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ABSTRACT 

Three trials have been made for the hybridization reaction between the 

total RNA extract prepared from the pod of pea {Pisum sativum L.) and the 

probe prepared from a clone for a Brassica root protein homologous to carrot 

extensin, no sign of any hybridization could be seen; this shows that there 

is no similar sequence between those two. 

Another attempt was done to identify a pea pod specific clone from the 

cDNA library of pea pod by the use of the method of plus and minus saeening 

technique. Two clones (pPP1052 & pPP954) have been selected that hybridized 

strongly to pea pod RNA but not that of pea leaf. One of them (pPP1052) has 

been successfully cloned into M13mpl8 and sequenced by Sanger method. 
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ABBREVIATIONS 

The abbreviations used thoughout the dissertation were based on those 

that recommended by the Biochemical Society in the Biochemical Journal 

"Policy of the Journal and Instruction to Authors", volume 209 (1983), pp 

1-27. Notations that had been used but not listed in the list were given 

below: 

bp: base pairs 

cDNA: complementary DNA 

BSA: bovine serum albumin 

GRP: glycine-rich protein 

HPRG: hydroxyproline-rich glycoprotein 

IPTG: isopropyl |3-D-thiogalactoside 

PEG: polyethylene glycol 

SDS: sodium dodecyl sulphate 

SSC: saline sodium citrate 

TEMED: N,N,N',N'-tetramethylethylenediamine 
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C H A P T E R I 

INTRODUCTION 



C H A P T E R I 

I N T R O D U C T I O N 

1.1 General Introduction 

Pisum sativum L. (2n=14), was the familiar green pea, constitutes one 

of the four most important seed legumes. It is grown mostiy in cool 

countries, but probably originated in central or western Asia. Originally, 

peas seem to have been consumed exclusively in the dry or mature stage as in 

'split pea* soup in the USA, but in recent centuries varieties grown as 

sweet or green peas have been given much attention. Most of the pea crop, is 

now produced commercially for fresh or green peas, which are canned or 

frozen. The plants are well adapted to cool spring weather or climate with 

reasonably cool summer. As such, this crop provided an important source of 

protein for human consumption (Janick et al., 1974). 

The fruit of pea is composed of a single ovary. In matured fruit, the 

seeds are housed in a pod composed of ovary wall. When the enclosed seed is 

fully developed, the pod is dry and is made up of non-living sclerenchyma 

cells with lignified or suberized walls. Dehiscence of the seed occurs by 

separation of the two sutures in the pod (Holman, 1939). 

Despite the nutritive value of pea, the crop produced from conventional 

inbreeding of high yielding varieties is more susceptible to major disease 

outbreaks. Nonetheless, with the advent of genetic engineering, that 

provides the ability to change the genetic makeup of the organism, a 

powerful new mean for investigation of all the aspects of plant function at 

the molecular level is provided. The full potential of the plant's own 

defence mechanism against disease can be explored and exploited. 

12 Importance of Cell Wall 

One of the differences that distinguish the cells of plant from those 
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of animal is the presence of the extraprotoplasmic wall in the cells of 

plants. The cell wall is a complex structure, and is cell-specific in its 

composition, so that each particular cell-type in the plant has a wall 

specifically adapted to its function, and related to the development of the 

given cell type. The cell walls of different cell types also have a 

quantitative differences in the composition of polysaccharides and other 

polymers. For example, epidermal cells have a layer of cutin as part of die 

wall, limiting the loss of water. Moreover, the cell wall is important in 

providing support to the whole plant through the collective mechanical 

strength of the individual cell wall, and in providing barrier against the 

invasion of disease. 

As the cell wall is important in disease resistance and in protection 

against physical damage, a knowledge of how the cell wall functions is 

needed for the design of plants with increased resistance to disease and 

physical damage. Moreover, cell walls constitute a large fraction of the 

edible plants, and are therefore the major determinant of the character of 

dietary fibre (Hood, 1988). An idea of the structure of cell walls is needed 

for an understanding of the nutritional role of fibre. 

1.3 Hydroxyproline-rich Proteins 

In general, plant cell walls were comprised of cellulose, hemi-

cellulose, pectic compounds, lignin, suberin, proteins, and water. For the 

portion of proteins, cell walls contain enzymes as well as structural 

proteins, for example, peroxidase in tobacco is associated with the cell 

wall (Lagrimini et al., 1987). Here, only the structural protein components 

of tile wall are discussed. Lamport & Northcote in 1960 first identified a 

protein in the primary cell wall which contains a high proportion of 

hydroxyproline. So far, tiiree classes of soluble hydroxyproline-rich 

glycoproteins have been found in higher plants. The first type is tiie 
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arabinogalactan proteins, which are acidic glycoproteins, composed mainly of 

serine, alanine, and hydroxyproline, which may function in cell-cell 

recognition, they are localized primarily in the extracellular matrix and 

are sometimes associated with the plasma membrane. A second type is the cell 

wall lectins, found only in the solanaceae family, which contain both a 

hydroxyproline/serine-rich and a cystein-rich domain and have been shown to 

increase upon wounding. The third type is the extensins, components of the 

primary cell wall, that may also become part of the insoluble matrix of the 

cell wall. In addition to their high content of hydroxyproline, another 

feature common to these three types of proteins is a high level of serine, 

and a repeating unit of tetrahydroxyproline-serine. However, up to now, only 

extensin has been well characterized. 

1.3.1 Structure of Extensin 

After the first discovery of a hydroxyproline-rich protein in plant, 

Lamport (1965) later proposed tiiat this protein must be involved in cell 

extension. This led to the hydroxyproline-rich protein being given die name 

extensin. In 1967, by using partial alkaline hydrolysis of tomato cell wall, 

Lamport found that extensin has a polypeptide backbone with hydroxyproline 

residues containing 0-glycosidic links to short oligo-arabinosidey lie also 

showed that galactose is an additional sugar component of the glycoprotein 

(1969), and is attached 0-glycosidically to serine residues (1973). This 

finding led to the proposal of the structure shown below for one of 

repeating units of the glycoprotein. 
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ara ara 
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I I I 

Ser-hyp-hyp-hyp-hyp 
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ara ara 
I I 

ara ara 
I I 

ara ara 
I I 

ara ara 

Diagram showing one of the repeating unit of extensin 

He further suggested that as extensin peptides are so rich in 

hydroxyproline, the polypeptide may adopt the polyproline n helix 

conformation, stabilize by tiie arabinosides, which probably bond to tiie 

peptide backbone through hydrogen-bonds (1977). This results in a rigid 

rod-shaped molecule. 

Liquid HF can be used to break the bonds of polysaccharides (by 

solvolysis), but not the protein. After the treatment of tiie cell wall witii 

liquid HF, the cell wall could not be totally solubilized. As a result, Mort 

and Lamport (1977) proposed that extensin is actually forming a network 

semi-independent but interacting with that of cellulose. In this way, they 

contribute to the strength and rigidity of the cell wall. 

The way that individual extensin molecule joins together was explained 

by Fry in 1982, he isolated a tyrosine dimer from cell walls which he called 

isodityrosine. It consists of two tyrosine units linked together by a 

diphenyl ether bridge. As a result, an interpeptide link, isodityrosine, is 

expected to form between pairs of tyrosine residues in extensin molecules 

that cause tiiem to join together as a network. 

1.3.2 Biosyntiietic Patiiway 

The biosyntiiesis of extensin has been tiioroughly investigated. The 
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general scheme of biosynthesis is given below. 

The proline-rich polypeptide backbone is synthesized first (Stuart, 

Mozer & Vamer, 1982), and then undergoes extensive post-translational 

modifications, namely hydroxylation of proline residues by the action of 

peptidylproline hydroxylase (Chrispeels, 1970), and glycosylation by 

arabijiosyl transferase in the golgi apparatus (Gardiner & Chrispeels, 1975; 

Wienecke et al., 1982), The fully formed soluble glycoprotein is then 

secreted to the cell wall. Before it is insolubilized there, it can be 

extracted by salt solutions (Brysk & Chrispeels, 1972), and it has been 

suggested that the glycoprotein is ionically bound to pectin at this stage 

(Smith, Muldoon & Lamport, 1984). It has been also shown that proline 

hydroxylation and glycosylation are not required for secretion and 

insolubilization (Smith, 1981). However, secretion and even cross-linking of 

imglycosylated extensin does not necessarily mean that the protein is 

functioning properly in the wall (Stafstrom & Staehelin, 1986). 

The glycoprotein is then bound in the cell wall by the formation of 

interpeptide isodityrosine links (Fry, 1982). The synthesis of this phenolic 

link between tyrosine residues is catalysed by peroxidase (Cooper & Vamer, 

1983), and the reaction is inhibited by acidic pH (Cooper & Vamer, 1984). 

This has led to the suggestion that cross-linking can be regulated by 

auxin-induced hydrogen ion secretion. 

When the deposition of labelled extensin in cell walls was studied, the 

extensin label was distributed quite uniformly aCTOss the cell wall but was 

absent from the expanded middle lamella at the interception of three or more 

cells, and was reduced in the narrow middle lamella between two cells, 

similar to the distribution of cellulose (Stafstrom and Staehelin, 1988). 

This indicated that extensin can not cross the middle lamella separating the 

walls of adjacent cells. The wall surrounding a given cell is synthesized by 

that cell alone, and cross-links probably do not form between extensin 
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molecules synthesised by adjacent cells, implying tiiat tiie wall 

strengthening properties of the extensin matrix are confined to each 

individual cell. In addition, as extensin can be found across tiie entire 

wall, tiie newly syntiiesized extensin was added to tiie wall by intus­

susception - this was, by the intercalation of new particles among those 

existing in the wall. 

1.3.3 Functions of Extensin 

Until recentiy, the insolubility of extensin has been tiie major 

obstacle to its study. Although, for some time, it has been accepted that 

extensin plays a role in controlling growth and is involved in disease 

resistance, the inability to extract this glycoprotein from the cell wall 

has restricted knowledge of its structure. Moreover, because of the presence 

of many imino acid residues and of many posttranslational modifications, it 

is very difficult to complete the sequence of extensin by protein chemical 

methods. 

A better understanding of tiie composition, sequence and secondary 

conformation of extensin has only emerged since the discovery of soluble 

extensin precursors. These precursors can be readily eluted from the wall of 

carrot root explants or tomato cells with a salt solution (Smith et al., 

1984; Stuart & Vamer, 1980), or solubilied the hydroxyproline-rich protein 

(HRGP) from a cell homogenate of potato tubers or tobacco callus at a very 

acidic pH (Leach et al, 1982; Mellon & Helgeson, 1982). 

