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Abstract

The electroweak standard model (Salam-Weinberg) is well
known to be a satisfactory and consistent theoretical
description of all the experimental data we have obtained so
far. In this thesis, we discuss possible phenomenology which
goes beyond the standard model, with particular emphasis on
the neutral current effects. First of all, the left-right
symmetric extension of the standard model is discussed and we
find limits on its parameters. We show that this model
cannot explain certain newly reported and highly
speculative events at the CERN collider (3], which in
principle could be caused by the decay into two W’'s of a new
heavy Z. We then discuss composite models where there is a
strong expectation that there should be two neutral Z’s of
similar mass. We study the effects of these on neutral
current phenomenology and show that in general the extra 2
would be very hard to detect. A comparison of our model with

a particular superstring model [6] is also made.
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INTRODUCTION

It is by now well established that the "standard model",
based on the group SU(3)xSU(2)xU(l1l) is compatible with all,
confirmed, experimental data. In particular, the Salam-
Weinberg sector, in which the Higgs mechanism is used to
break the SU(2)xU(1), agrees with all weak arid electromagnetic
phenomenology. Thus Chapter 1 is specially designed to
review and discuss the history and success of the standard
model in- all possible neutral currents dynamics. There it
will be explicitly seen that the electroweak component of the
standard model is fairly able to explain all the, so far,
obtained and confirmed experimental data. However, this
success does not necessarily mean that the model is correct
at the fundamental 1level; it could instead be an
approximation to something very different, with the
experimental errors concealing higher order correction terms.

One obvious alternative model, which has been studied
previously, is the left-right symmetric model based on the
group SU(2)[xSU(2)pxU(1) [(1,2] for the -electroweak
interactions. This model clearly requires a modified Higgs
mechanism which gives a mass to the gauge bosons associatgd
with both SU(2) factors. Provided the mass of the right-
handed boson is much gre#ter than that of the 1left-handed
boson, this model gives similar "low energy"” results to the
standard model. Therefore, Chapter 2 is mainly aimed to
review the current situation of the L-R symmetric model in

detail. There it will be seen that present available




experimental data requires MWR > 400 GeV.

Although, as noted above, there is no confirmed evidence
for effects outside the standard model, there are some
unconfirmed "events" which might be relevant to our
discussion. In particular there are two reported events{3]
which might be caused by a heavy Z’ decaying into two W’s. In
Chapter 3 we shall study whether these events, if real, might
be explained in terms of L-R symmetric model.

A much more basic alternative to the standard model is
to assume that the quarks, leptons and gauge bosons of the
weak interactions (Wt and z°) are composite objects, in which
the fundamental particles (preons) are bound by some new,
presumably gauge, interaction. This interaction is often
referred to as quantum hypercolour dynamics (QHCD). By
analogy with what happens in QCD the preons and the QHCD
gauge bosons are assumed to be confined, so that only
hypercolour singlets are seen. The observed weak
interactions are residual (Van der Waal type) forces which
arise in a similar way to the way in which nuclear forces
arise from QCD. Actually, the original application of the
Higgs mechanism, by Weinberg, was to nuclear forces and the
and () were assumed to be gauge bosons. This idea was, of
course, killed with the development of QCD, when it was
realised that the P and () were composite, and nuclear forces
were not fundamental. What is being suggested here is that
something similar might happen in the case of Salam-Weinberg

model. The phenomenological success of this model would then



be understood as being due to the fact that even an
"effective", low-energy, Lagrangian would be renormalisable,
so that it would have to look like a Higgs broken gauge
theory, at least up to the energy where composite effects
become important. Therefore, Chapter 4 discusses the
composite models in details.

There is, however, one possible difference between this
type of theory and the Salam-Weinberg model. Since the
photon is a massless particle, it seems natural to assume
that it really is a genuine gauge boson. (The basic
interactions could then be all unbroken gauge theories: QHCD,
QCD, and electromagnetism.) This almost certainly means that
the effective theory will contain two U(1l) factors, because
we expect the composite state to include an isotriplet (W and
one neutral) and an isosinglet (cf. the P and W). Thus the
theory will have 3 neutrél vector bosons, or 4 if we consider
the L-R symmetric version.

Chapters 5 and 6 deal with this model. Since there is
no obvious origin of parity violation in composite models, we
study the L-R symmetric case in general. HoweVer, in Chapter
5 we restrict our discussion to the case where MWR is very
heavy so that the right-handed SU(2) is irrelevant.

Some other fashionable models, which require extra gauge
bosons, are the superstring-inspired models. In these models
the current experimental limits on the mass of the new
neutral gauge bosons from low-energy neutral current
experiments and from the pp CERN collider are rather ‘weak

[4,5]. We compare these results with the extended



electroweak theory in Chapter 7. There we equally notice
that our analysis reasonably agree with the analysis made in
superstring models [6].

Finally, Chapter 8 is simply devoted to a summary of the

major results presented in this thesis;



CHAPTER 1
The Standard Model
1.1 Introduction

The history of attempts to unify the weak and
electromagnetic interaction is very long and probably can be
regarded as beginning with the work of E. Fermi [7] in 1934.
The standard SU(2)xU(1) model , proposed and established by
Salam-Weinberg to unify the electromaghetic and weak
interaction correctly predicted weak neutral currents as well
as the existence and properties of W, Z bosons. This model,
theoretically, was suggested first by S. Glashow [8] in 1961
and in more detail by S. Weinberg [9] in 1967 and finally, by
A. Salam [10] in 1968 in a variety of situations but still
remained experimentally unconfirmed. In 1973 [11] its first
prediction was confirmed when people obtained experimental
neutral current data which precisely matched with the
theoretical prediction made by Salam and Weinberg earlier.
Later, in 1983, the wt and Z bosons were seen at the CERN
(12,13,14,15). Before going into the detailed study of the
Salam-Weinberg model, we shall briefly discuss in a general

way, gauge theories and the Higgs mechanism.



1.

2 Gauge theories

Nature has provided us with two kinds of symmetry
principles, i.e. 1local symmetry principles and global
symmetry principles. Theories whicﬁ are based on local
symmetry principles are called gauge theories. Einstein also
made use of these symmetry principles and by considering the
symmetry under general co-ordinates transformations he was
led to the general theory of relativity, i.e. the theory of
the gravitational interaction. Since the gravitational
interaction is not relevant to our research work, we need not
to discuss it in the following sections, but it is
universally agreed that the theory of gravitational
interaction is a theory of exchange of massless gravitons.
Thus the present belief is that all'particle interactions,
currently known and regarded as fundamental, may be described
by gauge theories. In the next section we describe the

simplest such theory.
1.3 Local gauge s et n _QED

Here we begin our discussion by writing down the free

Lagrangian for a Dirac particle
L o= ¥ (iv',-my (1.3.1)

where "m" is the mass of the Dirac particle and ¥ is the



field associated with it. We use the notation
v = yhyo (1.3.2)

Now we consider transforming +the complex field,

describing an electron in space and time, according to:
Wix) > v (x) =84 y(x) (1.3.3)

where a (x) is real and depends upon space and time. A
Lagrangian that remains invariant under the above phase
transformation is said to possess a local gauge symmetry. It
is easy to see that the second term appearing in equation
(1.3.1) is unchanged by the local phase transformation as
given in equation (1.3.2). However the first term changes

according to:
VAV = Vav +4 Pyaa(x) (1.3.4)

The extra term in equation (1.3.3) breaks local gauge
invariance. Note that if a (x) is constant this term is zero
implying that equation (1.3.1) is invariant under global
phase transformation. If we demand that the Lagrangian
should be invariant under the above 1local phase
transformation, then we naturally must look for a modified
Lagrangian so that we can get rid of the second term
appearing in equation (1.3.3). In order to find this

modification we need to introduce a vector field Au with some



transformation properties such that the Lagrangian becomes
automatically invariant. For this purpose the covariant form

of the derivative, Du' is constructed [16]:

3, > D, =23, -iea, (1.3.5)

where the vector field Au transforms as

d 1.3.6
K (1.3.6)

Then the transformation (1.3.5) is used to obtain the
symmetry of the Lagrangian under the 1local gauge

transformation. The invariant Lagrangian is

L = TWiyp"-my

= T(iv¥s -my + eTyMya - (1.3.7)

Thus equation (1.3.7) shows that in order to demand the
invariance of the L under local gauge transformations, we are
naturally forced to introduce a vector field Au that couples
to the Dirac particle in precisely the same way as the photon
field. Now if this newly introduced vector field,Au, is
considered to be the physical photon field then we need to
add its K.E term in the Lagrangian (1.3.7).

The invariance of L requires that the K.E term is also

invariant under (1.3.6). In this regard, the K.E term only



the anti-
could involvejsymmetric field tensor F , defined by

F = 3 A =93 A (1.3.8)

Thus the complete invariant Lagrangian under the local

phase transformation for QED attains the final form as:

r r"Y
L=IP(iY“3u-m) u»ewy“umu - :" (1.3.9)

It is very important to note that a mass term of the form
_1112_2 AuAu for the newly introduced vector field A is not
compatible with the gauge invariance and hence is not allowed
in the Lagrangian (1.3.9). Hence the local gauge symmetry
requires the photon to be massless. Now it is gquite clear
that the phase difference will always'be created whenever the
phase is changed 1locally and this phase difference could
easily be detected unless otherwise it is compensate§7fn some
way. The interesting result is that it seems as if the
photon field was simply introduced just to cancel the phase

difference that was developed due to the 1local gauge

transformation and then subsequently to preserve the local

gauge symmetry.

1.4 Local gauge Symmetry in QCD

Quarks are fermions which carry a colour label



d;, i = 1,2,3. Thus the Lagrangian for a free quark is

t
0
ie1 e

.00 wHy o )
a1y Bu m) g (1.4.1)

where for simplicity we consider only one flavour of
quark. Now we consider the effect on L if the quark field is
transformed under the most general local gauge transformation

which mixes the quarks

a(x) > ugx) = et %a(X)Tag(y)
= (1 +4 oy(x)Ta)q(x) (1.4.2)
where U is a special unitary 3 x 3 matrix, i.e. detU =1

and a,(x) are the group parameters. T, with a =1,2, ..... 8

are the generators and they satisfy the algebra
[Tar Tpl = { £apcTc (1.4.3)

where the f_ . are called the structure constants of the
group SU(3).

In the last line of equation (1.4.2) we have expanded
using the assumption that the a ,(x) are very small. The

derivative of equation (1.4.2) gives

2, a’ (x) = (1+iaa(x)Ta)8uq(x) + i Taq(x)auaa(x)
(1.4.4)

10



which shows that the second term appearing on the right
hand side of equation (1.4.4) destroys the invariance of the
Lagrangian (1.4.1). So we need then to introduce light gauge
field Gi to obtain a covariant derivative such that the
invariance of L is preserved automatically. By making the

replacement

= : a
3, > D, = 3 +igT G} (1.4.5)

a
where every gauge field:Gutransforms as

a a 1 a
G -+ - 0406
G 3a®(x) (1 )

the equation (1.4.1) becomes:
= q(f v"s - - = H a
L =g@iy"s - mq - g(dy"Ta2)6] (1.4.7)

This equation (1.4.7) is the QCD analogue of QED (1.3.6).
Because the generators T, do not commute (equation (1.4.3))
this is an example of a non-Abelian gauge theory. To
preserve invariance of L we require that the gauge fieldsGﬁ

be transformed according to:

a a _ 13q43(x c
6h > 65 -4 - fapeab (x)6 (1.4.8)

If G2 are regarded as the physical coloured gauge fields
1

then the invariant K.E. terms corresponding’ to these fields

11



are naturally required to be added in the Lagrangian (1.4.7).
Therefore the complete gauge invariant QCD Lagrangian for
interacting coloured quarks gq and vector gluons Gu with

coupling g is then achieved as

= =(ivHy o - - a_1l .a ,uv
L = q(iv"3, -mq g(qwr“'l“.“q)(;u 7 CauCh (1.4.9)

where the field strength tensor is defined by

a a a b ¢

Thus our arbitrariness in mixing the three quark colour
fields, 1locally, requires eight vector gluon fields to be
introduced in order to compensate all the possible
transformations. Because an extra term appears in the field
strength tensor defined in equation (1.4.10), the K.E. term
in equation (1.4.9) now includes the kinetic part and an
induced self-interaction between the three and four colour
vector gluons . Finally, if we look at the invariant
Lagrangian (1.4.9), we see that the mass terms_%;_ei G:, as

for the photon in Q.E.D, are forbidden, implying that the

gluons are also massless.
1.5 Higgs Mec 8
The important message of the last section is that in

12



gauge theories the forces are vector-like and of infinite
range, i.e. they correspond to exchange of massless, spin-one
particles. It is easy to see that if we added a mass term
for the vector bosons then the gauge invariance of the
Lagrangian would be lost.

There is therefore a serious difficulty in applying these
ideas to weak interactions which appear to be mediated by
massive vector bosons. (Indeed these vector particles are so
massive that at present energies the interaction appears as a
point-like fermion interaction, although it is known that
this cannot be the true interaction because it is not
renormalizable).

The solution to this problem lies in the fact that it is
possible to break the gauge invariance through spontaneous
symmetry breaking in such a way that the renormalizability
property remains true. In such a broken symmetry the gauge
bosons in general acquire mass. To explain how this happens
we consider the charged meson which is associated with

complex scalar field ¢ described by the Lagrangian

2

L=5%(@0)"0%) ~50.0- 7 (0.6"2 (1.5.1)

] >

uUnder ¢ -+ ¢ e'a transformation, L has a U(l) global gauge
symmetry. Now suppose u2<0 and X>0 then the potential

.

2
Vo) = 2 0.0* + 5(0.0")2 (1.5.2)

13



has a minimum at

o.¢* ="k = 2 (1.5.3)

and this minimum potential corresponds to the ground state or

vacuum (i.e. no particles).

|<¢>|2 = - E = v2x0 (1.5.4)

Since, however, equation (1.5.3) only determines the
magnitude of |¢| the vacuum is degenerate. When we choose
a particular < ¢> satisfying equation (1.5.4) we
automatically break the symmetry. We translate the field ¢

to a true ground state in terms of new n, £ by replacing

o(x) = 1 (v + n(x) + 1&(x)) in equation (1.5.1) and we
2
get
[
L = %(aug)z + % (aun)%uznz,uz !? + cubic and quartic
2
terms in n,§ (1.5.5)

The first term of equation (1.5.5) is the K.E. part for
the ¢ field and is seen to be massless. The third term of
this equation is a mass term for n-field. Thus the theory

now describes two scalar particles; one is massless and the

14



other having a mass. The appearance of a massless particle
when a global symmetry is broken is a very general phenomena
- such particles are called "Goldstone bosons". At first
sight the addition of other unobserved massless states
suggests that this mechanism of symﬁetry breaking causes
further problems with gauge theories. However, when we apply
the method to a theory possessing a local symmetry it turns
out that the massless scalars are not physical states (they
can be eliminatéd by suitable choice of gauge) and their
degrees of freedom provide the extra degrees of freedom for
the gauge bosons which become massive.

Instead of au we use D defined by

D = 9 -1 eA (1.3.4)

A, > A+ e_i 2,8 {1.5.6)
and
o » /%(v+ h(x))e 8XV/v (1.5.7)

The gauge invariant lagrangian can then be written as:

15



L= (3" +i ealyor(s -i en) =u2e* 0 - A(o 0)2

-1 HY
7F L F (1.5.8)
where va F"Y term is purely K.E part for the gauge field

Au . We take uz < 0 since we are interested to generate the

masses by spontaneously symmetry breaking

i
L = %(aﬁh)z -av2p2 + 5e2v2Au2 - avh? - %Ah4
2 2 2 2.2 1 v
+ Le AU h® + ve Aug 4Fqu (1.5.9)

This Lagrangian contains two interacting massive
particles, a vector gauge boson Au and a massive scalar h,
which is called a "Higgs particle". Here the vector boson Au
has eaten up the unwanted "Goldstone boson" and hence becomes
massive. This kind of mechanism is called the "Higgs

mechanism" and is the result of a spontaneously broken local

symmetry.

1.6 Salam-Weinberqg Model

We have seen in the previous section that the Higgs
mechanism is responsible for generating the masses of the
vector bosons which mediate the weak interaction. In the
electroweak SU(2) x U(l) model, there will be four vector

bosons, three (WX, Z°) associated with the weak interaction

l6




and one (the photon) with the electromagnetic interaction.
Therefore in this section we will make use of the Higgs
mechanism in such a way that the W¥, Z bosons become massive
but the photon remains massless. In order to do this, we
first construct the Lagrangian for SU(2) 1local gauge

invariance.

We begin with the simplest form of such a Lagrangian
L= (3,0 (%) - V(o) (1.6.1)

where ¢ is a complex scalar doublet of an SU(2) group and

can be written

¢ +i 0o
¢ = V% .
o5 +4 0, (1.6.2)
where ¢ 1, etc. are real scalar fields.

