Cundall outlined two methods of promoting consolidation, under conditions 

of artificially high friction and by the use of fixed elements to prevent collapse. The 

high friction method may be utilised for problems where the failure mechanism is 

principally sliding. Here the elements do not collapse because the contact shear 

forces are allowed to be large to prevent contact failure. By using this a philosoph

ical problem is encountered, for when the friction is lowered to normal for collapse 

to ensue, the contacts fail immediately with no chance for the normal forces to 

compensate smoothly or, more importantly to follow the appropriate stress path. 

When the consolidation forces are much higher than the contact failure limits it 

may be argued that the system is as removed from the correct failure force system 

as it was before consolidation took place. 

Where the failure mechanism is that of a toppling and sliding mixture then 

additional fixed elements are used to prevent movement. These are removed af

ter consolidation has taken place. In Figure 2.4 fixed blocks have been used to 

allow consolidation throughout the whole of the problem. On unfixing the central 

supporting blocks the first row will drop, reducing the normal forces on the edges 

marked x. It can be seen that a wavefront of reduced normal forces will propagate 

through the mesh at a rate of one element per cycle. Although the side forces 

may restabilise the system, this wavefront seems to be an added complication to 

an already complex damping system. Furthermore, it must be questioned whether 

consolidation by fixed blocks is appropriate as in the real case the lowest blocks 
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Figure 2.4 The use of fixed blocks to promote consolidation 
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would be held by side friction, interlocking joints and cohesion. Again it may be 

argued that this method leads to an incorrect force system. 

2.2.2 A Statement of the New Approach 

Any new method should allow for the correct gradual build up of forces both 

before and during collapse. The method should be inherently numerically stable 

unlike the usual Distinct Element Analysis implementations and it should correctly 

model the progressive nature of the collapse. 

The new approach controls the consolidation of the elements in a more con

servative fashion than the usual Distinct Element Analysis in that neither element 

velocities nor displacements are allowed to build up across time step boundaries. 

In essence, the incremental displacements of the previous cycle are used in a force 

- displacement law to give an increment of contact stress, which is then added 

to the contact stress. A very simple motion law is executed to give rise to new 

incremental displacements. The contact stresses gradually increase until the incre:

mental displacements fall to very low levels. A contact failure law may be included 

in the process but for simple consolidation it need not. If no contact failure law 

is used and a collapse algorithm, such as a standard Distinct Element Analysis 

method, is processed afterwards, the artificially high shear forces for the contacts 

that will fail, must be reduced carefully to prevent shocking the system. Just as 

in normal Distinct Element Analysis this new method relies upon fixed elements 

to form an immovable platform. 

This force orientated system requires a slightly new calculation order which 

is shown in Figure 2.5. To interface between the consolidation and collapse phases 

consolidation forces are used in the collapse motion law. 
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Figure 2.5 The new calculation order 
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The consolidation process provides as an end result contact forces, whereas 

normal Distinct Element Analysis provides element overlaps and hence element 

body forces. As the incremental forces are added to the consolidation forces in each 

cycle there is a more complex zero tension condition because a separation between 

elements implies a tensile increment rather than necessarily a tensile contact. A 

tensile condition occurs when a tensile increment is added to the consolidation 

forces which causes the result to be less than zero. 

It is essential, of course that the correct forces are produced by the analysis. 

To check this Program CIRCLES was used to consolidate a single contact, a tower 

and a triangle involving two contacts. In the case of the single contact, the force 

summed to mg, for the tower jmg (where j is the number of circles above the 

contact) and for the sixty degree triangle of elements the combined contact forces 

resolved to give mg. 

2.2.3 Machine Accuracy 

2.2.3.1 The Relevance to Discretization 

Machine accuracy may be expressed in absolute terms as the number of bits 

used for a real number, or more usefully as the number of significant figures held, 

or the smallest number added to 1.0 which gives a result greater than 1.0. 

The computer used throughout this study was a System 370, Amdahl 470 V /8 

Serial Number 70435 at Durham using the Michigan Terminal System (MTS) of 

the University of Michigan Computer Center, Ann Arbor, Michigan. The Pascal 

compiler used was PASCALJB of Plug Compatible Software, Inc. The machine 

accuracy in this case is such that if 2.220446049 x 10-16 is added to 1, the result is 
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just discernible. Therefore, to maintain the accuracy of the algorithmn it is essen

tial to keep calculations involving small quantities separate from those involving 

large ones for as long as possible. 

For example, the position of the elements varies during the analysis by adding 

incremental displacements to the centre of gravity. Small increments are easily 

lost, so these are stored separately to ensure that they maintain their integrity. 

To illustrate, 

(1.0 + 10-17)- (1.0 + 10-18
) = 0 

whereas 

1.0- 1.0 + 10-17 - 10-18 = 9.0 X 10-18 

2.2.3.2 Bringing Consolidation to a Close 

For a convergent, stable system, there comes a point during consolidation 

when the incremental forces become very small and it is necessary to terminate 

the process while all the quantities are above the machine accuracy. To do this the 

maximum increment displacement is determined in each cycle and when this has 

fallen to the limiting arbitrary value of 10-14 consolidation is considered complete. 

At this point the force matrix gives rise to extremely small displacements and the 

system may be thought of as at equilibrium. 

For a convergent, unstable system the maximum incremental displacement 

with time becomes asymptotic to a constant value. Consolidation is brought to a 

close under conditions of constant displacement. That is, it is not possible for the 

consolidation forces to counter the effect of gravity in at least part of the mesh. 

For a divergent system the process is halted if the maximum incremental 

displacement reaches an arbitrary high value of 106 . Such a system is considered 
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to be numerically unstable, halting the process prevents the program crashing in 

an uncontrolled fashion. 

2.2.4 Propagating Effects Throu.gh the Matrix 

2.2.4.1 A Simple Tower Problem 

What occurs in one part of the mesh is very likely to affect another part. It 

is essential that these effects are correctly propagated through the mesh. Plesha 

et al. (1986) report that the propagation mechanism of waves through a distinct 

element mesh is not understood. In this study it was found that propagation may 

be very limited and is controlled by machine accuracy, stiffness, time step and unit 

length. 

Figure 2.6 shows a tower of CIRCLE elements. Table 2.1 shows the consoli

dation forces at completion, it can be seen that no contact forces exist above the 

seventh contact. As explained in section 2.1.4 propagation of the onset of consoli

dation travels at one element per cycle up the tower, those elements above falling 

under the influence of gravity only. 

O.OOOOOOOOOOOOOE+OO 

O.OOOOOOOOOOOOOE+OO 

O.OOOOOOOOOOOOOE+OO 

7.1642691779061E-14 

4.7029380390028E-12 

1.0319038623585E-09 

1.8433017642260E•07 

2.4740616641751E-05 

2.2250740175403E-03 

Table 2.1 Contact forces for a tower 
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The relative displacement between two elements ·is given by 

where 1Py and 2Py are the y positions and 1 Sy and 2Sy are the incremental 

displacements of the two elements. At the limit of propagation the value 1Sy- 2Sy 

is 'lost' when added to 1Py - 2 Py resulting in a zero relative displacement. From 

this point onwards propagation ceases as the contact force is also zero. 

Cycle Circle 1 Circle 2 Circle 3 
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F=O rn m 

a= k.d.a.lit 2 
- 2.k2 .d2 ·EJ.·lit4 

-g a = k
2 .d:~·lit4 _ g a= -g m. m2 

S= k.d.f1..lit4 
- 2.k 2 .d2 ·fJ.·6t6 

- g.8t2 S= k 2 .d2 ·9.·lit6 

- g.8t2 s = -g.8t2 
m m2 m2 

Table 2.2 The expansions for 3 circles 

Table 2.2 shows the expansions for the acceleration, displacement and forces 

on three circles in a tower for three cycles. Of the controlling parameters used, time 

step affects the size of the incremental displacement most. As expected, as the 

time step is decreased the displacement decreases also, unfortunately it can quickly 

disappear. Likewise as the stiffness is increased smaller displacements are required 

to represent the same forces. Gravity affects the displacements proportionally 

whereas the other parameters have a greater effect. 
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2.2.4.2 Some Recommendations 

To promote propagation through a large number of elements it is suggested 

that stiffness and time step size be equal to unity and that the numerical stability 

of contacts be controlled by a single damping factor. The size of the problem 

should be limited so that small quantities are added to modest element positions. 

It is suggested that the elements are of the order of one unit in radius for CIRCLES 

and one unit in width for SLICES. 

2.2.5 The Role of Damping 

The difference equation solution for a single contact under the influence of 

gravity is shown below. The governing equations for the displacement, acceleration 

and force are shown in equations (5) to (7). The sign convention of gravity as 

positive is used. 

(5) 

(6) 

(7) 

n -ay-

n-1 

n Fy = - L k X d X i Sy 
i=O 

On substituting equations (7) and (6) in (5) it is found that 

(8) 

Let A = kxc;:ot
2 

and B = gy X 8t2 then the difference between two consecutive 

incremental displacements becomes 

(9} 
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Which simplifies to 

(10) 

Let n Sy = p; so that 

(11) p~ x [py - (1 -A)] = 0 Py = (1- A) 

Now 0 Sy = 9y X 15t2 = C(1- A)0 which implies that c = B So that 

(12) 

The number of calculation cycles for a system to converge to a limiting differ

ence may be derived. The limiting factor may be force, acceleration or displace

ment. A different equation is required for each, they are given below. 

The derivation of N 1, the number of cycles needed to converge to a limiting 

positive difference in force of Lim! is shown. Care needs to be exercised regarding 

the gradients of the acceleration, displacement and force time graphs as gravity is 

taken as positive downwards. The limit is defined as -Lim1 = N1+ 1Fy- N1 Fy 

(13) 

which gives Lim1 = k x d x N, Sy and Lim!= k x d x B(1- A)N' and hence by 

logarithmns 

(14) 
N _ lg(Lim1 /(k x d x B)) 
I- lg(l- A) 

The equivalent equations (15) and (16) show the number of cycles required 

when the limiting factor is acceleration and displacement respectively. 

(15) Na = lg(Lima X m/(k X d X B)) 
lg{l -A) 
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(16) N = lg(Lims/(A x B)) 
s lg(l- A) 

Furthermore for N 8 > 0 implies 0 < kd8t2 fm < 1 and assuming k = 1 and 

Ot = 1 then it follows that 0 < d/m < 1 and N 8 = lg(L;;(~~.-:;~~xg)) which implies 

that N 8 varies with mass. So that all elements take equal time under the same 

conditions to consolidate the damping factor actually employed is element mass 

multiplied by the global damping factor: D 1 = dfm. This makes the consolidation 

process time independent of mass, if this were not so the time would 'warp' over 

the mesh with lighter elements more advanced than others. A further consequence 

would be that heavy elements would be lightly damped compared with light ones. 

Th £ N ~ lg(Lim.,j(Dt X g)) 
ere ore 8 - lg(1-n,) 

To show the effect of the number of contacts upon these equations, the dif

ference equation solution for an isosceles triangle where the lower two ~ircles are 

fixed, now follows. The internal angle between the horizontal and the contact lines 

is (). The derivation is carried out for the y direction only as the x can be shown 

to cancel out and have no effect. 6.G is used to represent the movement along the 

contact lines that join the circles. The subscripts 1 and 2 are used to differentiate 

between the two active contacts. The governing equations for the displacement 

and acceleration are as shown previously in equations (5) and (6). The equation 

for the force is given in (17). 

n-1 

(17) n Fy = -I: k x d X ( ~ AG + ~AG) X sin() 
i=O 

However the radial displacements are given by 

(18) 

Equation (17) simplifies to give 

(19) 
n-1 

n Fy = - L 2 X k X d X i Sy 
i=O 
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By following the previous method it may be shown that 

(20) 

and that Ns = lg(~~0·'!~~; )g)) Hence generally 

(21) 
N _ lg(Lims/(DJ X g)) 

s - lg( 1 - 1 x D 1) 

where I is the number of contacts. It should be noted that this applies to symmet

rical contacts sharing the weight of elements above. It can be concluded that the 

damping factor, D 1, must vary according to the mesh geometry used in Program 

CIRCLES. 

As damping increases so does the required number of cycles to reach equilib

rium, and hence the computer time increases also. An overall damping factor of 

0.5 to 0.9 has proved to be satisfactory. 

2.2.6 Concluding Remarks 

In this chapter some general theory has been investigated for Distinct Element 

Methods as used previously. A new method has been outlined and aspects of the 

theory have been detailed, in the following two chapters the theory is extended for 

SLICES and CIRCLES and their implementation described. 
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CHAPTER 3 

JD][§T][NCT ElLEMENT METHOD OJF §JL][CE§ 

3.1 ][ntrodu.ciion 

Program SLICES is designed to analyse the behaviour of a soil slope and a 

failure arc in much the same way as more traditional methods, such as Janbu. 

The program requires geometric data to define the slices. The tops of these form 

the soil slope, and the bottoms form the failure arc. The slices may vary in width 

and should normally have vertical sides. 

In addition cohesion, friction and pore water pressure values are needed for 

each slice. As the slope cross section may be considered as one unit length thick, 

and if the unit length is the metre, densities in tonnes /m3 , gravity as -10m/ s2 , 

then the cohesions and porewater data should be entered a.'3 kN/m2 and m. How

ever any self consistent units may be used. 

Finally control parameters and control commands govern the conditions of 

the solution and the production of the various outputs. Table 3.1 shows a typical 

command file while Figure 3.1 shows the slope and arc to be analysed. 

It must be emphasised that Program SLICES is a development program, and, 

although hopefully, reasonably user friendly this is for ease of use rather than as 

an indication of a packaged production program. Program SLICES is therefore 

limited in its applications. It is only able to analyse situations involving one 

soil type and has a simple contact failure law. It is envisaged that non-'linear 

soil properties could be incorporated quite simply and that layered situations be 
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Figure 3.1 A typical slope for analysis by SLICES 
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start SLOPE 1, C, PHI, U 

0 16 0 

create free 20 5.0 2.0 1.0 20 5.0 0.0 0.0 0.23 1 14 1 14 

2 10.5 2 14 

create free 20 5.0 2.0 1.0 20 5.0 0.0 0.0 0.23 3 8.9 3 14 

create free 20 5.0 2.0 1.0 20 5.0 0.6 0.6 0.23 4 7.7 4 14 

create free 20 5.0 2.0 1.0 20 6.0 1.6 1.0 0.23 5 6.9 5 14 

create free 20 6.0 2.0 1. 0 20 6 . 0 2 . 3 1.3 0.23 6 6.3 6 14 

create free 20 6.0 2.0 1.0 20 6.0 2.9 1.6 0.23 7 6.7 7 :1.4 

create free 20 6.0 2.0 1.0 20 5.0 3.36 1. 75 0.23 8 6.4 8 13 

create free 20 6.0 2.0 1. 0 20 6 . 0 3 . 66 1.9 0.23 9 5.1 9 12 

create free 20 5.0 2.0 1. 0 20 6 . 0 3 . 86 1. 96 0. 23 10 6.0 10 11 

create free 20 6.0 2.0 1.0 20 6.0 3.96 2.0 0.23 11 4.9 11 9.9 

create free 20 5.0 2.0 1.0 20 5.0 3.96 1.95 0.23 12 6.0 12 8.9 

create free 20 6.0 2.0 1.0 20 6.0 3.3 1.35 0.23 13 6.1 13 7.8 

create free 20 5.0 2.0 1.0 20 6.0 2.05 0.7 0.23 14 5.4 14 6.8 

create free 20 6.0 2.0 1.0 20 6.0 0.7 0.0 0.23 16 6.8 15 5.8 

meshend 

set time 1 gravity -10 cmdproc on framelimit 100 

aritegap 128 interval 128 

cmdlist plot standard set calc aritegap * 2 interval * 2 cend 

echo on 

go 32383 

stop 

Table 3.1 A Typical Command File 

accommodated by subcontacts along the interslice edges. In addition Program 

SLICES is intended for slopes failing by sliding only, as opposed to toppling. There 

is no check made by the program for toppling. Program SLICES is particularly 

suited for situations where the failure surface is already known, as in back analysis 

and post-mortem analysis of failed slopes. 

The program does not display the problem solution in a fixed format, but, 

rather a series of possible outputs may be requested by the user. The calculation 

marches through time producing data and to a very great extent which data are 

examined, and how, is left to the user. Of the several possibilities, perhaps the 
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inost useful is shown in Figure 3.2. Here the stresses are plotted along the length of 

the arc. Normal, shear and limiting shear stresses for both the base and interslice 

contacts are shown. The symbols+, 0 and * are used to represent the pore water 

pressure, mobilised stress and limiting stress respectively. Plot possibilities include 

incremental displacements, slice geometry and the stress profiles as illustrated. 

Much written output can be produced for debugging and general informa

tion. To complement the stress profile plots, written output can· be produced 

independently. This output consists of the Factor of Safety (Limiting stress over 

mobilised stress), for each of the base contacts and shows which slices are stabil

ising the slope. The limiting state is represented by a factor of safety of unity. 

The analysis may be considered static in nature in so far as the slices are not 

allowed to collapse, only to consolidate. The term consolidation is being used here 

to describe the process whereby the contact forces increase over successive cycles 

to counter the self weight of the slope. The cyclic process employed includes a 

failure law for the contacts which is executed during the force displacement law. 

The complete cycle is shown in Figure 3.3. It may be seen that in addition to the 

calculation sections there is a controlling section which is capable of terminating 

a run and to administer the production of output. 

3.2 Theory extensions for §JLJICE§ 

3.2.1 The edge formulation employed 

The Distinct Element Analysis formulation used is an Edge formulation. As 

stated in the Introduction, program SLICES is a Distinct Element Analysis im

plementation of fewer degrees of freedom than usual as rotation is ignored. As 

the problem types are of sliding only, rotation or toppling of slices can be safely 

discarded. Both edges involved in a contact, therefore, shall be parallel at all 
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A negative normal stress is a tensile stress. 
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Figure 3.3 The SLICES calculation cycle 
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times and this simplifies the edge formulation allowing a contact to be defined by 

a single subcontact. A furtherl>simplification to usual edge formulations is pos

sible, as initially both edges involved are closed along their whole lengths. This 

renders the storage of a contact origin unnecessary. Figure 3.4 compares a gen-

eral Distinct Element Analysis edge contact with that employed in SLICES. The 

lefthand diagram shows the information required for a contact in the traditional 

Distinct Element Analysis implementation of Watson (1983). The righthand dia

gram shows the contact definition used here. It may also be noted that the contact 

length is deemed to be a constant throughout the simulation and is used to convert 

forces to stresses by division. 

During the definition of the problem the program creates the slices from left 

to right and allocates a contact to the base of each slice and to the righthand edge 

of all except the last slice. The base contacts are made with a fixed hypothetical 

element, the platen, which consists of a series of edges identical to the base edges 

of the slices. As the leftmost slice has no lefthand contact and the rightmost slice 

has no righthand contact, slopes facing either left or right may be modelled. 

The main extension of the theory for slices is the incorporation of the edge 

length into the difference equation solution. The inclusion of the contact length L 

to convert from stress to force is shown in equations (1) and (2). 

(1) nFy=-nayXL 

(2) 
n-1 · 

n ~ k X d X tSy 
ay= ~ L 

t=O 

By following the method used in chapter 2, it is found that 

(3) 
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Figure 3.4 A Comparision of the data required to define a contact 
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and N;,., the number of cycles needed to converge to a limiting difference in stress 

of Limu is given by 

(4) 
N _ lg(Limu X L/(k X d X B)) 
u- lg(l- A) 

This number is an useful indicator of the rate of damping on the system. It 

has already been shown that the rate of damping is dependent on the element 

masses. For a typical slice problem this would mean that all the slices would be at 

different stages of the contact stress history. This problem is overcome by applying 

an individual damping factor to each block, such that DJ = dfm, where D1 is the 

overall damping factor. 

A second problem is encountered with damping in that the rate of damping is 

also dependent upon the contact length. Ideally two contacts of the same slice with 

different lengths should have different damping factors. In practice, for SLICES the 

contacts may be considered as two sets of contacts, basal which converge quickest, 

and interslice contacts which are slower to converge and gradually influence the 

basal contacts. Due to the geometrical consistency of SLICE problems this side 

effect is an advantage, however is does complicate the choice of damping factor as 

it must satisfy the convergence criteria for all contacts. 

3.2.2 The Force Displacement and Motion Laws 

Procedure fords[ defines the force displacement law and is executed once per 

slice cycle. fordsl executes a force displacement law once for the base contact and 

once for the side contact. The relative movement in the normal and shear direc-

tions is calculated from the incremental displacements of the slices involved (the 

platen may be considered as a slice and has zero displacements at all times). These 

relative.movements are converted to contact forces by the relaxation constant, k. 

(5) (~:)=(sinO cosO)x (:~:= :~:) xk 
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The contact is judged to be active (that is in contact) if n-lan > -DJ X Fn/ L 

(compression is taken as positive), and the following executed to give contact 

stresses. 

(6) 

Slices that are fully submerged in the traditional method of slices, are bouyant 

which normally causes the toe of the slope to under contribute to the mobilised 

stress of the failure arc. This leads to the factor of safety to be under valued. If 

the pore pressure due to the water table is applied to the slices in the distinct 

element analysis method a similar effect is experienced. Consider equation 7. 

(7) T = C + ( 0" n - U) tan <f> 

At the beginning of the analysis an = 0 so that for non-zero pore water pressures 

(an -u) < 0 and hence the slices would float upwards. To ensure that (an -u) 2:: 0, 

the water is applied gradually by increasing its value at an arbitrary rate of 0.1% 

of the required pressure u per calculation cycle. This rate cannot be currently 

altered by the user. 

(8) 

If the Critical State option is in use then failure of the contact is assumed 

once nu = u and I nrl > 7. Once the contact reaches the failure condition the 

contact remains in the failed state and the cohesion for each successive cycle is 

given by n+lc = nc x 0.85, that is c --t 0. The failure logic may be represented 

by the boolean logic of failure= failure V ((nu = u) 1\ I nrl > 7). 

The shear stress is limited by a Coulomb friction law such that 

(9) 
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and 

(10) 

and if I nTI > 7 then nT = 7 x I '~-rl ensuring sign continuity. 

The stresses are converted to contact forces by 

(11) 

and finally these forces are resolved in x and y and added to the forces acting on 

the slice, to be known here as the body forces. Additionally, in the case of a side 

contact, the resolved contact forces are subtracted from the body forces of the 

other slice involved. 

(12) (: :~~:: ) = ( sin 8 cos 8 ) x ( g: ) 

As the incremental displacements are not used to update the slice positions 

the contact stress increments may be compressive or, by the influence of other 

slices, tensile. In the tensile case a contact is still active if the summed normal 

stress state is compressive. A small tensile stress is permissible so that transient 

numerical jumping may be more effectively damped. 

The consolidation motion law is very simple compared to the motion law of 

normal Distinct Element Analysis. The Procedure consolsl defines this law and is 

executed once per slice per cycle. consolsl is called after fordsl in the calculation 

cycle. 

The incremental displacements are calculated from the body forces, mass, 

gravity and time step (recommended as unity). 

(13) (.
SS. yre) = 8t

2 
X ( Forcex) + bt2 X (ggyre) 

m Forcey 

49 



C.hapter 3 Distinct Elemeltlli Metb.od of §lices 

The body forces are then set to zero ready for the next cycle 

(14) (
Forcerc) = (0) 
Forcey 0 

3.3 Using JPrrogram §JLJJ:CE§ 

3.3.1 Introduction 

3.3.1.1 Overview 

Program SLICES is written in the PASCAL programming language. For some 

time previously implementations of Distinct Element Analysis have been writ

ten in FORTRAN, Dames and Moore (1978), Rouse (1982) and Watson {1983). 

Whichever language is used it should provide efficient object code and readable, 

easily maintained, modular source code. Some features of PASCAL enable these 

objectives to be more easily attainable than many other languages. Such at

tributes as structured variables and records make PASCAL particularly useful in 

this respect. 

For example el@.force.x is equivalent to A(IA(J)+11} of Watson (1983). The 

PASCAL version more clearly indicates that an element force in the x vector is 

meant than in the FORTRAN version. Furthermore, if 'force' is mistyped then 

the Pascal Compiler will indicate an error, whereas if 'J' was accidentally replaced 

with 'K' in FORTRAN a run time error might eventually occur. For a development 

program where the source is continually being modified these advantages are very 

great. For a reader unfamiliar with PASCAL, reference is made to Grogono (1980). 

Meek and Beer (1986) report that a large percentage of the programming ef- · 

fort in a Distinct Element Analysis implementation development may concentrate 

upon user orientated features. Much of the structure of programs SLICES and 
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CtRCLES is designed for the ease of input of data, output of results, debugging 

features, error handling and restart facilities. 

The plotting routines employed are library routines called from the GHOST 

library. Almost all references to these library routines are contained in Procedure 

plot- so that they may be changed or replaced easily if the need should arise. To 

call FORTRAN library routines such as these from a PASCAL program procedure 

head definitions are included in the PASCAL code. 

Finally, the source code for Program SLICES is in est8:p.slice.s and the object 

code may be found in est8:p.slice. 

3.3.1.2 Input and output unit summary 

The program requires various input and output files with which to communi

cate with the user. There are nine such channels each of which should be assigned 

on the Run command, for example: 

Run est§:p.slice l=resH 2=resto sca:rds=commandls sprint=*msink* 

7=-debug §=otrace 9=-plot 10=-osc ].].::::*msink* 

In MTS the run command should occupy a single line, in· addition *msink* 

is the pseudodevice name. for the terminal screen (if run from a terminal) and 

'-' infront of a filename indicates that it is temporary in nature. Any channel 

required, but not assigned is prompted for by MTS except for scards and sprint, 

here the MTS default values are *source* (normally the terminal keyboard), and 

*sink* (normally the terminal screen). In use it may be noted that channels 8, 10 

and 11 are often not needed and so need not be assigned, channel sprint should 

usually be the default, and finally channels 1 and 2 may be assigned to the same 

file. Each of the nine input / output channels are described below. 
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Channel 1 is the restart file input channel. The file attached to this should 

contain all of the information required to restart a previous problem run which 

terminated under normal conditions. If a new problem is to be started then a file 

need not be assigned. 

Channel 2 is the restart file output channel. The file attached to this will 

receive the data required to resume the problem at a later date. This must be 

assigned as restart information is output at the end of a normal termination as 

well as when requested. 

Channel scards is the command file input channel. The file or device attached 

to this unit contains the input command language commands that define the task 

to be done. 

Channel sprint is the running commentary output channel. The terminal 

screen (*msink*) is the default value for this. As control commands are written to 

the device, to position the output on to various parts of the screen, the network 

(NUNET at Durham) should be set to allow these control commands to be passed 

to, and executed by, the terminal. To do this at Durham the NUNET commands 

Ctrl-p passall=on and Ctrl-p chc=off should be issued prior to the run and Ctrl-p 

passall=off and Ctrl-p chc=' afterwards. 

It should be noted that the control commands used are suitable for Tele Video 

terminals and that no other terminal types have been tested, as the commands are 

contained in two constant strings at the beginning of the program they are easy 

to modify. For more details see section 3.3.4.7. 

Channel 7 is the debug output channel. The file attached will contain all of 

the debugging output requested. In some cases the amount of information may be 
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very large and it is best if the file is of a temporary nature so that personal disk 

space is not exceeded. 

Channel 8 is the trace output channel. This file contains the trace of the 

program, if requested. It contains a message on entry to and on exit fiom each 

procedure or function as they are used. This is particularly useful on debugging 

recursive structures as each level of recursion used is recorded. 

Channel 9 is the plot output channel. The file attached receives the plot 

output stream from the GHOST plotting routines. It contains control codes and 

unformatted values and is a plot description file and is device independent~ It must 

be reinterpreted for the plotting device to be used. At Durham this is accomplished 

by the public programs *PLOTSEE and *MTSPLOT. (See MTS Volume 2, Public 

File Descriptions.) 

Channel 10 is the oscillation output channel. The file used here will contain 

the oscillation output requested. , The information may be reinterpreted by the 

program SOP, simulated output plots, originally used in the study of oscillations 

of traditional Distinct Element Analysis contacts. (See program comments in file 

est8:p.sop.s for use, and sections 3.3.2.3 and 3.3.4.6.) 

Finally, Channel 11 is the error communication channel. This channel is 

used during error handling, for input of corrected commands or for a termina

tion message if a non-recoverable error occurs, such as an unexpected end-of-file 

condition. 

3.3.1.3 Outline of facilities 

The program is designed to be flexible in the tasks it performs and, on the 

whole, is not preprogrammed to solve the problem in a set fashion. The user is 
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in control of what is to be done, and when. Research use of the program further 

emphasises the need for such flexibility and so several user orientated features have 

been incorporated. 

A principal feature is the comprehensive input corriinand language to de

fine problems and the manner of solution. In addition a running commentary is 

produced providing information on the current program status, (for example the 

number of pages of plot produced so far, iterations completed and requested), cur

rent problem stability information, and the current command in progress. This 

allows a user to abort the run if it is not satisfactory. 

Certain parameters may requjre changing during the problem lifetime and 

this may be achieved by the using Procedure calculator allowing, for example, 

intervals between plots to be multiplied by a value. This same facility allows a 

restart file to be examined and the parameters inspected or changed. 

Experience of some previous Distinct Element Analysis implementations led 

to the realisation that input error checking and handling is very important. A crash 

caused by a mistyped command part way through an expensive run is particularly 

annoying. Error checking is included in SLICES and on encountering an invalid 

command the user is prompted for a replacement. It is not always possible to 

retrieve the situation, or it may be laborious to do so, but the opportunity is 

there. 

Often in investigating the progressive nature of the solution it is necessary 

to do the same things repeatedly. There are two repetitio:ri structures. One is a 

simple repeat loop, which repeats all of the commands enclosed, as many times as 

instructed. The other causes a command list to be repeated after every interval 

of so many cycles. 
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Another user orientated feature, which is included as standard in development 

programs is that of a debug facility. With this the user may request a whole variety 

of information to locate bugs or to supplement the normal solution. 

Finally a process orientated feature has been incorporated. The maximum 

individual displacement of all the slices in each cycle is monitored. The behaviour 

of the maximum displacement with time shows characteristic patterns under cer

tain conditions. This value is written to the running commentary and by internally 

monitoring its change a final verdict on the stability may be made by the program. 

Under conditions of constant sliding and stable equilibrium this displacement be

comes constant and the program terminates. An upper limit on the number of 

cycles to be executed can be issued with the realisation that termination should 

occur early without any waste of resources. This feature also checks for numerical 

instability and will automatically terminate the program before it crashes. 

3.3.2 Input Command Language 

3.3.2.1 Introduction 

All program tasks are controlled or defined by the Input Command Language 

As shall be explained later the program requires some commands in a particular 

order, but on the whole the majority of commands may be used at any time. 

Although the program is not designed to run interactively, it is possible with care. 

Normally, however, the commands should be contained in a file prior to use. 

The commands may be categorised into broad sections, dealing with pr<;>gram 

control, plotting, meshing, debugging, and the setting of optio~s and parameters, 

these corresponding to the major procedures of the program. The commands are 

hierarchical, forming a tree system. The highest level is the control level which 

allows access,to the loWer levels of commands, such as the plotting and debugging 
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command sets, which are at the second level. Furthermore, the plot command set, 

for example, contains <t level three command set, the mapping commands. 

Once in a low level set the permissable commands are those of the present 

set and of any higher level set which contains the current set. The highest level 

or outermost command set, the control commands, are available immediately on 

entry to the program. Access to lower sets must always be made though this 

control level. Once in a lower command set as many commands of that set may 

be issued as required. To exit from a lower level, a command of a higher level set 

containing the present set should be issued, often this will be a control command. 

To complete the picture it should be noted that on correction of an input error, 

it is as if the program is being re-entered, so that the only applicable commands 

are control commands, that is those of the outermost command set. 

The following sections, 3.3.2.2 to 3.3.2.8 describe the functions of the com

mands of each command set. Section 3.3.2.9 describes a syntax table for the Input 

Command Language. How best to use combinations of the commands is not dis

cussed here, but rather in Section 3.3.3, under the heading 'Input Command File'. 

3.3.2.2 Control commands 

The control commands are situated in the outermo_st coriunand set, all other 

commands are accessed through this set. The commands are set, restart, save, 

start, stop, debug, plot, go, repeat, rend, cend and return. Each of these is 

now described in detail. 

The set command enters the parameter procedure to allow parameters to be 

set up, altered or inspected. 
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The command Jrestrurt causes a restart of a previous problem run. A file con

taining the restart information must be attached to unit 1. Within the command 

file the mapping information must follow. 

save causes a restart file to be written. It may either overwrite or append 

the file attached to channel 2 according to the setting of the oveJrwJrite command 

(a set command). This is used to save the solution to the task so far found for a 

large job, thus avoiding loss in the case of a system crash. 

The start command starts a new problem. A title up to 80 characters long 

may follow, but the next line must contain the mapping information and then 

mesh information is required. Section 3.3.2.8 describes the meshing commands. 

stop should be the final command in the input command stream as it causes 

the geometry to be plotted, a restart file to be written and the program run 

terminated. 

The command debug causes the debug procedure to be entered, so that debug 

options can be set or general information generated. 

Command plot causes the plot procedure to be entered, which allows requests 

for the manipulation of the plot format, size, and the production of the different 

plot types available. 

go causes the calculation cycle to be entered and it must be followed by an 

integer, the number of cycles to be executed. 

The command repeat is the opening statement of the repeat n commands 

rend loop structure. It must be followed by an integer, which is the number of 
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times the loop is to be executed. There are certain commands for which inclusion 

in this structure would be pointless. These are explained in section 3.3.3. 

To balance the repeat loop structure the command reltldl is used in two ways. 

As regards to input, it terminates input to the repeat controlling procedure and is 

the last statement in the repeat loop, in this case it is not a controllevel command. 

The second way in which it is used is internally, during execution ofthe loop, here 

it signifies the end of the loop so that the commands may be repeated again. 

cend, like rend!, is used in two ways. Firstly, it terminates input to the 

command list structure of the set command set, and secondly it terminates exe

cution of the command list during use. Section 3.3.2.4 describes the set cmdlist 

commands celtld facility in detail. 

Finally, the return command terminates interactive input-during input error 

handling, and is described together with this facility in section 3.3.3.3. 

3.3.2.3 The debug command set 

To gain access to these second level commands the debug command must 

be entered at the control set level. This facility falls into two parts, one outputs 

information at the point of issue of the command, while the other a8signs options 

which provide data during the subsequent execution of the program. If used 

carelessly, this latter part may produce a very large amount of information, so it 

is intended that these options be switched on and off as required. All output from 

this routine is written to the file attached to unit 7 unless otherwise stated. There 

are eleven debug commands, each of which are now described. 

The command contacts writes out the contact information. general pro

duces some general problem and program information. The flagson command 
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sets all the debug options on, and should be used with care. Command fiagso:ff 

turns all of the debug options off. 

All of the following commands must be followed by the third level commands 

of either on or off, which clearly sets the option on or off. 

The command update produces contact information as the contacts are cre

ated. As creation of the contacts occurs during meshing, which is after the issue 

of the start command, but before the issue of the next control level command, 

this must be issued before start, otherwise it will do nothing. 

Command motion controls the production of debug output from the pro

cedure consolsl (the motion law) during execution of the calculation cycle. The 

ford command controls the production of the debug output from the procedure 

ford (the force displacement law) during execution of the calculation cycle. The 

command consolidate produces limited information from both consolsland ford; 

again during execution of the calculation cycle. cyde produces information from 

all procedures within the calculation cycle and procedure cycle itself. The com

mand trace causes a message to be written on entering and exiting all procedures 

and functions. Output is written on the file attached to the unit 8. Lastly the 

command oscHlate causes information from ford and consolsl, formatted for input 

to the Program SOP, to be written onto the file attached to channel 10. 

3.3.2.4 The set command set 

To gain access to these second level commands the command set must be 

issued at the control level. This set of commands falls into two groups, problem 

parameters such as gravity and options such as framelimit. The set commands 

are as follows. 
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The command echo, if set to on this parameter enables all input commands 

to be echoed on the running commentary. The command must be followed by the 

third level commands of either on or off. The default is on. 

The overwrite command controls the restart file output. If set, the file 

attached to unit 2 is emptied prior to use, otherwise the file is appended by the 

restart information. The default is off. 

cmdHst sets up a subsidiary file and copies all command input to it until 

the command cend is entered. The execution of this secondary command file 

is controlled by two further set commands, cmdproc and interval. Transfer of 

control is passed from the file attached to the unit scards to the secondary file 

(always named internally as the temporary file -sass.cmd), duringthe execution 

of procedure cycle. The default value is null. 

The command interval must be followed by an integer, the number of cy

cles to be executed between successive executions of the command list secondary 

command file. The default value is 100. 

The cmdproc command must be foJlowed by either of the commands on 

or off. If it is set to on, the command list secondary file is executed whenever 

the total cycles executed so far divided by the interval, (as set by the command 

interval), is an integer value. If set to off this facility is not used. The default 

value is off. 

framelimit should be followed by an integer. The GHOST library limits the 

number of frames of plot output to twe11ty. If this is exceeded the program will 

terminate. This command allows this limit to be reset. The default is 20. 
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The command writegap sets the interval of cycles between display of some 

of the running commentary information. The default is 100. 

The gravity command is followed by a real number, which represents the 

value of gravity in the positive y direction. The default value is 0. dlamp is 

followed by two real values, this sets the global damping values for base and side 

contacts respectively. Ideally they should be between 0.001 and 0.2 per unit mass. 

There is no default value other than the initialisation of zero. time is followed by 

a real value this sets the time step size, it is recommended that a value of unity is 

used. The default value is 1. 

The calculate command allows the values of some parameters and options 

to be modified or inspected rather than simply reset. Calculator commands are 

described in the following section, 3.3.2.5, and are level three commands. 

3.3.2.5 The calculator command set 

This set is at the third level and is accessed by the command string set 

calculate. Almost all the calculator commands have the same format, that of 

~parameter>- ~operator>- ~real>- with the exception of when the enquiry ? is 

used, when a value is not required. Permissible parameters, which are in fact 

third level commands, are interval, writegap, gravity, time and damp. The 

operators, fourth level commands, to be precise, are = replace, * multiply, / 

divide, + add, - subtract, " exponentiation. The ? enquiry although not an 

operator is used here. 

The values .are read in assuming a real number format. For parameters which 

are integer in nature, conversion takes place to give an integer result. The final 

value of a calculation command is written to the running commentary output 

stream. 
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3.3:2.6 The plot command set 

To gain access to this second level set the command pRot must be issued. 

As all the GHOST libtary routines are contained in the procedure plot to ease 

maintenance, and many plotting functions are automatically carried out by the 

program, it has been necessary for some of these and map commands to be issued 

internally. Although these internal commands are described, it may be that they 

will never need to be issued externally. They are initialise, endplot, and most 

map commands with the exception of zoom. 

initialise sets the initial plotting parameters and turns the plot out_put stream 

on. This command is issued automatically on receipt of the start or restad 

control commands and should not need to be used normally. The slices command 

draws the slices in the current plot space. The displacement command draws 

the current slice incremental displacement vectors. forces draws the normal and 

shear stress, limiting shear stress profiles for the base contacts. The standaJrd 

command produces a standard plot of a border and profiles for the base and side 

contacts. page calls for a new frame, or in physical terms a new sheet of paper. 

border produces a border with the problem title and current problem time. The 

map command enters the-tertiary level map set and enables the modification of 

plot formats, it is used internally for the most part. 

The unusual command zoom must be followed by three real numbers, xmin, 

xmax, and ymin which form the mapping limits. xmin is the minimum value of 

x, xmax is the maximum value of x, and ymin is the minimum yalue of y of the 

problem geometry to he plotted. As the plots are in fixed proportions in both 

landscape and portrait mode it is not necessary for the maximum y value to be 

provided. This command enables portions of the problem to be examined in more 

detail. Mapping limits are expected as part of the input after both the start 

and restart control commands. zoom is in fact a tertiary level command valid 
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at the secondary level as it is passed straight to the mapping procedure without 

processing. 

The endpRot command is issued internally during closedown of the program 

under normal termination, it produces a frame with a slice plot and turns the plot 

output stream off. 

3.3.2.7 The map command set 

These tertiary level commands are accessed by first issuing the command 

string plot map. They are 10 commands in this set and are described as follows. 

The command bottom sets the plotting space to the lowest quarter of the 

physical page. It is used internally for the production of the normal stress profiles. 

A border is drawn together with axes scaled to the mapping limits (x) and normal 

stress limits (y). 

To set the plotting space to the second lowest quarter of the physical page 

the command lowermiddle is used. It is used internally for the produ~tion of the 

shear stress, limiting shear stress profiles. A border is drawn together with axes 

scaled to the mapping limits (x) and limiting shear stress limits (y). 

uppermiddle is used to set the plotting space to the second highest quarter 
- -

of the physical page. It is used internally for the production of the normal stress 
- -

profiles. A border is drawn together with axes scaled to the mapping limits (x) 

and normal stress limits (y). 

To complete this suite, the command top is used to set the plotting space 

to the topmost quarter of the physical page. Again it is used internally for the 

production of the shear stress, limiting shear stress profiles. A border- is drawn 
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together with axes scaled to the mapping limits (x) and limiting shear stress limits 

(y). 

plich.ure sets the plotting space to the upper half of the physical page. It is 

used internally for the production of a $lice plot, normally above stress profiles, A 

border around the space is drawn together with axes scaled to the current mapping 

limits as set by the zoom, start or restart commands. 

The command horizontal sets the page format to lie along the A4 sheet of 

paper as in a landscape picture~ The default size is (0.06,0.96,0.05,0.65) expressed 

in a {xmin,xmax,ymin,ymax) format. 

The vertical command sets the page format to lie down. the A4 sheet as 

in conventional portrait picture. This is the default format, the default size is 

( 0.15,0. 75,0.06,0.96). 

fill sets the plotting space to the maximum permitted page size suitable for 

A4 paper. A border is drawn around this area together with axes scaled to the 

current mapping limits. A variation to fill, fullnoscales does the same as the fuU 

command but does not draw scaled axes. 

The last mapping command zoom has been described in the previous section. 

3.3.2.8 The mesh command set 

This is the only set of commands that cannot be accessed at random by a user. 

It is automatically entered after the issue of the level one command start, a further 

oddity is that this set can only be exited by issuing the meslh.end command. 
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There are two mesh commands which lie at level two, create and meshend, 

they are described below. 

The command meshend causes the meshing routines to terminate. The 

contacts are found and initial plots are produced before the next command in the 

input stream is executed. 

The create command triggers the creation of a new slice, the information for 

which must follow, 14 pieces are required, the first of which is strictly a tertiary 

level command describing the type. There are two tertiary commands. 

These two tertiary level commands associated with create are free and track. 

