
Durham E-Theses

Documentation for software maintenance and there

documentation of existing systems

Fletton, Nigel Thomas

How to cite:

Fletton, Nigel Thomas (1988) Documentation for software maintenance and there documentation of

existing systems, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/6435/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/6435/
 http://etheses.dur.ac.uk/6435/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

Documentation for Software Maintenance

and the

Redocumentation of Existing Systems

Nigel Thomas Fletton

Thesis submitted for the degree of

Mzister of Science

University of Diirham

School of Engineering and Applied Science

Computer Science

30th September, 1988

2 5 OCT 1989

Nigel Thomas Fletton

Documentation for Software Maintenance

and the

Redocumentation of Existing Systems

Abst rac t

The importance of software docimientatioh in maintenance work is widely acknowledged

by those involved in the work. However, many new software projects aire stUl being pro­

duced wi th docTmientation that is inadequate for efficient support of the product following

development. When a product enters the maintenance phase of its life-cycle, the need for

quality documentation increases dreimatic£iUy as i t is common for the maintenajice team

to be composed of personnel who were not involved in the products development. This

thesis surveys the tools available for supporting the production of software documentation

and then proposes a tool, based on hypertext technology, that wil l enable maintenance

programmers to efficiently create docvmientation about systems they are working on, where

the existing documentation is unsatisfactory.

The copyright © of this thesis rests with the author. No quotation from i t

should be published without prior written consent and information derived

f rom i t should be acknowledged.

A cknowledgement s

The author would like to thank the Director of British Telecom Research Laboratories for

the opportunity to study for this M.Sc. Thanks are also due to the many friends and

colleagues in the Systems and Softweire Engineering Division cind particularly to the past

and present members of the Software Engineering Applications Group who have contributed

to the DOCMAN system on which this research is based.

Finally, I would like to thank my supervisor, Malcolm Mimro, for his guidaince over the past

year.

Contents

1 Introduction 15

1.1 Software Maintenance 16

1.2 Objectives 18

1.3 Overview of Thesis 18

2 Software Documentation 20

2.1 How is Software Documentation Perceived? 21

2.2 Important Qualities for Software Documentation 22

2.2.1 Readability 22

2.2.2 Maintainability 22

2.2.3 Suitability 23

2.2.4 Redundancy 24

2.2.5 Consistency 24

2.2.6 Completeness 24

2.2.7 Traceability 25

2.2.8 Accessibility 25

2.3 Economics of Doctimentation 26

2.4 How Much Documentation? 26

2.4.1 Reducing the need for Documentation 27

2.5 Documentation Activities 28

2.6 Main Categories of Software Documentation 29

2.6.1 Internjil Documentation 29

2.6.2 External Docvmientation 29

2.7 Software Doctmientation Steindards and Guidelines 30

2.8 Why is Softwaire Documentation Important? 31

2.9 The Software Project Doctmient Set 31

2.9.1 Documentation Prepared During the Initiation Phase 31

2.9.2 Documents Prepared During the Software Life-Cycle 32

3 Survey of Software Documentation Tools 37

3.1 Software Docimientation Environments 38

3.1.1 FORTUNE 38

3.1.2 SODOS 40

3.1.3 DIF 40

3.1.4 SOFTLIB 41

3.1.5 Symbolics Concordia and Document Examiner 42

3.2 Automatic Dociunentation Tools 43

3.2.1 SOFTDOC: Software Documentation System 44

3.2.2 The C Information Abstractor 44

3.3 Other Software Docxmientation Tools 45

3.3.1 DOCMAN: Documentation Based on Cross-Referencing 45

3.3.2 The Neptune Hypertext System 46

3.3.3 The Smalltalk-SO Browser 47

4 Redocumentation 49

4.1 Why do we need to Redocument Software Systems? 49

4.2 Current Approaches to Software Redociraientation 51

4.3 Requirements for a Redocumentation System 53

4.3.1 Incremental Documentation 53

4.3.2 Informal Update 54

4.3.3 Quality Assurance 54

4.3.4 Integrated Source Code 54

4.3.5 Integrated Automatic Docimientation 55

4.3.6 Configuration Management 55

4.3.7 Team Use 55

4.3.8 Information Hiding 56

5 Hypertext and Software Redocumentation 57

5.1 Hypertext 58

5.2 Hypertext and Software Documentation 58

5.3 Scope of Research 59

5.4 Choice of Commercial Hypertext Tool 60

5.5 Structure of the Proposed Documentation Hypertext 62

5.6 How the System Would be Used 67

5.6.1 Locating Identifier References 68

5.6.2 Creating Documentation 68

5.7 Results 69

5.7.1 Large Screen 69

5.7.2 Encyclopaedia Entries 69

5.7.3 Window Sizing 70

5.7.4 Window Creation 70

5.7.5 Command Lcinguage Interface 71

5.7.6 Flagging of Unusueil Code 71

5.7.7 Credibility Rating for Programmer Hypotheses 72

5.7.8 Automate Creation of Encyclopaedia Links 72

5.7.9 Accessibility of the Documentation 73

5.7.10 Efficient Location of Identifier References 73

5.7.11 Management of Large Dociraient Sets 73

5.7.12 Navigation 73

6 A Prototype Source Code Browrsing and Documenting System 75

6.1 DOCMAN and Cross-Referencing 76

6.2 Capabilities of the Prototype 76

6.3 Hypertext Generation 80

6.3.1 Links 80

6.4 Hypertext Browser 81

6.4.1 Operating Environment 82

6.4.2 Screen Layout 82

6.4.3 Window Typing 84

6.4.4 Window Allocation 84

6.4.5 Hypertext Links 85

6.4.6 User Commands 87

6.4.7 Response Time 88

6.4.8 Enhancements 89

6.5 Requirements 90

7 Further Research and Development 91

7.1 Inclusion of Overview Documentation 91

7.2 Incremental Update of Cross-Referencing Tables 92

7.3 Configuration Management 92

7.4 Static Analysis Data 93

7.5 Content of Encyclopaedia Entries 93

7.6 Team Use 93

7.7 Webs and Paths 94

7.8 Importing Existing Dociunentation 94

7.9 Monitoring 95

8 Conclusions 96

8.1 Benefits of the Approach 96

8.2 Drawbacks of the Approach 97

8.3 Fulfilment of Requirements 98

A Requirements for a Source Code Browsing and Documenting System 99

A . l Overview 99

A.2 Development and Operating Environment 100

A.3 External Interfaces and Data Flow 100

10

A.4 Functional Requirements 101

A.4.1 Windows 101

Multiple Windows 101

Window Typing 101

Default Window Configiiration 101

Overlapping Windows 101

Window Locking 102

Miscellaneous Window Commeinds 102

A.4.2 Documents 102

Scrolling of Docmnents Following Button Selection 102

Document Status 103

Document Annotations 104

Configuration Management 104

A.4.3 Links 104

Legal Links 104

Emphasis of Buttons 105

Emphasis of Destination Points 105

Cursor Shape 105

A.4.4 Mouse 105

Button Selection 105

11

A.4.5 User Commands 105

Ptdl-Down Menu Interface 105

Coimnand Language Interface 106

Text Editing Commands 106

Link Creation eind Deletion Commeinds 107

Search Commcinds 107

A.4.6 Performance 108

Response Time 108

A.4.7 Multiple Users 108

A.4.8 Glossary 108

B Structure of the Hypertext Documents for X B R O W S E 109

C Proposed Syntax of D O C M A N Entities for Source Code Browsing and

Documenting System 113

12

List of Figures

5.1 A hypertext link where the destination is a point or region within a document 61

5.2 A hypertext link where the destination is a document 61

5.3 Schematic diagram of source code browser £ind documenter 63

5.4 An example of the links created in Guide between the soiu-ce code, cross-

reference tables and encyclopaedia documentation 65

5.5 Source Code Window 66

5.6 Cross-Reference Window 66

5.7 Encyclopaedia Window 67

6.1 Cross-referencing part of the DOCMAN system and the extension provided

by the prototype 77

6.2 A n example of the links created automatically, by the hypertext generation

phase of the prototype, between the source code and the cross-reference tables 79

6.3 Example layout of XBROWSE screen 83

13

List of Tables

3.1 Comparison of softweire docxmientation environment features 43

14

Chapter 1

Introduction

The term 'Software Crisis' has been used to describe the problems that have been encotin-

tered in producing large software products. I t has been discussed for many yeass in the

software engineering literature, but stil l there appears to be no solution available as the

symptoms are stiU very much apparent. In the future, perhaps aseas such as formal meth­

ods, CASE tools, rapid prototyping and IPSEs wil l off"er some solution. At the moments

these areas are in their infancy and have not received wide spread acceptance. Even when

they do, i t wi l l be some time before their effectiveness at reducing the symptoms of the

software crisis can be established.

The crisis comes about from the rapidly decreasing hardware costs and increasing hard-

waie capacity. Boehm[9] first presented the hardware/software cost trends diagreim that

predicted a dramatic rise in software costs relative to hardware cost at a time when spend­

ing more on software than hardware was diflficult for many to perceive. Exploiting this

increased capacity has lead to an increase in software complexity and cost which in turn

has highlighted the problems associated with managing \axge software projects.

Personnel and skiU shortages have also been a major contributor in ensuring that the soft­

ware crisis continues.

1.1 Software Maintenance

The phrase 'software maintenance' has been defined in varying ways by mciny people. Any

disagreement usually centres on the number of activities that the term encompaisses. I shall

use a broad definition given by Foster[32]:

Software maintenance is the set of activities associated with keeping operational

software in tune with the requirements of its users and operators, and of aU

other people and systems with which the operational system interacts.

Software maintenance activities are commonly classified into four areas based on the cat­

egories first offered by Swanson[61]. These areas are: corrective maiintenance, adaptive

maintenance, perfective maintenance and preventive maintenance.

Wi th in the software industry there is a growing awareness of the significance of software

maintenance as an activity that deserves specific attention. This awareness can be attributed

to a small group of academic and industrial gurus who over the last 10-15 years have been

debating software maintenance and its associated problems. This debate has resulted in

the recognition of software maintenance as an importeint eirea by many in the software

industry. However, there are stiU large organisations that have not identified software

maintenance as a problem. Those that have may weU have been influenced by the results of

surveys published, mainly in the US DP sector, which have shown that 30-80% of software

expenditure is spent on existing software[66]. There are no reasons to doubt that these

figures equally apply to the British software industry and to the maintenance of real-time

software systems.

W i t h such a large proportion of the total software expenditure being spent on softweire main­

tenance, this area has the greatest potential of any in the software life cycle for reducing

overall system costs. The direction of money into the maintenance of existing systems has

caused new developments to be postponed due to lack of financial and personnel resources.

Any freeing of money from software maintenance, by increasing meiintenance programmer's

productivity or better software maintenance management, would help reduce the develop­

ment backlog created by these resource shortages.

16

Most research into software engineering has been centred on improving techniques and

methods of the early parts of the softw£ire life-cycle. These are the requirements, specifi­

cation, design and implementation phases. This work has been valuable in improving the

quality of new developments and has undoubtedly helped reduce the maintenance burden.

Regrettably, it has not addressed the problems of the large body of programmers who cire

working on existing systems, designed before the wide spread use of modem programming

practices.

There are two approaches to alleviating the maintenance problem. Firstly, as mentioned

above, the development process can be improved to reduce the need for maintenance. The

most recent research in this area includes programming methodologies and software devel­

opment environments. Secondly, the maintenance problem can be approached directly and

methods of reducing the maintenance overhead of software systems can be identified. This

approach is effective for both new axid old systems, developed with or without modern pro­

gramming practices. Both approaches are worthy of attention, but the latter approach has

not been given the attention it deserves considering its potential for direct fineincial gains.

Major problems faced when maintaining old software are:

• Much of existing software is tmstructured and is written in languages that do not

easily support structured programming techniques. Unfortunately the momentum of

these languages wiU ensure their continued use for many years to come[66].

• Generally maintenance programmers have not been involved in a products develop­

ment prior to maintcdning it. This imfamiliarity causes progreimmers to be heavily

reliant on the support documentation.

• The software docimientation is often nonexistent, incomplete or out of date. Where

it does exist, it usually consists of an unmeinageable set of unstructiired papers that

axe difficult to access and impossible to maintain.

17

1.2 Objectives

There are many areas in which the software maintenamce activity can be improved. I shall

not list them all here as they have aJready been identified by many authors. The area of

specific interest in this research is the docimientation of program source code and centres

on two main questions: what form of source code documentation is the most useful to main­

tenance programmers and how should this information be presented? Documentation has

already been identified as a major contributor to the high cost of software maintenance[46].

A survey by Chapin[21] of personnel close to software maintenance work showed that they

perceived poor dociunentation as the biggest problem in softweire maintenance work.

The objectives for the research described in this thesis were:

1. Investigate the categories and problems of softwzire documentation.

2. Survey source code specific documentation tools.

3. Investigate the application of hypertext technology to redocumenting software sys­

tems.

4. Develop a strategy for redoctunenting source code during softwaire maintenance.

5. Establish requirements for a redocumentation system.

1.3 Overview of Thesis

Chapter 2 discusses soiarce code docimientation in general: including its properties and its

components. A survey of the current state of art in tools specifically targeted at softw£ire

documentation is contained in Chapter 3. Redocumentation is discussed in Chapter 4 and

the high level requirements of a system for redocumenting programs during software main­

tenance are given. These lead to the work on developing ideas on using hypertext for the

framework of a redocumentation system in Chapter 5 and the development of a prototype

hypertext system for browsing and documenting source code in Chapter 6. Chapter 7 sug­

gests paths for further research and development based on the ideas presented in this thesis.

18

Finally, Chapter 8 contains the conclusions of this research.

19

Chapter 2

Software Documentation

Introduction

Software documentation is a means of communicating knowledge about a program in an

alternative form or a more abstract and easily imderstood form than that available from

the source code itself. The software documentation produced during the development of a

system is more than a description of a program. It is a set of written records on how a

progr£im was constructed, what it does, how it does it, how to use it, and how it interacts

with other prograins[30]. Software dociunentation shoidd be considered an integral peirt of

softwaxe design and not an add-on component; however, this is rarely the case.

Software documentation is a very broad aiea. This chapter briefly discusses aU the areas

but proceeds to place particular emphasis on documentation that assists a programmer in

tmderstanding a program at the code level.

20

2.1 How is Software Documentation Perceived?

Software documentation is one of the lejist glamorous ajid least favoured activities in soft­

ware engineering. It is often an activity that is postponed by programmers until the Icist

opportunity or indefinitely. This attitude may come about because the success of a devel­

opment is often judged by performance and cost criteria alone. Due to a lack of foresight,

little credit is given to a program that will be easy to maintain in the future. This attitude

is less prevalent today than it was perhaps ten years ago as the reality of maintaining poorly

doctmiented and increasingly complex systems has enlightened many companies through ex­

perience. Unfortunately, this is not a universal situation, as development and maintenzmce

is often performed by different teams with little communication between them.

When it becomes obvious to management that a project is rimning behind time dirring

development, corrective actions are often taken. The futility of recruiting new staff at a late

stage in a project, is well established[12]. The alternative is to eliminate all those activities

deemed nonessential to the finished product. Invciriably, software documentation is the first

to suffer. Often the intention wiU have been to defer the documentation until cifter the

development, but in practice this means it will never be completed.

The quality of the documentation supplied with a product can only be ensured when the

management and the customer appreciate the long term benefits to be gained from it.

I believe the poor image of docvmientation amongst the software engineering community is

mainly due to programmers experiences with existing documentation and the unremitting

burden of meiintaining consistency between the source code and the docimaentation.

Existing documentation, especially that foimd in the maintenance phase of the life-cycle,

is often out of date, incomplete and difficult to access. The unreliability of documentation

can cause inexperienced programmers to be misled while those more experienced view the

documentation with the scepticism it deserves.

The highly adaptive nature of software, compared with other engineering and scientific

disciplines, means that a programs docvunentation requires continual maintenance in order

to keep the two in phase. If the specific problems of software documentation axe to be

21

overcome, then specialist tools are required. To date, most softwjire documentation has

been produced using general purpose word processing and graphical packages that offer no

assistance to the problems of software docimaentation. The recent advances in documenta­

tion prepeuration systems has been in presentational issues — graphics, colour, fonts, laser

printing, page layout and the like. Little progress has been made at the level of structure,

update and retrieval. Todays latest desktop publishing systems axe only doing, albeit in a

glossier wrapper, what simple word processing systems were doing 10 to 15 years ago —

commtmicating information on paper.

2.2 Important Qualities for Software Documentation

For software documentation to be useful it shoidd aim to possess a number of qualities.

These qualities, as discussed in this section, may appear conamon sense, but it is difficult to

find docimientation that satisfies just a few of them. Most are general in nature and could

be applied to technical documentation from any discipline.

2.2.1 Readability

Documentation should be clear, precise and easy to read. Otherwise it performs no purpose

as the source code itself may be ais readable as the docrmientation. Any notations or

formal languages used in the documentation should be adequately explained if they axe not

described in other literature.

2.2.2 Maintainability

Due to the flexibility of software, a program undergoes many changes during its useful life.