The self-interaction potential is given by
vie) = u2oTo + a(oT0)? (1.6.3)

Since in the weak interaction there are three generators
corresponding to the SU(2) group, we will require three gauge
fields to associate with these generators. Thus we replace

au by the covariant derivative as:

17



. T
3 - D =3 +ig-2w?@ (1.6.4)

where a=1,2,3.
Under ¢' (x) = (1+a(x).1/2) ¢ (x) gauge trahsformation, the three

gauge fields, corresponding to an SU(2) group, transform as

W -~ W - .3 - 1.6.5
Lo a xWu ( )

and the gauge invariant Lagrangian (1.6.1) attains the

form given below

- o | taHo 4 Moy -1 uv
L= (3 ¢+1g5uW ¢) (3T n+ig W ¢)—gw .W"" (1,6.6)

The last term in equation (1.6.6) represents the K.E. and

self-coupling of the gauge fields Wﬁ and is given by

WU\) = auwv - auw\) - gwu X w\)' (1.6.7)
L 1 J — )
K.E. Term self-coupling term.

2

As we are interested in the case ;;© <0 and ) >0 so the

potential (1.6.3) becomes

18



V($) = w2 (0T+05+05+02) 45 (62 +02+02+02)2 (1.6.8)

2

Making use of a particular choice, say, at ¢, = ¢, =

¢ 4 = O, the minimum potential then.becomes at

2 2 (1.6.9)

¢32=-u = Vv

Onieagn.

A

Therefore the complex scalar doublet ¢, at this minimum

potential, attains the form:
1

b = = (V)
°© v2 Y

(1.6.10)

When we extend the range of gauge symmetry from SU(2) to

SU(2) x U(1) then the gauge invariant Lagrangian can be

written as:

L = (Du¢)T(D“¢)- V(¢) (1.6.11)

4 ] —.gl —.gl
with D¢ = (3, -1%G.W i %Bu)¢ (1.6.12)

where Y and Bu are the weak hypercharge operator and the

U(1) gauge vector field respectively. Making use of the

expectation value ¢, from equation (1.6.10) for¢(x) with ¥=1,

the Lagrangian becomes

19



L= 13, -_i.g%.wu_ -i —;1'3“) 012 = V() (1.6.13)

The relevant mass term from equation (1.6.12) for the

gauge bosons is given by

3 i w2 2
W + g’ 1-4
gw g'B | gwl-iw?lo

1
8

1. 2 3 .
W +tw - W + gB
g( " ‘ u) g " g ul v

2
= .‘Bl._ [g2W+W-+ |gW3 - g’B |2 + 0|g’w3 + gB |2 (1.6.14)
'3 [ [T N u
where we have substituted

wi=wl7F {w? (1.6.15)
V2
When we compare the first term of equation (1.6.13) with

the K.E. of the charged vector bosons (gM2w+w'), we find that

Hence the terms inside the small brackets of equation
(1.6.14) are the physical fields and are orthogonal to each
other. Now when we compare these terms with Mz zﬁ and MAZ Aﬁ

. . z 2
and find that, after normalisation of the fields;

20



3 ’
A =g’ W +gB, with M, =0 1.6.17
g’ W +98B, A ( )
L

(g2 + g"z)

z =g wi -g'au, with My = ¥ ((g? + g'2)%  (1.6.18)
——-————_2- % .

(g% + g*%)
Where wi are two massive charged gauge bosons, Au is the
photon and Z a neutral massive gauge boson. Now if we define

g’/g = tan o -then an alternative form of these physical

fields becomes as /

i

. 3 '
= + e 06019
Au cosf y Bu sin Oy Wu (1 )
= - si 0 3 1.6.20
zu sin 6y Bu + cos 9y Wu (1 )
where 8y is the Weinberg mixing angle. Using equation

(1.6.16) and (1.6.18) we can more easily obtain the well

known Weinberg mass relationship:

2 _ 2
Mg© = My (1.6.21)
1-sin? oW
To calculate the interactions of the fermions we use the

covariant derivative (1.6.4) in the kinetic energy term

(1.3.1) and hence obtain

-7 (iy" a 4
vy gr, W, + 935 By (1.6.22)
\Y)
for the left-handed fermions doublets [ € ] etc., and
e
e ( iYW q X
eR( iy’ g 3 Bu )eR (1.6.23)
for the right-handed singlet. Then using (1.6.17), (1.6.18)

21



veL}

L

and (1.6.22), and ¢ = and Y = -1, we obtain the

following couplings ‘to wi, Z and vy

HERS Y z - Vv U
cos 8, ‘eL' YeL %y /5 YeLY e, W
ig - u i . H
- = +
5 eL Y eL W g sin ew eLy eL Au
1g cos 20y "
cos oy e, Y e Zp (1.6.24)

Similarly the right-handed fermions singlets (e.g. electron

eR) couplings to y and Z are found to be

: - i{g sin @ W SR

- p . - u
W eR Y eR Au + (g tan 6, e, ¥y e 2 .

(1.6.25)

Note that the coupling of the right-handed electron to the
photon is the same as for left-handed thereby giving the
required conservation of parity in electromagnetic inter-
actions. On the other hand the right-handed electron couples
to Z differently to the left-handed electron.

By putting together two of the vertices in (1.6.24) we can
calculate the effective four-fermion weak coupling constant due

to the exchange of the W meson (see 1.7 below).

1.7 Test of the Salam-Weinberqg model

After having established the structure of the standard

model (S-W) we find that there are parameters which directly
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effect the phenomenology of weak and electromagnetic effects.
These are two coupling constants (g,g’) and a mass term. The
constants g and g’ represent the coupling strength of the
vector bosons to the weak isospin and hypercharge currents
respectively and the fundamental interactions for such
couplings are shown in Figure (1). One constant is given (to
a very high accuracy) by e, so effectively we have two
constants My (the mass of the charged vector bosons) and Ow

(the mixing angle). These are related by:

am
G 3 —_— 2 I3
F JEM%sinzew(the Fermi weak interactlop coupling
constant) (1.7.1)
where o= g2 (fine Structure Constant) (1.7.2)

4w
We shall now see how it is possible to fit all the data
with these two parameters. Historically neutral current
measurements (see below) were used to obtain a value of sin26w
and equation (1.7.1) was then used to predict My and M,

through the relation

My2 = M2 (1.6.21)
. 2
l-sin qﬂ
These predictions were confirmed at CERN in 1983
(12,13,14,15)]. The current values for the W and Z masses

determined by UAl and UA2, as reported by Di Lella[l17] are:
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My = 83.1*+1.3(stat)+3(Syst.) GeV UAl

93.0+1.6(stat)+3 (syst.) GeV UAl

=
N
I

8l.2+1.1(stat)+1.3(syst.) GeV UA2
MZ = 92.5i1.3(statn)ilos(syst-) Gev UA2

(1.7.3)

It is important to note that to calculate Sinzew, using
equation (1.6.21), from the above data we have ignored, for
simplicity, the systematic error. By doing this the Weinberg

angle is predicted to be
sin%gy = 0.21 + 0.07 (1.7.4)

as shown in Figure (4).

Using the numerical value of G, =1.6638 x 10~° Gev~2,
which has been reported recently from the 1 -decay
process[(18)], and the masses of the W listed in equation
(1.7.3), the equation (1.7.1) rightly determines the values

for Sinzew as follows:
sinzew = 0.206 + 0.011 (1.7.5)

This is also plotted in Figure (4).

We now turn to the neutral current data to see how well
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they agree with these values of Sinze‘q given in

equations (1.7.4) and (1.7.5).

I Neutral current effects in ete” > LM

*e~ beam colliders

In this regard the high energy e
provide a useful testing ground for electroweak interference
effects. The e*e” annihilations could be. obtained either
through electromagnetic (y) or weak neutral current (2)
interactions as pictured, e.g. in Figure (2). But in our
current discussion we assume that the neutral current
interaction occurs by exchange of a Z-boson and a Y -boson
with their standard couplings given in ref. [16]. By making

use of the Feynman rules, the amplitudes for Y and 2

corresponding to the diagrams in Figure (2) are:

M= - e (TyVw (Eve) (1.7.6)
k
vV, u 5 gvo_kvkcm%
My = g% [Fr (eymepar ) ul (1.7.7)
4 cosZe k2-M3
[ef 03] W Z
[éyo(cs-czYs)e]
" "
where. K is the four-momentum which is carried by Y or 2

and k% = s (i.e. the c. of m-energy).
By assuming electron-muon universality i.e. ci = cf =
+

cy, we find that the differential cross-section for e'e”

utu~ process is given by [19]
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2

do _ o~ 2
T 45 [Ruu(l + cos“g ) + B Cosg ] (1.7.8)
where
R =1+ 2 cy X + X2 (c2 + c?)2 (1.7.9)
Ty v \ A
and
B = 4 cp%X + 8 cy?cy?x? (1.7.10)

The Cy and Cp are the vector and axial vector weak
charges of the electron and muon. They are expressed in the

standard model as:

cy = - %+ 2 sin%_ (1.7.11)

c = "1/2 (1.7.12)

By ignoring the width of the Z when compared to its
mass, X is expressed entirely in terms of electroweak mixing

gauge and the Z-boson mass as
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X = S/lasin?0cos20y (5-M?)) (1.7.13)

Now the integrated forward-backward asymmetry is given

by [20]

A x cpa2c/(3 + ¢?) (1.7.14)

Here we have neglected all the terms which are very much
smaller than unity. Now by substituting the exactly known
values for « and Gp (18] and the values for Sinzew [20] in
equations (1.7.1) and (1.6.21), we find Mz = 90.4 GeV. The
mass of the Z is increased to 93.8 + 2.4 GeV if the currently
best known values of the parameters are used [21,22]. It is
however, clear that the mass of Z is sensitive to OW, and My
free parameters.

The minimum and maximum forward-backward charge

asymmetries in the standard model at S = 1798 Gev? are

predicted A = -26.1% and A = -14.2% corresponding to Sin26w =

0.103 and Sinzew = 0.217 respectively. Therefore the
predicted asymmetries, using M; = 93.8 GeV are in good
agreement with the currently obtained data [20]. The

consistency between the Weinberg angle obtained from this

process and the others is pictured in Figure (4).

II Electron-neutrino (antineutrino) elastic scattering

If electron-neutrino elastic scattering proceeds via the
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Z exchange then the invariant amplitude for this neutral

current can be written as

MNC(\)E > ve) = g( Gyu(l=ys) V) (-éy kcv-cAy5)e) (1.7.16)
/2 U

It may, however, be noted that in equation (1.7.11) we
have used the fact that the four momentum transfer q is such
that q2 << Mzz. By using the electron-muon universality
assumption and the procedure outlined in ref. [16], the total
cross sections for v € - vué and qu > vué reactions are

u
obtained given below:

7]
()
wn>

o(v) = 233 [cf + oycp + c3?) (1.7.17)
%s 2
o(v) = =37 [c§ - cycp + c°] (1.7.18)

Therefore, the ratio R of the cross sections for muon-
neutrino and muon-antinuetrino scattering on electrons is

absolutely described by a single electroweak mixing angle

parameter
Wl olw o, (1 sin%y +(16/3)sin%6y)  (1.7.19)
o (V) (1-4 sin + 16 sin%ey)
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The latest experimental result ofReff23] is in good

agreement with the prediction of the standard model for

sin?6; = 0.209 + 0.029 + 0.013 (1.7.20)

which is shown in Figure (4).

IITI Neutrino-Nucleon Scattering

When the Z (weak neutral particle) is exchanged in a
quasielastic scattering of the neutrino (antineutrino) from
the nucleon then the inclusive differential ¢ross section for
such a process, phenomenologically shown in Figure (3), is

written as

2 24
d G™S -
S N> = 55 (gu? + gad) o(x) + (9d] + qul) Tx) (1-y)

+ (gug + gdg) Q(x) (l-y)2 + (gug + gdﬁ) Q(x)]

(1.7.21)
where
u 2 gin 20 o8 = - 5 + L sin?e
gL=;i—§Sln ngL— 3 W '
2 i 2 d _ 1 g2 1.7.22
g; = - 5 sin“8, and 9. =3 Sin“0. ( )
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Integrating equation

(1.7.21) over x, y and defining

Q= xQ(x)dx = x[(x) + d(x)]ldx (1.7.23)
and
Q= xQ(x)dx = x[u(x) + d(x)]ldx (1.7.24)
we get
-2 -2
d 2 2
22 (G} + g8 )_  (qui + gdd)o
ovine) = &5 [(qu + gadig+ =—L 5+ B K
27 3 3
+ (ga2 + gd?)0] (1.7.25)
g R g R o /e
2 2 -2 -2, =
_ 24 - . (gqus; + gd,“) (gus + gds)Q
gV (NC) = €S [(gﬁi + gdi)Q + R R Q + R R
2m 3 3
(1.7.26)
2 2
+ (guR + ng)Q]
But for charge currents we have
628 9
ov(cc) = (Q + 3) (1.7.27)
27
- s = ., 0
ovicec) = — (Q + 3) . (1.7.28)
27
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So an isoscalar target with equal number of u and d

quarks yields:

_ 0OV (NC) 2 2 2 2
R = SVI(NC) _ 1.7.29
ov(cc) gup *+ gdp + R, (gup + gdp) ( )
where Rge = Lvlcc) (1.7.30)
ov(cce)
and R = ()_\_)—(IE-)— = gui + gdf‘ + I_(QUIZ{ + gdg) (1.7.31)
ov(cc) R

cC

Thus from equations (1.7.29) and (1.7.31) we obtain

2 2 R—ich 5 4
uc + = = - 8in 2 8in
gui + gy = Tz 5 Bt 2 0,
CcC
(1.7.32)
and
) 5 (R-R)R
. d ) cc _ 5 .4
gl + g5 =—5——— == sin®g_ (1.7.33)
R R™g2 9 W

The values for R, R and R.. have been experimentally

determined and they are [24]
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R = 0.320 + 0.010 ' (1.7.34)

R = 0.277 + 0.020 (1.7.35)

and

0.498 + 0.019 (1.7.36)

)
]

cC

Using the above results in the context of the standard

model, the electroweak mixing angle can easily be obtained

sin% = 0.23 + 0.023 (1.7.37)

This is shown in Figure (4).

In summary we can safely say that the agreement between
five different ways of determining Sinzew shown clearly in
the Figure (4), gives strong support to the validity of the
Salam-Weinberg model. If such a model is the low-energy
limit of a different model (e.g. a L-R symmetric model) then
the corrections resulting from the extra terms must be small,
at least in the experiments discussed above. Similarly other
models must explain the above agreement - it is hardly

satisfactory to regard it as "accidental®".
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CHAPTE 2

Left-right 8 etric t =) R =W Model

2.1 Introduction

We have studied in the previous chapter the simplest
renorﬁalisable theory of weak interaction in which the
coupling between the weak currents is mediated by massive
intermediate vector bosons, since a four-fermion point
interaction is not-allowed. In this chapter we discuss a
left-right symmetric extension of this theory based on the
group SU(2);(x) SU(2)gxU(1l). Hefe the basic Lagrangian
preserves parity and the observed breakdown of parity in weak
interactions comes from the spontaneous symmetry breakdown,
i.e. from the same mechanism that gives mass to the W and 2.

In order to have one-to-one correspondence in the
SU(2)x SU(2)zxU(1l) gauge theory, there must be the doubled
number of charged gauge bosons (Wi and Wi) as compared to the
standard theory (Wi) and also the doubled number of massive
neutral gauge bosons (i.e. two against one in the standard
theory). In other words, there exists two kinds of
intermediate vector bosons; one associated with (V-A) current
is called the left-handed vector boson (Wy) and the other
associated with (V + A) current is termed as the right-handed

vector boson (Wg).
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In the mid seventies, Pati, Salam and Mohapatra [1,2)
discussed a completely left-right symmetric theory in which
both left-handed and right-handed fermions participate in g
decay. The (V-A) character of the observed interaction was a
natural consequence of the suppression .of right-handed (V+Aa)
gauq.;e currents which in turn was due to the right -handed
charged vector boson Wy being heavier than Wy.

In a unified gauge theory of weak and electromagnetic
interaction, the left-handed (V-A) currents and the right-
handed (V+A) currents together produce a situation in which
the parity is conserved in electromagnetic interactions and
is violated in weak interactions in good agreement with the
experimental result. It is explicitly shown by Sanjanovic
(25] that the prediction of both the minimal left-right and
the standard gauge theories are indistinguishable even with
finite MWR both in the realm of charged and neutral currents
at sufficiently low-energies. These gauge theories

phenomenologically would definitely be different at higher

energies.
2.2 8 matrix and e ues () ed vector
bosons

The left-right symmetric gauge theory based on the group
SU(2)xSU(2)xrxU(1) has three sets of vectors, T;, Tg and Y
corresponding to the three sub-groups. The electric charge

operator in this theory is defined as:
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Q= Ty + Top + ¥ (2.2.1)

Left-right symmetry of the Lagrangian requires the
equality of the SU(2); and SU(2)yx coufling constants, i.e.
g;, = 9r = 9. The left (right)-handed fermions are assigned
to doublets under Ty (Tg). In order to produce fermionic

masses we will need the following Higgs multiplets

l—- -
(o] +
¢l ¢1
§ = (2.2.2)
- o]
| " "2 ]

with SU(2)LxSU(2)RxU(1) quantum numbers

3 = (%, %, o)
(2.2.3)

i.e. § is a doublet under both SU(2) groups and has zero
hypercharge. Bosons will acquire mass when the symmetry is
broken spontaneously by giving non-zero expectation value to
the Higgs fields. The most general expectation value of
consistent with preserving the electromagnetic gauge

invariance is of the form:

<@> = (2.2.4)

1
V2
0] k!
After this first step, the symmetry is broken down to
U(1)xU(1), i.e. there are now two massless neutral vector

bosons. In order to have only one massless neutral vector
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boson, the photon, in the theory we are required to break
down the symmetry further down to U(l). For this purpose, we
would obviously need more Higgs multiplets. The simplest

choice is just to introduce two Higgs doublets:

X+ x+
X, = L X = R
L o R o (2.2.5)
xL ) XR
which are assigned the following quantum numbers:
X, = (5,0,1), Xg = (0,%,1) (2.2.6)

Therefore, the total Lagrangian for the X;, Xp and ¢

Higgs scalar fields can be written as

= T B T pH Bzt - .2.
L = (D Xp) (DX, ) +(D Xp) " (D"Xp) +tr (D7§) Du§ \' (2.2.7)
(X[, Xp, §)

where the general form of the Higgs potential V(Xp,Xg,¢) in

the left-right symmetry is then given by:

4V n,
v = -uftr¢+¢+x1(tr¢+¢)2+A2tr¢+¢¢+¢+gx3(tr¢+¢+tr¢+¢)2
.’\J n, NN
+%A4(tr¢+¢-tr¢+¢)2+x oot

+V 4
trd ¢¢ ¢+%A6[tr¢ ¢¢ ¢+h.c.]

