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ABSTRACT 

Metallothioneins are low molecular-weight, cysteine-rich, trace metal-binding 

proteins. Whereas class III metallothioneins (MTs) have been isolated in eukary­

otic algae, Anacystis nidulans (Synechococcus TX20} remains the only prokaryote 

in which a class II MT has been isolated and characterized. Cadmium binding 

ligands produced in response to cadmium were separated using gel permeation 

HPLC, DEAE and a variety of physical methods. Results indicated that, in ad­

dition to the class II MT previously isolated, putative class III (gammaEC)nG 

polypeptides may have been induced by the cadmium ions. An attempt was 

made to isolate and characterize the first prokaryotic metallothionein gene. Two 

synthetic oligonucleotides analogous to the Synechococcus TX20 MT protein were 

used as extension primers in an attempt to amplify the MT gene locus. 
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ABBREVIATIONS 

Amp= Ampicillin 

~14 = Absorbance at 414 nm 

BSA =Bovine serum albumin 

bp = base pair 

CdBP =Cadmium-binding peptide 

dNTP = deoxyribonucleoside triphosphate 

EDTA = Ethylenediaminetetra-acetic acid 

GSH = Glutathione 

hMT =Human metallothionein 

HPLC = High pressure liquid chromatography 

Kb = Kilobase 

MT = Metallothionein · 

MRE = Metal regulatory element 

NTA = Nitrilotriacetic acid 

PCR = Polymerase chain reaction 

RNAse =Ribonuclease 

SDS = Sodium dodecyl sulphate 

4 



Contents 

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

10 

2 

1.0.1 Introduction to metallothioneins . . . . . . . . . . . . . 8 

1.0.2 Biochemistry of metallothioneins . . . . . . . . . . . . . 8 
1.0.3 The role of metallothioneins in trace metal homoeostasis 

1.1 Cadmium 

1.1.1 The uses of cadmium. 

1.1.2 Cadmium exposure and toxicity 

1.1.3 Cadmium, metal antagonism 

11 

11 

11 

12 

1.1.4 Cadmium contamination of the environment 15 

1.1.5 Decontamination of cadmium in solution . . . 17 

1.2 Prokaryotic gene induction and its implications 18 

1.3 Justification in using Anacystis nidulans 21 

1.4 Aims and objectives of the project . . . . . . . . . . . 21 

METHODS AND MATERIALS ••• t ••••••••••• t 23 

2.0.1 Anacystis pedigree .... 23 

2.0.2 Algal growth media and buffers . . . . . 25 

2.0.3 Bacterial media and buffers. . . . . . 27 

2.0.4 Isolation of genomic DNA from A. nidulans . . . . . 27 

2.0.5 Endonuclease digestion of plasmid DNA 28 

2.0.6 Gel electrophoresis of retricted DNA 29 

2.0.7 Detection of cadmium binding peptides 29 

2.0.8 Determination of acid-labile sulfide 30 

2.0.9 Synthesis and purification of oligonucleotides 31 

2.0.10 Structure of two synthetic extension primers 31 

2.0.11 The polymerase chain reaction (PCR) 32 



2.0.12 PCR fragment isolation and recovery . . . . . . . . . 38 

2.0.13 Ligation of the potential MT gene amplified sequence 38 

2.0.14 Transformation into pUC18 . . . . . . . . . . 39 

2.0.15 Plasmid miniprep of pUC18 transformants 40 

2.0.16 Preparation of a hybridization probe 40 

2.0.17 Fixation of bacterial colonies onto nitrocellulose 41 

2.0.18 Hybridization of bacterial colonies . . . . . . . . . 41 

3 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 

3.0.1 Cd-binding ligands in A. nidulans . . . . . . . . • . 43 

3.0.2 Characterization of the two cadmium-binding ligands 59 

3.0.3 PCR amplification of the A. nidulans MT gene . . . . 76 

3.0.4 PCR fragment recovery and insertion into pUC18 . 89 

4 DISCUSSION . . . . . . . . . . . . . 90 

4.0.1 Prokaryotic metallothioneins 90 

4.0.2 Adaptive mechanisms involving (gammaEC)n G 94 

4.0.3 Amplification of the A. nidulans MT gene . . . . 95 

5 FUTURE STUDIES . . . . . 100 

6 MAJOR CONCLUSIONS . 101 



Chapter I 

INTRODUCTION 

1.0.1 Introduction to metallothioneins 

The isolation and characterization of metallothioneins (MTs) has now been 

documented for many species of vertebrate, invertebrate, and fungi. Most 

recently, an MT gene has been isolated from a higher plant but its translational 

product has not yet been identified (Evans et al., pers. com.). MTs are 

thought to play an essential role in the intracellular regulation of the trace 

elements zinc and copper. MTs are cysteine-rich, low molecular weight proteins 

of extremely high metal content and are currently of considerable scientific 

interest through their involvement in the detoxification of heavy metals. 

1.0.2 Biochemistry of metallothioneins 

The term metallothionein was initially used to designate the cadmium and 

zinc containing sulphur-rich protein first extracted from equine renal cortex 

(Kagi and Vallee, 1960). This protein had been characterised as having 

a low molecular weight, high metal content, an amino acid composition 

high in cysteine but with no aromatic residues or histidine, a unique amino 

acid sequence with characteristic distributions of cysteinyl residues (such 

as Cys-X-Cys, where X is any other amino acid), spectroscopic features 

characteristic of metal thiolates (mercaptides) and metal thiolate clusters. With 

the isolation of MTs from other evolutionary diverse species, such as crab, 

locust and fission yeast (Olafson et al., 1979. Martoja et al., 1983. Murasugi 
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et al., 1981), there are now three internationally recognized subclasses of 

metallothionein: 

Class 1: Polypeptides with locations of cysteine closely resembling those of equine 

renal MT, such as those isolated from Neurospora crass a and Agaricus 

bisporus (Lerch and Beltramini, 1983; Munger and Lerch, 1985). 

Class II: Polypeptides with locations of cysteine only distantly related to those in 

equine renal MT, such as those isolated from Saccharomyces cerevisiae and 

Synechococcus TX-20 (Winge et al., 1985; Olafson et al., 1988). 

Class III: Nontranslationary-synthesized metal-thiolate polypeptides isolated from higher 

plants (Grill et al., 1987; Jackson et al., 1987; Rauser, 1987.), the fission 

yeast Schizosaccharomyces pombe (Kondo et al., 1985) and eukaryotic al-

gae (Gekeler et al., 1988; Shaw et al., 1988; Hart and Bertram, 1980). 

Despite the wide range of metallothioneins discovered, they remain the 

only polypeptides isolated that contain cadmium. The class II MT isolated 

by Olafson (1988) from Synechococcus TX20 complexes cadmium and zinc. 

It has a high thiol content (19%) for a molecule, although this is low in 

comparison with other MT sequences, and cysteine sequences similar to those 

observed in eukaryotic MTs with characteristic clusters of Cys-X-Cys and the 

commonly found Cys-X-X-Cys or Cys-Cys sequences. Synthesis of prokaryotic 

MT is induced by the presence of zinc or cadmium within the media. The 

cyanobacterial molecule under discussion may have some covergent evolutionary 

relationship with eukaryotic MTs, and some similarities in secondary structure 

with regard to the metal thiolate region, However, it is believed to be the first 

prokaryotic MT isolated. Data presented here also indicates that Anacystis 

nidulans contains a putative class III MT or (gammaEC)nG. If this is 

confirmed, it will be the first evidence for such metal-binding polypeptides 

within a prokaryote. 
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1.0.3 The role of metallothioneins in trace metal homoeostasis 

Several intracellular/extracellular mechanisms of defense have evolved in 

response to the presence of trace metals within the environment. The role 

of Class I MTs in animals is thought to be primarily that of a regulator in 

the control of zinc homoeostasis (Karin, 1985: Olafson et al., 1988). Zinc 

ions are important constituents of the active site of many enzymes involved 

in transcription, protein synthesis and degradation, replication and energy 

metabolism. As the major zinc-binding proteins within the cell, MTs can 

potentially regulate the supply of trace metal and thus directly effect the 

outcome of many important biological processes. Increased dosage of cadmium 

and zinc in animals leads to the transcriptional activation of MT genes and the 

subsequent accumulation of MT within the liver and kidneys (Durnam and 

Palmiter, 1981). The transcription rate of the MT genes increase with the 

concentration of free zinc ions within mammalian cells, leading to the synthesis 

of extra MT to bind the excess metal. In addition, the level of zinc regulates 

the turn over of MT. When zinc levels are low intracellularly, MTs are rapidly 

degraded. The complexity of MT synthesis and transcriptional control suggest 

that MTs occupy a central role in cellular metabolis~. Such a role is unlikely to 

have developed in response to fluctuations in environmental levels of toxic trace 

metals and natural selection for intracellular detoxifying-metal binding proteins. 

The role of the class III MT, (gammaEC)nG, is less clear although there 

is direct evidence that these polypeptides are involved in the detoxification of 

excess cadmium and copper in plant cells (Jackson et al., 1987). Their role in 

zinc homoeostasis is doubtful as (gammaEC)n G are only weakly associated with 

zinc (Reese and Wagner, 1987). In Euglena gracilis, studies found evidence that 

intracellular cadmium bound to (gammaEC)nG, whilst the majority of the zinc 

was to be found in a low molecular weight pool (Gingrich et al., 1984; Shaw 
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et al., 1989). Exposure to zinc did not induce synthesis of zinc-(gammaEC)nG 

in Euglena gracilis (Weber et al., 1987; Shaw et al., 1989). 

1.1 Cadmium 

1.1.1 The uses of cadmium. 

Cadmium is a major environmental and occupational pollutant. Many 

commercial products contain cadmium. These include; cooking utensils; 

sleeve bearings for cars, aeroplanes and marine engines; jewellery production; 

chemicals (as in the halides) used in photography, coloured pigments used in 

the glass industry; storage batteries; paints; plastics; phosphors in television 

tubes; household appliances and transistors (Schroeder, 1965). 

1.1.2 Cadmium exposure and toxicity 

Humans are exposed to cadmium through the inhalation of cigarette 

smoke and emission from the combustion of fuels and plastic waste. Industrial 

workers are exposed to cadmium within metal smelters, paint pigment, battery, 

ceramic, alloy and welding industries (Nriagu, 1980). Trace amounts of cadmium 

have been detected in almost all types of food; shellfish, wheat, soybean and 

rice accumulate high amounts of cadmium (Jayasekara et al., 1986; Casterline 

and Bennett, 1982). The tissue distribution of cadmium has been studied in 

various parts of the world. Renal cadmium (mean level) amongst Japanese men 

was 6,030 p.g g-1in ash with a range of 1,350-19,500 p,g g-1, compared to the 

average Englishman with 1050 p.g g-1 (Schroeder, 1960; Schroeder and Balassa, 

1961 ). Exposure to cadmium causes anaemia, osteomalacia, hypertension, 
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hepatic, renal and cardiovascular disorders (Flich et al., 1971). The inhalation 

of CdO fumes leads to emphysema, chronic bronchitis and bronchial carcinoma 

(Morgan,1971; Gunn et al., 1963). Such chronic effects are a result of the 

long half-life of cadmium in most tissues, ranging from 80 days in blood and 

10 years in the liver to 25 years in the kidney. Within the USA cadmium is 

recognized as a "priority pollutant "and drinking water limits are set at 10 ng 

ml-1 . European levels for the Rhine and Neckar Rivers in 1979 were reported 

to have reached 3.7 and 6 p,g 1-1, respectively (Forstner and Wittman, 1979). 

1.1.3 Cadmium, metal antagonism 

The chemistry of cadmium is essentially homologous to that of zinc. 

Cadmium shows a strong affinity for ligands such as phosphates, cysteinyl 

and histidyl side chains of proteins, purines, pteridines, and porphyrins. In 

a similar way to lead and mercury, cadmium can act at a large number of 

biochemical sites. Premsagar (1969) noted the effect of cadmium on the 

conformation of polyriboadenylic acid and the physical properties of DNA, 

whilst other workers have noted the inhibition of enzymes with functional 

sulphydryl groups and the disruption of oxidative phosphorylation pathways. 

In higher organisms the biological action of metals both toxic and essential are 

often conditioned by metal ion antagonism. Cadmium can substitute for the 

zinc atom at the active site of bovine pancreatic carboxypeptidase A (Vallee 

and Ulmer,1972). The cadmium-enzyme displays a significantly greater activity 

than the native zinc-enzyme during the hydrolysis of other substrates, but 

in contrast to zinc-carboxypeptidase it will not hydrolyse peptide substrates. 