The free command is the normal slice type and is used almost exclusively, track, 

on the otherhand, in conjunction with the debug oscillation option, permits clumps 

of the slice information to be made during processing. 

The remaining information required by create is both geometric a,nd geotech

nical. Nine pieces of geotechnical information are requiredto describe the geotech

nical state of the slices. These are as follows, base cohesion, base ¢, dry density, 

numerical stiffness, side cohesion, side ¢,-pore water pressures at the middle of the 

base and side .contacts and the void ratio. The geometric information n~eded is 

the x and y coordinates of the points defining the top and then the bottom of the 

righthand edge of the slice. In the case of the first created slic::e the coordinates of 

the lefthand edge are given first, followed by the data for the righthand edge. It 

must be remembered that slices are created from left to right. 

3.3.2.9 Syntax table 

The following description of the Input Command Language is based upon the 

symbols as defined in Table 3.2 with the syntax in Table 3.3. 
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Symbol Definition 

... indicatt'ls possibl<a r<apetition of the clause 

[ ] indicat<as an optional clause 
( ) indicates a group of clauses 

-< :>- indicatras substitution· by a value, which 

may be either a clause or literal 

' ' indicatras a literal.value 

I indicates an alternative 

IS is the definition operator 

Table 3.2 Input Command Language Parsing Symbols 

3.3.3 Input command file 

3.3.3.1 File format 

The input command file contains the task to be performed by the program, 

defined by the input command language and syntax described in section 3.3.2. 

There are very few format conditions; and some of them are imposed by PASCAL. 

All commands must be separated by at least one space. The maximum word 

length is 12, so no string of non-blank characters should exceed this. Real numbers 

may be as 1 1.0 -1.0 -1 1E10 -lE-10 and must be separated by a blank or the 

negation. 

End of line conditions are autotpatically skipped by the input routines and so 

there is only one time when a new line niust be started. This occurs after the start 

command when the remainder of the line is read as a title. Further information 

must begin on a new line. Word length may be exceeded in the title. 

Text, including numbers may be commented out by the {and}, a blank must 

precede the open brace. An unbalanced open brace will cause an end of file error 
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task IS [-<com>- ... ] 'stop' 

corre.ction IS [-<com>- ... ]('return' l'atop') 

limits IS -<nal>- -<real>- -<nai>-

reply IS 'on' I 'off' 

com IS ('set' [-<sot command>- ... ]) 

('restart' -<limits>-) 

('start' -<start bloclt>-) 

('plot' [-<plot command>- ... J) 

('debug' [-<debug command>- ... )) 

('repeat' -<integer>- [-<com>- ... J 'rend') 

('go' -<integer>-) I 'save', 'cend' I 'rend' 

parameter IS 'framelimit' 

I 'damp' I 'time' 

'writegap' 'interval' I 'gravity' 

oper IS '*' I '+' I '-' '/' I '1\' '=' 
set command IS (('echo' I 'cmdproc' I 'ovunite') -<reply?-) 

(('framelimit' I 'eritegap' I 'interval') -<integer>- ) 

(('gravity' I 'dalllp' I 'time') -<rGal>- ) 

('calculate' [-<parameter>- ((-<oper>- -<real?-) I '?')]) 

( 'cmdlist' [-<com>- ... J 'cend') 

plot command IS ('initialise' -<limits>-) 

I 'slices' I 'displacement' I 'forcGs' I 'standard' I 'page' 

I 'border' I ('map' -<map command>-) I 'endpiot' I ('zoom' -<limits>-) 

map command IS 'picture' I 'horizontal' I 'vertical' 

I 'full' I 'fullnoscales' I ('zoom' -<limits>-) 

debug command IS 'contacts' I 'energy' I 'general' I 'flag son' I 'flagsoff' 

I (('update' I 'motion' I 'consolidate' I 'ford' I 'cycle' 

I 'trace' I 'oscillate') -<reply>-) 

ttpe IS 'f~ee' I '~ra~k' 

geom IS -<real>- -<real>- -<real>- -<real>

geotechnical IS -<real>- -<real>- -<real>-

-<real?- -<real>- -<real?-

-<real>- -<real>- -<real?-

meshinfo IS ('create' -<type>- -<geotechnical>- -<geom>- -<geom>

['create' -<type?- -<geotechnical>- -<geom>- J 
start block IS -<heading>- -<limits>- [-<meshinfo>-J 'meshend' 

Table 3.3 Input Command Language Parsing Definition 

termination. It should be noted that a comment does not act as a word delimiter, · 

only a blank or an end of line fulfils this function. 
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During error handling the same format rules apply, comments may be entered 

but there is little point. Apart from these points the input format is left to the 

user, but it is recommended that the file can be read and understood by the user. 

To illustrate the commands some examples are given. 

plot zoom 0 14 0 slices di§placement bo:rde:r page 

This causes the plotting space to map to new limits, produces a slice plot 

with incremental displacements and border and finally requests a new page. 

set callculate writegap * 2 cakulate writegap ? go 30010 

This example shows how to multiply the present value of writegap by two, 

display the new value and then request 3000 calculation cycles. The second cal

culate is not strictly necessary, but may be used for clarity. 

3.3.3.2 Defining tasks 

Tasks fall into two categories, starting a new problem and restarting an old 

one. Both types of task may be divided into three, initialisation, solution and 

closedown. Initialisation for the two categories is different. 

Starting a new problem calls for input of a title, plot limits, meshing infor

mation and problem parameters. In restarting, plot limits only need be supplied, 

as all the other initialisation took place in the first run, the command restart 

followed by the limits should be adequate. 

After creating the slices and finding the contacts the start up procedure sets 

the plot format to the default of vertical and then produces a slice plot. If a 

horizontal format is required for this first page then plot format lhorizontal 

should be issued prior to the start. Another command to be issued at this point 

is debug update on, otherwise it will do nothing in the current run. 
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Meshing information for a new problem has been discussed in section 3.3.2.8. 

The optimum number of slices is between 10 and 25. Too many, and the overhead 

per cycle increases as does the number of cycles required for a steady state to be 

attained. Too few and the resolution is poor. 

Solution types for start and restart task categories are similar, in the restart 

case the solution type may already be mostly set up, but can be altered. To 

monitor the progressive nature of the solution, plots, factors of safety or debug 

information may be required at various times. 

The interval at which factors of safety are produced is controlled by the 

w:ritegap parameter. This also controls when the total cycles and maximum 

displacement values are updated on the running commentary. This information is 

generated whenever the total cycles executed is an integer multiple of the write

gap parameter. writegap has a default value of 100 cycles, so factors of safety 

are produced every 100 cycles. 

By using set cmdlist plot standard cend interval 100 cmdproc on a 

standard plot of stress profiles is produced every 100 cycles. The interval parameter 

operates in the same way as writegap. 

Having decided upon this solution type all that is necessary to consider is 

the upper limit to the number of cycles to be executed. This should be between 

2000 and 5000 for typical problems. On issuing go 1000, up to 1000 cycles will 

be executed, 10 standard plots and 10 sets of factors of safety produced. An 

equivalent to this command list structure would be to use this repeat structure, 

repeat 10 go 100 plot standard rend. 

The consolidation process converges to constant displacements for all of the 

slices. In the case of constant movement, that is when stability of the slope is 
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not attained, experience has shown the displacements to be 10-1 to 10-4 times 

gl5t 2 • For stable systems the values are about ten orders of magnitude smaller. In 

both cases the early cycles, give the largest contributions, while the later cycles 

make small differences. In the light of this it would be better to generate more 

information in the early stages and less later on. A series of plot, set, and go 

commands could program this but it is more elegant to use the calculator to change 

the values of the intervals. For example to produce plots and factors of safety at 

the powers of 2 cycles this could be used. 

set interval 1 writegap 1 cmdproc on 

cmdlist plot standard set calcl.lllaie interval * 2 writegap * 2 cendl 

As a final note to the command list structure, it is possible to include a 

go command. This is particularly useful for the production of debug information 

during cycling. Much information can be produced, but normally it is only needed 

for a few cycles. A command list string of debug ford on go 1 debug ford 

off with an interval of 100 would produce force displacement information for one 

cycle in every hundred. If instead of 1, 100 was used, then the command list would 

not execute beyond the go before executing again. As this facility is programmed 

recursively, such a combination could eventually lead to a program crash and 

should not be used. The program structure of this facility is explained in section 

3.4.2.3 under Recursion Structures. 

Finally, to complete the command file, program termination must be consid

ered. The program monitors the maximum displacements and terminates under 

constant conditions. If these conditions do no prevail, then termination is accom

plished by the stop command which should always close the task definition. If for 

any reason it is required to halt the program prematurely, the use of the 'break' 

key causes an attention interrupt. This is trapped by the program and the user is 

then asked to confirm his wish to stop. To confirm, enter 'y'. Attention trapping 

is checked at the end of each calculation cycle and also during the input of a new 
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command. Termination involves the automatic production of stress profile plots, 

factors of safety, a restart file and job statistics on the running commentary. 

3.3.3.3 Input error handling 

Inevitably, occasional mistakes are made during production of a command 

file. If these are due to commands being mis-spelled, or even missing, then an 

error handling facility provides an opportunity for correction. 

On encountering a command error, the user is informed via the running com

mentary and is prompted for new commands. Regardless of the level of the com

mand in error, the replacement must be a control command. Once the replacement 

has been executed, the user is again prompted, and the next replacement read. 

When no further commands need to be entered, the user should reply to the 

prompt with the return command. This returns control to the command file at 

the point immediately after the original error. An immediate reply of return to 

an error causes the command to be ignored. 

If a further error occurs during the input of replacement commands, correction 

of it is possible in the same manner as if it had occurred from within the command 

file. If the correction process becomes laborious or impossible the stop command 

will cause program termination immediately. 

Any numerical input required is prompted for by individual messages to the 

user but has no correction facility. Any numbers following a command in error are 

treated as commands on return to the command file. They should be ignored by 

using retur:n. 

Not all mistakes in the command file need be accidental, a deliberate wildcard 

may be included at any stage to give control to the user. This may range from 
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complete interactive use of the program to interaction occurring at the end of a 

repeat structure. Tables 3.4 and 3.5 shows some examples of error correction and 

interactive use. 

~ PROGRAM SLICES RUNNING COMMENTARY ON 

~ Command plot 

~ Command sliceplot 

~ Error 'sliceplot' found in routine get_command 

~ Input corrected commands . . . -<(RETURN>- ... 

Input a command please 

r- plot 

~ Command : plot 

Input a command please 

r- slices 

~ Command : slices 

Input a command please 

r- return 

~ Command : return 

Lines marked ~ are output from the program 

Lines marked r- input from the keyboard 

Table 3.4 An Example of Error Correction 

If an error occurs during the processing of either of the loop structures there 

are two possible options. Either to correct the error each time it occurs or to 

replace the whole structure. During complete replacement it should be borne 

in mind that the rend and cend commands have two functions. To replace a 

command list the following should be issued, set cmdlist commands cend. The 

cend terminates the input to the structure. If replacement is taking place during 

the execution of the previous command list, it is now necessary to terminate this 

invocation by issuing a second cend. 
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Command : ???? 

Error '????' found in routine get_command 

Input corrected commands . . . -<RETURN>- ... 

Input a command please 

go 

Command : go 

Enter no of cycles required ... 

1 

Input a command please 

-t plot 

-t Command : plot 

-t Input a command please ........... . 

~ forces 

-t Command : forces 

Input a command please 

go 

Command : go 

Enter no of cycles required ... 

1 

Input a command please ........... . 

plot 

Command : plot 

Input a command please ........... . 

forces 

Command : forces 

Input a command please ........... . 

slices 

Command : slices 

Input a command please 

stop 

Command : stop 

total slices 10 contacts 

total cyclas 2 restarts 

total frames 6 plots 

Number slices at limit 0 not at limit 

-t A restart file has been aritten 

Lines marked -t are output from the program 

Lines marked ~ input from the keyboard 

Table 3.5 An example of interactive input 

20 

0 

7 

10 

Likewise during the execution of a repeat loop two rend commands are 

needed. Only one rend or cend is needed if these structures are being replaced 
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when they are not being executed. 

3. 3.4 Utility files 

3.3.4.1 Repeat file 

The repeat file is a secondary command file. It it emptied on issue of the 

repeat command, and all subsequent input is copied from the primary command 

source to this file up to and including the command rend. 

During execution of the repeat loop control is passed to this file which is reset 

to the beginning at the start of each pass through the loop. The repeat file has 

an exceedingly simple structure, containing only one word or number on each line. 

This file is temporary in nature and is set internally always to be called '-sass.rep'. 

3.3.4.2 Command list file 

The command list file works on the same basis as the repeat file, it has the 

same structure and is named internally as '-sass.cmd'. It is a secondary command 

file containing the command list commands and control is passed to it on execution 

of the command list facility. It receives all commands from the primary command 

source on issue of set cmdlist up to and including cend. 

3.3.4.3 Restart file 

Unlike all other input and output files the restart file facility uses non-text 

files. As the file must contain all the numbers required for the program to restart, 

the numbers must be stored in a way that exactly represents the full accuracy of 

the computer. The numbers are, therefore, written in a binary format. 
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Furthermore, PASCAL restricts file definitions to be of a single type, that 

is they can only contain one type of record. This complicates the issue, as the 

program variables are of many types - combinations of reals, integers, pointers 

and strings. As described in section 3.4.1, many of the variables are records 

of various types. There is a problem then in writing many record types to a file 

containing only one. To overcome this, the restart file is of type buffer, where buffer 

is defined as an union of all the other record types defined. A single character, 

known as the tag field, and part of the buffer, denotes which sort of record is 

being handled. This enables the buffer record, read in from a restart file, to be 

interpreted to the correct program record type. As the tag is an ASCII character 

within the restart file it is easy to see which lines refer to which variables. The 

various tags are listed in Table 3.6. 

Tag Restart record type 

G the general information 

c a command list word 

r a repeat list word 

F the slice body data 

R the right hand contact data 

B the base contact data 
p the platen data 

a the apex coordinates 

* the end of the restart data 

Table 3.6 The restart file line tags 

One side effect of the buffer type is that all the records in the file are the 

same length, so that the smallest variables take just as much room as the longest, 

which defines the record size. 

A further complication in implementing a restart facility in PASCAL is that 

pointers, which are memory addresses, are no longer valid once read back in. 

As Program CIRCLES and SLICES use pointers extensively, this is a significant 
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complication. On writing a restart file the memory str.ucture may be thought of 

as being dismembered, and on being read in, the severed portions must be linked 

together with pointers in the same order as before. 

3.3.4.4 Trace output file 

This file only need be attached to unit 8 if the debug tracing option is to be 

used. It is emptied prior to use and receives a message on entry and exit to each 

procedure and function. It can, therefore, become very large if used extensively. 

The input and output of data is a slow operation and so the use of this facility 

will slow the rate of problem solution considerably. The primary purpose of this 

is as a debugging tool, particularly of the recursive structures, as it reveals which 

levels of recursion have been attained. 

The file contains one message per line which take the formats of 

'Entered procedure xxxxx' 

' Exited procedure xxxxx' 

In the case of procedure word_scan, the word read from the command source 

is appended to the exit message. The facility is accessed by debug trace on and 

is turned off by debug trace off. 

3.~.4.5 Debug output 

The debug utility file is largely unformatted as it contains information pro

duced mostly in response to instructions from the user. As a set of safety factors 

is automatically generated on shut down, this file will contain the title, the closing 

factor of safety values and the current maximum individual slice displacement, 

even if no output is requested. The information may be divided into three types, 
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that produced during cycling by setting the debug flags, that produced immedi

ately on demand, and that produced periodically and controlled by the wrr'li'tegap 

parameter. 

Output generated periodically is restricted to the factors of safety. The cycle 

number starts a banner showing that the factor of safety, shear, normal, limiting 

and pore-water stress values are produced. However, these values are for the base 

contacts only. If the value of shear stress is zero then the factor of safety is also. 

There follows one line for each slice, containing the values as shown in the first 

entry in the format Table 3.7. The current maximum displacement is produced 

afterwards. 

Output generated during cycling is produced in the iterative solution of the 

motion and force displacement laws, as well as in the controlling procedure cycles. 

Refer to entry 2 in the format table, this produced when the ford flag is set 

and is generated by the procedure fordsl. It provides values for the incremental 

forces (Fn, Fs), geometry of the contact edge (sin, cos, 1), current stresses (ss, ns, 

lims) and current body forces ( nf, sf) during the processing of each contact. 

The motion flag produces the information as shown in the third entry which 

is generated from procedure rnotionsl. The slice body forces in x and y as well as 

the displacements are produced. 

The cycle flag produces the information shown in entries 2, 3 and 4. Entry 4 

is generated from the procedure cycle. 

The following output is generated on demand by the debug commands. The 

update command causes the mass and surface area values to be generated for 

each slice. The format for this is shown in entry 5 of the format table. 
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Entry 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Disti-nct Element Method of §lices 

Format 

999999 Slice no FOS shear normal limit pap 

9 9.999ES99 9.999ES99 (occurs 3 more times) 

Fn,Fs,sin,cos,l 9.99ES99 9.99ES99 (occurs 7 more times) 

ss,ns,lims,nf,sf 9.9ES99 9.9ES99 9.9ES99 9.9ES99 9.9ES99 

bforces 9.99ES99 9.99ES99 

disp 9.99ES99 9.99ES99 

max individual disp 9.9999999999999ES99 

mass,surf 9.9999999999999ES99 9.9999999999999ES99 

BASE Contact created edge, corn 999999 999999 

edge x,y 9.9ES99 9.9ES99 

corn x,y 9.9ES99 9.9ES99 

sin, cos 9.9ES99 9.9ES99 

len, dam 9.9ES99 9.9ES99 

p~p. at 9.9ES99 9.999ES99 

total number of contacts 9999999999 

Element data : 

mass force x y disp x y n 

9.9ES99 9.9ES99 9.9ES99 9.9ES99 9.9ES99 9 

9.9ES99 9.9ES99 9.9ES99 9.9ES99 9.9ES99 9 

Contact information : 

slice home, other, damp 999999 999999 9.9ES99 

corner coordinates x, y 9.9ES99 9.9ES99 

edge coordinates X, y 9.9ES99 9.9ES99 

stresses - n, s, l, u 9.9ES99 9.9ES99 9.9ES99 9.9ES99 

SLOPE 9, c 

mapping xmin 9.9ES99 xmax 9.9ES99 

mapping ymin 9.9ES99 ymax 9.9ES99 

plot interval 999999 

gravity x 9.9ES99 y 9.9ES99 

damping base 9.9ES99 side 9.9ES99 

totals slices 999999 contact 999999 

cycles 999999 restarts 999999 

frames 999999 plots 999999 

Table 3. 7 The debug format table 

Entry 6 shows the contact information which is generated as each contact is 
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made. At the end of the meshing process the total number of contacts is written 

out as shown in the seventh entry. 

Slice information is formatted as shown in the eighth entry, it includes the 

slice mass, body forces and incremental displacements as well as the slice number. 

There is one line of information for each slice. 

The format of the contact informatiom is shown in entry 9 of the format table. 

There are four lines of data for each contact. The first contains the slice numbers 

for the two slices involved, the home slice contains the base of the contact linked 

list in which the contact is to be found, and also the damping factor used in the 

calculation sequence. The second and third lines contain the coordinates for the 

corner and edge involved. The last line contains the stress data, normal, shear, 

limiting and pore water stresses. 

The general information is generated in accordance with the format shown in 

the tenth entry of the table. The general information shows the mapping limits, 

current plot interval set by the interval parameter, the values of the gravity and 

damping, and the numbers of slices, contacts, cycles completed, restarts of the 

task, plot frames and plot types generated. 

3.3.4.6 Oscillation output 

This file need only be attached to the unit 10 if the oscillation facility is to be 

used. This allows for information of track type blocks to be investigated. The file 

is a text file and may be visually inspected, in addition the format is compatible 

with program SOP which can produce graphs of the values. 

The file is emptied prior to use and contains the problem heading on the first 

line followed by one line of data for each cycle during which the facility was in use. 
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This facility is useful for monitoring the progress of critical slices, damping effects 

and contact behaviour. The data items produced are shown below. 

1 slice number 

2 total cycles 

3 body displacement x 

4 body displacement y 

5 base shear stress 

6 base normal stress 

7 base limiting stress 

8 side shear stress 

9 side normal stress 

10 side limiting stress 

3.3.4.7 The running commentary 

The running commentary writes various information concerning the current 

task status to the device attached to unit sprint. As control codes are written 

to this device, it should be a Televideo 910 series terminal. On entering program 

SLICES the terminal screen is cleared. Status information is then written to 

appropriate lines, and in this fashion the screen is continually updated. The 

screen line positions are reserved for the data as shown in Table 3.8. The specific 

messages that can occur on lines 12 to 20 are shown in Table 3.9. 

To clear the screen and turn the cursor on or off requires three separate control 

codes. Screen positioning is achieved by moving the cursor to the home position, 

at the top left hand corner, and then down the appropriate number of lines. The 

total number of codes used is five. They are shown below where the first two 
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Line 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Distinct Element Method of §lices 

Content 

Blank 

The program running commentary heading 

Blank 

The task title 

Blank 

The number of 

The number of 

The number of 

The number of 

Blank 

cycles requested 

plot frames completed 

plot types completed 

cycles completed 

The command under eXQcution 

General messages 

Slices at limit messages 

Error messages 

Message requesting replacement commands 

Prompts to user for command or parameter data 

The totals for cycles, frames and so on 

As line 17 

As line 17 

Messages dealing ~ith the restart files 

Table 3.8 The running commentary screen lines 

characters are shown in hexadecimal format. 

control code lA 

control code lB .0 

control code lE 

control code OA 

control code lB .1 

clears screen 

cursor off 

cursor home 

cursor down 

cursor on 

The program string constants close to the beginning of the source contain 

these codes. clearoff is lAlB.O, pos_str is lE with twenty OA and wrson is lB.l. 

The cursor is moved several lines at once by using a substring of pos_str. 

On MTS the network, NUNET traps all control codes and echoes them on to 

a terminal with a check character. To enable the codes to be executed the network 
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Line 

4 

12 

12 

12 

12 

12 

12 

12 

12 

12 

12 

12 

12 

12 

13 

14 

14 

14 

15 

16 

16 

16 

16 

16 

16 

16 

16 

16 

16 

16 

17 

18 

19 

20 

Distinct Element Method of §Hces 

Message 

PROGRAt-1 SLICES RUNNING COMMENTARY ON : 

Decreasing etability 9.99999999999E99 

Increasing stability 9.99999999999E99 

Stability has been gain0d 9.99999999999E99 

Constant sliding no~ occurring 9.9999999999999E99 

This is numerically unstable 9.9999999999999E99 

A restart file has becan read 

The value is : 99999.9999999 

Frame limit is no~ : 99999999 

Cycle gap is no~ : 99999999 

Gravity is no~ : 999999 

Time incremesnt is : 9.9999999999999E99 

Damping factor is : 9.9999999999999E99 

Process interval is: 99999999 

Number slices at limit 9999 not at limit 9999 

Attn! : Do you ~ant to stop ? 

Error XXXXXXXX found in routines get_command 

Input corrected commands . . . <RETURN> ... 

Input a command please 

Enter xmin, xmax, and ymin .. . 

Enter no of cycles resquired .. . 

Enter heading ............... . 

Enter values ................. . 

Enter frames limit ........... . 

Enter gap between ~riting .... . 

Enter gravity values x, y 

Enter time step increment ... . 

Enter value for damping ..... . 

Enter cmd process interval .. . 

total slices 999999 contacts 

total cycles 999999 restarts 

total framess 999999 plots 

A restart file has been ~ritten 

999999 

999999 

999999 

Table 3.9 Running commentary messages 

must be configured to pass them to the terminal. To do this the network commands 

chc=off and passall=on must be issued. After use the network commands chc=' 

and passall=off should be used to reset this. 
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3.4 §tructure of lPTogram §JLJICE§ 

3.4.1 Memory structure 

The memory requirement of the program varies according to the number of 

slices used in the problem. As memory is dynamically allocated it is possible to use 

only as much memory as necessary. The number of global variables is quite few, 

but some of them, such as slice_list and platen are pointers leading into potentially 

large data structures. 

On entry to the program all variables are initialised to zero, default, and for 

pointers, nil values. The data structure is built in the procedures mesh, cre_platen 

and update_area. Procedure mesh creates the slices, cre_platen creates the platen 

and update_area creates the contacts. 

A slice is defined as a record of type element. This type is a combination of 

smaller records and pointers. force and s (displacement) are records of type vector, 

containing values for the x andy directions. Another record is data which contains 

cohesion, friction, mass and pore water information. The remaining memory of 

type element is made up of three types, a record of two pointers for the contacts, 

a pointer, apexes, to the corner coordinates of the slice, and finally next, a pointer 

to the slice to the right of the current one. The value for the rightmost slice is 

'nil'. 

Variable slice_[ist points to the first (or lefthand) slice. The variable next of 

this slice points to the following one, and so on. The element type records are 

linked by the next pointers to form a list of elements, with the base pointed to by 

slice_list. This list is a FIFO (first in first out) list as the first created element is 

closest to this base pointer. 
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The corner coordinates are contained in a doubly linked ring of type corner 

records. Each of these records includes a coordinate type record of two reals, for 

the x and y values, and two corner pointers. These point to the adjacent corners 

in the clockwise and anticlockwise directions, thus it is possible to traverse the 

ring in either direction continuously. The element record field apexes points to the 

bottom left corner of the slice. 

Once the slice list has been formed, complete with corner rings, the platen 

is created. To simplify contact processing, platen is an element pointer type and 

points to an element which has values set to nil or zero, except for apexes. apexes 

points to a doubly linked ring of corner records where the corners are copies of 

the base corners of the slices. 

Each slice has contact pointers for the right and base contact information. 

The contact information is contained in a record type and consists of six real 

numbers and three further data pointers. Of the six numbers, three are grouped 

to form the consolidation force information and are segregated into a record type. 

Of the pointers, one, other, points to the other slice involved, while the others 

point to the corner, and to the first corner of the edge, which form the contact. 

Figure 3.5 shows a Bachmann diagram of the complete data structure. It 

should be noted that the method of storing corners and contacts is extremely 

flexible and is suitable for a general Rigid Block Model style implementation. The 

Bachmann method of representing data relationships here is more commonly used 

in data-base design. The links between the elements indicate that the elements 

are related, in this case linked by pointers. Crows feet on the end of the links 

indicate that many elements are related to the element at the other end of the 

link. It should be noted that these diagrams are logical representations of the 

data. The side contact to slice relationship is a one to many relationship. This is 
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Slice element 

Platen element 

Platen 

The crows feet indicate the relationship is many to one 

Figure 3.5 Bachmann diagram of SLICES memory items 
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because such a contact is related to two slices. The recursive link which joins an 

element to itself represents a linked list. 

There are many other variables used in the program but they have restricted 

scope. Often these are loop counters, temporary storage and pointers. Some of 

the more common are el, ele, elem as pointers to slices, apex a corner pointer and 

condir a contact pointer. The program structure is often imprinted by the data 

structures. This influence is discussed later in section 3.4.2.4. 

3.4.2 Program structure 

3.4.2.1 Procedural elements 

The structure of the program is necessarily large but may be broken down 

into smaller, similar units. The program itself defines the details of the structure, 

so rather than merely represent this by complex diagrams, aspects of the structure 

and some common structures used shall be discussed. 

Many different sorts of tasks can be performed by the program, and to an 

extent the input command language may be thought of as a language to program 

the tasks. As SLICES is very flexible, much of the large scale structure is con

cerned with parsing the input command language. Brief descriptions of the main 

procedures of the program together with a structural diagram may be found in 

Appendix C. The source code of Program SLICES may be found in Appendix D. 

3.4.2.2 Main relationships 

The main body of SLICES is short and as described contains a repeat control 

forever construct. This is the highest level of control in the program. Proce

dure control executes primary level commands and in doing so may call plots, 
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debug_s[ice, and parameters. These three execute secondary level commands and 

may call procedures ma.p_space and calculator to get and execute tertiary level 

commands. At all levels this is achieved by using the procedure geLcommand 

followed by a case statement. In a similar fashion starLshut uses a case con

struct to execute the four primary level commands that may be passed to it. The 

execution of these involves branching further into the 'tree' structure, to mesh, 

writesestarLfile and so on. 

By the use of commands, the user causes the tree to be traversed, always by 

moving from one level, down to the next and then, eventually by retreating back 

to the starting point, to choose another branch. However, internally, the program 

may occasionally flit from one branch to another. This occurs particularly from 

starLshut when frequent calls to plots are made. 

Essentially the structure is that of a tree with multiple branching at nodes, 

and where higher nodes can only be attained by visiting the node one level lower. 

Entry to this tree is always made at the primary node, the control level. At most 

nodes geLcommand is visited to ascertain which branch to traverse next. Table 

3.10 shows typical simple behaviour of this structure while the commands plot 

map zoom 99 99 99 stop are executed. 

3.4.2.3 Recursion structures 

Under normal conditions this tree is traversed such that the primary node 

is regained by falling back along the traversed branches. Under three conditions 

this does not happen simply. The conditions are during repeat, command list and 

error processing. 

When repeat loop processing is encountered, procedure repeater acts like the 

main body of SLICES, repeatedly jumping to the primary node until the repeat 
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Trace of procedures Comments 

Entered procedure CONTROL The primary node is entered. 

Entered procedure GET-COMMAND plot is retrsived from storage. 

EXIT procedure GET-COMMAND 

Entered procedure PLOTS A secondary node is entered. 

Entered procedure GET _COMHAND There is no stored ~ord so 

EXIT procedure GET-COMMAND map map is read. 

Entered procedure MAP-SPACE A tertiary node is entered. 

Entered procedure GET-COMMAND There is no stored word so a 

EXIT procedure GET-COMMAND zoom fourth level command is read. 

Entered procedure GET-COMMAND After zoom processing there is 

EXIT procedure GET-COMMAND stop no stored aord. The next command 

EXIT procedure MAP-SPACE is read and stored. 

Entered procedure GET _COMMAND stop is retrieved but is not used 

EXIT procedure GEL COMMAND as it belongs to a lower level. 

EXIT procedure PLOTS As a consequence the primary 

EXIT procedure CONTROL node is returned to, exited and 

Entered procedure CONTROL entered from the main program. 

Entered procedure GET-COMMAND stop is retrieved and is then 

EXIT procedure GET _COMMAND executed. 

Entered procedure START-SHUT The run is brought to a close 

Table 3.10 Trace of Program Behaviour During Simple Use 

file has been executed. Strictly the jump is made to the primary node of a second 

identical tree. This process is indirect recursion, as an invocation of procedure 

repeater lies between the two invocations of the procedure control. That is, main 

has called control has called repeater has called control. The second call to control 

is made with a different file device unit buffer to that used originally. The file 

device unit buffer used belongs to the secondary command file -sass.rep so that 

when word_scan (or anywhere else) reads input, it now reads from here. Once 

the repeat facility ends, repeater exits back to the primary node of the 'first' tree. 

The commands of repeat :n. debug general go 1 ren.d illustrates the program 

behaviour. An edited trace taken during the execution of these commands is given 

in Table 3.11 
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Trace of procedures 

Entered procedure CONTROL 

Entered procedure REPEATER 

Entered procedure CONTROL 

Entered procedure GET-COMMAND 

EXIT procedure GET-COMMAND debug 

Entered procedure DEBUG-SLICE 

Entered procedure GET-COMMAND 

EXIT procedure GET-COMMAND general 

Entered procedure GET-COMMAND 

EXIT procedure GET-COMMAND go 

EXIT procedure DEBUG-SLICE 

EXIT procedure CONTROL 

Entered procedure CONTROL 

Entered procedure GET-COMMAND 

EXIT procedure GET-COMMAND 

Entered procedure CYCLES 

EXIT procedure CYCLES 

EXIT procedure CONTROL 

Entered procedure CONTROL 

Entered procedure GET-COMMAND 

EXIT procedure GET-COMMAND rend 

EXIT procedure CONTROL 

EXIT procedure REPEATER 

EXIT procedure CONTROL 

Entered procedure CONTROL 

Entered procedure GET_COMMAND 

EXIT procedure GET_COMMAND stop 

Entered procedure START_SHUT 

lDistinct Element Metlh.odl of §lices 

Comments 

The primary node is entered. 

After reading the repeat string 

this calls control recursively. 

This noa reads from the repeat 

file the command debug. 

The general command is processed. 

As go is not a debug command 

this routine is left. 

Repeater calls control again. 

go is retrieved from storage. 

One cycle is executed. 

Repeater calls control again. 

The command rend is read which 

terminates the repeat loop after 

exit from control. 

Repeat also exits and normal 

processing contiues with 

a normal invocation of control. 

The stop command causes the 

execution to complete. 

Table 3.11 Program behaviour during Repeat processing 

During command list processing exactly the same thing occurs, this time 

control is repeatedly called from cycle with the file device unit buffer belonging to 

the file -sass.cmd. 

Error correction is more complex. Consider the following. A node has been 

reached at any level within the tree. Procedure geLcommand is called and an error 

is encountered. So, geL command is called again (direct recursion), word_scan is 
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executed to obtain a command from the user and, if the replacement is in error 

then this sequence is repeated until a valid replacement is found. At present, 

program control is in the third invocation of get-command, that is the third level 

of recursion, a stack of invocations is produced until a valid command is entered. 

If the command entered is return then get-command is exited three times and 

the calling node reached and exited with program control being passed back to 

the primary node. If the command is not return then get-command exits once, 

procedure cont1'0l is called repeatedly and the trees traversed until return is input. 

Procedure control, in this case, is called with the screen file device unit buffer 

pointer. This recursive invocation of control calls geLcommand (the fourth entry), 

a command is gained, get-command exited and the tree traversed. If an error were 

to be encountered from the user at this point exactly the same thing would happen 

as before, geLcommand would call itself directly until a valid command was gained 

then control would be called again (the third level of recursion for controQ and the 

tree traversed normally. In this example an error does occur but return is entered 

immediately. In this case program control falls back to the primary node of the 

present recursion level, control exits to the previous recursion level, geLcommand 

exits three times in this case, (input now reverts to the primary command file), the 

tree is traversed back to control, control exits back to the main body of SLICES 

which then calls control as normal. Table 3.12 shows a trace of this scenario as 

produced by the commands p!ot ???? within a file and ploterr plot ploterr 

return input interactively. 

Combinations of the three recursion possibilities may occur. For example a 

repeat go 1000 rend structure causes the execution of cycles, which, in turn 

executes a command list. This command list is found to be in error and the user 

inputs plot s!iceplot so that processing may continue. In this combination the 

repeat invokes control, cycle invokes control, geLcommand invokes control, then 

plot and sliceplot are executed at this third level of recursion. return is then 
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Trace of procedures 

Entered procedure CONTROL 

Entered procedure PLOTS 

Entered procedure GET-CDI'lHAND 

Entered procedure GET _com-lAND 

Entered procedure GET _COMMAND 

EXIT procedure GET _COMMAND 

Entered procedure CONTROL 

Entered procedure GET-COMMAND 

EXIT procedure GET _COf.UiAND 

Entered procedure PLOTS 

Entered procedure GET-COMMAND 

Entered procedure GET-COMMAND 

EXIT procedure GET _COMMAND 

EXIT procedure GET _COMMAND 

EXIT procedure PLOTS 

EXIT procedure CONTROL 

Entered procedure GET_COMMAND 

EXIT procedure GET_COMMAND 

EXIT procedure GET-COMMAND 

EXIT procedure GET_COMMAND 

EXIT procedure PLOTS 

EXIT procedure CONTROL 

Entered procedure CONTROL 

plot 

return 

return 

Jl)li§tinct Element Method of §lices 

Comments 

The primary node is entered. 

An error occurs in plotting 

Hhen ???? is encountered. 

A further error ploterr causes 

a second level recursive call. 

A correct command of plot gives 

a recursive call to control. 

The command plot is retrieved 

and plots entered recursively. 

A further error occurs and 

return is read. 

This causes all a return to 

to the primary node. 

The recursive call to control 

was from get-command Hhich is 

returned to. The return command 

is retreived and the three 

invocations of get_cornrnand are 

exited. 

The initial call to plot and 

then to control are exited. 

Normal execution continues. 

Table 3.12 Program behaviour during error processing; 

input and program control falls back to cycle, ready to carry on processing the 

command list. 

3.4.2.4 Structure that maps structured variables 

There are three structures that map the structure of the memory. One, which 

1s used extensively causes the slice list to be traversed. Another, often used in 

conjunction with the first enables both the base and side contacts to be reached 

and the third allows the corner rings to be traversed. 
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To traverse the slice list a separate procedure is written containing a while 

loop controlled by a pointer such as el. This pointer, a parameter to the proce

dure is seeded by the base or anchor of the list by the calling procedure. The 

while loop is constructed as follows. while el ,= NIL do begin ... el := el@.next; 

end;. The loop will continue until el becomes NIL, which will occur at the end 

of the list. Most procedures with headers of the form procedure procname(el : 

ptr_type ); use this construct to traverse the slice list. These procedures are 

factors_of_safety, disp_plot, slice_plot, force_profile, fordsl, fconsolsl, update_area, 

cre_platen, write_r_e[, write_con, and write_sli. 

To look at the two contacts of each slice a for loop is used as follows 

for contdir := righthand to based do begin 

case contdir of 

righthand : condir : = el@. contacts. right; 

based : condir : = el@. contacts. base; 

end; 

writeln{ condir@. consol. ns); 

end; 

The case statement causes the right or base contact pointer to be placed in 

the variable condir (contact direction), a pointer. This may then be used to access 

the contact information. The righthand contact is processed first and then on the 

second pass of the for loop the base contact is used. This construct is used in the 

procedure fordsl. In force_profile a local function ptrd_fm uses the case construct 

to return the contact pointer. 

Corner rings are traversed in the procedures cre_slices, slice_plot, write_r_el 

and update_area. In the first three the corners of a slice are traversed once, by 

using a repeat until loop as follows 
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apex := el@.apexes; 

repeat 

apex : = apex@. cw; 

until apex = apexes; 

Di§tlind ERemel!ll.t Method!. of §lice§ 

In update_area the corners of the platen are traversed in forming the slice 

base contacts. The termination of the slice list traverse is used to terminate the 

traverse of the platen corners. The corners are inspected once only with each shift 

caused by platapex := platapex@.cw;. 

3.5 Valiidation 

3. 5.1 Introduction 

The aim of the following discussion is to show that Program SLICES is capable 

of predicting the factor of safety and the mechanism of failure of soil slopes. The 

validation has not been exhaustive nor is it intended that program SLICES is 

used as if the results are guaranteed correct. Furthermore this discussion does 

not include all the program testing carried out to prevent program failure during 

normal operation. Rather, these discussions are meant to show that· this technique 

is viable when applied to problems in soil mechanics and that the results are 

comparable with traditional methods. 

3.5.2 Validation Methods 

To gauge the viability of this method three soil slope geometries were used. 

Each was tested under total and effective stress conditions. These problems were 

analysed by program FOS of Garrard (1984) and by SLICES. 
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Program FOS, (Factor of Safety), provides a slope stability analysis by a 

traditional method of slices. Factors of safety according to the Janbu, Fellenius 

and Bishop formulae are produced as well as an average. Slice geometry and soil 

parameters of cohesion, friction and density are required. In this respect program 

FOS was modified slightly from the source so that the slice density was input 

directly for each slice. This alteration was necessary to ensure that exactly the 

same situations were analysed by both programs. As with all traditional limiting 

equilibrium methods this program will under estimate the factor of safety for those 

slopes where some or all of the slices are submerged by the water table. 

For comparison purposes the average factor of safety has been taken as the 

best guide to the stability of the slopes. Program SLICES does not produce an 

overall factor of safety, so the FOS results are quoted in the unusual manner of 

the values for cohesion and friction which gave a factor of 1. 

In determining the stability with program SLICES an iterative method was 

adopted. Estimates for cohesion and friction, normally taken from the FOS analy

ses where used as initial values and SLICES used to determine if the configuration 

was stable. The parameters were then adjusted to bring the slope configuration 

closer to limiting equilibrium and SLICES used once more. This was repeated 

until the configuration was just stable. In practice a binary split method was used 

to reduce the number of runs, which was normally in the region of eight. It was 

therefore possible to standardise the results on the runs that indicated that the 

configuration was just unstable. For SLICE results friction is quoted to the nearest 

half degree and cohesion to the nearest kN jm 2 . 

Tests were carried out on the following combinations of parameters for each 

of the test slopes. 

Total stress conditions with variable ¢. 

Total stress conditions with variable cohesion. 
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Effective stress conditions with variable ¢. 

Effective stress conditions with constant cohesion variable ¢. 

Effective stress conditions non-linear critical cohesion and variable ¢. 

Here the variable parameter is the one operated on by the binary split method. 

The failure circles correspond to the three main types of arc failures, steep (a > 0), 

horizontal (a= 0) and deep (a < 0). 

3.5.3 Discussion of results 

Results for Method of slices 

Total Stress Effective stress Non-linear 

Slope Type ¢ Cr c Cr ¢ Cr C=20,¢ Cr C=20,¢ Cr 

Slope 1 SLICES 20.5 0 24 1 25/26 0 4/4 1 20 1 

(deep) FOS 25 0 23 0 27 0 10 0 

FOS Cr 31 1 10 1 

Slope 2 SLICES 31 0 36 3 46/46 0 21/22 211* 37 211* 

(horiz.) FOS 32 0 29 0 48 0 28 0 

FOS Cr 41 3 28 1 

Slope 3 SLICES 48 0 39 3 65.5/69 0 41.5/44 1 20/56 1 

(steep) FOS 48 0 24 0 69 0 49j 0 

FOS Cr 40 3 44j 1 

Notes : 

* most convincing alternate 

I alternates produced by increasing the damping 

I alternative tension cracks to the right of the slices quoted 

j indicates result for Janbu input factor of safety 1.13 is quoted 

¢ is in degrees C is in kJVjr.n2 

Table 3.13 Table of Results for Program SLICES 

The program results for the test conditions are summarised in Table 3.13. For 

each slope there are three lines of data. The SLICE result, the FOS result and a 

FOS result for a modified slope taking in to account any predicted tension crack 
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from the SLICES result. The tension cracks are applicable to cohesive conditions 

only. The stress profiles and geometries generated by SLICES are given in Figures 

3.6 through 3.20, and the program input may also be found in Tables 3.14 through 

3.25. Due to the quantity of output, only the geometry and final profile plots are 

provided for slopes 2 and 3, as the principal features are illustrated adequately by 

the slope 1 results which are given complete. The figures and tables are contained 

in Appendix B. The tables are placed before the corresponding SLICE output. 

The non-linear command files are not shown as they are the same as the c-¢ 

effective stress examples. 