More recentiy, information on extensin structure has came from studies 

of its biosynthetic intermediates at a stage even earlier than soluble 

precursors, mRNA and DNA. Part of tiie peptide sequence of extensin has been 

predicted from the RNA, and most recentiy, tiie DNA, which codes for tiiis 

protein. 
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1.3.3.1 Structural Importances of Extensin 

The distribution of extensin amongst different cell types is not 

uniform; for example, elevated levels of salt-extractable glycoprotein were 

found during the development of specialized tissues (Wilson and Fry, 1986). 

This led to the conclusion that extensin is expressed in a tissue-specific 

and developmental-specific manner. 

During soybean seed development, extensin is localized and accumulated 

in cell walls of the palisade and hourglass cells (which represents the 

mechanical and protective part of the Leguminous seed). The synthesis of 

extensin occurs just before the drying and shrinking of the seed coat 

started, suggesting that extensin may play a role in the mechanical and 

protective function of the testa towards the embryo (Cassab et al., 1985). 

Extensin is also found to be a major component of sclerenchyma cell 

walls. Cassab and Vamer (1986) have suggested that extensin, together with 

other cell wall components, contributes to the tensile strength of 

mechanical cells. The sclerenchyma cells are supposed to enable plant organs 

to withstand various strains, those may result from stretching, bending, 

weight, and pressure, without undue damage to the thin-walled softer cells, 

such as parenchyma. In agreement with this hypothesis, very low level of 

extensin is found in the walls of parenchyma cells, which do not have great 

tensile strength (Cassab et al., 1985). In the parenchymatous cell walls of 

soybean seed coats, extensin is almost absent (Cassab & Vamer, 1987). 

1.3.3.2 Cell Extension Control 

The growth of plant cell consists of irreversible extension of the 

pre-existing wall. The ability of the cell wall to extend is found to depend 

on the amount of extensin and the state of its cross-links to the other wall 

components (Wilson & Fry, 1986). 

The binding of hydroxyproline-rich glycoprotein to the cell wall has 
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been proposed to be the cause of reduced growth. In elongating tissue of pea 

stems the protein content of the wall increased, as well as the content of 

Hyp and Hyp-arabinosides; these change only slightly once elongation is 

completed (Klis, 1976). Moreover, Van Hoist et al. (1980) showed that the 

degree of arabinosylation of wall-bound hydroxyproline increases when the 

rate of cell elongation decreases in bean seedlings. As a result, there is 

an inverse relation between the rate of elongation and the concentration of 

the hydroxyproline-rich wall proteins, which suggest that extensin stiffens 

the wall during growth, thus reducing the rate of elongation. The presence 

of extensin in the soybean apical hook indicates that while the major 

increase in wall-bound extensin is detected in the elongating hypocotyl, 

extensin is also synthesized in the region of the seedling that is 

undergoing active cell division (Klis, 1976). 

Fujii, Suzuki & Kate (1981) suggested that a growth inhibitor is one of 

the factors that caused differential growth between the upper and lower 

halves of geotropic Zea roots, causing them to curve downwards. The 

inhibitor selectively increases the concentration of hydroxyproline-

containing proteins rigidly bound to the cell walls in the lower halves of 

the roots, thereby reducing the growth. Further support for the proposed 

role of the hydroxyproline-rich glycoprotein in stopping cell elongation was 

provided by Monro et al. (1974). They used sequential procedures to compare 

elongating and non-elongating hypocotyl sections and found that there is 

more bonding of the glycoprotein in the wall of non-elongating tissue. 

A current view of extensin's role is that it provides a second network 

which restricts movement between cellulose microfibrils. To achieve this 

requirement of a separate network, extensin is secreted to the wall in a 

soluble form and is then locked in position around the cellulose skeleton by 

the formation of isodityrosine cross-links by the extensin peroxidase 

(Everdeen, 1988). It is assumed that the insolublization of extensin in the 
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wall is an irreversible process. Extension is a major control point for 

plant hormones like auxin and gibberellin. Isolated cell walls have been 

shown to extend when placed in acidic pH (Taiz, 1984; Cleland et al., 1987); 

since auxins induce acid secretion, they may also suppress cross-linking of 

soluble extensin during wall growth. When growth hormone production ceases, 

extensin can cross-link to harden the new wall. 

Lamport and Epstein (1985) have suggested that the xyloglucan 

components of the wall may function as reversible bonds or 'latches', which 

can be broken to permit growth. The xyloglucans are hydrogen-bonded to the 

cellulose fibrils forming cross links, their turnover can be enhanced by 

auxin (via hydrogen ion secretion), in effect opening the latches, and 

allowing the microfibrils to slip through the extensin mesh and permit cell 

extension. No synthetic process would be necessary in cell extension by this 

method. By using chemical denaturants and boiling in water to remove the 

enzymes in walls from frozen-thawed cucumber hypocotyls, creep (which is the 

extension of the wall when places in tension under acidic conditions) seemed 

to be inhibited. These results indicated that creep depends on enzymes that 

are firmly attached to or entangled in the wall, but are denanired under the 

treatments used (Cosgrove, 1989). 

1.3.3.3 Disease Defense 

Enhanced extensin levels may play a role in resistance to pathogens 

either through their function of strengthening the cell wall, perhaps in a 

lignin-glycoprotein complex, or as bacterial agglutinins. 

The level of the hydroxyproline-rich glycoprotein has been shown to 

undergo a ten-fold increase in melon seedlings infected with the fungus 

Colletotrichum lagenarium (Esquerre-Tugaye & Lamport, 1979; Mazau et al., 

1986). Moreover, cell wall Hyp levels increase more rapidly in resistant 

than in susceptible cultivars of cucumber infected with the fungus 
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Cladosporiwn cucwnerunum (Hammerschmid, 1984). The increase in extensin is 

also correlated with resistance to anthracnose, a disease caused by the 

fungal infection (Esquerre-Tugaye & Toppan, 1976). Extensins have been shown 

to accumulate in the walls of living, uninfected cells close to sites, where 

fungal and bacterial growth has been restricted by the plant. Extensin also 

accumulates in plant papillae, which may present a physical barrier to 

penetration by fungi (Mazau, 1987). 

Esquerre-Tugaye et al. (1979) concluded that die accumulation of 

glycoprotein acts as a defence mechanism, which is effective i f started 

early in the host. Conversely, inhibiting glycoprotein synthesis in diseased 

plants results in an accelerated and more intense colonization of the host 

by the pathogen. 

Many plants have been reported to respond to an attack by pathogens 

with enhanced ethylene production (Chrispeels, 1969). Hence, it has been 

proposed that ethylene may function as a signal for the plant to enhance or 

activate its defences against pathogens (Averyhart-FuUard, 1987). In 1982, 

Toppan, Roby & Esquerre-Tugaye found indirect evidence that ethylene 

regulates the synthesis of extensin as a defence mechanism. They showed that 

in the presence of specific inhibitors of ethylene biosynthesis, both 

ethylene production and ^"^C-hydroxyprotein deposition in the cell walls of 

infected tissue is significantly lowered. Furthermore, treatment of healthy 

tissues with a natural precursor of ethylene stimulats both the production 

of the hormone and incorporation of ''^C-hydroxyproline into cell wall 

protein. 

The increase in cell wall hydroxyproline content observed in aged 

carrot discs has also been suggested to occur as part of a wound response in 

the excised tissue (Chrispeels, 1969). It is possible that production of 

hydroxyproline-rich glycoprotein in each of these stress situations may be 

controlled by ethylene, as wounding, aging and infection are all known to 
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cause plants to release large amounts of ethylene (Toppan et al., 1982). 

Toppan & Esquerre-Tugaye (1984) found that etiiylene levels are raised 

before the pathogen has invaded the tissues and before the onset of 

symptoms. They have demonstrated that the production of ethylene is 

stimulated by glycopeptides or 'elicitors' from the fungal cell walls. They 

suggested that the early increases in ethylene observed after inoculation 

may be occurring as a response to cell-surface interaction between host, 

possible via special receptors, and pathogen. They also found that this 

interaction is not species specific; elicitors from different fiingi can 

induce ethylene synthesis in non-host plants. Furthermore, these elicitors 

have been shown to stimulate the synthesis of both ethylene and the 

hydroxyproline-rich glycoproteins (Esquerre- Tugaye et al., 1985). It has 

been suggested (Mauch, Hadwiger & Boiler, 1984) that ethylene and fungal 

elicitors are actually separate signals which can both induce the 

biochemical defence reaction, of which synthesis of hydroxyproline-rich 

glycoproteins was a part. As shown in soybean cotyledons treated with a 

fungal elicitor, suppression of ethylene production by aminoethoxyvinyl-

giycine (AVG) did not reduce, phytoalexin production (Calt et al., 1976), and 

AVG treatment only slightly reduced the biosynthesis of hydroxyproline-rich 

cell wall glycoprotein in diseased melon seedlings (Chrispeels, 1969). 

The distinct nature of the signals provided by ethylene and the wound 

response is confirmed by evidence from the accumulation of mRNA species for 

extensin, ethylene induces two extensin mRNAs (1.8 and 4.0 kb), whereas 

wounding produces the accumulation of an additional extensin mRNA (1.5 kb) 

(Ecker & Davis, 1987). 

The exact role of extensins in the defence response is not clear, but 

they may act as structural barriers, and provide matrices for the deposition 

of lignin. 

Further evidence for the possible role of extensin in the defence 
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mechanism of plants can be found in the structural similarity between this 

glycoprotein and bacterial agglutinins. Mellon & Helgeson (1982) isolated a 

glycoprotein agglutinin from tobacco callus tissue cultures. They found 

that, like extensin, the protein is basic and rich in hydroxyproline, while 

the carbohydrate is predominantly arabinose. The glycoprotein also has a 

high content of lysine and histidine with a low proportion of acidic 

residues. This results in its being positively charged at physiological pH. 

The avirulent bacterial cells, which lack an extracellular polysaccharide, 

are negatively charged and hence agglutination can be caused by simple ionic 

interaction. The agglutinins may not have any race-specific role and, i f 

they have any function in recognition, they may merely be non-specific 

sensors of foreign invaders. 

Using immunofluorescence techniques, Leach, Cantrell & Sequeira (1982) 

have shown that potato agglutinins are located in the plant cell wall. 

Smith, Muldoon & Lamport (1984) pointed out the similarities between tomato 

extensin precursors and these agglutinins, and suggested that structural and 

agglutination roles are probably similar to each other. 

1.3.3.4. Other Roles 

A number of other possible functions have been proposed for extensin. 