Thus cadmium by altering the catalytic efficiency and specificity of the enzyme 

is both "activating " and "inhibiting " carboxypeptidase depending on the 
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substrate. Several other unnatural Cd-protein complexes are known (Table 1). 

The number of enzymes altered suggests that cadmium and zinc are likely to 

be isomorphic and compete readily for the same binding sites, i.e 3-SH groups, 

when cadmium is present intracellularly. It is therefore a serious environmental 

toxin. In cyanobacteria, the documented damage induced by cadmium includes 

mitochondrial membrane inactivation, chromosome aberrations, destruction 

of photosynthetic pigments and photosynthesis inhibition, release of cellular 

potassium and the inhibition of nitrogen fixation (Kunisawa and Cohen-Bazire, 

1970; Singh and Yadava, 1984 and 1986). 

12 



Table 1: Cadmium-zinc metal antagonism (Vallee and Ulmer, 1972.) 

Cadmium enhanced Cadmium inhibited 

Rat liver acid phosphatase Canine liver acid phosphatase 

Chicken adenosine triphosphatase Rat liver adenosine triphosphatase 

Rat alkaline phosphatase Calf Duodenum alkaline phosphatase 

E. coli alkaline phosphatase 

Bovine pancreatic Calf duodenum and E. coli 

carboxypeptidase A carboxypeptidase A 

Rat cholinesterase Calf duodenum and E. coli 

cholinesterase 

Pigeon brain cytochrome oxidase Rat liver mitochondrial 

cytochrome oxidase 

Mouse malic dehydrogenase 

Rat phosphorylase 

Pigeon succinic dehydrogenase Rat liver succinic dehydrogenase 
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1.1.4 Cadmium contamination of the environment 

The presence of toxic trace metal contaminants in industrial and 

agricultural wastes is of growing environmental and toxicological concern. 

Cadmium is commonly associated with zinc in carbonate and sulfide ores and as 

a byproduct in the refining of other metals (copper and lead). Global cadmium 

production in 1979-1980 was 1.5 x 105 t. In Europe cadmium emissions into the 

environment during the same year reached 2,700 t. The UK total alone was 

almost 100 t. The largest source of emission were the zinc-cadmium mining 

operations (Tables 2a and 2b ). The close association of cadmium in nature with 

zinc results in the recovery of 6kg of cadmium for every ton of zinc metal mined 

and smelted. 

Many industrial and domestic effluents are contaminated with toxic trace 

metals in solution. If not removed prior to discharge these metals (uranium, cad­

mium, lead and copper) can pose a serious health hazard (Scott et al., 1973). 

Running water spreads pollutants either as solutes or in the suspended sediment 
., 

load, and they may be deposited on the floodplain. Although the quality of 

effluent water from mines and processing plants in the UK is now controlled, 

the floodplain soils in the old lead mining areas of Britain are still contaminated 

by lead, zinc and cadmium residues (Davies, 1983), with levels of cadmium up 

to 1 mg g- 1 recorded (Colbourn and Thornton, 1978). In 1988 the village of 

Shipham, built on the site of old zinc mines, was the subject of a special re­

port (Morgan, 1988). Cadmium concentrations within the soils were found to 

have reached 300 p.g g-1with a median value of 90 Jl9 g-1 . An order of mag­

nitude higher than those associated with the "itai, itai" disease in the Japanese 

community of Jinzu. Itai, itai, the Japanese for pain, is a syndrome of long 

term cadmium and other toxic trace metal exposure (Flick et al., 1971). The 

unfavourable effects that cadmium containing effluents have on sewage should 
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Table 2a: European sources of cadmium emission into the atmosphere in 1979 

Source tons/yr 

Combustion of fuels 312 

Zinc-cadmium metal production 1550 

Copper-nickel metal production 595 

Ferroalloy manufacture 58 

Phosphate fertilizers 84 

Others 74 

European total 2,700 

Table 2b: The emission by European countries of cadmium into 

the atmosphere in 1979 (Nriagu and Davidson, 1979) 

Source tons/yr 

USSR 816 

UK 99 

Poland 207 

Italy 124 

G.F.R. 324 

France 170 

Belgium 171 

Austria 137 

Others 648 

European total 2,700 
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also not be overlooked, i.e. inhibition of nitrification and interference with bio­

logical oxidation by microorganisms. Sewage wastes, both solid and liquid, are 

increasingly applied to agricultural land. The solid waste, or sludge, is commonly 

applied annually to land at 25 t dry matter ha-1. As a result any constituent 

trace metal will accumulate within the soil. Cadmium-containing sludges of be­

tween 60-1500 p,g g-1 dry matter have been recorded (Berrow and Webber,1972). 

Plants grown on these soils have demonstrated marked increases in intracellular 

cadmium concentrations and may pose a serious health hazard when ingested in 

quantity. 

1.1.5 Decontamination of cadmium in solution 

Decontamination can be achieved by physiochemical processes such as 

ion precipitation and exchange. Cadmium will also form moderately stable 

complexes with a variety of organic compounds and synthetic chelating agents 

such as nitrilotriacetic acid (NTA) form relatively stable cadmium-NTA 

chelates. However, the use of microorganism's biomass to absorb trace metal 

ions intracellularly appears to offer an alternative solution to the problem. A 

number of eukaryotic algae are predominant in sewage/effiuent treatments and 

several algal species have been recorded to contain high intracellular levels of 

trace metals (Table 3). Other species have been used as biological indicators to 

monitor toxic trace metal pollution in aquatic environments. The efficiency of 

algae to remove trace metals will be determined primarily by. 

(1) Algal growth rate. 

(2) The environmental concentration of the metal. 

{3) The ability of the species to absorb and concentrate the metal. 

( 4) Percentage recovery of the metal required and achieved. 
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Table 3: Toxic trace metal accumulation within algae. 

(5) Cost and effectiveness of the operation. 

Species mg kg-1 .. Author 

Lemanea 10,000 Harding and Whitton, 1981 

Cladophora 500 Forstner and Wittman,1979 

Anabaena 10,000 Laube et al., 1980 

Coelastrum 2,000 Soeder et al., 1978 

1.2 Prokaryotic gene induction and its implications for MT induction 

In comparison to mammalian MTs, in which transcription has been 

activated and inhibited by a variety of stress factors besides that of toxic trace 

metals, the transcription of the Synechococcus MT gene has been induced only 

by zinc and cadmium ions. Although copper induction of the fungal MTs 

has been recorded within Saccharomyces cerevisiae, Agaricus bisporus and 

N. crassa, it has not been reported within Synechococcus. Induction of the 

mammalian MT genes is controlled by short DNA sequences present in multiple 

copies upstream of the transcriptional start. The arrangement and sequence of 

several of these metal regulatory elements (MREs) is known. MREs have also 

been isolated within Saccharomyces cerevisiae. To date, although the amino 

acid structure and some physical characteristics of the Synechococcus TX20 MT 

gene product are known, the presence of upstream regulatory elements and the 

precise base pair sequence of the MT locus has not yet been determined. Two 

theories concerning the induction of eukaryotic MT by cadmium have been 
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proposed. The first is that cadmium directly interacts with a DNA binding 

factor increasing its affinity for the regulatory site. The second is that cadmium 

acts by stimulating or inhibiting a protein-protein interaction, i.e activating the 

formation of a complex between the DNA-binding molecule and a "co-activator 

"protein thereby altering the conformation and hence its affinity for the MRE 

(Saquin and Hamer, 1987). Regulation of Synechococcus MT genes is also 

thought to be controlled at a transcription level (Olafson, 1986). 

In a potentially analogous system the mer operon of E. coli confers 

resistance to the effects of mercury salts. Mercury resistance is controlled 

through the coordinated action of the plasmid bo rne MerT, MerP and 

MerA genes within the operon (MerT and MerP encode membrane and 

periplasmic proteins involved in mercury uptake, whilst MerA encoded for 

mercuric ion reductase that detoxifies mercury salts through reduction to the 

non toxic Hg(O)). Resistance is acquired via amplification of the coordinate 

transcription rate of the MerTPA genes (Lund and Brown, 1987). This positive 

transcriptional control of the mer operon is affected by a metalloregu~tory 
DNA binding protein {merR), that activates transcription from the promoter 

in the presence of mercury and represses transcription in its absence. In 

addition, the merR protein has also been found to regulate its own synthesis 

in the absence and presence of mercury (Shewchuk et al., 1989). Two regions 

within the transcriptional control area of the MerR operon are thought to be 

potential binding sites for merR. A 16bp dyad centered on position -79/-80 with 

respect to the start point of mer mRNA and a 18bp inverted repeat embedded 

between the "-35 " and "-10 " recognition elements of the mer promoter. The 

merR protein has two domains, a carboxyl-terminal mercury binding site and 

an amino-terminal DNA binding domain. Specifically two regions within the 

N-terminal have the conformational ability to form the helix-turn-helix DNA 

binding motif common to many prokaryotic repressor/ activator molecules. A 
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configuration of four cysteine residues within the C-terminal domain are thought 

to form the mercury binding site and contribute to transcriptional activation. 

The arrangement of cysteine and histidine residues within this region has been 

suggested by some authors to bear some similarities to the zinc-binding domain 

of the "zinc finger " proteins (O'Halloran and Walsh, 1987). 

Several gene sequences, such as the mouse Krox-20, Drosophila 

"hunchback" , Xenopus transcriptional factor IliA and S. cerevisiae SW15 

sequence (Wilkinson et al., 1988; Tautz et al., 1987; Miller et al., 1985: 

Stillman et al., 1988), have been shown to contain tandem repeats of base pairs, 

these repeats on translation are thought to form structural domains around zinc 

bound ions - the zinc fingers. The sequences seem to occur quite commonly 

and are thought to play a role in developmental and metabolic control through 

nucleic acid recognition. The zinc ion is thought to play an important role in 

maintaining the tertiary structure required for sequence-specific recognition 

(Nagai et al., 1988). The zinc fingers direct binding of the transcriptional factor 

to its recognition sequence within the promoter region. These zinc-binding 

proteins are very different from MT in that pairs of metal-binding cysteine 

residues are seperated by 2 to 4 residues. The question regarding the ability 

of other trace metals such as copper and cadmium to substitute for the zinc 

ion has not been resolved (Miller et al., 1985). In comparison with the merA 

protein of E. coli, it is conceivable that metal-binding sites such as these are 

either a target of intraceHular cadmium, reducing the ability of a transcription 

factor or repressor to bind to an operon, or, by modifying the conformation 

of the metal-binding domain, through metal antagonism allow binding of an 

inducer protein to the MREs and transcription through the MT operon. 

In comparison to Class II Synechococcus TX20 MT, Class III MT is a 

metal thiolate polypeptide which has identified as a secondary metabolite 

(Robinson et al., 1988). These polypeptides are rapidly synthesised from an 
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intracellular pool of glutathione. The synthesis of these peptides, in response to 

the presence of cadmium, is rapid and has been detected within 5 minutes of 

cadmium exposure. It is, therefore, too fast a response to be a transcriptionally 

controlled process and it is also insensitive to cycloheximide. 

1.3 Justification in using Anacystis nidulans 

To date A nacystis nidulans remains the only prokaryotic organism 

identified as containing a recognized MT sequence. The cyanobacteria 

represent a diverse group of prokaryotic organisms, enough is known about the 

metabolism, biochemistry and physiology of A. nidulans for the species to be 

regarded as a "model "cyanobacteria (Golden et al., 1989; Wilmotte and Starn, 

1984). The study of gene expression is well developed within this organism and 

gene transfer techniques have been developed (Buzby, 1985; Golden, 1987; 

Kuhlemeire and Van Arkel, 1987). The investigation into the physiological role 

of MTs, their regulation, transcription and translation within an organism 

would be greatly enhanced by the use of a prokaryotic organism. Furthermore a 

MRE and MT gene which function in a cyanobacteria may allow the production 

of cyanobacteria which accumulate large amounts of cadmium from solution, 

possibly via the introduction of multiple copies of these genes. There are 

potential applications fo~; such an organism in waste management. 

1.4 Aims and objectives of the project 

The overall aim was to further characterise the molecular and biochemical 

responses of a cyanobacteria to cadmium and thereby identify genetic resources 

which may be applied to the bioaccumulation of toxic trace metals. Specific 
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objectives were as follows: 

(1) Characterize cadmium-ligands produced in A. nidulans in response to dif­

ferent cadmium concentrations. 

(la) By separating different MW species using gel permeation HPLC. 

