
Durham E-Theses

A numerical study of the dynamics of subduction

Whittaker, A.

How to cite:

Whittaker, A. (1988) A numerical study of the dynamics of subduction, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/6337/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/6337/
 http://etheses.dur.ac.uk/6337/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Graduate Society 

A Numerical Study Of The 

Dynamics Of Subduction 

by 

A. \Vhittaker 

The copyright of this thesis rests with the author. 

No quotation from it should be published without 

his prior written consent and information derived 

from it should be acknowledged. 

A thesis submitted to the University 

of Durham for the degree of 

Doctor of Philosophy 

2 3 MAR 1989 

September 1988 



Abstract 

The mechanics and dynamics of subduction have been studied using 2-D finite el

ement analysis. Two finite element formulat.io11s have been employed; one formulation 

for Newtonian viscous flow and one formulation for linear elasticity and viscoelastic

ity. Quadratic isoparametric quadrilateral and triangular elements are used for both 

formulations. 

Models of flow in the mantle driven by oblique subduction produce an asymmetric 

depression of the surface above the slab. The width and depth of this depression are 

dependent on the value of the viscosity of the lower mantle, the length and mechanical 

strength of the slab. Analysis of the flow patterns suggests that the viscosity contrast 

at the 670 km sesmic discontinuity is likely to be of the order x 10. 

The stress regime at an island arc margin with a subducting slab dipping at 45° 

has been modelled using an elastic-viscoelastic rheology. The body forces of the slab 

produce an asymmetric depression of the surface above the slab which generates hor

izontal deviatoric compression in the plates. Unlocking the thrust zone between the 

subducting and overriding plates eliminates the shear stress in the fault plane resulting 

in regional horizontal tension in both plates, uplift of the leading edge of the overriding 

plate and depression of the subducting plate. The regional tension is interpreted as 

the source of the plate driving forces of slab pull aHd trench suction. Local horizontal 

compression in t.be arc-forearc region produced by the surface depression exceeds the 

regional tension and this may be the source of lateral variation in stress that is ob

served acros5 the strike of convergent margins. It. may also be the source of backarc 

compression for low angle slabs at Chilean type margins. 

Depression of the surface provides partia.l compensation of the slab body forces. 

Thus the clownclip force is reduced and the resulting stress regime in tbe slab is con

trolled by the isostatic upthrust at the trench a.11d the viscosity contrast at 610 km depth. 

A low pressure zone above and high pressure zone below the slab ma.y act against the 

body forces which rotate the slab t.oY•ards vertical subduction. Anomalous pressures in 

the mantle are created and sustained by continuous subduction and rollback, and may 

behave in a self-regulating mechanism. A low viscosity zone in the mantle wedge above 

the slab leads to the development of double seismic zones as suggested by Sleep (19/9). 
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CHAPTER 1 

lntrod uction 

The world-wide distribution of earthquake epicent.res IS shown m :figure 1.1. It 

IS a striking pattern (lsacks et al. 1968). Nearly ali of the seismic energy release is 

concentrated in narrow, continuous belts outside of which seismic activity is almost 

absent. This observation was a major contribution to the formulation of plate tectonic 

theory (:rvlc Kenzie and Parker 1967, Morgan 1968), which postulates that the relatively 

a.seismic regions of the surface of the Earth are thin. rigid plates of lithosphere which 

interact at their boundaries, defined by the belts of seismicity. The mobility and in-

tegrity of the plates serves to explain phenomena such as continental drift and sea-floor 

spreading which had become popular explanatious of the palaeo-reconstructions made 

from the present-day positions of the continents. 

The earlier discovery by Raff and Mason (1961) of the magnetic lineations parallel 

to. aucl s~Tnmetric about the spreading centres (ocean ridges), and the realisation that 

t hPse abrupt changes in magnetic intensity could be related to reversals in the Earth's 

magnetic field (Vine and Matthews 1963), lead to the theory of plate tectonics .. The 

magnetic stripes thus 'date' the ocean floor and indicate how the plates are moving. 

Plate boundaries can be classified into three possible categories; divergent margins, the 

site of plate creation where the plates move apart. convergent margins where the plates 

move t.<w;ard one another, and transform faults \':ben· the plates slip by one another. 

The oldest parts of the ocean floor are found at convergent margins, and generally 

the st.ripl's are not. parallel to the plate boundary. Also at convergent margins the 

earthquakes occur at much greater depths and they lie along a plane descending into 

the Earth and dipping away from the ocean with a fairly smooth trajectory (Sykes 1966, 

Oliver and Jsacks 1967). This plaue, the Wadati-Benioff zone, was proposed to define 

the descent of the surface lithospheric plate underneath its neighbour, a process called 

subduction, which conveniently accounts for the oblique disappearance of the magnetic 

stripes at the margin. Subduction zones are thus the sit(' of consumption of the oceanic 

parts of the system of plates, a.nd this thesis will attempt to provide some insight into . 

'. 
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Figure 1.1 Distribution of the epicentres of earthquakes recorded between 1961 and 1967. 
From Dott ( 1984 ), originally Barazangi and Dorman ( 1969 ). 



the dynamics of this process. 

1.1 The Structure of Subduction Zones 

Subduction zones are of two types; the island arc margin in which the overriding 

plate is oceanic, and the active continental margin in which the overriding plate at the 

boundary carries continental crust. Whilst the differences are essential, the similarities 

allow us to discuss a. 'typical convergent margin', and I will concentrate on the island 

arcs. 

The morphological and structural units of the Lesser Antilles island arc margin are 

shown in figure 1.~. This particular margin exhibits most features commonly associated 

with subduction and so it is a convenient reference. The term island arc arises from 

the arcuate segments of exposed, and submarine. volcanics and volcanoes which form 

an almost continuous line about 100 km from the plate boundary on the overriding 

plate. The arcuate nature is one example of the 3-ciimensionality of subduction zones 

which will be discussed later. Meanwhile it is convenient to remain in two dimensions 

to describe the surface features of the margin. 

The outer rise is a low up-arching of the oceamc plate seaward of the trench, 

rising about ::?00- 400 m over a distance of about ~00 km. It is generally accepted to 

be the flexural response of the plate to the downbending at the trench (Parsons and 

Molnar J91b). The outer trench slope is generally Jc-,·::-angled dipping at 2°- 5° into 

the trench and exhibits extensional tectonics attributable to the flexure st.resses. The 

ocean trench is the surface bounding line between the subducting and overriding plates. 

Most trenches have a thin sedimentary cover, and t ht:-y are recognised as the deepest 

features of the ocean floor. 

La.ndwards of the trench line is a highly defonnfO'd. and possibly metamorphosed, 

sedimentary accumulation called the accretionary prism. The width and depth of the 

prism varies greatly, from near zero in the Marianas to the great extent of the Lesser 

Antilles (as shown in figure 1.2) which covers the trench and part. of the outer rise. 

The sediments are derived from turbidites and slumps, often reworkings, and from 

'scraping otr the top layer of the descending oceanic plate as it passes the trench line. 

As the prism grows it gives birth to an outer sedimentary rise which can breach the 

2 
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ocean surface, in this case generating the island of Barbados. For margins with a 

more diminutive accretionary prism the inner trench slope rises at 10°- 20° from the 

trench which is considerably steeper than the outer slope. The intimate structure of 

the accretioaary prism is complex and will not be pursued further. A forearc basin 

may develop behind this sedimentary ridge, in the case of the Lesser Antilles it is the 

Tobago Trough. Unconformably overlying the prism. it consists of undeformed, mainly 

terrigenous sediments derived from the volcanic arc. 

The arc itself begins abruptly 150- 250 km land\">ard of the trench. It is the site of 

intense, dominantly andesitic volcanicity of calc-alkaline type which, coupled with the 

observed uplift. is evidence of considerable magmatism at depth. The backarc region 

shows great \·a.riet y among the subduction zones of the world. Commonly a back arc 

basin is characterised by thin sedimentary cover and high heat flow. I\'larginal seas 

evolve when active spreading occurs and magnetic lineations become identifiable. The 

Lesser Antilies margin is a good example of a remnant arc at the far side of the backarc 

sea. This initctive volcanic island is recognised as ;;.n extiHct arc. 

Earthquake hypocentre location has clearly defined the intermediate and deep 

earthquakes !hat are clust.ered along Wadat.i-Benioff zones. Isacks and Barazangi ( 1917) 

interpreted ~hi" position of t.he upper surface of the descending slab in vertical cross

section thro:.~gh \•Vada.t.i-Benioff zones, and a selection of these interpretations is shown 

in figure 1.3. The angle of descent of the slab varies but one common feature of deep 

seis111icit.y is t hnt none has been observed deeper than 1:20 km (Stark and Frohlich 1985 ). 

This correla''="~ well with the known seismic discon:inuity at 610- 100 kn1 depth, the 

nature of wbch if:, still the subject. of debate. Initial!~· this cut-off point. was taken to be 

the termination of the descending plate but recently Creager and Jordan (1984, 1986) 

have used te!eseismic residuals to show that. the sl<tb~ of at least the Western Pacific 

ext.end, albeit aseismically, to depths of at least 1000 km and probably 1400 km. 

The cr•:,ss-section in figure 1.2 provides a useful dE-~criptiou uf the subduction pro· 

cess, but out-oi-plane effects are also important.. A~ already mentioned, the trench and 

arc are linear but arcuate features. This can be understood in terms of the ping-pong 

ball analogy; Frank 1968). Indenting the surface of the ping-pong ball creates a depres

sion with a cun-at.ure equal t.o that of the ball and so the dip of the slab can be related 

to the curvature of the arc. Although this is an oversimplification applied to trenches, 

3 
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the concept is \·alid and the associated stress system must exist ( Fukao et al. 1987). 

The relative motion of the plates is rarely perpendicular to the trench, and this oblique 

convergence is responsible for the strike-slip tectonics of the forearc and the resulting 

terrane motion. This further complicates the stress/stra..=n regime of the overlying plate 

and may jeopardise any predictions from 2-D modelling. 

The preceding description of a typical convergent oargin obviously precludes one 

of the major observations concerning subduction zones: they are not all the same. Much 

literature has been devoted to investigating the correlation between the properties such 

as convergence rate and age of subducting slab, with the observations of slab dip, 

seismicity etc. :\ recent extensive analysis by Jarrard (1986) using a multiple linear 

regressiOn has convincingly catalogued some significant correlations. \Vhile correlation 

is not direct proof of cttusality, it is a useful indica1ion of the relative effect of the 

fundamental parCt.meters of subduction. Jarrard cor,sidered slab length, earthquake 

magnitude, strain regime, slab dip, arc-trench gap and trench depth and found that they 

can all be accounted for by a combination of slab age. convergence rate and intermediate 

dip. The Benioff zone leHgt.h is correlated with the product of convergence and slab 

age, in line with conducting heating models. The maximum earthquake magnitude is 

correlated with convergence and slab age, supporting the theories of seismic coupling, 

and trench depth corrPlat.es with age and dip which 5t:pports the notion of slab pull. 

However t herl" ar.;- a few inconsistencies, notably· thc-.r r h-:- slab clip correlates negatively 

with duratitliJ nf -::uhduction, implying that snh<.lunior. -,hallows with age. Also Jarrard 

found that ~tra.in regime of the overriding pla.t.e is affected by the slab dip and presumed 

that this is due to its effect on the seismic coupling. 

1.2 Rheology 

This sect ion is a. short discussion of rheology oft lte Earth with a view to modelling 

this behaviour numerically. Consequently this is a 5o:newhat. simplified perspective· 

considering the receril advances in understanding {e.g. Braun and Beaumont 1987, 

Kirby and Kronl"n berg 1987. Hager and Gurnis 198/) but it is adequate for the purposes 

of this thesis. 

Plate tectonic theory requires that. the outer shell of the Earth, the lithosphere, 

4 



retains its rigidity over geological time scales. The vertical extent of the lithosphere 

can be defined by the depth to a characteristic isotherm, typically 1550 K, above which 

the rock is cool enough to behave rigidly, and below which the rock deforms by solid 

state creep, beha\·ing as a viscous fluid. The asthenosphere is a weak zone underlying 

the lithosphere which flows laterally in response to ]jthospheric movement allowing 

isostatic adjustment to occur on a time scale of the order 104 years (Robinson et al. 

1987, Ceuleneer et al. 1988). 

The lithosphere is composed of the crust and the top of the mantle. These are 

chemically distinct and meet at the Mohorovicic Discontinuity (Moho). Oceanic litho

sphere is created at ocean ridges, it cools and thickens as it migrates and isostatically 

subsides away from the ridge (Sclater and Francheteau 1910). At subduction zones the 

oldest oceanic lithosphere is about 100 km thick with about 5 km of oceanic crust at 

the top. Continer.t a] lithosphere is typically twice as thick as oceanic and the Moho 

is observed at about 40 km depth on average. The relatively low density crust low

ers the average de:.sity of continental lithosphere sufficientiy to inhibit subduction and 

this creates an important distinction between the two types of lithosphere. Continental 

]ithnsphere is thus much older. and also its integrated strength is much less since crustal 

rocks are much v:er.ker than those of the mantle, and the lower lithosphere rock is much 

hotter and weaker because of its greater depth. 

The exact rheology of the lithosphere is uncertain. ~lany possibilities have been 

proposed as models for the long term lithospheric beha,-iour. Simple models of an 

elastic plate C>':erlying a fluid substratum were reasonably successful for early flexural 

studies and led to the concepts of flexural rigidity and corresponding effective elastic 

thickness (EET i for the lithosphere. This elastic thickness was found to be about 

half the seismic or thermal thickness for the oceanic lithosphere (e.g. Walcott 1910, 

Watts and Codtr?.:J J 914, Watts et al. 1980) and so it can be concluded that only the 

upper, cooler pan of the lithosphere can support long term elastic stresses. The lower 

lithosphere is expened to relax viscously over geological time, and Kusznir and Bott 

( 1917) demonstrated that this relaxation leads to amplification of the stresses in the 

upper elastic layer. These observations ha.ve led to many other more complex models 

using viscoelastic iNakada and Lambeck 1986), elastic-plastic (Turcotte eta!. 1978) 

or other thermo-mechanical rheologies for the plates. However Lui et. al. (1982) and 
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Karner ( 1984, 19&.S) have shown that a simple elastic model, combined with thermal 

effects, can produce behaviour normally associated with the more complex rheologies, 

and so the representation of lithospheric behaviour by flexure of an elastic plate remains 

a very useful approx.irnation. 

Flexure of the lithosphere is strongly dependent on the load. Short wavelength 

( :S 50 km) loads will be almost entirely supported by the rigidity, but to long wavelength 

( 2 1000 km) loads the lithosphere is virtually transparent and then the load is supported 

in effect by local iso~~asy. In conjunction with the elastic flexure the lithosphere suffers a 

great deal of non-eh~stic deformation. At shallow depth rocks may suffer brittle fracture 

when their strength is exceeded, generally described by modified Griffith theory (Jaeger 

and Cook 1976). l-nder tension the yield values of upper and lower crustal rocks are 

about 10 and 50 ~-IPa respectively. 

The overall seismic structure of the mantle is shm·:r: in figure 1.4. The 5-wave 

velocity reaches a minimum between the base of the lithosphere and 220 km depth. 

This is the low n~locity zone. probably the region where the mantle comes closest t.o 

melting. which is often regarded as the asthenosphere. The transition zone is marked 

by sharp increa:o.es in P- arid 5-wave velocities at 400 hr, and at 700 km. The lower 

mantle is relati':el:: unstructured except for a slight fl<-.ttening of the velocity curves 

near the core-m<>.ntle boundary (CMB ). The seismic discontinuity at 400 km is a density 

discontinuity cau~eu mainly by a solid state phase change. This has been reproduced 

in lahorat.ory expe:iments recreating the discontinuou~ rec.niou from olivine+ ·1-spinel 

to ;3-phase spin":: c.r 14 GPa pressure nnd a lemperaturF of J/00 (±300).1\ (Jeanloz 

and Thompson 19,'3 ). This phase change is sufficiently o-rtc.rp i.e. occurs over a narrow 

pressure and terr:perature range, to account. for the obser·.-ed sharpness of the seismic 

discontinuity. 

The diamond-anvil cell experiments have also shown that. the dominant minerals of 

the upper mantle (olivine, pyroxene and garnet) all transform to a silicate perovskite at 

lower mantle tewp-:-ratures and pressures (Jeanloz and .\!orris 1986). Sufficient quan

tities of perovskite have been retrieved to allow its zero pressure density-temperature 

behaviour to be de;ermined (Knittle et al. 1986). The perovskite cannot match the 

decompressed va.lue of lower mantle density derived from seismological studies. Thus 

it has been suggested that the lower mantle is rich in iron or silica to account for the 
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burger and Engan ( 1974 ), Sengupta and Julian ( 1978 ), Anderson and Hart 
( 1976 ). 



density discrepancy. 

There are many deviations from this average mantle structure, in particular in 

the vicinity of the subducting slab. The slab is cooler, and hence denser, than the 

surrounding mantle but additional body forces are generated by the elevated phase 

changes in the slab. shown in figure 1.5. The Clapeyron curve. which defines the phase 

change in p - T s_?ace. has a positive slope -y = 4 MPa I\ -l for the olivine-spinel 

transition. Since the slab is cooler the transition will occur at lower pressures and 

hence at a shallower depth. Schubert eta!. (1975) estimated a maximum elevation of 

115 km in the cool core of the slab, giving a fourfold increase in the body force for a 

density contrast of 240 kg m - 3
. The elevated olivine-spinel phase boundary is probably 

a very significant factor in the mechanism of sinking lithosphere. 

The deeper phase change to perovskite is predicted to have a small negative Clapey

ron slope (Jeanloz and Morris 1986). At the phase boundary at 400 km depth the co

ordination number of Si remains at 4, but this deeper transition raises the coordination 

number to 6. The ~eorganisation of the oxygen nuclei could result in significant stress 

relief and thus explain the lack of seismic activity belm\· this dP.pth in the slab (Liu 

1979). 

Seismic probing of the deep interior yields the instant<tneous. elastic properties of 

the Earth. However, over geological time the mantle uuciergoes solid state creep at 

extremely small strain rates. The domi11ant mechanisms at low stresses are probably 

diffusion creep or Coble creep. Diffusion creep describes th10 migration of atoms through 

the crystal's interior, but for Coble creep the diffusion : c-.kes place along the grain 

boundary. Macrophysically this is described by a Newtor.ian fluid, where strain rate 

i is proportional to the stress CJ and the constant of proportionality is the pressure

temperature clepeP.dent viscosity J-1-

[ = fl-CJ 

Crystal lattice~ <tre not perfect structures and the imperf.,ctions, the dislocations, 

facilitate creep. T\·:o mechanisms are dislocation glide and di5location climb, and they 

involve the diffusion of the a.dditional nuclei, or holes. through tlw lattice. In the 

macrophysical model of dislocation creep the strain rate is proportional to a power n 

of the stress, this i~ non-Newtonian flow, 

[ •X CJ 
11 
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Figure 1.5 The Clapeyron curve delineates the phase change in p- T space, and 
below, a typical isotherm distribution in descending lithosphere showing the 
elevated phase change in the cool slab. From Turcotte and Schubert ( 1982 ). 



where commonly n = 3. The effective viscosity is defined by the ratio of stress to 

strain rate, which now becomes dependent on the stress aswell as being exponentially 

dependent on the pressure and temperature. 

Flow in the hot, underlying mantle can be suitably represented by diffusion creep, 

but the deviatoric stresses in the lower lithosphere generate a highly non-Newtonian re

sponse. The exact rheology of the mantle is not known and for mathematical simplicity 

it is often modelled as a Newtonian fluid, and with considerable success (e.g. Cathles 

1975, Peltier eta!. 1916 ). 

In order to investigate the long term response of the mantle the study of post

glacial rebound has become popular. Glaciation provided a significant long term load 

on the Earth which depressed the surface, but on relief of the load by glacial retreat the 

surface has been rising and recovering its pre-glacial configuration. Cathles ( 1975) made 

a world-wide study of post-glacial rebound and discussed at length the applicability of 

the self-gravitatillg .\"e,·:tonian viscous sphere as a v<:hole Earth model. The resulting 

viscosity-depth profile is shown in figure 1.6. However, the time-scale of post-glacial re

bound, about 20000 yrs. is still considerably Jess than that characteristic of subduction, 

about. 106 yrs. Peltier et a!. (1986) attempted to reconcile the relatively low viscosity 

lower mantle inferred from rebound studies with the much higher viscosities required 

by microphysical mode~s of solid state creep. They interpreted the low viscosity as a 

transit:>nt value, since ir. tbeir Burgers body representation the elastic moduli become 

frequency dependent. 

Further support for a higher viscosity lower manti~:" comes from Richards and Hager 

( 1984) and Hager ( 196-±! who studied the geoid anomalies due to mass anomalies in a 

self-gravitating Ne\-.·tonian viscous body. The relative high in the geoid at subduction 

zones was well documented (e.g. Crough and Jurdy 1980. Chapman and Talwani 1982, 

Cha.se and McNutt 1962). Hager (1984) proposed that the lower mantle should be at 

least 30 times, and probably as much as 100 times, more Yiscous than the upper mantle 

in order to support the observed geoid. 

In the subsequent :2-D mantle-wide subduction zone simulations the long term 

behaviour of the lithosphere will be modelled as an elastic upper layer overlying a 

viscoelastic lower layer. The mantle will be treated as a layered Newtonian body. 
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1.3 Driving Forces of Plate Motion 

The driving mechanism of the motion of the lithosphere has frequently been at

tributed to forces acting at the plate boundaries. Plates are rigid and act as stress 

guides so that edge forces result in motion rather than deformation. Forsyth and Uyeda 

(1975) summarised the forces acting on a plate, see figure 1.1. The ridge push force 

arises from the gravitational energy generated by the thermal upwelling at mid-ocean 

ridges. Lister ( 1975) and Hager ( 1978) demonstrated that this force exists throughout 

the oceanic lithosphere that is continuously cooling and subsiding (Crough 1975 ). The 

slab pull force is the component of negative buoyancy of the cool descending slab which 

is transmitted to the surface. Other effects include the trench suction force which pulls 

the overriding plate tO\\·ards the trench, asthenospheric drag. and continental collision. 

Forsyth and Uyeda presumed that the torques on the plate sum to zero, and the result.

ing analysis showed the slab pull contribution to be an order of magnitude greater than 

the ridge push. demonstc-c-.ting the dominance of slab pull. Among the forces resisting 

pla.t.e motion. asthenospheric drag is greater under continent a! lithosphere than oceanic. 

Carlson ( 1981, 1963 .~ expanded on this idea: if plate motion is due to boundary 

forces then its speed is predictable from the known boundar:; elements. Using linear 

regression he produced an empirical equation successfull~· predicting the plate speeds 

(in ern yr- 1 ) from the proportion of ridge push (RP), slab pull (SP), trench suction 

(TS) and excess continental drag (CD) present in each. 

1' = (2.6 ± 0.4) + ('-i.·~ = 1.8)RP + (14.3 ± l.I)SP + (3 . .5 ± 2.5<TS- (5.1 ± 0./)CD 

The slab pull contributic-:: is three times that of the ridge push. which is almost balanced 

by the excess continentcl drag, in line V'·:ith Forsyth and l.'yeda ( 19/.5). The trench 

suction force is small c-.rHl not. statistically significant. Carlson noted that the large 

positive constant tern; i:. the equation implies that lithospheric forces omitted from the 

regression all contribute i1 similar amount. to each plate. The major omission is the 

non-continental ast.henospheric di-ag (or pull), and Harper ( 1966) concluded that. this 

is an important effect .. -\ s Carlson pointed out, correlation is not proof of causality and 

regression analysis is a somewhat circular argument.. However. the success of the model 

encourages the notion of the driving mechanism a.s a system of boundary forces which 

are intimately dependent on the plate itself. 
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The forces acting on the lithosphere generate stresses within it and the origin of 

the stresses was recently reviewed by Bot.t and Kusznir (1964i. Stress systems are 

catalogued as renewable or non-renewable. Plate boundary forces and isostatically 

compensated loads are renewable stress sources since the forces. and stresses, persist 

over geological time. Bending, membrane, and thermally induced stresses can be dis

sipated by fracture and crt"ep, will then no longer exist, and are thus non-renewable. 

Non-renewable stresses ma~- dominate locally but it is the renewable stresses that are 

subject to stress amplification and control most of the tectonics. Wiens and Stein 

(1985) presented a small dataset (57 earthquakes) of intraplate seismicity, half of the 

data was taken from the Central Indian Ocean. The principal stresses derived from 

the focal mechanisms sho\·: that oceanic lithosphere > 35 Ma i~ in deviatoric rom

pressJOn. Wiens and Okal ( 1987) described additional tensional intraplate events but 

Haxby and Parmentier ( 1988) demonstrated that thermal stresses probably dominate 

the stress regime of oceanic lithosphere in ocean basins, and thus it is difficult to derive 

the tectonic stresses from the seismic evide11ce. 

1.4 Convection Ill the :Mantle 

Sustaining the plate motion requires a great. deal of energy. It is generally believed 

that the only viable source is the interior heat generated by radio<tctive decay combined 

with a. gradual cooling of the Earth. A simple thermal convection model of the man

tle is shown in figure 1.1'. The efficiency of these thermodynamic engines. for driving 

lithospheric plates is maximised for who!<- mantle convection but the exact mode that 

operates converting he<tt to work is not clear. The Rayleigh number of the mantle 

ranges betweeu 102 and 104 times the critical Rayleigh number (e.g. Jarvis and Peltier 

1982) and under these COI1ditions the heat. transport is dominated by thin boundary 

layers of the convection c'."ll. The direct inference is that the lithosphere is a pass1ve 

upper boundary layer. 

Numerous numerical simulations of this type of thermal convection, the R.ayleigh

Benard cell, permeate the literature (e.g. McKenzie et. al. 1974. Hansen and Ebel 

1984a, 1984b, Boss and Sacks 1986, Jarvis and Peltier 1986) attempting to reconcile 

the geological and geophysica.l evidence. Recent. work has concentrated on the question 
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of whether the present- day convection is mantle-wide or is layered. Christensen and 

Yuen ( 1984, 1985) showed that a compositional density contrast of 5% at 670 km depth 

is sufficient to deflect the slab, but. this would produce observable topography at the 

boundary. A density contrast < 2 % allows complete slab penetration of the lower 

mantle. Only a highly endothermic phase transition~,.= -6 MPa K- 1 could enforce a 

'leaky' two layer convection system. 

The descending oceanic lithosphere is widely believed to penetrate the lower mantle 

from the seismic studies of high velocity regions immediately beneath subduction zones 

(e.g. Engdahl 1975, Jordan 1977, Creager and Jordan 1984, 1966, Silver and Chan 

1986, Grand 1987) which are interpreted as aseismic extensions of the slab. Dziewonski 

(1984) and Woodhouse and Dziewonski (1984) presented a tomographic inversion of 

velocity heterogeneity in the mantle which shows fast regions of the lower mantle (in the 

depth range 1000 krn to core-mantle boundary) that correspond to deep extrapolations 

of present-day subduction (Chase 1979, Hager et al. 1985 ). The calculations of slab 

assimilation by \Vortel ( 19.)::. 1986) predict that. the slab retains c..n elastic core down to 

the upper-lower mantle boundary. Shoino and Sugi ( 1985) also estimated assimilation 

time for subduction, assuming that it is related to cooling time for oceanic lithosphere. 

It is clear in the results that older lithosphere requires a much longer slab than indicated 

by the Wadati-Benioff zone. a. further validation of slab extension into the lower mantle. 

The geophysical evidence weighs in favour of whole mantle convection, but. not of 

the simple Ra.yleigh-Bena.rd cell type. Loper (1985) presented a quite comprehensive 

discussion of the evidence. arguments and suppositions concerning mantle· convection. 

He offered a solution in :errns of two modes of convection, the primary mode is driven 

by the negative buoyancy of the slab a.t. subduction zones, and the secondary mode 

takes the form of narro\':. a.xisyrnmetric plumes rising from the cc•re-ma.ntle boundary 

( CMB ). The primary mode flow is controlled by the viscosity-depth distribution. The 

cool, wide slab is strongly coupled to the viscous mantle and excite~ considerable flow in 

the surrouuding mantle. The exact flow patterns will be decided by the 3-D interaction 

of flow created by subduction and other density heterogeneities such as ocean ridges 

and plumes. 

Stacey and Loper {1963), Loper and Stacey (1983) and Loper (1984) provided 

the analytical framework of the D" thermal boundary layer at the base of the mantle, 
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and the lower mantle plume. More recently Sleep ( 1987) added c.. simple analytical 

plume model in the same vein. Plumes are envisaged as narrm·.-. about 20 km in 

diameter, axisymmetric vertical channels which carry hot, low Yiscosity material up to 

the surface with little or no coupling to the surrounding mantle. The plumes are fed 

from the D" layer which itself is sustained by a bulk sinking of the lower mantle. The 

ascent of the plume material is terminated by the rigid lithosphere. At the surface the 

underlying plumes are evidenced by bot spots, and these are generally active volcanic 

islands centred on a topographic swelL The hot, low density plume material feeds the 

volcanicity. The mass deficit associated with the hot upper mantle supplemented by a 

positive fluid pressure at the top of the plume causes the up-arching of the lithosphere 

(Richards et a!. 1987). The observed hot spot volcanics can only account for a few 

percent of the estimated mass flux of the plumes and so it is presumed that the material 

flows laterally in the asthenosphere. Loper ( 1985) estimated a layer 140 km thick would 

accumulate over the lifetime of the Earth assuming present day rates. and perhaps this 

is the source of the low \·elocity zone. This surface layer would originate from the 

bottom 280 km of the lower mantle leaving shallower material in t be vicinity of the 

plume potentially untouched. 

However, the mineral physics experiments discussed earlier suggest a slight com

positional difference between the upper and lower mantle. This may cause some sep

aration of the circulation at tbe 610 km discontinuity and the cor.sequent formation 

of thi11 thermal hounclary la:;ers, but not strictly layered convecti(,:, with a chemical 

boundary layer. This has implications for the mantle geotherm ( Jec-.nloz ·and Morris 

1986) causing the lower mantle to be hotter and the upper mantle coider than for whole 

mantle convection. This increases the thermal response time of the Earth. Kenyon and 

Turcotte (1983) modelled the development of thermal boundary layers due to two layer 

convection with no mass flux across the 610 km discontinuity. This analysis showed 

that the relatively hot lower mantle would possess an unacceptabl:o· low viscosity. In 

this respect the thermal arguments favour whole mantle convection. 

The geochemical evidence is another important constraint on tr.e evolution of the 

mantle (Davies 1984). rsing isotopic and trace element data Hofmann et al. (1986) 

described the chemical history of the mantle in terms of two depletion events. The 

first event generated continental crust, depleting at least half of the primitive mantle. 
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The residual mantle may or may not be remixed and homogenised. The second event 

involves the formation of oceanic crust in the form of present-day plate tectonics. The 

isotopic character of mid-ocean ridge basalts (MORB) is unique and fairly constant over 

the Earth (Zindler and Hart 1986), and the MORB source region is generally considered 

to be the uppermost upper mantle. Subduction returns the oceanic lithosphere, that 

is the enriched oceanic crust and its depleted mantle component. back into the mantle. 

It. is generally believed (e.g. Davies et al. 198&) that subduct.ed crust forms the main 

source of ocean island basalts ( OIB) at hot spots, since OIB has distinct isotopic and 

trace element characteristics that are most readily explained this wc-.y. 

At first glance the geophysical, geochemical and mineral physics evidence are not 

compatible. However, if all are accepted at face value, there emerges the possibility of 

partial decoupling of the thermal and chemical systems involved in mantle evolution. 

Su bduct.ion must take oceanic crust down to the chemical boundary layer at the CMB, 

which then rises as narro\': plumes to form hot spots. However, the ':olume of material 

produced by the plumes must be much less than that estimated b~: Loper (1985) to 

prevent contamination of the ::--.10RB source region. At the 670 krr. discontinuity the 

cold, dense. rigid slab will plunge through into the lower mantle. but the induced flow 

will be partially decoupled. The induced flow will create some me:.ss flux across the 

upper- lower mantle boundary but it will be inhibited by the compositional difference 

(which may occur at a much greater depth). Thus thin thermal bo:.mdary layers may 

form about thoc discontinuity. 

These are very tentatiYe assertions about the mode of present-day convection 1n 

the mantle. In the context oft his thesis subduction assumes the role c.:" principal driving 

force of plate motion and flm·: in the mantle, with deep mantle perti>aation controlled 

by the viscosity-depth distribution. The next section discusses th<o cause-and-effect 

relationships which help to de1 ermine the dynamics of subduction. c-.n understanding of 

which is crucial to the und'O'rstanding of mantle evolution. 

1.5 Aspects of Subduction Zone Dynamics 

The mechanics and dynamics of subduction will be discussed with reference to a 

2-D cross-section since the numerical models of this thesis are two dimensional. Where 
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appropriate, the 3-D influences will be included as an acknowledgement of the need 

to include sphericity when discussing subduction tectonics. Despite the assertions of 

Uyeda ( 1982) that 'comparati\·e subductology' is the only useful analysis of subduction, 

it is apparent that 2-D generalisations can provide an important description of the 

behaviour and development of convergent margins. So, following a brief account of the 

overall mechanism of subduction, each feature typical of subduction -...-ill be described 

in more detail, incorporating some of the relevant previous numerical analyses. 

1.5.1 The :Mechanism of Subduction 

The highly simplified cross-section in figure 1.9 portrays the mor~C: significant prop

erties of subduction zone~. The slab. defined here as the lithosphere below 90 km depth, 

carries a mass anomaly which generates a body force acting in the direction of the grav

itational field. This can be reo:olved into two components, one acting downdip and one 

acting perpendicular to the slab. 

The downdip component of slab mot.ion has received a considC"rahle amount of 

attention in the literature. Da\·ies (1980, 1981, 19i-i3) assessed the clv::c.dip force balance 

to determine the relative magr.itude of forces opposing subduction <--:·:d the net stress 

distribution in the slab. Th'=' force balance occurs in the mantle: ~i1e downdip slab 

force is opposed b:v in-plate t,-nsion at the top of the slab, viscous sLear resistance at 

the slab sides, and resistance to penetration at the leading edge. Th"' \'iscous shear is 

the dominant rect.ctive forct. Davies (1983) modelled shear resista.:·,c-: in an isoviscous 

mant.l!:' ( p = 1021 Pas) a.nJ ar~ued that the resulting cun1pression ( ~ GPa) in the lower 

sections of the slilb wendel exc.:-E-d slab strength and thus the system of r-:-sistive forces was 

untenable. The estimated larg-:- compressions may arise because the calculations assume 

that the slab tip reaches <tn impenetrable boundary at depth, which thf'o o\·erburden rests 

on. The slab tip is likely to be ductile after a. loug residence time i::. the mantle and 

thus the overburden pressure will cause deformation flow of the leading edge (Fischer et 

al. 1988) which may transmit rnuch less compression back up the ~lab. Davies (1983) 

demonstrated that increasing shear resistance from a more viscous mantle (p = 4 x 1021 

Pa s) reduces the slab stresses t.o a more acceptable value (300 1·1Pa ·. and so perhaps 

simple shear resistance in an isoviscous mantle is not. adequate. These presumptions 

require some detailed modelling to determine the precise effects. 
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The in-plate tension at t.he top of the slab is coupled to the s·..:.rface subducting 

plate through the slab bend region. The vertical component of this tension holds the 

trench down out of isostatic equilibrium, and creates the flexural res;lOnse of the outer 

rise. Horizontal tension is transmitted along the subducting plate. dragging it into 

the trench. This is a major contribution to the slab pull force of the plate driving 

mechanism. The numerical models of the stress regime at subduc:ion zones in this 

thesis will attempt to elucidate the origin of the plate driving forces. The large mass 

deficit of the trench creates an isostatic reaction to the downpull. This is spatially 

offset from the in-plate tension, generating an enormous bending co~..:ple at the top of 

the slab. This is the origin of the large increase in curvature of the st.:bducting plate at 

the slab bend region. 

The component of negati\·e buoyancy perpendicular to the slab ·~auses rollback, a 

retrograde motion in which the slab and trench migrate seawards . ;:.g. Carlson and 

Melia 1984 ). Garfunkel et a!. t 1986) proposed that slab migration is :be major control 

of the time and space depend-:nce of mantle flow and estimated tho:' average rollback 

velocity to be 20 mm yr- 1 . O·;er the vast. surface area of subducted slabs this motion 

will cause a considerable mass flux, comparable to that at the ocean ridges. Davies 

( 1981. 1983) noted that this m•Jtion will be coupled to the overriding ;>late through the 

viscous mantle, inducing a broad downwa.rping about 1 km deep. This correlates well 

with observations of depth anomalies in the Western Pacific margiEcJ basins (Louden 

1980). Around 70-90% of th<:> magnitude of ohsen-ed geoid anor:-.<-.l:-:'~ in the backarc 

could be explained by this depression. 

The negative buoyancy of the slab tends to rotate the descer:d:r.:g lithosphere to

wards the vertical. This is contradictory to the present-day data o:· '::ic.b dips, displayed 

in figure 1.10. As Jarrard ( l9S6) pointed out, subducting slabs <qpec,r to show a gen

eral shallowing of dip with duration of subduction. The concept o:· corner flow was 

originally applied by Md\enzi10- (1969) to provide a rnechanism of ma..i:-,iaining slab dip. 

In t.he mantle wedge abon: the slab the downdip motion drags c-.way material which 

cannot be replaced becausiO' the overriding plate is stationary rela.t:;·e to the trench. 

This creates a pressure difference across the slab counteracting the graYitat.ional forces. 

This mechanism was restatiO'd by Stephenson and Turner ( 19/7) and extended to in

clude non-linear rheology by Tovish eta!. (1978). There is a relati·.-e geoid high at. the 
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trench (Crough and Jurdy 1960. McAdoo 1981) and McAdoo (1982; r::anaged to gen

erate correct geoid slopes using highly non-linear corner flow. Hager 1984) has since 

demonstrated the origin of geoid highs at convergent margins due to th~: -.-iscosity-depth 

variation, and Willemann and Anderson (1987) successfully modelled geoid slopes due 

to vertical subduction of an inextensible slab in a layered Newtonian r..:.antle. 

The pressure difference across the slab produced by corner flow fells off with dis

tance downdip. Willeman and Davies ( 1982) compared this corner flm·; support with 

the integrated slab force normal to the dip. These calculations showed that different 

variation down dip (of the two opposing mechanisms) creates large to:-ques which the 

slab could not endure. Corner flow support is proportional to the eEective viscosity 

which is predicted to be low in the mantle wedge. So, the evidence weighs against. 

corner flow as the dominant mechanism of slab support. 

Bott (1988) calculated thit1 a pressure deficit of 10 IviPa in thr:' mantle wedge 

would provide significant support to the descending slab against the y,)tational forces. 

This pressure low could be produced and dynamically sustained by co:-.~im10us rollback 

causing lateral flow in the asthenosphere. Global flow will probably ioc e:lly modify the 

specific effect of the basic mechc<.nism. \·Vhilst the dynamic flo\\" pressure ::nay maintain a 

particular slab dip, it is rather more unlikely to cause shallowing. A po5.oible mechanism 

for shallowing involves slab penetration of a high viscosity lower mant:e. The slab tip 

will move more slowly through the lower mantle than the upper ma.nde rollback, and 

thus t.he longest suhduct.iug sl<tbs may tend to shallow. 

The numerical models of Gurnis and Hager (1988) predict vertica.i .::·1bduct.ion until 

the slab tip collides with the top of the lower mantle. Ongoing subdue-ion then causes 

a shallowing of dip as the slab tip int.era.ct.s with the more viscous ]0\•:-:r mantle. This 

cannot explain the observed variation of dip among the shallowest Ber::~_;ff zones except 

by aseismic extension of the slab in t!te upper mantle. 

1.5.2 Controlling Factors of 1 he Subduction P1·ocess 

Conductive cooling models of the oceanic lithosphere (Crough 19-;-.:, •, as it migrates 

away from the ridge and isostatically subsides, show that it is cooler c.nd denser than 

the underlying asthenosphere. \umerical predictions of slab isotherms. rombined with 

estimates of the coeftlcient of thermal expansiOn, yield an average ::bermal density 
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anomaly of approximately 6p = SO kg m- 3 for the descending lithosphere at subduction 

zones. As subduction progresses. conductive heating spreads the therrr,al anomaly and 

so the effective density anomcjy may be reduced with distance downcip, but this is 

slow compared to the time com\ ant of convection. Hence as a good approximation for 

numerical models (Willemann and Anderson 1987) the density anomaly will generally 

persist throughout the length oft he slab. Kincaid and Olsen (1987) suggested that. the 

ratio of density anomalies in the upper and lower mantle is an important control. 

The low temperature of the slab will cause mineraJ phase changes to occur at 

different depths relative to the surrounding mantle. The discontinuities at 400 km and 

670 km depth were discussed pre\·iously (see section 1.3 ). In numerical implementations 

the olivine-spinel transition is represented by addit.ionaJ body forces a.bo\·e 400 km depth 

in the slab. Anderson ( 1987) proposed that the lateral temperature anomaly of the slab 

causes isobaric phase changes. increasing the density anomaly further 1 figure 1.11 ). The 

increased mass anomaly and \·elocity of the slab may then negate the requirement of 

slab extension into the lower mantle. 

I sacks and Molnar ( 1971) completed the first global study of eart hq'Jake generating 

stresses deduced from focal mt:-chanism solutions of intermediate and dt:-ep focus earth

quakes. That. survey has been updated recently by Vassiliou ( 1984) anc .-\pperson and 

Frohlich (1987) using the ne\':1~· available moment. tensor inversion ciata. resulting in 

very little alteration to the init:al conclusions. The diagram in figure l.L? portrays the 

va.riat.ion of number of eart.hquc:kes with depth. The histogra1n has a r~i!":inc1. minimum 

at 250-300 km depth. many r~:ore earthquakes nccur at a shallow depth ·than below 

300 km. The deep focus ean ~.cp;akes are predominantly downdip cor:~ pression, with 

50/{, of P-axe~ lying within :!~' of slab dip. The int.errnediate depth earthquakes, in 

the range 90 - 300 km, havf" a regional variation and the principal str-:-ss axis is not 

well aligned downdip. but in general terms downdip tension prevails in both deep and 

shallow penetrating slabs. Hm\-f"\·er. Apperson and Frohlich ( J 987) c<.Jn:lated tha.t., in 

a global sense, less than 30'7( (jf focal mechanisms fit this general pa.tte:-r:. 

The longest subducting siabs roughly follow the average earthquake distribution 

but. a notable exception is the Tonga slab which is aJmost. entirely compressional 

throughout its length (Giardini and Woodhouse 1984 ). Double seismic zones are the 

best documented departure from the average earthquake profile (Fujita and Eanamori 
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1981) but the recent surge in discm·eries (e.g. Samowitz and Forsyth 1961. Reyners and 

Coles 1982, House and Jacob 19S3, Suzuki eta!. 1983, Kawakatsu 1986a) suggests that 

the double seismic zone might well be the normal mode of intermediate earthquake dis

tribution (l(awakatsu 1986b). The most convincing double seismic zones are observed 

in the depth range 60 - 200 km in slabs with dips 30° - 45° and are characterised 

by two layers of seismicity. Compressional mechanisms dominate the top layer near 

the surface of the slab, and tensional earthquakes make up the lower layer about 30 

km further into the slab. Fujita and Kanamori (1981) note that double seismic zones 

persist over a large depth range. and hence a long time, and thus discount unbending 

stresses and phase changes as the sole mechanisms. Sleep ( 1979) suggested a model of 

a slab sagging under its own \\·eight. the low viscosity mantle above the slab relaxes 

quickly allowing compressive stresses to develop in the upper surface. The lower layer 

of in-plate tension persists as it is near t!Je neutral fibre of the bending moment. A 

displacement of 2 km is probably sufficient sagging to create the required stresses and 

this would be indistinguishable !or current earthquake location <tccuracies i =·5 km). 

The physical rnechanism of deep earthquake~ is not well understood. The volume 

change in high pressure polymorphic phase transitions would not prodcce th'O' observed 

double-couple mechanisms, but a variation on this theme by 1\irby i 19S I i has again 

lent credence to this notion. The earthquake generating stresses in the slab can be of 

mechanical or thermal origin. Phase changes serve to magnify both oft hese effects with 

an increase in buoyancy and the ;;=dent he<tl release. Ha.maguchi et al. ( l9S3) and Goto 

et itl. (J9KS) used a finite elemeni meiltud t.o evaluate the thermal stre~st-s induced by 

concluct.ive heating of the slab. including the latent hea.t. release of th'O' olivine-spinel 

tra.nsition (using a. non-linear Cla.penon curve). The thermal stresse~ dominated the 

mechanical stress field, but did not correlate well with the stress dist~ibution derived 

from the average earthquake profile. Vassiliou eta!. (1984) studied the mechanical 

stres~ distribution generated by a \·iscous slab sinking under its own weight into a lay

ered Newtonian mantle. A viscosity increase of X 25 at 670 km depth c-.pproximately 

reproduces the observed stress field. However, this is indistinguishable irom the stress 

regime generated by higher viscosity contrasts or an impenetrable boundary. The inclu

sion of the body forces of the ele,·ated olivine-spinel transition in the slab was discovered 

to he incompatible with the observed stresses. Neither study could account for double 
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seismic zones. Spherical shell tectonics analysed by Yamaokaet al. (1986) and Yamaoka 

( 1988) are an important addition to the stress field. 

The slab bend region connects the descending slab to the surface plate (Spence 

1986, 1987). It is characterised by a marked increase in curvature of the lithosphere 

with little associated seismicity. This occurs at about 40 km depth, roughly coinciding 

with the basalt-eclogite phase change in the oceanic crust of the descending plate. This 

transforms the initially buoyant crust to a high density phase. Bending will thin the 

crust and the phase change leads to a volume reduction and more plastic behaviour 

which may aid any possible decoupling from the overriding plate. Thus the onset 

of the slab bend region could define the end of the brittle fracture zone and help 

to explain the litek of large magnitude thrust earthquakes below 40 km depth. The 

descending lithosphere must pass through the slab bend and potentially is severely 

fractured and deformed. This could influence the mechanical and chemicaJ interaction 

with the asthenosphere. 

The thrust zone is the site of th>:> largest magnitude thrust earthquakes. It does 

not contribute directly to the force balance in the mantle, but it serves to redistribute 

the stresses in the surface plates. The nature of the contact across the thrust zone is 

uot well understood. Ruff and Kanamori ( 1980, 1983) suggested a distribution of large 

asperities in the fault zone to account for the large magnitude earthquakes and the 

nature of a.ftershocb. The asperities could be due to surface features of the subducting 

plak or clue to variations in contact l!O'ngt.h and angle along the fault. line. However, it. 

is clitticult. t.n predict the amount of sediment subduction and the behaviour. of the crust. 

whicb may contribute to the properties of the thrust. zone (Peterson and Seno 1984, 

J\ostoglodov 1988). 

Ridges and seamounts are thl? largest. topography of the seafloor and attempted 

subduction will generate a very large asperity which may temporarily halt. subduction 

in that region. Locking-up one segment of a subduction zone will have a dramatic 

effect on the stress regime, with '" !rtrge component. of regional horizontaJ compression 

being transmitted across the fault ( Waghorn 1984 ). For an elastic plate the compression 

would be transmitted throughout thl? plate length causing considerable vertical motion. 

Wortel and Cloetingh (1986) showed that flexural basins in the centre of the plates will 

suffer significant. uplift as the regional stress field becomes compressive. 
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Free-air gravity anomalies seaward o:· convergent margins follow the seafloor topog

raphy indicating that the trench and outer rise are held out of isostatic equilibrium. The 

flexure can be modelled to a first apprm:imation by an elastic layer of age-dependent 

thickness, 100 Ma lithosphere has an effective elastic thickness (EET) of 30 km (Watts 

and Talwani 1974, \Vatt.s 1982). Hov:ever, some outer trench slopes have high curva

tures which are best described by flexure of a lithosphere with an elastic core and an 

outer plastic layer (Turcotte eta!. 197~i. The bending stresses fracture the crust under 

tension to form graben blocks which trap sediment for subsequent. subduction (Hilde 

and Sharman 1978, Wortel and Cloetingh 1986). The weight of the accretionary prism, 

2.nd possibly the forearc, are additional loads on the subducting plate which will modify 

the surface flexure. 

The dominant features of the forearc are the accretionary prism, the structural 

high and forearc basin, which may or may not be present at a part.icular margin. In 

the nomenclature of Seely (1979), the re~idual forearc basin is considered to be typical 

c.f major forearc basins. The evolutior: i~ shown in figure 1.13. The basement e:.nd the 

initiation of t.lte structural high is remn<tnt. oceanic or transit.ionallithospltere; l\iechefer 

1:'1 a!. 1980, Lewis and Hayes 1984), and its inception must have some flexur;tl control. 

Subsequent. evolution is dependent on <tccret.ion, understuffing and compressional fail

ure. The forearc is controlled by compressional tectonics. The Lesser Antilles is an 

<::·:ample of a non-typica.l structural ltig~ .. Si11re the basement spur is small tl-:e Bar

b<tdos Ridge has developed by grm·:tb .:.fa huge accretionary prism (Westbroc.k and 

Brown 198b). The i~ostatic gravity e:r~c:nr,aly over thf:' Lesser Antilles forearc complex 

is strongly negative showing that t.ho:- s:;~1ern is depressed by the action of subduction 

'Westbrook and McCann 1980, Westbrook et al. 1984). 

Tharp ( 19bf•) modelled shallow S;.Ibduction to investigate forearc basin e·;o]ution 

using finite element methods. This procuced .S km structural highs and forearc basins 

c-. f<>w kms deep, which are great!:-· in excess of the observed. This discrepe:.ncy in 

m<tgnit.ude is aJtributed to the methoc used; viscous strain rrtte was defined a.s an 

elastic strain distributed over a small time period. 

The volcanic front of arc volcanism always lies above the point where the \\"adat.i

Benioff zone reaches 100-150 km depth. There is no volcanism seaward of this. t!yeda. 

i 1 98b) reviewed two possible sources of arc volcanism, diapiric rise clue to melting, and 
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induced flow above the slab (Andrews and Sleep 1974, Achayra 1981, Honda 196.:> ;_ The 

downdip motion induces convection in the mantle wedge, the material rises adiabatically 

and partially melts in response to the drop in pressure. The melt is buoyant and is 

released at the highest point of the flm·:. '·:here the surface lithosphere is ablated and 

intruded by the melt. Experimental e\·ideEce implies that. high temperatures ( 1400 °C) 

are necessary in the mantle wedge (Tatsurni et al. 1983). This induced flow model is 

supported by the absence of volcanism in the South American Cordillera where there 

is no underlying mantle wedge. 

The backarc of convergent margms has been catalogued by Taylor and Karner 

( 19S3) and Brookes et al. ( 1984 ), among others, and classified by strain regime by 

Jarrard (1986) and by stress-gradient by :\akamura and Uyeda (1980). There is a 

complete gradation of strain regimes from the highly extensional with active backarc 

spreading e.g. Marianas, through the EI"Utr<ti regimes e.g. Lesser Antilles. to the highly 

compressive of North and South Chilt>. 

Dewey ( 1980) presented a vector ar,a]\"Sis of absolute horizontal motion oi the 

plates. relating backarc and iorearc tectonics to the resultant of trench rollb<td: and 

m·erriding plate motion. Extensional bacb.rcs nccu r when rollback is fastt>r t hc-.n the 

<t(h·<tnce of the overriding plate, neutP.i backarcs arist' when both move at <t similar 

r<tte. and compressional backarcs are created when the overriding plate advances faster 

t h<tn the t.rellclt rollback. Oblique motion cre<ttes strike-slip features and terrane motion. 

Titu~ the mudPI requirt:"s a cb<t.llge in on·rriding plate motion or rollback velocity to affect 

the tectonic~. For illstanre, a decrease in rollback velocity due to younger. lithosphere 

itt the trench can t.rrwsform an extenS:.JniJ to a compressional ba.ckarc. This i:ib~olut.e 

moiic.n model crtn explain most., but I•Ot <tll, oft he variation in the tectonics oi the 

O\·erriding plate. 

B<tckarc spreading appears to hrt \"E" a limi tt>d lifetime < 1 I Tvl a. a change in plate 

motions can cause an immediate cessation of spreading but. there is a time lag of 6-10 

~Ia before spreadi11g resume·s elsewher10- !Judy and Stefanick l9i\3). Proposals for t.he 

mech<tnism of ba.ckarc spreading can be divided into either active or passive groups 

({"yeda 1986). Active mechanisms include the induced flow driving spreading (e.g. 

Andrews and Sleep 1914, Toksoz and Hsui 1978, Hsui and Toksoz 1981, Ida 1983, 

Jurdy and Stefanick 1983, Vanpe 1984j. Induced convection in the mantle wedge <tbove 
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the slab produces hot, buoyant rising material about 300-400 km from the trench. The 

buoyancy forces create small tensions of about 20 MPa in the surface plate (Jurdy 

and Stefanick 1983) and these would be expected at all backarcs unless the induced 

con·;ection is modified by global flow. Passi\·e mechanisms of backarc spreading include 

the a.bsolute motion model of Dewey ( 19801 and the 3-D buckling hypothesis of Yama.oka 

et ai.. ( 1986) and Fukao et al. (1981). As rollback progresses the arc grows, and backarc 

opening initiates to accommodate the increasing area enclosed by the evolving arc. This 

buckling mechanism can account for the limited size of the backarc basins, but again it 

inherently implies that. this should happen at all convergent. margins. 

5clater (1912), Sclater et al. (1976), Watanabe et al. (1977) and Louden ( 1960) 

noted that the marginal basins of the western Pacific have a negative depth anon·.aly 

of 2.pproximately 1 km rel<ttive to the Pacific Ocean. The free-air gravity anomalies are 

gner<tlly small and positi\·e ( < 50 mgal). 

The existencP of r!'mnant arcs at 1 he :<tr side of the backarc spreading cen' re5 

im:)lit:>s that sprea.ding was initiated at the c-.rc. This is the hottest., weakest par of 

tit-:- .:;\·erricling plate, intruded and fractur'O'd by magma injection. The loading vf the 

vo:u:r:ic arc alld the underlying compensct.tor:; hot., buoyant magma will generate hori

zo::tc-.i deviatoric tensions in the lithosphere. III combination with the absolute motion 

of: }w overriding plate this could overcome the local compression in the forearc to induce 

a :-plit. This accounts for the time lag to initiate spreading after subduction begins. 

0Lce initiated, spreading can propagate b:,· ;.. nuwber of mechanisms discussed ab(i-.·e. 

aw: can be termina.tecl aho. 

