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DISTINCT ELEMENT ANALYSIS
OF SOIL MASSES

by

Colin Richard Watson
B.Sc., M.Sc. (Dunelm)

ABSTRACT

The conventional Distinct Element Analysis of Cundall and Belytschko and
their respective co—workers are prone to vibrations which must be damped out
artificially if numerical problems are to be avoided. An alternative approach to
this method is developed which eliminates such problems by allowing the elements
to consolidate without gain in velocity. In the method employed here the contact
forces, together with body forces due to gravity give rise to accelerations of the
elements which in turn cause them to change position. Normally this change in
position will produce an increase in the contact forces. Once these new contact
forces have been calculated the elements are then returned to their original posi-
tions prior to the next iteration. The contact forces, therefore, increase during the
analysis to counter the effects of gravity. Two methods using this new approach

are described, for which computer programs have been written.

The first program, SLICES, is designed to analyse slopes divided in to slices
with a predetermined failure arc. During the analysis the program generates the
stress profile acting on the failure arc and predicts the stability or otherwise of the
slope. Program SLICES is compared with a traditional slice method under con-
ditions of total and effective stress with cohesive and frictional soils. An analysis
using a non-linear failure criterion is also carried out with program SLICES. The
second program, CIRCLES, uses circles as the distinct element type and does not
require a predetermined failure arc. It is shown that edge effects cause an incorrect
stress regime to be set up that masks the failure process. However a sliding type

failure is demonstrated where the edge effects do not mask the analysis.
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the University of Durham. October 1989.



THE

DISTINCT ELEMENT ANALYSIS

OF SOIL MASSES

Colin Richard Watson
B.Sc., M.Sc. (Dunelm)

The copyright of this thesis rests with the author,
No quotation from it should be published without
his prior written consent and information derived

from it should be acknowledged.



Chapter 1
1.1
1.1.1
1.1.2
1.1.3
1.2
1.2.1
1.2.2
1.2.3
1.23.1
1.2.3.2
1.2.3.3
1.3
1.3.1
1.4
1.4.1
1.5
1.5.1
1.5.2
1.5.3
1.54

List of Contents

List of Figures
List of Tables

Acknowledgements

Chapter 1 Introduction

Distinct element analysis

The need for Distinct Element Analysis

Distinct Element Analysis and discontinuous rock masses
Relation of Distinct Element Analysis to other analysis
A Rigid Block Model for rock masses

Corner formulations

Edge formulations

Hybrid formulations

The Distinct Element — Boundary Element hybrid

The Distinct Element — Finite Element hybrid

Explicit — Implicit time integration

A Rigid Ball Model for soil

Soil particle modelling

Initial aims of this work

Development of the Rigid Block Model at Durham

A final approach

The relevance of Distinct Element Analysis to soil masses
Soil slices as rigid blocks

Soil masses as circles of influence

Organisation of this work

page

iv

vi

[y

W o ~N N O O s hmx W W N NN~

e e T s T o S ==
W W W NN



Chapter 2
2.1
2.1.1
2.1.1.1
2.1.1.2
2.1.2
2.1.3
2.14
2.1.5
2.2
2.2.1
2.2.2
2.2.3
2.2.31
2.2.3.2
2.24
2241
2.24.2
2.2.5
2.2.6

Chapter 3
3.1

3.2

3.2.1
3.2.2

3.3

3.3.1
3.3.1.1

The implementation of the Distinct Element Amnalysis

Cundall’s Cyclic Process
Cundall’s Concept

The Cyclic Process

A Simple Implementation

The Behaviour of a Single Contact
Controlling Numerical Instability
Towers of Contacts

Some Recommendations

An Alternative Approach
Consolidation

A Statement of the New Approach
Machine Accuracy

The Relevance to Discretization
Bringing Consolidation to a Close
Propagating Effects Through the Matrix
A Simple Tower Problem

Some Recommendations

The Role of Damping

Concluding Remarks

Chapter 3 Distinct element method of slices

Introduction
Theory extensions for SLICES
The edge formulation employed

The Force Displacement and Motion Laws

Using Program SLICES

Introduction

Overview

15
15
15
19
20
23
24
25
25
25
28
30
30
31
32
32
35
35
38

39
39
42
42
47
50
50
50



3.3.1.2
3.3.1.3
3.3.2
3.3.2.1
3.3.2.2
3.3.2.3
3.3.2.4
3.3.2.5
3.3.2.6
3.3.2.7
3.3.2.8
3.3.2.9
3.3.3
3.3.3.1
3.3.3.2
3.3.3.3
3.3.4
3.34.1
3.34.2
3.3.4.3
3.34.4
3.3.4.5
3.3.4.6
3.3.4.7
3.4
3.4.1
3.4.2
3.4.2.1
3.4.2.2
3.4.2.3

Input and output unit summary
Outline of facilities

Input Command Language
Introduction

Control commands

The debug command set
The set command set

The calculator command set
The plot command set

The map command set

The mesh command set
Syntax table

Input command file

File format

Defining tasks

Input error handling

Utility files

Repeat file

Command list file

Restart file

Trace output file

Debug output

Oscillation output

The running commentary
Structure of Program SLICES
Memory structure

Program structure
Procedural elements

Main relationships

Recursion structures

51
53

95
56
58
59
61
62
63
64
65
66
66
68
71
74
4
74
74
76
76
79
80
83
83
86
86
86
87



3.424
3.5
3.5.1
3.5.2
3.5.3
3.5.3.1
3.5.3.2
3.5.3.3
3.5.4

Chapter 4
4.1
4.1.1
4.1.2
4.1.3
4.1.3.1
4.1.3.2
4.2
4.2.1
422
4.2.2.1
4.2.2.2
4.2.3
4.2.3.1
4.2.3.2
4.2.3.3
4.2.34
4.2.3.5
4.2.3.6
4.2.3.7

Structure that maps structured variables
Validation

Introduction

Validation Methods

Discussion of results

Results involving total stress conditions
Results involving effective stress conditions
Conclusions

Interpretation of SLICE output

Distinct element method of circles
The Concept
Circles as Areas of Influence

Contacts in detail

The Distinct Element Analysis formulation for CIRCLES

Consolidation formulation

The traditional Distinct Element Analysis formulation

Implementation

The Program Memory Structure
Program structure

Program structure that maps the memory
The updating of contacts

Input command language
Introduction

Control commands

The debug command set

The set command set

The calculator command set
The plot command set

The map command set

91
93
93
93
95
96
97
98
99

101
101
101
102
104
106
108
110
110
114
114
116
117
117
118
121
122
124
125
126



4.2.3.8 The mesh Command Shell 127

4.2.4 The utility files 128
4.3 Validation 132
4.3.1 Introduction 132
4.3.2 The contact behaviour 133
4.3.3 The Mesh Edge effects 134
Chapter 5 Conclusions 141

References 145

Appendices

Appendix A Mathematical Notation Al
Appendix B Structure charts for SLICES B
Appendix C Results for program SLICES C.1
Appendix D Program SLICES D.1

Appendix E  Program CIRCLES E.1



Figure 1.1

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15
Figure 3.16
Figure 3.17
Figure 3.18

List of Figures

Analysis of a tower. After Rouse (1982)

The Distinct Element Analysis Calculation Cycle

‘The forces associated with a contact

The behaviour of a single contact
The use of fixed blocks to promote consolidation
The new calculation order

The tower of circles analysed

A typical slope for analysis by SLICES

Stress profile produced by SLICES

The SLICES calculation cycle

A Comparision of the data required to define a contact
Bachmann diagram of SLICES memory items
Stress profiles for result set 1

Stress profiles for result set 2

Stress profiles for result set 3

Stress profiles for result set 4

Stress profiles for result set 5

Stress profiles for result set 6

Stress profiles for result set 7

Stress profiles for result set 8

Stress profiles for result set 9

Stress profiles for result set 10

Stress profiles for result set 11

Stress profiles for result set 12

Stress profiles for result set 13

Page
10

16
17
21
27
29
33

40
43
44
46
85
B.2
B.9
B.11
B.13
B.20
B.22
B.24
B.30
B.32
B.34
B.40
B.42
B .43



Figure 3.19
Figure 3.20

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7

Figure C.1
Figure C.2
Figure C.3
Figure C.4
Figure C.5
Figure C.6
Figure C.7
Figure C.8
Figure C.9
Figure C.10
Figure C.11
Figure C.12
Figure C.13
Figure C.14
Figure C.15
Figure C.16
Figure C.17
Figure C.18
Figure C.19

Stress profiles for result set 14

Stress profiles for result set 15

Contact definition in program CIRCLES

The Mohr construction

An high level view of the memory structure
A Bachmann diagram of the program memory elements
Analysis of embankment without contact correction

Analysis of embankment using a contact correction

Analysis showing partial wedge failure

List of Structure charts in Appendix C

Chart for procedure error.simple
Chart for procedure word-scan
Chart for procedure skipblks
Chart for procedure skipcomment
Chart for procedure trapper
Chart for procedure get_command
Chart for function onoff

Chart for procedure headers
Chart for procedure factors.of_safety
Chart for function sign

Chart for procedure initialise
Chart for procedure plots

Chart for procedure map-space
Chart for procedure setup_plot
Chart for procedure disp_plot
Chart for procedure fram_plot
Chart for procedure slice_plot
Chart for function utohead

Chart for procedure force.profile

il

B.48
B.49

103
105
111
113
135
138
139

C3
C4
C.5
C.6
C.7
C.8
C.9
C.10
C.11
C.12
C.12
C.13
C.15
C.14
C.16
C.16
C.17
C.17
C.18



Figure C.20
Figure C.21
Figure C.22
Figure C.23
Figure C.24
Figure C.25
Figure C.26
Figure C.27
Figure C.28
Figure C.29
Figure C.30
Figure C.31
Figure C.32
Figure C.33
Figure C.34
Figure C.35
Figure C.36
Figure C.37
Figure C.38
Figure C.39
Figure C.40
Figure C.41
Figure C.42
Figure C.43
Figure C.44
Figure C.45
Figure C.46
Figure C.47

Chart for procedure

init_fm

Chart for function ptrd_fin

Chart for procedure

Chart for procedure

lims_fm

cycle

Chart for procedure fordsl

Chart for procedure feonsolsl

Chart for procedure
Chart for procedure
Chart for procedure
Chart for procedure
Chart for procedure
Chart for procedure
Chart for procedure
Chart for procedure
Chart for procedure
Chart for procedure
Chart for procedure
Chart for procedure
Chart for procedure
Chart for procedure
Chart for procedure

Chart for procedure

start.shut
update_area
update_message
cold_contact
get_apez

mesh

cre_platen
cre_slices
read-restart_file
write_restart_file
write_r-el
complete
debug-slice
write_con
wr-con

write_sh

Chart for procedure parameters

Chart for procedure

calculator

Chart for function intcalc

Chart for procedure

Chart for procedure

repeater

control

Chart for program SLICES

il

C.19
C.19
C.20
C.21
C.23
C.22
C.24
C.26
C.25
C.27
C.27
C.28
C.29
C.30
C.31
C.32
C.33
C.34
C.35
C.36
C.36
C.34
C.37
C.38
C.39
C.40
C41
C.42



Table 2.1
Table 2.2

Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 3.5
Table 3.6
Table 3.7
Table 3.8
Table 3.9
Table 3.10
Table 3.11
Table 3.12
Table 3.13
Table 3.14
Table 3.15
Table 3.16
Table 3.17
Table 3.18
Table 3.19
Table 3.20
Table 3.21
Table 3.22
Table 3.23
Table 3.24

List of Tables

Contact forces for a tower

The expansions for 3 cicles

A Typical Command File

Input Command Language Parsing Symbols
Input Command Language Parsing Definition
An Example of Error Correction

An example of interactive input

The restart file line tags

The debug format table

The running commentary screen lines

Running commentary messages

Trace of Program Behaviour During Simple Use

Program behaviour during Repeat processing
Program behaviour during error processing
Table of Results for Program SLICES
Input commands for result set 1

Input commands for result set 2

Input commands for result set 3

Input commands for result set 4

Input commands for result set 5

Input commands for result set 6

Input commands for result set 7

Input commands for result set 8

Input commands for result set 9

Input commands for result set 10 and 13

Input commands for result set 11 and 14

iv

Page
32
34

B.10
B.12
B.19
B.21
B.23
B.29
B.31
B.33
B.39



Table 3.25

Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 4.7

Input commands for result set 12 and 15

Input Command Language Parsing Symbols
Input Command Language Parsing Definition
'The restart file line tags

Debug output formats

The running commentary screen lines

The running commentary messages

Output from CIRCLES after 2000 cycles

B.41

118
119
129
130
131
132
133



ACKNOWLEDGEMENTS

I have cause to thank several people for their help during the course of this work. In
particular I am greatly indebted to the Late Dr. R. K. Taylor and to Dr. J. M. Wil-
son for their supervision and encouragement. Dr. J. M. Wilson has had the difficult
task of taking over the supervision of my thesis at a late stage and this I greatly ap-
preciate. I also owe a great deal to my wife, family and friends for their invaluable

support throughout.

vi



THE
DISTINCT ELEMENT ANALYSIS

OF SOIL MASSES

Colin Richard Watson
B.Sc., M.Sc. (Dunelm)



Chapter 1 Introduction

CHAPTER 1

INTRODUCTION

1.1 Distinct element analysis

1.1.1 The need for Distinct Element Analysis

It may appear strange that a thesis principally concerned with the analysis
of the stability of soil masses should begin by discussing rock masses. Indeed
discontinuous rock masses shall frequently be referred to throughout the theoretical
sections of this discussion. The reason for this hybridisation is simply that the
analysis techniques developed here are abstract formulations of those used for

some years for the analysis of discontinuous rock masses, namely the Distinct (or

Discrete) Element Analysis (DEA).

Distinct Element Analysis is a numerical model which utilises the time explicit
integration of the second order difference equations for reduced degrees of freedom
of distinct geometric elements, for example rectangular blocks, within the problem.
Normally the reduction in the degrees of freedom is due to ignoring the internal
deformation of the elements, the elements being connected by their boundaries

across which deformation of the mass is considered to take place.

The major advantages of Distinct Element Analysis over finite element anal-
ysis are speed of execution, ease of incorporation of non-linear material properties
and its explicit relation to time allowing the progressive failure of the system to
be studied. These three properties make Distinct Element Analysis a tool worth

developing for the analysis of soil masses.
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1.1.2 Distinct Element Analysis and discontinuous rock masses

Distinct Element Analysis was originally developed for the analysis of discon-
tinuous rock masses by Cundall (1971), this model was known as the Rigid Block
Model (RBM) due to the reduction of the degrees of freedom by elimination of
the internal deformation of the elements. In terms of rock masses, the problem
elements are bounded by the joints and bedding planes to form blocks. Each biock
is allowed rotational and translational displacements and move under the influence

of gravity and the forces between neighbouring blocks at contacts.

The contact is fundamental to the understanding of the Distinct Element
Analysis as it is these which govern the behaviour of the mass as a whole. The
Distinct Element Analysis or Rigid Block Model is a dynamic relaxation method
for it is at the contacts that inter—element forces are produced by multiplying the
small overlaps of the elements (due to previous movements) by the relaxation con-
stant (or stiffness). These new inter—element forces are summed for each element
to give rise to new accelerations, velocities and displacements, and hence to new
inter—element forces. As it is the contacts which govern the overall behaviour of
the model, and the contact conditions are recalculated at the end of each time
step, it can readily be seen that this technique lends itself to the modelling of

large scale movements.
1.1.3 Relation of Distinct Element Analysis to other analysis methods

There are several possible classes of techniques facing the Engineer, deciding
which analysis to choose can often be difficult. There are finite elements, bound-
ary elements, distinct elements, displacement discontinuity methods and various
hybrid versions. As Meek and Beer (1984) point out, all these methods should

provide reasonable approximations to the elastic stress around an excavation.
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For excavations in blocky rock systems the problem of choice is further com-
pounded by the fact that the near field and far field behave very differently. The
near field is non-linear, non—elastic in its behaviour while the far field is linear
elastic. No individual technique can accurately model both behaviour types at
once. The Distinct Element Analysis requires all geometric data to be known
throughout the model domain which is a major problem for large excé,va,tions. It
is ideally suited to model the near field where the data is normally the most read-
ily available. To incorporate both behaviour types Distinct Element Analysis may
be coupled to a far field modelled by either Finite Element or Boundary Element

methods.
1.2 A Rigid Block Model for rock masses

The Rigid Block Model has undergone much work since its inception in 1971,
most published work concentrates upon modelling the behaviour and estimating
the support requirements of underground openings in jointed rock masses, almost
all the literature concerns itself with promoting the technique in a theoretical
fashion and rarely presents the analysis of real cases. There are three types of

Rigid Block Model, which shall be referred to here as Corner, Edge and Hybrid

formulations.
1.2.1 Corner formulations

The corner formulation is the original two dimensional formulation as devel-
oped by Cundall. It is so named because the contacts are defined when a corner
of one block touches the edge of another. The contact of two blocks along an
edge was defined simply as two contacts, unfortunately this gave rise to multiple
contact problems, and hence multiple force problems, Rouse (1982). This formula-
tion led to straightforward housekeeping algorithms for contacts allowing them to

be made, broken, and remade as necessary. Corner formulations were used in all
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cases where large displacements required to-be modelled, Cundall (1976), Voegele
(1978).

1.2.2 Edge formulations

In response to work with a Cundall corner formulation by Dowding et al.
(1983), to model the transient behaviour of rock caverns, the edge formulation was
developed, Belytschko et al. (1983). Here the definition of a contact was always
as two edges, one from each block. The physical length of contact allows the
calculations to be in terms of stress, a major advantage over corner formulations.
The rationale behind this work argued that the initial failure of the mass was the
most important feature and that the contacts could not be vmodelled accurately
over large displacements due to the simple failure criteria in use. It was also
pointed out that failure may take place at two to three percent strain rendering
large strain modelling inappropriate. Due to this the housekeeping of the corner

formulation could be dropped to give a much more compact code.
1.2.3 Hybrid formulations

In the same way as Finite Element analysis has difficulty analysing the far
field around an excavation due to the number of elements required to model it, so
too does Distinct Element Analysis, a further complication for Distinct Element
Analysis was how to model the behaviour of excavation support satisfactorily. This
led to hybrid formulations of Distinct Element Analysis with Boundary Elements

and Finite Elements.
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1.2.3.1 The Distinct Element — Boundary Element hybrid

Lorig and Brady published work in 1982, 1983 and 1984 coupling Boundary
Elements with Distinct Elements. Lorig, Brady and Cundall (1986) discuss this
method utilising a sophisticated form of Rigid Block Model.

Much of the work enhancing the Distinct Element Analysis was concerned
with increasing efficiency and combating problems discovered during use. Corner
formulations are subject to interlocking at corners as corner to corner contacts
may often lead to abnormally high forces. These forces can then be propagated
throughout the Distinct Element mesh. To overcome this problem an edge for-
mulation was adopted in addition to the corner formulation allowing edge to edge
and corner to edge contacts. It is assumed here that corner to corner contacts
were not entertained but it is not explicitly stated. A new damping regime was
also introduced, that of adaptive density scaling, whereby the element densities
are modified to allow the application of the mass proportional part of the damping
system across a greater spread of element masses. The contact housekeeping rou-
tines have been modified to transfer the contact between a sliding block and each
successive neighbour across which it slides, thus preventing the sudden collapse of

the forces on a block as previously described by Watson (1983).

The boundary element method determines the behaviour of the mass from
the boundary conditions imposed on surfaces within it. This allows for the mod-
elling of semi-infinite regimes as the far field boundaries need not be known. The
Boundary Element Analysis is an elastic analysis and it has been found from field
measurements that the far field domain (two to three excavation radii from the
excavation) does indeed act elastically with the discontinuities playing little or no
part. Boundary Element Analysis is therefore used to model the far field and the

Distinct Element Analysis to model the near field. To couple the two methods care
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has been taken by Lorig et al. to preserve kinematic continuity at the interface, by

equating block corner and nodal displacements in the Boundary Element domain.
1.2.3.2 The Distinct Element - Finite Element hybrid

The work of Dowding et al. (1983a,b) and Belytschko et al. (1983) coupled
Distinct Elements with Finite elements. The aim of their work was to model the
transient behaviour of caverns under the influence of seismic activity.‘ The propa-
gation of waveforms through large stacks of Distinct Element was problematic as
the mechanism was not understood and was also expensively time consuming. The
excitation therefore, was propagated from the far field Finite Elements to the near
field Distinct Elements. The Finite Element and Distinct Element domains were
coupled by silent boundaries, (that is producing no reflection), after the Lysmer
and Kuhlemeyer method (1969), while the cavern linings were modelled by beam

elements.
1.2.3.3 Explicit — Implicit time integration

Explicit time integration schemes as utilised in the Distinct Element Analysis
as described so far have a low over-head per time step compared with Finite Ele-
ment or Boundary Element analyses. However for long duration analysis requiring
small time steps, the cost of simulation may still be prohibitive. As will be seen
later the time step size is critical for numerical stability and the Distinct Element
Analysis has been found to be non convergent for many parameter combinations,

Lorig et al. (1986).

Plesha (1986) has proposed that simulations utilise a constitutive implicit —
explicit time splitting operator, whereby the linear portion of the analysis is mod-
elled using an implicit time integrator and the non-linear portions (for example

post contact failure) use the standard explicit, time marching integration of the
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normal Distinct Element Analysis. He found that under certain long duration
simulation conditions, considerable computer cost savings could be made with lit-
tle difference in the general behaviour of the rock mass. He also suggested that
transient behaviour could be modelled by changing to and from the usual methods

when necessary throughout the simulation.
1.3 A Rigid Ball Model for soil

The Distinct Element Analysis is not restricted to the Rigid Block Model or
derivatives and as a general concept has applications elsewhere. From the be-
ginning Cundall developed a program where the calculation elements were simple
discs or circles. The same degrees of freedom were allowed to the discs as to the
blocks enabling them to be used to model the collapse of a set of cylinders for
instance, as in Cundall (1971). It appears that this BALL program was the de-
velopment route to the Rigid Block Model as the elements are significantly less

complex due to them having no corners.
1.8.1 Soil particle modelling

By equating disk elements with soil particles Cundall used Program BALL
as an easily controlled test apparatus to investigate the properties of soil particles
under various loading conditions. From the data collected from this computer
model he hoped to develop continuum constitutive laws governing soil particle
behaviour, Cundall and Strack (1979). Although using a model for the basis
of this research he argued that the superior control of loading conditions in the

program over that of an experimental situation gave the program a valid role.

Apart from investigating the general non-linear properties of assemblies of soil
particles, Cundall and Strack turned their attention to modelling the process of soil

consolidation. Here a circular assembly of discs was subjected to two orthogonal
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forces, firstly in an isotropic state and then under a deviatoric load. The velocities
and displacements of the particles were plotted so that changes in the fabric could

easily be seen.

All Distinct Element Analysis work as far as can be found dealing with soils
concerns the modelling of assemblies of individual particles and not with soil

masses. This thesis aims to do so.

1.4 Initial aims of this work

As pointed out in section 1.2 most published work uses idealised theoreti-
cal problems to promote the latest development in the analysis technique. Very
little uses the Distinct Element Analysis / Rigid Block Model to solve a real de-
sign problem. This is perhaps, as Meek and Beer (1984) point out, because the

technique has been extensively used in the commercial environment.

The initial aims of this work were to continue the development of Distinct
Element Analysis theory and an edge formulation derived from Dames and Moore
(1978) with a view to validation against simple physical models and then real situ-
ations. To understand the starting point of this work it is necessary to appreciate

the development of the Rigid Block Model at Durham.

1.4.1 Development of the Rigid Block Model at Durham

The beginning of the work at Durham was with the Rigid Block Model im-
plementation of Dames and Moore report (1978). This work, by Rouse (1982),
utilised a corner formulation as described above which was initially unusable due
to it being in single precision. The program was therefore modified to double

precision, whereupon several unexpected effects were found.
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The first of these effects was noted when a simple tower of blocks was mod-
elled. Figure 1.1 shows the tower before analysis and after 7000 calculation cycles.
A tower is expected to topple rigidly to begin with and then break one third up
the height with the lower third rotating more rapidly than the upper part. In this
simulation Rouse found that the tower broke in more than one place and therefore

fell incorrectly.

It was proposed that the original damping regime employed was at fault. This
regime consists of two separately controllable viscous damping factors. Firstly
a stiffness—proportional damping to control contact vibration and analogous to
dashpots at the contacts between blocks both in the shear and normal directions.
Then secondly, a mass—proportional damping representing dashpots from the block
centroids to the coordinate origin. The damping regimes are provided to remove
the kinectic energy of the system generated during collapse, if this did not take
place the elements would continue moving perpetually. The cause of the incorrect
tower collapse was attributed to the stiffness—proportional damping giving rise to
a standing wave lying the length of the tower, in turn causing localised high stress

where the tower broke.

Rouse also reported the ‘locking up’ of certain configurations of blocks before
equilibrium could be reached. This was caused by corner to corner contacts as

well as corner to edge contacts being used in the formulation.

At this stage it was realised that this version of the Rigid Block Model, at
least contained some very serious fundamental inaccuracies and could not be used

to reliably model real situations.

An investigation by Watson (1983) showed that the corner to corner contact
problem led to some pairs of blocks having up to eight contacts between them

and so was remedied first. This was achieved by allowing a pair of blocks to
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Figure 1.1 Analysis of a tower. After Rouse (1982)
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have either, a single corner to edge contact or, two such contacts forming an edge
contact or, a corner to corner contact. In the case of the latter contact type, the
corner combination promoting the greatest ease of movement was chosen to reduce
the risk of ‘locking up’. Finally a comparison of Distinct Element Analysis with

simple sliding physical models was carried out.

For a complete discussion of the problems encountered, together with the
Rigid Block Model program versions used, reference is made to Rouse (1982) and
Watson (1983). The next problems on the agenda and hence the beginning position
for this work were those caused by the original Distinct Element Analysis damping
regime. It was reported by Rouse (1982) that blocks that differed in mass by a
factor of two from the mean were effectively undamped, even if the mean masses

were heavily damped.

To begin this investigation of the effects of damping on elements, and towers
of elements, a Pascal Distinct Element Analysis program was written. This im-
plementation was extremely simple in nature allowing each element one degree of
freedom. These point mass elements were all positioned at a common origin, each
having one contact with the next created element. Obviously, the last formed had
no contacts. This regime represents a set of elements which form a tower of con-
tacts. The program shall be referred to as Program CVS, a mnemonic representing

Contact Vibration Simulation.

It was during this stage of the damping investigation that a final approach

was conceived.

11
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1.5 A final approach
1.5.1 The relevance of Distinct Element Analysis to soil masses

For some time before Distinct Element Analysis, boundary elements and finite
elements were used to analyse blocky rock systems, despite these being discontinu-
ous systems and quite unlike the continuum systems more suited to these methods.
Some attempts were made to include the discontinuities by slide lines in finite dif-
ference, Wilkins (1969) and by joint finite elements as described by Goodman
(1976). To use a method designed for discontinuous materials and include increas-
ing degrees of continuum to solve a continuum problem is simply the reverse of

this.

The advantages of using a Distinct Element Analysis based solution for soil
mass stability analysis are similar to the main advantages of Distinct Element
Analysis for blocky rock systems, namely a low overhead per iteration, a time
explicit integrator leading to easy analysis of progressive failure and easy inclusion
of non-linear material properties. It is for these three reasons that an attempt
has been made to develop Distinct Element Analysis programs suitable for the

analysis of soil slopes and their progressive failure.

There are two such Distinct Element Analysis programs designed to model
the behaviour of soil masses, developed during this work, namely SLICES and
CIRCLES. The names referring to the fundamental calculation element. Program
SLICES is most akin to a traditional Rigid Block Model and to a traditional limit
equilibrium analysis such as Bishop (1955), Fellenius (1936) or Janbu (1973), while
Program CIRCLES, the more general of the two, is quite unlike either.

12
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1.5.2 Soil slices as Tigid blocks

Like limit equilibrium analyses, the user is expected to provide a surface
slope topography and a proposed failure surface. The failure sector is divided
into vertical slices which are interpreted as rigid blocks. The blocks have reduced
degrees of freedom, those of body displacements only. The removal of rotation
is desirable as the slices often have an high aspect ratio, which would lead to
problems tracing the positions of the corners. Furthermore, toppling of the slices
high on the failure arc would tend to occur, which is problematic in a analysis

designed to model sliding only.

Unlike limit equilibrium analysis inter—slice forces are fully incorporated.
SLICES provides graphical and written output allowing the build up of stresses
on the failure arc to be monitored. From this it can readily be seen which portions
have reached their limit and so the progress of the failure can be traced, and the

mechanisms inferred.

1.5.3 Soil masses as circles of influence

Program Circles is not a limit equilibrium analysis and employs a Distinct
Element Analysis where the elements are circles of influence. The circles are
not particles and have reduced degrees of freedom, rotation being ignored. As
areas of influence the circles may overlap to a large extent. CIRCLES is far more
sophisticated than SLICES as it is not limited to a predetermined failure arc. If

failure occurs then the failure zones are displayed as they form.

1.5.4 Organisation of this work

There is much in common between CIRCLES and SLICES, both in the theory

and the implementation of the Distinct Element Analysis techniques employed.

13
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Both have similar degrees of user friendliness, input and output requirements and

other features. The areas of common theory can be found in the next chapter.

Information for programs SLICES and CIRCLES is contained in Chapters
three and four respectively. These chapters contain information on extensions
to the theory specific to the program, its use, structure, memory requirements
and validation. Finally Chapter five draws the discussion to a close containing a

summary of conclusions.
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Chapter 2 Implementation of Distinct Element Analysis

CHAPTER 2

THE IMPLEMENTATION OF
THE DISTINCT ELEMENT ANALYSIS

2.1 Cundall’s Cyclic Process

2.1.1 Cundall’s Concept

2.1.1.1 The Cyclic Process

The underlying aim of Distinct Element Analysis is to model the displacement
of individual elements with time. This is cyclic or iterative in nature and allows
the use of simple force displacement laws using an explicit integration scheme.
As reported by Cundall (1971) several procedures are followed during each cycle.
In the broadest sense these procedures are a force displacement relation to give
the forces in the system, followed by a motion law to give the displacements.
Furthermore the forces may be modified by force boundary conditions and the
displacements by displacement boundary conditions. Figure 2.1 illustrates the
process. Each complete cycle around these procedures takes one time step. So,
in theory, as the values for all degrees of freedom are known at each time step
the displacement state at any time can be found by cycling round an appropriate

number of times.

To illustrate this cyclic process the laws used by Cundall (1971) are followed.
The force displacement law is determined for each contact for each block for each
cycle and the motion law for each block in each cycle. Figure 2.2 shows the forces

associated with a contact. The force displacement relator is the contact stiffness,
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Force Boundary Conditions

Force-Displacement Law,
eg, elasticity, friction

FORCES DISPLACEMENTS

Motion Law, eg, creep, viscosity

Displacement Boundary

Conditions

Figure 2.1 The Distinct Element Analysis Calculation Cycle
After Cundall (1971)
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" New position

I'Origina.l position

Force,

i : 1Force,

Figure 2.2 The forces associated with a contact
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so that the normal force on the contact is given by the normal penetration (for
example the movement of one block edge into another) multiplied by the contact
stiffness, as in equation (1). A list of the mathematical notation used throughout

this discussion is contained in Appendix A.
(1) F,=-5,xk,

Likewise the shear force is given by the product of the shear movement and shear

stiffness, equation (2).
(2) F; =8, x kg

If the dashpot contact damping is in force the normal and shear dashpot forces

are calculated in like manner, equations (3) and (4).

(3) H,=-S,x K,

(4) H,=8, x K,

These normal and shear forces are constrained by the following failure criteria.
Firstly if the contact is in tension, that is F,, < 0 then F,,, H,, Fs, and H, are
set to zero. Secondly the shear forces are restrained by a friction law so that if
|Fs| > u x F,, then Fy = pu X F,, |F,| /Fs where p is the coefficient of friction of

the contact.

Having obtained the contact forces, they are resolved to give forces in the z
and y directions which are then summed onto the blocks involved. The moment

about the block centroid is also calculated and summed.

Once the force displacement law has been executed for all of the contacts on
an element, the forces on the element are known. The motion law can relate these

forces to element movements.

18



Chapter 2 Implementation of Distinct Element Analysis

The facility for imposing force boundary conditions on the problem allows for
modelling of systems including rock bolts, these being simulated as constant body
forces on certain blocks. Displacement boundary conditionsperrﬁit some blocks to
be immovable for either the whole or part of the simulation, enabling the system

to consolidate and preventing it from acting as a rigid body under gravity.

The time step, the unit of time that each cycle is deemed to have modelled,
cannot be made arbitrarily large in the hope of reducing the number of iterations
required for the simulation time, for, in doing so numerical instability will be
encountered. This instability manifests itself as small contact oscillations. To
control these oscillations numerical damping has been used, although this removed

energy from the system in an apparently arbitrary fashion, Rouse (1982).

In dealing with these problems an observational investigation was carried out,
the findings of which are presented in the following sections. This investigation
was carried out using the Program CVS and a graphical module SOP (simulated
output program) written especially for plotting the output from CVS. Program
CVS uses the same undamped motion and force displacement laws as Cundall.
Basic input is the number of elements, the particle mass, the stiffness and the
time step size. Options include Simple Harmonic Motion simulation, Contact
simulation, shear force inclusion or exclusion, contact slope angle, and the number

of iterations.
2.1.1.2 A Simple Implementation

The essential feature of Distinct Element Analysis is the force, acceleration,
velocity, displacement cycle. In this case the force — displacement law is executed
as the starting point in the cycle. Part of the elegance of a Distinct Element
Analysis solution is the simplicity with which these quantities can be calculated at

each cycle in rotation. It is not easy to calculate them independently of previous
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cycles, but a general formula may be derived for very simple cases in terms of

solutions to sums of series and difference equations.

There also exist mathematical solutions for systems using non discrete in-
tegrating operators, but again they are extremely complex for anything but the
simplest cases. The principal difference in these two approaches is the period of
time step, in the Distinct Element Analysis this is the time step size whilst in the
Calculus it can be considered as zero. These two types of solution therefore deal

with quantised and continuous time respectively.

It follows that any system with constant acceleration shall have equal solutions
in quantised and continuous time and that the quantised solution to a system
with variable acceleration shall be an approximation to the true solution found in

continuous time.
2.1.2 The Behaviour of a Single Contact

Figure 2.3 shows the behaviour of a single contact between tWo point masses.
The ‘lower’ mass is fixed and has a zero initial overlap with the ‘upper’ which is
allowed to move under the influence of both gravity and the contact force. The
contact force is given by the product of the overlap and the stiffness and acts to
separate the masses. In this case it directly opposes gravity. The waveform can
be split into two portions, firstly a simple harmonic motion and secondly a freefall

condition.

For such a simple case it can be seen that a contact force equal to the weight
would counter gravity and thus represents an equilibrium condition (acceleration
= 0). This contact force corresponds to an overlap of mg/k. In an undamped

system this is never attainable because to gain an overlap of mg/k the particle
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Chapter 2 Implementation of Distinct Element Analysis

must have a downwards velocity, which will carry it beyond mg/k during the

following cycles.

The non-zero velocity at zero acceleration positions leads the particle always
to overshoot this crucial position. The contact force gives rise to an acceleration
larger than gravity, causing the mass to decelerate, the velocity eventually becomes
zero and then changes direction. The mass moves upwards towards the mg/k
position, and for the same reason the mass overshoots on its return and again
begins to decelerate. The velocity changes direction again when there is no overlap

and the mass moves down to begin a new period of oscillation.

This motion would continue indefinitely for continuous time with constant
period and amplitude. However the time is quantised and it is unlikely that the
incremental displacements would sum exactly to mg/k, 2mg/k, mg/k and 0 during
the first period. So then, the change of direction of the acceleration and velocity do
not occur precisely at these overlaps but rather at those corresponding to the end
of the time step which includes these overlap values. The overlaps are therefore a
little greater than mg/k, 2mg/k, and a little less than mg/k and 0. In the case
of the last value the masses have separated and freefall ensues until contact is
regained. This inaccuracy applies during freefall as well, so that the upper mass

regains contact with the lower at a slightly higher velocity than expected.

The second period of oscillation is slightly different from the first, in that the
particle begins this period with a downwards velocity. It therefore travels further
in the first time step of the new period than in the old one. The particle decelerates
more rapidly due to the increased overlap and as it approaches mg/k it does so
with a lower velocity and does not overshoot as far. Consequently at the end of

second period the separation or ‘jump’ is less.
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Successive periods of oscillation alternate those similar to the first, that is

beginning with a small or zero jump, and those like the second with a larger jump.

Assuming suitable parameters for mass, gravity,‘ time step and stiffness will
lead to the jump being restricted to a small value, the separation occurring for a
single calculation cycle. In this case the motion is essentially that of Simple Har-
monic Motion. However each of the parameters will affect the motion principally

by increasing the size of the jump.

The finite difference method gives rise to a movement of gét? in the first cycle
if the initial velocity is zero. This is true for all cases here. Consider the motion
after the first cycle if 6t2 > m/k. The initial contact force will be greater than
mg. In this case the particles will separate, free fall and regain contact. The
high regain velocity will cause a larger overlap than that of the first period. It is
clear that both the amplitude and wavelength of this asymmetric oscillation will

increase with successive periods.

This instability may be caused by a time step and / or stiffness that is too
big, or alternatively by a too small a mass. The gravity determines the time that
the particles are separate. The two extremes of motion described, the quasi-stable

oscillations and these large jumps are end members of a series of oscillation types.
2.1.3 Controlling Numerical Instability

In an undamped system the large oscillations may be avoided by shrewd use of
the problem parameters. The quasi stable oscillations, however, cannot. Damping
is required to control the quasi stable oscillations for the following reason. As
collapse of a real system occurs, the energy release due to collapse is absorbed
through noise, heating, grinding, breakage of material and loss by vibration to the

far field. Unless a damping regime is imposed on the numerical analysis the system
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energy will never decrease, and not reflect reality. In particular the analysis will

be too liberal in passing effects from one area to another.

Although we have only considered oscillations in the contact normal direction,
for an inclined contact they exist in the contact shear direction as well. These
oscillations are in phase, the stresses varying from zero to the maximum values at
the same time. When a failure law is imposed on the shear stress the oscillations
distort. What is of greatest importance is that the stress path followed by the

contact will be cyclic and unlike the correct, or even a sensible one.

Cundall’s implementations of Distinct Element Analysis involve the use of
damping factors to control these oscillations, the processes of which have been
adequately described by Cundall (1976), Rouse (1982) and referred to in section
1.4.1. Rouse reports that these damping regimes are unsatisfactory on two counts.
Firstly that the mass proportional damping factors for the whole mesh do not
damp masses differing by a factor of two from the mean. Standing waves were
also encountered in towers of contacts, and finally self exciting oscillations were

easily produced by the viscous damping, the use of which she strongly discouraged.
2.1.4 Towers of Contacts

A tower of contacts is a set of elements with each resting on one immediately
below, the bottom one being immovable. In the first time step, all the movable
elements fall by ¢g6t2. In the second, the lowest contact is in compression, so
the first movable particle moves down less than gét2. All of the other elements
move down by the same amount as in the first cycle. In the third, the bottom
two contacts are in compression. It can be seen readily that the onset of contact
compression travels up the tower at the rate of one contact per calculation cycle.
It is for this reason that all effects propagate through the mesh at the same rate

as this.
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In this system an element’s oscillations are coupled to its neighbours only
while the contacts are compressive. If jumping should occur at any stage, the jump
would cause a compression wave to travel up the contacts above the element. The
top element would separate from the column, free fall and begin a compression
wave travelling down the column. It is this effect which gives rise to the possibility

of standing waves.
2.1.5 Some Recommendations

In deciding the values of the parameters, care should be exercised to ensure

the following conditions:

(i) that gét? is modest.
(ii) that the time step is sufficiently small for the oscillations to be traced with a
reasonable degree of accuracy. v
(iii) that the contact overlaps are small relative to the size of the elements at all
times.
(iv) that the time step is sufficiently large for the computing cost to be acceptable.
(v) that the damping quenches all quasi stable oscillations in a reasonable fashion.

(vi) that energy is dissipated from the system during collapse.

A new approach was researched because current Distinct Element Analysis
implementations seem to be oscillation prone. These oscillations lead to incorrect
stress paths being followed and the oscillations are difficult to adequately damp.
2.2 An Alternative Approach

2.2.1 Consolidation

Consolidation, in this context, is the relaxation of a stable configuration of

elements until equilibrium is attained. Cundall (1971) recommends that a problem
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be a,n‘alyzed in two parts, firstly by allowing consolidation to take place and then by
collapse. The process of consolidation must take place under different conditions
to that of collapse, otherwise both processes would prove.to be identical. The aim
of consolidation is to stabilise the contact forces to values which counter the self
weight of the mesh so that during collapse the initial contact normal forces give
rise to the correct limiting shear forces and that shearing may take place under

the correct conditions.

Cundall outlined two methods of promoting consolidation, under conditions
of artificially high friction and by the use of fixed elements to prevent collapse. The
high friction method may be utilised for problems where the failure mechanism is
principally sliding. Here the elements do not collapse because the contact shear
forces are allowed to be large to prevent contact failure. By using this a philosoph-
ical problem is encountered, for when the friction is lowered to normal for collapse
to ensue, the contacts fail immediately with no chance for the normal forces to
compensate smoothly or, more importantly to follow the appropriate stress path.
When the consolidation forces are much higher than the contact failure limits it
may be argued that the system is as removed from the correct failure force system

as it was before consolidation took place.

Where the failure mechanism is that of a toppling and sliding mixture then
additional fixed elements are used to prevent movement. These are removed af-
ter consolidation has taken place. In Figure 2.4 fixed blocks have been used to
allow consolidation throughout the whole of the problem. On unfixing the central
supporting blocks the first row will drop, reducing the normal forces on the edges
marked x. It can be seen that a wavefront of reduced normal forces will propagate
through the mesh at a rate of one element per cycle. Although the side forces
may restabilise the system, this wavefront seems to be an added complication to
an already complex damping system. Furthermore, it must be questioned whether

consolidation by fixed blocks is appropriate as in the real case the lowest blocks
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x - joints relaxed in lirst collapse cycle
y - joints relaxed in second collapse cycle

z — joints relaxed in third collapse cycle

Figure 2.4 The use of fixed blocks to promote consolidation
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would be held by side friction, interlocking joints and cohesion. Again it may be

argued that this method leads to an incorrect force system.
2.2.2 A Statement of the New Approach

Any new method should allow for the correct gradual build up of forces both
before and during collapse. The method should be inherently numerically stable
unlike the usual Distinct Element Analysis implementations and it should correctly

model the progressive nature of the collapse.

The new approach controls the consolidation of the elements in a more con-
servative fashion than the usual Distinct Element Analysis in that neither element
velocities nor displacements are allowed to build up across time step boundaries.
In essence, the incremental displacements of the previous cycle are used in a force
— displacement law to give an increment of contact stress, which is then added
to the contact stress. A very simple motion law is executed to give rise to new
incremental displacements. The contact stresses gradually increase until the incre-
mental displacements fall to very low levels. A contact failure law may be included
in the process but for simple consolidation it need not. If no contact failure law
is used and a collapse algorithm, such as a standard Distinct Element Analysis
method, is processed afterwards, the artificially high shear forces for the contacts
that will fail, must be reduced carefully to prevent shocking the system. Just as
in normal Distinct Element Analysis this new method relies upon fixed elements

to form an immovable platform.
This force orientated system requires a slightly new calculation order which

is shown in Figure 2.5. To interface between the consolidation and collapse phases

consolidation forces are used in the collapse motion law.
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To interface to normal Distinct
- : >
~~_ Element Analysis

Force-Displacement Law
Consolidation Law

Brackets indicate that the value is not stored

Figure 2.5 The new calculation order
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The consolidation process provides as an end result contact forces, whereas
normal Distinct Element Analysis provides element overlaps and hence element
body forces. As the incremental forces are added to the consolidation forces in each
cycle there is a more complex zero tension condition because a separation between
elements implies a tensile increment rather than necessarily a tensile contact. A
tensile condition occurs when a tensile increment is added to the consolidation

forces which causes the result to be less than zero.

It is essential, of course that the correct forces are produced by the analysis.
To check this Program CIRCLES was used to consolidate a single contact, a tower
and a triangle involving two contacts. In the case of the single contact, the force
summed to mg, for the tower jmg (where j is the number of circles above the
contact) and for the sixty degree triangle of elements the combined contact forces

resolved to give mg.

2.2.3 Machine Accuracy

2.2.3.1 The Relevance to Discretization

Machine accuracy may be expressed in absolute terms as the number of bits
used for a real number, or more usefully as the number of significant figures held,

or the smallest number added to 1.0 which gives a result greater than 1.0.

The computer used throughout this study was a System 370, Amdahl 470 V/8
Serial Number 70435 at Durham using the Michigan Terminal System (MTS) of
the University of Michigan Computer Center, Ann Arbor, Michigan. The Pascal
compiler used was PASCALJB of Plug Compatible Software, Inc. The machine
accuracy in this case is such that if 2.220446049 x 10716 is added to 1, the result is
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just discernible. Therefore, to maintain the accuracy of the algorithmn it is essen-
tial to keep calculations involving small quantities separate from those involving

large ones for as long as possible.

For example, the position of the elements varies during the analysis by adding
incremental displacements to the centre of gravity. Small increments are easily
lost, so these are stored separately to ensure that they maintain their integrity.

