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Abstract

We present nonperturbative numerical solutions for the quark propaga-

tor Schwinger-Dyson equation (SDE) and pseudoscalar meson Bethe-

Salpeter equation (BSE) at and beyond the rainbow-ladder truncation

level of this system of equations. We solve this coupled system of in-

tegral equations using a phenomenological model for the dressed gluon

propagator in Landau gauge as input. In the rainbow-ladder truncation

scheme, we systematically calculate static properties of the pion and

kaon. After combining the rainbow-ladder truncation for the SDE-BSE

system with the impulse approximation for the pion-photon vertex, we

present numerical results for the pion form factor using the Ball-Chiu

and bare vertices for the nonperturbative quark-photon vertex. We find

that the Ball-Chiu vertex satisfies electromagnetic current conservation

automatically, however, this vertex gives a charge pion radius that is

less than its experimental value, leaving room for further improvement.

We go beyond the rainbow-ladder truncation by including pion cloud

effects into the quark propagation, and then all the way up into the

pion form factor. Here we find significant changes for the mass and de-

cay constant of the pion. For the pion form factor, on the other hand,

we find no qualitative changes in the Q2 region studied for both ver-

tices. Nevertheless, more work remains to be done at and beyond the

rainbow-ladder truncation in order to connect the pion form factor to

the model-independent perturbative result.
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Chapter 1.

Introduction

Quantum Chromodynamics (QCD), the theory of quarks, gluons, and their interac-

tions, is the accepted theory of the strong interactions at the fundamental level. It is

a self-contained part of the Standard Model of elementary particles, whose only input

parameters are the masses of the quarks and the coupling constant between these and

the gluons1. QCD is a consistent quantum field theory with a simple and elegant La-

grangian, based entirely on the invariance under the local non-Abelian SU(3) colour

gauge group, and renormalisability. Out of this Lagrangian emerges an enormously rich

variety of physical phenomena, structures, and phases. Exploring and understanding

these phenomena is undoubtedly one of the most exciting challenges in modern science.

At high temperatures, above a critical temperature Tc of about 200MeV, the elemen-

tary quark and gluon degrees of freedom are released from their confinement in hadrons.

Correlations between these basic constituents are expected still to persist up to quite

high temperatures, above which matter presumably exists in the form of the quark-gluon

plasma. At temperatures below Tc and low baryon density, matter exists in aggregates of

quarks and gluons with their colour degrees of freedom combined to form colour-singlet

objects. This is the domain of low energy QCD, the physics of the hadron phase in

which mesons, baryons, and nuclei exist. In this phase, the QCD vacuum has undergone

a qualitative change to a ground state characterised by strong condensates of quark-

antiquark pairs and gluons. In another sector, at very high baryon chemical potential,

i.e. at large quark densities and Fermi momenta, it is expected that Cooper pairing of

1The fundamental scale ΛQCD, or equivalently the running coupling constant αS , emerges from QCD
through the phenomenon of dimensional transmutation; the masses of the quarks arise from the
vacuum expectation values of the Higgs field, through Yukawa couplings of the Higgs boson with
the quarks. Since QCD is a confining theory, the masses of the quarks are not observable, and must
be determined indirectly, e.g. through the masses of the hadrons.

1
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quark sets in and induces transitions to a complex pattern of colour superconducting

and superfluid phases.

However, the Lagrangian written on the blackboard does not by itself explain the

data of strongly interacting matter, and it is not clear how the plethora of the observed

bound state objects, the hadrons, and their static and dynamic properties, arise from

the fundamental quark and gluon fields of QCD. This is the ambitious goal of the field

of hadron physics: the understanding of the properties of strongly interacting matter

in all of its manifestations in terms of the underlying fundamental theory, Quantum

Chromodynamics.

For “hard processes”, i.e. at large momentum transfers, due to the property of asymp-

totic freedom of QCD, one could use the familiar perturbative language, the Feynman

diagrams and the like, to describe hadron interactions. At these small distances, hadrons

and their reactions, are pictured as bound states of weakly interacting quarks and glu-

ons. This picture, however, starts to break down at energies around 1-2GeV, and is

surely inadequate at length scales corresponding to the size of the nucleon. At such

scales, the strong coupling constant is large enough to invalidate perturbation theory,

and one has to employ different methods to deal with what is called strong QCD.

QCD posses two important mechanisms that lie at the heart of this theory: confine-

ment and dynamical chiral symmetry breaking. Understanding these mechanisms from

first principles will surely provide the foundation for an understanding of hadron physics.

Confinement is the remarkable fact that the fundamental constituents of hadrons, the

quarks and gluons, cannot be removed from them and studied in isolation. Dynami-

cal chiral symmetry breaking is responsible for the existence of light pions, and from

the generation of quark masses via interactions. Neither of these phenomena can be

accounted for in perturbation theory, and are therefore genuine effects of strong QCD.

In order to go from the nonperturbative quarks and gluons to the study of hadron

physics, we need special tools such as QCD correlation functions, a bridge between the

theory and the experiment. At present, our choices for the nonperturbative calculation

these correlation functions are the Lattice-QCD theory and the Schwinger-Dyson equa-

tions, both of which have their own advantages and drawbacks. Lattice-QCD Monte

Carlo methods, based on the discretisation of spacetime, include all the nonperturba-

tive physics, and are therefore the only ab initio calculation method available so far.

However, the simulations suffer from limitation at small momenta due to finite volume

effects: one has to rely on extrapolation methods to obtain the infinite volume limit.
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Furthermore, calculations including quarks use unphysically large values for the quark

masses, and extrapolations to the physical values are required. On the other hand, with

the Schwinger-Dyson equations (SDE), which are the quantum equations of motion for

the correlation functions of the theory, we can work either in Minkowski or Euclidean

space for any value of the quark masses. However, here we are working with an infinite

number of coupled integral equations, and in order to obtain a closed system of equations

we must introduce ansatze for the higher correlation functions that are not explicitly

solved for, introducing a model dependence that is difficult to quantify. Nevertheless,

these two methods are entirely complementary in their strengths and weaknesses.

As quarks and gluons are confined, we need to study the bound states of the theory

since the hadrons and their properties are the objects that are observable. Bound state

calculations based on the Bethe-Salpeter equation (BSE) for mesons, or on the Faddeev

equation for baryons, will be the bridge between the fundamental theory, QCD, and

hadron phenomenology. Drawing a connection between QCD and hadron observables,

through the SDE-BSE system, is difficult due to the infinite number of equations we need

to confront, and that is why modelling remains a keystone in hadron physics. Modern

comparisons with and predictions of experimental data can properly be said to rest on

model assumptions but they can be tested within the framework and also via comparisons

with lattice-QCD simulations, and the predictions are very good. Furthermore, progress

in understanding the intimate connection between symmetries and truncation schemes

has enabled the proof of exact results.

In this thesis we will be concerned with the SDE-BSE approach to hadron physics, by

focusing on the static and dynamic properties of the pion as a bound state of a nonpertur-

bative quark-antiquark pair. In Chapter 2, we will introduce some basic aspects of strong

QCD that will serve to set up the notation, and introduce two very important equations

that will be the basis for most of the work of this thesis: the Schwinger-Dyson equa-

tion (SDE) for the quark propagator, and the Ward-Takahashi identity (WTI) for the

quark-photon vertex. Chapter 3 will introduce another two important equations, supple-

mentary to those in Chapter 2. These are the meson bound state equation, known as the

Bethe-Salpeter equation (BSE), and the axial-vector Ward-Takahashi identity (axWTI).

These four equations (in fact, two equations and two constraints) will illustrate the main

characteristics of the SDE-BSE approach: an infinite number of integral equation that

must be truncated. In Chapter 4 we will introduce the rainbow-ladder truncation of

the SDE-BSE system, and solve the quark SDE and meson BSE numerically. Here, we

will also present results for the static properties of pseudoscalar mesons. Moving to
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dynamic properties of the pion, in Chapter 5 we will introduce the general setting of

the impulse approximation of the pion-photon vertex in the SDE-BSE approach, and

show that this truncation is consistent with the rainbow-ladder truncation, in the sense

that electromagnetic current is conserved automatically. Furthermore, we will present

numerical results for the pion form factor in this approximation. Finally, in Chapter 6

we will introduce pion cloud effects into the approach by extending the rainbow-ladder

truncation with the inclusion of the pion back-reaction in the quark SDE, and then all

the way into the pion BSE and pion form factor. We will accompany these with numer-

ical results for the quark propagator, and static and dynamic properties of the pion. In

Chapter 7 we give our conclusions and outlook.



Chapter 2.

Aspects of strong QCD

2.1. Introduction

Quantum Chromodynamics (QCD) is the accepted theory of the strong interactions. It

is local non-Abelian gauge field theory whose gauge group is that of colour SU(3). The

non-Abelian nature of its gauge group not only dictates the interactions between quarks

and gluons, but also induces self-interactions amongst gluons themselves.

Gluons experience colour interactions only, being blind to electroweak interactions.

Quarks on the other hand, experience electromagnetic interactions. These are described

by the Abelian gauge theory of Quantum Electrodynamics (QED). The gauge invariance

of this theory is manifested in relations between different Green’s functions, and in the

physical world as the conservation of the electromagnetic charge. These not only prove

to be useful in the renormalisability of the theory, but also constrain the form of the

quark-photon interaction.

The Schwinger-Dyson equations of QCD also relate different Green’s functions of

the theory, but stem from a different origin. These are the quantum field equations of

the theory, and can in principle be solved in a perturbative expansion. However, their

main usefulness is in the strong coupling regime where, for example, the nonperturbative

solution of the SDE for the quark propagator serves as a main input for bound state

calculations.

In addition to gauge invariance, the Lagrangian of QCD possesses several symmetries.

Of these, chiral symmetry and its spontaneous breakdown are fundamental in the study

of bound states.

5
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This chapter introduces the basic aspects of strong QCD that will serve as a starting

point for the study of hadrons, and their electromagnetic interactions, as bound states

of fully-dressed nonperturbative constituent quarks.

2.2. Gauge principle in electrodynamics

Gauge field theories are a particular class of field theories based on the gauge principle.

The gauge principle requires that the theory be invariant under a local gauge transforma-

tion. A prototypical example of a gauge theory is the familiar Quantum Electrodynamics

(QED). In its classical version, the theory is described by the Lagrangian

LQED = ψ(x) (iγµDµ −m)ψ(x)− 1

4
FµνF

µν , (2.1)

where ψ(x) is a spin-1/2 Dirac field with mass parameter m, Fµν is the field strength

tensor, and Dµ is the covariant derivative. These are explicitly given by

Fµν = ∂µAν − ∂νAµ, (2.2)

Dµ = ∂µ + iQeAµ, (2.3)

where Aµ(x) is the electromagnetic vector potential. After gauge-fixing and quantisation,

LQED successfully describes the quantum theory of electromagnetic interactions [1].

It is interesting that classical electrodynamics, and indeed its quantised version,

described by Eq. (2.1), is invariant under the Abelian local (gauge) transformation

ψ(x) → U(x)ψ(x), U(x) = exp (−iQθ(x)) , (2.4)

Aµ → Aµ +
1

e
∂µθ(x), (2.5)

where θ(x) is an arbitrary function of the space-time coordinate x. The name Abelian

gauge transformation stems from the fact that θ is x-dependent, and that the (infinite)
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set of transformations Eq. (2.4) forms the commutative (Abelian) U(1) group. That is,

the electric charges Q satisfy the commutative algebra corresponding to the U(1) group.

Alternatively, by taking the modern viewpoint, we can postulate that the Abelian

gauge transformation, Eq. (2.4), is obeyed by the Dirac field ψ, and require that the free

Dirac Lagrangian

Lfermion = ψ(x) (iγµ∂µ −m)ψ(x), (2.6)

and its physical predictions, are invariant under Eqs. (2.4,2.5). This is the gauge princi-

ple. By imposing this gauge symmetry, we will be forced to introduce the vector gauge

potential Aµ, through the covariant derivative Eq. (2.3), subject to the transformation

rule Eq. (2.5). After supplementing the Aµ field with a kinetic term, invariant under

Eq. (2.5), we will uniquely arrive at Eq. (2.1). Here, it is assumed that the Lagrangian

is invariant under Lorentz transformations, the discrete symmetries∗ of space inversion

and time reversal, and is renormalisable†.

It therefore seems that the principle of (U(1)) gauge invariance, applied to Lfermion,

has led to the correct electromagnetic interactions of the Dirac field ψ. Of course, it just

happens that the U(1) gauge invariance is realised in the electromagnetic interactions,

but other more general (gauge) transformations could lead to other more interesting

Lagrangians, that could in principle be realised in nature. This is the case of Quantum

Chromodynamics, the modern theory of the strong interactions, which we now describe.

2.3. Yang-Mills theories

In the previous section we saw how the principle of gauge invariance leads to the correct

form of the Lagrangian for electrodynamics. There, the gauge group from was that of

U(1). This is in fact the simplest possible gauge transformation. Here, we consider the

gauge group SU(N) since we have in mind Quantum Chromodynamics, the accepted

∗A term that violates the discrete symmetries P and T is ǫαβµνFαβFµν .
†The requirement of renormalisability further constrains the type of terms that can appear in LQED.
For example, if the renormalisability of the theory is not required, as in so-called effective field
theories, then there is no reason for the term ψσµνFµνψ to be absent.
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theory of the strong interactions. This theory is invariant under the colour SU(3) gauge

group with Nf spin-1/2 quark flavours.

We consider the Dirac fermion field ψ(x), with mass parameterm, in theN -dimensional

fundamental representation of the group SU(N). This restricts our discussion to semi-

simple Lie algebras[1], and when convenient we will write the corresponding infinitesimal

expressions in order to be more explicit. The fermion field ψ(x) thus has N components

ψi(x), i = 1, 2, . . . , N , each of them being a Dirac field. According to the gauge princi-

ple, we postulate that the Lagrangian describing the free Dirac field ψ(x) be invariant

under the non-Abelian gauge transformation

ψi(x)→ψ′
i(x) = Uij(x)ψj(x), U(x) = exp (−itaθa(x)) , (2.7)

where θa(x) are N2−1 arbitrary functions of x, and the ta, a = 1, 2, . . . , N2−1, are the

generators associated to the SU(N) group. The generators ta satisfy the Lie algebra

[
ta, tb

]
= ifabctc, (2.8)

where fabc are the totally antisymmetric structure constants characterising the group

algebra.

The Lagrangian for the fermion field, Lfermion, is clearly invariant under the corre-

sponding global transformation Eq. (2.7). For θa(x) x-dependent, however, Lfermion is

no longer invariant due to the derivative term. Nevertheless, it may be made invari-

ant under the non-Abelian gauge transformation, Eq. (2.7), by replacing the ordinary

derivative with the covariant one:

∂µ→Dµ = ∂µ − igtaAaµ, (2.9)

where Aaµ are N2 − 1 vector gauge fields, and g is the coupling constant between ψ and

Aaµ. In component form (Dµ)ij = δij∂µ − ig(ta)ijA
a
µ, where (ta)ij is the representation of

ta in the fundamental representation. We now replace the Lagrangian Lfermion with
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Lfermion = ψi(x) (iγ
µDµ −m)ij ψj(x). (2.10)

The Lagrangian Eq. (2.10) is invariant under Eq. (2.7) provided the Aaµ(x) obey the

transformation rule

taAaµ→ taA
′a
µ = U

(
taAaµ −

i

g
U−1∂µU

)
U−1. (2.11)

For infinitesimal θa(x), we have U(x) ≈ 1− itaθa(x), and Eq. (2.11) gives

δAaµ ≡ A
′a
µ − Aaµ = fabcθbAcµ −

1

g
∂µθ

a, (2.12)

where we have used the commutation relations Eq. (2.8). We note that the infinitesimal

transformation rule for Aaµ involves only the structure constants fabc, and hence the

gauge fields Aaµ belong to the adjoint representation of the algebra of SU(N), where

(ta)bc = −ifabc.

The Lagrangian Eq. (2.10) describes the fermion fields in interaction with the gauge

fields Aaµ(x), but in order to construct a complete theory, we still need to supplement the

gauge fields Aaµ(x) with a kinetic term. In order to do so, we first note that the covariant

derivatives for the U(1) gauge group of electrodynamics satisfy [Dµ, Dν ] = iQeFµν , where

Fµν and Dµ are given by Eqs. (2.2,2.3), respectively. Clearly the form F aµνF a
µν , with

F a
µν = ∂µA

a
ν − ∂νA

a
µ, is not invariant under Eq. (2.11) due to the non-commutative

nature of the gauge group SU(N). Following the case of electrodynamics, we calculate

the commutator of covariant derivatives to find

[Dµ, Dν ] = −igtaF a
µν , where F a

µν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν . (2.13)

Thus, in analogy with QED, F a
µν may be regarded as the field strength tensor for the

non-Abelian gauge fields Aaµ(x). To work out the transformation law for F a
µν it is more
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convenient to use the infinitesimal version of U(x). Using the infinitesimal transforma-

tion law for Aaµ(x), Eq. (2.12), and the antisymmetry of the structure constants fabc, the

infinitesimal transformation law for the field strength tensor is δF a
µν = fabcθbF c

µν . Hence,

F aµνF a
µν is gauge invariant, since δ

(
F aµνF a

µν

)
= 2F aµνδF a

µν = 2fabcθbF aµνF c
µν = 0 due to

the anti-symmetry of fabc. Therefore, F aµνF a
µν , conventionally normalised, can be added

to the Lagrangian Eq. (2.10). We thus arrive at the general form of the Lagrangian in-

variant under the non-Abelian gauge transformations Eqs. (2.7,2.11)

LQCD = ψ(x) (iγµD
µ −m)ψ(x)− 1

4
F aµνF a

µν . (2.14)

In QCD, the gauge group is colour SU(3), and the quarks ψ and gluons Aaµ, belong to

the fundamental and adjoint representation, respectively. The classical Lagrangian of

QCD is thus given by

LQCD =

Nf∑

k=1

ψk(x) (iγµD
µ −mk)ψk(x)−

1

4
F a
µνF

aµν , (2.15)

where the summation is over the Nf quark flavours.

There are two remarkable consequences of gauge invariance. The first one is that in

the Lagrangian Eq. (2.14) there exists only one coupling constant, g, between quarks and

gluons. The second is the self-interaction amongst the gauge fields Aaµ, through the term

gfabcAbµAcν in F aµν , giving rise to cubic and quartic terms. In QCD, this self-interaction

of gluons is the main source of asymptotic freedom, and possibly confinement. This last

feature was not present in electrodynamics. It is entirely new, and is due solely to

the non-Abelian character of the gauge transformations, Eq. (2.7). However, the non-

Abelian nature of the gauge group introduces further elements into the theory, which

are as remarkable as the ones just described. These new features of the theory enter

through the process of quantisation, as we now describe.
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2.4. Quantisation in the functional approach

In the previous section we constructed the classical non-Abelian gauge theory, Eq. (2.15),

that is the basis for Quantum Chromodynamics. This is the first step in setting up QCD

and we must quantise the classical Lagrangian LQCD.

There are two well-known quantisation procedures. In the canonical approach to

quantisation of field theories, one regards fields as operators and sets up commutation

relations for them. All the Green’s functions, which characterise the quantum theory,

may be then calculated as vacuum expectation values of the time-ordered product of field

operators. On the other hand, in the functional integral approach, fields are c-numbers

and the Lagrangian is in its classical form. The Green’s functions are then obtained

by integrating the fields over all their functional forms with a suitable weight. Even

though these are well established methods, there are some subtleties that need to be

addressed in order to properly quantise the theory. One of these is the gauge invariance

of the Lagrangian itself, related to the fact that there are an infinite set of gauge field

configurations that are physically equivalent. In order to see this, we will concentrate

below on the functional integral approach to quantisation.

For simplicity, and to set up the notation, consider only a real scalar field φ(x). The

n-point Green’s functions for the field φ(x) are given by the vacuum expectation value

of the time-ordered product of n field operators φ̂(x): 〈0|T
[
φ̂(x1) · · · φ̂(xn)

]
|0〉. In the

functional integral formalism [1], these n-point Green’s functions can be written as

〈0|T
[
φ̂(x1) · · · φ̂(xn)

]
|0〉 =

∫
Dφφ(x1) · · ·φ(xn) exp (iS)∫

Dφ exp (iS) , (2.16)

where S is the classical action S =
∫
d4xL(φ, ∂φ). The expression Eq. (2.16) may be

rewritten in a more compact form by using the generating functional formalism[1]. Here,

we introduce an artificial source function J(x) into the functional integral through the

term φ(x)J(x):

Z[J(x)] =

∫
Dφ exp

{
i

∫
d4x(L + φJ)

}
, (2.17)
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where Z[J(x)], called the generating functional, is a functional of J(x). By functional

differentiation of Z with respect to J , we can generate all the n-point functions of the

theory:

〈0|T
[
φ̂(x1) · · · φ̂(xn)

]
|0〉 = (−i)n

Z[0]

δnZ[J ]

δJ(x1) · · · δJ(xn)

∣∣∣∣
J=0

. (2.18)

In the case of gauge fields, the generating functional is given by

Z[J(x)] =

∫
DA exp

{
i

∫
d4x

(
L+ AaµJ

aµ
)}

, (2.19)

where, for the moment, L is the Lagrangian for the pure gauge theory, and DA is

a compact notation for
∏

x

∏
a,µ dA

a
µ(x). Note that the source term AaµJ

aµ(x) is not

gauge invariant, however the physical predictions stemming from Z[J(x)] must be gauge

invariant.

In order to see what the main problem with gauge invariance is in the process of

quantisation, set J = 0 in Eq. (2.19). In this case the generating functional is given by

Z[0] =

∫
DA exp (iS) . (2.20)

The action S is invariant under the gauge transformation Aaµ→Aθaµ , where Aθaµ denotes

the gauge-transformed field, Eq. (2.11), that depends on the arbitrary functions θa(x).

This means that if we start with a fixed Aaµ, we can generate a continuous infinity Aθaµ
of field configurations by applying to Aaµ the gauge transformation U(θ), Eq. (2.11).

According to the above invariance, the action S is constant for all Aθaµ in this subset,

and the functional integral is badly divergent, as we are redundantly integrating over a

continuous infinity of physically equivalent field configurations. To fix the problem, we

would like to isolate the interesting part of the functional integral, which counts each

physical configuration only once, and factor out a divergent constant. We can achieve

this by means of a trick due to Faddeev and Popov [2]. This consists in applying the

following restriction on Aaµ:



Aspects of strong QCD 13

GµAaµ = Ba. (2.21)

Here, Gµ and Ba should be chosen appropriately, and we assume that Eq. (2.21) gives a

unique θa(x) for fixed Aaµ and Ba. In order to incorporate the constraint Eq. (2.21) into

Eq. (2.20), we insert 1 under the functional integral in the form

1 =

∫
Dθ(x)δ

(
GµAθaµ − Ba

)
detMG, (MG(x, y))

ab =

(
δ(GµAθaµ (x))

δθb(y)

)
, (2.22)

where the functional integral is performed over the gauge group, and Dθ(x) is the in-

variant measure of the gauge group space [3]. Inserting Eq. (2.22) into Eq. (2.20) we

obtain

Z[0] =

∫
DA

∏

a,x

Dθa(x)δ
(
GµAθaµ − Ba

)
detMG exp

{
i

∫
d4xL

}
. (2.23)

In Eq. (2.23), everything but the argument of the delta function is gauge invariant [3],

and hence we may replace Aθaµ by Aaµ in the argument of the delta function. Thus we

have

Z[0] =

∫
DA

∫ ∏

a,x

Dθa(x)δ
(
GµAaµ − Ba

)
detMG exp

{
i

∫
d4xL

}
. (2.24)

The integrand is now independent of the group parameters θa(x), so we can factor out the

functional integral
∫ ∏

a,xDθa(x), which is an infinite constant. The functional integral

Z[0] is thus defined by extracting this infinite constant. The (infinite) factor
∫
Dθ

will cancel out in the computation of correlation functions of gauge invariant operators

[1]. Since Ba is arbitrary, we may average Z[J ] over Ba in the sense of the functional

integral, i.e. we integrate Z[J ] in Ba with a suitable weight, which is commonly chosen

to be exp
{
− i

2ξ

∫
d4x (Ba(x))2

}
, where ξ is the gauge parameter. Hence we obtain
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Z[J ] =

∫
DA detMG exp

{
i

∫
d4x

(
L − 1

2ξ

(
GµAaµ

)2
+ AaµJ

aµ

)}
. (2.25)

In this way, we have succeeded in exponentiating the delta function representing

the constraint Eq. (2.21). The resulting added term in the exponent is the so-called

gauge-fixing term, with gauge parameter ξ. It is detMG which makes the quantisation

of non-Abelian gauge theories non-trivial. In Lorentz covariant gauges, which we shall

use throughout this thesis, Gµ = ∂µ and

(MG(x, y))
ab = −1

g

(
δab∂2 − gfabc∂µAcµ

)
δ4(x− y). (2.26)

Note that for non-Abelian gauge theories fabc = 0, and therefore detMG is independent

of the gauge field Aµ. Thus, detMG presents no further problems since it can be ab-

sorbed in the normalisation of the the functional integral. This is also true in temporal,

Coulomb, and axial gauges, for Abelian and non-Abelian gauge theories [3].

We would like to exponentiate detMG in a similar way as we did with the gauge-

fixing condition, and regard it as part of our effective Lagrangian. This will lead us to

introduce a fictitious field, called the Faddeev-Popov ghost, in the next section.

Including fermions fields, the generating functional Eq. (2.25) is given by

Z[J, η, η] =

∫
DADηDη detMG exp

{
i

∫
d4x

(
Leff + AaµJ

aµ + ψη + ηψ
)}

,

Leff = LQCD − 1

2ξ

(
GµAaµ

)2
,

(2.27)

where η and η are anti-commuting source functions for the fermion fields ψ and ψ,

respectively, and LQCD is given as in Eq. (2.15).

The fermion Green’s functions are obtained in a similar way as in Eq. (2.16), by

performing functional derivatives of Eq. (2.27) with respect to the sources η and η. It

should be stressed that ψ, ψ, η, and η are all anti-commuting but classical c-numbers.

Hence, proper account has to be taken of the sign coming from their anti-commutation
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when defining correlation functions in which fermions are included. For example, the

two-point Green’s function (quark propagator) should be defined in the following way

[3]

〈0|T
[
ψ̂α(x)ψ̂β(y)

]
|0〉 = (−i)2

Z[0, 0, 0]

δ2Z[J, η, η]

δηα(x)δ(−ηβ(y))

∣∣∣∣
J=η=η=0

. (2.28)

2.4.1. Faddeev-Popov ghosts

As we mentioned above, we would like to exponentiate detMG in a similar way as we

did with the gauge-fixing condition, and regard it as part of our effective Lagrangian.

Faddeev and Popov [2] chose to represent this determinant as a functional integral over

a new set of anti-commuting fields χa(x):

detMG =

∫
DχDχ∗ exp

{
−i

∫
d4xd4yχa∗(x) (MG(x, y))

ab χb(y)

}
, (2.29)

where MG is given by Eq. (2.26), and χa(x) is a complex fictitious field that obeys the

Grassmann algebra, and belongs to the adjoint representation of the non-Abelian gauge

group. The field χa(x) is called the Faddeev-Popov ghost, and its quantum excitations

have the wrong relation between spin and statistics to be physical particles [2]. The

exponent of the integrand in Eq. (2.29) may be rewritten by performing an integration

by parts, such that

∫
d4xd4yχa∗(x) (MG(x, y))

ab χb(y) = −
∫

d4x (∂µχa(x))∗Dab
µ χ

b(x), (2.30)

where Dab
µ = δab∂µ − gfabcAcµ(x) is the covariant derivative, Eq. (2.9), in the adjoint

representation. We now put all terms together. We insert Eq. (2.29) together with

Eq. (2.30) into Eq. (2.27) to obtain the full generating functional of QCD:
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Z[J, ξ, ξ∗, η, η] =

∫
DADηDηDξDξ∗ exp

{
i

∫
d4x (Leff + Sources)

}
,

Leff = LG + LGF + LFP + LF, Sources = AaµJ
aµ + χa∗ξa + ξa∗χa + ψη + ηψ,

(2.31)

where ξa and ξ∗a are Grassmann-valued source functions for the ghosts fields. Here,

Leff is a gauge-fixed quantum Lagrangian which includes the effect of detMG through

Eqs. (2.29,2.30), and

LG = −1

4
F a
µνF

µν
a , LGF = −1

ξ

(
∂µAaµ

)2
, (2.32)

LFP = (∂µχa)∗Dab
µ χ

b, LF =

Nf∑

k=1

ψk (iγµD
µ −mk)ψk, (2.33)

where the summation in the fermion Lagrangian LF is over Nf quark flavours.

2.4.2. The Gribov ambiguity

When deriving Leff in Eq. (2.31), it is was assumed that at any fixed Aaµ and Ba, the

equation GµAaµ = Ba has a unique solution with respect to θa, i.e. the absence of any

solution or the existence of several solutions were excluded. There are no examples of

the first possibility, however, the existence of many gauge-equivalent fields obeying the

same gauge condition, Eq. (2.21), was pointed out by Gribov [4, 5].

The simplest example presented by Gribov [4, 5] corresponds to Coulomb gauge,

defined by the equation

∂iAi = 0, (2.34)

for the case of the SU(2) colour gauge group. The existence of gauge-equivalent fields

means that the equality



Aspects of strong QCD 17

∂iA
(θ)
i = 0, (2.35)

where A
(θ)
i is the gauge-transformed field, is valid for non-trivial θa(x), and the matrix

U tending to the identity matrix at |r|→∞. From Eqs. (2.34,2.35) follows that

[
Di,
(
∂iU

−1
)
U
]
= 0, (2.36)

where Di = ∂i + igAi is the covariant derivative, and U is given in Eq. (2.7).

Consider the case A = 0 and U ∈ SU(2). One can look for spherically symmetric

solutions of Eq. (2.36) in the form

U = exp (iθ(r)n ·σ) = cos(θ) + in · σ sin(θ), (2.37)

where σk are the Pauli sigma matrices, and n = r/r. It follows[6] that the corresponding

fields satisfying Eq. (2.36) are transverse fields, which are gauge equivalent to A = 0:

Aθai
r→∞
= −1

g
ǫaibnb

1

r
. (2.38)

Thus, there is a family of pure gauge transverse fields, i.e. non-zero Aθ, which up to gauge

transformations are equivalent to zero fields, and satisfy the gauge condition Eq. (2.35).

This is a particular case of a general statement that the gauge condition Eq. (2.21) does

not fix uniquely the field from a family of gauge-equivalent fields. The existence of a

solution of Eq. (2.36) for an arbitrary field Aai can also be understood for large fields [6].

The problem of the existence of many gauge equivalent fields (Gribov copies) sat-

isfying the same gauge condition is not particular to the Coulomb gauge, but it also

occurs in covariant gauges [6]. On the other hand, axial gauges are found to be free of

the Gribov ambiguity [7].
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The existence of Gribov copies means that Eqs. (2.25,2.31) have to be improved.

Gribov suggested[4, 5] that the problem of copies can be solved if the integration in the

functional space is restricted by the potentials for which the Faddeev-Popov determinant

detMG is positive (in Euclidean space). This restriction does not concern small fields,

and therefore is not significant for perturbation theory. In particular it is not significant

for hard processes, where perturbation theory is applied. The existence of Gribov copies

is evidently important for lattice QCD.

2.5. Symmetries of QCD

The Lagrangian of Quantum Chromodynamics possess a number of exact and approxi-

mate symmetries [8]. The most important of the exact symmetries of the Lagrangian of

QCD are local gauge invariance, which we have described above, and Lorentz invariance.

See [8] for a detailed account of the symmetries of QCD.

In addition to gauge symmetry, the Lagrangian of QCD, Eq. (2.15), possesses several

other discrete symmetries. These are the operation of parity, charge conjugation, and

time reversal. These discrete symmetries are in agreement with the observed properties

of the strong interaction [?].

2.5.1. Strong CP problem

The analysis of the behaviour of the QCD Lagrangian, under these discrete symmetries,

is considerably complicated at the quantum level, due to the fact that there is another

gauge invariant operator of mass dimension four that can be added to the Lagrangian

[9]:

Lθ =
θg2

16π2
F̃ aµνF a

µν , F̃ aµν =
1

2
ǫµναβF a

αβ . (2.39)

A term of the form Eq. (2.39) would violate both parity and time reversal symmetry, in

contradiction with the observed properties of the strong interactions. In the context of

perturbation theory, this term is innocuous since it can be written as a total divergence:
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F̃ aµνF a
µν = ∂µX

µ, Xµ = ǫµαβγTr

[
1

2
Aα∂βAγ +

i

3
gAαAβAγ

]
. (2.40)

A total divergence contributes only a surface term to the action Eq. (2.31), and can

therefore be neglected.