Many of these cheinges are the result of adaptive maintenance which alter the functionality

of the program or allows the program to run in a modified environment. These tjrpes of

changes, more so than other types, will require the documentation to be updated to maintain

consistency between the program and its documentation. E documentation prepared during

22

the design of a program is to be of use during software mEuntenance its benefits must

outweigh the cost of maintaining it edongside the code.

The bxirden of maintaining the documentation in parjJlel with the code is avoided with

products that produce docimientation automatically from static emalysis of the source code

(see Section 3.2).

2.2.3 Suitability

Documentation needs to be tailored to its audience: there will be a wide range of steiff with

differing levels of experience and ability; documentation must be capable of satisfying the

needs of all these people.

Information hiding is an approach used in software system building[51]. Each module of a

system designed in this way hides the internal details of its processing from other modtdes

that use it. The same term, information hiding, can be applied to docimientation that

is organised to allow it to be read at differing levels of detail. High level documentation

should avoid discussion of low level detail. For instance, an overview description in a

document would hide low-level and detailed descriptions from the reader. But, the capability

to access low-level detedl should be provided when required. In conventioneil technical

documentation this is normally achieved by cross-references of the form: see page nnn.

Cross-referencing allows common information that may be used throughout a document to

be centrally located. This feature simplifies the update of information in future versions of

a document.

The power of cross-referencing is widely acknowledged. Hecht[52] discusses the need for for­

ward and backweird referencing between levels of documentation; the high-level documents

point to the lower level doctmaents and vice versa. He also suggested that cross-referencing

may help identify the areas of the documentation affected by a chjinge to the software and

that automation may help in the referencing effort. James[42] highlights the importance of

cross-referencing in technical publications between related information.

Software documentation should place greater emphasis on why and how something was

23

done rather than what has been done[38] since the source code itself accurately describes

what has been done.

2.2.4 Redundancy

K a piece of information can be derived from another source then it is redundant. In software

documentation redimdancy may occur because the information is duplicated elsewhere in

a doctmient or the information can be generated automatically from the soiurce code.

An example of redimdant documentation can often be seen in assembler source code where

each assembler instruction is commented with a description of what the instruction does:

an assembler mnemonic such as 'INC A' may have the comment 'increment the accumu­

lator' associated with it, which conveys no more information than the nmemonic itself.

Singleton[56] quotes a study of the documentation of a large program that showed that

there was 70 percent redimdancy in its software documentation.

2.2.5 Consistency

Consistency is the quality that ensures that aU abstract representations of a program: source

code, design, specification, etc., do not contradict each other. SommervUle et al.[58] states

that we ase unable to use a software tool to automatically check that all representations

of software components are logically consistent since this is beyond the capabilities of the

science. In the system they developed, consistency checking is limited to checking that if

one representation is modified, aU other eissociated representations eire aiso modified.

2.2.6 Completeness

Completeness is the property which describes the coverage of the documentation over the

softweire that it describes.

In software maintenance it is rarely necessary to have 100% completeness for the documen-

24

tation since many parts of a program are never examined or modified. The 80/20 rule often

applies: 80% of the time is spent on 20% of the code. The requirements for a redocumenta­

tion system given in this thesis (Section 4.3) specify that it should support the production

of incremental documentation, which by its definition allows less than 100% completeness.

2.2.7 Traceability

Traceability in program documentation is the property that links related components from

different phases of the software Hfe-cycle. This property, for instance, makes it possible to

trace from the requirement of a particular function in a system, through its specification,

design and then to the actual progreim code that implements that function. The links need

not necessarily stop at the program code, as traceability can aiso be provided to the testing

scripts for the function and to defect reports related to the function. Schneidewind[54]

considers this an important property of documentation and Mu]lin[49] states "traceability

is the key to Product Assurance".

2.2.8 Accessibility

James[42], in talking about the communication of technical information says.

A vital airticle buried in a stack of irrelevant paper is almost as unavailable as if

it had never been written.

The size of the retrieval problem is proportional to the quantity of documentation to be

accessed. The usual techniques for retrieving information from documentation are: use of

table of contents and index, skim reading, fuU text reading and text string searching (on­

line documentation oiJy). Skim reading and full text reading are only practical for locating

information when the document set is small. Also skim reading is less effective for on-line

documentation as the process of flicking through the pages of a book is difficult to model on

a V D U screen. Retrieval by text string searching enables a reader to locate all the points

in the documentation where words or phrases of interest occur. To date, this method of

25

retrieval is the oidy widely used one to make use of having the documentation on-line.

2.3 Economics of Documentation

Software doctmientation has already been identified as a major contributor to the high costs

of design[10] and m8dnten£ince[46]. According to the COCOMO database of several hundred

software development projects[10] the following statistics were calculated for documentation

effort in a project.

• It takes on average three hours to produce a page of software docimientation.

• A rough estimate of documentation effort showed that one man-month is spent on

documentation per thouszind source code instructions.

• About 51-54% of a software projects effort results in documentation as its immediate

end product.

These figures can only be taken as a rough guide due to the difficulty of obtaining consistent

and reliable data. But, they emphasise the potenticd financial geiins that can be made by

applying the use of efficiency iniproving tools to the documentation effort.

2.4 How Much Documentation?

The amount of documentation required for a project is difficult to estimate because of the

number of variables involved. It is influenced for example by: the size, complexity and

structuredness of the source code; the use of high or low level lainguages; and multi or single

user. These factors are all related to the source code but a major influence on queintity

is the requirements of the customer and the management of the development orgaiusation.

These issues can be summarized as follows:

• Formality, extent and level of detail required.

26

• Responsibilities and schedules for documentation preparation.

• Procedures and schedules for documentation.

• Review, approval, and distribution.

• Responsibilities for documentation maintenance and change control.

• Audience for which the docmnentation is intended.

• Amount of redundant information in the documentation.

• Rigidity of the document guidelines and standards.

• Number of users effected by the documentation.

• Frequency of use of the software.

It is usual to find that a softwcire project has incomplete documentation, however, it is

possible to over document software, especially when it involves redundant information[4,13].

The repeated presentation of the same information may obscure other unique and more

important information[13].

A balance must be achieved between keeping the amount of doctmientation to a minimum,

because of its high cost, eind describing the software in sufficient depth for the intended

audience. It must be remembered that while preparing documentation is time consuming

and expensive; reading is more expensive because more people cire usually involved.

2.4.1 Reducing the need for Documentation

A number of approaches can be used during program design to reduce the need for documen­

tation. They are mainly effective at reducing the need for low level prograim documentation.

• Good design methods and practices.

• Structured programming.

• High-level control structures.

27

• Meaningful identifier names.

• Selective high level code commentry.

• Consistent style.

• Self doctmienting/High level lainguages.

Majtin[46] suggests the ultimate solution to the docimientation problem is self documenting

programs. No current programming languages meet this criteria, although many, especially

4GLs, have made this clcdm.

2.5 Documentation Activities

The main activities required for documentation are.

Creation Creating the original documentation during development and creating 'retro­

spective' documentation[30] during maintenance. The later activity has been named

'redocumentation' in this thesis. It includes creating documentation where it is nonex­

istent and replacing documentation which is so out of date that it is not worthwhile

updating.

Update Updating the documentation to reflect the results of the improvement effort during

design and maintenance. AU documentation should be kept up-to-date during aU

phases of the life-cycle. This may not always be possible during maintenance in

situations where the original documentation is too inaccurate or inaccessible for cost-

effective maintenance. An exception to this rule can be made for documentation

prepared during the initiation phase of a project since it is a short term document

containing an aneilysis of the project when it Wcis initially proposed and has no long

term significance.

In many cases more problems are encountered changing the documentation than

chcinging the software. Changes to the software are therefore often quicker and cheaper

to implement than changes to the documentation.

28

2.6 Main Categories of Software Documentation

2.6.1 Internal Documentation

Internal documentation is embedded in the prograim using the commenting facilities of

the progrcimming language. It is common practice to have project standzirds for header

comments that explain the purpose of modules and routines.

Many embedded comments eire found to be inconsistent with the code and can therefore

cause great confusion to a nudntenance programmer. Which is correct?: the comments

or the code. Inconsistency results when changes are made to the code without equivalent

changes being made to the comments. Martin and McClure[46] said:

If a program is well structured and properly documented internally, the program

source code can provide aU the necessary program documentation.

This statement is difficult to agree with since there are many types of documentation that

cannot easily be conveyed using comments embedded in the source code. For example,

the source code does not seem the most appropriate place for organisational and overview

documentation.

2.6.2 External Documentation

External documentation is separate from the program and has two subcategories; indepen­

dently and automatically generated.

Independently Generated

Most development documentation falls into this category. It is produced manually ,usu-

aUy with the assistance of word processsing and graphiced packages. Often it is discarded

once development is complete because it is considered unnecess£iry and too expensive to

29

update. Maintenance programmers tend to distrust it because they know that it is rarely

updated[46]. Sneed[57] reports on a softweire system where the externzd documentation was

scrapped because it was so incomplete and out of date that it was not worthwhile using

during maintenance of the system.

Automatically Generated

The most accurate softwaire documentation is that generated automaticaiUy from static

analysis of the code. It requires no maintenance effort itself, apeirt from the machine time

to reemalyse the code, since it is updated overnight following a chainge to the code. Tools

that generate documentation of this type produce for exaimple: cross-reference Hstings,

module hierarchy charts, control flow graphs and calling hierarchy ch^ts.

Different types of information is being extracted from the code and presented in a more

compact and comprehensible form than in the code itself. Many of the commercial tools in

this category claim that they satisfy all the documentation needs of software maintenance.

Although the information they produce is of significant use to the maintenance programmer,

they do not provide information about the design of the system. This is only available in

the origineil documentation, if any exists, or in the heads of the designers who developed

the system, if they can still remember.

2.7 Software Documentation Standards and Guidelines

There have been a number of documentation standards and quideUnes produced[l, 2, 5, 6,

27], but unfortunately none seem broad enough to be applicable to all situations and they

often have little relevance to the application eirea being considered. They should however

provide some basis from which project specific documentation standards can be generated.

Many documentation standards appear out of date when compared with the progress that

has been made in other areas of computing over the last ten years. A recent documenta­

tion guideline from ANSI, titled 'Guidelines for the Docimientation of Digital Computer

Programs'[5] illustrates the inadequacy of such literature. The advice given in the guideline

30

is very general in nature and the complete document is only three pages in length. If a

standard or guideline is to define what information should be expressed and how that in­

formation is to be presented in software documentation, then three page cannot be enough.

2.8 Why is Software Documentation Important?

Without softwcire documentation, progreimmers must rely on the source code to provide

all the information they need to maintain a program. Unfortunately current programming

languages do not embody aU this information as they record no knowledge about why

particular design decisions were taken. Therefore software documentation must be provided

to communicate this knowledge.

Like programs, documentation must be considered an importzint product. Documentation

is as much part of a product as the heirdware and softw2ire[42].

2.9 The Software Project Document Set

The following subsections give an overview of the types of documentation that should be

produced for a software project during its life-cycle.

2.9.1 Documentation Prepared During the Initiation Phase

Prior to starting a software project it is normal to perform a study to access the value of

the project. The following documents would be produced during this phase:

Project Request Document

Provides the means for a user organisation to request the development, procurement or

modification of software or other related services. It is the initiation document of the

31

project life-cycle.

Feasibility Study

Provides:

• Analysis of objectives, requirements and system concepts.

• Evaluation of alternative approaches for reasonably achieving the objectives.

• Identification of proposed approach.

• Preliminary user documentation.

A Feasibility study in conjunction with a cost/benefit einalysis should provide sufficient

information to allow management to make decisions on the future of a project.

Cost/Benefit Analysis

Provides adequate cost and benefit information to analyse and evaluate ailternative ap­

proaches and make decisions to initiate or continue the project.

2.9.2 Documents Prepared During the Software Life-Cycle

Each documentation type is a by-product of a phase in the softwaire life-cycle.

Operations Documentation

Provides computer operation persormel with a description of the software and the opera­

tional enviromnent so that the software can run.

32

User Documentation

Describes the functions performed by the software in a terminology appropriate to the

expertise of the user. The quality of this documentation has a significant aflfect on the

usability of the software.

Good user doctunentation may help resolve questions about what the system should or

should not do in the absence of a specification. This is importamt when trying to determine

what category of maintenance activity a user request for change falls within.

Program Documentation

The different levels of docimientation give different views of the progrcim. A wide range of

graphical and textual methods are available for presenting program documentation.

• Requirements Documentation

Forms the basis of the mutual imderstanding between the users and the designers of the

functionality of the software. Includes the operating environments and development

plans.

Provides data description and technicaJ information about data collection require­

ments.

• Specification Documentation

Specifies for the analysts and programmers the requirements, operating environment,

design characteristics, and program specifications for a system or subsystem.

Specifies for the programmers the requirements, operating enviroiunent, and design

characteristics of a computer program.

Specifies the identification, logicad characteristics, and physiced characteristics of a

systems database.

• Design Documentation

The documentation produced as a by-product of the particular design methods and

strategies used during development.

33

• Implementation Documentation

The boundary between design and implementation doctmientation is indistinct and

the two types of documentation tend to merge together. There are three levels of im­

plementation documentation: program overview, program organisation and program

instruction. Each of these levels and their components are discussed below.

Program Overview Overview documentation provides an introduction to the pro­

gram. It is often of use in providing new maintenance staff with the basic knowl­

edge they need to start maintenance work on a program. It describes the progreim

in a broad, abstract way, axid tends to be the most stable type of implementation

documentation: most post development chEinges do not change the central struc­

ture of the program. In leirge programs it is used by experienced maintenance

staff working on localized areas of the program who need information about other

parts of the program that they are \mfamiliar with.

Martin and McClure[46] claim that overview docttmentation is brief and simple to

produce. It is certairdy simple to produce if it is created during the early design

stages of a program; unfortunately this is not usually the Ccise. Mcdntenance

programmers then have to attempt to abstract the overview from the source

code. Any one who has tried this for all but the smallest of programs, wUl

appreciate the difficulty of this process.

Where overview documentation has been produced at early stage during the

design of a program, it is often used as a discussion doctunent for the determining

the design of the program. In many cases it is never updated to reflect the

actual design used in the program. The maintenance team is then presented

with an overview document that only represents a proposal for the program

eind not the actual program developed. The frequency with which this situation

occurs may indicate the degree of difficulty associated with updating overview

documentation.

Program Organisation Organisation docimientation describes the structure of the

source code and its interactions with its environment. It wiU contain information

about: module hierarchies, inter-modvde relationships, module level commentry,

data structmre commentry and; hardware and operating system interactions.

34

Program Instruction Program Instruction documentation is the lowest level of

software docimientation. It describes what named items in the source code aie

used for and, how and why they operate. It is particularly important to pro­

vide internal documentation for 'clever' areas of code and for code where the

operation is imclear.

Letovsky and Soloway[45] proposed the 'role' and 'goal' approach to documenting

variables. The role describes what the variable is used to hold in the program

and the goal describes what the variable achieves in the progrzim.

Implementation documentation typically includes source code commentry, data

dictionaries, flow charts, state transition diagrams, etc.

• Testing Documentation

Provides a plan for testing the software; detailed specifications, descriptions, and

procedures for aU tests; and test data reduction and evaluation criteria.

It should describe the test analysis results and findings, present the demonstrated

capabilities and deficiencies for review, and provides a basis for preparing a statement

of software readiness for implementation[6].

• Maintenance Documentation

Provides the maintenance programmer with the information necessary to imderstand

the programs, their operating environment, and their maintenance procedures. A

separate document is not always necessary here as this information should be available

in the other documents.

Historic Documentation

Historic documentation records the evolutionary path of a program throughout its life and

ensures important design and maintenance information is available to the current mainte­

nance team. It will typically consist of two documents; a system development journal Eind

a system maintenance journal[46]. The content of these woidd be:

• System Development Journal

- Development philosophy.

35

- Decision making strategies used.

- Reason for a particular design.

- Project goals.

- Priorities.

- Experimental techniques.

- Tools and how they were used.

• System Maintenance Journal

- Change philosophy.

- Quality preservation/improvement strategies.

- Problems.

- Trouble spots.

- Change/Error history.

36

Chapter 3

Survey of Software

Documentation Tools

Introduction

This chapter surveys commercial and research tools that are specificfdly oriented towards

the production and support of software docvunentation. Examples of desktop pubUshing

systems and other documentation technologies have been examined as part of this resejirch,

however they appeair to offer no significant improvements over their predecessors for softwaire

documentation and are therefore not covered in this survey.

Until recently there has been very little research into softwaire documentation tools. In

Europe, both the Esprit and Alvey programmes have only supported a few projects where

software docmnentation is a major issue.

Of the tools available commercially, most fall within the category of automatic documenta­

tion and not in the axea of creating and managing manually created textual and graphical

documentation.

Even the latest generation of IPSEs and APSEs treat the production of softweire documen-

37

tation in a simplistic way. They provide a collection of general purpose tools for document

production and modification, and then provide an interface to the environments database

for configuration control. They provide limited technological support for achieving the

qualities described in Section 2.2.