(lb) Further characterize ligands by a variety of physical methods 

(2) Select Cd-resistant A. nidulans using stepwise selection. 

(3) Examine Cd-ligands produced in Cd-resistant A. nidulans. 

(4) Attempt to amplify the first prokaryotic MT gene from A. nidulans using 

the polymerase chain reaction. 

( 4a) To design two synthetic oligonucleotide probes analogous to the Syne­

chococcus TX20 MT gene N- and C-terminals. 

( 4b) To use the two oligonucleotides as extension primers in an attempt to 

amplify the MT gene locus through the polymerase chain reaction. 

(5) Attempt to isolate and characterise the first prokaryotic MT gene and its 

regulatory region. 

(5a) If the PCR amplification was successful to isolate the amplified gene 

and clone it into a suitable vector for nucleotide sequencing. 

(5b) To make radioactively-labelled probes from the oligonucleotides and 

probe the A. nidulans genome. 

(5c) To isolate the regions flanking the gene. 
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Chapter II 

METHODS AND MATERIALS 

2.0.1 Anacystis pedigree 

The literature concerning cyanobacterial genetic research is confused by the 

different taxonomic names appended to the same strain by different authors. 

The strain of Anacystis under examination in this thesis was obtained originally 

from the CCAP {1405/1) and has been nominated as Anacystis nidulans 33A 

under the University of Durham stock collection. Strains named Anacystis 

nidulans (TX20, UTEX 625 and UTEX 1550), Synechococcus leopoliensis CCAP 

1405/1, Synechococcus PCC 6301 (ATCC 27144), and Synechococcus TX20 

(Table 4). All originated from the immotile, apparently unicellular, rod-shaped 

blue-green algae isolated by Kratz and Myers (1955) and subsequently brought 

into pure culture by M. Allen {Pringsheim et al., 1968). This organism 

was identified by Drouet ( unpublished) as A nacystis nidulans, under which 

name it has been used for numerous physiological, biochemical and genetical 

investigations. A. nidul0;ns sometimes produces short filaments of cells, 

particularly when grown in stationary cultures and such observations may have 

confused previous workers, whilst bringing into question its classification as a 

unicellular organism. 
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Table 4: Alternative generic designations of Anacystis nidulans. 

Organism PCC ATCC UTEX CCAP 

Synechococcus 6301 27144 TX20 

Anacystis nidulans TX20 

Anacystis nidulans 625,1550 

Synechococcus leopoliensis 1405/1 

ATCC= American type Culture Collection; UTEX= Culture Collec­

tion of Algae at the University of Texas {formerly IU); CCAP= Cam­

bridge Culture Collectio!l of Algae and Protazoa; PCC= Pasteur Cul­

ture Collection of Cyanoacteria. 
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2.0.2 Algal growth media and buffers 

The strains were maintained on ACM (modified AC media) buffered with 2.5 

mM HEPES (pH 7.6) and grown in constant light at 32°C {Table 5). 

AC micronutrients: Stock solution (1 ml), made up to 1 litre with distilled 

water. 2.5 mM HEPES (0.6 g in 500 ml distilled water adjusted to pH 7.6 

with 1 M NaOH) added and adjusted to pH 7.6 before adding the rest of the 

stock solutions. Care was taken to add the phosphate last to reduce the risk of 

precipitation. Due to the Oxygen requirement of the organism during growth, 

only 25 ml in 100 ml flasks and 400 ml in 1 litre flasks was used. The media was 

autoclaved for 20 min and allowed to stand for a 2 hours. Stock culture {10 ml) 

was inoculated into 400 ml (0.5 ml of stock culture to 25 ml of medium). Cultures 

were incubated at 32°C in continuous light (3ilC would be ideal). Stock cultures 

were renewed every 7-10 days. 
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Table 5: ACM modified medium and BGll trace metal stock solution 

macronutrients quantity 

K2HP04.3H20. Use 0.1 ml of 131.03 gl-1 stock 

CaCb.2H20. Use 1 ml of 19.86 gl-1 stock 

MgS04.7H20. Use 5 ml of 50.00 gl-1 stock 

NaCl. Use 0.5 ml of 46.00 gl-1 stock 

KNOa. Use 5 ml of 100.00 gl-1 stock 

Fe.EDTA. Use 1 ml of 1.21 FeCl3. 

and 0.50 EDTA gl-1 

BG 11 Trace metal Use 1 ml of stock solution 

BGll Trace metals 

micronutrient MW quantity 

HaBOa 61.83 2.86 gl-1 

MnCl2.4H20. 197.72 1.81 gl-1 

ZnS04AH20. 287.55 0.22 gl-1 

NaMo04.2H20. 241.95 0.39 gl-1 

CuS04.5H20. 249.86 0.079 gl-1 

Co{NOa)2.6H20. 291.05 0.049 gl-1 

NiS04.7H20. 280.76 0.048 gl-1 
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2.0.3 Bacterial media and buffers. 

1. 2XL Media (for 1 litre). 

20 g of Trypticase 

10 g of Yeast extract 

1 g of NaCl (pH 7 with NaOH) 

autoclave 

10 m1 of 20% (w/v) Glucose 

3. 20x sse (for 1 litre). 

175.3 g of NaCl 

88.2 g of Citric acid 

pH 7 with 10N NaOH 

5. Restriction Buffer (medium) 

50 mM of NaCl 

10 mM of Tris.HCl (pH 7.5) 

10 mM of MgCl2 

1 mM of Dithiothreitol 

2.0.4 Isolation of genomic DNA from A. nidulans 

2. lOx. TBE (for 1 litre). 

108 g of Tria-Base 

55 g of Boric acid 

40 m1 of 0.5M EDTA (pH 8) 

(14.6g in 100 ml) 

4. TE Buffer. 

10 mM of Tris.HCl 

1 mM of EDTA (pH 8) 

6. Loading Buffer. 

10 mM of Tris.HCl (pH 7) 

10 mM of KCl 

1. 5 mM of MgCl2 

50 mM of ~-mercap. 

Several methods of DNA extraction were attempted (Tomioka et al., 1981. 
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Marmur, 1961; Dzelzkalns and Bogorad, 1986; Dzelzkalns et al., 1984). Early 

efforts at restriction by endonucleases were hampered by the purity of the 

resulting isolated DNA. Finally the method of Robinson et al., (1988), a 

protocol previously used to extract DNA from plant cells, yielded nucleic acids 

of sufficient purity for restriction digest, Southern blotting and the Polymerase 

Chain Reaction (PCR). Approximately 50 ml of cells were harvested in 

mid-late log phase of growth, washed once with ACM media and three times 

in sterile ice-cold extraction buffer containing 100mM Tris-HCI (pH 8.0), 20 

mM EDTA and 1.4 M NaCl, then placed in a sterile mortar and frozen in liquid 

nitrogen. Frozen cells were ground to a fine powder, then suspended in boiling 

extraction buffer containing 50 mM 2-mercaptoethanol. An equal volume of 1:1 

chloroform/buffered phenol (80% (v/v) phenol, 20% buffer containing 10 mM 

Tris-HCl (pH 7.4) and 0.1 mM EDTA) was added and the phases mixed for 10 

min, then separated by centrifugation at 5000 x g. The upper aqueous phase 

was collected and extracted twice more with 1:1 chlorophorm/buffered phenol 

then three times with an equal volume of 24:1 (v/v) chloroform/isoamyl alcohol. 

The nucleic acids were precipitated from the final aqueous phase at -20°C by 

addition of 1M ammonium acetate and 2.5 volumes of ice-cold 95% ethanol. 

Nucleic acids were collected by centrifugation at 5000 x g for 20 min and the 

pellet washed with 70% ( v jv) ethanol and air dried prior to resuspension in 30 

pJ of TE buffer (20 mM Tris-HCl (pH 8.0) and 1 mM EDTA). The purity of the 

resulting DNA was determined by measuring the absorbance at 260 and 280nm, 

and determining the ratio between the two. A ratio of between 1.8 and 2.0 

indicated that the DNA was suitable for further manipulation. If the ratio was 

below this the DNA was assumed to be contaminated with phenol or protein. 
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2.0.& Digestion of plasmid DNA with restriction endonuclease 

Genomic and plasmid DNA from the previous isolation method were 

restricted according to the protocol of Maniatis et al., (1982). TE Buffer (50J.tl, 

pH 8) containing 20J.tg ml-1 DNase-free pancreatic RNase was added and the 

tube vortexed briefly. To 10 J.tl of this solution, 1.2 J.tl of restriction buffer and 1 

unit of restriction enzyme was added. This was then incubated at 3'7'lC for 2 hr. 

s 
2.0.0 Gel electrophoresis of r+ricted DNA 

Restricted DNA was analysed by agarose gel electrophoresis using the 

methods of Maniatis et al., (1982). Gels were prepared using 1.5% (w/v) 

agarose dissolved in TBE, plus 10 J.tl ethridium bromide and DNA was 

separated by electrophoresis in tanks with volumes of 400 ml (minigel) and 2.2 1 

(full sized gels) containing TBE plus 100 J.tl of Ethidium bromide. A voltage 

of 30-100V was applied, and the gel run for 3-12 hrs respectively. Gels were 

photographed under uv-light using an aperture of 1.8 and 1 s exposure. 

2.0. 7 Detection of cadmium binding peptides 

Cell cultures of Anacystis 33A were grown up ACM media, approximately 

10 x 400 ml of culture was required for analysis. Cadmium was added at the 

required dosage, at a set time and the cultures allowed to continue to grow. 

The cells were then harvested and spun down and collected finally in a 50 ml 

Falcon tube. Washed twice in ice-cold buffer (10 mM Tris-HCl (pH 7.0), 10 

mM KCl, 1.5 mM MgCh) and then resuspended in a equal volume of buffer 

containing 50 mM ,8-mercaptoethanol in a 1.5 ml Eppendorf (36 pl ,8-mercap in 

10 ml of buffer). The cell suspension was sonicated for 10 x 30 son ice with 

a 1 min gap between each sonication to break open the cells. The 1 min rest 
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between sonication was found to be necessary to allow the dissapation of heat 

from the sample. Each cell extract was then centrifuged at 10,000 x g for 10 

min. The supernatant collected and respun to remove any further debris. Four 

x 100 p.l samples were then injected onto a SW 3000 (7.5 x 250 mm, Anachem.) 

gel permeation HPLC chromatography column. The samples were overlaid for 

each 100 p.l run with 15 ml of buffer. Sixty fractions were collected in total at 

30 s intervals. Fractions were analysed by passing the fractions through an 

Atomic Absorption Spectrophotometer set to detect the absorption 228 nm for 

the presence of cadmium. 

2.0.8 Determination of acid-labile sulfide 

In a tightly stoppered tube 0.5 ml of zinc acetate (2.6% in water), 0.1 ml 

of Sodium hydroxide (6% in water) and 0.7 ml of the sample under analysis 

were added. The tube was sealed and vortexed vigorously for 1 min. The 

tube was then opened and 0.25 ml of diamine reagent was rapidly added 

(N.N-Dimethyl-p-phenylenediamine monohydrochloride (0.1% (w/v) in 5N 

HCl). The solution was gently swirled then opened and 0.1 ml of ferric chloride 

(11.5 mM in 0.6N HCl) was quickly added with the test tube being rapidly 

resealed and the mixture vortexed for 1 min. The mixture was then allowed 

to stand at room temperature for 30 min, before adding 0.85 ml of distilled 

water. The resulting precipitate was removed by centrifugation at 10,000 x g 

for 10 min. The solution and standards made at 5, 10, 20 and 40 mM of sulfide 

(Standard Sodium sulfide 0.2M in water corresponding to 0.015, 0.1, 0.2 and 

0.4 ml of diluted solution, respectively) were read against a blank reagent at 

670 nm. 
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2.0.9 Synthesis and purification of oligonucleotides 

Oligonucleotides were synthesised on an Applied Biosystems DNA synthesiser 

model 381A. The method of synthesis utilises phosphoramitide chemistry 

with the oligonucleotides bound to a solid phase support during the reaction 

cycles (Marreucci and Caruthers, 1981; Beaucage and Caruthers, 1987}. 

