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ABSTRACT 

The stresses and deformation in an accretionary prism, and the crystalline 

basement behind and beneath it, have been modelled using finite element 

analysis, assuming a visco-elastic Maxwell rheology for the rocks involved. 

A new method for finding the effect of lateral variations in density 

and body forces on the deformation in such models has been developed, so 

that the balance between weight and basal shear in the accretionary orism, 

and the associated displacement and stress distributions, could be modelled. 

Analysis shows that there is an equilibrium basal stress that supports 

the weight of the accreted sediments. Above this stress the accretionary 

prism is built higher, and below it subsides and spreads up the basal slope. 

The average value for this stress was found to be 12 MPa for the Middle America 

subduction zone and 5 MPa for the central Aleutians. 

Models of these two subduction zones show important differences in 

surface displacement and stress distribution, due to the slope and extent 

of the overriding basement rocks. In the island arc model, it was concluded 

that the igneous crust extended beneath the Aleutian terrace to the edge of 

the inner trench slope, while in the case of the Middle America subduction 

zone the continental basement is cut back at depth and parts of it are 

underlain by accreted sediments. 

Displacement boundary conditions were applied to the basal thrust to 

investigate the effects of coupling and decoupling on it, and in this way 

the repeat time for earthquakes, at a depth of c. 15 km in the Middle 
:; 

America subduction zone, was predicted to be c. 250 yr, or less. 

Finally, the results for a simple accretionary wedge, applied to the 

mechanics of a thrust sheet, show that the basal gradient is an important 

controlling factor, and that gravitational forces alone cannot cause thrust 

motion up a basal slope, unless the thrust wedge is supported (at the end 

lower down the basal slope) by stresses which are lithostatic or greater. 
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!Jut thou shalt .flourish in immortal youth, 

Unhurt amidst the 1Jars of elements, 

The 1Jrec:ks o.f matter, and the crush o.f ZJorlds. 

Joseph Addison, Cato, V, i, 28. 



CHAPTER 1 

FEATURES OF SUBDUCTION ZONES AND THEIR PHYSICAL SIGNIFICANCE 

1.1 Evidence for Subduction 

One of the most important implications of the now widely acceoted 

theory of plate tectonics, is that oceanic lithosphere is subducted 

into the mantle along deep sea trenches. Over the past decade, a considerable 

number of observations have been made which support this hy!)othesis, the 

evidence falling into four main categories; earthquake seismology, seismic 

reflection and r~fraction profiles, and direct sampling of the material 

in, and near trenches. 

l. 1.1 Earthquake seismology 

Perhaps the most convincing argument supporting subduction is the 

asymmetry of the earthquake zones associated with island arcs and 

continental margins. 

A large proportion of intermediate and deep earthquakes (i.e. all 

those below about 50 km depth) are associated with deep sea trenches, and 

have hypocentres which define regions, known as Benioff zones, dipping 

at angles between 30° and 60° approximately, beneath volcanic chains, 

which may be on continental crust (e.g. the Andes), or which may form 

island arcs (e.g. the Aleutian Islands) if the crust above the Benioff 
i 

zone is oceanic. !sacks and Molnar (1971) analysed 204 sets of hypocentre 

and focal mechanism data, and presented profiles of all the major Benioff 

zones. From this analysis, they showed that in nearly all cases one of 

the principal stresses associated with the earthquake was aligned parallel 

to the dip of the Benioff zone, and since the stress down-dip may be 



either tensional or compressional, they deduced that the earthquakes 

usually take place within a sinking slab of lithosphere, rather than on 

2 

a single thrust plane at its upper surface. ~ore recently, however, 

detailed analyses have been made of the seismic zone beneath Northeastern 

Honshu, Japan (Hasegawa et a l . , 1978 ~ Yoshi i, 1979; Hasegawa et a l., 

1979), which show that in this case, the seismicity lies on two parallel 

planes, associated with the upper surface and the interior of the 

subducted plate, respectively. 

Seismic zones have also been shown (Oliver and !sacks, 1967; 

Barazangi et al., 1972; Hasegawa et al., 1979) to coincide with regions 

of high Q (quality factor) which act as waveguides for high frequency 

shear waves, and which are continuous with the oceanic lithosphere that 

is seaward of the trench. 

These observations imply that the oceanic lithosphere sinks, or 

is pushed, through a bend of up to about 60°, into the mantle where it 

is assimilated. 

1. 1.2 Seismic reflection profiles 

Although seismic reflection profiles are often made obscure by 

the acoustically opaque region resulting from intense deformation in 

the inner (landward) wall of the trench, they show that this deformation 

is due to thrusting. In addition, in many profiles (Hilde et al., 1969; von 

Huene, 1972; Beck and Lehner, 1974; Seely et al., 1974) the oceanic 

basement, layer 2, can be traced, dipping at so or 10°, beneath the trench 

sediments, which lie horizontally and are undeformed except close to the 

inner trench wall. Occasionally the subducted crust can be traced beneath 

the deformed region for as much as 30 to 40 km from the trench, and an 

example of this is shown, from the Lesser Antilles complex, in Fig. 1.1 
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(unpublished data collected by Durham University Department of 

Geological Sciences on Cruise 109 of the RRS Discovery, 10 March- 19 April, 

1980; see also Beck and Lehner, 1974). Note that in this profile, 

subducted oceanic sediments can also be seen overlying the (layer 2) 

. basement. 

When results from reflection work and gravity profiles are combined 

(e.g. Grow, 1973a), the resulting models are consistent with subduction. 

1. 1.3 Seismic refraction profiles 

Seismic refraction profiles across trenches (e.g. Hussong et al., 

1976; Meyer et al., 1976; Curray et al ., 1977; Boynton et al., 1979) 

show that the Mohorovicic discontinuity, at the base of the oceanic 

crust, dips down under the trench, while the Moho on the landward side 

can be followed at roughly the same level (though depressed a certain 

amount by crustal thickening) right up to the edge of the trench. 

The oceanic crustal rocks (layers 2 and 3) are brought into contact 

with the mantle, at a depth of c. 20 km in the Sunda arc (Curray et al., 

1977), and at a depth of c. 50 km under the East of the Bolivar Basin, 

Western Colombia (Meyer et al., 1976). The latter depth is the larger 

because the overriding plate in this case carries continental crust, 

rather than oceanic as in the Sunda arc. 

1. 1.4 Rock sampling 

Cores taken as part of the Deep Sea Drilling Project (hereinafter 

referred to as D.S.D.P.), in particular on Leg 66 across the accretionary 

complex landward of the Middle America trench (Moore et al., 1979a, 1979b; 

Moore and Watkins, 1979), together with the associated reflection profiles, 

show U1at sediments are carried by the oceanic rlate into the trench, where 



some are sheared off, together with sediments deposited in the 

trench, against the inner trench wall. The igneous oceanic basement 

(layers 2 and 3) and any remaining sedimentary cover continue beneath 

the accreted sediment wedg~ and finally into the mantle. 

1.2 General Description of a Subduction Zone 

The term "subduction zone" is taken broadly, to include all the 

features resulting from subduction of oceanic lithosphere, from the 

volcanic arc to the outer rise in front of the trench. 

Although at first sight the features seen in subduction zones seem 

to vary considerably, by comparing bathymetric profiles across a great 

number of trenches and seismic profiles where available, Karig and 

Sharman (1975; Karig, 1974; see also Dickinson and Seely, 1979) have 

developed a general subduction zone cross-section, which is the basis 

for the terminology used here (Fig. 1.2). 

The oceanic Jithosphere is bowed upward as an elastic response to 

the bend imposed by subduction (see, e.g., Watts and Talwani, 1974; 

Caldwell et al., ~976) forming an "outer rise" of about 0.3 to 0.5 km in 
I 

height, at about 50 km in front of the trench~ The trench itself is 

typically 5 or 6 km deep and contains a wedge of sediments, usually 

turbidites derived from the island arc or continent, which varies in 

thickness from nearly zero in the Tonga-Kermadec trench to over 1 km in 

the Middle America trench. 
'' 

4 

Behind the trench is a region called the "accretionary prism", 

composed of tectonized sediments that have been scraped onto the overriding 

plate, and of an overlying, relatively undeformed sedimentary cover. 

The igneous crust of the island arc, or continental plate, abuts onto 

the accretionary prism, perhaps underlying part or all of it, and the 
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join between igneous and sedimentary crust, near the surface, is called 

the "upper slope discontinuity" (or "u.s.d. 11 in Fig. 1.2), but its 

nature is not clearly understood (see Section 1.4.2). 

The accretionary prism is divided into two parts, the upper and 

lower inner trench slopes, by a change in gradient (which can take 

several forms; see Section 1.3) known as the 11 trench slope break 11 (or 

11 t.s.b." of Fig. 1.2; Dickinson, 1973). The lower slope consists of 

deformed sediments which have been lifted up by sometimes as much as 5 km, 

and often has ridges along it parallel to the trench which may be the 

surface expression of imbricate thrusts (Dickinson and Seely, 1979). The 

upper slope on the other hand is not rising as quickly as the trench 

slope break, and is partially, or completely, filled with scarcely

deformed sediments derived from the island arc, and from the trench 

slope break where the latter is above sea level. 

All the above features can be traced for great distances, typically 

several hundred kilometres, along the strike of the arc-trench system, 

which is ample justification for considering two-dimensional models of 

subduction zones. 

1.3 The Lower Slope and Trench Slope Break 

Seismic reflection profiles over the lower slope (Beck and Lehner, 

1974; Seely et al., 1974) show sets of landward dipping reflectors 

within the generally opaque acoustic basement, some of which are 

' I particularly strong and are interpreted a~ listric:thrust faults. Seismic 

refraction (Curray et al., 1977) and gravity data (Grow, 1973a) indicate 

that the lower slope is underlain by material with a low seismic velocity 

compared to oceanic layer 2, and a density of 2200 to 2400 kg m-3, which 

lies on the oceanic crust being subducted. 
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The interpretation of this data as a prism of deformed sediments 

accreted by being scraped off the underlying oceanic crust, is supported 

by the results from some of the Deep Sea Drilling Project holes (Kulm et 

al., 1973; Creager et al., 1973; Ingle et al., 1975; Hussong et al., 1978; 

Moore et al ., 1979; von Heune, Auboin et al., 1980). Of these, one of 

the more recent legs, number 66 (co-chiefs Moore and.Watkins) is particularly 

useful, as seven holes were drilled between a site just forward of the 

trench and one near the edge of the continental crust, as shown in 

Fig. 1.3 (combined with structures shown on seismic lines MX-16 and 

OM-7N made by the University of Texas Marine Science Institute (UTMSI)). 

The sediments in the trench are flat-lying and undeformed until 

close to the toe of the trench slope where the reflection profile shows 

folding and the start of the landward dipping reflectors (see also Hilde 

et al., 1969; von Heune, 1972). The degree of deformation increases rapidly 

to a maximum at the toe of the slope where thrust slices (Ingle et al., 1975; 

Moore, J.C., and Karig, 1976) are formed and sheared off the sinking plate. 

A good example of this is shown in Fig. 1.4, at the toe of the Middle 

America accretionary complex (Shipley et al., 1980). 

Further up the slope the uppermost rocks, below the apron of muds, 

are less deformed, while the angle of the landward dipping reflectors 

increases. The cores from D.S.D.P. sites 488, 491 and 492 show an 

important characteristic, in that significant deformation begins in 

older sediments (but af shallower depths below the present sea bed) from 

one site to the neft up-slope. Interbedded sand- and mudstone sequences 

were encountered in all three holes, which Moore et al. (1979) interpret 

as being trench turbidites. 

Using the above information and the fossils found in each core it 

is possible to find the rate of uplift at each site and to assign a rate 
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South-East of Acapulco, showing the sites of some of the 
O.S.D.P. Leg 66 boreholes (Moore et al., 1979b). 
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of deformation to each. At the toe of the accretionary prism uplift 

occurs at about 500 m Myr- 1 , and is reduced to about 100m Myr- 1 by the 

time the sediments have been raised 2 km above the trench floor. The 

rate of deformation at site 492 is about 0.1, and at 491 about 0.2, of 

the rate at th~ toe, site 488 (Moore et al 1979b). 

7 

The overall result of O.S.O.P. Leg 66 was to show that trench 

sediments and pelagic sediments from the incoming oceanic plate are 

scraped off at the toe of the inner trench slope and accreted to the base 

of the prism, involving slope sediments in the deformation as they are 

forced upward by further accretion beneath them. There are no major 

stratigraphic inversions observed in any one hole (even though site 488 

was ·positioned over a suspected thrust plane) and the landward-dipping 

reflectors may well be the bedding surfaces between sand- and mudstone units, 

so that a significant part of the shear motion must be taken up on small 

shear surfaces throughout the accretionary prism rather than on major 

thrust faults. 

However, Moore, G.F. and Karig (1976) present convincing evidence, 

on the basis of the deformation of basins on the inner slope, that there 

are major, thrusts in a large number of cases. The slope basins are 

ponded behind ridges of acoustically opaque material (the deformed 

sedimentary basement), and their deformation suggests that the slope 

sediments are included in the accretionary prism by shearing along 

thrust planes. 

It is not nec~ssarily the case that all the sediments being 

carried into the subduction zone are accreted at the toe of the prism. 

Fig. 1.1, from the Lesser Antilles, shows oceanic sediments subducted 

about 30 km under the accretionary wedge. Watkins et al. (in press}, 

on the basis of the D.S.D.P. Leg 66 results, postulate that, of the 
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total influx into the Middle America trench (90% from the trench sediments, 

10% carried in on the oceanic plate), only 25% of the sediments are 

accreted on the inner trench slope. They conclude that 50% are subducted 

into the mantle, a·nd that the remaining 25~0 are sheared off the subducted 

plate at greater depth and 11 underplated 11 beneath the accretionary prism. 

If there is very little sediment to be scraped off the oceanic plate, 

then some basaltic oceanic crust may be accreted. Fig. 1.5 is a cross

section of the Mariana Trough, showing the sites wher~ holes were drilled 

on D.S.D.P. Leg 60 (Hussong et al., 1978). The results of drilling at 
I 

sites 460 and 461 were consistent with the accretion of oceanic crust, in 

that igneous and metamorphic rocks of the kind commonly found in ophiolites 

were recovered, but it is possible that these were fragments of the 

oceanic basement beneath the island arc. However, basaltic and ultramafic 

rocks are recovered by dredging on such slopes (Petelin, 1964; Fischer 

and Engel, 1969) which support the accretion mechanism. 

The trench slone break is taken to be the point at which the sediments 

have been pushed up to their maximum height by the accretionary process 

and at which the deformation, due to that un.lift, ceases. As such, the 

trench slope break takes four distinct forms (Fig. 1.6; Karig and Sharman, 

1975; Karig, 1974). 

(a) The first type of trench inner slope, taken to be the youngest, 

shows no significant distinction between the uoper and lower slope. In 

these trenches (e.g. New Hebrides, Solomons and New Britain) igneous 

oceanic crust may be accreted on the very steep inner slope (Petelin, 1964), 

and subduction has not been active long enough to develop an accretionary 

prism. 

(b) The second type displays a distirict break of slope on the trench 

inner wall and a very small, if any, upper slope basin (e.g. Mariana, 
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Tonga, Ryuku1. At this type of trench, there is only a small thickness 

of pelagic sediments on the incoming plate and little or no terrigenous 

supply to the trench, and again dredging (Fischer and Engel, 1969) recovers 

basaltic rocks. 

(c) In the third type there is a thick layer of sediment on the 

plate and in the trench. However this is not derived from the frontal or 

volcanic arc, but from a more distant source, the trench wedge being 

brought in by turbidity currents. Trenches of this type (Luzon, Shikoku, 

Central Aleutians, Sumatra) show the trench slope break as a well 

developed ridge, since it is raised up by the thickness of the accretionary 

prism, but there are no terrigenous sediment sources to fill the 

depression in the upper slope behind it. 

(d) The final type corresponds to those trenches where the 

terrigenous sediment influx is large so that the upper slope is completely 

filled with sediments and forms a bench or terrace. If enough of these 

sediments are deposited in the trench, then the lower slope in front of 

the ter~ace is formed of accreted sediments regardless of the thickness 

of the pelagic sediment fee~ (e.g. Easte~n Aleutians), but if this is 

not the case, and if the pelagic sediments are thin, then although the 

terrace sediments are well developed, oceanic crust may still be accreted 

at ~he toe of the inner slope (e.g. Japan). 

1.4 The Upper Slope 

The upper slope, where it is developed, forms a basin of flat-lying 

and undeformed sediments which lap onto the ridge in front of it 

(generally the trench slope break) and onto the continent or island arc 

behind it. It is a feature which shows up well on reflection profiles 

(e.g. von Heune et al., 1971; Seely et al., 1974~ Karig, 1977; Karig et al., . 



1980) and in refraction work, where a common estimate of the depth of 

the sediments is 2 or 3 km (Curray et al., 1977). The widths of upper 

slope basins vary considerably, from less than 10 km in the East Luzon 

trench (Karig and Sharman, 1975) to about 100 km in the Tobago trough 

(Westbrook, 1975). 

Although the whole upper slope region is thought to undergo 

absolute subsidence, at least after it has reached a certain size 

(Karig, 1977), it is convenient to consider the motion relative to the 

leading edge, and relative to the trailing edge, separately. 

1 .4. 1 The leading edge 

The ridge in front of the uoper slope basin is a rising unit of 

tectoni·zed sediments. The relative movement is demonstrated by the 

folding of the sediments over basement arches and drape structures on 

the rearward flank of the ridge. Reflection profiles for D.S.D.P. sites 

186 and 187 (Grow, 1973b) show this draoing, but the best evidence is 

where the ridge is above water level, for example the Mentawai Islands 

in the Sunda Arc, and Barbados in the Caribbean. 

10 

Karig (1977) gives a cross-section to the landward side of Nias 

Island, based on proprietary reflection profiles and an exploration well. 

He shows that the upper slope sediments are draped over a region of 

flexures on the East side of the island, and interprets these structures 

as the result of thrust slices that have been rotated just past the 

trench slope break. and whi.ch are now subsiding with perhaps normal 
. . ' 

movement on old thrust faults. The sediments are barely deformed, maintaining 

continuity of bedding planes, and there is no evidence for any thrust 

faulting along this edge of the basin. 

Westbrook (1975) shows, using reflection profiles across the Tobago 
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Trough, that the basin sediments are folded over basement arches just 

behind the Barbados ridge. These are interpreted as the surface expression 

of seaward-dipping thrust faults, formed during the uplift of the 

Barbados ridge as a secondary feature directly above the point of 

subduction of oceanic crust beneath crystalline basement, and over 100 km 

from the present trench slope break. Similar basement arches are seen in 

the Aleutians (Grow, 1973b), and may be the result of the seaward d•pping 

thrust faults discussed by Seely (1977). This interpretation is in 

conflict with that of Karig and Sharman (1975) who regard both Nias and 

Barbados as regions of the trench slope break (see section 1.5.2, below). 

1.4.2 The trailing edge and basement 

The fact that the upper slope basin is subsiding relative to 

the volcanic arc, or continental crust (Karig et al., 1980), together 

with the angle of contact between them which is often steep, at least 

near the surface (von Heune et al., 1971; Hussong et al ,, 1976; Curray et 

al., 1977; Moore et al ., 1979), suggests that there must be some decoupling 

between the accreted sediments and the igneous crust. This corresponds 

to the upper slope discontinuity defined in Section 1.2 (following Karig, 

1974), but its behaviour at depth is poorly determined (see below, in this 

section). 

As the width of the upper slooe basin increases, so the deepest 

sedimentary layers within it tilt further (Grow, 1973b), .but in such a 

manner that the ax1s of th~ basin remains near to the volcanic arc 

(von Heune et al., 1971; Seely et al., 1974; Karig, 1974), indicating 

that the subsidence is greatest close to the discontinuity. This implies 

that a large part of the relative motion between volcanic arc and basin 

is localized near the upper slope discontinuity rather than being evenly 
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distributed over the whole upper slope. 

It is most likely, then, .that faulting occurs at the leading 

edge of the continental or arc crust. This is certainly the case in the 

Eastern Aleutians, where there is a distinct system of steeply-dipping 

faults (von Heune et al ., 1971), however the nature of these faults, 

whether normal or high-angle reverse is unclear. Karig (1977) interprets 

the work of Murdock (1969a and b) on earthquake focal mechanisms in this 

region as being evidence that the upper slope discontinuity is a reverse 

fault dipping at about 50° landward, but the fault shown by Murdock does 

not seem to be certain above a depth of 15 km, and the high angle thrust 

I earthquakes may b~ part of the Benioff zone, if the latter has a shallow 
I 

dip to start with :and then bends steeply below the upper slope (Model B 
: I 

i of Grow, 19 7 3a ; see F i g. 1 . 8) . 

Hussong et al. (1976) have interpreted reflection and refraction 

profiles across t~e Peru-Chile trench (at about latitude 10°5) as. showing 

normal faulting in an analogous position at the edge of the upper slope, 
i 
I 

although in this case there is a very poorly-developed basin. From the 
I 

velocity structure they suggest that continental material is being 
i 
I 

sheared off at its contact with the subducting plate, as do Curray et al. 
I 

(1977) in the case of the Sunda and Banda arcs, and that these thrust 

planes dip progressively more steeply landward at shallower depths until 
I 
I 

they turn over and become normal faults close to the surface. 

If this occurs then the two types of fault may simply represent 

different degrees of rotation of the basal thrust and could both be due 

to the same possible mechanism (see Fig. 1 .7). 

The disruption of the crystalline basement beneath the upper slope 

makes it difficult to find how far it extends towards the trench. Magnetic 

profiles (e.g. Grow, 1973a; Karig et al., 1978) can trace it as far as 
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b) high-angle thrust faulting (after Curray et al., 1977), 
at the upper slope discontinuity~ 
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the edge of the upper slope basin, which was confirmed by D.S.D.P. Leg 66 

(Moore et al., 1979a), and a little beyond, but further than that the 

anomalies cannot be identified until the oceanic magnetic anomalies due 

to the sinking plate are seen. 

Refraction profiles show oceanic-like crust beneath the upper slope 

basin in the Eastern Aleutian, Java and Lesser Antilles subduction zones 

(Shor and von Heune. 1972; Curray et al., 1977; Boynton et al., 1979), 

and a similar result is indicated in the Central Aleutians (Grow, 1973a). 

However there is a certain amount of ambiguity because the velocities in 

the supposed oceanic crust are reduced near the trench, and Karig (1977) 

suggests that the observed structure may be due to increasing the seismic 

velocity nf accreted sediments by compaction ~nd dewatering, rather than 

to underlying igneous crust. This ambiguity is illustrated in Fig. 1.8, 

showing two possi9le interpretations, made by Grow (1973a), of the 

geophysical data across the Central Aleutians. If the basement is indeed 
' 

oceanic crust. then it is faulted and. thickened by thrusting, and reaches 

a maximum thickness near the point of subduction, where it comes into 

contact with subducted oceanic basement. 

An additional mechanism, which w9uld help the development of 

upper slope basins is due to the sediments within them. Once the basin 

has been formed, the extra thickness and degree of compaction of the 

sediments in the deeper part of the basin will create a greater load there, 

so that the weight'of sediments will cause a differential load on the 

upper slope, accentuating ~ts original slope and increasing the rate of 

subsidence further, while keeping the axis of the basin nearly fixed. 
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1.5 Evolution of Subduction Zones 

1.5.1 A frame of reference 

In order to discuss the development of a subduction zone, and in 

particular the arc-trench gap, it is necessary to choose a fixed frame 

ot reference. Ideally this frame of reference should be in the orig~nal 

continental (or oceanic) crust of the overriding plate and should remain 

relatively undisturbed during the whole period of subduction. This ideal, 

however, due to volcanic activity and other forms of tectonic deformation 

as well as the sediment covering, is impossible to attain or identify. 

The upper slope discontinuity seems a likely candidate for the 

fixed point, especially since it initially represents the edge of the 

uoper continental slope in many cases (e.g. Middle America trench). 

However, the nature and even the position of the upper slope discontinuity 

is still not at all clear, as described earlier (Section 1.4.2), and if 

tectonic erosion of the leading edge of the continental (or island arc) 

crust occurs (as shown in Fig. 1.7) then it will migrate away from the 

trench. In addition to this, there is evidence in the Eastern Aleutians 

and Japan (Karig and Sharman, 1975; Matsuda and Uyeda, 1971) to suggest 

that the upper slope may be sheared onto the overriding plate as a 

complete unit, so that the upper slope discontinuity jumps forward to a 

position near the old trench slope break, and a new accretionary complex 

is built onto the front of perhaps a series of older ones. 

The volcanic arc, although not such a fundamentally important region 

to the structure of a subduction zone, is a lot easier to define and is 

subject to less movement over longer time periods than the upper slope 

discontinuity (Karig and Sharman, 1975). Although there is evidence that 

in 'some cases the volcanic arc can migrate either way, the rate at which 



15 

it does so is small compared with the size of the accretionary prism 

(Dickinson (1973) quotes a value of 2 km Myr- 1 )~ and Karig et al. (1976) 

show that to a first approximation the horizontal distance from the 

volcanic arc to the bend~ or position of maximum curvature~ in the Benioff 

zone is constant for nearly all arcs~ irrespective of the trench-arc gap. 

The volcanic arc is therefore taken as the fixed point of reference 

when considering the development of the accretionary complex~ but it 

should be remembered that the whole subduction zone may move relative 

to the mantle~ due for example to back-arc spreading~ or to the pull 

that may be exerted (forwards) by the sinking slab. 

1.5.2 Development of an accretionary prism 

The basic asslmption made in describing the development of the 
I 

accretionary prism is that the main differences in trench profiles, 

other than those due to the available volume of sediment, are due to 

the length of time each trench has been subducting continuously. Other 

effects will be discussed in the next section. 

When subduction begins~ the inner slope does not have a break 

(e.g. New Hebrides) and the oceanic plate bends sharply down beneath 

the island arc, which is very close (less than lOO.km) to the trench. 

Sediments and perhaps oceanic crust are accreted to the toe of the inner 

slope, and the trench slope break is developed. 

The trench slope break then moves forwards as further material is 

accreted, the rate depending on the rate of subduction and the supply 

of sediments, and a basin is developed behind it on the upper slope, 

containing a sediment thickness which varies from one arc to another 

(see Section 1.3). This development is represented (in Fig. 1.6) by the 

sequence E. Luzon, Shikoku, Aleutians~ and also in some studies of ancient 
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subduction zones, for example the lower Paleozoic accretionary prism 

to the South-East of the Southern Uplands fault (Leggett et al., 1979). 

Estimates of the rate of sedimentation and the rate of accretion 

in the Shikoku subduction zone (Moore, J.C. and Karig, 1976) are consistent 

and an accretion rate of about 15 km2 Myr-1 per length of arc is derived. 

Using this and data from D.S.D.P. site 298 (Ingle et al., 1975) a strain 

rate of 3 to 5 x 10- 13 s- 1 is estimated for the fold cored at the toe of 

'the inner slope, assuming a steady subduction rate of 12 to 20 mm yr-1. 
I 

While the lower of these two estimates could be taken up by folding 
' I 

alone, the higher would be likely to cause significant thrusting. It 

is almost certain that both processes take place. 
I 

As the accretionary prism becomes wider the initial angle of the 

oceanic plate beco~es shallower, but the steep section of the Benioff 
I 

zo~e remains fixedf Karig et al. (1976) show this to be the elastic 

. response of the plate to the increasing sedimentary load. The increase 

in dip of the subdl cted slab occurs where it comes into contact with the 

basement of the ov rriding plate. 

In accretiona y prisms where the toe of the prism has migrated 

more than about 50 km from the point of subduction, i.t is sometimes possible 

to see two ridges, one at the top of the steepest part of the inner trench 

slope, about 30 km from the trench and another, higher one over the point 

of subduction. Examples are Hawley Ridge in the Central Aleutians (Grow, 

1973a}, the Mentawki and Nicobar Islands in the Sumatra arc (Karig, 1977) 

and the Barbados riidge in the Caribbean (Westbrook,: 1975). Westbrook 

suggests that the trench s 1 ope break represents the height to which the 

accreted sediments may be thrust against their weight,.and that another 

higher ridge is formed by further compression over the point of subduction, 

corresponding to 

r 
Bouguer gravity minimum. Unless the accretionary 

I 



prism has developed to a width of 50 km from toe to upper slope basin, 

the second sedimentary ridge cannot be distinguished from the trench 

slope break, so this is a feature of well-developed subduction zones 

where there is a good supply of sediments to the trench. 

1.5.3 Complicating factors 

The comparatively simple model discussed so far only takes into 
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account straightforward subduction, in that it only describes continuous 

convergence perpendicular to the trench. However, in many cases the 

convergence has not always been either of these things. 

The rate of ?Ubduction may change, or subduction may stop completely· 

and then start upl again. When a further subduction pulse begins, the 

trench, upper slope discontinuity and volcanic arc may all move their 

positions either ~ogether or separately (e.g. Matsuda and Uyeda, 1971), 

and if a marginal basin has been formed behind the volcanic arc, then the 

"polarity" of subauction may reverse (Karig, 1974) and the back arc basin 

may be subducted eneath the island arc, along a seaward dipping Benioff 

zone. 

The region is again complicated further if the direction of 
I 

subduction is not[ perpendicular to the trench. The transverse component 

of subduction is faken up either by shearing in a back arc basin, where 

one exists, or on' the upper slope (Karig, 1974) and t"he margin may be 

truncated by disp~acing parts of the accretionary prism at rates of 

15 to 20 km Myr- 1r This m~y have happened in California and along the 

Middle America trench (Karig et al., 1978). 
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1.6 Summary 

An outline has been given of the observations made on subduction 

zones and the mechanisms proposed to explain them. The aim of this thesis 

is to form numerical models, based on current observational data, to 

investigate the deformation of, and stresses within accretionary prisms, 

and to find the dependence of this behaviour on their lithology and 

on boundary conditions, particularly the basal shear stresses exerted 

by the subducted oceanic crust. 



CHAPTER 2 

PHYSICAL PROPERTIES OF ROCKS USED IN LITHOSPHERIC MODELS 

2.1 Elastic Properties 

The elastic properties of rocks may be found from one of three 

broad categories of measurement. 
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Firstly, values for seismic wave velocities may be found from 

experiments on the crust and mantle, from which it is possible to 

derive the elastic parameters necessary for modelling assuming some 

density distribution. These lithospheric measurements include both 

large scale (e.g. earthquake seismology) experiments which give average 

parameter values for the crust and upper mantle, .and more detailed 

(e.g. seismic refraction) exp~riments in particular areas. 

The second category is that of laboratorY experiments. These include 

direct measurement of the elastic properties of samples.of rock types 

thought to be similar to those in the region of interest, and of samples 

actually taken from that region, for example in Deep Sea Drilling Project 

cores. 

The final category includes the values derived from analytical 

modelling of the lithosphere. The models are, for the most part, models 

of the flexure of the oceanic plate being subducted at a trench, based 

on bathymetric profiles across the tr~nch and outer rise, and on the 

angle of dip of the Benioff zone beneath the island arc. 
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2. 1.1 Experiments on the upper mantle 

The broad velocity structure of the lithosphere may be found from 

earthquake seismology. Bott (197la) shows the radial P wave velocity 

distribution for the whole earth found by Jeffreys (1939) and Gutenberg 

(1959) which are similar, except in the upper mantle where Gutenberg 

shows a low velocity zone at a depth of about 100 km. More recent studies 

(e.g. Toksoz et al ., 1967; Julian and Anderson, 1968) have increased 

the resolution of the P velocity distribution in the upper mantle, and 

have confirmed the existence of a low velocity zone at depths of about 

100- 200 km. 

All these studies give values for the P wave velocity, am' in the 

topmost mantle of 

· am = 7 . 9 - 8. 1 km s- 1 

and in the low velocity zone of 

am "' 7 . 8 km s- 1 • 

An alternative method for finding am' in the mantle immediately 

below the Moho, is the measurement of Moho headwave velocities in 

seismic refra~tion experiments. Bott (197la, p.ll4) summarises these 

results for several different tectonic regions, and shows that typi ca 1 

values are 

am = 8 . 0 - 8 . 2 km s- I . 

However in an area of volcanic activity, such as an island arc, the 

velocity may be as low as 

am= 7.5 km s- 1 , 

as, in the case of Japan, shown by Yoshii and Asano (1972) and Yoshii 

(1979). 

Shear wave velocities for the mantle cannot be found by seismic 

refraction, but in addition to travel time studies of earthquake body 



waves, the dispersion of surface (Love or Rayleigh) waves may be 

used to find S wave velocities, sm. These experiments give results 

of 

sm = 4. 4 - 4. 7 km s -1 

for the uppermost mantle, and 

Bm = 4 . 1 - 4 . 4 km s- 1 

for the low velocity zone (see, for example, Bott, 197la; Yu and 

Mitche 11 , 1979). 
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The lower values for the uppermost mantle (~4.4 km s-l) are 

associated with tectonically active areas, or young oceanic lithosphere. 

As the oceanic lithosphere becomes older (further from a spreading 

ridge), sm increases from 4.4 km s-1 to 4.6 km s-I (approximately) 

over about 50 or 100M yr (Yu and Mitchell, 1979). 

One further parameter is needed before the Young's modulus, Em' 

and Poisson's ratio, vm, of the upper mantle can be calculated, namely 

the density, Pm· This may be found, either by assuming a mantle 

composition and extrapolating the density from that measured to that 

at the required depth, or by using the Nafe-D~ake. curve relating the 

density of a rock to its P wave velocity (Bott, 197la, p.66). In either 

case the density of the upper mantle may be taken to be 

Pm = 3300 kg m- 3. 

In or,der to obtain the elastic parameters from these values of 

am, sm' Pm the following relations must be used: 

" = (' : 2"1! 2. l a 

2.1 b 



(Malvern, 1969, p.550; Jaeger and Cook, 1976, p.35l) where A and~ 

are Lame's elastic constants, from which Em and vm may be derived, 

using 
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X 
vm = 2.2a 

2(A + ~) 

Em = ~(3A + 2~) 

(A + ~) 

(Malvern, 1969, p.280; Jaeger and Cook, 1976, p.35l). 

Hence, for a fairly active region, with 

a = 7.9 km s-l m 

2.2b 

Equations 2. l and 2.2 give the following values of Poisson's ratio and 

Young's modulus for the upper mantle 

vm = 0.26 

Em= 170 GPa. 

2.1.2 Experiments on the crust 

Earthquake seismology methods give the broad velocity structure for 

the crust, as for the mantle, again using surface wave dispersion for 

S waves and earthquake arrival times for both P and S. However, seismic 

refraction methods are more effective in the crust, particularly for 

localized structures. All these methods are discussed by Bott (197la), 

and typically give values of 

= 6 . 0 - 6 . 2 km s- l 

= 6. 5 - 7 . 0 km s- l 

as the compressional velocities of the upper and lower crust respectively, 

and 
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as the average crustal shear velocity. 

Velocities in sediments vary considerably according to the degree 

of compaction, giving compressional velocities of 

a d = l . 6 - 3 . 5 km s - 1 • se 
However, there have been many refraction profiles made across trenches 

(see Chapter l, Section 1.1), and these all give similar distributions 

of a within the sediments comprising the accretionary prism, examples 

of which are shown in Fig. 2.1 (Hussong et al., 1976; Kieckhefer et al., 

1980), so that compressional velocities may be assigned more accurately 

to sediments in the region of interest. 

Although it is more difficult to find shear velocities in seismic 

refraction experiments, since the S arrivals are always later than P, 

it is sometimes possible to find the ratio (a/S) and hence, through 

Equations 2.1 and 2.2, Poisson's ratio 

= (a/ S) 2 - 2 v 
2.3 

2 ( (a/ B ) 2 - l ) 

Boynton et al. (1979) have used this fact, and apparent Sand P 

wave velocities to estimate Poisson's ratios of 

v = 0.260 ± 0.008 

and v = 0.267 ± 0.007 

for the igneous crust beneath the Lesser Antilles (average a = 6.2 km s- 1 ), 

and the same layer together with underlying sediments, respectively. 

Nagumo et al. (1980) used an ocean bottom seismometer on the inner 

wall of the Japan trench to record local earthquakes. P to Sand S to P 

conversions were detected at the boundary between the accreted sediments 

and the subducted oceanic crust, a very strongly reflecting boundary whose 

position was determined using reflection methods. The ratio (a/S) was 
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calculated from the delay times between P and PS and between SP and 

S, and gave (using Equation 2.3) 

\) = 0.41. 

This represents the average Poisson's ratio in the toe of the 

accretionary prism, which had an average velocity 

a = 2.3 km s-1 

according to the reflection data. 

The average density of the crust is in the range 

Pc = 2800 - 2900 kg m- 3 

(Bott, 197la) according to gravity measurements and extrapolation from 

the measured densities of basement outcrops. 

Local density variations, especially for shallower rocks, may be 

estimated to about 100 kg m-3 from the Nafe-Drake curve of a against p 

(see Section 2.1.3, below). For example, in the case of the toe of the 

Japan trench inner wall (with a= 2.3 km s- 1 ), the density is 

p = 2100 kg m- 3 • 

Hence, taking as average velocities 

a = 6.2 km s-1 c and s = 3. 5 km s -1 
c 
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and using Equations 2.1 and 2.2, the average elastic parameters for the 

crust are 

0.27 

Ec = 87 - 90 GPa. 

Similarly, the average parameters for the toe of the accretionary 

prism, in the instance of the Japan trench cited earlier, are 

\) = 0.41 

E = 4.9 GPa. 
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2.1 .3 Direct measurement 

Birch (1966) and Gerrard (1977) give summaries of experiments to 

measure the elastic parameters of rocks directly. These experiments 

are mostly performed by applying stresses to the samples and measuring 

the strains, though in some harder rocks (e.g. basalt or dunite) the 

elastic parameters are calculated from longitudinal and transverse 

wave velocities in the sample. Some average values taken from these 

two papers are shown in Table 2.1. 

Source Rock-type E/GPa \) 

Birch (1966) Andesite 40 0.16 

54 0.18 

Gerrard ( 1977) Andesite 32 0.15 

Birch Phyllite 10-30 

Gerrard Phyllite 70 0.26-0.5 

Clay <vl 0.27-0.45 

Table 2.1: Ela$tic parameters for various rock-types. 

Due to the effects of confining pressure, these figures will be more 

reliable for shallowen than for d~eper, rocks and sediments. Note that 

the parameters found for the inner wall of the Japan trench, in 

Section 2.1 .2, fall between those given for phyllites and clays, which 

might be expected as they represent average values for the low temper

ature metamorphic rocks of the accretionary prism and the overlying 

apron of mud. 

A third compilation of experiments of this kind is represented 



by the Nafe-Drake curve. Ludwig et al. (1970) show two curves, for 

P and S wave velocities each as a function of density, and a third, 

derived from the first tw~ of Poisson 1 s ratio against density (see 
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Fig. 2.2). Although this set of data is most reliable for P velocities, 

the parameters due to Boynton et al. (1979) and Nagumo et al. (1980) 

cited in Section 2.1 .2, and the average values for the crust are all 

consistent with both the P and S velocity curves. 

Analyses of various physical properties of cores from the Deen 

Sea Drilling Project have been made, but the only one of these that 

can be effectively used to determine elastic parameters for accretionary 

wedges is density. For example, holes 186 and 187 of Leg 19, drilled 

into the sedimentary complex on the inner wall of the Aleutian trench, 

gave densities (Lee, 1973) of 

p = 1700- 1900 kg m-3, 

increasing with depth. Taking the higher density (1900 kg m-3), and 

assuming that the empirical results represented by the Nafe-Drake curves 

(Fig. 2.2) are representative of rocks under the conditions in the 

accretionary prism, S and P wave velocities may be read from the graph, 

from which the elastic parameters are calculated to be 

v = 0.46 

E = 1.6 GPa. 

2.1.4 Parameters derived from analytical models 

There have been severa 1 ana lyses of the flexure of the 1 ithosphere 

assuming it to be an elastic (or elastic-plastic) plate overlying a 

viscous fluid (e.g. Walcott, 1970; Watts ~nd Cochran, 1974; Karig et al., 

1976; Turcotte et al., 1978). In these calculations the important 

parameter is the flexural rig1dity, 
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D = E h 3 2.4 
12(1 - v2) 

where h is the thickness of the elastic lithosphere. Walcott (1970) 

gives severa 1 values for D ranging from 5 x 1022 Nm for the Basin and 

Range Province, Western U.S.A., to 1025 Nm for parts of the Canadian 

shield. 

Obviously D can only be used to find E or v (using Equation 2.4) 

if one is already known together with the lithospheric thickness, but 

it is an independent check on the elastic properties found otherwise. 

For oceanic lithosphere Walcott gives 

D = 2 x 102 3 Nm 

which together with a lithospheric thickness and Poisson's ratio 

h = 30 km 

v = 0.27 

give a Young's modulus 

E = 80 GPa, 

consistent with Section 2.1.2. 

2.1.5 Discussion 

The chief difficulties in deriving elastic parameters for the 

lithosphere are that it is impossible to re-create conditions in the 

laboratory to accurately match those in the crust and mantle themselves, 

and that it is difficult to study the properties of rocks buried beneath 

several kilometres of other rocks. 

Parameters obtained from seismic wave velocities may be subject 

to inaccuracy, because they represent the response to an oscillating 

stress system, with frequency up to about 30Hz, which additionally has 

an amplitude negligible compared with the stresses in the lithosphere. 
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On the other hand, although comparable stresses may be applied to 

rock samples in the laboratory or in outcrops, it is hard to achieve 

the conditions of temperature and confining pressure necessary to 

simulate great depths. 

A further inevitable problem in finding lithospheric properties 

is the time-scale involved, but this is discussed further in Section 

2. 2. 

Despite all these difficulties, the results shown in Section 2.1 

are consistent and give, at the least, guidelines as to the elastic 

properties that should be used in lithospheric models. 

2.2 Effective Viscosities 

2.2. 1 Lithospheric viscosity 

Many experiments have been performed to find creep equations, 

especially on olivine and ultrabasic rocks to simulate the upper mantle, 

and these are reviewed comprehensively by Weertman (1975) and Tullis 

(1979). The steady-state strain rate is found to obey a power law 

• . n 
E = A exp(-Q/RT)(o/~) 2.5 

where ~ is the shear modulus (equal to Lame's constant in Ch. 3, Equation 

3.14), n is a number between l and 10 (theoretically n = 3 for glide

controlled dislocation creep (Weertman and Weertman, 1975)), Q is the 

activation energy and A a constant both dependent on the material, R is 

the universal gas constant and T is the absolute temperature. 

However there are considerable differences between the parameter 

values given by various authors (see, for example, Weertman and Weertman, 

1975, tab 1 e 2), and in addition there may be inaccuracies due to 

extrapolation. The reasons for this are that, not only is it difficult 
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to produce temoeratures and pressures in the laboratory comparable 

with those in the mantle; but it is impossible to conduct experiments 

over lengths of time which are comparable with the ages of geological 

structures. Therefore the steady-state creep observed in the laboratory 

is assumed to persist over very much longer times, .and the constants 

in Equation 2.5 are assumed to apply to much smaller rates of strain 

than can be measured accurately. 