3.1 Software Documentation Environments

Over the past few yeaxs a ntunber of software doctunentation environments have been dis­

cussed in the literature[34, 40, 47, 58] that support the production, management and use of

textual and graphical documentation during aU phases of the software life-cycle. Most of

these documentation environments provide facilities to support traceability, central storage

of all the projects documentation, easy access and update, and the enforcement of project

wide stcindards on the structure of the documentation.

These documentation environments provide useful facilities for the production of conven­

tional life-cycle docmnentation during the development of a project, but they are of little

use to programmers faced with a completed system that has little or no existing documen­

tation. Presented with such a problem during maintenance, it is not usually considered

econonaically feasible to reproduce the development docimientation from scratch, which is

the approach that would be needed if one of these enviroimients were to be used.

The following sections discuss a selection of these environments and Table 3.1 compares

their features.

3.1.1 F O R T U N E

F O R T U N E is a collaborative project forming part of the Alvey Software Engineering pro­

gram. Its aim is to produce an integrated documentation tool that wiU support the creation

and update of textual and graphiccil documentation throughout a projects life-cycle.

F O R T U N E is based on the traditional life cycle model. Conventional development docu­

mentation is created in the system during each phase of the life cycle. This may include

38

specification documents, data flow diagrams, data dictionaries, and program source code

according to the development methods in use. The ability is provided to support links be­

tween diff'erent levels of docmnentation, known as traceability(Section 2.2.7). For instance,

it would be possible to relate a component within a requirements document to a related

component within a specification document which woidd in turn have a link to the related

design doctunentation and so on. As another example, a section within a maintenance

change docimient may have links via the testing, code and design documentation back to

the area of the specification relevant to the maintenance change.

The following list includes the issues consider important by the FORTUNE consortium from

available documentation[47, 49, 48]:

• It incorporates a structured graphical editor that can be configured to support a range

of graphical design methodologies. However, it does not perform consistency checks on

the design as av£iilable on some PC based products that support design methodologies.

It is proposed that further tools can be supplied to perform this checking on the design

via the Public Tools Interface.

• Allows documents to be created and edited.

• Generic document structures can be defined at the beginning of a project by manage­

ment. AU documentation must then conform to these structures.

• It wiU support traceability between levels of documentation as discussed above.

• A Public Tool Interface to FORTUNE wiU be provided to allow stand-alone tools to

operate upon F O R T U N E documents.

• F O R T U N E wiU initially be sold as a stand alone tool but may later be integrated into

other manufacturers IPSEs.

• A textual interface to F O R T U N E will be provided to allow it to be run non-interactively.

• F O R T U N E will be integrated with a configuration management system.

• F O R T U N E will support the production of text associated with mathematical based

methodoIogies(e.g. Z and VDM). Any mamipulation of the mathematical expressions

wiU be performed via the Public Tool Interface.

39

F O R T U N E has the potentied of being a useful documentation tool for designing new sys­

tems. It enforces standards on the documentation and adlows aU the development docu­

mentation to be centrally located, with Ceisy access and update provided. Doctunentation

provided in this form is likely to be a major factor in reducing the cost of software mainte­

nance.

F O R T U N E is of limited tise for the retrospective dociunentation of existing systems dur­

ing software maintenance as it does not have the capability of incremental (Section 4.3.1)

update of the documentation database in an informal maimer. It would be necessciry to

redocument the whole system before any gains could be achieved in the maintenance phase.

As mentioned before, this is usually prohibitively expensive

3.1.2 S O D O S

SODOS is a software documentation support enviroima.ent that was developed as pairt of a

Ph.D. dissertation at the University of Southern California in 1984[40, 41]. It is based on

the same philosophy as F O R T U N E and DIF, but lacks the graphical support of FORTUNE.

According to papers published[40, 41], SODOS has been implemented in SmaUtaIk-80.

3.1.3 D I F

DIF[34](Document Integration Facility) departs slightly from the other environments in

that it has the additional aim of integrating documents within and across several projects

into a single environment. It was designed for use within an experimented System Factory

developed at the University of Southern C^difo^nia to study the development, use, cind main­

tenance of software systems. Like F O R T U N E and SODOS, this enviromnent is designed

to support the production of documentation associated with the phases of the traditionad

software life-cycle model. The particular model used here has eight phases £ind includes a

maintenance phase.

Software documents are decomposed into segments which can be considered as objects to

be stored, processed, browsed, revised and reused. Links £ire used (hence it is considered

40

a hypertext system) to define the relationships between objects. Each object is stored

within a separate file in the UNIX filing system. The file system is used for the hierarchi­

cal relationships between objects and a relational databcise is used for the nonhierarchical

relationships. The authors claim that:

...judicious use of links alleviate the problems of traceability, consistency and

completeness.

This may be true, but it exemplifies one of the fundamenteil problems with authoring

hypertext systems and that is that the quality of the documentation is dependent of the skills

of the original author in creating links at logical points in the documentation. Two hypertext

documents that contain exactly the same textual content, but organised by different people

may appear different in terms of both quality and lucidity to an end iiser. At the ciirrent

stage of hypertext research there are no automated strategies for ensuring that links are

created in the correct queintity and at the correct position in hypertext documents.

3.1.4 S O F T L I B

SOFTLIB[58] is a documentation Hbrary system based around the UNIX file store. It Wcis

developed with the aims of demonstrating ideas on the management of softwzire doctunen­

tation associated with laige software projects and to access the usefulness of limited forms

of completeness and consistency checking. It is a stand alone library system and does not

provide tools for document preparation

SommerviUe et al. argue the case for documentation hased on software components rather

than the software life-cycle approach of DIF , FORTUNE and SODOS. A softwcire compo­

nent is any software item that has an associated specification. In this way aU documentation

for a component is grouped into a set. Making it easy to trace the diff'erent representations

of a component. The authors claim that this approach encourages softweire reuse and meikes

limited completeness and consistency checking easier.

S O F T L I B does not provide any revision control mechanism, filthough a transaction log is

maintained by the system. The term 'version' is used to describe components with a common

41

abstract specification, but whose implementation-dependent representations are different.

For example, a specification for a stack abstract data type may have implementations in C

and Pascal.

The approaches taken for completeness and consistency checking are quite simple. Each soft­

ware component has predefined set of required dociunents. The document library achieves

completeness checking by ensuring that when a document set is placed in the library fol­

lowing its creation or update, all the reqtiired members of the set are present. As fuU

consistency checking is not possible(See section 2.2.5), the approach taken in SOFTLIB is

to check for inconsistency between representations. This is achieved by insisting that when

one representation of a software component is changed, that aU other dependent represen­

tations must also be changed in the same editing session. SOFTLIB does allows short term

inconsistencies for the 'quick fix'.

3.1.5 Symbol ics Concord ia and Document E x a m i n e r

Symbolics supply their software product documentation, which amounts to the equivalent

of 8 000 pages, in a hypertext format. Unlike many hypertext systems they have chosen to

separate the tasks of writing and reading the documentation by providing distinct tools.

Concordia[62] is a documentation development enviroiunent that jJlows techniczd writers

to create a hypertext database of documentation. This databeise is then viewed by the user

via a delivery interface known as Document Exeiminer[63].

Users can navigate around the database by moving from node to node in the h3T)ertext. An

overview command allows the users to see the context of the current node in relation to its

peirents, siblings and children. This assists the user in determining if the information in the

current node is relevant.

Comprehensive string searching is provided for locating information. It includes heuristic

matching against title and keywords of nodes in addition to exact cind substring matching.

This documentation system is primarily aimed at producing and viewing technical docu­

mentation and has been successfully used by Symbolics to supply the manual set on their

42

Docimientation Environment
Property DIF FORTUNE SODOS SOFTLIB

Tools Interface yes yes no no
Revision Control external externed internal none
Graphical Support external tools yes external tools external tools
Generic Docimaent yes yes yes no
Structvires
User Interface ? mouse and batch mouse menus
Document DBMS query menu menu menu
Retrieved language
Traceability yes yes yes yes

Completeness yes yes yes yes

Consistency yes yes yes yes

Access Control ? ? ? yes
Document Organi­ life-cycle life-cycle life-cycle software com­
sation ponent

Table 3.1: Comparison of software documentation environment features.

Lisp machine for several years. It is a general system and could be used for any techni­

cal/user docimaentation. However, its separation of the reader and writer role makes it

mainly stdtable for documentation where the period between releasing updates of the doc­

umentation is in the order of months or years rather than days or weeks. Thus making it

unsuitable for source code documentation.

3.2 Automatic Documentation Tools

There axe many tools available, especially in the COBOL programming domain, that fit into

the category of automatic softweire docimientation[7, 22, 39, 43, 57]. These tools perform

a static einalysis of the source code to produce a series of reports. These reports include

cross-reference listings, metric reports, and module hierarchy charts. The information they

provide helps the programmer in understanding the structure of the system and how com­

ponents within that system interact. Since the documentation is produced directly from

the source code the oidy effort required to keep the documentation in step with the evolving

source code is to rerun the tool over the new version of the system. This operation would

normally be performed in batch mode, overnight. Severed of the vendors of these tools lead

us to believe that doctunentation generated in such a way is the total solution to the doc-

43

umentation problem. However, our experiences have shown that although this information

plays an importEint role in improving the efficiency of programmers involved in maintenance

work, it does not directly assist in the comprehension process.

Examples of typical tools of this class sire discussed in the following subsections.

3.2.1 S O F T D O C : Software Documentat ion Sys tem

S O F T D O C is a typical example of a commercial automatic documentation tool. Sneed[57]

discussed a software re-engineering project that used the system and Jandrcisics[43] has

discussed the system itself.

S O F T D O C can be used to einalyse programs written in P L / 1 , COBOL or jissembler. It

generates listings which include the following information:

• Module tree diagram.

• HIPO diagram.

• List of externad/internal interface.

• Control flow graph.

• Data reference table.

• List of test paths.

• List of symbolic constants.

3.2.2 T h e C Informat ion Abstrac tor

The C information abstractor[22] collects information about C programs by static sinsdysis

of the code like other automatic documentation tools but instead of providing listings as

output, the system stores the information in a relational database. High-level commands

are provided to access the information in the database. Typical questions that can be asked

by the user are:

44

1. Which functions caU the function xyzl

2. Where is the structure ahc defined?

3. Which functions use the global Vciriable Imnl

4. What is the global constant rstl

The commands allow software objects to be displayed and exeimined. The database does not

contain copies of the objects, but keeps a record of the module (compilation tmit) contedning

the object and the range of lines in that module that the object spans. This is then used

by the system to retrieve objects when a user requests their display.

The authors suggest that the system could be extended to edlow structured comments to

be used to record information that caimot be derived automatically from the code.

The system appears to be a cross-referencing system using a database to store information

and provide an improved user-interface. The queries that the system answers are similar

to those that can be answered using the prototype browsing system discussed in Chapter 6

but it does not provide as eff'ective user-interface.

3.3 Other Software Documentation Tools

3.3.1 D O C M A N : Documentat ion Based on Cross -Referenc ing

A documentation system known as DOCMAN[33] has been proposed based on cross-referenc­

ing that aims to meet the needs of programmers maintedning large software systems. It

allows documentation produced by maintenance programmers during the examination of

source code to be linked with cross-referencing information obtained by parsing the source

code. Three categories of documentation are catered for by this system:

Encyclopaedia This is the lowest level of documentation provided in the system. It con­

sists of descriptive comments about the use of emd/or operation of identifiers within

45

the source code. Whether they are routines, data structures, data items or constants,

etc.

Glossary Within the doctmaentation of a system there wiU be words and phrases with spe­

cial meaning that appear frequently. The glossary documentation category provides

the mechanism for doctunenting these words or phrases.

Overview This category of documentation provides the high level narrative that describes

the system as a whole. This category is essenticJ for the person new to a progrsim who

wiU find the low level information given by the encyclopaedia cind glosseiry entries too

detailed for the early stages of understanding a system.

The text entries for all three categories may refer to other encyclopaedia or glossary entries.

Therefore, by means of scanning the documentation, each encyclopaedia and glossary entry

can have generated a list of references to other parts of the documentation where that entry

is referred to. A more detailed description of DOCMAN can be found in [33].

DOCMAN maikes extensive use of cross-referencing between documentation entities, cross-

reference listings of the source code and the source code itself. The system has been de­

veloped as both a hard-copy £ind an interactive system. The interactive component of

DOCMAN allows the user to display information about selected names and to add to the

documentation base, but it does not provide machine support for the traversal of the mass

of cross-references that axe created when dejiling with a large program DOCMAN shares

some of the cross-referencing concepts of the general hypertext technology, but it does not

offer as powerful interactive facilities. It does however, suggest useful concepts for the doc­

umentation of source code that cotdd form the beisis of a hypertext documentation tool that

meets the requirements outUned in Section 4.3.

3.3.2 T h e Neptune H y p e r t e x t Sys tem

Hypertext systems have been surveyed in the excellent eirticles by Conklin[23, 24] and

there is no need to repeat the information here. It woidd, however, be useful to have

a look at one particular system that has a number of features that mtike it particularly

suitable for the application considered in this thesis. The system is the Tektronix Neptune

46

system[25, 26, 19, 20] developed as a research project, but since sold to Mentor Graphics

who may tiu-n it into a commercial product.

The designers have split the Neptune system into two components: an appUcation layer

and a hypertext transaction server. The transaction server is called the Hypertext Abstract

Machine (HAM) and is written in the programming language C. It provides a number of

facilities useful for btulding large hypertext systems.

• Distributed access.

• Multi-tiser access.

• Transaction based crash recovery.

• The destination of a hypertext link can be an offset within a node.

• Link attachment may refer to a particular version of a node or it may adways refer to

the current version.

• Maintains a version history of each node and provides rapid access to any version.

Tektroiux provided a graphical user-interface using the language Smalltalk-80 that commu­

nicates with the HAM using a set of defined operations. Application specific interfaces can

be built in ciny Ijinguage, communicating with the HAM in the same way.

The advzintage of using a system such as the HAM is that applications can be btdlt using

hypertext principles without having to reinvent a database for storing hypertext structures.

3.3.3 T h e Smal l ta lk-80 Browser

The Smedltalk-SO browser commands; explain, comment[35, 44], inst var refs and class var

refs[44] are analogous to facilities being proposed in this thesis for the hjrpertext redocu-

mentation tool.

The explain command provides information about any single token within a method. The

user selects the token of interest in the current view. Then via a menu option the command

47

explain is chosen and the system then inserts brief information about the token immediately

after the token. Smalltalk-80 is the only programming language that allows embedded

comments to be associated with the software object to which they apply.

Information can also be obtained about instance variables by selecting the variable of in­

terest and choosing the menu option comment which, like the explain command, displays

information about the selected item. Two other commands that provide information on

variables axe ins var refs and class var refs which display all the peirticular places an in­

stance variable or a class variable axe used. The system creates a new browser window with

a list of the methods in which the variables occurs. By clicking on any of the names in the

list, the corresponding method can be examined or updated.

48

Chapter 4

Redocumentation

Introduction

Software documentation should be produced as a by-product of the development process

and handed over as a complete package along with the sotu-ce code to the team that wiU

maintain the program. However, this is rarely the situation in practice. Most software

reaches completion without useful documentation for the people that have to maintain it.

Redocumentation is the activity that many maintenemce tezims aire forced into because

the software documentation that is supplied with the program they have to maintain, is

inadequate or nonexistent. It involves creating documentation by analysis of the source code

by experienced programmers and the recovery of useful documentation from the original

documentation.

4.1 Why do we need to Redocument Software Systems?

There aie often a number of problems with the software documentation that is supplied to

maintenance teams from the development phase of a software system.

49

The documentation for a large prograim will often consist of many filing cabinets brim­

ming with paper docviments. In a well administrated project these docviments may well

be organised and structured with a comprehensive indexing scheme. Unfortunately, this is

rarely found to be the case. The maintenance programmer then has the tmenviable task of

searching through a mass of doctunentation for the information relevant to the area of their

work. Problems are also encountered when trying to update such dociunentation.

Due to the absence of useful standards and guidelines on doctimenting programs, there

axe a wide range of documentation techniques in use. Here, as with the choice of docu­

ment preparation system, the choice of docimaentation technique is in many cases arbitrary.

Therefore the softwjire maintenance programmer may have difRctdty understanding the

documentation if the technique used by the original programmer is unfamiliar.

Within a software maintenance team there is invariably a wide range of programmer ex­

perience and ability. Therefore the documentation should be capable of providing imder-

standable information for aH these levels of experience &nd ability. This cein be achieved

by providing dociunentation that spans from a broad overview of the program, through to

the nuts and bolts of the implementation. Unfortunately most existing documentation does

not meet this criteria.

Inevitably, as the design phase of a softwcire project proceeds, especially towjirds its end, the

pressures begin to increase on the staff to meet project deadlines. The restilt of this pressure

is that activities considered nonessential for the relejise of the product are often postponed

or they are dismissed as imnecessary. In many cases docmnentation is clzissified eis such

an activity. This attitude leads to the development documentation becoming incomplete

and out-of-step with the software. In fact the scenario described is probably excessively

optimistic considering that many programs being maintedned today were developed before

the current concern with softW£ire maintenance. These programs were often completed with

virtually no useful documentation for software mdntenance.

