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ABSTRACT 

The thesis describes short-term load forecasting by an expert system 

approach based on knowledge engineering. Conventionally, short-term load pre­

diction is based on mathematical models which either extract the mathematical 

properties in the time series of load data, or present the static causal rela­

tionships between the load demand and its effective factors. The conventional 

methods can predict the electrical demand under normal situations, but not 

for special events. The thesis proposes a new approach to estimate the loads 

for special events, such as time change-overs, public holidays, which 1s mainly 

based on knowledge about the system load. Based on the ARIMA model, 

modifications have been made to predict weekend loads, which take the weather 

effects into consideration. The thesis also proposes a method to disaggregate 

the overall load into its components in order to study the relationships be­

tween the components and the causal variables. The time change-over (from 

Greenwich Mean Time to British Summer Time and vice versa) effects can 

be considered by separately estimating the lighting load and the rest load. 

The thesis invesigates the holiday load characteristics and presents different 

estimation methods for different public holidays ranging from normal Monday 

Bank Holidays to Christmas Day holiday periods. Knowledge about the load is 

represented in production rules. The proposed estimation methods are written 

in POP-11 which can be interfaced with FORTRAN in which the ARIMA 

model is programmed for the prediction of the load under normal situations. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction to electrical power systems 

An electrical power system is defined as a network of interconnected 

components designed to convert non-electrical energy continuously into the 

electrical form; to transmit the electrical energy over potentially great distances; 

to transform the electrical energy into a specific form subject to close tolerances; 

and to convert the electrical energy into a usable form. To be practical, it 

must be secure, reliable and economical. The process of supplying the consumer 

with electricity can be divided into three distinct functions, namely generation, 

transmission and distribution. 

Generation: 

Electricity generation involves the conversion of a pnmary energy source 

into electrical energy. The most common primary energy sources are fossil fuels, 

i.e., coal and oil. In the Central Electricity Generating Board (CEGB) system 

this accounts for approximately 85 per cent of the requirements. The remainder 

is generated by nuclear (approximately 12.5 per cent), gas turbine, diesel and 

hydro-electric generating equipment. Fossil and nuclear fuels are used to produce 

heat which is converted into the rotational energy of generators by boiling water 

to create high pressure steam which is then passed through a turbine. Similarly, 

gas turbine generators pass hot burning gases through a turbine while hydro­

electric power stations pass water through a turbine under pressure obtained 

by storing water in a reservoir situated above the turbine. Diesel generators 

differ from the others in that a conventional internal combustion engine is 

used to convert the diesel fuel into rotational energy. The rotational energy 
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generated by utilising a pnmary energy source IS transformed into electricity 

in a sinusoidal waveform by a generator which exploits the electro-magnetic 

interactions between a magnetic field and a moving conductor. Modern steam 

turbine generators usually have a terminal voltage of 23.5 KV and a power 

output of up to 660 MW. A large power station may have as many as SIX 

generators. The CEGB system has approximately 90 large and efficient power 

stations with a total generating capacity in excess of 52 GW. 

The location of a power station is governed by two major factors: easy 

transport of fuel to the power station and location of a plentiful supply of 

water for cooling purpose. Thus power stations are usually located on a coast 

or a large river and in the case of coal-fired stations, near to a coal field; whilst 

the large consumers are often located far away from the stations. 

Large thermal generators whether they be fossil fuel or nuclear units, are 

usually the most economical to run, and thus, they are usually run continuously 

at a fairly steady output level. As would be expected, the output of a large 

generating unit can not change quickly and it may take several hours to 

synchronise such a generator to the network from a cold start. Gas turbine 

generators are, however, expensive to run, but they are fast and can be 

synchronised to the system within a matter of minutes. So they are used to 

meet sharp increases in the load in the system or during emergency conditions. 

Pumped storage hydro-electric generating schemes are an alternative method 

of meeting the sharp increases in the load curve. Pumped storage units are 

operated as follows. During the period of low demand, electricity is used to 

pump water from a lower reservoir to an upper reservoir. This utilisation of 

the power enables some of the large thermal units to remain synchronised with 

the system during the slack periods. When the load increases the water stored 

in the upper reservoir is returned to drive a hydro-electric generator. 

Electrical energy IS not a kind of energy that can be stored as other 

resources. The balance between the load demand and the power generated 

must be held all the time. If this balance fails, then the frequency will change 

accordingly. The frequency variation of the power system can be used as an 
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indicator of the imbalance. If the system frequency falls, then more energy 

should be supplied to generators in order to produce more electrical energy to 

balance with the loads. 

Transmission: 

Usually large power plants are located on a coast or near a coal field, 

whereas the consumer regions are far from the power stations. Consequently, 

the role of transmission sections of a power system is to transmit the power from 

the power station to the load centres of the network by high voltage overhead 

transmission lines or underground cables. In order to reduce transmission 

losses, the transmission network is operated at high voltages. The transmission 

network of the CEGB is operated at 275 KV (grid) and 400 KV (supergrid). 

From the viewpoint of security, the transmission network must be designed 

m such a way that the loss of a few lines does not completely disable the 

system. 

Distribution: 

The distribution networks are usually supplied by several bulk supply 

points from the transmission network. The voltage level is transformed from a 

high transmission voltage to a lower level at which the power can be consumed 

by the users. The domestic user is supplied by a single phase of the distribution 

network, usually with a voltage of 240 V above the ground potential, while 

industrial consumers may be supplied with a three-phase distribution network 

at a voltage level which is suitable for their requirements. The distribution 

network in England and Wales is maintained by 12 distribution companies 

(formerly the area boards). 

1.2 Control of electrical power systems 

In order to make the generation, transmission and distribution systems 

work well together, it is necessary to have a control function to co-ordinate the 
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whole power system operation. Power system control IS required to maintain 

a continuous balance between electrical generation and a varying load demand, 

i.e., a stable system frequency, whilst voltage levels and security are maintained. 

Another desirable objective of the power system control is to minimise the cost 

of operation. The control of generating units is a complex problem which 

needs to consider the following criteria: the likely load both in the near future 

(e.g., in the next 30 minutes) and the more distant future (e.g., in the next 

4-6 hours), the time for a generator to be synchronised if it is not already 

synchronised, and the rate of change of the output of a generator once it is 

synchronised. 

The control of a power system is a hierarchical process which commences 

with the prediction of the load demand at a control centre and ends with 

closed loop controllers which regulate the primary energy source supplied to 

the generators in response to variations in the desired and actual values of 

frequency and output power (see Figure 1.1). The hierarchical levels in the 

control sequence include the long term planning of which generators need to be 

synchronised (unit commitment) based on the long term load forecasting, the 

short term adjustment of the desired levels of generation (economic dispatch) 

based on the short term load forecasting, the desired operating frequency, and 

finally the continual adjustment of the generator regulators by the closed loop 

controllers. Therefore, the overall operation and control scheme needs the 

following procedures: 

Load prediction: 

Electrical power system operation starts from short term load prediction 

the objective of which is to predict the system load in the near future (several 

hours to several days ahead) so that prior warning of output requirements may 

be given to power stations. 

The quality of control of a power system, and the economy of operation, 

are highly sensitive to load forecasting error. In consequence, it is expedient to 
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develop forecasting techniques to the stage where the magnitudes of the errors 

have attained irreducible proportions. 

Off-line weather-dependent forecasting models are essential for lead times 

of more than a few hours. There are several reasons for this. In the first 

place, the on-line use of weather data for a real-time forecasting system requires 

either a reliable weather metering system or the regular external input of 

weather variable forecasts from a meteorological service. Secondly, it has been 

suggested that univariate adaptive procedures will implicitly be tracking most 

weather-induced changes over the short-term and thus little extra prediction 

accuracy would be gained from constructing a more elaborate multivariate 

weather dependent model. 

With the development of powerful computers, many problems which could 

only be solved by experienced human operators or experts in the past, can 

now be solved by computers. The programs, referred to as "expert systems", 

can manipulate knowledge in the domain and perform reasoning like a human 

being. Expert systems have been successfully applied to many fields, as well 

as in power systems. 

This thesis will focus on electrical load prediction by combining the 

mathematical analytical tools with the human expertise. 