A much more sophisticated analysis [9, 10] shows that Lθ can give rise to real physi-

cal effects despite the fact that it is a total divergence. The vacuum of QCD can have

non-trivial topological structure, and in this case the surface term in the action integral

cannot be neglected[10]. Since the operator Xµ is not gauge invariant, it can have singu-

lar behaviour at infinity without implying similar behaviour in physical gauge invariant

quantities [10]. The existence of this term Lθ gives rise to a violation of CP, with a

magnitude dictated by the strong interactions. In fact, the limit [9] on the size of the

parameter θ, coming from the measurements of the dipole moment of the neutron, is

θ < 10−9, and it is plausible to assume that it is exactly zero. The problem of why θ is

so small is referred to as the strong CP problem.

Several solutions to the strong CP problem exist in the literature [9]. One of these

exploits the fact that the phase which gives rise to physical effects (θ) is a sum of a

CP-violating phase in the quark mass matrix and the QCD phase θ. If the mass of the

up quark were exactly zero, the net physical effect could be rotated away [9]. However,

an up quark with zero mass appears not to be acceptable phenomenologically. Another

mechanism is to convert θ into a parameter which is dynamically chosen to be small,

rather than fixed a priori. This the Peccei-Quinn mechanism, which has the further

consequence that it requires the existence of axions. Axions are hypothetical particles

which couple to scalar and pseudoscalar fermion currents. However, there is at yet no

definitive solution to the strong CP problem.

2.5.2. Chiral symmetry

The Lagrangian of QCD also possesses a number of approximate symmetries. Of the

these symmetries, the most important for the study of hadron physics are isospin and

chiral symmetry, which are related to the light-quark masses.

Consider the quark sector of the Lagrangian Eq. (2.15) with only the up and down

quark fields, which in matrix notation ψ = (ψu, ψd)
T can be written as
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L = ψ (iγµD
µ −M)ψ, (2.41)

where M = diag(mu, md) is the quark mass matrix. This Lagrangian Eq. (2.41) is

invariant under a separate global phase redefinition of the up and down quark fields,

and corresponds to the conservation of baryon number in the real world.

If mu − md is very much less than the hadronic mass scale, the symmetry of the

Lagrangian Eq. (2.41) is increased. It is now invariant under a 2× 2 unitary global

transformation acting on the quark fields:

ψ
′

= exp

(
3∑

i=0

αiσi

)
ψ, (2.42)

where σi (i = 1, 2, 3) are the Pauli matrices, and σ0 is the unit matrix. This symmetry

U(2)V can be decomposed into the product U(1)V ×SU(2)V , where U(1)V is the baryon

number symmetry. The approximate SU(2)V isospin symmetry becomes exact in the

limit that the up and down quarks are degenerate in mass. The Noether vector currents

associated to the symmetry Eq. (2.42) are

Jkµ = ψγµσ
kψ (k = 1, 2, 3) (isospin current), (2.43)

Jµ = ψγµψ (baryonic current). (2.44)

This approximate flavour current can be further enhanced by considering the strange

quark to be degenerate in mass with the up and down quarks. In this case, we obtain

the approximate SU(3)V flavour symmetry which gives rise to the classification of the

meson and baryons into flavour octets and decuplets.

If we now take the limit in which the masses of the up and down quarks are negligible

(M = 0), the symmetry becomes even larger. To explain this, it is convenient to

introduce the left- and right-handed projectors:
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PL =
1

2
(1− γ5) , PR =

1

2
(1 + γ5) . (2.45)

We may decompose the quark fields into left- and right-handed components, ψL = PLψ,

ψR = PRψ, respectively. The quark sector of the Lagrangian, Eq. (2.41), becomes

L = ψLiγµD
µψL + ψRiγµD

µψR. (2.46)

There is now no term which connects left- and right-handed fields, and so independent

left and right rotations of the type Eq. (2.42) leave the Lagrangian invariant, yielding a

U(2)L×U(2)R = SU(2)V ×SU(2)A×U(1)V ×U(1)A chiral symmetry. This implies the

additional the Noether axial currents

Jk5µ = ψγµγ5σ
kψ (k = 1, 2, 3), (2.47)

J5µ = ψγµγ5ψ. (2.48)

To the extent that the strange quark can be considered massless, the chiral SU(2)

symmetry can be enlarged to chiral SU(3).

However, chiral symmetry is not apparent in the observed spectrum of QCD. If it

were, every hadron would be accompanied by a partner of opposite parity with the same

mass. Instead, chiral SU(2) is spontaneously broken, leaving only the U(1)V ×SU(2)V

symmetry of isospin and baryon number conservation. The axial-vector currents are

conserved only in the chiral limit, apart from possible anomalies.

If an exact symmetry of the Lagrangian is spontaneously broken, the theory will

contain massless spin-zero particles called Goldstone bosons. The Goldstone theorem

states that the number of such particles will be equal to the number of spontaneously

broken symmetry generators. In the case of chiral SU(2) breaking to SU(2)V , this

implies three pseudoscalar bosons, which are identified with the three pions (π+, π−, π0).

The U(1)V ×U(1)A symmetry is also broken down to U(1)V , but the lost U(1)A is spoilt

by quantum effects, and does not give rise to a Goldstone boson. This is related to the

existence of the contribution to the Lagrangian Lθ, Eq. (2.39).
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In the real world, the light quarks are not precisely massless, and therefore the chiral

symmetry of the QCD Lagrangian is explicitly broken. Nevertheless, their masses are

small on the scale of the strong interaction (mu ≈ 4MeV, md ≈ 7MeV). Correspond-

ingly, the pions are not precisely massless Goldstone bosons, but their masses are much

smaller than those of other hadrons.

When the spontaneous symmetry breaking scenario is extended to chiral SU(3)A ×
SU(3)V → SU(3)V , the corresponding eight Goldstone bosons are identified with the

members of the lightest pseudoscalar octet: pions, kaons, anti-kaons, and the η meson.

The η′ meson, on the other hand, falls out of this scheme. The large η′ mass reflects

the axial U(1)A anomaly in QCD. Without this anomaly, QCD would actually have

U(3)L×U(3)R symmetry, and its spontaneous breakdown would lead to nine rather than

eight pseudoscalar Goldstone bosons. The axial anomaly removes the U(1)A symmetry,

keeping SU(3)V ×SU(3)A×U(1)V intact, which is then spontaneously broken down

to SU(3)V ×U(1)V . The remaining SU(3) flavour symmetry is accompanied by the

conserved baryon number which generates U(1)V .

Chiral condensate

Spontaneous chiral symmetry breaking goes in parallel with a qualitative rearrangement

of the vacuum [11, 12], an entirely non-perturbative phenomena. The vacuum is now

populated by scalar quark-antiquark pairs. The corresponding vacuum expectation value

〈0|ψψ|0〉 ≡ 〈ψψ〉 is called the chiral quark condensate. The definition of the chiral

condensate is

〈ψψ〉 ≡ −iTr lim
y→x+

SF (x− y), (2.49)

with the full quark propagator SF (x − y) = −i〈0|T [ψ(x)ψ(y)]|0〉. We recall Wick’s

theorem which states that the time-ordered product T [ψ(x)ψ(y)] reduces to the normal

product : ψψ :, plus the contraction of two field operators. When considering the

perturbative quark propagator, S0
F (x−y), the time-ordered product is taken with respect

to a trivial vacuum, for which the expectation value : ψψ : vanishes[11, 12]. Long-range,

non-perturbative physics is then at the origin of a non-vanishing : ψψ :.
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In QCD, it is believed that the light-quark operator ψψ has a nonzero vacuum ex-

pectation value:

〈0|ψψ|0〉 = 〈0|
(
uu+ dd

)
|0〉 ≈ −(250MeV)3. (2.50)

Since the condensate connects left- and right-handed fields,

〈0|ψψ|0〉 = 〈0|ψLψL + ψRψR|0〉, (2.51)

it breaks chiral symmetry, while remaining invariant under the group U(1)V ×SU(2)V .

Axial anomaly

If the U(1)A symmetry was manifested directly, then in the chiral limit all massless

hadrons would have a massless partner of opposite chirality. Since this does not happen,

we assume that the symmetry is spontaneously broken. But then there should be an

isospin singlet I = 0 pseudoscalar Goldstone boson, whose physical mass should be about

the same mass as the pion. Using chiral perturbation theory, Weinberg [13] estimated

the mass to be less than
√
3mπ. Among the known hadrons, the only candidates with

the right quantum numbers are η(548) and η′(958). Both violate the Weinberg bound.

Furthermore, η(548) has already been claimed by the pseudoscalar octet. The U(1)

puzzle is: where is the extra Goldstone boson?

In fact, the Jµ5 current is not conserved at the quantum level due to the QCD axial

anomaly

∂µJ
µ
5 =

g2

16π2
F̃ aµνF a

µν , F̃ aµν =
1

2
ǫµναβF a

αβ. (2.52)

The term F̃ aµνF a
µν can be written as a four-divergence, F̃ aµνF a

µν = ∂µX
µ, whose inte-

gral over all space-time is proportional to the topological charge [10]. We can define a

conserved but non-gauge-invariant current
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J µ
5 ≡ Jµ5 − g2

16π2
Xµ. (2.53)

The generator of the U(1)A anomaly may now be taken to be

Q5 ≡
∫

d3xJ 0
5 =

∫
d3x

[
ψ†γ5ψ − g2

16π2
X0

]
. (2.54)

In the Abelian case, Q5 is gauge invariant because of the absence of the topological

charge. However, this is not true in the non-Abelian case, and hence Q5 is not a physical

quantity. In fact, Q5 is not even conserved because of the existence of instantons [10].

To see this, integrate Eq. (2.53) over Euclidean space. The result can be written in the

form [10]

∫ ∞

−∞

dt
dQ5

dt
= 2q[A], q[A] =

g2

32π2

∫
d4xF̃ aµνF a

µν , (2.55)

where q[A] is the topological charge, a functional of the gauge field Aaµ. For Aaµ corre-

sponding to one instanton, q[A] = 1. Therefore, in this case, the boundary values of

Q5 in Euclidean time differ by ∆Q5 = 2q[A]. This can be attributed to the fact that

an instanton interpolates (in Euclidean time) between two gauge field configurations

differing by one unit of topological charge. Thus, there is no reason to expect the U(1)A

to have physical manifestations [10].

2.6. Ward-Takahashi identities

The Ward identity, and its generalisation by Takahashi, are exact relations between

one-particle irreducible (1PI) vertex functions and propagators, true to all orders in

perturbation theory, and indeed non-perturbatively. They follow from the gauge invari-

ance of QED and play an important role in the proof of renormalisability of this theory.

Furthermore, this identity is extremely useful when studying the electromagnetic prop-



Aspects of strong QCD 25

erties of hadrons in terms of their constituent quarks, as it allows the constructtion of a

quark-photon vertex entirely in terms of fully-dressed quark propagators.

We will proceed in this section to derive this identity. The generating functional for

QED is

Z[J, η, η] =

∫
DADηDη exp

{
i

∫
d4x

(
Leff + AaµJ

aµ + ψη + ηψ
)}

,

Leff = LQED − 1

2ξ
(∂µAµ)

2 .

(2.56)

Recall that without the gauge-fixing and source terms, the action is gauge invariant.

This made Z infinite when integrating over all gauge field configurations, including

those connected by a gauge transformation. To find a finite Z, we were forced to

introduce a gauge-fixing term‡. This, however, means that Leff, Eq. (2.56), is no longer

gauge invariant. The physical consequences of the theory, expressed in terms of Green’s

functions, however, cannot depend on the gauge, so Z must be gauge invariant.

On performing an infinitesimal gauge transformation, the source and gauge-fixing

terms in Leff are not gauge invariant, so the integrand of Z picks up an extra factor,

exp

{
i

∫
d4x

[
−1

ξ
(∂µAµ)∂

2θ + Jµ∂µθ − ieθ(ηψ − ψη)

]}
, (2.57)

which, since θ is infinitesimal, can be written as

1 + i

∫
d4x

[
−1

ξ
∂2(∂µAµ)− ∂µJ

µ − ieθ(ηψ − ψη)

]
θ(x), (2.58)

where we have integrated by parts to remove the derivative operator from θ(x). Invari-

ance of Z means that the operator Eq. (2.58), when applied to Z, is merely the identity.

Since θ(x) is arbitrary, the operator acting on Z can be written as the differential equa-

tion

‡As we have seen, in the Abelian case the Faddeev-Popov determinant is independent of the gauge
field and thus can be absorbed into the normalisation of Z.
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[
i

ξ
∂2∂µ

δ

δJµ
− ∂µJµ − e

(
η
δ

δη
− η

δ

δη

)]
Z[J, η, η] = 0, (2.59)

where we have made the substitutions

ψ(x)→ 1

i

δ

η(x)
, ψ(x)→ 1

i

δ

η(x)
, Aµ(x)→

1

i

δ

δJµ
. (2.60)

Putting Z[J, η, η] = exp (iW), where W[J, η, η] is the generating functional for connected

Green’s functions, we can write Eq. (2.59) in terms of W:

[
1

ξ
∂2∂µ

δW
δJµ

− i∂µJµ − ie

(
η
δW
δη

− η
δW
δη

)]
= 0. (2.61)

Finally, we can convert Eq. (2.61) into an equation for the generating functional for

proper vertices, or effective action, Γ[ψ, ψ,Aµ], defined by the Legendre transformation

Γ[ψ, ψ,Aµ] = W[η, η, J ] +

∫
d4x

(
ηψ + ψη + JµAµ

)
, (2.62)

which implies that

δΓ

δAµ(x)
= −Jµ, δW

δJµ(x)
= Aµ(x), (2.63)

δΓ

δψ(x)
= −η(x), δW

δη(x)
= ψ(x), (2.64)

δΓ

δψ(x)
= −η(x), δW

δη(x)
= ψ(x) = 0. (2.65)

Eq. (2.61) then becomes
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−1

ξ
∂2∂µAµ(x) + i∂

δΓ

δAµ(x)
+ ieψ(x)

δΓ

δψ(x)
− ieψ(x)

δΓ

δψ(x)
= 0. (2.66)

Now, functionally differentiate Eq. (2.66) with respect to ψ(y1) and ψ(x1), and set

ψ = ψ = Aµ = 0. The first term vanishes, and the rest give

i∂µ
δ3Γ[0]

δψ(x1)δψ(y1)δAµ(x)
= ieδ(x− x1)

δ2Γ[0]

δψ(x1)δψ(y1)
− ieδ(x− y1)

δ2Γ[0]

δψ(x1)δψ(y1)
,

(2.67)

where the ordinary derivative is with respect to x. The left-hand side of Eq. (2.67) is the

(ordinary) derivative of the 1PI fermion-photon vertex, and the two terms on the right-

hand side are the inverses of exact (fully-dressed) fermion propagators. The content of

Eq. (2.67) is clearer in momentum space. Fourier transforming we have

qµΓµ(p, q, p+ q) = S−1
F (p+ q)− S−1(q), (2.68)

where Γµ(p, q, k) is the full fermion-photon vertex, and SF (p) is the full fermion prop-

agator. Eq. (2.68) is known as the Ward-Takahashi identity. Taking the qµ→ 0 limit

yields the Ward identity

Γµ(p, 0, p) =
∂S−1

F (p)

∂pµ
. (2.69)

Thus, the principle of gauge invariance not only has given us a procedure to derive

interesting Lagrangians, but relations between different (e.g. 2- and 3-) n-point functions

in the theory. In fact, Eq. (2.68) is the first of a series involving higher point functions.

Eqs. (2.68,2.69) will be particularly useful when we study electromagnetic interactions

of mesons. We will see that in addition to ensuring current conservation, they will allow

us to write the longitudinal part of the quark-photon vertex entirely in terms of the

(inverse) quark propagator.
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2.7. QCD Schwinger-Dyson Equations

The Schwinger-Dyson equations are the equations of motion of the quantum field theory.

They are derived from the full generating functional of the quantum theory, Eq. (2.31)

for QCD. The starting point for the derivation of the Schwinger-Dyson equations is the

observation that the functional integral of a total derivative is zero:

∫
Dφ δ

δφ
≡ 0. (2.70)

We are only interested in the explicit derivation of the SDE for the quark propagator.

From this equation it will be clear what the set of SDE are. Since quark fields enter

additively into the Lagrangian of QCD, we focus on just one flavour, denoted by ψ(x).

Furthermore, we will not consider the ghost fields since these do not couple directly to

the quarks. The ghosts will enter into the quark SDE through the quark-gluon vertex,

and the gluon propagator. The derivation is in fact the same as that for the fermion

in QED, the only difference being the colour quantum number. Additionally, cubic and

quartic interactions between gauge bosons do not enter explicitly in our derivation. We

will consider thus the generating functional of QED.

To derive the SDE for the quark propagator, we apply Eq. (2.70) to the generating

functional of QED, with the functional derivative taken with respect to ψ:

0 =

∫
DADηDη exp

{
i

∫
d4x

(
LQED + AaµJ

aµ + ψη + ηψ
)}

(2.71)

=

[
δSQED

δψ(x)

(
−i

δ

δJ
,−i

δ

δη
, i
δ

δη

)
+ η(x)

]
Z[J, η, η], (2.72)

where SQED =
∫
d4xLQED with LQED given by Eq. (2.1). Performing the functional

derivative we have

0 =

[
η(x) +

(
i��∂ −m+ eγµ(−i)

δ

δJµ(x)

)
(−i)

δ

δη(x)

]
Z[J, η, η]. (2.73)
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As we are interested in the fermion propagator, we perform and additional functional

derivative with respect to η(y), and set η(x) and η(y) to zero afterwards. Thus we have,

with Z[J ] ≡ Z[J, 0, 0],

0 = δ(x− y)Z[J ]−
(
i��∂ −m+ eγµ(−i)

δ

δJµ(x)

)
Z[J ]SF (x− y; J), (2.74)

where SF (x−y; J) is the fermion propagator in the presence of the source J , as defined in

Eq. (2.28). Putting Z[J, 0, 0] = exp (W[J, 0, 0]), Eq. (2.74) can be written as an equation

for the generating functional of connected Green’s functions, W[J ] = W[J, 0, 0]:

0 = δ(x− y)−
(
i��∂ −m+ eγµ(−i)

δW
δJµ(x)

)
SF (x− y; J). (2.75)

In terms of the effective action, the inverse fermion propagator is given by

S−1
F (x− y) =

δ2Γ

δψ(x)δψ(y)

∣∣∣∣
ψ=ψ=0

, (2.76)

and so we have, setting ψ = ψ = J = 0 at the end:

δ

δJµ(x)
SF (x− y; J) =

∫
d4z

δAν(z)

δJµ(x)

δ

δAν(z)

(
δ2Γ

δψ(x)δψ(y)

)−1

= −
∫

d4zd4x′d4y′
δAν(z)

δJµ(x)

δ2Γ

δψ(x)ψ(x′)

(
δ

δAν(z)

δ2Γ

δψ(x′)ψ(y′)

)
δ2Γ

δψ(y′)ψ(y)

= e

∫
d4zd4x′d4y′Dµν(x− z)SF (x− x′)Γν(x

′, y′; z)SF (y
′ − y).

(2.77)

We now multiply Eq. (2.75) with S−1
F (y− y′′), integrate with respect to y and relabel to

find
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= +

−1

p p

−1

k

pq

Figure 2.1.: Quark Schwinger-Dyson Equation; filled circles indicate fully dressed objects.

S−1
F (x− y) = −(i��∂ −m)δ(x− y)− ie2

∫
d4zd4x′Dµν(x− z)γµSF (x− x′)Γν(x

′, y; z),

(2.78)

where Dµν(x− z) is the photon propagator, and Γν(x
′, y; z) is the quark-photon vertex.

This is the SDE for the fermion propagator in coordinate space. Performing the usual

Fourier transform gives the momentum space version of Eq. (2.78):

S−1
F (p) = i�p−m− ie2

∫
d4k

(2π)4
Dµν(k)γµSF (q)Γν(p, q; k). (2.79)

The same procedure is applied to the derivation of the SDE for the quark propagator.

Here, the photon propagator gets replaced by the gluon propagator, and the quark-

photon propagator by the quark-gluon vertex, with the appropriate consideration of

the colour matrices. For example Γν(p, q; k)→Γaν(p, q; k), where a = 1, . . . , 8 since the

gluons live in the adjoint representation of SU(3), and similarly γµ→ γaµ. Furthermore,

the quark propagators carry the colour index i = 1, 2, 3, which is left implicit below,

because they belong to the fundamental representation of the colour SU(3) group. Thus

the SDE for the quark propagator in QCD is

S−1
F (p) = i�p−m− ig2

∫
d4k

(2π)4
Dµν(k)δabtaγµSF (q)Γ

b
ν(p, q; k), (2.80)

where g is the QCD coupling constant, Dµν(k)δab is the gluon propagator, and Γaν(p, q; k)

is the quark-gluon vertex. Both of these quantities satisfy their own SDE, which are
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connected to higher n-point functions and so on, thus making an infinite tower of integral

equations. The quark SDE is represented pictorially in Figure 2.1.

As we mentioned in Section 2.5.2, chiral symmetry is broken spontaneously. We will

see that this effect can be studied with the SDE for the quark propagator. In particular,

we will see how the strong interaction in the quark SDE generates (constituent) quark

masses of several hundred MeV, even in the limit of zero current quark masses. In

addition to this, we will see how the pattern of chiral symmetry breaking emerges when

we combine the quark SDE with the meson bound state equation.

2.8. Renormalisation

The gauge coupling and mass parameters in the Lagrangian of QCD are not physical.

These quantities need to be brought from their bare values to the their physical values,

i.e. quantities that can be experimentally measured. This is achieved through the process

of renormalisation, see [14, 15] for a detailed exposition. This process is carried out

through the replacements

g = ZggR, m = ZmmR, (2.81)

where Zg and Zm are the renormalisation constants for the gauge coupling and mass pa-

rameter, respectively, and the subscript R indicates the renormalised quantity. However,

the most general objects are the Green’s functions, and their renormalisation requires

additional renormalisation constants. For the quark and gluon propagators we have

S(p) = Z2SR(p), Z3D
ab
µν(k) = Dab

Rµν(k), (2.82)

where we note that only the transverse part of the gluon receives radiative corrections.

Renormalisation is also required for the interaction vertices. Omitting the Lorentz and

colour indices, we can write
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Γqgq = Z−1
1F Γ

qgq
R , Γ3g = Z−1

1 Γ3g
R , Γ4g = Z−1

4 Γ4g
R . (2.83)

The renormalisability of the theory means that the renormalised quantities, being

expressed in terms of renormalised charges and masses, remain finite in the limit when

the regularisation is removed.

In covariant gauges, one also needs to renormalise the ghost propagator, the ghost-

gluon vertex, and the gauge parameter. The renormalisation constants for the first two

Green’s functions are Z̃3 and Z̃1, respectively. For the gauge parameter, the renormali-

sation constant is usually taken to be equal to that of the gluon field

ξ = Z3ξR. (2.84)

The renormalised coupling constant g = g(µ), where µ is the renormalisation point,

can be defined using any of the interaction vertices. Its universality required by gauge

invariance means that

Z−1
g = Z

1/2
3 Z2Z

−1
1F = Z

3/2
3 Z−1

1 = Z3Z
−1/2
4 = Z

1/2
3 Z̃3Z̃

−1
1 . (2.85)

This means that the renormalisation constants are not independent. The relations

Z3

Z1
=

Z2

Z1F
=
Z

1/2
3

Z
1/2
4

=
Z̃3

Z̃1

(2.86)

are fulfilled as a consequence of gauge invariance. These relations are a consequence

of the Slavnov-Taylor identities [3], which are the non-Abelian extension of the Ward-

Takahashi identities in QED. They guarantee the universality of the coupling constant.

In terms of renormalised quantities, the quark SDE takes the same form as before,

the difference being the appearance of the appropriate renormalisation constants:
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S−1
F (p) = Z2

[
Sbare(p)

]−1 − Z1F ig
2

∫
d4k

(2π)4
Dµν(k)taγµSF (q)Γ

a
ν(p, q; k), (2.87)

where we have suppressed the R subscript.

Up to now we have now developed a considerable part of our machinery for the study

of strong QCD. They are the renormalised quark SDE, the Ward-Takahashi identity, and

the notions of chiral symmetry breaking. These will be the building blocks for the study

of the properties and interactions of the lightest bound states in QCD, e.g. the pion.



Chapter 3.

QCD Bound State Equations

3.1. Introduction

Bound states appear as poles in n-point Green’s functions. In perturbative QCD, it is

implicitly assumed that we can obtain a reasonable estimate of scattering amplitudes

by calculating a few Feynman diagrams of lowest order [?]. However, there are many

problems [16, 17, 18, 19, 20] for which the calculation of a few Feynman diagrams is

inadequate∗.

The study of bound states in QCD is one of these problems. A bound state produces

a pole in the scattering amplitude in the channel in which it appears. If the bound state

is truly composite, no such pole exists in any Feynman diagram, or any finite sum [21].

A pole can only be generated by an infinite sum of diagrams [21].

Ideally, we would like to sum all Feynman diagrams which describe the reaction. If

we could do this we assume we have the correct answer. However, such a summation

is not possible in general, and we must settle for an infinite sum of a particular class

of diagrams we believe particularly important physically (e.g. ladder diagrams). This is

achieved by finding an integral equation, the solution of which can be as interpreted as

the sum of the class of diagrams under consideration.

∗In QCD, the running of the coupling constant introduces further problems, since in the low energy
region, appropriate for bound states, QCD is a confining theory and thus the coupling constant
becomes strong. In fact, it is divergent [?].

34
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M = K + M K

Figure 3.1.: Quark-antiquark scattering matrix SDE: K is the quark-antiquark, fully ampu-
tated, two-particle irreducible, scattering kernel; filled dots on the quark lines
indicate quark propagators are fully dressed.

3.2. QCD Bound State Equations. Bethe-Salpeter

Equation

In QCD, hadrons are bound states of quarks and gluons: mesons corresponds to poles

in the 4-point Green’s function 〈0|q1q1q̄2q̄2|0〉, and baryons correspond to poles in the

6-point Green’s function 〈0|qqqq̄q̄q̄|0〉. However, for the purposes of this thesis, we will

only treat the bound state equations for mesons, and thus Γ below will represent a

quark-meson vertex. Baryons studies can be found in e.g. [22, 23, 24].

As said earlier in the introduction to this chapter, we need an integral equation whose

solution can be interpreted as the infinite sum of a particular class of diagrams, or as

the infinite sum of all diagrams contributing to the scattering amplitude’s bound state

pole. We will derive below this integral equation, and in subsequent chapters will solve

it for particular classes of diagrams.

In principle, using the functional integral approach developed in the first chapter

we can derive all of the equations we need. The quark-antiquark scattering amplitude,

M , satisfies the Schwinger-Dyson equation (colour, flavour, and spin indices have been

suppressed for brevity)

M(p, k;P ) = K(p, k;P ) +

∫

q

K(p, q;P )G(q, P )M(q, k;P ), (3.1)

where M is the 4-point quark-antiquark scattering amplitude, G is a two-body (a quark

and an antiquark) dressed-propagator, and K is the fully amputated, two-particle irre-

ducible, quark-antiquark scattering kernel of the equation.
∫
q
is the integration over the

internal loop momenta. Its specific form depends on the equation under consideration,

and the appropriate form for the Bethe-Salpeter Equation (BSE) will be given below.
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The same applies to the two-body propagator G. The Feynman diagram for Eq. (3.1)

is given in Figure 3.1.

If the kernel in Eq. (3.1) is “small”, so that perturbation theory converges, the

solution of Eq. (3.1) can be obtained formally by iteration. This generates a Born series

of the form

M = K +

∫
KGK +

∫∫
KGKGK + · · ·+ (

∫
KG)nK + · · · , (3.2)

where momentum arguments have been suppressed for notational convenience. Typi-

cally, each of the terms in the series is identified with a Feynman diagram† (or a part of

it), so the sum in Eq. (3.2) is indeed a sum of Feynman diagrams (or parts of Feynman

diagrams). Note that successive terms in the sum represent products of the kernel K

connected by the propagator G. Any Feynman diagram which can be written in such a

form, i.e.

MR =

∫
M1GM2, (3.3)

is said to be reducible with respect to the propagator G‡, and clearly such a diagram

cannot be part of the kernel. The kernel must be built up only of irreducible diagrams.

If we replace the integrals in Eq. (3.2) by sums over a finite set of discrete points in

momentum space, so that K and M are matrices and G is a diagonal matrix, then the

series in Eq. (3.2) is a geometric series which can be formally summed, giving

M = K +KGK +KGKGK + · · ·+ (KG)nK + · · ·
= (1−KG)−1K. (3.4)

†However, in nonperturbative QFT a correspondence between a mathematical expression and a Feyn-
man diagram might not always be possible.

‡When M is an n-point Green’s function G is an n-body propagator.
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For cases when the Born series does not converge, the solution of Eq. (3.1) may

still exist, and can be regarded as the analytic continuation of the sum Eq. (3.4), from

a region where it converges to a region where is does not converge. This situation is

familiar from the theory of complex functions; for example, the complex function

f(z) =
z

1− z
(3.5)

is the unique analytic continuation of the series

f(z) =
∑

n

zn, (3.6)

from the region inside the unit circle |z| < 1 to the region outside, |z| ≥ 1. Note that

there is a pole at z = 1. If z is a matrix, as in our case, then the generalisation of

the existence of a pole at z = 1 is that z has eigenvalue equal to one, so that if the

corresponding eigenvector is a, then the condition for a pole can be written as

a = za. (3.7)

The corresponding condition for a pole in the 4-point Green’s functionM is therefore

Γ(p;P ) =

∫

q

K(p, q;P )G(q, P )Γ(q;P ). (3.8)

This is the integral equation that we were looking for, the integral equation for the

bound state. The function Γ is known as the vertex function. In QCD, Γ is known

as the Bethe-Salpeter Amplitude (BSA), and the bound state equation as the Bethe-

Salpeter Equation [25, 26]. Writing explicitly the two-body dressed-propagator for a

quark and an anti-quark, noting that GΓ = SΓS, and putting back the relevant indices,

the BSE has the form
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q+

=
P P

p+

p− q−

p+

p−

Γ KΓ

Figure 3.2.: Bethe-Salpeter Equation: Γ is the fully-amputated quark-meson vertex or Bethe-
Salpeter Amplitude; K is the quark-antiquark fully-amputated, two-particle
irreducible, scattering kernel; filled dots on the quark lines indicate that the
propagators are-fully dressed.

[Γ(p;P )]tu =

∫
d4q

(2π)4
[K(p, q;P )]tu;rs[S(q+)Γ(q;P )S(q−)]sr, (3.9)

where q+− q− = P , P 2 = −m2
H is the meson mass shell, and s, t, u, . . . represent flavour,

colour, and Dirac indices. This equation is depicted in Figure 3.2. The general form of

Γ will depend on the quantum numbers (e.g. spin, parity, charge conjugation, etc.) of

the meson under consideration [27].

We have shown that the bound state equation Eq. (3.8) is a sufficient condition for a

bound state. It is also a necessary condition. The presence of a bound state is associated

with a pole at P 2 = −m2
H in the quark-antiquark scattering matrix M below threshold,

so the M matrix near the meson bound state pole would have the form

[M(p, k;P )]tu;rs = [Γ(p;P )]tu
1

P 2 +m2
H

[Γ(k;P )]rs + [R(p, k;P )]tu;rs, (3.10)

pictured in Figure 3.3, wheremH is the bound state mass. In Eq. (3.10), R is a remainder

term that has no pole at P 2 = −m2
H . Note that the vertex function is not uniquely

defined because the separation into a pole term and a non-pole term is not unique away

from the pole. However, this will not be a problem because we will need the vertex

function only at the pole. On the other hand, we can circumvent this problem by

introducing an eigenvalue λ(P 2) into the bound state equation Eq. (3.8) in order to

have solutions for all P 2. Eq. (3.9) is thus replaced by
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P 2 → −m2
H−−−−−−−−→M Γ Γ

Figure 3.3.: M near the bound state pole: Γ is the fully amputated quark-meson Bethe-
Salpeter Amplitude.

[Γ(p;P )]tu = λ(P 2)

∫
d4q

(2π)4
[K(p, q;P )]tu;rs[S(q+)Γ(q;P )S(q−))]sr, (3.11)

with the physical solution corresponding to λ = 1 at P 2 = −m2
H . The introduction

of the eigenvalue λ(P 2) will be particularly useful when finding solutions to Eq. (3.8)

iteratively, as described in Appendix A.

Assuming the existence of the bound state, and the form taken by the quark-

antiquark scattering matrix M near the meson bound state pole§, Eq. (3.10), an equa-

tion for Γ can be derived by using the integral equation for M , Eq. (3.1). Substituting

Eq. (3.10) into Eq. (3.1), multiplying by P 2+m2
H , and then taking the limit P 2→ −m2

H ,

eliminates all terms not singular at P 2 = −m2
H . Dropping Γ from both sides gives

Eq. (3.8). Thus, the BSE follows from the pole structure of the quark-antiquark scat-

tering matrix M below threshold.

Note that strictly speaking Γ(p;P ) is uniquely defined only at the bound state pole,

where P 2 = −m2
H . Alternatively, we may say that Eq. (3.8) does not hold everywhere,

except at the meson mass shell where P 2 = −m2
H , and hence it is an eigenvalue equation.

3.2.1. Normalisation of the Bethe-Salpeter Amplitude

The bound state equation Eq. (3.8) is an homogeneous eigenvalue equation, and in

order for Bethe-Salpeter Amplitude to be completely defined it needs to be normalised.