To illustrate,

(1.0+10717) - (1.04+107¥) =0

whereas

1.0-1.0+107"7 -10"8 =90 x 10718

2.2.3.2 Bringing Consolidation to a Close

For a convergent, stable system, there comes a point during consolidation
when the incremental forces become very small and it is necessary to terminate
the process while all the quantities are above the machine accuracy. To do this the
maximum increment displacement is determined in each cycle and when this has
fallen to the limiting arbitrary value of 107'* consolidation is considered complete.
At this point the force matrix gives rise to extremely small displacements and the

system may be thought of as at equilibrium.

For a convergent, unstable system the maximum incremental displacement
with time becomes asymptotic to a constant value. Consolidation is brought to a
close under conditions of constant displacement. That is, it is not possible for the

consolidation forces to counter the effect of gravity in at least part of the mesh.

For a divergent system the process is halted if the maximum incremental

displacement reaches an arbitrary high value of 108. Such a system is considered
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to be numerically unstable, halting the process prevents the program crashing in

an uncontrolled fashion.

2.2.4 Propagating Effects Through the Matriz

2.2.4.1 A Simple Tower Problem

What occurs in one part of the mesh is very likely to affect another part. It
is essential that these effects are correctly propagated through the mesh. Plesha
et al. (1986) report that the propagation mechanism of waves through a distinct
element mesh is not understood. In this study it was found that propagation may
be very limited and is controlled by machine accuracy, stiffness, time step and unit

length.

Figure 2.6 shows a tower of CIRCLE elements. Table 2.1 shows the consoli-
dation forces at completion, it can be seen that no contact forces exist above the
seventh contact. As explained in section 2.1.4 propagation of the onset of consoli-
dation travels at one element per cycle up the tower, those elements above falling

under the influence of gravity only.

.0000000000000E+00
.0000000000000E+00
.0000000000000E+00
.1642691779061E~14
.7029380390028E-12
.031903862358BE-09
.8433017642260E~07
.4740616641761E-05
.2250740176403E-03

NN = s N O O O

Table 2.1 Contact forces for a tower
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Figure 2.6 The tower of circles analysed
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The relative displacement between two elements is given by
le - 2Py + ISy - ZSy

where 1P, and P, are the y positions and ;S, and 2§, are the incremental
displacements of the two elements. At the limit of propagation the value 1.5, — 25,
is ‘lost’ when added to P, — 3P, resulting in a zero relative displacement. From

this point onwards propagation ceases as the contact force is also zero.

Cycle |Circle 1 Circle 2 Circle 3
0 a=—g a=—-g a=—g

S = —g.6t2 S = —g.6t2 S = —g.6t
1 F =k.d.g.6t F=0 F=0

Q= k.d.mg. st g a=—g a=—g

S = k.d.mg. 61t 9.6t S = —g.5¢2 S = —g.6t%
2 |F=kdgst? - 2R Lab8 F = Edlast F=0

m m
a= k.d.g.5t* _ 2-"72-42‘;9-6t4 —g a = &iig_&_tq_ —g a=-—g
m me m k
§ = kdaol  2Mdgb g lg o Hlgb g g2 |6 o g 52

Table 2.2 The expansions for 3 circles

Table 2.2 shows the expansions for the acceleration, displacement and forces
on three circles in a tower for three cycles. Of the controlling parameters used, time
step affects the size of the incremental displacement most. As expected, as the
time step is decreased the displacement decreases also, unfortunately it can quickly
disappear. Likewise as the stiffness is increased smaller displacements are required
to represent the same forces. Gravity affects the displacements proportionally

whereas the other parameters have a greater effect.
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2.2.4.2 Some Recommendations

To promote propagation through a large number of elements it is suggested
that stiffness and time step size be equal to unity and that the numerical stability
of contacts be controlled by a single damping factor. The size of the‘problem
should be limited so that small quantities are added to modest element positions.
It is suggested that the elements are of the order of one unit in radius for CIRCLES
and one unit in width for SLICES.

2.2.5 The Role of Damping

The difference equation solution for a single contact under the influence of
gravity is shown below. The governing equations for the displacement, acceleration
and force are shown in equations (5) to (7). The sign convention of gravity as

positive is used.

() nS, = "ay x 6t
n nF
(6) Ay = # + gy
n—1 .
(7) "Fy=-) kxdx 'S,
=0

On substituting equations (7) and (6) in (5) it is found that

: 2 n—l'
_kxdxét xzjsy—kgyxéﬁ

§=0

(8) "8y =

m

Let A = "’Xde“z and B = g, x 6t% then the difference between two consecutive

incremental displacements becomes

n n—1
(9) mHg, - Sy =-Ax [ > I5, - ) s,
j=1 i=1
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Which simplifies to

(10) nHlg, - "G, =—Ax ™S,

Let *Sy = py so that

(11) pyxlpy—(1-A4)]=0 = p,=(1-4)
Now %S, = g, x 6t = C(1 — A)® which implies that C = B So that

(12) S, =B x(l— A"

The number of calculation cycles for a system to converge to a limiting differ-
ence may be derived. The limiting factor may be force, acceleration or displace-

ment. A different equation is required for each, they are given below.

The derivation of Ny, the number of cycles needed to converge to a limiting
positive difference in force of Limy is shown. Care needs to be exercised regarding
the gradients of the acceleration, displacement and force time graphs as gravity is

taken as positive downwards. The limit is defined as —Lim; = Nf+1F, — N+ F,

- Nf Nf--l
(13) Limg=kxdx Y 98,—- ) 'S,

which gives Lims = k x d x N1S, and Lim; = k x d x B(1 — A)"7 and hence by

logarithmns

(14) Ny = lg(Lin;é(/l(/ixAc; x B))

The equivalent equations (15) and (16) show the number of cycles required
when the limiting factor is acceleration and displacemeént respectively.

_lg(Limg x m/(k x d x B))
N lg(1 - A)

(15) Ng
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lg(Lims /(A x B))
lg(1-4) =

(16) N, =

Furthermore for N, > 0 implies 0 < kdét?/m < 1 and assuming k = 1 and

6t = 1 then it follows that 0 < d/m < 1 and N, = lg@il’g’;‘ile/ﬁ‘;x@) which implies

that IV, varies with mass. So that all elements take equal time under the same

conditions to consolidate the damping factor actually employed is element mass
multiplied by the global damping factor: Dy = d/m. This makes the consolidation
process time independent of mass, if this were not so the time would ‘warp’ over
the mesh with lighter elements more advanced than others. A further consequence
would be that heavy elements would be lightly damped compared with light ones.

Therefore Ny = lg(pfg(lii(gf)xg))

To show the effect of the number of contacts upon these equations, the dif-
ference equation solution for an isosceles triangle where the lower two circles are
fixed, now follows. The internal angle between the horizontal and the contéct lines
is . The derivation is carried out for the y direction only as the & can be shown
to cancel out and have no effect. AG is used to represent the movement along the
contact lines that join the circles. The subscripts 1 and 2 are used to differentiate
between the two active contacts. The governing equations for the dis'placement
and acceleration are as shown previously in equations (5) and (6). The equation

for the force is given in (17).
n—1 ‘ '

(17) "Fy=-> kxdx({AG+ jAG) xsing
i=0

However the radial displacements are given by
(18) TAG = "S,/sind

Equation (17) simplifies to give

‘ n—1
(19) "Fy=-) 2xkxdx ‘S,

1=0
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By following the previous method it may be shown that

(20) "Sy=Bx(1-2xA)"

and that N, = lg(Ll:("l"‘ _/ gg’; ;( 9)  Hence generally

_ lg(Lims/(Ds x g))
No = lg(l -1 Xfo)

(21)

where [ is the number of contacts. It should be noted that this applies to symmet-
rical contacts sharing the weight of elements above. It can be concluded that the
damping factor, D¢, must vary according to the mesh geometry used in Program

CIRCLES.

As damping increases so does the required number of cycles to reach equilib-
rium, and hence the computer time increases also. An overall damping factor of

0.5 to 0.9 has proved to be satisfactory.
2.2.6 Concluding Remarks

In this chapter some general theory has been investigated for Distinct Element
Methods as used previously. A new method has been outlined and aspects of the

theory have been detailed, in the following two chapters the theory is extended for

SLICES and CIRCLES and their implementation described.
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CHAPTER 3

DISTINCT ELEMENT METHOD OF SLICES

3.1 Introduction

Program SLICES is designed to analyse the behaviour of a soil slope and a
failure arc in much the same way as more traditional methods, such as Janbu.
The program requires geometric data to define the slices. The tops of these form
the soil slope, and the bottoms form the failure arc. The slices may vary in width

and should normally have vertical sides.

In addition cohesion, friction and pore water pressure values are needed for
each slice. As the slope cross section may be considered as one unit length’thick,
and if the unit length is the metre, densities in tonnes /m3, gravity as —lbm/sz,
then the cohesions and porewater data should be entered as kN/m? and m. How-

ever any self consistent units may be used.

Finally control parameters and control commands govern the conditions of
the solution and the production of the various outputs. Table 3.1 shows a typical

command file while Figure 3.1 shows the slope and arc to be analysed.

It must be emphasised that Program SLICES is a development program, and,
although hopefully, reasonably user friendly this is for ease of use rather than as
an indication of a packaged production program. Program SLICES is therefore
limited in itsv applications. It is only able to analyse situations involving one
soil type and has a simple contact failure law. It is envisaged that non-linear

soil properties could be incorporated quite simply and that layered situations be
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Figure 3.1 A typical slope for analysis by SLICES
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start SLOPE i, C, PHI, U
0 16 O

create free 20 6.0 2.0 1.0 2056.00.0 0.0 0.23 1 14 1 14
2 10.5 2 14
create free 20 5.0 2.0 1.0 206.0 0.0 0.0 0.23 3 8.9 3 14
create free 20 5.0 2,0 1.0 206.0 0.6 0.6 0.23 4 7.7 4 14
create free 20 6.0 2.0 1.0 20 5.0 1.6 1.0 0.23 5 6.9 5 14
create free 20 5.0 2.0 1.0 20 5.0 2.3 1.3 0.23 6 6.3 6 14
create free 20 6.0 2,0 1.0 20 6.0 2.9 1.6 0.23 7 5.7 7 14
create free 20 6.0 2.0 1.0 20 6.0 3.361.76 0.23 8 5.4 8 13
create free 20-6.0 2.0 1.0 20 6.0 3.66 1.9 0.23 9 5.1 9 12
create free 20 5.0 2,0 1.0 20 5.0 3.85 1.95 0.23 10 5.0 10 11
create free 20 5.0 2.0 1.0 20 6.0 3.95 2.0 0.23 11 4.9 11 9.9
create free 20 5.0 2.0 1.0 20 6.0 3.95 1.95 0.23 12 6.0 12 8.9
create free 20 6.0 2.0 1.0 20 6.0 3.3 1.35 0.23 13 6.1 13 7.8
create free 20 5.0 2,0 1.0 20 5.0 2.06 0.7 0.23 14 5.4 14 6.8
create free 20 6.0 2.0 1.0 20 6.0 0.7 0.0 0.23 16 5.8 15 5.8

meshend

set time 1 gravity -10 cmdproc on framelimit 100
writegap 128 interval 128
cmdlist plot standard set calc writegap * 2 interval * 2 cend
echo on

go 32383

stop

Table 3.1 A Typical Command File

accommodated by subcontacts along the interslice edges. In addition Program
SLICES is intended for slopes failing by sliding only, as opposed to topplinig. There
is no check made by the program for toppling. Program SLICES is particularly
suited for situations where the failure surface is already known, as in back analysis

and post-mortem analysis of failed slopes.

The program does not display the problem solution in a fixed format, but,
rather a series of possible outputs may be requested by the user. The calculation
marches through time producing data and to a very great extent which data are

examined, and how, is left to the user. Of the several possibilities, perhaps the
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most useful is shown in Figure 3.2. Here the stresses are plotted along the length of
the arc. Normal, shear and limiting shear stresses for both the base and interslice
contacts are shown. The symbols +, ¢ and » are used to represent the pore water
pressure, mobilised stress and limiting stress respectively. Plot possibilities include

incremental displacements, slice geometry and the stress profiles as illustrated.

Much written output can be produced for debugging and general informa-
tion. To complement the stress profile plots, written output can-be produced
independently. This output consists of the Factor of Safety (Limiting stress over
mobilised stress), for each of the base contacts and shows which slices are stabil-

ising the slope. The limiting state is represented by a factor of safety of unity.

The analysis may be considered static in nature in so far as the slices are not
allowed to collapse, only to consolidate. The term consolidation is being used here
to describe the process whereby the contact forces increase over successive cycles
to counter the self weight of the slope. The cyclic process employed includes a
failure law for the contacts which is executed during the force displacement law.
The complete cycle is shown in Figure 3.3. It may be seen that in addition to the
calculation sections there is a controlling section which is capable of terminating

a run and to administer the production of output.
3.2 Theory extensions for SLICES
3.2.1 The edge formulation employed

The Distinct Element Analysis formulation used is an Edge formulation. As
stated in the Introduction, program SLICES is a Distinct Element Analysis im-
plementation of fewer degrees of freedom than usual as rotation is ignored. As
the problem types are of sliding only, rotation or toppling of slices can be safely

discarded. Both edges inveolved in a contact, therefore, shall be parallel at all
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Figure 3.2 Stress profile produced by SLICES

A negative normal stress is a tensile stress.
A negative shear stress is dextral shear for basal contacts

and is sinistral shear for interslice contacts.
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Command list processing
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Figure 3.3 The SLICES calculation cycle
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times and this simplifies the edge formulation allowing a contact to be defined by
a single subcontact. A further,simplification to usual edge formulations is pos-
sible, as initially both edges involved are closed along their whole lengths. This
renders the storage of a contact origin unnecessary. Figure 3.4 compares a gen-
eral Distinct Element Analysis edge contact with that employed in SLICES. The
lefthand diagram shows the information required for a contact in the traditional
Distinct Element Analysis implementation of Watson (1983). The righthand dia-
gram shows the contact definition used here. It may also be noted that the contact
length is deemed to be a constant throughout the simulation and is used to convert

forces to stresses by division.

During the definition of the problem the program creates the slices from left
to right and allocates a contact to the base of each slice and to the righthand edge
of all except the last slice. The base contacts are made with a fixed hypothetical
element, the platen, which consists of a series of edges identical to the base edges
of the slices. As the leftmost slice has no lefthand contact and the rightmost slice

has no righthand contact, slopes facing either left or right may be modelled.

The main extension of the theory for slices is the incorporation of the edge
length into the difference equation solution. The inclusion of the contact length L

to convert from stress to force is shown in equations (1) and (2).

(1) n"Fy=— "o, xL
"exdx iS
n . Y
(2) O'y - ; L

By following the method used in chapter 2, it is found that

(3) "S, =B x(l-A)"
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Figure 3.4 A Comparision of the data required to define a contact
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and Nj, the number of cycles needed to converge to a limiting difference in stress
of Lim, is given by

lg(Limg x L/(k x d x B))
lg(L - A)

(4) N, =

This number is an useful indicator of the rate of damping on the system. It
has already been shown that the rate of damping is dependent on the element
masses. For a typical slice problem this would mean that all the slices would be at
different stages of the contact stress history. This problem is overcome by applying
an individual damping factor to each block, such that D¢ = d/m, where Dy is the

overall damping factor.

A second problem is encountered with damping in that the rate of damping is
also dependent upon the contact length. Ideally two contacts of the same slice with
different lengths should have different damping factors. In practice, for SLICES the
contacts may be considered as two sets of contacts, basal which converge quickest,
and interslice contacts which are slower to converge and gradually inﬂuence the
basal contacts. Due to the geometrical consistency of SLICE problems this side
effect is an advantage, however is does complicate the choice of damping factor as

it must satisfy the convergence criteria for all contacts.
3.2.2 The Force Displacement and Motion Laws

Procedure fordsl defines the force displacement law and is executed once per
slice cycle. fordsl executes a force displacement law once for the base contact and
once for the side contact. The relative movement in the normal and shear direc-
tions is calculated from the incremental displacements of the slices involved (the
platen may be considered as a slice and has zero displacements at all times). These

relative movements are converted to contact forces by the relaxation constant, k.

. Fn . . eSw" cS:c R
5y - (Fs) = (sinf cosf) x (csy_ esy> X k
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The contact is judged to be active (that is in coﬁtact) if "o, > -DyxF,/L
(compression is taken as positive), and the following executed to give contact

stresses.

n n—1 ]
(6) On — On +£)ix (Fn)

Slices that are fully submerged in the traditional method of slices, are bouyant
which normally causes the toe of the slope to under.contribute to the mobilised
stress of the failure arc. This leads to the factor of safety to be under valued. If
the pore pressure due to the water table is applied to the slices in the distinct

element analysis method a similar effect is experienced. Consider equation 7.
(7) T=c+ (0p,—u)tan¢

At the beginning of the analysis o0, = 0 so that for non—zero pore water pressures
(0, —u) < 0 and hence the slices would float upwards. To ensure that (o, —u) > 0,
the water is applied gradually by increasing its value at an arbitrary rate of 0.1%
of the required pressure u per calculation cycle. This rate cannot be currently

altered by the user.

(8) "u= "ty 4+0.00lu where "tlu<u

If the Critical State option is in use then failure of the contact is assumed
once "u = u and | ®7| > 7. Once the contact reaches the failure condition the
contact remains in the failed state and the cohesion for éach successive cycle is
given by "tlc = ™c¢ x 0.85, that is ¢ — 0. The failure logic may be represented

by the boolean logic of failure = failure vV (("u =u) A| *7| > 7).

The shear stress is limited by a Coulomb friction law such that
(9) -0 (on - ")
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and
(10) T= "c+("on~— "u)tang¢

and if | *7| > 7 then "r =7 x T‘T—ﬂ ensuring sign continuity.

The stresses are converted to contact forces by

Cn\ _ "1 o,
(11) (&) -2

-
and finally these forces are resolved in z and y and added to the forces acting on
the slice, to be known here as the body forces. Additionally, in the case of a side
contact, the resolved contact forces are subtracted from the body forces of the

other slice involved.

(12) (F""'ce”) = (sind cosf) x (gn)

Force,

As the incremental displacements are not used to update the slice positions
the contact stress increments may be compressive or, by the influence of other
slices, tensile. In the tensile case a contact is still active if the summed normal
stress state is compressive. A small tensile stress is permissible so that transient

numerical jumping may be more effectively damped.

" The consolidation motion law is very simple compared to the motion law of
normal Distinct Element Analysis. The Procedure consols! defines this law and is
executed once per slice per cycle. consolslis called after fordslin the calculation

cycle.

The incremental displacements are calculated from the body forces, mass,

gravity and time step (recommended as unity).

S:\ _ 6t [ Force, 2 [ 9
13 (5) =5 (rore ) #5
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~The body forces are then set to zero ready for the next cycle
Forcec\ _ (0
(1 (Foreer) = (2)

3.3 Using Program SLICES
3.3.1 Introduction
3.3.1.1 Overview

Program SLICES is written in the PASCAL programming language. For some
time previously implementations of Distinct Element Analysis have been writ-
ten in FORTRAN, Dames and Moore (1978), Rouse (1982) and Watson (1983).
Whichever language is used it should provide efficient object code and readable,
easily maintained, modular source code. Some features of PASCAL enable these
objectives to be more easily attainable than many other languages. Such at-
tributes as structured variables and records make PASCAL palrticularly useful in

this respect.

For example el@.force.z is equivalent to A(TA(J)+11) of Watson (1983). The
PASCAL version more clearly indicates that an element force in the z vector is
meant than in the FORTRAN version. Furthermore, if ‘force’ is mistyped then
the Pascal Compiler will indicate an error, whereas if ‘J’ was accidentally replaced
with ‘K’ in FORTRAN a run time error might eventually occur. For a development
program where the source is continually being modified these advantages are very

great. For a reader unfamiliar with PASCAL, reference is made to Grogono (1980).

Meek and Beer (1986) report that a large percentage of the programming ef-
fort in a Distinct Element Analysis implementation development may concentrate

" ﬁpon user orientated features. Much of the structure of programs SLICES and
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CIRCLES is designed for the ease of input of data, output of results, debugging

features, error handling and restart facilities.

The plotting routines employed are library routines called from the GHOST
library. Almost all references to these library routines are contained in Procedure
plot so that they may be changed or replaced easily if the need ‘should arise. To
call FORTRAN library routines such as these from a PASCAL program prdcedure
head definitions are included in the PASCAL code.

Finally, the source code for Program SLICES is in est8:p.slice.s and the object

code may be found in est8:p.slice.
3.3.1.2 Input and output unit summary

The program requires various input and output files with which to communi-
cate with the user. There are nine such channels each of which should be assigned
on the Run command, for example:

Run est8:p.slice 1=resti 2=resto scards=commands sprint=*msink*

T=-debug 8=-trace 9=-plot 10=-o0sc 11=*msink*

In MTS the run command should occupy a single line, in addition *msink*
is the pseudodevice name. for the terminal screen (if run from a terminal) and
> infront of a filename indicates that it is temporary in nature. '_Any channel
required, but not assigned is prompted for by MTS except for scards and sprint,
here the MTS default values are *source* (normally the terminal keyboard), and
*sink™ (normally the terminal screen). In use it may be noted that channels 8, 10
and 11 are often not needed and so need not be assigned, channel sprint should

usuaﬂy- be the default, and finally channels 1 and 2 may be assigned to the same

file. Each of the nine input / output channels are described below.
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Channel 1 is the restart file input channel. The file attached to this should
contain all of the information required to restart a previous problem run which
terminated under normal conditions. If a new problem is to be started then a file

need not be assigned.

Channel 2 is the restart file output channel. The file attached to this will
receive the data required to resume the problem at a later date. This must be
assigned as restart information is output at the end of a normal termination as

well as when requested.

Channel scards is the command file input channel. The file or device attached
to this unit contains the input command language commands that define the task

to be done.

Channel sprint is the running commentary output channel. The terminal
screen (*msink*) is the default value for this. As control commands are written to
the device, to position the output on to various parts of the screen, the network
(NUNET at Durham) should be set to allow these control commands to be passed
to, and executed by, the terminal. To do this at Durham the NUNET commands
Ctrl-p passall=on and Ctrl-p chc=off should be issued prior to the run and Ctrl-p
passall=off and Ctrl-p chc=" afterwards. |

It should be noted that the control commands used are suitable for TeleVideo
terminals and that no other terminal types have been tested, as the commands are
contained in two constant strings at the beginning of the program they are easy

to modify. For more details see section 3.3.4.7.

Channel 7 is the debug output channel. The file attached will contain all of

the debugging output requested. In some cases the amount of information may be
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very large and it is best if the file is of a temporary nature so that personal disk

space is not exceeded.

Channel 8 is the trace output channel. This file contains ‘the tra_cp of the
program, if requested. It contains a message on entry to and on exit from each
procedure or function as they are used. This is particularly useful on debugging

recursive structures as each level of recursion used is recorded.

Channel 9 is the plot output channel. The file attached receives the plot
output stream from the GHOST plotting routines. It contains control codes and
unformatted values and is a plot description file and is device independent; It must
be reinterpreted for the plotting device to be ﬁsed. At Durham this is éccomplished
by the public programs *PLOTSEE and =°‘MTS.PLOT. (See MTS Volume 2, Public

File Descriptions.)

Channel 10 is the oscillation output channel. The file used here will contain
the oscillation output requestéd.. . The information may be reinterpreted by the
program SOP, simulated output plots, originally used in the study of oscillations
of traditional Distinct Element Analysis contacts. (See program comments in file

est8:p.sop.s for use, and sections 3.3.2.3 and 3.3.4.6.)

Finally, Channel 11 is the error communication channel. This channel is
used during error handling, for input of corrected commands or for a termina-
tion message if a non-recoverable error occurs, such as an unexpected end-of-file

condition.
3.3.1.3 Qutline of facilities

The program is designed to be flexible in the tasks it performs and, on the

whole, is not preprogrammed to solve the problem in a set fashion. The user is
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in control of what is to be done, and when. Research use of the program further
emphasises the need for such flexibility and so several user orientated features have

been incorporated.

A principal feature is the comprehensive input command language to de-
fine problems and the manner of soliution. In addition a running comméntary is
produced providing information on the current program status, (for example the
number of pages of plot produced so far, iterations completed and requested), cur-
rent problem st’a;bili‘ty information, and the current command in progress. This

allows a user to abort the run if it is not satisfactory.

Certain parameters may require changing during the problem lifetime and
this may be achieved by the using Procedure calculator allowing, for example,
intervals between plots to be multiplied by a value. This same facility allows a

restart file to be examined and the parameters inspected or changed.

Experience of some previous Distinct Element Analysis implementations led
to the realisation that input error checking and handling is very important. A crash -
caused by a mistyped command part way through an expensive run is particularly
annoying. Error checking is included in SLICES and on encountering an invalid
comméhd the user is prompted for a replacement. It is not qlways possible to
retrieve the situation, or it may be laborious to do so, but the bpportunity is

there.

Often in investigé,ting the progressive nature of the solution it is necessary
to do the same things repeatedly. There are two repetitio__ri stfuctures. One is a
simple repeat loop, which repeats all of the commands encloséd,' as many times as
instructed. The other causes a command list to be repeated after every interval

of so many cycles.
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Another user orientated feature, which is included as standard in development
programs is that of a debug facility. With this the user may request a whole variety

of information to locate bugs or to supplement the normal solution.

Finally a process orientated feature has been incorporated. The maximum
individual displacement of all the slices in each cycle is monitored. The behaviour
of the maximum displacement with time shows characteristic patterns under cer-
tain conditions. This value is written to the running commentary and by internally
monitoring its change a final verdict on the stability may be made by the program.
Under conditions of constant sliding and stable equilibrium this displacement be-
comes constant and the program terminates. An upper limit on the number of
cycles to be executed can be issued with the realisation that termination should
occur early without any waste of resources. This feature also checks for numerical

instability and will automatically terminate the program before it crashes.
3.3.2 Input Command Language
3.3.2.1 Introduction

All program tasks are controlled or defined by the Input Command Language
As shall be explained later the program requires some commands in a particular
order, but on the whole the majority of commands may be used at any time.
Although the program is not designed to run interactively, it is possible with care.

Normally, however, the commands should be contained in a file prior to use.

The commands may be categorised into broad sections, dealing with program
control, plotting, meshing, debugging, and the setting of options and parameters,
these corresponding to the majoi' prdcedures of the program. The commands are
hierarchical, forming a tree system. The highest level is the control level which

allows access:-to the lower levels of commands, such as the plotting and debugging
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command sets, which are at the second level. Furthermore, the plot command set,

for example, contains a level three command set, the mapping commands.

Once in a low level set the permissable commands are those of the present
set and of any higher level set which contains the current set. The highest level
or outermost command set, the control commands, are available im}mediate‘ly on
entry to the program. Access to lower sets musf always be made thougﬁ this
control level. Once in a lower command set as many commands of that set may
be issued as required. To exit from a lower level, a command of a higher level set

containing the present set should be issued, often this will be a control command.

To complete the picture it should be noted that on correction of an input error,
it is as if the program is being re-entered, so that the only applicable commahds

are control commands, that is those of the outermost command set.

The following sections, 3.3.2.2 to 3.3.2.8 describe the functions of the com-
mands of each command set. Section 3.3.2.9 describes a syntax table for the Input
Command Language. How best to use combinations of the commands is not dis-
cussed here, but rather in Section 3.3.3, under the heading ‘Input Command File’.

3.3.2.2 Control commands

The control commands are situated in the outermo_st,comma;h:d set, all other
commands are accessed through this set. The commands are set, restart, save,
start, stop, debug, plot, go, repeat, rend, cend and return. Each of these is

now described in detail.

The set command enters the parameter procedure to allow parameters to be

set up, altered or inspected.
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The command restart causes a restart of a previous problem run. A file con-
taining the restart information must be attached to unit 1. Within the command

file the mapping information must follow.

save causes a restart file to be written. It may either overwrite or append
the file attached to channel 2 according to the setting of the overwrite command
(a set command). This is used to save the solution to the task so far found for a

large job, thus avoiding loss in the case of a system crash.

The start command starts a new problem. A title up to 80 characters long
may follow, but the next line must contain the mapping information and then

mesh information is required. Section 3.3.2.8 describes the meshing commands.

stop should be the final command in the inpﬁt command stream as it causes
the geometry to be plotted, a restart file to be written and the progfeim run

terminated.

The command debug causes the debug procedure to be entered, so that debug

options can be set or general information generated.
Command plot causes the plot procedure to be entered, which allows requests
for the manipulation of the plot format, size, and the production of the different

plot types available.

go causes the calculation cycle to be entered and it must be followed by an

integer, the number of cycles to be executed.

The command repeat is the opening statement of the repeat n commands

rend loop structure. It must be followed by an integer, which is the number of
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tinies thAe loop is to be executed. There are certain commands for which inclusion

in this structure would be pointless. These are explained in section 3.3.3.

To balance the repeat loop structure the command rend is used in two ways.
As regards to input, it terminates inpixt to the repeat controlling procedure and is
the last statement in the repeat loop, in this case it is not a control level command.
The second way in which it is used is internally, during execution of_—-the loop, here

it signifies the end of the loop so that the commands may be repeated again.

cend, like rend, is used in two ways. Firstly, it terminates input to the
command list structure of the set command set, and secondly it terminates exe-
cution of the command list during use. Section 3.3.2.4 describes the set cmdlist

commands cend facility in detail.

Finally, the return command terminates interactive input-during input error

handling, and is described together with this facility in section 3.3.3.3.
3.3.2.3 The debug command set

To gain access to. these second level commands the debug command must
be entered at the control set level. This facility falls into two parts, one outputs
information at the point of issue of the command, while the other assigns options
which provide data during the subsequent execution of the program. If used
carelessly, this latter part may produce a very large amount of information, so it
is intended that these options be switched on and off as required. All output from
this routine is written to the file attached to unit 7 unless otherwise stated. There

are eleven debug commands, each of which are now described.

The command contacts writes out the contact information. general pro-

duces some general problem and program information. The flagson command
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sets all the debug options on, and should be used with care. Command flagsoff

turns all of the debug options off.

All of the following commands must be followed by the third level commands

of either on or off, which clearly sets the option on or off.

The command update produces contact information as the contacts are cre-
ated. As creation of the contacts occurs during meshing, which is after the issue
of the start command, but before the issue of the next control level command,

this must be issued before start, otherwise it will do nothing.

Command motion controls the production of debug output from the pro-
cedure consols! (the motion law) during execution of the calculation cycle. The
ford command controls the production of the debug output from the procedure
ford (the force displacement law) durihg execution of the calculation cycle. The
command consolidate produces limited inféormation from both consols! and fofd-,
again’ditring execution of the calculation cycle. cycle produces informatién‘frqr_‘n
all procedures within the calculation cycle and procedure cycle itself. The com-
mand trace causes a message to be written on énte‘ring and exiting all procedures
and functions. QOutput is written on the file attached to the unit 8. Lastly the
command oscillate causes information from ford and consolsl, formatted for input

to the Program SOP, to be written onto the file attached to channel 10.
3.3.2.4 The set command set

To gain access to these second level commands the command set must be
issued at the control level. This set of commands falls into two groups, problem

parameters such as gravity and options such as framelimit. The set commands

are as follows.

59



Chapter 3 R Distinct Element Method of Slices

The command echo, if set to on this parameter enables all input commands
to be echoed on the running commentary. The command must be followed by the

third level commands of either on or off. The default is on.

The overwrite command controls the restart file output. If set, the file
attached to unit 2 is emptied prior to use, otherwise the file is appended by the

restart information. The default is off.

cmdlist sets up a subsidiary file and copies all command input to it until
the command cend is entered. The execution of this secondary command file
is controlied by two further set commands, cmdproc and interval. Transfer of
control is passed from the file attached to the unit scards to the secondary file
(always named internally as the temporary file -sass.cmd), during the execution

of procedure cycle. The default value is null.

The command interval must be followed by an integer, the number of cy-
cles to be executed between successive executions of the command list secondary

command file. The default yalue is 100.

The cmdproc command must be followed by either of the commands on
or off. If it is set to on, the command list secondary file is executed whenever
the total cycles executed so far divided by the interval, (as set by the command
interval), is an integer value. If set to off this facility is not used. The default

value is off.
framelimit should be followed by an integer. The GHOST library limits the

number of frames of plot output to twenty. If this is ex_tgeded the program will

terminate. This command allows this limit to be reset. The default is 20.
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The command writegap sets the interval of cycles between display of some

of the running commentary information. The default is 100.

The gravity command is followed by a real number, which represeﬁts the
value of gravity in the positive y direction. The default value is 0. damp is
followed by two real values, this sets the global damping values for base and side
contacts respectively. Ideally they should he betweén 0.001 and 0.2 per unit mass.
There is no default value other than the initialisation of zero. time is followed by
a real value this sets the time step size, it is recommended that a value of unity ié

used. The default value is 1.

The calculate command allows the values of some parameters and options
to be modified or inspected rather than simply reset. Calculator commands are

described in the following séction, 3.3.2.5, and are level three commands.
3.3.2.5 The calculator command set

This set is at the third level and is accessed by the command string set
calculate. Almost all the calculator commands have the same format, that of
<parameter> <operator> <real> with the exception of when the enquiry 7 is
used, when a value is not required. Permissible pé.rameters, whi_ch are in fact
third level commands, are interval, writegap, gravity, time and damp. The
operators, fourth level commands, to be precise, are = replace, * multiply, /
divide, + add, - subtract, " exponentiation. The ? enquiry although not an

operator is used here.

The values are read in assuming a real number format. For parameters which
are integer in nature, conversion takes place to give an integer result. The final
value of a calculation command is written to the running commentary output

stream.
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3.3.2.6 The plot ‘comimmand set

To gain access to this second level set the command plot must be issued.
As all the GHOST library routines are contained in the procedure plot to ease
maintenance, and many plotting functions are automatically carried out by the
program, it has been necessary for some of these and map commands to be issued
internally. Although these internal commands are described, it may be that they
will never need to be issued externally. They are initialise, endplot, and most

map commands with the exception of zoom.

initialise sets the initial plotting parameters and turns the plot. output stream
on. This command is issued automatically on receipt of the start or restart
control commands and should not need to be used normally. The slices command
draws the slices in the current plot space. The displacement command draws
the current slice incremental displacement vectors. forces draws the normal and
shear stress, limiting shear stress profiles for the base contacts. The standard
command produces a standard plot of a border and profiles for the base and side
contacts, page calls for a new frame, or in physical terms a new sheet of paper.
border produces a border with the problem title and current problem time. The
map command enters the-tertiary level map set and enables the modification of

plot formats, it is used internally for the most part.

The unusual command zoom must be followed by three real numbers, zmin,
gmaz, and ymin which form the mapping limits. zmin is the minimum value of
z, zmaz is the maximum value of z, and ymin is the minim{lm value of y of the
problem geometry to be plotted. As the plots are in fixed pr'op‘dftions in both
landscape and portrait mode it is not necessary for the ma,ximuzﬁ y value to be
provided. This command enables portions of the problem to be examined in more
detail. Mappi’ng limits are expected as part of the input after both the start

and restart control commands. zoom is in fact a tertiary level command valid
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at the secondary level as it is passed straight to the mappirngvpro'cédure'without

processing.

The endplot command is issued internally during closedown of the program
under normal termination, it produces a frame with a slice plot and turns f)hepl’ot

output stream off.
3.3.2.7 The map command set

These tertiary level commands are accessed by first issuing the command

string plot map. They are 10 commands in this set and are described as follows.

The command bottom sets the plotting space to the lowest quarter of the
physical page. Tt is used internally for the production of the normal stress profiles.
A border is drawn together with axes scaled to the mapping limits (x) and normal

stress limits (y).

To set the plotting space to the second lowest quarter of the physical page
the command lowermiddle is used. It is used internally for the production of the
shear stress, limiting shear stress profiles. A border is drawn together with axes

scaled to the mapping limits (x) and limiting sheé,r stress limits (y).

uppermiddle is used to set the plotting space to the second highest quarter
of the physical page. It is used internally for the production of the normal stress
profiles. A border is drawn together with axes scaled to the ,mé,pping limits (x)

and normal stress limits (y).

To complete this suite, the command top is used to set the plotting space
to the topmost quarter of the physical page. Again it is used internally for the

production of the shea,rvs‘"tress, limiting shear stress profiles. A border is drawn

o
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t’ogether' with axes scaled to the mapping limits (x) and limiting shear stress limits

(¥)-

picture sets the plotting space to the upper half of the physical page. It is
used internally for the production of a slice plot, normally above stress profiles, A
border around the space is drawn together with axes scaled to the current mapping

limits as set by the zoom, start or restart commands.

The command horizontal sets the page format to lie along the A4 sheet of
paper as in a landscape picture, The default size is (0. 06,0.96,0.05,0. 65) expressed

in a (zmin,zmaz,ymin,ymaz) format.

The vertical command sets the page format to lie down.the A4 sheet as
in conventional portrait picture. This is the default fdfniat,' the default size is

(0.15,0.75,0.06,0.96).

fill sets the plotting space to the maximum permitted page size suitable for
A4 paper. A border is drawn around this area together with axes scaled to the
current mapping limits. A variation to fill, fullnoscales does the same as the full
command but does not draw scaled axes.

The last mapping command zoom has been described in the previous section.

3.3.2.8 The mesh command set

This is the only set of commands that cannot be accessed at random by a user.
It is automatically entered after the issue of the level one command start, a further

oddity is that this set can only be exited by issuing the meshend command.
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There are two mesh commands which lie at level two, create and meshend,

they are described below.

The command meshend causes the meshing routines to terminate. The
contacts are found and initial plots are produced before the next command in the

input stream is executed.

The create command triggers the creation of a new slice, the information for
which must follow, 14 pieces are required, the first of which is strictly a tertiary

level command describing the type. There are two tertiary commands.

These two tertiary level commands associated with create are free and track.
The free command is the normal slice type and is used almost exclusively, track,
on the otherhand, in conjunction with the debug oscillation option, permits dumps

of the slice information to be made during processing.

The remaining information required by create is both geometric and geotech-
nical. Nine pieces of geotechnical information are required to describe the .gedtech—
nical state of the slices. These are as follows, base cohesion, base ¢, dry d'ensity,
numerical stiffness, side cohesion, side ¢, -pore water pressures at the middle of the
base and side.contacts and the void ratio. The geometric information needed is
the  and y coordinates of the points defining the top and then the bottom of the
righthand edge of the slice. In the case of the first created slice the coordinates of
the lefthand edge are given first, followed by the data for theé righthand edge. It

must be remembered that slices are created from left to right.
3.3.2.9 Syntax table

The following description of the Input Command Language is based upon the

symbols as defined in Table 3.2 with the syntax in Table 3.3.
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Symbol Definition

indicates possiblo rapetition of the clause

[3 indicates an optional clause
SO indicates a group of clauses
< > indicates substitution'by a value, which

may be either a clause or literal
¢ indicates a literal-value

| indicates an altermative

Is is the definition operator

Table 3.2 Input Command Language Parsing Symbols

3.3.3 Input command file

3.3.3.1 File format

The input command file contains the task to be performed by the program,
defined by the input command language and syntax described in: section 3.3.2.

There are very few format conditions; and some of them are imposed by PASCAL.

All commands must be separated by at least one space. The maximum word
length is 12, so no string of non—blank characters should exceed this. Real numbers
may be as 1 1.0 -1.0 -1 1E10 -1E-10 and must be separated by a blank or the

negation.

End of line conditions are automatically skipped by the input routines and so
there is only one time when a new line nj_tisfbé started. This occurs after the start
command when the remainder of the line is read as a'title.. Further information

must begin on a new line. Word length may be exceeded in the title.

Text, including numbers may be commented out by the { and }, a blank must

precede the open brace. An unbalanced open brace will cause an end of file error
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task IS [<com> ...] ‘stop’
correction IS [<com> ...1(‘return’ |‘astop’)
limits IS <real> —<real> —<reall
reply IS ‘on’ | ‘off’
com IS (“set’ [<set command>...])
| (‘restart’ <limits>)
| (‘start’ <start block>)
| (‘plot’ [<plot command}>...])
| (‘debug’ [<debug command>...])
| (‘repéat’ <integer> [<com>...] ‘rend’)
| (‘go’ <integer>) | ‘save’, ‘cend’ | ‘rend’
parameter IS ‘framelimit’ | ‘writegap’ | ‘interval’ | ‘gravity’
| ‘damp’ | ‘time’
oper IS ‘x7 | 4> | =2 | > | ‘A | =
set command IS ((‘echo’ | ‘cmdproc’ | ‘overwrite’) <reply>)
| ((‘framelimit’ | ‘writegap’ | ‘interval’) <integer> )
| ((‘gravity’ | ‘damp’ | ‘time’) <roal> )
| (‘calculate’ [<parameter> ((<oper> —<real>) | ‘?7’)])
| (‘emdlist’ [<com> ...] ‘cend’)
plot command IS (‘initialisé’ <limite>)
| ‘slices’ | ‘displacement’ | ‘forces’ | ‘standard’ | ‘page’
| ‘border’ | (‘map’ <map command>) | ‘endpiot’ | (‘zoom’ <limits>)
map command IS ‘picture’ | ‘horizontal’ | ‘vertical’
| ‘full’ | ‘fullnoscales’ | (‘zoom’ <1limits’)
debug command IS ‘contacts’ | ‘energy’ | ‘general’ | ‘flagson’| ‘flagsoff’
I ((‘update’ | ‘motion’ | ‘consolidate’ | ‘ford’ | ‘cycle’
| ‘trace’ | ‘oscillate’) <reply>)
type IS ‘free’ | ‘track’
geom IS <real> =<real> =<real> —=real>
geotachnical IS <real> =real> =<real)
~<real> —<real> —<real
~<real> —<real> —real)
meshinfo IS (‘create’ <type> =geotechnical> <geom> <geom> )
| [‘create’ <type> —=gaotechnical> —<geom> ]
start block IS <heading> <limits> [<meshinfo>] ‘meshend’

Table 3.3 Input Command Language Parsing Definition

termination. It should be noted that a comment does not act as a word delimiter, - ‘

only a blank or an end of line fulfils this function.
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During error handling the same format rules apply, comments may be entered
but there is little point. Apart from these points the input format is left to the
user, but it is recommended that the file can be read and understood by the user.

To illustrate the commands some examples are given.

plot zoom 0 14 0 slices displacement border page

This causes the plotting space to map to new limits, produces a slice plot

with incremental displacements and border and finally requests a new page.

set calculate writegap * 2 calculate writegap ? go 3000

This example shows how to multiply the present value of writegap by two,
display the new value and then request 3000 calculation cycles. The second cal-

culate is not strictly necessary, but may be used for clarity.

3.3.3.2 Defining tasks

Tasks fall into two categories, starting a new problem and restarting an old
one. Both types of task may be divided into three, initialisation, solution and

closedown. Initialisation for the two categories is different.

Starting a new problem calls for input of a title, plot limits, meshing infor-
mation and problem parameters. In restarting, plot limits only need be supplied,
as all the other initialisation took place in the first run, the command restart

followed by the limits should be adequate.

After creating the slices and finding the contacts the start up procedure sets
the plot format to the default of vertical and then produces a slice plot. If a
horizontal format is required for this first page then plot format horizontal
should be issued prior to the start. Another command to be issued at this point

is debug update on, otherwise it will do nothing in the current run.
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Meshing information for a new problem has been discussed in section 3.3.2.8.
The optimum number of slices is between 10 and 25. Too many, and the overhead
per cycle increases as does the number of cycles required for a steady state to be

attained. Too few and the resolution is poor.

Solution types for start and restart task categories are similar, in the restart
case the solution type may already be mostly set up, but can be altered. To
monitor the progressive nature of the solution, plots, factors of safety or debug

information may be required at various times.

The interval at which factors of safety are produced is controlled by the
writegap parameter. This also controls when the total cycles and maximum
displacement values are updated on the running commentary. This information is
generated whenever the total cycles executed is an integer multiple of the write-
gap parameter. writegap has a default value of 100 cycles, so factors of safety

are produced every 100 cycles.

By using set cmdlist plot standard cend interval 100 cmdproc on a
standard plot of stress profiles is produced every 100 cycles. The interval parameter

operates in the same way as writegap.

Having decided upon this solution type all that is necessary to consider is
the upper limit to the number of cycles to be executed. This should be between
2000 and 5000 for typical problems. On issuing go 1000, up to 1000 cycles will
be executed, 10 standard plots and 10 sets of factors of safety produced. An
equivalent to this command list structure would be to use this repeat structure,

repeat 10 go 100 plot standard rend,

The consolidation process converges to constant displacements for all of the

slices. In the case of constant movement, that is when stability of the slope is
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not attained, experience has shown the displacements to be 10! to 10~ times
gbt?. For stable systems the values are about ten orders of magnitude smaller. In
both cases the early cycles, give the largest contributions, while the later éycles
make small differences. In the light of this it would be better to generate more
information in the early stages and less later on. A series of plot, set, and go
commands could program this but it is more elegant to use the calculator to change
the values of the intervals. For example to produce plots and factors of safety at

the powers of 2 cycles this could be used.

set interval 1 writegap 1 cmdproc on

cmdlist plot standard set calculate interval * 2 writegap * 2 cend

As a final note to the command list structure, it is possible to include a
go command. This is particularly useful for the production of debug information
during cycling. Much information can be produced, but normally it is only needed
for a few cycles. A command list string of debug ford on go 1 debug ford
off with an interval of 100 would produce force displacement information for one
cycle in every hundred. If instead of 1, 100 was used, then the command list would
not execute beyond the go before executing again. As this facility is programmed
recursively, such a combination could eventually lead to a program crash and
should not be used. The program structure of this facility is explained in section

3.4.2.3 under Recursion Structures.

