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Abstract

The mechanics and dynamics of subduction have been studied using 2-D finite el-
ement analysis. Two finite elemem formulations have been emploved; one formulation
for Newtonian viscous flow and one formulation for linear elasticity and viscoelastic-
ity. Quadratic isoparametric quadrilateral and triangular elements are used for both
formulations.

Models of flow in the mantle driven by oblique subduction produce an asymmetric
depression of the surface above the slab. The width and depth of this depression are
dependent on the value of the viscosity of the lower mantle, the length and mechanical
strength of the slab. Analysis of the flow patterns suggests that the viscosity contrast
at the 670 km sesmic discontinuity is likely to be of the order x10.

The stress regime at an island arc margin with a subducting slab dipping at 45°
has been modelled using an elastic-viscoelastic rheology. The body forces of the slab
produce an asymmetric depression of the surface above the slab which generates hor-
1zontal deviatoric compfession in the plates. Unlocking the thrust zone between the
subducting and overriding plates eliminates the shear stress in the fault plane resulting
in regional horizontal tension in both plates, uplift of the leading edge of the overriding
plate and depression of the subducting plate. The regional tension is interpreted as
the source of the plate driving forces of slab pull and trench suction. Local horizontal
compression in the arc-forearc region produced by the surface depression exceeds the
regional tension and this may be the source of lateral variation in stress that is ob-
served across the strike of convergent margins. It may also be the source of backarc
compression for low angle slabs at Chilean type margins.

Depression of the surface provides .partia.] compensation of the slab body forces.
Thus the downdip force is reduced and the resulting stress regime in the slab is con-
trolled by the isostatic upthrust at the trench and the viscosity contrast at 670 km depth.
A low pressure zone above and high pressure zone below the slab may act against the
body forces which rotate the slab towards vertical subduction. Anomalous pressures in
the mantle are created and sustained by continuous subduction and rollback, and may
behave in a self-regulating mechanism. A low viscosity zone in the mantle wedge above

the slab leads to the development of double seismic zones as suggested by Sleep (1979).
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CHAPTER 1

Introduction

The world-wide distribution of earthquake epicentres is shown in figure 1.1. It
is a striking pattern (Isacks et al. 1968). Nearly ali of the seismic energy release is
concentrated in narrow, continuous belts outside of which seismic activity is almost
absent. This observation was a major contribution to the formulation of plate tectonic
theory (McKenzie and Parker 1967, Morgan 1968), which postulates that the relatively
aseismic regions of the surface of the Earth are thin. rigid plates of lithosphere which
interact at their boundaries, defined by the belts of seismicity. The mobility and in-
tegrity of the plates serves to explain phenomena such as continental drift and sea-floor
spreading which had become popular explanations of the palaeo-reconstructions made

from the present-day positions of the continents.

The earlier discovery by Raff and Mason (1961} of the magnetic lineations parallel
to. and svmmetric about the spreading centres (ocean ridges), and the realisation that
these abrupt changes in magnetic intensity could be related to reversals in the Earth’s
magnetic field (Vine and Matthews 1963), lead to the theory of plate tectonics. The
magnetic stripes thus ‘date’ the ocean floor and indicate how the plates are moving.
Plate boundaries can be classified into three possible categories; divergent margins, the
site of plate creation where the plates move apart. convergent margins where the plates

move toward one another, and transform faults where the plates slip by one another.

The oldest parts of the ocean floor are found at convergent margins, and generally
the stripes are not parallel to the plate boundary. Also at convergent margins the
earthquakes occur at much greater depths and theyv lie along a plane descending into
the Earth and dipping away from the ocean with a fairly smooth trajectory (Sykes 1966,
Oliver and Isacks 1967). This plane, the Wadati-Benioff zone, was proposed to define
the descent of the surface lithospheric plate underneath its neighbour, a process called
subduction, which conveniently accounts for the oblique disappearance of the magnetic
stripes at the margin. Subduction zones are thus the site of consumption of the oceanic

parts of the system of plates, and this thesis will attempt to provide some insight into
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Figure 1.1  Distribution of the epicentres of earthquakes recorded between 1961 and 1967.
From Bott ( 1984 ), originally Barazangi and Dorman ( 1969 ).
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the dynamics of this process.

1.1 The Structure of Subduction Zones

Subduction zones are of two types; the island arc margin in which the overriding
plate is oceanic. and the active continental margin in which the overriding plate at the
boundary carries continental crust. Whilst the differences are essential, the similarities
allow us to discuss a ‘typical convergent margin’, and I will concentrate on the island
arcs.

The morphological and structural units of the Lesser Antilles island arc margin are
shown in figure 1.2. This particular margin exhibits most features commonly associated
with subduction and so it is a convenient reference. The term island arc arises from
the arcuate segments of exposed, and submarine, volcanics and volcanoes which form
an almost continuous line about 100 km from the plate boundary on the overriding
plate. The arcuate nature is one example of the 3-dimensionality of subduction zones
which will be discussed later. Meanwhile it is convenient to remain in two dimensions
to describe the surface features of the margin.

The outer rise is a low up-arching of the oceanic plate seaward of the trench,
rising about 200 — 400 m over a distance of about 200 km. It is generally accepted to
be the flexural response of the plate to the downbending at the trench (Parsons and
Molnar 1956, The outer trench slope is generally low-angled dipping at 2° — 5° into
the trench and exhibits extensional tectonics attributable to the flexure stresses. The
ocean trench is the surface bounding line between the subducting and overriding plates.
Most trenches have a thin sedimentary cover, and they are recognised as the deepest
features of the ocean floor.

Landwards of the trench line is a highly deforined. and possibly metamorphosed,
sedime;ltar}' accumulation called the accretionary prism. The width and depth of the
prism varies greatly, from near zero in the Marianas to the great extent of the Lesser
Antilles (as shown in figure 1.2) which covers the trench and part of the outer rise.
The sediments are derived from turbidites and slumps, often reworkings, and from
‘scraping off* the top layer of the descending oceanic plate as it passes the trench line.

As the prism grows it gives birth to an outer sedimeantary rise which can breach the

[§]
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Figure 1.2

Km east of long 64° W

The major morphological units of the Lesser Antilles subduction zone ( vertical

exaggeration X2 ) portraying from left to right: remnant arc, backarc basin, arc, forearc
basin, forearc ridge, accretionary prism, and oceanic crust of the subducting plate. Accre-
tion of the forearc complex has swamped the trench in this example, obscuring the inner-
and outer- trench slopes and the outer rise. From Westbrook and McCann ( 1986 ).



ocean surface. in this case generating the island of Barbados. For margins with a
more diminutive accretionary prism the inner trench slope rises at 10° — 20° from the
trench which is considerably steeper than the outer slope. The intimate structure of
the accretionary prism is complex and will not be pursued further. A forearc basin
may develop behind this sedimentary ridge, in the case of the Lesser Antilles it is the
Tobago Trough. Unconformably overlying the prism. it consists of undeformed, mainly

terrigenous sediments derived from the volcanic arc.

The arc itself begins abruptly 150 — 250 km landward of the trench. It is the site of
intense, dominantly andesitic volcanicity of calc-alkaline tvpe which, coupled with the
observed uplift. is evidence of considerable magmatism at depth. The backarc region
shows great variety among the subduction zones of the world. Commonly a backarc
basin is characterised by thin sedimentary cover and high heat flow. Marginal seas
evolve when active spreading occurs and magnetic lineations become identifiable. The
Lesser Antilies margin is a good example of a remnant arc at the far side of the backarc

sea. This inactive volcanic island is recognised as ar extiuct arc,

Earthquake hypocentre location has clearly defined the intermediate and deep
earthquakes that are clustered along Wadati-Benioff zones. Isacks and Barazangi {1977)
interpreted -he position of the upper surface of the descending slab in vertical cross-
section through Wadati-Benioff zones, and a selection of these interpretations is shown
in figure 1.3. The angle of descent of the slab varies but one common feature of deep
seismicity is that none has been observed deeper than 720 km (Stark and Frohlich 1985).
This correlares well with the known seismic discontinuity at 670 - 700 km depth, the
nature of which is still the subject of debate. Initially this cut-off point was taken to be
the termination of the descending plate but recently Creager and Jordan (1984, 1986)
have used teieseismic residuals to show that the slabs of at least the Western Pacific

extend, albeit aseismically, to depths of at least 1000 km and probably 1400 km.

The cross-section in figure 1.2 provides a useful description of the subduction pro-
cess, but out-of-plane effects are also important. As already mentioned, the trench and
arc are linear but arcuate features. This can be understood in terms of the ping-pong
ball analogy i Frank 1968). Indenting the surface of the ping-pong ball creates a depres-
sion with a curvature equal to that of the ball and so the dip of the slab can be related

to the curvature of the arc. Although this is an oversimplification applied to trenches,
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Figure 1.3 Earthquake hypocentre distributions at a selection of convergent mar-
gins. The solid line is the best estimate of the upper surface of the subducting
lithosphere. Below, a compilation of the interpretations of slab surfaces with
the position of the volcanic arc denoted by a black triangle ( NH = New He-
brides, CA = Central America, ALT = Aleutian, ALK = Alaska, M = Mar-
iana, IB = Izu-Bonin, KER = Kermedec, NZ = New Zealand, T = Tonga,
KK = Kurile-Kamchatka, NC = North Chile, P = Peru ). From Isacks and

Barazangi ( 1977 ).



the concept is valid and the associated stress system must exist (Fukao et al. 1987).
The relative motion of the plates is rarely perpendicular to the trench, and this oblique
convergence is responsible for the strike-slip tectonics of the forearc and the resulting
terrane motion. This further complicates the stress/stra’n regime of the overlving plate

and may jeopardise any predictions from 2-D modelling.

The preceding description of a typical convergent margin obviously precludes one
of the major observations concerning subduction zones: they are not all the same. Much
literature has been devoted to investigating the correlation between the properties such
as convergence rate and age of subducting slab, with the observations of slab dip,
seismicity etc. A recent extensive analysis by Jarrard (1986) using a multiple linear
regression has convincingly catalogued some significant correlations. While correlation
is not direct proof of causality, it is a useful indicaticn of the relative effect of the
fundamental parameters of subduction. Jarrard considered slab length, earthquake
magnitude, strain regime, slab dip, arc-trench gap and trench depth and found that they
can all be accounted for by a combination of slab age. convergence rate and intermediate
dip. The Benioff zone length is correlated with the product of convergence and slab
age, in line with conducting heating models. The maximum earthquake magnitude is
correlated with convergence and slab age. supporting the theories of seismic coupling,
and trench depth correlates with age and dip which supports the notion of slab pull.
However there are a few inconsistencies, notably that the slab dip correlates negatively
with duration of subduction, implying that subduction shallows with age. Also Jarrard
found that strain regime of the overriding plate is atfecied by the slab dip and presumed

that this is due to its eflect on the seismic coupling.

1.2 Rheology

This section is a short discussion of rheology of the Earth with a view to modelling
this behaviour numerically. Consequently this is a somewhat simplified perspective:
considering the recent advances in understanding {e.g. Braun and Beaumont 1987,
Kirby and Kronenberg 1987. Hager and Gurnis 1987} but it is adequate for the purposes
of this thesis.

Plate tectonic theory requires that the outer shell of the Earth, the lithosphere,



retains its rigidity over geological time scales. The vertical extent of the lithosphere
can be defined by the depth to a characteristic isotherm, tvpically 1550 K, above which
the rock is cool enough to behave rigidly, and below which the rock deforms by solid
state creep, behaving as a viscous fluid. The asthenosphere is a weak zone underlying
the lithosphere which flows laterally in response to lithospheric movement allowing

isostatic adjustment to occur on a time scale of the order 10* years (Robinson et al.

1987, Ceuleneer et al. 1988).

The lithosphere is composed of the crust and the top of the mantle. These are
chemically distinct and meet at the Mohorovici¢ Discontinuity (Moho). Oceanic litho-
sphere is created at ocean ridges, it cools and thickens as it migrates and isostatically
subsides away from the ridge (Sclater and Francheteau 1970). At subduction zones the
oldest oceanic lithosphere is about 100 km thick with about 5 km of oceanic crust at
the top. Continertal lithosphere is typically twice as thick as oceanic and the Moho
is observed at about 40 km depth on average. The relatively low density crust low-
ers the average dewsity of continental lithosphere sufliciently to inhibit subduction and
this creates an important distinction between the two types of ithosphere. Continental
lithosphere is thus much older. and also its integrated strength is much less since crustal
rocks are much wezker than those of the mantle, and the lower lithosphere rock is much

hotter and weaker because of its greater depth.

The exact rheology of the lithosphere is uncertain. Many possibilities have been
proposed as models for the long term lithospheric behaviour. Simple models of an
elastic plate overlving a fluid substratum were reasonably successful for eérly flexural
studies and led to the concepts of flexural rigidity and corresponding effective elastic
thickness (EET for the lithosphere. This elastic thickness was found to be about
half the seismic or thermal thickness for the oceanic lithosphere (e.g. Walcott 1970,
Watts and Cochran 1974, Watts et al. 1980) and so it can be concluded that only the
upper, cooler part of the lithosphere can support long term elastic stresses. The lower
lithosphere is expected to relax viscously over geological time, and Kusznir and Bott
(1977) demonstrated that this relaxation leads to amplification of the stresses in the
upper elastic layer. These observations have led to many other more complex models
using viscoelastic i Nakada and Lambeck 1986), elastic-plastic (Turcotte et al. 1978)

or other thermo-mechanical rheologies for the plates. However Lui et al. (1982) and




Karner (1984, 1955; have shown that a simple elastic model, combined with thermal
effects, can produce behaviour normally associated with the more complex rheologies,
and so the representation of lithospheric behaviour by flexure of an elastic plate remains

a very useful approximation.

Flexure of the lithosphere is strongly dependent on the load. Short wavelength
(< 50 km) loads will be almost entirely supported by the rigidity, but to long wavelength
(> 1000 km) loads the lithosphere is virtually transparent and then the load is supported
in effect by local isostasy. In conjunction with the elastic flexure the lithosphere suffers a
great deal of non-elastic deformation. At shallow depth rocks may suffer brittle fracture
when their strength 1s exceeded, generally described by modified Griffith theory (Jaeger
and Cook 1976). Under tension the vield values of upper and lower crustal rocks are

about 10 and 50 A\ Pa respectively.

The overall seismic structure of the mantle is showrn in figure 1.4. The S-wave
velocity reaches a minimum between the base of the lithosphere and 220 km depth.
This is the low velacity zone. probably the region where the mantle comes closest to
melting. which is often regarded as the asthenosphere. The transition zone is marked
by sharp increases in P- and S-wave velocities at 400 k. and at 700 km. The lower
mantle is relativelv unstructured except for a slight flattening of the velocity curves
near the core-mantle boundary (CMB). The seismic discontinuity at 400 km is a density
discontinuity caused mainly by a solid state phase change. This has been reproduced
in laboratory experiments recreating the discontinuous reaction from olivine + v-spinel
to j-phase spinel at 14 GPa pressure and a temperature of 1700 (+300) K (Jeanloz
and Thompson 1933). This phase change is sufficiently <harp i.e. occurs over a narrow
pressure and temperature range, to account for the observed sharpness of the seismic
discontinuity.

The diamond-anvil cell experiments have also shown that the dominant minerals of
the upper mantle { olivine, pvroxene and garnet ) all transform to a silicate perovskite at
lower mantle temperatures and pressures (Jeanloz and Morris 1986). Sufficient quan-
tities of perovskite have been retrieved to allow its zero pressure density-temperature
behaviour to be determined (Knittle et al. 1986). The perovskite cannot match the
decompressed value of lower mantle density derived from seismological studies. Thus

it has been suggested that the lower mantle is rich in iron or silica to account for the

6
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density discrepancy.

There are many deviations from this average mantle structure, in particular in
the vicinity of the subducting slab. The slab is cooler, and hence denser, than the
surrounding mantle but additional body forces are generated by the elevated phase
changes in the slab. shown in figure 1.5. The Clapeyron curve. which defines the phase
change in p - T space. has a positive slope ¥ = 4 MPa K~! for the olivine-spinel
transition. Since the slab is cooler the transition will occur at lower pressures and
hence at a shallower depth. Schubert et al. (1975) estimated a maximum elevation of
115 km in the cool core of the slab, giving a fourfold increase in the body force for a
density contrast of 240 kg m ™. The elevated olivine-spinel phase boundary is probably
a very significant factor in the mechanism of sinking lithosphere.

The deeper phase change to perovskite is predicted to have & small negative Clapey-
ron slope (Jeanloz and Morris 1956). At the phase boundary at 400 km depth the co-
ordination number of Si remains at 4, but this deeper transition raises the coordination
number to 6. The reorganisation of the oxygen nuclei could result in significant stress
relief and thus explain the lack of seismic activity below this depth in the slab (Liu
1979).

Seismic probing of the deep interior vields the instantaneocus. elastic properties of
the Earth. However, over geological time the mantle undergoes solid state creep at
extremelv small strain rates. The dominant mechanisms at low stresses are probably
diffusion creep or Coble creep. Ditfusion creep describes the migration of atoms through
the crystal’s interior. but for Coble creep the diffusion :akes place along the grain
boundary. Macrophysically this is described by a Newtorian fluid, where strain rate
¢ is proportional to the stress o and the constant of proportionality is the pressure-
temperature dependent viscosity .

€ = pa

Crystal lattices are not perfect structures and the imperfections, the dislocations,
facilitate creep. Two mechanisms are dislocation glide and dislocation climb, and they
involve the diffusion of the additional nuclei, or holes. through the lattice. In the
macrophysical model of dislocation creep the strain rate is proportional to a power n

of the stress, this 1s non-Newtonian flow,

Ex a”
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where commonly n = 3. The effective viscosity is defined by the ratio of stress to
strain rate, which now becomes dependent on the stress aswell as being exponentially

dependent on the pressure and temperature.

Flow in the hot, underlying mantle can be suitably repfesented by diffusion creep,
but the deviatoric stresses in the lower lithosphere generate a highly non-Newtonian re-
sponse. The exact rheology of the mantle is not known and for mathematical simplicity
it is often modelled as a Newtonian fluid, and with considerable success (e.g. Cathles

1975, Peltier et al. 1978 }.

In order to investigate the long term response of the mantle the study of post-
glacial rebound has become popular. Glaciation provided a significant long term load
on the Earth which depressed the surface, but on relief of the load by glacial retreat the
surface has been rising and recovering its pre-glacial configuration. Cathles (1975) made
a world-wide study of post-glacial rebound and discussed at length the applicability of
the self-gravitating Nevrtonian viscous sphere as a whole Earth model. The resulting
viscosity-depth profile is shown in figure 1.6. However, the time-scale of post-glacial re-
bound, about 20000 vrs. is still considerably less than that characteristic of subduction,
about 10° yrs. Peltier et al. (1986) attempted to reconcile the relatively low viscosity
lower mantle inferred from rebound studies with the much higher viscosities required
by microphysical models of solid state creep. They interpreted the low viscosity as a
transient value, since ir. their Burgers body representation the elastic moduli become

frequency dependent.

Further support for a higher viscosity lower mantle comes from Richards and Hager
(1954) and Hager {1984} who studied the geoid anomalies due to mass anomalies in a
self-gravitating Newtonian viscous body. The relative high in the geoid at subduction
zones was well documented (e.g. Crough and Jurdy 1980. Chapman and Talwani 1952,
Chase and McNutt 1982). Hager (1984) proposed that the lower mantle should be at

least 30 times, and probably as much as 100 times, more viscous than the upper mantle

in order to support the observed geoid.

In the subsequent 2-D mantle-wide subduction zone simulations the long term
behaviour of the lithosphere will be modelled as an elastic upper layer overlying a

viscoelastic lower laver. The mantle will be treated as a layered Newtonian body.

8
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1.3 Driving Forces of Plate Motion

The driving mechanism of the motion of the lithosphere has frequently been at-
tributed to forces acting at the vplat.e boundaries. Plates are rigid and act as stress
guidés so that edge forces result in motion rather than deformation. Forsyth and Uyeda
(1975) summarised the forces acting on a plate, see figure 1.7. The ridge push force
arises from the gravitational energy generated by the thermal upwelling at mid-ocean
ridges. Lister (1975) and Hager (1978) demonstrated that this force exists throughout
the oceanic lithosphere that is continuously cooling and subsiding (Crough 1975). The
slab pull force is the component of negative buoyancy of the cool descending slab which
is transmitted to the surface. Other effects include the trench suction force which pulls
the overriding plate towards the trench, asthenospheric drag. and continental collision.
Forsyth and Uveda presumed that the torques on the plate sum to zero, and the result-
ing analysis showed the slab pull contribution to be an order of magnitude greater than
the ridge push. demonsirating the dominance of slab pull. Among the forces resisting
plate motion. asthenospheric drag is greater under continental lithosphere than oceanic.

Carlson (1981, 1953 : expanded on this idea: if plate motion is due to boundary
forces themn its speed is predictable from the known boundary elements. Using linear
regression he produced an empirical equation successfully predicting the plate speeds
(in cm yr~!) from the proportion of ridge push (RP), slab pull (SP), trench suction

(TS) and excess continental drag (CD) present in each.
v=(26404)+ (45 = 1.85)RP +(14.3+£ 1.7)SP + (3.5 £ 25:TS — (5.1 £ 0.7)CD

The slab pull contriburion is three times that of the ridge push. which is almost balanced
by the excess continentz! drag, in line with Forsyth and Uyeda (1975). The trench
suction force is small arid not statistically significant. Carlson noted that the large
positive constant term: iz the equation immplies that lithospheric forces omitted from the
regression all contribute a similar amount to each plate. The major omission is the
non-continental asthencspheric drag (or pull), and Harper {1926) concluded that this
is an important effect. As Carlson pointed out, correlation is not proof of causality and
regression analysis is a somewhat circular argument. However. the success of the model
encourages the notion of the driving mechanism as a system of boundary forces which

are intimately dependent on the plate itself.

9



Continental plote Oceanic plate

Figure 1.7 A summary of the forces acting on a plate. Brieflly, Frp is the ridge push force,
FpF is a drag force from the underlying asthenosphere, Fisp is the slab pull force, Fspg is
the mantle resistance to slab motion, Fsy is the trench suction force. From Forsyth and
Uyeda ( 1975 ).



The forces acting on the lithosphere generate stresses within it and the origin of
the stresses was recently reviewed by Bott and Kusznir (1984). Stress systems are
catalogued as renewable or non-renewable. Plate boundary forces and isostatically
compensated loads are renewable stress sources since the forces. and stresses, persist
over geological time. Bending, membrane, and thermally induced stresses can be dis-
sipated by fracture and creep, will then no longer exist, and are thus non-renewable.
Non-renewable stresses may dominate locally but it is the renewable stresses that are
subject to stress amplification and control most of the tectonics. Wiens and Stein
(1985) presented a small dataset (57 earthquakes) of intraplate seismicity, half of the
data was taken from the Central Indian Ocean. The principal stresses derived from
the focal mechanisms show that oceanic lithosphere > 35 Ma is in deviatoric com-
pression. Wiens and Okal (1987) described additional tensional intraplate events but
Haxby and Parmentier (1988) demonstrated that thermal stresses probably dominate
the stress regime of oceanic lithosphere in ocean basins, and thus it is difficult to derive

the tectonic stresses from the seismic evidence.

1.4 Convection in the Mantle

Sustaining the plate motion requires a great deal of energy. It is generally believed
that the only viable source 1s the interior heat generated by radioactive decay combined
with a gradual cooling of the Earth. A simple thermal convection model of the man-
tle is shown in figure 1.a. The efficiency of these thermodynamic engines for driving
lithospheric plates is maxirnised for whole mantle convection but the exact mode that
operates converting heat to work is not clear. The Rayleigh number of the mantle
ranges between 10% and 10* times the critical Ravleigh number (e.g. Jarvis and Peltier
1952) and under these conditions the heat transport is dominated by thin boundary
layers of the convection cell. The direct inference is that the lithosphere is a passive

upper boundary layer.

Numerous numerical simulations of this type of thermal convection, the Rayleigh-
Bénard cell, permeate the literature (e.g. McKenzie et al. 1974, Hansen and Ebel
19584a, 1984b, Boss and Sacks 1986, Jarvis and Peltier 1986) attempting to reconcile

the geological and geophysical evidence. Recent work has concentrated on the question
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of whether the present-dav convection is mantle-wide or is layered. Christensen and
Yuen (1984, 1985) showed that a compositional density contrast of 5% at 670 km depth
is sufficient to deflect the slab, but this would produce observable topography at the
boundary. A density contrast < 2 % allows complete slab penetration of the lower
mantle. Only a highly endothermic phase transition v = —6 MPa K~! could enforce a

‘leaky’ two layer convection system.

The descending oceanic lithosphere is widely believed to penetrate the lower mantle
from the seismic studies of high velocity regions immediately beneath subduction zones
(e.g. Engdahl 1975, Jordan 1977, Creager and Jordan 1984, 1986, Silver and Chan
1986, Grand 1987) which are interpreted as aseismic extensions of the slab. Dziewonski
(1984) and Woodhouse and Dziewonski (1984) presented a tomographic inversion of
velocity heterogeneity in the mantle which shows fast regions of the lower mantle (in the
depth range 1000 km to core-mantle boundary) that correspond to deep extrapolations
of present-day subduction { Chase 1979, Hager et al. 1985). The calculations of slab
assimilation by Wortel { 1932, 1986) predict that the slab retains an elastic core down to
the upper-lower mantle boundary. Shoino and Sugi (1985} also estimated assimilation
time for subduction, assuming that it is related to cooling time for oceanic lithosphere.
It is clear in the results that older lithosphere requires a much longer slab than indicated

by the Wadati-Benioff zone. a further validation of slab extension into the lower mantle.

The geophysical evidence weighs in favour of whole mantle convection, but not of
the simple Rayleigh-Bénard cell type. Loper (1985) presented a quite comprehensive
discussion of the evidence. arguments and suppositions concernirng mantle convection.
He offered a solution in terms of two modes of convection, the primary mode is driven
by the negative buoyancy of the slab at subduction zones, and the secondary mode
takes the form of narrow. axisvmmetric plumes rising from the core-mantle boundary
(CMB). The primary mode flow is controlled by the viscosity-depth distribution. The
cool, wide slab is stronglyv coupled to the viscous mantle and excites considerable flow in
the surrounding mantle. The exact flow patterns will be decided by the 3-D interaction
of low created by subduction and other density heterogeneities such as ocean ridges
and plumes.

Stacey and Loper {1953), Loper and Stacey (1983) and Loper (1984) provided

the analytical framework of the D" thermal boundary layer at the base of the mantle,
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and the lower mantle plume. More recently Sleep (1987) added & simple analytical
plume model in the same vein. Plumes are envisaged as narrow. about 20 km in
diameter, axisymmetric vertical channels which carry hot, low viscosity material up to
the surface with little or no coupling to the surrounding mantle. The plumes are fed
from the D" layer which itself is sustained by a bulk sinking of the lower mantle. The
ascent of the plume material is terminated by the rigid lithosphere. At the surface the
underlying plumes are evidenced by hot spots, and these are generally active volcanic
islands centred on a topographic swell. The hot, low density plume material feeds the
volcanicity. The mass deficit associated with the hot upper mantle supplemented by a
positive fluid pressure at the top of the plume causes the up-arching of the lithosphere
(Richards et al. 1987). The observed hot spot volcanics can only account for a few
percent of the estimated mass flux of the plumes and so it is presumed that the material
flows laterally in the asthenosphere. Loper (1985) estimated a laver 140 km thick would
accumulate over the lifetime of the Earth assuming present day rates. and perhaps this
is the source of the low velocity zone. This surface layver would originate from the
bottom 280 km of the lower mantle leaving shallower material in the vicinity of the

plume potentially untouched.

However, the mineral physics experiments discussed earlier suggest a slight com-
positional difference between the upper and lower mantle. This may cause some sep-
aration of the circulation at the 670 km discontinuity and the cozsequent formation
of thin thermal boundaryv lavers, but not strictly layered convecticz. with a chemical
boundary layer. This has implications for the mantle geotherm {Jeanloz ‘and Morris
1936) causing the lower mantie to be hotter and the upper mantle colder than for whole
mantle convection. This increases the thermal response time of the Earth. Kenvon and
Turcotte (1983) modelled the development of thermal boundary layers due to two layer
convection with no mass flux across the 670 km discontinuity. This analyvsis showed
that the relatively hot lower mantle would possess an unacceptably low viscosity. In

this respect the thermal arguments favour whole mantle convection.

The geochemical evidence is another important constraint on the evolution of the
mantle (Davies 1984). Using isotopic and trace element data Hofmann et al. (1936)
described the chemical history of the mantle in terms of two depletion events. The

first event generated continental crust, depleting at least half of the primitive mantle.
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The residual mantle may or may not be remixed and homogenised. The second event
involves the formation of oceanic crust in the form of present-day plate tectonics. The
isotopic character of mid-ocean ridge basalts (MORB) is unique and fairly constant over
the Earth (Zindler and Hart 1986), and the MORB source region is generally considered
to be the uppermost upper mantle. Subduction returns the oceanic lithosphere, that
is the enriched oceanic crust and its depleted mantle component. back into the mantle.
It is generally believed {e.g. Davies et al. 1983) that subducted crust forms the main
source of ocean island basalts {OIB) at hot spots, since OIB has distinct isotopic and

trace element characteristics that are most readily explained this wayv.

At first glance the geophvsical, geochemical and mineral physics evidence are not
compatible. However, if all are accepted at face value, there emerges the possibility of
partial decoupling of the thermal and chemical systems involved in mantle evolution.
Subduction must take oceanic crust down to the chemical boundary layver at the CMB,
which then rises as narrow plumes to form hot spots. However, the volume of material
produced by the plumes must be much less than that estimated bx Loper (1985) to
prevent contamination of the MORB source region. At the 670 km. discontinuity the
cold, dense. rigid slab will plunge through into the lower mantle. but the induced flow
will be partially decoupled. The induced flow will create some mass flux across the
upper - lower mantle boundary but it will be inhibited by the compositional difference
(which mayv occur at a much greater depth). Thus thin thermal boundary layers may
form about the discontinuity.

These are very tentative assertions about the mode of present-day convection in
the mantle. In the context of this thesis subduction assumes the role o principal driving
force of plate motion and fiew in the mantle, with deep mantle penatration controlled
by the viscosity-depth distribution. The next section discusses tke cause-and-effect
relationships which help to determine the dynamics of subduction. an understanding of

which is crucial to the understanding of mantle evolution.

1.5 Aspects of Subduction Zone Dynamics

The mechanics and dynamics of subduction will be discussed with reference to a

2.D cross-section since the numerical models of this thesis are two dimensional. Where
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appropriate, the 3-D influences will be included as an acknowledgement of the need
to include sphericity when discussing subduction tectonics. Despite the assertions of
Uyeda (1982) that ‘comparative subductology’ is the only useful analvsis of subduction,
it is apparent that 2-D generalisations can provide an important description of the
behaviour and development of convergent margins. So, following a brief account of the
overall mechanism of subduction, each feature typical of subduction will be described

in more detail, incorporating some of the relevant previous numerical analyses.

1.5.1 The Mechanism of Subduction

The highly simplified cross-section in figure 1.9 portrays the more significant prop-
erties of subduction zones. The slab, defined here as the lithosphere below 90 km depth,
carries a mass anomaly which generates a body force acting in the direction of the grav-
itational field. This can be resolved into two components, one acting downdip and one
acting perpendicular to the slab.

The downdip componen: of slab motion has received a considerable amount of
attention in the literature. Davies (1980, 1951, 1983) assessed the dowr. dip force balance
to determine the relative magnitude of forces opposing subduction and the net stress
distribution in the slab. The force balance occurs in the mantle: :he downdip slab
force is opposed by in-plate tension at the top of the slab, viscous si.ear resistance at
the slab sides, and resistance to penetration at the leading edge. The viscous shear is
the dominant reactive force. Davies (1983) modelled shear resistarnce in an isoviscous
mantle (g = 10?! Pa s) and argued that the resulting compression { . GPa{)'in the lower
sections of the slab would exceed slab strength and thus the system of resistive forces was
untenable. The estimated large compressions may arise because the calculations assume
that the slab tip reaches an impenetrable boundary at depth, which the overburden rests
on. The slab tip is likely to be ductile after a long residence time ir. the mantle and
thus the overburden pressure will cause deformation flow of the leading edge (Fischer et
al. 1988) which may transmit much less compression back up the siab. Davies (1983)
demonstrated that increasing shear resistance from a more viscous mantle (g = 4 x 10%!
Pa s) reduces the slab stresses to a more acceptable value (300 MPa.. and so perhaps

simple shear resistance in an isoviscous mantle is not adequate. These presumptions

require some detailed modelling to determine the precise effects.
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The in-plate tension at the top of the slab is coupled to the szrface subducting
plate through the slab bend region. The vertical component of this tension holds the
trench down out of isostatic equilibrium, and creates the flexural resconse of the outer
rise. Horizontal tension is transmitted along the subducting plate. dragging it into
the trench. This is a major contribution to the slab pull force of the plate driving
mechanism. The numerical models of the stress regime at subduc:ion zones in this
thesis will attempt to elucidate the origin of the plate driving forces. The large mass
deficit of the trench creates an isostatic reaction to the downpuil. This is spatially
offset from the in-plate tension. generating an enormous bending couple at the top of
the slab. This is the origin of the large increase in curvature of the subducting plate at

the slab bend region.

The component of negative buoyancy perpendicular to the slab causes rollback, a
retrograde motion in which the slab and trench migrate seawards - e.g. Carlson and
Melia 1984). Garfunkel et al. 11986) proposed that slab migration is he major control
of the time and space dependence of mantle flow and estimated the average rollback
velocity to be 20 mm yr~!. Over the vast surface area of subducted slabs this motion
will cause a considerable mass flux, comparable to that at the ocean ridges. Davies
(1981, 1983) noted that this motion will be coupled to the overriding olate through the
viscous mantle, inducing a broad downwarping about 1 km deep. This correlates well
with observations of depth anomalies in the Western Pacific margine! basins (Louden
1980}. Around 70-90% of the magnitude of observed gecid anomal:=s in the backarc

could be explained by this depression.

The negative buoyancy of the slab tends to rotate the descernding lithosphere to-
wards the vertical. This is contradictory to the present-day data of slab dips, displayed
in figure 1.10. As Jarrard {1936) pointed out, subducting slabs appear to show a gen-
eral shallowing of dip with duration of subduction. The co‘ncept o7 corner flow was
originally applied by McKenzie {1969) to provide a mechanism of maintaining slab dip.
In the mantle wedge above the slab the downdip motion drags away material which
cannot be replaced because the overriding plate is stationary relative to the trench.
This creates a pressure differenice across the slab counteracting the gravitational forces.
This mechanism was restated by Stephenson and Turner (1977) and extended to in-

clude non-linear rheology by Tovish et al. (1975). There is a relative geoid high at the
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trench (Crough and Jurdy 1980. McAdoo 1981) and McAdoo (1982 rmanaged to gen-
erate correct geoid slopes using highly non-linear corner flow. Hager 1984) has since
demonstrated the origin of geoid highs at convergent margins due to the viscosity-depth
variat?ion, and Willemann and Anderson (1987) successfully modelled geoid slopes due
to vertical subduction of an inextensible slab in a layered Newtonian r:antle.

The pressure difference across the slab produced by corner flow fzlls off with dis-
tance downdip. Willeman and Davies (1982) compared this corner flow support with
the integrated slab force normal to the dip. These calculations showed that different
variation downdip (of the two opposing mechanisms) creates large torques which the
slab could not endure. Corner flow support is proportional to the effective viscosity
which is predicted to be low in the mantle wedge. So, the evidence weighs against
corner flow as the dominant mechanism of slab support.

Bott (1985) calculated that a pressure deficit of 10 MPa in the mantle wedge
would provide significant support to the descending slab against the rotational forces.
This pressure low could be produced and dynamically sustained by cozzinuous rollback
causing lateral flow in the astherosphere. Global flow will probably loczlly modify the
specific effect of the basic mechanism. Whilst the dynamic flow pressure may maintain a
particular slab dip, it is rather more unlikely to cause shallowing. A pos:ible mechanism
for shallowing involves slab penetration of a high viscosity lower mant.e. The slab tip
will move more slowly through the lower mantle than the upper mantie rollback, and
thus the longest subducting slabs may tend to shallow.

The numerical models of Gurnis and Hager (1988) predict vertical sabduction until
the slab tip collides with the top of the lower mantle. Ongoing subduc-ion then causes
a shallowing of dip as the slab tip interacts with the more viscous lower mantle. This
cannot explain the observed variation of dip among the shallowest Ber.:off zones except

by aseismic extension of the slab in the upper mantle.

1.5.2 Controlling Factors of the Subduction Process

Conductive cooling models of the oceanic lithosphere (Crough 1975 « as it migrates
away from the ridge and isostatically subsides, show that it is cooler znd denser than
the underlying asthenosphere. Numerical predictions of slab isotherms. combined with

estimates of the coeflicient of thermal expansion, yield an average :hermal density
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anomaly of approximately Ap = 30 kg m™3 for the descending lithosphere at subduction
zones. As subduction progresses. conductive heating spreads the thermal anomaly and
so the effective density anomaly may be reduced with distance downcip, but this is
slow compared to the time constant of convection. Hence as a good approximation for
numerical models (Willemann and Anderson 1987) the density anomaly will generally
persist throughout the length of the slab. Kincaid and Olsen (1987) suggested that the

ratio of density anomalies in the upper and lower mantle is an important control.

The low temperature of the slab will cause mineral phase changes to occur at
different depths relative to the surrounding mantle. The discontinuities at 400 km and
670 km depth were discussed previously {see section 1.3). In numerical implementations
the olivine-spinel transition is represented by additional body forces above 400 km depth
in the slab. Anderson (1987) proposed that the lateral temperature anomaly of the slab
causes isobaric phase changes. increasing the density anomaly further (figure 1.11}). The
increased mass anomaly and velocity of the slab may then negate the requirement of

slab extension into the lower mantle.

Isacks and Molnar (1971} completed the first global study of earthguake generating
stresses deduced from focal mechanism solutions of intermediate and deep focus earth-
quakes. That survey has been updated recently by Vassiliou {1984) ard Apperson and
Frohlich (1987) using the newly available moment tensor inversion cata. resulting in
very little alteration to the initial conclusions. The diagram in figure .12 portrays the
variation of number of earthquakes with depth. The histogram has a cistinct minimum
at 250-300 km depth. many more earthquakes occur at a shallow depth than below
300 km. The deep focus eartinquakes are predominantly downdip compression, with
50% of P-axes lying within 22° of slab dip. The intermediate depth earthquakes, in
the range 90 — 300 km, have a regional variation and the principal stress axis is not
well aligned downdip. but in general terms downdip tension prevails in both deep and
shallow penetrating slabs. However. Apperson and Frohlich (1957) czlculated that, in
a global sense, less than 30% of focal mechanisms fit this general patterr.

The longest subducting siabs roughly follow the average earthquake distribution
but a notable exception is the Tonga slab which is‘ almost entirely compressional
throughout its length (Giardini and Woodhouse 1984). Double seismic zones are the

best documented departure from the average earthquake profile (Fujita and Kanamori
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1981) but the recent surge in discoveries (e.g. Samowitz and Forsyth 1951. Reyners and
Coles 1982, House and Jacob 1983, Suzuki et al. 1983, Kawakatsu 1986a; suggests that
the double seismic zone might well be the normal mode of intermediate earthquake dis-
tribution {(Kawakatsu 1986b). The most convincing double seismic zones are observed
in the depth range 60 — 200 km in slabs with dips 30° — 45° and are characterised
by two lavers of seismicity. Compressional mechanisms dominate the top layer near
the surface of the slab, and tensional earthquakes make up the lower laver about 30
km further into the slab. Fujita and Kanamori (1981) note that double seismic zones
persist over a large depth range. and hence a long time, and thus discount unbending
stresses and phase changes as the sole mechanisms. Sleep (1979) suggested a model of
a slab sagging under its own weight. the low viscosity mantle above the slab relaxes
quickly allowing compressive stresses to develop in the upper surface. The lower layer
of in-plate tension persists as it is near the neutral fibre of the bending moment. A
displacement of 2 km is probably suthcient sagging to create the required stresses and

this would be indistinguishable for current earthquake location accuracies i =5 km).

The physical mechanism of deep earthquakes is not well understood. The volume
change in high pressure polymorphic phase transitions would not produce the observed
double-couple mechanisms, but a variation on this theme by Kirby (1927 ; has again
lent credence to this notion. The earthquake generating stresses in the slab can be of
mechanical or thermal origin. Phase changes serve to magnify both of these eflfects with
an increase in buoyancy and the :atent heat release. Hamaguchi et al. { 1933} and Goto
et al. (1985) used a finite elemeni method to evaluate the thermal stresses induced by
conductive heating of the slab. inciuding the latent heat release of the olivine-spinel
transition (using a non-linear Clapevron curve). The thermal stresses dominated the
mechanical stress field, but did not correlate well with the stress distribution derived
from the average earthquake profile. Vassiliou et al. {1984) studied the mechanical
stress distribution generated by a viscous slab sinking under its own weight into a lay-
ered Newtonian mantle. A viscosity increase of x25 at 670 km depth approximately
reproduces the observed stress field. However, this is indistinguishable from the stress
regime generated by higher viscosity contrasts or an impenetrable boundary. The inclu-
sion of the body forces of the elevated olivine-spinel transition in the slab was discovered

to be incompatible with the observed stresses. Neither study could account for double

.
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seismic zones. Spherical shell tectonics analysed by Yamaoka et al. (1986) and Yamaoka

{1988) are an important addition to the stress field.

The slab bend region connects the descending slab to the surface plate {Spence
1956, 1987). It is characterised by a marked increase in curvature of the lithosphere
with little associated seismicity. This occurs at about 40 km depth, roughly coinciding
with the basalt-eclogite phase change in the oceanic crust of the descending plate. This
transforms the initially buoyant crust to a high density phase. Bending will thin the
crust and the phase change leads to a volume reduction and more plastic behaviour
which may aid any possible decoupling from the overriding plate. Thus the onset
of the slab bend region could define the end of the brittle fracture zone and help
to explain the lack of large magnitude thrust earthquakes below 40 km depth. The
descending lithosphere must pass through the slab bend and potentially is severelyv
fractured and deformed. This could influence the mechanical and chemical interaction

with the asthenosphere.

The thrust zone is the site of the largest magnitude thrust earthquakes. It does
not contribute directly to the force balance in the mantle, but it serves to redistribute
the stresses in the surface plates. The nature of the contact across the thrust zone is
not well understood. Ruff and Kanamori {1980, 1983) suggested a distribution of large
asperities in the fault zone to account for the large magnitude earthquakes and the
nature of aftershocks. The asperities could be due to surface features of the subducting
plate or due to variations in contact length and angie along the fault line. However, it
is ditficult to predict the amount of sediment subduction and the behaviour of the crust
which may contribute to the properties of the thrust zone (Peterson and Seno 19384,
Kostoglodov 1988).

Ridges and seamounts are the largest topography of the seafloor and attempted
subduction will generate a very large asperity which may temporarily halt subduction
in that region. Locking-up one segment of a subduction zone will have a dramatic
effect on the stress regime, with a large component of regional horizontal compression
being transmitted across the fault { Waghorn 1984). For an elastic plate the compression
would be transmitted throughout the plate length causing considerable vertical motion.
Wortel and Cloetingh (1986) showed that flexural basins in the centre of the plates will

suffer significant uplift as the regional stress field becomes compressive.
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Free-air gravity anomalies seaward o: convergent margins follow the seafloor topog-
raphy indicating that the trench and outer rise are held out of isostatic equilibrium. The
fiexure can be modelled to a first approximation by an elastic layer of age-dependent
thickness, 100 Ma lithosphere has an effective elastic thickness (EET) of 30 km { Watts
and Talwani 1974, Watts 1982). However, some outer trench slopes have high curva-
tures which are best described by flexure of a lithosphere with an elastic core and an
outer plastic layer (Turcotte et al. 197&1. The bending stresses fracture the crust under
tension to form graben blocks which trap sediment for subsequent subduction (Hilde
and Sharman 1978, Wortel and Cloetingl: 1986). The weight of the accretionary prism,
and possibly the forearc, are additional loads on the subducting plate which will modify

the surface flexure.

The dominant features of the forearc are the accretionary prism, the structural
high and forearc basin, which may or may not be present at a particular margin. In
the nomenclature of Seely (1979), the residual forearc basin is considered to be typical
of major forearc basins. The evolutior. is shown in figure 1.13. The basement and the
initiation of the structural high is reminarnt oceanic or transitional lithosphere ¢ Kiechefer
et al. 1950, Lewis and Haves 19584), and its inception must have some flexural control.
Subsequent evolution is dependent on accretion, understuffing and compressional fail-
ure. The forearc is controlled by compressional tectonics. The Lesser Antilies is an
example of a non-typical structural higz. Since the basement spur is small the Bar-
bados Ridge has developed by growtl f a huge accretionary prism (Westbrosk and
Brown 1956). The isostatic gravity anoraly over the Lesser Antilles forearc complex
is strongly negative showing that the svziem is depressed by the action of subduction
 \Westbrook and McCann 1980, Westbrook et al. 1984).

Tharp (1955) modelled shallow subduction to investigate forearc basin evolution
using finite element methods. This procuced 5 km structural highs and forearc basins
= few kms deep, which are greatly in excess of the observed. This discrepancy in
magnitude is attributed to the method used; viscous strain rate was defined as an

elastic strain distributed over a smali time period.

The volcanic front of arc volcanism always lies above the point where the \Wadati-
Beniofl zone reaches 100-150 km depth. There is no volcanism seaward of this. Uyeda

11986) reviewed two possible sources of arc volcanism, diapiric rise due to melting, and
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induced flow above the slab (Andrews and Sieep 1974, Achayra 1951, Honda 1985:. The
downdip motion induces convection in the mantle wedge, the material rises adiabatically
and partially melts in response to the drop in pressure. The melt is buoyant and is
released at the highest point of the flow:. where the surface lithosphere is ablated and
intruded by the melt. Experimental eviderce implies that high temperatures (1400 °C)
are necessary in the mantle wedge (Tatsumi et al. 1983). This induced flow model is
supported by the absence of volcanism in the South American Cordillera where there

is no underlving mantle wedge.

The backarc of convergent margins has been catalogued by Taylor and Karner
(1983) and Brookes et al. (1984), among others, and classified by strain regime by
Jarrard (1986) and by stress-gradient by Nakamura and Uyveda (1980). There is a
complete gradation of strain regimes from the highly extensional with active backarc
spreading e.g. Marianas, through the neutral regimes e.g. Lesser Antilles. to the highly

compressive of North and South Chile.

Dewey (1980) presented a vector analvsis of absolute horizontal motion of the
plates. relating backarc and forearc tectonics to the resultant of trench rollback and
overriding plate motion. Extensional backarcs occur when rollback is faster than the
advance of the overniding plate, neutral backarcs arise when both move at a similar
rate. and compressional backarcs are created when the overriding plate advances faster
than the treuch rollback. Oblique motion creates strike-slip features and terrane motion.
Thus the model requires a Ach ange in overriding plate motion or roliback velocity to affect
the tectonics. For iustance, a decrease in rollback velocity due to vounger lithosphere
at the trench can transform an extensional to a compressional backarc. This absolute
motion model can explain most, but xh,ot all, of the variation in the tectonics of the
overriding plate.

Backarc spreading appears to have a hinited lifetime < 17 Ma. a change in plate
motions can cause an immediate cessation of spreading but there s a time lag of 6-10
Ma before spreading resumes elsewhere (Jurdy and Stefanick 1983). Proposals for the
mechanism of backarc spreading can be divided into either active or passive groups
i Uveda 1986). Active mechanisms include the induced flow driving spreading (e.g.
;-\ndrews and Sleep 1974, Toksoz and Hsui 1978, Hsui and Toksoz 1981, lda 1983,

Jurdy and Stefanick 1953, Vanpé 1984 ). Induced convection in the mantle wedge above
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the slab produces hot, buoyant rising material about 300-400 km from the trench. The
buovancy forces create small tensions of about 20 MPa in the surface plate (Jurdy
and Stefanick 1983) and these would be expected at all backarcs unless the induced
corvection is modified by global flow. Passive mechanisms of backarc spreading include
the absolute motion model of Dewey (1980} and the 3-D buckling hypothesis of Yamaoka
et al. {1986) and Fukao et al. (1987). As rollback progresses the arc grows, and backarc
opening initiates to accommodate the increasing area enclosed by the evolving arc. This
buckling mechanism can account for the limited size of the backarc basins, but again it

inkerently implies that this should happen at all convergent margins.

Sclater (1972), Sclater et al. (1976), Wztanabe et al. (1977) and Louden {1930)
noted that the marginal basins of the western Pacific have a negative depth anomaly
of approximately 1 km relative to the Pacific Ocean. The free-air gravity anomalies are
ger.erally small and positive (< 50 mgal).

The existence of remnant arcs at the rar side of the backarc spreading cenires
impnlies that spreading was initiated at the arc. This is the hottest, weakest par: of
the overriding plate, intruded and fractured by magma injection. The loading uf the
voicanic arc and the underlying compensatory hot, buoyant magma will generate hori-

zontzl deviatoric tensions in the lithosphere. In combination with the absolute motion
of *he overriding plate this could overcome the local compression in the forearc to induce
a split. This accounts for the time lag 1o initiate spreading after subduction begins.
Oi.ce inniated, spreading can propagate by # nuinber of mechanisms discussed abave,

an< can be terminated also.

Throughout the whole of the preceding discussion subduction has been treated as
a continuous phenomenon. One of the major problems of tectonics is the initiation
of subduction, the rupture process which permits oceanic lithosphere to re-enter the
mantle is not well understood. Cloetingh e: al. (1932) investigated the evolution of
pa-sive margins and found that ageing alone is not sufficient to initiate subduction
wi‘hout a pre-existing zone of weakness. The most suitable condition was sediment
loading of a young passive margin. Transform faults, separating lithosphere of differing
ages. are possible sites for inducing subduction in oceanic lithosphere. Fujimoto and
Tomoda (1985) used finite element models of viscous flow to model the development

of subduction at a transform fault, and showed the older lithosphere thickening and
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descending under the fault line.

1.6 Aims of the Study

The 2-D finite element simulations of this thesis use a highly simplified model o7
subduction. Varying the parameters of the models will give a quantitative assessment
of the effect of the parameter on each of the features of subduction zones described
above. From this a generalised picture of the mechanics and dynamics of a subductior.

zone and its role in global tectonics can be constructed.