Throughout. the whole of the preceding ciiscussion subduction has been treated a5 

a continuous phenomenon. One of the ma_ior problems of tectonics is the initiation 

of ~ubcluct.ion, the rupture process which pt:>rmits oceanic lithosphere to re-enter the 

mr. n t le is not well understood. Cloetingh e: al. ( 1982) i nvestigatecl the evolution of 

p<t-si·;e rnargius aud found that ageing aloue is not sufficient to initiate subduction 

wi·hout a pre-existing zone of weakuess. The most suitable condition was sediment 

]o<tcling of a young passive margin. Transform faults, separating lithosphere of differing 

agf:s. are possible sites for inducing subduction in oceanic lithosphere. Fujimoto and 

To:noda. ( 1985) used finite element models of viscous flow to model the development 

of subduction at a transform fault, and showed the older lithosphere thickening and 



descending under the fault line. 

1.6 Aims of the Study 

The 2-D finite element simulations of this t.hesis use a highly simplified model o: 

subduction. Varying the parameters of the models will give a quantitative assessmerct 

of the effect of the parameter on each of the features of subduction zones describ-:c 

aboH·. From this a generalised picture of the mechanics and dynamics of a subductior. 

zone and its role in global tectonics can be constructed. 



CHAPTER 2 

The Finite Element 1\1ethod 

The finite element method has been wideiy used for stress analysis in engineering 

applications but it is a highly versatile numerical tool and can also be applied to fluid 

flow, heat conduction and convection, and electric and magnetic potential problems. 

The basis of the method is to divide a continuum into a number of finite elements which 

are defined by nodes on the element boundary. Each element is assigned the relevant 

properties such as Lame parameters, viscosity. conductivity, to approximate the real 

body. r nder a given set of conditions we caE solve for the unknown variable such as 

displacement. velocity, temperature. at the nodes which approximates the continuum 

response. Solution accuracy increases as the eler!!ent. mesh is refined and with higher 

order elemE-nts we can define how the variable nel•:i behaves across tlte element., whether 

it is linea.:. quadratic, cubic etc. This study u:.b ;he 2-dimensional, quadratic, isopara

metric Sl"r'O'ndipity element, in the form of 8-nod'O' quildrilaterals and 6-node triangles. 

The elemc:nts have 2 degrees-of-frc-eclom ( dof • at c-ach node which define the variable 

field: for elasticity problems thc-sc- are the :r and y displacements and for fluid flow 

problems 1 hese are the ;r and y vc-locities, in C?.rtesian space. Serendipity elements 

ensurE' th<tt the unknown variable is continuous across the element boundaries, but any 

derivatin:::. will be discontinuous; thi~ is C',. cc·:t<ir,uit.y. 

Thl" following two sections an· essentially a summary of the techniques developed 

by \VagltC•rlt ( 1964) for elastic and viscoelastic benaviour where further details may be 

found. The final section is au extension of the pre·:ious work t.o produce a finite element 

code for ':iscous, incompressible flow. The purpose of this chapter is solely to present 

the theory of finite element aJlalysis, as it is applicable t.o studies of global geodynamics. 

a.ncl in particular the subduction process. A iuli discussion of the implementation of 

this theory is given in the next chapter, where the previous problems of faulting and 

thermal anomalies are addressed, and benchmark studies of fluid flow analyses are used 

t.o determine t.he accuracy of the viscous flow finite element program. 
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2.1 The Quadratic Isoparametric Formulation 

2.1.1 Shape Functions 

The element nodes define the two basic qualities of an element, 

• nodal coordinates { c} define the global coordinates of a point in the element interior 

through the interpolating shape functions [ ..\':. 

{x} = [Nj{c} ( 2.1) 

• nodal do:- { d} define the vector of the domain variable at a point. in the element 

interior through the interpolating shape functions [N], 

(2.2) 

An element is isoparametric if the nodes defining { c} and { d} are identical and the 

shape functions:_,\'] and [N] are also identical. The quadratic Serendipity elements are 

shown in fi.gu re ::?.1. In the local coordinate space i C ') i the elements are straight-sided 

of unit dimension. The mapping into the global Cartesian space (.r,y) allows curve-

sided elemer,b t.o be used to model t.he complex bod:; gt:>ometries whilst the calculations 

are performed in the local coordinate space. Considerable distortion of the elements is 

possible a~ loHg a" the one-to-one correspondence of the transformation from Cartesian 

t.o curvilirJP<~r '-pace is maintained. 

The In<-.pping is conta.ined within the element shape functions. The quadratic 

polynomial interpolation in the triangular element which defines the global coordinates 

of a. point from the local coordinates of that point can be written. 

where a;, b: are the nodal coefficients. This can be \Hitt.en as, 

where, 

:t = [C]{a}, Y = C rb}. 
. . l 

[C] = [1 ~ 1J e r/ ~7J] 
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Figure 2.1 The six-node triangular element in local (~,TJ) and global (x,y) co-
ordinate space, and below, the eight-node quadrilateral element in local(~, 77) 
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The local coordinates are known so then substituting the values for the .r-coordinate 

gives, 

:z· 2 ( ~ • 0) = a 1 + ~ + a4 
) 

2. 2 4 

.r 3 (1,0) = a1 + a2 + a4 

(1 1) a2 a3 a4 a.s a.5 
.r 4 2' 2 = 0.] + 2 + 2 + 4 - 4 + 4 

.r s ( 0, 1) = a 1 + a3 + as 

which can be written, 

{c} = [A]{a} 

and inverting this, 

Hence the .r-coordinate of a general point can be written, 

thus the shape functions which define a coordinate froai tlte nodal values are, 

[N] = [C'][At1 (2.5) 

in full, 

N3 = 2(- ~ 

- } As = 2r(- ·t] 

1'-h = 47)- 41l- 4~1] 

The y-coordinates yield an identical result, and by definition the shape functions 

for the field \·ariable are identical. Local derivatives are obtained by differentiating the 

shape functions_ then evaluating the derivative at the point in the element, for example, 

,:) 6 ·:> ~~. 
u:r '\"" OJ\ 1 

[),7 = L (1,7 .r, 
:=I 

(2.6) 
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The process outlined above will generate the shape i·Jnctions for a quadrilateral 

element using the following quadratic polynomial, 

and the resulting shape functions are, 

1 ( 2 0 J ?) 
N3 = 4 -1 + ~ + rr + ~17- ~- 77- ~rr 

1 ( 2 ·) ) 
N4 = 2 1 - '7- ~ + ~-17 

- 1 ( •) ? ' ?) IV s = - - 1 + ~- - 17- - ~ 77 - '' Ti - E 17" 4 ~ - . 

- 1 ( •J ?) lvr, = - 1 + ~ - rr - frr 2 . 

1\"7 = 1( ? ) ' ) 
- 1-] + ~- + I]" + ~~~ + ~-if - ~ !() 
4 
1 
- ( 1 -f 17 - e -e ,ll 
•) . 

2.1.2 The Jacobian l\Jatrix 

The global Je:-ivatives of the variable field defined r,,_·er the finite element domain 

are required. Th-:- chain rule gives t.he local differential C•~-:.':-ators. 

(J [J.r [I iJ:y i) 
' - --

[)~ ()~ CJ.r 
T ac fl·u 

~ . 
i:i f:IJ- i) iJy (I 

- = -- + 
d17 ih7 D.r D'l i)l.l 

which can be \':rin.;·n in matrix form and inverted to gi-:<: :he global derivatives, 

where the inverse Jacobian operator, 

lJrl [ru r21 r12] r22 = 

and detJ is the df:'terminant of the Jacobian. 

?"' _, 

[ ily ay l 1 i.IIJ d~~~ O.r det.J 
a11 i}~ 

(2.9) 



2.1.3 Numerical I nt.egration 

Global integrations over distorted elements are simplified by the transformation 

into local coordinate space. The integral of the functioL f over the specified area can 

be calculated fro!T1. 

I = j j f d.rdy = j j f detJ d~d17 ( 2.10) 

Integrals must be evaluated numerically and the Gauss-Legendre quadrature of the 

function fin 2-dimensions is given by, 

n1 n 

I= L L W, lVj f((,, 171 ) detJ :_ (2.11) 
i=l J=l 

where~,, 1J.i are tht- local integration points m the el'C'ments and VV, H-'i are the as-

sociated weighting functions. It. is most common for m = n. In one-dimensional 

Gauss-Legendre quadrature, if the function f is a polynomial then n sampling points 

will exactly integr;:,.te a polynomial of degree 2n- 1. Howen•r the order of integration 

and the location,){ Causs points which yields the best resulis for a particular element is 

not immediately c·b\·iou s. Barlow ( 1976) discussed the optimal stress locations for some 

popular finite ele::·:-::nts in elasticity and discussions in Cook (1981), Zienkiewicz (1917) 

and Si"gerlind i 1976' show tha.t 4-pt integration in quacri~aterals and 6-pt integration 

in triangles is i>Urliciently accurate. 

2.2 The Variational Method for Elasticity 

2.2.1 The Strain :!\1atrix 

In an elastic continuum the strain is tlw first spatial derivative of the displacement 

and for 2-D anal::!'-i~ t.he in-plane strain at a point can be '\':'ritt.en, 

O'U 

ax 
8v 

8y 
O'U 8v 
8y +ox 

where v, 7' are the .r. y components of displacement interpolated from the nodal val-

ues using the shape functions, [N]{d}. The differential operators have been derived, 
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equation 2.9, so the strain can be defined by, 

{E} = [B]{d} (2.12) 

\vhere, 
a 

- 0 ar, 

[r~, rl2 a 
0 

r~,l 
0 

:BJ = 0 rl2 01] [NJ a r21 r22 r11 r12 0 -
ar, 

(2.13) 

& 
0 -

07] 

2.2.2 The Elasticity Matrix 

In linear ela.s tic solids the stress Js proportional to the strain giving the general 

stress-strain relatiun. 

{a)~ { ;~} ~ [C I {c)- {'o} I - {ao) (2.14) 

where [CJ ~~ the eiasticity matrix. {c:o} are the initial strains, and {o0 } the initial 

stresse~. 

Hookes' ]a\\" in two dimensions for the case of plane strain in which {<'o} = 0 is, 

c -
~r -

(Or- llOy- L10J _ 

E + <r: 

(-VOx f 0"!1- L'O:) , _ 

E , -:-. 

2(1 + u) 
E T ::-~ + )'r!J•:• 

where tlw elnstic:r:; constants 1.1 is Poisson's ratio, E is Young's modulus. Rearranging 

these equnJiom i:no the form of equat.ion 2.14 gives the elasticity matrix, 

C)= 
r 

1 - /.1 

E L' 

(lfL')(l-21') O 

I' 

1 - I' (2.1.5) 
0 

with initial straiEs. 

and the out-of-pl<iitf.:' stress, 
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Other formulations which could be used are plane stress a= = 0, or a lithostatic 

.::-stress. This latter formulation allows both stress and strain in the out-of-plane z-

direction, but constrains the stress to be lithosta.tic by, 

The elasticity me:.tnx can be evaluated by substituting i:Ho the constitutive relations 

above to give, 
L' 31/ 

1- - 0 
2 2 

E 3u L' c 
(1 + u)(1- 2v) 

1-- 0 (2.16) 
2 2 

0 0 
i 1 - 2u) 

') 

The advantage of this formulation is that the deviatoric stresses in the .::-direction are 

identically zero. 

2.2.3 The Stiffness l\1at.rix 

The equatio:>s controlling th~ el~stic response of c-. body are derived usmg the 

variational meth.-.d. which is possibly the simplest and most physically meaningful 

approach. The n:IO'thod entails summing the potential er:ergy of the body, due to the 

body forces {b}, 5u:-f<tce forces {q}, and the accumulated strain energy, aud minimising 

this with respect :o t~1e displacements. The approximatior< of the finite element method 

is that the variations are restricted to a finite number of pe:.rameters i.e. the number of 

nodes in the bod:: io;;t>e Zienkiewicz 1917). 

Let. the tot a: ]Wient.ial energy of the volume of the co;-,tinuum be, 

ll=lVtU 

where the work done by the applied loads in response to'];"' \·irtual displacements {v} 

JS, 

l \ - = /{ 11} T { b} dF ' 

= /{df[Nf {b} dF 

I r 1 T r 1 ' , 
. ·Luf l.qf a_; 

t /{d}T·_y T {q} dA 

and the strilln eno:>rgy is, 

U = ~ / { c V {a} dV 

., _/{d}T[Bf[CJIB]{d} dF J {d} 1 .B1T[C]{.s 0 } d\f 

t J {d}T[B]T {a0 } d\f 
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Using matrix and tensor calculus the minimisation of, 

an 
-- =0 
8{d} 

g1ves, 

where [K] is the stiffness matrix and {F} is the global forc'O' \·ector. For a unit thickness 

in the .::-direction the stiffness matrix becomes, 

and the force vector is. 

where, 

{ F} - J f I _ r · } _ { f·} _ r f · 
- L.£._,.f t.f-,:. .t l.',J 

r · 1 /' ·T· 'l r 'l ·t./,. 1 =. 1B ( , 1 ~o 1 d.r dy 

u~ .. } = JIB?{ cro} d.r dy 

{h} = /tx]T{b} d:rdy 

{f,} = J!N]T {q} dS 

(2.20) 

( 2 .2]) 

( 2.22) 

( 2.23) 

( :2.24) 

The stiffnPs'"'' i1.re evaluated element- by-element and e:ssembled into the global 

stitf11ess JIJa.trix. Tlte a~sernblv process is a simple summ<ttior. of element contributions 

<11. eiiCh 11ode. <tr!d thl:' resulting global matrix is symmetric. A comprehensive and 

rigorous disrussinJ; of this cleriv<1tion ca.n be found in mo;;t finit.e element texts (e.g. 

Zienkiewicz 1911 ;_ 

2.2.4 Dirichlet Boundary Conditions 

The previous finite element analyses of Mithen ( 1960 ). Park ( 1981) and Waghorn 

( 1984) used the Payne-Irons approximation to a.pply Dirichlet boundary c01iditions. 

The nodal displacement. has a prescribed value 11, = ii which is imposed as follows: 

replace the diagonal term oft he stiffnes~ matrix ]\-" by .K _\' and the row of the force 

vector F, by I\, X i1 where .X is a large positive constant. This approximation simply 

weights tl1e equation to the value 11, = 1/. It. is a useful method since it preserves the 

:} ] 



symmetry of the global stiffness. However, a more exact representation of boundary 

conditions may be required and an alternative method is outlined in section 2.3.5. 

2.2.5 Nodal Forces 

The gravitationc-J field g acting on a volume element of density p generates the 

body force vector. 

{ b} = { P9:::} 
P9y 

where 9:::, 9y are the components of g acting in the x- and y-direct.ions. The body force 

vector is directly su bst.ituted into equation 2.24. 

Surface loads act only on an element. edgf' and it is convenient. to re-define the 

three edge nodes as a one-dimensional isoparametric edg"' element with a separate local 

coordinate systeu. a~ shown in figure 2.2. As before, the glcobal coordinates of a general 

point a,re interpo:aied from the nodal values using the local coordinate shape functions 

{.r} = [.IV]{c} (2.26) 

wbere the sh<tpe functions written ill full are, 

f.;3 = { ( 2~ + 1 ) 
l l . 

Surface lnacb 1':::; g,"'IJerally he prescribed in the form of normal and shear stresses, 

{q,,,}. ResokiHg 1be::.e at a point. in Cartesian space, 

{ 
qq __ -__ }. = [c

5

o
1

_·

11

s:· -sinn] { q_,) _ -R·· { q,} 
" u coso- q, f - . . q,, 

where from figurc: :2.:2. 

r 

i.l.r 

IR'l = d~ 
J ely 

i1T) 

(Jy l ()~ 

~;r 
rll) 

(2.21) 

the ma,trix cnmpcments are the local derivatives obtained from the shape functions. 

Hence, for the cmnplet.e edge element, 

{q} = [R]{qsn} 
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2jdy 
dx 

~------------------------------~x 

Figure 2.2 The three-node isoparametric edge element in local and global coor
dinate space. The normal qn and shear qs surface tractions act perpendicular 
or tangential to the element in both coordinate systems. The insert at the 
top shows the relationship between~ and (x,y) space required to evaluate the 
rotational transformation. 



where, 

[ R' 
0 

J] [R] = ~ R' 
0 

{qsn}T = {qsl q-,;1 q,-c q"" q_, ... } 

and so the elemental contribution to the force vector e\·aiuated in the local coordinate 

space JS, 

(2.28) 

smce the determinant of the rotation is one. This integral 1s evaluated numerically 

using three-pt. one-dimensional Gauss-Legendre quadratl.ire. 

2.2.6 lsost.at ic Compensation 

Boundaries which represent density discontinuities '·:ill generate a reaction to any 

perturbation, or displacement across them, in the direction of the gravitational field. 

Lithospheric behaYiour is often modelled as a thin, elastic iayer overlying an inviscicl, 

tluid substratum. An inviscid fluid react" instantly to deformation and supporb 110 

viscous stresses, so the reaction to the deformation will be tho:- buoyancy of the displaced 

fluid, 

where[! is the disp;acement in the direction of the gravitational field g. The buoyancy 

forces will a,ct no:-r:·.<tl tu the element edge and ca.n be wr:tten, 

(2.29) 

where { d} is the rli~ placement. and the gravitational field IT1<-:.1 rix [g] is, 

0 0 0 0 0 (o 

9::: 9y 0 0 0 0 

[g] = 0 0 0 0 0 0 
0 0 9.r g., 0 (i 

0 0 0 0 0 0 
0 0 0 0 9:· ~-

Substituting in equation 2.25 using the result.s from the pre'.·ious evaluation of surface 

t.ractious gives, 

(2.30) 

where the isostatic stiffness matrix is, 

( 2.:31 ) 
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The isostatic stiffness matrix is assembled element- by-element and then subtracted from 

the global stiffness matrix. This destroys the symmetry oi the global stiffness. 

2.2.i Thermal Stresses 

The thermal anomaly of an element produces an anomc.ious temperature field which 

generates a non-rene\·:able stress system. This is incorporatf'>d in t.he finite element. 

method as an initiai strain. In 2-D, the thermal strain is.· 

{

o.f).T} 
{c:o} = (1 + u) o. ~T (2.32) 

where o. is the thermal expansion coefficient, 6.T is the temperature anomaly. This is 

included in the global force vector by substitution in eq'-'ation 2.~. The final stress 

field is then calcul<--<ed from, 

{a}=[C']({.:}-{=-:o}) + {
(T- ·_·. 
~ '' ' 

where, for plane q~ain the .:-stress is, 

rr- = 1'( a"'+ a!-) - E 11 ~ T 

A full discussion oi the effects of <t thermal anomaly in an eiast.ic-viscoelast.ic body can 

be found in the next chapter. 

2.2.8 Viscoelast icit .\. 

A viscoelastic mc-.t.erial subject to a force Jielcl uHc-o:·goes instantaneous elastic 

deformation follm·:eJ by viscous rC'Iaxation oi the df'vi<tt.:-:·ic stresses. The relaxation 

rate is controlled u\· the J'vla.xwell time. 

t '" (2.33) 

where p is the visc·~J<:ity and E is t.he Young's modulus. 

Tbf' strain ra:e <t1 a point in a Maxwell body depend!' on the deviat.oric stresses 

which can be written. 

{i} = 
2p. 

(2.34) 
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where ah is the hydrostatic pressure, defined by, 

1 
ah 3(a:::- + ay +a~) 

For the case of plan'=' strain the :-strain must be zero, but deviatoric :-stresses may 

exist.. To overcome this, a fictitious elastic .:-strain is introduced which is equal and 

opposite to the ca.lcu.lated viscous .:-strain. 

Viscoelastic behaviour is modelled by the initial strain approach (Zienkiewicz 

1968). Over a small time increment. !:::.t the strain can be a.pproximated by, 

{Eo}= {i}~t 

whicl1 is considerfC:'d to be an initial strain. Substitution in equation 2.22 yields an 

additional compor,er,t to the force vector, and thus the fC:'quations can be resolved for 

the next. time incr"'IT!~"nt. 

The tinct.! str10::,; ;cystew <1t the end of the t.ime-marc:.i:·:g relaxi1tion is given by, 

r0 ·}-[C'l(fc1 f,l)+{-·' I. - J ·l·f-'t-Of ·'O:•.r 

The detailed <dg(>r>i.m can be found in Park (1981) and :Jithen ( 1980). 

2.2.9 Fault E.lemen1 s 

Fct.ult eleirii:'H!'- c-.:·t:- introduced into the mesh via the ciua! nude approach. The mesh 

is divided int.o t\';,, b,Jdies whose contact nodes are spatia!ly coincident. along tbe fault. 

section. The stitfn.c~ses of the two halves nf the mesh r.r<:- ctssembled into the global 

stiffness and tht:-n :Le elastic properties of the oue dime:·,~:unal fault elements which 

join the h<1lves art added. 

The ]neal coorciinate system of <1 fault element of :t:-ngi h l is given in figure 2.3. 

The shape functiorc:' are defined identically for the nudes E-id·.er side of the fault line (as 

eq11. 2.2li). 

- --1 5 ( 25 ) 
I I 

- + 1 ( 
2s ) 
l 
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t 
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(0) 2 s~n 

3 8 

(-f) 

Figure 2.3 The fault element in local ( s, n) and global ( x, y) coordinate space. 
The top diagram shows the fault dividing the mesh into two bodies, the adjoin
ing nodes of the fault element are spatially coincident. Below, the coordinates 
of the nodes in (s, n) space showing the order of the node numbering for the 
fault element. 



Define the relati\·e displacement at a general point { u·} along the fault. section 

using the shape function interpolation of the local parallel and normal displacements 

a.t a node, 

{w} =[I] {J} 

where, 

[l] = [ -a''] 0 -N2 f.l4 0 .v5 ... ] 
-Rl 0 0 , .. - , 

- T 
{ d} = {us 1 11-nl 11. S:· Un: ll.s. ... } 

Then the local displacement is related to the global displacement by, 

[ 

dx 

Us - ds { Un} - _ dy 

ds 

so the local nodal displacements can be written, 

{J} = [R]{d} 

Define the force per unit length at a general point along t i1e fault section, 

( 2.3.S) 

where, 

[R] = (2.36) 

/,·,-. /,·,. ;:ne the shf'<tr and normal stiffnesses respectively, ,·.-hich define the elastic prop-

erti1~s of the fault. 

The va.riatioJ,al rnethod requires the st.ored energy ,,f tht fa.ult element which ~~ 

defined as, 

W = 2 ~~ fw}Trp1. ds 
•) ' l l J 
- -t 

substitute the rdc.tions evaluated above gives, 

l 

\\' = ~ .~_~~ {df[R]T[I]T ~ [R][I][R_{c} ds 

and tlte minimisation :;ields, 

where the fault stiffness matrix is, 

I 

[f;pj = 71: [R?[Lf[J\-][L][R: d~ (2.31) 
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The fault stiffaess matrix is added into the global stiffness matrix at the relevant 

nodal positions. The behaviour of fault elements is disc:.1ssed in detail in the next 

chapter. 

2.3 The RIP I\ let hod fm lncomp1·essible Fluids 

In this section the finite element solution of t.he Na\·ier-Stokes equations for in-

compressible, viscous flow using the reduced integration penalty (RIP) method will be 

presented. Zienkiewicz and God bole ( 1975) demonstrated the direct analogy with in-

compressible elasticity. Thus it becomes obvious to convert ex.isting elasticity programs 

to solve fluid flow problems with very little alteration m·cess;:..ry. 

2.3.1 The Eulerian Description 

In the precedi!1g Lagrangian description of an elastic ";)ody the forces produce an 

immediate di~plau·ruent. whiclt is tlte minimum energy cor.figuration of tlte body. La-

grnngian space represents the reference frame of the materia] and so the displacement 

represents the actual particle motion of the points in the bc.d:: referenced to its current. 

equilibrium position. The Eulerian description defines thr> reference points in space, 

the initial position in space of the fluid body. The equatiGns of motion yield the ve-

locity at a point ir: space which defines tlte imtantaneous re~ponse of the fluid to the 

applied force field. However, for a finite body, as soon a~ ;hi> ftuid begins to move the 

equations are invalidated and so the velocities and stresse5 ro:-covered are relevant only 

to the onset of moli·:.n. Thus the main difference from tlt"' L<tgrn.ngian representation 

is that. the acceleration contains both spatial aJtcl temporai d,c-rivatives. Cathles (19/5) 

proYidecl a gootl il!u-tration of this point. Consider a on,c--dirnensional bar carrying a 

tE'mperatnre gradi,c-n; and moving rapidly along axis. as sr.c··.·;;, figure 2.4. Over a small 

tinH' increment a poi;·tt on the bar will maintain the same to:-mperature, but the spatial 

reference point S •::ill record a. change in temperature. So. returning to t.he equations 

of fluid flow the ·cc·nYect ive' acceleration opern.l.or can be de tined by, 

d iJ ~ 
- =- f 'U.\) 
cit. at (2.38) 

where 1/. is the velocity vector at a point, and v is the gr<tdieut operator. Thus even 

steady state flow can have an accelerative component. 
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Figure 2A Schematic representation of a 1-dimensional bar of length l carrying a 
temperature gradient ~T f l and travelling rapidly along the x-a..xis at velocity 
v. Over a small time increment, the temperature distribution in the bar is 
unaltered, but the spatial reference point S which is fixed with respect to the 
x-a..xis, records a change in temperature. 



In a fluid the motion JS driven by the deviatoric stresses. and for a 2-D linear, 

isotropic, incompressible fluid of viscosity J1 the deviatoric stresses are, 

(2.39) 

where, 

'D. l ,,J = J1 ( 2.40) 

and the strain rate tensor is, 

,;. - ~ ( au, ' au) ) 
, 1) - ? :::1 T :::1 •. 

_ u.rJ uJ, 

for the Cartesian coordinates ;r,, and so for a finite element this can be written, 

{i}- [B]{d} 

where {d} are now the nodal velocities, and therefore the analogy to the constitutive 

relations of elasticit~·. \':it h displacement replaced b~- velocitY. is obvious. 

Incompressibilit\· is a constraint on the fluid behaviour <tnd is defined by a zero 

rate uf volumet.ric straining, 

(2.41) 

This condition may b'=' imposed in a variety of ways. Using velocity and pressure as 

nodal variables yidds a -;et of coupled equations incorporating the incompressibility as 

part of the formulation. but it introduces the extra dof of the prl"ssure variable. Alter-

11atively the stream function formul<t1inn defines tlw velocity field in t.erms of auxiliary 

functions which <t.u1om<ttic;cdl~r satisfy the incompressibility requirement exactly. The 

disa.dv<tnta.ge of this rn'O"thod is 1l1<1.1 sf:"cond urcler derivativf'~ <-.ppear in the stiffnesses 

and this requires ell"ments with C1 continuity shape functions. The approach taken in 

this thesis is to genl:'rate a near incompressibility condition ·>i«. a penalty function, as 

11secl for incompressible elasticity studies. The conceptual ditference to compressible 

elasticity is that 'cumprt:'ssibility" in fluid flow represent.:; uet fiuid lui's or gain. 

2.3.2 The Variational Statement of the I\aviet·-Stokes Equations 

By analogy with the previous variational derivation we can construct the rate of 

work functional, 

j { u.f { b} dF (2.42) 
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and require stationarity '::i th respect to small variations of the velocity, subject to the 

constraint, 

Cv = [m]T{i} = 0 

where, 

[m] = [1 1 OJ 

The incompressibility constraint is incorporated via a pen<Jty function approach. 

The dilatational strain energy is given by the product of hydrostatic pressure p and 

dilatational strain rate. 

j PEv d\' 

Fur alCtrge, positive C(J!1!'-lil.nt >.,make the substitution for the pressure doL 

and then the compll"tf" i1.:ndional becomes, 

fi = ~ J.rc}T[D . r i 1• d\. 
•) l ... l .I 

l ;·.r"1TID. r_c·•. du = ') l '- J l ' : I. - ) ~ 

wbere, 

-J { 11} T { b} d1' 

- /{11}T{b}dF 

' -r 

(2.43) 

Tltus \'\C hove rPcm·(·red tJ,e equatious nl!Ctlugous to the functi·)llal for elasticity with 

two contributions tu tl.l" globa.l stiffness. JcnoteJ [1\:J and)\.: respect.i\·eiy. 

However, a5 pre\·i·ju.sl~· mentioned. the acceleration in Eui-:-rian space differs from 

t.be Lagrangian. and sc• by cl 'Alembert. \; Principle the body forces in a body of density 

fl are, 

wliere the acceleration. 

{ b} = { bo } + p{ a} 

c1 
{a}= -{u} 

dt. 

(2.44) 

and so the Eulerian finite element representation of t.!te bud~· f,.~rces at. a general point. 

become~, 

(2.4S) 
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where, 

and the subscripts denote differentiation with respect to :r and y. 

The minimisation of the complete functional yields the :'\a\·ier-St.okes equations, 

a 
~M]dt {d} + [K]{d} + {H} = {F} ( 2.46) 

which is similar to the equations for elasticity, but with two additional terms. These 

terms are defined by. 

[M: :t { d} = [j [Nf p[N] dV] :t {d} 

{H} = [jtNJT p[J']lNI dV] {d} 

ineri ial 

convective 

and so the full equa.tic,ns are time-dependent, non-linear and non-symmetric. 

(2.41) 

( 2 .4&) 

Fortunately thl" Earth's mantle exhibit~ creeping flov:. and so 1 he inertial and 

convective terms are negligible and the problem is reduced t0 St.okes flow. Ternam 

(1911) has proved t.be convergence of the penalty function method for Stokes flow, but. 

the crucial factor remains the invoking of the incompressibility constraint. In order to 

maintain a sensibl/0' pressure field (equation 2.43), as i,. ~ 0 tl110'1t ,\ ___, ·X·. Consequently 

to avoid the infinity. the penalty term [K ;,] must be singular. This is achieved by 

underint.egra.ting t.he penalty t.errrL but retaining sufficiently accura.te integration for 

1 he viscnsity tenn [ 1\· _. sot hat the summed global stiffness matrix is non-singular. This 

is called selective integration. Zienkiewicz (1911) pointed out th<tt sufficiently accurate 

integration for 8-nodiO' 3E-rendipity quadrilaterals is in fact reduced int.egrat.ion. and thus 

the two stiffnesses can be assembled together which greatly simplifies the computing. 

ln this study tlw triangular elements use 3-point reduced integration on t.he penalty 

term. 

Hugbes et al. i 1919) presented a simple criterion for the selection of the penalty 

parameter for Stokes flow, 

A = cp (2.49) 

where cis a constaut that is dependent on the computer word length and is problem 

indepeiJclent. Oden \ 1962) discussed in full the RIP method in Yiew of the order of se-

lective integration required to retrieve meaningful velocities and pressures. The met.l!od 
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will often work without reduced integration but at the e:·:pense of stability and arcu-

racy. Often it is the pressure which shows the greatest divergence and instability (being 

a derivative) particularly the 'checkerboard' mode of the bilinear elements. This may 

require a pressure filter or some sort of smoothing. The pressure will not. be required 

in this study, and the \·elocities will be shown to be stable in a numerical evaluation in 

the next chapter. 

2.3.3 Axisymmetric Analysis 

The 2-D analysis can also be applied to the cross-section through an axisymmetric 

body, requiring very little alteration to the finite element code. The major difference 

is that. an axisymmetric deformation involves four strain components and not .iust the 

three components of plctne strain. 

The cylindricaJ coordinate system ran be related to the Cartesian system by, 

.r=rrusB, y=y. ::=rsin(i 

so that on the planE- tl = 0°. 

J' = r, y = y 

and bence the Jacobi<ti! used in the isoparametric formuiz,·iurL t.c, transform from lo-

cal to globed coordin<ttes, will be identic<~.] for cylindric<tl ( r. y) ii.nd Cartesi<tn (.r, y) 

coordi11ates. HoweY#O"T. in cylindrical coordinates the voluml" element. becomes. 

dV = r dr dB dy 

and integrating around P gives, 

d\' = 27i·r dr dy ( 2.50) 

and so to generate the l"lement stiffness the integr<tl becom(:":>. 

Also the strain operator will differ from the 2-D Cart.esi<~n aualysis because now any 

radia.l strain rate will create a circumferentia.l component. Thus the operator ma.trires 

become, 

[
1 1 0 1] 
1 1 0 1 

/\ 0 0 0 0 

1 0 ] 

[DJ =p 
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oN 
or 0 

oN 
0 -

[B] = oy 
oN oN 
-oy or 

IV 
0 

T 

The nodal components now depend on the radial position rand so the stiffness matrix 

is no longer symmetric. Similarly, the strain operator [B] wiil be non-symmetric across 

an element as the element varies with r. 

Finally the externc-J forces at a node {f} now represent a force per unit length 

applied over the whole circumference and are effected as, 

?-,. { F- I _,, f 

2.3.4 Soh·ing for Cnsteady Fluid Flow 

The time-depender:t linear equations haw been deri\·ed <--5. 

(2.51) 

Hughes et a!. ( 1979; prt:>sented a.n algorithm for the solutior. en· the full 1\ axier-Stokes 

cqu<1tions which is <tdnpted and adapted here. 

Tlte mass matrix )1] which is the inertial control over the time-developing flow is 

dia.gonalised to form the ·Jumped' mass matrix. Cook ( 1981 i discussed lumping methods 

and the adva.nt.ages <tnd clisach·antages over the comist.ent. rlla~s matrix. Conceptually, 

lur11ping, replil.ces the el<:'ment mass by efll:ctive nodal masses · \\'hicb may· be positive 

or negn.tivP). This operation to diagonalise considerably simplifies the calculations. 

The solution a.lgorititm is a one-step, linearly implicit, predictor-corrector. Given the 

solution at time-stF:'p r~. tlte solution at. t.ime-st.ep n + is summarised as, 

{d-, - fcJ.I -L (l - ~·'a} · f fl + 1 - I. f '' ' - · '-l 1 -l r. ( ') ~ ')) __ J_ 

-- [M]{d},.+ 1 - -.~t{F}"+l (2.53) 

({d},+J- {d}n~Ji 
-, 6t 

(2.54) 

where-.. is a stability constant } S -y S 1, D.t is tile time-step, and {a} is the vector 

of nodal a.cceleratious. So, for a constant t.ime step ~t. the system matrix need only be 

factorised ouce which greatly reduces tlte comput.a.tional cost and time. 
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2.3.5 Nodal Forces and Boundary Conditions 

Body forces and surface tractions will act similarly to those previously discussed 

for elasticity, and the subroutines developed for the elastic finite element code can be 

used for the viscous case. 

Dirichlet boundar~· conditions are not applied by the Payne-Irons approximation 

and instead are applied ;exactly'. Each prescribed dof is incorporated by substituting 

the given value 11 = u into each equation, and then adding all known values into the 

global force vector. Then the row and column of the stiffness matrix are zeroed and 

the trivial solution 11 = ii is written in lieu. 

Standard Dirichlet conditions suffice if the model boundaries are aligned along the 

global axes, but it :s quite likely that curved boundaries will exist in which case the 2 dof 

at a node become line<trly dependent. This is a coupled equi\'alent. Dirichlet condition 

(~ee Norrie and De\'ries 1916) where we can \Hite for a node n, 

Un = 11.( l'n ) 

and so 1 h~C funct io:-1al ha.s one less dependent variable, 

fi = fi{ ... v.( l'n), Vn, ... ) 

and thf:' two millirnis;;.cion conditions, 

Jfi 
= 0 

Dv. 

can b<:> a.ccowplished by tbe single condition. 

Dfil 
i:.lr I 

11 

Dfl Jfi 
' --~ 

Hun Jn,: 

This is applied as follows: multiply the row and columr. C•)rresponding to 11 11 by the 

Jeri\'ative. and add td the row and column corresponding ~c.,·,,. Then zero the l/. 11 row 

and column and iH:.en the coupled condition in the vaca!.t row. On solution this will 

automatically gin' th!O' correct value of 11,1 and 1•,, but. th-: method renders the global 

stiffness unsymm-:~ ric. 

Density discontinuities such as the surface of the Eanb have been accounted for 

Ill the elasticity iomnd<ttion by isostatic compensation. lr, the fluid mechanics models 
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the free surface at the top of the mantle is a most t;u:ing problem which may be 

handled by one o:· a number of approximations. Firstly we could assign a thin, high 

viscosity layer at thi.:' surface and assume that this appro:>:.imates an elastic lithosphere. 

Then the _existing isostatic compensation can be applied. by assuming that the surface 

displacement can be approximated by vD.t, where 6.t is C1 small time increment (e.g. 

Tharp 1985 ). Alternatively we can evaluate the boundary conditions at the free surface 

of a viscous fluid (see Cathles 1915) which specify that a traction-free surface must 

develop. One approach is to prescribe zero vertical motion at the surface (e.g. Richter 

1913, Sleep 1979 ). This eliminates shear stress but generates large norma.! stresses at the 

surface. Another method involves integrating the velocities to redefine the free surface 

until the velocity vector is tangential to the surface a.t itll point~. This is the more 

satisfactory. but n10re time-consuming and expensive ml"thc•d, and it is only applicable 

to steady state problems when the initial boundary is close t.o the steady state free 

surface (Zienkie\·:icz 197/). Subduction zone models \':ili include regions of the free 

surface that haY.-:- -.-elocity vectors near perpendicular rc-.th-:-r tban prt.rallel and tu this 

end it. is necessary to adopt. a more formal approach to th.-:' problem. 

2.3.6 The ALE Formulation 

The difficulti~C-s engendered by the motion of the free surface of a.n unsteady :fluid 

can be overcom~'- hy the arbitrary Lagrange-Eulerian (ALE' formulation presented by 

Hughes et al. ( 197-'). This is a ge11eralisation of the Euil'"riitll ~ulution of the Navier

St.okes equa.tions in Hughes et al. (1979) which was disc)ssed i11 previo-us sections. 

This section will ou:line tbe fundamentals of the formular],:.n but. \">·ill not atternpt to 

derive formal]~- the finite element equations. The not.;;tir_.r, in this c;ection will follow 

the preceding a~ far as pussiblf' but unfortun<Jt.el~' soruo:- ;;.';mho)!, must change their 

rneamng. 

Consider t h,c three closed domains f!::-, 0.~, 0._. 1n figure :2.5 . 

• n.r is the reierence domain a.ncl is 'fixed, in time and space 

, fly is the image of rlr at a. particular time i and this is thr:: 'Eulerian space' normally 

associated with the :fluid body under consideration 

• nc is the domain of the material that would exist at t 

occupies 0. _c a.t time t 
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Figure 2.5 The three closed domains Dx, Dy, Dz describing the properties and 
relationships between them. From Hughes et al. ( 1978 ). 



Let the Cartesian coordinates of the domains be respect.i\·ely, 

(2.55) 

The domains are interd'=pendent and are related by the coordinate mappings; by defi-

nition we have, 

particle motion (2.56) 

]!_=1?_(:r.t) mesh motion (2.57) 

and define the third mappmg, 

(2.58) 

to be representable by a function of the first two mappings. Hence we can solve a fluid 

mechanics problem in the domain 11;: and relate this. through the mappings, t.o the 

actual particle motion and consequently follow the free surfc;ce. 

Firstly we must d.=:rive the exact rel<ttionsliip that defiiJF-~ it v<triable field in each 

domain. Define the displct.cements for eac!J dof i. 

11: = y, - - for @. -

?1., = y, - .r for a, 

u:, = J' - -·; for 7/J, 1 

unt.f' th;1t the syrnbu; t1 \':as a velocity and is now a displacement at. a generaJ point. 

To rel;:de this t<:· tbc- finite element method, the reference domain !1:- is the initially 

specit1ecl 111esh cnnrciinc,:Ps. Thf' mapping J.~ thus defines the motion of the mesh as the 

domain !1,, aJJcl thi5 rr,(•tion can be followed by evaluating the \·elocity wit.h respect to 

the reference domairo _ 

{!{,: I 
dt x, 

fur t. > 0 

Consider the sin!ple example element in figme 2.6, where the free surface is to be 

modelled by the linl"' 'i = +1 in local coordinate spilce. Tlw t\\'u components of mesh 

velocity which defiue that lines of consta11t. 1/lllove with the fre-: surface can be derived 

as, 
<Ju, 
-=0 
Jt 

D( 1l2 + .r 2 ) I aul 

a.r1 ·: at 
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Figure 2.6 The quadrilateral element in global space (x, y). The line TJ = +1 is 
chosen to follow the free-surface. 



where V. 2 + x2 is simply the- coordinate Y2 of the domain fly and is a function of x1 and 7]. 

This can be generalised to relate each dof to it's specific representation by introducing 

the parameter 0 and the ·:elocit.ies become, 

chi 1 8u1 D(u1 +x1)1 .au2 = o-1-.-- 0'] (1- (b ~---
dt at Dx? · - dt 

- 1) 

(2.59) 

dit~ 8u2 a(u2+;r2JI Oll1 
=n?--a2 (1-o 1 \--8t - at Dx1 · at 

1) 

( 2.60) 

A Eulerian dof is defined as stationary with respect to particle motion and a Lagrangian 

dof follows particle motion and so, 

o=O Eulerian dof ( 2.61) 

() = 1 Lagrangian dof (2.62) 

These equations allow lines of constant 17 to move with the free surface, and it is now 

t.h':" parameter n which is used to define the surface. 

The finite element di~creiisation of equations 2.~,9, 2.60 yields, 

(2.63) 

where -[1>} is the vPctor of nodal values of the mesh velocity. :.-r i~ the diagonal matrix 

of nodal values of the parameter o, { 1·} is the vector of nod;;._l values of the particle 

velocity. Tlw traasform matrix [L] is defined by, 

[L] = jtNf[I\'] dV ( 2.ti4) 

however the vector {S} cannot be written 111 the notation used so far. Instead each 

node a will contribute to the element integration as follows. 

j., [/(ir,.+J';)I i}u: . . 
A., n, . ( 1 - n; ) -.-- d\ 

cl.r .. · dt 
.1 tJ 

(2.65) 

T!te calculations ar>" simplified and stability ensured by lur;,ping [L], in an identical 

procedure to that used for the mass matrix ilvl]. Now t.he inverse Lt1 is trivial. Hughes 

et al. (1978) present an approximation for {S} but. the differential in the integrand can 

be eva.lua.t:ed numerically. Consider the function .f = .f(~,r7i then, 
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but for a constant. 17, 

:~I r; 
a.r a~ 

and the derivatives on the right hand side are available from the shape functions and 

the inverse Jacobian. Hence the integrand in equation 2.65 can be evaluated and the 

integral evaluated numerically. 

So given a solution to the fluid mechanics problem { r} in domain n, we can now 

evaluate the mesh velocity { i:} and update the domain to follm·: the free surface. The 

previous algorithm to solve theN avier-Stokes equations can thus be generalised to give 

t.he full solution at time step n + 1, note that {d} are nodal displacements, {v} are 

nodal velocities. {a} are nodal accelerations of the particular mappings. 

First., initialise this time step of the solution (for n = 1 the quiescent state is a 

good approximation), 

J ·.) i 0) 
L1 i--"- 1 = r 1·, "l ""'" " t r J - -.- ) {a· } LJ•il--l\ : n 

; 1.1fO) { 1 .\ (.] { 1 
l J·,~l= 7";,-+Di -·i) llfn 

solve the equations for the time step n + l, 

Now iterate the rton-linert.r term, and for each iteration rea~semble the system matrix 

from the updated domain fly, 

.fj-1_(•+11 = '4]fv}(,+II- fL]-lfS"lr·-.11 
< Jn"""l l· t 11+1 t L-J,·-, 

.- ; 1(:+11 _ rd··1(0) . , 12.·,{·}(:+11 
·li!f,,+J - l J,;+l T w p Q. n+l 

Finally assign the nodal Yalues at the end of the time increr:w::t. 

{d.) _ J j"t(·r+l) 
fn+l - l( .fn+J 

{a} n + 1 = ( { v} n + 1 - { 1'} ;,0~ 1 ) / ( ·: .3 t ) 

thus, g1ven the solution vectors at the end of the time step. the next time step can 

be int.ialised. The displacement vector of the mesh { d} maps the evolution of the free 

surf are. 
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CHAPTER 3 

Implementation Of The Finite Element. Theory 

The numerical analysis of \•Vaghorn ( 1984 ) has demonstrated that the elastic

viscoelastic finite element code performs satisfactorily. This short chapter is devoted 

firstly to a validation of the method of evaluating fault slip and thermal stresses in 

the structural mechanics problems. Mithen {1980) used fault elements to study stress

controlled graben formation and subsidence in continental lithosphere, following the 

energy budget calculations of Bott ( 1976 ). Horizontal tension causes normal faulting 

in the brittle upper crust and graben subsidence is accompanied by flow in the ductile 

lower crust. The graben models of Mithen ( 1980) proved to be unstable as the stresses 

in the ductile layer under the fault increased dramatically with time. Waghorn ( 1984) 

studied the surface lithosphere at subduction zones and used fault elements to represent 

the thrust zone between the plates. However, this analysis of faulting was restricted to 

elastic behaviour only. The first section of this chapter demonstrates that fault elements 

can usefully represent a fault zone in both brittle and ductile regimes. The stref:.5es 

generated by the thermal anomaly in the backarc of subduction zones are an important. 

contribution to tlte stress regime. \i\laghorn ( 1984) studied the elastic response to a 

temperature anomaly and the second section of this chapter demonstrates how the 

thermal anomaly can be more fully applied to the elastic-viscoelastic rheology. 

The second half of this chapter is devoted to a. numerical evaluation of the con

version of the existing finite element code to solve the viscous flow problems. The 

simple entry flow problem is used to evaluate the macltine constant required for). = cp. 

(see equation 2.49) using the results published by Zienkiewicz and Godbole (1975) as a 

benchmark. The subsequent. tests are designed to show that the finite element method 

will accurately reproduce the features of incompressible flow that are required. 

3.1 The Fault Elements 

The ability of the finite element method to incorporate adequately the thrust zone 
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of subduction is a most important feature of the numerical models. In this section the 

previous method of controlling fault slip is briefly reviewed and then an alternative 

approach is discussed and tested on a simple model. 

The elastic properties of the fault element are the normal and shear stiffnesses 

J.·n, h'~ and these control the instantaneous elastic displacement along the fault zone. 

The nodal displacements of the elements adjacent to the fault element are used to calcu

late the normal a and shear T stress at the central nodes either side of the fault element. 

Stresses are discontinuous at element boundaries but average values of the stress along 

the fault section can be estimated. If J.1 is the coefficient of friction of the fault, then 

the frictional strength can be defined by TF = JLCT (where a includes the overburden 

pressure which may have been explicitly omitted from the initial calculation). Hence 

if T > TF frictional sliding could occur, in addition to the initial elastic response. This 

can be modelled by calculating the excess shear stress T xs = T - TF and applying it 

as fault-parallel nodal forces to the fault elements. The process is then repeated until 

Txs drops to an acceptable value. The previous studies of Mithen (1980) and Waghorn 

( 1984) encountered major difficulties with this iterative technique. 

It is useful to examine the role of the two stiffnesses kn, k s· A high value of stiffness 

means that a large amount of work must be done to create a displacement. Thus kn is 

set to a high value (1015 N m- 1
) to ensure that the fault walls remain in contact. This 

is a physical necessity under the confining pressures at depths greater than a couple of 

kilometres. The shear stiffness contr-ols the fault-parallel movement. If it is high then 

no movement occurs, but if it is an intermediate value, 1010 N m - 1 (typical of the values 

used by Waghorn and Mithen ), then the work done on the fault section will produce 

a small displacement. This can be envisaged as a fault resistance which prevents the 

adjacent elements from attaining the preferred equilibrium configurations and generates 

large resistive stresses at the interface. In the aforementioned iterative method these 

large shear stresses are relieved by 'forcing' the fault nodes to slip further. In this 

context it would seem reasonable to permit greater instantaneous fault slip, thereby 

reducing the resultant shear stress and so the need for iterative forcing is eliminated. 

So, what controls the amount of slip and how does this compare to the physical realities 

of fault movement? The degree of fault slip is quite simply dictated by the two halves 

of the mesh attaining equilibria under appropriate boundary conditions, whilst being 
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coupled normally at the fault line. Thus, in most models, isostasy at the surface (the 

largest density contrast) will be the principal control on the fault slip, other boundaries 

(such as tl1e Moho) will ha\·e a lesser effect. Physically the shear strength of the fault 

does no work on the adjacent bodies and so does not establish any resicl ual stresses in 

them. Tl1is may approximate to the situation after major slip on a fault zone \':hen tl1e 

large asperities have been overcome. 

However, the discussion must not be limited to the behaviour of brittle fracture in 

which the adjacent elements are elastic. A ductile shear zone may be represented by 

a fault segment in which both adjacent elements are viscoelastic, and at a subduction 

zone the fault line defines the top surface of the subducting slab which separates elastic 

elements below from viscoelastic elements above. A typical model of stress controlled 

graben formation in the upper crust has an upper brittle fracture zone continuing down 

into a ductile shear zone. The simple mechanics of fault movement could be envisaged 

as initial elastic slip in the competent layer, followed by creep along the shear zone 

and accompanying flow in the incompetent layer. This creates considerable difficulties 

for the existing method. To prevent. large instantaneous elastic displacements in the 

lower shear zone requires a high A.·s to be assigned. This causes the layer to behave as 

a. continuum or generates large shears which must be relieved as the layer as a whole 

relaxes. One method of overcoming this problem is to parameterise the shear zone with 

a finite width and viscosity, and then model tl1e zone as viscous flow between parallel 

plates. Thus the shear stress on the fault sides will generate a fault-parallel velocity 

which is applied over a small time increment as a fault displacement.. This is a more 

reasonable approach than 'forcing' the nodes to slip, but this still perturbs the bulk 

energy minimisation. The optimum method should not destroy the self-consistency of 

the viscoelasticity algorithm. It is quite probable that the shear zone is significantly 

weaker than the surrounding ductile layer and so fault movement is dominated by the 

relaxation time constant of the whole layer. Physically this is equivalent to stating that 

graben subside because the ductile layer flows laterally rather than because the shear 

zone creeps. If this is the case, then the whole fault zone can be modelled with a low 

shear stiffness. The proposals above will be tested by reproducing the graben models 

of Bot.t (1976) and Mithen ( 1980). 

The brittle upper crust is modelled by a. finite element mesh representing a 1210 x 
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10 km cross-section. The right hand end is an axis of symmetry and the left h<tlld 

end is subjected to a uniform tension T. The top surface and base are isostatic ally 

compensated v:ith density contrasts of p = 2/SO kg m- 3 and p = .:10 kg m- 3 respectively, 

the flexural parameter n = 32.4 km and the fault. hade is 26 .. 5/0
• This model is almost 

identical to the elastic upbendirtg models of Bott (1916) with no frictional dissip<ttion 

of energy in the fault, a.nd so the results are presented in a similar fashion in the table 

3.1 below. The subsidence is given in kilometres for a range of graben surface widths 

and applied tensions. The figures in brackets show the percentage increase over Batt 

(1976). 

Width/ km T =50 MPa T = 100 :tvlPa 

30 1.18 (53%) 2.35 (53%) 

40 0.84 (35%) 1.68 (37%) 

50 0.62 ( 19%) 1.24 (19%) 

Table 3.1 Relative vertical displacements of the elastic graben model. 

There are certain differences between the finite element models and the energy 

budget calculations. The finite element models include the downbending of the graben 

edge, and in general the bending does not follow the 1-D elastic flexure equation because 

of the contact across the fault zone. The crusta.] shortening caused by fault slip relieves 

only 10% of the tensile extension and Bot.t ( 1976) assumed complete readjustment of 

the brittle layer. The systematic gain in wedge subsidence >vith decreasing graben y;idt.h 

is due to a 'constant' gain in gravitational energy in the layer for a particular tension 

T. This allows progressively greater subsidence for smaller graben. The subsidence is 

large compared to the thickness of the brittle layer ( 10 km) and so the analysis must 

be near the limit of the capability of this particular mesh. 

This simple model is also a convenient demonstration of the effect of the shear 

stiffness as discussed earlier. Table 3.2 below shows the variation of average shear 

stress at the centre of the fault zone for a uniform tension. 
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Shear Stiff11ess / N m- 1 Shear Stress I !\1Pa 

1015 60.0 

1010 18.5 

109 68.0 

J oh 41.0 

0 4.0 

Table 3.2 Variation of shear stress \'.'ith shear stiffness 

The preceding models inherently assume that the underlying ductile layer is inviscid 

and reacts instantaneously to the vertical motion of the brittle layer. The lower crust is 

likely to possess a high viscosity and thus graben subsidence will occur over a long time 

scale. The finite element mesh is simply an extension of the previous mesh to represent 

a 1210 x 100 km cross-section through the lithosphere, and the right hand portion is 

shm,·n in figure 3.1. The right hand end is an axis of symmetry and its horizontal 

motion is prevented. The rheology is described in table 3.3 below, the omission of a 

value for viscosity denotes that. the layer is elastic. 

Depth I km Young's Modulus I N m -2 Poisson's Ratio Viscosity / Pa s 

0-10 0.85 X 1011 0.2.5 

l 0-20 0.85 X 1011 0.25 1023 

20-35 1.08 X 1011 0.25 1023 

3S-l 00 1.80 X 1011 0.25 1023 

Table 3.3 Rheology of the graben model 

Tbe fault line (labelled F) dips at 63.43° and breaches tbe surface 25 km from the 

end of the mesh, thus representing a f,O km wide graben. So far, the mesh is identical 

to that used by Mit hen( 1980 ). Isostatic conditions are <tpplied at the base of the crust, 

p = ;:,oo kg m-3 and the surface, p = 2750 kg m- 3, and at the base of the brittle layer 

p =50 kg m- 3 . The left hand end is subjected to a uniform 50 MPa tension. Initially 

the fault was completely locked and the lithosphere allowed to relax for 5 Ma. The 

right halld edge subsided by 25m due to stretching flow in the ductile layers. 

Then the fault shear stiffness in the upper crust ( 0-20 km) was set to zero, lea\·ing 

the remaining mesh parameters untouched, and the model was rerun. The principal 

stress regime and surface displacement profile after 5 Ma relaxation are shown in figure 
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Figure 3.1 The right hand section of the finite element mesh for the graben 
subsidence model ( no vertical exaggeration ). The top three rows of elements 
represent the 35 km of crust, the uppermost 10 km thick layer is elastic. The 
lower three rows are the ·viscoelastic mantle layer of the lower lithosphere. The 
right hand edge is an a..xis of symmetry. The fault line is marked F and divides 
the mesh into two bodies, producing a graben of surface width 50 km. 
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Figure 3.2 The stress regime of the upper 60 km of lithosphere ( vertical exag
geration x 1.4 ) after 5 Ma rela..xation. This shows the large principal stresses 
mostly confined to the upper 10 km elastic layer. The fault line is denoted by 
the solid diagonaL 



STRESS VECTORS 

0 

-·--·-)t 
" Jc .'.-+ 

-60 

1160 

·-

l DOTT£0 LINES TENSIONAL J 
- 100 IIPA 

!.:::'"~-· ~ ·-·-. 