Finally, to complete the command file, program termination must be consid-
ered. The program monitors the maximum displacements and terminates under
constant conditions. If these conditions do no prevail, then termination is accom-
plished by the stop command which should always close the task definition. If for
any reason it is required to halt the program prematurely, the use of the ‘break’
key causes an attention interrupt. This is trapped by the program and the user is
then asked to confirm his wish to stop. To confirm, enter ‘y’. Attention trapping

is checked at the end of each calculation cycle and also during the input of a new
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command. Termination involves the automatic production of stress profile plots,

factors of safety, a restart file and job statistics on the running commentary.

3.3.3.3 Input error handling

Inevitably, occasional mistakes are made during production of a command
file. If these are due to commands being mis—spelled, or even missing, then an

error handling facility provides an opportunity for correction.

On encountering a command error, the user is informed via the running com-
mentary and is prompted for new commands. Regardless of the level of the com-
mand in error, the replacement must be a control command. Once the replacement
has been executed, the user is again prompted, and the next replacement read.
When no further commands need to be entered, the user should reply to the
prompt with the return command. This returns control to the command file at
the point immediately after the original error. An immediate reply of return to

an error causes the command to be ignored.

If a further error occurs during the input of replacement commands, correction
of it is possible in the same manner as if it had occurred from within the command
file. If the correction process becomes laborious or impossible the stop command

will cause program termination immediately.

Any numerical input required is prompted for by individual messages to the
user but has no correction facility. Any numbers following a command in error are
treated as commands on return to the command file. They should be ignored by

using return.

Not all mistakes in the command file need be accidental, a deliberate wildcard

may be included at any stage to give control to the user. This may range from

71



Chapter 3 Distinct Element Method of Slices

complete interactive use of the program to interaction occurring at the end of a
repeat structure. Tables 3.4 and 3.5 shows some examples of error correction and

interactive use.

PROGRAM SLICES RUNNING COMMENTARY ON :

Command : plot

Command : sliceplot

Error ‘sliceplot’ found in routine get_command
Input corrected commands ... <RETURN>
Input a command please ............
plot
Command : plot
Input a command please ....... NN
slices
Command : slices
Input a command please ............

return

L A A

Command : return

Lines marked — are output from the program
Lines marked ¢<— input from the keyboard

Table 3.4 An Example of Error Correction

If an error occurs during the processing of either of the loop structures there
are two possible options. Either to correct the error each time it occurs or to
replace the whole structure. During complete replacement it should be borne
in mind that the rend and cend commands have two functions. To replace a
command list the following should be issued, set cmdlist commands cend. The
cend terminates the input to the structure. If replacement is taking place during
the execution of the previous command list, it is now necessary to terminate this

invocation by issuing a second cend.
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L L At A A A A A

Command : 7777
Error ‘7?7?77’ found in routine get_command
Input corrected commands ... <<RETURN>
Input a command please ............
go
Command : go
Enter no of c¢ycles required...
1
Input a command please ............
plot
Command : plot
Input a command please ............
forces
Command : forces
Input a command please ............
g0
Command : go
Enter no of c¢ycles required...
1
Input a command please ............
plot
Command : plot
Input a command please ............
forces
Command : forces
Input a command please ............
slices
Command : slices

Input a command please ............

stop

Command : stop
total slices 10 contacts 20
total cycles 2 restarts
total frames b plots

Number slices at limit 0 not at limit 10

A restart file has been written

Lines marked — are output from the program

Lines marked ¢— input from the keyboard

Table 3.5 An example of interactive input

Likewise during the execution of a repeat loop two remd commands are

needed. Only one rend or cend is needed if these structures are being replaced
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when they are not being executed.

3.8.4 Utility files

3.3.4.1 Repeat file

The repeat file is a secondary command file. It it emptied on issue of the
repeat command, and all subsequent input is copied from the primary command

source to this file up to and including the command rend.

During execution of the repeat loop control is passed to this file which is reset
to the beginning at the start of each pass through the loop. The repeat file has
an exceedingly simple structure, containing only one word or number on each line.

This file is temporary in nature and is set internally always to be called ‘-sass.rep’.

3.3.4.2 Command list file

The command list file works on the same basis as the repeat file, it has the
same structure and is named internally as ‘-sass.cmd’. It is a secondary command
file containing the command list commands and control is passed to it on execution
of the command list facility. It receives all commands from the primary command

source on issue of set cmdlist up to and including cend.

3.3.4.3 Restart file

Unlike all other input and output files the restart file facility uses non-text
files. As the file must contain all the numbers required for the program to restart,
the numbers must be stored in a way that exactly represents the full accuracy of

the computer. The numbers are, therefore, written in a binary format.
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Furthermore, PASCAL restricts file definitions to be of a single type, that
is they can only contain one type of record. This complicates the issue, as the
program variables are of many types — combinations of reals, integers, pointers
and strings. As described in section 3.4.1, many of the variables are records
of various types. There is a problem then in writing many record types to a file
containing only one. To overcome this, the restart file is of type buffer, where buffer
is defined as an union of all the other record types defined. A single character,
known as the tag field, and part of the buffer, denotes which sort of record is
being handled. This enables the buffer record, read in from a restart file, to be
interpreted to the correct program record type. As the tagis an ASCII character
within the restart file it is easy to see which lines refer to which variables. The

various tags are listed in Table 3.6.

Tag Restart record type

the general information

a command list word

a repeat list word

the slice body data

the right hand contact data
the base contact data

the platen data

the apex coordinates

the end of the restart data

# 0 UV W O® T H o Q

Table 3.6 The restart file line tags

One side effect of the buffer type is that all the records in the file are the
same length, so that the smallest variables take just as much room as the longest,

which defines the record size.

A further complication in implementing a restart facility in PASCAL is that
pointers, which are memory addresses, are no longer valid once read back in.

As Program CIRCLES and SLICES use pointers extensively, this is a significant
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complication. On writing a restart file the memory structure may be thought of
as being dismembered, and on being read in, the severed portions must be linked

together with pointers in the same order as before.

3.3.4.4 Trace output file

This file only need be attached to unit 8 if the debug tracing option is to be
used. It is emptied prior to use and receives a message on entry and exit to each
procedure and function. It can, therefore, become very large if used extensively.
The input and output of data is a slow operation and so the use of this facility
will slow the rate of problem solution considerably. The primary purpose of this
is as a debugging tool, particularly of the recursive structures, as it reveals which

levels of recursion have been attained.

The file contains one message per line which take the formats of
‘Entered procedure xxxxx’

¢ Exited procedure xxxxx’

In the case of procedure word_scan, the word read from the command source
is appended to the exit message. The facility is accessed by debug trace on and

is turned off by debug trace off.

3.3.4.5 Debug output

The debug utility file is largely unformatted as it contains information pro-
duced mostly in response to instructions from the user. As a set of safety factors
is automatically generated on shut down, this file will contain the title, the closing
factor of safety values and the current maximum individual slice displacement,

even if no output is requested. The information may be divided into three types,
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that produced during cycling by setting the debug flags, that produced immedi-
ately on demand, and that produced periodically and controlled by the writegap

parameter.

Output generated periodically is restricted to the factors of safety. The cycle
number starts a banner showing that the factor of safety, shear, normal, limiting
and pore—water stress values are produced. However, these values are for the base
contacts only. If the value of shear stress is zero then the factor of safety is also.
There follows one line for each slice, containing the values as shown in the first
entry in the format Table 3.7. The current maximum displacement is produced

afterwards.

Output generated during cycling is produced in the iterative solution of the

motion and force displacement laws, as well as in the controlling procedure cycles.

Refer to entry 2 in the format table, this produced when the ford flag is set
and is generated by the procedure fordsl. It provides values for the incremental
forces (Fn, Fs), geometry of the contact edge (sin, cos, 1), current stresses (ss, ns,

lims) and current body forces (nf, sf) during the processing of each contact.

The motion flag produces the information as shown in the third entry which
is generated from procedure motionsl. The slice body forces in z and y as well as

the displacements are produced.

The cycle flag produces the information shown in entries 2, 3 and 4. Entry 4

is generated from the procedure cycle.

The following output is generated on demand by the debug commands. The
update command causes the mass and surface area values to be generated for

each slice. The format for this is shown in entry 5 of the format table.
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Entry Format

1 999999 Slice no FOS shear normal limit pup
9 9.999ES99 9.999ES99 (occurs 3 more times)

2 Fn,Fs,sin,cos,l 9.99ES99 9.99ES99 (occurs 7 more times)

ss,ns,lims,nf,sf 9,9E599 9.9ES99 9.9E599 9.9ES99 9.9ES99

3 bforces 9.99ES99 9.99ES99
disp 9.99ES99 9.99ES99

4 max individual disp 9.9999999999999ES99
5 mass,surf 9.9999999999999ES99 9.9999999999999ES99
6 BASE Contact created edge, corn 999999 999999

edge x,y 9.9ES99 9.9ES99
corn x,y 9.9ES99 9.9ES99
sin, cos 9.9ES99 9.9ES99
len, dam 9.9ES99 9.9ESS9
p¥p, wt  9.9ES99 9.999ES99

7 total number of contacts 9999999999
8 Element data :
mass force x y disp x y n

9.9ES99 9.9ES99 9.9ES99 9.9ES99 9.9ES99 9
9.9ES99 9.9ES599 9.9ES99 9.9ES99 9.9ES99 9

9 Contact information :

slice home, other, damp 999999 999999 ©9.9ES99

corner coordinates x, y ©.9ES99 9.9ES599

edge coordinates x, y 9.9ES99 9.9ES99

stresses -~ n, s, 1, u 9.9ES99 9.9ES99 9,9ES99 9.9ES99

10 SLOPE 9, C

mapping xmin 9.9E599 xmax 9.9ES99
mapping ymin 9.9ES99 ymax 9.9E599

plot interval 999999
gravity x 9.9ES99 y 9.9E599
damping base 9.9ES99 side 9.9E599

totals slices 999999 contact 999999
cycles 999999 restarts 999999
frames 999999 plots 999999

Table 3.7 The debug format table

Entry 6 shows the contact information which is generated as each contact is
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made. At the end of the meshing process the total number of contacts is written

out as shown in the seventh entry.

Slice information is formatted as shown in the eighth entry, it includes the
slice mass, body forces and incremental displacements as well as the slice number.

There i1s one line of information for each slice.

The format of the contact informatiom is shown in entry 9 of the format table.
There are four lines of data for each contact. The first contains the slice numbers
for the two slices involved, the home slice contains the base of the contact linked
list in which the contact is to be found, and also the damping factor used in the
calculation sequence. The second and third lines contain the coordinates for the
corner and edge involved. The last line contains the stress data, normal, shear,

limiting and pore water stresses.

The general information is generated in accordance with the format shown in
the tenth entry of the table. The general information shows the mapping limits,
current plot interval set by the interval parameter, the values of the gravity and
damping, and the numbers of slices, contacts, cycles completed, restarts of the

task, plot frames and plot types generated.
3.3.4.6 Oscillation output

This file need only be attached to the unit 10 if the oscillation facility is to be
used. This allows for information of track type blocks to be investigated. The file
is a text file and may be visually inspected, in addition the format is compatible

with program SOP which can produce graphs of the values.

The file is emptied prior to use and contains the problem heading on the first

line followed by one line of data for each cycle during which the facility was in use.
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This facility is useful for monitoring the progress of critical slices, damping effects

and contact behaviour. The data items produced are shown below.

slice number

total cycles

body displacement x
body displacement y
base shear stress
base normal stress
base limiting stress

side shear stress

© 0o N O Ut oh W N =

side normal stress

—
==

side limiting stress
3.3.4.7 The running commentary

The running commentary writes various information concerning the current
task status to the device attached to unit sprint. As control codes are written
to this device, it should be a Televideo 910 series terminal. On entering program
SLICES the terminal screen is cleared. Status information is then written to
appropriate lines, and in this fashion the screen is continually updated. The
screen line positions are reserved for the data as shown in Table 3.8. The specific

messages that can occur on lines 12 to 20 are shown in Table 3.9.

To clear the screen and turn the cursor on or off requires three separate control
codes. Screen positioning is achieved by moving the cursor to the home position,
at the top left hand corner, and then down the appropriate number of lines. The

total number of codes used is five, They are shown below where the first two
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Line Content
1 Blank
2 The program running commentary heading
3 Blank
4 The task title
5 Blank
6 The number of cycles requested
7 The number of plot frames completed
8 The number of plot types completed
9 The number of cycles completed
10 Blank
11 The command under execution
12 General messages
13 Slices at limit messages
14 Error messages
15 Message requesting replacement commands
16 Prompts to user for command or parameter data
17 The totals for cycles, frames and so on
18 As line 17
19 As line 17
20 Messages dealing with the restart files

Table 3.8 The running commentary screen lines

characters are shown in hexadecimal format.

control code 1A
control code 1B .0
control code 1E
control code 0A

control code 1B .1

clears screen
cursor off

cursor home
cursor down

cursor on

The program string constants close to the beginning of the source contain

these codes. clearoff is 1A1B.0, pos_str is 1E with twenty 0A and cursonis 1B.1.

The cursor is moved several lines at once by using a substring of pos_str.

On MTS the network, NUNET traps all control codes and echoes them on to

a terminal with a check character. To enable the codes to be executed the network
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Line Hessage

4 PROGRAM SLICES RUNNING COMMENTARY ON :

12 Decreasing stability 9.99999999999E99

12 Increasing stability 9.99999999999E99

12 Stability has been gained 9.99999999999E99
12 Constant sliding now occurring 9.9999999999999E99
12 This is numerically unstable $.9999999999999E99
12 A restart file has been read

12 The value is : 99999.9999999

12 Frame limit is now : 99899999

12 Cycle gap is now : 99999999

12 Gravity is now ¢ 999999

12 Time increment is : ©.9999999999999E99

12 Damping factor is : ©.9999999999999E99

12 Process interval is: 998999999

13 Number slices at limit 9999 not at limit 9999
14 Attn! : Do you want to stop 7

14

14 Error XXXXXXXX found in routine get_command
16 Input corrected commands ... <RETURN> ...
16 Input a command please ............
16 Enter xmin, xmax, and ymin ...

16 Enter no of cycles required...

16 Enter heading .......... creas

16 Enter value ..................

16 Enter frame limit ............

16 Enter gap between writing.....

16 Enter gravity values x, y ....

16 Enter time step increment ....

16 Enter value for damping ......

16 Enter cmd process interval ...

17 total slices 999999 contacts 999999
18 total cycles 999999 restarts 999999
19 total frames 999989 plots 999999
20 A restart file has bsen written

Table 3.9 Running commentary messages

must be configured to pass them to the terminal. To do this the network commands
chc=off and passall=on must be issued. After use the network commands chc="

and passall=off should be used to reset this.
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3.4 Structure of Program SLICES

3.4.1 Memory structure

The memory requirement of the program varies according to the number of
slices used in the problem. As memory is dynamically allocated it is possible to use
only as much memory as necessary. The number of global variables is quite few,
but some of them, such as slice_list and platen are pointers leading into potentially

large data structures.

On entry to the program all variables are initialised to zero, default, and for
pointers, nil values. The data structure is built in the procedures mesh, cre_platen
and update_area. Procedure mesh creates the slices, cre_platen creates the platen

and update_area creates the contacts.

A slice is defined as a record of type element. This type is a combination of
smaller records and pointers. force and s (displacement) are records of type vector,
containing values for the z and y directions. Another record is data which contains
cohesion, friction, mass and pore water information. The remaining memory of
type element is made up of three types, a record of two pointers for the contacts,
a pointer, apezes, to the corner coordinates of the slice, and finally next, a pointer
to the slice to the right of the current one. The value for the rightmost slice is

‘nil’.

Variable slice_list points to the first (or lefthand) slice. The variable next of
this slice points to the following one, and so on. The element type records are
linked by the next pointers to form a list of elements, with the base pointed to by
slice_list. This list is a FIFO (first in first out) list as the first created element is

closest to this base pointer.
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The corner coordinates are contained in a doubly linked ring of type corner
records. Each of these records includes a coordinate type record of two reals, for
the z and y values, and two corner pointers. These point to the adjacent corners
in the clockwise and anticlockwise directions, thus it is possible to traverse the
ring in either direction continuously. The element record field apezes points to the

bottom left corner of the slice.

Once the slice list has been formed, complete with corner rings, the platen
is created. To simplify contact processing, platen is an element pointer type and
points to an element which has values set to nil or zero, except for apezes. apezes
points to a doubly linked ring of corner records where the corners are copies of

the base corners of the slices.

Each slice has contact pointers for the right and base contact information.
The contact information is contained in a record type and consists of six real
numbers and three further data pointers. Of the six numbers, three are grouped
to form the consolidation force information and are segregated into a record type.
Of the pointers, one, other, points to the other slice involved, while the others

point to the corner, and to the first corner of the edge, which form the contact.

Figure 3.5 shows a Bachmann diagram of the complete data structure. It
should be noted that the method of storing corners and contacts is extremely
flexible and is suitable for a general Rigid Block Model style implementation. The
Bachmann method of representing data relationships here is more commonly used
in data—base design. The links between the elements indicate that the elements
are related, in this case linked by pointers. Crows feet on the end of the links
indicate that many elements are related to the element at the other end of the
link. It should be noted that these diagrams are logical representations of the

data. The side contact to slice relationship is a one to many relationship. This is
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Slice list

C\ Slice element

N/
PN
Slice corner P~ Side contact
Qlaten corner Base contact
N ¥

Platen element

Platen - 1

The crows feet indicate the relationship is many to one

Figure 3.5 Bachmann diagram of SLICES memory items
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because such a contact is related to two slices. The recursive link which joins an

element to itself represents a linked list.

There are many other variables used in the program but they have restricted
scope. Often these are loop counters, temporary storage and pointers. Some of
the more common are el, ele, elem as pointers to slices, apex a corner pointer and
condir a contact pointer. The program structure is often imprinted by the data

structures. This influence is discussed later in section 3.4.2.4.

3.4.2 Program structure

3.4.2.1 Procedural elements

The structure of the program is necessarily large but may be broken down
into smaller, similar units. The program itself defines the details of the structure,
so rather than merely represent this by complex diagrams, aspects of the structure

and some common structures used shall be discussed.

Many different sorts of tasks can be performed by the program, and to an
extent the input command language may be thought of as a language to program
the tasks. As SLICES is very flexible, much of the large scale structure is con-
cerned with parsing the input command language. Brief descriptions of the main
procedures of the program together with a structural diagram may be found in

Appendix C. The source code of Program SLICES may be found in Appendix D.

3.4.2.2 Main relationships

The main body of SLICES is short and as described contains a repeat control
forever construct. This is the highest level of control in the program. Proce-

dure control executes primary level commands and in doing so may call plots,
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debug_slice, and parameters. These three execute secondary level commands and
may call procedures map_space and calculator to get and execute tertiary level
commands. At all levels this is achieved by using the procedure get_command
followed by a case statement. In a similar fashion start.shut uses a case con-
struct to execute the four primary level commands that may be passed to it. The
execution of these involves branching further into the ‘tree’ structure, to mesh,

write_restart_file and so on.

By the use of commands, the user causes the tree to be traversed, always by
moving from one level, down to the next and then, eventually by retreating back
to the starting point, to choose another branch. However, internally, the program
may occasionally flit from one branch to another. This occurs particularly from

start_shut when frequent calls to plots are made.

Essentially the structure is that of a tree with multiple branching at nodes,
and where higher nodes can only be attained by visiting the node one level lower.
Entry to this tree is always made at the primary node, the control level. At most
nodes get_command is visited to ascertain which branch to traverse next. Table
3.10 shows typical simple behaviour of this structure while the commands plot

map zoom 99 99 99 stop are executed.

3.4.2.3 Recursion structures

Under normal conditions this tree is traversed such that the primary node
is regained by falling back along the traversed branches. Under three conditions
this does not happen simply. The conditions are during repeat, command list and

error processing.

When repeat loop processing is encountered, procedure repeater acts like the

main body of SLICES, repeatedly jumping to the primary node until the repeat
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Trace of procedures Comments

Entered procedure CONTROL The primary node is entered.

Entered procedure GET.COMHAND plot is retreived from storage.
EXIT procedure GET-COMMAND

Entered procedure PLOTS A secondary node is entered.

Entered procedure GET_COMMAND There is no stored word so
EXIT procedure GET.COMMAND map map is read.

Entered procedure MAP_SPACE A tertiary node is entered.

Entered procedure GET_-COMMAND There is no stored word so a
EXIT procedure GET.COMMAND =zoom fourth level command is read.

Entered procedure GET.COMMAND After zoom processing there is
EXIT procedure GET.COMMAND stop no stored word. The next command
EXIT procedure MAP_SPACE is read and stored.

Entered procedure GET.COMMAND stop is retrieved but is not used
EXIT procedure GET-COMMAND as it belongs to a lower level.
EXIT procedure PLOTS As a consequence the primary
EXIT procedure CONTROL node is returned to, exited and

Entered procedure CONTROL entered from the main program.

Entered procedure GET_-COMMAND stop is retrieved and is then
EXIT procedure GET_COMMAND executed.

Entered procedure START.SHUT The run is brought to a close

Table 3.10 Trace of Program Behaviour During Simple Use

file has been executed. Strictly the jump is made to the primary node of a second
identical tree. This process is indirect recursion, as an invocation of procedure
repeater lies between the two invocations of the procedure control. That is, main
has called control has called repeater has called control. The second call to control
is made with a different file device unit buffer to that used originally. The file
device unit buffer used belongs to the secondary command file -sass.rep so that
when word_scan (or anywhere else) reads input, it now reads from here. Once
the repeat facility ends, repeater exits back to the primary node of the ‘first’ tree.
The commands of repeat 1 debug general go 1 rend illustrates the program
behaviour. An edited trace taken during the execution of these commands is given

in Table 3.11
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Trace of procedures Comments
Entered procedure CONTROL ° The primary node is entered.
Entered procedure REPEATER After reading the repeat string
Entered procedure CONTROL this calls control recursively.
Entered procedure GET_COHMHAND This now reads from the repeat
EXIT procedure GET_-COMMAND debug file the command debug.
Entered procedure DEBUG.SLICE
Entered procedure GET.COMMAND
EXIT procedure GET-COMMAND general The general command is processed.
Entered procedure GET-COMMAND
EXIT procedure GET_-COMMAND go As go is not a debug command
EXIT procedure DEBUG.SLICE this routine is left.
EXIT procedure CONTROL
Entered procedure CONTROL Repeater calls control again.
Entered procedure GET_.COMMAND go is retrieved from storage.
EXIT procedure GET_-COMMAND
Entered procedure CYCLES One cycle is executed.
EXIT procedure CYCLES
EXIT procedure CONTROL
Entered procedure CONTROL Repeater calls control again.
Entered procedure GET_COMMAND The command rend is read which
EXIT procedure GET-COMMAND rend terminates the repeat loop after
EXIT procedure CONTROL exit from control.
EXIT procedure REPEATER Repeat also exits and normal
EXIT procedure CONTROL processing contiues with
Entered procedure CONTROL a normal invocation of control.
Entered procedure GET.COMMAND
EXIT procedure GET_COMMAND stop The stop command causes the
Entered procedure START_SHUT execution to complete.

Table 3.11 Program behaviour during Repeat processing

During command list processing exactly the same thing occurs, this time
control is repeatedly called from cycle with the file device unit buffer belonging to

the file -sass.cmd.

Error correction is more complex. Consider the following. A node has been
reached at any level within the tree. Procedure get_command is called and an error

is encountered. So, get.command is called again (direct recursion), word_scan is
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executed to obtain a command from the user and, if the replacement is in error
then this sequence is repeated until a valid replacement is found. At present,
program control is in the third invocation of get-command, that is the third level
of recursion, a stack of invocations is produced until a valid command is entered.
If the command entered is return then get_command is exited three times and
the calling node reached and exited with program control being passed back to
the primary node. If the command is not return then get_.command exits once,
procedure controlis called repeatedly and the trees traversed until return is input.
Procedure control, in this case, is called with the screen file device unit buffer
pointer. This recursive invocation of control calls get_command (the fourth entry),
a command is gained, get_.command exited and the tree traversed. If an error were
to be encountered from the user at this point exactly the same thing would happen
as before, get_command would call itself directly until a valid command was gained
then control would be called again (the third level of recursion for control) and the
tree traversed normally. In this example an error does occur but return is entered
immediately. In this case program control falls back to the primary node of the
present recursion level, control exits to the previous recursion level, get_command
exits three times in this case, (input now reverts to the primary command file), the
tree is traversed back to control, control exits back to the main body of SLICES
which then calls control as normal. Table 3.12 shows a trace of this scenario as
produced by the commands plot 7777 within a file and ploterr plot ploterr

return input interactively.

Combinations of the three recursion possibilities may occur. For example a
repeat go 1000 rend structure causes the execution of cycles, which, in turn
executes a command list. This command list is found to be in error and the user
inputs plot sliceplot so that processing may continue. In this combination the
repeat invokes control, cycle invokes control, get_command invokes control, then

plot and sliceplot are executed at this third level of recursion. return is then
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Trace of procedures Comments
Entered procedure CONTROL The primary node is entered.
Entered procedure PLOTS An error occurs in plotting
Entered procedure GET.COMMAND when 7777 is encountered.
Entered procedure GET.COMMAND A further error ploterr causes
Entered procedure GET.COMMAND a second level recursive call.

EXIT procedure GET_COMMAND plot A correct command of plot gives
Entered procedure CONTROL. a recursive call to control.
Entered procedure GET-COMMAND

EXIT procedure GET-COMHAND The command plot is retrieved
Entered procedure PLOTS and plots entered recursively.
Entered procedure GET_COMMAND A further error occurs and
Entered procedure GET.COMMAND return is read.

EXIT procedure GET_-COMMAND return This causes all a return to

EXIT procedure GET-COMMAND to the primary node.

EXIT procedure PLOTS The recursive call to control
EXIT procedure CONTROL was from get.command which is
Entered procedure GET_COMMAND return returned to. The return command

EXIT procedure GET_COMMAND is retreived and the three

EXIT procedure GET_COMMAND invocations of get.command are

EXIT procedure GET_COMMAND exited.

EXIT procedure PLOTS The initial call to plot and

EXIT procedure CONTROL then to control are exited.
Entered procedure CONTROL Normal execution continues.

input and program control falls back to cycle, ready to carry on processing the

Table 3.12 Program behaviour during error processing;

command list.

3.4.2.4 Structure that maps structured variables

There are three structures that map the structure of the memory. One, which
is used extensively causes the slice list to be traversed. Another, often used in
conjunction with the first enables both the base and side contacts to be reached

and the third allows the corner rings to be traversed.
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To traverse the slice list a separate procedure is written containing a while
loop controlled by a pointer such as el. This pointer, a parameter to the proce-
dure is seeded by the base or anchor of the list by the calling procedure. The
while loop is constructed as follows. while el ,= NIL do begin ... el := el@.next,
end;. The loop will continue until el becomes NIL, which will occur at the end
of the list. Most procedures with headers of the form procedure procname(el :
ptr_type ); use this construct to traverse the slice list. These procedures are
factors_of_safety, disp_plot, slice_plot, force_profile, fordsl, fconsolsl, update.area,

cre-platen, write_r_el, write_con, and write_sli.

To look at the two contacts of each slice a for loop is used as follows

for contdir := righthand to based do begin
case contdir of
righthand : condir := el@.contacts.right;
based : condir := el@.contacts.base;
end,
writeln(condir@.consol.ns);

end;

The case statement causes the right or base contact pointer to be placed in
the variable condir (contact direction), a pointer. This may then be used to access
the contact information. The righthand contact is processed first and then on the
second pass of the for loop the base contact is used. This construct is used in the
procedure fordsl. In force_profile a local function ptrd_fm uses the case construct

to return the contact pointer.
Corner rings are traversed in the procedures cre_slices, slice_plot, write_r_el

and update_area. In the first three the corners of a slice are traversed once, by

using a repeat until loop as follows
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apex := el@.apexes;

repeal

apex = apex@.cw,;

until apexr = apexes;

In update_area the corners of the platen are traversed in forming the slice
base contacts. The termination of the slice list traverse is used to terminate the
traverse of the platen corners. The corners are inspected once only with each shift

caused by platape:i := platapex@.cw;.
3.5 Validation
3.5.1 Introduction

The aim of the following discussion is to show that Program SLICES is capable
of predicting the factor of safety and the mechanism of failure of soil slopes. The
validation has not been exhaustive nor is it intended that program SLICES is
used as if the results are guaranteed correct. Furthermore this discussion does
not include all the program testing carried out to prevent program failure during
normal operation. Rather, these discussions are meant to show that this technique
is viable when applied to problems in soil mechanics and that the results are

comparable with traditional methods.
3.5.2 Validation Methods
To gauge the viability of this method three soil slope geometries were used.

Each was tested under total and effective stress conditions. These problems were

analysed by program FOS of Garrard (1984) and by SLICES.
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Program FOS, (Factor of Safety), provides a slope stability analysis by a
traditional method of slices. Factors of safety according to the Janbu, Fellenius
and Bishop formulae are produced as well as an average. Slice geometry and soil
parameters of cohesion, friction and density are required. In this respect program
FOS was modified slightly from the source so that the slice density was input
directly for each slice. This alteration was necessary to ensure that exactly the
same situations were analysed by both programs. As with all traditional limiting
equilibrium methods this program will under estimate the factor of safety for those

slopes where some or all of the slices are submerged by the water table.

For comparison purposes the average factor of safety has been taken as the
best guide to the stability of the slopes. Program SLICES does not produce an
overall factor of safety, so the FOS results are quoted in the unusual manner of

the values for cohesion and friction which gave a factor of 1.

In determining the stability with program SLICES an iterative method was
adopted. Estimates for cohesion and friction, normally taken from the FOS analy-
ses where used as initial values and SLICES used to determine if the configuration
was stable. The parameters were then adjusted to bring the slope configuration
closer to limiting equilibrium and SLICES used once more. This was repeated
until the configuration was just stable. In practice a binary split method was used
to reduce the number of runs, which was normally in the region of eight. It was
therefore possible to standardise the results on the runs that indicated that the
configuration was just unstable. For SLICE results friction is quoted to the nearest

half degree and cohesion to the nearest kN/m?.

Tests were carried out on the following combinations of parameters for each

of the test slopes.

Total stress conditions with variable ¢.

Total stress conditions with variable cohesion.
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Effective stress conditions with variable ¢.
Effective stress conditions with constant cohesion variable ¢.

Effective stress conditions non-linear critical cohesion and variable ¢.
Here the variable parameter is the one operated on by the binary split method.
The failure circles correspond to the three main types of arc failures, steep (a > 0),

horizontal (a = 0) and deep (a < 0).

3.5.3 Discussion of results

Results for Method of slices

Total Stress Effective stress Non-linear

Slope  |Type |¢ |cr|c |er|ed  |cr|c=20,¢ |or |[c=20,¢ |cr
Slope 1 |[SLICES (20.5 (0 |24 |1 [2B/2B 0 {4/4 1 ‘120 1
(deep) FOS 25 0 |23 |0 27 0 |10 0

FOS Cr 31 |1 10
Slope 2 |[SLICES |31 0 |36 |3 |46/46 0 |21/22 201% |37 2)1%
(horiz.) |FOS 32 0 |29 |0 |48 0 |28 0

FOS Cr 41 (3 28 1
Slope 3 |[SLICES |[48 0 [39|3 [656.5/69 |0 |41.5/44 |1 20/56 i
(steep) ([FOS 48 0 (240 (69 0 {49j 0

FOS Cr 40 |3 445
Notes :

* most convincing alternate

/ alternates produced by increasing the damping

| alternative tension cracks to the right of the slices quoted

j indicates result for Janbu input factor of safety 1.13 is quoted
¢ is in degrees C is in k]V/Tn2

Table 3.13 Table of Results for Program SLICES

The program results for the test conditions are summarised in Table 3.13. For
each slope there are three lines of data. The SLICE result, the FOS result and a

FOS result for a modified slope taking in to account any predicted tension crack
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from the SLICES result. The tension cracks are applicable to cohesive conditions
only. The stress profiles and geometries generated by SLICES are given in Figures
3.6 through 3.20, and the program input may also be found in Tables 3.14 through
3.25. Due to the quantity of output, only the geometry and final profile plots are
provided for slopes 2 and 3, as the principal features are illustrated adequately by
the slope 1 results which are given complete. The figures and tables are contained
in Appendix B. The tables are placed before the corresponding SLICE output.
The non-linear command files are not shown as they are the same as the c—¢

effective stress examples.

3.5.3.1 Results involving total stress conditions

Column one of Table 3.13 shows the results obtained for total stress conditions
with zero cohesion. The ¢ values required to stabilise the slopes are quoted. They
are as expected, increasing with a. The only significant discrepancy is for the
deep slope where FOS predicts an higher ¢ for safety than SLICES. It should
be noted that these total stress conditions are not realistic, but were included
in the validation for comparison and to see how SLICES behaved throughout the
parameter spectrum. The second column headed ‘Cr’ shows that no tension cracks

are predicted.

In column three the behaviour under purely cohesive conditions was investi-
gated. A single result for SLICES was obtained in each slope case together with
a prediction of a vertical tension crack forming near to the top of the slopes. Two
results for FOS are quoted, the upper for the whole slope and the lower for the
slope below the tension crack as predicted by SLICES. The assumptions in the
second case being that the soil above the crack plays no part in the behaviour of
the main body and hence that the crack penetrates to the failure arc. In all cases
FOS predicts a much higher cohesion for slopes with a tension crack. Generally

SLICE results do not correspond well with FOS analyses of the intact slopes. An

96



Chapter 3 Distinct Element Method of Slices

exception to this is the deep slope where the crack occurs high up on the slope.
Conversely on comparison with the FOS results for the cracked slopes the best

correlation is at the other end of the slope spectrum, that is the steep slope.

It is worthwhile considering why discrepancies occur. The tension crack is
determined by the resolution of the slices, this sometimes leads to two adjacent
vertical slice contacts being in tension, indicating a crack in between them, or
perhaps a tension zone. Both cases are difficult to convert to FOS problems with
certainty. This problem is particularly relevant in considering the effective c—¢
results where difficulty was encountered in deciding which contact to choose as

the tension crack.

The definition of tension cracks is clearest under conditions of high cohesion
and steep slopes, which appeals to the rationale. For a well defined tension crack
the FOS result for the cracked slope corresponds well to the SLICE result, but
for a badly defined crack the integral FOS analysis is close to SLICES. As may
be expected these circumstances are found for the steep slope and the deep slope

respectively.

3.5.3.2 Results involving effective stress conditions

The first column of effective stress results of Table 3.13 contains the results
for the effective frictional conditions. Unlike the total stress equivalent this is a

real possibility in the field.

The results correspond well between the two methods, broadly FOS indicates
that a higher ¢ is required for stability, but this may correspond to the under
estimation of the factor of safety under effective conditions by traditional methods.

The two values of ¢ quoted for SLICES are for two damping values. The similarity
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of these indicates that as long as numerical stability is maintained the results do

not differ largely with the damping factor.

The effective c—¢ results are in the third column for this set. In all cases
the cohesion was fixed at 20kN/m? and again two damping values were used and
hence two similar results are given for SLICES. The FOS values are considerably
higher than for SLICES, although it should be noted that tension crack definition
was uncertain in the horizontal slope case and that the FOS result for the Janbu
1.13 case is broadly in agreement with SLICES. It should also be remembered that

effective conditions with submerged slices causes problems for the FOS methods.

Finally, the last two columns of results refer to the ‘non-linear’ analysis of
SLICES. Critical cohesion is applied in this case, that is on contact failure the
cohesion is set to zero. The initial value for cohesion is again 20kN/m?2. There
can be no comparison with FOS as non-linear parameters are not permitted.
However, this set of results should be between the effective ¢ = 0 and c-¢ SLICE

results. In each case this is true.
3.5.3.3 Conclusions

Overall the results from SLICES compare favourably with traditional meth-
ods. Initially the results from cohesive conditions caused concern until it was
realised that SLICES can predict a tension crack. However, it is not always pos-
sible to precisely define the position and some discrepancies are inevitable. For
cohesive conditions, high a slopes provide the most similar results. Friction is
underestimated by SLICES relative to FOS. It has nbt been the intention of this
discussion to show that these methods produce identical results, it would benefit
no one if they did, furthermore the non-linear analysis indicates that SLICES can

provide a facility not available in traditional methods.
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3.5.4 Interpretation of SLICE output

The interpretations of the results discussed in the previous section were based
upon two principal features. Firstly, the factor of safety lists for each slice base
contact printed at the close of the run. Then, secondly, the stress profiles drawn
at intervals throughout thé run. The end of the analysis was determined by con-
vergence of the maximum cycle displacement displayed as part of the running
commentary, and by the number of slices at limiting friction. It is possible to
terminate the run early by observing this latter number as, when all slices have
reached this limit the slope has failed. Under conditions where a tension crack is
formed, the uppermost slices will not reach the limit so notice is taken of the max-

imum displacement. When this value is almost constant the run may be halted.

A safe slope will have at least the toe slice with a factor of safety greater than
unity. The safety of the slope increases with this value and with the number of

slices which are safe.

Tension cracks are observed by large ‘V’s’ in the side contact stress profiles
where the stress is negative for a single contact and by safe factors for slices at

the top of the slope.

It may be noted from the results that the stress profiles gradually build up
during the analysis, converging on final values. Typically a steep slope shows the
following behaviour. The top slices are glued by cohesion to platen and never fail,
below this the large slices, due to their weight build the largest normal and shear
stresses, which are passed down the slope by a ‘knock on’ effect. This is seen
by factors of safety for the slices decreasing with time for slices near to the toe,
until the toe slice factor reaches one. This implies a stress distribution largely,
although not wholely, related to the weight distribution of slices. This also implies

deformations occurring first in the bulk of the slope, rather than at the toe.
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This is not what would be expected in reality, however as discussed previously,
the results provided by SLICES are too close to the traditional methods without

dismissing both techniques.

It would seem that SLICES essentially models a set of blocks on a curved
surface. To overcome this the contact laws need further modification to more
nearly model soil failure rather than contact failure. The constraints of time upon
this project coupled with the SLICES development time has prevented further

analysis of this slice technique.
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CHAPTER 4

DISTINCT ELEMENT METHOD OF CIRCLES

4.1 The Concept

4.1.1 Circles as Areas of Influence

Program SLICES attempts to model soil slopes by dividing it into slices
and using these as discrete elements. As has been seen this analysis still es-
sentially deals with physical elements, the soil slices. Program CIRCLES differs
from SLICES fundamentally, not solely in a different geometrical element, but by
considering the circles, not as physical soil elements but as areas of influence of
calculation points. This abstraction is a long way from Cundall’'s BALL program
which has largely been used to model the behaviour of sand particles, as discussed

previously in the first Chapter.

A further fundamental difference is that CIRCLES does not require a prede-
termined failure arc. The principle is that if the slope is unsafe, the failure arc or
slip zone will be generated during the analysis. The program input is similar to
SLICES excepting the meshing of the circles where several additional commands

are needed.

An area of influence may be defined as a circular area around a calculation
point with the physical attributes of radius, mass, friction and cohesion. A contact
exists with another circle if the circumferences interfere, that is touch or overlap.

A's the circles are areas of influence and not physical representations a large overlap
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at the start of modelling does not give an initial separating force. The centre of

the circular area of influence is taken as the centre of gravity.

4.1.2 Contacts in detail

All potential contacts are considered for storage. A potential contact occurs
when the centres of two circles are less than the sum of the radii plus the contact
resolution apart. The contact resolution is an arbitrary tolerance of 1.05 times the
maximum circle radius. The maximum circle radius is the radius of the largest
circle in the problem mesh. Another arbitrary tolerance, the contact limit is half
the maximum circle radius and is used in a similar fashion to the contact resolution,
but this time to distinguish between contacts to be stored and those to be deleted.
These tolerances allow potential contacts to be stored in case movement causes
a real contact to be formed later. This is further explained in the section on

updating of contacts, section 4.2.2.2.

The contact point need not be defined as no rotational forces are considered
and all z and y quantities are resolved from the line between the centres. As
CIRCLES has been written to incorporate traditional Distinct Element Analysis
and consolidation methods, full housekeeping, force displacement law and motion
law routines have been included. The housekeeping routines require that a stored
contact be found and deleted if the contact gap is greater than the contact limit
but less that contact resolution. A further restriction upon a contact is that a
small separation of the contact is allowed in the form of a tensile 'fuzz’ to help
damp transient jumps in the traditional Distinct Element Analysis formulation.
Beyond this limit the contact is deemed to have failed in tension. The detail of a

contact is shown in Figure 4.1.

102



Chapter 4 Distinct Element Method of Circles

Contact resolution

Contact limit

Tensile fuzz

Positive gap — Tensile contact

Negative gap - Compressive contact

Figure 4.1 Contact definition in program CIRCLES
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4.1.3 The Distinct Element Analysis formulation for CIRCLES

The Distinct Element Analysis formulation employed may be conveniently
considered in two parts, the consolidation formulation and the traditional Distinct

Element Analysis formulation found in sections 4.1.3.1 and 4.1.3.2 respectively.

Currently forces are converted to stresses very crudely by dividing by the
circle radius. As the initial overlap may vary largely, the contact chord formed by
the intersection of the circles was deemed unsuitable as a contact surface. There
being no other readily available method the current method was employed. Here

large circles will have smaller stresses than small ones for the same overlap.

Presently pore water pressure is not accommodated due to the constraints
of time. Further work should include this enhancement. The failure criterion for
the contact is based upon the Mohr construction shown in Figure 4.2. Here the
lesser stress of o, and o, is taken as o3 and the greater as oy. The failure oy
is calculated from o3, ¢ and tan ¢ as shown in equations (1) through (4). If this
value is greater than o, then the contact has not failed. If a failure has occurred

the appropriate contact force is limited to the equivalent force of the failure oy.

(1) 1+tan¢ — /1 + tan? ¢
q:
tang — 1 + /1 +tan?¢

o3 +qgXc
2 L Rl Rk
(2) 7 1—gxtang
(3) T=tan¢ X o, + ¢
(4) 01 =2x (0, + T X tang) — o3
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Figure 4.2 The Mohr construction
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4.1.3.1 Consolidation formulation

The force displacement law for the consolidation formulation is executed for
each contact every calculation cycle. It has four parts to determine the contact
‘movement, the contact force, the limiting stress at failure, and the body force to

be added to the circles in preparation for the motion law.
The distances before movement are calculated first in equations (5) and (6).

(5) Dazzzpm—lpm

(6) Dy=2Py_1Py

where the numeric prefices indicate different circles. The radial distance between

the centres is given by

(7) D, = /D2 + D2

The angle 3 that this line makes with the z axis gives sinf3 = D, /D, and cos 3 =
D, /D..

The movements, M are then calculated from the displacements S.

(8) M, = ( 75 — ?Sw)

(9) My = ( 29y — ?Sy)

The current radial distance is given by

(10) Gr = (Da + M) + (D + M 2

106



Chapter 4 Distinct Element Method of Circles

Equation (11) gives the change in the gap between the circles from the initial
meshing positions. G, is the original offset, it is the sum of the two radii if the

circles just touched originally and less than this if they overlapped.

(11) AG =G, - G,

It should noted at this point that AG will lead to the increment of consoli-
dation force applicable from this calculation cycle. This complicates the decision
regarding whether a contact is tensile, as this cannot be deduced from a tensile
increment alone. This problem is overcome by keeping a total of AG. When this

total is positive the contact is tensile.

(12) "Goum = "1Gaum + AG

The contact forces are calculated by adding the increments to the consolida-

tion forces already accumulated.

(13) F,= ""1C, + AG x d x cos 3

(14) Fy= ""1Cy+ AG x d x sin 3

If "Gsum > ¢ the contact has failed in tension by exceeding the cohesion and
the contact forces are set to zero, F; = F, = 0. This completes the force displace-
ment law for a tensile contact. The rest of the law is executed for compressive

contacts, that is those where "G,y < 0.

The contact forces are converted to stresses by o, = |F, /7| and oy = |F, /7|
where 7 is the circle radius. The contact stresses are now examined for failure by

calculating the failure oy consistent with the soil parameters and the o3 given by
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the lesser of the & and y contact stresses. This procedure is described above. If
the contact has failed the stresses are modified by this procedure so that they are
limited by the soil strength, otherwise they are unchanged. The contact stresses
are convertéd to forces by multiplying by the circle radius. The signs of the original
forces are retained by the modified ones. The new forces are then summed to the

body forces of the circles involved and replace the consolidation forces.

(15) Forcey, = ._1Force, + F,
(16) Forcey = ._.1Forcey, + F,
(17) e, =F,
(18) "¢, = F,

The motion law, which is executed for all free circles involves the calculation

of the new displacements.

F .
(19) s, = (T2 4 g, ) x o1
m
F
(20) ’n+1sy — ( OT:ey +gy> % 6t2
T

Finally the body forces are reset to zero, Force, = F orcéy = 0.
4.1.3.2 The traditional Distinct Element Analysis formulation

The force displacement law consists of determining the movement on the
contacts and converting this to a contact force. The movement on the contact is

given by equations (21) to (24).