CHAPTER 2

The Finite Element Method

The finite element method has been wideiy used for stress analysis in engineering
applications but it is a highly versatile numerical tool and can also be applied to fluid
flow, heat conduction and convection, and electric and magnetic potential problems.
The basis of the method is to divide a continuum into a number of finite elements which
are defined by nodes on the element boundar:. Each element is assigned the relevant
properties such as Lamé parameters, viscositv. conductivity, to approximate the real
bodyv. Under a given set of conditions we car. solve for the unknown variable such as
displacement. velocity, temperature. at the nodes which approximates the continuum
response. Solution accuracy increases as the elernent mesh is refined and with higher
order elements we can define how the variable neld behaves across the element, whether
it is linear. quadratic, cubic etc. This study uses the 2-dimensional, quadratic, isopara-
metric Serendipity element, in the form of 8-node quadrilaterals and 6-node triangles.
The elements have 2 degrees-of-freedom (dof « at each node which define the variable
field: for elasticity problems these are the r and y displacements and for fluid fiow
problems these are the x and y velocities, in Cartesian space. Serendipity elements
ensure that the unknown variable is continuous across the element boundaries, but anv
derivatives will be discontinuous; this is (', continuity.

Tkhe tollowing two sections are essentially @ summary of the techniques developed
by Waghaorn (1954) for elastic and viscoelastic behaviour where further details may be
found. Tkhe final section is an extension of the previous work to produce a finite element
code for viscous, incompressible flow. The purpaose of this chapter is solely to present
the theur: of finite element analysis, as it is applicable 1o studies of global geodynamics.
and in particular the subduction process. A 7ull discussion of the implementation of
this theory is given in the néxt chapter, where the previous problems of faulting and
thermal anomalies are addressed, and benchmark studies of fluid flow analyses are used

to determine the accuracy of the viscous flow finite element program.



2.1 The Quadratic Isoparametric Formulation

2.1.1 Shape Functions

The element nodes define the two basic qualities of an element,

e nodal coordinates {c} define the global coordinates of a point in the element interior

through the interpolating shape functions [’:
{z} = [Ni{c} (2.1)

o nodal dof {d} define the vector of the domain variable at a point in the element

interior through the interpolating shape functions {N],

{u} = [Ni{d}

—
o
o

An element is isoparametric if the nodes defining {c} and {d} are identical and the
shape functiors ‘N]and |N] are also identical. The quadratic Serendipity elements are
shown in figure 2.1. In the local coordinate space i£. ni the elements are straight-sided
of unit dimension. The mapping into the global Cartesian space (2, y) allows curve-
sided elements to be used to model the complex body geometries whilst the calculations
are performed in the local coordinate space. Considerable distortion of the elements is
possible as long as the one-to-one correspondence of the transformation from Cartesian
to curvilinear space is maintained.

The mapping is contained within the element shape functions. The quadratic

polynornial interpolation in the triangular element which defines the global coordinates

of a point from the Jocal coordinates of that point can be written.

z(€,1) = a1 + a2é + aan + a3~ agn’ + asén (2.3)

y(E,n) = by + baf + ban + b8 = b0’ + baln (2.4)
where a;, b. are the nodal coefficients. This can be written as,
e =CHay,  v=C{B)

where,
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Figure 2.1  The six-node triangular element in local (&,7) and global (z,y) co-
ordinate space, and below, the eight-node quadrilateral element in local (€, 79)
and global (z,y) coordinate space.



{a,}T = {al ap; a3 Qa4 as (1.6}, {b}T = {5] b2 b3 b4 bS bb}

The local coordinates are known so then substituting the values for the r-coordinate

gives,

.1'1(0,0) =
a9 agq
_ e —
a) + 5 )

1
I ;.0 4
r3(1,0) = ay + a3 + a4
11 asz as .
Z Z2) =4 B Tt T R B
“<2’2) ato Tty o7ty

1‘5(0,1) = + as + Qs

1 as ag
I6<07,}:) —0‘1‘*‘-,2—*.?

which can be written,

and inverting this,

thus the shape functions which define a coordinate from the nodal values are,

V] = [CjA)! (2.5

Q%)
on

in full,
Ny =1-36-3n+28 - 207 ~ 48y

Ny = 46 — 48 — 4y

Ny =26 - ¢

Ny = 4€n

Ny =270 -9

Ng = 4n — 40 — 4y

The y-coordinates vield an identical result, and by definition the shape functions
for the field variable are identical. Local derivatives are obtained by differentiating the

shape functions. then evaluating the derivative at the point in the element, for example,
6

or anN; _
577' = Z} —(_)7.1'! (r_)b)
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The process outlined above will generate the shape 1anctions for a quadrilateral

element using the following quadratic polynomial,

N
-~
~—

(€. = a1 + af + azn + aa€ + asn’ + asln — ar&n + agln’ (

o
[o.4]

Y(E. 0y = by + bo€ + by + by + b + bsln ~ a-€2n + asén’? (

and the resulting shape functions are,

Ny = % (1440 —&n+&En- )
N,y = %(1“5‘772+£772)
Ns = %(_1+52+ﬂ2+€77—£277—602)
Ny = %(1“77—§2+£2n)
Ns = g (-1+&-n"—tn-En- )
No= 5 (1+€—nt-er)
Nr = % (14840 + &+ Ea- )
No= (=€)

2.1.2 The Jacobian Matrix

The global derivatives of the variable field defined aver the finite element domain
are required. The chain rule gives the local differential vperators.
g dr o Ay d
D Q€ dr - AL Ay
0 drd Ay o

ag ~ dnor | ooy

which can be written in matrix form and inverted to give “he global derivatives,

d o
A _ €
G
dy an

where the inverse Jacobian operator,

du dy
- I'n Ty 1 an o

1 (i Tey iy 50

] [Pn I"zz] det) | 0  ar (2.9)
an  JdE

and detl] is the determinant of the Jacobian.

I\
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2.1.3 Numerical Integration

Global integrations over distorted elements are simplified by the transformation

into local coordinate space. The integral of the functior. j over the specified area can

1= // f drdy = //f det] dédn (2.10)

Integrals must be evaluated numerically and the Gauss-Legendre quadrature of the

be calculated from.

function f in 2-dimensions is given by,

1=) " W.W, f(&,n,) det].. (2.11)

i=1 3=1
where £, n; are the local integration points in the elements and W,, W; are the as-
sociated weighting functions. It is most common for m = n. In one-dimensional
Gauss-Legendre quadrature, if the function f is a polvrnomial then n sampling points
will exactly integrate a polvnomial of degree 2n — 1. However the order of integration
and the location of Gauss points which vields the best results for a particular element is
not immediately ebvious. Barlow (1976) discussed the optimal stress locations for some
popular finite elerents in elasticity and discussions in Cook {1981), Zienkiewicz (1977)
and Segerlind (1975 show that 4-pt integration in quacrilaterals and 6-pt integration

in triangles is suiliciently accurate.

2  The Variational Method for Elasticity

[

I The Strain Matrix

[$]
(384

In an elastic continuum the strain is the first spatial derivative of the displacement

and for 2-D analvsis the in-plane strain at a point can be written,

du

a o

“r ov

€y = 7y
Yzy ou N ov
dy  Or

where u, v are the r. y components of displacement interpolated from the nodal val-

ues using the shape functions, [N]{d}. The differential operators have been derived,
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equation 2.9, so the strain can be defined by,

{e} = [B}{d} (2.

3]
—
(0%
g

where,

'y Ty 0 0 =
Bl=| 0 0 Ty Ta 5 | IV] (2.13)
Fyy Ta T T 0 —

2.2.2 The Elasticity Matrix

In linear elastic solids the stress is proportional to the strain giving the general

stress-strain relation.

{o}y=( a. p =[C:({e} = {ec}) ~ {00} (2.14)

[Ed 2

where [('] 1s the elasticity matrix. {¢o} are the initial strains, and {oq} the initial
stresses.

Hookes® law in two dimensions for the case of plane strain in which {:.} = 0 is,

(0z —vo, — L’d;)

Er = E + e

~_(~vort o, -vo.)

£ E :
2(1 +v)

fr E ’:‘y+‘)':c‘.

where the elasticitv constants r is Poisson’s ratio, E is Young’s modulus. Rearranging

these equations into the form of equation 2.14 gives the elasticity matrix,

. 1 - v i ]
‘iz — = | v l-w 0 (2.15,
-1 ,» _;) ; l:] _ 2', -— -,)
(14 v)(1—21r) 0 0 -)1)

with initial strains.

N
+
T

~—

[a}

[on]

i

o ™
<!

.+.

& oo

|

and the out-of-plane stress,



Other formulations which could be used are plane stress . = 0, or a lithostatic
z-stress. This latter formulation allows both stress and strain in the out-of-plane :z-

direction, but constrains the stress to be lithostatic by,
o. = 0z + 0y

= 9

The elasticity matrix can be evaluated by substituting into the constitutive relations

above to give,

v 3
1- - 0
2 2
e E 3v . v 0 516
T (14 )1 - 2v) 2 2 (2.16)
il - 2v)
0 0o —=
5

The advantage of this formulation is that the deviatoric stresses in the z-direction are

identically zcro.

2.2.3 The Stiffness Matrix

The equations controlling the elastic response of & body are derived using the
variational method. which is possibly the simplest and most physically meaningful
approach. The method entails summing the potential erergy of the body, due to the
body forces {b}, surface forces {g}, and the accumulated strain energy. and minimising
this with respect :o the displacements. The approximation oi the finite element method
is that the variations are restricted to a finite number of parameters i.e. the number of
nodes in the bod~ isee Zienkiewicz 1977},

Let the total potential energy of the volume of the continuum be,
NH=W4+U

where the work done by the applied loads in response to ilie virtual displacements {u}

1s,

i

i

/{U}T{b} qv / AT {g) d
+

/{d} NI (b} dv

and the strain energy is,

/{E}T{a}a’.\-’
i@y Brcnpay s~ [T BTICHeo) av
¢ [{rT1B1 (oa} av

=

[BVE R

1] ben

—_
]
—
o

~——
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Using matrix and tensor calculus the minimisation of,

o 0
a{d} ~
gives,
(A {d} = {F} (2.19)

where [K] is the stiffness matrix and {F} is the global force vector. For a unit thickness

in the z-direction the stiffness matrix becomes,

[K}:/[B]T[C][B] dr dy (2.20)
and the force vector is.
{Fy=A{f.} = {7} - 1R} - (1) (2.21)
where,
)= /iBfTﬁ('Hfo}d-r dy (2.22)
1fe ) = /lB;T{aO} dr dy (2.23]
() = 17103 drdy (2.24)
(£} = /i/\’]T{q}dS (2.25)

The stiffnesses are evaluated element-by-element and zssembled into the global
stiffness matrix. The assembly process is a simple summation of element contributions
at each node, and the resulting global matrix is svmmetric. A comprehensive and

rigorous discussion of this derivation can be found in most finite element texts (e.g.

Zienkiewicz 19773,
2.2.4 Dirichlet Boundary Conditions

The previous finite element analyses of Mithen {1980;. Park (19581) and Waghorn
(1984) used the Payne-lIrons approximation to apply Diricklet boundary corditions.
The nodal displacement has a prescribed value v. = @ which is imposed as follows:
replace the diagonal term of the stiffness matrix A, by A .\’ and the row of the force
vector F, by K,,Xu where X is a large positive constant. This approximation simply

weights the equation to the value v, = #. It is a useful method since it preserves the
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symmetry of the global stiffness. However, a more exact representation of boundary

conditions may be required and an alternative method is cutlined in section 2.3.5.

2.2.5 Nodal Forces

The gravitational field g acting on a volume element of density p generates the

0= 1{

where g, g, are the components of g acting in the z- ancd y-directions. The body force

body force vector.

vector is directly substituted into equation 2.24.

Surface loads act only on an element edge and it is convenient to re-define the
three edge nodes as a one-dimensional isoparametric edge element with a separate local
coordinate svsters. as shown in figure 2.2. As before, the global coordinates of a general

point are interpo.ated from the nodal values using the local coordinate shape functions

[N],
{r} = [N}{c} (2.26)

wlere the shape functions written iu full are,

c /9
Ny=2 ‘——1)
! 1(1

2

2—2: —%
) .g<2 )

Ky=2{=4
3 I 1+1’

Surface loads wili generally be prescribed in the form of normal and shear stresses,

{¢:n}. Resolving these at a point in Cartesian space,

g- | Jcosa —sina g | _ AR
¢, J  |sina cosa 7 B

where from figure 2.2,

ox dy
: a d _
R= |9 o (2.27)
an  dy

the matrix compouents are the local derivatives obtained from the shape functions.

Hence, for the complete edge element,

{a} = [R}{gsn}
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Figure 2.2 The three-node isoparametric edge element in local and global coor-
dinate space. The normal ¢, and shear ¢, surface tractions act perpendicular
or tangential to the element in both coordinate systems. The insert at the

top shows the relationship between £ and (z,y) space required to evaluate the
rotational transformation.



where,

R 0 0
Rl=|0 R o0
0 0 R
{(Isn}T = {951 qr, ¢s. Gr. G .. }

and so the elemerntal contribution to the force vector evajuated in the local coordinate

space is,

[ O]
(L]
on
—

() = [IN71RlHgen) de o
since the determ:nant of the rotation is one. This integral is evaluated numerically

using three-pt one-dimensional Gauss-Legendre quadrature.

2.2.6 Isostatic Compensation

Boundaries which represent density discontinuities will generate a reaction to any
perturbation, or displacement across them, in the direction of the gravitational field.
Lithospheric behaviour is often modelled as a thin, elastic layer overlying an inviscid,
fluid substratum. An inviscid fluid reacts instantly to detormation and supports no
viscous stresses, so the reaction to the deformation will be the buoyancy of the displaced
fluid,

piaiigl
where [7 is the disp:acement in the direction of the gravitational field g. The buoyancy

forces will act normal to the element edge and can be written,
{gen} = priclgli N {d) (2.29)

where {d} is the displacement and the gravitational field matrix {g] is,

ro o0 o0 0 0 @7
z g 0 0 0 @€
, o 0 0o 0 0 O
=19 o 4 . 0
g 0 0 0 0 ¢©

L0 0 0 0 g. c. |/

Substituting in equation 2.25 using the results from the previous evaluation of surface

tractions gives,

{f}=[niH{d} (2.30)

where the isostatic stiffness matrix is,

R
o
—
-—

(K1) = [ pruc ARV IRIGA dg o
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The isostatic stiffness matrix is assembled element-by-element and then subtracted from

the global stiffness matrix. This destroys the symmetry of the global stiffness.

2.2.7 Thermal Stresses

The thermal anomaly of an element produces an anomazicus temperature field which
generates a non-rerewable stress system. This is incorporated in the finite element

method as an initial strain. In 2-D, the thermal strain is. -

a AT
{eo} = (1 + ) a AT (
0

(O]
(%]
1~
~

where o is the thermal expansion coefficient, AT is the temperature anomaly. This is
included in the global force vector by substitution in equation 2.22. The final stress

field is then calculated from,

{o} =101 ({e} = {20} ) + {ea:

where, for plane strain the z-stress is,

IS
t
i

2
[l

1" a.

”';-CT;A)—EHAT

A full discussion «f the effects of a thermal anomaly in an eiastic-viscoelastic body can

be found in the next chapter.

2.2.8 Viscoelasticity

A viscoelastic material subject to a force field undsrgoes instantaneous elastic
deformation followed by viscous relaxation of the deviaturic stresses. The relaxation

rate is controlled by the Maxwell time.
fo = — (2.33)

where p is the viscosity and E is the Young’s modulus.
The strain rate at a point in a Maxwell body depends on the deviatoric stresses

which can be written.

£a Cr— 0. 1
£, 1 o, —C
{ed=40." 1=5-90 5. (2.34)
Ve 2}1, 2Try J
- a. - o;
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where o}, is the hvdrostatic pressure, defined by,

For the case of plane strain the z-strain must be zero, but deviatoric :-stresses may
exist. To overcome this, a fictitious elastic z-strain is introduced which is equal and
opposite to the calcu:lated viscous z-strain.

Viscoelastic behaviour is modelled by the initial strain approach (Zienkiewicz

1968). Over a small time increment At the strain can be approximated by,
{60} = {E}At

which is considered to be an initial strain. Substitution in equation 2.22 yields an
additional comporent to the force vector, and thus the equations can be resolved for
the next time increment.

The final stress svstem at the end of the time-marciing relaxation is given by,

The detailed algoritim can be found in Park (1981) and “Iithen (1980).

2.2.9 Fault Elements

Fault elements are introduced into the mesh via the dual! node approach. The mesh
is divided into two bodies whose contact nodes are spatizily coincident a.lo'ng the fault
section. The stiffn=sses of the two halves of the mesh are assembled into the global
stiffiess and then the elastic properties of the one dimeznsional fault elements which
join the halves are added.

The local coordinate system of a fault element of lengih [ is given in figure 2.3.
The shape functions are defined identically for the nodes either side of the fault line (as

equ. 2.26),

=
-
i1
2
N
Il
73
AN
[AV]
wn
!
[V
~——

1\
_ _ 4s?
Ny=fy=1-—
V= Mo =3 (1)
[\
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Figure 2.3 The fault element in local (s,n) and global (z,y) coordinate space.
The top diagram shows the fault dividing the mesh into two bodies, the adjoin-
ing nodes of the fault element are spatially coincident. Below, the coordinates
of the nodes in (s,n) space showing the order of the node numbering for the
fault element.



Define the relative displacement at a general point {w} along the fault section

using the shape function interpolation of the local parallel and normal displacements

at a node,
{w} = (L] {d}
where,
- - N - N, V. V
e S R A T
(@Y7 = {uny wny e e we )

Then the local displacement is related to the global displacement by,

dz  dy
us | _ | ds ds | fu)
Un _dy de e f
ds ds

so the local nodal displacements can be written,
{d} = [R}{d}

Define the force per unit length at a general point along the fault section,

Ps L
(= {2 = JR ) (2,35
where,
_ k. 0
K] = [0‘ ,\} (2.36)

k.. k. are the shear and normal stiffnesses respectively, which define the elastic prop-
erties of the fault.
The variatiornal method requires the stored energy oi the fault element which is

defined as,

i
1 z
' T
W = .)/ ! {w} {p} ds

substitute the relations evaluated above gives,

\\7:1/:
2/

and the minimisation vields,

T T Ve e e
(YTIRTILT 5 IFYLIR 4} ds

OW ,
(){d} = []\ F}{d}
where the fault stiffness matrix is,
) 1 /2 s
[Kp] = 7/ l (R]T[L)T[K|LIR ds (2.37)
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The fault stiffness matrix is added into the global stifiness matrix at the relevant
nodal positions. The behaviour of fault elements is discussed in detail in the next

chapter.

2.3 The RIP Nlethod for Incompressible Fluids

In this section the finite element solution of the Navier-Stokes equations for in-
compressible, viscous flow using the reduced integration penalty (RIP) method will be
presented. Zienkiewicz and Godbole (1975) demonstrated the direct analogy with in-
compressible elasticitv. Thus it becomes obvious to convert existing elasticity programs

to solve fluid flow problems with very little alteration necessary.

2.3.1 The Eulerian Description

In the preceding Lagrangian description of an elastic body the forces produce an
immediate displacernent. which is the minimum energy cor.figuration of the body. La-
grangian space represents the reference frame of the materia.l and so the displacement
represents the actual particle motion of the pointsin the bady referenced toits current
equilibrium position. The Eulerian description defines the reference points in space,
the initial position in space of the fluid body. The equations of motion yield the ve-
locity at a point in space which defines the instantaneous response of the fluid to the
applied force field. However, for a finite body, as soon as the fluid begins to move the
equations are invalidated and so the velocities and stresses recovered are relevant only
to the onset of motion. Thus the main difference from the Lagrangian representation
is that the acceleration contains both spatial aud temporal derivatives. Cathles (1975)
provided a good illustration of this point. Consider a one-dirnensional bar carrying a
temperature gradient and moving rapidly along axis. as shewn iigure 2.4, Over a small
time increment a point on the bar will maintain the same temperature, but the spatial
reference point S will record a change in temperature. So. returning to the equations

of fluid flow the ‘convective’ acceleration operator can be defined by,

a0 238
i = 51 +u.$/ (2. b)

where 7 is the velocity vector at a point, and <7 is the gradient operator. Thus even

steady state flow can have an accelerative component.
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Figure 214 Schematic representation of 2 i-dimensional bar of length [ carrying a
temperature gradient AT/! and travelling rapidly along the z-axis at velocity
v. Over a small time increment, the temperature distribution in the bar is
unaltered, but the spatial reference point S which is fixed with respect to the
z-axis, records a change in temperature.



In a fluid the motion is driven by the deviatoric stresses. and for a 2-D linear,

isotropic, incompressibie fluid of viscosity u the deviatoric stresses are,

{o} = [D.]{e} (2.39)
where,
2 0 O
D J=p {0 2 0 (2.40)
0 0 1
and the strain rate tensor is,
o1 ( du, : du,
T 9\ dx, | da )

for the Cartesian coordinates x,, and so for a finite element this can be written,
{e} - (BH{d}

where {d} are now the nodal velocities, and therefore the analogy to the constitutive
relations of elasticity. with displacement replaced by velocity. is obvious.
Incompressibility is a constraint on the fluid behaviour and is defined by a zero

rate of volumetric straining,

iy =a =0 (2.41)

This condition may be imposed in a variety of ways. Using velocity and pressure as
nodal variables yields a set of coupled equations incorporating the incompressibility as
part of the formulation. but it introduces the extra dof of the pressure variable. Alter-
natively the stream function formulation defines the velocity field in terms of auxiliary
functions which automatically satisfy the incompressibility requirement exactly. The
disadvantage of this method is that second order derivatives appear in the stiffnesses
and this requires elements with 'y continuity shape functions. The approach taken in
this thesis is to generate a near incompressibility condition via & penalty function, as
used for incompressible elasticity studies. The conceptual difference to compressible

elasticity is that ‘compressibility” in fluid flow represents net fiuid loss or gain.
2.3.2 The Variational Statement of the Navier-Stokes Equations

By analogy with the previous variational derivation we can construct the rate of

work functional,

H:%/{s‘}T{D_}{é}dV - /{u}T{b}dV - /{u}T{q}dA (2.42)
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and require stationarity with respect to small variations of the velocity, subject to the
constraint,

ée =m]T{} =0

where,

fml=1[1 1 0]

The incompressibility constraint is incorporated via a penalty function approach.

The dilatational strain energy is given by the product of hydrostatic pressure p and

/pév dv

For a large, positive constant A, make the substitution for the pressure dof,

dilatational strain rate.

p = Ady

[
NS
[

and then the complete functional becomes,

/{é}T[D_.:{é.:- v —/{u}T{b}dv - /{u}-T-{q}-dA +,\/:3 v

[@nnr o - [mmear - [ e

=

Lo = | -

wlhere,

iD}=1D.. =+ /\[‘m,ﬂm]T

Thius we have recovered the equations analogous to the functional for elasticity with
two contributions tu the global stiffness. denoted [A,] and A . respectively.

However, as previously mentioned. the acceleration in Eulerian space differs from
the Lagrangian. and so by d’Alembert’s Principle the body torces in a body of density
p are,

{6} = {bo} + pla} (2.44)
wlere the acceleration.
\ d
o) = = {0}

and so the Eulerian finite element representation of the body furces at a general point

becomes,

;
{8} = {bo} + pgpud 4 ol ) (2.45)
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where,
=0
Vo Ty
and the subscripts denote differentiation with respect to r and v.

The minimisation of the complete functional yields the Navier-Stokes equations,
- -
Mo Ad) + [E){d} + {H]} = {F} (2.46)

which is similar to the equations for elasticity, but with two additional terms. These

terms are defined by.

.0
[‘l‘l't_')?{d} = [/[N]Tp[l\] dV] %{d} inertial (2.47)
1H} = [/[N]Tp[J']{]\"_? dV} {d} convective (2.48)

and so the full equations are time-dependent, non-linear and non-symmetric.

Fortunately the Earth’s mantle exhibits creeping flow. and so the inertial and
convective terms are negligible and the problem is reduced 1o Stokes flow. Temam
(1977) has proved the canvergence of the penalty function method for Stokes flow, but
the crucial factor remains the invoking of the incompressibility constraint. In order to
maintain a sensible pressure field (equation 2.43), as ¢, — 0 then A — . Consequently
to avoid the infinitv. the penalty term [K;] must be singular. This is achieved by
underintegrating the penalty term, but retaining sufficiently accurate integration for
the viscosity term i A'_ so that the summed global stiffness matrix is non-singular. This
is called selective integration. Zienkiewicz (1977) pointed out that sufficiently accurate
integration for &-node Serendipity quadrilaterals is in fact reduced integration, and thus
the two stiffnesses can be assembled together which greatly simplifies the computing.
In this study the triangular elements use 3-point reduced integration on the penalty
term.

Hughes et al. {1979} presented a simple criterion for the selection of the penalty

parameter for Stokes flow,

A= cu (2.49)

where ¢ is a constant that is dependent on the computer word length and is problem
independent. Oden {19582) discussed in full the RIP method in view of the order of se-

lective integration required to retrieve meaningful velocities and pressures. The method
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will often work without reduced integration but at the expeunse of stability and accu-
racy. Often it is the pressure which shows the greatest divergence and instability (being
a derivative) particulariy the ‘checkerboard’ mode of the bilinear elements. This may
require a pressure filter or some sort of smoothing. The pressure will not be required
in this study, and the velocities will be shown to be stable in a numerical evaluation in

the next chapter.

2.3.3 Axisymmetric Analysis

The 2-D analysis can also be applied to the cross-section through an axisymmetric
body, requiring very little alteration to the finite element code. The major difference
is that an axisymmetric deformation involves four strain components and not just the
three components of plane strain.

The cylindrical coordinate system can be related to the Cartesian system by,
r=rcosf, wv=y. z=rsinf

so that on the plane ¢ = 0°.

and hence the Jacobiarn used in the isoparametric formulation. to transform from lo-
cal to global coordinates, will be identical for cylindricai (r.y) and Cartesian (., y)

coordinates. However. in cvlindrical coordinates the volume element becomes.
dV = v dr db dy
and integrating around € gives,

dV = 27v dr dy (:

o
fal
o

~

and so to generate the element stiffness the integral becomes.
/{BTDB] 2erdrdy = /[B]TID](B e det) dédn

Also the strain operator will differ from the 2-D Cartesian analysis because now any
radial strain rate will create a circumferential component. Thus the operator matrices

hecome,

D} = n

O = OO
oo oo

— O P b
—_— O = =
[ BN BN e B e }
—_ D e e
O o O 1
o O O
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The nodal components now depend on the radial position r and so the stifiness matrix

is no longer symmetric. Similarly, the strain operator [B] will be non-symmetric across
an element as the element varies with 7.
Finally the external forces at a node {F} now represent a force per unit length

applied over the whole circumference and are effected as,

27r {F}

2.3.4  Solving for Unsteady Fluid Flow

The time-dependent linear equations have been derived as.
S < )
{J\J;j)z{d}* IN[{d} = {F} (2.51)
e

Hughes et al. (1979} presented an algorithm for the solution oi the full Navier-Stokes
equations which is adopted and adapted here.

Tlie mass matrix M | which is the inertial control over the time-developing flow is
diagonalised to form the "lumped’ mass matrix. Cook (1981} discussed lumping methods
and the advantages and disadvantages over the consistent mass matrix. Conceptually,
lumping replaces the element mass by eflective nodal masses . which may be positive
or negative). This operation to diagonalise considerably simplifies the calculations.
The solution algorithm is a one-step, linearly implicit, predictor-corrector. Given the

solution at time-step . the solution at time-step n + 1 is summarised as,

{d}osy ={d}. + (1 -~ Dila), (2.52)

(1M = AR ) dY ey = [MEd}eyy ~ ~At{F} 4 (2.53)
({d‘l"ﬂ +1 = {d\"-])

Pt - Jn )= Y

sl = AT (2.54)

1, At is the time-step, and {a} is the vector

IA

where ~ is a stability constant 1 < y
of nodal accelerations. So, for a constant time step At the system matrix need only be

factorised once which greatly reduces the computational cost and time.

42



2.3.5 Nodal Forces and Boundary Conditions

Body forces and surface tractions will act similarly to those previously discussed
for elasticity, and the subroutines developed for the elastic finite element code can be
used for the viscous case.

Dirichlet boundary conditions are not applied by the Payne-Irons approximation
and instead are applied ‘exactly’. Each prescribed dof is incorpora;ted by substituting
the given value v = @ into each equation, and then adding all known values into the
global force vector. Then the row and column of the stifiness matrix are zeroed and
the trivial solution v = @ is written in lieu.

Standard Dirichlet conditions suffice if the model boundaries are aligned along the
global axes, but it s quite likely that curved boundaries will exist in which case the 2 dof
al a node become linearly dependent. This is a coupled eqguivalent Dirichlet condition

(see Norrie and De\ries 1978) where we can write for a node n,
Uy = ulvy)

and so the functicnal has one less dependent variable,

0 =1 u(vn) ta,...)

and the two minimisation conditions,

on a1l
Bl

- ., — =0
Ou. © Ju,

can be accomplished by the single condition.

onj on ol ’(')un> .
de ( -

v,  Jdu,

dv,.
n -

This is applied as follows: multiply the row and columr. corresponding to u, by the
derivative. and add to the row and column corresponding =< .. Then zero the u, row
and column and insert the coupled condition in the vacawt row. On solution this will
automatically give the correct value of v, and v, but the method renders the global
stiffness unsymirnetric.

Density discontinuities such as the surface of the Earth have been accounted for

in the elasticity formulation by isostatic compensation. In the fluid mechanics models
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the free surface at the top of the mantle is a most taxing problem which may be
handled By one of a number of approximations. Firstly we could assign a thin, high
viscosity layer at the surface and assume that this approximates an elastic lithosphere.
Then the existing isostatic compensation can be applied, by assuming that the surface
displacement can be approximated by vAi, where At is & small time increment (e.g.
Tharp 1985). Alternatively we can evaluate the boundary conditions at the free surface
of a viscous fluid {see Cathles 1975) which specify that a traction-free surface must
develop. One approach is to prescribe zero vertical motion at the surface (e.g. Richter
1973, Sleep 1979;. This eliminates shear stress but generates large normal stresses at the
surface. Another method involves integrating the velocities to redefine the free surface
until the velocity vector is tangential to the surface at all points. This is the more
satisfactory. but more time-consuming and expensive method, and it is only applicable
to steady state problems when the initial boundary is close to the steady state free
surface (Zienkiewicz 1977). Subduction zone models will include regions of the free
surface that have velocity vectors near perpendicular rather than parallel and to this

end it is necessary to adopt a more formal approach to the problem.

2.3.6 The ALE Formulation

The difficulties engendered by the motion of the free surface of an unsteady fluid
can be overcome by the arbitrary Lagrange-Eulerian (ALE} formulation presented by
Hughes et al. (197~} This is a generalisation of the Eulerian solution of the Navier-
Stokes equations in Hughes et al. (1979) which was discmssed in previous sections.
This section will ou:line the fundamentals of the formulativn but will not attempt to
derive formally the finite element equations. The notation in this section will follow
the preceding as far as possible but unfortunately some symbols must change their
meaning.

Consider the three closed domains Q., Q,, Q. in figure 2.5

e (1, is the reference domain and is ‘fixed’ in time and space
e , is theimage of 2, at a particular time ¢ and this is the ‘Eulerian space’ normally

associated with the fluid body under consideration
o . is the domain of the material that would exist at t = 0 given that the fluid
occupies 2 at time ¢

44



GENERALLY

IN MOTIONN SPATIAL DOMAIN
' =~«_ (CURRENT
N\ CONFIGURATION
OF Q,)

PARTICLE
MOTION

1
GENERALLY \) g
IN MOTION—~—w_ __ FIXED
/
{

REFERENCE DOMAIN

MATLRIAL _,
DOMAIN 12 ¢y Oy

Figure 2.5 The three closed domains ;, Qy, 2. describing the properties and

relationships between them. From Hughes et al. ( 1978 ).



Let the Cartesian coordinates of the domains be respectively,

(8
o

r=(r3,22), y=(y1,¥2), z=(51.22) (2.55)

The domains are interdependent and are related by the coordinate mappings; by defi-

nition we have,

) particle motion (2.56)

e

I
.

[ta
~

(z.1) mesh motion (2.57)

Je®
I
Qs

and define the third mapping,

[S™]
o
o
—

It

= Y(z,1) (

to be representable by a function of the first two mappings. Hence we can solve a fluid
mechanics problem in the domain Q. and relate this. through the mappings, to the
actual particle motion and consequently follow the free surface.
Firstly we must derive the exact re]ati%mship that defines a variable field in each
domain. Define the displacements for each dof 7.
v. =y, — =, for .
u, =y, —x for @
w, = x, - z; for 1,
note that the symbol ¢ was a velocity and is now a displacement at a general point.
To relate this 1 the finite element method, the reference domain Q. is the initially
specified mesh coorainates. The mapping é thus defines the motion of t}levmesh as the
domain Q,, and this mation can be followed by evaluating the velocity with respect to

the reference domair.
.
—_— f()l‘ it>0
at |,
Consider the sirmmpie example element in figure 2.6, where the free surface is to be

modelled by the line 1 = +1 in local coordinate space. The two components of mesh

velocity which defiue that lines of constant % move with the iree surface can be derived

as,
ot
d1y Ous 0( wy +X3) duy
At - a dxy —d—;
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Figure 2.6 The quadrilateral element in global space (z,y). The line p = +1is
chosen to follow the free-surface.



where i, + 7 1s simply the coordinate y, of the domain 2, and is a function of z; and 7.
This can be generalised ta relate each dof to it’s specific representation by introducing

the parameter « and the velocities become,

5)1)1 8111 ({)('ll] +I']) Au,

- = &1 —/—— — —_— i- ol ot 95
o Vo M o, 7,( N (2:59)
du; 81142 0(1}2 + :I’Q) all]

— = qy— — _ 1- y— 2

P R T A v (2.60)

A Eulerian dof is defined as stationary with respect to particle motion and a Lagrangian

dof follows particle motion and so,

=0 Eulerian dof (2.61)

a=1 Lagrangian dof (2.62)

These equations allow liries of constant n to move with the free surface, and it is now
the parameter a which is used to define the surface.

The finite element discretisation of equations 2.59, 2.60 vields,
{o} = [ANv} - [L]7' {5} (2.63)

where {@} is the vector of nodal values of the mesh velocity. "4 is the diagonal matrix
of nodal values of the parameter a, {v} is the vector of nodal values of the particle

velocity. The trausform matrix (L] is defined by,
L= [y av e

however the vector {5} cannot be written in the notation used so far. Instead each

node a will contribute to the element integration as follows.

v iy + 15 .
/qu‘_‘_“‘;)iﬁl (1- a',)(—;—" v (2.65)
i

ar, ot

[RN]
Ut

The calculations are simplified and stability ensured by lum.ping [L}, in an identical
procedure to that used for the mass matrix (M|, Now the inverse L) 1is trivial. Hughes
et al. (1975) present an approximation for {S$} but the differential in the integrand can
be evaluated numericallv. Consider the function f = f(£,7) then,

of _orog ofen
oz, 0 dzy = On 01y
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but for a constant 7,
or| _af oe
dxa |, A€ B,y

and the derivatives on the right hand side are available from the shape functions and
the inverse Jacobian. Hence the integrand in equation 2.65 can be evaluated and the
integral evaluated numerically.

So given a solution to the fluid mechanics problem {v} in domain Q, we can now
evaluate the mesh velocity {7} and update the domain to follow the free surface. The
previous algorithm to solve the Navier-Stokes equations can thus be generalised to give
the full solution at time step n + 1, note that {d} are nodal displacements, {v} are
nodal velocities. {a} are nodal accelerations of the particular mappings.

First, initialise this time step of the solution (for n = 1 the quiescent state is a

good approximation},

A12

Y . ) At L
(A3 = {d}, + At} + —-(1-23at,
(&30 = L&), + At - vi{a),

!

13 = (o) + AUl - fal,

solve the equations for the time step n + 1,
1) f
(l‘]]+ ‘Af ]\ 'll}7«}l -L/‘u]{rf7——] K ‘Y‘All{F}i‘l _{H}(nz-;]

Now iterate the non-linear term, and for each iteration reassemble the system matrix
from the updated domain €@,

L = A - s

Uin nd1
<y (241 i |
({1’}7:+1 ' - }7,,_ ) {~ A}

,11(+1)_f (0) 2. (:+1)
Qyne1 = d'hH*A’ {}T

- r+1)
S+l

Finally assign the nodal values at the end of the time increriext.
{dnis = {11
{i‘},,‘_‘,_] = '{i'}n«u
{afner = {a}h, 0,
{v}ns = {1}(7::1])
{efnir = ({’“}rﬂ -{r ,+1) GRS
thus, given the solution vectors at the end of the time step. the next time step can

be intialised. The displacement vector of the mesh {d} maps the evolution of the free

surface.



CHAPTER 3

Implementation Of The Finite Element Theory

The numerical analysis of Waghorn ( 1984 ) has demonsirated that the elastic-
viscoelastic finite element code performs satisfactorily. This short chapter is devoted
firstly to a validation of the method of evaluating fault slip and thermal stresses in
the structural mechanics problems. Mithen (192?0) used fault elements to study stress-
controlled graben formation and subsidence in continental lithosphere, following the
energy budget calculations of Bott (1976). Horizontal tension causes normal faulting
in the brittle upper crust and graben subsidence is accompanied by flow in the ductile
lower crust. The graben models of Mithen (1980) proved to be unstable as the stresses
in the ductile layer under the fault increased dramatically with time. Waghorn (1954)
studied the surface lithosphere at subduction zones and used fault elements to represent
the thrust zone between the plates. However, this analysis of faulting was restricted to
elastic behaviour only. The first section of this chapter demonstrates that fault elements
can usefully represent a fault zone in both brittle and ductile regimes. The stresses
generated by the thermal anomaly in the backarc of subduction zones are an important
contribution to thie stress regime. Waghorn (1984) studied the elastic response to a
temperature anomaly and the second section of this chapter demonstrates how the

thermal anomaly can be more fully applied to the elastic-viscoelastic rheology.

The second half of this chapter is devoted to a numerical evaluation of the con-
version of the existing finite element code to solve the viscous flow problems. The
simple entry flow problem is used to evaluate the machine constant required for A = cp.
(see equation 2.49) using the results published by Zienkiewicz and Godbole (1975) as a
benchinark. The subsequent tests are designed to show that the finite elemnent method

will accurately reproduce the features of incompressible flow that are required.

3.1 The Fault Elements

The ability of the finite element method to incorporate adequately the thrust zone
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of subduction is a most important feature of the numerical models. In this section the
previous method of controlling fault slip is briefly reviewed and then an alternative

approach is discussed and tested on a simple model.

The elastic properties of the fault element are the normal and shear stiffnesses
k., k¢ and these control the instantaneous elastic displacement along the fault zone.
The nodal displacements of the elements adjacent to the fault element are used to calcu-
late the normal o and shear 7 stress at the central nodes either side of the fault element.
Stresses are discontinuous at element bounaaries but average values of the stress along
the fault section can be estimated. If u is the coefficient of friction of the fault, then
the frictional strength can be defined by 7 = po (where o includes the overburden
pressure which may have been explicitly omitted from the initial calculation). Hence
if 7 > 7 frictional sliding could occur, in addition to the initial elastic response. This
can be modelled by calculating the excess shear stress 7.5 = 7 — 7p and applying it
as fault-parallel nodal forces to the fault elements. The process is then repeated until
725 drops to an acceptable value. The previous studies of Mithen (1980) and Waghorn

(1984) encountered major difficulties with this iterative technique.

It is useful to examine the role of the two stiffnesses k,,, k. A high value of stiffness
means that a large amount of work must be done to create a displacement. Thus k, is
set to a high value (10'®> N m~!) to ensure that the fault walls remain in contact. This
is a physical necessity under the confining pressures at depths greater than a couple of
kilometres. The shear stiffness controls the fault-parallel movement. If it is high then
no movement occurs, but if it is an intermediate value, 10'® N m ™! (typical of the values
used by Waghorn and Mithen), then the work done on the fault section will produce
a small displacementv. This can be envisaged as a fault resistance which prevents the
adjaceht elements from attaining the preférred equilibrium configurations and generates
large resistive stresses at the interface. in the aforementioned iterative method these
large shear stresses are relieved by ‘forcing’ the fault nodes to slip further. In this
context it would seem reasonable to permit greater instantaneous fault slip, thereby
reducing the resultant shear stress and so the need for iterative forcing is eliminated.
So, what controls the amount of slip and how does this compare to the physical realities
of fault movement? The degree of fault slip is quite simply dictated by the two halves

of the mesh attaining equilibria under appropriate boundary conditions, whilst being
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coupled normally at the fault line. Thus, in most models, isostasy at the surface (the
Jargest density contrast) will be the principal control on the fault slip, other boundaries
(such as the Moho) will have a lesser effect. Physically the shear strength of the fault
does no work on the adjacent bodies and so does not establish any residual stresses in
them. This mav approximate to the situation after major slip on a fault zone vhen the

large asperities have been overcome.

However, the discussion must not be limited to the behaviour of brittle fracture in
which the adjacent elements are elastic. A ductile shear zone may be represented by
a fault segment in which both adjacent elements are viscoelastic, and at a subduction
zone the fault line defines the top surface of the subducting slab which separates elastic
elements below from viscoelastic elements above. A typical model of stress controlled
graben formation in the upper crust has an upper brittle fracture zone continuing down
into a ductile shear zone. The simple mechanics of fault movement could be envisaged
as initial elastic slip in the competent layer, followed by creep along the shear zone
and accompanying flow in the incompetent layer. This creates considerable difficulties
for the existing method. To prevent large instantaneous elastic displacements in the
lower shear zone requires a high k. to be assigned. This causes the layer to behave as
a continuum or generates large shears which must be relieved as tlie Jayer as a whole
relaxes. One method of overcoming this problem is to parameterise the shear zone with
a finite width and viscosity, and then model the zone as viscous flow between parallel
plates. Thus the shear stress on the fault sides will generate & fault-parallel velocity
which is applied over a small time increment as a fault displacement. This is a more
reasonable approach than ‘forcing’ the nodes to slip, but this still perturbs the bulk
energy minimisation. The optimum method should not destroy the self-consistency of
the viscoelasticity algorithm. It is quite probable that the shear zone is significantly
weaker than the surrounding ductile layer and so fault movement is dominated by the
relaxation time constant of the whole layer. Physically this is equivalent to stating that
graben subside because the ductile layer flows laterally rather than because the shear
zone creeps. If this is the case, then the whole fault zone can be modelled with a low

shear stiffness. The proposals above will be tested by reproducing the graben models

of Bott (1976) and Mithen (1980).
The brittle upper crust is modelled by a finite element mesh representing a 1210 x
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10 km cross-section. The right hand end is an axis of symmetry and the left hand
end is subjected to a uniform tension T'. The top surface and base are isostatically
compensated with density contrasts of p = 2750 kg m~2 and p = 50 kg m ™2 respectively,
the flexural parameter a = 32.4 km and the fault hade is 26.57°. This model is almaost
identical to the elastic upbending models of Bott (1976) with no {rictional dissipation
of energy in the fault, and so the results are presented in a similar fashion in the table
3.1 below. The subsidence is given in kilometres for a range of graben surface widths

and applied tensions. The figures in brackets show the percentage increase over Bott

(1976).
Width / km [T = 50 MPa | T = 100 MPa
30 1.18 (53%) | 2.35 (53%)
40 0.84 (35%) | 1.68 (37%)
50 0.62 (19%) | 1.24 (19%)
Table 3.1  Relative vertical displacements of the elastic graben model.

There are certain differences between the finite element models and the energy
budget calculations. The finite element models include the downbending of the graben
edge, and in general the bending does not follow the 1-D elastic flexure equation because
of the contact across the fault zone. The crustal shortening caused by fault slip relieves
only 70% of the tensile extension and Bott (1976) assumed complete readjustment of
the brittle layer. The systematic gain in wedge subsidence with decreasing graben width
is due to a ‘constant’ gain in gravitational energy in the layer for a particular tension
T. This allows progressively greater subsidence for smaller graben. The subsidence is
large compared to the thickness of the brittle layer (10 km) and so the analysis must

be near the limit of the capability of this particular mesh.

This simple model is also a convenient demonstration of the effect of the shear
stiffness as discussed earlier. Table 3.2 below shows the variation of average shear

stress at the centre of the fault zone for a uniform tension.
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Shear Stiffuess / N m~' | Shear Stress / MPa
101? 50.0
1010 i85
10° 68.0
10° 41.0
0 1.0

Table 3.2 Variation of shear stress with shear stiffness

The preceding models inherently assume that the underlying ductile layer is inviscid
and reacts instantaneously to the vertical motion of the brittle layer. The lower crust is
likely to possess a high viscosity and thus graben subsidence will occur over a long time
scale. The finite element mesh is simply an extension of the previous mesh to represent
a 1210 x 100 km cross-section through the lithosphere, and the right hand portion is
shown in figure 3.1. The right hand end is an axis of symmetry and its horizontal
motion is prevented. The rheology is described in table 3.3 below, the omission of a

value for viscosity denotes that the layer is elastic.

Depth / km | Young’s Modulus / N m~? | Poisson’s Ratio | Viscosity / Pa s
0-10 0.85 x 10*! 0.25
10-20 0.55 x 10! 0.25 1023
20-35 1.08 x 101 0.25 1023
35-100 1.50 x 101! 0.25 10%

Table 3.3 Rheology of the graben model
Tlie fault line (labelled F) dips at 63.43° and breaches tlie surface 25 km {rom the
end of the mesh, thus representing a 50 km wide graben. So far, the mesh is identical
to that used by Mithen(1980). Isostatic conditions are applied at the base of the crust,
= 500 kg m~? and the surface, p = 2750 kg m~>, and at the base of the brittle layer
p = 50 kg m~3. The left hand end is subjected to a uniform 50 MPa tension. Initially
the fault was completely locked and the lithosphere allowed to relax for 5 Ma. The
right hand edge subsided by 25 m due to stretching flow in the ductile layers.
Then the fault shear stiffness in the upper crust (0-20 km) was set to zero, leaving

the remaining mesh parameters untouched, and the model was rerun. The principal

stress regime and surface displacement profile after 5 Ma relaxation are shown in figure

52



-100

1110 1210

Figure 3.1 The right hand section of the finite element mesh for the graben
subsidence model ( no vertical exaggeration ). The top three rows of elements
represent the 35 km of crust, the uppermost 10 km thick layer is elastic. The
lower three rows are the viscoelastic mantle layer of the lower lithosphere. The
right hand edge is an axis of symmetry. The fault line is marked F and divides
the mesh into two bodies, producing a graben of surface width 50 km.



STRESS VECTORS

( DOTTED LINES TENSIONAL )
- 100 MPA

-60

1160 1210

Figure 3.2 The stress regime of the upper 60 km of lithosphere ( vertical exag-
geration x1.4 ) after 5 Ma relaxation. This shows the large principal stresses
mostly confined to the upper 10 km elastic layer. The fault line is denoted by
the solid diagonal.
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Figure 3.3  The stress regime of the upper 60 km of lithosphere ( vertical exag-
geration x1.4 ) after 25 Ma relaxation. This shows the large principal stresses
completely confined to the upper elastic layer. The fault line is denoted by
the solid diagonal. ’
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Figure 3.4 The flow vectors of the upper 60 km of the lithosphere ( vertical ex-
aggeration x1.4 ) after 5 Ma relaxation represent the actual flow field over the
final time increment. Each node is denoted by a circle and the associated flow
vector has a length proportional to its magnitude. This shows the graben is
still subsiding after 5 Ma but further relaxation shows the graben has virtually
stopped subsiding after 25 Ma.



3.2, Stress is concentrated in the upper 10 km and well relaxed throughout the lower 90
km. The surface displacement shows a relative subsidence (ignoring edge flexure) of 525
m. which is less than the equivalent elastic model. This solution is in distinct contrast
to the results of Mithen (1980, figure 8.17). Failure to extend the fault throughout the
mesh created a singularity at the fault bottom as evidenced by the excessively large
principal stresses (1250 MPa) generated in the ductile region underlying the fault v-hich
restrict the relative subsidence to 440 m. The surface stresses in the elastic layer are
larger (400 MPa) in this model than those of Mithen (200 MPa), this is because the
elastic layer is half the thickness and thus the stress amplification is doubled. Allowing
the model to relax further results in subsidence of 1450 m at 20 Ma and 1750 m at 25
Ma. The stress regime in figure 3.3 shows the very large principal stresses (bending
superposed on the amplified applied tension) restricted to the elastic layer only. The
surface displacement profile shows roughly equal upbending of the rim and sinking of
the graben. In practice, fracture, erosion of the uplift and deposition in the trough will
greatly modify these models.

Within the confines of these models our best representation of graben subsidence
permits the elastic layer to sink into the viscous layer along a pre-defined zone of
weakness. The particular limitation of this model is that the compensating flow occurs
on a local, rather than regional, scale; this is shown by the creep flow vectors in figure
3.4. The creep vectors also show that the graben is continuing to subside at 5 Ma but
has alinost stopped by 25 Ma.

The fault configuration at subduction zones will be discussed in more detail in the
later chapters. Briefly, the surface lithosphere is decoupled at the thrust zone, but at

depth the descending slab is expected to be strongly coupled to the mantle.

3.2 Thermal Stresses

The backarc region of subduction zones is often characterised by high surface heat
flow (100mW m~?) implying the existence of a thermal anomaly at depth. The thermal
anomaly generated by raising the isotherms creates a temperature anomaly. In the finite
element method this temperature anomaly is implemented by the initial strain {zq} (see

section 2.5). In a constrained body, the displacements {d} will be very small and the
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stress field will be dominated by {o¢} = [C'}{cq}. However, in an unrestrained body
both will contribute to the final stress field. Under these conditions the thermal gradient
must not exceed the order of the strain field of the element (Cook 1950), and thus we

are restricted to a linear temperature gradient across the element.

In linear. isotropic, elastic material the temperature anomaly produces a fractional

change in volume.

AV
‘—/ = a‘.AT

where AT is the temperature anomaly and a, is the volume coeflicient of expansion. If
this material is then allowed to behave viscoelastically, the thermal stresses are relaxed
but the expansion will remain. In a gravitational field this volume change results in a
buoyancy force. This body force is not included in the initial strain approach and so
must be added explicitly. As Jurdy and Stefanick (1983) point out, it is the buoyancy
force of the thermal anomaly which is responsible for the surface uplift and long term

stresses.

Since the finite element implementations of these aspects of the thermal anomaly
are quite different, it is necessary to investigate quantitatively the potential differences.
The finite element mesh represents a cross-section through 90 km thick oceanic litho-

sphere. The rheology is shown in the table 3.4 below.