5

2,4+ + + 2 + 2 + +
-uz(xLx,+XRXR)+p1[(XLXL) +(XRXR) ]+p2XLXLXRX

R

+, ot + +, .+
+a tréT o (X X +XpXp) +a, (Xp 007X +X

+

+
R d ¢XR)

P +y+ |
+d3 (X7 887 x +x78 %xR). (2.2.8)
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4"
where § is defined by:

3 = T2¢*T2 = (%,%,0) (2.2.9)

Sanjanovic has explicitly shown I3] that one of the
particular solutions for the minimum of this potential has
the expectation values for the left-right handed Higgs scalar

doublets, provided the gauge symmetry is broken, as under:

_ - 1,0 2.2.10

<x;> = 0, <Xp> = - () ( )
1 K 0
V2 0 k'

We shall choose v > k, k’, thus ensuring that the mass
of the right-handed charged vector boson is greater than the
mass of the left-handed charged vector bosons, which
suppresses the right-handed charged current interactions at
low-energies. However, under the parity operation the Higgs

fields transform as:

4
Xy, < X, 3 < 3% and § < &' (2.2.11)
Therefore the K.E. part of the Lagrangian defined in
(2.2.8) for the scalar fields X;, Xz and ¢ can then easily be

written:
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_ - Tk tom Tt e 2.2.12
L = (DuXL) D xL+(DuxR) D DR+tr(Du¢) D*0, ( )

where
DuXL = auxL - kg1 . WLXL,
D Xp = 3,Xp - %{gT . WpXp,
Du¢ = au¢ - Biglt . W o - ¢T - WR)
(2.2.13)
and the T1's are the Pauli Spin matrices
o 1]
T =
1 |1 0
— -1
0 -1 ( 14)
T = . 2-2.4
@ L o]
B 7
1 0
T =
3
0 -1
L J
Now the relevant mass term of DuxR is found:
[ W, -{W -W
: Ry Ry
- 2.2.15
kR 2
0
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where we used the fact:

W = — (W, =i{W, )
R /2 R, +''R,
Thus
T (ph XEHE “wt (2.2.17)
(DuxR) (D™Xp) = p (WWe) vl

Similarly considering the mass term of Du§ for charged

vector bosons we find

2+ - vt _ ' T
k WLWL kk WLWR kKk'W, W
2.+ -
)
+k!' “WeWo

w +
(|

(D @)’L(D“qné’tE
m 4

2. -+ -+
k' “W_ W] -kk ' W Wy
0
v 2o
| kk ' W W) +k “W WD
So - W -
2 = k= = 2k
, k “W] Wy -k "W Wy —Kkk ' WEWT +k ' “WEWL
£r((D, ) T(o#g) =3
+k 2w -kk wow -k wow ek 2wow?
] L R RVL R
(2.2.18)

- f
By replacing the values of (DUXR)f(DuxR) and
tr(D 3 )T(D"§ ) from equations (2.2.17) and (2.2.18)
respectively in equaiton (2.2.12) the gauge particles of the

theory are then conveniently represented by the matrix:
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WL R
- 2
2 " £ -g kk'
M= 2
— - zkkl
2
2v2 2 2 2
where A = ﬂz—- and L = %— (k“ + k') (2.2.20)

To make Wp > W;, we choose vz >> k2, k’2. In this limit
the eigenstates of equation (2.2.19) are then immediately
found (using the characteristic equation i.e. det (M-AI) = 0)

as follows

2
Ml o= L k® 4+ xr? (2.2.21)
L 4
2 q° .2 2, 2
Mw = 7 (k + k! + v7) (2.2.22)
R

2.3 8ome Experimental evidences of My
R

In the preceding section we have assumed that the right-
handed charged vector boson is heavier than the left-handed
charged vector boson, in order to preserve the well,
established (V-A) character of the observed weak interaction
at low-energies. The obvious question that arises is how
small, MWR can be without violating the experimental data.
This lower limit has been increased as the now highly

sensitive and well designed machines are being used for
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measurements., The effective current-current Lagrangian for
the weak interactions at sufficiently low transfer of

momentum is [26) given by

G1 * G *
L = — J J (V-A) + _2 J J(V+A)

W /T (V-A) o) (V+A) (2.3.1)
where G; and G, are the left-handed and right-handed

Fermi coupling constants respectively and are defined as
follows:

2 2

1 _fmg S fm

% T

My M

(2.3.2)

and J(VA) ang J(V*A) are the left-handed and right -handed
charge currents respectively. It is important to note that
the interference effects of the (V-A) and (V+A) currents are
not appearing in equation (2.3.1), because at higher energies
these two currents behave almost independently. By knowing
the relationship between G, and G, experimentally one can
easily determine the mass ofAthe right-handed charged vector
boson. The integral probability of the negative muon-decay
into one electron and two neutrinos (when both the (V+A) and
(V-A) currents are considered to be involved in together)

yields [26]:

MSG2
- _H
"o 384n3[1+a1(E“n)+a2(gen)+a3(gun)(Een)+a4[(€u€e)'(5un)
(Egn) ] (2.3.3)
with
2 2
G G
= 2 2 ;j _ -1 _ L _ _ 2
G—(G1+G2) ’ al——§(1 2G2 ),az_ (1 G_z_)

=1075/2 .
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1
_— — E — 2.3.4
a 3 a4 4 ( )

Here a, is the electron asymmetry co-efficient, a, is
the longitudinal polarisation coefficient, the coefficient a,
gives the correlation of longitudinal polarisation and
asymmetry, a, is the co-efficient of T- and P- even
transverse electron polarisation in a plane determined by Eu
and n. Using the experimental value [27] determined for the
electron asymmetry coefficient a,, the equation (2.3.4)
clearly gives the following relation:

G, < 0.121 G, (2.3.5)

From equations (2.3.2) and (2.3.5) we obtain:

My 2> 8My (2.3.6)

The currently best known values for the mass of the MWL
listed in equation (1.7.3) immediately yields the mass of the

MW as follows
R

M, > 235 Gev. (2.3.7)
R

The first comprehensive study of the experimental
constraints on left-right symmetric theories, from the 1low
energy charged-current sector, was made by Beg et al [28].
There they concluded from their analysis that MWR > 220 GeV

approximately in agreement with equation (2.3.7). later some

41



improved constraints on the mass scale of the right-handed
currents, determined experimentally in u+-decay were reported
by Carr et al. [29] where they predicted from their
experimental analysis that MWR > 380 GeV at 90% confidence
level. The latest constraint on the mass of the right-handed
currents has been placed by Stoker et al. [30] by making use
of muon-spin-rotation technique in u+-decay experiment. In
this experimental study they conclude and set a lower limit

on My > 400 GeV.
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CHAPTER 3

The Possible Heavy 3’ —> W W' Events at the CERN Collider

3.1 Introduction

In the first chapter we have explicitly discussed and
analysed the standard Glashow-Weinberg-Salam (GWS) model of
electroweak interactions, based on thg gauge group
SU(2)LxU(1)y. There, we have seen that this model has
achieved great successes in describing all the neutral
current processes and in correctly predicting the masses of
the W- and Z- vector bosons. This standard model does not,
at the present time, conflict with any confirmed
experimental data.

In this chapter we shall discuss two possible events
observed at the CERN PP collider which appear to be hard to
explain within the standard models and which might therefore
indicate "new" physics. We shall see whether the LxR
symmetric model of the second chapter offers a way of
explaining these events (should they be confirmed).

The unusual events were seen by the UAI group [3].
Basically, what they observed was a high transverse momentum
distribution for (W— ev and—uv) events in PP collider
experiment shown in Figure (5). It is quite obvious from

the figure that there is a continuous event population up to
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ptw ~ 40 GeV/c. There are also two events which are

absolutely isolated from the rest at much higher values of
ptw. The solid curve in this figure gives the expected ptw
distribution for W’s produced directly from the QCD
calculations of Ref. [31] with structure functions modified
to take into account selection biases and detector smearing
effects. These two events were actually seen, one at PW¥
~ 66 GeV/c and the other at ptw ~ 89 GeV/c. In each of the
W » ev and W - v samples the event with the largest W
transverse momentum contains two jets and, further, that the
jet-jet mass is of order My. For both events, the overall
invariant mass of the W-jet-jet system is in the 245 - 270
GeV/c2 range. These events are therefore kinematically
consistent with an apparent WW pair production. The
expected WW pair production from the electroweak process is
a factor ~ 10 below the present experimental results [32].
This new experimental data require Myy > 240 GeV. In
summary, these events are interesting because they appear to
be just outside the expectation of the standard model. At
present, hdwever, there is no clear understanding of what
they represent. Various authors have different speculations
about these newly seen events. For example, Stirling and
Kleiss [33] consider the possibility that the WwrW~ pair are
produced in the decay of a heavy "Z’" with mass in the range
of 250 + 300 GeV/cz. The UAl group [3] have also put a
lower mass limit (90% cl) of 166 GeV/c2 on a hypothetical
+

heavy "Z’" with a standard (3%) branching ratio into e’e™.
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We shall now consider the possibility that these events
are actually the production of the heavy "Z’" (associated

with the SU(2)p) and its subsequent decay into two W’s.

3.2 Neutral currents eft- t. aetric mode

From equations (2.2.4), (2.2.12) and (2.2.13) we obtain
the mass matrix for the neutral gauge bosons (in the minimal

low energy effective theory) as follows:

r— —
z -z 0
2
<i|M|j> = -1 T+A -ah (3.2.1)
0 -af a2A
_ ]
where. o = gl/g (3.2.2)

The eigenvalues of this matrix are simply determined by
making use of the characteristic equation i.e. det. (M-AI) =
0, where the )\'s are three (mass)2 eigen values associated
with the photon (y), the light massive observed vector boson
(2) and a heavy vector boson (Z2’). Thus the eigenvalue

spectrum becomes

A =0
, L(1+20%) _ 3% (1+20°) ¥ (3.2.3)
2 = 2 7.3
1+a A (1+a?)
- 2 L
AB = A(1+a”) + l+a2



2

where we have ignored terms 0(%5) in A5 and A 3. 1In order to

diagonalize the matrix (3.2.1) we introduce the states | n>

n> = L |i><i|n> (3.2.4)
)
where
sinb cosf L (Coszew)
W w -
A cose
0s™ 6.,
-sin?e I (Cos26..) 2 (Cos26.)?  £Sin%6,Cos26
. Sin#b W W ) w W
<i|n> = W (1- 3 4 —_ 1+ 7
CosOw A sin GwCos ew Cosew ACos ew
2
. " 5 (Coszew) z (Cos29w)
(Coszew) -tanew(Coszew) (14— — } =tand_ (1 7 )
4 w
i A Cos.eW A Cos ew
(3.2.5)
2
i in2g > (3.2.6)
with sin = o2
W 1+2a2
In the basis |n> we find:
2 2
<n|Mim> = X <n|i><i|M]j><j|m>
i,j
[
0 0 W
2 ,Cos26,., 2
X
C059w A (Cosew)
2
0 0 ZCosZGw + A Cos.EE
2
i (Cosew) Cos29w |
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Now to calculate the couplings of these states to the

fermions we simply require

<i] = Y <i|n><n| (3.2.8)
n

where the states <n|, correspond to the photon <y| , the
standard neutral vector boson <Z| and a very heavy neutral
vector boson <z'| , while the states <i| are associated to
the left-handed charged vector boson <WL| . the right-handed

charged vector boson <WR| and an hypercharge state <B]| .

Therefore 3/,
. - _ -z (Cosz.ew)3 -
wL Sinew Cosew A (Cosew)
- Sin26 ' (Cosﬁe )2 (Cos29 )! smze Cos28
W (1-% W W - 2L W W
W | = [Sindy — - —a) S —
Cosew A Cos BwSin ew Cosew A (Cosew)
) } Coszﬂw 5 (Cos:.ew)2
B (Cos26._.) ~tan@_(Cos9, ) (1+— ) -tanb,, (l—m —— )
W W W 4 W 4 ,
L A Cos?o A (Cosew)
) | W ]
. 3/
- 5 (Cosiew)
= |Sing y + Cosg, Z - - 3 z'
A (Cosew)
2 2 ) 2 X
Sin ew T (Cos:.ew) (Cosﬂ.ew) 5 Sin ew Coszewl
S1n6_ Y - (1-= —5———26)2 + (14 7 )z
Cosew A Cos 'BwSin W Cosew A (Cosew)
; ; L COs;i.ew z (Cosiew)z
(Cos28 ) “y - tanb (Cos2b )* (l+————")Z - tand,_ (1-—- ——2) z'
W W W /3 W A
A Cos ew A (Cost )
w
(3.2.9)
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Since the couplings in general are defined by the

relation:

_1
9 Ty W + g T3 W + 918 5~
(3.2.10)
Thus the expected photon coupling becomes:
g Sinew Q
where Q is defined in (2.2.1).
The Z coupling therefore attains the form:
9 (ry - sin®e, Q) + 0 (}) (3.2.11)
COSGW
and similarly the Z' coupling is found to be:
‘ — r (Gy = cpr5) + 0 (§) (3.2.12)
2 Cosew(Coszew)
where Cy =T -ZSinZO Q
v 3 W

We note that, to the zero order of (%), the Z has
exactly the same coupling as in the standard model. We
shall consider the (%) correction further in Chapter 6.

Since we are particularly concerned to compute the

production cross-section of the heavy Z’ and its subsequent
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decay into two W;’s, we also need to calculate the couplings
of the Z’ to the left-handed light massive charged vector
bosons whichare due to the gauge coupling between 3w,

particles and the fact that Z contains an admixture of Wa.

This coupling is (from equation 3.2.5) given. by:

- K g Cosby (3.2.14)

where the suppression factor K is given by

3/
(CosZQW) 5

K= —— =
(Cosew)4 A (3.2.15)

2

and "g cos 6y" is the standard model coupling of the Z to

the left-handed massive charged vector bosons.
3.3 Production cross-section of "g/n ollid

The production of weak intermediate vector bosons of
very large masses at the CERN PP collider ([12,13,14]
provides a direct test of the Drell-yan mechanism [34)
assuming of course that the couplings are as given by thé
standard model. In this section we shall briefly discuss
the kinematics of the Drell-yan process and then find the
production cross-section of the heavy "Z'’" boson.

Consider a proton and antiproton with four momenta P,
and P, respectively, which collide at total centre-ofcﬁass

energy squared ngn to produce a vector boson of momentunm,
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"q". The diagram for a "Z’" boson produced by PP collision
is shown in Figure (6). For the high energies we are

considering the Mandelstam variable nS" becomes:

/233

= (P + Pp)?

= 2P,.P, (3.3.1)

According to the parton model, the production of the
boson proceeds via the interaction of a parton of momentum
p; in proton with a parton of momentum p, in antiproton.
Further if x, is the fraction of momentum carried by parton
in proton and x, is the fraction of momentum carried by

parton in antiproton then:

and .

= x,%,8 (3.3.4)

Using the "Z’" coupling to fermions determined (neglecting

the effect of Of % })) in section (3.2), the invariant
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production cross-section of "Z’" in PP reaction attains the

form [35]:
2 2
Koo 1 1 1 -
o(pP +zX) = 1 5 5 _z delgdx2 [fg(xl)fq(xz) +
Sin 6wCos Bw 3 g 0 0 . P P
q q 2, 2 A_m2
fp(xl)fﬁ(x2)] X (cv+cN)6(x1x28 MZQ
(3.3.5)
where
- ( )
K — S ——————— 3.306
1 (CosZBW);5

is the suppression factor which comes due to the "2'"
coupling.

Moreover'fqix) are the structure functions of the proton
and antiprot%n respectively and they represent the
distributions of quarks (anti-quarks) in the parent hadrons.
The factor %vaccounts for the fact that all three colours of
q and  occur with equal probability but only a g and q of
the same colour can annihilate to form a colourless boson.
We note that (3.3.5) differs from the corresponding
expression for Z production because of the factor K; and
also because of the mass dependence which occurs in the § -
function.