The sequences were based on previously published work by Olafson (1988} 

which contained the amino acid sequence of a recently isolated cyanobacterial 

metallothionein. Before cleavage of the oligonucleotide from the support the 

5'dimethoxy trityl group (DMP} is removed by treating with tri-fiuoro acetic 

acid (TCA). The oligonucleotide is subsequently released from the synthesis 

column by concentrated NaOH tr:eatment. This cleaves the oligonucleotide from 

the support and removes the .8-cyanoethyl groups protecting the phosphates of 

the internucleotide linkages ("trityl off synthesis"}. Subsequent incubation of 

the eluted oligonucleotides in concentrated NRtOH ( 55°C , 8-15 hrs) deprotects 

the exocyclic amines of the bases. Oligonucleotides are dried down under 

vacuum, twice resuspended to remove any ammonia (which inhibits any 5' 

end-labelling) and resuspended finally in water and stored until use at -20°C. 

2.0.10 Structure of two synthetic oligonucleotide extension primers 

As mentioned the two synthetic oligos were based on previously published 

data by Olafson: TheN-terminus probe: 5'-GTI AAY TGX GCI TGX 

GAl CC-3'. where A, C, G and T represent deoxyadenosine, deoxycytidine, 

deoxyguanosine and deoxythymidine respectively. X is deoxythymidine 50% 

of the time and deoxycytidine 50% of the time. Y is deoxyadenosine 50% of 

the time and deoxyguanosine 50% of the time. I is deoxyinosine, a synthetic 

oligonucleotide which will not prevent the formation of the DNA helix no 

matter which naturally occuring nucleotide is paired opposite. Deoxyinosine 
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was used within the probe structure to reduce the level of four-base redundancy 

within the twentymer (Mullis and Faloona, 1987). It was decided to place the 

5 H 3 probe six amino acids in from the N-terminus to reduce the level of 

redundancy that would have to be accommodated within the probe structure 

and to include a the sequence Cys-X-Cys, characteristic of MTs. In the case 

of the triplet GAl, it has been used to reduce further redundancy within the 

probe by replacing a A/G mix. This population of sequences should have a 

sixteen fold redundancy and hybridize to all possible DNA sequences encoding 

the polypeptide sequence Val-Lys-Cys-Ala-Cys-Glu-Pro. The C-terminus 

probe: 5'-CAY-TTY-CAI-CCI-GTY-TGI-CC-3'. This population of sequences 

should have a sixteen fold redundancy and hybridise to sequences encoding for 

Gly-His-Thr-Gly-Cys-Asn-Cys. It is notable that both probes were constructed 

to correspond with regions of Cys-X-Cys sequences, where X can be any amino 

acid, associated with previously isolated metallothioneins (Figure 1). 

2.0.11 The polymerase chain reaction (PCR) 

Genomic DNA was obtained from A. nidulans as described previously. 

Approximately 1JLg of genomic DNA was placed in 100 ~.tl of 1x PCR buffer 

(10 mM Tris-HCl (pH 8.3), 50 mM KCl, 10 mM MgCl2./ 0.1% gelatin,/200 

~.tM of each dNTP and 1~.tM of each extension primer) following the method 

of Salki (1985) and Mullis (1987). Five units of Taq ( Thermus aquaticus) 

DNA Polymerase (purchased from Perkin Elmer Cetus or Stratagene) diluted 

5:1 was added and the reaction mixture was overlaid with 100 ~.tl of mineral 

oil. The polymerase amplification reaction took place in previously siliconized 

Eppendorf tubes (Maniatis 1982) sealed with silica gel. The reaction tube was 

then subjected to several cycles of: a) Denaturation (2 min at 95°C , first cycle 

5 min), to dissociate the double-stranded DNA template. The two strands 

will remain free in solution until the temperature is reduced sufficiently to 
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allow annealing; b) Annealing of extension primers ( 3 min at 4 7°C ) . The 

extension primers will anneal to only one of the strands of DNA. Since the 

primers aimeal to opposite strands , they can be viewed as having their 3' ends 

facing each other. The primers are present in excess over the DNA template, 

therefore the formation of the primer-template complex will be favoured over 

the reassociation of the two DNA strands, at the primers' annealing sites, when 

the temperature is lowered. The annealing temperature was further raised to 

55°C , 60°C and 65°C in latter re-runs to assertain the degree of specificity 

between the extension primers and the potential MT gene regions; c) Synthesis 

and extension (amplification step, 3 min at 72°C ). Through this process the 

extension primers will become incorporated into the amplification product and 

form the templates of subsequent PCR reactions. The typical set of three steps 

(i.e., denaturation, annealing, extension) are referred to as a cycle. Thirty cycles 

were run per reaction mixture. During the final cycle tubes were placed at the 

annealing temperature for 3 min, followed by 6 min at 72°C. PCR products 

were examined either on a 2% agarose mini-gel (run at 80v) or on an alkaline 

3.75% agarose gel (NuSieve GTG) run overnight at 30V. A successful PCR 

reaction will result in the exponential increase of the DNA sequence between 

the 5' ends of the extension primers. The method relies on the the ability of the 

synthetically produced oligonucleotides to function as extension primers for the 

Taq polymerase. It was intended that in this case the degree of redundancy 

within the oligonucleotides would not inhibit this function in the early cycles. 

In latter cycles of amplification these primers will anneal primarily to the more 

abundant amplified products rather than to the original genomic sequences. 
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Figure 1: Amino acid sequence of the recently isolated Syne­

chococcv.s TX20 MT protein, the base pair sequence of two 

synthetic oligonucleotides and their proposed annealing sites 

upon the MT gene locus. A, C, G, T and I represent de­

oxyadenosine, deoxycytidine, deoxyguanosine, deoxythymidine 

and deoxyinosine repectively within the probe sequence. X is 

deoxythymidine 50% of the time and deoxycytidine 50% of the 

time. Y is deoxyadenosine 50% of the time and deoxyguano­

sine 50% of the time. 
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Figure 1: Design of the MT oligonucleotide prohes. 

Synechococcus TX20 MT amino acid sequence. 
.. 

TSTTLYKCACEPCLCNVDPSKAIDRNGLYYCTEACADGHTGGSKGCGHTGCNC 

N-terminus 1 <."-terminus 1 
Val-Lys-Cys-Ala-Cys-Giu-Pro -Giy-His-Thr-Gly-Cys-Asn-Cys 

Oligonucleotide probe sequences 
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Figure 2: Schematic diagram of the polymerase chain reac­

tion. Only the first two cycles are shown completely. Begin­

ing with the third cycle, the diagram doesn't show the fate of 

the original DNA and the extension products made from it. 

Note that the longer primer extensions from the original tem­

plate can increase additively with each cycle. In contrast, the 

short discrete, primer-terminated copies, which first appear in 

the third cycle, proceed to double with each subsequent cycle 

and rapidly become the predominant form of the amplification 

product. 



2.0.12 PCR fragment isolation and recovery from agarose gels 

The band of DNA of comparible size to the PCR amplified MT gene was 

excised from the agarose gel, frozen in liquid nitrogen for 15 min, removed and 

spun for 10 min at 10,000 g through sterile glass wool before the fragment had a 

chance to melt. The resulting solution was then extracted with 100 ~tl (equivalent 

volume) of TE buffered chloroform. The aqueous solution was removed to a 

separate tube, nucleic acids were precipitated by the addition of 3 M Sodium 

acetate, 0.1 M Magnesium acetate (pH 5.2) to a tenth of the residual volume 

plus two volumes of 100% ethanol. The solution was then returned to the liquid 

nitrogen for 30 min. On removal the Eppendorf was centrifuged at 10,000 x g 

for 10 min. The DNA pellet was then washed once with 70% ethanol and dried 

briefly in a desicator, before being resuspended in 10 ~tl of 10 mM Tris-HCL (pH 

7.6) and 1 mM EDTA solution. 

2.0.13 Ligation of the potential MT gene amplified sequence 

After the PCR reaction and recovery of the PCR reaction products, the 

DNA was treated with T4 DNA polymerase to create linear strands of DNA 

with blunt ends or directly ligated into a suitable vector. For polymerisation, 

1 ~tl of the recovered DNA (approximately 100 Jtg) was added to 2 ~tl of lOx 

polymerase reaction buffer, 1 ~tl of each deoxynucleotide triphosphate (0.5 mM, 4 

~tl total) and 1 ~tl of the large fragment DNA polymerase (Klenow fragment, T4 

polymerase, 0.5 units ~tl- 1 , NBL). The reaction mixtl,J.re was then incubated at 

room temperature (22°C for 15 min). Once completed 25 ~tl of TE satuarated 

Phenol and 25 ~tl of chloroform/isoamyl alcohol (24:1) was added and the solution 

vortexed. The aqueous solution was removed after centrifugation to briefly 

seperate the layers, and transfered to a new tube where 3 M sodium acetate was 

added to a final concentration of 0.3 M. The solution was precipitated by the 
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addition of two volumes of ice-cold 95% ethanol before freezing in liquid nitrogen 

for 15 min. On removal the solution was centrifuged at 4°C for 10 min at 10,000 

x g, the supernatant was discarded and the pellet washed with 0.5 ml of 80% 

ethanol. Care being taken not to disturb the pellet, before centrifuging at 10,000 

x g for 1 min, discarding the remaining supernatant and vacuum drying the 

pellet before resuspending in 6 JLl of TE buffer. To ligate the resulting blunt or 

ragged-ended fragments into a vector (pUC18), approximately 1 JL9-l of the 

vector was combined with 100J.Lg of amplified DNA, 3 JLl of Ligase Kinase buffer, 

3 JLl of 10 mM ATP and 1 JLl of T4 DNA Ligase for blunt ended fragments). The 

reaction mixture was then incubated at 22°C for 12 h and phenol/chloroform 

extracted as above. Due to the low annealing frequency normally experienced 

between blunt ended fragments and the blunt ended linear plasmid site during 

ligation, the level of Ligase had to be increased to compensate for the poor 

efficiency of this reaction: The Km for the activity of T4 ligase on blunt ended 

fragments is nearly 100x higher than its Km on DNA with cohesive ends. During 

blunt ended ligation a fraction of the plasmid blunt ends will reanneal. Also due 

to the high concentration of fragments to be cloned many recombinant plasmids 

will contain more than one insert. 

2.0.14 Transformation into pUC18 

DH5a-E. coli was transformed with the pUC18-PCR amplified fragment. The 

competent cells were grown up for 12 h on 2XL media (2 g Bacto Tryptone, 1 g 

Bacto Yeast extract and 0.1 g of NaCl, adjusted to pH 7.0, autoclaved and 1 ml 

of 20% sucrose added per 100 ml) at 30°C. Upto 40 ng of DNA (dissolved in 100 

JLl of ligation buffer or TE) was added to each 200 JLI of cells. The cells were then 

cold-shocked on ice for 30 min before being placed in a 37°C water bath for a 

further 5 min. The mixture of cells and DNA was then diluted to a volume of 

4 ml with 2XL broth (prewarmed to 37°C and shaken gently at 3~C for a 1-2 
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hours before being plated onto 2XL/ampicillin/X-Gal plates with 1.5 g Bacto 

agar/100 ml of media. Colonies were allowed to grow for 12 h at 37°C. 

2.o.u; Plasmid miniprep of pUC18 transformants 

Colonies were picked and grown up for 12 h in 2XL media ( + 20 J.tl ampicillin) 

at 3~C with constant agitation. Approximately 1.5 ml of the bacterial 

solution was pipetted into an Eppendorf and centrifuged for 1 min, before 

being resuspended in lysis buffer (8% sucrose (v/v), 0.5% Triton-X (v/v), 50 

mM EDTA (pH 8.0) and 10 mM Tris-HCl (pH 8.0)). To this buffer 25 p,l of 

freshly prepared lysozyme (10mg/ml, Sigma) in TE buffer was added, before 

vortexing for 3 min. The tube was then incubated in a boiling water bath for 90 

s before being centrifuged for 10 min. After centrifugation the bacterial pellet 

was removed and discarded. To the supernatant 0.7 ml of a saturated Sodium 

Iodide solution was added {90.8g Nal and 1.5g NaSOa (0.5 gadded afterwards to 

saturate the solution and act as an antioxidant) in 100 ml of water. The stock 

solution was then filter sterilized and stored in the dark at 4°C. Both agarose 

and DNA are soluble in high concentrations of Nal; and in Nal, glass binds DNA. 

Previously prepared glass fines were used (Vogelstein and Gillespie., 1979). The 

glass fines were shaken to resuspend and 5 p,l of the slurry was added. The DNA 

was bound onto the glass by incubating the mixture at room temperature for 30 

min, before spinning for 15 sat 10,000 x g. The supernatant was removed and 

the fines were resuspended in 1 ml of 70% ethanol (70% ethanol/30% TE buffer). 

The solution was recentrifuged for 15 s, the ethanol removed and resuspended in 

30 p,l of TE buffer and incubated at 37°C to release the DNA. 