Depth / km | Young’s Modulus / N m~? | Poisson’s Ratio | Viscosity / Pa s
0-7 0.85 x 10! 0.25
7-20 1.80 x 10" 0.25
20-90 1.80 x 10'? 0.25 10%

Table 3.4 Rheology of the thermal anomaly model

The right hand portion of the mesh is shown in figure 3.5, the right hand end is
an axis of symmetry. Tsostatic conditions are imposed at the base of the crust (7 km
depth) p = 600 kg m™2 and ai the surface p = 1670 kg m~>. The two manifestations
of the thermal anomaly are depicted in figure 3.5, which shows the region of uniform
200 K increase in temperature at the base of the lithosphere surrounded by a linear

gradient to zero over one element thickness. Assuming a linear coeflicient of expansion

a = 107° K71, then for lithosphere of density p = 3300 kg m ™3, the equivalent density
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Figure 3.5 The right hand section of the finite element mesh ( vertical exagger

tion x1.5 ) for the thermal anomaly model. The right hand edge is an axis f
symmetry. The rheology is given in the text. The two ma f st t of the
thermal anomaly are superposed on the mesh. The open circles o represent

a nodal temperature rise of 100 K, the full circles o represent’a, nodal tem-
perature rise of 200 K. The left diagonal shading denotes a density anomaly
p = —6.6 kg m~3 and the right diagonal shading a density anomaly p = —13.2
kg m3. '



\ \ 11
‘ <, Vo _,»’ I
ST T g
-90
500 675
0 — — —— —
, ! Lo
| A [l
' ! ! I
. | T
) L B
\ \ [
v~ [
— — “ . —\"T
A Y A
-90
500 675

Figure 3.6 The stress regime for the initial elastic solution ( vertical exaggeration
x1.5 ) for two models, a temperature anomaly only, and the combined thermal
anomaly. The stresses produced by the density anomaly are so small as to have
no significance in the wholly elastic models.
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Figure 3.7 The stress regime after 5 Ma relaxation ( vertical exaggeration x1.5)
for two models, a density anomaly only, and the combined thermal anomaly.
The stresses produced by the temperature anomaly have been completely re-
laxed and now the density anomaly dominates the stress regime.



anomaly of a 200 K rise in temperature is,

a AT
Ap=—p—rr = _132kegm”°
4 Pl a AT gm

The density distribution cannot mimic the temperature gradient and so an average
value of Ap = —6.2 kg m™2 is used in the bordering clements.

Initial elastic solutions for the temperature anormaly and the combined thermal
anomaly are shown in figure 3.6. The stress regime for the temperature anomaly ut-
terly dominates the elastic response. The lower layer, in which the anomaly exists,
was relaxed for 5 Ma and the stress regimes are shown in figure 3.7. This clearly
demonstrates the dominance of the density anomaly in the long term response, the
temperature stresses have been relaxed but the thermal expansion remains. This is

shown in the table 3.5 below which catalogues the vertical displacement (in metres) of

the surface (S) and the base (B) of the right hand edge at times 0 Ma and 5 Ma.

Time / Ma | Temperature | Density [ Combined

0 S=-27 S=310 S5=45

70
B=-570 B=305| B=-265

5 S=-2 S

250 S=2350

B=-242 B=290 B=45

Table 3.5 Absolute vertical displacement (in m) of the right hand edge

The surface displacement of the temperature anomaly decreases to zero with time.
whilst retaining the vertical expansion of the layer (the difference of the displacements).
The sum of temperature displacement + density displacement gives the disp]acément
of the combined thermal anomaly (to within a couple of metres), as would be expected.

In this example the thermal anomaly was confined to the ductile layer, which is
probably not realistic. Stresses due to a temperalure anomaly in the elastic layer will
persist, and even a small change in temperature can swamp the stress field of the body
forces. So, when incorporating a thermal anomaly in the finite element method the
temperature anomaly will dominate the elastic response and the associated buoyancy

forces will dominate the long term viscoelastic response.
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3.3 Entry Flow

Entry flow is possibly the simplest of steady state Stokes flow problems, solving

the set of linear equations,
[N]{d} = {F}
and this test model uses the axisymmetric formulation.

The model paramelers are non-dimensional and the finite element meshes for
quadrilateral and triangular elements, together with the boundary conditions are shown
in figure 3.8. The mesh has a radial dimension of 1 unit and an axial dimension of 2
units. The left hand edge is the axis of symmetry and has the boundary condition
u = 0, the right edge has a no-slip condition, the top edge has v = 0, and the bottom
edge prescribes a constant inflow v = 0, v = 1. Thus the model represents the de-
velopement of axial flow along a cylinder given the uniform inflow velocity. A velocity
singularity occurs at the bottom right hand corner and so a finer mesh subdivision is
used to prevent the disturbance affecling the bulk low. The fluid has a density p = 1,
and a viscosity g = 1 yielding a Reynold’s number of 1. The purpose of this test model
is to establish the value of the penalty parameter ¢ (see equation 2.49). For several val-
ues of the penalty parameter it was found that ¢ = 107 gave the best results. Varving
the penalty parameter by a factor of 10 had a negligible effect.

Comparison is taken from a study of finite elements in fluid flow by Zienkiewicz
and Godbole {1975) and both sets of non-dimensional results are shown in figure 3.9
for the quadrilaterals and figure 3.10 for the triangles (benchmark study plotted as
open circles). This shows velocity profiles along a radius taken at six points along the
axis, and both the axial and radial velocity components are displayed. The two sets
of results show reasonable agreement, particularly at the further axial distances for
the mesh of quadrilateral elements. Increasing the penalty parameter (¢ > 10°) only
degrades the flow and does not improve the velocity fit. Thus we must suffer a small
trade-ofl between accuracy and numerical stability which is essentially dependent on

the computer word length.

3.4 Couette Flow

This is a simple time-dependent laminar flow problem in which the convection term
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Figure 3.8  The finite element meshes for the entry flow problem, left a mesh

wholly composed of quadrilaterals, and right a2 mesh wholly composed of tri-
angles. The dashed line denotes the axis of symmetry. The base of the mesh

has a prescribed uniform inflow of unit velocity, the right hand side has a
no-slip condition.
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Figure 3.9 The velocity profiles for the mesh of quadrilateral elements. At six
points along the axis 0, 0.2, 0.4, 0.7, 1.0, 2.0 the velocity profiles along the ra-
dius are plotted. The open circles denote the benchmark study of Zienkiewicz

and Godbole ( 1975 ).
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Figure 3.10 The velocity profiles for the mesh of triangular elements. At six
points along the axis 0, 0.2, 0.4, 0.7, 1.0, 2.0 the velocity profiles along the ra-
dius are plotted. The open circles denote the benchmark study of Zienkiewicz

and Godbole ( 1975 ).



Unsteady Couette Flow

Figure 3.11  The simple finite element mesh of 16 quadrilaterals for the Couette
flow problem. The top sirface is held fixed and the base moves at unit velocity
along axis. -
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Figure 3.12 The velocity profiles at selected time intervals showing the developing
Couette flow. The dimensionless parameter characterising the curves is defined
in the text and represents increasing time. The finite element solution is
denoted by open circles, the exact solution is the solid lines. The first curve
( labelled 0.25 ) is one time-step of the finite element solution.



of the Navier-Stokes equations is identically zero,
(A2 {d} + (K }{d) = (F)

The solution to these equations was presented in section 2.3.4 and the implementation
of the algorithm will be tested by the model of Couette flow. A viscous fluid exists
between two parallel plates, the upper of which is held stationary. The lower plate
moves along its axis at unit velocity for t > 0. A boundary layer forms along the
lower edge and diffuses upward, developing a steady state linear velocity profile as time

progresses. The mesh is shown in figure 3.11, and the non-dimensional parameters of

this problem are ¢ = 1, v = 0.5, At 0.0625. The results are compared to the
theoretical flow profiles in figure 3.12 and show good agreement (open circles are the
finite element solutions). The dimensionless parameter which characterises the curves

is,

4/pt
H

where p is the dynamic viscosity, t is the total time, and H is the plate separation. The
r-axis defines the flow velocity and the y-axis defines the vertical distance between the
plates. So, as time progresses the curves map the upward diffusion of velocity towards

the steady state linear velocity profile.

3.5 Shear Stress Evaluation

The viscous flow finite element code is required to evaluate the amount of viscous
shear stress produced by an ‘elastic’ slab moving through the mantle. The represen-
tation of an elastic slab must accurately support the shear stress generated along its
edge. Melosh and Raefsky (1980) found that an eflective viscosity of 2 x 102! Pa s
was suitable to support the outer arc bulge of a viscous lower lithosphere. Vassiliou
et al. (1984} used a viscosity contrast of »10 between mantle and slab. Hager et al.
(1983) followed Melosh and Raefsky and used a viscosity of 102 Pa s, which equates
to a viscosity contrast of x10. Intuitively the slab is significantly more rigid than the
mantle, both upper and lower, and this is justified by the lack of divergent flow at the
670 km discontinuity (as evidenced by the stresses). Since lower mantle viscosities of

10%% Pa s have been proposed, my own rather arbitrary choice of slab viscosity is 1023



Pa s. This is considered to be large enough to distinguish the lithosphere within the
flow, without being so large that it decouples as a rigid intrusion.

The finite element mesh represents a long, thin channel of dimensions appropri-
ate to the mantle. The lower surface is held stationary and the upper surface has a
prescribed velocity of 107 m s™? (300 mm yr~'). The top 50 kmn of the mesh has a
viscosity of 10> Pa s and the lower 340 km a viscosity of 102! Pas. Assuming that the
top layer retains its rigidity and transfers the motion of the upper surface to the top
of the lower layer, then steady state Couette flow is induced in the lower layer. The
analytical solution is well-known, the only non-zero stress components are horizontal
shears,

du U
T = T = U—— = |—
21 12 #ay H b

where p is the viscosity, U is the velocity of the upper surface, b is the width of the

channel. Thus, substitute the parameters of the finite element mesh into the equation

and the shear stress which would be generated by flow in the lower layer is,

1071 x 1078

= 0.294 x 10% Pa
340 x 10° a

Apart from small edge effects, this shear stress is reproduced throughout the 50 km
upper layer by the finite element model. The normal stress components exist but are
small, being about x107%7.

In conclusion, a lithosphere of viscosity 10*® Pa s will accurately represent the

shear stress induced by viscous flow along its boundaries.

3.6 Time-Dependent Free Surface Flow

The complete Navier-Stokes equations were derived in section 2.3 and can be writ-

ten,

.0 .
[M]Z Ad} + K )1d) + () = {F}

The theory of an algorithm formulated for free-surface flow was sketched in the previous
chapter. In order to test the free-surface algorithm Hughes et al. (1978) provided
details of an experimental wave-generation study and also supplied the finite element
simulation of this wave propagation. It is appropriate to follow an identical simulation

to examine the implementation of the free-surface algorithm in this thesis.
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The finite clement mesh in figure 3.13 depicts the left hand edge of a rectangular
box of length L=949.095 units and depth D=10 units. The base nodes permit horizontal
motion only, and the right hand edge nodes only permit vertical motion. The nodes
along the top surface are assigned a, = 1 to designate motion with the {ree-surface,
while all otlier dof are assigned a = 0 (see equations 2.61, 2.62). A surface wave is

generated by prescribing the displacement-time function of the left hand edge nodes as,

U.(t) = —? [1 + tanh (%—t - 4)]

H 3H
c = gD 1+6 A = —4-5

Differentiation yields the velocity at the left hand edge,

—3_1},_:__& 1 Tanhz(ﬁt— 4)
ot~ D ' D

where,

where, g = 1, and H=0.86. The remaining parameters to be defined are p = 0, p = 1,
At=17s,3=06,and vy = 0.5. The wave-genera‘t'ion function is formulated such that
non-linear and dispersive terms are balanced and the wave should propagate without
distortion.

For each time increment the velocity of the left hand edge nodes is applied as
a boundary condition, and the body forces of the fluid are calculated under a scaled
gravitational field of g = 1. Two iterations of the non-linear term {H } are applied, and
for each iteration the system matrix is calculated from the updated mesh positions.
To ensure solution stability, the displacements of the mid-side nodes are defined as the
average of the displacements of the adjacent corner nodes.

The set of profiles in figure 3.14 describe the evolution of the surface of the fluid with
time. The axes are scaled by the depth of the fluid. The profiles show the development of
the surface wave and its subsequent propagation. Hughes et al. (1978) follow the wave
over a solution duration of 286 secs (160 time steps at A1 = 1.788 s), it has an almost
constant scaled amplitude of 0.095, propagates at a constant velocity of 3.31 units s™!,
and changes slightly in half-width from 6 — 6.2. By contrast, the wave in figure 3.15
has evolved over 170 secs; it has a scaled amplitude of 0.058 which is decaying with
time, it propagates at 2.86 units s~ and disperses with a half-width increase of 6.1 —

7.2. The details of the wave propagation differ quite markedly from the benchmark

<L
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Figure 3.13  The left hand section of the simple finite element mesh for the wave
propagation problem. The displacement-time history of the left hand edge
decreases the volume of the box which generates a travelling surface wave.
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Figure 3.14  The scaled profiles of the free-surface at 4 stages in the propagation
of the travelling wave corresponding to 40, 60, 80 and 100 time steps.



solution. The dispersive effects, i.e. decaving amplitude and increasing half-width, can
be attributed to the smoothing (removing the high frequency components) and the
inferior performance of the Serendipity elements in coping with the non-linear terms.
This is evident in the low value of the stability constants v, 3 necessary to achieve a
stable solution. The cause of the low amplitude and low velocity is more difficuli 1o
pinpoint. The non-linear terms control the amplitude growth of the wave in the initial
period of generation. The subsequent propagation is dependent on the developement
of the wave, and hence the low velocity could be due to the formation of a small initial
wave. Hence, if a wave of amplitude 0.095 had formed initially then it would probably
propagate at 3.31 units s”' in this model, but it would still be subject to dispersive
effects. This problem with the non-linear terms can be removed by considering a very

low Reynold’s number test model, more appropriate to the subsequent simulations of

flow in the mantle.

The algorithm outlined above has been adapted for low Reynold’s number flow
and the finite element code has been tested using a simple gravity slump problem.
The mesh is shown in figure 3.15, it represents a 600 x 200 ki cross-section with a 5
km high-standing ‘mountain’ at the centre. The topographic high is generated by a
linear rise and fall over a distance of 120 kim. The body of fluid has a uniform density
p = 3300 kg m™> and uniform viscosity p = 102! Pa s yielding an extremely small
Reynold’s number. The base and sides have free-slip boundary conditions. The free
surface is defined by the parameter a (see equations 2.61, 2.62), and for the nodes of
this mesh all o, = 0, @, = 0 except for the surface where oz = 0, ay, = 1. This
allows tlie nodes to move vertically and thus map the development of the surface. The

stability constants vy = 8 = 1.0 and the time step employed is A1 = 1000 yrs.

Under the law of conservation of mass the high-standing mass at the centre should
flow laterally under gravity and spread its volume as a uniform increase in surface height.
The volume of the mountain is 300 km?, which when completely relaxed will generate
an overall rise in surface level of 0.5 km. The ability of the finite element method 1o
model this redistribution of the surface is considered to be a good assessment of both
the time-stepping algorithm and the incompressibilty constraint. The development of

the surface with time is shown in figure 3.16 for a total solution duration of 2 Ma.
The perturbation at the centre dies sufficiently quickly and the overall rise in
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Figure 3.15 The simple finite element mesh for the gravity slump test problem.
The right hand edge is a 5 km topographic high.
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Figure 3.16  The evolution of the free-surface with time, the curves represent 0,
0.01, 0.05 and 0.2 Ma. The initial topography has almost completely relaxed
and spread as an even increase in surface height.



surface level is exactly as predicted.
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CHAPTER 4

Flow In A Viscous Earth

4.1 Introduction

Density heterogeneities at the surface or in the interior of the Earth persist over geo-
logical time and provide significant long-term loads. The lithosphere and the underlying
mantle respond differently to these loads; lithospheric behaviour can be approximated
by the flexure of an elastic plate, and mantle creep is best modelled by flow of a viscous
fluid. Attempts to formulate a numerical method to couple directly both elastic and
viscous rheologies (e.g. Tharp 1985, Ward 1985) have had only limited success. As
a compromise in this chapter the Earth is modelled as a viscous, incompressible fluid

body denoting the lithosphere as a high viscosity layer.

As a preface to the models of mantle flow driven by subduction a few examples
of earlier numerical analyses will be reviewed. Since it is not possible to simulate ac-
curately the entire Earth in a single model, the boundary conditions of a particular
cross-section must be a good approximation to the response of the material outside the
domain under consideration. The choice of boundary conditions originates from the
work in the early 1970s, notably Richter (1973), where mantle convection was mod-
elled by the 2-D Rayleigh-Bénard convection. Sleep (1975) studied the response to the
anomalously high density slab using a viscous, incompressible fluid rheology. The 2-D
cross-section through the asthenosphere included the slab as a high viscosity intrusion.
He adopted the same surface boundary conditions as Richter (1973) and stated ‘ The free
surface of the Earth was modelled as a vertically immovable, horizontally frictionless
boundary and the inferred elevation of the surface computed from the vertical stress on
that boundary. ..’ and he asserted that these assumptions will ‘... contribute mainly ge-
ometrical distortion of the computed versus the actual flow field but do not significantly
affect the dynamics.” This is true for the classical Rayleigh-Bénard thermal convection

cell, but some studies, such as Hager et al. (1983) and Vassiliou et al. (1984) for exam-
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ple, incorporated these assumptions into models of subduction which depend critically
on the flow pattern.

The subduction models of Vassiliou et al. (1984) used a penalty function finite
element method for Stokes flow similar to that used in this thesis. Erronecus boundary
conditions have two major effects which influence the dynamics of the model. The
top surface is constrained to move horizontally, and so a high viscosity lithosphere
would induce the top of the asthenosplere to move only horizontally also. While this
motion could be real, the constraints are artificial. Secondly, the zero vertical motion
at the top of the slab prescribes that its surface points are fixed with respect to the
gravitational field. Thus slab motion is controlled by stretching under its own weight.
This is highlighted by the note on slab viscosity (relative to the upper mantle viscosity
of unity) from Vassiliou et al. (1984) ‘... dimensionless slab viscosities of 10 yield
reasonable flow velocities...’. This is interpreted as stating that a viscosity contrast
of x10 between mantle and slab was required to allow the slab to flow downdip at
velocities which have been observed for the subduction zones of the Earth. It is likely
that the slab is significantly more rigid than the surrounding mant]é and perhaps a
viscosity contrast of x100 is more appropriate.

Subduction is not a steady-state process. Time-dependence is controlled by the
temporal variation of the boundary conditions. Over Jong time periods this variation is
provided by the motion of the slab, but over short time periods it is the adjustment of
the free surface. The 2-D models of a viscous fluid in a box require a suitable method
for dealing with the free surface. Other boundaries, at the base and sides, can be ap-
proximated quite adequately with Dirichlet conditions or lithostatic pressure gradients
and will have less influence on the dynamics. The previous chapter demonstrated that
the free surface can be modelled numerically and the following simulations of flow in

the mantle utilise this representation of the free surface of the Earth.

4.1.1 The Conceptual Basis of the Finite Element Models

Loper (1985) proposed that the viscosity-depth profile, rather than the density-
depth profile, exerts a primary control over the structure of mantle convection. The 1-D
exploratory model presented by Loper (1985) advocated an isoviscous mantle. Richards

and Hager (1984) and Hager (1984) modelled the mantle as a layered, Newtonian sphere.
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Density anomalies of the descending slab at convergent margins were employed 1o drive
mantle convection and the geoid was calculated from the driving densities and the defor-
mation of the surface and the core-mantle boundary (CMB). Hager (1984) demonstrated
that a viscosity contrast of x30 between the upper and lower mantle is required to pro-
duce a relative high in the geoid at subduction zones. Willemann and Anderson (1987)
extended the analysis of Hager (1984) to investigate the geoid due to an inextensible
vertical slab in 2-D finite element models of viscous flow. A relative geoid high was

produced by a viscosity contrast of x10 at the upper - lower mantle interface.

The numerical simulations of this chapter are based on the assumption that the
viscosity-depth distribution controls subduction. The average density-depth variation
of the mantle (e.g. figure 1.6) is not included. The anomalous density of the descending
slab drives the motion. The major sophistication over previous analyses is that short
period time-dependence is included by permitting motion of the free surface. Thus the
pattern of the flow in the mantle may be studied with a greater degree of confidence.
The surface deformation is essentially instantaneous compared to the It.ime constant of
subduction (Hager 1984). This is translated into the finite element models by allowing
the free surface to evolve over a time interval of 50000 yrs (the time scale of post-glacial
rebound). This time interval is instantaneous with respect to slab motion and so the

nodal coordinates of the slab remain unchanged.

4.2 The Finite Element Mesh

The finite element mesh represents a rectangular cross-section throughout the man-
tle of dimensions 9130 x 2800 km and is shown in figure 4.1. The bulk of the mesh
has a layered structure. The top 90 km is oceanic lithosphere and underlying this is
the asthenosphere, 90 — 180 km depth. The rest of the upper mantle extends between
180 — 670 km depth and most of the mesh represents the lower mantle, 670 — 2500

km depth. The general rheology is given in Table 4.1 below.
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Figure 4.1  The mesh represents a 9130 x 2800 km cross-section through the

mantle. The general rheology is given in the text. The slab s shaded; it dips

at 45° and carries the anomalous density.



Depth (km) | Density (kg m~3) | Viscosity (Pa s)
0- 90 3300 1023
90 — 180 3200 101% — 101
180 — 670 3200 102!
670 — 2800 3200 102! — 10%®

Table 4.1  General Rheology

Although the average viscosity-depth profile of the mantle is not well constrained,
the best estimate available is an upper mantle viscosity of g = 10?! Pa s (Cathles
1975). Estimates of the depth extent and viscosity of the asthenosphere vary widely
(e.g. Cathles 1975, Robinson et al. 1987, Ceuleneer et al. 1988) and the model values
of 90 km and g = 10'® — 10%! Pa s are representative. Recently published estimates
of lower mantle viscosity generally fall in the range u = 102! — 10?3 Pa s (Peltier et
al. 1986). The mantle is assigned a constant density of p = 3200 kg m > to remove the
effects of the vertical density variation. The oceanic lithosphere is assigned a density
of p = 3300 kg m ™3 to represent the thermal density contrast.

The position of the slab is shown in figure 4.1. It is represented by oceanic litho-
sphere of viscosity u = 10?3 Pa s dipping at 45°. The slab tip is streamlined in the
downdip direction. The elevated olivine-spinel phase change in the slab is included as
a density anomaly of 150 kg m~> over the depth range 300 — 400 km. The phase
change is spread over a larger volume than predicted (Schubert et al. 1975) and so the
density anomaly is reduced to maintain a consistent mass anomaly. The magnitude
of the density anomalies may be considered a little high but this will only affect the
magnitude of the flow velocities and should not seriously affect the dynamics.

Free slip boundary conditions are applied to the base and sides. Thus the base
permits only horizontal flow and the sides permit only vertical flow. The boundary
conditions contain the fluid within the domain of the mesh. The surface nodes are
assigned a, = 1 to define the free surface, all other a =0 (see equations 2.61, 2.62).

The deflection of the CMB is not included in the finite element models. Willemann
and Anderson (1987, figures 3 and 4) showed that this is a significant contribution to

the geoid for long slabs (1400 km penetration) with a viscosity comtrast at the 670
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km discontinuity of at least x10. The CMB topography will generate a negative, long
wavelength gravity anomaly. Deeply sourced gravity anomalies are attenuated at the
surface and so the gravity profile will be dominated by the contributions from shallower
loads.

The magnitude of the time increment for the time-stepping algorithm is a somewhat
arbitrary choice since it only has a maximum value which is dependent on the flow
velocity. The models were assigned a time increment of 1000 yrs and evolve over 50
time steps.

The finite element models of this chapter investigate the effect of mantle viscosity
and depth of slab penetration on the mantle flow patterns generated by subduction.
Model limitations, such as lithospheric rtheology and the thrust zone, are discussed in

the final section.

4.3 The Influence of Lower Mantle Viscosity

One of the main concerns of geodynamical studies of mantle convection is the
ability of the slab to penetrate the lower mantle. This chapter concentrates on the role
of the viscosity structure in the control of slab motion and thus the viscosity of the lower
mantle is a dominant theme. This opening section is devoted to a brief introduction to
the action of the lower mantle viscosity using a model of slab penetration to 1000 km
depth. Throughout the remainder of the chapter variations in lower mantle viscosity
will be included in addition to the study of other parameters. The three models of this
section have an asthenospheric and upper mantle viscosity of 4 = 10°! Pa s, and lower
mantle viscosities of 102, 10°? and 10% Pa s respectively.

The flow fields and surface displacement profiles are given in figures 4.2 - 4.4 for
the 102!, 1022 and 10?3 Pa s models respectively. The plots of flow vectors have a circle
at each node and a vector denoting the velocity away from the node. The velocity scale
at the top varies between models. The flow field is enclosed by a solid border. The
surface displacement profile is shown above the flow field. The dashed line is the initial
position of the surface at t = 0. The solid curve represents the vertical displacement of

the surface at ¢t = 50 000 yrs. The vertical line at the left hand edge is a vertical scale

denoting 5 km of displacement.
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Figure 4.2 The flow field and surface displacement profile for the model of slab
penetration to 1000 km depth, with asthenosphere, upper mantle and lower
mantle viscosities of g = 102! Pa s. The flow field is depicted by a circle at
each node and a vector denoting velocity away from the node. The velocity
scale is given at the top. The flow field is enclosed by a solid border. At the
right hand edge the ratios of upper mantle viscosity : asthenosphere viscosity,
and lower mantle viscosity : upper mantle viscosity are given. The surface

displacement profile is shown above the flow field.
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Figure 4.3  The flow field and surface displacement profile for the model of slab

penetration to 1000 km depth, with asthenosphere viscosity 102! Pa s, upper

mantle ¢ = 102! Pa s and lower mantle it = 10%2 Pa s.
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Figure 4.4 The flow field and surface displacement profile for the model of slab
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The constant viscosity mantle in figure 4.2 generates a continuous flow circulation
about the slab. Under the slab the flow vectors are near vertical. The upper mantle
material i1s being driven down into the lower mantle and this would cause the depression
of the CMB (not present in these models because of the base boundary condition). The
flow is circulating from under the subducting plate around the slab tip as noted by
Garfunkel et al. (1986). The width of the circulation is about 3000 km, but this may
be controlled by the depth of the mesh (2800 km), and also be influenced by the left
hand boundary.

In the upper mantle above the slab the flow is roughly horizontal with a maximum
(100 mm/vr) at about 400 km depth. The overriding plate is nearly stationary. Within
the slab the flow is aligned roughly downdip (80 mm/yr) in the upper sections but
inclined more towards vertical below 400 km depth. In the subducting plate, flow
is nearly horizontal (30 mm/yr) and directed towards the trench, and the underlying
mantle has a vertical velocity gradient with the lateral velocity dropping to zero at
about 400 km depth.

The surface displacement profile shows a maximum depression at the top of the
slab of 3.4 km. The right hand edge of the depression rises over a width of about 200
km, but the left hand edge rises at a lower angle, over a width of about 1100 km. The
far left and right hand edges of the surface plates are elevated by about 0.5 km.

The flow field in figure 4.3 demonstrates the effect of a viscosity contrast of x10 at
the 670 km discontinuity. The overall magnitude of the flow velocity is smaller but the
general pattern is similar to figure 4.2. There is a circulation about the slab tip, with
near vertical flow below the slab and horizontal flow above the slab. However, there is
distinct partial decoupling of this circulation at 670 km depth.

The subducting plate flows towards the trench at 15 mm/yr with an underlying
velocity gradient to zero at 670 km depth. The overriding plate is virtually stationary
with an underlying velocity gradient to a maximum (10 mm/yr) at about 400 km
depth. Within the slab the flow is fairly consistently aligned just vertical of downdip
(50 mm/yr). The maximum depression of the surface is 2.1 km with an enhanced
asymmetry to the uplift of the flanks.

Increasing the viscosity of the lower mantle further, figure 4.4 shows the flow field

utilising a viscosity contrast of x100 at the 670 km discontinuity. There is almost
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complete decoupling of the flow at the upper-lower mantle boundary. In the lower
mantle there is a small downdip component of flow (10 mm/yr) due to the portion of
slab in the lower mantle. In the upper mantle the flow is predominantly horizontal and
directed seawards with a velocity maximum (25 mm /yr) at about 400 km depth. Thus
the flow is "channelled’ through the upper mantle. The overriding plate has a small
seawards velocity and the subducting plate is roughly stationary with an underlying
velocity gradient now directed seawards. Flow within the slab varies along its length; it
is roughly vertical in the upper section and downdip in the lower section. The surface

depression is broader and reaches a maximum depth of about 1.9 km.

The surface depressions decrease in depth and increase in width as the lower mantle
viscosity increases. This variation in depth, and its effect on the geoid, was noted
by Hager (1954). The variation in width is partially due to the overall reduction in
magnitude of the flow velocity. Thus, over a fixed time interval, the surface has not
evolved as far. The shape of the depression is also affected by the mechanical strength
of the slab. The flow field in figure 4.5 reproduces the model of figure 4.3 with the
lower mantle viscosity 10°? Pa s, but there is no viscosity contrast between the slab and
mantle. The overall magnitude of flow is much greater {as shown by the velocity scale

al the top of the figures) and aligned downdip. and the surface depression is broader.

The asvmmetry of the depression is due to the dip of the slab. The vertical motion
of the sinking slab is coupled to the surface plates through the ‘mechanical strength’
of the high viscosity lithosphere, and by viscous coupling through the mantle overlying
the slab. The uplift of about 0.5 km at the left and right hand edges of the surface
plates is due to the boundary conditions. There is zero mass flux at the vertical sides
and so depression of the surface at the top of the slab will cause uplift of the flanks.
This is a limitation of the models that is further discussed in the final section. The
depression of the surface is sustained by continucus slab motion. The models do not

reach a steady state because slip at the thrust zone cannot be simulated.

These preliminary models demonstrate the ability of a viscosity contrast at the
670 km discontinuity to decouple the flow systems in the upper and lower mantle. This

provokes a change of flow in the surface plates. fiow within the slab, as well as the flow

systems in the mantle.



4.4 The Influence of the Asthenosphere

The following sequence of models investigate the effect of varying the viscosity in
the asthenospheric layer, 90 — 180 km depth. The flow fields in figures 4.6 - 4.8 employ
an asthenospheric viscosity of g = 10%° Pa s in models of slab penetration to 1000 km
with lower mantle viscosities of p = 10?!, 10%? and 10%® Pass.

Comparison with figures 4.2 - 4.4 shows that the decrease in asthenospheric vis-
cosity has very little effect on the gross flow pattern. The main effect is to concentrate
the lateral flow in the upper mantle into the asthenosphere and thus partially decou-
ple the surface plates. This introduces a small landward component of velocity in the
overriding plate above the slab.

The models in figures 4.9 - 4.11 further decrease the viscosity in the asthenosphere
to 10'® Pa s. Comparison with the models described above shows an exactly simi-
lar eflect. The low viscosity zone concentrates the lateral flow and produces a small

landward component of velocity in the overriding plate.

4.5 Variation in Depth of Slab Penetration

The models in this section describe the influence of variations in slab length. Depths
of slab penetration are set to 300, 400 and 670 k. The basic mesh parameters remain
unchanged from the models of the previous section and variations in viscosity in the
mantle lavers are included.

The models in figures 4.12 - 4.14 represent slab penetration to 670 km and have
a uniform viscosity asthenosphere and upper mantle g = 102! Pa s, with lower mantle
viscosities of 1021, 10?2 and 10%3 Pa s. Comparison with figures 4.2 - 4.8 shows that for
a given mantle viscosity the gross flow structure is similar to the 1000 km penetration
model. In more detail, the models in figures 4.2 and 4.12 for the constant viscosity
mantle sliow that the 670 kin peunetration model has a slightly reduced width of cir-
culation around the slab. Also, the flow vectors within the slab are rotated slightly
anticlockwise. A similar situation occurs for the 10?2 Pa s lower mantle model in figure
4.13. The width of circulation is reduced, relative to figure 4.3, and the flow within
023

the slab is rotated anticlockwise from the vertical. The high viscosity 10*° Pa s lower

mantle models in figures 4.4 and 4.14 are very similar with simply a reduction in the
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Figure 4.5 The flow field and surface displacement profile for the model of slab
penetration to 1000 km depth, with asthenosphere viscosity 102! Pa s, upper
mantle y = 102! Pa s and lower mantle 4 = 1022 Pa s. There is no visocsity

contrast between the slab and the mantle.
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Figure 4.6 The flow field and surface displacement profile for the model of slab
penetration to 1000 km depth, with asthenosphere viscosity 102° Pa s, upper

mantle g = 10*! Pa s and lower mantle y = 10*! Pa s.
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Figure 4.7  The flow field and surface displacement profile for the model of slab
penetration to 1000 km depth, with asthenosphere viscosity 1020 Pa s, upper

mantle y = 10?! Pa s and lower mantle u = 1022 Pa s.
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Figure 4.8  The flow field and surface displacement profile for the model of slab
penetration to 1000 km depth, with asthenosphere viscosity 102° Pa s, upper

mantle x4 = 10?! Pa s and lower mantle i =10%% Pas.
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Figure 4.9  The flow field and surface displacement profile for the model of slab

penetration to 1000 km depth, with asthenosphere viscosity 10'® Pa s, upper

mantle u = 10*! Pa s and lower mantle x = 102! Pa s.
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Figure 4.10 The flow field and surface displacement profile for the model of slab
penetration to 1000 km depth, with asthenosphere viscosity 10'® Pa s, upper

mantle p = 10%! Pa s and lower mantle jz = 10?2 Pa s.
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Figure 4.11 The flow field and surface displacement profile for the model of slab
penetration to 1000 km depth, with asthenosphere viscosity 10'® Pa s, upper

mantle g1 = 102! Pa s and lower mantle j2 = 1023 Pa s.
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Figure 4.12  The flow field and surface displacement profile for the model of slab
penctration 1o 670 km depth, with asthenospliere viscosity 1021 Pa s, upper

mantle y = 102! Pa s and lower mantle j = 102! Pa s.
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Figure 4.13 The flow field and surface displacement profile for the model of slab
penetration to 670 km depth, with asthenosphere viscosity 10?! Pa s, upper

mantle g = 10?! Pa s and lower mantle x4 = 10%? Pa s.
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Figure 4.14 The flow field and surface displacement profile for the model of slab
penetration to 670 km depth, with asthenosphere viscosity 10?! Pa s, upper

mantle g = 10?* Pa s and lower mantle p = 10?3 Pa s.



magnitude of the small velocities just below the slab tip. The surface depression in all

three models has slightly decreased in width and depth.

The models in figures 4.15 - 4.17 represent the addition of a low viscosity as-
thenosphere with u = 10%® Pa s to the preceding models of 670 km penetration. The
asthenosphere has an identical effect to the description given in the previous section.
Flow is concentrated into the asthenosphere, partially decoupling thé surface plates.
However, there is an additional complication for the 10?? Pa s lower mantle model in
figure 4.16. The anticlockwise rotation of the flow vectors within the slab is amplified

by the asthenosphere creating seawards lateral flow under the subducting plate.

The flow fields shown in figures 4.18 - 4.20 represent the models of slab penetration
to 670 km depth with the asthenospheric viscosity further reduced to 10'® Pa's. The
flow patterns are similar to figures 4.15 - 4.17 but the horizontal flow in the upper

mantle has beern further concentrated into the low viscosity zone.

The slab length is shortened and the flow fields for the models of 400 km penetration
are shown in figures 4.21 - 4.23. The asthenosphere ';’iscosit‘}' p =102 Pa s, the upper
mantle ¢ = 107 Pas, and the lower mantle viscosities are 10%! Pa s, 10?? Pa s or 10%®
Pa s. The flow field in figure 4.21 represents no viscosity contrast at 670 km depth.
There is a fiow circulation about the slab tip but the cell width is less than the deeper
penetrating models (figures 4.15, 4.6). Horizontal fiow under the overriding plate is
concentrated into the low viscosity zone. Within the slab the flow in the lower sections
is rotated almost 45° anticlockwise of vertical. This creates a component of seaward
horizontal fiow under the subducting plate. The fiow field in figure 4.22 rebresents the
model with lower mantle viscosity of 10> Pa s. There is decoupling of the flow in the
mantle about the 670 km discontinuity, leaving onlyv a small component of entrained flow
in the lower mantle. The circulation about the slab t:p now occurs in the upper mantle.
Lateral flow under the overriding plate is concentrated into the asthenosphere and the
overriding plate has a small Jandward component of velocity. Flow within the slab is
nearly downdip in the upper sections and vertical iri the lower sections. Increasing the
lower mantle viscosity to 102° Pa s, figure 4.23 shows that the flow is completely confined
to the upper mantle. The circulation around the slab tip causes a small component of
flow above the slab, but there is no flow under the bulk of the overriding plate. There

is a large component of seawards horizontal flow under the subducting plate. and also
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Figure 4.15 The flow field and surface displacement profile for the model of slab
penetration to 670 km depth, with asthenosphere viscosity 10?° Pa s, upper

mantle z = 102! Pa s and lower mantle u = 10%! Pa s,
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Figure 4.16 The flow field and surface displacement profile for the model of slab .
penetration to 670 km depth, with asthenosphere viscosity 10%° Pa s, upper

mantle u = 102! Pa s and lower mantle u = 10%? Pa s.
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Figure 4.17 The flow field and surface displacement profile for the model of slab
penetration to 670 km depth, with asthenosphere viscosity 102° Pa s, upper

mantle g = 102! Pa s and lower mantle u = 10?3 Pas.’
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Figure 4.18 The flow field and surface displacement profile for the model of slab
penetration to 670 km depth, with asthenosphere viscosity 10'° Pa s, upper

mantle 1 = 102! Pa s and lower mantle p = 10%! Pas.
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Figure 4.19 The flow field and surface displacement profile for the model of slab
penetration to 670 km depth, with asthenosphere viscosity 10'® Pa s, upper

mantle z = 10?! Pa s and lower mantle u = 1022 Pa s.
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Figure 4.20 The flow field and surface displacement profile for the model of slab
penetration to 670 km depth, with asthenosphere viscosity 10'® Pa s, upper

mantle g = 10?! Pa s and lower mantle ;. = 1023 Pa s.
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Figure 4.21 The flow field and surface displacement profile for the model of slab

penetration to 400 km depth, with asthenosphere viscosity 102 Pa s, upper

mantle 4 = 10%! Pa s and lower mantle p = 10?! Pas.
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Figure 4.22 The flow field and surface displacement profile for the model of slab
pen‘etrati‘on to 400 km depth, with asthenosphere viscosity 102° Pa s, upper

mantle g = 102! Pa s and lower mantle y = 1022 Pa s,
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Figure 4.23 The flow field and surface displacement profile for the model of slab

penetration to 400 km depth, with asthenosphere viscosity 10?° Pa s, upper

mantle g = 102! Pa s and lower mantle u = 10?3 Pas.
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mantle p = 102! Pa s and lower mantle u = 10! Pas.

Figure 4.24 The flow field and surface displacement profile for the model of slab
penetration to 400 km depth, with asthenosphere viscosity 101° Pa s, upper
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Figure 4.25 The flow field and surface displacement profile for the model of slab
penetration to 400 km depth, with asthenosphere viscosity 10'® Pa s, upper

mantle z = 102! Pa s and lower mantle g = 10%? Pa s.
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Figure 4.26 The flow field and surface displacement profile for the model of slab
penetration to 400 km depth, with asthenosphere viscosity 10'® Pa s, upper

mantle 4 = 102! Pa s and lower mantle p = 10?2 Pa s.
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Figure 4.27 The flow field and surface displacement profile for the model of slab
penetration to 300 km depth, with asthenosphere viscosity 102° Pa s, upper

mantle g = 102! Pa s and lower mantle u = 10%! Pa s.
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Figure 4.28 The flow field and surface displacement profile for the model of slab

penctration to 300 km depth, with asthenosphere viscosity 102° Pa s, upper

mantle i = 102! Pa s and lower mantle x = 1022 Pa s.
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Figure 4.29 The flow field and surface displacement profile for the model of slab
penetration to 300 km depth, with asthenosphere viscosity 102° Pa s, upper

mantle j = 102! Pa s and lower mantle u = 1022 Pa s.
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Figure 4.30 The flow field and surface displacement profile for the model of slab
penetration to 300 km depth, with asthenosphere viscos'ity 10’ Pa s, upper

mantle 1 = 10%! Pa s and lower mantle x = 102! Pa s.
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Figure 4.31 The flow field and surface displacement profile for the model of slah

penétration to 300 km depth, with asthenosphere viscosity 10'° Pa s, upper

mantle u = 102! Pa s and lower mantle ;2 = 10?2 Pa s.

x100

x10



S0 se/yr

10 - SN T 1 v b b - 3 T N - H
. . . . e . : . - s R S LR 2 Y 2 . [ [y
. : . : . . . . . . . " 4 e = - Ll -— - - v
. . . . . . « . - - -
. . . . . . . . . . . « 4 ¢ - - - - - - .
. . . . . < - o~ -
. . . . . . . . . H . e 4 v A 7 - - - - - .
. . . . . . ——_a —~—— - . .
L L] . . . . L] . L4 . . . L ses o LI RTT] L] » L] . - . A4
. . . * . . LI 4 . e & s 0 . L] L)
. L) . . . L] . . . . . LN ] . o ALXTI X1 L] . . - . . .
. . . . . . . s 0 0 . . .
. . . . . . . . . . . “se o o & esesees o o . . . . .
. L] L] L] L - . . e 8 a0 . . .
-2810

Figure 4.32 The flow field and surface displacement profile for the model of slab
penetration to 300 km depth, with asthenosphere viscosity 10'® Pa s, upper

mantle » = 10?! Pa s and lower mantle u = 10?* Pa s.
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a reduction in the width and depth of the surface depression.

The flow fields shown in figures 4.24 - 4.26 represent the models of 400 km pene-
tration with the viscosity of the asthenosphere reduced to 10'® Pa's. The flow patterns
are similar to figures 4.21 - 4.23 but the horizontal flow under the subducting plate has
been enhanced at the expense of the flow under the overriding plate.

0%0 Pas are

Slab penetration to 300 km depth with an asthenospheric viscosity of 1
shown in figures 4.27 - 4.29. The lower mantle u = 10%!. Pa s model in figure 4.27 has
a small circulation cell around the slab tip similar to the preceding 400 km penetration
model (figure 4.21). Flow within the slab is slightly rotated anticlockwise of vertical.
Horizontal flow under the overriding plate is concentrated into the low viscosity zone.
The model of lower mantle ¢ = 10?2 Pa s in figure 4.25 shows the circulation around the
slab tip confined to the upper mantle. Very little flow is entrained in the lower mantle.
Within the slab the flow is nearly downdip in the upper sections and roughly vertical
in the lower sections. The overriding plate is qearly stationary and flow underneath is
confined to the region above the slab. Increasing the lower mantle viscosity to 1023 Pa s
confines the flow to the upper mantle (figure 4.29). The circulation around the slab tip
generates a small flow under the overriding plate. but the low viscosity zone decouples
. the plate allowing a small landward component. There is large horizontal seawards flow
under the subducting plate.

The final three models of 300 ki penetration assign an asthenospheric viscosity of
10'9 Pas. figares 4.30 - 4.32. Comparison with figures 4.27 - 4.29 shows that decreasing
the viscositv of the asthenosphere enhances the liorizontal flow under the subducting

plate at the expense of the flow under the overriding plate.

4.6 Discussion of Results

There are strong arguments for viscosity stratification of the mantle. Hager (1984)
suggested a viscosity contrast of x30 — x100 at the upper - lower mantle boundary.
while Willemann and Anderson (1987) preferred a viscosity contrast of x10. The fi-
nite element models of flow due to oblique subduction in this chapter provide some
constraints on the viscosity structure.

The principal observation taken from the preceding flow fields is that a viscosity

il



contrast of x100 at 670 km depth is sufficient to eflectively decouple the flow systems in
the upper and lower mantle. This has the greatest influence on the longest slabs, in this
case penetrating to 670 km and 1000 km depth. In addition to decoupling the induced
flow, the viscosity contrast affects the flow within the slab. There is a large change in
orientation of the flow vectors along the length of the slab (figures 4.4, 4.8, 4.11, 4.14.
4.17, 4.20) which implies differing motion along the length and thus contortion of the
slab. There is no evidence for excessive slab bending among observations of Wadati-
Benioff zones which are remarkably straight at depth (see compilation in Jarrard (1986
for example ).

The flow fields of the model of slab penetration to 670 km depth (figures 4.14, 4.17,
4.20) show mﬁch higher velocities in the upper sections of the slab compared to the slab
tip. This can be interpreted as resistance to penetration of the lower mantle causing
rollback to laver the slab along the interface. There is no seismic evidence of substantial
amounts of slab material at the 670 km discontinuity and the observed slab stresses
are not consistent with the high degree of bending that this may entail (Vassiliou et al.
1984).

The flow fields of models with a viscosity contrast of x10 (figures 4.3, 4.10, 4.13.
4.16. 4.19} do not show the problems discussed above. Penetration of the lower mantie
is observed whilst flow within the slab is fairlv consistent in velocity and orientation
along the slab lengtl. In this respect the viscosity contrast of %10 is preferred.

The magunitude of viscosity in the asthenosphere does not affect the bulk flow
pattern greatly (figures 4.6-4.11). The genera! influence of the low viscosify zone is to
concentrate the upper mantle flow and decouple the motion of the surface plates. A
viscosity of ¢ = 10'° Pa s is at the low end of the range of possible viscosities, so for a
general model the value gy = 16%C Pa s is taken. However, these finite element models
are relatively insensitive to the value of asthenospheric viscosity.

A general model of mantle stratification has been adopted, the asthenosphere y =
1020 Pa s. upper mantle p = 102! Pa s and lower m.ant.le it = 10?2 Pa's. The flow fields
in figures 4.33 - 4.36 represent slab penetration to 300, 400, 670 and 1000 km in this

general mantle model and are blow-ups of figures 4.28, 4.22, 4.16 and 4.7.

There are a few observations to make on these models of increasing slab penetra-

tion. The width of circulation in the mantle increases, as does the depth and width of
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Figure 4.33 The flow field and surface displacement profile at the centre section
of the mesh for the model of slab penetration to 300 km depth, with astheno-

sphere viscosity 10%° Pa s, upper mantle 1 = 102! Pa s and lower mantle
u=10%? Pas.
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Figure 4.34 The flow field and surface displacement profile at the centre section
of the mesh for the model of slab penetration to 400 km depth, with astheno-

sphere viscosity 102° Pa s, upper mantle u = 10?! Pa s and lower mantle
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the surface depression, with increasing slab depth. The significant change occurs when
the elevated olivine-spinel transition is reached. Depression of the surface is caused by
a combination of viscous and mechanical coupling of the vertical motion of the slab.
The topography of the surface and the CMB serve to compensate the body force of the
descending lithosphere and the relationship is controlled by the viscosity stratification

(Hager 1954).

The flow field in figure 4.33 for the model of 300 km penetration has a relativelv
low magnitude of flow velocity. Flow within the slab (26 mm/yr) is roughly vertical
in the upper section (200 km depth) but rotated anticlockwise of vertical in the lower
section :300 km depth). The flow vectors do not represent particle trajectories but the
general motion of the slab can be defined as sinking vertically and rotating towards
vertical subduction. The 400 km penetration model (figure 4.34) shows flow in the
upper section of the slab oriented roughly downdip of vertical (60 mm/yr) and flow
in the lower sections is rotated anticlockwise of vertical. Thus the motion of the slab
is vertical sinking combined with rotation towards vertical. At 670 km penetration
the slab tip hits the top of the lower mantle . figure 4.35). In the upper slab the flow
is oriented downdip of vertical, at 400 km depth the flow is rotated anticlockwise of
vertical (70 mm/yr) and in the lower section the flow is aligned vertical of downdip.
Thus the general motion is altered, the slab is sinking more obliquely and bending at
mid-length. Deeper penetration into the lower mantle (figure 4.36) shows a similar
pattern. tiow in the upper and lower sections of the slab is aligned vertical of downdip.
At about 400 km depth the flow is aligned vertically. Thus the general slab motion s

oblique sinking accompanied by bending at mid-depth.

Thus. as subduction proceeds, the flow vectors within the slab rotate clockwise to-
wards an orientation just vertical of downdip. Interaction with the lower mantle causes
stagnatior. of the slab tip and the mechanical strength of the lithosphere transmits the

resistance to motion along the length of the slab.

The How field above the slab was aligned horizontally in all models, there was
no evidernce of ‘backarc convection’. Omission of the thrust zone prevents shear slip

between the plates at the surface and it is the relative motion which drives corner flow

(McKenzie 1969).



4.7 Limitations of the Models

The viscous flow models of this chapter have not attempted to model a particular
subduction zone but rather present a generalised simulation of the action of subduction.
The aim of the study is to predict the overall flow field generated by a mechanically
strong, oblique, sinking slab. Despite the simplistic approach of assuming only that
the viscosity distribution has primary control over subduction, the models have many
limitations. A

The lithosphere was represented by a 90 km thick layer of viscosity 10?2 Pa's. The
mechanical strength of oceanic lithosphere is best modelled by an elastic component
to the rheology. The high viscosity approximation cannot truly simulate the flexural
strength of the elastic component. The long term time-dependence produced by slab
motion was not considered and only slab dips of 45° were included. The age-dependent
thickness ot the lithosphere was also ommitted.

Short term time-dependence was allowed for by the movement of the free surface. In
the far fiel¢ from the slab this allowed the topography to balance roughly the induced
flow stresses, but at the top of the slab the surface will not reach equilibrium. The
subducting plate is not detached from the overriding plate at the thrust zone, in the
absence of shear slip between the plates the flow field at the top of the slab will not
be realistic. Thus the models cannot simulate the subduction of one plate under the
other and will not produce corner flow. The omission of the thrust zone also prevents
an accurate simulation of the surface topography which compensates the underlying
vertical forces.

The length of the mesh is almost one quarter of the circumference of the Earth and
so the r-ectangular box is not a good approximation. Curvature will cause the base to be
much shorter than the surface. The boundary conditions at the sides of the mesh contain
the fluid within the domain of the mesh and do not permit a mass flux across the sides.
This is an important omission. There is a circulation of mantle material due to thermal
convection and subduction is only the descending limb. Material is removed from the
mantle at ocean ridges to form the lithosphere of the surface plates and injected back
again at subduction zones. A major component of flow in the mantle will probably be
the lateral flow in the asthenosphere towards ocean ridges which replenishes the MOR

source region. This flow is driven by the roliback of the slab (Garfunkel et al. 1986).
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These finite element models do not simulate this circulation of material but simplv
depict the return flow of the lithosphere back into the mantle which is the dominant
driving force of mantle flow (Loper 1985).