Although the normalisation for the BSA is implicitly given by Eq. (3.10), we need a

more practical way for normalising it.

§Away from the bound state pole the form Eq. (3.10) is not valid, see the paragraph above Eq. (3.11).
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The normalisation condition for the bound state can be obtained directly from

Eq. (3.1) and the form of the M-matrix, Eq. (3.10), near the bound state pole. To

this end, we note that Eq. (3.1) can be written as

M = K +

∫
MGK, (3.12)

where for compactness we have suppressed all momentum arguments in M , K, and

G. The equivalence between Eq. (3.1) and Eq. (3.12) follows from the fact that they

generate the same Born series Eq. (3.2). In general, K will be real, however, G will be

in general complex. Hence, Eq. (3.12) may also be written as

M = K +

∫
MGK, (3.13)

where the bar represents the adjoint, which includes complex conjugation and any ad-

ditional operations. Writing Eq. (3.13) as

K =M −
∫
MGK, (3.14)

and substituting this equation for K under the integral in Eq. (3.1) gives

M = K +

∫
MGM −

∫∫
MGKGM. (3.15)

Substituting Eq. (3.10), written in shorthand as

M = Γ
1

P 2 +m2
H

Γ +R, (3.16)
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into Eq. (3.15), gives terms with a double pole at P 2 = −m2
H , a single pole, and no pole.

The double pole terms occur only at the right-hand side, and are

double poles =

(
1

P 2 +m2
H

)2{
Γ

∫
(ΓGΓ)Γ− Γ

∫∫
(ΓGKGΓ)Γ

}
. (3.17)

The coefficient of the double pole term must be zero at P 2 = −m2
H . Dropping the initial

factor of Γ, and the final factor of Γ, gives

∫
ΓGΓ−

∫∫
ΓKGΓ =

∫
ΓG

[
Γ−

∫
KGΓ

]

=

∫ [
Γ−

∫
ΓGK

]
GΓ

= 0, (3.18)

where the last equality follows because of the bound state equation Eq. (3.8). Alterna-

tively, by equating poles on both sides, Eq. (3.18) is another way to obtain the bound

state equation Eq. (3.8), assuming M has the form Eq. (3.10) below threshold.

Next, we look at the single poles. There are terms from the single poles, and terms

from the expansion of the coefficients of the double poles, near P 2 = −m2
H , the residue

of the double poles. The terms involving R do not contribute because of the bound

state equation Eq. (3.8). The expansion of the coefficient of the double pole terms, near

P 2 = −m2
H , will generate terms proportional to ∂Γ/∂P 2, and ∂Γ/∂P 2. Again, by using

the bound state equation Eq. (3.8), these terms do not contribute either. Finally, the

only new result comes from the balancing of the single pole on the left-hand side with

the derivatives of G, and GKG, on the right-hand side. Thus we obtain

ΓΓ = Γ

∫ (
Γ
∂G

∂P 2

∣∣∣
P 2=−m2

H

Γ

)
Γ− Γ

∫∫ (
Γ
∂(GKG)

∂P 2

∣∣∣
P 2=−m2

H

Γ

)
Γ. (3.19)

This can be simplified by dropping the common factor ΓΓ, and using the bound state

equation, giving
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1 + +=
P P P PP P

Γ Γ ΓΓ Γ ΓK

Figure 3.4.: Full normalisation condition for the Bethe-Salpeter amplitude. A slash over a
quantity denotes a derivative with respect to the total meson momenta.

1 =

∫
Γ
∂G

∂P 2

∣∣∣
P 2=−m2

H

Γ +

∫∫
ΓG

∂K

∂P 2

∣∣∣
P 2=−m2

H

GΓ, (3.20)

depicted in Figure 3.4. Note that the derivation of Eq. (3.20) did not depend on any

detail, but only on the structure of the equation. It can therefore be used to obtain the

normalisation of any bound state amplitude. For the cases when K is independent of

the bound state total momentum P , the normalisation condition reduces to

1 =

∫
Γ
∂G

∂P 2

∣∣∣
P 2=−m2

H

Γ. (3.21)

3.2.2. An equivalent normalisation condition for the BSA

In current Bethe-Salpeter equation studies [28, 23, 24, 29], the canonical normalisation

condition for the bound state amplitude, Eq. (3.20), is written explicitly as

2Pµ =

∫
d4q

(2π)4

{
Tr

[
Γ(q;−P )∂S(q+)

∂Pµ
Γ(q;P )S(q−)

]

+ Tr

[
Γ(q;−P )S(q+)Γ(q;P )

∂S(q−)

∂Pµ

]}

+

∫∫
d4k

(2π)4
d4q

(2π)4
[χ(q;−P )]sr

[
∂K(k, q;P )

∂Pµ

]

tu;rs

[χ(k;P )]ut ,

(3.22)

where χ(q;P ) = S(q+)Γ(q;P )S(q−) is the bound state wave function, and Γ(q;−P )t =
C−1Γ(−q;−P )C with C = γ2γ4 the charge conjugation matrix, and X t denoting the

transpose of the matrix X .
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An alternative but equivalent normalisation condition to Eq. (3.22) is given by[30, 31]

(
1

λ

dλ

dP 2

)−1

=

∫
d4q

(2π)4
Tr
[
S(q+)Γ(q;P )S(q−)Γ(q;−P )

]
, (3.23)

where λ is the eigenvalue introduced in Eq. (3.11), and λ = 1 at P 2 = −m2
H . This

alternative normalisation condition can be derived in the same way as the bound state

equation, by assuming Eq. (3.10) and equating coefficients of poles terms [30, 31]. The

advantage of this normalisation condition stems from the fact that it can be applied

to any truncation scheme of the Bethe-Salpeter kernel, K, in addition to being a one-

loop equation, and so easier to calculate. However, this normalisation condition does

not give a hint as to the type of diagrams that need to be considered when calculating

electromagnetic form factors, as will be seen in Chapter 5.

3.3. Dynamical Chiral Symmetry Breaking

3.3.1. Chiral symmetry

The QCD Lagrangian Eq. (2.15) with three light quark flavours has a global symmetry

SU(3)V ×SU(3)A×U(1)V ×U(1)A (3.24)

if one neglects the masses of the current up, down, and strange quarks¶, which are

small compared to the typical low-energy scale of QCD, that is, 1GeV. The U(1)V

symmetry reflects baryon number conservation, and the U(1)A is not a symmetry at the

quantum level because of the axial anomaly[8]. If the SU(3)V ×SU(3)A chiral symmetry

of the QCD Lagrangian were intact in the vacuum state, we would observe degenerate

multiplets in the particle spectrum corresponding to the above symmetry group, and

all hadrons made up of these light quarks would have their degenerate partners with

opposite parity. Since this degeneracy is not observed in nature, the implication is that

¶The mass of the strange quark is much larger than that of the up and down quarks, and thus
the SU(2)V ×SU(2)A would be a better approximate chiral symmetry when chiral symmetry is
explicitly broken.
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the chiral symmetry is dynamically broken down to SU(3)V in the QCD vacuum, i.e.

realised in the Nambu-Goldstone mode. The nonzero values of the quark masses break

chiral symmetry explicitly, and move the masses of the octet of pseudoscalar mesons

from their massless Goldstone boson character to their actual physical masses.

Direct evidence for the spontaneously broken chiral symmetry is a nonzero value of

the quark condensate for the light flavours [11, 32, 33]

〈0|qq|0〉 ≈ −(240− 250 MeV)3, (3.25)

which represents the order parameter of spontaneously broken chiral symmetry [32, 33].

That this is true we know from various sources: current algebra, QCD sum rules, and

lattice QCD[34, 35, 36]. Schwinger-Dyson Equation studies also support this value [37].

There are two important consequences of the spontaneous breaking of chiral sym-

metry. The first one is the appearance of an octet of pseudoscalar mesons of low mass

(π,K, η), which represent the associated Goldstone bosons. The η′ decouples from the

original nonet because of the U(1)A anomaly [35, 8]. The second one is that the va-

lence quarks acquire a dynamical or constituent mass through their interaction with the

collective excitations of the QCD vacuum– q̄q excitations and the instanton [32, 12].

In the chiral limit (mu = md = ms = 0), all members of the pseudoscalar octet

(π,K, η) would have zero mass, which is clearly seen in the Gell-Mann–Oakes-Renner

relations [35] that relate the pseudoscalar meson masses to the quark condensates and

current quark masses. Therefore, the nonzero mass of the pseudoscalar mesons is deter-

mined by the nonzero value of the quark condensate, a signal of DCSB, and the nonzero

values of the current quark masses.

As we will see in the next section, and following chapters, the phenomenological

consequences of chiral symmetry breaking, spontaneous or otherwise explicit, and its

breaking pattern, can be studied in the Schwinger-Dyson–Bethe-Salpeter approach to

low energy QCD, namely, hadron physics.
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3.3.2. Axial-Vector Ward-Takahashi identity

The above phenomenological features of chiral symmetry, and its dynamical breaking,

can be systematically studied in the functional integral approach to QCD, by means of

the renormalised axial-vector Ward-Takahashi identity (axWTI)

−iPµΓ
H
5µ(k;P ) = S−1(k+)γ5T

H + γ5T
HS−1(k−)− {ΓH5 (k;P ),MH}, (3.26)

where MH = diag(mu, md, ms) is the current quarks mass matrix, P = k+−k−, and T
H

gives the flavour structure of the meson under consideration, e.g. TK
+

= 1
2
(λ4 + iλ5),

T π
+

= 1
2
(λ1 + iλ2) with {λi, i = 1, . . . , 8} the SU(3)-flavour Gell-Mann matrices.

As can be seen from Eq. (3.26), the axWTI relates the axial-vector vertex ΓH5µ, the

pseudoscalar vertex ΓH5 , and the quark propagator S. This in turn implies a relationship

between the kernel in the BSE and that in the quark SDE. This will be made explicit

below, and must be preserved by any viable truncation scheme of the SDE-BSE complex.

It is the preservation of this identity which will prove useful in obtaining the defining

characteristics of the octet of pseudoscalar mesons mentioned above, namely, their low

mass, and their masslessness in the chiral limit.

The renormalised axial-vector vertex satisfies its own SDE, namely,

ΓH5µ(k;P ) = Z2γ5γµT
H +

∫
d4q

(2π)4
K(k, q;P )S(q+)Γ

H
5µ(q;P )S(q−), (3.27)

with the appropriate indices contracted. The renormalised pseudoscalar vertex similarly

satisfies

ΓH5 (k;P ) = Z4γ5T
H +

∫
d4q

(2π)4
K(k, q;P )S(q+)Γ

H
5 (q;P )S(q−), (3.28)

where in both equations, Eq. (3.27) and Eq. (3.28), K(k, q;P ) is the Bethe-Salpeter ker-

nel that appears in the bound state equation Eq. (3.8); Z2 and Z4 are the renormalisation

constants that appear in the quark SDE, Eq. (2.87).
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In order to reveal the connection between the kernel in the BSE and the kernel in

the quark SDE, rewrite the axWTI, Eq. (3.26), as

−iPµΓ
H
5µ(k;P ) + {ΓH5 (k;P ),MH} = S−1(k+)γ5T

H + γ5T
HS−1(k−) (3.29)

and rewrite the right-hand side using the general form of the renormalised dressed-quark

propagator, S−1(p) = Z2i�p + Z4MH + Σ(p) with Σ(p) = diag(Σu(p),Σd(p),Σs(p)), as

S−1(k+)γ5T
H + γ5T

HS−1(k−) = Z2i��Pγ5T
H + Z4{γ5TH ,MH}

+ Σ(k+)γ5T
H + γ5T

HΣ(k−),
(3.30)

where {γ5, γµ} = 0, and P = k+ − k− have been used.

By using the SDE, Eqs. (3.27,3.28), for ΓH5µ and ΓH5 , respectively, the left-hand side

of Eq. (3.29) can be rewritten as

−iPµΓ
H
5µ(k;P ) + {ΓH5 (k;P ),MH} = Z2i��Pγ5T

H + Z4{γ5TH ,MH}

+

∫

q

K(k, q;P )S(q+)
[
−iPµΓ

H
5µ + {ΓH5 ,MH}

]
S(q−).

(3.31)

Now, the term between square brackets can be rewritten by using Eq. (3.29), to obtain

−iPµΓ
H
5µ(k;P ) + {ΓH5 (k;P ),MH} = Z2i��Pγ5T

H + Z4{γ5TH ,MH}

+

∫

q

K(k, q;P )S(q+)

×
[
S−1(q+)γ5T

H + γ5T
HS−1(q−)

]
S(q−).

(3.32)

Finally, by equating both sides, Eq. (3.32) and Eq. (3.30), and cancelling identical terms,

we obtain
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+=+
KK

Figure 3.5.: The axial-vector Ward-Takahashi identity Eq. (3.33): It relates the quark self-
energy to the quark-antiquark scattering kernel. Filled dots denote fully dressed
objects, while cross circles denote a γ5 insertion.

∫
d4q

(2π)4
Ktu;rs(k, q;P )

[
γ5T

HS(q−) + S(q+)γ5T
H
]
sr

=
[
Σ(k+)γ5T

H + γ5T
HΣ(k−)

]
tu
, (3.33)

which clearly makes evident the relationship between the kernel in the BSE and that

in the the quark SDE, through the quark self-energy, as advertised. This identity is

depicted in Figure 3.5. It is a crucial identity that ensures the correct implementation

of chiral symmetry and its breaking pattern. A quark-antiquark scattering kernel K

that preserves this identity in the chiral limit will ensure the appearance of the pion

as the Goldstone boson of chiral symmetry breaking. In addition, for nonzero current

quark masses, it will lead to a generalisation of the Gell-Mann–Oakes–Renner relation,

see Eq. (3.42).

We will use this expression, Eq. (3.33), in future chapters to construct the Bethe-

Salpeter kernel. Any truncation or approximation to the kernel of these equation must

preserve this relation in order to capture an essential symmetry of the strong interactions

and its breaking pattern, as emphasised in [28, 23, 24, 29].

3.3.3. Axial-Vector Ward-Takahashi identity II

Independent of the assumptions about the form of the quark-antiquark scattering kernel

K, we derive an explicit relation between the pseudoscalar BSA and the quark propa-

gator in the chiral limit, by using the axWTI, Eq. (3.26). For any value of the current

quark masses, we also obtain an exact expression for the pseudoscalar decay constant,

and a relation between the pseudoscalar mass, decay constant, quark condensate, and

current quark masses.
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Consider first the chiral limit,MH = diag(0, 0, 0), of the axial-vector Ward-Takahashi

identity, Eq. (3.26):

−iPµΓH5µ(k;P ) = S−1(k+)γ5T
H + γ5T

HS−1(k−). (3.34)

The axial-vector vertex has the general form [27]

ΓH5µ(k;P ) = THγ5 [γµFR(k;P ) +��kkµGR(k;P )− σµνkνHR(k;P )]

+ Γ̃H5µ(k;P ) +
rAPµ

P 2 +m2
H

ΓH(k;P ),
(3.35)

where FR, . . . , HR, and Γ̃H5µ, are regular as P 2→ −m2
H , PµΓ̃

H
5µ∼O(P 2), and ΓH(k;P )

is the solution of the homogeneous BSE for a pseudoscalar bound state, whose general

form is given by [27]

ΓH(p;P ) = THγ5
[
iEH(p;P ) +��PFH(p;P ) + �p(p ·P )GH(p;P ) + σµνpµPνHH(p;P )

]
,

(3.36)

where the functions EH , . . . , HH are Lorentz-scalar dressing functions that characterise

ΓH(k;P ), e.g. EH(k;P ) = EH(k
2, k ·P ;P 2), with P 2 = −m2

H the pseudoscalar meson

mass shell.

By substituting Eq. (3.35) into Eq. (3.34), it is clear that, if present, ΓH satisfies

Eq. (3.9). Hence, if ΓH is nonzero then the pseudoscalar mass pole in Eq. (3.35) must

be at P 2 = −m2
H , since Eq. (3.9) admits nonzero solutions only for P 2 = −m2

H . There-

fore, if K(k, q;P ) supports such a bound state, then the axial-vector vertex, Eq. (3.35),

contains a pseudoscalar pole contribution. However, the residue rA is not fixed by the

homogeneous Bethe-Salpeter equation [38].

Assuming m2
H = 0 above, substituting Eqs. (3.35,3.36,2.87) into Eq. (3.34), and

equating poles we find [38] the chiral limit relations



QCD Bound State Equations 49

rAEH(k; 0) = B(k2) (3.37)

FR + 2rAFH(k; 0) = A(k2) (3.38)

GR + 2rAGH(k; 0) = 2A′(k2) (3.39)

HR + 2rAHH(k; 0) = 0 (3.40)

where A(k2) and B(k2) are the dressing functions of the quark propagator in the chiral

limit, and the prime denotes a derivative of A(k2) with respect to its argument.

It is important to note at this point that to any order in perturbative QCD, B(k2) = 0

in the chiral limit[39, 40, ?, 33]. The appearance of a nonzero B(k2) solution of the quark

SDE in the chiral limit indicates that chiral symmetry is dynamically broken. Eq. (3.35)

and Eqs. (3.37-3.40) show that when chiral symmetry is dynamically broken: (1) the

homogeneous, flavour-non-singlet, pseudoscalar BSE, has a massless solution; (2) the

BSA for the massless pseudoscalar bound state has a term proportional to γ5 alone,

with the momentum dependence of EH(k; 0) completely determined by the scalar part

of the quark propagator in the chiral limit, in addition to other structures that are not

zero in general; and (3) the axial-vector vertex is dominated by the pseudoscalar bound

state pole at P 2 = 0.

For MH 6= 0, the axial-vector Ward-Takahashi identity is given in Eq. (3.26). The

pseudoscalar vertex satisfies the inhomogeneous SDE, Eq. (3.28), and has the general

form

iΓH5 (k;P ) = THγ5
[
iEP

R +��PF
P
R (k;P ) +��k(k ·P )GP

R(k;P )

+ σµνkνPµH
P
R (k;P )

]
+

rP
P 2 +m2

H

ΓH(k;P ),
(3.41)

where EP
R , . . . , H

P
R are regular as P 2→ − m2

H , that is, the pseudoscalar vertex also

receives a contribution from the pseudoscalar bound state pole. In this case, after

equating poles on both sides of Eq. (3.26), we obtain

rAm
2
H = rPMH , (3.42)
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where MH ≡ TrFlavour[MH{TH , (TH)t}].

By using similar arguments, i.e. by equating pole structures, we can obtain explicit

expressions for the residues rA and rP . In particular, we will see that rA is equal to the

pseudoscalar leptonic decay constant, as defined below. To see this, note that Eq. (3.27)

can be written as

1

Z2

ΓH5µ(k;P ) = γ5γµT
H +

∫
d4q

(2π)4
M(k, q;P )S(q+)γ5γµT

HS(q−), (3.43)

whereM is the quark-antiquark scattering amplitude introduced in Eq. (3.1). Substitut-

ing the general form of ΓH5µ, Eq. (3.35), and the form of M below threshold, Eq. (3.10),

into Eq. (3.43), and equating residues on both sides of this equation at the pseudoscalar

pole, we obtain

rAPµ = Z2

∫
d4q

(2π)4
Tr
[
(TH)tγ5γµS(q+)Γ

H(q;P )S(q−)
]
, (3.44)

where the trace is over Dirac, colour, and flavour indices. The appearance of the renor-

malisation constant Z2 on the right-hand side of this equation, Eq. (3.44), is necessary

to ensure that rA is independent of the renormalisation point, regularisation mass-scale,

and gauge parameter [41].

Furthermore, we can give a physical meaning to rA by considering the renormalised

axial-vector vacuum polarisation, and its relation to the pseudoscalar leptonic decay

constant fH at the pseudoscalar bound state pole.

The renormalised axial-vector vacuum polarisation is given by

ΠH
Wµν(P ) =

(
ZW

3 − 1
) (
δµνP

2 − PµPν
)
− Z2g

2
W

∫
d4q

(2π)4
Tr
[
THγ5γµχ

H
5ν(q;P )

]
,

(3.45)
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where ZW
3 is the weak-boson wave-function renormalisation constant, and gW is the

electroweak coupling. The pseudoscalar leptonic decay constant fH appears with the

pseudoscalar bound state pole contribution to this vacuum polarisation [41] as

ΠH
Wµν(P ) =

(
δµνP

2 − PµPν
) [

Π(P 2) + g2Wf
2
H

1

P 2 +m2
H

]
, (3.46)

where Π(P 2) is regular as P 2→ −m2
H . As before, after substituting the general form

for the axial-vector vertex, Eq. (3.35), and Eq. (3.46) into Eq. (3.45), and equating poles

on both sides we find

rA = fH , (3.47)

that is, the residue of the pseudoscalar bound state pole in the axial-vector vertex is the

pseudoscalar leptonic decay constant.

By an identical procedure, but this time using the general form of the pseudoscalar

vertex, Eq. (3.41), and its SDE, Eq. (3.28), we find the following explicit expression for

the residue of the pseudoscalar bound state pole in the pseudoscalar vertex

rP = Z4

∫
d4q

(2π)4
Tr
[
(TH)tγ5S(q+)Γ

H(q;P )S(q−)
]
. (3.48)

Recall that the renormalisation constant Z4, appearing on the right-hand side of

Eq. (3.48), depends on the gauge parameter, the regularisation mass-scale, and the

renormalisation point. This dependence is what is required to ensure that rP is finite

and gauge-parameter independent[38]. Its renormalisation point dependence is just what

is required to ensure that Eq. (3.42) is independent of the renormalisation point [41].

Using the general form for the pseudoscalar bound state ΓH , Eq. (3.36), and the

chiral limit relations Eqs. (3.37-3.40) we find
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rχH = − 1

fχH
〈0|q̄q|0〉χ, (3.49)

where the superscript χ indicates that the quantity is calculated in the chiral limit, and

〈0|q̄q|0〉χ is the chiral vacuum quark condensate. The chiral vacuum quark condensate,

as defined here, is given by

−〈0|q̄q|0〉χ ≡ Z4

∫
d4q

(2π)4
Tr [Sχ(q)] , (3.50)

where the trace is over colour and Dirac indices. It is renormalisation-point dependent,

but independent of the gauge parameter and regularisation mass-scale[41]. As a corollary

of Eq. (3.42) we find

f 2
πm

2
π = − [mu +md] 〈0|q̄q|0〉+ 0(m̂2

q) (3.51)

f 2
Km

2
K = − [mu +ms] 〈0|q̄q|0〉+ 0(m̂2

q), (3.52)

where mu, md, and ms are the renormalisation-point dependent current-quark masses,

and m̂ is the renormalisation-group independent current-quark mass. The above rela-

tions, Eqs. (3.51,3.52), are what are commonly known as the Gell-Mann–Oakes–Renner

relations. They are a consequence of chiral symmetry and its breaking pattern, as im-

plemented by the axial-vector Ward-Takahashi identity.

3.4. Summary

By assuming a pole structure for the quark-antiquark scattering matrix, Eq. (3.10),

we have defined the Bethe-Salpeter amplitude and derived its bound state equation

Eq. (3.8). This is an homogeneous eigenvalue equation that admits solutions only for

discrete values of the meson momenta squared P 2 = −m2
H . In order to have solutions for

all values of P 2 = −m2
H we have introduced a fictitious eigenvalue to it, see Eq. (3.11).

Being the solution of a homogeneous eigenvalue equation, the normalisation of the BSA
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has to be defined by a separate equation. Again, by assuming the pole structure of the

quark-antiquark scattering matrix, Eq. (3.10), and balancing poles, we have obtained

a normalisation condition for the BSA. An alternative, but equivalent, normalisation

condition that includes the fictitious eigenvalue was also derived.

In principle, the only input quantities to the bound state equation are the quark-

antiquark scattering kernel and the constituent dressed-quark propagators. Both of these

quantities satisfy their own SDE. However, e.g. the quark propagator itself depends on

the full gluon propagator, and the full quark-gluon vertex through the quark SDE. In

turn, these 2- and 3-point functions depend on other higher n-point functions, and so

on. This dependence illustrates the major drawback of the Schwinger-Dyson equations

approach to quantum field theory: It is an infinite tower of coupled n-point functions

which has to be truncated in order to define a tractable problem. That is, we have to

make an ansatz for the n-point functions whose SDE are not explicitly solved for.

Irrespective of the complexity of the truncation scheme designed, it has to respect

some qualitative features of the strong interactions, such as chiral symmetry and its

breaking pattern, in order to be a viable truncation scheme. This is the content of

Eq. (3.33) and the way in which chiral chiral symmetry breaking is implemented in

the SDE-BSE approach. Any truncation scheme employed on the quark SDE kernel

must be related, via Eq. (3.33), to that employed in the quark-antiquark scattering

kernel, in order to preserve an essential symmetry of the strong interactions, namely

chiral symmetry and its breaking pattern. This relation is satisfied by ensuring the

preservation of the axial-vector Ward-Takahashi identity Eq. (3.26). In a more practical

way, Eq. (3.33) can be used to construct the kernel for the BSE given an expression for

the quark self-energy.

Independent of the form of the quark-antiquark scattering kernel, we derived a num-

ber of explicit relations involving the BSA and the quark propagator. In the chiral

limit, and when chiral symmetry is dynamically broken through a nonzero value of the

quark mass dressing function: the homogeneous, flavour-non-singlet, BSE has a mass-

less pseudoscalar bound state solution, with a term proportional to γ5 alone, and whose

momentum dependence is given completely in terms of the scalar part of the quark

propagator, Eq. (3.37), which in turn is nonzero due to chiral symmetry being spon-

taneously broken. An expression for the chiral quark condensate has also been given.

Away from the chiral limit, we obtained an explicit expression for the residue of the

pseudoscalar bound state pole in the axial-vector vertex, and that in the pseudoscalar

vertex, respectively; a relation between these, via the pseudoscalar bound state mass
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squared and the renormalised current quark masses, a generalisation of the Gell-Mann–

Oakes–Rener relation, has also been obtained. Finally, by considering the axial-vector

vacuum polarisation, and its form near the pseudoscalar bound state pole, we derived

an explicit relation for the pseudoscalar leptonic decay constant, and related this to the

residue of the pseudoscalar bound state pole in the axial-vector vertex.

Because of the nature of the infinite nesting of the system of SDE-BSE, it will in-

evitably be necessary to introduce a truncation scheme. The results discussed above will

provide important guidance in determining the structure of the BSE kernel, and be a

useful test for further approximations made.



Chapter 4.

Rainbow-Ladder truncation of

SDE-BSE

4.1. Introduction

The complex nature of the SDE-BSE system of equations requires the introduction of a

truncation scheme in order to define a tractable problem. In this chapter we introduce

the rainbow-ladder [38, 42] truncation scheme of this system of equations, and provide

a phenomenologically-motivated model for the effective quark-quark interaction. We

then systematically study its phenomenological consequences for the static properties of

the pion and kaon, by calculating their masses and decay constants. This is achieved

after solving numerically the corresponding equations for the quark propagators and

meson Bethe-Salpeter amplitudes. The results presented will allow the verification of

the general results based on chiral symmetry and its dynamical breaking, as presented

in the previous chapter. This will give us the confidence to take this truncation scheme

as a foundation for future improvement.

4.2. The quark SDE

The starting point for the study of mesons, as bound states of dressed quarks and

gluons, is the SDE for the dressed-quark propagator in QCD. It is one of the main

inputs to the meson BSE, as seen in the previous chapter. The SDE for the dressed-quark

propagator describes how the propagation of a quark is modified as it travels through the

interacting vacuum of QCD. In propagating through this medium, the quark and gluon

55
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Figure 4.1.: Quark Schwinger-Dyson Equation; filled circles indicate fully dressed objects.

propagators acquire momentum-dependent modifications that fundamentally alter their

spectral properties. It is therefore important for us to understand such modifications in

order to study meson bound states as composed of dressed quarks and gluons. We start

this section with some general features of the renormalised quark SDE as obtained from

general Quantum Field Theory in Euclidean space. More detailed presentations can be

found in [28, 23, 24, 43].

In QCD, the renormalised Schwinger-Dyson equation for the dressed-quark propaga-

tor for a particular quark flavour, as derived in Chapter 2, is

S−1(p) = Z2(i�p+mbare) + Z1

∫
d4q

(2π)4
g2Dµν(k)

λa

2
γµS(q)Γ

a
ν(k, p), (4.1)

where k = p−q is the momentum of the gluon, g is the renormalisation-point-dependent

coupling constant, Dµν(k) is the renormalised dressed-gluon propagator, Γaν(k, p) is the

renormalised dressed-quark-gluon vertex, and mbare is the bare current-quark mass that

appears in the Lagrangian Eq. (2.27); Z1(µ,Λ) and Z2(µ,Λ) are the quark-gluon-vertex

and the quark wave-function renormalisation constants, respectively, which depend on

the renormalisation point µ and the regularisation mass scale Λ. This equation is de-

picted in Figure 4.1. The dressed-quark propagator, as well as the dressed-gluon propa-

gator, and the dressed-quark-gluon vertex, depend on the renormalisation point at which

they are defined; however, observables do not depend on this.

The quark SDE explicitly shows what we mentioned at the end of the previous chap-

ter: The SDE are a coupled infinite set of nonlinear integral equations. The kernel in

Eq. (4.1) involves the dressed-gluon propagator Dµν(k) and the dressed-quark-gluon-

vertex Γaν(k, p), which in turn satisfy their own SDE and therefore the quark SDE is

coupled to them. These equations in turn are coupled to higher n-point functions . . . ad

infinitum, and hence the SDE are an infinite tower of coupled nonlinear integral equa-
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tions, with a tractable problem being defined once a truncation scheme has been spec-

ified. The problem is further complicated once we want to study meson bound states

as composed of dressed quarks and gluons. However, independent of these complexities,

general results can be derived as demonstrated in the previous chapter.

The general form of the renormalised dressed-quark propagator, obtained as the

solution of Eq. (4.1), is given in terms of two Lorentz-scalar dressing functions, written

in various forms as

S−1(p) = i�pA(p
2, µ2) +B(p2, µ2)

= Z−1(p2, µ2)
[
i�p +M(p2)

]
, (4.2)

which are equivalent. In the last form, Z(p2, µ2) is known as the wave-function renor-

malisation, and M(p2) is the dressed-quark mass function, which is independent of the

renormalisation point if the quark propagator is renormalised multiplicatively.

The solution of the quark SDE, Eq. (4.2), is subject to the renormalisation condition,

for µ large and spacelike [38],

S−1(p)
∣∣∣
p2=µ2

= i�p+m(µ), (4.3)

where m(µ) is the flavour-dependent renormalised current-quark mass, and

m(µ) = Z−1
m (µ,Λ)mbare(Λ), Zm(µ,Λ) = Z−1

2 (µ,Λ)Z4(µ,Λ), (4.4)

hold, with Zm(µ,Λ) being the mass renormalisation constant. In this thesis we will take

the renormalisation point to be µ = 19GeV, as we want to compare our results to those

of others.

The renormalisation constants Z2 and Z4 are determined by imposing the renormal-

isation condition, Eq. (4.3), on the solutions of the quark SDE, Eq. (4.1). These in turn
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imply the following renormalisation conditions for the quark dressing functions given in

Eq. (4.2):

A(µ2, µ2) = 1 (4.5)

B(µ2, µ2) = m(µ). (4.6)

Equations for the quark propagator dressing functions A(p2) andB(p2) can be derived

by taking appropriate Dirac traces of Eq. (4.1) with the projectors PA(p) = −(i/4p2)�p

and PB(p) = (1/4)1, respectively, resulting in

A(p2) = Z2 + Z1CF

∫
d4q

(2π)4
g2Dµν(k)TrD [PA(p)γµS(q),Γν(k, p)] (4.7)

B(p2) = Z4m(µ) + Z1CF

∫
d4q

(2π)4
g2Dµν(k)TrD [PB(p)γµS(q)Γν(k, p)] ,

(4.8)

where we have written Γaν(k, p) = (λa/2)Γν(k, p), and CF = 4/3 is the quadratic Casimir

operator for colour SU(3). At this point we could perform the Dirac traces and con-

tractions appearing in Eqs. (4.7,4.8), by using the general form of Dµν(k), S(q), and

Γν(k, p), but we leave this for a later section when we introduce a truncation scheme.

As we will be particularly interested in the phenomenon of dynamical breaking of

chiral symmetry, we formally introduce at this point the chiral limit. In QCD, the chiral

limit is unambiguously defined by [28, 23, 24]

Z2(µ,Λ)mbare(Λ) ≡ 0, ∀Λ ≫ µ, (4.9)

which is equivalent to the renormalisation-point-invariant current-quark mass being zero,

i.e. m̂ = 0 [28, 23, 24].

The best known truncation scheme of the SDE is the weak coupling expansion,

which reproduces every diagram in perturbation theory. It is a systematic-improvable

truncation scheme, and a essential tool for the investigation of large momentum transfer



Rainbow-Ladder truncation of SDE-BSE 59

phenomena because QCD is asymptotically free [44, ?, 35, 45]. However, it excludes the

possibility of obtaining information about the low-energy regime relevant for the hadron

structure and reactions, and the phenomena of dynamical chiral symmetry breaking

(DCSB), which are all essentially nonperturbative∗.