Although Equation 2.5 describes the behaviour of samples better 

than the equations of a Maxwell substance (Ch. 3, Equation 3.36) with 

a constant Newtonian viscosity, it is found that in models of lithospheric 

flexure the difference between these two types of modelling is not 

significant to first order (Bischke, 1974; Melosh and Raefsky, 1980), 

and Cathles (1975) concludes that the viscosity of the upper mantle is 

constant at 1021 N s m-2 throughout. 

The most important consequence of non-linear creep is that the 

effective viscosity (neff = o/~) is lower for high stresses and higher 

for low stresses, so that large deviatoric stresses relax faster than 

in the linear equivalent to start with, but once they have relaxed to 

a certain extent the deformation becomes slower. The time when the 

strain rates for linear and non-linear creep become equal depends on 

the constants in Equation 2.5 and on the value choseri for the effective 

Newtonian viscosity. 

In the light of these uncertainties, it was considered to be a 

good approximation for the purposes of this thesis (where the emphasis 

will be on crustal deformation) to consider only constant Newtonian 

viscosities. 

Models of lithospheric flexure often take the lithosphere to be 

elastic (see references in Section 2.1 .4, above), but this is not 



considered to be realistic because of the extremely large resultant 

deviatoric stresses, approaching 1 GPa (Melosh, 1978). Various 

possibilities for lithospheric viscosity, n£' have been suggested in 

the range 1022 - 1 Q25 N s m-2. Some examr> 1 es are: 

n£ ~ 1025 N s m- 2 

(Melosh, 1978; Melosh and Raefsky, 1980), 

n > 1024 N s m- 2 
£ 

for stable continental lithosphere (Artyushkov, 1973), and 

n ~ 1023 N s m- 2 
£ 

(Walcott, 1970; Bischke, 1974; de Bremaecker, 1977), which agrees with 

Artyushkov's value for tectonically active lithosrhere. 

On the basis of these figures, average values for lithospheric 

viscosities are taken to be 

for the crust and uppermost mantle respectively. 

2.2.2 Crustal viscosities 

Very little work has been done on power-law creep for crustal 

materials. One example is given by Parrish et al. (1976) who give 

equations of the form of 2.5 for wet and dry quartzite, but again the 
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results must be extrapolated from laboratory strain-rates, greater than 

10- 7 s-I, to typical geological rates of lO-l 4s-I. 

Bearing in mind the lack of such data for sediments and other 

crustal rocks, and other approximations inherent in the modelling, it 

would not be justifiable to use non-linear deformation in this study. 

Parrish et al. consider that quartzite in the Earth's crust deforms 

with a viscosity of about 



n = 4 x 1020 N s m-2 
qzt ' 

based on their power law creep equation, and they quote Heard and 

Raleigh 1 S result (1972) for the viscosity of marble under the same 

conditions (a temperature of 500°C and a strain-rate of 10-14 s-1) as 

nma rb = 3 x 1 0 2 o N s m- 2 . 

Handin (1966) gives a table of effective viscosities for some 

limestones and evaporites. The majority of these lie between 1012 and 
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1017 N s m-2, with a strong correlation between strain-rate and viscosity 

(the higher the strain-rate, the lower the viscosity). There are only 

two effective viscosities quoted for rates of strain less than l0-10s-1, 

which are 

for gypsum, and 

nlst > 2xl021 N s m-2 

for limestone, at strain-rates of 10-12 and 10-14 s-1 respectively. 

Stein and Wickham (1980), in their finite element model of fault 

zones associated with folding, list values of viscosity for sandstones, 

limestones and shales varying between 1019 and 1021 N s m-2. The average 

value they use, for homogeneous models, is 

n = 3.2xl020 N s m-2. 

Finally, Cow~n and Silling (1978), in choosing parameters on which 

to base scale models of an accretionary prism, took a value of 

n .d = 1014 N s m-2 
se 

for the viscosity of the whole sedimentary complex. However they do not 

explain their choice, which is at least 4 orders of magnitude lower 

than the values quoted ab6ve. 

The viscosities few crustal material given in this section can be 

used to give guidelines to the values which could be used in a visco-
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elastic model, but one of the aims of this thesis is to find the 

importance of the viscosity, and variations in it, in an accretionary 

prism, and closer bounds on its value (see Chapter 5). 

2.3 Conditions for Failure of Rocks 

Whether a rock will fracture along a given plane or not depends 

on the shear stress 1 in that plane and on the stress a normal to it. 

Stress is a tensor quantity, and so a and 1 relating to a plane 

at an angle e to the minimum principal stress o 3 (the greatest 

compression), and perpendicular to the plane containing o 1 and o 3 , are 

1 = -o 1 case sine + o 3 cose sine 

(Price, 1966; Jaeger and Cook, 1976). Rearranging Equations 2.6 

a = (a 1 + a 3 ) -· (a 1 - a 3 ) cos 2 e 
2 

1 = ( 0 3 - 0 l ) sin 2-B 
2 

= -1 sin2e m 

2 

2.6a 

2.6b 

2.7a 

2.7b 

where o 1 and o 3 are the maximum and minimum principal stress (usually 

both being in the plane of a finite element model, with the intermediate 

principal stress, o2 , perpendicular to the cross-section), and o and m 

1m are the mean stress and maximum shear stress respectively, 

(ol + o3) 
0 = m 2 

.:. (o 1 - .1 3 ) 

( 

2.8a 

2.8b 



From Equations 2.7 it can be ·seen that T and a satisfy 

f = (a - a )2 + T2 - T 2 = 0 m m 

which on a graph ofT against a, represents a circle, centre (am,O), 

radius T . This circle is known as a Mohr circle and a graph of this 
m 

kind (Fig. 2.3), usually drawn for positive T only, is called a Mohr 

diagram. 
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2.9 

The locus of all points (o,T) on a Mohr diagram where failure occurs 

in a particular material defines the fracture envelope for that material 

(e.g. Fig. 2.5). If the Mohr circle for a stress distribution lies 

entirely below the fracture envelope then no failure is predicted, while 

if it touches then the sample is expected to fracture at an angle e to 

the minimum principal stress given by 

tan2e = 
T 2.10 

where (o,T) is the point at which the fracture envelope is tangent to 

the circle (see Fig. 2.4, where the a-axis has been plotted conventionally 

with compression to the right). 

To determine how near to failure an element in a finite element 

model is (Ch. 3), or by how much it has failed, it is necessary to 

determine a degree of failure for the stress system within it. Consider 

the stress system o1 , a 3 shown in Fig. 2.4 for which combination of 

a and T failure is not predicted. To cause failure, the stress system m m 

must be altered in one of two ways (or a combination of the two); either 

am must be reduced to am' keeping Tm constant, or Tm must be increased 

until· the Mohr circle touches the fracture envelope. Thus the value of 

Tm necessary for failure, and indeed the type of failure (Sections 2.3.1 

to 2.3.3), depends on a , while the size ofT determines whether the . m m 

material will actually fail, for a given am· 



Fig. 2.3: A Mohr circle and its associated stress system (see text for 
explanation). 

Fig. 2.4: The Mohr representation of a fracture envelope, with compression 
plotted to the right (cf. Fig. 2.3, where compression is to the 
left; see text for definition of symbols). 



Let the value ofT needed be r, the shortest distance from m 
(a ,0) perpendicular to the envelope, then the degree of failure, C, 

m 

is defined as y 
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c = 1 - Tm 2.11 
r 

This definition is a convenient dimensionless number, since it allows 

a direct comparison of degrees of failure between stress systems liable 

to different types of failure. C is positive if failure is not predicted, 

zero at failure, and becomes more negative the more the material is 

stressed beyond its fracture limit. In other words, if failure is 

predicted in several parts of a model, the region with the largest 

negative value of C is the most likely to fail. 

2. 3.1 Open-crack failure 

To calculate the conditions for fracturing when open cracks are 

present, the (2-dimensional) simple Griffith theory is followed (as 

in Jaeger and Cook, 1976). The basic assumption of this theory is that 

failure occurs perpendicular to the surface of a crack when the tensile 

stress in that surface exceeds a value characteristic of the material, 

and that in this way cracks propagate, leading to failure of the whole 

rock. 

By maximizing the crack surface tension, it is found that failure 

will occur at an angle e to the greatest principal compression given by 

cos2e = _Tm 2. 12a 
2om 

or 8 = 0. 2. 12b 

Condition 2.12a can only apply if j2oml > jTmj' so that the open crack .·· 

region is divided into two types. 
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a) l2om1 ~ lrml 

Under this condition, 2.12b applies, i.e. failure occurs along 

the direction of the minimum principal stress in resoonse to the 

maximum principal stress, o 1 . The condition for failure is then 

2.13 

where T is the uniaxial tensile strength of the rock. 

The fracture envelope for this region is reduced to the point A 

at (T,O), (Fig. 2.5) and for any stress system with 

T>o >.-T . m -

failure occurs at A. In this case 

r = T - o m 

C=(T-ol) 
T - o m 

is the degree of failure according to Equation 2.11. 

A further possibility must be mentioned here, namely 

2. 14a 

2. 14b 

2. 15a 

·For these stress systems tensional failure, with e = 0, occurs for all 

values of r , so in this case the degree of failure must be redefined m 

and the expression 

is used. 

b) l2oml > lrml 

Again following Jaeger and Cook (1976), failure occurs at 

r2 = r 2 = -4To ·m m 

This value of rm is substituted into the Mohr circle Equation 2.9 

whence the fracture envelope is found by setting 

2. 15b 

2.16 
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and eliminating am. The result is 

T2 = 4T 2 - 4Ta 2.17 

a parabola which cuts the a-axis at (T,O) and the T-axis at (0,2T) 

(AB of Fig. 2.5). 

However this analysis only holds while all the cracks are open. 

Assuming that it holds until am is more compressional than a stress aa 

(see Fig. 2.5 and Section 2.3.3 below), then the characteristics of 

open crack compressional failure are 

-T > a > a m a 2.18a 

and, using Equations 2.11 and 2:16, 

c = 1 - 2. 18b 

2.3:2 Closed-crack failure 

If the normal compression across a crack is greater than a 

certain value a , then the crack will close and the simple Griffith . c 

theory of section 2.3.1 will not hold. There is now a frictional shear 

stress Tf on the crack 

Tf = ~(ac - a) 

where ~ is the coefficient of friction between the sides of the crack. 

If this effect is included in a similar derivation to that used 

to obtain the open-crack failure criteria (McClintock and Walsh, 1962; 

Jaeger and Cook, 1976), the result is 

aT + a = ST m m 2.19 

at failure. a and 8 are dimensionless constants given by 
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a = 
( fl2 + l ) 2 

fl 

1 
2 ( l - o/T) 2 

+ ac s = 

fl T 

Again, a similar calculation to that in Section 2.3. l gives the 

fracture envelope 

T = l-IST - flO 

representing the region BC in Fig. 2.5. 

If loci« T 

T = 2T - flO 

which is the Mohr-Coulomb fracture envelope (Price, 1966; Jaeger and 

Cook, 1976) with a cohesive strength of 2T and the coefficient of 

internal friction replaced by fl, the sliding friction in the crack. 

The size of oc has been quoted as: -2T (Brace, 1964), -3T 

(McClintock and Walsh, 1962), -4. l9T (Murrell, 1965) and -lOT (Digby 

and Murrell, 1976). Murrell's value of 

a = -4. l9T c 

is used in all the finite element models, together with his friction 

coefficient 

fl = 1.09 

unless stated otherwise. These give 

a = l . 36 

s = -0.0198. 
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2.20a 

2.20b 

2.21 

2.22 

The derivation of Equation 2.19 requires that all the cracks should 

be closed. Let this be the case where om is less (more compressive) 

than ob (Fig. 2.5 and Section 2.3.3 belo~). 
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This type of failure is thus described by 

om < ob 2.23a 

and, from Equation 2.19 

2. 23b 

The angle of fracture, e, in the closed crack region is given by 

the normal from (om,O) to the fracture envelone, that is by 

tan2e = l/\.1 

and is independent of om because the envelope is a straight line for 

om in this region (cf. Equation 2.10 for open-crack failure and 

Equation 2.28 for the intermediate region). 

2.3.3 The intermediate region 

2.24 

The modified Griffith theory of fracture UkClintock and Walsh, 1962) 

combines the open and closed crack theories described in the previous 

two sections. The transition from one part of the fracture envelope 

to the other occurs smoothly in reality, as the stress normal to the 

cracks approaches oc' but here the transition is approximated by a 

change from the parabolic to the straight line portions at a single 

point (oc,Tc) (B in Fig. 2.5.). 

Two Mohr circles are defined in Fig. 2.5; one which is tangent to 

the parabola AB at B (circle a), and one which is tangent to the line 

BC at B (circle b). According to this approximation, failure occurs at 

B, namely o = oc' 1 = Tc' for all values of om between oa and ob (the 

centres of a and b respectively). 

To find the value of o , first substitute the value of 1m at a , 
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open-crack failure (Equation 2.16) into the Mohr circle Equation 2.19, 

giving 

f = (a - a ) 2 + 1 2 + 4Ta = 0. m m 

On the envelope 

a = -6. 19T a 

using the value of ac from Section 2.3.2. 

.. 

Similarly for ab' substituting Equation 2.19 into 2.9 

f o (cr - "m)2 + ,z - (BT : "m) 2 = 0 

df -2(a - a ) = 
dom 

m 

ab = (11 2 + 1) 

a = -9. 14T b 

+ 2(sT - am) = 0 
a2 

a - 11 2 8T c 2.26 

using the definition of a (Equation 2.20a) and the values of 11, 8 and 

ac from Section 2.3.2. 

The failure parameters for the intermediate region are thus 

a ~ a ~ ab a m 2.27a 

with 

r 2 = (a - a ) 2 + 1 2 
c m c 

C = 1 - 1 m 
((a -o) 2 +T 2 )~ c m c 

2.27b 

1c,the shear stress corresponding to a normal stress ac' at failure, 
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is given by either Equation 2.17 or 2.21 as 

'c = 4.55T. 

The angle of failure, e, in the intermediate region is given by 

the line from (om,O) to (oc''c), that is by 

tan2e = 'c 2.28 
(oc - om) 

2.3.4 Tensile strength 

In Sections 2.3.2 and 2.3.3 the failure criteria have all been 

calculated in terms of the uniaxial tensile strength, T, and it provides 

the scale for the graph of, against a (Fig. 2.5). 

The value used here for T in large-scale finite element models is 

T = 50 MPa 

which is the average value for igneous rocks given by Service and 

Douglas (1973, based on work by Brace, 1961), and is a good average 

value for the whole crust. 

However the tensile strength in the upper crust is somewhat lower. 

Goldsmith et al. (1976) give various tensile strengths for Barre granite, 

the average of which is 

T = 12.6 MPa 

while values common for metamorphic and sedimentary rocks (in the 

upper crust) are even lower. Some of these are shown in Table 2.2 

below. 

Note that the strengths quoted from Handin (1966) were derived 

from measurements of the cohesive strengths for the samples (Equation 

2.22 shows that the cohesive strength, defined for a Mohr-Coulomb 

failure criterion, is equal to 2T), and are averages of the data 

presented there. 



Reference ~1aterial T/MPa 

Handin (1966) Sandstone (dry) 18 

Limestones 10 

Shales 8.0 

Sandstone (wet) 7.3 

Jaeger and Cook (1976) Marble 6.9 

Brace ( 1964) Marble 5.4 

Handin ( 1966) Greywackes 5.3 

Jaeger and Cook (1976) Sandstone 3.6 

Handin ( 1 966) Schists 2.9 

Phyllites 1.0 

Table 2.2: Tensile strengths of various upper crustal rocks 

2.3.5 Applicability of failure criteria 

The ~odified Griffith theory of failure describes the conditions 

for brittle failure of rocks only. For this reason the theory is 

applicable to rocks in the upper crust, but becomes an increasingly 

poor approximation with depth, as rocks become more ductile. This 

ductility is taken into account by the viscous part of the rheology 

used in the models (see Chap~er 3, Section 3.4), but failure may still 

occur at these depths and as a first approximation the same form of 

failure criterion is used throughout. 

No problem arises in the mantle where brittle failure would be 
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inapplicable, because the mean stress a is always too large for failure m 

to occur under realistic stress distributions. 
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CHAPTER 3 

THE FINITE ELEMENT METHOD 

3. l Introduction 

Analytical solutions to geodynamic problems may only be found by 

making many simplifying assumptions about the section of the lithosphere 

under investigation, particularly with respect to boundary conditions 

between regions with different properties. Therefore solutions are often 

found numerically and one of the most versatile methods of this type is 

finite element analysis, a numerical technique for finding the stress 

distribution in an elastic continuum, which can also be extended to 

visco-elastic media (see Section 3.4). 

The first step in the method, is to divide the body (for the purposes 

of this thesis, a cross-section taken through the lithosphere) into 

elements, the boundaries of which intersect to form nodes. 

Assumptions are made about the behaviour of the materials comorising 

the body, which allow an equation to be derived relating the stresses 

within the elements to the displacements of the nodes (Equation 3.22), 

which, together with equilibrium conditions, leads to the stiffness equation 

(3.30) 

K 6 = F. 

A solution of this equation, by matrix inversion, gives the displacements 
-
8 of the nodes for a given set of loads F (6 and F both being column 

vectors), applied to a body with stiffness matrix K. 

In this way, the displacements and hence, through the stress 

equation (3.22), the stresses in the body may be found for any set of 

external boundary conditions .. 
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3.2 The Relationship between Stresses and Displacements 

3.2. 1 The shape function 

The element shape function N(x,y) is a matrix which relates the 

displacements ux, uy at a point (x,y) within an element to the displacements 

o. o. of each node i on the element's boundary, through the equation 
1 X 1 y 

- -
u = N o 3. 1 

In general u is a column vector of dimension ~. the number of degrees 

of freedom of each node, and 6 has dimension im, where m is the number of 

nodes on the e 1 ement, so that N is [9- x 9-m]. 

However, this study is restricted to 2 dimensions (x,y) and each 

element is a simple 3-noded triangle with one node at each corner so 

9, = 2 

m = 3 

and N is a [2x6] matrix. 

Reducing the number of degrees of freedom of the element to 6 means 

that the shape function is linear, and following Zienkiewicz (1971), the 

displacement function within the element may be shown to be 

u = 2: [n . I ] 6
1
. 

i . 1 
3.2 

where 6i is the displacement vector for node i, I is the [2 x 2] identity 

matrix, the sum is over the three nodes numbered i, j, m and 

1 n. = -(n. + b.x + c.y) 
1 ' 26. 1 1 1 

;([ 

where A is the area of the ~l~ment, 

3.3 



a. = x.y 
1 J m 

b. = y. 
1 J 

c. = xm 1 

-

x. y. 
1 1 

X. y. 
J J 

X m 

X m Yj 

Ym 

x. 
J 

and a.~ a etc. are found by cyclic permutation of i~ j~ m. 
J m 
The displacement column vector for the element is defined as a 

list of the displacement vectors for each node 

0. 
1 

6 = 6. 
J 

-
om 

so that from Equations 3.1 and 3.2, the element shape function~ 

N = [n. I, n . I~ n I] 
1 J m 

3.2.2 The strain matrix 

It is convenient, when dealing with 2-dimensional models~ not to 

use all 9 components of the strain tensor, defined generally by 

au ) + _q 

axp · 

where p,q run over 1 ~ 2, 3 corresponding to the x, y, z directions 

(see, for example, Jaeger and Cook, 1976; Malvern, 1969). 

Instead a 3-component column vector is defined, 
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3.4 

3.5a 

3.5b 

3.5c 

3.6 

3.7 

3.8 
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3.9· 

E is a function of position and, within a particular element, the strain 

matrix, B, is defined such that 

E = B 8. 

From Equations 3.2, 3.8 and 3.9 it can be seen that 

where 

B = (B . , B . , Sm ] 
1 J 

an. 
_1 

ax 
B. 

1 
= 0 

an. 
_1 

ay 

Using Equations 

b. 0 
1 

B = 0 c. 
2!1 1 

0 

an. 
1 

ay 

an. 
1 

ax 

3.3 and 3.5, Equation 3. 12 gives B explicitly as 

b. 0 b 0 
J m 

0 c. 0 em J 

c. b. c. b. em b 
1 1 J J m 

and so' for a given set of nodal displacements 6, the strain E (and 

the stress through Equation 3. 19) is constant over each element. 

3.2.3 The elasticity matrix 

When treating the stresses in a model, it is similarly convenient 

to reduce the stress tensor, given generally for an isotropic elastic 

material by 
., 
~ 

3.10 

3.11 

3.12 

3. 13 

3.14 
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(see e.g. ~~alvern, 1969·. Jaeger and Cook, 1976) where A., IJ are Lame's 
K elastic constants (IJ is equal to the shear modulus), o is the Kroenecker pq 

delta function defined by 

K 
opq 

K 
opq 

and where 

e = 

= 

= 0 

3 
2: 

r= l 

if p = q 

otherwise, 

to the column vector 

To find the relationship between ~and~. rewrite Equations 3.14 

in terms of the Poisson's ratio v and Young's modulus E of the material, 

using the relations (see Malvern, 1969; Jaeger and Cook, 1976) 

v= 
2(>.. + IJ) 

and E = IJ(3>.. + 2\J) 
(A. + IJ) 

and including any initial strains (E , E 
0

, E , y ) in the model xo y zo xyo 

3.15 

3.16 

prior to the application of any loads which give (see Zienkiewicz, 1971) 

3. l7a 

Ey = -~ OX + :l_y - ~ O Z + E O 
E E E ,, y 

3. l7b 

= 2(1 + v) 
E Txy + Y xyo · 3.17c 

The lithospheric structures to be studied are very much larger 

parallel to, than perpendicular to strike (in particular subduction zones 

continue for distances along strike very much larger than the arc-trench 

gap), so that it is valid to restrict the displacements of the model to 
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the plane of cross-section (x,y). To impose these conditions of plane 

strain, the total strain in the z-direction must be set to zero 

0 = cz = -~ax - ~ ay + .5!..z + cz o 
E E E 

or az = v(ax + a) - E cz o 3.18 

Substituting this expression for az' and inverting Equations 3. 17,_ 

a = D( E: - E: 0 ) 3.19 

which defines the elasticity matrix, D, given in the case of plane strain 

by 

v/ ( 1- v) 0 

D = 
E(l - v) v/ ( 1- v) 0 

( 1 + v)(l - 2v) (l-2v) 
0 0 2(1-v) 

The initial strain vector in E~uation 3.19 is defined differently 

from the total strain vector (Equation 3.9), because of the restriction 

3.20 

to plane strain. The calculations that give Equations 3.19 and 3.20 also 

yield 

+ 

-
EQ = + 3.21 

If there are initial stresses 00 (defined in the same way as 

in Equation 3. 15) in the body, then Equation 3.19 becomes the stress 

equation 

3.22 

Note that the stress required to restrict the model to plane strain 

is az, given separately by Equation 3.18, and this will always be the 

principal stress parallel to strike. 



3.3 The Stiffness Equation 

To derive the stiffness equation for the body, relating the nodal 

displacements to the applied forces, it is necessary to consider the 

energy of the system comprising the body and all external forces, at 

equi 1 i bri urn. 

The internal forces on the body are those due to its elastic 

properties, work done against which increases the body's total strain 

energy. 

Three types of external force are considered: firstly distributed 

loads p per unit volume, in particular those due to gravity; secondly, 

-loads q per unit area applied to the surface of the body, for example 

forces due to lithostatic pressure at its ends; and thirdly, any other 

forces R which may be applied to the nodes directly. 
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All forces may, in general, be functions of position within the model. 

If the system is at equilibrium, and an arbitrary, small displacement 

(66) is imposed on the nodes of the model, then the change in energy of the 

whole system must be zero, since the equilibrium position must necessarily 

be an energy minimum. That is to say 

6U - 6W = 0 3. 23 

where 6U is the increase in strain energy of the body and 6W is the work 

done on it by the external forces. 

The increase in strain energy of the model is· 

6U = J (6s)T a d3v 

v 
3.24 

where the integral is over the whole volume V of the body, and a superscript 

T denotes a matrix (or column vector) transpose. 

The work done by the external forces is 



49 

6W = (66)T R + J (6u)T p d3v + 

v 

where S is the surface of the model. 

From Equations 3. l and 3.10 

u = N o and 

(6u)T = (~6)T NT and 

and rewriting the stress equation, 3.22 

a = D B 6 - D so + oo 

E: = B 8 

(~s)T = (~;s)T BT, 

so Equations 3.23, 3.24 and 3.25 may be expanded to give 

3.25 

3.26a,b 

3.27 

0 = J (66)T BT DB 6 d3V - J (~6)T BT D ~ 0 d3V + J (~6)T BT o0 d3V 

v v v 

- ( ~8) T R - J (68)T NT ~ d3V - f (66)T NT q d2S. 3. 28 

v s 

In this equation, the matrices N, B, D and the column vectors 8 and 

(66) have been extended to cover the whole model. If there are M nodes 

then o, (66) and Rare [2Mxl], B is [3x2M] and N is [2x2M]. Dis still 

13 x 3J, and so and 00 are still [3 x 1], but all three are discontinuous 

functions of position (x,y) (as are Band N), having the values pertaining 

to the element containing the point (x,y) (see Zienkiewicz, 1971). 

Since it is an arbitrary displacement, Equation 3,28 holds for all 

values of (66), and so (66)T~may be cancelled out. 

Rearranging Equation 3.28 accordingly 

( I BT DB d3V) 0 = R + J NT p d3V + f NT q d2S + J BT D - d3V so 
v v s v 

J 
T -B a 0 d3V 

v 
3.29 



All these quantities have the dimensions of force, and 3.29 may 

thus be rewritten as the stiffness equation 

K 8 = F 

where, by definition, the stiffness matrix, 

K = (f BT DB d3V) 
v 

and the total force vector, 

with 

Fp = f NT p d3V 

v 

= = 
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3.30 

3.31 

3.32 

3. 33a, b 

3.33c,d 

the force vectors due to the volume loads, surface loads, initial strains 

and initial stresses, respectively. 

Note that different approaches to the derivation of Equation 3.30 

can lead to differences in sign used in the defining equations, 3.33 

(cf. Zienkiewicz, 1971; Dean, 1973; Kusznir, 1976; Woodward, 1976; Hinton 

and Owen, 1977). 

When plane strain, 3-noded triangular elements are used, the integrals 

in Equations 3.31 and 3.33 need not often be solved explicitly. For 

instance, Equation 3.31 applied to a single element e becomes 

Ke = z t, BT DB 

since B and D are constant over e, where z is the thickness of the 

3.34 

model perpendicular to the x,y plane (usually set to unity and neglected, 

since it appears as a factor in all the Equations 3.33 and 3.31, and 

therefore is cance 11 ed out in' Equation 3. 30), and ~:~ is the area of the 

triangle as defined in Section 3.2.1. 
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The global stiffness matrix, K, of Equation 3.31, is then formed by 

summing the terms from all the element stiffness matrices, Ke, according 

to the nodes which they relate (Zienkiewicz, 1971). 

3.4 Visco-elastic analysis 

The rheological model used for the lithosphere is that of a Maxwell 

substance (Jaeger and Cook, 1976), which deforms elasticallyaccordingto its 

Young's modulus E and Poisson's ratio v, as described by Equations 3. 17, 

and then relaxes at a rate depending on its (dynamic) viscosity n until 

there are no remaining deviatoric stresses. The deviatoric stresses 

approach zero exponentially with a time constant tm' called the Maxwell 

time, where 

tm = 2n/E 

The strain rate for a Maxwell substance is 

(1 + v) ., 
Gpq 

E 

1 1 +- 0 
2n pq 

(Housner and Vreeland, 1966; Malvern, 1969; Zienkiewicz et al., 1968), 

where o~q is the deviatoric stress tensor 

I OK 
Gpq = Gpq - pq Gh 

with 1 
0 h =- l: 0 rr ' 

3 r 

the hydrostatic stress. 

3.35 

3.36 

3.37a 

3.37b 

The last term in Equation 3.36 is the viscous creep rate, which may 

be expressed in column vecto~ form (see Equations 3.9 and 3. i5) as 

.t. - 1 ( 0~ ) E: - - 0 
c 2n Y 

. 2Txy 

3.38a 

1 
with E:zc = 

2n 
3.38b 

.. 



szc is not necessarily zero, despite the restriction to plane 

strain, as long as the total strain in the z-direction is zero, i.e. 

using Equation 3.36, if 

-a~=_ (1 + v) ., 
az 

2n E 
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3.39 

These creep rates are integrated up to a given time T, and incorporated 

as an initial strain vector (tquation 3.21), 

3.40 

-
into the stiffness Equation 3.30, through a term FEoc' defined as in 

Equation 3.33c. 

Solving the stiffness equation then gives ~(T), the total displacement 

at timeT, including both elastic an.d creep components. 

The integration of Equations 3.38 to Equations 3.40 is performed by 

dividing the total time T into time increments, length t, and iterating 

to find the creep for each increment, as follows: 

a) At the beginning t 1 of each time increment, the stiffness 

equation is solved to find the displacement, and hence the stress 

o(t 1 ). This stress is used to calculate a creep rate, using Equations 

3.38. 

b) Assuming the creep rate is constant throughout the increment, it 

is integrated to find the creep for the increment, i.e. 

E:c(t 1 + t) ~ E:c(t 1 ) = ~c(t 1 + t/2) x t 

and this is added into the initial strain vector, according to 

Equation 3.40. 

c) The stiffness equation is solved again, to find the stress at 

the end of the increment, o(t 1 + t). 

3.41 
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d) Using the average value of deviatoric stress for the time increment 
·;r 

CJ I = 2_ ( CJ I ( t 1 + t) + CJ I ( t 1 ) ) ' 3 • 42 av 2 

the creep rate for the increment, E\(t 1 + t/2), is re-evaluated 

and steps (b) to (d) are repeated, until the values for o(t 1 + t) 

on successive iterations converge to within a specified tolerance. 

e) The whole process is repeated from t 1 = 0 until t 1 = T- t, to 

give the displacements and stress system at time T, as required. 

The iterations for a particular time increment will only converge 

if the creep is not too large compared to the elastic displacement. 

Thus the incremental time mu~~t be of the same order of magnitude as the 

Maxwell time, tm' or smaller. So, using Equation 3.35, 

2n t .( 
E 

for every element of the model. 

The number of iterations necessary depends on t and on the 

complexity of the model, but for any model, as the elastic stresses are 

relaxed, fewer iterations are needed, so that if a model is to be run 

for a long time on the computer, the processing time for each increment 

becomes less, making it feasible to study models over reasonably long 

geological times. 

3.5 Boundary Conditions and Loads 

The internal boundary conditions between regions with different 

physical properties in a finite element model are the same as those 

between any two adjacent elements, which depend on the shape function 

3.43 

for the type of element used. The linear shape function chosen means that 

the displacements a in the elements are continuous across the boundary, 

which ensures displacement continuity throughout the model. 
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However the boundary enclosing the whole model is initially free, 

and boundary conditions may be imposed on it, either by fixing the 

displacement of boundary nodes or by externally applied forces. The latter 

may act, not only on the boundaries but also throughout the model, as 

a result of distributed loads, for example due to the body's density 

under the force of gravity. 

3.5. 1 Applied forces 

Loads, both on the surface and distributed throughout the body, are 

applied by adding terms of the form given in Equations 3.33a and 3.33b 

to the total force vector in the stiffness equation (3.30). 

The most commonly used distributed load or body force, is that due 

to gravity, in which case, using the previous notation, for a particular 

element e 

p = (J 3.44 

where g is the gravitational field strength and p is the material density 

for the element. 

Using Equation 3.33a 

Fp J NT p z dx dy 

e 

+b.x +c.y 
1 1 

0 3.45 
a. + b. x 

1 1 

where FPix' FPiy are the x and y components of the part of Fp relating to 

node i, and where the thickness of the element z, has been set to unity. 

If coordinates are used with origin at the centroid of e, then 
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f x dx dy f y dx dy = 0 J dx dy = /:, 3.46a,b 

e e 

and 
2;:, a. --

1 3 
3.46c 

(see Zienkiewicz, 1971' p. 50) ' so that Equation 3.45 becomes 

Fp. = 0 
1X ,;· 

Fp· 
1 

=- /:, p g 
1Y 3 

3.47 

-
and the same expressions are found for Fpj and Fpm· In other words, one 

third of the weight of the element is applied at each of its nodes, and 

this result holds for all 3-noded triangular elements irrespective of the 

coordinate origin used. 

Similarly, if a uniform surface load, q per unit area, is applied 

to the boundary of an element between nodes i and j, half of the total 

force on the boundary is applied at each node, i.e. 

Fq. 
1 X 

X.) 
1 

3.48 

and these equations are valid for all angles of the surface to the axes. 

Both these pairs of equations (3.47 and 3.48) could have been reached 

without integration, but the application of a varying load~ for example 

lithostatic pressure on the end of a model, is more complicated. 

Consider the element shown overleaf, with 

q = p g y 3.49 

applied along the surface x = 0 (as a simplification) between yi and yj. 

Equation 3.33b with the restriction to x = 0, and with z = 1 gives the 

force on node i as 

-
F q. 

1 

= 
2t:, 

Y; 

0 ) (pgy) dy 

a. + c.y 0 
1 1 

3.50 
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_P_:::9.::_Y ----'pi ( 0 , y ) 

3.51 

For the simple triangle shown, Equations 3.4 and 3.5 give 

a. = -x y. 
1 m J 

3.52a,b 

and 211 = X (y. - y.) . 
m 1 J 

3.52c 

If Equations 3.52 are substituted into equation 3.51, factorisation and 

cancellation yield the result 

3. 53a 

and an identical calculation gives 

F (y - y ) ( y. + 2y ) = pg J 1 • 1 J 
qjx 2 3 

3.53b 

all other components of F q for this element being zero. 

The force applied at node i is thus equa 1 to the lithostatic 

pressure at a depth 1/3 of the way between i and j (and at node j, 2/3 of 

the way), times half the area of the boundary. 

Note that the sum 
1 

F + F = zP g (y~ - y?) 
qix qjx J ~J· 1 

which is the total force on the boundary predicted by integrating pgy 

along it. 

3.54 

If a similar calculation is performed for an element with a sloping 

face (i.e. x. f x.) the same equation (3.53a) for F results, but there 
1 J qix 
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is also a force in they-direction given by 

= - pg J 1 • J 1 F 
( 

X . - X. ) ( y . + 2y . ) 
qiy 2 3 

3.55 

and similarly for F , since the force q acts perpendicularly to the 
qjy 

boundary. 

3.5.2 Fixed displacements 

A finite element model must be restrained in order to obtain a 

unique solution to the stiffness equation (3.30) 

Ko = F 3.30 

The effect of having an unrestrained model, mathematically, is 

to make the stiffness matrix, K, singular and, in order to prevent this, 

the model must be held in some way that involves altering K. At least 

one node must be fixed in the x-direction and at least one in y to 

prevent translations of the whole body, and in addition these two nodes 

must not be the same or else the model would be able to rotate freely. 

To fix one displacement component of one node, say os' the 

equation relating to it in the set of equations represented by 3.30, 

namely 

2M 
E Ks r or = F s 

r = 1 

where M is the number of.nodes in the model, must be replaced by one of 

the form 

0 = 0 * s s 

where os* is the value at which os is to be fixed. 

All the components of K in the row relating to os are set to zero 

except for the diagonal term K , which is set at a constant value of ss 

the same order of magnitude as the other terms in K (to maintain its 

3.56 

3.57 



stability for the inversion subroutine), and the relevant component of 

the force vector is replaced by this constant multiplied by 6s*: 

r = 1, 2M , r f. s 

Kss = 1012 

and F s = l01 2 x6 *. s 

Thus Equation 3.56 has been replaced by 

K o = F ss s s 
or 10 12 X 6 = 10 12 6 * s s 

as required by Equation 3.57. 
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3.58a 

3.58b 

3. 58c 

3.59 

As a simple illustration, consider a [3 x 3] matrix Kin an equation 

.similar to 3.30 (although this could not refer to a model where each node 

has 2 degrees of freedom, £ = 2, in Section 3.2. 1) where the component 62 

is to be set at 62*. Then is Equation 3.30 is initially 

C'' 
K12 

K")(") (;:) K21 K22 K23 62 = 

K 31 K32 K3 3 6 3 

3.60 

after fixing 6 2 it becomes 

Kll K12 Kl3 ~~) (l:>J 0 1012 0 62 = 

K31 K32 K33 3 

3.61 

3.6 Testing the Method 

To test the finite element program and to investigate some of the 

effects of visco-elastic modelling, a comparison was made with an 

analytical solution by Lee et al. (1959; see also Zienkiewicz et al., 1968). 

In their paper they derive an expression for the stresses in an infinite 

hollow cylinder of visco-elastic material (obeying the linear strain-rate 

Equation 3.36) encased in a thin elastic shell, due to an applied pressure 
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at the centre. 

The parameters used for the visco-elastic cylinder are: 

inner radius r. = 2" 
1 

outer radius ro = 4" 

Poisson's ratio \) = l/3 

Young's modulus E = 105 psi 

viscosity n = 3/8 X 105 psi (time units) 

and for the elastic shell, taken to be steel: 

thickness h = 4/33" 

Poisson's ratio vs = l/ ;rr 

Young's modulus Es = 3 X 107 psi 

These units were originally chosen to simplify the calculations of 

Lee et al., but the solution, obtained using the Laplace transform method, 

is independent of units so that all length and stress units may be scaled 

without altering the result. 

The maximum and minimum principal stresses are in the plane of a 

cross-section through the cylinder and are oriented radially and 

tangentially. The radial stress within 

function of time, t, and distance from 

ar(r,t) = -p ( f( t) + r& g ( t) ) 
r2 

and the tangential stress is 

where 

f and 

this 

a (r,t) = -p (f(t) 
8 

p is the pressure 

r2 
- 0 

r2 
g ( t) ) 

applied inside 

g are functions dependent on the 

case by 

f(t) = 1 - 0. 005363 exp( -0.9849 t) 

g(t) = 0.001341 exp(-0.9849t) 

the visco-elastic materia 1 is a 

the centre, r, 

3.62a 

3.62b 

the cylinder from time t = 0, and 

material properties, and given in 

0.6331 exp(-0.3528 t) 3.63a 

0.1583 exp(-0.3528t) 3.63b 



to 4 significant figures. 

Equations 3.62 and 3.63 show that the tangential stress is always 

greater (more tensional) than the radial, but that they approach each 
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other with distance from the centre. In addition, the stresses approach 

a hydrostatic state with or = a
8 

= -p, as t becomes large. 

The finite element grid used is shown in Fig. 3. 1. Only a quadrant 

of the cylinder is modelled, since by constraining the ends only to move 

radially they become planes of symmetry, a fact which was confirmed by 

the lack of edge effects near the ends of the model. In all cases, the 

stresses at a particular radius varied by at most 1% over the whole model. 

The radial and tangential stresses from the finite element program 

for various different times are shown in Fig. 3.2 together with those 

calculated from Equations 3.62 and 3.63, all as fractions of the applied 

pressure, p. 

The finite element stresses are obtained by averaging the stresses in 

adjacent elements (e.g. 30 and 31, or 28 and 29 of Fig. 3. 1) and taking 

these as the stresses at the centre of the pair. It is necessary to take 

the mean stresses because the method assumes the stress within each 

element to be constant, which introduces errors particularly in regions 

where there is a high stress gradient. 

The model stresses (Fig. 3.2) match the analytical stresses well, the 

largest errors being about 0.02 in (o
8
/p) and 0.005 in 0r/p). The greatest 

errors occur in the solutions for short times, and close to the centre 

(small r). Two reasons for this are; that the stress gradient is higher 

for smaller r, so that the discretization of the stresses is more important, 

and secondly that boundary effects, due to the pressure being applied at 

the inner nodes, are greater. These effects are both reduced as the model 

relaxes. 
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The orientation of the principal stresses provides a further 

check on the model. The angles of the stresses in all the elements are 

correct to within 1°, on the elastic model, an error which is reduced 

to less than 0.5° by averaging as described earlier. 
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As the stresses become closer to a hydrostatic state the errors in 

the angles increase, so that fort= 10 time units, the angles are only 

radial to within 5°, reduced to 2° by averaging. This is easily understood, 

since if all the deviatoric stresses were relaxed, the stress would be 

uniform in all directions, and so there would be no particular orientation 

for the principal stresses. In such a case the program sets the angle, 

arbitrarily, at 45°. 



CHAPTER 4 

BODY FORCES IN FINITE ELEMENT MODELS 

4.1 Introduction 

An important problem encountered when using the finite element 

method to model the Earth's crust or lithosphere, is how to take into 

account realistically the effect of weight on the stress distribution. 

If a section of lithosphere had had no stress acting on it other 

than that due to gravity, over a period significantly longer than the 

Maxwell time, 

(Equation 3.35) 

then there would be no deviatoric stresses remaining within it. Taking 

the definition of Jaeger and Cook (1976), such a stress system, where 

the principal stresses, o 1 and o 3 (assumed to be in the plane of the 

model), are equal throughout, is called a "hydrostatic" distribution. 

In addition, if the model is composed of uniform horizontal layers of 

thickness h£ and density p£, the principal stresses at a point P are 

= -

where g is the gravitational field strength and the summation is over 

all the layers above P. This type of stress system (again following 
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4. 1 

Jaeger and Cook's definition) is called a "lithostatic" distribution, and 

is the same as that described by Anderson (1942) as the "standard state", 

on which any stresses due to externally applied forces are superimposed. 

Two difficulties arise. Firstly, a lithostatic stress distribution 

cannot be attained in an elastic model (as discussed in Sections 4.2.1 

and 4.2.2, below), and secondly, if there are lateral variations in 
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density, the differences in the distributed loads (due to the weight 

of the rocks) may cause significant deviatoric stresses, which must be 

included in any model (see Sections 4.3 and 4.5). 

In this chapter a method of modelling the stresses due to those 

body forces is put forward (Section 4.4), and applied to the particular 

example of a passive continental margin (Section 4.5). 

4.2 A Laterally Uniform, Layered Model 

4.2.1 The effect of fixing the sides of the model 

In general the elastic stress distribution due to body forces in 

a model is not lithostatic, even in the case of a model with uniform 

horizontal layers such as that in Fig. 4.1. 

Two reasons for this difference are the restrictions imposed on 

the model by holding the ends fixed, and by confining it to plane strain. 

To find the effect of these restrictions, consider the model of 

Fig. 4.1. The elasticity equation (Equation 3.19) is 

a = D(€ - E: 0 ) 

Assuming that there are no initial strains, 

E: 0 = 0, 

and invoking the symmetry of the model to show that 

Y : 0, T = Q, xy xy 

in other words that ax' ay are the principal stresses 

al = crx } 

03 = 0 
. y 

the elasticity equation (4.2), becomes 

4.2 

4.3 



LA YER HODEL 0 J 

0 r-~- ------·-·-- .. -__________ X_t__<I(j)MEl'~ - ···-------------·-····-- 140 

I ~ 
I 

l 
~ l ___________ · ___ · --------------~----------------_j 

---------·------.. ---·--.---····--··-·---------------. 

Fig. 4.1: A simple, uniform layer model of the lithosphere. 