2.0.16 Preparation of a hybridization probe 

One 1 p.g of the template (synthetic oligonucleotides) was used with 20 p,l of 
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water. Heated to 100°C in a boiling water bath for 5 min and chilled in ice-cold 

water. Ten microlitres of BSA (50 mg/ml) and 20 pJ of 5x random primer buffer 

(0.25 M Tris-HCl ( pH 8.1), 10 mM dithiothreitol, 25 mM MgCh and 0.2 M 

KCl) were added, followed by 2 J.Ll of a 2 mM solution of each unlabelled dNTP 

is added, plus 250 pmoles (100 JLCi) [a-32P] dNTP (sp.act >400 Ci/mM) and 4 

J.Ll of Klenow fragment (Sigma). The reaction mixture was made up to 100 J.Ll 

with water. Mixed and incubated for 2 h. Then 2 J.£1 of 0.5 M EDTA was added 

and the solution was passed through a column of G-50 Sephadex to separate 

unlabelled dNTPs from labelled DNA. Approximately 30% of the [a-32P] dNTP 

should have been incorporated into the DNA. 

2.0.17 Lysis and Incorporation of bacterial colonies onto nitrocellulose 

Bacterial colonies were grown for 12 h and smeared onto nitrocellulose filters 

placed on fresh plates of 2XL agar. They were then allowed to grow up for 48 h 

before the filter was removed and laid on top of a 10% SDS solution. Care was 

taken at all times not to allow the top side of the filter to become saturated. 

After 10 min the filter was removed and floated on top of 0.5 M NaOH and 1.5 

NaCl for a further 10 min. This was subsequently repeated with 1 M Trisma (pH 

8.0) and 1.5 M NaCl solution. The filter was then removed placed carefully 

between a sheet of 3MM Whatmans Filter paper and baked in a glass oven for 1 

hr and 2 hrs in a 80°C vacuum oven. Controls added to the filter paper included 

pUC18, pUC18 containing E.coli colonies and re-amplified MT. 

2.0.18 Hybridization of bacterial colony and "Southern blotting " 

"Southern blotts " of electrophoresis gels were produced by the method of 

Maniatis (1982). Southern blots and in situ colonies were first floated on the 

surface of 6x SSC (20x SSC: 173 g of NaCl and 88.2 g of sodium citrate in 11 (pH 
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7.0), sterilized by autoclaving) until the filter wetted from beneath. The filter 

was immersed in the solution for 2 min. The filters were placed in a heat sealable 

plastic bag and 10 ml of prehybridisation fluid (6x SSe, 0.5% SDS, 5x Denhardt's 

solution and 100 p.g ml-1 denatured, salmon sperm DNA) preheated to 68°e was 

added. Any air was removed from the bag before sealing and incubating for 4 h 

submerged in a 68°e agitated water bath. The bag was removed and as much 

as possible of the prehybridization fluid squeezed out. Using a Pasteur pipette 

hybridization solution (6x SSe, 10 mM EDTA, 32P-labelled denatured probe 

DNA, 5x Denhardt's solution (50x: 5 g Ficoll, 5 g polyvinylpyrrolidone, 5 g BSA 

in 500 ml water), 0.5% SDS and 100 ug/ml denatured salmon sperm DNA) was 

added, using just enough to keep the filter wet (50 p.l cm3 of filter). Any air was 

removed and the bag resealed and incubated at 68°e for 16 h. The filter was 

latter removed and placed immediately into a 2x SSe and 0.5% SDS solution at 

room temperature for 5 min. The filter was then transferred to a 2x SSe and 

0.1% SDS solution and incubated at 68°e for 2 hours in a gently agitated water 

bath. The filter was then dried at room temperature on a sheet of Whatman 

3MM paper, wrapped in Saran Wrap and applied to X-ray film to obtain an 

autoradiographic image (Maniatis, 1982). 
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Chapter III 

RESULTS 

3.0.1 Cd-binding ligands in A. nidulans 

Growth of the cyanobacteria was recorded by measuring the absorbance of 

the photosynthetic pigments ( OD at 670 nm) as an indication of cell density. 

Figure 3 presents the data on the growth kinetics of a cadmium-sensitive 

culture in the presence of cadmium. The addition of 5 JLM cadmium on day 

7 inhibited the growth of the cells within 48 h. Although no indication of 

cell death was found, the results suggest that the cells had ceased to divide. 

At 1.5 JLM cadmium the culture continued to divide for a further 72 h before 

a decline in absorbance was observed. The selection of a cadmium-tolerant 

strain was slow but relatively simple and was achieved through the stepwise 

selection of isolates through staggered increases in cadmium concentration. 

Large spontaneous increases in resistance were not observed and culture flasks 

often required several re-inoculations before a tolerant culture was established. 

No significant difference in this study was detected between cadmium-tolerant 

and sensitive cultures with regard to growth in the absence of cadmium. 

It was observed, however, that prolonged exposure to inhibitory levels of 

cadmium gave rise to differences in morphology and pigmentation. Clumping of 

cells, a normal occurrence during late log phase of growth, was seen to occur 

much earlier within the growth cycle of cadmium exposed cells. Examination 

under the light microscope revealed the presence of extra mucilage upon 
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the cyanobacteria's outer surface. After passage of the extracts through 

the gel permeation HPLC ( SW3000) cyanobacterial pigments separated out 

amongst fractions 18-30 in cultures exposed to 5 J,LM cadmium (Figure 4). In 

cultures exposed to 1 J,LM cadmium for 20 days, a blue pigment was found 

to be associated with fractions 25-40. This pigment absorbed strongly in 

the region of 660-680 nm and may have interfered with sulfide assays. The 

distribution of cystolic cadmium following the chromatography of extracts from 

cadmium-sensitive and tolerant cells (Expt A and B) exposed to 5J'M cadmium 

is shown in Figures 4 and 5. Analysis of the fractions by atomic absorption 

spectrophotometry revealed that the cadmium was distributed between three 

distinct peaks. Approximately 50-80% of the cadmium, respectively, was 

associated with a low molecular weight complex resolved from the peaks of 

void-associated and 2-mercaptoethanol bound cadmium (Tables 6 and 7). 

The peak fractions centred between 42-43 accounted for approximately 15% 

of the recovered cadmium within both cultures. The retention time for this 

material was similar to that reported previously for cadmium-(gammaEC)nG 

complexes (Robinson et al., 1988) and is designated putative (gammaEC)nG. 

A cadmium-tolerant culture was grown for 20 days in media containing a 

sublethal concentration of cadmium. When compared by HPLC analysis to 

a cadmium-sensitive culture grown under the same conditions, the profiles 

of the cystolic cadmium were notably different (Figure 6). The profile of 

the cadmium-tolerant culture was comparable to those previously obtained 

in expts A and B. Fifty-five percent of the cadmium was associated with 

the low molecular weight fraction tentatively thought to be (gammaEC)nG. 

This contrasted with the HPLC profile of the cadmium-sensitive culture . 

No discernable putative (gammaEC)nG peak was recorded, but 56% of the 

cadmi urn was associated with a higher molecular weight fraction resolved 

between fractions 23-28. A cadmium-sensitive culture grown for 9 d in 1 JLM 
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cadmium with a further 5 J.LM added on day 7 (Expt. C) contained 44% of 

the cadmium associated within fractions 23-28. The putative (gammaEC)nG 

fractions accounting for only 4% of the cystolic cadmium (Figure 7). To 

determine if the cadmium binding fractions were constitutively present within 

the cultures. A cadmium-tolerant strain was grown in the absence of cadmium 

for 9 d (Figure 8). An equivalent amount of cadmium {200 J.tg in 100 J.tl of 

buffer) to that found to be present within the homogenate of the cells of expt 

B, was added prior to HPLC analysis. Void and 2-mercaptoethanol-bound 

cadmium accounted for 70% of the recovered metal, whilst no cadmium was 

associated within fractions 23-28. Only 14.4% of the cadmium was associated 

with the putative (gammaEC)n G fractions, its presence suggesting that there 

may have been some constitutive cadmium binding ligands present within the 

cells. However, when compared to the percentage cadmium bound to the 

putative (gammaEC)n G in the cadmium-sensitive and tolerant profiles, the 

results indicate that these cadmium binding ligands are induced by cadmium 

within 48 h of exposure. 
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Table 6: Expts A-F; Cadmium exposure of Cd-sensitive and tolerant 

cultures. 

Expt.no. Cds Cdt CdAdd CduM CdExtra CdmM Days 

A yes 7 5 9 

B yes 7 5 9 

c yes 1 1 7 5 9 

D yes 9 

E yes 1 1 20 

F yes 1 1 20 

Cds= cadmium-sensitive culture; Cdt= cadmium-tolerant culture; 

CdAdd= The day on which cultures were exposed to cadmium; CduM= 

the amount of cadmium added (JLM); CdExtra= date of further 

cadmium addition to the culture. 

Table 7: Comparison of cystolic metal distribution for cadmium-tolerant 

and sensitive cultures. 

Expt.no MT-Cd (gammaEC)n G-Cd Void Cd Free Cd 

A 2% 49% 10% 39% 

B 0 80% 0.6% 16% 

c 44% 4% 23.6% 17.3% 

D 2% 14.4% 10.7% 59% 

E 56% 1% 20.3% 1.3% 

F 4% 55% 14% 16% 

45 



··.;: --·' 

Figure 3: Growth kinetics of an cadmium-sensitive A. nidu­

lans strain in tbe presence and absence (-a--) of cadmium. 

Growth was inhibited within 24 hrs and 72 hrs at 5 JLM ( fEf-) 

and 1.5 JLM cadmium ( 4-). Cadmium was added to the ACM 

media on day '1 of growth. 
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Figure 4: Distribution of cystolic cadmium in a cadmium­

sensitive culture of A. nidulans. Cells were exposed to 5 I'M 

cadmium for 48 h on day 7 of growth. Extracts of cells were 

centrifuged and the soluble portion of the extract was analysed 

by passage through a SW 3000 HPLC column. (-e-..) concen­

tration of cadmium; ( 4) photosynethetic pigments; A= void 

volume associated cadmium; B= f3 -mercaptoethanol associg 

ated cadmium. 
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Figure 5: Distribution of cystolic cadmium in a cadmiumg 

tolerant culture of A. nidulans. Cells were exposed to 5 JJ.M 

cadmium for 48 hrs on day '1 of growth. Extracts of all cells 

were analysed by passage through a SW 3000 HPLC column. 

( -lj)-..) concentration of cadmium; 

. ' 
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Figure 6: Distribution of cystolic cadmium in cadmium sen~ 

sitive (-f-..) and tolerant ( -£1..) cultures maintained in 1 ~tM 

cadmium for 20 d. Extracts of cells were centrifuged and the 

soluble portion of the extract was analysed by passage through 

a SW 3000 HPLC column. 
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Figure 7: HPLC chromatography of cadmium-binding lig­

ands in a cadmium-tolerant culture of A. nidulans exposed to 

1 p.M cadmium for 7 days before a further 5p.M cadmium was 

added for 48 hours. Extracts of the cells were centrifuged and 

the soluble fraction analysed by passage through a SW 3000 

HPLC column. ( -8-) cadmium concentration; ( -8) sulfide 

concentration. 
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Figure S: HPLC profile of a cadmium-sensitive A. nidulans 

culture grown for 9 d in the absence of cadmium. Extracts of 

the celW were centrifuged and 200 J.Lg of cadmium was added 

to the soluble portion of the extract. The extract was then 

analysed by passage through a SW 3000 column to detero 

mine if constitutively produced cadmium-binding ligands were 

present within the sample. ( fr) cadmium concentration. 



Cd cone. (ug) 
40 -, 

35 

30 

25 

20 

15 

10 

5 

0 10 20 30 40 

Fraction number 

57 

I 
i 
I 

50 60 70 



3.0.2 Characterization of the two cadmium-binding ligands 

The putative (gammaEC)n G fractions were collected and subjected to analysis 

for the presence of free sulfide. Free sulfide has been documented as occuring 

within the CdBPs of E. gracilis and S. pombe (Weber et al., 1987; Murasugi 

et al., 1983; Hayashi et al., 1986). Both complexes are known to be composed 

of aggregates of (gammaEC)n G and it was decided to investigate whether 

s2- is associated with Cd-binding ligands in A. nidulans. The assay revealed 

that a concentration of free sulfide was centered around fraction 41 (Table 8). 

The fractions were partially occluded by the presence of a blue pigment that 

absorbed in the region of 670 nm, the same wavelength used in the sulfide assay. 

