
Durham E-Theses

The distinct element analysis of soil masses

Watson, Colin Richard

How to cite:

Watson, Colin Richard (1990) The distinct element analysis of soil masses, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/6467/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/6467/
 http://etheses.dur.ac.uk/6467/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

THJE

D][§TliNCT JEJLJEMJENT ANAJLY§][§

OJF §OJIJL MA§§JE§

by

CoHn Richarrdl Wat§olll

B.Sc., M.Sc. (Dunelm)

AB§TRACT

The conventional Distinct Element Analysis of Cundall and Belytschko and

their respective co-workers are prone to vibrations which must be damped out

artificially if numerical problems are to be avoided. An alternative approach to

this method is developed which eliminates such problems by allowing the elements

to consolidate without gain in velocity. In the method employed here the contact

forces, together with body forces due to gravity give rise to accelerations of the

elements which in turn cause them to change position. Normally this change in

position will produce an increase in the contact forces. Once these new contact

forces have been calculated the elements are then returned to their original posi

tions prior to the next iteration. The contact forces, therefore, increase during the

analysis to counter the effects of gravity. Two methods using this new approach

are described, for which computer programs have been written.

The first program, SLICES, is designed to analyse slopes divided in to slices

with a predetermined failure arc. During the analysis the program generates the

stress profile acting on the failure arc and predicts the stability or otherwise of the

slope. Program SLICES is compared with a traditional slice method under con

ditions of total and effective stress with cohesive and frictional soils. An analysis

using a non-linear failure criterion is also carried out with program SLICES. The

second program, CIRCLES, uses circles as the distinct element type and does not

require a predetermined failure arc. It is shown that edge effects cause an incorrect

stress regime to be set up that masks the failure process. However a sliding type

failure is demonstrated where the edge effects do not mask the analysis.

Submitted in accordance with the regulations for the degree of Ph. D. of

the University of Durham. October 1989.

TlHilE

D][§T][NCT ElLEMENT ANAJLY§][§

OlF §OJIJL MA§§JE§

by

Colin Richard Watson

B.Sc., M.Sc. (Dunelm)

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

I I 2 AUG t990

Chapter 1

1.1

1.1.1

1.1.2

1.1.3

1.2

1.2.1

1.2.2

1.2.3

1.2.3.1

1.2.3.2

1.2.3.3

1.3

1.3.1

1.4

1.4.1

1.5

1.5.1

1.5.2

1.5.3

1.5.4

JList of Conteltllts

List of Figures

List of Tables

Acknowledgements

Chapter 1][ntroducHon

Distinct element analysis

The need for Distinct Element Analysis

Distinct Element Analysis and discontinuous rock masses

Relation of Distinct Element Analysis to other analysis

A Rigid JBlock Model for rock masses

Corner formulations

Edge formulations

Hybrid formulations

The Distinct Element - Boundary Element hybrid

The Distinct Element - Finite Element hybrid

Explicit - Implicit time integration

A Rigid JBall Model for soil

Soil particle modelling

][nitial aims of this work

Development of the Rigid Block Model at Durham

A final approach

The relevance of Distinct Element Analysis to soil masses

Soil slices as rigid blocks

Soil masses as circles of influence

Organisation of this work

page

lV

Vl

1

1

1

2

2

3

3

4

4

5

6

6

7

7

8

8

12

12

13

13

13

Chapter 2 'I'he implementation oif tlhe Di!:rthiLct Element Altlla!ysis 15

2.1 CundallPs Cydic Pli'ocess 15

2.1.1 Cundall's Concept 15

2.1.1.1 The Cyclic Process 15

2.1.1.2 A Simple Implementation 19

2.1.2 The Behaviour of a Single Contact 20

2.1.3 Controlling Numerical Instability 23

2.1.4 Towers of Contacts 24

2.1.5 Some Recommendations 25

2.2 An Alte:rnative Approach 25

2.2.1 Consolidation 25

2.2.2 A Statement of the New Approach 28

2.2.3 Machine Accuracy 30

2.2.3.1 The Relevance to Discretization 30

2.2.3.2 Bringing Consolidation to a Close 31

2.2.4 Propagating Effects Through the Matrix 32

2.2.4.1 A Simple Tower Problem 32

2.2.4.2 Some Recommendations 35

2.2.5 The Role of Damping 35

2.2.6 Concluding Remarks 38

Chapter 3 Chapter 3 Distinct element method of slices 39

3.1 Introduction 39

3.2 Theory extensions for §LJICE§ 42

3.2.1 The edge formulation employed 42

3.2.2 The Force Displacement and Motion Laws 47

3.3 Using Progli'am §LJICJE§ 50

3.3.1 Introduction 50

3.3.1.1 Overview 50

3.3.1.2 Input and output unit summary 51

3.3.1.3 Outline of facilities 53

3.3.2 Input Command Language 55

3.3.2.1 Introduction 55

3.3.2.2 Control commands 56

3.3.2.3 The debug command set 58

3.3.2.4 The set command set 59

3.3.2.5 The calculator command set 61

3.3.2.6 The plot command set 62

3.3.2.7 The map command set 63

3.3.2.8 The mesh command set 64

3.3.2.9 Syntax table 65

3.3.3 Input command file 66

3.3.3.1 File format 66

3.3.3.2 Defining tasks 68

3.3.3.3 Input error handling 71

3.3.4 Utility files 74

3.3.4.1 Repeat file 74

3.3.4.2 Command list file 74

3.3.4.3 Restart file 74

3.3.4.4 Trace output file 76

3.3.4.5 Debug output 76

3.3.4.6 Oscillation output 79

3.3.4.7 The running commentary 80

3.4 §tructure of Program §LICE§ 83

3.4.1 Memory structure 83

3.4.2 Program struct·ure 86

3.4.2.1 Procedural elements 86

3.4.2.2 Main relationships 86

3.4.2.3 Recursion structures 87

3.4.2.4 Structure that maps structured variables 91

3.5 Valiidation 93

3.5.1 Introduction 93

3.5.2 Validation Methods 93

3.5.3 Discussion of results 95

3.5.3.1 Results involving total stress conditions 96

3.5.3.2 Results involving effective stress conditions 97

3.5.3.3 Conclusions 98

3.5.4 Interpretation of SLICE output 99

Chapter 4 Distinct eliement method! of ci:rcles 101

4.1 'Fh.e Concept 101

4.1.1 Circles as Areas of Influence 101

4.1.2 Contacts in detail 102

4.1.3 The Distinct Element Analysis formulation for CIRCLES 104

4.1.3.1 Consolidation formulation 106

4.1.3.2 The traditional Distinct Element Analysis formulation 108

4.2][mplementation 110

4.2.1 The Program Memory Structure llO

4.2.2 Program structure 114

4.2.2.1 Program structure that maps the memory 114

4.2.2.2 The updating of contacts 116

4.2.3 Input command language 117

4.2.3.1 Introduction 117

4.2.3.2 Control commands 118

4.2.3.3 The debug command set 121

4.2.3.4 The set command set 122

4.2.3.5 The calculator command set 124

4.2.3.6 The plot command set 125

4.2.3.7 The map command set 126

4.2.3.8 The mesh Command Shell 127

4.2.4 The utility files 128

4.3 V&Hdation 132

4.3.1 Introduction 132

4.3.2 The contact behaviour 133

4.3.3 The Mesh Edge effects 134

Chapter 5 Conclusions 141

References 145

Appendices

Appendix A Mathematical Notation A.1

Appendix B Structure charts for SLICES B.1

Appendix C Results for program SLICES C.1

Appendix D Program SLICES D.l

Appendix E Program CIRCLES E.1

Page

Figure 1.1 Analysis of a tower. After Rouse (1982) 10

Figure 2.1 The Distinct Element Analysis Calculation Cycle 16

Figure 2.2 The forces associated with a contact 17

Figure 2.3 The behaviour of a single contact 21

Figure 2.4 The use of fixed blocks to promote consolidation 27

Figure 2.5 The new calculation order 29

Figure 2.6 The tower of circles analysed 33

Figure 3.1 A typical slope for analysis by SLICES 40

Figure 3.2 Stress profile produced by SLICES 43

Figure 3.3 The SLICES calculation cycle 44

Figure 3.4 A Comparision of the data required to define a contact 46

Figure 3.5 Bachmann diagram of SLICES memory items 85

Figure 3.6 Stress profiles for result set 1 B.2

Figure 3.7 Stress profiles for result set 2 B.9

Figure 3.8 Stress profiles for result set 3 B.ll

Figure 3.9 Stress profiles for result set 4 B.13

Figure 3.10 Stress profiles for result set 5 B.20

Figure 3.11 Stress profiles for result set 6 B.22

Figure 3.12 Stress profiles for result set 7 B.24

Figure 3.13 Stress profiles for result set 8 B.30

Figure 3.14 Stress profiles for result set 9 B.32

Figure 3.15 Stress profiles for result set 10 B.34

Figure 3.16 Stress profiles for result set 11 B.40

Figure 3.17 Stress profiles for result set 12 B.42

Figure 3.18 Stress profiles for result set 13 B.43

Figure 3.19 Stress profiles for result set 14 B.48

Figure 3.20 Stress profiles for result set 15 B.49

Figure 4.1 Contact definition in program CIRCLES 103

Figure 4.2 The Mohr construction 105

Figure 4.3 An high level view of the memory structure 111

Figure 4.4 A Bachmann diagram of the program memory elements 113

Figure 4.5 Analysis of embankment without contact correction 135

Figure 4.6 Analysis of embankment using a contact correction 138

Figure 4.7 Analysis showing partial wedge failure 139

List of Structure charts in Appendix C

Figure C.1 Chart for procedure error_simple C.3

Figure C.2 Chart for procedure word-scan C.4

Figure C.3 Chart for procedure skipblks C.5

Figure C.4 Chart for procedure skipcomment C.6

Figure C.5 Chart for procedure trapper C.7

Figure C.6 Chart for procedure get-command C.8

Figure C.7 Chart for function onoff C.9

Figure C.8 Chart for procedure headers C.10

Figure C.9 Chart for procedure factors_of_safety C.11

Figure C.10 Chart for function sign C.12

Figure C.11 Chart for procedure initialise C.12

Figure C.12 Chart for procedure plots C.13

Figure C.13 Chart for procedure map_space C.15

Figure C.14 Chart for procedure setup_plot C.14

Figure C.15 Chart for procedure disp_plot C.16

Figure C.16 Chart for procedure fram_plot C.16

Figure C.17 Chart for procedure slice_plot C.17

Figure C.18 Chart for function utohead C.17

Figure C.19 Chart for procedure force_profile C.18

11

Figure C.20 Chart for procedure iniLfm C.19

Figure C.21 Chart for function ptrd_fm C.l9

Figure C.22 Chart for procedure lims_fm C.20

Figure C.23 Chart for procedure cycle C.21

Figure C.24 Chart for procedure fordsl C.23

Figure C.25 Chart for procedure fconsolsl C.22

Figure C.26 Chart for procedure starLshut C.24

Figure C.27 Chart for procedure update_area C.26

Figure C.28 Chart for procedure update_message C.25

Figure C.29 Chart for procedure cold_contact C.27

Figure C.30 Chart for procedure geLapex C.27

Figure C.31 Chart for procedure mesh C.28

Figure C.32 Chart for procedure cre_platen C.29

Figure C.33 Chart for procedure cre_slices C.30

Figure C.34 Chart for procedure read_restarLfile C.31

Figure C.35 Chart for procedure write_restarLfile C.32

Figure C.36 Chart for procedure write_r_el C.33

Figure C.37 Chart for procedure complete C.34

Figure C.38 Chart for procedure debug-slice C.35

Figure C.39 Chart for procedure write_con C.36

Figure C.40 Chart for procedure wr_con C.36

Figure C.41 Chart for procedure write_sli C.34

Figure C.42 Chart for procedure parameters C.37

Figure C.43 Chart for procedure calculator C.38

Figure C.44 Chart for function intcalc C.39

Figure C.45 Chart for procedure repeater C.40

Figure C.46 Chart for procedure control C.41

Figure C.47 Chart for program SLICES C.42

Ill

Page

Table 2.1 Contact forces for a tower 32

Table 2.2 The expansions for 3 cicles 34

Table 3.1 A Typical Command File 41

Table 3.2 Input Command Language Parsing Symbols 66

Table 3.3 Input Command Language Parsing Definition 67

Table 3.4 An Example of Error Correction 72

Table 3.5 An example of interactive input 73

Table 3.6 The restart file line tags 75

Table 3.7 The debug format table 78

Table 3.8 The running commentary screen lines 81

Table 3.9 Running commentary messages 82

Table 3.10 Trace of Program Behaviour During Simple Use 88

Table 3.11 Program behaviour during Repeat processing 89

Table 3.12 Program behaviour during error processing 91

Table 3.13 Table of Results for Program SLICES 95

Table 3.14 Input commands for result set 1 B.1

Table 3.15 Input commands for result set 2 B.8

Table 3.16 Input commands for result set 3 B.10

Table 3.17 Input commands for result set 4 B.12

Table 3.18 Input commands for result set 5 B.19

Table 3.19 Input commands for result set 6 B.21

Table 3.20 Input commands for result set 7 B.23

Table 3.21 Input commands for result set 8 B.29

Table 3.22 Input commands for result set 9 B.31

Table 3.23 Input commands for result set 10 and 13 B.33

Table 3.24 Input commands for result set 11 and 14 B.39

IV

Table 3.25 Input commands for result set 12 and 15 B.41

Table 4.1 Input Command Language Parsing Symbols 118

Table 4.2 Input Command Language Parsing Definition 119

Table 4.3 The restart file line tags 129

Table 4.4 Debug output formats 130

Table 4.5 The running commentary screen lines 131

Table 4.6 The running commentary messages 132

Table 4.7 Output from CIRCLES after 2000 cycles 133

v

AG!KNOWJLEJDG EMENT§

I have cause to thank several people for their help during the course of this work. In

particular I am greatly indebted to the Late Dr: R. K. Taylor and to Dr. J. M. Wil

son for their supervision and encouragement. Dr. J. M. Wilson has had the difficult

task of taking over the supervision of my thesis at a late stage and this I greatly ap

preciate. I also owe a great deal to my wife, family and friends for their invaluable

support throughout.

VI

THE

DJI§TJINCT 18JL18Ml8NT ANAJLY§JI§

OF §OU, MA§§l8§

by

CoHn Richard Watson

B.Sc., M.Sc. (Dunelm)

Chaptell']_ Intll'od uction

CHAPTER 1

JINTRODUCTION

1.1 Distinct eliement analysis

1.1.1 The need for Distinct Element Analysis

It may appear strange that a thesis principally concerned with the analysis

of the stability of soil masses should begin by discussing rock masses. Indeed

discontinuous rock masses shall frequently be referred to throughout the theoretical

sections of this discussion. The reason for this hybridisation is simply that the

analysis techniques developed here are abstract formulations of those used for

some years for the analysis of discontinuous rock masses, namely the Distinct (or

Discrete) Element Analysis (DEA).

Distinct Element Analysis is a numerical model which utilises the time explicit

integration of the second order difference equations for reduced degrees of freedom

of distinct geometric elements, for example rectangular blocks, within the problem.

Normally the reduction in the degrees of freedom is due to ignoring the internal

deformation of the elements, the elements being connected by their boundaries

across which deformation of the mass is considered to take place.

The major advantages of Distinct Element Analysis over finite element anal

ysis are speed of execution, ease of incorporation of non-linear material properties

and its explicit relation to time allowing the progressive failure of the system to

be studied. These three properties make Distinct Element Analysis a tool worth

developing for the analysis of soil masses.

1

Chapter]. lint :rod uction

1.1.2 Distinct Element Analysis and discontinuous rock masses

Distinct Element Analysis was originally developed for the analysis of discon

tinuous rock masses by Cundall (1971), this model was known as the Rigid Block

Model (RBM) due to the reduction of the degrees of freedom by elimination of

the internal deformation of the elements. In terms of rock masses, the problem

elements are bounded by the joints and bedding planes to form blocks. Each block

is allowed rotational and translational displacements and move under the influence

of gravity and the forces between neighbouring blocks at contacts.

The contact is fundamental to the ·understanding of the Distinct Element

Analysis as it is these which govern the behaviour of the mass as a whole. The

Distinct Element Analysis or Rigid Block Model is a dynamic relaxation method

for it is at the contacts that inter-element forces are produced b:y multiplying the

small overlaps of the elements (due to previous movements) by the relaxation con

stant (or stiffness). These new inter-element forces are summed for each element

to give rise to new accelerations, velocities and displacements, and hence to new

inter-element forces. As it is the contacts which govern the overall behaviour of

the model, and the contact conditions are recalculated at the end of each time

step, it can readily be seen that this technique lends itself to the modelling of

large scale movements.

1.1.3 Relation of Distinct Element Analysis to other analysis methods

There are several possible classes of techniques facing the Engineer, deciding

which analysis to choose can often be difficult. There are finite elements, bound

ary elements, distinct elements, displacement discontinuity methods and various

hybrid versions. As Meek and Beer (1984) point out, all these methods should

provide reasonable approximations to the elastic stress around an excavation.

2

Chapter].][m.tl!'od udi.olll

For excavations in blocky rock systems the problem of choice is further com

pounded by the fact that the near field and far field behave very differently. The

near field is non-linear, non-elastic in its behaviour while the far field is linear

elastic. No individual technique can accurately model both behaviour types at

once. The Distinct Element Analysis requires all geometric data to be known

throughout the model domain which is a major problem for large excavations. It

is ideally suited to model the near field where the data is normally the most read

ily available. To incorporate both behaviour types Distinct Element Analysis may

be coupled to a far field modelled by either Finite Element or Boundary Element

methods.

1.2 A Rigid Block Model :for :rock masses

The Rigid Block Model has undergone much work since its inception in 1971,

most published work concentrates upon modelling the behaviour and estimating

the support requirements of underground openings in jointed rock masses, almost

all the literature concerns itself with promoting the technique in a theoretical

fashion and rarely presents the analysis of real cases. There are three types of

Rigid Block Model, which shall be referred to here as Corner, Edge and Hybrid

formulations.

1.2.1 Corner formulations

The corner formulation is the original two dimensional formulation as devel

oped by Cundall. It is so named because the contacts are defined when a corner

of one block touches the edge of another. The contact of two blocks along an

edge was defined simply as two contacts, unfortunately this gave rise to multiple

contact problems, and hence multiple force problems, Rouse (1982). This formula

tion led to straightforward housekeeping algorithms for contacts allowing them to

be made, broken, and remade as necessary. Corner formulations were used in all

3

Chapter 1][ntroduction

cases where large displacements required to ·be modelled, Cundall (1976), Voegele

(1978).

1.2.2 Edge formulations

In response to work with a Cundall corner formulation by Dowding et al.

(1983), to model the transient behaviour of rock caverns, the edge formulation was

developed, Belytschko et al. (1983). Here the definition of a contact was always

as two edges, one from each block. The physical length of contact allows the

calculations to be in terms of stress, a major advantage over corner formulations.

The rationale behind this work argued that the initial failure of the mass was the

most important feature and that the contacts could not be modelled accurately

over large displacements due to the simple failure criteria in use. It was also

pointed out that failure may take place at two to three percent strain rendering

large strain modelling inappropriate. Due to this the housekeeping of the corner

formulation could be dropped to give a much more compact code.

1.2.3 Hybrid formulations

In the same way as Finite Element analysis has difficulty analysing the far

field around an excavation due to the number of elements required to model it, so

too does Distinct Element Analysis, a further complication for Distinct Element

Analysis was how to model the behaviour of excavation support satisfactorily. This

led to hybrid formulations of Distinct Element Analysis with Boundary Elements

and Finite Elements.

4

Chapter]. lntJrod uction

1.2.3.1 The Distinct Element -Boundary Element hybrid

Lorig and Brady published work in 1982, 1983 and 1984 coupling Boundary

Elements with Distinct Elements. Lorig, Brady and Cundall (1986) discuss this

method utilising a sophisticated form of Rigid Block Model.

Much of the work enhancing the Distinct Element Analysis was concerned

with increasing efficiency and combating problems discovered during use. Corner

formulations are subject to interlocking at corners as corner to corner contacts

may often lead to abnormally high forces. These forces can then be propagated

throughout the Distinct Element mesh. To overcome this problem an edge for

mulation was adopted in addition to the corner formulation allowing edge to edge

and corner to edge contacts. It is assumed here that corner to corner contacts

were not entertained but it is not explicitly stated. A new damping regime was

also introduced, that of adaptive density scaling, whereby the element densities

are modified to allow the application of the mass proportional part of the damping

system across a greater spread of element masses. The contact housekeeping rou

tines have been modified to transfer the contact between a sliding block and each

successive neighbour across which it slides, thus preventing the sudden collapse of

the forces on a block as previously described by Watson (1983).

The boundary element method determines the behaviour of the mass from

the boundary conditions imposed on surfaces within it. This allows for the mod

elling of semi-infinite regimes as the far field boundaries need not be known. The

Boundary Element Analysis is an elastic analysis and it has been found from field

measurements that the far field domain (two to three excavation radii from the

excavation) does indeed act elastically with the discontinuities playing little or no

part. Boundary Element Analysis is therefore used to model the far field and the

Distinct Element Analysis to model the near field. To couple the two methods care

5

Clllapte:r].][n.tli'od u.ction

has been taken by Lorig et al. to preserve kinematic continuity at the interface, by

equating block corner and nodal displacements in the Boundary Element domain.

1.2.3.2 The Distinct Element - Finite Element hybrid

The work of Dowding et al. (1983a,b) and Belytschko et al. (1983) coupled

Distinct Elements with Finite elements. The aim of their work was to model the

transient behaviour of caverns under the influence of seismic activity. The propa

gation of waveforms through large stacks of Distinct Element was problematic as

the mechanism was not understood and was also expensively time consuming. The

excitation therefore, was propagated from the far field Finite Elements to the near

field Distinct Elements. The Finite Element and Distinct Element domains were

coupled by silent boundaries, (that is producing no reflection), after the Lysmer

and Kuhlemeyer method (1969), while the cavern linings were modelled by beam

elements.

1.2.3.3 Explicit - Implicit time integration

Explicit time integration schemes as utilised in the Distinct Element Analysis

as described so far have a low over-head per time step compared with Finite Ele

ment or Boundary Element analyses. However for long duration analysis requiring

small time steps, the cost of simulation may still be prohibitive. As will be seen

later the time step size is critical for numerical stability and the Distinct Element

Analysis has been found to be non convergent for many parameter combinations,

Lorig et al. (1986).

Plesha (1986) has proposed that simulations utilise a constitutive implicit -

explicit time splitting operator, whereby the linear portion of the analysis is mod

elled using an implicit time integrator and the non-linear portions (for example

post contact failure) use the standard explicit, time marching integration of the

6

Clhtapter 1][ntll."od uction

normal Distinct Element Analysis. He found that under certain long duration

simulation conditions, considerable computer cost savings could be made with lit

tle difference in the general behaviour of the rock mass. He also suggested that

transient behaviour could be modelled by changing to and from the usual methods

when necessary throughout the simulation.

1.3 A Rigid BaH Model f'or soil

The Distinct Element Analysis is not restricted to the Rigid Block Model or

derivatives and as a general concept has applications elsewhere. From the be

ginning Cundall developed a program where the calculation elements were simple

discs or circles. The same degrees of freedom were allowed to the discs as to the

blocks enabling them to be used to model the collapse of a set of cylinders for

instance, as in Cundall (1971). It appears that this BALL program was the de

velopment route to the Rigid Block Model as the elements are significantly less

complex due to them having no corners.

1.3.1 Soil particle modelling

By equating disk elements with soil particles Cundall used Program BALL

as an easily controlled test apparatus to investigate the properties of soil particles

under various loading conditions. From the data collected from this computer

model he hoped to develop continuum constitutive laws governing soil particle

behaviour, Cundall and Strack (1979). Although using a model for the basis

of this research he argued that the superior control of loading conditions in the

program over that of an experimental situation gave the program a valid role.

Apart from investigating the general non-linear properties of assemblies of soil

particles, Cundall and Strack turned their attention to modelling the process of soil

consolidation. Here a circular assembly of discs was subjected to two orthogonal

7

Chapter 1 lintrodlucHon

forces, firstly in an isotropic state and then under a deviatoric load. The velocities

and displacements of the particles were plotted so that changes in the fabric could

easily be seen.

All Distinct Element Analysis work as far as can be found dealing with soils

concerns the modelling of assemblies of individual particles and not with soil

masses. This thesis aims to do so.

1.4 Initial aims of this wo!t'k

As pointed out in section 1.2 most published work uses idealised theoreti

cal problems to promote the latest development in the analysis technique. Very

little uses the Distinct Element Analysis / Rigid Block Model to solve a real de

sign problem. This is perhaps, as Meek and Beer (1984) point out, because the

technique has been extensively used in the commercial environment.

The initial aims of this work were to continue the development of Distinct

Element Analysis theory and an edge formulation derived from Dames and Moore

(1978) with a view to validation against simple physical models and then real situ

ations. To understand the starting point of this work it is necessary to appreciate

the development of the Rigid Block Model at Durham.

1.4.1 Development of the Rigid Block Model at Durham

The beginning of the work at Durham was with the Rigid Block Model im

plementation of Dames and Moore report (1978). This work, by Rouse (1982),

utilised a corner formulation as described above which was initially unusable due

to it being in single precision. The program was therefore modified to double

precision, whereupon several unexpected effects were found.

8

Clhapier 1 Kntrod udion.

The first of these effects was noted when a simple tower of blocks was mod

elled. Figure 1.1 shows the tower before analysis and after 7000 calculation cycles.

A tower is expected to topple rigidly to begin with and then break one third up

the height with the lower third rotating more rapidly than the upper part. In this

simulation Rouse found that the tower broke in more than one place and therefore

fell incorrectly.

It was proposed that the original damping regime employed was at fault. This

regime consists of two separately controllable viscous damping factors. Firstly

a stiffness-proportional damping to control contact vibration and analogous to

dashpots at the contacts between blocks both in the shear and normal directions.

Then secondly, a mass-proportional damping representing dashpots from the block

centroids to the coordinate origin. The damping regimes are provided to remove

the kinectic energy of the system generated during collapse, if this did not take

place the elements would continue moving perpetually. The cause of the incorrect

tower collapse was attributed to the stiffness-proportional damping giving rise to

a standing wave lying the length of the tower, in turn causing localised high stress

where the tower broke.

Rouse also reported the 'locking up' of certain configurations of blocks before

equilibrium could be reached. This was caused by corner to corner contacts as

well as corner to edge contacts being used in the formulation.

At this stage it was realised that this version of the Rigid Block Model, at

least contained some very serious fundamental inaccuracies and could not be used

to reliably model real situations.

An investigation by Watson (1983) showed that the corner to corner contact

problem led to some pairs of blocks having up to eight contacts between them

and so was remedied first. This was achieved by allowing a pair of blocks to

9

I I

Figure 1.1 Analysis of a tower. After Rouse {1982)

10

C.ha.pter 1 Jinirod uction

have either, a single corner to edge contact or, two such contacts forming an edge

contact or, a corner to corner contact. In the case of the latter contact type, the

corner combination promoting the greatest ease of movement was chosen to reduce

the risk of 'locking up'. Finally a comparison of Distinct Element Analysis with

simple sliding physical models was carried out.

For a complete discussion of the problems encountered, together with the

Rigid Block Model program versions used, reference is made to Rouse (1982) and

Watson (1983). The next problems on the agenda and hence the beginning position

for this work were those caused by the original Distinct Element Analysis damping

regime. It was reported by Rouse (1982) that blocks that differed in mass by a

factor of two from the mean were effectively undamped, even if the mean masses

were heavily damped.

To begin this investigation of the effects of damping on elements, and towers

of elements, a Pascal Distinct Element Analysis program was written. This im

plementation was extremely simple in nature allowing each element one degree of

freedom. These point mass elements were all positioned at a common origin, each

having one contact with the next created element. Obviously, the last formed had

no contacts. This regime represents a set of elements which form a tower of con

tacts. The program shall be referred to as Program CVS, a mnemonic representing

Contact Vibration Simulation.

It was during this stage of the clamping investigation that a final approach

was conceived.

11

Chapter].]Introduction

]..5 A final approach

1.5.1 The relevance of Distinct Element Analysis to soil masses

For some time before Distinct Element Analysis, boundary elements and finite

elements were used to analyse blocky rock systems, despite these being discontinu

ous systems and quite unlike the continuum systems more suited to these methods.

Some attempts were made to include the discontinuities by slide lines in finite dif

ference, Wilkins (1969) and by joint finite elements as described by Goodman

(1976). To use a method designed for discontinuous materials and include increas

ing degrees of continuum to solve a continuum problem is simply the reverse of

this.

The advantages of using a Distinct Element Analysis based solution for soil

mass stability analysis are similar to the main advantages of Distinct Element

Analysis for blocky rock systems, namely a low overhead per iteration, a time

explicit integrator leading to easy analysis of progressive failure and easy inclusion

of non-linear material properties. It is for these three reasons that an attempt

has been made to develop Distinct Element Analysis programs suitable for the

analysis of soil slopes and their progressive failure.

There are two such Distinct Element Analysis programs designed to model

the behaviour of soil masses, developed during this work, namely SLICES and

CIRCLES. The names referring to the fundamental calculation element. Program

SLICES is most akin to a traditional Rigid Block Model and to a traditional limit

equilibrium analysis such as Bishop (1955), Fellenius (1936) or Janbu (1973), while

Program CIRCLES, the more general of the two, is quite unlike either.

12

Chapter]. J[:ntJrod lllction

1.5.2 Soil slices as rigid blocks

Like limit equilibrium analyses, the user is expected to provide a surface

slope topography and a proposed failure surface. The failure sector is divided

into vertical slices which are interpreted as rigid blocks. The blocks have reduced

degrees of freedom, those of body displacements only. The removal of rotation

is desirable as the slices often have an high aspect ratio, which would lead to

problems tracing the positions of the corners. Furthermore, toppling of the slices

high on the failure arc would tend to occur, which is problematic in a analysis

designed to model sliding only.

Unlike limit equilibrium analysis inter-slice forces are fully incorporated.

SLICES provides graphical and written output allowing the build up of stresses

on the failure arc to be monitored. From this it can readily be seen which portions

have reached their limit and so the progress of the failure can be traced, and the

mechanisms inferred.

1.5.3 Soil masses as circles of influence

Program Circles is not a limit equilibrium analysis and employs a Distinct

Element Analysis where the elements are circles of influence. The circles are

not particles and have reduced degrees of freedom, rotation being ignored. As

areas of influence the circles may overlap to a large extent. CIRCLES is far more

sophisticated than SLICES as it is not limited to a predetermined failure arc. If

failure occurs then the failure zones are displayed as they form.

1.5.4 Organisation of this work

There is much in common between CIRCLES and SLICES, both in the theory

and the implementation of the Distinct Element Analysis techniques employed.

13

Clhapter :n. Jrntrod uciiolll

Both have similar degrees of user friendliness, input and output requirements and

other features. The areas of common theory can be found in the next chapter.

Information for programs SLICES and CIRCLES is contained in Chapters

three and four respectively. These chapters contain information on extensions

to the theory specific to the program, its use, structure, memory requirements

and validation. Finally Chapter five draws the discussion to a close containing a

summary of conclusions.

14

Chapter 2 Jimplementatio:n of Distinct Element Anruysis

CHAJP'JI'JER 2

'JrHJE JIMJPJLJEMJEN'JrATJION OF

'JrHJE])JI§'JrJINC'Jr JEJLJEMJEN'Jr ANAJLY§][§

2.]. Cundall's Cyclic Process

2.1.1 Cundall's Concept

2.1.1.1 The Cyclic Process

The underlying aim of Distinct Element Analysis is to model the displacement

of individual elements with time. This is cyclic or iterative in nature and allows

the use of simple force displacement laws using an explicit integration scheme.

As reported by Cundall (1971) several procedures are followed during each cycle.

In the broadest sense these procedures are a force displacement relation to give

the forces in the system, followed by a motion law to give the displacements.

Furthermore the forces may be modified by force boundary conditions and the

displacements by displacement boundary conditions. Figure 2.1 illustrates the

process. Each complete cycle around these procedures takes one time step. So,

in theory, as the values for all degrees of freedom are known at each time step

the displacement state at any time can be found by cycling round an appropriate

number of times.

To illustrate this cyclic process the laws used by Cundall {1971) are followed.

The force displacement law is determined for each contact for each block for each

cycle and the motion law for each block in each cycle. Figure 2.2 shows the forces

associated with a contact. The force displacement relator is the contact stiffness,

15

Force Boundary Conditions

FORCES

Force-- Displammcnt Law, .
eg, elasticity, friction

Motion Law, t>g, ereep, viscosity

Displacement Boundary

Conditions

Figure 2.1 The Distinct Element Analysis Calculation Cycle

After Cundall (1971)

16

·New position

,I
Original position

Figure 2.2 The forces associated with a contact

17

Clhapter 2 limplementatio.n of JDi§tinct lElement Anallysis

so that the normal force on the contact is given by the normal penetration (for

example the movement of one block edge into another) multiplied by the contact

stiffness, as in equation (1). A list of the mathematical notation used throughout

this discussion is contained in Appendix A.

(1)

Likewise the shear force is given by the product of the shear movement and shear

stiffness, equation (2).

(2)

If the dashpot contact damping is in force the normal and shear dashpot forces

are calculated in like manner, equations (3) and (4).

(3)

(4)

These normal and shear forces are constrained by the following failure criteria.

Firstly if the contact is in tension, that is Fn < 0 then Fn, Hn, F8 , and Hs are

set to zero. Secondly the shear forces are restrained by a friction law so that if

IF s I > J-L X F n then Fs = J-L X F n JFs I / Fs where J-L is the coefficient of friction of

the contact.

Having obtained the contact forces, they are resolved to give forces in the x

and y directions which are then summed onto the blocks involved. The moment

about the block centroid is also calculated and summed.

Once the force displacement law has been executed for all of the contacts on

an element, the forces on the element are known. The motion law can relate these

forces to element movements.

18

Chapter 2][mpRementation of Distinct. Element Anallysis

The facility for imposing force boundary conditions on the problem allows for

modelling of systems including rock bolts, these being simulated as constant body

forces on certain blocks. Displacement boundary conditions permit some blocks to

be immovable for either the whole or part of the simulation, enabling the system

to consolidate and preventing it from acting as a rigid body under gravity.

The time step, the unit of time that each cycle is deemed to have. modelled,

cannot be made arbitrarily large in the hope of reducing the number of iterations

required for the simulation time, for, in doing so numerical instability will be

encountered. This instability manifests itself as small contact oscillations. To

control these oscillations numerical damping has been used, although this removed

energy from the system in an apparently arbitrary fashion, Rouse (1982).

In dealing with these problems an observational investigation was carried out,

the findings of which are presented in the following sections. This investigation

was carried out using the Program CVS and a graphical module SOP (simulated

output program) written especially for plotting the output from CVS. Program

CVS uses the same undamped motion and force displacement laws as Cundall.

Basic input is the number of elements, the particle mass, the stiffness and the

time step size. Options include Simple Harmonic Motion simulation, Contact

simulation, shear force inclusion or exclusion, contact slope angle, and the number

of iterations.

2.1.1.2 A Simple Implementation

The essential feature of Distinct Element Analysis is the force, acceleration,

velocity, displacement cycle. In this case the force - displacement law is executed

as the starting point in the cycle. Part of the elegance of a Distinct Element

Analysis solution is the simplicity with which these quantities can be calculated at

each cycle in rotation. It is not easy to calculate them independently of previous

19

Chapter 2 Jimpliemeniatlion of Di9tinct Elemelllt Analysis

cycles, but a general formula may be derived for very simple cases in terms of

solutions to sums of series and difference equations.

There also exist mathematical solutions for systems using non discrete in

tegrating operators, but again they are extremely complex for anything but the

simplest cases. The principal difference in these two approaches is the period of

time step, in the Distinct Element Analysis this is the time step size whilst in the

Calculus it can be considered as zero. These two types of solution therefore deal

with quantised and continuous time respectively.

It follows that any system with constant acceleration shall have equal solutions

in quantised and continuous time and that the quantised solution to a system

with variable acceleration shall be an approximation to the true solution found in

continuous time.

2.1. 2 The Behaviour of a Single Contact

Figure 2.3 shows the behaviour of a single contact between two point masses.

The 'lower' mass is fixed and has a zero initial overlap with the 'upper' which is

allowed to move under the influence of both gravity and the contact force. The

contact force is given by the product of the overlap and the stiffness and acts to

separate the masses. In this case it directly opposes gravity. The waveform can

be split into two portions, firstly a simple harmonic motion and secondly a freefall

condition.

For such a simple case it can be seen that a contact force equal to the weight

would counter gravity and thus represents an equilibrium condition (acceleration

= 0). This contact force corresponds to an overlap of mg/k. In an undamped

system this is never attainable because to gain an overlap of mg / k the particle

20

2 BlOCK TOllER , T/100 82 HIO SIE04 TO.OOOI

CYCLE LIMITS I 47483647 PLOT INTENSITY BlOO: 2

PQTENTUL ENER/iY

t'%j
OIAAAAAAAAAA

840 1680 2520 3360 4200 5040 5880 6720 7560 8400 9240
CYCLES

Otl Jmii.l/l1i
~
'"I
~

t.,j
-~~~~eo~~

~ CYCLES

~ Ql$P« ACflffNT

::r
CD

0""
CD
01~~~~~

::r
~. 1:'-.J

CYCLES
A(tBfRATIQM

0 1-'
~
'"I

0

ob~ ~ ~ ~ ~
1680 ~ 3360 ~5040 ~ 7560 ~ 9240 <

..... CYCLES
~ WTAI Fll1ICf
I'll
::s
~
~

:~~ ~ ~ ~ ~
-6 1140 ~20 3360~ 5040 ~ 6720 ~00 9240 ""'"=

(") CYCLES
0 J/l2..SJEJ:E a
~
~ F~~~~~·

840 1680 2520 3360 4200 5040 5880 6720 7560 8400 9240
CYCLES

SJMULATEO OSCILLATION OUTPUT

()

l
E'?

~
~

i -fi}
t3
fi} a
~
O=>o
el
~

el
~

g
0=>0
t!ll
E'?
O=>o

~
f1
E'?

t:i:J
t='
fi}

~ a
~

~
t!ll
O=>o
t!ll

Chapter 2 :U:mpRementation of Distinct Element Analysis·

must have a downwards velocity, which will carry it beyond mg I k during the

following cycles.

The non-zero velocity at zero acceleration positions leads the particle always

to overshoot this crucial position. The contact force gives rise to an acceleration

larger than gravity, causing the mass to decelerate, the velocity eventually becomes

zero and then changes direction. The mass moves upwards towards the mg I k

position, and for the same reason the mass overshoots on its return and again

begins to decelerate. The velocity changes direction again when there is no overlap

and the mass moves down to begin a new period of oscillation.

This motion would continue indefinitely for continuous time with constant

period and amplitude. However the time is quantised and it is unlikely that the

incremental displacements would sum exactly to mglk, 2mglk, mglk and 0 during

the first period. So then, the change of direction of the acceleration and velocity do

not occur precisely at these overlaps but rather at those corresponding to the end

of the time step which includes these overlap values. The overlaps are therefore a

little greater than mglk, 2mglk, and a little less than mglk and 0. In the case

of the last value the masses have separated and freefall ensues until contact is

regained. This ·inaccuracy applies during freefall as well, so that the upper mass

regains contact with the lower at a slightly higher velocity than expected.

The second period of oscillation is slightly different from the first, in that the

particle begins this period with a downwards velocity. It therefore travels further

in the first time step of the new period than in the old one. The particle decelerates

more rapidly due to the increased overlap and as it approaches mg / k it does so

with a lower velocity and does not overshoot as far. Consequently at the end of

second period the separation or 'jump' is less.

22

Chapter 2][mplementation of Distinct Element Anallysis

Successive periods of oscillation alternate those similar to the first, that is

beginning with a small or zero jump, and those like the second with a larger jump.

Assuming suitable parameters for mass, gravity, time step and stiffness will

lead to the jump being restricted to a small value, the separation occurring for a

single calculation cycle. In this case the motion is essentially that of Simple Har

monic Motion. However each of the parameters will affect the motion principally

by increasing the size of the jump.

The finite difference method gives rise to a movement of g0t2 in the first cycle

if the initial velocity is zero. This is true for all cases here. Consider the motion

after the first cycle if bt2 > m/ k. The initial contact force will be greater than

mg. In this case the particles will separate, free fall and regain contact. The

high regain velocity will cause a larger overlap than that of the first period. It is

clear that both the amplitude and wavelength of this asymmetric oscillation will

increase with successive periods.

This instability may be caused by a time step and / or stiffness that is too

big, or alternatively by a too small a mass. The gravity determines the time that

the particles are separate. The two extremes of motion described, the quasi-stable

oscillations and these large jumps are end members of a series of oscillation types.

2.1. 3 Controlling Numerical Instability

In an undamped system the large oscillations may be avoided by shrewd use of

the problem parameters. The quasi stable oscillations, however, cannot. Damping

is required to control the quasi stable oscillations for the following reason. As

collapse of a real system occurs, the energy release due to collapse is absorbed

through noise, heating, grinding, breakage of material and loss by vibration to the

far field. Unless a damping regime is imposed on the numerical analysis the system

23

Clma.pte:r 2 Kmplemermta.tion of Distinct JElemermt Ana.llysis

energy will never decrease, and not reflect reality. In particular the analysis will

be too liberal in passing effects from one area to another.

Although we have only considered oscillations in the contact normal direction,

for an inclined contact they exist in the contact shear direction as well. These

oscillations are in phase, the stresses varying from zero to the maximum values at

the same time. When a failure law is imposed on the shear stress the oscillations

distort. What is of greatest importance is that the stress path followed by the

contact will be cyclic and unlike the correct, or even a sensible one.

Cundall's implementations of Distinct Element Analysis involve the use of

damping factors to control these oscillations, the processes of which have been

adequately described by Cundall (1976), Rouse (1982) and referred to in section

1.4.1. Rouse reports that these damping regimes are unsatisfactory on two counts.

Firstly that the mass proportional damping factors for the whole mesh do not

damp masses differing by a factor of two from the mean. Standing waves were

also encountered in towers of contacts, and finally self exciting oscillations were

easily produced by the viscous damping, the use of which she strongly discouraged.

2.1.4 Towers of Contacts

A tower of contacts is a set of elements with each resting on one immediately

below, the bottom one being immovable. In the first time step, all the movable

elements fall by ght2 • In the second, the lowest contact is in compression, so

the first movable particle moves down less than g6t2 . All of the other elements

move down by the same amount as in the first cycle. In the third, the bottom

two contacts are in compression. It can be seen readily that the onset of contact

compression travels up the tower at the rate of one contact per calculation cycle.

It is for this reason that all effects propagate through the mesh at the same rate

as this.

24

Chapter 2][mplementatlion of Distlinct Element Analysis

In this system an element's oscillations are coupled to its neighbours only

while the contacts are compressive. If jumping should occur at any stage, the jump

would cause a compression wave to travel up the contacts above the element. The

top element would separate from the column, free fall and begin a compression

wave travelling down the column. It is this effect which gives rise to the possibility

of standing waves.

2.1.5 Some Recommendations

In deciding the values of the parameters, care should be exercised to ensure

the following conditions:

(i) that g8t2 is modest.

(ii) that the time step is sufficiently small for the oscillations to be traced with a

reasonable degree of accuracy.

(iii) that the contact overlaps are small relative to the size of the elements at all

times.

(iv) that the time step is sufficiently large for the computing cost to be acceptable.

(v) that the damping quenches all quasi stable oscillations in a reasonable fashion.

(vi) that energy is dissipated from the system during collapse.

A new approach was researched because current Distinct Element Analysis

implementations seem to be oscillation prone. These oscillations lead to incorrect

stress paths being followed and the oscillations are difficult to adequately damp.

2.2 An Alternative Approach

2.2.1 Consolidation

Consolidation, in this context, is the relaxation of a stable configuration of

elements until equilibrium is attained. Cundall (1971) recommends that a problem

25

Chapter 2][mplemeniation of Distinct Ellement Analysis

be analyzed in two parts, firstly by allowing consolidation to take place and then by

collapse. The process of consolidation must take place under different conditions

to that of collapse, otherwise both processes would prove to be identical. The aim

of consolidation is to stabilise the contact forces to values which counter the self

weight of the mesh so that during collapse the initial contact normal forces give

rise to the correct limiting shear forces and that shearing may take place under

the correct conditions.

Cundall outlined two methods of promoting consolidation, under conditions

of artificially high friction and by the use of fixed elements to prevent collapse. The

high friction method may be utilised for problems where the failure mechanism is

principally sliding. Here the elements do not collapse because the contact shear

forces are allowed to be large to prevent contact failure. By using this a philosoph

ical problem is encountered, for when the friction is lowered to normal for collapse

to ensue, the contacts fail immediately with no chance for the normal forces to

compensate smoothly or, more importantly to follow the appropriate stress path.

When the consolidation forces are much higher than the contact failure limits it

may be argued that the system is as removed from the correct failure force system

as it was before consolidation took place.

Where the failure mechanism is that of a toppling and sliding mixture then

additional fixed elements are used to prevent movement. These are removed af

ter consolidation has taken place. In Figure 2.4 fixed blocks have been used to

allow consolidation throughout the whole of the problem. On unfixing the central

supporting blocks the first row will drop, reducing the normal forces on the edges

marked x. It can be seen that a wavefront of reduced normal forces will propagate

through the mesh at a rate of one element per cycle. Although the side forces

may restabilise the system, this wavefront seems to be an added complication to

an already complex damping system. Furthermore, it must be questioned whether

consolidation by fixed blocks is appropriate as in the real case the lowest blocks

26

F

z z

y y

X X

F F

F

x - joints relaxed in first collapse cycle

y - joints relaxed in s£>Cond collapse cycle

z -joints relaxed in third collapse cycle

F F

Figure 2.4 The use of fixed blocks to promote consolidation

27

Chapter 2l Jimplementation o:lf Distinct JElement Anallysis

would be held by side friction, interlocking joints and cohesion. Again it may be

argued that this method leads to an incorrect force system.

2.2.2 A Statement of the New Approach

Any new method should allow for the correct gradual build up of forces both

before and during collapse. The method should be inherently numerically stable

unlike the usual Distinct Element Analysis implementations and it should correctly

model the progressive nature of the collapse.

The new approach controls the consolidation of the elements in a more con

servative fashion than the usual Distinct Element Analysis in that neither element

velocities nor displacements are allowed to build up across time step boundaries.

In essence, the incremental displacements of the previous cycle are used in a force

- displacement law to give an increment of contact stress, which is then added

to the contact stress. A very simple motion law is executed to give rise to new

incremental displacements. The contact stresses gradually increase until the incre:

mental displacements fall to very low levels. A contact failure law may be included

in the process but for simple consolidation it need not. If no contact failure law

is used and a collapse algorithm, such as a standard Distinct Element Analysis

method, is processed afterwards, the artificially high shear forces for the contacts

that will fail, must be reduced carefully to prevent shocking the system. Just as

in normal Distinct Element Analysis this new method relies upon fixed elements

to form an immovable platform.

This force orientated system requires a slightly new calculation order which

is shown in Figure 2.5. To interface between the consolidation and collapse phases

consolidation forces are used in the collapse motion law.

28

To interface to normal Distinct

~
....:I

d ~ ~:I

.[= 0
·~ <ll ~ 0 :.=

cb 0
y § ...
r2 0

Brackets indicate that the value is not stored

Figure 2.5 The new calculation order

29

Chapter 2 Jrmpliementatnon of Distinct Elemel!lt Analysis

The consolidation process provides as an end result contact forces, whereas

normal Distinct Element Analysis provides element overlaps and hence element

body forces. As the incremental forces are added to the consolidation forces in each

cycle there is a more complex zero tension condition because a separation between

elements implies a tensile increment rather than necessarily a tensile contact. A

tensile condition occurs when a tensile increment is added to the consolidation

forces which causes the result to be less than zero.

It is essential, of course that the correct forces are produced by the analysis.

To check this Program CIRCLES was used to consolidate a single contact, a tower

and a triangle involving two contacts. In the case of the single contact, the force

summed to mg, for the tower jmg (where j is the number of circles above the

contact) and for the sixty degree triangle of elements the combined contact forces

resolved to give mg.

2.2.3 Machine Accuracy

2.2.3.1 The Relevance to Discretization

Machine accuracy may be expressed in absolute terms as the number of bits

used for a real number, or more usefully as the number of significant figures held,

or the smallest number added to 1.0 which gives a result greater than 1.0.

The computer used throughout this study was a System 370, Amdahl 470 V /8

Serial Number 70435 at Durham using the Michigan Terminal System (MTS) of

the University of Michigan Computer Center, Ann Arbor, Michigan. The Pascal

compiler used was PASCALJB of Plug Compatible Software, Inc. The machine

accuracy in this case is such that if 2.220446049 x 10-16 is added to 1, the result is

30

Chapter 2 Kmpliementatlion of Distinct Element A:nruysis

just discernible. Therefore, to maintain the accuracy of the algorithmn it is essen

tial to keep calculations involving small quantities separate from those involving

large ones for as long as possible.

For example, the position of the elements varies during the analysis by adding

incremental displacements to the centre of gravity. Small increments are easily

lost, so these are stored separately to ensure that they maintain their integrity.

To illustrate,

(1.0 + 10-17)- (1.0 + 10-18
) = 0

whereas

1.0- 1.0 + 10-17 - 10-18 = 9.0 X 10-18

2.2.3.2 Bringing Consolidation to a Close

For a convergent, stable system, there comes a point during consolidation

when the incremental forces become very small and it is necessary to terminate

the process while all the quantities are above the machine accuracy. To do this the

maximum increment displacement is determined in each cycle and when this has

fallen to the limiting arbitrary value of 10-14 consolidation is considered complete.

At this point the force matrix gives rise to extremely small displacements and the

system may be thought of as at equilibrium.

For a convergent, unstable system the maximum incremental displacement

with time becomes asymptotic to a constant value. Consolidation is brought to a

close under conditions of constant displacement. That is, it is not possible for the

consolidation forces to counter the effect of gravity in at least part of the mesh.

For a divergent system the process is halted if the maximum incremental

displacement reaches an arbitrary high value of 106 . Such a system is considered

31

Chapter 2

to be numerically unstable, halting the process prevents the program crashing in

an uncontrolled fashion.

2.2.4 Propagating Effects Throu.gh the Matrix

2.2.4.1 A Simple Tower Problem

What occurs in one part of the mesh is very likely to affect another part. It

is essential that these effects are correctly propagated through the mesh. Plesha

et al. (1986) report that the propagation mechanism of waves through a distinct

element mesh is not understood. In this study it was found that propagation may

be very limited and is controlled by machine accuracy, stiffness, time step and unit

length.

Figure 2.6 shows a tower of CIRCLE elements. Table 2.1 shows the consoli

dation forces at completion, it can be seen that no contact forces exist above the

seventh contact. As explained in section 2.1.4 propagation of the onset of consoli

dation travels at one element per cycle up the tower, those elements above falling

under the influence of gravity only.

O.OOOOOOOOOOOOOE+OO

O.OOOOOOOOOOOOOE+OO

O.OOOOOOOOOOOOOE+OO

7.1642691779061E-14

4.7029380390028E-12

1.0319038623585E-09

1.8433017642260E•07

2.4740616641751E-05

2.2250740175403E-03

Table 2.1 Contact forces for a tower

32

18

16

14

12

10

8

6

4

2

0
0 2 4 6 8 10 12 14

Figure 2.6 The tower of circles analysed

33

Chapter 2][mplementatio:n of Distlirmct Element Analysis

The relative displacement between two elements ·is given by

where 1Py and 2Py are the y positions and 1 Sy and 2Sy are the incremental

displacements of the two elements. At the limit of propagation the value 1Sy- 2Sy

is 'lost' when added to 1Py - 2 Py resulting in a zero relative displacement. From

this point onwards propagation ceases as the contact force is also zero.

Cycle Circle 1 Circle 2 Circle 3

0 a= -g a= -g a= -g

s = -g.6t2 s = -g.8t2 s = -g.8t2

1 F = k.d.g.8t2 F=O F=O

a= k.d.a.lit2

rn
-g a= -g a= -g

S= k.d.a.lit4
- g.6t 2 s = -g.6t2 s = -g.6t2 .

rn

2 F = k.d.g.8t2 - 2.k2 .d2 ·9.·lit4

F= k2 .d2 ·fl.·lit4

F=O rn m

a= k.d.a.lit 2
- 2.k2 .d2 ·EJ.·lit4

-g a = k
2 .d:~·lit4 _ g a= -g m. m2

S= k.d.f1..lit4
- 2.k 2 .d2 ·fJ.·6t6

- g.8t2 S= k 2 .d2 ·9.·lit6

- g.8t2 s = -g.8t2
m m2 m2

Table 2.2 The expansions for 3 circles

Table 2.2 shows the expansions for the acceleration, displacement and forces

on three circles in a tower for three cycles. Of the controlling parameters used, time

step affects the size of the incremental displacement most. As expected, as the

time step is decreased the displacement decreases also, unfortunately it can quickly

disappear. Likewise as the stiffness is increased smaller displacements are required

to represent the same forces. Gravity affects the displacements proportionally

whereas the other parameters have a greater effect.

34

C1napte.ll." 2][mpllements.tion. of Distinct Elemen.t Anally§is

2.2.4.2 Some Recommendations

To promote propagation through a large number of elements it is suggested

that stiffness and time step size be equal to unity and that the numerical stability

of contacts be controlled by a single damping factor. The size of the problem

should be limited so that small quantities are added to modest element positions.

It is suggested that the elements are of the order of one unit in radius for CIRCLES

and one unit in width for SLICES.

2.2.5 The Role of Damping

The difference equation solution for a single contact under the influence of

gravity is shown below. The governing equations for the displacement, acceleration

and force are shown in equations (5) to (7). The sign convention of gravity as

positive is used.

(5)

(6)

(7)

n -ay-

n-1

n Fy = - L k X d X i Sy
i=O

On substituting equations (7) and (6) in (5) it is found that

(8)

Let A = kxc;:ot
2

and B = gy X 8t2 then the difference between two consecutive

incremental displacements becomes

(9}

35

Clha.pter 2][mplementa.tiora o:f Distinct Element AnaJlysis

Which simplifies to

(10)

Let n Sy = p; so that

(11) p~ x [py - (1 -A)] = 0 Py = (1- A)

Now 0 Sy = 9y X 15t2 = C(1- A)0 which implies that c = B So that

(12)

The number of calculation cycles for a system to converge to a limiting differ

ence may be derived. The limiting factor may be force, acceleration or displace

ment. A different equation is required for each, they are given below.

The derivation of N 1, the number of cycles needed to converge to a limiting

positive difference in force of Lim! is shown. Care needs to be exercised regarding

the gradients of the acceleration, displacement and force time graphs as gravity is

taken as positive downwards. The limit is defined as -Lim1 = N1+ 1Fy- N1 Fy

(13)

which gives Lim1 = k x d x N, Sy and Lim!= k x d x B(1- A)N' and hence by

logarithmns

(14)
N _ lg(Lim1 /(k x d x B))
I- lg(l- A)

The equivalent equations (15) and (16) show the number of cycles required

when the limiting factor is acceleration and displacement respectively.

(15) Na = lg(Lima X m/(k X d X B))
lg{l -A)

36

Chapte:r 2][mplementation of DistiJrD.d. Element AJrD.allysis

(16) N = lg(Lims/(A x B))
s lg(l- A)

Furthermore for N 8 > 0 implies 0 < kd8t2 fm < 1 and assuming k = 1 and

Ot = 1 then it follows that 0 < d/m < 1 and N 8 = lg(L;;(~~.-:;~~xg)) which implies

that N 8 varies with mass. So that all elements take equal time under the same

conditions to consolidate the damping factor actually employed is element mass

multiplied by the global damping factor: D 1 = dfm. This makes the consolidation

process time independent of mass, if this were not so the time would 'warp' over

the mesh with lighter elements more advanced than others. A further consequence

would be that heavy elements would be lightly damped compared with light ones.