Plant ordering: 

After the electrical demand for the next 24 hours has been forecast, 

generating units can be ordered in order that the peak demand can be safely 

met. Since the demand varies along time and the load near its peak value 

lasts only several hours each day, it may be economic to shut down some units 

during the off-peak periods. Start-up and shut-down of units can be ordered 

in order to obtain the optimal combination of units which can meet the load 

demand. Thus, the problem of plant ordering can be represented as a coarse 

running cost optimisation so that the system load and spinning reserve are 

met with the consideration of some constraints. The constraints include the 
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start-up and shut-down time for each unit. Of course, cheaper units should be 

scheduled before less efficient units. During the off-peak period, the inefficient 

units may be shut down in order to save operational cost. But later, prior to 

the next peak load, they will have to be restarted. So, the saving obtained 

by shutting down a unit must be compared with the start-up cost of the unit 

so that overall economic operation can be obtained. Therefore, the following 

factors have to be considered in plant ordering: 

1. The shape of consumer demand; 

2. The fuel cost curve of each unit; 

3. Reserve requirements; 

4. Unit shut-down time and start-up time constraints; 

5. Start-up cost as a function of shut-down time; 

6. Capacity of units (maximum and minimum); 

If there are also hydro generation units in the system, then co-ordination 

of thermal units and the hydro generators must be considered. Since hydro 

generation is much cheaper to operate than the thermal generation, optimal 

savings may be expected if the hydro generation is scheduled during peak 

load time. Hydro unit scheduling is to determine the water release from each 

reservoir and through each power station so as to optimise the total benefit of 

the hydro-generated energy. Therefore, hydro scheduling and thermal scheduling 

should be co-ordinated so that the overall cost can be minimised. 

Economic dispatch: 

Plant ordering only determines the on and off status of each unit. The 

output of each unit at specific times is determined by economic dispatch so that 

the varying load can be met and the production cost is minimised. Economic 

dispatch is therefore required to minimise the overall operation costs subject to 

a set of constraints, such as the maximum and minimum outputs of each unit. 
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Load frequency control: 

As stated earlier, system frequency variation can be used as an indicator 

of imbalance between the load demand and the electricity generation. In a 

complex inter-connected power system, many separate companies (for example, in 

U.S.A.) jointly provide a secure and economic power supply to widely distributed 

consumers via tie-lines. Load frequency control is needed to maintain the system 

frequency at a desired level by adjusting the set point of the area requirement 

which includes regulating the frequency variation from nominal, and the net 

deviation of the line power flows from their scheduled values. 

Voltage control: 

It has been explained that the consumer centre is usually not located 

near the generation centre, so it is necessary to transmit a great amount of 

energy by transmission networks from power stations to consumer centres. As 

heavy loads flow through transmission networks, voltage drops are inevitable 

at the consumer location. It is sometimes necessary to install shunt capacitors 

m order to maintain the voltage at a nominal level. In another sense, the 

reactive power produced by generators may not be enough for the requirement 

of consumers. The shunt capacitors are required to produce some reactive power 

to compensate for that lost in transmission lines and to meet the consumers' 

requirements. Conversely, when the load is light, the line capacitance may raise 

the voltage level beyond the acceptable limits. In this case, inductors are used 

to absorb the surplus reactive power. Consequently, the voltage level has to be 

controlled within the desired limits by appropriate means. 

State estimation: 

In order to operate and control a power system, up to date and accurate 

information about the state of the entire network is required. Most of the 

system variables are telemetered. Due to instrumentation and telemetry noise, 

inaccurate network parameters and delayed measurements may arise. In order 

to supply the operator with accurate information, raw measurements have to be 
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processed. The measurements are then validated to remove those errors, and 

values are calculated for all the unmeasured points. For example, the historical 

load data for load prediction are from the validation and estimation of teleme­

tered measurements of demands. State estimation also performs calculations to 

advise the operator if an emergency condition would arise from the loss of any 

single piece of equipment. 

Security analysis and fault studies: 

In an operational environment, security assessment consists of predicting 

the vulnerability of the system to some unforeseen, but possible disturbances 

on a real-time basis. Because of maintenance requirements, forced outages, and 

changing load patterns, actual operating conditions are continuously changing, 

and so are the levels of system security. When some disturbances happen to 

the system, a redistribution of power flows and voltages may be expected, this 

can result in an overloaded line, or an overvoltage condition. The system may 

tolerate such limit violations for a short period of time. Corrective action 

should be taken in such a period so that the system can recover to a normal 

condition. Analysis tools required for security assessment are based on load 

flow studies to find out the limit violations. 

The normal operation of a power system may be disturbed or disrupted 

by faults. These can be single line-to-ground, line-to-line, double line-to-ground, 

three-phase to ground, one line open, two lines open, or combinations of them. 

Faults can damage the equipment, cause danger to human bodies, and jeopardise 

the operation of other parts of the system. So, in the event of any faults, 

investigation must be made to find out the types, locations and reasons for the 

faults in order to find the appropriate solutions to clear the faults and restore 

the faulty elements or areas. 

Emergency rescheduling and load shedding: 

During emergency conditions, generation capacity may not be sufficient 

to meet system loads. It is important to rapidly reschedule generation and 
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allocate the degree of load shedding. Under emergency conditions, economic 

operation has a lower priority than the minimisation of load shedding. Generally, 

artificial costs are assigned to each load supply point, and a priority order of 

load shedding is drawn up. 

1.3 Presentation of the thesis 

The thesis presents a study of short term load forecasting by usmg 

knowledge based expert systems and the univariate auto-regressive integrated 

moving average (ARIMA) method. The results throughout the thesis are 

obtained by testing the methods against the CEGB system loads. The thesis 

is divided into a total of eight chapters. The following paragraphs outline the 

contents of the remaining chapters. 

The second chapter presents a review of previously published methods of 

short term load forecasting. The first section of chapter 2 gives an introduction 

to system load, followed by section 2 which describes the characteristics of 

system load. In this section, the characteristics of system load variations with 

time and with the effective factors are given, as well as the influences of such 

special events on system load as public holidays and time change-overs both from 

Greenwich Mean Time to British Summer Time and vice versa. Sections 3 and 

4 in this chapter describe data requirements for load prediction and the design 

features of a prediction model. The fifth section reviews the previously published 

and commonly used methods of load prediction, ranging from linear regression, 

spectral expansion, to pattern recognition and auto-regressive integrated moving 

average modelling. Advantages and disadvantages of each method are also 

discussed. Estimation for special events such as television pick-ups and holiday 

effects is also presented. A brief summary is given in the last section of the 

chapter and it is concluded that the knowledge and experience of operators can 

be used to improve the overall performance of a predictor, which accounts for 

the need for expert systems. 

The third chapter describes expert systems and the related techniques 

which include knowledge acquisition, knowledge representation, inference engine 
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and man-machine interface design. Much effort is being devoted to the applica­

tion of expert systems to operation and control of power systems. Applications 

range from normal operation and control, such as load frequency control and 

reactive power /voltage control, to alarm processing, network fault diagnosis and 

system restoration. The last section of the chapter is focused on the application 

of expert systems to short-term load forecasting. It is concluded that expert 

systems can be used to improve the existing algorithms. 

Chapter 4 proposes how expert systems can be applied to short-term load 

forecasting. A method of disaggregation of the overall load into its components 

is introduced in order to take into consideration the effective factors on electrical 

demand. Classification, disaggregation and estimation of each component are 

described in detail in this chapter. Testing has been made against the CEGB 

system load. 

Chapter 5 presents the application of disaggregation of the overall load 

to prediction of the special case: effect of time change-overs (both from BST 

to GMT and from GMT to BST) on the load behaviour. Detailed description 

and explanation of load behaviour around time change-overs are given. It is 

proposed that lighting loads should be separately considered from the other 

components when predicting the time change-over effects. Comparison of this 

approach with other methods is also presented. 

The sixth chapter presents load prediction of holiday periods. In this 

chapter, the loads in the periods ranging from fixed bank holidays to the 

period between Christmas Day and New Year's Day are predicted. Results 

are compared with some other methods. Some corrections are made to the 

contribution of weather effects on loads. Comparison has been made with other 

methods, especially with that of relative gaps, in the chapter. The elimination 

of holiday effects on further predictions is also given in order to predict the 

normal loads under normal situations. 

Chapter 7 describes how weather effects on load can be considered based 

on an auto-regressive integrated moving average predictor. Much effort is 
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devoted to weekend load prediction. For simplicity, max1mum temperature is 

used as the only effective factor on weekend load for both the summer season 

and the winter season. 

A summary is given and conclusions are drawn from the study. Discussion 

of possible improvements in the performance of load prediction, and future work 

related to load forecasting are also presented in the last chapter. 