To correct for absorbance due to the pigment, the absorbance of the fractions 

were read prior to the sulfide assay and the result subtracted from the final 

reading. Analysis of the high molecular weight associated cadmium shown in 

Figure 4 had indicated that it was resolved from the photosynthetic pigments 

and eluted in advance of the pigments. However, in comparison, expt E reveals 

that although 20% of cystolic cadmium is associated with the void fraction, 56% 

of the cadmium is resolved behind the photosynthetic pigments (Figure 9). The 

fractions were subjected to the Bradford assay to detect the presence of protein. 

The results indicated that although the majority of proteins were resolved with 

the void volume of the c6lumn, it could not be discounted that the cadmium 

ions were bound to lower molecular weight proteins travelling behind the main 

protein body (Figure 10). 

One of the key features of metallothioneins is the mercaptide bond. The 

cadmium-thiol bond forms a chromaphore that can be detected at an OD of 255 

nm. In the presence of excess H+ ions the cadmium is displaced and lost from 

the molecule. The displacement of the cadmium ion results in the chromophore 
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bond being lost and a reduction in the OD at 255 nm. Thus pH titrations can be 

used to assess the strength of metal-binding. Fractions 23-28 were collected and 

pooled and the optical density of the solution read between the range of 200-300 

nm. The pH of the sample, initially pH 7 within the column, was reduced by 

the addition of hydrochloric acid. Aliquots of the putative MT were subjected 

to progressively lower pH. Increasing acidity was seen to reduce the OD, until 

at pH 1.5 the cadmium is completely displaced from the putative MT (Figure 

11). When the absorbance values of the cadmium-thiol chromophore (A255) is 

plotted against pH (Figure i2) the characteristic cadmium displacement curve 

of a MT was produced. The pH of half displacement (i.e. the pH at which half 

the bound metal had been displaced by protons) was approximately pH 3.5. 

In an attempt at further isolation, the material was passed through an ion 

exchange chromatographic column of DEAE-cellulose. Separation is obtained by 

utilising the different affinities of solute molecules for the ion exchanger within 

the column. These affinities can be controlled by altering ionic strength and pH 

conditions within the column matrix. The first peak eluted marks the start of the 

linear salt gradient followed by a small broad peak of putative MT (Figure 13a). 

For comparison the work of Olafson (1979) on the isolation of the Synechococcus 

MT through a similar DEAE column are reproduced below (Fig 13b). The 

putative MT isolated within A. nidulans possesses a similar affinity for the 

DEAE-sephadex matrix as the Synechococcus (strain RRIMP NI) MT-1 protein. 

In conclusion these results demonstrate the presence of two putative MTs 

within A. nidulans. Although potentially present within the cell at a low 

constitutive level both peptides are induced by the presence of cadmium. In 

adapted cultures, or cells exposed to 5 p.M cadmium synthesis of the low 

molecular weight ligand was observed which had a retention time equivalent to 

Class III MT, or cadmium-(gammaEC)nG. This ligand was induced within two 
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days of exposure and was associated with free sulfide. The second putative MT 

had a greater molecular weight and was only induced within a cadmium-sensitive 

culture exposed to sublethal levels of cadmium. It was shown to possess a 

mercaptide chromophore characteristic of MT, a pH of half displacement value 

around pH 3.5 and a similar affinity on DEAE-Sephadex to another MT isolated 

within the Synechococcus species. 
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Table 8: Sulfide assay 

Fraction no. A B A-B 

35 0.071 0.064 0.008 

36 0.086 0.048 0.038 

37 0.078 0.037 0.041 

38 0.057 0.035 0.022 

39 0.060 0.029 0.041 

40 0.077 0.019 0.058 

41 0.082 0.030 0.052 

42 0.038 0.018 0.020 

43 0.041 0.013 0.028 

44 0.026 0.005 0.021 

45 0.031 

A= Sulfide assay, B= Absorbance of the fraction at 675 nm prior to 

sulfide analysis 
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Table 9: Changes in the uv absorption spectrum of Anacystis MT with 

increasing pH 

Wavelengh (nm) pH 6 pH 4.5 pH 3.5 pH 2 pH 1.5 

220 2.530 2.368 2.350 1.988 1.878 

225 2.206 2.060 1.991 1.544 1.527 

230 1.908 1.793 1.697 1.187 1.179 

235 1.571 1.495 1.388 0.832 0.828 

240 1.321 1.266 1.104 0.639 0.628 

245 1.192 1.143 1.050 0.567 0.550 

250 1.126 1.081 0.992 0.550 0.530 

255 1.134 1.087 1.004 0.577 0.562 

260 1.058 1.017 0.936 0.554 0.542 

265 1.023 0.986 0.909 0.614 0.607 

270 0.988 0.955 0.881 0.549 0.537 

275 0.945 0.916 0.844 0.535 0.524 

280 0.894 0.868 0.797 0.505 0.495 

285 0.831 0.808 0.737 0.460 0.453 

290 0.754 0.736 0.664 0.397 0.391 

295 0.676 0.662 0.590 0.329 0.325 

300 0.612 0.601 0.530 0.274 0.270 
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Figure 9: HPLC analysis of cadmium-binding ligands within 

a cadmium-sensitive culture of A. nidulans. The main cadmium 

resolved peak (-G) is passing through the column behind the 

void associated photosynthetic pigments (-G--). The cultures 

were exposed to lp.M cadmium for 20 days prior to extraction 

and HPLC analysis. 
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Figure 10: HPLC analysis of cadmium-binding ligands within a cadmiumD 

sensitive culture of A. nidulans. Theo cadmium (a-) is resolved within 

fractions containing a body of soluble ~protein, but behind that of the 

void proteins ("O-)· The cultures were exposed to lJ.lM cadmium for 20 

days prior to extraction and HPLC analysis. 
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Figure 11: Ultraviolet absorption spectrum of the Anacystis nidulans 

MT in 10 mM Tris-HCI. Displacement in the spectrum was acheived 

through changes in absorbance by the mercaptide bond chll'omaphore 

with decreasing pH. pH 6 (-B-); pH 3.5 (~-)and pH 1.5 (--9-). 
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Figure 12: Acid titration of the putative A. nidulans M'I' monitored as 

absorbance at 255 nm (mercaptide bond). The pH of half-displacement 

value is seen to occur at around pH 3.5 and is similar in value to other 

previously isolated metallotbioneins. 
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Figure 13a: DEAE-cellulose ion exchange chromatography of a cadmium­

binding ligand from A. nidulans. Cell cultures were grown for 20 days in 1 

JLM cadmium before extraction and analysis. The first peak eluted marks 

the starl of the linn ear gradient followed by a small peak of the MT. 
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Figure 13b: DEAE-cellulose ion exchange chromatography of pooled 

Synechococcus sp. MT fractions isolated by isoelectric focusing. The lin­

ear gradient (0.05-0.5M) was developed with Tris/HCl buffer, pH 6 in 

a total elution volume of 2 litres. The Synechococcus is apparently iden­

tical to Coccochloris elabens and was designated Synechococcv.s sp. Naegeli 

(strain RRlMP NI). In subsequent work, Olafson bas purified an equiv­

alent MT from Synechococcus TX20, using other seperation techniques 

(Olafson et al., 1979). 
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3.0.3 PCR amplification of the A. nidulans MT gene 

Initially the PCR reaction was run for 30 cycles overnight at 44°C (95°C for 

5 min, then 30 cycles: 44°C for 3 min, 72°C for 9 min, 91 °C for 2 min; then a 

final 72°C for 18 min). This cycle had previously been successfully used for the 

amplification of fragments over 1 Kb in size and allowed sufficient time for the 

complete transcription of the locus by the Taq polymerase (Fordham-Skelton, 

pers comm.). Examination under uv light revealed a band of DNA running in 

front of the 226 bp digested pBR322 + Alu 1 marker fragment but behind the 

136 bp marker (Plate 1 ). Further analysis indicated that the band size was 

approximately < 150 bp (Plate 2). The control a distantly related Synechococcus 

sp. amplified under similiar conditions with the same two extention primers, 

had not worked. Due to the size of the expected reaction product it was 

considered unnecessary to have a 9 min polymerase transcription period and 

this was reduced to 30 cycles of 45°C for 3 min. In latter trials the amount of 

oligonucleotide per reaction was reduced from 30 pl to 12 pl. A problem of 

overheating within the heating block was also corrected, the reduced amplification 

of the initial reaction when compared to latter experiments may have been due 

to Ta.q Polymerase inactivation. The reaction was repeated at 4rGC and the 

products analysed. The presence of several other DNA bands suggested that the 

primers had annealed to several loci within the genome and that transcription 

fragments of differing bp size had been formed and amplified. DNA band sizes 

corresponding to 140, 215, 265 355 and 405 bp were found when analysed latter 

on a 3.75% NuSieve GTG agarose gel. Re-amplification of 5 pl of the reaction 

mixture resulted in one band of 140bp being resolved (Plate 3). Analysis also 

revealed the presence of DNA fragments running between the primers and 140 

bp fragment. To increase the stringency of the PCR, the annealing temperature 

was raised stepwise from 47°C to 55°C , 60°C and 65°C (Plates 4 and 5). The 
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size and position of the various fragments were recorded (Figs 14a, 14b, 14c and 

14d). Increasing the reaction temperature reduced the number of fragments from 

nine at 4~C , to four at 65°C when analysed on 3.75% agarose. 

The degree to which a fragment had been amplified was indicated by its floures­

cence under uv-light. Four DNA bands of approximately 600, 265, 215 and 140 

bp were the predominant reaction products at 45°C , although nine bands were 

recorded in total. At 55°C three bands of 680, 265 and 140 bp were dominant. 

Whilst two dominant bands of 620 and 140 bp were recorded at 60°C only the 140 

bp potential MT gene product was predominant at 65°C with three other faint 

bands (Table 10). 

In conclusion, although the Synechococcus TX20 gene product is thought to be 

encoded by a 159 bp codon sequence. The size of the amplified gene product was 

not expected to exceed 150 bp due to the N-terminal annealing site of the 5' ~ 3' 

probe. In all the PCR reactions the dominant amplified fragment was approxi­

mately 140 bp in size. The effect of increasing the annealing temperature reduced 

the number of heterologous DNA fragments but did not inhibit amplification of 

the 140 bp fragment. The fact that a 140 bp fragment was recovered from the 

genomic DNA of A. nidulans but not from the DNA of a distantly related species 

adds further proof that A. nidulans is synonomous with Synechococcus TX20, that 

the MT isolated may be that reported by Olafson (1988) and that we may have 

identified the first prokaryotic MT gene. The non-amplification of DNA sequences 

from Synechococcus 562 raises the possibility that either this species does not con­

tain the Class II MT or that variations within the MT amino acid/codon sequence 

may exist between species. The recovery of the fragment of 140 bp indicated that 

it may be the MT gene, only the isolation and sequencing of the fragment will 

determine if this is so. 
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Table 10: The approximate base pair size of the reaction products 

obtained through the PCR amplification of the A. nidulans MT gene locus 

at different primer annealing temperatures. 

Temperature base pair size 

100-200 200-300 300-400 400-500 500-600 600-700 700-

47'1C 140 215, 265 355 405, 470 510, 600 630 

55°C 140 215, 225 405, 470 680 910 

265 

60°C 140 215, 265 510 620 

65°C 140 215 510 700 

fragement sizes in bold type were the predominant reaction products 

at that temperature 
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Figures 14a, 14b, 14c and 14d: Electrophoresis of the re­

action products obtained through the PCR directed amplifi­

cation of the A. nidulans MT gene locus with two synthetic 

oligonucleotides based on the N and C-terminus amino acid 

sequence of the Synechococcus TX20 MT. The reaction temper­

ature was raised from 47°C, 55°C, 60°C and 65°C respectively 

and the size of the electrophoretic fragments recorded against 

a pBR322 + Alu 1 restriction digest marker. 
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1 2 3 

140bp 

Plate 1: Taq Polymerase amplification of the Synechococcus TX20 gene 

with two synthetic oligonucleotides at 44°C. Lane 1: Synechococcus 562 

(Control); Lane 2: Anacystis nidulans : Lane 3; pBr322 + Alu 1 marker 

fragments. The approximate size of the A . nidulans reaction fragment is i 

150bp. 
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Plate 2: Analysis of the reaction products of the PCR amplification of 

the A nacystis nidulans MT gene locus with two N and C-terminal specific 

oligonucleotide probes. The reaction was run at 47°C and analysed in 

2% PAGE. The marker fragments are pBR322 + Alu 1. 
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Plate 3: Analysis of the PCR reaction fragments of the amplified MT 

gene in Ana cystis nidulans Lane 3: 47°C PCR; Lane 1: 47°C reamplification 

of the products within Lane 1. 



b) 

a) 

c) 

Plate 4: The effect of increasing the annealing temperature during the 

PCR amplification of the A . nidulans MT gen locus. a) 55°C ; b) 60oC ; 

c) 65°C . 