For example, Albersheim (1978) indicated that it can act as a carrier 

protein, with the function of transporting polysaccharides from the 

cytoplasm to the wall. Kauss & Glaser (1974) pointed out that the 

glycoprotein can guide the polysaccharides into their 'right' position in 

the cell wall. An alternative idea involves extensin's acting as a primer 

for the synthesis of the wall polysaccharides, in a similar mechanism to the 

polymerization of starch and glycogen (Brown & Kimmins, 1977). 
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L4 Other Cell Wall Protein 

Many different kinds of cell wall protein have been found, glycine-

rich and proline-rich proteins are among tiiose that have been more widely 

studied. 

1.4.1 Glycine-rich Protein 

Vamer and Cassab in 1986 pointed out that certain plant organs contain 

little HRGP and instead the cell walls are rich in glycine, raises the 

possibility that the wall of certain plant organ may have a wall rich in 

glycine instead of HRGP. Glycine-rich protein has been isolated from pumpkin 

seed coat (Vamer and Cassab, 1986), strawberry fruit (Reedy and Poovaiah, 

1987), petunia (Condit and Meagher, 1986), and bean (Keller et al., 1988). 

A l l these reports suggest that GRPs occur in a wide variety of plants. The 

entire amino acid sequence of this GRP can be represented as (Gly-X)^, where 

X is frequently glycine. 

Moreover, it was found that the antibodies raised against glycine-rich 

protein (based on a (Gly-X)^ motif) react with a purified cell wall protein 

showed that glycine-rich protein were indeed cell wall protein. It is also 

highly localized in regions closely associated with the vascular system, 

suggest that the protein has a specific role in the functional 

specializatitm of vascular tissue (Keller et al., 1988). It has also been 

shown that this protein is important in development and wounding response 

(Condit & Meagher, 1986). 

The probe for HRGP can be used to isolate GRP, this shows that gene 

sequences encoding GRPs and HRGP are quite similar. Their mRNAs are encoded 

by opposite strands of this similar sequence. This suggests during 

evolution, one of these sequences has duplicated and inverted to provide a 

novel protein. 
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1.4.2 Proline-rich Protein 

A cDNA from carrot root was isolated that increased greatiy upon 
wounding (Chen & Vamer, 1985). The predicted peptide sequence of the cDNA 
contained 24 repeat units of Pro-Pro-Val-Xa-Xaa. It has been shown diat the 
level of the protein increases after wounding and during plant development 
(Tiemey et al., 1988). 

1.5 Aims of the Project 

The aims of this project are: 

a. To identify a homologous sequence of extensin from pea pod by the use of 

a clone for Bassica root protein which is homologous to carrot root 

extensin. I f hybridization can be seemed between the RNA extracted from 

pea pod, and the labelled extensin probe, the corresponding clone from the 

cDNA library of pea pod can be picked out and use for further studied. 

b. To identify a pea pod specific clone by using the plus and minus 

screening technique. I f a specific clone can be found, it is then 

characterized by DNA sequencing. 
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C H A P T E R I I 

M A T E R U L S A N D M E T H O D S 
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C H A P T E R I I 

M A T E R U L S A N D M E T H O D S 

2.1 Materials 

2.1.1 Biological and Chemical Reagents 

Reagents, unless otherwise mentioned, were purchased from BDH (Hiemicals 

Ltd., Poole, Dorset, UK. and were of AnalaR (analytical) grade or the finest 

available. The following materials were obtained from the designated 

sources. 

Agarose: Bethesda Research Laboratories, Inc., Cambridge, England. 

Acrylamide, N^'-methylene-bis-acrylamide: Sigma Chemical Co. Ltd., Poole, 

Dorset, England. 

Bacto-agar, Bacto-Yeast extract: Difco Laboratories, Detroit, Michigan, USA. 

Calf intestinal alkaline phosphatase: Boehringer Co. Ltd., London. 

Dialysis tubing: Medical International Ltd., London. 

Guanidinium thiocyanate: Ruke Chemie AG, CH 9470 Bucks. 

Lysozyme, spermidine, bovine serum albumin (BSA), Dithiothreitol (DTT), 

ampicillin (sodium salt), herring sperm DNA, ethidium bromide (EtBr): 

Sigma Chemical Co., Poole, Dorset, UK. 

One-Phor>All Buffer Plus: Pharmacia LKB Biotechnology. 

Nitrocellulose Alters (BA85, 0.45 mm): Schleicher and SchuU, Anderman and 

Co. Ltd., Surrey, UK. 

Random primed DNA labelling kit: Boeringer Mannheim GmbH, West Germany. 

Restriction endonucleases: Northumbria Biologicals Ltd, Northumbria, UK. and 

Bethesda Research Laboratories UK. Ltd., Cambridge, UK. 

Sephadex G-50, Ficoll 400: Phamacia Fine Chemicals, Uppsala, Sweden. 

Tris (hydroxymethyl) aminomethane (Iris), 5.dibromo-4-chloro-3-3-indoyl. 

galactoside (X-gai): Boehringer Mannheim Co. (London) Ltd., Lewes, East 

Sussex, UK. 
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3 MM paper: Whatman Ltd., Maidstone, Kent, UK. 

2.1.2 Bacterial Strains, Plasmids and Bacteriophage 

The bacterial strains used throughout the project were derivatives of 

E. coli namely JM83 & TG2. 

2.1.3 Buffers and solutions 

2.1.3.1 Buffers 

6x Type I gel loading buffer: 0.25% bromophenol blue 

0.25% xylene cyanol 

40.00% sucrose 

lOx Alec's gel buffer: 96.80 g Tris 

7.44 g EDTA 

Adjusted to pH 7.7 with glacial acetic acid and made up to 2 litres 

with distilled water. 

lOx high-salt buffer: 100 m M NaCl 

50 mM Tris-HCl (pH 7.5) 

10 mM MgCl^ 

1 m M dithiothreitol 

lOx medium-salt buffer: 50 mM NaCl 

10 mM Tris-HCl (pH 7.5) 

10 mM MgCI^ 

1 mM dithiothreitol 

lOx MOPS/EDTA: 0.50 M MOPS 

0.01 M Na^EDTA 

adjust to pH 7.0 with NaOH 

lOx TBE buffer: 54.0 g Tris 

27.5 g boric acid 

20 ml 1 M EDTA (pH 8.0) 

Electrophoretic buffer for protein: 3.0 g Tris 

14.1 g glycine 
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1.0 g SDS 

It was made up to 1 litre with distilled water. 

Electrophoresis buffer for RNA gel: Ix MOPS/EDTA 

Extraction buffer: 0.125 M Tris-HCl (pH 6.8) 

2% SDS 

TE buffer: 10 mM Tris-HCl (pH 8.0) 

1 mM EDTA 

2.1.3.2 Solutions 

Protein gel electrophoresis 

Solution I : 30 g acrylamide 

0.135 g Bis 

100 ml water 

Solution U: 30 g acrylamide 

0.435 g Bis 

100 ml water 

RNA gel electrohporesis 

Buffer A: 294 1̂ lOx MOPS/EDTA 

706 1̂ water 

89 1̂ formaldehyde 

250 | i l formamide 

Dyes: 322 \il Buffer A 

5 mg X C 

5 mg bromocresol green (BCG) 

400 mg sucrose 

Gel loading buffer: 2 jxl formaldehyde 

5 ^il formamide 

7 ^ I Dyes 

Electrophoresis buffer: Ix MOPS/EDTA 

Miniprep of Plasmid DNA 
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YT-amp medium: 2.00 g trypticase peptone 

1.25 g yeast extract 

1.25 g NaCl 

It was made up to 250 ml with distilled water, and then was taken to 

autoclave. 50 Hg/ml ampicillin was added to the solution afterward. 

Solution I : 2 mg/ml lysozyme in 50 mM glucose 

10 mM EDTA 

25 mM Tris-HQ (pH 8.0) 

Solution n: 0.2 M NaOH 

1% SDS 

Solution ni: 3 M sodium acetate (pH 4.8) 

M13 cloning 

CaCl^ solution (50 mM): 7.4 g Ca.Cl^-2H^Cy in 1 1 of distilled water 

PEG/NaQ solution: 20.0 g polyethylene glycol 6000 

14.0 g NaCl 

for 100 ml 

IPTG 100mm: 11.9 mg for 0.5 ml 

X-gal 2% in dimethylformamide: 10 mg for 0.5 ml 

M9 salts ( Ix) : 6.0 g Na^HPO^ 

3.0 g KH^PO^ 

1.0 g NH^a 
0.5 g NaQ 

for 1 1 

Glucose minimal medium plates: 

M9 salt with 15 g agar 1 litre 

1 M MgSO^ 1 ml 

1 M thiamine HCl 1 ml 

0.1 M CaCl^ 1 ml 

20% glucose ^ 10 ml 
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2x TY medium: 

Bacto tryptone 16 g 

Bacto yeast extract 10 g 

NaCl 5 gper litre 

H plates: 

Bacto tryptone 10 g 

NaQ 8 g 

Agar 15 g per litre 

H top agar: 

Bacto tryptone 10 g 

NaQ 8 g 

Agar 8 g per litre 

2.2 Methods 

2.2.1 Restriction Analysis 

Type-2 restriction endonucleases were used to digest the DNA molecules. 

Usually EcoRI was used as most of the inserted fragments in the plasmid was 

through the EcoRI site. 

Generally, the enzymes were added at a concentration of 2-5 u/|ig of 

DNA. The reaction mixture was incubated at 37°C for 3 h. For digestion of 

mini-prepared plasmid DNA, 25 |ig/ml of RNase were included in the reaction 

mixture to remove the tRNA present, spermidine was also included to enhance 

the effficiency of digestion. 

RNase that was free of DNase contamination was prepared by adding the 

RNase A to distilled water at a concentration of 10 mg/ml, it was then 

boiled in a water bath for 15 min, and allowed to cool down slowly to room 

temperature. It could be used immediately or stored at -20°C. 
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2.2.2 Gel Electrophoresis of DNA 

2.2.2.1 Normal Gel 

1.4 g of agarose was added to 180 ml distilled water, the mixnire was 

then boiled to dissolve all the agarose. It was allowed to cool to about 

70°C, 20 ml lOx Alec's gel buffer and 10 îl ethidium bromide (10 mg/ml) were 

added. Then it was poured onto the gel frame, and allowed to cool down and 

solidify. 

The gel was placed on the gel tank and covered with Ix Alec's gel 

buffer containing 500 |xg/l ethidium bromide. After 5 .̂1 of the 6x gel 

loading buffer was added to the samples, the samples were loaded to gel 

slots. Electrophoresis was performed at 100 V for 4 h or 30 V for overnight 

(about 15 h). 

2.2.2.2 Minigel 

0.35 g agarose was added to 45 ml distilled water and heated until the 

solution started to boil. The solution was then allowed to cool down to 

70°C. 5 ml 1 Ox TBE buffer and 5 nl ethidium bromide (10 mg/ml) were added. 