The appendices contain additional information not included in the mam 

body of the thesis. Appendix 1 details some mathematical tools for analysing 

the properties of a time series: calculation of autocovariance and autocorrelation 

functions. Appendix 2 represents the performance of the overall package for 

short term load forecasting. Appendix 3 describes some examples of procedures 

written in POP-11 to perform prediction. 
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CHAPTER 2 

CONVENTIONAL APPROACHES TO 
SHORT-TERM LOAD FORECASTING 

2.1 Introduction 

The system load is the sum of all the individual demands at all the 

nodes of a power system. Estimation of a power system load at a certain time 

in the future is necessary since generating plant capacity must be available 

to balance exactly any network load at whatever time it occurs. The system 

load behaviour is generally influenced by four major factors, namely, economics, 

time, weather, and random effects. In the long-term, the installation of new 

plants and network expansion is dependent on the estimation of the future 

peak consumer demand many years ahead. The demand is actually determined 

by social, economic, technical, and industrial factors, such as national product 

growth, population growth, electricity tariff, political constraints. Three basic 

methods are used for long-term load prediction, namely, trend forecasting, 

market forecasting, and economic load forecasting [15]. In the medium-term, 

the scheduling of fuel supplies and maintenance programmes are based on the 

estimation of load a few months ahead. Exponential smoothing, and regression 

methods are commonly used. In the short-term, the variation of the system 

load must be known so that prior adjustment can be made by the power 

station allowing for output requirements, limitations upon boiler fuel feed rates 

and constraints upon the generator's rate of output change. The loads are 

affected in the short-term by the day-to-day activities of consumers and also 

quite often influenced by the weather conditions. The prediction methods for 

this short-term load are based on the history of past network loads, system 

configurations, and corresponding meteorological conditions. 
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This chapter will review some literature on the conventional methods 

for short-term load prediction. First, section 2.2 describes short term load 

characteristics from normal situation to some special events. Sections 2.3 and 

2.4 will present the data which are used for prediction, and some design features 

which need attention when developing a new model for prediction. Next, section 

2.5 will introduce, in detail, some commonly used methods for short term load 

prediction. 

2.2 Characteristics of system load 

Since the consumption of electricity vanes from time to time and some 

unexpected errors happen to the telemetry measurements, this makes it very 

difficult to predict the demand precisely. The demand, however, in the short­

term, shows some characteristics, e.g., periodical variation and changing trends. 

Most mathematical models are based on these properties. 

2.2.1 Intrinsic properties 

From the record of demand (which is a discrete time series) for electricity 

from the CEGB's National Grid System, it is found that the half-hourly load 

exhibits strong daily, weekly and seasonal variations. In a week, the load starts 

to grow on Monday, then remains at a peak in the middle of the week, and 

decreases on Friday, then reaches a trough at the weekend (see Figures 2.1 

and 2.2 of summer and winter weekly load profiles). Within a single day, the 

electrical load starts to increase in the morning to reach a morning peak; then, 

after a small decrease during the afternoon, reaches an evening peak again 

around dinner time after which it gradually decreases to reach a low value 

during the night. The daily load profiles also change with seasons (see Figures 

2.1 and 2.2). During a year, they reflect the low demand in the summer 

months and high demand in the winter months, with a ratio of approximately 

4:1 (see Figure 2.3) between winter peak demand and a summer night demand 

for the CEGB system [125]. 
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Figure 2.1 Typical Summer Week Load Profile 

- 15 -



TITLE: Load Characteristics 

FIGURE: Typica1 Winter Week Load Profi1e 

WINTERWEEK.P; 

Load (MN) 
46215. ~;::;..-

fi ~ 
1~. f;l 

1
·1 , I 

:

1

1 I: . I 1\ 
i"\ I ., I· I t\'U II 11"\,/ \ f,,., ti 
I ~ i f"'IJ \ I I ! I i \ I i 
I I 11 11 I . I I ! \. I 
' \ . I I I v \ 

40166.--

I 1 I\ i \I I 1 \ 
I \ I I I , I \ 

1
· \

1 
~ 

I I \ I I I' I ! I l\, 1\ II\ lA{\ 

34116.--

I 
28067. -~-- 1 

r .. I 
Jv 

' I I ' \ ' I I I I i I i ' I ,. \ 
\ i 'I I . I \lr-. I' .\· I' \I \ I \ \\ 
\~ N ~\J \\J ~~~ .. 1 •• 1 I v \ 

\ n / . 
I I \}\ I 
\; \ i \ 

\ ' 
\I 

22017.- l _l l v I 
~--------+---------~--------~--------~ 
I 0 

1
42 84 126

1 
168 

1 

Time (Hours) 

Figure 2.2 Typical Winter Week Load Profile 

- 16 -



TITLE: Load Characteristics 

FIGURE: Typical Daily Load Profiles in Summer and Winter 
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Figure 2.3 Typical Daily Load Profiles in Summer and Winter 

The winter profile was the load recorded on 15 January 1985; The 

summer profile was that of 29 July 1984. 
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Furthermore, there is a growth pattern in the requirements that reflects 

the increasing load over time, either as a result of an increase in the number 

of consumers demanding power or an increase in the demand for power per 

consumer. An increasing number of consumers gives rise to a continuous growth 

which is only detectable over a relatively long period. This increasing trend 

can be ignored in short-term load prediction such as that of 2-3 hours ahead 

or even days ahead. 

The periodical variation can also be shown by statistical analysis by the 

autocorrelation function (for its estimation, see Appendix 1). Table 2.1 shows 

the daily and weekly periods with autocorrelations of 0.815706 and 0.861754 

respectively for the record of only two months of half-hourly data (from 1st of 

September to 31st of October in 1984 on the CEGB system). 

Table 2.1 Autocorrelation Function with Time Lag 

Lag-time k(days) Autocorrelation Function 

0 1.0 

1 0.815706 

2 0.635447 

3 0.589124 

4 0.582404 

5 0.598889 

6 0.730362 

7 0.861754 

8 0.698513 

9 0.540044 

10 0.500226 

It can be seen from the table that the weekly cycle has stronger correlation 
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effects than the daily cycle. In other words, the load of any day-of-week 

resembles that of the same day-of-week in previous weeks, while the loads 

within a week do not replicate themselves from day to day. 

2.2.2 Influence of weather conditions on load 

Load behaviour is not only dependent on the time of a week, it is 

also significantly affected by weather factors, such as temperature, wind speed, 

humidity, since consumers' use of electricity for space heating, water heat­

ing, refrigeration, air-conditioning, and lighting is directly affected by those 

meteorological conditions. 

Figure 2.4 shows a typical illustration of the weather effect on electrical 

demand based on the data of lOth and 17th of November in 1984 of the CEGB 

system (both days are Saturdays, the key weather data are in Table 2.2). 

For the CEGB system load, the weather effects are responsible for demand 

variations of up to about ten per cent around the average pattern [27]. 

Date 

10/11/1984 

17/11/1984 

Table 2.2 Weather Data and Load Data 

for 

10/11/1984 ~ 17/11/1984 

Trna:z: Trnin Wind-speed Loadrna:z: Loadmin 

oc oc Knots MW MW 

14.3 9.8 3.3 29952 17794 

6.6 3.3 6.1 32022 19348 

Max(L1- L2) 

MW 

21806 

26657 

Note: Max (L1 - L 2 ) indicates the loads at time of maximum variation. 

To identify the dominant weather variables, cross-correlation studies of 

average daily load versus daily weather variables such as temperature (maximum 

and minimum), humidity, light intensity, etc., can be carried out. 
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In Great Britain [27], the dominant weather factors are: temperature, 

wind speed, and effective illumination (a function of cloud cover, visibility, 

and precipitation). In other countries, particularly those with a substantial 

air-conditioning component in the load, the additional factor of humidity (wet 

and dry bulb temperatures) will be important. 

For this type of weather-sensitive load such external influences must be 

included in the model if more accurate prediction up to one week ahead is 

to be made. Obviously, the achievable accuracy depends on reliable weather 

forecasts. In practice, however, automatic updating of meteorological data at 

regular intervals is not easy. 

2.2.3 Public holiday effects 

In addition to weather factors, electrical load is also influenced by public 

holidays, such as Easter, Christmas Day, or even the regular Monday bank 

holidays. During these periods, the load is quite different from the normal 

load in both the shape and level. The holiday effects are not only on the 

holiday itself, but also on the neighbouring days during which industrial and 

commercial activity is shutting down or restarting. This can be seen in Figure 

2.5 which indicates the difference of Summer Bank Holiday (27th August, 1984) 

from the same days-of-week of both the previous week (20th August, 1984) and 

the following week (3rd September, 1984). 