Plate 5: The effect of increasing the annealing temperature during the 

PCR amplification of the A. nidulans MT gene locus. Lane 1: marker (alu 

1 + pBR322 digest fragments; Lane 2: 47°C Re-Ampliflcation; Lane 3: 

A . nidulans genomic DNA (control); Lane 4: 4~C ; Lane 5: 55°C ; Lane 

6: 60°C ; Lane 7: 65°C ; Lane 8: marker. 



3.0.4 PCR fragment recovery and insertion into pUC18 

The bands relating to the 140 bp putative MT gene product were isolated. 

The DNA fragments were purified, treated with polymerase and ligated into a 

blunt ended site within pUC18. Three attempts at transformation into E. coli 

yielded a total of 12 isolates, these were given the designation ANMT 1-12. 

Analysis of cut and uncut plasmid recovered from the twelve isolates by agarose 

gel electrophoresis, when run against pUC18 did not reveal the presence of an 

insert. No difference between the control and plasmids were observed with regard 

to size (Plate ). The 12 ANMT strains were also transferred onto nitrocellulose 

filters and screened with a [32P]-labelled probe. Although a positive result 

was obtained with regard to the twelve isolates and the positive control, the 

fact that the negative control of purified pUC18 was blotted directly onto the 

nitrocellulose, whilst the pUC18-putative insert plasmids were lysed onto the 

filter within their bacterial hosts, meant that the result had to be treated with 

caution. Subsequently another transformation has yielded twelve more isolates 

and these are currently undergoing investigation. 

In conclusion, to date, attempts at cloning the PCR 140 bp fragment into E. 

coli have been unsucessful. 
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Chapter IV 

DISCUSSION 

4.0.1 Prokaryotic metallothioneins 

The isolation of class I and II MT within many higher organisms and 

(gammaEC)n G only within higher plants, eukaryotic algae and some yeast, 

has led to the suggestion that an evolutionary divergence has occurred within 

plants and animals (Gekeler et al., 1988). Animals respond to toxic trace 

metal stress by induction of MT gene expression, plants by induction of 

(gammaEC)n G formation via enzymatic polymerisation of peptidic precursors. 

Two copper-induced MTs and a cadmium-induced (gammaEC)n G have been 

isolated recently within Candida glabrata (Mehra et al., 1988) and within 

the last few months a class I MT has been isolated and sequenced within 

Pisum, a species known to possess (gammaEC)nG (Evans et al., pers. com.). 

The identification therefore of putative (gammaEC)nG within A. nidulans, 

a prokaryotic organism in which a class II MT protein has previously been 

identified (Olafson, 1984i Olafson, 1988) casts doubts on the strictness of this 

divergence and suggests that some prokaryotes and eukaryotes may contain two 

classes of MT. The identification of putative (gammaEC)n G is significant in 

that, if it is confirmed, A. nidulans will be the first prokaryotic organism in 

which they have been identified. 

To date (gammaEC)n G have been recorded within a wide range of plant 

species (Grill et al., 1987: Jackson et al., 1987) and they are believed 
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to be ubiquitous within the Angiosperms and Gymniosperms. Of greater 

relevance to this study, (gammaEC)n G complexes have been reported in 

several representative ']<V'e.ru. - of eukaryotic algae; Rhodophyta, Phaeophyta, 
-.-·-•.. 

Xanthophyta, Chlorophyta, Bacillariophyta, Chysophyta and Euglenophyta 

(Gekeler et al., 1988, Shaw et al., 1988). In addition they have been isolated 

within S. pombe (Musasugi et al., 1981; Kondo et al., 1985). Putative 

(gammaEC)nG was induced readily within A. nidulans on exposure to cadmium, 

with induction of putative (gammaEC)n G synthesis occuring within 48 hr of 

exposure. Within S. pombe and several eukaryotic algal species the synthesis of 

(gammaEC)nG has been induced by copper, cadmium, bismith, lead, silver, zinc 

and arsenic (Grill et al., 1986; Gekeler et al., 1988). Direct detoxification and 

the formation of metal-(gammaEC)nG complexes has only been demonstrated 

in the case of copper and cadmium (Jackson et al., 1987), although indirect 

evidence has been presented for the occurrence of silver-(gammaEC)n G 

complexes. No other metal associated complexes have been demonstrated to 

occur in vivo. The existence, however, of these complexes cannot be discounted. 

Other previously reported copper and cadmium binding peptides ( CdBPs) 

occuring within algae (Stokes et al., 1977; Hart and Bertram, 1980; Nagano 

et al., 1984; Gingrich et al., 1986) are potential (gammaEC)nG complexes. 

These CdBPs were inducible and represented the main trace metal-complexing 

agent. Amino acid analysis of the CdBPs of C. fusca and E. gracilis indicated a 

high proportion of glycine, cysteine and glutamic acid (Nagano et al., 1984; 

Gingrich et al., 1986). (gammaEC)nG are composed of the repeating dipeptide 

unit gammaglutamylcysteine with a single carboxy terminal glycine residue, 

so the results suggest that these are related (gammaEC)n G complexes. The 

presence of other amino acids , although regarded as contaminants, may 

have indicated the low level presence of other MTs. The occurrence of free 

sulfide within the A. nidulans putative (gammaEC)n G complex, a phenomena 
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previously confirmed for the Cd-binding complexes of S. pombe, E. gracilis and 

C. fusca (Musasugi et al., 1983; Hayashi et al., 1986; Weber et al., 1987; 

Gekeler et al., 1988) suggests that the phenomena may be widespread amongst 

the (gammaEC)n G complexes of lower organisms. 

Anacystis nidulans is the only prokaryote known to possess a class II MT. The 

MT consists of fifty three residues, the peptide sequence of which bears little 

homology to those of mammalian or invertebrate MTs, hence its classification as 

a class II MT. Although a conserved stretch of 6 residues (Lys-Lys-Ser-Cys-Cys­

Ser) is thought to resemble a region separating the two metal-binding domains 

within mammalian MT. The Synechococcus MT is thought to possess only a 

metal-thiolate cluster structure similiar to that found in eukaryotic MTs but in 

a single domain, has a lower cysteine content and is comparatively hydrophobic 

when compared to the@ cerevisiae and mammalian MTs (Olafson., 1988). In 

comparison to the single-binding domain Class I MTs isolated from N. crassa 

and A. bisporus (Munger et al., 1987; Kagi and Kojima, 1987), the algal MT 

is approximately twice the molecular weight and again shows little sequence 

homology. The high degree of sequence homology (80%) between the A. bisporus 

and N. crassa MTs, and a stretch of 11 amino acids at the amino terminus 
a. 

homologous to mammalian MT, suggest a common ancestry sepfrate to that of 

the Synechococcus TX20 (Anacystis nidulans) MT. The algal MT thus appears 

unique, for the moment, amongst MT in terms of amino acid sequence. 

Olafson through, through reverse phase HPLC of the Synechococcus MT, 

isolated eight potential metal-binding isoforms. Seven fractions were found to 

contain MT isoforms, whilst the last fraction containing the greatest absorbance 

at A250 was contaminated with pigments and remained unresolved. Although 

no isoforms -were identified within A. nidulans they may have been present. The 

high molecular weight fraction analysed within A. nidulans displayed a similar 
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charge density to Synechococcus MT on DEAE-Sephadex, the characteristic 

mercaptide chromophore in association with cadmium, the displacement 

spectrum of a MT when expossed to increasing proton concentration and a pH 

of half displacement similar to other MT. For mammalian MT the pH of half 

displacement is pH 3.2 for cadmium-MT and pH 4.5 for zinc-MT (Gingrich 

et al., 1986). An estimated pH of half displacement of 3.5 for the A. nidulans 

MT is therefore closer to these values, than for the E. gracilis (gammaEC)nG 

which releases 50% of in vivo cadmium bound at between pH 5-5.6. Further 

evidence that the Synechococcus TX20 MT was present within A. nidulans was 

provided by the use of oligonucleotide probes and the PCR reaction. 

Resistance of A. nidulans to the presence of cadmium within the media 

seemed to be related to increased (gammaEC)n G production. Between 

unadapted and adapted strains shocked for 2 days with a lethal dose of 

cadmium, the percentage of cadmium bound to the low molecular weight 

putative (gammaEC)nG pool rose from 50% of all intracellular cadmium to 

80%. It was also notable that when the adapted strain was grown in the 

presence of a low dose of cadmium for an extended period, 55% of all cystolic 

cadmium was within the putative (gammaEC)n G fraction. This raises an 

important question regarding cadmium tolerance. Is metal resistance the result 

of increased selection for improved synthesis of (gammaEC)nG? The results 

seem to suggest that within A. nidulans increased (gammaEC)n G synthesis 

was the path towards tolerance. If this is so, what effect will increased 

(gammaEC)n G synthesis have on metal homoeostasis? These results, and 

the work with Euglena gracilis and S. pombe, suggest that cadmium induces 

metallothionein synthesis and that the metal is strongly associated with 

(gammaEC)nG. Synthesis of zinc-(gammaEC)nG was not induced by exposure 

to zinc in E. gracilis (Weber et al., 1987; Shaw et al., 1989) and Reese and 

Wagner (1987) have proposed that zinc and (gammaEC)nG are likely to 
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be only weakly associated within the natural cell enviroment. Therefore, if 

(gammaEC)n Gs are unlikely to reduce the intracellular availability of free zinc 

ions within the cytoplasm. The important cellular processes of DNA replication, 

RNA transcription, energy metabolism, protein synthesis and degradation, 

which all require zinc-metalloenzymes, are all unlikely to be severely disrupted. 

H this is true, (gammaEC)nG induction and homoeostatic control of cadmium 

and copper ion levels within algal cells, could provide intracellular protection 

against the adverse effects of these ions without disrupting metallothionein 

regulated zinc homoeostasis. The level of metal required to induce synthesis of 

the two MTs is an important consideration. From the results obtained from the 

exposure of adapted and unadapted strains it could be proposed that class II 

MT synthesis is the primary route to metal homoeostatic regulation within A. 

nidulans until a threshold is reached upon which (gammaEC)nG synthesis is 

induced to reduce intracellular levels of cadmium. It would also be of interest 

to determine the preferred route of homoeostasis in A. nidulans strains adapted 

to high zinc concentrations (Fahmi et al., 1982). 

4.0.2 Adaptive mechanisms involving (gammaEC)n G 

The association of (gammaEC)n G with acid-labile sulphur has raised 

speculation that these peptides are involved in assimilatory so1- reduction 

{Steffens et al., 1986) and a theoretical cycle of assimilatory sulphate 

reduction and (gammaEC)nG biosynthesis has been proposed (Appendix). 

Furthermore, the association of s2- with cadmium-(gammaEC)nG complexes 

leads to a greater affinity and capacity for cadmium. Several possible ways 

by which adaption of the existing (gammaEC)n G synthesis pathway could 

lead to increased metal tolerance have been suggested {Robinson, 1989): 

1) Modifications in the activity of pathway enzymes, such as ')'-glutamyl 
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cysteine synthetase or GSH synthetase, leading to increased (gammaEC)nG 

biosynthesis; 2) Increased activity of enzymes reponsible for s2- saturation of 

metal-(gammaEC)nG complexes; 3) Modified rates of (gammaEC)nG turnover; 

4) Modified compartmentation of one of the components, (gammaEC)n G, s2-, 

or metal. 

4.0.3 Amplification of the A. nidulans MT gene 

The two oligonucleotides used to probe the A nacystis genome both contained 

a sixteen fold redundancy, three inosine bases were also included to minimise 

redundancy. The successful amplification of genomic DNA of the correct size 

even at higher annealing temperatures, indicated that the probes were annealing 

to two domains within a MT gene locus and that inosine was not inhibiting the 

formation of primer-genomic DNA duplexes. Both probes had been designed 

to include the Cys-X-Cys metal-binding sequence characteristic of MTs. The 

non-amplification of DNA from Synechococcus 562 is therefore intresting as it 

was possible that both these regions would form conserved domains within the 

MT molecule. It is notable that four of the seven Synechococcus MT isoforms 

isolated previously contained no valine molecules within their amino acid 

structure (Olafson et al., 1988), the remaining three isoforms were found to 

contain between one and three valine molecules. This Indicated that within 

the A nacystis genome being probed isoforms were likely to be present. Closer 

examination of the probe sequence revealed that the first three nucleotides of 

the 5'~---+3' N-terminus primer coded for valine. Therefore, if a substitution for 

valine had occured within an isoform at this position, the primer would be 

reduced from a twentymer to an eighteenmer. 