The solution was then poured into the gel frame in the minigel apparatus, 

and allowed to set. 50 ml Ix TBE buffer with 1 |xl ethidium bromide (10 

mg/ml) was poured into the electrophoretic tank. The gel was ran for 50 mA 

for 1 h. 

2.2.3 Transformation 

Firstly, 500 f l l of ovemight JM83 culmre was added to 100 ml YT medium 

and incubated at 37°C with shaking. The of the culmre was measured 

until it has reached 0.5 (about 4-5 h); cells were cooled on ice for 10 min 

and centrifuged to pellet the cells. The cells were resuspended in 40 ml of 

0.1 M CaQj and left on ice for 1 h. The cells were then centrifuged, 

resuspended in 2 ml of 0.1 M CaCl^, and stored on ice. 100 ^1 of cells were 

taken from the tube and added to the sample of DNA to be transformed. The 
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mixture was stood on ice for 20 min, it was subsequently heat shock at 42°C 

for 2 min. 1 ml of YT medium was added and incubated at 37°C for 1 h to 

allow the transformed plasmid to express. 100 |j.l aliquots of the transformed 

cells were plated on YT-amp-X-gal plates, which were incubated at 37°C 

overnight The remainder of the transformation mixture was stored at 4°C. 

2.2.4 Separation of Protein 

2.2.4.1 Direct Protein Extraction 

The plant material was taken freshly and put into liquid nitrogen. It 

was then dried in vacuum. The resulting material was grounded in mortar and 

pestle into powder form, and was poured into an Eppendorf mbe. 1 ml 

extraction buffer was added. The tube was then mixed in a rotating disc at 

4*'C overnight Afterwards, the tube was centrifiiged at 1000 g for 5 min, and 

the supernatant was collected. 10% sucrose was then added, and the resulting 

solution was loaded directly onto the gel. 

2.2.4.2 Protein Gel Electrophoresis 

A gel slab was prepared by fitting the spacers between the two glass 

plates. The spacer was lightly greased to ensure the gel slab was water­

tight bulldog clips was used to clamp the gel slab all together. The gel 

slab was placed vertically. 

The separation gel was prepared as follow: 8.33 ml solution I , 7.5 ml 1 

M Tris-HQ (pH 8.8), 3.3 ml distilled water and 0.5 ml 1% ammonium 

persulphate were added to a Buchner fiask, the mixture was degased by 

evacuation on a water pump, 0.2 ml 10% SDS and 7.33 ^ll TEMED were added. The 

mixture was mixed and poured into the gel slab immediately up to a level 

^proximately 2.5 cm below the cutout. Water was then added gendy to a 

depth of 2-3 mm. It was left to polymerise for at least 30 min. 

The stacking gel was made by mixing 1.5 ml solution U, 1.25 ml 1 M 

Tris-HQ (pH 6.8), 6.9 ml water and 0.25 ml 1% ammonium persulphate in a 
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Buchner flask, degased as before. 0.1 ml 10% SDS and 5 )J.l TEMED was then 

added. The solution was mixed and poured immediately to f i l l the gel slab, 

and the well-forming comb then gendy slid into the cutout. It was left to 

polymerize. The comb, and the spacer at the bottom of the gel could be 

removed. The slab was clamped onto the electrophoretic tank. 500 ml 

electrophoretic buffer was added to the top and bottom reservoirs. Any 

bubbles trapped under the gel was removed using a syringe with a bent 

needle. The sample could be loaded. The gel was ran at 15 mA for 1 h and 

then 25 mA for 4 h. 

2.2.5 Total RNA Extraction Using Modified Guanidinium Thiocyanate Method 

Guanidinium thiocyanate is among the most effective protein denaturants 

and was first introduced as a deproteinization agent for isolation of RNA by 

Cox (1968). I t dissolves protein readily and releases nucleic acids from 

nucleoproteins, as their cellular stracmres disintegrated and the secondary 

stracture lost 

A method modified from Chomczynski (1987) was adopted here. In general, 

sample was first frozen inmiediately in liquid nitrogen after it was removed 

from die plant to prevent deterioration. 1 g was weighed and put into a 35 

ml polycarbraiatB tube. The samples were homogenised (at room temperature) 

with 4 J ml of solution D (4 M guanidinium thiocyanate, 25 mM Na citrate, pH 

7; 0 J % N-lauroyl sarcosine, 0.1 M 2-mercaptoethanol) in a Polytron at speed 

10 for 20 s. The Polytron was rinsed with further 0.5 ml solution D. The 

homogenate was centrifuged for 10 min at 10 K, and the clear supernatant was 

collected and poured into a 15 ml comex tube. 5 ml phenol and 1 ml 

chlorofonn:isoamyl alcohol mixture (24:1) were added, and the mixture was 

centrifuged for 20 min at 10 K. The aqueous (upper) layer was collected and 

made up to 0.2 M Na acetate by adding 2 M Na acetate stock. The RNA was pre­

cipitated with 2 volume of cold ethanol for 1 h at -20°C. The pellet was 
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Buchner flask, degased as before. 0.1 ml 10% SDS and 5 |j,l TEMED was then 

added. The solution was mixed and poured immediately to fi l l the gel slab, 

and the well-forming comb then gently slid into the cutout. It was left to 

polymerize. The comb, and the spacer at the bottom of the gel could be 

removed. The slab was clamped onto the electrophoretic tank. 500 ml 

electrophoretic buffer was added to the top and bottom reservoirs. Any 

bubbles trapped under the gel was removed using a syringe with a bent 

needle. The sample could be loaded. The gel was run at 15 mA for 1 h and 

then 25 mA for 4 h. 

2.2.5 Total RNA Extraction Using Modified Guanidinium Thiocyanate Method 

Guanidinium thiocyanate is among the most effective protein denaturants 

and was first introduced as a deproteinization agent for isolation of RNA by 

Cox (1968). It dissolves protein readily and releases nucleic acids from 

nucleoproteins, as their cellular structures disintegrated and the secondary 

structure lost 

A method modified from Chomczynski (1987) was adopted here. In general, 

sample was first frozen immediately in liquid nitrogen after it was removed 

from the plant to prevent deterioration. 1 g was weighed and put into a 35 

ml polycarbooatB tube. The samples were homogenised (at room temperature) 

with 4.5 ml of solution D (4 M guanidinium thiocyanate, 25 mM Na citrate, pH 

7; 0.5% N-lauroyl sarcosine, 0.1 M 2-mercaptoethanol) in a Polytron at speed 

10 for 20 s. The Polytron was rinsed with further 0.5 ml solution D. The 

homogenate was centrifuged for 10 min at 10 K, and the clear supernatant was 

collected and poured into a 15 ml comex tube. 5 ml phenol and 1 ml 

chloroform:isoamyl alcohol mixture (24:1) were added, and the mixture was 

centrifuged for 20 min at 10 K. The aqueous (upper) layer was collected and 

made up to 0.2 M Na acetate by adding 2 M Na acetate stock. The RNA was pre­

cipitated with 2 volume of cold ethanol for 1 h at -20°C. The pellet was 
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collected by centrifiiging for 20 min at 10 kg, and was resuspended in 1.5 ml 

solution D and reprecipitated as before. The precipitate was finally washed 

with 70% ethanol, vacuum dried and resuspended in 1 ml DEPC treated water. 

2.2.6 Quantitation of DNA and RNA 

Spectrophotometric method was used to measure the amount of DNA or RNA 

in a preparation (Maniatis et al., 1982). 

When die sample was purified, a Philips PU 8700 Series UVA^isible 

Spectrophotometer and 1-cm path length quartz cells were used to measure the 

absorbance. The sample was scanned from wavelenght 260 nm to 280 nm. The 

reading at 260 nm allowed calculation of the concentration of nucleic acid 

in the sample. 

2.2.7 Formaldehyde Gel Electrophoresis of RNA 

Formaldehyde gel electrohporesis is frequentiy used to separate small 

molecular weight RNAs under denaturing conditions (Miller, 1988). 

2.2.7.1 Sample Preparation 

1 ^1 of the RNA sample was placed in DEPC-treated Eppendorf tube; large 

volume was reduced by ethanol precipitation i f necessary. Sequentially, 4,4 

Buffer A, 11.6 )il of formaldehyde/ formamide were added. The mixture was 

heated at 70°C for 10 min and chilled on ice. 1.5 | i l gel loading buffer was 

added to the mixture before it was loaded onto the gel. 

2.2.7.2 Gel Preparation and Electrophoresis 

A 1.5% agarose gel was prepared by dissolving 1.4 g hot agarose in 67 

ml water, the mixture was then heated to about 70°C, 9.3 ml lOx MOPS/EDTA 

and 17 ml formaldehyde were added in fume hood. The gel was allowed to set 

for 1 h. The gel was subjected to pre-electrophoresis at 60 V for 30 min 

before loading the samples. The gel was electrophoresed at 100 V for 4 h , 

or at 30 V overnight 
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2.2.7.3 Staining, Destaining 

After electrophoresis, the gel was stained for ^5 min in distilled water 

with 5 lig/val ethidium bromide. It was destained in distilled water for 2 h 

at 4°C. The gel was finally viewed under UV light. 

2.2.8 Northern Blotting 

After electrophoresis, the gel (without prior treatment) was placed over 

4 sheets of Whatman 3MM paper samrated with 20x SSC in a tank. A 

nitrocellulose filter was prepared by fu-st wet with water, and then 

equilibrated with 20x SSC for 5 min. The filter was then laid over the gel, 

making sure that no air bubbles were trapped between the gel and the filter. 

It was then covered with 4 sheets of Whatman 3MM paper and 3 layers of 

absorbive pads. Finally, a glass plate was placed on the pads and a 500 g 

weight was placed on the top. Transfer of RNA was complete in 12-15 h. The 

gel has not been treated with alkali to reduce the size of the RNA in the 

gel, because treatment of the gel with alkali and neutralization with salt 

buffers substantially reduces the efficiency of transfer of RNA from the gel 

to the nitrocellulose paper, particularly for larger RNAs. Moreover, 

presoaking the gel in 20x SSC or staining the gel with ethidium bromide 

reduces transfer. The most efficient transfer was obtained if the gel was in 

low salt and the transfer buffer is high salt. 

The blot was then baked in an vacuum oven for 1 h at 80°C. Baking was 

required for retention of the RNA on the nitrocellulose. 

2.2.9 Staining RNA After Transfer to Nitrocellulose Filters 

This method was used to check the size of the RNA transferred to 

nitrocellulose and the efficiency of its transfer. A lane was cut off from 

the filter, either after baking, or after hybridization and exposure to 
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X-ray film. 