In Figure 2.5, the load on the Summer Bank Holiday (27th August, 

1984) was much lower than the load on the same day-of-week either of the 

previous week or the following week. Also the load profile was totally different. 

2.2.4 Time change-over effects 

The load record also shows that the consumer's use of electricity IS 

affected by the time change-overs both from British Summer Time (BST) to 

Greenwich Mean Time (GMT) and VIce versa. 
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Figure 2.6 shows the effect of time change-over on loads from British 

Summer Time (Monday, 22nd October, 1984) to Greenwich Mean Time (Monday, 

29th October, 1984). And Figure 2.7 shows the effect of time change-over from 

GMT to BST. The load profiles have been changed considerably in both cases. 

It is apparent that the variation is not as simple as a shift of load backward 

or forward by one hour (the difference of time change-overs). This aspect will 

be dealt with in Chapter 5. 

2.2.5 Other special event effects 

There are some other special events which can influence the load behaviour 

in addition to holidays and time change-overs. For example, during some 

evenings of popular TV programmes, e.g., of national significance such as the 

Royal Wedding, sporting events such as the Cup Final, the load has unusual 

sharp rises between the commercial breaks. This phenomenon is referred to as 

a "TV pick-up", defined [28] as the steep rise in the demand for electricity 

within about three to six minutes of a break in television programming. Every 

week there is an average of about 5 pick-ups of more than 500 MW and 40 

pick-ups of more than 300 MW [28]. Pick-ups of less than 300 MW cannot 

easily be distinguished from normal system noise. 

Moreover, the events such as widespread strikes and shutdown of industrial 

factories can also affect the system load. 

As a result, all the irregular special events make it very difficult to 

perform accurate load prediction. However, many mathematical models have 

been developed for short-term prediction under normal situations. 

2.3 Data requirements 

Based on the properties stated above, the information needed for load 

forecasting should include: 

The record of consumption of electricity (historical load data); 
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The record of weather data which should cover the same area and 

correspond to the same period as the load data, and the weather forecast 

covering the prediction lead time; 

In addition to these two kinds of regular input data, some special 

information is also needed for accurate prediction, such as dates of special 

events, and the time schedule of popular TV programmes. 

2.4 Design features 

Since the system load is a random nonstationary process composed of 

thousands of individual components each of which behaves erratically without 

following any known physical law [88], all the models are empirical in nature 

and can only be objectively evaluated through extensive experimental evidence. 

So, the best test for a load forecasting scheme is its performance in the actual 

control centre environment over a period of time of at least two years. 

The major components of a short-term load forecasting system are the 

model, the data sources, and the man-machine interface. Therefore, certain 

design features for the short-term load predictor have to be considered with 

attention focused on the following six major components[27]: 

(l)Adaptiveness 

In the forecasting model, not every parameter should keep the same value 

over time. This implies a need for automatic tracking of the parameter changes 

in the model. 

(2)Recursiveness 

Every time new data are available, forecasts need to be recomputed 

so as to update some parameters. This recomputation normally does not 

require tracking of the whole past history of the data, but rather, updating the 
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parameters based on new data. So it is necessary for a forecasting model to 

contain an automatic data updating function. 

(3)Computational economy 

Since the short-term forecast is for on-line operation and control, and 

usually the models have a large amount of historical load data and weather 

information to be manipulated, the algorithm needs to be economical with 

respect to execution time. This means that the computing time should be 

short enough in order to do planning before the event. 

(4)Robustness 

The forecasting model should be robust enough to be consistent over 

a long time even though it may be sub-optimal for part of the time series. 

The model should be able to detect errors in the incoming data since this will 

often include measurement errors. It should also be able to exclude anomalous 

data, because the existence of holidays and neighbouring days will violate the 

assumption of steady-state load behaviour. Those models which require the 

periodic input of extra variables, such as regular weather data inputs, should 

be robust against defaults in the input of new data. 

(5) Accuracy of objective: 

No prediction of the system load can reach perfect accuracy. The highest 

accuracy can only mean the smallest error which a good model presents in 

forecasting. Usually the root mean squared (RMS) errors are used to indicate 

the goodness of the model in fitting the load series: 

RMS= 

where Zt and Zt are the actual and forecast values, respectively, at time t 

(t=l, 2, ... , N), and N is the total number of forecasts. 
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Some factors also affect the accuracy of prediction by any model. Typi­

cally, the seasonal change and lead time will cause a variation of accuracy. For 

example, root mean squared errors of prediction during winter and summer are 

about 1.4 per cent for lead times of three to four hours, and 2.5 per cent for 

lead times of 24 to 36 hours. These errors will increase to about 1.8 per cent 

and 3 per cent respectively during spring and autumn[27]. 

(6) Man-machine interface: 

A good man-machine interface is necessary since forecasting systems have 

not been developed to a perfect stage and manual intervention from operators 

is inevitable. 

Therefore, when a new algorithm emerges, all the above features have to 

be considered. 

2.5 Conventional approaches 

Since the problem of short-term load forecasting has been recognised as 

an important component in power system operation, many different models have 

been developed. Most of them are based on mathematical analytical methods 

and have been proven by researchers and operators to be reasonably accurate 

for different systems according to the specific characteristics of the system loads. 

Different classifications can be applied to them, such as univariate model and 

multi-variate model (depending on the number of variables); or regression model, 

pattern recognition, time series, etc., (based on the mathematical analytical 

methods); or some models using past load data only, but some requiring weather 

data inputs. Some models are built for prediction of peak load only. Here we 

introduce the methods classified by mathematical analytical models, since it IS 

easy to expand one model, for example, from univariate to multi-variate, if it 

is understood how the method works. 
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2.5.1 Linear regression method 

It has been noted that weather factors such as temperature, wind speed, 

cloud cover, and humidity, influence the load demand. Therefore, the whole 

load may be regarded [1, 32, 64, 92] as a composition of two parts: base load, 

and weather-dependent load. The weather effect is represented by a percentage 

of base load in order to predict the future load. According to some operational 

experience, typical weather weighting factors for temperature and cloud cover 

are listed in Tables 2.3 and 2.4, which are based on the CEGB system load 

[64, 140, 206]. 

Table 2.3 Weather Weight Variation with Monthly Temperature 

Weight December April May June July 

January November October September August 

February 

March 

% OF OF OF OF OF 

10 15 25 35 95 100 

8 20 30 40 90 95 

6 25 35 45 85 90 

4 30 40 50 80 50 80 85 

2 35 45 55 75 55 75 80 

0 40 50 60 70 60 70 75 

-2 45 55 65 65 70 

-4 50 60 65 

-6 55 65 

-8 60 

The normal mean monthly temperature given by the UK Meteorological 

Office is used as a base for the temperature weights. Thus the normal mean 
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temperature of a month has zero weight. 

Wind speed, by experience, has also been found to affect the consumption 

and typically a weight of +2% for each 5 m.p.h. of wind speed is used. The 

method has been found to be reliable given the base load pattern from day to 

day is uniform and the corresponding values for the same period on any day 

are again uniform. 

Table 2.4 Weather Weight Variation with Cloud Cover 

Weight Degree of cloud cover 

-2 Fair: broken fair-weather clouds reflecting sunlight 

-1 Fair: scattered fair-weather clouds reflecting sunlight 

0 Clear: blue sky 

1 Fair: thin haze 

1 Fair: scattered clouds high and thin 

2 Fair: thick haze 

2 Scattered clouds: low and thick 

2 Broken clouds: high and thin 

3 Broken clouds: low and thick 

3 Overcast sky: clouds high and thin 

4 Overcast sky: clouds high and thick 

4 Light fog 

5-6 Overcast sky: clouds moderately low and thick 

7 Overcast sky: clouds low and heavy 

8-9 Overcast sky: clouds very low and heavy 

8 

10-12 

10-12 

Moderate fog 

Overcast sky: 

Dense fog 

clouds very low, very heavy 
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The above consideration of weather effects is based on operational expe­

nence. Alternatively, the relationship between the weather-sensitive load and 

the weather conditions can be expressed explicitly in explanatory variables by a 

multiple linear regression method [3, 54, 92, 97, 197]. For a given time series, 

the explanatory variables are selected on the basis of correlation analysis of the 

time series. For example, a multiple regression model can be written as: 

(2.5.1) 

where x1 , x2 , ••• , Xn are the explanatory variables for the times series of electrical 

load y(.). And ao, a 11 ••• , an are the regression coefficients estimated by usmg 

least square estimation techniques; a(k) is a random variable with zero mean 

and constant variance. The weather variables x1 , x2 , ••• , Xn can be different 

from season to season. That is to say, the variables should be checked based 

on the correlation studies when the season changes. 