I 
I 
r 

·j 
I 

I 

I 

J 
----·--·---------·-·-······----·-······--·--·-·······------·--···--····-----------··-----~ 

LA YER HODEL (2J J 

X i r.ILOHETRES 0 0 140 ··-·-··--·---··-·····-------------·-······-·---····-----·--·-··----------l 

I -
I 
I 

! 
i 
t 

~ I i 
)- ! . i 

,---· ·--. ------~ --·-----···-·· --···--. ···-········-··-- ... ·-········· ·-····- ..... ··-·· ·-·-·--·---! 
.I . i . . I 

I I 

l e1- e\- f I 
. . I 

60 ......... -. --·-----------·------ ._ .... ·-·-· _, ____ ·- -·-·-··--·-·-- ····--· .. -·--·----·---- .. ---- -····- _________ _j 

' I 
i 

--. ·------··-·· ........................ _., ··-----------------------------.. ·----...... ______ ... - -·····-·-···------------_j 

Fig. 4.2: Illustration of the subtracti.on of a uniform density p (see text). 

i 
1 



Now, since the sides of the model in Fig. 4. 1 are held and all 

the 1 ayers have uniform density in x, all the x-disolacements are 

·negligible 

i.e. Ex << E everywhere. y 

Thus, from Equation 4.4, 

v 

o 3 (1 - v) 

and the only degrees of freedom remaining are t: for each element, or 
y 

equivalently oy for each node. 

If, therefore, the model in Fig. 4.1 is analysed by an elastic 

finite element method, the resultant stresses are, for each element 

( Equation 4. 1 ) 

(Equation 4.5) 
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4.4 

4.5 

If the element is in a layer with a Poisson's ratio of 0.25, ~orresponding 

in terms of the Lame constants, to A= w; see Ch. 3, E~uation 3.16), 

Equation 4.5 gives 

4.6 

and the principal stresses are both compressions, equal to the lithostatic 

pressure, vertically, and 1/3 as large, horizontally. 

The principal deviatoric stresses arising from this distribution 

are defined by 

01 = 01 - (o1 + 02 + 0 3) 

3 

and 03 
I 

= 03 -
(ol + oz + 0 3) 

3 
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which, in a 2-dimensional analysis, are commonly reduced to the 

definitions 

4.7 

and 

Using Equations 4.6 and 4.7 

4.8 

These equations (4.8) represent deviatoric stresses of a compression 

equal to l/3 of the total lithostatic pressure vertically, with a tension 

of equal magnitude horizontally. 

Given that the lithostatic pressure at the base of a 40 km thick 

crust of average density 2800 kg m-3 is about 1 GPa (or 10 kbar), this 

effect would swamp any deviatoric stresses due to applied loads on a 

lithospheric model of this type. 

It is important to note that this is not an edge effect, in the 

sense that increasing the length of the model (in x) does not alter 

the stress distribution. 

4.2.2 Stress boundary conditions 

Service and Douglas (1973) suggest that the ends of a model 

should be held in place by applying suitable horizontal forces at the 

nodes on the sides. These forces would represent the forces exerted by 

the lithosphere on either side of the model, but would not necessarily 

be equivalent to the forces exerted, lithostatically, by an equal 

thickness of rock. 

Finding the right va 1 ues for these forces is very difficult. The 



number of nodes in a model makes them impractical to calculate, and 

trial and error methods show the model to be very sensitive to the 

forces used. For example, if an attempt is made to hold the base with 

forces, rather than fixed displacements (see Ch. 3, Section 3.5), on a 

more complicated model (such as one of those inCh. 6), even after 

several trials the displacements of the basal nodes are still up to 

~100m, and vary considerably from node to node. 
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If the sides of the model are held motionless in the x-direction 

by forces, the same argument as in Section 4,2.1 applies, and although 

the sides of the model can move if loads are then applied to it, the 

stresses due to these loads are still obscured by the elastic deviatoric 

stresses due to the model's weight. 

A second type of stress boundary condition might be one which 

created a lithostatic stress system in the ~odel on which a further 

stress distribution would be superimposed. However, as Anderson (1942) 

states (on p. 141), the standard state cannot be produced in a model 

restricted to plane strain. If lithostatic stresses are applied to the 

sides of a uniform model (or to one side, with the other fixed as an 

axis of symmetry), the elastic stress system depends strongly on the 

value of Poisson's ratio assigned to it, and will only be lithostatic for 

the case v = 0.5, compared to the usual values for rocks of about 0.3. 

Note that, although materials with v = 0.5 cannot be modelled by the 

finite element formulation of Chapter 3 (see Equation 3.20), models 

with (0.5 - v) = lo-s show stress systems with negligible deviatoric 

stresses. 

The deviatoric stresses are increased if there are any property 

contrasts within the body (even in the form of uniform horizontal layers), 

and are typically of the order of 0.1 GPa (1 kbar), a figure which cannot 
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be negl~cted in most cases. 

4.2.3 Subtraction of a uniform density 

It has been suggested (Kusznir, 1976) that in order to see the 

deviatoric stresses due to applied loads more clearly, a uniform density 

should be subtracted from all the densities in a layered model. Thus, 

for instance, the densities in Fig. 4.2 might be replaced by (p 1 - p) 

and (p 3 - p) respectively, where p = (p 1 + p3 )/2. The justification 

for this is that the stiffness equation (see Equation 3.30), 
- -Ko = F 

is linear, so that any stress systems may be superimposed. It is then 

assumed that the resultant deviatoric stresses represent those that 

4.9 

exist in the lithosphere, since a uniform density distribution, implicitly 

assumed to give a lithostatic stress distribution, has been subtracted. 

Now the density above the Moho is negative and that below is positive 

so, on an elastic solution of the constitutive equation (4.9), large 

vertical deviatoric tensions appear near the Moho. 

These tensions arise because the stress distribution subtracted 

was not lithostatic, but the elastic stress distribution due to the 

application of body forces, as described in Section 4.2.1. There are 

large ve~tical deviatoric tensions at the base of the crust and small 

vertical compressions at the top of the mantle, because a much (c. 3 

times) larger compression has been subtracted from the vertical than from 

the horizontal stresses. If no loads, other than those due to gravity, 

were applied, then the ratio of the two principal stresses throughout 

the body would remain at v: (1 - v) (or about 1 :3), which would still 

mask the deviatoric stresses due to any loads then applied. 

The resulting stres~ system is entirely dependent on the value of 
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p arbitrarily subtracted from the model densities and is thus purely an 

artefact of the method used. 

4.2.4 Density stripping 

Instead of subtracting a uniform density from the whole model 

to reveal the deviatoric stresses, densities may be subtracted in 

uniform horizontal layers (Bott and Dean, 1972; Dean, 1973; Kusznir, 1976). 

This is more satisfactory for a model such as those in Figs. 4.1 and 4.2, 

since it would reduce either model to a zero density throughout, and 

would therefore not introduce any misleading stress systems. Loads 

could be applied to the model without the superposition of any body 

forces, and if the total (rather than deviatoric) stress system were 

required, a lithostatic distribution, based on the densities subtracted, 

could be added to that calculated. 

The latter result could not be derived directly from a solution 

of Equation 4.9, for the reasons described in Sections 4.2. 1 and 4.2.2 

but would give a realistic distribution, if the lithosphere has had 

time to relax to a lithostatic stress system, before the loads were 

applied. If this is to be the case, the lithosphere would have to be 

significantly older than the Maxwell time, 2n/E, as described in Section 

4.1. 

4.3 Models with Lateral Density Variations 

4.3.1 Density stripping 

The density stripping method, described in Section 4.2.4 above, is 

not so successful if there are lateral density changes within any of the 

layers. As an illustration of this point, the model shown in Fig. 4.3 
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was analysed both elastically and visco-elastically, with material 

properties as shown in Table 4.1 (see Ch. 2) and using a grid as 

shown in Fig. 4.4. 

Material number 1 2 3 4 

Density /kg m- 3 2800 3300 3300 2800 

Young's Modulus/GPa 90 170 170 90 

Poisson's ratio 0.266 0.260 0.260 0.266 

Viscosity/N s m-2 1025 1023 102 3 1025 

Table 4.1: Visco-elastic parameters used in the models of Section 4.3 

(see Fig. 4. 3) . 
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If this model is analysed elastically with the full densities as 

above, the resulting principal stresses are as shown in Fig. 4.5. 

Although some of the stress vectors have rotated due to the effect of 

the density change in the middle layer, the overall stress distribution 

is of the type described in Section 4.2.1, with the vertical stress 

being approximately equal to the lithostatic pressure and the horizontal 

being a factor of (v/(1 - v)) smaller. 

Figures 4.6 and 4.7 show the result of density stripping. In Fig. 4.6, 

a density of 2800 kg m-3 has been subtracted from the top and middle 

layers, and 3300 kg m-3 from the bottom layer, the only non-zero density 

remaining being p 2 = 500 kg m- 3, while in Fig. 4.7 3300 kg m-3 has been 

subtracted from the middle, so that the only non-zero density is 

p,, :: -500 kg m-·l. 

The differences between these two models are immediately obvious. 
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In Fig. 4.6, the only significant stresses are in the left half of 

the model and are compressive, while in Fig. 4.7 the largest stresses 

are to the right and are tensile. 
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If the lithostatic stress distributions, due to the density layers 

subtracted from each model, are added to their respective stripped 

stress systems (Figs. 4.6 and 4.7), the resulting stresses (see Figs. 

4.8 and 4.9) are the same to within, at most, 5%. In this respect the 

two different models may be said to be different ways of representing 

the same relative stress distribution. However, this is only a 

qualitative comparison, and quantitatively there are important differences. 

Firstly, although the magnitudes (and signs) of the stresses in 

Figs. 4.8 and 4.9 are so similar, this is only because the deviatoric 

stresses in each model are so much smaller (< 5%) than their hydrostatic 

values, but the angles of the resultant stresses (which depend on 

the d~viatoric stresses only) differ significantly. 

Secondly, the strains calculated depend on the stresses without 

the addition of any lithostatic distribution, and if these two models 

(Figs. 4:6 and 4.7) are taken to represent the same relative stress 

distribution, then a choice must be made between the strains shown in 

Figs. 4.10 and 4.11 to decide which represents the actual strains in 

the lithosphere. 

In a model representing a real cross-section of the lithosphere, 

this choice would be made according to which model seemed geologically 

the more feasible, but this model was chosen to show that the choice 

would necessarily be subjective, whatever the model. 
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4.3.2 Further considerations 

The principal reason for the difficulties discussed so far in 

this chapter, has been that the effects of the body forces have been 

examined using elastic models. This method of analysis causes two 

further problems, one in trying to attain some sort of lithostatic 

starting model, and the other in the size of the displacements and 

strains that it gives. 

The finite viscosity of the crust means that a simple layered 

model, such as in Fig. 4.1, gives a stress system which will relax 

visco-elastically to a lithostatic distribution, if it is left for a 
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time significantly greater than the Maxwell relaxation time (see Equation 

3.35) 

tm = 2n/E 

which, setting 

n ~ 1025 N s m- 2 

and E ~ 10 1 1 Pa 

gives 

tm~ 6 Myr. 

Hence tm is smaller than the age of many geological structures, 

and this is the justification for using density stripping in cases 

where loads are applied to a simple layered model' as suggested in 

Section 4.2.4. However, in cases where there are lateral changes in 

density, there remain deviatoric stresses due to density changes which 

make an important contribution to the final stress system. These stresses 

must therefore be calculated, and included in the final analysis when 

other loads are applied, rather than simply adding in lithostatic stresses. 

The second problem is related to the displacements given by an 

elastic solution. If full densities are used, these displacements can 
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be quite large (typically 300m) compared to the size of the elements 

used, an effect which is enhanced when the materials involved have low 

values forE, their Young's modulus. Together with the resulting stress 

pattern, they represent the effect of compaction that would occur if 

gravity were instantaneously applied to a model of the shape and 

composition given. 

An objection to this is that the geological structure being 

modelled has the dimensions of the initial model, and not those of the 

displaced result, so that the shape of the resultant surface is not 

that observed. This can be very important, because topography is one of 

the most easily obtained sets of data for a geological feature, 

particularly in the regions relevant to this study (see Ch. 1, Section 1.2) . 

. Rates of change of depth can also be found (for example, from the 

D.S.D.P. data, described in Ch.l, Section 1.3), so that a direct 

comparison between the calculated and observed displacements of the 

section's surface would be a useful check on the analysis. 

Any alternative method of modelling geological structures must 

take this into account, and provide means to allow realistically for 

the stresses supporting the model's weight. 

4.4 A Methodforinitializing Models 

4.4.1 The object of the method 

To avoid the difficulties discussed in Sections 4.1 to 4.3 of 

this Chapter, a new method has been developed for dealing with body 

forces in a finite element model. 

The basis of the method is the derivation of a hypothetical starting 

model, which, when allowed to relax visco-elastically for a given time, 



will deform to the required initial model of the lithosphere, based 

on observation. 

The starting model achieved is a mathematical convenience, and 

its shape may bear little or no resemblance to the real lithosphere, 

because the method applies gravity to a complete lithospheric model, 

while in reality the crust is formed gradually, with gravity acting 

throughout the process, and material properties vary during the 

period of formation. 
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However, if the crust were elastic, then the elastic displacements 

between the starting model and the required model would represent the 

compaction of the rocks under the force of gravity, assuming them to be 

formed instantaneously and in the absence of any other applied loads or 

tectonic stresses. 

Similarly, when the starting model relaxes visco-elastically to 

the required model in a time equal to the age of the latter, then the 

displacements represent a broad averaging of all effects, e.g. 

compaction, sedimentation and erosion, over its lifetime. 

The stresses formed in the initialized model are those stresses 

that are necessary to support the model's density distribution at its 

particular age, assuming that it behaves visco-elastically. 

4.4.2 The method 

The method used involves repeated solutions of the elastic or 

visco-elastic displacements, using the finite element methods described 

in Chapter 3. On each successive solution the model is modified 

according to the displacements of the previous solution, until the 

displaced model shape is the required initial model. 

Let one co-ordinate of one node within the model, at the beginning 



of the nth solution, be xn' and the displacement, after the nth 

solution, in that degree of freedom be on. x0 is set as the required 

co-ordinate for the observed model. 

The process begins with the zeroth solution that displaces x0 to 

(x0 + o0 ) and continues as illustrated in Fig. 4.12, below: 

x0 in solution 0 gives oo 

set x1 = x0 - o0 

x1 in ~elution 1. gives 6 1 

XI-----

set x2 = xl ( (XI + 61) 

= Xo OJ 

x2 in solution 2 gives 62 
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- xo) 

set x3 = x2 + (xo - (x2 + 62)) 

xo----------- ----

Xo + 6o---

Figure 4.12: Illustration of 

the model initialization process. 

and so on, until solution (n-1) 

gives 8 , then n-1 

X = Xo - 8 n n-1 

and if the solutions converge 

I ( xn + 6 n) - x0 I -+ 0, as n, 

the number of the solution, 

increases. 

When convergence has been achieved to within the required tolerance, 

the co-ordinates xn are usedfor th~ initial model and the stresses 

-an are used as the starting stresses for finding the visco-elastic 

response to any further applied loads. Note that the combination, 
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achieved by this method, of the initial stress system and that due to 

the additional forces is non-linear for visco-elastic models. 

4.4.3 Examples 

The results of applying the initialization process to the layer 

model (Fig. 4.1 with p 1 = 2800 kg m-3, p 2 = p 3 = 3300 kg m-3) and to 

the model, with lateral density variation, of Section 4.3.1 (Fig. 4.3), 

both using the grid of Fig. 4.4, are shown in Figs. 4.13 and 4.14 

respectively. These two diagrams show the stress patterns due to weight 

in the models, after they have been allowed to relax for 10 Myr, which 

would be superimposed on any stresses caused by other forces applied 

to lithosphere of that age. 

In the layer model (Fig. 4.13) the deviatoric stresses in the 

mantle have been relaxed entirely, while in the crust there is a 

laterally uniform remanent deviatoric stress system. The magnitudes of 

the stresses in the mantle differ positively and negatively from those 

expected lithostatically by about 10%, due to the coarse grid used, but 

if the stresses in pairs of elements (e.g. 5 and 6, or 11 and 12 in 

Fig. 4.4) are averaged, they give the correct lithostatic value at the 

centre of the pair to within 0.5% (an effect which is discussed in 

Chapter 3, Section 3.6). 

The Maxwell times (see Section 3.4) are, for the mantle 

tm = 2nm "' 4 x 104 yr 
m 

and for theEmcrust 

c 2n t = ~ "' 7 x 106 yr 
m E 

c 

so that 10 Myr is significantly greater than t~ but of the same order as 

tc. Thus the stresses .in Fig. 4.13 are as expected, the only remaining 
m 
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deviatoric stresses being in the crust. 

A comparison of Fig. 4.13 with 4.14 shows clearly the effect of a 

lateral density contrast in one layer. The viscous spreading of the 

portion of mantle above 40 km depth, under its weight, has pushed the 

stiffer, lighter crust to the right, increasing the horizontal compression 

in the crust to the right of the step in the Moho, and therefore reducing 

the near-horizontal deviatoric tensions (seen in Fig. 4.13) in the 

thicker crustal section. At the same time, the deviatoric tensions in 

the thinner crust to the left of the step are increased. There are no 

deviatoric stresses remaining in the mantle, as before, but the lateral 

change in viscosity and density has caused some variation from the 

lithostatic distribution. 

The stress pattern shown in Fig. 4.14 is very different from those 

given by elastic analysis using density stripping (see Figs. 4.6 to 4.9) 

and is taken to be more realistic (if such a model existed) since a 

visco-elastic model is closer to the rheologies postulated for the 

lithosphere than an elastic one. 

4.5 Body Forces at Passive Margins 

4.5.1 Elastic Models 

Several of the points discussed in this chapter are illustrated 

by analysis of an Atlantic-type, or passive, continental margin. Bott 

and Dean (1972; Dean, 1973) have made a study of this type of margin 

using an elastic finite element model, with an oceanic density distribution 

subtracted (density stripping as described in Sections 4.2.4 and 4.3.1), 

and a simplified copy of their model is shown in Figs. 4.15 and 4.16. 

The elastic properties used here are as before (Section 4.3. 1, Table 4.1) 
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vc = 0.266 

vm = 0.260 

E -· c 9.0 X 1010 Pa 

Em = 1.7xlOll Pa 

where the subscripts c and m refer to crust and mantle respectively. 

The densities are chosen so that, for the model dimensions shown, the 

margin is in isostatic equilibrium, i.e. the lithostatic oressure at 

35 km depth, the base of the continental crust, would be the same on 

either side of the margin. This gives 

= 2922 kg m-3 Pc 

if Pm = 3300 kg m-3. 

Fig. 4.17 shows the result of an elastic analysis of the model 

with stripped densities (see Fig. 4.16) of 

P1 = 1892 kg m-3 

P3 = -378 kg m-3 

P2 = P4 = 0 

(the density of sea water, Pw = 1030 kg m-3, having been subtracted 

from p 1), and with both ends fixed in the x-direction. This model 

corresponds to that used by Bott and Dean (1972) and gives similar 

results both qualitatively and quantitatively, any difference being 

due to the different crustal densities used. The resulting stress 

distribution is the elastic response to the variation in density load 

across the continental margin. 
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An alternative elastic solution is shown in Fig. 4.18, with only the 

right (continental) end of the model held, which gives a better 

approximation to the boundary conditions on the oceanic side of the 

margin, transmitted through the lithosphere from a spreading centre. 

This boundary condition releases the restriction on the horizontal 
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stresses which forced them to be approximately v/(1 - v) times the 

vertical stresses, according to Section 4.2.1 (although there were 

some horizontal displacements in Fig. 4.17 so that the rule was not 

obeyed exactly, particularly beneath the oceanic crust). Thus in Fig. 

4.18 all the horizontal stresses are more tensional, but the stress 

pattern is not significantly altered otherwise. 

The greatest values of the maximum shear stress, shown plotted 
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against depth in Fig. 4.19, 

= (ol - o3) 
'm 4.10 

2 

(see Chapter 2, Section 2.3), which occur at a depth of about 10 km in 

each case, are 

'm = 34 MPa in Fig. 4.17 (both ends fixed) 

'm = 38 MPa in Fig. 4.18 (oceanic end free) 

and 'm = 37 MPa in fig. 2 of Bott and Dean's paper. 

In all these models it was assumed that the stress patterns are 

to be superimposed on a lithostatic stress distribution, which,ruthough not 

a solution to the elastic stress equations as discussed earlier 

(Section 4.2.2), may be assumed to be the standard state in the oceanic 

lithosphere. 

However, these models make several approximations. They do not 

account for any change in the stresses due to contrasts in elastic 

properties (other than density) between oceanic mantle and lower 

continental crust, and secondly, they make the implicit assumption that 

the load due to the density differences between oceanic and continental 

lithosphere is applied instantaneously to the standard state. Neither 

of these approximations can be avoided in an elastic model because 

alterations to the standard state due to variations in material properties 
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and persistence of load cannot be calculated elastically. 

A third approximation made in the models of Figs. 4.17 and 4.18 

· is the treatment of the water as a load to be removed by subtracting 

pw from the density of the upper part of the continental crust. However, 

if water can penetrate into the rore spaces in the crust, it does not 

act as a load, but merely reduces the effective stresses within the 

rock (Hubbert and Rubey, 1959). The maximum shear stress, Tm' is 

unchanged by this since both o 1 and o 3 are reduced by the pore pressure, 

p, in Equation 4. 10, but the mean stress 

0 m = (
0 1 ; a3) 

is replaced by (o + p), so that brittle failure is more likely 
m 

4. ll 

(see Chapter 2, Section 2.3). Rubey and Hubbert (1959) report significant 

pore pressures down to several kilometres depth in continental crust, 

often exceeding that due to the head of water, \'lhile Drury (1979) 

estimates that porosity drops to 1% or less at 2 km depth in a 7 km -

thick oceanic crust. On the basis of these figures, and making broad 

simplifications because of the model used (Fig. 4.15), the pressure due 

to the column of water at the centroid is subtracted from the stresses 

in each element of the upper continental crust only (the region marked 

Pl in Fig. 4.16). 

4.5.2 Visco-elastic models 

Taking all the factors discussed in Section 4.5.1 into consideration, 

the visco-elastic method described in Section 4.4 was applied to the 

model, and Fig. 4.20 shows the stresses after 10 Myr of visco-elastic 

relaxation, the whole crust having a viscosity of 
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and the mantle of 

= 102 3 N s m- 2 
nm 

(see Ch. 2, Section 2.2), with both ends of the model fixed in the 

x-direction. 

As in Section 4.4.3, all the stresses in the mantle have relaxed 

to a hydrostatic state, leaving residual deviatoric stresses in the 
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crust. These stresses are, as before, in the form of horizontalltensions, 

but instead of rising to a maximum at about 10 km and then approaching 

zero with depth, the maximum shear increases from about 10 MPa near 

the surface to 100 MPa (1 kbar) at the base of the continental crust. 

In addition there is a concentration of stress reaching Tm ~ 100 MPa 

in the oceanic crust at the base of the continental slope where tensional 

failure is predicted by the finite element program, according to the 

criteria of Ch. 2, Section 2.3. 

This stress system is at variance with the features usually 

observed at passive margins, and one important reason for this is the 

uniform crustal viscosity chosen. Bott (l97lb) proposed that creep 

should occur in the lower crust, resulting in strain rates of the order 

of lQ-16 s-1 in response to stresses of about 50 MPa, which implies an 

effective viscosity for the lower crust of 

nlc = 1024 N s m-2. 

Using this value for the viscosity of the crust below 10 km depth 

(i.e. the region marked p 3 in Fig. 4. 16), and leaving the viscosity of 

the upper crust at 

nuc = 1025 N s m-2, 

the stress system shown in Fig. 4.21 was obta·ined, again after 10 Myr 

relaxation with both ends fixed in the x-direction. The result of the 

viscosity contrast has been to concentrate the deviatoric stresses in 
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the upper, higher viscosity crust, an effect described by Kusznir 

and Batt (1977). The maximum shear in the continent rises, more rapidly 

than in Fig. 4.20, to 130 MPa at the base of the upper crust and then 

drops abruptly to about 50 MPa in the lower crust. High angle tensile 

failure is predicted in the upper continental crust in agreement with 

Batt (197lb). 

However, this model does not yet correspond with observation in 

that there are large horizontal deviatoric compressions in the oceanic 

crust, giving a maximum shear of up to 100 MPa. These compressions are 

reduced, by a factor of 10, by altering the boundary conditions on the 

oceanic lithosphere, and Fig. 4.22 shows the stress distribution 

obtained by applying lithostatic stresses, rather than fixed displacements, 

to the left end of the model. 

The final model gives a qualitatively similar deviatoric stress 

distribution to the elastic models (Batt and Dean, 1972; and Figs. 4.17 

and 4. 18), in that the only significant deviatoric stresses are in 

the continental crust, and are horizontal tensions. In addition they 

increase with depth in the upper crust, down to about 10 km, and then 

decrease with depth to the base. The depth distribution of maximum 

shear has, however, a different shape (compare Figs. 4.19 and 4.23) 

and the greatest value in the visco-elastic model is about 170 MPa, about 

5 times as large as in the elastic models. 

Artyushkov (1973) has calculated the effect of changes in 

thickness of a viscous layer supported by an inviscid substratum. 

In this case he shows that, if the layer remains in isostatic equilibrium, 

then the change in the average horizontal stress due to an increase in 

height c of the top layer, density p, is 

f'..a = p g C 4.12 
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Substituting in the values for the passive margin model (Fig. 4.16) 

an average maximum shear stress is obtained, 

; = ! 60 = 72 MPa. m 

The mean value calculated from the graph of Tm against depth for 

the final model (Fig. 4.23) is 

T ~ 60 MPa. m 
The visco-elastic finite element model therefore produces a similar 

result to ArtyushkOV 1
S analytical solution. 

It must be noted, however, that two of the assumptions on which 

Equation 4.12 is based, do not hold for this model. Firstly the change 

in thickness of the crust across the margin is comparable with its 
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average thickness, and secondly the upper mantle has a finite viscosity. 

The former of these tends to reduce 60, by a factor of about 60% (if 

the model crustal thicknesses are used in ArtyushkOV 1
S equations), 

while the latter, by introducing significant coupling between the crust 

and mantle (even though nlc = 10 nm), increases it. Nevertheless the 

agreement between the values of ~m' even if only to within a factor of 

2, is significant because the two methods are completely independent. 

One further interesting feature of the stress distribution in 

Fig. 4.22 is the persistence of the horizontal deviatoric tension into 

the continental crust, an effect also discussed by Bott and Dean (1972). 

A version of the final visco-elastic model extending a further 110 km 

into the continent showed that the tensions only decreased by a few 

percent (less than 5%) 160 km from the margin, again in agreement with 

Artyushkov (1973). 

The stress system of Fig. 4.22 will be considerably modified in 

reality by faulting, which will relax some of the deviatoric tensions, 

especially near the margin; by any stresses applied to the whole 
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lithospheric plate, for instance due to density contrasts at mid-ocean 

ridges; and by any other tectonic influences, particularly from outside 

the plane of the model. 
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CHAPTER 5 

THE BALANCE BETWEEN WEIGHT AND BASAL SHEAR IN AN ACCRETIONARY PRISM 

5. l Introduction 

i 

If a wedge of sediments with a sloping top, such as an accretionary 

prism, were to exist without any shear along its base, then it would 

spread under its own weight, assuming that its rheology had some viscous 

or other time-dependent component, until its surface was horizontal. The 

only conditions that could allow such a structure to be stable are, 

either that it should have a perfectly elastic rheology, with a great 

enough strength to support the deviatoric stresses set up by the 

asymmetric density distribution in the wedge, or that it should be 

supported by stresses applied to its boundaries: 

In this chapter it will be assumed that the accretionary prism 

in a subduction zone is supported by a shearing stress imparted to its 

base by the oceanic plate being subducted. 

Two mechanisms are considered for the transmission of this basal 

stress; firstly through a weak shear zone between the overlying sediment 

pile and the underlying oceanic crust, and secondly by a direct frictional 

contact between them. The chief difference between these two types of 

contact, apart from their structural implications, is that in the first 

the shear stress is uniform along the whole base, while in the second 

it increases with depth, due to the dependence of the shear on the normal 

stress across the shear plane. 

The geological consequences of these two mechanisms will be 

discussed and the stress needed to support the wedge found in both 

cases, and additionally the effect on the deformation of varying some 

1 { );A ~ t-,..J.. ~ p--l ... ~f.\<. ~.,.{~~ , "'" 5....,.f'-c.IJ QcL.:-.t c-.a. ~ S"'(1p..AzJ., 

.:~ 1.~ ~~ .k~o.&,..:c. ~~~) ~~ k&w 1.-<t.. ~(&( s(~H. 



of the other model parameters will be examined, in particular the 

gradients of the upper and lower surfaces of the wedge. 

5.2 Description of the Model 

5.2.1 Shape and properties 

The model used for the investigations in this chapter is based on 

the seismic reflection line across the Middle American Trench shown in 

Fig. 1.3 (Moore et al., l979b), and consists of the material beneath 

the inner trench slope, for 20 km from the trench axis, approximating 

both the top surface and the base by straight lines. The resulting 

model, divided into elements, is shown in Fig. 5.1. 

Tha parameters used for the model, using the guidelines given in 

Chapter 2, are listed in Table 5.1. 

Property Symbol Value 

Young's Modulus E l 0 GPa 

Poisson's Ratio v 0.27 

Density p 2500 kg m- 3 

Viscosity n 10 22 N s m-2 

Table 5.1: Material properties used in the wedge model. 
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These values are taken to be constant throughout the wedge, in order to 

separate the observed effects from those due to contrasts in material 

properties, which will be considered in Chapter 6. 

A further implicit assumption is that t'he parameters are isotropic. 
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If there is a series of imbricate thrust faults in the accretionary 

prism, as discussed in Chapter 1, then there will definitely be some 

anisotropy, particularly in Young's modulus and viscosity. Once thrust 

faults have been formed it is easier to deform the material parallel, 

rather than perpendicular, to the faults, both through creep along the 

faults and elastically. A more sophisticated model might attempt to 

evaluate the effect of a set of such thrusts, but, although finite 

elements have been used to model faults {Goodman et al ., 1968; Bischke, 

1974; Goodman, 1976), little is known of the properties and distribution 

of such faults in an accretionary prism, and it is considered that 

such investigations are beyond the scope of this thesis. 

5.2.2 Boundary conditions 

The boundary conditions on the four faces of the model (Fig. 5.1) 

are as follows: 

a) the left-hand {landward) end of the wedge is held fixed in the 

x-direction, but allowed to move in y (see Ch. 3, Section 3.5.2); 

b) the base is fixed similarly, but in a rotated co-ordinate 

system, so that it cannot move perpendicular to the boundary, 

but is allowed to move parallel to its slooe, so that a basal 

shear (described further in the following sections of this 

chapter) may be applied; 

c) the right-hand end is bounded by trench sediments, and litho

static stresses due to these, taking a density of 1700 kg m-3 

(see Ch. 2, Section 2.1 .3) is applied using the method of 

Ch. 3, Section 3.5.1, the underlying assumption here being that 

the trench sediments are unconsolidated and may be regarded as 

fluid in this respect; 



d) the upper surface is left free, since the water does not 

exert a force on the surface (as discussed in Ch. 4, Section 

4.4.1), if it is assumed that there are sufficient pores in 

the wedge to allow the water to permeate through it. 

5.3 Uniform Basal Shear 

5.3. 1 Description of the boundary conditions 

It has been suggested (e.g. Seely, 1977) that an accretionary 

wedge may be underlain by a basal shear zone of pelagic and hemi

pelagic sediments that have been carried down by the oceanic plate. 
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These sediments have a high water content, and if the pore pressure were 

increased, on subduction, to a value close to the mean stress, they 

would become so weak as to behave like a low-viscosity fluid (this 

situation corresponds to an effective mean stress (om)eff ~ 0, in 

Fig. 2.5 of Ch. 2, combined with a small value ofT, the tensile 

strength). 

If this is the case, then stresses are transmitted from the plate 

being subducted to the overriding accretionary prism through flow in a 

viscous boundary layer. If the thickness and viscosity of the shear 

zone are d and n , respectively, and the velocity down-dip of the s. z. 

subducted oceanic crust is v, with respect to the accreted sediments, 

then the shear stress, T, on the base of the wedge is given by: 

v 5.1 T = 
d 

Equation 5.1 is independent of depth, so that the shear stress applied 

to the accretionary prism is constant along its base. 

To fulfil this boundary condition, forces (calculated according 



to Ch. 3, Section 3.5.1) are applied at the basal nodes, oarallel to 

the dip of the base, while all other boundary conditions are as 

described above in Section 5.2.2. 

5.3.2 Elastic models 
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The instantaneous deformation of the model under a combination of 

its weight and basal shear stress is illustrated by Figs. 5.2 and 5.3, 

where the surface deformation is shown both with and without exaggeration. 

If the basal stress is small, then the weight of the model causes 

the thick end of the wedge to subside more than the thin end. This 

subsidence, being transmitted horizontally due to the Poisson's ratio 

of the material, tends to push up the front of the wedge, but the effect 

is offset by the pressure of the trench sediments and gravitational 

sliding down the basal slope. 

In all elastic models with basal stresses between 0 and 100 MPa 

the surface remains approximately a straight line, but it is rotated 

according to the stress applied between the angles shown in Fig. 5.2 

(with no shear giving a rotation of c. 0.1° anti-clockwise) and 

Fig. 5.3 (with 100 MPa shear, giving a rotation of c. 0.4° clockwise), 

the whole variation only being c. 0.5°. 

The deformed surface is parallel to the .original for a basal 

shear between 10 MPa (Fig. 5.4) and 20 MPa (Fig. 5.5), and so the 

stress to support the wedge is in this interval, but it can be 

narrowed down further using a visco-elastic method (see next section). 

The effect of a basal shear of 10 MPa on the principal stresses 

is illustrated in Figs. 5.6 and 5.7. When no basal shear is applied 

(Fig. 5.6), the stresses in the deeper parts of the model are aligned 

so that the minimum principal stress (i.e. the greatest compression) is 
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perpendicular to the base and the maximum stress is parallel to it. 

Although the upper surface has moved down and to the left overall, 

there are deviatoric compressions in the upper part, roughly parallel 

to the slope, corresponding to a tendency to slump down-slope. 

In Fig. 5.7, where there is a basal shear of 10 MPa, these 

compressions in the shallower parts are intensified, and the deeper 

stresses are rotated in response to the component of horizontal 

compression introduced by the boundary stress. 

Note that in Figs. 5.6 and 5.7, as in all other stress vector 

diagrams from this chapter onwards, the stress vectors are plotted so 

that their angles may be compared directly with the (vertically 

exaggerated) model, which means that the principal stresses do not 
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appear to be at right-angles. The magnitudes of the stresses are, however, 

scaled equally in all directions so that comparison between them is 

straightforward. 

5.3.3 Visco-elastic models 

The visco-elastic models in this chapter were all run starting 

from a model initialized elastically as described in Ch.4, Section 4.3. 

If the wedge is allowed to subside visco-elastically without any 

restraining stresses it behaves as might be expected, in that it flows 

in such a way as to flatten out the surface, subsiding at the landward 

end (by c. 200 m) and pushing forwards and up the slope at the oceanward 

end (by c. 400 m; see Fig. 5.8). 

Conversely, if a shear stress of 20 MPa is applied to the base, 

then the landward end is pushed up (by c. 80 m) and the oceanward end 

is bent down (by c. 400 m; see Fig. 5.9). 

This effect increases with the basal shear, and if a stress of 
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100 MPa is applied, the uplift of the left-hand end is about l km, 

while the depression at the right-hand end is about 4 km. 
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Starting with the bounds found in the previous section (10- 20 MPa), 

several visco-elastic models were run to find the shear stress needed 

to support the model's weight, two of which (for basal shears of 10 MPa 

and 15 MPa respectively) are shown in Figs. 5.10 and 5.11 to illustrate 

the sensitivity of the surface deformation to the applied shear. Clearly 

the value needed to keep the surface still is between these two, and 

using Figs. 5.12 and 5.13 it appears that 12 MPa is the best approximation 

(to 2 significant figures), although there are still displacements of 

about 50 m. 

This balance is reflected in the principal stress system (see 

Figs. 5.14 and 5. 15). After l Myr, if there is no basal stress, there 

are significant remaining deviatoric stresses throughout the model, 

varying approximately from 10 MPa to 25 MPa (Fi9. 5. 14), and in 

particular, there are deviatoric tensions of 10-15 MPa near, and 

approximately parallel, to the surface of the model due to the forward 

movement of the wedge. 

In the model with a basal shear of 12 MPa (Fig. 5.15) these 

deviatoric stresses are almost entirely nullified in the left-hand 

part of the wedge and near the upper surface, and the stress system 

is very nearly hydrostatic. The deviatoric stress levels are between 

about 3 MPa and 8 MPa for the whole of the landward part (i.e. for 

x < 15 km) and are less than 5 MPa along the entire upper surface. 

However, along the base where the sole thrust becomes shallower 

(x > 15 km), the deviatoric stresses are increased relative to the 

model without basal shear, because the effect of weight in this region 

is smaller than that due to the applied shear, and here the maximum 
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shear stress is c. 10 MPa, parallel to the base. 

5.3.4 Implications of the value of the basal shear stress 

As discussed in the previous section, it is found that a shear 

stress of 

, = 12 MPa 

is needed to support the wedge of accreted sediments represented by 

Fig. 5. 1, which agrees with the estimate (to an order of magnitude) 

made by McKenzie (1977; Richter and McKenzie, 1978) based on the stress 

drops calculated from measurements of earthquakes at subduction zones. 

Given the magnitude of the basal stress it is possible to make 

some deductions about the nature of the shear zone referred to in 

Section 5.3. 1. The convergence rate at this section of the Middle 

American trench is given by Karig et al. (1978) as 

v = 70 mm yr-1, 

so using this and the shear stress obtained, the ratio of viscosity to 

thickness of the shear zone is found through Equation 5.1 to be 

n 
~· 

d 

=' "' 5 x 101s N s m-3. 
v 

The thickness of hemipelagic muds and clays just seaward of the trench 

is 100 to 200 m according to the results of D.S.D.P. Leg 66 (Moore et 

al., 1979a; Shipley et al., 1980}, so assuming this represents the 

thickness, d, of the shear zone, its viscosity is 

n = 10 18 N s m~2. s. z. 

Clearly, if the shear zone is narrower the estimated viscosity 

will be lower, but a lower limit may still be found to the possible 
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viscosity of the wedge, since it must be appreciably larger than the 

shear zone viscosity in order to define the shear zone as such. So 

n >> n 5.2 s. z. 

or n » 1 01 s N s m -2 

if the shear zone is about 100 m thick. This is consistent with most 

of the viscosities given inCh. 2 (Section 2.2), but is much larger 

than that of Cowan and Silling (1978; namely, n = 1014 N s m-2). The 

effective viscosity of the wedge is taken to be 1022 N s m-2 in this 

chapter (see Sections 5.2 and 5.6. 1). 

5.4 Basal Friction 

5.4. 1 Description of the boundary conditions 

The second mechanism for the transmission of shear stress to the 

base of the accretionary prism is a frictional one. If the sediment 

wedge and the underlying oceanic crust can be considered as two distinct 

tectonic units sliding past each other, then the stress on each is 

T = -J..lan 

where a is the normal stress across the boundary between them and 
n 

J..l is the coefficient of sliding friction between the two surfaces. 

In reality, sediments from the trench are carried down by the 

5.3 

oceanic plate being subducted and are probably accreted in thrust slices 

onto the accretionary prism, which means that there are severa 1 units 

in the system, variously interrelated, and in addition to this the 

oceanic crust carries sedimentary layers over the main basaltic section . 

. This method therefore assumes that all the accreted sediments above 

the basal thrust act as a single unit, resting on top of another single 
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unit, the oceanic crust. 

A second assumption is that the coefficient of friction is constant 

under the whole accretionary wedge. This assumption is quite a good one, 

since Byerlee (1978) concludes that for the normal stresses encountered 

at depth in the crust, rock types and confining pressures have little 

or no effect on friction coefficients. However he states that the effect 

of a fault gouge on~ may be dependent on its composition, so that in 

the finite element models of this section ~ must be regarded as an 

average for the whole thrust plane. 

Finally an assumption must be made to estimate the normal stress 

across the base. As stated in Section 5.2.2, the base is fixed so that 

it cannot move in a direction normal to itself, so to be consistent 

with this on should be set at the value of the normal stress needed to 

support the weight of the wedge. As an approximation to this, the 

vertical stress is used, namely 

5.4 

where h is the thickness of the wedge above the relevant point on the 

base. The applied nodal forces are then calculated using Ch. 3, 

Section 3.5.1. 

If there are superimposed horizontal (or nearly .horizontal) 

stresses, either tensional or compressional, transmitted by the oceanic 

plate, then these will not only change on but also the other boundary 

conditions at the base of the wedge (see Section 5.2). For simplicity 

it is assumed that the only stresses on the wedge are the basal shear 

and those due to the other boundary conditions as before. 



5.4.2 Elastic models 

To find the coefficient of friction that produces sufficient 

basal shear to support the wedge, a similar procedure to that used 

in the previous section (5.3) is followed. 
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Elastic analyses are used to narrow down the value for the friction 

coefficient, and as before the resulting surfaces are roughly straight 

lines whose orientation depends on the applied shear. Examples are 

shown in Figs. 5.16 and 5.17, with friction coefficients of 0.05 and 

0.20 respectively. In these two cases the rotations are c. 0.1° anti

clockwise and c. 0.2° clockwise. 

The displaced surface is roughly parallel to the initial when the 

friction coefficient is about 0.1. 

5.4.3 Visco-elastic models 

Figs. 5.18 and 5.19 show the effect of allowing the model to 

creep visco-elastically for 1 Myr with the same applied shear stresses 

as in the elastic models of Figs. 5.16 and 5.17 (corresponding to 

friction coefficients of 0.05 and 0.20 respectively). It is readily 

seen that a low value allows the wedge to subside at the landward end 

and move up the basal slope, while a large frictional force drags the 

seaward end down the slope and lifts up the landward end. The deformation 

in these two cases is very similar in shape to Figs. 5.8 and 5.9, where 

the basal shear applied was uniform. 

It is impossible to hold the whole surface to zero displacement 

in this way, but Figs. 5.20 and 5.21 show deformations where parts of 

the slope do not move (with values of~. 0.08 and 0.10 respectively). 

The best approximation is a friction coefficient of 0.09 (Fig. 5.22) 

which holds the surface deformation to about 30m and the resulting 
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principal stresses are displayed in Fig. 5.23. 

As with the model with a uniform basal shear of 12 MPa (Fig. 5.15), 

most of the deviatoric stresses present after 1 Myr without any applied 

stress (Fig. 5. 14) are removed by the application of the supporting 

stress, and there are only small differences between the two resulting 

stress systems. These differences occur near the base of the model where, 

because of the increase in frictional stress with depth (Equations 5.3 

and 5.4), there is an increase in the deviatoric stresses to the left 

of the wedge and a decrease to the right, compared with the uniform 

shear model. However these are small everywhere, rising to 3 MPa at the 

base of the wedge near to the trench. 