The numerical values of the cross-section for the 2’

production in PP mechanism, at its various masses, have been

calculated from equation (3.3.5) and are drawn in Figqure
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(8). These calculations use the structure functions f£(x)
given by E. Eichten et al. [37] and we are indebted to James
Stirling who has performed the necessary computations.
Figure (8) clearly indicates that the total cross-
section decreases by increasing the mass of the heavy 2’.
We have also determined the ratio of the cross-section of
. the heavy 2’ and the conventional Z, which is well shown in

Figure (9) as a function of My,.

3.4 The decay of ng’m

Since, in our L-R symmetric extension of the standard
modél, the heavier neutral "2’" particle is a spin one gauge
boson, there must be three helicity states associated with
it, + 1, 0. We estimate the decay of "Z’" into two W;’s by
taking a frame of reference in which "2’% is at rest. 1In

this frame the polarisation vector €, (p) for the gauge

bosons shown in Figure (7) are given by:

+ -
W W
L L 2!
Ao, €y (Pl) roEy (P2) '€y (P3)
1 1
0 ’ '—(ProlorE) ’ -MF-(-PIOIOIE) ’ (010100 1)
L L
- . - . -1 .
+1 ’ ']".'(0,1,1,0) 7 1(0'1'1,0) ¥ _(0'1l1:10)
V2 vZ V2
. . 1 .
-1, }‘(0111--110) ’ l(olll-tlo) ’ -(otll""ro)
Y2 VZ VZ
(3.4.1)
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where XNs are the helicity states and P’s represent the
momenta of the vector bosons. Now using the "Z’" couplings
to the vector bosons determined in Section (3.2) and working
in the frame mentioned above we iﬁmediately find the
invariant amplitude, for the process pictured in the Figure

(7), [36] as

* *
M=Kg Cosew €y (Pl)e)‘ (P2) [g\)}\(P2—P1)u-g)\u(P3+P2)\)+

9,y (P3*P1) 1€, (P4) (3.4.2)

The suppression factor K obviously gives the difference
between the heavy "Z’" and the usual light Z (for which K =
1). Then after some straightforward and tedious
mathematical calculations, the decay width of "z’" into WLWI

becomes [33] as follows:

2 3/
acot 6 2
[z » w;w£)= K2 ——JMZ.(X)'3(x2—4) (x+20x%+12)
48 ' .
(3.4.3)
MZ'
where we have used X = E;— (3.4.4)
L

Similarly the decay width of heavy "2’" into ff attains

the simplest form given below

2 2
- Kjg'M/!
[zt »£8) = —2 )2 + (cp?] (3.4.5)
48 mCos ™0
W

where K,, cy and cp’ are already well defined in Sections
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(3.2) and (3.3). The notations f and f represent fermion

and antifermion respectively.

3.5 Branching ratio

The experimental results with which we wish to compare
. our predictions are concerned with possible events leading
to pairs WiW;. In order to find how many of these pairs our
model predicts will be seen we need to know how often the 2’
decays into this mode. This is given by the branching ratio
which is the ratio of the decay width of the 2’ into a
particular channel and the total width of the Z’ into all

possible channel including the 2’ -~ wiﬂi mode. Thus

-+
) [(z* » wwh
B.R(2' > W W]) = I
[iz* » X £f + w ;)
all

(3.5.1)

Then making use of the equations (3.4.4) and (3.4.6),
the branching ratios of the fermions and W; bosons have been
determined and finally graphed in Figure (10). This Figure
clearly indicates that increasing the mass of the Z’ does
not noticeably effect the branching ratios of the fermions
like the standard model, whereas the branching ratios of the
W;, bosons increase reasonably. The reason is° very simple and
obvious from the fact that the coupling strength of the Z’
to W; boson is effectively suppressed by a factor K that

mainly depends on the MWR.

54



Now to find the number of Z’ to be decayed into Wiwi
pairs, we really require to calculate the number of the
standard Z’s produced. These are well computed in Chapter 5
which are approximately 975 events. Then the number of 2’

decayed into Wiwi events can be easily found by the relation

)
N,’ = No. of Z (produced) x Ratio of (%—) cross-section

v et
[(z > W W)

(z'> X £F + wow' (3.5.2)
r all L L)

X

Since the ratio of (%L) cross-section (see Figure 9) is
0.022 at Mz, = 200 GeV, and the branching ratio of W£W£
pairs (see Figure 10) again at My, = 200 GeV becomes
approximately 0.002.

Thus our current model predicts

Ng, = 975 x 0.0922 x 0.002

=~ 0.043 events (3.5.3)
which are, certainly, much smaller as compared to the
experimental data [3]. Also notice that the number of 2’
events to be seen can be further increased by lowerinjy the
mass of the right-handed vector boson (WR) from 300 GeV to a

reasonably acceptable value.
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CHAPTER 4

ompo ode

4.1 Motivation

The whole physical world around us is full of objects
" composed of so called "matter". 1In their sizes, appearances
and properties they are very different. To find a simple and
elegant way of understanding and explaining this amazing
variety of objects as being made from some basic constituents
has long been an aim of thinking man. The collective efforts
of various scientists, at different ages, to explore the
structure of matter have revealed a sequence of layers:;
molecule, atom, nucleus, nucleon and quark, each of which has
eventually turned out to be composite, i.e. to conceal some
further substructure. At the present stage of our
understanding we have reached the 1level of quarks and
leptons. Should we go further?

Early suggestions that quarks and leptons might have
composite structure were made by Chang [38)], Massam and
Zichichi [39]. At present there are not very compelling
reasons for believing in any substructure of quarks and
leptons, but the probable discovery of six types of quarks,
each appearing in three colours, and the existence of six
types of leptons naturally raises the possibility that these
particles are not the point-like building blocks of matter

but are constructed from a simpler set. Moreover the
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observed similarity between the properties of gquarks and
leptons suggests that both kinds of particles should be
constructed from the same fundamental objects. The
hypothetical new parficles, the building blocks of quarks and
leptons, are usually referred to hy t@g generic name
"preons".

The SU(S)chU(Z)wa(l)Y standard model provides a good
description of the experimental world at the current level of
accuracy, but still it has naively failed to explain why
quarks and leptons are so identical in their weak interaction
properties, both occurring in SU(2), weak isospin doublets.
Also it does not explain why the sum of electric charges of

quarks and leptons in each "generation® vanishes (e.g. u,d,

Vgr e) i.e.

2 1
3(Qu + Qd) + Qe + Q\)e= 3(§’§)e -e+0=20 (4-1)

The large number of particles appearing in the
SU(3)CxSUwaU(1)Y standard model, the Higgs mechanism and
three generations of fermions, each containing two 1leptons
and two flavours of three coloured quarks, is a problem of
substantial difficulty and has not as yet been clearly
understood if all of them are really fundamental particles.

The final motivation is much more speculative. The
masses of three generations, the Higgs particle mass, the
mixing of quarks and leptons, and the gauge couplings include
actually a large number of arbitrary parameters which are not

all predicted by the standard model. The value of any new
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model should lie in predicting most or all of these
parameters. It is, however, expected that these difficulties
and problems might be resolved if quarks and leptons are
composed out of a common set of some fundamental particles.
The short range force (intermediate véctor bosons exchange)
in the standard model could then be considered as a residual
effect of some new unbroken gauge theory.

There are various arguments which suggest that any
likely substructure may be observed only at extremely short
distances and corresponding large energies. The well-known
evidence for the "point-like" status of leptons and quarks
clearly shows that such a substructure must correspond to
distances well below 10~ 18cm. The present limit on the
proton’s life time requires, for a simple class of models,
distances below 1072%cm or momenta somewhere above
1015Gev.[40]. This tighter 1limit is, however, model
dependent.

4.2 The rishon model

Using the above reasoning mentioned in Section (4.1),
various models have been proposed all suggesting that quarks
and leptons are composite particles. In this section we
wish to explicitly discuss the rishon model. The model is
clearly simple and extremely economic. In the rishon model,
it is postulated [41,42] that gquarks and leptons as well as
gauge bosons are composite particles. This model in fact

consists of only two fundamental massless spin 1/2 building

58



blocks, called T-rishon and V-rishon with charges of %e and Q
respectively, and with SU(3) hypercolour and SU(3) colour
assignments listed in table (1). The simplest composite
fermions can be constructed from three rishons or three
antirishons which are hypercolour confined and cannot be
directly observed experimentally. The.hypercolour scale Ay
is substantially larger than the ordinary colour scale, i.e.
AH>>AC. All composite objects are hypercolour singlets and
are therefore "observable" below the hypercolour scale A\p.

The light hypercolour singlet combinations are
&= (TTT), u = (TTV), @ = (TW), v= (VW)  (4.2)

together with their antiparticles

e = (TTT), u = (TTV), d = (TW), v= (VVWV) (4.3)

Thus we can achieve all generations of quarks and
leptons having the correct charge and colour properties so
far we have seen. The major advantage of this model is that
the neutrality of matter is satisfied automatically since,

for instance,

euud = (TTT) (TTV) (TTV) (TVV) (4.4)

Hydrogen atom = ep
has no net . charge as the total number of T-rishons and
V-rishons vanish. It is also very clear from the above

equation (4.4) that the rishon model describes the Universe
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as the particle-antiparticle symmetric object. Since the
hypercoloured rishons are not free fermions and are rather
confined in leptons inside a radius of order A;l , the two
hypercolourless leptons will interact with each other by
short range residual hypercolour forces:. These are analogous
exactly to the hadronic forces among two colourless hadrons
containing coloured quarks. If we consider the hypergluon
massless particle which is responsible for the binding of the
fundamental rishons, the complete list of fundamental
particles includes rishons, antirishons, hjpergluons, gluons
and photons which are, of course, not too many when compared
to the particles appearing in the SU(3)ox SU(2)yx U(l)y
standard model. Furthermore; all these particles are
massless so mass parameters and fundamental scalar particles,
like Higgs scalar, do not exist at all. Therefore, the
rishon model has really reduced the number of both the
fundamental particles and the parameters to a reasonably
acceptable level.

Until now we have not discussed the weak interactions in
the content of the rishon model. Since the fundamental unit
of electric charge is e/3 so the wt cannot act between single
rishon states. In fact, the simplest boson with the quantum
numbers of W (Q = -1, B-L = 0) can be carried by multirishon
exchanges as shown in Figure (11) and correspond to a state of
the form:

W~ = (TTTVVV) (4.5)
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Similarly
wt = (TTTVVV) (4.6)

When W~ singlet state acts on a fermion that consists of
three rishons itproduces a state of three antirishons, for

- example,

Wo|TTT > = |VWWV > = |Vg >, WT|VIT > = [TV > = |d >
(4.7)

Thus W~ hypercolour singlet changes et - 'Ge, u -+ d,

d > Uandv, ~» e as desired’ similarly the W' boson can

easily transform the hypercolour singlets v, - et, d » wu,

u - d and e - Vear The neutral hypercolour singlet
mediated in weak interactions is expressed in terms of

charged T-rishons and neutral V-rishon as follows:

wo = (TTTTTT - VVVVVV (4.8)

N I

Since it must couple symmetrically to T’s and V’s. The
reason for these vector mesons (hypercolour singlets) to be
lighter than any of the other mesons constructed from these
combinations of rishons is still very much unclear. Note
also that the theory starts out as left-right symmetric
so it is necessary that the coupling to composite Higgs

fields must break then this symmetry. How and why this
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happens is a problem for composite models.

Equation (4.8) suggests a new and important feature of
composite models. In addition to the weak SU(2), spin 1
vector particle [Wi, W°)] there ought also to be a weak SU(2),
spin 0 vector particle.

1 ——
B® =/, [TTTITT + VVVVVV] (4.9)

~Compare the P and () of the quark model:

p = 1(un - dd) (4.10
V2

W= 1[uu + da] . (4.11)
V2

We expect that, at least in some approximation these
states will be degenerate in mass (again as with the P
and ()) . Thus composite models might be expected to give an
additional neutral vector boson. The effect of this will be

discussed in the next few chapters.

4.3 Problems

In the preceding section we have explicitly discussed
the rishon model (the most economic model) as the minimal
possible scheme. In this model it is simply assumed that all
quarks, leptons and massive vector bosons as well as all

scalar particles are composite of a small set of new
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fundamental building blocks. All properties of fermions and
bosons are assumed to be consequence of the properties of the
same set of elementary constituents; in particular, the
standard model is expected to be derived as low—energy
phenomenology. In other words, at energies well below A}y
the Lagrangian must possess all ingredients of a local gauge
theory. Despite the success of the rishon model in
reproducing and generating the correct spectrum of quarks and
leptons as well as vector bosons, it still remains
unexplained, why we observe only composite states like rrr
or iff but not, for example, rrr? The second major problem
of the rishonvmodel (discussed in the previous section) is
the requirement for light composite wvector bosons that
correspond to an approximate gauge symmetry of the energy
well below AH Lagrangian. This problem in fact seems to be
an extremely interesting current issue disregarding the
model. In QCD, all composite fermions acquired masses of
order A o (or more) at the expense of the spontaneously broken
chiral symmetry. On the other hand, the rishons composite
model of fermions which is basically based on hyperdynamics,
suggests some degree of unbroken chiral symmetry, and this
obviously generates massless quarks and leptons well below

A This might lead to some fundamental difference between

H*
the chiral symmetry breaking in QCD and the composite model.
Unfortunately, the reason for this difference is not
satisfactorily wunderstood yet. Finally, the unusual
assumption regarding the existence of a large v.e.v. for rrrr

(or rrrrrr) states with small (or zero) v.e.v for rr states
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is naturally unjustified and is considered to be an important
problem of the rishon composite model presently. Despite the
various difficulties of the rishon model, it still may remain
a realistic candidate for the correct theory provided the
problem of chiral symmetry is proved eﬁtirely different from

that of ordinary QCD.
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The 8imple Two Z’s Model

5.1 Mass matrix and diagon o

In this chapter we shall follow the ideas of the
previous chapters and assume that the observed weak
interactions are residual effects of an unbroken hypercolour
gauge interaction. The effective Lagrangian, which describes
the intermediate vector bosons mediating the weak
interaction, will be renormalizable so it must have the
structure of a Higgs-broken gauge theory. 1In order to agree
with experiment we have to assume the existence of the
appropriate set of light (i.e. compared to the hypercolour
scale) vector particles. As we have noted it is natural that
in addition to the 2zero charge members of the SU(2)
multiplets there should be a composite U(l1) vector boson.
Thus the effective Lagrangian will be invariant under a local

group:
G = SU(2)f, x SU(2)g x U(1) x U(1) (5.1.1)

where the other U(l1l) factor refers to an "elementary" vector
field. Following the discussion of the second Chapter, we
assume that the couplings associated with the gauge groups
SU(2);, and SU(2)p are equal. Hence the model under

discussion has coupling constants g, g, g;, 9, corresponding
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to each factor in equation (5.1.1). For the electromagnetic
charge operator we can take

Y
1

where Y, and Y, are the hypercharge associated with the two
U(1) factors. Note that there is no loss of generality in
putting just Y, in equation (5.1.2). The minimal set of
Higgs scalars required to break L-R symmetric model down to
U(1) of electromagnetism, and to give masses to.the quarks
and leptons, has been explicitly discussed by Mohapatra and
Sanjanovic [43]. But in our model, because of the extra
U(1), we need an additional Higgs scalar which is basically
obtained by assuming that there are two Higgs triplets with
different couplings. The following set of Higgs scalars has

been used in our subsequent work:

§ = (%? %I 0, 0)
x1 = (1, 0, 2, 2)
X = (1, 0, 2, -2) (5.1.3)
1
XR = (0’ 1' 2l 2)
2
xR = (o, 1, 2, -2)
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Up to this point we certainly have a completely L-R symmetric
theory. This L-R symmetric theory is broken by assuming that
only the right-handed X states possess a vacuum expectation
value. Thus considering equation (5.1.2) as an exact guantum

number, we can conveniently write:

1 k 0
<$>==_ | )
iz 0K
0 0
1 1 0 1 0
<Xp> = —2 v|r <Xg> = —2 W (5.1.4)

1 2
<X1> = <X;> =0

Then by making use of the equations (2.2.12), (2.2.13) and
(5.1.4), the following mass matrices both for the charged and

neutral gauge bosons involved in the theory are obtained:

] T
pX - X% gzk’k
2
<i|mMt|i> =
- %g%k’k I+ A
(5.1.5)
[ —~
5 -z 0 0
2
<iMly> = I I4p ~ah ~B(A-1)
0 -al ol A aB(A=A)
o -B(A=8)  aB(A-A) B2 A
. (5.1.6)
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where the states |i> are |W3L>, |W3r>, |B1> and

|B,>, and where

2
_ 2 2y _ o 2
z—%—(k + k%) = Myt
g% (.2 2 2
2 2
Ao =gwt  a=91  g- %2
2 g g

In this chapter we shall take A\ very large so that the right-
handed SU(2) has no effect. To diagonalize the neutral mass
matrix we just diagonalize that part of it which remains when

we ignore I:

[ ]

A ~ah -B A
2 5 ;
<i|M|j> = -ah a“A aB A (5.1.8)
' 2

-8 A ag A g2

Here we have defined:

(5.1.9)

The characteristic equation yields the following eigenvalue

spectrum (AA) for the mass matrix in equation (5.1.8). Where

A = 0'
2 .2 ,
o= BB 1 4024672 - 4(8%-8"%) (1402) 1%
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and
2, .2 ,
rg = LB (e )2 - a(B-8"H(14a?)) "

(5.1.10)

Now we recall that we wish to take A very large - in
fact we shall consider the limit A - » . However, we want
our model to have 3 neutral vector particles of finite mass
(the photon, the standard Z,and a new Z,). Thus one of the
above eigenvalues, say \jA, must remain finite as A »

This clearly requires:

B2 - g%~ 1 (5.1.11)

Ag =0
82- 89 11 + o?) (5.1.12)
A]. has 2 .
(1+a +82)
A= (1 +42%+3?
2
The . diagonalization of the matrix given in equation

(5.1.8) can be completed just by introducing the states In>:
jn>= ) |i>< i|n> (5.1.13)

1

where
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1 0 0 0
0 s cS cC
<in> = 0 c -sS -sC (5.1.14)
0 0 C -S
L .
with
2
g2 = _O 5 cl = 12
l+a 1+0
(5.1.15)
L
2 _ B 2 2 _ 1+a2
§% = 7 20 © < 2 3
1+a“+8 l1+a™+8

(in the A » ~approximation).