(21) Gw:(2pm_ 1Pw)+(gsw_ ?Sw)

108



Chapter 4 Distinct Element Method of Circles

(22) Gy = ( 2Py - 1Py) + ( gsy - ?Sy)

where the numeric prefices indicate different circles and the ™ indicates the nth

cycle.

The radial distance between the centres is given by

(23) Gr=,/G2+ G2

The angle 3 that this line makes with the horizontal gives sinf8 = G,/G. and
cos 8 = G,/G,. Equation (24) gives the the change in the gap between the circles

from the initial meshing positions.

(24) AG =G, - G,

Having found the movement it is now possible to calculate the contact forces.

(25) F.=kxAGxd
(26) Fo=C,+ F,. xcosf
(27) F,=Cy+ F,. xsinf

If the contact is tensile, that is, the equivalent gap between the circles is now
positive and greater than a small tensile fuzz used to damp transient movements,
then the contact has failed in tension and the contact forces are set to zero, F, =
F, = 0. If the contact is deemed to be compressive then the forces are converted

to stresses by o, = |F;/r| and o, = |F,/r| where 7 is the circle radius.
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The contact stresses are examined for failure using the same method as the
consolidation formulation. The new forces are then summed to the body forces of

the circles involved.

(28) JForce, = ._Force, + F,

(29) Forcey = c_1Forcey + F,

The motion law, which is executed for all free circles involves the calculation

of the acceleration, velocity and displacement.

Forc
(30) 0y = orcey + de
m
(31) "lye = Mg + ag x 6t
(32) n+ISm — n+l,vm x &t

The equivalent equations for y have been ommitted for clarity. Finally the body

forces are reset to zero, Force, = Force, = 0.

4.2 Implementation

4.2.1 The Program Memory Structure

A program memory schema is shown in Figure 4.3. This is intended to show
how the graphical problem area is mapped in memory. The grid of squares is linked
by pointers allowing a traverse in any direction and sequentially from SW to NE.
The area at the top of the figure is the re_area_list and is used for those circles
that move between areas in the traditional method. These circles are temporarily

placed in this area and are placed into the correct areas just prior to a contact
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Figure 4.3 An high level view of the memory structure
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update. A separate area, spare_area is provided for those circles that move out
of the problem area altogether. These circles are then effectively hidden for ever.
A Bachmann diagram showing the relationships between the areas, circles and

contacts is shown in Figure 4.4.

Each area has five pointers leading to the adjacent areas to the North, East,
South, West and to the next sequential area. The next sequential area is the same
as the area to the north except at the northern edge of the problem domain where
it is the southernmost area of the adjacent eastern column. The pointers at the
problem edge have NIL values. Diagonal pointers are not required as these areas

may be accessed by shifting north and then east for example.

Each grid area has various regulating variables associated with it and two
pointers to the circle elements. One points to the free list, that is a list of those
circles able to move, and the other to the fixed list containing circles forming fixed

boundaries for the problem.

The free and fixed lists are made up of the circle elements which contain three
pointers, one to the next element in the list, one to the parameter data block of
its type and one to the list of contacts belonging to the element. The contact list
contains a pointer to the other circle involved and a pointer to the next contact

for the current element.

Of the global variables in the program the pointers sal, re.area_list and sdl

are the most important and are discussed below.

sal points to the start of the area element list, that is to the extreme south

west area, and is the entry point to the main memory structure.
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Double crows feet indicate a many to many relation

O - indicates an optional relation at the end shown

Figure 4.4 A Bachmann diagram of the program memory elements
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re_area-list points to the beginning of a list of circles, that, due to movement,
have changed position from one area to another. These circles are stored in a
separate list until a convenient break in processing and are then placed into the

correct areas before a contact update.

sdl points to the start of the parameter data block list. There is one element
in this list for each soil type in the problem. The element contains the physical
and geotechnical data for the soil type as well as a pointer to the next element in
the list. This arrangement allows the information for a particular circle type to be
held in common rather than for each circle individually. Hence the circle element

need only point to the relevant element in this data list.
4.2.2 Program structure

Functionally the program elements of CIRCLES and SLICES are similar,
therefore, it is not intended to describe in detail the procedural elements of CIR-
CLES. The input and output routines and the error correction methodology are
the same. Plotting, cycling, restart, parameter setting, repeat and command pro-
cessing are similar in both programs. The essential d.ifferences are caused by the
memory structure mapping the grid areas of the problem space and the contact
updating required by the break and make of contacts permitted by the tradi-
tional Distinct Element Analysis implementation. These differences are discussed
in the following sections. The source code for program CIRCLES may be found
in Appendix E.

4.2.2.1 Program structure that maps the memory

The main addition to the complexity of the program structure as compared
with SLICES is due to the extra effort required to traverse the element lists. To

access all of the circle elements the current area pointer is set to sal, the start of
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the area list, that is the most south westerly area. The fixed list pointer of this
area makes the first circle contained here available. The fixed list can be traversed
in the normal fashion by obtaining the next element from the next pointer. The
end of the list is reached when this next element pointer is NIL. The free list is
then traversed in this same fashion. When all of the circle elements for the area
have been visited, the next area is obtained by updating the current area pointer
with the value of the next_area pointer. The elements of this area can then be
visited. Each area is traversed sequentially until the next_area pointer has a value

of NIL, that is, after processing the re_area_list.

All of this processing is contained in a single procedure do_this which is called
with the parameters of proc_name, curr_area, single and lists. This allows ei-
ther the free, fixed or both element lists to be traversed for either a single or all
areas. For all circles control is transferred to the procedure passed as the param-
eter proc_name to do_this. This technique allows each function requiring a circle
traverse to have the alg.orithm coding replaced by a simple statement such as

do_this(motion, sal, all, both);

which will cause the procedure motion to be executed for all elements.

To traverse the contact list associated with a circle element the simple con-
struction shown below is used. The beginning of the contact list is found from the

con_list pointer which is part of the circle memory element.

con_ptr := el@.con_list;
while con_ptr not = NIL do

begin

con-ptr := con_ptr@.nexl_con;

end,;
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4.2.2.2 The updating of contacts

In SLICES the basic geometrical relationships between the components could
never change. The same set of contacts were sufficient to describe the system
throughout the analysis. Not so with CIRCLES. Under traditional Distinct Ele-
ment Analysis large scale movements need to be accommodated, together with the
associated make and break of contacts during the analysis. Therefore, it is impor-
tant that potential contacts are located in advance of the immediate requirement,
old ones updated in the contact lists and new ones added efficiently. These are

currently achieved by the following method.

A complete circle traverse is carried out as described above with both the fixed
and free lists examined for each area sequentially. Each circle element, the ‘home’
element, is checked for contact with the circles occurring later in the free list for
the area. It is not necessary to check for contact with circles occurring in the free
list before the ‘home’ circle as any contact will already have been found. Likewise
when the ‘home’ circle is a free type it is not necessary to check for contact with

any circle which is in the fixed list of the current area.

Once the free list for the area has been checked and the ‘home’ circle is not
near to the edge of the area, the next circle in the free list is taken as ‘home’ and
the search for its contacts can begin. However, if the circle is close to the edge
of the area, the northern, north eastern, eastern and south eastern areas in turn
have both the free and fixed lists checked for contact with the ‘home’ circle. It
should be noted that the areas in the southern, south western, western, and north
western areas need not be examined as they occur sequentially before the current

area, so that any contact will already have been found.

If, during the scan for contacts outlined above, a contact is found, it must be

seen if the contact is already recorded. To do this the contact list for the ‘home’

116



Chapter 4 Distinct Element Method of Circles

circle is traversed until either the contact or the end of the list is located. If the
contact is not found in this list the contact list for the other circle is also traversed.
If an old contact is located and the distance between the circle circumferences is
less than the contact limit, nothing more is done. However if this distance is
greater than this limit, the contact is destroyed, that is, removed from the contact
list. A contact that is not found in either of the contact lists and the distance
apart is less than the contact limit then a new contact is created in the ‘home’

circle contact list.

To summarise, each free circle acts as the ‘home’ element and each free circle
later in the area and, if necessary, all circles in certain neighbouring areas are
investigated for contact with it. If there is a possible contact both contact lists

are scanned and housekeeping is performed.

Two main factors govern the efficiency of this algorithm. Clearly efficiency is
increased when most circles are not near an area edge, which can be achieved by
having areas large in comparison with the size of the circles. The reason for this is
that more circles are only compared with circles from the same area. Efficiency is
also increased for large number of circles by restricting the number of circles per
area by increasing the number of areas. It should be noted that large numbers of
areas will add an overhead to the circle access as all areas are looked at by the
routine do_this. These two apparently conflicting factors need to be bala,hced to

gain the optimum efficiency for any given problem.
4.2.3 Input command language
4.2.3.1 Introduction

All program tasks are controlled or defined by the Input Command Language.

As shall be explained later the program requires some commands in a particular
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order, but on the whole the majority of commands may be used at any time.
Although the program is not designed to run interactively, it is possible with care.

Normally, however, the commands should be contained in a file prior to use.

The commands may be categorised into broad sections, dealing with program
control, plotting, meshing, debugging, and the setting of options and parameters.
These correspond to the major procedures of the program. The commands are

hierarchial, forming a tree system and follow the same rules as for SLICES.

The following sections, 4.2.3.2 to 4.2.3.8 describe the functions of the com-
mands of each set. The symbols used in the syntax definition of the input command

language is shown in Table 4.1 with the definition in Table 4.2.

Symbol Definition

indicates possible repetition of the clause

(1 indicates an optional clause
> indicates a group of clauses
< > indicates substitution by a value, which

may be either a clause or literal
« indicates a literal value

| indicates an alternative

Is is the definition operator

Table 4.1 Input Command Language Parsing Symbols

4.2.3.2 Control commands

The control commands form the outermost command set, all other commands

are accessed through this set.

The set command enters the parameter procedure to allow parameters to be

set up, altered or inspected.
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task IS [<com> ...] ‘stop’
correction IS [<com> ...J(‘return’ |‘stop’)
limits IS <real> =real}> =<real>
boxes IS <integer> —integer>
reply IS ‘on’ | ‘off’
com IS (‘start’ <start block>) | (‘restart’ <limits>)
I (‘plot’ [<plot command>...]) | (‘set’ [<set command>...])
| (‘debug’ [<debug command>...]) | (‘go’ <integer>)
| ‘save’, ‘cend’ | ‘rend’| ‘settle’ | ‘collapse’
| (‘repeat’ —<integer> [<com>...] ‘rend’)
parameter IS ‘framelimit’ | ‘writegap’ | ‘interval’ | ‘gravity’l ‘time’

<

property IS ‘damp’ | ‘mass’ | ‘cohesion’ | ‘friction’
| ‘density’ | ‘radius’ | ‘stiffness’
datanumber IS <integer>
oper IS ‘%’ | ‘4 | ‘=2 | '/’ I ‘A2 | =2
set command IS ((‘echo’ | ‘echodebug’ | ‘cmdproc’ | ‘overwrite’) <reply>)
| ((‘framelimit’ | ‘writegap’ | ‘interval’) —<integer> )
| ((‘gravity’ | ‘time’) <real> ) | (‘cmdlist’ [<com> ...] ‘cend’)])
| (‘calculate’ [(<parameter> (<oper> —<real>) | ‘?’) ...1)
| (‘calculate’ [(‘soiltype’ <datanumber>
[(<property> (<oper> —<real>) | ‘7°) ...1) ...1)
plot command IS (‘initialise’ <limits>) | ‘ballplot’ | ‘dotplot’
| ‘velocities’ | ‘displacement’ | ‘conplot’ | ‘failplot’ | ‘graticule’
| ‘standard’ | ‘page’| ‘border’ | ‘endplot’
| (‘map’ <map command>) | (‘zoom’ <limits>)
map command IS ‘picture’ | f‘horizontal’ | ‘vertical’
| ‘full’ | ‘fullnoscales’ | (‘zoom’ <limits)>)
debug command IS ‘contacts’ | ‘energy’ | ‘general’ | ‘flagson’| ‘flagsoff’
| ‘datalist’ | ‘blocks’ | ‘areas’
] ((‘update’ | ‘motion’ | ‘consolidate’ | ‘ford’ | ‘cycle’
| ‘cycle’ | ‘rearea’ | ‘trace’ | ‘oscillate’) <reply>)
data IS <datanumber> —<real> —=real> —<real>
<real> <real> <real)> =<real> =<typer
type IS ‘free’ | ‘fixed’ | ‘track’
coord IS <real> —<real)>
eoln IS (¢ ’ ...) until the end of line is reached
mesh command IS ‘relative’ | ‘absolute’ | ‘single’ | ‘multiple’
| (‘create’ (<coord> ...) <eoln)>)
| ‘move’ | ‘position’ (<coord>) | (‘angle’ | <real))
meshinfo IS (‘dataset’ <data>) (‘for ' [<mesh command> ...] ‘endfor’)
start block IS <heading> <1limits> —<boxes> [<meshinfo> ...] ‘meshend’

Table 4.2 Input Command Language Parsing Definition
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The command restart causes the restart of a previous problem run. A file
containing the restart information must be attached to unit 1. Within the com-

mand file the mapping information must follow.

"save causes a restart file to written, it may either overwrite or append the
file attached to unit 2 according to the setting of the overwrite command (a set
command). This is used to save the solution to the task found so far for a large

job, thus avoiding loss in the case of a system crash.

Command start begins a new problem. A title up to 80 characters long may
follow, but the next line must contain the mapping information and then mesh

information is required. Section 4.2.3.8 describes the meshing commands.

stop this causes the geometry to be plotted, a restart file to be written and

the program run terminated.

The command debug causes the debug procedure to be entered, so that debug

options can be set or general information generated.

The plot command causes the plot procedure to be entered, which allows
requests for the manipulation of the plot format, size, and the production of the

different plot types available.

go is the command that causes the calculation cycle to be entered and it must

be followed by an integer, the number of cycles to be executed.

Command repeat is the opening statement of the repeat n commands rend
loop structure. It must be followed by an integer, which is the number of times
the loop is to be executed. There are certain commands for which inclusion in this

structure would be pointless.
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To close the repeat loop the command rend is used in two ways. As regards
to input, it terminates input to the repeat controlling procedure and is the last
statement in the repeat loop, in this case it is not a control level command. The
second way in which it is used is internally, during execution of the loop, here it

signifies the end of the loop so that the commands may be repeated again.

A similar command to rend, cend is used in two ways. Firstly, it terminates
input to the command list structure of the set command set, and secondly it
terminates execution of the command list during use. Section 3.3.2.4 describes

the set cmdlist commands cend facility in detail.

The command return terminates interactive input during input error han-

dling, and is described together with this facility in section 3.3.3.3.

The command settle causes the consolidation implementation to be used dur-
ing the calculation cycle while collapse will cause a traditional Distinct Element

Analysis implementation to be used instead.

4.2.3.3 The debug command set

To gain access to these second level commands the debug command must
be entered at the control command level. This facility falls into two parts, one
outputs information at the point of issue of the command, while the other assigns
options which provide data during the subsequent execution of the program. All
output from this routine is written to the file attached to unit 7 unless otherwise

stated. The debug commands are as follows.

The datalist command writes out the circle parameter data block list while
areas gives the information associated with each area. Command blocks produces

the information for each circle while the contacts command writes out the contact
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information. general, as is to be expected, produces some general information.
Just as in SLICES, flagson sets all the debug options on, and should be used with

care and flagsoff turns all of them off.

All of the following commands must be followed by the third level commands

of either on or off, which clearly sets the option on or off.

The update option produces contact information as the contacts are created
or destroyed. motion controls the production of debug output from the motion
law during execution of the calculation cycle. The option ford controls the pro-
duction of the debug output from the force displacement law during execution of
the calculation cycle. The consolidate option produces limited information from
both the motion and the force displacement law, again during execution of the
calculation cycle. cycle this produces information from all procedures within the
calculation cycle and procedure cycle itself. The option trace causes a message to
be written on entering and exiting all procedures and functions. Output is written
on the file attached to the unit 8. oscillate causes information from calculation
laws, formatted for input to the program SOP, to be written onto the file attached
to the unit 10. Finally the option of rearea causes information connected with

the change of area of a circle to be written out.

4.2.3.4 The set command set

To gain access to these second level commands the command set must be
issued at the control level. This set of commands falls into two groups, problem
parameters such as gravity and options such as frame limit. The set commands

are as follows.
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When set to on echo enables all input commands to be echoed on the running
commentary. The command must be followed by the third level commands of

either on or off. The default is on.

debugecho if set to on this causes headings for the debugging information

to be written in addition to the information itself.

The overwrite option controls the restart file output. If set, the file attached
to unit 2 is emptied prior to use, otherwise the file is appended by the restart

information. The default is off.

Option cmdlist sets up a subsidiary file and copies all command input to it
until the command cend is entered. The execution of this secondary command
file is controlled by two further set commands, cndproc and interval. Transfer
of control is passed from the file attached to the unit scards to the secondary file
(always named internally as the temporary file -sass.cmd), during the execution

of procedure cycle. The default value is null,

The option interval must be followed by an integer, the number of cycles to be

executed between successive executions of the command list secondary command

file. The default value is 100.

The cmdproc option must be followed by either of the commands on or off.
If it is set to on, the command list secondary file is executed whenever the total
cycles executed so far divided by the interval, (as set by the command interval),

is an integer value. If set to off this facility is not used. The default value is off.

framelimit is followed by an integer. The GHOST library limits the number
of frames of plot output to twenty. If this is exceeded the program will terminate.

This command allows this limil to be reset. The default is 20.
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writegap sets the interval of cycles between display of some of the running

commentary information. The default is 100.

The gravity option is followed by a real number, which represents the value

of gravity in the positive y direction. The default value is 0.

Option time is followed by a real value this sets the time step size.

The calculate command allows the values of some parameters and options
to be modified or inspected rather than simply reset, Calculator commands are

described in the following section, 4.3.2.5, and are level three commands.

4.2.3.5 The calculator command set

This set is at the third level and is accessed by the command string set
calculate. Almost all the calculator commands have the same format, that of
<parameter> <operator> <real> with the exception of the enquiry, 7 when
a value is not required. Permissible parameters (the third level commands) are
interval, writegap, gravity and time. The operators (fourth level commands, to
be precise) are = replace, * multiply, / divide, 4+ add, - subtract, " exponentiation.
The ? enquiry is also used here. The values are read in as real numbers only.
For parameters which are integer in nature, conversion takes place to give an
integer result. The final value of a calculation command is written to the running

commentary output stream.

The command soiltype allows access by the calculator to the soil parameters
of a particular soil type. The number of the soil type, that is the data type flag
must follow. The parameter that is to be modified is the input as for a normal

calculator command. The parameters that may be modified here are the damping
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factor, mass, cohesion, friction, density, radius and stiffness by using the commands

of damp, mass, cohesion, friction, density, radius and stiffness.
4.2.3.6 The plot command set

To gain access to this second level set the command plot must be issued in
the control command set. As all the GHOST library routines are contained in
the procedure plot to ease maintenance, and many plotting functions are auto-
matically carried out by the program, it has been necessary for some of these and
map commands to be issued internally. Although these internal commands are
described, it may be that they will never need to be issued externally. They are

initialise, endplot, and most map commands with the exception of zoom.

The initialise command sets the initial plotting parameters and turns the
plot output stream on. This command is issued automatically on receipt of the

start or restart commands and should not need to be used normally.

The command ballplot draws the circles in the current plot space, dotplot
causes the centre points of the circles to be plotted while velocities will draw the
current velocity vectors. The contact forces may be drawn by using the conplot
command and a plot of the failed contacts produced by failplot. The command

displacement draws the current incremental displacement vectors.

The graticule command produces an outline of the area limits. standard
this produces a standard plot of the circles. The page command calls for a new
frame, or in physical terms a new sheet of paper while border produces a border
with the problem title and current problem time. The command of map will enter
the tertiary level map set and enables the modification of plot formats. Finally

the endplot command is issued internally during closedown of the program under
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normal termination, it produces a frame with a slice plot and turns the plot output

stream off.
4.2.3.7 The map command set

These tertiary level commands are accessed by first issuing the commands

plot map.

The command horizontal sets the page format to lie along the A4 sheet of
paper as in a landscape picture. The default size is (0.06,0.96,0.05,0.65) expressed

in a (zmin, zmaz, ymin,ymaz) format.

Likewise the vertical command sets the page format to lie down the A4 sheet
as in conventional portrait picture. This is the default format, the default size is

(0.15,0.75,0.06,0.96).

The command full sets the plotting space to the maximum permitted page
size suitable for A4 paper. A border is drawn around this area together with axes
scaled to the current mapping limits while fullnoscales does the same but does

not draw scaled axes.

The zoom command is followed by three real numbers, xmin, xmazx, and
ymin which form the mapping limits. zmin is the minimum value of z, zmazx
is the maximum value of x, and ymin is the minimum value of y of the problem
geometry to be plotted. As the plots are in fixed proportions in both landscape
and portrait mode it is not necessary for the maximum y value to be provided.
This command enables portions of the problem to be examined in more detail.
Mapping limits are expected as part of the input after both the start and restart

commands.
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4.2.3.8 The mesh Command Shell

This is the only set of commands that cannot be accessed at random by a user.
It is automatically entered after the issue of the level one command start, a further
oddity is that this set can only be exited by issuing the meshend command.
The numbers of areas in the z and y directions are expected before any further

commands are entered.

dataset create a dataset type. This is followed by the various parameters
governing the soil type. All of the circles that are created following this are of this
type until the next dataset command is encountered. The parameters which must
follow are, dataset number, damping coefficient, mass, cohesion, tan ¢, r, radius,
stiffness and dataset type. Apart from the dataset number and dataset type all
of the parameters are real numbers. The dataset number is an integer and the
dataset type is one of free, fixed or track. The dataset type of free indicates
that the circles are to be free, conversely fixed indicates that the dataset is to
be of fixed circles. The track type will allow the circles to be tracked by the

oscillation debug command.

Once the dataset has been set up it is then necessary to create some circles. To
enable sets of circle to be created in a relatively easy fashion a set of commands
have been produced to govern the position of the creation point. Firstly, the
command relative will cause the = and y values following the create command
to be taken as the relative distances between creation points. Conversely the
absolute command causes the values to be taken as the absolute coordinates.
Furthermore these absolute or relative values in the # and y directions may be
operated on by the angle command. This command is followed by the angle, in

degrees, from the horizontal at which the circles are to be generated.
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The creation position can also be controlled by the move and position com-
mands. move causes the creation position to be moved relative to the current
position. The x and y values for the movement must follow. The position com-
mand causes the creation position to be at the absolute position of z, y which

again must follow.

The single command will allow only one circle to be created at a time, where
multiple will allow several circles to be created with one commaﬁd. The command
for begins a for loop, it is followed by the number of circles to be created. An
endfor will end the for loop construction. Finally, the create command triggers

the creation of a new circle.
4.2.4 The utility files

The input command file format restrictions for CIRCLES are the same as for
program SLICES and may be found in section 3.3.3.1. The task definition using
the input command language has already been largely covered in section 3.3.3.2,
the particular meshing information for CIRCLES is discussed in section 4.2.3.8.
However, with reference to the chapter three discussion it should be noted that no
factors of safety are produced. Automatic plot production occurs at the start and
at the end of the task. The rules for error handling are the same as for SLICES

and have been discussed in section 3.3.3.3.

The repeat, command list, restart, trace and oscillation output files all func-
tion in the same way as for SLICES. The restart file record tags are given in Table

4.3 as clearly there are some changes in the memory elements.

The various debug commands produce the messages shown in Table 4.4. Most
of the formats shown need no further explanation. For reasons of brevity not all

of the messages detail the quantities shown. These are now described.
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Tag Restart record type

G the genoral information

c a command list word

a repeat list word

a data parameter element

an area information element
a fixed circle element

a free circle element

a contact element

the end of the restart data

¥ Q Mmoo O R

Table 4.3 The restart file line tags

The rearea command produces several messages and shows the details of
the re-location process of circles that have moved out of their original area. The
formats are shown for completeness but this level of debugging information is
only useful if the details of the program are understood. The command update
produces information concerned with the production of contacts. The contact
creation message shows the contact gap and the positions of both of the circles

involved. The other messages are self explanatory.

The debug command ford produces the distance between the original cen-
tres of the circles and the sine and cosine of the angle between this line and the
horizontal. The current gap between the circles is then printed followed by the
consolidation force and the body forces. The body forces of the element which
owns the contact are quoted first. The data produced by the consolidate com-
mand are the limiting forces calculated by the failure law and the consolidation
forces upon the contact. The motion command produes the data type of the

element followed by the forces and displacments.
The contact information printed consists of the consolidation forces, the cur-

rent offset and the positions of the two circles involved. The current circle is given

last. The area data is made up of the area z and y limits, the column and row
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Flag Format

rearea Area 999999 999999 999999

Area 999999 999999

ori x,y, new x,y 999999 9992999 999999 899999
Xx,xm,y,ym 999999 999999 999999 999999

setup areas col number 999999

setup areas row number 999999

updat Victim destroyed

Contact created 999999 999999 999999 999999 999999

total number of contacts 99999999

ford deltagap con_force force t.force for x then y
99999999999E599 99999999999ES99 99999999999ES99 99999999999ES99
99999999 99999999 99999999 99999999 99999999 99999999 99999999

consol 99999999999E599 99999999999ES99
motion 999 £ 999999999E599 999999999ES99 s 999999999ES99 999999999ES99
cycling max individual disp 99999999999ES99
contact Contact information :
forces of contact, sibling, owner
999999 999999 999999 999999 999999 999999 999999
area Area data :

xmin,xmax,ymin,ymax, upd.par

999999 999999 999999 999999 999999 999999 999999

element Element data :

offs posn force velocity accleration datatype

999999 999999 999999 999999 99999999 (occurs 7 more times) 999

data flag damp mass c phi rho rad kn typ
999 99999999 99999999 99999999 99999999 (occurs 4 more times)
general XXXXXXXXXXXX task title XAXAXXAAXXRXXAXX

xareas number 999999 length 599999
yareas number 999999 length 999999

total number 999999
mapping  xmax 999999 ymax 999999
plot interval 999999
gravity x 999999 vy 999999

timing delay 999999

totals balls 999999 fixed 999999
cracked 999999 types 999999
contact 999999 cycles 999999
updates 999999 frames 999999
plots 999999

Table 4.4 Debug output formats
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numbers and the update parameter. The element data consists of the original and
current positions, the final consolidation force upon the element, followed by the

current force, velocity, acceleration and then the data type.

The running commentary produces various information concerning the task
on to the screen. The screen positions for this are given in Table 4.5 and the
specific messages occur in Table 4.6. The same codes to clear the screen and turn

the cursor on and off are used as in SLICES and may be found in section 3.3.4.7.

Line Content

1 Blank

2 The program running commentary heading

3 Blank

4 The task title

5 Blank

6 The number of cycles requested

7 The number of plot frames completed

8 The number of plot types completed

9 The number of updates completed

10 The number of cracked circles ,
11 The number of cycles completed '
12 The command under execution

13 General messages

14 Error messages and first line of totals

15 Message requesting replacement commands

16 Prompts to user for command or parameter data
17 Input line and last line of totals

18 Blank

19 Blank

20 Messages dealing with the restart files

Table 4.5 The running commentary screen lines
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2 PROGRAM CIRCLES RUNNING COMMENTARY ON :
12 Command ! AXXAAAXAXXLXRN

12 Reading : x

13 Warning : all velocities zero

13 Warning : all contact forces zero

13 Warning : no failures : no plot

13 Harning no circles left

13 Decreasing stability 9.999999999999ES599
13 Increasing stability 9.999999999999ES599
13 A restart file has been read

13 The value is : 999899999999999

14 Current time step set to : 99.9999999999
14 ! error xxxxxxxxxxxx found in routine get_command
1b Input corrected commands ... <RETURN> .
16 Input a command please ..........
14 total balls 999999 fixed 999999
15 total cracked 999998 contacts 999999
16 total cycles 999999 no.updats 999999
17 total frames 999989 plots 999999
20 A restart file has been written

Table 4.6 The running commentary messages

4.3 Validation

4.3.1 Introduction

Program CIRCLES must primarily be viewed as a development program.
The main reasons for this are the exclusion of effective stress and difficulties en-
countered in controlling effects at the boundaries of the mesh. In this validation
section it is intended to show that the program correctly consolidates contacts
and models the contact failures under cohesive and frictional conditions. It was
realised from the outset that different mesh types could influence the failure of a
given slope geometry. The extent to which this occurred was to be left to a stage
when the technique, having been shown to be applicable to soil masses, could be
tuned to the ‘live’ situation. During this investigation it has been found that edge

effects seriously mask the expected behaviour of the mesh, it is therefore intended
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to discuss these effects and to show the steps that have been taken to overcome

them.

4.3.2 The contact behaviour

To show that the contact behaviour is correct the case of a single contact is
discussed first. Consider two circles, one above the other, with the lower one fixed.
Table 4.7 shows the forces and displacements relevent to the upper mass in the
2000th calculation cycle. The information is from procedure consolsl. The first line
shows the forces and the second line the displacements, both sets of values show
the x value to be zero. The weight of the circle was 40 Newtons which corresponds
to the y value of force. The small y displacement shows that the situation has

reached a stable position.

A THO CIRCLE TOWER

f 0.0000000000000E+00 4.0000000000000E+01
s 0.0000000000000E+00 -2.4868996751604E-14
max individual disp 2.48689956751604E-14

Table 4.7 Output from CIRCLES after 2000 cycles

The case of an equilateral triangle of circles, where the lower two circles
are fixed, is a useful one. This is because the simplicity of the case eliminates
edge effect distortions to the stresses but does allow the investigation of contact
failure. The equilibrium force on each of the diagonal contacts may be shown
to be \—"}% acting along the contact line. The consolidation forces for equilibrium
are, therefore, o; = mg/2 and g3 = mg/2v/3. For failure just to occur then the
equivalent stresses of these forces must form the limiting values. For the case
of a purely cohesive soil these limits would be generated by a value of cohesion
corresponding to ZZ(1— %) For a mass of 4 and gravity of 1 this simplifies further

to give ¢ = 0.42265. It was found by analysing this system with ¢ = 0.42264 that
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both contacts failed. However, failure did not occur for ¢ = 0.42265, which shows

the program behaviour to be correct.
4.8.83 The Mesh Edge effects

It is not possible to model a slope using a mesh consisting of a series of vertical
columns of circles. The reason for this is that because gravity acts downwards
there is no lateral movement of the circles to cause lateral forces. The columns are
therefore uncoupled and consolidate independently. An hexagonal close packed

mesh overcomes this lateral coupling problem.

The analysis of such a mesh as shown in Figure 4.5 highlights an edge effect.
The figure is composed of three sections. The lowest sections shows the circle
element mesh, the middle section shows the forces on the contacts and the top
section shows the contacts that have failed. Failed contacts appear as lines between
the dots representing the circle centres. These lines are proportional to the failure
forces. It can be seen in the figure that the forces within the mesh increase from
the top to the bottom and from the sides to the centre. However the forces for
successive contacts on the lowermost row of contacts show an alternation between
large and small forces. A large force occurring at the edge, then a small one, and

so on, to the middle.

To explain this effect consider the analysis in the early stages. As the mesh
begins to consolidate each successive horizontal layer of contacts becomes com-
pressive with all of the circles above it falling due to gravity only. Consider such
a layer of circles, that is where the upper contacts are neither compressive nor
tensile, but where the lower contacts are compressive. In the next cycle the circles
above this layer will all fall by gé6t? and will produce compressive forces in the
upper contacts. These forces will have horizontal and vertical components. In the

case of all circles except the outermost ones the horizontal forces will sum to the
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Figure 4.5 Analysis of embankment without contact correction
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circle forces to give a zero lateral body force. In the case of the outermost circles
the single upper contact force is not balanced due to the asymmetry of the mesh

at this point and hence will have a lateral displacement in the next cycle.

Each of the outermost circles will behave in a similar fashion and will give rise
to these circles acting independently from the main body. This independence gives
rise to higher contact forces down this diagonal column and lower forces between
this column and the next one. The low forces between these columns causes the
next diagonal column to behave in a similar fashion to the first. This then leads

to the generation of a series of high and low contact forces.

This effect builds up progressively in the embankment. The tensile forces are
generated first at the bottom corners and then gradually up the diagonal. The
tensile forces are then produced in the next diagonal, and so on, until eventually
the embankment may be seen to consist of the three regions as shown in the figure.
These are lefthand and righthand triangular zones of tensile horizontal contacts
and a middle zone of compressive horizontal contacts. If the cohesion and friction
of the soil are reduced the embankment shows compressive failure at the toes of
the slopes but the tensile zones dominate and distort the failure zones so that if
further contact failure occurs it happens at the top of the slope and in the middle
of the embankment. The latter occurs when the soil characteristics are made to

be weak to try and force a proper failure.

This edge effect problem is exaggerated by the edge circles consolidating faster
than the internal ones due to the number of contacts affecting them. This is as
a direct result of the equation for N, given previously. This was not initially
accounted for by the Distinct Element Analysis employed as there did not seem
to be a straightforward method of dealing with it. The problem in trying to
accommodate the number of contacts is in determining the number of contacts

a circle has before the force displacement law is executed, for it is here that the
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damping factor is used. Furthermore, where two circles are involved which have
different numbers of contacts, the modified damping factor on the mutual contact
can not be easily determined. Such cases occur at the edge of the rﬁesh, where,
if an average number of contacts were used, would not effectively deal with the

problem.

Therefore, it was decided to counter this effect by modifying.the motion law.
This was achieved quite simply by dividing the circle displacement by the number
of active contacts that it has. Reducing the circle displacement at this stage is
equivalent to reducing it by this factor in the force displacement law to give a
reduced force. It is merely done at the last stage of the cycle rather than at the
first stage of the next. Applying this factor here allows the adjustment to be made
correctly for each circle. This is because it is dependent upon a property of the
circle rather than upon a property of a pair of circles, namely the number of active

contacts that a circle is involved in.

To find this number an additional process was introduced prior to the motion
law. As the displacements are greatest at the beginning of the analysis, it is at
this stage that the correction needs to be the most accurate. An active contact
is one that is compressive, or will become compressive in the next calculation
cycle. This is achieved crudely at present. If a circle has a contact with a fixed
circle the contact is assumed to be active, this will always be true if the fixed
circles are placed to restrain the circles and cause consolidation. To decide if a
contact is active when it is between two free circles the relative displacement is
examined, if it is not zero then the contact is active. Horizontal contacts are
presently considered as inactive as they are unimportant at the beginning of the
analysis. The contacts are counted by scanning the contact list for each circle and
the number of active contacts incremented for both the owner and the other circle

involved, if the contact is found to be an active one.
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Figure 4.6 Analysis of embankment using a contact correction
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Figure 4.7 Analysis showing partial wedge failure
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The effect of this correction can be seen in Figure 4.6. Here the effect is still
found but in addition the outer diagonal edges failed in tension immediately with
high tensile stresses. An informative analysis is that shown in Figure 4.7 where
the righthand vertical slope begins to shows a wedge failure caused by sliding, as is
to be expected. This at least shows some promise, however, the correction for the
number of contacts, as applied currently does not have the desired effect and any
soil like failure mechanisms are being obscured. It is presumed that the current
damping implementation lies along the lines described, but due to time has not

been elucidated.
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CHAPTER &

CONCLUSIONS

The work described here developed from an investigation of the vibrations
associated with a traditional Distinct Element Analysis implementation. It was
found that they could be eliminated from the system by implementing a consol-
idation type analysis. This consolidation technique has been described here by
difference equations. The solution of these equations shows that the convergence
of the system is governed by the stiffness, damping factor, gravity, contact length,
number of active contacts, element mass and the time step. The solution also
shows that the number of cycles required for convergence to a limiting value of

force, acceleration or displacement may be calculated for simple cases.

The machine accuracy limits the propagation of effects through the system.
Long hand expansion of the displacements, forces and acceleration of a simple
system showed that the limit of propagation was affected largely by the time step.
This led to the recommendation that the time step and stiffness are both unityso

that the effects are not attenuated too quickly on passing through contacts.

To facilitate the continuing development of the Distinct Element Analysis
the programs have been written in PASCAL for ease of amendment. These pro-
grams may be viewed as suitable for forming the basis for new implementations,
requiring a change in the motion or force displacement laws to alter the media un-
der investigation. This has a great advantage over FORTRAN equivalents where

considerable effort is required for quite small amendments.
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By including an input procedure that parses an input command language and
allows interactive error correction the setting up of analysis problems is straight
forward. This input method also prevents having to abort a run part way through
due to a simple typing error. In conclusion, the programs written are flexible in
terms of their ease of use, modification and utilisation as a base for modelling a

different media.

The analysis carried out by Program SLICES is similar to the traditional
method of slices and to the Rigid Block Model that formed the initial study.
SLICES uses the consolidation technique developed to model soil slopes given a
failure arc by dividing the slope into slices. The use of the program is therefore
restricted to systems with a predetermined failure arc or to interactive use so that
the least stable failure arc is found for a given slope. Currently the soil slope may

not contain different layers of soil.

The validation was carried out by comparing the results from SLICES against
a traditional method. Fifteen test cases have been used, five cases for each of three
slopes. Each slope was tested under two cases of total stress and three cases of
effective stress conditions. The last case utilised a non-linear failure criterion.

Both frictional and cohesive soil types were modelled.

The testing showed that the failure conditions were most easily determined for
frictional soils. The results from SLICES were similar to those from the traditional
method, differing by one or two degrees in friction or kN/m? in cohesion. Where
a difference larger than this occurred it was because a tension crack was predicted
by SLICES that could not be modelled by the standard method. This shows
an advantage of SLICES over the traditional method. A further advantage of
SLICES is the ability to use a non-linear failure criterion. The results using this
could not be compared with the traditional method but were consistent with the

other SLICES results. This facility coupled with the ability to predict tension
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cracks enables SLICES to give a more accurate indication of the behaviour of a

slope than the traditional method.

A worthwhile enhancement to SLICES would be the incorporation of addi-
tional subcontacts on the inter-slice edges to allow for the modelling of soil masses
with layers of different soil types. The contact failure laws need adjustment to re-
duce the rigid block behaviour of the slices and to increase the soil-like nature
of the contacts. Some further work needs to be carried out in the validation of

SLICES particularly in comparison with known case studies.

The development of the program CIRCLES has been constrained by time,
predominantly in the later stages of validation. In Program CIRCLES the Distinct
Element Analysis has been applied to soil in terms of circular areas of influence
rather than as a physical model. There is no restriction upon the number of soil

types modelled and a predetermined failure mechanism is not required.

The program has been shown to work adequately for simple cases but some
difficulties have been encountered in applying it in general. The validation showed
that edge effects caused an incorrect stress regime to be set up that masked the
failure process. An attempt was made to rectify this by introducing an additional
damping factor which was applied to the displacements of the circles. This fac-
tor was the reciprocal of the number of active contacts belonging to the circles,
but proved to be only partially successful. However a sliding type failure was
demonstrated where the edge effects seemed not to be strong enough to mask the

effect.

Perhaps the most far reaching finding of the investigation into the edge effects
is the impact that differing numbers of active contacts belonging to the circles can
have. In terms of time this has the effect of promoting some circles ahead of others

in the analysis and is rather like a ‘time warp’ occurring in the mesh.
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Work needs to be carried out to investigate the edge effects further and a
satisfactory correction procedure implemented. The starting point for this work
could be an investigation into the behaviour of several different mesh configura-
tions, for example, loosely packed, close packed and random. Two enhancements
to CIRCLES to bring it in to line with SLICES would be the accommodation of

effective stress, and the inclusion of a non-linear failure criterion for the contacts.

The aim of this work was to show that Distinct Element Analysis may be
applied to soil masses. Unlikely though this may seem this has been achieved by
Program SLICES which provides a more accurate indication of the slope behaviour
than traditional methods. In view of this, despite the current edge effects shown
by CIRCLES, the goal of modelling the generation of a failure zone in a soil slope

is worth pursuing along these lines.
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Appendix A. Al

APPENDIX A
MATHEMATICAL NOTATION

|| is the absolute value of .

7 is the maximum value of z.

V is the logical or operator.

A is the logical and operator.

— tends to.

= implies that.

a is the angle the failure arc makes with the horizontal at the toe of a slope.
a is acceleration.

A is a controlling constant in difference equation solutions.
[ is the angle between circle centres and the horizontal.

B is a controlling constant in difference equation solutions.
¢ is cohesion.

C is consolidation force.

d is the numerical damping factor.

D is the distance between circle centres.

Dy is the overall numerical damping factor.

¢ is a soil parameter representing the angle of friction.

F is contact force.

Force is force acting on the centroid of elements.

g is gravity.

G, is the initial radial distance between centres.

(7, is the radial distance between centres.

AG is the change in the radial distance between centres.
H is dashpot damping force.

I is the number of active contacts an element has.

k 1s contact stiffness.



Appendix A. A2

K is contact dashpot stiffness.

L is contact length.

Lim is the limiting difference value of force, stress and so on.

u is the coefficient of friction.

m is mass.

M is element movement from the original position.

N is the number of cycles for a limiting difference to be reached.
P is the coordinate position of element centroid.

o is stress.

o3 is the major principle stress.

o3 is the minor principle stress.

S is the increment of displacement occurring in a specific time step.
T is shear stress.

t is total time.

6 is angle between block edge and the horizontal.

0t is the time step.

u is pore water pressure,.

v is velocity.

The following symbols are used as subscripts.

c prefixed to a quantity refers to a block contributing the corner to a contact.
e prefixed to a quantity refers to a block contributing the edge to a contact.
1 prefixing the quantity refers to a specific distinct element.

a, f, o or s applied to Lim refers to the quantity at limiting difference.

n refers to the direction of normal movement on a contact.

r refers to the radial direction.

s refers to the direction of shear movement.

z refers to the = direction.

y refers to the y direction.

n as a preceeding superscript refers to a specific calculation cycle.
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APPENDIX B

SLICE RESULT'S

set echo off damp 0.06 0.2
atart SLOPE 1, PHI
016 0

create free 0.0 20.5 2.0 1.0
create free 0.0 20.5 2.0 1.0
create free 0.0 20.5 2.0 1.0
create free 0.0 20.56 2.0 1.0
create free 0.0 20.56 2.0 1.0
create free 0.0 20.5 2.0 1.0
create free 0.0 20.5 2.0 1.0
create free 0.0 20.5 2.0 1.0
create free 0.0 20.5 2.0 1.0
create free 0.0 20.5 2.0 1.0
create free 0.0 20.5 2.0 1.0
create free 0.0 20.5 2.0 1.0
create free 0.0 20.5 2.0 1.0

meshend

set damp 0.05 0.2 time 1 gravity
aritegap 32 interval 32
cmdlist plot standard set calc
echo on

go 16383 stop

create free 0.0 20.5 2.0 1.0 0.

©C © O O O O O © 0 O O o o
O O ©O O O O ©Q © O © © o ©

0 20.5 0.0 0.00.0 114.0 1
2 10.5 2

20.56 0.0 0.0 0.0 3 8.9 3
20.56 0.0 0.0 0.0 4 7.7 4
20.6 0.0 0.0 0.0 5 6.9 b
20.6 0.0 0.00.0 6 6.3 6
20.56 0.0 0.00.0 7 5.7 7
20.6 0.0 0.0 0.0 8 5.4 8
20,6 0.00.00.0 9 5.1 9
20.6 0.0 0.0 0.0 10 5.0 10
20.56 0.0 0.0 0.0 11 4.9 11
20.5 0.0 0.0 0.0 12 5.0 12
20.5 0.0 0.0 0.0 13 5.1 13
20.56 0.0 0.0 0.0 14 5.4 14
20.5 0.0 0.0 0.0 16 5.8 15

=10 cmdproc on framelimit 100

writegap * 2 interval % 2 cend

14
14
14
14
14
14
14
13
12
11

o »®» N o 0
w O W Ww ©

Table 3.14 Input commands for result set 1
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Figure 3.6 Stress profiles for result set 1 (continued)
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012 0

create

create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create

create

free

free
froe
free
free
free
free
free
free
free
free
free
free
freeo
free
free
free
free
free

free

meshend

echo on

set echo off damp 0
start SLOPE 2, PHI

0.0

©O O © O © O O O © © O O © © © O 0o o ©
O O O O O O O 0 © O O © 0 o o © ©o © ©

w
-

plot page go 16383

.05

31.

R I I s T D T~ T T~ T T TS N N T N T T I
MONONN NN NDNDNNDNNNNNDN
© © 0O 0O 0O 0 O O O C O 0O O © C 0 O O O

writegap 32 interval 32

stop

1.0

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

set damp 0.05 0.2 time 1 gravity

cmdlist plot standard set calc

© O O © © © O O O O © © © O © © © O o
© © O © © O O ©0 © O O O O O © © ©o O O

.0 31.6 0.0 0.0

31.5
31.6
31.5
31.5
31.56
31.5
31.5
31.56
31.5
31.5
31.86
31.6
31.6
31.5
31.5
31.5
31.56
31.5
31.5

O O O O © © © © © © O O © © © © o ©o o
©O 00O OO0 O 0O OO OO0 o0 o o o
O O O © O © 0O O © © © O O ©o © © © ©o ©
cobbobobobbobboboobos
©ooo0o0o00000000000000

-10 cmdproc on

.0 14.0
.5 11.8
.0 10.6
9.7
9.0
8.356
7.8
7.36
6.95
6.6
6.3
6.025
5.8
5.6
5.45
6.3
5.2
6.1
5.0b
5.0
5.0

o

W © 0 0 ~N ~N O O O ¢ b B W W NN~

© O © 0 00O 0 00000 0 o O O
O o mo MmO MmO mMOoOT oMo u o

framelimit 100

writegap * 2 interval # 2 cend

i4
14
14
14
14
14
i4
14
14
14
14
13
12.
11.
10.