5.4.4 Implications of the friction coefficient 

The coefficient of friction, obtained as described, namely 

~ = 0.09 

is significantly smaller than the values given by Byerlee (1978) of 

T = -0.85 an 

T = -0.6 a - 0.05 GPa n 

lanl< 0.2 GPa 

0.2 GPa <lanl< 2 GPa 

and the values of Jaeger and Cook (1976) which have an average of 

~ = 0.62 

both sources including examples of many different rock types. However 

these coefficients have been found for rock samples without any 

included gouge, which, Byerlee observes, reduces the friction 

considerably. Wang and Mao (1979) have performed experiments on small 

cylindrical granite samples (25.4 mm in diameter, 50.8 mm in length) 

in which a saw cut is made (at 30° to the axis) and filled with 

saturated clay,. to.measure the values of ~ for different clays under 

confining pressures of up to 300 MPa. Their results are quoted in Table 5.2. 
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Clay Coefficient of friction, )J 

Montmori 11 oni te 0.08 ± 0.01 

Chlorite 0.12 ± 0.01 

Kaolinite 0.15 ± 0.01 

Illite 0.22 ± 0.02 

Table 5.2: Friction coefficients for joints in granite filled with 

various saturated clays. (Wang and Mao, 1979) 

Wang and Mao's experiment was arranged in such a way that the 

pore pressure of water in the joint, p, could be measured independently 

from the confining pressure, and their results for JJ are based on the 

effective normal stress across the crack 

0 n = 0 n + p. 
eff 

5.5 

If there is significant pore pressure along the basal thrust of the 

wedge model, in other words if the sediments there are not dewatered, 
~"""'•( .(,...,.._ 

then the coefficient of friction corresponding w the applied shear-. ... .& -k.l 

is larger. 

To estimate this increase it is necessary to make some assumptions 

about the pore pressure on the thrust plane. If pore water is present, 

the least effect it can have is when all the pores are connected. In 

this case the pore pressure would be 

5.6 

where h is the depth to the thrust plane and Pw is the density of the 

water. The estimated friction coefficient would then be increased by 

a factor of 
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p 
= 1.7 

where pis the density of the accreted sediments (as before), giving 

~ = 0.15. 

However if the pores are not interconnected and the pore water is 

overpressured, then following Hubbert and Rubey (1959) 

p=fhpg; 5.7 

where f indicates the degree of overpressuring. Under these conditions 

the estimated coefficient of friction (from the finite element model) 

is increased by a factor of (1 - f)- 1 , a few possible values of which 

are shown in Table 5.3. 

Rubey and Hubbert (1959) report a range of values for f up to 

0.9, and it is difficult to put bounds on its value under the conditions 

of the model. If f is c. 0.9 the estimate for ~ is comparable with the 

results of Byerlee (1978; see above), but iff t 0.6 the estimate is 

consistent with Wang and Mao's (1979; see Table 5.2, above) values, 

implying that there is a layer of fault gouge along the thrust plane, 

as might be expected from observation of faults exposed at the Earth's 

surface. 

f ( 1 - f) -1 
~ 

0.5 2.0 0.18 

0.6 2.5 0.23 

0.7 3.3 0.30 

0.8 5.0 0.45 

0.9 10.0 0.90 

Table 5.3: Some values for the overpressure factor, f, and the 

corresponding estimates of ~' the coefficient of friction 

on the basal thrust. 

"'· 



5.5 The Effect of Surface and Basal Gradients 

5.5.1 Variations in slope of the model boundaries 

To investigate the effects of the gradients of the upper and 

lower surface boundaries on the basal shear stress, a series of models 

was run in which all the x co-ordinates were doubled but which were 

otherwise identical to the uniform shear models of Section 5.3 (Fig. 

5.24; cf. Fig. 5. 1). An elastic model with a basal shear of 12 MPa 

(Fig. 5.25) suggests that the same stress is needed to support the 

new, less steep slope, but in a visco-elastic analysis this does not 

hold (Fig. 5.26). By trial and error a basal shear of 6 MPa is found to 

hold the surface best, the displacements being about 50 m on average 

(Fig. 5.27). 

Thus doubling the x co-ordinates of the wedge has the effect of 

halving (approximately) the basal shear. This effect must be due to 

some combination of the slopes on the upper and lower surfaces, so to 

separate their contributions a second model was run with the base 

returned to its original (steeper) position (Fig. 5.28), but otherwise 

the same as the previous model. 

Again elastic analysis indicates that 12 MPa is the required. 

basal shear (Fig. 5.29), but a visco-elastic model (run for 1 Myr; 

Fig. 5.30) shows this. to be too large, and further investigation leads 

to the estimate of 8 MPa (Fig. 5.31). 

Therefore reductions both in the basal slope and in the surface 

slope reduce the basal shear necessary to support the model, both 

effects being of the same order of magnitude (namely c. 5 MPa). 

98 



--------------. 
TOE (5J Rt:I!ENT HESH 

: L .. -· ...... ·~·-··· ·----2 Lm011_ET~? ______________________________ l 

.... 
)-

10 

Fig. 5.24: Grid for the extended wedge model, as in Fig. 5.1, but with 
all x co-ordinates doubled. 
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Elastic deformation of the surface of the above model, in response 
to a uniform basal shear of 12 MPa. 
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Fig. 5.26: Surface displacements of the extended wedge (Fig. 5.24) after 
1 Myr of visco-elastic deformation, in response to a uniform 
basal shear of 12 MPa. 
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Fig. 5.27: As above, but with a basal shear stress of 6 MPa. 
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Fig. 5.28: Grid for the extended wedge model (Fig. 5.24), but with the 
basal gradient restored to that of the original (Fig. 5.1). 
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Fig. 5.29: Elastic deformation of the surface of the above model, in 
response to a uniform basal shear of 12 MPa. 
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Fig. 5.30: Surface displacements of the wedge of Fig. 5.28 after 1 Myr, in 
response to a uniform basal stress of 12 MPa. 
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Fig. 5.31: As above for a basal shear stress of 8 MPa. 



5.5.2 Comparison with an earlier, analytical model 

The result obtained in the previous section is opposed to the 

conclusions of Elliott (1976) who deduces that, 

"It is the surface slope which determines the magnitude and sense 
of the shearing stress at the base, and not the dip of the base", 

but is supported by Seely (1977) who draws a similar conclusion from 
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the presence of seaward-dipping thrust faults (seen on seismic reflection 

sections) in the sedimentary wedge of the Aleutian trench, where the 

upper surface is also seaward-dipping, .: .... .t.: .. A.(~ »-G-C: ~s-a-~~ ~'-4....,""" 
.14 ~~ J.otv:, ~ ~-c.( - .L-4 ,...,.~ .... c.a I.~ • 

Elliott finds, analytically, an expression for the shear stress on 

the base of a thrust wedge, thickness H, surface dip a, given by 

T "' p g H a 5.8 

where T is the average basal shear over a length greater than any 

fluctuations of either surface. 

The first derivation given for Equation 5.8 is based on the assumption 

that longitudinal stress gradients may be neglected. However, this 

assumption is questionable, since in the finite element solution shown 

in Fig. 5.15 (where there is a uniform basal shear of 12 MPa) there is 

a gradient of deviatoric stress, ax', of 

aax' "' l MPa km- 1 

ax 

throughout the wedge, which integrated over its thickness H gives 

J a ax' dy "' a a .X' • H "' 5 MPa 
H ax ax 

which is significant with respect to the basal shear of 12 MPa. 

Elliott also derives Equation 5.8 by a second method, in which 

longitudinal stress gradients are accounted for, drawing on the work of 
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Budd (1970, 1971). There are however two inconsistencies here. Firstly 

one of the results of Budd (1971) quoted by Elliott is 

5.9 

(assuming small variations in the upper surface and smooth variations 

on the base), but according to Budd (1971, section 1.2(i)) G is the 

net longitudinal stress gradient 

ao ' H G = ___x_ 

ax 
5. 10 

so that Equation 5.9 contradicts the fundamental assumption of Elliott's 

first derivation, namely that the longitudinal stress gradient may be 

neglected. 

The second inconsistency arises because Budd's work is concerned 

with uniform flow (of ice) between two boundaries, the upper surface 

and the base, whose positions remain fixed with time, whereas an 

overthrust c~n move as a single unit. This false assumption has 

important consequences in the derivation of the change in potential 

energy of a thrust sheet. To calculate this, following Elliott (1976), 

a column within the thrust sheet is analysed, as shown in Fig. 5.3 2. 

Changes in the gravitational potential energy of the column arise because 

of changes in the height, h, of the centre of mass of the column, which 

is at a height (H/2) above the base of the thrust sheet. 

The height of the centre of mass is a function of several 

·variables, h(B,E ,x), where B is the thickness of material deposited 
y 

on, or eroded from the surface (measured as negative for erosion), and 

Ey is the finite strain of the column vertically (e.g. due to compaction). 

Thus the rate of change of h with time may be expressed in terms of 

partial derivatives as 

dh = ~- ~ + aH. ~Y + v ~ 5.11 
dt as at aEY at ax 
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where v is the horizontal component of the thrust sheet's velocity 

(see any fluid dynamics or advanced calculus text, e.g. Rutherford, 

1959; Kaplan, 1962). Now, 

ah _ 1 aH _ 1 ------
aB 2 aB 2 

ah aH H 
= = 

2 

(see Elliott, 1976), but the partial derivative of h with respect to 

x depends only on the gradient of the base 

ah 
= tan s 

ax 

and not on the surface gradient, a, since the whole overthrust is 

free to move as shown, and not confined between the base and a fixed 

surface, as mentioned earlier. Thus 

0 

dh B H o 

= _ + _ s + v tans 
dt 2 2 y 
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5 .12a 

5 .12b 

5.13 

5. 14 

which differs from Elliott's expression for dh/dt in being independent 

of a. 

If sliding on this slope is to be energetically possible, when 

the only externally applied force is gravitational, then 

dh 
- < 0. 5.15 
dt 

However, the first two terms in Equation 5.14 are independent of x, 

so that the direction of motion of the overthrust is determined by the 

last term, namely v tans. The most energetically favourable direction 

of motion is thus down the basal slope (i.e. v tans< 0), and the energy 
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balance (Equations 5.14 and 5. 15) is independent of the surface slope. 

An overthrust will only move up the basal slope if a sufficient 

stress (at least equal to the lithostatic stress) is applied to the 

down-slope (left-hand in Fig. 5.32) end of the thrust wedge, and cannot 

be driven up-slope by gravity alone. The surface slope may effect the 

magnitude of the basal shear, but cannot provide the driving stress for 

the thrust. 

A second analytical model is presented by Chapple (1978). He 

analyses a wedge of sediments above a weaker basal zone, both of which 

are plastic and in steady-state flow (above their yield stresses). He 

derives a set of equations (given in Appendix 1) in terms of the upper 

and lower surface slopes, the thickness, the density and the yield 

stress, K, of the wedge, which can be used to find the basal shear 

stress. From these, and using Chapple's value of 

K = 100 MPa 

together with the relevant parameters for the wedge of Section 5.3 

(upper and lower surface dips tan- 1 (0.15) and tan- 1 (0.2), respectively) 

the basal shear is calculated as 

T = 50 MPa. 

This is considerably larger than the 12 MPa obtained in Section 5.3 

by finite element analysis. However, Chapple's value for K is very 

large compared with the values for tensile strength shown inCh. 2, 

Section 2.3.4, and if a value is chosen of 

K = 12 MPa, 

good agreement is reached with the finite element results of Sections 5.3 

and 5.5.1, as shown in Table 5.4, despite the difference in rheology 

between Chapple's plastic model and the visco-elastic behaviour 

assumed in this thesis. The most obvious qualitative agreement is that 

the basal shear increases with the basal slope. 



tan a tan S T(analytic)/MPa T(finite element)/MPa 

0.15 0.2 12 12 

0.075 0.2 9 8 

0.075 0. 1 7 6 

Table 5.4: Comparison of basal stress for various surface and basal 

slopes, derived using the finite element method and 

analytically. (Chapple, 1978) 

5.6 The Effects of Variation in Material Properties 

The effects of contrasts in the visco-elastic parameters of 

different parts of an accretionary wedge will be discussed in Ch. 6, 

but this section (5.6) will describe the effects on the uniform model 

in this chapter, of variations in material properties. 

5.6.1 Viscosity 
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The viscosity of the material only enters into the finite element 

calculation in Equations3.38 (Ch. 3) which show the relationship 

between creep rate and deviatoric stress in an element. 

The whole finite element formulation is linear, for linear creep, 

so that the value of any component of any relevant variable at time t, 

q(t) (where q may be a component of displacemen~ strain or stress), in 

a body with uniform viscosity, n, may be written as 

q(t) = q0 + q1 (~), 5.16 

where q0 is the value of q obtained in elastic analysis, q1 is a 

function of (t/11), and both q0 and~~ depend on the finite element grid, 

the mater·ial properties and the boundary conditions for the model. 
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Note that this equation depends only on t, and not ~t. the length 

of the time increment used. To verify this, several models were run 

with different increments, but for the same total time in each model. 

In all cases the results agreed to better than 1% for all variables 

(these differences being caused by the finite convergence criterion in 

the solution iterations; see Ch. 3 Section 3.4). 

Thus n only alters the time-scale of the model. This is readily 

tested by running the same model with different values of n, but 

keeping the ratio (~t/n) constant, and when this was done the results 

were i denti ca 1 . 

5.6.2 Young's modulus 

Figs. 5.33 and 5.34 show the effect of altering the Young's 

modulus of the wedge material from 10 GPa (Fig. 5.12 and Table 5.1) 

to 100 GPa and l GPa, resoectively. 

The compressibility of a material, K, is inversely proportional to 

K 
= 3(1 - 2v) 5.17 

E 

(Jaeger and Cook, 1976), where E and v are the Young's modulus and 

Poisson's ratio for the material as before, and the change in this is 

the chief cause of the difference between Figs. 5.33 and 5.34. 

The nodal forces are all of the order of 10 GN, both those due to 

basal shear and those due to weight, and so, in the original model, they 

were of the same order of magnitude as E (10 GPa). Increasing E to 

100 GPa reduces the displacements in the whole wedge by a factor of 

at least 2, except near the surface at the l~ndward end (Fig. 5.33) 

where there seem to be some undulations in the displaced surface (see 

Section 5.7, below). 
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Fig. 5.33: Surface displacements of a wedge (Fig. 5. l) with Young's 
modulus, E = 100 GPa, after l Myr of visco-elastic deformation, 
with a basal shear of 12 Mpa. 
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Conversely, reducing E by a factor of 10 (Fig. 5.34) increases 

the displacements in the wedge, particularly at the seaward end, since 

the landward end is supported somewhat by the bounda~ condition on 

the left of the model, namely that there should be no x-displacements 

(Section 5.2.2). Apart from the nodes near this end, all nodal x

displacements are at least 100 m to the left, reaching over 500 m at 

the toe of the wedge. Thus with a Young's modulus of 1 GPa, it is 

impossible to keep the surface displacements as small as in the previous 

models, but the basal stress required to maintain the average surface 

slope is still approximately 12 MPa, and is therefore not significantly 

dependent on E. 

5.6.3 Poisson's ratio 

Equation 5.17 shows that the compressibility depends not only 

on Young's modulus but also on Poisson's ratio,v. However, variations 

in K are restricted more because the range of possible values of v 

is much smaller than of E. 

Figs 5.35 and 5.36 show the visco-elastic deformation after 1 Myr, 

with a uniform basal shear of 12 MPa, when the Poisson's ratio is 0.4 

and 0.15, respectively compared to the previous value, 0.27 (Table 5. 1). 

The similarity between Figs. 5.35 and 5.33 is very marked, indicating 

that they might be caused through a change in the same parameter (namely 

K}, though K is only decreased by a factor of 2.3 in this case, as 

opposed to 10 in Fig. 5.33. 

In both Figs. 5.35 and 5.36, 12 MPa seems to be the best basal 

shear to hold the model steady, though when v = 0.15 there are rather 

larger displacements than before at ·ea~h end of the wedge. This is 

probably because, for a lower Poisson's ratio, there is less coupling 
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Fig. 5.35: Surface deformation after 1 Myr in a wedge with Poisson's ratio, 
v = 0.4, and a basal stress of 12 MPa. 
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between vertical and horizontal displacements. 

The deviatoric stress system in the wedge does not vary significantly 

with changes in v, the deviatoric stresses being overall slightly larger 

for v = 0.15 and slightly smaller for v = 0.4 than for v = 0.27, but 

the changes are less than 2 MPa everywhere. 

5.6.4 Density 

The effects of varying the wedge 1 s density on the results of 

the model are very straightforward. An increase in density increases 

the vertical stresses due to the body 1 s weight and so a larger basal 

shear stress is needed to support it. 

A comparison of Fig. 5.37 , where the density is 2700 kg m- 3 and 

Fig. 5.38, with p = 2300 kg m- 3, with the original model (P = 2500 kg m- 3) 

supported by different basal shears as shown in Figs. 5.10 to 5. 13, 

indicates that increasing (or decreasing) the density by 200 kg m-3 

increases (or decreases) the supporting stress by about 1 MPa. 

5.7 A Long-Term Model Instability 

If the original model, with properties as listed in Table 5.1, 

is run for 10 Myr~ the solution becomes unstable, as shown in Figs. 5.39 

and 5.40. This manifests itself as an undulation in the upper surface 

(shown together with an exaggerated version in Fig. 5.39), and in the 

introduction of tensile stresses and unrealistically small compressional 

stresses into the model (Fig. 5.40). 

A similar effect to this is seen if a visco-elastic model is 

run without the provision of sufficient constraints, for example if 

one end of a rectangular model is inadvertently left free, although of 

course when this is done the instability is very much more pronounced. 



' a 10 12 I~ 

)( I KILOMETRES 
14 

SURFACE FlEXURE 

a lnltlel eurfeoo 

o de fON!!Gd cur fooo 

'I GXeggar"Qt Gd do f01'1!lat I on 

(dlepl-.ento xSI 

Ill 

Fig. 5.37: Surface displacements after l Myr in a wedge of density, 
p = 2700 kg m-3, and a uniform basal shear of 12 MPa. 
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Fig. 5.39: Surface deformation of the wedge after 10 Myr, with a basal 
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To find the reason why such a model should become unstable, several 

test models were run, the first of which was to let the visco-elastic 

cylinder, used as a test model inCh. 3 (Section 3.6), relax for 

200 time units (compared with the previous maximum of 10 units). This 

had no significant effect on the stress distribution, which was hydro

static at the value of the internal pressure, throughout the visco

elastic material. 

A second possibility was that the length of the time increments 

used was too great, but running the same model with the steps reduced 

by a factor of 10 had no effect above the 1% level. 

Finally the importance of the deformation of the grid was considered. 

The same stiffness matrix (as derived in Section 3.3 of Ch. 3) is used 

throughout the time over which the model is run, on the assumption that 

the size and shape of each element does not vary significantly. In the 

case of the 10 Myr model, the displacements are up to 40% of the 

dimensions of the element in some places, and so might be significant. 

It was more complicated to test this possibility than the previous 

two, in that the main visco-elastic subroutine had to be restructured to 

allow a re-definition of the finite element grid at given intervals. 

However~ when this was done it did not provide a solution to the problem. 

As an example, Fig. 5.41 shows the results of re-running the model of 

Fig. 5.39, but re-gridding every l Myr. The resulting surface is 

slightly different, but the instability is still present and the stress 

system shows the same features as before. 

Therefore it appears that this instability is due to a combination 

of the finite element method used (Ch. 3, Section 3.4), the grid used, 

where the free surface is not horizontal and is not constrained in the 

x-direction, and the length of time over which the model was run. 
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The Maxwell time for this model is 

(Equation 3.35) 

= 0. 1 Myr , 

so that even after 1 Myr, a rectangular, symmetric model would only 

have small remaining deviatoric stresses. 

In the case where tm is reduced by a factor of 10 (Fig. 5.33) 

by increasing E to 100 GPa, the instability can be seen on the upper 

part of the surface slope, though its effect is smaller because the 

model is less compressible. Conversely, if tm is increased by a factor 

of 10, by decreasing E to 1 GPa, the model is still stable after 10 Myr 

(see Fig. 5.42; the exaggerated curve is omitted since the displacements 

are 1 arge). 

The deviatoric stresses in the model of Fig. 5.12 (run for 1 Myr 

with a basal stress of 12 MPa) were all below 8 MPa, as mentioned 

earlier, so that even in this asymmetric model the stresses are nearly 

hydrostatic. This model was then left to relax for a further 9 Myr 

(or 90 t ) to give Fig. 5.39. During this time, because the material has 
m 

a Maxwell rheology (Ch. 3, Section 3.4), deviatori.c stresses in any 

element tend to relax. However all the elements are interrelated so 

that the deviatoric stresses in one may only relax at the expense of 

those in adjacent elements. If some imbalance were set up, perhaps due 

to the extra degree of freedom of the surface nodes, then it might be 

accentuated over long periods. 

In the first model run for 10 Myr (Figs. 5.39 and 5.40) the 

deviatoric stresses are at worst the same as after 1 Myr (and mostly 

reduced by c. 1 t~Pa), but the creep in each e 1 ement has resulted in 

large changes in the hydrostatic stresses. These changes can only occur 



in a Maxwell substance because of the restriction to plane strain, 

which is equivalent to varying stresses perpendicular to the plane of 

the model. 

5.8 Discussion 

In this chapter some of the features of deformation beneath 

trench inner slopes have been isolated by studying simple models. The 

importance of using visco-elastic, rather than elastic models (Ch. 4) 

is emphasized by Section 5.5.1, where elastic models could not detect 

differences between basal shear stresses of 12 MPa and of 6 MPa from 

the surface displacements, while visco-elastic models could. 
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When the uniform stress (Section 5.3) and frictional (Section 5.4) 

boundary conditions are compared, it is apparent that this model cannot 

distinguish between them. The final surface displacements and principal 

stress distributions for a shear of 12 MPa and a friction coefficient 

of 0.09 are very similar. However, both models predict the existence 

of weaker material in a shear zone along the base of the wedge, and 

emphasize its importance, in agreement with Seely (1977). 

An important difference between the uniform shear and frictional 

models is their relation to convergence rates. The basal stress applied 

depends on the relative velocity, v, in the uniform shear model (Equation 

5. 1), but not according to the frictional model (Equations 5.3 and 5.4) 

unless there is a dependence of the normal compression, crn' across the 

basal thrust on v. Any such dependence would be reduced because of 

the shallow dip (c. 11°) of the contact. The former model therefore 

predicts a correlation between the surface slopes of accretionary prisms 

and the respective convergence rates (the greater the rate, the steeper 

the slope), while the latter predicts that rate and slope should be 



independent. 

However, as Karig and Sharman (1975) point out, the size and 

consequent shape of the accretionary prism depend more strongly on 
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the rates of sediment input to the subduction zone than on the convergence 

rate, so it is difficult to distinguish between the two types of model 

on this basis. 

The results of D.S.D.P. Leg 66 (Moore et al., l979b) show that 

the whole trench slope has been lifted up (during the Quaternary) at 

rates varying from 400 m Myr- 1 at the toe to less than 200m Myr- 1 at 

the landward end of the portion taken for the model. However, none of 

the models in this chapter shows uplift for the whole of the upper 

surface, so there must be some important effect other than the shear 

on the base of the wedge. Watkins et al. (in press) suggest that 50% 

of the sediment input to the Middle American Trench is subducted, 25% 

is accreted onto the toe of the slope and 25% is carried down beneath 

the accretionary prism and then 11 Underplated 11 onto it. If this were the 

case, then the effects of accreting more sediments to the toe and of 

underplating would be superimposed on the effects of the oasal shear, and 

in particular the process of underplating would account for the overall 

raising of the wedge. A pdssible mechanism for any underplating is that 

the basal shear stress may increase with depth beneath the complex, either 

due to a thinning of the shear zone in the first model (a reduction of d 

in Equation 5.1), or to an increase in friction coefficient,~. due to 

dewatering of the fault gouge (Wang, 1980) in the second. In either 

case, the effect would be the result of the increase in lithostatic 

pressure with depth. 

The relative vertical movement of the toe and rear of the wedge 

measured is c.200mMyr- 1 , which depends on the effect of any underplating 
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as well as the basal shear on it. In the simple models of this chapter 

the relative vertical displacement after 1 Myr is 25 m for a uniform 

shear of 12 MPa, 18m for a friction coefficient of 0.09, and about 

100m for a uniform shear of 1 MPa. Thus, if all the relative movement 

is due to the interaction between weight and basal shear, then the time 

scale used is rather too large, i.e. the viscosity used, n (1022 N s m- 2 ) 

is too great (see Section 5.6.1). It was found in the models that the 

displacement in the interval 0.1 Myr to 1 Myr was approximately linear, 

so that the likely value of n lies in the region 

1021 t n ~ 1022 N s m- 2 

(decreasing n by a factor of 10 will increase the displacements in l Myr 

by about a factor of 10, also). Underplating may alter the relative 

movements considerably, but it is considered that n for the sedimentary 

wedge is still within these approximate limits, which are consistent 

with the results of Section 5.3.4. 

The strains predicted by the finite element model are also of 

interest. Fig. 5.4 3 shows the distribution of principal strains in 

the model of Section 5.3 (with a uniform basal shear of 12 MPa), which 

occur in 1 Myr. The greatest strains are concentrated at the thrust 

plane and near the toe of the wedge, and the strains at the surface 

on the left of the model are very small (less than 1%). 

The magnitudes of the strains are low, all being less than 4%, 

which would not be sufficient to produce the deformation observed in 

cores taken from the inner trench slope on D.S.D.P. Leg 66 (Moore 

et al ., 1979a and b; Moore and Watkins, 1979). However, Moore and Watkins, 

in their description 9f drill site 491, note that deformation only occurs 

in sediments accumulated in, or near, the trench and in association with 

rapid uplift, and that this is followed by an interval of negligible 
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deformation (decreasing still more up-sloDe) and slow uplift. If this 

were the case, then the greatest strain would occur as the sediments 

were accreted to the toe of the wedge, and therefore the strains would 

be much smaller as predicted by the finite element model. 

A comparison of Figs. 5.43 and 5.44 (which shows the strains after 

Myr in the model of Section 5.4 with ~ = 0.09) shows that the strain 

distributions for both types of model are very similar, though the 

maximum strain for the frictional model is 5% rather than 4%. Thus strain 

analysis cannot distinguish between the two basal thrust mechanisms 

presented in this chapter. 

A further complicating factor affecting the deformation is the 

effect of variations in lithology within the wedge, especially the 

shape of material boundaries such as that between igneous crust and 

accreted sediments. These variations will be discussed in the next 

chapter. 



CHAPTER 6 

THE IMPORTANCE OF THE CONTRAST BETWEEN CRYSTALLINE BASEMENT AND 

ACCRETED SEDIMENTS 

6.1 Introduction 

In the previous chapter, the wedge of accreted sediments forming 
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the inner wall of the Middle America trench was modelled, assuming that 

its landward end remained fixed horizontally, in other words taking the 

crust behind it as a fixed frame of reference. In reality, however, the 

thicker end of the wedge is supported by more accreted sediments and, 

further back, by the crystalline basement rocks of the overriding plate 

(continental crust in the case of the Middle America subduction zone, but 

igneous oceanic or island arc crust in the case of an ocean-ocean plate 

boundary; see Fig. 1.2). 

As mentioned in Chapter 1 (Section 1.4), the position and shape of 

the lithological boundary between accreted sediments and igneous crust 

have not been clearly defined by observations. In this chaoter, results 

are presented of the analysis of models of two subduction zones where the 

shape and extent of the crystalline basement differ appreciably, to 

ascertain the effect of these different structures on the stresses 

within the accretionary prism and upper slope basin, and on the shaoe of 

their upper surfaces. 

The boundary conditions used for these models were the same as those 

for the models of Chapter 5 (see Section 5.2.2), excert that by holding the 

landward end against horizontal displacement, a position further back in 

the overriding plate was imrlicitly taken as a fixed frame of reference. 
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6.2 A Model of the Middle America Subduction Zone 

6.2.1 Description of the model and a first solution 

This model was based on the same set of data as the wedge in 

the previous chapter, namely the D.S.D.P. transect of the Middle 

America trench (Fig. 1. 3, Ch. 1; Moore et al., 1979) and the finite 

element grid used is shown in Fig. 6. 1. The latter also shows the position 

of the lithological boundary based on Fig. 1.3 (the material type of each 

ele~ent is indicated in Fig. 6.1 by: 1 for crystalline basement, 2 for 

tectonized sediments), rocks on either side being assigned appropriate 

properties which are listed in Table 6.1 (see Ch. 2, for the justification 

of these figures and definition of symbols). 

Lithological type EIGPa \) p/kgm-3 n/N s m- 2 

Continental basement, 1 90 0.27 2850 1025 

Accreted sediments, 2 10 0.27 2500 1022 

Table 6.1: Properties assumed in modelling the Middle America subduction 

zone. 

Figures 6.2 and 6.3 show the surface displacement and principal 

stress distribution, respectively, obtained by applying a uniform basal 

shear of 12 MPa to the body and allowing visco-elastic deformation for 

1 Myr. T~is value of basal stress was chosen because it was the equilibrium 

value for the model in Section 5.3 (Ch. 5) which represents the toe of 

this model (from x = 22 km, onwards). 

Although the boundary conditions on the toe are now different, in 
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that the boundary of the simpler model (represented by the nodes at 

x = 22 km) was fixed, but is now free to move both vertically and 

horizontally, the applied stress was still found to keep the slope of 

the toe nearest to equilibrium. The average displacement of the 
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surface is maintained at c. 20m, although now there are somewhat larger 

vertical displacements in places. The displacements near the trench are 

similar to the simple toe model, but further back they become greater 

(downwards), being about 70 m near the trench slope break (at x = 22 km) 

which is a factor of 2 larger than in the previous wedge model. 

The most striking feature of the surface deformation (Fig. 6.2) is 

the draping of the sediments at the front of the continental section. The 

nodes on the continental part of the model show very small displacements, 

of up to 10 m upwards and 5 m to the left, while the surface nodes on 

the accreted section show increasing subsidence to a maximum of 80 m, 

just behind the trench slope break (as defined by the change in surface 

slope in Fig. 6.1). The displacements then become smaller again over the toe, 

as described above. 

The stress system in the accretionary prism is close to hydrostatic, 

with deviatoric stresses of less than 12 MPa everywhere. The deviatoric 

stresses are largest at the base (where the shear stress is applied) and 

drop to less than 5 MPa along the surface, except in the two elements 

closest to the continental block where there are (near-horizontal) 

deviatoric tensions of c. 7 MPa. Typical deviatoric stresses in the 

accreted sediments are c. 6 MPa, indicating that they are close to equilibrium 

as expected after 1 Myr (the Maxwell time for these sediments is 

tm ~ 0.06 Myr). 

In the continental crust, however, there are deviatoric stresses 

of up to 50 MPa. The distribution of these stresses suggests that they are 
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caused by rotation of the continental crust away from the fixed (landward) 

boundary, due to the movement exerted by the weight of the undercut part 

of the basement and by the basal shear stress. 

Near the surface, the mean stresses are in the tensional region, 

as defined by the failure criteria of Section 2.3, Ch. 2, and vary, through 

the open crack and intermediate regions, to compressional at the base. 

However, the program does not predict any failure when the tensile strength 

of the basement rocks is taken to be T = 50 MPa, the closest to fracture 

being a value for the degree of failure (see Section 2.3) of C z 0.3. On 

the other hand, if T = 10 MPa for this section, a value which is still 

consistent with those given in Section 2.3.5, then tensional failure is 

predicted at the top of the continental crust, the angle of failure being 

taken between 75° and 80°, corresponding to high-angle normal faulting. 

There is still no failure at the base of the continental crust, the 

element closest to failure having C z 0.7, where the dip of the plane 

where failure would be most favoured is c. 40° landwards. 

Failure predictions in the sedimentary wedge are complicated by the 

presence of pore water, and this will be discussed in Section 7.1 of the 

next chapter. 

·As with the models of the toe of the accretionary prism in Ch. 5 

(see Section 5.8), the strains in this equilibrium model are all small, 

being less than 0.3% in the continental basement and rising to a maximum of 

5% along the base of the accreted wedge. Strains on the lower slope are 

between 1% and 2%, the larger values being nearer the toe. This supports 

the suggestion that most of the strain observed in the accreted sediments 

occurs as they are being scraped onto the toe of the wedge. 
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6.2.2 The extent of the continental basement 

To find the effect of the edge of the continental crust on the wedge 

deformation, several models were run in which its position was varied. 

Figure 6.4 shows the first of these models, and Fig. 6.5 the surface 

deformation after 1 Myr, for comparison with the original model of 

Figs. 6.1 to 6.3. The front of the continental crust has the same shape 

as before, but has been moved backwards by 3 km at depth, leaving the 

position where it reaches the surface unchanged (consistent with the 

D.S.D.P. Leg 66 results; see Fig. 1.3). This change has removed some of 

the supporting basement from beneath the upper slope, and at the same time 

allowed more of the accreted sediments to be forced under the overhanging 

part of the continental crust, with the result that the upper slope has 

subsided more in front of the continental edge, but that the latter has 

been lifted up more than in Fig. 6.2. The maxi~um uplift has been increased 

from 10m to 20 m, while the subsidence just behind the trench slope 

break has increased from 80 m to 90 m, the greatest increase in subsidence 

being from 50 m to 75 m near the contact with the crystalline basement. 

The region of subsidence in model 1 of this section (Fig. 6.4) has 

therefore deepened and broadened, while the transition from uplift to 

subsidence at the trailing edge of the upper slope has become sharper. 

Displacements on the lower slope have all been increased by about 5 m 

(downwards). 

The resulting stress distribution (not shown) is very similar to the 

original model (Fig. 6.3), the only difference being that the stresses 

in the continental crust are reduced. This is interoreted as being a 

result of the reduced weight of the crystalline basement. Tensional 

failure (normalfaulting) is more strongly favoured in the upper crust, 

because the turning moment (as described in Section 6.2.1) has been 
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increased by cutting back the lower part of the continental basement, 

but, because of the reduced weight of crystalline basement present, 

compressional failure is less likely (i.e. the degree of failure is 

larger, C ~ 0.8) at the base. 
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Model 2 of this section is shown in Fig. 6.6 and the resulting 

surface displacements, under the same conditions as before, in Fig. 6.7. 

In this case the leading edge of the continental basement has been moved 

forward 3 km from the initial position of Fig. 6.1, rather than back, and 

the effects on the surface deformation are as predicted by the previous 

two models. In other words, the uplift at the top of the continental 

crust has been reduced, to less than 5 m, the subsidence behind the trench 

slope break (again as defined by the slope of the model surface) has been 

reduced, to about 60 m (cf. 80 min the original model), the draping over 

the edge of the continental basement has become less steep, and the 

downward displacements of the lower slope are reduced by c. 5m (although 

the latter has kept the same shape). 

The principal stress vectors for this model are shown in Fig. 6.8. 

It can be seen that again they are of the same type as in Fig. 6.3, but 

with the stress levels (both total and deviatoric) reduced in the 

crystalline basement, the deviatoric stresses being less than 20 MPa 

everywhere, except at the contact with the accreted sediments where they 

rise to 35 MPa. 

The tensional failure in the upper part of the model is no longer 

predicted (the lowest value for Cis+ 0.6), because the rotation of the 

basement is counteracted more by the thicker section of igneous rocks. 

Compressional faulting at the base, on a plane dipping at 30° to 40° 

landward, is more favourable than before, although the degree of failure 

is still C 0.6. 
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Figure 6.10 shows the effect of continuing the crystalline basement 

down to the basal thrust plane, without any overhang (model 3 of this section; 

Fig. 6.9). The displacement of the upper surface is similar in shape to 

that of the initial model of Section 6.2. 1 (Fig. 6.2), but all displacements 

are reduced, the maximum subsidence, just behind the model 1 S trench slope 

break, being c. 60 m. 

This effect is increased in model 4 (Figs. 6.11 and 6.1~), where the 

igneous basement has been continued beneath the whole upper slope to the 

trench slope break, and here the surface is held almost stationary for 

its whole length. The maximum vertical displacement is c. 30 mover the 

end of the tongue of continental rocks. 

Both the last two models (3 and 4) have significantly different stress 

distributions from those of the other models in this chapter (see Figs. 

6.13 and 6.14), in that the near-horizontal principal stresses at the top 

of the continental section are compressional, not tensional. The turning 

moment exerted by the weight of the igneous crust has been nullified by 

continuing it down to the basal thrust. Thus, in these two models, the basal 

shear stress is transmitted through the igneous basement as a compression 

which is approximately parallel to the boundary with the accreted sediments. 

No fracturing is predicted anywhere within the continental crust in either 

model. 

The strains in all the models of this section are similar to those 

in the equilibrium model. By bringing the continental basement forward all 

the strains in the model are reduced, but only by 1% at the most. The 

greatest strain in the accreted sediments for the model of Fig. 6.11 is 

4% (corresponding to shear along the base) rather than 5% in the original 

model. The strains in the continental basement are reduced to 0.1% and 

those along the upper part of the inner slope to 0.8% (cf. 0.3% and 1% 



------------------------
HAH.23 , T=IHYR, S=1211PA 

0 X I Kn..at:ne 42 

0 ~1'::---~--~-~~--------------·l 

14 

I 

__________ _j 
--------- -________ _, 

Fig. 6.9: Model 3 of Section 6.2.2, where the con t inental basement is in 
contact wi t h the basal thrust for 10.5 km fur the r than i n Fig. 6.1. 

----------------·------
HAM. 23 , T = IMYR, S= 12HPA 

..... 
>-

1000 
D lnl$1el .,.,_ 

0 defonled _,_ 

• ~..sed de'-•on 
Cd1ep"-te x5) 

I 
--7·---to----ts,----:::111=-

x I KIUJ£TRES 

· Zs------il----~. --·j 
Fig. 6.10: The surface displacements of the above model with a basal 

shear of 12 MPa, after 1 Myr. 



MA/1.24 , T=1, S=12MPA 

0 0 

14 

HAM. 24 
tGDO 

1!110 

I 
:t 
... ~ ..... 

>- I 

armL 

, 

_________________ X_I_t:_It.MTRf'S ___ =---- -------

Fig. 6.11: Model 4 of Section 6.2.2, in which continental basement underlies 
the who le upper s lope . 

----
T=1, S=1211PA 

o lnatlel _.,_ 

0 .fcrMd _,_ 
Y ~.s«< •'"-'•on 

ldl.p"-'s• IC5) 

---t----',.,.o----~,s=--- . ....~211~---25-L----~----'-=---

x I .:ILIJETRES 

------------------------------l 

Fig. 6.12: The surface displacements of model 4 (above) after 1 Myr, 
with a basal stress of 12 MPa. 



------------------- ------
f1AHo 23 lf T = 1 f1YRR 5= 1 2HPA 

WJ!IKlm S'Tire!IS c 332.6 M?A. 

o ,.....o ___ _ _____ x _1 ~!L.OXETte ---------------~~ 

0 0 0 0 .. 

- iOO ~A 

Fig. 6.13: Principal stresses in model 3 (Figs. 6.9 and 6. 10). 

MAM~24 a T=18 5=12MPA 
WAltxw.m snes c 2"n. 1 M?Ao 

O ,_.0 ----·---__ X I lCit.maRES-'---

- 100 II'A 

Fig. 6.14: Principal stresses in model 4 (Figs. 6.11 and 6. 12) 



respectively, in Section 6.2.1). 

6.2.3 The effect of variations in basal stress on the surface flexure 

Figures 6.15 ind 6.16 show the surface displacements for the 
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original model of Section 6.2. 1, with basal shear stresses of 0 and 20 MPa 

respectively. 

In the case where there is no basal shear, the displacements on the 

upper surface follow a similar pattern to the equilibrium model (with 

T = 12 MPa; Fig. 6.2), except that now the upper slope subsides more, by 

a factor of 3, c. 250m, and has forced the toe of the prism to slide up 

the basal thrust (by c. 110m vertically, 550 m horizontally). 

When there is a large basal shear, 20 MPa, Fig. 6.16 shows that 

the surface displacements change radically. There is uplift (of up to 

65 m) of the upper slope, and the lower slope is pushed backwards by 

c. 550 m and steepened (from 8.5° to 9°). In the light of the observations 

discussed in Sections 1.3 and 1.4 of Ch. 1, namely that there should be 

uplift of the lower slope and subsidence of the upper slope, this basal 

stress is considered to be too large. Even if material were being added 

to the toe of the prism, which would reduce the angle of the lower slope, 

the upper slope would still be pushed upwards. From the stress needed to 

hold the upper slope close to its original position, it may be deduced that 

the basal shear stress under the accretionary prism of the Middle America 

trench, 

T ~ 15 MPa. 

The principal stress distributions in the first two models of this 

section are also significantly different from each other. In the first 

(Fig. 6.17) where there is no basal shear stress, the clockwise rotation 

of the continental basement is greater than in the original model 
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(Section 6.2.1), increasing the total compression at the base and the tension 

near the surface, so that widespread tensional failure is predicted at the 

top, and the toe of the basement is 20~ closer to compressional failure 

(C ~ 0.4) also. The accreted sediments are not in equilibrium in this model, 

having deviatoric stresses which are typically 15 MPa and which range up 

to 25 MPa. 

In the second of these models, which has a basal shear of 20 MPa, 

the rotation of the continental basement is completely counteracted by 

the effect of pushing accreted sediments down the basal slope, and there 

is even a tendency to anti-clockwise rotation. This is shown by the principal 

stresses (Fig. 6. 18) which, near the igneous/sedimentary boundary are 

rotated so that the maximum principal stress (tension positive) is more 

nearly parallel to the boundary than in the case of zero basal shear 

(Fig. 6.17), where the minimum principal stress was aligned. 

Models may also be run, increasing the basal stress with depth 

(as suggested by Wang, 1980). However, the same general principles apply 

as for a uniform basal stress, namely, if the stress is large uplift 

occurs on the upper slope and the continental basement rotates anti

clockwise, and vice versa for a small basal shear. The results of one of 

these models, where the average basal stress under the toe of the prism is 

c. 12 MPa, are shown in Figs. 6.19 and 6.20, and are very similar to those 

for a uniform basal shear of 20 MPa (Figs. 6.16 and 6. 18), the chief 

difference being that the lower slope remains more nearly parallel to 

the undeformed position, being rotated by only 0. 1°. The form of the basal 

shear stress as a function of depth is poorly constrained, and the effects 

of varying that function are not investigat~d in this thesis. 
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Finally, the strains in all the models of this section (6.2.3) 

are still much smaller than those observed in accreted sediments (as 

were those in the previous two sections and Section 5.8 of Ch. 5) 

irrespective of the basal shear stress applied. The largest strains 

(found in each case at the base of the sediment wedge, aligned with the 

direction of maximum shear approximately parallel to the basal thrust) 

are 5%, 6% and 7% in the models with zero basal shear, a shear of 20 MPa 

and a linearly increasing shear, respectively. 

6.2.4 Material property contrasts 

The effects of changing material properties throughout a finite 

element model of the wedge type have been examined in Section 5.6, Ch. 5, 

and so it is only necessary to investigate the effects of changing the 

contrasts in those properties, in this section. In addition, it was shown 

that changes in Poisson's ratio v were only significant in that they altered 

the compressibility, 

K = 
3(1 - 2v) 

E 
(Equation 5. 17). 