Today, there are many docvmient preparation systems avcdlable for the production of soft­

ware docimientation. Even in a single department of cin organisation there may be many

alternative systems in use at any one time. Often the system used is based on the pro­

grammers personal preference or their familiarity with a particular system. Also, in recent

50

years there has been a rapid evolution of document preparation systems and their aissoci-

ated storage media. Combine these two facts and the restdt is that, in general, softwcire

documentation is frequently found to be written on a wide range of docimient prepara­

tion systems rtmning on different hardware that may no longer be available to maintenance

teams. Therefore at some stage in the programs life it becomes impractical and imeconomic

to keep the existing documentation up-to-date.

Before expending effort on redocumenting a prograim it is important to assess the Vcdue of

the origincil documentation to determine if it is worthwhile msiintaining and what should

be kept or thrown away. This can be achieved by examining the documentation for the

qualities outlined in Section 2.2. The final judgement on the useftdness of the docimientation

wiU be an opiruon based on experience as there are no metrics for assessing the value of

doctunentation.

No rese£irch has been performed to determine whether the documentation produced during

development is the best form of documentation for software maintenance. Unfortimately,

like many areas of computer science, the experiments required to determine this woiild be

prohibitively expensive. But a survey of maintenance programmers could establish if design

docimientation is used when it is both avedlable and of good quality. From speaiking to

people involved in software maintenance, it would appezir that overview docimientation is

often considered the most valuable form of design documentation for software maintenance.

Other, more detailed documentation is not so populair. This may be because there is

insufficient technology for maintaining the consistency of this type of docimientation or

because it is not appropriate to the cognitive processes involved in anadysrng code.

4.2 Current Approaches to Software Redocumentation

At present the number of choices avedlable to a programming team faced with redocumenting

a large program is limited.

One approach is to reproduce the design documentation from the source code. To be

effective, the complete program must be documented or at least complete subsystems. This

51

requires a large number of a maintenance team to be tied to the redoc\mientation effort and

therefore imavailable for the main streeim activity of satisfying user-requests. The resvdts

of an experiment which took such an approach reported that it was expensive[57]. When

dealing with a prograim having a predicted maintenance life of, for example, 20 years, this

approach may be economically viable, but for programs with a short maintenance life it is

imlikely to be appropriate. However, if the approach is taken, it would be advantageous to

use a documentation support environment that managed the life-cycle documentation set

to avoid repeating the problems outlined in the previous section. These environments cire

primarily aimed at those designing new programs, but they would also be of use in this

approach to redocimaentation. They enforce standards on the documentation and allow

all the development documentation to be centrfdly located with easy access and update

provided (See Section 3.1).

There are a number of tools avmlable that claim to satisfy the documentation needs of

software maintenance. These tools generate automatic documentation in the form of re­

ports by static an?dysis of the source code. Examples of the documents produced cire:

control/data flow cheirts, cross-reference listings, metric reports, call graphs and module

hierarchy charts. AU this information is of significant use to the maintenzmce programmer

in becoming familiar with the structure of a progreim and in navigating eiround the pro­

gram during maintenance investigations. What they fail to do is provide any insight into

why particuljir program structures cire used or why certzdn design routes were taken. This

knowledge can only be recovered by eliciting information from the original designers or by

detailed examination of the source code by programmers. The advcintages of these tools

are that they are inexpensive to operate and the documentation produced is easily kept

up-to-date. Unfortimately the majority of tools of this type are only available for analysing

COBOL source code.

Code restructuring tools are worthy of mention in this section. Although they are not redoc-

mnentation tools in their own right, there use may be considered on the assumption that the

structured code they produce wiU be easier to document than the original code. Given two

programs with the same specification, but designed with different levels of structuredness,

then the more structured design of the two wiU undoubtedly be easier to document. But

you camiot necessarily extrapolate from this fact that code passed through a restructurer

52

wiU be easier to document thcin the original. A large paxt of analysing code during soft­

ware mainteucince work is trying to determine why the designer took a peirticular approach

in the code. If code has been restructered prior to analysis then the original design wiU

be obscured and therefore more difficult to determine and dociunent. Restructuring tools

should therefore be used with care during software maintenance.

4.3 Requirements for a Redocumentation System

At the Centre for Softweire Maintenance(CSM), University of Durham and British Telecom

Research Laboratories(BTRL) the activity of redociunenting software systems has been

recognised as an important area of software maintenance. From contacts made between the

CSM and other organisations in the industry, it would appear that this view is wide spread.

The collective experiences of persoimel involved in meiintaining large softweire systems in a

wide range of organisations has enabled the establishment of a number of key requirements

for a redocumentation system for capturing the knowledge geiined by mcuntenance program­

mers while analysing source code. These are discussed in the following subsections[31].

4.3.1 Incrementa l Documentat ion

The ability to build up the documentation for a system over a period of time in an incre­

mental manner without the need to document the complete system in one step. This is

possibly the most important requirement of any redocumentation system as it allows the

documentation to be produced as code is examined during day to day software maiintenance

activities. The docimientation can then become a byproduct of the maintenance process

and not an activity in its own right.

Another benefit is that oiJy the code that is analysed by maintenance programmers gets

documented. No time is spent docmnenting code that is in a stable state and never examined

or modified. It has often been said that the 80/20 rule applies to softwcire maintenance; 80

per cent of the time is spent on 20 per cent of the code. Therefore it is unproductive to

53

doctmient a complete system during software maintenance.

4.3.2 In for mal U p d a t e

It must be eâ sy for a programmer to add to the documentation as the source code is exam­

ined. The system should provide a 'notepad' Uke environment for creating documentation.

If the creation of documentation interferes with the comprehension process then the output

of the maintenance team wiU be reduced and programmers wiU therefore avoid using it.

4.3.3 Qua l i ty Assurance

It is common practice within industry to perform quality assurance on chamges made to the

source code[29, 28] to reduce the possibility of introducing errors into the code. Likewise,

the same procedures shoidd be applied to the creation and update of documentation.

Quality assurance checks can either be made at fixed time intervals, when a certain niunber

of changes have been made or prior to building a new version of the software. To achieve

QA, all documentation created or updated needs a status attached to it with the name of

the author of the change, a time stamp and a status of approved or imapproved.

4.3.4 Integrated Source Code

The system should integrate the source code with the docvunentation to allow the pro-

granamer to access the documentation while examining or modifying the source code. With

conventional terminals it is very difficult to view both code and documentation in parallel.

However, with the increasing popularity of Icirge screen workstations it wiU become possible

to provide a user interface that allows both soiu-ce code and doctunenation to be viewed

concurrently.

54

4.3.5 Integrated A u t o m a t i c Documentat ion

There are a large number of tools on the market that produce automatic documentation

from static analysis of the source code. These tools do not always meet the claims made for

them in their advertising, but they do generate useful information about the source code in

the form of reports. The information generated for a large progreim can be overwhelming.

A redocumentation system should make use of this information and provide an improved

user interface to the information.

4.3.6 Conf igurat ion Management

Configixration management(CM) must be supported to allow the documentation cind source

appropriate to a particular version of the system to be recovered[17] and for details of

changes to be logged. This could be provided by the system itself, an underlying database

management system with CM capabilities or, if the system were incorporated into an IPSE,

its database could be used.

4.3.7 T e a m U s e

A maintenance team working on a large program will have many members. For very large

systems the number can be in the hundreds. Therefore a redocumentation system for ^xse

during software mciintenance must support concurrent access and update by a team.

Multiple levels of access dependent on user status may be required. Some users may only

reqiiire read access while others wiU need read and write access to the program and its

docvunentation. Controlled access can also be used for sensitive programs like those in

military equipment. Access to certain aieas of the program emd its documentation may

only be allowed to those with the necessary security classification.

55

4.3.8 Informat ion H i d i n g

The documentation for a large program wiU be immense. Information hiding aUows the

documentation to be read at different levels of abstraction from the implementation that it

describes. It filters information. This is important when a mcdntenance team is composed

of programmers with a wide range of experience and ability and particul^ly when new steiff

are becoming accustomed to a program.

56

Chapter 5

Hypertext and Software

Redocumentation

Introduction

This chapter describes the use of a conamercial hypertext tool to demonstrate ideeis for

browsing and documenting programs. These ideas were originiilly aimed at providing soft­

ware maintainers with a system which would allow them to document programs without

interfering with their day to day functions of satisfying user requests for enhancements and

defect removal. However, the same techniques could equally be applied to the production

of original docimientation during development.

The proposed system offers software maintainers an efficient and cost effective way of doc-

imaenting a program where the existing documentation is inadequate.

57

5.1 Hypertext

Hypertext is a simple concept for the computer support of textual and and graphical doc-

imients. As an idea it has been eiroimd for many years[18], however, only recently has it

received widespread attention following the release of a number of hjrpertext tools for micro­

computers. Until then the concepts of hypertext had only been available on large machines

for use in specialist applications. Hypertext supports links between related documents and

allows users to browse the docimients and traverse the links. A document can be considered

as a set of nodes with links between those nodes to form a graph. Each node contedns graph­

ical or textual information. As an example, a hypertext user may be browsing a section of

a document when a word or phrase is encountered in that document that is highlighted,

known as a 'button'. This indicates to the user that a Mnk exists to a related doctunent. If

the user then chooses to open that link, the display will be replaced with the document that

the link points to. The new document wiU be related to original word or phccise m some

way. It may be a more detailed description, a glossary entry, or perhaps a related subject

area. The new document may also contain links to other docimients. The actual details of

how a hypertext document is browsed and the form of the links is dependent on the actual

implementation. Conklin has published an extensive survey of hypertext systems[23, 24].

Although the underlying concept is simple, there is much research interest in how this

concept can be used to provide solutions to problems in areas as diverse and complex as

computer aided leaxiung, public information systems, critiquing, authoring systems and

computer based docimientation.

5.2 Hypertext and Software Documentation

A number of tools have been developed that use hypertext principles to support the

production of the document set zissociated with the software life-cycle during a projects

development[34, 40, 41, 47]. These tools share a similar conceptuad organisation of docu­

ments; they decompose documents into hierarchical structtu-es of objects and use links to

provide both the hierarchical structure of the docimient and traceability between objects in

adjacent life-cycle phases. In this way, an object in a requirements document that describes

58

a particular feature of a system can be traced to its corresponding object in the specification

document which in turn can be traced to the object in the design dociunent that describes

the featTires design. This linking can continue through all the phases of the life-cycle. The

individual tools were discussed in more detail in Chapter 3.

From a survey of the literature on softwcire docimientation and hypertext systems, it would

appear that no other researcher's have applied hypertext technology to the area of software

redocumentation for maintenance. Yet the problems in this area are at least as large

as those of producing documentation during software development. Hypertext has the

potential of being a useful basis for the development of a system for the redocumentation

of existing softweire systems. The power of cross-referencing between related components of

documentation and between differing levels of dociunentation has adready been recognised

as valuable in hard-copy software documentation[33, 52]. Hypertext as a technology offers

the capabilities of integrating these ideas into an interactive enviromnent.

As mentioned above, systems have been proposed and developed that include some of these

ideas for the support of software documentation production during the development of

a project. Although valuable for new projects, this work has offered no solution to the

problems of documenting software during maintenance. With the recent publicity[23] and

availability of gener2ilised hypertext systems it became obvious that the hypertext approach

to supporting links between objects could be used to support the cross-references generated

in the paper based redocumentation system, DOCMAN (See Section 3.3.1). The following

sections discuss the experiences of using a commercial hypertext tool to identify how the

machine supported links of hypertext can be used to enhance the interaction of DOCMAN

with the programmer and to enhance its usefulness as a source code documentation system

5.3 Scope of Research

The primary aim of this research is to demonstrate how the concepts of DOCMAN can

benefit from incorporation into a hypertext framework. Although, at an early stage it

appeared that hypertext had the potential for enhancing the interaction between the user

and DOCMAN, it was still however necessary to create a tangible system for the further

59

development, evaluation and demonstration of these concepts.

The investigations have been performed by redocumenting a C cross-referencing progrcim,

X C C , developed at British Telecom Research Laboratories as part of the DOCMAN suite of

tools. This is an 8 000 line program written in C. Although the size of the program is small

when compared with the majority of programas being maintained in industry, it is believed to

be of sufficient size for the investigation of approaches to redocumenting software systems.

Nevertheless, at aU times during this research the problems associated with mapping these

ideas on to large systems with 200 000 plus lines of code, have been considered.

Two approaches to this research were available, either develop a prototype hypertext sys­

tem of our own or use one of the generalised hypertext systems that has been developed

commercially. A prototype system has the advantage that it can be adapted to meet specific

needs as they arise whereas a generalised system is restricted to the facilities that the man­

ufacturer has seen fit to provide. The proposed hypertext structure of the redocvunentation

system has links that can be created automatically. With our own hypertext tool it would

be easy to write a program to create these links, but with a commercial system this would

be difficult imless facilities are provided by the manufacturer to do so. The commercial sys­

tem approach has the advantage that experience of hypertext technology is gained cind it

enables the establishment of requirements for a full-blown hypertext based redocumentation

system without the commitment of producing code. After considering these factors, a two

stage approach was chosen: firstly, use a commercieJ system cis a mechcinism for developing

initial ideas on redoctmientation and gaining experience with hypertext technology; then

develop a prototype redocmnentation system based on the knowledge gained from the first

stage (Discussed in Chapter 6).

5.4 Choice of Commercial Hypertext Tool

The mmiber of commercial generalised hypertext systems avculable at the moment is limited.

The two most common systems for PCs are HyperCaird[8] and Guide[14, 15, 50]. For the

ideas being presented here it is necesseiry for the hypertext tool to support buttons embedded

within the text of a document «ind to have links whose destination can be a region or a point

60

Document A Document B

t e x t
with
an

embedded

The
d e s t i ­
n a t i o n
of the
l i n k i s
a r e g i o n
w i t h i n a
document

Figure 5.1: A hypertext link where the destination is a point or region within a document

Document A Document B

t e x t The
d e s t i ­
n a t i o n
of t he
l i n k

i s a whole
document

with

button

Figure 5.2: A hypertext link where the destination is a dociunent

within the destination dociunent. Many of the hypertext systems that have been discussed

in the literature do not allow the destination of a link to be pairt of a document as shown

in Figure 5.1. They only zdlow a link to point to a document (Figure 5.2).

HyperCard does not meet either of the requirements because, firstly, although it is com­

monly referred to as a hypettext tool, it does not directly support the placement of textual

buttons within fields of text. Secondly, link destinations are only cdlowed to be cards and

not points within cards. Since Guide meets both requirements, is easily obtziinable and runs

on relatively cheap hardware, this system was chosen for the initizd investigations. There

are reseairch hypertext systems like Neptune[25] (See cJso Section 3.3.2) and. Intermedia[64]

that would have been more suitable as they offer concurrent multi-users and better nuin-

agement of large hypertext networks. These additional features would be necesseiry in a

practiced system for documenting softwaire but as a mediiun for demonstrating initiad ideas.

Guide has proved adequate.

Guide was initially a research project at the University of Kent[l4] running tmder UNIX, but

has since been developed by Office Workstations Ltd. (OWL) eis a commercial product for

61

the Apple Macintosh and the IBM PC. For the research here, it had originaJly been hoped to

use a version of the UNIX Guide running on a Sun Workstation, but it was discovered that

the UNIX version does not provide the conventional, non hierarchical hypertext link which

allows jumps to different points in the dociunent or other documents. Brown[15] has since

discussed why this type of link was not provided in UNIX Guide. The main advcintages

of the UNIX version are that it rims on a large screen workstation and, since the system

is based on the UNIX file store and the structure of Guide documents is freely avaiilable,

programs can be written to automatically create Guide documents.

5.5 Structure of the Proposed Documentation Hypertext

The DOCMAN system comprises the following five entities:

1. Source Code

2. Cross-Reference Listing

3. Encyclopaedia Documentation

4. Glossary Documentation

5. Overview Documentation

Figure 5.3 shows schematically how these five entities are linked in the proposed hypertext

redocimaentation system. The following links are provided:

• Each identifier within the source code is made a button which is linked to its corre­

sponding cross-reference entry (link type a).

• References to identifier usages in the cross-reference entries are made into buttons that

Eire linked to the point in the source code or the documentation where the peirticular

usage occurs (link types b and c respectively).

• Each cross-reference entry heis a 'description' button that links to its corresponding

encyclopaedia entry (link type d).

62

f source ^
I code

reference
Ittting

c 4 d

glosury
documenlatlon

overview
documentation

encyclopedia
documentation

Figure 5.3: Schematic diagram of source code browser and documenter

• Each encyclopaedia entry has a reference button that links to its corresponding cross-

reference entry (link type e).

• Identifiers used within any of the three types of documentation: encyclopaedia, glos­

sary eind overview are buttons that link to the encyclopaedia entries for those identi­

fiers (link types f, g, and h).

• Glossary terms used within any of the three types of documentation: encyclopaedia,

glossary and overview are buttons that link to the glosseiry entries for those glossary

terms (link type i, j and k).

This reseeirch hiis concentrated on incorporating the first three DOCMAN entities into

Guide. Of the remaining two entities, the glossary documentation is of a similzir form to

the encyclopaedia docimientation and would therefore be treated in a simUair way, however,

the incorporation of overview documentation will require further research since there jo-e

problems associated with producing this tjrpe of documentation using hypertext. These

problems will be discussed later.