The mantle was assigned uniform Newtonian viscosities and the p — T dependence
was not included. However, over the short time periods considered the heat transport
will be small and so this is not expected to have a great deal of effect. The seismic
discontinuities at 400 km and 670 km depth were not included as horizontal mantle
b(;undaries. The sharpness of the transitions and the lack of topography at the seismic
discontinuities suggest that they are instantaneous phase changes. Lateral variations in
the properties of the lithosphere and the mantle were not included and may be expected
to play an important role.

An important omission is the out-of-plane flow.. Subduction zones are arcuate and
of a finite length and will drive a considerable component of flow in the z-direction.

The 2-D finite element analysis cannot model this flow.



CHAPTER 5

The Stress Regime At Subduction Zones

The previous chapter dealt with flow in a viscous mantle and encountered certain
problems with the surface of the Earth and the behaviour of the thrust zone. The models
of this chapter describe the evolution of subduction zones with an elastic-viscoelastic
rheology which provides a more precise description of the response of the surface and
thrust zone. The limitations of the models are elaborated upon in the final section.
A single, highly simplified basic model of an island arc convergent margin has been
chosen as a suitable starting point. Oceanic lithosphere subducts beneath an adjacent
plate which is also composed of oceanic lithosphere. Gradual complication of the model
should enable us to discriminate the eflect of each factor controlling the evolution of
subduction. The models and results are presented and corr.lmented upon in this chapier,

and a full discussion of the results is given in the next chapter.

There are several initial assumptions which form the basis for the numerical sim-
ulations of this chapter. The rheology of the lithosphere is represented by a 30 km
thick elastic layer overlying 60 km of Newtonian viscoelastic material. The finite ele-
ment meshes lack sufficient resolution to include the crust explicitly. Crustal thickress
variations may locally dominate the stress regime. At subduction zones the isostati-
cally compensated load of the volcanic arc is an important contribution to the crustal
Joads. The arc is incorporated as equivalent normal stresses about the elastic laver
of the lithosphere to simulate the topographic load and the underlying upthrust. The
absence of the oceanic crust excludes the basalt-eclogite phase change from the models.
This is an important addition to the body forces as it converts buoyant crust to the
denser phase of eclogite, which adds to the driving force of subduction. The mentle
below the lithospliere is modelled as a three layer Newtonian, viscoelastic body. The
asthenosphere exists between the base of the lithosphere (90 km) and 200 km depth,
the upper mantle extends to 670 km depth, and the lower mantle layer constitutes the

bottom layer from 670 km depth to the base of the model.
Slab dip was chosen to be a constant 45° throughout the mantle. This is the
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highest dip at which double seismic zones have been observed (Fujita and Kanamori
1981). A specific slab profile of a particular subduction zone has not been modelled
because of the difficulty of estimating the residual bending stresses that generate the
shape. However, the contortion of an initially straight slab will provide information on

the subduction dynamics.

The trench has been included as a geometrical effect only, and its mass deficit
and the flexural response of the outer rise have been omitted. The mass deficit of the
trench is a reaction to the slab pull and these two opposing forces generate an enormous
couple at the slab bend region (see section 1.5). Stresses exceeding the failure criteria
of the lithosphere cause significant anelastic deformation which cannot be modelled by
this finite element method. The stress regime of the slab bend region of these models
will not be realistic, however the trench - outer rise flexure system should develop as a

consequence of slab pull, inducing a reactive upthrust at the top of the slab.

5.1 The Finite Element Meshes

The two finite element meshes that are used in this chapter possess very similar
basic characteristics, differing only in dimension and resolution. The disadvantage of
attempting to model these larger cross-sections is that the internal resolution is reduced
as the element size increases. This constraint cannot be overcome by maintaining the
resolution {smaller elements) only in the region of interest around the slab. Selective
increased resolution need not significantly increase the total number of nodes (N) re-
quired for a particular mesh, but it does greatly increase the semibandwidth (KSBW) of
the system matrix. The computation time (in CPU sec) to perform the LU decomposi-
tion of the unsymmetric, banded system matrix by Gaussian elimination is proportional
to N >((2><KSBW—1)2 (Greenough and Robinson 1981). Limitations in core storage and
computing power thus preclude a large increase in KSBY.

Mesh (1) in figure 5.1 represents a 4600 x 1400 km cross-section through the top half
of the mantle. Mesh (11) represents a cross-section through the upper mantle only, of
dimensions 3100 x 670 km and is shown in figure 5.2. The general rheology, pertaining

to the left and right hand edges of the two meshes, is given in Table 5.1 below.
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The Finite Element Mesh
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Figure 5.1 Mesh (1) represents a 4600 x 1400 km cross-section of the top of the

mantle. The shading denotes the lithosphere.









Depth Range (km) | Young’s Modulus (N m~?) | Poisson’s Ratio | Viscosity (Pa sj
0-30 1.11 x 101! 0.25
30 - 90 1.11 x 10! 0.25 10%2
90 — 200 1.11 » 10" 0.25 107° — 10%
200 - 670 1.11 x 101! 0.25 107!
670 — 1400 1.11 x 10" 0.25 102! — 107
Table 5.1  General rheology

In the vicinity of the subduction zone this layered rheology is intruded by the
descending slab and figure 5.3 shows a blow-up of this mid-section of mesh (1), but
the following description is equally applicable to mesh (1). This portion of the mesh
represents a cross-section 1310 x 670 km. The fault line is marked by F and it divides
the mesh into two bodies along the top surface of the subducting slab. The section
of the fault line dividing the surface plates is the thrust zone. The lithosphere to the
right of the thrust zone is the subducting plate and that to the left is the overriding
plate. The forearc is the region of the overriding plate within about 200 km of the
trench, the arc is the region under which the slab reaches about 100 — 150 km depth
and the backarc is the area of the overriding plate approximately 300 — 700 km from
the trench. The slab is the portion of lithosphere below 90 km depth and it carries the
density anomaly. The base of the slab is horizontal which streamlines the slab tip in
the downdip direction. The mesh 1s density stripped relative to the left hand edge (see
Park 1951 for discussion), leaving the slab mass anomaly as the only surviving body
force. This removes the large principal stresses due to the overburden and the resulting

stress regime is interpreted relative to an unperturbed lithostatic stress field.

General mesh boundary conditions are straightforward. The sides are constrained
by a lithostatic pressure gradient which becomes zero under the density stripping, and
the surface is isostatically compensated using a rock - water density contrast of p = 2270
kg m~3. This is the mantle - water contrast since the crust has been omitted from the
models. Internal density contrasts such as the 400 km and 670 krn seismic discontinuities
have not been included because of the likelihood that they are phase changes that allow
material to pass across the boundary. Isostatic conditions simulate the density jump

at a compositional boundary which does not permit a mass flux, only an equilibrium
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topography. All the models are calculated under the plane strain approximation.

Computing power limits the mesh sizes and so the full vertical extent of the mantle
cannot be modelled. There are two possibilities for the mid-mantle basal boundary
condition, a vertically immovable traction free base, or an isostatically compensated
base. Preliminary tests have shown that altering the basal boundary condition provokes
a negligible change in the stress regime but there is a small eflect on the absolute motion.
The flexural twist of the whole mesh is included in the absolute motion, an unwanted
eflect of the isostatic base, and so the fixed base condition is used. The most important
boundary condition is the edge of the surface plates. One plate edge must be restrained
to eliminate the rigid body motion mode, but the plate boundaries strongly influence
the stress regime of the surface lithosphere and thus demand a careful analysis of these
boundary conditions.

The magnitude of the time increment for the viscoelasticity algorithm must be
less than the smallest Maxwell time in the mesh. For example, if 4 = 10°! Pa s, and

E=1.11 x 10! N m~? then the Maxwell time will be,

1S

f =570 yrs

The initial strain method for viscoelastic relaxation gradually increases the magnitude
of the force vector {F} with time (see section 2.2.8). At the completion of the time
stepping procedure the mesh suffers very large displacements, but the initial strain is
subtracted from the calculated strain leaving only very small resulting stresses. Thus
the algorithm becomes unstable as the force vector gets very large, and in practice one
is limited to about 1000 time steps. If there are extremely large viscosity contrasts
within the mesh the deviatoric stresses will only be relaxed in the elements with the
smaller viscosities.

The relaxation period is defined as the number of time steps multiplied by the
magnitude of the time increment. The models evolve for a variety of relaxation peri-
ods but all are small compared to the time constant of subduction. So the solutions
correspond to the first motion from an initially quiescent state. The relatively short re-
laxation periods make it necessary to impose an abnormally Jow viscosity for the lower
lithosphere, p = 10?2 Pa s instead of the more realistic estimate of p = 10%% Pa's. This
compromise viscosity allows a reasonable thermal thickness (90 km) combined with a

reasonable flexural thickness (30 km) for the lithosphere.
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The numerical solutions are displayed in five specific formats; the stress regime,
the vertical displacement of the surface, the true motion of the surface of the slab, the
displacement vectors and the gravity profile. The various properties of subduction to be
investigated are: the thrust zone, the viscosity of the mantle, the duration of subduction,
the thermal anomaly of the backarc, the slab mass anomaly, the slab rheology, and the
plate boundary conditions. The sections of this chapter are presented as a progressive
assembly of a subduction zone, so each subsequent section assumes the properties of all

other preceding sections.

.2 The Action of the Thrust Zone

(1]

2.1 Problem Statement

w

As the thrust zone could not be incorporated into the viscous flow models of the
previous chapter, the first problem is to establish, and attempt to quantify, the effect
of the thrust zone on subduction mechanics. It was suggested earlier (see section 1.5.2)
that the thrust is responsible for redistribution of stress in the surface plates, not in-
fluencing the force balance in the mantle. A model of slab penetration to a depth of
1000 kin in mesh {1) 1s used as the demonstration model, but the general conclusions
apply universally. The slab is assigned a thermal density anomaly of p = 50 kg m~3
throughout its length. As discussed in section 1.5.2 conductive heating slowly spreads
the anomaly, leading eventually to assimilation of the slab. For the purposes of mod-
elling subduction the constant thermal density anomaly is a good approximation. The
right hand edge of the subducting plate is held fixed in the z-direction, and the over-
riding plate is unrestrained. The viscosity of the asthenosphere and upper mantle is
g = 102! Pas, and below 670 km the lower mantle has a viscosity of g = 10*? Pas. The

models evolve for a relaxation period of 50 000 yrs, this is 100 time steps at At = 500
VTS,

In the first model the thrust zone is locked and all fault stiffnesses are set to 10'* N
m~?. Shear slip at the thrust zone is allowed in the second model. The shear stiffness

in the three shallowest fault elements is reset 1o k. = 0 and this is the sole difference

between the two models.



5.2.2 Discussion of Results

The stress regime of the centre section of the mesh for the model with a locked
thrust zone is shown in figure 5.4, the vertical displacement of the surface is shown in
figure 5.5, the slab motion in figure 5.6, and finally the gravity profile in figure 5.7.
The solid line dividing figure 5.4 delineates the fault line joining the mesh halves. The
principal stress vectors are depicted by solid lines for compression and by dashed lines
for tension. A scale vector is given at the top which shows the considerable variation
in stress magnitude in subsequent models. The slab stresses have a distinctive pattern.
There is a stress minimum at about 300 km depth, below which the slab shows downdip
compression (up to 180 MPa), and above which the slab is under downdip tension (up
to 180 MPa). Above the stress minimum the tensions increase with distance updip,
but below it the compressions have a local maximum at about 650 km depth. Thus the
portion of the slab in the Jower mantle is under reduced downdip compression. In general
the slab stresses are not perfectly aligned downdip but are rotated slightly towards the
vertical. The overriding plate has large horizontal compressions (up to 200 MPa) in the
forearc which gradually diminish into the far backarc. Outside the immediate vicinity
of the trench the subducting plate is under horizontal tension throughout, but only
the edge of the plate adjacent to the trench is shown here. Small bending stresses are
superimposed on these large tensions.

Away from the region around the slab the stresses throughout the upper and lower
mantle are well relaxed. In contrast, above the slab there is a low pressure region
denoted by the large principal tensions. The pressures in the mantle wedge vary from
about 10 — 50 MPa. Below the slab is high pressure region evidenced hy the principal
compressions, and the pressures here vary {from about 5 — 30 MPa. These pressure
differences in the mantle adjacent to the slab are generated and sustained by slab motion
and act to support the slab body force. This observation is quantified and discussed
further in the next chapter.

The surface displacement profile in figure 5.5 is split into two halves representing
the overriding and subducting plates and the lower box shows the relative position of
the density anomalies. The overriding plate shows a broad asymmetric depression with
the maximum amplitude of 1600 m centred close to the top of the slab. The right hand

curve denoting the subducting plate shows the development of the trench and a 100 m
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Figure 5.5 The vertical displacement of the surface for the model of 1000 km
penetration, lower mantle viscosity p = 1022 Pas and the thrust zone locked.
The left hand curve denotes the overriding plate, the right hand curve denotes
the subducting plate. The lower box shows the relative position of the density

anomalies.
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Figure 5.6  The absolute slab motion linearly extrapolated by a factor of 20 for
the model of 1000 km penetration, lower mantle viscosity p = 10?2 Pa s and
the thrust zone locked. The upper curve denotes the origina.l-posit.ion of the
top surface of the slab and the lower curve denotes the final position of the
top surface of the slab. The cross-lines represent displacement vectors of the

nodes.
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Figure 5.7  The gravity profile in mGal calculated on a plane 0.5 km above the
surface of the overriding plate for the model of 1000 km penetration, lower
mantle viscosity g = 10°? Pa s and the thrust zone locked. The lower box

shows the position of the density anomalies.



high outer rise. However, this feature is very broad because the stresses in the lower
lithosphere are not fully relaxed (thereby increasing the effective flexural strength of
the plate). From elastic beam theory, a 30 km thick elastic layer will produce an outer
rise centred 170 km from the trench, and a 90 km elastic layer will produce an outer
rise centred 400 km from the trench. In figure 5.5 the outer rise is centred about 300
km from the trench. The true slab motion in figure 5.6 plots the movement of the slab
linearly extrapolated to 1 Ma (factor of 20). The top curve is the original position of
the top surface of the slab, and the lower curve is the final position. The cross lines
are displacement vectors of points (podes). The slab in the upper mantle is sinking
almost vertically but slab motion in the lower mantle is inhibited. At the surface the
subducting plate is dragged into the trench, lateral displacement is greater than vertical

despite the boundary condition on the right hand edge.

The gravity pr_oﬁle in figure 5.7 is calculated along a plane 0.5 km above the surface
of the overriding plate (see Appendix for details of the calculation) and the lower box
shows the relative position of the density anomalies. The density anomaly of the slab,
and the deflection of the isostatic boundary at the su_rface are the only contributions to
the gravity anomaly. The deflection of the core-mantle boundary would contribute a
small, negative, long wavelength anomaly, but this will be attenuated and will probably
be negligible at the surface. The profile shows a maximum of 35 mGal just landward of

the trench, followed by gradual decline to a minimum about 2600 km {from the trench.

The second model unlocks the thrust zone and the resulting stress regime, surface
displacement, slab motion and gravity profile are shown in figures 5.8 - 5.11 respectively.
The deep compressions in the slab (figure 5.8) are 1‘e1atively unaffected compared to
figure 5.4, but the stress minimum occurs at a slightly shallower depth. The upper
sections of the slab show quite a variable orientation of tensions accompanied by a
reduction in magnitude. Horizontal compression in the overriding plate is reduced, and
the far backarc now exhibits small tensions (15 MPa). The subducting plate is again
under horizontal tension but carries stresses of a higher magnitude and the region of the
plate under the thrust is now under surface-parallel tension. The surface displacement
in figure 5.9 is quite similar to the locked thrust zone model. The maximum depression
of 1400 m is a slight reduction, and the trench - outer rise flexure is slightly sharper

than figure 5.5. The slab motion and gravity profile show slight increases in magnitude.
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Figure 5.9 The vertical displacement of the surface for the model of 1000 km
penetration, lower mantle viscosity p = 10?2 Pa s and the thrust zone un-
locked. The left hand curve denotes the overriding plate, the right hand curve
denotes the subducting plate. The lower box shows the relative position of

the density anomalies.
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Figure 5.10 The absolute slab motion linearly extrapolated by a factor of 20 for
the model of 1000 km penetration, lower mantle viscosity u = 10?2 Pa s and
the thrust zone unlocked. The upper curve denotes the original position of
the top surface of the slab and the lower curve denotes the final position of
the top surface of the slab. The cross-lines represent displacement vectors of

the nodes.
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Figure 5.11  The gravity profile in mGal calculated on a plane 0.5 km above the
surface of the overriding plate for the model of 1000 km penetration, lower

mantle viscosity g = 10%? Pa s and the thrust zone unlocked. The lower box

shows the position of the density anomalies.



Two-Dimensional Plate Flexure

The bending stress at a distance z from the neutral fibre of an elastic plate
of Young’s modulus E, and Poisson’s ratio v bent with a radius of curvature R

is given by,

where,

From the diagram above let,

tanA = = arc length = z
Y

since T >> y.

Then the bending stress can be approximated by,

Figure 5.12  An estimate of the bending stresses produced in an elastic layer with

a curvature R71.



Thus the thrust zone exerts strong control over the stress distribution in the surface
plates without contributing greatly to the force balance in the mantle. In this partic-
ular model, unlocking the fault redistributes the stresses local to the thrust zone and
generates a component of regional tension throughout the subducting and overriding
plates of about 20 MPa. This agrees with the models of Waghorn (1984, figures 7.66,
7.77), which predicted this eflect from purely elastic behaviour of the surface plates. In
the final section of this chapter we will return to this behaviour of the thrust zone.

The broad band of horizontal compreséion in the overriding plate, a maximum in
the arc gradually dying to leave tension in the far backarc and beyond, is controlled by
viscous coupling through the mantle wedge. Vertical motion of the slab exerts normal
stresses at the base of the surface lithosphere which create a broad depression of the
overriding plate (Davies 1981, 1983) as shown in figures 5.5 and 5.9. This depression
generates two contributions to the stress regime. Bending stresses are characterised
by opposing compression and tension either side of the neutral fibre ar;d these are not
readily apparent in the overriding plate of figures 5.4 and 5.8. A method of estimating
the bending stresses is given.in figure 5.12. Taking values from the surfa;ce displacement
profiles, let # = 500 km, y = 1500 m, and from the finite element mesh z = 8.7 km in
the elastic layer. This yields bending stresses of about 13 MPa.

The normal stresses at the base of the lithosphere have an isostatic reaction at the
surface which induces vertical tension in the lithosphere. The reduction in the vertical
componé—nt of the overburden pressure creates horizontal deviatoric compression which
will be amplified by stress relaxation in the lower lithosphere. The vertical tension can

be estimated from the isostatic reaction to the surface displacement (h),
pgh = 2270 x 9.81 x 1500 = 33 MPa

Stress amplification for a 30 km elastic layer in 90 km thick lithosphere yields horizontal
compressions of 100 MPa. This is an order of magnitude higher than the bending stress
but also it is less than the maximum stiresses in figures 5.4 and 5.8. Much deeper
stress relaxation, in the asthenosphere and below, may also contribute to the stress
amplification. Thus deep loads may be able to produce very large horizontal stresses
in the elastic portion of the surface lithosphere by stress relaxation. It is possible
to discriminate the bending stresses superimposed onto the large compressions in the

elastic layer of the overriding plate in figures 5.4 and 5.8. At the arc the plate is bent
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down and the upper compression is greater than the lower, whilst in the backarc the
lithosphere is convex upwards and the upper stress is then smaller than the lower.
The maximum surface depression above the top of the slab is 1600 m and this is
approximately half of most estimates of the relative trench depth (Davies 1983). The
reactive upthrust at the surface may be underestimated in these models and it is spread
over a broad area of the surface plates. This may cause an overestimate of the forearc
compressions and also an underestimate of the upper slab tensions and depth of the
stress minimum. The enforcement of norAmal contact at the thrust zone causes the
leading edge of the overriding plate to follow the slab rollback. If the asthenosphere
exerts a basal drag on the overriding plate then the application of this edge force at
the thrust zone will induce a regional tension in the plate. Boundary conditions at the
right hand edge of the subducting plate cause it to be under horizontal tension.
Jarrard (1986) calculated a correlation coefficient of -0.67 between deep dip (in the
depth range 100 — 400 km) and strain regime. As dip increases the strain regime be-
comes more tensional. This is consistent with the viscous coupling mechanism described
above, but there are many other mechanisms through which slab dip c?m influence the

strain regime and it is difficult to discriminate the relative importance of these effects.

5.3 The Olivine-Spinel Phase Change

5.3.1 Problem Statement

The olivine-spinel phase change at 400 km depth in the mantle occurs at a shallower
depth in the cool slab. Schubert et al. (1975) estimated a maximum elevation of 115

3 across the

km in the slab core with an associated density contrast of 280 kg m~
boundary. The finite element mesh does not have suflicient resolution to accurately
map the predicted distribution of the elevated phase transition (as shown earlier in
figure 1.5). As a compromise a density of 150 kg m™ is applied over the depth range
300 — 400 km in the slab. The increased body forces are distributed over a larger
volume than predicted for subducting lithosphere and so the density anomaly is reduced

accordingly to maintain the mass anomaly. All other mesh parameters are identical

to the unlocked thrust zone model of the previous section. The model evolves for a
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relaxation period of 50000 yrs as before.

5.3.2 Discussion of Results

The model results are given in figures 5.13 - 5.16. There is an overall increase in
magnitude in the stress regime of figure 5.13 compared to figure 5.8, as shown by the
change in scale. Deep slab compressions are increased to 300 MPa from 180 MPa, and
upper slab tensions to 180 MPa from 120 MPa. There is an increase of 80 MPa to give
200 MPa compressions in the forearc and an increase from 15 MPa to 30 MPa tension
in the far backarc. The only significant alteration to the actual pattern of the stress
distribution is the realignment of the slab tensions. The stresses in the upper slab now
tend more nearly downdip. This result is in contrast to that of Vassiliou et al. (1984)
who found that the addition of the body forces of the elevated phase change could not
be reconciled with the stress regime derived from the study of earthquake distributions

at Wadati-Benioff zones.

Davies (1983) modelled the downdip force in the slab due to shear resistance in an
isoviscous mantle (as discussed in section 1.5.1). He concluded that an unreasonably
large mantle viscosity of y = 4 x 10%! Pa s was required to generate sufficiently small
(300 MPa) compressions in the lower slab. In this finite element model, an acceptable
stress distribution is generated by a viscosity contrast x10 at 670 km, including the
elevated phase change and in the absence of an impenetrable boundary at the base
of the slab. ln‘ particular the compression in the slab tip in the lower manfle is of
much smaller magnitude. The mechanisms controlling the stress regime of the slab are
discussed in the next chapter.

The surface displacement profile in figure 5.14 shows a significant increase in the
maximum amplitude of depression to 1900 m. The slab motion curve in figure 5.15
shows a large increase in magnitude of displacement compared to figure 5.10, and a
distinct change in sense of motion of the slab. The slab is moving quickest in the
300 — 400 km depth range which leads to an increase in dip of the upper slab and a
decrease in dip of the lower slab due to the reactions of the trench and lower mantle.
This general shape is. observed in the Wadati-Benioff zones of Izu-Bonin and Tonga but
other deeply penetrating slabs such as Mariana,' Kamchatka, Kurile and Java do not

show the shallowing of dip at the slab tip. The gravity profile in figure 5.16 shows a
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Figure 5.14  The vertical displacement of the surface for the model of 1000 km
penetration, lower mantle viscosity y = 10%? Pa s including the olivine-spinel
transition. The left hand curve denotes the overriding plate, the right hand

curve denotes the subducting plate. The lower box shows the relative position

of the density anomalies.
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Figure 5.15 The absolute slab motion linearly extrapolated by a factor of 20
‘

for the model of 1000 km penetration, lower mantle viscosity y = 10> Pa s

including the olivine-spinel transition. The upper curve denotes the original

position of the top surface of the slab and the lower curve denotes the final

position of the top surface of the slab. The cross-lines represent displacement

vectors of the nodes.
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Figure 5.16 The gravity profile in mGal calculated on a plane 0.5 km above the
surface of the overriding plate for the model of 1000 km penetration, lower
mantle viscosity p = 10%? Pa s including the olivine-spinel transition. The

lower box shows the position of the density anomalies.



slight increase in the peak value, up to 40 mGal, but retains the same general shape.
It is noted at this point that the profiles compare favourably with the compilations of
average gravity profile landwards of the South American margins by Rabinowicz et al.
(1984). The observed profiles have a high of about 50 mGal just landward of the trench

with a gradual decrease to an absolute minimum about 3000 km from the trench.

5.4 Duration Of Subduction

5.4.1 Problem Statement

This finite element method cannot describe the continuous, dynamic evolution of
subduction zones and so the following series of models are presented as ‘snapshots’
in time. The depth of slab -penetration is used to define the duration of subduction
without specifying any particular time scale. Five depths of penetration are used: 300,
400, 535, 670 and 1000 km. So, if the slab were assumed to be moving downdip with a
velocity of 100 mm yr~! then the ‘snapshots’ are at least 1 Ma apart. Apart from the
alteration in slab length, all mesh parameters are identical to the model of the previous
section and so the 1000 km penetration model is referred to the figures 5.13 - 5.16 of
the previous section. The models have a relaxation period of 50 000 yrs which allows

the upper mantle to flow but is only a small perturbation about the age of duration.

5.4.2 Discussion of Results

The stress regime, surface displacement, slab motion and gravity profile are shown
in figures 5.17 - 5.20, 5.21 - 5.24, 5.25 - 5.28 and 5.29 - 5.32 for the 300, 400, 535 and
670 km penetration models respectively. The sequence shows that increasing duration
of subduction exiends compression into the backarc region, progressively eliminating
the 40 MPa tensions of figure 5.17. The forearc is under horizontal compression in
all models, regardless of duration of subduction. As slab length increases, viscous
coupling through the mantle wedge penetrates further into the overriding plate. The
surface displacement profiles in figures 5.18, 5.22, 5.26, 5.30 and 5.14 show the gradual
increase in the width of concavity and the change in depth of the depression. As the

olivine-spinel transition is reached the greatest change occurs. The depth of depression
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Figure 5.18 The vertical displacement of the surface for the model of 300 km

penetration and lower mantle viscosity g = 102> Pas. The left hand curve

denotes the overriding plate, the right hand curve denotes the subducting

plate. The lower box shows the relative position of the density anomalies.
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Figure 5.19 The absolute slab motion linearly extrapolated by a factor of 20 for
the model of 300 km penetration and lower mantle viscosity y = 10%% Pas.
The upper curve denotes the original position of the top surface of the slab
and the lower curve denotes the final position of the top surface of the slab.

The cross-lines represent displacement vectors of the nodes.
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Figure 5.20 The gravity profile in mGal calculated on a plane 0.5 km above the
surface of the overriding plate for the model of 300 kin penetration and lower
mantle viscosity g = 10°? Pa s. The lower box shows the position of the

density anomalies.






Surface displacement profile ( In m)

[ O I B Y B

8
g
g
:
8
§
g
§
§

Distance In km

v

Figure 5.22 The vertical displacement of the surface for the model of 400 km
penetration, lower mantle viscosity p = 1022 Pa s including the olivine-spinel
transition. The left hand curve denotes the overriding plate, the right hand

curve denotes the subducting plate. The lower box shows the relative position

of the density anomalies.
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Figure 5.23 The absolute slab motion linearly extrapolated by a factor of 20
for the model of 400 km penetration, lower mantle viscosity 4 = 10?2 Pa s
including the olivine-spinel transition. The upper curve denotes the original
position of the top surface of the slab and the lower curve denotes the final

position of the top surface of the slab. The cross-lines represent displacement

vectors of the nodes.
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Figure 5.24 The gravity profile in mGal calculated on a plane 0.5 km above the
surface of the overriding plate for the model of 400 km penetration, lower
mantle viscosity g = 10°? Pa s including the olivine-spinel transition. The

lower box shows the position of the density anomalies.
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Figure 5.26  The vertical displacement of the surface for the model of 535 km
penetration, lower mantle viscosity u = 10?2 Pa s including the olivine-spinel
transition. The left hand curve denotes the overriding plate, the right hand
curve denotes the subducting plate. The lower box shows the relative position

of the density anomalies.
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Figure 527 The absolute slab motion linearly extrapolated by a factor of 20
for the model of 535 km penetration, lower mantle viscosity g = 10?? Pa s
including the olivine-spinel transition. The upper curve denotes the original
position of the top surface of the slab and the lower curve denotes the final
position of the top surface of the slab. The cross-lines represent displacement

vectors of the nodes.
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Figure 5.28 The gravity profile in mGal calculated on a plane 0.5 km above the
surface of the overriding plate for the model of 535 km penetration, lower
mantle viscosity g = 10?2 Pa s including the olivine-spinel transition. The

lower box shows the position of the density anomalies.
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Figure 5.30 The vertical displacement of the surface for the model of 670 km
penetration, lower mantle viscosity g = 1022 Pa s including the olivine-spinel
transition. The left hand curve denotes the overriding plate, the right hand

curve denotes the subducting plate. The lower box shows the relative position

of the density anomalies.
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Figure 5.31  The absolute slab motion linearly extrapolated by a factor of 20
for the model of 670 km penetration, lower mantle viscosity -y = 10°? Pa s
including the olivine-spinel transition. The upper curve denotes the original
position of the top surface of the slab and the lower curve denotes the final
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vectors of the nodes.
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Figure 5.32  The gravity profile in mGal calculated on a plane 0.5 km above the

surface of the overriding plate for the model of 670 km penetration, lower

mantle viscosity g = 10?2 Pa s including the olivine-spinel transition. The

Jower box shows the position of the density anomalies.



increases from 1150 m at 300 km penetration, to 1900 m at 400 km penetration. Then
there is a slight increase for the bigger slab at 535 km to 2000 m, but as the higher
viscosity lower mantle is sensed at 670 km the depth of depression reduces slightly to
1900 m. Without the trench, the models tend to overestimate the magnitude of the

horizontal compression and its lateral extent in the overriding plate.

The magnitude and spatial extent of the depression of the overriding plate is ob-
viously dependent on the angle of slab dip as well as the length of the slab. Louden
(1980) reported that the Phillipine Sea is ipproximately 1 km deeper than predictions
from thermal subsidence models of ridge spreading (as discussed in section 1.5.2), and
this depth anomaly occurs in many other marginal basins of the Western Pacific. The
dips of the deeply penetrating Marianas and Izu-Bonin slabs underlying the eastern
edge Phillipine Sea have been estimated at 81° and 65° respectively, (Jarrard 1956).
Obviously it is not possible to compare directly with the model predictions, but these
results support the suggestion of Davies (1983) that the slab-induced depression of the
backarc is an important influence, and preferrable to the theory of Watanabe et al.
(1977) that the mantle under the basin carries a density anomaly of +A10 kg m~3 down

to 300 kin depth.

The horizontal tension in the subducting plate does not vary greatly with increas-
ing duration of subduction. The general behaviour is a slight increase in horizontal
tension as the slab length increases. This pattern is reflected in the increase in forearc
compression and depth of depression which is significant only when the olivine-spinel
transition is reached. This is also true for the slab motion in figures 5.19, 5.23, 5.27 and
5.31. The gravity profiles in figures 5.20, 5.24, 5.28 and 5.31 show a gradual increase in
maximum 17 — 40 mGal as slab length increases reflecting the diminishing influence

of the surface deformation relative to the slab.

The models with slab penetration to depths of 670 km and 1000 km have very
similar stress distributions (figures 5.29 and 5.13). The single difference occurs at 75
km depth where the 670 km penetration model shows downdip compression in the upper
surface of the slab and an opposing tension in the lower surface. Thié is probably an
expression of unbending near the base of the slab bend region and it occurs in all other
shallower penetrating models. However, since this is part of the slab bend region these

stresses are not considered reliable.

o
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The three shallowest penetrating models also display a systematic slab stress distri-
bution (figures 5.17, 5.21 and 5.25). The lowest section of the slab is always in downdip
compression regardless of depth of penetration. This is caused in part by a resistance
to penetration but mostly by upbending of the slab tip as it sinks (a phenomenon
which Harper (1984) observed in 3-D constant viscosity flow models of subducting
lithosphere). Evidence for the upbending is provided by the balancing tensions in the
lower surface of the slab and the shape of the slab profile in figures 5.19, 5.23 and 5.27.
However, for the shallowest model the upbending causes compression throughout the
upper surface of the slab. The majority of shallow Wadati-Benioff zones are tensional
(Isacks and Molnar 1971, Apperson and Frohlich 1987) and this cannot be explained

by these models.

The mesh is not fine enough to give very good resolution of the stresses, so it is
desirable to repeat the models using identical parameters applied to mesh (11). The fixed
base condition inherently assumes that shallow penetrating slabs do not sense the lower
mantle. The stress regime in figure 5.33 represents slab penetration to 400 km depth
in a constant viscosity (p = 10°! Pa s) mantle and this is very similar to figure 5.21
which used a lower mantle viscosity of 4 = 10%? Pa s in an otherwise identical model.
So it is appropriate to use the upper mantle mesh for models of shallow subduction. A

more detailed analysis of the effect of mantle viscosity is taken up in the next section.

The stress regime, surface displacement, slab motion and gravity profile are shown
in figures 5.34 - 5.37, 5.38 - 5.41 and 5.42 - 5.45 for slab penetration to 200, 300 and 400
km respectively. These are in very good agreement with the results obtained from the
previous mesh (figures 5.17 - 5.24), and it is apparent that the stress regime in the slab
is not a product of the possible ‘stiffness’ of a coarse mesh. The downdip compression
is not typical of the observations of slab stresses and requires some investigation. It was
suggested earlier (see section 1.5.1) that the leading edge of the slab contributed to the
force balance in the mantle, and in all the preceding models the slab tip was streamlined
in the downdip direction. A variety of shapes of slab tip were experimented with using
the model of slab penetration to 200 km, with the conclusion that only addition of
mass below 200 km reduces the compression in .the top surface of the slab. This is
because the centre of mass of the slab is lowered and thus the upbending of the slab tip

is inhibited. So, in these models, downdip tension can be generated only by aseismic
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Figure 5.35 The vertical displacement of the surface for the model of 200 km
penetration in mesh(u). The left hand curve denotes the overriding plate,
the right hand curve denotes the subducting plate. The lower box shows the

relative position of the density anomalies.
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Figure 5.36  The absolute slab motion linearly extrapolated by a factor of 20 for
the model of 200 km penetration in mesh (11). The upper curve denotes the
original position of the top surface of the slab and the lower curve denotes
the final position of the top surface of the slab. The cross-lines represent

displacement vectors of the nodes.
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Figure 5.37  The gravity profile in mGal calculated on a plane 0.5 km above the
surface of the overriding plate for the model of 200 km penetration in mesh

(11). The lower box shows the position of the density anomalies.
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Figure 5.39  The vertical displacement of the surface for the model of 300 kin
penetration in mesh(n). The left hand curve denotes the overriding plate,

the right hand curve denotes the subducting plate. The lower box shows the

relative position of the density anomalies.
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Figure 540 The absolute slab motion linearly extrapolated by a factor of 20 for
the model of 300 km penetration in mesh (n). The upper curve denotes the
original position of the top surface of the slab and the Jower curve denotes

the final position of the top surface of the slab. The cross-lines represent

displacement vectors of the nodes.



Gravity Profile

Anomaly 1n mgal

[ 200 400 600 &00 1000 1200 1800

Distance In km

Figure 5.41 The gravity profile in mGal calculated on a plane 0.5 km above the
surface of the overriding plate for the model of 300 km penetration in mesh

(11). The lower box shows the position of the density anomalies.
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Figure 5.43 The vertical displacement of the surface for the model of 400 km
penetration including the olivine-spinel transition in mesh (n). The left hand
curve denotes the overriding plate, the right hand curve denotes the subducting

plate. The lower box shows the relative position of the density anomalies.
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Figure 544 The absolute slab motion linearly extrapolated by a factor of 20
for the model] of 400 km penetration including the olivine-spinel transition in
mesh (11). The upper curve denotes the original position of the top surface of
the slab and the lower curve denotes the final position of the top surface of

the slab. The cross-lines represent displacement vectors of the nodes.
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Figure 5.45 The gravity profile in mGal calculated on a plane 0.5 km above the
surface of the overriding plate for the model of 400 km penetration including

the olivine-spinel transition in mesh (1). The lower box shows the position of

the density anomalies.



extension of the slab in the upper mantle. The surface displacement profiles in figures
5.35, 5.39 and 5.43 display trench depths of 700, 1000 and 1600 m for the 200, 300 and
400 km penetration models. Davies (1983) estimated the average trench depth to be
3 km, so perhaps these models underestimate the reactive upthrust at the top of the
slab and overestimate the surface reaction within the overriding plate. Greater trench
reaction may act to redistribute the slab stresses and thus reduce the compression in
the upper slab of these models.

The large compressions in the top surface of the subducting slab accompanied by
smaller tensions 20 km further into the slab are reminiscent of the stress regime required
to generate double seismic zones. However, these stresses occur over a very large depth
range (90 — 300 km) and are associated with the slab tip and so could only contribute
to the double seismic zone in the shallowest penetrating slabs. The origin of double
seismic zones in deeply subducting slabs will be discussed in a later section.

The short wavelength upflexing of the leading edge is a flexural reaction to the
downpull, accentuated by the trench geometry and shear slip. This is similar to the
results of Tharp (1985) except the effect occurs o&er much longer wavelengths (800 km
width) and has a much smaller amplitude. The models of Tharp (1985) produced 5 km
deep depressions and attendant 5 km structural highs over a width of 250 km. This
was generated by coupling of slab pull across 70 km thick lithosphere, the mantle not
being included. The consistency of this style of deformation suggests that this effect

may contribute to the forearc tectonics and is discussed further in the next chapter.

5.5 An Assessment of Mantle Viscosity

5.5.1 Problem Statement - Lower Mantle

The models of the previous sections (except figure 5.33) used the same viscosity

structure for the mantle, a uniform asthenosphere and upper mantle with p = 10?! Pa
s and a uniform lower mantle with pu = 10?2 Pas. The average radial viscosity profile of
the mantle is not very well constrained but there is a general consensus that y = 10%!
Pa s is a realistic value for the upper mantle. The only direct observational constfajnt

pertinent to this study is the earthquake distribution in the Wadati-Benioff zone and
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its relationship to the slab stresses as discussed earlier (see section 1.5.2).

There have been many estimates of the viscosity of the lower mantle, most of
which lie in the range 10°! — 10?3 Pa s. The following set of models involves slab
penetration to 1000 km and 670 km and employs a uniform viscosity u = 102! Pa s in
the asthenosphere and upper mantle above 670 km depth with lower mantle viscosities
of either . = 10%!, 10?2, or 102® Pas. All other parameters of mesh (1) are identical to
the models of the previous section, and so the 10*? Pa s model is referred to the figures
5.13 - 5.16 for 1000 km penetration and ﬁgﬁres 5.29 - 5.32 for 670 km penetration. The

relaxation period is once again 50 000 yrs.

5.5.2 Discussion of Results

The stress regime and gravity profile for 1000 km penetration are displayed in
figures 5.46 and 5.47 for the 10?! Pa s lower mantle model, and in figures 5.48 and
5.49 for the 102® Pa s model. The constant viscosity mantle (figure 5.46) does not
gener;'ite the compressive stresses in the depth range 400 — 670 km in the slab which
is required for consistency with the observed earthquake distribution. Also the gravity
profile (figure 5.47) gives a low of —80 mGal juét landward of the trench. On these
grounds it is discounted. Obviously this model may not include every aspect of the
force bhalance and so it is unwise to exclude completely the possibility of an isoviscous
mantle.

The slab stresses in the other two models (figures 5.13 and 5.48) are similar. The
1022 Pa s lower mantle gives a stress minimum at about 270 km depth, and the 1023
Pa s lower mantle gives the minimum at about 200 km depth. On this basis one
would prefer a lower mantle viscosity of approximately 10?2 Pa s but it is clear that
the slab stresses are not very sensitive to the higher viscosity contrasts. This agrees
with the conclusions of a similar study by Vassiliou et al. (1984). There is a small
change in the stress distribution of the surface plates for the latter two models. The
higher viscosity mantle generates more tension in the overriding plate and reduces the
tension in the subducting plate. This is because the lower mantle severely inhibits slab
motion, reducing the normal viscous coupling to the overriding plate and transmitting
compression all the way back along the subducting plate.

As the stress regime is unable to distinguish between the higher viscosities, it is
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Figure 5.47  The gravity profile in mGal calculated on a plane 0.5 km above the
surface of the overriding plate for the model of 1000 km penetration, lower
mantle viscosity g = 10*! Pa s including the olivine-spinel transition. The

lower box shows the position of the density anomalies.
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Figure 5.49 The gravity profile in mGal calculated on a plane 0.5 ki above the
surface of the overriding plate for the model of 1000 km penetration, lower
mantle viscosity g = 107> Pa s including the olivine-spinel transition. The

lower box shows the position of the density anomalies.
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Figure 5.50  The absolute slab motion linearly extrapolated by a factor of 20
for tle model of 670 km penetration, lower mantle viscosity p = 10%° Pas
including the olivine-spinel transition. The upper curve denotes the original
position of the top surface of the slab and the lower curve denotes the final

position of the top surface of the slab. The cross-lines represent displacement

vectors of the nodes.
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Figure 5.51 The absolute slab motion linearly extrapolated by a factor of 20
for the model of 670 km penetration, lower mantle viscosity x = 10? Pa
s including the olivine-spinel transition. The lowest segment of the slab is
viscoelastic with viscosity p = 1032 Pa's. The upper curve denotes the original
position of the top surface of the slab and the lower curve denotes the final
position of the top surface of the slab. The cross-lines represent displacement

vectors of the nodes.



more instructive to look at the true motion of a slab colliding with the top of the
lower mantle. The diagram in figure 5.50 shows the motion of the top surface of a slab
penetrating to 670 km depth with a lower mantle of viscosity 10%® Pa s. Virtually no
penetration of the lower mantle is allowed, and so the sinking upper sections of the
slab push the lower section landward. Permitting the deepest section of the slab (from
535 — 670 km) to deform viscously, with y = 10°? Pa s, results in the slab motion in
figure 5.51. This shows the tendency of the slab tip to deform, migrate landwards and
lay flat along the boundary. In contrast, t}%e model in figure 5.31, with a lower mantle

22 Pa s, allows the slab to sink below the 670 km boundary.

viscosity of 10

Kincaid and Olsen (1987) demonstrated experimentally the extremely long time
constant for slab material to penetrate a high viscosity lower mantle in scaled models
of subduction. Thus it appears that a very high viscosity contrast may create an
aggregation of slab material at the base of the upper mantle, despite the mass excess
of the slab. This has virtually no observational support among the teleseismic and
tomographic analyses of mantle heterogeneity and Hager (1984) argued convincingly
against layers of slab material at 670 km on the basis of geoid studies. The evidence

favours a viscosity contrast less than X100 at the base of the upper mantle, but it is by

no means conclusive.

5.5.3 Problem Statement - Asthenosphere

In this thesis the asthenosphere is regarded as the low viscosity zone between the
base of the lithosphere (90 km) and 200 km depth. The following models utilise mesh
{1} for higher resolution and employ an asthenospheric viscosity of y = 10?° Pa s which
is a little higher than most estimates of the low viscosity layer. The time increment is
reduced to 50 yrs and so 1000 time steps are implemented to give a relaxation period

of 50000 vrs. All other mesh parameters are retained identical to the previous models.

-

5.5.4 Discussion Of Results

The stress regime, nodal displacements, surface displacement, slab motion and
gravity profile for a slab penetrating to 400 km depth are shown in figures 5.52 - 5.56
and can be compared with the equivalent non-asthenospheric model in figures 5.42 -

5.45. The tensional stresses in the subducting plate are reduced by about 30 MPa
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Figure 5.54 The vertical displacement of the surface for the model of 400 km
penetration, asthenosphere viscosity y = 10%® Pa s including the olivine-spinel
transition in mesh (11). The left hand curve denotes the overriding plate. the
right hand curve denotes the subducting plate. The lower box shows the

relative position of the density anomalies.
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Figure 5.35 The absolute slab motion linearly extrapolated by a factor of 20
for the model of 400 km penetration, asthenosphere viscosity p = 10°® Pa s
including the olivine-spinel transition in mesh (). The upper curve denotes
the original position of the top surface of the slab and the lower curve denotes
the final position of the top surface of the slah. The cross-lines represent

displacement vectors of the nodes.
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Figure 5.56  The gravity profile in mGal calculated on a plane 0.5 km above the
surface of the overriding plate for the model of 400 km penetration, astheno-
sphere viscosity p = 10%® Pa s including the olivine-spinel transition in mesh

(). The lower box shows the position of the density anomalies.



by the introduction of the low viscosity layer. In the overriding plate the far backarc
tension is much reduced from 70 MPa to 30 MPa and the compression around the
arc-backarc region about 200 — 400 km from the trench increases from 90 MPa to 130
MPa. In the slab the compression near the tip has increased from 310 MPa to 430 MPa
and in the upper slab the tension is uniformly reduced by about 50 MPa. The nodal
displacements in figure 5.53 are given as an example, clearly showing the overriding
plate being dragged into the trench and the rollback of the slab and trench creating
lateral flow in the mantle. The surface disp]acement in figure 5.54 is very similar to the
uniform upper mantle model in figure 5.43, the amplitude of depression is reduced by
100 m, and so presumably the normal stresses at the base of the lithosphere must be
similar. The trench - outer rise system of the subducting plate has sharpened slightly,
with the trench depth increasing from 1600 m to 1800 m. The motion of the slab
has also altered (figure 5.55) compared to figure 5.44. There is much greater rotation
towards the vertical causing greater bending above 100 km and below 300 km depth.
The short wavelenugth flexure in the forearc is beginning to dominate the gravity profile
in figure 5.56.

The increase in trench depth should generate greater isostatic reaction at the top of
the slab and thus increase the tension in the upper slab. This does not appear to occur.
The reduction in the amplitude of depression in the overriding plate should reduce the
local horizontal compression in the plate, and the increase in trench rollback should
increase the tension in the far backarc. This does not appear to occur. As found in the
models of the previous chapter (see section 4.4) the low viscosity zone concentrates the
flow into the asthenosphere (figure 5.53). Thus it appears that the lower viscosity of the
asthenosphere reduces the basal drag on the overriding plate and this effect outweighs
the increase in rollback resulting in a reduction in horizontal tension in the overriding

plate.

5.6 Thermal Anomalies in the Backarc

5.6.1 Problem Statement

The high heat flow observed in the backarc of subduction zones has been attributed
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to a thermal anomaly underneath the overriding plate. The origin and nature of this
anomaly is not well understood but it is generally believed to be due to convective
upwelling in the mantle wedge driven by the downdip motion of the slab, combined
with the possibility of water release from the subducted crust. There are no direct
observations of the state of the mantle and so these finite element models must rely on
data derived from previous numerical simulations. Toksoz and Hsui (1978) modelled
convection in the backarc which produced a thermal anomaly extending to about 300 km
depth supporting about 1 km of topography at the surface. The maximum temperature
anomaly (caused by raising the isoth_erms) proved to be about 200 K near the base of
the lithosphere. Subsequent studies by Jurdy and Stefanick (1983) and Honda (1985)
do not contradict these conclusions, but it is clear that the thermal anomaly is not well
constrained and may vary considerably from one location to another. This finite element
method cannot model thermal convection under the backarc and the generation of the
thermal anomaly. So, the mechanical representation of an in-place thefmal anomaly is
included as a linear, vertical variation in density, temperature and viscosity.

An average density anomaly of Ap = —8.4 kg m~2 distributed ovef a 270 km depth
range will support 1 km of submarine topography at the surface (Ap = 2270 kg m~3).

Distributing this as a linear density gradient gives the depth profile in Table 5.2 below.

Depth Range (km) | Density (kg m~3)| Temperature (K)

30 - 90 -14.93 150
90 — 200 -9.64 97
200 — 300 -3.11 31

Table 5.2 Vertical distribution of the backarc anomaly

The depth range represents the resolution of the elements. The equivalent temper-

ature anomaly is evaluated from,

Ay
AT = —— 2P
a(p+ Ap)

where a = 3 x 107% K~ is the coefficient of thermal expansion. The full thermal
anomaly is portrayed in figure 5.57 for a model of slab penetration to 400 km in mesh

(11). The equivalent temperatures calculated in Table 5.2 above are assigned to midside

nodes and all other nodes are interpolated to produce a linear temperature gradient.
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The viscosity of the anomalous region under the backarc was reduced to u = 10°® Pa s.
All other parameters are identical to the final model of the previous section, including

the low viscosity asthenosphere. The models have a relaxation period of 50 000 vrs.

5.6.2 Discussion of Results

To investigate the effect of the low viscosity, the temperature and density anomalies
were initially omitted. The stress regime, surface displacement, slab motion and gravity
profile are shown in figures 5.58 - 5.61. The overriding plate is significantly decoupled
by this low viscosity wedge, resulting in a 20% decrease in the surface depression (figure
5.59) to 1350 m, and a 200 m increase in the trench depth. This has a considerable effect
on the stress regime in figure 5.58. Forearc compression persists but the broad band of
compression in the overriding plate is reduced in magnitude and extent'(restricted to
within 700 km of the trench), and the far backarc tension is increased by 20 MPa to
50 MPa. There is also a change in the slab stresses. In the depth range 90 — 200 km
the top surface of the slab is much less tensional while the lower layer of elastic stresses
(20 km i;urt.her into the slab) retains its tension. This suggests some support for the
conclusions of Sleep (1979) that double seismic zones are caused by the relaxation of
the low viscosity mantle wedge which allows the slab to sag. Sadly, these models do not
have sufficient resolution to study this effect in more detail. The slab motion in figure
5.60 is similar to the asthenospheric model in figure 5.55 apart from the small increase
in the magnitude of the displacement vectors below 200 km depth. Thus any sagging
which led to the birth of the double seismic zone is indistinguishable in this model.
The motion of the élab demonstrates the control of the mantle wedge over the slab. in
the absence of external flow pressures. The flexure in the forearc now dominates the
gravity profile.