In the |n> basis, the full mass matrix (5.1.6) is obtained as

follows
<n|M2|m> = § <n|i><i|M? >3 |m>
i,J
- | T
) -sT -cSt -cCr.
2
-sy s scSyY scCy
2 2 2 (5.1.16)
-cS¢Y scSy c”Ss z+l1 c"CSy
-cCy scCyr cZSCz c2C22+A2A
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As expected this matrix is diagonal provided I = 0.

Since (AZA) becomes infinite as A goes to infinity we
can ignore the off-diagonal terms of the fourth row and
column and just diagonalize the top left 3 x 3 mass matrix of

equation (5.1.16):

r -
1 -S -CcS
2
<n M m> = -s s2 scS (5.1.17)
z L -cS scS c252+K
where

A A 2_,'2 2, A

o @hasd A (5.1.18)
z (1+a“+B87) z

The eigenvalue spectrum of mass matrix (5.1.17) is then
determined, by making use of the characteristic equation, to

be

= Z (%(1+52+K+czsz) ;% [(1+52+K+0282)2-4K(1+52n %
(5.1.19)
where the )\'s are three mass squared eigenvalues associated
with the photon and the two massive neutral vector bosons M.
Further K, S and s are the only free parameters. Now if we

define

! and %, = -ZZ (5.1.20)
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then we have

h) =0

o
2 2.2
- 1+s™+K+ =
y,2 = = === S_ Fy[ (K- (1+82)+c282) 2440252 (1482) ] &

(5.1.21)

5.2 The couplings of the vector bosons

In order to calculate the couplings of the vector

bosons we need eigenstates which diagonalize the mass matrix

(5.1.17), i.e.

_ 7
sinew cosoyS’ cosgyC’

<n|r> =|cosfy -sinéyS’ -singyC’ (5.2.1)
B c’ -S?

where the Weinberg angle is defined by

2
91
2 2
g +2g,

sin?gy = (5.2.2)

The constants C’ and S’ appearing in equation (5.2.1)
expressed in terms of known (Xl,iz) parameters by using
eigenvalue equation i.e.

2
<n|Mm>< m |r> = )\ <nj|r>
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[ 11 i
- e~ ' ' ! . f ?
1 s cS 51n9w cosewS cosewC 51n9w cosGWS cosewc
2 . ] . ] . ] . ]
-s s scS cosew -51n6WS —51n9wC :cosew -51n9wS -51n6WC
-cS scS c?s%4K 0 c' -s L 0 c -s

l [ [ [} ! [

51n9w-scosewA cosGWS+551n6wS-cSC cosewC+551n6WC+cCS
ind. +s2cos® 8. S-5251in6. & . 8. C-s2sin6..( '
-ssin w+s cos W -SCOSs WS-s sin wS+csSC -scos wC-s 51n6wC-scSS= y
’ 1 [ 1]
Tc851n6w+scScosew -cSScosGw-scSSsn19w —cSCcosGw-scSC51new
[} (4

+C(c?s24K) -5 (c?524K)

l-_ — L o

This equation (5.2.3) then yields

2 (§L,2 22
¢’ (cos®_(1-,)+s sin® )2
wil %y W
L
o2 252
 —
(1-c Al)
(5.2.4)
where ¢ 2 =1[(1+ s?) (5.2.5)

To find the value of "S2%" in terms of A1+ Ay, we begin with

*
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equation (5.1.21) as follows

11 + ié =1+ 82 + K + c2s2
AlA

=1+ 82 + ~- c?s2 (5.2.6)
and A Ay = K(1 + s2)
A,
7 K

1+s

X, A Ao A

12 - L (5.2.7)
l+s . Z

Thus equations (5.2.6) and (5.2.7) simultaneously give

- 12 12,
(Alc - 1) (1 - ¢ Ay)

2 -
s o212 (5.2.8)

Substituting this into equation (5.2.4) then gives:

"9 (izclz-l)
T R (5.2.9)
(l-c Al)

Then by using the relation s’2 +¢'2 = 1, we immediately find

that
'2 l2-
s'2= 31—, = (c "xy-1) (5.2.10)
1+7 c Z(Xz-ll)
and
’ ‘25
1+T c'Z(XZ_al)

After having determined the constants involved in equation
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(5.2.1) in terms of known parameters, we shall now calculate

the couplings of the neutral gauge vector bosons.

purpose we find first:

<i|r> = ) <i|n><n >
i
1 T i
0 0 0 51n9w
0 s cS cC cose,w
0 c -sS ~-sC 0
0 0 C -S 0
A e
R ]
51n9w cosews
. . [} ]
551new -551news+cSC
. ! '
ccosew -051n6wS-sSC

CcC

cosewS'

—cin O '

sin wS
Cl

0

]

cosewC
’ ! !
-ssxnewC-cSS
. [} [
-c51n6wC+sSS

'
-SC

cC

-sC

For this

0

0

0

1
_

-

(5.2.12)

The eigenstates <i| corresponding to the order of factors in
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equation (5.1.1) are given by:

.

L

<i| = ) <i|r> ><r|
inb 6 '
sin W cos W S
[ [
scosew —ss1n9wS + ¢SC
e .el )
ccos W -Ccsin wS - sSC
0 cd

L

51n6w-y + cosewS Z1
! []
scose“ﬂ +(-ss:.anS+cSC)Z1
e . 6 [} ]
ccos8_ Y +(-csin wS-sSC)Z1

0.Y + CCZ1

X

17 ]
el
cos wC 0 Y
le' ,
-ssin wC - ¢SS cCA Z1
-e' '
-Ccsin wC + sSS -sC Z2
sc s
- - Z
1 1%3]
8. C i
+cos WCZZ + 0 Z3
. [ 2 |
+(-ss:.n9wc—cSS)Z2 + cCZ3
Y Y |
+(—cs1n6wC+sSS)Z2 - sCZ3
4
-SC22 - S»Z3
(5.2.13) -

Then making use of the general definition of the couplings

given in equation (3.2.12), we find that the photon coupling

(5.2.14)

¥y

becomes:
h
: g singyQ
[Here we

have used cg, = sg and Q = Tyy + T3R'+_5]

As expected for the electromagnetic interactions.

The Z, coupling is then obtained as follows
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! Y Y
g8 _sin? : e L 2)-2
zl'cosew [T3L sin ew,Q] + g cCS [T3R a” 5= + (1+o )2 ]
(5.2.15)
and finally the Z, coupling has the form:
: Y Y
7y gc [T3L-sin26wQ]—chS' [T3R-a2 —2-1- (1+a2) —%]
cos®b
W (5.2.16)

5.3 Both Z’s wit experiment e

The composite model of Section (4.2) clearly suggests
that there are two Z particles of approximately equal mass.
Since there 1is no evidence for two 2Z’s in the mass
distribution of Z events, it is natural to.assume that both
Z’s appear in the same experimental peak i.e. that the mass
difference IMZ2 - MZ]J is less than the experimental
uncertainty, which is about 2.6 Gev [44]. In this section we
shall explore the consequences of this assumption. For this

2
purpose we start with the experimentally known values ofMWJMZ

and sinzew which are given by [3,45].

2

M

—— = 0.777 % 0.02, sin6y = 0.23 # 0.007  (5.3.1)
M
Z

Substituting K = B + 1 + 82 into equation (5.1.21) then

clearly gives

22
- B+c®S _
X, o = 1+s2+ 2 T3 (B+c252) 2+4c2s2 (1482) 1% (5.3.2)
[
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We recall, from section (5.1), that B and S are given in

terms of the original parameters by

2 12 2
B (8 -26 )21\ - (%) (5.3.3)
(1+a“+B8“) 1 l+a
Bl
§ = —t
(1+0t2+32);5

Clearly we can regard B and S as our new independent

parameters. Since we have

Mif -MS = (M, +M, )(M; - M, )
2, %4 Z, &2, T,
< 200 Gev?
Mg - My
2 1 200 1
Mvzv € Tooo0o X 30

So [(B + ¢ 52)2 + 4c2s2(1+s2)]* « %—5

which implies that:

B2 + 2c282B + c%s? + 4c?52(1+82) « %55
(5.3.4)
Thus both B2 and S2 are small £ 1/2500, so we can ignore BS2
and s terms in the square root. Then working only to first
order in B and S we get:

o = 1+s2+-123 ¥ ;5{132+4¢:252(1+s"-’)]!5 (5.3.5)
’

Now if E, and E, are considered as the minimum and maximum
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2
M, M22
values of — and __é which can, of course, be numerically

MW2 My

determined from the equation (5.3.1), then equation (5.3.5)

immediately gives:

s§2 = —; 1 5 [(Ep-(1+52))2 - B(E,-(1+82))] (5.3.6)
c“(1+s7)
and
§2 = ——— [((1+8?)-E;)2 + B((145%)-E; )]
c“(1+s”)
(5.3.7)
Using sinzew = 0.23 clearly produces
1+s2 = 1.299, E, = 1.255 and E, = 1.321 (5.3.8)

The relationship between B and S, from equations (5.3.6) and
(5.3.7) are shown in Figure (12a). The shaded area in this
figure indicates the possible allowed region of the two Z’s
contribution. The standard model, of course, is included in
this region at, for instance, § = 0, B # 0. our prime
concern here is to explore the area where both Z’s are
contributing. In this regard the maximum contribution is
most likely to be shared by the two massive neutral gauge
bosons at the points where the two different lines arising
from the equations (5.3.6) and (5.3.7) intersect each other.

It is probably worth noticing that different values of sinzew
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give different intersecting positions as shown in Figures

(12b,c). But, from Figure (12a), we choose

B=-0.022, S =+ 0.033

and sinZgy = 0.23 C (5.3.9)
Then by using these values we get

X3 = 1.28, 7}, = 1.34 (5.3.10)
which subsequently yield

s*? = 0.669, C’'2 = 0.331 (5.3.11)

We shall now test the consequences of the two Z’s in the
neutrino-electron elastic scattering process (Figure (13))
which is believed to be a sensitivg and accurate probe of the
fundamental features of the standard electroweak theory. The
couplings of these two massive neutral vector bosons to the
fermions in the region S = B # 0 can be rewritten as follows

Z.: L R [c

- ¢c,Y5] + gh [e,, = ¢, "'Y5l]
A v A
2cosew

\Y
2cosew

(5.3.12)

Here we have ignored the (unknown) Y, term and have used
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b
5= = Q = T3, = T3g

cy = T3 - 2 sin?gu0, ¢, = T3 (5.3.13)
cp’= - Ty cos2ey, A = _Cs X
(cos26.)

Alternatively equation (5.3.12) is written by:

' v ! ]
Z): ;_H___ [(s" e +Ac ') (1-v5) + (Scp + AcQ) (1+Y5))(5. 3. 14)
cosew )

where we have further defined:

. V A . V A
L T —3 v+ CR T —3
(5.3.15)
c,,+c ! c.,~¢c,’
_ V A t_ V A
c:l'..'_ 2 ¢+ CR T 2
Similarly, the Z, coupling has the form:
[
Z —4g [(dé -Hc,' ) (1-y5) +{Cc~Hc ) (1+v5) ]
2 L L ; R R
2cosﬁw
(5.3.16)
with
ss’

Now the amplitude due to the two Z’s exchange in ve ->

reaction can then immediately be written by:
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2
M(v) = —L—— 2 [A-ﬁ(k')yu(l-ys)v(k)é(p')y“(l-ys)e(p)

2
Zl+ZZ 8cos Gwle

+ H'D(k' )y, (1=y5) v(k)E(p ) y* (1+yS)e(p)] N
(5.3.18)

where
M 2
A’ = (S+Asin®6.) (¢ ' : ') (C-Hsin26 ‘1
= (S+Asin w)(ScL+AcL) + (CcL—HcL)( -Hsin W)EEE
and ~ 15.3.19)
, 4 . 2 3 ;o p o2, Mp2
H’ = (S + Asin GW)(ScR+AcR)+(CcR—Hcé)(C-HSLn 9w) ;
MZ
2

Here we have assumed that the neutrinos in the experiment are
purely left-handed. Thus the differential cross-section in

the neutral current ve -+ ve process becomes:

4.\
Q) .95 @;aZia-yhue?) (5.3.20)
dy 327ncos OWMZ
1
where S is called the c. of m. squared-energy.
Integration over y from 0 » 1 obviously produces the total

cross-section as follows

4z ;
2
a(vy _ 38 a2 s B2 (5.3.21)
2112, 321rcos49wMZ4 3
1

Oon substituting the values of A’ and H’ from the equation

(5.3.19) into equation (5.3.21) and also making use of the

expansions
2 2
M - M
14 = 14 [1—2( 21,2 Z)] (5.3.22)
My M, M2
1,2 2
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we get

~ L » 2 2 '

o(v) ’s[ , 2sin?g Q's® - 2m 2-M2 ), , 2sin S Q
.42, ~ 7 [P+ W 2 "Z1 (p+
2 cos2b
cosZew MZ . W
- 1
2(Mzz le) , 12 sin29w52Q Séd , 2
——>— (PC + - y (Psin 9w+Q'))]
My cosZGW (cos26w)
, (5.3.23)

where

2 2 2 . 4 , 2
p' = ci + SR ) Cy *Cp tcych ) 16sin70,,-125in”6 +3

3 3 12

2
o ' cRcR' _ 2 cV + cvcé +cAcV + 2 CACK
Q' = c.c + =
L™L
3 6
- . 4, c 20 2 dainl
= 28sin Gw 17sin GW cos ew(3 4sin Gw)+3

24

(5.3.24)

and G is the usual weak interaction Fermi coupling constant.
Also note that we have ignored the terms which come from the
higher order of s2. Replacing (M% - Mz:) and (Mzg- Mzi) in
terms of known B and S then gives the total cross-section as

follows:
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, 2 22 2. %
2sin”™6.,.,5™M 4cos26..S7) “_
o(v) _o(v) [1 + W _ 2coszew((B2 + , W B)x
Z1+Z2 s.m cosZBw cos SW
2sin0_.5%M 2 2 . 4cos26 3
(1 + W ) - 2 cos™ 6 W (B + W SZ) X
4
coszew . cos Gw
2 ., 2 22 11 . 2 A »
(C' + Sin GWS M ) SCS(sin ew + M))] (5.3.25)
5
cosZGw (cosZBw)
where we have defined
olv) = __ ~~ .na M= (5.3.26)
sS.m - p

Thus substituting the values of S’, C’, S and B computed

earlier yields the total cross-section numerically to be:

al(v) = g{v) _ (5.2.27)
Zl+zz s.m [1 0.103]

This clearly shows that the contributions of the two 2’s do
not contradict the standard model prediction [46] provided
that these two 2Z’s are constrained to be within the
experimentally observed peak.

Finally, it is of interest to use our results to find the
relationship between the original parameters 8 and B8’, and to
this end we merely make use of the equation (5.3.3). The
values of the parameters B and S given in equation (5.3.9)

can easily be shown to lead to

82 ~ 100 8’2 (5.2.28)
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5.4 Two adjacent Z peaks

Our composite model seems to predict the existence of
two Z’s close together in mass. In the previous section we
considered the possibility that they are so close that they
both lie in the same peak, and have not been seen as two
peaks because of their width and the experimental resolution.
This required 4dM; < 1 Gev. In this section we will consider
the possibility that the observed peak is due to the (owest
Z (the Z,) and that the other lies a small distance above,
but is too small to have been observed. As we shall see the
required small coupling is predicted by the theory. We begin

with equation (5.3.2)

2
2 2
Mg, = Mg+ ;E.[B;(32+4c2(1 + s2)s2)*) (5.4.1)
where
2
Mg = I (1+ 8% = MW 5 (5.4.2)
cos” 9

Since experimentally | M; - lel € 2.6 Gev and we wish |Mz2 -
MZI to be much greater than this, we must have B2 > 4c? (1 +

sz)sz. Hence we can expand the square root and obtain:

2 2 2 2, .2
B B 2c“(1+s87)S
M-§=MZZ+MW P, - )
4 2 2 B
, M% c2(1452) 52 (5.4.3)
=Mz—



and similarly

oy RS
Adding equations (5.4.3) and (5.4.4) then yields
Mg + M% -2 M%
B= (%1 2 ) (5.4.5)
v
and
(Mi - Mg )(MZ2 + M2 - 2M§)
2 1 1 2
c“(1l+s )Mw

Thus the parameters arising in the equation (5.2.1) attain

the simple form given below

2
1
C'z = 2—'2 (5.4.7)
M, - M,
2 1
M, - Mi
s’2 = 5 - (5.4.8)
My - M
2 24

Our next step is actually to compute the number of Z, events
expected to be observed using the coupling listed in equation
(5.2.16). For this purpose we merely make use of the leading
terms of the couplings of the two Z’s and ignore the rest as
they are not very much important at this stage. Under this
approximation the ratio of the (couplings)2 of these 2’s is

determined as
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v
R = (gr) (5.4.9)

But the number of Z, and Z; events are related by:

N, Production rate of Z,

2 _
Production rate of 24

Nzl

= R.R’ * (5.4.10)

where R’ is the ratio of the kinematic factors of the two
Z’s. Since the Z, and Z, masses are roughly equal the
kinematic factors ratio can be taken to be 1 (see next
section). Oon substituting the values of C’ and S’ from
equations (5.4.7) and (5.4.8) into equation (5.4.10) we

finally find:
M
31 ) (5.4.11)
Z

As we have assumed that 2, lies outside the observed peak and
MZz > M; while leit M;. Therefore the number of Z, events
are suppressed by the number which really depends upon the MZZ
. Using the experimental possible values for M; [44]), the
number of Z, events against its various masses are calculated
aﬁd graphed in Figure (14a).