As a demonstration of the nonperturbative nature of the phenomena of chiral sym-

metry breaking, consider the chiral limit in perturbative QCD, as defined in Eq. (4.9).

In this case, the theory is chirally symmetric, and a perturbative evaluation of the quark

propagator dressing functions, Eq. (4.2), gives [39, 40, ?, 33]

B(p2) = m

[
1− α

π
ln

(
p2

m2

)
+ · · ·

]
, (4.10)

where the ellipsis denote higher order terms in α. However, it is always true that at any

order in perturbation theory

lim
m→ 0

B(p2) = 0, (4.11)

and hence dynamical chiral symmetry breaking is impossible in perturbation theory, and

the quark SDE cannot generate a mass gap.

The question is whether the above situation can ever be avoided. That is, are there

circumstances (e.g. a truncation scheme) under which it is possible to obtain dynami-

cal chiral symmetry breaking†? In this case the interactions between the propagating

quark and the collective excitations of the QCD vacuum would have nonperturbatively

generated a mass gap, whose appearance breaks chiral symmetry dynamically.

We will see in the next section that it is indeed possible to construct a truncation

scheme in which DCSB is possible. There are additional models in which this is also

possible, e.g. [46, 29], however all of these share the property of an infrared enhancement

in the effective quark SDE kernel [47, 48, 49, 50], namely for energy scales ≈ 1 GeV2.

∗From the hadron spectrum we know that chiral symmetry has to be spontaneously broken in the
nontrivial QCD vacuum, which is a nonperturbative effect.

†We insist in DCSB since this effect is responsible for the large mass difference between parity partners
in the hadron spectrum, amongst other things such as the pion being light, and the rho and nucleon
being heavy.
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4.3. Rainbow truncation of the quark SDE

The kernel in the quark SDE, Eq. (4.1), is formed from the product of the dressed-gluon

propagator and the dressed-quark-gluon-vertex, and therefore the structure of these

quantities is largely responsible for the spectral properties of the dressed-quark propa-

gator. However, in developing a truncation scheme for the quark SDE it is insufficient to

concentrate only on these, as the SDE system forms an infinite tower. In the low-energy

region of the strong interactions, dynamical chiral symmetry breaking is the dominant

nonperturbative effect characterising the light hadron spectrum, in particular that of the

octet of pseudoscalar mesons[11]. It is thus imperative that the implemented truncation

scheme does not break chiral symmetry, and the pattern by which it is broken, if it is to

be a viable approach.

In QCD, the accepted theory of the strong interactions [44], chiral symmetry and

its breaking pattern are expressed through the axial-vector Ward-Takahashi identity,

Eq. (3.26). This identity entails a relation between the kernel in the BSE and that in

the quark SDE, Eq. (3.33). Thus, in order to preserve an essential symmetry of the

strong interactions and its breaking pattern, any truncation scheme, or approximation

made to these quantities, must preserve that relation.

Both, the dressed-gluon propagator and the dressed-quark-gluon-vertex satisfy their

own SDE, and in order to define a self-consistent solution we must study their SDE too,

which is a difficult problem. However, such a task is outside the scope of this thesis, and

therefore we concentrate only on the quark SDE, Eq. (4.1). Despite their complexity,

recent progress has been made in unveiling their nonperturbative structure using their

SDE [51, 52, 53, 54, 55], as well the lattice formulation of QCD [56, 57, 58, 59, 60]. Ul-

timately, the detailed infrared behaviour of these quantities should not materially affect

the observable consequences of the quark SDE and meson BSE, as long as the infrared

enhancement in the quark SDE implements the appropriate amount of dynamical chiral

symmetry breaking, and explains the (pseudo)Goldstone character of the pion [50].
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4.3.1. Gluon propagator and quark-gluon-vertex

Gluon propagator

The dressed-gluon propagator satisfies its own SDE, and the general solution to this

equation has the form

Dµν(k) =
G(k2, µ2)

k2

(
δµν −

kµkν
k2

)
, (4.12)

in Euclidean space and Landau gauge, where G(k2, µ2) is gluon dressing function, re-

lated to the vacuum polarisation by G(k2, µ2) = 1/(1+Π(k2, µ2)). In Eq. (4.12), we have

made explicit the dependence of the dressed-gluon propagator on the renormalisation

point µ through G(k2, µ2). The dressed-gluon propagator is calculable in a perturba-

tive expansion in the coupling constant, and the free gluon propagator, used in QCD

perturbation theory, is simply given by setting G(k2, µ2) = 1 in Eq. (4.12).

Quark-gluon-vertex

The dressed-quark-gluon-vertex also satisfies its own SDE, and its general form can

be characterised by 12 Lorentz-scalar dressing functions. Its Lorentz-Dirac basis can

be constructed from the linear combinations of the three vectors γµ, kµ, and pµ, each

multiplied by one of the four independent matrices 1, ��k, �p, and σµνkµpν . The choice

of the Lorentz-Dirac basis is constrained by the required properties under Lorentz and

CPT transformations, but it is not unique, see e.g. [56]. The general form of the

dressed-quark-gluon-vertex is thus given by

Γµ(k, p) =
12∑

i=1

F i(k, p, µ)V i
µ(k, p), (4.13)

where µ indicates the renormalisation-point dependence of the quark-gluon vertex, F i

(i = 1, . . . , 12) are the Lorentz-scalar dressing functions characterising Γµ(k, p), and

V i
µ(k, p) (i = 1, . . . , 12) is the Lorentz-Dirac basis being employed. For our purposes it
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Figure 4.2.: Rainbow truncation of the quark SDE. The resulting equation consists of an
effectively dressed gluon exchange Eq. (4.14).

will be sufficient to note that V 1
µ (k, p) = γµ [56] since the other structures will not be

taken into account explicitly.

4.3.2. A phenomenological model for the effective interaction

In modelling the quark SDE kernel we follow [38, 42], and make the following approxi-

mation in the quark self-energy Eq. (4.1), the so-called rainbow approximation,

Z1

∫
d4q

(2π)4
g2Dµν(k)

λa

2
γµS(q)Γ

a
ν(k, p) →

∫
d4q

(2π)4
G(k2)Dfree

µν (k)
λa

2
γµS(q)

λa

2
γν , (4.14)

where the phenomenological “effective” coupling G(k2) contains information about the

behaviour of the product G(k2, µ2)F 1(k, p, µ), and the model is completely defined once

a form for G(k2) has been specified. Note that we have actually made the replacement

Γaν(k, p)→ (λa/2)γν, and absorbed Z1g
2 into the effective coupling G(k2). The function

G(k2) can be interpreted as an effective gluon dressing function. The resulting diagram-

matic expression is presented in Figure 4.2, and it is clear from this figure that the

solution to this equation resums an effectively-dressed gluon rainbow.

In principle, constraints on the form of G(k2) come from the SDE satisfied by the

dressed-gluon propagator and the dressed-quark-gluon vertex. However, we know that

the behaviour of the QCD running coupling α(k2) in the ultraviolet, i.e. k2 > 2-3 GeV2,

is well described by perturbation theory [61], and therefore the model dependence is re-

stricted to the infrared region. On the other hand, the effective interaction in the quark

SDE should exhibit sufficient infrared enhancement capable of triggering dynamical chi-

ral symmetry breaking, through a nonzero quark condensate, and the generation of a
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Figure 4.3.: Effective coupling for the quark SDE, Eq. (4.15), for various values of ω, with
(ωD)1/3 = 0.72 GeV. For k2 > 2 GeV2 G(k2) ≈ 4πα(k2).

momentum-dependent quark mass dressing function[29] that connects the current-quark

mass to a constituent-like quark mass.

Various models for the effective interaction G(k2) combining the ultraviolet behaviour

known from perturbative QCD and an ansatz for the infrared part have been designed

in the past. These have been applied to different detailed studies of dynamical chiral

symmetry breaking, hadron structure and reactions [38, 42, 62, 63, 64, 65, 66].

In choosing a form for the effective coupling we follow reference [38, 42], and write

the effective gluon dressing function G(k2) as

G(k2)
k2

= 4π2D

ω6
k2 exp

(
−k2

ω2

)
+ 4π

γmπ

1
2
ln

[
τ +

(
1 + k2

ΛQCD

)2]F(k2), (4.15)

where F(k2) =
(
1− exp

(
− k2

4m2
t

))
/k2, and fixed parameters mt = 0.5 GeV, τ = e2 − 1,

Nf = 4, γm = 12/(33− 2Nf ), Λ
Nf

QCD = 0.234 GeV. The remaining parameters, ω and D,

are phenomenological parameters fitted, together with the renormalised quark masses

mu = md and ms, to pion and kaon observables. The effective gluon dressing function

G(k2) is plotted in Figure 4.3 for various values of ω and D.
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Figure 4.4.: Quark mass function for different values values of the model parameters. The
renormalised current quark mass mu = 3.7 MeV is given at the renormalisation
point µ = 19 GeV.

From the expression for G(k2), Eq. (4.15), we see that the first term describes the

infrared properties of the effective interaction through the parameters ω and D‡. For ω

fixed, D controls the amplitude of G(k2). On the other hand, ω not only controls the am-

plitude of G(k2), but also its width. The first term thus provides the phenomenologically

required infrared enhancement of the quark SDE kernel, necessary for the dynamical gen-

eration of a constituent-like quark mass and a chiral vacuum quark condensate. The

second term accounts for the ultraviolet behaviour known from perturbative QCD, and

ensures the preservation of one-loop results [38, 42].

The detailed study of [42] found that pseudoscalar and vector meson ground state

properties are practically insensitive to variations in the model parameters, with ω =

0.3-0.5 GeV and (ωD)1/3 = 0.72 GeV, as long as the integrated strength of the effective

interaction is strong enough to generate an acceptable amount of chiral symmetry break-

ing, as required by the chiral quark condensate. However, this is not true for excited

states made up of light quarks, where the long range part of the effective quark-quark

interaction plays a significant role [67, 68, 69, 70].

‡The parameters ω and mt are not freely varied, they are fixed mainly to ensure that G(k2) ≈ 4πα(k2)
for k2 > 2 GeV2 [38].
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Figure 4.5.: Quark wave function renormalisation for different values of the model param-
eters. The renormalised current quark mass mu = 3.7 MeV is given at the
renormalisation point µ = 19 GeV.

Experiment ω = 0.4 [GeV]

(estimates) [MeV] D = 0.93 [GeV2]

mu/d 5-10 5.54

ms 100-300 125

mπ 138.5 138

mK 496 497

fπ 130.7 131

Table 4.1.: Parameters in Eq. (4.15), fitted to pion and kaon static properties [42]. Renor-
malised current-quark masses have been evolved to the renormalisation point
µ = 1 GeV using one-loop equations. ω is fixed a priori such that G(k2) ≈ 4πα(k2)
for k2 > 2 GeV2 [38, 42].

4.3.3. Numerical results for the rainbow-truncated quark SDE

The true phenomenological parameters in the rainbow quark SDE are D and the renor-

malised current-quark masses of the u/d- and s-quarks, mu/d(µ) and ms(µ), respec-

tively. The parameters ω and mt are chosen so as to ensure that G(k2) ≈ 4πα(k2) for

k2 > 2 GeV2 [38, 42]. The current quark masses mu/d = 3.7 MeV and ms = 83.8 MeV,

renormalised at µ = 19 GeV, were fitted to the pion and kaon masses, respectively [42].
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Using the one-loop expression [39, 40, ?, 33] to evolve these masses down to µ = 1 GeV

results in the values for mu/d and ms presented in the third column of Table 4.1. With

the parameters fixed with static pion and kaon observables, subsequent calculated meson

properties are predictions. Using this model, good agreement with the experimental val-

ues for the light pseudoscalar and vector meson masses and decay constants is achieved

[42, 71]. Not only the meson masses and leptonic decay constants agree with experiment

without parameter readjustment but also a wide range of other observables, see e.g. [24]

and references therein.

Given the values of these phenomenological parameters, we can now solve numeri-

cally the quark SDE for the dressing functions A(p2) and B(p2) in Eqs. (4.7,4.8), renor-

malised according to Eqs. (4.5,4.6). Performing the traces and contractions appearing

in Eqs. (4.7,4.8), we obtain the following coupled nonlinear integral equations for the

quark dressing functions

A(p2) = Z2 +
CF
p2

∫
d4q

(2π)4
G(k2)
k2

{
− 2

k2
[
p2q2 − (p · q)2

]
+ 3(p · q)

}
σV (q

2)(4.16)

B(p2) = Z4m(µ) + 3CF

∫
d4q

(2π)4
G(k2)
k2

σS(q
2), (4.17)

where

σV (q
2) =

A(q2)

q2A2(q2) +B2(q2)
, (4.18)

σS(q
2) =

B(q2)

q2A2(q2) +B2(q2)
. (4.19)

We present numerical solutions to Eqs. (4.16,4.17) for the wave-function renormalisation

Z(p2) = 1/A(p2) and mass dressing function M(p2) = B(p2)/A(p2) in Figures 4.6,4.7,

renormalised at µ = 19 GeV. In Figures 4.6,4.7, various values of the renormalised

current-quark mass are considered, while ω = 0.4 GeV and D = 0.93 GeV2 are kept

fixed. On the other hand, in Figures 4.4,4.5 the current-quark mass of the quark to

mu = 3.7MeV, and vary ω and D.

Figure 4.6 makes evident that DCSB is a reality, i.e. can be implemented, in the rain-

bow truncation with the effective coupling given by Eq. (4.15). At ultraviolet momenta,
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Figure 4.6.: Quark mass function in the rainbow-ladder truncation with the Maris-Tandy
dressing function for various values of the renormalised current-quark mass,
with ω = 0.4 GeV and D = 0.93 GeV2.

the magnitude of the mass function is determined by the renormalised current-quark

mass. In the infrared, however, and specially for light-quarks, M(p2) is significantly en-

hanced. For light quarks, this enhancement is orders of magnitude larger than the mass

present in the Lagrangian. Figure 4.6 also shows that the evolution from the current-

quark mass to a constituent-like quark mass occurs at the scale of ≈ 1 GeV2, as required

from hadron phenomenology.

To get a quantitative idea of the effects of dynamical chiral symmetry breaking on

the propagation characteristics of quarks, we define§ [38] the Euclidean constituent-

quark mass ME as the solution of p2 = M2(p2). Table 4.2 presents the Euclidean

constituent-quark mass for various values of the renormalised current-quark mass. The

ratio ME
f /mf(µ) is a quantitative measure of the nonperturbative effects of DCSB on

a particular quark flavour. As can be seen from the third column of Table 4.2 and

Figures 4.6,4.7, this effect is particularly important for light quarks, i.e. the evolution

and magnitude of their mass function in the infrared is dominated by the nonperturbative

effect of DCSB. The domain in which the effect of DCSB is relevant decreases as the

renormalised current-quark mass increases.

§Quark confinement implies that there is no pole mass. This definition is therefore arbitrary since we
could have defined M(p2 = 0) as our quantitative measure.
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Figure 4.7.: Wave function renormalisation in the rainbow-ladder truncation with the Maris-
Tandy dressing function for various values of the renormalised current-quark
mass, with ω = 0.4 GeV and D = 0.93 GeV2.

mf (µ) [MeV] ME [GeV] ME/mf(µ)

0.0 0.391 ∞
3.7 0.400 108.12

83.8 0.555 6.62

827 1.416 1.71

Table 4.2.: Euclidean constituent-quark mass for various quark flavours as the solution of
p2 = M2(p2). The renormalised current-quark masses are defined at the renor-
malisation point µ = 19 GeV.

Because the truncation preserves the one-loop renormalisation group properties of

QCD, the ultraviolet behaviour of the solutions of the quark SDE is that of perturbative

QCD, in the chiral limit and in the presence of explicit chiral symmetry breaking, see

Figures 4.6,4.7. In the presence of explicit chiral symmetry breaking, the mass function

is described by [72, 73]

M(p2)
p2≫Λ2

QCD

=
m̂[

1
2
ln
(
p2/Λ2

QCD

)]γm , (4.20)
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where m̂ is the renormalisation-group-invariant current-quark mass, while when dynam-

ical chiral symmetry breaking occurs, the ultraviolet behaviour is given by [72, 73]

M(p2)
p2≫Λ2

QCD

=
2π2γm

3

1

p2
−〈qq〉0

[
1
2
ln
(
p2/Λ2

QCD

)]1−γm , (4.21)

where 〈qq〉0 is the renormalisation-point-independent chiral vacuum quark condensate.

Fitting Eq. (4.21) to the ultraviolet tail of our chiral limit numerical solutions in Fig-

ure 4.6 we find

−〈qq〉0 = (0.228 GeV)3. (4.22)

The behaviour of the quark mass function and wave function renormalisation of Fig-

ures 4.6,4.7 has also been confirmed semi-quantitatively in lattice simulations of QCD

[74, 75, 76]. Agreement for a range of quark masses requires the effective interaction to

be flavour dependent, and dressing the quark-gluon-vertex ensures this dependence, as

pointed out in [49].

4.4. Ladder truncation of the meson BSE

We now turn our study to meson bound states. Meson bound states, whose flavour

structure is given by a dressed quark-antiquark (ab̄) pair¶, are described by the Bethe-

Salpeter equation (BSE), depicted in Figure 4.8,

[ΓH(p;P )]tu =

∫
d4q

(2π)4
[K(p, q;P )]tu;rs

[
Sa(q+)ΓH(q;P )S

b(q−)
]
sr
, (4.23)

where H = (ab̄) indicates the flavour structure. Here, ΓH(p;P ) is the meson Bethe-

Salpeter amplitude (BSA) describing the bound state, Sf(q± ) is the propagator for a

dressed quark, and K(p, q;P )tu;rs is the quark-antiquark scattering kernel. Latin indices

¶In the rainbow truncation, quark propagators, obtained as the solution of the quark SDE, are distin-
guished only by the renormalised current quark mass.
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q+

=
P P

p+

p− q−

p+

p−

Γ KΓ

Figure 4.8.: Bethe-Salpeter Equation: Γ is the fully-amputated quark-meson vertex or Bethe-
Salpeter Amplitude; K is the fully-amputated, two-particle irreducible, scatter-
ing kernel; filled dots on the quark lines indicate quark propagators are fully
dressed.

indicate the colour, flavour, and Dirac structure. Poincaré covariance and momentum

conservation entail q+ = q+ηP , q+ = q−(1−η)P , and similarly for p± , with P = p+−p−.
The parameter η ∈ [0, 1] describes the meson momentum sharing between the quark-

antiquark pair. Observables, however, do not depend on this, see Tables 4.3,4.4.

The Bethe-Salpeter equation, Eq. (4.23), is a homogeneous eigenvalue equation that

admits solutions only for discrete values of the meson momenta P 2 = −m2
H , where mH

is the mass of the meson under consideration. In a particular channel, the lowest mass

solution corresponds to the physical ground state.

In Eq. (4.23), K(p, q;P )tu;rs is the fully-amputated, two-particle irreducible, quark-

antiquark scattering kernel. It is a four-point Schwinger function, obtained formally as

the sum of a countable infinity of skeleton diagrams[77]. The complexity ofK(p, q;P )tu;rs

is one of the reasons why quantitative SDE and BSE studies employ modelling of Dµν(k)

and Γaν(k, p) [38], because K(p, q;P )tu;rs also appears in the SDE satisfied by Γaν(k, p).

However, as illustrated in the previous chapter, the lack of a full understanding of the

interaction between quarks, through the complete knowledge of K(p, q;P )tu;rs, does not

prevent us from obtaining general results in hadron physics. If explicit calculations of

the static and dynamics properties of mesons are intended, an explicit expression for

K(p, q;P )tu;rs must be at hand however.

4.4.1. Axial-Vector Ward-Takahashi identity and ladder

Bethe-Salpeter Kernel

In the low-energy region of the strong interaction, dynamical chiral symmetry break-

ing is the main effect characterising the octet of pseudoscalar mesons [11]. In QCD,

chiral symmetry and its breaking pattern are expressed through the axial-vector Ward-
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q+

=
P P

p+

p− q−

p+

p−

ΓΓ k

Figure 4.9.: Bethe-Salpeter equation in the ladder truncation. This truncation is consistent
with the rainbow truncation of the quark SDE in the sense that they satisfy the
axWTI, Eq. (4.24).

Takahashi identity Eq. (3.26). This identity provides a relation between the kernel in

the quark SDE and that in the BSE,

∫
d4q

(2π)4
Ktu;rs(k, q;P )

[
γ5T

HS(q−) + S(q+)γ5T
H
]
sr

=
[
Σ(k+)γ5T

H + γ5T
HΣ(k−)

]
tu
, (4.24)

thus constraining the content of the quark-antiquark scattering kernel K(p, q;P )tu;rs

if an essential symmetry of the strong interactions, and its breaking pattern, is to be

preserved.

From a practical point of view, Eq. (4.24) provides a way of obtaining the quark-

antiquark scattering kernel if we can solve this constraint, given an expression for the

quark self-energy. However, this is not always possible, see e.g. [78], and we must find an

alternative way of preserving the chiral symmetry properties of the strong interactions.

In principle, one may construct a quark-antiquark scattering kernel satisfying Eq. (4.24)

from a functional derivative of the quark self-energy with respect to the quark propaga-

tor [79], within the framework of the effective action formalism for composite operators

developed in [80].

Fortunately, for the rainbow truncation of the quark self-energy, Eq. (4.14), the axial-

vector Ward-Takahashi identity can be easily satisfied. The quark-antiquark scattering

kernel that is consistent with the rainbow truncation of the quark self-energy, in the

sense that the axial-vector Ward-Takahashi identity, Eq. (4.24), is satisfied, is given by
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K(p, q;P )tu;rs = −G(k2)Dfree
µν (k)

[
λa

2
γµ

]

ts

[
λa

2
γν

]

ru

, (4.25)

where k = p− q, and G(k2) is the effective coupling of Eq. (4.15). This is the so-called

ladder truncation of the BSE. In this approximation, the Bethe-Salpeter equation takes

the form

ΓH(p;P ) = −CF
∫

d4q

(2π)4
G(k2)Dfree

µν (k)γµS
a(q+)ΓH(q;P )S

b(q−)γν , (4.26)

where the s, t, . . . indices have been suppressed. This equation is represented diagram-

matically in Figure 4.9. As can be seen from Figure 4.9, this equation corresponds to a

single effective dressed-gluon exchange, and its solution corresponds to resumming this

gluon rung, thus providing the (infinite) ladder.

Note from the Bethe-Salpeter kernel, Eq. (4.25), that

∂K(p, q;P )tu;rs
∂Pµ

= 0, (4.27)

and thus the normalisation condition Eq. (3.22) for the Bethe-Salpeter amplitude greatly

simplifies to

2Pµ =

∫
d4q

(2π)4

{
Tr

[
ΓH(q;−P )

∂Sa(q+)

∂Pµ
ΓH(q;P )S

b(q−)

]

+ Tr

[
ΓH(q;−P )Sa(q+)ΓH(q;P )

∂Sb(q−)

∂Pµ

]}
,

(4.28)

which is a one loop expression.
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4.4.2. Numerical solution to the ladder-truncated meson BSE

As stated earlier, the Bethe-Salpeter equation is a homogeneous eigenvalue equation

that admits solutions only for discrete values of the meson momenta P 2 = −m2
H , where

mH is the mass of the meson under consideration. In order to facilitate the numerical

solution of this equation, we modify it by introducing a fictitious eigenvalue λ(P 2) into

Eq. (4.23),

[ΓH(p;P )]tu = λ(P 2)

∫
d4q

(2π)4
[K(p, q;P )]tu;rs

[
Sa(q+)ΓH(q;P )S

b(q−)
]
sr
, (4.29)

with the physical solution obtained when λ(P 2 = −m2
H) = 1. The general structure of

the meson under consideration will depend on its quantum numbers, such as flavour,

Dirac, and CPT transformations [27]. Scalar and pseudoscalar mesons are characterised

by four Lorentz-scalar dressing functions, see Eq. (4.32), while vector mesons are char-

acterised by eight. These are denoted generically by F i
H(p;P ). In this thesis we will be

interested mainly in pseudoscalar mesons, however the general method described below

can be applied to any meson, with slight variations. The equations for pseudoscalar

mesons in the rainbow-ladder truncation of the SDE-BSE complex are given explicitly

in Appendix A.

We solve the BSE for the Bethe-Salpeter amplitude ΓH(p;P ) using matrix methods

as follows. We project the BSE onto the Lorentz-scalar dressing functions F i
H(p;P )

using appropriate projectors, see Appendix A for the pseudoscalar case. This results

in a system of either four or eight coupled integral equations for the dressing functions

F i
H(p;P ). This system can be solved directly for the scalar dressing functions F i

H(p;P )

depending on two variables, p2 and p ·P , and labelled by P 2 as an integral eigenvalue

equation. This makes a high demand on computer memory. However, in order to

elucidate the angular dependence of the Lorentz-scalar dressing functions F i
H(p;P ), and

save on computer memory, we expand these in a Chebyshev polynomials decomposition

in the angle‖ p̂ ·P = p ·P/|pP | as

‖In the meson rest frame we have Pµ = (imH , 0, 0, 0), and therefore p̂ ·P ∈ [−1, 1].



Rainbow-Ladder truncation of SDE-BSE 74

F i
H(p;P ) =

∑

k

F i
H,k(p

2;P 2)Tk

(
p̂ ·P

)
, with P 2 = −m2

H . (4.30)

The functions F i
H,k(p

2;P 2) can be further projected out using the orthonormal properties

of the Chebyshev polynomials Tk. With the angular dependence made explicit, we

can evaluate the non-trivial angular integrals appearing in Eq. (4.29) numerically. We

then arrange the remaining radial integral in the form of a matrix equation for the

Chebyshev moments, by matching the radial, external and internal, momenta at the

integration nodes p2j . Thus, the amplitude of our BSE is effectively projected out onto

the decomposition F i
H,k(p

2
j ;P

2). Schematically we are solving

F = λKF, (4.31)

for the eigenvector F, made up of Chebyshev moments, as a parametric equation of

P 2 = −m2
H , with mH the mass of the meson. The physical solution corresponds to

λ = 1, where the lowest mass solution with λ = 1 corresponds to the ground state in

any particular channel. Equivalently, we can set λ = 1 from the beginning, with the

solution obtained once det [1−K] = 0, for P 2 = −m2
H . However, the eigenvalue method

gives the mass and BSA of the meson at the same time.

4.5. Static properties of pseudoscalar mesons from

RL SDE-BSE

The procedure described above is employed iteratively to determine the smallest mH

satisfying λ(P 2 = −m2
H) = 1, and its respective eigenvector ΓH(p;P ), as discussed in

Appendix A. This corresponds to the ground state solution in any particular channel.

Excited states can also be found in this way, with a slight modification to this procedure.

This involves the subtraction of the ground state contribution from the kernel, as detailed

in [81, 22].
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In the pseudoscalar channel (JP = 0−), the lowest mass solutions are the pion and

kaon mesons, with flavour structure ud and us, respectively. The general form of the

BSA in this channel is given by

ΓH(p;P ) = THγ5
[
iEH(p;P ) +��PFH(p;P ) + �p(p ·P )GH(p;P ) + σµνpµPνHH(p;P )

]
,

(4.32)

with H = π, K. For mesons that are eigenstates of the charge conjugation operation

C, such as the π0, there is an additional constraint on the Bethe-Salpeter amplitude to

obtain a specified C-parity∗∗. In Eq. (4.32), all the elements of the Lorentz-Dirac basis

employed are even under C, and thus the only remaining quantity that can produce a

definite C-parity is p ·P , which is odd under C. Therefore, a C = +1 (−1) solution will

have dressing functions F i
H(p;P ) that are even (odd) in p ·P . For mesons that are not

eigenstates of C, each dressing function will contain both even an odd terms in p ·P .
Since the ladder truncation of the BSE is invariant under C if equal momentum partition

is used, the observation above of the definite parity on p ·P of the dressing functions can

be used as a test of numerical accuracy. For the Chebyshev expansion Eq. (4.30), this

means that for C = +1 (−1) we will only require even (odd) Chebyshev polynomials,

and thus the odd (even) Chebyshev coefficients will vanish.

The pseudoscalar leptonic decay constant is calculated using

fHPµ = Z2

∫
d4q

(2π)4
Tr

[
(TH)t

2
γ5γµS

a(q+)ΓH(q;P )S
b(q−)

]
, at P 2 = −m2

H , (4.33)

where H = π, K, and the trace is over Dirac, colour, and flavour indices. In Eq. (4.33),

ΓH(q;P ) is the normalised BSA. In the present truncation scheme, it is equivalently

normalised according to either Eq. (4.28) or Eq. (3.23).

The residue of the pseudoscalar vertex is similarly calculated using

∗∗In the isospin symmetric limit (mu = md) we are working in, the mass and dressing functions of π±

mesons will be equal to those of π0.
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η = 0.0 η = 0.25 η = 0.5

N mπ fπ Rπ mπ fπ Rπ mπ fπ Rπ

1 0.1849 0.1210 1.8435 0.1958 0.1292 2.0552 0.1999 0.1325 2.1371

2 0.2102 0.1307 2.3535 0.2022 0.1320 2.1855 0.1999 0.1325 2.1371

3 0.1363 0.1305 0.9858 0.1376 0.1323 1.0048 0.1380 0.1329 1.0112

4 0.1375 0.1318 1.0037 0.1379 0.1326 1.0093 0.1380 0.1329 1.0112

5 0.1385 0.1329 1.0111 0.1384 0.1328 1.0107 0.1384 0.1328 1.0106

6 0.1384 0.1329 1.0112 0.1384 0.1328 1.0108 0.1384 0.1328 1.0106

7 0.1384 0.1328 1.0111 0.1384 0.1328 1.0108 0.1384 0.1328 1.0106

8 0.1384 0.1328 1.0111 0.1384 0.1328 1.0108 0.1384 0.1328 1.0107

Table 4.3.: Dependence on the momentum sharing parameter ηπ and the number of Cheby-
shev polynomials of the mass and decay constant of the pion. All four dressing
functions are taken into account. A Rπ = 1 means that the axWTI is satisfied.
The renormalised current quark mass mu = 3.7 MeV is given at the renormali-
sation point µ = 19 GeV. The parameter D and the renormalized mass of the
current up quark mu/d were fitted to mπ and fπ in [38, 42].

rH = Z4

∫
d4q

(2π)4
Tr

[
(TH)t

2
γ5S

a(q+)ΓH(q;P )S
b(q−)

]
, at P 2 = −m2

H . (4.34)

From the previous chapter, we know that the axial-vector Ward-Takahashi imposes a

relationship between fH and rH , known as the generalised Gell-Mann–Oakes-Renner

relation,

fHm
2
H = rH(ma +mb), (4.35)

where ma and mb are the renormalised masses of the quark and the antiquark, respec-

tively. This relation must be satisfied at and beyond the chiral limit by any truncation

scheme. Confirming this relation serves both as a check of our numerical procedure and

how well the kernel satisfies the axWTI.

In Table 4.3 we present results for the mass and leptonic decay constant of the pion,

as a function of the momentum sharing parameter η and the number of Chebyshev
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η = 0.0 η = 0.25 η = 0.5

N mK fK RK mK fK RK mK fK RK

1 0.5140 0.1330 1.0064 0.5395 0.1487 1.1741 0.5397 0.1568 1.2664

2 0.5598 0.1439 1.2404 0.5402 0.1520 1.1971 0.5457 0.1565 1.2486

3 0.4980 0.1496 0.9593 0.5001 0.1526 1.0094 0.4981 0.1570 1.0332

4 0.4984 0.1677 1.0008 0.4963 0.1551 1.0086 0.4953 0.1568 1.0148

5 0.5001 0.1613 1.0062 0.4974 0.1533 1.0091 0.4969 0.1568 1.0141

6 0.4974 0.1558 1.0143 0.4967 0.1553 1.0118 0.4967 0.1565 1.0117

7 0.4974 0.1556 1.0142 0.4967 0.1553 1.0118 0.4967 0.1564 1.0117

8 0.4974 0.1556 1.0142 0.4967 0.1553 1.0117 0.4967 0.1564 1.0117

Table 4.4.: Dependence on the momentum sharing parameter ηK and the number of Cheby-
shev polynomials of the mass and decay constant of the kaon. All four dressing
functions are taken into account. A RK = 1 means that the AxWTI is satisfied.
The renormalised current quark masses mu = 3.7 MeV ms = 82 MeV are given
at the renormalisation point µ = 19 GeV. The parameter D and the renormal-
ized mass of the current up and strange quarks, mu/d and ms, were fitted to mπ,
fπ, and mK in [38, 42]. The decay constant of the kaon is a prediction of the
approach.

polynomials used in Eq. (4.30). We also present results for Rπ ≡ fπm
2
π/ [rπ(mu +md)].

A value of Rπ = 1 means that the axial-vector Ward-Takahashi identity is satisfied.

From Table 4.3, we observe that when the p ·P dependence of the dressing functions

in the BSA is appropriately included, through a sufficiently large number of Chebyshev

polynomials, physical observables are independent of the momentum sharing parameter

η appearing in the BSE, Eq. (4.23), as required. All four dressing functions in the BSA

must be included to ensure this, and to obtain the correct value for the static properties

mπ and fπ, and for Rπ = 1.