Of the three entities incorporated into Guide: the source code is, of course, available; the

cross-reference listing is generated by running X C C on itself; and the encyclopaedia docu-

63

mentation is created manually following examination of the source code by a programmer.

Figure 5.4 shows an example of the hypertext links created between the three entities for

the arbitrary identifier page_count. BNF descriptions of these entities are given in Ap­

pendix C.

Initially it had been hoped to produce a program that would take as inputs the source code

and the cross-reference listing of X C C or for that matter, any C prograim, and produce a

set of Guide documents with the links between the source code and cross-reference tables

created automatically. Unfortunately, this could not be achieved because the structure of

Guide documents is not published.

Since the links could not be created automatically, it was necesseiry to create the links

manually using the menu commands provided in Guide. To have done this for the com­

plete X C C prograim would have involved creating around 30 000 links. This w£is obviously

impractical, and therefore the links were only created for a section of the source code large

enough to demonstrate the approach. Nevertheless, it took many hours and many mouse

operations to create the links.

Figures 5.5-5.7 show how each of these entities appear on the screen. Figure 5.5 shows

a window containing a source code module of a program that is being examined by a

programmer. Each identifier within the source code is highlighted in bold font, which

indicates that the identifier is a button. If the programmer is interested in a particular

identifier they can select the appropriate button with the mouse. In this excimple the

programmer has selected the identifier p_token from the source code which causes a second

window(Figure 5.6) to be opened contaiiung the cross-reference entry for that identifier.

Within the cross-reference entry there Eire references in the form of pathnames that uniquely

describe the position of every occurrence of that identifier in both the source code and the

documentation. Each of these references is also a button that is linked to the point in

the source code or documentation where the identifier actually occurs. By making use

of these buttons a programmer can efficiently move between points in a program Eind its

documentation where a paxticular identifier is used.

Each cross-reference entry contains a button named DESCRIPTION that is linked to the

encyclopaedia entry for that identifier. A similar link is provide from the encyclopaedia

64

I

' i l l

I

p a g « _ e o u n t / m o d _ a c

RaCaranma:

EncvdoDMdift
Documanlatian

Nod*

/rrr

i n t paga_aaiint

paga_aount

/* mod a.c */

^ paaa_eount
Intagar
DB«exX»TXO«:
DEFIHITIOH —

Bed a.a

pr ln t_pa«a/aod_b. c

l . t h a varlabla
. paga_aannt i« usad . . .

Kafaraaoaa r

EncydopMdte ^

CODE REFS —
— na*_paga/aod_a.a
— p r l n t _ p a g a / M 4 _ b . a

lalt/Bed_a.a

DOCOIGHTATION KEFS:
prlBt_paga

j

/* mod b.c */

pag*_aonBt

/* mod c.c */
Source Coda Nocto$ &MiroB'''bode''Naditi

1

1

Figure 5.4: An example of the links created in Guide between the source code, cross-
reference tables and encyclopaedia documentation

65

^ File Edit Search Display Format Font Size Malce
•

i O i KCC.C
/ * H t m - parse t a i l of i n i t i a l i s e r */
v o i d p _ i n i t ()
(s t r u c t E x p r * e . * p _ e l () ;

do
(i f <p_token(T_LCTniLT))

< p _ i n l t () ;
i n a i s t o n (T _ B C 1 I B L T) ;

>
else i f (e - p _ e l ())

c onsiime (e , C_SZ1D, CZ_GEHEB AL) ;
) \ r t i i l e (p_ toke i i (T_C01IHA)) ;

) / * p _ i n i t * /

/ « p _ f i e l d - parse a f i e l d d e c l a r a t i o n */
B o o l e a n p _ f i e l d (s u e _ n a m e)
char *sue_name;
(B o o l e a n r e s u l t ;

s t r u c t Type • t y p e ;
s t r u c t O b j e c t * o b j e c t ;
s t r u c t S y n b o l * s , * d e c l a r e _ o b j e c t (} ;

decleTel++;

Figure 5.5: Source Code Window

File Edit Searcli Display Format Font Size Malce

KCC.Hrfp
p_tok«iL

ituotioa r*tvnd.ng ohu:
DESCXIPTZOV:
DECLASES ~

xoo.o
DOTE: — this item is ?TIBLIC
COSE ItEFS ~

0 * 1 1 1 / p _ i i i l t /zoo. 0
M i l
M i l l/r_£l«ld/zoo.o
M i l 1/p ̂£l«ld/xoo.0
M i l p_ll*ld/zoo.0
M i l p_£l*14/zoo.0

SOCTIHEBTATZOH BEFS —

• B 0 7 0

•BO70 »_tTP«
mnojo

s t r u c t O b j e c t * o b j e c t ;
s t r u c t S y n b o l * s , * d e c l a r e _ o b j e c t () ;

decleTel++;

Figure 5.6: Cross-Reference Window

66

^ File Edit Search Display Format Font Size Make

Kcc.enc_p
P-loken/xcc.c

A function that optionally parses the token specified by parameter t and
returns a result of TRUE or F A L S E i f the token was successfully parsed or
not [status].
References:

p_tset/xcc.c

Parser to accept one token of a given l i s t of tokens, fakes a variable number
of parameters, the f i r s t of which is the formal parameter e. The last
parameter is a zero terminator. Attempts to parse each token in the Hst in
turn. If a token is successfully parsed Its value is returned as the function
result. If none of those in the l is t is successfully parsed then zero Is
returned [status!.
References:

K>

decleTel++;

Figure 5.7: Encyclopaedia Window

entry back to the cross-reference entry by the REFERENCES button. Figure 5.7 shows

the window that is created when the p̂ ogr̂ lmmê selects the DESCRIPTION button in

Figure 5.6. The new window contains a textual description of the identifier p.token.

The description may also contain identifiers which are also buttons that point to their

corresponding encyclopaedia entries. Within the encyclopjiedia entry an example of a Guide

note button can be seen. The button is labelled '[status]' find hcis been used to indicate the

author and status of the description it foUows.

5.6 How the System Would be Used

The proposed browsing and doctmienting system would be used by a maintenance program­

mer whilst exzmsining source code during maintenjince activities.

67

5.6.1 Locating Identifier References

The system wiU enable a programmer to locate any reference point of ein identifier effi­

ciently. An example follows of a typiccd task carried out by a mcdntenance programmer

and a comparison is made between the approach that would be used with and without the

proposed system.

Often, when examining the soxirce code of a program, a programmer wiU wish to exeimine

the definition of a routine that is used at the point in the code currently being examined. If

the programmer does not know where the definition is located in relation to aU the modules

that comprise the program, it will be necessary to find the location from a cross-reference

listing or by performing a global textual search on aR the modules. Then when the module

containing the routine has been located, it must be loaded into and editor for examination.

Although this type of movement from module to modtde is a common one, it wUl have taken

the programmer several minutes to complete. In which time, the break in concentration

may well have caused the origined reason for examining the routine to have been forgotten.

With the proposed system, a programmer using a mouse device wotdd select the identifier

of the routine at the point in the code where its use is of interest, causing the cross-reference

table for that identifier to be displayed in a window. In this example the programmer would

select the reference in the table associated with the definition of the routine which in turn

would cause a window to be opened displaying the module at the point where the routines

definition occurs. A process of only two steps that wiU have taken only a few seconds to

complete. Likewise, a programmer can locate einy reference to an identifier in the source

code or documentation by two similar steps.

5.6.2 Creating Documentation

Initially, when the source code of a program is loaded into the system there will be no

encyclopaedia documentation present. As the maintenance programmers examine the pro­

gram in attempting to imderstand its operation, they will gain knowledge. This is when

the encyclopaedia docimientation is created. The mechanism must be efficient for creating

the docimientation otherwise programmers will be reluctemt to record the knowledge they

68

have gained.

Encyclopaedia documentation is suitable for the maintadner to produce because it can be

created with limited knowledge about the program as a whole. This is particularly impor­

tant as much of the maintenance work on large progrjims is performed with only localised

knowledge of the software in the area of a chcinge[45].

5.7 Results

This section discusses the residts from using Guide to demonstrate ideas for a source code

browsing and documenting system.

5.7.1 Large Screen

The size of the Apple Macintosh screen effectively only allows one window to be viewed at

any one time. A large workstation screen would offer severed advantages for the redocu-

mentation system. It would allow several windows to be viewed in parallel and windows to

be positioned in fixed parts of the screen according to their role.

5.7.2 Encyclopaedia Entries

With the hypertext structiare used for this study (Figure 5.4), the encyclopaedia entry for

each identifier is a separate entity that is displayed when the programmer selects the DE­

SCRIPTION button in the cross-reference entry for that identifier. A programmer therefore

has to make two selections to open an encyclopaedia entry from the the source code. Firstly,

selecting the identifier in the soiu-ce code and then selecting the description button in its

cross-reference entry. It would be more efficient and logical to display the encyclopaedia

entry, i f present, with the cross-reference entry. In this way the encyclopaedia entry and

the cross-reference table of an identifier are always displayed at the Scime time. This can be

achieved by either embedding the encyclopaedia entry within the cross-reference entry or

69

by having a separate encyclopaedia entry window that is automatically updated when the

cross-reference entry changes.

An encyclopaedia entry wiU typically contain a few sentences of text describing the use of cin

identifier in the program. It is important to avoid repeating information in the entry that

can easily be obtained by looking at the code or other encyclopaedia entries. For example

it might be tempting to give the range of an array identifier or in the entry for a routine

name, information could be given about the parameters to the routine. In the first case this

information is directly available in the source code from the definition site of the array and

in the latter case the information for parameter information should be in the encyclopaedia

entries for the parameters.

5.7.3 Window Sizing

Within Guide there is no control over the size of newly created windows. For the application

here windows need to be sized according to their contents. For instance a source code

window needs to be large enough to display a minimum of around twenty four lines of

code (typical size of a normal terminal). While a window containing an encyclopaedia

doctmientation entry can be much smaller since a typical entry only spans approximately

ten lines of text.

5.7.4 Window Creation

Guide allocates a new window to each dociunent as it is opened until the maximum number

of windows has been created. Once this point has been reached. Guide will not open

any more documents until an existing document in a window has been closed. For this

application and on a workstation with a larger screen it would be better to have a fixed

number of windows. Each window would be allocated a certain type of dociunent that it

can contain. When a document is opened, instead of creating a new window, an existing

window of a type that matched the document woidd have its contents replaced by the new

docmnent.

70

5.7.5 Command Language Interface

It would be extremely useful i f the hypertext system had a conmicind Icinguage interface

as well as a menu driven interface to provide access to more powerful commemds and the

ability to run a script of commands from a file to perform repetitive or frequently used

sequences of commands. Example of commands that would be useful are:

• Often a maintenance programmer wiU not remember the exact name of an identifier

that is of interest. String searching commands that match against regular expressions

would help in locating the identifier. It would be possible to dynamicedly create a list

of buttons that are linked to the cross-reference entries of the identifiers that matched

the search in a similar way to that achieved in the Symbolics Document Ex£iminer[63].

• When creating and modifying the hypertext it is inevitable that buttons and reference

points wiU become detached, i.e. a reference point will have no button Unked to it

or a button wiU have no valid link to a reference point. It would be useful to have a

command that lists such buttons and reference points.

5.7.6 Flagging of Unusual Code

Often, while analysing source code diiring software medntenance a programmer is confronted

by a section of code that appears unusual in some way. It may appear erroneous or perhaps

it may appeair that the input data will never cause a peirticular path of a program to be

executed. Usually cis a more extensive understanding of the system is achieved the pTirpose

of these sections becomes clear. However, in some cases the initial hypothesis is confirmed

by more detailed analysis. I f the defective section of code is functionally removed from

the area of the maintenance change currently being worked on, then it is common practice

when dealing with large systems to report the problem as a defect for a further maintenance

change.

When browsing the source code in the hypertext environment it would be useful to have

a mechcinism where a programmer could flag (with comments) suspect sections of code for

further investigation. If, as a more complete understanding of the system is established,

71

the initial eissertion proved false then the flag can easily be removed. But, in cases where

the assertion is confirmed the fiag acts as a pointer to defective areas of code to help other

programmers and to mark where further attention is required.

5.7.7 Credibility Rating for Programmer Hypotheses

During the analysis of source code a programmer makes hypotheses about the functioning

and piirpose of items in the source code. These hypotheses are later confirmed or refuted

by further analysis of the system as a whole (need reference here). This process is usually

a purely mental process, however there could be a case for the programmer recording these

hypotheses i f the recording mechanism is siifficiently fast to avoid hindering the process of

comprehension. To achieve this, it would be possible to provide some mechemism for the

maintenance programmer to attach a credibility rating to the encyclopaedia documentation

to allow both hypothesis and fact to be recorded in the entries.

5.7.8 Automate Creation of Encyclopaedia Links

It was found while writing encyclopaedia entries in Guide that creating the links between

buttons in entries and other entries was time consuming and interrupted the fiow of thought.

Therefore it would be necessary to improve on the link creation methods offered in Guide for

a production redocimaentation system. Since, in this application, the buttons wiU cilways be

linked to either an encyclopaedia entry or a glossary entry, it woidd be possible to partially

automate the creation of these links. One possible implementation to achieve this woidd

be for the user to select the word or phrase to be made into a button, then the system

would offer the user the choice of creating a link to the encyclopaedia or glossary entries

that matched the word or phrase via a menu.

72

5.7.9 Accessibility of the Documentation

A major advantage of the approach used here for browsing and documenting programs is the

ease with which the documentation can be created, updated and examined by a programmer

in parallel with examining the source code. Using Guide has demonstrated this advantage,

but to exploit the full potential of the approach a speciidised hypertext tool is required for

this application.

5.7.10 Efficient Location of Identifier References

As the example in Section 5.6.1 illustrated, this approach offers efficient location of any

occurrence of an identifier in the source code or the documentation. From a survey of docu­

mentation tools, it would appear that no commercial software tool offers similar capabilities.

5.7.11 Management of Large Document Sets

A problem encotintered with Guide for this application is that it offers no facilities for the

management of large document sets. AU the documents that form part of a hyper dociunent

must be in the same directory. Where a hyperdocument consists of hundreds of sepzirate

documents, as is often the case in this application, the management of the documents soon

becomes a problem. Some form of librarian system is required to remove this responsibility

from the user.

5.7.12 Navigation

Guide provides a backtracking facility that allows links to be closed in a reverse sequence to

that opened. By using backtracking a user can return to a location in the hypertext back

down the navigation path. This facility was not found necessary in this application. The

well defined structure of hypertext and the range of links available to the user at any point

in the hypertext made this facility redundant.

73

The 'disorientation problem' is quite common in hypertext systems and consists of two

problems [24]:

(a) Knowing where you are in a network.

(b) Knowing how to get to some other place in the network.

These problems were not encountered in this application of hypertext. The rezison for this

is likely to be the same as the reason for the redimdancy of backtracking explained above.

Although backtracking was not required and the disorientation problem was not experienced

with the DOCMAN entities used in this experiment, the same may not apply if the system

were to include overview docimientation. UiUike the other DOCMAN entities, and in com­

mon with mciny other hypertext application areas, the information presented in overview

docimientation does not have a well defined structure.

74

C h a p t e r 6

A Prototype Source Code

Browsing and Documenting

System

Introduction

This chapter discusses the important design issues encountered when developing a prototype

for a hypertext based source code browsing and documenting system to form part of the

DOCMAN suite of programs. The requirements for the prototype having been established

from the groundwork performed by using a commercied hypertext tool, Guide, for the same

application (Chapter 5).

The prototype forms the foundations for a specialised system incorporating the capabilities

cind ideas that had been investigated using Guide. Time constraints made it impossible

to develop a system which shared the features of the generalised hypertext technology; for

instance the interactive creation and manipidation of text and buttons; and, in addition,

included those features identified as important for a specialized source code browsing and

doctmienting system. Such a system would require several man-years of effort. Therefore

75

the prototype focuses on the implementation of features that could not be investigated in

Guide.

6.1 DOCMAN and Cross-Referencing

DOCMAN is a documentation system based on cross-referencing developed to meet specific

problems encountered in maintairung a softweire system of several hundred thousands of

lines of code (Section 3.3.1). The left hand section of Figure 6.1 shows the existing cross-

reference components of the DOCMAN suite of progrcims. It shows the three phases required

to produce a paper or machine readable cross-reference listing for a progrcim:

Source File Processing Each compilation unit is processed by a 'front-end' program de­

signed to interpret the source language in which the compilation unit is written in.

The output from each front-end is an intermediate file in a common, language inde­

pendent format.

Merging The intermediate files produced by the previous phase are merged into a single

file in the same format.

Formatting The final phase formats the contents of the intermediate file into a readable

form; either, plain text for machine reading and low quality printing, or BTgX where

high quality printing is required.

6.2 Capabilities of the Prototype

As the capabilities of the prototype had to be restricted because of the time avsiilable, it

was decided to investigate two areas that had not been looked at previously because of

limitations in the version of Guide available and the hardware that it runs on.