3.5.3.1 Results involving total stress conditions 

Column one of Table 3.13 shows the results obtained for total stress conditions 

with zero cohesion. The¢ values required to stabilise the slopes are quoted. They 

are as expected, increasing with a. The only significant discrepancy is for the 

deep slope where FOS predicts an higher ¢ for safety than SLICES. It should 

be noted that these total stress conditions are not realistic, but were included 

in the validation for comparison and to see how SLICES behaved throughout the 

parameter spectrum. The second column headed 'Cr' shows that no tension cracks 

are predicted. 

In column three the behaviour under purely cohesive conditions was investi

gated. A single result for SLICES was obtained in each slope case together with 

a prediction of a vertical tension crack forming near to the top of the slopes. Two 

results for FOS are quoted, the upper for the whole slope and the lower for the 

slope below the tension crack as predicted by SLICES. The assumptions in the 

second case being that the soil above the crack plays no part in the behaviour of 

the main body and hence that the crack penetrates to the failure arc. In all cases 

FOS predicts a much higher cohesion for slopes with a tension crack. Generally 

SLICE results do not correspond well with FOS analyses of the intact slopes. An 
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exception to this is the deep slope where the crack occurs high up on the slope. 

Conversely on comparison with the FOS results for the cracked slopes the best 

correlation is at the other end of the slope spectrum, that is the steep slope. 

It is worthwhile considering why discrepancies occur. The tension crack is 

determined by the resolution of the slices, this sometimes leads to two adjacent 

vertical slice contacts being in tension, indicating a crack in between them, or 

perhaps a tension zone. Both cases are difficult to convert to FOS problems with 

certainty. This problem is particularly relevant in considering the effective c-1> 

results where difficulty was encountered in deciding which contact to choose as 

the tension crack. 

The definition of tension cracks is clearest under conditions of high cohesion 

and steep slopes, which appeals to the rationale. For a well defined tension crack 

the FOS result for the cracked slope corresponds well to the SLICE result, but 

for a badly defined crack the integral FOS analysis is close to SLICES. As may 

be expected these circumstances are found for the steep slope and the deep slope 

respectively. 

3.5.3.2 Results involving effective stress conditions 

The first column of effective stress results of Table 3.13 contains the results 

for the effective frictional conditions. Unlike the total stress equivalent this is a 

real possibility in the field. 

The results correspond well between the two methods, broadly FOS indicates 

that a higher 1> is required for stability, but this may correspond to the under 

estimation of the factor of safety under effective conditions by traditional methods. 

The two values of 1> quoted for SLICES are for two damping values. The similarity 
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of these indicates that as long as numerical stability is maintained the results do 

not differ largely with the dam ping factor. 

The effective c-¢ results are in the third column for this set. In all cases 

the cohesion was fixed at 20kNjm2 and again two damping values were used and 

hence two similar results are given for SLICES. The FOS values are considerably 

higher than for SLICES, although it should be noted that tension crack definition 

was uncertain in the horizontal slope case and that the FOS result for the Janbu 

1.13 case is broadly in agreement with SLICES. It should also be remembered that 

effective conditions with submerged slices causes problems for the FOS methods. 

Finally, the last two columns of results refer to the 'non-linear' analysis of 

SLICES. Critical cohesion is applied in this case, that is on contact failure the 

cohesion is set to zero. The initial value for cohesion is again 20kN jm2 . There 

can be no comparison with FOS as non-linear parameters are not permitted. 

However, this set of results should be between the effective c = 0 and c-¢ SLICE 

results. In each case this is true. 

3.5.3.3 Conclusions 

Overall the results from SLICES compare favourably with traditional meth

ods. Initially the results from cohesive conditions caused concern until it was 

realised that SLICES can predict a tension crack. However, it is not always pos

sible to precisely define the position and some discrepancies are inevitable. For 

cohesive conditions, high a slopes provide the most similar results. Friction is 

underestimated by SLICES relative to FOS. It has not been the intention of this 

discussion to show that these methods produce identical results, it would benefit 

no one if they did, furthermore the non-linear analysis indicates that SLICES can 

provide a facility not available in traditional methods. 
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3. 5.4 Interpretation of SLICE output 

The interpretations of the results discussed in the previous section were based 

upon two principal features. Firstly, the factor of safety lists for each slice base 

contact printed at the close of the run. Then, secondly, the stress profiles drawn 

at intervals throughout the run. The end of the analysis was determined by con

vergence of the maximum cycle displacement displayed as part of the running 

commentary, and by the number of slices at limiting friction. It is possible to 

terminate the run early by observing this latter number as, when all slices have 

reached this limit the slope has failed. Under conditions where a tension crack is 

formed, the uppermost slices will not reach the limit so notice is taken of the max

imum displacement. When this value is almost constant the run may be halted. 

A safe slope will have at least the toe slice with a factor of safety greater than 

unity. The safety of the slope increases with this value and with the number of 

slices which are safe. 

Tension cracks are observed by large 'V's' in the side contact stress profiles 

where the stress is negative for a single contact and by safe factors for slices at 

the top of the slope. 

It may be noted from the results that the stress profiles gradually build up 

during the analysis, converging on final values. Typically a steep slope shows the 

following behaviour. The top slices are glued by cohesion to platen and never fail, 

below this the large slices, due to their weight build the largest normal and shear 

stresses, which are passed down the slope by a 'knock on' effect. This is seen 

by factors of safety for the slices decreasing with time for slices near to the toe, 

until the toe slice factor reaches one. This implies a stress distribution largely, 

although not wholely, related to the weight distribution of slices. This also implies 

deformations occurring first in the bulk of the slope, rather than at the toe. 
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This is not what would be expected in reality, however as discussed previously, 

the results provided by SLICES are too close to the traditional methods without 

dismissing both techniques. 

It would seem that SLICES essentially models a set of blocks on a curved 

surface. To overcome this the contact laws need further modification to more 

nearly model soil failure rather than contact failure. The constraints of time upon 

this project coupled with the SLICES development time has prevented further 

analysis of this slice technique. 
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CHAJP'1I.'ER 4 

])JI§TJINCT ElLEMENT METHOD OF C][RCJLE§ 

4.1 The Concept 

4.1.1 Circles as Areas of Influence 

Program SLICES attempts to model soil slopes by dividing it into slices 

and using these as discrete elements. As has been seen this analysis still es

sentially deals with physical elements, the soil slices. Program CIRCLES differs 

from SLICES fundamentally, not solely in a different geometrical element, but by 

considering the circles, not as physical soil elements but as areas of influence of 

calculation points. This abstraction is a long way from Cundall's BALL program 

which has largely been used to model the behaviour of sand particles, as discussed 

previously in the first Chapter. 

A further fundamental difference is that CIRCLES does not require a prede

termined failure arc. The principle is that if the slope is unsafe, the failure arc or 

slip zone will be generated during the analysis. The program input is similar to 

SLICES excepting the meshing of the circles where several additional commands 

are needed. 

An area of influence may be defined as a circular area around a calculation 

point with the physical attributes of radius, mass, friction and cohesion. A contact 

exists with another circle if the circumferences interfere, that is touch or overlap. 

As the circles are areas of influence and not physical representations a large overlap 
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at the start of modelling does not give an initial separating force. The centre of 

the circular area of influence is taken as the centre of gravity. 

4.1.2 Contacts in detail 

All potential contacts are considered for storage. A potential contact occurs 

when the centres of two circles are less than the sum of the radii plus the contact 

resolution apart. The contact resolution is an arbitrary tolerance of 1.05 times the 

maximum circle radius. The maximum circle radius is the radius of the largest 

circle in the problem mesh. Another arbitrary tolerance, the contact limit is half 

the maximum circle radius and is used in a similar fashion to the contact resolution, 

but this time to distinguish between contacts to be stored and those to be deleted. 

These tolerances allow potential contacts to be stored in case movement causes 

a real contact to be formed later. This is further explained in the section on 

updating of contacts, section 4.2.2.2. 

The contact point need not be defined as no rotational forces are considered 

and all x and y quantities are resolved from the line between the centres. As 

CIRCLES has been written to incorporate traditional Distinct Element Analysis 

and consolidation methods, full housekeeping, force displacement law and motion 

law routines have been included. The housekeeping routines require that a stored 

contact be found and deleted if the contact gap is greater than the contact limit 

but ·less that contact resolution. A further restriction upon a contact is that a 

small separation of the contact is allowed in the form of a tensile 'fuzz' to help 

damp transient jumps in the traditional Distinct Element Analysis formulation. 

Beyond this limit the contact is deemed to have failed in tension. The detail of a 

contact is shown in Figure 4.1. 
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Positive gap - Tensile contact 

Negative gap - Compressive contact 

Figure 4.1 Contact definition in program CIRCLES 

103 



Chapter 4 Distilllct EAement Method of Circles 

4.1.3 The Distinct Element Analysis formulation for CIRCLES 

The Distinct Element Analysis formulation employed may be conveniently 

considered in two parts, the consolidation formulation and the traditional Distinct 

Element Analysis formulation found in sections 4.1.3.1 and 4.1.3.2 respectively. 

Currently forces are converted to stresses very crudely by dividing by the 

circle radius. As the initial overlap may vary largely, the contact chord formed by 

the intersection of the circles was deemed unsuitable as a contact surface. There 

being no other readily available method the current method was employed. Here 

large circles will have smaller stresses than small ones for the same overlap. 

Presently pore water pressure is not accommodated due to the constraints 

of time. Further work should include this enhancement. The failure criterion for 

the contact is based upon the Mohr construction shown in Figure 4.2. Here the 

lesser stress of ax and ay is taken as a3 and the greater as a1. The failure a1 

is calculated from o-3 , c and tan ¢ as shown in equations ( 1) through ( 4). If this 

value is greater than a 1 then the contact has not failed. If a failure has occurred 

the appropriate contact force is limited to the equivalent force of the failure a 1 . 

(1) 

(2) 

(3) 

(4) 

1 +tan¢- yf1 + tan 2 ¢ 
q = -----..:~=~= 

tan¢- 1 + V1 + tan2 ¢ 

(jn = 
a3 + q XC 

1- q x tan¢ 

T =tan¢ X an+ c 

a1 = 2 X (an + T X tan¢) - a3 
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Figure 4.2 The Mohr construction 
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4.1.3.1 Consolidation formulation 

The force displacement law for the consolidation formulation is executed for 

each contact every calculation cycle. It has four parts to determine the contact 

movement, the contact force, the limiting stress at failure, and the body force to 

be added to the circles in preparation for the motion law. 

The distances before movement are calculated first in equations (5) and (6). 

(5) 

(6) 

where the numeric prefices indicate different circles. The radial distance between 

the centres is given by 

(7) 

The angle f3 that this line makes with the x axis gives sin f3 = Dy /Dr and cos f3 = 
Dx/Dr. 

The movements, M are then calculated from the displacements S. 

(8) 

(9) 

The current radial distance is given by 

(10) 
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Equation (11) gives the change in the gap between the circles from the initial 

meshing positions. G0 is the original offset, it is the sum of the two radii if the 

circles just touched originally and less than this if they overlapped. 

(11) t6.G = Gr- Go 

It should noted at this point that /:1G will lead to the increment of consoli

dation force applicable from this calculation cycle. This complicates the decision 

regarding whether a contact is tensile, as this cannot be deduced from a tensile 

increment alone. This problem is overcome by keeping a total of fiG. When this 

total is positive the contact is tensile. 

(12) 

The contact forces are calculated by adding the increments to the consolida

tion forces already accumulated. 

(13) Frc = n-l Crc + /:1G X d X COS {3 

(14) Fy = n-lcy + 6.G X d X sin{J 

If nGsum > c the contact has failed in tension by exceeding the cohesion and 

the contact forces are set to zero, Frc = Fy = 0. This completes the force displace

ment law for a tensile contact. The rest of the law is executed for compressive 

contacts, that is those where nG sum < 0. 

The contact forces are converted to stresses by CTrc = JFrc/rl and CTy = JFy/rl 

where r is the circle radius. The contact stresses are now examined for failure by 

calculating the failure CT1 consistent with the soil parameters and the CT3 given by 
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the lesser of the x and y contact stresses. This procedure is described above. If 

the contact has failed the stresses are modified by this procedure so that they are 

limited by the soil strength, otherwise they are unchanged. The contact stresses 

are converted to forces by multiplying by the circle radius. The signs of the original 

forces are retained by the modified ones. The new forces are then summed to the 

body forces of the circles involved and replace the consolidation forces. 

(15) 

(16) 

(17) 

(18) 

n+lc - F :c - ;c 

n+lc - F y- y 

The motion law, which is executed for all free circles involves the calculation 

of the new displacements. 

(19) n+ls _ (Forcex ) 
:c - + 9::c m 

(20) n+ls _ (Forcey ) £ 2 
y- + 9y X ut 

1n 

Finally the body forces are reset to zero, Force:c = Forcey = 0. 

4.1.3.2 The traditional Distinct Element Analysis formulation 

The force displacement law consists of determining the movement on the 

contacts and converting this to a contact force. The movement on the contact is 

given by equations (21) to (24). 

(21) 
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(22) 

where the numeric prefi.ces indicate different circles and the n indicates the nth 

cycle. 

The radial distance between the centres is given by 

(23) 

The angle (3 that this line makes with the horizontal gives sin (3 = Gy/Gr and 

cosf3 = G'J)/Gr. Equation (24) gives the the change in the gap between the circles 

from the initial meshing positions. 

(24) D.G = G,.- Go 

Having found the movement it is now possible to calculate the contact forces. 

(25) Fr = k X b.G X d 

(26) F'J) = c'J) + Fr X cos(3 

(27) Fy = Cy + Fr X sin f3 

If the contact is tensile, that is, the equivalent gap between the circles is now 

positive and greater than a small tensile fuzz used to damp transient movements, 

then the contact has failed in tension and the contact forces are set to zero, F'J) = 

Fy = 0. If the contact is deemed to be compressive then the forces are converted 

to stresses by o-'J) = IF'J)/rl and o-y = IFy/rl where r is the circle radius. 
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The contact stresses are examined for failure using the same method as the 

consolidation formulation. The new forces are then summed to the body forces of 

the circles involved. 

(28) 

(29) cF orcey = c-1 F orcey + Fy 

The motion law, which is executed for all free circles involves the calculation 

of the acceleration, velocity and displacement. 

(30) 

(31) 

(32) 

The equivalent equations for y have been ommitted for clarity. Finally the body 

forces are reset to zero, Forcerc = Forcey = 0. 

4.2 Implementation 

4.2.1 The Program Memory Structure 

A program memory schema is shown in Figure 4.3. This is intended to show 

how the graphical problem area is mapped in memory. The grid of squares is linked 

by pointers allowing a traverse in any direction and sequentially from SW to NE. 

The area at the top of the figure is the re_area_list and is used for those circles 

that move between areas in the traditional method. These circles are temporarily 

placed in this area and are placed into the correct areas just prior to a contact 
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Figure 4.3 An high level view of the memory structure 
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update. A separate area, spare_area is provided for those circles that move out 

of the problem area altogether. These circles are then effectively hidden for ever. 

A Bachmann diagram showing the relationships between the areas, circles and 

contacts is shown in Figure 4.4. 

Each area has five pointers leading to the adjacent areas to the North, East, 

South, West and to the next sequential area. The next sequential area is the same 

as the area to the north except at the northern edge of the problem domain where 

it is the southernmost area of the adjacent eastern column. The pointers at the 

problem edge have NIL values. Diagonal pointers are not required as these areas 

may be accessed by shifting north and then east for example. 

Each grid area has various regulating variables associated with it and two 

pointers to the circle elements. One points to the free list, that is a list of those 

circles able to move, and the other to the fixed list containing circles forming fixed 

boundaries for the problem. 

The free and fixed lists are made up of the circle elements which contain three 

pointers, one to the next element in the list, one to the parameter data block of 

its type and one to the list of contacts belonging to the element. The contact list 

contains a pointer to the other circle involved and a pointer to the next contact 

for the current element. 

Of the global variables in the program the pointers sal, re_area_list and sdl 

are the most important and are discussed below. 

sal points to the start of the area element list, that is to the extreme south 

west area, and is the entry point to the main memory structure. 
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Figure 4.4 A Bachmann diagram of the program memory elements 
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re_area_list points to the beginning of a list of circles, that, due to movement, 

have changed position from one area to another. These circles are stored in a 

separate list until a convenient break in processing and are then placed into the 

correct areas before a contact update. 

sdl points to the start of the parameter data block list. There is one element 

in this list for each soil type in the problem. The element contains the physical 

and geotechnical data for the soil type as well as a pointer to the next element in 

the list. This arrangement allows the information for a particular circle type to be 

held in common rather than for each circle individually. Hence the circle element 

need only point to the relevant element in this data list. 

4.2.2 Program structure 

Functionally the program elements of CIRCLES and SLICES are similar, 

therefore, it is not intended to describe in detail the procedural elements of CIR

CLES. The input and output routines and the error correction methodology are 

the same. Plotting, cycling, restart, parameter setting, repeat and command pro

cessing are similar in both programs. The essential differences are caused by the 

memory structure mapping the grid areas of the problem space and the contact 

updating required by the break and make of contacts permitted by the tradi

tional Distinct Element Analysis implementation. These differences are discussed 

in the following sections. The source code for program CIRCLES may be found 

in Appendix E. 

4.2.2.1 Program structure that maps the memory 

The main addition to the complexity of the program structure as compared 

with SLICES is due to the extra effort required to traverse the element lists. To 

access all of the circle elements the current area pointer is set to sal, the start of 

114 



Chaptell" 4 Dnstlinct Element Method of Circles 

the area list, that is the most south westerly area. The fixed list pointer of this 

area makes the first circle contained here available. The fixed list can be traversed 

in the normal fashion by obtaining the next element from the next pointer. The 

end of the list is reached when this next element pointer is NIL. The free list is 

then traversed in this same fashion. When all of the circle elements for the area 

have been visited, the next area is obtained by updating the current area pointer 

with the value of the nexLarea pointer. The elements of this area can then be 

visited. Each area is traversed sequentially until the nexLarea pointer has a value 

of NIL, that is, after processing the re_area_list. 

All of this processing is contained in a single procedure do_this which is called 

with the parameters of proc_name, curr_area, single and lists. This allows ei

ther the free, fixed or both element lists to be traversed for either a single or all 

areas. For all circles control is transferred to the procedure passed as the param

eter proc_name to do_this. This technique allows each function requiring a circle 

traverse to have the algorithm coding replaced by a simple statement such as 

do_this(motion, sal, all, both); 

which will cause the procedure motion to be executed for all elements. 

To traverse the contact list associated with a circle element the simple con

struction shown below is used. The beginning of the contact list is found from the 

con_list pointer which is part of the circle memory element. 

con_ptr := el@. con_list; 

while con_ptr not = NIL do 

begin 

con_ptr := con_ptr@.nexLcon; 

end; 
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4.2.2.2 The updating of contacts 

In SLICES the basic geometrical relationships between the components could 

never change. The same set of contacts were sufficient to describe the system 

throughout the analysis. Not so with CIRCLES. Under traditional Distinct Ele

ment Analysis large scale movements need to be accommodated, together with the 

associated make and break of contacts during the analysis. Therefore, it is impor

tant that potential contacts are located in advance of the immediate requirement, 

old ones updated in the contact lists and new ones added efficiently. These are 

currently achieved by the following method. 

A complete circle traverse is carried out as described above with both the fixed 

and free lists examined for each area sequentially. Each circle element, the 'home' 

element, is checked for contact with the circles occurring later in the free list for 

the area. It is not necessary to check for contact with circles occurring in the free 

list before the 'home' circle as any contact will already have been found. Likewise 

when the 'home' circle is a free type it is not necessary to check for contact with 

any circle which is in the fixed list of the current area. 

Once.the free list for the area has been checked and the 'home' circle is not 

near to the edge of the area, the next circle in the free list is taken as 'home' and 

the search for its contacts can begin. However, if the circle is close to the edge 

of the area, the northern, north eastern, eastern and south eastern areas in turn 

have both the free and fixed lists checked for contact with the 'home' circle. It 

should be noted that the areas in the southern, south western, western, and north 

western areas need not be examined as they occur sequentially before the current 

area, so that any contact will already have been found. 

If, during the scan for contacts outlined above, a contact is found, it must be 

seen if the contact is already recorded. To do this the contact list for the 'home' 

11() 



Chapter 4 Di§tinct Element Method of Cirde§ 

circle is traversed until either the contact or the end of the list is located. If the 

contact is not found in this list the contact list for the other circle is also traversed. 

If an old contact is located and the distance between the circle circumferences is 

less than the contact limit, nothing more is done. However if this distance is 

greater than this limit, the contact is destroyed, that is, removed from the contact 

list. A contact that is not found in either of the contact lists and the distance 

apart is less than the contact limit then a new contact is created in the 'home' 

circle contact list. 

To summarise, each free circle acts as the 'home' element and each free circle 

later in the area and, if necessary, all circles in certain neighbouring areas are 

investigated for contact with it. If there is a possible contact both contact lists 

are scanned and housekeeping is performed. 

Two main factors govern the efficiency of this algorithm. Clearly efficiency is 

increased when most circles are not near an area edge, which can be achieved by 

having areas large in comparison with the size of the circles. The reason for this is 

that more circles are only compared with circles from the same area. Efficiency is 

also increased for large number of circles by restricting the number of circles per 

area by increasing the number of areas. It should be noted that large numbers of 

areas will add an overhead to the circle access as all areas are looked at by the 

routine do_this. These two apparently conflicting factors need to be balanced to 

gain the optimum efficiency for any given problem. 

4.2.3 Input command language 

4.2.3.1 Introduction 

All program tasks are controlled or defined by the Input Command Language. 

As shall be explained later the program requires some commands in a particular 
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order, but on the whole the majority of commands may be used at any time. 

Although the program is not designed to run interactively, it is possible with care. 

Normally, however, the commands should be contained in a file prior to use. 

The commands may be categorised into broad sections, dealing with program 

control, plotting, meshing, debugging, and the setting of options and parameters. 

These correspond to the major procedures of the program. The commands are 

hierarchial, forming a tree system and follow the same rules as for SLICES. 

The following sections, 4.2.3.2 to 4.2.3.8 describe the functions of the com

mands of each set. The symbols used in the syntax definition ofthe input command 

language is shown in Table 4.1 with the definition in Table 4.2. 

Symbol Definition 

... indicates possibla repetition of the clause 
[ ] indicates an optional clause 
( ) indicates a group of clauses 

-< :>- indicates substitution by a value, ~hich 

may be either a clause or literal 
c ' indicates a literal value 

I indicates an alternative 

IS is the definition operator 

Table 4.1 Input Command Language Parsing Symbols 

4.2.3.2 Control commands 

The control commands form the outermost command set, all other commands 

are accessed through this set. 

The set command enters the parameter procedure to allow parameters to be 

set up, altered or inspected. 
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task IS [-<com>- ... ] 'stop' 

correction IS [-<com>- ... ]('return' !'stop') 

limits IS -<real>- -<real>- -<real>-

boxes IS -<integer>- -<integer>-

reply IS 'on' I 'off' 

com IS ('start' -<start block>-) I ('restart' -<limits>-) 

('plot' [-<plot command>- ... ] ) I ('set' [-<set command>- ... ] ) 

('debug' [-<debug command>- ... ]) I ('go' -<integer>-) 

'save' , 'cend' I 'rend' I 'settle 1 I 'collapse 1 

('repeat' -<integer>- [-<com>- ... ] 'rend') 

parameter IS 'framelimit' I 'writegap' I 'interval' I 'gravity'! 'time' 

property IS 'damp' I 'mass' I 'cohesion' I 'friction' 

I 'density' I 'radius' I 'stiffness' 

datanumber IS -<integer>-

oper IS '* ' I '+ ' I ' - ' I '/ ' I ' 1\ ' I ' = ' 
set command IS (('echo' I 'echodebug' I 'cmdproc' I 'overwrite') -<reply>-) 

(('framelimit' I 'eritagap' I 'interval') -<integer>- ) 

(('gravity' I 'time') -<real>- ) I ('cmdlist' [-<com>- ... ] 'cend')]) 

('calculate' [(-<paramater>- C-<oper>- -<real>-) I '?') ... ]) 

('calculate' [('soiltype' -<datanumber>-

[(-<property>- <-<oper>- -<real>-) I '?') ... ]) ... ]) 

plot command IS ('initialise' -<limits>-) I 'ballplot' I 'dotplot' 

I 'velocities' I 'displacement' I 'conplot' I 'failplot' I 'graticule' 

I 'standard' I 'page' I 'border' I 'end plot' 

I ('map' -<map command>-) I ('zoom' -<limits>-) 

map command IS 'picture' I 'horizontal' I 'vertical' 

'full' I 'fullnoscales' I ('zoom' -<limits>-) 

debug command IS 'contacts' I 'energy' I 'general' I 'flagson' I 'flagsoff' 

I 'datalist' I 'blocks' I 'areas' 

I (('update' I 'motion' I 'consolidate' I 'ford' I 'cycle' 

I 'cycle' I 'rearea' I 'trace' I 'oscillate') -<reply>-) 

data IS -<datanumber>- -<real>- -<real>- -<real>-

-<real>- -<real>- -<real>- -<real>- -<type>

type IS 'free' I 'fixed' I 'track' 

coord IS -<real>- -<real>-

eoln IS (' ' ... ) until the end of line is reached 

mesh command IS 'relative' I 'absolute' I 'single' I 'multiple' 

('create' C-<coord>- ... ) -<eoln>-) 

'move' I 'position' C-<coord>-) I ('angle' I -<real>-) 

meshinfo IS ('dataset' -<data>-) ('for ' [-<mesh command>- ... ] 'endfor') 

start block IS -<heading>- -<limits>- -<boxes>- [-<meshinfo>- ... ] 'meshend' 

Table 4.2 Input Command Language Parsing Definition 
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The command restart causes the restart of a previous problem run. A file 

containing the restart information must be attached to unit 1. Within the com

mand file the mapping information must follow. 

save causes a rPstart file to written, it may either overwrite or append the 

file attached to unit 2 according to the setting of the overwrite command (a set 

command). This is used to save the solution to the task found so far for a large 

job, thus avoiding loss in the case of a system crash. 

Command start begins a new problem. A title up to 80 characters long may 

follow, but the next line must contain the mapping information and then mesh 

information is required. Section 4.2.3.8 describes the meshing commands. 

stop this causes the geometry to be plotted, a restart file to be written and 

the program run terminated. 

The command debug causes the debug procedure to be entered, so that debug 

options can be set or general information generated. 

The plot command causes the plot procedure to be entered, which allows 

requests for the manipulation of the plot format, size, and the production of the 

different plot types available. 

go is the command that causes the calculation cycle to be entered and it must 

be followed by an integer, the number of cycles to be executed. 

Command repeat is the opening statement of the repeat n commands rend 

loop structure. It must be followed by an integer, which is the number of times 

the loop is to be executed. There are certain commands for which inclusion in this 

structure would be pointless. 
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To close the repeat loop the command rend is used in two ways. As regards 

to input, it terminates input to the repeat controlling procedure and is the last 

statement in the repeat loop, in this case it is not a control level command. The 

second way in which it is used is internally, during execution of the loop, here it 

signifies the end of the loop so that the commands may be repeated again. 

A similar command to rend, cend is used in two ways. Firstly, it terminates 

input to the command list structure of the set command set, and secondly it 

terminates execution of the command list during use. Section 3.3.2.4 describes 

the set cmdlist commands cend facility in detail. 

The command return terminates interactive input during input error han

dling, and is described together with this facility in section 3.3.3.3. 

The command settle causes the consolidation implementation to be used dur

ing the calculation cycle while collapse will cause a traditional Distinct Element 

Analysis implementation to be used instead. 

4.2.3.3 The debug command set 

To gain access to these second level commands the debug command must 

be entered at the control command level. This facility falls into two parts, one 

outputs information at the point of issue of the command, while the other assigns 

options which provide data during the subsequent execution of the program. All 

output from this routine is written to the file attached to unit 7 unless otherwise 

stated. The debug commands are as follows. 

The datalist command writes out the circle parameter data block list while 

areas gives the information associated with each area. Command blocks produces 

the information for each circle while the contacts command writes out the contact 
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information. general, as is to be expected, produces some general information. 

Just as in SLICES, fl.agsoJill sets all the debug options on, and should be used with 

care and fiagsoff turns all of them off. 

All of the following commands must be followed by the third level commands 

of either on or off, which clearly sets the option on or off. 

The update option produces contact information as the contacts are created 

or destroyed. motion controls the production of debug output from the motion 

law during execution of the calculation cycle. The option ford controls the pro

duction of the debug output from the force displacement law during execution of 

the calculation cycle. The commlidate option produces limited information from 

both the motion and the force displacement law, again during execution of the 

calculation cycle. cycle this produces information from all procedures within the 

calculation cycle and procedure cycle itself. The option trace causes a message to 

be written on entering and exiting all procedures and functions. Output is written 

on the file attached to the unit 8. oscillate causes information from calculation 

laws, formatted for input to the program SOP, to be written onto the file attached 

to the unit 10. Finally the option of rea.rea causes information connected with 

the change of area of a circle to be written out. 

4.2.3.4 The set command set 

To gain access to these second level commands the command set must be 

issued at the control level. This set of commands falls into two groups, problem 

parameters such as gravity and options such as frame limit. The set commands 

are as follows. 
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When set to on echo enables all input commands to be echoed on the running 

commentary. The command must be followed by the third level commands of 

either on or off. The default is on. 

debugecho if set to on this causes headings for the debugging information 

to be written in addition to the information itself. 

The overwrite option controls the restart file output. If set, the file attached 

to unit 2 is emptied prior to use, otherwise the file is appended by the restart 

information. The default is off. 

Option cmdli.st sets up a subsidiary file and copies all command input to it 

until the command cend is entered. The execution of this secondary command 

file is controlled by two further set commands, cmdproc and interval. Transfer 

of control is passed from the file attached to the unit scards to the secondary file 

(always named internally as the temporary file -sass.cmd), during the execution 

of procedure cycle. The default value is null. 

The option interval must be followed by an integer, the number of cycles to be 

executed between successive executions of the command list secondary command 

file. The default value is 100. 

The cmdproc option must be followed by either of the commands on or off. 

If it is set to on, the command list secondary file is executed whenever the total 

cycles executed so far divided by the interval, (as set by the command interval), 

is an integer value. If set to off this facility is not used. The default value is off. 

framelimit is followed by an integer. The GHOST library limits the number 

of frames of plot output to twenty. If this is exceeded the program will terminate. 

This command allows this limit to be reset. The default is 20. 
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writegap sets the interval of cycles between display of some of the running 

commentary information. The default is 100. 

The gravity option is followed by a real number, which represents the value 

of gravity in the positive y direction. The default value is 0. 

Option time is followed by a real value this sets the time step size. 

The calculate command allows the values of some parameters and options 

to be modified or inspected rather than simply reset. Calculator commands are 

described in the following section, 4.3.2.5, and are level three commands. 

4.2.3.5 The calculator command set 

This set is at the third level and is accessed by the command string set 

calculate. Almost all the calculator commands have the same format, that of 

~parameter~ ~operator~ ~real~ with the exception of the enquiry, ? when 

a value is not required. Permissible parameters (the third level commands) are 

interval, writegap, gravity and time. The operators (fourth level commands, to 

be precise) are= replace,* multiply,/ divide,+ add,- subtract," exponentiation. 

The ? enquiry is also used here. The values are read in as real numbers only. 

For parameters which are integer in nature, conversion takes place to give an 

integer result. The final value of a calculation command is written to the running 

commentary output stream. 

The command soiltype allows access by the calculator to the soil parameters 

of a particular soil type. The number of the soil type, that is the data type flag 

must follow. The parameter that is to be modified is the input as for a normal 

calculator command. The parameters that may be modified here are the damping 
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factor, mass, cohesion, friction, density, radius and stiffness by using the commands 

of dlamp, mass, cohesion, friction, dernsity, radii us and stiffness. 

4.2.3.6 The plot command set 

To gain access to this second level set the command plot must be issued in 

the control command set. As all the GHOST library routines are contained in 

the procedure plot to ease maintenance, and many plotting functions are auto

matically carried out by the program, it has been necessary for some of these and 

map commands to be issued internally. Although these internal commands are 

described, it may be that they will never need to be issued externally. They are 

initialise, endplot, and most map commands with the exception of zoom. 

The initialise command sets the initial plotting parameters and turns the 

plot output stream on. This command is issued automatically on receipt of the 

start or restart commands and should not need to be used normally. 

The command ba.Hplot draws the circles in the current plot space, dotplot 

causes the centre points of the circles to be plotted while velocities will draw the 

current velocity vectors. The contact forces may be drawn by using the conplot 

command and a plot of the failed contacts produced by failplot. The command 

displacement draws the current incremental displacement vectors. 

The graticule command produces an outline of the area limits. standard 

this produces a standard plot of the circles. The page command calls for a new 

frame, or in physical terms a new sheet of paper while border produces a border 

with the problem title and current problem time. The command of map will enter 

the tertiary level map set and enables the modification of plot formats. Finally 

the end plot command is issued internally during closedown of the program under 
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normal termination, it produces a frame with a slice plot and turns the plot output 

stream off. 

4.2.3.7 The map command set 

These tertiary level commands are accessed by first issuing the commands 

plot map. 

The command ho:rrizontal sets the page format to lie along the A4 sheet of 

paper as in a landscape picture. The default size is (0.06,0.96,0.05,0.65) expressed 

in a (xmin, xmax, ymin, ymax) format. 

Likewise the vertical command sets the page format to lie down the A4 sheet 

as in conventional portrait picture. This is the default format, the default size is 

(0.15,0. 75,0.06,0.96). 

The command full sets the plotting space to the maximum permitted page 

size suitable for A4 paper. A border is drawn around this area together with axes 

scaled to the current mapping limits while fullnoscales does the same but does 

not draw scaled axes. 

The zoom command is followed by three real numbers, xmm, xmax, and 

ymin which form the mapping limits. xmin is the minimum value of x, xmax 

is the maximum value of x, and ymin is the minimum value of y of the problem 

geometry to be plotted. As the plots are in fixed proportions in both landscape 

and portrait mode it is not necessary for the maximum y value to be provided. 

This command enables portions of the problem to be examined in more detail. 

Mapping limits are expected as part of the input after both the start and resta:rrt 

commands. 
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4.2.3.8 The mesh Command Shell 

This is the only set of commands that cannot be accessed at random by a user. 

It is automatically entered after the issue of the level one command start, a further 

oddity is that this set can only be exited by issuing the meslh.end command. 

The numbers of areas in the x and y directions are expected before any further 

commands are entered. 

dataset create a dataset type. This is followed by the various parameters 

governing the soil type. All of the circles that are created following this are of this 

type until the next dataset command is encountered. The parameters which must 

follow are, dataset number, damping coefficient, mass, cohesion, tan c/J, r, radius, 

stiffness and dataset type. Apart from the dataset number and dataset type all 

of the parameters are real numbers. The dataset number is an integer and the 

dataset type is one of free, fixed or track. The dataset type of f:ree indicates 

that the circles are to be free, conversely fixed indicates that the dataset is to 

be of fixed circles. The track type will allow the circles to be tracked by the 

oscillation debug command. 

Once the dataset has been set up it is then necessary to create some circles. To 

enable sets of circle to be created in a relatively easy fashion a set of commands 

have been produced to govern the position of the creation point. Firstly, the 

command relative will cause the x and y values following the create command 

to be taken as the relative distances between creation points. Conversely the 

absolute command causes the values to be taken as the absolute coordinates. 

Furthermore these absolute or relative values in the x and y directions may be 

operated on by the angle command. This command is followed by the angle, in 

degrees, from the horizontal at which the circles are to be generated. 
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The creation position can also be controlled by the move and position com

mands. move causes the creation position to be moved relative to the current 

position. The x and y values for the movement must follow. The positio:rm com

mand causes the creation position to be at the absolute position of x, y which 

again must follow. 

The single command will allow only one circle to be created at a time, where 

multiple will allow several circles to be created with one command. The command 

for begins a for loop, it is followed by the number of circles to be created. An 

endfor will end the for loop construction. Finally, the create command triggers 

the creation of a new circle. 

4.2.4 The utility files 

The input command file format restrictions for CIRCLES are the same as for 

program SLICES and may be found in section 3.3.3.1. The task definition using 

the input command language has already been largely covered in section 3.3.3.2, 

the particular meshing information for CIRCLES is discussed in section 4.2.3.8. 

However, with reference to the chapter three discussion it should be noted that no 

factors of safety are produced. Automatic plot production occurs at the start and 

at the end of the task. The rules for error handling are the same as for SLICES 

and have been discussed in section 3.3.3.3. 

The repeat, command list, restart, trace and oscillation output files all func

tion in the same way as for SLICES. The restart file record tags are given in Table 

4.3 as clearly there are some changes in the memory elements. 

The various debug commands produce the messages shown in Table 4.4. Most 

of the formats shown need no further explanation. For reasons of brevity not all 

of the messages detail the quantities shown. These are now described. 
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Tag Restart record type 

G th~ g~noral information 

c a command list word 

r a repeat list aord 

0 a data parametar element 

A an area information element 

F a fixed circle elament 

f a free circle element 

c a contact element 

* the end of the restart data 

Table 4.3 The restart file line tags 

The rearea command produces several messages and shows the details of 

the re-location process of circles that have moved out of their original area. The 

formats are shown for completeness but this level of debugging information is 

only useful if the details of the program are understood. The command update 

produces information concerned with the production of contacts. The contact 

creation message shows the contact gap and the positions of both of the circles 

involved. The other messages are self explanatory. 

The debug command :ford produces the distance between the original cen

tres of the circles and the sine and cosine of the angle between this line and the 

horizontal. The current gap between the circles is then printed followed by the 

consolidation force and the body forces. The body forces of the element which 

owns the contact are quoted first. The data produced by the consolidate com

mand are the limiting forces calculated by the failure law and the consolidation 

forces upon the contact. The motion command produes the data type of the 

element followed by the forces and displacments. 

The contact information printed consists of the consolidation forces, the cur

rent offset and the positions of the two circles involved. The current circle is given 

last. The area data is made up of t"he area x and y limits, the column and row 

129 



Clbtapter 4 

Flag 

rearea 

updat 

Format 

Area 999999 999999 999999 

Area 999999 999999 

Distinct Eleme:ni Method of CJirdes 

ori x,y, ne~ x,y 999999 999999 999999 999999 

x,xm,y,ym 999999 999999 999999 999999 

setup areas col number 999999 

setup areas ro~ number 999999 

Victim destroyed 

Contact created 999999 999999 999999 999999 999999 

total number of contacts 99999999 

ford deltagap con_force force t-Iorce for x then y 

99999999999ES99 99999999999ES99 99999999999ES99 99999999999ES99 

consol 

motion 

cycling 

contact 

99999999 99999999 99999999 99999999 99999999 99999999 99999999 

99999999999ES99 99999999999ES99 

999 f 999999999ES99 999999999ES99 s 999999999ES99 999999999ES99 

max individual disp 99999999999ES99 

Contact information : 

forces of contact, sibling, o~ner 

999999 999999 999999 999999 999999 999999 999999 

area Area data : 

xmin,xmax,ymin,ymax, upd-par 

999999 999999 999999 999999 999999 999999 999999 

element Element data : 

offs posn force velocity accleration datatype 

999999 999999 999999 999999 99999999 (occurs 7 more times) 999 

data flag damp mass c phi rho rad kn typ 

999 99999999 99999999 99999999 99999999 (occurs 4 more times) 

general xxxxxxxxxxxx task title xxxxxxxxxxxxxxx 

xareas number 999999 length 999999 

yare as number 999999 length 999999 

total number 999999 

mapping xmax 999999 ymax 999999 

plot interval 999999 

gravity X 999999 y 999999 

timing delay 999999 

totals balls 999999 fixed 999999 

cracked 999999 types 999999 

contact 999999 cycles 999999 

updates 999999 frames 999999 

plots 999999 

Table 4.4 Debug output formats 
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numbers and the update parameter. The element data consists of the original and 

current positions, the final consolidation force upon the element, followed by the 

current force, velocity, acceleration and then the data type. 

The running commentary produces various information concerning the task 

on to the screen. The screen positions for this are given in Table 4.5 and the 

specific messages occur in Table 4.6. The same codes to clear the screen and turn 

the cursor on and off are used as in SLICES and may be found in section 3.3.4.7. 

Line Content 

1 Blank 

2 The program running commentary heading 

3 Blank 

4 The task title 

5 Blank 

6 The number of cycles requested 

7 The number of plot frames completed 

8 The number of plot types completed 

9 The number of updates completed 

10 The number of cracked circles .. 
11 The number of cycles completed 

12 The command under execution 

13 General messages 

14 Error messages and first line of totals 

15 Message requesting replacement commands 

16 Prompts to user for command or parameter data 

17 Input line and last line of totals 

18 Blank 

19 Blank 

20 Messages dealing with the restart files 

Table 4.5 The running commentary screen lines 
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2 

12 

12 

13 

13 

13 

13 

13 

13 

13 

13 

14 

14 

15 

16 

14 

15 

16 

17 

20 

4.3 Validation 

4.3.1 Introduction 

DisHn.ct ERement Method of Cill."des 

PROGRAM CIRCLES RUNNING CO~iHENT ARY ON 

Command Xltxxxxxxxxxn 

Reading x 

Warning all velocities zero 

Warning all contact forces zero 

Harning no failures : no plot 

Warning no circles left 

Decreasing stability 9.999999999999ES99 

Increasing stability 9.999999999999ES99 

A restart file has been read 

The value is : 999999999999999 

Current time step set to : 99.9999999999 

! error xxxxxxxxxxxx found in routine get-command 

Input corrected commands ... <RETURN> .. . 

Input a command please ......... . 

total balls 999999 fixed 999999 

total cracked 999999 contacts 999999 

total cycles 999999 no.updats 999999 

total frames 999999 plots 999999 

A restart file has been ~ritten 

Table 4.6 The running commentary messages 

Program CIRCLES must primarily be viewed as a development program. 

The main reasons for this are the exclusion of effective stress and difficulties en-

countered in controlling effects at the boundaries of the mesh. In this validation 

section it is intended to show that the program correctly consolidates contacts 

and models the contact failures under cohesive and frictional conditions. It was 

realised from the outset that different mesh types could influence the failure of a 

given slope geometry. The extent to which this occurred was to be left to a stage 

when the technique, having been shown to be applicable to soil masses, could be 

tuned to the 'live' situation. During this investigation it has been found that edge 

effects seriously mask the expected behaviour of the mesh, it is therefore intended 
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to discuss these effects and to show the steps that have been taken to overcome 

them. 

4.3.2 The contact behaviour 

To show that the contact behaviour is correct the case of a single contact is 

discussed first. Consider two circles, one above the other, with the lower one fixed. 

Table 4. 7 shows the forces and displacements relevent to the upper mass in the 

2000th calculation cycle. The information is from procedure consolsl. The first line 

shows the forces and the second line the displacements, both sets of values show 

the x value to be zero. The weight of the circle was 40 Newtons which corresponds 

to the y value of force. The small y displacement shows that the situation has 

reached a stable position. 