Th £ N ~ lg(Lim.,j(Dt X g))
ere ore 8 - lg(1-n,)

To show the effect of the number of contacts upon these equations, the dif

ference equation solution for an isosceles triangle where the lower two ~ircles are

fixed, now follows. The internal angle between the horizontal and the contact lines

is (). The derivation is carried out for the y direction only as the x can be shown

to cancel out and have no effect. 6.G is used to represent the movement along the

contact lines that join the circles. The subscripts 1 and 2 are used to differentiate

between the two active contacts. The governing equations for the displacement

and acceleration are as shown previously in equations (5) and (6). The equation

for the force is given in (17).

n-1

(17) n Fy = -I: k x d X (~ AG + ~AG) X sin()
i=O

However the radial displacements are given by

(18)

Equation (17) simplifies to give

(19)
n-1

n Fy = - L 2 X k X d X i Sy
i=O

Chapter 2][mplementation of IDi§tin.ct JElemen.t A:naly§n§

By following the previous method it may be shown that

(20)

and that Ns = lg(~~0·'!~~;)g)) Hence generally

(21)
N _ lg(Lims/(DJ X g))

s - lg(1 - 1 x D 1)

where I is the number of contacts. It should be noted that this applies to symmet

rical contacts sharing the weight of elements above. It can be concluded that the

damping factor, D 1, must vary according to the mesh geometry used in Program

CIRCLES.

As damping increases so does the required number of cycles to reach equilib

rium, and hence the computer time increases also. An overall damping factor of

0.5 to 0.9 has proved to be satisfactory.

2.2.6 Concluding Remarks

In this chapter some general theory has been investigated for Distinct Element

Methods as used previously. A new method has been outlined and aspects of the

theory have been detailed, in the following two chapters the theory is extended for

SLICES and CIRCLES and their implementation described.

38

Chapter 3 Distinct Element Meth.od of §Hces

CHAPTER 3

JD][§T][NCT ElLEMENT METHOD OJF §JL][CE§

3.1][ntrodu.ciion

Program SLICES is designed to analyse the behaviour of a soil slope and a

failure arc in much the same way as more traditional methods, such as Janbu.

The program requires geometric data to define the slices. The tops of these form

the soil slope, and the bottoms form the failure arc. The slices may vary in width

and should normally have vertical sides.

In addition cohesion, friction and pore water pressure values are needed for

each slice. As the slope cross section may be considered as one unit length thick,

and if the unit length is the metre, densities in tonnes /m3 , gravity as -10m/ s2 ,

then the cohesions and porewater data should be entered a.'3 kN/m2 and m. How

ever any self consistent units may be used.

Finally control parameters and control commands govern the conditions of

the solution and the production of the various outputs. Table 3.1 shows a typical

command file while Figure 3.1 shows the slope and arc to be analysed.

It must be emphasised that Program SLICES is a development program, and,

although hopefully, reasonably user friendly this is for ease of use rather than as

an indication of a packaged production program. Program SLICES is therefore

limited in its applications. It is only able to analyse situations involving one

soil type and has a simple contact failure law. It is envisaged that non-'linear

soil properties could be incorporated quite simply and that layered situations be

39

Dnsti:nd Element l\!liethodl of §!.ices

metres
SLOPE I. C. PHI. U TIHE 0 16'8E05

22

20

18

16

14

12

10

8

6

4

2

0
0 2 4 6 8 10 12 14 metres

Figure 3.1 A typical slope for analysis by SLICES

40

Cha:pteJr 3])i§iinct E~ement Method of §~ice§

start SLOPE 1, C, PHI, U

0 16 0

create free 20 5.0 2.0 1.0 20 5.0 0.0 0.0 0.23 1 14 1 14

2 10.5 2 14

create free 20 5.0 2.0 1.0 20 5.0 0.0 0.0 0.23 3 8.9 3 14

create free 20 5.0 2.0 1.0 20 5.0 0.6 0.6 0.23 4 7.7 4 14

create free 20 5.0 2.0 1.0 20 6.0 1.6 1.0 0.23 5 6.9 5 14

create free 20 6.0 2.0 1. 0 20 6 . 0 2 . 3 1.3 0.23 6 6.3 6 14

create free 20 6.0 2.0 1.0 20 6.0 2.9 1.6 0.23 7 6.7 7 :1.4

create free 20 6.0 2.0 1.0 20 5.0 3.36 1. 75 0.23 8 6.4 8 13

create free 20 6.0 2.0 1. 0 20 6 . 0 3 . 66 1.9 0.23 9 5.1 9 12

create free 20 5.0 2.0 1. 0 20 6 . 0 3 . 86 1. 96 0. 23 10 6.0 10 11

create free 20 6.0 2.0 1.0 20 6.0 3.96 2.0 0.23 11 4.9 11 9.9

create free 20 5.0 2.0 1.0 20 5.0 3.96 1.95 0.23 12 6.0 12 8.9

create free 20 6.0 2.0 1.0 20 6.0 3.3 1.35 0.23 13 6.1 13 7.8

create free 20 5.0 2.0 1.0 20 6.0 2.05 0.7 0.23 14 5.4 14 6.8

create free 20 6.0 2.0 1.0 20 6.0 0.7 0.0 0.23 16 6.8 15 5.8

meshend

set time 1 gravity -10 cmdproc on framelimit 100

aritegap 128 interval 128

cmdlist plot standard set calc aritegap * 2 interval * 2 cend

echo on

go 32383

stop

Table 3.1 A Typical Command File

accommodated by subcontacts along the interslice edges. In addition Program

SLICES is intended for slopes failing by sliding only, as opposed to toppling. There

is no check made by the program for toppling. Program SLICES is particularly

suited for situations where the failure surface is already known, as in back analysis

and post-mortem analysis of failed slopes.

The program does not display the problem solution in a fixed format, but,

rather a series of possible outputs may be requested by the user. The calculation

marches through time producing data and to a very great extent which data are

examined, and how, is left to the user. Of the several possibilities, perhaps the

41

Chapter 3 JDi§iinct JE~ement Method of §lice§

inost useful is shown in Figure 3.2. Here the stresses are plotted along the length of

the arc. Normal, shear and limiting shear stresses for both the base and interslice

contacts are shown. The symbols+, 0 and * are used to represent the pore water

pressure, mobilised stress and limiting stress respectively. Plot possibilities include

incremental displacements, slice geometry and the stress profiles as illustrated.

Much written output can be produced for debugging and general informa

tion. To complement the stress profile plots, written output can· be produced

independently. This output consists of the Factor of Safety (Limiting stress over

mobilised stress), for each of the base contacts and shows which slices are stabil

ising the slope. The limiting state is represented by a factor of safety of unity.

The analysis may be considered static in nature in so far as the slices are not

allowed to collapse, only to consolidate. The term consolidation is being used here

to describe the process whereby the contact forces increase over successive cycles

to counter the self weight of the slope. The cyclic process employed includes a

failure law for the contacts which is executed during the force displacement law.

The complete cycle is shown in Figure 3.3. It may be seen that in addition to the

calculation sections there is a controlling section which is capable of terminating

a run and to administer the production of output.

3.2 Theory extensions for §JLJICE§

3.2.1 The edge formulation employed

The Distinct Element Analysis formulation used is an Edge formulation. As

stated in the Introduction, program SLICES is a Distinct Element Analysis im

plementation of fewer degrees of freedom than usual as rotation is ignored. As

the problem types are of sliding only, rotation or toppling of slices can be safely

discarded. Both edges involved in a contact, therefore, shall be parallel at all

42

N 22
!: 20 -..._ 18
~ 16
...:c 14

12
10
8
6
4
2
0

-2
N 2
!: 0 -..._
~ -2
...:c -4

-6
-8
-10
-12
-14
-16

N 0
-10 ~

~ -20
...:c -30

-40
-50
-60
-70
-80

N 120 !: 100
~ 80
...:c 60

40
20
0

-20
-40

0

SI.Off. 2., c PH!, IJ. N/. TTI:1f. Q, 12fl.QEOJ

Lli''IIT

SSIL1o

8 10

u

INTER - NS

LIMIT

SS/LIH

2

ARC - NS

2 4 6 8 10
metres

Figure 3.2 Stress profile produced by SLICES

A negative normal stress is a tensile stress.

'"' ~
Q)

..c
f/)

Cd ,..
t::
'"' 0
!:::

....
~
Q)

..c
00

-~
a
'"' 0
=

A negative shear stress is dextral shear for basal contacts

and is sinistral shear for interslice contacts.

43

f/) u
~ -!::: 0 u
Q)

.~
'fll

'"' Q)
!::: ·-
'"' .£
f/)
Q)

q::
0
0..

f/) u
~ = 0 u

Cd
~

...0

'"' ;,£
00
Q) -c.:
0
'"' 0..

Figure 3.3 The SLICES calculation cycle

44

Cllun.pier 3 Distinct Ellement Method! of §lices

times and this simplifies the edge formulation allowing a contact to be defined by

a single subcontact. A furtherl>simplification to usual edge formulations is pos

sible, as initially both edges involved are closed along their whole lengths. This

renders the storage of a contact origin unnecessary. Figure 3.4 compares a gen-

eral Distinct Element Analysis edge contact with that employed in SLICES. The

lefthand diagram shows the information required for a contact in the traditional

Distinct Element Analysis implementation of Watson (1983). The righthand dia

gram shows the contact definition used here. It may also be noted that the contact

length is deemed to be a constant throughout the simulation and is used to convert

forces to stresses by division.

During the definition of the problem the program creates the slices from left

to right and allocates a contact to the base of each slice and to the righthand edge

of all except the last slice. The base contacts are made with a fixed hypothetical

element, the platen, which consists of a series of edges identical to the base edges

of the slices. As the leftmost slice has no lefthand contact and the rightmost slice

has no righthand contact, slopes facing either left or right may be modelled.

The main extension of the theory for slices is the incorporation of the edge

length into the difference equation solution. The inclusion of the contact length L

to convert from stress to force is shown in equations (1) and (2).

(1) nFy=-nayXL

(2)
n-1 ·

n ~ k X d X tSy
ay= ~ L

t=O

By following the method used in chapter 2, it is found that

(3)

45

2NBC tNPE

.
2XT l

~
tNPC It" 1

aYT
1 ~ ' aN PC T

tXT
.

tNBC aNPE

NBC - Block number that owns corner N PC

N P E - Block number that owns edge involved

N PC - Corner number involved in contact

P - Platen corner involved

S - Slice corner involved

Figure 3.4 A Comparision of the data required to define a contact

46

Distinct Element Method of §lices

and N;,., the number of cycles needed to converge to a limiting difference in stress

of Limu is given by

(4)
N _ lg(Limu X L/(k X d X B))
u- lg(l- A)

This number is an useful indicator of the rate of damping on the system. It

has already been shown that the rate of damping is dependent on the element

masses. For a typical slice problem this would mean that all the slices would be at

different stages of the contact stress history. This problem is overcome by applying

an individual damping factor to each block, such that DJ = dfm, where D1 is the

overall damping factor.

A second problem is encountered with damping in that the rate of damping is

also dependent upon the contact length. Ideally two contacts of the same slice with

different lengths should have different damping factors. In practice, for SLICES the

contacts may be considered as two sets of contacts, basal which converge quickest,

and interslice contacts which are slower to converge and gradually influence the

basal contacts. Due to the geometrical consistency of SLICE problems this side

effect is an advantage, however is does complicate the choice of damping factor as

it must satisfy the convergence criteria for all contacts.

3.2.2 The Force Displacement and Motion Laws

Procedure fords[defines the force displacement law and is executed once per

slice cycle. fordsl executes a force displacement law once for the base contact and

once for the side contact. The relative movement in the normal and shear direc-

tions is calculated from the incremental displacements of the slices involved (the

platen may be considered as a slice and has zero displacements at all times). These

relative.movements are converted to contact forces by the relaxation constant, k.

(5) (~:)=(sinO cosO)x (:~:= :~:) xk

Chapter 3 10llistinct Element Metlllodl of §lices

The contact is judged to be active (that is in contact) if n-lan > -DJ X Fn/ L

(compression is taken as positive), and the following executed to give contact

stresses.

(6)

Slices that are fully submerged in the traditional method of slices, are bouyant

which normally causes the toe of the slope to under contribute to the mobilised

stress of the failure arc. This leads to the factor of safety to be under valued. If

the pore pressure due to the water table is applied to the slices in the distinct

element analysis method a similar effect is experienced. Consider equation 7.

(7) T = C + (0" n - U) tan <f>

At the beginning of the analysis an = 0 so that for non-zero pore water pressures

(an -u) < 0 and hence the slices would float upwards. To ensure that (an -u) 2:: 0,

the water is applied gradually by increasing its value at an arbitrary rate of 0.1%

of the required pressure u per calculation cycle. This rate cannot be currently

altered by the user.

(8)

If the Critical State option is in use then failure of the contact is assumed

once nu = u and I nrl > 7. Once the contact reaches the failure condition the

contact remains in the failed state and the cohesion for each successive cycle is

given by n+lc = nc x 0.85, that is c --t 0. The failure logic may be represented

by the boolean logic of failure= failure V ((nu = u) 1\ I nrl > 7).

The shear stress is limited by a Coulomb friction law such that

(9)

48

Chapter 3 Distinct JElemen.t Met.hod o:lf §llices

and

(10)

and if I nTI > 7 then nT = 7 x I '~-rl ensuring sign continuity.

The stresses are converted to contact forces by

(11)

and finally these forces are resolved in x and y and added to the forces acting on

the slice, to be known here as the body forces. Additionally, in the case of a side

contact, the resolved contact forces are subtracted from the body forces of the

other slice involved.

(12) (: :~~::) = (sin 8 cos 8) x (g:)

As the incremental displacements are not used to update the slice positions

the contact stress increments may be compressive or, by the influence of other

slices, tensile. In the tensile case a contact is still active if the summed normal

stress state is compressive. A small tensile stress is permissible so that transient

numerical jumping may be more effectively damped.

The consolidation motion law is very simple compared to the motion law of

normal Distinct Element Analysis. The Procedure consolsl defines this law and is

executed once per slice per cycle. consolsl is called after fordsl in the calculation

cycle.

The incremental displacements are calculated from the body forces, mass,

gravity and time step (recommended as unity).

(13) (.
SS. yre) = 8t

2
X (Forcex) + bt2 X (ggyre)

m Forcey

49

C.hapter 3 Distinct Elemeltlli Metb.od of §lices

The body forces are then set to zero ready for the next cycle

(14) (
Forcerc) = (0)
Forcey 0

3.3 Using JPrrogram §JLJJ:CE§

3.3.1 Introduction

3.3.1.1 Overview

Program SLICES is written in the PASCAL programming language. For some

time previously implementations of Distinct Element Analysis have been writ

ten in FORTRAN, Dames and Moore (1978), Rouse (1982) and Watson {1983).

Whichever language is used it should provide efficient object code and readable,

easily maintained, modular source code. Some features of PASCAL enable these

objectives to be more easily attainable than many other languages. Such at

tributes as structured variables and records make PASCAL particularly useful in

this respect.

For example el@.force.x is equivalent to A(IA(J)+11} of Watson (1983). The

PASCAL version more clearly indicates that an element force in the x vector is

meant than in the FORTRAN version. Furthermore, if 'force' is mistyped then

the Pascal Compiler will indicate an error, whereas if 'J' was accidentally replaced

with 'K' in FORTRAN a run time error might eventually occur. For a development

program where the source is continually being modified these advantages are very

great. For a reader unfamiliar with PASCAL, reference is made to Grogono (1980).

Meek and Beer (1986) report that a large percentage of the programming ef- ·

fort in a Distinct Element Analysis implementation development may concentrate

upon user orientated features. Much of the structure of programs SLICES and

50

Chapter 3 Distinct Element Metlhodl of §lices

CtRCLES is designed for the ease of input of data, output of results, debugging

features, error handling and restart facilities.

The plotting routines employed are library routines called from the GHOST

library. Almost all references to these library routines are contained in Procedure

plot- so that they may be changed or replaced easily if the need should arise. To

call FORTRAN library routines such as these from a PASCAL program procedure

head definitions are included in the PASCAL code.

Finally, the source code for Program SLICES is in est8:p.slice.s and the object

code may be found in est8:p.slice.

3.3.1.2 Input and output unit summary

The program requires various input and output files with which to communi

cate with the user. There are nine such channels each of which should be assigned

on the Run command, for example:

Run est§:p.slice l=resH 2=resto sca:rds=commandls sprint=*msink*

7=-debug §=otrace 9=-plot 10=-osc].].::::*msink*

In MTS the run command should occupy a single line, in· addition *msink*

is the pseudodevice name. for the terminal screen (if run from a terminal) and

'-' infront of a filename indicates that it is temporary in nature. Any channel

required, but not assigned is prompted for by MTS except for scards and sprint,

here the MTS default values are *source* (normally the terminal keyboard), and

sink (normally the terminal screen). In use it may be noted that channels 8, 10

and 11 are often not needed and so need not be assigned, channel sprint should

usually be the default, and finally channels 1 and 2 may be assigned to the same

file. Each of the nine input / output channels are described below.

51

Chapie:r 3 Distinct Element Method of §liices

Channel 1 is the restart file input channel. The file attached to this should

contain all of the information required to restart a previous problem run which

terminated under normal conditions. If a new problem is to be started then a file

need not be assigned.

Channel 2 is the restart file output channel. The file attached to this will

receive the data required to resume the problem at a later date. This must be

assigned as restart information is output at the end of a normal termination as

well as when requested.

Channel scards is the command file input channel. The file or device attached

to this unit contains the input command language commands that define the task

to be done.

Channel sprint is the running commentary output channel. The terminal

screen (*msink*) is the default value for this. As control commands are written to

the device, to position the output on to various parts of the screen, the network

(NUNET at Durham) should be set to allow these control commands to be passed

to, and executed by, the terminal. To do this at Durham the NUNET commands

Ctrl-p passall=on and Ctrl-p chc=off should be issued prior to the run and Ctrl-p

passall=off and Ctrl-p chc=' afterwards.

It should be noted that the control commands used are suitable for Tele Video

terminals and that no other terminal types have been tested, as the commands are

contained in two constant strings at the beginning of the program they are easy

to modify. For more details see section 3.3.4.7.

Channel 7 is the debug output channel. The file attached will contain all of

the debugging output requested. In some cases the amount of information may be

52

Chapterr 3 Distind Element Method of §!ices

very large and it is best if the file is of a temporary nature so that personal disk

space is not exceeded.

Channel 8 is the trace output channel. This file contains the trace of the

program, if requested. It contains a message on entry to and on exit fiom each

procedure or function as they are used. This is particularly useful on debugging

recursive structures as each level of recursion used is recorded.

Channel 9 is the plot output channel. The file attached receives the plot

output stream from the GHOST plotting routines. It contains control codes and

unformatted values and is a plot description file and is device independent~ It must

be reinterpreted for the plotting device to be used. At Durham this is accomplished

by the public programs *PLOTSEE and *MTSPLOT. (See MTS Volume 2, Public

File Descriptions.)

Channel 10 is the oscillation output channel. The file used here will contain

the oscillation output requested. , The information may be reinterpreted by the

program SOP, simulated output plots, originally used in the study of oscillations

of traditional Distinct Element Analysis contacts. (See program comments in file

est8:p.sop.s for use, and sections 3.3.2.3 and 3.3.4.6.)

Finally, Channel 11 is the error communication channel. This channel is

used during error handling, for input of corrected commands or for a termina

tion message if a non-recoverable error occurs, such as an unexpected end-of-file

condition.

3.3.1.3 Outline of facilities

The program is designed to be flexible in the tasks it performs and, on the

whole, is not preprogrammed to solve the problem in a set fashion. The user is

53

Chaqpter 3 JD>listind Element Method of §llices

in control of what is to be done, and when. Research use of the program further

emphasises the need for such flexibility and so several user orientated features have

been incorporated.

A principal feature is the comprehensive input corriinand language to de

fine problems and the manner of solution. In addition a running commentary is

produced providing information on the current program status, (for example the

number of pages of plot produced so far, iterations completed and requested), cur

rent problem stability information, and the current command in progress. This

allows a user to abort the run if it is not satisfactory.

Certain parameters may requjre changing during the problem lifetime and

this may be achieved by the using Procedure calculator allowing, for example,

intervals between plots to be multiplied by a value. This same facility allows a

restart file to be examined and the parameters inspected or changed.

Experience of some previous Distinct Element Analysis implementations led

to the realisation that input error checking and handling is very important. A crash

caused by a mistyped command part way through an expensive run is particularly

annoying. Error checking is included in SLICES and on encountering an invalid

command the user is prompted for a replacement. It is not always possible to

retrieve the situation, or it may be laborious to do so, but the opportunity is

there.

Often in investigating the progressive nature of the solution it is necessary

to do the same things repeatedly. There are two repetitio:ri structures. One is a

simple repeat loop, which repeats all of the commands enclosed, as many times as

instructed. The other causes a command list to be repeated after every interval

of so many cycles.

54

Clhapte:r 3 Distinct JEftement Method! of §lnces

Another user orientated feature, which is included as standard in development

programs is that of a debug facility. With this the user may request a whole variety

of information to locate bugs or to supplement the normal solution.

Finally a process orientated feature has been incorporated. The maximum

individual displacement of all the slices in each cycle is monitored. The behaviour

of the maximum displacement with time shows characteristic patterns under cer

tain conditions. This value is written to the running commentary and by internally

monitoring its change a final verdict on the stability may be made by the program.

Under conditions of constant sliding and stable equilibrium this displacement be

comes constant and the program terminates. An upper limit on the number of

cycles to be executed can be issued with the realisation that termination should

occur early without any waste of resources. This feature also checks for numerical

instability and will automatically terminate the program before it crashes.

3.3.2 Input Command Language

3.3.2.1 Introduction

All program tasks are controlled or defined by the Input Command Language

As shall be explained later the program requires some commands in a particular

order, but on the whole the majority of commands may be used at any time.

Although the program is not designed to run interactively, it is possible with care.

Normally, however, the commands should be contained in a file prior to use.

The commands may be categorised into broad sections, dealing with pr<;>gram

control, plotting, meshing, debugging, and the setting of optio~s and parameters,

these corresponding to the major procedures of the program. The commands are

hierarchical, forming a tree system. The highest level is the control level which

allows access,to the loWer levels of commands, such as the plotting and debugging

55

Chapter 3 Dli§thu:t Element Method of §llices

command sets, which are at the second level. Furthermore, the plot command set,

for example, contains <t level three command set, the mapping commands.

Once in a low level set the permissable commands are those of the present

set and of any higher level set which contains the current set. The highest level

or outermost command set, the control commands, are available immediately on

entry to the program. Access to lower sets must always be made though this

control level. Once in a lower command set as many commands of that set may

be issued as required. To exit from a lower level, a command of a higher level set

containing the present set should be issued, often this will be a control command.

To complete the picture it should be noted that on correction of an input error,

it is as if the program is being re-entered, so that the only applicable commands

are control commands, that is those of the outermost command set.

The following sections, 3.3.2.2 to 3.3.2.8 describe the functions of the com

mands of each command set. Section 3.3.2.9 describes a syntax table for the Input

Command Language. How best to use combinations of the commands is not dis

cussed here, but rather in Section 3.3.3, under the heading 'Input Command File'.

3.3.2.2 Control commands

The control commands are situated in the outermo_st coriunand set, all other

commands are accessed through this set. The commands are set, restart, save,

start, stop, debug, plot, go, repeat, rend, cend and return. Each of these is

now described in detail.

The set command enters the parameter procedure to allow parameters to be

set up, altered or inspected.

56

Ch.apter 3 Distinct ERement Method of §lices

The command Jrestrurt causes a restart of a previous problem run. A file con

taining the restart information must be attached to unit 1. Within the command

file the mapping information must follow.

save causes a restart file to be written. It may either overwrite or append

the file attached to channel 2 according to the setting of the oveJrwJrite command

(a set command). This is used to save the solution to the task so far found for a

large job, thus avoiding loss in the case of a system crash.

The start command starts a new problem. A title up to 80 characters long

may follow, but the next line must contain the mapping information and then

mesh information is required. Section 3.3.2.8 describes the meshing commands.

stop should be the final command in the input command stream as it causes

the geometry to be plotted, a restart file to be written and the program run

terminated.

The command debug causes the debug procedure to be entered, so that debug

options can be set or general information generated.

Command plot causes the plot procedure to be entered, which allows requests

for the manipulation of the plot format, size, and the production of the different

plot types available.

go causes the calculation cycle to be entered and it must be followed by an

integer, the number of cycles to be executed.

The command repeat is the opening statement of the repeat n commands

rend loop structure. It must be followed by an integer, which is the number of

f)7

;_, ,_

Chapter 3 Distinct Element Metlhodl of §!ices

times the loop is to be executed. There are certain commands for which inclusion

in this structure would be pointless. These are explained in section 3.3.3.

To balance the repeat loop structure the command reltldl is used in two ways.

As regards to input, it terminates input to the repeat controlling procedure and is

the last statement in the repeat loop, in this case it is not a controllevel command.

The second way in which it is used is internally, during execution ofthe loop, here

it signifies the end of the loop so that the commands may be repeated again.

cend, like rend!, is used in two ways. Firstly, it terminates input to the

command list structure of the set command set, and secondly it terminates exe

cution of the command list during use. Section 3.3.2.4 describes the set cmdlist

commands celtld facility in detail.

Finally, the return command terminates interactive input-during input error

handling, and is described together with this facility in section 3.3.3.3.

3.3.2.3 The debug command set

To gain access to these second level commands the debug command must

be entered at the control set level. This facility falls into two parts, one outputs

information at the point of issue of the command, while the other a8signs options

which provide data during the subsequent execution of the program. If used

carelessly, this latter part may produce a very large amount of information, so it

is intended that these options be switched on and off as required. All output from

this routine is written to the file attached to unit 7 unless otherwise stated. There

are eleven debug commands, each of which are now described.

The command contacts writes out the contact information. general pro

duces some general problem and program information. The flagson command

58

Chapter 3 Distind JElemeni Method of §ll.ices

sets all the debug options on, and should be used with care. Command fiagso:ff

turns all of the debug options off.

All of the following commands must be followed by the third level commands

of either on or off, which clearly sets the option on or off.

The command update produces contact information as the contacts are cre

ated. As creation of the contacts occurs during meshing, which is after the issue

of the start command, but before the issue of the next control level command,

this must be issued before start, otherwise it will do nothing.

Command motion controls the production of debug output from the pro

cedure consolsl (the motion law) during execution of the calculation cycle. The

ford command controls the production of the debug output from the procedure

ford (the force displacement law) during execution of the calculation cycle. The

command consolidate produces limited information from both consolsland ford;

again during execution of the calculation cycle. cyde produces information from

all procedures within the calculation cycle and procedure cycle itself. The com

mand trace causes a message to be written on entering and exiting all procedures

and functions. Output is written on the file attached to the unit 8. Lastly the

command oscHlate causes information from ford and consolsl, formatted for input

to the Program SOP, to be written onto the file attached to channel 10.

3.3.2.4 The set command set

To gain access to these second level commands the command set must be

issued at the control level. This set of commands falls into two groups, problem

parameters such as gravity and options such as framelimit. The set commands

are as follows.

59

Chapter 3])listlinct Element Method of §lices

The command echo, if set to on this parameter enables all input commands

to be echoed on the running commentary. The command must be followed by the

third level commands of either on or off. The default is on.

The overwrite command controls the restart file output. If set, the file

attached to unit 2 is emptied prior to use, otherwise the file is appended by the

restart information. The default is off.

cmdHst sets up a subsidiary file and copies all command input to it until

the command cend is entered. The execution of this secondary command file

is controlled by two further set commands, cmdproc and interval. Transfer of

control is passed from the file attached to the unit scards to the secondary file

(always named internally as the temporary file -sass.cmd), duringthe execution

of procedure cycle. The default value is null.

The command interval must be followed by an integer, the number of cy

cles to be executed between successive executions of the command list secondary

command file. The default value is 100.

The cmdproc command must be foJlowed by either of the commands on

or off. If it is set to on, the command list secondary file is executed whenever

the total cycles executed so far divided by the interval, (as set by the command

interval), is an integer value. If set to off this facility is not used. The default

value is off.

framelimit should be followed by an integer. The GHOST library limits the

number of frames of plot output to twe11ty. If this is exceeded the program will

terminate. This command allows this limit to be reset. The default is 20.

60

Chaqpier 3 Disii:nu:i Element Metlhod of §lices

The command writegap sets the interval of cycles between display of some

of the running commentary information. The default is 100.

The gravity command is followed by a real number, which represents the

value of gravity in the positive y direction. The default value is 0. dlamp is

followed by two real values, this sets the global damping values for base and side

contacts respectively. Ideally they should be between 0.001 and 0.2 per unit mass.

There is no default value other than the initialisation of zero. time is followed by

a real value this sets the time step size, it is recommended that a value of unity is

used. The default value is 1.

The calculate command allows the values of some parameters and options

to be modified or inspected rather than simply reset. Calculator commands are

described in the following section, 3.3.2.5, and are level three commands.

3.3.2.5 The calculator command set

This set is at the third level and is accessed by the command string set

calculate. Almost all the calculator commands have the same format, that of

~parameter>- ~operator>- ~real>- with the exception of when the enquiry ? is

used, when a value is not required. Permissible parameters, which are in fact

third level commands, are interval, writegap, gravity, time and damp. The

operators, fourth level commands, to be precise, are = replace, * multiply, /

divide, + add, - subtract, " exponentiation. The ? enquiry although not an

operator is used here.

The values .are read in assuming a real number format. For parameters which

are integer in nature, conversion takes place to give an integer result. The final

value of a calculation command is written to the running commentary output

stream.

61

Chaptel!' 3 Distinct Element Method of §lices

3.3:2.6 The plot command set

To gain access to this second level set the command pRot must be issued.

As all the GHOST libtary routines are contained in the procedure plot to ease

maintenance, and many plotting functions are automatically carried out by the

program, it has been necessary for some of these and map commands to be issued

internally. Although these internal commands are described, it may be that they

will never need to be issued externally. They are initialise, endplot, and most

map commands with the exception of zoom.

initialise sets the initial plotting parameters and turns the plot out_put stream

on. This command is issued automatically on receipt of the start or restad

control commands and should not need to be used normally. The slices command

draws the slices in the current plot space. The displacement command draws

the current slice incremental displacement vectors. forces draws the normal and

shear stress, limiting shear stress profiles for the base contacts. The standaJrd

command produces a standard plot of a border and profiles for the base and side

contacts. page calls for a new frame, or in physical terms a new sheet of paper.

border produces a border with the problem title and current problem time. The

map command enters the-tertiary level map set and enables the modification of

plot formats, it is used internally for the most part.

The unusual command zoom must be followed by three real numbers, xmin,

xmax, and ymin which form the mapping limits. xmin is the minimum value of

x, xmax is the maximum value of x, and ymin is the minimum yalue of y of the

problem geometry to he plotted. As the plots are in fixed proportions in both

landscape and portrait mode it is not necessary for the maximum y value to be

provided. This command enables portions of the problem to be examined in more

detail. Mapping limits are expected as part of the input after both the start

and restart control commands. zoom is in fact a tertiary level command valid

62

. -· i

Chapter 3 Distirru:t _ERemen:t Method of §llices

at the secondary level as it is passed straight to the mapping procedure without

processing.

The endpRot command is issued internally during closedown of the program

under normal termination, it produces a frame with a slice plot and turns the plot

output stream off.

3.3.2.7 The map command set

These tertiary level commands are accessed by first issuing the command

string plot map. They are 10 commands in this set and are described as follows.

The command bottom sets the plotting space to the lowest quarter of the

physical page. It is used internally for the production of the normal stress profiles.

A border is drawn together with axes scaled to the mapping limits (x) and normal

stress limits (y).

To set the plotting space to the second lowest quarter of the physical page

the command lowermiddle is used. It is used internally for the produ~tion of the

shear stress, limiting shear stress profiles. A border is drawn together with axes

scaled to the mapping limits (x) and limiting shear stress limits (y).

uppermiddle is used to set the plotting space to the second highest quarter
- -

of the physical page. It is used internally for the production of the normal stress
- -

profiles. A border is drawn together with axes scaled to the mapping limits (x)

and normal stress limits (y).

To complete this suite, the command top is used to set the plotting space

to the topmost quarter of the physical page. Again it is used internally for the

production of the shear stress, limiting shear stress profiles. A border- is drawn

63

Chaptex-. 3 Dli.§tii:nct lElemeni Method of §lices

together with axes scaled to the mapping limits (x) and limiting shear stress limits

(y).

plich.ure sets the plotting space to the upper half of the physical page. It is

used internally for the production of a $lice plot, normally above stress profiles, A

border around the space is drawn together with axes scaled to the current mapping

limits as set by the zoom, start or restart commands.

The command horizontal sets the page format to lie along the A4 sheet of

paper as in a landscape picture~ The default size is (0.06,0.96,0.05,0.65) expressed

in a {xmin,xmax,ymin,ymax) format.

The vertical command sets the page format to lie down. the A4 sheet as

in conventional portrait picture. This is the default format, the default size is

(0.15,0. 75,0.06,0.96).

fill sets the plotting space to the maximum permitted page size suitable for

A4 paper. A border is drawn around this area together with axes scaled to the

current mapping limits. A variation to fill, fullnoscales does the same as the fuU

command but does not draw scaled axes.

The last mapping command zoom has been described in the previous section.

3.3.2.8 The mesh command set

This is the only set of commands that cannot be accessed at random by a user.

It is automatically entered after the issue of the level one command start, a further

oddity is that this set can only be exited by issuing the meslh.end command.

64

Chapter 3 lDisti'mct Element Method!. of §liices

There are two mesh commands which lie at level two, create and meshend,

they are described below.

The command meshend causes the meshing routines to terminate. The

contacts are found and initial plots are produced before the next command in the

input stream is executed.

The create command triggers the creation of a new slice, the information for

which must follow, 14 pieces are required, the first of which is strictly a tertiary

level command describing the type. There are two tertiary commands.

These two tertiary level commands associated with create are free and track.

The free command is the normal slice type and is used almost exclusively, track,

on the otherhand, in conjunction with the debug oscillation option, permits clumps

of the slice information to be made during processing.

The remaining information required by create is both geometric a,nd geotech

nical. Nine pieces of geotechnical information are requiredto describe the geotech

nical state of the slices. These are as follows, base cohesion, base ¢, dry density,

numerical stiffness, side cohesion, side ¢,-pore water pressures at the middle of the

base and side .contacts and the void ratio. The geometric information n~eded is

the x and y coordinates of the points defining the top and then the bottom of the

righthand edge of the slice. In the case of the first created slic::e the coordinates of

the lefthand edge are given first, followed by the data for the righthand edge. It

must be remembered that slices are created from left to right.

3.3.2.9 Syntax table

The following description of the Input Command Language is based upon the

symbols as defined in Table 3.2 with the syntax in Table 3.3.

65

Chapie:r 3 Dnsillrmci Element Method! of §lices

Symbol Definition

... indicatt'ls possibl<a r<apetition of the clause

[] indicat<as an optional clause
() indicates a group of clauses

-< :>- indicatras substitution· by a value, which

may be either a clause or literal

' ' indicatras a literal.value

I indicates an alternative

IS is the definition operator

Table 3.2 Input Command Language Parsing Symbols

3.3.3 Input command file

3.3.3.1 File format

The input command file contains the task to be performed by the program,

defined by the input command language and syntax described in section 3.3.2.

There are very few format conditions; and some of them are imposed by PASCAL.

All commands must be separated by at least one space. The maximum word

length is 12, so no string of non-blank characters should exceed this. Real numbers

may be as 1 1.0 -1.0 -1 1E10 -lE-10 and must be separated by a blank or the

negation.

End of line conditions are autotpatically skipped by the input routines and so

there is only one time when a new line niust be started. This occurs after the start

command when the remainder of the line is read as a title. Further information

must begin on a new line. Word length may be exceeded in the title.

Text, including numbers may be commented out by the {and}, a blank must

precede the open brace. An unbalanced open brace will cause an end of file error

66

Cllu!pter 3

task IS [-<com>- ...] 'stop'

corre.ction IS [-<com>- ...]('return' l'atop')

limits IS -<nal>- -<real>- -<nai>-

reply IS 'on' I 'off'

com IS ('set' [-<sot command>- ...])

('restart' -<limits>-)

('start' -<start bloclt>-)

('plot' [-<plot command>- ... J)

('debug' [-<debug command>- ...))

('repeat' -<integer>- [-<com>- ... J 'rend')

('go' -<integer>-) I 'save', 'cend' I 'rend'

parameter IS 'framelimit'

I 'damp' I 'time'

'writegap' 'interval' I 'gravity'

oper IS '*' I '+' I '-' '/' I '1\' '='
set command IS (('echo' I 'cmdproc' I 'ovunite') -<reply?-)

(('framelimit' I 'eritegap' I 'interval') -<integer>-)

(('gravity' I 'dalllp' I 'time') -<rGal>-)

('calculate' [-<parameter>- ((-<oper>- -<real?-) I '?')])

('cmdlist' [-<com>- ... J 'cend')

plot command IS ('initialise' -<limits>-)

I 'slices' I 'displacement' I 'forcGs' I 'standard' I 'page'

I 'border' I ('map' -<map command>-) I 'endpiot' I ('zoom' -<limits>-)

map command IS 'picture' I 'horizontal' I 'vertical'

I 'full' I 'fullnoscales' I ('zoom' -<limits>-)

debug command IS 'contacts' I 'energy' I 'general' I 'flag son' I 'flagsoff'

I (('update' I 'motion' I 'consolidate' I 'ford' I 'cycle'

I 'trace' I 'oscillate') -<reply>-)

ttpe IS 'f~ee' I '~ra~k'

geom IS -<real>- -<real>- -<real>- -<real>

geotechnical IS -<real>- -<real>- -<real>-

-<real?- -<real>- -<real?-

-<real>- -<real>- -<real?-

meshinfo IS ('create' -<type>- -<geotechnical>- -<geom>- -<geom>

['create' -<type?- -<geotechnical>- -<geom>- J
start block IS -<heading>- -<limits>- [-<meshinfo>-J 'meshend'

Table 3.3 Input Command Language Parsing Definition

termination. It should be noted that a comment does not act as a word delimiter, ·

only a blank or an end of line fulfils this function.

67

Chapte:r 3 Distinct JERement Method of §lices

During error handling the same format rules apply, comments may be entered

but there is little point. Apart from these points the input format is left to the

user, but it is recommended that the file can be read and understood by the user.

To illustrate the commands some examples are given.

plot zoom 0 14 0 slices di§placement bo:rde:r page

This causes the plotting space to map to new limits, produces a slice plot

with incremental displacements and border and finally requests a new page.

set callculate writegap * 2 cakulate writegap ? go 30010

This example shows how to multiply the present value of writegap by two,

display the new value and then request 3000 calculation cycles. The second cal

culate is not strictly necessary, but may be used for clarity.

3.3.3.2 Defining tasks

Tasks fall into two categories, starting a new problem and restarting an old

one. Both types of task may be divided into three, initialisation, solution and

closedown. Initialisation for the two categories is different.

Starting a new problem calls for input of a title, plot limits, meshing infor

mation and problem parameters. In restarting, plot limits only need be supplied,

as all the other initialisation took place in the first run, the command restart

followed by the limits should be adequate.

After creating the slices and finding the contacts the start up procedure sets

the plot format to the default of vertical and then produces a slice plot. If a

horizontal format is required for this first page then plot format lhorizontal

should be issued prior to the start. Another command to be issued at this point

is debug update on, otherwise it will do nothing in the current run.

68

Chapter 3 Di9tnnct Element Method! of §ilices

Meshing information for a new problem has been discussed in section 3.3.2.8.

The optimum number of slices is between 10 and 25. Too many, and the overhead

per cycle increases as does the number of cycles required for a steady state to be

attained. Too few and the resolution is poor.

Solution types for start and restart task categories are similar, in the restart

case the solution type may already be mostly set up, but can be altered. To

monitor the progressive nature of the solution, plots, factors of safety or debug

information may be required at various times.

The interval at which factors of safety are produced is controlled by the

w:ritegap parameter. This also controls when the total cycles and maximum

displacement values are updated on the running commentary. This information is

generated whenever the total cycles executed is an integer multiple of the write

gap parameter. writegap has a default value of 100 cycles, so factors of safety

are produced every 100 cycles.

By using set cmdlist plot standard cend interval 100 cmdproc on a

standard plot of stress profiles is produced every 100 cycles. The interval parameter

operates in the same way as writegap.

Having decided upon this solution type all that is necessary to consider is

the upper limit to the number of cycles to be executed. This should be between

2000 and 5000 for typical problems. On issuing go 1000, up to 1000 cycles will

be executed, 10 standard plots and 10 sets of factors of safety produced. An

equivalent to this command list structure would be to use this repeat structure,

repeat 10 go 100 plot standard rend.

The consolidation process converges to constant displacements for all of the

slices. In the case of constant movement, that is when stability of the slope is

69

Chapter 3 Distinct Eleme:nt Method of Slices

not attained, experience has shown the displacements to be 10-1 to 10-4 times

gl5t 2 • For stable systems the values are about ten orders of magnitude smaller. In

both cases the early cycles, give the largest contributions, while the later cycles

make small differences. In the light of this it would be better to generate more

information in the early stages and less later on. A series of plot, set, and go

commands could program this but it is more elegant to use the calculator to change

the values of the intervals. For example to produce plots and factors of safety at

the powers of 2 cycles this could be used.

set interval 1 writegap 1 cmdproc on

cmdlist plot standard set calcl.lllaie interval * 2 writegap * 2 cendl

As a final note to the command list structure, it is possible to include a

go command. This is particularly useful for the production of debug information

during cycling. Much information can be produced, but normally it is only needed

for a few cycles. A command list string of debug ford on go 1 debug ford

off with an interval of 100 would produce force displacement information for one

cycle in every hundred. If instead of 1, 100 was used, then the command list would

not execute beyond the go before executing again. As this facility is programmed

recursively, such a combination could eventually lead to a program crash and

should not be used. The program structure of this facility is explained in section

3.4.2.3 under Recursion Structures.

Finally, to complete the command file, program termination must be consid

ered. The program monitors the maximum displacements and terminates under

constant conditions. If these conditions do no prevail, then termination is accom

plished by the stop command which should always close the task definition. If for

any reason it is required to halt the program prematurely, the use of the 'break'

key causes an attention interrupt. This is trapped by the program and the user is

then asked to confirm his wish to stop. To confirm, enter 'y'. Attention trapping

is checked at the end of each calculation cycle and also during the input of a new

70

Chapter 3 Distinct Element Method of §Hces

command. Termination involves the automatic production of stress profile plots,

factors of safety, a restart file and job statistics on the running commentary.

3.3.3.3 Input error handling

Inevitably, occasional mistakes are made during production of a command

file. If these are due to commands being mis-spelled, or even missing, then an

error handling facility provides an opportunity for correction.

On encountering a command error, the user is informed via the running com

mentary and is prompted for new commands. Regardless of the level of the com

mand in error, the replacement must be a control command. Once the replacement

has been executed, the user is again prompted, and the next replacement read.

When no further commands need to be entered, the user should reply to the

prompt with the return command. This returns control to the command file at

the point immediately after the original error. An immediate reply of return to

an error causes the command to be ignored.

If a further error occurs during the input of replacement commands, correction

of it is possible in the same manner as if it had occurred from within the command

file. If the correction process becomes laborious or impossible the stop command

will cause program termination immediately.

Any numerical input required is prompted for by individual messages to the

user but has no correction facility. Any numbers following a command in error are

treated as commands on return to the command file. They should be ignored by

using retur:n.

Not all mistakes in the command file need be accidental, a deliberate wildcard

may be included at any stage to give control to the user. This may range from

71

Chapter 3 Di§tinct Element Method of §!ices

complete interactive use of the program to interaction occurring at the end of a

repeat structure. Tables 3.4 and 3.5 shows some examples of error correction and

interactive use.

~ PROGRAM SLICES RUNNING COMMENTARY ON

~ Command plot

~ Command sliceplot

~ Error 'sliceplot' found in routine get_command

~ Input corrected commands . . . -<(RETURN>- ...

Input a command please

r- plot

~ Command : plot

Input a command please

r- slices

~ Command : slices

Input a command please

r- return

~ Command : return

Lines marked ~ are output from the program

Lines marked r- input from the keyboard

Table 3.4 An Example of Error Correction

If an error occurs during the processing of either of the loop structures there

are two possible options. Either to correct the error each time it occurs or to

replace the whole structure. During complete replacement it should be borne

in mind that the rend and cend commands have two functions. To replace a

command list the following should be issued, set cmdlist commands cend. The

cend terminates the input to the structure. If replacement is taking place during

the execution of the previous command list, it is now necessary to terminate this

invocation by issuing a second cend.

72

Chapter 3 Distinct Eliement Method of §Rices

Command : ????

Error '????' found in routine get_command

Input corrected commands . . . -<RETURN>- ...

Input a command please

go

Command : go

Enter no of cycles required ...

1

Input a command please

-t plot

-t Command : plot

-t Input a command please

~ forces

-t Command : forces

Input a command please

go

Command : go

Enter no of cycles required ...

1

Input a command please

plot

Command : plot

Input a command please

forces

Command : forces

Input a command please

slices

Command : slices

Input a command please

stop

Command : stop

total slices 10 contacts

total cyclas 2 restarts

total frames 6 plots

Number slices at limit 0 not at limit

-t A restart file has been aritten

Lines marked -t are output from the program

Lines marked ~ input from the keyboard

Table 3.5 An example of interactive input

20

0

7

10

Likewise during the execution of a repeat loop two rend commands are

needed. Only one rend or cend is needed if these structures are being replaced

73

Chapter 3 Di§ti:nct Element Method of §lice§

when they are not being executed.

3. 3.4 Utility files

3.3.4.1 Repeat file

The repeat file is a secondary command file. It it emptied on issue of the

repeat command, and all subsequent input is copied from the primary command

source to this file up to and including the command rend.

During execution of the repeat loop control is passed to this file which is reset

to the beginning at the start of each pass through the loop. The repeat file has

an exceedingly simple structure, containing only one word or number on each line.

This file is temporary in nature and is set internally always to be called '-sass.rep'.

3.3.4.2 Command list file

The command list file works on the same basis as the repeat file, it has the

same structure and is named internally as '-sass.cmd'. It is a secondary command

file containing the command list commands and control is passed to it on execution

of the command list facility. It receives all commands from the primary command

source on issue of set cmdlist up to and including cend.

3.3.4.3 Restart file

Unlike all other input and output files the restart file facility uses non-text

files. As the file must contain all the numbers required for the program to restart,

the numbers must be stored in a way that exactly represents the full accuracy of

the computer. The numbers are, therefore, written in a binary format.

74

C.hapte1r 3 Distinct Element Metlb.od of §lices

Furthermore, PASCAL restricts file definitions to be of a single type, that

is they can only contain one type of record. This complicates the issue, as the

program variables are of many types - combinations of reals, integers, pointers

and strings. As described in section 3.4.1, many of the variables are records

of various types. There is a problem then in writing many record types to a file

containing only one. To overcome this, the restart file is of type buffer, where buffer

is defined as an union of all the other record types defined. A single character,

known as the tag field, and part of the buffer, denotes which sort of record is

being handled. This enables the buffer record, read in from a restart file, to be

interpreted to the correct program record type. As the tag is an ASCII character

within the restart file it is easy to see which lines refer to which variables. The

various tags are listed in Table 3.6.

Tag Restart record type

G the general information

c a command list word

r a repeat list word

F the slice body data

R the right hand contact data

B the base contact data
p the platen data

a the apex coordinates

* the end of the restart data

Table 3.6 The restart file line tags

One side effect of the buffer type is that all the records in the file are the

same length, so that the smallest variables take just as much room as the longest,

which defines the record size.

A further complication in implementing a restart facility in PASCAL is that

pointers, which are memory addresses, are no longer valid once read back in.

As Program CIRCLES and SLICES use pointers extensively, this is a significant

75

Chapter 3 Distinct Element Method of §lices

complication. On writing a restart file the memory str.ucture may be thought of

as being dismembered, and on being read in, the severed portions must be linked

together with pointers in the same order as before.

3.3.4.4 Trace output file

This file only need be attached to unit 8 if the debug tracing option is to be

used. It is emptied prior to use and receives a message on entry and exit to each

procedure and function. It can, therefore, become very large if used extensively.

The input and output of data is a slow operation and so the use of this facility

will slow the rate of problem solution considerably. The primary purpose of this

is as a debugging tool, particularly of the recursive structures, as it reveals which

levels of recursion have been attained.

The file contains one message per line which take the formats of

'Entered procedure xxxxx'

' Exited procedure xxxxx'

In the case of procedure word_scan, the word read from the command source

is appended to the exit message. The facility is accessed by debug trace on and

is turned off by debug trace off.

3.~.4.5 Debug output

The debug utility file is largely unformatted as it contains information pro

duced mostly in response to instructions from the user. As a set of safety factors

is automatically generated on shut down, this file will contain the title, the closing

factor of safety values and the current maximum individual slice displacement,

even if no output is requested. The information may be divided into three types,

76

Chapter 3 Dli§tinct Ellement Met.hodl of §lices

that produced during cycling by setting the debug flags, that produced immedi

ately on demand, and that produced periodically and controlled by the wrr'li'tegap

parameter.

Output generated periodically is restricted to the factors of safety. The cycle

number starts a banner showing that the factor of safety, shear, normal, limiting

and pore-water stress values are produced. However, these values are for the base

contacts only. If the value of shear stress is zero then the factor of safety is also.

There follows one line for each slice, containing the values as shown in the first

entry in the format Table 3.7. The current maximum displacement is produced

afterwards.

Output generated during cycling is produced in the iterative solution of the

motion and force displacement laws, as well as in the controlling procedure cycles.

Refer to entry 2 in the format table, this produced when the ford flag is set

and is generated by the procedure fordsl. It provides values for the incremental

forces (Fn, Fs), geometry of the contact edge (sin, cos, 1), current stresses (ss, ns,

lims) and current body forces (nf, sf) during the processing of each contact.

The motion flag produces the information as shown in the third entry which

is generated from procedure rnotionsl. The slice body forces in x and y as well as

the displacements are produced.

The cycle flag produces the information shown in entries 2, 3 and 4. Entry 4

is generated from the procedure cycle.

The following output is generated on demand by the debug commands. The

update command causes the mass and surface area values to be generated for

each slice. The format for this is shown in entry 5 of the format table.

77

ChapteR" 3

Entry

1

2

3

4

5

6

7

8

9

10

Disti-nct Element Method of §lices

Format

999999 Slice no FOS shear normal limit pap

9 9.999ES99 9.999ES99 (occurs 3 more times)

Fn,Fs,sin,cos,l 9.99ES99 9.99ES99 (occurs 7 more times)

ss,ns,lims,nf,sf 9.9ES99 9.9ES99 9.9ES99 9.9ES99 9.9ES99

bforces 9.99ES99 9.99ES99

disp 9.99ES99 9.99ES99

max individual disp 9.9999999999999ES99

mass,surf 9.9999999999999ES99 9.9999999999999ES99

BASE Contact created edge, corn 999999 999999

edge x,y 9.9ES99 9.9ES99

corn x,y 9.9ES99 9.9ES99

sin, cos 9.9ES99 9.9ES99

len, dam 9.9ES99 9.9ES99

p~p. at 9.9ES99 9.999ES99

total number of contacts 9999999999

Element data :

mass force x y disp x y n

9.9ES99 9.9ES99 9.9ES99 9.9ES99 9.9ES99 9

9.9ES99 9.9ES99 9.9ES99 9.9ES99 9.9ES99 9

Contact information :

slice home, other, damp 999999 999999 9.9ES99

corner coordinates x, y 9.9ES99 9.9ES99

edge coordinates X, y 9.9ES99 9.9ES99

stresses - n, s, l, u 9.9ES99 9.9ES99 9.9ES99 9.9ES99

SLOPE 9, c

mapping xmin 9.9ES99 xmax 9.9ES99

mapping ymin 9.9ES99 ymax 9.9ES99

plot interval 999999

gravity x 9.9ES99 y 9.9ES99

damping base 9.9ES99 side 9.9ES99

totals slices 999999 contact 999999

cycles 999999 restarts 999999

frames 999999 plots 999999

Table 3. 7 The debug format table

Entry 6 shows the contact information which is generated as each contact is

78

Chapte:r 3 Di§iinci Element Method of §!ices

made. At the end of the meshing process the total number of contacts is written

out as shown in the seventh entry.

Slice information is formatted as shown in the eighth entry, it includes the

slice mass, body forces and incremental displacements as well as the slice number.

There is one line of information for each slice.

The format of the contact informatiom is shown in entry 9 of the format table.

There are four lines of data for each contact. The first contains the slice numbers

for the two slices involved, the home slice contains the base of the contact linked

list in which the contact is to be found, and also the damping factor used in the

calculation sequence. The second and third lines contain the coordinates for the

corner and edge involved. The last line contains the stress data, normal, shear,

limiting and pore water stresses.

The general information is generated in accordance with the format shown in

the tenth entry of the table. The general information shows the mapping limits,

current plot interval set by the interval parameter, the values of the gravity and

damping, and the numbers of slices, contacts, cycles completed, restarts of the

task, plot frames and plot types generated.

3.3.4.6 Oscillation output

This file need only be attached to the unit 10 if the oscillation facility is to be

used. This allows for information of track type blocks to be investigated. The file

is a text file and may be visually inspected, in addition the format is compatible

with program SOP which can produce graphs of the values.

The file is emptied prior to use and contains the problem heading on the first

line followed by one line of data for each cycle during which the facility was in use.

79

Clb.apieiL 3 Distinct Element Method of §lices

This facility is useful for monitoring the progress of critical slices, damping effects

and contact behaviour. The data items produced are shown below.

1 slice number

2 total cycles

3 body displacement x

4 body displacement y

5 base shear stress

6 base normal stress

7 base limiting stress

8 side shear stress

9 side normal stress

10 side limiting stress

3.3.4.7 The running commentary

The running commentary writes various information concerning the current

task status to the device attached to unit sprint. As control codes are written

to this device, it should be a Televideo 910 series terminal. On entering program

SLICES the terminal screen is cleared. Status information is then written to

appropriate lines, and in this fashion the screen is continually updated. The

screen line positions are reserved for the data as shown in Table 3.8. The specific

messages that can occur on lines 12 to 20 are shown in Table 3.9.

To clear the screen and turn the cursor on or off requires three separate control

codes. Screen positioning is achieved by moving the cursor to the home position,

at the top left hand corner, and then down the appropriate number of lines. The

total number of codes used is five. They are shown below where the first two

80

Chapter 3

Line

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Distinct Element Method of §lices

Content

Blank

The program running commentary heading

Blank

The task title

Blank

The number of

The number of

The number of

The number of

Blank

cycles requested

plot frames completed

plot types completed

cycles completed

The command under eXQcution

General messages

Slices at limit messages

Error messages

Message requesting replacement commands

Prompts to user for command or parameter data

The totals for cycles, frames and so on

As line 17

As line 17

Messages dealing ~ith the restart files

Table 3.8 The running commentary screen lines

characters are shown in hexadecimal format.

control code lA

control code lB .0

control code lE

control code OA

control code lB .1

clears screen

cursor off

cursor home

cursor down

cursor on

The program string constants close to the beginning of the source contain

these codes. clearoff is lAlB.O, pos_str is lE with twenty OA and wrson is lB.l.

The cursor is moved several lines at once by using a substring of pos_str.