It can be seen that the effect of weather conditions on load behaviour 

can be expressed either in table form or in the mathematical formula of the 

regression method. The only difference is that the coefficients which indicate 

the relationships have been estimated in the form of tables by past operational 

experience, but have to be calculated by the least squares method based on 

the historical loads and weather data in regression analysis. Therefore, the 

regression analysis can update the coefficients adaptively while the analysis in 

table form is rather static. As a result, the regression method has an advantage 

over the table method that it can predict the load when the weather conditions 

are extremely abnormal (beyond the range listed in table form). However, 

any historical load or weather data errors will inevitably result in inaccurate 

coefficients and consequently prediction errors from the regression method. 

Discussion: 

The above method is only for weekdays, smce the basic load changes 

very little from day to day of a week. On weekends, however, the load pattern 

is significantly different from that on weekdays, and consequently prediction for 

weekends should be treated separately from weekdays using a similar approach. 
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Since the relationships between electrical load y(.) and the influential 

weather variables Xi ( k) are not necessarily linear, a nonlinear transformation of 

the weather variables has been used [92, 127] to formulate a linear weather-load 

model. One of the many possible transformations for temperature is: 

{ 

TMP(i)- Til 
WV(i) = 0 

Tw- TMP(i) 

if TMP(i)> Til 
if Tw <TMP(i)< Til 
if TMP(i)< Tw 

(2.5.2) 

where Tw and Til are the fixed parameters and TMP(i) is the average temperature 

on the ith day. 

Based on a linear (or non-linear for transformation) regression method, 

some authors [97, 123] applied the following equation to predict daily peak load 

DPL: 

DPL=B+CDF*WV (2.5.3) 

where: 

B is the base load; 

CDF is a vector of the cooling demand factors; 

WV is a vector of the weather variables or weather conditions which 

influence the peak load. 

Other effective factors, such as the rapid load fluctuations during and 

after television programmes, must be accounted for manually with the result 

that the success of the method depends, to a considerable extent, on the 

intuition and experience of the grid control engineer. 

The prediction of effects of weather variables on load variations, 

either in table form, or in regression formula, requires regular weather inputs. 

Therefore, the accuracy of the weather forecast will affect the accuracy of load 

prediction. The advantage of the method is that the computation is economic 
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and very little storage is required, if the coefficients have been drawn up from 

historical data. 

2.5.2 Spectral expansion method 

Derived from the linear regression method, the spectral expansion method 

was first applied to short-term load forecasting by E.D.Farmer [70]. The 

electrical load is regarded as the combination of a long-term trend, a component 

varying periodically over each week and a residual component. 

After the weekly and daily components are removed from the actual load, 

the residual fluctuations from day-to-day and hour-to-hour are mainly due to 

variations in the weather conditions: 

where: 

where: 

Ywd(t) is the whole load at time t of day d in week w; 

Aw (t) is the average weekly load at time t of week w; 

Bd(t) is the average daily load at time t of day d; 

Xwd(t) is the residual load. 

Aw (t) and Bd(t) are obtained in the way: 

1 ND 

Aw(t) = ND L Ywd(t) 
d=l 

1 NW 

Bd(t) = NW L {Ywd(t) - Aw (t)} 
w=l 

ND: number of days in each week; 
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NW: number of weeks history. 

The residual Xwd(t) is a combination of functions of the effective mete­

orological parameters and can be expressed by linear transformation: 

(2.5.7) 

where: 

fl(Twd), f2(Lwd), !3(Wwd), etc. are functions of temperature Twd, 

illumination Lwd, and wind speed Wwd, etc.; 

!Jwd(t), '"Ywd(t), and hwd(t) are the weighting vectors for the effect of 

temperature, illumination and wind speed. 

The discrete form of Karhunen's spectral expansion of stochastic processes 

was used to expand the residual loads Xwd(t) in the form [70, 139, 140]: 

K .l 

Xwd(t) = L amkA~ ¢k(t) + fm(t) (2.5.8) 
k=l 

By minimising the mean squared error of the f over the interval of 

samples, it is evident [139] that the >.k and the transposed ¢k are the eigenvalues 

and eigenvectors of the matrix Q: 

Q = _!:___xT X (2.5.9) 
M 

where X is an (M*N) matrix of the residual components Xwd(t). And the 

coefficients amk are statistically independent random variables with unit variance: 
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M 

E (2.5.10) 
~n=1 

The predicative procedure is to calculate the characteristic functions from 

the long-term behaviour of the load and to determine the weighting coefficients 

a~nk by fitting the expansion to the immediate past. Having determined the 

best set of coefficients, the most probable values of future load may be derived 

given the most recent values of the past. 

The whole procedure in matrix notation is: 

1) Calculate the K largest eigenvalues, and the corresponding eigenvectors ~ of 

(2.5.9). 

2) Partition the eigenvector ~ to form ~0 (of p*K) and <!>1 (of (N-p)*K). 

3) Calculation of coefficient matrix C. 

Partition the load data for the day of prediction into known data Xo 

(1, p) and required data X 1 (p+1, N): 

(2.5.11) 

Since the coefficient matrix C can be derived from: 

(2.5.12) 

4) Prediction. 

The predicted data X 1 will be: 
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(2.5.13) 

Discussion: 

1) An advantage of the spectral expansion method lies in the fact 

that no meteorological data are required for its predictions, and consequently, 

the need for expensive instruction or the use of possibly inaccurate weather 

forecasts can be avoided. 

2) Another advantage of spectral expansion 1s that prediction can be 

made continuously for any hour of the day, without the need for storage or 

special graphs. 

3} Matrix Q is symmetric, and Jacobi's method may be used for calcu­

lation of eigenvectors and eigenvalues. 

The method can be used to predict the loads from p+ 1 to N, so the 

lead time of prediction is limited by the length of the data in a block N. That 

means, it can only predict the loads for the rest of the day given p known 

data. 

Since Farmer's method only models the static relation between the load 

and weather factors, it is unable to take account of rapid and large weather 

condition changes and the changes which may be caused by the onset of 

electrical storms or television programmes of national interest, and the changes 

in consumer pattern on account of bank holidays or strikes. 

As analysed by Matthewman [139] the mean squared error E of the 

prediction is: 

(2.5.14) 
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So, if the number N in a block increases, the error E will decrease. 

But, the increase of N will increase the computational time for calculating 

the eigenvectors and eigenvalues. In the equation (2.5.14), if the number of 

eigenvalues K increases, the error E can decrease as well. However, the dominant 

eigenvalue is much more significant than the second dominant eigenvalue, and 

the third. So, usually, only the first and/or second largest eigenvalues are used. 

Although the error E is proportional to it, the choice of M should not be too 

high, otherwise, the model will weight the eigenvectors too heavily towards the 

earlier data and will tend to give an inaccurate guide to future behaviour. A 

suitable number for M has been found by experience to be 20 [139]. 

Another point to be noticed is that the method is only for prediction of 

loads for weekdays. For weekends, Saturdays and Sundays, similar models must 

be built in similar ways. In this case, the choice of M will be very difficult 

because the load behaviour will be changed if M is chosen the same as for 

weekdays (which is 20). 

In order to reduce the computational time, implementations have been 

made [206] in which the whole day can be divided into several periods. The 

same periods of past days are used to predict the future load within the period, 

but this limits the lead time of prediction (less than the period N). 

2.5.3 General exponential smoothing method 

The exponential smoothing method is widely used in forecasting the 

future sales of products. The earliest version of exponential smoothing, called 

"simple exponential smoothing", regards a time series as being made up locally 

of its level and a residual element. Since the available data consisted of a 

random sample, then the obvious thing to do would be to take a simple average 

of the observations, giving most weight to the most recent observation, rather 

less weights to the preceding observations. The way to achieve this is to employ 

a weighted average, with geometrically (exponentially) declining weights, so that 

the level of the series at time t is estimated by 
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- 2 3 Xt = aXt + a(1- a)Xt-1 + a(1- a) Xt-2 + a(1- a) Xt-3 + ... 0<a<1 

(2.5.15) 

By substituting (t - 1) for t in this expression and multiplying through 

by (1 - a), (2.5.15) yields 

-- 2 3 (1- a)Xt-1 = a(1 - a)Xt-1 + a(1- a) Xt-2 + a(1- a) Xt-3 + ... (2.5.16) 

By subtracting this from (2.5.15), then (2.5.17) will be obtained: 

Xt = aXt + (1- a)Xt-1 0<a<1 (2.5.17) 

Equation (2.5.17) represents the basic algorithm for simple exponential 

smoothing: replacing the original Xt series by a "smoothed" series Xt. The 

quality a is termed the "smoothing constant". The forecasts of all future values 

of the series are given simply by the latest available smoothed value Xt. 