W O 0 0 N ~N OO ;G DWW NN -
o O N O o1 O T O O o UToC OO ;MmO

10.0 6.
10.5 5.85
11 6.0

Table 3.15 Input commands for result set 2
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set echo off damp 0.05 0.2
start SLOPE 3, PHI
07 0
create track 0.0 48.0 2.0 1.0 0.0 48.0 0.0 0.0 0.0 1.0 14.0 1.0 i4
1.6 11.8 1.5 14

create track 0.0 48.0 2.0 1.0 0.0 48.0 0.0 0.0 0.0 2.0 10.6 2.0 14
create track 0.0 48.0 2.0 1.0 0.0 48.0 0.0 0.0 0.0 2.5 9.7 2.5 14
create track 0.0 48.0 2.0 1.0 0.0 48.0 0.0 0.0 0.0 3.0 9.0 3.0 14
create track 0.0 48.0 2.0 1.0 0.0 48.0 0.0 0.0 0.0 3.5 8.35 3.5 14
create track 0.0 48.0 2.0 1.0 0.0 48.0 0.0 0.0 0.0 4.0 7.8 4.0 14
create track 0.0 48.0 2.0 1.0 0.0 48.0 0.0 0.0 0.0 4.5 7.36 4.5 12
create track 0.0 48.0 2.0 1.0 0.0 48.0 0.0 0.0 0.0 5.0 6.956 5.0 10
create track 0.0 48.0 2.0 1.0 0.0 48.0 0.0 0.0 0.0 b.6 6.6 5.5 8
create track 0.0 48.0 2.0 1.0 0.0 48.0 0.0 0.0 0.0 6.0 6. 6.0 6.3
meshend

set damp 0.06 0.2 time 1 gravity -10 cmdproc on framelimit 100
writegap 32 interval 32
cmdlist plot standard set calc writegap * 2 interval * 2 cend
echo on debug oscil on

plot page go 16383 stop

Table 3.16 Input commands for result set 3
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016 0

create

create
create
create
create
create
create
create
create
create
create
create
create

create

free

free
free
free
free
free
free
free
free
free
free
free
free

free

meshend

echo on
go 16383

set echo off damp
start SLOPE 1, C

24.

24.
24,
24.
24,
24.
24.
24.
24,
24.
24,
24.
24,
24.

stop

O O O O © © © O © O © © O
©CO O O O O © © © O OO0 o o o
NN NN R D NN N NN NN
©O oo oo oo oo o oo o
L R R e T . T R S WA W
© o oo oo o ooo0oo o

.05 0.2

vritegap 32 interval 32

debug update

24.

24.
24,
24,
24,
24.
24.
24.
24.
24.
24.
24.
24.
24.

O O O O O O O O 0o O 0o O ©
O © © O © © © © © © o O ©
©C O 0O 0O O 0 O 0O O 0 o o o
cooboboboboob
©Soo0o0o000000000

debug slices contacts general stop

©C O O © © © O © © © © ©o ©
©C O O O O O © O © © © O O

set time 1 gravity -10 cmdproc on framelimit

.01 14,

%]
-
o

100

£t o ¢ IR « o B ¢ 2 N Y o+ BN # 2 Y + 2 T+ 2 Y « I « I )

® k- O DO R PR NWDND OO

O 0 N O O W =

Il L S
o W NN = O

14
14
14
14
14
i4
14
13
12
11
9.9
8.9
7.8
6.8
5.8

cmdlist plot standard set calc writegap * 2 interval # 2 cend

Table 3.17 Input commands for result set 4
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Figure 3.9 Stress profiles for result set 4 (continued)



Appendix B. B.15

™ T I T 1rvr1rJ7rrrrygr e vy TvT 1y rT1rm 1 vrrer1¥ TI Vi fTryvrq+rf7rrrfrrv o110 11U T
E = ~
g = g
i} ~

o

-

(=)

w

0

~
T N a\_u\LH
=) % ! [}
5 5 18 g
) = 483 <

_-nh’-_-__—L-—.-D-[--_—-—_—__)——-——-..-.-#----L- (=]

O ONOONOITONO ~STOANOOO-TNO QN OOONFT O OO0 O

OO v — — —0ONO-F OO O N = o o v OO+ ONONN T O — o v = ANNNND D OTNOOQOQ

) T 10 b N - OOTNO

_.4_1---_&‘-__-_1--]-- T 71 v 1T 1T ¢+ v v 1T 7 —r 3 151y r 17T
L 3
b -~
i - 3

N o
o
[+o] o]
~0 0
- =
i
st N kw
7 id
(=
a = ia
n - 1]
(S NN U N T D I O DO Y N B [ WS UV NV NN WUNNS S N 1 [V T T T U A WU S e
OTOCOOTONO MOTNO nono oNnowm
29241]1‘18665/__ 11111 VOFTNO 22‘150:.;1_.4 _9_.

Figure 3.9 Stress profiles for result set 4 (continued)
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Figure 3.9 Stress profiles for result set 4 (continued)



Appendix B. B.19
set echo off damp 0.025 0.1
start SLOPE 2, C
0120
create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 1.0 14.0 1.0 14
1.6 11.8 1.5 14
create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 2.0 10.6 2.0 14
create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 2.5 9.7 2.5 14
create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 3.0 9.0 3.0 14
create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 3.5 8.35 3.5 14
create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 4.0 7.8 4.0 14
create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 4.5 7.36 4.5 14
create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 5.0 6.95 5.0 14
create fres 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 B.5 6.6 5.5 14
create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 6.0 6.3 6.0 14
create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0.0.0 0.0 6.5 6.025 6.5 13
create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 7.0 5.8 7.0 12.1
create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 7.5 5.6 7.5 11.2
create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 8.0 5.45 8.0 10.3
create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 8.5 5.3 8.5 9.5
create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 9.0 5.2 9.0 8.6
create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 9.5 5.1 9.6 7.7
create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 10.0 b5.05 10.0 6.8
create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 10.5 5.0 10.5 56.85
create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 11.0 5.0 11.0 5.0
meshend
set time 1 gravity -10 cmdproc off framelimit 100
writegap 2000 interval 32
cmdlist plot standard set calc writegap * 2 interval # 2 cend
echo on
plot page go 32383 stop

Table 3.18 Input commands for result set 5
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07 0

create

create
create
create
create
create
create
create
create
create
meshend

set damp

track

track
track
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track

0.05

set echo off damp 0.05 0.
start SLOPE 3, C
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0.2 time

sritegap 32 interval
cndlist plot standard
echo on debug osc on

plot page go 4000 stop
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1.0 39
1.0 39
1.0 39
1.0 39
1.0 39
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1 gravity -10 cmdproc on framelimit
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set calc writegap * 2 interval =*
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Table 3.19 Input commands for result set 6
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016 0
create

create
create
create
create
create
create
create
create
create
create
create
create

" create

freeo

free
free
free
free
free
free
free
free
free
free
free
free

free

meshend

echo on

0.0 25.
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plot page go 40000
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stop
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set echo off damp 0.00125 0.006 gravity -10
start SLOPE 1, PHI, U

1.0 0.0 256.0 0.0
1.0 0.0 25.0 0.0
1.0 0.0 25.0 0.6
1.0 0.0 25.0 1.6
1.0 0.0 25.0 2.3
1.000.0 25.0 2.9
1.0 0.0 25.0 3.36
1.0 0.0 25.0 3.65
1.0 0.0 25.0 3.85
1.0 0.0 25.0 3.95
1.0 0.0 26.0 3.95
1.0 0.0 25.0 3.3
1.0 0.0 26.0 2.05
1.0 0.0 25.0 0.7

writegap 1000 interval 1000
cmdlist plot standard cend

set time 1 gravity -10 cmdproc

on framelimit
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Table 3.20 Input commands for result set 7
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Appendix B. B.28
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Figure 3.12 Stress profiles for result set 7 (continued)



Appendix B. B.29

gset echo off damp 0.00126 0.005 gravity -16
start SLOPE 2, PHI, U
0120
create free 0.0 46.5 2.0 1.0 0.0 46.56 0.0 0.0 0.23 1.0 14.0 1.0 14
1.5 11.8 1.5 14

create free 0.0 46.5 2.0 1.0 0.0 46.56 0.56 0.55 0.23 2.0 10.6 2.0 14
create free 0.0 46.56 2.0 1.0 0.0 46.56 1.556 1.0 0.23 2.6 9.7 2.5 14
create free 0.0 46.5 2.0 1.0 0.0 46.56 2.3 1.3 0.23 3.0 9.0 3.0 14
create free 0.0 46.5 2.0 1.0 0.0 46.5 2.875 1.675 0.23 3.5 8.35 3.5 14
create free 0.0 46.5 2.0 1.0 0.0 46.5 3.356 1.7756 0.23 4.0 7.8 4.0 14
create free 0.0 46.5 2.0 1.0 0.0 46.5 3.66 1.875 0.23 4.6 7.36 4.6 14
create free 0.0 46.5 2.0 1.0 0.0 46.5 3.85 1.975 0.23 5.0 6.95 5.0 14
create free 0.0 46.5 2.0 1.0 0.0 46.5 4.025 2.06 0.23 5.5 6.6 5.5 14
create free 0.0 46.5 2.0 1.0 0.0 46.5 4.125 2.075 0.23 6.0 6.3 6.0 14
create free 0.0 46.5 2.0 1.0 0.0 46.5 4.125 2.06 0.23 6.5 6.025 6.5 13
create free 0.0 46.5 2.0 1.0 0.0 46.5 4.1 2.06 0.23 7.0 5.8 7.0 12.1
create free 0.0 46.5 2.0 1.0 0.0 46.5 4.05 2.0 0.23 7.6 5.6 7.5 11.2
create free 0.0 46.56 2.0 1.0 0.0 46.5 3.9 1.9 0.23 8.0 b5.45 8.0 10.3
create free 0.0 46.56 2.0 1.0 0.0 46.56 3.726 1.8256 0.23 8.5 5.3 8.5 9.6
croate free 0.0 46.5 2.0 1.0 0.0 46.5 3.476 1.656 0.23 9.0 5.2 9.0 8.6
create free 0.0 46.5 2.0 1.0 0.0 46.5 2.9 1.26 0.23 8.5 5.1 9.5 7.7
create free 0.0 46.5 2.0 1.0 0.0 46.56 2.1 0.85 0.23 10.0 5.05 10.0 6.8
create free 0.0 46.6 2.0 1.0 0.0 46.5 1.25 0.4 0.23 10.56 6.0 10.5 5.85
create free 0.0 46.5 2.0 1.0 0.0 46.56 0.4 0.0 0.23 11.0 5.0 11.0 6.0
meshend

set time 1 gravity -10 cmdproc on framelimit 100
writegap 128 interval 128

cmdlist plot standard set calc writegap * 2 interval * 2 cend

echo on

plot page go 32767 stop

Table 3.21 Input commands for result set 8
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Figure 3.13 Stress profiles for result set 8
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B.31

start SLOPE 3, PHI, U
07 0

create free 0.0 69.5 2.
create free 0.0 69.5 2.
create free 0.0 69.5 2.
create free 0.0 69.5 2.
create free 0.0 69.5 2.
create free 0.0 69.5 2.
créate free 0.0 .69.5 2.
create free 0.0 69.5 2.
create free 0.0 69.5 2.
create free 0.0 69.5 2

echo on debug oscil off

plot page go 32767 stop

© O O O O ©O o ©

.0

set time 1 cmdproc on framelimit

e S S

1

gritegap 128 interval 1?8

© 0o 0o o o o o o
© 0o o000 o o o
o oo o o oo o o

.0

set acho off damp 0.06 0.06 gravity -10
set damp 0.00125 0.00b gravity -10

.0 69.

100

69.
69.
69.
69.
69.
69.
69.
69.
69.

o o oo oot n

O, =~ NN NN N = -

.226

.925
.25
.4256
.475
.35
.075

75

cmdlist plot standard set calc writegap =*

O O O +H B o O

2

.45 0.23
.85 0.23
.075 0.23
175 0.23
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0 0.23
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Table 3.22 Input commands for result set 9
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016 0

create
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create
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free

free
free
free
free
free
free
free
free
free
free
free
free

free

meshend

writegap 128

echo on
go 32383
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set echo off debug update on
set echo off damp 0.006 0.02 gravity -10 debug update
start SLOPE 1, C, PHI, U
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interval 128

stop
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Table 3.23 Input commands for result set 10 and 13
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Figure 3.15 Stress profiles for result set 10
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Figure 3.15 Stress profiles for result set 10 (continued)
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Figure 3.15 Stress profiles for result set 10 (continued)
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Figure 3.15 Stress profiles for result set 10 (continued)
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Figure 3.15 Stress profiles for result set 10 (continued)
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debug updaté on
start SLOPE 2, C, PHI, U
0120
create free 20.0 21.56 2.0 1.0 20.0 21.6 0.0 0.0 0.23 1.0 14.0 1.0'14
1.6 11.8 1.5 14
create free 20.0 21.56 2.0 1.0 20.0 21.5 0.6 0.556 0.23 2.0 10.6 2.0 14
create free 20.0 21.56 2.0 1.0 20.0 21.5 1.66 1.0 0.23 2.b 9.7 2.5 14
create free 20.0 21.6 2.0 1.0 20.0 21.5 2.3 1.3 0.23 3.0 9.0 3.0 14
create free 20.0 21.6 2.0 1.0 20.0 21.5 2.876 1,575 0.23 3.6 8.35 3.5 14
create free 20.0 21.56 2.0 1.0 20.0 21.5 3.36 1.775.0.23 4.0 7.8 4.0 14
create free 20.0 21.5 2,0 1.0 20.0 21.56 3.66 1.875 0.23 4.6 7.35 4.5 14
create free 20.0 21.56 2.0 1.0 20.0 21.5 3.85 1.975 0.23 5.0 6.95 5.0 14
create free 20.0 21.5 2.0 1.0 20.0 21.5 4.026 2,06 0.23 5.5 6.6 5.5 14
create free 20.0 21.5 2.0 1.0 20.0 21.5 4.126 2.076 0.23° 6.0 6.3 6.0 14
create free 20.0 21.5 2.0 1.0 20.0 21.5 4.126 2.05 0.23 6.5 6.025 6.5 13
create free 20.0 21.5 2.0 1.0 20.0 21.5 4.1 2,06 0.23 7.0 5.8 7.0 12.1
create free 20.0 21.5 2.0 1.0 20.0 21.56 4.056 2.0 0.23 7.5 5.6 7.5 11.2
create free 20.0 21.5 2.0 1.0 20.0 21.5 3.9 1.9 0.23 8.0 5.45 8.0 10.3
create free 20.0 21.56 2.0 1.0 20.0 21.5 3.726 1.8256 0.23 8.6 5.3 8.5 9.5
create free 20.0 21.6 2.0 1.0 20.0 21.5 3.476 1.65 0.23 8.0 5.2 9.0 8.6
create free 20.0 21.6 2.0 1.0 20.0 21.5 2.9 1.26 0.23 9.5 5.1 9.5 7.7
create free 20.0 21.6 2.0 1.0 20.0 21.5 2.1 0.85 0.23 10.0 5.05 10.0 6.8
create free 20.0 21.5 2.0 1.0 20.0 21.5 1.26 O, 0.23 10.5 5.0 10.6 5.8b
create free 20.0 21.6 2.0 1.0 20.0 24.5 0.4 0.0 0.23 11.0 B5.0 11.0 5.0
meshend
set time 1 gravity -10 cmdproc off framelimit 100
gritegap 5000 interval 128
cmdlist plot standard set calc writegap * 2 interval # 2 cend
echo on
plot page go 32767 stop

Table 3.24 Input commands for result set 11 and 14
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Figure 3.16 Stress profiles for result set 11
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0 70

create

create
create
créate
create
create
create
create
create

create

free

free
free
free
free
free
free
free
free

free

meshend

echo on

20.0 46 2.0 1.0 20.

20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0

writegap 2000

46
46
46
46
46
46
46
46
46

sot echo off debug update on
set damp 0.00125 0.006 gravity
start SLOPE 3, C, PHI, U

NN NN DN N NN
© 0o oo oo oo o
[ S T - T = T = Y Sy
© oo oo o oo o

interval 2500

plot page go 40000

stop

20.
20.
20.
20.
20.
20.
20.
20.
20.

©C. 0O O O O © O O ©

46

46
a6
46
46
a6
a6
a6
a6
46

set time 1 cmdproc off framelimit 100

O = N RN NN N e e

.225

.92b6
.25
.42b
.476
.36
.075

.75

©C O O K MR R RO

O 0O 0 OO O o0 0 o

.23

.23
+23
.23
.23
.23
.23
.23
.23
.23

P

D OO d s W W NN
o OO o O

.0 14,
.5 11,

o
-
o

o N ® ® o

DO M N N0 O O

.36
.96

cmdlist plot standard set calc writegap * 2 interval * 2 cend

B W W N
©C 0o 1o N O O ;o

14
14
i4
14
14
14
14
12
10

6.3

Table 3.25 Input commands for result set 12 and 15
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Figure 3.17 Stress profiles for result set 12
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Figure 3.18 Stress profiles for result set 13



o
Appendix B. B.44
rrrryt+rrrrrrrrrerqr v 11 1 T T T 1T 7T 1 1T 1T 1T 1T T°7 TIrrrrrrtr1rrri1uv1d
< < < |
=
o o~ o~
o [=]
[+ o] ©
= 0 0 0
B~ 5\
K z
F3 2
(&
[2]
~J =
1]
& =io ! o~ <l
9 [+ 4 |
=4 o i}
oy N = (8]
%] z [
(72 — k=4
S5 VN VN U VY TN T T T hm—-_—-_-__ f 1 ¢t & 1 1 ¢t 1 \7-._--.--0
DT ONDIO-T N nono oONOO OO QOO0 Q OCOOCOD
NN e e e RO N = = N O N — — I N = © — O N & 1N QIOOOTNOOQ00 OO0
i U _.___92111118646/__4%
™ rrrrrrrryqoooqgqrr 15y 11 T ____-—-.---_---,—_
k
2 =4 = = =
5 - < —
o~ o~ o
o (o] Q
© ©
Ko 0 0
~r ~ ~
[}
N 2
¥
o~
XN mR._ o~ [
i
N - o
2 z =
___-—--...-P’.n_-.__-w——u-_——_W-.—_--.- (=]
OO0 owmno ONoO OO0 _ 0000 OROVOD
244411]18669341150:_4444 3210.!.9...44:.;%864200000 COO

Figure 3.18 Stress profiles for result

set 13 (continued)
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Figure 3.18 Stress profiles for result set 13 (continued)
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Figure 3.18 Stress profiles for result set 13 (continued)
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Figure 3.19 Stress profiles for result set 14
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Figure 3.20 Stress profiles for result set 15




Appendix C. C.1

APPENDIX C

PROGRAM SLICES
STRUCTURE CHARTS

Appendix C is a series of structure charts for the procedures and functions
that make up program SLICES. The structure charts consist of various boxes
linked by lines. The boxes represent logical units of code and the lines represent

the flow of control from one part of the program to another.

The rounded boxes are descriptive, indicating the start and end of the charts.
They may also be used to show logical processes that have not been broken down

in to their constituent parts. In this respect they may be viewed as comments.

" The rectangular boxes that are double sided indicate a call to another pro-
cedure and hence a flow to another chart. The normal boxes however, represent

logical processes within the confines of the current chart.

The flow of program control is always from the top to the bottom of the chart.
The current chart is exited when the bottom is reached. Control then falls back to
a previous chart. Flow, within the chart is along the joining lines. At a junction
of lines, flow continues by turning left. On reaching the end of a branch the flow
returns to the last junction and continues along the righthand branch. The case

and loop structures are, however special constructs.

Loop structures are shown by long loops eminating from a control box. The
control box indicates the termination condition. Flow continues around the loop
in a clockwise direction. Case structures are shown by a contol box with a series of

diamond decision symbols. The decision diamonds are normally associated with
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two boxes. The one to the left on the chart is the case condition. If this condition
is met then program flow continues by branching left, as normal. If the condition

1s not met then flow continues down the chart.

Some explanatory text is associated with each chart, which is organised in
the same order as the procedure headers occur in the program. This causes some
local procedures to appear later here than in the source. The charts for procedure
headers that have the forward directive are placed in the correct logical sequence,

that is with the later definitions.
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‘ START ERROR SIKRLE >
jl REVRITE SERTON I

QUTPUT KEJSAGE

'EKDE!&ORSIKH.E)

Figure C.1 Chart for procedure error.simple

PROCEDURE error_simple(ob, caller: string(40)); This is a global procedure and
immediately halts the program after the production of an explanatory message.

This is only called when an irretrievable situation occurs.

PROCEDURE word_scan(var cmds_in : text; var word:string(12)); This global
procedure is called from repeater, parameters and get.command. It reads a set
of consecutive non-blank characters to form a word of maximum length 12, and
passes it back to the calling procedure in word. It reads from the file device
unit buffer given in cmds_in and, if reading from a terminal prompts the user
for a command. This procedure looks after end of line conditions and skips all
blanks between words and all comments by calling the local procedures skipblks

and skipcomment.

PROCEDURE skipblks(VAR ch : string(1)); A local procedure to word-scan, this

simply reads characters until a non-blank is encountered, this is returned in ch.

PROCEDURE skipcomment(VAR ch : string(1)); A local procedure to word_scan,
this reads characters until the end comment symbol ’}’ is encountered. This will

recursively call itself on encountering another comment symbol ’{ .
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‘ START YORD SCAN )

——I ADD CHARACTER TO YORD |
READ CHARACTER

IF WOT BLAMK

9, ADD CHARACTER TO YORD

END YORD SCAN

Figure C.2 Chart for procedure word.scan

C.4
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‘ START SXIPBLKS ’
————m"uli O’lARACTR}

YHILE A BLANX

—“i YHILE NOT ECL ARD A Bl.ANX—l

IF EQL AKD NOT EQF

‘ END SXIPBLKS }

Figure C.3 Chart for procedure skipblks

PROCEDURE start_shut(Var cmd_i : text; starting : start-type); FORWARD;
Procedure start_shut is defined later, but is headed here as it is called from pro-

cedure trapper.

PROCEDURE control(var cmd-i : text); FORWARD; Procedure controlis defined

later, but must be headed before reference can be made to it.

PROCEDURE trapper; This is called from procedures cycle and get_command, and

is executed when an attention interrupt is passed by the system to the program.
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STARY SXIPCOIMENT

YHILE NOT ECC
————{HHILENDTEGLANDNIH’EIIF ‘

READ CHARACTER

IF EOL AKD XOT EC?

END SKIPCOMXENT

Figure C.4 Chart for procedure skipcomment

The user is prompted for confirmation before the run is terminated by calling

start_shut.

PROCEDURE get_command(caller : call_type; var quiter : boolean; var retcom :
com_type; intcall : string(12); cmds_ig : text);
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‘ START TRAFPER )

YRITE ATTH PRORPT

UNTIL ROT BLARX

- READ CHARACTER

Figure C.5 Chart for procedure trapper

This procedure is called with five parameters. caller designates which com-
mand set is valid. quiter is defined on exit and determines if the calling procedure
should exit or continue with another command from the same set. retcom, on
exit, contains the valid command scaler value. intcall, on entry, is either a null or
contains the literal value of the internal command to be executed. cmds_ig is the

file device unit buffer pointer from which input should be read.

This is the heart of the ICL parser, it is called under three conditions, inter-

nally, externally and recursively on error.

Under internal use the parameter intcallis set to the command. Under normal
use the procedure word_scan is used to obtain a word from the file device unit buffer
pointer in cmds_ig. The word obtained (or intcall) is checked against a string of all
the valid commands and the resulting command type (including null if the word is

in error) is compared to those which are relevent to the calling procedure. There
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17 KOT I QURRDIT LISY

(e ]
$——4wm =]

|:§:|

omn, |

cocwa |

\_/
———— s 5 o rmo Fs I——-[savumn |
——lmmmmm Huamj

'BG‘IETCW:D ’

Figure C.6 Chart for procedure get.command

C.8
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are three possible results, a relevent valid command, an irrelevent valid command

and lastly one which is invalid.

In the first of these results, the routine exits with guiter set to true onlyif the
command was internal. In the second, gquiter is set and the word is placed into the
variable gi.neztword, to be processed the next time get_command is called normally.
In case three, the user is notified and get_.command called (direct recursion) with
the error communication file device unit buffer to provide a replacement. If a
replacement is received, procedure control is called (indirect recursion) and input
continues from the error communication. If further errors occur thén more levels
of recursion take place. The error condition is terminated by return, when the
procedures fall back with this in the variable gi.nextword so that it is continuously
processed until the first invocation of get.command is exited. At this point exit
is made back to procedure control with quiter set to false to prevent program

termination.

<87ARI’0ROFF )
GETCO-‘«‘HAND I

| OTHERVISE I— -

SET ONOFF 7O TRLE

SET ONOFF TQ FALSE

@)

Figure C.7 Chart for function onoff
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FUNCTION onoff(var cmd_i : text) : boolean; This global function calls get.com-
mand. The two possible commands are om, which causes this to return true, and

off which causes this to return false.

‘ START KEAQZRS >

YRITE RC HEADERS

YRITE RC VALUES

I

END KEADERS

Figure C.8 Chart for procedure headers

PROCEDURE headers; This global procedure initiates the headings for the run-

ning commentary.

PROCEDURE factors-of-safety(el : ptr_type); This global procedure calculates
the factors of safety for the base contacts of each of the slices. These values are

written to the file attached to unit 7, the debug output file.

FUNCTION sign(val,donor:real) : real; This function receives two real values, and
returns the value of the first with the sign of the other.

PROCEDURE initialise_globals; This is executed only once and sets the values of

all the global variables to zero, default or nil values.

All of the preceeding modules are global in scope, that is they may be called

from anywhere within the program. There is one restriction to this, they may only
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START FACTORS OF SAFETY ’

——{SET\.IP LOCAL VARIABLE?I
————LUH!LE NOT EXD OF SLICES I

]
| IF SEAR STRESS IS SuLL I

< SET FOS 70 §
CALCULATE FOS

IF FOS IS 1
| Ml

<>—| ADD | T MLDGER AT LIMIT
—’liﬂn 1 TO MUXSER NOV AT LIKIT I
{ NEXT l

),

(ENDFAC!(IRSOFSAFETY ’

Figure C.9 Chart for procedure factors_of-safety

be called after they have been defined. In the cases of control and start_shut the
FORWARD directive on the headings indicate that the definitions are provided

later in the source code. The remaining modules are only called from control.
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(smsr sin )
IF ONOR NOT ZERO
<>——‘ GIVE VALLZ OOXORS SIGN ]

00 NOTHING TO VALUE

( END SIGN ’

Figure C.10 Chart for function sign

GTART INITIALISE ILUBALS)

SET TRAPPING QN

OFEN FILES

———l INITIALISE GLOBAL VARIABLES

@m INITIALISE G.OBALS)

Figure C.11 Chart for procedure initialise

PROCEDURE plots(var cmd_i : text; plot.command : string(12)); This routine
contains the calls to the *ghost library subroutines. The structure of this routine
is simple and consists of a repeat loop. Essentially two processes are carried out
in the loop. Firstly get_command is called, and then a case statement causes the
relevent command to be executed. It is within the case statement that the local

procedures are called. The repeat loop is exited when the value passed back from

get_.command in plotquit is true.
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‘ START PLOTS >
UNTIL TIKE YO QUIT
[eresoms |

CASE COMHAND OF

T ey

STANDARD - <>—— H!AH ALOT I FORCE PROFILE BASE I
[ s o e

PLOTSTOR -

OTHERVISE -

( EXD RLOTS ’

Figure C.12 Chart for procedure plots
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During internal command processing plots is called with plot_command set to

a literal value and this is passed directly to get.command in the parameter list.

PROCEDURE map_space(ver cmd_i : text; sp-comst : string(12)); This is a local
procedure to procedure plots. map_space has the same structure as plots, except
that it contains two case statements. The first manipulates the plot space and the
second the mapping onto this plot space. The repeat condition is dependent upon

the value of mapquit, which is passed back by get_command.

( START SETUP PLOT ’

< NAPSPAE VERTICAL I
NAPSFAG HORIZONTAL I

EXD SETUP PLOT

Figure C.14 Chart for procedure setup_plot

PROCEDURE setup_plot; This is a local procedure to procedure plots. The intial

format is set up and the plot output stream turned on.
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Figure C.13 Chart for procedure map_space
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Figure C.15 Chart for procedure disp_plot

‘ START FRAN FLOT >
[ i | —— [ ]

ORAY FRAKE
————" HAPSPACE FULLNUSCALES “

( END FRAN PLOT ’

Figure C.16 Chart for procedure fram_plot

PROCEDURE disp_plot(el : ptr_type); This is a local procedure to procedure plots.
A plot of the slice body displacements is produced.

PROCEDURE fram.plot; This is a local procedure to procedure plots and produces

a frame around the main plot space.



Appendix C. C.17

‘ STM,",S_L_I_Z:LO,T )

——'_\JHILE NOT END OF SLICE LlST—l

]

_—={ ORAY YATER TABLE SEGMENT |

( exo sLICE PLOT )

Figure C.17 Chart for procedure slice.plot
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Figure C.18 Chart for function utohead

PROCEDURE slice_plot(el : ptr.type); This local procedure to procedure plots

causes the slice geometry to be plotted.

FUNCTION utohead(el : ptr_type); real; This local function to procedure slice_plot

caonverts the pore water pressure to an equivalent height for plotting of the water

table.
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Figure C.19 Chart for procedure force_profile
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PROCEDURE force_profile(ele : ptr_type; dire : dir_of-contacts); This is a local
procedure to procedure plots. force_profile produces formats by calling map_space
internally and plots the stress profiles for either the base or the side contacts

according to the value of dire being either based or righthand.

(starr T A )
——{ SET LINITS TO HACHINE HAXIHUYS

‘ EXD INIT R4 }

Figure C.20 Chart for procedure init.fm

PROCEDURE init_fm; A simple procedure for initialising stress mapping values
before finding maxmimum and minimum values for scaling the stress profiles. It

is local to force_profile.

‘ START PTRD FM )

CASE DIRECTION OF

]

RIGHT -

USE BASE POINTER

USE RIGHT POINTER

‘ENDFTRDFN }

Figure C.21 Chart for function ptrd_fm
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Figure C.22 Chart for procedure lims_fm

FUNCTION ptrd_fm(elem : ptr_type; dire : dir_of-contacts) : con_ptr; ptrd_fm is
local to force_profile and finds the contact pointer for an element depending on

whether side or base contacts are being plotted.

PROCEDURE lims_fm(VAR miny, mazy : real); This adds a ten percent margin

to the stress mapping values and is local to force_profile.

PROCEDURE cycle(var cmd_i : text); This procedure controls the calculation
sequence. The structure of cycles consists of a small block dealing with reading
in the number of cycles to be executed, followed by a while loop to execute them.
The while loop terminates either when the requested cycles are complete or when
it is pointless to go further. The statements within this loop fall into four blocks.
The first block calls fordsl, consolsl and increments the loop counters. The second,
an if structure, determines if a running commentary update is due, executes this
and calls factors_of_safety. The third, another if block, determines if command
list processing is due. If it is, a repeat structure is entered which continually
calls control until gi.cmdend is set by cend. control is called with the file device
unit buffer belonging to the command list secondary command file. The fourth
block moniters the behaviour of the maximum slice displacement. If this value
is < 10714 or > 10°% or has stayed almost constant for 100 cycles then the while

loop will terminate. After execution of the while loop the maximum displacement
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state is reviewed and a message written to the running commentary for each of

the three value cases outlined above.

PROCEDURE fordsl(el : ptr_type); As one of the two main calculation procedures
this is local to cycles. The force displacement law is defined here. This is executed
for each contact by combining a while and for loop to traverse the slice list and

the contacts for each element.

(st Feovsase )

—-l HHILE KT BAD OF SLICE LIST |

——-@mw.m msmcaen@
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Figure C.25 Chart for procedure fconsolsl

PROCEDURE feonsolsl(el : ptr_type); The second of the two calculation proce-
dures, this defines the motion law for the slices. The slice list is traversed using a

while loop so that the law is executed for each slice.

PROCEDURE start_shut(var cmd_i : text,; starting : start-type); This procedure
controls starting and stopping procedures and looks after meshing, contact creation

and reading to and from the restart files. The procedure consists of a single case
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Figure C.26 Chart for procedure start.shut
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statement with four parts, one for a new run, stopping, restarting, and updating
a restart file. The procedure plots is referred to several times with internal type

calls.

PROCEDURE update_area(el : ptr_type); This is local to start.shut and is respon-
sible for setting up the contacts between the slices as well as with the platen. The

slice list is traversed using a while construct.

‘ START UPDATE HESSAGE >
1F OEBUGGING

<> YRITE CONTACT 1womrlm41

‘ END UPDATE KESSAGE )

Figure C.28 Chart for procedure update.message

PROCEDURE update_message(direction : hed-type; el : ptr_type; cont : con_ptr);
update_message is local to update_area and generates debug contact information

for each contact as it is created during an initial or restarted run.

PROCEDURE cold_contact(el : ptr_type direction : hed_type; cont : con_ptr);
cold_contact initialises the contact parameter for a new contact during a cold, that

is, an initial run.

PROCEDURE get_apez(var base, oater : corn_ptr; number : integer); This pro-
cedure creates the corner doubly linked rings, the number indicates the number
of corners to be created. The procedure not only produces complete rings for the
slices but can splice corners into such a ring at any time. This latter facility is
exploited in creating the platen corner ring. This procedure is local to start_shut

and is called from cre_slices and cre_platen.
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Figure C.27 Chart for procedure update_area

PROCEDURE mesh; mesh executes the command input dealing with the creation

of slices. The structure is that of plots, except that the repeat loop is exited
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Figure C.29 Chart for procedure cold-contact
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Figure C.30 Chart for procedure get_apez

C.27

when meshquit is explicity set by the user by the meshend command. The case

statement has two options, one for creating and one for quiting. This procedure

calls cre_slice.
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Figure C.31 Chart for procedure mesh

PROCEDURE cre_platen(el : ptr_type); This local procedure to mesh creates the
platen, it is called after all the slices have been created. For each slice in the slice

list it adds corners to the platen corner ring by calling get-apez.

PROCEDURE cre_slices; get.command is called to ascertain the slice type and
a case statement with two options creates the slice according to the type. The
element values are initailised to zero and the corner rings created. Once this has

been done centres of gravity and masses are found by traversing the corners.

PROCEDURE read_restart_file; This procedure reads a restart file, it is local to
start_shut and calls no other procedures. The structure is simple, the repeat and

command list files are emptied and the restart file is set to the beginning. Following
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Figure C.32 Chart for procedure cre_platen

this a while loop executes until the end of the restart file is reached. Within the
loop, a record is read from the file and a case statement option reinterpretes the

buffer contents according to the tag field on the buffer record type.

PROCEDURE write_restart_file;, This procedure writes a restart file and is local
to start_shut. The restart file is produced in a standard manner. Firstly five sets
of general information are moved to the buffer and written. Then, each line of the
command list file and the repeat structure file is set up and written. Following
this write_r_el is called twice, once for the slice list and then for the platen, and

finally the restart file is finished with an end of file message.

PROCEDURE write_r-el(el : ptr-type; c:char); This local procedure to write.re-
start_file recieves the base of an element list in the parameter el This list is
traversed and the information for each element is written to the restart file. Fol-
lowing the element data, the righthand and base contact information is written,

and lastly the corner rings are traversed and the coordinates added to the file.
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Figure C.33 Chart for procedure cre_slices

PROCEDURE complete; This causes some general information to be written to

the running commentary.

PROCEDURE debug-slice(var cmd_i : text); This procedure produces or arranges
for the production of debugging information. The structure is the same as for plots,

a repeat containing a case statement. There are twelve case options, mirroring the
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Figure C.35 Chart for procedure write.restart_file



Appendix C. C.33

‘ START HRITE R EL ’

YHILE ROT EXD OF SLICE LIST ]

—————-I SAVE SLICE INFORMATIM—l
‘——-‘imaﬂ CONTACT EXISTS ]

O SAVE CONTACT

——l IF BASE CONTACT EXISTS I

I

GET FIRST CORMER

UNTIL ALL CORNERS DINE |

SAVE CORKER

E
:
;

(exD WRITE R BL )

Figure C.36 Chart for procedure write_r_el

twelve debug commands. Reference is made to two local procedures, write_con

and write_sli for the production of information.

PROCEDURE write_con(el :ptr_type); This is local to debug-slice and produces
information for each contact, wr_con is called for each contact by traversing the

data structure.
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Figure C.37 Chart for procedure complete

PROCEDURE wr-con(el : ptr-type; con : con_ptr); This is local to write_con and

writes out the contact information for a single contact.
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GET WEXT SLICE

Figure C.41 Chart for procedure write_sli

PROCEDURE write_sli(el :ptr_type); This is local to debug_slice and produces slice

data for each slice.

PROCEDURE parameters(var cmd-i : text); Parameters deals with the execution

of the set commands. The structure is the same as plots, the case statement
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Figure C.40 Chart for procedure wr-con

containing twelve options. Most of these involve the prompting for, and reading in

of parameter values. One option, the calculator refers to the procedure calculator.
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Figure C.43 Chart for procedure calculator

C.38

PROCEDURE calculator; This is local to parameters and enables several of the

problem parameters to be altered by calculation. The structure is that of plots

with a case statement of six options refering to the function intcalc, which performs

the calculation. On return from intcalc the new value is placed in the variable to

be changed.

FUNCTION intcalc(op : real): real; This is local to the procedure calculator and

recieves one value, the operand, the variable to be altered. get-command is called
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Figure C.44 Chart for function intcalc

to obtain the operator and a case option executed accordingly. The result of the
simple calculation is written to the running commentary and then returned to the

calculator.

PROCEDURE repeater(var cmd_i : text); This procedure is called from control
during the execution of the repeat command. Initially the file -sass.rep is emptied
and the number of repeats read. A repeat loop calling get_.command is used to copy
the input from the primary source to the secondary. The repeat facility is invoked
by means of executing a for loop the number of times requested. Within this,
the variable gi.reptend is set to false, and control is called from within a second
repeat loop until gi.reptend is true. The file device unit buffer for the secondary
command source is passed to control on invocation. gi.reptend is set to true on

encountering rend in procedure control.
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Figure C.45 Chart for procedure repeater

PROCEDURE control; The structure consists of a call to get_command followed

by a case statement. Each case option refers to a permissible level one command.