Firstly, the filter was put into the 5% acetic acid for 15 min at room 

temperature and then transferred to a solution of 0.5 M sodium acetate (pH 

5.2) and 0.04% methylene blue for 5-10 min. The filter was soon rinsed in 

distilled water for 5-10 min. 

2.2.10 Miniprep of Plasmid DNA 

10 ml of YT-amp medium was inoculated with a single bacterial colony 

containing the desired plasmid, and the medium was incubated at 37°C 

overnight with vigorous shaking. The culture was centrifuged, and most of 

the supernatant was removed to leave 0.5 - 1.0 ml. It was resuspended and 

transferred to an 1.5 ml Eppendorf tube and recentrifuged. As much 

supernatant as possible was removed to leave a bacterial pellet. 200 ^il of 

solution I was added to resuspend the pellet and die mixture was kept on ice 

for 30 min. 600 | i l of solution I I was added, mixed gendy and kept on ice 

for 5 min. SubsequenUy, 450 ^1 of solution III was added and inverted a few 

times while the DNA clot was forming. The mixture was kept on ice for 60 

min, and centrifuged for 5 min afterward. From the supernatant 1100 ^il was 

removed to a new Eppendorf tube, to this 500 ^il cold isopropanol was added, 

and the tube was kept at -20°C for at least 30 min. After centrifugation for 

5 min, the supernatant was removed and the pellet was redissolved in 200 | i l 

of 0.1 M sodium acetate/0.05 M Tris-HQ (pH 6.0), then repre- cipitated by 

500 \il cold ethanol, left at -20°C for at least 30 min. It was centrifuged 

again, and the pellet obtained was washed with 1 ml cold ethanol. The pellet 

was then vacuum dry and redissolved in 50 | i l of sterile water. 

2.2.11 Recover of DNA From Agarose Gel 

2.2.11.1 Preparation of Dialysis Tubing 

Dialysis tubing was first cut into pieces with length about 10 cm. The 
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resulting tubings were boiled in a large volume of 2% sodium bicarbonate and 

1 mM EDTA for 10 min, and then boUed again in 0.001 M EDTA for 10 min. The 

tubings could then be used immediately, or could be kept at 4°C for one 

month. The tubings should be rinsed with distilled water before using 

(Maniatis, 1982). 

2.2.11.2 Electroelution 

After gel electrophoresis of DNA, the gel was viewed under UV, the 

desired band was then located and was cut out from the gel using a sharp 

scalpel. The dialysis tubing that had been prepared before was then filled 

with the electrophoresis buffer that has been used for gel electrophoresis 

of the DNA, except ethidium bromide was not included in the buffer. The gel 

slice was put into the dialysis tubing and tied with a clip at both end. No 

gas bubbles should be trapped. The whole tubing was placed in a minigel 

electrophoretic tank filled with electrophoretic buffer. Electric current 

was passed through the tubing at 100 V for 1/2 h, the polarity was 

then reversed for 30 s to cause the DNA to become detached from the wall of 

dialysis tubing. The whole setup was viewed under UV to ensure all the DNA 

had eluted out from the gel slice and stayed in the buffer. The dialysis 

tubing could remove from the tank and opened up, and the buffer surrounding 

the gel slice was then removed carefully by using a pasteur pipette. The DNA 

could be recovered from the buffer by phenol extraction (Maniatis, 1982). 

2.2.12 Radiolabelling DNA Using Random Oligonucleotides as Primers 

The method could produce DNA labelled to high activity and was devised 

by Feinberg (1984). The principle was based on the hybridization of a 

mixture of random oligonucleotides to the DNA to be labelled. 

The DNA (about 25 ng) using for labelling was adjusted to 31 ^U, 

denatured by boiling in a water bath for 3 min, and stored briefly (10-60 

min) at 37*'C until needed. Labelling reaction was set up by adding the 
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following solutions in order: 

water, i f needed to make a final volume of 50 ^il 

OLB 10 ^1 

BSA (10 mg/ml) 2 ^il 

DNA 31 ^1 

^¥-dCTP (50 ^iCi) 5 ^1 

Klenow enzyme (2 u) 2 jxl 

The mixture was incubated at room temperature for 2.5 h, and then 

stopped by addition of 200 ^1 of 20 mM NaCl, 20 mM Tris-HCl (pH 7.5), 2 mM 

EDTA, 0.25% SDS. The unincorporated label was removed by gel filtration on 

Sephadex G-50. 

Sephadex was prepared by swelling in the buffer (150 mM NaQ, 10 mM 

EDTA, 0.1% SDS, 10 mM Tris-HQ, pH 7.5) overnight, and was packed into a 5 

ml Dispocolumn. The labelling reaction mixture was loaded and the column was 

washed with the column buffer. 6 ml of column effluent was collected into 12 

Eppendorf tubes with 0.5 ml each. 2 ^il fi-om each tube was taken and mixed 

with 4 ml of scintillant (Ecoscint A) in a plastic counting vial. Protocol 

no. 7 was used for P counting and the whole process was done automatically 

by a Packard PL Tri-Carb Liquid Scintillation Counter. The first peak of 

eluted radioactivity was the labelled DNA and was recovered by phenol 

extraction and ethanol precipitation. It was then added to the 

hybridization solution and was used as probe. 

Random primed DNA labelling kit from Boehringer Mannheim was also used 

to prepare radioactive probes. At first, the DNA (the volume adjusted to 9 

was denatured by heating for 5-8 min at 100°C and subsequent cooling on 

ice. The following were added. 

3 ^1 dATP, dGTP, dTTP mixture (prepared by making a 1+1+1 mixture) 

2 )il reaction mixture 

5 Hi = 50 ^Ci ["P] dCTP 
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1 | i l Klenow enzyme 

The reaction mixture was incubated for 1 h at 37°C. The reaction was 

stopped by adding 2 | i l EDTA (0.2M, pH 8.0). Finally, the reaction mixture 

was loaded into the Sephadex G-50 column and separated as above. 

2.2.13 Hybridization 

The prehybridization buffer contained 50% (vol/vol) form- amide, 5x 

SSC, heat denatured herring sperm DNA at 100 |ig/ml, and 0.02% each BSA, 

Ficoll, and Polyvinylpyrrolidone. The RNA blots were prehybridized for 4 h 

at 42*̂ C, The hybridization buffer was the same as prehybidization buffer, 

except with the probe added. The labelled probes are denatured at 100°C for 

10 min, cooled, and added to the hybridization buffer, and the blots were 

hybridized for about 24 h at 42°C. The RNA blots were subsequentiy washed to 

a hybridization stringency of 0.1 x SSC /0.1% SDS at 50°C. 

2.2.14 Autoradiography 

The nitrocellulose filter to be autoradiographed was attached to a 

Whatman 3 MM paper. Radioactive ink was dotted at several locations on the 3 

MM paper in a random pattern for easier distinguishing the orientation after 

the film was exposed. The filter was put in a plastic bag when the ink was 

blotted dry. It was then placed in a Kodak X-omatic cassette with intensify 

screen. 

The whole cassette was taken to a dark room with only safty light on. A 

X-ray film (Fuji) was pre-flashed once by a ordinary camera flash. The 

flashed side of the film was placed opposite to the filter. The cassette was 

stored at -80°C for several days depending on die strength of the 

radioactivity on the filter. 

Before the film was developed, it should be warmed up to room 

temperature for at least 30 min. The film was removed from the cassette and 

39 



put into the developer for 10 min with occasional turning. It was then 

rinsed in water and placed into the fixer for 2 min. Finally, the film was 

rinsed in tap water for 30 min. The film was hung to dry and examined under 

light. 

2.2.15 M13 cloning 

2.2.15.1 Phosphatase Treatment of Linear, Plasmid Vector DNA 

During ligaton, DNA ligase will catalyse the formation of a 

phosphodiester bond between adjacent nucleotides only when one nucleotide 

possessed a 3'-hydroxy 1 group and the other contained a 5'-phosphate group. 

Recircularization of plasmid DNA can be minimized by removing the 

5'-phosphate groups from both end of the linear DNA with calf intestinal 

phosphatase (Maniatis, 1985). As a result, foreign DNA segment with 

5'-phosphate groups can be ligated efficently to the dephosphated plasmid 

DNA to give an open circular molecule with two nicks. Because nicked 

circular DNA transforms more efficently than linear plasmid DNA, most of the 

transformants will contain recombinant plasmids. 

The following ligation reaction was set up: 

4 ^tl M13 (Yanisch-Perron et al., 1985) 

2 ^1 high salt buffer 

2 \il EcoRI 

12 ^1 water 

Incubated for 1 h at 37°C, then 1 ^1 calf intestinal phosphatase (CIP) 

was added and incuabated at 3TC for 10 min. Afterwards, 2 ^il of 500 mM EGTA 

was added, and incubated at 65°C for 1 h. Lasdy, 30 \il TE buffer was then 

added to the mixture and the dephosphated plasmid DNA was recovered by 

phenol extraction. 

2.2.15.2 Ligation 

After the recovery of fragment from the gel by electroelution, it was 
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added to die dedephosphated vector with ATP and T^ ligase, diey were 

incubated at 12-14°C for 4 h. 

2.2.15.3 Transformation 

The E. coli was made competent by CaCl̂  treatment. Firsdy, a single 

colony was picked from the glucose/minimal medium plate. It was growth 

overnight in 10 ml 2x TY medium at 37°C widi continuous shaking. 2 ml 

overnight culture was taken and added to 40 ml 2x TY medium in a 250 ml 

flask, it was kept at 37''C for 2 h until OD^̂ ^ was equal to 0.3. Moreover, 1 

drop of overnight culture was added to 20 ml of 2x TY medium to provide log 

phase cells, which was needed for plating out stage. 

The cells were spinned down fi"om 40 ml culture at 3000 g for 5 min. 

They were then resuspend in 20 ml of sterilized 50 mM CaQ^ and kept in ice 

for 20 min. The cells were again spinned down at 3000 g for 2 min and 

resuspended in 4 ml cold 50 mM CaQ^. They were ready to use at diat time or 

might be kept for several hours to increase the efficiency of 

transformation. 

Approriate amount of DNA ft-om ligation was added to 300 ^il of competent 

cells. The mixture was incubated in ice for 40 min and heat-shock at 42°C 

for 45 s, shaking should be avoided. It was placed on ice for 5 min. 

To the transfixination mixture, 200 )il of log phase £. coli cells, 40 ^il 

IPTG, and 40 Jll 2% X-gal in dimediylformamide were added. 3- 4 ml molten H 

top agar was subsequendy added and kept at 45°C. The mixture was mixed by 

rolling, and was poured immediately onto a prewarmed (37^0 H plate, it 

could dien be leave at ambient temperature to set. It was dien inverted and 

incubated at 37*'C overnight. 