When using Guide, it had not been possible to create the links between identifiers in the

source code and the cross-reference tables automatically. The reason for this is that Guide

76

e-»
' »

s 8

Figure 6.1: Cross-referencing part of the DOCMAN system and the extension provided by
the prototype.

77

oidy allows users to create links interactively via puU-down menu commemds. It does not

aUow structured documents to be imported into Guide with links created automatically

according to the documents structure. This limits Guide to applications where documents

are authored within i t . An exaimple of an application where hJ^pertext has been used for

displaying structured documents which were not prepared as hypertext documents, is the

conversion of UNIX man pages into documents that can be displayed using the UNIX version

of Guide[16]. Systems with built in programming languages, for example the Icinguage

HyperTalk in HyperCard[36], provide the user with the capability to extend and tailor the

system in this direction.

Another area where Guide proved restrictive was the small screen size of the hardware that

it runs on in relation to the large screens that are now available on workstations. This

limits the user to viewing only one window at a time and prevented any experimentation

with window layout and window allocation algorithms. The prototype makes use of the

large screen available on the Sun workstation.

The prototype has no editing capabilities and therefore it is not possible to create the

encyclopaedia documentation as it had been in Guide. It is purely a system for browsing the

hypertext structure created automatically between the source code and the cross-reference

tables. Cross-referencers may be considered as a tool to assist programmers in navigating

around a software system. The prototype browser improves their effectiveness.

The prototype oflfers an alternative way to view the cross-reference information generated

by DOCMAN.

A new phase, 'hypertext generation' (right hand section of Figure 6.1), has been added to

the DOCMAN system. This takes as input the merged intermediate file and each of the

compilation units and produces a speciad set of documents. These documents consist of the

source code and cross-reference tables in a hypertext format (see Appendix B) that can be

viewed by another program, XBROWSE, ruiming on a Sun Workstation. Figure 6.2 shows

an example of the links created automatically by the hypertext generator program between

the source code and the cross-reference tables. By referring to Figure 5.4 on page 65, which

shows the hypertext structure used in Guide, a comparison can be made between the links

that were created manually with Guide and those created automatically by the hypertext

78

si

/ * mod b.c */ * iDod_a.c */
PSouree Coda Node

^ page_count
In teger
DUOtZrXZOK:
DEFINITION —

CC»E REFS —
BMr_page/Bed_a.o
prlnt_paae/Bod_b.o
I n l t / a e d o.e

/ * modc.c • /

S o u ^ B d .

Figure 6.2: An example of the links created automatically, by the hypertext generation
phase of the prototype, between the source code and the cross-reference tables

generator.

The prototype is split into two components. The first component generates the source code

and cross-reference hypertext and the second component allows the user to navigate around

this h)rpertext using a mouse and a window environment.

79

6.3 Hypertext Generation

The source code and cross-reference hypertext is generated by a program called XNET-

GEN. This prograim takes as input the source code for a program and the intermediate file

produced from this source code and generates as output a set of documents that represent

the nodes of a hypertext. Each node contains either source code or cross-reference table

entries.

6.3.1 Links

There are a number of ways to implement links between the nodes of a hypertext. The

properties of the links in the prototype eind the justification for them are discussed below:

1. In XBROWSE there is oidy a single link type that allows a user to jmnp from point

to point in docimients. Many hypertext systems have a predefined or user defined

set of link types. The main purpose of typing is to provide the user with information

about the destination of a link without having to open the link. For instaince, a link

in a document expressing an opinion may have a type of 'supports' to indicate that

the linked doctmient provides support for the opinion. Users of XBROWSE do not

need this facility since the destination of a link is implicit from its context.

2. A links destination is a point within a document with no embedded text. All destina­

tion points in the hypertext aie identifier names in the source code or cross-reference

entries. Ideally the destination points would be the text string of the identifiers, but

these strings wiU also be embedded in the link buttons (property 4). Therefore, for

the sake of simplicity, the destination point of a link is immediately in front of the

identifier that it points to. This avoids the technical problem of meiking the same

piece of text a button and a destination point, while being equally effective.

3. The method for defining a destination point of a link within a dociunent, fdlows the

docmnent to be edited without disconnecting lirdcs that terminate in the document.

They may be called 'floating' destination points. The problem can be illustrated

by considering a hypertext system where the liidcs aie implemented by using a fine

80

number and character position to locate the destination point. E a dociunent in such a

system is edited, then every link that terminates at a point in the document following

the edit, will need updating. Since the prototype is only a browsing system and

does not have editing facilities, this property is not necessary. But, to allow future

development of the prototype, floating destination points have been implemented in

the system

4. A button that marks the source point of a link in a document is a region of text, at

least one character in length. This region does not cross line boimdaries.

In this system, the region of text is either an identifier name or a cross-reference path­

name. This text needs to be embedded in the button as it wiU be the mouse sensitive

area that the user selects to open a link. As neither of these two possible button text

strings cross line boundaries it is therefore not necessary for the text embedded in

buttons to extend over multiple lines in the prototype. The same will apply if the

system is extended to include encyclopaedia emd glossary docimientation. However,

if the system were to include overview docimientation then it may be necessary to

reconsider this position.

A links source structure consists of the text forming the button, the name of the document

where its destination is, and a destination point key that tmiquely matches with the key

of a destination point structure in the destination document. The dociunent name axid

key provides enough information to for a program to locate the destination of a link. The

destination structure only needs to contain a key that matches with the key in the sovirce

structures.

The internal structure of the source and destination points of a link can be examined by

referring to the syntax of X B R O W S E documents in Appendix B.

6.4 Hypertext Browser

The source code and cross-reference hypertext generated by X N E T G E N is viewed by the

hypertext browser program, XBROWSE. This section discusses the design of the browser.

81

6.4.1 Operating Environment

The prototype browser is designed for a Sun Workstation running the Sun View environ-

ment[59, 60]. The choice of workstation and window environment wais based on aveiilability

only. Any large screen workstation with a window environment would have been equally

suitable for demonstrating the concepts. An alternative window environment which through

future standardization may offer portability of applications amongst workstations, is the X

Windows system[53]. Any continued development of the prototype would benefit from the

use of a standardized environment, when one becomes available.

6.4.2 Screen Layout

The hypertext created by X N E T G E N comprises nodes that contain either source code or

cross-reference entry docimaents. These nodes are displayed on the workstation screen in

scrollable windows. Each window hcis a designated type which determines the type of

doctiment that can be displayed in it.

Figure 6.3 shows the default window layout for XBROWSE. The top left window allows

the user to list and load the hypertext documents in the current directory. The other four

windows are for displaying documents. The bottom two windows have been configured

for displaying source code documents and the smaller two windows at the top right of the

screen, for cross-reference entries.

The document windows cire simile in appearance to those in the Guide system, although

in the prototype they make use of the larger screen available on a workstation. The vertical

scrollbar in the document window allows the user to browse through the document and

gives an indication of the size of the document.

When X B R O W S E starts, it sets the number of windows, their position and size according to

data read from the Sun View defaults database. Malting use of the database allows the initial

configuration of the screen to be adjusted by the user to match their personal preferences,

without the need to recompile the browser.

82

g S S 3
»C X K » -

« ^ <4. ^ . V W •

- » - g g g -
0) 0)

ID Qi

ri,,v v V %

I O LU

Figure 6.3: Example layout of XBROWSE screen

83

Window resizing and repositioning while the browser is running is heindled by the Sun View

environment. The application is only responsible for updating the image in the window

following a resize. No commands have been provided to increeise the number of windows

displayed on the screen from the number setup at initizJization; jdthough their construction

can be easily achieved.

6.4.3 Window Typing

The windows for displaying the nodes of the source code and cross-reference hypertext are

typed. A document can only be displayed in a window of a matching type or the type

'Genercd'. The following window types are valid in the prototype:

(i) Source — The source code of the program.

(ii) X r e f — The cross-reference tables generated from the progr£im

(iii) E n c y c — Encyclopaedia documentation.

(iv) Glossary — Glossary doctimentation.

(v) Overview — Overview documentation.

(vi) General — A general purpose window that may display any document type.

Only types (i), (ii) and (vi) are currently used in the prototype.

6.4.4 Window Allocation

The algorithm used for displaying the document at the destination of a link attempts to

find a window that satisfies one of the following rules in the order given:

Rtde i: A window that already contains the destination document.

Rule ii: The first window that is not displaying a document and whose type matches

that of the destination document.

84

Rule iii: The least recently used window whose type matches that of the destination

docimient.

Rule iv: The first window that is not displaying a document cind whose type is 'General'.

Rule v: The least recently used window whose type is 'Genereil'.

If none of these riiles are successful at seizing a window, an error message is displayed and

the destination document is not displayed.

The least recently used window is the window with the longest elapsed time since a user

command was directed at it. Commjinds that cause the least recently used timer of a window

to be updated in the prototype aie: docimient scrolling, button selection and traversing a

link that terminates in the window.

A user of the browser may wish to have a window permanently eissigned to a document

for part of or the whole of a session. Thus preventing the window from being used for the

display of another document. Window locking wiU provide this capability by the window

allocation algorithm ignoring windows that are locked.

6.4.5 Hypertext Links

The properties of the links in the prototype browser and the justification for them are

discussed below:

1. The text embedded in a button is emphasised by emboldening to indicate to the user

where the mouse sensitive areas are for opening links.

2. When the user navigates around the hypertext, from document to document, the

destination point of a link within a docvunent needs to be emphasised on the screen.

Without this, the user will have to scan through the part of the document visible

in a window for the text string that matches the link just traversed. This is not a

problem with cross-reference entries as the destination points are always positioned at

the top of the window. The same wotdd apply to encyclopaedia and glossary entries.

85

However, in source code the destination point may be located at any position in the

window (property 3). In many instances there wiU be severeil occurrences of the same

identifier in the window. The user wiU be unable to determine which is associated

with the link just traversed.

The prototype does not implement emphasis of the destination point. Nevertheless,

this is an important property and should be implemented in any future development.

3. The prototype browser always positions a destination point at the top of a window.

This approach is appropriate for cross-reference, encyclopaedia and glossary docimient

entries since the user wiU eJways want to have as much of these entries in view as

possible and this is best achieved by positioning the destination point at the top of

the window.

For source code documents the positioning of the destination point requires more

consideration. From using the prototype it would appear that diflferent strategies are

required depending on the properties and context of the object that a Hnk points to

in the source code and the status of the destination document at the time the link

was traversed. Several points have to be considered:

• If the object pointed to in the source code is the definition of a routine or a

formal parameter of a routine then the user wiU weint to view as much of that

routines definition as possible. Therefore, in this instance the destination point

(object) should be positioned at the top of the window. The only problem here

is that if the routine had leading comments then these would be positioned off"

the top of the view.

• For all other types of object, including definitions and usages of variables, rou­

tines, constants, etc., two different strategies are required for positioning the

destination point, ff the point is aiLready in an existing view then destination

point should be emphasized and the view should not be scrolled. This strategy

assumes that the user wiU have been working recently with the window and wiU

be happy with its content. To scroll the view to reposition the destination point

would prove distracting. A second strategy is necessary when the destination is

not in an existing view. The best approach here would seem to be to centre the

destination point in the view.

86

More complex approaches could position the steirt of the enclosing code block of

the destination point at the top of the view provided the destination point would

still fit in the view. For example, in the following code fragment, if the destination

point is the identifier count the code would be positioned with the line that

reads { i f (rp_id_count >= NUM_RP_IDS-1) at the top of the window. To

maintain programming language independence in the browser and documenter

the additional information required for positioning the destination point would

have to be contained in the hypertext link.

pr int . char = TRUE;
while (l i n e [i] != ' \ 0 ' && actual.cp < n)

{ i f (line[i]==REFERENCE_POINT_ID)
{ i f (rp_id_count >= NUM_RP_IDS-1)

•C rp_id_count = 0;

pr int .char = TRUE;
++count;

>

else

{ ++rp_id_count;

print .char = FALSE;

}

}

else i f (lineCi]==REFERENCE_BUTTON_ID)
{ i f (rb_id_count >= NUM_RB_IDS-1)

{ rb_id_count = 0;

6.4.6 User Commands

The user interface to the prototype is very simple. Browsing of the source code and cross-

reference hypertext is performed either by scrolling through documents using the scrollbar or

by locating the mouse cursor over a button and pressing the left mouse key. In a production

version of the prototype a wider range of commands would be needed to provide alternative

ways of locating areas of interest in the hypertext. But the basic browsing commands, as

87

provided in the prototype, would remain the most used.

6.4.7 Response Time

It is widely recognised that the most important requirement of any hjT)ertext system is

a rapid response between the user selecting a button and the display of the document

associated with the link. Many implementation factors wiU eff'ect this response time.

A response time of 1 to 2 seconds is considered the maximtun acceptable for a hypertext

system[24]. Any longer and their is a risk that the user wiU become distracted during the

wait. It would be expected that the shorter the time the better, however, experience with

the ZOG system running on a machine capable of response times in the rjinge 0.05 to 0.1

seconds showed that at the lower limit of this range, users had trouble detecting whether

or not the screen had changed[3]. The provision of some edternative cue, such as empheisis

of the destination point for a fixed time period, would overcome this.

No measurements have been made of the response time of the prototype, but most responses

appear to be in the sub one second range. Times could easily be collected by modifying the

prototype to coUect usage statistics.

(

The prototype uses docimient caching to reduce response time by taking advantage of the

large local memory available on workstations. During a session with the prototype once a

docimient has been opened it wiU remain in a cache while there is sufficient memory. When

a fresh document is opened and there is no available memory in the cache then the least

recently used document is removed to make room for the new document. The source code

and cross-reference hypertexts for large software systems wiU consist of many hundreds, if

not thousands of separate hypertext documents. A programmer browsing such a system

while investigating a maintenance change wiU usually only be examining a small part of the

complete system. Therefore it is likely that during a browsing session the set of documents

opened will be small when compared with the total set for the system. The set may be

sufficiently smaU for the majority of documents to remain permanently in memory. Again,

automatic statistic collection would enable this hypothesis to be verified.

88

The hypertext links in the prototype have been implemented by using a key embedded in

the text of a document to mark the destination point of a link. When a link is traversed

the destination document is scaimed from the begiiming to locate the key that matches

the corresponding key of the source point of the link. The time it takes to locate the key

is therefore dependent on the position of the key within the document and the size of the

docimient. When a link terminates at the end of large docimient this secirch time can have a

considerable effect on the link response time. Therefore laxge documents should be avoided.

To avoid one large cross-reference listing document a separate document has been created

for each set of identifiers begiiming with a different eiscii character. Obviously, the size of

the listing wiU be dependent on the size of the software system it was generated from. For

very large systems the approach taken here may not be adequate and &a alternative method

of indexing into the cross-reference listing may be necessary.

6.4.8 Enhancements

It would be interesting to provide the capability for automatically collecting statistics about

the use of the system. These coidd then be used to tailor the design of the system to provide

the best performance and functionality for the users needs.

For the authoring of textual documentation, in the form of encyclopaedia, glossary aaid

overview documentation, it will be necessary to add editing capabilities to XBROWSE. For

both ordiuciry text and hypertext link structures.

When a software system is being maintained the code wiU go through meiny revisions.

When using this browsing system is will be necessary to regenerate the source code and

cross-reference hypertext following each revision. If the browser included the textual doc­

umentation components then the links created between the documentation and the cross-

reference entries will become detached. A scheme is therefore required to enable these links

to be regenerated automatically where possible. At the same time, the user could be Jilerted

of areas of documentation that may need updating following the revision.

As experienced with Guide, the prototype suffers from the problem of how to manage and

89

organise a large document set. The prototype expects to find edl the documents eissociated

with a hypertext in one flat directory: the current directory. With a large software system

this would become a burden.

6.5 Requirements

The requirements for a source code browsing and documenting system based on the expe­

riences from using Guide and developing the prototype are given in Appendix A.

90

Chapter 7

Further Research and

Development

Introduction

The prototype has demonstrated an approach to documenting software systems during

maintenance. It has opened up many interesting aieas for further research and development.

This chapter discusses those areas.

7.1 Inclusion of Overview Documentation

The research here has established how source code and the DOCMAN entities: encyclopae­

dia and cross-reference documentation can be built into a hypertext network. Two more

entities exist in DOCMAN. They are glossary and overview documentation. Glosseiry docu­

mentation can easily be added since it is of the same form as encyclopaedia documentation

and therefore can be incorporated in a similar way.

Within encyclopaedia and glossary documentation there is no confusion about what text

91

should be linked to where since the placement of links is well defined. However, overview

documentation usually consists of free-form narrative text and the placement of Hnks is

more difficult. Strategies for positioning links in this kind of documentation is an area of

active resezirch in the hypertext community and would need to be considered.

Other areas that may be a problem with overview documentation are: the disorientation

problem or getting lost, and updating the documentation following a change to the softwcire.

7.2 Incremental Update of Cross-Referencing Tables

The creation of the links between the source code and cross-reference documents are cre­

ated in a separate process that is performed before the hypertext can be viewed using

X B R O W S E . Following each update of the source code, the process of generating the cross-

referencing tables and links wiU have to be repeated. Although this is an automated process

that could be performed overnight following a days editing, it would be better if XBROWSE

created the new tables and links itself following a ch£mge to the code without the need to

regenerate everything from scratch. This approach would be similcir to that used by incre­

mental compilers which only recompile the units of code in a module that have changed

since the last compile. A drawback of such an approach is that the tool would then become

language dependent.