Increasing v by a given percentage reduces K by approximately the same 

percentage (this relation is exact for changes from v = 0.25), so that 

increasing v by 100% (the greatest possible amount if v = 0.25) only 

increases K by a factor of 2, and the largest feasible decrease in v 

(by, say, 50% to v = 0.125) decreases K by the same factor. K is inversely 

proportional to E1 which can take a wider range of values than v, and so 

variations in Young's moduli are modelled here, rather than in Poisson's 

ratios. 

Figure 6.21 shows the effect on the surface deformation of increasing 

the Young's modulus (and hence decreasing the compressibility) of the 
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accreted sediments, E2, by a factor of 9, so that now E2 = E1 , the 

Young 1 s modulus of the crystalline basement. The maximum subsidence is 

reduced by this change to c. 60 m after 1 Myr (cf. 80 m in the equilibrium 

model of Fig. 6.2) and the lower slope moves up by c. 20m. Both these 

effects occur because of the reduced compressibility of the thicker oart of 

the accreted sediments. This also has the effect of nullifying the boundary

parallel compressional stresses that were previously within the crystalline 

basement and reducing the tensions at its upper surface (Fig. 6.22; cf. 

Fig. 6. 3) . 

It should also be noted that, in Fig. 6.22, there are signs of the 

instability discussed in Section 5.7, Ch. 5, in that near the toe of the 

model some elements have anomalously low hydrostatic stresses. 

All the trends in surface displacements and principal stresses are 

reversed if the Young 1 s modulus for the accreted sediments, E2, is reduced 

to l GPa (Figs. 6.23 and 6.24), except that here the changes are more 

marked. The upper slope is lif"ted up by up to 55 m (after 1 Myr), and the 

lower slope is depressed by c. 200m, while the greatest stresses in the 

crystalline basement are concentrated along its boundary. The surface 

deformation is inconsistent with all observations of accretionary prisms, and 

bearing in mind that the angle of the lower slope in Fig, 6.23 is changed 

very little so that the basal stress is still close to the required 

equilibrium value, it is concluded that the Young 1 s modulus for accreted 

sediments must be significantly greater than l GPa. 

The effects of varying the viscosity of the accreted sediments, n2, 

with respect to that of the igneous crust, is to change the amount of 

viscous deformation in that part of the model. If n2 is increased to 

1023 Nsm-2 (from 102~ Nsm- 2 )·, the surface displacements of the model are 

reduced to less than 20 m everywhere, and there are larger deviatoric 
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stresses (by a factor of 2) remaining in the accretionary prism. If n2 

is reduced to 1021 N s m-2, then the displacements of the original model 

are amplified, giving a subsidence of c. 600 m in the upoer slope and 

uplift of c. 200m on the lower slope, after 1 Myr. 

Figure 6.25 shows the effect of increasing n2 and reducing E2 together. 

Comparison with Fig. 6.23 shows that the reduction in E2 has had the same 

type of effect as before, though the reduction in viscous creep has modified 

the displacements somewhat. In contrast, Fig. 6.26 shows the effect of 

decreasing both E2 and n2 together. The subsidence of the upper slope is 

now 1100 m, even larger than obtained by reducing n2 alone (600 m; see 

last paragraph), supporting the conclusion reached earlier that E2 > 1 GPa . 

. The reduction of n2 to 1021 N s m-2 reduces the Maxwell time, tm, 

for the sediments to an extent where instabilities are noticeable in 

the stress distribution (Section 5.7, Ch. 5), and increasing E2 at the 

same time decreases t still further making a solution of this type unstable 
m 

and so impossible to model over l Myr. However, the results of the last 

two paragraphs indicate that the effective viscosity of the accretionary 

prism, n2, must be within the limits 

1021 < n2 < 1023 N s m-2 

whatever the value of the Young's modulus, E2 . This result is consistent 

with that of Section 5.8, Ch. 5. 

The final parameter whose variation is to be studied is the density 

of the accreted sediments, p 2. Figs. 6.27 and 6.28 show the surface displace

ments when p 2 = 2300 kg m-3 and p 2 = 2700 kg m-3, respectively (originally 

p 2 = 2500 kg m-3). The upper slope subsides more for a higher density and 

prevents the toe from being pushed so far down the basal slope, and vice 

versa for a lower density (the displacements of the upper slope are 57 m 

and 100 m, and of the toe are 32 m and 14 m respectively for P? = 2300 
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and 2700 kg m- 3). The stress systems in the two models are almost identical 

to the original model (Fig. 6.3), except that the greatest compressions 

are 395 MPa (p 2 = 2300 kg m-3) and 390 MPa (p 2 = 2700 kg m-3) as opposed 

to 392 MPa (p 2 = 2500 kg m-3). This stress is within the continental 

basement and is therefore decreased when the accretionary prism 

supports it more, which is the case for an increase in p2, although this 

effect is sma 11. 

6.3 A Model of the Inner Wall of the Central Aleutians Trench 

6.3. l The initial model 

Figure 6.29 shows the finite element grid and the material 

properties in each element for a model based on the cross-sections of 

the central Aleutian Islands subduction zone shown in Fig. 1.8 (Grow, 1973a). 

The model has been divided into 4 lithological sections, as shown in 

Table 6.2, although material types 2 and 4 are given the same properties 

in this initial model. 

Lithological type E/GPa v p/kg m-3 n/N s m- 2 

Terrace sediments 1 0.22 0.38 1900 1Q20 

Older terrace and 2 10 0.27 2500 1022 
accreted sediments 

Igneous oceanic crust 3 35 0.25 2800 1 Q2 3 

More recently accreted 4 10 0.27 2500 1 Q22 
sediments 

Table 6.2: Material properties used in modelling the central Aleutians 

subduction zone 
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The boundary conditions on this model are similar to those on the 

previous accretionary models, namely; the upper surface is free, the 

landward end is fixed horizontally, the seaward end has a lithostatic 

load due to sediments in the trench (of density, 1700 kg m-3), and a shear 

stress is applied to the base. The base of this model is divided into 

three straight segments to approximate the curvature of the subducted 

plate, which is assumed to come into contact with the mantle at 15 km 

depth. The mantle is assumed to have a low viscosity so that the shear 

transmitted to the overlying crust from the contact between the subducted 

plate and the mantle is negligible, and thus only the shear applied 

directly to the overriding crust need be considered, as indicated in 

Fig. 6.29. The base of the igneous, oceanic or island arc, crust is 

supported by the underlying mantle, and since it is impossible to model 

this support by applied forces (see Section 4.2.2, Ch. 4), those nodes 

along that part of the base are held in a direction perpendicular to the 

base, as are the nodes on the thrust plane, but have no applied forces. 

The equilibrium basal shear stress is again found by trial and error. 

Figs. 6.30 and 6.31 show the surface displacements after 1 Myr, when there 

are no basal stresses and a basal shear of 10 MPa, respectively. These 

models show very similar features to those of Section 6.2 (especially the 

subsidence of the upper slope immediately seaward of the edge of the 

igneous crust, when there is no basal shear), the most obvious difference 

being the increased subsidence in the terrace region, due to the weak 

terrace sediments. 

The closest model to equilibrium is given by a basal shear of 5 MPa, 

and the resulting surface deformation (Fig. 6.32) shows several interesting 

features. There is subsidence of the terrace by up to 25m forming a 

depression behind a ridge of accreted sediments which forms the terrace 
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edge. Immediately seaward ·of the terrace edge there is subsidence of 

c. 20 m which decreases to 15 m and then remains uniform as far as the 

break in the lower trench slope. The subsidence of the toe varies from 

20 m at the break in slope to 40 m at the base, thereby increasing the 

slope of the lower part and emphasizing the break in slope (at x = 85 km, 

i.e. 15 km from the trench). 

The stresses in the model (Fig. 6.33) are all close to hydrostatic, 

and no failure is predicted anywhere. Deviatoric stresses in the 

tectonized sediments are less than 1 MPa, except close to the noint of 

subduction (where the subducted plate comes into contact with the over

riding igneous crust) where they reach 5 MPa. They are higher in the 

igneous crust, in response to the compression exerted by the accretionary 

wedge, at 7 MPa near the surface and up to 12 MPa near the point of 

subduction. These low deviatoric stress levels confirm that the model is 

close to equilibrium. 

The strains in this model are small (as were those in Section 6.2, 

and Section 5.8 of Ch. 5), the greatest value being 3% at the base of 

the accretionary wedge, representing shear along the basal thrust. This 

strain does not depend significantly on the shear stress applied, and is 

4% for the case of zero basal shear, and 4.5% when there is a shear of 

10 MPa. The strains in the terrace sediments are vertical compactions 

of between 1% and 2% in all cases, with horizontal strains of less than 

0.3% (tensional for zero basal shear, compressional in the equilibrium 

model), consistent with the observation that sediments in upper slooe and 

terrace basins are not significantly deformed. 
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6.3.2 Variation in the extent of the overriding igneous crust 

Grow (1973a) showed that two models for the position of the igneous 

crust were consistent with the geophysical data (as shown in Fig. 1.8), 

so several models were run to find the effect that this has on the surface 

deformation of the accretionary prism. The most significant result of this 

modelling is illustrated by Figs. 6.34 to 6.37. These show two models with 

their resulting surface displacements, one (Figs. 6.34 and 6.35) in which 

the igneous crust has been moved back 20 km from its original position 

(Fig. 6.29) and the other forward 20 km (Figs. 6.36 and 6.37). 

In both cases, there is uplift of the accreted sediments above, and 

slightly seaward of the point of lithospheric subduction. This is very 

clear in Fig. 6.35, where the sediments in that position have been lifted 

up by 18m, while the terrace edge of the initial model has subsided by 

28m, giving a relative movement of 46 m (compared with 19 min the opposite 

sense found in the original; Fig. 6.32). 

The effect is less marked in Fig. 6.37. Here the subsidence of the 

terrace relative to its leading edge is reduced (to 10m) because the 

latter is not held up as effectively as in the original model, and the 

accreted sediments above the point of subduction have subsided less 

(5 m, cf. 19m in Fig. 6.32): In addition, the slope landward of this point 

has subsided more than in the original model, emphasizing the uolift (reduced 

subsidence). 

The stress systems .for these two models are similar, save for elements 

which change from one lithology to the other, and for the change in 

position of the edge effects at the point of subduction. The deviatoric 

stresses are higher in the igneous basement than in the accreted sediments, 

and there is a stress concentration on both sides of the boundary between 

the two. 



CAL. 22 I T = l HYR, 5=5HPA 
------l 

I 
I 

0 0 ·--------···---~-~~~~~~ ______ :___________1 

4 I 

18 -------- __ j 
Fig. 6.34: A model of the central Aleutians subduction zone in which the 

igneous crust has been moved back 20 km from its original 
position (see Fig. 6.29, which also defines mate r ial ~ypes) . 

..------·-·-·-·--·-------------·-·-------

CAL. 22 I T = 1 HYR, 5=5HPA 

..... 
>-

: t 
5200 L 

-----=~CE ~-~ 
a 1 n1~1el eur feoe I o doror-d ...r-feoe 

• exeggereud defot'M~ 1on ~ 
(d I ep l-aenu x5l 

Fi g. 6.35: The surface deformation of the above model afte r l Myr, with 
a basal shear of 5 MPa. 



CAL.23 I T=lt1YR ELEMDH HESH 

1\IITII H'. TE;<JJ.:.. I~"'.J!:i?Sl 

O r- ~--- --~ -----·--···-~J.~ IL9~TR~_S ________ ~ ___ ---~1 

I 
r 

I 
i 
' 

-------------- -- ---------
__ _j I 

I 

-------------------------------------
_ _j 

Fig. 6.36: A model of the central Aleut ian s subduction zone in which the 
igneou s crust has been moved forward 20 km from its original 
positi on (see Fig . 6.29) . 

CAL.23 SURFACE FLEXLRE l 

>-

~~ 
: t 

l 

= ~ 
5600 L 

' 

~ ~ 

6400 

7000 

a Init ial eurfeoe 

o defONted eurfece 

• exeggoreted def~et l on 

(d I • p leoetlletlt • x5) 

i 
- ·-·--· ---------- ..L.. ------ ·-··- ' --------- L_ ______ _J ____ __ _ _____ l --- .. . --l o 20 40 60 eo roo 

X I KILOHETRES J 

' 
I 

Fig. 6.37: The surface displacements after 1 Myr of the above model with 
a basal shear of 5 MPa . 



129 

Finally, Fig. 6.38 shows a model where the igneous crust has been 

thickened beneath the terrace by 2 km, and Fig. 6.39 the resulting 

surface deformation. The displacements are reduced along the upper slope 

so that it becomes steeper, and subsidence in the terrace is increased. 

Both these effects result from the lack of more compressible material 

above the igneous crust, which would allow greater displacement on the 

upper slope and which would, by being forced landward, also be pushed up, 

supporting the terrace sediments from beneath. However, this change in 

displacement pattern is not great enough to distinguish between this and 

the original model (Fig. 6.32), showing that the finite element model is 

more sensitive to the lateral extent of the igneous crust than to its 

thickness. 

6.3.3 Variation in material properties of the toe 

The model of the central Aleutians subduction zone (Fig. 6.29) was 

shown with 4 different lithological types, only 3 of which were 

distinguished in Table 6.1. For this section, models were run in which the 

accreted sediments at the toe of the wedge were given a lower Young's 

modulus, E4 = 1 GPa and a lower viscosity, n4 = 1021 N s m-2. These reductions 

are intended to represent the fact that the accreted sediments become 

more lithified further back from the trench, thereby increasing both these 

parameters, E and n. The effects of decreasing E4 and n4 in the toe are 

very similar, and the surface displacements are only shown for the 

reduced value of E4 (Fig. 6.40). The only significant effect on the 

model is to steepen the lower slope as shown, but otherwise the deformation 

of the whole model is unchanged. Fig. 6.41 shows the result of reducing 

E4 and n4 together, which magnifies the effect and shows clearly that, 

if there is an increase in .the ri gi di ty of the accreted sediments with 
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distance from the trench, then there will be a corresponding change in 

the trench inner slope. If this lithification occurs over a comparatively 

short distance, then a break in the trench slope might appear as a distinct 

feature, as in Fig. 6.41. 

6.4 Discussion 

The most important result of this chapter is the contrast between 

the two plate margins discussed. In the first, the Middle America trench, 

the stress patterns varied significantly with the shape of the leading 

edge of the continent, in particular because of the postulated landward

dipping contact between continental crust and accreted sediments, which 

forms an overhang and can give rise to normal faulting near the surface 

and the possibility of high angle-compressional failure at the point of 

lithospheric subduction. These might both be aspects of the type of 

tectonic erosion postulated by Hussong et al. (1976) and Curray et al. 

(1977), as described in Section 1.4, Ch. 1 (see Fig. 1.7). This behaviour 

was not observed at all in the central Aleutian model. 

A further difference between the two, is the equilibrium basal shear 

stress; 12 MPa for the Middle America model, but only 5 MPa for the central 

Aleutians model. The convergence rate for the first margin is 60 mm yr-1 

(Karig et al., 1978) and for the second 70 mm yr-1. The latter value is 

derived from a calculation using the plate motions giyen by Minster and 

Jordan (1978), which gives 84 mm yr-1 for the rate at an angle of 60° or 

50° to the trench axis, or normal convergence of 73 or 64 mm yr-1. So 

the central Aleutians have a normal convergence rate at least as big, 

if not greater than that of the Middle America trench, and yet show less 

than half the basal shear stress. 

Using the results of Ch. 5, there are two possibilities, one arising 
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if a shear zone model is considered, the other for a frictional model of 

the basal shear. In the first case, there may be a difference in the material 

available to form the shear zone, so that either its viscosity, n , s. z. 

is lower or its thickness, d, is greater in the Aleutian model (see Equation 

5.1). In the second the gouge along the basal thrust may be of a different 

composition, reducing the coefficient of friction, ~ (Equation 5.3; the 

thickness of the two sedimentary complexes are similar so that changes in 

on are unlikely to cause the difference in basal shear). 

Whatever the mechanism for the difference in basal shear, the latter 

is larger for the accretionary prism with the higher angles of dip on the 

surface and base, as predicted by Section 5.5, Ch. 5 (the surface and basal 

dips for the Middle America prism are 8.5° and 11°, and for the central 

Aleutian accretionary prism 4° and 6°, respectively). 

A similarity between the two models is the importance of the 

position of the overriding basement. In the first set of models it was 

shown to dictate the position of the region of subsidence in the upper 

slope, which might eventually give rise to an upper slope basin. The draping 

of the accreted sediments from the continental basement would then represent 

the upper slope discontinuity, although:the normal faulting predicted 

behind this position might represent this feature instead (see Section 1.4, 

Ch. 1). 

In the second set of models {of the central Aleutian trench inner slope), 

the position of the point of subduction was marked on the surface by a 

region of uplift (or reduced subsidence). The model therefore indicates 

that the point of subduction defines the seaward edge of·the terrace or 

upper slope basin, so that in Grow's (l973a) model (Fig. 1.8), the over-

riding igneous crust would extend beneath the terrace to its edge, and meet 

the subducted oceanic crust beneath that point. 
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In Fig. 6.32 it was noted that the break in the lower slope of the 

model was accentuated by the surface displacement, and even more so if 

there is an increase in E and n of the accreted sediments as they 

become more lithified further from the trench (Figs. 6.40 and 6.41; the 

same type of effect is a 1 so shown by severa 1 of the mode 1 s of the Middle 

America trench in Section 6.2, e.g. Fig. 6.2). This feature might represent 

the trench slope break, nearer to the trench, where the accreted sediments 

have been built up to the surface slope dictated by the basal shear stress 

(as described inCh. 5). This interpretation predicts that, in an accretionary 

complex where the point of lithospheric subduction is a long distance from 

the toe (e.g. over 200 km in the Lesser Antilles), there would be two 

distinct features; a trench slope break comparatively close to the toe 

(at 15-20 km), and a second region of uplift above the ooint of subduction. 

This is the suggestion made by Westbrook (1975) for the origin of Barbados, 

as described in Section 1.4.1, Ch. l. 

Finally, the strains in all the models in this chapter are small. 

The maximum value in each case is at most 7%, and corresponds to shearing 

along the basal thrust, while the strains along the inner slope are 1-2%. 

This confirms that most of the deformation observed in accreted sediments 

occurs while they are being accreted at the toe of the prism, as 

suggested in Section 5.8, Ch. 5. 



CHAPTER 7 

FAILURE WITHIN THE UPPER PART OF A SUBDUCTION ZONE, AND DECOUPLING 

ON THE BASAL THRUST PLANE 

7.1 Pore Pressure and its Effect on Rock Fracture 

Hubbert and Rubey (1959) showed that the effective stress within 

sediments containing pore water is 

0 eff = a + P 
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7. l 

(see Ch. 5, Section 5.4.4, Equation 5.5), where p is the pore pressure 

and a is compressive (and therefore negative) at depth. The effective 

stress, aeff' must then be used in the failure criteria of Ch. 2, Section 2.3. 

The pore pressure may, in general, take any value between the 

hydrostatic value caused by the head of water, how g (Equation 5.6), and the 

lithostatic pressure h 0 g (Equation 5. 7), where ow is the density of water 

and p the density of rock. The amount of overpressuring (reoresented by 

the factor fin Equation 5.7) depends on the permeability of the rock; 

if the permeability is low then the pore pressure will approach the mean 

stress at a given point, but if it is high the pore pressure will be close 

to h 0 g. 
w 

If this value is assumed to be correct for the accreted 

the models of Section 6.2, in 

of Figs. 6.1 to 6.3, modelling difficulties arise. T e assumption of 

p = h 0 g implies that the water w 

permeates the entire 

is, that it 

its weight is carried by the 

in this case to be the basal thrust plane. 

are applied to the surface of the model, as mentioned 

4.5, Ch. 4. 
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However, if sediments are under c. 4 km of water,~ 

point, P, at a depth of less than c. 2 km, 

p = hw Pw g > h p g 7.2 

(where sea level to P, and h is the depth from the sea 

see Fig. 7. 1 ) . 

sea level 

sea bed 
p h 

p -

Fig. 7.1: Illustration of parameters used in Section 7.1. 

The implication of Equation 7.2 is that when 

added to the mean stress (om "" -h p g, because the weight of 

is supported by an impermeable layer at greater depth it becomes 

tensional, so that the upper 2 km of the sediments c support little or 

no shear stress (they fail in the tensional regi n with om> 0; see 

Section 2.3, Ch. 2). This result cannot ap to the sediments in an 

accretionary prism, because it implie that a sedimentary structure with 

surface topography, containing p e water, cannot exist beneath several 

kilometres of water. It do , however, apply to sediments which are not 

lithified, and is ysical reason why unconsolidated marine sediments 

are flat lying cept where there are effects due to currents) and do 

not accumul Le on sloping surfaces. 

the other hand, if sediments under water are well lithified, 

~en the effect of the overlying water is rather different, because now 
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-the sediments are impermeable and so must support tho weight of the water 
., "-'"""" .. "' 

"'h'"'"' +ho':'. Using the ~ notation as~ Fig. 7. 1 , the stress at 

point P must support a depth (hw - h) of water and a thickness h of 

sediments, so that if the stresses are lithostatic, 

0 =-(hw- h) pwg- h P g :::- - k. (e~e..>)-o- "~(...J1s 7.3 
.t.~ .... ~g . . 

Now, the sediments,-~ 1mpermeable, may still have significant 

porosity, so that the pore pressure, which will in general be greater 

than h o g, must be added to the stresses to find the effective stresses 
w It-! 

0 eff = 0 + P 

with p = -f 0 

(Equation 7.1) 

7.4 

where f is the overpressuring factor, following Hubbert and Rubey (1959). 

Note that compressional stresses are negative, while pressure, and in 

particular pore pressure, is conventionally a positive quantity. 

When sediments are laid down under several kilometres of water they 

are at first unconsolidated, and the pore pressure due to the head of 
( su. € 'V-'-•~!> "1.1 -£ 1. 3 , ....:<:< f .. t....., e ... ~ ). 

water opposes compactio~~- However, as the sediments become 

lithified and the pores become isolated, reducing permeability, pore water 

is excluded and the water above begins to exert a force on them which 

tends to enhance lithification, until finally, at some depth beneath the 

sea bed, the entire weight of the water is supported and Equations 7.3 and 

7.4 apply. 

These factors make a calculation of the effective stresses within the 

accretionary wedge very difficult. Clearly the accreted sediments are 

sufficiently lithified to support the surface topography (in Ch. 6 it was 

concluded that they must have a Young's modulus of at least 1 GPa), but 

this is not the case for at least the upper 500 m. Lee (1973) presents 

data for vane shear strengths and water content of the sediments cored 

on D.S.D.P. Leg 19 (near the Aleutian trench), as do Bouma and Moore (1975) 



for Leg 31 (in the Phillipine and Japan Seas), which show that the 

sediments have a very high water content and are very weak. Leg 19 
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results show that the shear strength of the sediments is less than 0.4 MPa 

down to at least 600 m, the limit of the data, and Leg 31 results 

similarly show that the unconfined shear strength of the sediments is 

less than 0.1 MPa down to at least 300 m, this last figure being from 

hole 298 in accreted sediments on the inner trench wall of the Nankai 

Trough. 

It is impossible to say, either at what depth in the accretionary 

wedge the sediments are sufficiently lithified so that the load of the 

water should be applied, or what pore pressure should be used to find the 

effective stresses for failure prediction. In addition it is not clear 

whether the load of the water should be applied as a set of forces on 

the body,therebycreating a deviatoric stress system superimposed 

(non-linearly since the sediments have a visco-elastic rheology) on the 

tectonic stresses, or as a simple addition of a hydrostatic stress, 

-hw Pw g, at a 11 points in the accretionary prism. 

This thesis does not provide a solution to the above problems, and 

the accretionary wedge was modelled in all cases without any loads due 

to the water, and the failure criteria of Section 2.3, Ch. 2, could not 

be applied to the tectonized sediments in the model, because the 

effective stresses could not be calculated. 

However. these problems do not apply to the overriding basement 

rocks, which are assumed to contain no pore water, and the failure 

criteria of Section 2.3 are applied to this region both in this chapter 

and in Ch. 6. 



7.2 A New Basal Boundary Condition 

All the wedge models analysed so far (Ch. 5, Ch. 6) have had 

shear stresses applied to their base. This implies that the subducted 

plate is decoupled from the wedge by the basal thrust plane, with the 

transmission of stress being either through a weak shear zone, or by 

frictional contact, and that the basal thrust is in equilibrium with 

the subducted plate sliding past beneath at a uniform rate. 
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This type of model is likely to be realistic over a length of time 

of 1 Myr, but on a shorter time scale it is not such a good approximation. 

Major earthquakes occur along subduction zones, and Sykes (1971) has 

shown that these take place in such a way that, although displacement 

of the subducted plate may vary along the length of the subduction zone 

at any one time, the gaps between the aftershock regions of major earth

quakes are gradually filled in by others, so that the average displacement 

rate of the whole plate is preserved. 

In order to investigate this type of behaviour, the model of the 

Middle America trench used in Section 6.2, Ch. 6, was modified to obtain 

more detail at the base of the overriding basement as shown in Fig. 7.2 

(cf. Fig. 6.1), but the material properties and boundary conditions, other 

than those on the base, were the same as those used in Section 6.2 

(Table 6. 1). 

The model was initialized visco-elastically, as described in 

Section 4.4, Ch. 4, for 1 Myr with a basal shear of 12 MPa, and was then 

deformed from this equilibrium position by applying a displacement to the 

nodes along the thrust plane of 60 mm yr- 1 (the convergence rate at 

the Middle America trench, according to Karig et al., 1978) down the basal 

slope. This displacement boundary condition represents a 11 locking 11 of the 

basal thrust plane, which is then released by failure along or near the 
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Fig. 7.2: The Middle America trench model of Ch. 6 (Fig. 6.1) with extra 

elements inserted at the base of the continental crust to increase 
detail. The material type of each element is indicated at its 
centroid: l. Crystalline basement 

2. Accreted sediments. 
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thrust. 

Figure 7.3 shows the stresses in the model after 500 yr. It can be 

seen that the greatest stresses are concentrated at the base of the 

continental crust, the greatest compression being very large (2 GPa), 

while the stresses in the sedimentary wedge are much smaller. Compressional 

failure is predicted very strongly at the base with a degree of failure, 

C = -3.1 (as defined in Section 2.3, Ch. 2), as is normal faulting along 

the surface of the continental section, corresponding once more to a 

clockwise rotation (cf. Section 6.2, Ch. 6). 

Several other models were now run to find out at what stage failure 

is first predicted at the base of the model. The time taken to fail 

depends on the tensile strength, T, of the crystalline basement rocks, 

as shown in Table 7.1, but is approximately 250 yr forT between 10 and 

50 MPa. Thus, assuming that the basal stresses are completely relaxed by 

Length of time for Tensile strength of Degree of Type of failure 
which model was run/yr continental basement fa i 1 ure (if any) 

T/MPa c 

200 50 +0.27 Open crack 

250 50 +0.07 Open crack 

300 50 -0. 16 Open crack 

200 10 +0. 11 Closed crack 

250 10 -0.20 Closed crack 

300 10 -0.56 Closed crack 

Table 7.1: Variation in degree and type of failure for some models with 

displacement boundary conditions. The degree of failure, C, 

is negative if failure is predicted. 
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Fig. 7.3: The principal stress distribution in the model of Fig. 7.2, 
in response to a displacement boundary condition at the 
base of 60 mm yr- 1 down slope, after 500 yr. 



each event, the model predicts a repeat time for earthquakes in the 

upper part of the subduction zone (at the point of subduction) of 
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c. 250 yr. A shorter repeat time would result if the stresses built up on 

the thrust plane are only partially relaxed by the movement during each 

event. 

However, this does not necessarily represent the repeat time for all 

major earthquakes at the subduction zone, since the majority of these, for 

most subduction zones, have much deeper hypocentres than the point of 

subduction, so that the repeat time must depend more on the interaction 

between subducted crust and overriding mantle. 

The displacements of the surface after 250 yr (which are not shown 

since they are so small) correspond to the rotation of the continental 

crust, together with subsidence, of up to 4 m, in the upper slope, and a 

general movement of the lower slope parallel to the basal thrust of 

c. 60 mm yr- 1 • However these displacements, which would be large if 

continued for 1 Myr, are almost purely elastic (since the Maxwell time 

for the sediments tm "'6 x 10 4 yr » 250 yr, the length of time for which 

the model was run) and must be released, at least in part, when the basal 

thrust "unlocks", that is when there is an earthquake. These displacements 

appear to be rather large when compared, for example, with the vertical 

displacements recorded in the Japan arc associated with earthquakes (Kato, 

1979, gives displacement values of less than 0.4 m for the period 1900-1974). 

Another prediction of this model is that there should be widespread 

normal faulting in the upper part of the continental basement (in this 

part, C"' -2.7 after only 50 yr). This prediction casts some doubt on the 

method of modelling the basal thrust with displacement boundary conditions, 

since extensive normal faulting of this type is not shown on the seismic 

reflection profiles published with the D.S.D.P. Leg 66 results (Moore et al., 
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1979; Moore and Watkins, 1979; Shipley et al., 1980). 

However, if this locking and unlocking of the basal thrust is a 

valid mechanism for earthquake generation, its time scale is geologically 

very short. It is proposed that the shaoe of the accretionary prism is 

determined by the type of equilibrium shown in Ch. 5 and Ch. 6, and that 

this type of modelling represents an average of the discontinuous type 

of basal movement modelled in this section, over times much longer than 

500 yr. 
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CHAPTER 8 

SUMMARY AND CONCLUSIONS 

The finite element method has been used to model the stresses and 

deformation within the prism of accreted sediments in a subduction zone. 

The application of numerical techniques to model regions, in which 

physical quantities (e.g. material properties and stress distributions) 

are so poorly constrained by direct observations, poses many problems, 

the first of which is to choose a rheology and the associated parameters 

to represent the behaviour of rocks realistically. A visco-elastic 

rheology was chosen, and was considered to be more realistic than an 

elastic one (there were found to be significant differences in the results 

obtained), but an extension to non-linear viscosities was not thought 

to be justified, because orevious work has shown the consequent changes 

to be small (Bischke, 1974; Cathles, 1975; Melosh and Raefsk.v, 1980). 

A plastic, or elasto-plastic, rheology might also be modelled with finite 

elements (Zienkiewicz, 1971), but yield stresses and the olastic flow 

law would be difficult to nredict at deoth in the crust. 

The next difficulty to be faced was how to model correctly the effect 

of the weight distribution in the lithosphere. Previous finite element 

models of the lithosphere have not dealt with this problem satisfactorily, 

and it is particularly important in accretionary prisms where one of the 

main causei of deformation is the weight of the wedge. A new method for 

taking these body forces into account was developed, which involves finding, 

by iteration, a hypothetical starting model which deforms, either elastically 

or visco-elastically for a prescribed length of time, to give an initial 

model with the diMensions requi~ed. The visco-elastic deformation, resulting 
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from the application of external tectonic stresses or fixed displacements 

to this initial model, then gives displacements which are free of 

deformation occurring before the application of tectonic stresses, such as 

that due to compaction, but also gives stresses which include the effects 

of density contrasts within the model. 

To illustrate the effects of this initialization, models were run of 

an Atlantic-type passive margin, where an average shear stress of 60 MPa 

was found to be set up in the crust due to lateral density variations 

across the margin. 

An analysis was made of a simple model of the toe of the Middle 

America accretionary prism to investigate the interaction between shear 

stress along the thrust plane between the wedge and the subducted oceanic 

crust, and the visco-elastic subsidence of the wedge in response to its 

weight. Two types of basal stress were modelled, one corresponding to 

transmission of stress to the base of the wedge through a weak viscous 

shear zone, the other to frictional shearing on the thrust plane.~It was 

found that these models could not be distinguished by the model used, but 

that both gave realistic results. 

An equilibrium stress was found in each case which supported the 

wedge sufficiently to hold its surface still. The average basal shear 

under these conditions was 12 MPa in both models, the viscosity of the shear 

zone was estimated to be 10 18 Ns m- 2 , which is consistent with the values 

obtained from stress-strain curves for sediments, and the coefficient of 

friction on the thrust was inferred to be c. 0.25 (assuming the fault to 

contain gouge with a pore pressure of 60% of lithostatic), which is typical 

for residual shear strengths in clays. 

It is considered that this equilibrium position represents the steady 

state for an accretionary prism, and that a larger basal stress leads to 
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the building of a larger wedge. If the basal shear is smaller than the 

equilibrium value, then the wedge tends to subside and flatten out up 

the basal slope (an example of gravity spreading). 

The strains in the equilibrium model are all small (less than 5%), 

which indicates that most of the strain observed in accreted sediments 

occurs as they are scraped off onto the toe of the prism, and that thereafter 

the strain rate drops considerably while they migrate up the trench slope. 

It was found that the equilibrium basal shear depends on the slope 

of both the upper surface and the base, in disagreement with Elliott's 

(1976) work, and analysis of the potential energy of the wedge (considering 

it now to represent a thrust sheet) led to the conclusion that, if there 

is to be motion on a thrust plane up the basal slope, then supporting 

stresses are needed at the end of the thrust sheet lower down the basal 

slope. These stresses must be at least equal to lithostatic, in which case 

gravity spreading of the thrust sheet may occur up the basal slope, but if 

the thrust sheet is to move as a whole in this direction, then larger, 

tectonic, driving stresses are required, and such motion cannot be driven 

by g ra vi ty a 1 one . 

An instability was discovered in these models when attempting to find 

the behaviour of sediments with low viscosity. It was found that if a 

wedge model was run for a time which was much longer than the Maxwell time, 

tm, for the sediments, then the stress distribution and surface 

displacement became unstable (the model was still stable after times of 

10 t , but 100 t was too large). This instability was interpreted as m m 
arising from the presence of the free, sloping upper surface of the wedge, 

combined with the plane strain analysis using a Maxwell rheology, and could 

not be avoided by any of several methods used. 

The model of the Middle America accretionary wedge was extended to 
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include part of the overriding continental crust, and the basal shear 

needed to support the toe of the wedge in equilibrium in this model was 

found to remain unaltered at 12 MPa. By observing the patterns of surface 

deformation in models of this type where the material properties of the 

wedge were varied, keeping the better-determined properties of the 

continental basement constant, it was concluded that the effective viscosity 

of the sediments is c. 1022 N s m-::, and that their Young's modulus is 

c. 10 GPa. 

A comparison was made of this model with one of the accretionary 

complex in front of the central Aleutian Island arc, where the equilibrium 

basal stress was found to be only 5 MPa, due to the shallower angle of 

the basal slope arising from the greater width of the complex. It was 

deduced in both cases that one of the most significant factors in determining 

the deformation of the accretionary prism is the shape and extent of the 

overriding basement, and that this was the cause of marked differences 

between the two models. 

In the Middle America model the basement is undercut and supported 

in part by the accreted sediments forced underneath it, the degree of 

support depending on the density and rigidity of the sediments, and on the 

basal stress. In the Aleutian model, on the other hand, the igneous arc 

crust underlies the sediments, and it was shown that the latter are pushed 

upwards immediately above the point of subduction, where subducted crust 

comes into contact with the leading edge of the overriding basement. It 

was deduced that this uplift represents the edge of the terrace basins 

in the central Aleutians, and that the arc crust extends beneath the entire 

terrace, the point of subduction being immediately below the terrace edge. 

This feature is thought to be distinct from the trench slope break, which 

represents the height to which sediments are lifted in response to the basal 
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shear on the wedge. 

Behind this region of uplift, there is subsidence of the terrace 

sediments, which was also found in the upper slope of the Middle America 

model~ just seaward of the continental crust. This is in agreement with 

observational evidence that the upper slopes or terraces of many subduction 

zones are subsiding. 

A further difference between the two models was that faulting at the 

base of the continental basement, of a type thought to lead to tectonic 

erosion, was only possible in the case where it was undercut. The shape 

of the underlying crust in the Aleutian model could not give rise to the 

stresses necessary for this type of compressional faulting. 

An attempt was made to investigate the faulting in the accretionary 

prism and leading edge of the continent by using displacement boundary 

conditions at the base, instead of shear stresses, with the aim of finding 

out how much decoupling there is along the basal thrust~ and what length 

of time is needed to cause faulting. However, the water pressure in sediments, 

at several kilometres depth in the sea, has a complicated effect on the 

stresses in the sediments, which proved too difficult to model accurately, 

as far as calculating the degree of failure in them was concerned. 

Therefore only the fracture of the continental basement could be 

investigated, and 250 yr was found to be the time necessary to build stresses 

up to the point where failure occurs at the base. However, this model also 

made predictions of the displacements of the surface of the continental 

crust, and of the degree of failure ther~. which seem to be unrealistic, 

and it is thought that the only way to make a realistic model of this type 

is to include both mantle material in the overriding plate, and at least 

part of the crust below th~· basal thrust. 

However, despite these difficulties, the visco-elastic finite element 
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method has produced some interesting results from the models analysed, 

and there is scope for further work of this kind. 

If the problem of pore pressure and effective stresses could be resolved, 

thenmodelling might reveal how much of the basal thrust is ever locked 

together, and over what length motion might occur in earthquakes. The 

intervals between major earthquakes and their magnitudes might then be 

modelled as an aid to prediction of seismic risk near subduction zones. The 

surface displacements predicted might indicate whether tsunamis were likely. 

The inclusion of faults in the model would increase its realism, 

and remove the simplifying assumption of material property isotropy made 

in the models in this thesis (some work has already been done on the 

modelling of faults using finite element analysis; see, e.g., Bischke, 

1974). It might then be possible, again if effective stresses could be 

calculated, to predict how the imbricate thrust faults in the sediments 

at the toe of the wedge propagate, and perhaps to model the shearing of 

slices of sediment from the subducted plate at depth to discover how under

plating occurs. 

There are therefore many more results, essential to the understanding 

of tectonic processes at subduction zones, that might be obtained from 

the application of finite-element methods to more sophisticated models of 

such regions. 
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APPENDIX 1 

ANALYTICAL MODELLING OF A PLASTIC THRUST SHEET 

This appendix contains a summary of the equations derived by 

Chapple (1978) which were referred to in Chapter 5, Section 5.5.2. 

Al. l The Model and Boundary Conditions 

Chapple (1978) made an analytical investigation of a model of a 

thrust sheet, assuming that it consisted of a perfectly plastic material 

yielding in compressive flow, underlain by a weaker shear zone of the 

same rheological type. 

The plane polar co-ordinate system used (r,s) is defined by Fig. Al.l, 

but otherwise notation is as used in Ch. 5. 

8 = 0 

I 
ho P(r,s) 

l 

Fig. Al. 1: Definition of polar co-ordinates used in modelling a thrust 

sheet analytically. (Chapple, 1978) 
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The boundary conditions used are: 

a) the top surface is stress free 

a = T = 0 at e = -'), 
8 re Al.l 

b) the basal shear is constant, and equal to the yield stress of 

the weaker shear zone underlying the wedge 

= constant at 8 = s Al. 2 

Chapple found that the restraint of maintaining the surface 

slope fixed, while specifying that the material beneath it was yielding, 

over-constrained the model. To avoid this, he modelled the wedge in 

two parts, divided by a horizontal surface which he prescribed to be 

free of shear stress, 

T = 0 at 8 = 0. 
r8 

The lower part was then analysed as supporting plastic flow, and the 

angle of the surface (a) was found by assuming that the upper part 

gave rise to the stress distribution derived nor~al to the dividing 

boundary. 8 = 0. 

Al. 3 

The condition that the wedge is yielding olastically, implies that 

everywhere, where K is the yield stress of the wedge material and 1 m 

is the maximum shear stress (see Ch, 2, Section 2.3). 

A1.4 

By using similar equations to those in Ch. 2, Section 2.3, Equation 

Al.4 may be rewritten as 

(or - a ) 2 + 4T 2 = 4K2 
8 re Al. 5 

which gives 

= K sin2·'· T ro o/ 
Al.6a 

(o - n ) = -2K cos2~ r o Al.6b 
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for the point Pat (r,e), where w = w(e) is the angle between c. (the minimum 

principal stress) and r at P. 

A1.2 Summaryof the Analysis and Results 

Through application of the boundary conditions (Section Al.l. above) 

to the equilibrium equations for the wed~e, 

r ao r + Zl T ro + ( o - o ) + o g r sin 8 = 0 
r e 

r llTre + 30 e + 2Tre + pgr cose = 0, 
ar ae 

Al.7a 

Al.7b 

Chapple obtains relations between w and 8 dependent on a model parameter, C 

for C > 1; 

e = w - C tan- 1~~ tanw] 
IC2 - 1 ~ C + 1 

for -1 < C < 1; 

C = ~_u__f! _g tana 
2K tans 

where h0 is the depth to the base of the wedge from the boundary at 

e = 0 (Fig. A l. 1 ) . 

The basal shear is taken to be 

, 0 = x K 

Al.8a 

Al.8b 

Al. 9 

Al. 10 

where x is the ratio of the yield stress of the basal shear zone to that 

of the wedge, and using Equations Al.lO and Al.6a applied to the base 

of the wedge (where ~(e) = w(B) = w0 ) 

Al. 11 

Using Equations Al.R to Al .11, assuming a set of model parameters. 
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the basal shear stress To may be found for different values of a and s. 

In order to achieve agreement with the finite element results 

(Ch. 5, Section 5.5), the best value of the yield stress K was found to 

be 12 MPa, which is consistent with the discussion inCh. 2, Section 2.3.4. 

The depth to the base of the wedge (h 0 ) was taken to be 5 km, and its 

density was taken to be the reduced value, p = 1500 kg m-3 (being the total 

density, 2500 kg m-3, less the density of water, following the rheological 

assumptions made by Chapple). 

An apparent inconsistency arose in using these values, because the 

yield stress calculated for Chapple's shear zone is close to that for the 

whole wedge, i.e. x ~ 1, so that the shear zone is no longer a well-defined 

region, distinct from the rest of the wedge. However the analysis is 

nonetheless valid and the results are presented (to the nearest 1 MPa) 

in Ch. 5, Section 5.5.2, Table 5.4. 

It should be emphasized that the agreement between Chapple's results 

and those using the finite element method can only be regarded as 

qualitative, because of the difference in rheology between the two models 

(the finite element analysis was visco-elastic; see Ch. 3). 



151 

APPENDIX 2 

COMPUTER PROGRAMS 

A2.1 Introduction 

The finite element program develooed for this research uses the 

methods described in Chapter 3. It was written (in IBM FORTRAN IV) in 

modular form, with a main calling program (filename FEVER) and a subroutine 

library (PRIMA). The advantage of this system is that the sequence of 

subroutines called may be changed easily, by using comment characters 

(C in column 1 of the relevant line in FEVER), and only the main program 

need be recompiled. 

The external subroutines required are t~A07BD (in the Harwell sub

routine library; Hopper, 1973), an inversion routine for banded matrices, 

and the graphical subroutines in the GHOST library. In addition, contour 

plots require the CALCOMP General Purpose Contourin9 Package (GPCP). These 

are commonly available at comouting centres. 