2.2.15.4 Isolation of Single and Double-stranded DNA 

The transformed plaque (clear plaque) could be picked out from die 

plate by using a sterile toodipick, and inoculated in 5 ml 2x TY medium widi 

50 ul of a fresh overnight culture of TG2 cells. A control (blue plaque) was 
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also picked. 

The culture was incubated for 5 h at 37°C with shaking, it was poured 

into five 1.5 ml Eppendorf tubes and centrifuged for 5 min. The preciptates 

were kept for miniprep to testify whether there were inserts or not.. 

The supematants were transferred to five fresh tubes, one tube was 

kept as a phage stock. For the remaining four tubes, 200 ^il PEG/NaCl (20% 

w/v polyethylene glycol 6000, 2.5 M sodium chloride) was added to each 

tubes. It was shaken and left at room temperature for 15 min, centrifuged 

for 5 min and discarded the supernatant. All PEG was then removed by using a 

drawn out Pasteur pipette after recentrifuged for 2 min. 

100 | i l of TE buffer was added to resuspend the pellet. It was dien 

undergone phenol extraction and ethanol precipitation. 

All four tubes were fmally resuspended in 100 | i l TE buffer by 

transferred from tube to tube. It was centrifuged again to remove any 

protein precipitate remained, the supernatant was transferred to a new tube. 

The amount of yield was determined by measure the OD at 260 nm, 1 OD was 

equivalent to 40 |i.g/ml of single-stranded DNA. 
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C H A P T E R I I I 

R E S U L T S 

3.1 Preliminary Investigations 

3.1.1 Restriction Analysis 

4 ^1 (0.25 \ig/\il) of lambda DNA was digested with 10 u EcoRI (5u/^l) in 

high salt buffer and 10 u Hindin (5u/|xl) in medium salt buffer. After 

restriction, the mixture was separated by gel electrophoresis and viewed 

under UV light. The result was shown in Fig. 3.1. A calibration graph was 

drawn from Table 3.1 by plotting the log of the sizes of restriction 

fragments against distance migrated (Fig. 3.2). 

3.1.2 Transformation 

3.25 ng and 13 ng of pUC18 were used to transform JM83 strain of E. 

coli. The cells were made competent by the use of CaCl̂ . Heat shock was used 

to increase the efficiency of transformation. The transformed bacteria was 

then grown on YT-Amp-X-gal plates. Positive transformants would be blue in 

color. The result was shown in Table 3.2. 
Number of transformed cells 

Efficiency = 
Amount of DNA (ng) 

Amount of DNA (ng) Number of colony Efficiency 

0.00 ( c ontrol) 0 0 
3.25 530 1.63x10^ 

13.00 991 7.62x10'* 

Table 3.2 Efficiency of transformation for E. coli strain JM83 

3.1.3 Protein Electrophoresis 

Protein was extracted from 0.12 g leaf, 0.17 g green pod, 0.08 g purple 

pod, 0.02 g purple seed, and 0.02 g green seed by the method of direct 

extraction of protein. A 12% slab gel was done with markers included (Fig. 

3.3). 

44 



3.2 Attempt to Use a Homologous Extensin Probe to Identify Extensih 

mRNA in Pea Pod RNA 

A clone for a Brassica root protein homologous to carrot extensin 

that has been previous identified was used. It was supplied as an insert in 

pUC18 as the plasmid vector, and was ligated to the vector at the EcoRI 

site. 

3.2.1 Preparation of Plasmid 

In order to prepare plasmid DNA, an overnight culture (10 ml) of the 

clone in YT-amp medium was used. Miniprep was done and the amount of DNA 

obtained was shown in Fig. 3.4. 

20 f i l of plasmid DNA was restricted with EcoRI to isolate the inserted 

fragment. The components of the restriction were as follow: 

Components Amount (jil) 

EcoRI 2 
Sample 10 
H i g h sal t buffer (lOx) 2 
D i s t i l l e d water 6 

Table 3.3 Components of the restriction of a clone for a Brassica 
protein homologous to carrot root extensin 

Several attempts were made to restrict the plasmids, but only partial 

or even no restriction could be obtained. Finally, a complete restriction 

was obtained by reducing the amount of enzyme used and increasing the 

incubation time of the digestion. As die enzyme was dissolved in glycerol 

that would inhibit die enzyme in high concentration (Maniatis et al., 1982); 

moreover, the plasmid made from miniprep contained impurities that would 

inhibit enzymatic activity (Draper et al., 1988), a longer incubation time 

was needed for complete restriction (Fig. 3.5). A calibration curve was 

drawn (Fig. 3.6) from Table 3.4. The insert was found to be 603 bp. 

In order to test wheUier diere was homologous sequence to extensin 
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present in pea pod, a northern blotting of the total RNA of pea pod was 

carried out. 

3.2.2 Pea Pod Total RNA Extraction Practices 

1 g of pods was used as starting material. Modified guanidinium 

thiocyanate method was employed. 

After the pea pod total RNA was extracted and resuspended in 500 jxl of 

sterile water, 5 |xl was taken out and quantified by spectrophotometric 

method (Fig. 3.7). The total amount of RNA extracted was 51.77 ^ig. 

In order to confirm whether RNA was present or not, formaldehyde gel 

electrophoresis was used. 45 jxl (5.8 |ig) of sample was added to each wells. 

RNA from E. coli was used as a marker. Two ribosomal RNA bands together 

with the smears of mRNA and tRNA were clearly shown on the gel (Fig. 3.8). 

3.2.3 Northern Blotting 

The total RNA present on the gel was then transferred to a nitro­

cellulose filter by northern blotting. The blot was later stained by 

methylene blue to ensure a successful transfer has taken place (Fig. 3.9). 

3.2.4 Hybridization 

The radioactive probe was then used to hybridize to the nitrocellulose 

filter. At the first attempt, the autoradiograph obtained had a high 

background but some degree of hybridization seemed present (Fig. 3.10). As a 

result, another northern blot of pea pod was used for hybridization. 

However, only a very low degree of hybridization was obtained (Fig. 3.11). 

One more trial has done but showed no improvement (Fig. 3.12). It was 

concluded that the homologous probe was not suitable to detect extensin in 

pea pod RNA. 

3.3 Attempt to Find Pea Pod Specific Clones 

3.3.1 Total RNA from Pea Pod, Leaf and Cotyledon 

Total RNA was extracted from pea pod, leaf and cotyledon by the 
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modified guanidinium thiocyanate method. The spectrophotometric method was 

used to access die amount of total RNA extracted (Fig. 3.13-3.15). The 

amount of total RNA extracted was follow: 

Tissue Amount of tissue 
used (g) 

Amount of RNA 
e X tracted ( | i g) 

% of RNA against 
tissue used 

pod 
leaf 
seed 

1.07 
0.78 
0.28 

476 . 25 
273 . 75 
33 . 75 

0 .045 
0 .035 
0 .012 

Table 3.5 Amount of total RNA extracted from pea pod, 
leaf and cotyledon. 

3.3.2 Transfer the Total RNA to Nitrocellulose Filter 

Northern blotting was done to transfer die total RNA of pod, leaf 

and cotyledon from the gel to the filter. 

3.3.3 Probe Preparation #? : 

12 abundant clones from pea purple pod cDNA library were obtained. The 

plasmids from the clones were extracted by miniprep of overnight cultures. 

50 ^1 of plasmid was obtained from each clones. 10 jxl from each clones was 

then restricted by using 10 u EcoRI (5\i/\il) and separated by gel 

electrophoresis (Fig. 3.16). A calibration curve for finding the insert size 

was drawn (Fig. 3.17), and the resulting insert size for each of the clones 

was dien determined (Table 3.6). A southern blot was prepared from die gel, 

but as the probe for ribosomal RNA of pea was not available, the southem 

blot has not been used. 

Insert fragments from pPP523 and pPP1017 widi sizes 927 bp and 1308 bp 

respectively were then isolated and used for random primer labelling (Table 

3.7). The probes produced were used to screen the northern blot made from 

pea leaf. However, no hybridization was given (Fig. 3.18). This might be 

caused by inadequate radioactivity of the probes. Anodier labelling reaction 

was done (Table 3.8) and die probe for pPP523 was used to hybridize to 

northern blot of pea pod and pea leaf (Fig. 3.19). Again, no hybridization 

was obtained. 

Four more clones (pPP240, pPP354, pPP954, and pPP1052) were once again 
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selected. 50 ^1 of plasmid DNA from of them were recovered from miniprep of 

10 ml overnight culture. 40 | i l was taken and restricted with EcoRI, the 

restricted mixture was separated by gel electrophoresis. The DNA from the 

corresponding bands on the gel was recovered by electroelution. It was used 

for random primer labelling (Table 3.9-3.12). 

The probes prepared from these clones were then used to hybridize to 

the northern blot of pea pod (Fig. 3.20) and pea leaf (Fig. 3.21). After 

that, autoradiographs were developed with the same length of exposure time 

(1 week). 

From the autoradiographs, this could be shown that all the clones 

hybridized to the total RNA of pea pod, but only two of them (pPP354 and 

pPP240) hybridized to the total RNA of pea leaf. 

3.3.4 M13 Qoning 

In order to characterize the clones (pPP1052 and pPP954) that seemed to 

be pea pod specific clones, the best method was to clone the fragments into 

M13mpl8 and determined the DNA sequences of the insert fragments. 

3.3.4.1 Phosphatase Treatment of Linear, Plasmid Vector DNA 

4 )xl (1 ng) of M l 3 was used, and was restricted with 10 u (2 |il) of 

EcoRI. It was then treated with calf intestinal phosphatase (1 Û) to remove 

the 5'-pho^hate groups from both ends of the linearized DNA. The vector was 

recovered by phenol extraction and redissolved in 5 j i l of water. 

3.3.4.2 Isolation of Insert Fragments from Clones 

Again, miniprep, gel electrophoresis and electroelution were done to 

isolate the fragments from the clones. 5 \il was obtained from pPP1052 and 

pPP954. 

3.3.4.3 Ligation 

Three ligation reactions were set up with the compositions as followed: 
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Reaction no. 
Compo n ents 1 2 3 
Ve c 1 0 r 
F r a g m e n t from pPP1052 
F r a g m e n t from pPP954 
1/10 ATP 
1 Ox 1 i gation buf fer 
wa t e r 
T 1 ig a se 

4 

1 1 1 
1 2 

1 
1 1 1 
1 1 1 
5 4 4 
1 1 1 

Table showing the components of the ligation reaction. 
3.3.4.4 Transformation 

After the ligation, 3 |xl and 7 |il was taken from each ligation mixtures 

and added directly to the competent cells of TG2. These were then grown on H 

plates at 37°C overnight, totally, six plates were prepared. 