A TBO CIRCLE TOBER 
f O.OOOOOOOOOOOOOE+OO 4.0000000000000E+01 

s O.OOOOOOOOOOOOOE+OO -2.4868996761604E-14 

max individual disp 2.4868996761604E-14 

Table 4.7 Output from CIRCLES after 2000 cycles 

The case of an equilateral triangle of circles, where the lower two circles 

are fixed, is a useful one. This is because the simplicity of the case eliminates 

edge effect distortions to the stresses but does allow the investigation of contact 

failure. The equilibrium force on each of the diagonal contacts may be shown 

to be ~ acting along the contact line. The consolidation forces for equilibrium 

are, therefore, a1 = mg/2 and a 3 = mg/2-/3. For failure just to occur then the 

equivalent stresses of these forces must form the limiting values. For the case 

of a purely cohesive soil these limits would be generated by a value of cohesion 

corresponding to qa(l- .../J ). For a mass of 4 and gravity of 1 this simplifies further 

to give c = 0.42265. It was found by analysing this system with c = 0.42264 that 
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both contacts failed. However, failure did not occur for c = 0.42265, which shows 

the program behaviour to be correct. 

4.3.3 The Mesh Edge effects 

It is not possible to model a slope using a mesh consisting of a series of vertical 

columns of circles. The reason for this is that because gravity acts downwards 

there is no lateral movement of the circles to cause lateral forces. The columns are 

therefore uncoupled and consolidate independently. An hexagonal close packed 

mesh overcomes this lateral coupling problem. 

The analysis of such a mesh as shown in Figure 4.5 highlights an edge effect. 

The figure is composed of three sections. The lowest sections shows the circle 

element mesh, the middle section shows the forces on the contacts and the top 

section shows the contacts that have failed. Failed contacts appear as lines between 

the dots representing the circle centres. These lines are proportional to the failure 

forces. It can be seen in the figure that the forces within the mesh increase from 

the top to the bottom and from the sides to the centre. However the forces for 

successive contacts on the lowermost row of contacts show an alternation between 

large and small forces. A large force occurring at the edge, then a small one, and 

so on, to the middle. 

To explain this effect consider the analysis in the early stages. As the mesh 

begins to consolidate each successive horizontal layer of contacts becomes com

pressive with all of the circles above it falling due to gravity only. Consider such 

a layer of circles, that is where the upper contacts are neither compressive nor 

tensile, but where the lower contacts are compressive. In the next cycle the circles 

above this layer will all fall by gbt 2 and will produce compressive forces in the 

upper contacts. These forces will have horizontal and vertical components. In the 

case of all circles except the outermost ones the horizontal forces will sum to the 
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Figure 4.5 Analysis of embankment without contact correction 
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circle forces to give a zero lateral body force. In the case of the outermost circles 

the single upper contact force is not balanced due to the asymmetry of the mesh 

at this point and hence will have a lateral displacement in the next cycle. 

Each of the outermost circles will behave in a similar fashion and will give rise 

to these circles acting independently from the main body. This independence gives 

rise to higher contact forces down this diagonal column and lower forces between 

this column and the next one. The low forces between these columns causes the 

next diagonal column to behave in a similar fashion to the first. This then leads 

to the generation of a series of high and low contact forces. 

This effect builds up progressively in the embankment. The tensile forces are 

generated first at the bottom corners and then gradually up the diagonal. The 

tensile forces are then produced in the next diagonal, and so on, until eventually 

the embankment may be seen to consist of the three regions as shown in the figure. 

These are lefthand and righthand triangular zones of tensile horizontal contacts 

and a middle zone of compressive horizontal contacts. If the cohesion and friction 

of the soil are reduced the embankment shows compressive failure at the toes of 

the slopes but the tensile zones dominate and distort the failure zones so that if 

further contact failure occurs it happens at the top of the slope and in the middle 

of the embankment. The latter occurs when the soil characteristics are made to 

be weak to try and force a proper failure. 

This edge effect problem is exaggerated by the edge circles consolidating faster 

than the internal ones due to the number of contacts affecting them. This is as 

a direct result of the equation for N 8 given previously. This was not initially 

accounted for by the Distinct Element Analysis employed as there did not seem 

to be a straightforward method of dealing with it. The problem in trying to 

accommodate the number of contacts is in determining the number of contacts 

a circle has before the force displacement law is executed, for it is here that the 
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damping factor is used. Furthermore, where two circles are involved which have 

different numbers of contacts, the modified damping factor on the mutual contact 

can not be easily determined. Such cases occur at the edge of the mesh, where, 

if an average number of contacts were used, would not effectively deal with the 

problem. 

Therefore, it was decided to counter this effect by modifying the motion law. 

This was achieved quite simply by dividing the circle displacement by the number 

of active contacts that it has. Reducing the circle displacement at this stage is 

equivalent to reducing it by this factor in the force displacement law to give a 

reduced force. It is merely done at the last stage of the cycle rather than at the 

first stage of the next. Applying this factor here allows the adjustment to be made 

correctly for each circle. This is because it is dependent upon a property of the 

circle rather than upon a property of a pair of circles, namely the number of active 

contacts that a circle is involved in. 

To find this number an additional process was introduced prior to the motion 

law. As the displacements are greatest at the beginning of the analysis, it is at 

this stage that the correction needs to be the most accurate. An active contact 

is one that is compressive, or will become compressive in the next calculation 

cycle. This is achieved crudely at present. If a circle has a contact with a fixed 

circle the contact is assumed to be active, this will always be true if the fixed 

circles are placed to restrain the circles and cause consolidation. To decide if a 

contact is active when it is between two free circles the relative displacement is 

examined, if it is not zero then the contact is active. Horizontal contacts are 

presently considered as inactive as they are unimportant at the beginning of the 

analysis. The contacts are counted by scanning the contact list for each circle and 

the number of active contacts incremented for both the owner and the other circle 

involved, if the contact is found to be an active one. 
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Figure 4.6 Analysis of embankment using a contact correction 
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The effect of this correction can be seen in Figure 4.6. Here the effect is still 

found but in addition the outer diagonal edges failed in tension immediately with 

high tensile stresses. An informative analysis is that shown in Figure 4. 7 where 

the righthand vertical slope begins to shows a wedge failure caused by sliding, as is 

to be expected. This at least shows some promise, however, the correction for the 

number of contacts, as applied currently does not have the desired effect and any 

soil like failure mechanisms are being obscured. It is presumed that the current 

damping implementation lies along the lines described, but due to time has not 

been elucidated. 
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CHAP'JrlER 5 

CONCJLU§][ON§ 

Condusions 

The work described here developed from an investigation of the vibrations 

associated with a traditional Distinct Element Analysis implementation. It was 

found that they could be eliminated from the system by implementing a consol

idation type analysis. This consolidation technique has been described here by 

difference equations. The solution of these equations shows that the convergence 

of the system is governed by the stiffness, damping factor, gravity, contact length, 

number of active contacts, element mass and the time step. The solution also 

shows that the number of cycles required for convergence to a limiting value of 

force, acceleration or displacement may be calculated for simple cases. 

The machine accuracy limits the propagation of effects through the system. 

Long hand expansion of the displacements, forces and acceleration of a simple 

system showed that the limit of propagation was affected largely by the time step. 

This led to the recommendation that the time step and stiffness are both unity so 

that the effects are not attenuated too quickly on passing through contacts. 

To facilitate the continuing development of the Distinct Element Analysis 

the programs have been written in PASCAL for ease of amendment. These pro

grams may be viewed as suitable for forming the basis for new implementations, 

requiring a change in the motion or force displacement laws to alter the media un

der investigation. This has a great advantage over FORTRAN equivalents where 

considerable effort is required for quite small amendments. 
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By including an input procedure that parses an input command language and 

allows interactive error correction the setting up of analysis problems is straight 

forward. This input method also prevents having to abort a run part way through 

due to a simple typing error. In conclusion, the programs written are flexible in 

terms of their ease of use, modification and utilisation as a base for modelling a 

different media. 

The analysis carried out by Program SLICES is similar to the traditional 

method of slices and to the Rigid Block Model that formed the initial study. 

SLICES uses the consolidation technique developed to model soil slopes given a 

failure arc by dividing the slope into slices. The use of the program is therefore 

restricted to systems with a predetermined failure arc or to interactive use so that 

the least stable failure arc is found for a given slope. Currently the soil slope may 

not contain different layers of soil. 

The validation was carried out by comparing the results from SLICES against 

a traditional method. Fifteen test cases have been used, five cases for each of three 

slopes. Each slope was tested under two cases of total stress and three cases of 

effective stress conditions. The last case utilised a non-linear failure criterion. 

Both frictional and cohesive soil types were modelled. 

The testing showed that the failure conditions were most easily determined for 

frictional soils. The results from SLICES were similar to those from the traditional 

method, differing by one or two degrees in friction or kN/m2 in cohesion. Where 

a difference larger than this occurred it was because a tension crack was predicted 

by SLICES that could not be modelled by the standard method. This shows 

an advantage of SLICES over the traditional method. A further advantage of 

SLICES is the ability to use a non-linear failure criterion. The results using this 

could not be compared with the traditional method but were consistent with the 

other SLICES results. This facility coupled with the ability to predict tension 
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cracks enables SLICES to give a more accurate indication of the behaviour of a 

slope than the traditional method. 

A worthwhile enhancement to SLICES would be the incorporation of addi

tional subcontacts on the inter-slice edges to allow for the modelling of soil masses 

with layers of different soil types. The contact failure laws need adjustment to re

duce the rigid block behaviour of the slices and to increase the soil-like nature 

of the contacts. Some further work needs to be carried out in the validation of 

SLICES particularly in comparison with known case studies. 

The development of the program CIRCLES has been constrained by time, 

predominantly in the later stages of validation. In Program CIRCLES the Distinct 

Element Analysis has been applied to soil in terms of circular areas of influence 

rather than as a physical model. There is no restriction upon the number of soil 

types modelled and a predetermined failure mechanism is not required. 

The program has been shown to work adequately for simple cases but some 

difficulties have been encountered in applying it in general. The validation showed 

that edge effects caused an incorrect stress regime to be set up that masked the 

failure process. An attempt was made to rectify this by introducing an additional 

damping factor which was applied to the displacements of the circles. This fac

tor was the reciprocal of the number of active contacts belonging to the circles, 

but proved to be only partially successful. However a sliding type failure was 

demonstrated where the edge effects seemed not to be strong enough to mask the 

effect. 

Perhaps the most far reaching finding of the investigation into the edge effects 

is the impact that differing numbers of active contacts belonging to the circles can 

have. In terms of time this has the effect of promoting some circles ahead of others 

in the analysis and is rather like a 'time warp' occurring in the mesh. 
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Work needs to be carried out to investigate the edge effects further and a 

satisfactory correction procedure implemented. The starting point for this work 

could be an investigation into the behaviour of several different mesh configura

tions, for example, loosely packed, close packed and random. Two enhancements 

to CIRCLES to bring it in to line with SLICES would be the accommodation of 

effective stress, and the inclusion of a non·-linear failure criterion for the contacts. 

The aim of this work was to show that Distinct Element Analysis may be 

applied to soil masses. Unlikely though this may seem this has been achieved by 

Program SLICES which provides a more accurate indication of the slope behaviour 

than traditional methods. In view of this, despite the current edge effects shown 

by CIRCLES, the goal of modelling the generation of a failure zone in a soil slope 

is worth pursuing along these lines. 
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APPENDJIX A 

MATHEMATJICAJL NOTATJION 

lxl is the absolute value of x. 

xis the maximum value of x. 

V is the logical or operator. 

1\ is the logical and operator. 

-+ tends to. 

::::? implies that. 

A.]. 

a is the angle the failure arc makes with the horizontal at the toe of a slope. 

a is acceleration. 

A is a controlling constant in difference equation solutions. 

f3 is the angle between circle centres and the horizontal. 

B is a controlling constant in difference equation solutions. 

c is cohesion. 

C is consolidation force. 

dis the numerical damping factor. 

D is the distance between circle centres. 

D1 is the overall numerical damping factor. 

c/J is a soil parameter representing the angle of friction. 

F is contact force. 

Force is force acting on the centroid of elements. 

g is gravity. 

G0 is the initial radial distance between centres. 

Gr is the radial distance between centres. 

I::!G is the change in the radial distance between centres. 

H is dashpot damping force. 

I is the number of active contacts an element has. 

k is contact stiffness. 
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K is contact dashpot stiffness. 

L is contact length. 

Lim is the limiting difference value of force, stress and so on. 

JL is the coefficient of friction. 

m IS mass. 

M is element movement from the original position. 

N is the number of cycles for a limiting difference to be reached. 

P is the coordinate position of element centroid. 

CJ is stress. 

CJ1 is the major principle stress. 

CJ3 is the minor principle stress. 

S is the increment of displacement occurring in a specific time step. 

T is shear stress. 

t is total time. 

() is angle between block edge and the horizontal. 

lit is the time step. 

u is pore water pressure,. 

v is velocity. 

The following symbols are used as subscripts. 

A.2 

c prefixed to a quantity refers to a block contributing the corner to a contact. 

e prefixed to a quantity refers to a block contributing the edge to a contact. 

1 prefixing the quantity refers to a specific distinct element. 

a, f, CJ or s applied to Lim refers to the quantity at limiting difference. 

n refers to the direction of normal movement on a contact. 

r refers to the radial direction. 

s refers to the direction of shear movement. 

x refers to the x direction. 

y refers to the y direction. 

n as a preceeding superscript refers to a specific calculation cycle. 
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AJPJPENDJIX B 

§LJICE RE§ULT§ 

set echo off damp 0.05 0.2 

start SLOPE 1, PHI 

0 16 0 

create free 0.0 20.5 2.0 1.0 0.0 20.5 0.0 0.0 0.0 1 14.0 1 14 

2 10.5 2 14 

create free 0.0 20.5 2.0 1.0 0.0 20.5 0.0 0.0 0.0 3 8.9 3 14 

create free 0.0 20.5 2.0 1.0 0.0 20.5 0.0 0.0 0.0 4 7.7 4 14 

create free 0.0 20.5 2.0 1.0 0.0 20.5 0.0 0.0 0.0 5 6.9 5 14 

create free 0.0 20.5 2.0 1.0 0.0 20.5 0.0 0.0 0.0 6 6.3 6 14 

create free 0.0 20.5 2.0 1.0 0.0 20.5 0.0 0.0 0.0 7 5.7 7 14 

create free 0.0 20.5 2.0 1.0 0.0 20.5 0.0 0.0 0.0 8 5.4 8 13 

create free 0.0 20.5 2.0 1.0 0.0 20.5 0.0 0.0 0.0 9 5.1 9 12 

create free 0.0 20.5 2.0 1.0 0.0 20.5 0.0 0.0 0.0 10 5.0 10 11 

create free 0.0 20.5 2.0 1.0 0.0 20.5 0.0 0.0 0.0 11 4.9 11 9.9 

create free 0.0 20.5 2.0 1.0 0.0 20.5 0.0 0.0 0.0 12 5.0 12 8.9 

create free 0.0 20.5 2.0 1.0 0.0 20.5 0.0 0.0 0.0 13 5.1 13 7.8 

create free 0.0 20.5 2.0 1.0 0.0 20.5 0.0 0.0 0.0 14 5.4 14 6.8 

create free 0.0 20.5 2.0 1.0 0.0 20.5 0.0 0.0 0.0 15 5.8 15 5.8 

meshend 

set damp 0.05 0.2 time 1 gravity -10 cmdproc on framelimit 100 

eritegap 32 interval 32 

cmdlist plot standard set calc ~ritegap * 2 interval * 2 cend 

echo on 

go 16383 stop 

Table 3.14 Input commands for result set 1 
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Figure 3.6 Stress profiles for result set 1 (continued) 



B.§ 

set echo off damp 0.06 0.2 

start SLOPE 2, PHI 

0 12 0 

create free 0.0 31.6 2.0 1.0 0.0 31.6 0.0 0.0 0.0 1.0 14.0 1.0 14 

1.6 11.8 1.6 14 

create free 0.0 31.6 2.0 1.0 0.0 31.5 0.0 0.0 0.0 2.0 10.6 2.0 14 

create free 0.0 31.6 2.0 1.0 0.0 31.6 0.0 0.0 0.0 2.6 9.7 2.6 14 

create free 0.0 31.5 2.0 1.0 0.0 31.6 0.0 0.0 0.0 3.0 9.0 3.0 14 

create free 0.0 31.6 2.0 1.0 0.0 31.6 0.0 0.0 0.0 3.6 8.36 3.6 14 

create free 0.0 31.5 2.0 1.0 0.0 31.5 0.0 0.0 0.0 4.0 7.8 4.0 14 

create free 0.0 31.6 2.0 1.0 0.0 31.6 0.0 0.0 0.0 4.5 7.36 4.5 14 

create free 0.0 31.5 2.0 1.0 0.0 31.5 0.0 0.0 0.0 6.0 6.95 5.0 14 

create free 0.0 31.5 2.0 1.0 0.0 31.5 0.0 0.0 0.0 6.5 6.6 5.6 14 

create free 0.0 31.5 2.0 1.0 0.0 31.5 0.0 0.0 0.0 6.0 6.3 6.0 14 

create free 0.0 31.6 2.0 1.0 0.0 31.6 0.0 0.0 0.0 6.6 6.025 6.5 13 

create free 0.0 31.6 2.0 1.0 0.0 31.6 0.0 0.0 0.0 7.0 6.8 7.0 12.1 

create free 0.0 31.5 2.0 1.0 0.0 31.6 0.0 0.0 0.0 7.5 5.6 7.5 11.2 

create free 0.0 31.6 2.0 1.0 0.0 31.6 0.0 0.0 0.0 8.0 5.45 8.0 10.3 

create free 0.0 31.6 2.0 1.0 0.0 31.5 0.0 0.0 0.0 8.5 5.3 8.5 9.5 

create free 0.0 31.6 2.0 1.0 0.0 31.5 0.0 0.0 0.0 9.0 6.2 9.0 8.6 

create free 0.0 31.5 2.0 1.0 0.0 31.5 0.0 0.0 0.0 9.5 6.1 9.6 7.7 

create free 0.0 31.5 2.0 1.0 0.0 31.5 0.0 0.0 0.0 10.0 5.05 10.0 6.8 

create free 0.0 31.5 2.0 1.0 0.0 31.5 0.0 0.0 0.0 10 .. 5 5.0 10.5 5.85 

create free 0.0 31.5 2.0 1.0 0.0 31.5 0.0 0.0 0.0 11.0 5.0 11 6.0 

meshend 

set damp 0.05 0.2 time 1 gravity -10 cmdproc on framelimit 100 

vritegap 32 interval 32 

cmdlist plot standard set calc vritegap * 2 interval * 2 cend 

echo on 

plot page go 16383 stop 

Table 3.15 Input commands for result set 2 
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Figure 3.7 Stress profiles for result set 2 



Appendliix B. JB.Hll 

set echo off damp 0.06 0.2 

start SLOPE 3, PHI 

0 7 0 

create track 0.0 48.0 2.0 1.0 0.0 48.0 0.0 0.0 0.0 1.0 14.0 1.0 14 

1.6 11.8 1.6 14 

create track 0.0 48.0 2.0 1.0 0.0 48.0 0.0 0.0 0.0 2.0 10.6 2.0 14 

create track 0.0 48.0 2.0 1.0 0.0 48.0 0.0 0.0 0.0 2.6 9.7 2.6 14 

create track 0.0 48.0 2.0 1.0 0.0 48.0 0.0 0.0 0.0 3.0 9.0 3.0 14 

create track 0.0 48.0 2.0 1.0 0.0 48.0 0.0 0.0 0.0 3.6 8.36 3.6 14 

create track 0.0 48.0 2.0 1.0 0.0 48.0 0.0 0.0 0.0 4.0 7.8 4.0 14 

create track 0.0 48.0 2.0 1.0 0.0 48.0 0.0 0.0 0.0 4.6 7.36 4.6 12 

create track 0.0 48.0 2.0 1.0 0.0 48.0 0.0 0.0 0.0 6.0 6.96 6.0 10 

create track 0.0 48.0 2.0 1.0 0.0 48.0 0.0 0.0 0.0 6.6 6.6 6.6 8 

create track 0.0 48.0 2.0 1.0 0.0 48.0 0.0 0.0 0.0 6.0 6.3 6.0 6.3 

meshend 

set damp 0.06 0.2 time 1 gravity -10 cmdproc on framelimit 100 

eritegap 32 interval 32 

cmdlist plot standard set calc writegap * 2 interval * 2 cend 

echo on debug oscil on 

plot page go 16383 stop 

Table 3.16 Input commands for result set 3 
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set echo off damp 0.05 0.2 debug update on 

start SLOPE 1, C 

0 16 0 

create free 24.0 0 2.0 1.0 24.0 0 0.0 0.0 0.0 1 14.0 

2 10.5 

create free 24.0 0 2.0 1.0 24.0 0 0.0 0.0 0.0 3 8.9 

create free 24.0 0 2.0 1.0 24.0 0 0.0 0.0 0 .. 0 4 7.7 

create free 24.0 0 2.0 1.0 24.0 0 0.0 0.0 0.0 6 6.9 

create free 24.0 0 2.0 1.0 24.0 0 0.0 0.0 0.0 6 6.3 

create free 24.0 0 2.0 1.0 24.0 0 0.0 0.0 0.0 7 6.7 

create free 24.0 0 2.0 1.0 24.0 0 0.0 0.0 0.0 8 5.4 

create free 24.0 0 2.0 1.0 24.0 0 0.0 0.0 0.0 9 5.1 

create free 24.0 0 2.0 1. 0 24.0 0 0.0 0.0 0.0 10 6.0 

create free 24.0 0 2.0 1.0 24.0 0 0.0 0.0 0.0 11 4.9 

create free 24.0 0 2.0 1.0 24.0 0 0.0 0.0 0.0 12 6.0 

create free 24.0 0 2.0 1.0 24.0 0 0.0 0.0 0.0 13 6.1 

create free 24.0 0 2.0 1.0 24.0 0 0.0 0.0 0.0 14 6.4 

create free 24.0 0 2.0 1.0 24.0 0 0.0 0~0 0.0 15 5.8 

meshend 

set time 1 gravity -10 cmdproc on framelimit 100 

debug slices contacts general stop 

aritegap 32 interval 32 

1 14 

2 14 

3 14 

4 14 

6 14 

6 14 

7 14 

8 13 

9 12 

10 11 

11 9.9 

12 8.9 

13 7.8 

14 6.8 

15 5.8 

cmdlist plot standard set calc aritegap * 2 interval * 2 cend 

echo on 

go 16383 stop 

Table 3.17 Input commands for result set 4 

B.12l 
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Figure 3.9 Stress profiles for result set 4 (continued) 



Appell].dix B. B.l'£1 

set echo off damp 0.025 0.1 

start SLOPE 2, C 

0 12 0 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 1.0 14.0 1.0 14 

1.5 11.8 1.5 14 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 2.0 10.6 2.0 14 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 2.5 9.7 2.5 14 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 3.0 9.0 3.0 14 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 3.5 8.35 3.5 14 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 4.0 7.8 4.0 14 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 4.6 7.35 4.5 14 

create free 37. 0 0. 0 2. 0 1. 0 37. 0 0. 0 0. 0 0. 0 0. 0 5. 0 6. 95 5. 0 14 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 5.5 6.6 5.5 14 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 6.0 6.3 6.0 14 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 6.5 6.025 6.5 13 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 7.0 5.8 7.0 12.1 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 7.5 5.6 7.5 11.2 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 8.0 5.45 8.0 10.3 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 8.5 6.3 8.5 9.5 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 9.0 5.2 9.0 8.6 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 9.6 6.1 9.6 7.7 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 10.0 6.05 10.0 6.8 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 10.6 6.0 10.6 5.86 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 11.0 5.0 11.0 5.0 

meshend 

set time 1 gravity -10 cmdproc off framelimit 100 

aritegap 2000 interval 3~ 

cmdlist plot standard set calc aritegap * 2 interval * 2 cend 

echo on 

plot page go 32383 stop 

Table 3.18 Input commands for result set 5 



> 
"g 

SLOPE 2. C TIHE 0. OOOOEOO I I SLOPE 2. C TIHE fl. 1638E05I ~ 
l;l 

16 ~ j :~ ~ • • • ' ' • • ' • • • • • ' • • • ' j ~ 
30 ltful.l\ tQ 
~ 0 

20 
14 15 

~ 10 
~ 5 
~ 0~ 
<:.;:! 12 18~ 2 4 
~ 16 
en 14 
- 12 
~ 10 
C/l 10 8 
C/l 6 
~ 4 
0 2 ::n 
~ 8 -~ ~ JNTE: _ r 7_ I I 

6 
I I I I 

8 

I I I : 

1 

~\A 

Sl -10 

~ -15 
C/l a6 -~ 

- ~5 
~ -30 -01 -35 ~ ._,..._" ~ /..f:;,L. M-

4 ~~~SS/L~'?''7~'" 
120 
100 

2 ~ J 00 
60 
40 

0 
~
0 t ARC~ I 1 1 I 1 I I I I I I I I I I I ~\A ~ ~ 

0 2 4 6 8 10 0 2 4 6 8 10 0 



set echo off damp 0.05 0.2 

start SLOPE 3, c 
0 7 0 

create track 39 0.0 2.0 1.0 39 0.0 0.0 0.0 0.0 1.0 14.0 1.0 14 

1.5 11.8 1.5 14 

create track 39 0.0 2.0 1.0 39 0.0 0.0 0.0 0.0 2.0 10.6 2.0 14 

create track 39 0.0 2.0 1.0 39 0.0 0.0 0.0 0.0 2.5 9.7 2.5 14 

create track 39 0.0 2.0 1.0 39 0.0 0.0 0.0 0.0 3.0 9.0 3.0 14 

create track 39 0.0 2.0 1.0 39 0.0 0.0 0.0 0.0 3.5 8.35 3.5 14 

create track 39 0.0 2.0 1.0 39 0.0 0.0 0.0 0.0 4.0 7.8 4.0 14 

create track 39 0.0 2.0 1.0 39 0.0 0,0 0.0 0.0 4.5 7.35 4.5 12 

create track 39 0.0 2.0 1.0 39 0.0 0.0 0.0 0.0 5.0 6.95 5.0 10 

create track 39 0.0 2.0 1.0 39 0.0 0.0 0.0 0.0 5.5 6.6 5.5 8 

create track 39 0.0 2.0 1.0 39 0.0 0.0 0.0 0.0 6.0 6.3 6.0 6.3 

meshend 

set damp 0.05 0.2 time 1 gravity -10 cmdproc on framelimit 100 

eritegap 32 interval 32 

cmdlist plot standard set calc eritegap * 2 interval * 2 cend 

echo on debug osc on 

plot page go 4000 stop 

Table 3.19 Input commands for result set 6 
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Appendllix lB. JB.23 

sat acho off damp 0.00126 0.006 gravity -10 

start SLOPE 1, PHI, U 
0 16 0 

create free 0.0 25.0 2.0 1.0 0.0 25.0 0.0 0.0 0.23 1 14.0 1 14 

2 10.5 2 14 

create free 0.0 25.0 2.0 1.0 0.0 25.0 0.0 0.0 0.23 3 8.9 3 14 

create free 0.0 25.0 2.0 1.0 0.0 25.0 0.6 0.6 0.23 4 7.7 4 14 

create free 0.0 25.0 2.0 1.0 0.0 25.0 1.6 1.0 0.23 5 6.9 5 14 

create free 0.0 26.0 2.0 1.0 0.0 25.0 2.3 1.3 0.23 6 6.3 6 14 

create free 0.0 25.0 2.0 1.0 0.0 25.0 2.9 1.6 0.23 7 5.7 7 14 

create free 0.0 25.0 2.0 1.0 0.0 26.0 3.36 1. 75 0.23 8 5.4 8 13 

create free 0.0 26.0 2.0 1.0 0.0 25.0 3.65 1.9 0.23 9 5.1 9 12 

create free 0.0 25.0 2.0 1.0 0.0 26.0 3.86 1.95 0.23 10 5.0 10 11 

create free 0.0 26.0 2.0 1.0 0.0 25.0 3.95 2.0 0.23 11 4.9 11 9.9 

create frae 0.0 26.0 2.0 1.0 0.0 26.0 3.96 1.96 0.23 12 6.0 12 8.9 

create free 0.0 26.0 2.0 1.0 0.0 25.0 3.3 1.36 0.23 13 5.1 13 7.8 

create free 0.0 26.0 2.0 1.0 0.0 26.0 2.06 0.7 0.23 14 6.4 14 6.8 

create free 0.0 26.0 2.0 1. 0 0. 0 26 . 0 0 . 7 0.0 0.23 16 5.8 15 6.8 

meshend 

set time 1 gravity -10 cmdproc on framelimit 100 

~ritegap 1000 interval 1000 

cmdlist plot standard cend 

echo on 

plot page go 40000 stop 

Table 3.20 Input commands for result set 7 
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Figure 3.12 Stress profiles for result set 7 (continued) 



Appeitulllix lB. 

sat echo off damp 0.00125 0.005 gravity -10 

start SLOPE 2, PHI, U 

0 12 0 

create free 0.0 46.5 2.0 1.0 0.0 46.5 0.0 0.0 0.23 1.0 14.0 1.0 14 

1.5 11.8 1.5 14 

create free 0.0 46.5 2.0 1.0 0.0 46.5 0.55 0.55 0.23 2.0 10.6 2.0 14 

create free 0.0 46.5 2.0 1.0 0.0 46.5 1.55 1.0 0.23 2.5 9.7 2.6 14 

create free 0.0 46.5 2.0 1.0 0.0 46.5 2.3 1.3 0.23 3.0 9.0 3.0 14 

create free 0.0 46.5 2.0 1.0 0. 0 46.5 2.876 1.575 0.23 3.5 8.35 3.5 14 

create free 0.0 46.5 2.0 1.0 0.0 46.5 3.35 1. 775 0.23 4.0 7.8 4.0 14 

create free 0.0 46.5 2.0 1.0 0.0 46.5 3;65 1.876 0.23 4.5 7.35 4.6 14 

create free 0.0 46.5 2.0 1.0 0.0 46.5 3.85 1.976 0.23 5.0 6.95 5.0 14 

create free 0.0 46.5 2.0 1.0 0.0 46.5 4.026 2.06 0.23 5.5 6.6 5 .. 6 14 

create free 0.0 46.5 2.0 1.0 0.0 46.5 4.125 2.075 Q.23 6.0 6.3 6.0 14 

create free 0.0 46.5 2.0 1.0 0.0 46.5 4.125 2.06 0.23 6.5 6.025 6.5 13 

create free 0.0 46.5 2.0 1.0 0.0 46.5 4.1 2.06 0.23 7.0 5.8 7.0 12.1 

create free 0.0 46.5 2.0 1.0 0.0 46.5 4.05 2.0 0.23 7.5 5.6 7.5 11.2 

create free 0.0 46.5 2.0 1.0 0.0 46.5 3.9 1.9 0.23 8.0 5.45 8.0 10.3 

create free 0.0 46.5 2.0 1.0 0.0 46.5 3.725 1.825 0.23 8.5 5.3 8.5 9.5 

create free 0.0 46.5 2.0 1.0 0.0 46.5 3.475 1.65 0.23 9.0 5.2 9.0 8.6 

create free 0.0 46.5 2.0 1.0 0.0 46.5 2.9 1.25 0.23 9.5 5.1 9.5 7.7 

create free 0.0 46.5 2.0 1. 0 0. 0 46.5 2.1 0.85 0.23 10.0 5.05 10.0 6.8 

create free 0.0 46.5 2.0 1.0 0.0 46.5 1.25 0.4 0.23 10.5 5.0 10.6 5.85 

create free 0.0 46.5 2.0 1.0 0.0 46.5 0.4 0.0 0.23 11.0 5.0 11.0 6.0 

meshend 

set time 1 gravity -10 cmdproc on framelimit 100 

eritegap 128 interval 128 

cmdlist plot standard set calc eritegap * 2 interval * 2 cend 

echo on 

plot page go 32767 stop 

Table 3.21 Input commands for result set 8 
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Figure 3.13 Stress profiles for result set 8 



Appendlix B. 

sat echo off damp 0.05 0.05 gravity -10 

set damp 0.00125 0.005 gravity -10 

start SLOPE 3, PHI, U 

0 7 0 

create free 0.0 69.5 2.0 1.0 0.0 69.5 0.225 0.45 0. 23 1.0 14.0 1.0 

1.5 11.8 1.5 

create free 0.0 69.5 2.0 1. 0 0 . 0 69 . 5 1. 3 0.85 0.23 2.0 10.6 2.0 

create free 0.0 69.5 2.0 1.0 0.0 69.5 1.925 1.075 0.23 2.5 9.7 2.6 

create free 0.0 69.5 2.0 1.0 0.0 69.5 2.26 1.175 0.23 3.0 9.0 3.0 

create free 0.0 69.5 2.0 1.0 0.0 69.6 2.425 1.26 0.23 3.6 8.36 3.5 

create free 0.0 69.5 2.0 1.0 0.0 69.6 2.475 1.226 0.23 4.0 7.8 4.0 

create free 0.0 69.5 2.0 1.0 0.0 69.6 2.36 1.126 0.23 4.5 7.36 4.6 

create· free 0.0 69.6 2.0 1.0 0.0 69.6 2 .. 075 0.95 0,23 5.0 6.95 5.0 

create free 0.0 69.5 2.0 1.0 0.0 69.5 1.7 

create free 0.0 69.6 2.0 1.0 0.0 69.5 0. 75-

set time 1 cmdp;roc on framelj.mit 100 

~ritegap 128 interval 128 

0.75 0.23 5.5 6.6 

0.0 0;23 6.0 6.3 

cmdlist plot standard set calc ~ritegap * 2 interval * 2 cend 

echo on debug oscil off 

plot page go 32767 stop 

Table 3.22 Input commands for result set 9 
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Figure 3.14 Stress profiles for result set 9 



set echo off debug update on 

set echo off damp 0.005 0.02 gravity -10 debug update on 

start SLOPE 1, C, PHI, U 

0 16 0 

create free 20 5.0 2.0 1.0 20 5.0 0.0 0.0 0.23 1 14.0 1 14 

2 10.5 2 14 

create free 20 6.0 2.0 1.0 20 5.0 0.0 0.0 0.23 3 8.9 3 14 

create free 20 5.0 2.0 1.0 20 5.0 0.6 0.6 0.23 4 7.7 4 14 

create free 20 5.0 2.0 1.0 20 5.0 1.6 1.0 0.23 5 6.9 5 14 

create free 20 5.0 2.0 1.0 20 5.0 2.3 1.3 0.23 6 6.3 6 14 

create free 20 5.0 2.0 1.0 20 5.0 2.9 1.6 0.23 7 5.7 7 14 

create free 20 5.0 2.0 1.0 20 5.0 3.35 1.75 0.23 8 5.4 8 13 

create free 20 5.0 2.0 1.0 20 5.0 3.65 1.9 0.23 9 5.1 9 12 

create free 20 5.0 2.0 1.0 20 5.0 3.85 1.95 0.23 10 5.0 10 11 

create free 20 5.0 2.0 1.0 20 5.0 3.95 2.0 0.23 11 4.9 11 9.9 

create free 20 5.0 2.0 1.0 20 5.0 3.95 1.95 0.23 12 5.0 12 8.9 

create free 20 5.0 2.0 1.0 20 5.0 3.3 1.35 0.23 13 5.1 13 7.8 

create free 20 5.0 2.0 1.0 20 5.0 2.05 0.7 0.23 14 5.4 14 6.8 

create free 20 5.0 2.0 1.0 20 5.0 0.7 0.0 0.23 15 5.8 15 5.8 

meshend 

set time 1 gravity -10 cmdproc on framelimit 100 

eritegap 128 interval 128 

cmdlist plot standard set calc eritegap * 2 interval * 2 cend 

echo on 

go 32383 stop 

Table 3.23 Input commands for result set 10 and 13 
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Appendi.Jix :B. :8.3~ 

debug update on 

start SLOPE 2, c. PHI, U 

0 12 0 

create free 20.0 21.6 2. 0 1.0 20.0 21.5 0.0 0.0 0.23 1.0 14.0 1.0 14 

1.6 11.8 1.5 14 

create free 20.0 21.5 2.0 1.0 20.0 21.5 0.55 0.55 0.23 2.0 10.6 2.0 14 

create free 20.0 21.5 2.0 1.0 20.0 21.5 1.55 1.0 0.23 2.6 9.7 2.5 14 

create free 20.0 21.5 2.0 1.0 20.0 21.5 2. 3 1.3 0.23 3.0 9.0 3.0 14 

create free 20.0 21.5 2.0 1.0 20.0 21.5 2;875 1.575 0.23 3.5 8.35 3.5 14 

create free 20.0 21.5 2.0 1.0 20.0 21.5 3.35 1.775 0.23 4.0 7.8 4.0 14 

create free 20.0 21.5 2.0 1.0 20.0 21.5 3.65 1.875 0.23 4.6 7.35 4.5 14 

create free 20.0 21.6 2.0 1.0 20.0 21.5 3.85 1.975 0.23 5.0 6.95 5.0 14 

create free 20.0 21.5 2.0 1.0 20.0 21.5 4.025 2.06 0.23 6.5 6.6 5.6 14 

create free 20.0 21.5 2.0 1.0 20.0 21.54.125 2.075 0.23· 6.0 6.3 6.0 14 

create free 20.0 21.5 2.0 1.0 20.0 21.5 4.125 2.05 0.23 6.5 6.025 6.5 13 

create free 20.0 21.5 2.0 1.0 20 . 0 21. 6 4 . 1 2.05 0.23 7.0 6.8 7.0 12.1 

create free 20.0 21.5 2.0 1.0 20.0 21.5 4.05 2.0 0.23 7.5 6.6 7.5 11.2 

create free 20.0 21.5 2.0 1.0 20.0 21.5 3.9 1.9 0.23 8.0 5.45 8.0 10.3 

create free 20.0 21.5 2.0 1.0 20.0 21.6 3.726 1.825 0.23 8.6 5.3 8.5 9.5 

create free 20.0 21.5 2.0 1.0 20.0 21.6 3.476 1.65 0.23 9.0 5.2 9.0 8.6 

create free 20.0 21.5 2.0 1. 0 20.0 21.5 2.9 1.25 0.23 9.5 5.1 9.5 7.7 

create free 20.0 21.5 2.0 1.0 20.0 21.5 2.1 0.85 0.23 10.0 5.05 10.0 6.8 

create free 20.0 21.5 2.0 1.0 20.0 21.5 1.25 0.4 0.23 10.5 5.0 10.5 5.85 

create free 20.0 21.5 2.0 1.0 20.0 21.5 0.4 0.0 0.23 11.0 5.0 11.0 5.0 

meshend 

set time 1 gravity -10 cmdproc off frame limit 100 

eritegap 5000 interval 128 

cmdlist plot ·standard set calc eritegap * 2 interval * 2 cend 

echo on 

plot page go 32767 stop 

Table 3.24 Input commands for result set 11 and 14 
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Figure 3.16 Stress profiles for result set 11 



scat echo off debug update on 

scat damp 0.00125 0.005 gravity -10 

start SLOPE 3, C, PHI, U 

0 7 0 

create free 20.0 46 2.0 1.0 20.0 46 0.225 0.45 0.23 1.0 

1.5 

create free 20.0 46 2.0 1.0 20.0 46 1.3 0.85 0.23 2.0 

create free 20.0 46 2.0 1.0 20.0 46 1.925 1.075 _0.23 2.6 

create free 20.0 46 2.0 1.0 20.0 46 2.25 1. 175 0. 23 3. 0 

create free 20.0 46 2.0 1.0 20.0 46 2.425 1.25 0.23 3.5 

create free 20.0 46 2.0 1.0 20.0 46 2.475 1.225 0.23 4.0 

create free 20.0 46 2.0 1.0 20.0 46 2.35 1.125 0.23 4.5 

create free 20.0 46 2.0 1.0 20.0 46 2.075 0.95 0.23 5.0 

create free 20.0 46 2.0 1.0 20.0 46 1. 7 0.75 0.23 5.5 

create free 20.0 46 2.0 1.0 20.0 46 0.75 o.o 0.23 6.0 

meshend 

set time 1 cmdproc off framelimit 100 

eritegap 2000 interval 2500 

14.0 

11.8 

10.6 

9.7 

9.0 

8.35 

7.8 

7.36 

6.95 

6.6 

6.3 

cmdlist plot standard set calc eritegap * 2 interval * 2 cend 

echo on 

plot page go 40000 stop 

Table 3.25 Input commands for result set 12 and 15 

B.41 

1.0 14 

1.5 14 

2.0 14 

2.5 14 

3.0 14 

3.5 14 

4.0 14 

4.5 12 

5.0 10 

5.5 8 

6.0 6.3 
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Figure 3.18 Stress profiles for result set 13 (continued) 
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Figure 3.19 Stress profiles for result set 14 
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AJPJPJENJDJIX <C 

PROGRAM §ILJI<CJE§ 

§ 'JI'R U' <C 'JI'U RJE C JHIAR'JI'§ 

<Col 

Appendix C is a series of structure charts for the procedures and functions 

that make up program SLICES. The structure charts consist of various boxes 

linked by lines. The boxes represent logical units of code and the lines represent 

the flow of control from one part of the program to another. 

The rounded boxes are descriptive, indicating the start and end of the charts. 

They may also be used to show logical processes that have not been broken down 

in to their constituent parts. In this respect they may be viewed as comments. 

-. The rectangular boxes that are double sided indicate a call to another pro

cedure and hence a flow to another chart. The normal boxes however, represent 

logical processes within the confines of the current chart. 

The flow of program control is always from the top to the bottom of the chart. 

The current chart is exited when the bottom is reached. Control then falls back to 

a previous chart. Flow, within the chart is along the joining lines. At a junction 

of lines, flow continues by turning left. On reaching the end of a branch the flow 

returns to the last junction and continues along the righthand branch. The case 

and loop structures are, however special constructs. 

Loop structures are shown by long loops eminating from a control box. The 

control box indicates the termination condition. Flow continues around the loop 

in a clockwise direction. Case structures are shown by a contol box with a series of 

diamond decision symbols. The decision diamonds are normally associated with 



C.2l 

two boxes. The one to the left on the chart is the case condition. If this condition 

is met then program flow continues by branching left, as normal. If the condition 

is not met then flow continues down the chart. 

Some explanatory text is associated with each chart, which is organised in 

the same order as the procedure headers occur in the program. This causes some 

local procedures to appear later here than in the source. The charts for procedure 

headers that have the forward directive are placed in the correct logical sequence, 

that is with the later definitions. 
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(sTART ERROl! Sl~ 

1----1 RE\!lliTE SERI:Q;l I 

1----1 STill' Rim I 

( 00 ERRO!I SIKI'!.E) 

Figure C.l Chart for procedure error_simple 

PROCEDURE error_simple(ob, caller: string(40}}; This is a global procedure and 

immediately halts the program after the production of an explanatory message. 