The density anomaly is now added to the preceding model and as figures 5.62 -
5.65 show, it has a noticeable effect. The surface depression above the anomalous re-
gion is appreciably reduced, to a maximurn of 950 m. This flattening of the overriding
plate leads to reduction of the previous 80 MPa surface compressions in the arc-backarc
region which all but eliminates them above the anomaly. The far backarc tension and
the forearc compression persist, and the slab stresses are virtually unaffected, only the

trench depth and motion of the deep slab are slightly reduced. Finally the temperature
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Figure 559  The vertical displacemént of the surface for the model of 400 km
penetration, asthenosphere viscosity p = 102° Pa s including the olivine-spinel
transition and the low viscosity g = 10°° Pa s of the thermal anomaly. The
left hand curve denotes the overriding plate, the right hand curve denotes the
subducting plate. The lower box shows the relative position of the density

anomalies.



Depth In km

450 4 -

$ + : 3 + 3 3 3 N - I $ + 4
t T T —— y T T —

t y t t
1250 1300 1350 1400 14D 1S00 1SSD 1400 1650 1700 170 1800 1850 1900 1950

Distance. tn km

Figure 5.60 The absolute slab motion linearly extrapolated by a factor of 20
for the model of 400 km penetration, asthenosphere viscosity u = 10°® Pa s
including the olivine-spinel transition and the low viscosity g = 10%® Pa s of
the thermal anomaly. The upper curve denotes the original position of the
top surface of the slab and the lower curve denotes the ﬁnaliposition of the

top surface of the slab. The cross-lines represent displacement vectors of the

nodes.
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Figure 5.61  The gravity profile in mGal calculated on a plane 0.5 km above the
surface of the overriding plate for the model of 400 km penetration, astheuo-
sphere viscosity u = 10°° Pa s including the olivine-spinel transition and the
low viscosity ¢ = 10°° Pa s of the thermal anomaly. The lower box shows the

position of the density anomalies.
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Figﬁre 5.63 The vertical displacement of the surface for the model of 400 km
penetration, asthenosphere viscosity p = 10%° Pa s including the olivine-spinel
transition, the low viscosity 4 = 10?° Pa s and the density anomaly of the
thermal anomaly. The left hand curve denotes the overriding plate, the right
hand curve denotes the subducting plate. The lower box shows the relative

position of the density anomalies.
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Figure 5.64 The absolute slab motion linearly extrapolated by a factor of 20
for the model of 400 km penetration, asthenosphere viscosity p = 10° Pa's
including the olivine-spinel transition, the low viscosity p = 10%° Pa s and the
density anomaly of the thermal anomaly. The upper curve denotes the original
position of the top surface of the slab and the lover curve denotes the final
position of the top surface of the slab. The cross-lines represent displacement

vectors of the nodes.
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Figure 5.65 The gravity profile in mGal calculated on a plane 0.5 km above the
surface of the overriding plate for the model of 400 km penetration, astheno-
sphere viscosity g = 10%° Pa s including the olivine-spinel transition, the low
viscosity p = 10%° Pa s and the density anomaly of the tliermal anomaly. The

lower box shows the position of the density anomalies.






Surface displacement profile ( In m)

[
200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 2600 2600 3000

Distance In km

1%

//

Figure 5.67  The vertical displacement of the surface for the model of 400 km

penetration, asthenosphere viscosity y = 10°° Pa s including the olivine-spinel
transition and the full thermal anomaly. The left hand curve denotes the

overriding plate, the right hand curve denotes the subducting plate. The

Jower box shows the relative position of the dernsity anomalies.
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Figure 5.68 The absolute slab motion linearly extrapolated by a factor of 20
for the model of 400 km penetration, asthenosphere viscosity 4 = 10?° Pa
s including the olivine-spinel transition and the full thermal anomaly. The
upper curve denotes the original position of the top surface of the slab and
the lower curve denotes the final position of the top surface of the slab. The

cross-lines represent displacement vectors of the nodes.
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Figure 5.69 The gravity profile in mGal calculated on a plane 0.5 km above
the surface of the overriding plate for the model of 400 km penetration, as-
thenosphere viscosity u = 10%° Pa s including the olivine-spinel transition and
the full thermal anomaly. The lower box shows the position of the density

anomalies.



anomaly is added according to the distribution in figure 5.56, and the stress regime,
surface displacement, slab motion and gravity profile are shown in figures 5.66 - 5.69.
The sole change occurs in the stress field (figure 5.66). The elastic layer of the over-
riding plate above the anomaly has developed near-surface tensions and underlying
compressions both of about 100 MPa. The remainder of the stress field is unaffected,

as expected (see section 3.2).

The sequence of stress regime, surface displacement, slab motion and gravity profile
in figures 5.70 - 5.73 result from the addition of a backarc thermal anomaly to a model of
slab penetration to 300 km depth including a low viscosity asthenosphere. The viscosity,
density and temperature anomalies each produce effects similar to the previous model,
but appear to be enhanced by this shallower subduction, probably because the size of
the anomaly has been overestimated. The combined effect of the viscosity and density
anomaly completely eliminates the backarc depression, creating large tensions in the
surface as the overriding plate is bent down sharply in the regjon of the arc. The
temperature anomaly affects only the elastic layer, producing 100 MPa tensions above

compressions as in the previous model.

A volcanic arc is assumed to contain a maximum of 10 km of crustal thickening of
density p = 2900 kg m~3 at the surface. To simulate this isostatic load on the model
of slab penetration to 400 km a normal stress of 200 MPa is applied over a width of
110 km at the surface. This is balanced on the underside of the elastic layer by equal
and opposite stresses. The position of the arc is depicted by vertical vectors which
represent the relative magnitude of the applied forces. The resulting stress regime in
figure 5.74 depicts a 400 x 200 km area around the forearc and shows large deviatoric

vertical compressions and horizontal tensions in the region of the arc.

Thus the thermal anomaly in the backarc, as implemented in these models, has a
profound eflect on the stress distribution at subduction zones; it generates a component
of horizontal tension in the lithosphere above the anomaly and allows a double seismic
zone to develop in the descending slab. The state of stress in the backarc is dependent
on the relationship between viscous coupling and the thermal anomaly in the backarc.
Horizontal tension is predicted despite up to 1 km depression of the overriding plate

for the 400 km penetration model (figure 5.67).
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Fieure 5.71 The vertical displacement of the surface for the model of 300 km pen-
[=]

etration, asthenosphere viscosity p = 10°° Pa s and the full thermal anomaly.

The left hand curve denotes the overriding plate, the right hand curve denotes

the subducting plate. The lower box shows the relative position of the density

anomalies.



Depth I1n km

:

450 4= -

N + 4 It
2 T T

L4

t t + t t t ¥ t + 1
1250 1300 1350 1400 1450 1500 1SS0 1600 IS0 1200 (7SO 1800 165D 1900 1950

Distance In km

Figure 5.72  The absolute slab motion linearly extrapolated by a factor of 20 for
the model of 300 km penetration, asthenosphere viscosity g = 10%° Pa s and
the full thermal anomaly. The upper curve denotes the original position of the
top surface of the slab and the lower curve denotes the final position of the

top surface of the slab. The cross-lines represent displacement vectors of the

nodes.
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Figure 5.73 The gravity profile in mGal calculated on a plane 0.5 km above the
surface of the overriding plate for the model of 300 km penetration, astheno-
sphere viscosity p = 10%° Pa s and the full thermal anomaly. The lower box

shows the position of the density anomalies.






Boundary Force On The Overriding Plate
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1 Problem Statement

(1]

The introductory comments of this chapter acknowledge that the boundary condi-
tions at the far edges of the surface plates will have a strong influence over the stress
regime. The boundary condition at the far edge of the subducting plate requires special
consideration and will be dealt with in full in the final discussion. In all models zero
horizontal motion is prescribed at this edge and this produces horizontal tension in the
subducting plate and rollback of the trench and slab.

The model of slab penetration to 400 km depth from the previous section, including
low viscosity asthenosphere and backarc anomaly, now has a normal stress of 20 MPa
applied to the left hand edge of the overriding plate. A tension may cause the plate to

retreat relative to trench motion, and a compression may cause the plate to advance

seaward relative to the trench. Once again the relaxation period is 50 000 yrs.

5.7.2 Discussion of Results

A tensional tectonic stress results in the stress regime, surface displacement and
slab motion in figures 5.75 - 5.77. The horizontal tension of the far backarc is increased
from 30 MPa to 70 MPa and the near-surface tension above the backarc is slightly
enhanced compared to figure 5.66. Most surprisingly, the stress regime of the slab is
disturbed. In the upper sections of the slab the upper surface has regained its tensioral
character. thus eliminating the possibility of a double seismic zone developing. Applviug
a compressional tectonic stress produces the stress regime, surface displacement znd
slab motion in figures 5.78 - 5.50. The far backarc is now neutral, the tension over the
backarc anomaly is almost eliminated but thie underlying compression remains. The
upper surface of the slab is now more compressional than figure 5.66, enhancing ihe
double seismic zome.

The change in stress distribution of the overriding plate is explained by the surface
displacement profiles in figures 5.76 and 5.78. The thrust zone at the trench causes a
“fault-like’ behaviour of the plates in response to the tectonic stresses. Tension causes

a normal faulting eflect and the overriding plate bends down at the trench. Likewise,
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Figure 5.76  The vertical displacement of the surface for the model of 400 km
penetration, asthenosphere viscosity p = 10%° Pa s including the olivine-spinel
transition and the full thermal anomaly. A 20 MPa tension is applied to the
left hand edge. The left hand curve denotes the overriding plate, the right
hand curve denotes the subducting plate. The lower box shows the relative

position of the density anormalies.
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Figure 5.77  The absolute slab motion linearly extrapolated by a factor of 20
for the model of 400 km penetration, asthenosphere viscosity u = 10%° Pa s
including the olivine-spinel transition and the full thermal anomaly. A 20 MPa
tension is applied to the Jeft hand edge. The upper curve denotes the original
position of the top surface of the slab and the lower curve denotes the final
position of the top surface of the slab. The cross-lines represent displacement

vectors of the nodes.
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Figure 5.79  The vertical displacement of the surface for the model of 400 km
penetration, asthenosphere viscosity y = 102° Pa s including the olivine-spinel
transition and the full thermal anomaly. A 20 MPa compression is apphed to
the left hand edge. The left hand curve denotes the overriding plate, the right
hand curve denotes the subducting plate. The lower box shows the relative

position of the density anomalies.
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Figure 5.80 The absolute slab motion linearly extrapolated by a factor of 20
for the model of 400 km penetration, asthenosphere viscosity u = 10*° Pa
s including the olivine-spinel transition and the full thermal anomaly. A 20
MPa compression is applied to the left hand edge. The upper curve denotes
the original position of the top surface of the slab and the lower curve denotes
the final position of the top surface of the slab. The cross-lines represent

displacement vectors of the nodes.
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Figure 5.52 The vertical displacement of the surface for the model of 400 km
penetration, asthenosphere viscosity g = 10%° Pa s including the olivine-spinel
transition and the full thermal anomaly. A 20 MPa compression is applied
to the left hand edge and the fault locked. The left hand curve denotes the
overriding plate, the right hand curve denotes the subducting plate. The lower

box shows the relative position of the density anomalies.



Depth in km

450 - _

+ 3 " 3 n 3
T 1 4 T T t

ES

i 3
T N

1250 1500 1350 1400 1450 1500 1550 1500 1650 1200 175D 1800 1850 1900 1950

Distence 1n km

Figure 5.83  The absolute slab motion linearly extrapolated by a factor of 20
for the model of 400 km penetration, asthenosphere viscosity p = 10%° Pa
s including the olivine-spinel transition and the full thermal anomaly. A 20
MPa compression is applied to the left hand edge and the fault locked. The
upper curve denotes the original position of the top surface of the slab and
the lower curve denotes the final position of the top surface of the slab. The

cross-lines represent displacement vectors of the nodes.



compression causes the leading edge of the plate to flex upwards.

The absolute motion of the subducting slab is shown in figures 5.77 and 5.80. This
demonstrates how the tectonic stress influences the stress distribution of the slab. The
shallow dip of the slab (in the depth range 0 — 100 km) is decreased by tension and
increased by compression, as it is controlled by the coupling to the overriding plate.
In turn this influences the whole trajectory of the slab motion and thus alters the slab
stresses.

Compression is the most probable boﬁndary stress since the overriding plate is
quite possibly attached to a mid-ocean ridge. This is therefore the most complete
general model of a subduction zone, so it is appropriate to return to the question of the
behaviour of the thrust zone (see section 5.2). The stress regime, surface displacement
and slab motion in figures 5.81 - 5.83 result from locking the thrust zone. Compared
to figure 5.78 there is a regional horizontal compression in the overriding plate, and
elimination of the double seismic zone as the descent of the plate is slightly changed.

An identical 20 MPa stress was applied to the model of slab penetration to 300
km, including the thermal anomaly and asthenosphere as in the previous section. The
stress regimes show a similar behaviour to the preceding model of penetration to 400

km depth.

5.8 Limitations of the NModels

The initial assumptions of the finite element models presented in this chapter
demand some justification. Slab dip was chosen to be a constant 45° from the base
of the lithosphere down into the lower mantle. A specific Wadati-Benioff zone profile
was nol modelled because of the huge variation in observed profiles from which to take
an ‘average’, and because of the difficulty of estimating the residual bending stresses
which generate the shape. No quantitative account has been attempted of the effect
of variation in slab dip and thus the effects, such as depression of the overriding plate,
which depend on the slab dip must be interpreted with this in mind. The upthrust
of the trench was not included and this is expected to affect the stress regime of the
slab and the surface plates as the isostatic reaction to the slab forces is distributed over

a somewhat wider area in the models presented. This particular problem is discussed

97



further in the next chapter. As a consequence of slab pull trench depths up to 2 km
develop, which are about 60% of the observed average trench depth. Outer rises of
about 200 — 300 m amplitude are produced by the downbending at the trench and
probably aided by the flow driven by rollback, but both features are very broad due to

the inadequate response of the lower lithosphere.

The fault couples the mesh halves along the line of the top surface of the descending
slab. The isoparametric fault element allows variation in the elastic properties of the
fault with depth. Above 200 km depth the three shallowest fault elements were either
shear coupled (k. = 10'® N m~!) or shear decoupled (ks = 0). The fault must be shear
decoupled down to 200 km depth to allow the upper two fault elements to move freely
with respect to one another. The thrust zone was either locked or unlocked, and so
the models did not investigate the variation in mechanical coupling along the thrust
zone. In conjunction with the angle of contact of the thrust, the mechanical coupling
is expected to control the amount of compression transmitted across the fault into the
overriding plate.

The mesh was density stripped to reveal the stresses more clearly. Under the
plane strain approximation finite element models using full densities do not produce the
lithostatic stress field (Park 1981). The actual stress field can be retrieved simply by the
addition of the overburden (hydrostatic stress) to the stresses generated by the density
stripped model. Unfortunately the density stripping does present a small problem for
the simulation of subduction. In these models the slab is dragging neutrally buovant
lithosphere into the asthenosphere, when in reality the lithosphere just above 90 km
depth is of a higher density than the adjacent asthenosphere. This could be considered
as a relative upthrust which causes the slab to rotate about its centre of mass (rather
than sink obliquely) pushing the slab tip seaward and the trench landwards. However,
if the far edge of the subducting plate is fixed, then the slab will hinge about the trench
and rollback with respect to the subducting plate. This does not overcome the problem
of neutrally buoyant lithosphere arriving at the trench but it is a good approximation

for short relaxation periods which do not involve large displacements.

Newtonian viscoelasticity is the rheology assigned to the mantle and this is an
approximation since it does include the convective heat transport. Creep motion driven

by the deviatoric stresses provides a good description of the initial flow of the viscous
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fluid in response to the loads, but it cannot predict the long term behaviour. In this
respect the models are considered on a ‘first motion’ basis. The models do not come
to equilibrium but are stopped at 50 000 yrs which is convenient to prevent instability
in the algorithm. However, the forces in the mantle may not be exactly balanced as
is expected at a subduction zone and this may affect the final stress distribution. The
equilibrium force balance between the slab body forces and the mantle resistance is

discussed in the next chapter.

The most significant limitation of these models is the question of rheology. The
omission of the crust is due to the low resolution of the finite element mesh, and this
was discussed earlier. The models would also benefit from a non-Newtonian rheology
for the lower lithosphere. High stress regions generate a large reduction in effective
viscosity allowing much quicker relaxation of the stresses, but this would not affect the
magnitude of the elastic stresses. The age-dependent thickness, and thus its variation
along the length of the lithosphere, was not included. The mantle was considered to be
uniform except for the viscosity-depth variation. A more sophisticated model should
take into account the vertical and lateral variation of elastic constants and density. The
end of the Wadati-Benioff zone is usually taken to be the slab tip, and in these models
the slab tip influenced the slab mechanics. The exact rheology of the end of the slab
is unknown and more detailed thermal modelling of this aspect is required to produce

better mechanical models of the descending lithosphere.

The subducting and overriding plates were represented by uniform oceanic litho-
sphere in the preceding models but the rheology is a great deal more complicated. The
subducting plate decreases in age perpendicular to the strike of the trench, with a cor-
responding decrease in thickness of the lithosphere. Variations in thermal thickness of
the lithosphere were not included in the models. In the overriding plate crustal and
lithospheric thickness variations throughout the forearc-arc-backarc region contribute
to the loads and strength of the plate. In addition the possibility of continental litho-
sphere as the overriding plate was not investigated due to the complexity of the crustal

loading and rheology of continental lithosphere.

The majority of thermoelastic effects have not been included. Apart from a very
simple linear vertical temperature gradient across the lithosphere in the backarc, tem-

perature gradients in the arc, forearc and slab have been ignored. An important ther-
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moelastic stress is generated by conductive heating of descending slab. All the models
were calculated under the plane strain approximation, but 3-D effects such as the spher-

ical shell tectonics described by Yamaoka (1988) are important.
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CHAPTER 6

Discussion

In this chapter the results of the models of flow in the mantle and the models of
stress regime are interpreted to provide a generalised description of the two dimensional
mechanics and dynamics of a convergent margin. One of the dominant themes of this
thesis is the investigation of the causes of the lateral variation of the state of stress
in the surface plates across the strike of convergent margins. Identifying the stress
generation mechanisms should lead towards a better understanding of the origin of
the driving forces of plate motion. In addition, the analysis of the deep structure of
subduction should yield some i_nsight into the evolution of subduction zones and the
dynamics of subducting slabs, particularly with respect to the factors controlling the
time dependence. For clarity and to avoid repetition the following discussion refers to

the plots and diagrams which can be found in the previous two chapters.

6.1 The Stress Regime in the Surface Plates

The main source of tectonic stress in the surface plates at subduction zones arises
from the pull of the descending slab. The forces exerted by the (non-vertical) slab are
coupled to the plates by two distinct mechanisms, these are termed elastic coupling
due to the physical continuity of the lithosphere through the slab bend, and viscous
coupling which is due to the transmission of stress through the mantle wedge. The
viscous coupling applies (predominantly) vertical forces to the base of the lithosphere
whilst the elastic coupling has both a vertical and a horizontal component of the in-plate

tension.

Consider this distribution of forces applied to the base of a continuum lithosphere
with the thrust zone locked, as modelled in figure 5.4. The vertical forces produce an
asymmetric local depression. The isostatic reaction at the surface generates vertical
tension in the lithosphere which in turn produces horizontal deviatoric compression.

Relaxation of the lower lithosphere leads to a concentration of the compression in the




upper elastic layer. Bending stresses are superimposed but are much smaller. The
depression causes an overall shortening of the surface lithosphere but the fixed boundary
at the right hand edge of the subducting plate restricts lateral motion and induces
large horizontal tension in the subducting plate. The left hand edge is unrestrained,
it is dragged seawards and viscous resistance in the asthenosphere can generate very
small horizontal tensions near the left hand edge of the overriding plate. The horizontal
component of the elastic coupling generates horizontal tension in the subducting plate
since it acts against the fixed boundary at the right hand edge. This horizontal force
is also transmitted across the thrust zone to act on the overriding plate. The left hand
edge of the plate is unrestrained and so only small compressions would be produced. An
additional component of regional horizontal tension in the overriding plate is created
by the normal coupling at the fault which causes the leading edge of the overriding
plate to follow the slab rollback. The models cannot separate the competing effects of
rollback and the horizontal component of elastic coupling which are manifestations of

resolving the vertical body force of the slab in the downdip direction.

Unlocking the thrust zone causes a redistribution of the stresses both locally and
regionally (figure 5.8). In the immediate vicinity of the thrust the subducting plate
is now under surface-parallel tension. In addition a component of regional tension is

introduced into the subducting and overriding plates.

Lithosphere at the thrust zone is held out of isostatic equilibrium by the vertical
pull of the slab body force. In conjunction with the isostatic reaction at the surface, hor-
izontal compression is produced in the lithosphere as described previously (see section
5.2.2). With the fault locked the fault walls support equal and opposite shear stresses
due to the compression. Unlocking the fault decouples the stresses in the plate edge
either side of the fault and the plate reacts to relieve the shear stress on its edge. For
the overriding plate this results in positive vertical and horizontal forces which cause
slight uplift and horizontal tension in the plate. In the subducting plate negative ver-
tical and horizontal forces are produced and this causes further depression of the edge
and regional horizontal tension within the plate. The mechanism will be controlled by
the angle of the thrust zone, the mechanical coupling at the fault, the angle of slab dip,

* and the magnitude of in-plate tension at the top of the slab.
The increase in regional temsion is depicted quite clearly in figures 5.4 and 5.8,
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but the stress magnitudes are complicated by the boundary conditions, the change in
amplitude of the surface depression, bending stresses and rotation of the fault zone. A
major limitation of the models is the spatial distribution of the isostatic reaction at
the surface. The trench is not included explicitly and so the reaction to the vertical
component of elastic coupling is distributed over much longer wavelengths rather than
concentrated at the trench. This may affect the relative magnitude of each contribution

to the regional stress.

The regional stress regime in the surféce lithosphere can be interpreted to derive
the origin of the plate driving forces (see section 1.3). The slab pull force drags the
subducting plate into the trench. The finite element models show that horizontal tension
in the subducting plate is generated by shear slip at the thrust zone in response to the
vertical body forces of the slab. The trench suction force drags the overriding plate into
the trench and a regional tension is similarly produced by shear slip at the thrust zone

in re-sponse to the vertical body forces of the slab (Bott et al. 1988).

In resolving the slab body force downdip two equal and opposite horizontal forces
are created which act on the base of the lithosphere at the top of the slab. The horizontal
component of the downdip force increases the slab pull force, but is not transmitted to
the overriding plate if the thrust zone is unlocked. An equal and opposite horizontal
force arises from slab rollback. Since the overriding plate is coupled normally across the
thrust zone it must follow the slab and trench rollback and this may generate a small

regional horizontal tension in the plate.

The regional stress regime gives an indication of the driving forces but the origin
of local lateral variations in stress is also of interest. Starting on the subducting plate
and working landwards, the stress regimes are split into four sections, the outer trench
slope, the forearc, the arc, and the backarc.

As a consequence of slab pull a trench and outer rise flexure system develops in all
models (see displacement profiles e.g. figures 5.14, 5.43, 5.53). This is a much broader
feature than the flexure observed at present-day margins and this is a limitation of
the models (see discussion in section 5.8). Shear slip at the thrust zone causes large
surface-parallel tensions in the near-surface of the outer trench slope. These tensions are
predominantly due to bending (e.g. figures 5.13 and 5.42). The seismicity and geology

of the outer trench slope are characterised by normal faulting and graben formation
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which is usually attributed to the bending stresses of flexure caused by stab pull. The

stress stale of the finite element models is consistent with this interpretation.

The forearc of the overriding plate was found to be under horizontal compression
in all models. Compression is generated by depression of the forearc by transmission of
the vertical body forces of the slab, but may be overestimated because of the omission
of the trench. In response to this downbending the leading edge of the overriding plate
is flexed up over a relatively short wavelength (e.g. figure 5.43), enhanced by differen-
tial shear slip at the thrust zone. The resultant bending stresses complicate the stress
regime of the forearc. However, this is a broad feature in relation to forearc tecton-
ics. This behaviour mimics the finite element models of forearc deformation of Tharp
(1985) but occurs over a much wider region with much less amplitude. This suggests
that a more sophisticated rheological model of forearc deformation may produce the
same phenomenon. The structural high of major forearc basins is often seeded by a
basement spur but subsequent development depends on the surface processes of accre-
tion and compressional failure (Seely 1979). Thus in the initial stages of subduction
the inception of the structural high and accretionary prism may be influenced by the

flexural behaviour of the leading edge.

Forearc compression persists because 1t is the region nearest to the top of ihe
slab and thus the depression of the surface is greatest. Local and regional tensional
siresses are not sufficient to overcome this compression. The local tension produced by
the thermal anornaly under the backarc does not penetrate into the forearc, and the
regional tension produced by the plate driving forces is relatively small. Westbrook et
al. (1984) noted that the Jarge negative isostatic gravity anomaly over the forearc of
the Lesser Antilles indicates that the region is held down out of equilibrium by the slab.
The finite element models do not have suflicient resolution nor an adequate rheology
to study forearc tectonics in any detail.

The crustal thickening at the volcanic arc could not be included explicitly. Satoand
Matsu’ura (1988) modelled the arc topography as a dynamically supported reaction to
steady-state slip along the thrust zone. However, it is more likely that the arc assumes a
more passive role as an isostatically compensated load. Thus the arc was simulated by a
niormal stress on the surface equivalent to the topographicload of the crustal thickening.

This was counterbalanced at the base of the elastic layer by equal and opposite stresses
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to simulate the underlying thickened crust and hot, buoyant magma which supports
the topography. This force system produced horizontal deviatoric tension under the
arc (figure 5.74) demonstrating that the load at the arc may generate tensions large
enough to overcome the existing compression. This horizontal tension may be sufficient
to split the crust which is already considerably weakened by the high temperature and
igneous intrusions. Isolated tension at the arc is not sufficient to propagate spreading,

but sustained tension in the backarc may then give birth to a spreading centre.

So the question arises, how is backarc- tension produced? After a brief review of
the sources of backarc stress in the finite element models other sources which have
been omitted from the models are discussed. Backarc tension is often attributed to the
action of the thermal anomaly in the mantle wedge above the slab. The viscoelastic
rheology cannot generate the thermal anomaly, but it can model the short-term response
to the normal and shear stresses induced at the base of the lithosphere by the low
viscosity and buoyancy of the hot region. Thermoelastic stresses were also incorporated.
The low viscosity reduces the viscous coupling resulting in a decrease in horizontal
compress-ion in the overriding plate above the anomaly (figure 5.58). The low density
pushes up against the overriding plate reducing the surface depression and compression
in figure 5.62 (for the case of slab penetration to 300 km the depression of the backarc is
eliminated resulting in horizontal tension throughout the backarc, figures 5.70 and 5.71).
A linear, vertical temperature gradient across the overriding plate produces near-surface
Jarge horizontal tension (figure 5.66). So it can be concluded that the thermal anomaly
adds a component of horizontal tension in the region of the overriding plate above the
anomaly. The magnitude of this tension and thus its ability to overcome compression in

the backarc depends on the values of the parameters assigned to represent the anomaly.

External regional forces may influence the tectonics of the backarc and this was
simulated by applying tectonic forces to the left hand edge of the overriding plate.
An island arc margin would probably have a mid-ocean ridge at the far end of the
plates and in this respect the compression (figure 5.78) is most realistic. However, as
demonstrated earlier, subduction can transmit regional tension into an overriding plate
and so the tensional tectonic force could represent hypothetical subduction at the left
hand edge of the overriding plate (figure 5.75). Stress amplification in the lithosphere

and the boundary conditions at the right hand edge ensure that the relatively small

105



tectonic force (20 MPa) dominates the stress regime of the overriding plate.

Various influences were not included, specifically the 3-D effects such as buckling.
So it appears that the state of stress in the backarc is derived from a delicate bal-
ance between the competing effects of: viscous coupling, action of the thrust zone.
the thermal anomaly, rollback, external tectonic forces and 3-D mechanisms. In turn
these mechanisms are controlled by more fundamental parameters and many regression
analyses (e.g. Jarrard 1986) attempted to ascertain the relative importance of each fun-
damental parameter. Problems arise when a parameter contributes via more than one
mechanism. It is then impossible to distinguish the physical mechanisms which control
the stress regime. It would not be profitable to attempt to derive the fundamental
parameters from the finite element models.

Froidevaux et al. (1988) compared estimates of the horizontal stress due to crustal
thickening at the arc with the ‘average’ state of stress of the overriding plate (Nakamura
and Uyeda 1980). It was suggested that the difference represented compression trans-
mitted into the backarc by mechanical coupling at the fault. However, it appears that
the state of stress in the overriding plate arises from a more complex assembly of siress
sources. Mechanical coupling across the thrust zone is only one of the sources, but it
may be expecfed to play an important role in determining the magnitude of regional
horizontal compression transmitted into the overriding plate.

/

The regional stress produced by the plate driving forces results in horizontal tension
in the far backarc of the overriding plate (e.g. figures 5.13, 5.34, 5.38 and 5.42). In the
scenario of a continent bounded by subduction zones, this provides a possible mechanism
for rifting and other extensional tectonics which may eventually lead to continental

splitting {Bott 1982b).

6.2 The Stress Regime in the Slab

In a series of papers Davies (1980, 1981, 1983) assessed the force balance of the
descending lithosphere in an isoviscous mantle and estimated the stress in the slab.
The conclusions were briefly commented upon in section 1.5 and the calculations will
be further reviewed here. In a generalised 1-D analytical model Davies (1983) estimated

the total downdip force due to the thermal anomaly of the slab to be 70 x 10'> Nm™.
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This is resisted by two mechanisms, at the surface by depression of the trench and

overriding plate, estimated at —10x 10'2 N m~!, and in the mantle by shear resistance
of the viscous fluid. For the most realistic case of a mantle viscosity g = 10°! Pa s, the
analytical model predicts a force difference along the length of the slab of 50 » 101> N
m~ !, and compressions of 1300 MPa at 670 ki depth. Davies (1983) pointed out that
the slab could not endure these forces and would probably buckle. There is 1o evidence
of this buckling in Wadati-Benioff zones.

The equivalent finite element models are shown in figures 5.4 and 5.8. These
models produce stresses of about 180 MPa at 670 km depth which are an order of
magnitude smaller than the extremely large slab stresses predicted by the analytical
model of Davies above. The mass anomaly of the slab of width 90 km and penetrating

to 1000 km depth with a dip of 45° and a thermal density anomaly of p = 50 kg m~3

is approximated by,
50 x 1000v/2 x 10° x 90 x 10° = 45v/2 x.]0“ kg m™
and so the total downdip force due to the slab weight is,
45/2 % 10" % 10 x sin45 = 45 x 10’2 N m ™"

This is only 65% of the downdip force in the analytical model of Davies but it is not
sufficient to account for the discrepancy in the predicted stresses at 670 km depth.
The force difference along the length of the slab in the finite element models can
be calculated from the stress regime in figure 5.4. A generous estimate of the stress
difference between the top and the base of the slab is 400 MPa. The stress is concen-
trated into the 30 km thick elastic layer giving a force difference along the length of
the slab of 12 x 10> N m~!. This is considerably less than the total downdip force of
the thermal density anomaly. The surface is depressed over a width of about 2700 km

(see figure 5.5). The average depth of this depression was calculated to be 440 m which

provides an upthrust of,

440 X 2270 X 9.81 x 2700 x 10° = 26 x 10*> N m™!

This does not include the partitioning between the trench and the overriding plate;

explicit inclusion of the trench will probably reduce the width over which the depression
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exists. Summation of the force in the slab and the compensation al the surface does
not total the body force in the slab, but as discussed in section 5.6, the models do not
reach equilibrium.

The stress regimes in figures 5.4 and 5.8 show that the mantle stresses immediately
adjacent to the slab are not relaxed. Above the slab both principal siresses are tensional
and below it both principal stresses are compressional. This indicates a low pressure
region above of magnitude 10 — 50 MPa, and a high pressure region below the slab of
magnitude 5 — 30 MPa which partially sﬁpport. the thermal body force. Bott (1988)
suggested that pressure differences in the mantle above 1:he slab could support the slab

and these pressures (AP) can be estimated from,
AP = ApgT cosé = 50 x 9.81 x 90 x 10 x cos45 = 31 MPa

taking values from the finite element models. Values of pressure from the finite element
models are in good agreement with the theoretical values suggesting that pressure
differences support the slab against rotation in a self-regulating mechanism. The motion
of the slab (e.g. figures 5.10, 5.15) may represent the motion from the quiescent state
necessary to generate the pressure anomalies which then support the slab against further
rotation as subduction progresses.

The pressures would be sustained by continuous rollback, since if rollback was
prevented then inflow from under the overriding plate due to the pressure gradient
would allow the slab rotate towards vertical subduction.

The finite element models have neither the correct rheology for the mantle nor the
correct distribution of the upthrust at the surface. However, the models provide some
understanding of the support of the slab body force. Depression of the surface plates
and a small contribution from shear resistance to motion partially support the buoyancy
force and consequently decrease the downdip force acting in the slab. In addition to the
thermal body forces the elevated olivine-spinel phase change was included (see figure
5.13). This does not alter the basic conclusions concerning the slab support mechanism.

The distribution of stresses in the finite element models differs from the analytical
solutions. The finite element models allow the slab to sink freely through a layered man-
tle but the analytical models assume a constant viscosity mantle with an impenetrable

base at the slab tip. It is highly unlikely that the slab tip encounters an impassable
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mid-mantle boundary at any given depth and so the ‘free’ slab tip is a more appropriate
representation.

The stress distribution of the finite element models is now compared to the observed
slab stress regime. Studies of earthquake focal mechanisms have proposed a typical
slab stress distribution \‘\'hich consists of a stress minimum at about 300 km depth,
below which the slab has downdip compression and above which the slab has downdip
tension. The most convincing aspects of this stress regime are the position of the
stress minimum and the compression in the lower slab. The stress regime in the deeply
penetrating slabs (figures 5.46, 5.13, 5.48) is controlled by the viscosity contrast at
670 km depth and the isostatic reaction at the surface. The models in figures 5.13
and 5.48 approximately reproduce the observed slab stresses. However, the stresses
are not sensitive to increases in viscosity contrast above x10. The slab stress regime
is complicated by the distribution of the isostatic reaction i.o slab pull at the surface.
Observed trench depths are much greater than those produced by the finite element
models (figures 5.14 and 5.30), and so the isostatic reaction of the models should be
more strongly concentrated at the trench. This would increase the magnitude of the
elastic coupling and consequently increase the in-plate tension near the top of the slab.
The redistribution of slab stresses would be expected to increase the depth of the stress

minimum and decrease the magnitude of the deep compressions.

The stress regimes in shallow penetrating slabs (< 400 km depth) do not match
the observed stress distributions. Large downdip compression (figures 5.34, 5.38) is
associated with the tip and this violates the requirement of a stress minimum at 300
km depth with predominantly tension above. The compression is caused by resistance
to penetration and upbending of the slab tip. Jarrard (1986) compiled the best known
Wadati-Benioff zone profiles and out of 20 profiles of shallow penetrating slabs only 2
show upbending of the tip, namely New Britain and N. Sulawesi. Neither compression
nor upbending are common in present-day subduction zones. The stress regime was
altered by varying the geometry and rheology of the slab tip, but the large compression
near the slab tip could only be eliminated by invoking aseismic extension of the slab in

the upper mantle.

The dynamic reaction of the trench was omitted in all models. The inability

of the finite element models to reproduce the observed slab tension could be due to
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the distribution of the isostatic reaction at the surface. If more of the upthrust was
concentrated at the trench then the elastic coupling would increase the magnitude of
the in-plate tension at the top of the slab. The tension will be transmitted down the
slab and may overcome the deeper compressions. A large trench reaction may cause the
slab to "hang’ from the surface and this may alleviate the upbending of the tip which
is due to the resistance to penetration in the mantle.

The finite element models could not successfully generate the stress regime in
shallow penetrating slabs, but the mechanics of the slab motion imply that the trench
reaction dominates the slab stresses to produce in-plate tension.

Sleep (1979) proposed that double seismic zones are generated by a low viscosity
region in the mantle wedge allowing the slab to sag under its own weight. The upper
surface of the slab develops compression due to bending and the lower layer retains
in-plate tension because it is close to the neutral fibre. The addition of a low viscosity
asthenosphere (figure 5.52) and a low viscosity thermal anomaly (figure 5.57) to the
finite element models produced an increase in compression in the upper surface of the
slab (compared to figure 5.42). The lower layer of in-plate tension persists. The models
do not produce true double seismic zones but simply lend support to the analysis of
Sleep (1979). The inadequacy of both the mantle rheology and the representation of

the thermal anomaly prevent definite conclusions on the origins of double seismic zones.

6.3 The Evolution of the Subduction Zone

The continuous dynamic evolution of the slab cannot be modelled by the finite
element methods employed in this thesis. However, a general framework describing the
descent of the slab through the upper mantle can be assembled.

Above the transition zone the models of slab pernetration to 200 km and 300 km
show that the displacement of the descending lithosphere is quite small (e.g. figures
5.36, 5.40). The flow models of 300 km penetration (figure 4.33) show the slab sinking
vertically and rotating towards vertical subduction at relatively small velocities. In
the depth range 300 — 400 km the slab gains the body forces of the elevated olivine-
spinel phase change, and this has a dramatic effect on subduction. The additional

forces cause significant slab rotation towards the vertical and increase the downdip and
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rollback velocities {e.g. figures 4.34, 5.44). So, for the period (say 1 Ma) over which
the slab acquires higher body forces, the subduction zone may undergo a significant
change in its evolution. Roecker (1985) analysed the seismotectonics of Izu-Bonin and
suggested that lateral variation in the magnitude of the body forces of the elevated
olivine-spinel transition was the major cause of the lateral variation in tectonics along

the strike of the margin.

The next stage in the evolution of a subduction zone is collision with the 670 km
discontinuity. The analysis of mantle viscosity favours a viscosity contrast of x10 in
preference to a contrast of x100 or x1 but is unable to give definite conclusions due to
the model limitations. The increase in viscosity at the base of the upper mantle provides
a resistance to the motion of the slab tip. If the slab remains rigid, this resistance to
movement will be transmitted back up the slab changing the geﬁeral slab motion (figure
4.35) to be realigned approximately downdip and may slightly affect the surface plates
(figures 5.46, 5.13, 5.48). Alternatively, the motion in the upper mantle may remain
constant but the reduction of vertical velocity in the lower mantle may cause the leading
edge to deform and flow laterally (Fischer et al. 1988). The stagnation of the slab tip in
the Jower mantle causes a decrease in slab dip as the upper slab continues to rollback.
B\ ‘anchoring’ the leading edge of the slab in the lower mantle, the strength of the
slab may not be able to endure continuous rollback of its upper mantle section, but
if it does a quasi- steady state subduction may ensue (Gurnis and Hager 1988). The
models predict bending at 300 — 400 km depth due to the body forces of the elevated
olivine-spinel transition. However, Wadati-Benioff zones are surprisingly straight at
depth. Although interpretations generally average along strike which may introduce
some smoothing of the profile, this is a discrepancy of the models.

In an analysis of slab dip, Jarrard (1986) proposed that dip is negatively correlated
with duration of subduction. All finite element models demonstrate rotation of the slab
towards vertical subduction in apparent contradiction of the observations. This may
be attributed to the initial quiescent state which did not allow sustained local pressure
differences in the mantle, or it may be a result of global interaction which cannot be

modelled here.

Duration of subduction influences the stress field of the overriding plate as figures

o

5.17, 5.21, 5.25, 5.29 and 5.13 demonstrate. The width of the band of localised hori-
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zontal compression in the overriding plate increases as the length of the slab increases.
The models assume a constant slab dip with time which may not be realistic. As dip in-
creases the width of the band of compression would decrease, so there is some trade-off
between these competing effects.

The slowly growing band of compression which gradually encroaches into the
backarc may be an important control of the stress regime and subsequent tectonics.
In the absence of the local horizontal tension produced by the thermal anomaly in the
mantle under the backarc, this mechanism may be responsible for the compressional
tectonics of the backarc. The South American margins have very Jow angle slabs, no
evidence of thermal activity in the mantle wedge and compressional tectonics in the
overriding plate. This mechanism of viscous coupling to the surface lithosphere may be

usefully applied to help explain the stress regime at these subduction zones.



CHAPTER 7

Summary and Conclusions

This thesis has presented a numerical investigation of selected aspects of the me-
chanics and dynamics of subduction by finite element analysis. Subduction zones pose
certain rheological problems for numerical analyses. The rheology of the subducting
and overriding plates and the descending slab is best approximated by an elastic-plastic-
viscoelastic solid in its response to tectonic loads over geological time. In contrast, the
mantle responds to loads by creep which can be numerically modelled by flow of a New-
tonian viscous fluid. At the trench the surface plates are coupled along a large thrust
zone which permits the subducting plate to underthrust the overriding plate. It was
not possible to incorporate all three rheologies into a single finite element package and

so the 2-D numerical analysis was divided between two approaches,
o Newtonian viscous flow gives a good approximation of mantle behaviour

e linear elasticity and viscoelasticity provide a good approximation of both litho-
spheric behaviour and the response of the thrust zone
The basic isoparametric finite element package for linear elasticity was originally
developed by Waghorn (1984). Quadratic elements permit a linear strain gradient
across the element and are the optimum elements for elasticity analyses (Zienkiewicz
1977). The initial strain method of Zienkiewicz et al. (1968) was implemented to
provide a Newtonian viscoelastic rheology. Fault behaviour was included via the dual
node concept of Mithen (1980). The isoparametric elements allow curved faults to
be introduced which is important for modelling the thrust zone of subduction. This
basic package was updated and improved to combine the faulting into the viscoelastic
algorithm and to include the full mechanical response to a thermal anomaly.
Quadratic isoparametric elements can be used for the analysis of viscous fluids
although they are not optimal. The linear elasticity package was converted to solve
the Navier-Stokes equations for viscous flow by the reduced integration penalty (RIP)
method following Zienkiewicz and Godbole (1975). This was further developed to allow

motion of the free surface following the arbitrary Lagrange-Eulerian (ALE) method of
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Hughes et al. (1978).

Chapter 4 presented models of flow in the mantle driven by motion of a slab dipping
al 45°, under the assumption that subduction is controlled by the viscosity-depth profile.
The lithosphere of the surface plates and the subducting slab was represented by a 90
km thick high viscosity layer. The free surface evolved over a time interval of 50 000
yrs which can be regarded as approximately instantaneous with respect to the time
constant of subduction.

The models produced an asymmetric dépression of the surface above the slab. The
depth and width of this depression was found to be dependent on the viscosity of the
lower mantle, the length and mechanical strength of the slab. Implications for slab
motion inferred from the flow field constrain the viscosity contrast at the upper - lower
mantle interface to be of the order x10 rather than x100 or x1.

Analysis of the variation in depth of penetration of the slab shows that acquisition
of the body forces of the elevated olivine-spinel transition and collision with the 670
km discontinuity are significant events in the evolution of subduction zones which may
contribute to abrupt changes in tectonics.

The major limitations of the models are the rheology of the lithosphere, the omis-
sion of the thrust zone and the boundary conditions of the mesh. The flow models
cannot simulate the subduction of one plate under the adjacent and thus corner flow
is not generated and the surface does not evolve to reproduce the correct topography.
The compensation of the body force of the slab by depression of the surface will not be
accurately distributed. The boundary conditions do not permit a mass flux across the
sides of the mesh and so all flow is contained within the mesh. Thus the lateral flow
driven by subduction to mid-ocean ridges, which is part of the mechanism of thermal
convection, is not produced by the models.

In Chapter 5 an island arc margin was modelled using the linear elasticity package.
The lithosphere was represented by an elastic layer 30 km thick overlying a 60 km thick
viscoelastic Jayer. The underlying mantle was modelled as a layered viscoelastic body
and the two meshes used extended to 670 km and 1400 km depth respectively. A fault
dividing the meshes into two halves was used to simulate the thrust zone. The models
provide a good approximation of the surface, lithosphere and thrust zone, and of the

initial flow response of the mantle. The aim of the study is to quantitatively investigate
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the influence of the negative buoyvancy of the slab over subduction tectonics.
The stress regime at subduction zones has been analysed for three distinct phe-

nomena,
e the origin of the driving forces of plate motion
o the cause of lateral variations in stress state of the surface plates

o the mechanics and dynamics of the descending slab

The slab pull force drags the subducting plate into the trench and it was proposed
that regional tension in the plate is generated by differential shear slip at the thrust
zone in response to the vertical forces applied by the slab.

The trench suction force drags the overriding plate into the trench and it was
proposed regional tension in the plate is generated also by differential shear slip at the
thrust zone in response to the vertical forces applied by the slab.

The magnitude of the stress is dependent on the dip and in-plate tension in the
top of the slab, and the angle and degree of mechanical coupling at the thrust zone.

The stress state of the surface plates was partitioned into five regimes. Bending
of the subducting plate in response to the vertical forces applied by the slab through
the slab bend region created large horizontal tension at the outer trench slope. This
is consistent with the extensional tectonics observed in the region. The forearc was
found to be under horizontal compression in all models. The compression arises from
the vertical tension in the lithosphere created by the combination of vertical downpull
of the slab and isostatic upthrust at the surface. Thus horizontal compression in the
overriding plate can be generated by the vertical forces of subduction. The isostatically
compensated topographic load of the volcanic arc may generate horizontal deviatoric
tension in the lithosphere at the arc if the horizontal tension due to the load exceeds the
local compression. The backarc shows considerable variety in stiress state. A compo-
nent of regional horizontal tension is produced by the plate driving forces and regional
horizontal compression by locking the thrust zone. A component of local horizontal
compression 1s produced by depression of the backarc due to viscous coupling to the
sinking slab. A component of local horizontal tension is produced by an underlying
thermal anomaly. The final state of stress is dependent upon a delicate balance of the
stress components. However, an external regional tectonic force applied to the far edge

of the overriding plate dominated the backarc. This suggests support for the theory
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that subduction tectonics are primarily controlled by global plate interaction {Dewey
1980) rather than solely by local forces. The regional stress of the plate driving forces
creates horizontal tension in the far backarc which provides a source mechanism for

stress-controlled extensional tectonics (Bott 1982h).

The negative buoyancy of the slab is partially supported by depression of the
surface and shear resistance of the viscous fluid. Thus the resultant downdip force
within the slab is much reduced. The stress state of the slab, in response to the
downdip force, is controlled by the isostatic reaction of the surface and the viscosity-
depth distribution in the mantle. The mass deficit of the trench produces tension in
the upper slab, and a viscosity contrast at 670 km depth causes compression in the
lower slab. The models of a deeply penetrating slab reproduce the observed average
stress distribution. The stress regimes of the shallower penetrating models do not fit
the observations, probably because of incorrect partitioning of the isostatic reaction at
the surface. A low viscosity zone above the slab leads to the development of double

selsmic zones.

A low pressure zone above, and high pressure zone below the slab act against
the body forces to inhibit slab rotation towards vertical subduction. The pressure
anomalies are maintained by continuous subduction and rollback, and act in a self-
regulating mechanism to prevent large changes in dip with time and excessive torques

along the length of the slab.

The limitations of the models are dominated by the inadequate rheclogy of the
mantle and the problem of resolution which necessitated the omission of the crust.
Also, the addition of a plastic rheology allowing finite strain deformation of the siab
bend region would allow the dynamics of the trench to be included.

The success of this 2-D analysis is encouraging but limitations of the models leave
many questions unanswered. Further work on 2-D generalised subduction zone models
would profit from rheological sophistications and better resolution of the meshes. In
particular non-Newtlonian viscoelastic and large deformation plastic rheologies would
allow the trench and slab bend regions to be iucluded. Detailed thermal modelling of
the slab to vield a better mechanical model of the slab, especially the behaviour of the
slab tip, will aid analysis of the slab mechanics. Most importantly direct coupling of

viscous and elastic behaviour is required, without which there will be no true dynamical
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model of subduction.



The Computer Programs

The Linear Elasticity Finite Element Library - ISOLIB

Tlie main algorithms of the library program ISOLIB were not significantly altered
and so the program is not listed here. A full description and listing of the basic program
can be found in Waghorn (1984). However, some operational changes were made to the
program and these are described below.

ISOLIB was converted to FORTRAN77, structured and some additional subroutines
were added which are briefly described here. In order to test the faulting algorithm
subroutines to calculate the stresses and viscous strains at the fault walls were added.
The implementation of Dirichlet conditions is described in section 2.3.5; this exact
method is preferred over the Payne-Irons method and is included as an optional routine.
Often it is necessary to make minor changes to a mesh and so a subroutine was developed
which adds or deletes specific nodes, renumbers the mesh accordingly and produces a
new input file. A subroutine to find the eigenvalues of the symmetric system matrix
reduces the band matrix to tridiagonal form by Jacobi rotations and then employs the
QL algorithm to extract the eigenvalues using the public domain routines available
in NAG. Anomalous densities of the elements and deflection of isostatic boundaries
contribute to the gravity field. Source code for the main calculation was kindly provided
by Prof. M.H.P. Bott and included in a subroutine to calculate the 2-D gravity anomaly
at the surface of the mesh. The original routine in ISOLIB to calculate the initial strain
of a temperature anomaly was corrected and thermal stresses were incorporated into

the viscoelastic algorithm.

The Viscous Flow Finite Element Library - ISOVISC
The library program ISOVISC was produced by converting ISOLIB as described in
section 2.3.1, and hence retains many of its features. The library is accessed from a

calling program ISOCALL. The input/output units are assigned as follows,
e 1 echo the mesh data
e 3 data for mesh renumbering
e 4 mesh data

Al



[=]
(@3}

data for the plotting routines
o 6 output of program status

o 7 output of solution data

[e]
O

graplical output

The source code listing below contains both a general operational description and
definitions of major variables for each routine. The subroutines access external routines
from the libraries NAG and GHOSTS80 for matrix manipulation and graphical output
respectively, and also the MTS system routine TIME which monitors the CPU time

elapsed.
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The main program for the finite element |ibrary ISOVISC.

Program execution is controlled by the sequence of subroutines
remoining unCOMMENTed. Details of the subroutines can be found in
tibrary ISOVISC.

Acknowledgement: This program was developad from an original
finite element library for tineor elasticity
~written by G.D. Waghorn.