Since experimentally " 50 Z2,’s have been seen and no

Z,’s. We require this ratio to be < 5%. Hence the model

allows

Mz; > 110 Gev.
2
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if we take | M, - MZJ = 1 Gev. If |M; - Mzﬂ is less than
this, then even smaller values of MZZ are allowed (see
Figures (14b,c)). We can also calculate the contribution of
Z, to neutral current processes. For e%ample the process v +
e » v+ e attains the form of the cross section, in terms of

masses of the Z’s under discussion, as follows

_ .20 25 2 _ .2
a(v) _ o(v) [ 1+2$1n WS M _ (MZ le)
2.+2 S.
1 72 m cos%w M%
2 2, . 2 225 2 2
M, - M 6..S"M M - M
_ 4 (My 2 z)8in" 8y -~ ac2 (M7, 71!
MZ coszew MZZ
(M% - Mg ) sinzewszﬁ 2(M§ - Mé )S', 5 .
-2 2 1 + 2 1 Sc(sin“e_+M)
M2c0529 ' M2(00526 );5 w
pA W Z W
(5.4.12)

Note that in deriving equation (5.4.12) we have used the
couplings of the two Z’s which are given in equations
(5.2.15) and (5.2.16). Then by fixing, from the experimental

data [2],

le = 9101 GeV., Mz = 9201 GeV.,

Mz, = 110 Gev., My = 80.1 Gev and sin% y = 0.23

(5.4.13)
88



we obtain

a(v) _ a(v)
7. 45. = [1 - 0.27]

1742 S.m . (5.4.14)

which clearly indicates that although the 2, contribution is
higher as compared to the previously calculated cross-
section, it 1is still 1less than the error in the
experimental values [46]. This is because of its weak
coupling to the fermions, and so it is not seen
experimentally.

We now again find the status of the original parameters
and B’. This time, as is clear from the equations (5.4.5)
and (5.4.6), the parameters B and S are M21,2 dependent.
Using the values given above, in equation (5.4.13), the

following approximate relationship between B’ and B is found

g2 = gg' 2 (5.4.15).

5.5 Can the second Z explain the CERN Wt2Jet svents?

In the previous section we have assumed that the second
Z has a mass close to the first Z, and we have seen that
whether it lies within the experimental Z-peak or just
outside it, there is no conflict with experiment since the
departures from the standard model phenomenology are small.

In this section we shall again take seriously the W+2Jet
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events (discussed earlier in Chapter 3) which appear to lie
outside the standard model and see whether they might be
caused by the second Z. Clearly this requires that we take

MZZ~ 200-300 Gev. It is apparent from equation (5.4.7) that

c’ = 0.06, 0.04 (5.5.1)

which is very small. Hence the second part of the expression
for the coupling in (5.2.5) and similarly the first part of

(5.2.16) can be ignored. Then the Z’s couplings become

2) : —35— (¢, - c,¥5) (5.5.2)
2cos9w

2, : _gss_ (cosZGw)_%)(cV-cA'ys) (5.5.3)
2cos W

where cy, c, and cp’ have the same definition as given in

(5.3.13). Thus by choosing

sinZey = .23, M; = 92.1 Gev
M; = 91.5 Gev and M; = 200-300 Gev (5.5.4)
1 2

equation (5.4.6) gives
S = 0.31, 0.49 (5.5.5)

Now if we just consider the left-right handed u and d valance
quarks and their anti-quarks confined inside the proton

(anti-proton), the ratio of the couplings squared of the two
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Z exchange in PP inelastic process is given by

4[(uRﬁR)2 + (uﬁﬁL)z)Z] + (dRaR)z + (dLaL)z\zz

a[ (ugtg)? + ((urlp)?2] + (dpdg)?) + (dL&L)z\

Z4(5.5.6)

Using the values of S determined in equation (5.5.5) and the

couplings of the two Z given in equations (5.5.2) and (5.5.3)

at sinzew = 0.23, this ratio is computed as follows:

R = 0.01, 0.05 (5.5.7)

i.e. due to the couplings given in equations (5.5.2) and
(5.5.3) the Z, events are suppressed by factors~ 1/100, 1/20

at M; = 200-300 Gev respectively.
2
There is in addition a kinematic effect due to the

difference in the masses (see chapter 3). This obviously
gives an extra suppression factor (R’) of about 0.04, 0.002

for M; = 200-300 Gev at c. of m. energy J§'= 630 Gev.
2

We know that the number of 7, produced in PP inelastic

phenomenology are related by the expression:

rhltot.

(5.5.8)
[F(Z1+ete=, ntu-)

Ng, (produced) = Nzl(seen).

1

Since only " 50 2,’s have been experimentally observed and
the total width of Z; is " 3.1 Gev [3,44]. Then the width of

24 e+e,u +u'pairs is estimated to ben 0.18 Gev. Therefore
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the total number of Z,; produced become:
Ny (produced) = 975 events- (5.5.9)
1

Thus we have the prediction

Ny (produced)
R — = R R’
Nzl(produced)

= 0.004, 0.0001 (5.5.10)

at Mzz = 200-300 Gev respectively.

Hence sz (produced) = 0.4, 0.1 events. (5.5.11)

Surely, even if they all are decayed in to Wtyi (which they

would not), this cannot explain the events seen at the CERN.
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CHAPTER 6
The Three Z’s Model

6.1 Mass matrix, diagonaligation formula and the new
couplings of the vector bosons

In the previous chapter we have discussed the possible
effects of a second 29 due to compogiteness. The
calculations have been made under the assumption that there
are no effects due to the right-handed SU(2) couplings, i.e.
we have taken W; to have infinite mass.

However, as we saw in Chapter 2, the phenomenology of
the charged current sector allows a Wi with a mass greater
than about 400 Gev. In this chapter we shall therefore
combine the effects of an extra 2° and the effects due to a
large, but finite, value for MWR v 400 Gev.

Using the result of equation (5.1.16), the neutral mass-

matrix in the basis of the states |r> defined by

r> = |n><nlr>

for n,r =1,2,3 (6.1.1)
and for |r = 4> = |n = 4>
where <n|r> is defined by equation (5.2.1), becomes

<r|M2|%> = | <r|n><n|M2|m><m] 2>
n,m
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1T
51n9w c059w 0 o] )X IS ~2cS ~ rcC
cosGWS' -sinewS' c!' 0 - Is rscS scCy
O ) 2.2, A 2
cos GWC 51n9wC S' 0 rcS rscS 1 {c“s +>\12) c“Csy
o) -0 o) 1 -1cC  yscC zc2cs 5 (c2c2+>\2zA )
[ sin® cos® s cos® C o
W w w
[ [
-s5in® -ginb
cos ew sin WS sin WC o
0 c - 0
0] 0] (0] 1
0 (0] 0 (0]
- ’ 2, ! 2 !
0 }‘l 0 -cc(l+s”)SC+c“SCC
- . 2 r 2 '
(0] (0] }\2 -cc(1+s”)CC~-c“SCS
[}
o -cé(1+s2) 8C -cc(1+s%)cC c?c? 4+ *2%
+c?scec’ -c?scs’
.

(6.1.2)

Previously we were able to neglect the off-diagonal terms

because they were negligible compared to the difference

between 1, and A

Az— -
z
these terms by lowest order in perturbation theory.

Now we shall include the effect of

Since,

according to the equations (5.2.8), (5.2.10) and (5.2.11), S
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is ~ (X - 71) which is small so we can put S = 0 and C = 1
in the off-diagonal terms of equation (6.1.2). Thus by
considering the eigenvalue equation

<r M2 |2 ><|p> = <r|p>

*p
where p = 0, 1,2,3 , (6.1.3)

the following eigenvalue spectrum is obtained:

1 ]
(c %-5'?%)s' 2z

3. =3 -
1 1 c'4(A2A=M§ )
[} 1 '5
3 =3, - (e 2.s'%)c'?s
= []
2 2 c 4(xjA-m§ )
2
3 .. A
A3 ® Aoy

(6.1.4)

Similarly, the corrected eigenstates , by perturbation theory

(47], are given by

T e><2|M2|r>

| x> =|r> + — (6.1.5)
corrected Mr Er El
So the photon’s new state is given by
ly> = |1> = | 1> (6.1.6)

Therefore, the photon’s new coupling remains unchanged and is

given by:
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Y : g singuQ ) (5.2.14)

The new Z, state is also determined as:

(-cc'(1+sz)s'2)

i
Za> = [2> = |2> + | 4> 6.1.7
Il I I | (Mz—kl\) ( )
2 2
Thus the new 2z, coupling becomes:
! Y Y
. 98 -sin?2 ] —0l 1 2y_2
Zy [T4;-sin 8,,Q1 +gcCS [T 4 -a"5 +(1+a )2
coseW
Y D¢
+gc?csr  (T3r-o? S -8% S
cosGw 5
(AA - le)
(6.1.8)
Similarly the Z, state is given by
’ 2 1
| | | (-=cc (1+s7)C I)
Z,> = |3'> = [3> + |4> 2 (6.1.9)
2 -
(Mzz AZA)
and this clearly gives the new Z, coupling as:
Y Y
' . 2 ' 271 2,72
Zy : EE [T3L - sin BWQ] -gcS S[T3R-a 7—-(1+a )3—]
cosew ¢ y
24 T 2 71 272
+ gec“cCZ ["3R-a 5= = a'5= ]
cos® 2
w (A0 - M, )
2
(6.1.10)

Finally the Z; state has the form given below
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(—cc'(1+sz)§2 )

|23 > = [4'> = |4> + |2> (6.1.11)
A A- M2
(A, M, )
1
Hence the new Z; coupling becomes:
Y Y 12 .2
2., : gcC [T - a2 -2 _32 _21 - gcs [T3L - sin GWQ]Z
3 3R 2 2 5 .
cos“0.. (A, A - M, )
W 2 N/
%scs’ [T 211, (140?) 2 .
- gc¢ [3R-a'—§+(a)_212
> .
coseW (XzA - le)
(6.1.12)

6.2 Two 2’s within the experimental peak

In Section (5.3) we have seen the effects of the extra Z
which has approximately the same mass as the standard Z.
Here we basically intend to find the consequences of the
extra Z when the additional term which appears due to the
presence of the right-handed vector boson, is also taken into

account. Using the equation (6.1.4), we have

- ) "2 [
3. = (148?) + B oy (B2rac@sP(rest o g 08 1S E
. 2 c Haa-m2y
2hMg )
(6.2.1)
and
o= |2 l2 l2
12 = (1+52) + % + % (32+4c252(1+32)% - (?4 -Ss )g L
c (AZA-MZ )
2(6.2.2)
Now making use of
] ' 2=
s 2 (c "Ay=1) _ [B+[B2+4c282(1+52)]%]
c'z(iz—-l) [B2+40282(1+52)]!5
(6.2.3)
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c'? = (1-¢'2%.) =y [(B%+4c?s?(1+s2)1%-B]
— (B2+ac?s2(1+8%) 1%
¢ “(R,m1)) ¢ s7) ]
(6.2.4)
and A, = (1+a%) = 12 . (6.2.5)
we finally find that
71 = (1+s2) + B/2-Q/2-"%2(B/Q + 1) (6.2.6)
and
72 = (1+s2) + B/2 + 9/2 - W2(1 - B/Q) (6.2.7)
where
12 12,2 .
we= e =2 b ana § = %+ ac?s?ars?
c “(A-c M )
1 (6.2.8)

Equations (6.2.6) and (6.2.7) simultaneously yield the

following constraints:

(i) (2(1+s?) - zﬁl-u)b-éz
B € .
(“‘Q) s B> Q
2 = a 22
B3 (2(1+s%) - 2);-u)Q-Q (6.2.9)
(o - Q) ,n<Q
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and

(ii) (23, - 2(1+s?)+w)d - &7
B &

(Q + u)
(6.2.10)

and
(iii) |B| < @ - (6.2.11)

We now calculate the range of values which are

consistent with the experimental limits [45]:
1.126 < il < iZ < 1.32 (6.2.12)

These are shown on the various graphs which give allowed
values of B and 6 at different values of ju which of course
depends upon the mass of the right-handed vector gauge boson.

The shaded area in each Figure (15a, 116a, 17a),
represents the required region which satisfies all the three

conditions mentioned above. The sharp changes occur when

-2 ) + 2(1 + 82)-pu=20-2(1 + s?) +u

L= 2(1 + s2) - (31 + 32) (6.2.13)

and also when
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-2 A 1+ 2(1 + 52) - pu= p

b= (1 +8%) - X, (6.2.14)

It is interesting to note that increasing the value of
the u tends to decrease the volume of the enclosed shaded
region, i.e. gives a smaller range of allowed values of the 6
and B parameters (see Figures 16a, 17a). Note that 1argé M
corresponds to small mass of the right-handed gauge boson My .

R
From equation (6.2.8) i.e.

0% - B?)

s? =
4c2(1+52)

(6.2.8)
it is obvious that the higher value of "6" yields the higher
value of "S" while keeping the Weinberg angle ‘6 y’ to be
fixed from the experimental data. The typical value of u
that gives the highest value of 0 and reasonably small value
of B, is 0.04 which results at Mw&‘u 300 Gev and sinzew =

0.23. Thus, the translation of the maximally enclosed region

in B and 6 plane into the S and B plane (see Figure 17b),

gives

S =+ 0.026, B = 0.018 (6.2.15)
and

s*2 = 0,673, C’2 = 0.327 (5.3.16)

which are clearly not very much different as compared to the
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values found earlier in Section (5.3) i.e.

S =4+ 0.033; B= - 0.022 (5.3.9)

and 8’2 = 0.669; C’2 = 0.331 : (5.3.11)

Thus, provided that the right-handed vector bosons are
reasonably heavy, the calculations of this section do not
suggest any significant changes in the neutral current data
provided two Z’s remain within the experimentally observed
peak.

Now in order to see the effects of the.additional terms
appearing in the expressions (6.1.8) and (6.1.10), we simply
try to find the formula for the total cross-section in the
neutral current (ve > ve) process. Before doing that, we

first rewrite the equations (6.1.8) and (6.1.10) as follows

] -
218 85 [(cymc,y5) ] + B [cmcpvs)
vV A vV "A
2cosew 2cosew

i M [(§ cL+A ci)(l-YS) +(§ cR+i ci)(1+y5)]

2cosew
(6.2.17)
where
- ] 3 [
= - - b
A §9——————% (148), 5 = &55 77
(cosZOw) cosGw(A-MZ c’)Cs (6.2.18)

1
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Similarly

Zz : g¢ (cv-cAys] - g4 (CV'C'Y5)
W
. . - r
P L [(C ep-H ) (1-y5) +(C cpmH cf) (1475) ]
2coseW
(6.2.19)
where
! = 3 ¢
§ = SS(1-p) T = gtcer
= , = :
(COSZGW)% cosew(A_Mg CZ)SS (6.2.20)

2
Thus the total amplitude due to the exchange of two Z’s with

new coupling strengths given in equations (6.2.17) and

(6.2.19) becomes:

g° [AY (K) v (1-y5) v (k)& (H) Y* (1-vg ) e (p)
Mz +2.) 4 K '
172 8cosZGWMZ =_ , ,
1 +H\)(k)Yu(1-Y5)v(k)'é(p)Y”‘(1+Y5)e(p)]
(6.2.21)
where

-A. = (S’+R Sinzew) (SICL.*:ACL')*.(C'CL - ECLI) (C'-ﬁ Sinzew)

(6.2.22)

Eq =
[ VR )

and
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ﬁ = (S""i Sin2 ew) (S’CR+RCR')+(C'CR = ECR’) (C’=-l.'.! Sinzew)
Mg (6.2.23)
1

=

2
and also where k(k’) and p(p’) reé%esent the four vector

momenta of the incoming (outgoing) particles (see Figure 13).