1210 

Figure 3.3 The stress regime of the upper 60 km of lithosphere ( vertical exag
geration X 1.4 ) after 25 Ma rela.xation. This shows the large principal stresses 
completely confined to the upper elastic layer. The fault line is denoted by 
the solid diagonal. 
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Figure 3.4 The flow vectors of the upper 60 km of the lithosphere ( vertical ex
aggeration X 1.4 ) after 5 Ma rela.xation represent the actual flow field over the 
final time increment. Each node is denoted by a circle and the associated flow 
vector has a length proportional to its magnitude. This shows the graben is 
still subsiding after 5 Ma but further rela.xation shows the graben has virtually 
stopped subsiding after 25 Ma. 



:L2. Stress i~ concentrated in the upper 10 km and well relaxed throughout the lower 90 

km. Tl1e surface displacement shows a relative subsidence (ignoring edge flexure) of S2S 

m. which is less than the equi\"aJent elastic model. This solution is in distinct contrast 

t.o the results of Mithen (1980, figure 8.17). Failure to extend the fault throughout the 

mesh created a siugularity at the fault bottom as evidenced by the excessi\·ely large 

priucipa1 stresses ( 12~,0 J\IPa) generated in the ductile region underlying the fault \':hich 

restrict the relative subsidence to 440 m. The surface stresses in the elastic layer are 

larger (400 l\lPa) in this model than those of Mithen (200 MPa), this is because the 

elastic layer is half the thickness and thus the stress amplification is doubled. Allowing 

the model to relax further results in subsidence of 1450 m at 20 Ma and 1750 m at 25 

M a. The stress regime in figure 3.3 shows the very large principal stresses (bending 

superposed on the amplified applied tension) restricted to the elastic layer only. The 

surfa.ce displacement profile shows roughly equal upbending of the rim and sinking of 

the graben. In practice, fracture, erosion of the uplift and deposition in the trough \'!ill 

greatly modify these models. 

\Vithin the confines of these models our best representation of graben subsidence 

permits the elastic layer to sink into the viscous layer along a pre-defined zone of 

weakness. The particular limitation of this model is that the compensating flow occurs 

on a locaL rather than regional, scale; this is shown by the creep flow vectors in figure 

3.4. The creep vectors also show that the graben is continuing to subside at 5 Ma but 

has almost stopped by 25 Ma. 

The fault configuration at subduction zones will be discussed in more detail in the 

later chapters. Briefly, the surface lithosphere is decoupled at the thrust zone, but at. 

depth the descending slab is expected to be strongly coupled to the mantle. 

3.2 Thennal Stresses 

The ba,ckarc region of subduction zones is often characterised by high surface heat 

flow (lOOm W m- 2
) implying the existence of a thermal anomaly at depth. The thermal 

anomaly generated by raising the isotherms· creates a. temperature anomaly. In the finite 

element method this temperature anomaly is implemented by the initial strain {.:0 } (see 

section 2 .. 5 ). In a. constrained body, the displacements { d} will be very small and the 
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stress field will be domin<tted by {al,} = IC]{co}. HoweYer, in <!.It unrestrained body 

both will contribute to the final stress field. UHder these co11ditions the thermal gradient 

must not exceed the order of the strain field of t.!te element (Cook 19:SO), and thu!- \':e 

are restricted to a linear temper<thne gradient across the clement. 

ln linear. isotropic, el<tstic material the temperature anomaly produces a fraction;d 

change in volume. 

~v -- = Ov~T v 

where !:::.T is the temperature anomaly and O\· is the volume coefficient of expansion. If 

this material is then allowed to behave viscoelastically, the thermal stresses <tre relaxed 

hut. the expansion will remain. In a grilvit.at.ional field this volume change results in a 

buoyancy force. This body force is not included in the initial strain approach and so 

must be added explicitly. As Jurdy and Stefanick (1983) point out, it is the buoyancy 

force of the thermal anomaly which is responsible for the surface uplift and long term 

stresses. 

Since the finite element implementations of these aspects of the thermal anomaly 

are quite different, it is necessary to investigate quantitatively the potential differences. 

The finite element. mesh represents a cross-section through 90 km thick oceanic litho-

sphere. The rheology is shown in the table 3.4 below. 

Depth I km Young's Modulus I N m -2 Poisson's Ratio Viscosity I Pa s 

0-7 0.85 X 1011 0.25 

1-20 1.80 X 1011 0.25 

20-90 1.80 X 1011 0 ')!:: 
·-'"0 1023 

Table 3.4 Rheology of the thermal anomaly model 

The right hand portion of the mesh is shown in figure 3.5, the right. hand end is 

an axis of symmetry. Isostatic conditions are imposed at. the base of the crust. (I km 

depth) p = 600 kg; m - 3 and ai the surface p = 1610 kg m - 3
. The two manifestations 

of the thermal anomaly are depicted in figure 3.5, which shows the region of uniform 

200 I( increase in temperature at. the base of the lithosphere surrounded by a linear 

gradient to zero over one element thickness. Assuming a linear coefficient of expansion 

ex = 1 o- 5 K -I, then for lithosphere of density p = 3300 kg m - 3
, the equivalent. density 
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Figure 3.5 The right hand section of the finite element mesh ( vertical exaggera
tion X 1.5 ) for the thermal anomaly model. The right hand edge is an axis of 
symmetry. The rheology is given in the text. The two manifestations of the 
thermal anomaly are superposed on the mesh. The open circles o represent 
a nodal temperature rise of 100 K, the full circles • represent· a nodal tem
perature rise of 200 K. The left diagonal shading denotes a density anomaly 
p = -6.6 kg m-3 and the right diagonal shading a density anomaly p = -13.2 
kg m-3 • · 
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Figure 3.6 The stress regime for the initial elastic solution (vertical exaggeration 
X 1.5 ) for two models, a temperature anomaly only, and the combined thermal 
anomaly. The stresses produced by the density anomaly are so small as to have 
no significance in the wholly elastic models. 
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Figure 3.7 The stress regime after 5 Ma relaxation ( vertical exaggeration x 1.5) 
for two models, a density anomaly only, and the combined thermal anomaly. 
The stresses produced by the temperature anomaly have been completely re
laxed and now the density anomaly dominates the stress regime. 



anom<dy of a :200 K rise in temperature is, 

-13.2kgm- 3 

The density distribution cannot nmmc tl1e temperature gradient. ilJJd so an ilVerage 

\"cJue of :::.p = -6.:2 kg m- 3 is used in t.he bordering elements. 

Initial elastic solutions for the temperature a.nornaly and the combined thermal 

anomaly are shown in figure 3.6. The stress regime for the temperature anomilly ut-

terly dominates t.he elastic response. The lower layer, in which the anomaJy exists, 

was relaxed for 5 Ma and the stress regimes are shown in figure 3.7. This clearly 

demonstrates t.he dominance of the density anomaly in the long term response, the 

temperature stresses have been relaxed but the thermal expansion remains. This is 

shown in the table 3.5 below which catalogues the vertical displacement (in metres) of 

the surface ( S) and the base (B) of the right hand edge a.t times 0 Ma and 5 Ma. 

Time/ Ma Temperature Density Combined 

0 S=-270 S=310 S=45 

B=-570 B=30.5 B=-265 

5 S=-2 S=280 5=280 

B=-242 B=290 B=45 

Ta.ble 3.5 Absolute vertical displacement (in m) of the right. hand edge 

The surface displacement of the temperature anomaly decreases to zero with time. 

whilst retaining the vertical expansion of the layer (the difference of the displacements). 

The sum of temperature displacement + density displacement gives the displacement 

of the combined thermal anomaly (to within a couple of metres), as would be expected. 

In this example the tberrnal a.nomil.ly was confined to the ductile layer, which is 

probably not realistic. Stresses due to a tempera! ure anomaly in the elastic layer \\·ill 

persist, and even a small change in temperature can swamp the stress field of the body 

forces. So, \vhen incorporating a thermal anorna.ly in the finite element method the 

temperature anomaly will dominate the elastic response and the associated buoyancy 

forces will dominate the long term viscoelastic response. 
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:~.3 E111ry Flow 

Entry flow is possibly the simplest of steady state Stokes flow problems, solving 

1 he se1 of linea.r equations, 

and this test model uses the axisymmetric formulation. 

The model parameters are non-dimellSional aJtd t.he fi11ite element meshes for 

quadrilateral and triangular elements, together with the boundary conditions are shown 

in figure 3.8. The mesh has a radial dimension of 1 unit. and an axial dimension of 2 

units. The left hand edge is the axis of symmetry and has the boundary condition 

u = 0, the right. edge has a no-slip condition, the top edge has v = 0, and the bottom 

edge prescribes a constant inflow u = 0, v = 1. Thus the model represents the de

velopement. of axial flow along a cylinder given the uniform inflow velocity. A velocity 

singularity occurs at. the bottom right hand corner and so a finer mesh subdivision is 

used to prevent the disturbance affecting the bulk flow. The fluid has a density p = 1, 

and a viscosity f1 = 1 yielding a Reynold's number of 1. The purpose of this test model 

is to establish the value of the penalty parameter c (see equation 2.49). For several val

ues of the penalty parameter. it was found that c = 107 gave the best results. Varying 

the penalty parameter by a factor of 10 had a negligible effect. 

Comparison is taken from a study of finite elements in fluid flow by Zienkiewicz 

and God bole ( 19/5) and both sets of no11-dirnensional results are shown in figure 3.9 

for the quadrilaterals and ftgure .3.10 for the triangles (benchmark study plotted as 

open circles). This shows velocity profiles alcmg a radius taken at six points along the 

axis, and both the axial and radial velocity components are displayed. The two 5ets 

of results show rea,sonable agreement, particularly at the further axial dista,nces for 

the mesh of qua,drilateral elements. Increasing the penalty parameter (c 2:: 109 ) only 

degrades the flow and does not improve the velocity fit. Thus we must suffer a small 

trade-off between accuracy and numerical stability which is essentially dependent on 

the com pu t.er word length. 

3.4 Couette Flow 

This is a simple time-dependent. laminar flow problem in which the convection term 
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Figure 3.8 The finite element meshes for the entry flow problem, left a mesh 
wholly composed of quadrilaterals, and right a mesh wholly composed of tri
angles. The dashed line denotes the axis of symmetry. The base of the mesh 
has a prescribed uniform inflow of unit velocity, the right hand side has a 
no-slip condition. 
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Figure 3.9 The velocity profiles for the mesh of quadrilateral elements. At six 
points along the axis 0, 0.2, 0.4, 0. 7, 1.0, 2.0 the velocity profiles along the ra
dius are plotted. The open circles denote the benchmark study of Zienkiewicz 
and Godbole ( 1975 ). 
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Figure 3.10 The velocity profiles for the mesh of triangular elements. At six 
points along the axis 0, 0.2, 0.4, 0. 7, 1.0, 2.0 the velocity profiles along the ra
dius are plotted. The open circles denote the benchmark study of Zienkiewicz 
and Godbole ( 1975 ). 



Unsteady Couette Flo~ 
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Figure 3.11 The simple finite element mesh of 16 quadrilaterals for the Couette 
flow problem. The top surface is held fixed and the base moves at unit velocity 
along axis .. 



Velocity Profiles for Couette flow 
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Figure 3.12 The velocity profiles at selected time intervals showing the developing 
Couette flow. The dimensionless parameter characterising the curves is defined 
in the text and represents increasing time. The finite element solution is 
denoted by open circles, the exact solution is the solid lines. The first curve 
( labelled 0.25 ) is one time-step of the finite element solution. 



uf tbe Navier-Stokes equations is identically zero, 

a 
[11/]Bt {d} + [K]{d} = {F} 

Tlte solution to these equatioHs was presented in section :2.3.4 and the implementation 

of the algorithm will be tested by the model of C'ouett.e flow. A viscous fluid exists 

between t.wo parallel plates, the upper of which is held stationary. The lower plate 

moves along its axis at unit velocity for t 2' 0. A boundary layer forms along the 

lower edge and diffuses upward, developing a steady state linear velocity profile as time 

progresses. The mesh is shown in figure 3.11, and the non-dimensional parameters of 

this problem are J.1 = 1, ')' = 0.5, 6t = 0.0625. The results are compared to the 

theoretical flow profiles in figure 3.12 and show good agreement. (open circles are the 

finite element solutions). The dimensionless parameter which characterises the curves 

JS, 

4Jjlt 
H 

where J.1 is the dynamic viscosity, tis the total time, and His the plate separation. The 

;r-axis defines the flow velocity and the y-axis defines the vertical distance between the 

plates. So, as time progresses the curves map the upward diffusion of velocity towards 

the steady state linear velocity profile. 

3.5 Shear Stress Evaluation 

The viscous flow finite element code is required to evaluate the amount. of viscous 

shear stress produced by an 'elastic' slab moving through the mantle. The represen-

tation of an elastic slab must accurately support the sl1ear stress generated along its 

edge. Melosh and Ra.efsky (1980) found that a.n effective viscosity of 2 x 1021 Pas 

was suitable to support the outer arc bulge of a \'iscous lower lithosphere. \'assiliou 

et al. ( 1984) used a viscosity contrast of >< 10 between mantle <wd slab. Hager et al. 

( 1983) followed Melosh and Raefsky and used a viscosity of 1012 Pa s, which equates 

to a viscosity contrast. of x 10. Intuitively the slab is significantly more rigid than the 

mantle, both upper and lower, and this is justified by the lack of divergent flow at the 

670 km discontinuity (as evidenced by the stresses). Since lower mantle viscosities of 

1023 Pas have been proposed, my own rather arbitrary choice of slab viscosity is 1023 
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Pa s. This is considered to be large enough to distinguish the lithosphere within tile 

flow, without. being so large that it decouples as a rigid intrusion. 

The finite element mesh represents a long, thin channel of dimensions appropri-

at.e to the mantle. The lower surface is held stationary and the upper surface hils il 

prescribed Ye]ocity of 10- 6 m s- 1 (300 mm yr- 1 
). The top 2"10 km of the mesh has n 

\·iscosity of 1023 Pa. sand the lower 340 km a viscosity of 1021 Pas. Assuming that the 

top layer retains its rigidity and transfers the motion of the upper surface to the top 

of the lower layer, then steady state Couette flow is induced in the lower layer. The 

analytical solution is well-known, the only non-zero stress components are horizontal 

shears, 

01.1. u 
r 21 = r 12 - f.l-- 11-- ·ay - · b 

where f.l is the viscosity, U is the velocity of the upper surface, b is the width of the 

channel. Thus, substitute the parameters of the finite element mesh into the equation 

and the shear stress which would be generated by flow in the lower layer is, 

T= 
1021 X 10-8 

-----=- = 0.294 x 108 Pa 
340 X 103 

Apart from small edge effects, this shear stress is reproduced throughout the 50 km 

upper layer by the finite element model. The normal stress components exist but are 

small, being about x10- 4 r. 

In conclusion, a lithosphere of viscosity 1023 Pa s will a.ccurately represent the 

sheetr stress induced by viscous flow along its boundaries. 

3.6 Time-Dependent Free Surface Flmv 

The complete Navier-Stokes equations were derived in section 2.3 and can be writ-

ten, 
8 

[M]-;:;-{d} + [J\]{d} + {H} = {F} 
ut 

The theory of an algorithm formulated for free-surface flow was sketcl1ed in the previous 

chapter. In order to test the free-surface algorithm Hughes et al. ( 1978) provided 

details of an experimental wave-generation study and also supplied the finite element 

simulation of this wave propagation. It is appropriate to follow an identical simulation 

to examine the implementation of the free-surface algorithm in this thesis. 
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The finite clement mesh in figure 3.13 depicts the left hand edge of a n·ctangular 

box of length 1=949.095 units and depth D= 10 units. The base nodes permit horizontal 

motion only, and the right hand edge nodes only permit vertical motion. The nodes 

along the top surface are assigned a!J = 1 to designate motion with the free-surface, 

v.'hile all other dof are assigned o = 0 (see equations :2.(i1, :2.62). A surface wave is 

generated by prescribing the displacement-time function of the left hand edge nodes rt.s, 

, H [ (. Cl\t ) ] 11x(l)= 1\ 1+tanh D-4 

where, 

Differentiation yields the velocity at the left hand edge, 

- = - 1 - tanh - - 4 oil.x He [ 2 (.cl\t )] 
ot D D 

where, g = 1, and H=0.86. The remaining parameters to be defined are J.1 = 0, p = 1, 

6.t = 1.7 s, j3 = O.Ci, and 1 = 0.5. The \'lave-generation fu11ction is formulated such that 

non-linear and dispersive terms are balanced and the wave should propagate without 

distortion. 

For each time increment the velocity of the left hand edge nodes is applied as 

a boundary condition, and the body forces of the fluid are calculated under a scaled 

gravitational field of g = 1. Two iterations of the non-linear term {H} are applied, and 

for each iteration the system matrix is calculated from the updated mesh positions. 

To ensure solution stability, the displacements of the mid-side nodes are defined as the 

average of the displacements of the a.djacent corner nodes. 

The set of profiles in figure 3.14 describe the evolution of the surface of the fluid with 

time. The axes are scaled by tl1e depth ofthe fluid. The profiles show the development of 

the surface wave and its subseque11t propagation. Hughes e1 al. (J978) follow the wave 

over a solution durat.icm of 286 sees ( 160 time steps at ~t = 1.788 s), it. has an almost 

constant scaled amplitude of 0.09.5, propagates at a constant velocity of 3.31 units s- 1
, 

and changes slightly in half-width from 6 - 6.2. By contrast, the wave in figure 3.15 

has evolved over 170 sees; it has a scaled amplitude of 0.058 which is decaying with 

time, it propagates at 2.86 units s- 1 and disperses with a half-width increase of 6.1 ___, 

7.2. The details of the wave propagation differ quite markedly from the benchmark 
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Figure 3.13 The left hand section of the simple finite element mesh for the wave 
propagation problem. The displacement-time history of the left hand edge 
decreases the volume of the box which generates a travelling surface wave. 
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Figure 3.14 The scaled profiles of the free-surface at 4 stages in the propagation 
of the travelling wave corresponding to 40, 60, 80 and 100 time steps. 



wlut.ion. Tlte dispersive effects, i.e. decaying amplitude and increasing half-\·:idth, cc..n 

be attributed to the smoothiug (removing the high frequency components) and the 

inferior performance of the Serendipity elements in coping with the non-linear terms. 

This is eYi dent in the low value of the stability constants ;·, f3 necessary to a.chieYe a 

stable solution. The cause of tl1e low amplitude and low velocity is more difficult to 

pinpoint. The non-linear terms control the amplitude growth of the wave in the initial 

period of generation. The subsequent propagation is dependent on the developement 

of the wave, and hence the low velocity could be due to the formation of a small initial 

wave. Hence, if a wave of amplitude 0.095 had formed initially then it would probably 

propagate at 3.31 units s- 1 in this model, but it would still be subject to dispersive 

effects. This problem with the non-linear terms can be removed by considering a very 

low Reynold's number test model, more appropriate to the subsequent simulations of 

flO\·\' in the mantle. 

The algorithm outlined above has been adapted for low Reynold's number flow 

and the finite element code has been tested using a simple gravity slump problem. 

The mesh is shown in figure 3.15, it. represents a 600 x 200 km cross-section with a 5 

km high-standing 'mountain' at the centre. The topographic high is generated by a 

linear rise and fall over a distance of 120 km. The body of fluid has a uniform density 

p = 3300 kg m - 3 and uniform viscosity J.1 = 1021 Pa s yielding an extremely small 

Reynold's number. The base and sides have free-slip boundary conditions. The free 

surface is defined by the parameter o (see equations 2.61, 2.62), and for the nodes of 

this mesh all O'x = 0, n, = 0 except for the surf<tce vvhere O'x = 0, Cty = 1. This 

a.llows tl1e nodes to move vertically and thus map the development of the surface. The 

stability constants 1 = (3 = 1.0 and the time step employed is .6.t = 1000 yrs. 

Under the law of conservation of mass the high-sta11ding mass at the centre should 

flow laterally under gravity and spread its volume as a uniform increase in surface height. 

The volume of the mountain is 300 km 2 , which when completely relaxed will gener;;.te 

an overall rise in surface level of 0.5 km. The ability of the finite element method to 

model this redistribution of the surface is considered to be a good assessment of both 

the time-stepping algorithm and the incompressibilty constraint. The development of 

the surface with time is shown in figure 3.16 for a total solution duration of 2 Ma. 

The perturbation at the centre dies sufficiently quickly and the overall nse 111 
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Figure 3.15 The simple finite element mesh for the gravity slump test problem. 
The right hand edge is a 5 km topographic high. 
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Figure 3.16 The evolution of the free-surface with time, the curves represent 0, 
0.01, 0.05 a'nd 0.2 Ma. The initial topography has almost completely rela.xed 
and spread as an even increase in surface height. 



surfrtrl:' level is exactly as prcdict('d. 
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CHAPTER 4 

Flow In A Viscous Earth 

4.1 IntJ·oduction 

Density heterogeneities at the surface or in the interior of the Earth persist over geo

logical time and provide significant long-term loads. The lithosphere and the underlying 

mantle respond differently to these loads; lithospheric behaviour can be approximated 

by the flexure of an elastic plate, and mantle creep is best modelled by flow of a viscous 

fluid. Attempts to formulate a numerical method to couple directly both elastic and 

viscous rheologies (e.g. Tharp 1985, Ward 1985) have had only limited success. As 

a compromise in this chapter the Earth is modelled as a viscous, incompressible fluid 

body denoting the lithosphere as a high viscosity layer. 

As a preface to the models of mantle flow driven by subduction a few examples 

of earlier numerical analyses will be reviewed. Since it is not possible to simulate ac

curately the entire Earth in a single model, the boundary conditions of a particular 

cross-section must be a good approximation to the response of the material outside the 

domain under consideration. The choice of boundary conditions originates from the 

vvork in the early 1970s, notably Richter (1973), where mantle convection was mod

elled by the :2-D Rayleigh-Bena.rd convection. Sleep (1975) studied the response t.o the 

anomalously high density slab using a viscous, incompressible fluid rheology. The 2-D 

cross-section through the asthenosphere included the slab as a high viscosity intrusion. 

He adopted tlte same surface boundary conditions as Ricltt.er ( 1913) and stated' The free 

surfaa. of the Earth was nwdelled as a vertically immovable, hori::ontally frictionlEss 

boundary and the inferred elevation of the surfaa computed from the vertical stress on 

that boundary ... ' and he asserted that these assumptions will ' ... contribute mainly ge

omEtrical distortion of the computed versus the actual flow field but do not significantly 

affect t.he dynamics.' This is true for the classical Rayleigh-Benard thermal convection 

cell, but some studies, such as Hager et al. ( 1983) a.nd Vassiliou et. al. ( 1984) for exam-
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pie, incorporated these assumptious into models of subductiou which depe11d crilically 

on 1 he flow pattern. 

The subduction models of Vassiliou et al. (1984) used a penalty fuuction fiuile 

element melhod for Stokes flow similar to lhat used in this thesis. Erroneous bound<n~' 

conditions have two major effects which influeiLCe the dynamics of the model. The 

top surface is constrained to move horizont.a.lly, and so a high viscosity lithosphere 

would induce the top of the asthenosphere to move only horizontally also. While lhis 

motion could be real, the constraints are artificial. Secondly, the zero vertical motion 

at the top of the slab prescribes that its surface points are fixed with respect. to the 

gravitational field. Thus slab motion is controlled by stretching under its own weight. 

This is highlighted by the note on slab viscosity (relative to the upper mantle viscosity 

of unity) from Vassiliou et al. (1984) ' ... dimensionless slab viscosities of 10 yield 

reasonable flow velocities . .. '. This is interpreted as stating that a viscosity contrast 

of x 10 between mantle and slab was required to allow the slab to flow down dip at 

velocities which have been observed for the subduction zones of the Earth. It. is likely 

that the slab is significantly more rigid than the surrounding mantle and perhaps a 

viscosity contrast of x 100 is more appropriate. 

Subduction is not a steady-state process. Time-dependence is controlled by the 

temporal variation of the boundary conditions. Over long time periods this variation is 

provided by the motion of the slab, but over short. time periods it is the adjustment of 

the free surface. The 2-D models of a viscous fluid in a box require a suitable method 

for dealing with the free surface. Other boundaries, at the base and sides, can be ap

proximated quite adequately with Dirichlet conditions or lit.host.atic pressure gradients 

and will have less influence on the dynamics. The previous chapter demonstrated that 

the free surface can be modelled numerically aud the followiilg simulations of flo\'." in 

t.l1e mantle utilise this representation of the free surface of the Earth. 

4.1.1 The Conceptual Basis of the Finite Element lVIodels 

Loper ( 1985) proposed that the viscosity-depth profile, rather than the density

depth profile, exerts a primary control over the structure of mantle convection. The 1-D 

exploratory model presented by Loper ( 1985) advocated an isoviscous mantle. Richards 

and Hager ( 1984) and Hager ( 1984) modelled the mantle as a layered, Newtonian sphere. 
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Density anomcdies of the cl esce11 eli 11g slab at convergent rn argillS were em played to d~i \·e 

mantle convection and the geoid was calculated from the driving densities and the defor

mation oft he surface aucl the core-mantle hounda.ry (CMB). Hager (19b4) demonstre:ted 

that a \·iscosity contrast of x30 between the upper and ]0\':er mantle is required to pro

duce a relative high in the geoid at subductio11 zones. \1\,"illemann and Anderson (19bl) 

extended the analysis of Hager ( 1984) to investigate the geoid due to an inext.ensible 

vertical slab in 2-D nnite element models of viscous flow. A relative geoid high \\·as 

produced by a viscosity contrast of X 10 at the upper- lower mantle interface. 

The numerical simulations of this chapter are based on the assumption that the 

viscosity-depth distribution controls subduction. The average density-depth variation 

of the mantle (e.g. ngure 1.6) is not included. The anomalous density of the descending 

slab drives the motion. The major sophistication over previous analyses is that short 

period time-dependence is included by permitting motion of the free surface. Thus the 

pattern of the flow in the mantle may be studied with a greater degree of confidence. 

The surface deformation is essentially instantaneous compared to the time constant of 

subduction ( Ha.ger 1984). This is translated into the finite element models by allowing 

the free surface to evolve over a. time int.enal of SO 000 yrs (the time scale of post-glacial 

rebound). This time interval is instantaneous with respect. to slab motion and so the 

nodal coordinates of the slab remain unchanged. 

4.2 The Finite Element l\1esh 

The nnite element mesh represents a rectangular cross-section throughout. the man

tle of dimensions 9130 x 2800 krn a11d is shown in figure 4.1. The bulk of the mesh 

has a layered structure. The top 90 km is oceanic lithosphere and underlying this is 

the asthenosphere, 90......, 180 km depth. The rest. of the upper mantle extends between 

180 _, 670 km depth and most of the mesh represents the lower mantle, 670 ....... 2800 

km depth. The general rheology is given in Table 4.1 below. 
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Figure 4.1 The mesh represents a 9130 x 2800 km cross-section through the 

mantle. The general rheology is given in the text.. The slab is shaded; it. dips 

at 45° and carries the anomalous density. 
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Depth (km) Density (kg m-3) Viscosity ( Pa s) 

0-90 3300 1023 

90- 180 3200 1019 _, 1021 

180- 670 3200 1021 

670- 2800 3200 1021 _, 1023 

Table 4.1 General Rheology 

Although the average viscosity-depth profile of the mantle is not well constrained, 

the best estimate available is an upper mantle viscosity of J1 = 1021 Pa s ( Cathles 

1975). Estimates of the depth extent and viscosity of the asthenosphere vary widely 

(e.g. Cathles 1975, Robinson et al. 1987, Ceuleneer et al. 1988) and the model values 

of 90 km and J1 = 1019 - 1021 Pas are representative. Recently published estimates 

of lower mantle viscosity generally fail in the range J1 = 1021 
- 1023 Pa s (Peltier et 

al. 1986 ). The mantle is assigned a constant density of p = 3200 kg m - 3 to remove the 

effects of the vertical density variation. The oceanic lithosphere is assigned a densit.y 

of p = 3300 kg m - 3 to represent the thermal density contrast. 

The position of the slab is shown in figure 4.1. It is represented by oceanic litho

sphere of viscosity Jl· = 1023 Pa s dipping at 45°. The slab tip is streamlined in the 

downdip direction. The ele\·ated olivine-spinel phase change in the slab is included a.s 

a density anomaly of 150 kg m - 3 over the depth range 300 - 400 km. The phase 

change is spread over a larger volume than predicted (Schubert et al. 1915) and so the 

density anomaly is reduced to maintain a consistent mass anomaly. The magnitude 

of the density anomalies may be considered a little high but this will only affect the 

magnitude of the flow velocities and should not seriously affect the dynamics. 

Free slip boundary conditions are applied to the base and sides. Thus the base 

permits only horizontal flow and the sides permit only vertical flow. The boundary 

conditions contain the fluid within the domain of the mesh. The surface nodes are 

assigned o:y = 1 to define the free surface, all other o: = 0 (see equations 2.61, 2.62). 

The deflection of the CMB is not included in the finite element models. Willemann 

and Anderson ( 1987, figures 3 and 4) showed that this is a significant contribution to 

the geoid for long slabs ( 1400 km penetration) with a viscosity contrast at the 670 
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km discontinuity of at least X 10. The CMB topography will generate a negative, long 

wavelength gravity anomaly. Deeply sourced gravity anomalies are attenuated at the 

surface and so the gravity profile will be dominated by the contributions from shallower 

loads. 

The magnitude ofthe time increment for the time-stepping algorithm is a somewhat 

arbitrary choice since it only has a maximum value which is dependent on the flow 

velocity. The models were assigned a time increment of 1 000 yrs and evolve over 50 

time steps. 

The finite element models of this chapter investigate the effect of mantle viscosity 

and depth of slab penetration on the mantle flow patterns generated by subduction. 

Model limitations, such as lithospheric rheology and the thrust zone, are discussed in 

the final section. 

4.3 The Influence of Lower Mantle Viscosity 

One of the mam concerns of geodynamical studies of mantle convection is the 

ability oft he slab to penetrate the lower mantle. This chapter concentrates on the role 

of the viscosity structure in the control of slab motion and thus the viscosity of the lower 

mantle is a dominant theme. This opening section is devoted to a brief introduction to 

the action of the lower mantle viscosity using a model of slab penetration to 1000 km 

depth. Throughout the remainder of the chapter variations in lower mantle viscosity 

will be included in addition to the study of other parameters. The three models of this 

section have an asthenospheric and upper mantle viscosity of Jl· = 1021 Pas, and lower 

mantle viscosities of 1021 , 1022 and 1023 Pas respectively. 

The flow fields and surface displacement profiles are given in figures 4.2- 4.4 for 

the 1021 • 1022 and 1023 Pas models respectively. The plots of flow vectors have a circle 

at each node and a vector denoting the velocity away from the node. The velocity scale 

at the top varies between models. The flow field is enclosed by a solid border. The 

surface displacement profile is shown above the flow field. The dashed line is the initial 

position of the surface at t = 0. The solid curve represents the vertical displacement of 

the surface at t = 50 000 yrs. The vertical line at the left hand edge is a vertical scale 

denoting 5 km of displacement. 
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Figure 4.2 The flow field and surface displacement profile for the model of slab 

penetration to 1000 'km depth, with asthenosphere, upper mantle and lower 

mantle viscosities of JL = 1021 Pa s. The flow field is depicted by a circle at 

each node and a vector denoting velocity away from the node. The velocity 

scale is given at the top. The flow field is enclosed by a solid border. At the 

right hand edge the ratios of upper mantle viscosity : asthenosphere viscosity, 

a.nd lower mant.le visc~sity : upper mantle visco:;ity a.re given. The surface 

displacement. profile is shown above the flow field. 
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Figure 4.3 The flow field and surface displacement protlle for the model of slab 

penetration to 1000 km depth, with asthenosphere viscosity 1021 Pas, upper 

ma.nt.le JL = 1021 Pa. s and lower mantle JL = 1022 Pa. s. 
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The constant viscosity mantle in figure 4.2 generates a continuous flow circulation 

about the slab. Under the slab the flow vectors are near vertical. The upper mantle 

material is being driven down into the lower mantle and this would cause the depression 

of the CMB (not present in these models because of the base boundary condition). The 

flow is circulating from under the subducting plate around the slab tip as noted by 

Garfunkel et al. (1986). The width of the circulation is about 3000 km, but this may 

be controlled by the depth of the mesh (2800 km), and also be influenced by the left 

hand boundary. 

In the upper mantle above the slab the flow is roughly horizontal with a maximum 

( 100 mm/yr) at about 400 km depth. The overriding plate is nearly stationary. Within 

the slab the flow is aligned roughly down dip ( 80 mm/yr) in the upper sections but 

inclined more towards vertical below 400 km depth. In the subducting plate, flow 

is nearly horizontal (30 mm/yr) and directed towards the trench, and the underlying 

mantle h<t.s a vertical velocity gradient with the lateral velocity dropping to zero at 

about 400 km depth. 

The surface displacement profile shows a maximum depression at the t.op of the 

slab of 3.4 km. The right. hand edge of the depression rises over a width of about. 200 

km, but the left hand edge rises at a lower angle, over a width of about 1100 km. The 

far left and right hand edges of the surface plates are elevated by about 0.5 km. 

The flow field in figure 4.3 demonstrates the effect of a viscosity contrast of x 10 at 

the 610 km discontinuity. The overall magnitude of the flow velocity is smaller but the 

general pattern is similar to figure 4.2. There is a circulation about the slab tip, with 

near vertical flow below the slab and horizontal flow above the slab. However, there is 

distinct pc>..rtial decoupling of this circulation at. 610 km depth. 

The subducting plate flows towards the trench at 15 mm/yr with an underlying 

velocity gradient to zero at 670 km depth. The o\·erriding plate is virtually stationary 

with an underlying velocity gradient to a maximum (10 mm/yr) at about 400 km 

depth. \\~ithin the slab the flow is fairly consistently aligned just vertical of downdip 

(50 mm/ yr ). The maximum depression of the surface is 2.1 krn with an enhanced 

asymmetry to the uplift of the flanks. 

Increasing the viscosity of the lower mantle further, figure 4.4 shows the flow field 

utilising a viscosity contrast of X 100 at the 670 km discontinuity. There is almost 
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complete decoupling of the flow at the upper-iower mantle boundary. In the lower 

mantle there is a small down dip component of flow ( 10 mm/yr) due to the portion of 

slab in the lower mantle. In the upper mantle the flow is predominantly horizontal and 

directed seawards with a velocity maximum (2.5 mm/yr) at about 400 km depth. Thus 

the flow is ·channelled' through the upper mantle. The overriding plate has a small 

seawards velocity and the subducting plate is roughly ~tationary with an underlying 

velocity gradient now directed seawards. Flow within the slab varies along its length; it 

is roughly vertical in the upper section and downdip in the lower section. The surface 

depression is broader and reaches a maximum depth of about 1.9 km. 

The surface depressions decrease in depth and increase in width as the lower mantle 

viscosity increases. This variation in depth, and its effect on the geoid, was noted 

by Hager ( 1984 ). The variation in width is partially clue to the overall reduction in 

magnitude of the flow velocity. Thus, over a fixl"d time interval, the surface has not 

evolved as fctr. The shape of the depression is also <dfected by the mechanical strength 

of the slab. The flow field in figure 4.~, reproduces the model of figure 4.3 with the 

lower mantle viscosity 1022 Pa s, but there is no ;:iscosity contrast between the slab and 

mantle. The overall magnitude of flow is much grl'aler (as shown by the velocity scale 

a.t the top c.f the figures) and aligned downdip. and the surface depression is broader. 

The a~ymmetry of the depression is due to the dip of the slab. The vertical motion 

uf the s:nki11g slab is coupled tu the surfrtee platfos- through the 'mechanical strength' 

of the high \·iscosity lithosphere, and by visccJU~ coupling through the mant.le overlying 

the slab. The uplift of about 0.5 km at the left <:.nd right hand edges of the surface 

plates is due to the bonnda.r_v conditions. There i~ zero mass flux at. the vertical sides 

and so depression of the surface at the top of the slab will cause uplift of the flanks. 

This is <t li;-nitatiun uf the models that is further discussed in the final section. Th.:

depression of the smface is sustained by continuous slab motion. The models do not 

reach a ste<:d_v state because slip at. the thrust zone cannot. be simulated. 

Tlwse preliminary models demonstrate the ability of a viscosity contrast. at the 

670 km discont.i11uity to decouple the flow system~ in the upper and lower mantle. This 

provokes a change of flow in the surface plates. flv:; within the slab, as well a.s the flow 

systems in the mantle. 
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4.4 The Influence of the Asthenosphere 

The following sequence of models investigate the effect of varying the viscosity in 

the asthenospheric layer, 90 --> 180 km depth. The flow fields in figures 4.6- 4.8 employ 

an asthenospheric viscosity of Jl = 1020 Pa s in models of slab penetration to 1000 km 

with lower mantle viscosities of J.1 = 1021
, 1022 and 1023 Pas. 

Comparison with figures 4.2 - 4.4 shows that the decrease in asthenospheric VIS

cosity has very little effect on the gross flow pattern. The main effect is to concentrate 

the lateral flow in the upper mantle into the asthenosphere and thus partially decou

ple the surface plates. This introduces a small landward component of velocity in the 

overriding plate above the slab. 

The models in figures 4.9- 4.11 further decrease the viscosity in the asthenosphere 

t.o 1019 Pa s. Comparison with the models described above shows an exactly simi

lar effect. The low viscosity zone concentrateti the lateral flow and produces a small 

landward component. of velocity in the overriding plate. 

4.5 Variation Ill Depth of Slab Penetration 

Th~'> models in this section describe the influence of variations in slab length. Depths 

of slab penetration are set to 300, 400 and 610 km. The basic mesh parameters remain 

unchanged from the models of the previous section and variations in viscosity in the 

mantle layers a.re included. 

The 1nucleb in figures 4.12 - 4.14 represent slab penetration t.o 610 km and have 

a uniform viscosity <tst.henosphere and upper mantle J.1 = 1021 Pas, with lower mantle 

viscosities of 1021 • 1022 and 1023 Pas. Comparison with figures 4.2- 4.8 shows that for 

a gn,.en rr:antle viscosity the gross flow structure is similar t.o the 1000 km penetration 

model. In more detail, the rnodels in figures 4.2 and 4.12 for the constant viscosity 

mantle sl10w that. t.he 610 km pe11et.ration model has a slightly reduced width of cir

culation arouHd the slab. Also, the flow vector~ ·within the slab are rotated slightly 

antic.lockwise. A similar situation occurs for the 1022 Pas lower mantle model in figure 

4.13. The width of circulation is reduced, relative to figure 4.3, and the flow within 

the slab is rotated anticlockwise from the vertical. The high viscosity 1023 Pas lower 

mantle models in figures 4.4 and 4.14 are very similar with simply a reduction in t.he 
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Figure 4.5 The flow field and surface displacement profile for the model of slab 

penetration to 1000 km depth, with asthenosphere viscosity 1021 Pa. s, upper 

mantle 11 = J 021 Pa. s and lower mantle J.L = 1022 Pa. s. There is no visocsity 

contrast. between the slab and the mantle. 
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Figure 4.6 The flow field and surface displacement profile for the model of slab 

penetration to 1000 km depth, with asthenosphere viscosity 1020 Pas, upper 

mantle Jl = 1021 Pa s and lower mantle J1 = 1021 Pa s. 
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Figure 4.7 The flow field and surface displacement profile for the model of slab 

penetration to 1000 km depth, with asthenosphere viscosity 1020 Pas, upper 

mantle 11 = 1021 Pa s and lower mantle 11· = 1022 Pa s. 
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Figure 4.9 The flow field and surface displacement profile for the model of slab 

penetration to 1000 km depth, with asthenosphere viscosity 1019 Pas, upper 

mantle J.L = 1021 Pas and lower mantle J.L = 1021 Pas. 
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Figure 4.10 The :flow field and surface displacement proJlle for the model of slab 

penetra.tion to 1000 km depth, with asthenosphere viscosity 10 1 !1 Pa. s, 11pper 

mantle p = 1021 Pas and lower mantle I'·= 1022 Pas. 
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Figure 4.12 The flow f1eld and surface displacement profile for the rnodel of sla.b 

penetra.tiou to 670 km depth, with asthenosphere viscosity J0 21 Pas, upper 

mantle I' = 1021 Pas and lower mant.le I'·= J 021 Pa s. 
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Figure 4.1:3 The How field and surface displacement. profile for tile model of slah 

penetration to 670 km depth, with asthenosphere viscosity 1021 Pas, upper 
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magnitude of the small velocities just below the slab tip. The surface depression in all 

three models has slightly decreased in width and depth. 

The models in figures 4.15 - 4.17 .represent the addition of a low viscosity as

thenosphere with f..l = 1020 Pa s to the preceding models of 670 km penetration. The 

asthenosphere has an identical effect to the description given in the previous section. 

Flow is concentrated into the asthenosphere, partially decoupling the surface plates. 

However, there is an additional complication for the 1022 Pa s lower mantle model in 

figure 4.16. The anticlockwise rotation of the flow vectors within the slab is amplified 

by the asthenosphere creating seawards lateral flow under the subducting plate. 

The flow fields shown in figures 4.18- 4.20 represent the models of slab penetration 

to 670 km depth with the asthenospheric viscosity further reduced to 10 19 Pa s. The 

flow patterns are similar to figures 4.15 - 4.17 but the horizontal flow in the upper 

mantle has been further concentrated into t.he 10\·; \·iscosity zone. 

The slab length is shortened and the flow fields for the models of 400 km penetration 

are shown in figures 4.21 - 4.23. The asthenosphere \·iscosity· p = 1020 Pas, the upper 

mantle p = 10~ 1 Pas, and the lower mantle viscosities are 1021 Pas. 10 22 Pas or 1023 

Pa s. The flow field in figure 4.21 represents no \·iscosity contrast at 670 km depth. 

There is a flO\'; circulation about the slab tip but the cell width is less than the deeper 

penetrating models (figures 4.15, 4.6). Horizontal now UJHler the overriding plate is 

concentrated into the low viscosity zone. Within the slab the flow in the lower sections 

is rotated almost 4S 0 anticlockwise of vertical. This creates a component of seaward 

horizontal rio\·: under the subducting plate. Tbe rlo·:: field in figure 4_.22 represents the 

model with lower mantle viscosity of 1022 Pas. There is clecoupling of the flow in the 

mantle about the 670 km discontinuity, leaving only;;. small component of entrained flow 

in the ]ow!O'r ma11tle. The circulation about the slab t:p now occurs in the upper mantle. 

La,tera.l flrw: under the overriding pla.te is concent.rc;.ted into tire asthenosphere and the 

overriding pl<tte has a small landward component of velocity. Flow within the slab is 

nearly downdip in the upper sections and vertical in the lower sections. Increasing the 

lower mautle \·iscosit.y to 1023 Pas, figure 4.23 shows that the flow is completely confined 

to the upper mantle. The circulation arcmnd the slab tip causes a small component. of 

flow above the slab, but there is no flow under the bulk of the overriding plate. There 

is a large component of seawards horizontal flow uuder the subducting plate. and also 
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Figure 4.15 The flow 'field and surface displacement profile for the model of slab 

penetration to 670 km depth, with asthenosphere viscosity 1020 Pa s, upper 

mantle Jl = 1021 Pas and lower mantle J.l· = 1021 Pa s. 
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Figure 4.16 The flow field and surface displacement profile for the model of slab 

penetration to 670 km depth, with asthenosphere viscosity 1020 Pa s, upper 

mantle J1. = 1021 Pas and lower mantle J1. = 1022 Pas. 
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The flow field and surface displacement profile for the model of slab 

penetration to 670 _km depth, with asthenosphere viscosity 1020 Pa s, upper 

mantle J.L = 1021 Pas and lower mantle J.L = 1023 Pa s. 
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Figure 4.18 The flow field and surface displacement profile for the model of slab 

penetration to 670 km depth, with asthenosphere viscosity 1019 Pa s, upper 

mantle J.L = 1021 Pa s and lower mantle J.L = 1021 Pa s. 
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Figure 4.19 The flow field and surface displacement profile for the model of slab 

pen'etration to 670 km depth, with. asthenosphere viscosity 1019 Pa s, upper 

mantle J..L = 1021 Pas and lower mantle /.l· = 1022 Pa s. 
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The flow field and surface displacement profile for the model of slab 

penetration to 670 km depth, with asthenosphere viscosity 1019 Pa s, upper 

mantle J..L = 1021 Pas and lower mantle Jl· = 1023 Pas. 
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Figure 4.21 The flow field and surface displacement profile for the model of slab 

penetration to 400 km depth, with asthenosphere viscosity 1020 Pas, upper 

mantle J1. = 1021 Pas. and lower mantle J1. = 1021 Pas. 
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Figure 4.22 The flow field and surface displacement profile for the model of slab 

pen·etration to 400 km depth, with asthenosphere viscosity 1020 Pa s, upper 

mantle p. = 1021 Pas and lower mant.lc 11 = 1022 Pn s. 
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The flow field and surface displacement profile for the model of slab 

penetration to 400 km depth, with asthenosphere viscosity 1020 Pa s, upper 

mantle J.L = 1021 Pa s and lower mantle J.L = 10n Pa s. 
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Figure 4.24 The flow field and surface displacement profile for the model of slab 

penetration to 400 km depth, with asthenosphere viscosity 1019 Pa s, upper 

mantle I.L = 1021 Pa s and lower mantle I.L = 1021 Pa s. 
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Figure 4.25 The flow field and surface displacement profile for the model of slab 

penetration to 400 km depth, with asthenosphere viscosity 1019 Pa s, upper 

mantle J.L = 1021 Pas and lower mantle J.L = 1022 Pa s. 
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Figure 4.27 The flow field and surface displacement profile for the model of slab 

penetration to 300 km depth, with asthenosphere viscosity 1020 Pa s, upper 

mantle J.L = 1021 Pa s and lower mantle J.L = 1021 Pa s. 
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Figure 4.28 The flow field and surface displacement profile for the model of slab 

penetration to 300 km depth, with asthenosphere viscosity 1020 Pa s, upper 

mantle IL = 1021 Pa s and lower mantle Jl· = 1022 Pa s. 

• i . . . . x10 
• . . . • . . . . . . x10 . . . . 

. 
. . . 

. 

9140 



10 I . . 

-2810 

-I 0 

----50 _,Y" 

t ~---:.-~. -- l ' : . ~ . :..· ~ ..-::::- ... J . . . . . : 1 ••• ::..-._ ..-"' -t . . .. . : . ~ . ... . ...-:::: ... -. 
.... • 

: • : l • ~~ -- ... ... . _._. ~ ~ . . . . ....... . . . . . . . . ....... . . 
. . . . 

... . . . ....... . . 
. ... 

Figure 4.29 The flow field and surface displacement profile for the model of slab 

penetration to 300 km depth, with asthenosphere viscosity 1020 Pa s, upper 

mant.le JL = 1021 Pas and lower mantle p = 1023 Pas. 
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Figure 4.30 The flow field and surface displacement profile {or the model of slab 

penetration to 300 km depth, with asthenosphere viscos'ity 1019 Pa s, upper. 

mantle Jt. = 1021 Pas and lower mantle J.L = 1021 Pas. 
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Figure 4.31 The flow field and surface displacement profile for the model of slah 

penetration to 300 km depth, with asthenosphere viscosity 1019 Pa s, upper 

mantle 11 = 1021 Pa s and lower mantle JL = 1022 Pa s. 
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a reduction in the width and depth of the surface depression. 

The flow fields shown in figures 4.24 - 4.26 represent the models of 400 km pene

tration with the viscosity of the asthenosphere reduced to 1019 Pas. The flow patterns 

are similar to figures 4.21 - 4.23 but the horizontal flow under the subducting plate has 

been enhanced at the expense of the flow under the overriding plate. 

Slab penetration to 300 km depth with an asthenospheric viscosity of 1020 Pas are 

shown in figures 4.27 - 4.29. The lower mantle J.1 = 1021 Pas model in figure 4.27 has 

a small circulation cell around the slab tip similar to the preceding 400 km penetration 

model (figure 4.21 ). Flow within the slab is slightly rotated anticlockwise of vertical. 

Horizontal flow under the overriding plate is concentrated into the low viscosity zone. 

The model of lower mantle J.1 = 1022 Pas in figure 4.~6 shows the circulation around the 

slab tip confined to the upper mantle. Very little ftm·.- is entrained in the lower mantle. 

Within the slab the flow is nearly downdip in the upper sections and roughly vertical 

in the lower sections. The overriding plate is nearly stationary and flow underneath is 

confined to the region above the slab. Increasing the lower mantle viscosity to 1023 Pas 

confines the flow to the upper mantle (figure 4.29). The circulation around the slab tip 

generates a small flow under tbe overriding plate. but the low viscosity zone decouples 

the plate allo\'."ing a small landward component. There is large horizontal seawards flow 

under the subducting plate. 

The tiitai three modeb of 300 km penetration d..5:=:ign a11 asthenospheric \·i~cosity of 

10 19 Pa. s. hg'Hes 4.30- 4.~)2. C'ornp;uison \\·ith figur~-- ·L21- 4.29 shows th<-t.t. derre<-tsing 

the viscosit:: (jf the asthenosphere enhances the lto~:zontal flcm· under the· subducting 

platt> at. t hi" expenst of the flow under the overriding plate. 

4.6 Discu:::sion of Results 

There are strong arguments for viscosity stratification of the mantle. Hager ( 1984) 

suggested a -.·iscosity contrast. of X 30 ~ X 100 at the upper - lower mantle boundary. 

while Willemann and Anderson ( 1987) preferred 2. ·;iscosity contrast. of X 10. The fi

nite element models of flow due t.o oblique subduction in this chapt.er provide some 

constraints on the viscosity structure. 

The principal observation t.akeu from the prt:>ciO'diug flow fields is that a viscosity 
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contrast of x 100 at 670 km depth is sufficient to effectively decouple the flow systems in 

the upper and lower mantle. This has the greatest influence on the longest slabs, in this 

case penetrating to 670 km and 1000 km depth. In addition to decoupling the induced 

flow, the viscosity contrast affects the flow within the slab. There is a large change in 

orientation of the flow vectors along the length of the slab (figures 4.4, 4.8, 4.11, 4.14. 

4.17, 4.20) which implies differing motion along the length and thus contortion of the 

slab. There is no evidence for excessive slab bending among observations of Wadati-

Benioff zones which are remarkably straight at dept b (see compilation in Jarrard ( 1986) 

for example). 

The flo\\" fields of the model of slab penetration to 610 km depth (figures 4.14, 4.11, 

4.20) show much higher velocities in the upper sections of the slab compared to the slab 

tip. This can be interpreted as resistance to penetration of the lower mantle causing 

rollback to layer the slab aJong the interface. There is no seismic evidence of substantial 

amounts of slab material at the 670 km discontinuity and the observed slab stresses 

are not consistent with the high degree of bending that this may entail (Vassiliou et al. 

1984). 

The flO\': fields of models with a viscosity contrast of X 10 (figures 4.3, 4.10, 4.13. 

4.1 6. 4.19) do not show the problems discussed above. Penetration of the lower mantle 

is obst:'r':ed whilst flow within the slab is fairly consistent in velocity and orientation 

along tht- ~lab length. ln this respect the viscosity contrast of x10 is preferred. 

Tb~C nragHit.ude of viscosity in the asthenospltere does not affect the bulk flo\·: 

pattem greatly (figures 4.6-4.11). The general influence of the low viscosity zone is to 

coucen t r<t t e the upper mantle flow and decouple the motion of the surface plates. A 

viscosity of p = 1019 Pas is at the low end of the range of possible viscosities, so for a 

generctl model the value J.l = 1020 Pa. s is taken. However, these finite element models 

are relati\·IO']y insensitive to the value of a.sthenospheric viscosity. 

A general model of mantle stratification has been adopted, the asthenosphere J.l = 

1020 Pas_ upper mantle p. = 1021 Pas and·lm•:er mantle p. = 1022 Pas. The flow fields 

in figures -L33 - 4.3b represent slab penetration to 300, 400, 670 and 1000 km in this 

general mantle model and are blow-ups of figures -L28, 4.22, 4.16 and 4.7. 

There are a few observations to make on these models of increasing slab penetra-

t.ion. The \':idth of circulation in the mantle increases, as does the depth and width of 
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of the mesh for the model of slab penetration to 300 km depth, with astheno
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Figure 4.34 The flow field and surface displacement. profile at the centre section 

of the mesh for the model of slab penetration to 400 km depth, with astheno

sphere viscosity 1020 Pa s, upper mantle J1· = 1021 Pa s and lower mantle 

J.L = 1022 Pa s. 
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Figure 4.35 The flow field and surface displacement profile at the centre section 

of the mesh for the model of slab penetration to 670 km depth, with astheno

sphere viscosity 1020 Pa s, upper mantle p = 1021 Pa s and lower mantle 

J.L = 1022 Pas . 
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the surface depression, with increasing slab depth. The significant change occurs when 

the elevated olivine-spinel transition is reached. Depression of the surface is caused by 

a combination of viscous and mechanical coupling of the vertical motion of the slab. 

The topography of the surface and the CMB serve to compensate the body force of the 

descending lithosphere and the relationship is controlled by the viscosity stratification 

(Hager 1964). 

The flow field in figure 4.33 for the model of 300 km penetration has a relatively 

low magnitude of flow velocity. Flow within the slab (25 mm/yr) is roughly vertical 

in the upper section (200 km depth) but rotated anticlockwise of vertical in the lower 

section ! 300 km depth). The flow vectors do not represent particle trajectories but the 

general motion of the slab can be defined as sinking vertically and rotating towards 

vertical subduction. The 400 km penetration model (figure 4.34) shows flow in th-o

upper section of the slab oriented roughly dmmdip of vertical (60 mm/yr) and flm·: 

in the lo·.·:er sections is rotated anticlockwise of vertical. Thus the motion of the slab 

is vertical sinking combined with rotation towards vertical. At 670 km penetration 

the slab tip hits the top of the lower mantle , figure 4.35 ). In the upper slab the flm·: 

is oriented downdip of vertical, at 400 km depth the flow is rotated ant.idockwise of 

vertical \70 mm/yr) and in the lower section the flow is aligned vertical of downdip. 

Thus the general motion is altered, the slab is sinking more obliquely and bending ai 

mid-length. Deeper penetration into the lm·:er mantle (figure 4.36) shows a similar 

pattern. tow ill the upper and lower sections of the slab is aligned vertical of downdip. 

At about 400 km depth tl1e flow is alig11ed \·ertically. Thus the general slab motion :; 

oblique sinking accompanied by bending at mid-depth. 