This is only called when an irretrievable situation occurs. 

PROCEDURE word_scan{var cmds_in : text; var word:string{12}); This global 

procedure is called from repeater, parameters and get-command. It reads a set 

of consecutive non-blank characters to form a word of maximum length 12, and 

passes it back to the calling procedure in word. It reads from the file device 

unit buffer given in cmds-in and, if reading from a terminal prompts the user 

for a command. This procedure looks after end of line conditions and skips all 

blanks between words and all comments by calling the local procedures skipblks 

and skipcomment. 

PROCEDURE skipblks{VAR ch : string(l)); A local procedure to word..scan, this 

simply reads characters until a non-blank is encountered, this is returned in ch. 

PROCEDURE skipcomment(VAR ch: string(l)); A local procedure to word_scan, 

this reads characters until the end comment symbol '}' is encountered. This will 

recursively call itself on encountering another comment symbol ' { '. 
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(START UDRO SCAN ) 

IF stREEil I 

6 \MIL 1(01' 8lAI(X I 

RfAD CHARACTER I 

'-" 

::S!(IP BXS II 

\IHILE NOT EO!. AI(JJ NOT 8lAI(X I 

IP CQJO<EHT I 

6 II SKIPCOllllENT II 

ADO CHARACTER TO llOliD I 

READ OiARAClBI I 

'---"' 

IF 1(01' 8lAI(X I 

6 ADD CHARACTER TO IIORO I 

IF EO!. AtaJ tmT EOl' 

6 READ Lila: I 
( EtaJ IIORO SCAN) 

Figure C.2 Chart for procedure word_scan 
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1----1 READ CHARACTER 

Figure C.3 Chart for procedure skipblks 

PROCEDURE starLshut{Var cmd..i : text; starting : starLtype}; FORWARD; 

Procedure start..shut is defined later, but is headed here as it is called from pro

cedure trapper. 

PROCEDURE control(var cmd_i: text); FORWARD; Procedure control is defined 

later, but must be headed before reference can be made to it. 

PROCEDURE trapper; This is called from procedures cycle and geLcommand, and 

is executed when an attention interrupt is passed by the system to the program. 
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START Sl:IPCOXXENT 

1-----1 IIHILE IIQT EOC 

1-----1 READ OIAIIACTER 

END SKIPCOKXENT 

Figure C.4 Chart for procedure skipcomment 

The user is prompted for confirmation before the run is terminated by calling 

starLshut. 

PROCEDURE geLcommand{caller : calLtype; var quiter: boolean; var retcom : 

com..type; intcall : string{12}; cmds_ig : text}; 



C.?' 

1-----i lll!ITE ATTN Plltr'.JJT 

1-----1 UIITIL I:OT lil.ANX 

Figure C.5 Chart for procedure trapper 

This procedure is called with five parameters. caller designates which com

mand set is valid. quiter is defined on exit and determines if the calling procedure 

should exit or continue with another command from the same set. retcom, on 

exit, contains the valid command scaler value. intcall, on entry, is either a null or 

contains the literal value of the internal command to be executed. cmds_ig is the 

file device unit buffer pointer from which input should be read. 

This is the heart of the ICL parser, it is called under three conditions, inter

nally, externally and recursively on error. 

Under internal use the parameter intcall is set to the command. Under normal 

use the procedure word_scan is used to obtain a word from the file device unit buffer 

pointer in cmds_ig. The word obtained (or intcalQ is checked against a string of all 

the valid commands and the resulting command type (including null if the word is 

in error) is compared to those which are relevent to the calling procedure. There 
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Figure C.6 Chart for procedure geLcommand 
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are three possible results, a relevent valid command, an irrelevent valid command 

and lastly one which is invalid. 

In the first of these results, the routine exits with quiter set to true onlyif the 

command was internal. In the second, quiter is set and the word is placed into the 

variable gi. nextword, to be processed the next time get-command is called normally. 

In case three, the user is notified and get-command called (direct recursion) with 

the error communication file device unit buffer to provide a replacement. If a 

replacement is received, procedure control is called (indirect recursion) and input 

continues from the error communication. If further errors occur then more levels 

of recursion take place. The error condition is terminated by return, when the 

procedures fall back with this in the variable gi. nextword so that it is continuously 

processed until the first invocation of get-command is exited. At this point exit 

is made back to procedure control with quiter set to false to prevent program 

termination. 

I ON ~- SET OlW'F TO TAlE 

I OFF ~- SET O!!OFF TO FALSE 

I OTHER\/ I se ~-

Figure C.7 Chart for function onoff 
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FUNCTION onoff(var cmd_i : text) : boolean; This global function calls geLcom

mand. The two possible commands are olrll., which causes this to return true, and 

off which causes this to return false. 

1----1 ClEAR SCIIEEH I 

1-----1 WRITE RC KEADE!S I 

1----1 WAITE AC YALIJES I 

(Eta! HEADERS ) 

Figure C.8 Chart for procedure headers 

PROCEDURE headers; This global procedure initiates the headings for the run

ning commentary. 

PROCEDURE factors_of-safety(el : ptr_type); This global procedure calculates 

the factors of safety for the base contacts of each of the slices. These values are 

written to the file attached to unit 7, the debug output file. 

FUNCTION sign{val,donor:real) : real; This function receives two real values, and 

returns the value of the first with the sign of the other. 

PROCEDURE initialise_globals; This is executed only once and sets the values of 

all the global variables to zero, default or nil values. 

All of the preceeding modules are global in scope, that is they may be called 

from anywhere within the program. There is one restriction to this, they may only 
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(START F ACTOllS OF SAFEYY) 

SfTUll LOCAL VAI!IAI!l.ES I 

!IIIJLE HOT EIID OF SliCES 

IF SHEAR STRESS IS SIIALL I 

6 SET 1'03 TO I I 

CALOJLA TE FOS I 

IF F05 IS I I 

6 ADD I TO M.JXIlEA AT LIHIT I 

ADD I TO lllJXBCR HOT AT Lli'IJT I 

NEXT I 

VRITE NUXBERS TO RC I 

( El«< FACTCIRS OF SAFETY) 

Figure C.9 Chart for procedure factors_of_safety 

be called after they have been defined. In the cases of control and start-shut the 

FORWARD directive on the headings indicate that the definitions are provided 

later in the source code. The remaining modules are only called from control. 
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>----1 GIVC VAI..I!E Dcoom5 Sl!ill 

'------1 DO NOTHII!G TO VALUE 

Figure C.lO Chart for function sign 

(START INITIALISE G!..OBALS) 

1-----t SET TRAPPII!G ON I 

1----1 OI'CN FILES I 

1-----t INITIALISE GLOBAL VARIABLES I 

(END INITIALISE CUlBALS) 

Figure C.ll Chart for procedure initialise 

PROCEDURE plots(var cmd..i : text; plot-command : string{12}}; This routine 

contains the calls to the *ghost library subroutines. The structure of this routine 

is simple and consists of a repeat loop. Essentially two processes are carried out 

in the loop. Firstly get-command is called, and then a case statement causes the 

relevent command to be executed. It is within the case statement that the local 

procedures are called. The repeat loop is exited when the value passed back from 

geLcommand in plotquit is true. 
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I DI9Pl.OT ~-

I SLICES ~-

I I'CliCEPI.OT ~- FOliCE PROl'llE IIASf 

I STAmiAIID ~- FOliCE PROl'llE IIASf 

FOllCE PROFILE RIOO 

I FRAI<l:S ~-

I PAGE ~-

lum r-
I PLOTSTOI' r-
I Zotlll r-
I ~APS r-
I OTHERIII Sf r-

Figure C.l2 Chart for procedure plots 
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During internal command processing plots is called with ploLcommand set to 

a literal value and this is passed directly to geLcommand in the parameter list. 

PROCEDURE map_space{var cmd_i : text; sp_comst: string{12}); This is a local 

procedure to procedure plots. map_space has the same structure as plots, except 

that it contains two case statements. The first manipulates the plot space and the 

second the mapping onto this plot space. The repeat condition is dependent upon 

the value of mapquit, which is passed back by geLcommand. 

START SI!TIJ? PLOT 

Figure C.l4 Chart for procedure setup_plot 

PROCEDURE setup_plot; This is a local procedure to procedure plots. The intial 

format is set up and the plot output stream turned on. 
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Figure C.l3 Chart for procedure map_space 
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(sTART DISP I'UIT) 

t----i u~JLE NOT em oF SliCES 1 

t-----i lll!AII Dl5l'UCEIIENT va:TOR I 

1---i NEXT I 

( EI(IJ DISP I'UIT 

Figure C.15 Chart for procedure disp_plot 

(sTART FRAil Pl..OT) 

t----iiiMAPSPACE FUI.I.J«<SCALES 111-----111111.\PSPACE Pl..AIN II 

l----i
1 

ORAl! FRAKC I 

1-----r:: I NAPSPACE FUI.I.J«<SCALES II 

( EI(IJ FRAM I'UIT 

Figure C.16 Chart for procedure fram_plot 

PROCEDURE disp_plot{el: ptr-type); This is a local procedure to procedure plots. 

A plot of the slice body displacements is produced. 

PROCEDURE fram_plot; This is a local procedure to procedure plots and produces 

a frame around the main plot space. 



c.]_ 7 

(START Sllll: Pl.~ 

IIHJLE NOT em oF SliCE LIST I 

IF Ia) COR!a:RS I 

~ ILERROR 51~ II 

L DRAII \lATER TABLe SEGMENT I 

DRAII sua: I 

NEXT I 

(etm SliCE PI.OT) 

Figure C.l7 Chart for procedure slice_plot 

Figure C.l8 Chart for function utohead 

PROCEDURE slice_plot(el : ptr_type); This local procedure to procedure plots 

causes the slice geometry to be plotted. 

FUNCTION utohead(el: ptr_type}; real; This local function to procedure slice_plot 

caonverts the pore water pressure to an equivalent height for plotting of the water 

table. 
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Figure C.l9 Chart for procedure force_profile 
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PROCEDURE force_profile(ele : ptr_type; dire : dir_of_contacts); This is a local 

procedure to procedure plots. force_profile produces formats by calling map_space 

internally and plots the stress profiles for either the base or the side contacts 

according to the value of dire being either based or righthand. 

Figure C.20 Chart for procedure init_fm 

PROCEDURE iniLfm; A simple procedure for initialising stress mapping values 

before finding maxmimum and minimum values for scaling the stress profiles. It 

is local to force_ pro file. 

._I e_ASBI _ ___,~ -

.__I R_IGHT _ ___,~ -

>---1 Ulie BASe POlNTBI 

)--~ USE RIGHT POINTER 

Figure C.21 Chart for function ptrd_fm 
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(START Lltl3 FH) 

1-----{( CALCULATE IO:l Tm..ERANCE 

1-----{( CALCULATE TOLERATED LIMITS 

(ei!D LI~S FH 

Figure C.22 Chart for procedure lims_fm 

FUNCTION ptT£L/m{elem : ptr_type; dire : dir_of_contacts) : con_ptr; ptrd_fm is 

local to force_profile and finds the contact pointer for an element depending on 

whether side or base contacts are being plotted. 

PROCEDURE lims_fm{VAR miny, maxy: real); This adds a ten percent margin 

to the stress mapping values and is local to force_profile. 

PROCEDURE cycle{var cmd_i : text); This procedure controls the calculation 

sequence. The structure of cycles consists of a small block dealing with reading 

in the number of cycles to be executed, followed by a while loop to execute them. 

The while loop terminates either when the requested cycles are complete or when 

it is pointless to go further. The statements within this loop fall into four blocks. 

The first block calls fordsl, consolsl and increments the loop counters. The second, 

an if structure, determines if a running commentary update is due, executes this 

and calls factors_of_safety. The third, another if block, determines if command 

list processing is due. If it is, a repeat structure is entered which continually 

calls control until gi. cmdend is set by cend. control is called with the file device 

unit buffer belonging to the command list secondary command file. The fourth 

block moniters the behaviour of the maximum slice displacement. If this value 

is < 10-14 or > 106 or has stayed almost constant for 100 cycles then the while 

loop will terminate. After execution of the while loop the maximum displacement 



C.21 

1-------t I<ZAD Ill C)? C'I'CU:S I 

1-------t SiT tat<B:EQ OQXS: 0 I 

~IU! = u 1!11 O? C'ICU:9 001 I!!IT tit« to eun I 

1-------t m QUI 01~ >:e:<HCill TO - vwu I 

1------t ::~,~ II 

1-----t ::~ 'l'tooa.SI. II 

loaa<SIT CYO.E VALUES I 

IP 111« FCill I<2SSlG2 I 

Lauoor-1 
v I._ __ ·--H ::•ACTJRS 0> s.!Fl!TY II 

IF11Kl!FCill~ll<ll I 

1-----1:: I :eo>mn II 

\. "'J))JTOll STAOILITY ) 

IPATlSitla:l I 

II 

Figure C.23 Chart for procedure cycle 
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state is reviewed and a message written to the running commentary for each of 

the three value cases outlined above. 

PROCEDURE fordsl(el : ptr_type}; As one of the two main calculation procedures 

this is local to cycles. The force displacement law is defined here. This is executed 

for each contact by combining a while and for loop to traverse the slice list and 

the contacts for each element. 

(START FCOlSll.SL) 

1/HILE NOT END OF SLICE LIST I 

( CAL.CULA TE DISP!.ACEI<CNTS ) 

\. CAUlllATE HAXHI\Jil DISPI.ACelENT 50 FAR ) 

(SET RJl!Cf VECTOR TO ZERO) 

HEXT I 

(END FCOIISOI.SL) 

Figure C.25 Chart for procedure fconsolsl 

PROCEDURE fconsolsl{el : ptr_type}; The second of the two calculation proce

dures, this defines the motion law for the slices. The slice list is traversed using a 

while loop so that the law is executed for each slice. 

PROCEDURE starLshut(var cmd_i : text; starting : starLtype); This procedure 

controls starting and stopping procedures and looks after meshing, contact creation 

and reading to and from the restart files. The procedure consists of a single case 
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Figure C.24 Chart for procedure fords/ 
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Figure C.26 Chart for procedure starLshut 
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statement with four parts, one for a new run, stopping, restarting, and updating 

a restart file. The procedure plots is referred to several times with internal type 

calls. 

PROCEDURE update_area(el: ptr_type); This is local to starLshut and is respon

sible for setting up the contacts between the slices as well as with the platen. The 

slice list is traversed using a while construct. 

START UPDATE HESSAGE 

Et!D UPDATE ~SAGE 

Figure C.28 Chart for procedure update_message 

PROCEDURE update_message{direction : hed_type; el: ptr_type; cont : con_ptr); 

update_message is local to update-area and generates debug contact information 

for each contact as it is created during an initial or restarted run. 

PROCEDURE cold_contact(el : ptr_type direction : hed_type; cont : con_ptr); 

cold_contact initialises the contact parameter for a new contact during a cold, that 

is, an initial run. 

PROCEDURE geLapex(var base, oater : corn_ptr; number : integer); This pro

cedure creates the corner doubly linked rings, the number indicates the number 

of corners to be created. The procedure not only produces complete rings for the 

slices but can splice corners into such a ring at any time. This latter facility is 

exploited in creating the platen corner ring. This procedure is local to starLshut 

and is called from cre_slices and cre_platen. 
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Figure C.27 Chart for procedure update_area 

PROCEDURE mesh; mesh executes the command input dealing with the creation 

of slices. The structure is that of plots, except that the repeat loop is exited 
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Figure C.29 Chart for procedure colrLcontact 

(START GET APEX) 

t-----1 IF 1«1 CORNERS EXIST I 

~)----1 CREATE FIRST CCIRNCR I 

1----1 FQll REQUESTED CORia:RS I 

1----1 CREATE CORNER I 

( EI!D GET APEX) 

Figure C.30 Chart for procedure geLapex 

when meshquit is explicity set by the user by the meshen.d command. The case 

statement has two options, one for creating and one for quiting. This procedure 

calls cre_s[ice. 
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1---l UHTIL TIKE TO QUIT 

I CREATE ~-

)---1 SET TIKE TO C!UJT TRUE 

Figure C.31 Chart for procedure mesh 

PROCEDURE cre_platen{el : ptr_type); This local procedure to mesh creates the 

platen, it is called after all the slices have been created. For each slice in the slice 

list it adds corners to the platen corner ring by calling geLapex. 

PROCEDURE cre_slices; get-command is called to ascertain the slice type and 

a case statement with two options creates the slice according to the type. The 

element values are initailised to zero and the corner rings created. Once this has 

been done centres of gravity and masses are found by traversing the corners. 

PROCEDURE read_restart_file; This procedure reads a restart file, it is local to 

starLshut and calls no other procedures. The structure is simple, the repeat and 

command list files are emptied and the restart file is set to the beginning. Following 
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Figure C.32 Chart for procedure cre_platen 

this a while loop executes until the end of the restart file is reached. Within the 

loop, a record is read from the file and a case statement option reinterpretes the 

buffer contents according to the tag field on the buffer record type. 

PROCEDURE write_restarLfile; This procedure writes a restart file and is local 

to starLshut. The restart file is produced in a standard manner. Firstly five sets 

of general information are moved to the buffer and written. Then, each line of the 

command list file and the repeat structure file is set up and written. Following 

this write_r_el is called twice, once for the slice list and then for the platen, and 

finally the restart file is finished with an end of file message. 

PROCEDURE write_r_el(el : ptr_type; c:char); This local procedure to write_re

start_file recieves the base of an element list in the parameter el. This list is 

traversed and the information for each element is written to the restart file. Fol

lowing the element data, the righthand and base contact information is written, 

and lastly the corner rings are traversed and the coordinates added to the file. 
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Figure C.33 Chart for procedure cre_slices 

PROCEDURE complete; This causes some general information to be written to 

the running commentary. 

PROCEDURE debug_slice(var cmd_i : text); This procedure produces or arranges 

for the production of debugging information. The structure is the same as for plots, 

a repeat containing a case statement. There are twelve case options, mirroring the 
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Figure C.34 Chart for procedure read_restart_file 
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Figure C.35 Chart for procedure write_restarLfile 
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Figure C.36 Chart for procedure write-r_el 

twelve debug commands. Reference is made to two local procedures, write_con 

and write_sli for the production of information. 

PROCEDURE write_con{el :ptr_type); This is local to debug_slice and produces 

information for each contact, wr_con is called for each contact by traversing the 

data structure. 
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Figure C.37 Chart for procedure complete 

PROCEDURE wr_con(el: ptr_type; con: con_ptr); This is local to write_con and 

writes out the contact information for a single contact. 

(START IIRJlE Sl.l) 

IIA ne HEADINGS I 

!littLE NOT em oP SLice LIST I 

IIRITE SliCE II!FOAMATION I 

GET I!EXT SLICE I 
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Figure C.41 Chart for procedure write_sli 

PROCEDURE write-sli(el :ptr_type); This is local to debug_slice and produces slice 

data for each slice. 

PROCEDURE parameters(var cmd_i: text); Parameters deals with the execution 

of the set commands. The structure is the same as plots, the case statement 



Appemudllix C. C.35 

START DEBUG SliCE 

I SLICES ~-

lc(J)j ~-

I GEN ~- )----l \!RITE GEIIERAL liO'ORMATIOll 

lf(J)j ~- )----l MH ALL DEBUG FlAGS ())I 

IFill' ~- >------1 MN ALL DEBUG FLAGS Ol'F 

I~ ~- 1---_,. SET MQTIQ)j FLAG 

I est ~-

IUPD ~-

I CYC ~- Il----l SET CYCLE FLAG 

'-----1 SET FORO FlAG 1----1 SET HOTION FlAG 

I FOO ~- 11-----1 SET FORO FLAG 

I TIIA ~-

1 osc ~-

I OTI!EIIIIISE ~-

END DfBUG St. ICE 

Figure C.38 Chart for procedure debug_slice 
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1-----l NEXT 

Figure C.39 Chart for procedure write_con 

Figure C.40 Chart for procedure wr_con 

containing twelve options. Most of these involve the prompting for, and reading in 

of parameter values. One option, the calculator refers to the procedure calculator. 



C.37 

START PARAKETERS 

I EO«< ClllliWlll ~ - SET EO«< 

I FIW<I.HIIT ~- SET LIIIIT 

I CYCI.fG!I r- sa GAP 

I GRAVITY ~- SET GRAVITY 

I PTIKE ~- SET TIKE INCREKENT 

I FIJAI<l' ~- SET DAI<l' 

I CALC ~-

I 0:01111' ~- IIITERVAL 

I CKDI..IST ~- REVRITE FILE IM'IL END COKIWID 

t----1 VRITE VORO TO FILE 

I LISTPII ~- SET Cl«lPRRC 

I OVER Rl' ~- SET RF OVER 

I OTHEA\11 SE ~-

Figure C.42 Chart for procedure parameters 
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Figure C.43 Chart for procedure calculator 

PROCEDURE calculator; This is local to parameters and enables several of the 

problem parameters to be altered by calculation. The structure is that of plots 

with a case statement of six options refering to the function intcalc, which performs 

the calculation. On return from intcalc the new value is placed in the variable to 

be changed. 

FUNCTION intcalc(op : real): real; This is local to the procedure calculator and 

recieves one value, the operand, the variable to be altered. geLcommand is called 
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I OTHER\IISE ~ -

Figure C.44 Chart for function intcalc 

to obtain the operator and a case option executed accordingly. The result of the 

simple calculation is written to the running commentary and then returned to the 

calculator. 

PROCEDURE repeater(var cmd_i : text}; This procedure is called from control 

during the execution of the repeat command. Initially the file -sass.rep is emptied 

and the number of repeats read. A repeat loop calling geLcommand is used to copy 

the input from the primary source to the secondary. The repeat facility is invoked 

by means of executing a for loop the number of times requested. Within this, 

the variable gi.reptend is set to false, and control is called from within a second 

repeat loop until gi. reptend is true. The file device unit buffer for the secondary 

command source is passed to control on invocation. gi. rep tend is set to true on 

encountering rend in procedure control. 
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Figure C .45 Chart for procedure repeater 

PROCEDURE control; The structure consists of a call to get-command followed 

by a case statement. Each case option refers to a permissible level one command. 

PROGRAM SLICES Initialisation of the program variables is carried out first 

by calling initialise_globals, this sets all global variables to zero or default values. 

headers is called next to initiate the structure of the running commentary. The 

outermost control structure of the program then follows. This is a repeat loop 

that calls the procedure control. The loop termination condition can never be 
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Figure C.46 Chart for procedure control 
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START PROGRAH SliCES 

1------i UHTIL TJ~;E TO llUIT 

Figure C.4 7 Chart for program SLICES 

true, so this is a repeat forever construct. The program, however, does closedown 

in procedure starLshut or error_simple. Procedure control is called with the file 

device unit buffer pointer for the primary input command file. 
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PROGRAM §JLJICJE§ 

program slices(debug_o, sercom); 
%include estB:u.ghost.lib 
%include trap 

const 
led_pos = 2; 
tit_pos = 4; 
req_pos = 6; 
fra_pos = 7; 
plo_pos = 8; 
cyc_pos = 9; 
com_pos = 11; 
mes_pos = 12; 
fos-pos = 13; 
err _pos = 14; 
tot_pos = 17; 
fiLpos = 20; 
pro_pos = 16; 
pos_str = ' ' ; 
clearoff =' .0'; 
curs on = ' . 1 ' ; 
maxcycle = 1000000; 
commands = { onoffer} 
'null on off ' II 
'bottom lowermiddle uppermiddle top 
'horizontal vertical plain full 
'zoom ' I I {map} 

{onoffer} 
picture ' I I 

fullnoscales' I I 

'initialise slices displacementforces standard ' II 
'page border map endplot ' I I {plot} 
'free track ' I I {create} 
'meshend create ' II {mesh} 
'= * I + ' II 
'A ? ' I I { operater} 
'echo cmdproc overwrite framelimit writegap 
'interval cmdlist gravity damp time 
'calculate ' II {set} 
'contacts general flagson 
'motion consolidate ford 
'oscillate ' I I {debug} 
'set cend rend 
'start go plot 
'stop return '. I 

type 

flags off 
cycle 

update 
trace 

restart save 
repeat debug 
{control} 

' II 
' II 

' II 
' II 

' II 
' II 

com_type = (null, on, off, lowerp, midlop, midupp, upperp, piccie, horiz, 
vertic, plain, whole, fnosc, zoom, init, slices, displot, 
forceplot, standard, page, frames, maps, plotstop, free, track, 
meshend, create, equal, mult, divid, plus, minus, power, enquiry, 
echo, listpr, over_rf, framlim, cyclegp, cmdint, cmdlist, gravity, 

D.]. 
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fdamp, ptime, calc, con, gen, fon, fof, upd, mot, csl, fod, eye, 
tra, osc, sets, cend, rend, rest, save, star, cycl, plot, rept, 
debg, stop, retur); 

call-type~ (errorer, onoffer, mapper, plotter, masher, creater, operter, 
calcter, paramer, debuger, contler); 

start-type= (cold, ~arm, shutdo~n, keep); 
dir_of_contacts = (righthand, based); 
ptr_type = l!lelemen·t_-t;ype; 
con-ptr = @con.. type; 
corn_ptr = @corn_ type; 
vector_type = record 

x, y: real 
end; 

coord..type = record 
xc, yc: real 

end; 
con-type = record 

consol: record 
ns, ss, lime, pp: real 

end; 
damp£, sine, cose, con-len: real; 
failed: boolean; 
corn, edge: corn_ptr; 
other: ptr _type; 

end; 
corn_type = record 

c: coord-type; 
c~, a~: corn-ptr 

end; 
element_type = record 

posn: coord-type; 
force, s: vector _type; 
data: record 

phi, mass, sidec, cohes, sphi, rho, k, p~, spwp, e: 
real; 

sliceno: integer; 
typ: free .. track; 

end; 
contacts: record 

right, base: con_ptr 
end; 

next: ptr-type; 
apexes: corn..ptr; 

end; 
cycle_type = 0 .. maxcycle; 
hed-type = string(80); 
grid-type = record 

xmin, xmax, ymin, ymax: real 
end; 

gen_info_type = record 
heading: hed_type; 
tstep: real; 
nextword: string(12); 
reptend, cmdend: boolean; 
motioning, consoling, updating, cycling, fording, tracing, 

oscing: boolean 
end; 

option..type = record 
plot_lims: grid..type; 
vert: boolean; 

]).2 
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meshtbs: record 
xb, yb, xt, yt: real 

end; 
grav: vGctor_typG; 
damp, damps: real; 
cyclegap, cycle-interval: cycle_type; 
cmdprocessing, echo, rf_over: boolean 

end; 
sum_type = record 

sc, scold, scsofar: real 
end; 

totals-type = record 
cycles, restarts, slices, cons, pies, pages: integer 

end; 

const 
nilv = vector_type(O, 0); 
nile= coordLtype(O, 0); 
nilhed = ' '; 
nilgrid = gridLtype(O, 0, 0, 0); 

var 
repts_i, cycmdLi, oscil_o, debug_o, trace_o, sercom: text; 
rf_first, quit, qdum, screen: boolean; 
gi: gen_info_type; 
opt: option_type; 
sum: sum-type; 
total: totals-type; 
plspace, plot_space, force~ap: gridLtype; 
platen, slice_list, eolist: ptr_type; 
apex, platapex: corn-ptr; 

{**************************************** BEGIN GLOBAL ROUTINES } 

procedure error_simple(ob, caller: string(40)); 

begin 
if gi . tracing 

then 
writeln(trace_o, 'Entered procedure ERROR-SIMPLE'); 

rewrite(sercom, 'UNIT=11'); 
writeln(sercom, 'Error', '''', ob, '''', 'found in routine' caller, 

, ) j 

halt; 
end {error_simple}; 

procedure word-scan(var cmds-in: text; var word: string(12)); 

const 
blank= ' '; 

var 
ch: string(1); 

procedure skipblks(var ch: string(1)); 

begin 

D.3 
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if gi. tracing 
then 

eriteln(trace_o, 'Entered procedure SKIPBLKS'); 
ch := ' '; 
while ch = blank do begin 

ehile (~ eoln(cmds-in)) AND (ch =blank) do 
read(cmds_in, ch); 

if (eoln(cmds_in)) AND ( ~ eof ( cmds_in)) 
then 

readln(cmds_in); 
if eof ( cmds_in) 

then 
error_simple(' End of file causes return to mts', 'skipblks'); 

end; 
if gi . tracing 

then 
wri teln ( trace_o, ' EXIT procedure SKIPBLKS') ; 

end {skipblks}; 

procedure skipcomment(var ch: string(l)); 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure SKIPCOMMENT'); 

while ch ~ = •}• do begin 
while(~ eoln(cmds_in)) AND (ch ~ = •}•) do 

read(cmds_in, ch); 
if (eoln(cmds-in)) AND (~ eof(cmds-in)) 

then 
readln(cmds_in); 

if eof ( cmds_in) 
then 

error-simple('end of file causes return to mts', 'skipcomment'); 
end; 

skipblks(ch); 
if ch = •{' 

then 
skipcomment(ch); 

if gi.tracing 
then 

writeln(trace_o, ' EXIT procedure SKIPCOMMENT'); 
end {skipcomment}; 

begin {word-scan} 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure WORD_SCAN'); 

word := ''; 
ch := ''; 
if screen 

then begin 
writeln(output, substr(pos_str, 1, err_pos + 2), 

' Input a command please . . . . . . . . . . . . ') ; 
reset(cmds~in, 'UNIT=11,INTERACTIVE'); 
repeat 

read(cmds_in, ch) 
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until ch -
end 

else 

= ''. . 
skipblks(ch); 

ahile c- eoln(cmds-in)) AND (ch- =blank) do begin 
if ch"' ' {' 

then 
skipcomment(ch); 

aord := aord II ch; 
read(cmds_in, ch); 
end; 

if ch - = blank 
then 

word := word II ch; 
if opt.echo 

then 
writeln(output, substr(pos_str, 1, com-pos), 'Command 

'); 
if (eoln(cmds-in)) AND c- eof(cmds-in)) 

then 
readln(cmds_in); 

if gi. tracing 
then 

wri teln(trace_o, ' EXIT procedure WORD-SCAN 
end {word-scan}; 

word); 

procedure start-shut(var cmd-i: text; starting: start_type); 
forward; 

procedure control(var cmd-i: text); 
forward; 

procedure trapper; 

var 
ch: char; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure TRAPPER'); 

writeln(output, substr(pos_str, 1, err_pos), 
' Attn! : Do you want to stop?'); 

reset(sercom, 'UNIT=11'); 
repeat 

read(sercom, ch); 
until (ch- =' '); 

trpreset; 
if ch = 'y' 

then 
start_shut(input, shutdown); 

writeln(output, substr(pos-str, 1, err-pos), 
'); 

if gi. tracing 
then· 

writeln(trace_o, ' EXIT procedure TRAPPER'); 
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end {trapper} ; 

procedure get_command(caller: call-type; var quiter: boolean; var retcom: 
com-type; intcall: string(12); var cmds-ig: text); 

const 
last "'816; 

var 
ifail: boolean; 
beg, loca, indes: 0 .. 1200; 
this-com: string(12); 

begin 
if gi.tracing 

then 
writeln(trace_o, 'Entered procedure GET_COMMAND 

this_com := intcall; 
if this-com = '' 

then begin 
this_com := gi.nextword; 
gi.nextword := ''; 
end; 

if this_com = '' 
then 

word_scan(cmds-ig, this_com); 
if trap 

then 
trapper; 

beg := 1; 
repeat 

intcall); 

indes := index(substr(commands, beg, last- beg+ 1), this_com); 
loca := indes +beg- 1; 
if loca MOD 12 = 1 

then 
indes := 0 

else 
beg : = loca + 1; 

until (indes = 0) OR (last- beg< 12); 
retcom := com_type(loca DIV 12); 
case caller of 

errorer: 
ifail :=NOT (retcom IN on retur ); 

onoffer: 
ifail :=NOT (retcom IN on off); 

mapper: 
ifail :=NOT (retcom IN lowerp .. zoom); 

plotter: 
ifail :=NOT (retcom IN init plotstop, zoom); 

masher: 
ifail :=NOT (retcom IN free track); 

creater: 
ifail :=NOT (retcom IN meshend .. create); 

operter: 
ifail :=NOT (retcom IN equal .. enquiry); 

calcter: 
ifail :=NOT (retcom IN cyclegp, cmdint, gravity .. ptime ); 

para.mer: 
ifail :=NOT (retcom IN echo .. calc); 
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debuger: 
ifail :=NOT (retcorn IN con .. osc, slices); 

contler: 
ifail :=NOT (retcom IN sets .. retur ); 

end; 
ififail 

then begin {some thing's arong} 
if (retcom = null) OR (caller "' con·tler) 

then begin {invalid command} 
screen : = true; 
writeln(output, substr(pos-str, 1, err-poe), 'Error','''' 

this-com, '''', 'found in routine', 'get_command 
writeln(output, 'Input corrected commands ... <RETURN> 
get_command(errorer, ifail, retcom, '', sercorn); 
while retcorn - = retur do begin 

'); 
... '); 

gi.nextaord := substr(comrnands, ord(retcom) * 12 + 1, 12); 

control(sercom); {control returns with nextaord = returnlkeyword} 
get_command(errorer, ifail, retcorn, gi.nextaord, sercom); 
end; 

screen : = false; 
gi.nextword :='return'; 
quiter :=false; 
end 

else begin {valid command wrong caller} 
quiter :=true; 
gi.nextword := this_com; 
end; 

end 
else 

quiter := intcall - = 
if gi. tracing 

then 

''. {alls ok} 

writeln(trace-o, ' EXIT procedure GET-COMMAND'); 
end {get_command}; 

function onoff(var cmd_i: text): boolean; 

var 
onof: com...type; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure ONOFF'); 

get_command(onoffer, qdum, onof, '', crnd_i); 
case onof of 

on: 
onoff : = true ; 

off: 
onoff :=false; 

otherwise; 
end; 

if gi. tracing 
then 

wri teln(trace_o, ' EXIT procedure ONOFF'); 
end { onoff} ; 
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procedure headers; 

begin 
writeln(output, clearoff); 
writeln(output, substr(pos_str, 1, led-pos), 

'PROGRAM SLICES RUNNING COMMENTARY ON: '); 
ariteln(output, substr(pos_str, 1, tit_pos), ' ', gi.heading); 
ariteln(output, substr(pos_str, 1, req_pos), ' 0 cycles requested'); 
ariteln(output,'' total.pages: 6,' framesplotted'); 
ari teln(output, ' ' total. pies: 6, ' plots types drawn'); 
ariteln(output, ' ' total.cycles: 6, ' cycles and still counting!'); 
end {headers}; 

procedure factors-of_safety(el: ptr-type); 

var 
fos: real; 
atlim, natlim: integer; 

begin 
atlim := 0; 
nat lim := 0; 
ariteln(debug_o, total.cycles: 6, 

'Slice no FOS shear normal 
while el - = nil do 

limit 

with el@, contacts.base@, consol do begin 
if abs(ss) < 1e-20 

then 
fos := 1 

else 
fos := abs(lims Iss); 

pap targu'); 

writeln(debug-o, ' data.sliceno: 10, fos: 10, ss: 10, ns: 10, 
lims: 10, pp: 10, data.pwp: 10); 

if fos < 1.0005 
then 

atlim := atlim + 1 
else 

natlim := natlim + 1; 
el :=next; 
end; 

writeln(output, substr(pos_str, 1, fos_pos), ' Number slices at limit ' 
atlim: 4, ' not at limit ', natlim: 4); 

end {factors_of_safety}; 

function sign(val, donor: real): real; 

begin 
if donor - = 0 

then 
sign := abs(val * donor) I donor 

else 
sign :=val; 

end {sign}; 

procedure initialise-globals; 
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begin 
trapon; 
reerite(debug_o, 'UNIT=7'); 
rewrite(trace_o, 'UNIT=8'); 
reerite(oscil_o, 'UNIT=10'); 
reerite(cycmd-i, 'FILE=-sass.cmd.i'); 
quit :=false; 
rf_first := true; 
with gi, plspace, opt, total, opt.meshtbs do begin 

reptend :=false; 
cmdend :=false; 
tstep := 0; 
heading := nilhed; 
next '!lord : = ' ' ; 
motioning :=false; 
updating := fal~e; 
cycling :=false; 
fording :=false; 
oscing := false; 
tracing :=false; 
consoling :=false; 
plspace := nilgrid; 
force~ap := nilgrid; 
plot_space := nilgrid; 
plot_lims := nilgrid; 
xb := 0; 
yb := 0; 
xt := 0; 
yt := 0; 
vert : = true ; 
grav .x := 0; 
grav.y := 1; 
damp := 0; 
cyclegap := 100; 
cycle-interval := maxcycle; 
echo : = true; 
rf_over :=true; 
cmdprocessing :=false; 
sum.sc := 1E70; 
sum.scold := 0.0; 
sum.scsofar := 0; 
slices := 0; 
cons := 0; 
cycles := 0; 
restarts : = 0; 
pies := 0; 
pages := 0; 
platen : = nil; 
slice_list :=nil; 
apex :=nil; 
platapex :=nil; 
end 

end {initialise-globals}; 

{**************************************** END GLOBALS } 
{**************************************** BEGIN PLOTS } 

procedure plots(var cmdLi: text; plot-command: string(12)); 
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var 
plotcom: com-type; 
plotquit, eriting: boolean; 

procedure map-space(var cmd-i: text; sp-comst: string(12)); 

canst 
paph-space = grid-type(0.06, 0.96, 0.05, 0.65); 
papv_space = gridLtype(0.15, 0.76, 0.06, 0.96); 

var 
quartht, htratio: real; 
sp_com: com_ type; 
map_sp, plt_sp: gridLtype; 
mapquit: boolean; 

begin 
if gi.tracing 

then 
eriteln(trace_o, 'Entered procedure MAP-SPACE'); 

repeat 
get_command(mapper, mapquit, sp_com, sp-comst, cmdLi); 
with plt_sp do begin 

pl t_sp : = plot_space; 
quartht := 0.9 * (ymax- ymin) I 4; 
case sp-com of 

horiz: begin 
opt.vert :=false; 
plot-space := paph-space; 
plt-sp :=plot-space; 
quartht := 0.9 * (ymax - ymin) I 4; 
end; 

vertic: begin 
opt.vert :=true; 
plot_space : = papv_space; 
plt-sp :=plot-space; 
quartht := 0.9 * (ymax - ymin) I 4; 
end; 

lowerp: 
ymax := ymin + quartht; 

midlop: begin 
ymin := ymin + quartht; 
ymax := ymin + quartht 
end; 

midupp: begin 
ymin := ymin + 2 * quartht; 
ymax := ymin + quartht 
end; 

upperp: begin 
ymin := ymin + 3 * quartht; 
ymax := ymin + quartht 
end; 

piccie: begin 
ymin := ymin + 2 * quartht; 
ymax := ymin + 2 * quartht 
end; 

otherwise; 
end; 
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if sp_com - = plain 
then 

pspace(xmin, xmax, ymin, ymax); 
if ymax - ymin < 1E-20 

then 
htratio := 1 

else 
htratio := (xmax- xmin) I (ymax- ymin); 

end; 

with map_sp do begin 
map-sp := plspace; 
case sp_com of 

lowerp, midlop, midupp, upperp: begin 
ymin := force~ap.ymin; 
ymax := force~ap.ymax; 
end; 

piccie, horiz, vertic, whole, fnosc: 
ymax := ymin + (xmax - xmin) I htratio; 

zoom: 
with plspace do begin 

if screen 
then 

ariteln(output, aubatr(pos_str, 1, pro_poa), 
'Enter xmin, xmax, and ymin ... '); 

read(cmdLi, xmin, xmax, ymin); 
ymax := ymin + (xmax - xmin) I htratio; 
map-sp := plspace; 
end; 

plain: begin 
map-sp := nilgrid; 
xmax := 100; 
ymax := 100; 
end; 

othenlise; 
end; 

ctrmag ( 10) ; 
map(xmin, xmax, ymin, ymax); 
end; 

if (ap_com - = fnosc) AND (sp-com - = plain) 
then 

scales; 
border; 
until mapqui t ; 

if gi.tracing 
then 

Hriteln(trace_o, ' EXIT procedure MAP-SPACE'); 
end {map-space} ; 

procedure setup_plot; 
{ sets up plotting parameters } 

{ sui table for a4 size paper I laser printer} 
{ called from either start or restar } 
{ end of line } 

begin 
if gi. tracing 

then 
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writeln(trace_o, 'Entered procedure SETUP-PLOT'); 
writeln(output, substr(pos_str, 1, mes-pos- 1)); 
paper(1); 
cspace(O.OO, 1.00, 0.00, 1.00); 
if opt .vert 

then 
map_space(cmd_i, 'vertical') 

else 
map_space(cmd_i, 'horizontal'); 

map-space(cmd_i, 'zoom'); 
blkpen; 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure SETUP-PLOT'); 

end {setup-plot}; 

procedure disp-plot(el: ptr_type); 
{ plot of displacements, called from plot, end of line } 

begin 
if gi.tracing 

then 
writeln(trace_o, 'Entered procedure DISPJ?LOT'); 

while el - = nil do 
with el@ do begin 

gpoint(posn.xc, posn.yc); 
join(posn.xc + s.x, posn.yc + s.y); 
el :=next; 
end; 

if gi. tracing 
then 

writeln(trace_o, • EXIT procedure DISP..PLOT'); 

end {disp-plot}; 

procedure frarn-plot; 

var 
time, yline: real; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure FRAM..PLOT'); 

with plspace do begin 
map_space(cmd_i, 'fullnoscales'); 
map_space(cmd_i, 'plain'); 
time := gi.tstep * total.cycles; 
undlin(1); 
italic(1); 
plotcs(5, 95, gi.heading, length(gi.heading)); 
pcsend(85, 95, 'TIME ', 6); 
plotne(88, 95, time, 4); 
italic(O); 
undlin(O); 
map-space(cmd_i, 'fullnoscales'); 
end; 

if gi. tracing 

][).12 



Appe:ndlix ]). 