IMPLICIT DOUBLE PRECISION ?A—H,O—W)

CHARACTER  TITLE(4)e8,2UF (4)e4

PARAMETER( IGL=880, JGL=131,KGL=66)

OOWIN /OHAR/ TITLE,2UF

oowN /OONS/ NTRI ,NOUAD,NINCS ,NNOD ,KS 1 ZE , KSEW ,NNOD2  NVAT , 10UM(4)
GAMMA,P1,BETA NST NS | NSEG ,NODSEG, DELTAT

or»m NODS/ x(ch/%) -Y(16L/2) .D1SP(1GL) , FORCE(IGL) ,

500) , YSTPOS( 4, 500
cowN JELEW/ NZDEL?G ,500) ,NGAUSS(500) ,NOTEL (500) , mo&?seo)
+ 001 (50@) ,NOQUOL(500) ,DIFFOP(9,500) .BLIB( 144 ,500) ,

PRINC(16,509)
ocwm /FORC/ NODAS 100 .ND1S4S(180) ,NLOAD( 100) , NOOM1 (300) ,
FNORM( 100 ) . FTAN(100) , FNTOT(100) , FTTOT ( 100)
or.\wN JFIXT/ DFIX(2, 5@03 NOF 1X(500) . IFLAG(2,50@) ,NF § X ,NEXT NSTOP
COWON AATS/ BM(9),PM(9) . TM(9) , RHOM{9) , ETAM(9) , ETAN, 1 TYP(9)
COMVON /STIF/ ELK(18,18),GLOBK( 1GL, JGL
COMVON /STF4/ GLOBKL(1GL,KGL) , FORCE@( IGL) ,NROPIV( 1GL)
OOMMON /V1SC/ DSTORE |2.900),FlNlT(IGL).F(IJT(lGL).AMBSich)
oowN /VARS/ WIW2 .DETJ,RHD,C2, FACT ,DNXDX(B) , DNXDY(8) ,B(4, 18) ,
BTC(18,4) .NO, NGAUS ,NO2, NUMEL ,NSURF , 1G
ocwan /TIMS/ ELSIZE(2,508) ,DELT. ILOAD(IGL), TTOTAL
COMVON MOVE/ VPART(IGL) , WESH(16L) mmmgmg LSTRANS(IGL),

++

ATRANS( IGL) ,DMESH( IGL ) , APART{ IGL) , AMESH( IGL) ,
WESH2( IGL .mcEmL).mw IGL) . YOLD( IGL
(8),0NMS(B) ,DNODT (B) , TSHAPE(6, 36) ,
TONXDS(6, 36 ,mmgs.ssg,mmﬁs.s;.osm’cf.n;.
QNS (3,72) . CONDT(3,72) .W1w2(3.9) WEITRI (12,6,
+  WEIQAD(18,3) PLACET(12,6) ,PLACEQ( 18, 3) .PLACEL(3) WEILIN(3)

CALL TIME(®,1)
CALL READ
CALL RENODE
CALL PREX
CALL FORMK
CALL EIGEN
CALL TIMSOL
CALL DISOUT
CALL STRESS
CALL STOUT
CALL PAVG
CALL GRID
CALL FRAME
CALL VELPLT
CALL FRAVE
CALL VECPLY
CALL FRAME
CALL SURF
CALL FRAME
CALL DPROF

CALL GREND

CALL EXIT
B0
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An isoparametric finite element library for solving the
Navier~Stokes equations in 2-D incorporoting (he free
surface of the fluid.

The reduced integration penalty (RIP) formulotion is
used to generate the system matrix.

The formo! derivation can be found in Hughes et of. (1978)

Array is 2600450 for wave model

SUBROUT INE READ

Read in gl} information required to set up the model and echo immediotely

to the check file attoched to unit 1.

Mojor voricbles: X =node x—coords Y
FORCE wsystem force vector |F}
DELTAT=t ime increment

IMPLICIT DOUBLE PRECISION §A—H,0—W)
CHARACTER  TITLE(4)«8,ZUF(4)e4
PARAMETER(1GL=880 . JGL=131 .KGL=66)
COMWON /CHAR/ TITLE, ZUF

(DACN /OONS/ NTRI ,NQUAD NINCS ,NNOD, KS1ZE , KSBW,NNDD2 ,NMAT , [DUM(4) ,

GAMMA P ,BETA,NST NS .NSEG, NODSEG, DELTAT

M‘ oS/ X(iGu). Y(IeL2) DisIoL) Force(1oL),

oowm JELEW MI)EL$B ,500) ,NGAUSS(500) ,NOTEL(500) , Nooc% ).
mror()Lssg&)’)mL(soo) .DIFFOP(9,500) ,BL1B( 144 ,500) ,

: PRINC( 1

COMMON /FORC/ msgwe;,wlsas(we).mow(me).nm(m),

+ FNORM( 100) . FTAN(100) , FNTOT (100) , FTTOT( 100)

OMION /FIXT/ DFIX(2.,500) NOF [X(500) , IFLAG(2,50@) NF [X,NEXT ,NSTOP

COMON MATS/ W(Q),F’M(Q{,N(o).R’{N(Q).ET&M(Q).EIAN.ITW(D)

COMMON /VARS/ COMB( 165) NOSECT ,ND1S . NDTR 1OOMX(2) , IG

OOMION MOVE/ VPART(1GL) , WIESH( 1GL.) , APARAM( 1GL ), STRANG( 163L)

) AIHM‘S%ICI;.l’M.SH(ICL),N‘N'(I 1GL) , AMESHIGL)

' WES2(1GL) M2 ( 1GL) . XOLD{ IGLY, YOLD(1GL.)

e«se Read title

ITEST=0

WRITE(6,10)

FORMAT(1HD, ‘Finite Element Program for free—surfoce flow',/
+ " up ond running..."')

READ(4,20)TITLE

VRITE(I.ZQ;TITLE

FORMAT ( 4AB

eees Read in model information

READ(4, 30)NNOD NTRT ,NJUAD NMAT NF I X ,NDIR,NSEG NS1 ,NST NFS

=node y—coords

OOO& OO0 s

OOOg [eXoNe)

Oﬂﬂsg

110

120

OO0

WRITE(1,30)NNOD, NTRT ,NQUAD ,NMAT NF1X ,NDIR,NSEG, NS, NST ,NFS
FORMAT(1115)
NNOD2=hNOD # 2

see Read solution information

READ(4.35)NINCS, GAMMA, BETA, ETAN, DELTAT
WRITE(1, 35)NINCS  GAMMA, BETA, ETAN . DELTAT
FORMAT(15,4D10. 4)

sss Read node numbers, coordinates and free surface poraneter

DO 50 INOD=1,NNCD
READ(4, 40)JNOD, X(JNOD) , Y(JNOD) , APARAM( 24 JNOD—1 ) , APARAM( 2+ JNOD)
FORMAT(15,4F10.3)

ese Convert from potar to rectonguiar

IF(NST £Q.2) THEN
ANG=X{ JNOD) oP1/180. 0
xEerg-vEer;-osmgm;
Y JNOD)=Y { JNOD ) sDOOS { ANG
IF
WRITE(1,40)JINCD, X(JNOD) . Y(JINOD) , APARAM( 20 JNOD—1) , APARAM( 2¢ JNCD)

ese Convert to metres

IF(NS1.E0.@) THEN
XéJM])g-X}JMD;ﬂ .8E3
Y{JNOD)=Y{JNOD) # 1 . BE3

20IF

OONT INUE

se+ Read in material types

DO 70 IMAT=1 NWAT
READ(4,60)EM(IMAT) , PM( IMAT ) , RHOM( IMAT) , TM( IMAT ), ETAM( IMAT)
WRITE(1,60)EM(IMAT)  PM( IMAT) ,RHOM( IMAT) , TM( IMAT) , ETAM( IMAT)
FORMAT(D10.3,2F10.3,2010.3)

CONT INUE

ses Raod alement topologies, moterial types and gouss points

IF(NTRI 6T @) THIN
DO 98 |EL=1,NIRI
READ(4, 80) JEL, (NODEL(KEL ,JEL) ,KEL=1 6}, ITYP(JEL) ,NGAUSS(JEL)
WRITE(1, ao; JEL, (NCDEL (KEL , JEL) ,KEL=1 ,6) , ITYP(JEL) .NGAUSS(JEL)
FORMAT (915
NOTEL( TEL)=JEL
CONT INUE
ENDIF

[F(NQUAD .GT.9) THEN
DO 120 [EL=1,NOUAD
READ(4,110) JEL, ?‘(DEL%KEL.JEL; JKEL=1 .B; . lTYP%JEL; ,PGN.SSEJEL;

WRITE(1,110)JEL, (NODEL{KEL ,JEL) .KEL=1,8) , ITYP(JEL) ,NGAUSS(JEL
FORMAT (1115

NOQEL ( [EL)=JEL
OONT INUE
ENDIF

ees |nitialise force vector



CALL VEOMUL{FORCE, IGL ,NNOD2, [ TEST)

eese Read direct nodal forces

OO0

IF(NDIR.GT.8) THEN
00 140 [=1,NDIR
READ(4, 150)NOD4S (1), FNOD(2e 1-1) ,FNOD(29 1)
WRITE(1, 150)NOD4S(1) ,FNOD(201-1) ,FNOD( 20 1)
150 FORMAT(15.2(4X.D11.4))
IF(NST.EQ. 1) THEN
rm:r.EZoms(l)»t{-rmoﬁzol-1;-2,m~m.x}m%§|§{
FORCE( 2eNOD4S( 1) 2¢1 )02.0000eP1eX(NODAS( !
ELSE
rmczﬁz-moas(l)qrnm%z-l—‘;
FORCE( 24NOD4S(1) )=FNCD( 26!
ODIF
140 OQONTINUE
ENDIF

C
Cc see Read surfoce tractions
[

1F(NSEG.GT.@) THEN
NDIS=0
DO 142 I=1,NSEG
READ(4, 150)NODSEG
WRITE( 1, 150)NODSEG
DO 143 Jm=i ,NODSEG
READ(4, 150)ND1545(J) , FNCRM(J) , FTAN(J)
WRITE(1,150)ND1S4S(J) , FNORM(J) ,FTAN(J)
NLOAD(ND | S+ =ND154S(J)
FNTOT (NDIS+J )=FNORM(J)
FTTOT(NDISH)=FTAN(J)

143 OONT INUE
c
C ses for each surfoce, divide into NOSECT 3—node edge elements
[
NOSECT=(NODSEG-1)/2
CALL GLOBF
ND15=hND | S+NOOSEG
142 OONT INUE
ENDIF
C
C soe Ragd Dirichlet conditions
c
IF(NFIX.GT.0) THEN
DO 170 1=1 ,NFIX
READ(4,160)NOFI1X( 1), (1FLAG(J,1),DFIX(J,1),9=1,2)
WRITE(1, 160)NOFIX(1), (1FLAG(J, I) .DFIX(J,1),J=1,2)
160 FORMAT(15,2(15,010.3),F10.3)
170 OONT INUE
ENDIF
c

WRITE(6.190)
199 FORMAT("@READ finished’)
CALL TIME(1.1)

o}
RETURN
END

C

C

C00enerternnesneesnitnetnstttsseeettenostotonstdrtietestnnettoitsnceesdisesestse

c

SUBROUTINE LSHAPE

c
C+
C Calculate the shape functions of the 1-D edge element at the locol
[ coordinate point which is supplied.
Cc Major variables: SHAPE =shape functions
C DNOS, ONXDT =derivotives w.r.t. local coords
c- .

IMPLICIT DOUBLE PRECISION (A-H, o-W)

PMTER(lGL-G& JGLm131 KGL=66)

OOMWON /GAPT/ S, T WE(B) ONDS(8) ,DNOT(B) ,PCOM(1611) ,

+ PLACEL(3) WEILIN(3)
C

SHAPE(1)=(S5-5)/2.0

SHAPE(2)=1.0-SS

SHAPE(3)=(SS+5)/2.9

ONDS(1)=5-9.5

DNXDS(2)=-2 . @eS

3)=5+8.9%

o

RETURN

BN
c
[

Core0eteensesnttttteanitntssesiotssteeiototttsstttsrtorttniisnsodienedsetsseenes

C
SUBROUT INE GLOBF

C
C+
C Calculate the contribution to the global force vector of normal
C and tangential stresses, dividing this edge into 3node 1-D elements.
(o3 Mojor variables: FORCE =maystem force vector {F}
C FNORM, FTAN =supplied edge stresses
c-
IMPLICIT DOUBLE PRECISION (A-H,0-W)
PARAVMETER( 1GL=R80, JGL=131 KGL=68)
CI)MZN /NODS/ X(IGL/Z) Y(16L/2), DlS’(IGL; JFORCE( IGL),
TPOS(4,500), YSTPOS( 4, 500
M JGAPT/ S T,SHAPE(B) ,0NDS(8) ,0NDT(8) .POOM(1611),
PLACEL(3) ,WETLIN(3)
OOMMON /FORC/ NCDAS \%; NDISAS(100) ,NLOAD(10@) , PINCD( 200) ,
FNORM(180) , FTAN(100) , FNTOT (100), rTTOT(wo)
(YWN /VARS/ OOMA( 1685) ,NOSFECT NDIS NDIR NOD(3)
c
C see For each 1-0 edge element
C
DO 10 IS=1,NOSECT
LNOD2=2+ 15
LNCD 1=LNDD2-1
LNCD3=tNCD2+ 1
NOD( 1)=ND | S4S( LNOD1
PCO%2§=N)IS4’S?LMDZ§
NOD(3)=hD[S4S(LNODD
C
C ees |ntegrate the stress by 3-pt goussian
o]
DO 20 16=1.3
S=PLACEL(1G)
DS=WEILIN(IG)



CALL LSHAPE + QONXDS(3,72) ,QDNDT(3,72) ,WIw2(3,9) WEITRI(12,6),
XPOS=0 . 0000 - +  WEIQAD(18,3) ,PLACET(12,6),PLACEQ(18,3) ,PLACEL(3), WE[LIN(J;
DXXDS=0 . 002D oo.mN /VARS/ WW2,DETJ,ETA,C2,FACT ,0NXDX(8), uNxDY(s) B(4.18
DXDS=0 . @000 BTC(18,4) ,ND,NGAUS ,NOZ , NUMEL ,NROW, |
0O 30 1=1.3 C
XPOS=XPOS+SHAPE( 1) «X(NOD(1)) 1TEST=0
DXXDS#)NXDS%I%-XEN‘D lg; + DXOOS C
ONOS=ONOS(1)»Y(NOD(1)) + DNXDS C eee Trianguiar element stiffness
30 OONT INUE C
c IF(NTR1 .GT.8) THEN
[ see fvgiuote the stresses at the gouss point NO=&
c NO2=NO»2
IF(NST EQ, V) THEN DO 30 1EL=Y NTR}
PR FNORM( LNOD1 ) s SHAPE (1 )+FNORM( LNOD2 } ¢ SHAPE (2)+ C
+ FNORM(ENOD3 ¢ SHAPE(3) ) #2.0000eP| «XPOS [ see Initialise
PTa(  FTAN(LNODY ) e SHAPE( 1)+ FTAN(LNOD2) e SHAPE(2)+ C
+ FTAN(INODY ) «SHAPE( 3} )*2.0000eP [ «XPOS CALL WTN)L%ELK,‘B.\BJB.‘B.ITEST)
ELSE NUMEL=NOTEL( TEL)
PN=FNORM( LNOD 1 ) » SHAPE (1 )-+FNORM( LNOD2 ) » SHAPE (2)+ WxT=ITYP§MML)
+ FNORM(LNOD3 ) « SHAPE(3) ETA=ETAM(MAT )
PT= FTAN(LNOD1) oSHAPE( 1)+ FTAN(LNOD2) «SHAPE(2)+ 1F(ETA.EQ.8.0000) THEN
+ FTAN(LNOD3) «SHAPE(3) FACT=ETAN
BNDIF ELSE
osx-ﬁptoows-m-ovms; FACT=ETAsETAN
DSYm(PNeDXODSHT «DYXDS ENDIF
DO 49 [=1.3 NGAUS=NGAUSS (NUMEL
FmCEEbN’J)(I)%;WE?I;‘DSXODS + F(FCE?ZOW(I)—Q NROW=NOTCOL (TEL)
FORCE( 2eNOD(1) )=SHAPE(1)+DSYsDS + FORCE( 2eNOD(1) C
49 OONT [NUE [ +ee Numerically integrate
20 OONT [NUE C
10 OONTINUE DO 20 1G=1 ,NGAUS
c 1POS=(1G-1)+ND
RETURN JPOS=1P0Se2
BD XPOS5=9 .9
C YPOS~d .0
c DO 19 Vw1 NO
C.‘.‘.."..l.0"..‘0."‘.‘.."‘."...O....‘..‘.C...‘...0....‘...‘...‘.‘....... mEm)EL( IV,ML)
C SHAPE( 1V)=QGHAPE (NROW, 1POG+1V)
C W-MWEEIV%OX P{DE;
SUBROUT INE FORMK YPOSmYPOSASHAPE ( 1V) »Y (NODE
C+ DNXDT ( TV )= TONXDT (NROW, 1POSH IV
C Colcuiate the gioboi etiffness by sumning contributions from eoch 19 CONT INUE
c element stiffness. XSTPOS( 1G, NUMEL )exPOS
C Major variobles: ELK =element stiffness BLIB =strain operator [B) YSTPOS( 1G, NUMEL )=YPOS
C GLOBK =system motix [K] WIW2=TWIW2 (NROW, IG)
[ CALL BFORM
IMPLICIT DOUBLE PRECISION (A, 0-W) Cc
PARAMETER ( IGL=880, JGL=131 ,KGL=66) C ese Store the strain rate operator
M /OONS/ NTRI ,NQUAD ,NINCS ,NNOD  KS 1 ZE ,KSBW,NNOD2 ,NWAT , IDUM(4) , C
GAMMA P BETA NST NST ,NSEG ,NODSEG,DELTAT 00 12 I=1,NO
m NS/ X(IGL/Z) Y(16L/2), 019( IGL) ,FORCE(IGL), (=2e]
TPOS(4,500) , YSTPOS( 4, 500 K=l -1
(X)Nm JELEW/ N:DELéB ,500) NGAUSS (590) .NOTEL(500) , MDELéSOO) BLIB(JPOSH , NUMEL ) =ONXDX ( |
NOTOOL(580) ,NOQCOL(50@) .D1 FFOP(9,500) ,BLIB( 144 ,500) , eLlangL,ML;-owovﬁlg
+ PRINC(16, 500; 12 CONT INUE
COMON MATS/ EM(9) . PM(9 ,TM(Q),F&{N(Q;.ETNA(Q).ETAN,HYP(Q) CALL ELSTIF
COMMON /STIF/ ELK(18,18) ,GLOBK(IGL ,JGL OONT INUE

COMON /GAPT/ SJ.WE(B;.N@S(B).WXDT(B),YSHAPE(G.MS).
+ TONXDS(6.36) . TONXDT (6. 36) . TWIW2(6,6) ,OSHAPE(3.72),

(’)003

¢*¢ Logd the element stiffness into the global stiffness



CALL LOADK CALL BFORM

WIW2eOW W2 (NROW, 1G)

C 00 99 1=1,ND
C see Evoluote the volumetric component =21
C K=L—-1
CALL MATNUL(ELK, 18,18,18,18,ITEST) 8LlB§JM.ML;MX§I;
DO 112 (G=1.3 BLIB(JPOS+L, NUMEL )=ONXDY (1
PO [Ge2 99 QONTINUE
T=PLACET(1POS~1,3) CALL. ELSTIF
S-PUCET&lP(B.J) 60 OONT INUE
CALL DTSHAP C :
CALL BFORM o} eee Lood the element stiffness
WiwW2et | TRY(1PUS, 3) C
CALL PENALT CALL LOADK
110 CONT INUE 70 CONTINUE
C ENDIF
CALL LOADK c
C RETURN
32 OONT INUE END
ENDIF C
Cc Cc
C ees Quadrilaterol Elements (0000000000000t ttenersitsteesstonttarttectaststietttsdststseseetstsdeensnsssess
C C
[F(NQUAD.GT.Q) THEN Cc
NO=8 SUBROUT INE PREK
NO2=NOe*2 Cc
NO1=NO2--1 C+
: 00O 79 1EL=1 ,NQUAD C Evaoluate the bondwidih, gouss quadrature points, the shape ’
C Cc functions aond their derivatives.
c eee [nitiolise C Mojor voriobles: KSIZE mbondwidth
c C TSHAPE, DTSHAP =triangie shope fns.
CALL WML$ELK.18,18,1B.IB.ITEST) [ QSHAPE, DOSHAP mquad shape fns.
NUME L=NOQEL( TEL) c C melosticity motrix [qu
MAT= [ TYP(NUMEL) C-
ETA:ET#M§MAT) IMPLICIT DOUBLE PRECISION (A~H,0-W)
IF(ETA.EQ.0.000Q) THEN PARAMETER( IGL=888, JGL=131 KGL=66)
FACT=ETAN M /COONS/ NTRIT ,NQUAD ,NINCS ,NNOD,KS1ZE ,KSBW , NNOD2 ,NMAT , IDUM(4) ,
ELSE GAMMA PI ,BETA NST,NS! NSEG, N'.DSEG DELTAT
FACT=ETASETAN M /ELew *(DEL}B 5&0) M;AUSS(W) DOTEL(M) WIL}SOO)
ENDIF , + NOTOOL (500) ,NOQCOL (50@) 01 FFOP(9,500) .BL18{ 144, 500) ,
NGALS=NGAUSS (NUMEL ) + PRI?C(!G,SGO;
NROW=NOQOOL ( 1EL) . COMON /MATS/ EM(9) .PM(9 .TM(Q).W(Q;.UM(Q).UM.!TYP(Q)
(o} COMMON /STIF/ €1X(18,18),GLOBK(IGL, JGL
o} see Numerically integrate CXM(N /GAPT/ S, T,SHAPE(8) .ONDS(8) ,DNDT(8), TSHAPE(6, 36) ,
Cc TN(DS§6 ,36), TW(DTEG,JG;.N1VQEG.6;.M%J.72;.
DO 60 1G=1,NGAUS + QONDS(3,72),Q0NDT(3,72) QN IW2(3,9) , WEITRI(12,6),
1POSm(1G-1)+NO + WEIQAD(18,3) ,PLACET(12, 6) PLACEQ(18,3) ,PLACEL(3) ,WEILIN(3)
JPOS [POSe2 . COMMON /VARS/ COM6(21) ,B(3. \8) B87C(18,4), ICDM(S) iG
XPOS=Q . @ DIMENSION NOGT(6) .NOGQ(3) ,NOD(6)
YPOS=9 . @ C
00 50 V=1 NO [ ese Colculate semibondwidth from max nodal difference
NODE=NODEL ( 1V, NUMEL) C
SHAPE ( 1V)=QSHAPE (NROW, 1POS+]V) ITEST=0
mos:xmsos-w)E}lv;-xEr(DE; MAX=0
YPOS=YPOSASHAPE(1V) oY (NODE Cc
Mélv;mém.lmlvg IF(NTR].GT.@) THEN
DNXDT (1V)=QDONOT (NROW, 1POS+ 1V 00 3@ IEL=1 NTRI
50 CONT INUE NUMEL=NOTEL( TEL)
XSYPOS§IG.ML;-XPOS 00 20 J=1.5
YSTROS( [G,NUMEL )=YPOS 1STm) 41

NOD1=NODEL (J, NUMEL )



D0 10 K=IST,6 TPOS=SPOS~1

ID1F=]ABS{NOD1-NODEL(K ,NUMEL)) S=PLACET§SPO$M3NB§
MAX=MAX@( |D1F MAX) T=PLACET (TPOS ,NGAUS
19 OONT INUE w1=WElTRl§SP(5,M3AUS;
20 OONT INUE W2=WE [ TRI ( TPOS ,NGAUS
3 OONT INUE CALL TSHAFN
ENDIF CALL OTSHAP
[ 1POS={1G-1)+6
IF(NQUAD.GT.Q) THEN D0 210 1v=1.6
DO 70 1EL=1,NQUAD JPOS=IPOSHV
NMEL=NOEL( TEL) TSHAPE (NOP , JPOS )=SHAPE( 1V
) 60 Jet 7 TONXDS (NOP, JPUS )mONXDS ( 1V
15Tl 41 TORXDT(NOP , JPOS J=ONDT ( 1V
NOD1=NODEL (J, NUMEL) 210 CONT {NUE
DO 50 K=15T1,8 TWIW2(NOP | |G )= 1
1D1F=TABS(NOD1-NODEL (K ,NUMEL ) ) 220 CONT INUE
MAX=MAXB( ID1F, MAX) 230 OONT INUE
50 CONTINUE ENDIF
60 OONT INUE C
70 CONT INUE C sese Evaluate quodrilateral shope fns ond deriv
ENDIF C
c 1F(NQUAD .GT .@) THEN
KSBN=2+ (MAX+1) NOGQ( 1)=4
KS1ZEx2 oK SBW-1 NOQGP=1
IFEMAX‘E0.0) CALL CRASH DO 190 TEL=1,NQUAD
IF(KSIZE.GT.JGL) CALL BADLWK NUMEL=NOQEL(1EL)
C NGAUS=NGAUSS (NUMEL )
C ses Eatablish gouss points 00 170 IMP=1,NOQGP
C : 1F(NOGQ( IMP) . EQ.NGAUS) THEN
CALL GAUSSQ NOQOOL ( 1EL)=IMP
C GOTO 190
C «ss Evaluate triangular shape fns ond derivs ENDIF
C 179 OONT INUE
IF(NTR1.GT.@) THEN NOQGP=NOQGP+ 1
NOGT(1)=6 moo(mocpg-mws
NOTGP=1 NOQOOL ( TEL )=NOQGP
C 190 OONT INUE
C esa Fatablish the no. of sets of qouss puints used in the mesh and C
C ess f10g sach with NOTOOL DO 260 NOP=1 NOQGP
C NGAUS=NOGQ(NOP)
DO 150 {EL=1,NTRI LOOL=1
NUMEL=NOTEL (1EL) [F(NGAUS . EQ.9) LOOL=2
NGAUSsNGAUSS (NUMEL ) DO 250 1G=1 NGAUS
DO 130 IMP=1 NOTGP SPOS=2¢1G
IF(NOGT( IMP) . EQ.NGAUS) THEN TPOS=SPOS-1
NOTCOL( 1EL Y=iMP S=PLACEQ(SPOS, LOOL
G010 150 TuPLACEO§TPClS,L(X)L;
BDIF . W1=WE [QAD(SPOS . LOOL
130 CONT INUE MIQADETPCS.LCDL;
NOTGP=NOTGP+ 1 CALL QSHAFN
ch(erPgchus CALL DQSHAP
NOTCOL ( EL )=NOTGP POS=(1G-1)e8
150 COONT INUE DO 240 Ive1.8
C JPOS [POSH1V
o] ses For each set of gouss points evaluate shapes ond derivs CSHAPE (NOP, JPOS )=SHAPE ( IV
c QONXDS (NOP , JPOS ) =DNXDS ( IV
00 230 NP1 NOTCP QONDT (NOP, JPOS )=DNDT( IV
NGAUS=NIGT (NCP) 240 CONT INUE

D0 220 1G=1 NGAUS ONIW2(NOP, G )= 1 eW2
SPOS=2+1G 259 CONT INUE



260 CONT INUE
BDIF

279 RETURN
BD

C
C

CO....‘....‘..QC‘......‘.‘tt0...0.‘.‘0...“.0....."0‘0..‘0‘.0..0...0.....‘.

SUBROUTINE GAUSSQ

Set up the goussion integration points.

(?OOOQO oo

IMPLICTT DOUBLE PRECISION (A—H,0-W)
COMON /GAPT/ m§1385; .wznm&
+ PLACEQ( 18.3) .PLACEL(3) .WEILIN(3)

sss Set up triongles

[sXeXe)

PLACET}! .1%4,33333333333333300
PLACET(2.1)=PLACET(1,1)

G1=0 . 66666666666666 7D0
G2=0.16666666666666 700
PLACET(1,3)=G1
PLACET(2,3)=G2
PLACET(3.3)=G2
PLACET(4,3)=G1
PLACET(S, 3)=G2
PLACET (6. 3)=G2

Gl 600

G20 200

PLACET(1 ., 4 -PMCCI&!,I
PLACET(2, 4 )aPLACET (1 1;
PLACET(3,4)=G1
PLACET(4,4)=G2
PLACET(5, 4)=G2
PLACET(6, 4)=G1
PLACET(7, 4)=G2
PLACET(8,4)=G2

G1=0 . 81684757298045900
G2=0.09157621350977100
G3=0. 1081030 1816807000
GA=Q . 4459484909 1596300
PLACET(1,6)=G1

PLACET(2.6)=G2

PLACET(3.6)=G2

PLACET(4,6)=G1

PLACET(S
PLACET (6
PLACET(7
PLACET (8
PLACET(9
PLACET(

PR8Eas

2.6

Major variables: PLACET, WEITRI =gouss points ond weights for trigngles
PLACEQ, WEIQAD =gouss points and weights for quods

12,6) WEIQAD(18,3) ,PLACET(12.6).

[oXoXe]

OO0

o3

OOOS

PLACET?H.G;-(‘A
PLACET(12,6)=G4

see Set up quadrilaterals

G1=-0.577350269189626D0

G2=-G1
PLACEQ(1,1)=G1
PLACEQ(2.1)=G1
PLACEQ(3, 1)=G1
PLACEQ(4,1)=G2
PLACEQ(S, 1)=G2
PLACEQ(6. 1 )=G1
PLACEQ( 7, 1)=G2
PLACEQ(8. 1)=G2
G1=-9. 77459666924 148309
G2=0.000

G3=G1
PLACEQ(1,2)G1
PLACEQ(2,2)=G1
PLACEQ(3.2)=G1
PLACEQ(4, 2)=G2
PLACEQ(5,2)=G1
PLACEQ(6.2)=G3
PLACEQ(7,2)=G2
PLACEQ(8, 2 )=G1
PLACEQ(9,2)=G2
PLACEQ(10,2)=G2
PLACEQ(11,2)=G2
PLACEQ( 12,2

PLACEQ(17,2)=G3
PLACEQ( 18, 2)=G)

*e+ Set up triongle weights

WEITngl,I =0 500
WEITRI(2,1)=0.500

DO 19 1=1.6

WEITRI(1.3)=. 1666666666666667D0
OONT INUE

WElTRIéI.d;-—O.ZBIZSDO
WETTRI(2,4)eWEITRI(1,4)
DO 20 =3.8

WETTRI(1,4)=. 2604166666666667D0
CONT INUE

DO 30 1=1,6
WEITRI&I .6)=.5497587182766090-1

WEITRI(146,6)=0. 111690794839005500
CONT INUE

e+ Set up quadrilateral weights



00 58 I=1,8
WE1QAD(1,1)=1.a00

50  CONTINUE
C
G1=0 . 55555555555555600
G2=0 . 88888888883888300
G3=G1
WEIQAD(1,2)=G1
WEIQAD(2,2)=G1
WEIQAD(J,2)=G1
WEIDAD( 4, 2)=0?
WLAN(S, 2 )=
WEIQAD(6.2)=G3
WEIQAD(7,2)=G2
WEIQAD(8,2)=G1
WEJQAD(9,2)=G2
WEIQAD{19,2)=G2
WEIQAD(11,2)=G2
WEIQAD(12,2)=G3
WEIQAD(13,2)=G3
WEIQAD(14,2)=G1
WEIQAD(15,2)=G3
WEIQAD(16,2)=G2
WEIQAD(17,2)=G3
WEIQAD(18,2)=G3
[
RETURN
END
C
o}
C‘....'.......‘.....“-“.........‘...O‘.....’..‘...‘..O.......‘...“.....'..
[
C
SUBROUT INE  TSHAFN
C
Ce
C Calculate the ahape funclions af o triangutar element
C-
IMPLICIT DOUBLE PRECISION (A-H,0-W)
COMWON /GAPT/ ST, SHAPE(8) ,00M7(1633)
C
P=1.000-5-T
SHAPE( 1)=2.000¢5¢5-S
SHAPE(J)=2.00QeTeT-T
SHAPE(5)=2.0D0ePeP-P
SHAPE(2)m4 . 000eSe T
SHAPE (4 )wd  @0Qe ToP
SHAPE( 6 )=d , QDD SeP
C
RETURN
END
C
9
C000000000000000000000000000000000000000000000000000000000000000000000000000
(o}
Cc
SUBROUT INE QSHAFN
C ey
C+
C Calculote the quodrilateral shape functions.

[

IMPLICIT DOUBLE PRECISION (A-H,0-W)
COMON /GAPT/ S, T,SHAPE(B) ,00M7(1633)

[
S2=5+2.000
T2=T+2.000
SS=GeS
TT=TeT
SST=5Se T
STT=SeTT
ST=Gel

C
SHAPE (1 )= (=1, ODB4ST4SSHTT-SST-STT) /4 . 000
SHAPE (2 )=(1.000-1-SS4SST) /2. 000
SHAPE(3)=(—1.0DO-ST4+SS+TT-SST4STT) /4. 000
SHAPE(4)=(1.000+S-TT-STT)/2.0008
SHAPE(S)=(—1 . 0D0+ST+SS+TT4SST+STT) /4.900
SHAPE(6)=(1.0D0+T-SS-SST)/2. 000
SHAPE(7)=(-1.000-ST+SS+TT4SST-STT) /4. 000
SHAPE(8)=(1.000-5-TT+STT)/2.000

c
RETURN
END

C

(o]

CO.‘O0.0000..‘00..0..0..0.0'.......".....0.‘...'..0.0‘.‘00..0‘..0..‘.‘..00...
(o4
C

SUBROUT INE DTSHAP
C
C+

C Evaluate the derivatives of the trianguiar shape functions,
C-

IMPLICIT DOUBLE PRECISION (A—H.O—W;
OCMVON /GAPT/ S, T,SHAPE(B) ,DNXDS(8) ,DNXDT(8) ,0MB(1617)

Tamd 00T
Seed ADDeS

O

[sXe K¢l

eee Derivatives w.r. t. s(xi)—coord

DNDS(1)=54—1 . 000
ONDS(3)=0 . 000

ONDS( 5 )=S44-T4-3 . 00Q
DNDS(2)=T4

ONXDS(4)=T4

ONXDS (6 )=4 . 0D0-T4—2 . @DQ+S4

see Derivotives w.r.t. t(eto)—coord

OO0

ONXDT(1)=0 . 000

ONXDT (3)=T4~1.000

DNDT (5)=544T4-3 . 000
ONXDT (2)=54

DNXDT(4)=4 , ADO-54—2. 000« T4
DNXDT(6) =S4

RETURN
BN

GO000000000000000000000000000000000000000000000000000000000000000000000800000
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SUBROUT INE DOSHAP + QNS (3,72) ,QONDT(3,72) ,QWIW2(3,9) WEITRI(12,6),

C e +  WEIQAD(18,3) ,PLACET(12,6) ,PLACEQ(18,3) ,PLACEL(3) ,WEILIN(J;
C+ OOMMON /VARS/ W1W2,DETJ ETA,C2,FACT ,DNXDX(8) ,0NXDY(8) .B(4,18) .,
o} Calculote the derivatives of the quadriloterol shape functions. + BTC(18,4) ,NO,NGAUS, ICASE ,NUMEL ,NROW, 1G
(o o}
IMPLICIT DQUBLE PRECISION (A—H.O—w% 1TEST=0
OOMMON /GAPT/ S, T, SHAPE(8) ,DNXDS(8) ., ONXDT(8) .COMB(1617) c
C C ess Calculate the Jacobian
TTmlel c
S55eS JAC(1,1)=0.000
STwSel JAC(1,2)d . 000
T2=2.000e 1 JAC(2,1)=Q.000
S2=2.000S JAC(2,2)=0.000
ST2=2.00Q+ST DO 12 INOD=1,NO
[ NODE=1ABS(NODEL( INCD ,NUMEL))
[ ess Derivatives w.r .t s(xi)—coord XNOD=X (NOOE
c YNOD=Y (NODE
DNXDS( 1)=(S2+T-ST2-TT)/4.000 JAC(1,1)=JAC(1,1)+ONXDS( INCD) »XINOD
DNXDS(2)=ST-S JAC(1,2)=JAC(1,2)+0NXDS( INCD) « YNOD
DNXDS(3)=(TT-ST2-T+52)/4 . 000 JAC(2.1)=JAC(2.1)+ONXDT( INCD ) « XNOD
DNXDS ( 4 nE!.ﬂ)O—TI)/L’.M JAC(2,2)m0AC(2, 2)+ONDT ( INDD) « YNOD
ONXDS(5)=(ST2+TT+52+T) /4 @00 10 CONTINUE
ONDS(6)=-ST-5 C
DNXDS (7 )=(S2-T+ST2-TT) /4. @00 C ess Evaluate determinant ond inverse
DNXDS(8)=—DNXDS(4) C
C DETJ=JAC(1,1)eJAC(2,2)JAC(1,2)eJAC(2,1)
c sse Derivatives w.r.t. t(eto)—coord JACINV(1, )= JAC(2,2)/DETJ
C JACINV(1,2)=~JAC(1,2)/DETY
ONXDT (1)=(S+T2-S5-5T2) /4. 000 JACINV(2,1)=JAC(2,1)/DETY
DNDT(2 -%ss-‘,eoe)/z.ooo JACINV(2,2)= yAaC(1,1)/DETY
DNXDT (3 )=(T2-S+ST2-SS)/4.000 C
ONXDT( 4)=-ST-T C ese Store the inverse Jacobian
ONXDT(5)=(SSHST2+5+72)/4.000 c
ONDOT (6 )=-ONXDT ( 2) 1POSa([G-1)e4
DNXDT(7)=(T2-5+55-S12) /4.000 PRINC( [POS+1 ,NUMEL )wJACINV(1, 1
DNXDT(R)=ST-1 PRINC(1POS+2 NUMEL )=JACINV( 1,2
C PRINC(1POS+3 NMEL ) JACTNV(2 1
RETURN PRINC( 1POS44 ,NUMEL )=JACINV(2.2
2 ) o}
C o} eee Evaluote strain rate operator
[o c
Ot araeerrrttarrterecettteeretettitetesosnettottesenioionecssncentesestorsencessd D0 20 1=1,ND
c w@x&l;wﬁclwy.1;-m2|;+\1~:|w§1.2;-0&001’ l;
[ DNDY(1)=JACINV(2,1)«ONXDS( 1 )HJACINV(2,2 0W®T§l
SUBROUTINE BFORM 20 CONTINUE
C C
C+ RETURN
c Colculote the components of the strain rate operator (B]. (354]
C Mojor variobles: ONXDX, DNXDY =global derivatives C
[of DETY =determinont of Jocobian C
C_ CQ..O.......l.......‘.0.........................‘..0.....‘..0.......‘.‘...‘..‘
IMPLICIT DOUBLE PRECISION (A-H,0-W) Cc
DOUBLE PRECISION JAC(2,2).JACINV(2,2) Cc
PARAMETER( IGL=880, JGL=131 ,KGL=66) SUBROUT INE ELSTIF

COMON NCDS/ X(16L/2), Y(1GL/2) .DISP(1GL) . FORCE( IGL) , XOOM1 ( 4000)

COMVON /ELEM/ nm&gs.seo).m(see).mrEL(see).NoosLﬁsoe),
NOTOOL(500) ,NOGOOL(500) .0 | FFOP(9.500) .BLIB( 144 ,500) .
PRINC(16,500)

COMION /GAPT/ s,r.smpe(ag.wns(a).mmua),ch(s.x).

' TINTYS (R, 36) , TONXDT (6. 36)  TWIW2(6,6) ,ORWPF(3,72)

+

Calculote the element stiffness.

Major voriobles: DNXDX, DNDY =globol derivotives
ETA =element viscosity FACT w=penolty parameter
EIK =alament atiffneas

++

COGO0000



IMPLICIT DOUBLE PRECISION (A-H,0-W)

PARAMETER( IGL=889, JGL=131 ,KGL=66)

oc»/.\m JOONS/ NTRT,NQUAD NINCS ,NNOD  KSTZE ,KSBW,NNOD2 ,NMAT , IDUM(4) ,
GAMMA P1,BETA NST NST ,NSEG,NODSEG , DELTAT

oo»m /STIF/ EWK(18, 18) GLCBK(IGL JGL)

OOMVON /ELEM/ NODEL(8,589) ,NGAUSS(509) , mTEL(Sea).NCDSLESBO).

+ NOTOOL (589) ,NOQOOL (560) ,DIFFOP(9,509) ,BLIB(144,500),

+ PRINC(16,509)

mWON JVARS/ Wiw2 DETJ ETA,C2,FACT ,DNXDX(8) ,UNXDY(8) .B(4,18) .
BIC(18,4) ND NGALUS, ICASE NUMEL , IROW, 1G

C
C eee Initialise
C
1TEST=9
NO2=NDo2
CALL MATNUL?B.Q, 18,4,18, 1TEST)
CALL MATNUL(BTC,18,4,18,4,1TEST)
c
C eso Calculote the non-zaro components of [BT]{C1+42], both shear ond
C soo volumetric components can be integrated directly for the quods.
C
00 19 1= NO
L=2¢]
K=l—1
B(1.K)=D0DOX( 1
B(2.L)=0NDY(1
B(3.K)=ONDY (I
B(3,L)=ONDx (1
C
C eee Check for quodrilaterals
C
IF{NGAUS .£0Q.4) THEN
C
C see Chock for axisymmetric
C
IF(NST.EQ. 1) THEN
B(4,K)=SWE(I;/XSIPOS(1G.MML)
BIC(K,1)=8(1.K)2.800<ETA + (e}n,xgae(a,x))-rACT
BTC(L,1)= B(2.L)FACT
BYC(K,3)=8(3.L)=ETA
BIC(K.4 =924.Kg'2.0008°UA + §B 1.K -08?4,K oFACT
BIC(K.2)= B I,K§+B 4 x%%.mw
BIC(L.2 =B$2,Lg°2.600~ETA + B(2,L)eFACT
BTC(L.3)=B(3.L)°ETA
BTC(L.4)= B(2.1)eFACT
ELSE
BTC(K,1)=8(1,K)*2.800ETA + B§ goFACT
BIC(L.1)= L)eFACT
BTC(K,3)=8(3,K)eETA
BIC(K.2)= B}I,K;«FACT
BTC(L.2 =8§2.L§°2.000-ETA + B(2.L)eFACT
BTC(L.3)=8(3.L)-ETA
ENDIF
ELSE
BTC(K, 1)=B(1.K)e2.0D0-E£TA
BTC(K,3)=8(3.K)*ETA
BYC(L.2)=B(2.L)02.0D0-ETA
BIC(L,3)=B(3.L)ETA
FNDIF

10 oinre

[
[ eoo Calculote mmerical integration operator
C

IF(NST.EQ.1) THEN
DV=INIW2eDETJo2 . 6D89eP1 s XSTROS( 1G, NUMEL)
ELSE
DV=1W26DETS
NI
DIFFOP( 1G, NUMEL)=DV

coo Evaluate tha alemant atiffness

[¢XeXe]

00 40 NROW=1 ND2
00 32 NCOL=NROA NO2
Ouv=9.0
DO 20 J=1,4
DUM=DUMHBTC (NROA, J ) eB(J ,NOOL)
20 COONT INUE
ELK(NROA , NOOL )=ELK (NRON , NCOL )+0UN= DV
OONT INUE
OCNTINUE

O S g

RETURN
20]

[oXg’

C00000000000000000000000000000000000000000000000000000000000000008000000000CTT

[

C
SUBROUT INE PENALT
c
C+
C Calculote the penalty function contribution to the element stiffness.
C Major variables: FACT =penalty parameter ELK =element stiffness
C-
IMPLICIT DOUBLE PRECISION (A-H,0-W)
PARMETER( 1GL=889, JGL=131  KGL=66)
OOMMON /OONS/ NTRI ,NQUAD , NINCS ,NNOD, KS | 7E  KSBA, NNOD2 , NVAT , 10UM(4) ,
+ GAMMA P BETA NST NS] NSEG,NODSEG, DELTAT
OOMMON /STIF/ EWK(18,18),GLOBX(IGL,JGL)
M /GAPT/ ST WE(ei ,ONDS(8) .ONXDT(8) , TSHAPE(6,36) ,
TONXDS(6 .36 TDN)CDTES JGg TW1W2§6 6; LQSHAPE(3,72),
QONDS(3,72) .AONDT(3,72) ,QVIW2(3,9) ,00M2(258)
OZMJDN /VARS/ WIW2 DETJ ETA,C2,FACT ,DNDX(8) ,0NDY(8), B§4 18).
BTC(18,4) ,NO,NGAUS ,ND2 ,NUMEL . NROW, IG
(o4
C cos Reduced intagrotion of tho volumatric component
(o
ITEST~9
o
C eoe Initiolise
(o}
CALL MATMJL&BA.!BA,!B,ITEST)
CALL MATNUL(BTC,18,4,18,4,ITEST)
C
C see Colculote non-zero componants of the stiffness
C
DO 19 [=1,ND
L=20]
K=2e]-1
B(1,K)=0Dx(1
822'L§MV§|§
B(Y.K)=mY (1



B(3,L)=DNOX(1)
IF(NST.EQ.5) THEN
B(4.K)=SHAPE(1)/XSTPOS( 1Ge2-1 , NLMEL)

BTC(K,1 -(B 1.K)+B(4 K))oFACT
BTC(L.1)= 2 L)-FM:T
BTC(K,2)= BTC
BIC(K,4)= BTC(K
BIC(L.2)= BIC(L
BIC(L.4)= BIC L l)
ELSE
BTC(K. 1)=B(1.K)eFACT
BIC(L,1)=B(2,L)+FACT
BTC(K,2)=8(1 K)eFACT
BTC(L,2)=B(2,L)+FACT
BNDIF
1@ OONTINJUE
C
Dv=0D1FFOP({ 1G, NUMEL )
C
[ sse Evaluote the element stiffness
C
DO 49 NROW=1 ,NO2
DO 30 NOOL=NROW,NO2
DUM=0 .0
DO 20 J=1.4
DUM=DUMHBTC (NROW, J ) »B(J . NOOL)
20 CONT [NUE
EUC(NROW , NOOL )=E LK { NROW , NOOL ) +DLMe DV
30 CONT INUE
490  CONTINUE
o
RETURN
D
C
C
c..".""t......0...“0'0.0.0.....‘.0‘.0‘l...0.'Q'OO.‘t..'...‘...‘..".."..'
C
C
SUBROUT INE {LOADK
C
C+
C Load the element stiffness into the global atiffness motrix.
C Mojor variables: ELX =element stiffness NODEL =element nodes
C GLOBK =system matrix [K]
c_
IMPLICIT DOUBLE PRECISION (A-H,0-W)
PARAMETER( 1GL=889, JGL=131 ,KGL=66)
OOMVON /OONS/ NTRT ,NQUAD ,NINCS ,NNOD ,KS1ZE ,KSBW ,NNOD2 . NMAT , IDUM(4) ,
+ GAMWA P ,BETA NST NS NSEG,NODSEG,DELTAT
COMVON /STIF/ ELK(18,18) ,GLOBK(IGL,JGL)
COWMON /VARS/ OOMB(165) ,NO, NGAUS ,NO2 , NUMEL , NROW,, 1G
COWON /ELEM/ WEL§8.500),MJSS(509).BDTEL(500) ,WEL§W),
+ NOTOOL(500) ,NOQOOL(S500) .DIFFOP(9,500) ,BLIB(144,500) .
+ PRINC(16,500)
C
C see Fill in lower triangle of element stiffness
C

DD 50 [FiL=1 ND2
) 50 JrlielFiL N2
FURGIIL TE el EK( I VL)

CONT [NUE.

ses Lood the element stiffness into the banded system motrix

000%

DO 10 [=t NO
100L=2+NODEL (I, NUMEL ) —2+KSBW
1ELKm2e1-2

eee Evaluate the column number of the two dof

[oXe Ny

DO 20 J=1,2
JOOL=100L + J
JEWK=1EW + J
00 30 K=1 NO
1ROM=2 ¢NODEL (K, NUMEL )-2
KELK=20K-2

ese Evaluate the row number of the two dof and reduce the column

OO0

00 49 L=1,2
KROW=[ROW + L
KOOL=JOOL ~ KROW
LELK=KELK + L
GLOBI (KROW, KOOL ) =GLOBK (KROW, KOOL J4+ELK (LELK , JELK)

CONTINUE
CONT INUE
OONT INUE
OONT INUE

5388

RETURN
END
C
C
Ce000000000000000000000000000000000000000000000000000000000000000000800000¢04
C .
c
SUBROUT INE BOUND2

ey

Enforce the Dirichlet boundary conditions exactly by adding each known

component to free nodes in the force vector.