The presence of different fragment sizes was unexpected. During the early 

cycles of the PCR reaction when single stranded genomic DNA-primer duplexes 
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are formed, polymerase transcription of the genonitc strand may cause the 

formation of a ssDNA fragment that extends beyond the annealing sites of 

the 3'~--+5' and 5'~--+3' primers. The rate of Taq polymerase transcription is 

estimated at approximately 1000 bp/min (Davies, 1988). The subsequent cycle 

of primer annealing, transcription and disassociation will produce one ssDNA 

corresponding to the original overtranscribed strand (the long. product) and 

a second the length of which will depend on the distance between the two 

primers (the short product). The next round of the PCR cycle will produce 

one ssDNA of the long product and three of the short product. During further 

cycles the long product will continue to act as a template for the production of 

correctly sized fragments (Oste, 1988). Fragment extensions are thus quickly 

diluted out of the mixture. During the final cooling period these fragments will 

either form an imbalanced double strand with a primer or remain as ssDNA 

fragments. During electrophoresis they should run behind the primers but in 

front of the PCR product. Examination of all the gels revealed that these 

fragments may have been present. The presence of DNA fragments running 

behind the main PCR fragment therefore raised the possibility that the primers 

were annealing to several different sites within the genome. The occurrence of 

multigenic MT families is not unknown amongst eukaryotes. Within Man, MTs 

comprise a multigene family of about nine members. However only four of these 

genes appear to be expressed at the protein level; hMT-IA, hMT-IE, hMT-1F 

and hMT-2A. The remaining five MT genes are thought to be pseudogenes 

and are not transcribed; 'iJ!MT- Ic, \I!MT- Iv, 'ii!MT- 1a, 'ii!MT- 1H and 

'iJ!MT- liB (Karin and Richards, 1982; Richards et al., 1982). 

Metal tolerance within other organisms has been linked to gene copy num­

ber. Crawford and co-workers have reported that within Chinese Hamster cells 

cadmium resistance resulted from the co-ordinated amplification of the MT-1 

and MT-2 genes, to between 3- to 60-fold above the basal gene dosage of Cd-
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sensitive cells (Crawford et al., 1985). In S. cerevisiae gene amplification has 

been observed, with copper resistant ( CU PI R) strains containing ten or more 

tandem duplications of the CUPl locus (Fogel and Welsh, 1982). Within this 

study the genomic DNA used throughout the PCR amplification originated from 

a cadmium-sensitive culture. Therefore it was unlikely that tandem duplications 

of the MT gene locus were present. Any result with the PCR amplification would 

therefore be expected to reflect the basal gene number. Within Synechococcus 

TX20, the reported presence of isoforms, may either be due to gene amplification 

as a result of cadmium selection, or MT species with distinct intracellular roles as 

suggested by Karin (1985). Each isoform may carry zinc to different intracellular 

compartments or else interact with different classes of enzyme. Olafson (1988) 

demonstrated that the isoforms varied in respect of elution time from reversed 

phase HPLC and metal composition. If variations within the isoforms are en­

coded by different gene sequences, it is possible that specific isoforms may anneal 

to only one or neither of the two primers. If only one primer was annealing to 

the 5'.---+3' or 3'~5' strands of a specific MT gene, each amplification would pro­

duce only one extended ssDNA fragment at that locus. If however the MT genes 

are clustered within a locus, mis-primer annealing could lead to transcription 

between the 3' and 5' ends of two MT genes (Figure 15). 
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Figure 15: Schematic diagram of a PCR in which primer 

anneSli~g within ao-M'I' mult1g~ne family is unequal. ODly two 

cycles are shown, in both the fate of the original_DNA strand is 

omitted. MT-1 and MT-2 are in tandem, MT-2 has an amino 

acid change at theN-terminus that inhibits annealing of the 

51 
1-+ 3' primer. It is assumed there is a 50% possibility that 

the MT-2 51 
1-+ 31 polymerase will encode through to MT-1. 

MT-3 is situated upon the same DNA strand but is amplified 

seperately. A codon change within the C-terminus inhibits 

primer annealing. Note that the longer primer extensions 

(A1, Bl) can increase additively with each cycle. In contrast 

strands A2 and B2 will give rise to an assortment of fragments. 

Short discrete, primer terminated copies of the MT-1 gene will 

proceed to double with each subsequent cycle and become the 

predominant form. The remaining fragments will continue to 

increase additive_ly with each cycle. 



- MT-1 

~·. 

~· -
MT-1 

A .-• 
:> 

8 ~ 

-· A :; - ····--· 8 l' -·· ···111111 

l 
MT-1 

A1 r' • 

A2 
or 

MT-1 

81 

82 

or MT-1 

MT-2 

MT-2 1 
J' 

l 
·-

-·· ··-···- • -· ···-
MT-2 

J 

MT-2 

MT-2 

-

98 

' 3 

\ 

1 

-

-·· 

= PCR primer 

= MTgene 

=new DNA 

MT-3 . 
l 

s' 

MT-3 

! 
-

l 
MT-3 



Chapter V 

FUTURE STUDIES 

{1) To determine the differences in the regulation and synthesis of the two cadmium­

binding ligands between cadmium-sensitive and tolerant cultures. Competition 

may exist between the two types of regulatory molecules for a particular metal 

ion and the affinity and co-ordination preference of the molecules may dictate 

whether MT or (gammaEC)n G are synthesized. 

(2) More detailed structural characterization of the two ligands, an example of 

this would be an indication of the pH of half displacement for the putative 

(gammaEC)n G. 

{3 Use of the PCR reaction products as probes to determine the position of the 

MT locus within the A. nidulans genome. Once the site is identified to screen 

and isolate the upstream regulatory elements. 

( 4) Once the upstream region has been placed inside a suitable vector to sequence 

the region and assess for the presence of any prokaryotic MREs. 

(5) Use the MT gene and probe MREs to engineer cyanobacteria which are highly 

cadmium-resistant and accumulate cadmium from solution. 

(6) Use of any putative MREs to regulate the activity of other genes, and use 

of the cyanobacterial MT as a selectable marker (e.g. selection for cadmium­

resistance). 
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Chapter VI 

MAJOR CONCLUSIONS 

(1) The results indicate that the cyanobacteria A. nidulans contains two cadmium­

binding ligands. The first resembles the class II MT previously isolated by 

Olafson and the second to the class III MTs, or (gammaEC)nG, commonly 

associated with plants and lower eukaryotes. It is believed that this is the first 

evidence of two classes of metallothionein within a prokaryotic organism and 

that (gammaEC)n Gs may be present in non-eukaryotic organisms. 

(2) Although both classes of MT were induced by the addition of cadmium. Dif­

ferences between their regulation and induction were noted. Selection for a 

cadmium-tolerant strain resulted in cultures in which (gammaEC)n G was the 

predominant cadmium-binding ligand following exposure to sublethal doses of 

metal. (gammaEC)n G was also the predominant ligand in cultures exposed 

to lethal cadmium levels. Putative class II MT was only found in cadmium­

sensitive cultures exposed to sublethal levels of cadmium. 

(3) Analysis of the two molecules indicated characteristic MT properties. The 

presence of sulfide within the lower molecular weight species, an HPLC elution 

time similar to (gammaEC)n G previously resolved from D. innoxia was sugges­

tive of putative (gammaEC)nG. The higher molecular weight ligand contained 

a mercaptide bond chromophore and a pH of half displacement similar to other 

class I and II MT MTs. 

( 4) Data suggests that the two extension primers corresponding to the genes en­

coding theN and C-terminus of Synechococcus TX20 MT successfully annealed 
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to the MT gene locus within A. nidulans. Increasing the annealing tempera­

ture of the polymerase chain reaction did not reduce the transcription of the 

correctly sized reaction product. The results confirm previous work by Olaf­

son into the occurence of a class II MT and confirm the similarity between A. 

nidulans and Synechococcus TX20. 

(5) The presence of other polymerase chain reaction products indicated that the 

A. nidulans MT may be present within isoforms or gene duplications of the 

main MT gene sequence. Differences within the annealing sites of the extension 

primers were demonstrated through the reduction in number of fragments with 

increasing temperature. 

(6) The project accomplished the first four objectives set out in the introduction, 

with the fifth still remaining to be carryed out. 
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Table 11: Total cadmium fractions recovered after analysis by AAS 

Fraction no . Expt.A Expt.B Expt.C Expt.D Expt.E Expt.F 

1 0.5 0.75 0.8 

2 0.5 0.7 

3 0.5 0.6 

4 0.5 0.7 

5 0.5 0.7 

6 0.5 0.7 

7 0.5 0.7 

8 0.5 0.7 

9 0.5 0.7 

10 0.5 0.7 

11 0.7 

12 0.5 0.7 

13 0.5 0.7 

14 0.7 

15 0.7 

16 0.5 0.7 

17 0.5 0.7 

18 0.5 0.7 

19 0.5 1.2 0.8 0.8 1.2 

20 3.5 0.5 5 1.2 2.1 2 

21 15 17.5 1.5 3.8 2 

22 10.5 40 1.5 6.1 1.8 

23 7 48 1.2 7.5 1.6 

24 3 38.5 1 8.5 1.5 

25 1.3 24 1 7.5 1.3 

26 1.2 15 0.8 6.3 1.2 

27 2 9 0.8 5.5 1 

28 1.5 2 7 0.8 4 0.9 

29 3 3.8 0.8 3 0.8 

30 3 2 0.8 2.1 0.9 



Fraction no . Expt.A Expt.B Expt.C Expt.D Expt.E Expt.F 

31 3.1 0.5 1.5 0.8 1.5 0.9 

32 3.2 0.5 1.4 0.8 1.1 1 

33 2.5 2 0.9 1.1 0.7 1.25 

34 0.5 3 0.8 1.2 0.5 1.4 

35 3.1 3.5 0.8 1.5 0.3 1.5 

36 4.3 4 0.7 1.6 0.3 1.55 

37 5.1 4.5 0.8 1.7 0.25 1.6 

38 8.5 5 0.8 1.8 0.15 2.2 

39 9.6 7.6 0.6 1.8 0.1 6 

40 11.7 12 0.5 2 0.1 12 

41 26.9 19 0.5 3 17 

42 50 25 0.5 3.5 12 

43 65 20 0.5 3 7.2 

44 22.8 13.5 0.45 2.9 7 

45 10.5 10.5 0.1 2.8 4 

46 8.5 7 3 3.6 3.4 

47 4.4 4 5.1 14 2.3 

48 11 4 7 33 2 

49 50 7 9.5 35 0.25 1.9 

50 86 8 11.8 20 0.3 1.8 
' 

51 53 4.5 7 10 0.2 1.8 

52 10.5 2.2 2.5 3 1.5 

53 4.4 1 0.6 2 1.4 

54 1.25 0.5 0.5 1.5 1.4 

55 1.2 1.1 1.3 

56 1.1 1 1.3 

57 0.9 0.9 1 

58 0.8 3 0.9 1 

59 0.9 0.7 0.9 

60 0.8 0.9 0.8 
,.,_...__, ............ 1 ~~ ~ 01~ 101 ,., t::"l ne:: 1 ") 1: 1 



Appendix 1: A theoretical unified scheme linking assimilatory sulphate reduc-

tion and (gammaEG)nG biosynthesis as proposed by RObinson (1989). A pos-

sible alternative s<>utce of S2~ to that shown above for the formation of Cd-

s2--(gammaEC)n G aggregates, is generated by the action of non-organic sul-

phate reductase. The enzymes involved in this theoretical cycle : 1, gamma­

glutamylcysteinecynthetase (EC6.3.2.2.),2,glutathione synthetase(EC63,2,3,),3,uncharacteri: 

enzyme(s) assumed to be (gammaEC)nG synthetase,4,ATP sulphurylase (EC2,7,7,4), 

5, APS sulphotransferase, 6, ferredoxin dependant organic thiosulphate reductase 

(EC 1.8.7.1),7, 0-acetyl L-serine sulphydrolase (EC4,2,99,8), 8, alternative path-

ways for cysteine biosynthesis, 9, pathways that consume glutathione. 
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