PROGRAM SLICES Initialisation of the program variables is carried out first
by calling initialise_globals, this sets all global variables to zero or default values.
headers is called next to initiate the structure of the running commentary. The
outermost control structure of the program then follows. This is a repeat loop

that calls the procedure control. The loop termination condition can never be
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Figure C.47 Chart for program SLICES

true, so this is a repeat forever construct. The program, however, does closedown

in procedure start_shut or error_simple. Procedure control is called with the file

device unit buffer pointer for the primary input command file.
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APPENDIX D

PROGRAM SLICES

program slices(debug.o, sercom);
%include est8:u.ghost.lib
%include trap

const
led_pos = 2;
tit_pos = 4;
req._pos = 6;
fra_pos = 7;
plo_pos = 8;
cyc_pos = 9;
com_pos = 11;
mes_pos = 12;
fos_pos = 13;
err_pos = 14;
tot_pos = 17;
fil_pos = 20;
pro-pos = 16;

pos-str =’ ?’;
clearoff = ° .0?;

curson =’ ,17;
maxcycle = 1000000;
commands = {onoffer}
’null on off * {onoffer}
’bottom lowermiddle uppermiddle top picture > |
‘horizontal vertical plain full fullnoscales’ ||
’zoom * 1 {map}
’initialise slices displacementforces standard I
’page  border map endplot ' {plot}
’free track > {craate}
‘meshend creatse > 1 {mesh}
= * / + - ]
A ? >l {operater}
’echo cmdproc  overwrite framelimit writegap ° |
*interval cmdlist  gravity damp time !
‘calculate °* || {set}
’contacts  general flagson  flagsoff update '
‘motion consolidate ford cycle trace .l
’oscillate || {debug}
’set cend rend restart save l
’start go plot repeat debug > I
’stop return >, {control}

type

com_type = (null, on, off, lowerp, midlop, midupp, upperp, piccie, horiz,
vertic, plain, whole, fnosc, zoom, init, slices, displot,
forceplot, standard, page, frames, maps, plotstop, free, track,
meshend, create, equal, mult, divid, plus, minus, power, enquiry,

echo, listpr, over.rf, framlim, cyclegp, cmdint, cmdlist, gravity,
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fdamp, ptime, calc, con, gen, fon, fof, upd, mot, csl, fod, cyc,
tra, osc, sets, cend, rend, rest, save, star, cycl, plot, rept,
debg, stop, retur);
call_type = (errorer, onoffer, mapper, plotter, mesher, creater, operter,
calcter, paramer, debuger, contler);
start-type = (cold, warm, shutdown, keep);
dir.of_contacts = (righthand, based);
ptr.type = @element_type;
con.ptr = @con-type;
corn_ptr = @corn_type;
vector_type = record
X, y: real
end;
coord_type = record
Xc, yc: real
end;
con.type = record
consol: record
ns, ss, lims, pp: real
end;
dampf, sine, cose, con.len: real;
failed: boolean;
corn, edge: corn.ptr;
other: ptr_type;
end;
corn.type = record
c: coord.type;
cw, aw: corn.ptr
end;
element_type = record
posn: coord-type;
force, s: vector_type;
data: record
phi, mass, sidec, cohes, sphi, rho, k, pwp, spwp, e:
real;
sliceno: integer;
typ: free .. track;
end;
contacts: record
right, base: con.ptr
end;
next: ptr.type;
apexes: corn.ptr;
end;
cycle_type = 0 .. maxcycle;
hed_type = string(80);
grid-type = record
xmin, xmax, ymin, ymax: real
end;
gen.info_type = record
heading: hed.typs;
tstep: real;
nextword: string(12);
reptend, cmdend: boolean;
motioning, consoling, updating, cycling, fording, tracing,
oscing: boolean
end;
option.type = record
plot.lims: grid-type;
vert: boolean;
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meshtbs: record
xb, yb, xt, yt: real
end;
grav: vector_typo;
damp, damps: real;
cyclegap, cycle_interval: cycle_typs;
cmdprocessing, echo, rf_over: boolean
end;
sum_type = record
sc, scold, scsofar: real
end;
totals_type = record
cycles, restarts, slices, cons, pics, pages: integer
end;

const
nilv = vector-type(0, 0);
nilc = coord-type(0, 0);
nilhed = ’ ?;
nilgrid = grid-type(0, 0, 0, 0);

var
repts_i, cycmd.i, oscil.o, debug.o, trace.o, sercom: text;
rf_first, quit, qdum, screen: boolean;
gi: gen_info_type;
opt: option_type;
sum: sum-type;
total: totals-type;
plspace, plot_space, force.map: grid type;
platen, slice_list, eolist: ptr.type;
apex, platapex: corn.ptr;
{v**v*m***av*#w*¢¢¢*¢*v##w#¢¢¢¢¢¢¢¢¢¢m¢¢v BEGIN GLOBAL ROUTINES }

procedure error_simple(ob, caller: string(40));

begin
if gi.tracing
then

writeln(trace_o, ’Entered procedure ERROR_SIMPLE’);

rewrite(sercom, ’UNIT=11’);

writeln(sercom, ’> Error ’, ’’’?’, ob, ’’?’’, ’ found in routine ’, caller,
b !);

halt;

end {error-simple};

procedure word_scan(var cmds.in: text; var word: string(12));

const
blank =’ ?;

var
ch: string(1);

procedure skipblks(var ch: string(1));

begin
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if gi.tracing
then
writeln(trace_o, ’Entered procedure SKIPBLKS’);
ch :=77;
while ch = blank do begin
while (" eoln(cmds.in)) AND (ch = blank) do
read(cmds-in, ch);
if (eoln(cmds_in)) AND (~ eof(cmds-in))
then
readln(cmds_in) ;
if eof(cmds_in)
then
error_simple(’ End of file causes return to mts’, ’skipblks’);
end;
if gi.tracing
then
writeln(trace_o, ° EXIT procedure SKIPBLKS’);
end {skipblks};

procedure skipcomment(var ch: string(1));

begin
if gi.tracing
then
writeln(trace_o, ’Entered procedure SKIPCOMMENT’);
while ch " = ’}’ do begin
vhile (" eoln(cmds_in)) AND (ch ~ = ’}*) do
read(cmds.in, ch);
if (eoln{cmds.in)) AND (~ eof(cmds.in))
then
readln(cmds_in) ;
if eof (cmds_in)
then
error_simple(’end of file causes return to mts’, ’skipcomment’);
end;
skipblks(ch);
if ch = {°
then
skipcomment (ch);
if gi.tracing
then
writeln(trace_o, * EXIT procedure SKIPCOMMENT’);
end {skipcomment};

begin {word-scan}
if gi.tracing

then
writeln(trace_o, ’Entered procedure WORD_SCAN’);
word := ’’;
ch := ??;
if screen
then begin
writeln(output, substr(pos_str, 1, err.pos + 2),
’ Input a command please ..... RN ’);
reset{cmds.in, *UNIT=11,INTERACTIVE’);
repeat

read(cmds_in, ch)
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until ch 7 = ??;
end
else
skipblks(ch);
while (* eoln(cmds_in}) AND (ch © = blank) do begin
if ch = *{°
then
skipcomment{ch);
word := word || ch;
read(cmds_in, ch);
end;
if ch " = blank
then
word := word || ch;
if opt.echo
then
writeln(output, substr(pos_str, 1, com.pos), ’ Command :
’ )
if (eoln{cmds-in)) AND (= eof(cmds.in))
then
readln(cmds_in);
if gi.tracing
then
writeln{trace.o, ’* EXIT procedure WORD_SCAN >, word);

end {word-scan};

procedure start-shut(var cmd-i: text; starting: start_type);
forward;

procedure control(var cmd-i: text);
forward;

procedure trapper;

var
ch: char;

begin
if gi.tracing
then
writeln(trace_o, ’Entered procedure TRAPPER’);
writeln(output, substr(pos.str, 1, err_pos),

? Attn! : Do you want to stop 7’);
reset(sercom, *UNIT=11’);
repeat

read(sercom, ch);
until (ch =~ = ?);
trpreset;
if ch = 'y’
then
start-shut (input, shutdown);
writeln(output, substr(pos_str, 1, err._pos),
> ));
if gi.tracing
then -
writeln(trace.o, * EXIT procedure TRAPPER’);

’, word,
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end {trapper};

procedure get_command(caller: call.type; var quiter: boolean; var retcom:
com_type; intcall: string(12); var cmds.ig: text);

const
last = 816;

var
ifail: boolean;
beg, loca, indes: 0 .. 1200;
this_com: string(12);

begin
if gi.tracing
then
writeln(trace.o, ’Entered procedure GET_COMMAND ’, intcall);
this_com := intcall;
if this.com = ?*?
then begin
this.com := gi.nextword;
gi.nextword := *’;
end;
if this_com = *°
then
word-scan(cmds_ig, this_com);
if trap
then
trapper;
beg := 1;
repeat
indes := index(substr(commands, beg, last - beg + 1), this_com);
loca := indes + beg - 1;
if loca MOD 12 =1
then
indes := 0
else
beg := loca + 1;
until (indes = 0) OR (last - beg < 12);
retcom := com_type(loca DIV 12);
case caller of

errorer:

ifail := NOT (retcom IN on .. retur );
onoffer:

ifail := NOT (retcom IN on .. off );
mapper :

ifail := NOT (retcom IN lowerp .. zoom );
plotter:

ifail := NOT (retcom IN init .. plotstop, zoom );
mesher:

ifail := NOT (retcom IN free .. track );
creater:

ifail := NOT (retcom IN meshend .. create );
operter:

ifail := NOT (retcom IN equal .. enquiry );
calcter:

ifail := NOT (retcom IN cyclegp, cmdint, gravity .. ptime );
paramer:

ifail := NOT (retcom IN echo .. calc );
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debuger:
ifail :
contler:
ifail :
end;
if ifail
then begin {some thing’s arong}
if (retcom = null) OR (caller = contler)
then begin {invalid command}
screen := true;
writeln(output, substr(pos.str, 1, err_pos), ’ Error °’,
this_com, ’’?’, ’ found in routine ’, ’get_command )
writeln(output, ’Input corrected commands ... <RETURN> ...’);
get_command (errorer, ifail, retcom, ’’, sercom);
while retcom ~ = retur do begin
gi.nextword := substr(commands, ord(retcom) * 12 + 1, 12);
control(sercom); {control returns with nextword = returnlkeyuord}
get_command(errorer, ifail, retcom, gi.nextword, sercom);

NOT (retcom IN con .. osc, slices );

NOT (retcom IN sets .. retur );

3222
]

end;
screen := false;
gi.nextword := ’return’;
quiter := false;
end
else begin {valid command wrong caller}
quiter := true;
gi.nextword := this.com;
end;
end
else

quiter := intcall " = ’’; {alls ok}
if gi.tracing
then )
writeln(trace.o, > EXIT procedure GET_.COMMAND’);

end {get-command};

function onoff(var cmd.i: text): boolean;

var
onof: com-type;

begin
if gi.tracing
then .
writeln(trace._o, ’Entered procedure ONOFF’);
get-command(onoffer, qdum, onof, ’’, cmd-i);
case onof of
on:
onoff := true;
off:
onoff := false;
otherwise;
end;
if gi.tracing
then
writeln(trace_o, * EXIT procedure ONOFF’);

end {onoff};
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procedure headers;

begin
writeln(output, clearoff);
writeln(output, substr(pos_str, 1, led_pos),

> PROGRAIM SLICES RUNNING COMMENTARY ON : °);

writeln(output, substr(pos.str, 1, tit_pos), ’ ’, gi.heading);
writeln(output, substr(pos.str, 1, reg.pos), ° 0 cycles requested’);
writeln(output, ’> ’, total.pages: 6, > frames plotted’);
writeln(output, * °>, total.pics: 6, ’ plots types drawn’);
writeln(output, ’ ’>, total.cycles: 6, > cycles and still counting!?’);
end {headers};

procedure factors.of-safety(el: ptr.type);

var
fos: real;
atlim, natlim: integer;

begin
atlim := 0;
natlim := 0;
writeln(debug.o, total.cycles: 86,
’Slice no FOS shear normal limit pup  targu’);
while el ~ = nil do
with el@, contacts.base@, consol do begin
if abs(ss) < 1e-20

then
fos =1
else
fos := abs(lims / s8);
writeln(debug-o, °’ ’, data.sliceno: 10, fos: 10, ss: 10, ns: 10,

lims: 10, pp: 10, data.pwp: 10);
if fos < 1.0005

then
atlim := atlim + 1
else
natlim := natlim + 1;
el := next;
end;

writeln(output, substr(pos_str, 1, fos_pos), ’° Number slices at limit ’,
atlim: 4, ’ not at limit ’, natlim: 4);
end {factors-of-safety};

function sign(val, donor: real): real;

begin
if donor “ =0
then
sign := abs(val * donor) / donor
else
sign := val;
end {sign};

procedure initialise_globals;
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begin
trapon;
reurite(debug_o, *UNIT=7’);
rewrite(trace.o, UNIT=8’);
reurite(oscil_o, *UNIT=10’);
rewrite(cycmd-i, ’FILE=-sass.cmd.i’);
quit := false;
rf_first := true;
with gi, plspace, opt, total, opt.meshtbs do begin
reptend := false;
cmdend := false;

tatep := 0;
heading := nilhed;
nextword := ’?;
motioning := false;

updating := falr-e;
cycling := false;
fording := false;
oscing := false;

tracing := false;
consoling := false;
plspace := nilgrid;
forcemap := nilgrid;

plot.space := nilgrid;
plot.lims := nilgrid;

xb := 0;

yb := 0;

xt := 0;

yt := 0;

vert := true;
grav.x := 0;
grav.y := 1;

damp := 0;
cyclegap := 100;
cycle.interval := maxcycle;
echo := true;
rf_over := true;
cmdprocessing := false;
sum.sc := 1E70;
sum.scold := 0.0;
sum.scsofar := 0;
slices := 0;

cons := Q;

cycles := 0;
restarts := 0;
pics := 0;

pages := 0;
platen := nil;
gslice.list := nil;

apex := nil;
platapex := nil;
end
end {initialise_globals};
{***#****#*##w###****#**##***##**#**#*##* END GLOBALS }

{ﬁl****###***##*###*###*##**########*##### BEGIN PLOTS }

procedure plots{var cmd-i: text; plot.command: string(12));



Appendix D. D.10

var
plotcom: com.type;
plotquit, writing: boolean;

procedure map-space(var ¢md-i: text; sp.comst: string(12));

consgt
paph-space = grid_type(0.06, 0.96, 0.05, 0.65);
papv-space = grid type(0.15, 0.76, 0.06, 0.96);

var
quartht, htratio: real;
sp.com: com.type;
map.sp, plt-sp: grid.type;
mapquit: boolean;

begin
if gi.tracing
then
writeln(trace_o, ’Entered procedure MAP_SPACE’);

repeat
get_command(mapper, mapquit, sp_com, sp-comst, cmd.i);
with plt.sp do begin
plt.sp := plot_space;
quartht := 0.9 * (ymax - ymin) / &;
case sp-com of
horiz: begin
opt.vert := false;
plot_space := paph._space;
plt-sp := plot_space;
quartht := 0.9 * (ymax - ymin) / 4;
end;
vertic: begin
opt.vert := truse;
plot_space := papv.space;
plt-sp := plot_space;
quartht := 0.9 = (ymaxz - ymin) / 4;
end;
lowerp:
ymax := ymin + quartht;
midlop: begin

ymin := ymin + quartht;
ymax := ymin + quartht
end;

midupp: begin
ymin := ymin + 2 % quartht;

ymax := ymin + quartht
end;

upperp: begin
ymin := ymin + 3 * quartht;
ymax := ymin + quartht
end;

piccie: begin
ymin := ymin + 2 * quartht;
ymax := ymin + 2 * quartht
end;

otherwise;

end;
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if sp-com ~ = plain
then
pspace(xmin, xmax, ymin, ymax);
if ymax - ymin < 1E-20

then
htratio := 1
else
htratio := (xmax - xmin) / (ymax = ymin);
end;

with map_sp do begin
map_sp := plspace;
case sp-com of
lowerp, midlop, midupp, upperp: begin

ymin := force_map.ymin;

ymax := force-map.ymax;

end;
piccie, horiz, vertic, whole, fnosc:

ymax := ymin + (xmax - xmin) / htratio;
zoom:

with plspace do begin

if screen
then
writeln(output, substr(pos_str, 1, pro_pos),
> Enter xmin, xmax, and ymin ...’);

read(cmd-i, xmin, xmax, ymin);
ymax := ymin + (xmax - xmin) / htratio;
map-sp := plspace;
end;
plain: begin
map-sp := nilgrid;
xmax := 100;
ymax := 100;
end;
otherwise;
end;
ctrmag(10);
map(xmin, xmax, ymin, ymax);
end;
if (sp_com
then
scales;
border;
until mapquit;
if gi.tracing
then
writeln(trace.o, > EXIT procedure MAP.SPACE’);

end {map_space};

= fnosc) AND (sp-com ~ = plain)

procedure setup_plot;
sets up plotting parameters }
suitable for a4 size paper / laser printer}
called from either start or restar }
end of line }

ey e, e ey

begin
if gi.tracing
then

D.11
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writeln(trace.o, ’Entered procedure SETUP_PLOT’);
writeln(output, substr(pos.str, 1, mes.pos - 1));
paper(1);
cspace(0.00, 1.00, 0.00, 1.00);
if opt.vert
then
map_space(cmd_i, ’vertical?)
else
map_space(cmd_i, *horizontal’);
map-space(cmd-i, ’zoom’);
blkpen;
if gi.tracing
then
writeln(trace.o, *> EXIT procedure SETUP.PLOT’);

end {setup_plot};

procedure disp-plot(el: ptr_type);
{ plot of displacements, called from plot, end of line }

begin
if gi.tracing
then
writeln(trace_o, ’Entered procedure DISP.PLOT’);
while el " = nil do
with 1@ do begin
gpoint (posn.xc, posn.yc);
join(posn.xc + s.x, posn.yc + 8.y);

el := next;
end;
if gi.tracing
then

writeln(trace.o, ' EXIT procedure DISP_PLOT’);
end {disp_plot};

procedure fram plot;

var
time, yline: real;

begin
if gi.tracing
then
writeln(trace_o, ’Entered procedure FRAM.PLOT’);
with plspace do begin
map-space(cmd-i, ’fullnoscales’);
map_space(cmd_i, ’plain’);
time := gi.tstep * total.cycles;
undlin(1);
italic(1);
plotcs(b, 95, gi.heading, length(gi.heading));
pcsend(85, 95, *TIME °, 6);
plotne(88, 95, time, 4);
italic(0);
undlin(0);
map-space(cmd-i, ’fullnoscales?);
end;
if gi.tracing
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then
writeln(trace_o, > EXIT procedure FRAM_PLOT’);

end {fram_plot};

procedure slice_plot(el: ptr_type);
{ plot a snapshot of the geometry, called from plot, end of line, plot a slice }

function utohead(el: ptr_type): real;

begin
if el@.contacts.right ” = nil
then
utohead := sqrt(abs(2 % el@.data.spwp * el@.contacts.right@.con_len
/ opt.grav.y))
else
utohead := 0;
end {utohead};

begin {slice_plot}
if gi.tracing
then
writeln(trace_o, ’Entered procedure SLICE.PLOT’);
if (el ~ = nil) AND (el@.apexes ~ = nil)
then
with el@.apexes®.aw@ do
positn(c.xc, c.yc + utohead(el));
while el ” = nil do
with el@ do begin
if apexes = nil
then
error_simple(’no corners in slice’, ’slice.plot’)
else
with apexes@.aw@, contacts do begin
apex := apexes;
jein(c.xc, c.yc + utohead(el));
positn(apex@.c.xc, apex@.c.yc);
repeat
apex := apex@.cw;
with apex@ do
join{(c.xc, c.yc)
until apex = apexes;
positn(c.xc, c.yc + utohead(el));
end;
el := el@.next;
end;
if gi.tracing
then
writeln(trace_o, ’ EXIT procedure SLICE_PLOT’);

end {slice_plot};
procedure force.profile(ele: ptr_type; dire: dir.of_contacts);
var

el: ptr_type;
condir: con.ptr;



Appendix D. D.14

procedure init.fm;

begin
el := ele;
force_map.ymax := - maxreal;
force_map.ymin := maxreal;

end {init_fm};

function ptrd.fm(elem: ptr_type; dire: dir.of.contacts): con_ptr;

begin
case dire of
based:
ptrd_fm := elem@.contacts.base;
righthand:
ptrd.fm := elem@.contacts.right;
end;
end {ptrd_fm};

procedure lims_fm(var miny, maxy: real);

var
tenpercent: real;

begin
tenpercent := (maxy - miny) / 10;
if tenpercent =0
then
tenpercent := maxy / 10;
maxy := maxy + tenpercent;
miny := miny -~ tenpercent;

end {lims_fm};

begin {force.profile}
if gi.tracing
then '

writeln(trace.o, ’Entered procedure FORCE_PROFILE’);
with force_map do begin

el := ele;
while el ~ = nil do begin

condir := ptrd-fm(el, dire);

if condir ~ = nil

then
with condir@ do
consol.lims := sign(consol.lims, consol.ss);
el := el@.next;
end;

init_fm;
while el ~ = nil do begin
condir := ptrd_fm(el, dire);
if condir ° = nil
then
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with condir@.consol do
case dire of
righthand: begin
ymax := max(- el@.data.spwp, ymax, ns);
ymin := min(- el@.data.spwp, ymin, ns);
end;
based: begin
ymax := max(- el@.data.pwp, ymax, ns);
ymin := min(- el@.data.pwp, ymin, ns);
end;
end;
el := el@.next;
end;
el := ele;
condir := ptrd fm(el, dire);
if condir ~ = nil !
then begin
lims_fm(ymin, ymax);
case dire of
based: begin
map-space(cmd-i, ’bottom’);
map-space(cmd-i, ’plain’);
ctrset(1);
plotcs(5, b, *ARC - NS?, 8);
map_space(cmd_i, ’bottom’);
end;
righthand: begin
map-space(cmd_i, ’uppermiddle’);
map_space(cmd-i, ’plain’);
ctrset(1);
plotcs(5, 5, *INTER - NS’, 10);
map-space(cmd-i, ’uppermiddle’);
end;
end;
ctrset(4);
positn(el@.posn.xc, condir@.consol.ns);
while el " = nil do
with el1@.posn do begin
condir := ptrd.-fm(el, dire);
if condir ~ = nil
then
with condir@.consol do begin
join(xzc, ms);
plotnc(xc, ns, 46)
end;
el := el@.next
end;

el := ele;
case dire of
righthand:
positn(el@.posn.xc, - el@.data.spwup);
based:
positn(el@.posn.xc, - el@.data.pwp);
end;

while el ” = nil do
with el@.posn do begin
condir := ptrdfm(el, dire);
if condir ~ = nil
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then
with condir@.consol do begin
case dire of

righthand: begin
join(xc, - el@.data.spwp);
plotnc(xc, - el@.data.spup, 43);
end;

based: begin
join(zc, - el@.data.spup);
plotnc{xc, - el@.data.spup, 43);

end;
end;
end;
el := el@.next
end;
end;
init_fm;

while el " = nil do begin
condir := ptrd_fm(el, dire);
if condir © = nil
then
with condir@.consol do begin
if lims > ymax
¢ then
ymax := lims;

if lims < ymin

then
ymin := lims;
if ss > ymax
then
ymax := 8ss;
if ss < ymin
then
ymin := ss;
end;
el := el@.next;
end;
el := ele;

ctrset(4);
condir := ptrd-fm(el, dire);
if condir “ = nil
then begin
lims_fm(ymin, ymax);
if dire = based
then
map_space(cmd_i, ’lowermiddle’)
else
map-space(cmd.-i, ’top’);
positn(el@.posn.xc, condir@.consol.ss);
while el ~ = nil do
with el@.posn do begin
condir := ptrd.fm(el, dire);
if condir ~ = nil
then
with condir@.consol do begin
join(xc, ss);
plotnc(xc, ss, 53)
end;



Appendix D. D.17

el := el@.next
end;
end;

el := ele;
condir := ptrd-fm(el, dire);
if condir ~ = nil
then begin
positn(el@.posn.xc, condir@.consol.lims);
while el “ = nil do
with el@.posn do begin
condir := ptrd.fm(el, dire);
if condir ~ = nil
then
with condir@.consol do begin
join(xc, lims);
plotnc(xc, lims, 45)
end;
el := el@.next
end;
ctrset(1);
map_space(cmd_i, ’plain’);
plotcs(5, 5, *SS/LIN’, 6);
end;
end;
if gi.tracing
then
writeln(trace.o, ’ EXIT procedure FORCE_PROFILE’);

end {force_profile};

begin {plots}
if gi.tracing
then
writeln(trace.o, ’Entered procedure PLOTS?);
repeat
get-command(plotter, plotquit, plotcom, plot_command, cmd.i);
if plotcom IN slices .. standard
then
total.pics := total.pics + 1;
if opt.echo
then
writeln(substr(pos_str, 1, err_pos ~ 1));
case plotcom of '
displot:
disp_plot(slice_list);
slices:
slice_plot(slice_list);
forceplot: begin
fram_plot;
force_profile(slice_list, based);
map-space(cmd-i, ’picture’);
slice_plot(slice._list);
frame;
total.pages := total.pages + 1;
end;
standard: begin

fram.plot;
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force_profile(slice.list, based);
force_profile(slice_list, righthand);
frame;
total.pages := total.pages + i;
end;
frames:
fram._plot;
page: begin
frame;
total.pages := total.pages + 1;
end;
init:
setup.plot;
plotstop: begin
plots{cmd.i, ’standard’);
map_space(cmd_i, *full’);
framplot;
slice_plot(slice_list);
grend;
total.pics := total.pics + 1;
total.pages := total.pages + 1;
end;
zoom:
map-space(cmd_i, ’zoom’);
maps:
map.space(cmd_i, ’’);
otherwise;
end;
if opt.echo
then
writeln(output, substr(pos._str, 1, fra.pos), total.pages: 8, substr(
pos_str, 1, plo_pos), total.pics: 8);
until plotquit;
if gi.tracing
then
writeln(trace.o, > EXIT procedure PLOTS®);
end {plots};
{****#***************v#***m*#***w**#t**a* END PLOTS }

{**###*##***##*#*#**#########**##**v*#### BEGIN CYCLES }

procedure cycle(var cmd_i: text);

var
cycles, no.of_cycles, outcounter, cycle.lim: cycle-type;

procedure fordsl(el: ptr_type);

treats edge contacts as one contact
{ force displacement law for single block }
{ called from cycle, end of line }

var
in_contact: boolean;
Fn, Fs, nf, sf: real;
contdir: dir.of_contacts;
condir: con_ptr;
bodyfinc: vector_type;
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nsinc, u, coh, fhi: real;

begin
if gi.tracing
then
writeln(trace-o, ’Entered procedure FORDSL’);
while el ™ = nil do
with el@ do begin
for contdir := righthand to based do begin
case contdir of
righthand: begin
condir := contacts.right;
if condir ~ = nil
then begin
u := data.spwp;
if condir@.failed
then
data.sidec := data.sidec % 0.85;
coh := data.sidec;
fhi := data.sphi;
end;
end;
based: begin
condir := contacts.base;
u := data.pwp;
if condir@.failed
then
data.cohes := data.cohes * 0.85;
coh := data.cohes;
fhi := data.phi;
end;
end;
if condir = nil
then
continue;
with condir@, other@.s do begin
Fn := ((x - 8.%) * sine - (y - 8.y) * cose) * data.k;
Fs := - ((y - s.y) * sine + (x - 8.X) * cose) * data.k;
if gi.fording
then

n

writeln(debug-o, ’Fn,Fs,sin,cos,1’, Fn: 9, Fs: 9, sine:

cose: 9, con-len: 9, s8.x: 9, s.y: 9, x: 9, y: 9);
nsinc := dampf * Fn;

in_contact := false;
if consol.ns > - nsinc {total stress}
then begin

consol.ss := consol.ss + dampf * Fs; {f/length}
consol.ns := consol.ns + nsinc; {f/length}
in_contact := true; .
consol.pp := max(consol.pp + 0.001 = u, u);
end;

end;

with condir@, consol, other®.force do
if in_contact
then begin
lims := coh + max((ns + pp) * fhi, 0);
nf := ns * con.len;

9,

failed := (failed) OR ((pp = u) AND (abs(ss) > abs(lims)));

D.19
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ss := sign(min(abs(ss), lims), ss);
sf := gs % con.len;
bodyfinc.x := sf = cose - nf * sine;
bodyfinc.y := sf * sine + nf % cose;
force.x := force.x - bodyfinc.x;
force.y := force.y - bodyfinc.y;
if contdir = righthand
then begin
x := x + bodyfinc.x;
y :=y + bodyfinc.y;
end;
if (gi.fording) OR (gi.consoling)
then
writeln(debug-o, ’ss,ns,lims,pp,nf,sf’, ss: 8, ns: 8, lims
8, pp: 8, nf: 8, sf: 8);
if gi.fording
then
writeln(debug.o, ’bforces’, force.x: 9, force.y: 9);
end
end;
el := next
end;
if gi.tracing
then
writeln(trace.o, ’ EXIT procedure FORDSL’);

end {fordsl};

procedure fconsolsl(el: ptr_type);

begin
if gi.tracing
then
writeln(trace-o, ’Entered procedure FCONSOLXY’);
while el ~ = nil do
with el@, el@.data do begin
s.x := force.x / mass * sqr(gi.tstep);
s.y := (force.y / mass + opt.grav.y) = sqr(gi.tstep);
sum.sc := max(abs(s.x), abs(s.y), sum.sc);
if gi.motioning
then
writeln(debug.o, ’disp ', 8.x: 9, s.y: 9);
if (gi.oscing) AND (data.typ = track)
then begin
with contacts.base@.consol do
write(oscil_o, data.sliceno: 4, total.cycles: 6, s.x, s.y, ss,

ns, lims);
if contacts.right = nil
then

with contacts.right@.consol do
writeln(oscil.o, ss, ns, lims)
else
writeln(oscil_o);
end;
force := nilv;
el := next;
end;
if gi.tracing
then
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writeln(trace.o, ’ EXIT procedure FCONSOLXY’);
end {fconsolsl};

var
cyclequit: boolean;

begin {cycle}
if gi.tracing
then
writeln(trace.o, ’Entered procedure CYCLES’);
if screen
then
writeln(output, substr(pos_str, 1, pro.-pos),
’ Enter no of cycles required...’);
read(cmd-i, no_of_cycles);
if opt.echo
then
writeln(output, substr(pos.str, 1, req-pos), no.of.cycles: 8);

cycles := 0;

while (cycles < no.of_cycles) AND (~ cyclequit) do begin
sum.scold := sum.sc;
sum.sc := 0;

fordsl(slice.list);
fconsolsl(slice.list);
total.cycles := total.cycles + 1;
cycles := cycles + 1;
if total.cycles MOD opt.cyclegap = 0
then begin
if opt.echo
then begin
writeln(output, substr(pos._str, 1, cyc.pos), total.cycles: 8);
if sum.scold < sum.sc
then
writeln(output, substr(pos_str, 1, mes_pos),
’ Decreasing stability ’, sum.sc)
else
writeln(output, substr(pos_str, 1, mes.pos),
’ Increasing stability ’, sum.sc);
end;
factors.of_safety(slice.list);
end;
if (opt.cmdprocessing) AND (total.cycles MOD opt.cycle.interval = 0)
then begin
reset(cycmd_i, ’FILE=-gass.cmd.i’);
gi.cmdend := false;
while * gi.cmdend do
control(cycmd-i) ;

if opt.echo
then
writeln(output, substr(pos_str, 1, req-pos), no-of_cycles: 8);
end;
if abs(sum.sc / sum.scold ~ 1) < 1e-13
then
sum.scsofar := sum.scsofar + 1
else
sum.scsofar := 0;

cyclequit := (sum.sc < le-14) OR (sum.scsofar = 100) OR (sum.sc > 1e6);
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if trap
then
trapper;
if gi.cycling
then
writeln(debug.o, ’max individual disp ’, sum.sc);
end;
if sum.sc < le-14
then
writeln(output, substr(pos_str, 1, mes_pos),
? Stability has been gained ’, sum.sc);
if sum.scsofar = 100
then
writeln(output, substr(pos._str, 1, mes_pos),
> Constant sliding now occurring ’, sum.sc);
if sum.sc > leb
then
writeln(output, substr(pos._str, 1, mes_pos),
’ This is numerically unstable ’, sum.sc);
if gi.tracing
then
writeln(trace_o, ’ EXIT procedure CYCLES’);
end {cycle};
{*#*#********##*****#*#******#***#**#**#* END CYCLE }

{***##**##****##******#**#**#**#t*****#v* BEGIN START }

procedure start.shut;
{ initialises the run, called from control, initialisation modules }

type
lhed_type = string(300);
records = (rvec, rcoo, rcon, rele, rgri, rgen, ropt, rtot, rsum, rhed, bool)

buffertype = record

tag: char;

case records of
rgen: (gen_info rep: gen_info_type);
rvec: (vector_rep: vector_type);
rcoo: (coord-rep: coord.-type);
rcon: (con-rep: con_type);
rele: (element_rep: element_type);
rgri: (grid.rep: grid-type);
ropt: (option.rep: option.type);
rtot: (totals_rep: totals_type);
rsum: (sum_rep: sum_type);
rhed: (hed.rep: hed_type);
bool: (null_rep: lhed_type);

“end;

const
nullrep =’ * 1
b

3

J

- e e e

b

var
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rest.o, rest.i: file of buffertype;
buffer: buffertype;
new.slice: ptr.type;

procedure update.area(el: ptr_type);

procedure update_message(direction:

begin
if gi.updating
then
with el@, cont@ do begin
write(debug.o, ’ ’, direction: b, ’ Contact created edge, corn ’);
writeln(debug-o, data.sliceno: 6, other@.data.sliceno: 6);

hed type; el: ptr.type; cont: con_ptr);

uriteln(debug-o, ’ edge x,y ’,
writeln(debug.o, ’ corn x,y ’,
writeln(debug.o, ’ sin, cos ’,
writeln(debug-o, ’ len, dam ’,

edge®.c.xc: 6, edge@.c.yc: 6);
corn@.c.xc: 6, corn@.c.yc: 6);
sine: 6, cose: 6);

con_len: 6, dampf: 6);

if direction = ’RIGHT’

then
writeln(debug_o, ’ pwp, wt ’, data.spwp: 6, opt.grav,y * data.
mass: 6)
else
writeln(debug.o, ’ pwp, wt ’>, data.pwp: 6, opt.grav.y * data.
mass: 6)
end;

end {upd;te.message};

procedure cold.contact(el: ptr-type; direction: hed.type; cont: con.ptr);

var
dif: vector_type;

begin
with e1l@, cont@ do begin
with edge@ do begin
dif.x := cw@.c.xc - c.xC;
dif.y := cw@.c.yc - c.yc;
end;
failed := falss;
con_len := sqrt{sqr(dif.x) + sqr(dif.y));
sine := dif.y / con-len;
cose := dif.x / con.len;
consol.ss :
consol.ns
consol.pp :=
consol.lims
if direction
then begin
data.spwp := opt.grav.y * sqr(data.spwp) * 2 / con.len;
if data.mass > other@.data.mass

s

t g ooco

0;
>RIGHT’

then
dampf := data.mass * opt.damps / con_len
else
dampf := other@.data.mass * opt.damps / con.len;
end

else begin

D023
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data.pwp := opt.grav.y % data.pwp;
if data.mass > other@.data.mass

then
dampf := data.mass % opt.damp / con.len
else
dampf := other@.data.mass » opt.damp / con-len;
end ;

end;
end {cold_contact};

begin {update_area}
if gi.tracing
then
writeln(trace_o, ’Entered procedure UPDATE_AREA’);

platapex := platen@.apexes;
while el ~ = nil do
with e1l@ do begin
if starting = cold
then
new(contacts.base);
with contacts.base® do begin
other := platen;
edge := apexes@.aw;
corn := platapex@.cw;
if starting = cold
then
cold.contact(el, ’ BASE’, el@.contacts.base);
update.message(’ BASE’, el, el@.contacts.base);

end;
if next = nil
then
contacts.right := nil

else begin
if starting = cold
then
new(contacts.right);
with contacts.right@ do begin
other := next;
edge := apexes@.cw@.cw;
corn := next@®.apexes@.cw;
if starting = cold
then
cold_contact(el, ’> BASE’, el@.contacts.right);
update_message(’RIGHT’, el, el@.contacts.right);
end;
end;
total.cons := total.cons + 2;
platapex := platapex@.cw;
el := next;
end;
if gi.updating
then
writeln(debug_o, ’total number of contacts’, total.cons);
if gi.tracing
then
writeln(trace.o, ’ EXIT procedure UPDATE-AREA’);

end {update-area};
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procedure get_apex(var base, oater: corn_ptr; number: integer);

var
num: integer;

begin
if gi.tracing
then
writeln(trace_o, ’Entered procedure GET-APEX’);
if base = nil

then begin
new(base) ;
base@.cw := base;
base@.aw := base;
oater := base;
number := number - 1;
end;
for num := 1 to number do begin
new{(oater);
oater@.aw := base@.aw;
oater@.cw := base;
base@.aw@.cw := oater;
base@.awy := oater;
end;
if gi.tracing
then

writeln(trace_o, ’° EXIT procedure GET_APEX’);
end {get-apex};

procedure mesh;

procedure cre_platen(el: ptr_type);

begin
if gi.tracing
then
writeln(trace_o, ’Entered procedure CRE_PLATEN’);
new(platen);
platen@.next := nil;
platen@.apexes := nil;
get_apex(platen@.apexes, apex, total.slices + 1);
platapex := platen@.apexes;
platapex@.c := el@.apexes@.c;
while el ™ = nil do begin
platapex := platapex@.cw;
platapex@.c := el@.apexes@.aw@.c;
el := el@.next
end;
with platen@, platen@.contacts, platen®@.data do begin
posn := nilc;

force := nilv;
8 := nilv;
mass := 0;

cohes := 0;
phi :=0;
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rho := 0;

k :=0;

sidec := 0;
sphi := 0;
p¥p := 0;
spup := 0;

e :=0;
sliceno := 0;
typ := free;

right := nil;
base := nil;
end;
if gi.tracing
then
writeln(traceo, ’ EXIT procedure CRE_PLATEN’);

end {cre_platen};

procedure cre-slices;

var
sort: string(12);
typs: com-type;
surf, temp: real;
X, ¥, Xn, yn: real;

begin {FIFO OF ELEMENTS}
if gi.tracing
then
writeln(trace.o, ’Entered procedure CRE_SLICES’);
get_command (mesher, qdum, typs, ’’, cmd.i);
while NOT eoln do begin
case typs of
track, free:
if slice.list = nil
then begin
new(slice-list);
eolist := slice_list;
eolist@.next := nil;
end
else begin
new(eolist@.next);

eolist := eolist®.next;
eolist@.next := nil;
end;
otherwise
return;

end;

with eolist@, eolist@.data, opt.meshtbs do begin
read(cmd.i, cohes, phi, rho, k, sidec, sphi, pwp, spwp, e);
phi := phi * arctan(1) / 45;
sphi := sphi * arctan(1) / 45;
phi := sin(phi) / cos(phi);
sphi := sin(sphi) / cos(sphi);
total.slices := total.slices + 1;
sliceno := total.slices;
typ := typs;
apexes := nil;
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posn := nilc;
force := nilv;
s := nilv;

get_apex(apexes, apex, 4);

apex := apexes;

if total.slices = 1

then

read(cmd i, xb, yb, xt, yt);

apex@.c.xc := xb;
apex@.c.yc := yb;
apex := apex@.cw;
apex@.c.xc := xt;
apex@.c.yc := yt;

apex := apexes@.aw;

read(cmd_i, xb, yb, xt, yt);

apex@.c.xc := xb;
apex@.c.yc := yb;
apex := apexQ@.aw;
apex@.c.xc := xt;
apex@.c.yc := yt;

{ area and centroid of block }

surf := 0;
apex := apexes;
repeat

with apex@.c, apex@.aw@® do begin
surf := surf + (xc - c.xc) * (yc + c.yc);

posn.yc := posn.yc + (xc - c.xc) * ((yc - c.yc) # (yc + 2 * c.yc

) + 3 % sqr(c.yc));

posn.xc := posn.xc + (yc - c.yc) * ((xc - c.xc) * (xc + 2 * c.xc

) + 3 % aqr(c.xc));
apex := apex@.cw;

end;

until apex = apexes;

surf := surf * 0.5;
posn.yc / (6 % surf);

posn.yc :

posn.xc := - posn.xc / (6 * surf);
mass := surf % data.rho;

if gi.updating
then

writeln(debug-o, ’'mass,surf’, mass, surf);

end;
end;
if gi.tracing
then
writeln(trace-o, ’

end {cre_slices};

var
meshquit: boolean;
meshcom: com_type;

begin {mesh}
if gi.tracing
then

EXIT procedure CRE_SLICES’);

writeln(trace_o, ’Entered procedure MESH’);

repeat
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get_command(creater, meshquit, meshcom, ’’, cmd_i);
case meshcom of
create:
cre_slices;
meshend:
meshquit := true otherwise;
end
until meshquit;
cre_platen(slice_list);
if gi.tracing
then
writeln(trace_o, > EXIT procedure MESH’);

end {mesh} ;

procedure read-restart.file;

var
labl: char;
ele: ptr_type;
new_con: con_ptr;

begin
if gi.tracing
then
writeln(trace.o, ’Entered procedure READ.RESTART.FILE’);
reset(rest.i, ’unit=2’);
rewrite(cycmd-i, 'FILE=-sass.cmd.i’);
revrite(repte-i, 'FILE=-sass.rep.i’);
while ~ eof(rest_i) do begin
read(rest_i, buffer);
labl := buffer.tag;
case labl of
'G’: begin
gi := buffer.gen.info.rep;
read(rest_i, buffer);
total := buffer.totals.rep;
read(rest-i, buffer);
sum := buffer.sum.rep;
read(rest._i, buffer);
opt := buffer.option_rep;
read(rest_i, buffer);
plspace := buffer.grid.rep;
end;
’c?:
writeln(cycmd_i, buffer.hed_rep);
’r?:
writeln(repts.i, buffer.hed rep);
’F’: begin
new(new.slice);
new_slice@ := buffer.element_rep;

new_slice®.next := nil;
new.slice@.apexes := nil;
if slice.list = nil
then
slice_list := new.slice
else

ele@.next := new_slice;
ele := new.slice;
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end;

’R’: begin
new(new_con) ;
new_con@ := buffer.con_rep;
ele@.contacts.right := new._con;
end;

’B’: begin
new{(new.con);
new_con@ := buffer.con rep;
ele@.contacts.base := ned.con;
end;

’P’: begin
new(new._slice);
new.slice@ := buffer.element_rep;
platen := new_slice;
platen@.next := nil;
platen@.apexes := nil;
platen@.contacts.right := nil;
platen@.contacts.base := nil;
ele := platen;
end;

’a’: begin
get_apex(ele@.apexes, apex, 1);
apex@.c := buffer.coord-rep;
end;

I

end;

end;

writeln(output, substr(pos_str, i, mes_pos),

> A restart file has been read’);
if gi.tracing
then

writeln(trace.o, > EXIT procedure READ_RESTART.FILE’);

end {read_re start-file} ;

procedure write.restart file;

procedure write_r_el(el: ptr_type; c: char);

begin
if gi.tracing
then

writeln(trace.o, ’Entered procedure WRITE_R-EL’);

while el ~ = nil do
with el@ do begin
buffer.tag := ¢;
buffer.null.rep := nullrep;
buffer.element_rep := el@;
yrite(rest.o, buffer);
if contacts.right ~ = nil
then begin
buffer.tag := ’R’;
buffer.null rep := nullrep;

buffer.con.rep := contacts.right@;

write(rest.o, buffer)
end;
if contacts.base

-

= nil
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then begin
buffer.tag := ’B’;
buffer.null.rep := nullrep;

buffer.con rep := contacts.base@;

write(rest_o, buffer)
end;
apex := apexes;
buffer.tag := ’a’;
repeat
buffer.null. rep := nullrep;
buffer.coord.rep := apex@.c;
write(rest_o, buffer);
apex := apex@.cw
until apex = apexes;
el := el@.next
end;
if gi.tracing
then

writeln(trace.o, > EXIT procedure WRITE.REL’);

end {Hrite_r-el} H

begin {arite-restart_file}
if gi.tracing
then

writeln(trace.o, ’Entered procedure WRITE_LRESTART_FILE’);

if (opt.rf_over) OR (rf_first)

then

rewrite(rest_o, ’unit=1’);

rf_first := false;
buffer.tag := ’G’;
buffer.null_-rep := nullrep;
buffer.gen-info_rep := gi;
write(rest_o, buffer);
buffer.null rep := nullrep;
buffer.totals.rep := total;
urite(rest-o, buffer);
buffer.null_rep := nullrep;
buffer.sum_rep := sum;
write(rest.o, buffer);
buffer.null.rep := nullrep;
buffer.option.rep := opt;
write(rest_o, buffer);
buffer.null.rep := nullrep;
buffer.grid_rep := plspace;
write(rest_o, buffer);

reset(cycmd.i, ’FILE=-sass.cmd.i’);

buffer.tag := ’c’;

while ~ eof(cycmd i) do begin
buffer.null.rep := nullrep;
readln(cycmd-i, buffer.hed_rep);
write(rest_o, buffer);
end;

reset(repts.i, ’FILE=-sass.rep.i’);

buffer.tag := ’r’;

while ~ eof(repts_i) do begin
buffer.null-rep := nullrep;
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readln(repta_i, buffer.hed.rep);
write(rest.o, buffer);
end;
write_r_el(slice.list, ’F’);
urite_r_el(platen, ’P’);
buffer.tag := ’%’;
buffer.null_rep := nullrep;
buffer.hed rep := *END of RESTART FILE ’;
write(rest.c, buffer);
writeln(output, substr(pos_str, 1, fil_pos),
> A restart file has been written’);
if gi.tracing
then
writeln(trace_o, > EXIT procedure WRITE_RESTART.FILE’);

end {write_restart_file};

procedure complete;

begin
if gi.tracing
then
writeln(trace_o, ’Entered procedure COMPLETE’);
with total do begin

writeln(output, substr(pos.str, 1, tot_pos), ’ total slices ’,
slices: 6, ’ contacts ’, cons: 6);

writeln(output, °’ total cycles ’, cycles: 6, ’ restarts °’,
restarts: 6);

writeln(output, * total frames ’, pages: 6, ’ plots ’, pics: 6)

H
end;
if gi.tracing
then

writeln(trace_o, > EXIT procedure COMPLETE’);
end {complete};

begin {start_shut}
if gi.tracing
then
writeln(trace_o, ’Entered procedure START.SHUT’);
case starting of

cold: begin
if screen
then
writeln(output, substr(pos._str, 1, pro_pos),
> Enter heading ................ *);

readln(cmd.i, gi.heading);
writeln(output, substr(pos.str, 1, tit_pos), gi.heading);
writeln(debug-o, gi.heading);
plots(cmd.i, ’initialise’);
mesh;
update_area(slice_list);
plots(cmd.i, ’border’);
plots(cmd.i, ’slices’);
plots(cmd i, ’page’);
end;

shutdown: begin
plots(input, ’endplot’);
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complete;
factors_of_safety(slice_list);
writeln(debug_o, sum.sc);
write_.restart_file;
writeln(output, substr(pos.str, i, fil.pos), curson);
halt;
end;

warm: begin
read._restart.file;
total.restarts := total.restarts + 1;
plots(cmd_i, ’initialise’);
update_area(slice_list);
plots(cmd_i, ’border’);
plots(cmd_i, ’slices’);
plots(cmd_i, ’page’);
end;

keep:
write.restart_file;

end;

if gi.tracing

then

writeln(trace_o, ’ EXIT procedure START.SHUT’);
end {start_shut};
{*#********#******#**##4#**#*#*###&***### END STARTSHUT }

{#v#***********#*********##**#**v#*##*w#* BEGIN DEBUG }

procedure debug.slice(var cmd.i: text);
{ debugging routine, called from contrl, calls dump }

var
debugend: boolean;
deb.com: com.type;

procedure write.con(el: ptr_type);

procedure wr_con(el: ptr.type; con: conptr);

begin
if gi.tracing
then
writeln(trace_o, ’Entered procedure WR-CON’);
with con@ do begin
writeln(debug.o, ’slice home, other, damp ’, el@.data.sliceno: 3,
other@.data.sliceno: 3, dampf: 6);

writeln(debug_o, ’corner coordinates x, y ’, corn@.c.xc: 6, corn@.c.yc

6);

writeln(debug.o, ’edge coordinate s x, y ’>, edge@.c.xc: 6, edge@.c.yc
6);

write(debug_o, ’stresses - n, s, 1, u ’, consol.ns: 6, consol.ss:

consol.lims: 6);
end;
if gi.tracing
then

writeln(trace.o, ’> EXIT procedure WR_CON’);
end {Hr-con};
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begin {write_con}
if gi.tracing
then
writeln(trace_o, ’Entered procedure WRITE_CON’);
writeln(debug o, ’ Contact information :’);
writeln(debug.o);
writeln(debug-o, ’ coords of corn, edge’);
writeln(debug-o);
while el " = nil do
with el@.contacts do begin
if right ~ = nil
then begin
wr_con(el, right);
writeln(debug.o, e1@.data.spup: 6);

end;
if base " = nil
then begin

wr.con{el, base);
writeln(debug. o, el@.data.pup: 6);
end;
el := el@.next;
end;
if gi.tracing
then
writeln(trace_o, ’> EXIT procedure WRITE.CON’);
end {write_con};

procedure write._sli(el: ptr_type);

begin
if gi.tracing
then
writeln(trace.o, ’Entered procedure WRITE_SLI’);
writeln(debug.o, ’ Element data :’);
writeln(debug_o);
writeln(debug.o, ’mass force x y disp x y n’);
writeln(debug.o);
while el © = nil do
with 1@ do begin
writeln(debug o, data.mass: 6, force.x: 8, force.y: 8, s.x: 8, s.y: 8,
data.sliceno: 3);
el := el@.next;
end;
if gi.tracing
then
writeln(trace_o, > EXIT procedure WRITE_SLI’);
end {write-sli};

begin {debug_slice}
if gi.tracing
then
writeln(trace_o, ’Entered procedure DEBUG.SLICE’);
repeat
get.command (debuger, debugend, deb.com, ’’, cmd.i);
case deb.com of
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slices:
write.sli(slice.list);
con:
write_con(slice_list);
gen: begin
writeln(debug_o, gi.heading);
writeln(debug_o);
with plspace, opt, total do begin
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writeln(debug.o, ’ mapping xmin ’, xmin: 6, ’ xmax °’, xmax: 6)

writeln(debug.o, ’ mapping ymin ’, ymin: 6, ’ ymax >, ymax: 6)

writeln(debug.o);

writeln(debug.o, ’ plot interval’, cycle_interval: 6);

writeln(debug.o, ’ gravity x ’, grav.x: 6, 'y ’, grav.y
6);

writeln(debug.o, ’ damping base ’, damp: 6, ’ side ’, damps: 6

);
writeln(debug.o);

writeln(debug.o, ’ totals slices ’, slices: 6, ’ contact’, cons:

6);

writeln(debugo, °’ cycles ’, cycles: 6, ’ restarts’,
g y y

restarts: 6);
writeln(debug.o, ’

6);
writeln(debug o);
end;

end;
fon:
with gi do begin
motioning := true;
updating := true;
cycling := true;

fording := true;
oscing := true;

tracing := true;
end;
fof:
with gi do begin
motioning := false;
updating := false;
cycling := false;
fording := false;
oscing := false;
tracing := false;
end;
mot :
gi.motioning := onoff(cmd-i);
csl:
gi.consoling := onoff(cmd.-i);
upd:
gi.updating := onoff(cmd-i);
cyc:

with gi do begin
cycling := onoff(cmd_i);

fording := cycling;
motioning := cycling;
end;

fod:
gi.fording := onoff(cmd_i);

frames ’, pages: 6, ’ plots ’, pics:
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tra:
gi.tracing := onoff(cmd.i);
osc:
gi.oscing := onoff(cmd_i);
otherwise;
end;
until debugend;
if gi.tracing
then
writeln(trace.o, ’ EXIT procedure DEBUG_SLICE’);
end {debug_slice};
{***¢**¢*¢¢¢¢¢***¢**¢¢¢*n*¢¢¢*¢¢¢¢¢¢¢**¢¢ END DEBUG }