The advantage of the method is that it does not require the storage of 

all past values of a time series, all that is needed is the most recent smoothed 

value Xt_ 1 and the current observation Xt. 

In practice, this simple exponential smoothing version is rarely employed. 

Instead, a more flexible version of trend, and (possibly) a seasonal factor in 

addition to the unpredictable residual element, has been developed. 

First, a linear trend IS added to the previous version: 

Denote the estimate of level at time t by Xt and· of the trend by Tt, 

where 
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Xt = AXt + (1- A)(Xt-1 + Tt-d, O<A<1 (2.5.18) 

and 

Tt = C(Xt- Xt-d + (1- C)Tt-1 0 < c < 1 (2.5.19) 

Then forecasts of future values of the series are given by Xt + hTt of h 

steps ahead. 

Second, a seasonal factor is considered: 

If the seasonal factor Ft with seasonality S is multiplicative (while trend 

remains additive) to the equation (2.5.18), then 

Xt 
Ft = D(=) + (1- D)Ft-s 

Xt 

So, the present level is estimated by 

- Xt --
Xt = A (-,;;---) + ( 1 - A)( Xt -1 + Tt-d 

.L't-S 

0 < D < 1 (2.5.20} 

0 <A< 1 (2.5.21} 

The three updating equations (2.5.19), (2.5.20), and (2.5.21) are used 

recursively for t = S + 1, S + 2, ... , n. The forecasts of future values are given 

by (Xt + hTt)Ft+h-S for h steps ahead (h :S S). 

If the seasonal factor is also additive, then the model and the updating 

equation should be changed accordingly. 
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In addition to the seasonal and/or trend factors, Muller [151] introduced 

an error difference smoothing of the last prediction to correct the current 

prediction. 

The choice of the smoothing constants A, C, and D employed in the 

algorithms (and similarly the choice of a in the simple exponential smoothing 

formula) is discussed here. The lower the values of these constants, the more 

steady will be the final forecasts since the use of low values implies that more 

weight is given to past observations and consequently any random fluctuations 

in the present will exert a less strong effect in the determination of the forecast. 

In contrast, the bigger the values of these constants, the faster the response 

will be to sudden load changes. In practice, consequently, one will have to try 

to find the combination that fits the best. 

Discussion: 

It can be seen that the exponential smoothing method is economic, 

requiring both short computing time and little storage. The main disadvantage 

is that it can only predict loads of a very short time ahead (1-2 hours only, 

mostly used for half-hour ahead). The smoothing constants A, C, and D should 

be chosen carefully. It is foreseen that they cannot remain constant over 24 

hours of a day in order to obtain best performance. Consequently, this method 

restricts the prediction lead times to a very short period, basically within 2 

hours. Usually it is used to predict minute by minute loads [153]. In addition, 

it does not consider the meteorological conditions, which are the most influential 

factors in the load variations. Muller [151] proposed an example of including 

temperature in the model. The temperature-dependent load component is taken 

into account by changing the base load according to the coefficient of relative 

load change at a certain temperature: 

(2.5.22) 

where: 
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XB · · base load· 1.... , 
kT: coefficient of relative load change; 

"fi-d: temperature changes; 

d: the delay of temperature influence on load. 

It is obvious that the method cannot forecast the effect of special events. 

2.5.4 Harmonic decomposition method 

Since the hourly (or half-hourly) load data for a given power system 

shows a distinct repetitive pattern with the repetition frequency of 168 hours 

(one week), provided that the variations due to seasonal effects and possible 

load growth are disregarded, the method of setting up a harmonic series model 

can be adopted for this repetitive weekly load. 

Assuming that the variations of load pattern in a week are neglected, 

Fourier analysis can be used to express the past load data y ( t): 

n 

y(t) = bo + L (~siniwt + bicosiwt) (2.5.23) 
i=l 

where w = 27r /168 is the fundamental frequency. 

The first problem is to identify the necessary harmonics Wi that dominate 

the waveform, and the coefficients ~, bi. This can be achieved by the usual 

correlation and spectral analysis given a sufficient amount of past data. 

Equation (2.5.23) can be written in a more convenient representation: 

y(t) = IT (t)a( t) + v(t) (2.5.24) 

where fitting function vector f(t) and the coefficient vector a(t) are m the 

following form: 
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f(t) = (1, sinw1t, cosw1t, ... , sinwm.t, coswm.tf (2.5.25) 

(2.5.26) 

The next problem is how to update f(t) and a(t) to perform prediction. 

Function f(t) is easy to update, smce the trigonometrical functions m 

f ( t) can be updated by: 

f(t + 1) = Lf(t) (2.5.27) 

where the transition matrix L is given by 

1 0 0 

0 cosw1 sznw1 
L= (2.5.28) 

0 0 0 COSWm. stnwm. 
0 0 0 -stnwm. COSWm. 

Since the weekly load pattern may have some variations from week to 

week, the coefficient vector a(t) needs to be updated. 

The early work [41] used the general exponential smoothing method to 

perform off-line updating of the coefficient vector since it considered a(t) to be 

static. However, significant improvements can be obtained by using the Kalman 

filtering algorithm to update the coefficients [189]. 

Discussion: 
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This method does not reqmre much on-line computational time and 

storage. It needs an off-line computation to increase the accuracy of the load 

forecasts by the method of exponential smoothing. 

As stated before, the method only implicitly considers the static relation 

between the load and the causal variables of meteorological factors as Farmer's 

method does. The load variation caused by sudden and extremely large weather 

condition changes cannot be predicted by this method. Certainly it cannot be 

directly used for prediction of special events. 

2.5.5 Pattern recognition method 

Pattern recognition techniques are generally applied in the study of 

variables whose total physical principles behind their variations are unknown, 

but certain kinds of measurements explain their behaviour. Exactly expressing 

the total system load as a function of all the effective weather variables is 

impossible. Therefore, pattern recognition may be an ideal method to perform 

short-term load forecasting since the qualitative relationships between the load 

and the weather factors are easy to draw up. Matthewman and Nicholson 

[140] first introduced the techniques to load forecasting. It is based on the 

assumption that if a load demand has followed a certain pattern on account of 

a particular weather change in the past, it will tend to follow the same pattern 

if the same type of weather change occurs again. 

One of the pattern recognition techniques is cluster analysis which tries 

to group objects which are characterised by attributes into different classes 

(clusters), such that the members of a class are most similar to one another, 

while the clusters differ mutually as much as possible. Euclidean distance was 

used to separate different classes. Weights can be given to different selected 

variables to enhance or reduce their relative importance and also to normalise 

different variables. 

Matthewman and Nicholson [140] used the past load data x 1 , x2 , ••• , Xn 

as attributes. The number of classes R is fixed by the accuracy of prediction. 
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For a peak load which varies between 2500 MW summer minimum and 4500 

MW winter maximum, for example, approximately 30 classes would be required 

for a 2% accuracy. So, all the past data are classified into one of the 30 

classes. The prediction of Xn+l is the next value in the class which has the 

least distance from the sample x 1, x2, ... , Xn. 

Muller [152] classified the whole load into 6 classes: Monday, working 

day, Saturday, Sunday, Summer holiday and Winter holiday. The weekly and/or 

yearly cycles are eliminated by scaling the normalised values of the individual 

load. 

Dehdashti [58] used the weather variables as attributes, which were 

determined by correlation analysis, to predict future loads by pattern recognition 

techniques. The choice of independent variables can vary dependent on the 

season being analysed. 

Fu [76] introduced the learning regression method to consider the influence 

of meteorological factors. This used machine learning to try to find the load 

pattern for the same day-of-week with similar weather conditions in the history. 

This can improve the general forecasting performance, but too much storage is 

required. 