Only four transformants could be picked up from all the plates, one 

control was also taken for characterization as shown below: 

Tube no. Source of trans formant 

1 
2 
3 
4 
5 

3 ^1 of ligation reaction 1 
7 |xl of ligation reaction 1 
7 ^il of ligation reaction 2 
7 ^1 of ligation reaction 3 
control (blue plaque) 

Table showing the sources that plaques were picked for 
further single- and double-stranded Ml3 extraction. 

They were then grown in 2x T Y medium for 5 h. Single-stranded and 

double-stranded M13mpl8 were then extracted from these cultures by the 

method 2.2.15.4. 

Minipreps have been done to the bacteria containing the double-stranded 

M13mpl8, 30 \il was obtained. 10 1̂ was then restricted with EcoRI (10 u) and 

separated in a minigel (Fig. 3.22). No restriction could be seen. 

Ball (10 u) and PstI (10 u) were used to restrict the remaining 20 îl 

of vector (Fig. 3.23). A calibration curve was drawn (Fig. 3.24) to 

determine the size of restricted fragments. Although partial restriction was 

seemed but it could be shown that there was insert to the Ml3 vector for 

Tube no. 1, 2, and 3 when comparing the control of tube no. 5, and the 
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calculated insert size was quite agreeable with that before. 

Single-strjuided M13mpl8 was then prepared from supematants of tube 

number 3. 6 îl was recovered that 1 îl was used for spectrophotometry. 

Finally, 4 )j.g in 5 )il was obtained and used for DNA sequencing. The sequence 

obtained was shown in Fig. 3.25. 
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Fig. 3.1 Gel electrophoresis of lambda DNA restricted with 
Hindin & EcoRI. 

EcoRI Hindl l l 

fragment d ist a nee fragment 
log bp 

d ist ance 
s i z e log bp migr a ted s i z e log bp migr a ted 
(bp) 

log bp 
(cm) (bp) (cm) 

21226 4.33 2. 25 23130 4.36 2. 25 
7421 3.87 4.50 9416 3.97 3.75 
5804 3.76 5.40 6682 3.82 4.95 
5643 3.75 5.70 4361 3.64 7.05 
4878 3.69 6.30 2322 3.37 10.50 
3530 3.55 7.95 2027 3.31 11.40 

Table 3.1 Fragment sizes of lambda DNA after restricted with 
EcoRI and HindUI alternatively. 
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log bp 

4 5 6 7 8 9 

distance migrated/cm 
10 11 12 

EcoRI + Hindm 

Fig. 3.2 A calibration curve for log the 
size of fragments of lambda DNA with 

Hindin and EcoRI against distance. 
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Fig, 3.3 Gel electrophoresis of protein extracted from pea 
purple and green pod, purple and green seed, leaf. 

With molecular markers included. 

Lane number Components Molecular weight 

1 abum i n 
2 chymo t r y s inogen 25700 
3 cyt 0 ch r ome 11700 
4 tryp s i n 20100 
5 abum in (egg) 43000 
6 green seed 
7 pur p i e s e ed 
8 leaf 
9 green pod 

10 purp 1 e pod 
11 purp 1 e pod 
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1 1 X 2 8 9 . 9 - 3 0 9 . 9 B 2 . 9 SS2998 ABS " 

ABS 

3901 

ABS 

Fig. 3.4 UV absorption spectrum of the plasmid containing insert 
encoding Brassica protein homologous to carrot extensin. 

The absorbance was 0.536 at 257 nm. Because an OD of 1 
corresponded to about 50 )ig/|Al for dsDNA (Maniatis et al., 1982), 
the total amount of DNA extracted was: 

0.536 X 50 X 3 
= 75 y.g/10 lil (10 ill of sample was added to 3 ml of water) 

Total amount of DNA left 
= 75 X 4 îg = 300 îg 
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Hindill 2 

Fig. 3.5 Plasmid containing insert encoding Brassica protein 
homologous to carrot extensin. 

Hindl l l 

fragment d ist ance 
s i z e log bp migr a ted 
(bp) (cm) 

23130 4.36 7. 50 
9416 3.97 12. 50 
6682 3.82 16.50 
4361 3.64 22. 50 
2322 3.37 34.00 
2027 3.31 36.50 

Table 3.2 Fragment size of lambda DNA after restricted with 
Hindni 

Distance migrated of the insert = 54.5 cm 
The calculated insert size of the fragment = 603 bp 
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log bp 

r^serted 
^fragment 

10 15 20 25 30 35 40 45 50 

distance migrated/cm 

Fig. 3.6 A calibration curve for log the 
size of fragments of lambda DNA cut 

with Hindni against distance migrated. 

55 60 
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4 1 DHA/RNA CHECK SCAN 

Fig. 3.7 UV absorption spectrum of the RNA from pea pod. 
The absorbance was 0.167 at 257.6 nm. Because an CD of 

1 corresponded to about 25 \Lg/\Ll for ssRNA (Maniatis et al., 1982), 
the total amount of DNA extracted was: 

0.167 X 25 x 3.1 
= 12.9 ^g/100 ^il (100 Hi of sample was added to 3 ml of water) 

Total amount of RNA left 
= 12.9 X 4 Hg = 51.6 Hg 
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n bosoma 

Fig. 3.8 Gel electrophoresis of the total RNA of pea pod, RNA 
from E. coli was used as a marker on Lane 1. 

Fig. 3.9 Staining the nitrocellulose to ensure a successful 
transfer of pea pod total RNA. 
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i 

Fig. 3.10 First attempt to prepare a autoradiograph to find the 
homologous extensin clone in pea pod. Bands were seemed 
to present. 
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Fig. 3.11 Second attempt to prepare a autoradiograph to find the 
homologous extensin clone in pea pod. No band could be seen. 
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Fig. 3.12 Final attempt to prepare a autoradiograph to find the 
homologous extensin clone in pea pod. No band could be 
seen. 
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5 1 DNA/RMA CHECK SCAH 

269 

Pi . 19 9 . 9 5 

399 

329 

349h 

9 . 9 9 

Fig. 3.13 UV absorption spectrum of the total RNA from pea pod. 
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4 1 DHA/RHA CHECK SCAN 

;29 
8 . 2 8 

34eF 

Fig. 3.14 UV absorption spectrum of the total RNA from pea leaf. 
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b 1 D H H / R N A C H E C K S C A H 

9. 19 9.95 y. 19 

9.1 y 
- 9 . ly 

Fig. 3.15 UV absorption spectrum of the total RNA from pea seed. 
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9 8 7 6 5 4 3 2 1 M 

Fig. 3.16 12 abundant cDNA clones from purple pea pod restricted 
with EcoRI. Lambda DNA restricted with HindJH and EcoRI 
was used as a marker. 

number clone number 
dist ance 
migr a ted 

(cm) 
log bp bp 

1 585 14.3 3.23 1681 
2 240 15 .2 3.15 1437 
3 354 14 . 8 3.18 1530 
4 523 17 .5 2.98 927 
5 694 16 .7 3.04 1084 
6 954 14 .7 3.20 1579 
7 1052 17.5 2.97 927 
8 1017 15 .7 3.12 1308 
9 1103 

10 615 20 . 3 2.74 544 
11 777 15 .5 3.17 1483 
12 496 

Table 3.6 Insert sizes of pea purple pod abundant clone 
after restricted with EcoRI 
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Fig. 3.18 Autoradiograph for the hybridization of labelled probes 
pPP523 and pPPlOl? to the northern blot of leaf. 
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Fig. 3.19 Autoradiograph for the hybridization of labelled probe 
pPP523 to the northern blot of leaf and pod. 
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4 h 4 » 

Fig. 3.20 Autoradiograph for the hybridization of labelled probes 
to the northern blot of pod. 
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Fig. 3.21 Autoradiograph for the hybridization of labelled probes 
to the northern blot of leaf. 

70 



o 

i t o c o i #: 7 Name: 32P I n u n cpm 26~Juri~89 17: 1̂  

•. • i 1 or") 

T i me 

1 

A: L _ L . - U L - = 5 . 0 - 1 7 0 0 Lcr^-- 0 Bkg= O.CiO V.2 Sigma^O. 
_._--UL=^50. 0 - 1 7 0 0 Lc:r = 0 Bkq= 0.00 '/.2 Sigma=0. 

C : •. - - U L - 0. 0 - 0 . Ci L c r ^ 0 B k g - 0 . 0 0 7.2 S i grr.a-V.), 
1 . . 

T I 
.1. • '-

yo QI 

r ~ i-.i A 
_ ^ 1 1 1 r-i 

F' - t S i 

' 2 . 60 

:£ 

CPr 
4 3 9 1 . ( 

E i3 r E ni 1 i"i ci t G r = 

1B S I S t S I E 

CoLmt 

1 . 0̂  '.• 7 6 5 5 . 00 " / ~ o L j i . • 1. :)0 1 1 4 9 . 0 5 4 8 . 
1 - 0̂  j 1 0 8 6 . 0 0 6. 06 \_> / i - j . •-, jO 1 1 3 1 . 6 5 4 7 . 
1 . 0̂  1; 1271 . 0 0 5 . 60 i. i / • •-. :)0 1 2 S 4 . 3 5 4 3 . 

Table 3.7 Liquid scintillation counts in count per minute (CPM) 
for separation of radiolabelled pPP523 & pPP1017. Tubes 
in slots one and two were supposed to be the desired 
fraction coming from pPP523, tubes in slots three and 
four were these coming from pPP1017. Each sample 
contained 3 JJ.1 of effluent from Sephadex G-50. 

:)tocc.;:. 7 Nams:32P l/v;in cpm 0 7 - J : . - l - G -

. or 
?g:i.on E : i_L •-L]L: = 5 0 . 0 • 1700 L c r ^ 0 3k 

C ; L . ; _ - U L ~ O.O"- 0,0 i_-.:;r~ 0 Bkg-- O. X2 bi giwo—O. (.'u 
•r,\<a -^^ 1 . •.; 0 Q I P t B I E EG T s r m i n a t 

Gift 
1 

'7 1 

1 wi t I . T H ; I.J 3/. SIS t S I E 
00 2 5 . 0 0 '•'•> r j o 

00 1 3 6 9 . 0 0 
0 '. 2 iA 0. 00 4 . 

40 '.^ •—- • •.• 
1 Z.' -i-O . 

I'j J - 0 • 1 i 

0 " 7 u CTJ T ' 

1 ~ • A- Id 

. J W .1. • 

^ m 

c- I " 

O' - . 459 . O'O iz;" 74 9 6 2 ! 0 0 5 6 2 . 
00 9 1 6 7 . 0 0 ^ • 7 6 6 6 . 0 0 •j •) ; "71 5 6 0 . 
O: 4 6 0 6 1 . 0 C O ~ T 561 . 