It has been assumed that S.I. units will be used for all input, 

but any consistent set of units may be used (bearing in mind the default 

values of certain variables, e.g. the gravitational field strength, and 

that the nodal coordinates (X,Y) are multiplied by 103 on input to convert 

from km to m). 

A2.2 Input 

The program reads data from 4 device numbers: 

1. Initial stresses, o 0 (see Ch. 3), generated by a previous program 

run (unformatted). 

3. Unformatted input of all variables necessary to perform further 
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time increments on a model. This file must be generated by a 

previous run of FEVER or by the initialization program, SETUP 

(see Section A2.6). 

4. All input data describing the model and its boundary conditions. 

5. Intera~tive input for controlling each job, e.g. the title and 

the number and length of time increments. 

The input on Devices 4 and 5 is shown below, in detail. All integers 

are read in under Format (I4), all real numbers under (El0.3). 

Device 4 

NNOD, NEL, MOHO, G: number of nodes, number of elements, flag for 

Moho, gravitational field strength. MOHO determines whether the Moho will 

be drawn on plots of rectangular models, and must be the number of the 

node on the Moho at the left-hand side of the model. Its default value is 

0, in which case the Moho is not drawn. G defines the direction of the 

y-axis (if G is positive, y is measured downwards), and defaults to+ 9.81. 

IMESH, NNODB, NELB, WIDB, NSID, NNODA, NELA: Information for the 

regular rectangular mesh generating subroutine, MESH. If IMESH is 

positive then MESH is called. NNODB, NELB are the numbers of nodes and 

elements whose properties are to be read in, WIDB is the width of the 

block to be repeated, NSID is the number of nodes down each end of the 

model (if different from the main part of it), and NNODA, NELA are the 
' 

repeat numbers for nodes and elements, respectively (see comment cards 

in the listing of subroutine MESH). If !MESH is set to zero, the mesh 

generating subroutine is not called, and the rest of the card may be 

left blank. 

JNOD, X(JNOD), Y(JNOD): The number of each node, together with its 

x and y coordinates in km. 

NMAT: The number of different material types in the model. 
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EM(IMAT), PM(IMAT), RHOM(IMAT), ETAM(IMAT), TS(IMAT), IPORE(IMAT): 

The Young's modulus, Poisson's ratio, density, viscosity, tensile strength 

and pore pressure marker for each material type. If ETAM is zero, the 

material is elastic. The default value for TS is 5 x 107 (corresponding 

toT= 50 MPa). If IPORE = l, then pore pressure, due to the head of 

water above the centroid of the element, is added, using Subroutine PORE, 

to all the stresses (reducing compressional stresses) before arplication 

of failure criteria. 

JEL, (NODEL (KEL, JEL), KEL = 1 ,3), ITYP(JEL): The number of each 

element, the numbers of the three nodes at its corners, and the material 

type. 

NLOAD: The number of nodes at which external forces are applied. 

LOAD(ILD), FLOAD(2*ILD- 1), FLOAD(2*ILD): The number of each node 

at which a force is applied, and the x andy components of that force. 

NFIX: The number of nodes at which displacements are to be fixed. 

NOFIX(IFIX), (IFLAG(JFIX, IFIX), DFIX(JFIX, IFIX), JFIX = 1,2), 

ANGLE(IFIX): The number of each node whose displacement is to be fixed, 

the marker and value of the fixed displacement for each component, and 

the angle of the coordinates in which the displacements are given. If, 

for a particular component, IFLAG is 

0 that component is not fixed; 

it is a fixed displacement in global coordinates (x,y); 

2 it has a fixed velocity of DFIX per time increment, in global 

coordinates~ 

3 it is a fixed displacement in coordinates which make an angle to 

(x,y) given by ANGLE; 

4 it has a fixed velocity, DFIX per time increment, in rotated 

coordinates. 
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If Subroutine ISOS has been called, it reads in information on the 

isostatic compensation to be applied at this stage, and if Subroutine 

HYDRA has been called, it also reads in the relevant data here (for details 

of these options, see subroutine listin~s). 

NOUT(IOUT): A list of the numbers of the nodes forming the outline 

of the body to be drawn on the graphical output. The list must be closed by 

making the last number equal to the first, and must be taken anticlockwise 

if y is measured downwards. If NOUT(l) = 0, then the body is assumed to 

be rectangular. 

Device 5 

TITLE: The title of the job in Format (4A8). 

NTIME, DTIME: The number of time increments and the length of each. 

If NTIME = 0 an elastic solution is given. These variables may be given 

in the main program before the call to Subroutine VISEL, in which case 

they are not read in. 

ITCON: If a time increment does not converge, the program orompts 

(on Device 6) for the entry of the number of extra iterations. 

A2.3 Output 

The program produces output on 7 device numbers: 

0. A file for input to the contouring package, GPCP. 

2. Unformatted output of stresses for input to the next run on Device 1. 

3. Unformatted continuation data written out by Subroutine MORE. 

6. Interactive output, prompting for input to Device 5, and giving 

information on the progress of the job, including error messages. 

7. Written output echoing inrut and presenting results. 

8. Information on the convergence of each time increment. 
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9. Plotfile containing graphical output generated. 

The output on Device 7 includes verification of the input to the program 

and of which subroutines were called, but the main part of it consists of 

tables of the results calculated. The first of these is a table of the 

nodal displacements, and the second of the resultant stresses and failure 

states for each element. The two principal stresses in the plane of the 

model are given together with the angle that the first makes with the 

x-axis. Following that is the stress in the z-direction (perpendicular 

to the plane) 0 • and a marker, MZ, which is -1, 0 or +1 according to z 
whether 0 is the minimum, intermediate or maximum principal stress. The z 

final three columns show the failure state of the element (calculated by 

Subroutine FAIL according to Section 2.3, Ch. 2); CFAIL, the degree of 

failure, !FAIL, the type of failure, and e, the angle of failure (stored 

in array FANGL). 

Finally if Subroutine STRAIN has been called it writes out the principal 

strains in the plane of the model with their angle of orientation, for 

each element. 

A2.4 Subroutine Calling Sequence 

The sequence of subroutine calls from the main program is shown below. 

Those subroutines which are optio~al are indented. 

Solution Phase 

READ reads in data from Device 4. 

READ2 as an alternative to READ, reads in data from a previous 

run, on Device 3. 
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ECHOl echoes nodal coordinates and element tooologies. 

ECH02 echoes material properties and boundary conditions. 

KFORM forms the stiffness matrix. 

INSTRS incorporates an initial stress distribution (from Device 1). 

FBODY applies body forces due to the weight of the model. 

ISOS applies isostatic compensation. 

BOUNDS applies fixed displacement or velocity boundary conditions 

in global coordinates. 

ROTOR as BOUNDS, but in rotated coordinates. 

VISEL solves for the visco-elastic displacements. 

STRESS 

FAIL 

OUTPUT 

SOLVE solves for elastic displacements, as an alternative to 

VISEL (it is called by VISEL if the number of time 

increments input is 0). 

HYDRA 

PORE 

ZERO 

STRAIN 

MORE 

finds the principal stresses in the body, from the 

displacements. 

adds a lithostatic stress distribution. 

takes off pore pressure. 

applies the failure criteria of Section 2.3, Ch. 2 to 

each element. 

subtracts the initial displacements at the end of a 

previous run (e.g. using SETUP; see Section A2.6). 

writes resulting displacements and stresses in Device 7. 

calculates principal strains and writes them on Device 7. 

writes information for continuation on Device 3. 

Plotting Phase 

PSCALE calculates plot scaling factors, reads in the outline 

array from Device 4 and initial·izes the plotfile. 



GREND 

SCON writes out (on Device 0) input data for GPCP to 

plot contours of maximum shear stress. 
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PLON writes out data for contours of minimum principal stress. 

OUTLIN draws an outline of the body prior to the plotting of 

vectors. 

VECPLT plots principal stress vectors or principal strains if 

STRAIN has been called previously. 

SURF plots the displaced surface of the body. 

DISTRT plots the deformed outline of the whole body. 

GRDPLT 

PROPS 

plots the finite element grid, with element numbers. 

plots the grid with material property numbers. 

a GHOST subroutine to close the plotfile. 

A2.5 Common Block Organisation 

Variables are passed to all the major subroutines in common blocks, 

as part of the modular arrangement of the program. 

There are 11 common blocks, listed below with the most important 

arrays within them. 

Common Block 

NOD 

EL 

MAT 

FIX 

50 

Principal Contents 

nodal coordinates (X,Y); the displacement vector 

(DISP); the force vector (FORCE). 

the material type of each element (ITYP); a list of 

the nodes on each element (NODEL). 

material properties. 

fixed displacement data. 

initial stresses (STR0). This block is also used to 

transfer failure information from Subroutine FAIL to 

OUTPUT. 
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ST 

CR 

WK 

IN 

MIS 
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the global stiffness matrix (GLOBK); libraries 

containing the element areas (DELIB), B matrices 

(BLIB) and D matrices (DLIB). 

the principal stresses and their orientation (PRINC). 

the creep vector (CREEP); information on time 

increments. 

used to provide work space, but also to transfer 

applied force data from READ to ECH02, and to store 

scale factors during the plotting phase of the program. 

initial displacements (DISP0) and nodal coordinates 

(X0, Y0) for continuation runs. 

miscellaneous arrays, including the title (TITLE) 

and date (!DATE) of the job. 

A2.6 The Initialization Program 

The initialization program based on the theory developed in Chapter 4 

is in file SETUP. This program solves for an initial model, using the 

Subroutines in PRIMA, and writes all the information necessary for contin

uation onto Device 3 by calling Subroutine MORE (the continuation run should 

then call ZERO, to subtract the initializing displacements, before OUTPUT, 

but after STRESS). 

The input for this program is exactly as for the main finite element 

program (read in by READ), except that the number of solution iterations, 

NSOL, is read in from Device 5 (NSOL = 5 is found to be the maximum 

necessary for the models in this thesis). The output is also the same, with 

the addition of information on convergence to the initialized model. 
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A2.7 Program Listings 

The subroutines in the library file PRIMA are listed in the order 

given by the main program FEVER, and are followed by a listing of the 

initialization program, SETUP. 



., ........... .. ... , ..... , ..... , .. 

............... .. .. ..... ~.-
~· ......... .. ....... , .. 4, .. 

.............. ....... , ... , .. 

CALL Tit-lECO,l) 
CALL .:::~D 
(.0-LL RE.lC2 
CALL :C·Cl 
C:.LL :CHJ2 
":: A L L '\ F ::: ; :-1 
C:1LL PJST=<:3 
I~ST=l 
C i. L L r.:.: C Y 
CALL IS2.:: 
C!.L..L 3JU~CS 
CALL C<CTiJC' 
':-4LL SCLV;: 
~j T P1 2 = 2 2 
DTI"lc=5o004 
CALL VIS:L 
CALL STR::SS 
C:..LL ~YJ~~ 
C:.LL P[l;;_:; 
CALL =.4IL 
C~LL ZERO 
CALL ::UTPUT 
C .l L L S T ? A It~ 
C~LL .v:~: 

CALL PSCAL': 
CALL SC2N 
CALL PCC'N 
CALL CL.:TLIN 
CALL v:CDLT 
C:.LL FRAM:: 
CALL STRAI\J 
CALL GUTLI'< 
CALL v~c:::·Li 
C A L· L = D .l ~·1 :0 
CALL SURF 
CALL >=~Af'1E 
C.Cl.~~ ;:~A~.E 
CALL JISTt<T 
CALL c:O<Ar~:: 
CALL ·~RDPL T 
U.LL PRJPS 
CALL S~:NS' 

STG? 
END 

~-: :; : i : >:; f'-! :. - ""~ J .:;_ - :. '•' v 'J T V ;: ~ S ! - Y ::; Y J :: r.; ~·J ::» ~ R K. 
:.:o73- ~;so 
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:'::,:*~'* 
'1::;.:~:*::: 
.. .............. ..~ ...... .. 
~ .... , ........ , .... , .. 

.. ................ #' ... .. .. .................... .. 

........................ .. , .... , .............. ~ 

.. ................. ., .. .. ................... .. 



................... , .. ,, ... , ..... , ... 
................... ..... , .... , .... , .. 
... ..... ~· ....... .................. 
.................. ..... , ... , .... , .. 
.................. , ..... , ... , .......... 
.................. ..... , ..... , ..... , .. 

................. ...... , ... , .... , .. 
SUoROUTINE READ 
=============== 
TCl SET UP MO:JEL 

~~iTTEN ~T SUPrlt~ U~IVE~S!TY 3Y JOrlN CA~K 
1973 - 1990 

I~?LICIT ~EAL*B (0-H 9 J-W) 
CCJM~1JN ~~~~~ XC30J),YC30C),JIS~~:00),=QDC:C6JJ),G,NNO~,~N002 
ca~~JN ~~LI rrv?~soo),NG:ELC?,;cJ),N~L 
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.. ............. <J •• • .. . ...................... .. 

.. ......... ,.J...J ... • .. 
~ ..... , ..... , .. ¥ ... .. 

.. .................... ... 
.. ..... , ... y.,_ ... , .. 

::::::::::.-:::: 
::::***:!: 

,4,. .,/,; .. ~ ~· .. ..... .. ................. , .. 

CJMMJ~ /MOT/ E~ClJ) 9 P~C10) 9 ~~:MCl0) 9 E·A~ClJ) 9 TSC10),IPJREC10),~MAT 
C2MMO~ /FIX/ CFIXC2 9 !JO),AN~L~C1:1) 9 !cLASC2 9 100) 9 ~0=IXC100) 9 NFIX 
COMMCN 1$01 C:M5~2000),:NST 

................. , ............... ... 

COM~ON /ST/ CCM7C2001)9NCOM7C1C01)9:ST~ 
COMM8N IC~I CCM3(2001) 9 T,TI~:,~T:M~ 9 ~T~~~ 
C:MMJN /WK/ FLSA~(60~),L0~~(?0~),~L:t:9\CJ~9,C:M?('5 2 8) 
C~MMGN /I~/ CJ~10C600) 9 X8C3C0) 9 YOC30~)9IS~T 
C~MMON /M:S/ ~:9T!TLEC4)9z~=(4),IJA-~(~),~:~: 

TITLE AND WRITE :T 

WRITE(6919~) 
199 FO~~AT(1H0D 0 PL~AS~ G!V~ TITLE ('~?) 1 / 

1 0 ------------------------') 
~~AJC5 9 198) TITLE 

1:;18 FGRMATC4A8) 
wqrr=c79137)IJATE9TITLE 

187 FO~~ATC1~0 9 12X 9 3~4 9 34X 9 9 :UTPUi c~:M FEV=R 9 / 

1 lH~,~8X,'-----------------'/lHOd5X,4~8) 

~*** REAJ ~CD~ C~DRDI~~T~S 

................... , ............... .. 

.................. , .... , .... , .... , .. 

................. ...... , .... , .... , .. 

KE~S(4,1~7)NNOJ9N~L9MSHG,G 

ASSI~N DEcAULT VALUE JF G 

READ ~LEMENT TjPQLOGI=S 

rc CTS(IMAT).LE.O.O) TSCI~AT):C.SJS 
120 C:'NTINUE 

IF C!MESH.EQ.Q) NELB=NEL 
0~ 121 IEL=1,NEL3 
R~A0(4 9 194)JEL,(NJD~LCKEL,J~L) 9 KEL=1,3),!~YPCJEL) 

194 FJRMAT(5!4) 
121 C'JNTINUE 

r= CIMESH.GT.O) ~ALL MESHCIMES~,~NOl3,N~L~,WIOd,NSIG,NNCOA,NELA) 

~*** REAJ APPLIED FQQCES FIRST z:ROI~~ •=:~C~' 



.................. , ................ .. ~EAD FIXED DISPLACEMENT~ 

132 R~A0(4 9 194)NFIX 
I~CN~IXor:QoO) GO TJ 142 

02 141 r~rx=19N~:x 
~~AC (4,192) NO=!XCIFIX)9(!FLDG(J=rx,rF:X),DF!XCJ~Ix,IFIX), 

1 J=IX=1p2),AN~L~(!~IX) 
192 CJ~MAT(!492(I49Cl8o3),F10.3) 

AN G l.: C IF I X)= A tJ ·~ L = ( IF I X)::: P: I 1 8 0. 0 
141 CJNTII\i:.JE 

................... ...... , ... , .... , .. 

................... .. ... , ... , .. ~ ... 

SET FLAGS AND C1U~TE~S 

II\IST =0 
ISTR =0 
NTIMi:=O 
KT!r.AE=O 
TJTHit:=OoO 
IS:T=O 

INITIALIZ~ AR~AYS XO QNS YO 

JO 143 IX0=19N~OD 
X)(!X'))=XCIXO) 
YQ(!XO)=YCIXO) 

1 4 3 C ':; ~- -r PJU c 
142 C:JNTINU= 

'..J~ITE(6,190) 
190 F8Q~AT('OREAOIN~ 1~ DATA CO~PL:T~D') 

CALL TIMEC1d) 

RETUQN 
ENJ 
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.......................... .., .... , .... , .... , ....... 

~********************************************************************** 

.................. ..... , ........... ... 

SU2~QUTIN~ DEAJ2 ------------------------------
I~PLICIT REAL*S CA-~,0-W) 
CJMMON INDO/ X(300),Y(300),~ISPC600),FORC~C~OO),G,NNOO,NNOD2 
CJMMJ~ /EL/ ITY?(500),NC~ELC3,~JO),NEL 
COMMON /MAT/ EMClO),PM(lC),R~JM(l8),ETAM(l0),TS(l0),IPDREC10),NMAT 
COMMON /FtX/ OF!X(2,100),ANGLEC100),:=LAGC2,100),NC=IXC100),NFIX 
COMM~N 1$01 C:M5(2000),INST 
COMMON /ST/ COM7(200l),NCOM7Cl~Cl),I5T~ 
COMMON /CR/ CR~EP(4,50C),OT!~E,T~T!M~,KT!M~,NTIM~ 
CJMMJN /WK/ FLJA8(600),LOA0(3JC),NLOAD,NCJM9,COM9(4518) 
COM~JN /IN/ JISPOC600),XOC300),Y0C300),IS~T 
CdMM~N /MIS/ Di 9 TITLE(4) 9 ZUF(4),I:ATEC3),~JHO 

CALL TiM=cs,o,IDATc) 

R~AD TITL~ AND WRITE IT 

W:(!TEC6,199) 

WIT~ DATe 

199 FOR~AT(lHO,'PLEAS~ GIVE T!TL= (4A~)'/ 



1 I ------------------------') 
R~Ar(5,198) TITLE 

198 FCJR1111AT(4A8) 
w~:T:C7,187)IOATE,TITLE 

197 CJ~MAT(1H0 9 12X 9 3A4 9 34X 9 '0UTOu- c~:M FEV~~·; 

...................... 
~,, .. , .... , ... ,, .. 

...................... ....................... 

................... ... , .... , ... , .... , .. 

................... .. , .... , ... , .... , .. 

................... .. , .... , ... , .... , .. 

..................... ..................... 

.................... .. , ..... , ... , .... , .. 

1 1H+958X,'-----------------'11M0,55X,4A3) 
~EAD PARAMETERS ANJ NClCAL C~:~~=~~TES 

WPITE :~FQRMAT:~N JN INITIAL 

READ (3) CR':EP 
G:J -J 134 

:REcD 9 :.:: At~Y 

REAJ El~~~NT TJPDLJGifS 

R~AD (3) EM 9 PM 9 RHJM,ETAM 9 TS 9 IOJ~E,N~~T 
R~AD (3) ITYP9NOD~L 9 NEL 

R::AO FORCES 

RC::AD (3) F=GRCE 

IF ~JOEL HAS SEEN !NITIQLIZEQ ~:ING S~TUP, 
QEAD I~ O:SPLACE~~NTS AND WR:T~ :NcC~MoT:~~ TO 17 

IF CISEToLTo1) GC TJ 135 

R::AJ (3) DISPO 

N~IT~(7 9 191) IS~T 
191 FQ~MA7 (1H0 9 3QX 9 '*** US:NG SETUP, F~R 1 ,I4 9 ' ITERATIONS') 

.................... .. , .... , ............ .. R~AJ ANY SUPEP!~PJSEJ FQRCES 

135 REA0(4,194)~LOAQ 
IFCNL~AOof.QoO) GQ TO 132 
OJ 131 ILQ=1 9 NLJAJ 
REA~(4,193) LJAJ(ILO),FLOAD(2*IL~-:),F=LJ~~(2*:L~) 

193 FORMATCI492~10o3) 
JLD=2*LDADCIL0)-1 
FORCECJLD)=FORCECJLO)+FLOAJC2*ILD-l) 
JLO=JLD+1 
F~RCE(JLD)=FORCECJLD)+FLOADC2*IL0) 

131 CONTINU:: 

**** READ FIXED DISPLACEMENTS. 

132 REA0(4,194)~FIX 
194 F!JR~4AT(!4) 

IC(NFIX.EQ.O) G~ TJ 142 
JO 141 IFIX=1,NFIX 
READ (4,192) NOFIXCIFIX),CI=LAGCJFIX,IFIX),O~IX(J=IX,IFIX), 

1 J=IX=1,2),ANGLECIFIX) 
192 FORMAT(I4,2CI4,Fl0o3),F10.3) 

ANGLECIF!X):ANGLECIFIX)*PI/130.0 
141 CuNTINUE 
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......................... .. .......... , .... , .... , .. 

.......................... .. ........ ., .......... ... 

::: ::c:) :~ ::' 
:::::Ct,ct,c:',r 

*:!'**':: 



~~~* ~ET FLAGS ANJ CJU~TERS 

MCJHJ =0 
IMESti=O 
INST =0 
ISH' =0 
1\J '1'" ! ~~ : = 0 

*~** INITIAL!Z~ ARRAYS XO lND vc 
J~ 143 ~X0=19~N:: 
XOCIX(1 )=XC:X0) 
YOC:X!J)=YCIXO) 

143 C~NTINUE 

142 WRITEC6d'?0) 
190 F:RMAT( 0 QQ~A:ING 1~ OBTA CC~PL~T~O') 

c B L L T I ~~ : ( 1 9 1 ) 

..................... .. , ..... , ... , .... , .. 
5LJCK ~ATA --------------------
TJ INITIALIZE 

DATe ZUF / 1 STo 0 9 1 ~0o 1 9 1 ~:o 1 , IT~o 1 / 

~ATA PI 13ol~:59265358g7931:~; 
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•'· . " ~·· ... ·'· ... , ... ~ ... . 

.. ., ... ,...}, .. • .... • .. ...... , ............ , .. 

.. . ., ......... ..,_ ... .. .. ...................... .. 

.................................................................................. " ...................................................................................................................................................................................................................................................... .J .... • .... • • .. , .... , .... , .... , ..... , .... , .......................... , .... , .... , .... , ... , ................................................. , ...... , .... , ........ , ..... , ... , ... , ... , .... , ... , .... , ................ , ......................... , ... , .... , ... , .... , ........ , .... , .... , ............. , .... , .......... , .... , ............................................ , ..... .. 

.................... ................... , .. 
--------------------------------
~CHJ M~SH I~PUT T1 D~VIC~ 7 

I~PLICIT ~EAL*8 (A-H,O-~) 
CJMMJN /NJO/ X(300) 9 Y(30Q)g[QVl(1201),NI\J~1 9 NN1J2 
CJMMJI\J /Ell ITYPC50Q)pNC:~LC~95:0)9N~L 
COMM~N /MIS/ DI 9 T!TLE(4) 9 Z~~(4),:J~TE(3) 9 ~J~: 

wt<Fc(7,199) 
lqi FORM~T(lH099X 9 1 ~* JATA INPUT*~') 

WRITEC79138)NNCJ,NEL 
138 FORMAT(lH0910X9 9 ~UMBEQ 0~ NOJ=S = 0 ,:4, 

1 10X9 9 NUM~E~ ~F EL~M~~TS = I 9!4) 

wqiTEC7,185) 
185 FORMAT(lHO,lOX,'~JOAL CCO~DINA~~S 1 / 

1 lH+,lOX,' 1 / 

2 lH0 9 3QX 9 1 ij~5tT;Ii~;T~?!~!-u•,lSX, 1 Y(I): M1 /lHQ) 
DC 160 ~~~N=1 9 NNDJ 

150 wRITEC7,184) IECN,XCI:CN),YC::CN) 
184 FO~~ATC31X 9 !4 9 2Cl2X,Dl0.3)) 

WRITE(7,1'33) 
183 FDRMATClrlO/lH0 9 lOX, 'ELEMENT P~J 0 EQT!ES 1 / 

1 lH+,lOX, 1 
__ ~-~-•T--~--T-~-~'/ 

2 1H0 9 12X, 1 Elc~cN1 ,luX, N_D~l 1 ,11X, 1 NCJE2', 
3 llX 9 1 NODE3 1 ,11X, 1 M4T~RIAL 1 /lH0) 

DO lSl IECEL=l,~EL 
161 ~RIT~C7,132) IECEL 9 CNDDELCJ~C~L,!~C~L),JECEL=1,3),ITYPC!ECEL) 
lqz F~~MAT(l4X,I4,4(12X,I4)) 

w=I~TE(6,17S) 

.. .................. ..J .. .. ......... ~ .......... ... 



17~ ~n~MA~( 0 0ECH01 COMPLET~O') 
r.nt_L TI-.4=(lpl) 

R':"~"URr-.J 
EN:J 

SU3i<JUTIN': cCH:'2 
====:=========== ................... .. , ................ .. 

..................... ..................... 

.................... .. , .... , .... , ..... , .. 

IFCNFIX.GT.O) G: .·J 162 
IJRITEC7,181) 

A ~y 

1 81 F 0 R I_, AT ( 1 H 0 /1 H 0 , 1 0 X 9 
1 N 0 :::: :X E: J! S D lAC: 1·1: ~JT S 1 ) 

GO TO 16.:. 
152 wRITE(7,1SO)N=IX 
180 FJRMAT(lHO/lHO,lOX, •~rx::J J!S~L~C~~=~-s•; 

1 1H+,l0X 9
1 '9'X,I4,' IN TOTAL'/ 

2 l'10,13X, •1\j)j!jtT-;I~x-;Tv-!![!;;T;sx, 'X QI:?LACEMENT', 
3 6X 1

1 Y FLAG 1 ,6X, 1 Y JIS~LAC=M':NT 1 , 
4 5X, 1 ANGL= c= C1-:~DIN~~~S'/1H0) 

OJ 163 IECFIX=l,NF!X 
A~G=ANGLECI::c=rx)*lSO.OIP: 
WRIT~ (7,179) NOF:XCI~CF!X),(:=L~GCJ=CF:x,I'::=Ix), 

1 s=rxCJ~CFix,I:C=Ix),JECFIX=1,2),ANG 
179 F8R~AT (l4X,2CI4,12X),OlC.3,6X,r4,12X,D1C.3,lCX,F7.2) 
163 C'JNTII'JUE 
164 CJNTINUE 

WRITE(7,186) ~ 

165 

.. ..................... .. .. , .... , .. .,, .. .,. .. , .. 

........................... .. .......... , ........... .. 



126 FJRMAT(1H0/1H0910X 9 °G~AVITY 

WF'!Tc(6ol72) 

1 ,Fs.2, 1 ~ p=; ~~. 1 ) 

172 F2RM~T( 1 0~C~02 CJMPLETEO'} 
CALL TP.1::C1d) 

....................... ....... , .... , ....... 

' ................. .. , ........ , .... , .... , .. 
................... , .................... .. 

i<~TU~t\J 
Et-.10 

SUE:RCUTINE KFJR~ 
================ 
T~ SET UP THE SL~3AL 

TJ CALCULAT~ ~rl~ 9AN~W:~T~,K~~,A~1 T~:: S~::~J :!~~NSI~N 
J F T rl:: G L iJ SAL S T: =;: N:: S S , :3 L L: r; !<. ( rJ 'J: ::' 2 , i<. S: 2:: ) 

DO 206 I~W=l 9 N~L 
!A51=IA?S(NCJEL(l9IBW)-NCD~L(2,!~~)) 
IlS2=IASSCNCJELC:,I9W)-~:~ELC3,:5~)) 
I~S~=!A3SCNOJELC2,I5w)-~GJ::LC3,:~w)) 

~06 MeX=MAXDCIA3l,IA52,IA33,~AX) 
1\ ?. w = 2 ::: ( '-1 ~ X + 1 ) 
~<, S I Z c = 2 :;: 1<. 6 W - 1 
'..J'<!TE(7 9 298) KE::W 

298 FC~MAT(lHO,lOX, 1 ~AN~WIOTH = I ,:4) 

• ............... ..... y .-. ~ A T ; : X 9 K • ......... , ... , ... , .. 

o: 207 J~O=l 9 KSI!E 
DO 207 IKO=l,N~J:2 

207 GL~gK(IKD,JK0)=0oJ 
OJ 21J IK~L=i 9 N~L 
E=E:MCITY?CIK::L)) 
P=P~CITYP(It<.EL)) 

..................... , .. , .... , .... , ....... 

..................... .................... 

FORM Th:: ELASTICITY 

J(l,l)=~~(l-D)/(l+P)/(l-2~~) 
JC192)=JC191)~P/(l-c) 
:)(1,3)=0.0 
c ( 2 9 1 ) = 0 ( 1 9 2 ) 
JC292)=iJCld) 
OC2d)=,:.o 
OC3d)=O.O 
0(392)=0.0 
DC3,3)=E/2.0/Cl+?) 

F~RM THE EL~ME~T AREA,OELTA~lND STRAIN MATRIX,a 

DXI=XCNSDELCl,IK:L)) 
DXJ=XCNODELC2,IKEL)) 
DXM=X(NOJEL(3,rKEL)) 
DYI=YCN:o=LCl,IKEL)) 
JYJ=YCNDD=L(2,IKEL)) 
DYM=YCNODELC3,IKEL)) 
J:LTA=CDXJ*OYM-OXM*DYJ-~X:*DY~• 

1 CX~*DYI+JXI*DYJ-DXJ*DY!)/2~0 
3(3,1)=CDXM-DXJ)/2.0/D LTA 
3(3,2)=(0YJ-OYM)12.0/J LTA 
3(3,3)=(JXI-OXM)I!.O/J LTA 
~(3 9 4)=(0YM-DYI)12.0/8 LTQ 
o(3,5)=(JXJ-~XI)12.0/0 LTA 
3(3 9 6)=(~Y:-DYJ)I2.0/J LT~ 
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................. \t .. • .. 
~ ..................... ... 

... _ ..... ,J .... • .... • .. 
~ .................... ~.~ 



....... , ........ .. ................... 

................. , ., ..... , ... , .... , .. 

F:~ ASC~SSI~G ~~~ICIENCY 

::: ::: ::: ::: ; 11 ~ ~ L c t·1 E ~.J T s T I ;:: = tl) c s s 9 :: i.. <: :: c 3 T ) ( :; ) ( 0 ) : : J :: L T ..l 
:;: ::::::::: ( = J R J N I T 2 L : ~1 :; ~JT T'"' I C K N: S S ) 

JG .204 J:Li<,=l96 
::;::; .2•)4 IELK=l~6 

204 ::LK(I~LK9J2LK)=:L<C!~LK,J~LK)*:~~SC~:LT~) 

**** ro LJAD r~: :L:~ENT sT:==~:ss~c:L~~ **** I~TJ T~E ~LG3AL S7I==~ESS ~~T~:x9~L,~K 

WRI:E(6 9 .299) 
2 9 9 ~ 0 R f'-1 A T ( I 0 s L ~ ~' :.. L s : : :::: F ': ~ s s !.1 ~ ... :> : X :::: :: :> t·1 = D I ) 

C fl. L L T I t~ E ( 1 9 1 ) 

K~TJR"J 
: t'J u 

SUBROUT!N~ ~ATPPD(A,e,C,L,~,N) 

=================:============ 

c ? 7 ) c ~ ) ( 3 ) 

...................... .. , .... , ..... , .. ~ .. TJ =r~: T~2 M4TR!X P;1DUCT CCL,N)=ACL,M)*~(M,N) 

I~PLICIT QEAL*3 (A-H,~-W) 
D!MENSICN ACL 9 M),3(M,N),:(L,N) 
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.......................... ..... '"•""~"'"•"'"•" 
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t,: :;:* :;: * 



~t:T!IR."J 

;:: w: 

168 

................ "' ... ~· ............... ,. .................................................................................................................................... · .............. ·

..................... ........ , ... , ..... , .. 

.................... ................. , .. 

................... .. , .... , ... , ..... , .. 

----------------------------------
T~ ACCOUNT coR AN 

VECT-:~ 

JC: 233 JNS=ld 
~ISX=C5L:q((2*JNS-l),l,:NS)*ST~OC1,:~S) 

A'!J llDD l'JTO I=Q~C~ 

1 +3LI3CC2*JNS-1)9?9I~S)*STqSC3,:~S)) ~ JQ=~c~~LIBCIN$)) 
~ISY=CBLI~C CZ~JNS) 9 2,I~~)~ST~"C2,~~5) 

1 •3L:3C C2*J~S) ,3,I~S)*ST~0(?,:~5)) * JA~SCD~L!BC!~S)) 
N~I~S=2*NDO~LCJNS,INS) 
ruRC=CN;::INS-1)=FJ~CECN~I~S-l) -, =rsx 
FJRCEC NFINS )=CJPCEC NciN~ ) - =:sv 

233 CIJNTI~UE 

232 CJNTINUE 

W~ITE (7 9 239) 
238 FQRMAT(lHO,lOX, 1 :~ITIAL ST~ESS SYST~~ SU3T~A:TE~') 

.................... .. , .... , ......... ... 
================ 

J2 3~0 ~~~J=l,N~L 
R~J=~HJM(!TY?(I3:J)) 
D~LTA=JA5SC~ELIBCI30:)) 
~~=~HD*S*DELTA/3.0 
08 351 J:OD=1,3 

351 FIJRCEC2*N~D~LCJBJO,I6JD))=FJ~C~C2*~::=L(J~JJ,J3CO))+F 0 

350 CJNTINUE 

WPITEC7,359) 
35i FJRMAT(lH0910X,'5JJY =opc=s A~c~:=~•) 

RETU~N 
END 

....................... a., .. .................... .. 

............. , ........ .. .. ..................... .. 



SUBR:JUTIN ISOS --------- -------------- -----
~ .................. .. " .. , .... , .. ~ ..... , .. T'J INCLUD IS·JST:J.TIC C ::; M P E N S A -:- : -:: i·, : '! G L J 31<. 

:~::~::::::;: R:~; )t'~JS:TIES9;:LAGS >liJ:J !JA.Tu·~s 

~ ..... ~· ......... .. ...................... 
' ................. .. ........................ 

.. ................... .. ....................... 

300 

...................... .. .. , .... , .... , ..... , .. . ................... .. 

.. "'!'""•""''""'•" 

...................... , .................. .. 

I~ IS=l9 THEN CCMPENSCT:~~ ~S 
AT ALL ~JSES wr:~ Y=JA-u~ 

KOATU'-'=0 
:: 300 IDATU~=l9NNCD 
I~ CYCID~TU~).NE.YDATUMCJS:S)) ~J 
K Q A T u I~= :<.. D l'l T l) ~~? 1 
N~D~T(KJATU~)=IOATJ~ 
C: NT I'.JU:: 
:,.::- :J 31.2. 

:::; C.CILCiJLAT:' FIS:J3 

T"" 30) 

312 ::AT=~COAT(l) 

...................... _ .. , .... , ........... .. 

K:JA ... =N:C'A'7'(2) 
FtSJS(l)=(X(KJA7)-XC:QAT))/2.1~~~~:(JSJ~)~~ 
!)AT=NO~AT(KjATUM-1) 
KDAT=NGO~T(~CATUM) 
FIS:SCKDATUM)=~X(KJAT)-XCIJnT))/2.:~~~C!CJSCS)*G 

FJR OTH:R ~JC=S J~ DATUM 

J014AX=KJATUM-l 
~J 301 J:AT=2 9 JCMAX 
IJAT=~OOATCJJAT-1) 
KDAT=~OOAT(JJAT+l) 

301 ~ISOS(J:AT):(X(KOCIT)-XCIDAT))I2.0~~H:ICJS:S)*~ 

M:JIFY TH~ A?PROP~IATE 

DO 302 JISOS=l,KJ~TUM 
IIS~S=2*NOOATCJISCS) 

302 GLCB~CI:S~S,K5W)=SLO~~CIISOS,K3W)+F!SJSCJISOS) 
GO TJ 311 

303 R~DICJS~S)=O.O 
311 CONTINU: 
310 CONTINu~ 

w~:TE(7,309) ~HOI 
.:, 0 'j F 0 R MAT ( 1 H 0 , 1 0 X , 1 I S J S T G T I C C : H !:) :: ~I S AT : 0 N ~ r~ C L U :J f 0 : ' , 

1 1 :>'"lOICl.) =•,c7~~,•, RHOIC?.) =•,=7.1) 
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.. ...................... .. 
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.......... ~ ........... ......................... 

.. ..................... .. . , .... , .... , .... , ... , .. 

.. ...................... .. .., .... , .... , ..... , .... , .. 



RFTlJRN 
~"-10 

SU5~JUTINE ~DUN:S 
================= :::: ::::;: ::: T: 

... ................. .. ,., .. , ..... , ... , ..... , .. -................ .. ...................... 

... ................. .. ,., .. , .... , .... , .... , .. 

... .................... .. "' .. , ..... , ........... .. 

..................... ,., ... , ..... , ... , .... , .. 

....................... .... , .... , ......... , .. 

324 C~NTINU:: 

170 

.......................... ,, .... , ............... ... 
.. ......... .J .......... .. ,, ......... , .. ~- .. , .. 
.. ....................... .. .. .................... .. 

.. ..................... .. .. ........... , .... , .... , ... 
:'::::::c:::::: 

"h~~~h~h~h~~~~h~~~~~~~~~~~~~~~~~~~~~-~--~~~~~~~~~h~h~~~~~~~~~~~~~~~~~-·~~ 
wl .. , .... , .... , .... , .... , .... , .... , .... , .... , .... , ......... , .... , .... , .......... , .... , .... , .... , .... , ... , .... , .... , .... , .... , .... , .... , .... , .... , .... , ..... , .... , .... , ................................. , ...... , .... , .... , ... , ... , ..... ...................................................................................................................... .. 

SU3~0UTIN: Q.JTJ;; 
================ 

~~~~ T~ FIX NOQAL DIS?LAC::MENTS IN A ~OTATEO CJ-O~DI~ATE SYSTEM **** ACC~~OIN~ TO : IFL~G=3: F!X~Q ~IS~LACE~ENT 
~*** IFLAG=4: ~rx~~ VELJCITY 

IMPLICIT Q::AL~B CA-H,O-W) 
COMMJN /NOD/ ZCCM1Ct0C),CJM1C~00),F~QCEC500),~,~NC~,N~OD2 

..... ......... ...A.. ... ... .. ,,...,. .. , ..... , ..... ,. 

COMMON /FIX/ ~F!XC2,100) 9 A~~LEC10Q),I=LAG(2,100) 9 NOFIXC100) 9 NF!X 
C~M~~N 1~1 GLC3KC600,185),C~M5(!4~00),K;~,KSIZ:: 
CQMMON /WK/ COM5(5269),~CZ,?.),~T(2,2),=(2),QF(2),SUSKC2,2),PS(2,2) 

1 ,0(2),~0(2) 
~OMMJ~ /IN/ OISPOC600),XCO~l0C~C0),ISET 

I~ (NFIX.LE.O) GJ TC 404 

At\J':,L=Jl.42 
JJ 400 IF!X=l,NFIX 



I = ( I ;:: L A ~ ~ 1 , ~ = : X ; • L T • ~ • ~ ;.J ~~ • I = L; ~~ ( : , ~ :: : A ) • ~ T ., ; ) ~ ,:1 T: ~ ~: ·"' 

:**** s~r~ THE FIRST s~c7rc~ := ~-~ :~:L~ := ?:·~·:J~ :s Th~ ~lv~ 
:**** AS 5EFORE (ANGL ~AS I~ITIBL!:~~ ,- AN U~LIK~LY VALU~) 

r~ CANGLEcr~rx>.E~.ANGL> ~= T~ ~J3 

-.................... .. .., .. , .. ~, .... , .. 1, ... 

403 MD:T=~o~rxc:F:x) 
F(1)==:~C~C2*~~~T-1) 
F(2)==:~:~C2*~~~T) 

-..................... .. ..................... , .. 
.......................... .... .. , ..... , .... , .... , .. 
........................ "' .. , .... , .... , ....... 

CALL ~AT?~G(~9=,R=,zv2,1) 

TAKE TrlE MATRIX ~=LATING 
ST:~=NESS ~ATR:X AND ~U~ 
F:~ EACH VALU~ ~F N IN TM 

~RM~X=MR:•+(K~~/2-1) 
NRMIN=MRCT-(KS~/2-1) 

J ':; ~ S !'' A I" r 

~ SU3<, 
::. ~ "-J :· 

r= (~RMAX.~-.~N~::;) N~~AX=~N~~ 
IF (~RMI~.LT.l) ~RMIN=l 
0 ~ 4 1 0 N R ~ T = '~ R il, I fJ , r~ R ·~ .l X 
JCl 411 IRC';=1,2 
C~ 411 JRJT=l,2 
K~J7=2*MR~T+I~OT-2 
l~JT=Z*NRJT+JQOT-2-K~DT+K~w 
SU5KCIROT 9 JROT)=GLJ3K(KRQT,LPJT) 

411 :::JNTINU: 

....................... "' .................... , .. .. ................... .. "" .. , .... , ... , ..... , .. 

~OTAT~ SU9K TO S!V~ (Q)(SU~K)(;T) 

T H f: S 0 ,·~ P CJ N C: N ~ S Cl = l1 N Y ::: .'J ! : ~ :; L :: Z :: ~J G 
I~ RCTATE~ CJ-ORDI~~TES 

IF CIScT.LT.1) GO TO 414 
:(1)=0ISPOC2*MROT-1) 
DC2)=~IS?OC2*~~0T) 
CALL MATPPD(R 9 0 9 ~092,2,1) 

414 CDNTINUE 
..................... ........................ 
: :::: ::c :::: ::: 

ZER~ RJW OF STIF~NESS MAT~IX 
JISPLACEM=NT TJ c~ =rxEO 

08 412 JFIX=l 9 2 
IF CIFLAG(J~IX,IF!X).~Q.O) ~a r~ 412 
SUBKCJF:::X,l)=O.O 
SUoK(JFIX,Z)=O.O 
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!'::::!:::.':::-: 
.......................... ...................... , ... 

.......... .~, ..... .~ ... ....... , ..... , ......... .. 

::: ::: ::r :;: :;: 
......................... . .................... .. 

::: ~c:;: :~ ::;: 
::::::::::~:·, 

~'*t.::::::: 
*'::t.c:::t.: 

:**** SET THE DIAGONAL T~RM TO 4 LAR~= ~UMS~R A~D ***** 
:**** TH~ MTH. ROW OF T~E FO~CE V~CTGP TJ T~AT ~UM3~R ***** 
:**** TIMES TH~ DISPLACEMENT TO 3~ ~:x~n. CZE~O ~JQ FIX~J V~LOC!TY)***** 

................... .. , .... , .... , .... , .. 

...................... .. , .... , .... , .. ~ ... 