On MTS the network, NUNET traps all control codes and echoes them on to

a terminal with a check character. To enable the codes to be executed the network

81

Chcn.pte:r 3

Line

4

12

12

12

12

12

12

12

12

12

12

12

12

12

13

14

14

14

15

16

16

16

16

16

16

16

16

16

16

16

17

18

19

20

Distinct Element Method of §Hces

Message

PROGRAt-1 SLICES RUNNING COMMENTARY ON :

Decreasing etability 9.99999999999E99

Increasing stability 9.99999999999E99

Stability has been gain0d 9.99999999999E99

Constant sliding no~ occurring 9.9999999999999E99

This is numerically unstable 9.9999999999999E99

A restart file has becan read

The value is : 99999.9999999

Frame limit is no~ : 99999999

Cycle gap is no~ : 99999999

Gravity is no~ : 999999

Time incremesnt is : 9.9999999999999E99

Damping factor is : 9.9999999999999E99

Process interval is: 99999999

Number slices at limit 9999 not at limit 9999

Attn! : Do you ~ant to stop ?

Error XXXXXXXX found in routines get_command

Input corrected commands . . . <RETURN> ...

Input a command please

Enter xmin, xmax, and ymin .. .

Enter no of cycles resquired .. .

Enter heading

Enter values

Enter frames limit

Enter gap between ~riting

Enter gravity values x, y

Enter time step increment

Enter value for damping

Enter cmd process interval .. .

total slices 999999 contacts

total cycles 999999 restarts

total framess 999999 plots

A restart file has been ~ritten

999999

999999

999999

Table 3.9 Running commentary messages

must be configured to pass them to the terminal. To do this the network commands

chc=off and passall=on must be issued. After use the network commands chc='

and passall=off should be used to reset this.

82

Chapter 3 Distinct Element Method of §lices

3.4 §tructure of lPTogram §JLJICE§

3.4.1 Memory structure

The memory requirement of the program varies according to the number of

slices used in the problem. As memory is dynamically allocated it is possible to use

only as much memory as necessary. The number of global variables is quite few,

but some of them, such as slice_list and platen are pointers leading into potentially

large data structures.

On entry to the program all variables are initialised to zero, default, and for

pointers, nil values. The data structure is built in the procedures mesh, cre_platen

and update_area. Procedure mesh creates the slices, cre_platen creates the platen

and update_area creates the contacts.

A slice is defined as a record of type element. This type is a combination of

smaller records and pointers. force and s (displacement) are records of type vector,

containing values for the x andy directions. Another record is data which contains

cohesion, friction, mass and pore water information. The remaining memory of

type element is made up of three types, a record of two pointers for the contacts,

a pointer, apexes, to the corner coordinates of the slice, and finally next, a pointer

to the slice to the right of the current one. The value for the rightmost slice is

'nil'.

Variable slice_[ist points to the first (or lefthand) slice. The variable next of

this slice points to the following one, and so on. The element type records are

linked by the next pointers to form a list of elements, with the base pointed to by

slice_list. This list is a FIFO (first in first out) list as the first created element is

closest to this base pointer.

83

Chapter 3 Dnstlinct JElemeni Method of §lices

The corner coordinates are contained in a doubly linked ring of type corner

records. Each of these records includes a coordinate type record of two reals, for

the x and y values, and two corner pointers. These point to the adjacent corners

in the clockwise and anticlockwise directions, thus it is possible to traverse the

ring in either direction continuously. The element record field apexes points to the

bottom left corner of the slice.

Once the slice list has been formed, complete with corner rings, the platen

is created. To simplify contact processing, platen is an element pointer type and

points to an element which has values set to nil or zero, except for apexes. apexes

points to a doubly linked ring of corner records where the corners are copies of

the base corners of the slices.

Each slice has contact pointers for the right and base contact information.

The contact information is contained in a record type and consists of six real

numbers and three further data pointers. Of the six numbers, three are grouped

to form the consolidation force information and are segregated into a record type.

Of the pointers, one, other, points to the other slice involved, while the others

point to the corner, and to the first corner of the edge, which form the contact.

Figure 3.5 shows a Bachmann diagram of the complete data structure. It

should be noted that the method of storing corners and contacts is extremely

flexible and is suitable for a general Rigid Block Model style implementation. The

Bachmann method of representing data relationships here is more commonly used

in data-base design. The links between the elements indicate that the elements

are related, in this case linked by pointers. Crows feet on the end of the links

indicate that many elements are related to the element at the other end of the

link. It should be noted that these diagrams are logical representations of the

data. The side contact to slice relationship is a one to many relationship. This is

84

Slice list

Slice element

Platen element

Platen

The crows feet indicate the relationship is many to one

Figure 3.5 Bachmann diagram of SLICES memory items

85

CJnaptell.' 3 DisHnd Element Method of §lllices

because such a contact is related to two slices. The recursive link which joins an

element to itself represents a linked list.

There are many other variables used in the program but they have restricted

scope. Often these are loop counters, temporary storage and pointers. Some of

the more common are el, ele, elem as pointers to slices, apex a corner pointer and

condir a contact pointer. The program structure is often imprinted by the data

structures. This influence is discussed later in section 3.4.2.4.

3.4.2 Program structure

3.4.2.1 Procedural elements

The structure of the program is necessarily large but may be broken down

into smaller, similar units. The program itself defines the details of the structure,

so rather than merely represent this by complex diagrams, aspects of the structure

and some common structures used shall be discussed.

Many different sorts of tasks can be performed by the program, and to an

extent the input command language may be thought of as a language to program

the tasks. As SLICES is very flexible, much of the large scale structure is con

cerned with parsing the input command language. Brief descriptions of the main

procedures of the program together with a structural diagram may be found in

Appendix C. The source code of Program SLICES may be found in Appendix D.

3.4.2.2 Main relationships

The main body of SLICES is short and as described contains a repeat control

forever construct. This is the highest level of control in the program. Proce

dure control executes primary level commands and in doing so may call plots,

86

Chapter 3 Dli9tlind Element Method of §lice§

debug_s[ice, and parameters. These three execute secondary level commands and

may call procedures ma.p_space and calculator to get and execute tertiary level

commands. At all levels this is achieved by using the procedure geLcommand

followed by a case statement. In a similar fashion starLshut uses a case con

struct to execute the four primary level commands that may be passed to it. The

execution of these involves branching further into the 'tree' structure, to mesh,

writesestarLfile and so on.

By the use of commands, the user causes the tree to be traversed, always by

moving from one level, down to the next and then, eventually by retreating back

to the starting point, to choose another branch. However, internally, the program

may occasionally flit from one branch to another. This occurs particularly from

starLshut when frequent calls to plots are made.

Essentially the structure is that of a tree with multiple branching at nodes,

and where higher nodes can only be attained by visiting the node one level lower.

Entry to this tree is always made at the primary node, the control level. At most

nodes geLcommand is visited to ascertain which branch to traverse next. Table

3.10 shows typical simple behaviour of this structure while the commands plot

map zoom 99 99 99 stop are executed.

3.4.2.3 Recursion structures

Under normal conditions this tree is traversed such that the primary node

is regained by falling back along the traversed branches. Under three conditions

this does not happen simply. The conditions are during repeat, command list and

error processing.

When repeat loop processing is encountered, procedure repeater acts like the

main body of SLICES, repeatedly jumping to the primary node until the repeat

87

Chapter 3 Di§tli:nct lElemeltllt Metlhodl of §lices

Trace of procedures Comments

Entered procedure CONTROL The primary node is entered.

Entered procedure GET-COMMAND plot is retrsived from storage.

EXIT procedure GET-COMMAND

Entered procedure PLOTS A secondary node is entered.

Entered procedure GET _COMHAND There is no stored ~ord so

EXIT procedure GET-COMMAND map map is read.

Entered procedure MAP-SPACE A tertiary node is entered.

Entered procedure GET-COMMAND There is no stored word so a

EXIT procedure GET-COMMAND zoom fourth level command is read.

Entered procedure GET-COMMAND After zoom processing there is

EXIT procedure GET-COMMAND stop no stored aord. The next command

EXIT procedure MAP-SPACE is read and stored.

Entered procedure GET _COMMAND stop is retrieved but is not used

EXIT procedure GEL COMMAND as it belongs to a lower level.

EXIT procedure PLOTS As a consequence the primary

EXIT procedure CONTROL node is returned to, exited and

Entered procedure CONTROL entered from the main program.

Entered procedure GET-COMMAND stop is retrieved and is then

EXIT procedure GET _COMMAND executed.

Entered procedure START-SHUT The run is brought to a close

Table 3.10 Trace of Program Behaviour During Simple Use

file has been executed. Strictly the jump is made to the primary node of a second

identical tree. This process is indirect recursion, as an invocation of procedure

repeater lies between the two invocations of the procedure control. That is, main

has called control has called repeater has called control. The second call to control

is made with a different file device unit buffer to that used originally. The file

device unit buffer used belongs to the secondary command file -sass.rep so that

when word_scan (or anywhere else) reads input, it now reads from here. Once

the repeat facility ends, repeater exits back to the primary node of the 'first' tree.

The commands of repeat :n. debug general go 1 ren.d illustrates the program

behaviour. An edited trace taken during the execution of these commands is given

in Table 3.11

88

Chapte:r 3

Trace of procedures

Entered procedure CONTROL

Entered procedure REPEATER

Entered procedure CONTROL

Entered procedure GET-COMMAND

EXIT procedure GET-COMMAND debug

Entered procedure DEBUG-SLICE

Entered procedure GET-COMMAND

EXIT procedure GET-COMMAND general

Entered procedure GET-COMMAND

EXIT procedure GET-COMMAND go

EXIT procedure DEBUG-SLICE

EXIT procedure CONTROL

Entered procedure CONTROL

Entered procedure GET-COMMAND

EXIT procedure GET-COMMAND

Entered procedure CYCLES

EXIT procedure CYCLES

EXIT procedure CONTROL

Entered procedure CONTROL

Entered procedure GET-COMMAND

EXIT procedure GET-COMMAND rend

EXIT procedure CONTROL

EXIT procedure REPEATER

EXIT procedure CONTROL

Entered procedure CONTROL

Entered procedure GET_COMMAND

EXIT procedure GET_COMMAND stop

Entered procedure START_SHUT

lDistinct Element Metlh.odl of §lices

Comments

The primary node is entered.

After reading the repeat string

this calls control recursively.

This noa reads from the repeat

file the command debug.

The general command is processed.

As go is not a debug command

this routine is left.

Repeater calls control again.

go is retrieved from storage.

One cycle is executed.

Repeater calls control again.

The command rend is read which

terminates the repeat loop after

exit from control.

Repeat also exits and normal

processing contiues with

a normal invocation of control.

The stop command causes the

execution to complete.

Table 3.11 Program behaviour during Repeat processing

During command list processing exactly the same thing occurs, this time

control is repeatedly called from cycle with the file device unit buffer belonging to

the file -sass.cmd.

Error correction is more complex. Consider the following. A node has been

reached at any level within the tree. Procedure geLcommand is called and an error

is encountered. So, geL command is called again (direct recursion), word_scan is

89

Chapter 3 JDn§tinct Element Meth.odl of §lices

executed to obtain a command from the user and, if the replacement is in error

then this sequence is repeated until a valid replacement is found. At present,

program control is in the third invocation of get-command, that is the third level

of recursion, a stack of invocations is produced until a valid command is entered.

If the command entered is return then get-command is exited three times and

the calling node reached and exited with program control being passed back to

the primary node. If the command is not return then get-command exits once,

procedure cont1'0l is called repeatedly and the trees traversed until return is input.

Procedure control, in this case, is called with the screen file device unit buffer

pointer. This recursive invocation of control calls geLcommand (the fourth entry),

a command is gained, get-command exited and the tree traversed. If an error were

to be encountered from the user at this point exactly the same thing would happen

as before, geLcommand would call itself directly until a valid command was gained

then control would be called again (the third level of recursion for controQ and the

tree traversed normally. In this example an error does occur but return is entered

immediately. In this case program control falls back to the primary node of the

present recursion level, control exits to the previous recursion level, geLcommand

exits three times in this case, (input now reverts to the primary command file), the

tree is traversed back to control, control exits back to the main body of SLICES

which then calls control as normal. Table 3.12 shows a trace of this scenario as

produced by the commands p!ot ???? within a file and ploterr plot ploterr

return input interactively.

Combinations of the three recursion possibilities may occur. For example a

repeat go 1000 rend structure causes the execution of cycles, which, in turn

executes a command list. This command list is found to be in error and the user

inputs plot s!iceplot so that processing may continue. In this combination the

repeat invokes control, cycle invokes control, geLcommand invokes control, then

plot and sliceplot are executed at this third level of recursion. return is then

90

Chapter 3

Trace of procedures

Entered procedure CONTROL

Entered procedure PLOTS

Entered procedure GET-CDI'lHAND

Entered procedure GET _com-lAND

Entered procedure GET _COMMAND

EXIT procedure GET _COMMAND

Entered procedure CONTROL

Entered procedure GET-COMMAND

EXIT procedure GET _COf.UiAND

Entered procedure PLOTS

Entered procedure GET-COMMAND

Entered procedure GET-COMMAND

EXIT procedure GET _COMMAND

EXIT procedure GET _COMMAND

EXIT procedure PLOTS

EXIT procedure CONTROL

Entered procedure GET_COMMAND

EXIT procedure GET_COMMAND

EXIT procedure GET-COMMAND

EXIT procedure GET_COMMAND

EXIT procedure PLOTS

EXIT procedure CONTROL

Entered procedure CONTROL

plot

return

return

Jl)li§tinct Element Method of §lices

Comments

The primary node is entered.

An error occurs in plotting

Hhen ???? is encountered.

A further error ploterr causes

a second level recursive call.

A correct command of plot gives

a recursive call to control.

The command plot is retrieved

and plots entered recursively.

A further error occurs and

return is read.

This causes all a return to

to the primary node.

The recursive call to control

was from get-command Hhich is

returned to. The return command

is retreived and the three

invocations of get_cornrnand are

exited.

The initial call to plot and

then to control are exited.

Normal execution continues.

Table 3.12 Program behaviour during error processing;

input and program control falls back to cycle, ready to carry on processing the

command list.

3.4.2.4 Structure that maps structured variables

There are three structures that map the structure of the memory. One, which

1s used extensively causes the slice list to be traversed. Another, often used in

conjunction with the first enables both the base and side contacts to be reached

and the third allows the corner rings to be traversed.

91

Chapter 3 Distinct Element Met.hodl of §lices

To traverse the slice list a separate procedure is written containing a while

loop controlled by a pointer such as el. This pointer, a parameter to the proce

dure is seeded by the base or anchor of the list by the calling procedure. The

while loop is constructed as follows. while el ,= NIL do begin ... el := el@.next;

end;. The loop will continue until el becomes NIL, which will occur at the end

of the list. Most procedures with headers of the form procedure procname(el :

ptr_type); use this construct to traverse the slice list. These procedures are

factors_of_safety, disp_plot, slice_plot, force_profile, fordsl, fconsolsl, update_area,

cre_platen, write_r_e[, write_con, and write_sli.

To look at the two contacts of each slice a for loop is used as follows

for contdir := righthand to based do begin

case contdir of

righthand : condir : = el@. contacts. right;

based : condir : = el@. contacts. base;

end;

writeln{ condir@. consol. ns);

end;

The case statement causes the right or base contact pointer to be placed in

the variable condir (contact direction), a pointer. This may then be used to access

the contact information. The righthand contact is processed first and then on the

second pass of the for loop the base contact is used. This construct is used in the

procedure fordsl. In force_profile a local function ptrd_fm uses the case construct

to return the contact pointer.

Corner rings are traversed in the procedures cre_slices, slice_plot, write_r_el

and update_area. In the first three the corners of a slice are traversed once, by

using a repeat until loop as follows

92

Chapter 3

apex := el@.apexes;

repeat

apex : = apex@. cw;

until apex = apexes;

Di§tlind ERemel!ll.t Method!. of §lice§

In update_area the corners of the platen are traversed in forming the slice

base contacts. The termination of the slice list traverse is used to terminate the

traverse of the platen corners. The corners are inspected once only with each shift

caused by platapex := platapex@.cw;.

3.5 Valiidation

3. 5.1 Introduction

The aim of the following discussion is to show that Program SLICES is capable

of predicting the factor of safety and the mechanism of failure of soil slopes. The

validation has not been exhaustive nor is it intended that program SLICES is

used as if the results are guaranteed correct. Furthermore this discussion does

not include all the program testing carried out to prevent program failure during

normal operation. Rather, these discussions are meant to show that· this technique

is viable when applied to problems in soil mechanics and that the results are

comparable with traditional methods.

3.5.2 Validation Methods

To gauge the viability of this method three soil slope geometries were used.

Each was tested under total and effective stress conditions. These problems were

analysed by program FOS of Garrard (1984) and by SLICES.

93

Chapter 3 Distinct Element Method of Slices

Program FOS, (Factor of Safety), provides a slope stability analysis by a

traditional method of slices. Factors of safety according to the Janbu, Fellenius

and Bishop formulae are produced as well as an average. Slice geometry and soil

parameters of cohesion, friction and density are required. In this respect program

FOS was modified slightly from the source so that the slice density was input

directly for each slice. This alteration was necessary to ensure that exactly the

same situations were analysed by both programs. As with all traditional limiting

equilibrium methods this program will under estimate the factor of safety for those

slopes where some or all of the slices are submerged by the water table.

For comparison purposes the average factor of safety has been taken as the

best guide to the stability of the slopes. Program SLICES does not produce an

overall factor of safety, so the FOS results are quoted in the unusual manner of

the values for cohesion and friction which gave a factor of 1.

In determining the stability with program SLICES an iterative method was

adopted. Estimates for cohesion and friction, normally taken from the FOS analy

ses where used as initial values and SLICES used to determine if the configuration

was stable. The parameters were then adjusted to bring the slope configuration

closer to limiting equilibrium and SLICES used once more. This was repeated

until the configuration was just stable. In practice a binary split method was used

to reduce the number of runs, which was normally in the region of eight. It was

therefore possible to standardise the results on the runs that indicated that the

configuration was just unstable. For SLICE results friction is quoted to the nearest

half degree and cohesion to the nearest kN jm 2 .

Tests were carried out on the following combinations of parameters for each

of the test slopes.

Total stress conditions with variable ¢.

Total stress conditions with variable cohesion.

94

Chapter 3 Distinct. Element Method of §lilices

Effective stress conditions with variable ¢.

Effective stress conditions with constant cohesion variable ¢.

Effective stress conditions non-linear critical cohesion and variable ¢.

Here the variable parameter is the one operated on by the binary split method.

The failure circles correspond to the three main types of arc failures, steep (a > 0),

horizontal (a= 0) and deep (a < 0).

3.5.3 Discussion of results

Results for Method of slices

Total Stress Effective stress Non-linear

Slope Type ¢ Cr c Cr ¢ Cr C=20,¢ Cr C=20,¢ Cr

Slope 1 SLICES 20.5 0 24 1 25/26 0 4/4 1 20 1

(deep) FOS 25 0 23 0 27 0 10 0

FOS Cr 31 1 10 1

Slope 2 SLICES 31 0 36 3 46/46 0 21/22 211* 37 211*

(horiz.) FOS 32 0 29 0 48 0 28 0

FOS Cr 41 3 28 1

Slope 3 SLICES 48 0 39 3 65.5/69 0 41.5/44 1 20/56 1

(steep) FOS 48 0 24 0 69 0 49j 0

FOS Cr 40 3 44j 1

Notes :

* most convincing alternate

I alternates produced by increasing the damping

I alternative tension cracks to the right of the slices quoted

j indicates result for Janbu input factor of safety 1.13 is quoted

¢ is in degrees C is in kJVjr.n2

Table 3.13 Table of Results for Program SLICES

The program results for the test conditions are summarised in Table 3.13. For

each slope there are three lines of data. The SLICE result, the FOS result and a

FOS result for a modified slope taking in to account any predicted tension crack

95

Clhtapter 3 Dn§tinct Element Method of §lice§

from the SLICES result. The tension cracks are applicable to cohesive conditions

only. The stress profiles and geometries generated by SLICES are given in Figures

3.6 through 3.20, and the program input may also be found in Tables 3.14 through

3.25. Due to the quantity of output, only the geometry and final profile plots are

provided for slopes 2 and 3, as the principal features are illustrated adequately by

the slope 1 results which are given complete. The figures and tables are contained

in Appendix B. The tables are placed before the corresponding SLICE output.

The non-linear command files are not shown as they are the same as the c-¢

effective stress examples.

3.5.3.1 Results involving total stress conditions

Column one of Table 3.13 shows the results obtained for total stress conditions

with zero cohesion. The¢ values required to stabilise the slopes are quoted. They

are as expected, increasing with a. The only significant discrepancy is for the

deep slope where FOS predicts an higher ¢ for safety than SLICES. It should

be noted that these total stress conditions are not realistic, but were included

in the validation for comparison and to see how SLICES behaved throughout the

parameter spectrum. The second column headed 'Cr' shows that no tension cracks

are predicted.

In column three the behaviour under purely cohesive conditions was investi

gated. A single result for SLICES was obtained in each slope case together with

a prediction of a vertical tension crack forming near to the top of the slopes. Two

results for FOS are quoted, the upper for the whole slope and the lower for the

slope below the tension crack as predicted by SLICES. The assumptions in the

second case being that the soil above the crack plays no part in the behaviour of

the main body and hence that the crack penetrates to the failure arc. In all cases

FOS predicts a much higher cohesion for slopes with a tension crack. Generally

SLICE results do not correspond well with FOS analyses of the intact slopes. An

96

Chapter 3 DlisthiJ.ci Element Method! of §lices

exception to this is the deep slope where the crack occurs high up on the slope.

Conversely on comparison with the FOS results for the cracked slopes the best

correlation is at the other end of the slope spectrum, that is the steep slope.

It is worthwhile considering why discrepancies occur. The tension crack is

determined by the resolution of the slices, this sometimes leads to two adjacent

vertical slice contacts being in tension, indicating a crack in between them, or

perhaps a tension zone. Both cases are difficult to convert to FOS problems with

certainty. This problem is particularly relevant in considering the effective c-1>

results where difficulty was encountered in deciding which contact to choose as

the tension crack.

The definition of tension cracks is clearest under conditions of high cohesion

and steep slopes, which appeals to the rationale. For a well defined tension crack

the FOS result for the cracked slope corresponds well to the SLICE result, but

for a badly defined crack the integral FOS analysis is close to SLICES. As may

be expected these circumstances are found for the steep slope and the deep slope

respectively.

3.5.3.2 Results involving effective stress conditions

The first column of effective stress results of Table 3.13 contains the results

for the effective frictional conditions. Unlike the total stress equivalent this is a

real possibility in the field.

The results correspond well between the two methods, broadly FOS indicates

that a higher 1> is required for stability, but this may correspond to the under

estimation of the factor of safety under effective conditions by traditional methods.

The two values of 1> quoted for SLICES are for two damping values. The similarity

97

Chapter 3 Di§tinct Element Methocdl of §li~e§

of these indicates that as long as numerical stability is maintained the results do

not differ largely with the dam ping factor.

The effective c-¢ results are in the third column for this set. In all cases

the cohesion was fixed at 20kNjm2 and again two damping values were used and

hence two similar results are given for SLICES. The FOS values are considerably

higher than for SLICES, although it should be noted that tension crack definition

was uncertain in the horizontal slope case and that the FOS result for the Janbu

1.13 case is broadly in agreement with SLICES. It should also be remembered that

effective conditions with submerged slices causes problems for the FOS methods.

Finally, the last two columns of results refer to the 'non-linear' analysis of

SLICES. Critical cohesion is applied in this case, that is on contact failure the

cohesion is set to zero. The initial value for cohesion is again 20kN jm2 . There

can be no comparison with FOS as non-linear parameters are not permitted.

However, this set of results should be between the effective c = 0 and c-¢ SLICE

results. In each case this is true.

3.5.3.3 Conclusions

Overall the results from SLICES compare favourably with traditional meth

ods. Initially the results from cohesive conditions caused concern until it was

realised that SLICES can predict a tension crack. However, it is not always pos

sible to precisely define the position and some discrepancies are inevitable. For

cohesive conditions, high a slopes provide the most similar results. Friction is

underestimated by SLICES relative to FOS. It has not been the intention of this

discussion to show that these methods produce identical results, it would benefit

no one if they did, furthermore the non-linear analysis indicates that SLICES can

provide a facility not available in traditional methods.

98

Clh.apterr 3 Dlisiil!ld lEllement Method o:fr' §lliices

3. 5.4 Interpretation of SLICE output

The interpretations of the results discussed in the previous section were based

upon two principal features. Firstly, the factor of safety lists for each slice base

contact printed at the close of the run. Then, secondly, the stress profiles drawn

at intervals throughout the run. The end of the analysis was determined by con

vergence of the maximum cycle displacement displayed as part of the running

commentary, and by the number of slices at limiting friction. It is possible to

terminate the run early by observing this latter number as, when all slices have

reached this limit the slope has failed. Under conditions where a tension crack is

formed, the uppermost slices will not reach the limit so notice is taken of the max

imum displacement. When this value is almost constant the run may be halted.

A safe slope will have at least the toe slice with a factor of safety greater than

unity. The safety of the slope increases with this value and with the number of

slices which are safe.

Tension cracks are observed by large 'V's' in the side contact stress profiles

where the stress is negative for a single contact and by safe factors for slices at

the top of the slope.

It may be noted from the results that the stress profiles gradually build up

during the analysis, converging on final values. Typically a steep slope shows the

following behaviour. The top slices are glued by cohesion to platen and never fail,

below this the large slices, due to their weight build the largest normal and shear

stresses, which are passed down the slope by a 'knock on' effect. This is seen

by factors of safety for the slices decreasing with time for slices near to the toe,

until the toe slice factor reaches one. This implies a stress distribution largely,

although not wholely, related to the weight distribution of slices. This also implies

deformations occurring first in the bulk of the slope, rather than at the toe.

99

Chapter 3 Dlisilinct Eliemeni Meth.odl of §lices

This is not what would be expected in reality, however as discussed previously,

the results provided by SLICES are too close to the traditional methods without

dismissing both techniques.

It would seem that SLICES essentially models a set of blocks on a curved

surface. To overcome this the contact laws need further modification to more

nearly model soil failure rather than contact failure. The constraints of time upon

this project coupled with the SLICES development time has prevented further

analysis of this slice technique.

100

Chapter 41 Distinct Element Method of Circles

CHAJP'1I.'ER 4

])JI§TJINCT ElLEMENT METHOD OF C][RCJLE§

4.1 The Concept

4.1.1 Circles as Areas of Influence

Program SLICES attempts to model soil slopes by dividing it into slices

and using these as discrete elements. As has been seen this analysis still es

sentially deals with physical elements, the soil slices. Program CIRCLES differs

from SLICES fundamentally, not solely in a different geometrical element, but by

considering the circles, not as physical soil elements but as areas of influence of

calculation points. This abstraction is a long way from Cundall's BALL program

which has largely been used to model the behaviour of sand particles, as discussed

previously in the first Chapter.

A further fundamental difference is that CIRCLES does not require a prede

termined failure arc. The principle is that if the slope is unsafe, the failure arc or

slip zone will be generated during the analysis. The program input is similar to

SLICES excepting the meshing of the circles where several additional commands

are needed.

An area of influence may be defined as a circular area around a calculation

point with the physical attributes of radius, mass, friction and cohesion. A contact

exists with another circle if the circumferences interfere, that is touch or overlap.

As the circles are areas of influence and not physical representations a large overlap

101

Chapter 4 lDi§tllllld JERement Method! of Cn1rdes

at the start of modelling does not give an initial separating force. The centre of

the circular area of influence is taken as the centre of gravity.

4.1.2 Contacts in detail

All potential contacts are considered for storage. A potential contact occurs

when the centres of two circles are less than the sum of the radii plus the contact

resolution apart. The contact resolution is an arbitrary tolerance of 1.05 times the

maximum circle radius. The maximum circle radius is the radius of the largest

circle in the problem mesh. Another arbitrary tolerance, the contact limit is half

the maximum circle radius and is used in a similar fashion to the contact resolution,

but this time to distinguish between contacts to be stored and those to be deleted.

These tolerances allow potential contacts to be stored in case movement causes

a real contact to be formed later. This is further explained in the section on

updating of contacts, section 4.2.2.2.

The contact point need not be defined as no rotational forces are considered

and all x and y quantities are resolved from the line between the centres. As

CIRCLES has been written to incorporate traditional Distinct Element Analysis

and consolidation methods, full housekeeping, force displacement law and motion

law routines have been included. The housekeeping routines require that a stored

contact be found and deleted if the contact gap is greater than the contact limit

but ·less that contact resolution. A further restriction upon a contact is that a

small separation of the contact is allowed in the form of a tensile 'fuzz' to help

damp transient jumps in the traditional Distinct Element Analysis formulation.

Beyond this limit the contact is deemed to have failed in tension. The detail of a

contact is shown in Figure 4.1.

102

Contact resolution

Contact limit

Positive gap - Tensile contact

Negative gap - Compressive contact

Figure 4.1 Contact definition in program CIRCLES

103

Chapter 4 Distilllct EAement Method of Circles

4.1.3 The Distinct Element Analysis formulation for CIRCLES

The Distinct Element Analysis formulation employed may be conveniently

considered in two parts, the consolidation formulation and the traditional Distinct

Element Analysis formulation found in sections 4.1.3.1 and 4.1.3.2 respectively.

Currently forces are converted to stresses very crudely by dividing by the

circle radius. As the initial overlap may vary largely, the contact chord formed by

the intersection of the circles was deemed unsuitable as a contact surface. There

being no other readily available method the current method was employed. Here

large circles will have smaller stresses than small ones for the same overlap.

Presently pore water pressure is not accommodated due to the constraints

of time. Further work should include this enhancement. The failure criterion for

the contact is based upon the Mohr construction shown in Figure 4.2. Here the

lesser stress of ax and ay is taken as a3 and the greater as a1. The failure a1

is calculated from o-3 , c and tan ¢ as shown in equations (1) through (4). If this

value is greater than a 1 then the contact has not failed. If a failure has occurred

the appropriate contact force is limited to the equivalent force of the failure a 1 .

(1)

(2)

(3)

(4)

1 +tan¢- yf1 + tan 2 ¢
q = -----..:~=~=

tan¢- 1 + V1 + tan2 ¢

(jn =
a3 + q XC

1- q x tan¢

T =tan¢ X an+ c

a1 = 2 X (an + T X tan¢) - a3

104

Shear stress Gradient q

Figure 4.2 The Mohr construction

105

Chapter 4 Digtiiilld Element Methodl of Cirdes

4.1.3.1 Consolidation formulation

The force displacement law for the consolidation formulation is executed for

each contact every calculation cycle. It has four parts to determine the contact

movement, the contact force, the limiting stress at failure, and the body force to

be added to the circles in preparation for the motion law.

The distances before movement are calculated first in equations (5) and (6).

(5)

(6)

where the numeric prefices indicate different circles. The radial distance between

the centres is given by

(7)

The angle f3 that this line makes with the x axis gives sin f3 = Dy /Dr and cos f3 =
Dx/Dr.

The movements, M are then calculated from the displacements S.

(8)

(9)

The current radial distance is given by

(10)

106

Chapter 4 Distil!ld lEXement Method of Cirde§

Equation (11) gives the change in the gap between the circles from the initial

meshing positions. G0 is the original offset, it is the sum of the two radii if the

circles just touched originally and less than this if they overlapped.

(11) t6.G = Gr- Go

It should noted at this point that /:1G will lead to the increment of consoli

dation force applicable from this calculation cycle. This complicates the decision

regarding whether a contact is tensile, as this cannot be deduced from a tensile

increment alone. This problem is overcome by keeping a total of fiG. When this

total is positive the contact is tensile.

(12)

The contact forces are calculated by adding the increments to the consolida

tion forces already accumulated.

(13) Frc = n-l Crc + /:1G X d X COS {3

(14) Fy = n-lcy + 6.G X d X sin{J

If nGsum > c the contact has failed in tension by exceeding the cohesion and

the contact forces are set to zero, Frc = Fy = 0. This completes the force displace

ment law for a tensile contact. The rest of the law is executed for compressive

contacts, that is those where nG sum < 0.

The contact forces are converted to stresses by CTrc = JFrc/rl and CTy = JFy/rl

where r is the circle radius. The contact stresses are now examined for failure by

calculating the failure CT1 consistent with the soil parameters and the CT3 given by

107

Chapterr 4 Dnstind Element Method of Circles

the lesser of the x and y contact stresses. This procedure is described above. If

the contact has failed the stresses are modified by this procedure so that they are

limited by the soil strength, otherwise they are unchanged. The contact stresses

are converted to forces by multiplying by the circle radius. The signs of the original

forces are retained by the modified ones. The new forces are then summed to the

body forces of the circles involved and replace the consolidation forces.

(15)

(16)

(17)

(18)

n+lc - F :c - ;c

n+lc - F y- y

The motion law, which is executed for all free circles involves the calculation

of the new displacements.

(19) n+ls _ (Forcex)
:c - + 9::c m

(20) n+ls _ (Forcey) £ 2
y- + 9y X ut

1n

Finally the body forces are reset to zero, Force:c = Forcey = 0.

4.1.3.2 The traditional Distinct Element Analysis formulation

The force displacement law consists of determining the movement on the

contacts and converting this to a contact force. The movement on the contact is

given by equations (21) to (24).

(21)

108

Chapter 4 Dhiih:11d E!emeli'ht Method of Cirde§

(22)

where the numeric prefi.ces indicate different circles and the n indicates the nth

cycle.

The radial distance between the centres is given by

(23)

The angle (3 that this line makes with the horizontal gives sin (3 = Gy/Gr and

cosf3 = G'J)/Gr. Equation (24) gives the the change in the gap between the circles

from the initial meshing positions.

(24) D.G = G,.- Go

Having found the movement it is now possible to calculate the contact forces.

(25) Fr = k X b.G X d

(26) F'J) = c'J) + Fr X cos(3

(27) Fy = Cy + Fr X sin f3

If the contact is tensile, that is, the equivalent gap between the circles is now

positive and greater than a small tensile fuzz used to damp transient movements,

then the contact has failed in tension and the contact forces are set to zero, F'J) =

Fy = 0. If the contact is deemed to be compressive then the forces are converted

to stresses by o-'J) = IF'J)/rl and o-y = IFy/rl where r is the circle radius.

109

Clhapter 41: Disti1t1ci Eleme:nt Method of Cirdes

The contact stresses are examined for failure using the same method as the

consolidation formulation. The new forces are then summed to the body forces of

the circles involved.

(28)

(29) cF orcey = c-1 F orcey + Fy

The motion law, which is executed for all free circles involves the calculation

of the acceleration, velocity and displacement.

(30)

(31)

(32)

The equivalent equations for y have been ommitted for clarity. Finally the body

forces are reset to zero, Forcerc = Forcey = 0.

4.2 Implementation

4.2.1 The Program Memory Structure

A program memory schema is shown in Figure 4.3. This is intended to show

how the graphical problem area is mapped in memory. The grid of squares is linked

by pointers allowing a traverse in any direction and sequentially from SW to NE.

The area at the top of the figure is the re_area_list and is used for those circles

that move between areas in the traditional method. These circles are temporarily

placed in this area and are placed into the correct areas just prior to a contact

110

~

I
Re-a.rea list

I
Nil Nil "

Nil N
Next

N Next
..:--r-w w

Area
E E

s s
i'

i' ,
Nil N Next

N
Next

..... r-w w
E E

s s
i'

!-

~ 1-

" "
Start area list

Figure 4.3 An high level view of the memory structure

111

Chapter 4 Distinct Element Method of Circles

update. A separate area, spare_area is provided for those circles that move out

of the problem area altogether. These circles are then effectively hidden for ever.

A Bachmann diagram showing the relationships between the areas, circles and

contacts is shown in Figure 4.4.

Each area has five pointers leading to the adjacent areas to the North, East,

South, West and to the next sequential area. The next sequential area is the same

as the area to the north except at the northern edge of the problem domain where

it is the southernmost area of the adjacent eastern column. The pointers at the

problem edge have NIL values. Diagonal pointers are not required as these areas

may be accessed by shifting north and then east for example.

Each grid area has various regulating variables associated with it and two

pointers to the circle elements. One points to the free list, that is a list of those

circles able to move, and the other to the fixed list containing circles forming fixed

boundaries for the problem.

The free and fixed lists are made up of the circle elements which contain three

pointers, one to the next element in the list, one to the parameter data block of

its type and one to the list of contacts belonging to the element. The contact list

contains a pointer to the other circle involved and a pointer to the next contact

for the current element.

Of the global variables in the program the pointers sal, re_area_list and sdl

are the most important and are discussed below.

sal points to the start of the area element list, that is to the extreme south

west area, and is the entry point to the main memory structure.

112

b

Start area list

a
Area

0 0

Free circle Contact

e

d

0

Data element

Start data list

a- Pointers toE, W, N, Sand Next areas

b - Pointers to next circle

c - Pointer to next contact

0

d - Pointer to element data type information

e - Pointer to next data type element

Crows feet indicate a one to many relation

Double crows feet indicate a many to many relation

0 - indicates an optional relation at the end shown

Figure 4.4 A Bachmann diagram of the program memory elements

113

Chapter 4 Distinct JElement Method of Ci:rdes

re_area_list points to the beginning of a list of circles, that, due to movement,

have changed position from one area to another. These circles are stored in a

separate list until a convenient break in processing and are then placed into the

correct areas before a contact update.

sdl points to the start of the parameter data block list. There is one element

in this list for each soil type in the problem. The element contains the physical

and geotechnical data for the soil type as well as a pointer to the next element in

the list. This arrangement allows the information for a particular circle type to be

held in common rather than for each circle individually. Hence the circle element

need only point to the relevant element in this data list.

4.2.2 Program structure

Functionally the program elements of CIRCLES and SLICES are similar,

therefore, it is not intended to describe in detail the procedural elements of CIR

CLES. The input and output routines and the error correction methodology are

the same. Plotting, cycling, restart, parameter setting, repeat and command pro

cessing are similar in both programs. The essential differences are caused by the

memory structure mapping the grid areas of the problem space and the contact

updating required by the break and make of contacts permitted by the tradi

tional Distinct Element Analysis implementation. These differences are discussed

in the following sections. The source code for program CIRCLES may be found

in Appendix E.

4.2.2.1 Program structure that maps the memory

The main addition to the complexity of the program structure as compared

with SLICES is due to the extra effort required to traverse the element lists. To

access all of the circle elements the current area pointer is set to sal, the start of

114

Chaptell" 4 Dnstlinct Element Method of Circles

the area list, that is the most south westerly area. The fixed list pointer of this

area makes the first circle contained here available. The fixed list can be traversed

in the normal fashion by obtaining the next element from the next pointer. The

end of the list is reached when this next element pointer is NIL. The free list is

then traversed in this same fashion. When all of the circle elements for the area

have been visited, the next area is obtained by updating the current area pointer

with the value of the nexLarea pointer. The elements of this area can then be

visited. Each area is traversed sequentially until the nexLarea pointer has a value

of NIL, that is, after processing the re_area_list.

All of this processing is contained in a single procedure do_this which is called

with the parameters of proc_name, curr_area, single and lists. This allows ei

ther the free, fixed or both element lists to be traversed for either a single or all

areas. For all circles control is transferred to the procedure passed as the param

eter proc_name to do_this. This technique allows each function requiring a circle

traverse to have the algorithm coding replaced by a simple statement such as

do_this(motion, sal, all, both);

which will cause the procedure motion to be executed for all elements.

To traverse the contact list associated with a circle element the simple con

struction shown below is used. The beginning of the contact list is found from the

con_list pointer which is part of the circle memory element.

con_ptr := el@. con_list;

while con_ptr not = NIL do

begin

con_ptr := con_ptr@.nexLcon;

end;

115

ChaqpteJr 4 Di~:~tinct Element Method of Circles

4.2.2.2 The updating of contacts

In SLICES the basic geometrical relationships between the components could

never change. The same set of contacts were sufficient to describe the system

throughout the analysis. Not so with CIRCLES. Under traditional Distinct Ele

ment Analysis large scale movements need to be accommodated, together with the

associated make and break of contacts during the analysis. Therefore, it is impor

tant that potential contacts are located in advance of the immediate requirement,

old ones updated in the contact lists and new ones added efficiently. These are

currently achieved by the following method.

A complete circle traverse is carried out as described above with both the fixed

and free lists examined for each area sequentially. Each circle element, the 'home'

element, is checked for contact with the circles occurring later in the free list for

the area. It is not necessary to check for contact with circles occurring in the free

list before the 'home' circle as any contact will already have been found. Likewise

when the 'home' circle is a free type it is not necessary to check for contact with

any circle which is in the fixed list of the current area.

Once.the free list for the area has been checked and the 'home' circle is not

near to the edge of the area, the next circle in the free list is taken as 'home' and

the search for its contacts can begin. However, if the circle is close to the edge

of the area, the northern, north eastern, eastern and south eastern areas in turn

have both the free and fixed lists checked for contact with the 'home' circle. It

should be noted that the areas in the southern, south western, western, and north

western areas need not be examined as they occur sequentially before the current

area, so that any contact will already have been found.

If, during the scan for contacts outlined above, a contact is found, it must be

seen if the contact is already recorded. To do this the contact list for the 'home'

11()

Chapter 4 Di§tinct Element Method of Cirde§

circle is traversed until either the contact or the end of the list is located. If the

contact is not found in this list the contact list for the other circle is also traversed.

If an old contact is located and the distance between the circle circumferences is

less than the contact limit, nothing more is done. However if this distance is

greater than this limit, the contact is destroyed, that is, removed from the contact

list. A contact that is not found in either of the contact lists and the distance

apart is less than the contact limit then a new contact is created in the 'home'

circle contact list.

To summarise, each free circle acts as the 'home' element and each free circle

later in the area and, if necessary, all circles in certain neighbouring areas are

investigated for contact with it. If there is a possible contact both contact lists

are scanned and housekeeping is performed.

Two main factors govern the efficiency of this algorithm. Clearly efficiency is

increased when most circles are not near an area edge, which can be achieved by

having areas large in comparison with the size of the circles. The reason for this is

that more circles are only compared with circles from the same area. Efficiency is

also increased for large number of circles by restricting the number of circles per

area by increasing the number of areas. It should be noted that large numbers of

areas will add an overhead to the circle access as all areas are looked at by the

routine do_this. These two apparently conflicting factors need to be balanced to

gain the optimum efficiency for any given problem.

4.2.3 Input command language

4.2.3.1 Introduction

All program tasks are controlled or defined by the Input Command Language.

As shall be explained later the program requires some commands in a particular

117

Cllullpter 4 Dn!3tinct Element Method of Ciilrdes

order, but on the whole the majority of commands may be used at any time.

Although the program is not designed to run interactively, it is possible with care.

Normally, however, the commands should be contained in a file prior to use.

The commands may be categorised into broad sections, dealing with program

control, plotting, meshing, debugging, and the setting of options and parameters.

These correspond to the major procedures of the program. The commands are

hierarchial, forming a tree system and follow the same rules as for SLICES.

The following sections, 4.2.3.2 to 4.2.3.8 describe the functions of the com

mands of each set. The symbols used in the syntax definition ofthe input command

language is shown in Table 4.1 with the definition in Table 4.2.

Symbol Definition

... indicates possibla repetition of the clause
[] indicates an optional clause
() indicates a group of clauses

-< :>- indicates substitution by a value, ~hich

may be either a clause or literal
c ' indicates a literal value

I indicates an alternative

IS is the definition operator

Table 4.1 Input Command Language Parsing Symbols

4.2.3.2 Control commands

The control commands form the outermost command set, all other commands

are accessed through this set.

The set command enters the parameter procedure to allow parameters to be

set up, altered or inspected.

118

ClhapieJr 4 Distinct lEleme:nt Method of Cii1rdes

task IS [-<com>- ...] 'stop'

correction IS [-<com>- ...]('return' !'stop')

limits IS -<real>- -<real>- -<real>-

boxes IS -<integer>- -<integer>-

reply IS 'on' I 'off'

com IS ('start' -<start block>-) I ('restart' -<limits>-)

('plot' [-<plot command>- ...]) I ('set' [-<set command>- ...])

('debug' [-<debug command>- ...]) I ('go' -<integer>-)

'save' , 'cend' I 'rend' I 'settle 1 I 'collapse 1

('repeat' -<integer>- [-<com>- ...] 'rend')

parameter IS 'framelimit' I 'writegap' I 'interval' I 'gravity'! 'time'

property IS 'damp' I 'mass' I 'cohesion' I 'friction'

I 'density' I 'radius' I 'stiffness'

datanumber IS -<integer>-

oper IS '* ' I '+ ' I ' - ' I '/ ' I ' 1\ ' I ' = '
set command IS (('echo' I 'echodebug' I 'cmdproc' I 'overwrite') -<reply>-)

(('framelimit' I 'eritagap' I 'interval') -<integer>-)

(('gravity' I 'time') -<real>-) I ('cmdlist' [-<com>- ...] 'cend')])

('calculate' [(-<paramater>- C-<oper>- -<real>-) I '?') ...])

('calculate' [('soiltype' -<datanumber>-

[(-<property>- <-<oper>- -<real>-) I '?') ...]) ...])

plot command IS ('initialise' -<limits>-) I 'ballplot' I 'dotplot'

I 'velocities' I 'displacement' I 'conplot' I 'failplot' I 'graticule'

I 'standard' I 'page' I 'border' I 'end plot'

I ('map' -<map command>-) I ('zoom' -<limits>-)

map command IS 'picture' I 'horizontal' I 'vertical'

'full' I 'fullnoscales' I ('zoom' -<limits>-)

debug command IS 'contacts' I 'energy' I 'general' I 'flagson' I 'flagsoff'

I 'datalist' I 'blocks' I 'areas'

I (('update' I 'motion' I 'consolidate' I 'ford' I 'cycle'

I 'cycle' I 'rearea' I 'trace' I 'oscillate') -<reply>-)

data IS -<datanumber>- -<real>- -<real>- -<real>-

-<real>- -<real>- -<real>- -<real>- -<type>

type IS 'free' I 'fixed' I 'track'

coord IS -<real>- -<real>-

eoln IS (' ' ...) until the end of line is reached

mesh command IS 'relative' I 'absolute' I 'single' I 'multiple'

('create' C-<coord>- ...) -<eoln>-)

'move' I 'position' C-<coord>-) I ('angle' I -<real>-)

meshinfo IS ('dataset' -<data>-) ('for ' [-<mesh command>- ...] 'endfor')

start block IS -<heading>- -<limits>- -<boxes>- [-<meshinfo>- ...] 'meshend'

Table 4.2 Input Command Language Parsing Definition

119

Chapter 4 Distinct Element Method of Ci:rdes

The command restart causes the restart of a previous problem run. A file

containing the restart information must be attached to unit 1. Within the com

mand file the mapping information must follow.

save causes a rPstart file to written, it may either overwrite or append the

file attached to unit 2 according to the setting of the overwrite command (a set

command). This is used to save the solution to the task found so far for a large

job, thus avoiding loss in the case of a system crash.

Command start begins a new problem. A title up to 80 characters long may

follow, but the next line must contain the mapping information and then mesh

information is required. Section 4.2.3.8 describes the meshing commands.

stop this causes the geometry to be plotted, a restart file to be written and

the program run terminated.

The command debug causes the debug procedure to be entered, so that debug

options can be set or general information generated.

The plot command causes the plot procedure to be entered, which allows

requests for the manipulation of the plot format, size, and the production of the

different plot types available.

go is the command that causes the calculation cycle to be entered and it must

be followed by an integer, the number of cycles to be executed.

Command repeat is the opening statement of the repeat n commands rend

loop structure. It must be followed by an integer, which is the number of times

the loop is to be executed. There are certain commands for which inclusion in this

structure would be pointless.

120

Chapte:r 41 Distinct lElement Method of Circles

To close the repeat loop the command rend is used in two ways. As regards

to input, it terminates input to the repeat controlling procedure and is the last

statement in the repeat loop, in this case it is not a control level command. The

second way in which it is used is internally, during execution of the loop, here it

signifies the end of the loop so that the commands may be repeated again.

A similar command to rend, cend is used in two ways. Firstly, it terminates

input to the command list structure of the set command set, and secondly it

terminates execution of the command list during use. Section 3.3.2.4 describes

the set cmdlist commands cend facility in detail.

The command return terminates interactive input during input error han

dling, and is described together with this facility in section 3.3.3.3.

The command settle causes the consolidation implementation to be used dur

ing the calculation cycle while collapse will cause a traditional Distinct Element

Analysis implementation to be used instead.

4.2.3.3 The debug command set

To gain access to these second level commands the debug command must

be entered at the control command level. This facility falls into two parts, one

outputs information at the point of issue of the command, while the other assigns

options which provide data during the subsequent execution of the program. All

output from this routine is written to the file attached to unit 7 unless otherwise

stated. The debug commands are as follows.

The datalist command writes out the circle parameter data block list while

areas gives the information associated with each area. Command blocks produces

the information for each circle while the contacts command writes out the contact

121

Clhapter 4 Distinct Element Method of CD.rdes

information. general, as is to be expected, produces some general information.

Just as in SLICES, fl.agsoJill sets all the debug options on, and should be used with

care and fiagsoff turns all of them off.

All of the following commands must be followed by the third level commands

of either on or off, which clearly sets the option on or off.

The update option produces contact information as the contacts are created

or destroyed. motion controls the production of debug output from the motion

law during execution of the calculation cycle. The option ford controls the pro

duction of the debug output from the force displacement law during execution of

the calculation cycle. The commlidate option produces limited information from

both the motion and the force displacement law, again during execution of the

calculation cycle. cycle this produces information from all procedures within the

calculation cycle and procedure cycle itself. The option trace causes a message to

be written on entering and exiting all procedures and functions. Output is written

on the file attached to the unit 8. oscillate causes information from calculation

laws, formatted for input to the program SOP, to be written onto the file attached

to the unit 10. Finally the option of rea.rea causes information connected with

the change of area of a circle to be written out.

4.2.3.4 The set command set

To gain access to these second level commands the command set must be

issued at the control level. This set of commands falls into two groups, problem

parameters such as gravity and options such as frame limit. The set commands

are as follows.

122

Chapter 4 Distinct Element Method of Circles

When set to on echo enables all input commands to be echoed on the running

commentary. The command must be followed by the third level commands of

either on or off. The default is on.

debugecho if set to on this causes headings for the debugging information

to be written in addition to the information itself.

The overwrite option controls the restart file output. If set, the file attached

to unit 2 is emptied prior to use, otherwise the file is appended by the restart

information. The default is off.

Option cmdli.st sets up a subsidiary file and copies all command input to it

until the command cend is entered. The execution of this secondary command

file is controlled by two further set commands, cmdproc and interval. Transfer

of control is passed from the file attached to the unit scards to the secondary file

(always named internally as the temporary file -sass.cmd), during the execution

of procedure cycle. The default value is null.

The option interval must be followed by an integer, the number of cycles to be

executed between successive executions of the command list secondary command

file. The default value is 100.

The cmdproc option must be followed by either of the commands on or off.

If it is set to on, the command list secondary file is executed whenever the total

cycles executed so far divided by the interval, (as set by the command interval),

is an integer value. If set to off this facility is not used. The default value is off.

framelimit is followed by an integer. The GHOST library limits the number

of frames of plot output to twenty. If this is exceeded the program will terminate.

This command allows this limit to be reset. The default is 20.

123

Chapter 4 Distinct JEliement Method of Cirdes

writegap sets the interval of cycles between display of some of the running

commentary information. The default is 100.

The gravity option is followed by a real number, which represents the value

of gravity in the positive y direction. The default value is 0.

Option time is followed by a real value this sets the time step size.

The calculate command allows the values of some parameters and options

to be modified or inspected rather than simply reset. Calculator commands are

described in the following section, 4.3.2.5, and are level three commands.

4.2.3.5 The calculator command set

This set is at the third level and is accessed by the command string set

calculate. Almost all the calculator commands have the same format, that of

~parameter~ ~operator~ ~real~ with the exception of the enquiry, ? when

a value is not required. Permissible parameters (the third level commands) are

interval, writegap, gravity and time. The operators (fourth level commands, to

be precise) are= replace,* multiply,/ divide,+ add,- subtract," exponentiation.

The ? enquiry is also used here. The values are read in as real numbers only.

For parameters which are integer in nature, conversion takes place to give an

integer result. The final value of a calculation command is written to the running

commentary output stream.

The command soiltype allows access by the calculator to the soil parameters

of a particular soil type. The number of the soil type, that is the data type flag

must follow. The parameter that is to be modified is the input as for a normal

calculator command. The parameters that may be modified here are the damping

124

Chapter 4l Di§tlinct Element Method!. of Cirdes

factor, mass, cohesion, friction, density, radius and stiffness by using the commands

of dlamp, mass, cohesion, friction, dernsity, radii us and stiffness.

4.2.3.6 The plot command set

To gain access to this second level set the command plot must be issued in

the control command set. As all the GHOST library routines are contained in

the procedure plot to ease maintenance, and many plotting functions are auto

matically carried out by the program, it has been necessary for some of these and

map commands to be issued internally. Although these internal commands are

described, it may be that they will never need to be issued externally. They are

initialise, endplot, and most map commands with the exception of zoom.

The initialise command sets the initial plotting parameters and turns the

plot output stream on. This command is issued automatically on receipt of the

start or restart commands and should not need to be used normally.

The command ba.Hplot draws the circles in the current plot space, dotplot

causes the centre points of the circles to be plotted while velocities will draw the

current velocity vectors. The contact forces may be drawn by using the conplot

command and a plot of the failed contacts produced by failplot. The command

displacement draws the current incremental displacement vectors.

The graticule command produces an outline of the area limits. standard

this produces a standard plot of the circles. The page command calls for a new

frame, or in physical terms a new sheet of paper while border produces a border

with the problem title and current problem time. The command of map will enter

the tertiary level map set and enables the modification of plot formats. Finally

the end plot command is issued internally during closedown of the program under

125

Chapter 4 Difltllnd Element Method of Cirdes

normal termination, it produces a frame with a slice plot and turns the plot output

stream off.

4.2.3.7 The map command set

These tertiary level commands are accessed by first issuing the commands

plot map.

The command ho:rrizontal sets the page format to lie along the A4 sheet of

paper as in a landscape picture. The default size is (0.06,0.96,0.05,0.65) expressed

in a (xmin, xmax, ymin, ymax) format.

Likewise the vertical command sets the page format to lie down the A4 sheet

as in conventional portrait picture. This is the default format, the default size is

(0.15,0. 75,0.06,0.96).

The command full sets the plotting space to the maximum permitted page

size suitable for A4 paper. A border is drawn around this area together with axes

scaled to the current mapping limits while fullnoscales does the same but does

not draw scaled axes.

The zoom command is followed by three real numbers, xmm, xmax, and

ymin which form the mapping limits. xmin is the minimum value of x, xmax

is the maximum value of x, and ymin is the minimum value of y of the problem

geometry to be plotted. As the plots are in fixed proportions in both landscape

and portrait mode it is not necessary for the maximum y value to be provided.

This command enables portions of the problem to be examined in more detail.

Mapping limits are expected as part of the input after both the start and resta:rrt

commands.

126

Chapter 4 Disiind Element Method! of Cirdes

4.2.3.8 The mesh Command Shell

This is the only set of commands that cannot be accessed at random by a user.

It is automatically entered after the issue of the level one command start, a further

oddity is that this set can only be exited by issuing the meslh.end command.

The numbers of areas in the x and y directions are expected before any further

commands are entered.

dataset create a dataset type. This is followed by the various parameters

governing the soil type. All of the circles that are created following this are of this

type until the next dataset command is encountered. The parameters which must

follow are, dataset number, damping coefficient, mass, cohesion, tan c/J, r, radius,

stiffness and dataset type. Apart from the dataset number and dataset type all

of the parameters are real numbers. The dataset number is an integer and the

dataset type is one of free, fixed or track. The dataset type of f:ree indicates

that the circles are to be free, conversely fixed indicates that the dataset is to

be of fixed circles. The track type will allow the circles to be tracked by the

oscillation debug command.

Once the dataset has been set up it is then necessary to create some circles. To

enable sets of circle to be created in a relatively easy fashion a set of commands

have been produced to govern the position of the creation point. Firstly, the

command relative will cause the x and y values following the create command

to be taken as the relative distances between creation points. Conversely the

absolute command causes the values to be taken as the absolute coordinates.