Thu~. as subduction proceeds, the flow \·ectors within the slab rotate clockwise to

wards an orientation just vertical of downdip. lHt.era.ction with the lower mantle causes 

sta.gn<ttioE of the slab tip and the mechanical strength of the lithosphere transmits the 

resist<tnce to motion along the length of the slab. 

The flow field above the slab was aligned horizontally in all models, there was 

no e\·idence of 'backarc convection'. Omission of the thrust zone prevents shear slip 

between the plates at the surface and it is the relative motion which drives corner flo\·: 

(Md\enzie 1969). 
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4. 7 Limitations of the Models 

The viscous flow models of this chapter have not attempted to model a particular 

subduction zone but rather present a generalised simulation of the action of subduction. 

The aim of the study is to predict the overall flow field generated by a mechanically 

strong, oblique, sinking slab. Despite the simplistic approach of assuming only that 

the viscosity distribution has primary control over subduction, the models have many 

limitations. 

The lithosphere was represented by a 90 km thick layer of viscosity 1023 Pas. The 

mechanical strength of oceanic lithosphere is best modelled by an elastic component 

to the rheology. The high viscosity approximation cannot truly simulate the flexural 

strength oi the elastic component. The long term time-dependence produced by slab 

motion was not considered and only slab dips of 45c were included. The age-dependent 

thickness oi the lithosphere was also ommitted. 

Short term time-dependence was allowed for by the movement. of the free surface. In 

the far fiek from the slab this allowed the topngr;:,phy to balance roughly the induced 

flow stresses, but at the top of the slab the surface v::ill not reach equilibrium. The 

subducting plate is not detached from the on·rriding plate at. the thrust zone, in th~? 

absence of shear slip between the plates the flO\\. ne]cJ at the top of the s]a.b will not 

be realistic. Thus the models cannot simulate the su bd uct.ion of one plate under the 

other and will not produce corner flow. The omis~ion of the thrust. zone also prevents 

an accurate simulation of the surface topography which compensates t.he underlying 

vertic a! forces. 

The length of the mesh is almost one quarter of the circumference of the Earth and 

so the rectangular box is not a good approximation. Curvature vvill cause the base to be 

much shortt::r than the surface. The boundary conditions at the sides of the mesh contain 

the fluid within the domain of the mesh and do not permit. a mass flux across the sides. 

This is an important. omission. There is a circulation of mantle material due to thermal 

convection and subduction is only the descending limb. Jvla.t.erial is removed from the 

mantle at ocean ridges to form the lithosphere of the surface plates and injected back 

again at subdurt.ion zones. A major component ,:.f flow in t.he mantle will probably bF? 

the lateral flow in the asthenosphere towards ocean ridges which replenishes the MOR 

source regJOn. This flow is driven by the rollback of the slab (Garfunkel et. a!. 1986). 
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These fin.ite element models do not simulate this circulation of material but simply 

depict the return flow of the lithosphere back into the mantle which is the dominant 

driving force of mantle flow (Loper 1985 ). 

The mantle was assigned uniform Newtonian viscosities and the p- T dependence 

was not included. However, over the short time periods considered the heat transport 

will be small and so this is not expected to ha\·e a great. deal of effect. The seismic 

discontinuities at 400 km and 670 km depth were not included as horizontal mantle 

boundaries. The sharpness of the transitions and the lack of topography at the seismic 

discontinuities suggest that they are instantaneous phase changes. Lateral variations in 

the properties of the lithosphere and the mantle were not included and may be expected 

to play an important. role. 

An important omission is the out-of-plane flo\':. Subduction zones are arcuate and 

of a finite length and will drive a considerable component of flow in the :-direction. 

The 2-D finitf:' element analysis cannot model this flow. 
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CHAPTER 5 

The Stress Regime At Subduct.ion Zones 

· Tl1e previous chapter dealt witl1 flow in a viscous mantle and encountered rert;,in 

problems with the surface of the Earth and the behaviour of the thrust ZOIIe. The models 

of this chapter describe the evolution of subduction zones with an elastic-viscoelastic 

rheology which provides a more precise description of the response of the surface and 

thrust zone. The limitations of the models are elaborated upon in the final section. 

A single, highly simplified basic model of an island arc convergent margin has been 

chosen as a suitable starting point. Oceanic lithosphere subducts beneath an adjacent 

plate which is also composed of oceanic lithosphere. Gradual complication of the model 

should enable us to discriminate the effect. of each factor controlling the evolution of 

subduction. The models and result.s are presented and commented upon in this chapter, 

and a full discussion of the results is given in the next chapter. 

There are several initial assumptions which form the basis for the numerical sim

ulations of this chapter. The rheology of the lithosphere is represented by a .30 km 

thick elastic layer overlying 60 km of Newtonian viscoelastic material. The finite ele

ment meshes lack sufii.cient resolution to include the crust. explicitly. Crustal thichess 

variations m<ty locally dominate the stress regime. At subduction zones the isostati

cally compensated load of the volcanic arc is an important contribution to the crustal 

loads. The arc is incorporated as equivalent. normal stresses about the elastic le:yer 

of the lithosphere to simulate the topographic load and the underlying upthrust. The 

absence of the oceanic crust excludes the ba~alt-eclogite phase change from the models. 

This is an important addition to the body forces as it converts buoyant crust to the 

denser phase of eclogite, which adds to t.he driving force of subduction. The mantle 

below the lithospl,ere is modelled as a three layer Newtonian, viscoelastic body. The 

a.sthenosphere exists between the base of the lithosphere (90 km) and 200 km depth, 

the upper mantle extends to 670 km depth, and the lower mantle layer constitutes the 

bottom layer from 670 km depth to the base of the model. 

Slab dip was chosen to be a constant 45° throughout the mantle. This is the 
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ltighest dip Clt which double seJsmJc zone~ haw been observed (Fujita and I\anarnori 

1981 ). A specific slab profile of a particular subduction zone has not been modelled 

because of the difficult~· of estimating tlte residual bending stresses that generate the 

shape. Ho\'.'ever, the wntortion of an initi<dly straight slab will prm·ide information on 

the subduction dynamics. 

The trench has been included as a geometrical effect only, and its mass deficit 

and the flexural response of the outer rise have been omitted. The mass deficit of the 

trench is a reaction to the slab pull and these two opposing forces generate an enormous 

couple at the slab bend region (see section 1.5 ). Stresses exceeding the failure criteria 

of the lithosphere cause significant anelastic deformation which cannot be modelled by 

this finite element method. The stress regime of the slab bend region of these models 

will not be realistic, however the trench - outer rise flexure system should develop as a 

consequence of slab pull, inducing a reactive upthrust at the top of the slab. 

5.1 The Finite Element :rvieshes 

The t\vo finite element meshes that are used in this chapter possess very similar 

basic characteristics, differing only in dimension and resolution. The disadvantage of 

attempting to model these larger cross-sections is that the internal resolution is reduced 

as the element. size increases. This constraint. cannot be overcome by maintaining the 

resolution (smaller elements) only in the region of interest. around the slab. Selective 

increased resolution ueed not significantly increase the total number of nodes (N) re

quired for a particular mesh, but it does greatly increase the semibandwidth (KSB~i) of 

the system ma.trix. The computation time (in CPU sec) to perform the LU decomposi

tion of the unsymmetric, banded system matrix by Gaussian elimination is proportional 

to N><(2xKSBH-1)2 (Greenough and Robinson 1981). Limitatiom in core storage and 

computing power thus preclude a large increase in KSB\-1. 

Mesh (1) in figure 5.1 represents a 4600 x 1400 km cross-section through the top half 

of the mantle. Mesh (ll) represents a cross-section through the upper mantle only, of 

dimensions 3100 x 670 km and is shown in figure 5.2. The general rheology, pertaining 

to the left and right hand edges of the two meshes, is given in Table 5.1 below. 
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The Finite Element. Mesh 
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Figure 5.1 Mesh (1) represents a 4600 x 1400 km cross-section of the top of the 

mantle. The shading denotes the lithosphere. 
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The Finite Element Mesh (Centre Section) 
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Figure 5.3 The mid-section of mesh (u) of dimensions 1310 X 670 km. The 

shading denotes the lithosphere and the fault line along the top surface of the 

slab is marked by F. 
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Depth Range ( km) Young's Jv1odulus (N m- 2
) Poisson's Ratio Viscosity (Pas i 

0- 30 1.11 >~ 1011 0.25 

30- 90 1.11 X 1011 0 C)~ .-'oJ 1022 

90- ::?00 1.11 >: 1011 0.2.5 1020 
---- 1 o21 

::?00- 6/0 1.11 >: 1011 0.25 1021 

610- 1400 1.11 X 1011 0.25 1 o21 --, 1023 

Table 5.1 General rheology 

In the vicinity of the subduction zone this layered rheology is intruded by the 

descending slab and figure 5.3 shows a blow-up of this mid-section of mesh (u), but 

the followi11g description is equally applicable to mesh (1). This port.io11 of the llH::!>h 

represents a cross-section 1310 X 670 km. The fault. line is marked by F and it divides 

the mesh into two bodies along the top surface of the subducting slab. The section 

of the fault line dividing the surface plates is the thrust zone. The lithosphere to the 

right of the thrust zone is the subducting pla.te and that to the left. is the overriding 

plate. The forearc is the region of the overriding plate within about 200 km of the 

trench, the arc is the region under which the slab reaches about 100- 150 km depth 

and the backarc is the area. of the overriding plate approximately 300 - 700 km from 

the trench. The slab is the portion of lithosphere below 90 km depth and it carries the 

density anomaly. The ba.se of the slab is horizontal which streamlines the slab tip in 

the clown dip direction. The mesh is density stripped relative to the left. ha11d edge (see 

Park 1961 for discussion), leaving the slab mass anomaly a.s the only surviving body 

force. This removes the large principal stresses due to the overburden and the resulting 

stress regime is interpreted relative to an unperturbed lithostatic stress field. 

General mesh boundary conditions are straightforward. The sides are constrained 

by a lithostatic pressure gradient which becomes zero under the density stripping, and 

the surface is isostatically compensated usillg a rock- wa.ter density contrast of p = 2210 

kg m - 3 . This is the mantle - water contrast sillce the crust has been omitted from the 

models. Internal density contrasts such as the 400 km and 610 km seismic discontinuities 

have not been included because of the likelihood that they are phase changes that. allow 

material to pass across the boundary. Isostatic conditions simulate the density jump 

at a compositional boundary which does not permit a mass flux, only an equilibrium 
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topography. All the models <ne calculated uudcr tbe plane strain approximation. 

Computing power limits tbe mesh sizes and so the full vertical ext.ent of the mantle 

ca11not be modelled. There <tre two possibilities for the mid-mantle basal boundary 

COJtdit.ion, a vertically immm·able traction freE- base, or an isostatically compensated 

base. Preliminary tests ltave slww11 tbat altering tbe basal boundary conditio11 provokes 

a negligible cltange in the stress regime but thert is a small effect on the absolute motion. 

The flexural twist of the whole mesh is included in the absolute motion, an unwanted 

effect. of the isostatic base, and so the fixed base condition is used. The most important 

boundary condition is the edge of the surface plates. One plate edge must be restrained 

to eliminate the rigid body motion mode, but the plate boundaries strongly influence 

the stress regime of the surface lithosphere and thus demand a. careful analysis of these 

boundary conditions. 

The magnitude of the time increment for tlte viscoelasticity algorithm must be 

less than the smanest Maxwell time in the mesh. For e):a.mple, if J.i = 1021 Pas, and 

E= 1.11 x 1011 N m- 2 then the Maxwell time will be, 

2p - = .5/0 'fTS E . 

The initial strain method for viscoelastic relaxation gradually increases the magnitude 

of the force vector {F} with time (see section 2.2.8). At the completion of the t.illle 

stepping procedure the mesh suffers very large displacements, hut the initial strain is 

subtracted from the calculated strain leaving only very small resulting stresses. Thus 

the algorithm becomes unstable as the force vector gets very large, and in practice one 

is lirnitecl t.o about 1000 time steps. lf there are extremely large visco,;ity contrasts 

within tlte me,;h the deviatoric stresses will only be relaxed in the elements with the 

smaller viscosities. 

The relaxation period is defined as the num her of time steps multiplied by the 

ma.gnitucle of the time increment. The models evolve for a variety of rela...xation peri-

ocls but all are small compared to tlte time cuust.ant of subduction. So the solutions 

correspond to the first motion from an initially quiescent state. The relatively short. re-

laxation periods make it necessary to impose an abnormally low viscosity for the lower 

lithosphere, J.i = 1022 Pas inst.ectcl of the more realistic estimate of J.i = 1023 Pas. This 

compromise viscosity allows a reasonable thermal thickness (90 km) combined with a 

reasonable flexural thickness 00 km) for the lithosphere. 
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The numerical solutions are displayed in five specific formats; the stress regime, 

1he vertical displacement of the surface, the true motion of the surface of the slab, the 

displacen1ent vectors and the gravity profile. The various properties of subduction to be 

investigated are: tlw thrust zone, the viscosity ofthe mantle, the duration of subduction, 

the t.herrnal <womaly of the backa.rc, the slab mass anomaly, the slab r!Jeology, and the 

plate boundary conditions. The sections of this chapter are presented as a progressive 

assembly of a subduction zone, so each subsequent section assumes the properties of all 

other preceding sections. 

5.2 The Action of the Thrust Zone 

5.2.1 Problem Statement 

As the thrust zone could not be incorporated into the viscous flow models of the 

previous chapter, the first problem is to establish, and attempt to quantify, the effect 

of the thrust zone on subduction mechanics. It was suggested earlier (see section 1.5.2) 

that tl1e thrust is responsible for redistribution of stress in the surface plates, not in

fluencing the force balance in the mantle. A model of slab penetration to a depth of 

1000 km in mesh (1) is used as the demonstration model, but the general conclusions 

apply universa.lly. The slab is assigned a thermal density anomaly of p == 50 kg m- 3 

throughout its leHgth. As discussed in section 1.5.2 conductive heating slowly spreads 

the anomaly, leadiug eventually to assimilation of the slab. For the purposes of mod

elling subduction the constant t!Jerma1 density anomaly is a good approximation. The 

right hand edge of the subducting plate is held fixed in the :r-direction, and the over

riding plate is unrestrained. The viscosity of the a.st henosphere and upper mantle is 

p = 1021 Pas, and below 670 km the lower mantle has a viscosity of J1 = 1022 Pas. The 

models evolve for a relaxation period of ~,Q 000 yrs, this is 100 time steps a.t. !::,.t = 500 

yrs. 

In the first model the thrust zone is locked and all fault. st.iffnesses are set to 1015 N 

m -1. Shear slip at the thrust zone is allowed in the second model. The shear stiffness 

in the three shallowest fault elements is reset 1o k·: == 0 and this is the sole difference 

between the two models. 
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- ? ? <l--·- Discussion of Results 

The stress regm1e of the centre sect.ion of the mesh for the model with a locb:d 

1 hrust zone is shown in figure 5.4, the vertical displacement of the surface is shown in 

figure S.f,, the slab motion in figure 5.6, and finally the gra.\·ity profile in figure ::,.1. 

The solid line dividing figure 5.4 delineates the fault line joining the mesh halves. The 

principal stress vectors are depicted by solid lines for compression and by dashed lines 

for tension. A scale vector is given at the top which shows the considerable variation 

in stress magnitude in subsequent models. The slab stresses have a distinctive pattern. 

There is a stress minimum at about 300 km depth, below which the slab shows downdip 

compression (up to 180 MPa), and above which the slab is under downdip tension (up 

to 180 MPa). Above the stress minimum the tensions increase with distance updip, 

but below it the compressions have a local maximum at about 650 km depth. Thus the 

portion of the slab in the lower mantle is under reduced downdip compression. In general 

the slab stresses are not perfectly aligned downdip but are rotated slightly towards the 

vertical. The overriding plate has large horizontal compressions (up to 200 MPa) in the 

forearc which gradually diminish into the far backarc. Outside the immediate vicinit.y 

of the trench the subducting plate is under horizontal tension throughout, but only 

the edge of the plate adjacent to the trench is shown here. Small bending stresses are 

superimposed oil these large tensions. 

Away from the region around the slab the stresses throughout the upper and lo\·:er 

mantle are well relaxed. In contrast, above the slab there is a low pressure region 

denoted by the large principal tensions. The pressures in the mantle wedge vary from 

il.bout 10 - ~,o MPa. Below the slab is high pressure region evidenced by the principal 

compressions, and the pressures here vary from about 5 - 30 MPa. These pressure 

differences in the mantle adjacent to the slab are generated all(! sustained by sla.b motion 

and act t.o support. the slab body force. This ubsenation is quantified and discussed 

further in the next chapter. 

The surface displacement profile in figure .5.5 is split into two halves represenliHg 

the overriding and subducting plates and t.he lower box shows the relative position of 

the density anomalies. The overriding plate shows a broad asymmetric depression \'>it h 

the maximum amplitude of 1600 m centred close to the top of the slab. The right hand 

curve denoting the subducting plate shows the development of the trench and a 100m 
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Figure 5.5 The vertical displacement of the surface for the model of 1000 km 

penetration, lower mantle viscosity J1 = 1022 Pas and the thrust zone locked. 

The left hand curve denotes the overriding plate, the right hand curve denotes 

the subducting plate. The lower box shows the relative position of the density 

anomalies. 
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high outer rise. However, this feature is very broad because the stresses in the lower 

lithosphere are not fully relaxed (thereby increasing the effective flexural strength of 

the plate). From elastic beam theory, a 30 km thick elastic layer will produce an outer 

rise centred 170 km from the trench, and a 90 km elastic layer will produce an outer 

rise centred 400 km from the trench. In figure 5.5 the outer rise is centred about 300 

km from the trench. The true slab motion in figure 5.6 plots the movement of the slab 

linearly extrapolated to 1 Ma (factor of 20). The top curve is the original position of 

the top surface of the slab, and the lower. curve is the final position. The cross lines 

are displacement vectors of points (nodes). The slab in the upper mantle is sinking 

almost vertically but slab motion in the lower mantle is inhibited. At the surface the 

subducting plate is dragged into the trench, lateral displacement is greater than vertical 

despite the boundary condition on the right hand edge. 

The gravity profile in figure 5.7 is calculated along a plane 0.5 km above the surface 

of the overriding plate (see Appendix for details of the calculation) and the lower box 

shows the relative position of the density anomalies. The density anomaly of the slab, 

and the deflection of the isostatic boundary at the surface are the only contributions to 

the gravity anomaly. The deflection of the core-mantle boundary would contribute a 

small, negative, long wavelength anomaly, but this will be attenuated and will probably 

be negligible at the surface. The profile shows a maximum of 35 mGal just landward of 

the trench, followed by gradual decline to a minimum about 2600 km from the trench. 

The second model unlocks the thrust zone and the resulting stress regime, surface 

displacement, slab motion and gravity profile are shown in figures 5.8- .5.11 respectively. 

The deep compressions in the slab (figm~e 5.8) are relatively unaffected compared to 

figure 5.4, but the stress minimum occurs at a slightly shallower depth. The upper 

sections of the slab show quite a variable orientation of tensions accompanied by a 

reduction in magnitude. Horizontal compression in the overriding plate is reduced, and 

the far backarc now exhibits small tensions (1S MPa). The subducting plate is again 

under horizontal tension but. carries stresses of a higher magnitude and the region of the 

plate under the thrust is now under surface-parallel tension. The surface displacement 

in figure 5.9 is quite similar to the locked thrust zone model. The maximum depression 

of 1400 m is a slight reduction, and the trench - outer rise flexure is slightly sharper 

than figure 5.5. The slab motion and gravity profile show slight increases in magnitude. 
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Figure 5.9 The vertical displacement of the surface for the model of 1000 km 

penetration, lower mantle viscosity J1 = 1022 Pa s and the thrust zone un

locked. The left hand curve denotes the overriding plate, the right hand curve 

denotes the subducting plate. The lower box shows the relative position of 

the density anomalies. 
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Two-Dilnensional Plate Flexure 

The bending stress at a distance z from the neutral fibre of an elastic plate 

of Young's modulus E, and Poisson's ratio 11 bent with a radius of curvature R 

is given by, 

where, 

From the diagram above let., 

since x >> y. 

X 
tan A=

y 

E 

z 
C:z::z: = 

R 

arc length = x 

Then the bending stress can be approximated by, 

E .: (iT- 2A) 
CT:z:x = 

arc 

Figure 5.12 An estimate of the bending stresses produced in an elastic layer with 

a curvat.u re R -l. 



Thus the thrust zone exerts strong control over the stress distribution in the surface 

plates without contributing greatly to the force balance in the mantle. In this partic

ular model, unlocking the fault redistributes the stresses local to the thrust. zone and 

generates a component of regional tension throughout. the subducting and overriding 

plates of about. 20 MPa. This agrees with the models of Waghorn (1984, figures 1.66, 

7. 77), v:hich predicted this effect from purely elastic behaviour of the surface plates. In 

the final section of this chapter we will return to this behaviour of the thrust zone. 

The broad band of horizontal compression in the overriding plate, a maximum in 

the arc gradually dying to leave tension in the far backarc and beyond, is controlled by 

viscous coupling through the mantle wedge. Vertical motion of the slab exerts normal 

stresses at the base of the surface lithosphere which create a broad depression of the 

overriding plate (Davies 1981, 1983) as shown in figures 5.5 and5.9. This depression 

generates two contributions to the stress regime. Bending stresses are· characterised 

by opposing compression and tension either side of the neutral fibre and these are not 

readily apparent in the overriding plate of figures .5.4 and 5.8. A method of estimating 

the bending stresses is given in figure 5.12. Taking values from the surface displacement 

profiles, let x = 500 km, y = 1500 m, and from the finite element mesh z = 8.7 km in 

the elastic layer. This yields bending stresses of about 13 MPa. 

The normal stresses at the base of the lithosphere have an isostatic reaction at. the 

surface which induces vertical tension in the lithosphere. The reduction in the vertical 

component of the overburden pressure creates horizontal deviatoric compression which 

will be amplified by stress relaxation in the lower lithosphere. The vertical tension can 

be estimated from the isostatic reaCtion to the surface displacement (h), 

pgh = 2270 x 9.81 x 1500 = 33 MPa 

Stress amplification for a 30 km elastic layer in 90 km thick lithosphere yields horizontal 

compressions of 100 MPa. This is an order of magnitude higher than the bending stress 

but also it is less than the maximum stresses in figures 5.4 and 5.8. Much deeper 

stress relaxation, in the asthenosphere and below, may also contribute to the stress 

amplification. Thus deep loads may be able to produce very large horizontal stresses 

in the elastic portion of the surface lithosphere by stress relaxation. It is possible 

to discriminate the bending stresses superimposed onto the large compressions in the 

elastic layer of the overriding plate in figures 5.4 and 5.8. At the arc the plate is bent 
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down and the upper rompress10n is greater than the lower, whilst in the backarc the 

lithosphere is convex upwards and the upper stress is then smaller than the lower. 

The maximum surface depression above the top of the slab is 1600 m and this is 

approximately half of most estimates of the relative trench depth (Davies 1983 ). The 

reactive upthrust at the surface may be underestimated in these models and it is spread 

over a broad area of the surface plates. This may cause an overestimate oft he forearc 

compressions and also an underestimate of the upper slab tensions and depth of the 

stress minimum. The enforcement of normal contact at the thrust zone causes the 

leading edge of the overriding plate to follow the slab rollback. If the asthenosphere 

exerts a basal drag on the overriding plate then the application of this edge force at 

the thrust zone will induce a regional tension in the plate. Boundary conditions at the 

right hand edge of the subducting plate cause it to be under horizontal tension. 

Jarrard ( 1986) calculated a correlation coefficient of -0.67 between deep dip (in the 

depth range 100 ........ 400 km) and strain regime. As dip increases the strain regime be

comes more tensional. This is consistent with the viscous coupling mechanism described 

above, but there are many other mechanisms through which slab dip can influence the 

strain regime and it is difficult. to discriminate the relative importance of these effects. 

5.3 The Olivine-Spinel Phase Change 

5.3.1 Problem Statement 

The olivine-spinel phase change at 400 km depth in the mantle occurs at a shallower 

depth in the cool slab. Schubert et al. (1975) estimated a maximum elevation of 115 

km in the slab core with an associated density contrast of 280 kg m - 3 across the 

boundary. The finite element mesh does not. have sufficient resolution to accurately 

map the predicted distribution of the elevated phase transition (as shown earlier in 

figure 1.5). As a compromise a density of 150 kg m- 3 is applied over the depth range 

300 ~ 400 km in the slab. The increased body forces are distributed over a larger 

volume than predicted for subducting lithosphere and so the density anomaly is reduced 

accordingly to maintain the mass anomaly. All other mesh parameters are identical 

to the unlocked thrust zone model of the previous section. The model evolves for a 
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relaxation period of 50 000 yrs as before. 

5.3.2 Discussion of Results 

The model results are given in figures 5.13 · 5.16. There is an overall increase in 

magnitude in the stress regime of figure 5.13 compared to figure 5.8, as shown by the 

change in scale. Deep slab compressions are increased to 300 MPa from 180 MPa, and 

upper slab tensions to 180 MPa from 120 MPa. There is an increase of 80 MPa to give 

200 MPa compressions in the forearc and an increase from 15 MPa to 30 MPa tension 

in the far backarc. The only significant alteration to the actual pattern of the stress 

distribution is the realignment of the slab tensions. The stresses in the upper slab now 

tend more nearly downdip. This result is in contrast to that of Vassiliou et al. (1984) 

who found that the addition of the body forces of the elevated phase change could not 

be reconciled with the stress regime derived from the study of earthquake distributions 

at Wadati-Benioff zones. 

Davies (1983) modelled the downdip force in the slab due to shear resistance in an 

isoviscous mantle (as discussed in section 1.5.1 ). He concluded that. an unreasonably 

large mantle Yiscosity of J1 = 4 x 1021 Pa s was required to generate sufficiently small 

( 300 MPa) compressions in the lower slab. In this finite element model, an acceptaLle 

stress distribution is generated by a viscosity contrast X 10 at 670 km, including the 

elevated phase change and in the absence of an impenetrable boundary at the base 

of the slab. In particular the compression in the slab tip in the lower mantle is of 

much smaller magnitude. The mechanisms controlling the stress regime of the slab are 

discussed in the next chapter. 

The surface displacement profile in figure 5.14 shows a significant increase in the 

maximum amplitude of depression to 1900 m. The slab motion curve in figure 5.15 

shows a large increase in magnitude of displacement compared to figure 5.10, and a 

distinct change in sense of motion of the slab. The slab is moving quickest in the . 

300 _, 400 km depth range which leads to an increase in dip of the upper slab and a 

decrease in dip of the lower slab due to the reactions of the trench and lower mantle. 

This general shape is observed in the Wadati-Benioff zones of Izu-Bonin and Tonga but 

other deeply penetrating slabs such as Mariana, Kamchatka, K urile and Java do not. 

show the shallowing of dip at the slab tip. The gravity profile in figure 5.16 shows a 
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slight increase in the peak value, up to 40 mGal, but retains the same general shape. 

It is noted at this point that the profiles compare favourably with the compilations of 

average gravity profile land wards of the South American margins by Rabinowicz et al. 

( 1984 ). The observed profiles haw a high of about 50 mGal just landward of the trench 

with a gradual decrease to an absolute minimum about 3000 km from the trench. 

5.4 Duration Of Subduction 

5.4.1 Problem Statement 

This finite element method cannot describe the continuous, dynamic evolution of 

subduction zones and so the following series of models are presented as 'snapshots' 

in time. The depth of slab ·penetration is used to define the duration of subduction 

without specifying any particular time scale. Five depths of penetration are used: 300, 

400, 535, 670 and 1000 km. So, if the slab were assumed to be moving downdip with a 

velocity of 100 mm yr- 1 then the 'snapshots' are at least 1 Ma apart. Apart from the 

alteration in slab length, an mesh parameters are identical to the model of the previous 

section and so the 1000 km penetration model is referred to the figures 5.13 - 5.16 of 

the previous section. The models have a relaxation period of 50 000 yrs which allows 

the upper mantle to flow but is only a small perturbation about the age of duration. 

5.4.2 Discussion of Results 

The stress regime, surface displacement, slab motion and gravity profile are shown 

in figures 5.17 - 5.20, 5.21 - 5.24, 5.25 · 5.28 and 5.29 · 5.32 for the 300, 400, 535 and 

670 km penetration models respectively. The sequence shows that increasing duration 

of subduction extends compression into the backarc region, progressively eliminating 

the 40 MPa tensions of figure 5.17. The forearc is under horizontal compression in 

all models, regardless of duration of subduction. As slab length increases, viscous 

coupling through the mantle wedge penetrates further into the overriding plate. The 

surface displacement profiles in figures 5.18, 5.22, 5.26, 5.30 and 5.14 show the gradual 

increase in the width of concavity and the change in depth of the depression. As the 

olivine-spinel transition is reached the greatest change occurs. The depth of depression 
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Figure 5.18 The vertical displacement of the surface for the model of 300 km 

penetration and lower mantle viscosity 1-L = 1022 Pa s. The left hand curve 

denotes the overriding plate, the right hand curve denotes the subducting 

plate. The lower box shows the relative position of the density anomalies. 
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mantle viscosity Jl = 10: 1 Pa s. The lu\·:er bux sh<l\"·:s tl1t- pusition of the 

cleJ1sity anomalies. 
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Figure 5.22 The vertical displacement of the surface for the model of 400 km 

penetration, lower mantle viscosity Jl = 1022 Pa s including the olivine-spinel 

transition. The left hand curve denotes the overriding plate, the right hc..nd 

curve denotes the subducting plate. The lower box shows the relative position 

of the density anomalies. 
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Figure 5.23 The absolute slab motion linearly extrapolated by a factor of 20 

for the model of 400 km penetration, lower mantle viscosity J.l = 1022 Pa s 

including the olivine-spinel transition. The upper curve denotes the original 

position of the top surface of the slab and the lower curve denotes the final 

position of the top surface of the slab. The cross-lines represent displacement 

vectors of the nodes. 
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Figure 5.24 The gravity profile in mGal calculated on a. plane 0.5 km above the 

surface of the overriding plate for the model of 400 km penetration, lower 

mantle viscosity 11 = 1022 Pa s including the olivine-spinel transition. The 

lower box shows the position of the density anomalies. 
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Figure 5.25 The principal stresses for the model of .535 km penetration, lower 

mantle viscosity J.l. = 1022 Pas inc.lucling the olivine-spinel transition. The soli d 

line dt>notes tht> position of the fault .. The shn.ding denotes the lithosphere . A 

scale length of vector magnitude is given above . 
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Figure 5.26 The vertical displacement of the surface for the model of 535 km 

penetration, lower mantle viscosity J1 = 1022 Pas including the olivine-spinel 

transition. The left hand curve denotes the overriding plate, the right hand 

curn· deuote~ the subducting plate. The lower box shows the relative position 

of the deusity auomalies. 
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Figure 5.21 The absolute slab motion linearly extrapolated by a factor of 20 

for the model of 5~~-5 krn penl'tration, lower mantle viscosity J1 = 1022 Pa s 

inc! u eli 11g the olivine-spinel tr<tnsi tion. The upper curve denotes the original 

position nf the top surface of the slab and the lower curve denotes the final 

positioll of the tnp surface uf the slab. The cross-lines represent displacement 

Vt:>dors of t lw nodes. 
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Figure 5.28 The gravity profile in mGal calculated on a plane 0.5 km above. the 

surface of the overriding plate for the model of 535 km penetration, lower 

mantle viscosity fL = 1022 Pa s including the olivine-spinel transition. The 

lower box shows the position of the density anomalies. 
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Figure 5.30 The vertical displacement of the surface for the model of 670 km 

penetration, lower mantle viscosity J1 = 1022 Pa s including the olivine-s:pinel 

transition. The left hand curve denotes the overriding plate, the right hand 

curve denotes the subducting plate. The lower box shows the relative position 

of the density anomalies. 
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Figure 5.31 The absolute slab motion linearly extrapolated by a factor of 20 

for the model of 670 km penetration, lower mantle viscosity fJ = 1022 Pa s 

including the olivine-spinel transition. The upper curve denotes the original 

position of the top surface of the slab and the lower curve denotes the finct.l 

position of the top surface of the slab. The cross-lines represent displacement 

vector~ of the nodes. 
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Figure 5.32 The gravity profile in mGal calculated on a plane 0.5 km above the 

surface of the O\'erriding plate for the model of 610 km penetration, lower 

mantle viscosity J.1 = 1022 Pa s including the o]iYine-spinel transition. The 

lower box shows the position of the density anomalies. 



increases from 1150 mat 300 km penetration, to 1900 mat 400 km penetration. Then 

there is a slight increase for the bigger slab at 535 km to 2000 m, but as the higher 

\'iscosity lower mantle is sensed at 670 km the depth of depression reduces slightly to 

1900 m. Without the trench, the models tend to overestimate the magnitude of the 

horizontal compression and its lateral extent in the overriding plate. 

The magnitude and spatial extent of the depression of the overriding plate is ob

viously dependent on the angle of slab dip as well as the length of the slab. Louden 

(1980) reported that the Phillipine Sea is approximately 1 km deeper than predictions 

from thermal subsidence models of ridge spreading (as discussed in section 1.5.2), and 

this depth anomaly occurs in many other marginal basins of the \Vestern Pacific. The 

dips of the deeply penetrating Marianas and Izu-Bonin slabs underlying the eastern 

edge Phillipine Sea have been estimated at 81° and 65° respectively, (Jarrard 1986). 

Obviously it is not possible to compare directly with the model predictions, but these 

results support the suggestion of Davies ( 1983) that the slab-induced depression of the 

backarc is an important influence, and preferrable to the theory of \Vatanabe et al. 

( 1977) that the mantle under the basin carries a density anomaly of+ 10 kg m -J down 

to 300 km depth. 

The horizontal tension in the subducting plate does not vary greatly with increas

ing duration of subduction. The general behaviour is a slight increase in horizontal 

tension as the slab length increases. This pattern is reflected in the increase in forearc 

compression and depth of depression which is significant only when the olivine-spinel 

transition is reached. This is also true for the slab motion in figures 5.19, 5.23, 5.21 and 

5.31. The gravity profiles in figures 5.20, 5.24, 5.28 and 5.31 show a gradual increase in 

maximum 17 _, 40 mGal as slab length increases reflecting the diminishing influence 

of the surface deformation relative to the slab. 

The models with slab penetration to depths of 670 km and 1000 km have Yery 

similar stress distributions (figures 5.29 and 5.13). The single difference occurs at 75 

km depth where the 670 km penetration model shows down dip compression in the upper 

surface of the slab and an opposing tension in the lower surface. This is probably an 

expression of unbending near the ba.se of the slab bend region and it occurs in all other 

shallower penetrating models. However, since this is part of the slab bend region these 

stresses are not considered reliable. 
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The three shallowest penetrating models also display a systematic slab stress distri

bution (figures 5.17, 5.21 and 5.25). The lowest section of the slab is always in downdip 

compression regardless of depth of penetration. This is caused in part by a resistance 

to penetration but mostly by upbending of the slab tip as it sinks (a phenomenon 

which Harper (1984) observed in 3-D constant viscosity flow models of subducting 

lithosphere). Evidence for the upbending is provided by the balancing tensions in the 

lower surface of the slab and the shape of the slab profile in figures 5.19, 5.23 and 5.27. 

However, for the shallowest model the upbending causes compression throughout the 

upper surface of the slab. The majority of shallow Wadati-Benioff zones are tensional 

(!sacks and Molnar 1971, Apperson and Frohlich 1987) and this cannot be explained 

by these models. 

The mesh is not fine enough to give very good resolution of the stresses, so it is 

desirable to repeat the models using identical parameters applied to mesh (11 ). The fixed 

base condition inherently assumes that shallow penetrating slabs do not sense the lower 

mantle. The stress regime in figure 5.33 represents slab penetration to 400 km depth 

in a constant viscosity (J-1 = 1021 Pa s) mantle and this is very similar to figure 5.21 

which used a lower mantle viscosity of J.1 = 1022 Pa s in an otherwise identical model. 

So it is appropriate to use the upper mantle mesh for models of shallow subduction. A 

more detailed analysis of the effect of mantle viscosity is taken up in the next section. 

The stress regime, surface displacement, slab motion and gravity profile are shown 

in figures 5.34- 5.37, 5.38- 5.41 and 5.42- 5.45 for slab penetration to 200, 300 and 400 

km respectively. These are in very good agreement with the results obtained from the 

previous mesh (figures 5.17 - 5.24 ), and it is apparent that the stress regime in the slab 

is not a product of the possible 'stiffness' of a coarse mesh. The downdip compression 

is not typical of the observations of slab stresses and requires some investigation. It was 

suggested earlier (see section 1.5.1) that the leading edge of the slab contributed to the 

force balance in the mantle, and in all the preceding models the slab tip was streamlined 

in the downdip direction. A variety of shapes of slab tip were experimented with using 

the model of slab penetration to 200 km, with the conclusion that only addition of 

mass below 200 km reduces the compression in the top surface of the slab. This is 

because the centre of mass of the slab is lowered and thus the up bending of the slab tip 

is inhibited. So, in these models, downdip tension can be generated only by aseismic 
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Figure 5.34 The principal stresses for the model of 200 km penetration in mesh 

(11) . The solid line denotes the position of the fault. The shading denotes t.he 

lithosphere. A scale length of vector magnitude is given above. 
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Figure 5.35 The vertical displacement of the surface for the model of 200 km 

penetration in mesh(n). The left hand curve denotes the overriding plat.P., 

the right hand curve denotes the subducting plate. The lower box shows the 

relative position of the density anomalies. 



0 

-100 

-150 

c 

-500 

1250 1300 13511 I~ 14!0 1500 1!»0 1600 181 1100 11!0 1800 18!0 1900 1950 

Otstance In l:11 

Figure 5.36 The absolute slab motion linearly extrapolated by a factor of 20 for 

the model of 200 km penetration in mesh (u). The upper curve denotes the 

original position of the top surface of the slab and the lower curve denotes 

the final position of the top surface of the slab. The cross-lines represent 

displacement vectors of the nodes. 
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Figure 5.37 The gravity profile in mGal calcul<tted on a plane 0.5 km above the 

surface of the overriding pl«te for the model of :WO km penetration in mesh 

111 ). Th'O' lower bux shows t.he posit.ioll uf the density anom<tlies. 
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Figure 5.39 The vertical displacewent. of t.he surf<tce for t ltt: wodel of 300 km 
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Figure 5.40 The absolute slab motion linearly extrapolated by a factor of 20 for 

the model of 300 km penetration in mesh (u ). The upper curve denotes the 

original position of the top surface of the slab and the lower curve denotes 

the final position of the top surface of the slab. The cross-lines represent 

displacement vectors of the nodes. 
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Figure 5.41 The gravity profile in mGal calculated on a plane 0.5 km above the 

surface of the overriding plate for the model of 300 krn penetration in mesh 

(u). The lower box shows the position of the density anomalies. 
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Figure .S.43 The vertical displacement of the surface for the model of 400 km 

penetration including the olivine-spinel transition in mesh (ll). The left hand 

cun·e denotes tl1e overriding plate, the right hand curve denote.~ the subducting 

plate. The lower box shm·:s the relative position of tbe density anomalies. 
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Figure 5.44 The absolute slab motion linearly extrapolated by a factor of 20 

for the model of 400 km penetration including the olivine-spinel transition in 

mt'sh (11 ). The upp12r cun·e deJiotcs th~ original position of the top surface of 
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tlw slah. Tlw crnss-lin•:s repr~'sent displ<1cem~nt vectors of tlw nndes. 



Grav I t y Prof 1 le 

40 

J5 

-' 
5I 

CD 25 
0) 

E 20 

c 15 

- 10 

>.. 
-' 
m 0 
E -! 0 c -10 < 

-I! 

~ 

-25 

..JO 

0 8DII 1000 12011 1400 lo!GO I!ICXI 

Distance In len 

Figure 5.45 The gravity profile in mGal calculated on a plane 0.5 km above the 

surface of the overriding plate for the model of 400 km penetration including 

the olivine-spinel transition in mesh (11). The lower box shows the position of 

the density anomalies. 



extension of the slab in the upper mantle. The surface displacement profiles in figures 

5.35, 5.39 and 5.43 display trench depths of 700, 1000 and 1600 m for the 200, 300 and 

400 km penetration models. Davies ( 1983) estimated the average trench depth to be 

3 km, so perhaps these models underestimate the reactive upthrust at the top of the 

slab and overestimate the surface reaction within the overriding plate. Greater trench 

reaction may act to redistribute the slab stresses and thus reduce the compression m 

the upper slab of these models. 

The large compressions in the top surface of the subducting slab accompanied by 

smaller tensions 20 km further into the slab are reminiscent of the stress regime required 

to generate double seismic zones. However, these stresses occur over a very large depth 

range (90---+ 300 km) and are associated with the slab tip and so could only contribute 

to the double seismic zone in the shallowest penetrating slabs. The origin of double 

seismic zones in deeply subducting slabs will be discussed in a later section. 

The short wavelength upfiexing of the leading edge is a flexural reaction to the 

downpull, accentuated by the trench geometry and shear slip. This is similar to the 

results of Tharp ( 1985) except the effect occurs over much longer wavelengths ( 800 km 

width) and has a much smaller amplitude. The models of Tharp (1985) produced 5 km 

deep depressions and attendant 5 km structural highs over a width of 250 km. This 

was generated by coupling of slab pull across 70 km thick lithosphere, the mantle not 

being included. The consistency of this style of deformation suggests that this effect 

may contribute to the forearc tectonics and is discmsed further in the next chapter. 

5.5 An Assessment of l\1antle Viscosity 

5.5.1 Problem Statement - Lower Mantle 

The models of the previous sections (except figure 5.33) used the same viscosity 

structure for the mantle, a uniform asthenosphere and upper mantle with J.L = 1021 Pa 

s and a uniform lower mantle with J.L = 1022 Pas. Tl1e average radial viscosity profile of 

the mantle is not very well constrained but there is a general consensus that J.1 = 1021 

Pa s is a realistic value for the upper mantle. The only direct observational constraint 

pertinent to this study is the earthquake distribution in the Wadati-Benioff zone and 
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its relationship to the slab stresses as discussed earlier (see section 1.5.2). 

There have been many estimates of the viscosity of the lower mantle, most of 

which lie in the range 1021 - 1023 Pa s. Thr:- following set of models involves slab 

penetration to 1000 km and 610 km and employs a uniform viscosity f.1 = 1021 Pas in 

the asthenosphere and upper mantle above 610 km depth with lower mantle viscosities 

of either f.l· = 1021
, 1022

, or l 023 Pa s. All other parameters of mesh ( 1) are identical to 

the models of the previous section, and so the 1022 Pas model is referred to the figures 

5.13- 5.16 for 1000 km penetration and figures 5.29- 5.32 for 670 km penetration. The 

relaxation period is once again 50 000 yrs. 

5.5.2 Discussion of Results 

The stress regime and gravity profile for 1000 km penetration are displayed in 

figures 5.46 and 5.47 for the 1021 Pa s lower mantle model, and in figures 5.48 and 

5.49 for the 1023 Pa s model. The constant viscosity mantle (figure 5.46) does not 

generate the compressive stresses in the depth range 400 ...., 670 km in the slab which 

is required for consistency with the observed earthquake distribution. Also the gravity 

profile (figure 5.47) gives a low of -80 mGal just landward of the trench. On these 

grounds it is discounted. Obviously this model ma.y not include every aspect of the 

force balance and so it is unwise to exclude completely the possibility of an isoviscous 

mantle. 

The slab stresses in the other two models (figures 5.13 and f>.48) are similar. The 

1022 Pa s lower mantle gives a stress minimum at about 270 km depth, and the 1023 

Pa s lower mantle gives the minimum at about 200 km depth. On this basis one 

would prefer a lower mantle viscosity of approximately 1022 Pa s but it is clear that 

the slab stresses are not very sensitive to the higher viscosity contrasts. This agrees 

with the conclusions of a. similar study by Vassiliou et. al. (1984). There is a small 

change in the stress distribution of the surface plates for the latter two models. The 

higher viscosity mantle generates more tension in the overriding plate and reduces the 

tension in the subducting plate. This is because the lower mantle severely inhibits slab 

motion, reducing the normal viscous coupling to the overriding plate and transmitting 

compression all the way back along the subducting plate. 

As the stress regime is unable to distinguish between the higher viscosities, it is 
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Figure G.46 The principal stresses for the model of 1000 km penetration, lower 

mantle viscosity 11 = 1021 Pas including the olivine-spinel t ransition. The solid 

line denotes the position of th e fa1dt.. The shading denotes the lithosphere. A 

scale length of vector magnitude is given above. 
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Figure 5.47 The gr<tvity profile in mG<tl calculated on a plane 0,5 km above the 

surface of the overriding plate for the model of 1000 km penetration, lower 

mantle viscosity J1 = 1021 Pa s including the olivine-spinel transition. The 

lower box shows the position of the density anomalies. 
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Figure 5.49 The gravity profile in mGaJ calculated on a plane 0.~, km above the 

surface of the overriding plate fur tl1e model of 1000 krn penetration, lm·:er 
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Figure 5.51 The absolute slab motion linearly extrapolated by a factor of 20 

for the model of 670 km penetration, lower mantle viscosity 11 = 1023 Pa 

s including the olivine-spinel transition. The lowest segment of the slab is 

viscoelastic with viscosity 11 = 1022 Pas. The upper curve denotes the original 

position of the top surface of the slab and the lower curve denotes the final 

position of the top surface of the slab. The cross-lines represent displacement 

vectors of the nodes. 



more instructive to look a.t the true motion of a slab colliding with the top of the 

lower mai1t.le. The diagram in figure 5.50 shows tbe motion of the top surface of a slab 

penetrating to 610 km depth with a lower mantle of \·iscosity 1023 Pa s. Virtually no 

penetration of the lower mantle is allowed, and so the sinking upper sections of the 

sl<tb push the lower section landward. Permitting the deepest. section of the slab (from 

535 - 610 km) to deform viscously, with J.1 = 10~ 2 Pas, results in the slab motion in 

figure 5 .. 51. This shows the tendency of the slab tip to deform, migrate landwards and 

lay flat along the boundary. In contrast, the model in figure 5.31, with a lower mantle 

viscosity of 1022 Pas, allows the slab to sink below the 610 km boundary. 

l\incaid and Olsen ( 1987) demonstrated experimentally the extremely long time 

constant for slab material to penetrate a high viscosity lower mantle in scaled models 

of subduction. Thus it. appears that a very high viscosity contrast may create an 

aggregation of slab material at the base of the upper mantle, despite the mass excess 

of the slab. This has virtually no observational support among the teleseismic and 

tomographic analyses of mantle heterogeneity and Hager ( 1984) argued convincingly 

against layers of slab material at 670 km on the basis of geoid studies. The evidence 

favours a viscosity contrast less than X 100 at the base of the upper mantle, but it is by 

no mtans conclusive. 

5.5.3 Problem Statement - Asthenosphere 

In this thesis the asthenosphere is regarded a~ the low viscosity zone between the 

base of the lithosphere (90 km) and 200 km depth. The following models utilise mesh 

(11) for higher resolution and employ an asthenospheric viscosity of J.1 = 1020 Pas which 

is a little higher than most estimates of the low viscosity layer. The time increment is 

reduced to 50 yrs and so 1000 time steps are implemented to give a relaxation period 

of .')0 000 yrs. All other mesh parameters are retained identical to the pre\·ious models. 

5.5.4 Discussion Of Results 

The stress regune, nodal displacements, surface displacement, slab motion and 

gra.vity profile for a slab penetrating to 400 km depth are shown in figures 5.52 - 5.56 

and can be compared with the equivalent non-asthenospheric model in figures 5.42 -

5.4.:i. The tensional stresses in the subducting plate are reduced by about 30 l\IPa 
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Figure 5.54 The vertical displacement of the surface for the model of 400 km 

penetration, asthenosphere viscosity J1 = 1020 Pas including the olivine-spinel 

transitio11 in mesh (u). Tlw left hand curve denotes the overriding pl.1.te. the 

right hand curve denotes the subducting plate. The lower box shows the 

relative position of the density anomalies. 
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Figure 5.S5 The absolute slab motion linearly extrapolated by a factor of 20 

for the model of 400 km peuet.ra.tion, asthenosphere viscosity J1 = 1020 Pa s 

including tbe olivine-spinel tra.nsition in mesh (ll). The upper curve denotes 

the origi11al position of the top surface of the sla.b and the lower curve denotes 

the final position of the top surface of the slab. The cross-lines represent 

displct.cement Vf:'Cturs of the nodes. 
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by the introduction of tlte lo\\' viscosity layer. In the m·erriding plate the far backarc 

tension is much reduced from 10 MPa to 30 MPa and the compression around the 

arc-backarc region about 200 ~ -100 km from the trench increases from 90 \IPa to 130 

Jv!Pa. In the slab the compression near the tip has increased from 310 1\lPa to 430 IvlPa 

aud in the upper slab the tension is uniformly redmed by about SO MPa. The uodrtl 

displacements in figure 5.53 are given as an example, clearly sho\\'ing the overriding 

plate being dragged into the trench and the rollback of the slab and trench creating 

lateral flo\\' in the mantle. The surface displacement in figure 5.54 is very similar to the 

uniform upper mantle model in figure 5.43, the amplitude of depression is reduced by 

100 m, and so presumably the normal stresses at the base of the lithosphere must be 

similar. The trench - outer rise system of the subducting plate has sharpened slightly, 

with the trench depth increasing from 1600 m to 1800 m. The motion of the slab 

has also altered (figure 5.55) compared to figure 5.44. There is much greater rotation 

towards the vertical causing greater bending above 100 km and below 300 km depth. 

The short waveleHgth flexure in the forearc is beginning to dominate the gravity profile 

in figure 5 .. 56. 

The increase in trench depth should generate grea.ter isostatic reaction at the top of 

the slab and thus increase the tension in the upper slab. This does not appear to occur. 

The reduction in the amplitude of depression in the overriding plate should reduce the 

local horizontal compression in the plate, and the increase in trench rollback should 

increase the tension in the far backarc. This does not appear to occur. As found in the 

models of the previous chapter (see section 4.4) the low viscosity zone concentrates the 

flow into the asthenosphere (figure 5.53). Thus it appears that the lower viscosity of the 

asthenosphere reduces the basal drag on the overriding plate and this effect outweighs 

the increase in rollback resulting in n reduct.ion in horizontal tension in the overriding 

plaJe. 

5.6 Thermal Anomalies in 1 he Backarc: 

5.6.1 Problem Statement 

The high heat flow observed in the backarc of subduction zones has been attributed 

92 



to a thermal anomaly underneath the overriding plate. The origin and nature of this 

anomaly is not well understood but it is generally believed to be due to convective 

upwelling in the mantle wedge driven by the downdip motion of the slab, combined 

with the possibility of water release from the subducted crust. There are no direct 

observations of the state of the mantle and so 1 hese finite element models must rely on 

data derived from previous numerical simulations. Toksoz and Hsui (1978) modelled 

convection in the backarc which produced a thermal anomaly extending to about 300 km 

depth supporting about 1 km of topography at the surface. The maximum temperature 

anomaly (caused by raising the isotherms) proved to be about 200 K near the base of 

the lithosphere. Subsequent studies by Jurdy and Stefanick (1983) and Honda (1985) 

do not contradict these conclusions, but it is clear that the thermal anomaly is not well 

constrained and may vary considerably from one location to another. This finite element 

method cannot. model thermal convection under the backarc and the generation of the 

thermal anomaly. So, the mechanical representation of an in-place thermal anomaly is 

included as a linear, vertical variation in density, temperature and viscosity. 

An average density anomaly of !::..p = -8.4 kg m- 3 distributed over a 270 km depth 

range will support 1 km of submarine topography at. the surface (!::..p = 2270 kg m-3
). 

Distributing this as a linear density gradient gives the depth profile in Table 5.2 below. 

Depth Range (km) Density (kg m - 3 ) Temperature ( K) 

30- 90 -14.93 150 

90- 200 -9.64 97 

200- 300 -3.11 31 

Table 5.2 Vertical distribution of the ba.ckarc anomaly 

The depth range represents the resolution of the elements. The equivalent temper-

at.ure anomaly is evaluated from, 

!::..T = - __ t::.._p_. -
0: (p + !::..p) 

where o: = 3 x 10- 5 K- 1 is the coefficient of thermal expansion. The full thermal 

anomaly is portrayed in figure 5.57 for a model of slab penetration to 400 km in mesh 

(u). The equivalent temperatures calculated in Table 5.2 above are assigned to midside 

nodes and all other nodes are interpolated to produce a linear temperature gradient. 
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Tl1e \·iscosity of the anomalous region under the backarc was reduced to f1 = 1020 Pas. 

All ot!Jer parameters are identical to the final model of the previous section, including 

the len·; viscosity asthenosphere. The models have a relaxation period of 50 000 yrs. 

il.6.2 Discussion of Results 

To investigate the effect of the low \·iscosity, the temperature and density anomC!Iies 

were initially omitted. The stress regime, surface displacement, slab motion and gravity 

profile are shown in figures 5.58 - 5.61. The overriding plate is significantly decoupled 

by this low \·iscosity >vedge, resulting in a 20% decrease in the surface depression (figure 

5.59) to 1350 m, and a 200m increase in the trench depth. This has a considerable effect 

on the stress regime in figure 5.58. Forearc compression persists but the broad band of 

compression in the overriding plate is reduced in magnitude and extent.' (restricted to 

within 100 km of the trench), and the far back<trc tension is increased by 20 MPa to 

~,Q MPa. There is also a change in the slab stresses. In the depth range 90 __. 200 km 

the top surface of the slab is much less tensional while the lower layer of elastic stresses 

(20 km further into the slab) retains its tension. This suggests some support for the 

conclusions of Sleep (1979) that double seismic zones are caused by the relaxation of 

the low viscosity mantle wedge which allows the slab to sag. Sadly, these models do not 

have sufficient resolution to study this effect in more detail. The slab motion in figure 

5.60 is similar to the a.sthenospheric model in figure ~,.55 apart from the small increase 

in the magnitude of the displacement vectors below 200 km depth. Thus any sagging 

which led to the birth of the double seismic zone is indistinguishable in this model. 

The motion of the slab demonstrates the control of the mantle wedge over the slab. in 

the absence of external flow pressures. The flexure in the forearc now dominates the 

gravity profile. 