7.3 Configuration Management

One of the requirements for a redocumentation tool in Chapter 4 is that it should pro­

vide configuration management for the source code and documentation. How this will be

achieved in the proposed system has not been considered here, but it is an important require­

ment that needs to be addressed. Two options are available. Either provide configuration

management internally in the browsing and documenting system or interface the system to

a separate configuration management system such as SCCS or Lifespan.

92

7.4 Static Analysis Data

Automatic documentation tools generate a large amovmt of information from static analysis

of the source code. Much of this information is of use to the maintenance progreimmer, but

the quantity generated can be overwhelming as no assistance is provided to the programmer

for extracting relevant information. The browsing and documenting system described here

has incorporated the data generated by a cross-referencer, further static aneilysis data may

be included in the system in a similar way to provide a simple user interface to it.

7.5 Content of Encyclopaedia Entries

The network created by the browsing and dociimenting system will contain a large iimount

of information about the source code. The encyclopaedia entries as proposed, consist of

free format text. If instead, these entries were created with a defined format, then it may

be possible to use expert system techniques on the network to provide answers to queries

from the progranmier and to guide a programmer Jiround the source code.

7.6 Team Use

Another requirement of the redocimientation tool was that it should be able to support

concurrent access and update. This capability has not been provided in the prototype.

In a conxmercial product this would be cin important requirement and could be achieved

by building the application around a hypertext tramsaction server such as the Hypertext

Abstract Machine (HAM)[20] developed as part of the Tektronix Neptune system. The

HAM has mtdti-user access built in.

Alternatively, an approach similar to that taken by KMS[3] would be possible. In this

system the vmits of information stored in each node of the hypertext network is small.

Since a typical network wiU be very large, users will usually be working in different areas

of the network and therefore conflicts between users editing the same node are rare. On

93

this assumption the designers have chosen a simple concurrency control mechanism, called

optimistic concurrency control, which guarantees that a user camnot have successftdly saved

changes revoked by another user. But, if an editing conflict does occur, then the user wiU

not necessarily be able to save their changes without problem

7.7 Webs and Paths

The concept of webs and paths demonstrated in Brown University's Intermedia system[65,

64] could be used in the documenting and browsing system.

In an Intermedia hypertext network, every link belongs to one or more webs. Only those

links belonging to a currently active web can be seen by the user. This concept could be

used in documenting and browsing system to provide abstract views of the source code:

webs would be created in the network at diflferent levels of detail from the code and the

user would choose the level appropriate to their current task.

Paths are routes through the hypertext network. These may be useful for the documen­

tation of multi-process softweire. Communication between the processes is often achieved

by passing messages between them. A problem found with source code documentation

for multi-process software is that the documentation is usually process beised. Yet sys­

tem functions are implemented across several processes. Paths could be used through the

documentation network to foUow the trail of system wide functions through the software.

Enabling the control flow to be followed from process to process.

7.8 Importing Existing Documentation

Although the majority of original documentation produced during design will be of little use

to software maintainers, there will be some that is useful. Therefore a way of including this

documentation into the hypertext documentation network created by the redocumentation

system should be provided. Optical character readers are now sufficiently reliable at reading

a wide range of type faces that they now offer a means to import hard copy documentation

94

into the system.

7.9 Monitoring

An axea of resecirch in softw£ire maintenemce is observing how people debug computer

programs[45, 37]. The experiments that have been performed in this eirea have been based

on small programs because of the problems of collecting and analysing the data. The redoc-

mnentation system could provide a way of collecting data about the steps people go through

when debugging programs. A large part of browsing through the code would be performed

by using the links between the source code, cross-reference tables and the documentation.

By monitoring which links are traversed, data can be collected about what parts of the

code are examined and in what sequence. The analysis of such data is a possible £irea of

research.

A less ambitious use of the data in a commercial version of the system, would be to provide

management with information on what areais of the code and documentation are examined

the most during the analysis phase of software m£dntenance. The information generated

woidd be used to identify troublesome aireas of a program that would benefit from preventive

maintenance or areas in the documentation that need improvement.

95

Chapter 8

Conclusions

The research described in this thesis has met the objectives outlined in Section 1.2. It

has demonstrated a technique for redocumenting source code during software maintencince

that is based on ideas first developed by a maintenance team at British Telecom Research

Laboratories[33]. The extension of these ideas in this thesis are now the te£ims recommended

approach to redocumenting software.

8.1 Benefits of the Approach

The major benefits of the browsing and documenting system for redocimienting source code

can be summarized as:

• Efficient browsing of code and documentation

The system automates the low-level tasks of a maintenance programmer when brows­

ing source code and locating relevant documentation. Hypertext links have been used

to allow the programmer to quickly locate any reference to an identifier in the source

code and the docimientation.

• Notepad approach to documenting source code

96

The concept of encyclopaedia dociimentation provides sufficiently small iinits of doc­

umentation that a programmer can create entries without necessarily imderstanding

a Icirge part of the sirrrounding program.

• Simple user interface

Most user interaction with the system is via single 'point cind click' commamds using

a mouse.

• Records knowledge gained during maintenance effort

A major objective of this research was to establish an approach for recording the

knowledge gained by a mainteneince progreimmer during analysis of a program. The

knowledge can then be used by other programmers working in the same area or by the

author when working in the same area at a later date. The proposed system meets

this objective.

• Only the problem area code gets documented

The system allows incremental redocumentation of the source code. Only the areas of

the code that are examined during analysis of the code during maintenamce operations

are documented. No effort is wasted in documenting code that is in a stable state and

never looked at.

• Language independent The same techniques can be applied to any prograimming

language. The only language dependent component is the cross-referencer.

8.2 Drawbacks of the Approach

Two drawbacks with the system have been identified, but they axe not considered to be

significant in relation to the benefits.

• Additional material to be maintained

The system does increase the amount of materi?il to be maintained. When a change

is made to the code, the documentation wil l need updating to preserve consistency

between them,

97

• Large screen works t a t ion required For the fu l l benefits of the system to be

achieved, i t needs to be implemented on a large screen workstation. This is not a

problem in the scientific and engineering software communities because workstations

aire in use and increasing in popularity. However, commercial softwaire is stUl being

produced and maintained on conventional 80 column, 24 row terminals which are

not suitable for supporting an application of this kind. The problems wil l dimin­

ish as workstations become cheaper and the technical differences between PCs and

workstations merge.

8.3 Fulfilment of Requirements

The source code browsing and documenting system has met most of the reqtiirements con­

sidered important for a redocimientation tool in Section 4.3. These include: incremental

documentation, informed update, quality assurance, integrated source code, integrated au­

tomatic documentation and information hiding. Configuration management eind team use

have not been addressed in the research, but they could easily be supported by the system.

The browsing and documenting system discussed in this thesis provides capabilities cur­

rently imavailable f rom any vendor. The prototype developed as part of this M.Sc. has been

demonstrated to many industrial visitors to the Centre for Software Maintenemce. Without

exception, the enthusiasm shown for i t has been high. I believe i t can be developed into a

very successful commercial product.

98

Appendix A

Requirements for a Source Code

Browsing and Documenting

System

This appendix describes the requirements for a source code browsing and documenting

system. They have been established from the work using a commercial hypertext system,

Gtdde, and the development of a prototype discussed in Chapters 5 and 6 respectively. The

set of requirements is not complete as the intention has been to concentrate on those axeas

considered important for this application. Other requirements, of a more general nature,

have been left vague: especially where there are several stdtable approaches that may be

taken.

A . l Overview

The system shall provide an alternative approach for DOCMAN[33] users to view the source

code and cross-reference listings associated with a program being maintained. Also, i t shall

allow the user to create, modify and exjimine documentation about routines, data items,

99

types and other named entities in the program.

Hypertext technology shall be used to provide machine support for the links between the

source code, cross-reference listings and docimientation that would usually be followed man-

ually by the user.

A.2 Development and Operating Environment

The nature of the system necessitates its implementation on a large screen workstation

with a mouse and a window environment. The window environment shoidd preferably be

a standardized one that wi l l allow the future porting of the system to other manufacturers

workstations wi th minimeil fincincial overhead. To ensure performance reqiiirements are

met the workstation should have an internal memory of at least 4Mb to enable several

docimients to be stored in memory at the same time.

An exEimple of an environment satisfying these requirements would be the combination of

a Sim workstation, the UNIX operating system and the X Windows environment.

A.3 External Interfaces and Data Flow

The system shall be integrated into the DOCMAN suite of programs. I t shall take as input:

an intermediate cross-reference file generated from the source files that comprise a program;

the source files themselves; and encyclopaedia docromentation. The first time the hypertext

files are generated, there wi l l be no existing encyclopaedia docimientation to be included

in the hypertext since the system wiU not have been used before. But, later generations of

the hypertext wi l l include the documentation created by the user while browsing the source

code and cross-reference hypertext.

A n external interface shall be provided to the host operating system to allow commcinds to

be run f rom a script and to allow existing documentation to be input into the hypertext.

100

A.4 Functional Requirements

A.4 .1 Windows

Multiple Windows

The system shall allow the display of multiple windows on the workstation screen.

Window Typing

Each window shall have a type associated with i t that restricts the type of documentation

that i t may display. Window types in this system shall be: Soiirce (source code), Xref (cross-

reference document), Encyc (encyclopaedia document). Glossary (glossary document) and

General. A window with type general can display any document type. A l l window types

shall share the same set of commands.

Default Window Configuration

When the system is started, the nimiber of windows, their position, size and type shaU be

set according to user customisable default values.

Overlapping Windows

The system shall aJlovr document windows to overlap.

I f when navigating between documents, the destination point of a link is in a window that is

overlapped by another window then the overlapped window shall be brought to the front.

101

Window Locking

The system shall allow a document to be locked to a particular window. This wOl prevent

the system from replacing the docimient in the window with a different document.

Miscellaneous Window Commands

Window commands shall be provided in the system to:

• Create and delete windows.

• Reposition windows.

• Resize windows.

• Retype windows.

• ScroU the documents displayed in windows.

A . 4 . 2 D o c u m e n t s

Scrolling of Documents Following Button Selection

The scrolling of the destination document following a button selection shall behave according

to the following rules:

1. When a new cross-reference entry is displayed in a window it shall be positioned with

its top line at the top of the window.

2. When a new cross-reference entry is displayed, its corresponding encyclopaedia en­

try shall be displayed in a separate window imless a window of the correct type is

unavailable.

3. When a new encyclopaedia entry is displayed in a window i t shall be positioned with

its top line at the top of the window.

102

4. When a new glossary entry is displayed in a window is shall be positioned with its

top line at the top of the window.

5. When the destination of a link is an identifier in a source code docmnent, then the

source code shall be positioned in a window with the identifier located on the line

nearest the middle of the window. Thus edlowing the identifier to be displayed in

context.

Document Status

Popup windows shaU provide facilities for attaching statuses to textual descriptions in the

encyclopaedia eind glossary documentation. Mouse sensitive symbols shall be used in the

text to indicate their presence. The mouse wil l be used to display the status information

which wiU consist of author, status, creation date and approved date.

This facility wiU provide a means of supporting quality assurance for the documentation

created in the system. When a new docvmientation entry has been created, the system shall

generate a status entry and place a button at the end of the documentation entry to which

i t refers. The status entry wil l be created automatically with the author field containing

the user name of the author, the status field wi l l initicdly be set to 'unapproved' and the

creation date field wi l l be set to the current date. AU other fields wi l l be empty.

AU new dociimentation entries wi l l be reviewed to enstire their accuracy. The reviews may

occur at fixed time intervals, prior to new releases of the software, when the amount of

unreviewed documentation reaches a predetermined level or at any other time determined

appropriate for the project. Following the successful! review of a documentation entry, its

status field wiU be updated to 'approved' and its approved date wil l be set. I f a docvunenta-

tion entry fails review, then the entry wiU be removed. A replacement entry may be created

at this time and review process wiU be repeated.

103

Document Annotations

Popup windows shall provide facilities for attaching annotations to textual descriptions in

the encyclopaedia and glossary documentation. Mouse sensitive symbols shall be used in

the text to indicate their presence. The mouse wiU be used to display the eiimotations which

wi l l contain user created notes about the entry to which i t is attached.

Configuration Management

The system shall provide configuration meinagement for documents. This wil l be provides

either internally or by interfacing to an external configuration meinagement system.

A . 4 . 3 L i n k s

Legal Links

One way links shaill be allowed between the document types as follows:

• Between identifiers in the source code and their cross-reference entries.

• Between source references in the cross-reference entries and the point of reference in

the source code.

• Between docimient references in the cross-reference entries and the point of reference

in the encyclopaedia docimientation.

• Between identifiers in the encyclopaedia documentation and their corresponding en­

cyclopaedia entries.

• Between glossary terms in the encyclopaedia entries and their glossary entries.

• Between glossary terms in the glossary entries cind their corresponding glossary entries.

104

Emphasis of Buttons

Each item in a document that is a button shall be highlighted in a bold font.

Emphasis of Destination Points

Following traversal of a link by selecting a button, the destination point should be empha­

sised for a period of time to enable the user to see the exact point in the document where

the link terminated.

Cursor Shape

When the mouse locator is positioned over a button its image shall change. This wiU

indicate to the user that the cursor is positioned correctly to cdlow button selection.

A.4 .4 Mouse

Button Selection

When the mouse cursor is positioned over a button and a mouse key is pressed the document

that the button is linked to wiU be displayed in a window compatible with the documents

type. The view into the document wi l l be positioned so that the destination point of the

link is positioned according to the rules in Requirement A.4.2.

A . 4 . 5 U s e r C o m m a n d s

Pul l -Down Menu Interface

The system shall provide a puU-down menu command interface.

105

Command Language Interface

The system shall provide a command language interface as an alternative to the puU-down

menu interface to allow commands to be typed and command scripts to be r im within the

system.

Text Edit ing Commands

The system shall provide text editing commands in line with those available on modern

interactive editors. The editing commands available in a window wil l be dependant on the

type of document that is displayed within i t .

Editing commands wiU be allowed as follows:

Source Code The init ial version of the source code browsing and dociunenting system

shall not allow editing of source code. Later versions, with configuration management

facilities, wi l l allow the source code to be updated.

Cross-Reference Document No editing commzinds shall be allowed on cross-reference

documents. These docxmients wi l l be created automatically and wil l therefore not

require manual updating.

Encyclopaedia Document General users shall be aillowed to create new encyclopaedia

entries and to add text to existing entries.

Removal of text shall oidy be allowed by 'super-users'. This would normally occur

following the review of an encycopaedia entry where i t had been agreed that parts of

an entry were out of date and needed removing

Glossary Document The same rules shall apply to glossary documents as encyclopaedia

docimaents.

I f an edited document in a window is replaced by a new document following a user action,

then the user shall be given the option to save the edited document before i t is removed

f rom the window.

106

L i n k Crea t ion and Dele t ion Commands

Conmiands shall be provided to enable links to be created interactively between:

1. Identifiers in the encyclopaedia documentation and their encyclopaedia entries.

2. Glossary terms in the encyclopaedia and glossary documentation and their glossary

entries.

AU other links wiU be created automatically.

Search Commands

AH window types shall have searching commands for exact matching of text within a doc­

ument.

Additional search commands shall be provided to facilitate the location of areas of code

where the user may have some recollection of names used within the area, but cannot

remember the exact names. These search commands shall include:

• Search commands that match identifiers in cross-reference entries against regular ex­

pressions.

• Search commeinds with 'intelligent' matching edgorithms simileir to those used in spell

checking programs that offer a number of alternative choices to the misspelt word.

For all the identifiers that match the search expression, there shall be a button dynamically

created in a temporary window that is linked to the cross-reference entry for the identifier.

107

A . 4 . 6 Per formance

Response T ime

The response time between a user selecting a button and the display of the dociraient

associated with the destination of the link shall be no more than one second.

A . 4 . 7 Mul t ip le Users

The system shall provide facilities to allow multiple users to access and update documents.

A . 4 . 8 Glossary-

button Buttons are highlighted, mouse sensitive strings of characters that indicate the

existence of a hypertext link between the button and a point in either that document

or a separate docimient. By clicking a mouse button when the cursor is positioned over

a button causes the document containing the destination of the link to be displayed

in an available window.

link A link coimects two points in a document or separate dociunents. The source point

of the link is indicated in the docimient by the presence of a button.

popup window A temporary window created cis the result of a user action. The window

lasts for either the period of the user action (e.g. the operation of a mouse key) or

unt i l a second user action.