Mojor variobles: NFIX w=no. of fixed dof DFIX wknown volue
GLOBK wsystem motrix [K] FORCE wforce vector {fj

OOOOO0OO0

IMPLICIT DOUBLE PRECISION (A-H,0-W)

PARAMETER( IGL=880, JGL=131 KGL=66)

COMMON /OONS/ NTRT ,NQUAD ,NINCS ,NNCD , KS I ZE ,KSBW , NNOD2 . NVAT | 10UM( 4) ,
+ GAVWMA P ,BETA ,NST ,NS1 ,NSEG,NODSEG ,DELTAT

COMMON /STIF/ ELK(18,18),GLOBK(IGL,JGL)

COMON /NODS/ X(1GL/2) ,Y(16L/2) ,D1SP(1GL) ,FORCE(IGL) ,XOOM1(4000)
COMWON /FIXT/ DFIX(2,50@) ,NOFIX(500) , IFLAG(2,508) ,NF1X ,NEXT ,NSTOP

IF(NFIX.EQ.Q0) RETURN

ees Subtract the known values from the force vectlor

OO0 O

DO 19 =1 NFIX
00 19 J=1.2
he=2eNOF [X( 1 )4+J-2
IF(IFIAG(J. 1) EQ 1) THEN



[~

GO0 =

(0000000008 000000000000000000000000EtE0IttsIttteronitasonsttcssscesnssiscenes

C
[

+

[eXeXsXeXeXeXnXel

DO 20 NOD=1,NNOD2
JOOL=KSBWHK-NOD
IF(JOOL.GT.@. AND.JOOL . LE .KSIZE)

+ FORCE (NOD )=FORCE (NOD )~GLOBK (NOD . JOOL ) #DF 1X(J, 1)

CONT INUE.
ENDIF
CONT INUE

ess |nsert the exoct solution

00 25 I=1 NFIX
DO 25 J=1,2
K=2eNOF [X( 1)44-2
IF(IFLAG(J, 1) .EQ.1) THEN
DO 38 1ROW=1 NNOD2
JOOL=K SBWH(— 1 ROW
[F(JOOL.GT.9.AND.JOOL. LE.KSIZE) GLOBK( IROWN, JOOL )=@ . 000
CONT INUE
DO 4@ 100L=1 KSIZE
GLOBK (K, 100L)=0.000
OONT INUE
GLCG(EK,KSBN)=1 .08
FORCE(K)=DF IX(J . 1)
ENDIF
CONT INUE

RETURN
END

FOROUTING [X1Y4S

Calculate the contributions to the global force vector for body
forces octing in the positive y—direction. Note that grovity is
1.0 for the wove-test mode!.
Mgjor voriables: RHOM =density of moterial type

FORCE =force vector |Fi

IMPLICIT DOUBLE PRECISION (A—H,0-W)
PARAMETER(IGL=889, JGL=131 KGL=66)

oc»m /OONS/ NTRI ,NQUAD ,NINCS ,NNCD  KS T ZE ,KSBW,NNOD2 ,NMAT , [DUM(4) ,

GAMMA,P1,BETA,NST,NS| ,NSEG ,NODSEG , DELTAT

omm DS/ X(1GL/2) . Y(1GL/2) .DISP(IGL) . FORCE( 1GL ) . XOOM1 ( 400@)
COMON MATS/ EM(9),PA4(9) , TM(9) . RHOM(9) , ETAM(9) , ETAN. ITYP(9
COMON /ELEM/ MDEL§5.500),FGAUSS(500).%0TEL we),mc%m

+ NOTCOL (500) ,NOQCOL(50@) ,DIFFOP(9,500) ,BL18(144,500) ,
+ PRINC(16,500)

OOMMON /GAPT/ S, T ,SHAPE(B) ,DNXDS(8) ,DNXDT(8) , TSHAPE(6,36) ,

+ TDO@S§6.36 .TDO(DT?G,JG%.TW1W2§6,6;,OSHAPEEJ.72 .
+ QDNXDS(3,72) ,QONXDT(3,72) . OWIW2(3,9) WEITRI 12.6;.
+ WE1QAD(18,3) .PLACET(12.6) ,PLACEQ(18,3) ,PLACEL(3) WEILIN(3

IF(NTR1.GT.0) THIN

00 3 1Ei=] NIR(
NMLL=NOTEL(TEL)
MATel TYP(NMFL)

RHO=RHOM(MAT )

IF(ETAM{MAT) .EQ.©.0080) THEN
GRAV=1 0000

ELSE
GRAV=0 81000

MDIF

NGALIS=NGAUSS (NUMEL )

NROW=NOTOOL ( 1€L)

# LOADm—RHDSGRAV

OO0

ess Integrate the element weight to give the nodal forces

DO 20 1G=1,NGAUS
1POS=( 1G—1) 6
DV=01FFOP(IG, M.MEL)
00 10 INT=1,6
SHAPE ( INT)=TSHAPE (NROW, IPOS+INT)
NOD=NODEL ( INT ,NUMEL)
FORCE (2 +NOD )=GHAPE ( INT ) s FLOAD#DV4FORCE ( 2eNOD)
10 CONT INUE
20 CONT INUE
30 OONT INUE
EDIF

1F(NQUAD .GT. @) THEN
DO 70 [EL=1,NQUAD
NUMEL=NOQEL ( 1EL )
MAT=1TYP(NUMEL)
RHO=RHOM(MAT )
IF(ETAM(MAT ) .£Q.9.0000) THEN
GRAV=1 . D00
ELSE
GRAV=9 , R 1000
NDIT
NGAUS=NGAUSS (NUMEL )
NROW=NOQOOL ( 1EL)
FLOAD=-RHD*GRAV
DO 60 [0G=1,NGAUS
OV=DIFFOP(1G,NUMEL)
1POS=:(1G~1) 8
DO 50 INT=1,8
SHAPE ( INT )=QSHAPE (NROW, [POS+INT)
NOD=NCDEL( INT ,NUMEL)
FORCE ( 2NOD )=GHAPE( INT ) « FLOAD DV ORCE (2¢NOD )
CONT INUE
OONT INUE
OONT INUE
ENDIF

388

RETURN
END

C

C

Cor0000000000000000000000000000000000000000000000RE0000000 INEaEetteeEsetonsntssss
C
C

SUBROUTINE  FORMN

Calculate the convective operator {H] using the lotest velocities,
ond assuming the Boussinesq approx.
Mojor variables: FOUT mconvective operator {H] RMOM odensity

OO0OCGOO



o} DISP =current velocily solution {vi}

C-
IMPLICIT DOUBLE PRECISION (A-H,0-W)
PARAMETER( IGL=880, JGL=131 KGL=66)
OOMMON /OONS/ NTRI,NQUAD,NINCS ,NNOD ,KSTZE  KSBW,NNOD2 ,NMAT , IDUM(4)
+ GAMMA P BETA NST NS ,NSEG.NODSEG,DELTAT
OOMION  /NDDS/ X(IGL/Z).Y(IGL/Z{.DIS’§IGL),FCRCE(IGL),X(XN!(AOOO)
COMMON MATS/ EM(9),PM(9), TM(9) , RHM 9),ETAM§9).UAN.ITYP(9;
OOWON /ELEW/ "(DEL}B,T)OO).WLBS(SOB),N)YEL 500).@&2500 .
+ NOTCOL (500) NIOODL (500) ,DIFFOP(9,500) BLIB(144,500) ,
+ F’Rlb{:(lﬁ.w@;
OOMMON /FIXT/ DFIX(2.500) ,NOF [X(500), IFLAG(2,500) ,NF I X ,NEXT NSTOP
OOMMON /STIF/ ELK(18,18) .GL(B((ICL.JGL;
OOMMON AVISC/ DSTORE(12,900) ,FINIT(IGL),FOUT(IGL) , AMASS(IGL)

OOMMON /GAPT/ S_T,WE(B%.M’S(B).MT(B),TWE(S..’SG).
+ TONDS (6,36 .TDDCDTﬁG,J;G;,TW1W2§6.6;.0§WEE3,72;.
+ GNXDSE}JZ LQDNDT(3,72) OWIw2(3,.9) WEITRI(12,6),
+ WEIOAD(1B,3).PLACET(IZ,G),PLACEO(!B,J).PUCEL(S).WEILIN(J;
OOMMON /VARS/ Wiw2 ,DETJ ,RHO,C2, FACT ,DNXDX(8) ,ONXDY(8) ,B(4,18),
+ VEL(2),DVEL(2,2),00M3(66) ,NO,NGAUS ,NO2 ,NUMEL ,NROW, G
C
C ses Initialise
C
ITEST=0
RHO=RHM( 1)
CALL VECNUL(FOUT, IGL.NNOD2, ITEST)
TF(NQUAD .GT .0) THEN
DO 19 1EL=1,NQUAD
NO=8
NO2=NQO+ 2
NUMEL=NOQEL([EL)
NGAUS=NGAUSS (NUMEL )
WNHDI.§IEL)
CALL MATNUL(ELK 18,18, 18 18 | 1EST)
00 20 1061 NGALS
IPOS=(1G-1)+ND
DV=OIFFOR(1G.NUMEL)
CALL VE(NJL§VEL.2,2, 1TEST)
CALL MATNUL(DVEL.2.2,2.2,1TEST)
C
Cc see Unload the shope functions ond derivotives ot the gouss
C sse point, calculiate the velocity and it's derivative
(o}
0O 30 NOD=1,NO
NODE=NODEL(NOD , NUMEL )
SHAPE (NOD )=QSHAPE (NROW , [POS+HNOD)
DNXDX (NOD =BLIB§IP(5~2+2‘M])—1 JNUMEL
DNXDY(NOD )=8LIB( 1POS*2+42eN0D NUMEL
VELE1;=VEL§1;+SHAPE§MDg'Dl9§2»mE~I)
VEL(2)=VEL(2)+SHAPE(NCD ) «D 1 SP(2¢NODE)
DVEL(1, 1)=DVEL( 1, 1)+ONXDX(NOD) «DISP 2»0)5—1;
OVEL(1,2)=0OVEL(1,2)+ONXDY(NOD) ¢D1SP(2¢NODE-1
OVEL(2,1)=DVEL(2, 1 )+ONXDOX(NCD ) «D ISP Z'NZDE;
DVEL(2,2)=DVEL(2,2)+0ONXDY(NCD)«D[SP(2+NODE
3 CONT INUE
Cc
[0 see [ntegrate the velocity—derivative product to give the
[ ees convactive operator
C

0O 40 NI=1 ,ND
NIUE=NLDEL(ND NML)
FQUT(2eNODE=1 )=F QLT ( 26NODE=1 )-R 0O+0Ve SHAPE(NDD ) »

+ ( DVEL(1,2)eVEL(2))
FangzomOE)uran(bm)E)mowwc(rm)o

+ (OVEL(2,1)eVEL(1) )

QONT INUE

20 OONT INUE

19 OONT INUE
ENDIF

IF(NTRI .GT.®) THEN
DO 60 1EL=1,NTRI
NOw6 ’
NO2=O# 2
NUMEL=NOTEL ( 1EL)
NGAUS=NGAUSS (NUMEL )
N?OIH\OTwLélEL)
CALL MATNUL(ELK, 18,18,18,18, ITEST)
00 7@ 1G=1,NGAUS
1POS=(1G-1) eNO
DV=O1FFOP( 1G,NUMEL)
CALL vscw%v&.z.z,nssn
CALL MATNUL(DVEL,2,2.2,2. 1TEST)

ese Unload the shape functions ond derivatives at the gauss
ess point, calculote the velocity ond it's derivotive

o000

0O 88 NOD=1 ,NO
NODE=NODEL (NOD , NUMEL )
ws%moidws(m, 1POSHNOD)
DMDX (NOD =818 wos-2+2-mo-1.w.&g
DAY (NOD ~BL1B( 1POSe242eN0D  ,NUMEL
thélg-VELﬁtgﬁwPE Noogoolspizo»mc—n
VEL(2)mVEL (2)+SHAPE (NOD) «01 SP( 24NODE )
DVEL(1, 1)=OVEL( 1, 1)+0NXDX(NOD) «D ISP 2-PG)E-1§
OVEL(1.2)=OVEL( 1, 2)+ONXDY (NOD) «D 1 SP({ 2¢NODE~1
OVEL(2, 1 }=OVEL(2. 1 }+DNXDX(NOD) «D1SP 2ormcg
DVEL(2, 2)=OVEL(2, 2 )+ONXDY (NOD} D 15P( 2eN0OE
OONT INUE

ses |ntegrote the velocity—derivotive product to give the
see force increment

00008

DO 99 NOD=1,NO
NODE=NODEL (NOD ,NLMEL )
FOUT (24NODE~1 ) =FOUT ( 26NODE—1 )—RHDDV e SHAPE (NOD ) »
+ (DVEL(1,2)eVEL(2))
FOUT ( 2¢NODE ) =FOUT ( 2¢NODE }-RHDDV s SHAPE (NOD ) »
+ (OVEL(2,1)eVEL(1))
OONT INUE
OONT INUE
OONT INVE
BNDIF

sse Ensure Dirichlet conditions

IF(NFIX.CT.@) THEN
DO 10@ I=1 NFiX
DO 100 J=1,2
K=2eNDF 1 X( | )4h)=2
ICIFLAG(S, 1) . EQ.1) FOUT(K)=@. 800
100 OONTINUE

coo gyg



ENDIF

[o
C see Multiply each component by the stability factor
C

N0 60 le1 N2

FOUT (1 )=FQUT (1) sGAMMASDEL TAT

600 OONTINUE
C

RETURN

(3,0]
c
C

(0004000000000 b000tsetstitsittcesactsststssttacssiesosrsesstetsesetscesssisntene
C
C

SUBROUT INE TIMSOL

+

Evoluate the time—dependent sotution to the Novier-Stokes' equations
using o predictor—corrector algorithm incorporating the free surface
of the fluid.
Major variables: GLOBK =system matrix [K]
DISP =current velocity jvi
AMASS =inertial term (M} FOUT =convective [H]
DPART, VPART, APARTa=particle displ, vel, and acc
DMESH, WESH, AMESH=mesh displ, vel, acc

FORCE =force vector {F{

0000000000

IMPLICIT DOUBLE PRECISION (A-H,0-W)

PARAME TER( 1GLwARR, JGL= 151 k(L =hA)

COMMOM /ONNS/ NTRT NGUAD NINCS NN, KSTZE KSEW NNOD?2  NVAT | 1(XM(4)

4 GAMA P I BETA NST NST NSEG NDOSEG DEL TAT

OCOMIN ANDDS/ X(1GL/2),Y(IGL/2) .DISP(IGL), FORCE(IGL) , XOOM1 ( 4009)

OOMWON /STIF/ ELK(18,18) ,GLOBK(IGL,JGL)

COMON /FRON/ GL(B(@ElGL.JGL;

COMMON /STF4/ GLOBKL(1GL,KGL ,rmceeﬁch),momv(ch)

OOMMON MATS/ EM(9) ,PM(9), TM(9) ,RHOM(9) . ETAM(9) ,ETAN, I TYP(9

COMON  /ELEM/ NOOELEB.see).wAss(soo).mTcL soe).moc%soo .
NOTCOL (500) .NOQOOL(500) ,D1FFOP(9,500) ,BL18( 144 ,500) ,

+ PRINC(16,500)

COMMON /VISC/ DST(FE(12,900),FlNlT(IGL).FCtH(IGL;.MMSS(IGL)

OOMMON /FIXT/ DFIX(2,500) ,NOF IX(500) , IFLAG(2,500) .NF I X ,NEXT ,NSTOP

OOMON AVARS/ WIw2 ,DETJ ,RHD,C2, FACT ,DNXDX(8) ,ONXDY(8) .B(4,18),

+ BTC(18,4) .NO, NGAUS ,NO2 ,NUMEL NSURF | IG

COMMON /T IMS/ ELSIZE(2,500) ,DELT NLOAD(IGL), TTOTAL

COMON MMOVE/ VPART(IGL) , WIESH(IGL) ,APARAM( IGL) , STRANS(IGL),

+ ATRMIS}IGL;.D{%(IGL).APART IGL) ,AMESH(IGL),

+ WESH2(IGL) ,DMESH2(IGL) . XOLD(IGL), YOLD(IGL)

DIMENSION DUMMY (1GL) , AMESH2(IGL).

+

NITER=1

ITEST=0

DELT=0.0
TTOTAL=0 .9

1T MP=20

| AR -
COMM-CAMMA«DF | TAT

ese Initiglise

OO0

CALL VECOUP(X, 1GL.XOLD, IGL.NNCO, ITEST)

OoOOWwm

OO0 OOOm—-

110

o OOOONOO 000 OO0 000

+

CALL VECOOP(Y, IGL,YOLD, IGL ,NNCD, I TEST)
CALL VECNUL(WESH, IGL ,NNOD2, I TEST
CALL VECNUL(VPART, IGL ,NNCD2, I TEST

CALL VECNUL{APART, IGL NNOD2, I TEST
CALL VECNUL(DMESH, IGL NNCD2, I TEST

CALL VECNUL(AMESH, IGL,NNOD2. 1 TEST
CALL VEONUL(FINIT, IGL NNCD2, I TEST
CALL MATNUL(DSTORE, 12,900,5,900, | TEST)
DO 5 1=1,NFIX

DO S J=1,2
K=2oNOF 1X( | )n)—2

1F(IFLAG(J, 1).EQ. 1) VPART(K)mOFIX(d4,1)
CONT INUE

ees Flag the Dirichlet conditions
DO 8 1ROM=1 ,NNOD2
DUMMY (TROW)=0. 2
DO t1 I=1 NFIX
DO 11 J=1,2
K=2eNOF IX( 1 )42
IF(K.EQ. TRON.AND . IFLAG(J.[) .EQ.1) DUMMY(K)=1.0

CONT INUE
QONT INUE

sss Start the time—stepping algorittm

00 20 IND=1 NINCS
ses Initiolise for this increment
DO 119 [=1 NNOD2
OMESH( 1 )=OMESH( 1 )+WIESH( | ) DELTAT+
(1.0-2.0+BETA) s AMESH( | ) sDELTAT#DELTAT /2.200
OMESH2( 1 )=OMESH( 1)
W?%milgmuno 1. O-GAMMA ) e AMESH( |
VPART (1 )=VPART (1)4DELTAT«(1.9-GAMMA) « APART ([
OONT INUE
ses Stort iterations for this increment
00O 3@ 1TER=1 ,NITER
sse Calculote the system motrix and apply the boundory conditions
CALL REMESH
ses Catculate the [L) tronsform motrix from the shape fns.
CALL FORML
ese Calculate the time—dependent term [M] from the shope fns.

CALL FORW
see Myltipty by the atobllity foctor

00 10 [ROW=1,NNCD2
1F(DUMMY(IROW) (EO.1.0) THEN



FORCE (TROW)=FORCEO( TROW) CALL VEQOOP(DISP, IGL,FINIT, 1GL,NNOD2, 1TEST)

DO Y JO0L=1 K5170 C VRIH’}?,\M) ITFR, VEIMAX ,OONVER
GLORK ( 1ROW, JCOI )=GLOPKA( |ROW, JCDL ) 100 FORMAT(" Tteration ', [2/15X, 'Max Velocity ' EB.2,10X,
13 OUNT INUE 4 ‘Remainder ' £7.2)
C ELSE C
C FORCE( 1ROW)=FORCEQ( IROW) sGAMMASDELTAT C sse Smooth this solution
C DO 12 JOOL=1,KS]ZE C
C GLOBK { IROW, JOOL )=GLOBK®( TROW, JOOL ) «GAMMADELTAT CALL SMOOTH
Cc12 OONT INUE 30 CONT INUE
C ENDIF C .
1@ OONT INUE C ese Form the ‘constont’ for the next time—increment
C Cc
C esee Form the left~hand side of the soln ‘corrector’ 99 DO 60 =1 ,NN0D2
Cc DMESH( 1)=0MESH2( |
c DO 15 TRIM=1,NNOD2 WESH( 1 )=WESH2( ]
C GLOBK ( TROW , KSBW)=GLOBK ( TROW, KSBW)+AMASS ( TROW) AMESH( 1 )=AMESH2( |
cis OONT INUE APART (1 -(DIS’(!)—VP»RT(I))/(DELTAT-GMM)
CALL GAURDN(GLOBK , IGL, JGL,GLOBKL , 1GL, JGL ,NNOD2 , KSEW, VPART (1)=DI1SP(1)
+ NROPIV, IGL, ITEST) 60 OONT INUE
C C
C sese Assemble the force vector, storting with the 'constant’ VPART Cc ses [nitiaglise the next time—increment
c C
CALL VECNJL?DISP. IGL,NNOD2, [ TEST) (o} INCRE=INC
CALL VECADD(DISP, IGL,FORCE, IGL NNOD2, I TEST) C CALL TIMINC
C DO 80 IROW=1 ,NNOD2 C ELT
9 DI?’(IR(N)-MQS(IR(W).WART(IRCMI) C 1F(GAMMA2 GE.9.5.AND .GAMMA2 . LE.1.08) THEN
(g7 CINILINGE C CAMMARGAMMA?
C C LTAT-DLLY
C see Form the convactive oparator C EISE
C C GAMMARG | 75
C CALL FORMN C IF(DELY.LY.DELTAT+10.0) THEN
(o} C DELTAT=DELT
C ees Form the out—of-balance force C ELSE
[ C OELTAT=DELTAT+10.0
o} CALL VECADD(DISP, IGL,FOUT, [GL,NNOD2, I TEST) C ENDIF
C C DELT=0.0
(o} ees Solve for the corrected velocities C COMA=GAMMADELTAT
C C ENDIF
CALL GAUSUB(GLOBK , IGL. JGL ,GLOBK L, IGL, JGL .NNOD2 , KSBW, C
c + NROPIV, IGL,DISP. IGL, ITEST) C sss Store the surface displocements for plotting
(o}
[ se¢ Update the mesh movement for this iterotion IF(INC.EQ. I0OMP) THEN
Cc DO 910 1=1,900
CALL FORMS DSTO?E(I&RF D=y(1)
DO 120 I=1,NNOD2 919 CONTINUE
WWESH2 (1 )mAPARAM( 1) *DISP(1)-ATRANS(1)eSTRANS(]) JOOMP= ] OOMP+19
AMESH2( | )=(WESH2(1)-WESH( 1))/ (DELTAT «GAMMA) 1SURF= ] SURF+1
OMESH2( 1 )=DMESH( [ }4DELTATDELTAT«BETA«AMESH2( 1) ENDIF
120 OONTINUE TTOTAL=TTOTAL + DELTAT
C 20 CONTINUE
[} ees Check for convergence between successive iterations [
C . WRITE(7,800) TTOTAL/3.16E10
VELMAX=Q 00O 800 FORMAT('@Sotution Duration' ,3X,FB.3,2X, 'ka’)
DO 49 =1 ,NNOD2 WRITE(6,600)
VEUMAXsUMAX L (VELMAX, ABS(DISP(1))) 600  FORMAT('OT ime—depandent solution campieted’)
49 OONT INUE CALL TIME(1,1)
CONVER=0 . @
DO 50 [=1 ,NNOD2 RETURN
CONVER=OMAX 1 (CONVER . ABS(D1SP (1 )-F INI T( 1)) /VELMAX) 0o
50 CONT INUE C
C

Cr0000000000000000000000000000000000000000000000000000000000000000008000¢000000

C



SBRCUTINE FORW

Calculote the lunped moss motrix [M], o diagonol matrix. The Bouasinesq
approximation assumes thot the reference moterial is the first quoted.
Mojor variables: AMASS =inertial term [M)

[»XeXeXsXeXelel

IMPLICIT DOUBLE PRECISION (A~H,0-W)

PARAMETER (|GL=880, JGL=131 KGL=66 )

cxwoN JOONS/ NTRI ,NQUAD,NINCS ,NNOD , KS1ZE , KSBW, NNCD2 ,NVAT , IDUM(4) ,
GAMA P1 BETA NST NS .NSEG ,NODSEG , DELTAT

oova MATS/ BM(9) ,PM(9) , TM(9) ,RHOM(9) . ETMEQ) JETAN, ITYP(Q;

OOMMON /ELEMW/ MI)ELEB ,500) ,NGAUSS(500) ,NOTEL(500) , M’DEL?

+ NOTCOL(50@) ,NOGOOL(500) .D1FFOP(9,500) ,BLIB( 144, 500) ,

PRINC( 16,500

omm JFIXT/ DFIX(2. 500; hDFlX(S@e).IFLAG(Z.SOO;.NFIX,ND(T,NSTG’

OOMMON AV1SC/ DSTORE(12.90@) , FINIT(IGL) , FOUT( IGL) . AMASS(1GL)

oo»m /GAPT/ S, T,SHAPE(B) ,DNXDS(8) .ONXDT (8) , TSHAPE(6,36) ,
moosgs .36 Tmmrée,se;.mvvass.sg.o&wcés.n;.

: QONDS(3, 72) . CONDT(3. 72) . aN1w2(3,9) WEITRI(12,6).

+ WEIQAD(18,3).PLACET{12.6).PLACEQ(18.3) PLACEL(3} . WEILIN(3)

see Initialise

[eXeXe

1TEST=0
RHO=RHOM( 1)
CALL VECNUL(AMASS, IGL ,NNOD2, 1 TEST)

IF(NQIAD GT @) THEN
00 10 [EL=t NIUAD
NO=8
NO2=NDs 2
NUMEL=NOQEL ( 1EL)
NGAUS=NGAUSS (NUMEL )
NROW=NOQOOL ( [EL)
EUMASS=0.0
DO 20 1G=1,NGAUS
1POS=( 1G—~1) eNO
Dv=01rrop(lc NUMEL)
SHAP=0. @
DO 30 NOD=1,ND
SHAP=SHAP4+QSHAPE (NROW , 1POS+NOD)
30 CONTINUE
£ LMASS=ELMASSHSHAP e RHO« DV
20 OONT INUE
D0 40 NOD=1,N0/2
I=¢~mEL§2-Pﬂ).ML)
J=NODEL ( 20NOD-1 ,NUMEL )
Ka2e ]
LaK~1
Ma2e )
Nt 1
AVASS (M) =AMASS(M) + CLMASS/36 a0
AMASS (N)mAMASS(N) ¢ FIMASS/36 a0
AVASS (K JaMASS(K) + ELMASSeB. 809/36, 200
AMASS(L)=AMASS(L) + ELMASSB.000/36.009
40 OONT INUE
10 OONT INUE
ENDIF

\F(NTR] .GT.8) THEN

70

[aXeXe] g 8

C
C

L0 5 1EL=1,NIR]
N6
NO2=ND2
NUMEL=NOTEL( 1EL)
NGAUS=NGAUSS (NMEL )
NROW=NOTOOL ( 1EL)
ELMASS=0 @
DO 60 1G=1,NGAUS
1POS=( 1G—1) *NO
0v=01rrop(10 NUMEL)
SHAP=0 .0
DO 70 NOD=1,ND
SHAP=GHAP+ TSHAPE (NROW, IPOSHNOD)
CONTINUE
ELMASS=E LMASS+SHAP s RHOS DV
OONT INUE
00 89 NOD=1,N0/2
1=NODEL (2¢NOD , NUMEL )
K=2e |
L=K-1
mgx;mw + ELMASS/3.000
AMASS(L)=AMASS(L) + ELMASS/3.@09
CONT INUE
OONTINUE
ENOIF

see Ensure Dirichlet conditions

IF (NFIX.NE.9) THEN
DO 90 [=1 NFIX
DO 90 J=1,2
K=2eNOF IX( | )+J~2
IF(IFLAG(J, ). EQ.1) AMASS(K)=0.0000
CONTINUE
ENDIF

RETURN
END

Crn0r0t00000000000000000000000000000000000000000000800008000000000000400000000008

C
C

OO0
()C)C)g

SUBROUT INE FORML

Colculate the tumped motrix [L], o diagonal motrix.
Mojor variobles: ATRANS =transliotion matrix [L}

IMPLICIT DOUBLE FRECISION (A-H,0-w)

PARAVE TER( IGL=888, JGLe131 KGL=66)

OOMVON /ONNS/ NTR1, NOUAD, NINCS  NNOD , KS | Z€., KSBW, NNOD2  NWAT , TOUM(4) ,

+ CAMMA,P1 BETA,NST NS| NSEG, NODSEG, DELTAT

oo /ELew/ M])EL%B .508) , NGAUSS(508) , NOTEL (500) , NOGEL (500) .

NOTOOL(500) ,NOQOOL (56@) ,D1FFOP(9.,508) . BLIB( 144, 500) ,

+ PRINC( 16, 5%;

COMON /F IXT/ DFIX(2.500) ,NOF 1X(500) , 1FLAG(2.,500) ,NF 1 X . NEXT ,NSTOP

CoMon /GAPT/ S, ¥ wc(e; .DNDS(8) RO (B) , TSHAPE(6., 36),
TONXDS(6,36) , TONXDT(6, 36) . TWIW2(6.,6) . OSHAPE(3,72) .



[sXeXe]

49
19

C

70

QONXDS(3,72) ODNXDT(3,72) OMIW2(3,9) WEITRI(12.6),

+
4+ WOIQAD(1R,3) PLACET(12,6) PLACFO(18,3) PLALEL(D) WETLIN(DY)

OOMMON MOVE/ VPART(1GL), WESH( IGL) , APARAM( IGL) . STRANS( IGL) .
+ ATRNG%IGL;,MSH(IGL),APART 1GL) , AMESH(IGL) .
+ WESH2( IGL) ,DMESH2( IGL) , XOLD( IGL) , YOLD( IGL)

ese Initiolise

ITEST=0
CALL VECNUL(ATRANS, IGL,NNOD2, | TEST)

1F(NQUAD .GT.@) THEN
DO 10 IEL=1,NQUAD

NO=8

NO2=ND 2

NUMEL=NOOEL( TEL)

NGAUS=NGALISS (NUMEL )

NROR=NOOCOL ( 1EL)

ELMASS=0 . ©

DO 20 1G=1.NGAUS
1POSee( [G~1) oD
DV=DIFFOP(1G, NUMEL)
SHAP=0 @
DO 3@ NOD=1.NO

SHAPSGHAP+OSHAPE (NROW, 1 FOSHNUD)

OONT INUE
£ LMASS=E LMASS+GHAP 4OV

CONT INUE

DO 40 ND=1,ND/2
1=NODEL (2¢NOD ,NUMEL )
J=NODEL(2eNOD—1 , NUMEL)
K=2e1
=K1
M=2e
N=—-1
ATRANS (M)=ATRANS(M) + ELMASS/36.000
ATRANS(N)=ATRANS(N) + ELMASS/36.009
ATRANS(K )=ATRANS(K) + ELMASSe8.000/36.009
ATRANS (L)=ATRANS(L) + ELMASS+8.000/36.000

OONT INUE

OONT INUE
ENDIF

IF(NTRI .GT.9) THEN
DO 50 [EL=1,NTR]
NO=6
NOPeNDe 2
NUMEL=NDTEL(TEL)
NGAUS=NGAUSS (NMEL )
NROW=NOTONDL (1F1)
ELMASS~0 @
00 60 1C=1,NGAS
100 ( 1G-1) oND
OV=D | FFOP( 1G, NUMEL )
SHAP=0.0
00 70 NOD=1,NO
SHAP=SHAP TSHAPE (NROW, 1POS+ND0)
CONT [NUE
ELMASS=ELMASS+SHAP+ IV
CONT INUE

DO A8 NOD=1 NO/2
1=NODEL(2oN0OD  NUMEL )
Km2el
L=K~1
ATRANS?K;MTRANS}K; + ELMASS/3.000
ATRANS(L)=ATRANS(L) + ELMASS/3.000

OONT INUE

OONT [NUE
ENDIF

€3

IF(NF1X.NE.@) THEN
DO 90 I=1NFIX
0O 90 J=1,2
K=2eNOF 1 X( 1 )+J-2
IF(IFLAG(J, 1) .ED. 1) ATRANS(K)=0.0000
99 CONT INUE
ENDIF

DO 110 [=1,NNOD2
IF(ATRANS(1) .NE.©.000) ATRANS(1)=1.000/ATRANS( 1)
118 OONTINUE

RETURN
END

C0000000000000000000000000000000000000000R0000000EREIICEIN000RRIPTO0RINERINROISE

Cc
C
SUBROUT INE  FORMS

ond porticle velocities.
Major variobles: STRANS mtransform vector {S]

QOO0

IMPLICIT DOUBLE PRECISION (A-H,0-W)
PARAVETER( 1GL=880 , JGL=131 ,KGL=66)

Calculate the transform vector [S] from the mesh displacements

COMMON /OONS/ NTRT ,NQUAD ,NINCS ,NNOD , KS | ZE ,KSBW, NNOD2 , NMAT , IOUM(4) ,
+ GAWA,P1 BETA NST NS ,NSEG , NODSEG , DELTAT
COMON ANODS/ X(16L/2) . Y(1GL/2) ,DISP(IGL) , FORCE( IGL) , XOOM1 (4900)

OOMVON  /ELEM/ b(DEL?B ,508) ,NGAUSS(500) ,NOTEL(500) , P(XIL%W)

+ NOTCOL{5080) ,NOQCOL (500) , D1 FFOP(9 , 500)
PRINC( 16,500

BLIB( 144, 500) ,

Y comon /FIXT/ DFIX(2.500) NOFIX(500) , [FLAG(2,500) .NF 1X ,NEXT NSTOP

+ IMXDS}G.JB
+ QONDS(3.72

OOMMON /GAPT/ S, T.SHAPE(B) ,ONXDS(8) ,ONXDT(8) , TSHAPE(6.36) .
| Eiton

.mmﬁs.x{,mwzzs.sg

,ADNDT(3,72) , QWiw2(3,9

12,6).

¢ WEIQAD(1B,3) PLACET(12,6) ,PLACEQ(18,3) .PLACEL(3) WEILIN(3)
OMMUN MOVE/ WPART(IGL) , WESH( lCL).N’ARM?IGLE.SYRANS(IGL).

IGL

4 ATRANS ICL;.D‘S‘(IGL).'PART
1GL

+ WESH2(IGL ) .OMESH2(IGL) . XOLD

eee |nitialise

(e XeXe]

ITEST=0
CALL VECNUL(STRANS, IGL NNOD2, I TEST)

1F(NQUAD .GT.9) THEN

JAMESH(IGL),
,YOLD( IGL}



OO0 OSSO0

+

OO0O00

DO 18 |EL=1 ,NOURD
NO=8
ND2=ND#2
NUMEL=NOOEL( TEL)

1POS=(1G-1)+NO
OV=01FFOP(1G,NUMEL)
ALPHX=0 .0
ALPHY=0 .0
DISPX=0 .9
OISPY=0.9
VELX=0.0
VELY=D.0
DOiSPX=0.0
DDISPY=0.98
PO 30 NCD=1,ND
NODE=NCDEL (NOD , NUME | )
SHAPE (NOD )=QSHAPE (NROW, | POS+NOD
WXDS%N]) =QDNDDS (NROW , [POSHNCD
DNXDT (NOD ) =CONXDT ( NROW, 1POSHNOD
ALPHXwALPHX+SHAPE (NOD ) « ( 1 . @00-APARAM( 2¢NODE ) )
ALPHYmALPHY+SHAPE (NOD ) o (1 G’)O-APARAME?-MI)E—‘))
DISPX=D1SPX+SHAPE(ND ) o MS(2§QOMDE-|;0)(§WE§;
DISPY=OISPY 4 SHAPE (NOD ) « (DMESHZ (2eNODE ) +Y (NODE
VELX—VELX+WE§'(D;'DISP§2'M'DE)

VELY=VELY+SHAPE (NOD) +D 1 SP{ 2¢NCDE-1)

oolsax=oolspx+wm§mo§o Mwéz-mwgu?wc;;
DOISPY=0D1SPY+ONXDS (NOD) o (DMESH2( 26NODE 4 (NODE
CONT INUE

JPOS=(1G-1)e4

0O 40 NOD=1,NO
NODE=NODEL(NCD , NUMEL )
STRANS ( 2eNODE~1)=STRANS (2¢NODE-1)+

+ SHAPE (NOD ) » APARAM( 2 sNODE-1)
+ +ALPHXsVELX*DD 1 SPX+PRINC (JPOS+4 ,NUMEL) DV
STRANS(2+NODE  )=STRANS(2eNODE )+
+ SHAPE (NOD ) » APARAM( 26NODE. )
+ SALPHY « VELY o001 SPY +PRINC (JPOS+2  NUMEL ) « DV
CONT INUE
CONT [NUE
CONT INUE
ENDIF
RETURN
END

9000000000000000000000000000000500000000800000000000000000000800060000000000000

SUBROUT [NE REMESH

Recolculate the system matrix from the most recent mesh displacements.

Major voriabies : DMESH2 =mesh displacements of this iteration
XOWD, YOLD= x~ ond y-coords of reference frame

GLOBK =system matrix (K]

[eXoXe]

OO0

[eXeXg]

aoon

C
[

C00000000000000000000000000000000000000000000000000000000000000000000000000000

C
[

[
C+
[
C~

+
+

IMPLICIT DOUBLE PRECISION (A-H,0-W)
PARAMETER( IGL=880 , JGL=131 ,KGL=66)
COMMON /OONS/ NTRT ,NOUAD ,NINCS ,NNOD , KS1ZE ,KSBW,NNOD2 , NMAT , TDUM(4) ,

+ GAWA Pl BETA NST NS ,NSEG,NODSEG, DELTATY

OOMON /NODS/ x(ch/z),v(lcuzg.olspﬁlcu.rmce(ch),xomt(m)

COMN MATS/ EM(9),PW(9), TM(9) , RHOM 9;.ET»A(9).ETM.1TYP(9)

COMON /STIF/ ELK(18,18) .GLOBK( IGL, JGL

OOMMON /FRON/ GLOBK®( IGL , JGL

OOMMON /STF4/ GLOBKL(1GL,KGL) , FORCER( 1GL) ,NROPTV( IGL)

COMON /FIXT/ DFIX(2,500) ,NOFIX(50@) , IFLAG(2,500) ,NF IX ,NEXT ,NSTOP

OOMVON /MOVE/ VPART(IGL) , WIESH( IGL) , APARAM( IGL) , STRANS(IGL),
ATRANS&IGL LOMESH(IGL) , APART{ IGL} , AMESH(IGL) ,
WESH2 ,YOLD( IGL)

IGL) ,OMESH2(IGL) . XOLD(IGL

see Initialise

1TEST=0
CALL MATNUL(GLOBK ., IGL, JGL .NNOD2 ,KSIZE , ITEST)
CALL VECNUL(FORCF | 1GL ,NNOD2, 1 TEST)

ses For the wave propagation model

IF(ETAM(1) .€Q.0.0D000) THEN
ANGLE=(9. 0836940854004 TTOTAL) —4.000
AF | X=3 38624670600 (1.000 + TANH(ANGLE))
DO 30 NOD=1,9
DMESH(2oNOD-1 )=AF | X
OONT INUE
AF [X=9. 28340882126000¢« ( 1 . @DO-TANH(ANGLE ) « TANH(ANGLE ) )
DO 20 [=NFIX—4 NFIX
DFIX(1, 1 )=AF X
OONT INUE
ENDIF

ese Colculate global matrix and apply b.c.

CALL FORMK

CALL BODY4S
CALL BOUND2

ses Store the matrices at the beginning of the iteration

CALL VECCOP(FORCE, IGL, FORCE®, IGL ,NNOD2 , I TEST)
CALL MOOPY(GLOBK, IGL, JGL,GLOBK®, I1GL, JGL,NNOD2,KST1ZE, ITEST)

RETURN
END

SUBROUT INE T IMINC

Colculote the time increment from the Courant convection criterio.

IMPLICIT DOUBLE PRECISION (A-H,0-W)
PARAMETER( 1GL=880 . JGL=131 ,KGL=66)
OOMMON /OONS/ NTRT,NQUAD . NINCS ,NNOD , KS1ZE , KSBA ,NNOD2  NMAT , 10LM(4) ,



' GAMMA D1 BLTA NST NS T NSEG NCDSEG  DELTAT
OOMVON. NODS/ X(16L/2) . ¥(16L/2) .DISP(IGL) , FORCE(1GL) , XOTM1 ( 4000)
ocwoN JELEM/ MZDEL}B .500)  NGAUSS(500) NOTEL(500) , MDELéSGO)

NOTCOL(500) ,NOQOOL(58@) .D1FFOP(9,500) .BLIB( 144 .500) .
M PRINC(16,500)
COMMON /GAPT/ S, T SHAPE(B) . DNXDS(B) ,DNXDT(8) , TSHAPE (6, 36) ,
+ m@sﬁs.se .mm?s.}sg.mm}s.s; .osmpsf_ng.
+ QONXDS(3,72) ,QONNDT(3, 72) ,QMIW2(3,9) WELTRI(12,6),

+  WEIQAD(18,3).PLACET(12,6) ,PLACEQ(18,3) ,PLACEL(3) WEILIN(3)
COMMON /TIMS/ ELSIZE(2.500) ,DELT, 1LOAD(IGL), TTOTAL

o
C eee [nitiolise ot the centre of the element
c
DELT=1.0030
TF(NQUAD .GT.9) THEN
S=0.0
T=0.0
CALL QSHAFN
DO 19 [EL=1 NWAD
NUMEL=NOCEL (1EL)
NO=8
VELX=9 .000
VELY=0.0D0
D0 20 N'(=1 M)
NODE=NDFL (ND N ML)
VELX=VELX + ‘HAPI:} ;‘DISPEZ-MDE— ;
VELY=VELY + SHAPE(NOD) D 1SP(2eNIDE
290 CONT INUE
IF(VELX.EQ.2.000. AND VELY .EQ.©.008) THEN
DUM=1.0030
ELSE
DLM-1.wee/((DABS(VELX)/ELSlZE(LML;) +
+ - (DABS(VELY)/ELSIZE(2,NIMEL) )
IF

DELT=OMIN1 (DELT , DLM)
10 CONT |NUE
BOIF

1F(NTR] .GT.0) THEN
S=1.0090/3. 0000
T=5

CALL TSHAFN

DO 30 1EL=1 NTRI]
NUMEL=NOTEL( IEL)
NO=6

VELX=0.0
VELY=0.0
00 42 NOO=1.NO
NODE=NODEL (NOD . NUMEL )
VELX=VELX + wrﬁu‘n;-msp?z-nmr.—t
VELY=VELY + SHAPE(NID) o011 SP(2eN0DE ;
49 OONT INUE
OUM=1.0000/( (DABS(VELX) /ELSI ZE(1 ,NML%) +
soAas(chv)/cLsuz(z.ML))
DELT=OMIN1{DELT ,DLM)
30 CONT INUE

ENDIF
c
RETURN
END
C
o
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SUBROUT INE STRESS

Colculate the total stress ot eoch gouss point.

Mojor variables: STMAX =mox obsolute value of stress
DISP  =mcurrent mesh velocities
BLIB =strain rote operotor

IMPLICIT DOUBLE PRECISION (A-H,0-W)

PARAMETER(1GL=B80 , JGL=131 ,KGL=66)

ocwm /OONS/ NTRI,NQUAD,NINCS ,NNOD , KSTZE , KSBW, NNCD2 , NVAT , 10UM(4) ,
STMAX.P| ,BETA,NST .NSI ,NSEG ,NODSEG, DELTAT

oomm NS/ X(16L/2) .¥(16L/2) .DISP(IGL) , FORCE(IGL).
XSTROS(4,500) , YSTROS(4, 500

oowN /MATS/ EM(9),PM(9), TM(9) ,RHOM(9) , ETAM(9) .ETAN, ITYP(9

COMMON /ELEM/ WELEB.S@O).W(S@O).W\'EL m).wngsoo )

+ NOTCOL(509) ,NOQOOL (500) ,O1FFOP(9., 500) ,BLIB( 144 ,500) ,
+ PRINC(16,500)

COMMIN /GAPT/ S.T.SHAPE(8) .DUM1 (16}, TSHAPE(6,36) .

+ TONDS(6, 36 .morgs.ss;,rwmgs.e;.osws}s.ng.
+ QONXDS(3.72) .QDNDT(3, 72 .amiw2(3,9) . WEITRI(12,6) |

+ WE1QAD(18.3) ,PLACET(12,6) ,PLACEQ(18,3), PUCEL?J) WElLlN?J)
M /VARS/ C0(2) .ETA,C2.C3, MXEB) ,DNXDY(8) ,Q(18) ,COM12(36) ,
ONXDS(8) ,ONDT(8),0014(76) ,ND, NUMEL ,NGAUS MAT ,NROW, IG

see Initigllise

STMAX=Q . 000
1TEST=0

IF(NTR] .GT.Q) THEN
NOwE
DO 60 1EL=1 ,NTR]
es+ Unlood the material constonts and strain rote operator

NUMEL=NOTEL( 1EL)
)MT=ITYPEM)£L)
ETA<ETAM(MAT)
NGAUS=NGALISS (NLMEL )

sse Retrieve the nodal velocities

00 10 J=1.6
0220J-l§-019352-P{DEL(J.M)£L)-1
al 240 J=015P 2oncn£L(J.mcL)§

OONT INUE

**s Unlood straoin rate operotor at this gauss point

DO 50 1G=1,3
lms-EIGozg-s
KPOS=(1G-1)e12
00 3o Ivet NO

SHAPE(1V)=TSHAPE( 1, |POSHIV)

La2e 1V

K=l—1

mx}lvg-euagwos-z M.MML;

ONOY( IV)=BLIB( 1POSe2 +L,NUMEL
OONT INUE

ses Evaluote the principal stresses



CALL PRINCS IMPLICIT DOUBLE PRECISION (A-H,O-W)

50 OONT INUE . PARMETD?(IGHGS@ JGL=131 ,KGL=66)
60 CONTINUE COMMON /OONS/ NTR1,NOQUAD ,NINCS ,NNOD  KS1ZE ,KSBW, NNOD2 ,NWAT , TDUM(4) ,
BNDIF + STMAX ,P1 ,BETA NST ,NST ,NSEG,NODSEG  DELTAT
c ocwm /MATS/ EM(9) .PM(3) , TM(9) . RHOM(9) , ET»AEQ) JETAN, ITYP(9
(o} eee Quodritoterol Elements COMVON /ELEW/ N])ELEG ,500) ,NGAUSS(500) ,NOTEL(500) , P{IIL$500
C + NOTCOL(509) , mooon.(soo) DIFF(P(Q 500) ,BLIB(144,500) ,
|F(NQUAD.GT .9) THEN PRINC(16,500)
NO=8 OCWON NVARS/ 00(2) ,ETA,C2,C3,0NXDX(8) , ONDY(8) ,Q(18) ,STRN(4)
DO 138 1EL=1 ,NQUAD STRES(4), C()M(HB) NO,NUMEL ,NGAUS ,MAT ,NROW, 1G
NUMEL=NOOEL( 1EL) c
MAT=TTYP(NUMEL ) C ses Unioad properties ond initialise
ETA-:ETW}MU) c
: NGALIS=NGAUSS (NUMEL ) M}WT;
o E=EM(MAT
[ ess Unload the velocities INDEX=(1G—1) ¢4
C 1)=0.0
DO 80 J=1,ND STRN(2)=0.0
QEZOJ—1;ﬂls’thhﬂ)EL(J.ML)A; STRN(3)=0.0
Q( 2¢J )=DISP( 2eNODEL(J,NUMEL) STRN(4)=0 .0
8o OONT INUE o
C C ess Evaluate stroin rates
C ess Unlood the strain rate operotor ot this gouss point C
C DO 19 =1 ,NO
DO 120 1G~1,4 L=2e|
1POS=(1G~1) eND Kal ~1
KPO5=1POSe2 STRN(1)=STRN(1)+0NXDX (1 }+Q(K
DO 100 1v=1 ,NO STRN(2)=GTRN(2)+0NDY(1)eQ(L
JPOS=[POS+IV STRN(3)=STRN(3)+0NDX( 1) «Q(L)+ONDY (1) +Q(K)
SHAPE ( 1V)=QSHAPE( 1, JPOS) 10 COONTINUE
L=2¢1V C
K=1-1 (o} ese Form stresses from the stroins
ENXDX§IV;=BLIB§IPCS'2 N(,N)ELg C
ONXDY(1V)=BLIB(1POSe2 +L ,NUMEL STRES(1)=2.0000+ETA«STRN( 1
100 CONT INUE STRES(2 HZ.M-ETAoSTRN§2§
C STRES(3)= ETA*STRN(3
C eso Evaluate principal stresses STRES(4)=@ . D00
C C
CALL PRINCS (o} see Form the principal stresses
120 OONT INUE c
130 OONT INUE IF(STRES(1) . £Q.STRES(2)) THEN
a0IF THETA=P] /4. @00
C ELSE
WRITE(6.150) . THETA=® . SD@+ (DATAN(2 . @DB+STRES(3)/( STRES( 1)-STRES(2))))
150 FORMAT('@Principal stresses computed’) IF(THETA.LE.9.9) THETA=THETA+P1/2.000
CALL TIME(1,1) ENDIF
C C
RETURN . m:m(mmﬂx NUME L )=STRES( 1 o§m§mA;om§mnAgg +
214) STRES(2) » (DSIN(THETA) sDSIN( THETA
c * STRES(3)eDSIN(2.8D0e THETA)
¢ PRIMZE?HM)U.ML%-GTR[‘S 1)HSTRES(2)-PRINC( 14 1NDEX  NLMEL)
(0000000000000 00000000000000000000000000000000000000000400000000000000000000¢ PRINC ( 3+ INDEX ,NUMEL )=STRES (3
(é PRINC( 4+ INDEX , NUMEL )=THETA« 180 . @00/P1
C
c SUBROUT INE PRINCS C eess Determine maximum stress
C
Ce STMAX=OMAX 1 (DABS (PRINC( 14 INDEX , NUMEL
C Colculate the principol deviotoric stresses at this gouss point. + DASS(PRINC( 24 INDEX . NUMEL)) .
C Mojor variables: PRINCS =principol stresses + DABS PRI'C%MIM)D(.ML%;SW)
C DISP  =current velocities (o}
[ BLIB =3troin rote operator
(o ETA =element viscosity
C-



C
C
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RETURN
3,03)

SUBROUT INE AMNOTH

Calculate the displaocement of the side nodes by averaging the

displacement of the adjocent corner nodes.
Major variables: DMESHZ =current mesh displacements

IMPLICIT DOUBLE PRECISION (A—H,0-W)
PARAMETER( IGL=880, JGL=131 ,KGL=66)

COMMON /CONS/ NTRT ,NQUAD , NINCS ,NNOD, KS [ 2E , KSEW ,NNOD2  NMAT , TDUM(4) ,

+ STMAX,P1,BETA,NST NS1 ,NSEG ,NODSEG, DELTAT

COMON /NODS/ X(16L/2),Y(1GL/2) ,DISP(1GL) , FORCE(IGL) , XOOM1 (4000 )
OOMVON /ELEM/ NOOEL§B.500).ms(soo).mTEL(see),moELg?o‘?)sw)

+ NOTOOL(50@ ) ,NOQOOL (58@) . D1 FFOP(9,500) ,BL IS
PRINC(16,508)

oomu /MONE/ VPART (IGL) ,WESH( IGL) , APARAM( 1GL) , STRANS(IGL) .

+ ATRMSEIGL; LOMESH(1GL) , APART( IGL) . AMESH( IGL) .