Tlte density <womaly is now added t.o the preceding model and as figures 5.62 -

5.65 show, it has a noticeable effect.. The surface depression above the anomalous re

gion is a.pprecia.bly reduced, to a maximum of 9SO m. This flattening of the overriding 

plate leads to reduction of the previous 80 MPa surface compressions in the arc-backarc 

region which all but eliminates them above the anomaly. The far backarc tension and 

the forearc compression persist, and the slab stresses are virtually unaffected, only the 

trench depth and motion of the deep slab are slightly reduced. Finally the temperature 
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Figure 5.59 The vertical displacement of the surface for the model of 400 km 

penetration, asthenosphere viscosity J1 = 1020 Pas including the olivine-spinel 

transition and the low viscosity J1 = 1020 Pa s of the thermal anomaly. The 

left hand curve denotes the overriding plate, the right hand curve denotes the 

subducting plate. The lower box shows the relative position of the density 

anomalies. 
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Figure 5.60 The absolute slab motion linearly extrapolated by a factor of 20 

for the model of 400 km penetration, asthenosphere viscosity 11 = 1020 Pa s 

including the olivine-spinel transition and the low viscosity 11 = 1020 Pas of 

the thermal anomaly. The upper cur\"e denotes the original position of the 

top surface of the slab and the lower curve denotes the final position of the 

top surface of the slah. The cross-lines represent displacement vectors of the 

nodes. 
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Figure 5.61 The gravity profile ill rnGal calcul<t!t:u on a plane 0.5 km above the 

surface of the overriding plate for the model of 400 km penet.rc..t.ion, astheHo

spht:>re viscosity J1 = 10~ 0 Pa s including tl1e olivine-spinel transition and the 

low viscosity JL = 1020 Pa s of t.he 1lwrmal ;cunmaly. Tbe lower box sl10ws the 
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Figure 5.63 The vertical displacement of the surface for the model of 400 km 

penetration, asthenosphere viscosity J.L = 1020 Pas including the olivine-spinel 

transition, the low viscosity 11 = 1020 Pa s and the density anomaly of. the 

thermal anomaly. The left hand curve denotes the overriding plate, the right 

hand curve denotes the subducting plate. The lO\ver box shows the relative 

position of the density anomalies. 
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Figure 5.64 The absolute slab motion linearly extrapolated by a factor of 20 

for the model of 400 km penetration, asthenosphere viscosity J1 = 1020 Pa s 

including the olivine-spinel transition, the low viscosity J1 = 1020 Pas and the 

density anomaly of the thermal anomaly. The upper curve denotes the original 

position of the top surface of the slab and the lower curve denotes the final 

position of the top surface of the slab. The cross-lines represent displacement 

vectors of the nodes. 
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Figure 5.65 The gra\·ity profile in mGal calculated on a. plane 0.5 km above the 

surface of the overriding plate for the model of 400 km penetration, astheno

sphere Yiscosity J1 = 1020 Pa. s including the olivine-spinel transition, the low 

viscosity J1 = 1010 Pas and the density anomaly of the thermal anomaly. The 

lower box shows the position of the density anomalies. 



0 

- 700 
600 

-- 250 I'P• f OOTTED L liES TENS/001. J 

.. 

..· 

Distance In km 

Figme !").6() The principal stresses for the model of 400 km penet.rat.ion, astheno-

sphere vi!-.rosity I' ::::. 10 10 Pa. s i11cludiug the nliviJJe-spiJJel t.ransitiou and t.]Jc 

full thermal a.noma.ly. The solid line denotes the position of tl1e fa.ult. The 

sh;tding denotes the lithosphere. A sca.le length nf vector magnitude is given 

ahov<'. 

I • ~.,., 

2000 



Surface displacement profl le ( In m ) 

200 
0 

-200 
-400 
-1/XJ 
-800 
-1000 
-1200 
-1400 
-1600 
-1800 

D,~--~200--~~~--::600--~~~--~~~~----------_l--------------------------~ 
I 000 1200 1400 1600 1800 2000 2200 l400 2600 21100 3000 

Distance In l:m 

Figure S.t-i7 The vertical displaceme11t of the surface for the model of 400 km 

JWnetration, asthenosphere vi~cosit.y Jl = 10 20 Pas including the olivine-spinel 
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Figure 5.68 The absolute slab motion linearly extrapolated by a factor of 20 

for the model of 400 km penetration, asthenosphere viscosity J1 = 1020 Pa 

s including the olivine-spinel transition and the full thermal anomaly. The 

upper curve denotes the original position of the top surface of the slab and 

the lower curve denotes the final position of the top surface of the slab. The 

cross-lines represent displacement vectors of the nodes. 
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anomaly is added accordillg to the distribution in figure 5.56, and the stress regJJne, 

surface displacement., slab motion and gra\·ity profile are shov:n in figmes E">.66 - 5.69. 

The sole cltange occurs in the stress field (figure 5.66). The elastic layer of the over

riding plate above the anomaly has developed near-surface tensions and underlying 

compressions both of about. 100 MPa. The remai11der of the stress field is unaffected, 

as expected (see section 3.2 ). 

The sequence of stress regime, surface displacement, slab motion and gravity profile 

in "figures 5. 70- 5.13 result. from the addition of a backarc thermal anomaly to a model of 

slab penetration to 300 km depth including a low viscosity asthenosphere. The viscosity, 

density and temperature anomalies each produce effects similar to the previous model, 

but appear to be enhanced by this shallower subduction, probably because the size of 

the anomaly has been overestimated. The combined effect of the viscosity and density 

anomaly completely eliminates the backarc depression, creating large tensions in the 

surface as the overriding plate is bent clown sharply in the region of the arc. The 

temperature anomaly affects only the elastic layer, producing 100 MPa tensions above 

compressions as in the previous model. 

A volcanic arc is assumed to contain a maximum of 10 km of crustal thickening of 

density p = 2900 kg rn - 3 at the surface. To simulate this isostatic load on the model 

of slab pt'net.ration to 400 km a normal stress of 200 MPa is applied over a width of 

110 km at the surface. This is balanced on the underside of t.h<:' elastic layer by equal 

and opposite stresses. The position of the arc is depicted by vertical vectors \\"hich 

represe11t the relative magnitude of the applied forces. The resulting stress regime in 

figure 5.14 depicts a 400 X 200 km area around the forearc and shows large cleviatoric 

vertical compressions and horizontal tensions in the region of the arc. 

TLus the thermal anomaly in the backarc, as implemented in these models, has a 

profound effect on the stress distribution at subduction zones; it generates a component 

of horizontal tension in the lithosphere above the anomaly and allows a double seismic 

zone to develop in the descending slab. The state of stress in the backarc is dependent. 

on the relationship between viscous coupling and the thermal anomaly in the backarc. 

Horizontal tension is predicted despite up to 1 km depression of the overriding pla.te 

for the 400 km penetration model ("figure 5.67). 
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Figure 5.71 The vertical displacement of the surface for the model of 300 km pen-

etration, asthenosphere viscosity 11 = 1020 Pas and the full thermal anoll}aly. 

The left hand curve denotes the overriding plate, the right hand curve denotes 

the su hd uct.ing plate. The lower box shows the relative position of the density 

au om ali es. 
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Figure 5.72 The absolute slab motion linearly extrapolated by a factor of 20 for 

the model of 300 km penetration, asthenosphere viscosity J.L = 1020 Pa s and 

the full thermal anomaly. The upper curve denotes the original position of the 

top surface of the slab and the lower curve denotes the final position of the 

top surface of the slab. The cross-lines represent displacement vectors of the 

nodes. 
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Figure 5.73 The gravity profile in mGal calculated on a plane 0.5 km above. the 

surface of the overriding plate for the model of 300 km penetration, astheno

sphere viscosity J1 = 1020 Pas and the full thermal anomaly. The lower box 

shows the position of the density anomalies. 
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Figure G.74 The deviatoric principal stresses for the model of 400 km penetration, 

asthenosphere viscosity I' = 1020 Pa s including the olivine-spinel transition 

and the full thermal anomaly. The load of the arc is designated by vertical 

arrow s. The solid line denotes the position of th e fault. The shading denotes 

t.he lithosphere . A scale length of vector magnitud e is give n n.hnve. 
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5. 7 Boundary Force On The OYerridi11g Plate 

5.7.1 Problem Statement 

The introductory comments of this chapter acknowledge that the boundary condi

tions at the far edges of the surface plates will have a strong influence over the stress 

regime. The boundary condition at the far edge of the subducting plate requires special 

consideration and will be dealt with in full in the final discussion. In all models zero 

horizontal motion is prescribed at this edge and this produces horizontal tension in the 

subducting plate and rollback of the trench and slab. 

The model of slab penetration to 400 km depth from tl1e previous section, including 

low viscosity asthenosphere and backarc anomaly, now has a normal stress of 20 MPa 

applied to the left hand edge of the overriding plate. A tension may cause the plate to 

retreat relative to trench motion, and a compression may cause the plate to advance 

seaward relative to the trench. Once again the relaxation period is 50 000 yrs. 

5.7.2 Discussion of Results 

A tensional tectonic stress results in the stress regime, surface displacement c.nd 

slab motion in figures .5.75- 5. 77. The horizontal tension of the far backarc is increased 

from 30 !vlPa to 70 MPa and the near-surface tension above the backarc is slightly 

enhanced cornparc:>cl to figure fl.66. Most surprisingly, the stress regime of the slab is 

disturbed. In the upper sections of the slab the upper surface has regained its tensior.al 

character. thus eliminating the possibility of a double:> seismic zone developing. Applyi11g 

a compressional tectonic stress produces the stress regime, surface displacement c.nd 

slab motion in figures 5.78- fJ.80. The far hackarc is now neutra.l, the tension over the 

hackarc anomaly is almost eliminated but the underlying compression remains. The 

upper surface of the slab is now more compressional than figure 5.66, enhancing the 

double seismic zone. 

The change in stress distribution of the overriding plate is explained by the surface 

displacement profiles in figures 5.76 and 5.78. The thrust zone at the trench causes a 

'fault-like' behaviour of the plates in response to the tectonic stresses. Tension causes 

a normal faulting effect and the overriding plate bends down at the trench. Likewise, 
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compresswn causes th<' leading edge of the plate to flex upwards. 

The absolute motion of the subducting slab is shown in figures 5.77 and 5.80. This 

demonstrates how the tectonic stress influences the stress distribution of the slab. The 

shallow dip of the slab (in t lte depth range 0 - 100 km) is decreased by tension and 

increased by compression, as it is controlled by the roupling to the overriding plate. 

In turn this influences the whole trajectory of the slab motion and thus alters the slab 

stresses. 

Compression IS the most probable boundary stress since the overriding plate is 

quite possibly attached to a mid-ocean ridge. This is therefore the most complete 

general model of a subduction zone, so it is appropriate to return to the question of the 

behaviour of the thrust. zone (see section .5.2). The stress regime, snrfa.ce displacement 

and slab motion in figures 5.81 - 5.83 result from locking the thrust. zone. Compared 

to figure 5.78 there is a. regional horizontal compression in the overriding plate, and 

elimination of the double seismic zone as the descent of the plate is slightly changed. 

An identical 20 MPa stress was applied to the model of slab penetration to 300 

km, including the thermal anomaly and asthenosphere a.s in the previous section. The 

stress regimes show a similar behaviour to the preceding model of penetration t.o 400 

km depth. 

5.8 Limitations of the :Models 

The i11itial assumptions of the finite element models presented in this chapter 

demand some justification. Slab clip was chosen to be a. constant. 45° from the base 

of the lithosphere clown into the lower mantle. A ~pecific \~'a.dati-Benioff zone profile 

was not modelled because of the huge variation in observed profiles from which to take 

an 'a.vera.ge', and because of the difficulty of estimating the residual bending stresses 

v:hich g<:::nera.te the sha.pe. No quantitative account has been attempted of the effect 

of variation in slab dip and thus the effects, such as depression of the overriding plate, 

which depend on the slab clip must. be interpreted with this in mind. The upthrust 

of the trench was not included and this is expected to affect the stress regime of the 

slab and the surface plates as the isostatic reaction to the slab forces is distributed over 

a some>vhat wider area. in the models presented. This particular problem is discussed 
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further in tlte next chapter. As a consequence of slab pull trench depths up to 2 km 

develop, which are about 60% of the observed average trench depth. Outer rises of 

about 200- 300 m amplitude are produced by the downbending at the trench and 

probably aided by the flow driven by rollback, but both features are very broad due to 

the iniidequate response of the lower lithosphere. 

The fault couples the mesh halves along the line of the top surface oft.he descending 

sl<1b. The isoparametric fault element allows variation in the elastic properties of the 

fault with depth. Above 200 km depth the three shallowest fault elements were either 

sltear coupled (ks = 1015 N m- 1
) or shear decoupled (ks = 0). The fault must be shear 

decoupled down to 200 km depth to allow the upper two fault elements to move freely 

with respect to one another. The thrust zone was either locked or unlocked, and so 

the models did not investigate the variation in mechanical coupling along the thrust 

zone. In conjunction with the angle of contact of the thrust, the mechanical coupling 

is expected to control the amount of compression transmitted across the fault into the 

overriding plate. 

The mesh was density stripped to reveal the stresses more clearly. Under the 

plaite strain approximation finite element. models using full densities do not. produce the 

lithostatic stress field (Park 1981). The actual stress field can be retrieved simply by the 

addition of the overburden (hydrostatic stress) to the stresses generated by the density 

stripped model. U.nfortunately the density stripping does present a small problem for 

the simulation of subduction. In these models the slab is dragging neutrally buoyant 

lithosphere into the asthenosphere, 1.Yhen in reality the lithosphere just above 90 km 

depth is of a higher density than the adjacent asthenosphere. This could be considered 

as a relative upthrust which causes the slab to rotate about. its centre of mass (rather 

thctn sink obliquely) pushing the slab tip seaward and the trench landwards. However, 

if the far edge of the subducting plate is fixed, then the slab will hinge about the trench 

and rollback with respect to the subducting plate. This does not overcome the problem 

of neutrally buoyant lithosphere arriving at the trench but it is a good approximation 

for short relaxation periods which do not involve large displacements. 

Newtonian viscoelasticity is the rheology assigned to the mantle and this is an 

approximation since it does include the convective heat transport. Creep motion driven 

by the deviatoric stresses provides a good description of the initial flow of the viscous 
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fluid in response to the loads, but it cannot predict the long term beha\·iour. In thi5 

respect the models are considered on a ;first motion' basis. The models do not come 

to equilibrium but are stopped at 50 000 yrs which is convenient to prevent instability 

in the algorithm. However, the forces in the mantle may not be exactly balanced as 

is expected at a subduction zone and this may affect the final stress distribution. The 

equilibrium force balance bet\'.'een the slab body forces and the mantle resistance is 

discussed in the next chapter. 

The most significant limitation of these models is the question of rheology. The 

omission of the crust is due to the low resolution of the finite element mesh, and this 

was discussed earlier. The models would also benefit from a non-Newtonian rheology 

for the lower lithosphere. High stress regions generate a large reduction in effective 

Yiscosity allowing much quicker relaxation of the stresses, but this would not affect the 

magnitude of the elastic stresses. The age-dependent thickness, and thus its variation 

along the length of the lithosphere, was not included. The mantle was considered to be 

uniform except. for the viscosity-depth variation. A more sophisticated model should 

take into account the vertical and lateral variation of elastic constants and density. The 

end of the \Vadati-Benioff zone is usually taken to be the slab tip, and in these models 

the slab tip influenced the slab mechanics. The exact rheology of the end of the slab 

is unknown and more detailed thermal modelling of this aspect is required to produce 

better mechanical models of the descending lithosphere. 

The subducting and overriding plates were represented by uniform oceanic litho

sphere in the preceding models but the rheology is a great deal more complicated. The 

subducting plate decreases in age perpendicular to the strike of the trench, with a cor

responding decrease in thickness of the lithosphere. Variations in thermal thickness of 

the lithosphere were not included in the models. In the overriding plate crustal and 

lithospheric thickness variations throughout the forea.rc-arc- ha.ckarc region contribute 

to the loa.ds and strength of the plate. In addition the possibility of continental litho

sphere as the overriding plate was not. investigated due to the complexity of the crustal 

loading and rheology of continental lithosphere. 

The majority of thermoelastic effects have not been included. Apart. from a very 

simple linear vertical temperature gradient. across the lithosphere in the backarc, tem

perature gradients in the arc, forearc and slab have been ignored. An important ther-
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moclastic stress is generd.tctl by contluctive heating of descending slab. All the models 

\\"ere calculated under the plane strain approximation, but 3-D effects such as the spher

ical shell tectonics described by Yam<wka (198~) <1l·e important. 
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CHAPTER 6 

Discussion 

In this chapter the results of the models of flow in the mantle and the models of 

stress regime are interpreted to provide a generalised description of the two dimensional 

mechanics and dynamics of a convergent margin. One of the dominant themes of this 

thesis is the investigation of the causes of the lateral variation of the state of stress 

in the surface plates across the strike of convergent margins. Identifying the stress 

generation mechanisms should lead towards a better understanding of the origin of 

the driving forces of plate motion. In addition, the analysis of the deep structure of 

subduction should yield some insight into the evolution of subduction zones and the 

dynamics of subducting slabs, particularly with respect to the factors controlling the 

time dependence. For clarity and to avoid repetition the following discussion refers to 

the plots and diagrams which can be found in the previous two chapters. 

6.1 The Stress Regime in the Surface Plates 

The main source of tectonic stress in the surface plates at subduction zones arises 

from the pull of the descending slab. The forces exerted by the (non-vertical) slab are 

coupled to the plates by two distinct mechanisms, these are termed elastic coupling 

due to the physical continuity of the lithosphere through the slab bend, a.nd viscous 

coupling which is due to the transmission of stress through the mantle wedge. The 

viscous coupling applies (predominantly) vertical forces to the base ofthe lithosphere 

whilst the elastic coupling has both a vertical and a horizontal component ofthe in-plate 

tension. 

Consider this distribution of forces applied to the base of a. continuum lithosphere 

with the thrust zone locked, as modelled in figure 5.4. The vertical forces produce an 

asymmetric locaJ depression. The isostatic reaction at the surface generates vertical 

tension in the lithosphere which in turn produces horizontal devia.toric compression. 

Relaxation of the lower lithosphere leads to a concentration of the compression in the 
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upper elastic layer. Bending stresses are superimposed but are much smaller. The 

depression causes an overall shortening of the surface lithosphere but the fixed boundary 

at the right hand edge of the subducting plate restricts lateral motion and i11duces 

large horizontal tension in the subducting plate. The left hand edge is unrestrained, 

it is dragged seawards aitd viscous resistance in the asthenosphere can generate Yery 

small horizontal tensions near the left hand edge of the overriding plate. The horizontal 

component of the elastic coupling genera-tes horizontal tension in the subducting plate 

since it acts against the fixed boundary at the right. hand edge. This horizontal force 

is also transmitted across the thrust. zone to act. on the overriding plate. The left hand 

edge of the plate is unrestrained and so only small compressions would be produced. An 

additional component. of regional horizontal tension in the overriding plate is created 

by the normal coupling at the fault which causes the leading edge of the overriding 

plate to follow the slab rollback. The models cannot separate the competing effects of 

rollback and the horizontal component of elastic coupling which are manifestations of 

resolving the vertical body force of the slab in the downdip direction. 

Unlocking the thrust. zone causes a redistribution of the stresses both locally and 

regionally (figure 5.8). In the immediate vicinity of the thrust the subducting plate 

is now under surface-parallel tension. In addition a component of regional tension is 

introduced into the subducting and overriding plates. 

Lithosphere at. the thrust zone is held out of isostatic equilibrium by the vertical 

pull of the slab body force. In conjunction with the isostatic reaction at. the surface, hor

izontal compression is produced in the lithosphere as described previously (see section 

::).2.2). With the fault locked tlte fault walls support equal and opposite shear stresses 

due to the compression. Unlocking the fault. decouples the stresses in the plate edge 

either side of the fault. and the plate reacts to relieve the shear stress on its edge. For 

the overriding plate this results in positive vertical and horizontal forces which cause 

slight uplift. and horizontal tension in the plate. In the subducting plate negative ver

tical and horizontal forces are produced and this causes further depression of the edge 

and regional horizontal tension within the plate. The mechanism will be controlled by 

the angle of the thrust zone, the mechanical coupling at. the fault, the angle of slab dip, 

and the magnitude of in-plate tension at the top of the slab. 

The increase in regional tension is depicted quite clearly m figures 5.4 and 5.8, 
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but the stress magnitudes are complicated by the boundary conditions, the change in 

amplitude of the surface depression, bending stresses and rotation of the fault zone. A 

major limitation of the models is the spatial distribution of the isostatic reaction at 

the surface. The trench is not included explicitly and so the reaction to the vertical 

component of elastic coupling is distributed over much longer wavelengths rather than 

concentrated at the trench. This may affect the relative magnitude of each contribution 

to the regional stress. 

The regional stress regime in the surface lithosphere can be interpreted to derive 

the origin of the plate driving forces (see section 1.3 ). The slab pull force drags the 

subducting plate into the trench. The finite element models show that horizontal tension 

in the subducting plate is generated by shear slip at the thrust zone in response to the 

vertical body forces of the slab. The trench suction force drags the overriding plate into 

the trench and a regional tension is similarly produced by shear slip at the thrust zone 

in response to the vertical body forces of the slab (Bott et al. 1988). 

In resolving the slab body force downdip two equal and opposite horizontal forces 

are created which act on the base of the lithosphere at the top ofthe slab. The horizontal 

component of the downdip force increases the slab pull force, but is not transmitted to 

the overriding plate if the thrust zone is unlocked. An equal and opposite horizontal 

force arises from slab rollback. Since the overriding plate is coupled normally across the 

thrust zone it must follow the slab and trench rollback and this may generate a small 

regional horizontal tension in the plate. 

The regional stress regime gives an indication of the driving forces but the origin 

of local lateral variations in stress is also of interest. Starting on the subducting plate 

and working landwards, the stress regimes are split into four sections, the outer trench 

slope, the forearc, the arc, and the backarc. 

As a consequence of slab pull a trench and outer rise flexure system develops in all 

models (see displacement profiles e.g. figures 5.14, 5.43, 5.53). This is a much broader 

feature than the :flexure observed at present-day margins and this is a limitation of 

the models (see discussion in section 5.8). Shear slip at the thrust zone causes large 

surface-parallel tensions in the near-surface of the outer trench slope. These tensions are 

predominantly due to bending (e.g. figures 5.13 and 5.42). The seismicity and geology 

of the outer trench slope are characterised by normal faulting and graben formation 
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\':bic!t is usmdly attributed to the bending stresses of flexure caused by slab pull. Tlte 

stress state of tlte finite element models is consistent with this interpretation. 

The forearc oft lte o\·erriding plate was found to be u11der horizontal compression 

iii all models. Compression is generated by depression of the forearc by transmission of 

tlte vertical body forces of the slab, but may be overestimated because of t.l1e omission 

oft he trench. In response to this down bending the leading edge of the overriding plate 

is flexed up over a relatively short wavelength (e.g. figure 5.43), enhanced by differen

tial shear slip at. the thrust. zone. The resultant bending stresses complicate the stress 

regime of the forearc. However, this is a broad feature in relation to forearc tecton

ics. This behaviour mimics the finite element models of forearc deformation of Tharp 

( 198Ei) but occurs over a much wider region with much less amplitude. This suggests 

that a more sophisticated rheological model of forearc deformation may produce the 

same phenomenon. The structural high of major forearc basins is often seeded by a 

basement spur but subsequent development depends on the surface processes of accre

tion and compressional failure (Seely 1979). Thus in the initial stages of subduction 

the inception of the structural high and accretionary prism may be influenced by the 

:flexural behaviour oft he leading edge. 

Forearc compression persists because it IS the regJOn nearest to the top of the 

slab and thus the depression of the surface is greatest. Local and regional tensional 

stresses are not sufficient to overcome this compression. The local tension produced by 

the thermal anom<t.ly under the backarc does not penetrate into the forearc, and the 

regional tension produced by the plate drivillg forces is relatively small. Westbrook et 

al. ( 1984) lloted that the large negative isostatic gravity anomaly over the forearc of 

the Lesser Antilles indicates that the region is held down out of equilibrium by the slab. 

Tl1e finite element models do not. have sufficient resolution nor an adequate rheology 

t.o study forearc tectonic~ in any detail. 

The crustal thickening at the volcanic arc could not. be included explicitly. Sato and 

:tviatsu 'ura ( 1988) modelled the arc topography as a dynamically supported reaction to 

steady-state slip along the thrust zone. However, it is more likely that the arc assumes a 

more passive role as an isostatically compensated load. Thus the arc was simulated by a 

normal stress on the surface equivalent to the topographidoad of the crustal thickening. 

This was counterbalanced at the base of the elastic layer by equal and opposite stresses 
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to simulate the underlying tltickened crust and hot, buuyaut Jl1<tgma \';hich supports 

the topography. This force system produced horizontal deviatoric tension under tlte 

arc (figure [~.14) demonstrating that the load at the arc may generate tensions l<nge 

enough to overcome the existiHg compression. This horizontal tension may be sufficie11t 

to split the crust which is already considerably weakened by the high temperature a11d 

igneous intrusions. Isolated tension at the arc is not. sufficient. to propagate spreading, 

but sustained tension in the backarc may then give birth to a spreading centre. 

So the question arises, how is backarc tension produced? After a brief revie\\' of 

the sources of backarc stress in the finite element models other sources which have 

been omitted from the models are discussed. Backarc tension is often attributed to the 

action of the thermal anomaly in the mantle wedge above the slab. The viscoelastic 

rheology cannot generate the thermal anomaly, but it. can model the short-term response 

to the normal and shear stresses induced at the base of the lithosphere by the lmv 

viscosity and buoyancy of the hot. region. Thermoelastic stresses were also incorporated. 

The low viscosity reduces the viscous coupling resulting in a decrease in horizontal 

compression in the overriding plate above the anomaly (figure 5.58). The low density 

pushes up against the overriding plate reducing the surface depression and compression 

in figure 5.62 (for the case of slab penetration to 300 km the depression of the backarc is 

eliminated resulting in horizontal tension throughout. the backarc, figures 5.70 and 5.11). 

A linear, vertical temperature gradient across the overriding plate produces near-surface 

large horizonta.l tension (figure 5.66). So it: can be concluded that. the thermal anomaly 

adds a component of horizontal tension in the region of the overriding plate above the 

anomaly. The magnitude of this tension n.ncl thus its a.bility t.o overcome compression in 

the backarc depends on the values of the parameters assigned to represent the anomaly. 

External regional forces mc.y influence the tectonics of the backarc and this was 

simulated by applying tectonic forces to the left hand edge of the overriding plate. 

An island arc margin would probably have a mid-ocean ridge at the far end of the 

plates and in this respect the compression (figure 5.78) is most. realistic. However, as 

demonstrated earlier, subduction can transmit. regional tension into an overriding plate 

and so the tensional tectonic force could represent hypothetical subduction at. the left. 

hand edge of the overriding plate (figure 5. 75). Stress amplification in the lithosphere 

and the boundary conditions at the right hand edge ensure that the relatively small 
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tectonic force (20 IvlPa) dominates tbe stress regime of the overriding plate. 

Various influences were not included, specifically the 3-D effects such as buckling. 

So it appears that the state of stress in the backarc is derived from a delicate bal-

ance between the coinpeting effects of: v1scnus coupling, action of the thrust zone. 

the thermal anomaly, rollback, external tect011ic forces and 3-D mechanisms. ln turn 

these mechanisms are controlled by more fundamental parameters and many rt>gression 

analyses (e.g. Jarrard 1986) attempted to ascertain the relat.ive importance of each fun-

damental parameter. Problems arise when a parameter contributes via more than one 

mechanism. It is then impossible to distinguish the physical mechanisms which control 

the stress regime. It would not be profitable to attempt to derive the fundamental 

parameters from the finite element models. 

Froidevaux eta!. ( 1988) compared estimates of the horizontal stress due to crustal 

thickening at the arc with tlte 'average' state of stress of the overriding plate (Nakamura 

and Uyeda 1980). It was suggested that the difference represented compression trans-

mitted into the ba.ckarc by mechanical coupling at the fault. However, it appears that 

the state of stress in the overriding plate arises from a more complex assembly of stress 

sources. Mechanical coupling across the thrust zone is only one of the sources, but it 

may be expected to play an important role in determining the magnitude of regional 

horizontal compression transmitted into the overriding plate. 
I 

The regiortal stress produced by the plate driving forces results in horizontal tension 

in the far backa.rc of the overriding plate (e.g. figures 5.13, 5.34, 5.38 and 5.42). In the 

scenario of a continent bounded by subduction zones, this provides a possible mechanism 

for rifting and other extensional tectonics which may eventually lead to continental 

splitting (Bott 1982b ). 

6.2 The Stress Regime in the Slab 

In a series of papers Davies (1980, 1981, 1983) assessed the force balance of the 

descending lithosphere in an isoviscous mantle and estimated the stress in the slab. 

The conclusions were briefly commented upon in section 1.5 and the calculations will 

be further reviewed here. In a generalised 1- D anaJytical model Davies ( 1983) estimated 

the total downdip force due to the thermal anomaly of the slab to be 70 X 1012 N m- 1
. 

106 



This is resisted by 1\W mechanisms, at the surface by depression of the trench and 

overriding plate, estimated at. -10 X 1012 N m- 1
, and in the mantle by shear resistance 

of the viscous fluid. For the most realistic case of a mantle viscosity 11 = 1021 Pas, t} 1e 

analytical model predicts a force difference along the length of t.lw slab of 50>: 1012 N 

rn- 1
, aud compressions of 1300 I\iPa at 610 km depth. Da\·ies (1983) pointed out that 

the slab could not. endure these forces and would probably buckle. There is uo evidence 

of this buckling in \Vadati-Benioff zones. 

The equivalent finite element models are shown in figures 5.4 and 5.8. These 

models produce stresses of about 180 MPa a.t 670 km depth which are an order of 

magnitude smaller than the extremely large slab stresses predicted by the analytical 

model of Davies above. The mass anomaly of the slab of width 90 km and penetrating 

to 1000 km depth with a. dip of 45° and a. thermal density anomaly of p =50 kg m- 3 

is approximated by, 

and so the total downdip force due to the slab weight is, 

45J2 X 1011 X 10 X sin 45 = 45 X 1012 N m- 1 

This is only 65% of the downdip force in the analytical model of Davies but it is not 

sufficient. to account. for the discrepancy in the predicted stresses at 670 km depth. 

The force difference along the length of the slab in the finite element models can 

be calcula.t.ed from the stress regime in figure .5.4. A generous estimate of the stress 

difference between the top a.nd the base of the slab is 400 MPa. The stress is concen

trated into the 30 km thick elastic layer giving a. force difference a.long the length of 

the slab of 12 x 1012 N m- 1 . This is considerably less than the total downdip force of 

the thermal density anomaly. The surface is depressed over a width of about 2700 km 

(see figure 5.5 ). The average depth of this depression was calculated to be 440 m which 

provides an upthrust of, 

440 X 2270 X 9.81 X 2700 X 103 = 26 X 1012 N m- 1 

This does not include the partitioning between the trench and the overriding plate; 

explicit inclusion of the trench will probably reduce the width over which the depression 
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exists. Summation of the force in t.l1e slab and the compensation at the' surface does 

not total the body force in the slab, but as discussed in section S.6. the models do not 

reach equilibrium. 

The stress regimes in figures ~,.4 and [>.8 show that the mantle stresses immediately 

adjacent to the slab are not relaxed. Above the slab both principal stresses are tensional 

and lwlow it both principal stresses are compres&ional. This indicet.tes a low pressure 

region above of magnitude 10 ~ ;jO JvfPa, and a high pressure region below the slab of 

magnitude 5 ~ 30 MPa which partially support the thermal body force. Bot.t. (1988) 

suggested that pressure differences in the mantle above the slab could support the slab 

and these pressures (D.P) can be estimated from, 

D.P = D.pgT cos b = 50 x 9.81 x 90 x 103 x cos 45 = 31 MPa 

taking Yalues from the finite element models. Values of pressure from t.he finite element 

models are in good agreement with the theoretical values suggesting that pressure 

differences support the slab against. rotation in a self-regulating mechanism. The motion 

of the slab (e.g. figures 5.10, 5.15) may represent the motion from the quiescent state 

necessary to generate the pressure anomalies which then support the slab against. further 

rotation as subduction progresses. 

The pressures would be sustained by continuous rollback, since if rollback was 

prevented then inflow from under the overriding plate due to the pressure gradient 

would allow the slab rotate towards vertical subduction. 

The finite element models have neither the correct rheology for the mantle nor the 

correct distribution of the upthrust at the surface. However, the models provide some 

understanding of the support of the slab body force. Depression of the surface plates 

and a small contribution from shear resistance to motion partially support the buoyancy 

force and consequently decrease the downdip force acting in the slab. In addition to the 

thermal body forces the elevated olivine-spinel phase cha11ge was included (see figure 

.5.13 ). This does not alter the basic conclusions concerning the slab support mechanism. 

The distribution of stresses in the finite element models differs from the analytical 

solutions. The finite element models allow the slab to sink freely through a layered man

tle but the analytical models assume a constant viscosity mantle with an impenetrable 

base at the slab tip. lt is highly unlikely that the slab tip encounters an impassable 
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mid-mantle boundary at any given Jeplh allC.l so the 'free' slab tip is a more appropriale 

representalion. 

The stress distribution of the finite element models is now compared to the observed 

slab stress regime. Studies of earthquake focal mechanisms have proposed a typical 

slab stress dislribution which consists of a stress minimum at <tbout 300 km depth, 

below which the slab has downdip compression <tJtd <tbO\"e which the slab has downdip 

tension. The most convincing aspects of this stress regime are the position of the 

stress minimum and the compression in the lower slab. The stress regime in the deeply 

penetrating slabs (figures 5.46, 5.13, 5.48) is controlled by the viscosity contrast at 

670 km depth and the isostatic reaction at the surface. The models in figures 5.13 

a.nd 5.48 approximately reproduce the observed slab stresses. However, the stresses 

are not sensitive to increases in viscosity contrast above x 10. The slab stress regime 

is complicated by the distribution of the isostatic reaction to slab pull at the surface. 

Observed trench depths are much greater than those produced by the finite element 

models (figures 5.14 and 5.30), and so the isostatic reaction of the models should be 

more strongly concentrated at the trench. This would increase the magnitude of the 

elastic coupling and consequently increase the in-plate tension near the top of the slab. 

The redistribution of slab stresses would be expected to increase the depth of the stress 

minimum and decrease the magnitude of the deep compressions. 

The stress regim_es in shallow penetrating slabs ( :S 400 km depth) do not match 

the observed stress distributions. Large downdip compression (figures 5.34, f,.38) is 

a.ssociated with the tip and this violates the requirement of a stress minimum at 300 

km depth with predominantly tension above. The compression is caused by resistance 

to penetration and upbending of the slab tip. Jarrard (1986) compiled the best known 

Wadati-Benioff zone profiles and out of 20 profiles of shallow penetrating slabs only 2 

show upbencling of the tip, namely New Britain aYtd N. Sulawesi. Neither compression 

nor up bending are common in present-day su bcluction zones. The stress regime was 

altered by varying the geometry and rheology of the slab tip, but the large compression 

near the slab tip could only be eliminated by invoking aseismic extension of the slab in 

the upper mantle. 

The dynamic reaction of the trench was omitted in all models. The inability 

of the finite element models to reproduce the observed slab tension could be clue to 
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the distribution of the isostatic reaction at the surface. If more of the upthrust was 

concentrated at. the trench then the el<tstic coupling would increase the m<tgnitude of 

the in-pl<ttc tension at the top of the slab. The tension will be transmitted down the 

slab and may overcome the deeper compressions. A large trench reaction may cause the 

slab to ·bang· from the surfac<:> <tnd this way alle\·i;.d<:> the upbeHding of the tip which 

is due to the resistance to penetration in the mantle. 

The finite element models could not successfully generate the stress regime m 

shallow penetrating slabs, but the mechanics of the slab motion imply that the trench 

reaction dominates the slab stresses to produce in-plate tension. 

Sleep ( 1919) proposed that double seismic zones are generated by a low viscosity 

region in the mantle wedge allowing the slab to sag under its own weight. The upper 

surface of the slab develops compression due to bending and the lower layer retains 

in-plate tension because it is close to the neutral fibre. The addition of a low viscosity 

asthenosphere (figure 5.52) and a. low viscosity thermal anomaly (figure 5.57) to the 

finite element models produced an increase in compression in the upper surface of the 

slab (compared to figure 5.42). The lower layer of in-plate tension persists. The models 

do not produce true double seismic zones but simply lend support to the analysis of 

Sleep ( 1979 ). The inadequacy of both the mantle rheology and the representation of 

the thermal anomaly prevent definite conclusions on the origins of double seismic zo~es. 

6.3 The Evolution of the Subduction Zone 

The continuous dynamic evolution of the slab cannot be modelled by the finite 

element methods employed in this thesis. However, a general framework describing the 

descent of the slab through the upper mantl<:> can be assembled. 

Above the transition zone the models of slab penetra.tion to 200 km and 300 km 

show that the displacement of the descending lithosphere is quite small (e.g. figures 

5.36, 5.40). The flow models of 300 km penetration (figure 4.33) show the slab sinking 

vertically and rotating towards vertical subduction at relatively small velocities. In 

the depth range 300 _, 400 km the slab gains the body forces of the elevated olivine

spinel phase change, and this has a dramatic effect on subduction. The additional 

forces cause significant slab rotation towards the vertical and increase the downdip and 
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rollback velocities (e.g. figures 4.34, 5.44). So, for the period (say 1 Ma) over \':ltich 

the slab acquires higher body forces, the subduction zone may undergo a significc.nt 

d1ang<- in its e\·olution. Roecker (198.':,) analysed the seismotectonics of Izu-Bonin a 11 d 

suggested that lateral variation in the magnitude of the body forces of the elevated 

olivine-spi11el transition was the major cause of the lateral variation in tectonics along 

the strike of the margin. 

The next stage in the evolution of a subduction zone is collision with the 610 km 

discontinuity. The analysis of mantle viscosity favours a viscosity contrast of x 10 in 

preference to a contrast of X 100 or X 1 but is unable to give definite conclusions due to 

the model limitations. The increase in viscosity at the base of the upper mantle provides 

a resistance to the motion of the slab tip. If the slab remains rigid, this resistance to 

movement will be transmitted back up the slab changing the general slab motion (figure 

4.35) to be realigned approximately downdip and may slightly affect the surface plates 

(figures 5.46, 5.13, 5.48). Alternatively, the motion in the upper mantle may remain 

constant but the reduction of vertical velocity in the lower mantle may cause the leading 

edge t.o deform and flow laterally (Fischer et al. 1988). The stagnation of the slab tip in 

the lo\\'er mantle causes a decrease in slab dip as the upper slab continues to rollback. 

B)· 'anchoring' the leading edge of the slab in the lower mantle, the strength of the 

slab ma.y not be able to endure continuous rollback of its upper mantle section, but. 

if it does a quasi- steady state subduction may ensue (Gurnis and Hager 1988). The 

models predict bending at 300 -7 400 km depth due to the body forces of the elevated 

olivine-spinel transition. How ever, \Vada ti- Benioff zones are surprisingly straight at 

depth. Although i11terpret.ations generally average along strike which may introduce 

some smoothing of the profile, this is a discrepancy of the models. 

ln an analysis of slab dip, Jarrard ( 1986) proposed that dip is negatively correlated 

with duration of subduction. All finite element models demonstrate rotation of the slab 

towards vertical subduction in apparent contradiction of the observations. This may 

be attributed to the initial quiescent. state which did not. allow sustained local pressure 

differences in the mantle, or it may be a result of global interaction which cannot be 

modelled here. 

Duration of subduction influences the stress field of the overriding plate as figures 

.5.17, 5.21, 5.25, 5.29 and 5.13 demonstrate. The width of the band of localised hori-
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zollt.al compression in the o\·erriding plate increases as the lellgtii of tiie slab illcreascs. 

The models assume a constant slab dip witii time which may 11ot be realistic. As dip ill

creases t.he width of the band of compression would decrease, so there is some trade-off 

between t.hese competing effects. 

Tbe slowly growing band of compressiOn which gradually encroaches into the 

backarc may be an important control of the stress regime and subsequent tectonics. 

In the absence of the local horizontal tension produced by the thermal anomaJy in the 

mantle under the backarc, this mechanism may be responsible for the compressional 

tectonics of the backarc. The South American margins have very low angle slabs, no 

evidence of thermal activity in the mantle wedge and compressionaJ tectonics in the 

overriding plate. Thil:i mechanism of viscous coupling to tlte surface lithosphere may be 

usefully applied t.o help explain the stress regime at these subduction zones. 
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CHAPTER 7 

Summary and Conclusions 

This thesis has presented a numerical investigation of selected aspects of the me

chanics and dynamics of subduction by finite element analysis. Subduction zones pose 

certain rheological problems for numerical analyses. The rheology of the subducting 

and overriding plates and the descending slab is best approximated by an elastic-plastic

viscoelastic solid in its response to tectonic loads over geological time. In contrast, the 

mantle responds to loads by creep which can be numerically modelled by flow of a New

tonian viscous fluid. At the trench the surface plates are coupled along a large thrust 

zone which permits the subducting plate to underthrust. the overriding plate. It was 

not possible to incorporate all three rheologies into a. single finite element package and 

so the 2-D numerical analysis was divided between two approaches, 

• Newtonian viscous flow gives a good approximation of mantle behaviour 

• linear elasticity and viscoelasticity provide a good approximation of both litho

spheric behaviour and the response of the thrust zone 

The basic isoparametric finite element package for linear elasticity was originally 

developed by Waghorn (1984). Quadratic elements permit a linear strain gradient. 

across the element and are the optimum elements for elasticity analyses (Zienkiewicz 

1917). The initial strain method of Zienkiewicz et. a.l. ( 1968) was implemented to 

provide a Newtonian viscoelastic rheology. Fault behaviour was included via the dual 

nude concept of Mithen ( 1980 ). The isoparametric elements allow curved faults to 

be introduced which is important for modelling the thrust zone of subduction. This 

basic package was updat.ed and improved to combine the faulti11g into the viscoelastic 

algorithm and to include the full mechanical response to a thermal anomaly. 

Quadratic isopa.ramet.ric elements can be used for the an<Llysis of vi~cous fluids 

although they are not optimal. The linear elasticity package was converted to solve 

the N avier-St.okes equations for viscous flow by the reduced integration penalty (RIP) 

method following Zienkiewicz and God bole ( 1975 ). This was further developed to a1low 

motion of the free surface following the arbitrary Lagrange-Eulerian (ALE) method of 

113 



Hughes et al. ( 1918). 

Cbapter 4 presented models of flow in the mantle driven by motion of a slab dipping 

at 4.5°, under the assumption that subduction is controlled by the viscosity-depth profile. 

The lithosphere of the surface plates and the subducting slab was represented by a 90 

km thick high viscosity layer. The free surface evolved over a time interval of 50 000 

yrs which can be regarded as approximately instantaneous with respect to the time 

constant of su bel uction. 

The models produced an asymmetric depression of the surface above the slab. The 

depth and width of this depression was found to be dependent on the viscosity of the 

lower mantle, the length and mechanical strength of the slab. Implications for slab 

motion inferred from the flow field constrain the viscosity contrast at the upper- lower 

mantle interface to be of the order xlO rather than xlOO or xl. 

Analysis of the variation in depth of penetration of the slab shows that acquisition 

of the body forces of the elevated olivine-spinel transition and collision with the 670 

km discontinuity are significant events in the evolution of subduction zones which may 

contribute to abrupt changes in tectonics. 

The major limitations of the models are the rheology of the lithosphere, the omis

sion of the thrust zone and the boundary conditions of the mesh. The flow models 

cannot simulate the subduction of one plate under the adjacent and thus corner flow 

is not generated and the surface does not evolve to reproduce the correct topography. 

The compensation of the body force of the slab by depression of the surface will not be 

accurately distributed. The boundary conditions do not permit a mass flux across the 

sides of the mesh and so all flow is contained within the mesh. Thus the lateral flow 

driven by subduction to mid-ocean ridges, which is part of the mechanism of thermal 

convection, is not produced by the models. 

In Chapter 5 an island arc ma.rgin was modelled usi11g the linear elasticity package. 

The lithosphere wct.s represented b~' an elastic layer 30 km thick overlying a 60 km thick 

viscoelastic layer. The underlying mantle was modelled as a layered viscoelastic body 

and the two meshes used extended to 670 km and 1400 km depth respectively. A fault 

dividing the meshes into two halves was used to simulate the thrust zone. The models 

provide a good approximation of the surface, lithosphere and thrust zone, and of the 

initial flow response of the mantle. The aim of the study is to quantitatively investigate 
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the influence of the negative buoyancy of the slab over subduction tectonics. 

The stress regime at subduction zones has been analysed for three distinct phe-

nomena, 

• the origin of the driving forces of plate motion 

• the cause of lateral variations in stress state of the surface plates 

• the mechanics and dynamics of the descending slab 

The slab pull force drags the subducting plate into the trench and it. was proposed 

that regional tension in the plate is generated by differential shear slip at. the thrust 

zone in response to the vertical forces applied by the slab. 

The trench suction force drags the overriding plate into the trench and it \':as 

proposed regional tension in the plate is generated also by differential shear slip at the 

thrust zone in response to the vertical forces applied by the slab. 

The magnitude of the stress is dependent on the dip and in-plate tension in the 

top of the slab, and the angle and degree of mechanical coupling at. the thrust zone. 

The stress state of the surface plates was partitioned into five regimes. Bending 

of the subducting plate in response to the vertical forces applied by the slab through 

the slab bend region created large horizontal tension at the outer trench slope. This 

is consistent with the extensional tectonics observed m the region. The forearc \':as 

found to be under horizontal compression in all models. The compression arises from 

the vertical tension in the lithosphere created by the combination of vertical downpull 

of the slab and isostatic upthrust. at. the surface. Thus horizontal compression in the 

overriding plate can be generated by t.be vertical forces of subduction. The isostatically 

compensated topographic load of the volcanic arc may generate horizontal deviatoric 

tension in the lithosphere at the arc if the horizontal tension due to t.he load exceeds the 

local compression. The hackarc shows considernble variet.y in stress state. A compo

nent. of regional horizontal tension is produced by the plate driving forces and regional 

horizontal compression by locking the thrust. zcme. A component of local horizontal 

compression is produced by depression of the hackarc due to viscous coupling t.o the 

sinking slab. A component of local horizontal tension is produced by an underlying 

thermal anomaly. The final state of stress is dependent upon a delicate balance of the 

stress components. However, an external regional tectonic force applied to the far edge 

of the overriding plate dominated the backarc. This suggests support for the theory 
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that subduction tectonics are primarily controlled by global plate iJtteraction (Dewey 

1980) rather than solely by local forces. Tlte regional stress of the plate driving forces 

creates horizontal tension in the far backarc which Jnm·ides a source mechanism for 

stress-controlled extensional tectonics (Bot t 1 982b). 

The negative buoyaitcy of the slab is partially supported by depression of the 

surface and shear resistance of the \·iscous fluid. Thus the resultant downdip force 

within the slab is much reduced. The stress state of the slab, in response to the 

down dip force, is controlled by the isostatic reaction of the surface and the viscosity

depth distribution in the mantle. The mass deficit of the trench produces tension in 

the upper slab, and a viscosity contrast at 670 km depth causes compression in the 

lower slab. The models of a deeply penetrating slab reproduce the observed average 

stress distribution. The stress regimes of the shallower penetrating models do not fit 

the observations, probably because of incorrect partitioning of the isostatic reaction at 

the surface. A low viscosity zone above the slab leads to the development of double 

se1sm1c zones. 

A low pressure zone above, and high pressure zone below the slab act against. 

the body forces to inhibit slab rotation towards vertical subduction. The pressure 

anomalies are maintained by continuous subduction and rollback, and act in a self

regulating mechanism to prevent. large changes in dip with time and excessive torques 

along the length of the slab. 

The limitations of the models are dominated by the illadequat.e rlteology of the 

mantle and the problem of resolution which necessitated the omission of the crust. 

Also, the addition of a plastic rheology allowing finite strain deformation of the slab 

bend region would allow the dynamics of the tre11ch to be included. 

The success of this 2-D analysis is encouraging but limitations of the models leave 

many questions unanswered. Further work on 2-D generali~ed subduct.ion zone models 

would profit from rheological sophistications and bet.t.er resolution of the meshes. In 

particular non-Newtonian viscoelastic and large deformation plastic rheologies would 

allow the trench and slab bend regions to be iitcluded. Detailed thermal modelling of 

the slab to yield a better mechanical model of the slab, especia.lly the behaviour of the 

slab tip, will aid analysis of the slab mechanics. Most importantly direct coupling of 

viscous and elastic behaviour is required, without which there will be no true dynamical 
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rnoclcl of subduction. 
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The Computer Programs 

The Linear Elasticity Finite Elcmeut Library - ISOLIB 

Tl1e main algorithms of the library program ISOLIB were not significantly altered 

and sot he program is not listed here. A full description and listing of the basic program 

can be found in V•laghorn (1984). However, some operational changes were made to the 

program and these are described below. 

ISOLIB was converted to FORTRAN77, structured and some additional subroutines 

were added which are briefly described here. In order to test the faulting algorithm 

subroutines to calculate the stresses and viscous strains at the fault. walls were added. 

The implementation of Dirichlet conditions is described in section 2.3.5; this exact 

method is preferred over the Payne-Irons method and is included as an optional routine. 

Often it. is necessary to make minor changes to a mesh and so a subroutine was developed 

which adds or deletes specific nodes, renumbers the mesh accordingly and produces a 

new input file. A subroutine to find the eigenvalues of the symmetric system matrix 

reduces the band matrix to tridiagonal form by Jacobi rotations and then employs the 

QL algorithm to extract. the eigenYalues using the public domain routines available 

in NAG. Anomalous densities of the elements and deflection of isostatic boundaries 

contribute t.o the gravity field. Source code for the main calculation \\"as kindly provided 

by Prof. M.H.P. Bot.t and included in a subroutine to calculate the 2-D graYity anomaly 

at. the surface of the mesh. The original routine in ISOLIB to ca.lculate the initial strain 

of a temperature <t.nomaJy was corrected and thermal stresses were incorporated into 

the viscoelastic algorithm. 

The Viscous Flow Finite Element Library - ISOVISC 

The library program ISOVISC was produced by converting ISOLIB <tS described in 

section 2.3.1, and hence retains many of its features. Tile library is accessed from a. 

calling program ISOCALL. The input/output units are assigned as follows, 

• 1 echo the mesh data 

• 3 data for mesh renumbering 

• 4 mesh data 
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o 5 data for tlte plotting routines 

o 6 output of program status 

o t output of solution data 

o 9 grapltica.l output 

The source code listing below contains both a general operational description and 

definitions of m<tjor variecbles for each routine. The subroutines access external routines 

from the libraries NAG and GHOSTSO for matrix manipulection and graphical output 

respectively, and also the 1viTS system routine TIME which monitors the CPU time 

elapsed. 

A2 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

c 
c 
c 
c 
c 
c 

c 
c 

c 
c 
c 
c 
c 
c 

The main progran for the finite element I ibrary 19),119:. 

Progran execution is controlled by the sequence of subroutines 
remoini"9 u~ed. Details of the subroutines can be found in 
I ibrary (9),1(9:. 

Acknowledgement: This program was developed from an original 
finite element library lor linear elasticity 
written by G.O. Waghorn. 

I.,PLICIT 0Cl..8LE PRECISICN (A-+i,<>-W) 
~TER TITLE(4)•8,ZUF(4)•4 
P~TER( IGL-e60.JGL•131,KGL-66) 
COM:N /OWV TITLE.zur 
oo.to04 ~ NTRI,N:J.W),Nites,IK'O,KSIZE,K9,1K'02.~T ,ICUA(4). 

+ ~.PI,BETA.NST .NSI,NSEG,talSEO,OELTAT 
oo.to04 t'aJS/ X( IGL/2), Y( IGL/2) ,OI!iP( IGL) .~E( IGL). 

+ ><51"1"00( 4 .~). YSl"I"'O( 4 .~) 
oo.to04 /ELE)# I'O)(L(8.~) ,N::AUSS(~) ,NOTEL(~) .N::OEL(500). 

+ NOTCXll(500) ,IIOD)l(500) ,OifFCP(9. 500) .BLIB( 144. 500). 
+ PIWC(16.~) 

<XJoM:)j /tr:K:./ tfi>4S( 100) ,t()IS4S( 100) ,NLCWJ( 100) .~1 (300). 
+ rn:R.l( 100). nN-~( 100). rnror( 100). nror( 100) 

cx:MoOI /fi><T/ OfiX(2 ,500) ,NJFIX(500). lfi.Jf(;(2. 500) .NFI X ,NE><T.NSTCP 
cx:Mo01 """TS/ OA(9) ,R.1(9), 1\4(9) ,IHJ.4(9). ETIIM(9), ETN-1. I TYP(9) 
cx:MoOI /STIF/ ELK(18, 18) .GLCO<( IGL,JGL) 
cx:MoOI /STF4/ GLCO<L( IGL,KGL), F01CE0( IGL) ,l'fU'IV( IGL) 
cx:MoOI /VI'f1::/ OSTCRE(12 ,900) ,FINIT( IGL) ,FOJT( IGL) .~( IGL) 
cx:MoOI /VI>RS/ W1W2,0ETJ ,RHJ,C2, fiCT ,CNXDX(8) ,CNXDY(8) ,8( 4. 18). 

+ BTC(18,4) ,NO,t.CAUS,N02,10,£L,NS\.RF. IG 
<XJoM:)j /Tit.6/ ELSIZE(2.500) ,OELT ,ILCWJ( IGL), TIOTAL 
cx:Mo01 /IK:NEI WAAT( IGL), '>M:SH( IGL) .AP~~ IGL~. STRANS( IGL), 

+ A TRANS( IGL) ,CM:SH( IGL) ,APART IGL .N.ESH( IGL). 
• ~( IGI.).IJ,I[goQ( IGI.), XOl.O IGI. • 'IOl.D( IGI.) 

cn.MJ.I /GN"T/ S, T .SHAPE(&~ ,CNXOS(8) ,CNXDT(8). T9W'E(6,J6). 
+ TCNXDS 6,J6 ,TCNXDT 6,J6 ,TW1W2 6,6 .CISHN'E .3,72 . 
+ ODNXOS~.3,72 ,CONXOT~.3,72~.0W1W2~.3,9~.WEITRI~12.6~. 
+ WE1~(18,.3),PLACET(12,6),PLACE0(18,.3).PLACEL(.3).WEILIN(.3) 

CALL Tlt.€(0, 1) 
CAll. ROO 

CALL ROU>E 
CALL F'RO< 

CALL FtA.t< 
CALL EIGEN 

CALL Tlt,t;OL 
CALL 01~ 
CALL STRESS 
CALL STOlT 

CALL P.aMS 
CALL GRID 
CALL~ 

CALL VELPLT 
CALL~ 
CALL VECPLT 
CALL~ 
CALL 9-.Rf 
CALL~ 
CALL CF'ROf 

c 
CALL GROO 

CALL EXIT 
END 
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An isoporome\ric finite element I ibrary for salving \he 
Navier-Stokes equations in 2·-0 incorporating \he free 
surface of the fluid. · 

The reduced integration penalty (RIP) fonnulation is 
used to generate \he system matri•. 