Although the number of Chebyshev polynomials reported in Table 4.3 is considerable,

accurate results can be produced with a low number of Chebyshev polynomials, e.g. 4,

especially for η = 1/2, where odd Chebyshev coefficients vanish. The same observations

with respect to the angular dependence in the BSA apply to the kaon, whose results

we present in Table 4.4. In this case, however, we need to include both even and odd

Chebyshev polynomials, since the kaon is not a charge conjugation eigenstate.

In Figure 4.10 we present some nonzero Chebyshev moments of the BSA dressing

functions of Eq. (4.32). From this figure and from Table 4.3, we see that the zeroth
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Figure 4.10.: Chebyshev moments for the various dressing functions of the pion BSA,
Eq. (4.32). Top: zeroth order; Bottom: second order. Odd Chebyshev mo-
ments vanish.
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Figure 4.11.: Momentum dependence of the various dressing functions of the pion BSA,
Eq. (4.32). The angular dependence in negligible, and chosen here such that
p ·P = 0; the Chebyshev sum in Eq. (4.30) is performed using the Clenshaw’s
recurrence formula [82].

order Chebyshev moment contributes the most to the BSA and to the static properties

of the pion. However, for an accurate description of the mass and decay constant of the

pion, Chebyshev moments beyond the zeroth order need to be included, as seen from

Tables 4.3,4.4.

In Figure 4.11 we plot the relative-momentum dependence of the various terms in the

BSA, Eq. (4.32), namely Eπ(p;P ), Fπ(p;P ), p
2Gπ(p;P ), and pHπ(p;P ), at the meson

mass shell, for the angular point p ·P = 0. As can be seen from this figure, the first two

terms in the pion BSA are the most significant, nevertheless, all four are necessary to

ensure the η independence of static properties of the pion, as well as their correct value.

These observations apply to the kaon as well.

4.6. Summary

In this chapter we have introduced the rainbow-ladder truncation scheme of the SDE-

BSE system of equations, complemented with a successful phenomenological dressing

function [42]. First, we have defined the rainbow truncation of the quark SDE, and

presented numerical solutions to the resulting equations for various quark flavours, from

the chiral limit to the strange quark mass. We have shown that chiral symmetry breaking
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is a nonperturbative phenomenon, and that such an effect is indeed possible in the

rainbow truncation scheme with a phenomenologically motivated effective quark-quark

interaction. Additionally, we have presented evidence that the phenomenon of dynamical

chiral symmetry breaking is specially important in the light quark sector, and that it is

largely responsible for the existence of a constituent-like quark mass that is significantly

bigger than the mass scale present in the QCD Lagrangian. Indeed, this dynamically

generated mass is proportional to ΛQCD. In the second part of this chapter we have

obtained the Bethe-Salpeter (ladder) kernel by solving the axial-vector Ward-Takahashi

identity, ensuring the preservation of the generalised Gell-Mann–Oakes-Renner relation.

Once we have obtained the ladder Bethe-Salpeter kernel, we have solved the Bethe-

Salpeter integral eigenvalue equation numerically for the pion and kaon, systematically

calculating their static properties. This demonstrates that the rainbow-ladder truncation

scheme is a good starting point for the investigation of the static properties of ground

state pseudoscalar mesons, and that it can be used as a firm foundation for future

improvements, as well as the investigation of the dynamic properties of the pion.



Chapter 5.

Pion form factor in the impulse

approximation

5.1. Introduction

The fact that the strongly interacting particles, the hadrons, do have a substructure was

realised more than 50 years ago at SLAC, where deep inelastic scattering experiments

[1, 83] were performed. The interpretation of these large momentum transfer experiments

revealed the presence of point-like free Dirac particles inside the hadrons, and lead to

the parton model. Further investigations, and the property of asymptotic freedom of

Non-Abelian gauge field theories, lead to the identification of these partons with the

quarks and gluons of Quantum Chromodynamics.

The picture that emerged from these large momentum transfer experiments was that

of a proton being a bound state of weakly interacting quarks and gluons. In this way,

the inelastic electron-proton scattering, through photon exchange, was viewed simply as

the elastic scattering of the electron on a free quark within the proton.

The property of asymptotic freedom of QCD allows perturbation theory techniques

to be used for the calculation of hadronic observables at large momentum transfer.

Favourable comparisons [44, 61] of QCD predictions to high energy experimental data

allowed QCD to emerge as the theory of the strong interactions. For small momentum

transfers, the proton does not break up, and the elastic scattering can be interpreted in

terms of electric and magnetic form factors that can be measured experimentally.

81
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γ q = k′ − k

π(P′)π(P)

e(k) e(k′)

Figure 5.1.: Investigation of pion substructure by means of electron scattering. Simplified
one-photon exchange elastic scattering.

The above picture of hadrons is not complete, however, since quarks and gluons

are not observed as the free particles that hit the detector, but are confined inside the

hadrons. Although not proven theoretically yet from QCD, the confinement property

of the strong interactions forbids single quarks and gluons to propagate as free particles

over large distances. Due to the running of the strong coupling constant, in propagating

over these distances, quarks and gluons interact with the nontrivial vacuum of QCD and

eventually hadronise into the colourless particles that hit the detectors.

At large distances or low momentum transfer, the QCD coupling constant is large so

that perturbation theory techniques cannot be employed, and the high energy picture

of hadrons, as being composed of weakly interacting quarks and gluons, cannot be

extrapolated to these scales. It is at these momentum scales where the nonperturbative

aspects of QCD are important in understanding the complex bound state structure and

dynamics of hadrons.

5.2. Electromagnetic form factors

The investigation of the structure of matter through electron scattering experiments

is a well-proved technique in physics since the electromagnetic probe is well known.

Suppose that we want to study the charge distribution of a hadron, e.g. the pion of

Figure 5.1. The experimental procedure is to measure the angular distribution of the

scattered electrons and compare it to the known cross section for scattering electrons

from a point charge, in the form



Pion form factor in the impulse approximation 83

dσ

dΩ
=

(
dσ

dΩ

)

point

|F (q)|2 , (5.1)

where q = k′−k is the momentum transfer between the incident electron and the hadron

target, and F is the hadron electromagnetic form factor. We then attempt to deduce

the structure (and its dynamics) of the target from the measured electromagnetic form

factor F (q), which only depends on the probe’s resolution.

It is important to note, however, that the above discussion cannot be applied directly

to the experimental investigation of the pion structure. First, although Eq. (5.1) is given

for a spinless charge distribution, it only applies to a static charge, and the pion will

usually recoil under electron scattering. Second, free pion targets are not available.

Nevertheless, Eq. (5.1) can be applied to study of elastic scattering of high energy pions

from atomic electrons[84, 85], where low momentum transfers are involved, and therefore

it can be useful in the determination of the “size” of the pion. For higher momentum

transfer, other experimental techniques need to be implemented, as described below.

We can still gain insight into the pion structure and dynamics using low momentum

transfer experiments. For a static target, it is found [77, 83] that the form factor in

Eq. (5.1) is just the Fourier transform of the normalised charge distribution ρ(x),

F (q) =

∫
d3xρ(x) exp(iq ·x). (5.2)

If the momentum transfer is small, and we assume a spherically symmetric charge dis-

tribution, we can expand the exponential in Eq. (5.2), obtaining

F (q) = 1− 1

6
〈r2〉|q|2 + · · · , (5.3)

so that the mean square radius of the pion charge distribution is given by
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〈r2〉 = −6
dF (Q2)

dQ2

∣∣∣∣
Q2=0

. (5.4)

That is, the low-momentum transfer scattering only measures the mean square radius

of the pion charge cloud, and nothing else. This is because in the small momentum

transfer limit the photon is soft, and with its long wavelength it can resolve only the size

of the pion charge distribution, but is not sensitive to the details of its substructure.

We are not only interested in understanding the overall structure of the bound state

pion by calculating its static properties, but we are also interested in the nonperturbative

dynamics of its substructure that is responsible for its form factor. In order to achieve

this, it is necessary to study electron-pion scattering at larger momentum transfers,

where the photon probe has more resolution power, and can therefore tell us something

about the pion’s detailed structure.

The Feynman diagram for the elastic electron scattering off pions is shown in Fig-

ure 5.1. Using the momentum labelling of Figure 5.1, the one-photon exchange amplitude

for electron-pion elastic scattering is given by

Tfi = (−ie)2u(k′)γµu(k)
−i

q2
〈π+(P ′)|Jµ|π+(P )〉, (5.5)

where u and u are electron spinors, q = k′ − k is the momentum transfer carried by the

virtual photon, |π+(P )〉 is the full pion bound state, and Jµ is the pion’s electromagnetic

current.

In the quark model [86], the pion electromagnetic current is given in terms of the

electromagnetic current of its constituent quarks

Jµ(x) =
2

3
u(x)γµu(x)−

1

3
d(x)γµd(x), (5.6)

where u and d are the free Dirac spinors for the up and down quarks, respectively; 2/3 and

1/3 are their electromagnetic charges, respectively. Note that this current cannot be used

for our purposes since it ignores the effects of quark confinement, the nonperturbative
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QCD dynamics, the bound state structure of the pion, and the nonperturbative structure

of the quark-photon vertex, see section 5.4.

The quantity 〈π+(P ′)|Jµ|π+(P )〉 is the pion-photon vertex, whose structure we do not

know and would like to understand in terms of the nonperturbative interactions between

quarks, gluons, and photons, either by their underlying theories or by some modelling of

them. This is particularly important for QCD since in the nonperturbative regime there

is a lack of a systematic approach to hadronic observables∗. Although we do not know

the details about the pion-photon vertex in terms of QCD and QED dynamics, we know

that Jµ must be a Lorentz four-vector, and therefore the electromagnetic interaction of

a spinless particle, like the pion, can be described by a single form factor, so that we

can write

〈π+(P ′)|Jµ|π+(P )〉 = (P ′ + P )µFπ(Q
2), (5.7)

where Fπ is the form factor that appears in Eq. (5.1). For electron scattering q2 is

negative, and it is common to define the positive quantity Q2 by Q2 ≡ −q2.

The form factor Fπ(Q
2) parametrises our ignorance about the detailed structure of

the pion and the dynamics of its substructure, represented by the blob in Figure 5.1. In

principle, it can be calculated unambiguously from QCD for large momentum transfers

because QCD is asymptotically free, see section 5.2.1. However, it is not clear whether

presently accessible momentum transfers are large enough to test predictions based on a

perturbative analysis in QCD, see Figure 5.4. For low-to-present-day momentum trans-

fers, the contributions coming from the dynamics of strong QCD play an important, if

non-dominant, role. In this regime, perturbative QCD is inapplicable and other methods

that incorporate these effects must be developed.
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igγµt
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γ∗ q

ieqγµ

(a) (b)

Figure 5.2.: Perturbative evaluation of the pion form factor: (a) Perturbative one-gluon
exchange approximation to the pion Bethe-Salpeter equation; (b) The photon
interacts perturbatively with both the up quark or the down antiquark.

5.2.1. Perturbative QCD prediction for Fπ

According to Brodsky and Lepage[87, 88], the large Q2 limit of lepton-hadron scattering

processes can be separated into a soft part containing the longe-range dynamics and a

hard part due to the scattering kernel TH for the high-momentum exchange between the

lepton and the valence quarks in the hadron. In this case [87, 88], the pion form factor

can thus be written as a sum of contributions from the purely soft part, which vanishes

as O(1/Q4) or faster, and the dominating overlaping integral over the hard contributions

Fπ(Q
2) =

∫∫
dxdyφ∗

π(x)TH(x, y;Q
2)φπ(y), (5.8)

where φπ is the pion distribution amplitude, and x (y) is the fraction of the pion mo-

mentum P (P ′) carried by the individual valence quarks in the initial (final) state, with

0 < x, y < 1, see Figure 5.2. The hard scattering kernel TH is a sum over contributions

from one-gluon exchange, two-gluon exchange, and so on. Due to the asymptotic free-

dom of QCD, in the Q2→∞ limit Eq. (5.8) is dominated by the one-gluon exchange

term, and thus Fπ is written as

∗Chiral perturbation theory (ChPT) and Lattice QCD are the only two ab-initio approaches to the con-
fined phase of QCD. Chiral perturbation theory is restricted to small values of momenta. Moreover,
if extended to higher orders in the perturbation series, ChPT loses any predictive power because
the number of unknown low energy constants increases. Lattice QCD, on the other hand, is still
limited to the use of unphysical large quark masses.
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Fπ(Q
2)

Q2 →∞
=

∫∫
dxdy

2π

3

(
αs(Q

2)

Q2

)(
1

xy

)
φ∗
π(x)φπ(y), (5.9)

where αs is the strong coupling constant, and xyQ2 is the “virtuality” of the exchanged

gluon. The gluon virtuality sets the scale for the QCD running coupling constant αs(Q
2),

and can be understood generally as the measure of the applicability of perturbative QCD

to the interaction.

In the asymptotic limit Q2→∞ the pion distribution amplitude evolves into the

form [87, 88]

φπ(x)
Q2 →∞−→ φas

π (x) = 6fπx(1− x), (5.10)

where fπ is the pion decay constant. Using Eqs. (5.9,5.10) one gets the perturbative

QCD prediction for the pion form factor

lim
Q2 →∞

Fπ(Q
2) =

8παs(Q
2)f 2

π

Q2
. (5.11)

The pQCD prediction accounts for the high momentum components of the pion’s

wave function, but cannot describe the lower momentum part [87, 88, 89, 90, 91]. Be-

cause the pion is very light, it is expected that the transition from “soft” to “hard”

degrees of freedom will occur at a relative low momentum transfer, and thus be more

likely to be experimentally testable.

It has to be stressed that the transverse momenta carried by the quark has been

neglected in Eq. (5.9). Isgur and Llewellyn-Smith [89, 90, 91] raised the issue that at

momentum transfers of a few GeV the contribution from the end point regions of the

pion distribution amplitude where x or (1 − x) are close to zero cannot be calculated

consistently in perturbative QCD, since at low values of xyQ2 the coupling constant αs

becomes too big. The picture is modified when the transverse degrees of freedom of the

quark are included into the perturbative calculation, as discussed in [89, 90, 91].
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For the highest Q2 data available, see Figure 5.4, there is a very weak suggestion that

the condition Q2Fπ = constant is being approached. Since these data are several times

larger than the perturbative QCD prediction, the conclusion is that nonperturbative

effects are still dominant.

The issue then is down to which finite values of Q2 Eq. (5.11) is valid, and the

transition from the soft regime, governed by all kinds of nonperturbative quark-gluon

correlations at low Q2, to the perturbative regime at high Q2, dominated by one-gluon

exchange, starts to take place.

5.3. Experimental data on Fπ

The experimental measurement of the electromagnetic form factor of the pion, Fπ, is

a nontrivial task. To date, reliable experimental data for Fπ(Q
2) exist in the timelike

(negative) Q2 region[84, 92, 93, 94], for small (positive) spacelike values of Q2, where Fπ

is dominated by the ρ meson, and up to Q2 = 2.45 GeV. In this thesis we are interested

only in the form factor in the spacelike region, therefore we concetrate on this region

below.

At low values of the momentum transfer squared Q2, the pion form factor has been

determined experimentally to a high precision in a model-independent way up to Q2 =

0.28GeV2 at CERN[84, 85]. In these experiments, Fπ has been extracted from the total

cross section for elastic scattering of high-energy pions off atomic electrons. From this

data the charge radius of the pion, rπ, has also been extracted [95].

For higher values of Q2, high-energy electroproduction of pions† on a proton target

has to be used [96, 97, 17]. For selected kinematics, near the pion pole t = m2
π, this

process can be described as quasi-elastic scattering of the high-energy electron off a

virtual pion associated with the proton’s pion cloud [96, 97]. The physical region for

the Mandelstam variable t = (pπ − q)2, where pπ is the pion four-moment, in pion

electroproduction is negative, so measurements should be performed at the smallest

reachable values of −t. The longitudinal component, σL, of the total cross section for

pion electroproduction contains the pion exchange (t-pole) process in which the virtual

photon couples to the virtual pion. This process is expected to dominate at small values

†The price paid for the higher values of Q2 is that the initial state pion is off-shell before the interaction
with the photon, and this needs to be taken into account in the experimental extraction of Fπ .
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Figure 5.3.: Pion form factor data

of −t, and since it contains Fπ, it therefore allows, in principle, the extraction‡ of Fπ

from the data [96, 97]. Hence, the longitudinal cross section needs to be separated from

the measured total cross section. This is done using the so-called Rosenbluth separation

method [97], for which measurements at different electron energies, but for constant

values of Q2 and invariant mass W of the photon-nucleon system, are necessary.

The extraction of Fπ from the separated pion electroproduction data is done using a

theoretical model for the electroproduction cross section at small values of −t, wherein
Fπ is a free parameter that is fitted to the experimental data [96, 99, 100, 101]. There

are a number of approaches [102, 103] for the extraction of the pion form factor from

these cross sections, each with their associated uncertainties[96]. This way of extracting

Fπ from the experimental data means that the result depends on the theoretical model

used in the analysis. Nevertheless, it is anticipated that this dependence can be reduced

at sufficiently small -t [104, 98].

In this way, data on Fπ has been extracted from experiments at DESY [105, 106],

Cambridge Electron Accelerator (CEA), and Cornell [107, 108, 109]. In the DESY ex-

‡The separated cross sections versus t over some range of Q2 and invariant mass of the photon-nucleon
system W = (pp + q)2, where pp is the proton mass, are the actual observables measured by the
experiment, and the extraction of the pion form factor from these data needs theoretical input and
therefore it is unavoidable model dependent [98].



Pion form factor in the impulse approximation 90

periments, pion electroproduction data for Q2 = 0.35 GeV2, W = 2.10GeV [110], and

Q2 = 0.7 GeV2, W = 2.19GeV [105, 106] were taken. The longitudinal cross sections

were determined using a Rosenbluth separation, and the Born term model of [111] was

used to extract the values for Fπ from these data on σL.

The experiments performed at CEA and Cornell covered theQ2 range of 0.28-9.77 GeV2.

A Rosenbluth separation was performed for some data points, but the results suffered

from large uncertainties [109, 96]. Due to this, σL was calculated for each measurement

by subtracting a simple model for the transverse cross section, σT , from the measured

total cross section. A Born term model was used[112] to extract values for Fπ from these

data. However, the results are still inconsistent, and because of their large systematic

and statistical uncertainties have in fact no power to constrain theoretical models for Fπ

[96, 109].

Clearly, reliable experimental data for Fπ are needed for values of Q2 above 0.7 GeV2.

Over the past decade, the Fπ-collaboration [113] has measured the total cross section

for the pion electroproduction reaction, at the Hall C of the Thomas Jefferson National

Accelerator Facility (JLab), in order to study the pion form factor at intermediate Q2.

Because of the excellent capabilities of the JLab electron beam and experimental setup,

separated, longitudinal and transverse, cross sections were determined with high accu-

racy. Two experiments have been completed, and plans[114, 115, 116, 117] for a 12GeV

upgrade have been made. In the first of these experiments [99, 100], data were taken for

Q2 ∈ [0.6, 1.6] GeV2, at W = 1.95 GeV, using a 4 GeV electron beam. In the second

one [101], these measurements were extended to the highest Q2 possible with a 6 GeV

electron beam. This second experiment allowed new Q2 = 1.6 GeV2 data to be obtained

30% closer to the t = m2
π pole, significantly reducing the model uncertainties in Fπ, as

well as new data at Q2 = 2.45 GeV2 to be extracted. In both of these experiments the

use of the Regge model§ of [102, 118] has emerged as a reliable tool [96, 97, 101] for the

extraction of Fπ from the σL data.

Further improvements are awaiting the 12GeV upgrade to be completed at the JLab’s

Continuous Electron Beam Accelerator Facility (CEBAF), in order to extend the above

measurements up to Q2 = 6 GeV2. The higher energy of the upgraded JLab electron

beam is essential not only for obtaining higher momentum transfers Q2, but also to

allow data to be taken closer to the pion pole, in order to maximise its contribution

§This model incorporates the π+ production mechanism and spectator neutron effects. The exchange of
high-spin, high-mass particles is taken into account by replacing the pole-like Feynman propagators
of Born term models with Regge propagators
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Figure 5.4.: Pion form factor data versus perturbative QCD prediction. As a result of the
running of the strong coupling constant αs, the pQCD prediction for Fπ should
also so “run” with the momentum scale Q2. This pQCD result is valid for large
asymptotic Q2 however. The value used for αs in the perturbative QCD predic-
tion Eq. (5.11) is αs = 0.32, which corresponds roughly to the momentum scale
Q2 of 1 GeV2. Here, its running is not taken into account. However, this running
is logarithmic and the precise value of Q2 should not matter. This comparison is
only qualitative, however it illustrates the dominance of nonperturbative physics.

to the cross section [114, 98]. These recent data is plotted together with the previous

reliable one in Figures 5.3,5.4. In Figure 5.4, the perturbative prediction, Eq. (5.11),

for Fπ is compared to these data. As can be seen from Figure 5.4, for the highest Q2

data available, there is a very weak suggestion that the condition Q2Fπ = constant is

being approached. Since these data are several times larger than the perturbative QCD

prediction, nonperturbative effects are still dominant.

5.4. The nonperturbative quark-photon vertex

The aim of the SDE-BSE approach to hadron physics is to understand the bound state

structure and reactions of hadrons in terms of the nonperturbative interactions between

quarks, gluons, and photons, directly from the underlying theory. In this way, we would

like to understand the electromagnetic interaction of the pion with a virtual photon in
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Figure 5.5.: The SDE for the quark-photon vertex. Note the appearance of the four-point
quark-antiquark scattering kernel that incorporates both strong and electromag-
netic dressing.

terms of the nonperturbative interaction of the virtual photon with the pion’s charged

constituents, that is the quarks, which is described by the gauge theory of Quantum

Electrodynamics (QED).

The quark-photon vertex Γµ(p, k; q) satisfies its own SDE that describes both strong

and electromagnetic dressing of the vertex

Γaµ(p, k; q) = Z2γµ +

∫
d4ℓ

(2π)4
K(p, k, p̃, k̃)Sa(p̃)Γaµ(p̃, k̃; q)S

a(k̃), (5.12)

given in Figure 5.5, where Z2 is the renormalisation constant that appears in the

quark SDE, Sa is a dressed-quark propagator, and K(p, k, p̃, k̃) is the four-point quark-

antiquark scattering kernel. The solution of this equation is a difficult problem. Never-

theless, some progress has been achieved by solving it in the rainbow-ladder truncation

for various forms of the dressed-gluon two-point function[119, 120]. Solutions to the ho-

mogeneous version of Eq. (5.12), at discrete timelike momenta Q2, define vector meson

bound states with masses Q2 = −m2. In fact, Γµ(p, k; q) has poles at these locations

[42, 120]. Despite this, information about its form can be gained by resorting to gauge in-

variance of the electromagnetic interactions and Lorentz symmetry, in addition to other

key constraints such as being free of kinematic singularities, have the correct perturba-

tive limit in the ultraviolet, and transform as the bare vertex under charge conjugation

and Lorentz transformations [121].

The requirement of gauge invariance is implemented through the well-known Ward-

Takahashi identity (WTI) of Quantum Electrodynamics [122, 1]

iqµΓµ(p, k; q) = S−1(p)− S−1(k), (5.13)
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where q = p − k is the incoming photon momenta, and S(p) is the fully-dressed quark

propagator. It is clear that the bare vertex does not satisfy this constraint if dressed

quark propagators are employed, however, this identity is satisfied order by order in

perturbation theory.

Being free of kinematic singularities, the quark-photon vertex must satisfy the q→ 0

limit of the WTI, namely the Ward identity (WI) [123]

iΓµ(p, p; 0) =
∂S−1(p)

∂pµ
. (5.14)

Furthermore, the full quark-photon vector vertex can be decomposed into a longitudinal

and a transverse part

Γµ(p, k; q) = ΓLµ(p, k; q) + ΓTµ (p, k; q), (5.15)

where

qµΓ
T
µ (p, k; q) = 0. (5.16)

From Eqs. (5.15,5.16), it follows that the WTI only constrains the longitudinal part of

the vertex, relating it to the full quark propagator, while the transverse part ΓT is not

constrained by gauge invariance.

Being a Lorentz vector, the general form of the quark-photon vertex Γµ can be

decomposed into 12 Lorentz-scalar dressing functions. Its Lorentz-Dirac basis can be

constructed from the linear combinations of the three vectors γµ, kµ, and pµ, each mul-

tiplied by one of the four independent matrices 1, /k, /p, and σµνkµpν . The choice of the

Lorentz-Dirac basis is constrained by the required properties under Lorentz and CPT

transformations, but it is not unique, see e.g. [56]. Four of these covariants represent

the longitudinal part of the vertex, which is completely specified by the WTI in terms

of the full quark propagator. The transverse part can be expanded in eight covariants
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T iµ, i = 1, . . . , 8, see e.g. [56]. Furthermore, multiplicative renormalisability of the

fermion SDE can be used [124, 125] to put constraints on ΓTµ (p, k; q).

The vertex that satisfies the Ward-Takahashi identity, Eq. (5.13), and is free of

kinematic singularities, by satisfying Eq. (5.14), is given by

ΓLµ(p, k; q) =
1

2

[
A(p2) + A(k2)

]
γµ

+
1

2

[
A(p2)−A(k2)

p2 − k2

]
(/p+ /k) (p+ k)µ

−
[
B(p2)− B(k2)

p2 − k2

]
i (p + k)µ ,

(5.17)

which is the well-known Ball-Chiu (BC) ansatz [126].

Writing the longitudinal part in terms of the basis Liµ, i = 1, . . . , 4,

ΓLµ(p, k; q) =
4∑

i=1

λi(p, k; q)Liµ(p, k; q), (5.18)

we can identify from Eq. (5.17) the following basis for the longitudinal part, as well as

their corresponding dressing functions,

λ1(p, k; q) =
1

2

[
A(p2) + A(k2)

]
, L1

µ(p, k, q) = γµ, (5.19)

λ2(p, k; q) =
1

2

[
A(p2)−A(k2)

p2 − k2

]
, L2

µ(p, k, q) = (/p+ /k) (p+ k)µ , (5.20)

λ3(p, k; q) =
B(p2)−B(k2)

p2 − k2
, L3

µ(p, k, q) = −i (p+ k)µ , (5.21)

λ4(p, k; q) = 0, L4
µ(p, k, q) = σµν (p+ k)ν , (5.22)

where we note that the dressing function λ4(p, k; q) identically vanishes due to the Ward-

Takahashi identity. Taking the k→ p limit of Eq. (5.17) we can identify a further con-

straint on the transverse part, that is
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Figure 5.6.: Full pion-photon vertex. The pion is a bound state of a constituent dressed
quark-antiquark pair.

ΓTµ (p, p; 0) = 0, (5.23)

which makes the full vertex free of kinematic singularities and satisfies Eqs. (5.13,5.14).

In summary, the Ball-Chiu ansatz, Eq. (5.17), satisfies the constraints from the WTI

and the WI, transforms under CPT as a vector should, has the correct perturbative

limit in the ultraviolet, and is free of kinematic singularities. The longitudinal part

is exact, i.e. completely determined by the WTI and WT, while the transverse part

is exact only at q = 0, where ΓTµ (p, k; q→ 0) = 0, and in the ultraviolet limit, where

ΓTµ (p, k; q→∞) = 0.

5.5. Impulse approximation to Fπ

The dynamics of the internal structure of hadrons affects their observable properties,

and the electromagnetic form factor of hadrons is an example of such an observable. The

interaction of a virtual photon with a meson probes its internal structure and dynamics

through the meson form factor. The study of their form factors will thus allow us to

extract information about the nonperturbative dynamics of its constituents.

The theoretical prediction of Fπ, defined in Eq. (5.7), at experimentally accessible

Q2, below say 10 GeV2, is a nontrivial task since the complex nonperturbative physics of
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Figure 5.7.: Impulse approximation to the pion-photon vertex. All quantities have built in
nonperturbative dressing effects.

confinement, dynamical chiral symmetry breaking, and bound state structure are highly

dependent on the modelling of the strong coupling regime that is not reachable using

pQCD.

5.5.1. Impulse approximation general setting

In this section we present the impulse approximation to the meson-photon vertex, using

the continuum modelling of strong QCD we have developed so far. That is, we want

to incorporate the nonperturbative effects of dynamical chiral symmetry breaking, and

bound state structure in our calculation for Fπ at moderate values of Q2.

In the SDE-BSE approach to bound state structure and dynamics we have taken, a

meson is a bound state of a nonperturbatively dressed constituent quark-antiquark pair,

whose flavour structure is denoted by H = ab. The meson bound state is described by

the meson Bethe-Salpeter amplitude (BSA), and governed by the meson BSE, Eq. (4.23);

the constituent quark (a) and antiquark (b) are described by their propagators, and are

dressed nonperturbatively through the solution of the the quark SDE, Eq. (4.1).

The impulse approximation to the meson-photon vertex of Figure 5.6 is illustrated

in Figure 5.7 for the case of the pion, and makes evident the main elements of this

approach. In physical terms, in the impulse approximation the photon probe interacts

nonperturbatively with either the dressed quark or the dressed antiquark that make up

the meson bound state, as can be seen from Figure 5.7.
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In what follows, we refer only to pseudoscalar mesons since these are described by

just one form factor, but the general setting can be easily extended to vector mesons

[71, 127].

We denote the general meson-photon vertex by ΛHµ (P, P
′; q), where P and P ′ are,

respectively, the initial and final meson momenta, and q is the momentum transfer

carried by the virtual photon. The full meson-photon vertex is thus given by

ΛHµ (P, P
′; q) ≡ 〈H(P ′)|Jµ|H(P )〉

= (P + P ′)µF
H(Q2), (5.24)

where |H(P )〉 is the full bound state meson, e.g. H = π, K, and Jµ its electromagnetic

current. This vertex is depicted in Figure 5.6 for the pion.

The building blocks of the impulse approximation, Figure 5.7, are: the nonperturba-

tive quark-photon vertex Γfµ(p, k; q); the dressed quark and antiquark propagators Sf(p);

and the meson bound state Bethe-Salpeter amplitude ΓH(p;P ). The propagators for the

quark and antiquark are dressed by nonperturbative gluon exchange, and are obtained

by solving the quark SDE in the rainbow approximation; the meson BSA are obtained by

solving the BSE in the rainbow-ladder truncation, as discussed in the previous chapter.

In the impulse approximation, the meson-photon vertex is written as the sum of two

terms,

ΛHµ (P, P
′; q) = Q̂aΛH,aµ (P, P ′; q) + Q̂bΛH,bµ (P, P ′; q), (5.25)

where ΛH,aµ (P, P ′; q) is the contribution to the meson-photon vertex from the diagram

where the photon couples to the quark, and ΛH,bµ (P, P ′; q) that where the photon couples

to the antiquark; Q̂a and Q̂b are the electromagnetic charges of the quark and the anti-

quark, respectively. Using appropriate momentum labelling, see Figure 5.7, ΛH,bµ (P, P ′; q)

is given by
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ΛH,bµ (P, P ′; q) = Nc

∫
d4ℓ

(2π)4
Tr
[
Sa(k1)Γ

H(k1, k2;P )S
b(k2)

iΓb(k2, k3; q)S
b(k3)Γ

H
(k̂;−P ′)

]
,

(5.26)

where Nc is the number of colours, the trace is performed over Dirac indices, and ℓ is

an appropriate loop integration variable. In ΓH(k1, k2;P ), k1 is the momentum of the

quark, and k2 that of the antiquark, such that k1 − k2 = P , P 2 = −m2
H . A similar

expression for ΛH,aµ (P, P ′; q) can be written down.

Similarly to Eqs. (5.24,5.25), we can identify the contributions to the meson form

factor from ΛH,aµ (P, P ′; q) and ΛH,bµ (P, P ′; q). When the photon couples to the antiquark

we have

ΛH,bµ (P, P ′; q) = (P ′ + P )µF
H,b(Q2), (5.27)

where FH,b(Q2) is the form factor associated to ΛH,bµ (P, P ′; q), and similarly for FH,a(Q2).

In the impulse approximation the meson form factor FH is thus given by

FH(Q2) = Q̂aFH,a(Q2) + Q̂bFH,b(Q2). (5.28)

5.5.2. Isospin symmetry

From Eq. (5.28), the pion form factor is given by

F π(Q2) =
2

3
F π,u(Q2) +

1

3
F π,d(Q2). (5.29)

In the rainbow truncation of the quark SDE, quark propagators for different flavours

are distinguished only by their current mass, and therefore in the isospin symmetric

limit (mu = md) we are working in the dressed quark propagators for the up and down

quark are equal. It thus follows that
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Λπ,uµ (P, P ′; q) = Λπ,dµ (P, P ′; q), (5.30)

and therefore there is only one independent form factor to calculate in Eq. (5.29)

5.5.3. Current conservation

Electromagnetic current conservation poses constraints on the form of the meson-photon

vertex and its form factor. It requires that

FH(Q2 = 0) = Q̂a + Q̂b and qµΛ
H
µ (P, P

′; q) = 0 (5.31)

are satisfied. This in turn requires for the quark and antiquark contributions, Eqs. (5.25,5.28),

that

FH,a(Q2 = 0) = 1, FH,b(Q2 = 0) = 1, (5.32)

qµΛ
H,a
µ (P, P ′; q) = 0, qµΛ

H,b
µ (P, P ′; q) = 0. (5.33)

It is an easy exercise to show that the impulse approximation preserves the elec-

tromagnetic current automatically, provided that: (a) the kernel in the Bethe-Salpeter

equation, Eq. (4.23), is independent of the meson momenta; (b) the quark-photon vertex

satisfies the Ward-Takahashi identity, Eq. (5.13); and (c) the quark-photon vertex is free

of kinematic singularities by satisfying the Ward identity, Eq. (5.14).