IF (NRJT.~E.M~JT) GO TJ 412 
SUBKCJriX,JFIX)=l.OD12 
IF CI=LAG(JFIX,IF!X).~Q.3) ~F(J~!X)=C=IYCJ~!X,i~IX)*l.Onl2 
IF CI=LAG(J=Ix,I=~X).:Q.4) QF(Jcrv)~O.O 

IF ~08EL HAS BE?N INITIQLIZ~D ~!T~ S~Tu~, 
ADO IN PR~VICUS JISPLQCEME~TS 



T~ riSET.LT.l) ~2 TO 412 
~=(JFTX)=~FCJF!X) ~ RDCJFIX)*l.CClZ 

412 C:::"--TI"JUc 
.. -·~ .. ·~ , ..... ·~ ...................... ~~TAT: SU3K SACK TJ ~l2~AL C0-:~0S 

CQLL ~AT~RS(RTpSJ3K9~S,2,2p2) 
CALL MATPDD(RSPR9SU3K 9 2p2.2) 
iJG .:.13 r~=~=l92 
OJ 413 JK=R=l92 
K~JT=2*~R~T+IRE~-2 
L~C~=2*NR~T+JREQ-2-K~GT+K~W 
GL:S~(K~JT9L~QT)=SU6KCIREj9J~~~) 

413 CJNTINU: 
410 C:J~T:Nu: 

' ................. .. ................... , .. - - """ ..... -,- .. ...; - : 

~04 CJNTINUE 

WR!:E(6 9 4g9) 
499 FJRMATC'09~UNJA~Y CJNDITICNS AcolrE~'I' :~ ~=·~r:: co-:DJS') 

CALL T:U·1:Cld) 

~:TURN 

= IIJD 
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.......................... .. ..................... .. 

... ....... .~ ....... ., .. .. ..................... .. 

................................................................................................................................................................................................................................................................................ J .. .......... .~ .. ~ .. ................................. J., ,J., .... .J .. .,J,. 
~ ... .......................... , ................ , .......... , ..................... , .......... , ......... , .............. , ......... , ......... , .............. , ................... , ......... , .... , ................................ , ............. , .... , ............. , .. " ........... , ......................... , .............................................. , .... , .... , .............. .. 

.................... .. , ... ,, .... , .... , .. 

................... ............ , .... , ... 

SU3RJUTINc SOLVE 
================ 
S~LVE THE EQUAT!J~ K*~I~P=F~~C~ 

C:J~Y =QQC,= INTO J~S::>9 t..~;J 

S8LUTIO~ VECTO~ IS I~ J:S~(6C~) 

wQITEC7,1909) 
1909 FQ~MATC1H0,10X 9 °ELASTIC ANALYSIS') 

W"?ITE(6 9 1908) 
1908 FDRMATC'O~~UATION SOLVED') 

CALL TIMECl 9 1) 

RETURN 
C:NJ 

.. ...................... .. ........................... 

... , ................... .. .. ....................... .. 

~********************************************************************** 



.................. . , .... , ......... , .. 

................... , .... , ... , .... , .. 

VIS L ------------------ ---- = 
TJ 'SJLV~ 0=1 v 5CC-!:L..4STIC 

I;: T"i:'Y i·iClVE 

IF ~T:M~.L:.C A~ ~LASTIC 

IF CNTIM!:) 1001,1101,1002 
LOCl CALL SCJLV: 

.................. ..... , .... , ........ 

R: T UR 'J 

L082 o:>T=1.0 
~'lJ:'~=6'JO 
NITE~=2C 
VcRG2=1.0~4 
wQITE (7 9 1906) ~TI~E,:T:ME,VE~s= 

! s .~: v:: ': 

~ :; o 6 r=: =< "-1:.. r c 1 ,"1 o 11 H o , : ~.. 9 o r I r--1: r N c ~: '-'1 = ~J .... s, ::A c- s = ' , J 7. 1 , 1 y P s. 1 1 

173 

.......... .,}., .. ·~ ~4 ...... , ................ .. 

.......................... .. ................... ... 

1 1rl09~x9'CJ~v:~SEN:= L:M:T =' ,J7.1, 1 ~ ~=~ SQ.~ 1 /lri0) 
DTI~E=2TI~::*3.16C7 
WPITE (8 9 1905) :JAT2 9 TITL= 

.905 F:RMAT (1~0,12X,3A4 9 3~X,4A2/lY0) 

:*** ZERC CR::ED 9 IF TH:RE ~AVE ::~~~ ~: ~~EVIJUS r:~:: ST~os 

................. ... , ..... , .... , .. ST:R: INITIAL FORC:S ~N =:N!T 

OJ 1086 I~IN=l,NN:J2 
C06 FINITCIFIN)=F:RC:CIFIN) 

.................. . ..... ~ ........ STAQT L:OP GVER NT:M~ TIM~ 

DJ 1010 !TIME=l,NTIME 
TJT!~~=TJTIME+DT!~E 
~TI~=ITIM~-lOO*(ITIME/lCC) 
LTIM=MTIM-lO*(MTI~/10) 
r~ CMTIM.LT.14) LTIM=MTI~ 
r= CLTI~.sT.4.D?.LTIM.EC.0) LTI~=4 
WRITE(3,1919) ITIME,:UF(LT!~)~T~T!M= 

......................... .. , ....... ~ .......... .. 

919 FCRMQT(lrl0/lrl0,!4,~4, 'T!M~· I~CR=Y~NT, ENC!~G AT 1 IJ9.3, 1 S. 1 /lH ) 
DC 1011 JJC0=1,NEL 
DO 1011 IJCC=l,4 . 
JCQEE?CIJCO,JDCO)=O.O 

011 P~EST~(IDCO,J~CO)=O.O 

START SCLUTID~ !T~RATIONS 



TTER0=1 
ITMAX=NITER 

1o14 ~~ 1020 ~T:R=ITE~O,ITMAX 

=~~~* COPY ~oRCf INTO JISP, AND SDLV~ TrlE sr:=~N:SS ~OU~TJON 

DO 1000 ISJL=1,~N:~z 
OISDCISOL)=FJ~CEC!SOL) 

lClClO CONT:NUE 

....................... .. ....... , .... , ..... , ... 

..................... ........ , .... , ....... 

...................... .. , ............... , .. 

CALL ~A07°JCGLJ3K,JIS~,Nu~,N~1J2,~S:2:,or) 
?T=Oo•J 

SJLUT!CN VECTQ~ IS IN ;:,rs=>c-so0) 

DO 1030 !CR~EP=l 9 ~EL 

ASS:GN PROPERTIES TO 

IF CIT=R.GTel) GJ TO 1036 
JO 1035 IBGN=l,t. 

T I '}: : \J C " :: :~ E ~JT 

1035 STR3GNC!3~N,IC~EEP)=STR:SC!~~N) 
1036 C:::NTINUc 

**~* F!N~ CR~Eo STRA!~ F~OM ~EVIATC~!C STR:SS:S 

.................... ..................... 
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............ '¥ ........ .. ....... , .... , .... , .... ,. 

......................... ....... , .... , .......... .. 

..• .... • .... '~, ... • .... • ... .. .................... . 

" .................... .. ...... , .... , .... , .... , .. 

............................ ......................... 



................... 
' ................... .. 

.......... ~· ....... .................... 

.................... .. , .... , .... , .... , .. 

................... ...... , ... , ....... 

::NO OF LO~P 

ENSUR: T'1AT 

~~ (N::IX.~Q.O) ~0 TO 1027 
ANGL=31.42 
JJ 1040 I 0 JUN=~9~~:x 

~ r r.• .l I ~! :: I X :.: ') 

r:: (ANGLECIBOUN).fiJE.O.O) ~: TC ~044 

NJJES FIXED It~J GL~5AL CO-:PJI~~T::S 

JJ 1041 JS:UN=1,2 
:F CI~LAGCJ?OU~ 9 :~JUN)-l) 1~41,18429104~ 

1042 KBOUN=2*N~FI~CI30U~)+JSJU~-2 
F~R::Eo(K58UN)=J.O 

.................... .. , ......... , ..... , ... 

..................... .. , .... , ......... , .. 

.................... 
, .................... .. 

~: TJ l'hl 

NJDES F!x:D IN QCTATEC CJ-O~GIN~T:S 

FJRM QJTATIJN MAT~IX, 

AN~L=ANGL~CI30UN) 
RCl,l)=DC:SCAN;L) 
R C 2 , 2 ) = R C 1 , 1 ) 
~(1,2)=0SINCANGL) 
R(2,1)=-~(1,2) 
0'; 1046 I~T=l,2 
JG 1046 J~T=1 9 2 
~TCIRT 9 JRT)=RCJ~~,IRT) 

rTs T~BNSP:s=, ~r 

1046 C'JNTINUE 

.................... .... ..... ~ ........ 
ROTATE FCRE~P T: ~= AND SET ~P?~D~RT~TE VALU~S 
I~LAG=3 GIVES FIX~D JIS 0 LAC~M~~T, 4 ~rx::o V~LOCITY 
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.. ... .J ............. ~~,. .. ... ~ .............. .. 

................... ~ .. .. ...................... .. 

=:t~c::::-.c=:: 

::c::::::t.:* 



C~L MATPPDCRT,R=, ,2,2,1) 
F:~ ~D(2*MQ~TF-l)= (1) 
=c~ EPC2*MROTF) = (2) 

10t.0 :'JN'~'"INJ:: 

...................... 
"'t'''"•""'•'"•" 

...................... , .. , .... , ... , ....... 

.................... 
~ ..... , .. ~ ........ 

1026 r= CCONV.LT.1.0) S2 TJ 101? 
.................... .. , .... , ..... , ........ 

................... ............ , .... , .. 
............ ., ..... .................... 

END a= ITEqATI:N LJOP 

CONVERG~NCE HAS FAIL~J 
ITE~ATIJN MAY BE CJNTINUED 

w~:r::c6,1917)ITIME~zu=CLTIM),C:~v 
1 9 1 7 F 0 R rH, i ( 1 H 0 9 ! 4 9 A 4 9 ' ..,. I ME ! N C ;<. E l-1 E ~~ T 1-H S 'J C: T C 0 NV E ~ r:. ~ J 1 I 

1 °X 9 °P.ESI~uAL= 1
9 Jl0.3/ 

2 3X, '~NTED ~U~3=Q OF =xrRo IT=~~TTJ~S (!4) 1 / 1 •••• 1 ) 

REA~(5 9 1916) !TCO~ 
1 9 1 6 F 0 i< ~1 A T ( I 4 ) 

r= CITC'JN.L~.O) G: TJ 1015 
ITER0=ITM:.X+l 
I™AX=ITMAX+:TCON 
GJ TJ 1!)14 

1015 ~RITEC7 9 191~) 
1915 FJR~AT(l~Q,l0X 9 '** QU~ o~:~T~: *~') 

CALL TI"''=(ld) 
S7JP 

1019 C:JNTINU!: 
...................... .. , .... , ..... , .... , ... 
.... , ..... _ ...... .. ... , ..... , .... , .... , .. 

=~J J= SDLUTIJN IT~RATIONS 

!NCJRDORATE INCPEMENTAL 

DJ 1013 JCRT=l,NEL 
00 1013 ICRT=l,4 

1013 CR=EPCICRT,JCRT)=CREEP(IC~T,JCRT)•GC~EED(!CJT,JCRT) 

S~T UP FJ~CE VECTJRS F8D NEXT TIM~ INCR=M~NT 

OJ 1016 NEXTF=1,NN002 
FINITCNEXTF)=FINITCNExT=)•FC~~EPCNEXTF) 
FJRC~CNEXTF)=FINITCN~YTF) 

1016 C.JNTPJUE 

w~IT~(6,1~18) ITIME,ZUFCLT!~) 
1918 =OQVATC1HO,!~,A4, 1 TIM~ !NC~cM=NT SO~~LET=') 

COLL 7H<1EC1tl) 
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.......................... .. ................ , .... , .. 

........................... ...................... , ... 

. ..................... .. .. ..................... .. 



1010 !.ONTI'JU:: 
.................... , .................... E"JO iJF TINE 

R:: T U ~ '·J 
cNJ 

ITE::?A-:"IONS 

177 

...................... .. .... , .... , .... , ..... 

..................................................................................................................................................... •'• ..................... • .............................................................................................................................................. ., .. .~ ......... ...... ..... ..~ .. ~ .. .. , ............................................................... , .... , .... , ........................... , .... , .... , .... , .... , .... , .... , ......... , .... , .... , .......................... , .... , .. , ................................................................................................................................... .. 

................... ................ , .. 

....... • ... -• .... • .. ..... , .... ,- .. , .. 

................ ............ , ... 

................. ... , ... , .... , .. 

................ ... , ... , ..... , .. 

SUa~JUT!NE ST~~SS 
================= 

F= ~ : ~·~ L: : S " L ~ c := 1· 1 ~ r J ... s 

ST"'10.X=O.O 
IHX::L=l 
!STQ=l 

P =< ~ P : ;. T I := S 

JUT STRESSES FO~ CJ~TIN~AT:~N CUN=oo~ATT~~' ON ~2) 

W"!TE CZ) CSTR~SCJS0) 9 JSO=l,4) 

AOJ ON INITIAL ST~~SSES, _r 

IF (!NST.Nc.l) GO TO 50~ 
DO 507 !$0=1 9 4 

:~~S ... =l 

STRESCISO)=STRESCISO) + STPOC7~0,IST) 
507 CONTINUE . 

................. .. , ... , .... , .. 
................ .............. 

ro ~aTA!N P~:NCTPAL s ... R=ss:s 
( ?RINCCl) IS AT T~~T~ TO TH: X ~vrs ) 

.. ....... .}.. .. ' ... '-.. ... "'""•"'"'""" 

):::::~::::::: 
.......................... .., .... , .... , ........ , .. 



~· ................ .. . , .... , .... , .... , .. 
..................... ............ , .... , .. 

D~AX=DM6X1( 0 ~!NC(l 9 IST),PQINC(2 9 :ST),~~~~C(?,~3T)) 
D ,...,., I t\1 = Cl r.1 IN 1 c C) ~ I N c c 1 9 I s ,. ) , P ~ I N c c 2 , : s. r ) , " :> ,. >.. ::: ~ :: , : 3 r ) ) 
tHCIST)=0 
I!= (Dc:I~C(l,IST).::;).?!;1I~JCC3,:ST)) :;r: :: 503 
~F (?~I~S(2 9 IST~.=J.D~INC(3,:ST)) ~~ r: 5,3 
I~ (J~AX.~~. 0 :>I~C(3,IST)) MZCIS,.)=l 
:= (J~l~.~~.?~IN:C3,!ST)) M:CIST)=-1 

509 0MAX=OA5SC~~Av) 
:JtH~~=JAeS(JM!'..J) 
JYAX=JMAX1(0MQX 9 D'-'1~N) 
r~ CSTMAX.GE.DMAX) SO TO 510 
STMAX=CI~AX 
i'l A X: L =IS T 

510 CONTINUE 

WRI':C6,53S) 
599 =JR~ATC 1 0°KINCIPAL ST~ESSF-S :n~:uLAT~~o) 

CALL TI...,':Cld) 

.................. , .... , .... , .... , .. 

.................... ................. 

................. ................... 

~i:TUR>J 
:NO 

SUBDJLJTIN!: HYORt. 
================ 

YS!GN=G/OA8SCG) 

R::AO IN JI=NSITY 

K~ADC4,56<?) NRJ 
569 FORMATCI4) 

JO 561 IRO=l,NRJ 
REAJ(4,56S) YPJ(!QJ),ROCIPO) 

568 FQ~MATC2F10.3) 
YQJ(IQO)=YROCIR~)*l.OE3*YSIG~ 

561 CCJNTINUE 

DO 570 IHYD=l,N:L 

T., D 

:*** FTND THE 1EPTH TQ T~E C~NT~JI~ ~F Ec:~ ~L~~=N• 

PHYO=Q.O 
YCEN=CYCNDJ:L(l,IHYJ))+YC~O~~L(~,IHYQ))+YCNOD=L(3,!HY~))) 

1 ::: Y S I S ~ I 3 • 0 :F CYCE~.LE.Y~O(l)) GG TO 57C 
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.. ................... ~, .. ..................... .. 

......................... .. .................... , .. 



~ ...... ~· .. ~·· ... ... 
~ .. , ..... , .. -..... , .. 

............. _ ...... .. 
' ........... -....... .. 

BP~LY C~NTRIBUT!O~ TO MY:QCST~TIC P~~SSU~~ 
FQOM ALL LAYE~S ABOVE T1E C~~T~:IG 

AJ8 ~y~~OSTATIC PRcSSUR: 

DfJ 575 JHYD=l,3 
o~:NCCJ~Y~ 9 :HY0)= 0 ~INCCJ~Yu,:~Y~)-D~YS 

R~-CC~?UT~ STM~X AND ~AXEL 

~MAX=DA3SCP~INC(J~YO,IHYD)) 
!~ CSTMAX.G~.JM4X) GO TO 575 
:)T,'~AX=D"lAX 
rv!AX:L=r~vo 

STR~SSES 

575 CQ:~TP.JU:: 

5 7 0 C 0 i~ T I N U E 

~o~:>r~:c7,s67) 

567 FJR~ATC1rl0,10X, 1 rlYJ;CSTAT:C ?~~SSu~= 4J,~n AS FJLLJWS :•; 
1 lH0115X, 'T~P := L~Y~~ (M)' 95X,•~=NS!TY') 

J'J 562 :':H=l,i<;;:'] 
YPJ(Ih)=YPJCI~)*YS!~N 
~~IT~(7,566) YR:C!~),~JC!•) 

566 FJR~AT(l8X,El0.3,~X,=7.1) 
562 :::;r·-JTI~u: 

................... ................ , .. 

..................... .. , ..... ,_, .... , .. 

.................... . , ..... , ... , ....... 

R:TUi<~! 
:~w 

suaRourrN:: OJKc ------------------------------TO SUBTRACT P~~SSUR~ ~U~ TG ~AT=~, WH~Sc SUP~~c~ :S AT Y=O, 
F~JM T~~ ~~INC!D~L STR~SSES , ~:v!~G T~~ ~~:NC!P~L 
~F~ECT!V~ STR~SS~S CIN ~~GIONS WITH IP~RE=l) 

~ I .'-1 c N S I 2 N J D ( 1 0 ) 

**** ASSIGN WATER D~NSITY 

....................... ........... , ..... , .. 

RHJW=l030.0 

DO 22'J IPJ=l,N::L 

IF (IPQqE(ITYP(IP~)).NE.l) SO rr 221 

FINO TH~ W~TER P~ESSURf ~7 TH~ EL~M~N· C~NT~~ 

YCEN=CYCNOD~L(l,I~J))+YCN~J=L(2,IDG))+Y(N8JEL(3,! 0 ~)));~.0 
P D = Y C :: N :;: R H CJ W :;: G 

**** SUBTRACT TH~ DJRE o~::SSUR~ ~R~M ~Ac~ CF T~E p?:NC!PAL 
**** ST~ESS~S CNGT~: ?P IS +V~, ~~ILE o:R: 0 ~ESSUQE r~ -V~) 
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!:: ;:: f.:;~:': 
........................ -.- ................. .. 

........................ . .......... , .... , .... .. 

.. ....................... .. . ............... , .... , .. 

t.c :;:t,c*f.' 
::::::*:::t.t 

::~ ~:' ::c ~:c t,t 
..... .. • .. J .......... .. ...... , ............... .. 



DO 221 JPO=ld 
PRINC(JP09IDQ) = DRINCCJPQ,I?~) • DO 

221 C~NTINUE 

220 CCNTINUc 
~ ...................... 
,.; ...... , ... , ........ 

K :J = () 
D ::: 2 2 2 I ? = 1 9 N r·1 A i 
r~ CI:JCRECIP).N~.l) G~ TO 222 
<:=>=KP+l 
J?(K?)=ID 

222 CQNTI'JU: 

223 w=<IT:C69228) 
2 2 8 i= c: ~ ~-1 ..l. T c I c = R C' J ~ 

224 CJ~TI'·:U~ 

.................... ... , .... , ..... , .... , ... 

.................... 
' ...... , .. ~ ..... , .. 
.................... .. , .... , .......... .. 

..................... ...................... 
.................... ..................... 

------------------------------

ASSIGN VALUES JF T ANS SC FOR ELcM:~T 

T = TSCITYPCIF)) 
SC=-4.19:::T 

'I 

..................... ....... , .... , ....... 

...................... .............. , ..... , .. 
51 9 53 ARE T~E MAXIMUM AND ~:N!M~M o~:~C! 0 ~L ST~=ss~~ 
RESPECTIVELY, :~ Tri~ X9 Y cl~~~ 

Sl=QMAXlC~~!~CCl,!F), 0 R!NCC2,:=)) 
S3=0MINl(ORINC(l,!F),~RINC(2,:~)) 

S ·~ = ( S 1 + S 3 ) I 2 • ') 
rr~=CS1-S3)1?a0 

180 
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~ .................. .. .......................... 

::: ':: ~::;: ::: 
t,:::c::r,:::': 

:': :~ ::::::::: 
::: ::: t,c ::: :~: 



..................... ....... , .... , .... , .. JPEN S?A:K CJYPQESS!C~~L 

5 ? 2 S A :: S C - 2 • 0 ::: T 

................... .. , .... , ... -, .... , .. 

I~ CS~.LT.SA) SC TJ 553 
r=:HLCIF)=2 
T~=QSQRT(-4.0~T*S~) 
CFAILCI=)=1.0 - T~/TF 
FANGLCI=)=DARCJSC-TF/SM12.8)*~0.DI~: 
GC TO 555 

INT~~MEDIATE REG~JN 

553 3ETA=2.0i=MU*DSQRT(l.J-SC/T) + c:;r 
S8=SC*Cl.O+=Mu*=MJ) + ~=TA*=~u*=~u*T 
TC=3ETA*=~U*T - F~U*SC 

.................... ...... , ........ , .. 

IF CS~.LT.S~) ~2 TJ 534 
I=.:.:LClf=)=3 
(CA~LCIF)=1.J - T~/CSQRT((~M-5()::(5~-S:)+•C*T~) 
=ANGLc:=)=DATA~CTC/CSC-SM))*SJ.SI~: 
·:;r-; TJ 555 

554 AL?~A=0S~DT(1.0+FMU*F~U)!=MU 
I=A!LCic:)=4 
CFA!l(IF)=1.0 - ALPHA*TM/(5=T~*T-SM) 
I=ANGLC!~)=PHI 

555 CQNT~NUE 
55C C·JNTINUE 

.................. ., .......... , .... , .. 

~::TUR'J 
END 

SU3QJUTINE Zc~O 
=============== 
T~ TlKE OFF IN:TIAL 

TEST ...JHETr'ER ZERJ CAN BE USE.::. 

Ic CISET.SE.l) GJ TO 2101 
W'<ITE (6,2109) 

?109 FCqMAT C'O** ERRO~: MJDEL WDS N:T INITI~L~Z~D USING S~TUP 1 / 
1 llX,'ZERJ CANNJT 3= US~D') 

q:ruRN 
~101 CONTINUE 

~*** TAKE INITIAL DISPLAC~MENTS =~:~ s:s~ 

DO 2100 ISU3=1,NNOD2 
DISPCISUB)=DISPCISU3)-DIS~OCISU~) 

noo CONTINu: 

~*** CORQECT GRID TO GIVE xo~vo 
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:':::::;:::::;: 

..... .. .... ~ .......... .. .. , ... , .... , .... , ..... , .. 

:;c::c:;:t,ct,c 

:;c*:',:*f.: 

....... , ............... . ............. , .... , ..... , .. 



no 2001 !AJO=l,NNOO 
XOCIADD)=XOCIADD)+JIS~OC2~IAD~-l) 
YCCIADO)=YOCIADD)+OISPOCZ*IAC~) 

2001 CONT:~J~~ 

~n:r: c7,21')5) 
2108 ~:~~AT ~:~c910X, 0 !~:~:~L JrscL~c~~~~TS 5~~roacr=J') 

~=riJ:;;~J 
c ~!J 

182 



................... .. , .... , .. -........ 
================= 
TJ ~UT?UT R~SULTS 

612 wDii:(69692) 
692 FOR~AT( 1 QOUTPUT CJ~DL~TEJ') 

CALL T:t--~E(ld) 

~::TURN 
t:NJ 

! S T ~ , N ~ • ! 1 ) 

****~*~*~~~*~*~**~~*~*~~~**~**~~~~~~***~~~~~~~~*~~~~~~~*~***~********** 



SU6ROUTI~= STP~IN 
================= 

h~~~ T~ 1S~~!~ TJTAL ST~A:NS F~S~ SI5~L'C~~~NT5 
~~~~ CINCLUJING ~~y CR~EP S~~AI~S) 

.................... .. , .... , .... , ........ 

................... ...................... 

.................... ........... , ..... , .. 

..................... -, .... , .. -..... , ... 

~~~LICI- ~EAL*B (A-H,O-W) 
CO~~:N /NJ:I x:~~l(600),0ISPC~OO),C:vl(50l),NCO~l(2) 
C:~MJN /~L/ ITYPC500),NCD~L(3,5~0),N~L 
C8M~ON /K/. COM6(111500),BLI;c~,3,cJ~).DL cc3,?,=J1),~CJM6(2) 
C:MM2~ IS-I P~I~C(4,500),ST~~x,~:C5J~),: ~!LCSO~),~,X~L,!STD 
:~M~J~ /~K/ C:M9(52?0),~(?,6),:C3,3),~5( ,6), 

1 STR~S(4),STQN(4),:ISC~) 
C:M~:~ /~IS/ or,c:~0(~) 9 NCCYOC-) 

STMAX=OoO 
t~ A X~ l = 1 
ISTP=2 

ASSIGN PRJD~~TI5S 

TJ Oo~~~~ P~INCI?AL ~T~AI~S 
c PR!NCCl) IS AT T~:TA TJ T~c 

TO FI~O T~E MAXIMUM STRAIN !N 

X ~XIS ) 

CMAX=DMAXl(DRINCCl,!ST),PRI~CC29IST),DR!NC(3,!ST)) 
O~IN=JMIN1CPR!NCCl,!ST) 9 PR!~CC2,:ST), 0 RINC(3,!ST)) 
D M A X = D A B S C D r~ A X ) 
JMIN=:JABSCDMI"J) 
DMAX=DMAX1(CMAX 9 J~IN) 
I~ (STMAX.GEoDMAX) GO TD 510 
STHAX=J"1"-X 
t~AX::L=ISi 

510 CONTINU: 

W~ITEC7 9 598) STMAX,MAXEL 
598 FDRMAT(lHO,lOX,'TJTAL STRAINS'/ 

1 lH+,lOX,' 1 / 

2 lHO,lOX,•~Ii!RO~-~T~JIN = ',010.3,' CA3SJLUTE VALUE)', 

183 

.... ; -·· ~· .. ~·· 
·.~ ...... ~ ........ . 
.......................... .......... , .... , ....... 

t.: ::: t.: :',c ::c 
................ .,,,Jw .. ........ ~ ......... , .. 

3 •, IN cLEMENT NO.',I~/1H0/ · 
4 1H0,30X 9 

1 EL~MENT 1 ,11X,'~~:NCIP~L STRAINS',15X,'ANGLE 1 /lH0) 
OJ 520 JST=l,Ncl 
~P.ITc(7 9 597) JST,PRINC(l 9 JST),?OiNC(2,JST),o~!~C(4 9 JST) 

597 FORMAT(31X,!4 9 2(8X,Ol0.3),5X,=3.3) 
520 CONTINUE . 

WP.ITEC6t599) 
599 FOR~AT( OPRINCIPAL ST~AINS C~LCULAT~J') 

CALL T:"1ECld) 

R::TURN 
END 
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........................................................................................................................................................................................ · ... · ... · ....... · .... • ..... • .... • .... • .... • .... • .... • .... • .... • .... • .... • .... • .... • ..... • .... • .... • .... • .... • ......................................................... .,., ....... , ... , .... , .... , .... , .... , ......... , ......................................... , .... , ............................................................ , .... , .... , .... , ... , .................... , .......... , .... , .... , ................................. , .... , .... , .................................................................................. .. 

.................... .. , .... , .... , .... , .. 

.................... .. , ............... .. 

SUBROUTINE MORe ------------------------------WO!TE JUT INFORMATION =:R M2~~ 
CUN=OQMATTED 9 TO 3~ R~AJ :N 3Y 

... : '·' : : ·~:: ~ : '·' : t\J T S 
S::> ;::=;!.:2) 

WQIT~ (3) G 9 NN:: 9 NNCD2 9 T2TI~~ 9 KT:~E,IS~T 
~~IT~ (3) X9Y9~IS~ 

W~!TE (3) EM 9 PM,~~JM 9 ETAM,TS,:PJ~~,~MAT 
W~ITE (3) !TY? 9 ~DJEL 9 ~~L 
W'-'!TE (3) FORCE 

r= crs:r.GE.l) w~:T: C3) :~s?o 

K;::T~PN 
E~O 

.. ...................... .. .., .................... .. 

............. ,.-.. .. ., . ................... , . 

*********************************************************************** 

...................... .. , ..... , ... , ..... , ... 
SUBRGUTIN~ PSC~LE 
================= 

I~PLICIT ~~AL*3 (a-~,:-w) 
REAL*4 QA~AX 9 RAMIN 
CCMMON /NCC/ XCCM1(60S),CJM1Cl2~J),~9NN~2,NN002 
COM~ON ~~~~ X~AXpXMIN,Y~AX,YMI~,XSC,YSC,XSP,YSP, 

1 X~Aol9XMA~2,Y~Aol,Y~~cz,S:G~,~JUT(51),KNOUT,C,M9(5256) 

709 

703 

708 
702 

........................ ...... ..... -........ 

COMMGN /IN/ ::J~l0(600) 9 X(300) 9 Y(?8C),IS:T 

R:AIJ NUMBERS s~ :uT:R 

READ (4,709) NGUT(l) 
FCRt~AT (!4) 

Noo:s 

IF (NJUT(l)ol:.O) ~0 TQ 702 
OJ 703 IOUT=2. 9 51 
QEAIJ (4 9 709) NJUTCIDUT) 

USE :N 1U.,.LIN 

IF CNJUTCIOUT).~E.NOUT(l)) G: T: 703 
KI\JOUT=I'JUT 
G: TS 702 
CJNTINUE 
WQITE (6 9 708) 
FORMATC'O** ERRCR OUTLINE A~~OY CONTA:NS ~OQ~ T~AN 50 
CJNTINUE 

START PLOTFILE 

CALL OAPER(l) 

**** ASSIGN MAXIMUM AND MINIMU~ VALU~5 2c X AND Y 
~*~* YMAX aEING THE GqEAT~ST ~EPTrl (~~E ... ~~Q +VE Oq -VE) 

XMAX=RAMAX(X,NNGO) 
Y~AX=~~MAXCY,NN:D) 
XMIN=~AM!~(X,NN~D) 
Y~IN=RA~!I\J(Y,~NOO) 
:F C~.GT.Q.O) GJ TJ 713 

NJJES') 

:;t**:',o;c 
*::o;c** 



Ylv'IA=Y"1AX 
YMAX=YMIN 
YI>1IIIJ=Yt'1A 

713 CONT!~UE 
...................... .. , .... , .... , ..... , ... 

..... , ... _ ...... .. .. , .... , .......... .. 

.................... .. , .... , .... , .... , ... 

CAL:uu.TE 

XSC=lo0~5 
I~ (XMAX.LE.S.OE4) XSC=l.OE4 
IX=~F!XCXMAX/2.0/XSC)+l 
XSC=FLOATCIX)*XSC 
XMAP1=-0. 2:::XSC 
XMAP2=XMAX-XMAP1 
X 5 P = X 'HI X I X S C + 0 • 4 

TH~ ~LJT C~I~~TATIDN 
c:~ VAP!A~LE 'SI~N' 

:::?:~cs 
IS +Vcp 

SIGN=l.OC'!) 
SI~N=-DSI~NCSIG~p~) 
IY=A~S(YMAX-Y~IN)/5.0~3 
IF CIV.GT.10) IY=CIY/10)*10 
YSC=FLJAT(IY)*l.0~3 
Y M A P 2 = S I ·~ ~J :;: Y S S 
Y "-1 A ~ 1 = '1 M A X - Y r,1 A P 2 
YSP=Q.S 

R::T~~N 
::No 

:N ;~~ s::;~~ o= ~ 
Y :) +V: U?wAR8S) 

185 

.. ...................... ... .. ..................... .. 

.. ....................... .. 
.. .... , ... , .... to ... .. 

*********************************************************************** 

..................... ........ , ... , .... , .. =================== 
T~ ~INJ T~E MAXIMUM VALUE :~ 

c:t'.E·\JSIQN X(i~) 
~A!~AX=X(l) 
D'J 700 H~AX=2 9 N 
~AMaX=~~AX1CRAMAXpX(!~AX)) 

'00 CC:NTI"JU~ 

... ... .... .J .. v .. ~ .. .......................... 

:********************~************************************************** 

.................... , ... , ..... , ... ~ ........ 
--------------------------------------
DH~'=NSION XCN) 
R CH N :: X ( 1 ) 

VALU::: 

OJ 701 H1IN=2 9 N 
~AMIN=AMINl(~AMIN9XCI~IN)) 

r~n CJNTI~Uc 

RET UK~ 
::NJ 

=*********************************************************************** 



...................... ........ , .... , ...... , .. 

.................... ............ , ..... , .. 

.................... .. , .... , .......... ... 

SUB~O'JTINE SCJN 
=============== 

P ~~A X= 0 • 0 
;J 1·1! N = ') o 0 
X1=XC1)/l.OE3 
Y1=YC1)11.0::3 
X i~ ~ = X~~ A X /1 o IJ :: 3 
Y ~_., ~ = Y "'1 A X I 1 • ·J C:: 3 

FIND TH~ CO-:QJI~DT::S CF T~= :u-L:~~, XN9Y~, 
NU~3::RING CL:C~w:SE CF~~ ~~As= 3), ~SSUM~~~ 
THAT NOUT IS GIV~~ A~T!-:L~C~~7S~ 

DJ BOO I~=1,K~OUT 
JN=KNJUT-!N-+1 
."JN=NOUTCI~J) 
XN(JN)=XC~N)/1o:::3 
YN(JN)=YC~~)/1.0~3 

186 

..... ~·· ..... ~· ..... .. . , ... , ........... .. 

.......................... ...................... 

......................... ........................ 

::: ;~ ::~ :::::: 
::~ ::: ::: ::c ~:: 

8CO ::::1\JT!NU:: 
..................... . , .... , .... , ........ 

' .................. .. ...................... 

.............. , ..... .. ......... , ... , .... , .. 

' ...................... ... , .... , ... , .... , .. 

PHASE 2 : PA~AM::T~RS 

OJ P20 ICJN=l,NCL 
XCC~=CXCNCD~L(l 9 I:ON))+X("JC~~LC2,!C:N))+XC~1D~LC3,IC0N)))/3.0E3 
YCON=CYCNnJ~L(l,ICCN))+Y(NG~=LC2,ICJ~))+YC'l~J~LC3,IC0N)))/3.~~3 
P=JA5S(P~INCC1 9 !C~N)-DRINCCZ,::~N))/2.0 

~. :n S T ~A: N S A CCC C1 J! N SlY 

I~ (!ST~.~~.l) P= 0 /1.009 
rc CISTR.~Q.2) E= 0 *1.003 

?MAX=~MAX1(PMAX 1 P) 
o~:N=DMIN1(D~IN,P) 
W~IT=(Q,S96) XCQN,YCQN,P 

896 FORMATC'CNTL ',2F1J.3,Fl0.5) 
820 C~NTINUE . 

..................... ............. , .... , .. 

W~!TEC0 9 895) KNOUT 
895 F:~~AT('6~ND 1 / 1 SAMF'1'3LNK 1',:5) 

WRIT~ (0,887) (XN(IqN~),YN(!3ND),!BN:=l,~NJUT) 



R87 F0;',\1AT ( 1 BND I ,6.=10.3) 

**** PHASE 4 : PLJT CCNTJU~S 

**** PHASE 5 : DRAW ~G:EL 

WQITEC09884) CXN(ILIN-1) 9 Y~(lL!~-1), 
1 XN(!LIN) ,Y~C:LIN) 9 !LI~=2 1 KNOUT) 

884 FJRMAT C'LINE' ,~X,'1' ,4=s.:, 1 J.c c.o n.0 1'> 
..................... 
~ ...... , .......... .. 

'rlii<IT~C0,893) 
893 F::;RMt..T('LIN= 1 ,3X,'O 

................... .. , .... , ........ , ... 

1 1 L!t~E',5X 9 '0 
2 ° L I N ~ 0 

9 5 X ' I J 
3 I L : ~~ : I 9. 5 X 9 I 0 

XT1=-J.4:::xs 
X T 2 = - 0 • 9 ::: X S 

J. c 
o.c 

1 50 0 
1 5 0 I) 

PLOT 

1 J. 3 
1 Q • 5 

0. 0 

wRITE(0,892) XT1,XT2,YMA,Y~~ 

f' f' -. -
1 :; 0 ') 

1 :; 0 ~· 
} . ) 

1 0 • 5 
1 J. 5 

~ r. 
- • v o.o 

f) • 0 J. 0 
!).0 0. 0 
0. c 0. J 
f) • ') 0. 0 

c.o 
0.0 
:.0 
o.o 

892 FORMAT( 0 SYM3° ,SX9 1 l',=s.l, I n.: o.o C.1~ 1.0 1 ,15X, 1 0 1 1 
1 'SYM2°,5X,'l' ,2~5.1,' 0.0 C.lS ~.0' ,15X,=5.1) 

!F (Yl.N~.O.O) ~Q!T:CO,SSl) x·:,Yl,Yl 
981 F~~MAT C'SY~s· ,sx, '1',2=5.1, 1 s.o 1.15 s.o',1~X,FS.l) 

wqiTEC0,391) T!TL~ 
891 FJ~MATC'SYMe 1 ,5X,'O O.S 10.0 0.} 0.3 32.C',1~X,4A8/ 

1 1 SYM='95X9'0 10.5 ~.4 ~.~ 0.2 11.0 1
9 15X, 

2 'C0NTOU~S 3F MAX!MU~') 

IF CISTR.~~.2) GJ TC PS2 

**** HEAD:NGS =oQ STP~SS C~NTDU~S 

'tJ~Ir::co,s36) 
8 8 6 F J R ~, t.. T ( I s y M :. I ' :5 X ' I 'J 1 1 • 1 

1 • S'-'E~~ .)r.:.{::ss •) 
wQITE(0,325)D~AX9?MIN 

8 9 5 F Cl .~ M A T ( 0 S Y t~ 6 1 , 5 X 9 ° 0 1 • 0 
1 'MOXIMUM STRESS = 
2 I s y ~~ 6 ° ' :: X 9 I 0 1 0 0 
3 'MINIMUM STRESS = 

GO TO a51 

9.C C'.: 0.2 12.0',t:.X, 

9o4 ~.0 0.2 30.0' 1 15X, 
•,=7.3,' K~A.?. 1 1 
9.0 C.'J 0.2 ~IJ.0',1'3X9 

I ' = 7 • 3 ' I K : A ~ • I ) 

.................... . ~ ..... , .... , .. ~ ... HEAJINGS FOD STQAIN CJNTGURS 

852 CCNTPJUE 
tFlTE(0 9 379) 

879 FJR~AT( 1 SYM2' 9 5X 9 1 0 11.1 
1 I SHE~R ST~AIN') 

P M A X = P 1·1 A X I 1 • 0 0 3 
P.MIN=?MIN/1.003 

878 ~d~~~t~f~~~~~~~~:;irN1.o 
1 'MAXIMUM s~~AIN = 
2 'SYM3',5X,':J l.C 
3 'MINIMUM ST~A!~ = 

851 C'JNTII'JU: 

wRITEC0,833) 
3q3 F'JRMATC'END 1 ) 

wR!TE(0,990) 
B90 FOR~ATC'STOD 1 ) 

wQIT (7,889) 

9. 0 " (" 
i • -· 

9.4 0.0 
•,:10.31 
9.J C'.Cl 

•,C:10.3) 

0.2 12.0 1 ,15X, 

0.2 27.0 1 ,15X, 

0.2 27.0 1 ,15X 1 

899 ~O;'~ T(lrlJ,lJX,'S~EAR C~NTOU~ ~!L~ GENE~QT~Q') 
..JR!T (6,2'<2) 

1 I I 
1 1 I 
1 I I 
1 I ) 

187 

......................... ............... , ... , ... 

:': :::!'::' ;',: t,: 



888 FORMA~C'OSH~AR CO~TOUQ ciLE G~~~QAT~~') 
CALL TU1:;(1,1) 

~::TURN 
Ef\JD 

188 

:*********~***~********************************************************* 

' ................... .. , ....... , .... , .... , .. 
. .................. .. , ................... .. 
.. .................. .. ..... , ..... , ... , ...... .. 

.................... ................... 

...................... ....... , .... , ..... , .. 

.................... ........... , ....... 

-=============== 

?"!AX=OeO 
DMIN=O.O 
Xl=XC1)11.0':3 
Yl=Y(l)/1.0::3 
X''! A = X VI A X I 1 • 0 E 3 
Y "l A = Y ~~ A X I 1 • ~ E 3 

DO 80J IN=l 9 KNOUT 
J\J=I(~J:JUT-IN+l 
r~ N = N 0 U T ( : N ) 
X ~J C J 'J ) = X ( N N ) I 1 • 0 E 3 
YNCJN)=YCNN)Il.OE3 

800 CONTPWE 
................... .. , ..... , .... , .... , .. 

wRITE(0,899) TITL~ 
899 C:Q=?"1ATC'JOE-X ' 9 4AS/ 1 FLEY') 

IFCG.GT.O.Q) ~~IT::C0,39S) 
d98 FJRMATC'AN~l 13C.0 0.0') 

.,, ................ .. .. , ........... -... PHASE 2 : OA~OMETERS 

X$=XSC/l.IJE4 
YS=YM~/8.0 
XINC=(XMAX-XM!N)I2.0E4 
YINC=CYMAX-YMIN)/2.0E4 
WRITE(Q,3;7) XS,YS,XINC,XMA,Y!N 

837 F~RMATC'SIZX •,z=s.1, 1 1.0 S. 
1 Fl0.3,' 0.0 ',F5.1 9 
2 1 CNTL 0.075 0.15 -1 

N': 9 X:-.J,YN, 
, llSSUM:::NG 

,YMA 
:) • I') 

10. 3 I 
1 I ) 

1
9 F5.1, 

**** PHASE 2 : POINTS AND VALUES TO s= CONTOU~~J 

.. ........ .,,. ......... . ............... ..,.. .. , .. 
:::: :::::: ::: t,c 
... ...................... .. ..... ~ ............... . 

::: :;: ::: :;: t,: 
.. ........... ,. ...... ... .. ..................... .. 

.... ...~ ............ .. 

... ..................... .. 

***** 
JO 820 ICON=l,N~L 
XCON=CXCNODELCl,ICO~))+X(NCO:LCZ,IC~N))+X(N~~=L(3,ICON)))/3.0E3 
YCCN=(Y(NQO~L(l 9 I:ON))+Y('JO~ELC2,TC~~))+YCNOD~L(3,ICON)))/3.0E3 
P=OMl~l(PRI~C(l 9 ICON),PRINCC2,l(~~)) . 