then 
wri teln ( trace_o, ' EXIT procadura FRAM..PLOT') ; 

end { fram_plot} ; 

procedure slice_plot(el: ptr_type); 
{plot a snapshot of the geometry, called from plot, end of line, plot a slice } 

function utohead(el: ptr-type): real; 

begin 
if el@ocontactsoright - =nil 

then 
utohead := sqrt(abs(2 * el®odataospwp * el®ocontactsoright®ocon_len 

I optogravoy)) 
else 

utohead : = 0; 
end {utohead}: 

begin {slice_plot} 
if gi 0 tracing 

then 
writeln(trace_o, 'Entered procedure SLICE-PLOT'); 

if (el - =nil) AND (el@oapexes - =nil) 
then 

with el®oapexes®oaw@ do 
positn(coxc, coyc + utohead(el)); 

while el - = nil do 
with el@ do begin 

if apexes = nil 
then 

error_simple('no corners in slice', 'slice-plot') 
else 

with apexes@oaw@, contacts do begin 
ap;;u := apexes; 
j o:Ln(c o xc, co yc + utohead(el)); 
positn(apex®ocoxc, apex@oc.yc); 
repeat 

apex := apex@ocw; 
with apex@ do 

join(coxc, coyc) 
until apex= apexes; 

positn(coxc, coyc + utohead(el)); 
end; 

el := el@.next; 
end; 

if gi . tracing 
then 

wri teln ( trace_o, ' EXIT procedure SLICE..PLOT') ; 

end { slice_plot}; 

procedure force_profile(ele: ptr_type; dire: dir_of_contacts); 

var 
el: ptr_type; 
condir: con-ptr; 
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procedure init_frn; 

begin 
el := ele; 
force~ap.yrnax :=- rnaxreal; 
force~ap.yrnin := rnaxreal; 
end { ini t_frn} ; 

function ptrd_frn(elern: ptr_type; dire: dir_of_contacts): con-ptr; 

begin 
case dire of 

based: 
ptrd_frn := elern@.contacts.base; 

righthand: 
ptrd_fm : = elem@. contacts. right; 

end; 
end {ptrd_fm} ; 

procedure lims_fm(var miny, maxy: real); 

var 
tenpercent: real; 

begin 
tenpercent := (maxy- miny) I 10; 
if tenpercent = 0 

then 
tenpercent := maxy I 10; 

rnaxy : = maxy + tenpercent; 
miny := miny- tenpercent; 
end { lims_fm}; 

begin {force-profile} 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure FORCE_pRQFILE'); 

with force~ap do begin 

el := ele; 
while el - = nil do begin 

condir := ptrd_fm(el, dire); 
if condir - = nil 

then 
with condir@ do 

consol.lirns := sign(consol.lims, consol.ss); 
el := el@.next; 
end; 

init_fm; 
while el - = nil do begin 

condir := ptrd_fm(el, dire); 
if condir - = nil 

then 
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with condir@.consol do 
case dire of 

righthand: begin 
ymax ;; max(- el@.data.spap, ymax, ns); 
ymin ;; min(- el@.data.spwp, ymin, ns); 
end; 

based: begin 
ymax ;; max(- el@.data.pwp, ymax, ns); 
ymin :=min(- el@.data.pwp, ymin, ns); 
end; 

end; 
el := el@.next; 
end; 

el:=ele; 
condir := ptrd_fm(el, dire); 
if condir - = nil 

then begin 
lims_fm(ymin, ymax); 
case dire of 

based: begin 
map-space(cmd-i, 'bottom'); 
map_space(cmd_i, 'plain'); 
ctrset(1); 
plotcs(5, 6, 'ARC- NS', 8); 
map_space(cmd_i, 'bottom'); 
end; 

righthand: begin 
map-space(cmd_i, 'uppermiddle'); 
map-space ( cmd_i , 'plain' ) ; 
ctrset(1); 
plotcs(5, 5, 'INTER-NS', 10); 
map-space(cmd_i, 'uppermiddle'); 
end; 

end; 
ctrset(4); 
positn(el@.posn.xc, condir@.consol.ns); 
while el - = nil do 

with el@.posn do begin 
condir := ptrd-fm(el, dire); 
if condir - = nil 

then 
with condir@.consol do begin 

join(xc, ns); 
plotnc(xc, ns, 45) 
end; 

el := el<D.next 
end; 

el := ele; 
case dire of 

righthand: 
positn(el@.posn.xc,- el@.data.spwp); 

based: 
positn(el@.posn.xc,- el@.data.pwp); 

end; 

while el - = nil do 
with el@.posn do begin 

condir := ptrd_fm(el, dire); 
if condir - = nil 
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then 
with condir@.consol do begin 

case dire of 
righthand: begin 

join(xc,- el@.data.spwp); 
plotnc(xc,- el®.data.spwp, 43); 
end; 

based: begin 
join(xc,- el@.data.spwp); 
plotnc(xc,- el@.data.spap, 43); 
end; 

end; 
end; 

el := el@.next 
end; 

end; 

ini t.:fm: 
while el - = nil do begin 

condir := ptrd_fm(el, dire); 
if condir - = nil 

then 
with condir@.consol do begin 

if lims > ymax 
then 

ymax : = lims; 
if lims < ymin 

then 
ymin := lims; 

if ss > ymax 
then 

ymax := ss; 
if ss < ymin 

then 
ymin := ss; 

end; 
el := el@.next; 
end; 

el : = ele; 
ctrset(4); 
condir := ptrd-fm(el, dire); 
if condir - = nil 

then begin 
lims.:fm(ymin, ymax); 
if dire = based 

then 
map_space(cmd_i, 'lowermiddle') 

else 
map-space ( cmd-i, 'top') ; 

positn(el@.posn.xc, condir@.consol.ss); 
while el - = nil do 

with eliD.posn do begin 
condir := ptrd_fm(el, dire); 
if condir - = nil 

then 
with condir@.consol do begin 

join(xc, ss); 
plotnc(xc, ss, 63) 
end; 
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el := el@.next 
end; 

end; 

el : = els; 
condir := ptrd_fm(el, dire); 
if condir - ; nil 

then begin 
positn(el@.posn.xc, condir@.consol.lims); 
while el - = nil do 

with el@.posn do begin 
condir := ptrd-fm(el, dire); 
if condir - = nil 

then 
with condir@.consol do begin 

join(xc, lims); 
plotnc(xc, lirns, 45) 
end; 

el := el<D.next 
end; 

ctrset(l); 
map-space(cmd_i, 'plain'); 
plotcs(5, 5, 'SS/LIM', 6) i 
end; 

end; 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure FORCE-PROFILE'); 

end {force_profile}; 

begin {plots} 
if gi.tracing 

then 
writeln(trace_o, 'Entered procedure PLOTS'); 

repeat 
get_command(plotter, plotquit, plotcom, plot-command, cmd-i); 
if plotcom IN slices . . standard 

then 
total.pics := total.pics + 1; 

if opt .echo 
then 

writeln(substr(pos_str, 1, err-pos- 1)); 
case plotcom of 

displot: 
disp_plot(slice_list); 

slices: 
slice-plot(slice_list); 

forceplot: begin 
fram_plot; 
force_profile(slice_list, based); 
map-space(cmd-i, 'picture'); 
slice-plot(slice-list); 
frame; 
total. pages := total. pages + 1; 
end; 

standard: begin 

fram_plot; 

D.].7 



Appendix D. 

force-profile(slice-list, based); 
force_profile(slice-list, righthand); 
frame; 
total. pages ::::: total. pages + 1; 
end; 

frames: 
fram_plot i 

page: begin 
frame; 
total. pages : = total. pages + 1; 
end; 

init: 
setup-plot ; 

plotstop: begin 
plots(cmd_i, 'standard'); 
map-space ( cmd_i, 'full') ; 
fram-plot i 
slice_plot(slice_list); 
grand; 
total.pics := total.pics + 1; 
total.pages := total.pages + 1; 
end; 

zoom: 
map-space(cmd_i, 'zoom'); 

maps: 
map_space(cmd_i, ''); 

otherwise; 
end; 

if opt.echo 
then 

writeln(output, substr(pos-str, 1, fra-pos), total.pages: 8, substr( 
pos_str, 1, plo-pos) , total. pies: 8) ; 

until plotquit; 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure PLOTS'); 

end {plots}; 

{ **************************************** END PLOTS } 

{**************************************** BEGIN CYCLES } 

procedure cycle(var cmd-i: text); 

var 
cycles, no_of_cycles, outcounter, cycle-lim: cycle-type; 

procedure fordsl(el: ptr_type); 
{ treats edge contacts as one contact } 
{ force displacement law for single block } 
{ called from cycle, end of line } 

var 
in_contact: boolean; 
Fn, Fs, nf, sf: real; 
contdir: dir_of-contacts; 
condir: coiLptr; 
bodyfinc: vector_type; 
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nsinc, u, coh, fhi: rsal; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure FORDSL'); 

while el - = nil do 
with el@ do begin 

for contdir : = right hand to based do begin 
case contdir of 

righthand: begin 
condir := contacts.right; 
if condir - = nil 

then begin 
u := data.spap; 
if condir@.failed 

then 
data.sidec := data.sidec * 0.86; 

coh := data.sidec; 
fhi : = data. sphi ; 
end; 

end; 
based: begin 

condir := contacts.base; 
u := data.pwp; 
if condir@.failed 

then 
data.cohes := data.cohes * 0.86; 

coh := data.cohes; 
fhi := data.phi; 
end; 

end; 
if condir = nil 

then 
continue; 

with condir@, other@.s do begin 
Fn := ((x - s.x) * sine- (y- s.y) * cose) * data.k; 
Fs :=- ((y- s.y) * sine+ (x- s.x) * cose) * data.k; 
if gi. fording 

then 
writeln(debug_o, 'Fn,Fs,sin,cos,l', Fn: 9, Fa: 9, sine: 9, 

cose: 9, con-len: 9, s.x: 9, s.y: 9, x: 9, y: 9); 
nsinc : = dampf * Fn; 
in-contact :=false; 
if consol.ns >- nsinc {total stress} 

then begin 
consol.ss := consol.ss + dampf * Fs; {f/length} 
consol.ns := consol.ns + nsinc; {f/length} 
in-contact :=true; 
consol.pp := max(consol.pp + 0.001 * u, u); 
end; 

end; 

with condir@, consol, other@.force do 
if in_contact 

then begin 
lima : = coh + max( (ns + pp) * fhi, 0); 
nf := ns * con-len; 
failed:= (failed) OR ((pp o u) AND (abs(ss) > abs(lims))); 
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end; 

ss := sign(min(abs(ss), lims), ss); 
sf := ss * con_len; 
bodyfinc.x :=sf* coss- nf *sins; 
bodyfinc.y :=sf* sine+ nf * cose; 
force.x := forcs.x- bodyfinc.x; 
force.y := force.y- bodyfinc.y; 
if contdir = righthand 

then begin 
x := x + bodyfinc.x; 
y := y + bodyfinc.y; 
end; 

if (gi.fording) OR (gi.consoling) 
then 

writeln(dsbug_o, 'ss,ns,lims,pp,nf,sf', ss: 8, ns: 8, lims 
: 8, pp: 8, nf: 8, sf: 8); 

if gi . fording 
then 

wri teln(debug_o, 'bforces' , force. x: 9, force. y: 9) ; 
end 

el := next 
end; 

if gi.tracing 
then 

wri teln( trace_o, ' EXIT procsdure FORDSL'); 
end { fordsl}; 

procedure fconsolsl(el: ptr_type); 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure FCONSOLXY'); 

while el - = nil do 
with el~, el~. data do begin 

s.x := force.x I mass* sqr(gi.tstep); 
s.y := (force.y I mass+ opt.grav.y) * sqr(gi.tstep); 
sum.sc := max(abs(s.x), abs(s.y), sum.sc); 
if gi.motioning 

then 
writeln(debug_o, 'disp ', s.x: 9, s.y: 9); 

if (gi.oscing) AND (data.typ =track) 
then begin 

with contacts.base@.consol do 
write(oscil_o, data.sliceno: 4, total.cycles: 6, s.x, s.y, ss, 

ns, lima); 
if contacts.right - =nil 

then 
with contacts.right@.consol do 

writeln(oscil_o, ss, ns, lims) 
else 

writeln(oscil_o); 
end; 

force := nilv; 
el :=next; 
end; 

if gi. tracing 
then 
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var 

writeln(trace_o, ' EXIT procedure FCONSOLXY'); 
end { fconsolsl}; 

cyclequit: boolean; 

begin {cycle} 
if gi.tracing 

then 
writeln(trace-o, 'Entered procedure CYCLES'); 

if screen 
then 

writeln(output, substr(pos_str, 1, pro-pos), 
'Enter no of cycles required ... '); 

read(cmdLi, no_of_cycles); 
if opt.echo 

then 
ariteln(output, substr(pos-str, 1, req-pos), no-of-cycles: 8); 

cycles := 0; 
while (cycles < no_of_cycles) AND (* cyclequit) do begin 

sum.scold := sum.sc; 
sum.sc := 0; 
fordsl(slice_list); 
fconsolsl(slice_list); 
total.cycles := total.cycles + 1; 
cycles :=cycles+ 1; 
if total.cycles MOD opt.cyclegap = 0 

then begin 
if opt.echo 

then begin 
writeln(output, substr(pos-str, 1, cyc-pos), total.cycles: 8); 
if sum.scold < sum.sc 

then 
writeln(output, substr(pos_str, 1, mes_pos), 

'Decreasing stability', sum.sc) 
else 

writeln(output, substr(pos_str, 1, mes-pos), 
' Increasing stability ', sum.sc); 

end; 
factors_of_safety(slice_list); 
end; 

if (opt.cmdprocessing) AND (total.cycles MOD opt.cycle_interval = 0) 
then begin 

reeet(cycmdLi, 'FILE=-sass.cmd.i'); 
gi.cmdend :=false; 
while • gi. cmdend do 

control(cycmd_i); 
if opt.echo 

then 
writeln(output, substr(pos_str, 1, req-pos), no_of_cycles: 8); 

end; 
if abs(sum.sc I sum.scold- 1) < 1e-13 

then 
sum.scsofar := sum.scsofar + 1 

else 
sum.scsofar := 0; 

cyclequit := (sum.sc < 1e-14) OR (sum.scsofar = 100) OR (sum.sc > 1e6); 
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if trap 
then 

trapper; 
if gi.cycling 

then 
eriteln(debug_o, 'max individual disp' sum.sc); 

end; 
if sum.sc < 1e-14 

then 
writeln(output, substr(pos_str, 1, mes_pos), 

'Stability has been gained', sum.sc); 
if sum.scsofar = 100 

then 
eriteln(output, substr(pos_str, 1, mes_pos), 

' Constant sliding noe occurring ', sum. sc); 
if sum.sc > 1e6 

then 
writeln(output, substr(pos_str, 1, mes-pos), 

'This is numerically unstable', sum.sc); 
if gi.tracing 

then 
wri teln( trace_o, ' EXIT procedure CYCLES'); 

end {cycle}; 

{**************************************** END CYCLE} 

{**************************************** BEGIN START } 

procedure start-shut; 
{ initialises the run, called from control, initialisation modules } 

type 
lhed_type = string(300); 
records= (rvec, rcoo, rcon, rele, rgri, rgen, rapt, rtot, rsum, rhed, bool) 

buffertype = record 
tag: char; 
case records of 

rgen: (gen_info_rep: gen..info_type); 
rvec: (vector_rep: vector_type); 
rcoo: (coorcLrep: coord-type); 
rcon: (con..rep: con-type); 
rele: (element_rep: element_type); 
rgri: (grid_rep: gricLtype) ; 
ropt: (option..rep: option-type); 
rtot : ( totals..rep: totals-type) ; 
rsum: (sum..rep: sum_type); 
rhed: (hed_rep: hed_type); 
bool: (nulLrep: lhed_type); 

end; 

const 
nullrep = ' 

var 

' II 
' II 
' II 
'. ' 

' II 
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rest_o, rest_i: file of buffertype; 
buffer: buffertype; 
ne'll'_slice: ptr_type; 

procedure update-area(el: ptr_type); 

procedure update~essage(direction: hed_type; el: ptr-type; cent: con-ptr); 

begin 
if gi.updating 

then 
'll'ith eltll, cent@ do begin 

erite(debug_o,' ',direction: 5, 'Contact created edge, corn 
'll'riteln(debug_o, data.sliceno: 6, other@.data.sliceno: 6); 
'!l'riteln(debug-o, 'edge x,y' edge@.c.xc·: 6, edge@.c.yc: 6); 
writeln(debug_o, 'corn x,y corn@.c.xc: 6, corn@.c.yc: 6); 
uriteln(debug_o, 'sin, cos sine: 6, cose: 6); 
writeln(debug-o, 'len, dam' con-len: 6, dampf: 6); 
if direction = 'RIGHT' 

then 

') ; 

uriteln(debug_o, ' pup, 'll't ' data.spep: 6, opt.grav.y *data. 
mass: 6) 

else 
uriteln(debug_o, ' pup, wt ' data.pup: 6, opt.grav.y *data. 

mass: 6) 
end; 

end {update~essage}; 

procedure coldLcontact(el: ptr-type; direction: hed-type; cent: con-ptr); 

var 
dif: vector-type; 

begin 
with el<ll, cent@ do begin 

with edge<ll do begin 
dif.x := cu@.c.xc- c.xc; 
dif.y := ce@.c.yc- c.yc; 
end; 

failed :=false; 
con_len := sqrt(sqr(dif.x) + sqr(dif.y)); 
sine := dif.y I con-len; 
cose := dif.x I con-len; 
consol. ss := 0; 
consol.ns := 0; 
consol.pp := 0; 
consol.lims := 0; 
if direction= 'RIGHT' 

then begin 
data.spwp := opt.grav.y * sqr(data.spwp) * 2 I con-len; 
if data.mass > other@.data.mass 

then 
dampf := data.mass * opt.damps I con-len 

else 
dampf := other@.data.mass * opt.damps I con-len; 

end 
else begin 
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data.pHp := opt.grav.y * data.pHp; 
if data.mass > other@.data.mass 

then 
dampf := data.mass * opt.damp I con_len 

else 
dampf := other@.data.masa * opt.damp I con-len; 

end; 
end; 

end {cold-contact}; 

begin {update-area} 
if gi . tracing 

then 
Hriteln(trace_o, 'Entered procedure UPDATE-AREA'); 

platapex := platenl!l.apexes; 
while el - = nil do 

with el@ do begin 
if starting = cold 

then 
new(contacts.base); 

with contacts. base@ do begin 
other :=platen; 
edge := apexes@.aw; 
corn := platapex@.cw; 
if starting = cold 

then 
cold_contact(el, ' BASE', el@.contacts.base); 

update-message(' BASE', el, el@.contacts.base); 
end; 

if next =nil 
then 

contacts.right :=nil 
else begin 

if starting = cold 
then 

new(contacts.right); 
with contacts. right@ do begin 

other : = next; 
edge := apexes@.cw@.cw; 
corn := next@.apexes@.cw; 
if starting = cold 

then 
cold.contact(el, 'BASE', el@.contacts.right); 

update-message('RIGHT', el, el@.contacts.right); 
end; 

end; 
total. cons : = total. cons + 2; 
plat apex : = plat apex@. cw; 
el :=next; 
end; 

if gi . updating 
then 

writeln(debug.o, 'total number of contacts', total.cons); 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure UPDATE-AREA'); 

end {update.area}; 
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procedure get_apex(var base, oater: corn_ptr; number: integer); 

var 
num: integer; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure GET-APEX'); 

if base =nil 
then begin 

new(base); 
base@.cw :=base; 
base@.aw :=base; 
oater : = base; 
number : = number - 1; 
end; 

for num : = 1 to number do begin 
new(oater); 
oater@.aw := base@.aw; 
oater@. cw : = base; 
base@.aw@.cw := oater; 
base@.aw := oater; 
end; 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure GELAPEX'); 
end {get_apex}; 

procedure mesh; 

procedure cre_platen(el: ptr_type); 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure CRE-PLATEN'); 

new(platen); 
platen@.next :=nil; 
platen@.apexes :=nil; 
get_apex(platen@.apexes, apex, total.slices + 1); 
platapex := platen@.apexes; 
platapex@.c := el@.apexes@.c; 
while el - = nil do begin 

platapex := platapex@.cw; 
platapex@.c := el@.apexes@.aw@.c; 
el := el<ll.next 
end; 

with platen@, platen@. contacts, platen@.data do begin 
posn : = nile; 
force := nilv; 
s := nilv; 
mass := 0; 
cohes := 0; 
phi := 0 j 
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rho := 0; 
k ::: 0; 
sidec := 0; 
sphi := 0; 
pwp := 0; 
spt1p := 0; 
e := 0; 
sliceno : = 0; 
typ :"'free; 
right := nil; 
base :=nil; 
end; 

if gi.tracing 
then 

writeln(trace_o, ' EXIT procedure CRE-PLATEN'); 
end {ere-platen}; 

procedure ere-slices; 

var 
sort: string(12); 
typs: com_ type; 
surf, temp: real; 
x, y, xn, yn: real; 

begin {FIFO OF ELEMENTS} 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure CRE-SLICES'); 

get_command(mesher, qdum, type, '', cmd_i); 
while NOT eoln do begin 

case typs of 
track, free: 

if slice_list = nil 
then begin 

new(slice-list); 
eolist := slice_list; 
eolist~.next :=nil; 
end 

else begin 
new(eolist@.next); 
eolist := eolist@.next; 
eolist@.next :=nil; 
end; 

otherwise 
return; 

end; 

t1ith eolist@, eolist@.data, opt.meshtbs do begin 
read(cmd_i, cohes, phi, rho, k, sidec, sphi, pwp, spwp, e); 
phi :=phi * arctan(l) I 45; 
sphi := sphi * arctan(1) I 45; 
phi:= sin(phi) I cos(phi); 
sphi := sin(sphi) I cos(sphi); 
total.slices := total.slices + 1; 
sliceno := total.slices; 
typ := typs; 
apexes : = nil; 
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posn : = nile; 
force := nilv; 
s := nilv; 
get_apex(apexes, apex, 4); 
apex := apexes; 
if total.slices = 1 

then 
read(cmd_i, xb, yb, xt, yt); 

apex@.c.xc := xb; 
apex@.c.ye := yb; 
apex := apex@.c~; 
apex@.c.xc := xt; 
apex@.c.ye := yt; 
apex := apexes@.aw; 
read(cmd_i, xb, yb, xt, yt); 
apex@.c.xc := xb; 
apex@.c.ye := yb; 
apex := apex@.a~; 
apex@.c.xc := xt; 
apex@.c.ye := yt; 

{ area and centroid of block } 
surf := 0; 

var 

apex := apexes; 
repeat 
~ith apex@.c, apex@.a~@ do begin 

surf:= surf+ (xc- c.xc) * (yc + c.yc); 
posn.yc := posn.yc + (xc- c.xc) * ((yc- c.yc) * (yc + 2 * c.yc 

) + 3 * sqr(c.yc)); 
posn.xc := posn.xc + (yc- c.yc) * ((xc- c.xc) * (xc + 2 * c.xc 

) + 3 * sqr(c.xc)); 
apex := apex@.cw; 
end; 

until apex= apexes; 
surf :=surf * 0.5; 
posn.yc := posn.yc I (6 *surf); 
posn.xc :=- posn.xc I (6 *surf); 
mass := surf * data.rho; 
if gi. updating 

then 
~riteln(debug_o, 'mass,surf', mass, surf); 

end; 
end; 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure CRE-SLICES'); 
end {ere-slices}; 

meshquit: boolean; 
meshcom: com_type; 

begin {mesh} 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure MESH'); 

repeat 
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get_command(creater, meshquit, meshcom, '' cmd_i); 
case meshcom of 

create: 
cre_slices; 

meshend: 
meshquit :=true otheruise; 

end 
until meshquit; 

cre-platen(slice_list); 
if gi . tracing 

then 
ariteln(trace_o, ' EXIT procedure MESH'); 

end {mesh}; 

procedure readLrestart_file; 

var 
labl: char; 
ele: ptr_type; 
nea_con: con_ptr; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure READJaESTART-FILE'); 

reset(rest_i, 'unit=2'); 
rewrite(cycmd_i, 'FILE=-sass.cmd.i'); 
rewrite(repts_i, 'FILE=-sass.rep.i'); 
while - eof(rest_i) do begin 

read(rest_i, buffer); 
labl := buffer.tag; 
case labl of 

'G': begin 
gi := buffer.gen_info_rep; 
read(rest_i, buffer); 
total := buffer.totals-rep; 
read(rest-i, buffer); 
sum := buffer.sum_rep; 
read(rest_i, buffer); 
opt := buffer.option-rep; 
read(rest_i, buffer); 
plspace := buffer.grid-rep; 
end; 

'c': 
writeln(cycmd_i, buffer.hed_rep); 

'r': 
writeln(repts_i, buffer.hedLrep); 

'F': begin 
new(new_slice); 
new_slice@ := buffer.element-rep; 
new_slice@.next :=nil; 
new_slice@.apexes :=nil; 
if slice_list = nil 

then 
slice-list :=new-slice 

else 
ele@.next := new_slice; 

ele :=new-slice; 
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end; 
'R': begin 

nea(neiLcon) ; 
nea_con@ := buffer.con_rep; 
ele@.contacts.right := nea_con; 
end; 

'B': begin 
nea(new_con); 
new_con@ := buffer.con_rep; 
ele@.contacts.base := new_con; 
end; 

'P': begin 
ne-a (new_slice) ; 
new_slice@ := buffer.element_rep; 
platen := new_slice; 
platen@.next :=nil; 
platen@.apexes :=nil; 
platen@.contacts.right :=nil; 
platen@.contacts.base :=nil; 
ele : = platen; 
end; 

'a': begin 
get_apex(ele@.apexes, apex, 1); 
apex@.c := buffer.coordLrep; 
end; 

'*':; 
end; 

end; 
writeln(output, substr(pos_str, 1, mes-pos), 

' A restart file has been read'); 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure READ..RESTART..FILE'); 

end {read-restart-file}; 

procedure -arite_restart_file; 

procedure write_r_el(el: ptr_type; c: char); 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure WRITE-R-EL'); 

while el - = nil do 
with el@ do begin 

buffer.tag := c; 
buffer.null-rep := nullrep; 
buffer.element_rep := el@; 
write(rest_o, buffer); 
if contacts.right - =nil 

then begin 
buffer.tag := 'R'; 
buffer.null_rep := nullrep; 
buffer.con_rep := contacts.right@; 
write(rest_o, buffer) 
end; 

if contacts.base w o nil 
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then begin 
buffer.tag := 'B'; 
buffer.null-rep := nullrep; 
buffer.con_rep := contacts.base@; 
write(rest_o, buffer) 
end; 

apex := apexes; 
buffer.tag :='a'; 
repeat 

buffer.null_rep := nullrep; 
buffer.coord_rep :~ apex@.c; 
arite(rest_o, buffer); 
apex := apex@.cw 
until apex = apexes; 

el := el@ .next 
end; 

if gi. tracing 
then 

ari teln ( trace_o, ' EXIT procedure WRITE..R..EL') ; 
end {write_r_el}; 

begin {arite_restart-file} 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure WRITE-RESTART-FILE'); 

if (opt.rf_over) OR (rf_first) 
then 

rewrite(rest_o, 'unit=l'); 
rf_first :=false; 
buffer.tag := 'G'; 
buffer.null-rep := nullrep; 
buffer.gen_info-rep := gi; 
write(rest_o, buffer); 
buffer.null_rep := nullrep; 
buffer.totals-rep :=total; 
arite(rest_o, buffer); 
buffer.null_rep := nullrep; 
buffer . sum_rep : = sum; 
write(rest-o, buffer); 
buffer.null_rep := nullrep; 
buffer.option_rep :=opt; 
write(rest_o, buffer); 
buffer.null-rep := nullrep; 
buffer.grid-rep := plspace; 
arite(rest_o, buffer); 

reset(cycmd-i, 'FILE=-sass.cmd.i'); 
buffer.tag := 'c'; 
while - eof(cycmd-i) do begin 

buffer.null-rep := nullrep; 
readln(cycmd_i, buffer.hed-rep); 
write(rest_o, buffer); 
end; 

reset(repts_i, 'FILE=-sass.rep.i'); 
buffer.tag := 'r'; 
while - eof(repts_i) do begin 

buffer.null_rep := nullrep; 
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readln(repts-i, buffer.hed-rap); 
~rite(rest_o, buffer); 
and; 

~rite_r_el(slice_list, 'F'); 
~rite_r_el(platen, 'P'); 
buffer.tag := '*'; 
buffer.null_rep := nullrap; 
buffer.hed..rap :'"' 'END of RESTART FILE '; 
~rite(rest-o, buffer); 
writeln(output, substr(pos_str, 1, fil_pos), 

'A restart file has been ~ritten'); 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure WRITE-RESTART-FILE'); 

end { ~rite..restart_file}; 

procedure complete; 

begin 
if gi. tracing 

then 
~riteln(trace_o, 'Entered procedure COMPLETE'); 

with total do begin 
writeln(output, substr(pos_str, 1, tot_pos), ' total slices' 

slices: 6, ' contacts ', cons: 6); 
eriteln(output, ' total cycles ' cycles: 6, ' restarts 

restarts: 6) ; 
eriteln(output, ' total frames ' pages: 6, ' plots , pies: 6) 

end; 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure COMPLETE'); 

end {complete}; 

begin { start_shut} 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure START_SHUT'); 

case starting of 
cold: begin 

if screen 
then 

writeln(output, substr(pos_str, 1, pro_pos), 
' Enter heading ................ ') ; 

readln(cmd_i, gi.heading); 
writeln(output, substr(pos_str, 1, tit_pos), gi.heading); 
~riteln(debug_o, gi.heading); 
plots(cmdLi, 'initialise'); 
mesh; 
update_area(slice_list); 
plots(cmd..i, 'border'); 
plots(cmdLi, 'slices'); 
plots(cmdLi, 'page'); 
end; 

shutdown: begin 
plots(input, 'endplot'); 
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complete; 
factors_of_safety(slica_list); 
Hriteln(dabug_o, sum.sc); 
write-restart-file; 
Hriteln(output, substr(pos_str, 1, fil-pos), curson); 
halt; 
end; 

Harm: begin 
read-restart-fila; 
total.restarts := total.restarts + 1; 
plots(cmdLi, 'initialise'); 
update_area(slice-list); 
plots(cmdLi, 'border'); 
plots(cmdLi, 'slices'); 
plots(cmdLi, 'page'); 
end; 

keep: 
write_restart_file; 

end; 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure START_SHUT'); 

end {start-shut}; 

{**************************************** END STARTSHUT } 

{**************************************** BEGIN DEBUG } 

procedure debug_slice(var cmdLi: text); 
{ debugging routine, called from contrl, calls dump } 

var 
debugend: boolean; 
deb_com: com-type; 

procedure write-con(el: ptr_type); 

procedure wr_con(el: ptr-type; con: con-ptr); 

begin 
if gi.tracing 

then 
writeln(trace_o, 'Entered procedure WR-CON'); 

with con@ do begin 
writeln(debug_o, 'slice home, other, damp ' el<ll.data.sliceno: 3, 

other@.data.sliceno: 3, dampf: 6); 
writeln(debug_o, 'corner coordinates x, y' corn@.c.xc: 6, corn@.c.yc 

: 6) j 

vri teln(debug_o, 'edge coordinate s x, y ' , edge <II. c. xc: 6, edge@. c. yc 
: 6); 

vrite(debug_o, 'stresses - n, s, 1, u' consol.ns: 6, consol.ss: 6, 
consol.lims: 6); 

end; 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure WR_CON'); 

end { wr_con}; 
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begin {arite_con} 
if gi.tracing 

then 
eriteln(trace_o, 'Entered procedure WRITE-CON'); 

ariteln(debug_o, 'Contact information:'); 
eriteln(debug_o); 
ariteln(debug_o, ' coords of corn, edge'); 
ariteln(debug_o); 
ahile el - = nil do 

eith el@.contacts do begin 
if right - = nil 

then begin 
er_con(el, right); 
eriteln(debug_o, el@.data.spep: 6); 
end; 

if base - = nil 
then begin 

er_con(el, base); 
eriteln(debug_o, el@.data.pap: 6); 
end; 

el :=el@.next; 
end; 

if gi.tracing 
then 

eri teln ( trace_o, ' EXIT procedure \iRITE-CON') ; 
end {write_con}; 

procedure write_sli(el: ptr_type); 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure WRITE_SLI'); 

writeln(debug_o, 'Element data:'); 
writeln(debug_o); 
writeln(debug_o, 'mass force x ydisp x y n'); 
writeln(debug_o); 
while el - = nil do 

with el@ do begin 
eriteln(debug_o, data.mass: 6, force.x: 8, force.y: 8, s.x: 8, s.y: 8, 

data.sliceno: 3); 
el := el@.next; 
end; 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure WRITE_SLI'); 
end {write_sli}; 

begin {debug_slice} 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure DEBUG_SLICE'); 

repeat 
get-command(debuger, debugend, deb-com, '', cmd-i); 
case deb_com of 
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slices: 
write_sli(slice_list); 

con: 
write_con(slice_list); 

gen: begin 
writeln(debug_o, gi.heading); 
ariteln(debug_o); 
with plspace, opt, total do begin 

wri teln(debug_o, ' mapping xmin 

writeln(debug_o, ' mapping ymin 

writeln(debug_o); 

, xmin : 6 , ' xmax , xmax: 6) 

, ymin: 6, ' ymax , ymax: 6) 

wri teln(debug_o, ' plot interval' , cycle_interval: 6) ; 
wri teln(debug_o, ' gravity x ' , grav. x: 6, ' y , grav. y 

: 6); 
writeln(debug-o, ' damping base 

) ; 
writeln(debug_o); 
writeln(debug_o, ' totals slices 

6); 
writeln(debug_o, ' 

restarts: 6) ; 
writeln(debug_o, ' 

6); 
writeln(debug_o); 
end; 

end; 
fon: 

with gi do begin 
motioning :=true; 
updating :=true; 
cycling : = true; 
fording :=true; 
oscing :=true; 
tracing :=true; 
end; 

fof: 
with gi do begin 

motioning :=false; 
updating :=false; 
cycling :=false; 
fording :=false; 
oscing :=false; 
tracing :=false; 
end; 

mot: 

cycles 

frames 

gi.motioning := onoff(cmd_i); 
csl: 

gi.consoling := onoff(cmd_i); 
upd: 

gi.updating := onoff(cmd_i); 
eye: 

with gi do begin 
cycling:= onoff(cmdLi); 
fording := cycling; 
motioning := cycling; 
end; 

fod: 
gi.fording := onoff(cmd_i); 

', damp: 6, ' side ', damps: 6 

slices: 6, ' contact', cons: 

cycles: 6, ' restarts', 

pages: 6, ' plots , pies: 
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tra: 
gi.tracing := onoff(cmd-i); 

osc: 
gi.oscing := onoff(cmd_i); 

otherwise; 
end; 

until debugend; 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure DEBUG_SLICE'); 

end {debug_slice}; 

{**************************************** END DEBUG } 

{**************************************** BEGIN PARAMETERS } 

procedure parameters(var cmd-i: text); 

procedure calculator; 

function intcalc(op: real): real; 

var 
result, v: real; 
oper: com_ type; 

begin 
get_command(operter, qdum, oper, '' cmd_i); 
if oper - = enquiry 

then begin 
if screen 

then 
writeln(output, substr(pos_str, 1, pro-pos), 

' Enter value .................. '); 
read(cmcLi, v); 
end; 

case oper of 
equal: 

result := v; 
mult: 

result := op 
divid: 

result := op 
plus: 

result := op 
minus: 

result := op 
power: 

* v; 

I v; 

+ v; 

- v; 

result := exp(ln(op) 
otherwise 

result := op; 
end; 

if opt.echo 
then 

* v) i 

writeln(output, substr(pos-str, 1, mes-pos), 'The value is : ' 
result: 12: 7,' '); 

intcalc :=result; 
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end {intcalc}; 

var 
calquit: boolean; 
calcom: com-type; 

begin {calculator} 
repeat 

var 

get_command(calcter, calquit, calcom, '' cmd_i); 
case calcom of 

cyclegp: 
opt.cyclegap := round(intcalc(opt.cyclegap)); 

gravity: 
opt.grav.y := intcalc(opt.grav.y); 

ptime: 
gi.tstep := intcalc(gi.tstep); 

cmdint: 
opt.cycle_interval := round(intcalc(opt.cycle_interval)); 

fdamp: 
opt.damp := intcalc(opt.damp); 

otherwise; 
end; 

until calquit; 
end {calculator}; 

parcom: com_type; 
parquit: boolean; 
flimit: integer; 
cmdlistword: string(12); 

begin {parameters} 
repeat 

get_command(paramer, parquit, parcom, '' cmd_i); 
case parcom of 

echo: 
opt.echo := onoff(cmd_i); 

framlim: begin 
if screen 

then 
writeln(output, substr(pos_str, 1, pro_pos), 

'Enter frame limit ............ '); 
read(cmd-i, flimit); 
gpstop(flimit); 
if opt.echo 

then 
writeln(output, substr(pos_str, 1, mes-pos), 

' Frame limit is now : ', flimit); 
end; 

cyclegp: begin 
if screen 

then 
eriteln(output, substr(pos_str, 1, pro-pos), 

'Enter gap between writing ..... '); 
read(cmd-i, opt.cyclegap); 
if opt.echo 

then 
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writeln(output, substr(pos_str, 1, mes-pos), 
' Cycle gap is now : ', opt. cyclegap); 

end; 
gravity: begin 

if screen 
then 

writeln(output, substr(pos_str, 1, pro-pos), 
'Enter gravity values x, y .... '); 

read(cmdLi, opt.grav.y); 
if opt.echo 

then 
writeln(output, substr(pos-str, 1, mes-pos), 

'Gravity is now : ', opt.grav.y: 6); 
end; 

ptime: begin 
if screen 

then 
writeln(output, substr(pos_str, 1, pro_pos), 

'Enter time step increment .... '); 
read(cmd_i, gi. tstep); 
if opt.echo 

then 
writeln(output, substr(pos_str, 1, mes_pos), 

'Time increment is : ', gi.tstep); 
end; 

fdamp: begin 
if screen 

then 
writeln(output, substr(pos_str, 1, pro_pos), 

'Enter value for damping ...... '); 
read(cmdLi, opt.damp); 
read(cmdLi, opt.damps); 
if opt.echo 

then 
writeln(output, substr(pos-str, 1, mes-pos), 

' Damping factor is : ', gi. tstep); 
end; 

calc: 
calculator; 

cmdint: begin 
if screen 

then 
writeln(output, substr(pos-str, 1, pro-pos), 

'Enter cmd process interval ... '); 
read(cmdLi, opt.cycle_interval); 
if opt.echo 

then 
writeln(output, substr(pos_str, 1, mes_pos), 

'Process interval is: ', opt.cycle_interval); 
end; 

cmdlist: begin 
rewrite(cycmd_i, 'FILE=-sass.cmd.i'); 
repeat 

word_scan(cmd_i, cmdlistword); 
writeln(cycmd_i, cmdlistword) 
until cmdlistword = 'cend'; 

end; 
listpr: 

opt.cmdprocessing := onoff(cmd_i); 
over_rf: 
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opt.rf_over := onoff(cmd-i); 
otherwise; 
end; 

until parqui t; 
end {parameters}; 

{**************************************** END PARA~tETERS } 

{**************************************** BEGIN REPEATER } 

procedure repeater(var cmdLi: text); 

var 
cmdreptaord: string(12); 
loopcntor, loopctr: integer; 

begin 
if gi. tracing 

then 
ariteln(trace_o, 'Entered procedure REPEATER'); 

rewrite(repts_i, 'FILE=-sass.rep.i'); 
read(cmdLi, loopctr); 
repeat 

word-scan(cmd-i, cmdreptaord); 
writeln(repts_i, cmdreptword) 
until cmdreptword ='rend'; 

for loopcntor := 1 to loopctr do begin 
reset(repts_i, 'FILE=-sass.rep.i'); 
gi.reptend :=false; 
repeat 

control(repts-i) 
until gi. 

reptend; 
end; 

if gi.tracing 
then 

writeln(trace_o, ' EXIT procedure REPEATER'); 
end {repeater}; 

{**************************************** END REPEATER } 

{**************************************** BEGIN CONTROL } 

procedure control; 
{ controls the execution of the datafile commands, called from main } 

var 
com: com-type; 

begin 
if gi. tracing 

then 
ariteln(trace_o, 'Entered procedure CONTROL'); 

get_command(contler, qdum, com, '', cmd_i); 
case com of 

sets: 
parameters(cmd_i); 

cend: 
gi.cmdend :=true; 

{ set parameter values } 

{ end interrupt commands } 
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rend: 
gi.reptend :=true; { end command stack } 

rest: 
start_shut(cmd_i, warm); { restart a previous run } 

save: 
start_shut(cmd-i, keep); { update restart file } 

star: 
start_shut(cmd_i, cold); {start a new rur1} 

cycl: 
cycle(cmdLi); {calculation routines} 

plot: 
plots(cmdLi, ''); {plot routines} 

debg: 
debug_slice(cmdLi); 

rept: 
repeater(cmd_i); 

stop: 

{ debugging routine } 

{ command stack } 

start_shut(cmd_i, shutdoHn);{ stop command} 
retur:; 
end; 

if gi. tracing 
then 

Hriteln(trace_o, ' EXIT procedure CONTROL'); 
end {control}; 

{**************************************** END CONTROL } 

{**************************************** BEGIN MAIN } 

begin {slices} 
initialise_globals; 
headers; 
repeat 

control(input); 
until quit; 

end {slices}. 
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AlPJPENDKX E 

lPROG RAM <C][RCJLE§ 

program circles(debug_o, sercom); 
%include est8:u.ghost.lib 
%include trap 

const 
led-pos = 2; 
tit-pos = 4; 
req_pos = 6; 
fra_pos = 7; 
plo-pos = 8; 
upd-pos = 9; 
cra_pos = 10; 
cyc_pos = 11; 
com-pos = 12; 
mes_pos = 13; 
err_pos 14; 
tot-pos = 14; 
fiLpos = 20; 
pro_pos = 16; 
pos_str = ' ' ; 
maxcycle = 1000000; 
blank= ' '; 
commands= {onoffer} 
'null on off 
'picture horizontal vertical 
'zoom ' II 

' II 
full 

{onoffer} 
fullnoscales' II {map} 

'initialise ballplot 
'conplot failplot 

dotplot velocities displacement' II {plot} 
graticule standard page ' I I 

'border map endplot ' II 
'create relative absolute dataset for ' I I 
'endfor single multiple meshend position ' I I 
'move angle free fixed track ' II {mesh} 

'= 
'I\ 
'echo 
'writegap 
'calculate 
'damp 
'radius 
'datalist 
'flag son 
'motion 
'set 
'start 
'settle 

type 

* 
? 