Consider for example the ΛH,bµ (P, P ′; q) vertex. At q = 0 we have, after using the

Ward identity, Eq. (5.14),

ΛH,bµ (P, P ; 0) = 2PµF
H,b(Q2 = 0)

= Nc

∫
d4ℓ

(2π)4
Tr
[
Sa(k1)Γ

H(k1, k2;P )S
b(k2)Γ

H
(k2, k1;−P )

]
,

(5.34)
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where ℓ = k1 is chosen to be the loop integration variable in Figure 5.7, and k2 = ℓ−P .

Comparing this equation to the canonical normalisation condition, Eq. (4.28), we see that

if the Bethe-Salpeter kernel is independent of the meson momenta P then the canonical

normalisation condition for ΓH ensures that FH,b(0) = 1. The same procedure applies

to ΛH,a(P, P ′; q). The second constraint, Eq. (5.33), can be satisfied if the quark-photon

vertex satisfies the Ward-Takahashi identity, Eq. (5.13). Using Eq. (5.13) in Eq. (5.26)

we obtain

q ·ΛH,b(P, P ′; q) = Nc

∫
d4ℓ

(2π)4
Tr
[
Sa(k1)Γ

H(k1, k2;P )S
b(k3)Γ

H
(k3, k1;P

′)
]

−Nc

∫
d4ℓ

(2π)4
Tr
[
Sa(k1)Γ

H(k1, k2;P )S
b(k2)Γ

H
(k3, k1;P

′)
]
,

(5.35)

which identically vanishes. The same occurs for q ·ΛH,a.

If one goes beyond the rainbow-ladder truncation for the quark SDE and pion BSE,

then one has to go beyond the impulse approximation in order to ensure current conser-

vation [128, 129], since this consistency between the different truncations is crucial for

the preservation electromagnetic charge, as demonstrated above. In this case, the last

term in the full canonical normalisation condition, Eq. (3.22), will not vanish in general,

and further structure to the meson-photon vertex will need to be added. It is not clear,

however, whether a nonperturbative diagrammatic representation for ΛHµ exists for an

arbitrary, P -dependent, Bethe-Salpeter kernel.

The diagrammatic expression for the impulse approximation is similar to the per-

turbative one, Figure 5.2. The difference lies in the fact that here we are taking into

account the nonperturbative effects of gluon dressing in the quark-gluon vertex, quark-

photon vertex, quark propagators, and pion Bethe-Salpeter amplitude, by modelling the

infrared part of the effective coupling. In this approximation, the photon interacts non-

perturbatively with either the dressed up quark or the dressed down antiquark. Since

the rainbow-ladder truncation preserves the ultraviolet behaviour of QCD, we are guar-

anteed to recover the leading power-law of Fπ. An explicit verification of this is difficult

since numerical accuracy at such Q2 is problematic [130].
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5.5.4. Momentum routing and frame independence

We have solved the BSE in the rest frame Pµ = (imH , 0, 0, 0) of the meson, and calcu-

lated static properties for the pion and kaon in the previous chapter. However, when

calculating dynamic properties of mesons, like electromagnetic form factors, at least one

of the mesons is moving. This occurs in any reference frame, and requires the solution

of the meson BSE to be calculated in this particular frame.

Since the SDE-BSE approach to hadron physics is Poincaré covariant, it is guaranteed

that meson observables will be independent of the reference frame in which these are

calculated. This has been explicitly demonstrated in [131, 71], where the masses and

decay constants of the pion and rho meson have been calculated for a nonzero three-

momentum of the meson under consideration.

The solution of the homogeneous BSE in a frame that implies a nonzero three-

momentum of the meson is a numerically-intensive task, since the Lorentz-scalar dressing

functions characterising the meson BSA will be now functions of three variables, one

radial and two angular. In the case of the Chebyshev decomposition of the previous

chapter, the Chebyshev coefficients will now be functions of two variables, since we

perform only one angular decomposition.

In evaluating the loop integral in the meson-photon vertex numerically in the impulse

approximation, Eq. (5.26) and Figure 5.7, if we choose the momentum routing and

integration variables appropriately in both the meson BSA and the loop integral in the

meson-photon vertex, we can arrange the integration nodes in such a way that we do not

need any interpolation or extrapolation. The price paid for this is that we have to solve

the meson BSE for every value of the photon momenta Q2, a numerically demanding

task.

Overall momentum conservation implies that only two momenta are independent,

since Pi − Pf + Q = 0, where we have relabelled the initial and final momenta of

the meson to be Pi and Pf , respectively, see Figure 5.7. We choose the independent

momenta to be the incoming photon momenta Q, and some other momenta, say P . We

then write the initial and final meson momenta in terms of Q and P as Pi = P − 1
2
Q

and Pf = P + 1
2
Q, respectively. The condition of elastic scattering imposes constraints

on P and Q, in such a way that only one remains independent. The on-shell conditions,

P 2
i = P 2

f = −m2
H , require P

2 + 1
4
Q2 = 0 and P ·Q = 0. That is, the magnitude and

direction of say P are determined by those of Q. Our momentum routing is given by
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Momentum conservation: Pi − Pf +Q = 0,

k1 − k2 = Pi, k2 − k3 = Q, k3 − k1 = −Pf , (5.36)

Initial state meson: Pi = P − 1
2
Q,

k1 = k̃ − 1

2
Pi, k2 = k̃ + 1

2
Pi, k̃ ≡ k +

1

4
Q, (5.37)

Quark-photon vertex:

k2 = k̄ +
1

2
Q, k3 = k̄ − 1

2
Q, k̄ ≡ k − 1

2
P, (5.38)

Final state meson: Pf = P + 1
2
Q,

k3 = k̂ +
1

2
(−Pf ), k1 = k̂ − 1

2
(−Pf ), k̂ ≡ k − 1

4
Q, (5.39)

where k = ℓ is the loop integration variable in the meson-photon triangle diagram, see

Figure 5.7; k̃, k̄, and k̂ are the relative momenta in the initial state meson BSA, quark-

photon vertex, and final state meson BSA, respectively. We use the specific momentum

frame

Qµ = (0, Q, 0, 0) (5.40)

Pµ = (P0, 0, 0, 0), (5.41)

with P 2
0 = −1

4
Q2 − m2

H . Depending on the value of Q2, P , Q, or both are imaginary.

The possible cases for spacelike or timelike photon momenta are

Q2 ≥ 0 :

Q = (Q2)1/2 (5.42)

P0 = i

(
m2
H +

1

4
Q2

)1/2

(5.43)

Q2 < 0 :

Q = i
(∣∣Q2

∣∣)1/2 (5.44)

P0 =




i
(
m2
H − 1

4
|Q2|

)1/2
, −4m2

H < Q2 < 0
(
1
4
|Q2| −m2

H

)1/2
, −∞ < Q2 < −4m2

H ,
(5.45)
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Figure 5.8.: Predicted Fπ versus experimental data. The upper curve represents the cal-
culation of Fπ using the Ball-Chiu vertex; the lower curve employs the bare
vertex.

however, we are only interested in the calculation of the form factor for spacelike photon

momenta. For timelike momenta, Fπ is dominated by the ρ meson resonance contribu-

tion [132], which is contained in the transverse part of the quark-photon vertex, but we

neglected this altogether, see Section 5.4.

5.6. Numerical results for Fπ

In Figure 5.8 we present numerical results for our calculation of the pion form factor Fπ

in the impulse approximation using the Ball-Chiu and bare vertices.

As can be seen from Figure 5.8, the bare quark-quark photon vertex, Γµ(p, k; q) = γµ,

is inappropriate since it does not satisfy current conservation, which requires Fπ(0) = 1.

That this would be the case could have been anticipated from Eq. (5.13), because the

bare vertex violates the Ward-Takahashi identity, Eq. (5.13), if dressed quark propaga-

tors are used. This identity is satisfied by the bare vertex only if quark propagators are

not dressed, but the dressing of the quark propagator is an essential property of the dy-
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Figure 5.9.: Predicted Fπ versus experimental data. The upper curve represents the cal-
culation of Fπ using the Ball-Chiu vertex; the lower curve employs the bare
vertex.

namical breaking of chiral symmetry in QCD. Furthermore, this property is fundamental

in the description of low energy hadron physics and therefore cannot be ignored.

On the other hand, use of the Ball-Chiu vertex conserves electromagnetic current

because it satisfies, by construction, the vector Ward-Takahashi identity, Eq. (5.13).

However, the calculated form factor misses the data. One reason for this is that we

have completely neglected the transverse piece of the vertex, and this could have sizable

contributions in the Q2 region studied. The incorporation of vector meson bound states

from the transverse piece could also be an important element for improvement[130, 120].

For the pion charge radius, rπ, which is essentially the slope of Fπ at Q2 = 0, the

Ball-Chiu vertex produces the value r2π = 0.182 fm2, a value that is less than half the

experimental one, r2π = 0.44 fm2. This is mainly because the Ball-Chiu vertex does

not incorporate vector meson poles, which are contained in the transverse part of the

quark-photon vertex, and therefore the Q2 slope of Fπ is poorly represented by this

vertex.

Current conservation constrains the pion form factor at Q2 = 0 to be Fπ = 1. This is

satisfied if the quark-photon vertex satisfies Eqs. (5.13,5.14) and the pion BSA is properly
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Chebyshev polynomials used 6 5 4 3 2 1

Eπ, Fπ, Gπ, Hπ 1.000 1.000 1.000 1.000 0.998 0.998

Eπ, Fπ, Gπ 0.920 0.920 0.921 0.921 0.921 0.921

Eπ, Fπ 0.957 0.957 0.958 0.958 0.963 0.963

Eπ 1.312 1.312 1.317 1.317 1.264 1.264

Table 5.1.: Contributions to the pion form factor Fπ(Q
2) at zero momentum transfer from

the different dressing functions and Chebyshev coefficients. The pion BSA is
properly normalised, with mπ = 0.1385. The Ball-Chiu vertex is employed.

normalised, according to Eq. (3.22) or Eq. (3.23) in the rainbow-ladder truncation. In

Table 5.1 we present the contributions to Fπ(Q
2 = 0) coming from the different dressing

functions in the pion BSA, Eq. (4.32), and the different Chebyshev coefficients used in

the Chebyshev expansion of Eq. (4.30). The BSA amplitude Γπ is properly normalised

by satisfying Eq. (3.22) or Eq. (3.23). We produce this data as follows. Once the

homogeneous BSE is solved using all four dressing functions Eπ, Fπ, Gπ, and Hπ for

Q2 = 0, and the BSA is properly normalised, we then assess the different contributions

coming from these dressing functions and the different Chebyshev coefficients. That is,

we solve the BSE once, canonically normalise Γπ using all four dressing functions, and

then put to zero the Chebyshev coefficients we want to study their impact on Fπ(0).

This guarantees that the mass and decay constant of the pion are correctly produced to

be mπ = 0.1385GeV and fπ = 0.132GeV, respectively.

From Table 5.1 we can see that the major part of Fπ(0) comes from the Eπ dressing

function, with little contribution from high order Chebyshev polynomials. At Q2 = 0,

Γπ is only a function of two variables, one radial and one angular, and the odd order

Chebyshev coefficients do not contribute since these vanish for a symmetric partition-

ing of the meson momenta, that is η = 1/2 in the BSE. Nevertheless, the rest of the

dressing functions are required to ensure that the normalisation condition, Eq. (3.22) or

Eq. (4.28), is satisfied, and current conservation preserved.

In Table 5.2 we present the contributions of the different components of the longi-

tudinal part of the quark-photon vertex, Eqs. (5.19-5.22), to the pion form factor at

zero momentum transfer, using all four dressing functions in the pion BSA. As can be

seen, λ1 contributes the most to Fπ(0), however it is insufficient to ensure Fπ(0) = 1, as

required by current conservation. The contributions from λ2, λ3, and λ4 need to added

to bring the value of Fπ(0) to 1. Note that although the γµ part of the vertex does not
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Separate Accumulated

contribution contribution

λ1 1.1317 1.1317

λ2 -0.0468 1.0848

λ3 -0.0848 1.0000

λ4 0.0000 1.0000

Bare vertex 0.7375 0.7375

Table 5.2.: Contribution to the Fπ at Q2 = 0 from the different terms in the Ball-Chiu vertex.
Current conservations is fulfilled only when all four terms in the longitudinal piece
are taken into account. Compare the contribution of only λ1 to Fπ(0) with the
bare vertex to see the effect of dressing this last vertex.

preserve electromagnetic current, it provides the most important contribution, as can

be seen from row 5 of Table 5.2. The rest is contributed by λ2, λ3, λ4, and by dressing

the γµ part in such a way that the Ward-Takahashi identity is satisfied.

The conclusion that follow from Tables 5.1,5.2 is that there must be an interconnec-

tion between the canonical normalisation condition in the BSA and the Ward-Takahashi

identity in order to preserve electromagnetic current. All dressing functions need to be

included to ensure this. This relation is similar to that between the truncation in the

BSE and that in the quark SDE needed to preserve the (pseudo)Goldstone nature of the

pion.

As we mentioned above, when going beyond the rainbow-ladder truncation of the

SDE-BSE complex, one must go beyond the impulse approximation in order to ensure

electromagnetic current conservation. This is not straightforward however, as there

is no identity-like that tells us the type of diagrams that need to be added to the

impulse approximation when the Bethe-Salpeter kernel depends on the meson momenta.

Therefore, when attempting to ensure charge conservation one must carefully take into

account the normalisation condition of the BSA and the WI since these both constrain

the meson-photon vertex at zero momentum transfer.
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5.7. Summary

The electromagnetic structure of hadrons is encoded in their form factors. These

parametrise our ignorance about the distribution of charge and current inside the hadrons.

The experimental determination of the pion form factor is a complex endeavour due to

the lack of free pions. Of equal complexity is their theoretical prediction in terms of the

quarks and gluons of Quantum Chromodynamics. At experimentally accessible momen-

tum transfers, the nonperturbative effects of confinement and bound state structure are

dominant and must be taken into account. Due to the strong coupling of this regime,

perturbation theory is inapplicable and we lack a systematic theoretical framework for

the calculation of the pion form factor. Some modelling of the meson-photon vertex is

thus required. This is possible in the SDE-BSE approach to hadron physics. The im-

pulse approximation to the meson-photon vertex has emerged as a good starting point

for this, mainly because it automatically satisfies current conservation in conjunction

with the rainbow-ladder truncation of the SDE-BSE complex.

Current conservation is of fundamental importance and it can only be guaranteed if

there exists an interplay between the Ward-Takahashi identity and the canonical normal-

isation condition for the meson BSA, as demonstrated in Eqs. (5.34,5.35). The Ward-

Takahashi identity will be satisfied if the longitudinal part of the quark-photon vertex

is taken to be the Ball-Chiu construction. Additional structure can be added either by

solving the quark-photon SDE for the transverse part in an appropriate truncation, or

by constraining it using multiplicative renormalisability [124, 125].

Numerical results for the pion form factor have been presented, using the bare and

Ball-Chiu vertices. The first of these violates current conservation since it does not

satisfy the WTI, and it misses the data completely. The Ball-Chiu vertex improves

the situation. It satisfies current conservation because it is designed to do so, however,

it is still a little above the experimental data. This is mainly because the transverse

part of the quark-photon vertex has been neglected completely. This part should have

important contributions to the form factor and to pion charge radius because it contains

vector meson poles. Independent of this, more structure can be accommodated into

the longitudinal part by dressing the quark propagators and Bethe-Salpeter kernel in a

consistent way, as dictated by the axial-vector Ward-Takahashi identity.



Chapter 6.

Pion cloud effects in the quark

propagator, meson BSA, and pion

form factor

6.1. Introduction

Dynamical chiral symmetry breaking is one of the most important properties of low

energy QCD, and its breaking pattern has profound impact on phenomenological quan-

tities, e.g. the appearance of pseudoscalar Goldstone bosons and the non-degeneracy of

chiral partners.

The spontaneous breaking of chiral symmetry is a remarkable feature of QCD because

it cannot be derived directly from the Lagrangian– it is related to the nontrivial structure

of the QCD vacuum, characterised by strong condensates of quarks and gluons. This is

quite different from the explicit symmetry breaking, which is put in by hand through

the finite quark masses, and appears in a similar way through the Higgs mechanism.

There are two important consequences of the spontaneous breaking of chiral symme-

try. The first one is that the valence quarks acquire a dynamical or constituent mass

through their interactions with the collective excitations of the QCD vacuum that is

much larger than the seed mass present in the Lagrangian. The second one is the ap-

pearance of a triplet of pseudoscalar mesons of low mass (π+, π−, π0) which represent

the associated Goldstone bosons.
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The prominent role played by the pion as the Goldstone boson of spontaneously

broken chiral symmetry has its impact on the low-energy structure of hadrons through

pion cloud effects in the quark propagation. In full QCD there are hadron contributions

to the fully dressed quark-gluon vertex. These effects are generated by the inclusion of

dynamical sea quarks in the quark-gluon interaction, and are therefore only present in

the unquenched case. It is the aim of this chapter to introduce these pion cloud effects

into the quark propagator, and then all the way up into the meson BSA and the pion

form factor.

6.2. Pion back reaction into the quark SDE

Within the SDE-BSE complex, pion cloud effects are contained in the structure of the

nonperturbative quark-gluon vertex, and quark-antiquark scattering kernel. These two,

however, must be consistent as required by the axial-vector Ward-Takahashi identity,

Eq. (3.26). Here, we describe the inclusion of the pion back reaction into the quark SDE

through the quark-gluon vertex.

6.2.1. Quark-gluon vertex revisited

One of the key quantities in the quark SDE, Eq. (4.1), is the fully-dressed quark-gluon

vertex Γaµ. It satisfies its own Schwinger-Dyson equation whose content, which includes

various two-, three-, and four-point functions, makes the solution of this equation a very

difficult task. The general structure of the full vertex, described in Section 4.3.1, con-

tains contributions from all quark-gluon correlations. In particular, there are hadronic

contributions which are generated by dynamical sea quarks, and are therefore present

only in the unquenched theory. These contributions should be important at low energies

in the (nonperturbative) structure and dynamics of hadrons. Of particular importance

are the pion cloud effects [133].

Due to the complexity of this equation, following [38, 42], we neglected in Chapter 4

all explicit contributions to this vertex, and modelled this interaction by dressing the

γν-part only, which then was combined with the gluon dressing function Z(k2) into a

phenomenological effective interaction G(k2). The full quark-gluon interaction has then

been modelled by an effective gluon exchange. This is the so-called rainbow-ladder
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Figure 6.1.: Rainbow truncation of the full quark-gluon vertex. Only the (dressed) γν part of
the full interaction is retained. Recall that the full quark-gluon vertex consists
of twelve Dirac structures and it receives contributions from all quark-gluon
correlations, including hadronic effects.

truncation of the SDE-BSE system that we studied in the previous two chapters of this

thesis, and is depicted in Figure 6.1.

More generally, denoting the full quark self-energy by
∑

(p), the rainbow truncation

of the quark SDE can be summarised as follows. The full quark SDE is given by

S−1(p) = Z2S
−1
bare(p) +

∑
(p), (6.1)

where S−1
bare(p) = i/p+mbare is the inverse bare-quark propagator, and S−1(p) = i/pA(p2)+

B(p2) is the inverse fully-dressed quark propagator, completely defined by the dressing

functions A(p2) and B(p2); Z2 is the renormalisation constant for the quark field. The

quark self-energy
∑

(p) is given by

∑
(p) = Z1

∫
d4q

(2π)4
g2Dµν(k)

λa

2
γµS(q)Γ

a
ν(k, p), (6.2)

where k = p− q, and Z1 is the renormalisation constant for the quark-gluon vertex. As

emphasised in Chapter 4, the quark self-energy depends crucially on the full quark-gluon

vertex Γaµ and gluon propagator Dµν . The latter is given in Landau gauge by

Dµν(k) =
Z(k2)

k2

(
δµν −

kµkν
k2

)
. (6.3)
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The rainbow truncation scheme, depicted in Figure 6.1, consists then in the replace-

ment

Z(k2)Γaν(k, p)→
ta

2
γνZ(k

2)F 1(k, p) ≡ λa

2
γνZ

eff(k2) (6.4)

in the quark self energy
∑

(p), where the effective∗ gluon dressing function Zeff(k2)

contains information of the gluon dressing function Z(k2) and a purely k2-dependent

dressing of the γν-part of the quark-gluon vertex.

The effective gluon dressing function Zeff(k2) is also referred to as the effective cou-

pling, since its ultraviolet behaviour has to resemble that of the strong running coupling

constant in order to preserve the ultraviolet properties of the quark propagator, see [78]

and references therein. By preserving this property, the rainbow approximation then

gives reliable results in the ultraviolet, as demonstrated in Chapter 4. In the medium-

to-low momentum region, however, one has to resort to a phenomenological modelling

of the effective gluon dressing. The model parameters are then fixed either by fitting

hadronic observables or lattice QCD data [38, 42, 134, 64].

6.2.2. Hadronic contributions to the quark-gluon vertex

In spite of the success of the rainbow approach [24, 135], by effectively dressing the

resulting exchanged gluon, more structure in the quark SDE, other than the γν-part

of the quark-gluon vertex, should be important in the intermediate momentum region

[57, 136, 54], and in particular for the description of hadron structure and dynamics.

Furthermore, the infrared shape of the quark propagator and its analytic structure de-

pend on the details of the quark-gluon vertex[54, 78, 137]. In principle, all twelve Dirac

structures can be important in the intermediate momentum region [57, 136, 54]. Addi-

tional structure, other than the γν-part, can in principle be incorporated in a consistent

way in the quark propagator, and then all the way up into the structure and dynam-

ics of hadrons through the Bethe-Salpeter (BS) kernel, by studying the SDE for the

quark-gluon vertex. It is our aim to incorporate hadronic effects, in particular pion

cloud effects, into the calculation of electromagnetic form factor for light mesons. The

∗In the modelling of[38, 42], that we used in the previous chapters, the renormalised coupling constant
squared and the renormalisation constant Z1 have also been absorbed into G(k2), whose model
parameters were determined phenomenologically [38, 42].
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π, . . .

= + · · ·

Figure 6.2.: Hadronic contributions to the quark-antiquark scattering kernel in the quark-
gluon vertex. The diagram on the left hand side is one of several nonperturbative
diagrams in the quark-gluon SDE.

starting point for the inclusion of hadronic effects will be the incorporation of the pion

back reaction into the quark propagation. This will be done by extending the rainbow

truncation, Figure 6.1, of the quark-gluon vertex by following [78, 137, 138].

In full QCD there are hadronic contributions to the fully dressed quark-gluon inter-

action. These effects are generated by dynamical sea quarks, and can be accounted for

by a particular class of interaction diagrams in the quark-gluon vertex that appear only

in unquenched QCD [78].

Of course, unquenching effects are in principle incorporated in rainbow models,

Eq. (6.4), via the effective coupling Zeff(k2). These models effectively resum additional

corrections to the quark-gluon interaction from the Yang-Mills sector, and the inclusion

of sea quarks in the gluon polarisation tensor.

Unquenching effects in the SDE-BSE framework have been investigated previously.

For example, in [134] unquenching effects in the quark-antiquark Green’s function were

studied with the aim of providing hadronic intermediate states in bound state calcula-

tions, which generate a finite width of meson spectral functions. In[139, 140], dynamical

sea quarks in the gluon polarisation were studied, and their effect on light mesons proper-

ties were found to be small but not negligible. The unquenching studies of[78, 137, 138],

which we follow, are complementary to these.

The particular diagram containing hadronic contributions to the full quark-gluon

interaction is given on the left-hand side of Figure 6.2, see [78] for further details. On

the right-hand side, this diagram is expanded in terms of resonant and non-resonant

contributions, of which only the meson exchange diagram is shown. Other hadronic

contributions include baryon and diquark exchanges, and amongst the non-resonant

contributions there is a one-gluon exchange between the quark and the antiquark lines,

see [78] for further details. However, we are interested only in the dominant [78] meson
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→ +

k k

F 1(k2)

π

k

Figure 6.3.: One-pion exchange contribution to the quark-gluon vertex, with the first diagram
on the right-hand side representing the rainbow approximation.

→ +
pπp

k

q p

k

q

Figure 6.4.: Resulting quark-self energy for the approximated quark-gluon vertex of Fig-
ure 6.3. The exchanged gluon in the first diagram is effectively dressed by
Zeff(k2).

exchange diagram, the pion triplet. This contribution requires the solution of the cou-

pled system of the SDE for the quark propagator, and the corresponding BSE for the

exchanged meson.

The resulting diagrammatic expression for the quark-gluon vertex is given in Fig-

ure 6.3. This approximation for the quark-gluon vertex leads to the two-loop diagram

for the quark-self energy given in Figure 6.4. The first term on the right-hand side of

Figure 6.4 subsumes gluonic contributions to the quark propagator, effectively dressed

by Zeff(k2). The pion part in Figure 6.4 is more complicated since it involves not only

two-loop integrals but also the full pion BSA, which needs to be determined from its

Bethe-Salpeter equation. In the earlier work of [78], the loop containing the dressed-

gluon was approximated by the pion BSA, using diagrammatic arguments. However,

this lead to an overestimation of the back reaction, in disagreement with corresponding

lattice QCD results [78]. Good agreement with lattice QCD results for the quark prop-

agator, and meson phenomenology, were obtained [137, 138] by setting this loop equal†

to Z2τ
iiγ5, where τ

i (i = 1, 2, 3) are the generators of flavour SU(2).

†A different motivation for simplifying this loop comes from the need to respect the axial-vector Ward-
Takahashi identity in the P 2→ 0 limit, and thus preserving the (pseudo)Goldstone nature of the
pion. The simplification mentioned above has indeed allowed the construction of a axWTI preserving
Bethe-Salpeter kernel [78, 137, 138].
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Figure 6.5.: Pion back reaction inclusion into the quark propagation.

After these simplifications, one then arrives at the SDE for the quark propagator,

displayed in Figure 6.5,

S−1(p) =Z2S
−1
bare +

∫
d4q

(2π)4
Deff(k)

λa

2
γµS(q)

λa

2
γν

+

∫
d4q

(2π)4

{
iτ iγ5S(q)Γ

i
π(l̃; k) + iτ iγ5S(q)Γ

i
π(l̂;−k)

} Dπ(k)

2
,

(6.5)

where k = p − q, Deff(k) ≡ G(k2)Dfree(k) is the effectively-dressed gluon propagator of

Chapter 4, Γiπ(p;P ) = τ iΓπ(p;P ) is the internal pion Bethe-Salpeter amplitude, and

Dπ(k) = (k2+m2
π)

−1 is the propagator for the exchanged pion, where mπ is the internal

pion mass. The momenta l̃ and l̂ are given in terms of p and q, in such a way that the

pion contribution to the self energy is symmetric in p, q. Their explicit expressions are

l̃ = (1− ηπ)p+ ηπq, l̂ = (1− ηπ)q + ηπp, (6.6)

where ηπ is the momentum sharing parameter in Γπ for the exchanged pion. Recall that

this pion is not on its mass shell.

In the chiral limit, an exact solution for the amplitudes Eπ, . . . , Hπ in terms of quark

dressing functions and regular parts of the isovector axial-vector vertex has been given in

Eqs. (3.37-3.40). In particular, the leading dressing function Eπ is completely determined

in terms of the quark dressing function B(p2) in the chiral limit, normalised by the chiral

limit decay constant fπ. In this limit, the pion BSA amplitude is thus given by
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Γπ(p;P ) = γ5i
B(p2)

fπ
+ · · · (6.7)

≡ γ5i
B(p2)

fπ
, (6.8)

where the ellipsis in Eq. (6.7) denote the contributions from the non-zero dressing func-

tions Gπ, Fπ, and Hπ.

Motivated by Eq. (6.7), and following[78, 137, 138], we will approximate the full pion

BSA in the quark self-energy, Eq. (6.5), by its leading amplitude in the chiral limit. We

will also use this approximation for the massive internal pion. Evidently, this approx-

imation omits the contributions from the three subleading amplitudes, represented by

the ellipsis in Eq. (6.7). However, this approximation is only employed for the internal

pion in the quark self-energy, Eq. (6.5).

Substituting Eq. (6.8) for Γπ(p;P ) into Eq. (6.5), and projecting out the vector and

scalar part of the quark propagator we obtain

A(p2) = Z2 +
CF
p2

∫
d4q

(2π)4
G(k2)
k2

{
− 2

k2
[
p2q2 − (p · q)2

]
+ 3(p · q)

}
σV (q

2)

− 3

fπ

∫
d4q

(2π)4

[
B(l̃2) +B(l̂2)

] Dπ(k)

2

(
p · q
p2

)
σV (q

2) (6.9)

B(p2) = Z4m(µ) + 3CF

∫
d4q

(2π)4
G(k2)
k2

σS(q
2)

− 3

fπ

∫
d4q

(2π)4

[
B(l̃2) +B(l̂2)

] Dπ(k)

2
σS(q

2), (6.10)

where the factor of 3 in front of the pion contribution represents the contribution from

the pion triplet, which are degenerate in the isospin symmetric limit adopted here. Note

that the effective gluon dressing function G(k2) of Chapter 4 contains no free parameters.

These are preserved from that chapter, and fixed in [38, 42]. Furthermore, the mass of

the up quark will preserve its value.
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Figure 6.6.: Quark wave function Z(p2) = A−1(p2) with and with out the pion back reac-
tion. Results without the pion back-reaction correspond to the rainbow model
G(k2) studied in the previous two chapters. The parameter D = 0.93GeV2 that
defines this model, together with the current up-quark mass mu = 3.7MeV,
renormalised at µ = 19GeV, were fixed by the pion mass and decay constant.
These parameters are not refitted here after the inclusion of the pion cloud.

6.2.3. Numerical results for the quark propagator

Before attempting a numerical solution of the coupled system Eqs. (6.9,6.10), we need

to specify the values for the pion mass mπ in the pion propagator Dπ(k), and decay

constant fπ in the chiral limit for the exchanged pion. We will use the values obtained

in Chapter 4 with D = 0.93GeV2 and mu = 3.7MeV. These parameters will be kept

fixed in the rest of this thesis. In the chiral limit, we have for the pion mass and decay

constant, mπ = 0 and fπ = 130MeV, respectively; away from the chiral limit, with

the up quark mass mu = 3.7MeV, we will use the physical values, mπ = 138MeV

and fπ = 132MeV, for the pion mass and decay constant, respectively. Variations of

these numbers do not change the qualitative behaviour of the results with quantitative

variations being small [137]. Note that up to here, mπ and fπ are just input parameters

describing the internal pion. When we use the quark propagators obtained here, by

solving Eqs. (6.9,6.10), into the meson Bethe-Salpeter equation, in the next section, we

will study how the pion mass and decay constant change under the influence of pion

cloud effects.
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Figure 6.7.: Quark mass function M(p2) = B(p2)/A(p2) with and with out the pion back re-
action. Results without the pion back-reaction correspond to the rainbow model
G(k2) studied in the previous two chapters. The parameter D = 0.93GeV2 that
defines this model, together with the current up-quark mass mu = 3.7MeV,
renormalised at µ = 19GeV, were fixed by the pion mass and decay constant.
These parameters are not refitted here after the inclusion of the pion cloud.

In Figures 6.6,6.7, we present numerical solutions for the dressing functions Z(p2) =

A−1(p2) and M(p2) = B(p2)/A(p2), after solving Eqs. (6.9,6.10), with and without

the pion back-coupling. The explicit current mass of the up quark is mu = 3.7GeV,

renormalised at µ = 19GeV. Results without the pion back reaction correspond to the

rainbow model studied in the previous chapters with the effective coupling G(k2)[38, 42].

The inclusion of a finite quark mass in both models adds very little to the quark mass

function, making evident the dominance of dynamical over explicit chiral symmetry

breaking. Results with and without the pion back-reaction are qualitatively similar.

In the ultraviolet region, both the mass function and the quark wave function, are

almost identical for the rainbow and beyond the rainbow models. This means that the

renormalisation group behaviour of these functions is not altered by the inclusion of the

pion back-reaction, and that the approximation Γπ(p;P ) ≈ γ5iB(p2)/fπ captures the

correct behaviour at large momenta, both at and away from the chiral limit.
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mf (µ) [MeV] ME [GeV] ME [GeV] −〈qq〉0 −〈qq〉0
Including π Including π

0.0 0.391 0.527 (0.227 GeV)3 (0.203 GeV)3

3.7 0.400 0.531 - -

Table 6.1.: Euclidean mass function, ME, and chiral quark condensate −〈qq〉0, with and
without the inclusion of the pion back-reaction.The current up-quark mass is
mu = 3.7MeV, renormalised at µ = 19GeV.