Furthermore these absolute or relative values in the x and y directions may be

operated on by the angle command. This command is followed by the angle, in

degrees, from the horizontal at which the circles are to be generated.

127

Chapte.Ir 4 Distinct Element Method of Ci.~rdes

The creation position can also be controlled by the move and position com

mands. move causes the creation position to be moved relative to the current

position. The x and y values for the movement must follow. The positio:rm com

mand causes the creation position to be at the absolute position of x, y which

again must follow.

The single command will allow only one circle to be created at a time, where

multiple will allow several circles to be created with one command. The command

for begins a for loop, it is followed by the number of circles to be created. An

endfor will end the for loop construction. Finally, the create command triggers

the creation of a new circle.

4.2.4 The utility files

The input command file format restrictions for CIRCLES are the same as for

program SLICES and may be found in section 3.3.3.1. The task definition using

the input command language has already been largely covered in section 3.3.3.2,

the particular meshing information for CIRCLES is discussed in section 4.2.3.8.

However, with reference to the chapter three discussion it should be noted that no

factors of safety are produced. Automatic plot production occurs at the start and

at the end of the task. The rules for error handling are the same as for SLICES

and have been discussed in section 3.3.3.3.

The repeat, command list, restart, trace and oscillation output files all func

tion in the same way as for SLICES. The restart file record tags are given in Table

4.3 as clearly there are some changes in the memory elements.

The various debug commands produce the messages shown in Table 4.4. Most

of the formats shown need no further explanation. For reasons of brevity not all

of the messages detail the quantities shown. These are now described.

128

Glhapter 41])Ji.§tinct lElement Method of Cli.rcles

Tag Restart record type

G th~ g~noral information

c a command list word

r a repeat list aord

0 a data parametar element

A an area information element

F a fixed circle elament

f a free circle element

c a contact element

* the end of the restart data

Table 4.3 The restart file line tags

The rearea command produces several messages and shows the details of

the re-location process of circles that have moved out of their original area. The

formats are shown for completeness but this level of debugging information is

only useful if the details of the program are understood. The command update

produces information concerned with the production of contacts. The contact

creation message shows the contact gap and the positions of both of the circles

involved. The other messages are self explanatory.

The debug command :ford produces the distance between the original cen

tres of the circles and the sine and cosine of the angle between this line and the

horizontal. The current gap between the circles is then printed followed by the

consolidation force and the body forces. The body forces of the element which

owns the contact are quoted first. The data produced by the consolidate com

mand are the limiting forces calculated by the failure law and the consolidation

forces upon the contact. The motion command produes the data type of the

element followed by the forces and displacments.

The contact information printed consists of the consolidation forces, the cur

rent offset and the positions of the two circles involved. The current circle is given

last. The area data is made up of t"he area x and y limits, the column and row

129

Clbtapter 4

Flag

rearea

updat

Format

Area 999999 999999 999999

Area 999999 999999

Distinct Eleme:ni Method of CJirdes

ori x,y, ne~ x,y 999999 999999 999999 999999

x,xm,y,ym 999999 999999 999999 999999

setup areas col number 999999

setup areas ro~ number 999999

Victim destroyed

Contact created 999999 999999 999999 999999 999999

total number of contacts 99999999

ford deltagap con_force force t-Iorce for x then y

99999999999ES99 99999999999ES99 99999999999ES99 99999999999ES99

consol

motion

cycling

contact

99999999 99999999 99999999 99999999 99999999 99999999 99999999

99999999999ES99 99999999999ES99

999 f 999999999ES99 999999999ES99 s 999999999ES99 999999999ES99

max individual disp 99999999999ES99

Contact information :

forces of contact, sibling, o~ner

999999 999999 999999 999999 999999 999999 999999

area Area data :

xmin,xmax,ymin,ymax, upd-par

999999 999999 999999 999999 999999 999999 999999

element Element data :

offs posn force velocity accleration datatype

999999 999999 999999 999999 99999999 (occurs 7 more times) 999

data flag damp mass c phi rho rad kn typ

999 99999999 99999999 99999999 99999999 (occurs 4 more times)

general xxxxxxxxxxxx task title xxxxxxxxxxxxxxx

xareas number 999999 length 999999

yare as number 999999 length 999999

total number 999999

mapping xmax 999999 ymax 999999

plot interval 999999

gravity X 999999 y 999999

timing delay 999999

totals balls 999999 fixed 999999

cracked 999999 types 999999

contact 999999 cycles 999999

updates 999999 frames 999999

plots 999999

Table 4.4 Debug output formats

130

Ch.apie:r 4 Dn§tind Element Meth.od of Ci:rcles

numbers and the update parameter. The element data consists of the original and

current positions, the final consolidation force upon the element, followed by the

current force, velocity, acceleration and then the data type.

The running commentary produces various information concerning the task

on to the screen. The screen positions for this are given in Table 4.5 and the

specific messages occur in Table 4.6. The same codes to clear the screen and turn

the cursor on and off are used as in SLICES and may be found in section 3.3.4.7.

Line Content

1 Blank

2 The program running commentary heading

3 Blank

4 The task title

5 Blank

6 The number of cycles requested

7 The number of plot frames completed

8 The number of plot types completed

9 The number of updates completed

10 The number of cracked circles ..
11 The number of cycles completed

12 The command under execution

13 General messages

14 Error messages and first line of totals

15 Message requesting replacement commands

16 Prompts to user for command or parameter data

17 Input line and last line of totals

18 Blank

19 Blank

20 Messages dealing with the restart files

Table 4.5 The running commentary screen lines

131

ChaJPier 4l

2

12

12

13

13

13

13

13

13

13

13

14

14

15

16

14

15

16

17

20

4.3 Validation

4.3.1 Introduction

DisHn.ct ERement Method of Cill."des

PROGRAM CIRCLES RUNNING CO~iHENT ARY ON

Command Xltxxxxxxxxxn

Reading x

Warning all velocities zero

Warning all contact forces zero

Harning no failures : no plot

Warning no circles left

Decreasing stability 9.999999999999ES99

Increasing stability 9.999999999999ES99

A restart file has been read

The value is : 999999999999999

Current time step set to : 99.9999999999

! error xxxxxxxxxxxx found in routine get-command

Input corrected commands ... <RETURN> .. .

Input a command please

total balls 999999 fixed 999999

total cracked 999999 contacts 999999

total cycles 999999 no.updats 999999

total frames 999999 plots 999999

A restart file has been ~ritten

Table 4.6 The running commentary messages

Program CIRCLES must primarily be viewed as a development program.

The main reasons for this are the exclusion of effective stress and difficulties en-

countered in controlling effects at the boundaries of the mesh. In this validation

section it is intended to show that the program correctly consolidates contacts

and models the contact failures under cohesive and frictional conditions. It was

realised from the outset that different mesh types could influence the failure of a

given slope geometry. The extent to which this occurred was to be left to a stage

when the technique, having been shown to be applicable to soil masses, could be

tuned to the 'live' situation. During this investigation it has been found that edge

effects seriously mask the expected behaviour of the mesh, it is therefore intended

132

Chapiell" 4 Db1iind Eliemellli Method of Cirdes

to discuss these effects and to show the steps that have been taken to overcome

them.

4.3.2 The contact behaviour

To show that the contact behaviour is correct the case of a single contact is

discussed first. Consider two circles, one above the other, with the lower one fixed.

Table 4. 7 shows the forces and displacements relevent to the upper mass in the

2000th calculation cycle. The information is from procedure consolsl. The first line

shows the forces and the second line the displacements, both sets of values show

the x value to be zero. The weight of the circle was 40 Newtons which corresponds

to the y value of force. The small y displacement shows that the situation has

reached a stable position.

A TBO CIRCLE TOBER
f O.OOOOOOOOOOOOOE+OO 4.0000000000000E+01

s O.OOOOOOOOOOOOOE+OO -2.4868996761604E-14

max individual disp 2.4868996761604E-14

Table 4.7 Output from CIRCLES after 2000 cycles

The case of an equilateral triangle of circles, where the lower two circles

are fixed, is a useful one. This is because the simplicity of the case eliminates

edge effect distortions to the stresses but does allow the investigation of contact

failure. The equilibrium force on each of the diagonal contacts may be shown

to be ~ acting along the contact line. The consolidation forces for equilibrium

are, therefore, a1 = mg/2 and a 3 = mg/2-/3. For failure just to occur then the

equivalent stresses of these forces must form the limiting values. For the case

of a purely cohesive soil these limits would be generated by a value of cohesion

corresponding to qa(l- .../J). For a mass of 4 and gravity of 1 this simplifies further

to give c = 0.42265. It was found by analysing this system with c = 0.42264 that

Chapter 4 Diatinct Element Method of Ci:rdes

both contacts failed. However, failure did not occur for c = 0.42265, which shows

the program behaviour to be correct.

4.3.3 The Mesh Edge effects

It is not possible to model a slope using a mesh consisting of a series of vertical

columns of circles. The reason for this is that because gravity acts downwards

there is no lateral movement of the circles to cause lateral forces. The columns are

therefore uncoupled and consolidate independently. An hexagonal close packed

mesh overcomes this lateral coupling problem.

The analysis of such a mesh as shown in Figure 4.5 highlights an edge effect.

The figure is composed of three sections. The lowest sections shows the circle

element mesh, the middle section shows the forces on the contacts and the top

section shows the contacts that have failed. Failed contacts appear as lines between

the dots representing the circle centres. These lines are proportional to the failure

forces. It can be seen in the figure that the forces within the mesh increase from

the top to the bottom and from the sides to the centre. However the forces for

successive contacts on the lowermost row of contacts show an alternation between

large and small forces. A large force occurring at the edge, then a small one, and

so on, to the middle.

To explain this effect consider the analysis in the early stages. As the mesh

begins to consolidate each successive horizontal layer of contacts becomes com

pressive with all of the circles above it falling due to gravity only. Consider such

a layer of circles, that is where the upper contacts are neither compressive nor

tensile, but where the lower contacts are compressive. In the next cycle the circles

above this layer will all fall by gbt 2 and will produce compressive forces in the

upper contacts. These forces will have horizontal and vertical components. In the

case of all circles except the outermost ones the horizontal forces will sum to the

134

40

20

0
0

.. 0 • 0 •• 0 ••• 0 ••••• 0 ••• 0 ••••••••

~ -=-

~·························-
·-·-- 0 ••••••••••• 0 ••••• 0. 0 ••• ~-· ... ·-·-- .. """'=-"-·-· ..

• • • • ·-·-·-· 0 •••••••••••••••••• 0 •• ·--·-·

• 0. 0 •• ·-·-·-· • 0 ••••• 0 ••• 0 0 ••••••• 0 ·-·-·-· •••• 0.

oo oo 01 o 0 ···-·-· o 0 0 o 0 o o 0 o 0 ° o 0 0 0 I I I 0 0 001_1.0fl0001 00

•• 0 •• •••••••••••• ••••••••• 0 ••• 0 ••••• ·-·-·············

••••••••• 0 •••••• 0-. • 0 • • • • • • • • • • • • • 0 • • 0 •••••••• 0. 0 ••• 0 •• 0

•••• 0 ••••• 0 •••••••••••••• 0 •••••••••••••

• · · · · · · · · · · ·X·X·X· • ·X· · • · · · · • ;y. · ·
(· ·l· ·l·l·•.•.

C. • • . . • • • .y:y:y;y.y ·"Y. • ·Y·"Y. • • • • . • • • . . • •
........ y.y;y.y ·Y· ·l'· ••..

f·X·X·X· · · · ·l·X· ·Y· · ·X· · · · · · · · ·X· · · · · · · · :Y;-"J
~l·~· ·~·~· ~- :y y ·~-~1
•. y•...•••..••..•••..•••..••

. ;y
·X· ·X· · · · • ·X· · · · ·X·X· · • • · · • • · · • • • · · • • • · · • · ·

C· • · · • • ·Y· ·X· • • · · • • • · · • • • · • ,"Y·Y· · • • • · ·

20 40 60 80

Figure 4.5 Analysis of embankment without contact correction

135

Chapter 4l Distinct IElement Method of Circles

circle forces to give a zero lateral body force. In the case of the outermost circles

the single upper contact force is not balanced due to the asymmetry of the mesh

at this point and hence will have a lateral displacement in the next cycle.

Each of the outermost circles will behave in a similar fashion and will give rise

to these circles acting independently from the main body. This independence gives

rise to higher contact forces down this diagonal column and lower forces between

this column and the next one. The low forces between these columns causes the

next diagonal column to behave in a similar fashion to the first. This then leads

to the generation of a series of high and low contact forces.

This effect builds up progressively in the embankment. The tensile forces are

generated first at the bottom corners and then gradually up the diagonal. The

tensile forces are then produced in the next diagonal, and so on, until eventually

the embankment may be seen to consist of the three regions as shown in the figure.

These are lefthand and righthand triangular zones of tensile horizontal contacts

and a middle zone of compressive horizontal contacts. If the cohesion and friction

of the soil are reduced the embankment shows compressive failure at the toes of

the slopes but the tensile zones dominate and distort the failure zones so that if

further contact failure occurs it happens at the top of the slope and in the middle

of the embankment. The latter occurs when the soil characteristics are made to

be weak to try and force a proper failure.

This edge effect problem is exaggerated by the edge circles consolidating faster

than the internal ones due to the number of contacts affecting them. This is as

a direct result of the equation for N 8 given previously. This was not initially

accounted for by the Distinct Element Analysis employed as there did not seem

to be a straightforward method of dealing with it. The problem in trying to

accommodate the number of contacts is in determining the number of contacts

a circle has before the force displacement law is executed, for it is here that the

136

Chapter 4l Distinct Ellement Method of Cirdes

damping factor is used. Furthermore, where two circles are involved which have

different numbers of contacts, the modified damping factor on the mutual contact

can not be easily determined. Such cases occur at the edge of the mesh, where,

if an average number of contacts were used, would not effectively deal with the

problem.

Therefore, it was decided to counter this effect by modifying the motion law.

This was achieved quite simply by dividing the circle displacement by the number

of active contacts that it has. Reducing the circle displacement at this stage is

equivalent to reducing it by this factor in the force displacement law to give a

reduced force. It is merely done at the last stage of the cycle rather than at the

first stage of the next. Applying this factor here allows the adjustment to be made

correctly for each circle. This is because it is dependent upon a property of the

circle rather than upon a property of a pair of circles, namely the number of active

contacts that a circle is involved in.

To find this number an additional process was introduced prior to the motion

law. As the displacements are greatest at the beginning of the analysis, it is at

this stage that the correction needs to be the most accurate. An active contact

is one that is compressive, or will become compressive in the next calculation

cycle. This is achieved crudely at present. If a circle has a contact with a fixed

circle the contact is assumed to be active, this will always be true if the fixed

circles are placed to restrain the circles and cause consolidation. To decide if a

contact is active when it is between two free circles the relative displacement is

examined, if it is not zero then the contact is active. Horizontal contacts are

presently considered as inactive as they are unimportant at the beginning of the

analysis. The contacts are counted by scanning the contact list for each circle and

the number of active contacts incremented for both the owner and the other circle

involved, if the contact is found to be an active one.

137

40

20 f- ·T·T· ...•.......•.... ·1 .
·X·X· ·X· ·X·•. ·X·
............•.......••...... ·X· •

. • . ·~: ..• ·X· .
. y.y ~

{· ·X·
~- y x. ... -i~i- ·X·l..

0 •• 0 0 0 •• 0 0 0. 0 .y.y. 0. 0 0 0 0. 0 .y .. 0 0 0. 0 0 0 0. ~

..... ·X· .•..•.•..•••.... ·X·Y·Y· •..•••..••.

0
(•X· .. :.X:·A· ...•.. . y.y.y.y . .•••..• •¥·1:· .• ·l:·l:· . ·J

0 20 40 60 80

Figure 4.6 Analysis of embankment using a contact correction

138

. -~·~·'X..·'X..·
.

.. . . "' ""'" ...
... -~·· .·

.................. ·'X..·~··
• 0 • • • • • • • • • • • • • •

······· -~··
•••••••• 0 • 0 • • • • • • •

• 0 •••• 0 • • • • 0 0 • • • •

. ·'X..·
• • 0 0 • • • • • • •

Figure 4. 7 Analysis showing partial wedge failure

139

Chapter 4 Di§tinct :!Element Method o:f Circles

The effect of this correction can be seen in Figure 4.6. Here the effect is still

found but in addition the outer diagonal edges failed in tension immediately with

high tensile stresses. An informative analysis is that shown in Figure 4. 7 where

the righthand vertical slope begins to shows a wedge failure caused by sliding, as is

to be expected. This at least shows some promise, however, the correction for the

number of contacts, as applied currently does not have the desired effect and any

soil like failure mechanisms are being obscured. It is presumed that the current

damping implementation lies along the lines described, but due to time has not

been elucidated.

140

Chapter 5

CHAP'JrlER 5

CONCJLU§][ON§

Condusions

The work described here developed from an investigation of the vibrations

associated with a traditional Distinct Element Analysis implementation. It was

found that they could be eliminated from the system by implementing a consol

idation type analysis. This consolidation technique has been described here by

difference equations. The solution of these equations shows that the convergence

of the system is governed by the stiffness, damping factor, gravity, contact length,

number of active contacts, element mass and the time step. The solution also

shows that the number of cycles required for convergence to a limiting value of

force, acceleration or displacement may be calculated for simple cases.

The machine accuracy limits the propagation of effects through the system.

Long hand expansion of the displacements, forces and acceleration of a simple

system showed that the limit of propagation was affected largely by the time step.

This led to the recommendation that the time step and stiffness are both unity so

that the effects are not attenuated too quickly on passing through contacts.

To facilitate the continuing development of the Distinct Element Analysis

the programs have been written in PASCAL for ease of amendment. These pro

grams may be viewed as suitable for forming the basis for new implementations,

requiring a change in the motion or force displacement laws to alter the media un

der investigation. This has a great advantage over FORTRAN equivalents where

considerable effort is required for quite small amendments.

141

Chapter 5 Conclusions

By including an input procedure that parses an input command language and

allows interactive error correction the setting up of analysis problems is straight

forward. This input method also prevents having to abort a run part way through

due to a simple typing error. In conclusion, the programs written are flexible in

terms of their ease of use, modification and utilisation as a base for modelling a

different media.

The analysis carried out by Program SLICES is similar to the traditional

method of slices and to the Rigid Block Model that formed the initial study.

SLICES uses the consolidation technique developed to model soil slopes given a

failure arc by dividing the slope into slices. The use of the program is therefore

restricted to systems with a predetermined failure arc or to interactive use so that

the least stable failure arc is found for a given slope. Currently the soil slope may

not contain different layers of soil.

The validation was carried out by comparing the results from SLICES against

a traditional method. Fifteen test cases have been used, five cases for each of three

slopes. Each slope was tested under two cases of total stress and three cases of

effective stress conditions. The last case utilised a non-linear failure criterion.

Both frictional and cohesive soil types were modelled.

The testing showed that the failure conditions were most easily determined for

frictional soils. The results from SLICES were similar to those from the traditional

method, differing by one or two degrees in friction or kN/m2 in cohesion. Where

a difference larger than this occurred it was because a tension crack was predicted

by SLICES that could not be modelled by the standard method. This shows

an advantage of SLICES over the traditional method. A further advantage of

SLICES is the ability to use a non-linear failure criterion. The results using this

could not be compared with the traditional method but were consistent with the

other SLICES results. This facility coupled with the ability to predict tension

142

Cllun.pter 5 Condusions

cracks enables SLICES to give a more accurate indication of the behaviour of a

slope than the traditional method.

A worthwhile enhancement to SLICES would be the incorporation of addi

tional subcontacts on the inter-slice edges to allow for the modelling of soil masses

with layers of different soil types. The contact failure laws need adjustment to re

duce the rigid block behaviour of the slices and to increase the soil-like nature

of the contacts. Some further work needs to be carried out in the validation of

SLICES particularly in comparison with known case studies.

The development of the program CIRCLES has been constrained by time,

predominantly in the later stages of validation. In Program CIRCLES the Distinct

Element Analysis has been applied to soil in terms of circular areas of influence

rather than as a physical model. There is no restriction upon the number of soil

types modelled and a predetermined failure mechanism is not required.

The program has been shown to work adequately for simple cases but some

difficulties have been encountered in applying it in general. The validation showed

that edge effects caused an incorrect stress regime to be set up that masked the

failure process. An attempt was made to rectify this by introducing an additional

damping factor which was applied to the displacements of the circles. This fac

tor was the reciprocal of the number of active contacts belonging to the circles,

but proved to be only partially successful. However a sliding type failure was

demonstrated where the edge effects seemed not to be strong enough to mask the

effect.

Perhaps the most far reaching finding of the investigation into the edge effects

is the impact that differing numbers of active contacts belonging to the circles can

have. In terms of time this has the effect of promoting some circles ahead of others

in the analysis and is rather like a 'time warp' occurring in the mesh.

143

Chapter 5 Conclusions

Work needs to be carried out to investigate the edge effects further and a

satisfactory correction procedure implemented. The starting point for this work

could be an investigation into the behaviour of several different mesh configura

tions, for example, loosely packed, close packed and random. Two enhancements

to CIRCLES to bring it in to line with SLICES would be the accommodation of

effective stress, and the inclusion of a non·-linear failure criterion for the contacts.

The aim of this work was to show that Distinct Element Analysis may be

applied to soil masses. Unlikely though this may seem this has been achieved by

Program SLICES which provides a more accurate indication of the slope behaviour

than traditional methods. In view of this, despite the current edge effects shown

by CIRCLES, the goal of modelling the generation of a failure zone in a soil slope

is worth pursuing along these lines.

144

REFERENCE§

Belytschko, T., Plesha, M.E., Dowding, C.H., 1983, A Computer Method for

the Stability Analysis of Caverns in Jointed Rock. Proceedings of the Interna

tional Conference on Constitutive Laws for Engineering Materials. January

1983. pp333-339

Bishop, A.W., 1955, The Use of the Slip Circle in the Stability Analysis of

Slopes. Geotechnique v5 pp7-17.

Cundall, P.A., 1971, A Compute1· Model for Simulating progressive, Large

Scale Movements in Blocky Rock Systems. Proceedings of the International

Symposium on Rock Fracture. Nancy, France. (I.S.R.M.) Paper Il-8.

Cundall, P.A., 1976, Explic'it Finite Difference Methods in Geomechanics.

A.S.C.E Engineering Conference Numerical Methods in Geornechanics. Bl

acks burg, Virginia. pp. 132-150.

Cundall, P.A., Strack, O.D.L., 1979, Discrete Numerical Model for Granular

Assemblages. Geotechnique, v29 No1 March 1979, pp47-65.

Dames and Moore., 1978, Computer Modelling of Jointed Rock Masses. Da

mes and Moore Advanced Technical Group Technical Report no N-78-4, Au

gust 1978.

Dowding, C.H., Belytschko, T., Yen, Y.J., 1983, Dynamic Computational

Analysis of Openings in Jointed Rock. Journal of Geotechnical Engineering

v109, pp1551-1566.

145

Dowding, C.H., Belytschko, T., Yen, Y.J., 1983, A Coupled Finite-Element

Rigid Block Method for Transient Analysis of Rock Caverns. International

Journal for Numerical and Analytical methods in Geomechanics v7, pp117-

127.

Fellenius, W., 1936, Calculation of Stability of Earth Dams. Transactions of

the 2nd. Congress on Large Dams.

Garrard, G.F.G. 1984 The Collapse of Shallow Mine Workings. Ph. D. Thesis,

University of Durham.

Goodman, R.E., 1976, Methods of Geological Engineering in Discontinuous

Rocks. West Publishing Company, St. Paul, MN.

Grogono, P., 1980, Programming in Pascal. Revised Edition, Addison-Wesley.

Reading, Mass.

Janbu, N., 1973, Slope Stability Computations. in Hirschfeld, R.C., Poulos,

S.J. (Ed.) Embankment -Dam Engineering, Casagrande Volume, J. Wieby

and Sons, pp47-86.

Lorig, L.J.A., Brady, B.H.G., 1982, A Hybrid Discrete Element Boundary El

ement Method of St·ress Analysis. Issues in Rock Mechanics, Univ. California,

Berkeley. pp628-636.

Lorig, L.J.A., Brady, B.H.G., 1983, An Improved Procedure for Excavation

Design in Stratified Rock. in Rock Mechanics - Theory - Experiment -

Practice, 24th US Rock Mechanics Symposium. Texas A and M University

College Station. pp577-586.

14()

Lorig, L.J.A., Brady, B.H.G., 1984, A Hybrid Computational Scheme for

Excavation Support Design in Jointed Rock Media. I.S.R.M Symposium -

Design and Performance of Underground Excavations. pp105-112. Cam

bridge UK.

Lorig, L.J.A., Brady, B.H.G., Cundall, P.A., 1986, Hybrid Distinct Element

-Boundary Element Analysis of Jointed Rock. International Journal of Rock

Mechanics Mining Science and Geomechanical Abstracts. v23 No 4 August

1986 pp303-312.

Lysmer, J. and Kuhlemeyer, R.L., 1969, Finite Dynamic Model for Infinite

Media. Journal of the Engineering Mechanics Division, ASCE, v95, No.

EM4, August 1969, pp859-877.

Meek, J.L. and Beer, G., 1984, A Review of Analysis Techniques for the Deter

mination of Stresses around and Performance of Excavations in Hard Rock.

Chapter 1. pp1-10. in Des·ign and Pe1jormance of Underground Excavations.

I. S. R. M. /B. G. S., Cambridge.

Michigan Terminal System, Volume 2, 1981, Public File Descriptions. Pub

lished by the University of Michigan Computing Centre, Ann Arbor, Michi

gan, October 1981.

Plesha, M.E., 1986, Mixed Time Integration for the Transient Analysis of

Jointed Media. International Journal of Numerical and Analytical Methods

in Geomechanics, vlO, No 1, January- February 1986, pp91-110.

Rouse, K.A., 1982 A Computer PTOgram for Modelling Jointed Rock Mass

Behaviour. M.Sc. Thesis, University of Durham.

147

Voegele, M., 1978, An Interactive Graphics - Based Analysis of the Support

Requirements of Excavations in Jointed Rock Masses. Ph.D. Thesis, Univer

sity of Minnesota.

Watson, C.R., 1983, A Program Designed to Model the Behaviour of Discon

tinuous Rock Masses. M.Sc. Thesis, University of Durham.

Wilkins, M.L., 1969, Calculation of Elastic - Plastic flow. Report UCRL-

7322 Revision I, Lawrence Radiation Laboratory, University of California,

Livermore.

148

Ap:pellldix A.

APPENDJIX A

MATHEMATJICAJL NOTATJION

lxl is the absolute value of x.

xis the maximum value of x.

V is the logical or operator.

1\ is the logical and operator.

-+ tends to.

::::? implies that.

A.].

a is the angle the failure arc makes with the horizontal at the toe of a slope.

a is acceleration.

A is a controlling constant in difference equation solutions.

f3 is the angle between circle centres and the horizontal.

B is a controlling constant in difference equation solutions.

c is cohesion.

C is consolidation force.

dis the numerical damping factor.

D is the distance between circle centres.

D1 is the overall numerical damping factor.

c/J is a soil parameter representing the angle of friction.

F is contact force.

Force is force acting on the centroid of elements.

g is gravity.

G0 is the initial radial distance between centres.

Gr is the radial distance between centres.

I::!G is the change in the radial distance between centres.

H is dashpot damping force.

I is the number of active contacts an element has.

k is contact stiffness.

Appendix A.

K is contact dashpot stiffness.

L is contact length.

Lim is the limiting difference value of force, stress and so on.

JL is the coefficient of friction.

m IS mass.

M is element movement from the original position.

N is the number of cycles for a limiting difference to be reached.

P is the coordinate position of element centroid.

CJ is stress.

CJ1 is the major principle stress.

CJ3 is the minor principle stress.

S is the increment of displacement occurring in a specific time step.

T is shear stress.

t is total time.

() is angle between block edge and the horizontal.

lit is the time step.

u is pore water pressure,.

v is velocity.

The following symbols are used as subscripts.

A.2

c prefixed to a quantity refers to a block contributing the corner to a contact.

e prefixed to a quantity refers to a block contributing the edge to a contact.

1 prefixing the quantity refers to a specific distinct element.

a, f, CJ or s applied to Lim refers to the quantity at limiting difference.

n refers to the direction of normal movement on a contact.

r refers to the radial direction.

s refers to the direction of shear movement.

x refers to the x direction.

y refers to the y direction.

n as a preceeding superscript refers to a specific calculation cycle.

Appellll.dlix B. JB.]_

AJPJPENDJIX B

§LJICE RE§ULT§

set echo off damp 0.05 0.2

start SLOPE 1, PHI

0 16 0

create free 0.0 20.5 2.0 1.0 0.0 20.5 0.0 0.0 0.0 1 14.0 1 14

2 10.5 2 14

create free 0.0 20.5 2.0 1.0 0.0 20.5 0.0 0.0 0.0 3 8.9 3 14

create free 0.0 20.5 2.0 1.0 0.0 20.5 0.0 0.0 0.0 4 7.7 4 14

create free 0.0 20.5 2.0 1.0 0.0 20.5 0.0 0.0 0.0 5 6.9 5 14

create free 0.0 20.5 2.0 1.0 0.0 20.5 0.0 0.0 0.0 6 6.3 6 14

create free 0.0 20.5 2.0 1.0 0.0 20.5 0.0 0.0 0.0 7 5.7 7 14

create free 0.0 20.5 2.0 1.0 0.0 20.5 0.0 0.0 0.0 8 5.4 8 13

create free 0.0 20.5 2.0 1.0 0.0 20.5 0.0 0.0 0.0 9 5.1 9 12

create free 0.0 20.5 2.0 1.0 0.0 20.5 0.0 0.0 0.0 10 5.0 10 11

create free 0.0 20.5 2.0 1.0 0.0 20.5 0.0 0.0 0.0 11 4.9 11 9.9

create free 0.0 20.5 2.0 1.0 0.0 20.5 0.0 0.0 0.0 12 5.0 12 8.9

create free 0.0 20.5 2.0 1.0 0.0 20.5 0.0 0.0 0.0 13 5.1 13 7.8

create free 0.0 20.5 2.0 1.0 0.0 20.5 0.0 0.0 0.0 14 5.4 14 6.8

create free 0.0 20.5 2.0 1.0 0.0 20.5 0.0 0.0 0.0 15 5.8 15 5.8

meshend

set damp 0.05 0.2 time 1 gravity -10 cmdproc on framelimit 100

eritegap 32 interval 32

cmdlist plot standard set calc ~ritegap * 2 interval * 2 cend

echo on

go 16383 stop

Table 3.14 Input commands for result set 1

~
"Q

22 ~ SI.IIPF I. PHi TillE Q OOOOEOO J ~ 51.: I PHI UIIE ~ = j I
1.4 ~·
1.2 fl--._ A QJ

20 ~ ~ 1.0 / .--<)' \ 0

0.8
0.6

~ 18 0.4
crq· 0.2
~ 0.0
(il lil A £ SS/LIH 16 - ... ,g
C,.., 3. 5 2 4 6 A 8 10 12 14
0')
UQ 3.0
~ 14 2.5
~ 2.0
00 1.5
'g 1.0
~ 12 0.5
(b o.o ~ INTt~~ws 1 1 I I , ,

00 30 ~
8' 10 20 2 4 6 8 10 ~12 14
..,
.., 10
~ 0
e. 8 -10
~

00 -20
a -~
t-' 6 -40

~ 1~8 ~ 2 4 6 ~a 10 12 14

4 ~ J 100
ao
60

2 ~ ~ 40
20

0 0 t ARC 4• 1
' 0 I o I I o 1 1 o ';\A j ~

o 2 4 6 a 10 12 14 o 2 4 6 8 10 12 14 ~

~
"Q

SLOPE I. PHI TIME 0. 6400E02 I I SLOPE I PHI TINE 0 1280EOJi 16
1;1
~

3.0 5.0 t 1 ~·
25

4.5 ~ ~
• 4.0 ~ ~ gg

"xj 2. 0 3. 5 . •
&q· I 5 3.0 s= • 2.5
~ I 0 2.0
w • 1.5
~ 0.5 1.0
0) 0 0 0.5
~ • Ol~ t SS/LIM

~ ~ 10 12 14 12 2 4 ~ B 10 12 14

I'll 6 10
'1:l ~ 5 8
0
~ 4 6
~ 3
I'll 2 4
~ I 2
~

~ 0 !NT 0
('!) 40 40
~ ()) 2
:;::;:' 20 20
rn
~ 0 0
1-'
~ -20 -20

(")