+ WESH2{ IGL) . DMESH2( 1GL) . XOLD( IGL) . YOLD(16L)

ITEST=0
IF(NQUAD.GT .@) THEN
DO 10 1EL=1,NQUAD
NMEL=NOQEL(TEL)
DMESH2(24NODEL (2, NUMEL )~ 1)=(DMESH2 ( 2¢NODEL (1, NUMEL )1 )+
+ OMESHZ(2eNODEL {3, NUMEL )~1) ) /2., 0000
DMESH2 (2eNODEL(2 NUMEL)  )=(OMESH2(2+4NODEL(1 ,NMEL) )+
+ OMESH2 (2eNODEL (3, MUMEL)  ))/2.0000
OMESH2( 2eNODEL (4, NUMEL )~ 1 ) = { DMESH2 ( 2 ¢NODEL (3 NUMEL ) -1 )+
+ DMESH2(2+NODEL (5. NUMEL)—1)) /2 . 0000
DMESH2(2eNODEL(4 ,NUMEL)  )=(DMESH2(2eNODEL (3 .NUMEL) )+
+ OMESH2( 2sNODEL (5, NUMEL) /20000
DMESH2( 2eNODEL (6 ,NUMEL )~ 1 )=( DMESH2 ( 2¢NODEL (5, NUMEL ) 1)+
+ DMESH2 (2«NODEL (7 .NUMEL )-1)) /2 . 2000
DMESH2(2NODEL(6 ,NUMEL ) )=(M912(2-MZDEL(5.M.MEL) )+
+ OMESH2(2eNODEL (7 ,NLMEL)  ))/2.0000
DMESH2( 26NODEL (8 ,NUMEL )~1 )={ OMESH2 ( 2¢NCDEL( 7 NUMEL )—1 )+
+ DMESH2 (2eNCDEL (1, NUMEL)—1)) /2. 0000
DMESH2 ( 2NODEL (8, NUMEL) )-(Msm(z-uooau NOMEL) )+
+ DMESH2(2NODEL( 1 ,NUMEL)  ))/2.0000
CONT INUF,
ENDIF

It (NIR! GT @) THEN
DO 20 IEL=1,NTR]

NUMEL=NODEL(1EL)

DMESH2( 29NODEL( 2, NUMEL ) -1 )= (DMESH2 ( 2 #NCDEL (1, NUMEL ) ~1)+
+ DMESH2( 2¢NODEL (3, NUMEL )—1) ) /2. 0000

DMESH2(2¢NODEL(2 ,NUMEL)  )=(OMESH2(2+NODEL( 1 ,NUMEL) )+
+ OMESH2( 2sNCDEL (3 . NUMEL) ) )/2.0000

OMESH2( 20NDDEL (4, NUMEL )~1 )= DMESH2 (2#NODEL (3 . NUMEL ) -1) +
+ OMESH2( 29NODEL (S, MUMEL )—1) ) /2. 0000

DMESHZ(2+NODEL{4 NLMEL) ) =(DMESH2(2+NODEL(3. MMEL) )+
' DMESH2(2eNCDEL (5. MMEL)  ))/2.0000

DMESH2 (2+NODEL (6, NUMEL )1 )-(DES'Q(ZOMDEL(S.ML)—1 +

+ OMESH2 (2¢NODEL (1,NUMEL)-1)) /2. 8008
DMESHZ (2eNODEL(6 NUMEL)  )u=(DMESHZ(2eNODEL (5, NUMEL) )+
+ DMESHZ (2sNODEL( 1 ,NMEL)  ))/2.9000
20 CONT INUE
ENDIF
c
C ees Update mesh coordinatens
Cc
00 30 =1 NNOD .
X( 1 )»XOLD( | Wébl-‘;
Y§l§=YOLDEIg+O£SH2 2e¢]
30 OONTINUE
C
RETURN
END
c
C
C".‘.‘."....‘“..“.‘.0‘...“.....‘.‘..l.“O‘..‘..........‘.‘..‘...".......‘
C
(o}
BLOCK DATA
[
C
C+
C Initia!ise the fundanmental parameters
C~
[
IMPLICIT DOUBLE PRECISION }A—H.O—w)
CHARACTER  TITLE(4)e8,2UF(4)+4
OOMMON /CHAR/ TITLE, ZUF
OCMm /OONS/ NTRI,NQUAD ,NINCS ,NNOD,KSIZE ,KSBW,NNOD2 ,NMAT , [DUM(4) ,
STMAX P BETA NST ,NS] ,NSEG,NODSEG, DELTAT
OO»(N /GAPT/ S, T SHAPE(B) [NXDS(B) INXDT(B) POOM(1611),
PLACEL(J) WETLIN(3)
C
DATA PI /3. 14159265358979300/
DATA ZUF /°ST. ' ,'ND. ','RD. ','TH. '/
DATA PLACEL/. 77459666924 1483000 . 000,
+ —~. 77459666924 148300/,
+ WEILIN/. 55555555&5655600
+
+ .55555555555555609/
END
C
C
C.O"0..0.0‘..0‘.‘0‘.‘...“...'..‘.0‘..."..'0.....“.........00...'.‘...“...
C
C
SUBROUT INE CRASH
[of
c+
C Check bandwidth
C-
WRITE(7.10)
10 FORMAT(1HD, 'ee RUN ABORTED se'/'Bandwidth equotls zero’)

CALL TIME(1.1)

[}

siop



END

o500
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SUBROUT INE BADLWK

Check bandwidth

ﬁ)(ﬁi?(ﬁ [oX )

IMPLICIT DOUBLE PRECISION (A—H,O-W)
OOMMON /OONS/ NTRT,NQUAD  NINCS NNOD  KS 1 ZE ,KSBW ,NNOD2 ,NVAT , [DULM(4) ,
+ STMAX ,P1,BETA NST,NS| ,NSEG,NODSEG,DELTAT

WRITE(6,18) KSIZE
10 FORMAT(1HD, 'es RUN ABORTED e/

+ ‘Bondwidth ='_15,", and exceeds storage space')
CALL TIME(1,1)

O

STOP
27 9]
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FUNCTTON RAMAX(X,N)

+

Find the moximun value of o vector

i

OOOOOO OOOOO0

DIMENSION X(N)
RAMAX=X(1)
00 10 IMAX=2 N
RAMAX=AMAX 1 (RAMAX , X ( IMAX ) )
10 CONTINUE
Cc

RETURN
END

C

C

(00000000000 0000000000000000000000000000000000000000600000000000000080080

[

C
FUNCTION RAMIN(X N)
C
C
C+
C Find the minimum value of o vector
o
C
DIMENSION X(N)
RAMIN=X (1)
DO 10 IMIN=2 N
RAMIN=AMINT (RAMIN X ( IMIN))
190 OONTINUE
C

RETURN

END
C
C
CO.‘00.00..0‘0...O..‘0...0“.0.0.‘...0..0‘0‘.0...0.00.‘.0.0‘.........OO0.0.'...
c
c

SUBROUT INE RENODE
C
C+

(o} Add or delete nodes from the mesh and renunber accordingly.
C-

IMPLICIT DOUBLE PRECISION (A-H,0-W)

INTEGER NODE(200) ,NO(8)

CHARACTER  TITLE(4)e8,7UF(4)e4

PARAMETER( 1GL=880 , JGL=131 ,KGL=66)

COMVON /OHAR/ TITLE,ZUF

COMMON /OONS/ NTRI ,NQUAD,NINCS ,NNOD, KS 1 ZE, KSBW, NNOD2 , NVAT  IDUM(4) ,
+ GAVWMA P ,BETA NST NSI ,NSEG ,NOOSEG, DELTAT

OOMON NODS/ X(16L/2) , Y(1GL/2) ,.DISP(IGL) , FORCE( IGL) , XOOM1 ( 4009)
COMON /ELEM/ moasa.we).m(soo).mtu(wo).moc%m),
+ NOTOOL(500) ,NOQOOL(500) , DIFFOP(9,500) ,BLIB( 144, 500) ,
+ PRINC(16,500)

COMON /FORC/ NOD4S wo;,roms(we).moao(wa),nm(m).
+ FNORM( 108 ) , FTAN( 189) , FNTOT (10@) , FTTOT( 100)

COMON /FIXT/ orrx(z,sea;.mrlx(sea).lrw;(z.seo).nrlx.nm.rsmp
COMON MATS/ EM(9) ,PM(3) , TM(9) .RHOM(9) . ETAM(9) ,ETAN, I TYP(9)
OOMVON /VARS/ OOMB(165) ,NOSECT ,NDIS,NDTR,, 100MX(2) . IG

*ss This routine adds or deletes nodes from the mesh writing the new
see fite to unit 7. Dota for the new nodes must be odded separately

i i

OO0

READ(3, ¢ )NNODE
READ(3.+) (NODE(1),l=1,NNODE)
N=NNCD+ (NNODE » IS [GN)

WRITE(7,1)TITLE
1 FORMAT (4A8)
WRITE(7,2)N,NTRI ,NQUAD ,NMAT ,NF X ,NDIR NSEG,NST ,NST .NFS
2 FORMAT(1115) -
WRITE(7,3)NINCS, GAMMA , VERGE , ETAN, DELTAT
3 FORMAT(15,4010.4)

C
IF(NS1 EQ.Q) THEN
SCALF=1. 0003
ELSE
SCALE=1.000
ENDIF
|COUNT =1
[o}
Cc see Update coordinate dota
C

DO 12 INOD=1,NNOD
N=INOD
DO 20 I=1,NNODE
IF(INOD.GT .NODE( 1)) N=N+ISIGN
20 CONT INUE
IF(N.GT. ICOUNT) THEN
00 25 fe1,N—10OUNT-1



25

000 =0 OO0

o 8 &8

38

DOO g

12

119

WRITE(7.4) ICOUNT41 . X( INOD-1)/SCALE
CONT [NUE
ENDIF
WRITE(7,4) N.X(INOD)/SCALE.Y(INOD)/SCALE
FORMAT(15,2F10.3)
JOOUNT=N
OONT INUE
NNOO=RNODHNNODE

sse Write material properties

DO 11 IMAT=1 AMAT
WRITE(7,5)EM( IMAT) ,PM( mng JRHOM( IMAT) , TM( IMAT) , ETAM( TMAT)
FORMAT(D10.3,2F10.3.2D10.3

CONT INUE

ses Write element topologies

IF(NTRI GT.0@) THEN
DO 30 1EL=1 NIR|
JLL-NDIEL(IEL)
DO 49 Kfl=1,6
NO(KEL )=NODEL(KEL, JEL)
DO 50 I=1,NNODE
IF(NODEL(KEL ,JEL) .GT.NODE(1)) NO(KEL)=NO(KEL)+ISIGN
CONT INUE
CONT [NUE
WRITE(7,2)JEL, (ND(KEL) ,KEL=1,6) , ITYP(JEL) ,NGAUSS(JEL)
CONTINIE
ENDIF

IF(NQUAD.GT.®) THEN
00 60 EL=1,NQUAD
JEL=NOQEL(1EL)
DO 70 KEL=1,8
NO(KEL )=NODEL (KEL , JEL)
DO 82 1=1,NNODE
1F(NODEL(KEL, JEL) .GT .NODE(1))  NO(KEL)=NO(KEL)+ISIGN
CONT INUE
OONT INUE
WRITE(7,2)JEL. (NO(KEL) .KEL=1,8) . ITYP(JEL) ,NGAUSS(JEL)
CONT INUE
BDIF

ese Direct nodal forces

IF(NDIR.GT.9) THEN
00 110 1=1 NDIR
INCOE=NCD4S( | }
DO 112 K=1 ,NNODE
TF(NOD4S(1).GT.NODE(K)) INODE=INODE+ISIGN
OONT INUE
WRITE(7.6) INODE,FNOD(2+1-1) ,FNCD(2e1)
FORMAT(§5,2(4%, D11 .4))
OINT INUE
ENDIF

ses Surfoce tractions

IF(NSEG.CT.@) THEN

145

140

C
C

0000000000000 00000000000000000000000000000000000000080000000000000000000000800¢

C
C

C
C+
C
C
C-

D00

OO0O0

20

DO 140 =1 NSEG
WRITE(7,2)NODSEG
DO 149 Jm=1 NODSEG
INODEsND 1 545(J)
DO 145 Km1 ,NNOOE
IF(NDISAS(J) .GT.NODE(K)) INODE=INODE+ISION
OONT [NUE
WRITE(7.6) INODE, FNORM(J) , FTAN(J)
CONT INUE
BDIF

ses Dirichlet conditions

IF(NFIX.GT.0) THEN
DO 160 [=1 NFIX
INODE=NOF 1X(1)
DO 165 J=1,NNODE
IF(NOFIX(1) .GT .NODE(J)) INODE=INCDE+ISIGN
OONT [NUE
WRITE(7,7) INCOE, (IFLAG(J, 1), OFIX(J, 1) . J=1,2)
FORMAT(15.2(15.010.3),F10.3)
OONT INUE
ENDIF

RETURN
END

SUBROUT INE EIGEN

Extract the normolised eigenvalues.
Major variables: GLOBK =system matrix [K]

IMPLICIT DOUBLE PRECISION (A-H,O-W)
PARAMETER( IGL=880, JGL=131 ,KGL=66)

COMWON /CONS/ NTR1T ,NQUAD  NINCS ,NNOD ,KS1ZE ,KSBW,NNOD2  NMAT , TDUM(4) ,

+ STMAX,P1,BETA,NST,NS1 .NSEG, NODSEG , DELTAT
COMMON /STIF/ ELK(18.!6).GL®(§IGL.JGL)
DOUBLE PRECISION DIAG(IGL),SUB(IGL)

eee [nitialise, EPS is the smallest representable number

| TEST=@
DUMMY=0) . 000
EPS=X02AAF (DUMMY)
1=9

sss The system matrix is scaled by {S){K}{S] where [S] is o diagona!

see molrix composed of 1/SORT of the diagonals of (K]

00 10 KROM=1 NNOD2
DUMABS (GLOBK (KROW, KSBW) )
DUM=1 . 0DQ/SART (DLM)
DO 20 KCOOL=1 ,KSIZE
GLOBK (KROW, KOOL ) =G LOBIK (KROW, KOOK. ) « DUM
OONT INUE



DO 30 THON=1 NNIUZ
FQOL=KROMH(SEW- | RON
1F(10OL.GE. | .AND. [COL. LE.KSIZE)
+ GLOBK ( 1ROW, 1OOL)=GLOBK( [ROW, 100L ) «DUM
CONT INUE

eee Check unit diagonals

o000 &

TCHECK=N INT (GLOBK (KROW, KSBW) )
1F(ICHECK .NE. 1) GOTO 99

see Check symmetry

[sXeXe]

00 49 KCOL=1,NNOD2
[OOL=KOOL-+HK SBW-KROW
| ROW=KROWHK SBW—KO0L
1F(100L.GE. 1 . AND. ICOL. LE .KSIZE.AND. [ROW.GE .1 . AND.
+ IROW. LE KSIZE) THEN
IF (GLOBK(KROW, [00L ) .NE.GLUBK (KCOL, [RON) )} GOTO 99
FNDIF
GUNT INJE
CONT INUE

eee Decompose motrix

SO0 5 &

CALL JA(GLORK, 1GL G DIAG 161 B, IGL NNN2 KSBW, | TEST)
eee Extract eigenvalues
CALL OLVAL(DIAG. IGL,SUB, IGL ,NNOD2 . EPS, ITEST)
eee Evaluate spectrum condition numbers
C1=ABS(DIN3§M(])2;/DI#G§I§§

C2=ABS(D1AG(NNOD2) /D1AG(2
C|=LGB!0§C?§

OO0 OO0

C2=10G10(C2
WRITE(7 200
200 FORMAT(14X," Spectrum Condition Numbers' /24X,
+ ' First', 4X, 'Second’)
WRITE(7,300) C1.C2
300 FORMAT(20X,2(5%,F5.1)//)
CALL PRTVEC(DIAG,IGL,NNCD2,7, I TEST)
C
WRITE(6,100)
100 FURMAT(OF 1genvialues et racted’)
CALL TIME(Y 1)

RETURN

99  WRITE(6,500)
5 FORMAT('Oincorract system motrin datected')

CALL TIME(1,1)
StToP
END

C

[

Cr0000000000000000000000000000000000000000000000000000000000000000000000000

C
[o

SUAROUTINEG DISOUT

C Output of nodal positions and final velocities.
Cc Major variables: DISP =current velocities

C X, Y =node coords

C

IMPLICIT DOUBLE PRECISION EA—H_O—W)

CHARACTER  TITLE(4)+B,2UF(4)e4

PARAMETER( 1GL=688 . JGL=131,KGL=66)

OCOMON /CHAR/ TITLE, 2UF

oowN JOONS/ NTRI ,NOUAD,NINCS ,NNOD , KS T ZE , KSBN,NNOD2 , NVAT , IDUM(4)
STMAX P ,BETA.NST ,NS1 .NSEG, NODSEG , DELTAT

m».m MNODS/ X(16L/2).Y(I16L/2)., DIS’(XGL; FORCE(IGL),
XSTROS(4,500) , YSTPOS (4, 500

WRITE(7.10)TITLE
10 FORMAT(1HB/1H 50)( 4AB/1HD, 10X, 'Noda! Velocities'/

+ tHe, 10X, '/
+ 1HO,5X, 'Node’ , 12X,’ x—coord: lm' ,8X,  y—coord: lm’, BX,
+ * Vel(x): m/e’,10X,* Vei(y): m/s'/110)
C
DO 20 IDIS=1 ,NNCD
WRITE(7.30) 101S.X(IDIS)/1.0E03,Y(IDIS)/1.0€03,DISP(2+1D15-1),
+ DlSP}Z-IDIS)
30 FORMAT (6X, 14, BX,2(3X F19 2,7x) . 2(9%,1PE13.8))
20 CONTINUE
c

WRITE(6, 40)
49 FORMAT('@Velocities written’)
CALL TIME(1,1)

Cc
RETURN
3 0]
C
C
C..‘.‘..“O..‘0..0.“...‘....Q‘............‘...“.........‘.‘.....‘..........‘
C
[
SUBROUT INE GRID
C
C+
[ Plot the original and the finol mesh configurotions.
¢ Major variables: XOUD, YOLD = coorda of rafarance (rame
C X, Y = coorda of finol mesh
C-
C

IMPLICIT DOUBLE PRECISION (A-H,0-W)
PARAMETER( 1GL=880, JGL=131 ,KGL=E6 )
OOMMON /OONS/ NTRI,NQUAD ,NINCS ,NNOD , KS | ZE ,KSEW, NNOD2  NVAT , [DUM(4) ,

+ STMAX, P ,BETA,NST NS .NSEG,NODSEG , DELTAT
COMIN ANONS/ X(1GL/2) . Y(16L/2) . DTSP{IGL) , FORCE( IGL) . XOOM1 ( 4000)
omm /PLOT/ YMAX, J0AIN, YMAX, YMIN , XONAX , XOMIN, YOMAX , YOMIN,

XSP,YSP, XPL(50) , w%w)
oowN JELDW P{DELEG ,500) ,NGAUSS(500) ,NOTEL (500) , Noochseo)

NOTOOL(508) ,NOQOOL(500) D1 FFOP(9,500) ,BLIB(144,500) ,
PRINC(16,500)
omm /MOVE/ VPART (IGL) , WESH( IGL) , APARAM( IGL) , STRANS(IGL),
+ ATRANS}IGL; LOMESH(IGL) ,APART(IGL) . AMESH(IGL),
+ WESH2(IGL) ,OMESH2( IGL) , XOLD(IGL ) . YOLD( IGL)

ese |nitialise

[eXzXe)



XSP1=XSP+9. 2 RETURN
CALL PSPACE(9.2,XSP1,0.1,1.0) END

[eXeXg]

20

08 O OOO§

CALL MAP(XMIN, XMAX , YMIN, YOMAX ) C
c .
eee Plot original mesh with a broken line C9000000000000000000000000020006000006000d0Pstroorititstetttcersnttensssne
C
CALL BROKEN(5,15,5,15)
DO 300 NMESH=1,2 SUBROUT INE PAMS
[F(NTR] .GT.@) THEN C
00 2@ IEL=1,NTRI ¢ 4
NUMEL=NOTEL( TEL) C+ This routine sets up o plotting space XSP YSP in which the
DO 19 i=1,6 C ocutput is plotted. This plot spoce hos an annotation border,
NOD=NODEL( I .NUMEL) o of 8.2 in each x—direction, 8.1 ot the base and it stretches
TF(NMESH. EQ. 1) THEN C to filt up the top border.
)@LS!?XOID?(D% (o} Major variables: XSP, YSP sphysicaol size of plot
YPL( T )=YOLD(NOD C MMIN, XMAX, YMIN, YMAX mextremities of coords
£L5E C~
XPI.}I;-'XEW; Cc
oL 1 )=y (ND IMPLICIT DOUBLE PRECISION (A-H,0-W)
BNDIF PARAME 1ER( IGL=880 , JGL=131 KGL=66)
OONT INUE W JOONS/ NTRI ,NQUAD ,NINCS ,NNOD , KS T ZE ,KSBW, NNCD2 ,NMAT , IDUM(4) ,
XPL§7;=XPL§1; STMAX ,P1 ,BETA NST ,NS1 ,NSEG,NODSEG, DELTAT
YPL(7)=YPL(1 m /PLOT/ YMAX , XMIN, YMAX , YMIN, XOMAX , XOMIN, YOMAX , YOMIN,
CALL CURVEO(XPL,YPL, 1,3 XSP,YSP,XPL(50) . YPL(50)
CALL CURVEO(XPL,YPL, 3.5 o}
CALL QURVEO(XPL ,YPL,5,7 C eee |nitiate plot
CONT INUE C
ENDIF CALL PAPER(1)
C
1F (NQUAD .GT .9) THEN C see Reod coordinate boundaries
DO 50 I1EL=1,NQAD C
NUMEL=NOGEL( TEL) READ}S.‘IO;XMIN‘MX
DO 49 I=1.8 READ(S, 10) YMIN, YMAX
NOO=NCOEL (1 ,NUMEL ) 19 FORMAT (2F10.3)
IF(NMESH.EQ. 1) THEN C
XPL%I;=XOLD§W; C ses Read size of PSPACE
YPL( 1 )=YOLD(NOD C
ELSE READ(S, 20)XSP, YSP
XPL§|;=XEN:JD; 20 FORMAT(2F5.2)
YPL(1)=Y(NCD C
20IF [ *+e Scole
CONT |INUE C
XPL$9;=XF‘L%|§ IF(NST.£Q.9) THEN
YHL(9)=TPL(! MXMIN=XM | Ne 1000 . 0
CALL CORVEOOM., Y 1 A YMAX=XMAX ¢ 100 O
CALL CURVED(XPL,YPL, 5 5 YMIN=YMINe 1000 .0
CALL OURVEO(XPL,YPL,5,7 YMAX=YMAX ¢ 1000 . 0
CALL QRVEO(XPL,YPL.,7.9 FNDIF
CINLINA, C
ENDIF c *s¢ Colculote mapping oreo for the border region
CALL FULL C
OONT INUE X%sW—WIN;/EX@dO.G
YSO=( YMIN-YMAX )/ vs?.m.o;
eee Annotate XCMIN=XMIN-XSC2.0
XOMAXm)MIN+(XSCe (XSP40.2) ¢ 10.0)
CALL LABEL YOMINwYMINAYSC
YOMAX=YMAX—(YSCe (0. «10.
WRITE(6,90) c ( (0.9-YSP)+10.0)

FORMAT ('@E I ement mesh drawn')

WRITE(6, 100)

100 FORMAT('OPAMG completed')

[



C
C

RETURN

(3, 8]

Cornoteneetestenstantstsrtiototestoniseiototttttecistssttessdossnesssosses

C
C

O(POOQOO

OO0

[eXe Xe]

[eXoXel

SUBROUT INE LABEL

Annotote axes of the current plot.
Major variables: TITLE =titie of mode!

IMPLICIT DOUBLE PRECISION (A-H,O-W)

CURACTER  TITLEe32, 2UF (4) 4

OOMAN /OHAR/ TINTLE, DK

umN SO/ NIRE NJOAD NINCS NNCD KRG TZE KCEW NN NVAT (TUM(4)
STMAX,P'| BETA NST NS NSEG . NODSEG, DELTAT

COA(N /PLOT/ XMAX  XMIN, YMAX , YMIN, XOMAX , XOMIN, YOMAX , YOMIN,

+ XSP,YSP XPL(50) . YPL(50)

XSP1=XSP+0 . 4

CALL CSF’ACE§0.0.XSP1 Ae.e.Le;
CALL PSPACE(©.9.XSP1,0.0,1.0
CALL MAP{XOMIN, XOMAX , YOMIN, YOMAX )

see Plot title

CALL CTRVAG(20)

XST=XMIN

YSTaYMAX+( YOMAX-YMAX ) ¢@ .8
CALL PLOTCS}XST,YST,TITLE)
CALL CTRMAG(15)

ess Plot the corner coords

I'YKM=YMIN/1 . OE3
XSTaXMIN-(XMAX-XMIN) /20 .0
CALL PLOTNI(XST,YMIN, 1 viM)

1IM=YMAX/ ) _BE3
CALL PLOTNI(XST, YMAX, 1 YKM)

YSTm(YMIN-YMAX ) o 1.09
1XaM=XMIN/1 . OE3
CALL PLOTNI (XMIN,YST , 1X0M)

10M=X04AX /1 . OE3
CALL PLOTNI (XMAX,YST, [XM)

sse Draw o border around the plot
XSP2=XSP49.2

YSP1=Y5P49 .1
CALL PSPACE(0.2,XSP2.0.1,YSP1)
CALL BORDER

WRITE(6,100)

100 FORMAT('@Current plot annotated')

C
RETURN
END
[
C
C‘.OO..O0.00....00‘.00...l.‘..........‘...‘.‘......‘.‘.‘.‘O.‘......‘..OO..‘O.
[
C
SUBROUT INE VECPLT
c
C
C+
C Plot the stress vectors at selected gouss points.
C Mojor variables: XSTPOS, YSTPOS =coords of gauss points
C PRINCS wstress ot gouss points
C-
C
IMLICTT DOURLE PRECISION (A-H,0-W)
PARAME TER( IGL=BB , JGL=131 , KGL=68)
OOMMON /MATS/ EM(9),PM(9) . TM(9) . RHOM(S) ,ETAM(9) .ETAN, I TYP(9)
OOMMON /OONS/ NTR1 ,NQUAD ,NINCS ,NNOD , KS 1 2E , KSBW,NNOD2 . NMAT , [DUM(4) ,
+ STMAX ,P] BETA NST NSI ,NSEG, NODSEG, DELTAT
COMON /VARS/ COMB(165) ,NO,NUMEL ,NGAUS, LOOM(2) , IG
M /PLOT/ Y0MAX, XMTN, YMAX , YMIN , XOMAX , XOMIN , YOMAX , YOMIN,
XSP, YSP , XVECS, YVECS, xPL(4a) YPL(SG
M JELEM/ &DEL?& ,500) ,NGALISS (500) , POTEL(SOO; M'.DEL}SGO)
NOTOOL(500) ,NOQODL(500) ,DIFFOP(9,500) ,BL1B(144,500) ,
+ PRINC( 16, 500)
C
XSP1=XSP49 . 2
CALL CSPACEEG,O.XSF‘! ,0.0_1‘0;
CALL PSPACE(©.2,XSP1.0.1,1.0
CALL MAP(XMIN, XMAX , YMIN, YOMAX )
C
C sses Scale the vectors to the physical size of the plot
C
WE&ﬁABS&MX—mIN;/éZS.OOXS’;;-I .9
YVECS=(ABS(YMAX-YMIN)/(25.02YSP) )e1.0
o}
IF(NTRT GT.@) THEN
00 20 1EL=1 NTR]
NUMEL=NOTEL( 1EL)
MATm | TYP(NUMEL)
NGAUS=Y
CALL STPLOT
20 CONT INJE
BDIF
c

1F(NQUAD .GT .8) THEN
DO 4@ 1EL=1,NQUAD
NUMEL=NOQEL ( 1EL)
MAT={ TYP(NUMEL)
NGAUS=4
CALL STPLOT
OONT INUE
ENDIF

sse Annotate

[eXe Xyl S



O 000

C
C

XSP1=XSP+9 . 4
CALL PSPACE(Q.9,X3P1,0.0,1.0)
CALL MAP(XCMIN, XOMAX , YOMIN, YOMAX )
CALL CTRMAG(12)
XST=XMAX— (XMAX~XMIN) «0 4
YST=MX+EYOMX—M)()°0< 2
CALL POSlTN(XST,YST;
IF(STMAX. LT .50.8E06) THEN
XST=XST+1 . OE@8« XVECS/STMAX
CALL JOIN(XST,YST)

CALL TYPECS(® 50 MPo’,8)
ELSEIF(STMAX. LT . 109.0E06) THEN
XST=XST+2 . OEO8« XVECS/STMAX

CALL JOIN(XST,YST)

CALL TYPECS(' 100 MPa’ . 9)
ELSE

AST=XST+S QEOBXVECS/S TMAX

CALL JOIN(XST,vS1)

CALL TYPECS(' 2% MPa’.9)
ENDIF
CALL ITALIC(1)
CALL wpecsé' ( DOTTED LINES TENSIONAL )°.30)
CALL I7ALIC(@)

XST=)MAX— ( XMAX—XMIN) «@ .5

YST=YMAX+ ( YOMAX—YMAX ) ¢0 . 7

CALL PLOTCS(XST,YST, "STRESS VECTORS' ,14)
sse Label

CALL LABEL

WRITE(6, 100)
FORMAT (' @Vectors plotted’)

RETURN
BND

C0000000000000000000000000000ttstenetttnsnittetosttittseieditestttossnotstosionss
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SUBROLITINE. STout

P ="

Write stresses to unit 7
Major voriables: XSTPOS, YSTPOS =coords of gouss points
PRINCS =stresses at gauss points

IMPLICIT DOUBLE PRECISION §A—H,O—W)

CHARACTER  TITLE(4)#B,2UF(4)e4

PARAMETER( IGL=880, JGL=131 ,KGL=66)

COMMON /CHAR/ TITLE, ZUF

oc»m JOONS/ NTRI NQUAD NINCS ,NNOD, KS | ZE ,KSBW, NNOD2  NMAT, 1DLM(4)

STMAX,P1,BETA NST ,NS1 ,NSEG,NODSEG , DELTAT

ocwm /NODS/ X(1GL/2) . Y(1GL/2), olsp(chg FORCE{ IGL).
XSTPOS(4,500) , YSTPOS(4,500

COMCN JELEW/ NODELEB .500) ,NGAUSS(500) ,NOTEL(500) , P{DEL§500)
NOTCOL(500) ,NOQOOL(500) ,01FFOP(9,500) .BL1B( 144 ,500) .

+ PRINC(16,500)

ess Write title ond header

[eXeXe]

WRITE(7,10) TITLE
19 FORMAT('1 ', 20X, 4AB)
WRITE(7, zo)sm«x/n 006
20 FORMAT(1H@, 10X, STRE§ES;

+ 1H4, 10X,
+  1HO, 10X, "Max imum Slress =’ 1PD10. 25 'M'-'o (Absoctute value)'/
+ 1HO, 10X, "E1° (kem) " .6X, (tam)’ ,7X,
+ 'Principal Stresses' 9)( ‘Angle’ ,6X, 'Shear'.//)
C
Cc see Write out triangles then quads
C
NOEL=NTR]
ND=Y
DO 50 15=1,2
TF(NOLE (T @) THEN
DO 40 1EL=1 NDEL
IF(1S.€0.1) THEN
NUMEL=NOTEL(1EL)
ELSE
NUMEL=NOQEL ( 1EL)
ENDIF
00 30 1G=t,NO
JF’CE=2]G—1§-4
WRITE(7,60)NUMEL , XSTPOS( 1G,NUMEL) , YSTPOS( 1G,NUMEL) ,
+ PRIBC§1HP(B.ML;.FR]PC22NP%,ML R
+ PRINC(4+JP0S ,NUMEL ) , PRINC( 3+JPOS , NUMEL
60 FORMAT(8BX, 13,5X,E10.3,3x,E10.3,3X,E10.3,3X,£10.3,
+ 3X,F8.3,3%,E10.3)
30 CONTINUE
40 OONT INUE
NOEL=NQUAD
NO=4
ENDIF
5@  CONTINUE
C
WRITE(6, 100)
100 FORMAT( '@Stresses written’)
CALL TIME(1.1)
Cc
RETURN
D
C
C

Cre000000000000000000000000000000000000000000000000000000000800000000¢0000000

SUBROUT INE STPLOT

(o4
C
Cc Plot the two stress vectors ot this gouss point.

Cc Major variables: XSTPOS, YSTPOS mcoords of gguss points
C PRINCS wstress at gouss points

C

C

IMPLICIT DOUBLE PRECISION (A—H,0-W)



-~

[eXele.

[eXeX %]

DOO

PARAMETER( IGL=880, JGL=131 ,KGL=66)

M /OONS/ NTR1 NQUAD ,NINCS ,NNOD , KS1ZE  KSBW NNOD2 ,NMAT , 1DUM(4) ,

STMAX, P ,BETA NST NS ,NSEG, NODSEG, DELTAT
oomN NARS/ COVB(165) ,NONOMEL .NGAUS , LOOM(2) . 1G
oowN 7PLOT/ XMAX, XMTN, YMAX , YMIN, XOMAX , XOMIN, YOMAX , YOMIN
XSP,YSP XVECS, YECS , XPL(48) , YPL(50)
omm /NODS/ x( 16L/2) . Y(IGL/2).DISP(1GL) . FORCE( IGL) .
(4 500), YSTF’CS(4 500
oowm JELEM/ NoocL§a .500) ,NGAUSS(500) ,NOTEL (509) , rmc%
NOTCOL (500) , NOQOOL(500) ,D1FFOP(9,500) ,BLIB( 144 ,500) .
N PRINC( 16 ,500)

see For each qgouss point in this element

00 18 10m1 NCAUS
KPL Tt
1SS (1G-1) o4
XPOS=XS TPOS IG,NM-ZLg
Y‘POS-YSTPOSEIG.ML

ses Retrieve the angles of the principal stresses

1F (DABS(PRINC(4+1POS ,NUMEL)—90.0) .LT.1.0E-7) THEN
CTHETA=0.0
STHETA=1.0@

ELSE
TTHETA=PRINC(4+1POS NUMEL)«P1/180 .0
CTHETMIDS?TTHETA;
STHETA=DS IN( TTHETA

ENDIF

s«»ses Evaluate the end of the first vector

)(PLT=)(PCS&(PRI%C%HIP(B.M)EL;-CTHETA/SMXoXVECS;
YPLT=YPOS+(PRINC( 1+1P0OS . NUMEL ) s STHETA/STMAX ¢ YVECS
DO 3@ KPLY=1,2

CALL POSITN(XPLT,YPLT)

eses Broken line for tension

IF(PRINC(KPLTHINCS NMEL) G @ 0) THEN
XPL 110 40XPUSED . GoxP| 1
YN T 1@ 4YICFu oDl ]
CALL JOINOPLTY, YPLT1)
XPLT 121, 6eXPOS-9.64XPLT
YPLT1=1 , 6 YPOS-0. 6+ YPLT
CALL POSITN(XPLTT, YPLT1)

ENDIF

XPLT 1=2 . @« )XPOS-XPLT

YPLT 12, Qe YPOS—YPLY

CALL JOIN (XPLT1,YPLT1)

IF(KPLT.€Q.1) THEN
IF(CTHETA NE.©.9) THEN

OOP=CTHETA

CTHETA=GTHETA

STHETA=COP
ELSE

STHETA=@ .0

CTHETA=1.0
ENDIF

C
C

XPLT:)CPOS—%PRIMI 2+IP05,MLEL;'CTPETVSTW\X'XVECS;
YPLT=YPOS+(PRINC( 24 1POS ,NUMEL ) * STHETA/STMAX» YVECS
ENDIF
COONT INUE
CONT INUE

RETURN
END

Creeseesssenessneetesetttnieesetnittttsttindorsteetstssinsentetestesitsenussdnsss
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SUBROUT INE SURF

O ——————

Plot the surface displocement profile of the final configuration,
Mojor variables: X, Y mcoords of finai mesh

IMPLICIT DOUBLE PRECISION (A—H,0-W)

PARAMETER( IGL=880 , JGL=131 ,KGL~66)

OOMJN /OONS/ NTRI ,NQUAD ,NINCS ,NNOD, KS1ZE ,KSBW ,NNOD2 ,NVAT , [DUM(4) ,
STMAX,P] ,BETA NST NSI ,NSEG,NODSEG , DELTAT

oc»m /NODS/ X(1GL/2),Y(16L/2). DlSP(lGL) FORCE{ 1GL) , XOOM1 ( 4020)

QOMMON AVISC/ DSTCREEIZ,QGO),FINIT(IGL).FUJT(lGL).MMSS?IGL;

DIMENSION NN(500),XP(9,500),YDISP(9.500) ,XPLT(500), YPLT (50

XSTART=0.0
XEND=0 .0
YBOT=9.0
YTOP=0 .0
1PLT=0

READ(5,200) NPLT

FORMAT(15)

DO 219 I=1,NPLT
READ(5,200) NN(1)

CONT INUE

CALL PSPACE(D 2,1.0.0 3,0 6)
CALL. MAP(0.9,9130.9,-5.0,1.0)
CALL SCALES

DO 10 [=1,4
DO 20 1PLT=1 NPLT
XPLT§ lpu;-x(m( IPLT))/1.0E03
YPLT(IPLT )=OSTORE( ] ,NN(IPLT))/1.0E03
WRITE(7,100) )CPLT&IPLT) YPLT(1PLT)
FORMAT (2(5X.F10.3))
CONTINUE
CALL CURVEO(XPLT ,YPLT,1,NPLT)
CONT INUE

CALL PSPACE(0.9,1.0,0.9,1.0)

CALL MAP(0.0,1.0,0.0,1.0)

CALL CTRMAG(17)

CALL THICK(2)

CALL PLOTCS(0.2,0.75, "Surface Displocement Profiles'.29)



CALL THICK(1) CALL PTPLOTEX.Y,I ,NNOD, 245)
CALL CTRMAG(12) CALL CTRMAG(15)

CALL PLOTCS(9.4,0.20, 'Distonce along profile in km',28) C
CALL CTRORI(990.0) C eee Plot the scaled velocity vectors
CALL PLOTCS(9.10,0.35, 'Surface height in k', 20) C
CALL CTROR1(0.9) XVE@#BSEW—)M[N;/?ZS.OOXT;
c YVECS=ABS (YMAX-YMIN) /(25 .0 YSP
WRITE(6.50) SCALEX=XVECS /D IMAX
59 FORMAT('@Specified displocements plotted’) SCALEY=YVECS/DIMAX
c CALL REDPEN ]
RETURN 00 20 1=1PLOT NNOD
no CALL POSITN(X(1),Y(1))
c xp-xﬁlg«vﬁolsp J#2-1)#SCALEX)
C YPwY(1)4(DI1SP(102)9SCALEY)
[o CALL JOIN(XP,YP)
C00000000000000600000000000000000000000000Nerentststetcsssertsnesesensseesens 20  CONTINUE
[o} CALL BLKPEN
C C
C c sse Plot the displocement of the surface obove the frame
SUBROUTINE VELPLT (o}
¢ READ(S,200) NPLT
c+ ' 200 FORMAT(1S)
C Plot the velocity vectors at the nodes. DO 219 1=1 NPLT
C Mojor variobles: DISP =current velocities READ(5,200) NN(I)
C X, Y =mesh coords 210 CONTINUE
C~ Cc
[of 00 220 IPLT=1 NPLT
IMPLICIT DOUBLE PRECISION (A-H,0-W) XPLTgIPLTgﬂ)(é"N}IPLTg;
PARAMETER( |GL=888 , JGL=131 ,KGL=66) YPLT(1PLT)=Y(NN( IPLT))/1.0E03
OOMON /NODS/ X(16L/2), Y(1GL/2) . DISP(IGL) , FORCE(1GL) , XOUM1 (4000) WRITE(7,230) XPLT(IPLT)/1.0003, YPLT( IPLT)
omm /OONS/ NTRI,NQUAD ,NINCS ,NNOD , KS [ ZE , KSBW, NNOD2 ,NMAT , [TOUM(4) , 236 FORMAT(2(5X,F10.3))
STMAX ., P1 ,BETA,NST ,NST ,NSEG ,NODSEG, DELTAT 220 CONTINUE
ocwoN JNARS/ WIW2,DETJ,ETA.C2,FACT ,DNXDX(8) ,ONDY(8) .B(4,18) , c
BYC(18.4) ,NO,NGAUS, ICASE ,NUMEL , IROW, IG XSP1=XSP40 . 2
M /PLOT/ XMAX DMIN, YMAX , YMIN, XOMAX , XOMIN, YOMAX , YOMIN, YSP1=9, 14YSP
XSP,YSP XPL(50}, vm%se) YSP2=YSP140. 1
(IM(.N JELEM/ M]JEL§B ,500) ,NGAUSS(500) , rOTEL(SOB).rmELé&O), CALL PSPACE(®.2,XSP1,YSP1,YSP2)
+ NOTOOL (50@) ,NOQOOL (500) .DIFFOP(9,500) ,BLIB( 144 ,500), CALL MAP(XMIN,XMAX ,—4.9,1.0)
+ PRINC(16,500) CALL POSITNOMIN, 1.0)
DIMENSION XPLT(50) ,YPLT(5@) . STORE(750) .NULL(750) ,NN(50) CALL JOIN(XMIN,~4.0)
c CALL H?O(EN§29.20.10,20)
C evs Evoluate the largest velocity vector CALL POSITN(YMIN,©.2)
c CALL JOIN(XMAX,0.9)
DIMAX=D . D) CALL FULL
DO 18 1=[PLOT ,NNOD CALL CURVED(XPLT,YPLT, 1 ,NPLT)
DVEO=DSCRT (DISP(102-1) ¢ 024D1SP(102) #+2) c
DIWM1(DVEC.D|W) C see Annotate
10 CONTINUE C
C XSP1aXSP4+9 . 4
c e++ Set up plot frame CALL PSF%CEﬁO‘O.XSPI.OAB.l ]
c CALL CSPACE 0.0,)(9’1,0.0,1.0;
XSP1=XSP40 .20 CALL MAP(XOMIN, XOMAX , YOMIN, YOMAX )
CALL CS’/’CE§0 2.XSP1,9.0,1. 0; CALL CTRWAG(10)
CALL PSPACE(9.2,X5P1,0.8,1.0 XLABELaMAX — ( XMAX=)MIN)«Q . 4
CALL MAP(XMIN,XMAX, YOMIN, YOMAX ) YLABEL=YMAX + éw—mm;.o.a
c CALL POSITN{XLABEL,YLABEL)
C eee Plot a circle ot eoch node XLABEL=XLABEL +15.80E~10¢SCALEX
Cc

CALL JOIN(XLABEL, YLABEL)
CALL CTRFNY$\; CALL TYPECS(® SO mm/yr', 10)
CALL CTRMAG(7

sse Labe! axes

[eXeXe)



CALL LABEL CALL JOIN(XEND,9.1)

C CALL FULL
WRITE(6,11) ’ YSP1=YSP149.16

11 FORMAT('@Velocities plotted’) YSP2=YSP249. 16
RETURN 20 OONTINUE
END C

C ’ CALL PSPACE(@.2,0.8,0.2,YSP1)

o} CALL MAP(0.0,1.2,0.0,1.0)

000 rs00000000000000000000000000000000000000000000000000000000000000000088000080 CALL POSITN(9.9,0.9)

C CALL JOIN(1.9.0.0

C CALL JOIN(1.9,1.0
SUBROUT INE DPROF CALL JOIN(0®.9,t @

[o ——————Cm ‘ CALL JOIN(®.0,0.0

[ [

C+ CALL PSPACE(0.0,1.0,0.0,0.2)

C Plot the surface profite of the travelling wove problem. CALL MAP(0.0,1.0,0.9,1.9)

¢ Mojor variables: X, Y =mesh coords CALL CTRMAG(12)

C~- CALL PLOTCS(9.3,0.5, "Scaled distance in reference frame’, 34)
IMPLICIT DOUBLE PRECISION (A-H,0-W) CALL PLOTNF{B.19,0.8,XSTART,1)
PARAMETER( IGL=880, JGL=131 ,KCL=66) CALL PLOTNF(©.79.0.8.60.9,1)
COMWON NODS/ X(16L/2) . Y(1GL/2) .DISP(IGL) , FORCE( IGL) , XOOM1 ( 4008) c
COMON VISC/ DSTORE(12,90@) ,FINIT(IGL), FOUT(IGL) , AMASS(IGL) CALL PSPACE(9.8.1.0,0.9,1.0)
COMN MOVE/ VPART (IGL) , WEESH( IGL) . APARAM( 1GL ,STRANS(IGL), CALL MAP(0.9,1.0,0.2,1.0)

+ ATRArGéIGL JOMESH(IGL) ,APART(IGL) , AMESH(IGL) , CALL CTRMAG(15)
+ WESH2 lGLg.M&QEIGL;.XOLD IGL) ,YOLD(IGL) CALL PLOTCS(9.2,0.3, "redd’ , 4)
DIMENSION XPLT(350) , YPLT(350) ,NN(350 CALL PLOTCS(9.2,0.46, 'n=60" , 4

C CALL PLOTCS(0.2,0.62, 'mB0° 4
XSTART=0.0 CALL PLOTCS(©.2,0.78, 'n=100" ,5)
XEND=0.0 (o}

YBOT=0 .0 CALL PSPACE(@.9,1.0,YSP1,1.0)

YTOP=0 .0 CALL MAP(9.0,1.0,0.90,1.0)

1PLT=d CALL CTRMAG(13)

YP1=d 2 CALL THICK(2)

YSP2=0 35 CALL PLOTCS(0.2,8.3, 'Free—surfoce of the fiuid ot selected times'

C + 43)

READ(S, 100) NPLT CALL THICK(1)

100 FORMAT(IS) c

DO 158 =1 NPLT CALL PS’A'CE(0,0,0.Z.O.G,LO)
READ(5,100) NN(1) CALL MAP(0.9,1.9,0.9,1.9)

150 OONTINUE CALL CTRMAG(9)

c CALL PLOTNF(9.9,0.205,0.0,1
DO 20 ISURF=1,4 CALL PLOTNF(0.9,0.345,0.1,1

DO 19 1=t ,NPLT CALL PLOTNF(9.9,0.365,8.0,1
)@LT§I;=X(W([))/|0.0 CALL PLOTNF(0.9.0.505.2.1,1
YPLT(1)=( DSTCRE(ISRF,'*N%I%) — YOLD(NN(1)) )/10.0 CALL PLOTNF(0.9.0.525,0.0,1
WRITE(7.200) XPLY(1),YPLT (I CALL PLOTNF(9.9,0.665.0.1,1
200 FORMAT(2(5X,F10.3)) CALL PLOTNF(9.9.0.685.0.0.1
XSTART=AMINI(XSTART XPLT(1)} CALL PLOTNF(2.9,0.825,8.1.1
XEND=AMAX 1 (XEND, XPLT( | CALL CTRMAG(12)
YBOT=AMAX 1 {(YBOT . YPLT( | CALL CTRORI(90.0)
YTOP=AMINt (YTOP, YPLT( | CALL PLOTCS(0.4,0.3, 'Scaled amplitude of position of free-surface’
1® CONTINUE + ,44)
CALL CTROR](9.9)
CALL PSPACE(D.2,0.8,YSP1,YSP2) c
CALL MAP(XSTART, XEND.—-0.0@5,0.1) WRITE(6, 300)
CALL O.RVEOE)@LT,YPLT,LN’LT) 300 FORMAT('@Surface displacement plotted')
CALL POSITN(XSTART,9.0) C
CALL JOIN(XEND.0.9) RETURN
CALL B?O(DI?IO.IO,\OJO) END
CALL POSITN(XSTART.0.1) o}

c

C--oooooo-o-t-n.‘oooooo‘ooo‘.oo‘o00ooonooooo.oaa-ooooo.-00-00.0..0000..0000.0..

C
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C
C

SUBROUT INE MOOPY(A, 1A, JA B, 18,UB M,N I TEST)

Duplicate one motrix into aonother

IMPLICIT DOUBLE PRECISION (A-H,0-W)
DIMENSION A(1A,JA),B(1B,JB)

DO 10 1=1 M
DO 1@ J=1,N
B8(1,J)=A(1,4)
CONT INUE
RETURN
8o

Cotret00000t0eteittetetssssisitstittetestesoisieristedttnierieiototantossersioe

[
C

O?OOOOQO

SUBROUT INE GRAVTY

Calculate the contribution to the global force vector for body forces
octing towords the centre of the Earth.
Mojor variables: RHOM =density of element

X, Y =coords of nodes FORCE =force vector {F}

IMPLICIT DOUBLE PRECISION (A-H,0-W)

PARAMETER(1GL=880, JGL=131 KGL=66)

M JOONS/ NTRI ,NQUAD ,NINCS ,NNOD , KS [ ZE, KSBW,NNOD2 ,NVAT , IOUM(4) ,
STMAX P 1 BETA NST NS1 ,NSEG ,NODSEG, DELTAT

M /NOOS/ X(IGL/2) Y§IGL/2§ DISP(IGL) FORCE(IGL) . XSTPOS(4,500)

omm /MATS/ m(g) PM(9) , TM(9) ,RHOM(9), nm%g) LETAN, mrp(sg
ocwm JELBW/ P(DELEB ,500) ,NGAUSS(500) ,NOTEL(500) , NooELﬁsoo

NOTCOL (500) ,NOQOOL(508) ,DIFFOP(9,500) ,BLI1B(144,500) ,

PRINC(16, :m)
orwn JOAPT/ ST Q«PE(s .DNXDS(B) .ONXDT(8B), TSHAPE(S, 36) ,
+ rmxnsé IENXDI}E,.\G;,NlW?G,G{.()QﬂPE}J,?Z .
+ QNS (3, 72) . QUNDT (3, 72) . wiw2(3.9) \WEL TRI(12,6) .
+ WEIQAD(18,3) PLACET(12.6) ,PLACEQ( 18,3) ,PLACEL(3) WEILIN(3

IF (NTRI.NE.®) THEN
DO 30 IEL=1,NTRI
NUMEL=NOTEL(1EL)
MAT:ITYP%M.MEL)
RHO=RHOM(MAT )
NGAUS=AGAUSS (NUMEL )
NROW=NOTOOL(1€L)
FLOAD= RHD#9.81
DO 20 1G=1,NGAUS
1POS=(1G-1)«6
DV=DIFFCP( G, NUMEL)
ANG=ATAN(XSTPOS( IG,NUMEL ) AYSTROS( 1G, NIMEL) )
ZLOAD-—FLOAD'M)SYM;
XLOAD= FLOAD#DS IN(ANG
0O 19 INT=1,6
SHAPE (INT )= TSHAPE (NROW, [POS+INT)
NOD=NODEL( INT NUMEL)
FORCE(2eNCD  )=SHAPE( INT)«ZLOAD<DV4FORCE(2+NOD )

10
20
30

FORCE (26NOD-1 )=SHAPE ( INT) « XLOAD¢DVHFORCE ( 2¢NOD-1)
OONT INUE
OONT INUE
CONT INUE
ENDIF

1F(NOUAD .NE.®) THEN

DO 70 TEL=1.NQUAD

NUME L=NOQEL ( TEL)

MAT=[TYP§NJ€L)
MAT)

FLOAD= RMHO9 81
00 60 1G=1,NGAUS
OV=D1FFOP( 1G,NUMEL)
1POS=(1G-1)+8
ANG=ATAN(XSTPOS( 1G,NUMEL ) /YSTROS( 1G,NUMEL) )
ALOAD=—F LOAD+DO0S (ANG
BLOAD=—FLOAD DS IN(ANG
DO 50 INT=1,8
SHAPE ( INT J=CSHAPE (NROW, [POS+INT)
NOO=NOOEL ( INT ,NUMEL )
chzfomo ;-G%PEélNT;-ALON)tDV#U?CEizoP\(D g
FORCE (2¢NOD-1)=GHAPE { INT ) ¢BLOAD« DV4+FORCE ( 2+NCD- 1
OONT INUE

CONT INUE
OONT INUE
ENDIF

WRITE(6,90)
FORMAT ("@Body forcea applied’)
CALL TIME(1,1)

RETURN
BN
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