In the presence of explicit chiral symmetry breaking, the quark mass function in the

far ultraviolet is given by Eq. (4.20) [72, 73], whereas when dynamical chiral symmetry

breaking takes place, it is given by

M(p2)
p2≫Λ2

QCD

=
2π2γm

3

1

p2
−〈qq〉0[

1
2
ln
(
p2/Λ2

QCD

)]1−γm , (6.11)

where 〈qq〉0 is the renormalisation-point-independent chiral vacuum quark condensate.

Consequently, one can determine the value of the chiral quark condensate by fitting

Eq. (6.11) to the asymptotics of our chiral limit numerical solutions, Figure 6.7. In this

way, we can determine quantitatively the effect of including the pion back-reaction into

the quark SDE. Explicit values for the chiral quark condensate and Euclidean mass are

given in Table 6.1, where we also include results for the rainbow model. From Table 6.1,

we can see that the value of the chiral quark condensate has decreased by the inclusion

of the back-reaction of the pion, in agreement with the results of [137].

6.3. Hadronic unquenching effects into the

Bethe-Salpeter kernel

We now turn our study to meson bound states. Here, we would like to study the influence

of the pion back-reaction into the static and dynamic properties of mesons, in particular

the pion. The pion back-reaction enters in two ways into the Bethe-Salpeter equation.

In the first one, in an indirect way through the quark propagator for the constituent

quark and antiquark, as we described in the previous section. Here, the effective one-
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gluon exchange and one-pion exchange are resummed to all orders through the solution

of the quark SDE. In the second one, in a direct way through the Bethe-Salpeter kernel.

Following [78, 137, 138] we explain how this can be done.

As we have already discussed, meson bound states are described by the Bethe-

Salpeter equation (BSE), depicted in Figure 4.8,

[ΓH(p;P )]tu =

∫
d4q

(2π)4
[K(p, q;P )]tu;rs

[
Sa(q+)ΓH(q;P )S

b(q−)
]
sr
, (6.12)

where H = (ab̄) indicates the flavour structure of the meson, ΓH(p;P ) is the meson

Bethe-Salpeter amplitude (BSA) describing the bound state, Sf(q± ) is the propagator

for a dressed quark, and K(p, q;P )tu;rs is the quark-antiquark scattering kernel that

contains, in principle, all the information about the quark-antiquark interaction. Latin

indices indicate the colour, flavour, and Dirac structure. Momentum conservation entails

q+ = q + ηP , q+ = q − (1− η)P , and similarly for p± , with P = p+−p−. The parameter

η ∈ [0, 1] describes the meson momentum sharing between the quark-antiquark pair.

Observables, however, do not depend on this, see Tables 4.3,4.4.

As explained in Chapter 4, the BSE is a parametric eigenvalue equation, with discrete

solutions P 2 = −m2
H , where mH is the mass of the bound state, with the lowest mass

solutions corresponding to the physical ground state in a particular channel. Once the

quark propagators and the Bethe-Salpeter kernel are known, the BSE can be solved with

the use of the numerical procedure given in Appendix A.

Chiral symmetry constrains the Bethe-Salpeter kernel through the axial-vector Ward-

Takahashi identity (axWTI),

∫
d4q

(2π)4
Ktu;rs(k, q;P )

[
γ5T

HS(q−) + S(q+)γ5T
H
]
sr

=
[
Σ(k+)γ5T

H + γ5T
HΣ(k−)

]
tu
, (6.13)

providing a relation between the kernel in the quark SDE, through the quark self-energy∑
(p), and that in the BSE. Any truncation of these equations must preserve this relation
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−→K + +π π

Figure 6.8.: Pion cloud effects into the quark-antiquark scattering kernel, as required by the
axWTI, Eq. (6.13).

if the pattern of chiral symmetry breaking is to be satisfied. This implies that to a given

kernel in the quark SDE corresponds a particular truncation of the Bethe-Salpeter kernel.

In the rainbow truncation of the quark SDE, Eq. (6.4) and Figure 6.1, this relation

can be easily satisfied by

Kgluon(p, q;P )tu;rs = −Z
eff(k2)

k2
(δµν − kµkν)

[
λa

2
γµ

]

ts

[
λa

2
γν

]

ru

, (6.14)

where k = p− q, and Zeff(k2) ≡ Z1g
2F 1(k2)Z(k2). In our case, Z1 and g2 are absorbed

into the model parameters for G(k2). The resulting BSE includes an effective one-gluon

exchange between the constituent quark-antiquark pair, thus providing the “ladder”.

The solution of the ladder-truncated BSE then corresponds to a resummation of this

(infinite) gluon ladder.

As detailed in [78], the construction of a Bethe-Salpeter kernel corresponding to the

pion-exchange part is more complicated. There, diagrammatic arguments were used to

come up with a kernel that satisfies Eq. (6.13) in the P 2→ 0 limit. In order to satisfy the

axial-vector Ward-Takahashi identity, the expression for the quark self-energy containing

two loops, Figure 6.4, had to be simplified to the one-loop expression of the third diagram

on the right-hand of Figure 6.5, in order to ensure Eq. (6.13). The resulting Bethe-

Salpeter kernel, depicted in Figure 6.8, is
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Figure 6.9.: Inclusion of the pion back reaction in the BSE as dictated by the axWTI. Quark
propagators contain pion cloud effects implicitly through the solution of the
quark SDE.

Kpion
tu;rs(p, q;P ) =

{[
Γiπ

(
l̃−; k

)]
ts

[
iτ iγ5

]
ru

+
[
Γiπ

(
l̂−;−k

)]
ts

[
iτ iγ5

]
ru

+
[
iτ iγ5

]
ts

[
Γiπ

(
l̃+; k

)]
ru

+
[
iτ iγ5

]
ts

[
Γiπ

(
l̂+;−k

)]
ru

} Dπ(k)

4
,

(6.15)

where k = p−q, and the relative momenta in the exchanged pion are given by l̃+ = l̃+ηP ,

l̃− = l̃− (1− η)P , and similarly for l̂± , with l̃ and l̂ as in Eq. (6.6). The gluon exchange

part of the Bethe-Salpeter kernel is given by Eq. (6.14)

Finally, the Bethe-Salpeter equation beyond the rainbow-ladder is given by

[ΓH(p;P )]tu =

∫
d4q

(2π)4
{
Kgluon(p, q;P ) +Kpion(p, q;P )

}
tu;rs

×
[
Sa(q+)ΓH(q;P )S

b(q−)
]
sr
,

(6.16)

with Kgluon(p, q;P ) and Kpion(p, q;P ) given by Eqs. (6.14,6.15), respectively. The re-

sulting diagrammatic expression for the BSE is given in Figure 6.9.

The rainbow-ladder kernel Kgluon(p, q;P ) is independent of the total meson momenta

P . However, Kpion(p, q;P ) depends on P through the relative momenta of the exchanged

pion, ˜l± and ˆl± , giving rise to a complicated expression for the canonical normalisation

condition for the BSA, see Figure 6.10:
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Figure 6.10.: Canonical normalisation condition for the meson BSA, after adding a one-pion
exchange into the rainbow-ladder kernel. This results in a P -dependent kernel.

2Pµ =

∫
d4q

(2π)4

{
Tr

[
ΓH(q;−P )

∂Sa(q+)

∂Pµ
ΓH(q;P )S

b(q−)

]

+ Tr

[
ΓH(q;−P )Sb(q+)ΓH(q;P )

∂Sb(q−)

∂Pµ

]}

+

∫∫
d4p

(2π)4
d4q

(2π)4
[χH(q;−P )]sr

[
∂Kpion(p, q;P )

∂Pµ

]

tu;rs

[χH(p;P )]ut ,

(6.17)

where χH(q;P ) = Sa(q+)ΓH(q;P )S
b(q−) is the bound state wave function, and ΓH(q;−P )t

= C−1ΓH(−q;−P )C, with C = γ2γ4 the charge conjugation matrix, and X t denoting

the transpose of the matrix X .

The problem with the expression Eq. (6.17) is the two-loop integral that must be

evaluated numerically. Decomposing the measure into hyperspherical coordinates, where

none of the angles may be evaluated trivially, results in the need to evaluate an eight

dimensional integral numerically. Since this is forbidding, we turn our attention to an

alternative but equivalent normalisation condition.

Using the artificial eigenvalue λ we have introduced into the BSE, one may use the

equivalent [30, 31] normalisation condition

(
1

λ

dλ

dP 2

)−1

=

∫
d4q

(2π)4
Tr
[
Sa(q+)ΓH(q;P )S

b(q−)ΓH(q;−P )
]
, (6.18)
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Experiment ω = 0.4 [GeV] Including π

(estimates) [MeV] D = 0.93 [GeV2]

mu/d [MeV] 5-10 3.7 -

mπ [MeV] 138.5 138 124

fπ [MeV] 130.7 131 147 (146)

Table 6.2.: Pion cloud effects into the pion mass and decay constant, compared to the
rainbow-ladder model. The current quark mass is given at the renormalisation
point µ = 19GeV. The number in parenthesis in the leptonic decay constant is
the value for fπ that results when the two-loop integral in Eq. (6.17) is ignored. It
thus seems a very good approximation to neglect this term altogether. Note that
after including pion cloud effects the parameter mu/d, ω, and D are not refitted.

with P 2 = −m2
H . This evidently requires less numerical effort, and can simply be

applied to all truncations of the Bethe-Salpeter kernel. We therefore use this expression

for the normalisation of ΓH instead. It is important to note that both normalisation

conditions are equivalent in the sense that both ensure that the residue of the four-point

quark-antiquark Green’s function, at the pion pole, is unity.

We present our results for the pion mass mπ and decay constant fπ in Table 6.2.

The mass and decay constant characterising the pion being exchanged are fixed to mπ =

138.5MeV and fπ = 132MeV for the massive pion, and to mπ = 0 and fπ = 130MeV in

the chiral limit, as obtained in the rainbow-ladder truncation of the SDE-BSE system.

These will be our reference point. Recall that the BSA of the exchanged pion was

approximated with its leading amplitude Eπ(p;P ) = B(p2)/fπ. However, it has to be

stressed that this is done for the internal pion only.

The values for the parameters defining the effective coupling G(k2) are ω = 0.4GeV

and D = 0.93GeV2‡. Recall that these parameters, together with mu = 3.7MeV, at

the renormalisation point µ = 19GeV, were fixed in such a way that the the experi-

mental values for the pion mass and decay constant were reproduced. As can be seen

from Table 6.2, including the pion exchange into the SDE-BSE system gives rise to an

attractive effect, reducing the pion mass from mπ = 138MeV to mπ = 124MeV, that

is, a 11% reduction. Recall that the meson mass mH is determined solely by the con-

dition λ(P 2 = −m2
H) = 1, see Figure 6.11, that is, it does not depend at all on the

‡We can in principle re-calculate ω and D such that the experimental values for the mass and decay
constant of the pion are well reproduced. This will, of course, modify their values in the rainbow-
ladder model. As we consider the rainbow-ladder model our starting point we do not do this.
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Figure 6.11.: Evolution of λ as a function of the pion mass mπ in the rainbow-ladder trun-
cation, and by adding effects of the pion back reaction. We can see that the λ
has to be determined quite precisely.

normalisation of the meson BSA. However, the decay constant does. From the canonical

normalisation condition, we see that it depends on the value of the two-loop integral,

see Figure 6.10. On the other hand, from the alternative normalisation condition, we

see that it depends on the derivative of the artificial eigenvalue, evaluated at the meson

mass shell, see Eq. (6.18). These two expressions must give the same normalisation

constant. For the decay constant we also see a significant change, 12%, going from

131MeV to 147MeV. In Table 6.2, we also present results for the pion decay constant

calculated with the BSA normalised according the full normalisation of Eq. (6.18), and

with a ladder-type normalisation that results by neglecting the explicit two-loop integral

in Figure 6.10. From this, we can see that there is no significant change in fπ when we

use the full normalisation condition, Eq. (6.18), or a ladder-type normalisation, suggest-

ing that we can neglect the two-loop integral in the canonical normalisation condition.

Even though there is no problem now in calculating the normalisation constant for the

BSA, neglecting the two-loop integral in the canonical normalisation condition can be

useful when we consider the pion-photon vertex.
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6.4. Electromagnetic form factor

In Section 5.5.3, we saw how important the normalisation condition for the pion BSA

was in ensuring current conservation. There, the impulse approximation for the pion-

photon vertex reduced to the canonical normalisation condition for the pion BSA, in

the limit in which the photon momentum vanished. This meant that, in this limit, the

photon only probes the overall electric charge of the pion, given as the sum of the electric

charges of the up and antidown quarks. Furthermore, in the impulse approximation the

photon interacted only with the up and antidown quarks, as suggested by the ladder-

type normalisation condition, Eq. (4.28). Writing the meson-photon vertex in terms of

the quark-photon vertex meant that we were able to use the Ward-Takahashi identity,

and specially the Ward identity, to write a zero-momentum quark-photon vertex in

terms of the derivative of the inverse quark propagator, Eq. (5.14), eventually reducing

the impulse approximation for the meson-photon vertex to the canonical normalisation

condition for the pion BSA. This general procedure only applied to the case in which

the Bethe-Salpeter kernel was independent of the meson momenta, where the two-loop

integrals in the canonical normalisation identically vanished.

When we include the pion back-reaction into the quark propagator, and then for

consistency into the Bethe-Salpeter kernel, however, the Bethe-Salpeter kernel is no

longer independent of the meson momenta. This in turn implies that the two-loop

integral term in the normalisation condition no longer vanishes, and the meson-photon

vertex cannot be simply written as the sum of just two terms, one where the photon

couples to the quark, and another where the photon couples to the antiquark, but it

must include, somehow, a term where the photon couples to the (internal) pion being

exchanged. In analogy with the impulse approximation, the two-loop integral term in

the normalisation condition suggests that we add a term to the impulse approximation

where the zero-momentum photon couples to the BSA for the exchanged pion. However,

we will immediately face the problem of how to write such a term for nonzero photon

momenta, since we lack a diagrammatic expression for the BSA-photon coupling, see

the last two terms in Figure 6.10.

We have seen in Table 6.2 that it does not make a difference for the pion decay con-

stant whether we normalise the BSA with the full normalisation condition, Eq. (6.18),

or with the ladder-type normalisation, obtained by neglecting the two-loop diagrams in

Eq. (6.17). This clearly indicates that the two-loop integrals do not contribute much

to the normalisation constant. By using Eqs. (6.18,6.17), we can indeed calculate the
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contribution of the two-loop integrals to the normalisation constant, without actually

calculating any two-loop integral. For this, we write the canonical normalisation condi-

tion as

2P 2 =
1

N2

[
I(P 2) +D(P 2)

]
, (6.19)

where P 2 = −m2
H is the on-shell meson momenta, N is the full normalisation constant

for the meson BSA , I(P 2) represents the one-loop integrals in Eq. (6.17), and D(P 2)

the two-loop integrals in the same equation. These are given in terms the unnormalised

BSA, obtained as the solution of the homogeneous bound state equation. Similarly, we

can write the alternative normalisation condition, Eq. (6.18), as

(
1

λ

dλ

dP 2

)−1
∣∣∣∣∣
P 2=−m2

H

=
1

N2
J(P 2). (6.20)

Since both, Eq. (6.19) and Eq. (6.20), give the same normalisation constant, we can

compare the two-loop integrals D(P 2) to the one-loop integrals in Eq. (6.17). From

Eqs. (6.19,6.20), we obtain

D(P 2)

I(P 2)
=

2P 2

I(P 2)

(
1

λ

dλ

dP 2

)
J(P 2)− 1, (6.21)

with P 2 = −m2
H . In the ladder truncation of the BSE, D/I is zero. With mπ =

0.124GeV, in the beyond rainbow-ladder we find

D(P 2)

I(P 2)
= −1.885× 10−2,

(
Nladder

Nfull

)2

= 1.019, (6.22)

where Nladder is the normalisation constant obtained with the ladder-type normalisation,

i.e. by neglecting two-loop integrals,
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2P 2 =
1

N2
ladder

I(P 2), (6.23)

and Nfull that with the full normalisation, Eq. (6.19) or Eq. (6.20). From Eq. (6.21),

we see that normalisation condition is dominated by the one-loop integrals, that is, the

two-loop integrals add very little to the normalisation constant, in fact less than 2%, and

therefore do not contribute much to the static properties of the pion, as can be seen in

Table 6.2. It thus, might be a good idea to neglect the two-loop integrals altogether. We

stress that calculating the normalisation constant is not a problem, specially now that we

have an alternative condition, but we recall that the canonical normalisation condition

suggests the kind and type of diagrams that need to be added to the meson-photon

vertex when trying to preserve electromagnetic charge, as discussed in Section 5.5.3. In

other words, if we normalise the BSA with the full normalisation, we will need to add a

term to the meson-photon vertex where the photon couples to the pion being exchanged,

and we want to avoid that in the first place.

6.4.1. A hybrid approach

We have explained above that when using a meson-momenta-dependent kernel, we can-

not avoid the two-loop integral appearing in the canonical normalisation condition, the

last two terms in Figure 6.10. Consequently, when attempting to write an expression for

the meson-photon vertex, this normalisation condition itself suggests that we take into

account a term in the meson-photon vertex where the photon couples to the pion being

exchanged§. In fact, this is required for consistency between the beyond-rainbow-ladder

and the beyond-impulse approximations. In this way, we ensure, at the same time, a

correctly normalised meson BSA and electromagnetic current conservation. Physically,

this suggests that we consider, somehow, the case where the photon couples directly to

the pion being exchanged.

For simplicity, consider the diagram of Figure 6.12. We would like to add this diagram

to the impulse approximation, Figure 5.7, of the pion-photon vertex. In Figure 6.12, the

internal ππγ vertex will be calculated in the impulse approximation, as we have described

in Section 5.5. However, there are two important things to be stressed. The first one is

that the external pions are not on shell. The second is that this is a hybrid approach

§This will inevitably lead to a two-loop integral, something we would like to avoid.



Pion cloud effects in the quark propagator, meson BSA, and pion form
factor 128

q

γ∗

π(P )

π(P ′)
π

π

T

Figure 6.12.: Pion loop contribution to the electromagnetic pion form factor. T is the ππ
scattering amplitude.

where only part of it is correctly described in the SDE-BSE approach, while the rest

is modelled using chiral perturbation theory input. Therefore it cannot be considered

a rigorous SDE-BSE application, and the results should be interpreted with due care.

The intention of this section is to see how the effects of explicit pion exchange in the

pion-meson vertex can be incorporated, before presenting the results in the SDE-BSE

approach in Section 6.4.2. A similar approach has been presented in [141]

We approximate the pion loop contribution to the connected ππγ vertex as

Λijloopµ (P, P ′;Q) = ǫ3kl
∫

d4k

(2π)4
T ijkl(s, t, u)Dπ(k−)Dπ(k+)Λ

IA
µ (k−, k+;Q), (6.24)

where ΛIA
µ is the impulse approximation to the pion-photon vertex of Section 5.5, and

T ijkl(s, t, u) is the ππ scattering amplitude, a function of the Mandelstam variables, and

Dπ(k) = (k2 +m2
π)

−1 is the pion propagator for the internal pion.

The ππ scattering amplitude T ijkl(s, t, u) can be written in terms of a single scalar

function A(s, t, u) as [142, 8]

T ijkl(s, t, u) =Amp(πi(p1)π
j(p2)→πk(p3)π

l(p4))

=A(s, t, u)δijδkl + A(t, s, u)δikδjl + A(u, t, s)δilδjk,
(6.25)

where

s = (p1 + p2)
2, t = (p1 − p3)

2, u = (p1 − p4)
2, (6.26)
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are the usual Mandelstam variables. Furthermore, the various amplitudes of definite

isospin can also written in terms of this function as [142, 8]

T 0(s, t, u) = 3A(s, t, u) + A(t, s, u) + A(u, t, s), (6.27)

T 1(s, t, u) = A(t, s, u)− A(u, t, s), (6.28)

T 2(s, t, u) = A(t, s, u) + A(u, t, s). (6.29)

Chiral perturbation theory input

Note that in Eq. (6.24) the ǫ3kl factor allows only for a I = 1 isospin, forbidding the

ρ0-photon mixing that is contained in the transverse part of the quark-photon vertex.

Since qµΛ
IA
µ = 0, see Eq. (5.35), we can write

Λijloopµ (P, P ′;Q) = ǫ3ijTµ(P, P
′)F loop

π (Q2), (6.30)

with

qµTµ(P, P
′;Q) = 0,

Tµ(P, P
′;Q) =

2

Q2

[
Pµ (P

′ ·Q)− P ′
µ (P ·Q)

]
.

(6.31)

Setting i = 1 and j = 2, and contracting Eq. (6.30) with Vµ ≡ (P ′ − P )µ, we have

F loop
π (Q2) =

Vµ(P, P
′)Λloop

µ (P, P ′;Q)

V (P, P ′) ·T (P, P ′)
, (6.32)

where we have put the external pions on shell, P 2 = P ′2 = −m2
π. Writing ΛIA

µ (k−, k+;Q)

as in Eq. (6.30), we can write F loop
π in terms of the pion form factor in the impulse

approximation:
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F loop
π (Q2) =

∫
d4k

(2π)4
T I=1(s, t, u)Dπ(k−)Dπ(k+)

Vµ(P, P
′)Tµ(k−, k+)

Vν(P, P ′)Tν(P, P ′)
F IA
π (k2−, k− · k+, k2+)

=

∫
d4k

(2π)4
T I=1(s, t, u)Dπ(k−)Dπ(k+)

( −k ·P
m2
π +

1
4
Q2

)
F IA
π (k2−, k− · k+, k2+),

(6.33)

where F IA
π (k2−, k− · k+, k2+) is the electromagnetic form factor for off shell (internal) pions

in the impulse approximation, and T I=1(s, t, u) is the ππ scattering amplitude for isospin

I = 1, Eq. (6.28). In principle, given these two quantities we should be able to calculate

F loop
π (Q2) by performing the one-loop integral Eq. (6.33). However, it is difficult to

calculate these quantities, one reason being that the internal pions are not on shell.

The quantity F IA
π (k2−, k− · k+, k2+) can be calculated in the impulse approximation of

Section 5.5, however numerical problems (e.g. sampling the quark propagators and pion

BSA for large and complex momenta, as required by the loop integration) prohibit this.

Thus, for practical reasons we approximate F IA
π (k2−, k− · k+, k2+) by its on-shell value, i.e.

F IA
π (k2−, k− · k+, k2+)→F IA

π (Q2), (6.34)

where Q2 = (P ′−P )2. The quantity T I=1(s, t, u) = A(t, s, u)−A(u, t, s) can in principle

be calculated in chiral perturbation theory[142, 8]. At lowest order in chiral perturbation

theory [142, 8]

A(s, t, u) = − 1

f 2
π

(s−m2
π), (6.35)

where fπ and mπ are the physical pion decay constant and mass, respectively. This

expression is valid only for small momenta however, as dictated by chiral perturbation

theory [142, 8]. We can extend A(s, t, u) above, by introducing an effective parameter

mσ into it:
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Λ2 = ∞ Λ2 = 1GeV2

mσ [GeV2] r2π [fm
2] mσ [GeV2] r2π [fm

2]

r2π,exp [84] 0.559 0.440 0.667 0.440

Amendiola et al [85] 0.668 0.510 0.875 0.500

Table 6.3.: Fitted mσ using low-Q2 data on Fπ [85] and the experimental pion charge radius
value r2π,exp = 0.44 fm2 [84].

A(s, t, u) =
1

f 2
π

(
s+m2

π

1 + s
m2

σ

)
, (6.36)

provided that s/m2
σ ≪ 1, where we have written Eq. (6.36) in Euclidean space.

We now define the net ππγ vertex as the sum of the impulse approximation contri-

bution, Eq. (5.26), and the pion loop contribution of Eq. (6.24), as

Λijµ (P, P
′;Q) = ǫ3ijΛIA(P, P ′;Q) + Λijloopµ (P, P ′;Q). (6.37)

Defining a form factor for each vertex, as in Eq. (6.30), we can write the total form

factor as

Fπ(Q
2;mσ) =F

IA
π (Q2) + F loop

π (Q2)

=F IA
π (Q2)

[
1 +

∫ Λ d4k

(2π)4
T I=1(s, t, u)Dπ(k−)Dπ(k+)

( −k ·P
m2
π +

1
4
Q2

)]

=F IA
π (Q2)

[
1 +W (Q2;mσ)

]
,

(6.38)

where we have used Eqs. (6.33,6.34) in factoring F IA
π out in the second line, and Λ is

a momentum cut-off for the evaluation of Eq. (6.38) in spherical coordinates . Recall

that the impulse approximation to the pion form factor, F IA
π (Q2), satisfies current con-

servation, that is, it satisfies F IA
π (Q2 = 0) = 1. Therefore, in order to ensure current
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Figure 6.13.: Pion form factor given by Eq. (6.39) in the hybrid approach, with Λ = ∞.

conservation, Fπ(Q
2 = 0;mσ) = 1, in this hybrid approach, we redefine W (Q2;mσ) by

subtracting its value at Q2 = 0. Our final expression for the form factor is

Fπ(Q
2;mσ) = F IA

π

[
1 +W (Q2;mσ)−W (Q2 = 0;mσ)

]
, (6.39)

where

W (Q2;mσ) =

∫ Λ d4k

(2π)4
T I=1(s, t, u)Dπ(k−)Dπ(k+)

( −k ·P
m2
π +

1
4
Q2

)
. (6.40)

We recall that mσ inW (Q2;mσ) is an effective parameter that needs to be specified. We

can obtain mσ either by fitting Fπ(Q
2;mσ) in Eq. (6.39) to low-Q2 data on Fπ, or by

fitting the squared charge radius r2π(mσ), obtained with Fπ(Q
2;mσ), to the experimental

value r2π = 0.44 fm2. In this way, we obtain the values presented in Table 6.3. Note that

in Eq. (6.39) we have to specify the cutoff Λ in the loop integration. The fitted value

of mσ will depend on this. In Table 6.3 we present values for Λ = ∞, and Λ = 1GeV,

a characteristic hadronic scale. We note that W (Q2;mσ) is finite for Λ = ∞. In
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Figure 6.14.: Pion form factor given by Eq. (6.39) in the hybrid approach, with Λ = 1GeV.

Figures 6.13,6.14, we present the respective pion form form factors for Q2 ∈ [0-1] GeV2,

compared to the experimental data, and to the impulse approximation of Chapter 5.

From these figures, we can clearly see that the pion loop lowers the value of Fπ in

the region studied, with a magnitude dependent on Q2. For Q2 > 1GeV2 we need

the pion form factor in the impulse approximation, unfortunately numerical problems

prohibit its reliable calculation. From Figures 6.13,6.14, it is expected that Fπ(Q
2;mσ)

continues to decrease, however, it is not known in advance at which value of Q2 it will

“connect” to the perturbative result. Clearly, more work on this approach needs to be

done. Furthermore, from Figures 6.13,6.14 we see that the “quark core” of the meson

BSA contributes the most to the form factor, in qualitative agreement with the findings

of [141], where it was found that the pion loop contributes less than 15% to the squared

pion charge radius. Finally, we stress that this hybrid calculation is only a qualitative

way of estimating the pion loop contributions to the pion form factor, compared to the

impulse approximation, not a rigorous calculation.

Going beyond the impulse approximation for the calculation of the electromagnetic

form factor, builds additional structure into the pion BSA, whose BSA is a ladder quark-

antiquark bound state, i.e. it represents the “quark core” of the pion. As we have seen,

this quark core provides a very good description of static and dynamic properties of the

pion, away from resonance contributions. Adding the pion loop contribution is a first
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step in allowing this ladder quark-antiquark bound state to dress itself with a cloud of

ladder mesonic bound states. In the framework of the BSE, this corresponds to going

beyond the rainbow-ladder approximation. Indeed, this modification could be built into

the pion BSE (and for consistency into the quark SDE) and would lead to a dependence

on the centre-of-mass momentum P in the Bethe-Salpeter kernel, thus changing the

normalisation obtained in Eq. (4.28), as we have seen in the previous section.

6.4.2. Pion cloud effects in the pion form factor

In the SDE-BSE approach, pion cloud effects enter into the pion-photon vertex in various

ways: they are resummed in the quark propagators connecting pion Bethe-Salpeter

amplitudes in Figure 6.15, by solving the quark SDE; through the pion Bethe-Salpeter

amplitudes themselves by solving the Bethe-Salpeter equation; and possibly (explicitly)

through the interaction of the virtual photon with the pion being exchanged. As we have

emphasised in Section 5.5.1, there is an interplay between the canonical normalisation

condition for the meson BSA and the type of diagrams that need to be considered in

the meson-photon vertex, at and away from Q2 = 0. For the rainbow-ladder truncation

of the Bethe-Salpeter kernel of Chapter 4, we saw that it was sufficient to add only two

diagrams to the meson-photon vertex: one where the photon couples to the quark, and

one where the photon couples to the anti-quark, as in Figure 6.15. Using the Ward

identity, we reduced these two diagrams to the normalisation condition of the pion BSA,

automatically obtaining electromagnetic charge conservation, see Eqs. (5.34,5.35). This

general result holds only when the Bethe-Salpeter kernel is independent of the meson

momenta however, and the resulting approximation to the meson-photon vertex is called

the impulse approximation, see Figure 6.15.

Based on the results of Table 6.2, we see that the two-loop integral in the canonical

normalisation condition does not contribute much to the normalisation of the pion BSA,

that is, the normalisation condition is dominated by the first two terms in Eq. (6.17),

those that contain a derivative with respect to P 2 on the quark propagator. By neglect-

ing the two-loop-integral terms in Eq. (6.17), we are left with a ladder-type normalisation

condition. Once again, we stress that there is no problem in calculating the full normali-

sation of the BSA, since we now have an alternative normalisation condition, Eq. (6.18),

that can be calculated easily. The “problem” with this normalisation condition is that

it does not suggest which diagrams to add to the meson-photon vertex when trying to

ensure electromagnetic current conservation: at Q2 = 0, the normalisation condition for
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Figure 6.15.: Impulse approximation to the pion-photon vertex. All quantities have built-in
nonperturbative dressing effects, including pion cloud effects.

the meson BSA and the expression for the meson-photon vertex should be “consistent”,

in such a way that they ensure electromagnetic current conservation automatically. This

is why we are still keeping the canonical normalisation condition.

Independent of the contribution of the two-loop integral to the normalisation con-

dition, Eq. (6.17), we define the pion-photon vertex by the impulse approximation,

Figure 6.15, as we did in Chapter 5. In this approximation, the meson-photon vertex is

written as the sum of two terms,

Λπµ(P, P
′;Q) = Q̂uΛπ,uµ (P, P ′;Q) + Q̂dΛπ,dµ (P, P ′;Q), (6.41)

where Λπ,uµ (P, P ′;Q) is the contribution to the meson-photon vertex from the diagram

where the photon couples to the up quark, and Λπ,dµ (P, P ′;Q) that where the pho-

ton couples to the down antiquark; Q̂u and Q̂d are the electromagnetic charges of the

quark and the antiquark, respectively. Isospin symmetry ensures that Λπ,uµ (P, P ′;Q) =

Λπ,dµ (P, P ′;Q). Explicitly, we have

Λπ,dµ (P, P ′;Q) = Nc

∫
d4ℓ

(2π)4
Tr
[
Su(k1)Γ

π(k1, k2;P )S
d(k2)

iΓdµ(k2, k3;Q)S
d(k3)Γ

π
(k̂;−P ′)

]
,

(6.42)
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Rainbow-Ladder Beyond-Rainbow-Ladder

ladder norm. ladder norm. full norm.

Ball-Chiu vertex 1.000 1.000 1.019

Bare vertex 0.736 0.836 0.852

Table 6.4.: Fπ at Q2 = 0 in the impulse approximation of the pion-photon vertex for the
Ball-Chiu and the bare vertices. The BSA is normalised with a ladder-type nor-
malisation, Eq. (6.23), in the first two columns, and with the full normalisation,
Eq. (6.20), in the last column. In the Rainbow-Ladder truncation of the Bethe-
Salpeter kernel, the two-loop integral term is zero, and therefore the ladder-type
normalisation is exact. In the Beyond-Rainbow-Ladder truncation this term is
not zero, however its contribution is negligible, as we can see.

where Nc is the number of colours, the trace is performed over Dirac indices, and ℓ is

an appropriate loop integration variable. In Γπ(k1, k2;P ), k1 is the momentum of the

quark, and k2 that of the antiquark, such that k1 − k2 = P , and P 2 = −m2
π. For

a ladder-normalised Γπ(k1, k2;P ), Eq. (6.42) and the Ward-Takahashi identity ensure

electromagnetic current conservation. The normalisation of Γπ(k1, k2;P ) is of ladder

type only if we neglect the two-loop integrals in Eq. (6.17). Eq. (6.42) defines our

approximation for the pion-photon vertex, however, we still need to see whether it pre-

serves electromagnetic current conservation automatically, that is, if it gives Fπ(0)=1.