108

Appendix B

Structure of the Hypertext

Documents for X B R O W S E

The following syntactic description of XBROWSE documents, uses the syntactic metalan­

guage defined in BS6154[11, 55].

xbrowse-document prolog, hypertext-document ;

prolog version,

doc-type,

l i r s t - f r e e - d e s t - k e y ,

".do "

(* prologue of an XBROWSE document *)

ve r s i o n ".vn ", integer

(* the ver s i o n of the XBROWSE

document *) ;

doc-type ".ty ", ("Xref" I "Source")

(* the type of the XBROWSE document *) ;

109

f i r s t - f r e e - d e s t - k e y ".ky integer

(* the f i r s t a v a i l a b l e d e s t i n a t i o n key i n

the document *) ;

hypertext-document { a s c i i - c h a r a c t e r I

space I

reference-button-structure I

reference-point-structure

> ;

reference-button-structure = reference-button-id,

bu t t o n - t e x t - s t r i n g ,

reference-button-id,

destination-filename,

reference-button-id,

destination-key,

reference-button-id ;

reference-button-id control-A ;

b u t t o n - t e x t - s t r i n g (K a sequence of a s c i i p r i n t a b l e

characters *) ;

destination-filename (* neime of the f i l e containing the

d e s t i n a t i o n of the l i n k *) ;

r e f e r e n c e - p o i n t - s t r u c t u r e = reference-point-id,

destination-key,

r e f e r e n c e - p o i n t - i d ;

destination-key integer

110

r e f e r e n c e - p o i n t - i d control-B ;

control-A ? the a s c i i character "~A" ? ;

control-B ? the a s c i i character "~B" ? ;

s t r i n g (a s c i i - c h a r a c t e r I space),

{ a s c i i - c h a r a c t e r I space} ;

a s c i i - c h a r a c t e r s y m b o l I d i g i t I

l o w e r - c a s e - l e t t e r I u p p e r - c a s e - l e t t e r ;

i n t e g e r decimal-digit, { d e c i m a l - d i g i t } ;

l o w e r - c a s e - l e t t e r "a" "b" 1 " c " 1 "d" "e" 1 " f " "g"

"h" " i " 1 " j " 1 "k" i i^i i 1 "m" "n"

"o" i .pii 1 "q" 1 i i^i i " s " 1 " t " "u"

"v" "w" 1 "x" 1 l ly l l "z" *

u p p e r - c a s e - l e t t e r "A" I I Q I I 1 "C" 1 I I Q I I "E" 1 "F" "G"

"H" " I " 1 " J " 1 "K" "L" 1 "M" "N"

" 0 " i .pi i 1 "Q" 1 " R " " S " " U "

" V " "W" 1 " X " 1 I I y i i " Z " >

d e c i m a l - d i g i t " 1 " 1 " 2 " 1 " 3 " 1 i i^i i 1

" 5 " 1 " 6 " 1 i i^ i i j " 8 " 1 " 9 " »

space _ I I I I new - l i n e ;

new-line ? ASCII new l i n e character ? ;

s j r m b o l i i j i i I >»} I i i#i i I I I I I

111

I l ^ l l I 1 1 . 1 1 I I l l ^ l l I-•>=<> I ••>•> I <>?•• I

l l f g l l I I I ^11 I l l ^ l l I l l j l l I 11-11 I l i I I I • • ' • > I

" { " I * ' } • * ' I ** —*' •

112

Appendix C

Proposed Syntax of D O C M A N

Entities for Source Code Browsing

and Documenting System

The following proposed syntactic description of the DOCMAN entities to be included in the

source code browsing and documenting system, uses the syntactic metalanguage defined in

BS6154[11, 55]. Descriptions are given of the glossary, encyclopaedia and cross-reference

entities.

glossary-docn

glossary-entry

{glossary-entry} ;

glossary-term, new-line,

glossary-defn ;

glossary-term

glossary-defn

glossary-term-button

str ing ;

{ s t r ing I glossary-term-button} ;

button

113

(* a button that i s l i n k e d to the

glossary entry corresponding to the

glossary term *) ;

encyc-docn

encyc-entry

•Cencyc-entry} ;

identifier-name, new-line,

encyc-defn, new-line,

reference-button, 2 * new-line ;

encyc-defn { s t r i n g I

glossary-term-button I

i d e n t i f i e r - b u t t o n

} ;

reference-button ? the terminal "REFERENCES:" i n bold

font ?

(* the button that i s l i n k e d to the

xref entry corresponding to the

encyclopaedia entry *) ;

i d e n t i f i e r - b u t t o n button

(* a button that i s l i n k e d to the

encyclopaedia entry f o r the

i d e n t i f i e r *) ;

xref-docn { x r e f - e n t r y } ;

x r e f - e n t r y identifier-name, new-line.

114

{ i d e n t i f i e r - d e s c r i p t i o n , new-line},

"DEFINITION:", new-line,

[d e f i n i t i o n - b u t t o n] ,

"CODE REFERENCES:", new-line

{code-reference-button, new-line},

"DOCUMENTATION REFERENCES:", new-line,

{docn-reference-button, new-line},

2 * new-line ;

i d e n t i f i e r - d e s c r i p t i o n s t r i n g

(* a s t r i n g generated by a cross-reference

front-end g i v i n g information about the

i d e n t i f i e r *) ;

de f i n i t i o n - b u t t o n button

(* the button that i s l i n k e d to the

d e f i n i t i o n s i t e of the i d e n t i f i e r *) ;

code-reference-button button

(* a button that i s l i n k e d to a

s p e c i f i c reference to the i d e n t i f i e r

i n the source code *) ;

docn-reference-button button

(* a button that i s l i n k e d to a s p e c i f i c

reference to the i d e n t i f i e r i n the

documentation *) ;

identifier-name s t r i n g

button b o l d - s t r i n g

(* a hypertext button represented on the

screen as a s t r i n g i n bold font *) ;

115

word s t r i n g - space;

s t r i n g (a s c i i - c h a r a c t e r I space),

{ a s c i i - c h a r a c t e r I space} ;

b o l d - s t r i n g ? the non-terminal s t r i n g i n a bold

font ?;

a s c i i - c h a r a c t e r symbol I d i g i t I

l o w e r - c a s e - l e t t e r I upper-case-letter;

l o w e r - c a s e - l e t t e r = "a" "b" 1 " c " "d" "e" 1 " f " i igi .

"h" i i^i i 1 " j " "k" ii^^ii 1 "m" "n"

"o" i ipii 1 "q" i i^i i i igi i 1 " t " "u"

"v" "w" 1 "x" l ly l l "z" 1

u p p e r - c a s e - l e t t e r _ i i^ i i "B" 1 "C" "D" "E" 1 "F" "G"

" H " I I j i i 1 " J " " K " " L " 1 "M" "N"

"0" i ipii 1 "Q" " R " " S " " U "

i i y i i "W" 1 "X" I IY" "Z"

dec i m a l - d i g i t = "0" i i^ i i 1 "2" "3" i i^ i i 1

"5" "6" 1 "7" "8" "9" 1

space _ I I I I new- l i n e ;

new-line ? ASCII new l i n e character ? ;

symbol I I j I I I > I I > I i i ^ i i I i i ^ i i I i i y ^ i i I i i j ^ i i I I I > 11 I

i i ^ i i I i i ^ i i I 11,^11 I i i ^ i i I I I I I I i i _ i i I I I I I I

i i ^ i i I 1 1 . 1 1 I 1 1 . 1 1 I i i ^ i i I 11-11 I i i ^ i i I i i ? i i I

"(3" I [• • I " \ " I " 3 " I "~" I " " I " ' " I

116

" { " I " } " I "~" ',

117

Bibliography

[1] Federal Information Processing Standards Publication 38. Guidelines for documenta­

tion of computer programs and automated Technical report, NBS, U.S. Department

of Commerce, Februciry 1976.

[2j Federal Information Processing Standards Publication 64. Guidelines for docimienta-

tion of computer programs and automated Technical report, NBS, U.S. Department

of Commerce, August 1979.

[3] Robert M. Akscyn, Donald L . McCracken, and EUse A. Yoder. KMS: a distributed

hypermedia system for managing knowledge in organizations. Communications of the

ACM, 31(7):820-835, July 1988.

[4] Roy E . Anderson. Modular documentation: A softwjire development tool. In AFIPS

Con/. Proc. 1981 National Computer Con/., pages 401-405, 1981.

[5] ANSI/ANS. Guidlines for the documentation of digital computer programs. Technical

Report ANSI/ANS 10.3-1986, American National Standards, 1986.

[6] A N S I / I E E E . Software test documentation. Technical Report A N S I / I E E E 829-1983,

Americjin National Standards, 1983.

[7] P. Antonini, P. Benedusi, G. Cantone, and A. Cimitile. Madntenance and reverse

engineering: Low-level design documents production and improvement. In Proceedings

of the Conference on Software Maintenance — 1987, pages 91-100, September 1987.

[8] Apple Computers, Inc., California. HyperCard User's Manual, 1987.

[9] Barry W. Boehm. Software and its impact: A quantative assessment. Datamation,

pages 48-59, May 1973.

118

[10] Barry W. Boehtn. Software Engineering Economics. Prentice-Hall, Englewood Cliffs,

N.J., 1981.

[11] British Standards Institution, 2 park St., London W I A 2BS. Method of Defining

Syntactic Metalanguage, 1981.

[12] F.P. Brooks. The Mythical Man-Month. Addison-Wesley, Reading, MA, 1975.

[13] Ruven E . Brooks. A theoretical analysis of the role of documentation in the compre­

hension of computer programs. In Proc. of the Human Factors in Computer Systems,

pages 125-129. A C M Press, March 1982.

[14] Peter J . Brown. Interactive documentation. Software — Practice and Experience,

16(3):291-299, March 1986.

[15] Peter J . Brown. Turning ideas into products: The guide system In Proceedings of the

Hypertext '87 Workshop, pages 33-40. The University of North Carolina, November

1987.

[16] Peter J . Brown. Converting help systems to hypertext. Software — Practice and

Experience, 18(2):163-165, February 1988.

[17] J .K. Buckle. Software Configuration Management. MACMILLAN EDUCATIONS

L T D . , 1982.

[18] Vannevar Bush. As we may think. Atlantic Monthly, 176(1):101-108, July 1945.

Reprinted in Computer Bulletin, March 1988.

[19] Brad Campbell and Joseph M. Goodman. HAM: A general purpose hypertext abstract

machine. In Proceedings of the Hypertext '87 Workshop, pages 21-32, November 1987.

[20] Brad Campbell and Joseph M. Goodman. HAM: A general purpose hypertext abstract

machine. Communications of the ACM, 31(7):856-861, July 1988.

[21] Ned Chapin. Software maintenance: A different view. In AFIPS 54th National Com­

puter Conference Proceedings, pages 507-513, 1985.

[22] Y . Chen and C.V. Ramamoorthy. The c information abstractor. In COMP86, pages

291-298, October 1986.

119

[23] Jeff Conklin. Hypertext: An introduction and survey. IEEE COMPUTER, pages

17-41, September 1987.

[24] Jeff Conklin. A survey of hypertext. Technical Report STP-356-86, Revision 2, MCC

Software Technology Program, December 1987.

[25] Norman Delisle and Mayer Schwartz. NEPTUNE: a hypertext system for cad applica­

tions. In Proceedings of ACM SIGMOD '86, pages 132-143, 1986.

[26] Norman Delisle ajid Mayer Schwartz. Contexts — a partitioning concept for hypertext.

ACM Transactions on Office Information Systems, 5(2):168-186, April 1987.

[27] DOD. DoD automated data systems documentation standards. Technical Report DOD

7935.1-S, Department of Defence, September 1977.

[28] Michael E . Fagan. Design and code inspections to reduce errors in program develop­

ment. IBM Systems Journal, 15(3):182-211,1976.

[29] Michael E . Fagan. Advances in software inspections. IEEE Transactions on Software

Engineering, SE-12(7):744-751, July 1986.

[30] F C S C . The software improvement process—its phases and tasks. Technical Re­

port OSD/FCSC-83/006, Office of Software Development and Information Technology,

1983.

[31] Nigel T. Fletton and Malcolm Munro. Redocimienting software systems u îng hyper­

text technology. In Proceedings of the Conference on Software Maintenance — 1988,

pages 54-59, October 1988.

[32] John R. Foster. Software maintenaince — an overview. R l l Divisional Memoramdum

Rll /86/013, British Telecom Research Laboratories, August 1986.

[33] John R. Foster and Malcolm Munro. A documentation method b£ised on cross-

referencing. In Proceedings of the Conference on Software Maintenance — 1987, pages

181-185,1987.

[34] Pankaj K. Garg and Walt Scacchi. A hypertext system to manage software life cycle

documents. In Proceedings of the 21st Annual Hawaii International Conference on

System Sciences, pages 337-346, 1988.

120

[35] Adele Goldberg. The influence of an object-oriented language on the programming

enviroimient. In David R. Bzirstow, Howard E . Shrobe, and Erik SzindewaU, editors.

Interactive Programming Environments, pages 141-171. McGraw-Hill Book Company,

1984.

[36] Danny Goodman. The Complete HyperCard Handbook. Beintam Books, New York,

September 1987.

[37] John D. Gould. Some psychologiccd evidence on how people debug computer progr£ims.

Intemationl Journal of Man-Machine Studies, 7:151-182,1975.

38] Rajid P. Hall. Seven ways to cut software maintenance costs. Datamation, pages

81,82,84, July 1987.

[39] Jitsuro Harada and Satoshi Sakashita. A docimaentation tools to visualize program

maintainability. In 1983 Software Maintenance Workshop Record, pages 275-280,1983.

[40] EUis Horowitz and Ronald C. Williamson. SODOS: a softwaire documentation sup­

port environment—its definition. IEEE Transactions on Software Engineering, SE-

12(8):849-859, August 1986.

[41] EUis Horowitz and Ronald C. Williamson. SODOS: a software docimientation support

environment—its use. IEEE Transactions on Software Engineering, SE-12(11):1076-

1087, November 1986.

[42] Geoffrey James. Document Databases. Van Nostrand Reinhold, New York, 1985.

[43] Gabor Jandreisics. Static analysis of commercial programs with the SOFTDOC sys­

tem. Technical report, SES Softweire Engineering Service, Pappelstr. 6, D-8014 Mu-

nich/Neubiberg, West Germany, 1981.

[44] Ted Kaehler and Dave Patterson. A Taste of Smalltalk. W. W. Norton & Company,

1986.

[45] Stanley Letovsky and EUiot Soloway. Delocalized plans and prograim comprehension.

IEEE Software, 3(3):41-49, May 1986.

[46] James Martin and Carma McClure. Software Maintenance: The problem and Its So­

lutions. Prentice-Hall, 1983.

121

[47] Stuart McGowain. Fortime — an ipse docimientation tooL Technical report, CAP (UK)

Limited, 1987. Alvey Project ALV/PRJ/SE/050 .

[48] Douglas MuUin. Software engineer's task analysis. Technical Report 2017/twp/116,

CAP (UK) Limited, February 1988. Alvey Project ALV/PRJ/SE/050 .

[49] Douglas Mullin and Stuart McGowan. Fortune's functional definition. Technical Report

2017/twp/128, CAP (UK) Limited, January 1988. Alvey Project ALV/PRJ/SE/050.

[50] OWL Ltd. Guide User's Manual, 1987.

[51] David L . Parnas. Information distribution aspects of design methodology. In 1971

Proceedings of IFIP Congress, 1971.

[52] Al Patterson. Understanding and documenting software. In 1983 Software Maintenance

Workshop Record, pages 142-144, 1983. Summary of Session 7.

[53] R.W. Scheifler and J . Gettys. The X window system. Computer Graphics, pages

79-109, April 1986.

[54] Normjin F . Schneidewind. The state of softwaire maintenance. IEEE Transactions on

Software Engineering, SE-13(3):303-310, March 1987.

[55] R. S. Scowen. An introduction and handbook for the standard syntactic metcilamguage.

NPL Report D I T C 19/83, National Physical Laboratory, Teddington, Middlesex T W l l

OWL, UK, February 1983.

[56] Margaret E . Singleton. Automating Code and Documentation Management. Prentice-

Hall, Englewood CUffs, N.J., 1987.

[57] Harry M. Sneed. Software renewal: A case study. IEEE Software, pages 56-63, July

1984.

[58] Ian Sommerville, R. Welland, L Bennett, and R. Thomson. SOFTLIB—a documenta­

tion management system. Software — Practice and Experience, 16(2):131-143, Febru­

ary 1986.

59] Sun Microsystems, Inc. SunView Programmer's Guide, September 1986.

[60] Sun Microsystems, Inc. SunView System Programmer's Guide, September 1986.

122

[61] E . Burton Swanson. The dimensions of maintenance. In Proceedings of the 2nd In­

ternational Conference on Software Engineering, pages 492-497. I E E E / A C M , October

1976.

[62] Janet H. Walker. Supporting docimient development with concordia. In Proceedings of

the 21st Annual Hawaii International Conference on System Sciences, pages 355-364,

1988.

[63] J.H. Walker. Document examiner: Delivery interface for hypertext documents. In

Proceedings of the Hypertext '87 Workshop, pages 307-324, 1987.

[64] Nicole Yankelovich, Bernard J . Haan, Norman K. Meyrowitz, and Steven M. Drucker.

Intermedia: The concept and construction of a seamless information environment.

IEEE COMPUTER, 21(l):81-96, January 1988.

[65] Nicole Yankelovich, Norman Meyrowitz, and Andries vein Dam. Reading and writing

the electronic book. IEEE COMPUTER, 18(10):15-30, October 1985.

[66] Nicholas Zvegintzov. Neinotrends. Datamation, pages 106-116, August 1983.