g -40 -40
.,-+-

§" -60 t88 ~ SSIL!M

~~~ I~ 2 
~ 120 120 

100 100 
80 80 
60 60 
40 40 
20 20 
0 0 [ ARC (N I I I I I I I I : ' ' I ~LA. 1 ~ 

0 2 4 6 8 10 12 0 2 4 6 8 10 12 14 ~ 



~ 
"g 

SLOPE I. PHI TIHE 0.2560E03 I I SLaeE 1 et:J.l TIME a 5.1212EQJ I 'g 
l;l 
!2,. 

7 ~ t ~~ 1 ~ 6 
~ .... 5 6 

(Jq 4 5 
~ 
"1 3 4 
(1) 

c:,.., 2 
3 

~ 1 
2 
1 

00 
28 

SS/LIH 0 G SS/LIH -"1 24 2 4 6..,., ' a...,_ 10 12 (1) 18 2 10 12 14 14 
Ul ~6 Ul 16 
'0 14 18 
"1 12 

16 
0 14 
::::n 10 16 :;) 8 
Ul 6 8 

cr 4 6 
4 

"1 2 6 "1 0 INT (1) -~o Ul 20 
2 ~ 10 

4 6 8 10 10 ,.. - / ""'- L1M\T -Ul 0 0 
(1) 

-10 -10 .,.... 
....... -20 -20 
-.. -30 -30 (") 
0 -40 -40 ::s 
:;::!'". -50 -50 

= 1&8 SS/LIH r88 ~ 
(1) 

0.. 140 2 4 12 14 140 
'--" 120 120 

100 100 

80 80 

60 60 
40 40 

20 20 

t 
, <> 

1~ 0 0 ARC !. l'l 1 I I I I I I I I ' I lu 
\A 

0 2 0 2 4 6 8 10 12 14 ~ 
4 6 8 10 12 14 



SLQPE I. PHI TIHE 0. IQ24E04 

10 10 

~ 8 8 ...... 
~ 6 6 

"'' t'tl 4 4 
~ 

0:, 2 LIM lT 2 

~ §O 55/LIH O 
(;l 2 14 30 
~ ~ ~ 

~ ~ ~ 
~ 15 15 

ff 10 10 

~ 5 5 
"'' ""~ 0 INT 0 
~ 5 2 4 0 = 5 -5 
~ -,0 -10 
oo :,s -15 
t'tl ~ ~ 
~~ ~ 
t-' =30 -30 

,.-... -35 -35 8 -40 -40 

a~ ~ 
...... -55 -55 
S t88 55

/LIH TS8 a. 140 2 4 140 
--- 120 120 

100 100 
00 00 
~ ~ 
40 40 
~ ~ 
0 0 

L_~~~----------------------------------~u~~ L 
0 2 4 6 8 10 12 14 0 

~ 
l'g 

SLOPE I PHI IIHE 0. 2048E04 I ~ 
!;! 
~ .... 
~ 

t%1 
0 

Ltl'<\tT 

55/LIH 

2 12 14 

2 4 6 8 10 

55/LIM 

2 4 14 

~- ~ . rn 
2 4 6 8 10 12 14 

(;J1l 



~ 
SLOPE I. PH! TIME 0. 4096£04 SLQPE !. PH! TIME 0.8192E04j ] 

t;l 
~ .... 
~ 12 12 

~ 10 10 
~ 8 8 ..... 

()1:1 
s= 6 6 
"1 
ct> 
c,..:J 4 4 

en 2 2 
rn 55/LIH c+ 0 0 
"1 
ct> 30 2 12 14 30 
C/l 

55/LIH 

2 12 14 
C/l 

25 25 
"t:l 
"1 20 20 
0 
:;::h IS IS -ct> 
C/l 10 10 
0' 5 5 
"1 

"1 0 INT 
0 

ct> 
C/l 0 0 
s= -5 -5 -c+ -10 -10 
C/l -IS -IS 
ct> -20 -20 
c+ 

-25 -25 
I-" -30 -30 

..--.. -35 -35 
(") -40 -40 
0 
1:::1 -45 -45 
e+ -SO -50 ..... 

-55 -55 l:l 55/LIM s= r88 r88 ct> 2 0... 140 4 140 
'--' 

120 120 

2 4 6 8 10 12 
!NT ~ 

55/LIM 

2 4 6 12 14 

100 100 
80 80 
60 60 
40 40 
20 20 
0 0 

\,A L 

0 ? 
"" 

... R 10 1? 1/, 0 
ARC - V\ 

2 4 6 8 10 12 14 
0 

~ 

(jj 



N 0 
CO -o ..:t N 

0 Ll1 0 Ll1 0 OlllOLllOLllOLllOLllOO 0 0 0 
0 ~ N N Ll1 0 Olll--NN~~..:t..:tllllll'()() ..:t N 0 0 0 0 0 

I I I I II I I I I I lo----co-o..:tNO 

Figure 3.6 Stress profiles for result set 1 (continued) 



B.§ 

set echo off damp 0.06 0.2 

start SLOPE 2, PHI 

0 12 0 

create free 0.0 31.6 2.0 1.0 0.0 31.6 0.0 0.0 0.0 1.0 14.0 1.0 14 

1.6 11.8 1.6 14 

create free 0.0 31.6 2.0 1.0 0.0 31.5 0.0 0.0 0.0 2.0 10.6 2.0 14 

create free 0.0 31.6 2.0 1.0 0.0 31.6 0.0 0.0 0.0 2.6 9.7 2.6 14 

create free 0.0 31.5 2.0 1.0 0.0 31.6 0.0 0.0 0.0 3.0 9.0 3.0 14 

create free 0.0 31.6 2.0 1.0 0.0 31.6 0.0 0.0 0.0 3.6 8.36 3.6 14 

create free 0.0 31.5 2.0 1.0 0.0 31.5 0.0 0.0 0.0 4.0 7.8 4.0 14 

create free 0.0 31.6 2.0 1.0 0.0 31.6 0.0 0.0 0.0 4.5 7.36 4.5 14 

create free 0.0 31.5 2.0 1.0 0.0 31.5 0.0 0.0 0.0 6.0 6.95 5.0 14 

create free 0.0 31.5 2.0 1.0 0.0 31.5 0.0 0.0 0.0 6.5 6.6 5.6 14 

create free 0.0 31.5 2.0 1.0 0.0 31.5 0.0 0.0 0.0 6.0 6.3 6.0 14 

create free 0.0 31.6 2.0 1.0 0.0 31.6 0.0 0.0 0.0 6.6 6.025 6.5 13 

create free 0.0 31.6 2.0 1.0 0.0 31.6 0.0 0.0 0.0 7.0 6.8 7.0 12.1 

create free 0.0 31.5 2.0 1.0 0.0 31.6 0.0 0.0 0.0 7.5 5.6 7.5 11.2 

create free 0.0 31.6 2.0 1.0 0.0 31.6 0.0 0.0 0.0 8.0 5.45 8.0 10.3 

create free 0.0 31.6 2.0 1.0 0.0 31.5 0.0 0.0 0.0 8.5 5.3 8.5 9.5 

create free 0.0 31.6 2.0 1.0 0.0 31.5 0.0 0.0 0.0 9.0 6.2 9.0 8.6 

create free 0.0 31.5 2.0 1.0 0.0 31.5 0.0 0.0 0.0 9.5 6.1 9.6 7.7 

create free 0.0 31.5 2.0 1.0 0.0 31.5 0.0 0.0 0.0 10.0 5.05 10.0 6.8 

create free 0.0 31.5 2.0 1.0 0.0 31.5 0.0 0.0 0.0 10 .. 5 5.0 10.5 5.85 

create free 0.0 31.5 2.0 1.0 0.0 31.5 0.0 0.0 0.0 11.0 5.0 11 6.0 

meshend 

set damp 0.05 0.2 time 1 gravity -10 cmdproc on framelimit 100 

vritegap 32 interval 32 

cmdlist plot standard set calc vritegap * 2 interval * 2 cend 

echo on 

plot page go 16383 stop 

Table 3.15 Input commands for result set 2 



0 

O.CXli'-'Oln4"1'f'lN-<:liD4"NO 0000000 0 0 
----CXl'04-NO 0-NI'f'l..;t-ln'OI'- N 0 0 0 0 0 

u 
1% 
< 

1111111 CXl'04"NO 

0 

0 

CX) 

N 

~------~------~~------J-------~--------~------~------~~------J-------~0 
N 0 

N 0 CX) 

Figure 3.7 Stress profiles for result set 2 



Appendliix B. JB.Hll 

set echo off damp 0.06 0.2 

start SLOPE 3, PHI 

0 7 0 

create track 0.0 48.0 2.0 1.0 0.0 48.0 0.0 0.0 0.0 1.0 14.0 1.0 14 

1.6 11.8 1.6 14 

create track 0.0 48.0 2.0 1.0 0.0 48.0 0.0 0.0 0.0 2.0 10.6 2.0 14 

create track 0.0 48.0 2.0 1.0 0.0 48.0 0.0 0.0 0.0 2.6 9.7 2.6 14 

create track 0.0 48.0 2.0 1.0 0.0 48.0 0.0 0.0 0.0 3.0 9.0 3.0 14 

create track 0.0 48.0 2.0 1.0 0.0 48.0 0.0 0.0 0.0 3.6 8.36 3.6 14 

create track 0.0 48.0 2.0 1.0 0.0 48.0 0.0 0.0 0.0 4.0 7.8 4.0 14 

create track 0.0 48.0 2.0 1.0 0.0 48.0 0.0 0.0 0.0 4.6 7.36 4.6 12 

create track 0.0 48.0 2.0 1.0 0.0 48.0 0.0 0.0 0.0 6.0 6.96 6.0 10 

create track 0.0 48.0 2.0 1.0 0.0 48.0 0.0 0.0 0.0 6.6 6.6 6.6 8 

create track 0.0 48.0 2.0 1.0 0.0 48.0 0.0 0.0 0.0 6.0 6.3 6.0 6.3 

meshend 

set damp 0.06 0.2 time 1 gravity -10 cmdproc on framelimit 100 

eritegap 32 interval 32 

cmdlist plot standard set calc writegap * 2 interval * 2 cend 

echo on debug oscil on 

plot page go 16383 stop 

Table 3.16 Input commands for result set 3 



~ 
og 

16 1- SLfJPE 3. PHI TIHE O.OOOOEOO~ I S.W.PE .t elil lllfE__ft5865E04 I ~ 
~ 
~ 

5.0 t 
~ 1 ~ 4.5 

4.0 
3.5 

"''j 14 3.0 .... 
2.5 ()q 

s:: 
2.0r 

1-1 
(!) 

~ 
4.5 1 2 00 ~ 4 5 6 4.0 

U'1 3.5 c+ 
1-1 3.0 (!) 

2.5 C/.1 12 Cll 
2.0 

"t:: 1.5 1-1 
0 1.0 :::t:> 0.5 -(!) 

0~0 f INTER - N I I I I I I I I l7.l 
IV.. 

8"' 1 

' 2 3 4 5 6 1-1 -10 
1-1 

-20 (!) 10 C/.1 s:: -30 ,__. 
c+ 

-40 C/.1 
(!) 

-50 c+ 

~ -60 

8 1- '\.I I I \ ~ 

-70~ 
60 1 l 3 ~ 5 6 
so 
40 
30 
20 
10 

1 E 0 t ARC- NS ~I I I I I I I I V\. 6 
0 1 2 3 4 5 6 0 1 2 3 4 5 6 f=! 



set echo off damp 0.05 0.2 debug update on 

start SLOPE 1, C 

0 16 0 

create free 24.0 0 2.0 1.0 24.0 0 0.0 0.0 0.0 1 14.0 

2 10.5 

create free 24.0 0 2.0 1.0 24.0 0 0.0 0.0 0.0 3 8.9 

create free 24.0 0 2.0 1.0 24.0 0 0.0 0.0 0 .. 0 4 7.7 

create free 24.0 0 2.0 1.0 24.0 0 0.0 0.0 0.0 6 6.9 

create free 24.0 0 2.0 1.0 24.0 0 0.0 0.0 0.0 6 6.3 

create free 24.0 0 2.0 1.0 24.0 0 0.0 0.0 0.0 7 6.7 

create free 24.0 0 2.0 1.0 24.0 0 0.0 0.0 0.0 8 5.4 

create free 24.0 0 2.0 1.0 24.0 0 0.0 0.0 0.0 9 5.1 

create free 24.0 0 2.0 1. 0 24.0 0 0.0 0.0 0.0 10 6.0 

create free 24.0 0 2.0 1.0 24.0 0 0.0 0.0 0.0 11 4.9 

create free 24.0 0 2.0 1.0 24.0 0 0.0 0.0 0.0 12 6.0 

create free 24.0 0 2.0 1.0 24.0 0 0.0 0.0 0.0 13 6.1 

create free 24.0 0 2.0 1.0 24.0 0 0.0 0.0 0.0 14 6.4 

create free 24.0 0 2.0 1.0 24.0 0 0.0 0~0 0.0 15 5.8 

meshend 

set time 1 gravity -10 cmdproc on framelimit 100 

debug slices contacts general stop 

aritegap 32 interval 32 

1 14 

2 14 

3 14 

4 14 

6 14 

6 14 

7 14 

8 13 

9 12 

10 11 

11 9.9 

12 8.9 

13 7.8 

14 6.8 

15 5.8 

cmdlist plot standard set calc aritegap * 2 interval * 2 cend 

echo on 

go 16383 stop 

Table 3.17 Input commands for result set 4 

B.12l 



JB\.13 

N N 

0 0 

co 

"()-.1"NOO:X>-.t-NO ~ll'IOll'IO Oll'IOll'l 0 0 
NNNN-----~NON • • • • • • • • • • • • • • •NN--ll'IOll'I--NN N 0 0 0 0 0 
I~ IIIII C0"()-.1"NO 

I 

N 

0 

co 

N 

L---~----~--~----~----~--~----~--~----~----~--~--~0 
N 
N 

0 
N 

co N 0 
co 

Figure 3.9 Stress profiles for result set 4 

N 0 



~ og 

SLOPE I. C W:tE O.Q400E02l I S.l O.e.E l, C W:tE Q, l2BOEQJ.l "g 
!;:l 

~! n • 0 0 : c c : ' : c ~~ L~v~. ,.-
c 'Luu. 1,.-

~ :! 1g 
..... 16 

()q 14 

~ 16 
16 

~J 
~ 
6 
4 
2 

J 
('!) 7 12 ll 2 4 6 8.A. 10 12 14 
Ul 
Ul 6 10 

't:l 5 
'"1 8 
0 4 ::n 6 - 3 ('!) 
Ul 

2 
4 

0' 1 2 
'"1 

'"1 0 INT 
0 

('!) 
Ul 25 25 $-s:: 2 4 6 8 10 - 20 20 
e+ 

Ul 15 15 
('!) 10 10 
c+ 5 5 
~ 0 0 

,..-... -5 -5 
8 -10 -10 
==' -15 -15 
a-. -20 -20 
==' -25 -25 
s:: 160 180 ¢l 
('!) 

~ 140 
160 2 4 6 ;.._8 10 12 14 
140 

120 120 
100 100 
80 80 
60 60 
40 40 
20 20 t ARC~ I 

~ iE 0 0 u. 
I I I I I I I I I I 'R 

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 ~ 



~ 
'Q 

SLOPE /._C TINE 0 2560E031 I SlOPE I c TINE o st2DE03I "g 
~ 

~* n 0 c 0 0 ' ' 0 : 0 0 : l ~ LtM.\1 
0 

Ull4.tT 

~ 1~ J ~ ..... 
OC'I 

~~ 
14 

~ 16 
1"1 
('b ~ (J.;I 

C-0 

j -t 00 -1"1 
('b 18 2 14 22 ([ 2 4 6 8 J..Oo._ 12 14 
CJl 16 20 
CJl 

't:l 14 18 

12 
16 

1"1 14 
0 10 12 ::n - 8 10 
('b 

6 
8 

CJl 6 
cr 4 4 
1"1 2 2 
1"1 0 !NT 

0 
('b -2 
CJl 25 2 6 8 10 -2 $- 2 4 6 8 10 
~ 4 -4 12 - 20 - 15 -6 

~ 10 
-8 
-10 - 5 -12 

~ 0 -14 
...-.... -5 -16 
n -10 -18 
0 
l;j -15 -20 - -20 -22 ~" \ J L.tt\\,\1 -· -24 55/l'- \ ---o-__ 
I:' -25 
~ :268 2 4 
('b 180 2 14 6 A..8 10 12 14 
p... 180 

.._ 160 160 
140 140 
120 120 
100 100 
80 80 
60 60 
40 40 
20 20 

~ ARC~ 
"\, 

~E 0 !A 
0 I I I I I I ~ I ~ I '!:! 

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 ~ 



> 
'G 

SLOPE L C IIHE 0.1024£04 I I SLDPE I. C Ill1E_ D.2048E04l 'g 
~ 

~ ~~ L<M~ fH .. ·~' ' ' 'l'~" l~ 
.... 1* 1* 
~ la !6 
~ * * ; j Jo 
~ 25 4 6 1 4 25 ~ 2 4 6 6 1J)o...._ 1 2 1 4 
w 
~ ~ ~ 
~ 

~ 15 15 

[ 10 10 

~ 5 5 
~ 

~ 0 !NT O { INTt~ ' ' ' ' ().. m 6 ~ 
~ =a 2 4 6 a 10 12 _10 <t2 4 6 a 10 12 14 
:;:;:' -10 -12 
g; -12 -14 
~ -14 -16 
...,.. -16 -18 
--- -18 
a~ ~ 
a~ ~ s· -24 -24 
c ~ 
(!) 200 4 6 1 2 1 4 1 80 (jl. 2 4 6 
p... 180 160 

..._ 160 140 
140 120 
120 100 
100 80 
00 ~ 
60 40 
40 

~0 ARC - lA ~
0 f ARC ~ I I I I ' ' I ' I ' ~ u. ~ E 

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 ~ 



~ 
~ 

SLOPE I. C TIHE D.4D96E041 I SUl.eE. (, C W1.E Q 8122E04 I "g 
(j) 

~* I 
~ 

~~ 
I) c: F--=;;'C:\ : 0 l ~ l\IVvill 

0
lii1A IT 

~ ii ..... 16 ()q 14 s:: 
16 

12 
"1 

~0 C1) 

~ !;...:> 

c.o 4 

~ -~o 
2 

55/L H -~O ~ SS/L'l1 
2 4 6 14 4 6 8 1j)o...__ 12 14 Cll 

Cll 25 25 
'0 

20 20 "1 
0 
::n 15 15 ........ 
C1) 

10 Cll 10 
0' 5 5 
"1 

"1 0 0 INTEil - Ill ' I I I I I I 
C1) v.. =~0 { 

' I ' ·~ Cll -8 s:: -10 6 8 10 12 14 t2 4 6 8 10 12 14 ..... 
e-f- -12 
Cll -12 
C1) -14 -14 
~ 

~ -16 -16 
,.........., -18 -18 
(') -20 0 -20 
l:l -22 -22 e-f-

-24 I ........ ,~ \ \ / _,.-LIMCI ..... MC'f" l:l -24 s:: 200 200 
C1) 

180 4 6 12 14 180 ~ 2 4 6 A.8 6 10 12 14 0.. ...__.. 160 160 
140 140 
120 120 
100 100 
80 80 
60 60 
40 40 
20 20 

t ARC~= 
v 

~E 0 0 I I I I I I I I I I ARC - lA. 'lA 
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 ~ 



JB.l§ 

-o-:tNO<XN>-4"NO 0 lfl 0 lfl 0 0 N ~ '() CD 0 N ~ 0 0 0 0 0 0 
NNNN-----~NONI'fl N N lfl OCD----- N N NOCD>O~NOOOOO 

I I I I I I I I I IN-----CD'<l~NO 

Figure 3.9 Stress profiles for result set 4 (continued) 



Appell].dix B. B.l'£1 

set echo off damp 0.025 0.1 

start SLOPE 2, C 

0 12 0 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 1.0 14.0 1.0 14 

1.5 11.8 1.5 14 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 2.0 10.6 2.0 14 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 2.5 9.7 2.5 14 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 3.0 9.0 3.0 14 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 3.5 8.35 3.5 14 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 4.0 7.8 4.0 14 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 4.6 7.35 4.5 14 

create free 37. 0 0. 0 2. 0 1. 0 37. 0 0. 0 0. 0 0. 0 0. 0 5. 0 6. 95 5. 0 14 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 5.5 6.6 5.5 14 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 6.0 6.3 6.0 14 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 6.5 6.025 6.5 13 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 7.0 5.8 7.0 12.1 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 7.5 5.6 7.5 11.2 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 8.0 5.45 8.0 10.3 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 8.5 6.3 8.5 9.5 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 9.0 5.2 9.0 8.6 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 9.6 6.1 9.6 7.7 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 10.0 6.05 10.0 6.8 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 10.6 6.0 10.6 5.86 

create free 37.0 0.0 2.0 1.0 37.0 0.0 0.0 0.0 0.0 11.0 5.0 11.0 5.0 

meshend 

set time 1 gravity -10 cmdproc off framelimit 100 

aritegap 2000 interval 3~ 

cmdlist plot standard set calc aritegap * 2 interval * 2 cend 

echo on 

plot page go 32383 stop 

Table 3.18 Input commands for result set 5 



> 
"g 

SLOPE 2. C TIHE 0. OOOOEOO I I SLOPE 2. C TIHE fl. 1638E05I ~ 
l;l 

16 ~ j :~ ~ • • • ' ' • • ' • • • • • ' • • • ' j ~ 
30 ltful.l\ tQ 
~ 0 

20 
14 15 

~ 10 
~ 5 
~ 0~ 
<:.;:! 12 18~ 2 4 
~ 16 
en 14 
- 12 
~ 10 
C/l 10 8 
C/l 6 
~ 4 
0 2 ::n 
~ 8 -~ ~ JNTE: _ r 7_ I I 

6 
I I I I 

8 

I I I : 

1 

~\A 

Sl -10 

~ -15 
C/l a6 -~ 

- ~5 
~ -30 -01 -35 ~ ._,..._" ~ /..f:;,L. M-

4 ~~~SS/L~'?''7~'" 
120 
100 

2 ~ J 00 
60 
40 

0 
~
0 t ARC~ I 1 1 I 1 I I I I I I I I I I I ~\A ~ ~ 

0 2 4 6 8 10 0 2 4 6 8 10 0 



set echo off damp 0.05 0.2 

start SLOPE 3, c 
0 7 0 

create track 39 0.0 2.0 1.0 39 0.0 0.0 0.0 0.0 1.0 14.0 1.0 14 

1.5 11.8 1.5 14 

create track 39 0.0 2.0 1.0 39 0.0 0.0 0.0 0.0 2.0 10.6 2.0 14 

create track 39 0.0 2.0 1.0 39 0.0 0.0 0.0 0.0 2.5 9.7 2.5 14 

create track 39 0.0 2.0 1.0 39 0.0 0.0 0.0 0.0 3.0 9.0 3.0 14 

create track 39 0.0 2.0 1.0 39 0.0 0.0 0.0 0.0 3.5 8.35 3.5 14 

create track 39 0.0 2.0 1.0 39 0.0 0.0 0.0 0.0 4.0 7.8 4.0 14 

create track 39 0.0 2.0 1.0 39 0.0 0,0 0.0 0.0 4.5 7.35 4.5 12 

create track 39 0.0 2.0 1.0 39 0.0 0.0 0.0 0.0 5.0 6.95 5.0 10 

create track 39 0.0 2.0 1.0 39 0.0 0.0 0.0 0.0 5.5 6.6 5.5 8 

create track 39 0.0 2.0 1.0 39 0.0 0.0 0.0 0.0 6.0 6.3 6.0 6.3 

meshend 

set damp 0.05 0.2 time 1 gravity -10 cmdproc on framelimit 100 

eritegap 32 interval 32 

cmdlist plot standard set calc eritegap * 2 interval * 2 cend 

echo on debug osc on 

plot page go 4000 stop 

Table 3.19 Input commands for result set 6 



~ 
"'9 

16 ~ SLOPE 3. C TI/1E O.OOQQEOO~ I SI.Cle.E. l C [lJ1.E. a. 1 ~lllEI22 1 "g 
~ 
~ 

40 t ' 0 ' ' 0 0 l ~ 35 LooM.oT 

30 
25 
20 

14 r 
1 

15 
~ 

\I I I I I ~ 
10 .... 

Otl 5 ~ 
'"I 0 i SS/LIH 

1 

(t) 

""' 2 3 4 5 f> 6 
1--'- 8 
1--'-

en I \ I I I I I I \ I 6 
~ 
'"I 
(t) 12 r \1 I I I I I \ i 4 Ul 
Ul 

"'0 2 '"I 
0 
::n 

-50! 
INTER - N ' : ' : :~ I I I \A -(t) 

Ul 1 2 3 4 5 6 '1. 
0' -10 '"I 

'"I 10 -15 
(t) 
Ul -20 
~ 

-25 --Ul -30 
(t) - -35 
Cj) 

-40 f SS/LIH 70 
60 

1 2 3 4 ..A.-5 6 
8 ~ '\.I I I \ ~ 

so 
40 
30 
20 

~0 ~ 
ARC - NS ~ I I I I I I ' \A ~ ~ 6 0 1 2 3 4 5 6 ~ 

0 1 2 3 4 5 6 



Appendllix lB. JB.23 

sat acho off damp 0.00126 0.006 gravity -10 

start SLOPE 1, PHI, U 
0 16 0 

create free 0.0 25.0 2.0 1.0 0.0 25.0 0.0 0.0 0.23 1 14.0 1 14 

2 10.5 2 14 

create free 0.0 25.0 2.0 1.0 0.0 25.0 0.0 0.0 0.23 3 8.9 3 14 

create free 0.0 25.0 2.0 1.0 0.0 25.0 0.6 0.6 0.23 4 7.7 4 14 

create free 0.0 25.0 2.0 1.0 0.0 25.0 1.6 1.0 0.23 5 6.9 5 14 

create free 0.0 26.0 2.0 1.0 0.0 25.0 2.3 1.3 0.23 6 6.3 6 14 

create free 0.0 25.0 2.0 1.0 0.0 25.0 2.9 1.6 0.23 7 5.7 7 14 

create free 0.0 25.0 2.0 1.0 0.0 26.0 3.36 1. 75 0.23 8 5.4 8 13 

create free 0.0 26.0 2.0 1.0 0.0 25.0 3.65 1.9 0.23 9 5.1 9 12 

create free 0.0 25.0 2.0 1.0 0.0 26.0 3.86 1.95 0.23 10 5.0 10 11 

create free 0.0 26.0 2.0 1.0 0.0 25.0 3.95 2.0 0.23 11 4.9 11 9.9 

create frae 0.0 26.0 2.0 1.0 0.0 26.0 3.96 1.96 0.23 12 6.0 12 8.9 

create free 0.0 26.0 2.0 1.0 0.0 25.0 3.3 1.36 0.23 13 5.1 13 7.8 

create free 0.0 26.0 2.0 1.0 0.0 26.0 2.06 0.7 0.23 14 6.4 14 6.8 

create free 0.0 26.0 2.0 1. 0 0. 0 26 . 0 0 . 7 0.0 0.23 16 5.8 15 6.8 

meshend 

set time 1 gravity -10 cmdproc on framelimit 100 

~ritegap 1000 interval 1000 

cmdlist plot standard cend 

echo on 

plot page go 40000 stop 

Table 3.20 Input commands for result set 7 



> og 

5.WeE l, et11. u [lJ:1E. O.QQQOEOO J 

~ I 
5-W.PE l eti.l.: (J 

[l..ff. 

·~=I! 22 ~ 

20 ~ ~ ~~ 
2 

l-%j 
1 .... 18 0 

~ -1 
'""' (1) 

-2 f SS/LJH 
~ 16 15 2 
~ 4~8 10 12 14 t:-.:1 10 
en 
c+ 

5 

'""' 14 0 (1) 
CJl 

-5 CJl 

'i:l -10 
'""' 0 12 -15 ::n - -20 f (1) INTER - NS CJl 

~ 10 
2 4 6 8 10 ~12 14 

'""' 
20 

'""' (1) 
CJl I \1 I I I I I I I I " I 0 
~ - 8 I ~ I I I I I I I~ i -20 c+ 

CJl 
(1) -40 c+ 

-:J 6 1- ......__I I I I I I I I '\.. J 
- 60 ~ SS/LIH 
160 2 4 6 ..........._a 10 12 14 140 

4 1- J 120 
100 
80 
60 

2 1- J 
40 
20 
0 

-20 t 
I I I 

==·~ ~ ~ -40 ARC - NS 
0 

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 ~ 



~ 
~ 

SLOPE LJ>Hl. U Il1:1E 0.256DE031 I 5UJ.eE. £, ett£ 11 W1E. Q, 5.l2.~QJ I ~ 
!;! 

6 ~ ~ ~\MIT 
~----j~ 

1-%:1 4 -· ()q 
~ 2 

2 
1-1 
(l) 0 

""" 0 -2 
1--' 
tV -2 

-4 

en SS/LIH 2g qJ e+ 20 1-1 
(l) 20 2 4 ~ 10 12 14 
til 15 
til 10 

15 
'0 10 
1-1 5 5 
0 0 ::::n 0 - -5 (l) -5 
til -10 -10 ...... 
Q -15 -15 

1-1 -20 -!g ~ INTER - NS 
(l) 
til 10 2 4 6 8 10 
~ ...... 0 e+ -10 
til -10 -20 (l) 
e+ -20 -30 
-l -30 -40 -- -40 ('") 

0 -50 
-50 

~ 
~. -60 

-60 
~ r88 

-70 
~ 180 
(l) 160 160 

-.:::: 140 140 
120 120 
100 100 
80 80 
60 60 
40 40 
20 20 
0 0 

-20 -20 t 
I I I ·~ i~ 

I 

-40 ARC - NS 
-40 ARC - NS 

-60 -60 
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 

gQ 



~ 
og 

SLOPE T. PHI. U [ll:fE Q, U22.~EQ~ I I s.t aeE 1 etf.l u [lJjf;_ Q, 2.Q~B.EQ~ I 'g 
!;! 

n 1 8 f :?-~ 
f2,. 

0 

~kl~i\/\ 1~ "%j 1 ••. - /\ -· 4 6 
Otl 
~ 2 1- ~ \ i "1 4 
('I) 0 
(J.:I -2 VL·~~ 

2 
~ 

~ -4 
rn -6 55/LIH O ~ 55/LIM 
<"+- 30 2 
"1 25 2 12 14 25 4 6.~ 10 12 14 
('I) 
f/l 20 20 
f/l 

"t:l 
15 15 

"1 10 10 
0 5 ~ 
::n - 0 0 
('I) -5 -5 
f/l 

0' -10 -10 
-15 -15 

"1 
-20 -~0 ~ "1 

INTER - NS 
('I) 

0 f/l o2 4 6 8 10 
~ -10 - -10 <"+-

f/l -20 
-20 

('I) 
<"+- -30 

-30 
-'1 

-40 -40 
,--... 

(') -50 -50 
0 
:=:! -60 -60 
<"+--· n :=:! reB ~ 

180 2 4 6 
('I) 160 

160 .A.B A 10 12 14 
0... 140 

140 ......., 
120 

120 
100 

100 

80 
80 

60 60 
40 

40 
20 20 
0 0 

~ -20 -20 
I I ' I ______..-u. 

~~ -40 
LA. -40 

-60 ARC - NS -60 ARC - NS 

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 ~ 



~ 
'9 

SLOPE I. PHI. U [.CJ1.E. 0.4096E041 I S.LQEE l, E/:J.l u WiE a. Bl22EQ§ 1 'g 
~ 

10 

:" r 
!2,. 

1 ~ 8 ~o~l 1\ 
~ ...... 

6 6 
()q 
~ 
I-I 4 

4 
('!) 

c,..., 
2 

2 
....... 
1:-.:) 

0 
0 

en 55/LIH ~ -I-I 30 2 
30 2 4 6. __a......__ 

('!) 25 
12 14 25 10 12 14 

Cll 
Cll 20 20 

'1j 15 IS 
I-I 10 10 
0 
:::::n 5 5 
....... 0 0 
('!) 
Cll -5 -5 

cr -to -10 
I-I -15 -15 

I-I -20 -~0 & INTER - N5 
('!) 0 en <t2 
~ 

4 6 8 10 
~ -10 

-10 

en -20 -20 
('!) 
c+ -30 -30 
-.:, 

- -40 
-40 

n 
0 -50 -50 

= ~- -60 
-60 

= 55/LIH ~ ~ 180 
('!) 2 4 

180 
4 6 160 2 

0.. 160 12 14 .A8 ~ 10 12 14 

---- 140 140 
120 120 
100 100 
80 80 
60 60 
40 

40 
20 

20 
0 I I I I I ~ 

0 

~ 
I I I 

-20 
I I I I -20 I I . ---u 

J ~ I + 
I l 

-40 -40 
-60 ARC - NS -60 ARC - NS 

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 ..:u 



0 

VI z 

:0:: 

:J 0:: 
w 

...... .... 
VI ~ VI 

CD '() ..:t N 0 

JB.2§ 

VI z 
I 

u 
0:: 
< 

:5~~~8oooo ooo 
-----00-o..:tNON..:t-o 

I I I 

N 

Figure 3.12 Stress profiles for result set 7 (continued) 



Appeitulllix lB. 

sat echo off damp 0.00125 0.005 gravity -10 

start SLOPE 2, PHI, U 

0 12 0 

create free 0.0 46.5 2.0 1.0 0.0 46.5 0.0 0.0 0.23 1.0 14.0 1.0 14 

1.5 11.8 1.5 14 

create free 0.0 46.5 2.0 1.0 0.0 46.5 0.55 0.55 0.23 2.0 10.6 2.0 14 

create free 0.0 46.5 2.0 1.0 0.0 46.5 1.55 1.0 0.23 2.5 9.7 2.6 14 

create free 0.0 46.5 2.0 1.0 0.0 46.5 2.3 1.3 0.23 3.0 9.0 3.0 14 

create free 0.0 46.5 2.0 1.0 0. 0 46.5 2.876 1.575 0.23 3.5 8.35 3.5 14 

create free 0.0 46.5 2.0 1.0 0.0 46.5 3.35 1. 775 0.23 4.0 7.8 4.0 14 

create free 0.0 46.5 2.0 1.0 0.0 46.5 3;65 1.876 0.23 4.5 7.35 4.6 14 

create free 0.0 46.5 2.0 1.0 0.0 46.5 3.85 1.976 0.23 5.0 6.95 5.0 14 

create free 0.0 46.5 2.0 1.0 0.0 46.5 4.026 2.06 0.23 5.5 6.6 5 .. 6 14 

create free 0.0 46.5 2.0 1.0 0.0 46.5 4.125 2.075 Q.23 6.0 6.3 6.0 14 

create free 0.0 46.5 2.0 1.0 0.0 46.5 4.125 2.06 0.23 6.5 6.025 6.5 13 

create free 0.0 46.5 2.0 1.0 0.0 46.5 4.1 2.06 0.23 7.0 5.8 7.0 12.1 

create free 0.0 46.5 2.0 1.0 0.0 46.5 4.05 2.0 0.23 7.5 5.6 7.5 11.2 

create free 0.0 46.5 2.0 1.0 0.0 46.5 3.9 1.9 0.23 8.0 5.45 8.0 10.3 

create free 0.0 46.5 2.0 1.0 0.0 46.5 3.725 1.825 0.23 8.5 5.3 8.5 9.5 

create free 0.0 46.5 2.0 1.0 0.0 46.5 3.475 1.65 0.23 9.0 5.2 9.0 8.6 

create free 0.0 46.5 2.0 1.0 0.0 46.5 2.9 1.25 0.23 9.5 5.1 9.5 7.7 

create free 0.0 46.5 2.0 1. 0 0. 0 46.5 2.1 0.85 0.23 10.0 5.05 10.0 6.8 

create free 0.0 46.5 2.0 1.0 0.0 46.5 1.25 0.4 0.23 10.5 5.0 10.6 5.85 

create free 0.0 46.5 2.0 1.0 0.0 46.5 0.4 0.0 0.23 11.0 5.0 11.0 6.0 

meshend 

set time 1 gravity -10 cmdproc on framelimit 100 

eritegap 128 interval 128 

cmdlist plot standard set calc eritegap * 2 interval * 2 cend 

echo on 

plot page go 32767 stop 

Table 3.21 Input commands for result set 8 



AJP>JP>emlldliix B. 

..J ...... 
U") 
U") 

...:tC\10 
---ro-o...:tNo 

IB\.30 

0 

OCl 

0 

C\1 

L-----~------~------~------~----~------~------L-----~------~0 
C\1 0 

CD C\1 0 

Figure 3.13 Stress profiles for result set 8 



Appendlix B. 

sat echo off damp 0.05 0.05 gravity -10 

set damp 0.00125 0.005 gravity -10 

start SLOPE 3, PHI, U 

0 7 0 

create free 0.0 69.5 2.0 1.0 0.0 69.5 0.225 0.45 0. 23 1.0 14.0 1.0 

1.5 11.8 1.5 

create free 0.0 69.5 2.0 1. 0 0 . 0 69 . 5 1. 3 0.85 0.23 2.0 10.6 2.0 

create free 0.0 69.5 2.0 1.0 0.0 69.5 1.925 1.075 0.23 2.5 9.7 2.6 

create free 0.0 69.5 2.0 1.0 0.0 69.5 2.26 1.175 0.23 3.0 9.0 3.0 

create free 0.0 69.5 2.0 1.0 0.0 69.6 2.425 1.26 0.23 3.6 8.36 3.5 

create free 0.0 69.5 2.0 1.0 0.0 69.6 2.475 1.226 0.23 4.0 7.8 4.0 

create free 0.0 69.5 2.0 1.0 0.0 69.6 2.36 1.126 0.23 4.5 7.36 4.6 

create· free 0.0 69.6 2.0 1.0 0.0 69.6 2 .. 075 0.95 0,23 5.0 6.95 5.0 

create free 0.0 69.5 2.0 1.0 0.0 69.5 1.7 

create free 0.0 69.6 2.0 1.0 0.0 69.5 0. 75-

set time 1 cmdp;roc on framelj.mit 100 

~ritegap 128 interval 128 

0.75 0.23 5.5 6.6 

0.0 0;23 6.0 6.3 

cmdlist plot standard set calc ~ritegap * 2 interval * 2 cend 

echo on debug oscil off 

plot page go 32767 stop 

Table 3.22 Input commands for result set 9 

6.5 

6.0 

JB.3:n. 

14 

14 

14 

14 

14 

14 

14 

12 

10 

8 

6.3 



"' :z 

~ X: a:: -...J w ...J 

' ...... 
' "' :z "' "' "' 

N 0 ~~NON~~ro 000000000 
0 I I I I 0-Nr<l~lfl~l'-ro ~ 

I I I I I I I I 

0 
N 0 

B.32 

0 
N 

I 

"' :z 

u a:: 
< 

lf1 

N 

0 

lf1 

N 

L_~----------~----------~----------~----------~--~----~0 
N 0 

Figure 3.14 Stress profiles for result set 9 



set echo off debug update on 

set echo off damp 0.005 0.02 gravity -10 debug update on 

start SLOPE 1, C, PHI, U 

0 16 0 

create free 20 5.0 2.0 1.0 20 5.0 0.0 0.0 0.23 1 14.0 1 14 

2 10.5 2 14 

create free 20 6.0 2.0 1.0 20 5.0 0.0 0.0 0.23 3 8.9 3 14 

create free 20 5.0 2.0 1.0 20 5.0 0.6 0.6 0.23 4 7.7 4 14 

create free 20 5.0 2.0 1.0 20 5.0 1.6 1.0 0.23 5 6.9 5 14 

create free 20 5.0 2.0 1.0 20 5.0 2.3 1.3 0.23 6 6.3 6 14 

create free 20 5.0 2.0 1.0 20 5.0 2.9 1.6 0.23 7 5.7 7 14 

create free 20 5.0 2.0 1.0 20 5.0 3.35 1.75 0.23 8 5.4 8 13 

create free 20 5.0 2.0 1.0 20 5.0 3.65 1.9 0.23 9 5.1 9 12 

create free 20 5.0 2.0 1.0 20 5.0 3.85 1.95 0.23 10 5.0 10 11 

create free 20 5.0 2.0 1.0 20 5.0 3.95 2.0 0.23 11 4.9 11 9.9 

create free 20 5.0 2.0 1.0 20 5.0 3.95 1.95 0.23 12 5.0 12 8.9 

create free 20 5.0 2.0 1.0 20 5.0 3.3 1.35 0.23 13 5.1 13 7.8 

create free 20 5.0 2.0 1.0 20 5.0 2.05 0.7 0.23 14 5.4 14 6.8 

create free 20 5.0 2.0 1.0 20 5.0 0.7 0.0 0.23 15 5.8 15 5.8 

meshend 

set time 1 gravity -10 cmdproc on framelimit 100 

eritegap 128 interval 128 

cmdlist plot standard set calc eritegap * 2 interval * 2 cend 

echo on 

go 32383 stop 

Table 3.23 Input commands for result set 10 and 13 



> 
'g 

~ > ~~ 1 C ffil U U£ ~Wlf®j 
22 

~ &7 1

· ; ~ U ~ ~ 1~ jl 
20 ' ' ' ' ' ¢ : ~ 
1 8 L.~ov. IT rn 

20 ~ ~ l ~ 0 

12 
10 

l-%j 8 
..... 18 6 
~ 4 
~ 2 
ro 0 
~ 16 -?5 c;; 10 w 2 4 6 _8.-..o....._ 10 12 14 

~ 5 
~ 14 0 
~ -5 

"g -10 
~ 12 -15 

rn -20 & INTER - N5 
25 cr 

10 
20 2 4 6 8 10 

~ 15 
~ 10 
ro 5 
~ 0 
~ 8 -5 

-10 
~ -15 
~ -20 
~ -25 
0 6 -30 & 55/LIM 

IS~ 2 4 
160 
140 

4 1- -l 120 
100 
80 
60 

2 ~ I 40 ., 20 
0 

:t8 b I I I : -P ==lA ~ ~ 
0 _60 ARC - NS ~ 

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 ' ~ 
I, 



~ 
"Q 

SLOPE f. C. PHI. U T!HE 0.2560E031 I SLOPE f. C. PHI. U TIHE 0 5f20E03i'?6 
!;;3 
~ 

22 22 ~ ~ ~· 20 1. - 20 0 0 ~~~ O ~~l - ~ 18 .._.1\.4.11 18 IM.II 

~ 16 16 Q;:l 
...... 14 14 0 

~ 12 12 
'"1 10 10 
~ 8 8 
~ 6 6 
~ 4 4 
~ 2 2 
w 0 0 
~ -~05 2 -~6 0" 2 4 6 8 lQ...... 12 14 
CJl 1 
CJl 10 15 

'"Cl 5 10 
8 0 5 
~ 0 
~~ ~ 
CJl -10 -10 
8' -15 -15 
'"1 
1-1 -20 INTER - NS -20 t INTER - NS 

~ ~5 2 ° 2 4 6 8 e.. 15 -5 
o+ 10 
CJl 5 -10 
~ 0 -15 
~ -5 
0 -10 -20 

-15 n -2o -25 
g -25 -30 
o+ - 30 SS/LIH s· 2~d 2 2oo 
~ 180 180 
~ 1~ 1~ 
~ 140 140 

120 128 
100 10 
80 88 
60 6 
40 40 
20 20 

jo _g8 f 1 1 
I I 1 O I ---u ~ Q;:l 

:i8 ARC - NS lA. :io ARC - NS ~ 
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 ~ 



> >g 

SLOPE I. C. PHI. U TIHE 0. t024E04 I 1 SLQPE I. C. PHl U TIHE 0.2048£0411 
~ 

22 22 [----------------------------------------~~ ~ 
20 I. 20 ' ' 7' ~<::;:?~ 0 

- '1. X 
18 ""'""''' 18 '-'M•r ~ 16 16 rn 

oq" 14 14 ° 
~ 12 12 
~ 10 10 

8 8 
w 6 6 
~ 4 4 
~ 2 2 
00 0 0 
- -5o -2 ~ 2S 2 ~~ ~ 2 4 6 8 ~ 12 14 
~ 20 20 

't:l 1S 15 
8 10 10 
::n s s 
(;) 0 0 
00 -S -S 
0' -10 -10 
~ -IS -IS 
~ -20 INTER NS -20 
~ - ~ ~ 2 -10 @: q2 4 6 8 10 12 14 
~ -12 
00 -14 
~ -16 
c+ -18 
~ ~0 
0 -22 
~ -24 
n ~ g ~ 
c+ -30 s· 55/LIM 2~a t 55/LIM 
~ 2 4 6 ~10 12 14 180 2 4 6 A.8 A 10 12 14 
~ 1~ 
p... 140 
'-' 120 

100 
80 
60 
40 
20 
0 

1 -- LA. i -20 ~ I I I 1 ----. ~ rn 
ARC - NS j =~8 t ARC - NS \A j ~ 

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 ~ 



~ 
"§ 

SLOPE I. CL PHLJJ TIHE 0 4096E04l I SLOPE T. c PHI. II Tiff£ 0.8192E041 ~ 
~ 

~ ~~ ~~ l-%j fg Lt~tr fg ' ' ~~~ , lt<\.t1T X 
.... 16 16 ~ v \ QJ 

Otl 14 14 ° 
~ 12 12 
(l) 10 10 
~ 8 8 

6 6 
~ 4 4 
~ 2 2 
~ g g ~ 55/L'lH 
""'~ -e5 -::J5 
~ 30 14 30 2 4 6 8 1..0o-_ 12 14 
[/J 25 25 . 

"0 20 20 
8 15 15 
::h 10 10 
- 5 5 m o o 
~ -5 -5 
0 -10 -10 
'"I -15 -15 
(6 -20 -20 
[/J 8 ~ e. :10 8 10 12 14 -10 ([ ,2 4 6 8 10 12 14 
<+ -12 -12 
[/J -14 -14 
~ -16 -16 
~ -18 -18 
0 -20 -20 

-22 -22 
~~ ~ 
0 -26 -26 
I:! -28 -28 =· -30 -30 ~· I:! 

2
ea 55/LIM 2ea SS/LIH 

~ 1 80 2 4 1 80 2 4 
p... 160 160 

--- 140 140 
120 120 
100 100 
80 80 
60 60 
40 40 
20 20 
0 0 ~ ""~~·--~·--~·--~~--~-+--+-~--~--~ -20 -20 I I I 1 • ---u ~ QJ 

- 40 ARC NS -
40 

ARC - NS lJ.. o -60 - -60 - - - e,.."J 
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 ~ 



~ 
'Q 

SLOPE I. C. PHI. U TIME 0. /638E051 'Q 
(i) 
t:::l 

~ t ' ' ?=-;;'-<o?"-7\ ' '!JM<T l ; 
~ 14 
-- 12 

()q 10 
~ 8 
en 6 
~ 4 
- 2 ~ 0 

~ -~8 ([ 2 4 6 8 J.O<.-___ 12 1 4 
~ 3 
m 20 00 

15 
~ 10 
8 5 
~ 0 
~ ~ 
m -10 
0' -15 
~ -20 
~ -8 m _,o 
~ -12 
:;:;' -14 

-16 
~ -18 
~ -~ - -~ 0 -24 

.-... -26 
n -~ 
0 -30 
5-. 2ea 
~ 100 
~ 1~ 
en 140 
~ 120 

,___. 1 00 
80 
60 
40 
20 
0 

-20 ~ I \A_ i gJ 
-40 ARC - NS • 
~ ~ 

0 2 4 6 8 10 12 14 ® 



Appendi.Jix :B. :8.3~ 

debug update on 

start SLOPE 2, c. PHI, U 

0 12 0 

create free 20.0 21.6 2. 0 1.0 20.0 21.5 0.0 0.0 0.23 1.0 14.0 1.0 14 

1.6 11.8 1.5 14 

create free 20.0 21.5 2.0 1.0 20.0 21.5 0.55 0.55 0.23 2.0 10.6 2.0 14 

create free 20.0 21.5 2.0 1.0 20.0 21.5 1.55 1.0 0.23 2.6 9.7 2.5 14 

create free 20.0 21.5 2.0 1.0 20.0 21.5 2. 3 1.3 0.23 3.0 9.0 3.0 14 

create free 20.0 21.5 2.0 1.0 20.0 21.5 2;875 1.575 0.23 3.5 8.35 3.5 14 

create free 20.0 21.5 2.0 1.0 20.0 21.5 3.35 1.775 0.23 4.0 7.8 4.0 14 

create free 20.0 21.5 2.0 1.0 20.0 21.5 3.65 1.875 0.23 4.6 7.35 4.5 14 

create free 20.0 21.6 2.0 1.0 20.0 21.5 3.85 1.975 0.23 5.0 6.95 5.0 14 

create free 20.0 21.5 2.0 1.0 20.0 21.5 4.025 2.06 0.23 6.5 6.6 5.6 14 

create free 20.0 21.5 2.0 1.0 20.0 21.54.125 2.075 0.23· 6.0 6.3 6.0 14 

create free 20.0 21.5 2.0 1.0 20.0 21.5 4.125 2.05 0.23 6.5 6.025 6.5 13 

create free 20.0 21.5 2.0 1.0 20 . 0 21. 6 4 . 1 2.05 0.23 7.0 6.8 7.0 12.1 

create free 20.0 21.5 2.0 1.0 20.0 21.5 4.05 2.0 0.23 7.5 6.6 7.5 11.2 

create free 20.0 21.5 2.0 1.0 20.0 21.5 3.9 1.9 0.23 8.0 5.45 8.0 10.3 

create free 20.0 21.5 2.0 1.0 20.0 21.6 3.726 1.825 0.23 8.6 5.3 8.5 9.5 

create free 20.0 21.5 2.0 1.0 20.0 21.6 3.476 1.65 0.23 9.0 5.2 9.0 8.6 

create free 20.0 21.5 2.0 1. 0 20.0 21.5 2.9 1.25 0.23 9.5 5.1 9.5 7.7 

create free 20.0 21.5 2.0 1.0 20.0 21.5 2.1 0.85 0.23 10.0 5.05 10.0 6.8 

create free 20.0 21.5 2.0 1.0 20.0 21.5 1.25 0.4 0.23 10.5 5.0 10.5 5.85 

create free 20.0 21.5 2.0 1.0 20.0 21.5 0.4 0.0 0.23 11.0 5.0 11.0 5.0 

meshend 

set time 1 gravity -10 cmdproc off frame limit 100 

eritegap 5000 interval 128 

cmdlist plot ·standard set calc eritegap * 2 interval * 2 cend 

echo on 

plot page go 32767 stop 

Table 3.24 Input commands for result set 11 and 14 



Appemt~dllix B. B.40 

0 0 

ro 

"' z N N 

"' I z 
~ 

...J w 
' 1- u 

"' z ~ 

"' - < 

0 

Lfl 0 Lfl 0 Lfl 0 0 Lfl 0 0 0 0 0 0 0 00000 N N Lfl 0 Lfl 0 Lfl I I 0 I N to ...,. Lfl '() "- CX)'O._,.NOOOOO 000 
I I I I I I I -----ro-o._,.NON...:t'O 

I I I 

0 

ro 

N 

L-------+-------~------....1-------~------~------~------~------~-------....lo 
N 0 

CX) N 0 

Figure 3.16 Stress profiles for result set 11 



scat echo off debug update on 

scat damp 0.00125 0.005 gravity -10 

start SLOPE 3, C, PHI, U 

0 7 0 

create free 20.0 46 2.0 1.0 20.0 46 0.225 0.45 0.23 1.0 

1.5 

create free 20.0 46 2.0 1.0 20.0 46 1.3 0.85 0.23 2.0 

create free 20.0 46 2.0 1.0 20.0 46 1.925 1.075 _0.23 2.6 

create free 20.0 46 2.0 1.0 20.0 46 2.25 1. 175 0. 23 3. 0 

create free 20.0 46 2.0 1.0 20.0 46 2.425 1.25 0.23 3.5 

create free 20.0 46 2.0 1.0 20.0 46 2.475 1.225 0.23 4.0 

create free 20.0 46 2.0 1.0 20.0 46 2.35 1.125 0.23 4.5 

create free 20.0 46 2.0 1.0 20.0 46 2.075 0.95 0.23 5.0 

create free 20.0 46 2.0 1.0 20.0 46 1. 7 0.75 0.23 5.5 

create free 20.0 46 2.0 1.0 20.0 46 0.75 o.o 0.23 6.0 

meshend 

set time 1 cmdproc off framelimit 100 

eritegap 2000 interval 2500 

14.0 

11.8 

10.6 

9.7 

9.0 

8.35 

7.8 

7.36 

6.95 

6.6 

6.3 

cmdlist plot standard set calc eritegap * 2 interval * 2 cend 

echo on 

plot page go 40000 stop 

Table 3.25 Input commands for result set 12 and 15 

B.41 

1.0 14 

1.5 14 

2.0 14 

2.5 14 

3.0 14 

3.5 14 

4.0 14 

4.5 12 

5.0 10 

5.5 8 

6.0 6.3 



> 
"9 

16 ~ _5LDEE 3. C. PHI. U III1E O.OOOOEOO~ I S/ OP£ ~ C. PH!. II TII1E o 3211Eosl "g 
t;;l 

25 f 
20 

LLW...tT 

~ 

l~ 
15 

l-%j 14 10 .... 
()q 5 = '"1 
(b 0 r ~ 

1-' 6 I 2 j 4 5-o 6 
~ 4 
r:n 2 .,.... ...., 

0 ("i) 12 QZI 
-2 QZI 

't:J -4 ...., 
0 -6 ::2') -

08 f ~\.}.. (b INTER - NS ttl 

~ I 

' 2 3 4 5 6 ...., -10 
...., 

10 -20 (t) 
CDl -30 = -...... -40 
00 

-50 (b ...... 
....... -60 
R:-..:) 

-e8 t SS/LIH I 
2 3 4 ./"-.... 5 6 

8 ~ '-I I \. I \ .J 60 

40 

20 

0 

-20 t I I I I I I --lA j: ARC - NS 
6 

0 I 2 3 4 5 6 0 I 2 3 4 5 6 ~ 



SlOPE I 
I 

C. PH!. U. NL TIHE 0. OQQQEOO 

22 

20 

"'%j ..... 18 oq 
~ ., 
(b 

~ -16 
00 

en -., 14 (b 
C/1 
C/1 

't:l ., 
0 12 ::n .......... 
(b 
C/1 

8' 10 ., ., 
C1) 
C/1 
~ .......... 

8 -C/1 
('I) --~ 6 

4 

2 

0 
0 2 4 6 8 10 12 14 

24 
22 
20 
18 
16 
14 
12 
10 
8 
6 
4 
2 
0 

-2 
15 
10 
5 
0 

-5 
-10 
-15 
-20 
40 

20 

0 

-20 

-40 

-60 
180 
160 
140 
120 
100 
80 
60 
40 
20 
0 

-20 
-40 
-60 

SLOPE I C PH!. U. NL 

~ 
I 

ARC - NS 

0 2 4 6 8 

I 

~ 
UHf 0. 12BOE03I ~ 

-· --.....,-._. _ __, ___ L1""- ,, 

lll\<. i'i 

I 
= • ~ 

10 12 14 

!::;! 
~ 
<=>• 
>< 
w 
0 

~~ 
(;o.:l 



~ 
'G 

SLOPE 1. C. PHI. U._NL TIHE o.2560E03I I Sl OPE 1 C PH! 11 NL TIHE 0 512DE03J "g 
t;l 

!I 
~n 

~ 

: • ·~ ~~ llM.ll 

~ 
0 ' 4.J \.. 

..... Ltiii..IT" 
A 

()q I* ~ ..., 16 ('!) 

CJ,:) 

* 
~ 

~ -~o SS/L H -~5 
~ 15 

12 14 20 (f) 2 4 6 ~ 12 14 

Ul 15 
10 

"'=' 5 
10 ..., 

0 
0 

5 
::n 0 -~ -5 -5 
.,.., -10 -10 
s; -15 -15 

@ -20 INTER - NS -~g i INTER - NS 
Ul 30 

I 

~ 2 2 4 6 8 10 20 - 20 .,.... 10 
Ul 10 0 
('!) 

0 .,.... -10 
~ -10 
CJ,:) 

-20 
-20 

--- -30 
-30 

n 
0 -40 

-40 
::l 
c-. -50 

-50 

::l 200 
SS/LIH ~~8 l SS/LI~ 

~ 180 2 4 6 p..8 10 12 14 

0... 160 1*8 ,__.. 140 
120 
100 i~o 
80 
60 *8 40 
20 
0 Jo 

f 
.;::;; I I I I I 

-20 
I 1 I I --ct ~~ -40 ARC - NS 

-40 ARC - NS 
-60 -60 

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 
tJ:>,. 



> 
"Q 

SLOPE I. C. PHI. U. NL TJJ1E 0.102~E04 I I SlOPE I. C. PHI. U. NL WfE 0.2048E04)1€ 

'

* 25~ l~ 
:::.1 ~ 20 - ---l:t'\j ~ 
~ IS 

~ ~ 10 
~ s 
00 

~ J 0 

@ 25 2 4 14 30 
~ 20 2S 20 

"'=' 15 IS 
8 10 10 
~ 5 5 ro o o 
w ~ ~ 

S' -10 -10 
'"1 -15 -15 
@ -20 -20 
w ~ e.. -5 8 10 -10 
~ -10 -15 
~ -15 -20 
~ -20 -2S 
s; =~6 -30 L \ I \ / '\ I/ LtM rr 

.---. -35 -35 
8 -40 -40 a ~5 ~s 
5· -50 SS/LIH -50 ~ SS/LIM 

200 200 ~ 180 2 12 14 180 2 4 6 p..._ 8 A I 0 12 I 4 
~ 1~ I~ 

140 140 
120 120 
100 100 
80 80 
60 60 
40 40 
20 20 
0 0 

-20 -20 ~ I I I I I I : G ~ Qj 
=~8 ARC - NS =~8 ARC - NS ~ ~ 

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 ~ 



> 
"Q 

SLOPE I. C. PHI. U._NL TTHF 0.4096E041 I SLOPE I. C. PH! tJ., NL WfE 0 8192ED4i~ 
gl 
~ 

25 25 t liMIT j~ 
~ 20 20 ~..) \._ .... 

oq 
15 15 

~ 
'"! 
~ 10 10 
c..;~ 

1-' 5 5 
00 

en 0 SS/L H 
0 

cot-
'"! 30 2 4 30 
~ 14 
Cll 25 25 
Cll 20 20 
'0 1S IS 
'"! 10 10 
0 
::n 5 s - 0 0 
~ 
Cll -S -5 

8' -10 -10 
'"! -IS -IS 
'"! -20 -20 
~ -5 -5 
Cll 
~ -10 -10 -cot- -IS -15 
CIJ -20 -20 
~ 
cot- -25 -25 
1-' -30 -30 
c..;~ 

-35 -35 ___.._ 
("') -40 -40 
0 -45 -45 
l:j .,.... -50 SS/LIH -50 £ SSILIM ...... 
l:j 
~ fg8 2 12 14 fg8 2 4 6 ~a A IQ 12 14 
~ 
0... 160 160 -- 140 140 

120 120 
100 100 
80 80 
60 60 
40 40 
20 20 
0 0 

~ 
I I I I . -------fA -20 -20 I 

~~ \A 
I I I 

-40 -40 
-60 ARC - NS -60 ARC - NS 

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 O:l 



Lfl 0 Lfl 0 
N N 

\!? N 
I 

u 
0:: 
< 

OLnOLflO OLflO 0 U1 0 Lfl 0 U1 0 Lfl 0 oo=o 
Lfl 0 MNN--LflOU1--N Ln-- N N M M""" -4- U1 OCD"()-4-NOOOOO 000 

I I I I I I I I I I I I I I N-----CD"()-4-NON-4-"() 
I I I 

Figure 3.18 Stress profiles for result set 13 (continued) 



.J 

' !fl 
!fl 

0 l/'1 0 l/'1 0 l/'1 0 
r<"l N N l/'1 o- l/'1 0 l/'1 

I 

0 l/'1 

I I 

B.4§ 

000000 

!fl z 

0 0 0 0 OOJ~~NOOOOO 000 
0 N ~ ~ OJ ------ro~~NON~~ 

I I I I I I I I 

0 

OJ 

N 

0 

OJ 

L-------~------~------~--------L-------~------~------~--------L-----~0 

N 0 
N 0 

Figure 3.19 Stress profiles for result set 14 



~ 
"Q 

16 1- SLOPE 3. C. PH!. U. NL TIHE 0. OOOOEOO~ I SLOPE 3. C. PHI. U. NL Lll1E_ _123211E05Il 

f;l 

~~ r~-------,---.---------------------L~-~-,T----~1~ 
15 

~ 14 10 
()q 

~ 5 
~ 0 

~ 8 rl 2 3 4 5~ 6 
6 

~ 4 
::6 2 
~ 12 0 
~ ~ a ~ = ~ 
~ -8 t INTER -, NS , "'-,. (A_ 

g' 0 t 1 ... 2 p...__3 4 5 6 

rn 10 -20 

~ I \ I "I I I 1\ I -40 

~ I \.1 I "\.I I I\ I -60 

S:: I \.. I I \.. I I \ I -8o 

80 ~I 2 3 4 5 6 
8 1- '\.I 1\.1 \ -1 ~· .A.._ 

60 

40 

20 

0 
-20 ~ ~ 1 I 1 I I I I ---[A 1 CQ 

[ ARC - NS j ~ 
6 o 1 2 3 4 5 6 0 1 2 3 4 5 6 (;!';) 



Appelilldnx Co 

AJPJPJENJDJIX <C 

PROGRAM §ILJI<CJE§ 

§ 'JI'R U' <C 'JI'U RJE C JHIAR'JI'§ 

<Col 

Appendix C is a series of structure charts for the procedures and functions 

that make up program SLICES. The structure charts consist of various boxes 

linked by lines. The boxes represent logical units of code and the lines represent 

the flow of control from one part of the program to another. 

The rounded boxes are descriptive, indicating the start and end of the charts. 

They may also be used to show logical processes that have not been broken down 

in to their constituent parts. In this respect they may be viewed as comments. 

-. The rectangular boxes that are double sided indicate a call to another pro

cedure and hence a flow to another chart. The normal boxes however, represent 

logical processes within the confines of the current chart. 

The flow of program control is always from the top to the bottom of the chart. 

The current chart is exited when the bottom is reached. Control then falls back to 

a previous chart. Flow, within the chart is along the joining lines. At a junction 

of lines, flow continues by turning left. On reaching the end of a branch the flow 

returns to the last junction and continues along the righthand branch. The case 

and loop structures are, however special constructs. 

Loop structures are shown by long loops eminating from a control box. The 

control box indicates the termination condition. Flow continues around the loop 

in a clockwise direction. Case structures are shown by a contol box with a series of 

diamond decision symbols. The decision diamonds are normally associated with 



C.2l 

two boxes. The one to the left on the chart is the case condition. If this condition 

is met then program flow continues by branching left, as normal. If the condition 

is not met then flow continues down the chart. 

Some explanatory text is associated with each chart, which is organised in 

the same order as the procedure headers occur in the program. This causes some 

local procedures to appear later here than in the source. The charts for procedure 

headers that have the forward directive are placed in the correct logical sequence, 

that is with the later definitions. 



Apperrulllix: C. C.3 

(sTART ERROl! Sl~ 

1----1 RE\!lliTE SERI:Q;l I 

1----1 STill' Rim I 

( 00 ERRO!I SIKI'!.E) 

Figure C.l Chart for procedure error_simple 

PROCEDURE error_simple(ob, caller: string(40}}; This is a global procedure and 

immediately halts the program after the production of an explanatory message. 

This is only called when an irretrievable situation occurs. 

PROCEDURE word_scan{var cmds_in : text; var word:string{12}); This global 

procedure is called from repeater, parameters and get-command. It reads a set 

of consecutive non-blank characters to form a word of maximum length 12, and 

passes it back to the calling procedure in word. It reads from the file device 

unit buffer given in cmds-in and, if reading from a terminal prompts the user 

for a command. This procedure looks after end of line conditions and skips all 

blanks between words and all comments by calling the local procedures skipblks 

and skipcomment. 

PROCEDURE skipblks{VAR ch : string(l)); A local procedure to word..scan, this 

simply reads characters until a non-blank is encountered, this is returned in ch. 

PROCEDURE skipcomment(VAR ch: string(l)); A local procedure to word_scan, 

this reads characters until the end comment symbol '}' is encountered. This will 

recursively call itself on encountering another comment symbol ' { '. 



CA 

(START UDRO SCAN ) 

IF stREEil I 

6 \MIL 1(01' 8lAI(X I 

RfAD CHARACTER I 

'-" 

::S!(IP BXS II 

\IHILE NOT EO!. AI(JJ NOT 8lAI(X I 

IP CQJO<EHT I 

6 II SKIPCOllllENT II 

ADO CHARACTER TO llOliD I 

READ OiARAClBI I 

'---"' 

IF 1(01' 8lAI(X I 

6 ADD CHARACTER TO IIORO I 

IF EO!. AtaJ tmT EOl' 

6 READ Lila: I 
( EtaJ IIORO SCAN) 

Figure C.2 Chart for procedure word_scan 



C.5 

1----1 READ CHARACTER 

Figure C.3 Chart for procedure skipblks 

PROCEDURE starLshut{Var cmd..i : text; starting : starLtype}; FORWARD; 

Procedure start..shut is defined later, but is headed here as it is called from pro

cedure trapper. 

PROCEDURE control(var cmd_i: text); FORWARD; Procedure control is defined 

later, but must be headed before reference can be made to it. 

PROCEDURE trapper; This is called from procedures cycle and geLcommand, and 

is executed when an attention interrupt is passed by the system to the program. 



A.jpJJPliBRUHx C. C.8 

START Sl:IPCOXXENT 

1-----1 IIHILE IIQT EOC 

1-----1 READ OIAIIACTER 

END SKIPCOKXENT 

Figure C.4 Chart for procedure skipcomment 

The user is prompted for confirmation before the run is terminated by calling 

starLshut. 

PROCEDURE geLcommand{caller : calLtype; var quiter: boolean; var retcom : 

com..type; intcall : string{12}; cmds_ig : text}; 



C.?' 

1-----i lll!ITE ATTN Plltr'.JJT 

1-----1 UIITIL I:OT lil.ANX 

Figure C.5 Chart for procedure trapper 

This procedure is called with five parameters. caller designates which com

mand set is valid. quiter is defined on exit and determines if the calling procedure 

should exit or continue with another command from the same set. retcom, on 

exit, contains the valid command scaler value. intcall, on entry, is either a null or 

contains the literal value of the internal command to be executed. cmds_ig is the 

file device unit buffer pointer from which input should be read. 

This is the heart of the ICL parser, it is called under three conditions, inter

nally, externally and recursively on error. 

Under internal use the parameter intcall is set to the command. Under normal 

use the procedure word_scan is used to obtain a word from the file device unit buffer 

pointer in cmds_ig. The word obtained (or intcalQ is checked against a string of all 

the valid commands and the resulting command type (including null if the word is 

in error) is compared to those which are relevent to the calling procedure. There 



Appemudllix C. C.§ 

(sumrm=) 

rn a=r tG<llllal I 

IP CUICt I 

~ I!Ol1Jist.\ll II 

II' ATTII J 

~ 'I1W'lQ II 

\.LIIlJlll}aww:lJ I~LISIII 

IP ta!T I~ =LIST I 

~ m IFAIL m!! 1 

IP IPAIL I 

~IF l3lLL ~ llltllliTRI!. VAll tAU.Sl J 

~rlMM~ li CET IXI>CI~ Jl 

ll>IILE ta)T I:ETIQ I 

SA\\< cxt:>W<II J 

t1l>frnm. II 

II CI!T c:o:<:waJ II 

SOT II' TO 11a11 FILl! SAW REM I 

SfT FUG 10 Bal CAUSI J 

m FUG 10 9C1 CAUB1 llAVJ= I 

S2T FUS 10 Gal CIUSI I 
( 9CI 1!:1' co:=D ) 

Figure C.6 Chart for procedure geLcommand 



Appendix C. C.9 

are three possible results, a relevent valid command, an irrelevent valid command 

and lastly one which is invalid. 

In the first of these results, the routine exits with quiter set to true onlyif the 

command was internal. In the second, quiter is set and the word is placed into the 

variable gi. nextword, to be processed the next time get-command is called normally. 

In case three, the user is notified and get-command called (direct recursion) with 

the error communication file device unit buffer to provide a replacement. If a 

replacement is received, procedure control is called (indirect recursion) and input 

continues from the error communication. If further errors occur then more levels 

of recursion take place. The error condition is terminated by return, when the 

procedures fall back with this in the variable gi. nextword so that it is continuously 

processed until the first invocation of get-command is exited. At this point exit 

is made back to procedure control with quiter set to false to prevent program 

termination. 

I ON ~- SET OlW'F TO TAlE 

I OFF ~- SET O!!OFF TO FALSE 

I OTHER\/ I se ~-

Figure C.7 Chart for function onoff 



Appenulllix C. C.Jl.!D 

FUNCTION onoff(var cmd_i : text) : boolean; This global function calls geLcom

mand. The two possible commands are olrll., which causes this to return true, and 

off which causes this to return false. 

1----1 ClEAR SCIIEEH I 

1-----1 WRITE RC KEADE!S I 

1----1 WAITE AC YALIJES I 

(Eta! HEADERS ) 

Figure C.8 Chart for procedure headers 

PROCEDURE headers; This global procedure initiates the headings for the run

ning commentary. 

PROCEDURE factors_of-safety(el : ptr_type); This global procedure calculates 

the factors of safety for the base contacts of each of the slices. These values are 

written to the file attached to unit 7, the debug output file. 

FUNCTION sign{val,donor:real) : real; This function receives two real values, and 

returns the value of the first with the sign of the other. 

PROCEDURE initialise_globals; This is executed only once and sets the values of 

all the global variables to zero, default or nil values. 

All of the preceeding modules are global in scope, that is they may be called 

from anywhere within the program. There is one restriction to this, they may only 



C.ll 

(START F ACTOllS OF SAFEYY) 

SfTUll LOCAL VAI!IAI!l.ES I 

!IIIJLE HOT EIID OF SliCES 

IF SHEAR STRESS IS SIIALL I 

6 SET 1'03 TO I I 

CALOJLA TE FOS I 

IF F05 IS I I 

6 ADD I TO M.JXIlEA AT LIHIT I 

ADD I TO lllJXBCR HOT AT Lli'IJT I 

NEXT I 

VRITE NUXBERS TO RC I 

( El«< FACTCIRS OF SAFETY) 

Figure C.9 Chart for procedure factors_of_safety 

be called after they have been defined. In the cases of control and start-shut the 

FORWARD directive on the headings indicate that the definitions are provided 

later in the source code. The remaining modules are only called from control. 



c.:n.2 

>----1 GIVC VAI..I!E Dcoom5 Sl!ill 

'------1 DO NOTHII!G TO VALUE 

Figure C.lO Chart for function sign 

(START INITIALISE G!..OBALS) 

1-----t SET TRAPPII!G ON I 

1----1 OI'CN FILES I 

1-----t INITIALISE GLOBAL VARIABLES I 

(END INITIALISE CUlBALS) 

Figure C.ll Chart for procedure initialise 

PROCEDURE plots(var cmd..i : text; plot-command : string{12}}; This routine 

contains the calls to the *ghost library subroutines. The structure of this routine 

is simple and consists of a repeat loop. Essentially two processes are carried out 

in the loop. Firstly get-command is called, and then a case statement causes the 

relevent command to be executed. It is within the case statement that the local 

procedures are called. The repeat loop is exited when the value passed back from 

geLcommand in plotquit is true. 



Appendix C. C.13 

I DI9Pl.OT ~-

I SLICES ~-

I I'CliCEPI.OT ~- FOliCE PROl'llE IIASf 

I STAmiAIID ~- FOliCE PROl'llE IIASf 

FOllCE PROFILE RIOO 

I FRAI<l:S ~-

I PAGE ~-

lum r-
I PLOTSTOI' r-
I Zotlll r-
I ~APS r-
I OTHERIII Sf r-

Figure C.l2 Chart for procedure plots 



C.14 

During internal command processing plots is called with ploLcommand set to 

a literal value and this is passed directly to geLcommand in the parameter list. 

PROCEDURE map_space{var cmd_i : text; sp_comst: string{12}); This is a local 

procedure to procedure plots. map_space has the same structure as plots, except 

that it contains two case statements. The first manipulates the plot space and the 

second the mapping onto this plot space. The repeat condition is dependent upon 

the value of mapquit, which is passed back by geLcommand. 