In Eq. (6.42), Γπ(k1, k2;P ) is the correctly normalised BSA, normalised according to

Eq. (6.17), or equivalently with Eq. (6.18). Eq. (6.18) is the full normalisation con-

dition, however, we are not guaranteed Fπ(0) = 1 automatically. On the other hand,

even though the ladder-type normalisation is not the correct one, it ensures Fπ(0) = 1

by construction, and, as we have seen, neglecting the two-loop integrals in calculating

static properties of the pion does not make any significant difference.

In Table 6.4, we present results for Fπ(0) using the Ball-Chiu and bare vertices for

the quark-photon vertex. In the first column of Table 6.4, we present the results of

Chapter 5, where the ladder-truncation of the BSE, and the impulse approximation of

the pion-photon vertex, exactly give Fπ(0) = 1 for the Ball-Chiu vertex. In the second

column, we give our results for Fπ(0) for the same vertices, but with the pion BSA

normalised with a ladder-type normalisation, that is, we have neglected the two-loop

integrals in Eq. (6.17). We can see that current conservation is satisfied, and we knew

this beforehand, since the impulse approximation and a ladder-type normalisation of the

BSA are consistent, in the sense that they guarantee Fπ(0) = 1. Since the bare vertex
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Figure 6.16.: Implicit inclusion of pion cloud effects into the pion form factor through the
dressed quark propagators and the pion BSA. The structure of the pion-photon
vertex is that of the impulse approximation.

does not satisfy the WTI, it is not constrained to have any fixed value at Q2 = 0. Adding

pion cloud effects to the impulse approximation increases the bare-vertex value of Fπ(0)

by 14% with respect to the results of the first column. Finally, in the last column, we

present the same calculation as in column two, but this time the pion BSA is normalised

using the full normalisation condition, that is, the contribution of the two-loop integrals

is taken into account. For both vertices, we see a very small increase in Fπ(0), supporting

the results of Table 6.2. The most important result is that the impulse approximation

of the pion-photon vertex still preserves electromagnetic charge automatically, even if

the normalisation condition of the pion BSA is not of ladder type. This is because the

contribution of the two-loop integrals is negligible.

In Figure 6.17, we present numerical results for the pion form factor in the impulse

approximation, Figure 6.15, using the Ball-Chiu and bare vertices for the quark-photon

vertex. Pion cloud effects entered in this calculation in various ways: through the

quark propagators, Eq. (6.5), connecting the pion BSA in the pion-photon vertex, see

Figure 6.15; through the quark-photon vertex with the Ball-Chiu construction; and

through the BSA, via the constituent quark propagators in the BSE, Eq. (6.12), and the

Bethe-Salpeter kernel, Eq. (6.15). These results are compared to those of Chapter 5,
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Figure 6.17.: Implicit inclusion of pion cloud effects into the pion form factor through the
dressed quark propagators and the pion BSA. The structure of the pion-photon
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and with experimental data. The new results are given on the Q2 ∈ [0-0.5] GeV2 range

only. Compared to the calculation of Chapter 5, the qualitative behaviour of Q2Fπ

remains the same, at least for this Q2 range, the only difference being the magnitude

of Q2Fπ for both the Ball-Chiu and bare vertices. However, a closer look to the low-

Q2 momentum region, see Figure 6.16, shows that the pion cloud effects could have

important contributions to the slope of Fπ at Q2 = 0, and therefore to the charge radius

of the pion. An explicit verification of this is therefore necessary. For Q2 > 0.5GeV2

we should expect a similar behaviour as well, due to the fact that we are using the

same approximation for the pion-photon vertex, namely, the impulse approximation,

and the pion cloud effects preserve the ultraviolet behaviour of the quark propagators.

However, in order to make this evident, the quark propagators need to be sampled

for large complex momenta, a complicated task with our current numerical procedure.

Therefore, it seems that the impulse approximation to the pion-photon vertex needs

to be supplemented with more structure, other than that accommodated in the quark

propagators and the Bethe-Salpeter kernel, consistent with current conservation. On

a deeper level, the quark-photon vertex should be obtained by solving its Schwinger-

Dyson equation, thus incorporating more structure into the vertex, and vector meson

bound states. On the other hand, going beyond the rainbow-ladder truncation, and
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therefore beyond the impulse approximation, should also be an improvement. However,

the numerical complexity of the problem then grows quickly, since we will be faced with

the need to evaluate two-loop integrals numerically.

6.5. Summary

We have introduced pion cloud effects into the quark SDE and pion BSE through the

quark-gluon vertex by following [78, 137, 138], and then extended these into the calcu-

lation of the electromagnetic form factor of the pion.

We found that the inclusion of pion cloud effects into the quark propagation have little

effect in the behaviour of the quark dressing functions, these being largely constrained

by perturbative QCD at ultraviolet momenta, and the dynamical generation of a large

constituent-quark mass in the infrared region.

After the inclusion of pion cloud effects into the quark propagation, we have calcu-

lated the influence of these effects into the static properties of the pion, namely its mass

and decay constant, without any readjustment of model parameters for the effective

gluon dressing function. Compared to the rainbow-ladder truncation alone, the pion

cloud has a considerable effect on these quantities, around 12% change, with a decrease

in the pion mass and an increase in the pion decay constant. However, a refitting of

the model parameters for the gluon interaction, which are the only parameters since the

pion cloud effects do not contain any adjustable parameter, should bring the values of

these quantities back to their experimental values.

Furthermore, we have extended the pion cloud effects to the calculation of the elec-

tromagnetic form factor of the pion. Due to the negligible contribution of the two-loop

integrals in the canonical normalisation condition for the pion BSA, see Eq. (6.22), we

have written the pion-photon vertex in terms of the impulse approximation, neglecting

a possible explicit coupling of the photon with the pion cloud, which could have con-

siderable effects away from Q2 = 0. The pion cloud effects therefore were confined to

the quark propagators, pion BSA, and dressed quark-photon vertex. Even though we

have simplified the pion BSA for the pion cloud, we have found that the qualitative

behaviour of Q2Fπ(Q
2) does not change by the inclusion of these effects, see Figure 6.17.

The quantitative difference on the region studied, compared to the rainbow-ladder trun-

cation, might be due to the fact that the model parameters for the effective gluon
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dressing function were not refitted. Nevertheless, a closer look to the low-Q2 momentum

region, see Figure 6.16, shows that the pion cloud effects have important contributions

to the slope of Fπ at Q2 = 0, and therefore to the charge radius of the pion. An explicit

evaluation of this is thus necessary.

In making the above observations, however, we have to keep in mind the simpli-

fications we have made. There are three main simplifications which will need to be

addressed in future work. The first one has to do with the representation of the vir-

tual pion BSA. This has been replaced by its leading amplitude in the chiral limit, i.e.

Γπ(p;P ) ≈ γ5iB(p2)/fπ. Here, the remaining tensor structures could have sizable effects

in both the static and dynamic properties of the pion. The second simplification is con-

cerned with the neglecting of the explicit coupling of the photon with the virtual pion

BSA. Although at Q2 = 0 this term contributes little to the form factor and the nor-

malisation condition of the BSA, it could have important effects away from Q2 = 0. In

the third simplification we have made, the transverse part of the dressed quark-photon

vertex has been neglected completely. This should be important in the low-Q2 region at

and beyond the impulse approximation for the pion-photon vertex. The inclusion of a

transverse part of the quark-photon vertex could be realised in the near future, either by

solving its SDE or by employing existing models in the literature[124, 125]. This should

be particularly important since the transverse part of the quark-photon vertex contains

vector meson bound states.



Chapter 7.

Conclusions

The SDE-BSE is a well founded continuum approach to nonperturbative hadron physics.

Indeed, they are a natural framework for the exploration of strong QCD since they

provide access to infrared as well as ultraviolet momenta, thus giving a clear connection

with processes that are well understood because QCD is asymptotically free. Moreover,

the SDE are the generating tool for perturbation theory.

However, the SDE-BSE form an infinite tower of coupled n-point functions that

must be truncated in order to define a tractable problem. That is, we have to make

an ansatz for the n-point functions whose SDE are not explicitly solved for, thereby

introducing a model dependence that is difficult to quantify. Furthermore, drawing a

connection between QCD (in the form of the SDE for the nonperturbative quarks and

gluons) and hadron observables (e.g. in the form of the meson BSE) is difficult, and

that is why modelling remains a keystone is the SDE-BSE approach to hadron physics.

Phenomenological input is proving useful in designing an effective quark-antiquark in-

teraction, and quantitative comparisons between the SDE-BSE and lattice-QCD studies

are today complementing the (SDE-BSE) approach.

Independent of the complexity of the truncation scheme designed for the SDE-BSE

system, it has to respect some general features of the strong interactions, such as chiral

symmetry and its breaking pattern. This is achieved by ensuring that the approach

respects the corresponding Ward-Takahashi identities. In considering the chiral symme-

try of QCD, we focused on the axial-vector Ward-Takahashi identity (axWTI). When

chiral symmetry is dynamically broken, we found a number of relations between the

fundamental theory and bound state properties: an explicit relation between the kernel

in the meson BSE and that in the quark SDE that must be preserved by any truncation

scheme; the homogeneous, flavour-nonsinglet, BSE has a massless pseudoscalar solution

141
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with its leading amplitude given completely in terms of the nonzero scalar part of the

quark propagator; and a mass formula for the flavour-nonsinglet pseudoscalar mesons in

terms of the current-quark masses and the chiral quark condensate. These general re-

sults have provided important guidance in determining the structure of the BSE kernel,

and have been a useful test for further approximations made.

In this thesis we have extensively studied the rainbow-ladder truncation scheme of the

SDE-BSE system, complemented with a successful phenomenological quark-antiquark

effective interaction, by calculating static and dynamic properties of the pion. First, we

have defined the rainbow truncation of the quark SDE, and then presented numerical

solutions to the resulting equations for various quark flavours, from the chiral limit to the

strange quark mass. We have shown that chiral symmetry breaking is a nonperturbative

phenomenon, impossible at any order in perturbative QCD, and that such an effect is

possible in the rainbow truncation scheme with a phenomenologically motivated effective

quark-antiquark interaction. Additionally, we have shown that dynamical chiral symme-

try breaking is a mass generating mechanism. Indeed, it can take the almost massless

light-quarks of perturbative QCD and turn them into the massive constituent-quarks

whose mass sets the scale which characterises the spectrum of the strong interaction.

This phenomenon is understood via the QCD’s gap equation, the solution of which gives

a quark mass function with a momentum dependence that connects the perturbative and

nonperturbative, constituent-quark domains. This actually happened thanks to the fact

that the effective quark-antiquark interaction reduced to the perturbative result in the

ultraviolet.

By solving the axial-vector Ward-Takahashi identity, we have obtained the Bethe-

Salpeter kernel that ensures the preservation of the generalised Gell-Mann–Oakes-Renner

relation. Once we have obtained the ladder Bethe-Salpeter kernel, we have solved the

Bethe-Salpeter integral eigenvalue equation numerically for the pion and kaon, and sys-

tematically calculated their static properties. Despite the fact that the light-quarks are

made heavier, the mass of the pion, in particular, remained unnaturally small. This,

too, is due to the fact that the rainbow-ladder truncation preserves the chiral sym-

metry breaking pattern of QCD encoded in the axWTI. This demonstrated that the

rainbow-ladder truncation scheme is a good starting point for the investigation of the

static properties of ground state pseudoscalar mesons, and that it can be used as a

firm foundation for future improvements, as well as for the investigation of the dynamic

properties of the pion.
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The theoretical determination of the pion form factor, in terms of the electromag-

netic interaction between its nonperturbative constituent-quarks and the photon, is a

difficult task. At experimentally accessible momentum transfers, the nonperturbative

effects of confinement and bound state structure must be taken into account. Due to

the inapplicability of perturbative QCD in this momentum regime, modelling of the

pion-photon vertex is required. We showed that this is possible in the SDE-BSE ap-

proach to hadron physics by means of the impulse approximation to the meson-photon

vertex. In fact, this approximation has emerged as a good starting point for this, mainly

because, as we have shown explicitly, it automatically satisfies current conservation in

conjunction with the rainbow-ladder truncation of the SDE-BSE complex. We have

shown that electromagnetic current conservation can only be guaranteed automatically

if there exists an interplay between the vector Ward-Takahashi identity (WTI) and the

canonical normalisation condition for the meson BSA. The vector WTI will be satisfied

if the longitudinal part of the quark-photon vertex is taken to be the Ball-Chiu construc-

tion, leaving the transverse part largely unconstrained. In the impulse approximation,

additional structure to the meson-photon vertex can be added through the quark-photon

vertex, either by solving the quark-photon SDE for transverse part in an appropriate

truncation scheme or by constraining it using multiplicative renormalisability.

We have presented numerical results for the pion form factor in the impulse ap-

proximation using the bare and Ball-Chiu vertices for the quark-photon vertex on the

Q2 ∈ [0-1] GeV2 region. The first of these violates current conservation since it does not

satisfy the WTI, and it misses the data completely. The Ball-Chiu vertex improves the

situation. It satisfies current conservation because it is designed to do so, however, it is

still a little above the experimental data on the region studied. This is mainly because

the transverse part of the quark-photon vertex has been neglected completely. This

part should have important contributions to the form factor and charge radius of the

pion because it contains vector meson poles. Independent of this, more structure can

be accommodated into the longitudinal part of the vertex by dressing the quark prop-

agators and Bethe-Salpeter kernel in a consistent way, as dictated by the axial-vector

Ward-Takahashi identity, and then using the Ball-Chiu vertex construction.

In connection with the perturbative prediction for Fπ, the diagrammatic expression

for the pion-photon vertex in the impulse approximation is similar to the perturbative

one. The difference being that in the impulse approximation we take into account

the nonperturbative effects of gluon dressing in the quark-gluon vertex, quark-photon

vertex, constituent quark propagators, and pion BSA by modelling the infrared part of



Conclusions 144

→ + +

Figure 7.1.: Nonperturbative one-loop corrections to the quark-gluon vertex in the quark
self-energy.

the effective quark-antiquark interaction. Since the rainbow-ladder truncation preserves

the ultraviolet behaviour of QCD, we are guaranteed to recover the leading power-law

of Fπ at large Q2. Unfortunately, an explicit verification of this, and the value of Q2 at

which this happens, is difficult since numerical accuracy at such Q2 is problematic.

Following the observation above, that more structure can be accommodated into the

longitudinal part of the vertex by using the Ball-Chiu construction, we have introduced

pion cloud effects into the quark SDE and pion BSE through the quark-gluon vertex,

and then all the way up into the pion electromagnetic form factor using the impulse

approximation for the pion-photon vertex. Even though we have approximated the pion

BSA for the virtual pion by its leading amplitude in the chiral limit, it seems, according

to the numerical results presented, that the introduction of pion cloud effects, as we have

done it here, do not change the qualitative behaviour of the quark propagators and pion

form factor, the former being largely constrained by perturbative QCD and dynamical

chiral symmetry breaking. For the static properties of the pion (mπ and fπ), we have

seen a considerable variation in their values, as compared to their rainbow-ladder results,

however, a readjustment of the effective gluon dressing parameters should bring them

back to their experimental values.

For the pion form factor, on the other hand, incorporating the transverse part of the

quark-photon vertex should be important at and beyond the impulse approximation.

This will add a richer structure to the vertex, and because it contains vector meson bound

states it will also be relevant for the pion charge radius. Moreover, going beyond the

impulse approximation to the pion-photon vertex, in accordance with electromagnetic

current conservation, should be important as well, since the Q2 behaviour of the pion

form factor would be modified, at least in principle.

In particular, starting with the quark SDE, the inclusion of the one-loop corrections

to the quark-gluon vertex in the quark self-energy should be relevant, see Figure 7.1,

both for the static and dynamic properties of mesons. According to the axial-vector
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Ward-Takahashi identity, Eq. (3.26), these one-loop (nonperturbative) corrections to the

quark-gluon vertex would require 5 additional two-loop diagrams in the ladder Bethe-

Salpeter kernel [131] in order to preserve the chiral symmetry breaking pattern of the

strong interactions. The resulting BSE kernel will now become dependent on the total

meson momenta, implying a quite complicated canonical normalisation condition for the

BSA. In fact, this introduces 4 extra terms in the normalisation condition [131] for the

meson BSA. Furthermore, according to the vector Ward-Takahashi identity, this will

require 4 additional diagrams to be added to the impulse approximation of the pion-

photon vertex in order to ensure electromagnetic current, Eq. (5.31). As can be inferred

from Figure 7.1, and subsequent diagrams for the BSE kernel, and pion-photon vertex

diagrams, every step, from the calculation of the quark propagators to the pion-photon

vertex, will present significant technical, nevertheless, some progress is being made in

current exploratory studies [143, 144].

The Schwinger-Dyson equation for the quark propagator has been one of the main

objects studied in this thesis. We have seen that it is closely related to the meson

Bethe-Salpeter equation, not only because it is one of its main inputs, but also because

the kernels of these two integral equations must be related according to the chiral sym-

metry properties of the strong interactions implied by the axial-vector Ward-Takahashi

identity. The quark SDE is also crucially related to the full gluon propagator and

quark-gluon vertex. These two objects combine nonperturbatively to give the quark

propagator its spectral properties. Due to the complexity of the SDE-BSE system,

tractability requieres us to adopt a more model dependent approach. Probably, by

systematically incorporating all the relevant Ward-Takahashi identities of the theory,

this model dependence can be reduced. In fact, the rainbow-ladder truncation scheme

of the SDE-BSE is the leading-order term of a nonperturbative symmetry-preserving

truncation scheme of the SDE-BSE [145]. This truncation scheme may be described as

a dressed-loop expansion of quark-gluon vertex. Its diagrammatic expansion yields an

ordered truncation of the SDE-BSE that, term by term, guarantees the preservation

of vector and axial-vector Ward-Takahashi identities. The nonperturbative one-loop

corrections to the quark-gluon vertex in the quark self-energy described above are the

next-to-leading terms in this dressed-loop expansion. The advantage of this truncation

scheme is that it is systematic and satisfies the Ward-Takahashi identities mentioned

above, thus ensuring the Goldstone character of the pion, and electromagnetic current

conservation automatically. Unfortunately, at every order of the truncation, an ansatz

for the gluon dressing function is required. Here is where the phenomenological and

lattice-QCD input enter, providing insight for the modelling of the gluon dressing func-
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tion. Hopefully by blending the systematics of this truncation scheme with the insight

of fully nonperturbative lattice-QCD, we might arrive at a robust truncation scheme

capable of describing quantitatively many phenomena in hadron physics.



Appendix A.

Numerical solution to the

Bethe-Salpeter equation

A.1. Numerical solution of the rainbow-ladder

truncated BSE in the pseudoscalar channel

The Bethe-Salpeter equation (BSE) is a homogeneous eigenvalue equation that admits

solutions only for discrete values of the meson momenta squared P 2 = −m2
H , where

mH is the mass of the meson under consideration. In order to facilitate the numerical

solution of this equation we modify it by introducing a fictitious eigenvalue λ(P 2) into

Eq. (6.12),

λ(P 2) [ΓH(p;P )]tu =

∫
d4q

(2π)4
[K(p, q;P )]tu;rs

[
Sa(q+)ΓH(q;P )S

b(q−)
]
sr
, (A.1)

where q is the relative momenta between the quark and the antiquark, q+ = q+ηP , and

q− = q− (1− η)P , such that P = q+ − q− is the meson momenta with P 2 = −m2
H fixed.

The original problem is recovered when λ = 1 at the meson mass shell P 2 = −m2
H .

The general structure of the Bethe-Salpeter amplitude (BSA), ΓH(p;P ), for the me-

son under consideration will depend on its quantum numbers, such as flavour, Dirac,

and CPT transformations[27]. Scalar and pseudoscalar mesons are characterised by four

Lorentz-scalar dressing functions, see Eq. (A.4), while vector mesons are characterized

by eight. We denote these generically by F α
H(p;P ).

147
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A.1.1. Rainbow-Ladder Kernel

In this appendix we will solve the BSE for a pseudoscalar meson in the rainbow-ladder

truncation by explicitly applying the general method described in Section 4.4.2.

In principle, the only input quantities to the bound state equation, Eq. (A.1), are

the quark-antiquark scattering kernel, [K(p, q;P )]tu;rs, and the constituent dressed-quark

propagators, Sa and Sb. However, these quantities are part of an infinite tower of coupled

nonlinear integral equations, and a truncation scheme must be introduced in order to

obtain a tractable problem.

The rainbow-ladder truncation scheme of the SDE-BSE complex is a scheme that

preserves essential properties of the strong interactions such as chiral symmetry and its

breaking pattern, as dictated by the axial-vector Ward-Takahashi identity Eq. (3.26).

This truncation has been successfully applied to the study of pseudoscalar and vector

mesons, as discussed in Chapter 4. In this truncation the Bethe-Salpeter kernel is given

by the effective one-gluon exchange kernel [38, 42]

K(p, q;P )tu;rs = −G(k2)Dfree
µν (k)

[
λi

2
γµ

]

ts

[
λi

2
γν

]

ru

, (A.2)

where k = p− q, Dfree
µν (k) is the free gluon propagator in Landau gauge, and G(k2) is the

effective coupling of Eq. (4.15). The quark propagators are obtained as solutions of the

quark SDE in the rainbow truncation.

In this truncation, the full BSE, Eq. (A.1), takes the form

λ(P 2)ΓH(p;P ) = −
∫

d4q

(2π)4
G(k2)Dfree

µν (k)
λi

2
γµS

a(q+)ΓH(q;P )S
b(q−)γν

λi

2

=

∫
d4q

(2π)4
Dphen
µν (k)γµS

a(q+)ΓH(q;P )S
b(q−)γν ,

(A.3)

where Dphen
µν (k) ≡ −CFG(k2)Dfree

µν (k) is a ”phenomenologically” dressed gluon propaga-

tor.
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A.1.2. Pseudoscalar Bethe-Salpeter amplitude

In the pseudoscalar channel (JP = 0−) the lowest mass solutions are the pion and kaon

mesons, with valence flavour structure ud and us, respectively. The general form of the

meson BSA in this channel is given by [27]

ΓH(p;P ) = γ5 [iEH(p;P ) + /PFH(p;P )

+ /p(p ·P )GH(p;P ) + σµνpµPνHH(p;P )]

=

4∑

α=1

F α
H(p;P )A

α(p;P ),

(A.4)

where we have defined

Aα(p;P ) = γ5 {i1, /P, /p(p ·P ), σµνpµPν} ,
F α
H(p;P ) = {EH(p;P ), FH(p;P ), GH(p;P ), HH(p;P )} .

(A.5)

The functions F α
H(p;P ) are Lorentz-scalar dressing functions, that is, F α

H(p;P ) =

F α
H(p

2, p ·P ;P 2), with P 2 = −m2
H fixed.

A.1.3. Projecting out Fα
H
(p;P )

We solve the BSE for ΓH(p;P ) using matrix methods as follows. First, we project the

BSE onto the Lorentz-scalar dressing functions F α
H(p;P ) using appropriate projectors.

We denote these by P α(p;P ), α = 1, . . . , 4.

In general, the Lorentz-Dirac basis {Aα(p;P ), α = 1, . . . , 4} is not orthogonal with

respect to the Dirac trace. Thus, in order to project out the Lorentz-scalar dressing

functions F α
H(p;P ) we need to construct these projectors such that

F α
H(p;P ) =

1

4
TrD [P α(p;P )ΓH(p;P )] , for α = 1, . . . , 4, (A.6)
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where TrD is the Dirac trace. Finding these projectors is of course equivalent to a

change of basis for ΓH(p;P ). Write P α(p;P ), α = 1, . . . , 4, in terms of the basis

{Aα(p;P ), α = 1, . . . , 4} as

P α(p;P ) =
4∑

β=1

P αβ(p;P )Aβ(p;P ), (A.7)

where P αβ(p;P ) are the coefficients for the change of basis. Substituting Eq. (A.7) into

the right hand side of Eq. (A.6), we see that the coefficients P αβ(p;P ) are obtained by

solving

1

4

4∑

β=1

P αβ(p;P )TrD
[
Aβ(p;P )Aγ(p;P )

]
= δαγ , (A.8)

or in matrix notation

PA = 1 ⇒ P = A−1, (A.9)

where the matrix elements Aαβ are

Aαβ(p;P ) ≡ 1

4
TrD

[
Aα(p;P )Aβ(p;P )

]

=




−1 0 0 0

0 −P 2 −(p ·P )2 0

0 −(p ·P )2 −p2(p ·P )2 0

0 0 0 p2P 2 − (p ·P )2



.

(A.10)

By calculating the inverse of A we find
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Pαβ =
(
A−1

)αβ
=




(A11)
−1

0 0 0

0 A33∆−1 −A23∆−1 0

0 −A32∆−1 A22∆−1 0

0 0 0 (A44)
−1



, (A.11)

with ∆ = A33A22 −A32A23.

A.1.4. Preparing the numerical kernel I

With the projectors P α(p;P ) found explicitly, we can now project out the dressing

functions F α
H(p;P ). Multiply Eq. (A.3) by (1/4)P α(p;P ), take the Dirac trace, and use

Eq. (A.6) to obtain

λ(P 2)F α
H(p;P ) =

∫
d4q

(2π)4
Kαβ(p, q;P )F β

H(q;P ), (A.12)

where we have suppressed summation symbols, and

Kαβ(p, q;P ) ≡ Dphen
µν (k)

1

4
TrD

[
P α(p;P )γµS

a(q+)A
β(q;P )Sb(q−)γν

]
. (A.13)

Eq. (A.12) is a system of four coupled integral equations for the dressing functions

F α
H(p;P ).

A.1.5. Momentum frame

We use the rest frame of the meson to solve Eq. (A.12). In Euclidean metric this frame

is given by
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Pµ = (imH , 0, 0, 0), (A.14)

with P 2 = −m2
H the meson mass shell. In the same metric, the integration measure and

loop integration variables are [1, 3]

∫
d4q

(2π)4
=

1

(2π)4
1

2

∫ ∞

0

dq2q2
∫ π

0

dθ cos2 θ

∫ π

0

dφ cosφ

∫ 2π

0

dψ, (A.15)

where qµ =
√
q2(cos θ, sin θ cos φ, sin θ sinφ cosψ, sin θ sin φ sinψ), (A.16)

from which follows that q ·P = imH

√
q2 cos θ, and therefore the Lorentz-scalar dressing

functions F α
H(p;P ) depend only on two variables, one radial and one angular(the ψ

integration is trivial, giving an overall contribution of 2π). The numerical integration

in Eq. (A.12) is straightforward and is performed using standard Gauss quadrature

techniques [82].

A.1.6. Chebyshev decomposition

The system of Eq. (A.12) can now be solved directly for the scalar dressing functions

F α
H(p;P ) depending on two variables, p2 and p ·P , and labelled by P 2, as an integral

eigenvalue equation. This has a high demand of computer memory and computing

time. However, in order to elucidate the angular dependence of the Lorentz-scalar dress-

ing functions F α
H(p;P ), and save on computing resources, we expand these in terms of

Chebyshev polynomials in the angle p̂ ·P ≡ p ·P/|pP | = cos θ = z as∗

F α
H(p

2, p ·P ;P ) =
∞∑′

m=0

F α
H,m(p

2;P 2)Tm(z), with P 2 = −m2
H , (A.17)

∗In practice the number of Chebyshev polynomials needed in Eq. (A.17) to produce converged results
is quite low. For example, the numerical results presented in Figures A.1,A.2 were obtained by using
only 4 Chebyshev polynomials in the decomposition of the dressing functions. See also Tables 4.3,4.4
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where the prime indicates that the zeroth Chebyshev coefficient is halved. The func-

tions F α
H,m(p

2;P 2) can be further projected out using the orthonormal properties of the

Chebyshev polynomials Tm,

∫ 1

−1

dz W (z)Tm(z)Tn(z) =





0 : m 6= n

π : m = n = 0

π/2 : m = n 6= 0,

(A.18)

where W (z) = (1− z2)
1/2

is the weight function. The Chebyshev moments for F α
H(p;P )

are thus given by

F α
H,m(p

2;P 2) =
(π
2

)−1
∫ 1

−1

dz W (z)Tm(z)F
α
H(p

2, p ·P ;P 2), α = 1, . . . , 4, (A.19)

with z = cos θ = p ·P/|pP | = p̂ ·P .

A.1.7. Preparing the numerical kernel II

Projecting out Eq. (A.12) onto the Chebyshev moments we have

λ(P 2)F α
H,m(p

2;P 2) =
(π
2

)−1
∫ 1

−1

dz W (z)Tm

(
p̂ ·P

)

∫
d4q

(2π)4
Kαβ(p, q;P )

∞∑′

n=0

Tn

(
q̂ ·P

)
F β
H,n(q

2;P 2)

=

∫
dq2q2Kαβ

mn(p
2, q2;P )F β

H,n(q
2;P 2),

(A.20)

where it is obvious what Kαβ
mn(p

2, q2;P ) is. With the angular dependence made explicit,

we can evaluate numerically the non-trivial angular integrals appearing after the first

equal sign in Eq. (A.20). The result of this is contained in Kαβ
mn(p

2, q2;P ). By matching

the external radial points, p2i , to the integration nodes for the numerical radial integral,

q2j , we can arrange Eq. (A.20) in the form of an eigenvalue matrix equation for the Cheby-
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shev moments. The Bethe-Salpeter amplitude ΓH(p;P ) is thus effectively projected out

onto the decomposition F α
H,m(p

2
i ;P

2). Schematically we are solving

λ(P 2)F = KF (A.21)

for the eigenvector F made up of Chebyshev moments as a parametric equation of

P 2 = −m2
H . The required physical solution corresponds to λ = 1, with the lowest mass

solution being the ground state in any particular channel.

A.1.8. Iterative numerical solution

The bound state BSE equation, Eq. (A.1), has now the form of a standard eigenvalue

equation, Eq. (A.21), which can be solved with the use of standard numerical techniques.

We are only interested in the eigenvalue λ = 1 with the lowest mass and its corresponding

eigenvector. In the pseudoscalar channel these are the pion and the kaon. Finding this

eigenvalue, and its associated eigenvector, is done iteratively by studying the evolution

of the eigenvalue closest to one with respect to the pseudoscalar meson mass. The

pseudoscalar meson mass is that for which λ = 1 at P 2 = −m2
H . This is equivalent to

finding the root of f(mH), defined by

f(mH) = λ(P 2 = −m2
H)− 1. (A.22)

As we are only interested in the λ = 1 eigenvalue of K, it will be a waste of time to

find all the eigenvalues first and then search for the one that is closest to one. The task

of finding only the closest eigenvalue to one is performed by using the standard inverse

iteration method. In general, this method will converge to the closest eigenvalue to ρ,

and is based on the following algorithm [146]:
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Figure A.1.: Evolution of λ(P 2 = −m2
H) for the pion together with Linear and quadratic fits

to the numerical data. The value of mH that corresponds to the intersection
with λ = 1 is the pion mass; mπ = 0.1385GeV.

Inverse Iteration:

Choose ǫ, V0, ρ; Set r0, k = 0

Solve LU = K− ρ1 (LU decomposition of the right-hand side)

Repeat

k = k + 1

Solve (K− ρ1)Zk = Vk−1

rk = VT
k−1Zk

Vk = Zk/||Zk||2
Until |rk − rk−1| < ǫ,

λ = 1/rk + ρ, F = Vk.

(A.23)

This algorithm is based on the well-known power method which converges to the

largest eigenvalue of a matrix [146]. The shift ρ above is chosen in such a way that

(λ−ρ)−1 is the largest eigenvalue of (K−ρ1)−1. Using this algorithm we can, in principle,

find all eigenvalues of K. If ρ ≈ λ, then (λ− ρ)−1 is likely to be the largest eigenvalue,
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Figure A.2.: Evolution of λ(P 2 = −m2
H) for the kaon together with Linear and quadratic fits

to the numerical data. The value of mH that corresponds to the intersection
with λ = 1 is the kaon mass; mK = 0.496GeV.

hence for good choices of ρ the inverse iteration will converge rapidly. However, choosing

a good ρ requires some previous knowledge of the eigenvalues. For this reason, the inverse

iteration method is generally used when an estimate of an eigenvalue has been obtained

from another algorithm. In this situation, the inverse iteration can be used to improve

the eigenvalue estimation as well as to compute the associated eigenvector. Luckily, we

know that λ = 1, and just need to tune mH such that this occurs. Therefore we put

ρ = 1 in Eq. (A.23).

In Figures A.1,A.2 we present the evolution of the closest eigenvalue to 1 obtained

with the inverse iteration algorithm, Eq. (A.23), for the pion and kaon. The mass of

the pseudoscalar meson is that for which λ = 1. In this way, for the pion we have

mπ = 0.1385GeV, while for the kaon mK = 0.496GeV.

The inverse iteration algorithm gives also the eigenvector F for the Chebyshev mo-

ments. Once these are obtained, the Chebyshev sum in Eq. (A.17) is performed using

the Clenshaw’s recurrence formula, as discussed in[82]. The normalized ΓH is then used

for the calculation of pseudoscalar observables.
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