Discussion: 

Generally speaking, pattern recognition techniques can be applied to 

predicting any load as long as there are the same characteristic loads in the 

samples. But, the difficulty is how to correctly classify the attributes (for 

example, the historical data) into appropriate classes. It was found [140] 

that there were approximately 40 percent misclassifications in Matthewman and 

Nicholson's example. Another problem with the pattern recognition techniques 

is that they require excessive data storage to classify all sample points. It may 

be worthwhile to store the holiday load patterns as well as those of unusual 

events only, in order to predict the loads which possess similar characteristics. 
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2.5.6 Autoregressive Integrated Moving Averages (ARIMA} 

This model is based on the Box-Jenkins [20] time series method. The 

load Zt (t = 1, 2, ... , N, equally spaced in time) is a non-stationary time 

series with strongly daily and weekly periodic cycles. The stationary series Wt 

can be obtained by the transformation: 

where: 

d D -Wt = \l \ls (Zt- Zt) 

Zt: the series mean obtained by 

- lN 
Zt =- E zi 

N i=l 

Wt: the stationary time series with constant mean; 

\7: backward difference operator: 

= Zt- Zt-s 

d, D: the difference orders: 

B: backward shift operator: 

BZt = Zt-1 

B 8
: seasonal backshift operator of period S: 

BsZt = Zt-s 

Generally, (2.5.29) can be written as 
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(2.5.30) 

(2.5.33) 

(2.5.34) 

(2.5.31) 

(2.5.32) 



(2.5.35) 

Then, the prediction problem has been reduced to represent the stationary 

time series by the autoregressive (AR) and moving average (MA) models as: 

(2.5.36) 

where ¢, ~' () and E> are polynomials in B such that 

(2.5.37) 

(2.5.38) 

are the auto-regressive components and 

(2.5.39) 

(2.5.40) 

are the moving average components. 

If p, P, q, and Q are correctly determined then Ort in (2.5.36) will be a 

white noise sequence distributed as N(O, u~) where u~ is the variance. 

The coefficients associated with each backshift operator m (2.5.37), 

(2.5.38), (2.5.39), and (2.5.40) can be derived by minimisation of the sum 

of squared errors Ort for all the sample points. 

- 46 -



To ensure stationarity and invertibility of (2.5.36), the coefficients in 

equation (2.5.37), (2.5.38), (2.5.39), and (2.5.40) must all lie outside the unit 

circle: 

-1 < ¢;, < 1 i = 1,2, ... ,p (2.5.41) 

-1 < ~. < 1 3 J=1,2, ... ,P (2.5.42) 

-1 < (}k < 1 k = 1,2, ... 'q (2.5.43) 

-1 < e1 < 1 l = 1, 2, ... 'Q (2.5.44) 

The whole procedure of determining the model and performing prediction 

consists of four stages: 

a) Model Identification 

The purpose of this step is to model the load data series into a particular 

one, the seasonal periods Si, the orders of differences d;,, the auto-regressive 

orders p;,, and the moving average orders q;, are to be determined. 

Two approaches can be applied, i.e., simply examining the series graph­

ically, or by auto-correlation function (ACF) at periods k apart of the series: 

(2.5.45) 

where Ck(Zt) is the auto-covariance function: 

1 Nt-k _ _ 

Ck(Zt) = N, L (Zt - Zt)(Zt+k - Zt), k = 0, 1, 2, ... 'Nt - 1 
t t=l 

(2.5.46) 

where Zt is the mean of the series. 
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The values of Ck(Zt) approaching unity indicates potentially strong cor­

relation. 

In [100], the partial auto-correlation function (PACF), inverse autocorre­

lation function (IACF), and inverse partial autocorrelation function (IPACF), 

are used together in order to determine a suitable model. 

b) Parameter Estimation 

After Si, ~, Pi, Qi are determined, the model representing the load data 

series will be: 

(2.5.47) 

Then the coefficients in <Pi(BS;) and E>i(B8 ;) can be estimated by 

minimising the sum of the squares of residual at over the data samples, I.e., 
.... 

mm1m1smg: 

(2.5.48) 

Any optimisation algorithms can be used, but the constraints are needed 

to check the stationarity and invertibility: 

-1 < cPi < 1 i = 1, 2, ... ' (2.5.49) 

-1 < <P; < 1 j = 1,2, ... ' (2.5.50) 

-1 < ok < 1 k = 1,2, ... ' (2.5.51) 

-1 < e, < 1 l = 1,2, ... ' (2.5.52) 

c) Diagnostic Check 
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l 

Estimate Optimal Coefficients I 
Apply Diagnostics 

l 
NO 

l YES 

( Finish ) 

Figure 2.8 Structure of ARIMA 

After the model has been preliminarily identified and the parameters 

have been estimated, the resulting residuals at should be a random normally 

distributed series (pseudo-white noise). That means there is no correlation of 

~ in time. The autocorrelation rk(~), therefore, may be used as a check. If 

the autocorrelation rk(~) is not zero, then the model should be refined (back 

to stage a)). 

d) Prediction 

Having established a model of the time series Wt derived from the 

demand data over the period t = 1, 2, ... , N in the form of equation (2.5.36), 

this model may now be used for prediction by expanding it forward in time 

t = N + 1, N+2, ... , N + k with the assumption that the white noise error 

function ~ is zero for t > N. 
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The diagram for the whole process is shown in Figure 2.8. 

The time series analysis has been adopted by many users [3, 65, 85, 94, 

126, 127, 163, 169, 191, 208, 234]. It is adaptive and the prediction lead time 

can be as long as one week. The parameters can be updated as frequently as 

required. But off-line testing is needed to determine the periodical terms and 

the orders of the model to obtain the best prediction results. 

Discussion: 

Unfortunately, the univariate ARIMA model cannot predict the load 

variations due to sudden weather condition changes. Hagan [94] developed a 

multi-variate ARIMA model which can include the most influential weather 

variable of temperature: 

(2.5.53) 

where w(B) and o(B) are polynomials in B of orders s and r respectively, and 

Xt-b is the temperature. 

This undoubtedly increased the number of parameters in the model and 

complicated the four stages. But unfortunately, the accuracy of prediction 

was not improved much compared with that of the univariate ARIMA model 

[94]. Instead, Hagan [94] used a third order polynomial of temperature to fit 

the load data of the ARIMA model and gained better results. Other authors 

[18, 65, 127] used the transfer functions of weather variables (temperature and 

illumination) to "correct" the load of both the historical data and the predicted 

data, if the weather conditions are different from the average conditions. The 

corrected data are modelled using a univariate ARIMA model. 

In addition, the parameters are so sensitive to abnormal loads in the 

historical data that bad prediction for the future loads will result if there are 

some extremely special loads existing in the past. For example, if a bank 
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holiday exists in the period of data which are used to estimate the parameters, 

some unexpected prediction errors will result. So, in order to eliminate the 

effect of abnormal data, the model should be able to detect the abnormal data 

and replace them by normal data. Moreover, the model cannot predict the 

special loads, e.g., bank holidays. It is also shown by Gann [79] that the 

prediction accuracy will be lower when the prediction lead time becomes longer. 

2.5. 7 Unusual situations 

Unusual situations here, refer to some special events which are, either 

not repetitive in the period of historical load data which are used for parameter 

estimation, or not random but disturbing and noticed by the operators. The 

most interested are the TV pick-ups and public holiday effects. 

All the models stated above are generally based on normal conditions, 

either to represent the present (or future) loads in terms of the historical load 

data, and/or weather factors which have been shown great influence on load 

variations. Such models cannot predict the load for the case of special events 

such as TV pick-ups, or bank holidays. 

Here, we present some special considerations for predicting TV pick-ups 

and public holiday loads. 

2.5.7.1 TV pick-ups 

"T.V. pick-up" is defined [28] by the C.E.G.B. as the steep rise in 

the demand for electricity within about three to six minutes of a commercial 

break in television programming. During popular television programmes, many 

households switch the electricity activity from other appliances to television. 

But at the commercial breaks or after the programmes, other electric appliances 

are switched on causing a steep load rise (as much as 1.9 GW [28]) which 

requires considerable use of standby units. The phenomenon has been studied 

by Bunn & Seigal [28] who concluded that as many as eleven "explanatory 

variables" influence the load rises. By analysing all programme changes in a 
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week, given 190 observations, they found the following regression formula to be 

the most encouraging: 

PU = - 70.4 + 443(LGHT) + 0.224(PTV R2) - 11.5(FTV R) 

+ 1.79(LONG)- 48.7(TIME) 

where: 

(2.5.54) 

LGHT: "lighting-up" - a 0-1 variable to indicate whether a programme 

coincided with the onset of darkness at sunset; 

PTVR: the T.V. rating of the programme (individual, not household 

basis); 

PTVR2: (PTV R) 2 ; 

FTVR: the changing T.V. rating at the break in the programme for that 

channel; 

LONG: the length of the programme; 

TIME: a 0-1 variable to indicate whether a programme finished after 10 

p.m .. 