START SI!TIJ? PLOT 

Figure C.l4 Chart for procedure setup_plot 

PROCEDURE setup_plot; This is a local procedure to procedure plots. The intial 

format is set up and the plot output stream turned on. 



C.15 

IKO.'IIZ ~- SZT PlOfSl>ACI! TO l<tll!IZIWA!. f1JltlAT 

I VWICM. ~- S2TI'UifSl>ACI! TO va!TIC.U. FOZ<AT 

IUI'!Z£l' ~- SZT PI.TS>Ati! TO 1.0131 9lAIIlBl 

I nJIIU!l' ~- 521 Pl. TSl'Ati! TO SZaooJ etWnSI 

I nJDU>I' ~- 5ZT Pi.TSl'Ati! TO THIRD CIUAIITi!Q 

1- ~- 5ZT PI.TSPAti! TO Ul'I'CII CIJAIITE~ 

I PJa:Je ~- SZT Pl. TSl'Ate TO Ul'I'CII IW.P 

IIIIIO:Ulltll(!l ~-

I= 
I PUIQ 

llllllallltll(!l 

Figure C.l3 Chart for procedure map_space 



Appelilldlnx c. C.JL6 

(sTART DISP I'UIT) 

t----i u~JLE NOT em oF SliCES 1 

t-----i lll!AII Dl5l'UCEIIENT va:TOR I 

1---i NEXT I 

( EI(IJ DISP I'UIT 

Figure C.15 Chart for procedure disp_plot 

(sTART FRAil Pl..OT) 

t----iiiMAPSPACE FUI.I.J«<SCALES 111-----111111.\PSPACE Pl..AIN II 

l----i
1 

ORAl! FRAKC I 

1-----r:: I NAPSPACE FUI.I.J«<SCALES II 

( EI(IJ FRAM I'UIT 

Figure C.16 Chart for procedure fram_plot 

PROCEDURE disp_plot{el: ptr-type); This is a local procedure to procedure plots. 

A plot of the slice body displacements is produced. 

PROCEDURE fram_plot; This is a local procedure to procedure plots and produces 

a frame around the main plot space. 



c.]_ 7 

(START Sllll: Pl.~ 

IIHJLE NOT em oF SliCE LIST I 

IF Ia) COR!a:RS I 

~ ILERROR 51~ II 

L DRAII \lATER TABLe SEGMENT I 

DRAII sua: I 

NEXT I 

(etm SliCE PI.OT) 

Figure C.l7 Chart for procedure slice_plot 

Figure C.l8 Chart for function utohead 

PROCEDURE slice_plot(el : ptr_type); This local procedure to procedure plots 

causes the slice geometry to be plotted. 

FUNCTION utohead(el: ptr_type}; real; This local function to procedure slice_plot 

caonverts the pore water pressure to an equivalent height for plotting of the water 

table. 



C.].§ 

(START FORCE PRQf ILE ) 

I ADJUST LIHITIK& SHEAA SICN J 

JIIHIT Fll II 

(Fit{!] SPREAD OF Flll<CES J 

( F II{!] CQ:IT ACT TYPE 8 OR R 

( DliA\1 SMEAR Plllll'ILE FAAAJ: 

IIHILE NOT Elm Ill' SLICE LIST l 

[[PTAD Fll ll 

IF A COlfTACT I 

~ l ORA \I PAOI' ILE SEG!<ENT I 

PlOT DWIACTER HERE -1 

GET llEXT SLICE l 
\...,..I 

( DRAII IN VATER T.ASl.E J 

I ORAII NOAIIAL FORCE PROFILE J 

( El{l] POliCE Plllll'Ilf 

Figure C.l9 Chart for procedure force_profile 



A]prpel!lldliix C. C.l~ 

PROCEDURE force_profile(ele : ptr_type; dire : dir_of_contacts); This is a local 

procedure to procedure plots. force_profile produces formats by calling map_space 

internally and plots the stress profiles for either the base or the side contacts 

according to the value of dire being either based or righthand. 

Figure C.20 Chart for procedure init_fm 

PROCEDURE iniLfm; A simple procedure for initialising stress mapping values 

before finding maxmimum and minimum values for scaling the stress profiles. It 

is local to force_ pro file. 

._I e_ASBI _ ___,~ -

.__I R_IGHT _ ___,~ -

>---1 Ulie BASe POlNTBI 

)--~ USE RIGHT POINTER 

Figure C.21 Chart for function ptrd_fm 



A.JPlJPlellll.diix C. C.20 

(START Lltl3 FH) 

1-----{( CALCULATE IO:l Tm..ERANCE 

1-----{( CALCULATE TOLERATED LIMITS 

(ei!D LI~S FH 

Figure C.22 Chart for procedure lims_fm 

FUNCTION ptT£L/m{elem : ptr_type; dire : dir_of_contacts) : con_ptr; ptrd_fm is 

local to force_profile and finds the contact pointer for an element depending on 

whether side or base contacts are being plotted. 

PROCEDURE lims_fm{VAR miny, maxy: real); This adds a ten percent margin 

to the stress mapping values and is local to force_profile. 

PROCEDURE cycle{var cmd_i : text); This procedure controls the calculation 

sequence. The structure of cycles consists of a small block dealing with reading 

in the number of cycles to be executed, followed by a while loop to execute them. 

The while loop terminates either when the requested cycles are complete or when 

it is pointless to go further. The statements within this loop fall into four blocks. 

The first block calls fordsl, consolsl and increments the loop counters. The second, 

an if structure, determines if a running commentary update is due, executes this 

and calls factors_of_safety. The third, another if block, determines if command 

list processing is due. If it is, a repeat structure is entered which continually 

calls control until gi. cmdend is set by cend. control is called with the file device 

unit buffer belonging to the command list secondary command file. The fourth 

block moniters the behaviour of the maximum slice displacement. If this value 

is < 10-14 or > 106 or has stayed almost constant for 100 cycles then the while 

loop will terminate. After execution of the while loop the maximum displacement 



C.21 

1-------t I<ZAD Ill C)? C'I'CU:S I 

1-------t SiT tat<B:EQ OQXS: 0 I 

~IU! = u 1!11 O? C'ICU:9 001 I!!IT tit« to eun I 

1-------t m QUI 01~ >:e:<HCill TO - vwu I 

1------t ::~,~ II 

1-----t ::~ 'l'tooa.SI. II 

loaa<SIT CYO.E VALUES I 

IP 111« FCill I<2SSlG2 I 

Lauoor-1 
v I._ __ ·--H ::•ACTJRS 0> s.!Fl!TY II 

IF11Kl!FCill~ll<ll I 

1-----1:: I :eo>mn II 

\. "'J))JTOll STAOILITY ) 

IPATlSitla:l I 

II 

Figure C.23 Chart for procedure cycle 



C.22 

state is reviewed and a message written to the running commentary for each of 

the three value cases outlined above. 

PROCEDURE fordsl(el : ptr_type}; As one of the two main calculation procedures 

this is local to cycles. The force displacement law is defined here. This is executed 

for each contact by combining a while and for loop to traverse the slice list and 

the contacts for each element. 

(START FCOlSll.SL) 

1/HILE NOT END OF SLICE LIST I 

( CAL.CULA TE DISP!.ACEI<CNTS ) 

\. CAUlllATE HAXHI\Jil DISPI.ACelENT 50 FAR ) 

(SET RJl!Cf VECTOR TO ZERO) 

HEXT I 

(END FCOIISOI.SL) 

Figure C.25 Chart for procedure fconsolsl 

PROCEDURE fconsolsl{el : ptr_type}; The second of the two calculation proce

dures, this defines the motion law for the slices. The slice list is traversed using a 

while loop so that the law is executed for each slice. 

PROCEDURE starLshut(var cmd_i : text; starting : starLtype); This procedure 

controls starting and stopping procedures and looks after meshing, contact creation 

and reading to and from the restart files. The procedure consists of a single case 



C.2l3 

c START FORDS!..) 

1----1 IIHILE troT EIID Ill' S!.ICE L 1ST _I 

1-----1 Fllll BOTH RIG!fTIIAN!l AMI IIASf COllTACTS I 

1-----1-(SET LOCAL VARIABLES) 

1----{( CALClllA TE RmCE) 

1----{( CALOJLATE tllllt!AL STRESS lta:RB<ENTS ) 

1--~--t IF STILL IN CONTACT I 

6>--r----1 S\D4 STRESSES I 

L-------fl CALCUlATE PORE PRfSSUllf I 

1-----1 IF IN CONTACT I 

6>--.---<(FIND LIHITING STRESS) 

1-----1( DECIDE IF FAILED ) 

I----ll CALCUlATE SHEAR STRESS I 

1-----1 CALCUlATE SHEAR FORCE I 

1-----1 CALCUlATE BODY FORCE JIDII:HENTS I 

.....___----! SIJI BODY FORCES I 

1-----t NEXT CONTACT I 

1-----1 NEXT SliCE I 

(END FORDSL ) 

Figure C.24 Chart for procedure fords/ 



C.24 

(START START SHUT 

CASE Cl);liiAI!ll Ol' I 

I COlD START r-1 RfAII ~Ditm -~ 

::PLOTS TO INJTIAILISE ll 

IIHfSH 
II II 

:: UI'DATE AREA II 

::PLOTS FOll INITAIL 5!.1CE PLOT II 

I SHUT DOIIIl ~- II PLOTS TO em PLOTTltm II 

uCOX!'U:Te 
II II 

:: FACTORS Ol' SAFETY II 

:: VRITE RESTART FILE II 

STOP RUII l 

IvA~&~ r- ::READ RESTART FILE II 

n PLOTS TO START PLOTTII«i ll 

::PLOTS FOR (NIT AIL SLICE PLOT II 

I KEEP r- :: liRITE RESTART FILE II 
(etal START SHUT 

Figure C.26 Chart for procedure starLshut 



C.25 

statement with four parts, one for a new run, stopping, restarting, and updating 

a restart file. The procedure plots is referred to several times with internal type 

calls. 

PROCEDURE update_area(el: ptr_type); This is local to starLshut and is respon

sible for setting up the contacts between the slices as well as with the platen. The 

slice list is traversed using a while construct. 

START UPDATE HESSAGE 

Et!D UPDATE ~SAGE 

Figure C.28 Chart for procedure update_message 

PROCEDURE update_message{direction : hed_type; el: ptr_type; cont : con_ptr); 

update_message is local to update-area and generates debug contact information 

for each contact as it is created during an initial or restarted run. 

PROCEDURE cold_contact(el : ptr_type direction : hed_type; cont : con_ptr); 

cold_contact initialises the contact parameter for a new contact during a cold, that 

is, an initial run. 

PROCEDURE geLapex(var base, oater : corn_ptr; number : integer); This pro

cedure creates the corner doubly linked rings, the number indicates the number 

of corners to be created. The procedure not only produces complete rings for the 

slices but can splice corners into such a ring at any time. This latter facility is 

exploited in creating the platen corner ring. This procedure is local to starLshut 

and is called from cre_slices and cre_platen. 



AppeJtD.dlnx C. C.26 

c START UPDATE AREA) 

l GET FIRST PLATEN COllNER 

IIHILE NOT END OF SI.ICE LIST I 

IF cm.o START I 

6 GET liB! CIMACT KBml!Y I 

SET lJll CONTACT I 

IF cm.o START I 

6 II COI.D CONTACT II 

II UPDATE ltfSSAGf II 

IF LAST SLICE I 

~ SET RIGHT CIMACT TO llll I 

sET lll' RIGHTHAND com ACT I 

NEXT I 

(END UI'DA TE MlfA 

'-...,..; 

Figure C.27 Chart for procedure update_area 

PROCEDURE mesh; mesh executes the command input dealing with the creation 

of slices. The structure is that of plots, except that the repeat loop is exited 



Ap:peXll.~lix C. C.27 

(sTART COUl CllliTACT 

1----1 SElUP GEOXETRY I 

.-------~' IF RIGHT CONTACT I 

6>---t SET UP RIGIITIW«< PI/P 1001 DAKPII!G PARJJ<ETERS I 

'------1 SET UP BASE PI/P AND DAIIl'ING PARAMETERS I 
( EI!D CDllJ CONTACT 

Figure C.29 Chart for procedure colrLcontact 

(START GET APEX) 

t-----1 IF 1«1 CORNERS EXIST I 

~)----1 CREATE FIRST CCIRNCR I 

1----1 FQll REQUESTED CORia:RS I 

1----1 CREATE CORNER I 

( EI!D GET APEX) 

Figure C.30 Chart for procedure geLapex 

when meshquit is explicity set by the user by the meshen.d command. The case 

statement has two options, one for creating and one for quiting. This procedure 

calls cre_s[ice. 



C.2§ 

1---l UHTIL TIKE TO QUIT 

I CREATE ~-

)---1 SET TIKE TO C!UJT TRUE 

Figure C.31 Chart for procedure mesh 

PROCEDURE cre_platen{el : ptr_type); This local procedure to mesh creates the 

platen, it is called after all the slices have been created. For each slice in the slice 

list it adds corners to the platen corner ring by calling geLapex. 

PROCEDURE cre_slices; get-command is called to ascertain the slice type and 

a case statement with two options creates the slice according to the type. The 

element values are initailised to zero and the corner rings created. Once this has 

been done centres of gravity and masses are found by traversing the corners. 

PROCEDURE read_restart_file; This procedure reads a restart file, it is local to 

starLshut and calls no other procedures. The structure is simple, the repeat and 

command list files are emptied and the restart file is set to the beginning. Following 



(sTART CRE PLATEN 

1-----1 INITAILISE POINTERS I 

1-----1 COllY SLICE BASAL COORDINATES TO PLATEN COR1a31S I 

1----1 INITIALISE PI..ATEN VALUES I 

( Etm CRE PLATEN 

Figure C.32 Chart for procedure cre_platen 

this a while loop executes until the end of the restart file is reached. Within the 

loop, a record is read from the file and a case statement option reinterpretes the 

buffer contents according to the tag field on the buffer record type. 

PROCEDURE write_restarLfile; This procedure writes a restart file and is local 

to starLshut. The restart file is produced in a standard manner. Firstly five sets 

of general information are moved to the buffer and written. Then, each line of the 

command list file and the repeat structure file is set up and written. Following 

this write_r_el is called twice, once for the slice list and then for the platen, and 

finally the restart file is finished with an end of file message. 

PROCEDURE write_r_el(el : ptr_type; c:char); This local procedure to write_re

start_file recieves the base of an element list in the parameter el. This list is 

traversed and the information for each element is written to the restart file. Fol

lowing the element data, the righthand and base contact information is written, 

and lastly the corner rings are traversed and the coordinates added to the file. 



C.31(]) 

(START CRE SLICES) 

t-----ill GET CIWlAilll ~ 

1-----1 IIHILE IIOT EOl I 

t--------; CASE SLICE TYPE Ill' I 

I ,_ " ""' ~ -6>---l IF FIRST SLICE I 

6>---l CREATE FIRST SLICE I 

'-----IL CREATE SUBSEQUENT SLICE I 

I OTHBII/ISE ~ - I 

J-----1 INITIALISE SLICE DATA 

1-----1 SET Ul' COJOO:RS I 

1---i CALQL\TE CENTROID I 

(END CRE SLICES) 

Figure C.33 Chart for procedure cre_slices 

PROCEDURE complete; This causes some general information to be written to 

the running commentary. 

PROCEDURE debug_slice(var cmd_i : text); This procedure produces or arranges 

for the production of debugging information. The structure is the same as for plots, 

a repeat containing a case statement. There are twelve case options, mirroring the 



C.31 

START READ ReSTART FILE 

1----l IIHILE NOT EO? RESTART 

1----1 READ A LIME 

1-----t SET I.AI!a VALUE 

I G ~-

I c ~- RESTQliE COIIIWal PI!CICESS C0l04AI<ll5 

In ~- RESTORE REPEAT PROCESS COKl4ANOO 

I F ~-

I R ~- RESTORE RIGtll COliTAtl 

I B ~- RESTORE BASE aM ACT 

I p ~- RESTORE PLATEN 

I A ~- RESTORE CORNER 

r-
EI!D READ RESTART FILE 

Figure C.34 Chart for procedure read_restart_file 



Appemtdh: C. C.32l 

(START ~RITE Rf5TART FILE 

IF DVEAURITE OR FIRST RESTART FILE l 

~ RCIIRITE FILE 

IIIII TE GEI<ERAI. DATA I 

I RESET Cl!ll FILE I l I!HILE NOT EO? I 

READ 001 FILE LitlE I 

SAVE Cl!D FILE LitlE I 
\....,... 

RESET REPEAT FILE 1/HILE tall EOF I 

READ REPEAT FILE LINE l 

SAVE REPEAT FILE LINE I 

II VIIITE R EL FOll SUCE LIST II 

-ll VIIITE R EL FOll PLATENl] 

SAVE END OF RESTART llESSAGE I 

(END VIIITE RESTART FILE 

Figure C.35 Chart for procedure write_restarLfile 



Appendix C. C.33 

c START URI'IC R EL 

IIHILE t!OT EMl Of StiCE LIST I 

sAve StiCE IIO'ORHATJtm I 

IF RIGKT COliTACT EXISTS I 

~ SAve COMTACT I 

IF BASE COlfTACT EXISTS I 

~ SAVE COMT ACT I 

GET FIRST CC!MR I 

UIITIL ALL CC!MRS DOla! I 

SAVE DIIU!ER I 

GET IIEXT COlMA I 
'-...I 

(ell!l IIRITE R B. J 

Figure C.36 Chart for procedure write-r_el 

twelve debug commands. Reference is made to two local procedures, write_con 

and write_sli for the production of information. 

PROCEDURE write_con{el :ptr_type); This is local to debug_slice and produces 

information for each contact, wr_con is called for each contact by traversing the 

data structure. 



Appeltll.<dlnx C. C.34 

Figure C.37 Chart for procedure complete 

PROCEDURE wr_con(el: ptr_type; con: con_ptr); This is local to write_con and 

writes out the contact information for a single contact. 

(START IIRJlE Sl.l) 

IIA ne HEADINGS I 

!littLE NOT em oP SLice LIST I 

IIRITE SliCE II!FOAMATION I 

GET I!EXT SLICE I 

(eND IIRilE Sll) 

Figure C.41 Chart for procedure write_sli 

PROCEDURE write-sli(el :ptr_type); This is local to debug_slice and produces slice 

data for each slice. 

PROCEDURE parameters(var cmd_i: text); Parameters deals with the execution 

of the set commands. The structure is the same as plots, the case statement 



Appemudllix C. C.35 

START DEBUG SliCE 

I SLICES ~-

lc(J)j ~-

I GEN ~- )----l \!RITE GEIIERAL liO'ORMATIOll 

lf(J)j ~- )----l MH ALL DEBUG FlAGS ())I 

IFill' ~- >------1 MN ALL DEBUG FLAGS Ol'F 

I~ ~- 1---_,. SET MQTIQ)j FLAG 

I est ~-

IUPD ~-

I CYC ~- Il----l SET CYCLE FLAG 

'-----1 SET FORO FlAG 1----1 SET HOTION FlAG 

I FOO ~- 11-----1 SET FORO FLAG 

I TIIA ~-

1 osc ~-

I OTI!EIIIIISE ~-

END DfBUG St. ICE 

Figure C.38 Chart for procedure debug_slice 



Appendix C. C.36 

START HRITE CQll 

1-----l NEXT 

Figure C.39 Chart for procedure write_con 

Figure C.40 Chart for procedure wr_con 

containing twelve options. Most of these involve the prompting for, and reading in 

of parameter values. One option, the calculator refers to the procedure calculator. 



C.37 

START PARAKETERS 

I EO«< ClllliWlll ~ - SET EO«< 

I FIW<I.HIIT ~- SET LIIIIT 

I CYCI.fG!I r- sa GAP 

I GRAVITY ~- SET GRAVITY 

I PTIKE ~- SET TIKE INCREKENT 

I FIJAI<l' ~- SET DAI<l' 

I CALC ~-

I 0:01111' ~- IIITERVAL 

I CKDI..IST ~- REVRITE FILE IM'IL END COKIWID 

t----1 VRITE VORO TO FILE 

I LISTPII ~- SET Cl«lPRRC 

I OVER Rl' ~- SET RF OVER 

I OTHEA\11 SE ~-

Figure C.42 Chart for procedure parameters 



Appemudlix C. C.3§ 

START CALCill.ATOR 

I CYCI.fGI> 

I GRAVITY 

I TillE 

I OOIINT 

I OTHERYISE 

Figure C.43 Chart for procedure calculator 

PROCEDURE calculator; This is local to parameters and enables several of the 

problem parameters to be altered by calculation. The structure is that of plots 

with a case statement of six options refering to the function intcalc, which performs 

the calculation. On return from intcalc the new value is placed in the variable to 

be changed. 

FUNCTION intcalc(op : real): real; This is local to the procedure calculator and 

recieves one value, the operand, the variable to be altered. geLcommand is called 



Appendllix C. C.39 

)----1 MOVE VALUE TO RESULT 

I OTMCR O!'ERA TOR ~ >----1 CALOJI..ATE RESULT 

I OTHER\IISE ~ -

Figure C.44 Chart for function intcalc 

to obtain the operator and a case option executed accordingly. The result of the 

simple calculation is written to the running commentary and then returned to the 

calculator. 

PROCEDURE repeater(var cmd_i : text}; This procedure is called from control 

during the execution of the repeat command. Initially the file -sass.rep is emptied 

and the number of repeats read. A repeat loop calling geLcommand is used to copy 

the input from the primary source to the secondary. The repeat facility is invoked 

by means of executing a for loop the number of times requested. Within this, 

the variable gi.reptend is set to false, and control is called from within a second 

repeat loop until gi. reptend is true. The file device unit buffer for the secondary 

command source is passed to control on invocation. gi. rep tend is set to true on 

encountering rend in procedure control. 



C.40 

(sTART RfPCATER J 

REIIIIITE FILE IIEAII fi WES I 

UHT IL END CQX)IAI([J I 

111/0RII SCAli II 

IIRITE IIOllll I 
'-.,..i 

FOll ND OF REPEATS TIWES I 

SET fiLE TO START I 

UNTIL em COX>tAND I 

UcOOROL II 
'-.,..i 

(END RePEATER) 

Figure C .45 Chart for procedure repeater 

PROCEDURE control; The structure consists of a call to get-command followed 

by a case statement. Each case option refers to a permissible level one command. 

PROGRAM SLICES Initialisation of the program variables is carried out first 

by calling initialise_globals, this sets all global variables to zero or default values. 

headers is called next to initiate the structure of the running commentary. The 

outermost control structure of the program then follows. This is a repeat loop 

that calls the procedure control. The loop termination condition can never be 



Appendix C. C.411. 

lsers ~-

I CEND ~- SET CIIDEH!l TRUI: 

I AEtal ~- SET REPTEND TRtJE 

I REST ~- START SHUT FOR IIARll START 

I SAVE ~- STAAT 5111/T TO KEEP POSITIOll 

I STAR ~-

I CYQ. ~-

I PlOT ~-

IOESG ~-

I REPT ~-

I STOP ~- STAAT 5111/T TO HALT RIJll 

I RETU!I ~-

Figure C.46 Chart for procedure control 



C.42 

START PROGRAH SliCES 

1------i UHTIL TJ~;E TO llUIT 

Figure C.4 7 Chart for program SLICES 

true, so this is a repeat forever construct. The program, however, does closedown 

in procedure starLshut or error_simple. Procedure control is called with the file 

device unit buffer pointer for the primary input command file. 



Appendix]). 

APPJENDJIX ]) 

PROGRAM §JLJICJE§ 

program slices(debug_o, sercom); 
%include estB:u.ghost.lib 
%include trap 

const 
led_pos = 2; 
tit_pos = 4; 
req_pos = 6; 
fra_pos = 7; 
plo_pos = 8; 
cyc_pos = 9; 
com_pos = 11; 
mes_pos = 12; 
fos-pos = 13; 
err _pos = 14; 
tot_pos = 17; 
fiLpos = 20; 
pro_pos = 16; 
pos_str = ' ' ; 
clearoff =' .0'; 
curs on = ' . 1 ' ; 
maxcycle = 1000000; 
commands = { onoffer} 
'null on off ' II 
'bottom lowermiddle uppermiddle top 
'horizontal vertical plain full 
'zoom ' I I {map} 

{onoffer} 
picture ' I I 

fullnoscales' I I 

'initialise slices displacementforces standard ' II 
'page border map endplot ' I I {plot} 
'free track ' I I {create} 
'meshend create ' II {mesh} 
'= * I + ' II 
'A ? ' I I { operater} 
'echo cmdproc overwrite framelimit writegap 
'interval cmdlist gravity damp time 
'calculate ' II {set} 
'contacts general flagson 
'motion consolidate ford 
'oscillate ' I I {debug} 
'set cend rend 
'start go plot 
'stop return '. I 

type 

flags off 
cycle 

update 
trace 

restart save 
repeat debug 
{control} 

' II 
' II 

' II 
' II 

' II 
' II 

com_type = (null, on, off, lowerp, midlop, midupp, upperp, piccie, horiz, 
vertic, plain, whole, fnosc, zoom, init, slices, displot, 
forceplot, standard, page, frames, maps, plotstop, free, track, 
meshend, create, equal, mult, divid, plus, minus, power, enquiry, 
echo, listpr, over_rf, framlim, cyclegp, cmdint, cmdlist, gravity, 

D.]. 



Appendix ]). 

fdamp, ptime, calc, con, gen, fon, fof, upd, mot, csl, fod, eye, 
tra, osc, sets, cend, rend, rest, save, star, cycl, plot, rept, 
debg, stop, retur); 

call-type~ (errorer, onoffer, mapper, plotter, masher, creater, operter, 
calcter, paramer, debuger, contler); 

start-type= (cold, ~arm, shutdo~n, keep); 
dir_of_contacts = (righthand, based); 
ptr_type = l!lelemen·t_-t;ype; 
con-ptr = @con.. type; 
corn_ptr = @corn_ type; 
vector_type = record 

x, y: real 
end; 

coord..type = record 
xc, yc: real 

end; 
con-type = record 

consol: record 
ns, ss, lime, pp: real 

end; 
damp£, sine, cose, con-len: real; 
failed: boolean; 
corn, edge: corn_ptr; 
other: ptr _type; 

end; 
corn_type = record 

c: coord-type; 
c~, a~: corn-ptr 

end; 
element_type = record 

posn: coord-type; 
force, s: vector _type; 
data: record 

phi, mass, sidec, cohes, sphi, rho, k, p~, spwp, e: 
real; 

sliceno: integer; 
typ: free .. track; 

end; 
contacts: record 

right, base: con_ptr 
end; 

next: ptr-type; 
apexes: corn..ptr; 

end; 
cycle_type = 0 .. maxcycle; 
hed-type = string(80); 
grid-type = record 

xmin, xmax, ymin, ymax: real 
end; 

gen_info_type = record 
heading: hed_type; 
tstep: real; 
nextword: string(12); 
reptend, cmdend: boolean; 
motioning, consoling, updating, cycling, fording, tracing, 

oscing: boolean 
end; 

option..type = record 
plot_lims: grid..type; 
vert: boolean; 

]).2 



Appendix JD. 

meshtbs: record 
xb, yb, xt, yt: real 

end; 
grav: vGctor_typG; 
damp, damps: real; 
cyclegap, cycle-interval: cycle_type; 
cmdprocessing, echo, rf_over: boolean 

end; 
sum_type = record 

sc, scold, scsofar: real 
end; 

totals-type = record 
cycles, restarts, slices, cons, pies, pages: integer 

end; 

const 
nilv = vector_type(O, 0); 
nile= coordLtype(O, 0); 
nilhed = ' '; 
nilgrid = gridLtype(O, 0, 0, 0); 

var 
repts_i, cycmdLi, oscil_o, debug_o, trace_o, sercom: text; 
rf_first, quit, qdum, screen: boolean; 
gi: gen_info_type; 
opt: option_type; 
sum: sum-type; 
total: totals-type; 
plspace, plot_space, force~ap: gridLtype; 
platen, slice_list, eolist: ptr_type; 
apex, platapex: corn-ptr; 

{**************************************** BEGIN GLOBAL ROUTINES } 

procedure error_simple(ob, caller: string(40)); 

begin 
if gi . tracing 

then 
writeln(trace_o, 'Entered procedure ERROR-SIMPLE'); 

rewrite(sercom, 'UNIT=11'); 
writeln(sercom, 'Error', '''', ob, '''', 'found in routine' caller, 

, ) j 

halt; 
end {error_simple}; 

procedure word-scan(var cmds-in: text; var word: string(12)); 

const 
blank= ' '; 

var 
ch: string(1); 

procedure skipblks(var ch: string(1)); 

begin 

D.3 



Appendix ]). 

if gi. tracing 
then 

eriteln(trace_o, 'Entered procedure SKIPBLKS'); 
ch := ' '; 
while ch = blank do begin 

ehile (~ eoln(cmds-in)) AND (ch =blank) do 
read(cmds_in, ch); 

if (eoln(cmds_in)) AND ( ~ eof ( cmds_in)) 
then 

readln(cmds_in); 
if eof ( cmds_in) 

then 
error_simple(' End of file causes return to mts', 'skipblks'); 

end; 
if gi . tracing 

then 
wri teln ( trace_o, ' EXIT procedure SKIPBLKS') ; 

end {skipblks}; 

procedure skipcomment(var ch: string(l)); 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure SKIPCOMMENT'); 

while ch ~ = •}• do begin 
while(~ eoln(cmds_in)) AND (ch ~ = •}•) do 

read(cmds_in, ch); 
if (eoln(cmds-in)) AND (~ eof(cmds-in)) 

then 
readln(cmds_in); 

if eof ( cmds_in) 
then 

error-simple('end of file causes return to mts', 'skipcomment'); 
end; 

skipblks(ch); 
if ch = •{' 

then 
skipcomment(ch); 

if gi.tracing 
then 

writeln(trace_o, ' EXIT procedure SKIPCOMMENT'); 
end {skipcomment}; 

begin {word-scan} 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure WORD_SCAN'); 

word := ''; 
ch := ''; 
if screen 

then begin 
writeln(output, substr(pos_str, 1, err_pos + 2), 

' Input a command please . . . . . . . . . . . . ') ; 
reset(cmds~in, 'UNIT=11,INTERACTIVE'); 
repeat 

read(cmds_in, ch) 

]).4 



Appendix ]). 

until ch -
end 

else 

= ''. . 
skipblks(ch); 

ahile c- eoln(cmds-in)) AND (ch- =blank) do begin 
if ch"' ' {' 

then 
skipcomment(ch); 

aord := aord II ch; 
read(cmds_in, ch); 
end; 

if ch - = blank 
then 

word := word II ch; 
if opt.echo 

then 
writeln(output, substr(pos_str, 1, com-pos), 'Command 

'); 
if (eoln(cmds-in)) AND c- eof(cmds-in)) 

then 
readln(cmds_in); 

if gi. tracing 
then 

wri teln(trace_o, ' EXIT procedure WORD-SCAN 
end {word-scan}; 

word); 

procedure start-shut(var cmd-i: text; starting: start_type); 
forward; 

procedure control(var cmd-i: text); 
forward; 

procedure trapper; 

var 
ch: char; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure TRAPPER'); 

writeln(output, substr(pos_str, 1, err_pos), 
' Attn! : Do you want to stop?'); 

reset(sercom, 'UNIT=11'); 
repeat 

read(sercom, ch); 
until (ch- =' '); 

trpreset; 
if ch = 'y' 

then 
start_shut(input, shutdown); 

writeln(output, substr(pos-str, 1, err-pos), 
'); 

if gi. tracing 
then· 

writeln(trace_o, ' EXIT procedure TRAPPER'); 

]).5 

-aord, 



Appendix ]). 

end {trapper} ; 

procedure get_command(caller: call-type; var quiter: boolean; var retcom: 
com-type; intcall: string(12); var cmds-ig: text); 

const 
last "'816; 

var 
ifail: boolean; 
beg, loca, indes: 0 .. 1200; 
this-com: string(12); 

begin 
if gi.tracing 

then 
writeln(trace_o, 'Entered procedure GET_COMMAND 

this_com := intcall; 
if this-com = '' 

then begin 
this_com := gi.nextword; 
gi.nextword := ''; 
end; 

if this_com = '' 
then 

word_scan(cmds-ig, this_com); 
if trap 

then 
trapper; 

beg := 1; 
repeat 

intcall); 

indes := index(substr(commands, beg, last- beg+ 1), this_com); 
loca := indes +beg- 1; 
if loca MOD 12 = 1 

then 
indes := 0 

else 
beg : = loca + 1; 

until (indes = 0) OR (last- beg< 12); 
retcom := com_type(loca DIV 12); 
case caller of 

errorer: 
ifail :=NOT (retcom IN on retur ); 

onoffer: 
ifail :=NOT (retcom IN on off); 

mapper: 
ifail :=NOT (retcom IN lowerp .. zoom); 

plotter: 
ifail :=NOT (retcom IN init plotstop, zoom); 

masher: 
ifail :=NOT (retcom IN free track); 

creater: 
ifail :=NOT (retcom IN meshend .. create); 

operter: 
ifail :=NOT (retcom IN equal .. enquiry); 

calcter: 
ifail :=NOT (retcom IN cyclegp, cmdint, gravity .. ptime ); 

para.mer: 
ifail :=NOT (retcom IN echo .. calc); 

]).18 



Appendix D. 

debuger: 
ifail :=NOT (retcorn IN con .. osc, slices); 

contler: 
ifail :=NOT (retcom IN sets .. retur ); 

end; 
ififail 

then begin {some thing's arong} 
if (retcom = null) OR (caller "' con·tler) 

then begin {invalid command} 
screen : = true; 
writeln(output, substr(pos-str, 1, err-poe), 'Error','''' 

this-com, '''', 'found in routine', 'get_command 
writeln(output, 'Input corrected commands ... <RETURN> 
get_command(errorer, ifail, retcom, '', sercorn); 
while retcorn - = retur do begin 

'); 
... '); 

gi.nextaord := substr(comrnands, ord(retcom) * 12 + 1, 12); 

control(sercom); {control returns with nextaord = returnlkeyword} 
get_command(errorer, ifail, retcorn, gi.nextaord, sercom); 
end; 

screen : = false; 
gi.nextword :='return'; 
quiter :=false; 
end 

else begin {valid command wrong caller} 
quiter :=true; 
gi.nextword := this_com; 
end; 

end 
else 

quiter := intcall - = 
if gi. tracing 

then 

''. {alls ok} 

writeln(trace-o, ' EXIT procedure GET-COMMAND'); 
end {get_command}; 

function onoff(var cmd_i: text): boolean; 

var 
onof: com...type; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure ONOFF'); 

get_command(onoffer, qdum, onof, '', crnd_i); 
case onof of 

on: 
onoff : = true ; 

off: 
onoff :=false; 

otherwise; 
end; 

if gi. tracing 
then 

wri teln(trace_o, ' EXIT procedure ONOFF'); 
end { onoff} ; 

D.'f 



Appelllldnx D. 

procedure headers; 

begin 
writeln(output, clearoff); 
writeln(output, substr(pos_str, 1, led-pos), 

'PROGRAM SLICES RUNNING COMMENTARY ON: '); 
ariteln(output, substr(pos_str, 1, tit_pos), ' ', gi.heading); 
ariteln(output, substr(pos_str, 1, req_pos), ' 0 cycles requested'); 
ariteln(output,'' total.pages: 6,' framesplotted'); 
ari teln(output, ' ' total. pies: 6, ' plots types drawn'); 
ariteln(output, ' ' total.cycles: 6, ' cycles and still counting!'); 
end {headers}; 

procedure factors-of_safety(el: ptr-type); 

var 
fos: real; 
atlim, natlim: integer; 

begin 
atlim := 0; 
nat lim := 0; 
ariteln(debug_o, total.cycles: 6, 

'Slice no FOS shear normal 
while el - = nil do 

limit 

with el@, contacts.base@, consol do begin 
if abs(ss) < 1e-20 

then 
fos := 1 

else 
fos := abs(lims Iss); 

pap targu'); 

writeln(debug-o, ' data.sliceno: 10, fos: 10, ss: 10, ns: 10, 
lims: 10, pp: 10, data.pwp: 10); 

if fos < 1.0005 
then 

atlim := atlim + 1 
else 

natlim := natlim + 1; 
el :=next; 
end; 

writeln(output, substr(pos_str, 1, fos_pos), ' Number slices at limit ' 
atlim: 4, ' not at limit ', natlim: 4); 

end {factors_of_safety}; 

function sign(val, donor: real): real; 

begin 
if donor - = 0 

then 
sign := abs(val * donor) I donor 

else 
sign :=val; 

end {sign}; 

procedure initialise-globals; 

JD.§ 



A.ppe:ndix ]). 

begin 
trapon; 
reerite(debug_o, 'UNIT=7'); 
rewrite(trace_o, 'UNIT=8'); 
reerite(oscil_o, 'UNIT=10'); 
reerite(cycmd-i, 'FILE=-sass.cmd.i'); 
quit :=false; 
rf_first := true; 
with gi, plspace, opt, total, opt.meshtbs do begin 

reptend :=false; 
cmdend :=false; 
tstep := 0; 
heading := nilhed; 
next '!lord : = ' ' ; 
motioning :=false; 
updating := fal~e; 
cycling :=false; 
fording :=false; 
oscing := false; 
tracing :=false; 
consoling :=false; 
plspace := nilgrid; 
force~ap := nilgrid; 
plot_space := nilgrid; 
plot_lims := nilgrid; 
xb := 0; 
yb := 0; 
xt := 0; 
yt := 0; 
vert : = true ; 
grav .x := 0; 
grav.y := 1; 
damp := 0; 
cyclegap := 100; 
cycle-interval := maxcycle; 
echo : = true; 
rf_over :=true; 
cmdprocessing :=false; 
sum.sc := 1E70; 
sum.scold := 0.0; 
sum.scsofar := 0; 
slices := 0; 
cons := 0; 
cycles := 0; 
restarts : = 0; 
pies := 0; 
pages := 0; 
platen : = nil; 
slice_list :=nil; 
apex :=nil; 
platapex :=nil; 
end 

end {initialise-globals}; 

{**************************************** END GLOBALS } 
{**************************************** BEGIN PLOTS } 

procedure plots(var cmdLi: text; plot-command: string(12)); 

]).9 



Appendix JD. 

var 
plotcom: com-type; 
plotquit, eriting: boolean; 

procedure map-space(var cmd-i: text; sp-comst: string(12)); 

canst 
paph-space = grid-type(0.06, 0.96, 0.05, 0.65); 
papv_space = gridLtype(0.15, 0.76, 0.06, 0.96); 

var 
quartht, htratio: real; 
sp_com: com_ type; 
map_sp, plt_sp: gridLtype; 
mapquit: boolean; 

begin 
if gi.tracing 

then 
eriteln(trace_o, 'Entered procedure MAP-SPACE'); 

repeat 
get_command(mapper, mapquit, sp_com, sp-comst, cmdLi); 
with plt_sp do begin 

pl t_sp : = plot_space; 
quartht := 0.9 * (ymax- ymin) I 4; 
case sp-com of 

horiz: begin 
opt.vert :=false; 
plot-space := paph-space; 
plt-sp :=plot-space; 
quartht := 0.9 * (ymax - ymin) I 4; 
end; 

vertic: begin 
opt.vert :=true; 
plot_space : = papv_space; 
plt-sp :=plot-space; 
quartht := 0.9 * (ymax - ymin) I 4; 
end; 

lowerp: 
ymax := ymin + quartht; 

midlop: begin 
ymin := ymin + quartht; 
ymax := ymin + quartht 
end; 

midupp: begin 
ymin := ymin + 2 * quartht; 
ymax := ymin + quartht 
end; 

upperp: begin 
ymin := ymin + 3 * quartht; 
ymax := ymin + quartht 
end; 

piccie: begin 
ymin := ymin + 2 * quartht; 
ymax := ymin + 2 * quartht 
end; 

otherwise; 
end; 

JD.lO 



Appendix JD. 

if sp_com - = plain 
then 

pspace(xmin, xmax, ymin, ymax); 
if ymax - ymin < 1E-20 

then 
htratio := 1 

else 
htratio := (xmax- xmin) I (ymax- ymin); 

end; 

with map_sp do begin 
map-sp := plspace; 
case sp_com of 

lowerp, midlop, midupp, upperp: begin 
ymin := force~ap.ymin; 
ymax := force~ap.ymax; 
end; 

piccie, horiz, vertic, whole, fnosc: 
ymax := ymin + (xmax - xmin) I htratio; 

zoom: 
with plspace do begin 

if screen 
then 

ariteln(output, aubatr(pos_str, 1, pro_poa), 
'Enter xmin, xmax, and ymin ... '); 

read(cmdLi, xmin, xmax, ymin); 
ymax := ymin + (xmax - xmin) I htratio; 
map-sp := plspace; 
end; 

plain: begin 
map-sp := nilgrid; 
xmax := 100; 
ymax := 100; 
end; 

othenlise; 
end; 

ctrmag ( 10) ; 
map(xmin, xmax, ymin, ymax); 
end; 

if (ap_com - = fnosc) AND (sp-com - = plain) 
then 

scales; 
border; 
until mapqui t ; 

if gi.tracing 
then 

Hriteln(trace_o, ' EXIT procedure MAP-SPACE'); 
end {map-space} ; 

procedure setup_plot; 
{ sets up plotting parameters } 

{ sui table for a4 size paper I laser printer} 
{ called from either start or restar } 
{ end of line } 

begin 
if gi. tracing 

then 

JD.].l 



Appendiix JD. 

writeln(trace_o, 'Entered procedure SETUP-PLOT'); 
writeln(output, substr(pos_str, 1, mes-pos- 1)); 
paper(1); 
cspace(O.OO, 1.00, 0.00, 1.00); 
if opt .vert 

then 
map_space(cmd_i, 'vertical') 

else 
map_space(cmd_i, 'horizontal'); 

map-space(cmd_i, 'zoom'); 
blkpen; 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure SETUP-PLOT'); 

end {setup-plot}; 

procedure disp-plot(el: ptr_type); 
{ plot of displacements, called from plot, end of line } 

begin 
if gi.tracing 

then 
writeln(trace_o, 'Entered procedure DISPJ?LOT'); 

while el - = nil do 
with el@ do begin 

gpoint(posn.xc, posn.yc); 
join(posn.xc + s.x, posn.yc + s.y); 
el :=next; 
end; 

if gi. tracing 
then 

writeln(trace_o, • EXIT procedure DISP..PLOT'); 

end {disp-plot}; 

procedure frarn-plot; 

var 
time, yline: real; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure FRAM..PLOT'); 

with plspace do begin 
map_space(cmd_i, 'fullnoscales'); 
map_space(cmd_i, 'plain'); 
time := gi.tstep * total.cycles; 
undlin(1); 
italic(1); 
plotcs(5, 95, gi.heading, length(gi.heading)); 
pcsend(85, 95, 'TIME ', 6); 
plotne(88, 95, time, 4); 
italic(O); 
undlin(O); 
map-space(cmd_i, 'fullnoscales'); 
end; 

if gi. tracing 

][).12 



Appe:ndlix ]). 

then 
wri teln ( trace_o, ' EXIT procadura FRAM..PLOT') ; 

end { fram_plot} ; 

procedure slice_plot(el: ptr_type); 
{plot a snapshot of the geometry, called from plot, end of line, plot a slice } 

function utohead(el: ptr-type): real; 

begin 
if el@ocontactsoright - =nil 

then 
utohead := sqrt(abs(2 * el®odataospwp * el®ocontactsoright®ocon_len 

I optogravoy)) 
else 

utohead : = 0; 
end {utohead}: 

begin {slice_plot} 
if gi 0 tracing 

then 
writeln(trace_o, 'Entered procedure SLICE-PLOT'); 

if (el - =nil) AND (el@oapexes - =nil) 
then 

with el®oapexes®oaw@ do 
positn(coxc, coyc + utohead(el)); 

while el - = nil do 
with el@ do begin 

if apexes = nil 
then 

error_simple('no corners in slice', 'slice-plot') 
else 

with apexes@oaw@, contacts do begin 
ap;;u := apexes; 
j o:Ln(c o xc, co yc + utohead(el)); 
positn(apex®ocoxc, apex@oc.yc); 
repeat 

apex := apex@ocw; 
with apex@ do 

join(coxc, coyc) 
until apex= apexes; 

positn(coxc, coyc + utohead(el)); 
end; 

el := el@.next; 
end; 

if gi . tracing 
then 

wri teln ( trace_o, ' EXIT procedure SLICE..PLOT') ; 

end { slice_plot}; 

procedure force_profile(ele: ptr_type; dire: dir_of_contacts); 

var 
el: ptr_type; 
condir: con-ptr; 

]).].3 



Appendix D. 

procedure init_frn; 

begin 
el := ele; 
force~ap.yrnax :=- rnaxreal; 
force~ap.yrnin := rnaxreal; 
end { ini t_frn} ; 

function ptrd_frn(elern: ptr_type; dire: dir_of_contacts): con-ptr; 

begin 
case dire of 

based: 
ptrd_frn := elern@.contacts.base; 

righthand: 
ptrd_fm : = elem@. contacts. right; 

end; 
end {ptrd_fm} ; 

procedure lims_fm(var miny, maxy: real); 

var 
tenpercent: real; 

begin 
tenpercent := (maxy- miny) I 10; 
if tenpercent = 0 

then 
tenpercent := maxy I 10; 

rnaxy : = maxy + tenpercent; 
miny := miny- tenpercent; 
end { lims_fm}; 

begin {force-profile} 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure FORCE_pRQFILE'); 

with force~ap do begin 

el := ele; 
while el - = nil do begin 

condir := ptrd_fm(el, dire); 
if condir - = nil 

then 
with condir@ do 

consol.lirns := sign(consol.lims, consol.ss); 
el := el@.next; 
end; 

init_fm; 
while el - = nil do begin 

condir := ptrd_fm(el, dire); 
if condir - = nil 

then 

D.14 



Appendix JD. 

with condir@.consol do 
case dire of 

righthand: begin 
ymax ;; max(- el@.data.spap, ymax, ns); 
ymin ;; min(- el@.data.spwp, ymin, ns); 
end; 

based: begin 
ymax ;; max(- el@.data.pwp, ymax, ns); 
ymin :=min(- el@.data.pwp, ymin, ns); 
end; 

end; 
el := el@.next; 
end; 

el:=ele; 
condir := ptrd_fm(el, dire); 
if condir - = nil 

then begin 
lims_fm(ymin, ymax); 
case dire of 

based: begin 
map-space(cmd-i, 'bottom'); 
map_space(cmd_i, 'plain'); 
ctrset(1); 
plotcs(5, 6, 'ARC- NS', 8); 
map_space(cmd_i, 'bottom'); 
end; 

righthand: begin 
map-space(cmd_i, 'uppermiddle'); 
map-space ( cmd_i , 'plain' ) ; 
ctrset(1); 
plotcs(5, 5, 'INTER-NS', 10); 
map-space(cmd_i, 'uppermiddle'); 
end; 

end; 
ctrset(4); 
positn(el@.posn.xc, condir@.consol.ns); 
while el - = nil do 

with el@.posn do begin 
condir := ptrd-fm(el, dire); 
if condir - = nil 

then 
with condir@.consol do begin 

join(xc, ns); 
plotnc(xc, ns, 45) 
end; 

el := el<D.next 
end; 

el := ele; 
case dire of 

righthand: 
positn(el@.posn.xc,- el@.data.spwp); 

based: 
positn(el@.posn.xc,- el@.data.pwp); 

end; 

while el - = nil do 
with el@.posn do begin 

condir := ptrd_fm(el, dire); 
if condir - = nil 

JD.15 



Appendix D. 

then 
with condir@.consol do begin 

case dire of 
righthand: begin 

join(xc,- el@.data.spwp); 
plotnc(xc,- el®.data.spwp, 43); 
end; 

based: begin 
join(xc,- el@.data.spwp); 
plotnc(xc,- el@.data.spap, 43); 
end; 

end; 
end; 

el := el@.next 
end; 

end; 

ini t.:fm: 
while el - = nil do begin 

condir := ptrd_fm(el, dire); 
if condir - = nil 

then 
with condir@.consol do begin 

if lims > ymax 
then 

ymax : = lims; 
if lims < ymin 

then 
ymin := lims; 

if ss > ymax 
then 

ymax := ss; 
if ss < ymin 

then 
ymin := ss; 

end; 
el := el@.next; 
end; 

el : = ele; 
ctrset(4); 
condir := ptrd-fm(el, dire); 
if condir - = nil 

then begin 
lims.:fm(ymin, ymax); 
if dire = based 

then 
map_space(cmd_i, 'lowermiddle') 

else 
map-space ( cmd-i, 'top') ; 

positn(el@.posn.xc, condir@.consol.ss); 
while el - = nil do 

with eliD.posn do begin 
condir := ptrd_fm(el, dire); 
if condir - = nil 

then 
with condir@.consol do begin 

join(xc, ss); 
plotnc(xc, ss, 63) 
end; 

D.H) 



Appendix D. 

el := el@.next 
end; 

end; 

el : = els; 
condir := ptrd_fm(el, dire); 
if condir - ; nil 

then begin 
positn(el@.posn.xc, condir@.consol.lims); 
while el - = nil do 

with el@.posn do begin 
condir := ptrd-fm(el, dire); 
if condir - = nil 

then 
with condir@.consol do begin 

join(xc, lims); 
plotnc(xc, lirns, 45) 
end; 

el := el<D.next 
end; 

ctrset(l); 
map-space(cmd_i, 'plain'); 
plotcs(5, 5, 'SS/LIM', 6) i 
end; 

end; 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure FORCE-PROFILE'); 

end {force_profile}; 

begin {plots} 
if gi.tracing 

then 
writeln(trace_o, 'Entered procedure PLOTS'); 

repeat 
get_command(plotter, plotquit, plotcom, plot-command, cmd-i); 
if plotcom IN slices . . standard 

then 
total.pics := total.pics + 1; 

if opt .echo 
then 

writeln(substr(pos_str, 1, err-pos- 1)); 
case plotcom of 

displot: 
disp_plot(slice_list); 

slices: 
slice-plot(slice_list); 

forceplot: begin 
fram_plot; 
force_profile(slice_list, based); 
map-space(cmd-i, 'picture'); 
slice-plot(slice-list); 
frame; 
total. pages := total. pages + 1; 
end; 

standard: begin 

fram_plot; 

D.].7 



Appendix D. 

force-profile(slice-list, based); 
force_profile(slice-list, righthand); 
frame; 
total. pages ::::: total. pages + 1; 
end; 

frames: 
fram_plot i 

page: begin 
frame; 
total. pages : = total. pages + 1; 
end; 

init: 
setup-plot ; 

plotstop: begin 
plots(cmd_i, 'standard'); 
map-space ( cmd_i, 'full') ; 
fram-plot i 
slice_plot(slice_list); 
grand; 
total.pics := total.pics + 1; 
total.pages := total.pages + 1; 
end; 

zoom: 
map-space(cmd_i, 'zoom'); 

maps: 
map_space(cmd_i, ''); 

otherwise; 
end; 

if opt.echo 
then 

writeln(output, substr(pos-str, 1, fra-pos), total.pages: 8, substr( 
pos_str, 1, plo-pos) , total. pies: 8) ; 

until plotquit; 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure PLOTS'); 

end {plots}; 

{ **************************************** END PLOTS } 

{**************************************** BEGIN CYCLES } 

procedure cycle(var cmd-i: text); 

var 
cycles, no_of_cycles, outcounter, cycle-lim: cycle-type; 

procedure fordsl(el: ptr_type); 
{ treats edge contacts as one contact } 
{ force displacement law for single block } 
{ called from cycle, end of line } 

var 
in_contact: boolean; 
Fn, Fs, nf, sf: real; 
contdir: dir_of-contacts; 
condir: coiLptr; 
bodyfinc: vector_type; 

D.l§ 



Appe:n:uHx D. 

nsinc, u, coh, fhi: rsal; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure FORDSL'); 

while el - = nil do 
with el@ do begin 

for contdir : = right hand to based do begin 
case contdir of 

righthand: begin 
condir := contacts.right; 
if condir - = nil 

then begin 
u := data.spap; 
if condir@.failed 

then 
data.sidec := data.sidec * 0.86; 

coh := data.sidec; 
fhi : = data. sphi ; 
end; 

end; 
based: begin 

condir := contacts.base; 
u := data.pwp; 
if condir@.failed 

then 
data.cohes := data.cohes * 0.86; 

coh := data.cohes; 
fhi := data.phi; 
end; 

end; 
if condir = nil 

then 
continue; 

with condir@, other@.s do begin 
Fn := ((x - s.x) * sine- (y- s.y) * cose) * data.k; 
Fs :=- ((y- s.y) * sine+ (x- s.x) * cose) * data.k; 
if gi. fording 

then 
writeln(debug_o, 'Fn,Fs,sin,cos,l', Fn: 9, Fa: 9, sine: 9, 

cose: 9, con-len: 9, s.x: 9, s.y: 9, x: 9, y: 9); 
nsinc : = dampf * Fn; 
in-contact :=false; 
if consol.ns >- nsinc {total stress} 

then begin 
consol.ss := consol.ss + dampf * Fs; {f/length} 
consol.ns := consol.ns + nsinc; {f/length} 
in-contact :=true; 
consol.pp := max(consol.pp + 0.001 * u, u); 
end; 

end; 

with condir@, consol, other@.force do 
if in_contact 

then begin 
lima : = coh + max( (ns + pp) * fhi, 0); 
nf := ns * con-len; 
failed:= (failed) OR ((pp o u) AND (abs(ss) > abs(lims))); 

D.19 



Appendix D. 

end; 

ss := sign(min(abs(ss), lims), ss); 
sf := ss * con_len; 
bodyfinc.x :=sf* coss- nf *sins; 
bodyfinc.y :=sf* sine+ nf * cose; 
force.x := forcs.x- bodyfinc.x; 
force.y := force.y- bodyfinc.y; 
if contdir = righthand 

then begin 
x := x + bodyfinc.x; 
y := y + bodyfinc.y; 
end; 

if (gi.fording) OR (gi.consoling) 
then 

writeln(dsbug_o, 'ss,ns,lims,pp,nf,sf', ss: 8, ns: 8, lims 
: 8, pp: 8, nf: 8, sf: 8); 

if gi . fording 
then 

wri teln(debug_o, 'bforces' , force. x: 9, force. y: 9) ; 
end 

el := next 
end; 

if gi.tracing 
then 

wri teln( trace_o, ' EXIT procsdure FORDSL'); 
end { fordsl}; 

procedure fconsolsl(el: ptr_type); 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure FCONSOLXY'); 

while el - = nil do 
with el~, el~. data do begin 

s.x := force.x I mass* sqr(gi.tstep); 
s.y := (force.y I mass+ opt.grav.y) * sqr(gi.tstep); 
sum.sc := max(abs(s.x), abs(s.y), sum.sc); 
if gi.motioning 

then 
writeln(debug_o, 'disp ', s.x: 9, s.y: 9); 

if (gi.oscing) AND (data.typ =track) 
then begin 

with contacts.base@.consol do 
write(oscil_o, data.sliceno: 4, total.cycles: 6, s.x, s.y, ss, 

ns, lima); 
if contacts.right - =nil 

then 
with contacts.right@.consol do 

writeln(oscil_o, ss, ns, lims) 
else 

writeln(oscil_o); 
end; 

force := nilv; 
el :=next; 
end; 

if gi. tracing 
then 

]) .21[) 



Appendix D. 

var 

writeln(trace_o, ' EXIT procedure FCONSOLXY'); 
end { fconsolsl}; 

cyclequit: boolean; 

begin {cycle} 
if gi.tracing 

then 
writeln(trace-o, 'Entered procedure CYCLES'); 

if screen 
then 

writeln(output, substr(pos_str, 1, pro-pos), 
'Enter no of cycles required ... '); 

read(cmdLi, no_of_cycles); 
if opt.echo 

then 
ariteln(output, substr(pos-str, 1, req-pos), no-of-cycles: 8); 

cycles := 0; 
while (cycles < no_of_cycles) AND (* cyclequit) do begin 

sum.scold := sum.sc; 
sum.sc := 0; 
fordsl(slice_list); 
fconsolsl(slice_list); 
total.cycles := total.cycles + 1; 
cycles :=cycles+ 1; 
if total.cycles MOD opt.cyclegap = 0 

then begin 
if opt.echo 

then begin 
writeln(output, substr(pos-str, 1, cyc-pos), total.cycles: 8); 
if sum.scold < sum.sc 

then 
writeln(output, substr(pos_str, 1, mes_pos), 

'Decreasing stability', sum.sc) 
else 

writeln(output, substr(pos_str, 1, mes-pos), 
' Increasing stability ', sum.sc); 

end; 
factors_of_safety(slice_list); 
end; 

if (opt.cmdprocessing) AND (total.cycles MOD opt.cycle_interval = 0) 
then begin 

reeet(cycmdLi, 'FILE=-sass.cmd.i'); 
gi.cmdend :=false; 
while • gi. cmdend do 

control(cycmd_i); 
if opt.echo 

then 
writeln(output, substr(pos_str, 1, req-pos), no_of_cycles: 8); 

end; 
if abs(sum.sc I sum.scold- 1) < 1e-13 

then 
sum.scsofar := sum.scsofar + 1 

else 
sum.scsofar := 0; 

cyclequit := (sum.sc < 1e-14) OR (sum.scsofar = 100) OR (sum.sc > 1e6); 

ID.2Jl. 



Appendli:x D. 

if trap 
then 

trapper; 
if gi.cycling 

then 
eriteln(debug_o, 'max individual disp' sum.sc); 

end; 
if sum.sc < 1e-14 

then 
writeln(output, substr(pos_str, 1, mes_pos), 

'Stability has been gained', sum.sc); 
if sum.scsofar = 100 