Thus the total cross-section obtains the form

o(v) g4S

= [ 32+ =3
(Zl+22)

2 . ®?
32ﬂcos49wMg 3
(6.2.24)

Therefore, on substituting the values of A and I_'{ from the
equations (6.2.22) and (6.2.23) and also making use of the

expansion given in equation (5.3.22), we finally get:

[N} 2 L= A 2
g{v) _a(v) 2 sin“9 SC(u+u)M SCsin“0_.(p+p)M S
i, = 2 o o2 Satnloy i
cosZGw (cosZG ) (cosZBw)
L) ._é 2
2 SCsin“6_ (l+u) 4sin” 06 S . 3
W 12 =12
e v — W [Re%458% (%)) M
(cosZGW) cosZBw
Y [ ] P
2 2 -m2 ) ,, sin®oMs?  sCs  (sin®e +h)
- 2 “1[c” +
2 ‘ X
M 7 coszew (coszew)
[ .
+ 5€ Y (7 (2¢2+8%) + E%i)(sin®e, + fi)
(cosZG )
Y P
+ Sin BWCSS 219 49e i1 12

[ - A
2 [4RS“+S HU-2AC +C RIM

(coszew)3/

.2
_ Sin~6_8S e 2 D
W 28¢2-27s2(3¢%+sf1]
cosZGw
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~ " N — ~ [ » ; "~
-2 (2 - m2) 2sin?6 32M SC(fi+i)M scs?sinto, (i+R)M
1 [ 2
5 1 + + 2 i\ + ——— 3/2
M cos28, (coszew) (cos26y)
4sin29ws
+ 212 212 ~
- [RC“+us (C )]M]]
(cosZGW)
(6.2.25)
where
s e 3/2,2
L = us (cosZBw) MWL sC
2 2 (6.2.26)
M, - le cos26, ) cos46
coszew
and
ﬁ = ﬁs = (cosZQW)B/2 Mé '
L CcC
(gr)
4 2 2 cos20
cos g (M, -M, W) (6.2.27)
R 2 2
cos Bw

Now after making use of the computed values of the parameters
involved in the formula (6.2.25), the numerical value of the

total cross-section is approximately estimated as follows:

agl(v) _ a(v) (6.2.28)
Z,+2,  s.m [1 - 0.140]

This seems to be about 4 per cent different from the earlier
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calculation done in Chapter (5) i.e.

a(v) _o(v) _
7 +zz‘ s.m[ 1 -0.103] (5.3.27)

1
Moreover, this calculation also indicates that the
contributions of two 2Z’s still 1lie well within the

experimentally observed errors.

6.3 Two adjacent Z peaks

From the discussion and calculations of the last section
we have concluded that even the presence of the reasonably
heavy charged MwR(the right-handed vector boson) does not
impose any particular restriction provided that the two 2’s
are considered to be within the observed peak. In this
section we are going to discuss the possibility that the 2,
still remains within the peak while the second Z lies outside
the observed peak. We wish to see what the model predicts
about whether this second Z is likely to have been seen, or
whether, as in Section (5.4), its coupling is always
sufficiently weak for it not to have been seen. We begin with
the equations

M = (1+s8%) +B/2-082-u(1+ BRY/, (6.2.6)

and
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s
- ~

A, = (1 + s2) + B/2 + /2 - u(1 - B/Q)/2 (6.2.7)
If we define

dyjp = (1 +8?) - o (6.3.1)
and dy,, = 3y - (1 + 82 (6.3.2)
then we have

d; =Q - B +uB/Q + u (6.3.3)
and d, = Q + B +uB/Q - (6.3.4)

We note that d, and d, are the deviations from the Salam-

Weinberg valueszand, siﬁce 6 > B
d; >0 . (6.3.5)

First, we shall suppose that Z,, the heaviest of the pair of

Z particles, is the one which lies outside the observed peak.

Thus
Subtractions and additions of the equations (6.3.3) and

106



(6.3.4) yield

w
]

(dy, - d1)/2 + ‘ (6.3.7)
and 92 - (d, + d;)Q/2 + B = 0 . (6.3.8)

respectively. The equation (6.3.8) gives the roots:

. 2
a (@, + d,) X
Q = (d; +d;)/4 * (—2 1 - uBl (6.3.9)
16

It is obvious from this equation that ) only exists if

(d, + d,)2
2 LN
— 16 L B
or
(@, +dp?
T1e . wte (dymdp)/z
(6.3.10)
Roots are
2 2 K
(d,-4,) (a,-d,) (d,+d,)
W _2 1 (2 1" 2 1" ] 6.3.11
) t Tt 31 ( )
Since d, > d;, so Q exists provided
2 2%
bo< 174 (2d5 + 2d7)2 - 1/4 (dy - dy) (6.3.12)

[It is important to note that the condition mentioned in

(6.3.6) gives B > 0 (using equation (6.3.7))].
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Then the condition B < Q certainly implies that

(dy+d)) % %
174(d, + 44) £ | 5 - uBl] > % (dz—d1)+u
or
(d2+d1)2 4 ;
+ [ 21 - uB] >ad,,, - 3d;/4
[ 16 uel 2/4 14T (6.3.13)

Suppose that the right-hand side of (6.3.13) is +ve i.e. if

Then we definitely need the +ve root, so we need

(d,+d;) > 5
16

or [using equation (6.3.7)]

16 u( 4(dg-dp) + u) < (dy + dg)2 - (dp - 3d; + 4p)°

(6.3.16)

w< dys

We could also take the +ve root even if (6.3.14) is not

satisfied, i.e. if
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Normally (6.3.16) will imply (6.3.17).

If we take the =ve root then we must have

and also (from 6.3.12)
1/16 (d, + d,)2% - uB < (3dy /4 = dy/q - )2 (6.3.19)

which implies (again from equation (6.3.7)) that

2
But (6.3.17) and (6.3.18) are only compatible if
d, > d, (6.3.21)

which we have already excluded, so the -ve root is irrelevant
here. Thus (6.3.16) is the only required condition. Then the
expressions (6.3.7), (6.3.8) and (6.3.16) can be written in
terms of the original parameters in equations (6.2.6) and

(6.2.8) as follows
B = M+ M =-2(1+8%) +u (6.3.22)
- ]

d = (,-ap/2et/2 m,-1)) 2-au) (6.3.23)
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and

p< (1 + 52) - .Xl
or

3 < (1 +8?) -y (6.3.24)
If Q=B
Then %) pay = (1 + 82) - | (6.3.25)

The Weinberg angle sin? 6y 1is known from the neutral

current data {44) , and is given by
sin?6y = 0.232 + 0.007 (6.3.26)

so (1 + 52) can be calculated from the relations (3.2.2),

(5.1.16) and (5.2.2):
(1 + s2) = 1/(1 - sin?ey) (6.3.27)

Thus after fixing the numerical value of the parameter (1 +
s2) to be 1.322, the relationship between 3 1 max and u is
shown in Figure (18), which clearly indicates that increasing
the value of u tends to decrease the size of the allowed
region for 31.

our next main concern is actually to find the connection
between the mass of the Z, and the number of Z, events. 1In

order to compute the number of 2, events expected to be
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observed, we merely take the leading terms appearing in the
equations (6.1.8) and (6.1.10). So the number of Z, events

are simply related by the expression given below:

sz = Nzl (€)2 (6.3.28)

Substituting the values of c’? and s’2 from the equations

(6.2.3) and (6.2.4) then yields .

Ny, = (O=B)Ny, 6.3.29
z, (ﬁ) il ( )
M
After fixing the X41 = —52- = 1.277 (from the graph (18))

which naturally fixes le = 90.5 Gev., the values of B and 6
are determined from the equations (6.3.21) and (6.3.22) at
the particular values of sz and u. Since p - is restricted
not to go beyond its limiting values, i.e. 0.045, so the
relationship between the Z, events and its mass is graphed in
Figure (19) under the constraint that 6 > B at the various
possible values ofu. It is obvious and interesting to note,
from the Figure ( 19), that increasing the values of both gy -
and Mzz suppress the number of Z, events to be seen. Since
it has been mentioned earlier in this section that increasing
the value of , tends to decrease the range of the allowed
region. Thus by fixing il = 1.262 which again fixes le =
90.0 Gev, the maximum value of the permitted range of

becomes 0.06. After having done this, the plot between Mzz

and the number of Z, events, at all possible values of . , is
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sketched (see Figure (20)) under the condition that 6 > B.
It is very much clear from the Figures (19,20) that
increasing the value of le also causes to decrease the
number of Z, events.

Figure (20) also shows that the probability of seeing
the second peak decreases with M%z and MéR (which is
inversely proportional to u). For the largest permitted
value of §(0.04 corresponding to MWI: 300 Gev) the number of
Z2,’s is 5% of the number of Z,’s provided Mzz 2 105 Gev.

In the previous chapter, where we only considered p = 0
(see Section 5.4) we have explicitly seen that the
probability of the number of Z, events being less than 5% of
the number of Z, events requires Mzz 2 110 Gev provided that
M, - lel = 1 Gev, but if |M, - Mzﬂ = 2.1 Gev (less than
the experimentally observed uncertainty) then it occurs at Mzz
> 126 Gev (see Figure (20)).

Thus from the discussion of this section we could easily
conclude that, in the presence of the reasonably heévy right-
handed charged vector boson, the range of the permitted Z,
masses starts just outside the observed peak, but in the
absence of the intermediate right-handed charged vector boson
this range begins considerably higher beyond the peak.

We now try to see the effect of the Z, contribution to

the neutral current process (ve > ve) by fixing

1
Mz,
p = 0.04 and sin?gy = 0.23
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Substituting these values in the equation (6.2.24) gives

o (v) = ao(v) [1 - 0.343)] (6.3.31)
Zl+ZZ S.m. .
which is still less than the experimental uncertainty [46].
Although the cross-section computed in equation (6.3.31) does
not appear to go beyond the experimental value, but it seems
to be improved by about 6% as compared to the cross section
at ;, = 0.0 (see Section 5.4).

We now consider the opposite assumption, namely that the
observed peak corresponds to the higher mass Z. Thus the 2,
lies out of the peak and the 2, is inside the peak. In this
case if we take di > d, and d, > 0 then the -ye root of

equation (6.3.8), which requires

or

W> 1+ 8%) - A (6.3.32)

cannot be ruled out. Fixing le = 88 Gev and MZZ = 93 Gev
then yield ju= 0.12 at B < 6, which after substituting in
equations (6.3.21) and (6.3.22) gives B = 0.04 and Q = 0.06.

Therefore, the number of Rz , defined by the relation
1

' 2
- - s
N = N (—c)
z =Nz, 'C
- ﬁzz (%}%) (6.3.33)

113



are computed to be ~ 250 events. Thus contrary to our
assumption, more Z, than Z, are produced. Ezz represents the
number of experimentally observed events.

If we now assume that Mzz' which.lies inside the peak,
is less than the standard Mg i.e. Mzz < Mg, then clearly di >

0 and d2 < 0. Thus

B> 0 (6.3.34)
requires

1/2 (dy ~dy) + 4> 0 (6.3.35)
or

> 2(1 + s2) - (71 - 32) (6.3.36)

Then by fixing M; = 91.0 Gev and M; = 88 Gev we have
2 1

H= 0.15 (6.3.37)
and B <6 which subsequently gives B = 0.01 and 6 = 0.03.

Notice that the value of p given in (6.3.37) produces (from

(6.2.8)) My = 180 Gev. Thus equation (6.3.33) gives
R

N; = 100 events (6.3.38)
1
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which are still too many.

6.4 Can the higher 2 be the new CERN events?

In the simple two Z’s model (see Chapter 5) we saw that
because of the small number of Z, produced, we were unable to
see the partial decay width of Z, into Wiwi events. There we
also ignored the extra correction term arising from the
presence of the right-handed vector bosons. In this section
we shall try to study the possibility that there are two Z’s
within the experimental peak and that the higher Z (200-300
Gev) is responsible for the new events, possibly seen at the
CERN PP collider [3]. We also notice that the two 2’s have
the same masses and nearly equal in magnitu&e to the mass of
the standard Z, but their coupling strength is obviously
different from each other as well as the standard model’s 2.
Since we have seen in section (6.2) that the numerical value
of "s" jis very small so the couplings of these Z’s to the

fermions finally become (see Section (6.1))

' -—
2,s s (6mciys) + gST cos26, (cy cAYAS’)_. |
2cos® v A 2c0s°0 (A-M2 CO820y , . -
W w Zl '—2—) )
cos Oy (6.4.1)
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[] [
Z,:9C (cy=cn¥5) + gCL cos26, (cy-cpY5)
2cos6, 2cossew(A-M§ cos2aw) (6.4.2)
1 cos ew
and
2 3/2
7. g(cv—céy5) gs Z(cosZGW) / (cv-cAYS)

3 2cos6, . (cos28 );i ) 2c0s°9 (A-M2 cos2@y,

W W W 2, —5—
cos ew

(6.4.3)

where we have used Mz2 = Mzz.

2 1
Assuming that the dominant contributions come from the
valence quarks inside the proton and anti-proton then the
ratio of the production cross-section for the two Z’s in PP

inelastic collision is given by the expression

4 (ughp) 2+ (u i) 21, (dgdp) 2+(dLa'L) 2 ]

R = 3 (6.4.4)
2 2 2 2
4 [ u aR tu aL ] +d akR +d aL
where we have defined
uzrg = (uUguplg Y (uRlR) 7 ,

Uap, = (urly) g ) + (ugly) g )

116



dar = (deR)z1 + (dgdg) )

dap, = (deL)z1 + (deL)z2
(6.4.5)

Substituting the values of s’2 and ¢’2 from (6.2) and My
R
= 300 Gev, M; = 92.0 Gev My = 80.1 Gev and sin29w = 0.23
1 L
into the equations(6.4.1), (6.4.2) and (6.4.3), this ratio is

determined to be
R 2 0.82 (6.4.6)

Because of the difference in the masses of the two Z’s, the
kinematic effect gives a suppression factor (R’) of about
0.04 and 0.002 for Mzz = 200 - 300 Gev respectively (see
Chapter 3). Thus the number of Z5 produced are estimated as

follows:

Ny,

Ny (R.R’)
3 1

975 (0.82) (0.04) (M = 200 Gev) .
2

32 events (6.4.7)

Obviously not all of these decay into ﬁiﬁ; pairs. Thus we
need to calculate the branching ratio for this decay, which
requires the coupling strength of the Z; to the left-handed
W’s . Thus the second part of the expression (6.4.3) is the

only term which mixes the left-right handed and hypercharge
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vector bosons. From this term the following coupling of the

23 to the light W has been obtained

‘K g cos 8y (6.4.8)
3/2
(cosZew) z
where K : (6.4.9)
4 2
8 -
cos W(A le c0523W )
coszew

With this coupling the decay rate of the Z5 into WEWE is

computed as [33]

2 2 3/2
- Kacot™® _
Mz,owiw) = W23 x3x2-g)  (xt+20x412)
48 (6.4.10)
where
L

Thus, after making use of the already described values of the
quantities involved in equation (6.4.10), the partial decay
width of Z3 is numerically estimated to bg'0.0l Gev at M%B =
200 Gev. This width can be further increased to 0.054 Gev by
replacing My 3" 300 Gev. |
Following the coupliﬁg of the 25 to the fermions
calculated in Chapter 3, the branching ratio into w{wi}
defined by the expression
Mz, — wiwy)

Mz all _
3 —> z £ E, + W
i

(6.4.12)
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is thus determined to be ~ 0.002 at M; = 200 Gev and My =
3 R
+ -
300 Gev.  Then the number of Z; 5 W;W; observed events

become.

NZ3 (observed) = NZ3 (produced) . B.R(Z3;—WW)

< 0.1 events. (6.4.13)

Since experimentally two events have been observed [44] and
our predicted rates do not seem to have much effect. The
main reason for such a small effect is due to the weaker
coupling strength of the Z; into wiw{ decay gnd this can be
reasonably improved by decreasing the mass of the right-

handed charged vector boson from 300 Gev to 200 Gev.
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PTER

The Superstring Models

7.1 Introduction

There has recently been much activity associated with
the suggestion that ‘particles’ are not point-like objects
but instead are one-dimensional, extended objects, "strings"
[48,49]. One of the strongest reasons for believing this
idea is that the ultra-violet divergent infinities of point
field-theory are removed, so with strings it naturally seems
to be possible to construct a finite theory of gravity.
Point field theories however, are inconsistent with gravity
since the quantum theory of gravity is not renormalizable.

Various string theories which seem to be reasonably
promising candidates are being much studied and discussed.
The most satisfactory and consistent string theory is the so
called ’‘heterotic’ superstring[50). This is a closed string
associated with the gauge group EgX Eg - such a group is
selected from the essential requirement of anomaly
cancellation. The heterotic string is initially defined in a
space~time of ten-dimensions and one of the current big
problems of string theory is to understand how six of these
dimensions ‘compactify’ to leave four-physical space-time
dimensions.

The low-energy effective theory in four-dimensions is’
the massless sector containing the ground state of the string

4
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and the lowest (massless) modes of the compact six-
dimensional manifold. Other excited states are expected to
have mass 0O (Mplanck) and to be irrelevant to "physics". The
theory is necessarily required to have N = 1 supersymmetry
down to energies | ~ 1 Tev and it can be shown that this
requires the manifold to have SU(3) holonomy with the spin
connection identified with a ceftain subset of the gauge
connection. This requires embedding the SU(3) holonomy
group within a SU(3) subgroup of one of the Eg factors. The
symmetry is thus automatically broken to EéXEB gauge group.
We assume that the physical states are singlets of the
Eg factor and are in the adjoint representation of the Eg.
The problem then arises as to how this Eg can be broken down
to the standard model (or something similar). It is known
from general consideration of Grand Unified Theories (GUT)
that such a breaking must occur at an energy . 101%Gev or a
little less than the planck mass ( ~ 1019Gev). Thus it is
natural to suppose that it occurs at the compactification

scale.