The formal derivation can be found in Hughes et al. (1978) 

Array is 2600•50 for wave model 

9mcull NE Rf.Kl 

Read in alI information required to set up the model and echo immediately 
to the check file attached to unit 1. 
Major variables: X =node w-coords Y =node y-caords 

FCA:E ..,.ystem force vector IFI 
OELTAT=time increment 

IWLICIT OCU3LE PRECISIGI (A--+i.o-w) 
CHARACTER TITLE(4)•8.ZUF(4)•4 
PARM£TER( IGL=880.JGL=131,KGL=66) 
COMMON /CHAR/ TITLE.ZUF 
COMMON /CONS/ NTRI,NOUAO.NINCS,NNOO,KSIZE,KS8W,NN002,NMAT,IOUM(4), 

+ ~.PI .BETA,NST ,NSI,NSEG,I'O)SEG.OELTAT 
COMMON ji'O)S/ X( IGL/2), Y( IGL/2) .OISP( IGL), FCA:E( IGL), 

+ XSTPOS(4,500),YSTPOS(4,500) 
COMMON /ELEM/ talEL(8,500) .~(500) ,f'o()TEL(500) ,I'U)(L(500), 

+ f'o()TC0L(500) ,t-OX:OL(500) ,01 FF'CP(9 ,500) .BLIB( 144 ,500), 
+ PRIPC(16,500) 

COMMON /F'CA:/ t-ro4S( 100) ,NOIS4S( 100) ,NLOAO( 100), F't-ro(200), 
+ f"t-.(R.A( 100). F'TAN( 100), FNTOT( 100), F'TTOT ( 100) 

QOMMON /FIXT/ OFIX(2.~~).NOfiX(500),1F'LAG(2,500),NFIX,NEXl,NSTCP 
COMMON f'W.TS/ [).1(9) ,R.4(9), "N(9) .~(9) ,ETN-4(9) ,ETN-I.ITW(9) 
COMMON /VAAS/ ro.tl( 16~) ,IC5ECT ,NOIS.NOIR. ltXMX(2), IG 
!'YJ.M:N t\Oif/ 'vf'NlT( IGL) ,W£'11( II;!.) ,N'Nl.N.t( IGl.~ ,STfWt;( II;L). 

1 AlfW.IS( IGI) .lt.4!.SI~( IGL) ,AI'Nll ( IGl. .Nifr SIH 1\;L), 
+ \Ml.9l2( IGL) .IM..912( IGL) .XOUJ( IGL , YOW( IGI.) 

••• Read title 

I TEST~ 
v.RITE(6, 10) 
F'(R.IIIT(IH0, 'Finite Element Program for free-surface I low'./ 

+ ' up and running .. ') 
RE.6D( 4, 20)T ITLE 
v.fll TE( I, 20)TITLE 
F'(R.III T ( 4A8) 

••• Read in model infonmotion 

RE,60( 4 .30)NNOO,NTRI ,NOUAO,NMAT ,NFI X ,NOIR,NSEG,NSI .NST .NFS 

30 

c 
c 
c 

35 
c 
c 
c 

40 
c 
c 
c 

c 
c 
c 

50 
c 
c 
c 

60 
70 
c 
c 
c 

80 

90 

c 

110 

120 

c 

v.RITE( 1 ,30)Nt-ro,NTRI,NOUAO,I-M'T ,Nf'JX ,NOJR,NSEG,NSI ,NST ,NFS 
f'(R.IIIT( 1115) 
Nt-0)2=«'0)• 2 

••• Read solution information 

RE,60(4.35)NINCS.~.BETA.ETAN.OELTAT 
WRITE(1,35)NINCS.~.BETA.ETAN.OELTAT 
F(R.IIIT( 15,4010.4) 

••• Read node numbers, coordinates and free surface parameter 

00 50 lt<Dool , NNOO 
READ(4,40)Jt-ro,X(Jt-ro),Y(Jt-ro),APARAM(2•JN00-1),APARAM(2•JNOO) 
F(R.IIIT(I5,4F10.3) 

••• Convert frCW~~ polar to reclanoular 

lf(NST [0.2) TliEN 
ANO-X(JNOO)•PI/180.0 
X(JNOO)•Y(JNOO)•OSIN(ANG) 
Y(JNOO)~Y(Jt-ro)•fXX)S(ANG) 

OOIF 
WRITE(1,40)JNOO,X(JNOO),Y(JNOO),APARAM(2•JN00-1),APARAM(2•JNOO) 

••• Convert to metres 

IF(NSI .80.0) THEN 
X(JNOO)•X(JN00)•1.0E3 
Y(JNOO)sY(JN00)•1 .0EJ 

OOIF 
OGITIN.IE 

••• Read in mater iol types 

00 70 IW.Ta1 ,1-M'T 
READ( 4,60)EM( IW.T) ,RA( IW.T) .~( IIMT), "N( JW.T), ETIIM( IW.T) 
v.RITE( I ,60)EM( IW.T) ,RA( IW.T) .~( IW.T), TM( IIMT) ,ETIIM( IW.T) 
F(R.IIIT(OI0.3,2F10.3,2010.3) 

CX:tH lt.IJE 

••• Reod elem.nt topoiOQiee, material typee ond gau~e pointe 

lf(NTRI r.T 0) TI~fN 
L'O 90 IE.L•I,NIHI 

READ(4,80) JEL, (t-roEL(KEL,JEL) ,KEL•1 ,6), ITYP(JEL) .~(JEL) 
WRITE( 1,80) JEL. (NOOEL(KEL.JEL) ,KELa1 ,6) ,ITYP(JEL) .~(JEL) 
f(R.IIIT(915) 
f'o()TEL( I EL )=JEL 

OGIT IN.IE 
OOIF 

IF(~.GT.0) THEN 
00 120 IEL•1,NQUAO 

READ( 4. 110) JEL, (NOOEL(KEL,JEL) ,KEL•1 .8), ITYP(JEL) ,tG4LISS(JEL) 
WRITE( 1, 1 10)JEL, (NOOEL(KEL ,JEL) .KEL-1 .8), ITYP(JEL) .tG4LISS(JEL) 
F(R.IIIT( 1 115) 
f'o()OEL( I EL)aJEL 

OGIT IN.IE 
OOIF 

C ••• Initialise force vector 
c 



CALL VECNJL(F~E.IGL.~2.1TEST) 
c 
C ••• Read direct nodal forces 
c 

IF(NDIR.GT.0) THEN 
00 140 1=1 ,NDIR 

REftO( 4, 150)f'U>4S( I) ,FNX>(2•1-1), FNX>(2•1) 
VIR I TE( 1, 150)f'U>4S( I), FNX>(2•1-1), FNX>(2•1) 

150 FCRAAT(I5.2(4X,011.4)) 
IF(NST.EO. 1) THf.N 

rcn::r.(2•~0.( I)· 1 )•fl.0)(2•1-1 )•2. OOOO•PI•X(tfl)-4<;( I)) 
F~t( NW4S(I) )•FNX>( 2•1 )•2 0000•PI•X(N:X>4S(I)) 

ELSE 
F~E(2•f'U>4S( I )-1 )=FN:0(2•1-1) 
F~E( 2•f'U>4S( I) )•FNX>( 2•1 ) 

END IF 
1 40 CCtJT I i'UE 

F.H:ll r 
c 
C ••• Read surface tractions 
c 

IF(NSEG.GT.0) THEN 
NDIS=0 
00 142 1=1 ,NSEG 

REft0(4. 150)NODSEG 
'IIRITE(1 .150)NODSEG 
00 143 J•1 , NODSEG 

READ(4,150)NDIS4S(J).FNORM(J),FTAN(J) 
v.RITE~1,150)NDIS4S(J),FNORM(J),FTAN(J) 
NLOAO NDIS+J~=NDIS4S(J) 
FNTOT NDIS+J =FNDRM(J) 
mOT NDIS+J =FTAN(J) 

1 43 CONT I i'UE 
c 
C ••• For each surface. divide into NOSECT 3-node edge elements 
c 

NOSECT•(NODSEG-1)/2 
CALL GLOOF 
NO l Soot.() l S#roSEG 

142 CCtJT I i'UE 
EN) IF 

c 
C ••• RttodDirictllet conditione 
c 

IF(NFIX.GT.0) THEN 
00 170 1=1,NFIX 

READ( 4, 160)NOFIX( I), ( IFLPC(J, I) ,OFIX(J, I) ,J=1. 2) 
~ITE( 1, 160)1'o0FIX( l), ( IFLPC(J, I) ,OFIX(J. I) ,Ja1, 2) 

160 FCRAAT(I5, 2( 15,010. 3). F10. 3) 
170 CONTI NJE 

OOIF 
c 

'IIRITE(6. 190) 
190 FCRAAT ( '0REftO finished') 

CALL Tlt.£(1,1) 
c 

c 
c 

REll..flN 
00 

C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

c 
C+ 

9.aUJT IN£ L9W'E 

C Calculate the shape functions of the 1-D edge element ot the local 
C coordinate point which is supplied. 
C Major variables: 9-W'E •shape functions 
C ONXOS. ONXOT -derivatives w.r.t. local coords 
c-

c 

c 

c 
c 

lt.f>LICIT OCUlLE PRECISICN (,.._...,o-w) 
PARH-£TER(IGL-e80.JGL•131,KGL-66) 
~/CAPT/ S,T,9W'E(8),DNXOS(8),DNXOT(8),POOM(1611). 

PIXEL(J) ,WEI LIN(J) 

SHAPE 1 •(55-S)/2.0 
9-W'E 2 •1.~SS 
SHAPE J •(SS+S)/2.0 
ONXOS 1 ....s--0. 5 
ONXOS 2 -~ .0•5 
ONXOS J ~.5 

RETI.R'l 
00 

C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 
c 
C+ 

SllR)]TlNE GLOOF 

C Calculate the contribution to the global force vector of nonmol 
C ond tangential stresses, dividing this edge into .}-node 1-D elements. 
C Major voriobles: F~E -yst"" force vector IF! 
C Fl'(R.I, FTIIN -uppl ied edge stresses 
c-

c 
c 
c 

c 
c 
c 

lt.f>l.ICI T OCUlLE PRECISIGI (,.._...,o-w) 
P~TER( IGI..-4l80,JGL-1J1 ,KGL-66) 
~ /I'OJS/ X( IGL/2), Y( IGL/2) ,OISP( IGL) ,FCJ'«:E( IGL). 

+ XSTF'OS ( 4, 500) , YSTF'OS ( 4. 500) 
(XM,O.j /GM'T/ S, T ,9-W'E(S) ,ONXOS(8) ,ONXOT(8) .POOM( 1611), 

(XM,O.j /F~/ t-0>45 100) ,NDIS4S( 100) ,NUWl( 100) ,N:0(200), 
+ PlJICEL~3) ,WEILIN(J) 

• m:RA 100),nN11(100),FNTOT(100),nTOT(100) 
('("M.("N /VAAS/ oo.fl( 16..">) .t>OSI:CT ,to{)IS,NDIR,l-0)(3) 

••• For each 1-{) edge element 

00 10 I Sal ,NOSECT 
LN002-2•1S 
LNQ01aLNQ02-1 
LN003=LN002+ 1 

NOD~1~aNDIS4S~LN001~ NOD 2 =NDIS4S LN002 
NOD J aND I 545 LN003 

••• Integrate the stress by J-pt gaussian 

00 20 10=1,3 
S=PlJICEL( I G) 
~ILIN(IG) 



CALL LSHAPE 
XPOS=0. 0000 
0~.0000 
D'()([)S=0 . 0000 
00 30 1=1,3 

XPOS=XPOS+SHAPE( I) •X~I'ID( I)) 
D)()(()S=W)(l)S( I ) • X ( 1'0) I ) ) + DXXDS 
DYXDS=CNXOS ( I ) • Y ( I'ID I ) ) + DYXDS 

30 O:NTllllJE 
c 
C ••• Evaluate the stresses at the gauss point 
c 

40 
20 
10 
c 

c 
c 

+ 

+ 

+ 

lf(NST .EO. I) THEN 

PN-( ~!IJO)I ~•SHAPE! I~+~(IJ0)2)•9W'E(2)+ 
FN'.R-1 l.NXlJ •9W'E J }•2 .0000•PI•XPOS 

PTa( n~ l.NXl1 •'-lW'F: I + rT~(LN:02)•9-W'E(2)+ 
rTAN IJO)J •SI-W'E 3 )•2.0000•Pl•XPOS 

ELSE 
PN=~(lJO)I)•SlW'E(I}+~(lJ0)2)•SHAPE(2)+ 
~( [}0)3) •SHAPE(J) 

PT= FTAN(LNOOI}•SHAPE(I)+ FTAN(IJ0)2)•SHAPE(2)+ 
FTAN(IJ0)3)•SHAPE(3) 

END IF 
DSX.(PT•OXXDS-PN•OYXDS} 
DSYa(PN•DXXOS+PT•DYXDS) 
00 40 1=1 ,3 

FffiCE(2•1'ID( I H }=SHAPE( I) •DSX•DS + FffiCE(2•1'ID( I )-I) 
FffiCE( 2•1'ID( I) )=SHAPE( I} •DSY•DS + FffiCE( 2•1'ID( I) ) 

O:NTllllJE 
O:NTllllJE 

cx:M"IIIlJE 

R~ 

END 

C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 

c 
C+ 

Sl.ffi1JT I Nf FCI~ 

·c Calculate the 9lobol ell line•• by eummln9 contribution• from each 
C elownent stillness. 
C Major variables: ELK =element stiffness BLIB =strain operator [B) 
C GLC9< =system mot i • [K) 
c-

ll.f'LICIT OCUILE PRECISICN (~.o-w) 
PARME:TER( IGL=880,JGL=131 ,KGL=66) 
~/CONS/ NTRI,NQUAD,NINCS,NI'ID.KSIZE.KSBW.NI'ID2,NMAT,IDUM(4}, 

+ GMt.NI,PI ,BETA,NST ,NSI ,NSEG,I'IDSEG,OELTAT 
~ /1-0)5/ X( IGL/2} ,Y(IGL/2) ,DISP( IGL} ,FffiCE( IGL), 

+ XSTroS( 4, 500), YSTPCS( 4, 500} 
~ /ELDA/ I'IDEL(B.500} .~(500) ,N::>TEL(500) ,I-O)[L(500), 

+ N::>TOOL(500) ,t-Or.OL(500) .01 FFCJ'(9 ,500) .BLIB( 144. 500). 
+ PRINC(16,500) 
~ jW.TS/ 9.4(9) ,R-1(9), TM(9) ,R!UA(9} .ET.AM(9) .ETAN,I'IW(9) 
~ /STIF/ EUK(IB,IB).GLC9<(1GL,JGL) 
~ /G#>T/ S, T .SHAPE(B) ,[N)(I)S(8) .cmDT(8) ,TSHAPE(6.J6), 

+ T(NXI)S(6,J6). Tt:NXDT(6.36). TWIW2(6,6) .OSHAPE(J. 72}, 

+ COOXDS(J, 72) ,<VOO)T(3, 72) ,QW1W2(J,9) .WEITRI ( 12 ,6}. 
+ WEIQI\0(18,3) ,PLtCET(12,6) ,PLtCE0(18,3) ,PLtCEL(J) ,WEILIN(J) 

<XM..f:.N /VI>RS/ W1W2,0ETJ ,ETA,C2,F.ACT .~X(8) .~Y(B) ,8(4, 18), 
+ BTC( 18,4) ,N::>,tGI\US,NJ2 ,1-UAEL.~.IG 

c 
ITEST=0 

c 
C ••• Triangular element stiffness 
c 

c 

lr(NTRI .GT .0) THON 
~ 

N::>2-N:>•2 
00 30 IEL•1 .NTRI 

C ••• Initialise 
c 

c 

C'.AU. W.TNJL(EUK, 18, 18, 18, 18,1TEST) 
lllM:L-N::>TEL( I EL) 
MAT=I'IW(IUAEL} 
ET A=fT MI(W. T) 
IF(ETA.EQ.0.0000) THEN 

FI>CT=ETAN 
ELSE 

FI>CT-ETA•ETAN 
END IF 
~(1-UAEL} 
NROW=NOTOOL(IEL) 

C ••• Numerically integrate 
c 

00 20 I G-1 , tGI\lJS 
I P0'.5o-( I G-1) •N::> 
JP()So.l POS• 2 
XPOS=0.0 
~.0 
00 10 IV..l,t-0 
I'IDE~EL( IV ,IUAEL) 
SHAPE(IV}~E(~.IPOS+IV) 
XPOS-XPOS+SHAPE(IV)•X(NODE) 
YPOS-YPOS+SHAPE( IV) • Y (NODE) 
[N)(I)S( IV)•ID-00)5(~, IPOS+IV) 
I:WDT(IV)•~T(~.IPOS+IV) 

10 O:NT llllJE 
XSTPOS(IG,IUAEL)•XPOS 
YSTPOS( IG,IUAEL)•YPOS 
W1W2=TW1W2(NROW,IG) 
CALL BFCRA 

c 
C ••• Store the strain rote operator 
c 

00 12 1=1 ,N::> 
L•2•1 
K=L-1 
BLIB(J~ .IUAEL}-o.cxDX( I) 
BLIB(JPOS+L,t-UAEL)-o.cxDY( I) 

1 2 ():NT llllJE 
CALL ELSTIF 

20 O.."'NTIIIlJE 
c 
C ••• Load the element stiffnees into the Qlabol stiffness 
c 



CALL LCW)( 
c 
C ••• Evaluate the valunetric conponent 
c 

CALL MATWL(EU<, 18, 18, 18, 18, I TEST) 
00110 IG-1,3 

I"'T.,.. IG•2 
T=PLACET(IPOS--1 ,3) 
s-PLACET(IPOS,3) 
CALL DTSHAP 
CALL BFCR.A 
W1W]o.Wli1RI ( IPUS,J) 
CALL PENIILT 

110 cnn tNJE 
c 

CALL LCW)( 
c 
30 CCNT II<UE 

EKllf 
c 
C ••• Ouadri lateral [letTlents 
c 

c 
c 
c 

c 
c 
c 

50 

IF( t'UJ.4D. GT . 0) mEN 
1-0=8 
to02cN:l•2 
to01-«Y.2-1 
00 70 I EL•1 . t'UJ.4D 

• • • In i t i a I i se 

CALL W.TWL(EU<, 18, 18, 18, 18, I TEST) 
~L-«X:l£L( I EL) 
MAI•l TYT'(f'U.4(L) 
ET A=ET .6M( W. T ) 
IF(ETA.E0.0 0000) mEN 

FACT=ETAN 
ELSE 

r IICT mET A• ET AN 
EKllF 
~(~.M:L) 
~L(IEL) 

••• NtJnericolly integrate 

00 60 I G= 1 , t-GAUS 
IPCJS-( ICH )•toO 
Jf'OSoooiPOS•2 
XA::S-0.0 
~.0 
00 50 IV.1 , toO 

PoO:JE="(l)EL ( IV, ~L) 
SHAPE( IV)=OSHAPE(~. IPOS+IV) 
XPOS=XPOS+SHAPE(IV)•X(PoO:JE) 
'lf'OS='YPCJS.+ SHAPE ( IV) • Y (PUlE) 
CNXDS( I V)..a:M><DS( ~, I POS+ IV) 
DNXDT(IV)cQONXOT(~.IPOS+IV) 

CCNTINJE 
XSTPOS( IG.~l)•Xf'OS 
YSTPOS( IG.~l.)•YPOS 
W1W2a0'11W2(~. IG) 

CALL BFCR.A 
00 90 1=1 ,toO 

L=2•1 
K=L-1 
BL I B( JPCS+I<, ~L )...o~XDX (I ) 
BL 18( JPOS+L .~L)...oiXOY( I) 

90 <XNTINJE 
CALl. ELST I r 

60 CCNTINJE 
c 
C ••• Load the element stiffness 
c 

CALL LCW)( 
70 CCNTINJE 

c 

c 
c 

EKllf 

RET\.R'l 
EKl 

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 
c 
C+ 
c 
c 
c 
c 
c 
c 
c-

c 
c 
c 

c 

Sl.£f<OJT I NE PRE!< 

Evaluate the bandwidth, gauss quadrature points, the shape 
functions ond their derivatives. 
Major variables: KSIZE -bandwidth 

TSHAPE, DTSHAP •triangle shape fns. 
~E. ~-quad shaee fns. 
C -elasticity matrix [CJ 

ll.f'LICIT IXU!LE PRECISICN (~.o-w) 
PARM£TER( IGL-M0,JGL•131 ,I<GL~) 
~/CONS/ NTRI ,NQUAD,NINCS,NNOD,KSIZE,KSBW,NNDD2,~T.I~(4), 

+ ~.PI ,BETA,NST ,NSI ,NSEXI,NDS£G,OELTAT 
~ /ELO# PoO:JEL(8,500) .~(500) ,I()TEL(500) ,t-OJEL(500), 

+ toOTOOL(500) ,t-Ol:OL(500) ,Oim:P(9,500) ,BLIB(144,500), 
+ PRINC(16,500) 
~ ,1\AATS/ EM(9) ,R.A(9), l"IA(9) ,JHJ,4(9) .ETN-4(9) ,ETAN,ITYP(9) 
~ /STIF/ EU<(18, 18).GLCO<(IGL,JGL) 
~ /GAPT/ S.T.SHAPE(8~.0NXDS(8},0NXDT(8},TSHAPE(6,36}, 

+ TONXDS 6,36 , Tt:NXOT 6,36 ,1W1W2 6,6 .~ 3, 72 , 
+ QON)(OS~3.72 ,QONXOT~3,72~,0W1W2~J,9~,WEITR1~12,6~. 
+ WE lOAD( 18,J) ,PLACET( 12,6) ,PIXE0(18,J} ,PIXEL(3) ,WEILIN(J) 

a.:t..t.m /VAAS/ a:M'>(21} ,B(J, 18},BTC( 18,4}, 1~1 (5}, IG 
DIMENSION NOGT(6),NOOQ(J).NOD(6) 

••• Calculate semi bandwidth Iron 1110• nodal difference 

ITEST=0 
W.X=0 

I F(NTRI .GT .0} tHEN 
00 30 IELa1 ,NTRI 
~L~TEL(IEL) 
00 10 J•1 .~ 

IST-J+1 
PoO:l1-PoO:JEL(J .~L) 



00 10 K=IST,6 
!DI F=IABS(N:01--N:OEL(K ,"'-.MEL)) 
MAX=MAX0(1DIF,MAX) 

1 0 <X'NT I N.JE 
20 <XNTIN.JE 
30 <XNT I N.JE 

c 
EJ'.lliF 

IF(I'OJ.aD.GT .0) THEN 
00 70 IEL=1 .I'OJ.aD 

tHAEI. aN"')EL ( I [ 1.) 
l)) 60 J~1 . ' 

ISlooJ I r 
I'(() 1-N:O£ l ( J , t-I.M£ L ) 
00 50 K=IST ,8 

ID!F=!ABS(I'((J1-N:OEL(K ."'-.MEL)) 
MAX=MAX0(!DlF.MAX) 

50 <X'NT l N.JE 
60 <X'NT l N.JE 
70 CXNT!N.JE 

c 

c 

EJ'.ll!F 

KSSW..2•(MAX+1) 
KS I zE.,2 •KSBH--1 
IF(MAX.E0.0) CALL CRASH 
IF(KSIZE.GT.JGL) CALL BADLUK 

C ••• Estab1 ish gauss points 
c 

CALL GAUSSO 
c 
C ••• Evaluate triangular •hope fns and derivs 
c 

c 

IF(NTRI.GT.0) THEN 
~T(1)~ 
N1TGP=1 

C ••• (•tohl ish the no. of s~ts of quuss roints used in the mesh ond 
C ••• flog "och with N':JTOOL 
c 

00 150 IEL=l ,NTRI 
~LaNOTEL(IEL) 
~(~L) 
00 130 1~1 ,N':JTO" 
IF(~T( IM'). EO.NGAUS) THEN 

N::>TOOL( IEL)•IM' 
OOTO 150 

EJ'.lliF 
1 30 ceNT I N.JE 

N)TGP=N:)TO"+ 1 
~T ( NJTO") =N:;AUS 
N::>TCOL ( I EL )-«JTO" 

150 <X'NT I N.JE 
c 
C ••• tor each ~et of gauss points evaluate shapes and derivs 
c 

00 230 1'0'-1 • N) 1(1' 
t-CAI.JSo.N:C 1 ( t>{P) 
00 220 ICr-1 .W..AUS 

SPOS=2•1G 

TP()5..6POS-.1 
'i'Ff'LftCET ( sros . toCAUS) 
T ~LftCET ( TPOS, toCAUS) 
Wl=WEITRI (sros,t-GAUS) 
W2=WE I TR I ( TPOS , t-GAUS) 
CALL TSHAFN 
CALL DT9W' 
I f'()S.-( I &-1 ) •6 
00 210 ,~, .6 

~~~POS+~NOP~~POS~-GHAPE~IV~ 
l1)'00)S flO' , Jf\JS o(:NXI)5 I v 
TJ:NXDT f>IY, JPOS oo(fi)([)T IV 

210 CXNT INJE 
TW1W2(f>I:F, IG)~1 

220 <XNT IN.JE 
230 <X'NT l N.JE 

EJ'.lliF 
c 
C ••• Evaluate quadrilateral shape Ins and deriv 
c 

!F(NOUAD.GT.0) THEN 
1'-CO)( 1 )-4 
f'O:X:P=1 
00 190 IEL=l ,I'OJAO 

"'-.MEL =NXlEL (l EL) 
~USS(t-UAEL) 
00 170 IM>-1 .~ 

IF(l'-CO)( 11.1'). EQ.t-CAUS) THEN 
NXX:OL( IEL)=IIR 
OOTO 190 

EJ'.lliF 
170 <XNTIN.JE 

~+1 
1'-CO)(~)-N:;AU$ 
t-O:XOL( IEL)-NXG' 

100 rrnr JN.Jf 
c 

00 760 f>.Ol-1 • r-ro:;p 
~(f>I:F) 
LOOL~1 

IF(NGAUS.E0.9) LOOL•2 
00 250 10.1 ,t-CAUS 

sro5=2•1G 
TPOS=SPOS-1 
Sof>LftCEO( sros, LCOL) 
T..PlftCEO(TPOS, LCOL) 
W1at11Elo-D(sro5. LCOL) 
wc..wE I o-D ( Tl"CS , LCOL) 
CALL QSH.l.FN 
CALL OOSJ.W> 
Ifl05o.( l&-1) •8 
00 240 IY..1 ,8 

JPOS-IPOS+IV 

051-W'E ~f>I:F, Jf'a;~-&W'£ ~ IV~ <XNXDS f>IY • JPOS ...(toOO)S I v 
a:nan ,y. JPO; ..()OO)T 1 v 

240 <XNI I N.JE 
Ofi1W2(f>IY.IG)~1•W2 

250 CCNT IN.JE 



260 <XNTitvE 
OOIF 

c 
270 RET\..F<N 

00 
c 
c 
C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 

c 
(ft 

9.ffi)Jl IN( GAUSSO 

c Set up the gaussian inteqratoan points. 
C MaJOr variables: PLACET, WEITRJ =qauss points and weights for triangles 
C PLACEO, WEIQAD =gauss points and weights lor quads 
c-

JM>LICIT OCU3LE PRECISICN (A-+j,(}-W) 
~ /GAPT/ CQ.46(1385) .WEITRI ( 12 ,6) ,WE lOAD( 18,.3) ,PLACET(12.6). 

+ PLACEO( 18 . .3) ,PLACEL(.3) ,WEI LIN(J) 
c 
C ••• Set up triangles 
c 

c 

c 

c 

PLACET(1.1)c0.3.33.33.3.3.3.33.3.333J00 
PIXET(2. 1 ).{'LAC(T( 1,1) 

G1~.66666666666666700 
G~. 1 6666666666666700 
PLACET 1,3 =G1 
PLACET 2, .3 =G2 
PLACET 3. 3 =G2 
PLACET 4. 3 =G1 
PLACET 5, .3 =G2 
PLACET 6 . .3 =G2 

G1"'l ti00 
(;~ :1)0 
Pi,K(l I , 4 .('LAC( I ( I . 1 ) 
Pi.KET 2. 4 ..PLACET ( 1 . 1 ) 
Pi.KET 3.4 -Gl 
PLACET 4. 4 -G2 
PLACET 5, 4 ooG2 
PLACET 6,4 =G1 
PLACET 7, 4 =G2 
PLACET 8. 4 =G2 

G1m0.81684757298045900 
G2a0.091576213509771D0 
GJ-0.10810301816807000 
~. 4459-4849091 59~ 
PUICE1 1,6 -G1 
PLACET 2 . 6 =G2 
PLACET 3. 6 =G2 
PLACET 4,6 =G1 
PLACET 5. 6 =G2 
PLACET 6. 6 =G2 

PLACET~7. 6 =G.3 
PLACET 8. 6 =G4 
PLACET 9. 6 :{'_,4 

PlJICET 10.6)=G.3 

c 
c 
c 

c 

c 

PLACET ( 1 1 . 6 )-G4 
PLACET ( 1 2 , 6 )..c;4 

••• Set up quadrilaterals 

G1=-0.57735026918962600 
G~1 
PLACEO 1. 1 =G1 
PLACEO 2. 1 ooG1 
PLACEO 3. 1 =G1 
PI.!ICEQ 4 • 1 -G2 
PI.!IC[Q 5, 1 =G2 
PI.JICf.U 6. 1 -G 1 
PlJICEQ I, 1 =G2 
PLACEO 8. 1 =G2 

G1=-0.77459666924148J00 
G~.000 
G3-(;1 
PLACEO 1,2 -G1 
PLACEO 2. 2 =G1 
PLACEO 3,2 =G1 
PLACEO 4, 2 ooG2 
PLACEO 5, 2 -G1 
PL!ICEO 6. 2 -G3 
Pi.KEO 7, 2 -G2 
PLACEO 6.2 -G1 
PLACEO 9 . 2 =G2 
PLACEO 1 0. 2 -G2 
PLACEO 11 ,2 =G2 
PLACEO 1 2. 2 -G3 
PLACEQ 13,2 cC3 
PLACEQ 14,2 =G1 
PLACEO 15, 2 cC3 
PLACEO 16. 2 -G2 
PlH:EO 1 I . 2 ..(',3 
f>LAC[Q 16. 2 -G3 

C ••• Set up triangle welghte 
c 

c 

WEITRI(1, 1)a0.500 
WEITR1(2,1)m0.500 

DO 10 1=1 ,6 
WEITRI(I,.3)~.166666666666666700 

10 CXM'ItvE 
c 

WEITRI(1,4)--0.2612500 
WEITR1(2,4)-wEITR1(1,4) 
DO 20 I..V,8 

WEI TRI (I. 4 )•. 260416666666666700 
20 <XNT 11-UE 
c 

DO 30 1=1 ,6 
WEITRI(I,6)m.5497587182766090-1 
WE I TR I ( I +6, 6 )a0. 1 1 1 690794839005500 

30 CXM'JtvE 
c 
C ••• Set up quadrilateral weights 
c 



00 50 1=1,8 
WEIQAO(I,1)=1.000 

50 CCNTINJE 
c 

c 

c 
c 

G 1~. 55555555555555600 
G2=0.88888888888888900 
G3=C1 

W[JQAOI1. 2 =G1 
WEIQAO 2,2 =G1 
WE IQAO 3. 2 =G1 
W( JI')Afl •, 7 "'~7 
Wfl(~fl ... 7 ... t; 1 
W(JQA() 6.2 .w 
W[JQA() 7. 2 =G2 
WEIQAO 8. 2 -G1 
W[JQAO 9,2 =G2 
W[JQA() 10,2)=G2 
WEIQAO 11.2 =G2 
W[JQA() 12,2 =G3 
WEIQAO 13,2 =G3 
WEIQAO 14,2 =G1 
WEIQAO 15.2 =G3 
WEIQAO 16.2 .(;2 
WEIQAO 17,2 =G3 
WEIQAO 18,2 =G3 

RETI..f<N 
00 

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 

c 
Gt 

SUR)JT I NE TSHAFN 

C Cnl cuI n t e the 8hape f unct 1 ono of o I r o on9od a r e 1-n t 
c-

c 

( 

c 
c 

lt.f'LICIT OCU:lLE PRECI51()-4 (~.0-W) 
~/CAPT/ 5,T,SHAPE(8),00M7(1633) 

P=1.000-s-T 
SHAPE 1 c2.000•5•s-5 
SHAPE 3 =2.000•ToT-T 
SHAPE 5 a2.000•P•P-P 
SHAPE 2 -4.000•5•1 
SHAPE 4 -4.000•T•P 
SHAPE 6 -4.000•S•P 

RETU<N 
00 

C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 

c 
C+ 

Sl..mCUT I NE O.:W.FN 

C Calculate the Quodri laterol shape functions. 
(-

c 

c 

c 

c 
c 

lt.f'LICI T IXl.eLE PRECISI()-4 (A-+i,O-W) 
~/CAPT/ S,T,SHN'E(8),00M7(1633) 

52=5•2.000 
T2=T•2 .000 
SS=S•S 
TT=lol 
SST=SS•T 
STI=S•TI 
ST=S•l 

r-IW'f t • -t .OOB+-<;W;StTT-SST-<;TI)/4.000 
SHAPE 2 • 1 .000-1-SS+SST)/2 .000 
SHAPE 3 c -1.000-ST+SS+TI-SST+STI)/4.000 
SHAPE 4 - 1.eoo+s-n-5TI)/2.000 
SHAPE 5 = -1 .000+5T+SS+TT+SST+5TI)/4.000 
SHAPE 6 = 1.000+T-$S-SST)/2.000 
SHAPE 7 • -1.000-5l+SS+TI+SST-5TI)/4.000 
SHAPE 8 = 1 .000-s-TT+5TI)/2 .000 

RETI..f<N 
00 

C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 

c 
C+ 

SUR)JTJNE DTSHAP 

C Evaluate the derivatives of the triangular shape functions. 
c-

c 

(.; 

c 
c 

c 
c 
c 

c 

c 
c 

lt.f'LICJT ro..8LE PRECI51()-4 (A-+i,O-W) 
~/CAPT/ 5,1,SHAPE(8),DNXDS(8),DNXDT(8),00M8(1617) 

T 4oo4. 000• T 
S4oo4 . 000•5 

Derivatives w.r.t. s(xl)-coord 

DNXDS 1 -54--1 . 000 
DNXDS 3 -e. 000 
DNXDS 5 <54+ 14-3. 000 
DNXDS 2 •14 
DNXDS 4 -T4 
DNXDS 6 -4.000-14-2.000•54 

••• Derivatives w.r.t. t(eto)-coord 

DNXDT 1 -0.000 
DNXDT 3 •14-1.000 
DNXDl 5 -64+ T 4-3. 000 
(N)([)T 2 .-&4 
(N)([)l 4 -4.000-54-2 .000•14 
(N)([)T6-S4 

RETI..f<N 
00 

C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• c 
r 



c 
C+ 

sa<CUT I NE [)09-W' 

C Calculate the derivatives of the quodri lateral shape functions. 
c-

c 

c 

1'-f'LICIT OCUlLE PRECISICN (A-H,o-w) 
~ /CW>T/ S, T ,SHAPE(8) .CNXDS(8) .CNXDT(8) .co.tl( 1617) 

H•l•T 
SS.OS•S 
51-5•1 
12a2 .000• T 
S2e2.000•5 
ST2e2.000•ST 

C ••• Derivatives w.r.t s(xi)-coord 
c 

c 

DNXDS 1 •(S2+T-ST2-TT)/4.000 
CNXDS 2 -sT-s 
DNXDS 3 •(11-ST2-1+52)/4.000 
CNXDS 4 n(1.000-TT)/2.000 
0NXDS S ~(S12+TT+S2~T)/4.000 
CNXDS 6 ~sr-s 
DNXDS 7 •(S2-T+ST2-TT)/4.000 
DNXDS 8 --mxDS( 4) 

C ••• Derivatives w.r.t. t(eto)--;:oord 
c 

f. 

c 
c 

CNXDT 1 -~S+T2-5S-ST2)/4.000 
DNXDT 2 • 55-1 .000)/2.000 
CNXDT 3 = T2-S+ST2-SS)/4.000 
CNXDT 4 -ST-T 
ONXDT S =(SS+ST2+S+T2)/4.000 
CNXDT 6 --DNXOT(2) 
ONXDT 7 =(T2-S+~~ST2)/4.000 
llNXI)T II -51- 1 

RETI..RN 
E}() 

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 
(" 

C+ 

sa<CUT I NE BFCR.l 

C Calculate the canponents ot the.stroin rote operator (B). 
C Major variables: ONXDX. ONXDY -global derivatives 
C DET J =determi nont of Jacobi on 
c-

1'-f'LICIT OCUlLE PRECISICN (A-H.o-w) 
OCUlLE PRECISICN JAC(2,2).JACINV(2.2) 
PARAMETER( IGL=680.JGL=131 ,KGL=66) 
~ ;tflJS/ X( IGL/2), Y( IGL/2) ,019'( IGL). FCA::E( IGL). XCXM1 ( 4000) 
(X).t.(.'N /ELEM/ N:OEL ( 8 • 500) . t-GAlJSS ( 500) • t-OT EL ( 500) , N:XJEL ( 500) • 

+ t-OTOJL(500) .t-OX:OL(500) .DI FTCP(9 .500) .BLIB( 144. 500). 
+ PRit-£(16,500) 

Ct-.....:N /CAPT/ S. T . 9-W'E ( 8} . I:MDS{ 8) . ('N)(I)T ( 8) . T9-W'E ( 6, 36) . 
I TT'f'l'(IY;(fi,Jii), TrtMlT(Ii,.,f\) ,!Wiw;>(fi,f;) .~W'r( '· 77). 

+ OCNXDS(J, 72) ,<VIXOT(3, 72} ,ON1W2(3,9) ,WEiffil (12,6), 
+ WE loaD( 18.3) ,PLACET( 12 ,6) ,PLACEO( 18,3) ,PLACEL(3) ,WEILIN(3} 
~ /VAAS/ W1W2 ,DETJ .ETA,C2 ,F.ACT ,CNXDX(8) ,CNXDY(8) ,8( 4, 18), 

+ BTC( 18,4) ,t-O,t-GAUS, ICASE.N..t.£L.~. IG 
c 

ITEST=0 
c 
C ••• Calculate the Jocobion 
( 

J.AC!1 '1 ~~.000 .I,AC 1,2 ~.000 
J.AC 2,1 ""l.000 
JAC 2,2 =0.000 
00 101~1.t-O 

N:OE~IABS(N:OEL(IN:O.NUUEL)) 
~X(N:OE} 
~Y(N:OE) 

JAC~I, 1~cJ.AC~1,1~+0NXDS~IN:O~•XNOD JAC 1 . 2 -JAC 1, 2 +ONXDS IN:O •YN:O 
JAC 2, 1 -J.tC 2, I -+{)II)(!)T IN:l> •XNOD 
JAC 2. 2 -J/>C 2, 2 -+{)II)(!)T IN:l> •YN:O 

10 CCNT 1"'-.JE 
c 
C ••• Evaluate determinant ond inverse 
c 

c 

~~~~I>C~1 ~:~·~)~~/>C~~~22i}o~~(1,2)•JAC(2,1) 
JACINV 1,2 -.JAC 1,2 /DETJ 
JACINV 2,1 -.JAC 2, I /DETJ 
JACINV 2.2 • JAC 1,1 /DETJ 

C ••• Store the inver~e Jocobion 
c 

c 

lfl0'.3Fo IG-1 )•4 

PRit-£ IP05+1 ,N..t.£L~-J.tCINV~1, 1~ 
PRit-C IF'OS+2.N..M:L -JACINV 1,2 
PRINC IPOS+J,t-.I.M[L -J.tCINV '1. 1 
PRill(; IPCJS+4,N..t.£L -JACINV 2.2 

C ••• Evaluate strain rote operator 
c 

00 20 1=1 ,t-O 
DNXDX(I}-JACINV(1,1}•0NXDS(I}+JACINV(1,2}•DNXDT(I} 
CNXDY( I )=JACINV(2, 1 )•DNXDS( I )+JACINV(2, 2)•CNXDT( I) 

20 CCNTI"'-.JE 
c 

c 
c 

RE llli'N 
E}() 

C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 

c 
C+ 

sa<CUTINE ELSliF 

C Calculate the element stiffness. 
C Major vorioblee: DNXOX, (NX[)Y -global derivatives 
C ETA -element viscosity FACT -Penalty parameter 
C ElK -elament •tlffn•a• 
c-



c 

IWPLICIT COJBLE PRECISICN (A-li,D-W) 
PAAMIETER( IGL=880,JGL=1JI ,KGL=66) 
CXM.QJ /ro6/ NTR I , tQJAO. N II'CS ,1«:0, KS I ZE. Kstrtl, NNC02 , NW\ T , I~( 4) , 

+ Gi'WlM, PI , BET A, NST. NS I . NSEG. t-.(l)SEG. DELTA T 
CXM.QJ /ST IF/ ELK( 18, 18) .GLOOX( IGL,JGL) 
CXM.QJ /ELEM/ N:DEL(8. 500) .I'G'JJSS(500) ,r-t:>TEL(500) ,N:Xl£L(500). 

+ r-t:>T<XlL(500) .I\OOXJL(500) ,OIFFCf>(9 ,500) .BLI8( I 44. 500). 
i PRit-C( 16,500) 
~ /VI>RS/ I'IIW2 .OETJ .ETA,C2 ,ft<CT ,ONXDX(8) ,I..Wl)Y(8) .B( 4. lf.l). 

f.JTC( 11:1.4) .m.t-~'.AIJS.ICA.'>F..tU,<rt ,IRON.IG 

C ••• Initialise 
c 

c 

ITEST-=0 
~·2 
CALL MAlNJL(8,4, 18,4, 18,1TEST) 
CALL MATNJL(BTC, 18,4, 18,4, I TEST) 

C ••• Cn I cuI ot e t h~ non-r"ro cCY!Iponent" nf [BT ]( C I <'-:1), hot h •hAor and 
C ••• volumetric components con be integrated directly for the QUads. 
c 

c 
c 
c 

c 
c 
c 

tO ,. 

00 10 (£1 .r-t:> 
L=2•1 
K=L-1 

8~1 ,K~o{)N)(DX~ I~ 8 2 . L o{)N)(DY I 
8 3.K =ONXDY I 
8 3 , L ..oNXDX I 

••• Check for QUodri laterals 

IF(~.EQ.4) THEN 

••• Chock for owls~etric 

lr(NST.EO. t) TH[N 
8( 4 .K)oo&-W'E( I )/)<SIPOS( IG.N..ML) 
BTC K,l ooB(I,K)•2.000•ETA + (8(1,K)•6{4,K))•FN::T 
BTC L.l = 8(2.L)•FIICT 
BTC K,J ooB(J.L)•ETA 
BTC K,4 =8{4,K)•2.0000•ETA + 
8TC K.2 = 
BTC L.2 =B(2.L)•2.000•ETA + 
BTC L. 3 ..S(J. L)•ETA 
BTC L,4 -

ELSE 

{8( 1,Kl+8(4,K))•FACT 
(8( I ,K +8( 4 ,K) )•FACT 
B\2.L •FACT 

A(2.1.)•rt<CT 

BTC K.l =8(1 .K)•2.000•ETA + 8(1 .K)•Ff<CT 
BTC L,l = 8(2.L)•ff<CT 
8TC K.J =B(J,K)•ETA . 
8TC K.2 = 8( I,K)•Ff<CT 
BTC L.2 ooB(2,L)•2.000•ETA + 8(2.L)•Ff<CT 
BTC L.J =B(J.L)•ETA 

OOIF 
ELSE 

BTC~K. I~..S~I .K~•2.000•ETA BTC K,J oil J.K •ETA 
8TC L.2 =8 2.L •2.000•ETA 
BTC L,J =8 J.L •ETA 

rt-41Ir 
a·w ,,.,,. 

C ••• C.ol,·olot~ nt~n~r irnl int.-grnt ion np~rotor 
c 

c 

IF(NST.EO. I) THEN 
DV=WIW2•0ETJ•2.6060•PI•XSTPOS(IG,~L) 

ELSE 
DV=W1W2•DET J 

EN:> IF 
OIFFCf>( IG.~L)=()II 

C ••• Evaluate the et~nt stiffness 
c 

00 40 NRI:l!> 1 . N02 
00 .30 NCOL~.r-t:>2 

DI..M=0.0 
00 20 J=1,4 
DUM=DUM+BTC(~.J)•B(J,NODL) 

20 CONTINUE 
ELK {NRCW, NCOL )=ELK{~. NXJL )-iOU\olo[N 

30 CONTINUE 
40 ('(NT I NIE 
c 

c 
c 

RETURN 
00 

Coooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo 

c 
c 

c 
C+ 

SLmOJT INE PENALT 

C Calculate the penalty function contribution to the element stiffness. 
C l.bjor variables: FN::T =penally parameter ELK =element stiffness 
c-

c 

IWPLICIT COJBLE PRECISICN (A--l-1,04'1) 
PARM.<ETER( IGI.oo61:10,JGL~I31 ,KGL=66) 
CXMA:N /r:fJIIS/ NTR I • NOUAO, N II'CS, NNOD ,I<S llE, ~, NNOD2 ,II\'CI T , I OLM( 4) • 

i ~.PI,BETA.NST ,NSJ.NSEG,NOOSEG,DELTAT 
CXM.QJ /STlf/ ELK( 18, 18) ,GLOBX( IGL,JGL) 
CXM.QJ /GAPT/ S,T,SHAPE{8~,DNXDS(8).DNXDT(8),TSHAPE(6,36), 

+ TDNXDS(6.36 . TUNXDT{6,36). T\'111'12(6.6) .OSHAPE{J, 72). 
+ C!JNXDS(J. 72 .ODNXDT(J, 72) ,Q':J1W2(3,9) ,00\42(258) 

CXMA:N /VI>RS/ 1'11\'12,0ETJ ,ETA,C2,FACT ,DNXDX(8) ,DNXDY(8) .8(4, 18). 
+ BTC( 18,4) ,r-t:>,N:;.AUS,N02,~L.~.IG 

C ••• Reduced inte9rotion of \he valumstric component 
c 

ITEST..e 
c 
C ooo Initialise 
c 

c 

CALL WITNJL(8,4. 18,4, 18, ITEST) 
CALL MATNJL(BTC, 18,4,18,4,1TEST) 

C ••• Calculate non-zero components of the stiffness 
c 

00 10 1~1.r-t:> 

L~2•1 

K=2•1-t 

8~ I ,K~-oNXDX~ I~ 8 2 . I. -oNXOY I 
n .\ . K co(]N)(J)Y I 



8(3, L)=CNXDX( I) 
IF(NST.E0.5) THEN 

B( 4 .K)=9-W'E( I )/XSTPOS( IG•2-1 .t-.t.MEL) 
BTC K,1l=(B(1 ,K)-+tl(4,K))•FN.:T 
BTC l. 1 = B(2.L)•FACT 

BTC K,2 = BTC!K, 1} 
BTC K,4 • BTC K,L 
ATC l.2 • BTC L. 1 
BTC L.4 • BTC L. 1) 

ELSE 

BTC~K. 1 !=9l1 .K~•FACT BTC L. 1 =9 2.L •FACT 
BTC K,2 =9 1,K •FACT 
BTC L.2 -e 2.L •FACT 

OOIF 
10 o:Nllt-.I.JE. 
c 

OV=OI FFCP( IG .t-.I.MEL) 
c 
C ••• Evaluate the element stillness 
c 

DO~ ~1.1o02 
DO 30 i'O)L-t>llON ,ICZ 

OCM=0.0 
00 20 J=1,4 
~TC(~.J)•B(J,i'O)L) 

20 o:NTit-.t.JE 
ELK(~ ,i'O)L)=ELK(~ ,i'O)L)-+O..M•OV 

30 o:NTit-.I.JE 
40 o:NT lt-.t.JE 
c 

c 
c 

RE:l\.Rol 
00 

C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 

c 
C+ 

su:R)JT INE Lew:»< 

C Load the element !tiffne!! into the global !liflne!! motri•. 
C Major variable•: ELK -element •tiline•• NODEL -element node• 
C GL<:O< •system mot r i • [K) 
c-

c 

IM'LICIT OCUlLE PRECISICN (IH-l.o-w) 
PARIIMETER( IGL=880,JGL=131 ,KGL-.66) 
(XM.(:N /o:NS/ t-.ITR I , t-.I)J.A(), N I t-CS, ~, KS I ZE, KS81'1, ~2. t.MA T , I CUA( 4) , 

+ GMM\,PI,BETA,NST ,Nsl .NSEG.NODSEG.DELTAT 
(XM.(:N /ST IF/ ELK( 18. 18) ,GLca<( IGL ,JGL) 
(XM.(:N /VARS/ CCMl( 165) ,t(),N:OAI.JS,ICZ ,t-.t..t.£L.~. IG 
(XM.(:N /ELEM/ t()OEL(8,500) .~(500) ,t()TEL(500) ,NXJEL(500), 

+ t()T(X)L(500) ,N:OX>L(500) .01 FFCP(9 .500) .BLIB( 144 .500). 
+ PRINC(16,500) 

C ••• Fill in lower triangle of element stiffness 
c 

00 ')0 1Filo1,fo4)2 
I o"l ~oil .If II •I r II . ~.ro 

fl~(.lllt.llll )aiiK(IIII,.II'II) 

50 o:NT lt-.t.JE 
c 
C ••• Load the element !lillne•! into the bonded •y!lem motri• 
c 

c 

DO 10 1=1 ,t() 
IOOL=2•NODEL(l,t-.I.MEL)-2+KS81'1 
IELK•2•1-2 

C ••• Evaluate the coi~~M n~~nber of the two dol 
c 

c 

00 20 J=1,2 
JCX>L=ICX>l + J 
JELK=IELK + J 
00 30 K•1 ,t() 

IRCW-2•NODEL(K ,t-.t.MEL)-2 
KELK•2•K-2 

C ••• Evolt•ole the rt:~~~ nllllber of the two dol and reduce the coi!IM 
c 

00 40 L=1 ,2 
KRCW- I ROlf + L 
KOOL-.JCX>L - I<JOii 
LELK-KELK + L 
GLca<(KROW,KOOL)-GLca<(KROW,KOOL)+ELK(LELK,JELK) 

40 o:NTlt-.tJE 
30 o:NTit-.IJE 
20 o:NT!t-.IJE 
10 CXNTit-.IJE 
c 

c 
c 

RE:l\.Rol 
00 

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 
c 
C+ 

su:R)JT I NE B:).N)2 

C Enforce the Dirichlet boundary conditions e•oclly by adding each known 
C component Ia free nodes in the force vector. 
C Major variable!: NFIX -no. of liKed dol OF!X •known value 
C GLca< •ayalem motrl• [K] FORCE •force vector IFI 
c-

c 

c 

li.PLICIT OCUlLE PRECISICN (4-+l,o-w) 
PARIIMETER( IGL=880,JGL•131,KGL-66) 
(XM.(:N /o:NS/ t-.ITRI.~.Nlt-CS.~.KSIZE.KS81'1.~2J~T .ICUA(4), 

+ GMM\,Pl ,8£TA,NST ,NSI .NSEG,NODSEG.DELTAT 
(XM.(:N /STI F / ELK( 18, 18) ,GLca<( IGL,JGL) 
(XM.(:N /NODS/ X( IGL/2). Y( IGL/2) .DISP( IGL) ,FORCE( !GL) ,XCOol1 ( >4000) 
~ /FIXT/ OfiX(2,S00),NOFIX(500),1f~(2,500),NfiX.NEXT,NSTOP 

lf(Nf!X.E0.0) RETURN 

C ••• Subtract the known value~ from the force vector 
c 

00 10 1=1,Nf!X 
00 10 J•1.2 
k~2•NYIX( I )+J-:;> 
lf(lriK.(J,I) f.O 1) nif.N 



00 20 t-0)=1 .~2 
JCDL=KSBN+l<-N:O 
I F(JCDL .GT. 0. I«J. JCDL. LE .KSI ZE) 

+ FORCE(NOD);fORCE(NOD)-GLOBK(NOD.JCDL)•DFIX(J, I) 
20 CONTINUE 

OOIF 
10 CX'NTINUE 
c 
C • • • I nse r t U•e e •ac t eo I u I i on 
c 

00 25 1=1 ,NFI X 
00 25 J=l .2 

K=2•N:lFIX( I )+J-2 
IF (I Fl.JIG( J, I ) . EO. 1) ll-lEN 

00 30 1110'1=1 .~2 
JCDL=KSBN+l<-1~ 
IF( JOOL .GT. 0. I«J. JCDL. LE .KS I ZE) GLOBK( I~, JCOL)~. 000 

30 CONTINUE 
DO 40 ICOL=1 ,KSIZE 

GLOBK(K, IOOL)=0.000 
40 CONTINUE 

GLOBK(K,KSBW)=I .000 
FORCE(K)..OF'IX(J, I) 
EWIF 

25 CONTINUE 
c 

c 
c 

R~ 
fK) 

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 

c 
C+ 

'lfU.liiiNI" fHIY4c, 

C Calculate the contributions to the global Ioree vector lor body 
C forces acting in the positive y-direction. Note that 9ravity is 
C 1.0 lor the wave-test model. 
C Major variables: RH::M =density ol moterial type 
C FORCE =Ioree vector lrl 
c-

c 

II.PLICIT OCUILE PRECISICN (A-H,o-w) 
PAR!oMETER( IGL=(l80,JGL•I31 ,KGL~) 
~ /o:::NS/ i'lffi I , tOJAO, N I tCS, ~, KS I ZE . KSBW. t«X>2 . t-MII T • I CUA( 4) . 