then 
eriteln(output, substr(pos_str, 1, mes_pos), 

' Constant sliding noe occurring ', sum. sc); 
if sum.sc > 1e6 

then 
writeln(output, substr(pos_str, 1, mes-pos), 

'This is numerically unstable', sum.sc); 
if gi.tracing 

then 
wri teln( trace_o, ' EXIT procedure CYCLES'); 

end {cycle}; 

{**************************************** END CYCLE} 

{**************************************** BEGIN START } 

procedure start-shut; 
{ initialises the run, called from control, initialisation modules } 

type 
lhed_type = string(300); 
records= (rvec, rcoo, rcon, rele, rgri, rgen, rapt, rtot, rsum, rhed, bool) 

buffertype = record 
tag: char; 
case records of 

rgen: (gen_info_rep: gen..info_type); 
rvec: (vector_rep: vector_type); 
rcoo: (coorcLrep: coord-type); 
rcon: (con..rep: con-type); 
rele: (element_rep: element_type); 
rgri: (grid_rep: gricLtype) ; 
ropt: (option..rep: option-type); 
rtot : ( totals..rep: totals-type) ; 
rsum: (sum..rep: sum_type); 
rhed: (hed_rep: hed_type); 
bool: (nulLrep: lhed_type); 

end; 

const 
nullrep = ' 

var 

' II 
' II 
' II 
'. ' 

' II 

]).22 



Appendlix D. 

rest_o, rest_i: file of buffertype; 
buffer: buffertype; 
ne'll'_slice: ptr_type; 

procedure update-area(el: ptr_type); 

procedure update~essage(direction: hed_type; el: ptr-type; cent: con-ptr); 

begin 
if gi.updating 

then 
'll'ith eltll, cent@ do begin 

erite(debug_o,' ',direction: 5, 'Contact created edge, corn 
'll'riteln(debug_o, data.sliceno: 6, other@.data.sliceno: 6); 
'!l'riteln(debug-o, 'edge x,y' edge@.c.xc·: 6, edge@.c.yc: 6); 
writeln(debug_o, 'corn x,y corn@.c.xc: 6, corn@.c.yc: 6); 
uriteln(debug_o, 'sin, cos sine: 6, cose: 6); 
writeln(debug-o, 'len, dam' con-len: 6, dampf: 6); 
if direction = 'RIGHT' 

then 

') ; 

uriteln(debug_o, ' pup, 'll't ' data.spep: 6, opt.grav.y *data. 
mass: 6) 

else 
uriteln(debug_o, ' pup, wt ' data.pup: 6, opt.grav.y *data. 

mass: 6) 
end; 

end {update~essage}; 

procedure coldLcontact(el: ptr-type; direction: hed-type; cent: con-ptr); 

var 
dif: vector-type; 

begin 
with el<ll, cent@ do begin 

with edge<ll do begin 
dif.x := cu@.c.xc- c.xc; 
dif.y := ce@.c.yc- c.yc; 
end; 

failed :=false; 
con_len := sqrt(sqr(dif.x) + sqr(dif.y)); 
sine := dif.y I con-len; 
cose := dif.x I con-len; 
consol. ss := 0; 
consol.ns := 0; 
consol.pp := 0; 
consol.lims := 0; 
if direction= 'RIGHT' 

then begin 
data.spwp := opt.grav.y * sqr(data.spwp) * 2 I con-len; 
if data.mass > other@.data.mass 

then 
dampf := data.mass * opt.damps I con-len 

else 
dampf := other@.data.mass * opt.damps I con-len; 

end 
else begin 

D.23 



Appendix ]). 

data.pHp := opt.grav.y * data.pHp; 
if data.mass > other@.data.mass 

then 
dampf := data.mass * opt.damp I con_len 

else 
dampf := other@.data.masa * opt.damp I con-len; 

end; 
end; 

end {cold-contact}; 

begin {update-area} 
if gi . tracing 

then 
Hriteln(trace_o, 'Entered procedure UPDATE-AREA'); 

platapex := platenl!l.apexes; 
while el - = nil do 

with el@ do begin 
if starting = cold 

then 
new(contacts.base); 

with contacts. base@ do begin 
other :=platen; 
edge := apexes@.aw; 
corn := platapex@.cw; 
if starting = cold 

then 
cold_contact(el, ' BASE', el@.contacts.base); 

update-message(' BASE', el, el@.contacts.base); 
end; 

if next =nil 
then 

contacts.right :=nil 
else begin 

if starting = cold 
then 

new(contacts.right); 
with contacts. right@ do begin 

other : = next; 
edge := apexes@.cw@.cw; 
corn := next@.apexes@.cw; 
if starting = cold 

then 
cold.contact(el, 'BASE', el@.contacts.right); 

update-message('RIGHT', el, el@.contacts.right); 
end; 

end; 
total. cons : = total. cons + 2; 
plat apex : = plat apex@. cw; 
el :=next; 
end; 

if gi . updating 
then 

writeln(debug.o, 'total number of contacts', total.cons); 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure UPDATE-AREA'); 

end {update.area}; 

]).241 



Appe:ndix ]]). 

procedure get_apex(var base, oater: corn_ptr; number: integer); 

var 
num: integer; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure GET-APEX'); 

if base =nil 
then begin 

new(base); 
base@.cw :=base; 
base@.aw :=base; 
oater : = base; 
number : = number - 1; 
end; 

for num : = 1 to number do begin 
new(oater); 
oater@.aw := base@.aw; 
oater@. cw : = base; 
base@.aw@.cw := oater; 
base@.aw := oater; 
end; 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure GELAPEX'); 
end {get_apex}; 

procedure mesh; 

procedure cre_platen(el: ptr_type); 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure CRE-PLATEN'); 

new(platen); 
platen@.next :=nil; 
platen@.apexes :=nil; 
get_apex(platen@.apexes, apex, total.slices + 1); 
platapex := platen@.apexes; 
platapex@.c := el@.apexes@.c; 
while el - = nil do begin 

platapex := platapex@.cw; 
platapex@.c := el@.apexes@.aw@.c; 
el := el<ll.next 
end; 

with platen@, platen@. contacts, platen@.data do begin 
posn : = nile; 
force := nilv; 
s := nilv; 
mass := 0; 
cohes := 0; 
phi := 0 j 

]]).25 



Appendlix D. 

rho := 0; 
k ::: 0; 
sidec := 0; 
sphi := 0; 
pwp := 0; 
spt1p := 0; 
e := 0; 
sliceno : = 0; 
typ :"'free; 
right := nil; 
base :=nil; 
end; 

if gi.tracing 
then 

writeln(trace_o, ' EXIT procedure CRE-PLATEN'); 
end {ere-platen}; 

procedure ere-slices; 

var 
sort: string(12); 
typs: com_ type; 
surf, temp: real; 
x, y, xn, yn: real; 

begin {FIFO OF ELEMENTS} 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure CRE-SLICES'); 

get_command(mesher, qdum, type, '', cmd_i); 
while NOT eoln do begin 

case typs of 
track, free: 

if slice_list = nil 
then begin 

new(slice-list); 
eolist := slice_list; 
eolist~.next :=nil; 
end 

else begin 
new(eolist@.next); 
eolist := eolist@.next; 
eolist@.next :=nil; 
end; 

otherwise 
return; 

end; 

t1ith eolist@, eolist@.data, opt.meshtbs do begin 
read(cmd_i, cohes, phi, rho, k, sidec, sphi, pwp, spwp, e); 
phi :=phi * arctan(l) I 45; 
sphi := sphi * arctan(1) I 45; 
phi:= sin(phi) I cos(phi); 
sphi := sin(sphi) I cos(sphi); 
total.slices := total.slices + 1; 
sliceno := total.slices; 
typ := typs; 
apexes : = nil; 

D.26 



Appendix D. 

posn : = nile; 
force := nilv; 
s := nilv; 
get_apex(apexes, apex, 4); 
apex := apexes; 
if total.slices = 1 

then 
read(cmd_i, xb, yb, xt, yt); 

apex@.c.xc := xb; 
apex@.c.ye := yb; 
apex := apex@.c~; 
apex@.c.xc := xt; 
apex@.c.ye := yt; 
apex := apexes@.aw; 
read(cmd_i, xb, yb, xt, yt); 
apex@.c.xc := xb; 
apex@.c.ye := yb; 
apex := apex@.a~; 
apex@.c.xc := xt; 
apex@.c.ye := yt; 

{ area and centroid of block } 
surf := 0; 

var 

apex := apexes; 
repeat 
~ith apex@.c, apex@.a~@ do begin 

surf:= surf+ (xc- c.xc) * (yc + c.yc); 
posn.yc := posn.yc + (xc- c.xc) * ((yc- c.yc) * (yc + 2 * c.yc 

) + 3 * sqr(c.yc)); 
posn.xc := posn.xc + (yc- c.yc) * ((xc- c.xc) * (xc + 2 * c.xc 

) + 3 * sqr(c.xc)); 
apex := apex@.cw; 
end; 

until apex= apexes; 
surf :=surf * 0.5; 
posn.yc := posn.yc I (6 *surf); 
posn.xc :=- posn.xc I (6 *surf); 
mass := surf * data.rho; 
if gi. updating 

then 
~riteln(debug_o, 'mass,surf', mass, surf); 

end; 
end; 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure CRE-SLICES'); 
end {ere-slices}; 

meshquit: boolean; 
meshcom: com_type; 

begin {mesh} 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure MESH'); 

repeat 

D.27 



Appendix D. D.2§ 

get_command(creater, meshquit, meshcom, '' cmd_i); 
case meshcom of 

create: 
cre_slices; 

meshend: 
meshquit :=true otheruise; 

end 
until meshquit; 

cre-platen(slice_list); 
if gi . tracing 

then 
ariteln(trace_o, ' EXIT procedure MESH'); 

end {mesh}; 

procedure readLrestart_file; 

var 
labl: char; 
ele: ptr_type; 
nea_con: con_ptr; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure READJaESTART-FILE'); 

reset(rest_i, 'unit=2'); 
rewrite(cycmd_i, 'FILE=-sass.cmd.i'); 
rewrite(repts_i, 'FILE=-sass.rep.i'); 
while - eof(rest_i) do begin 

read(rest_i, buffer); 
labl := buffer.tag; 
case labl of 

'G': begin 
gi := buffer.gen_info_rep; 
read(rest_i, buffer); 
total := buffer.totals-rep; 
read(rest-i, buffer); 
sum := buffer.sum_rep; 
read(rest_i, buffer); 
opt := buffer.option-rep; 
read(rest_i, buffer); 
plspace := buffer.grid-rep; 
end; 

'c': 
writeln(cycmd_i, buffer.hed_rep); 

'r': 
writeln(repts_i, buffer.hedLrep); 

'F': begin 
new(new_slice); 
new_slice@ := buffer.element-rep; 
new_slice@.next :=nil; 
new_slice@.apexes :=nil; 
if slice_list = nil 

then 
slice-list :=new-slice 

else 
ele@.next := new_slice; 

ele :=new-slice; 



Appendix D. 

end; 
'R': begin 

nea(neiLcon) ; 
nea_con@ := buffer.con_rep; 
ele@.contacts.right := nea_con; 
end; 

'B': begin 
nea(new_con); 
new_con@ := buffer.con_rep; 
ele@.contacts.base := new_con; 
end; 

'P': begin 
ne-a (new_slice) ; 
new_slice@ := buffer.element_rep; 
platen := new_slice; 
platen@.next :=nil; 
platen@.apexes :=nil; 
platen@.contacts.right :=nil; 
platen@.contacts.base :=nil; 
ele : = platen; 
end; 

'a': begin 
get_apex(ele@.apexes, apex, 1); 
apex@.c := buffer.coordLrep; 
end; 

'*':; 
end; 

end; 
writeln(output, substr(pos_str, 1, mes-pos), 

' A restart file has been read'); 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure READ..RESTART..FILE'); 

end {read-restart-file}; 

procedure -arite_restart_file; 

procedure write_r_el(el: ptr_type; c: char); 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure WRITE-R-EL'); 

while el - = nil do 
with el@ do begin 

buffer.tag := c; 
buffer.null-rep := nullrep; 
buffer.element_rep := el@; 
write(rest_o, buffer); 
if contacts.right - =nil 

then begin 
buffer.tag := 'R'; 
buffer.null_rep := nullrep; 
buffer.con_rep := contacts.right@; 
write(rest_o, buffer) 
end; 

if contacts.base w o nil 

D.29 



Appenulllix D~ 

then begin 
buffer.tag := 'B'; 
buffer.null-rep := nullrep; 
buffer.con_rep := contacts.base@; 
write(rest_o, buffer) 
end; 

apex := apexes; 
buffer.tag :='a'; 
repeat 

buffer.null_rep := nullrep; 
buffer.coord_rep :~ apex@.c; 
arite(rest_o, buffer); 
apex := apex@.cw 
until apex = apexes; 

el := el@ .next 
end; 

if gi. tracing 
then 

ari teln ( trace_o, ' EXIT procedure WRITE..R..EL') ; 
end {write_r_el}; 

begin {arite_restart-file} 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure WRITE-RESTART-FILE'); 

if (opt.rf_over) OR (rf_first) 
then 

rewrite(rest_o, 'unit=l'); 
rf_first :=false; 
buffer.tag := 'G'; 
buffer.null-rep := nullrep; 
buffer.gen_info-rep := gi; 
write(rest_o, buffer); 
buffer.null_rep := nullrep; 
buffer.totals-rep :=total; 
arite(rest_o, buffer); 
buffer.null_rep := nullrep; 
buffer . sum_rep : = sum; 
write(rest-o, buffer); 
buffer.null_rep := nullrep; 
buffer.option_rep :=opt; 
write(rest_o, buffer); 
buffer.null-rep := nullrep; 
buffer.grid-rep := plspace; 
arite(rest_o, buffer); 

reset(cycmd-i, 'FILE=-sass.cmd.i'); 
buffer.tag := 'c'; 
while - eof(cycmd-i) do begin 

buffer.null-rep := nullrep; 
readln(cycmd_i, buffer.hed-rep); 
write(rest_o, buffer); 
end; 

reset(repts_i, 'FILE=-sass.rep.i'); 
buffer.tag := 'r'; 
while - eof(repts_i) do begin 

buffer.null_rep := nullrep; 

JD.30 



Appendix ]). 

readln(repts-i, buffer.hed-rap); 
~rite(rest_o, buffer); 
and; 

~rite_r_el(slice_list, 'F'); 
~rite_r_el(platen, 'P'); 
buffer.tag := '*'; 
buffer.null_rep := nullrap; 
buffer.hed..rap :'"' 'END of RESTART FILE '; 
~rite(rest-o, buffer); 
writeln(output, substr(pos_str, 1, fil_pos), 

'A restart file has been ~ritten'); 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure WRITE-RESTART-FILE'); 

end { ~rite..restart_file}; 

procedure complete; 

begin 
if gi. tracing 

then 
~riteln(trace_o, 'Entered procedure COMPLETE'); 

with total do begin 
writeln(output, substr(pos_str, 1, tot_pos), ' total slices' 

slices: 6, ' contacts ', cons: 6); 
eriteln(output, ' total cycles ' cycles: 6, ' restarts 

restarts: 6) ; 
eriteln(output, ' total frames ' pages: 6, ' plots , pies: 6) 

end; 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure COMPLETE'); 

end {complete}; 

begin { start_shut} 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure START_SHUT'); 

case starting of 
cold: begin 

if screen 
then 

writeln(output, substr(pos_str, 1, pro_pos), 
' Enter heading ................ ') ; 

readln(cmd_i, gi.heading); 
writeln(output, substr(pos_str, 1, tit_pos), gi.heading); 
~riteln(debug_o, gi.heading); 
plots(cmdLi, 'initialise'); 
mesh; 
update_area(slice_list); 
plots(cmd..i, 'border'); 
plots(cmdLi, 'slices'); 
plots(cmdLi, 'page'); 
end; 

shutdown: begin 
plots(input, 'endplot'); 

]).31 



Appendlix D. ]).32 

complete; 
factors_of_safety(slica_list); 
Hriteln(dabug_o, sum.sc); 
write-restart-file; 
Hriteln(output, substr(pos_str, 1, fil-pos), curson); 
halt; 
end; 

Harm: begin 
read-restart-fila; 
total.restarts := total.restarts + 1; 
plots(cmdLi, 'initialise'); 
update_area(slice-list); 
plots(cmdLi, 'border'); 
plots(cmdLi, 'slices'); 
plots(cmdLi, 'page'); 
end; 

keep: 
write_restart_file; 

end; 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure START_SHUT'); 

end {start-shut}; 

{**************************************** END STARTSHUT } 

{**************************************** BEGIN DEBUG } 

procedure debug_slice(var cmdLi: text); 
{ debugging routine, called from contrl, calls dump } 

var 
debugend: boolean; 
deb_com: com-type; 

procedure write-con(el: ptr_type); 

procedure wr_con(el: ptr-type; con: con-ptr); 

begin 
if gi.tracing 

then 
writeln(trace_o, 'Entered procedure WR-CON'); 

with con@ do begin 
writeln(debug_o, 'slice home, other, damp ' el<ll.data.sliceno: 3, 

other@.data.sliceno: 3, dampf: 6); 
writeln(debug_o, 'corner coordinates x, y' corn@.c.xc: 6, corn@.c.yc 

: 6) j 

vri teln(debug_o, 'edge coordinate s x, y ' , edge <II. c. xc: 6, edge@. c. yc 
: 6); 

vrite(debug_o, 'stresses - n, s, 1, u' consol.ns: 6, consol.ss: 6, 
consol.lims: 6); 

end; 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure WR_CON'); 

end { wr_con}; 



Appendix JD. 

begin {arite_con} 
if gi.tracing 

then 
eriteln(trace_o, 'Entered procedure WRITE-CON'); 

ariteln(debug_o, 'Contact information:'); 
eriteln(debug_o); 
ariteln(debug_o, ' coords of corn, edge'); 
ariteln(debug_o); 
ahile el - = nil do 

eith el@.contacts do begin 
if right - = nil 

then begin 
er_con(el, right); 
eriteln(debug_o, el@.data.spep: 6); 
end; 

if base - = nil 
then begin 

er_con(el, base); 
eriteln(debug_o, el@.data.pap: 6); 
end; 

el :=el@.next; 
end; 

if gi.tracing 
then 

eri teln ( trace_o, ' EXIT procedure \iRITE-CON') ; 
end {write_con}; 

procedure write_sli(el: ptr_type); 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure WRITE_SLI'); 

writeln(debug_o, 'Element data:'); 
writeln(debug_o); 
writeln(debug_o, 'mass force x ydisp x y n'); 
writeln(debug_o); 
while el - = nil do 

with el@ do begin 
eriteln(debug_o, data.mass: 6, force.x: 8, force.y: 8, s.x: 8, s.y: 8, 

data.sliceno: 3); 
el := el@.next; 
end; 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure WRITE_SLI'); 
end {write_sli}; 

begin {debug_slice} 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure DEBUG_SLICE'); 

repeat 
get-command(debuger, debugend, deb-com, '', cmd-i); 
case deb_com of 

D.33 



Appendix]). 

slices: 
write_sli(slice_list); 

con: 
write_con(slice_list); 

gen: begin 
writeln(debug_o, gi.heading); 
ariteln(debug_o); 
with plspace, opt, total do begin 

wri teln(debug_o, ' mapping xmin 

writeln(debug_o, ' mapping ymin 

writeln(debug_o); 

, xmin : 6 , ' xmax , xmax: 6) 

, ymin: 6, ' ymax , ymax: 6) 

wri teln(debug_o, ' plot interval' , cycle_interval: 6) ; 
wri teln(debug_o, ' gravity x ' , grav. x: 6, ' y , grav. y 

: 6); 
writeln(debug-o, ' damping base 

) ; 
writeln(debug_o); 
writeln(debug_o, ' totals slices 

6); 
writeln(debug_o, ' 

restarts: 6) ; 
writeln(debug_o, ' 

6); 
writeln(debug_o); 
end; 

end; 
fon: 

with gi do begin 
motioning :=true; 
updating :=true; 
cycling : = true; 
fording :=true; 
oscing :=true; 
tracing :=true; 
end; 

fof: 
with gi do begin 

motioning :=false; 
updating :=false; 
cycling :=false; 
fording :=false; 
oscing :=false; 
tracing :=false; 
end; 

mot: 

cycles 

frames 

gi.motioning := onoff(cmd_i); 
csl: 

gi.consoling := onoff(cmd_i); 
upd: 

gi.updating := onoff(cmd_i); 
eye: 

with gi do begin 
cycling:= onoff(cmdLi); 
fording := cycling; 
motioning := cycling; 
end; 

fod: 
gi.fording := onoff(cmd_i); 

', damp: 6, ' side ', damps: 6 

slices: 6, ' contact', cons: 

cycles: 6, ' restarts', 

pages: 6, ' plots , pies: 

]).34 



Appendix D. 

tra: 
gi.tracing := onoff(cmd-i); 

osc: 
gi.oscing := onoff(cmd_i); 

otherwise; 
end; 

until debugend; 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure DEBUG_SLICE'); 

end {debug_slice}; 

{**************************************** END DEBUG } 

{**************************************** BEGIN PARAMETERS } 

procedure parameters(var cmd-i: text); 

procedure calculator; 

function intcalc(op: real): real; 

var 
result, v: real; 
oper: com_ type; 

begin 
get_command(operter, qdum, oper, '' cmd_i); 
if oper - = enquiry 

then begin 
if screen 

then 
writeln(output, substr(pos_str, 1, pro-pos), 

' Enter value .................. '); 
read(cmcLi, v); 
end; 

case oper of 
equal: 

result := v; 
mult: 

result := op 
divid: 

result := op 
plus: 

result := op 
minus: 

result := op 
power: 

* v; 

I v; 

+ v; 

- v; 

result := exp(ln(op) 
otherwise 

result := op; 
end; 

if opt.echo 
then 

* v) i 

writeln(output, substr(pos-str, 1, mes-pos), 'The value is : ' 
result: 12: 7,' '); 

intcalc :=result; 

D.35 



Appendix D. 

end {intcalc}; 

var 
calquit: boolean; 
calcom: com-type; 

begin {calculator} 
repeat 

var 

get_command(calcter, calquit, calcom, '' cmd_i); 
case calcom of 

cyclegp: 
opt.cyclegap := round(intcalc(opt.cyclegap)); 

gravity: 
opt.grav.y := intcalc(opt.grav.y); 

ptime: 
gi.tstep := intcalc(gi.tstep); 

cmdint: 
opt.cycle_interval := round(intcalc(opt.cycle_interval)); 

fdamp: 
opt.damp := intcalc(opt.damp); 

otherwise; 
end; 

until calquit; 
end {calculator}; 

parcom: com_type; 
parquit: boolean; 
flimit: integer; 
cmdlistword: string(12); 

begin {parameters} 
repeat 

get_command(paramer, parquit, parcom, '' cmd_i); 
case parcom of 

echo: 
opt.echo := onoff(cmd_i); 

framlim: begin 
if screen 

then 
writeln(output, substr(pos_str, 1, pro_pos), 

'Enter frame limit ............ '); 
read(cmd-i, flimit); 
gpstop(flimit); 
if opt.echo 

then 
writeln(output, substr(pos_str, 1, mes-pos), 

' Frame limit is now : ', flimit); 
end; 

cyclegp: begin 
if screen 

then 
eriteln(output, substr(pos_str, 1, pro-pos), 

'Enter gap between writing ..... '); 
read(cmd-i, opt.cyclegap); 
if opt.echo 

then 

D.38 



Appendix D. 

writeln(output, substr(pos_str, 1, mes-pos), 
' Cycle gap is now : ', opt. cyclegap); 

end; 
gravity: begin 

if screen 
then 

writeln(output, substr(pos_str, 1, pro-pos), 
'Enter gravity values x, y .... '); 

read(cmdLi, opt.grav.y); 
if opt.echo 

then 
writeln(output, substr(pos-str, 1, mes-pos), 

'Gravity is now : ', opt.grav.y: 6); 
end; 

ptime: begin 
if screen 

then 
writeln(output, substr(pos_str, 1, pro_pos), 

'Enter time step increment .... '); 
read(cmd_i, gi. tstep); 
if opt.echo 

then 
writeln(output, substr(pos_str, 1, mes_pos), 

'Time increment is : ', gi.tstep); 
end; 

fdamp: begin 
if screen 

then 
writeln(output, substr(pos_str, 1, pro_pos), 

'Enter value for damping ...... '); 
read(cmdLi, opt.damp); 
read(cmdLi, opt.damps); 
if opt.echo 

then 
writeln(output, substr(pos-str, 1, mes-pos), 

' Damping factor is : ', gi. tstep); 
end; 

calc: 
calculator; 

cmdint: begin 
if screen 

then 
writeln(output, substr(pos-str, 1, pro-pos), 

'Enter cmd process interval ... '); 
read(cmdLi, opt.cycle_interval); 
if opt.echo 

then 
writeln(output, substr(pos_str, 1, mes_pos), 

'Process interval is: ', opt.cycle_interval); 
end; 

cmdlist: begin 
rewrite(cycmd_i, 'FILE=-sass.cmd.i'); 
repeat 

word_scan(cmd_i, cmdlistword); 
writeln(cycmd_i, cmdlistword) 
until cmdlistword = 'cend'; 

end; 
listpr: 

opt.cmdprocessing := onoff(cmd_i); 
over_rf: 

D.37 



Appendix JD. 1D.3§ 

opt.rf_over := onoff(cmd-i); 
otherwise; 
end; 

until parqui t; 
end {parameters}; 

{**************************************** END PARA~tETERS } 

{**************************************** BEGIN REPEATER } 

procedure repeater(var cmdLi: text); 

var 
cmdreptaord: string(12); 
loopcntor, loopctr: integer; 

begin 
if gi. tracing 

then 
ariteln(trace_o, 'Entered procedure REPEATER'); 

rewrite(repts_i, 'FILE=-sass.rep.i'); 
read(cmdLi, loopctr); 
repeat 

word-scan(cmd-i, cmdreptaord); 
writeln(repts_i, cmdreptword) 
until cmdreptword ='rend'; 

for loopcntor := 1 to loopctr do begin 
reset(repts_i, 'FILE=-sass.rep.i'); 
gi.reptend :=false; 
repeat 

control(repts-i) 
until gi. 

reptend; 
end; 

if gi.tracing 
then 

writeln(trace_o, ' EXIT procedure REPEATER'); 
end {repeater}; 

{**************************************** END REPEATER } 

{**************************************** BEGIN CONTROL } 

procedure control; 
{ controls the execution of the datafile commands, called from main } 

var 
com: com-type; 

begin 
if gi. tracing 

then 
ariteln(trace_o, 'Entered procedure CONTROL'); 

get_command(contler, qdum, com, '', cmd_i); 
case com of 

sets: 
parameters(cmd_i); 

cend: 
gi.cmdend :=true; 

{ set parameter values } 

{ end interrupt commands } 



Appe:ndlix D. 

rend: 
gi.reptend :=true; { end command stack } 

rest: 
start_shut(cmd_i, warm); { restart a previous run } 

save: 
start_shut(cmd-i, keep); { update restart file } 

star: 
start_shut(cmd_i, cold); {start a new rur1} 

cycl: 
cycle(cmdLi); {calculation routines} 

plot: 
plots(cmdLi, ''); {plot routines} 

debg: 
debug_slice(cmdLi); 

rept: 
repeater(cmd_i); 

stop: 

{ debugging routine } 

{ command stack } 

start_shut(cmd_i, shutdoHn);{ stop command} 
retur:; 
end; 

if gi. tracing 
then 

Hriteln(trace_o, ' EXIT procedure CONTROL'); 
end {control}; 

{**************************************** END CONTROL } 

{**************************************** BEGIN MAIN } 

begin {slices} 
initialise_globals; 
headers; 
repeat 

control(input); 
until quit; 

end {slices}. 

D.39 



Appe:ndlix E. 

AlPJPENDKX E 

lPROG RAM <C][RCJLE§ 

program circles(debug_o, sercom); 
%include est8:u.ghost.lib 
%include trap 

const 
led-pos = 2; 
tit-pos = 4; 
req_pos = 6; 
fra_pos = 7; 
plo-pos = 8; 
upd-pos = 9; 
cra_pos = 10; 
cyc_pos = 11; 
com-pos = 12; 
mes_pos = 13; 
err_pos 14; 
tot-pos = 14; 
fiLpos = 20; 
pro_pos = 16; 
pos_str = ' ' ; 
maxcycle = 1000000; 
blank= ' '; 
commands= {onoffer} 
'null on off 
'picture horizontal vertical 
'zoom ' II 

' II 
full 

{onoffer} 
fullnoscales' II {map} 

'initialise ballplot 
'conplot failplot 

dotplot velocities displacement' II {plot} 
graticule standard page ' I I 

'border map endplot ' II 
'create relative absolute dataset for ' I I 
'endfor single multiple meshend position ' I I 
'move angle free fixed track ' II {mesh} 

'= 
'I\ 
'echo 
'writegap 
'calculate 
'damp 
'radius 
'datalist 
'flag son 
'motion 
'set 
'start 
'settle 

type 

* 
? 

' II 
I + 
' II 

echodebug cmdproc 
interval cmdlist 
soil type ' II 

cohesion 
' II 

overwrite 
gravity 

friction mass 
stiffness 
blocks areas contacts 

flags off 
ford 

cend 
go 

collapse 

rearea update 
consolidate trace 

rend 
plot 

stop 

restart 
repeat 

return 

{spare} 
' II 

{operators} 
framelimit ' I I {set} 

time ' II 

density ' I I {parameter} 

general ' I I {debug} 
cycle ' II 
oscillate ' I I 

save ' I I {control} 
debug ' II 

'. 
' 

com-type= (null, on, off, piccie, horiz, vertic, whole, fnosc, zoom, init, 
ballplot, dotplot, velplot, displot, conplot, failplot, graticule, 

E.l 



Appendix JE. 

standard, page, frames, maps, plotstop, create, relative, 
absolute, dataset, forloop, endfor, sing, multip, meshend, 
position, movepos, angle, free, fixed, track, cracked, both, 
equal, mult, divid, plus, minus, power, enquiry, echo, debech, 
listpr, over-rf, framlim, cyclegp, cmdint, cmdlist, gravity, 
ptime, calc, datype, dfact, drnass, dcohe , dfric, ddens, dradi, 
dstif, dat, blk, are, con, gen, fon, fof, reb, upd, mot, eye, fod, 
sol, tra, osc, sets, cend, rend, rest, save, star, cycl, plot, 
rapt, debg, sett, coll, stop, retur); 

call_type = (errorer, onoffer, mapper, plotter, masher, datert, operter, 
calcter, datalte, paramer, debuger, contler); 

el-list-types =free .. both; 
para_ptr = @parabk_type; 
ptr_type = @element_type; 
con_ptr = <!Icon-type; 
parabk_type = record 

damp, mass, cohes, phi, rho, rad, kn: real; 
preincarnate, flagno: integer; 
typ: eLlist-types; 
next-data: para_ptr; 

end; 
vector-type = record 

x, y: real; 
end; 

coor<Ltype = record 
xc, yc: real; 

end; 
con_type = record 

gapsurn, offs: real; 
other: ptr _type; 
next-con: con-ptr; 
c_force: vector_type; 
f_force, f_angle: real; 
failed: boolean; 

end; 
element_type = record 

source, posn: coord-type; 
consol, force, v, a, s: vector-type; 
data: para_ptr; 
no_of_contacts: integer; 
con-list: con-ptr; 
next: ptr _type; 

end; 
grid_type = record 

xmin, xmax, yrnin, yrnax: real; 
end; 

rowcol_type =- 1 100; 
area-directions= (self, n, ne, e, se, s, sw, w, nw, nex); 
area-ptr = <!larea-type; 
area-type = record 

corners: grid_type; 
upd..rnin, upd-par : real ; 
row, col: rowcol-type; 
n, e, s, w, next_area: area_ptr; 
fixe<Llist, free_list: ptr_type; 

end; 
cycle_type = 0 .. maxcycle; 
hed_type = string(80); 
start_type =(cold, warm, shutdown, keep); 

lE.2 



Appendlix E. 

gen-info-type = record 
heading: hed_type; 
nextword: string(12); 
charsize, tfrac, tstep, max_rad: real; 
settling, reptend, cmdend, jumping, single, reareaing, 

motioning, updating, consoling, cycling, fording, 
tracing, oscing, debecho: boolean 

end; 
area-Ltype = record 

size: coordltype; 
xmax, ymax: 0 .. 100; 
nos: integer; 

end; 
option_type = record 

plot_lims: grid_type; 
meshtbs: record 

xb, yb, xt, yt: real 
end; 

grav: vector_type; 
cyclegap, cycle-interval: cycle-type; 
cmdprocessing, echo1, echo, rf_over: boolean; 

end; 
sum_type = record 

en, sc, scold: real 
end; 

totals-type = record 

const 

cycles, updates, circles, fixed, cracked, cons, pies, pages, 
datatypes: integer 

end; 

nilv = vector_type(O, 0); 
nile= coord_type(O, 0); 
nilhed = • '; 
tens..fuzz = 0. 06; 

{make this a parameter sometime as 0. 06 * max_rad/datatype} 

var 

repts_i, cycmdli, oscil_o, debug_o, trace_o, sercom: text; 
screen, rf..first, cy..first, quit, qdum: boolean; 
gi: gen-info-type; 
opt: option_type; 
sum: sum..type; 
total: totals-type; 
sdl, cdp: para..ptr; 
plspace, plot_space, force..map: gridltype; 
this_area, area, spare_area, sal: area..ptr; 
area_i: area-L type; 
re_area-list: ptr-type; 

{**************************************** BEGIN GLOBAL ROUTINES } 

procedure error_simple(ob, caller: string(40)); 

begin 
if gi.tracing 

then 

18.3 



Appendlix E. 18.4 

writeln(trace_o, 'Entered procedure ERROR-SIMPLE'); 
reerite(sercom, 'UNIT=11 1 ); 

writeln(sercom, '! error ', 1111
, ob, 1 

' '', 
1 found in routine ' caller); 

halt; 
end {error-simple}; 

procedure aord-scan(var cmds_in: text; var word: string(12)); 

var 
ch: stringC1); 

procedure skipblks(var ch: string(1)); 

begin 
if gi 0 tracing 

then 
writeln(trace_o, 'Entered procedure SKIPBLKS'); 

ch := ' 1
; 

while ch = blank do begin 
while c· eoln(cmds_in)) AND (ch =blank) do 

read(cmds_in, ch); 
if (eoln(cmds_in)) AND c- eof(cmds.in)) 

then 
readln(cmds_in); 

if eof(cmds-in) 
then 

error_simple( 1 End of file causes return to mts 1
, 'skipblks 1

); 

end; 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure SKIPBLKS 1

); 

end {skipblks}; 

procedure skipcomment(var ch: string(1)); 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure SKIPCOMMENT 1

); 

while ch- = 1
}' do begin 

while c- eoln(cmds_in)) AND (ch- = 1 }') do 
read(cmds-in, ch); 

if (eoln(cmds-in)) AND c· eof(cmds.in)) 
then 

readln(cmds_in); 
if eof(cmds_in) 

then 
error_simple( 1 end of file causes return to mts', 1 skipcomment 1

); 

end;. 
skipblks(ch); 
if Ch: I {I 

then 
skipcomment(ch); 

if gi o tracing 
then 

writeln(trace_o, 1 EXIT procedure SKIPCOMMENT'); 



Appendnx E. 

end {skipcomment}; 

bag in { HorcLscan} 
if gi. tracing 

than 
Hriteln(trace_o, 'Entered procedure ~ORO_SCAN'); 

word ;:;; ''; 
if screen 

then begin 
Hriteln(output, substr(pos_str, 1, err_pos + 2), 

Input a command please.......... '); 
raset(cmds-in, 'UNIT=11,INTERACTIVE'); 
repeat 

read(cmds_in, ch) 
until ch - = ''; 

end 
else 

skipblks(ch); 
while c- eoln(cmds-in)) AND (ch- =blank) do begin 

if ch = •{' 
then 

skipcomment(ch); 
word : = word II ch; 
read(cmds_in, ch); 
end; 

if ch - = blank 
then 

word :=word II ch; 
if opt.echo 

then 
writeln(output, substr(pos_str, 1, com_pos), 'Command 

'); 
if (eoln(cmds_in)) AND c- eof(cmds-in)) 

then 
readln(cmds_in); 

if gi. tracing 
then 

wri teln(trace_o, ' EXIT procedure WORD_SCAN 
end {word-scan} ; 

procedure control(var cmd_i: text); 
forward; 

word); 

procedure start-shut(var cmd-i: text; starting: start-type); 
forward; 

procedure trapper; 

var 
ch: char; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure TRAPPER'); 

E.5 

word, 



Appendix E. 

ariteln(output, substr(pos_str, 1, err-pos), 
' Attn! : Do you aant to stop ? ') ; 

reset(sercom, 'UNIT=11'); 
repeat 

read(sercom, ch); 
until (ch- =' '); 

trpreset; 
if ch = 'y' 

then 
start_shut(input, shutdoan); 

writeln(output, substr(pos_str, 1, err_pos), 
') ; 

if gi.tracing 
then 

wri teln ( trace_o, ' EXIT procedure TRAPPER') ; 
end {trapper} ; 

procedure get-command(caller: call-type; var quiter: boolean; var retcom: 
com_type; intcall: string(12); var cmds_ig: text); 

const 
last = 1122; 

var 
ifail: boolean; 
beg, loca, indes: 0 .. 1200; 
this_com: string(12); 

begin 
if gi.tracing 

then 
writeln(trace_o, 'Entered procedure GET-COMMAND 

this-com := intcall; 
if this_com = ' ' 

then begin 
this-com := gi.nextword; 
gi.nextword := ''; 
end; 

if this_com = '' 
then 

word_scan(cmds_ig, this_com); 
if trap 

then 
trapper; 

beg := 1; 
repeat 

intcall); 

indes := index(substr(commands, beg, last- beg+ 1), this-com); 
loca := indes +beg- 1; 
if loca MOD 12 = 1 

then 
indes := 0 

else 
beg := loca + 1; 

until (indes = 0) OR (last- beg< 12); 
retcom := com_type(loca DIV 12); 
case caller of 

errorer: 

E.S 



Appendix JE. 

ifail :=NOT (retcom IN on 
onoffer: 

ifail :=NOT (retcom IN on 
mapper: 

retur ); 

off); 

ifail :=NOT (retcom IN piccie .. zoom); 
plotter: 

ifail :=NOT (retcom IN init plotstop, zoom); 
datert: 

ifail := NOT (retcom IN free track); 
mesher: 

ifail :=NOT (retcom IN create .. angle); 
operter: 

ifail :=NOT (retcom IN equal 
datalte: 

ifail :=NOT (retcom IN dfact 
calcter: 

enquiry ) ; 

dstif ); 

ifail :=NOT (retcom IN cyclegp, cmdint, gravity, ptime, datype ); 
paramer: 

ifail :=NOT (retcom IN echo .. calc); 
debuger: 

ifail :=NOT (retcom IN dat .. osc ); 
contler: 

ifail :=NOT (retcom IN sets .. retur ); 
end; 

ififail 
then begin {some thing's wrong} 

if (retcom = null) OR (caller = contler) 
then begin {invalid command} 

screen : = true; 
write(output, substr(pos-str, 1, err_pos)); 
wri teln(output, ' ! error ' , '' ' ', this-com, ' ' '' 

'found in routine ', 'get-command'); 
writeln(output, 'Input corrected commands ... <RETURN> ... '); 
get_command(errorer, ifail, retcom, '', sercom); 
while retcom - = retur do begin 

gi.nextword := substr(commands, ord(retcom) * 12 + 1, 12); 

control(sercom); {control returns with nextword = returnlkeyword} 
get_command(errorer, ifail, retcom, gi.nextword, sercom); 
end; 

screen : = false; 
gi.nextword :='return'; 
quiter :=false; 
end 

else begin {valid command wrong caller} 
quiter :=true; 
gi.nextword := this_com; 
end; 

end 
else 

quiter := intcall -
if gi. tracing 

= , '. , { alls ok} 

then 
writeln(trace_o, ' EXIT procedure GET-COMMAND'); 

end {get-command}; 

function onoff(var cmd_i: text): boolean; 

var 

JE. 7 



Appendlix JE. 

onof: com-type; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure ONOFF'); 

get_command(onoffer, qdum, onof, '', cmd_i); 
case onof of 

on: 
onoff : = true; 

off: 
onoff : = false; 

otherwise; 
end; 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure ONOFF'); 
end { onoff} ; 

procedure headers; 

begin 
writeln(output, ' .0'); 
writeln(output, substr(pos_str, 1, led-pos), 

'PROGRAM CIRCLES RUNNING COMMENTARY ON: '); 
writeln(output, substr(pos_str, 1, tit-pos), ' ' gi.heading); 
writeln(output, substr(pos_str, 1, req_pos), ' 0 cycles requested'); 
wri teln(output, ' ' total. pages: 6, ' frames plotted'); 
writeln(output,'' total.pics: 6,' plots types drawn'); 
wri teln(output, ' ' total. updates: 6, ' updates executed') ; 
wri teln(output, ' ' total. cracked: 6, ' cracking completed'); 
wri teln(output, ' ' total. cycles: 6, ' cycles and still counting!'); 
end {headers}; 

procedure initialise_globals; 

begin 
rewrite(debug_o, 'UNIT=7'); 
rewrite(trace_o, 'UNIT=8'); 
rewrite(oscil_o, 'UNIT=10'); 
rewrite(sercom, 'UNIT=11'); 
rewrite(cycmd-i, 'FILE=-sass.cmd'); 
new(sdl); 
cdp := sdl; 
quit :=false; 
rf_first :=true; 
screen :=false; 
cy_first := true; 
with gi, plspace, opt, total, opt.meshtbs, sdl@ do begin 

damp := 0; 
mass := 0; 
cohes := 0; 
phi := 0; 
rho := 0; 
rad := 0; 
kn := 0; 
preincarnate := ord(sdl); 

JE.§ 



Appendix E. E.9 

flagno := 0; 
typ :=free; 
next_data := sdl; 
reptend :=false; 
heading := nilhed; 
next~wrd : = ' ' ; 
settling :=false; 
cmdand := false; 
tfrac := 0; 
tstap := 0; 
max_rad : = 0 ; 
jumping :=false; 
single :=false; 
reareaing :=false; 
motioning :=false; 
updating :=false; 
cycling :=false; 
fording :=false; 
oscing :=false; 
tracing :=false; 
consoling :=false; 
charsize := 0.0; 
debecho :=false; 
xmin := 0; 
xmax := 0; 
ymin := 0; 
ymax := 0; 
plot-space := plspaca; 
plot-lims := plspace; 
force~ap := plspace; 
this-area :=nil; 
area :=nil; 
sal :=nil; 
spare_area :=nil; 
re_area-list : = nil; 
area_i.size :=nile; 
area_i.xmax := 0; 
area_i.ymax := 0; 
grav := nilv; 
cyclegap := 100; 
cycle_interval := maxcycle; 
cmdprocessing :=false; 
echo1 : = true; 
echo : = true; 
rf_over : = true; 
yb := 0; 
yt := 0; 
xb := O· 

' 
xt := 0; 
circles : = 0; 
fixed := 0; 
cracked : = 0; 
cons := 0; 
cycles := 0; 
updates : = 0; 
pies := 0; 
pages := 0; 
datatypes := 0; 
sum.en := 0.0; 
sum.sc := 1E70; 



Appendix E. 

sum. scold : = 0; 
end; 

end {initialise_globals}; 

function no_cols(xcoord: real): integer; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure NO_COLS'); 

no-cols := trunc(xcoord I area-i.size.xc); 
if gi . tracing 

then 
writeln(trace_o, ' EXIT procedure NO_COLS'); 

end { no-cols} ; 

function no_rows(ycoord: real): integer; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure NO_ROWS'); 

no_rows := trunc(ycoord I area_i.size.yc); 
if gi. tracing 

then 
wri teln( trace_o, ' EXIT procedure NO_ROWS'); 

end { no..rows} ; 

E.lO 

function shift-area(el: area-ptr; num: integer; dir: area-directions): area-ptr; 

var 
shifts: 0 .. 100; 

begin 
if gi.tracing 

then 
writeln(trace_o, 'Entered procedure SHIFT-AREA'); 

if num < 0 
then begin 

num := - num; 
{area-directions= (self,n,ne,e,se,s,sw,w,nw,nex);} 

case dir of 
n .. se: 

dir := area_directions(ord(dir) + 4); 
s .. nw: 

dir := area_directions(ord(dir)- 4); 
otherwise; 
end; 

end; 

for shifts := num downto 1 do begin 
if el - = nil 

then begin 
if gi.reareaing 

then 
~riteln(debug_o, 'Area 1 el@.col: 6, el@.ro~: 6, 1 num: 6); 



Appendllix E. 

cas a dir of 
n: 

el := el@.n; 
ne: 

el := shift_area(el@.e, 1, n); 
e: 

el := el@.e; 
se: 

el :== shift-area(el@.e, 1, s); 
s: 

el := el@.s; 
sa: 

el := shift_area(el@.a, 1, s); 
a: 

el := el@.w; 
nw: 

el := shift_area(el@.a, 1, n); 
self:; 
nex: 

el := el@.next_area; 
otherwise 

error_simple('illegal direction specification', 'shift_area'); 
end; 

end; 
end; 

shift_area := el; 
if (gi.reareaing) AND (el- =nil) 

then 
writeln(debug_o, 'Area', el@.col: 6, el@.row: 6); 

if gi. tracing 
then 

wri teln(trace_o, ' EXIT procedure SHIFT_AREA'); 
end {shift-area}; 

function sign(val, donor: real): real; 

begin 
if donor - = 0 

then 
sign := abs(val * donor) I donor 

else 
sign :=val; 

end {sign}; 

function max(a, b, c: real): real; 

var 
v: real; 

begin 
v := abs(c); 
if abs(a) > v 

then 
v := abs(a); 

if abs(b) > v 
then 

E.ll 



A:ppe.111dlix E. 

v := abs(b); 
max := v; 
end ; 

{**************************************** END GLOBALS } 

procedure do_this(procedure proc..name(arg: ptr_type); curr_area: area_ptr; 
{does for all elements} single: boolean; lists: el-list-types); 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure DO_THIS'); 

while curr-area - =nil do 
with curr-area@ do begin 

this_area := curr_area; 
case lists of 

free: 
if free_list - = nil 

then 
proc..name(free-list); 

fixed: 
if fixed-list - = nil 

then 
proc..name(fixedLlist); 

both: begin 
if free_list - = nil 

then 
proc..name(free_list); 

if fixed_list - = nil 
then 

proc..name(fixed_list); 
end; 

end; 
if - single 

then 
curr-area := next_area 

else 
curr_area :=nil; 

end; 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure DQ_THIS'); 

end {do_ this} ; 

{**************************************** BEGIN PLOTS } 

procedure plots(var cmd-i: text; plot-command: string(12)); 

var 
plotcom: com-type; 
plotquit, writing: boolean; 
plot_scale: real; 

procedure map-space(var cmd-i: text; sp_comst: string(12)); 

const 

E.l2 



Appendix E. 

paph-space = grid-type(0.06, 0.96, 0.06, 0.66); 
papv-space = gridLtype(0.16, 0.74, 0.14, 0.93); 

var 
eightht, htratio: real; 
sp-com: com_ type; 
map-sp, pl t_sp: gridLtype; 
rnapquit: boolean; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure MAP-SPACE'); 

repeat 
get_comrnand(rnapper, rnapquit, sp_com, sp-comst, cmdLi); 
with plt-sp do begin 

plt_sp := plot_space; 
eightht := (ymax- ymin) I 6; 
case sp_com of 

horiz: begin 
plot_space := paph_space; 
plt_sp := plot_space; 
eightht := (ymax - ymin) I 6; 
end; 

vertic: begin 
plot-space := papv-space; 
plt-sp :=plot-space; 
eightht := (ymax - ymin) I 6; 
end; 

fnosc, whole, zoom: ; 
otherwise; 
end; 

pspace(xmin, xmax, ymin, ymax); 
if ymax - ymin < 1E-20 

then 
htratio := 1 

else 
htratio := (xmax- xmin) I (ymax- ymin); 

end; 

with map-sp do begin 
map_sp := plspace; 
case sp_com of 

piccie, horiz, vertic, whole, fnosc: 
ymax := ymin + (xmax - xmin) I htratio; 

zoom: 
with plspace do begin 

if screen 
then 

writeln(output, substr(pos_str, 1, pro-pos), 
'Enter xmin, xmax, and ymin ... '); 

read(cmdLi, xmin, xmax, ymin); 
ymax := ymin + (xmax- xmin) I htratio; 
map_sp := plspace; 
end; 

otherwise; 
end; 

gi.charsize := 0.012 * (ymax- ymin); 
ctrsiz(gi.charsize); 

E.13 



Appendix E. 

{ 
{ 
{ 
{ 

map(xmin, xmax, ymin, ymax); 
end; 

if sp_com - = fnosc 
then 

scales; 
border; 
until mapquit; 

if gi. tracing 
then 
~riteln(trace_o, ' EXIT procedure MAP-SPACE'); 

end {map-space}; 

procedure setup-plot; 
sets up plotting parameters } 
suitable for a4 size paper I laser printer} 
called from either start or restar } 
end of line } 

begin 
if gi . tracing 

then 
writeln(trace_o, 'Entered procedure SETUP-PLOT'); 

paper(!); 
cspace(0.00 1 1.00 1 0.00 1 0.80); 
pspace(0.06, 0.96 1 0.05, 0.65); 
map-space(cmd-i, 'vertical'); 
map-space ( cmd_i , 'zoom' ) ; 
blkpen; 
if gi.tracing 

then 
writeln(trace_o, ' EXIT procedure SETUP-PLOT'); 

end {setup-plot}; 

procedure grid-plot; 
{ procedure to plot area called from plot end of line } 

var 
i I j I lines: 1 . . 100; 
xm, ym, x, y: real; 

begin 
if gi. tracing 

then 
writeln(trace-0 1 'Entered procedure GRID-PLOT'); 

xm := plspace.xmax; 
ym := plspace.ymax; 

{ draw vertical lines } 
X := 0.0; 
y := 0.0; 
lines := area_i.xmax + 1; 
for i := 1 to lines do begin 

positn(x, y); 
join(x, ym); 
x := x + area-i.size.xc; 
end; 

{ draw horizontal lines } 

E.14 



Appendnx E. 

X := 0 .0; 
y := 0.0; 
lines : = area._i. ymax + 1; 
for j : = 1 to lines do begin 

positn(x, y); 
join(xm, y); 
y := y + area_i.size.yc; 
end; 

if gi . tracing 
then 

wri teln( trace_o, ' EXIT procedure GRID_FLQT') ; 
end {grid-plot}; 

procedure fram_plot; 
{ *** sets up plotting frames ***} 
{ sui table for a4 size paper I laser printer } 

{ called from either stplot or plot } 

{ may call gricLplot if areaing set } 

var 
time, yline: real; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure FRAM-PLOT'); 

with plspace do begin 
map_space(cmd_i, 'fullnoscales'); 
time := gi.tstep * total.cycles; 
gi.charsize := 0.02; 
ctrsiz(gi.charsize); 
yline := yrnax - 4 * gi.charsize; 
undlin(1); 
italic(1); 
plotcs(3 * gi.charsize, yline, gi.heading, 80); 
pcsend(xmax- 11 * gi.charsize, yline, 'TIME ', 6); 
plotne(xmax- 9 * gi.charsize, yline, time, 4); 
italic(O); 
undlin(O); 
if gi.reareaing 

then begin 
grid-plot; 
end; 

writeln(debug_o); 
end; 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure FRAM_FLOT'); 
end { frarn_plot} ; 

procedure circle_plot(el: ptr_type); 
{ plot a snapshot of the geometry} 

begin 
if gi. tracing 

then 

:18.].5 



Appendix E. 

eriteln(trace_o, 'Entered procedure circle-PLOT'); 
while el * = nil do 

with el@, data@ do begin 
gpoint(posn.xc, posn.yc); 
circle(rad); 
el :=next; 
end; 

if gi . tracing 
then 

writeln(trace_o, ' EXIT procedure circle_PLOT'); 
end {circle-plot} ; 

procedure dot-plot(el: ptr-type); 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure DQT_PLDT'); 

while el * = nil do 
with el@ do begin 

gpoint(posn.xc, posn.yc); 
el :=next; 
end; 

if gi . tracing 
then 

writeln(trace_o, ' EXIT procedure DDT-PLOT'); 
end {dot-plot}; 

procedure prof_plot; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure PROF-PLOT'); 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure PRDF..PLDT'); 
end {prof_plot}; 

procedure arrow(x, y, vx, vy, scale: real); 
{ this routine plots an arrow 
x - x - coordinate of arrow centre y - y - coordinate of arrow centre 
vx - x component of vector vy - y component of vector } 

var 
rdenom, alen, sina, cosa, ahlen, ahwid, alend2, alen2x, alen2y, ahwidx, 

ahwidy, xtip, ytip, xtipmh, ytipmh: real; 

begin 
alen :=scale* sqrt(sqr(vx) + sqr(vy)); 
if alen > l.OE-50 

then begin 
ahlen := 0.15 * alen; 
ahwid := 0.04 * alen; 

{ find angle shaft makes 'IIi th horizontal direction} 

E.16 



Appellldix E. 

rdenom := scale I alen; 
sina :"' vy * rdenom; 
cosa := vx * rdenom; 
if abs(vy * 0.00001) - abs(vx) > 0 

then begin 
sina := sign(1.0, vy); 
cosa := 0.0; 
end; 

alend2 := 0.5 * alen; 
alen2x := alend2 * cosa; 
alen2y := alend2 * sina; 
ahwidx := ahwid * sina; 
ahwidy := ahwid * cosa; 
xtip := x + alen2x; 
ytip := y + alen2y; 
xtipmh := xtip - ahlen * cosa; 
ytipmh := ytip - ahlen * sina; 

{ plot arrow starting at tail} 

positn(x- alen2x, y- alen2y); 
join(xtip, ytip); 
join(xtipmh- ahwidx, ytipmh + ahaidy); 
join(xtipmh + ahwidx, ytipmh- ahwidy); 
join(xtip, ytip); 
positn(x- ahwidx, y + ahwidy); 
join(x + ahwidx, y- ahwidy); 
end; 

end {arrow} ; 

procedure find_scale(el: ptr_type); 

var 
con~ode: con-ptr; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure FIND_SCALE'); 

case plotcom of 
conplot: 

while el - = nil do 
with el@ do begin 
con~ode : = con-list; 
while con~ode - = nil do 

with con~ode® do begin 
if abs(c_force.x) > plot_scale 

then 
plot_scale := abs(c_force.x); 

if abs(c_force.y) > plot_scale 
then 

plot-scale:= abs(c_force.y); 
con~ode := next_con; 
end; 

el := next; 
end; 

fail plot: 
while el - = nil do 

E.]. 7 



Appendix JE. JE.l§ 

Hith el@ do begin 
con-Ilode : = con-list; 
Hhile con-Ilode - = nil do 

with con-Ilode@ do begin 
if (failed) AND (abs(f_force) >plot-scale) 

then 
plot-scale := abs(f_force); 

con-Ilode := next_con; 
end; 

el := next; 
end; 

vel plot: 
while el - = nil do 

with el@, v do begin 

end; 

if abs(x) > plot_scale 
then 

plot-scale := abs(x); 
if abs(y) > plot_scale 

then 
plot-scale := abs(y); 

el :=next; 
end; 

if gi. tracing 
then 

wri teln ( trace_o, ' EXIT procedura FIND-SCALE') ; 
end {find-scale}; 

procedure veLplot(el: ptr-type); 
{ plot the velocities of the circles, called from plot, end of line} 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure VEL-PLOT'); 

while el - = nil do 
with el@, posn, v do begin 

arrow(xc, yc, x, 0, plot-scale); 
arrow(xc, yc, 0, y, plot-scale); 
arrow(xc, yc, x, y, plot_scale); 
el := next; 
end; 

if gi. tracing 
then 

wri teln ( trace_o, ' EXIT procedure VEL_pLQT •) ; 
end { veLplot}; 

procedure disp-plot(el: ptr-type); 
{ plot of displacements, called from plot, end of line } 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure DISP_pLQT'); 

while el - = nil do 
with el@ do begin 

with source do 



Appendix E. 

gpoint(xc, yc); 
with posn do 

j oin(xc, yc); 
source : = posn; 
el :=next; 
end; 

if gi . tracing 
then 

wri teln ( trace_o, ' EXIT procedure DISP ..PLOT') ; 
end { disp_plot} ; 

procedure cont_plot(el: ptr_type); 

var 
midx, midy: real; 
con..node: con_ptr; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure CONT..PLOT'); 

while el - = nil do 
with el@, el@.posn do begin 

con..node := con_list; 
while con..node - = nil do 

with con..node@ do begin 
positn(xc, yc); 
join(other@.posn.xc, other@.posn.yc); 
midx := (xc + other@.posn.xc) I 2; 
midy := (yc + other@.posn.yc) I 2; 
arrow(midx, midy, c_force.x, 0, plot_acale); 
arrow(midx, midy, 0, c_force.y, plot-scale); 
arrow(midx, midy, c-Iorce.x, c-Iorce.y, plot-scale); 
con..node := next_con; 
end; 

el :=next; 
end; 

if gi. tracing 
then 

wri teln ( trace_o, ' EXIT procedure CONT ..PLOT') ; 
end {cont_plot}; 

procedure draw_split(x, y, theta, scale: real); 

var 
xlen, ylen: real; 

begin 
ylen :=scale* cos(theta); 
xlen :=scale* sin(theta); 
positn(x + 2 * xlen, y - 2 * ylen); 
join(x - 2 * xlen, y + 2 * ylen); 
positn(x + xlen, y + ylen); 
join(x - xlen, y - ylen) 
end { draw_spli t} ; 

E.19 



Appendix E. 

procedure fail-plot(el: ptr-type); 

var 
midx, midy: real; 
con~ode: con-ptr; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure FAILJPLOT'); 

while el - = nil do 
with el@ do begin 
con~ode := con-list; 
while con~ode - = nil do 

with co~ode@ do begin 
draw-split((posn.xc + other@.posn.xc) I 2, (posn.yc + other@.posn. 

yc) I 2, f_angle, f_force *plot-scale); 
con~ode := next_con; 
end; 

el :=next; 
end; 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure FAILJPLOT'); 
end {fail_plot}; 