O--'.' 1 5 9 . 00 i 
) 

69 • 

.—- - - ^ - * 7 ,1 

9 3 1 . 4 9 5 5 8 . 
1 220 . 00 u . - 7 •—, 9 4 . C> C 9 7 S . 4 9 ' ~j 6 2 . 

^'j '. -•kio'ziti ^ 0' i • '0 1 5251 4 - C) i i ; ; 0 . 3 560 ^ 
(•).; G 2 4 0 5 . 0 :j . ^573w.0 9 6 2 . 9;.! 
O-'. 411 2 0 . '0 0. 98 . 5 w ' . 

Table 3.8 Liquid scintillation counts in count per minute (CPM) 
for separation of radiolabelled pPP523 and pPP1017. 
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Table 3.9 Liquid scintillation counts in count per minute (CPM) 
for separation of radiolabelled pPP954. Tubes in slots 4 
and 5 were expected to be the desired fraction. 
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Table 3.10 Liquid scintillation counts in count per minute (CPM) 
for separation of radiolabelled pPP1052. Tubes in slots 
3 and 4 were supposed to be the labelled fraction. 
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3 and 4 were expected to be the desired firaction. 

73 



5 4 3 2 1 M 

Fig. 3.22 Restriction of transformants of M13mpl8 by EcoRI. Lane 
5 was the control. M was the fragments of X, DNA 
restricted with EcoRI and Hindlll. 

Fig. 3.23 Restriction of transformants by Ball and Pstl. Lane 5 
was the control. M was the marker. 
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Fig. 3.24 A calibration curve for lambda 
restricted with Hindlll and EcoRI. 
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D I S C U S S I O N 

4.1 Preliminary Investigations 

4.1.1 Restriction Analysis 

During the project, some elementary works were done, as most of the 

experiments for molecular biology are very much depend on techniques. One 

of the most important techniques is the restriction analysis. 

After restriction of lambda DNA with Hindlll and EcoRI, sharp bands 

could be seen on the gel as shown in Fig. 3.1. 

4.1.2 Transformation 

In order to make a complete cDNA library, a high transformation 

efficiency was needed. JM83 strain of E. coli was used. The method of 

transformation by calcium chloride was employed. For maximum transformation 

efficiency, it was very important that the bacterial culhire was in the 

logarithmic phase of growth. 

After the transformation, the transformation efficiency for pUClS was 

calculated. It has been found that with 13 ng of DNA added, the trans­

formation efficiency was seen to be lower than that with 3.25 ng. 

4.1.3 Protein Electrophoresis 

Protein gel electrophoresis was done at the very beginning of the 

project to act as an elementary study. Protein was eluted from the plant 

tissues by the method of direct protein extraction (Method 2.2.4.1). The 

protein from pea pod was see^^to be quite different from that of pea leaf. 

As leaf tissue has shown to contain only a trace amount of Hyp (Cassab et 

al., 1985), which was am important component of extensm. However, pod 

tissue were expected to relatively rich in hydroxyproline (Van Etten et al., 

1961). Moreover, pod was an important organ that provided protection for the 
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seeds inside, level of extensin should be higher as extensin has been known 

to involve in disease resistance of plants. 

On the other hand, the difference between green pod and purple pod was 

only on the gene controlling the color of the pod, the proteins were seemed" 

to have littie differences. 

4.2 Attempt to Use a Homologous Extensin Probe to Identify Extensin mRNA in 

Pea Pod RNA 

In 1985, Chen & Vamer isolated a partial cDNA clone from wounded 

carrot root mRNA. The clone was then used to isolate genomic clones of 

carrot, which was in turn used to identify the tomato extensin genomic clone 

(Showalter et al., 1985). 

In both the carrot and tomato extensins, the two most prominent repeat 

sequences are Ser-(Hyp)^ and Val-Tyr-Lys. The former is the site of the 

attachment of the oligoarabinosyl and galactosyl side chains, while the 

latter is the major non-glycosylated region that formed both intra- and 

intermolecular cross-links. 

Moreover, hydroxyproline-rich proteins in soybean cell wall (Averyhart, 

1988) and soybean cell culture (Hong et al., 1986) was also identified, both 

have the same pentameric repeat Pro-Pro-Val-Tyr-Lys. 

It can be noticed that from the sequences of extensins identified so 

far, all of the prolines in the pentameric repeats are hydroxylated, the 

repeats are not continguous and are separated either by Ser-Hyp-Hyp or by 

Tyr-Lys (Smith et al., 1986). 

From these experiments, it can be noticed that extensin probes from 

other species are used to identify the correspondmg gene in other species, 

so it is reasonable to use the existing extensin probe to screen the cDNA 

library of other species to obtain a homologous extensin probe for that 

species. The corresponding gene regulation and expression can then be 
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investigated. 

Moreover, as the protein sequence of the extensin containing an repeat 

sequence of Ser-(Hyp)^, synthetic oligonucleotide can also be synthesized 

and used to screen the cDNA library. Those methods were more convenience 

than classical method to identify extensin. 

Unfortunately, as shown from all the results of the attempt to localize 

a related mRNA species in total RNA preparation of pea pod, it was 

reasonable to deduce that pea pod contains sequences that has no homologouŝ  

to carrot root extensin. 

4.3 Attempt to Identic a Pea Pod Specific Qone 

As shown before, the differences between the protein of pea pod and pea 

leaf are quite great, plus or minus screening technique can be used to 

identify cDNA clones from mRNA molecules present in one cell type but not 

the otiier (Old & Primrose, 1985). 

Total RNA extractions by the modified guanidinium thiocyanate method 

were done on pea leaf, pod and cotyledon. From the amount of RNA collected, 

it was shown tiiat the percentage of RNA extracted from pea cotyledon 

(0.012%) was lower than those from pea pod (0.035%) and pea leaf (0.045%). 

It is concluded that this method is not effective in isolating total RNA 

from pea cotyledon. 

At the beginning, 2 of the abundant pea pod clones were selected that 

have short insert sizes. However, after several trials have been, no binding 

of the probes to the total RNA of pea pod and pea leaf could be seen. The 

possible explanations for those results are not enough radioactivity of the 

probes, or those clones have no similar sequences in pea pod or pea leaf. 

As a result, four more clones were selected, they were labelled with a 

higher radioactivity and were used to hybridize to pea pod. At this time, 

hybridization can be seen for all of the clones, some (pPP954 & pPP1052) are 
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hybridized more strongly than the others (pPP240 & pPP354). On the other 

hand, no band can be seen from these hybridizations, the greatest 

possibility is that there are some degradations of the RNA during the gel 

electrophoresis process, further trials were needed to confirm the result. 

The four labelled probes were also used to hybridize to the total RNA of 

pea leaf with the same conditions as before, two clones (pPP954 & pPP1052) 

were seen to hybridize strongly to pea pod but not pea leaf. As a result, it 

might be possible that those two clones were specific pea pod clones. 

Insert fragments from pPP954 and pPP1052 were extracted from pUC18 and 

tried to ligate to M13mpl8 for DNA sequencing. 

After the ligation reaction and transformation, pPP1052 had three 

transformants and pPP954 had only one, but numerous blue plaques could be 

seen on the plates, this shown that the dephosphation of the linearized DNA 

was not so effective that some phosphate groups were not removed. 

Self-ligation of the linearized DNA occurred that caused a drop in the 

amount of recombinants. Moreover, the sizes of the fragments (927 & 1579 bp) 

were too big to fit in the phage that cause a lower in transformation 

efficiency 

For the transformants picked, double-stranded M13mpl8 was isolated 

from the cell pellet by the method 2.2.15.4. 

At first, no restriction could be seen when restricted with EcoRI, 

this might due to not enough incubation time for the restriction enzyme (2 

h), or there was a mutation in the sequence of the site of EcoRI that the 

enzyme could not recognize. But as the migration distance for the control 

was long than that of transformants, it was sure that there were inserts in 

those. 

As a result, two restriction enzymes were used. One (Pstl) cut the 

phage closed to the site for EcoRI (position 6269), while the other (Ball) 

cut at position 5082. As the size of the whole phage was 7250, the 
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restricted fragment with insert from pPP1052 should be about 

6269 bp - 5082 bp + 927 bp = 2114 bp, 

while the restricted phage should be 

7250 bp - (6269 bp - 5082 bp) = 6063 bp. 

From the calibration curve obtained (Fig. 3.24), the migration 

distances of bands were quite similar to that expected. The band with 7740 

bp would be the unrestricted M13mpl8, the band with 4310 bp was the 

restricted remain of M13mpl8, and the band with 2400 bp would be the 

restricted fragment with insert from pPP1052. For the expected transformant 

of pPP954, no M13mpl8 could be extracted from the bacteria, the most 

possible explanation was that a colony rather than a plaque was taken from 

the plate. 

As a result, only the single-stranded M13mpl8 of pPP1052 could be 

isolated and taken to sequence using Sanger's dideoxynucleotide-sequencing 

method (1979). 
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Summary 

1. During the extraction of plasmid from the clone encoding the Brassica 

root protein homologous to carrot root extensin by the method of miniprep, 

the plasmid obtained was not pure that would need a much longer incubation 

time for restriction with EcoRI before a complete restriction could be 

obtained. 

2. Proteins were extracted from pea pod and pea leaf by the method of direct 

protein extraction, and was subsequently separated on a 12% polyacryamide 

gel. It was found that the proteins from pea pod and pea leaf looked quite 

different from each other, as leaf tissue has shown to contain only a trace 

amount of hyp, while pod were expected to rich in hydroxyproline. 

3. Modified guanidinium thiocyanate method could be used to isolated 

sufficient amount of RNA from pea leaf (0.045% of tissue used) and pod 

(0.035% of tissue used), but not very effective for pea cotyledon (0.012% of 

tissue used). 

4. Three trials have been done trying to find whether there was any 

homologous sequences to carrot root extensin was present in the total RNA of 

pea pod or not. No hybridization could be seepe^between the labelled probe 

and the northern blotting of total RNA of pea pod. It was reasonable to 

conclude that no homologous sequence of carrot root extensin was present in 

the total RNA extract of pea pod. 

5. Abundant pea purple pod clones were picked up from the cDNA library of 

pea purple pod and screened by their degree of hybridization to the total 

RNA of pea pod and pea leaf. Two clones were selected that shown 

hybridization strongly to the total RNA of pea pod but not pea leaf. They 

were then taken and tried to clone into M13mpl8 for DNA sequencing by 

Sanger method. By restriction analysis of the transformants, only one clone, 

pPP1052, could get a correct restriction pattern. Single-stranded M13mpl8 

was then purified from the culture and the DNA sequence was determined. 
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