' II 
I + 
' II 

echodebug cmdproc 
interval cmdlist 
soil type ' II 

cohesion 
' II 

overwrite 
gravity 

friction mass 
stiffness 
blocks areas contacts 

flags off 
ford 

cend 
go 

collapse 

rearea update 
consolidate trace 

rend 
plot 

stop 

restart 
repeat 

return 

{spare} 
' II 

{operators} 
framelimit ' I I {set} 

time ' II 

density ' I I {parameter} 

general ' I I {debug} 
cycle ' II 
oscillate ' I I 

save ' I I {control} 
debug ' II 

'. 
' 

com-type= (null, on, off, piccie, horiz, vertic, whole, fnosc, zoom, init, 
ballplot, dotplot, velplot, displot, conplot, failplot, graticule, 
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standard, page, frames, maps, plotstop, create, relative, 
absolute, dataset, forloop, endfor, sing, multip, meshend, 
position, movepos, angle, free, fixed, track, cracked, both, 
equal, mult, divid, plus, minus, power, enquiry, echo, debech, 
listpr, over-rf, framlim, cyclegp, cmdint, cmdlist, gravity, 
ptime, calc, datype, dfact, drnass, dcohe , dfric, ddens, dradi, 
dstif, dat, blk, are, con, gen, fon, fof, reb, upd, mot, eye, fod, 
sol, tra, osc, sets, cend, rend, rest, save, star, cycl, plot, 
rapt, debg, sett, coll, stop, retur); 

call_type = (errorer, onoffer, mapper, plotter, masher, datert, operter, 
calcter, datalte, paramer, debuger, contler); 

el-list-types =free .. both; 
para_ptr = @parabk_type; 
ptr_type = @element_type; 
con_ptr = <!Icon-type; 
parabk_type = record 

damp, mass, cohes, phi, rho, rad, kn: real; 
preincarnate, flagno: integer; 
typ: eLlist-types; 
next-data: para_ptr; 

end; 
vector-type = record 

x, y: real; 
end; 

coor<Ltype = record 
xc, yc: real; 

end; 
con_type = record 

gapsurn, offs: real; 
other: ptr _type; 
next-con: con-ptr; 
c_force: vector_type; 
f_force, f_angle: real; 
failed: boolean; 

end; 
element_type = record 

source, posn: coord-type; 
consol, force, v, a, s: vector-type; 
data: para_ptr; 
no_of_contacts: integer; 
con-list: con-ptr; 
next: ptr _type; 

end; 
grid_type = record 

xmin, xmax, yrnin, yrnax: real; 
end; 

rowcol_type =- 1 100; 
area-directions= (self, n, ne, e, se, s, sw, w, nw, nex); 
area-ptr = <!larea-type; 
area-type = record 

corners: grid_type; 
upd..rnin, upd-par : real ; 
row, col: rowcol-type; 
n, e, s, w, next_area: area_ptr; 
fixe<Llist, free_list: ptr_type; 

end; 
cycle_type = 0 .. maxcycle; 
hed_type = string(80); 
start_type =(cold, warm, shutdown, keep); 
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gen-info-type = record 
heading: hed_type; 
nextword: string(12); 
charsize, tfrac, tstep, max_rad: real; 
settling, reptend, cmdend, jumping, single, reareaing, 

motioning, updating, consoling, cycling, fording, 
tracing, oscing, debecho: boolean 

end; 
area-Ltype = record 

size: coordltype; 
xmax, ymax: 0 .. 100; 
nos: integer; 

end; 
option_type = record 

plot_lims: grid_type; 
meshtbs: record 

xb, yb, xt, yt: real 
end; 

grav: vector_type; 
cyclegap, cycle-interval: cycle-type; 
cmdprocessing, echo1, echo, rf_over: boolean; 

end; 
sum_type = record 

en, sc, scold: real 
end; 

totals-type = record 

const 

cycles, updates, circles, fixed, cracked, cons, pies, pages, 
datatypes: integer 

end; 

nilv = vector_type(O, 0); 
nile= coord_type(O, 0); 
nilhed = • '; 
tens..fuzz = 0. 06; 

{make this a parameter sometime as 0. 06 * max_rad/datatype} 

var 

repts_i, cycmdli, oscil_o, debug_o, trace_o, sercom: text; 
screen, rf..first, cy..first, quit, qdum: boolean; 
gi: gen-info-type; 
opt: option_type; 
sum: sum..type; 
total: totals-type; 
sdl, cdp: para..ptr; 
plspace, plot_space, force..map: gridltype; 
this_area, area, spare_area, sal: area..ptr; 
area_i: area-L type; 
re_area-list: ptr-type; 

{**************************************** BEGIN GLOBAL ROUTINES } 

procedure error_simple(ob, caller: string(40)); 

begin 
if gi.tracing 

then 
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writeln(trace_o, 'Entered procedure ERROR-SIMPLE'); 
reerite(sercom, 'UNIT=11 1 ); 

writeln(sercom, '! error ', 1111
, ob, 1 

' '', 
1 found in routine ' caller); 

halt; 
end {error-simple}; 

procedure aord-scan(var cmds_in: text; var word: string(12)); 

var 
ch: stringC1); 

procedure skipblks(var ch: string(1)); 

begin 
if gi 0 tracing 

then 
writeln(trace_o, 'Entered procedure SKIPBLKS'); 

ch := ' 1
; 

while ch = blank do begin 
while c· eoln(cmds_in)) AND (ch =blank) do 

read(cmds_in, ch); 
if (eoln(cmds_in)) AND c- eof(cmds.in)) 

then 
readln(cmds_in); 

if eof(cmds-in) 
then 

error_simple( 1 End of file causes return to mts 1
, 'skipblks 1

); 

end; 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure SKIPBLKS 1

); 

end {skipblks}; 

procedure skipcomment(var ch: string(1)); 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure SKIPCOMMENT 1

); 

while ch- = 1
}' do begin 

while c- eoln(cmds_in)) AND (ch- = 1 }') do 
read(cmds-in, ch); 

if (eoln(cmds-in)) AND c· eof(cmds.in)) 
then 

readln(cmds_in); 
if eof(cmds_in) 

then 
error_simple( 1 end of file causes return to mts', 1 skipcomment 1

); 

end;. 
skipblks(ch); 
if Ch: I {I 

then 
skipcomment(ch); 

if gi o tracing 
then 

writeln(trace_o, 1 EXIT procedure SKIPCOMMENT'); 
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end {skipcomment}; 

bag in { HorcLscan} 
if gi. tracing 

than 
Hriteln(trace_o, 'Entered procedure ~ORO_SCAN'); 

word ;:;; ''; 
if screen 

then begin 
Hriteln(output, substr(pos_str, 1, err_pos + 2), 

Input a command please.......... '); 
raset(cmds-in, 'UNIT=11,INTERACTIVE'); 
repeat 

read(cmds_in, ch) 
until ch - = ''; 

end 
else 

skipblks(ch); 
while c- eoln(cmds-in)) AND (ch- =blank) do begin 

if ch = •{' 
then 

skipcomment(ch); 
word : = word II ch; 
read(cmds_in, ch); 
end; 

if ch - = blank 
then 

word :=word II ch; 
if opt.echo 

then 
writeln(output, substr(pos_str, 1, com_pos), 'Command 

'); 
if (eoln(cmds_in)) AND c- eof(cmds-in)) 

then 
readln(cmds_in); 

if gi. tracing 
then 

wri teln(trace_o, ' EXIT procedure WORD_SCAN 
end {word-scan} ; 

procedure control(var cmd_i: text); 
forward; 

word); 

procedure start-shut(var cmd-i: text; starting: start-type); 
forward; 

procedure trapper; 

var 
ch: char; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure TRAPPER'); 
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ariteln(output, substr(pos_str, 1, err-pos), 
' Attn! : Do you aant to stop ? ') ; 

reset(sercom, 'UNIT=11'); 
repeat 

read(sercom, ch); 
until (ch- =' '); 

trpreset; 
if ch = 'y' 

then 
start_shut(input, shutdoan); 

writeln(output, substr(pos_str, 1, err_pos), 
') ; 

if gi.tracing 
then 

wri teln ( trace_o, ' EXIT procedure TRAPPER') ; 
end {trapper} ; 

procedure get-command(caller: call-type; var quiter: boolean; var retcom: 
com_type; intcall: string(12); var cmds_ig: text); 

const 
last = 1122; 

var 
ifail: boolean; 
beg, loca, indes: 0 .. 1200; 
this_com: string(12); 

begin 
if gi.tracing 

then 
writeln(trace_o, 'Entered procedure GET-COMMAND 

this-com := intcall; 
if this_com = ' ' 

then begin 
this-com := gi.nextword; 
gi.nextword := ''; 
end; 

if this_com = '' 
then 

word_scan(cmds_ig, this_com); 
if trap 

then 
trapper; 

beg := 1; 
repeat 

intcall); 

indes := index(substr(commands, beg, last- beg+ 1), this-com); 
loca := indes +beg- 1; 
if loca MOD 12 = 1 

then 
indes := 0 

else 
beg := loca + 1; 

until (indes = 0) OR (last- beg< 12); 
retcom := com_type(loca DIV 12); 
case caller of 

errorer: 
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ifail :=NOT (retcom IN on 
onoffer: 

ifail :=NOT (retcom IN on 
mapper: 

retur ); 

off); 

ifail :=NOT (retcom IN piccie .. zoom); 
plotter: 

ifail :=NOT (retcom IN init plotstop, zoom); 
datert: 

ifail := NOT (retcom IN free track); 
mesher: 

ifail :=NOT (retcom IN create .. angle); 
operter: 

ifail :=NOT (retcom IN equal 
datalte: 

ifail :=NOT (retcom IN dfact 
calcter: 

enquiry ) ; 

dstif ); 

ifail :=NOT (retcom IN cyclegp, cmdint, gravity, ptime, datype ); 
paramer: 

ifail :=NOT (retcom IN echo .. calc); 
debuger: 

ifail :=NOT (retcom IN dat .. osc ); 
contler: 

ifail :=NOT (retcom IN sets .. retur ); 
end; 

ififail 
then begin {some thing's wrong} 

if (retcom = null) OR (caller = contler) 
then begin {invalid command} 

screen : = true; 
write(output, substr(pos-str, 1, err_pos)); 
wri teln(output, ' ! error ' , '' ' ', this-com, ' ' '' 

'found in routine ', 'get-command'); 
writeln(output, 'Input corrected commands ... <RETURN> ... '); 
get_command(errorer, ifail, retcom, '', sercom); 
while retcom - = retur do begin 

gi.nextword := substr(commands, ord(retcom) * 12 + 1, 12); 

control(sercom); {control returns with nextword = returnlkeyword} 
get_command(errorer, ifail, retcom, gi.nextword, sercom); 
end; 

screen : = false; 
gi.nextword :='return'; 
quiter :=false; 
end 

else begin {valid command wrong caller} 
quiter :=true; 
gi.nextword := this_com; 
end; 

end 
else 

quiter := intcall -
if gi. tracing 

= , '. , { alls ok} 

then 
writeln(trace_o, ' EXIT procedure GET-COMMAND'); 

end {get-command}; 

function onoff(var cmd_i: text): boolean; 

var 
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onof: com-type; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure ONOFF'); 

get_command(onoffer, qdum, onof, '', cmd_i); 
case onof of 

on: 
onoff : = true; 

off: 
onoff : = false; 

otherwise; 
end; 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure ONOFF'); 
end { onoff} ; 

procedure headers; 

begin 
writeln(output, ' .0'); 
writeln(output, substr(pos_str, 1, led-pos), 

'PROGRAM CIRCLES RUNNING COMMENTARY ON: '); 
writeln(output, substr(pos_str, 1, tit-pos), ' ' gi.heading); 
writeln(output, substr(pos_str, 1, req_pos), ' 0 cycles requested'); 
wri teln(output, ' ' total. pages: 6, ' frames plotted'); 
writeln(output,'' total.pics: 6,' plots types drawn'); 
wri teln(output, ' ' total. updates: 6, ' updates executed') ; 
wri teln(output, ' ' total. cracked: 6, ' cracking completed'); 
wri teln(output, ' ' total. cycles: 6, ' cycles and still counting!'); 
end {headers}; 

procedure initialise_globals; 

begin 
rewrite(debug_o, 'UNIT=7'); 
rewrite(trace_o, 'UNIT=8'); 
rewrite(oscil_o, 'UNIT=10'); 
rewrite(sercom, 'UNIT=11'); 
rewrite(cycmd-i, 'FILE=-sass.cmd'); 
new(sdl); 
cdp := sdl; 
quit :=false; 
rf_first :=true; 
screen :=false; 
cy_first := true; 
with gi, plspace, opt, total, opt.meshtbs, sdl@ do begin 

damp := 0; 
mass := 0; 
cohes := 0; 
phi := 0; 
rho := 0; 
rad := 0; 
kn := 0; 
preincarnate := ord(sdl); 
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flagno := 0; 
typ :=free; 
next_data := sdl; 
reptend :=false; 
heading := nilhed; 
next~wrd : = ' ' ; 
settling :=false; 
cmdand := false; 
tfrac := 0; 
tstap := 0; 
max_rad : = 0 ; 
jumping :=false; 
single :=false; 
reareaing :=false; 
motioning :=false; 
updating :=false; 
cycling :=false; 
fording :=false; 
oscing :=false; 
tracing :=false; 
consoling :=false; 
charsize := 0.0; 
debecho :=false; 
xmin := 0; 
xmax := 0; 
ymin := 0; 
ymax := 0; 
plot-space := plspaca; 
plot-lims := plspace; 
force~ap := plspace; 
this-area :=nil; 
area :=nil; 
sal :=nil; 
spare_area :=nil; 
re_area-list : = nil; 
area_i.size :=nile; 
area_i.xmax := 0; 
area_i.ymax := 0; 
grav := nilv; 
cyclegap := 100; 
cycle_interval := maxcycle; 
cmdprocessing :=false; 
echo1 : = true; 
echo : = true; 
rf_over : = true; 
yb := 0; 
yt := 0; 
xb := O· 

' 
xt := 0; 
circles : = 0; 
fixed := 0; 
cracked : = 0; 
cons := 0; 
cycles := 0; 
updates : = 0; 
pies := 0; 
pages := 0; 
datatypes := 0; 
sum.en := 0.0; 
sum.sc := 1E70; 
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sum. scold : = 0; 
end; 

end {initialise_globals}; 

function no_cols(xcoord: real): integer; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure NO_COLS'); 

no-cols := trunc(xcoord I area-i.size.xc); 
if gi . tracing 

then 
writeln(trace_o, ' EXIT procedure NO_COLS'); 

end { no-cols} ; 

function no_rows(ycoord: real): integer; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure NO_ROWS'); 

no_rows := trunc(ycoord I area_i.size.yc); 
if gi. tracing 

then 
wri teln( trace_o, ' EXIT procedure NO_ROWS'); 

end { no..rows} ; 

E.lO 

function shift-area(el: area-ptr; num: integer; dir: area-directions): area-ptr; 

var 
shifts: 0 .. 100; 

begin 
if gi.tracing 

then 
writeln(trace_o, 'Entered procedure SHIFT-AREA'); 

if num < 0 
then begin 

num := - num; 
{area-directions= (self,n,ne,e,se,s,sw,w,nw,nex);} 

case dir of 
n .. se: 

dir := area_directions(ord(dir) + 4); 
s .. nw: 

dir := area_directions(ord(dir)- 4); 
otherwise; 
end; 

end; 

for shifts := num downto 1 do begin 
if el - = nil 

then begin 
if gi.reareaing 

then 
~riteln(debug_o, 'Area 1 el@.col: 6, el@.ro~: 6, 1 num: 6); 
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cas a dir of 
n: 

el := el@.n; 
ne: 

el := shift_area(el@.e, 1, n); 
e: 

el := el@.e; 
se: 

el :== shift-area(el@.e, 1, s); 
s: 

el := el@.s; 
sa: 

el := shift_area(el@.a, 1, s); 
a: 

el := el@.w; 
nw: 

el := shift_area(el@.a, 1, n); 
self:; 
nex: 

el := el@.next_area; 
otherwise 

error_simple('illegal direction specification', 'shift_area'); 
end; 

end; 
end; 

shift_area := el; 
if (gi.reareaing) AND (el- =nil) 

then 
writeln(debug_o, 'Area', el@.col: 6, el@.row: 6); 

if gi. tracing 
then 

wri teln(trace_o, ' EXIT procedure SHIFT_AREA'); 
end {shift-area}; 

function sign(val, donor: real): real; 

begin 
if donor - = 0 

then 
sign := abs(val * donor) I donor 

else 
sign :=val; 

end {sign}; 

function max(a, b, c: real): real; 

var 
v: real; 

begin 
v := abs(c); 
if abs(a) > v 

then 
v := abs(a); 

if abs(b) > v 
then 
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v := abs(b); 
max := v; 
end ; 

{**************************************** END GLOBALS } 

procedure do_this(procedure proc..name(arg: ptr_type); curr_area: area_ptr; 
{does for all elements} single: boolean; lists: el-list-types); 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure DO_THIS'); 

while curr-area - =nil do 
with curr-area@ do begin 

this_area := curr_area; 
case lists of 

free: 
if free_list - = nil 

then 
proc..name(free-list); 

fixed: 
if fixed-list - = nil 

then 
proc..name(fixedLlist); 

both: begin 
if free_list - = nil 

then 
proc..name(free_list); 

if fixed_list - = nil 
then 

proc..name(fixed_list); 
end; 

end; 
if - single 

then 
curr-area := next_area 

else 
curr_area :=nil; 

end; 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure DQ_THIS'); 

end {do_ this} ; 

{**************************************** BEGIN PLOTS } 

procedure plots(var cmd-i: text; plot-command: string(12)); 

var 
plotcom: com-type; 
plotquit, writing: boolean; 
plot_scale: real; 

procedure map-space(var cmd-i: text; sp_comst: string(12)); 

const 
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paph-space = grid-type(0.06, 0.96, 0.06, 0.66); 
papv-space = gridLtype(0.16, 0.74, 0.14, 0.93); 

var 
eightht, htratio: real; 
sp-com: com_ type; 
map-sp, pl t_sp: gridLtype; 
rnapquit: boolean; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure MAP-SPACE'); 

repeat 
get_comrnand(rnapper, rnapquit, sp_com, sp-comst, cmdLi); 
with plt-sp do begin 

plt_sp := plot_space; 
eightht := (ymax- ymin) I 6; 
case sp_com of 

horiz: begin 
plot_space := paph_space; 
plt_sp := plot_space; 
eightht := (ymax - ymin) I 6; 
end; 

vertic: begin 
plot-space := papv-space; 
plt-sp :=plot-space; 
eightht := (ymax - ymin) I 6; 
end; 

fnosc, whole, zoom: ; 
otherwise; 
end; 

pspace(xmin, xmax, ymin, ymax); 
if ymax - ymin < 1E-20 

then 
htratio := 1 

else 
htratio := (xmax- xmin) I (ymax- ymin); 

end; 

with map-sp do begin 
map_sp := plspace; 
case sp_com of 

piccie, horiz, vertic, whole, fnosc: 
ymax := ymin + (xmax - xmin) I htratio; 

zoom: 
with plspace do begin 

if screen 
then 

writeln(output, substr(pos_str, 1, pro-pos), 
'Enter xmin, xmax, and ymin ... '); 

read(cmdLi, xmin, xmax, ymin); 
ymax := ymin + (xmax- xmin) I htratio; 
map_sp := plspace; 
end; 

otherwise; 
end; 

gi.charsize := 0.012 * (ymax- ymin); 
ctrsiz(gi.charsize); 
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{ 
{ 
{ 
{ 

map(xmin, xmax, ymin, ymax); 
end; 

if sp_com - = fnosc 
then 

scales; 
border; 
until mapquit; 

if gi. tracing 
then 
~riteln(trace_o, ' EXIT procedure MAP-SPACE'); 

end {map-space}; 

procedure setup-plot; 
sets up plotting parameters } 
suitable for a4 size paper I laser printer} 
called from either start or restar } 
end of line } 

begin 
if gi . tracing 

then 
writeln(trace_o, 'Entered procedure SETUP-PLOT'); 

paper(!); 
cspace(0.00 1 1.00 1 0.00 1 0.80); 
pspace(0.06, 0.96 1 0.05, 0.65); 
map-space(cmd-i, 'vertical'); 
map-space ( cmd_i , 'zoom' ) ; 
blkpen; 
if gi.tracing 

then 
writeln(trace_o, ' EXIT procedure SETUP-PLOT'); 

end {setup-plot}; 

procedure grid-plot; 
{ procedure to plot area called from plot end of line } 

var 
i I j I lines: 1 . . 100; 
xm, ym, x, y: real; 

begin 
if gi. tracing 

then 
writeln(trace-0 1 'Entered procedure GRID-PLOT'); 

xm := plspace.xmax; 
ym := plspace.ymax; 

{ draw vertical lines } 
X := 0.0; 
y := 0.0; 
lines := area_i.xmax + 1; 
for i := 1 to lines do begin 

positn(x, y); 
join(x, ym); 
x := x + area-i.size.xc; 
end; 

{ draw horizontal lines } 
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X := 0 .0; 
y := 0.0; 
lines : = area._i. ymax + 1; 
for j : = 1 to lines do begin 

positn(x, y); 
join(xm, y); 
y := y + area_i.size.yc; 
end; 

if gi . tracing 
then 

wri teln( trace_o, ' EXIT procedure GRID_FLQT') ; 
end {grid-plot}; 

procedure fram_plot; 
{ *** sets up plotting frames ***} 
{ sui table for a4 size paper I laser printer } 

{ called from either stplot or plot } 

{ may call gricLplot if areaing set } 

var 
time, yline: real; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure FRAM-PLOT'); 

with plspace do begin 
map_space(cmd_i, 'fullnoscales'); 
time := gi.tstep * total.cycles; 
gi.charsize := 0.02; 
ctrsiz(gi.charsize); 
yline := yrnax - 4 * gi.charsize; 
undlin(1); 
italic(1); 
plotcs(3 * gi.charsize, yline, gi.heading, 80); 
pcsend(xmax- 11 * gi.charsize, yline, 'TIME ', 6); 
plotne(xmax- 9 * gi.charsize, yline, time, 4); 
italic(O); 
undlin(O); 
if gi.reareaing 

then begin 
grid-plot; 
end; 

writeln(debug_o); 
end; 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure FRAM_FLOT'); 
end { frarn_plot} ; 

procedure circle_plot(el: ptr_type); 
{ plot a snapshot of the geometry} 

begin 
if gi. tracing 

then 
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eriteln(trace_o, 'Entered procedure circle-PLOT'); 
while el * = nil do 

with el@, data@ do begin 
gpoint(posn.xc, posn.yc); 
circle(rad); 
el :=next; 
end; 

if gi . tracing 
then 

writeln(trace_o, ' EXIT procedure circle_PLOT'); 
end {circle-plot} ; 

procedure dot-plot(el: ptr-type); 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure DQT_PLDT'); 

while el * = nil do 
with el@ do begin 

gpoint(posn.xc, posn.yc); 
el :=next; 
end; 

if gi . tracing 
then 

writeln(trace_o, ' EXIT procedure DDT-PLOT'); 
end {dot-plot}; 

procedure prof_plot; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure PROF-PLOT'); 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure PRDF..PLDT'); 
end {prof_plot}; 

procedure arrow(x, y, vx, vy, scale: real); 
{ this routine plots an arrow 
x - x - coordinate of arrow centre y - y - coordinate of arrow centre 
vx - x component of vector vy - y component of vector } 

var 
rdenom, alen, sina, cosa, ahlen, ahwid, alend2, alen2x, alen2y, ahwidx, 

ahwidy, xtip, ytip, xtipmh, ytipmh: real; 

begin 
alen :=scale* sqrt(sqr(vx) + sqr(vy)); 
if alen > l.OE-50 

then begin 
ahlen := 0.15 * alen; 
ahwid := 0.04 * alen; 

{ find angle shaft makes 'IIi th horizontal direction} 
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rdenom := scale I alen; 
sina :"' vy * rdenom; 
cosa := vx * rdenom; 
if abs(vy * 0.00001) - abs(vx) > 0 

then begin 
sina := sign(1.0, vy); 
cosa := 0.0; 
end; 

alend2 := 0.5 * alen; 
alen2x := alend2 * cosa; 
alen2y := alend2 * sina; 
ahwidx := ahwid * sina; 
ahwidy := ahwid * cosa; 
xtip := x + alen2x; 
ytip := y + alen2y; 
xtipmh := xtip - ahlen * cosa; 
ytipmh := ytip - ahlen * sina; 

{ plot arrow starting at tail} 

positn(x- alen2x, y- alen2y); 
join(xtip, ytip); 
join(xtipmh- ahwidx, ytipmh + ahaidy); 
join(xtipmh + ahwidx, ytipmh- ahwidy); 
join(xtip, ytip); 
positn(x- ahwidx, y + ahwidy); 
join(x + ahwidx, y- ahwidy); 
end; 

end {arrow} ; 

procedure find_scale(el: ptr_type); 

var 
con~ode: con-ptr; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure FIND_SCALE'); 

case plotcom of 
conplot: 

while el - = nil do 
with el@ do begin 
con~ode : = con-list; 
while con~ode - = nil do 

with con~ode® do begin 
if abs(c_force.x) > plot_scale 

then 
plot_scale := abs(c_force.x); 

if abs(c_force.y) > plot_scale 
then 

plot-scale:= abs(c_force.y); 
con~ode := next_con; 
end; 

el := next; 
end; 

fail plot: 
while el - = nil do 
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Hith el@ do begin 
con-Ilode : = con-list; 
Hhile con-Ilode - = nil do 

with con-Ilode@ do begin 
if (failed) AND (abs(f_force) >plot-scale) 

then 
plot-scale := abs(f_force); 

con-Ilode := next_con; 
end; 

el := next; 
end; 

vel plot: 
while el - = nil do 

with el@, v do begin 

end; 

if abs(x) > plot_scale 
then 

plot-scale := abs(x); 
if abs(y) > plot_scale 

then 
plot-scale := abs(y); 

el :=next; 
end; 

if gi. tracing 
then 

wri teln ( trace_o, ' EXIT procedura FIND-SCALE') ; 
end {find-scale}; 

procedure veLplot(el: ptr-type); 
{ plot the velocities of the circles, called from plot, end of line} 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure VEL-PLOT'); 

while el - = nil do 
with el@, posn, v do begin 

arrow(xc, yc, x, 0, plot-scale); 
arrow(xc, yc, 0, y, plot-scale); 
arrow(xc, yc, x, y, plot_scale); 
el := next; 
end; 

if gi. tracing 
then 

wri teln ( trace_o, ' EXIT procedure VEL_pLQT •) ; 
end { veLplot}; 

procedure disp-plot(el: ptr-type); 
{ plot of displacements, called from plot, end of line } 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure DISP_pLQT'); 

while el - = nil do 
with el@ do begin 

with source do 
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gpoint(xc, yc); 
with posn do 

j oin(xc, yc); 
source : = posn; 
el :=next; 
end; 

if gi . tracing 
then 

wri teln ( trace_o, ' EXIT procedure DISP ..PLOT') ; 
end { disp_plot} ; 

procedure cont_plot(el: ptr_type); 

var 
midx, midy: real; 
con..node: con_ptr; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure CONT..PLOT'); 

while el - = nil do 
with el@, el@.posn do begin 

con..node := con_list; 
while con..node - = nil do 

with con..node@ do begin 
positn(xc, yc); 
join(other@.posn.xc, other@.posn.yc); 
midx := (xc + other@.posn.xc) I 2; 
midy := (yc + other@.posn.yc) I 2; 
arrow(midx, midy, c_force.x, 0, plot_acale); 
arrow(midx, midy, 0, c_force.y, plot-scale); 
arrow(midx, midy, c-Iorce.x, c-Iorce.y, plot-scale); 
con..node := next_con; 
end; 

el :=next; 
end; 

if gi. tracing 
then 

wri teln ( trace_o, ' EXIT procedure CONT ..PLOT') ; 
end {cont_plot}; 

procedure draw_split(x, y, theta, scale: real); 

var 
xlen, ylen: real; 

begin 
ylen :=scale* cos(theta); 
xlen :=scale* sin(theta); 
positn(x + 2 * xlen, y - 2 * ylen); 
join(x - 2 * xlen, y + 2 * ylen); 
positn(x + xlen, y + ylen); 
join(x - xlen, y - ylen) 
end { draw_spli t} ; 
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procedure fail-plot(el: ptr-type); 

var 
midx, midy: real; 
con~ode: con-ptr; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure FAILJPLOT'); 

while el - = nil do 
with el@ do begin 
con~ode := con-list; 
while con~ode - = nil do 

with co~ode@ do begin 
draw-split((posn.xc + other@.posn.xc) I 2, (posn.yc + other@.posn. 

yc) I 2, f_angle, f_force *plot-scale); 
con~ode := next_con; 
end; 

el :=next; 
end; 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure FAILJPLOT'); 
end {fail_plot}; 

begin {plots} 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure PLOTS'); 

writing := opt.echo; 
repeat 

get_command(plotter, plotquit, plotcom, plot-command, cmd_i); 
if plotcom IN ballplot . . failplot 

then 
total.pics := total.pics + 1; 

case plotcom of 
ballplot: 

do_this(circle-plot, sal, false, both); 
dotplot: 

do_this(dot_plot, sal, false, both); 
velplot: begin 

plot_scale : = 0; 
do_this(find_scale, sal, false, free); 
if plot_scale - = 0 

then begin 
plot_scale := gi.max-rad I (total.datatypes *plot-scale); 
do-this(vel-plot, sal, false, free); 
end 

else 
writeln(output, substr(pos_str, 1, mes_pos), 

end; 
displot: 

'Warning: all velocities zero '); 

do-this(disp-plot, sal, false, free); 
conplot: begin 

plot_scale := 0; 
do_this(find_scale, sal, false, free); 
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if plot-scale • ; 0 
then begin 

plot-scale :o gi.max_r~d I (totQl.datatypea ¢ plot_acale); 
do_this(cont_plot, sal, false, free); 
end 

else 
ariteln(output, substr(pos_str, 1, mes_pos), 

'Harnin~: all contact forces zero '); 
end; 

fail plot: begin 
plot_scale : = 0; 
do_this(find_scale, sal, false, free); 
if plot-scale - = 0 

then begin 
plot_scale := gi.max_rad I (2 ¢ total.datatypes * plot_scale); 
do-this(fail-plot, sal, false, free); 
end 

else 
writeln(output, substr(pos_str, 1, mes_pos), 

' Harning : no failures : no plot '); 
end; 

standard: begin 

do-this(circle-plot, sal, false, both); 
total.pics := total.pics + 1; 
fram_plot; 
frame; 
total. pages := total.pages + 1; 
end; 

frames: 
fram-plot; 

page: begin 
frame; 
total.pages := total.pages + 1; 
end; 

graticule: 
gricLplot; 

init: begin 
setup-plot; 
fram_plot; 
grid_plot; 
writing :=false; 
end; 

plotstop: begin 
map_space(cmd-i, 'full'); 
fram-plot; 
grid-plot; 
do_this(circle_plot, sal, false, both); 
grend; 
total.pics := total.pics + 1; 
writing:= false; 
total. pages :=total. pages + 1; 
end; 

zoom: 
map_space(cmd_i, 'zoom'); 

maps: 
map-space(cmd-i, ''); 

otherwise; 
end; 

if writing AND • cy_first 
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then begin 
if opt.echo 

then 
eriteln(output, substr(pos_str, 1, fra_pos), total.pages: 8, 

substr(pos_str, 1, plo-pos), total.pics: 8); 
end; 

until plotqui t; 
if gi. tracing 

then 
wri teln ( trace_o, ' EXIT procedure PLOTS') ; 

end {plots}; 

{**************************************** END PLOTS } 
{**************************************** BEGIN UPDATE } 

procedure update_area(el: ptr_type); 

var 
con-lim, con-res: real; 

procedure update_el(el: ptr_type); 

var 
sibling: ptr_type; 
forf: eLlist-types; 
dir-lim, sweep: area-directions; 
centre: area_ptr; 
gap: real; 
offset: real; 

procedure update_brain(elem, twin: ptr_type); 

var 
found: boolean; 

procedure destroy_contact(owner: ptr_type; pre_victim: con-ptr); 

var 
victim: con-ptr; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure DESTROY_CQNTACT'); 

if pre-victim = nil 
then begin 

victim := owner@.con-list; 
owner@.con_list := oener@.con-list@.next_con; 
end 

else begin 
victim := pre_victim@.next_con; 
pre_victim@.next_con := victim@.next_con; 
end; 

dispose(victim); 
total.cons := total.cons- 1; 
if gi.updating 
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then 
eriteln(debug_o, ' 

if gi.tracing 
then 

Victim destroyed'); 

aritaln(trace_o, ' EXIT procGdure DESTROY-CONTACT'); 
end {destroy_contact}; 

procedure scan_con(home_el, away_el: ptr_type); 

var 
home_con, prev_con: con-ptr; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure SCAN_CON'); 

home-con := home-el@.con_list; 
prev_con :=nil; 
found :=false; 
while (NOT found) AND (home_con ~ = nil) do begin 

found := home_con@.other = away-el; 
if NOT found 

then begin 
prev_con := home_con; 
home_con := home_con@.next_con; 
end; 

end; 
if (found) AND (gap >= con_lim) 

then 
destroy_contact(home_el, prev_con); 

if gi.tracing 
then 

ari teln(trace_o, ' EXIT procedure SCAN_CON •); 
end {scan-con}; 

procedure create_contact(domicus, vagrantus: ptr_type); 

var 
new con: con-ptr; 

begin 
if gi.tracing 

then 
writeln(trace_o, 'Entered procedure CREATE-CONTACT'); 

new(newcon); 
with newcon@ do begin 

next_con := domicus@.con-list; 
domicus@.con_list := newcon; 
other := vagrantus; 
if gap > 0 

then {tensional} 
offs := domicus@.data@.rad + vagrantus@.data@.rad 

else {overlapping} 
offs : = offset; 

gapsum := 0; 
c..force := nilv; 
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f_force : = 0; 
Langle := 0; 
failed : = false; 
end; 

total.cons := total.cons + 1; 
if gi.updating 

then 
writeln(debug_o, ' Contact created', gap: 6, domicus@.posn.xc: 

6, domicus@.posn.yc: 6, vagrantus@.posn.xc: 6, vagrantus@.posn 
.yc: 6); 

if gi . tracing 
then 

"ffriteln(trace_o, ' EXIT procedure CREATE-CONTACT'); 
end {create_contact}; 

begin {update_brain} 
if gi.tracing 

then 
writeln(trace_o, 'Entered procedure UPDATEJBRAIN'); 

scan_con(elem, t"ffin); 
if NOT found 

then 
scan_con(twin, elem); 

if (NOT found) AND (gap < con-lim) 
then 

create_contact(elem, twin); 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure UPDATEJBRAIN'); 

end {update-brain}; 

function central(elem: ptr-type): boolean; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure CENTRAL'); 

with centre@.corners do 
central := min(elem@.posn.yc - ymin, ymax - elem@.posn.yc, elem@.posn. 

xc- xmin, xmax- elem®.posn.xc) > 2 * gi.max_rad +con-res; 
if gi. tracing 

then 
"ffriteln(trace_o, ' EXIT procedure CENTRAL'); 

end {central} ; 

begin 
{ it is fortunate that two fixed blocks are not allowed to have contacts} 

if gi.tracing 
then 

writeln(trace_o, 'Entered procedure UPDATE-EL'); 

with el® do begin 
centre :=this-area; 
if central(el) 

then 
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dir -lim : = self 
else 

dir_lim :::: na; 
for saeep := self to dir_lim do begin 

area :o shift_area(centre, 1, saGop); 
if area::: nil 

then 
continue; 

if saeep = self 
then 

sibling :~ el@.next 
else 

sibling := area@.free-list; 
for forf := free to fixed do begin 

while (sibling - = nil) do begin 
offset := sqrt(sqr(sibling@.posn.xc- posn.xc) + sqr(sibling®.posn 

.yc- posn.yc)); 
gap:= offset- (data@.rad + sibling@.data@.rad); 
if gap < con-res 

then 
update_brain(el, sibling); 

sibling := sibling@.next; 
end; 

sibling := area@.fixed_list; 
end; 

end; 
end; 

if gi. tracing 
then 

ariteln(trace_o, ' EXIT procedure UPDATE-EL'); 
end {update_el}; 

begin {update_area} 
if gi. tracing 

then 
writeln(trace-o, 'Entered procedure UPDATE-AREA'); 

if this-area = spare-area 
then 

return; 
with this-area@ do begin 

upd_min : = 0. 5 * gi. max..rad I total. datatypes; 
con-lim : = updJIIin; { gap > con-lim not a contact} 
con_res := 2.1 * con_lim; {gap< con..res check lists} 
upd-par : = 0 ; 
end; 

while el - = nil do begin 
update_el(el); 
el := el@.next; 
if gi.updating 

then 
ariteln(debug_o, 'total number of contacts', total.cons); 

end; 
total. updates : = total. updates + 1; 
if gi. tracing 

then 
wri teln(trace-o, ' EXIT procedure UPDATE-AREA'); 

end {update-area}; 

{**************************************** END UPDATE } 
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{**************************************** BEGIN RE-AREA } 

procedure re_area; 

var 
el: ptr_type; 

begin 
if gi. tracing 

then 
~riteln(trace_o, 'Entered procedure RE-AREA'); 

~hile re_area-list - = nil do 
~ith re-area_list@ do begin 

if gi.reareaing 
then 
~riteln(debug_o, 'ori x,y, ne~ x,y ' source.xc: 6, source.yc: 6, 

posn.xc: 6, posn.yc: 6); 

area:= shift_area(shift_area(sal, no_cols(posn.xc), e), no_rows(posn.yc 
) ' n); 

if area= nil 
then begin 

area := spare_area; 
total.circles := total.circles - 1; 
writeln(output, substr(pos-str, 1, mes-pos), 

'Warning: circles leaving area', el@.posn.xc: 8,'' el@. 
posn. yc : 8) ; 

end; 
el := re-area-list; 
re_area_list := el@.next; 
el@.next := area@.free_list; 
area@.free_list := el; 
end; 

if total.circles = 0 
then 

start-shut(input, shutdo~n); 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure RE-AREA'); 

end {re_area}; 

{**************************************** BEGIN CYCLE } 

procedure cycle(var cmdLi: text); 
{ driver for iterations } 
{ the calculation sequence module } 

{ called from contrl } 

{ 
{ 

may call ford, motion, updat and stop } 
called via motion } 

var 
cycles, no_of_cycles, outcounter, cycle_lim: cycle-type; 
max_adisp, min-adisp: real; 



Apperrullix E. 

procedure hide-el(var el: ptr-type); 

var 
elem, prev: ptr_type; 

begin 
if gi. tracing 

then 
eriteln(trace-o, 'Entered procedure HIDE-EL'); 

if this_area :::: spare_area 
then 

return; 
eith this_area@ do begin 

elem := free_list; 
prev :=nil; 
while el - = elem do begin 

prev := elem; 
elem := elem@.next; 
end; 

el := el@.next; 
if prev =nil 

then 
free_list : = el 

else 
prev@.next := el; 

elem@.next := re_area_list; 
re_area_list := elem; 
end; 

if gi.tracing 
then 

-ariteln(trace_o, ' EXIT procedure HIDE..EL'); 
end { hide_el} ; 

procedure clear_forces(el: ptr_type); 
{ set all forces to zero } 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure CLEAR-FORCES'); 

while el - = nil do 
with eHl do begin 

force := nilv; 
el := next; 
end; 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure CLEAR-FORCES'); 
end {clear-forces}; 

procedure fordmot(el: ptr-type); 

var 
con~ode: con_ptr; 
sine, cose, gap, dx, dy, con-force: real; 
stress, t_force: vector-type; 
n, s1, s3, si, sn, st: real; 
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begin 
if gi. tracing 

then 
ariteln(trace_o, 'Entered procedure FORD'); 

while el - = nil do 
with el@, el@.data@ do begin 

con-node :=con-list; 
if gi. fording 

then 
writeln(debug_o, 

'del tagap con_force force t_force for x then y'); 
while con~ode - = nil do 

with con-node@ do begin 
dx := other@.posn.xc- posn.xc + (other@.s.x- s.x); 
dy := other@.posn.yc- posn.yc + (other@.s.y- s.y); 
gap:= sqrt(sqr(dx) + sqr(dy)); 
sine := dy I gap; 
cose := dx I gap; 
if gi. fording 

then 
write(debug_o, gap, sine, cose); 

gap :=gap- offs; 
if gi.fording 

then 
writeln(debug-o, gap); 

if gap< this_area@.upd~in 
then begin 

con-force := kn * gap * damp; 
t-force.x := c_force.x +con-force* cose; 
t-force.y := c_force.y + con_force *sine; 
if gap * kn + gapsum > 0 

then begin 
if gap * kn + gapsum > tens-fuzz 

then begin 

end 

f_force := (t_force.x + t_force.y) I 2; 
if abs(sine) < lE-40 

then 
sine := ie-40; 

f_angle :=arctan(- cose I sine); 
t_force := nilv; 
failed : = true; 
end; 

else begin 
stress.x := abs(t_force.x I rad); 
stress.y := abs(t_force.y I rad); 
if stress.x < stress.y 

t;hen begin 
s3 : = stress . x; 
si : = stress. y; 
end 

else begin 
s3 : = stress. y; 
si := stress.x; 
end; 

if phi = 0 
then begin 

s1 := s3 + 2 * cohes; 
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sn := 1E7; 
st := cohes; 
end 

else begin 
n := sqrt(1 + sqr(phi)); 
n :c (1 +phi- n) I (phi- 1 + n); 
sn := (s3 + n * cohes) I (1- n *phi); 
st :=phi* sn + cohes; 
s1 := 2 * (sn + st * phi) - s3; 
end; 

if si > s1 
then begin 

if stress.x < stress.y 
then 

t_force.y := sign(sl * rad, t_force.y) 
else 

t_force.x := sign(s1 * rad, t-force.x); 
if - failed 

then begin 
failed : = true; 
f_force : = st; 
if abs(sn - s3) > 1e-20 

then 
f-angle := arctan(st I (sn - s3)) 

else 
f_angle : = 0; 

total.cracked := total.cracked + 1; 
if opt.echo 

then 
writeln(output, substr(pos_str, 1, cra_pos), 

total.cracked: 8, substr(pos-str, 1, 
cyc_pos), total.cycles: 8, substr(pos-str, 
1, mes_pos) , ' Sphere cracked at ' , posn. 
xc: 8: 3, posn.yc: 8: 3, stress.x: 8: 3, 
stress.y: 8: 3); 

end; 
end; 

other@.force.x := other@.force.x- t_force.x; 
other@.force.y := other@.force.y- t_force.y; 
force.x := force.x + t_force.x; 
force.y := force.y + t_force.y; 
if gi. fording 

then 
writeln(debug_o, con_force: 8, dx: 8, force.x: 8, 

other@.force.x: 8, dy: 8, force.y: 8, other@.force 
.y: 8); 

if gi. consoling 
then 

writeln(debug_o, t_force.x, t_force.y); 
end; 

end; 
con_node := next_con; 
end; 

el :=next; 
end; 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure FORD'); 
end { fordmot}; 
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procedure fordcon(el: ptr_type); 

var 
con..node: con_ptr; 
sine, cose, gap, dx, dy, con_force: real; 
stress, t_force: vector-type; 
n, s1, s3, si, sn, st: real; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure FORDCON'); 

while el - = nil do 
with el@, el@.data@ do begin 

con..node := con_list; 
if gi.fording 

then 
writeln(debug-o, 

'del tagap con_force force t_force for x then y'); 
ahile con..node - = nil do 

with con..node@ do begin 
dx := other@.posn.xc - posn.xc; 
dy := other@.posn.yc- posn.yc; 
gap:= sqrt(sqr(dx) + sqr(dy)); 
sine := dy I gap; 
cose := dx I gap; 
dx := dx + (other@.s.x- s.x); 
dy := dy + (other@.s.y- s.y); 
gap:= sqrt(sqr(dx) + sqr(dy)); 
if gi.fording 

then 
write(debug-o, gap, sine, cose); 

gap :=gap- offs; 
if gi. fording 

then 
ariteln(debug-o, gap); 

if gap < this_area@. upd..rnin 
then begin 

gapsum := gapsum +gap; 
con_force :=gap * damp; 
t-force.x := c_force.x +con-force* cose; 
t_force.y := c_force.y + con_force *sine; 
if gapsum > 0 

then begin 
if gapsum > cohes 

then begin 

end 

f_force := (t_force.x + t_force.y) I 2; 
if abs(sine) < lE-40 

then 
sine : = le-40; 

f_angle :=arctan(- cose I sine); 
t_force := nilv; 
failed : = true; 
end; 

else begin 
stress.x :s abs(t_force.x I rad); 
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stress.y := abs(t_forc~.y I rad); 
if stress.x < stress.y 

then begin 
s3 := stress.x; 
si := stress.y; 
end 

else begin 
s3 :"' stress.y; 
si := stress.x; 
end; 

if phi ::: 0 
then begin 

s1 := s3 + 2 * cohes; 
sn := 1E7; 
at := cohes; 
end 

else begin 
n := sqrt(1 + sqr(phi)); 
n := (1 +phi- n) I (phi- 1 + n); 
an := (s3 + n * cohes) I (1- n *phi); 
at :=phi·* an+ cohes; 
s1 := 2 * (an + st * phi) - a3; 
end; 

if si > s1 
then begin 

if stresa.x < atreaa.y 
then 

t_force.y := aign(s1 * rad, t-force.y) 
else 

t_force.x := aign(a1 * rad, t-force.x); 
if - failed 

then begin 
failed : = true ; 
f_force := at; 
if abs(sn - a3) > 1e-20 

then 
f_angle := arctan(at I (an- s3)) 

else 
Langle := 0; 

total.cracked := total.cracked + 1; 
end; 

end; 
end; 

c_force : = t-force; 
other~.force.x := other@.force.x- c_force.x; 
other@.force.y := other@.force.y- c_force.y; 
force.x := force.x + c_force.x; 
force.y := force.y + c_force.y; 
if gi.fording 

then 
-eriteln(debug_o, con-force: 8, dx: 8, force.x: 8, other@. 