{*#*#*****#********#*******¢¢¢v¢¢**¢¢**¢¢ BEGIN PARAMETERS }
procedure parameters(var cmd-i: text);
procedure calculator;
function intcalc(op: real): real;
var

result, v: real;
oper: com.type;

begin
get_command(operter, qdum, oper, ’’, cmd.i);
if oper " = enquiry
then begin
if screen
then
writeln(output, substr(pos.str, i, pro.pos),
>Enter value .................. *);
read(cmd_i, v);
end;
case oper of
equal:
result := v;
mult:
result := op * v;
divid:
result := op / v;
plus:
result := op + v;
minus:
result := op - v;
power:
result := exp(1ln(op) * v);
otherwise
result := op;
end;
if opt.echo
then

writeln(output, substr(pos.str, 1, mes_pos), ’> The value is : °’,
result: 12: 7,°? ),
intcalc := result;
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end {intcalc};

var
calquit: boolean;
calcom: com.type;

begin {calculator}
repeat
get_command(calcter. calquit, calcom, ’’, cmd-i);
case calcom of
cyclegp:
opt.cyclegap := round(intcalc(opt.cyclegap));
gravity:
opt.grav.y := intcalc(opt.grav.y);
ptime:
gi.tstep := intcalc(gi.tstep);
cmdint:
opt.cycle_interval := round(intcalc(opt.cycle_interval));
fdamp:
opt.damp := intcalc(opt.damp);
otherwise;
end;
until calquit;
end {calculator};

var
parcom: com_type;
parquit: boolean;
flimit: integer;
cmdlistword: string(12);

begin {parameters}
repeat
get_command(paramer, parquit, parcom, ’’, cmd.i);
case parcom of
echo:
opt.echo := onoff(cmd_i);
framlim: begin
if screen
then
writeln(output, substr(pos_str, 1, pro_pos),
> Enter frame limit ............ ’);
read(cmd-i, flimit);
gpstop(flimit);
if opt.echo
then
writeln(output, substr(pos_str, 1, mes_pos),
> Frame limit is now : ’, flimit);
end;
cyclegp: begin
if screen
then
writeln(output, substr(pos_str, 1, pro.pos),
* Enter gap between writing..... N
read(cmd-i, opt.cyclegap);
if opt.echo
then
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writeln(output, substr(pos_str, 1, mes_pos),
’ Cycle gap is now : ’, opt.cyclegap);
end;
gravity: begin
.if screen

then
writeln(output, substr(pos_str, 1, pro_pos),
’ Enter gravity values x, y ....?);
read(cmd-i, opt.grav.y);
if opt.echo
then
writeln{output, substr(pos.str, 1, mes.pos),
’ Gravity is now : ’, opt.grav.y: 6);
end;
ptime: begin
if screen
then
writeln(output, substr(pos_str, 1, pro_pos),
’ Enter time step increment ....’);
read(cmd_ i, gi.tstep);
if opt.echo
then
writeln(output, substr(pos.str, 1, mes.pos),
> Time increment is : ’, gi.tstep);
end;
fdamp: begin
if screen
then
writeln(output, substr(pos_str, 1, pro_pos),
’ Enter value for damping ...... '),

read(cmd.i, opt.damp);
read(cmd.-i, opt.damps);
if opt.echo
then
sriteln(output, substr(pos.str, 1, mes_pos),
’ Damping factor is : ’, gi.tstep);
end;
calc:
calculator;
cmdint: begin
if screen
then
writeln(output, substr(pos_str, 1, pro_pos),
> Enter cmd process interval ...’);
read(cmd_i, opt.cycle_interval);
if opt.echo
then
writeln(output, substr(pos.str, 1, mes_pos),
’ Process interval is: ’, opt.cycle_interval);
end;
cmdlist: begin
rewrite(cycmd_i, *FILE=-sass.cmd.i’);
repeat
word_scan{cmd_i, cmdlistword);
uriteln(cyemd_i, cmdlistword)
until cmdlistword = ’cend’;
end;
listpr:
opt.cmdprocessing := onoff(cmd-i);
over_rf:
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opt.rf.over := onoff(cmd-i);
otherwise;
end;
until parquit;
end {parameters ;
{***¢*¢¢**v¢¢¢**¢****¢*¢#**#**¢¢*¢m¢¢**¢a END PARAMETERS }

{**********#***#v**##******¢*¢¢***¢¢¢#¢*¢ BEGIN REPEATER }

procedure repeater(var cmd.i: text);

var
cmdreptword: string(12);
loopcntor, loopctr: integer;

begin
if gi.tracing
then
writeln(trace_o, ’Entered procedure REPEATER’);
rewrite(repts.i, ’FILE=-sass.rep.i’);
read(cmd-i, loopctr);
repeat
word-scan(cmd_i, cmdreptword);
writeln(repts.i, cmdreptword)
until cmdreptword = ’rend’;
for loopcntor := 1 to loopctr do begin
reset(repts.i, ’FILE=-sass.rep.i’);
gi.reptend := false;
repeat
control(repts-i)
until gi.
reptend;
end;
if gi.tracing
then
writeln(trace.o, > EXIT procedure REPEATER’);

end {repeater};
{*#**********##****####****#*########*### END REPEATER }

{*#**##***###**###*#####********##*#**#*# BEGIN CONTROL }

procedure control;
{ controls the execution of the datafile commands, called from main }

var
com: com.type;

begin
if gi.tracing
then
writeln(trace_o, ’Entered procedure CONTROL’);
get.command(contler, qdum, com, ’’, cmd-i);
case com of
sets:
parameters(cmd_i) ; { set parameter values }
cend:
gi.cmdend := true; { end interrupt commands }
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rend:

gi.reptend := true; { end command stack }
rest:

start.shut (cmd_i, warm); { restart a previous run }
save:

start_shut(cmd.i, keep); { update restart file }
star:

start.shut(cmd_i, cold); { start a ney run }
cycl:

cycle(cmd_i); { calculation routines }
plot:

plots(cmd i, *?); { plot routines }
debg:

debug_slice(cmd.i); { debugging routine }
rept:

repeater(cmd_i); { command stack }
stop:

start_shut(cmd.i, shutdown);{ stop command }
retur:;
end;

if gi.tracing

then

writeln(trace_o, ’ EXIT procedure CONTROL’);

end {control};
{**¢****##**#*******#**w*##**#*#****v**m& END CONTROL }

{#******##*#*****#***#*#*#*##**###*##**#a BEGIN MAIN }

begin {slices}
initialise_globals;
headers;
repeat
control (input);
until quit;
end {slices}.
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APPENDIX E

PROGRAM CIRCLES

program circles(debug.o, sercom);
%include est8:u.ghost.lib
%include trap

const
led.pos =
tit_pos =
req-pos =
fra_pos =
plo_pos = 8;
upd_pos = 9;
cra_pos = 10;
cyc.pos = 11;
com_pos = 12;
mes.pos = 13;
err_pos = 14;
tot_pos = 14;
fil_pos = 20;
pro_pos = 16;
pos_str =’ ?;
maxcycle = 1000000;

W~ ;N

blank = *> ’;
commands = {onoffer}
’null on off *H {onoffer}
’picture  horizontal vertical full fullnoscales’ || {map}
Yzoom >
’initialise ballplot  dotplot velocities displacement’ || {plot}
’conplot  failplot  graticule standard page *
’border map endplot * 1)
’create relative  abseclute dataset  for >
’endfor single multiple meshend position * ||
’move angle free fixed track B {mesh}
> N {spare}
’= %* / + - > )
'A ? > {operators}
’echo echodebug cmdproc overwrite framelimit ’ || {set}
'writegap interval cmdlist gravity time *
’calculate soiltype >
’damp mass cohesion  friction demnsity ’ || {parameter}
’radius stiffness ’ ||
’datalist  blocks areas contacts  general > H {debug}
’flagson  flagsoff rearea update cycle > il
’motion ford consolidate trace oscillate °’ ||
’set cend rend restart save * {control}
’start go plot repeat debug >
’settle collapse stop return ’;

type

com_type = (null, on, off, piccie, horiz, vertic, whole, fnosc, zoom, init,
ballplot, dotplot, velplot, displot, conplot, failplot, graticule,
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standard, page, frames, maps, plotstop, create, relative,
absolute, dataset, forloop, endfor, sing, multip, meshend,
position, movepos, angle, free, fixed, track, cracked, both,
equal, mult, divid, plus, minus, power, enquiry, echo, debech,
listpr, over.rf, framlim, cyclegp, cmdint, cmdlist, gravity,
ptime, calc, datype, dfact, dmass, dcohe , dfric, ddens, dradi,
dstif, dat, blk, are, con, gen, fon, fof, reb, upd, mot, cyc, fod,
sol, tra, osc, sets, cend, rend, rest, save, star, cycl, plot,
rept, debg, sett, coll, stop, retur);

call_type = (errorer, onoffer, mapper, plotter, mesher, datert, operter,
calcter, datalte, paramer, debuger, contler);
el.list.types = free .. both;
para.ptr = @parabk_type;
ptr-type = @element_type;
con.ptr = @con-type;
parabk.type = record
damp, mass, cohes, phi, rho, rad, kn: real;
preincarnate, flagno: integer;
typ: el-list.types;
next.data: para-ptr;
end;
vector_type = record
X, y: real;
end;
coord.type = record
Xc, yc: real;
end;
con_type = record
gapsum, offs: real;
other: ptr.type;
next.con: con.ptr;
c_force: vector._type;
f_force, f_angle: real;
failed: boolean;
end;
element_type = record
source, posn: coord-type;
consol, force, v, a, 8: vector.type;
data: para.ptr;
no.of.contacts: integer;
con.list: con.ptr;
next: ptr_type;
end;
grid_type = record
xmin, xmax, ymin, ymax: real;
end;
rowcol.type = -1 .. 100;
area.directions = (self, n, ne, e, se, 8, sW, ¥, NW, nex);
area.ptr = Qarea-type;
area-type = record
corners: grid._type;
upd-min, upd-par: real;
row, col: rowcol_type;
n, e, 8, W, next.area: area.ptr;
fixed.list, free.list: ptr_type;
end;
cycle.type = 0 .. maxcycle;
hed-type = string(80);
start_type = (cold, warm, shutdown, keep);
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gen-info_type = racord
heading: hed.-type;
nextword: string(12);
charsize, tfrac, tstep, max_rad: real;
settling, reptend, cmdend, jumping, single, reareaing,
motioning, updating, consecling, cycling, fording,
tracing, oscing, debecho: boolean
end;
area.i-type = record
size: coord type;
xmax, ymax: 0 .. 100;
nos: integer;
end;
option.type = record
plot.lims: grid-type;
meshtbs: record
xb, yb, xt, yt: real
end;
grav: vector.type;
cyclegap, cycle_interval: cycle.type;
cmdprocessing, echol, echo, rf.over: boolean;
end;
sum.type = record
en, sc, scold: real
end;
totals.type = record
cycles, updates, circles, fixed, cracked, cons, pics, pages,
datatypes: integer
end;

const

nilv = vector_type(0, 0);
nilc = coord_type(0, 0);
nilhed =’ ?;
tens_fuzz = 0.05;
{make this a parameter sometime as 0.05 = max_rad/da’catype}

var

repts_i, cycmd-i, oscil_o, debug.o, trace.o, sercom: text;
screen, rf first, cy.first, quit, qdum: boolean;

gi: gen-info_type;

opt: option_type;

sum: sum.type;

total: totals_type;

sdl, cdp: para.ptr;

plspace, plot_space, forcemap: grid-type;

this.area, area, spare.area, sal: area.ptr;

area.i: area-i-type;

re.area-list: ptr.type;
{*************Mw*********w**##*ww#*m BEGIN GLOBAL ROUTINES }

procedure error_simple(ob, caller: string(40));
begin

if gi.tracing
then
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writeln(trace-o, ’Entered procedure ERROR-SIMPLE’);
rewrite(sercom, *UNIT=11’);
writeln(sercom, ’! erroxr ’, ’’*’, ob, ’’’?, ? found in routine ’, caller);
halt;
end {error_simple};

procedure word.scan(var cmds.in: text; var word: string(12));

var
ch: string(1);

procedure skipblks(var ch: string(1));

begin
if gi.tracing
then
writeln(trace_o, ’Entered procedure SKIPBLKS’);
ch :=? 7;
while ch = blank do begin
while (~ eoln(cmds_in)) AND (ch = blank) do
read(cmds_in, ch);
if (eoln{cmds_in)) AND (~ eof(cmds.in))
then
readln(cmds.in);
if eof(cmds_in)
then
error_simple(’ End of file causes return to mts’, ’skipblks’);
end;
if gi.tracing
then
writeln(trace.o, * EXIT procedure SKIPBLKS’);
end {skipblks};

procedure skipcomment(var ch: string(1));

begin
if gi.tracing
then
writeln(trace.o, ’Entered procedure SKIPCOMMENT’);
while ch ~ = ’}’ do begin
while (- eoln{cmds_in)) AND (c¢h ~ = ’}’) do
read(cmds_in, ch);
if (eoln(cmds-in)) AND (~ eof(cmds.in))
then
readln(ecmds_in) ;
if eof(cmds_in)
then
error.simple(’end of file causes return to mts’, ’skipcomment’);
end;
skipblks(ch);
if ch = {
then
skipcomment(ch);
if gi.tracing
then
writeln(trace_o, ’ EXIT procedure SKIPCOMMENT’);
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end {skipcomment};

begin {word_scan}
if gi.tracing
then
writeln(trace.o, ’Entered procedure WORD_SCAN’);
word := *?;
if screen
then begin
writeln(output, substr(pos.str, 1, err_pos + 2),
> Input a command please .......... ON
reset(cmds.in, *UNIT=11,INTERACTIVE’);

repeat
read(cmds.in, ch)
until ch ~ = ??;
end

else

skipblks(ch);
while (~ eoln(cmds_in)) AND (ch “ = blank) do begin

if ch = *{°
then
skipcomment (ch);

word := word || ch;
read(cmds_in, ch);

end;
if ch 7 = blank
then
word := word || ch;
if opt.echo
then
writeln(output, substr(pos.str, 1, com_pos), ’ Command : ’, word,

bl ,);
if (eoln(cmds.in)) AND (" eof(cmds-in))
then
readln(cmds_in) ;
if gi.tracing
then
writeln(trace_o, ’ EXIT procedure WORD_SCAN

end {word-scan};

', word);

procedure control(var cmd.i: text);
forward;

procedure start_shut(var cmd_-i: text; starting: start-type);

forward;

procedure trapper;

var
ch: char;

begin
if gi.tracing

then
writeln(trace.o, 'Entered procedure TRAPPER’);
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writeln(output, substr(pos.str, 1, err.pos),

> Attn! : Do you want to stop ?’);
reset(sercom, ’UNIT=11’);
repeat

read(sercom, ch);
until (ch ~ = ?);

trpreset;
if ch = ’y’
then

start.shut (input, shutdown);
writeln(output, substr(pos_str, 1, err_pos),
> ));
if gi.tracing
then
writeln(trace_o, > EXIT procedure TRAPPER’);

end {trapper};

procedure get_command(caller: call.type; var quiter: boolean; var retcom:
com_type; intcall: string(12); var cmds_ig: text);

const
last = 1122;

var
ifail: boolean;
beg, loca, indes: 0 .. 1200;
this_com: string(12);

begin
if gi.tracing
then
writeln(trace-o, ’Entered procedure GET_COMMAND ’, intcall);
this.com := intcall;
if this_com = *°
then begin
this.com := gi.nextword;
gi.nextword := ’’;
end;
if this.com = ?°
then
word_scan(cmds_ig, this.com);
if trap
then
trapper;
beg := 1;
repeat
indes := index(substr(commands, beg, last - beg + 1), this.com);
loca := indes + beg - 1;
if loca MOD 12 =1
then
indes := 0
else

beg := loca + 1;
until (indes = 0) OR (last - beg < 12);
retcom := com_-type(loca DIV 12);
case caller of
errorer:
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ifail := NOT (retcom IN on .. retur );
onoffer:

ifail := NOT (retcom IN on .. off );
mapper :

ifail := NOT (retcom IN piccie .. zoom );
plotter:

ifail := NOT (retcom IN init .. plotstop, zoom );
datert:

ifail := NOT (retcom IN free .. track );
mesher:

ifail := NOT (retcom IN create .. angle );
operter:

ifail := NOT (retcom IN equal .. enquiry );
datalte:

ifail := NOT (retcom IN dfact .. dstif );
calcter:

ifail := NOT (retcom IN cyclegp, cmdint, gravity, ptime, datype );
paramer:

ifail := NOT (retcom IN echo .. calc );
debuger:

ifail := NOT (retcom IN dat .. osc );
contler:

ifail := NOT (retcom IN sets .. retur );
end;

if ifail

then begin {some thing’s wrong}
if (retcom = null) OR (caller = contler)
then begin {invalid command
screen := true;
write(output, substr(pos.str, 1, err_pos));
writeln(output, ’>! error ’, ’’’’, this.com, *’*’,
! found in routine ’, ’get_command’);

writeln(output, ’Input corrected commands ... <RETURN> ...’);
get_command(errorer, ifail, retcom, ’’, sercom);
while retcom " = retur do begin

gi.nextword := substr(commands, ord(retcom) * 12 + 1, 12);

control(sercom); {control returns with nextword = returnlkeyword}
get_command(errorer, ifail, retcom, gi.nextword, sercom) ;
end;
screen := false;
gi.nextword := ’return’;
quiter := false;
end
else begin {valid command wrong caller}
quiter := true;
gi.nextword := this_com;
end;
end
else
quiter := intcall " = ’?; {alls ok}
if gi.tracing
then
writeln(trace_o, > EXIT procedure GET_COMMAND’);

end {get_command};

function onoff(var cmd.i: text): boolean;

var
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onof: com-type;

begin
if gi.tracing
then

writeln(trace. o, ’Entered procedure ONOFF’);

get_command (onoffer, qdum,
case onof of
on:
onoff
off:
onoff := falsse;
otherwise;
end;
if gi.tracing
then
griteln(trace.o, ’
end {onoff};

;= true;

procedure headers;

begin
writeln(output, ’ .0%);

onof, ’?, cmd.i);

EXIT procedure ONOFF’);

writeln(output, substr(pos_str, 1, led_pos),
’ PROGRAM CIRCLES RUNNING COMMENTARY ON : *);
writeln(output, substr(pos.str, 1, tit.pos), ’ ’, gi.heading);

writeln(output, substr(pos_str, 1, req_pos), '’

writeln(output, ’ ’, total.
writeln(output, ’ *, total.
writeln(output, ’ ’, total.
writeln(output, ’ ’, total.
writeln(output, ’ ’>, total.

end {headers};
procedure initialise_globals;
begin

rewrite(debug-o, 'UNIT=7’);
rewrite(trace_o, *UNIT=8’);

rewrite(oscil_o, 'UNIT=10’);

rewrite(sercom, UNIT=11’);
rewrite(cycmd-i, ’FILE=-sas
new(sdl);

cdp := sdl;

quit := false;

rf_first := true;

screen := false;

cy-first := true;

0 cycles requested’);
pages: 6, ’ frames plotted’);

pics: 6, > plots types drawn’);

updates: 6, '’ updates executed’);

cracked: 6, ’ cracking completed’);

cycles: 6, ’ cycles and still counting!’);

s.cmd’);

with gi, plspace, opt, total, opt.meshtbs, sdl@ do begin

damp :
mass :
cohes
phi :
rho :
rad :
kn := 0;

preincarnate := ord(sdl);

1]
o

E.8



Appendix E.

flagno := 0;

typ := free;
next_data := sdl;
reptend := false;
heading := nilhed;
nextword := ’’;
settling := false;
cmdend := false;
tfrac := 0;

tstep := 0;
max.rad := 0;
jumping := false;
single := false;

reareaing := false;
motioning := false;
updating := false;
cycling := false;
fording := false;

oscing := false;
tracing := false;
consoling := false;
charsize := 0.0;
debecho := false;
xmin := 0;

xmax := 0;

ymin := 0;

ymax := 0;

plot_space := plspace;
plot_lims := plspace;

force.map := plspace;
this_area := nil;
area := nil;

sal := nil;
spare_area := nil;
re.area-list := nil;
area-i.size := nilc;
area_i.xmax := 0;
area.i.ymax := 0;

grav := nilv;
cyclegap := 100;

cycle_interval := maxcycle;
cmdprocessing := false;
achol := true;

echo := true;

rf_over := true;

yb := 0;

yt := 0;

xb := 0;

xt = 0;

circles := 0;

fixed := 0;

cracked := 0;

cons := 0;

cycles := 0;

updates := 0;

pics := 0;

pages := 0;

datatypes := 0;
sum.en := 0.0;
sum.sc := 1E70;
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sum.scold := 0;
end;
end {initialise_globals};

function no_cols(xcoord: real): integer;

begin
if gi.tracing
then
writeln(trace.o, ’Entered procedure NO_COLS’);
no-cols := trunc(xcoord / area.i.size.xc);
if gi.tracing
then

writeln(trace_o, ’> EXIT procedure NO_COLS’);
end {no_cols};

function no_rows(ycoord: real): integer;

begin
if gi.tracing
then
writeln(trace.o, ’Entered procedure NO_ROWS’);
no_rows := trunc(ycoord / area.i.size.yc);
if gi.tracing
then

writeln(trace.o, ’ EXIT procedure NO_ROWS’);

end {no_rows};

function shift.area(el: area_ptr; num: integer; dir: area.directioms): area_ptr;

var
shifts: 0 .. 100;

begin
if gi.tracing
then
writeln(trace.o, 'Entered procedure SHIFT_AREA’);
if num < 0
then begin
num := - num;
{area_directions = (self,n,ne,e,se,s,sw,w,nw,nex);}
case dir of

n.. se:
dir := area-directions(ord(dir) + 4);
8 .. nw:
dir := area.directions(ord(dir) - 4);
otherwise;
end;
end;

for shifts := num downto 1 do begin
if el ” = nil
then begin
if gi.reareaing
then
writeln(debug.o, ’Area ’, el@.col: 6, el@.row: 6, ' ', num: 6);
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case dir of

n:
el := el@.n;
ne:
el := shift_area(el@.s, 1, n);
e:
el := el@.e;
se:
el := shift.area(el@.e, 1, 8);
8:
el := el@.s;
8w
el := shift_area(el@.w, 1, 8);
w:
el := el@.w;
nw:
el := shift_area(el@.w, 1, n);
self:;
nex:
el := el@.next_area;
otherwise
error.simple(’illegal direction specification’, ’shift.area’);
end;
end;
end;
shift_area := el;
if (gi.reareaing) AND (el ~ = nil)
then

writeln(debug_o, ’Area ’, ol@.col: 6, el@.row: 6);
if gi.tracing
then
writeln(trace_o, > EXIT procedure SHIFT_AREA’);

end {shift-area};

function sign(val, donor: real): real;

begin
if donor " =0
then
sign := abs(val * donor) / donor
else
sign := val;
end {sign};

function max(a, b, c: real): real;

var
v: real;
begin

v := abs(c);
if abs(a) > v
then
v := abs(a);
if abs(b) > v
then
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v := abs(b);
max := v;
end ;
{*Mxxena*x:**::*:cu:*¢****a@*****#***xm**txm:**m& END GLOBALS }

procedure do_this(procedure proc_name(arg: ptr.type); curr_area:

{does for all elements} single: boolean; lists: el_list_types);

begin
if gi.tracing
then
writeln(trace.o, ’Entered procedure DO.THIS’);
while curr_area ~ = nil do
with curr.area@ do begin

this_area := curr.area;
case lists of
free:
if free_list ” = nil
then
proc.name(free.list);
fixed:
if fixed.list " = nil
then
proc.name(fixed.list);
both: begin
if free.list ~ = nil
then
proc_name(free.list);
if fixed.list ~ = nil
then
proc.-name (fixed list);
end;
end;
if ” single
then
curr.area := next.area
else
curr.area := nil;
end;
if gi.tracing
then

writeln(trace.o, > EXIT procedure DO_THIS’);
end {do_this};
{#***###*##****##**###***##***v##*#*#*##* BEGIN PLOTS }

procedure plots(var ¢cmd_i: text; plot_command: string(12));
var
plotcom: com-type;
plotquit, writing: boolean;
plot_scale: real;
procedure map.space(var cmd.i: text; sp.comst: string(12));

const

area.ptr;
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paph._space = grid_type(0.06, 0.96, 0.05, 0.65);
papv_space = grid_type(0.16, 0.74, 0.14, 0.93);

var
eightht, htratio: real;
sp-com: com-type;
map.sp, plt.sp: grid.type;
mapquit: boolean;

begin
if gi.tracing
then
writeln(trace.o, ’Entered procedure MAP.SPACE’);

repeat
got_command (mapper, mapquit, sp.com, sp.comst, cmd.i);
with plt_sp do begin
plt_sp := plot_space;
eightht := (ymax - ymin) / 6;
case sp.com of
horiz: begin
plot_space := paph.space;
plt_sp := plot._space;
eightht := (ymax - ymin) / 6;

end;
vertic: begin
plot_space := papv.space;

plt.sp := plot_space;
eightht := (ymax - ymin) / 6;
end;
fnosc, whole, zoom:;
otherwise;
end;
pspace(xmin, xmax, ymin, ymax);
if ymax - ymin < 1E-20

then
htratio := 1
else
htratio := (xmax - xzmin) / (ymax - ymin);
end;

with map.sp do begin
map-sp := plspace;
case sp-com of
piccie, horiz, vertic, whole, fnosc:
ymax := ymin + (xmax - xmin) / htratio;

Zoom:
with plspace do begin
if screen
then
writeln(output, substr(pos_str, 1, pro.pos),
’ Enter xmin, xmax, and ymin ...’);

read(cmd-i, xmin, xmax, ymin);
ymax := ymin + (xmax - xmin) / htratio;
map-sp := plspace;
end;
otherwise;
end;
gi.charsize := 0.012 # (ymax - ymin);
ctrsiz(gi.charsize);
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map(xmin, xmax, ymin, ymax);
end ;

if sp-com
then

scales;
border;
until mapquit;
if gi.tracing

then

writeln(trace.o, > EXIT procedure MAP_SPACE’);

end {map_space};

= fnosc

procedure setup.plot;
sets up plotting parameters }
suitable for a4 size paper / laser printer}
called from either start or restar
end of line }

fonten Tenten Vanaen Youa Y

begin
if gi.tracing
then
writeln(trace.o, ’Entered procedure SETUP.PLOT?);
papexr(1);
cspace(0.00, 1.00, 0.00, 0.80);
pspace(0.06, 0.96, 0.05, 0.65);
map-space(cmd.i, ’vertical’);
map_space{cmd_i, ’zoom’);
blkpen;
if gi.tracing
then
writeln(trace.o, ’* EXIT procedure SETUP.PLOT’);
end {setup_plot};

procedure grid-plot;
procedure to plot area called from plot end of line }

var
i, j, lines: 1 .. 100;
Xxm, ym, x, y: real;

begin
if gi.tracing
then
writeln(trace_-o, ’Entered procedure GRID.PLOT’);
xm := plspace.xmax;
ym := plspace.ymax;
dray vertical lines }
x :=0.0;
y :=0.0;
lines := area.i.xmax + 1;
for i := 1 to lines do begin
positn(x, y);
join(x, ym);
X := x + area_i.size.xc;
end;
draw horizontal lines }
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x :=0.0;

y :=0.0;

lines := area.i.ymax + 1;
for j :=1 to lines do begin

positn(x, y);
join(xm, y);
y :=y + area_i.size.yc;
end;
if gi.tracing
then
writeln(trace.o, ’ EXIT procedure GRID_PLOT’);

end {grid-plot};

procedure fram_plot;
#%% gets up plotting frames ***}
suitable for a4 size paper / laser printer }
called from either stplot or plot }

Fonten Ve Ve Yo

may call grid_plot if areaing set }

var
time, yline: real;

begin
if gi.tracing
then
writeln(trace.o, ’Entered procedure FRAM.PLOT’);
with plspace do begin
map.space(cmd_i, ’fullnoscales’);
time := gi.tstep * total.cycles;
gi.charsize := 0.02;
ctrsiz(gi.charsize);
yline := ymax - 4 * gi.charsize;
undlin(1);
italic(1);
plotcs(3 * gi.charsize, yline, gi.heading, 80);
pcsend(xmax - 11 * gi.charsize, yline, ’TIME ’, 6);
plotne(xmax - 9 * gi.charsize, yline, time, 4);
italic(0);
undlin(0);
if gi.reareaing
then begin
grid_plot;
end;
writeln(debug_o) ;
end;
if gi.tracing
then
writeln(trace_o, * EXIT procedure FRAM_PLOT’);

end {fram_plot};

procedure circle_plot(el: ptr.type);
{ plot a snapshot of the geometry}

begin
if gi.tracing
then

E.15
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writeln(trace-o, 'Entered procedure circle.PLOT’);
while el “ = nil do
with el@, data@ do begin
gpoint(posn.xc, posn.yc);
circle(rad);

el := next;
end;
if gi.tracing
then

writeln(trace_o, ’ EXIT procedure circle_PLOT’);
end {circle_plot};

procedure dot_plot(el: ptr_type);

begin
if gi.tracing
then
writeln(trace.c, ’Entered procedure DOT_PLOT’);
while el ~ = nil do
with el@ do begin
gpoint (posn.xc, posn.yc);

el := next;
end;
if gi.tracing
then

writeln(trace.o, ’ EXIT procedure DOT_PLOT’);
end {dot-plot};

procedure prof_plot;

begin
if gi.tracing
then
writeln(trace.o, ’Entered procedure PROF_PLOT’);
if gi.tracing
then
writeln(trace.o, * EXIT procedure PROF_PLOT’);

end {prof_plot};

procedure arrow(x, y, vx, vy, scale: real);
{ this routine plots an arrow

b4 - X - coordinate of arrow centre y - y - coordinate of arrow centre
vx - Xx component of vector vy - y component of vector

var

rdenom, alen, sina, cosa, ahlen, ahwid, alend2, alen2x, alen2y, ahwidx,

ahwidy, xtip, ytip, xtipmh, ytipmh: real;

begin
alen := scale * sqrt(sqr(vx) + sqr(vy));
if alen > 1.0E-50
then begin
ahlen := 0.15 % alen;
ahwid := 0.04 = alen;

{ find angle shaft makes with horizontal direction}

E.16
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rdenom := scale / alen;
sina := vy % rdenom;
cosa := vx * rdenom;
if abs(vy * 0.00001) - abs(vx) >0
then begin
sina := sign(1.0, vy);
cosa := 0.0;
end;
alend2 := 0.5 % alen;

alen2x := alend2 * cosa;
alen2y := alend2 * sina;
ahwidx := ahwid * sina;

ahwidy := ahwid * cosa;

xtip := x + alen2x;

ytip := y + alen2y;
xtipmh := xtip - ahlen * cosa;
ytipmh := ytip ~ ahlen * sina;

{ plot arrow starting at tail}

positn(x - alen2x, y - alen2y);
join(xtip, ytip);
join(xtipmh - ahwidx, ytipmh + ahwidy);
join(xtipmh + ahwidx, ytipmh - ahwidy);
join(xtip, ytip);
positn(x - ahwidx, y + ahwidy);
join(x + ahwidx, y - ahwidy);
end;

end {arrow};

procedure find_scale(el: ptr_type);

var
con.ncde: con-ptr;

begin
if gi.tracing
then
writeln(trace_o, ’Entered procedure FIND_SCALE’);
case plotcom of
conplot:
while el ~ = nil do
with el@ do begin
con-node := con.list;
while con.node “ = nil do
with con_node@ do begin
if abs(c.force.x) > plot.scale
then
plot.scale := abs(c.force.x);
if abs(c_force.y) > plot_scale

then
plot.scale := abs(c.force.y);
con_node := next_con;
end;
el := next;
end;
failplot:

while el ™ = nil do

E.17
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with el@ do begin
con_node := con.-list;
vhile connode ~ = nil do
with con_node@ do begin
if (failed) AND (abs(f.force) > plot.scale)

then
plot_scale := abs{f_force);
con_node := next.con;
end;
el := next;
end;
velplot:

while el ” = nil do
with el@, v do begin
if aba(x) > plot.scale
then
plot.scale := aba(x);
if abs(y) > plot_scale
then
plot_scale := abs(y);
el := next;
end;
end;
if gi.tracing
then
writeln(trace_o, ’° EXIT procedure FIND_SCALE’);

end {find_scale};

procedure vel_plot(el: ptr_type);
plot the velocities of the circles, called from plot, end of line }

begin
if gi.tracing
then
writeln{trace-o, ’Entered procedure VEL-PLOT’);
while el “ = nil do
with el@, posn, v do begin
arrow(xc, yc, x, 0, plot_scale);
arrow(xc, yc, 0, y, plot_scale);
arrow(xc, yc, x, y, plot.scale);
el := next;
end;
if gi.tracing
then
writeln(trace_o, > EXIT procedure VEL_PLOT’);

end {vel_plot};

procedure disp.plot(el: ptr.typa);
{ plot of displacements, called from plot, end of line }

begin
if gi.tracing
then
writeln(trace.o, 'Entered procedure DISP_PLOT’);

while el ” = nil do
with el@ do begin
with source do
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gpoint(xc, yc);
with posn do
join(xc, yc);
source := posn;
el := next;
end;
if gi.tracing
then
writeln(trace.o, ’° EXIT procedure DISP.PLOT’);
end {disp_plot};

procedure cont_plot(el: ptr._type);

var
midx, midy: real;
con.node: con_ptr;

begin
if gi.tracing
then
writeln(trace.o, ’Entered procedure CONT_PLOT’);
while el ~ = nil do
with el@, el@.posn do begin
con.node := con.list;
while con.node " = nil do
with con.node@ do begin
positn(xc, yc);
join(other@.posn.xc, other®.posn.yc);
midx := (xc + other@.posn.xc) / 2;
midy := (yc + other@.posn.yc) / 2;
arrow(midx, midy, c_force.x, O, plot_scale);
arrow(midx, midy, 0, c_force.y, plot_scale);
arrow(midx, midy, c_force.x, c.force.y, plot_scale);
con.node := next._con;
end;
el := next;
end;
if gi.tracing
then
writeln(trace.o, > EXIT procedure CONT_PLOT’);
end {cont_plot};

procedure draw_split(x, y, theta, scale: real);

var
xlen, ylen: real;

begin
ylen := scale * cos(theta);
xlen := scale * sin(theta);

positn(x + 2 # xlen, y - 2 * ylen);
join(x - 2 # xlen, y + 2 * ylen);
positn(x + xlen, y + ylen);

join(x - xlen, y - ylen)

end {draw-split};
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procedure fail.plot(el: ptr_type);

var
midx, midy: real;
con.node: con.ptr;

begin
if gi.tracing
then
writeln(trace.o, ’Entered procedure FAIL.PLOT’);
while el ” = nil do
with el@ do begin
con_node := con.list;
while conmnode “ = nil do
with con node@ do begin
draw.split((posn.xc + other@.posn.xc) / 2, (posn.yc + other@.posn.
yc) / 2, f.angle, f.force » plot.scale);
con.node := next.con;
end;
el := next;
end;
if gi.tracing
then
writeln(trace.o, ’> EXIT procedure FAILPLOT’);
end {fail_plot};

begin {plots}
if gi.tracing
then
writeln(trace_o, ’Entered procedure PLOTS’);
writing := opt.echo;
repeat
get_command (plotter, plotquit, plotcom, plot_command, cmd-i);
if plotcom IN ballplot .. failplot
then
total.pics := total.pics + 1;
case plotcom of
ballplot:
do.this(circle.plot, sal, false, both);
dotplot:
do_this(dot_plot, sal, false, both);
velplot: begin
plot_scale := 0;
do_this(find.scale, sal, false, free);
if plot_scale " =0
then begin v
plot_scale := gi.max.rad / (total.datatypes * plot_scale);
do_this(vel.plot, sal, false, free);

end
else
writeln(output, substr(pos_str, 1, mes.pos),
> Warning : all velocities zero )
end;
displot:

do_this(disp.plot, sal, false, free);
conplot: begin

plot_scale := 0;

do-this(find_scale, sal, false, fres);
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if plot_scale “ = 0
then begin
plot.scale := gi.max.rad / (total.detatypes # plot.scalae);
do_this(cont_plot, sal, false, free);
end
else
writeln(output, substr(pos_str, 1, mes_pos),
> Harning : all contact forces zero )
end;
failplot: begin
plot_scale := 0;
do-this(find.scale, sal, false, free);
if plot_scale " =0
then begin

plot_scale := gi.max.rad / (2 » total.datatypes = plot_scale);

do_this(fail_plot, sal, false, free);
end
else
writeln(output, substr(pos_str, i, mes.pos),
’ Yarning : no failures : no plot *);
end;
standard: begin

do_this(circle_plot, sal, false, both);
total.pics := total.pics + 1;
fram_plot;
frame;
total.pages := total.pages + 1;
end;
frames:
fram_plot;
page: begin
frame;
total.pages := total.pages + 1;
end;
graticule:
grid_plot;
init: begin
setup-plot;
fram_plot;
grid.plot;
writing := false;
end;
plotstop: begin
map-space(cmd_i, ’full’);
fram_plot;
grid-plot;
do_this(circle_plot, sal, false, both);
grend;
total.pics := total.pics + 1;
writing := false;
total.pages := total.pages + 1;
end;
zoom:
map-space(cmd._i, ’zoom’);
maps :
map-space(cmd-i, ’’);
otherwise;
end;
if writing AND ~ cy-first
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then begin
if opt.echo
then

writeln(output, substr(pos.str, 1, fra.pos), total.pages: 8,

substr(pos.str, 1, plo.pos), total.pics: B);
end;

until pleotquit;
if gi.tracing

then

writeln(trace_o, ’ EXIT procedure PLOTS’);
end {plots};
{*#*######*****#**#*#t#***##vt##¢*#¢t*¢*# END PLOTS }

{#*t*******aa#****#*****#**#****#*#v***** BEGIN UPDATE }

procedure update.area(el: ptr_type);

var
con-lim, con_res: real;

procedure update_el(el: ptr._type);

var
sibling: ptr.type;
forf: el.list_types;
dir_lim, sweep: area-directions;
centre: area_ptr;
gap: real;
offset: real;

procedure update.brain(elem, twin: ptr.type);

var
found: boolean;

procedure destroy.contact(owner: ptr_type; pre_victim: con_ptr);

var
victim: con.ptr;

begin
if gi.tracing
then
writeln(trace_o, ’Entered procedure DESTROY_CONTACT’);

if pre.victim = nil

then begin
victim := owner@.con_list;
owner@.con_list := owner®.con_list®.next_con;
end

else begin
victim := pre.victim@.next.con;
pre.victim@.next-con := victim@.next.con;
end;
dispose(victim);
total.cons := total.cons - 1;
if gi.updating
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then
writeln(debug.o, > Victim destroyed?’);
if gi.tracing
then
writeln(trace_o, * EXIT procedure DESTROY.CONTACT’);
end {destroy-contact};

procedure scan_con(home_el, away_el: ptr_type);

var
home.con, prev.con: con.ptr;

begin
if gi.tracing
then
writeln(trace_o, ’Entered procedure SCAN_CON’);
home_con := home_el@.con.list;
prev.con := nil;
found := false;
while (NOT found) AND (home_con ~ = nil) do begin
found := home.con@.other = away-el;
if NOT found
then begin
prev-con := home_con;
home.con := home_con@.next_con;
end;
end;
if (found) AND (gap >= con.lim)
then
destroy_contact(home.el, prev_con);

if gi.tracing
then
writeln(trace_.o, ’ EXIT procedure SCAN_CON’);

end {scan-con};

procedure create _contact(domicus, vagrantus: ptr_type);

var
newcon: con.ptr;

begin
if gi.tracing
then
writeln(trace.o, ’Entered procedure CREATE.CONTACT’);
new(newcon) ;
with newcon@ do begin
next.con := domicus@.con.list;
domicus@.con_list := newcon;
other := vagrantus;
if gap > 0
then {tensional}
offs := domicus@.data@.rad + vagrantus@.data@.rad
else {overlapping}
offs := offset;
gapsum := 0;
c.force := nilv;
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f.force := 0;

f.angle := 0;

failed := false;

end;
total.cons := total.cons + 1;
if gi.updating

then

writeln(debugo, ’ Contact created’, gap: 6, domicus@.posn.xc:
6, domicus@.posn.yc: 6, vagrantus@.posn.xc: 6, vagrantus@.posn
.yc: 6);
if gi.tracing
then
writeln(traceo, ’ EXIT procedure CREATE_CONTACT’);
end {create_contact}; ‘

begin {update_brain}
if gi.tracing
then
writeln(trace.o, ’Entered procedure UPDATE_BRAIN’);

scan-con(elem, twin);
if NOT found
then
scan_con(twin, elem);
if (NOT found) AND (gap < con-lim)
then
create.contact(elem, twin);
if gi.tracing
then
writeln(trace.o, ’ EXIT procedure UPDATE_BRAIN’);
end {update_brain};

function central(elem: ptr._type): boolean;

begin
if gi.tracing
then
writeln(trace_o, ’Entered procedurs CENTRAL');
with centre®.corners do
central := min(elem®.posn.yc - ymin, ymax - elem@.posn.yc, elem@.posn.
xc - xmin, xmax - elem@.posn.xc) > 2 * gi.max.rad + con.res;
if gi.tracing
then
writeln(trace_o, ’ EXIT procedure CENTRAL’);

end {central};

begin
{ it is fortunate that two fixed blocks are not allowed to have contacts}
if gi.tracing
then
writeln(trace.o, ’Entered procedure UPDATE EL’);

with el@ do begin
centre := this.area;
if central(el)
then
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dir.lim := self
else
dir_lim := nw;
for sweep := self to dir.lim do begin
area := shift_area(centre, 1, swaop);
if area = nil
then
continue;
if sweep = self
then
sibling := el@.next
else
sibling := area@®.free.list;
for forf := free to fixed do begin
while (sibling ~ = nil) do begin
offset := sqrt(sqr(sibling@.posn.xc - posn.xc) + sqr(sibling@.posn
.yc - posn.yc));
gap := offset - (data@.rad + sibling@.data@.rad);
if gap < con.res
then
update_brain(el, sibling);
sibling := sibling@®.next;
end;
sibling := area®.fixed-list;
end;
end;
end;
if gi.tracing
then
writeln(trace.o, ’ EXIT procedure UPDATE.EL’);

end {update_el};

begin {update_area}
if gi.tracing
then
writeln(trace.o, ’Entered procedure UPDATE_AREA’);
if this.area = spare.area
then
return;
with this.area@ do begin
upd_min := 0.5 * gi.max.rad / total.datatypes;

con_lim := upd-min; { gap > con.lim not a contact}
con_res := 2.1 * con_lim; { gap < con.res check lists}
upd.par := 0;

end;

while el ~ = nil do begin
update_el(el);
el := el@.next;
if gi.updating
then
writeln(debug_o, ’total number of contacts’, total.cons);
end;
total.updates := total.updates + 1;
if gi.tracing
then
writeln(trace-o, ' EXIT procedure UPDATE_AREA’);
end {update_area};
{¢**#*#****###**#****#**#*#######**##**** END UPDATE }
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{*¢¢*¢¢¢¢¢*w*&#v#m#th#*atavta¢¢¢¢¢¢¢¢¢vv BEGIN RE_AREA }

procedure re_area;

var
el: ptr_type;

begin
if gi.tracing
then
writeln(trace-o, ’Entered procedure RE_AREA’);
while re.area.list ~ = nil do
with re.area_list@ do begin
if gi.reareaing
then
writeln(debug.o, ’ori x,y, new x,y ’, source.xc: 6, source.yc: 6,
posn.xc: 6, posn.yc: 6);

area := shift_area(shift_area(sal, no_cols(posn.xc), e), no_rows(posn.yc
), n);
if area = nil
then begin
area := spare.area;
total.circles := total.circles - 1;

writeln(output, substr(pos.str, 1, mes_pos),
’ Harning : circles leaving area ’, el@.posn.xc: 8, * ’, el@.

posn.yc: B);
end;
el := re_area_list;
re_area_list := el@.next;
el@.next := area@.free_list;
area@.free_list := el;
end;
if total.circles = 0
then

start_shut (input, shutdown);
if gi.tracing
then
writeln(trace.o, * EXIT procedure RE_AREA’);
end {re_area};
{****4#w#***#**************#**#**#¢*¢#*¢¢ BEGIN CYCLE }

procedure cycle(var cmd.i: text);