begin {plots} 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure PLOTS'); 

writing := opt.echo; 
repeat 

get_command(plotter, plotquit, plotcom, plot-command, cmd_i); 
if plotcom IN ballplot . . failplot 

then 
total.pics := total.pics + 1; 

case plotcom of 
ballplot: 

do_this(circle-plot, sal, false, both); 
dotplot: 

do_this(dot_plot, sal, false, both); 
velplot: begin 

plot_scale : = 0; 
do_this(find_scale, sal, false, free); 
if plot_scale - = 0 

then begin 
plot_scale := gi.max-rad I (total.datatypes *plot-scale); 
do-this(vel-plot, sal, false, free); 
end 

else 
writeln(output, substr(pos_str, 1, mes_pos), 

end; 
displot: 

'Warning: all velocities zero '); 

do-this(disp-plot, sal, false, free); 
conplot: begin 

plot_scale := 0; 
do_this(find_scale, sal, false, free); 

E.20 



Appendix JE. lE.21 

if plot-scale • ; 0 
then begin 

plot-scale :o gi.max_r~d I (totQl.datatypea ¢ plot_acale); 
do_this(cont_plot, sal, false, free); 
end 

else 
ariteln(output, substr(pos_str, 1, mes_pos), 

'Harnin~: all contact forces zero '); 
end; 

fail plot: begin 
plot_scale : = 0; 
do_this(find_scale, sal, false, free); 
if plot-scale - = 0 

then begin 
plot_scale := gi.max_rad I (2 ¢ total.datatypes * plot_scale); 
do-this(fail-plot, sal, false, free); 
end 

else 
writeln(output, substr(pos_str, 1, mes_pos), 

' Harning : no failures : no plot '); 
end; 

standard: begin 

do-this(circle-plot, sal, false, both); 
total.pics := total.pics + 1; 
fram_plot; 
frame; 
total. pages := total.pages + 1; 
end; 

frames: 
fram-plot; 

page: begin 
frame; 
total.pages := total.pages + 1; 
end; 

graticule: 
gricLplot; 

init: begin 
setup-plot; 
fram_plot; 
grid_plot; 
writing :=false; 
end; 

plotstop: begin 
map_space(cmd-i, 'full'); 
fram-plot; 
grid-plot; 
do_this(circle_plot, sal, false, both); 
grend; 
total.pics := total.pics + 1; 
writing:= false; 
total. pages :=total. pages + 1; 
end; 

zoom: 
map_space(cmd_i, 'zoom'); 

maps: 
map-space(cmd-i, ''); 

otherwise; 
end; 

if writing AND • cy_first 



Appem:Hx JE. 

then begin 
if opt.echo 

then 
eriteln(output, substr(pos_str, 1, fra_pos), total.pages: 8, 

substr(pos_str, 1, plo-pos), total.pics: 8); 
end; 

until plotqui t; 
if gi. tracing 

then 
wri teln ( trace_o, ' EXIT procedure PLOTS') ; 

end {plots}; 

{**************************************** END PLOTS } 
{**************************************** BEGIN UPDATE } 

procedure update_area(el: ptr_type); 

var 
con-lim, con-res: real; 

procedure update_el(el: ptr_type); 

var 
sibling: ptr_type; 
forf: eLlist-types; 
dir-lim, sweep: area-directions; 
centre: area_ptr; 
gap: real; 
offset: real; 

procedure update_brain(elem, twin: ptr_type); 

var 
found: boolean; 

procedure destroy_contact(owner: ptr_type; pre_victim: con-ptr); 

var 
victim: con-ptr; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure DESTROY_CQNTACT'); 

if pre-victim = nil 
then begin 

victim := owner@.con-list; 
owner@.con_list := oener@.con-list@.next_con; 
end 

else begin 
victim := pre_victim@.next_con; 
pre_victim@.next_con := victim@.next_con; 
end; 

dispose(victim); 
total.cons := total.cons- 1; 
if gi.updating 

JE.22 



Appendix JE. 

then 
eriteln(debug_o, ' 

if gi.tracing 
then 

Victim destroyed'); 

aritaln(trace_o, ' EXIT procGdure DESTROY-CONTACT'); 
end {destroy_contact}; 

procedure scan_con(home_el, away_el: ptr_type); 

var 
home_con, prev_con: con-ptr; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure SCAN_CON'); 

home-con := home-el@.con_list; 
prev_con :=nil; 
found :=false; 
while (NOT found) AND (home_con ~ = nil) do begin 

found := home_con@.other = away-el; 
if NOT found 

then begin 
prev_con := home_con; 
home_con := home_con@.next_con; 
end; 

end; 
if (found) AND (gap >= con_lim) 

then 
destroy_contact(home_el, prev_con); 

if gi.tracing 
then 

ari teln(trace_o, ' EXIT procedure SCAN_CON •); 
end {scan-con}; 

procedure create_contact(domicus, vagrantus: ptr_type); 

var 
new con: con-ptr; 

begin 
if gi.tracing 

then 
writeln(trace_o, 'Entered procedure CREATE-CONTACT'); 

new(newcon); 
with newcon@ do begin 

next_con := domicus@.con-list; 
domicus@.con_list := newcon; 
other := vagrantus; 
if gap > 0 

then {tensional} 
offs := domicus@.data@.rad + vagrantus@.data@.rad 

else {overlapping} 
offs : = offset; 

gapsum := 0; 
c..force := nilv; 

JE.23 



Appe1t1dix E. 

f_force : = 0; 
Langle := 0; 
failed : = false; 
end; 

total.cons := total.cons + 1; 
if gi.updating 

then 
writeln(debug_o, ' Contact created', gap: 6, domicus@.posn.xc: 

6, domicus@.posn.yc: 6, vagrantus@.posn.xc: 6, vagrantus@.posn 
.yc: 6); 

if gi . tracing 
then 

"ffriteln(trace_o, ' EXIT procedure CREATE-CONTACT'); 
end {create_contact}; 

begin {update_brain} 
if gi.tracing 

then 
writeln(trace_o, 'Entered procedure UPDATEJBRAIN'); 

scan_con(elem, t"ffin); 
if NOT found 

then 
scan_con(twin, elem); 

if (NOT found) AND (gap < con-lim) 
then 

create_contact(elem, twin); 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure UPDATEJBRAIN'); 

end {update-brain}; 

function central(elem: ptr-type): boolean; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure CENTRAL'); 

with centre@.corners do 
central := min(elem@.posn.yc - ymin, ymax - elem@.posn.yc, elem@.posn. 

xc- xmin, xmax- elem®.posn.xc) > 2 * gi.max_rad +con-res; 
if gi. tracing 

then 
"ffriteln(trace_o, ' EXIT procedure CENTRAL'); 

end {central} ; 

begin 
{ it is fortunate that two fixed blocks are not allowed to have contacts} 

if gi.tracing 
then 

writeln(trace_o, 'Entered procedure UPDATE-EL'); 

with el® do begin 
centre :=this-area; 
if central(el) 

then 

E.24 



Apperru:Hx JE. 

dir -lim : = self 
else 

dir_lim :::: na; 
for saeep := self to dir_lim do begin 

area :o shift_area(centre, 1, saGop); 
if area::: nil 

then 
continue; 

if saeep = self 
then 

sibling :~ el@.next 
else 

sibling := area@.free-list; 
for forf := free to fixed do begin 

while (sibling - = nil) do begin 
offset := sqrt(sqr(sibling@.posn.xc- posn.xc) + sqr(sibling®.posn 

.yc- posn.yc)); 
gap:= offset- (data@.rad + sibling@.data@.rad); 
if gap < con-res 

then 
update_brain(el, sibling); 

sibling := sibling@.next; 
end; 

sibling := area@.fixed_list; 
end; 

end; 
end; 

if gi. tracing 
then 

ariteln(trace_o, ' EXIT procedure UPDATE-EL'); 
end {update_el}; 

begin {update_area} 
if gi. tracing 

then 
writeln(trace-o, 'Entered procedure UPDATE-AREA'); 

if this-area = spare-area 
then 

return; 
with this-area@ do begin 

upd_min : = 0. 5 * gi. max..rad I total. datatypes; 
con-lim : = updJIIin; { gap > con-lim not a contact} 
con_res := 2.1 * con_lim; {gap< con..res check lists} 
upd-par : = 0 ; 
end; 

while el - = nil do begin 
update_el(el); 
el := el@.next; 
if gi.updating 

then 
ariteln(debug_o, 'total number of contacts', total.cons); 

end; 
total. updates : = total. updates + 1; 
if gi. tracing 

then 
wri teln(trace-o, ' EXIT procedure UPDATE-AREA'); 

end {update-area}; 

{**************************************** END UPDATE } 

JE.25 



Appendlix E. 

{**************************************** BEGIN RE-AREA } 

procedure re_area; 

var 
el: ptr_type; 

begin 
if gi. tracing 

then 
~riteln(trace_o, 'Entered procedure RE-AREA'); 

~hile re_area-list - = nil do 
~ith re-area_list@ do begin 

if gi.reareaing 
then 
~riteln(debug_o, 'ori x,y, ne~ x,y ' source.xc: 6, source.yc: 6, 

posn.xc: 6, posn.yc: 6); 

area:= shift_area(shift_area(sal, no_cols(posn.xc), e), no_rows(posn.yc 
) ' n); 

if area= nil 
then begin 

area := spare_area; 
total.circles := total.circles - 1; 
writeln(output, substr(pos-str, 1, mes-pos), 

'Warning: circles leaving area', el@.posn.xc: 8,'' el@. 
posn. yc : 8) ; 

end; 
el := re-area-list; 
re_area_list := el@.next; 
el@.next := area@.free_list; 
area@.free_list := el; 
end; 

if total.circles = 0 
then 

start-shut(input, shutdo~n); 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure RE-AREA'); 

end {re_area}; 

{**************************************** BEGIN CYCLE } 

procedure cycle(var cmdLi: text); 
{ driver for iterations } 
{ the calculation sequence module } 

{ called from contrl } 

{ 
{ 

may call ford, motion, updat and stop } 
called via motion } 

var 
cycles, no_of_cycles, outcounter, cycle_lim: cycle-type; 
max_adisp, min-adisp: real; 



Apperrullix E. 

procedure hide-el(var el: ptr-type); 

var 
elem, prev: ptr_type; 

begin 
if gi. tracing 

then 
eriteln(trace-o, 'Entered procedure HIDE-EL'); 

if this_area :::: spare_area 
then 

return; 
eith this_area@ do begin 

elem := free_list; 
prev :=nil; 
while el - = elem do begin 

prev := elem; 
elem := elem@.next; 
end; 

el := el@.next; 
if prev =nil 

then 
free_list : = el 

else 
prev@.next := el; 

elem@.next := re_area_list; 
re_area_list := elem; 
end; 

if gi.tracing 
then 

-ariteln(trace_o, ' EXIT procedure HIDE..EL'); 
end { hide_el} ; 

procedure clear_forces(el: ptr_type); 
{ set all forces to zero } 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure CLEAR-FORCES'); 

while el - = nil do 
with eHl do begin 

force := nilv; 
el := next; 
end; 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure CLEAR-FORCES'); 
end {clear-forces}; 

procedure fordmot(el: ptr-type); 

var 
con~ode: con_ptr; 
sine, cose, gap, dx, dy, con-force: real; 
stress, t_force: vector-type; 
n, s1, s3, si, sn, st: real; 

E.2'f 



Appe:ndlix E. 

begin 
if gi. tracing 

then 
ariteln(trace_o, 'Entered procedure FORD'); 

while el - = nil do 
with el@, el@.data@ do begin 

con-node :=con-list; 
if gi. fording 

then 
writeln(debug_o, 

'del tagap con_force force t_force for x then y'); 
while con~ode - = nil do 

with con-node@ do begin 
dx := other@.posn.xc- posn.xc + (other@.s.x- s.x); 
dy := other@.posn.yc- posn.yc + (other@.s.y- s.y); 
gap:= sqrt(sqr(dx) + sqr(dy)); 
sine := dy I gap; 
cose := dx I gap; 
if gi. fording 

then 
write(debug_o, gap, sine, cose); 

gap :=gap- offs; 
if gi.fording 

then 
writeln(debug-o, gap); 

if gap< this_area@.upd~in 
then begin 

con-force := kn * gap * damp; 
t-force.x := c_force.x +con-force* cose; 
t-force.y := c_force.y + con_force *sine; 
if gap * kn + gapsum > 0 

then begin 
if gap * kn + gapsum > tens-fuzz 

then begin 

end 

f_force := (t_force.x + t_force.y) I 2; 
if abs(sine) < lE-40 

then 
sine := ie-40; 

f_angle :=arctan(- cose I sine); 
t_force := nilv; 
failed : = true; 
end; 

else begin 
stress.x := abs(t_force.x I rad); 
stress.y := abs(t_force.y I rad); 
if stress.x < stress.y 

t;hen begin 
s3 : = stress . x; 
si : = stress. y; 
end 

else begin 
s3 : = stress. y; 
si := stress.x; 
end; 

if phi = 0 
then begin 

s1 := s3 + 2 * cohes; 

E.2§ 



Appendix JE. 

sn := 1E7; 
st := cohes; 
end 

else begin 
n := sqrt(1 + sqr(phi)); 
n :c (1 +phi- n) I (phi- 1 + n); 
sn := (s3 + n * cohes) I (1- n *phi); 
st :=phi* sn + cohes; 
s1 := 2 * (sn + st * phi) - s3; 
end; 

if si > s1 
then begin 

if stress.x < stress.y 
then 

t_force.y := sign(sl * rad, t_force.y) 
else 

t_force.x := sign(s1 * rad, t-force.x); 
if - failed 

then begin 
failed : = true; 
f_force : = st; 
if abs(sn - s3) > 1e-20 

then 
f-angle := arctan(st I (sn - s3)) 

else 
f_angle : = 0; 

total.cracked := total.cracked + 1; 
if opt.echo 

then 
writeln(output, substr(pos_str, 1, cra_pos), 

total.cracked: 8, substr(pos-str, 1, 
cyc_pos), total.cycles: 8, substr(pos-str, 
1, mes_pos) , ' Sphere cracked at ' , posn. 
xc: 8: 3, posn.yc: 8: 3, stress.x: 8: 3, 
stress.y: 8: 3); 

end; 
end; 

other@.force.x := other@.force.x- t_force.x; 
other@.force.y := other@.force.y- t_force.y; 
force.x := force.x + t_force.x; 
force.y := force.y + t_force.y; 
if gi. fording 

then 
writeln(debug_o, con_force: 8, dx: 8, force.x: 8, 

other@.force.x: 8, dy: 8, force.y: 8, other@.force 
.y: 8); 

if gi. consoling 
then 

writeln(debug_o, t_force.x, t_force.y); 
end; 

end; 
con_node := next_con; 
end; 

el :=next; 
end; 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure FORD'); 
end { fordmot}; 

JE.29 



Appendix JE. 

procedure fordcon(el: ptr_type); 

var 
con..node: con_ptr; 
sine, cose, gap, dx, dy, con_force: real; 
stress, t_force: vector-type; 
n, s1, s3, si, sn, st: real; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure FORDCON'); 

while el - = nil do 
with el@, el@.data@ do begin 

con..node := con_list; 
if gi.fording 

then 
writeln(debug-o, 

'del tagap con_force force t_force for x then y'); 
ahile con..node - = nil do 

with con..node@ do begin 
dx := other@.posn.xc - posn.xc; 
dy := other@.posn.yc- posn.yc; 
gap:= sqrt(sqr(dx) + sqr(dy)); 
sine := dy I gap; 
cose := dx I gap; 
dx := dx + (other@.s.x- s.x); 
dy := dy + (other@.s.y- s.y); 
gap:= sqrt(sqr(dx) + sqr(dy)); 
if gi.fording 

then 
write(debug-o, gap, sine, cose); 

gap :=gap- offs; 
if gi. fording 

then 
ariteln(debug-o, gap); 

if gap < this_area@. upd..rnin 
then begin 

gapsum := gapsum +gap; 
con_force :=gap * damp; 
t-force.x := c_force.x +con-force* cose; 
t_force.y := c_force.y + con_force *sine; 
if gapsum > 0 

then begin 
if gapsum > cohes 

then begin 

end 

f_force := (t_force.x + t_force.y) I 2; 
if abs(sine) < lE-40 

then 
sine : = le-40; 

f_angle :=arctan(- cose I sine); 
t_force := nilv; 
failed : = true; 
end; 

else begin 
stress.x :s abs(t_force.x I rad); 

JE.30 



Appendix JE. JE.31 

stress.y := abs(t_forc~.y I rad); 
if stress.x < stress.y 

then begin 
s3 := stress.x; 
si := stress.y; 
end 

else begin 
s3 :"' stress.y; 
si := stress.x; 
end; 

if phi ::: 0 
then begin 

s1 := s3 + 2 * cohes; 
sn := 1E7; 
at := cohes; 
end 

else begin 
n := sqrt(1 + sqr(phi)); 
n := (1 +phi- n) I (phi- 1 + n); 
an := (s3 + n * cohes) I (1- n *phi); 
at :=phi·* an+ cohes; 
s1 := 2 * (an + st * phi) - a3; 
end; 

if si > s1 
then begin 

if stresa.x < atreaa.y 
then 

t_force.y := aign(s1 * rad, t-force.y) 
else 

t_force.x := aign(a1 * rad, t-force.x); 
if - failed 

then begin 
failed : = true ; 
f_force := at; 
if abs(sn - a3) > 1e-20 

then 
f_angle := arctan(at I (an- s3)) 

else 
Langle := 0; 

total.cracked := total.cracked + 1; 
end; 

end; 
end; 

c_force : = t-force; 
other~.force.x := other@.force.x- c_force.x; 
other@.force.y := other@.force.y- c_force.y; 
force.x := force.x + c_force.x; 
force.y := force.y + c_force.y; 
if gi.fording 

then 
-eriteln(debug_o, con-force: 8, dx: 8, force.x: 8, other@. 

force.x: 8, dy: 8, force.y: 8, other@.force.y: 8); 
if gi.consoling 

then 
Hriteln(debug_o, c_force.x, c_force.y); 

end; 
con~ode := next_con; 
end; 

el :=next; 
end; 



Appendlix JE. 

if gi.tracing 
then 

writeln(trace_o, ' EXIT proceduroa FORDCON'); 
end {ford con}; 

procedure premotion(el: ptr_type); 

var 
con~ode: con_ptr; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure PREMOTION'); 

while el - = nil do 
with el@ do begin 
con~ode := con-list; 
while con~ode - = nil do 

with co~ode@ do begin 
if other@.data@.typ =fixed 

then 
no_of_contacts := no_of_contacts + 1 

else 
if (abs(other@.s.y- s.y) > 0.0005) AND (abs(posn.yc -other@. 

posn.yc) > 0 .1) 
then begin 

no_of_contacts := no_of_contacts + 1; 
other@.no_of_contacts := other@.no_of_contacts + 1; 
end; 

con~ode := next_con; 
end; 

el :=next; 
end; 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure PREMOTION'); 
end {premotion}; 

procedure fconsolxy(el: ptr_type); 

begin 
if gi. tracing 

then 
writeln(trace.o, 'Entered procedure FCONSOLXY'); 

while el - = nil do 
with el@, el@.force, el@.data@, opt, gi do begin 

if no_of_contacts = 0 
then 

no_of-contacts := 1; 
s.x := (xI mass+ grav.x) * sqr(gi.tstep) {1 no_of_contacts}; 
s.y := (y I mass+ grav.y) * sqr(gi.tstep) {1 no_of_contacts}; 
sum.sc := rnax(s.x, s.y, sum.sc); 
if motioning 

then 
writeln(debug.o, flagno: 3, 'f' x, y, 's' s.x, s.y); 

no_of_contacts : = 0; 
force := nilv; 

18.32 



Appendnx E. 

el :=next; 
end; 

if gi . tracing 
then 

-ari teln ( trace_o, ' EXIT procedure FCONSOLXY') ; 
end {fconsolxy}; 

procedure motionxy(el: ptr_type); 

var 
max-disp: real; 

begin 
if gi. tracing 

then 
-ariteln(trace_o, 'Entered procedure MOTION'); 

max_disp : = 0; 
while el - = nil do 

-aith el0 do begin 
posn.xc := posn.xc + s.x; 
posn.yc := posn.yc + s.y; 
a.x := force.x I data@_.mass + _opt.grav.x; 
a.y := force.y I data@.mass + opt.grav.y; 
v.x := v.x + a.x * gi.tstep; 
v.y := v.y + a.y * gi.tstep; 
s.x := v.x * gi.tstep; 
s.y := v.y * gi.tstep; 
sum.sc := max(s.x, s.y, sum.sc); 
max_disp := max(max_disp, s.x, s.y); 
if (gi.oscing) AND (data@.typ =track) 

then 
writeln(oscil-o, data@.flagno: 4, total.cycles: 6, force.x: 12, a. 

x: 12, v.x: 12, s.x: 12, posn.xc: 12, force.y: 12, a.y: 12, v. 
y: 12, s.y: 12, posn.yc: 12); 

if (trunc(posn.yc I area_i.size.yc) - = this-area@.ro~) OR (trunc(posn 
.xc I area_i.size.xc) - = this-area@.col) 

then 
hide_el(el) 

else 
el : = next; { el may be changed by hide_el} 

end; 

with this-area@ do begin 
upd_par : = upd_par + max_disp; 
if upd-par > upcLmin 

then begin 
if re_area_list - = nil 

then 
re_area; 

do_this(update_area, this-area, true, free); 
if opt .echo 

then 
~riteln(output, substr(pos_str, 1, upd_pos), total.updates: 8); 

end; 
end; 

if gi.tracing 
then 

E.33 



Appendix E. 

writeln(trace_o, ' EXIT procedure MOTION'); 
end {motionxy}; 

begin {cycle} 
if gi.tracing 

then 
writeln(trace_o, 'Entered procedure CYCLES'); 

if screen 
then 

writeln(output, substr(pos-str, 1, pro-pos), 
'Enter no of cycles required ... '); 

read(cmd_i, no_of_cycles); 
if opt.echo 

then 
writeln(output, substr(pos-str, 1, req-pos), no-of-cycles: 8); 

if total. circles = 0 
then begin 

writeln(output, substr(pos_str, 1, mes_pos), 
'Warning no circles left'); 

return 
end; 

max_adisp := gi.max_rad I (200 * total.datatypes); 
min_adisp := max_adisp I 50; 
outcounter := total.cycles; 
cycles := 0; 
while (cycles < no_of_cycles) AND c- quit) do begin 

if opt.cycle-interval < no_of_cycles- cycles 
then 

cycle_lim := total.cycles + opt.cycle_interval 
else 

cycle-lim := total.cycles +no-of-cycles - cycles; 
while (total.cycles < cycle_lim) AND c- quit) do begin 

sum.scold := sum.sc; 
sum. sc := 0; 
if gi. settling 

then begin 
do_this(premotion, sal, false, free); 
do-this(fordcon, sal, false, free); 
do_this(fconsolxy, sal, false, free); 
end 

else begin 
do_this(fordmot, sal, false, free); 
do_this(motionxy, sal, false, free); 
if re_area_list - = nil 

then 
re_area; 

do_this(clear_forces, sal, false, both); 
end; 

total.cycles := total.cycles + 1; 
if (opt.echo) AND (total.cycles MOD opt.cyclegap = 0) 

then begin 
writeln(output, substr(pos_str, 1, cyc_pos), total.cycles: 8); 
if sum.scold < sum.sc 

then 
writeln(output, substr(pos_str, 1, mes_pos), 

'Decreasing stability', sum.sc) 

18.34 



Appendix E. 

else 
ariteln(output, substr(pos-str, 1, mes-pos), 

'Increasing stability', sum.sc); 
cand; 

if (opt.cmdprocessing) AND (total.cyclcas MOD opt.cycle-interval = 0) 
then begin 

reset(cycmd_i, 'FILE=-sass.cmd'); 
gi. cmdend :::: false; 
while - gi.cmdend do 

control(cycmd_i); 
if opt .echo 

then 
ariteln(output, substr(pos-str, 1, req-pos), no-of-cycles: 8); 

end; 
quit := (gi.settling) AND (sum.sc < 1e-14); 
if - gi.settling 

then begin 
if sum.sc > max_adisp 

then begin 
gi.tstep := gi.tstep I 2; 
writeln(output, substr(pos-str, 1, err_pos), 

'Current time step set to: ', gi.tstep: 12: 10); 
end 

elf!e 
if sum.sc < min_adisp 

then begin 

end; 
if trap 

gi.tstep := gi.tstep * 1.05; 
writeln(output, substr(pos-str, 1, err_pos), 

' Current time step set to : ', gi. tstep: 12: 10); 
end; 

then 
trapper; 

if gi.cycling 
then 

writeln(debug_o, 'max individual disp' sum.sc); 
end; 

cycles := total.cycles- outcounter; 
end; 

if (quit) AND (sum.sc < 1e-14) 
then 

quit :=false; 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure CYCLES'); 

end {cycle} ; 

{**************************************** END CYCLE} 

procedure start-shut; 
{ initialises the run, called from control, initialisation modules } 

type 
records= (rpar, rvec, rcoo, rcon, rele, rgri, rare, rara, rgen, ropt, rtot, 

rsum, rhed); 
buffertype = record 

tag: char; 
case records of 

E.35 



Appendix JE. JE.36 

var 

rpar: (parabk-rep: parabk-type); 
rvec: (vector-rep: vector_type); 
rcoo: (coord_rep: coord_typa); 
rcon: (con-rap: con_type); 
rele: (element-rep: element-type); 
rgri: (gridLrep: gridLtype); 
rare: (area...i-rep: area_Ltypa); 
rara: (area_rep: araa .. type); 
rgen: (gen-info_rep: gen..info-typa) ; 
ropt: (option...rep: option_type); 
rtot: (totals-rep: totals_ type); 
rsum: (sum-rep: sum-type); 
rhed: (hed-rep: hed-type); 

end; 

rest_o, rest-i: file of buffertype; 
buffer: buffertype; 
sd: para...ptr; 
new-circle: ptr-type; 

procedure mesh_areas; 

procedure get_area(var n_a: area_ptr; cola, ro~s: ro~col_type); 

begin 

var 

if gi.tracing 
then 
~riteln(trace_o, 'Entered procedure GET-AREA'); 

ne~(n..a); 

~ith n_a@ do begin 
corners.xmax := area_i. size. xc 
corners.xmin := corners.xmax -
corners.ymax := area_i. size. yc 
corners.ymin .- corners.ymax 
row := ro~s - 1; 
col := cols - 1; 
upd_par : = 0.0; 
upd..min : = 0 ; 
free_list :=nil; 
fixedLlist : = nil; 
n :=nil; 
e :=nil; 
s :=nil; 
w :=nil; 
next_area :=nil; 
end; 

if gi.reareaing 
then 
~ith n_a@.corners do 

-

* cols; 
area...i.size.xc; 

* rows; 
area..i. size. yc; 

writeln(debug-o, 'x,x- ,y,y- , xmin: 6, xmax: 6, ymin: 6, ymax); 
if gi.tracing 

then 
~riteln(trace_o, ' EXIT procedure GET-AREA'); 

end {get_area} ; 



A ppend.ix E. 

nee-area: area.ptr; 
columns, layers: rowcol_type; 

begin {mesh-areas} 
if gi. tracing 

then 
wri teln ( trace_o, 'Entered procedure UESH_AREAS'); 

get_area(area, 1, 1); 
sal := area; 
for columns : = 1 to area_i. xmax do begin 

if gi.reareaing 
then 

writeln(debug_o, 'setup areas col number', columns); 
for layers := 2 to area_i.ymax do begin 

if gi.reareaing 
then 

writeln(debug_o, 'setup areas row number', layers); 
get_area(new_area, columns, layers); 
area@.next-area := new_area; 
area@.n := new-area; 
area@.n@.s :=area; 
if columns = 1 

then 
area := areaCil.n 

else begin 
area:= shift-area(area, 1, nw); 
area@.e :=new-area; 
area@.e@.w := area; 
area := areaCil.e; 
end; 

end; 

get_area(new_area, columns+ 1, 1); 
area@.next_area :=new-area; 
area:= shift_area(area, area-i.ymax- 1, s); 
area@.e := new_area; 
areaCil.e@.w := area; 
area := areaCil.e; 
end; 

spare-area := area; 
area:= shift_area(area, 1, w); 
areaCil.e :=nil; 
spare_area@.w :=nil; 
area:= shift-area(area, area-i.ymax- 1, n); 
area@.next-area :=nil; 
area :=sal; 
if gi . tracing 

then 
wri teln(trace_o, ' EXIT procedure ~tESH..AREAS'); 

end {mesh-areas}; 

procedure setup_a_info; 

begin 
if gi. tracing 

then 

E.37 



Appem:Hx E. 

writeln(trace_o, 'Entered procedure SETUP-A-INFO'); 
with area_i do begin 

if screen 
then 

writeln(output, substr(pos_str, 1, pro-pos), 
'Enter no of areas in x andy .. '); 

read(cmdLi, xmax, ymax); 
size.xc := (plspace.xmax- plspace.xmin) I xmax; 
size.yc := (plspace.ymax- plspace.ymin) I ymax; 
nos := xmax * ymax; 
end; 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure SETUP_A_INFD'); 
end {setup-a-info}; 

procedure mesh; 
{procedure to create profiles, called from start } 

var 
oldx, oldy, cose, sine: real; 
numrep: integer; 

procedure cre_data; 

const 
sort-str ='null free fixedtrack'; 

var 
new-data: para-ptr; 
sort: string(12); 
sind: integer; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure CREJDATA'); 

new(new-data); 
new_data@.preincarnate := ord(new_data); 
new_data@.next-data := cdp@.next_data; 
cdp@.next-data := new_data; 
cdp : = new-data; 
with cdp@ do begin 

if screen 
then 

writeln(output, substr(pos-str, 1, pro-pos), 
' Enter data as fdmcprrk ....... '); 

read(cmdLi, flagno, damp, mass, cohes, phi, rho, rad, kn); 
damp :=damp I mass; 
if- screen and opt.echo 

then 
writeln(output, substr(pos-str, 1, mes-pos), ' ' flagno: 6, damp: 

6, mass: 6, cohes: 6, phi: 6, rho: 6, rad: 6, kn: 6, ' ') ; 
gi. max_rad : = gi. max_rad + rad; 
total. datatypes : = total. datatypes -1- 1; 
end; 

get_command(datert, qdum, cdp@.typ, '', cmd-i); 

E.3§ 



Appendix E. 

if gi. tracing 
then 

ariteln(trace_o, ' EXIT procedure CRE-DATA'); 
end {ere-data}; 

procedure cre_circles; 

var 
x, y: real; 
repind, numrept: integer; 
nea_circle, area_l: ptr-type; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure CRE_circleS'); 

if screen 
then 

writeln(output, substr(pos_str, 1, pro_pos), 
'Enter x, y ... coordinates .. '); 

while NOT eoln do begin 
read(cmd_i, x, y); 
if (~ gi.jumping) OR (gi.single) 

then · · 
numrept := 1 

else 
numrept := numrep; 

for repind := 1 to numrept do begin 
if gi. jumping 

then begin 
oldx := x * cose + oldx; 
oldy := y *sine +oldy; 
end 

else begin 
oldx := x; 
oldy := y; 
end; 

if opt .echo 
then 

write(output, substr(pos-str, 1, pro-pos), oldx: 9, oldy: 9); 
area:= shift_area(shift_area(sal, no_cols(oldx), e), no_rows(oldy), 

n); 
if area= nil 

then 
error_simple('circle coordinates out of range ' 

'create circles'); 
if gi.reareaing 

then 
with area@.corners do 

writeln(debug_o, 'x,x~ ,y,y~ ', xmin: 6, xmax: 6, ymin: 6, ymax: 
6, ' X, Y ', oldx: 6, oldy: 6); 

new(new_circle); 
case cdp@.typ of 

track, free: begin 
total.circles := total.circles + 1; 
new_circle@.next := area@.free_list; 
area@.free_list := new_circle 

E.39 



Appendix E. 

var 

end; 
fixed: begin 

total.fixed := total.fixed ~ 1; 
new_circle@.next := area@.fixed-list; 
area@.fixsdLlist :=new-circle 
end; 

end; 

with nee_circle@ do begin 
data := cdp; 
source.xc := oldx; 
source.yc :=oldy; 
posn :=source; 
force.x := 0; 
force.y := 0; 
s :=force; 
v :=force; 
a :=force; 
consol :=force; 
no_of-contacts := 0; 
con-list : = nil; 
end; 

end; 
end; 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure CRE-circleS'); 
end {cre_circles}; 

x, y: real; 
meshquit: boolean; 
meshcom: com-type; 

begin {mesh} 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure MESH'); 

numrep := 1; 
sine := 1; 
cose := 1; 
repeat 

get-command(mesher, meshquit, meshcom, '' cmd_i); 
case meshcom of 

forloop: begin 
if screen 

then 
writeln(output, substr(pos_str, 1, pro_pos), 

'Enter no of repeats desired ... '); 
read(cmdLi, numrep); 
gi.single :=false; 
end; 

endfor: 
gi.single :=true; 

sing: 
gi.singla :~true; 

multip: 



Appendix JE. 

gi.single :=false; 
relative: 

gi. jumping : = true; 
absolute: 

gi. jumping :"' false; 
dataset: 

cre_data; 
create: 

ere-circles; 
position: begin 

if screen 
then 

ariteln(output, substr(pos-str, 1, pro-pos), 
' Enter position to move to xy .. '); 

read(cmd_i, oldx, oldy); 
end; 

movepos: begin 
if screen 

then 
writeln(output, substr(pos-str, 1, pro-pos), 

'Enter translate by x, y ...... '); 
read(cmdLi, x, y); 
oldx := oldx + x * cose; 
oldy := oldy+ y * sine; 
end; 

angle: begin 
if screen 

then 
writeln(output, substr(pos_str, 1, pro_pos), 

'Enter angle (in degrees) ... '); 
read(cmdLi, sine); 
sine :=sine • arctan(1) I 46; 
cose := cos(sine); 
sine := sin(sine); 
end; 

meshend: 
meshquit :=true otherwise; 

end 
until meshquit; 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure MESH'); 

end {mesh}; 

procedure readLrestart_file; 

var 
labl: char; 
no_areas: integer; 
cont: con_ptr; 
ele: ptr-type; 
old_fixe, old..free: ptr-type; 

procedure data_link(el: ptr-type); 

begin 
if gi. tracing 

1E.41 



Appendix E. 

then 
uriteln(trace_o, 'Entered procedure DATA-LINK'); 

if ord(el@.data) ~ sd@.preincarnate 
then 

el@.data :::: sd 
else begin 

sd :::: cdp; 
uhile ord(el@.data) - ~ sd@.praincarnate do 

sd :::: sd@.next-data; 
el@. data ::: sd 
end; 

if gi.tracing 
then 

uriteln(trace_o, ' EXIT procedure DATA..LINK'); 
end {data-link}; 

procedure find_a_contact(var con: con-ptr); 

procedure findLan_element; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure FIND-AN-ELEMENT'); 

repeat 
if ele - =nil 

then 
ele := ele@.next 

else begin 
if area= nil 

then 
area := sal 

else 
area := area@.next_area; 

ele := area@.free-list 
end 

until ele - =nil; 
con := ele@.con_list; 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure FIND_ANJELEMENT'); 

end {find_an_element}; 

begin {find_a_contact} 
if gi.tracing 

then 
writeln(trace_o, 'Entered procedure FIND-A-CONTACT'); 

repeat 
if con - :: nil 

then 
con := con@.next-con 

else 
find_an_element; 

until con-= nil; 
if gi. tracing 

then 



Appen:u:llix E. E.43 

eriteln(trace_o,' EXIT procedure FIND-A-CONTACT'); 
end { find_a_contact}; 

begin {read_restart_file} 
if gi. tracing 

then 
Hriteln(trace_o, 'Entered procedure READ-RESTART-FILE'); 

no_areas : = 0; 
old_fixe : = nil; 
old-free : = nil; 
reset(rest_i, 'unit=2'); 
reerite(cycmd-i, 'FILE=-sass.cmd'); 
reerite(repts-i, 'FILE=-sass.rep'); 
writeln(output); 
while - eof(rest-i) do begin 

read(rest_i, buffer); 
labl := buffer.tag; 
if cols(output) = 1 

then 
write(output, substr(pos_str, 1, com_pos), 'Reading '); 

write(output, labl); 
if cols(output) = 31 

then 
writeln(output); 

case labl of 
'G': begin 

gi := buffer.gen_info_rep; 
read(rest_i, buffer); 
total := buffer.totals-rep; 
read(rest_i, buffer); 
sum := buffer.sum_rep; 
read(rest_i, buffer); 
opt := buffer.option_rep; 
read(rest_i, buffer); 
area_i : = buffer. area_Lrep; 
read(rest-i, buffer); 
plspace := buffer.grid-rep; 
mesh_areas; 
plots(input, 'init'); 
end; 

'c': 
writeln(cycmd_i, buffer.hedLrep); 

'r': 
writeln(repts-i, buffer.hedLrep); 

'D': begin 
new(sd); 
with sd@ do begin 

sd@ := buffer.parabk-rep; 
next_data : = cdp@. next_data; 
cdp@.next_data := sd; 
cdp := sd; 
end; 

end; 
'A': begin 

with area@ do begin 
corners := buffer.area-rep.corners; 
upd_par := buffer.area-rep.upd-par; 
upd_min := buffer.area-rep.upd_min; 



Appendix E. 

area :=next-area; 
end; 

old_fixe :=nil; 
old-free :~nil; 
no-areas := no_areas + 1; 
if no_areas = area_i,nos 

then begin 
total.cons :~ 0; 
do-this(update_area, sal, false, free); 
area :=nil; 
ele :=nil; 
cont :=nil 
end; 

end; 
'F': begin 

new(new_circle); 
new-circle@ := buffer.element-rep; 
new_circle@.con_list :=nil; 
data_link(new_circle); 
new_circle@.next :=nil; 
if old-fixe = nil 

then 
area@.fixed_list := new_circle 

else 
old_fixe@.next := new_circle; 

old_fixe := new_circle; 
end; 

'f': begin 
new(new_circle); 
new_circle@ := buffer.element_rep; 
new_circle@.con-list :=nil; 
data_link(new-circle); 
new_circle@.next :=nil; 
if old-free = nil 

then 
area@.free-list :=new-circle 

else 
old-free@.next :=new-circle; 

old-free :=new-circle; 
end; 

'C': begin 
find_a_contact(cont); 
with cont@ do begin 

offs := buffer.con_rep.offs; 
c_force := buffer.con_rep.c_force; 
gapsum := buffer.con_rep.gapsum; 
f_force := buffer.con_rep.f-force; 
f_angle := buffer.con_rep.f_angle; 
failed := buffer.con_rep.failed; 
end; 

end; 
'*': begin 

sd := cdp; 
repeat 

cdp := cdp@.next_data; 
cdp@.preincarnate := ord(cdp); 
until sd = cdp; 

writeln(output, substr(pos_str, 1, mes-pos), 
' A restart file has been read'); 

end; 

E.441 



Appe:ro.dix E. 

end; 
end; 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure READ-RESTART-FILE'); 
end { read_restart_file}; 

procedure write_restart_file; 

procedure wr-con_rf(el: ptr-type); 

var 
con: con_ptr; 

begin 
if gi.tracing 

then 
writeln(trace_o, 'Entered procedure WR_CON-RF'); 

while el - = nil do begin 
con := el@.con-list; 
while con - = nil do begin 

buffer.con_rep :=con~; 
write(rest_o, buffer); 
con := con@.next_con; 
end; 

el := el~.next; 
end; 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure WR-CON-RF'); 
end {wr_con_rf}; 

procedure rest_w_boxes Carel: area-ptr) ; 

procedure wr_blk-rf(el: ptr_type); 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure WR-BLK-RF'); 

while el - = nil do begin 
buffer.element_rep := el@; 
write(rest-o, buffer); 
el := el@.next; 
end; 

if gi. tracing 
then 

wri teln ( trace_o, ' EXIT procedure WR-BLK-RF') ; 
end { wr -blk_rf} ; 

begin {rest_w_boxes} 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure REST_W_BQXES'); 

E.45 



Appendix JE. 

while arel - = nil do 
with arel@ do begin 

buffer.tag := 'F'; 
er_blk_rf(fixed-list); 
buffer.tag := 'f'; 
wr_blk-rf(free-list); 
buffer.tag :='A'; 
buffer.area_rep := arel@; 
write(rest_o, buffer); 
arel := next_area 
end; 

if gi. tracing 
then 

wri teln(trace_o, ' EXIT procedure REST_W...BOXES'); 
end {rest_w_boxes}; 

begin {write-restart-file} 
if gi. tracing 

then 
ariteln(trace_o, 'Entered procedure HRITEJRESTART_FILE'); 

if re_area-list - = nil 
then 

re_-~rt:~a; 

do_this(update_area, sal, false, free); 
if (opt.rf_over) OR (rf_first) 

then 
rewrite(rest_o, 'unit=l'); 

rf_first :=false; 
buffer.tag := 'G'; 
buffer.gen_info_rep := gi; 
write(rest_o, buffer); 
buffer.totals-rep :=total; 
write(rest-o, buffer); 
buffer. swn..rep : = swn; 
write(rest_o, buffer); 
buffer. option..rep : = opt; 
arite(rest-o, buffer); 
buffer.area_i-rep := area_i; 
write(rest_o, buffer); 
buffer.grid-rep := plspace; 
write(reat_o, buffer); 

reset(cycmd_i, 'FILE=-sass.cmd'); 
buffer.tag := 'c'; 
while - eof(cycmd_i) do begin 

buffer.hed-rep := nilhed; 
readln(cycmd_i, buffer.hed-rep); 
write(rest-o, buffer); 
end; 

reset(repts_i, 'FILE=-sass.rep'); 
buffer.tag := 'r'; 
while - eof(repts_i) do begin 

buffer.hed..rep := nilhed; 
readln(repts_i, buffer.hed_rep); 
write(rest_o, buffer); 
end; 

buffer.tag := '0'; 
cdp := sdl; 

JE.41B 



Appendix E. 

repeat 
buffer.parabk_rep :o cdp@; 
urite(rest_o, buffer); 
cdp := cdp@.next_data; 
until cdp o sdl; 

rest-u-boxes(sal); 
buffer.tag := 'C'; 
do_this(wr_con_rf, sal, false, both); 
buffer.tag := '*'; 
buffer. hed....rep : = 'END of RESTART FILE ' ; 
write(rest_o, buffer); 
writeln(output, substr(pos-str, 1, fil-pos), 

'A restart file has been written'); 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure RESTART..FILE'); 

end {write....restart_file}; 

procedure complete; 
{tidy up and stop called from contrl or cycle calls bplot, check and rfile } 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure COMPLETE'); 

plots(input, 'endplot'); 
with total do begin 

writeln(output, substr(pos_str, 1, tot-pos), ' total circles 
circles: 6, 'fixed ',fixed: 6); 

writeln(output, ' total cracked', cracked: 6, ' contacts ', cons: 6 
) ; 

writeln(output, ' 
6); 

writeln(output, ' 
end; 

total cycles ' cycles: 6, ' no. updats ', updates: 

total frames ' pages: 6, ' plots 

if gi.tracing 
then 

wri t_eln ( trace_o, ' EXIT procedure COMPLETE') ; 
end {complete}; 

begin {start_shut} 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure START-SHUT'); 

case starting of 
cold: begin 

if screen 
then 

writeln(output, substr(pos_str, 1, pro_pos), 
' Enter heading ................ ') ; 

readln(cmd-i, gi.heading); 
writeln(output, substr(pos_str, 1, tit-pos), gi.heading); 
plots(cmd_i, 'initialise'); 
setup-a-info; 
mesh-areas; 
mesh; 
plots(cmdLi, 'ballplot'); 

pies: 6); 

E.417 



Appe:ndlix JE. 

do_this(update-area, sal, false, free); 
end; 

shutdown: begin 
complete; 
write_restart-file; 
halt; 
end; 

earrn: begin 
read-restart_file; 
headers; 
end; 

keep: 
write_restart-file; 

end; 
if gi.tracing 

then 
writeln(trace_o, ' EXIT procedure START-SHUT'); 

end {start-shut}; 

{**************************************** END STARTSHUT } 

{*****************************~********** BEGIN DEBUG } 

pro~edure debug-circle(var cmdLi: text); 
{ debugging routine, called from contrl, calls dump } 

var 
debugend: boolean; 
deb_com: com_type; 
sd: para-ptr; 

procedure write_con(el: ptr_type); 

procedure erite_scan_con(home_el: ptr_type); 

var 
home_con: con_ptr; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure WRITE-SCAN'); 

home-con := home-el@.con-list; 
while home-con - = nil do begin 

with home_conlll do 
write(debug_o, c-force.x: 6, c_force.y: 6); 

with home_conlll do 
write(debug_o, offs: 6); 

with home_conlll.other@ do 
write(debug_o, posn.xc: 6, posn.yc: 6); 

with home_el@ do 
write(debug_o, posn.xc: 6, posn.yc: 6); 

writeln(debug_o); 
home_con := home_conlll.next_con; 
end; 

if gi.tracing 
then 

E.4§ 



Appendix JE. JE.49 

writeln(trace_o, ' EXIT procedure HRITE-SCAN'); 
end {write_scan_con}; 

begin {write_con} 
if gi . tracing 

then 
writeln(trace_o, 'Entered procedure \1RITE-CDN'); 

if gi.debecho 
then 

writeln(debug-o, 'Contact information:'); 
writeln(debug_o); 
while el - = nil do 

with el@ do begin 
if gi.debecho 

then begin 
writeln(debug_o, ' forces of 
writeln(debug_o); 
end; 

write_scan_con(el); 
el := next; 
end; 

if gi.tracing 
then 

contact, sibling, owner'); 

writeln(trace_o, ' EXIT procedure WRITE_CON'); 
end {write_con}; 

procedure write_are(el: area-ptr); 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure WRITE-ARE'); 

if gi.debecho 
then 

writeln(debug_o, 'Area data:'); 
writeln(debug_o); 
if gi.debecho 

then 
writeln(debug_o, 'xmin,xmax,ymin,ymax, upd_par'); 

writeln(debug_o); 
while el - = nil do 

with el@ do begin 
with corners do 

write(debug_o, xmin: 6, xmax: 6, ymin: 6, ymax: 6); 
writeln(debug-o, col: 6, row: 6, upd-par: 6); 
el := el@.next-area 
end; 

if gi. tracing 
then 

writeln(trace_o, ' EXIT procedure WRITE-ARE'): 
end {write-are}; 

procedure write_blk(el: ptr_type); 

begin 
if gi.tracing 



Appendix E. 

then 
writeln(trace_o, 'Entered procedure WRITE-ELK'); 

if gi.debecho 
then begin 

writeln(debug_o, 'Element data:'); 
writeln(debug_o); 
writeln(debug_o, 'offs posn force velocity accleration datatype'); 
writeln(debug_o); 
end; 

while el - = nil do 
with ellll do begin 

writeln(debug-o, source.xc: 6, source.yc: 6, posn.xc: 6, posn.yc: 6, 
consol.x: 8, consol.y: 8, force.x: 8, force.y: 8, v.x: 8, v.y: 8, 
a.x: 8, a.y: 8, data@.flagno: 3); 

el := el@.next; 
end; 

if gi. tracing 
then 

wri teln(trace_o, ' EXIT procedure WRITE-ELK'); 
end {write_blk}; 

begin {debug-circle} 
if gi. tracing 

then 
writeln(trace-o, 'Entered procedure DEBUG-circle'); 

repeat 
get_command(debuger, debugend, deb_com, '', cmd_i); 
case deb_com of 

dat: begin 
cdp := sdl; 
if gi.debecho 

then begin 
writeln(debug_o); 
writeln(debug_o, 'flag damp inert mass c phi 

II 'rho rad kn typ'); 
end; 

repeat 
with cdp@ do _!>egin 

writeln(debug_o, flagno: 6, damp: 8, mass: 8, cohes: 8, phi: 8, 
rho: 8, rad: 8, kn: 8, ord(typ): 6); 

cdp := next_data 
end 

until cdp = sdl 
end; 

blk: 
do_this(write_blk, sal, false, both); 

con: 
do_this(write_con, sal, false, free); 

are: 
write_are(sal); 

gen: begin 
writeln(debug_o, gi.heading); 
writeln(debug_o); 
with area_i do begin 

writeln(debug_o, ' xareas number ', xmax: 6, ' length', size.xc: 
6); 

writeln(debug_o, 'yareas number', ymax: 6, ' length', size.yc: 
10); 



Appendix E. 

-ariteln(debug_o, ' total number ' nos: 6); 
end; 

with plspace do 
writeln(debug_o, ' mapping xmax xmax: 6, ' ymax ymax: 6) 

writeln(debug_o); 
with opt do begin 

writeln(debug_o, ' plot interval', cycle_interval: 6); 
writeln(debug_o, 'gravity x grav.x: 6, 'y , grav.y 

: 6); 
writeln(debug_o, ' timing delay 
writeln(debug_o); 
end; 

with total do begin 

gi.tfrac: 6); 

writeln(debug_o, ' totals circles circles: 6, ' fixed 
fixed: 6); 

writeln(debug_o, ' cracked ' cracked: 6, ' types 
datatypes: 6); 

writeln(debug_o, ' contact ' cons: 6, ' cycles cycles: 
6); 

writeln(debug_o, ' 
pages: 6); 

writeln(debug_o, ' 
writeln(debug_o); 
end; 

end; 
fon: 

with gi do begin 
reareaing :=true; 
motioning :=true; 
updating:= true; 
cycling :=true; 
fording :=true; 
oscing : = true; 
tracing :=true; 
consoling :=true; 
end; 

fof: 
with gi do begin 

reareaing :=false; 
motioning :=false; 
updating :=false; 
cycling :=false; 
fording :=false; 
oscing :=false; 
tracing :=false; 
consoling :=false; 
end; 

reb: 

updates ' updates: 6, ' frames 

plots ', pies: 6); 

gi.reareaing := onoff(cmd_i); 
mot: 

gi.motioning := onoff(cmd_i); 
upd: 

gi.updating := onoff(cmd_i); 
eye: 

with gi do begin 
cycling:= onoff(cmdLi); 
fording := cycling; 
motioning := cycling; 
reareaing := cycling; 
consoling := cycling; 

E.51 



Appendlix E. 

end; 
fod: 

gi.fording := onoff(cmd_i); 
sol: 

gi.consoling := onoff(cmd_i); 
tra: 

gi.tracing := onoff(cmdli); 
osc: 

gi.oscing := onoff(cmd_i); 
other"!l'ise; 
end; 

until debugend; 
if gi. tracing 

then 
writeln(trace_o, ' EXIT procedure DEBUG_circle'); 

end {debug-circle}; 

{**************************************** END DEBUG } 
{**************************************** BEGIN PARAMETERS } 

procedure parameters(var cmd_i: text); 

procedure calculator; 

function intcalc(op: real): real; 

var 
result, v: real; 
oper: co11Ltype; 

begin 
get-command(operter, qdum, oper, '' cmd_i); 
if oper - = enquiry 

then begin 
if screen 

then 
"ll'riteln(output, substr(pos_str, 1, pro_pos), 

' Enter value .................. '); 
read(cmdli, v); 
end; 

case oper of 
equal: 

result := v; 
mult: 

result := op 
divid: 

result := op 
plus: 

* v; 

I v; 

result := op + v; 
minus: 

result := op- v; 
power: 

result:= exp(ln(op) * v); 
othereise 

result := op; 
end; 

if opt.echo 

E.52 



Appendix E. 

var 

then 
if oper == enquiry 

then 
ffriteln(output, substr(pos_str, 1, mes_pos), 'The value is 

result) 
else 

ariteln(output, substr(pos_str, 1, mes_pos), ' ' v, ' 
result); 

intcalc :=result; 
end {intcalc}; 

datquit, calquit: boolean; 
datcom, calcom: com_type; 
flag: integer; 

begin {calculator} 
repeat 

get_command(calcter, calquit, calcom, '' cmd-i); 
case calcom of 

cyclegp: 
opt.cyclegap := round(intcalc(opt.cyclegap)); 

gravity: 
opt.grav.y := intcalc(opt.grav.y); 

ptime: 
gi.tstep := intcalc(gi.tstep); 

cmdint: 
opt.cycle_interval := round(intcalc(opt.cycle_interval)); 

datype: begin 
if screen 

then 
writeln(output, substr(pos_str, 1, pro_pos), 

'Enter data type flag ......... '); 
read(flag); 
repeat 

get_command(datalte, datquit, datcom, '' cmd_i); 
cdp := sdl; 
repeat 

cdp := cdp~.next_data: 
with cdp<O do 

if flagno == flag 
then 

case datcom of 
dfact: 

damp:= intcalc(damp); 
dmass: 

mass:= intcalc(mass): 
dcohe: 

cohes := intcalc(cohes); 
dfric: 

phi:= intcalc(phi); 
ddens: 

rho:= intcalc(rho); 
dradi: 

rad := intcalc(rad); 
dstif: 

kn := intcalc(kn); 
otherwise; 
end; 

E.53 



Appendix E. 

var 

until cdp = sdl; 
unt i1 datqui t ; 

end; 
otherl'lise; 
and; 

until calquit; 
end {calculator}; 

parcom: com_type; 
parquit: boolean; 
flimit: integer; 
cmdlistl'lord: string(12); 

begin {parameters} 
repeat 

get_command(paramer, parquit, parcom, '' cmd_i); 
case parcom of 

echo: 
opt.echo := onoff(cmd_i); 

debech: 
gi.debecho := onoff(cmd-i); 

framlim: begin 
if screen 

then 
writeln(output, substr(pos_str, 1, pro-pos), 

'Enter frame limit ............ '); 
read(cmd_i, flimit); 
gpstop(flimit); 
if opt.echo 

then 
write(output, substr(pos-str, 1, mes-pos), 

' Frame limit is now : ', flimit); 
end; 

cyclegp: begin 
if screen 

then 
writeln(output, substr(pos_str, 1, pro_pos), 

'Enter gap between writing ..... '); 
read(cmd-i, opt.cyclegap); 
if opt.echo 

then 
write(output, substr(pos_str, 1, mes-pos), 

' Cycle gap is now : ' , opt. cycle gap); 
end; 

gravity: begin 
if screen 

then 
l'lriteln(output, substr(pos_str, 1, pro_pos), 

'Enter gravity values x, y .... '); 
read(cmd_i, opt.grav.x, opt.grav.y); 
if opt .echo 

then 
l'lrite(output, substr(pos_str, 1, mes-pos), 

'Gravity is nol'l : ', opt.grav.x: 6, opt.grav.y: 6); 
end; 

ptime: begin 
if screen 

E.54 



A ppendD.x JE:. 

then 
~riteln(output, substr(pos-str, 1, pro-pos), 

'Enter time step increment .... '); 
read(cmdLi, gi.tstep); 
if opt .echo 

then 
arite(output, substr(pos_str, 1, mes_pos), 

'Time increment is ', gi.tstep); 
end; 

calc: 
calculator; 

cmdint: begin 
if screen 

then 
~riteln(output, substr(pos_str, 1, pro-pos), 

'Enter cmd process interval ... '); 
read(cmdLi, opt.cycle_interval); 
if opt.echo 

then 
write(output, substr(pos-str, 1, mes-pos), 

'Process interval is: ', opt.cycle-interval); 
end; 

cmdlist: begin 
re~rite(cycmd_i, 'FILE=-sass.cmd'); 

·repeat 
word_scan(cmd_i, cmdlistword); 
writeln(cycmd-i, cmdlistword); 
until cmdlistword = 'cend'; 

end; 
listpr: 

opt.cmdprocessing := onoff(cmdLi); 
over-rf: 

opt.rf_over := onoff(cmd_i); 
otherwise; 
end; 

until parqui t ; 
end {parameters}; 

{**************************************** END PARAMETERS } 

{**************************************** BEGIN REPEATER } 

procedure repeater(var cmdLi: text); 

var 
cmdrept~ord: string(12); 
loopcntor, loopctr: integer; 

begin 
if gi. tracing 

then 
writeln(trace_o, 'Entered procedure REPEATER'); 

rewrite(repts_i, 'FILE=-sass.rep'); 
read(cmd_i, loopctr); 
repeat 

word-scan(cmd_i, cmdreptword); 
writeln(repts_i, cmdreptword) 
until cmdreptword ='rend'; 

for loopcntor := 1 to loopctr do begin 

JE:.55 



Appermdnx JE. 

reset(repts_i, 'FILE;-sass.rep'); 
gi.reptend :=false; 
~hile NOT gi.reptend do 

control(repts_i); 
end; 

if gi. tracing 
then 
~riteln(trace_o,' EXIT procedure REPEATER'); 

end {repeater}; 

{**************************************** END REPEATER } 

{**************************************** BEGIN CONTROL } 

procedure control; 
{ controls the execution of the datafile commands, called from main } 

var 
com: com_type; 

begin 
if gi. tracing 

then 
ariteln(trace_o, 'Entered procedure CONTROL'); 

get_command(contler, qdum, com, '', cmd_i); 
case com of 

sets: 
parameters(cmd_i); {set parameter values} 

cend: 
gi.cmdend :=true; 

rend: 
gi.reptend :=true; 

rest: 
start-shut(cmd-i, 

{ end interrupt commands } 

{ end command stack } 

restart a previous run } 
save: 

start_shut(cmd_i, 

~arm);{ 

keep);{ update restart file } 
star: 

start_shut(cmd-i, cold);{ start a new run} 
cycl: 

cycle(cmd_i); {calculation routines} 
sett: 

gi.settling :=true; { settlement of elements} 
coll: 

gi.settling :=false; { collapse of elements} 
plot: 

plots(cmdLi, ''); {plot routines} 
debg: 

debug_circle(cmd-i); {debugging routine} 
rept: 

repeater(cmd_i); {command stack} 
stop: 

quit : = true; { stop command } 
retur:; 
end; 

if quit 
then 

start-shut(cmdLi, shutdown); 
if gi.tracing 

JE.56 



Appendix E. 

then 
a-riteln(trace_o, ' EXIT procedure CONTROL'); 

end {control} ; 

{**************************************** END CONTROL } 

{**************************************** BEGIN MAIN } 

begin {circles} 
initialise-globals; 
headers; 
repeat 

controlCinput); 
until quit; 

start_shut(input, shutdoa-n); 
if gi. tracing 

then 
wri teln ( trace_o, ' EXIT procedure MAIN') ; 

end {circles}. 

IE.57 