+ GN.t.\1\,PI .BETA,NST ,NSI ,NSEG,NODSEG.DELTAT 
~/NODS/ X( IGL/2). Y( IGL/2) .DISP( IGL) ,FORCE( IGL) .XCO.,n (4000) 
~ ,.W.TS/ 9.4(9) ,RA(9), 'N(9) ,RH::M(9), ETN-4(9), ETAN. ITYP(9) 
~ /El9.4/ NOOEL(B.500) ,1'-GAUSS(500) ,N:JTEL(500) ,I'-IXIEL(500), 

+ N:JTOOL(500) ,t-OXX>L(500) ,D!FF'CP{9, 500) ,BUB( 144 .500), 
+ PRINC(16,500) 
~ /GAPT/ S, T .SHAPE(B~ ,DNXDS(B) ,CNXDT(8), T9-i.AP£(6,.36), 

+ TDNXDS 6,.36 , TCNXDT 6,.36 , TW1W2 6,6 ,051-W'E J,72~. 
+ cnlXDSh.n .WOOJTb.nLcw,W2b.9LWEITRI~12.6 . 
+ WE lew:>( 18,J) .PU'CET( 12, 6) ,PU'CEO( 18,J) ,PU'CEL(J) .WEI LIN(J 

IF(i'lffil .GT .0) THEN 
DO .lA lfi•I,NTRI 

N MIJ.-«)If 1.( I [1.) 
M/11~1 Tll'(NMI'.I.) 

c 

~(MilT) 
I F(ETMI(M/IT). EO. 0 .OCOO) THEN 

rnA II= 1 .ocoo 
ELSE 

GRA\1=9 . 81 000 
FnliF 
1-('.Al~(IO.f:L) 
~TOJL(I£L) 
fL~·~v 

C ••• Integrate the element weight to give the nodal forces 
c 

DO 20 IG-1.~ 
IAJS=( IG-1 )•6 
DV=OIFFOP(IG,IO.f:l) 
00 10 INT=1 ,6 

SHAPE(INT)•TSHAPE(NROW,IPOS+INT) 
NCD-N::OEL ( I NT ,IO.f:L) 
FORCE(2•NOO)-sHAPE(INT)•F'l~•OV+FORCE(2•NOD) 

10 CONTINUE 
20 CONTINUE 
30 CONTINUE 

c 
EWIF 

IF(tOJAO.GT.0) ll-lEN 
DO 70 IEL=1 ,tOJAO 
IO.f:L~L( IEL) 
M/IT=I TYP(IO.f:L) 
RJ-()oRJ-O.l(M/1 T ) 
IF( ETIIM(M/IT). EO. 0 .OCOO) 'THEN 

eRA II= 1 .OCOO 
EI.SE 

GRAII-9.R1000 
f'Nllf 
t>CAI~(IO.f:L) 
~L(IEL) 
Fl~GRAV 
DO 60 IG-1,~ 

DV=DIFFOP( IG,IO.f:L) 
IPIJS.=( IG-1 )•8 
DO 50 INT•I .8 

9-W'E( INT).()SI-W'E{NROW, IPOS+JNT) 
NOD-NODEL(INT,IO.f:L) 
FORCE(2•NOD)-sHAPE(INT)•FL~•OV+fORCE(2•NOD) 

50 CONTINUE 
60 CONTINUE 
70 CONTINUE 

c 

c 
c 

EWIF 

R~ 
fK) 

C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 

c 
c 
Ct 

9...mOJTINE ~ 

C Calculate the convective operator (H] using the latest velocities, 
C and assuming the Boussinesq approx. 
C Major variables: FOUT -convective operator (H] RHOM adensity 



c 
c-

c 
c 
c 

c 

c 
c 
c 
c 

30 
c 
c 
c 
c 

019" =<:urrent velocity solution Jvl 

!~LICIT IXUlLE PRECISICN (A-H.~) 
PAR!>METER( IGL=880,JGL=131 ,KGL=66) 
('().t.CN /rotS/ Nffi I , tUJ.AD, N II'CS, ~, KS I ZE. KS8'Ufl:D2, I'M\ T , I co.4( 4) , 

+ ~.PI,BETA.NST ,NSI,NSEG,I'O)SEG,DELTAT 
('().t.CN /lmS/ X( IGL/2) .Y( IGL/2) .019"( IGL), FCR::E( IGL), Xco.41 ( 4000) 
('().t.CN ;\NITS/ £M(9) ,N(9), N(9) ,RH:M(9) ,ETN.4(9) ,ET.AN,lTYP(9) 
('().t.CN /WM/ liD( l. ( 6 , 500) . N::.AUS5 ( 500) ,1•m El ( 500) , t-l.U L ( 500) . 

+ ~·HO)L(~) ,N))))L(~) ,OiffCfl(9,!'100) ,FII.IFI( 144.~), 
+ PRIN:(16.500) 

('().t.CN /FIXT/ OFIX(2.500).~1X(500),1FLAG(2.500),NFIX,NEXT,NSTOP 
('().t.CN /STIF/ ELK(18,18),GLC9<(1GL,JGL) 
('().t.CN /VI':£/ DSTCRE( 12,900) ,FlNlT( IGL) ,fOJT( IGL) .~( IGL) 
('().t.CN /GAPT/ S, T, SI-W'E(6~ .~(6) ,CNXDT(6), TSI-W'E(S.:\6), 

+ ~ 6,36 ,TCNXDT 6,36 ,1W1W2 6,6 ,051-W'E 3,72 . 
+ WIXDSb.n .<XNXInb.nLON1W2b.9l.WEITRI~12,6l. 
+ WEI<Wl( 16,3) ,PLACET( 12 ,6) ,PLACEO( 16,3) .PLACEL(3) ,WEI LIN(3) 

('().t.CN /VAAS/ W1W2 ,OET J ,RH:l,C2, fACT ,CNXDX(8) ,CNXDY(8) ,8( 4, 16). 
+ VEL(2) ,DVEL(2, 2) ,co.43( 66) ,r.D,r-GAUS.~ ,t-U.£L,i'of0'1, IG 

• • • In i t i a I i se 

lTEST=0 
~(1) 
CALL VEOUL(fOJT.IGL.~2.lTEST) 

IF(tUJ.AO.GT .0) THEN 
00 10 1EL=1,to0JAO 

t--0=8 
r-D2=t.0•2 
loUAELaNX!EL( IEL) 
~("'-..MEL) 
~»nl.( I f.L) 
CALL ""lt-UL(EI.K,18,18,18,1R,II(ST) 
00 20 1(;.1 .~~Al.f~ 

lfDS..( IG-1 )•r-D 
OV=DIFFCP( IG.!'-Il.MEL) 
CALL VEOUL(VEL, 2. 2. IT EST) 
CALL ""Tt-UL(OVEL.2.2.2.2.1TEST) 

••• Unload the shape functions and derivatives at the 90uss 
••• point, calculate the velocity and it's derivative 

00 30 toa)..1 , r-1) 
IIDE=KOEL(I'Ul. t-U.£L) 

SI-W'E ~liD ~=051-W'E ( l'ofO'I . I P05+N:D) 
CNXDX liD eE!LIB( IPOS•2+2•1U}-1 ,Nl.MEL) 
OtiXDY liD eE!LIB( IPOS•2+2•N:D ,i'Uo4EL) 
VEL(1)=VEL(1)+SHAPE(r-DD)•OISP(2•r-DDE-1) 

~~~2!l~~~~~SHAP!1 ' 1 E~~~O!~(~:~~E!~•r-DDE- 1 ) 
OVEL 1,2 =OVEL 1,2 +CNXDY N:D •DISP 2•N:DE-1) 
OVEL 2,1 .OVEL 2,1 +CNXDX r-oD •019" 2•r-DDE) 
DVEL 2,2 -DVEL 2,2 +CNXDY r-oD •OISP 2•1IDE) 

CONT lt-UE 

lnteqrotP. the velocity-derivative product to give the 
conv~ct iv~ ope rotor 

()) 40 1-l).)-1 . ft.) 
~Jil~.UH(r-lll.~t.t.l) 
retJl (2•~[-1 )•rCtJT ( 2•ft.l)E-1 )-RIO•OV•SI-W'E(N:D) • 

40 
20 
10 

c 

c 
c 
c 
c 

80 
c 
c 
c 
c 

+ 

+ 

( DVEL(1,2)•VEL(2)) 
fOJT(2•1'UlE),.f'OJT(2•rm£)~•51-W>E(I'Ul)• 

(DVEL( 2, 1) •VEL( 1) ) 
o::NTIIVE 

o::NT It-ruE 
o::Mit-UE 

OOIF 

IF(NTRI.GT.0) THEN 
00 60 IEL•1 ,Nffil 

r-o-6 . 
r-1)2-«)•2 
t-U.£L=t.OTEL( I EL) 
~(t-U.£L) 
~TCOL(IEL) 
CALL IAANJL(ELK,18,18,16,16.1TEST} 
00 70 I 0= 1 • r-GAUS 

IPOS=( IG-1 )•r-D 
OV=OIFFOP(IG,t-U.£L) 
CALL VEOUL(VEL,2,2,JTEST) 
CALL IAANJL(DVEL,2,2,2,2.1TEST) 

••• Unload the shape functions ond derivatives ot the gauss 
point. calculate the velocity and it's derivative 

00 80 toa)..1 'r-1) 
IIDE-«::E L (liD . t-U.£L) 
SI-W'E~I'Ul~=TSI-W'E(I'ofO'I, IPOS+N:D) 
[)'IXDX rro .flUB~ IPOS•2+2•111D-1 ,t-U.£L) 
CNXDY rro .flUB IPOS•2+2•1'Ul ,t-U.£L) 
VEL ( 1 )-VEL( 1 )+SI-W'E N:D)•DISP(2•rm£-1) 

~5~[2~~~~E~~i~SI-W'E~1,1~~=0~~~(~~~E~~·N:DE-1) 
OVEL 1.2 -ovEL 1,2 +CNXDY Nl) •DISP 2•N:DE-1) 
OVEL 2, 1 -ovEL 2. 1 +CNXDX N:D •DISP 2•N:DE) 
OVEL 2.2 -ovEL 2.2 +CNXDY N:D •DISP 2•N:DE) 

CCNTIIVE 

Integrate the velocity-derivative product to give the 
force increment 

00 90 ~1.r-D 
N:DE=KOEL(N:D, t-U.£L) 
FOJT(2•1IDE-1 )-FOJT(2•rm£-1 )-fH>oOV•9W'E(IID)• 

+ (DVEL( 1,2)•VEL(2)) 
FOJT ( 2•r-DDE)-FOJT ( 2•rm£)-fH>oOV•9W'E(r-DD) • 

+ (DVEL(2, 1 )•VEL( 1)) 
90 o::NT liVE 
70 CONTINUE 
60 o::NT I IVE 

END IF 
c 
C ••• Ensure Dirichlet conditions 
c 

IF(NFIX.GT.0) THEN 
00 100 1•1,NriX 

00 100 J-1.2 
k'~2•N)f'IX( I )+J-2 
lf(IH . ...-;(J,I).l0.1) fWI(K)~.000 

100 COlT lt'U[ 



En) IF 
c 
C ••• ~ultiply each cm~ponent by the stability factor 
c 

1'0 tiOO 1•1 .mlO 
FOJT( I )*FOJT( I )•~•DELTA! 

600 <XNTit-UE 
c 

c 
c 

RETU<N 
En) 

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 

c 
C+ 
c 
c 
c 
c 
c 
c 
c 
c 
c-

c 

c 
c 
c 

Sl80JTINE Tlt..&>L 

Evaluate the t ime-<lependent solution to the Novier-Stokes' equations 
using o predictor-corrector algorithm incorporating the free surface 
of the fluid. 
~jor variables: GLOBK =system motri• [K] FORCE =force vector IFI 

OISP =current velocity lvl 
AMASS =inertial term [M] FOUl =convective [H) 
OPART, VPART. APART•porticle displ, vel, and ace 
OMESH, VMESH, ~SH=mesh displ, vel, ace 

IM'I.ICIT OCUli.( PllECISI(tJ (A·H,G-W) 
PAFUIMF Tf:R( IGI.-IIM, .JGI•I.II ,>(;! ~li) 
C(M.OI /('f'tf;,/ NHll ,t-O.W),NII{':<;,~O),K~.I/r ,l<<nfj,t«''7 .~T .ll:X.M( 4). 

~ \~.PI .ElEIA.NSI .NSI.NS(t;,Jo.l).l':l(G,OHIAI 
o:.t..M:::tJ /t¥J)S/ X( IGL/2). Y( IGL/2).DISP( IGL). FORCE( IGL). X<.XMI ( 4000) 
co..M:N /"TIF/ ELK( 18.18) ,GLOBK( IGL,JGL) 
CUM:N /FRCN/ GL08K0(1GL,JGL) 
.co..M:N /STF4/ GLOO<L( IGL,KGL), FORCE0( IGL) ,1'-R:PIV( IGL) 
a::M.Qo.l ;Mf<TS/ ~(9) ,R.4(9), 'N(9) .R!-0.4(9). ET.AM(9), ETAN, I T'VP(9) 
a::M.O'ol /ELf:W JoOJEL(B,500) .~(500) .~TEL(500) ,toroEL(500). 

+ ~TCOL{500) .t-OXX>L(500) ,OIFFOP(9,500) .BUB( 144 .500). 
+ PlliNC(16,500) 

o:.t..M::tl /VISC/ OSTCRE( 12, 900) ,FIN IT( IGL). FOUl( IGL) .Mv.SS( IGL) 
OOMMON /FIXT/ OFIX(2,500).~1X(500),1FLAG(2,500),NFIX,NEXT,NSTOP 
OOMMON /VARS/ W1W2 ,OET J ,RH:>,C2,F~T ,ONXOX(8) .ONXOY(8) .8(4, 18). 

+ BTC( 18,4) .~.NGAUS.~2 ,t-UA:L.NSLRF, IG 
OOMMON /WAS/ ELSI ZE(2, 500) .DELl ,NLOAO( IGL). TIOTAL 
OOMMON /M'NE/ VPART( IGL) .\h.AESH( IGL) .AP~~ IGL~ ,STRANS( IGL). 

+ A TRANS( IGL) .DMESH( IGL) ,APART IGL ,.AMESH( IGL). 
+ 'MSH2(1GL),[M[SH2(1GL).XOLD IGL ,YOLD(IGL) 

Olt.CISI()ol OLM.f(( IGL) . .AMESH2( IGL). 

N llffi.=1 
ITEST=0 
OELT=0.0 
TTQTAL=0.0 
l(fM'->?1'1 
1'-llll·l 
('X.}.Mo('.N.MA •llfl. TAT 

••• I nit iol ise 

CALL VEC:U"P(X.IGL.XOLD.IGL.t«''.ITEST) 

c 

5 
c 
c 
c 

CALL VECIXP Y,IGL,YOLD,IGL,!HD,ITEST) 
CALL VEOUL \M2SH, IGL,!HD2 ,ITEST 
CALL VEOUL VPART. IGL ,!HD2, ITEST 
CALL VEOUL M>ART, IGL .t«''2. IT EST 
CAl.l. V[(]IIJL [).£SH,IGL,t«''2.1TEST 
CALL VECNJL ~l.IGL.t«''2.11EST 
CALL VlOUL FINIT,IGL,NNOD2,1TEST 
CALL ~OOL OST~E.12,900,5,900,1TEST) 

00 5 1=1 .NFI X 
00 5 J=1 ,2 
K=2•~1X( I )+J-2 
IF( IHAG(J ,I). EO. 1) VPART(K)-oFIX(J .I) 

CCWit-UE 

••• Flog the Dirichlet conditions 

00 8 I RCW-1 . !HD2 
(UMl' ( I R()tj)ao0. 0 
00 11 1=1 .NFI X 

00 11 J=1,2 
K=2•~FIX( I )+J-2 
I F(l<. EO. IR()tj.AI-(). IFLAG{J, I). EO. 1) (UMI'(K)m1 .0 

11 ccmtt-UE 
8 CCWit-UE 
c 
C ••• Start the time-stepping algoritt-rn 
c 

0) 21'1 I~J-1,NINCS 

c 
C ••• Initialise for thle lncr-nt 
c 

00 110 1·1 ,!HD2 
OMESH(I)~(I)+'M2SH(I)•OELTAT+ 

+ (1.0-2.0•BETA)•AMESH(I)•OELTAT•OELTAT/2.000 
().AESH2( I)~( I) 
'MSH( I )-M.AE'SH( I )-+O£L TAT • ( 1 . ~) •.AMESH( I) 
VPART( I )-VPART( I )-+O£LTAT•(1 .~)•M>ART( I) 

110 <XNTit-UE 
c 
C ••• Start iterations for this increment 
c 

00 .30 ITER<-1 ,NITER 
c 
C ••• Calculate the system matrix and apply the boundary conditions 
c 

CALL Ro.£SH 
c 
C ••• Calculate the [L] tronsfonn matrix from the shape Ins. 
c 

CALL FeRAL 
c 
C ••• Calculate the time-dependent tenm [U) from the shape fns. 
c 
C ('ALL FCfMA 
c 
C ••• t.t1l t iply by the stab I I I ty foetor 
c 

00 10 I RCW-1 . t«''2 
C IF([UM!'(IR()tj).E0.1.0) THEN 



f(fi'!l( I~W)•f"Cfii'".!O( H":W) 
rn 1.1 .Jmi-1.K';I71 

Gl(ll< ( I RI:YI. JOOI ).CI.Cll<0( I RfVj, JCOI ) 
1J CXtH I~[ 
C ELSE 
C FCii'CE( IRCW)=FCii'CE0( IRCW)•~•DELTAT 
C DO 12 J<XlL=1,KSIZE 
C GLC9<( IRCW,J<XlL)=CLC9<0( IRCW, J<XlL)•~•DELTAT 
C12 o::NTI!VE 
C OOIF 
10 o::NTINUE 
c 
C ••• Form the left-hand side of the soln 'corrector' 
c 
C DO 15 I RI.'W= 1 • t-N::02 
C Glca<( IRCW.Kse.'I)=CLC6<( IRCW.Kse.'l)+~( IRCW) 
C15 o::NTI!VE 

CALL GA~(GLC9<,1GL.JGL,GLC9<L,IGL,JGL,t-N::02,Kse.'l, 
+ f'I<CPIV.IGL.ITEST) 

c 
C ••• Aoeemble the force vector. otorting witk the 'conotont' VPART 
c 

CALL VECNJL(DISP. IGL .t-N:D2. ITEST) 
CALL VECAOO(DISP,IGL,FCii'CE.IGL.t-N::02. ITEST) 

C DO 80 I RCW= 1 . t-N:D2 
C OISP( JROfj)-.&Mt\.<;5( IRCW)•VPART( IRCW) 
iAA flt-~11~11 

c 
C ••• rorrt\ thA ~~f)f)VIIrt ~V. np11r0t0r 
c 
C CALL FCfM.I 
c 
C ••• Form the out-of-balance force 
c 
C CALL VECAOO(DISP.IGL,FOJT ,IGL.t-N::02,1TEST) 
c 
C ••• Solve for the correctP.d velocitie9 
c 

CALL GAI.f.UI(GLC9<.1GL.JGL,GLL:&-L.IGL.JGL.t-N::02.Kse.'l. 
+ f'I<CPIV.IGL.DISP.IGL,ITEST) 

c 
C ••• Update \he meoh movement for \hio iteration 
c 

CALL FCBfS 
DO 120 1=1 .t-N:D2 

'.K9i2~ I ~-.APAR.JM( I )•DISP( I )-ATR.ANS( I )•STR.ANS( I) 
AM£9-12 I =('.K9-12(1)-~(I))/(DELTAT•~) 
~ I =DMESH(I)+DELTAT•OELTAT•BETA•AM£9-12(1) 

120 o::NT I !VE 
c 
C ••• Check for conver9ence between successive iterations 
c 

VELI.AAX~ 000 
00 49 1•1.~2 

VHM'V<ool.~t (VW~>UBS(OISP( I))) 
49 (Xt-IT I NUE 

CXt-IV~.0 
DO 50 1=1 .t-N:D2 
CXt-IV~I (CXt-IVER.ABS(OISP( I )-f'INI T( I) )/VELM'V<) 

50 CXt-IT I NUE 

r. 
100 

c 
c 
c 

30 
c 
c 
c 
99 

60 
c 
c 
c 
c 
c 
c 
c 
r. 
c 
(. 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

910 

20 
c 

800 

600 

c 

c 
c 

C.Al.l VWX1'(015P,IGL,FINIT ,IGL.~2 ,lTEST) 
~llr(7,100) ITFP,Vrt~.('(tN[R . 
fl~T(' Iteration ',12/I~X.'Uox Velocity ',£8.7.10)(, 

'Remainder ',[7.2) 

••• ~th this solution 

CALL 9-0)TH 

o::NT I t-U£ 

••• Form the 'constant' for the next time-increment 

DO 60 1=1 ,t-N::02 

J:M:SHll !=OIESH2 ~ I ~ IM:.SH I -'.KSH2 I 
AM£SH I =N.£SH2 I 
PPART I •(OISP(I)-VPART(I))/(DELTAT~) 
VPART I =0 ISP( I) 

o::NTINUE 

••• Initialise the next time-increment 

lr-r::RE=INC 
CALL T I ~A INC 
~ELT 
IF(GAMMA2.GE.0.5.ANO.~.LE.1.0) THEN 

·~ DIIIAI-DUI 
E I <;f. 

~-·'~ 
IF(OELT.LT.DELTAT•I0.0) THEN 

DELTAT=OELT 
ELSE 

DELTAT-DELTAT•10.0 
OOIF 
DELT=0.0 
~·OELTAT 

OOIF 

••• Store the surface displacements for plotting 

IF(INC.EQ.Ioo.f') THEN 
DO 910 1•1,900 

OSTCRE( I SLRF, l}=Y( I) 
o::NTINUE 
I CXU'-1 oo.f'+ 10 
ISLRF=ISLRF+1 

OOIF 
TTOTAL=TTOTAL + DELTAT 

o::NTINUE 

WRITE(7,800) TTOTAL/3.16(10 
FORMAT('9Solullon Duration' ,JX,FB.J.2X. 'ko') 
WRIT£(6,600) 
f'l:HAAl ( '01 ilniH!epend8nt solution completed') 
CALL Tlt.AE(1,1) 

RETLJ<N 
00 

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 



c 

c 
c 
C"* 

Sl.ff<(l IT I Nl" F(R..t.A 

C Colculote the lol!lred mo~s motri• (1.4], o tloO<JOnol motri•. lhe Bou~sinesq 
C appro•imotion assll!les that the reference material is the first quoted. 
C Major variables: I>MI>SS =inert iot term (1.4] 
c-

c 

IM'LICI T OCUlLE PRECISICN (A-H,G-W) 
PARMCIER( IGL=880,JGL=131 ,KGL=66) 
OCI.4I.40N /CONS/ NTRI,NOUAD,NINCS,NNOO,KSIZE,KS8W,NN002,NMAT,IDUI.4(4), 

+ c;.tii.Mii,PI ,BETA,NST ,NSI .NSEG,to(X)SEG,OELTAT 
OCI.4I.40N ;\AA TS/ EM( 9) , F\.4( 9) , "N( 9) , RHJ,I( 9) . ET ~( 9) , ET AN, I TYP( 9) 
OCI.4I.40N /ELEM/ N::OEL(8,500) .~(500) ,I-OTEL(500) ,l'roEL(500), 

+ t-OTOOL(500) ,l'oOXOL(500) ,DIFHP(9,500) ,BLIB( 144,500). 
+ PRINC(16,500) 

QCI.4I.40N /FIXT/ DFIX(2,500),1-0FIX{500), IFLAG(2.500),NFIX,NEXT,NSTOP 
OCI.4I.40N (VI'£/ DSTffiE( 12. 900), FINIT( IGL). FOJT( IGL) ,I>MI>SS( IGL) 
OOI.4I.40N /GAPT/ S,T,SHAPE(8~,DNXDS(8).DNXDT(8),TSHAPE(6,36), 

+ TDNXDS 6,36 .TDNXDT 6,36 ,TW1W2 6,6 ,09-W'E 3.72 . 
+ CVOOJSb.n ,CINI(Drb.nl.()olj1W2b.9l.WEITRI~12,6L 
+ WEia.>D( 18,3) ,PLACET( 12.6) ,PLACEO( 18,3) .PLACEL(3) ,WEILIN(3) 

C ••• Initialise 
c 

c 

ITEST=0 
~(I) 
CALL VEC»JL(~S. IGL.NN002, ITEST) 

IF(N')IA() Gl ") IHFN 
00 10 IEL•1 ,IUJAD 

f'()=8 

t-0~·2 
t-UiEL=f-O)[L ( I EL) 
~(t-UiEL) 
~L(IEL) 
Et.M"SS=0.0 
00 20 IG-1 ,!GWS 

I POSo-( I G-l) •t-O 
DV=<ll FFOP( IG,t-UiEL) 
SHAP=0.0 
()() 30 t-OO= 1 ' t-0 
9-W'=9-W'~E (Jo.RJ/1. I flOS.+KO) 

30 a:NT IN.JE 
El.MI\SS.EI.M'SS+SHAP•RI-O•DV 

20 a:NTINUE 
00 40 t-00=1 ,fo()/2 

I=K'OEL( 2•N::O ,t-UiEL) 
J~EL(2•10)-1 .t-UiEL) 
K•2•1 
L=l<-1 
M-2•.1 
~1 

~;..:;~1.4~-No/ASS~M~ "* D.Mb-'>S/.16 0Ul NN>S·, N ~SS N I ft~t.;Sj.\1; rAJA 
~S K ~S K I EI.MlSS•8.000/36.000 
AMASS L ~ L + EI.MlSS•B.000/36.000 

40 a:NTINUE 
10 a:NT I N.JE 

EN) IF 
c 

IF(NTRI .GT.0) THEN 

I.(J :>0 IH•t,NIRI 

~·~ N');>-N')• 2 
t-UiEL-+OTEL( I EL) 
~(t-UiEL) 
~TOOL{IEL) 
E t..MASS=e . 0 
DO 60 I G=1 , tGAIJS 

IPOS=( IG-1) •t-0 
DV=<liFFOP(JG.t-UiEL) 
SHAP=0.0 
()() 70 t-OO= 1 ' t-0 
~TSHAPE(foft:W, lf'OS.+KX)) 

70 a:NTINU£ 
EL.Mt<SSo-EI..MtiSS+SHAP•RI-O•OV 

60 a:NTINUE 
()() 80 1-00-1 • N'J/2 

I~EL(2•N::O.t-UiEL) 
K=2•1 
L=l<-1 
I>MI>SS(K)~(K) + EI.MlSS/3.000 
I>MI>SS( L )...,tMo\SS( L) + EI.MlSS/3 . 000 

80 a:NT I N.JE 
50 a:NTINUE 

DoOIF 
c 
C ••• (nftur~ Dirichlet conditions 
c 

U (NFIX.NE.0) !HEN 
00 90 1•1 ,NFI X 

()() 90 J•1 ,2 
K=2•NOFIX(I)+J-2 
IF( IFLAG(J, I). EO. 1) I>MI>S'S(K)--0.0000 

90 a:NTINUE 

c 

c 
c 

DoOIF 

RETI..f<N 
EN) 

C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 

c 
c 
C+ 

~INE FCB4L 

C Cotculote the lll!lpf!d motri• (L], a diagonal matrix. 
C Major variables: ATRN6 •translation matrix [L) 
c-

llwf'LICI I OCU3l.( ffi[CISICN (A-H,o-W) 
PAR.otK!Ul( IGL~.JGL•131 ,KGL~) 
001.41.40N /CONS/ N1RI,NQUAO,NINCS,NNOO,KSIZE,KSBW,NN001.~1.1DUI.4{4), 

• ~.PI .EI£TA,NST ,NSI .NSEil,t(l)SEC,OELTAT 
co.M:N /ELO.V lo(l)EL(B.~) ,IC.NJSS(~) ,NDTEL(~) .l'roEL(~), 

+ N'JTOOL{~) ,tOXX>L(~) ,OIFF'CP(9.~) .BLI8(144,~), 
+ PR1~(16,500) 

001.41.40N /FIXT/ OFIX(2. 500) ,NOFlX(~), JFLN>(2 .~) ,NF"IX ,NEXT .NSTCP 
001.41.40N /GAPT/ S, T. SHAPE(B) .DNXDS(B) ,[)'oi)([)T(B), TSI-W'E(6,36), 

+ TDNXDS(6,36). moo>T{6,36). TW1W2(6,6) .C&W'E(3, n), 



c 

cniX!lS(], 7'1) .cn~XTH0. 77) ,t>'I1W'}(3, 9) ,WEI TRI ( 11 ,fi). 
i W(IQAP( 1R,.l) ,PI At::fl( 1[ ,fi) ,PI..K.fO( HU) ,PI ~.[L(j) .WEII.IN(3) 

o::t..t.(N ~f/ WART( IGL) ,\MESH( IGL) ,.tS'AIWA~ IGL~, STRANS( IGL). 
+ A TRANS( IGL) ,CM:SH( IGL) ,.tPART IGL .Mf:SH( IGL), 
+ IMESH2( IGL) ,[).A[SH2( IGL), XOLD IGL , YOLD( IGL) 

C •••Initialise 
c 

c 

ITEST=0 
CALL VE~L(ATRANS,IGL,NNOD2,1TEST) 

IF(1'-0JAD.GT .0) THEN 
00 10 I EL~1 ,I'UJAD 
~ 
~·2 
N.M:L=NX>EL( I EL) 
~("lM:L) 
~L(IEL) 
ELMAS$=0.0 
00 20 1~1 .t>GAUS 

1~(1('~1)•1'0 
DV..OIHCP( IG,NI.ML) 
SH.tP=0.0 
00 J0 1'0).1 . ton 

SHAP•SIW'iOStW'E ( r-llOV , I Rhti'U) ) 
J0 O:tHI~E 

E LMA$5-F: LMASS..SI-W' •fN 
20 OONTI~E 

00 40 "''Da1 .~/2 
I~EL(2•~ ,N.M:L) 
J~EL(2•"'D-1 ,"lM:L) 
1<~2•1 
L=..:-1 
M=2•J 
~1 

ATRANS~IA~=ATRANS~M~ + ELMASS/36.1100 A TRANS N =A TRANS N + ELMASS/J6 .1100 
ATRANS I< =ATRANS I< + EIJMSS•B.I100/J6.1100 
ATRftNS L =ATRftNS L + EIJMSS•B.000/36.1100 

40 <XNTI~E 

10 OONTI~E 

c 
EN> IF 

IF(NTRI.GT.0) THEN 
00 50 IEL•1 .NTRI 
~ 
1'0?-1-0•2 
i'U4EL-NJIEL( II:L) 
N"..A~ISS(IIl.M:L) 
~1001 (I [I) 
[I)NIS~ 0 
00 60 I G-1 , N':.Al.IS 

lf'(f.,oo( IG-1 )•t-1) 
DV.OI FFCP( IG.IIl.M:L) 
~.0 
00 70 N:l)..1 .~ 
~+19-W'E(t-RON,IPCJS.m::o) 

70 OONTI~E 
EIJNISS=ELW<SS+9-W' • OV 

60 <XNTI~E 

00 R0 t-0:1-1 .t-n/2 
I-N:OF.L(2•~.~L) 
K•2•1 
L=..:-1 
ATRANS(K)~TRANS(K) + ELMASS/3.1100 
ATRANS(L)=ATRANS(L) + ELMASS/3.1100 

80 <XNTI~E 
50 <XNT I~E 

c 
EN> IF 

IF(NFIX.NE.0) THEN 
00 90 1=1 ,NFI X 

00 90 J=1 .2 
1<=2•NOFIX(I)+J-2 
IF'( I FlJ'G(J, I). EO. 1) A'TR»>S(K)-e .11000 

90 <XNTI~E 
EN> IF 

c 
00 110 (a1 ,NNOD2 

IF(ATRANS( I) .NE 0 .1100) A'TR»>S( I )-1.1100/A'TR»>S( I) 
110 CXNT IIIIJE 
c 

c 
c 

RE'f\R.I 
HD 

C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 

c 
c 
C+ 

SURlJT I NE FCR.6 

C Calculate the transform vector [S] from the mesh displacements 
C and particle velocities. 
C Major variables: STRANS •tronsfonn vector [S] 
c-

c 

IM>LICI T IXUlLE PRECISI()II (.~Hi,O..W) 
PARAMETER(IGLa660,JGL•1J1,KGL-66) 
~ /0()11$/ NTRI ,NOUAO,NINCS,NNOD,I<SIZE,KSBW,NNOD2,NMAT,IOUM(4), 

+ ~.PI ,BETA,NST ,NSI,NSEG.NDSEG,OELTAT 
~ ;'t0:15/ X( IGL/2), Y( IGL/2) ,019'( IGL), FCR::E( IGL), XCXJ.I1 ( 4000) 
~ /ELOol/lll:OEL(B,509) .~(509) ,N:lTEL(509) .t-OJEL(509). 

+ N:lTCOL(509) .NXKXll(509) ,DimP(9,509) ,BUB( 144,509), 
+ PRII'C( 16,509) 

o::t..t.(N /FIXT/ DFIX(2 ,509) ,NOFIX(509), IFL..tG(2 ,509) ,NFI X .NEXT ,NSTCP 
(X),t,(),j /GAPT/ S, T .51-W'E(B~ ,CNXOS(B) ,rtiXDT(!I), T9-W'f(6.36). 

+ T(JOO)S 6,36 , TrtiXDT 6,36 , TW1W2 6.6 ,CSW>( J, 72 , 
+ IDil<OSb. 72 ,<VIXOTb. 72L()II1W2b. 9LWEI TRI ~ 12 .6L 
+ WU!Wl( 18, J) ,PIK:rT( 1~ ,6) ,PIX£0( 1f.I,J) .PIXEL(J) ,WEll IN(J) 

i A'TR»>S(ICL),[).£SH(JCL),N'AAT ICL ,N.f:SH(IGL). 
c:o.M..N ~ WAAT(IGL).IM:SH(ICL),N'~~ICL~,ST!Wl3(1CL). 

+ IM:SH2( ICL) .CM:Si2( ICL) .XOlD ICL , YOLD( ICL) 

C • • • In i t i o I i se 
c 

I TEST<>e 
CALL VE~L(STIWIS,IGL,NNOD2, JTEST) 

c 
IF(NOUAD.GT.0) THEN 



()) 10 I [La1 ,t-OJ,6ll 
~ 
1>1)~·2 

"'-MEL=NXlEL ( I EL) 
~(~L) 
~L(IEL) 
00 20 I G= 1 ,I'G'IIJS 

IPOS=( IG-1 )•t>n 
DV=OIFFOP(IG.~l) 
Al.PHX=0.0 
Al.PHY=0.0 
DISPX=0.0 
DISPY=0.0 
VELX=0.0 
VELY=0.0 
OOISPX=0.0 
OOISPY=0.0 
('() 3tl t--C0-1 . ~ 

f'(flf -tfl)[L ( r<O. N.M l ) 

9-W'E~tm~..c&W'E ~. lf'OS.+N:O~ CNXDS tm =(XN)(1)S ~. I flOS.+N:O 
[»(()T t>l)D -a:N)(OT t-1'0'1, lf'OS.+N:D 

AlPHX"""lPHX+SHAPE t>l)D ~ • ~ 1 . 000-APNW.I( 2 ot>l)DE) ) 
AlPiff ..... t.F'H'1'+9W'E t-O) • 1 000-APNW.1(2•1Q)E-1)) 
DISP~-DISPX+SHAPE ~lD • ~SH2(2•NODE-1)~~(r<Of)) 
OISI'Y-DISPYt91AI'E NOD • I:M:SH2(2•NOD( )H(NODE)) 
VELX=VELX~9-W'E(NOD)•DISP~2•NODE) 
VELY=VEL'I'+SHAPE(NOD)•DISP 2•NODE-1) 
OOISPX=OOISPX~T(NOD)• CME9-t2(2•NODE-1 )+X(NODE)) 
OOISPY=OOISPY~(NOD) • (CMESH2(2•NODE )+Y(NODE)) 

30 o::NT liVE 
JPOS=( IG-1 )•4 
00 40 IUFI ,t>n 

NODE=N:OEL(NOD .~L) 
STRANS(2•r<DE-1)=STRANS{2•NODE-1)+ 

+ SHAPE(NOD)•APAA.AM(2•NODE-1) 
+ •Al.PHX•VELX•OOISPX•PRII-C( JP05+4 .~L)•OV 

STRANS(2•NODE )=STRANS(2•NODE )+ 
+ SHAPE(r<D)•APAR.6M(2•r<DE ) 
+ •Al.PHY•VELY•OOI SPY•PRII-C(JPOS+2 .~L)•OV 

.40 CCNT liVE 
20 o::NTII-UE 
10 o::NTIIVE 

r. 

c 
c 

001 F 

RETU<N 
!}{) 

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 
c 
C+ 
c 
c 
c 
c 
c-

Sl..mOJT I NE ROA:SH 

Recalculate the system matrix fr~ the most recent mesh displacements. 
Major variables [JJJ[SH2 =mesh displacements of this i terot ion 

~OLD, YOLO= x- ond y-coords of reference frame 
GLCB< =system matrix (K] 

c 

ll.f'LICIT [)(U3L[ PROCISICN (~.o-w) 
PARAMETER(IGL-880,JGL•1J1,KGL-66) 
cn.t.CN /W45/ NTR I ,IOJK) • N I 1-CS , 1-Nl), KS I ZE • KS8N ,I-Nl)2 , t.J,M T , I !:UA( 4) • 

+ ~.PI .BETA.NST ,NSI ,NSEC,ralSEG.DELTAT 
cn.t.CN ,M.XYS/ X( IGL/2), Y( IGL/2) ,OISP( IGL) ,F'Cf<CE( IGL). xro.n ( 4000) 
cn.t.CN ~TS/ OA(9) ,PM(9), 'N(9) ,IKM(9) ,ET.fM(9) .ETAN. ITW(9) 
cn.t.CN /STIF/ ELK(18,18).GLCB<(IGL.JGL) 
cn.t.CN /FRCN/ GLCB<0(1GL,JGL) 
cn.t.CN /STF4/ GLCB<l( IGL,KGL) ,F'Cf<CE0( IGL) ,t-RY IV( IGL) 
cn.t.CN /FIXT/ OFIX(2.500),NOFIX(500},1FLAGi2,500),NFIX,NEXT,NSTOP 
cn.t.CN ;M:NE/ VPAAT( IGL), "'-£SH( IGL) ,APAA.fM IGL~ ,STRANS(IGL), 

+ A TRANS( IGL) .~( IGL) ,APAAT IGL .~( IGL). 
+ \4,£SH2( IGL) ,r.t.ESH2(1GL) ,XOLD IGL , YOLD(IGL) 

C • • • In i t i o I i se 
c 

c 

ITEST=0 
CALL Mo\TNJL(GLCB<.IGL,JGL,t.Nl)2,KSIZE. ITEST) 
CAlL Vfr:NJL (rcocr .IGI .. Nr<02 ,I TEST) 

C ••• For the wove propagation model 
c 

IF{ET.AM{ 1) .EQ.0.0000) TKN 
Al-GI. E•( 0. 06J6940M400• TTOTAL) --<4 .1'100 
AFIX~~ 38624670600•(1.000 + TANH(ANGLE)) 
00 J0 ND-1 .~ 

CMESH( 2 •IIID--1 )...a.FI X 
J0 o::NT liVE 

AFIX:0.2BJ40882126000•(1.000-TANH{ANGLE)•TANH(ANGLE)) 
DO 20 I =NFI X--4 • NFI X 

OF I X( 1. I }...a.F I X 
20 o::NTIIVE 

!}{)If 
c 
C ••• Calculate global matrix and apply b.c. 
c 

c 

CALL FCR.t< 
CALL OCDY4S 
CALL EO..W2 

C ••• Store the matrices ot the beginninq of the iteration 
c 

r. 

c 
c 

CALL VEaxP(F'CilCE,IGL,F'Cf<CE0.IGL,t.Nl)2,1TEST) 
CALl. MXPY ( GI.CB<. I GL. JGL, GLCB<0. I GL, JGL ,I-Nl)2. KS I ZE. I TEST) 

RETI.JlN 
!}{) 

C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 

c 
C+ 

Sl..mOJT I NE mAl 1-C 

C Calculate the time increment fr011 the Courant convection criteria. 
c-

IWLICIT OCU!LE PRECISICN (~.o-w) 
PARAMETER( IGL=680.JGLa1J1,KGLoo66) 
cn.t.CN /006/ NTRI ,IOJK),Nli>CS,t.Nl),KSIZE.KS8N,t.Nl)2,t.J,MT ,I!:UA(4), 



c 
c 
c 

20 

10 

c 

40 

30 

c 

c 
c 

1 ~.PI.fll.lA,N',I.NSI.NSI:G,N.:OS[G,OELIAI 
<XM01 /t'OY3/ X( IGL/2). Y( IGL/2) .DISP( IGL) ,FO<CE( IGL). XC0..1 (4000) 
<XM01 /ELEM/ rc:>EL(8,500) ,t-GAUS$(500) ,I\OTEL(500) ,I'O:lEL(500). 

+ I\OTCOL(500) ,r-oxxJL(500) ,01 FFCP(9, 500) .BLIB( 144. 500). 
+ ffilt-C( 16,500) 

<XMOI /GAPT/ S. T .S1-W'E(8~ .rmDS(8) ,I>IXDT(8). TS1-W'E(6,36). 
+ TrmDS 6.36 ,TaiXDT 6,36 ,TW1W2 6,6 .OSHoiPE 3,72 , 
+ cnlXDSb.n ,(.O>OO)Tb.nLCifi1W2b.9~.wEITRI~12,6~. 
+ WEI COD( 18,3) .PLPCET( 12 ,6) ,PLPCEO( 18,3) ,Pl.PCEL(3) ,WEI LIN(3) 

<XMOI /TIM5/ ELSIZE(2.500),0ELT.ILCW>(IGL),nOTAL 

••• lni t iol ise ot the centre of the element 

OELT=I .0030 
IF(rQJAO.GT .0) THEN 
~-0 
T""l.0 
CALL OSHAFN 
00 10 IEL=1 .'-OJAD 
~L""''XlEL( IEL) 
1\0=8 
VELX""l.eo0 
VELY""l.eo0 
ex:> 20 ,.n,. , . m 

~lll_,...fllf'l (~'(l.~MI) 

VELX~VEIX + SHAPE(NOO)•OISP(2•NOOE-t) 
V[LYmV[LY ~ SHAPE(NOO)•OISP(2•NOOE ) 

CONTIIVE 
IF(VELX.E0.0.000.ANO.VELY.E0.0.000) THEN 

!).»= 1 . 0030 
ELSE 

DlM-1.0000/((CW!S(VELX)/ELSIZE(1 .I'UIEL)) + 
+ (O.ABS(VELY)/ELSI ZE(2 .i'U.t:L))) 

OOIF 
OELT=<:MIN1 (OELT ,COA) 

CONTIIVE 
OOIF 

+ 

IF(NTRI .GT .0) THEN 
So-1 .0000/3.0000 
r-s 
CALL TSHAFN 
00 30 IEL=1 ,NTRI 

i'U.t:L=I\OTEL( I EL) 
NJ=6 
VELX""l.0 
VELY=0.0 
00 40 t£0=1 ,1\0 

1-roE-N::.OEL ( rc:> . i'U.t: L ) 
vn.x-vnx + 9-W'f(~·n)•DISP(2•N:Of-1) 
V(LY-V(LY I SIW'£.(N.fl)•IIIT(2•~()l ) 

CONI I IV( 
ou.-1.0000/((0N:JS(VELX)/ELSIZE(I .P-I.MEL)) + 

(O.ABS(VELY)/ELSI ZE(2 .i'U.t:L))) 
OELT=().AIN1 (OELT ,COA) 

CONTIIVE 
OOIF 

RETLf<N 
00 

C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

c 
c 

c 
C+ 
c 
c 
c 
c 
c-

c 
c 
( 

c 

c 
c 
c 

c 
c 
c 

10 
c 
c 
c 

30 
c 
c 
c 

9..ffi0Jll NE STRESS 

Colculote the total stress ot each gauss point. 
Major voriobles: s~ -mox absolute value of stress 

OISP -current mesh velocities 
BLIB -strain rote operator 

llof'LICIT !XU3LE ffiECISIO>l (llrli,o-w) 
P.oRAA£TER( IGL-e80, JGL•131 ,KGL-66) 
<XMOI /tONS/ NTRI ,NQUAO,NINCS,NNOD,KSIZE,KSBW,NNOD2,NMAT,IOUM(4), 

+ S~.PI ,BETA.NST ,NSI,NSEG,NDSEG,OELTAT 
<XMOI ;'laYS/ X( IGL/2), Y( IGL/2) .DISP( IGL), FCRCE( IGL). 

+ XSTPOS(4,500),Y'STPOS(4,500) 
co..t..04 ;WITS/ EM(9) ,R.A(9), TM(9) ,RH:lo4(9) ,ET.IM(9) .ETAN.I"NP(9) 
<XMOI /ELEM/ l'mEL(8,500) ,IGNJSS(500) ,I\OTEL(500) .I'O:lEL(500). 

+ I\OTCOL ( 500) • r-oxxll ( 500) • 0 I FF"CP( 9. 500) • BLI B( 144. 500) , 
+ ffilt-C( 16,500) 

<XMOI /GAPT/ S.T.SHAPE(8~.0UM1(16),T~(6,36). 
+ TrmDS 6,36 ,TaiXDT 6,36 ,TW1W2 6,6 ,OSHN'E 3,72 , 
+ cnlXDSb.n ,(.O>OO)rb.nL~,W2b.9l_wE:ITRI~12.sl_ 
+ WEI COD( 18,3) ,PLPCET( 12 ,6) ,PLPCE0(18,3) ,PLPCEL(3) .WEILIN(3) 
ro.t.Ol /VI>RS/ C0(2) .ETA.C2.C3,[N)([)X(8) ,[N)([)Y(8) ,0(18) ,CQ.I12(36), 

+ [N)([)S(8) ,ONXDT(8) ,0014(76) ,I\O,i'U.t:L ,tGti.JS .~T ,l'oR)Ij, IG 

••• lni t ioll oe 

s TlAAX-0 . 000 
ITEST=0 

IF(NTRI .GT.0) THEN 
N:)oO 

00 60 IEL•1 ,NTRI 

••• Unload the material constants and strain rote operator 

i'U.t:L=I\OTEL ( I EL) 
~T=I"NP(i'U.t:L) 
ETA=£TN.4(~T) 
~(i'U.t:L) 

••• Retrieve the nodal velocities 

00 10 Jsl ,6 
0(2•J-1 )-<>ISP(2•rc:>EL(J ,i'U.t:L)-1) 
0( 2•J )=OISP( 2•1'roEL(J,i'U.t:L) ) 

CONTIIVE 

••• Unload strain rote operator at this gauss point 

00 !10 IG-1, 3 
If'05o.( 10+2)•6 
KFQS..(IG-1)•12 
00 30 IY.1,1\0 
~(IV)•T~E(1,1P05+1V) 
L•2•1V 
K•L-1 
ONXDX( IV)-43LIB( IP05•2 +K ,i'U.t:L) 
ONXDY( IV)-43LIB( IP05•2 +L.i'Uo£L) 

CONTIIVE 

••• Evaluate the principal stresses 



CALL PRI~ 
50 CXNTIIVE 
60 CXNTIIVE 

EN) IF 
c 
C ••• Ouodri lateral Elements 
c 

IF(I'O.JAD.GT .0) THEN 
N.)=8 

00 130 IEL=1,1QJAO 
tu.t:L=tn:lEL( I EL) 
Mo\T=ITYP(N.M:L) 
[T 1\:[T AM(Mo\ T) 
~USS(NUMEL) 

c 
C ••• Unload the velocities 
c 

00 80 J=1,t-IJ 
0(2•J-1 )..OISP(2•~EL(J ,tu.t:L)-1) 
0( 2•J )..OISP( 2•~EL(J,NUMEL) ) 

80 CXNTIIVE 
c 
C ••• Unload the "train role o~rator at this gauss point 
c 

00 120 Jl).1,4 
IPCJSo.( IG-1 )•t-IJ 
I<F'OSo= I POS • 2 
00 100 111-1 ,t-IJ 

Jf'C&alPOS+IV 
SHAPE(IV)c0SHAPE(1,JPOS) 
L=2•1V 
K=L-1 
~X( IV}=6LIB( IPOS•2 -+!< .t-UAEL) 
~Y( IV)=6LIB( IPOS•2 +L .tu.t:L) 

100 CXNTIIVE 
c 
C ••• Evaluate principal stresse! 
c 

CALL PRJ~ 
120 OONTIIVE 
130 CXNTIIVE 

EN) IF 
c 

v.RITE(6,150) 
150 FCR.¥.T('0Principol stresses computed') 

CALL TII.£(1,1) 
c 

c 
c 

R£1U<N 
EN) 

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 

c 
C+ 

SLmOJT I NE PR I~ 

C Calculate the principal deviatoric stresses at this gauss paint. 
C Major variables: PRJ~ =principal stresses 
C DISP =current velocities 
C BUB •strain rate operator 
C [TA ...,l....,nt viscosity 
c-

c 

!~LICIT IXUILE PRECISICN (~.0-W) 
P.ARAMETER( IGL~.JGLm1J1 ,KGL~) 
~/CONS/ NTRI.NOUAO,NINCS.NNOO.I<SIZE.I<SBW.NN002,~T.I~(4), 

+ STMo\X,PI,BrTA,NST ,NSI,NSEG,NDSEG,DELTAT 
~ ;W.TS/ 01(9) ,R.l(9) ,1U(9) .FHM(9) ,rT.tM(9) ,[TAN, IT'YP(9) 
~ /ELEM/ ~L(8,500) ,N:>AIJSS(500) ,PoOTEL(500) ,PoOJEL(500), 

+ PoOTOOL(500) ,I'OXOL(500) ,DIFTCP(9,500) ,BLIB(144,500), 
+ PRINC( 16,500) 
~ /VARS/ 00(2), [TA,C2 ,CJ.~X(8) ,ll'OOY(8) ,0( 18), STAN( 4), 

+ STRES( 4) ,C()AI ( 118) ,PoO,tu.t:L,N:;NJS ,MI!\T ,I'R:W, IG 

C ••• Unload pra~rties and initialise 
c 

c 

p,.fl,A ( Mo\ T ) 
E~BI(Mo\T) 

~~~~(~.!!)•4 
STRN 2 =0.0 
STAN J -0.0 
STRN 4 -0.0 

C ••• Evaluate strain rates 
c 

00 10 l•1,ND 
L•2•1 
K•L-1 

STAN~ I ~-6TAN~ 1 ~+ll'OOX~ I ~·O~K~ STRN 2 =5TRN 2 +ll'OOY I eQ L 
STAN J =5TAN J +ll'OOX I eQ l +CtOOY(I)eO(K) 

10 OONTIIVE 
c 
C ••• Fonm stresses from the strains 
c 

c 

STRESI1~=2.0000•fTA•STAN~1~ STRES 2 =2.0000•ETA•STAN 2 
STRES J • ETA•STAN J 
STRES 4 -0. 0000 

C ••• Farm the principal etreeeee 
c 

c 

c 

IF(STRES(1).EO.STRES(2)) THEN 
THET A=P I /4. 000 

ELSE 
THfT~.S00•(~TAN(2.000•STRES(J)/(STRES(1)-STRES(2)))) 
IF(THETA. LE.0.0) THETA-THETMf'I/2.000 

EN:> IF 

PRINC( 1+1~ ,tu.£L)-6TRESI1!•(0CX:S(THETA)•OCX:S(THETA)) + 
+ STRES 2 •(DSIN('OUA)•DSIN(TH[TA)) + 
+ STRES J •DSIN(2.000•'0UA) 
PRI~~2+li-OEX ,tu.£t.~-6TRES 1 +SfRES(2)~1NC( l+lf'.OEX ,tu.t:l.) 
PRINC .}+l~.tu.t:L -6TRES J 
PRINC 4+lf'.OEX ,tu.t:L •THETA•180.000/I>I 

C ••• Determine mQ)(imun stress 
c 

SlUAX~1(DABS~PRINC~1+1NDEX.tu.£L~~· 
+ DABS PRINC 2+lf'.OEX .tu.t:L • 
+ DABS PRINC .}+J~.to.E:L ,SlUAX) 

c 



c 
c 

RETU<N 
00 

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 

c 
~ 

SlffilJTIN[ <M'l)TII 

C Calculate the displacement of the side nodes by averaging the 
C displacement of the adjacent corner nodes. 
C Major variables: DMESH2 ~urrent mesh displacements 
c-

c 

It.PLICIT OCU3LE PRECISICN (A-4-i,CH'I) 
PAR.AMETER( IGL=680, JGL~ 131 , KGL~6) 
~/CONS/ NTRI,NQUAD,NINCS,NNOD,KSIZE,KS8W,NNOD2.NMAT, IDUM(4), 

+ STMo\X, PI , BET A, NST, NS I , NSEG, f'OJSEG, DELT AT 
~ MJ.f5/ X( IGL/2).Y( IGL/2) ,DisP( IGL), FCJ<CE( IGL) ,Xo::t.l1 ( 4000) 
~ /ELEM/ I>O)EL(8,500) .IO.USS(500) ,t>l)TEL(500) ,NXlEL(500), 

+ t>l)TOOL(500) .~L(500) .DIFFCP(Il,500) .BLIB(1,..,500). 
+ PRINC(16,509) 
~ ;M:J./E/ 'v1"AAT( IGL) ,\M€SH( IGL) .APARAM~IGL},SmANS( IGL). 

t ATIWIS(IGL),CM:9-I(IGL),APART IGL .N.f.:Sij(IGL). 
+ 'h.AESH2( IGL) ,CM:SH2( IGL). XOLD IGL , YOLO( IGL) 

ITEST=0 
IF(I'OJAD.GT .0) THEN 

00 10 I EL=1 .I'OJAD 
t-U.£L:N:O!:L ( I EL) 
DMESH2(2•NODEL(2,NUMEL)-1)=(DMESH2(2•NODEL(1,NUMEL)-1)+ 

+ CMESH2(2•NODEL(J.NUMEL)-1) )/2 .0000 
DMESH2(2•NODEL(2,NUMEL) )=(OMESH2(2•NODEL(1,NUMEL) )+ 

+ DMESH2(2•NODEL(3,NUMEL) ))/2.0000 
DMESH2(2•NODEL( 4 .N..MEL)-1 )•(I:MESH2(2•NODEL(J,N..MEL)-1 )+ 

' ().£SI-12(2•NODEL(5.NUMEL)-1) )/2. 0000 
DM£SH2(2•NODEL( 4 ,N..MEL) )c(DM£SH2(2•NODEL(3 .NUMEL) )+ 

+ I:MESH2(2•NODEL(5,N..MEL) ))/2. 0000 
DMESH2(2•NODEL(6,NUMEL)-1)o(I:MESH2(2•NODEL(5,NUMEL)-1)+ 

+ DMESH2(2•NODEL(7 ,NUMEL)-1) )/2 .0000 
DM£SH2(2•NODEL(6,NUMEL) )=(DMESH2(2•NODEL(5.NUMEL) )+ 

+ DMESH2(2•NODEL(7.NUMEL) ))/2.0000 
DMESH2(2•NODEL(8.~JAEL)-1)=(~2(2•NODEL(7.Nl~l)-l)+ 

+ ~(2•NODEL(1 ,NUMEL)-1))/2.0000 
I:MESI-12(2•NODEL(8,NUMEL) )•(DMESH2(2•NODEL(7.N..MEL) )+ 

+ DMESH2(2•NODEL(1,NUMEL) ))/2.0000 
10 Ct:NTIN.JF. 