force.x: 8, dy: 8, force.y: 8, other@.force.y: 8); 
if gi.consoling 

then 
Hriteln(debug_o, c_force.x, c_force.y); 

end; 
con~ode := next_con; 
end; 

el :=next; 
end; 
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if gi.tracing 
then 

writeln(trace_o, ' EXIT proceduroa FORDCON'); 
end {ford con}; 

procedure premotion(el: ptr_type); 

var 
con~ode: con_ptr; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure PREMOTION'); 

while el - = nil do 
with el@ do begin 
con~ode := con-list; 
while con~ode - = nil do 

with co~ode@ do begin 
if other@.data@.typ =fixed 

then 
no_of_contacts := no_of_contacts + 1 

else 
if (abs(other@.s.y- s.y) > 0.0005) AND (abs(posn.yc -other@. 

posn.yc) > 0 .1) 
then begin 

no_of_contacts := no_of_contacts + 1; 
other@.no_of_contacts := other@.no_of_contacts + 1; 
end; 

con~ode := next_con; 
end; 

el :=next; 
end; 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure PREMOTION'); 
end {premotion}; 

procedure fconsolxy(el: ptr_type); 

begin 
if gi. tracing 

then 
writeln(trace.o, 'Entered procedure FCONSOLXY'); 

while el - = nil do 
with el@, el@.force, el@.data@, opt, gi do begin 

if no_of_contacts = 0 
then 

no_of-contacts := 1; 
s.x := (xI mass+ grav.x) * sqr(gi.tstep) {1 no_of_contacts}; 
s.y := (y I mass+ grav.y) * sqr(gi.tstep) {1 no_of_contacts}; 
sum.sc := rnax(s.x, s.y, sum.sc); 
if motioning 

then 
writeln(debug.o, flagno: 3, 'f' x, y, 's' s.x, s.y); 

no_of_contacts : = 0; 
force := nilv; 
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el :=next; 
end; 

if gi . tracing 
then 

-ari teln ( trace_o, ' EXIT procedure FCONSOLXY') ; 
end {fconsolxy}; 

procedure motionxy(el: ptr_type); 

var 
max-disp: real; 

begin 
if gi. tracing 

then 
-ariteln(trace_o, 'Entered procedure MOTION'); 

max_disp : = 0; 
while el - = nil do 

-aith el0 do begin 
posn.xc := posn.xc + s.x; 
posn.yc := posn.yc + s.y; 
a.x := force.x I data@_.mass + _opt.grav.x; 
a.y := force.y I data@.mass + opt.grav.y; 
v.x := v.x + a.x * gi.tstep; 
v.y := v.y + a.y * gi.tstep; 
s.x := v.x * gi.tstep; 
s.y := v.y * gi.tstep; 
sum.sc := max(s.x, s.y, sum.sc); 
max_disp := max(max_disp, s.x, s.y); 
if (gi.oscing) AND (data@.typ =track) 

then 
writeln(oscil-o, data@.flagno: 4, total.cycles: 6, force.x: 12, a. 

x: 12, v.x: 12, s.x: 12, posn.xc: 12, force.y: 12, a.y: 12, v. 
y: 12, s.y: 12, posn.yc: 12); 

if (trunc(posn.yc I area_i.size.yc) - = this-area@.ro~) OR (trunc(posn 
.xc I area_i.size.xc) - = this-area@.col) 

then 
hide_el(el) 

else 
el : = next; { el may be changed by hide_el} 

end; 

with this-area@ do begin 
upd_par : = upd_par + max_disp; 
if upd-par > upcLmin 

then begin 
if re_area_list - = nil 

then 
re_area; 

do_this(update_area, this-area, true, free); 
if opt .echo 

then 
~riteln(output, substr(pos_str, 1, upd_pos), total.updates: 8); 

end; 
end; 

if gi.tracing 
then 
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writeln(trace_o, ' EXIT procedure MOTION'); 
end {motionxy}; 

begin {cycle} 
if gi.tracing 

then 
writeln(trace_o, 'Entered procedure CYCLES'); 

if screen 
then 

writeln(output, substr(pos-str, 1, pro-pos), 
'Enter no of cycles required ... '); 

read(cmd_i, no_of_cycles); 
if opt.echo 

then 
writeln(output, substr(pos-str, 1, req-pos), no-of-cycles: 8); 

if total. circles = 0 
then begin 

writeln(output, substr(pos_str, 1, mes_pos), 
'Warning no circles left'); 

return 
end; 

max_adisp := gi.max_rad I (200 * total.datatypes); 
min_adisp := max_adisp I 50; 
outcounter := total.cycles; 
cycles := 0; 
while (cycles < no_of_cycles) AND c- quit) do begin 

if opt.cycle-interval < no_of_cycles- cycles 
then 

cycle_lim := total.cycles + opt.cycle_interval 
else 

cycle-lim := total.cycles +no-of-cycles - cycles; 
while (total.cycles < cycle_lim) AND c- quit) do begin 

sum.scold := sum.sc; 
sum. sc := 0; 
if gi. settling 

then begin 
do_this(premotion, sal, false, free); 
do-this(fordcon, sal, false, free); 
do_this(fconsolxy, sal, false, free); 
end 

else begin 
do_this(fordmot, sal, false, free); 
do_this(motionxy, sal, false, free); 
if re_area_list - = nil 

then 
re_area; 

do_this(clear_forces, sal, false, both); 
end; 

total.cycles := total.cycles + 1; 
if (opt.echo) AND (total.cycles MOD opt.cyclegap = 0) 

then begin 
writeln(output, substr(pos_str, 1, cyc_pos), total.cycles: 8); 
if sum.scold < sum.sc 

then 
writeln(output, substr(pos_str, 1, mes_pos), 

'Decreasing stability', sum.sc) 
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else 
ariteln(output, substr(pos-str, 1, mes-pos), 

'Increasing stability', sum.sc); 
cand; 

if (opt.cmdprocessing) AND (total.cyclcas MOD opt.cycle-interval = 0) 
then begin 

reset(cycmd_i, 'FILE=-sass.cmd'); 
gi. cmdend :::: false; 
while - gi.cmdend do 

control(cycmd_i); 
if opt .echo 

then 
ariteln(output, substr(pos-str, 1, req-pos), no-of-cycles: 8); 

end; 
quit := (gi.settling) AND (sum.sc < 1e-14); 
if - gi.settling 

then begin 
if sum.sc > max_adisp 

then begin 
gi.tstep := gi.tstep I 2; 
writeln(output, substr(pos-str, 1, err_pos), 

'Current time step set to: ', gi.tstep: 12: 10); 
end 

elf!e 
if sum.sc < min_adisp 

then begin 

end; 
if trap 

gi.tstep := gi.tstep * 1.05; 
writeln(output, substr(pos-str, 1, err_pos), 

' Current time step set to : ', gi. tstep: 12: 10); 
end; 

then 
trapper; 

if gi.cycling 
then 

writeln(debug_o, 'max individual disp' sum.sc); 
end; 

cycles := total.cycles- outcounter; 
end; 

if (quit) AND (sum.sc < 1e-14) 
then 

quit :=false; 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure CYCLES'); 

end {cycle} ; 

{**************************************** END CYCLE} 

procedure start-shut; 
{ initialises the run, called from control, initialisation modules } 

type 
records= (rpar, rvec, rcoo, rcon, rele, rgri, rare, rara, rgen, ropt, rtot, 

rsum, rhed); 
buffertype = record 

tag: char; 
case records of 
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var 

rpar: (parabk-rep: parabk-type); 
rvec: (vector-rep: vector_type); 
rcoo: (coord_rep: coord_typa); 
rcon: (con-rap: con_type); 
rele: (element-rep: element-type); 
rgri: (gridLrep: gridLtype); 
rare: (area...i-rep: area_Ltypa); 
rara: (area_rep: araa .. type); 
rgen: (gen-info_rep: gen..info-typa) ; 
ropt: (option...rep: option_type); 
rtot: (totals-rep: totals_ type); 
rsum: (sum-rep: sum-type); 
rhed: (hed-rep: hed-type); 

end; 

rest_o, rest-i: file of buffertype; 
buffer: buffertype; 
sd: para...ptr; 
new-circle: ptr-type; 

procedure mesh_areas; 

procedure get_area(var n_a: area_ptr; cola, ro~s: ro~col_type); 

begin 

var 

if gi.tracing 
then 
~riteln(trace_o, 'Entered procedure GET-AREA'); 

ne~(n..a); 

~ith n_a@ do begin 
corners.xmax := area_i. size. xc 
corners.xmin := corners.xmax -
corners.ymax := area_i. size. yc 
corners.ymin .- corners.ymax 
row := ro~s - 1; 
col := cols - 1; 
upd_par : = 0.0; 
upd..min : = 0 ; 
free_list :=nil; 
fixedLlist : = nil; 
n :=nil; 
e :=nil; 
s :=nil; 
w :=nil; 
next_area :=nil; 
end; 

if gi.reareaing 
then 
~ith n_a@.corners do 

-

* cols; 
area...i.size.xc; 

* rows; 
area..i. size. yc; 

writeln(debug-o, 'x,x- ,y,y- , xmin: 6, xmax: 6, ymin: 6, ymax); 
if gi.tracing 

then 
~riteln(trace_o, ' EXIT procedure GET-AREA'); 

end {get_area} ; 
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nee-area: area.ptr; 
columns, layers: rowcol_type; 

begin {mesh-areas} 
if gi. tracing 

then 
wri teln ( trace_o, 'Entered procedure UESH_AREAS'); 

get_area(area, 1, 1); 
sal := area; 
for columns : = 1 to area_i. xmax do begin 

if gi.reareaing 
then 

writeln(debug_o, 'setup areas col number', columns); 
for layers := 2 to area_i.ymax do begin 

if gi.reareaing 
then 

writeln(debug_o, 'setup areas row number', layers); 
get_area(new_area, columns, layers); 
area@.next-area := new_area; 
area@.n := new-area; 
area@.n@.s :=area; 
if columns = 1 

then 
area := areaCil.n 

else begin 
area:= shift-area(area, 1, nw); 
area@.e :=new-area; 
area@.e@.w := area; 
area := areaCil.e; 
end; 

end; 

get_area(new_area, columns+ 1, 1); 
area@.next_area :=new-area; 
area:= shift_area(area, area-i.ymax- 1, s); 
area@.e := new_area; 
areaCil.e@.w := area; 
area := areaCil.e; 
end; 

spare-area := area; 
area:= shift_area(area, 1, w); 
areaCil.e :=nil; 
spare_area@.w :=nil; 
area:= shift-area(area, area-i.ymax- 1, n); 
area@.next-area :=nil; 
area :=sal; 
if gi . tracing 

then 
wri teln(trace_o, ' EXIT procedure ~tESH..AREAS'); 

end {mesh-areas}; 

procedure setup_a_info; 

begin 
if gi. tracing 

then 
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writeln(trace_o, 'Entered procedure SETUP-A-INFO'); 
with area_i do begin 

if screen 
then 

writeln(output, substr(pos_str, 1, pro-pos), 
'Enter no of areas in x andy .. '); 

read(cmdLi, xmax, ymax); 
size.xc := (plspace.xmax- plspace.xmin) I xmax; 
size.yc := (plspace.ymax- plspace.ymin) I ymax; 
nos := xmax * ymax; 
end; 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure SETUP_A_INFD'); 
end {setup-a-info}; 

procedure mesh; 
{procedure to create profiles, called from start } 

var 
oldx, oldy, cose, sine: real; 
numrep: integer; 

procedure cre_data; 

const 
sort-str ='null free fixedtrack'; 

var 
new-data: para-ptr; 
sort: string(12); 
sind: integer; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure CREJDATA'); 

new(new-data); 
new_data@.preincarnate := ord(new_data); 
new_data@.next-data := cdp@.next_data; 
cdp@.next-data := new_data; 
cdp : = new-data; 
with cdp@ do begin 

if screen 
then 

writeln(output, substr(pos-str, 1, pro-pos), 
' Enter data as fdmcprrk ....... '); 

read(cmdLi, flagno, damp, mass, cohes, phi, rho, rad, kn); 
damp :=damp I mass; 
if- screen and opt.echo 

then 
writeln(output, substr(pos-str, 1, mes-pos), ' ' flagno: 6, damp: 

6, mass: 6, cohes: 6, phi: 6, rho: 6, rad: 6, kn: 6, ' ') ; 
gi. max_rad : = gi. max_rad + rad; 
total. datatypes : = total. datatypes -1- 1; 
end; 

get_command(datert, qdum, cdp@.typ, '', cmd-i); 
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if gi. tracing 
then 

ariteln(trace_o, ' EXIT procedure CRE-DATA'); 
end {ere-data}; 

procedure cre_circles; 

var 
x, y: real; 
repind, numrept: integer; 
nea_circle, area_l: ptr-type; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure CRE_circleS'); 

if screen 
then 

writeln(output, substr(pos_str, 1, pro_pos), 
'Enter x, y ... coordinates .. '); 

while NOT eoln do begin 
read(cmd_i, x, y); 
if (~ gi.jumping) OR (gi.single) 

then · · 
numrept := 1 

else 
numrept := numrep; 

for repind := 1 to numrept do begin 
if gi. jumping 

then begin 
oldx := x * cose + oldx; 
oldy := y *sine +oldy; 
end 

else begin 
oldx := x; 
oldy := y; 
end; 

if opt .echo 
then 

write(output, substr(pos-str, 1, pro-pos), oldx: 9, oldy: 9); 
area:= shift_area(shift_area(sal, no_cols(oldx), e), no_rows(oldy), 

n); 
if area= nil 

then 
error_simple('circle coordinates out of range ' 

'create circles'); 
if gi.reareaing 

then 
with area@.corners do 

writeln(debug_o, 'x,x~ ,y,y~ ', xmin: 6, xmax: 6, ymin: 6, ymax: 
6, ' X, Y ', oldx: 6, oldy: 6); 

new(new_circle); 
case cdp@.typ of 

track, free: begin 
total.circles := total.circles + 1; 
new_circle@.next := area@.free_list; 
area@.free_list := new_circle 
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var 

end; 
fixed: begin 

total.fixed := total.fixed ~ 1; 
new_circle@.next := area@.fixed-list; 
area@.fixsdLlist :=new-circle 
end; 

end; 

with nee_circle@ do begin 
data := cdp; 
source.xc := oldx; 
source.yc :=oldy; 
posn :=source; 
force.x := 0; 
force.y := 0; 
s :=force; 
v :=force; 
a :=force; 
consol :=force; 
no_of-contacts := 0; 
con-list : = nil; 
end; 

end; 
end; 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure CRE-circleS'); 
end {cre_circles}; 

x, y: real; 
meshquit: boolean; 
meshcom: com-type; 

begin {mesh} 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure MESH'); 

numrep := 1; 
sine := 1; 
cose := 1; 
repeat 

get-command(mesher, meshquit, meshcom, '' cmd_i); 
case meshcom of 

forloop: begin 
if screen 

then 
writeln(output, substr(pos_str, 1, pro_pos), 

'Enter no of repeats desired ... '); 
read(cmdLi, numrep); 
gi.single :=false; 
end; 

endfor: 
gi.single :=true; 

sing: 
gi.singla :~true; 

multip: 
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gi.single :=false; 
relative: 

gi. jumping : = true; 
absolute: 

gi. jumping :"' false; 
dataset: 

cre_data; 
create: 

ere-circles; 
position: begin 

if screen 
then 

ariteln(output, substr(pos-str, 1, pro-pos), 
' Enter position to move to xy .. '); 

read(cmd_i, oldx, oldy); 
end; 

movepos: begin 
if screen 

then 
writeln(output, substr(pos-str, 1, pro-pos), 

'Enter translate by x, y ...... '); 
read(cmdLi, x, y); 
oldx := oldx + x * cose; 
oldy := oldy+ y * sine; 
end; 

angle: begin 
if screen 

then 
writeln(output, substr(pos_str, 1, pro_pos), 

'Enter angle (in degrees) ... '); 
read(cmdLi, sine); 
sine :=sine • arctan(1) I 46; 
cose := cos(sine); 
sine := sin(sine); 
end; 

meshend: 
meshquit :=true otherwise; 

end 
until meshquit; 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure MESH'); 

end {mesh}; 

procedure readLrestart_file; 

var 
labl: char; 
no_areas: integer; 
cont: con_ptr; 
ele: ptr-type; 
old_fixe, old..free: ptr-type; 

procedure data_link(el: ptr-type); 

begin 
if gi. tracing 
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then 
uriteln(trace_o, 'Entered procedure DATA-LINK'); 

if ord(el@.data) ~ sd@.preincarnate 
then 

el@.data :::: sd 
else begin 

sd :::: cdp; 
uhile ord(el@.data) - ~ sd@.praincarnate do 

sd :::: sd@.next-data; 
el@. data ::: sd 
end; 

if gi.tracing 
then 

uriteln(trace_o, ' EXIT procedure DATA..LINK'); 
end {data-link}; 

procedure find_a_contact(var con: con-ptr); 

procedure findLan_element; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure FIND-AN-ELEMENT'); 

repeat 
if ele - =nil 

then 
ele := ele@.next 

else begin 
if area= nil 

then 
area := sal 

else 
area := area@.next_area; 

ele := area@.free-list 
end 

until ele - =nil; 
con := ele@.con_list; 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure FIND_ANJELEMENT'); 

end {find_an_element}; 

begin {find_a_contact} 
if gi.tracing 

then 
writeln(trace_o, 'Entered procedure FIND-A-CONTACT'); 

repeat 
if con - :: nil 

then 
con := con@.next-con 

else 
find_an_element; 

until con-= nil; 
if gi. tracing 

then 
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eriteln(trace_o,' EXIT procedure FIND-A-CONTACT'); 
end { find_a_contact}; 

begin {read_restart_file} 
if gi. tracing 

then 
Hriteln(trace_o, 'Entered procedure READ-RESTART-FILE'); 

no_areas : = 0; 
old_fixe : = nil; 
old-free : = nil; 
reset(rest_i, 'unit=2'); 
reerite(cycmd-i, 'FILE=-sass.cmd'); 
reerite(repts-i, 'FILE=-sass.rep'); 
writeln(output); 
while - eof(rest-i) do begin 

read(rest_i, buffer); 
labl := buffer.tag; 
if cols(output) = 1 

then 
write(output, substr(pos_str, 1, com_pos), 'Reading '); 

write(output, labl); 
if cols(output) = 31 

then 
writeln(output); 

case labl of 
'G': begin 

gi := buffer.gen_info_rep; 
read(rest_i, buffer); 
total := buffer.totals-rep; 
read(rest_i, buffer); 
sum := buffer.sum_rep; 
read(rest_i, buffer); 
opt := buffer.option_rep; 
read(rest_i, buffer); 
area_i : = buffer. area_Lrep; 
read(rest-i, buffer); 
plspace := buffer.grid-rep; 
mesh_areas; 
plots(input, 'init'); 
end; 

'c': 
writeln(cycmd_i, buffer.hedLrep); 

'r': 
writeln(repts-i, buffer.hedLrep); 

'D': begin 
new(sd); 
with sd@ do begin 

sd@ := buffer.parabk-rep; 
next_data : = cdp@. next_data; 
cdp@.next_data := sd; 
cdp := sd; 
end; 

end; 
'A': begin 

with area@ do begin 
corners := buffer.area-rep.corners; 
upd_par := buffer.area-rep.upd-par; 
upd_min := buffer.area-rep.upd_min; 
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area :=next-area; 
end; 

old_fixe :=nil; 
old-free :~nil; 
no-areas := no_areas + 1; 
if no_areas = area_i,nos 

then begin 
total.cons :~ 0; 
do-this(update_area, sal, false, free); 
area :=nil; 
ele :=nil; 
cont :=nil 
end; 

end; 
'F': begin 

new(new_circle); 
new-circle@ := buffer.element-rep; 
new_circle@.con_list :=nil; 
data_link(new_circle); 
new_circle@.next :=nil; 
if old-fixe = nil 

then 
area@.fixed_list := new_circle 

else 
old_fixe@.next := new_circle; 

old_fixe := new_circle; 
end; 

'f': begin 
new(new_circle); 
new_circle@ := buffer.element_rep; 
new_circle@.con-list :=nil; 
data_link(new-circle); 
new_circle@.next :=nil; 
if old-free = nil 

then 
area@.free-list :=new-circle 

else 
old-free@.next :=new-circle; 

old-free :=new-circle; 
end; 

'C': begin 
find_a_contact(cont); 
with cont@ do begin 

offs := buffer.con_rep.offs; 
c_force := buffer.con_rep.c_force; 
gapsum := buffer.con_rep.gapsum; 
f_force := buffer.con_rep.f-force; 
f_angle := buffer.con_rep.f_angle; 
failed := buffer.con_rep.failed; 
end; 

end; 
'*': begin 

sd := cdp; 
repeat 

cdp := cdp@.next_data; 
cdp@.preincarnate := ord(cdp); 
until sd = cdp; 

writeln(output, substr(pos_str, 1, mes-pos), 
' A restart file has been read'); 

end; 
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end; 
end; 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure READ-RESTART-FILE'); 
end { read_restart_file}; 

procedure write_restart_file; 

procedure wr-con_rf(el: ptr-type); 

var 
con: con_ptr; 

begin 
if gi.tracing 

then 
writeln(trace_o, 'Entered procedure WR_CON-RF'); 

while el - = nil do begin 
con := el@.con-list; 
while con - = nil do begin 

buffer.con_rep :=con~; 
write(rest_o, buffer); 
con := con@.next_con; 
end; 

el := el~.next; 
end; 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure WR-CON-RF'); 
end {wr_con_rf}; 

procedure rest_w_boxes Carel: area-ptr) ; 

procedure wr_blk-rf(el: ptr_type); 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure WR-BLK-RF'); 

while el - = nil do begin 
buffer.element_rep := el@; 
write(rest-o, buffer); 
el := el@.next; 
end; 

if gi. tracing 
then 

wri teln ( trace_o, ' EXIT procedure WR-BLK-RF') ; 
end { wr -blk_rf} ; 

begin {rest_w_boxes} 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure REST_W_BQXES'); 
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while arel - = nil do 
with arel@ do begin 

buffer.tag := 'F'; 
er_blk_rf(fixed-list); 
buffer.tag := 'f'; 
wr_blk-rf(free-list); 
buffer.tag :='A'; 
buffer.area_rep := arel@; 
write(rest_o, buffer); 
arel := next_area 
end; 

if gi. tracing 
then 

wri teln(trace_o, ' EXIT procedure REST_W...BOXES'); 
end {rest_w_boxes}; 

begin {write-restart-file} 
if gi. tracing 

then 
ariteln(trace_o, 'Entered procedure HRITEJRESTART_FILE'); 

if re_area-list - = nil 
then 

re_-~rt:~a; 

do_this(update_area, sal, false, free); 
if (opt.rf_over) OR (rf_first) 

then 
rewrite(rest_o, 'unit=l'); 

rf_first :=false; 
buffer.tag := 'G'; 
buffer.gen_info_rep := gi; 
write(rest_o, buffer); 
buffer.totals-rep :=total; 
write(rest-o, buffer); 
buffer. swn..rep : = swn; 
write(rest_o, buffer); 
buffer. option..rep : = opt; 
arite(rest-o, buffer); 
buffer.area_i-rep := area_i; 
write(rest_o, buffer); 
buffer.grid-rep := plspace; 
write(reat_o, buffer); 

reset(cycmd_i, 'FILE=-sass.cmd'); 
buffer.tag := 'c'; 
while - eof(cycmd_i) do begin 

buffer.hed-rep := nilhed; 
readln(cycmd_i, buffer.hed-rep); 
write(rest-o, buffer); 
end; 

reset(repts_i, 'FILE=-sass.rep'); 
buffer.tag := 'r'; 
while - eof(repts_i) do begin 

buffer.hed..rep := nilhed; 
readln(repts_i, buffer.hed_rep); 
write(rest_o, buffer); 
end; 

buffer.tag := '0'; 
cdp := sdl; 
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repeat 
buffer.parabk_rep :o cdp@; 
urite(rest_o, buffer); 
cdp := cdp@.next_data; 
until cdp o sdl; 

rest-u-boxes(sal); 
buffer.tag := 'C'; 
do_this(wr_con_rf, sal, false, both); 
buffer.tag := '*'; 
buffer. hed....rep : = 'END of RESTART FILE ' ; 
write(rest_o, buffer); 
writeln(output, substr(pos-str, 1, fil-pos), 

'A restart file has been written'); 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure RESTART..FILE'); 

end {write....restart_file}; 

procedure complete; 
{tidy up and stop called from contrl or cycle calls bplot, check and rfile } 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure COMPLETE'); 

plots(input, 'endplot'); 
with total do begin 

writeln(output, substr(pos_str, 1, tot-pos), ' total circles 
circles: 6, 'fixed ',fixed: 6); 

writeln(output, ' total cracked', cracked: 6, ' contacts ', cons: 6 
) ; 

writeln(output, ' 
6); 

writeln(output, ' 
end; 

total cycles ' cycles: 6, ' no. updats ', updates: 

total frames ' pages: 6, ' plots 

if gi.tracing 
then 

wri t_eln ( trace_o, ' EXIT procedure COMPLETE') ; 
end {complete}; 

begin {start_shut} 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure START-SHUT'); 

case starting of 
cold: begin 

if screen 
then 

writeln(output, substr(pos_str, 1, pro_pos), 
' Enter heading ................ ') ; 

readln(cmd-i, gi.heading); 
writeln(output, substr(pos_str, 1, tit-pos), gi.heading); 
plots(cmd_i, 'initialise'); 
setup-a-info; 
mesh-areas; 
mesh; 
plots(cmdLi, 'ballplot'); 

pies: 6); 
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do_this(update-area, sal, false, free); 
end; 

shutdown: begin 
complete; 
write_restart-file; 
halt; 
end; 

earrn: begin 
read-restart_file; 
headers; 
end; 

keep: 
write_restart-file; 

end; 
if gi.tracing 

then 
writeln(trace_o, ' EXIT procedure START-SHUT'); 

end {start-shut}; 

{**************************************** END STARTSHUT } 

{*****************************~********** BEGIN DEBUG } 

pro~edure debug-circle(var cmdLi: text); 
{ debugging routine, called from contrl, calls dump } 

var 
debugend: boolean; 
deb_com: com_type; 
sd: para-ptr; 

procedure write_con(el: ptr_type); 

procedure erite_scan_con(home_el: ptr_type); 

var 
home_con: con_ptr; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure WRITE-SCAN'); 

home-con := home-el@.con-list; 
while home-con - = nil do begin 

with home_conlll do 
write(debug_o, c-force.x: 6, c_force.y: 6); 

with home_conlll do 
write(debug_o, offs: 6); 

with home_conlll.other@ do 
write(debug_o, posn.xc: 6, posn.yc: 6); 

with home_el@ do 
write(debug_o, posn.xc: 6, posn.yc: 6); 

writeln(debug_o); 
home_con := home_conlll.next_con; 
end; 

if gi.tracing 
then 
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writeln(trace_o, ' EXIT procedure HRITE-SCAN'); 
end {write_scan_con}; 

begin {write_con} 
if gi . tracing 

then 
writeln(trace_o, 'Entered procedure \1RITE-CDN'); 

if gi.debecho 
then 

writeln(debug-o, 'Contact information:'); 
writeln(debug_o); 
while el - = nil do 

with el@ do begin 
if gi.debecho 

then begin 
writeln(debug_o, ' forces of 
writeln(debug_o); 
end; 

write_scan_con(el); 
el := next; 
end; 

if gi.tracing 
then 

contact, sibling, owner'); 

writeln(trace_o, ' EXIT procedure WRITE_CON'); 
end {write_con}; 

procedure write_are(el: area-ptr); 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure WRITE-ARE'); 

if gi.debecho 
then 

writeln(debug_o, 'Area data:'); 
writeln(debug_o); 
if gi.debecho 

then 
writeln(debug_o, 'xmin,xmax,ymin,ymax, upd_par'); 

writeln(debug_o); 
while el - = nil do 

with el@ do begin 
with corners do 

write(debug_o, xmin: 6, xmax: 6, ymin: 6, ymax: 6); 
writeln(debug-o, col: 6, row: 6, upd-par: 6); 
el := el@.next-area 
end; 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure WRITE-ARE'): 
end {write-are}; 

procedure write_blk(el: ptr_type); 

begin 
if gi.tracing 
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then 
writeln(trace_o, 'Entered procedure WRITE-ELK'); 

if gi.debecho 
then begin 

writeln(debug_o, 'Element data:'); 
writeln(debug_o); 
writeln(debug_o, 'offs posn force velocity accleration datatype'); 
writeln(debug_o); 
end; 

while el - = nil do 
with ellll do begin 

writeln(debug-o, source.xc: 6, source.yc: 6, posn.xc: 6, posn.yc: 6, 
consol.x: 8, consol.y: 8, force.x: 8, force.y: 8, v.x: 8, v.y: 8, 
a.x: 8, a.y: 8, data@.flagno: 3); 

el := el@.next; 
end; 

if gi. tracing 
then 

wri teln(trace_o, ' EXIT procedure WRITE-ELK'); 
end {write_blk}; 

begin {debug-circle} 
if gi. tracing 

then 
writeln(trace-o, 'Entered procedure DEBUG-circle'); 

repeat 
get_command(debuger, debugend, deb_com, '', cmd_i); 
case deb_com of 

dat: begin 
cdp := sdl; 
if gi.debecho 

then begin 
writeln(debug_o); 
writeln(debug_o, 'flag damp inert mass c phi 

II 'rho rad kn typ'); 
end; 

repeat 
with cdp@ do _!>egin 

writeln(debug_o, flagno: 6, damp: 8, mass: 8, cohes: 8, phi: 8, 
rho: 8, rad: 8, kn: 8, ord(typ): 6); 

cdp := next_data 
end 

until cdp = sdl 
end; 

blk: 
do_this(write_blk, sal, false, both); 

con: 
do_this(write_con, sal, false, free); 

are: 
write_are(sal); 

gen: begin 
writeln(debug_o, gi.heading); 
writeln(debug_o); 
with area_i do begin 

writeln(debug_o, ' xareas number ', xmax: 6, ' length', size.xc: 
6); 

writeln(debug_o, 'yareas number', ymax: 6, ' length', size.yc: 
10); 
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-ariteln(debug_o, ' total number ' nos: 6); 
end; 

with plspace do 
writeln(debug_o, ' mapping xmax xmax: 6, ' ymax ymax: 6) 

writeln(debug_o); 
with opt do begin 

writeln(debug_o, ' plot interval', cycle_interval: 6); 
writeln(debug_o, 'gravity x grav.x: 6, 'y , grav.y 

: 6); 
writeln(debug_o, ' timing delay 
writeln(debug_o); 
end; 

with total do begin 

gi.tfrac: 6); 

writeln(debug_o, ' totals circles circles: 6, ' fixed 
fixed: 6); 

writeln(debug_o, ' cracked ' cracked: 6, ' types 
datatypes: 6); 

writeln(debug_o, ' contact ' cons: 6, ' cycles cycles: 
6); 

writeln(debug_o, ' 
pages: 6); 

writeln(debug_o, ' 
writeln(debug_o); 
end; 

end; 
fon: 

with gi do begin 
reareaing :=true; 
motioning :=true; 
updating:= true; 
cycling :=true; 
fording :=true; 
oscing : = true; 
tracing :=true; 
consoling :=true; 
end; 

fof: 
with gi do begin 

reareaing :=false; 
motioning :=false; 
updating :=false; 
cycling :=false; 
fording :=false; 
oscing :=false; 
tracing :=false; 
consoling :=false; 
end; 

reb: 

updates ' updates: 6, ' frames 

plots ', pies: 6); 

gi.reareaing := onoff(cmd_i); 
mot: 

gi.motioning := onoff(cmd_i); 
upd: 

gi.updating := onoff(cmd_i); 
eye: 

with gi do begin 
cycling:= onoff(cmdLi); 
fording := cycling; 
motioning := cycling; 
reareaing := cycling; 
consoling := cycling; 
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end; 
fod: 

gi.fording := onoff(cmd_i); 
sol: 

gi.consoling := onoff(cmd_i); 
tra: 

gi.tracing := onoff(cmdli); 
osc: 

gi.oscing := onoff(cmd_i); 
other"!l'ise; 
end; 

until debugend; 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure DEBUG_circle'); 

end {debug-circle}; 

{**************************************** END DEBUG } 
{**************************************** BEGIN PARAMETERS } 

procedure parameters(var cmd_i: text); 

procedure calculator; 

function intcalc(op: real): real; 

var 
result, v: real; 
oper: co11Ltype; 

begin 
get-command(operter, qdum, oper, '' cmd_i); 
if oper - = enquiry 

then begin 
if screen 

then 
"ll'riteln(output, substr(pos_str, 1, pro_pos), 

' Enter value .................. '); 
read(cmdli, v); 
end; 

case oper of 
equal: 

result := v; 
mult: 

result := op 
divid: 

result := op 
plus: 

* v; 

I v; 

result := op + v; 
minus: 

result := op- v; 
power: 

result:= exp(ln(op) * v); 
othereise 

result := op; 
end; 

if opt.echo 
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var 

then 
if oper == enquiry 

then 
ffriteln(output, substr(pos_str, 1, mes_pos), 'The value is 

result) 
else 

ariteln(output, substr(pos_str, 1, mes_pos), ' ' v, ' 
result); 

intcalc :=result; 
end {intcalc}; 

datquit, calquit: boolean; 
datcom, calcom: com_type; 
flag: integer; 

begin {calculator} 
repeat 

get_command(calcter, calquit, calcom, '' cmd-i); 
case calcom of 

cyclegp: 
opt.cyclegap := round(intcalc(opt.cyclegap)); 

gravity: 
opt.grav.y := intcalc(opt.grav.y); 

ptime: 
gi.tstep := intcalc(gi.tstep); 

cmdint: 
opt.cycle_interval := round(intcalc(opt.cycle_interval)); 

datype: begin 
if screen 

then 
writeln(output, substr(pos_str, 1, pro_pos), 

'Enter data type flag ......... '); 
read(flag); 
repeat 

get_command(datalte, datquit, datcom, '' cmd_i); 
cdp := sdl; 
repeat 

cdp := cdp~.next_data: 
with cdp<O do 

if flagno == flag 
then 

case datcom of 
dfact: 

damp:= intcalc(damp); 
dmass: 

mass:= intcalc(mass): 
dcohe: 

cohes := intcalc(cohes); 
dfric: 

phi:= intcalc(phi); 
ddens: 

rho:= intcalc(rho); 
dradi: 

rad := intcalc(rad); 
dstif: 

kn := intcalc(kn); 
otherwise; 
end; 
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var 

until cdp = sdl; 
unt i1 datqui t ; 

end; 
otherl'lise; 
and; 

until calquit; 
end {calculator}; 

parcom: com_type; 
parquit: boolean; 
flimit: integer; 
cmdlistl'lord: string(12); 

begin {parameters} 
repeat 

get_command(paramer, parquit, parcom, '' cmd_i); 
case parcom of 

echo: 
opt.echo := onoff(cmd_i); 

debech: 
gi.debecho := onoff(cmd-i); 

framlim: begin 
if screen 

then 
writeln(output, substr(pos_str, 1, pro-pos), 

'Enter frame limit ............ '); 
read(cmd_i, flimit); 
gpstop(flimit); 
if opt.echo 

then 
write(output, substr(pos-str, 1, mes-pos), 

' Frame limit is now : ', flimit); 
end; 

cyclegp: begin 
if screen 

then 
writeln(output, substr(pos_str, 1, pro_pos), 

'Enter gap between writing ..... '); 
read(cmd-i, opt.cyclegap); 
if opt.echo 

then 
write(output, substr(pos_str, 1, mes-pos), 

' Cycle gap is now : ' , opt. cycle gap); 
end; 

gravity: begin 
if screen 

then 
l'lriteln(output, substr(pos_str, 1, pro_pos), 

'Enter gravity values x, y .... '); 
read(cmd_i, opt.grav.x, opt.grav.y); 
if opt .echo 

then 
l'lrite(output, substr(pos_str, 1, mes-pos), 

'Gravity is nol'l : ', opt.grav.x: 6, opt.grav.y: 6); 
end; 

ptime: begin 
if screen 
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then 
~riteln(output, substr(pos-str, 1, pro-pos), 

'Enter time step increment .... '); 
read(cmdLi, gi.tstep); 
if opt .echo 

then 
arite(output, substr(pos_str, 1, mes_pos), 

'Time increment is ', gi.tstep); 
end; 

calc: 
calculator; 

cmdint: begin 
if screen 

then 
~riteln(output, substr(pos_str, 1, pro-pos), 

'Enter cmd process interval ... '); 
read(cmdLi, opt.cycle_interval); 
if opt.echo 

then 
write(output, substr(pos-str, 1, mes-pos), 

'Process interval is: ', opt.cycle-interval); 
end; 

cmdlist: begin 
re~rite(cycmd_i, 'FILE=-sass.cmd'); 

·repeat 
word_scan(cmd_i, cmdlistword); 
writeln(cycmd-i, cmdlistword); 
until cmdlistword = 'cend'; 

end; 
listpr: 

opt.cmdprocessing := onoff(cmdLi); 
over-rf: 

opt.rf_over := onoff(cmd_i); 
otherwise; 
end; 

until parqui t ; 
end {parameters}; 

{**************************************** END PARAMETERS } 

{**************************************** BEGIN REPEATER } 

procedure repeater(var cmdLi: text); 

var 
cmdrept~ord: string(12); 
loopcntor, loopctr: integer; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure REPEATER'); 

rewrite(repts_i, 'FILE=-sass.rep'); 
read(cmd_i, loopctr); 
repeat 

word-scan(cmd_i, cmdreptword); 
writeln(repts_i, cmdreptword) 
until cmdreptword ='rend'; 

for loopcntor := 1 to loopctr do begin 
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reset(repts_i, 'FILE;-sass.rep'); 
gi.reptend :=false; 
~hile NOT gi.reptend do 

control(repts_i); 
end; 

if gi. tracing 
then 
~riteln(trace_o,' EXIT procedure REPEATER'); 

end {repeater}; 

{**************************************** END REPEATER } 

{**************************************** BEGIN CONTROL } 

procedure control; 
{ controls the execution of the datafile commands, called from main } 

var 
com: com_type; 

begin 
if gi. tracing 

then 
ariteln(trace_o, 'Entered procedure CONTROL'); 

get_command(contler, qdum, com, '', cmd_i); 
case com of 

sets: 
parameters(cmd_i); {set parameter values} 

cend: 
gi.cmdend :=true; 

rend: 
gi.reptend :=true; 

rest: 
start-shut(cmd-i, 

{ end interrupt commands } 

{ end command stack } 

restart a previous run } 
save: 

start_shut(cmd_i, 

~arm);{ 

keep);{ update restart file } 
star: 

start_shut(cmd-i, cold);{ start a new run} 
cycl: 

cycle(cmd_i); {calculation routines} 
sett: 

gi.settling :=true; { settlement of elements} 
coll: 

gi.settling :=false; { collapse of elements} 
plot: 

plots(cmdLi, ''); {plot routines} 
debg: 

debug_circle(cmd-i); {debugging routine} 
rept: 

repeater(cmd_i); {command stack} 
stop: 

quit : = true; { stop command } 
retur:; 
end; 

if quit 
then 

start-shut(cmdLi, shutdown); 
if gi.tracing 
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then 
a-riteln(trace_o, ' EXIT procedure CONTROL'); 

end {control} ; 

{**************************************** END CONTROL } 

{**************************************** BEGIN MAIN } 

begin {circles} 
initialise-globals; 
headers; 
repeat 

controlCinput); 
until quit; 

start_shut(input, shutdoa-n); 
if gi. tracing 

then 
wri teln ( trace_o, ' EXIT procedure MAIN') ; 

end {circles}. 
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