**** SCALE ST~ESS~S AN~ STRAINS ACC:QJ!NGLY 

r~ CISTR.EQ.l) P=~/1.008 
IF (!STR.~Q.2) P=D*l.003 

PMAX=OMAXlCPMAX,P) 



P~TN OMINl(PMIN 9 ?) 
W~:T (0,896) XCON,YCJN,c 

896 ~JRM TC'CNTL ' 9 2Fl0.3 9 Fl0.5) 
320 C'JNT NU:: 

..................... ...................... 

.. ................... .. ., ................ , .. 

· .................... .. . .. , .... , .... , .... , ... 

?HASE 3 : DEFINE ~REA TC 9E 

P~ASE 4 : PLDT C~~TJU~S 

0. c 
0 0 ~ 

1 5 0 c 
1 50 0 

().) ".0 :o.s 
1 0 0 5 1 5 • 0 ! J • 5 
10.5 l~.D 0.0 

:J •. : c.o o.o 
...................... , ................... .. P~ASE 5 : ANNJTAT~ ~L:T 

' .................. .. 
' .................. .. HEAC!NGS FGR STQ~SS 

l-i"?ITECOo3?6) 
886 c:oR~~ATC'SY.'~I3'9;;x,•o 10.7 9.C 

1 •P~INCIPcL sr~=ss•) 
W?ITEC0 9 885)PMAX 9 ?MIN 

835 FO~~~TC'SYMB',5Xp 1 0 1.0 
1 'MAXIMUM STR::SS = 
2 'SH1B 1 ,sx,•o 1.0 
3 'MINIMUM STRESS = 

GO T::J 851 

·**** rl::AOINGS FQR STRAIN CONTOURS 

852 CCiNTI'JUE 
w:<rr::co,s79) 

C' • 0 0 0 2 

o.o 
o.o 
1).0 
0. 0 

o.o 
) • 0 
o.o 
.J.O 

1 5 • 0 I 9 l s X ' 

379 FO~MATC 1 SYM8',5X, 1 0 10.7 9.0 0.~ 0.2 16.0 1 ,15X, 
1 1 PP.I~CI?AL STRAIN') 

P'-1AX=PMAX1l.OD3 
P~.i.~=DMIN/1.003 
~RITEC0 1 878)PM~X,PMIN 

878 FOR~ATC'SYMB',SX,'O 1.0 9.4 O.C ·0.2 27.0',15X, 
1 't~AX!f1Ui'~ STRAP·J = 1 ,;::10.?/ 
2 I s y 1'-1 3 I ' 5 X ' I 1

) 1 • :: . 9 • 0 •1 • 0 0 • 2 2 '7 • 'i ' ' 1 ~ X ' 
3 1 MT~I~1UM s;RA.i.N = .1 ,:10. ") 

0.0 
o.o 
o.o 
o.o 

1 I I 
1'1 
1 1 I 
1 I) 

189 

..................... ~~,. 
~ .............. , .... . 

.. .......... ,.J..J;,J, .......................... 



~c:;1 CS'NTINU: 

w~ITE(0,883) 
883 FOR~AT( 0 ENO 0 ) 

WRlTE(098'30) 
890 FORMAT( 0 STOP 1 ) 

WPIT2(79889) 
a~~ F~~M~TC1H091CX9 •oQr~cr~nL CO\-:U~ ~rL~ ~ENEcn~:~') 

·.-~:nr::c6,B=38) 
838 FCRMATC'QD~I~C:cAL CJNT:UQ =:L2 ~~NEQ~T~G') 

CALL THICCl,l) 

~ETUi<N 
:NJ 

190 

.............. , ........... , ................................................................... -·~ •'• ...... •

....................... . ..... .. , .. ~ ...... , .. 

' ................ .. , .. , .... , ... , ..... , ... 

............. ., .... .. , .. , ............... ... 

================ 
TJ C~LCULOT= C:NT~UR 

R:.: A L :::3 D MD. X • ? '·1: t·; 

IF(PMI~.N~.O.O) GO T~ 640 
ALEV:L=O.O 
G·J TO 243 

340 I(,AL=O 
I~L=:>Mit\J 

841 I~CIAL.Nc.O) GO TJ S42 
~AL='<AL+: 
:lL=PMIN*(lO.O**KAL) 
G: TO 841 

('--
~~ : ' 

842 :SNTINU: 
'LEV2L=FLl~T(IAL)~lG.O**C-~QL) 

...................... .................... , .. 

843 JAL~V=(DMAX-AL~V:L)/20.~ 
KI)A=O 
IDA=J.ClL::·v 

344 I~CIDA.NE.8) GJ TJ 2*5 
K::A=K~A+l 
IIJA=JALEV*(lO.O**~JA) 
GCJ Tu 544 

545 CONTI';:.J: 
DAL:V=FLOATC!JA)*lJ.O**C-KSA) 

-........... • ..... .. ........................ 
""" ................... .. ............ , .......... .. 

1~ (OALEV.LT.O.Cl) ~ALEV=O.Ol 
~ 

s:~. FIG. 

w:LL 

;**** SET ~0. o~ c:~T2U~S, NLEVS, T~ :~CLUD: dLL STqE~S VALUES 

c 

NLEVS=22 
846 r~CCAL~VEL-SALEV).LE.P~IN) G: rr ?~7 

NLEVS=NLEVS+l 
ALEVEL=ALEVEL-JAL:v 
:JC: T8 346 

847 CJNTINUE 
345 !F((ALEV L+CLOA~(~LEVS)*GALEV).S~.P~AX) G: T: 349 

NL::VS=NL VS+l 
·::,: TJ 84 

8 4 9 C Q N T : ~JU :: 

R~TU~r...J 
END 

.. ..................... .. ......................... 

...... ~ ............. .,}., ................. /'" .. , ... 

.. ....................... .. .. ........... , ..... (" ... .. 



1~1 

..................................................................................................................................................................................................................................................................................................................... .A..,...,. 
~ ....... , ..... , .... , .... , .... , .... , .............. ,.. .. .. , ............. "'•' ....... , ......... , .... , ....... , ............... , .... , .... , .... , ... , ...... •,• ., ......... , ...... •,• ............ , ... , ............... , ...... , .......... , ... , ...... , ....... , .................... , .... , ............. , ................... .. 

....................... .................... .................... ...................... 

SUB~~UT!NE :uTL:N 
============~==== 
TO ~RA~ T~~ OUTLINE OF A ~CCY 

~c~ US~ WIT~ ST~ESS VECiC~ 

I~?LI:IT ~~QL*~ CA-ri,~-W) 
CDM~ON ~~~/ X~AX,X~IN,YMAX,Y~!~,xs:,YSC,XS~,YSD, 

......................... .. .................... .. 

.. ..................... .. .., .... , .............. , .. 

1 X~~Dl 9 XMAD2,Y~~cl,YMl~Z,S!GN,~JUT(5l),KNGUT,C~M9(~256) 
:JM~~~ llNI CJ~l0(6CC),XC38C) 9 Y(~JJ),IS~T 

............. ~· ..... .. , .. , .... , .......... .. .. ................. "" ....... , .... , ..... , .... , .. 

·~~~~~~~~~~~~~~~~~~h~~~~h-~~~~~~~h~~~~~h~~~~~~~~~~~~~~~~~~h~~~~~~~~~~~~~ , .. , .... , ... , ..... , .......... , .......... , ............. , ..... , .... , .... , .... , .... , ........................................................ , .... , .... , ......... , ....... , ... , .... , .................... , .... , .... , .... , .... , ... , ........ , ...................... , .... , ... , ................................ , .... , .... , ......... , ................... , .... , .. 

...................... , .. , .... , ... , .... , .. 
SUS~~UTIN~ VECPLT 
================= 
TJ oLJT v~croos := 

IF csrM~x.N~.O.O) ;c TJ 715 
WRIT~(6 9 717) 

797 F:R~'T('C~* ~RR~R : STMAX=O.J- ~= V~CT:~ PLJT 0 R~DUCED') 
~:TURN 

715 CALL CS~ACECJ.O,XS?,O.O,l.O) 
CALL osoAc=cG.o,xs~,o.o,I.O) 
CALL MAD(Q.O,l.O,C.O,l.C) 
CALL 30RDE:R 
CALL ?S~Ac:co.O,XS?,O.O,Y5~) 
CALL ~AD(XMAP1 9 XMAP2 9 YMAPl,YMAC2) 

:**** O~AW A 30X ROUND TnE MODEL 

CALL BOXCO.O,XMAX,O.O,Y~AX) 

J~AW THE MOHO, UNL~SS MCHJ=~ 

r=c~oHO.LE.o) Go To 112 
CALL PCSITN(X(l),YCMO~C)) 
CALL JOINCXMAX 9 Y(MJHJ)) 

712 C:Jr-.JTINU;: 

XV~CS=ABS(XMAPZ-X~APl)/10.0/x~P 
YVECS=ABSCY~AP2-Y~AP1)110.0/YSP 



-~~*~ PLOT VECTJRS 

' .................. .. . ...... , ..... , ..... , ... 
..................... . ................. , .. 

l~Jusr ANGLES ~:~ ~LJ·r:Ns, SJ ·~~T !~GL~5 := sT~~ss 
V~CTC~S CA~ 3~ CJ~~A~~~ J:R=CTLY ~:T~ ~~~LES ~~ ~~J=L 

T~H~TA:~TDN(P~:~C(~,I 0 LT)*C!/l~1.1) ~ XVE~~/YVECS 
C·H~T~=l.~I:5JRTCl.D•~T~ET~*T-":r~) 
s·~ET~=TT~E·A*:7~~T~ 
,:;'] 7J 714 

713 C;r':TA=O.O 
SThC:TA=l.:J 

71~ CJNT:r-.JUE 

X 0 LT=XC~~+CPRINC(l,IPLT)*CT~~T~JSTMBX*XVECS) 
Y~LT=YCEN+CPR!NC(1 9 IPLT)*STri~TA/STNDX*YVECS) 

711 CALL PJSITN(XPLT 9 YPLT) 

. ................. .. ....................... 

...................... 
~ ..... ~ ..... , ........ 

718 

710 
-- .................. .. , .. , .... , .... , .... , .. 

....................... , .. , .... , .......... .. 

........ ~· .......... .. 
~ ................. , .. 

r 

XPLT=2.0*XC:N-X?LT 
YD~T=Z.O*YC~N-YDLT 

I= TH~ STQESS :s TE~S!D~AL THE VECT-R IS B 3R~KEN LIN: 

r= CPRI~C(K~LT 9 !PLT).GT.J.O) C~L- ~o:~E~C5,5 9 5,5) 
CALL Jw!N(XPLT,Y 0 LT) 
C4Ll =ULL rc (KDLT.:Q.2) GJ TQ 71) 

I~ c:r~~T4.E~.J.O) G~ TC 71~ 
TTHETA=l.~I:TAN(P?INC(4,:~LT)*~I/l30.0) * XVECSIYVECS 
ST~cTA=1.1/CS:RT(l.O+TTYETC*TTH=T~) 
STnETA=~T~~TA*CT~=TA 
XPLT=XC~~-(P~lNC(2 9 !~LT)*rTH~Tl/STMQX*XV~CS) 
Y=LT=YCE~+(PR!~C(2,!PLT)*ST~ET~JSTM~X*YVECS) 
KP~T=K.?LT·d 
GJ T: 71.1 
CJNTIN:JE 

ANNOTAT5 PL:T 

SALL CTR/'1AGC15) 
IPLAC~=CXSP*77.0)-25 
CALL PLAC~(IPLACE,6) 
CALL TY~ECSC°C3RJKEN LINES TENS::NAL) 1 924) 
CALL LI~EC:J(-2) 
CALL SPJ.ICcC-19) 
r= CIST~.~Q.2) ~0 T~ 716 

rlEAJ:NGS =OQ ST~~5S V~CTORS 

CALL TYP:CSC'STR:SS v=crc~S',l4) 
CALL PLACEC7 9 6) 
CALL TYPECSC'~~X:MUM STQESS = 1 ,17) 
S T = S T "1 A X I 1 • 0 :' f 
CALL TYP~NFCST,l) 
CALL TYPECSC' M0 A. 1

9 5) 

XLi3EL=XMAX - XVECS*3.0 
Y~A~~L=YMAX - Y~AP2*0.7 
CALL oQSITN(XLA~EL,YLA~~L) 
XLAgEL=XLAS~L + 2.0EB/ST~AX~XVE:S 
CALL JJINCXLA52L,YLA3EL) 
CALL OLJTCSCXLABEL,YLl3=L, 1 1~, vp~',9) 
GO T:J 717 

192 

.... ~· ............... .. 
·.~ ~ ............ .. 

.. ........ .A, ........ .. .., .... , .... , .... , .... , .. 

.. ..................... .. .. ..................... .. 

........................ .., .. .._ .... ,.. .. , ....... 

........................ .. .......... , .... , ... .. 



716 (ALL ~YPESS ('STRAIN VEC7~RS 1 ,l4) 
Ct.LL OLAC~ (7,t.:) 
:ALL TY~ECS ('MAXI~~M s·~AIN = ',17) 
C~LL TY~EN~ CSTMAX 9 ~) 

XLA3~L=1~DX - XVECS*'·O 
YLAS~L=YMAX - Y~A02*0.7 
CALL PJSlTN(XLA?EL 9 YL4S~L) 
XLA3~L=XLA~~L + 0.021ST~At*XV=CS 
CALL JJI~(XL~3EL 9 YLA3EL) 
C~L~ DLJTCS(XLAS~L,YL~S~L,' 1~ ~TLL:STQ~INS',17) 

7 1 7 ·: J N T I ~J U : 

W~!T: TITLE AND LA5EL AX:S 

CALL LAScL 

riP:Tc(7,798) 
798 =oR~AT(lHO,lOX,'V~CTCO DLJT o~:~u:EC') 

W'<IT:C6 9 799) 
799 FCPMAT( 1 0V~CTOR ?LJT DROD~C~2') 

CALL TIMECld) 

RETURN 
c:rn 

193 

.............................................................................................. ·~ ...... · ......... • ... · ............................................................................................................................................................................................................................................... .... ... , .......... , .... , ..... , .... , .... , .... , ... , ........ , ......... , .............. , .... , ............... "~ .. ,~ ...... , ........ , .... , .... , ... , .... , ... , .... , ..... ~ .... ~ ., .... , ......... " .... , ..... , .... , .... , .... , ... , .... , ........ , ... , .... , ... , .... , .......... , ... , ......... , .... , .... , .... , .... , ......... , .............. , .......................... .. 

................... ....... , ... , .... , .. 

................... 
"l""'t"'t""'•" 

.................... .. , .... , ... , .... , ... 

===============-= 
T: W~ITE TITLE G~J L42EL AX~S :N ~L2T5 

..;;;:IT: !JUT T!TLE 

C A L L C T 1:1 IH .:; ( 3 0 ) 
CALL ;,LAC::C4,2) 
CALL ~TALICCl) 
CALL TY?ECSCTITLE 9 32) 
CALL ITALICCO) 

LAS:L Y-P.'05 

CALL C:TRr•1AG(l5) 
XLASEL=-0 .Qt.:::xSC 
YLA8~L=(YMAY+YM!N)*0.6 
CALL CTRJPI(1.0) 
CALL ~L1T~S(XL4~EL9YLA3EL9'Y I <:~c~=T~=S'914) 
CALL CTRQ~ICO.O) 
:i: Y = Y ~11 N I 1 • 0 E 3 
X L A B E L =- 0 • 0 3 :;: X S C 
YLA3EL=: Y:::l. 0:3 
IF C:Y.NE.O) CALL ?LOTNI(XL43~L,YLA?~L,!Y) 
CALL PLOTN!(XLA9:L,0.0,:) 
!Y=YMAX1l.OE3 
YLAC3!:L=IY:::I .0::3 
CALL PLJ7NICXLAS:L,YLtB~L,IY) 
IF CMOrlO.LE.O) GO TG 714 
XLAEEL=-O.l4*XSC 
CALL OLOTCSCXLA5:L,Y01GHO), 1 :'-10'"'';',4) 

714 CONTINUE 
.................... .. , .... ,.. ....... .. LA3EL X-AXIS 

YLA5EL=SIGN*Q.15*VSC 
X L A B !: L = X M A X::: 0 • 4 
CALL PL~T~SCXLABEL,YLAB~L,'X I K!LO~:T~~S 1 ,l4) 



~ .. ·~ ...... ~·· .... .. ......... , ..... , ..... , ... 

.................... ... , .............. ... ..................... ... , .... , .... , ..... , .. 

' .................. .. ............ , .... , .. 

. ........ , ......... .. 
~ .. , ..... , .. -.... -... 

xLAa::L=o.oz:n:sc 
CQLL DLOTNl(XLAB::L,YLA5~L,0) 
IX=XMAX/l.Oc3 
XL~3EL=IX*l.OE3+xLABEL 
CALL DLOT~ICXLA3~L 9 YLA6EL,:Y) 

~:iUI<'IJ 
E\JJ 

S U c R :: U T I 'J := S U ~ ;: 
=============== 
70 DLJT THE SU~~ACE DfFL~CT!JN CF A MOD~L 

!~?LICIT REAL*B (A-H,J-W) 
:OMMDN /NSC/ XC~Ml(600),J:S~(6QO),CJ~1(601),NCOM1(2) 
CO~~C'IJ /~K/ XMAX,XMI~,YMAX,YM:~,XSC,YSC,XSD,y$D, 

1 XMA?1 9 XNAP2 9 YVAP1 9 Y~QD2,5IGN,~JUT(~1),~N1UT, 
2 XT0?(30),Y!CP(30),XJC30),Y~C30),XJOC 7 0),Y00(30), 
3 N:~TJD(30) 9 C~M9(5151) 

COMMON /I~/ C0~1~(60Q),X(300),Y(300),IS~T 
CJM~JN /M!$/ DI,TrTLE(4),ZCOM:( 0 ) 

FIND TH:: NQO:S JN T~~ UPPE~ SURFAC~, 
ASSUMI\JG THAT 'NJUT' ~AS ~=E~ ~IVEN, 
NU~6E~INS ANTI-CLJCK~ISE FQ:~ TH= TOP LE~T-HANO ~OQNER 

THE FIRST W::J~ 

NT=NOUTCKNOUI) 
N~~TOD(l)=NT 
XTJP(l)=X(NT)/1.0=3 
YT:PCl)=Y(NT) 
XJJ(1)=XT:~Cl) + O:SPC2*NT-l)/1.0~3 
YDJCl)=YT~P(l) + JISPC2*~T) 
X:(1)=XTJP(l) + 5.0 * DI$P(2~~T-l)11.0~3 
YD(1)=YTOP(l) ~ S.Q * ::S 0 (2*NT) 
X~~~X=A~AX1CXTJ?(1),X:(l)) 
Y~MQX=AMAX1CYTOD(l) 9 YJ(l)) 
Y G rc i J = A 1'-1 : ~ll ( Y T J P ~ 1 ) , Y J C 1 ) ) 
KTJ=>=1 
MULT:=O 

SUKFACc NCD=S 

JS 730 IT~P=2 9 K~J~T 
\JT=NOUT(K~CUT+l-ITJP) 
XTQP(!TOP)=XC~T)/1.0:3 
IFCXTOPCITOP).L:.xro=>(IT~P-1)) GJ rr 731 
I~CCXTOP(!TOP)-XT:PCIT~ 0 -l)).L:.l.0~-2) ~~ TJ 7?1 
i~ S J T J P ( I T C' P ) = N T 
YT8PC!TQP)=YC\!T) 
X~OCITOP)=XTJO(!T~D) + DISP(2*~T-l)/l.0~3 
Y80(!TOP)=YTJ=>(ITJP) + DISD(2*NT) 
XS(!T~P)=XTQ=>(IT0°) + 5.0 ~ CI5P(2*~T-l)ll.C:~ 
YOC!TOP)=YTODCITCD) + 5.0 * ~IS°C2*NT) 
XOMAX=AMAX1CX9MAX 9 XTC°C:TCP) 9 XC(!T~~)) 
YDMAX=A~AXl(YJMAX,YTCP(ITC?),YJ(!TOD)) 
YQMIN=AM:NlCYD~!N,YTJO(!TJD),YJ(IT:o)) 

TEST IF T!-<c JE;::::-~·~.::J su::n=llC:, IS "1UL r:-VALU~: 

r~ cxocrTJP).L:.xJCIT~?-:)) MULT:=1 
q 

KTGP=ITOD 
730 C'JNT~~UE 

731 IF CKTCP.ST.2) GQ TO 732 
~QITE (6,730) KT:P 

739 FJR~ATC'O** E~~~~: TH~ NUM3~R J= T0° SURFAC~ NSr~S 1 / 
1 11Xt 1 1S TC~ SMALL (~T~P=' ,!3, 1 ) 1 / 

194 

*:~**t,: 
:::::: :!c :',: ::: 
::: ::c ::: :;: !:: 

...................... ~ ,, .. ,, .. ,, .... (",, .. 

............................ .. ................... ,, .. 



........... ~· ..... .. ,#, .... , .... , .... , .. 

........................ . ................. .. 
................... .................... 

2 1 1 X ' 1 1\j ~ p L J T :::;: s u ;(;:A c = J ~ 1 w tj I ) 

R~TU'<N 

LH1ITS 

XS=XD~AX¢1.0~?/XS:+O.~ 
CALL :s~Ac:co.o9xs9o.o,1.J) 
CDLL DSPAC::CO.l9XS90.0,1.~) 
CA~L ~~~(0.0,1.0,0.0,!.0) 
C:.LL =\C~OI::R 
CALL PSPACt(G.l9XS,0.1,C.9) 

Y~~a~ ~~PPESE~TS TH~ G~~AT~~T :=cr~, 
c:= s:·~tJ IS +V~, Y !S +VE. LJP,~~~:'S) 

r= CSIGN.LT.J.C) ~0 TJ 733 
Y'::-I=Y::'HAX 
Y J r-1 A X = Y iJ M I ~ 
YOMIN=YQM 

733 XM1=X~AD1/1.0E3 
X '·1 2 = X J M A X - X M 1 

..................... , .. , .... , ..... , .... , .. 

· ................... .. ...................... 

736 
737 

...................... .................... , .. 

. ................... .. 
" .. , ......... ~f" .. , .. 

......................... .......... , .... , .... , .. 

CALL ~A~CXM1 9 X~2 9 YDMAX,YDMIN) 

AXES 

CALL CTP.i-1AGC10) 
CALL .IU~S 

LA3::L X-AXIS 

CALL 0 LACEC12,25) 
CALL CT~Clt:>I(l.Q) 
c A L L T y p E c s ( I y I •. , = T R :: s I p 1 ::; ) 
CALL CT~<CR!CO.O) 

O~AW !NIT!AL SURFACE 

CALL PT?L:Tcxr:c,YTG?,l,KT:o,-:) 
CALL CH~SETC2) 
CALL DTDL:TCXTJD,YT8P,1,K'C 0 ,62) 

~~AW iJc~ORME8 SuR=Ac: (XJ),Y2J , 
AND EXAGGERATED O~FCRM~TIQN (X ,Y:) 

- = s !9J 

: ~:c ::: ~: :;: IF TH~Y ARE MULTI-VALUED, N~CU V ~UST 8~ ~s;o C~:T I\ISCU~V) 

~ 

:ALL DTDL~T(XDO,YD0,1,KTOC,25) 
CALL PTDL~T(XQ 9 VO,l,KT0°,61) 
IF (MULT!.~Q.l) ~0 TO 734 
CALL ~SCU~VCXDO,YJ0 9 l,KTJD) 
CALL ~SCJRV(XD,YU,l,KTJ?) 
;:;,J TJ 735 

734 C~LL NMCU~V(XOO,Y~O,l,K-:P) 
CALL ~MCU~V(XQ,YJ,l,KTGP) 

735 CCJNTI'Ju:: 

:**** AN~C~4T~ PL~T 

CALL CTRS~T(1) 
C A L L : T c: t~ .A G C 3 0 ) 
c:.LL DLAC~cs,z) 
CALL ITALIC(l) 

195 

... ...................... ... .. ..................... .. 

.. ....... w ......... .. ... .................... .. 

.......... .} ..... • .... • .. .. ..................... .. 

.......................... .. ................... .. 

.. ....................... .. ....... ,.. .. , ..... , .... , .. 

......................... .. ........................ .. 

.. ...................... .. 
.. ... "t'"•t'" .... .. , .. 

::: :;: u ::: ::: 

:;c***::: 



r 

c 

c 

c 

::: 

::: 

rllll :YD:CSCTITLE,32) 
rllLL IT4LICC0) 

CllLL CTRt"1AG(l5) 
I 0 LAC~=(XS*77.0)-25 
CALL PLAC=CIPLAC= 9 4) 
CALL TYP~CSC'SURFACE FL~XU~E' ,15~ 

CALL L:NcFDC3) 
CALL SPACEC-15) 
C4LL CTRS~TC2) 
Ct..LL TY 0 E~C(62) 
CALL TYPECSC 1 INITIAL SU~Fl~~· ,i7) 

·tJ~I ... EC7d"3) 
738 FJRY~T(lrlO,lCX, 1 PLOT ~F SU~=a:: FLEXUDE ~~:CUC~D') 

r'lk'IT~ (~,729) 
729 =J~MATC'O~LQT o= SUQFAC~ =L=xu~~ =~~JUCE:') 

C A L L '7" :: ,•) E ( 1 , 1 ) 

rETU~N 
END 

SU3~JUTINF DISTRT 
================= 

:**** TJ SHJW THE OI5T~?TICN OF T~E ~~:Y 

............ ~·· ... .. ............ ~ ...... .. 

CALL cs~Ac:co.o,xso,o.o,l.O) 
CALL OS?ACECO.O,XSP,J.O,l.O) 
CALL MAPC0.0 9 l.Q,Q.O,l.O) 
CLlLL 3JRDER 
:ALL PSPACECO.O,XSP,O.O,YSP) 
CALL ~~P(XMAPl,XMAP2,YMAPl,YMAP2) 

DRAW A ~OX ROUND THE MGJEL 

CALL 3LUP:N 
CALL BOX(O.O,XMAX,O.O,YMAX) 
C.li.LL JUTLTN 

:**** CALCULATE A~O D~AW DISTORT~: SHC~~ 

JJ 72~ JDIS=2,~NOUT 
XCNSUTCJDIS))=XCNOUTCJGIS))+~:socz*NCUTCJ~!S)-1) 
YCNDJTCJJIS))=YCNJUTCJDIS))+JIS~C2*NGUTCJ::S)) 

720 CJNTI~U5 
C A L L ~ E :J ? ::: ~~ 
CO.LL JUH.:N 

CALL BL!<P=N 

196 



'**** AN~OT4T~ ~LOT 

C!ILL LABEL 

R::TU~\i 
::NO 

197 

............ ~· ............. ~· ....... ~· .................................................. • ............................................................................................... •

...................... ............... , .... , .. 

....................... .. . , .... , ... , ..... , ... 

....................... ......... , ... , ..... , .. 

SU8RJUTI~E GROPLT 
================= 

~~~LICIT ~~~L*6 (11-H,:-~) 
C J fo.1 M :, 'J IN 0 ::; I X C : ;., 1 ( 6 C G ) 9 C : ~· 1 ~ l 2 "' ·~ ) 9 r: 9 'J N ~ :, , ~~ ~ 0 ::' ~ 
C:MMJ~ !ELl ~C~M2(500),NC:~LC~.5JC),~EL 
c ::; .·~ M: f\J 1 w ~ 1 Y ., B x 9 x M : \J , v r-1:.. x , Y '·' : ··: , x : ': , Y s c , x s o , Y s ::- , 

1 XM4?1 9 XVlP2 9 YMB~],YM!?7 1 5I~~,COM?C5~~2) 
C~M~GN 1:~1 C:Ml2(6JO),X(30C) 9 v~~0~) 9 :S~T 

C~LL CSP4CEC0.0 9 XS?,O.O,l.J) 
C~LL OSOACECO.O,X5P90.09l.C) 
CALL MAD(0.0,1.0 9 0.C,1.0) 
C~LL 3:J~iJ:'< 
CALL osp~~Eco.a9xso,o.o,ysc) 
CALL ~APCXMAol,XMncz,vMA?l,v~~c2) 
C4LL SJX(O.O,XMAX,J.J,Y~AX) 

J ~ A W :: L :: t·1 :: ~- T S 

CALL C:TRMAG(8) 
DO 760 INUM=l,N~L 
XC~N=CCXCNJOELC19INUM))+XCNJJ:Lcz,:~J~))•X(NJ~~LC3,INUM))) 

1 13.G)+CXSC/100.0) 
YCEN=CYCNOOELCl,INUM))+YC~OQ~LC2,:NUM))+YCN~J:LC3,INUM)))I3.C 
CALL DLOTNICXCEN 9 YCEN,I~~~) 

760 CONTINU:: 
~ - .................. .. ..... , .... , .... , ..... , .. ANNOT.lTE PLQT 

CALL CTP.MAG(1:5) 
IPLACE=CXSP*7'.0)-20 
CALL PLAC~CIPLACc,~) 
C!lLL TYP:CSC 'cLci·FNT '~ESH' ,12) 
CALL LINEi=DC2) 
CALL SPACEC-17) 
CALL TY~:CSC'CW:TH EL~MENT NU~~~RS)' ,22) 

:**** ~PITE TITLE ~NO L43tL AX~~ ,.. . 
.... 

CALL Li43EL 

.. ...................... .. ......................... 

. ........ ., .......... .. .. , .... , ................ . 

........................ ..... ...... ..... ..... ~ ... 

......................... ......................... 



:: 

IJ::>ITE(7.7S5) 
735 ~~~~AT(lHJ,lOX, 1 ?LJT ~~ G~:~ P;~~Jc=:•) 

',J ~I 7 E C 6 , 7 ~4) 
7 g 4 I: C) ~ ;'>I A T ( I () ::> L D T 0 := ~ ~ I D p :> () :: u c : [' I ) 

St..LL TIM::(l, 1) 

RETURI\.J 
::NJ 

198 

-.................. ·~ ........................................................................... ·'· .................................................................................... •'• ...................................................... •'• ........... ·'· ....... • ....................................................................... .. .... , .............. , .... , .... , .... , .... , .... , ............... , .... , .... , ........................ , .... , ........ , .... , .... , ..... , .... , .... , .... , .... , ... , .... , .... , ... , .... , .... , .................. , ..... , ........................... , ................. , ....... , ................. , ....... , ... , ... , ........................................ .. 
:: 

- .......... ·'· ... .. '* .. , .... , .... , .... , ... 

... ................ .. -..... , ... , .... , .. 

...................... -............ , .... , ... 

752 
751 

750 
-................. .. ., ................. , .. 

================ 

CALL CSCAC~CO.Q,XSP,Q.Q,l.J) 
CALL ~SDACEC0.0,XSP 9 0.0,l.O) 
C4LL ~A?(Q.Q,l.~,~.O,l.~) 
CALL 3:~J::R 
C~LL PS?ACECO.C,XSP 9 J.O,Y5?) 
CALL VAP(XMAPl,X~t~z,vMAPl,Y~AP2) 
CALL 30XC0.0 9 XMAX,C.O,Y~AX) 

O=?~W :L!:MENT5 

JJ 750 !GPIJ=l,~~L 
I~ CIGRIJ.EQ.l) ~0 TJ 752 
I~ (~JJELC1 9 !GRJJ).E~.N~D~L(l,(~G 
CALL DJSITN(X(N~J::LCl,!~~IJ)),Y(~ 
CALL JO!N(X(NOO~LC2,IGRIO)),Y(N~D 
CALL JJINCXCNOGEL(3,!G~!O)),Y(~~: 
CALL JOINCXCNJDELC1 9 !SRI0)) 9 Y(~J~ 
CJ"JTI"JU: 

CALL CTP"1AGC10) 

:J-!))) s~ r: 7~1 
J~LC 1, I·SR! Ci))) 
LC2d~~~D))) 
LC3,!S~!O))) 
LCl,lS~IIJ))) 

D~ 760 INUM=l,N:L 
XCEN=CCXCNGDELC1 9 !NUM))+XCN10:LC2,I~UY))+XC~2~EL(3,INUM))) 

1 13.0)+(XSCI10C.Q) 
Y:EN=CYC~SDELCl,I~UM))+YCN:D~LC?,!NU~))•YCN~D:LC3,!NU~)))/3.0 
CALL PL:TNICXC~~9YC~N 9 ITY°C!NUM)) 

76C CJNT.:NUE 
..................... ............... , .... , .. ANNDTAT:: DLCJT 

CALL CT!'I-1AGC15) 
IDLAC~=CX$0*77.0)-20 
CALL PLACECIPLACE,4) 
CALL TYPECSC'~L~~~~T ~~SH 1 9 12) 
CALL LINE=u(2) 
CALL SPAC::C-17) 
CALL TYDECSC'CwiT~ MATEPIOL ~u~~EQS) 1 ,2?) 

W~ITE TITLE Lu3::L AXES 

CALL LA~::L 

WRITE(7 9 7q5) 
795 =Q~~AT(lHO,lOX, 1 ~IAG~AM 0~ P~~~~?TI:S PPQ:UCEJ') 

•·J!' .:r: u, 794) 
794 ~J~~ATC'OOIAGRA~ CF ?~G~~~T:::s :>~JJUC~D') 

C~LL TII~E(l 1 1) 

.. .......... ._ ......... .. .. .................... .. 

.. ......... ., .......... .. .. , .... , ............... ... 

......................... ...... , .... , .... , .... , .. 

.... .................. .. .., .... ,.. .............. . 



====================================================== -................. ·~ ., .. , ................ .. 

... ................. .. ... .. , .... , ... , ... ,. - .................. .. ... ................ . 

IF (NNJJA.EQ.O) N~OJ~=N~OJ3 
:= (~~LA.=Q.O) N~LA=~~LS 
w ! J 3 = w : J 0 :;:1 0 0 :: 3 
I= CNSID.~~.0) GO TJ 10? 

:L=w=~T C."JC NG~E 
Ji= VlLUcS I\I~UT 

..................... .., .. , .... , ... , .... , .. 

......................... ..... , ... , ... , .... , .. 
:= ~SIJ IS N:N-Z~~~ T~~ E~D H=s~ ~L~~~NTS 
=~c~ TH~S~ !N rw~ ~A=~ Q~;r - r~~ PJ:Y 

....................... , ................... .. 

........................ ....................... 

=INO LENGTH :~ MJJEL 

NBLOCK=NN~O/NNOJA 
e.L:;CKS=N5LJCK 
X~NO=WICS~BLJCK5 
It~ i~ :J :; J = ~ WJ D S + 1 

~SSIGN \!COAL CO-J~~S 

) 2 1 1 0 I M ~~ 0 0 = I M N 0 0 ·J , N N 2 ~ 
XCI~~:D)=XCIM~CJ-NNOJA)•~IJ= 
rc ~XCIMNJD).N~.X~NC) GJ T~ 111 
I := \J J = Ir~ N J ~ 
G:J TJ 112 

111 YCIM\I~D)=YCIMNOC-NNOOA) 
110 c::~n::-.~ur.: 

WPITC:C6d=l) 
99 CJR~4T( 1 0~* EQ~:R : X(NNJn).\=.x~~S- RUN AS:~T~D') 

S T::: P 

:**** ASSIG~ CJ-OQOS :F E~D ~ODES, S~TT!~G T~= ~!GHT ~N~ Y CC-ORDS 
:**** ~QUAL TC TH::SE OF THE L~FT ~N~ :**** ST~~~ NUMeE~S J= ~JDES IN T~~ ~QS7 w:~s c= M~J~L !N NSD:=ND 

112 OJ 113 !ENDN=I~ND9NNJC 
XCI::NJN)=XEND 
YCIE~)N)=YCIENON-T~N~+1) 
NOJ~CT=!E~JN-I~NO+l 
NOD~~DCN:DECT)=:E~DN 

113 CONTPJUC: 
K E t-J J =IE N D 
K.OIF=1 

114 KEND=KC:N0-1 
I= cxcK~N~).N~.xc~:ND-1)) G: T: 11s 
t<.S:C:o(O!r+1 
G'J TO 114 

115 1\Ci=KJIF 
116 N~D~CT=~OOECT+1 

I= (CXENO-X(KFNG)).GE.WIO~) GJ ·: 1!7 
NODENOCNOOECT)=KENO 
KENI)=K!:N0+1 
KCT=KCT-1 r= CKST.GT.Q) ~0 TJ 116 
KC:NS=KENJ-K:'IF 
KDIF=1 
:;,'J TJ 114 
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........................ . ............. , ..... .. 

......................... .. ..... , .... , .... , .... , .. 
.. ........ ., ............ .. .. ...................... .. 

.. ........ ..~ .......... .. .., .... , .... , .... , .... , .. 
~:::c ::::t.:::: 

........ , ..... J, ... .. .. , .... , .... , ......... .. 

............ '"'~ ... .. .. , .... , .... , .... , .... , ... 

........................ ......................... 



117 ~<_CJUNT=O 
KL::~T=NELA+2 

.................... . ~ ... ~ .... ,. .... , .. 

11 9 
118 

1 ) ~ ... _, 

..................... 
~ ...... , ... , ..... , .. 

s T :; R = L c = T =' ·~ J 

J~ 113 :L~~T=1,~L==r 
MA~K=:J 
i)iJ 119 JLEFT=1 9 ~ 
Ic(NJJ~L(JLEFT,!L~FT).L~.~S!:) 
r=CMA~~.NE.2) G: r: 119 
~<.CJU~T=K:::C:UNT+1 
L~FTC~CJUNT)=!LFFT 
C:JNT !:WE 
C CHF I NU E 
i<COUNT=KC!JUNT+l 
:J 125 !LO=~COUNT 9 6 
LEFTCILO)=O 
:~ELO=~:LA+2 
KELA=NEU. 
KCCUNT=O 
N~DGE=O 
K~DGE=) 

S: 124 IMEL=I~~LO,~~L 

·.• ;:. :- K = '·i A R I( • 1 

r= CCIMEL-KEL4).~T.NEL~) ~J TO 121 
J ~ : 2 ) K ,'-1 ::: L = 1 , 6 

- CCI~~~-KEL~).N~.LEFT(KMEL)) ~: ·~ 120 
:<EL~=KELA-1 
·:;J TJ 124 

120 C:JNiiNUE 
1 2 1 f·1 4 ~·K = 0 

127 
128 

130 

JO 122 JM=L=1,3 
N=N:JELCJMEL,CI~EL-"ELA)) 
I= CN.LT.NSIJ) GO T~ 124 
~QO~L(JMEL,IMEL)=~·~~==~ 
I= CNJJELCJ~EL,!MEL).3E.IEN~) ~l'~=M;:.~K+1 
.:= C~A?I(.NE.2) GC T: 122 

GO T"~ 

1 ., (\ 
..J " 

.................... ... , .... , ... , .... , .. our R!G~T END ELE~E~TS 

' 

129 KCDUNT=KCOUNT+l 
l?I~rlT(KCOUNT)=!MEL 
GJ T:J 124 

122 CONTINUE 
ITYPC!~~L)=!TYPCIM~L-KELA) 
IF (MARK.~E.1) G: TO 124 
DO 131 MMEL=l,3 
r~ CNSD~LCMMEL,!MEL).LT.I~~~' G: T: 131 
NOOELCMMEL,!MEL)=NJJ~L(~M~L,!~EL)+~ED~E 

131 CONTINUE 
124 CONTINUE 

IF CKCOUNT.~Q.O) ~0 TO 126 
.. .................. .. ~SSIG~ TO?OLOGI~S AND , .. , ... , .... , .... , ... 

DC 123 ~~~ND=l,K~JUNT 
D!J 132 J~:N!:·=l ,3 

127 

1 3 J 

132 NOJ~LCJ~E~O,LRIGHTCIR~ND))=~:OENJ(N1JEL(J~ENO,L~=TC!~~NC))) 

' 

200 

.. ......... ~ .... ..... .. .......... , .. ..,. ... .. 

::: '~ ~c ::: :;: 

........................ .. , ..................... .. 



ITY?CLRIGwrcr~~ND>)=I-v~cL~~T(:~~\:)) 
123 C:JNT:::'JUE 

~ .................. .. ,.. .......... , .... , .. 
. .................. .. ... .. , ... , ......... , .. 

....................... ., .. , .... , .... , ..... , .. 

S~GM~~T T~ ~~~~A- A SI~~L~ ~L:~v -: 
~L~M~~TS ~VE~Y ~~L~. ~S~~ IF ~S~~=C. 

G8 102 IMN~n=IMNJDJ,NNOD 
xc:~NJJ)=XCI~'\JCD-~~DD~)+WIC~ 
YC:MN~D)=Y(!M~OD-'\JNOOA) 

1 0 2 C 0 N T I ~~ U c 
RC:TU.~"J 
::NJ 

201 

.. ..................... .. ........................ 
.. .................. .. . ..... , .... , ..... , ...... .. 



~ .............. .. , ... , ..... , ..... , ... 
................. .................. ............... , .. , .... , ........ ............... .... , .... , ..... , .. 
................... ................ 
~ ............ .. .. , ... , .... . 
............. ... , ..... , ....... ............... ................ .............. .... , ......... .. 

................ .... , .......... .. 

................... ... , ........ , .. 

................ 
, ........ , ... , .. 

SETL.:? TO 
ST=! 
T'J 
( .~ . 
~-

..... :; I i 7 :: '-4 r: T ::; lj -~ ~ :.. • ' :_ • ; ::: v :: :: ~ ::: 7 'f ~ y j :: t-' • • :> ~ ;;: K 

CALL TL~::('J 9 1) 

::~-!C:l 
=rl...;-'"'1 
- V I...,-

J :: ;:: ; 2 C K 5 ~ L = 1 9 '! S ': !.. 

w:>:T:: H::ADI\:;~ ( T .-. = 

K<.SOL=KStJL-1 
W~IT~ (692Cq7) K<.SJL 
>= : ;;: :-\ ~ T ( '0 ': .':. !.. L' T I ::; ~: ·~ ~ ·-: ~ : " ' 9 : 3 ) 
W~:r~ C792JS6) ~K3JL 
~;:7E c~,2J~o) ~~s:L. 

ts7~· - 1·;~o 

,. ; T : ~-~ : 
'/. :; • : ::: '.-\ 9 ( t. 5 ~ = ) 
T 

~ 0 :J 6 = :::; i< ~~ ~ 'i ( 1 h l/1 :-i 0 9 l 0 X 9 • S: L UTI~ o; :.IJ •:, ::,::; P • 9 I? I 

.................. ..... , .......... . 

...... ~· ..... . , .... , ..... , ...... ... 

1 1•;+ 9lC'X v • ------------------ '/1'10) 

s : ! F I= : J i: s s '.1 :. T :' : X c: ;: :: : u ::: :: ~ ~' T 5 :: L u T I -= ~; 

~P~LY 3CUN~ARY CJ~JIT!::~S 

C4LL 2SUNOS 
CALL :;:·::T:~ 
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.. ............. ..~ ..... .. .. ......... , .......... .. 
.. ..................... .. . ................... .. 
............... .J .... • .. . .................. . 
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