{ driver for iterations }

{ the calculation sequence module }

{ called from contrl }

{ may call ford, motion, updat and stop }
{ called via motion

var
cycles, no.of_cycles, outcounter, cycle.lim: cycle_type;
max_adisp, min_.adisp: real;
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procedure hide_el(var el: ptr_type);

var
elem, prev: ptr.type;

begin
if gi.tracing
then
writeln(trace.o, ’Entered procedure HIDE_EL’);
if this_area = spare.area
then
return;
with this_area@ do begin
elem := free_list;

prev :=nil;

while el ~ = elem do begin
prev := elem;
elem := elem@.next;
end;

el := el@.next;
if prev = nil

then
free_list := el
else
prev@.next := el;
elem@.next := re_area.list;
re.area.list := elem;
end;
if gi.tracing
then

writeln(trace.o, ' EXIT procedure HIDE.EL’);
end {hide-el};

procedure clear_forces(el: ptr._type);
{ set all forces to zero

begin
if gi.tracing
then
writeln(trace_o, ’Entered procedure CLEAR_FORCES’);
while el ” = nil do
with el@ do begin
force := nilv;

el := next;
end;
if gi.tracing
then

writeln(trace_o, * EXIT procedure CLEAR_FORCES’);
end {clear_forces};

procedure fordmot(el: ptr-type);

var
con.node: con._ptr;
sine, cose, gap, dx, dy, con.force: real;
stress, t_force: vector_type;
n, si, s3, si, sn, st: real;
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begin
if gi.tracing
then
writeln(trace-o, ’Entered procedure FORD’);

while el “ = nil do
with el@, el@.data@ do begin

con_node := con-list;
if gi.fording
then

writeln(debug.o,
’deltagap con_force force t_force for x then y’);
while connode ~ = nil do
with connode@ do begin
dx := other@.posn.xc - posn.xc + (other@.s.x - 8.x);
dy := other@.posn.yc - posn.yc + (other@.s.y -~ 8.y);
gap := sqrt(sqr(dx) + sqr(dy));
sine := dy / gap;
cose :=dx / gap;
if gi.fording
then
write(debug.o, gap, sine, cose);
gap := gap - offs;
if gi.fording
then
writeln(debug-o, gap);
if gap < this.area®.upd-min
then begin
con.force kn = gap = damp;
tforce.x := c_force.x + con.force * cose;
t-force.y := c_force.y + con.force * sine;
if gap * kn + gapsum > 0
then begin
if gap * kn + gapsum > tens_fuzz
then begin
f_force := (t-force.x + t.force.y) / 2;
if abs(sine) < 1E-40
then
sine := 1e-40;
f_angle := arctan(- cose / sine);
t_force := nilv;
failed := true;
end;
end
else begin
stress.x := abs(t_force.x / rad);
stress.y := abs(t_force.y / rad);
if stress.x < stress.y
then begin
s3 := stress.x;
si := stress.y;
end
else begin
s3 := stress.y;
si := stress.x;
end;
if phi =0
then begin
sl := 83 + 2 * cohes;
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sn := 1E7;
st := cohes;
end

else begin

n := sqrt(1 + sqr(phi));
n:= (1 +phi-n)/ (phi-1+mn);
sn := (83 + n * cohes) / (1 - n * phi);
st := phi * sn + cohes;
sl := 2 % (sn 4+ st % phi) - 83;
end;
if si > sl
then begin
if stress.x < stress.y
then
t_force.y := sign(sl # rad, t_force.y)
else
t-force.x := sign(sl # rad, t-force.x);
if ~ failed
then begin
failed := true;
f_force := st;
if aba(sn - 83) > 1e-20
then
f.angle := arctan(st / (sn - 83))

else
f_angle := 0;
total.cracked := total.cracked + 1;
if opt.echo
then
writeln(output, substr(pos_str, 1, cra.pos),
total.cracked: 8, substr(pos._str, 1,
cyc-pos), total.cycles: 8, substr(pos.str,
1, mes_pos), ’ Sphere cracked at ’, posn.
xc: 8: 3, posn.yc: B: 3, stress.x: 8: 3,
stress.y: 8: 3);
end;
end;
other@.force.x := other®.force.x - t_force.x;
other@.force.y := other@.force.y - t_force.y;
force.x := force.x + t_force.x;
force.y := force.y + t_force.y;
if gi.fording
then
writeln(debug.o, con.force: 8, dx: 8, force.x: 8,
other@®.force.x: 8, dy: 8, force.y: 8, other@.force
.y: 8);
if gi.consoling
then
writeln(debug.o, t_force.x, t_force.y);
end;
end;
con_node := next_con;
end;
el := next;
end;
if gi.tracing
then
writeln(trace_o, ’ EXIT procedure FORD’);
end {fordmot};
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procedure fordcon(el: ptr.type);

var
con_node: con_ptr;
sine, cose, gap, dx, dy, con force: real;
stress, t_force: vector.type;
n, si, 83, si, sn, st: real;

begin
if gi.tracing
then
writeln(trace.o, ’Entered procedure FORDCON’);

while el ~ = nil do
with el@, el@.data@ do begin
con_node := con.list;
if gi.fording
then
writeln(debug-o,
‘deltagap con.-force force t_force for x then y’);
while con_node ~ = nil do
with con-node@ do begin
dx := other®@.posn.xc - posn.xc;
dy := other@.posn.yc - posn.yc;
gap := sqrt(sqr(dx) + sqr(dy));
sine := dy / gap;
cose := dx / gap;
dx := dx + (other@.s.x - 8.%);
dy := dy + (other@.s.y - s.y);
gap := sqrt(sqr(dx) + sqr(dy));
if gi.fording
then
write(debug.o, gap, sine, cose);
gap := gap - offs;
if gi.fording
then
writeln(debug.o, gap);
if gap < this_area®.upd_min
then begin
gapsum := gapsum + gap;
con.force := gap * damp;
t.force.x := c_force.x + con_force * cose;
t_force.y := c_force.y + con.force * sine;
if gapsum > 0
then begin
if gapsum > cohes
then begin
f_force := (t_-force.x + t_force.y) / 2;
if abs(sine) < 1E-40

LU I

then
sine := 1e-40;

f_angle := arctan(- cose / sine);
t_.force := nilv;

failed := true;

end;

end
else begin

stress.x := abs(t_force.x / rad);
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stress.y := abs(t_force.y / rad);
if stress.x < stress.y

then begin
s3 := stress.x;
si := stress.y;
end

else begin
83 := stress.y;
si := stress.x;
end;

if phi = 0

then begin
sl := 83 + 2 » cohes;
sn := 1E7;
st := cohes;
end

else begin
n := sqrt(1 + sqr(phi));
n:=(1+phi-n)/ (phi-1+n);
sn := (s3 +n * cohes) / (1 - n * phi);
st := phi * sn + cohes;
81 := 2 * (sn + st * phi) = s3;
end;
if 8i > sl
then begin
if stress.x < stress.y
then
t_force.y :
else
t_force.x :
if ~ failed
then begin
failed := true;
f_force := st;
if abs(sn - 83) > 1e-20

sign(sl * rad, t.force.y)

1l

sign(sl » rad, t.force.x);

then
f_angle := arctan(st / (sn - 83))
else
f.angle := 0;
total.cracked := total.cracked + 1;
end;
end;
end;
c.force ;= t_force;
other@.force.x := other@.force.x - c_force.x;
other@.force.y := other@.force.y - c.force.y;
force.x := force.x + c.force.x;

force.y := force.y + c_force.y;
if gi.fording
then
writeln(debug.o, con_force: 8, dx: 8, force.x: 8, other@.
force.x: 8, dy: 8, force.y: 8, other@.force.y: 8);
if gi.consoling

then
writeln(debug o, c.force.x, c_force.y);
end;
con-node := next_con;

end;
el := next;
end;
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if gi.tracing
then
writeln(trace.o, > EXIT procedure FORDCON’);

end {fordcon};

procedure premotion(el: ptr._type);

var
con_node: con_ptr;

begin
if gi.tracing
then
writeln{trace.o, ’Entered procedure PREMOTION’);
while el ” = nil do
with el@ do begin
con_node := con.list;
while connode ~ = nil do
with con_node@ do begin
if other@.data@.typ = fixed
then
no_of_contacts := no_of_contacts + 1
else
if (abs(other@.s.y - s.y) > 0.0005) AND (abs(posn.yc - other@.
posn.yc) > 0.1)
then begin
no.of_contacts := no.of_contacts + 1;
other@.no_of _contacts := other@.no_of_contacts + 1;
end;
con.node := next.con;
end;
el := next;
end;
if gi.tracing
then
writeln(trace.o, ’ EXIT procedure PREMOTION’);

end {premotion};

procedure fconsolxy(el: ptr._type);

begin
if gi.tracing
then
writeln(trace.o, ’Entered procedure FCONSOLXY’);
while el “ = nil do
with el@, el@.force, el@.data@, opt, gi do begin
if no_of._contacts = 0
then
no-of_contacts := 1;
s.x := (x / mass + grav.x) * sqr(gi.tstep) {/ no_of-contacts};
s.y := (y / mass + grav.y) * sqr(gi.tstep) {/ no-of-contacts};
sum.sc := max(s.x, s.y, sum.sc);
if motioning
then
vriteln(debug.o, flagno: 3, ' £’, x,y, ' 8, 8.%, B.y);
no.of_contacts := 0;
force := nilv;

]
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el := next;
end;
if gi.tracing
then

writeln(trace.o, ’ EXIT procedure FCONSOLXY’);
end {fconsolxy};

procedure motionxy(el: ptr_type);

var
max-disp: real;

begin
if gi.tracing
then
writeln(trace_o, ’Entered procedure MOTION’);

max-disp := 0;
while el “ = nil do
with e1@ do begin
posn.xXc := posn.xc + 8.X;
posn.yc := posn.yc + 3.y;
a.x := force.x / data@.mass + opt.grav.x;
force.y / data@.mass + opt.grav.y;
v.x +a.x * gi.tstep;
v.y +a.y * gi.tstep;
v.x * gi.tstep;
v.y * gi.tstep;
sum.sc := max(s.x, 8.y, sum.sc);
max_disp := max(max_disp, s.x, s.y);
if (gi.oscing) AND (data®.typ = track)
then
writeln(oscil.o, data@.flagno: 4, total.cycles: 6, force.x: 12, a.
x: 12, v.x: 12, s.x: 12, posn.xc: 12, force.y: 12, a.y: 12, v.
y: 12, s.y: 12, posn.yc: 12);
if (trunc(posn.yc / area.i.size.yc) ~ = this.area@.row) OR (trunc(posn
.xc / area.i.size.xc) ~ = this.area@.col)
then
hide_el(el)
else
el := next; {el may be changed by hide_el}
end;

<

with this_area@ do begin
upd-par := upd.par + max.disp;
if upd.par > upd_min
then begin
if re.area_-list " = nil
then
re_area;
do-this(update.area, this_area, true, free);
if opt.echo
then
writeln(output, substr(pos.str, 1, upd_pos), total.updates: 8);
end;
end;
if gi.tracing
then
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writeln(trace.o, ’ EXIT procedure MOTION');
end {motionxy};

begin {cycle}
if gi.tracing
then
writeln(trace.o, ’Entered procedure CYCLES’);
if screen
then
writeln(output, substr(pos.str, 1, pro.pos),
’> Enter no of cycles required...’);
read(cmd_i, no_of_cycles);
if opt.echo
then
writeln(output, substr(pos.str, 1, req.pos), no-of.cycles: 8);

if total.circles = 0
then begin
writeln(output, substr{pos_str, 1, mes_pos),
’ Warning no circles left ’);
return
end;

max_adisp := gi.max_rad / (200 % total.datatypes);
=m

min_adisp := max_adisp / 50;
outcounter := total.cycles;
cycles := 0;

while (cycles < no_of_cycles) AND (" quit) do begin
if opt.cycle.interval < no.of.cycles - cycles
then
cycle_lim := total.cycles + opt.cycle.interval
else
cycle_lim := total.cycles + no_of.cycles - cycles;
while (total.cycles < cycle_lim) AND (~ quit) do begin
sum.scold := sum.sc;
sum.sc := 0;
if gi.settling
then begin
do_this(premotion, sal, false, free);
do_this(fordcon, sal, false, free);
do_this(fconsolxy, sal, false, free);
end
else begin
do.this(fordmot, sal, false, free);
do_this(motionxy, sal, false, free);
if re.area.list ” = nil
then
re_area;
do.this(clear_forces, sal, false, both);
end;
total.cycles := total.cycles + 1;
if (opt.echo) AND (total.cycles MOD opt.cyclegap = 0)
then begin
writeln(output, substr(pos_str, 1, cyc_pos), total.cycles:
if sum.scold < sum.sc
then
writeln(output, substr(pos.str, 1, mes_pos),
’ Decreasing stability ’, sum.sc)

8);

E.34
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else
writeln(output, substr(pos_str, 1, mes_pos),
’ Increasing stability ’, sum.sc);
end;
if (opt.cmdprocessing) AND (total.cycles MOD opt.cycle_interval = 0)
then begin
reset(cycmd-i, ’FILE=-sass.cmd’);
gi.cmdend := false;
while ” gi.cmdend do
control(cycmd_i);
if opt.echo
then
griteln(output, substr(pos.str, i, req.pos), no.of_cycles: 8);
end;
quit := (gi.settling) AND (sum.sc < le-14);
if © gi.settling
then begin
if sum.sc > max.adisp
then begin
gi.tstep := gi.tstep / 2;
writeln(output, substr(pos._str, 1, err_pos),
> Current time step set to : ’, gi.tstep: 12: 10);
end
else
if sum.sc < min_adisp
then begin
gi.tstep := gi.tstep % 1.05;
writeln(output, substr(pos.astr, 1, err_pos),
> Current time step set to : ’, gi.tstep: 12: 10);
end;
end;
if trap
then
trapper;
if gi.cycling
then
writeln(debug.o, ’max individual disp ’, sum.sc);
end;
cycles := total.cycles - outcounter;
end;
if (quit) AND (sum.sc < le-14)
then
quit := false;
if gi.tracing
then
writeln(trace_o, > EXIT procedure CYCLES’);
end {cycle};
{*************##¢*¢*¢¢v¢¢***¢*#*##¢#¢###a END CYCLE }

procedure start_shut;
{ initialises the run, called from control, initialisation modules }

type
records = (rpar, rvec, rcoo, rcon, rele, rgri, rare, rara, rgen, ropt, rtot,

rsum, rhed);
buffertype = record
tag: char;
case records of
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rpar:
rvec:
rcoo:
rcon:
rele:
rgri:
rare:
rara:
rgen:
ropt:
rtot:
rsum:
rhed:
end;

var

(parabk_rep: parabk.-type);
(vector_rep: vector_type);
(coord.rep: coord-type);
(con_rep: con-type);
(element_rep: element_type);
(grid-rep: grid-type);
(area_i_rep: area_i_type);
(area.rep: arsa.type);
(gen-info.rep: gen.info.type);
(option_rep: option_type);
(totals_rep: totals_type);
(sum_rep: sum_type);
(hed_rep: hed-type);

rest.o, rest.i: file of buffertype;
buffer: buffertype;

sd: para.ptr;

new.circle: ptr-type;

procedure mesh.areas;

procedure get_area(var n.a: area.ptr; cols, rows: rouwcol.type);

begin
if gi.tracing
then

writeln(trace.o, ’Entered procedure GET-AREA’);

new(n_a);

with n_a@ do begin
corners.xmax :=
corners.xmin :
corners.ymax :
corners.ymin :
row := rows - 1;

col := cols - 1;

upd_par :=
upd_min :
free.list :

1l
=K

area-i.size.xc * cols;
corners.xmax - area-i.size.xc;
area.i.size.yc * rows;
corners.ymax - area.i.size.yc;

fixed_list :=nil;

n := nil;
e nil;
s :=nil;
¥ := nil;

o

next_area := nil;

end;

if gi.reareaing

then

with n.a@.corners do

writeln(debugo, ’x,x” ,y,y"

if gi.tracing
then

writeln(trace.o, ' EXIT procedure GET.AREA’);

end {get-area};

var

', xmin: 6, xmax: 6, ymin: 6, ymax);

E.36
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nev-area: areaptr;
columns, layers: rowcol.type;

begin {mesh.areas}
if gi.tracing
then
writeln(trace_o, ’Entered procedure MESH-AREAS’);
get.area(area, 1, 1);
sal := area;

for columns := 1 to area.i.xmax do begin
if gi.reareaing
then
writeln(debug.o, ’setup areas col number’, columns);
for layers := 2 to area.i.ymax do begin
if gi.reareaing
then

writeln(debug_o, ’setup areas row number’, layers);
get.area(new.area, columns, layers);
area@.next_area := new.area;
area@®.n := new_-area;
area@.n®.s := area;
if columns = 1
then
area := area@.n
else begin
area := shift_area(area, 1, nw);
area@.e := new.area;
area@.e®.w := area;
area := area@.e;
end;
end;

get_area(new_area, columns + 1, 1);
area®.next_area := new_area;

area := shift_area(area, area-i.ymax - 1, 8);
area@.e := new.area;

area@.e@.w := area;
area := area@Q.e;
end;
spare.area := area;
area := shift_area(area, 1, w);
area@.e := nil;
spare_area@.w := nil;
area ;= shift_area(area, area-i.ymax - 1, n);
area@.next_area := nil;
area := sal;
if gi.tracing
then

writeln(trace_o, > EXIT procedure MESH_AREAS’);
end {mesh_areas};

procedure setup_a_-info;
begin

if gi.tracing
then



Appendix E.

writeln(trace_o, ’Entered procedure SETUP_A_INFO’);
with area.i do begin
if screen
then
writeln(output, substr(pos.str, 1, pro_pos),
> Enter no of areas inx and y..’);
read(cmd_i, xmax, ymax);

size.xc := (plspace.xmax - plspace.xmin) / xmax;
size.yc := (plspace.ymax - plspace.ymin) / ymax;
nos := xXmax * ymax;
end;

if gi.tracing
then

writeln(trace_o, > EXIT procedure SETUP.A_INFOD’);
end {setup_a-info};

procedure mesh;
{procedure to croate profiles, called from start }

var
oldx, oldy, cose, sine: real;
numrep: integer;

procedure cre_data;

const
sort_str = ’null free fixedtrack’;

var
nevw_data: para-ptr;
sort: string(12);
sind: integer;

begin
if gi.tracing
then
writeln(trace-o, ’Entered procedure CRE_DATA’);
new(new.data);
new_data@.preincarnate := ord(new.data);
new.-data@.next.data := cdp@.next.data;
cdp@.next_data := new.data;
cdp := new_data;
with cdp@ do begin
if screen
then
writeln(output, substr(pos.str, i, pro.pos),

! Enter data as fdmcprrk ....... ¥
read(cmd.i, flagno, damp, mass, cohes, phi, rho, rad, kn);
damp := damp / mass;
if ” screen and opt.echo

then

writeln(output, substr(pos.str, 1, mes_pos), ’ ’, flagno:
6, mass: 6, cohes: 6, phi: 6, rho: 6, rad: 6, kn: 6,

gi.max.rad := gi.max.rad + rad;
total.datatypes := total.datatypes + 1;
end;

get_command(datert, qdum, cdp@.typ, ’’, cmd-i);

6, damp:

E.38
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if gi.tracing
then
yriteln(trace.o,

end {cre-data};

> EXIT procedure CRE_DATA’);

procedure cre_circles;

var
X, y: real;
repind, numrept: integer;
new.circle, area_l: ptr.type;

begin
if gi.tracing
then
writeln(trace.o, 'Entered procedure CRE_circleS’);
if screen

then
writeln(output, substr(pos.str, 1, pro_pos),

’ Enter x, y ... coordinates..’);

while NOT eoln do begin
read(cmd-i, x, y);
if (7 gi.jumping) OR (gi.single)
then )
numrept :
else
numrept := numrep;
for repind := 1 to numrept do begin
if gi.jumping

1

then begin
oldx := x % cose + oldx;
oldy := y * sine + oldy;
end
else begin
oldx := x;
oldy :=y;
end;
if opt.echo
then
write(output, substr(pos.str, i, pro.pos), oldx: 9, oldy: 9);
area := shift_area(shift_area(sal, no.cols(oldx), e), no_rows(oldy),
n);
if area = nil
then

error_simple(’circle coordinates out of range °’,
’create circles’);
if gi.rearseaing
then
with area®.corners do
, xmin: 6, xmax: 6, ymin: 6, ymax:

uriteln(debug.o, ’x,x" ,y,y~ °’
6, > X, Y, oldx: 6, oldy: 6);

new(new.circle);

case cdp@.typ of

track, free: begin
1= total.circles + 1;

total.circles :
new_circle@.next := area@.free.list;
area@.free_list := new_circle
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end;
fixed: begin
total.fixed := total.fixed ¢+ 1;

new_circle@.next := area@.fixed.list;
area@.fixed_list := new.circle
end;

end;

gith new_circle@ do begin
data := cdp;
gsource.xc := oldx;
source.yc := oldy;
posn := source;
force.x := 0;
force.y := 0;
s := force;

v ;= force;
a := force;
consol := force;

no-of_contacts := 0;
con_-list := nil;
end;
end;
end;
if gi.tracing
then
writeln(trace.o, ’° EXIT procedure CRE_circleS’);
end {cre_circles};

var
X, y: real;
meshquit: boolean;
meshcom: com_type;

begin {mesh}
if gi.tracing
then
writeln(trace.o, ’Entered procedure MESH’);

repeat
get.command (mesher, meshquit, meshcom, ’', cmd-i);
case meshcom of
forloop: begin
if screen
then
writeln(output, substr(pos_str, 1, pro_pos),
’ Enter no of repeats desired...’);
read(cmd_i, numrep);

gi.single := false;
end;
endfor:
gi.single := true;
sing:

gi.single := true;
multip:
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gi.single := false;
relative:
gi.jumping := true;
absolute:
gi.jumping := false;
dataset:
cre_data;
create:
cre-circles;
position: begin
if screen
then
writeln(output, substr(pos_str, 1, pro.pos),
’ Enter position to move to xy..’);
read(cmd-i, oldx, oldy);
end;
movepos: begin
if screen
then
writeln(output, substr(pos-etr, 1, pro-pos),
> Enter translate by x, y ...... ’);
read(cmd-i, x, y);
oldx := oldx + x * cose;
oldy := oldy + y % sine;
end;
angle: begin
if screen
then
writeln(output, substr(pos_str, 1, pro.pos),
> Enter angle ( in degress ) ...’);
read(cmd.i, sine);
sine := sine ¥ arctan(1) / 45;
cose := cos(sine);
sine := sin(sine);
end;
meshend:
meshquit := true otherwise;
end
until meshquit;
if gi.tracing
then
writeln(trace_o, ’> EXIT procedure MESH’);

end {mesh};

procedure read_restart_file;

var
labl: char;
no.areas: integer;
cont: con.ptr;
ele: ptr-type;
old fixe, old.free: ptr_typse;

procedure data-link(el: ptr.type);

begin
if gi.tracing
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then
writeln(trace_o, ’Entered procedure DATA_LINK’);

if ord(el@.data) = sd@.preincarnatae

then
6l@.data := 8d
else begin

sd := cdp;
while ord(el@.data) ~ = sd@.praeincarnate do

sd := sd@.next_data;
el@.data := sd
end;
if gi.tracing

then
writeln{trace_o, ’° EXIT procedure DATA.LINK’);

end {data_link};

procedure find.a_contact(var con: con_ptr);

procedure find.an.element;

begin
if gi.tracing
then
writeln(trace.o, ’Entered procedure FIND.AN_ELEMENT’);
repeat
if ele ” = nil
then
ele := ele@.next
else begin
if area = nil
then
area := sal
else
area := area@®.next._area;
ele := area@.free_list
end
until ele ~ = nil;
con := ele@.con_list;
if gi.tracing
then
writeln(trace.o, ' EXIT procedure FIND_AN_ELEMENT’);

end {find_an_element};

begin {find_a-contact}
if gi.tracing

then
writeln(trace_o, ’Entered procedure FIND.A_CONTACT’);

repeat
if con 7 = nil
then
con := con@.next_con
else

find_an_element;
until con " = nil;
if gi.tracing
then
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writeln(trace.o, > EXIT procedure FIND_-A_CONTACT?);
end {find-a.contact};

begin {read-restart-file}
if gi.tracing

then
writeln(trace.o, ’Entered procedure READ.RESTART_FILE’);
no-areas := 0;
old.fixe := nil;
old.free := nil;

reset(rest.i, ’unit=2’);
rewrite(cycmd.i, ’FILE=-gsass.cmd’);
rewrite(repts_i, ’FILE=-sass.rep’);
writeln(output);
while ~ eof(rest.i) do begin
read(rest_i, buffer);
labl := buffer.tag;
if cols(output) =1
then
write(output, substr(pos_str, 1, com_pos), ’ Reading : ’);
write(output, labl);
if cols(output) = 31
then
writeln(output);
case labl of
’G’: begin
gi := buffer.gen_info.rep;
read(rest.i, buffer);
total := buffer.totals.rep;
read(rest.i, buffer);
sum := buffer.sum.rep;
read(rest.i, buffer);
opt := buffer.option.rep;
read(rest_i, buffer);
area_i := buffer.area_i_rep;
read(rest-i, buffer);
plspace := buffer.grid.rep;
mesh_areas;
plots(input, *init’);
end;
)c’:
writeln(cycmd.i, buffer.hed rep);
’r’:
writeln(repts_i, buffer.hed.rep);
’D?: begin
new(sd);
with 8d@ do begin
8d@ := buffer.parabk.rep;
next_data := cdp@.next.data;
cdp@.next.data := 8d;

cdp := sd;
end ;
end;
’A’: begin
with area@ do begin
corners := buffer.area_rep.corners;

upd_par := buffer.area.rep.upd.par;
upd-min := buffer.area_rep.upd-min;
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area := next.area;
end;
old_fixe := nil;
old_free := nil;
no.areas := no-areas + 1;
if no_areas = area-i.nos
then begin
total.cons := 0;
do_this(update.area, sal, false, free);
area := nil;
ele := nil;
cont := nil
end;
end;
’F?: begin

new(new.circle);
new-_circle@ := buffer.element_rep;
nev_circle@.con.list := nil;
data.link(new.circle);
new_circle@.next := nil;
if oldfixe = nil
then
area@.fixed_list := new.circle
else
old_fixe@.next := new._circle;
old.fixe := new_circle;
end;
’f’: begin
new(new_circle);
new.circle@ := buffer.element.rep;
nev-circle@.con_-list := nil;
data-link(new-circle);

new_circle®.next := nil;
if old.free = nil
then
area@.free_list := new.-circle
else
old_free®.next := new_circle;
old_-free := new-circle;
end;
’C’: begin

find-a_contact(cont);
with cont@ do begin
offs := buffer.con.rep.offs;

c-force := buffer.con_rep.c_force;
gapsum := buffer.con.rep.gapsum;
f_force := buffer.con.rep.f_force;
f.angle := buffer.con_rep.f.angle;
failed := buffer.con_rep.failed;
end;

end;

’%7: begin
sd := cdp;
repeat

cdp := cdp@.next.data;
cdp@.preincarnate := ord(cdp);
until sd = cdp;

writeln(output, substr(pos_str, i, mes_pos),

> A restart file has been read’);
end;

E.44
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end;
end;
if gi.tracing
then

writeln(trace-o, > EXIT procedure READ_-RESTART.FILE’);
end {read_restart_file};

procedure write._restart_filas;

procedure wr_con_rf(el: ptr_type);

var
con: con.ptr;

begin
if gi.tracing
then
writeln(trace.o, ’Entered procedure WR_CON.RF’);
while el = nil do begin
con := el@.con.list;
while con ” = nil do begin
buffer.con_rep := con@;
urite(rest.o, buffer);
con := con@.next.con;
end;
el := el@.next;
end;
if gi.tracing
then
writeln(trace.o, ’

EXIT procedure WR_CON_RF’);
end {er_con.rf};

procedure rest_w.-boxes(arel: area.ptr);

procedure wr_blk rf(el: ptr_type);

begin
if gi.tracing
then
writeln(trace.o, ’Entered procedure WR_BLKRF’);
while el ” = nil do begin
buffer.element_rep := €1@;
write(rest.o, buffer);
el := el@.next;
end;
if gi.tracing
then
writeln(trace—o, ' EXIT procedure WR-BLK.RF’);
end {wr_blk-rf};

begin {rest-w_boxes}
if gi.tracing
then

writeln(trace.o, ’Entered procedure REST_W_BOXES’);
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while arel ~ = nil do
with arel@ do begin

buffer.tag := ’F’;
wr blk_rf(fixed list);
buffer.tag := ’f’;
ur-blk_rf(free-list);
buffer.tag := ’A’;
buffer.area-rep := arel@;
write(rest_o, buffer);

arel := next_area
end;
if gi.tracing
then

writeln(trace_ o, ' EXIT procedure REST_W_BOXES’);
end {rest-a_boxes};

begin {Hrite_restart_file}
if gi.tracing
then
writeln(trace_o, ’Entered procedure WRITE_RESTART._FILE’);
if re_area_list ~ = nil
then
re-area,;
do.this(update_area, sal, false, free);
if (opt.rf_over) OR (rf_first)

then
rewrite(rest_o, ’unit=1?);
rf_first := false;
buffer.tag := ’G’;
buffer.gen.info_rep := gi;

write(rest_o, buffer);
buffer.totals.rep := total;
write(rest.o, buffer);
buffer.sum_rep := sum;
write(rest_o, buffer);
buffer.option.rep := opt;
write(rest.o, buffer);
buffer.area_i_rep := area.i;
write(rest_o, buffer);
buffer.grid.rep := plspace;
write(rest_o, buffer);

reset(cycmd_i, *FILE=-sass.cmd’);

buffer.tag := ’¢’;

while ~ eof(cycmd_i) do begin
buffer.hed_rep := nilhed;
readln(cycmd-i, buffer.hed_rep);
write(rest_o, buffer);
end;

reset(repts_i, 'FILE=-sass.rep’);

buffer.tag := ’r’;

while ~ eof(repts_i) do begin
buffer.hed_rep := nilhed;
readln(repts.i, buffer.hed_rep);
write(rest_o, buffer);
end;

buffer.tag := ’D’;

cdp := sdl;
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repeat
buffer.parabk-rep := cdp@;
write(rest.o, buffer);
cdp := cdp@.next.data;
until cdp = sdl;
rest.w.boxes(sal);
buffer.tag := ’C’;
do_this(wr_con_rf, sal, false, both);
buffer.tag := ’%’;
buffer.hed_rep := ’END of RESTART FILE ’;
write(rest.o, buffer);
writeln(output, substr(pos_str, 1, fil_pos),
> A restart file has been written’);
if gi.tracing
then
writeln(trace.o, ’* EXIT procedure RESTART.FILE’);
end {arite_restart_file};

procedure complete;
{ tidy up and stop called from contrl or cycle calls bplot, check and rfile }

begin
if gi.tracing
then
writeln(trace.o, ’Entered procedure COMPLETE’);
plots(input, ’endplot’);
with total do begin
writeln{output, substr(pos_str, 1, tot.pos), ’ total circles °,
circles: 6, ’ fixed >, fixed: 6);
writeln(output, ’ total cracked’, cracked: 6, ’ contacts ’, cons: 6

)i
writeln(output, ’ total cycles ’, cycles: 6, ’ no.updats ’, updates:
6);
writeln(output, ’ total frames ’, pages: 6, ’ plots ’, pics: 86);
end;
if gi.tracing
then

writeln(trace.o, ’° EXIT procedure COMPLETE’);
end {complete};

begin {start_shut}
if gi.tracing
then
writeln(trace.o, 'Entered procedure START-SHUT’);
case starting of

cold: begin
if screen
then
writeln(output, substr(pos.str, 1, pro.pos),
’ Enter heading ................ ')

readln(cmd-i, gi.heading);

writeln(output, substr(pos.str, 1, tit_pos), gi.heading);
plots(cmd.i, ’initialise’);

setup.a.info;

mesh_areas;

mesh;

plots(cmd_i, ’ballplot’);
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do.this(update.area, sal, false, free);
end;
shutdown: begin
complete;
write_restart_file;
halt;
end;
warm: begin
read_restart_file;
headers;
end;
keep:
write_restart_file,;
end;
if gi.tracing
then
writeln(trace.o, ’> EXIT procedure START.SHUT’);
end {start_shut};

{*#****##**t#***#t#**#**#***#**####*****# END STARTSHUT }

{**#***#v***#****#*¢#¢*¢¢*¢¢¢¢*¢¢**¢**¢¢¢ BEGIN DEBUG }

procedure debug_circle(var cmd-i: text);

{ debugging routine, called from contrl, calls dump }

var
debugend: boolean;
deb.com: com.type;
sd: para-ptr;

procedure write_con(el: ptr_type);

procedure write_scan_con(home_el: ptr.type);

var
home_con: con.ptr;

begin
if gi.tracing
then
writeln(trace_o, 'Entered procedure HRITE_SCAN’);
home.con := home_el@.con_list;
while home_con ”~ = nil do begin
with home_con@ do
write(debug.o, c_force.x: 6, c_force.y: 6);
with home_con@ do
write(debug_o, offs: 6);
with home.con@.other@ do
write(debug-o, posn.xc: 6, posn.yc: 6);
with home.el@ do
write(debug.o, posn.xc: 6, posn.yc: 6);
writeln(debug-o);
home.con := home_con@.next_con;
end;
if gi.tracing
then

E.48
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writeln(trace_o, > EXIT procedure WRITE-SCAN’);
end {write_scan_con};

begin {write_con}
if gi.tracing
then
writeln(trace-o, ’Entered procedure WRITE.CON’);
if gi.debecho
then
writeln(debug-o, ’ Contact informatiom :°);
writeln(debug.o);
while el ~ = nil do
with el@ do begin
if gi.debecho
then begin
writeln(debug_o, > forces of contact, sibling, owner’);
writeln(debug_o);
end;
write_scan_con(el);
el := next;
end;
if gi.tracing
then
writeln(trace_o, ’ EXIT procedure WRITE.CON’);

end {write_con};

procedure write_are(el: area._ptr);

begin
if gi.tracing
then
writeln(trace.o, ’Entered procedure WRITE_-ARE’);
if gi.debecho
then
writeln(debug_o, ’ Area data :’);
writeln(debug.o);
if gi.debecho
then
writeln(debug.o, ’ xmin,xmax,ymin,ymax, upd.par’);
writeln(debug.o);
while el = nil do
with el@ do begin
with corners do
write(debugo, xmin: 6, xmax: 6, ymin: 6, ymax: 6);
writeln(debug-o, col: 6, row: 6, upd.par: 6);

el := el@.next_area
end;
if gi.tracing
then

writeln(trace.o, > EXIT procedure WRITE.ARE’);
end {write_are};
procedure write.blk(el: ptr.type);

begin
if gi.tracing
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then
writeln(trace.o, ’'Entered procedure WRITE_BLK’);
if gi.debecho
then begin
writeln(debug.o, ’ Element data :’);
writeln(debug-o);
writeln(debug.o, ’ offs posn force velocity accleration datatype’);
writeln(debug_o);
end;
while el “ = nil do
with 1@ do begin
writeln(debug-o, source.xc: 6, source.yc: 6, posn.xc: 6, posn.yc: 6,
consol.x: 8, consol.y: 8, force.x: 8, force.y: 8, v.x: 8, v.y: 8,
a.x: 8, a.y: 8, data®@.flagno: 3);
el := el@.next;
end;
if gi.tracing
then
writeln(trace_o, ’ EXIT procedure WRITEBLK’);

end {write_blk};

begin {debug-circle}
if gi.tracing
then
writeln(trace.o, ’Entered procedure DEBUG.circle’);
repeat
get_command(debuger, debugend, deb_com, ’’, cmd_i);
case deb._com of
dat: begin
cdp := sdl;
if gi.debecho
then begin
writeln(debug.o);
writeln(debugo, ’flag damp inert mass ¢ phi
|| >rho rad kn typ’);
end;
repeat
with cdp@ do begin
writeln(debug.o, flagno: 6, damp: 8, mass: 8, cohes: 8, phi: 8,
rho: 8, rad: 8, kn: 8, ord(typ): 6);
cdp := next_data

end
until cdp = sdl

end;
blk:

do_this(write_blk, sal, false, both);
con:

do-this(write_con, sal, false, free);
are:

write.are(sal);
gen: begin
writeln(debug_o, gi.heading);
writeln(debug-o);
with area.i do begin
writeln(debug o, ’ xareas number ’, xmax: 6, ’ length ’, size.xc:
6);
writeln(debug_o, ’ yareas number ’, ymax: 6, ’ length ’, size.yc:
10);
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writeln(debug.o, ’ total number ’, nos: 6);
end;
with plspace do
writeln(debug.o, ’> mapping xmax ’, xmax: 6, ’ ymax °’, ymax: 6) ;
writeln(debug-o);
with opt do begin
writeln(debug-o, ’ plot interval’, cycle_interval: 6);
writeln(debug.o, ’ gravity =x ', grav.x: 6, ’y ’, grav.y
6);
writeln(debug.o, ’ timing delay ', gi.tfrac: 6);
writeln(debug.o);
end;
with total do begin
writeln(debug.o, ’ totals circles ’, circles: 6, ’> fixed °’,
fixed: 6);
writeln(debugo, ’ cracked ’, cracked: 6, ’ types ’,
datatypes: 6);
writeln(debugo, ’ contact ', cons: 6, ’ cycles ’, cycles:
6);
writeln(debug-o, ’ updates ’, updates: 6, ’ frames °’,
pages: 6);

writeln(debugo, ’
writeln(debugo);

end;
end;
fon:
with gi do begin
reareaing := true;

motioning := true;
updating := true;

cycling := true;
fording := true;
oscing := true;
tracing := true;
consoling := true;
end;

fof:

with gi do begin
reareaing := false;
motioning := false;
updating := false;
cycling := false;
fording := false;
oscing := false;

tracing := false;
consoling := false;
end;
reb:
gi.reareaing := onoff(cmd.i)
mot:
gi.motioning := onoff(cmd-i)
upd:
gi.updating := onoff(cmd-i);
cyc:
with gi do begin
cycling := onoff(emd._i);
fording := cycling;
motioning := cycling;
reareaing := cycling;
consoling := cycling;

plote ’, pics: 6);

B
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end;
fod:
gi.fording := onoff(cmd.i);
sol:
gi.consoling := onoff(cmd_i);
tra:
gi.tracing := onoff(cmd_i);
osc: '
gi.oscing := onoff(cmd-i);
otherwise;
end;
until debugend;
if gi.tracing
then
writeln(trace_o, ’° EXIT procedure DEBUG_circle’);
end {debug_circle};
{*#********#*******###**#*****#¢*¢¢¢¢¢¢¢¢ END DEBUG }

{*#***###**#**##*#*******##**###*####**** BEGIN PARAMETERS }

procedure parameters(var cmd_i: text);
procedure calculator;

function intcalc(op: real): real;

var
result, v: real;
oper: com_-type;

begin
get_command(operter, qdum, oper, *’, cmd-i);
if oper ~ = enquiry

then begin
if screen
then
writeln(output, substr(pos.str, 1, pro_pos),
> Enter value ..........ce000000n ’);
read(cmd-i, v);
end;
case oper of
equal:
result := v;
mult:
result := op * v;
divid:
result :=op / v;
plus:
result := op + v;
minus:
result :=op - v;
power:
result := exp(ln(op) * v);
otherwise
result := op;
end;

if opt.echo
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then
if oper = enquiry
then
writeln(output, substr(pos.str, i, mes.pos), ’ The value is : °’,
result)
else
writeln(output, substr(pos.str, i, mespos), ' ’, v, ’ : 7,
result);
intcalc := result;
end {intcalc};

var
datquit, calquit: boolean;
datcom, calcom: com_type;
flag: integer;

begin {calculator}
repeat
get-command(calcter, calquit, calcom, ’’, cmd-i);
case calcom of
cyclegp:
opt.cyclegap := round(intcalc(opt.cyclegap));
gravity:
opt.grav.y := intcalc(opt.grav.y);
ptime:
gi.tstep := intcalc(gi.tstep);
cmdint :
opt.cycle_interval := round(intcalc(opt.cycle_interval));
datype: begin
if screen
then
writeln(output, substr(pos_str, 1, pro_pos),
’ Enter data type flag ......... ®H
read(flag);
repeat
get_command(datalte, datquit, datcom, ’’, cmd._i);
cdp := sdl;
repeat
cdp := cdp@.next.data;
with ¢dp@ do
if flagno = flag

then
case datcom of

dfact:

damp := intcalc(damp);
dmass:

mass := intcalc(mass);
dcohe:

cohes := intcalc(cohes);
dfric:

phi := intcalc(phi);
ddens:

rho := intcalc(rho);
dradi:

rad := intcalc(rad);
dstif:

kn := intcalc(kn);
otherwise;

end;




Appendix E.

until cdp = sdl;
until datquit;
end;
otherwise;
end;
until calquit;
end {calculator};

var
parcom: com.type;
parquit: boolean;
flimit: integer;
cmdlistword: string(12);

begin {parameters}
repeat
get_command (paramer, parquit, parcom, ’’, cmd-i);
case parcom of
echo:
opt.echo := onoff(cmd_i);
debech:
gi.debecho := onoff(cmd.i);
framlim: begin
if screen
then
writeln(output, substr(pos-str, 1, pro.pos),
> Enter frame limit ............ DF
read(cmd-i, flimit);
gpstop(£flimit);
if opt.echo
then
write(output, substr(pos_str, 1, mes_pos),
> Frame limit is now : ’, flimit);
end;
cyclegp: begin
if screen
then
writeln(output, substr(pos.str, 1, pro.pos),
’ Enter gap between writing..... *);
read(cmd-i, opt.cyclegap);
if opt.echo
then
write(output, substr(pos.str, 1, mes.pos),
’ Cycle gap is now : ’, opt.cyclegap);
end;
gravity: begin
if screen
then
writeln(output, substr(pos_str, 1, pro.pos),
’ Enter gravity valuesx,y ....’);
read(cmd-i, opt.grav.x, opt.grav.y);
if opt.echo
then
write(output, substr(pos._str, 1, mes_pos),

> Gravity is now : ’, opt.grav.x: 6, opt.grav.y: 6);

end;
ptime: begin
if screen
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then
writeln(output, substr(pos.str, 1, pro.pos),
’ Enter time step increment L)
read(cmd_i, gi.tstep);
if opt.echo
then
write(output, substr(pos_str, 1, mes_pos),
' Time increment is : *, gi.tstep);
end;
calc:
calculator;

cmdint: begin
if screen

then
writeln(output, substr(pos.str, 1, pro_pos),
> Enter cmd process interval ...’);
read(cmd-i, opt.cycle.interval);
if opt.echo
then

write(output, substr(pos.str, 1, mes.pos),
’ Process interval is: ’, opt.cycle._interval);
end;
cmdlist: begin
rewrite(cycmd_i, ’FILE=-sass.cmd’);
‘repeat
word.scan(cmd_i, cmdlistword);
writeln(cycmd-i, cmdlistword);
until cmdlistword = ’cend’;
end;
listpr:
opt.cmdprocessing := onoff(cmd-i);
over.rf:
opt.rf_over := onoff(cmd.i);
otherwise;
end;
until parquit;
end {parameters};

{*#*###*#**#****#****##**#**#***#*#*#**#* END PARAMETERS }

{**v*#****#***m*****¢¢¢¢¢¢*¢¢¢¢¢v¢¢¢¢*¢v¢ BEGIN REPEATER

procedure repeater(var cmd_i: text);

var
cmdreptword: string(12);
loopcntor, loopctr: integer;

begin
if gi.tracing
then
writeln(trace_o, ’Entered procedure REPEATER’);
rewrite(repts_i, ’FILE=-saas.rep’);
read(cmd_i, loopctr);
repeat
word.scan(cmd.i, cmdreptword);
writeln(repts_i, cmdreptword)
until cmdreptword = ’rend’;
for loopcntor := 1 to loopctr do begin
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reset(repts.i, FILE=-sass.rep’);

gi.reptend := false;

while NOT gi.reptend do
control(repts.i);

end;
if gi.tracing
then

writeln(trace_o, ' EXIT procedure REPEATER’);

end {repeater};

{**ﬁ********¢¢*¢**¢¢*¢¢¢**¢¢*¢¢¢mvv¢¢v¢¢¢ END REPEATER }

{**#*****#**#**###*###t##*#*#####*##*##*# BEGIN CONTROL }

procedure control;

controls the execution of the datafile commands, called from main }

var
com: com-type;

begin
if gi.tracing
then

writeln(trace.o, ’Entered procedurs CONTROL’);
get_command(contler, qdum, com, ’’, cmd.i);

case com of
sets:

parameters{cmd-i); { set parameter values }

cend:

gi.cmdend := true; { end interrupt commands }

rend:

gi.reptend := true; { end command stack }

rest:

start.shut(cmd.-i, warm);{ restart a previous run }

save:

start_shut(cmd.i, keep);{ update restart file }

star:

start_shut(cmd-i, cold);{ start a new run }

cycl:
cycle(emd-i);
sett:
gi.settling :
coll:
gi.settling :
plot:

{ calculation routines }
true; { settlement of elements }

false; { collapse of elements }

plots(emd_i, ’?); { plot routines }

debg:

debug.circle(cmd-i); { debugging routine }

rept:

repeater(cmd_i); { command stack }

stop:
quit := true;
retur:;
end;
if quit
then

{ stop command }

start-shut (cmd-i, shutdown);

if gi.tracing
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then
writeln(trace.o, > EXIT procedure CONTROL’);
end {control};
{¢¢*¢v*¢v**¢**¢*¢¢v*¢¢¢¢*¢v¢¢¢*¢¢¢¢¢¢¢va* END CONTROL }

{****v**m*****w*#********#*****vv*******m BEGIN MAIN }

begin {circles}
initialise.globals;
headers;
repeat
control (input) ;
until quit;
start_shut (input, shutdown);
if gi.tracing
then
writeln(trace_o, > EXIT procedure MAIN’);

end {circles}.