7.2 Why the string theory has an extra U(1)

As we saw in the previous section the most natural
compactification scheme for the heterotic string breaks the
original EgXEg group down to EgXEg. Although the Eg factor
is satisfactory as a Grand-Unified Group it has to be brokén‘
at a high energy, i.e. around the compactification scale.

The question then arises as to how we can arrange for the
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compactification to yield a suitable subgroup (e.g. the
standard model) of Eg rather than Eg itself.

One possibility occurs if the 6-dimensional compact
manifold, K, is not simply connected. This can always be
arranged, starting from a simply connected manifold, by
identifying points which are related by a suitable group
operations. As a simple example if we start with a flat two-
dimensional Euclidean space, described by co-ordinates x aﬁd

y, which is simply connected, and identify points

x and ¥ + 1

yand y + 1

Then we construct a torus which is not simply connected
(see Figure 21). The line AB in Figure (21b) is a closed-
loop which cannot be reduced to a point, thereby showing that
the torus is not simply connected.

In general the method involves finding some discrete

symmetry group F and identifying points on the manifold
x and fx
where £ is any element of F. In order not to destroy the

smooth properties of the manifold it is important that F acts

"freely", i.e. x is never the same point as fx.

The idea of using this method to break the symmetry is:

that, instead of requiring of any physical field,
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¥ (£x) W (x) (7.2.1)

we postulate

W(£x) Ug (x) (7.2.2)
where Uy is an element of E5’ i.e. we require that on going
round any non-contractible loop the field does not change
apart from a specific gauge transformation.’

We now make the successive use of equation (7.2.2) to

show that, for any f,f’ that are the elements of the discrete

symmetry group F, ®
UgUe¥(x) = UgW¥(£'x)
= Y(£fLf’x)
= Uffllﬂ(X) (7.2.3)
or
Uffl = UfoI ° (7.2»4)

It follows that the set of Ug’s form a (discrete) group
and therefore that we must embed the group F into some
discrete subgroup of Eg. The gauge group Eg is then broken
into the group that commutes with all elements of this
discrete subgroup. |

An alternative way of describing this method of symmetry
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breaking is through the idea of "Wilson loops". According to
this technique, if 7Y is any non-contractible loop in a
manifold K (which is not simply connected), starting and

ending at some point x, then the "Wilson line" given by

U, = Pexp§ A.dx (7.2.5)

Y
is essentially a gauge covariant. Here both A and UY are
associated with Eg-group and they represent the gauge field
and an element of the group respectively. Also note that P
denotes the path ordering.

Now if we take two loops Y and Y’, drawn in Figure

(21c), the product loop YY’ is defined by

UYY'= P exp§ A:dx = (P exp§ A.dx) (P expé?;‘.dx)
YY Y Y (7.2.6)

Since Eg is an abelian group, thus the equation (7.2.6)

reduces to
U r = U .U ? (7-2-7)
Y Y

which is analogous to (7.2.4) and describes a homomorphism
mapping the fundamental group into Eg. As the Wilson lines
are taken to be not simply connected, the Eg gauge field
strength F;35 = 0 merely indicates that we can set gauge field

J
A; to zero by a non-single valued gauge transformation and
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such kind of transformation in fact will introduce a "twist"
in the boundary conditions that are obeyed by the charged
fields. Thus symmetry breaking by Wilson lines is in fact the
same as that produced by (7.2.2).

We now turn to the problem of determining the possible
Eg breaking that can be obtained by this mechanism. We first
note that Eg contains a maximal subgroup SU(3)xSU(3)xSU(3).
It is natural to suppose that one of these is the colour
group and that the others represent "weak-interactions" on L,
R fermions, i.e. we can write the subgroup as
SU(3) oxSU(3) 1 SU(3) R- Thus we expect that the elements Ug
will commute with SU(3). and break SU(3)y down to SU(2);.

Consider for simplicity the case where the group formed
by the Ug is a cyclic group, generated by a single element U
which satisfies UM = 1. Then, the above condition means that
we can write U in the form

a 1 [ 8 ] Y R

u = o X B X § (7.2.8)

I L i L

-

where we have diagonalized the SU(3)p part. .Since we require

U to belong to SU(3)oxSU(3);xSU(3)g We require 3 = yde

1. Also the condition U® = 1 requires that ¢, B8, v, §, ¢€
are all nth roots of unity. For general values of the
parameters that satisfy these conditions the subgroup of Eg
that commutes with the U is SU(3)~xSU(2)xU(1)xU(1)xU(1)
where the three U(l)’s are, a diagonal matéix of SU(2)p of

a
the form a and the two diagonal elements of SU(3)g.
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Thus we obtain the standard model plus 2 extra U(1) factors.
Of course for special values of the parameters we obtain a
larger unbroken group, e.g. if Y = ¢ we obtain an unbroken
SU(2)g so that we have a LxR symmetric model.

To obtain a smaller unbroken symmetry we consider the
case of the non-abelian flux breaking of E¢ at the
compactification scale, then it can be shown that the
smallest subgroup becomes SU(3)~xSU(2);xU(1l) xU(1) which
obviously has rank 5. This is the unique minimum possible
extension of the standard model at low-energies in the
superstring.

Thus, it seems natural to propose that if Eg is broken
by Wilson loops, there must be&at least an additional U(1)
gauge interaction in the theory. This is a "prediction" of
this class of string modes, and it is one of very few such
predictions that have been obtained from the superstring.
(It should be noted however, that there have recently been

obtained consistent string models which do not have it).
7.3 The com on with the stri de edictions

We have explicitly discussed in the preceding section
how the existence of two Z’s in the superstring theory seems
to be natural provided the Eg gauge group is broken down to
some subgroup by Wilson loops. The interesting question of
whether these two Z’s are similér to those in the composite,

or significantly different, will be considered in this
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section.

One immediate difference is that in the string theory
there is no reason why the two Z’s should have [51] similar
masses, whereas, as we have seen, in the composite model
there is a strong preference for this-e.g. in the same way
that the p and (W have almost equal masses. We shall indeed
see below that such equality seems to be impossible in the
string.

We now try briefly to compare the structure of our
composite model explicitly described in Chapter 5 with the
string theory. For the latter we use the careful discussion
of Ref. [6]. If we recall our equation (5.1.21) we can

easily find that

2 2 _ w2 A A 252 2 .
le + MZ2 = M; + ("13 + c*s?)ME (7-.3.1)
2 2 - w2 MA L2
1 2
Substituting A;A = B + (1+52) into the above equations
I
immediately yields
2 2 = M2 2 2022
le + Mzz = MZ + MZ + (B + c“s®)My (7.3.3)
2 2 = M2 /M2 2 M2y o M2~2a2M2
MZI .MZZ = uz(uz+(s+czs M) ~ MicésMe (7.3.4)

In order to compare with the notations of the model

being discussed in Ref. [6] we write these equations as’
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2 2 2
Mz + MZ = Mz + B (703&5)

1 2
and
M2 M2 =M?B - (7.3.6)
1 2 z
where
B =M+ (B+ c?s2)M2 . (7.3.7)
and
A w
C = MgcsMy (7.3.9)

Equations (7.3.5) and (7.3.6) are identical to 5a and 5b of
Ref. [6] except the quantities B and C are denoted by B and C
and le and Mzz are denoted by M, and M;.

In our model of course B and C are free parameters,
subject only to the restrictions arising from the fact that S
and B are all non-zero and further & 2 B (see chapter 6).
However, in the string model as used in Ref. [6] C seems to
be at least partially determined.

The string restriction on C means that reasonable values
of le (= M;) require that M%Z (= My) is bounded below (see
Figure (22)). For a given value of M, Figure (22) shows that
M, can be precisely determined. Also note that the string
does not even allow Hzl - Mzz. While our model seems to be

~
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entirely free from such restrictions. We have more degree of
freedom in choosing the Mj; . In our model when the mass of
the second Z is fixed froﬁ the experiment then the rate }s
too small.

The probability of observing the decay of the extra
neutral gauge boson, which is being predicted in our
composite model as well as in string model, into w Wt vector
bosons also seems relevant to be nicely compared. In string
theory, the heavy new Z; couples to W-pairs through its
coupling with standard Z° and is §1°w53' where alcw is the
standard Z° coupling and 83 the z°@Pixing. There they have
shown that the present experiment limits require s < 0.1 for
M4y = 250 Gev. They have further shown that the Z, coming from
an Eg-superstring-inspired model is unable to yield the
presently needed cross-section.

On the other hand, we have well determined that the
coupling of the new 25 to W-pairs has similar pattern as in

string model and is Kgcos@y, where gcos@y is the standard 2

coupling and K the 225 mixing given by

3/2
(coszew) L A
(6.4.9)

cos4 6 (A

M%I cos26w
w -

c0526w

However, the numerical value of the suppression factor K
is computed to be ~ 0.08 at MWR = 250 Gev and can be further

increased by decreasing the mass of the right-handed vector
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boson and vice-versa.

Thus, from the discussion of this section one could
easily see that our composite model much studied in Chapters
5 and 6, and the string model well explained in Ref. [6] seenm
to be fairly consistent and both are, At present, unable to
explain the current (speculative) experimental data discussed

in Ref. [3].
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The unification of all natural forces has long been the
prime and ultimate aim of many scientists. The process was
begun by Maxwell, but it was Einstein who first conceived the
idea of a complete unification. The various attempts to
unify the electromagnetic and weak interactions successfully
led to the establishment of the so called "Salam-Weinberg"
electroweak standard model. We have explicitly seen how
gauge theories and the Higgs mechanism play their individual
role in the development of the standard model. In Chapter 1
we have mainly reviewed the Salam-Weinberg model and have
seen how it is in agreement with all so far known
phenomenoclogy. However, this consistency of the electroweak
standard model does not necessarily mean that the model can
be regarded as correct at a deeper, more fundamental, level.

A detailed review of the left-right symmetric model,
which is the most natural extension of the standard model,
and is based on the group SU(2)yxSU(2)pxU(1l) for the
electroweak interactions has been carefully made in Chapter
2. There we have clearly observed that the Higgs mechanism,
which in fact provides the masses to the intermediate vector
bosons, has to be modified. We have further seen that in
order to preserve the low-energy phenomenology, the right-
handed massive charged vector bosons (Wp) associated with

SU(2)g factor must be much heavier than the experimentally
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confirmed left-handed light massive charged vector bosons
(Wg,) - To give a strong support to this assumption some
experimental constraints on the mass of Wg l:lave been briefly
presented and it is seen that the latest available data
requires MWR > 400 Gev. .

Although the analysis of Chapter 1 clearly shows that
there is no confirmed experimental evidence that lies beyond
the Salam-Weinberg model, there have recently been some
unconfirmed events [3] which have obviously spread various
speculations about their nature. We have explicitly
discussed them in the context of the extended left-right
symmetric version of the electroweak standard model in
Chapter 3. We have tried to explain the events as being due
to the decay of the additional hypothetical neutral vector
boson (Z’) in the LxR symmetric model, thereby roughly fixing
Mz, ~ 200 Gev. In order to do this we have, first, derived
the mass matrix for vector bosons and then using that mass
matrix we have determined the corresponding mass eigenvalue
spectrum and finally the coupling of the expected new Z’ ‘to
the fermions. The coupling of the Z’ to the W;’s is found to
be dependent on MWR. For reasonable values, it is highly
suppressed, by a factor we call K, and the number of 2z’
decays predicted is much less than that required to explain
the speculative experimental prediction [3].

Another class of models, which also predict the
existence of two neutral vector bosons, are the composite

models. The simplest and economic rishon model has been
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reviewed in Chapter 4. An important feature of this model is
that the two 2’s are expected to have closely similar masses.
In Chapter 5 we have explicitly computed the couplings of the
vector bosons in the framework of the composite model and
have also discussed (under the assumption that the mass of
the Wi is infinite) the various possible values for the
masses of the two Z’s. Considering them both to be present
within the experimentally observed peak we have found a range
of acceptable parameters and shown that for this range the
usual fits of the standard model to the cross-section
obtained in (ve—,ve) neutral current data is not affected.
The possibility of one Z to be within the experimental peak
and the other 2 just outside the standard model, also does
not conflict with the observed data because the weak coupling
of the extra Z, means that it would be unlikely to have been
seen. Then we consider the possibility of what happens if
one of the Z’s is the ’standard one’ with Mz, s M; (the
central value of the observed standard model prediction) and
Mzz is sufficiently far away from the standard model, to
allow it to explain the unconfirmed CERN events. However, we
again find that the number of 2Z,’s produced is too small to
explain the data.

Then, we essentially combine the two models by taking
into account the effects which come from the presence of the
heavy right-handed vector bosons with a large but finite
mass. We have carefully reconsidered all the possibilities
regarding the masses and other dynamics of the Z’s. Again we

do not find any obvious disagreements with the experimental
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predictions. With regard to“explaining the extra events we
find that the number of hypothetical Z’s produced is large
but their probability of decaying into W-pairs has been
estimated and is ~ 1/20 times less than that required to
explain the events. '

Finally, we have made a comparison of our model
predictions with those of superstring (which in some forms at
least also ,pfedicts the extra 2). There we have well seen
that both models have similar structures and predictions.
The constraints on the parameters given ih the particular
string model we study [6] are different from the expected in
the composite model, in particular the string does not have
any natural reason for requiring the two Z’s to have similar
masses.

The conclusions of this thesis can be briefly
summarized in the following way:

(1) Presently available experimental methods do not
distinguish a 2Z model from the standard model provided
either that the mass separation is less than the width of the
Z peak, or, if the separation is somewhat larger, provided
that one of the Z’s remains in the peak. These results apply
even when a L x R symmetrical model, with an acceptable mass
for Wp, is used.

(2) A modest improvemen; (from about 50% error to about 5%)
in the accuracy of Ve~ e~ scattering data would enable
further restrictions to be placed on the parameters of our

models and maybe even to reveal evidence for the extra Z.
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With any combination of parameters a two 2, L x R

(3)
predicts a maximum "new Z2 —— 2W"

symmetrical model,
which is at least an order of magnitude too small to explain

rate

the unconfirmed "non-standard" CERN events.
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Figure captions

(1) The vector boson couplings to the weak isospin and
hypercharge currents.

(2) Electromagnetic and weak contributions to e+e'———9 whu~
process.

(3) Neutrino nuclear inclusive neutral current interaction.

(4) The Weinberg mixing angle obtained from the various
neutral current phenomenology.

(5) Experimental W-transverse momentum distribution for W—ev
and > pv . Events having at least one jet are shown
shaded. The solid curve line is the QCD prediction
[31), modified for selection and apparatus smearing
effects.

(6) The Drell-Yan mechanism for Z’ production.

(7) The decyaing of the 2’ into W'W™ pairs.

(8) The cross-section of the 2’ exchanged in PP inelastic
collision vs. its masses at the c. of m. energy Jé =
546 and 630 GeV.

(9) The ratio of the(z'/z ) cross-sections vs. the masses of
the Z’ at the c. of m. energy Jg = 546 and 630 GeV.

(10) 'The branching ratio of the Z’ decays into various
possible channels vs. its masses.

(11) The weak process de+__)uv in the rishon model,

(12) Allowed region in the (B,S) plane at various values of
Sinzew. The shaded area in each case represents the

permitted range favoured by our model.
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(13) Neutral current ve — v e weak interaction.
(14) The number of Z, events against its masses when
(a) |Mz - My | =1 Gev.
1
(b) |Mz; = M,
\ A

(c) |Mz - Mz | = 0.4 Gev.
1

c.6 GeV.

It

(15) (a) The shaded region is the required area in the (B,&)
plane at B = Q and at K = 0.025.
(b) The translation of the above (B,a) plane into the
(B,S) plane at u = 0.025.
(16) (a) The shaded region is the required area in the
(B,Q) plane restricted at B = 6 at 4 = 0.03.
(b) The translation of the above (B,&) plane into
the (B,S) plane at H = 0.03.
(17) (a) The shaded region is the required area in the
(B,&) plane at B =ﬁ at U= 0.04.
(b) The translation of the above (B,a) plane into
the (B,S) plane at H = 0.04.
(18) The ratio of the (MZZ/M%) vs. the various values of
is drawn. Shaded a;La represents the allowed region
favoured by our model.
(19) The number of Z, events vs. its different masses are
depicted by fixiﬁg le = 90.5 GeV and Mz = 92.1 GeV.
The lines corresponding to H = 0.0, 0.02 and 0.04 are show:
(20) The number of Z, events against its various masses are
depicted by fixing le = 90.0 GeV and My 92.1 GeV The
lines corresponding to , = 0.0, 0.02, 0.04 and 0.05

are shown.
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(21) (a) The construction of the two torus points A, B and
C are regarded as the same points. .
(b) This is an alternative way of 1looking at the
Figure (21a).
(c) Two non-contractible loops Yy and Yy’ are
multiplied and this gives the multiplicative law
defined in the fundamental group in the manifold K.
(22) Allowed region in the (My, Mj3) plane for the model (c)
Ref. [6]. My° is fixed by taking My = 81.8 GeV, while

M, is varied according to the Figure (1) of Ref. [6].
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Table 1

The Rishon Model

Rishon| Spinth) | Chargele)| Hypercolour | Colour
1 1
T 2 2 3 3
v ¥ 0 3 3
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