c 
001r 

II (NIRI t:l 0) llllN 
00 20 I EL~1 ,NTRI 

NlMEL=NXlEL(IEL) 
DMESH2(2•NODEL( 2 .N..MEL)-1 )•(I:MESH2(2•NODEL( 1 .N..J.EL)-1 )+ 

+ CMESH2(2•NODEL(J,NUMEL)-1) )/2.0000 
D.E:SH2(2•NODEL(2,NUMEL) )~(D.E:SH2(2•NODEL( 1 .NUMEL) )+ 

+ I:MESH2(2•NODEL(J.NUMEL) ))/2.0000 
I:MESH2(2•NODEL(4,NUMEL)-1)=(DMESH2(2•NODEL(J.NUMEL)-1)+ 

+ CMESH2(2•NOOEL(5,NUMEL)-1))/2.0000 
OM£SH2(2•NODEL(4.NlMEL) )•(DMESH2(2•NCOEL(J.NUMEL) )+ 

OM£SH2(2•NCOEL(~.~WEL) ) )/2 .0000 

I:MESH2( 2•NCOEL( 6, NUMEL)-1 )•(DMESH2(2•N.:DEL(5 ,N..MEL)-1 )+ 
+ (l.£SH2(2•NCOEL( 1 ,tUE:L)-1 ))/2 .0000 

EM:SH2(2•NCOEL(6,tU£L) )•(DMESH2(2•N.:DEL(5,tU£L) )+ 
+ rKSI-l2(NWEL( 1 ,tUE:L) ) )/2 .0000 

20 CCNT I N.JE 
OOIF 

c 
C ••• 1Jp<Jo1e ""'8h coordino1e8 
c 

00 J0 1•1 .IINXl 
X( I )•XOLD( I )+WE9-12(2• 1-1) 
Y( I )~YOLO( I )+WE9-12(2•1 ) 

30 CCNT I N.JE 
c 

c 
c 

RETU<N 
00 

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 

c 
c 
C+ 

BLCXJ< DATA 

C lni t ial ise the fundamental paraneters 
c-
c 

c 

c 

c 
c 

It.PLICIT OCUlLE PRECISICN (A-+!,CH'I) 
CHARACTER TITLE(4)•8,ZUF(4)•4 
~/CHAR/ TITLE.ZVF 
~ /OONS/ NTRI,NOUAD,NINCS,NNOD,KSIZE,KSBW,NNOD2.~T.IOUM(4), 

+ STMI\X ,PI ,BETA,NST ,NSI ,NSEG,f'OJSEG,DELTAT 
~ /GAPT/ S,T,SHAPE(8),DNXDS(8),0NXDT(8).~(1611), 

+ PL'CEL(J) .WEI LIN(J) 

+ 
+ 
+ 

00 

C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 

c 
~ 

Sl.mOJT I NE mASH 

C Chec~ bandwidth 
c-

VIRITE(7. 10) 
10 F~T(1H0, '•• RUN ABORTED ••'/'8ondwidth equo\s zero') 

CALL Til.£( 1. 1) 
c 

STCP 



c 
c 

EN) 

(••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 

c 
~ 

Sl..mCUT IN[ BADLU< 

C Check bandwidth 
G 

IM'LICJT IXU3LE PRECISICN (A--H,o-¥1) 
COMMON /CONS/ NTRI .NOUAO,NINCS,NNOD,KSIZE.KSBW,NNOD2,NMAT,IDUM(4), 

+ STW.X,PI,BETA,NST ,NSI,NSEG,t'(:()SEG,OELTAT 
c 

WRITE(6, 10) KSIZE 
10 HR#.T(1H0, ... RLN ~TEO .. ·; 

c 

c 
c 

+ 'Bandwidth='. 15,'. ond exceeds !toroge !poce') 
CALL Tl~(1,1) 

STCJ' 
[U) 

C•••••••••••••••••••••••··~••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 

c 
c 
~ 

F\.K:T I 0>J IV'MA.X ( X , N) 

C tind the maximum value of o vector 
c-
c 

DIMENSIO>J X(N) 
IV'MA.X=X ( 1 ) 
00 10 IW\X=2,N 
~WN<X=->< 1 ( fV'MA.X , X ( I WV<) ) 

10 CXNT INJE 
c 

c 
c 

RE"ll.R'J 
EN) 

C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
(. 

c 
c 
c 
C+ 

F1.H.:T la-J R.6MIN(X ,N) 

C rind the minimum value of a vector 
c-
c 

Olt.Af.NSIO>J X(N) 
R.'MI~X( 1) 
00 10 IMI~2.N 
R.6MI~IN1 (R.6MIN, X( I MIN)) 

10 CXNT INJE 
c 

c 
c 

RE"ll.R'J 
EN) 

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 

c 
C+ 

SLmOJT INE RomE 

C Add or delete nodes from the mesh ond renumber accordingly. 
c-

c 
c 
c 
c 

c 

2 

3 
c 

c 

IM'LICI T IXU3LE PRECISI()ol (.trll,o-¥1) 
INTEGER NOOE(200),N0(8) 
CHARACTER TITLE(4)•8,2UF(4)•4 
PARAMETER(IGLa680.JGLa1J1,KGL-66) 
COMMON /O'AA/ T IT L[. 2UF 
COMMON /CONS/ NTRI,NOUAO,NINCS,NNOD,KSIZE.KSBW,NNOD2.NMAT ,IDUM(4), 

+ ~.PI .BETA,NST ,NSI ,NSEG,t'(:()S[G,OELTAT 
('().MN ;'t-a:IS/ X( IGL/2). Y( IGL/2) ,DISP( IGL), FmC£( IGL), xa:lo41 ( 4000) 
~ /ELE).4,/ NOOEL(8,500) ,I(;AUSS(500) ,NOTEL(500) .~L(500), 

+ ~TOOL(500) ,IO:XX>L(500) ,OIFF"CP(9,500) ,BLIB(144,500), 
+ PRINC( 16,500) 

COMMON /FCI<C/ N004S( Hl0) ,1'{)1545( 100) ,NL(W)( 100) ,Fl(D(200). 
+ f1.(R.l( 100), F"TAN( 100), FNTOT( 100), niOT( 100} 

COMMON /F"IXT/ OrJX(2,500) ,t-.Of"IX(500) ,IF"L-AG(2.500) ,NF"IX.NEXT ,NSTCP 
COMMON ;WITS/ EM(9) ,PM(9) ,n.1(9) .RH:M(9) ,ET.tM(9) ,ETAN,ITYP(9) 
COMMON /VIIRS/ a::M3( 165) ,NOSECT ,I'{)IS,I'{)IR, la:M<(2), IG 

••• This routine odde or delelee nodee from the meeh writinQ the new 
••• file to unit 7. Doto for the new nodee muet be odded eeporotely 

READ~J. ·~I SIGN 
READ J, • NNODE 
READ J. • (talE( I). lal.l'f<DE) 
N=NNOD+(NNOOE•ISIGN) 

WRITE(7 ,1 )TITLE 
F~T(4A8) 
WR I TE(7, 2)N,NTRI ,NQUAO,NMAT ,NF"IX ,I'{)(R ,NSEG,NSI .NST ,Nf"'S 
F"~T(1115) 
WRITE(7,J)NINCS.~.VERGE.ETAN,O£LTAT 
F"CRNIT( 15,4010. 4) 

IF"(NSI f.0.0) THf.N 
9"'..AI.f•1 0Cl0.~ 

[1.5£ 
SCAI.[•1.000 

EN:liF 
lca..NTa1 

C ••• Update coordinate data 
c 

00 10 I "-CC= 1 , NNOD 
~I NOD 
00 20 1•1 .NNOO( 

lr(lta>.GT.NOOE(I)) ~ISIGN 
20 CXNTINJE 

IF(N.GT .lca..NT) THEN 
00 25 1•1 .~tc:a..NT-1 



25 

4 

10 

c 
c 
c 

5 
11 
c 
c 
c 

50 
40 

30 

c 

v.RJTE(7,4) lc::o..M+I.X(Itro--1)/0CALE 
o::NT lt-UE 

OOIF 
v.RITE(7 ,4) N. X( ltffi)/OCALE.Y( ltm)/OCALE 
FORMAT(15,2F10.3) 
lc:o..M=N 

o::NTit-UE 
~E 

••• Write material properties 

00 11 IW.T=1,1>MAT 
v.RITE(7 ,5)EM( I WIT) ,R.A( IW.T) .Rto.A( IW.T) .1M( IW.T) .ET~( IW.T) 
FORMAT(D10.3.2F10.3.2010.3) 

o::NT lt-UE 

••• Write element topologies 

IF(N1RI GT.0) THEN 
()) ..10 IEI•1.N1HI 

Jll.oN)ICI.( I H) 
00 40 Kf.1.•1 ,fi 

t-O(KEL)..troEL(K(L ,JH) 
00 50 1=1 .t-tmE 

I F(NODEL(KEL. JEL) .CT .NODE( I)) t-O(KEL)ooNJ(KEL)+ISIGN 
<XM'It-UE 

o::NTit-UE 
VIR ITE( 7. 2)JEL.. (t-O(KEL).KEL•1 ,6). I TW(JEL) ,~'GAUSS( JEL) 

CCNT Ito.! I[ 
fNliF 

IF(~AD.GT .0) THEN 
00 60 IEL=1.~ 

JEL=NXIEL( IEL) 
00 70 KEL=1,8 

t-O(KEL)=NODEL(KEL. JEL) 
00 60 1=1 .t-tmE 

I F(NODEL(KEL ,JEL) .GT .NODE( I)) t-O(KEL)=N:>(KEL)+ISIGN 
60 <XM' I t-UE 
70 <XM'It-UE 

VIR I TE(7. 2)JEL. (t-O(KEL) .KEL=1 ,8). I Ti'P( JEL) .I'GAUSS(JEL) 
60 cx:NT I t-UE 

Et-OIF 
c 
C ••• Oi rect nodal forces 
c 

IF(NDIR.GT.0) IH!:N 
00 110 1•1 ,NDIR 

INODE..tro4S( I) 
00 112 K=1 .t-tmE 

IF(t-ro4S( I) .GT .NODE(K)) INODE=ItmE+ISIGN 
112 OONTit-UE 

v.R I Tf( 7. 6) It-roE, FNOD(2• 1-1). FNOD(2• I) 
h FnRMA1(1~.2(4~.D11.4)) 
110 o:NTit-.~..1£ 

Et-01 F 
c 
C ••• Surface tractions 
c 

IF(NSEG.GT.0) THEN 

00 140 lm1,NSEG 
v.R11E(7 ,2)N::oSEG 
00 140 J•1 ,N::oSEG 

ltmE.WIS4S(J) 
00 145 1<•1 .foNl>E 

IF(NDIS4S(J).GT.NODE(K)) INODE•INODE+ISIGN 
145 o::NT lt-UE 

v.RITE(7,6)1NODE,~(J),FTAN(J) 
140 o::NT I t-UE 

OOIF 
c 
C ••• Dirichlet conditions 
c 

IF(NFIX.GT.0) THEN 
00 160 I•1,NFIX 

INODEcffiFIX( I) 
00 165 J=1 .foNl>E 

lf(t>O'IX( I) .GT .NODE(J)) INODE•INODE+ISIGN 
165 o::NT I t-UE 

VIR I TE(7, 7) I NODE. ( IHAG(J ,I) ,DFIX(J ,I) ,J-1 ,2) 
7 f~T( 15,2( 15,010.3) ,F10.3) 
160 COlT I tV[ 

c 

c 
c 

END IF 

RET\..FlN 
fM) 

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
<:: 

c 
C+ 

s.mctJT INE EIGEN 

C Extract the normalised eigenvalues. 
C Major variables: GL(B( "'System matrix [K] 
c-

c 

IM>LICIT IXU!LE PRECISIGI (~.CHV) 
P~ER(IGL-680,JGL•131,KGL-66) 
~/CONS/ NTRI.~.NINCS.NNOO,KSIZE.KSBW,NN002.~T.IDUM(4), 

+ STMIIX,PI,BETA,NST ,NSI ,NSEG,N::o'SEG,DELTAT 
~ /STIF/ ELK(18,1B),GL(B((IGL,JGL) 
IXU!LE PRECISION DIAG(IGL),SUB(IGL) 

C ••• Initialise, EPS is the smallest representable number 
r. 

c 

I lEST~ 
[O.t.fl'-0 . 000 
EPSo-X02AAF ( [O.t.fl') 
I~ 

C ••• The system matrix is scaled by [S][K][S] where [S] is o diagonal 
C ••• ma1rix composed of 1/SORT of the diagonals of (K] 
c 

00 10 KR(Wol ,1#:02 
IJ.MoABS ( GL(B( ( KJOrf. KSBW)) 
~1.000/SORT(DUM) 
00 20 KOOLal ,KSIZE 
GL(B((~.KOOL)-GL(B((~.KCOL)•IUA 

20 o::NT I t-UE 



lXJ j() If~ I . f«lJ2 
I COL ~R(W+I<SBH---1 RCM' 
IF( I<XlL.GE. I.AN:l.I<XlL. LE.KSIZE) 

+ GLC9<( IRCM'.I<XlL)=(;LC8<( IRCM'. IOOL)•CUA 
30 CCNTINJE 
c 
C ••• Check unit diagonals 
c 

c 

ICHEOK=NINT(GLC9<(KROW,KS8W)) 
IF(ICHEOK.NE. I) GOTO 99 

C ••• Check symnet ry 
c 

00 40 KCOL=1 .I«D2 
I COL~COL +KSBo'H<RO'I 
I~SBH--KCOL 
IF( I COL .GE. I. AN:>. I COL. LE. KSI ZE. AN:>. IRCM' .GE. 1 . AN). 

IROW.LE.KSIZE) THEN 
IF (GLC8<(KROW, I COL) .NE.GLC8<(KCOL, I ROW)) GOTO 99 

fN)If' 
40 O.:N I I NJl 
10 ((NT I~JE 
c 
c ••• o~composP. motri~ 
c 

CAll .I.Arl)(I.I(H<.I,-;1 .. tr:l_.('liAr.,ll.l .Sifl,ll.l..rflTl2.1<9'fi'I.ITF.'il) 
c 
C ••• Extract eiqenvolues 
c 

CALL OLVAL(OIAG.IGL,SUB,IGL,NN002.EPS,ITEST) 
c 
C ••• Evaluate spectrum condition numbers 
c 

C1=ABS(DIAG(r«D2)/DIAG(1)) 
C2'--ABS(OIAG(r«D2)/DIAG(2)) 
C1=LCC10(C1l 
C2=LCC10(C2 
VIRITE(7 ,200 

200 F~T(14X, · Spectrum Condition Number•'/24X. 
+ First',4X,'Second') 

v.RITE(7 ,300) C1 .C2 
300 F~T(20X.2{5X,F5. 1)//) 

CALL PRTVEC(OIAG,IGL,NN002,7,1TEST) 
r. 

v.li IIF (tl, lOll) 
""' Ft 1-Mo\1 ('Ill "J~IlV•I I~~~· • 'I"'' I ~ot· ) 

CALL I 1M[( 1 . 1) 
c 

RET\R-1 
c 
99 v.RITE(6,500) 
SOO FCRAAT( 'Oinr.orrf!ct syst""' mot r i • clf!tectf!ri') 

CALL TIMl(1, I) 

c 
c 

STeP 
00 

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 

c 
C+ 

~Hilll.ll INI. 01~1 

C Output of nodal positions and final velocities. 
C Major variables: DISP -current velocities 
C X, Y anode coords 
c-

c 

IWLICIT OCUlLE PRECISIGl (~.o-w) 
CHARACTER TITLE(4)•8,ZUF(4)•4 
PARM£TER( IGL=$0, JGL=1 .31 ,KGL-66) 
CCM.<N /CHAR/ TITLE, zur 
CCM.<N /roiS/ NTRI ,t0JAD,NII'CS,NNOO,KSIZE,t<Sa¥,NN002,NN.T .lt:U4(4), 

+ ST'MI'J(,PI ,BETA.NST ,NSI,NSEG,N:DSEG,OELTAT 
CCM.<N jta:JS/ X( IGL/2), Y( IGL/2) ,OISP(IGL), F'CR:E( IGL), 

+ XSTPOS(4,SOO),YSTPOS(4,500) 

WRITE(7. 10)TITLE 
10 r~T(1H0/1H ,50X,4A8/1H0,10X, 'Nodal Velocities'/ 

+ 1Ht, 10X,' '/ 
+ IH0,5X. 'Node', 12X, · x-coord: kill' ,8X, · y-<:oord: kill' ,8X, 
t 'Vel(x): m/s',10)(,' Vel(y): m/s'/1H0) 

c 
00 20 1015=1 ,NNOO 

v.RITE(7 .30) lOIS, X( IOIS)/1 .0E0.3, Y( IDIS)/1 .0E0J,OISP(2•1015-1), 
+ OISP(2•101S) 

30 F~T(fiX,I4,8X,2(JX,F10 2,7X),2(9X,1PE1.3.6)) 
20 t:.CN T I ~[ 
c 

v.RITE(6,40) 
40 FCRAAT('0Velocities written') 

CALL TIME( 1,1) 
c 

c 
c 

RET\R-1 
00 

C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 

c 
C+ 

SL9<0JT I NE GR 10 

C Plot the original and the final mesh configurations. 
f. Mnjor vnrinbl11o· XOIO, YOI.D • coorde of rl!f•HI!nrl! fr,..,.. 
C X, Y • coorde of final meeh 
c-
c 

c 
c 
c 

IM-'LICI T OCWLE PRECISIGl (A-+i,Q-W) 
PARM£TER( IGL-680,JGL•1.31,KGL-66) 
CCM.<N /roiS/ NTR I , tOJAD, N II'CS, NNOO, KS I ZE. KSa¥, NN002, ~ T , I t:U4( 4) , 

+ ST'MI'J(, PI , BET A, NST, NS I , NS£G, N))SE'G, DEL TAT 
(Xl.,t,t"N ;t-¥l'f'>/ X{ IGL/1) , Y( IGL/2), OISP( IGL), F'CR:E( IGL). )(((),11 ( 4000) 
CCM.<N /PLOT/ ~.~IN.~.~IN.~.XOMIN,YOMAX,YOMIN, 

+ XSP, YSP, XPL(50), 'YPL(~) 
CCM.<N /ELO,V troEL(8,500) .~(500) ,I()TEL(~) ,N:OEL(~), 

+ t-OTCOL{~) ,ICQXlL(~) ,Oim::P(9,500) .BLIB(144,500), 
+ PRIN::(16,500) 

+ A TRANS( IGL) .CM:SH( IGL) ,/>PART IGL .~( IGL), 
CCM.<N /IKNE/ WART ( IGL) , ~( IGL) ,I>PNWA~ IGL~, STRANS{ IGL), 

+ 'M:SH2( IGL) ,c:t.ESH2( IGL), XOI.D IGL , 'YOLO( IGL) 

• • • In i t i o I i se 



c 

XSP1=XSP-+0. 2 
CALL PSPACE(0.2.XSP1.01,1 0) 
CALL I.W'()(MI N ,l<MI\X. '!MIN. Yc:MAX) 

C ••• Plot original mesh with a broken I ine 
c 

CALL ffiO<EN(5, 15,5. 15) 
00 300 f'oMESI-I= 1 • 2 

IF(NTRI.GT 0) lliEN 
00 20 IEL=1 ,NTRI 

NLJ.4EL=WTEL( IEL) 
00 10 1=1,6 
~EL( I.IUAEL) 
IF(t-MESH. EO. 1) lliEN 

XPL(I)=XOLD(NOD) 
YPL( I )•YOLD(NOD) 

ELSE 
XPL( I )•X(NOD) 
YPI.( I )ooY(I'¥0) 

EK\IF 
10 CONTINUE 

XPL(7)=XPL( 1) 
YPL(7)=YPL(1) 

CALL CLRVEO~XPL. YPL, 1 . 3~ 
CALL CLRVEO XPL,YPL,3.5 
CALL CLRVEO XPL, YPL , 5, 7 

20 CONTINUE 

c 
EK\IF 

IF(N)JA().GT .0) lliEN 
00 50 I EL=1 , i'OJAD 

tU£L="')[L ( I EL) 
00 40 1=1,8 
~EL(I.NLJ.4EL) 
I F ( f'oMESH. EO. 1 ) lliEN 

XPL( I )=XOLD(NOD) 
YPL( I )=YOUD(NOD) 

ELSE 
XPL( I )=X(NOD) 
YPL( I )=Y(NOD) 

EK\IF 
40 CCNT INUE 

XPt.(9)=XPL( 1) 
YPL.(9)•"fPL(1) 

I.".AII. f).IN).I)~Xl'l., '11'1 , I , .. 1! 
CALL CLRVEO XPL,YPL.3,5 
CALL CLRVEO XPL, YPL, 5, 7 
C'.At I O.RVr.O XPI., YPI.. 7. <l 

~ I).NIIPIIJI. 
OOIF 
CALL fULL 

300 CONTINUE 
c 
C ••• Annotate 
c 

CALL LABEL 
c 

VIR I TE(6,90) 
90 FCRMT( '0Eiement mesh drown') 
c 

c 
c 

RE11..f<N 
En) 

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 

c 
c 

SUJ<OJTINE PAMS 

C+ This routine sets up a plotting space XSP,YSP in which the 
C output is plotted. This plot space hos on annotation border, 
C of 0.2 in each •-direction, 0.1 at the bose and it stretches 
C to I iII up the top border. 
C Major variables: XSP, YSP oophysicol size of plot 
C )(MIN, )(WJ(, '!MIN, ~ -extrSIIi I ies of coords 
c-
c 

c 

1~1 IC:IT OCUH PRF.CISI\N (~.o-w) 
PARN.t:IER( IGL-680,JGL•U1,KGL-66) 
~/CONS/ NTRI,NQUAD,NINCS,NNOD,KSIZE.KSBW,NNOD2.~T.IOUM(4), 

+ STMIIX ,PI .BETA.NST .NSI ,NSEG,t'(l)SEG,DELTAT 
~ /PLOT/ l<MIIX , )().41 N. 'fWV< , 'IMI N , )(().W( , XO.A IN. Y'().4A)( • '(().41 N , 

+ XSP,YSP,XPL(50).YPL(50) 

C ••• lni t iale plot 
c 

CALL PAPER( 1) 
c 
C ••• Read coordinate boundaries 
c 

READ(5,10))().41N,)().4A)( 
READ(5, 10)'/MIN, 'fWV< 

10 FCRMT(2F10.3) 
c 
C ••• Read size of PSP,o!CE 
c 

READ(5,20)XSP,YSP 
20 FCRMT(2F5.2) 
c 
C ••• Scale 
c 

c 

IF(NSI.E0.0) Tij!Joj 

)().41~XMIN•t000.0 

~X·~•1000 ll 
'IMI~'IMIN•1000.0 
'fWV<m'IIN\)( •1000. 0 

fNliF 

C ••• Calculate mopping area lor the border region 
c 

c 

XSC=()().4A)(-XMIN)/(XSP•10.0) 
YSC=('IMI1-+-'IWV<)/(YSP•10. 0) 
X~IN=XMII-+-XSC•2.0 
)(().W(•XMIN+(XSC•(XSP-+0.2)•10.0) 
'(().411+-'IM IN+ '1"3: 
Y'().4A)(•'fWV<-('1"3:•(0.9-YSP)•10.0) 

v.RITE(6,100) 
100 FCRMT('0PAMS canpteted') 
c 



c 
c 

RETl.RN 
o-n 

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 

c 
c 
C+ 
c 
c 
c
c 

c 

t 
c 
c 

c 
c 
c 

c 

c 

c 

c 
c 
c 

c 

SLmCUTINE LABEL 

Annotate oxes of the current plot. 
Major voriobles: TITLE =title of model 

IMPLICIT OOJBLE PRECISION (A-H,O-W) 
O~lf.R llli.E•J2,ZUF(4)•4 
O't.M',N /0 W~/ T Ill. f , 71 If 
IIWN /II N-o/ ~IIIII ,NJIIIP,NH-A:<;,t-H.Il,W;I/I .~<lflll,t-Hll;• .~1, IIUA(4). 

+ STI.W<,J'I .BE.IA,NST ,NSI .NSEGJQ)S[G.[l(LTAT 
~/PLOT/ ~.~IN.~.~IN,XOMAX,XOMIN,YOMAX,YOMIN, 

+ X9', YSP, XPL(50), YPL(50) 

X9'1=X9'~.4 

CALL C9'ACE(0.0.X9'1 ,0.0, 1.0) 
CALL PSPACE(0.0,X9'1,0.0, 1 .0) 
CALL ~(XCMIN,XCMIIX, YCMIN, YOMAX) 

••• Plot title 

CALL CTR.¥G(20) 
XST=~IN 
YST•~+(YOMAX-~)•0.8 
CALL PLOTCS(XST,YST,TITLE) 
CALL CTR.¥G(15) 

••• Plot the corner coords 

l'rl<M=~IN/1.0[3 
xsT~~IN-(~-~IN)/20.0 
CALL PI.OTNI (XST, '1\AIN, IY1<1.4) 

~~~X/1 0[3 
CAI.I. f'IOINI (XST, '!W.X, l'flo,l.4) 

YST·(~IN-~)•1.09 
IX!<Mo~IN/1.0EJ 
CALL PLOTNI(~IN,YST, llOOA) 

IXI<M=~/1.0EJ 
CALL PLOTNI(~.YST, IXI<M) 

••• Orow o border around the plot 

XSP2=X~.2 
YSP1=YSP~.1 
CALL PSPACE(0.2.X9'2.0.1 ,YSPl) 
CALL EmDER 

VIR I TE(6, 100) 

100 FCRAAT( 'OCurrent plot onnototed') 
c 

c 
c 

RETl.RN 
o-n 

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 

c 
c 
C+ 

SUBROUTINE VECPLT 

C Plot the stress vectors ot selected gauss points. 
C Major voriobles: XSTPOS, YSTPOS -coorde of gouee pointe 
C PRII'CS -siren ol QOUSS points 
c-
c 

c 

c 

lt.f'l If'. I I 1¥1111 r ffifCt<;f(}ol (~.O·W) 
PAAM IER( IGL-Me,JGL•1JI ,KGL-66) 
~ ;l.4ATS/ EM(9) ,F\.1(9), Tl.4(9) .~(9) .ET~(9) .ETAN. ITYP(9) 
~/CONS/ NTRI ,NOUAD,NINCS,NNOO,KSIZE,KSBW,NN002.~T.I~(4), 

+ Sli.W<,PI ,BETA,NST ,NSI .NSEG,IQ)S[G,OELTAT 
~ /VARS/ COAO( 165), NO,N..t.AEL .~, Lco.A(2), IG 
~ /PLOT/ »oAAX.~IN, '!t.4AX, ~IN,XCJ,WC ,XOAIN,YOMAX, YOM IN, 

+ X9', YSP.XVECS. YVECS,XPL(48), YPL(50) 
~ /ELEM/ I'IDEL(8,500) .~(500) ,NQTEL(500) ,I«<EL(500), 

+ NOTCOL(500) ,N:OX>L(500) ,OIFFCP(9 ,500) ,BLIB( 144 ,500), 
+ PRIIIC( 16,500) 

X9'1aX~.2 

CALL CSPACE(0.0,XSP1 ,0.0, 1.0) 
CALL P9'ACE(0.2,XSP1,0. 1,1.0) 
CALL ~(~IN,)~,")(,~IN.~) 

C ••• Scole the vectors to the physical size of the plot 
c 

c 

XVECS=(ABS(~-~IN)/(25.0•XSP))•1.0 
YVECS=(ABS('!t.4AX-~IN)/(25.0•YSP))•1.0 

IF(NTRI GT.0) THfN 
00 ~ IEI.•l ,NTRI 

~JAEL-NOTEL(IEL) 
~1•1 TYP(~t.t:L) 
N:'.AI)Soo.J 

CALL STPLOT 
20 (X).Iltt-UE 

c 
OOIF 

lf(tO..W>.GT.0) THEN 
DO 40 IEL•1 ,tO..W> 

N..t.AEL-«XlEL( I EL) 
Mo\T•I TYP(N..t.AEL) 
~ 
CALL STPLOT 

40 ron 1 "llE 
EJ-OJF 

c 
C ••• Annotate 
c 



c 

XSP1=XSP-Kl.4 
CALL PSPACE(0.0.XSP1 ,0.0, 1 .0) 
CALL t.NIP(XCMI N, X().1AX. YCMI N, Y().M)() 
CALL CTR.N>G( 12) 
XST=~-(~-~IN)•0.4 
YST=~+(Y().M)(-~)•0.2 
CALL Fa;ITN(XST, YST) 
I F(Sn.v.><. LT. 50. 0E06) THEN 

XST•XST+1.0E06•XVECS/Sn.v.>< 
CALL JOIN(XST.YST) 
CALL m>ECS(' 50 ~o· ,8) 

ELSEIF(S1WV<.Ll.100.0E06) THEN 
XST=XSl+2.0E08•XVECS/SlWV< 
CALL JOIN(XST,YST) 
CALL m>ECS(' 100~o'.9) 

usr 
XST•XSlt~ 0E08•XVfCS/SnMAX 
CALL JOIN(XST. YSI) 
(All TYPF.CS(' ~~ MPo' .9) 

Et-OIF 
CALL ITALIC~1) 
CALL m>ECS ' ( OOTTED LINES TENSICNAL ) ',30) 
CALL ITALIC 0) 
XST=~-(~-~IN)•0.5 
YST=~+(Y().M)(-~)•0.7 
CALL PLOTCS(XST,YST. 'STRESS VECTORS' ,14) 

C ••• Lobel 
c 

CALL LABEL 
c 

VIRITE(6, 100) 
100 F<R.41\T('0Vectors plotted') 
c 

c 
c 

RE:l\.R-1 
Et-0 

C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 

c 
c 
Ct 

9.f.Mli11NF_ S I OJI 

C Write stresses to unit 7 
C Major variables: XSTI'OS, YSTI'OS "'COOrds of gauss paints 
C ~INCS •st resoes at gauss poi nto 
c-
c 

l~LICIT DCU3LE ~ECISICN (A-+l,O..W) 
CHARACTER TITLE(4)•8.ZUF(4)•4 
PAR.MIETER( ICL~.JGL=1J1 ,KGL:66) 
~/CHAR/ TITLE.ZUF 
~ /OCNS/ NTR I .IOJ.OD, N I NCS, t-Kll ,I<S I ZE. KSBI'I, t-H:02. ~ T . I !X.M( 4) . 

+ Sn.v.>< ,PI .BETA.t.ST ,NSI ,t.SEG.N:DSEC.OELTAT 
~ /t«Y3/ X( IGL/2). Y( IGL/2) ,OISP( IGL) .FCR:E( ICL). 

+ XST1'05(4.500) .YST1'05(4,500) 
~ /ELEM/ N:DEL(8.500) .~(500) ,I'-()TEL(500) ,t-a:>EL(500). 

+ I'-()TOOL(500) .IOXX>L(500) ,OIFFCP(9,500) .BUB( 144.500). 

c 
c 
c 

10 

20 

c 
c 
c 

60 

30 
40 

50 
c 

+ f'Rlt-C(16.500) 

••• Write title and header 

VIRITE(7,10) TITLE 
F<R.41\T( '1 ' , 20X, 4A8) 
VIRITE(7 ,20)Sn.v.></1.0006 
F<R.411 T ( 1 H0 , 10X • ' STRESSES '/ 

+ 1H+-,10X, ' ___ '/ 
+ 1H0,10X, 'Moxi~ll!l Stress a' ,1P010.J, '!.Po (Absolute value)'/ 
+ 1H0,10X, 'EI' ,5X, 'x: (lcm)' ,6X, 'y: (lool)' ,7X, 
+ 'Pr inc i poI Stresses', 9X, 'Angle' ,6X, 'Shear' ./ /) 

••• Write out triangles then quods 

f\l)f.L~IRI 

~)ooJ 

00 :;0 1~.-1.2 
IF(~'ll.l 1.1 0) TllfN 

fXl 40 1El.•1 ."'lEL 
IF( IS. EO. 1) THEN 

t.U.E:L=t-OTEL( I EL) 
ELSE 
t.U.E:L~L( IEL) 

Et-OIF 
00 30 IG=1,1'-() 

JI'(&.(I<T-1 )•4 
VIRITE(7, 60)"'-.MEL, XST1'0S( IG,PUAEL), YST1'0S( IG,PUAEL~. 

+ PRlt-C( l+JFa;,PUAEL) ,PRI!oC(2+JFa;,PUAEL , 
+ ~ I t-C ( 4+JFa; , t.U.E:l) , PR I t-e( J+JFa;, PUAEL 

F<R.41\T(8X,IJ,5X,E10.J,JX,E10.J,JX,E10.J,JX,E10.J, 
+ JX,F8.J,JX,E10.J) 

OCNTI~E 
OCNTI~E 
1'-()[L=t-OJAO 
1-0=4 

Et-OIF 
OCNTI~E 

VIRITE(6,100) 
100 F<R.41\T( '0Stresses written') 

CALL T 11.4[( 1 , 1) 
c 

c 
c 

R[Tif<N 
00 

C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 

c 
c 
C+ 

SJ...ma.JT I NE STPLOT 

C Plot the two stress vectors ot this gauss point. 
C Major variables: XST1'0S, YST1'0S -coords of gauss paints 
C ~INCS •stress at gauss points 
c-
c 

!~LICIT DCU3LE PRECISICN (1.-+i,O..W) 



PARAA£TER(IGL=880.JGL=131,KGL=66) 
o::MDJ /ro¥5/ NTR I , t'UJ.AD, N I tC5, t-tO:l, KS I ZE, KSWI. t-tO:l2, toM\ T , I !:U.4( 4) , 

+ STMIVC,PI .BETA,NST,NSI ,NSEG,N:OSEG.DELTAT 
o::MDJ /VMS/ CCMl( 165) .~.r-u.£L.t-C.AUS. LCOA(2). IG 
o::MDJ /PLOT/ ~.XMIN.~.YMIN.XOMAX,X~IN,YOMAX,YOMIN, 

+ XSP, YSP, XVECS, YVECS, XPL( 48~, YPL(50) 
o::MDJ /t«fj/ X( IGL/2). Y( IGL/2) .DISP( IGL .FOOCE( IGL). 

+ XSTP06(4,500),YSTP06(4,500 
o::MDJ /ELOA/ t-roEL(8.500) ,t-CAUSS(500) .~TEL(500) ,to:JEL(500). 

+ ~TOJL(500) ,I'OXDL(500) ,DIFFCP(9,500) ,8LI8( 144,500), 
+ PRitC( 16,500) 

c 
C ••• For each qouss paint in this el<111ent 
(; 

c 

00 10 1(' ... 1 .Nr.Al.IS 
KPI 1··1 
lfU;;..( IG-1 )•4 
xro5-XSTP06( IG ·"' M:L) 
Yf'OSooYS TP06 ( I G • NLMEL) 

C ••• Retrieve the angles of the principal stresses 
c 

c 

IF(DABS(PRitC( 4+IPOS,NLMEL)-90.0). LT. 1 .0E-7) THEN 
CTHETA=0.0 
STHETA=1.0 

ELSE 
TTHETAFPRitC(4+1POS,Nlt.£L)•PI/180.0 
CTHET~(TTHETA) 
STHET A-OS IN( TTHET A) 

END IF 

C ••• Evoluote the end of the first vector 
c 

c 

XPLT=XPOS+(PRINC(1+1POS,Nlt.£L)•CTHETA/STMIVC•XVECS) 
YPLT=YPOS+(PRINC(1+1POS.NLMEL)•STHETA/STMIVC•YVECS) 
00 30 KPLT=1,2 

CALL POSITN(XPLT,YPLT) 

C ••• 8roken I ine for tension 
c 

tr(mlt-r.(KPiltlN',;_,... .... ,) r.1 0 01 rttiN 
)(1.'1 I I~ 4•XKI'-.Hl fi•)(f.'l I 
Yl'l 11-0 ••)11(~'·•0 r .• ·,n 1 
CALL JOIN(XPLT1, 'IT'! I 1) 
XPLT1~1.6•XPOS-0.6•XPLT 

YPLT 1=1 . 6•'!'POS-e. 6•YPLT 
CALL POSITN(XPLT1, YPLT1) 

En> IF' 
XPLT1=2.0•XPO&-XPLT 
YPLT1•2.0•YPOS-YPLT 
CALL JOIN (XPLT1,YPLT1) 
IF(KPLT.E0.1) THEN 

IF'(CTHETA.NE.0.0) THEN 
COP=<:THET A 
CTHETA=STHETA 
STHE1/>:=0J> 

ELSE 
STHE1A=0.0 
CTHE1A=1 .0 

EWIF 

XPL T =Xf'OS.- ( PR I tC ( 2+ I POS , f'U.£L) oCTHET A/STMIVC • XVECS) 
YPLT=~(PRitC(2+1POS,r-u.£L)•STHETA/S~•YVECS) 

EWIF 
30 <XNT I N.JE 
10 <XNT I N.JE 
c 

c 
c 

R~ 
En) 

C••••••••••••••••••••~•••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 

c 
c 
C.+ 

9.mfl1T IN£ SLRF 

C Plol the surloc11 disploc-nt prof lie of the I lnol coni iourat ion. 
C Major variables: X, Y -caords of final mesh 
c-
c 

c 

c 

IWLICJT OO..SLE PRECJSJCN (.t.-+i,O...W) 
PARAA£TER( IGL=880,JGL•1J1,KGL~6) 
o::MDJ /ro¥5/ NTRI .~.NitCS,t-tO:l.KSIZE,KSWI,t-tO:l2 .~T, II:U.4(4), 

+ STMIVC .PI ,BETA.NST ,NSI ,NSEG,N:OSEG,DELTAT 
cn.t.Ol /IU15/ X( IGL/2), Y( IGL/2) .DISP( IGL) ,FCR::E( IGL).XO:lo41 ( 4000) 
cn.t.Ol /VI'!£/ DST<H:( 12 ,900) ,FJNIT( IGL) ,FOJT( IGL) .~( IGL) 
DI~ICN NN(500) ,XP(9,500), YOISP(9.500) ,XPLT(500), YPLT(500) 

XSTART=0.0 
XEM)=0.0 
Y80T=0.0 
YTCP=0.0 
IPLT=0 

READ(5,200) NPLT 
200 F'CR.It<T( 15) 

DO 210 1=1 ,NPLT 
REA0(5,200) NN( I) 

210 o::NT '"'.Jf 
c 

c 

C'.Al.l l".:f'.•O.(Il 'l,1 0,0 .'.0 ll) 
CAll . ..w:'(0 0,9U0.0.-5.0.1.0) 
CALL ~LES 

DO 10 1=1,4 
DO 20 IPLTa1,WLT 

XPLT( IPLT)•X(NN( IPLT))/1 .0E0J 
YPLT(IPLT)oOST~E(I.NN(IPLT))/1.0E0J 
VoRl TE(7. 100) XPLT( IPLT), YPLT( IPLT) 

100 F'CR.It<T(2(5X,F'10.J)) 
20 <XNT I N.JE 

CALL a..RVEO(XPLT, YPLT, 1 ,NPLT) 
10 <XNT I N.JE 
c 

CALL PSPACE(0.0,1 .0,0.0,1.0) 
CALL MAP(0.0,1.0,0.0,1.0) 
CALL CT~(17) 
CALL THI0<(2) 
CALL PLOTCS(0.2,0.75, 'Surface Di•plocement Profi le•' .29) 



c 

CALL THIO<( 1) 

CALL cm..w:;~12) CALL PLOTCS 0.4,0.20, 'Distance along profile in km' .28) 
CALL C~l 90.0) 
CALL PLOTCS 0.10,0.35, 'Surface height in km' ,20) 
CALL C~l 0.0) 

~ITE(6,50) 
50 FORMAT('0Specified displacements plotted') 
c 

c 
c 
c 

RfTU<N 
fll) 

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 
c 

c 
C+ 

SUBROUTINE VELPLT 

C Plot the velocity vectors at the nodes. 
C Major variable~: OlSP =current velocities 
C X, Y ~sh coords 
c-
c 

c 

IWLICIT OCUILE PRECISION (A4-l,o-lfl) 
PARMETER( IGL=Sa0,JGL=131 ,KGL=66) 
o::t.M:N MJJS/ X( IGL/2), Y( IGL/2) ,019"( IGL), FCRCE( IGL), X<XM1 ( 4000) 
o::t.M:N /o::NS/ NTR I , I>QJAO, N II'CS, t-«:0, KS I ZE, KSQ!j, t-«:02 , i'MII T , I CUA( 4) , 

+ Sll.W< ,PI .BETA,NST ,NSI ,NSEG,I'O)SEG,OELTAT 
o::t.M:N /VARS/ W1W2,0ETJ,ETA,C2,FACT,ONXDX(8),0NXDY(8),B(4,18), 

+ BTC( 18,4) .~.1-CAUS.ICASE.t-.UAEL,IRCW,IG 
o::t.t.QI /PLOT/ ~.XMIN.~.~IN,X~.XOMIN,~.YOMIN, 

+ X9",Y9",XPL(50),YPL(50) 
o::t.M:N /ELEM/ ~EL(8,500) ,I>CAIJS$(500) .~TEL(500) ,I-O)[L(500), 

+ ~TC:OL(500) ,t>OXX>L(500) ,01 FFOP(9 ,500) ,BUB( 144, 500), 
+ PRINC(16,500) 
OI~ION XPU(50). YPLT(50). STCRE(750) ,t-l.ILL(750) ,t-N(50) 

C ••• Evoluot~ the lorg~st velocity v~ctor c . 
OIW.X~.eoo 
00 10 I•IPLOT.~ 

DVE()oo()9FT(019"( 1•2-1) .. 2+01SP( 1•2) .. 2) 
DIW.X~1(0VEC.OIMAX) 

10 CONTlt-UE 
c 
C ••• Set up plot frane 
c 

c 

X9" 1 =X9"+0 . 20 
CALL C9"ACE(0.2.X9"1,0.0,1.0) 
CALL P9"ACE(0.2,X9"1,0.0,1.0) 
CALL MAP(XMIN.~.YOMIN.~) 

C ••• Plot a circle ot each node 
c 

CALL CTRFNT ( 1 ) 
CALL CmMG(7) 

c 

CALL PTPLOT(X,Y,1,t-N:0,245) 
CALL cm..w:;( 15) 

C ••• Plot the scaled velocity vectors 
c 

XVECS=ABS(~-XMIN)/(25.0•XSP) 
YVEC:S-oABS(~-~IN)/(25.0•~) 
~LEX=XVECS;t> !MAX 
~LEY=YVECS/t>IMAX 
CALL REIPEN 
00 20 I•IPLOT .I'Hl:> 

CAll I'U;;ITN(X~I) ,Y( I)) 
XP-X( I )+(DISP 1•2-1 )•~LEX) 
YP.Y(l)+(DISP 1•2)•~LEY) 
CALL JOIN(XP,YP) 

20 OOfllf'.lJE 
CALL BU<PEN 

c 
C ••• Plot the displacement of the surface above the frame 
c 

READ(5,200) 1-f'LT 
200 F~T(I5) 

00 210 1=1 ,1-f'LT 
READ(5,200) t-N( I) 

210 CONTI"llE 
c 

00 220 IPLTa1,t-PLT 
XPLT(IPLT)=X(t-N(IPLT)) 
YPLT(IPLT)=Y(t-N(IPLT))/1.0[03 
I'IRITE(7 ,230) XPLT( IPLT)/1 .0003, YPLT( IPLT) 

230 FORMAT(2(5X,F10.3)) 
220 CONT!f'.IJE 
c 

c 

X9"1=X9"+0.2 
~1=0.1+~ 
YSP2<=Y9" 1 +0 . 1 
CALL P9"ACE(0. 2, X9"1, ~1, Y9"2) 
CALL MAP(XMIN.~.-4.0,1.0) 
CALL POSITN(XMIN, 1.0) 
CAI.L JOIN(XMIN,-4.0) 
CALL IJ<O<EN(20,20,10,20) 
CALL POSI TN(XMIN,0.0) 
CALL JOIN(~.0.0) 
CALL FULL 
CALL CUM:'O(XPLT,YPLT,1,t-f'LT) 

C ••• Annotate 
c 

c 

)(9" 1 a)(9"+0 . 4 
CALL P9"ACE(0.0.X9"1,0.0,1.0) 
CALL C9"ACE(0.0,XSP1,0.0,1.0) 
CALL MAP(XCMIN.~.YOMIN.~) 
CALL Cm.w::(10) 
XLABEL·~ - (~-XMIN)•0.4 
YlABELa~ + {~-~IN)•0.4 
CALL POSITN{XLN3EL,Yl.N3El) 
XLABEL•XLN3El +15.B0E-10•SCALEX 
CALL JOIN(XLABEL,YLABEL) 
CALL TYPECS(' 50 rm>/yr', 10) 

C ••• Lobel aMes 
c 



CALL LABEL 
c 

~ITE(6, 11) 
11 F~T('0Velocities plotted') 
R~ 

c 
c 

00 

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 

c 
c 
C+ 

SlER)JT I NE CffiOF 

C Plot the ~urfoce profile of the travel I ing wove problem. 
C Major voriobles: X, Y =mesh coords 
C-

c 

c 

IWLICI T IXU3LE PRECIS I().! (A-+t,o-¥1) 
PARN.AETER( IGL-=880,JGL=131 ,KGL-66) 
ro.t.«:J.. ;ta:JS/ X( IGL/2). Y( IGL/2) .OISP( IGL), FCR::E( IGL), XCX).41 ( 4000) 
<XMd:N /VI'!£/ DSTCRE( 12 ,900), FIN IT( IGL), FOJT( IGL) ,-s5( IGL) 
o::M.OI /WCNEJ W.ART ( IGL), lh.£SH( IGL) . .APARftM~ IGL~, STRANS( IGL), 

+ A TRANS( IGL) ,!:MESH( IGL) ,.AP.ART IGL ,M'ESH( IGL), 
+ >M:SH2(1GL),I:MESH2(1GL),XOLD IGL ,YOLD(IGL) 

DIMENSI()-1 XPLT(350),YPLT(350),NN(350) 

XST.ART~.0 

XENP0.0 
YOOT~.0 
YTCPoe.0 
IPLT-0 
YSP1-0 2 
YSP2-0.J5 

R00(5, 100) f'.PLT 
100 F~T(I5) 

00 150 1"1 ,NPLT 
R00(5, 100) NN( I) 

150 ~TI~E 
c 

200 

10 
c 

DO 20 ISlRF=1 ,4 
DO 10 1=1 ,NPLT 

XPLT( I )=X(NN( I) )/10.0 
YPLT(I)=( DSTCRE(ISlRF,NN(I))- YOLD(NN(I)) 
~ITE(7,200) XPLT(I),YPLT(I) 

F~T(2(5X,Fi0.3)) 
XST.ART=AMINI(XST.ART,XPLT(I)} 

X~llXOO,XPLTllll YOOT =AMAX 1 YOOT, YPL T I 
YTCP=AMIN1 YTCP,YPLT I 

~I~E 

CALL PSPACE(0.2,0.B,YSP1 ,YSP2) 
CALL WIP(XST.ART, X00,--0. 005,0.1) 
CALL o.RVEO( XPLT , YPLT , I , f'.PLT) 
CALL POSITN(XST.ART,0.0) 
CALL JOIN(X00.0.0) 
CALL Ef<O<EN(10, 10, 10, 10) 
CALL POSITN(XST.ART,0.1) 

)/10.0 

CALL JOIN(X00,0. 1) 
CALL FULL 
YSP1=YSP1+0. 16 
YSP2=YSP2+0 16 

20 ~liVE 
c 

c 

c 

c 

c 

c 

CALL PSPACE(0.2,0.B,0.2,YSP1) 
CALL ~(0.0, 1.0,0.0,1.0) 
CALL POSITN(0.0,0.0) 
CALL JOIN~1.0,0.0~ CALL JOIN 1 .0, 1.0 
CALL JOIN 0.0,1.0 
CALL JOIN 0.0,0.0 

CALL PSPAC£(0.0, 1.0,0.0,0.2) 
CALL MAP(0.0, 1 .0,0.0,1 .0) 
CALL C~t12) 
CALL PLOTCS 0.3,0.5, 'Scaled distance in reference frame' ,34) 
CALL PLOTNF 0.19,0.B,XSTART,1) 
CALL PLOTNF 0.79,0.8,60.0,1) 

CALL PSPACE(0.8,1 .0,0.0,1 .0) 
CALL MAP(0.0, 1.0,0.0, 1.0) 
CALL C~ 15} 
CALL PLOTCS 0.2,0.3,'n-40' ,4} 
CALL PLOTCS 0.2,0.46, 'n-60',4} 
CALL PLOTCS 0.2,0.62, ·~· ,4) 
CALL PLOTCS 0.2,0.78, 'ns100' ,5) 

CALL PSPACE(0.0, 1.0,YSP1, 1.0) 
CALL WIP(0.0,1.0,0.0,1 .0) 
CALL C~(13) 
CALL nUCK(2) 
CALL Pt.OTCS(0.2,0.3. 'F'ree-eurfoce of the fluid at selectPd t imee', 

+ 43) 
CALL THICK(!) 

CALL PSPACE(0.0,0.2,0.0,1.0) 
CALL MAP(0.0, 1 .0,0.0,1.0) 
CALL Cm.w> 9) 
CALL PLOTNF 0.9,0.200,0.0,1 
CALL PLOTNF 0.9,0.345,0. 1,1 
CALL PLOTNF 0.9,0.365,0.0,1 
CALL PLOTNF 0.9,0.505,0.1,1 
CALL PLOTNF 0.9,0.525,0.0,1 
CALL PLOTNF 0.9,0.665,0.1,1 
CALL PLOTNF 0.9,0.685,0.0,1 
CALL PLOTNF 0.9,0.825,0.1,1 
CALL C~ 12) 
CALL CTRCRI 90.0) 
CALL PLOTCS 0.4,0.3, 'Scaled ompl itude of position of free-surface' 

+ ,44) 
CALL CTRCRI (0.0) 

~ITE(6,300) 

300 F~T('0Surfoce displacement platted') 
c 

c 
c 

R~ 
00 

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• c 



c 

c 
C+ 

~INE MXPY(A, IA,JA.B, IB,JB,t.A,N, !TEST) 

C Dupl icote one matrix into another 
c-
c 

c 

IIS'LICIT OCWLE PRECISI()ol (A-H,Q-W) 
Dlt.AENSI()ol A(IA,JA),B(IB,JB) 

00 10 1=1 ,t.A 
00 10 J=l ,N 

B( I ,J)=A( I ,J) 
10 CO'fllt-UE 

c 
c 

RET\.Rol 
00 

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 

c 
C+ 

9..ER)JTINE ~VTY 

C Calculate the contribution to the global force vector for body force• 
C acting toword9 the centre of the Earth. 
C t.Aojor variable•: RHOt.A =den9ity of element 
C X, Y =coords of nodes fORCE •force vector IFI 
~ 
c 

c 

IIS'LICIT OCWLE PRECISI()ol (A~.o-w) 
PAAMI:TER( IGL-ffle.JGL•IJI ,KGL-66) 
cx:MOl /a:ff5/ Nm I , I'OJAD, N I NCS, toND. KS I ZE. KS9fl, toND2, Nt.AA T , I t:UA( 4) , 

+ STI.W<,PI .BETA.NST.NSI .NSEG.~EG,DELTAT 
cx:MOl ~/ X( IGL/2), Y( IGL/2~ .DISP( IGL) ,FORCE( IGL), XSTPOS( 4 ,500), 

+ YSTPOS ( 4 , 500 
cx:MOl ,W.TS/ Et.A(9) ,F'-4(9), Tt.4(9 ,Rt-OA(9) ,ET.eM(9) ,ET.Ai'l,ITYP(9) 
OOt.4t.AON /EL~ NODEL(8,500),NGAUSS(500),NOTEL(500),NOOEL(500), 

+ NOTOOL(500) ,!oOXOL(500) ,DiffCF(9.500) ,Bll8(1«,500), 
+ I'RIN:(Itl.~) 

cn.M:N /f".N>T/ S, T ,9W"£(8~ ,[N)(D5(8) ,I:NXOT(8), TSHN'E(6,J6), 
+ T[N)(DS 6, !>6 , l(N)([)T 6 ,.\6 , TWIW2 6, 6 ,CSW'E J, 72~. 
+ <D'OO)SL~.12 .aNXDT~J. nLtNVIW2~J.9LW£1 m1~12.6 • 
+ W£100( 18,3) ,PLACET( 12 ,6) ,PLACEO( 18,3) ,PLACEL(J) ,WEI LIN(J 

If (Nml.NE.0) THEN 
00 30 IEL=1 ,Nml 

f'.l.t.£L=f>OTEL( I EL) 
t.AAT=ITYP(tU.!EL) 
~(t.AAT) 
~(f'.l.t.£L) 
~TOOL(IEL) 
FLQIII)= Rt-0•9. 81 
00 20 10=1 .NGAUS 

IFUS=( IG-1 )•6 
OV=OifFOP(IG.NUt.AEL) 
ANQ-ATAN(XSTPOS(IG,NUt.AEL)/YSTPOS(IG.NUt.AEL)) 
ZL~F LCWJ•!XOS(~) 
XL~ FLCWJ•OSIN(N<G) 
00 10 INTa1 ,6 

SHAPE(INT)•TSHAPE(NROW, IPOS+INT) 
NOO=NODEL(INT.NUt.AEL) 
FORCE(2•NOD )=SHAPE(INT)•ZLOAD•DV+f0RCE(2•NOD 

FCJ<C£(2•~1 )-sHWE( INT)•XI..OAO•IN+fll<CE(2•~1) 
10 CO'IT 11-ol.JE 
20 CO'ITII-ol.JE 
30 CO'IT 11-ol.J[ 

c 
OOIF 

IF(~.NE.0) 'THEN 
00 70 l[ls1 ,I'OJAD 
NUt.AEL~L( I EL) 
t.AAT=l TYP(t-U.£l) 
~(t.AAT) 
~(NLM:L) 
~L(IEL) 
FLOAD- Rt-0•9 .81 
00 60 I(). 1 , I'GAI.JS 
~II'I'CP( IG,tu.f:L) 
IPOS-( IG-1 )•8 
~T.Ai'l(XSTPOS(IG,NUt.AEL)/YSTPOS(IG,NUt.AEL)) 
ALOAD-fLCW>•DCOS(N<G) 
BLOII£)oo-HCW>•OS IN(N<G) 
00 50 INT=1 ,8 

SHAPE( INT)~E(NROW, IPOS+INT) 
NOD-NODEL(INT,NUt.AEL) 
FORCE(2•NOD )-sHAPE(INT)•ALCW>•OV+fORCE(2•NOD ) 
FORCE(2•~1 )-&W'E( INT)•BLOAD•OV+fORCE(2•~1) 

50 c:J:Nfl t-UE 
60 <XNTII-ol.JE 
70 CCNTII-ol.JE 

OOIF 
c 

YIHITE(6,90) 
90 F~T( '0Body forces oppl ied') 

CALL Tlt.AE(1,1) 
c 

RET\.Rol 
END 
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