It was concluded from the study that the regression studies can provide 

an aid to the operators. But the final decision is still based on experience of an 

expert analyst because predicting the T.V. pick-ups relies upon a combination 

of intuition and experience. Although the pick-ups occur in minutes, they will 

affect the smoothed half-hourly load data which are used as a part of the 

historical data for further prediction. 

2.5.7.2 Public holidays 

Electricity demand is considerably affected by public holidays, such as 

Easter, and Christmas holidays, or even the regular Monday bank holidays. 

The bank holiday effects have been shown in Figure 2.5. 

Some methods have been developed for estimating holiday loads, which 

are based on modifying the models for prediction of normal loads. Srinivasan 
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[200] used the multiple correlation models of yearly, weekly and daily models 

for predicting normal loads. The holiday loads were forecast by neglecting the 

daily and weekly models and using the yearly model only which relates to the 

same holiday in the previous year. Alternatively, Meslier [94] used the ARIMA 

model for prediction of normal loads. Accordingly, he added correction factors 

to the ARIMA model to adjust for the holidays. This resulted in the number 

of parameters increasing up to 138. He also proposed a transfer function model 

in a form of ARIMA models with a period of 365 days. Brubacher & Wilson 

[24] proposed interpolating the unaffected demand observations from both before 

and after the holiday period. For the same holiday period over successive years, 

it is assumed that the ratios of the actual demand to the estimated normal 

demand are the same and can be used to forecast the effect on demand of 

future holidays. It is performed in the following way: 

The holiday correction ratios were defined by: 

{2.5.50) 

where: 

Zt is the actual demand value (affected by the holiday); 

Zt is the interpolate, or estimate of the "normal" demand. 

Although the historical load pattern varies in successive years, particularly 

over the important region where the demand is rapidly returning to its normal 

value at the end of the holiday period, the ratios seems quite stable in successive 

years. 

After the ratios were obtained, the average value over the successive 

years is used for correcting the load forecast from the model which is used to 

predict the normal demand over the period of interest. This was done simply 

by multiplying by (1 - Ht): 

{2.5.51) 
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where Ht IS the average ratio of holiday effects of the previous years. 

From these analyses, it is concluded that there is no perfect model which 

can predict both normal loads and unusual loads of special events. 

2.6 Summary 

Several short-term load forecasting models have been briefly explained 

and discussed. Different approaches are suitable for different cases of different 

system load. Some are good for very short lead times, since the approach 

reflects the very recent demand changes, while some are for longer lead times, 

as their performances are based on the reference of longer historical load profiles. 

Since weather conditions have a key role in the variation of system 

load, load variations from any rapid large weather condition changes can easily 

be considered if the relation between weather conditions and load demand IS 

explicitly expressed in the model. Usually, this kind of model (regression) is 

economic both in parameter estimation and load prediction, but the disadvantage 

is that it requires regular weather variable input. 

The spectral decomposition expansion method has the advantage that it 

does not require any weather inputs and can implicitly represent the effect of 

weather conditions on electrical demand. The eigenvectors potentially represent 

the effect. In theory, the spectral expansion is the most suitable compared 

with other expansions in that it has the least errors over the period of interest. 

But in practice, not many users have adopted it because of the difficulty in 

choosing the parameters of M, K, N, and computation economy. 

Pattern recognition techniques have encountered the problems of misclas­

sification and too much storage. 

Exponential smoothing and harmonic decomposition are not used as a 

forecasting model individually, but as a method of parameter updating and 

component detection respectively in time series and state space analysis. 
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Auto-regressive Integrated Moving Average (ARIMA) methods are the 

most widely used. Although off-line periodic component detection is necessary, 

the general prediction performance is relatively satisfactory. Because the meth­

ods have more weight on the recent past data than on the earlier data, the 

weather effect on load has been potentially taken into account in the model. 

Another factor to be pointed out about the method 1s that it should be able 

to detect the abnormal data in the past. Otherwise, the parameter estimation 

will be greatly affected by the abnormal data, and consequently, unexpected 

bad prediction will occur. 

In conclusion, data requirements, accuracy of prediction, and economy in 

computation must be compromised to obtain a relatively satisfactory forecasting 

model which can be used on-line. From the viewpoint of functions, it has 

been seen that there is no such perfect model which can forecast loads for all 

situations of both usual and special events. The final decision of load forecast, 

especially for special effects, is made by the operators. This kind of experience 

and knowledge can be modified to be used by the computer, which is referred 

to as expert systems or knowledge-based engineering. Nowadays, expert systems 

have been (or being) successfully applied to many fields. It will be discussed in 

the following chapters how an expert system can be applied to load forecasting. 
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CHAPTER 3 

ARTIFICIAL INTELLIGENCE TECHNIQUES 

3.1 Introduction 

It has been noted that the conventional numeric algorithms for short-term 

load prediction which were summarised in chapter 2 have encountered some 

problems which they cannot solve. The reasons are mainly either difficulty in 

expressing the exact relationship between the electrical load and the related 

factors, or lack of repetition in the period under consideration. For such 

circumstances as special events, the operator usually gives a prediction based 

on his experience, rather than on the results of the models. In a wider context, 

many engineering solutions and decisions are, in fact, made by engineers on the 

basis of their experience and skills, even when there are some specific algorithms 

existing in the domain. However, human experts are in short supply, very much 

in demand and expensive. Expertise can be lost through personnel changes due 

to job transfer or retirement. When it is available, it is slow and expensive 

to transfer to other humans. By contrast, artificial expertise is relatively 

inexpensive and once developed, it is easy to disseminate and can be operated 

at a low cost [174]. That is why engineers in more and more areas are in 

the process of building their own artificial expert systems. Can the computers 

follow and model what the behaviour of the operators for such cases? The 

answer is yes since a new branch of computer development, namely artificial 

intelligence (AI), has succeeded in applying the knowledge of human experts 

(the operators in our case) to different fields. 

This chapter gives an introduction to artificial intelligence (AI) techniques 

and applications in general and its special application in power system operation 

and control. 
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The chapter is arranged as follows. In section 3.2, an introduction to AI 

is presented. In section 3.3, a brief summary is given about some related AI 

techniques: knowledge acquisition, knowledge representation, inference engine 

design and man-machine interfacing. Section 3.4 presents some successful 

applications of AI in power system operation and control, as well as in other 

fields. In section 3.5, we propose the application of AI to short-term load 

prediction. Finally, a summary and comments are given in section 3.6. 

3.2 Introduction to expert systems 

Artificial Intelligence was developed in the 1970s, when computer scientists 

generated types of systems, in which the programmes mimic human behaviour 

and reasoning, and perform tasks that previously could be performed only by 

human experts. These kinds of programmes can demonstrate some aspects 

of "intelligent" behaviour of human beings. Unfortunately, there is so far no 

perfect definition for AI. Basically there are three categories in AI systems: 

expert (or knowledge base) systems (and the tools to build them), natural­

language (everyday native language) systems, and perception systems for vision, 

speech, and touch [171, 172]. Among them, the research and development 

of expert systems is the fastest growing branch. These systems use human­

like reasoning processes to solve problems in specific problem domains, ranging 

from diagnosing certain infectious diseases, MYCIN [25], to prospecting for 

mineral sites, PROSPECTOR [96] and R1 for configuring VAX computer systems 

[96]. All these expert systems have been developed to investigate methods 

and techniques for constructing man-machine systems which can process the 

specialised expertise in a particular domain. 

3.2.1 Types of expert systems 

Expert systems are designed to solve problems on the basis of knowledge 

and expertise. Engineering problems can be categorised as interpretation sys­

tems, prediction systems, diagnosis systems, design systems, planning systems, 

and so on. Consequently, the expert systems can similarly be divided into the 

following categories [96]: 
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Interpretation systems infer explanations and descriptions from observ­

ables. An interpretation system explains observed data by assigning to them 

symbolic meanings which describe the situation or system state indicated by the 

observed data. This sort of system includes surveillance, speech understanding, 

image analysis, chemical structure elucidation, signal interpretation, and many 

kinds of intelligence analysis. 

Prediction systems infer the likely consequences from given situations. 

A prediction system typically employs a parametric dynamic model in which the 

parameter values are estimated from the given situation. This includes weather 

forecasting, demographic predictions, traffic predictions, crop estimations, mili­

tary forecasting and so on. 

Diagnosis systems infer system faults or malfunctions from observables. 

The commonly used techniques are either based on logical associations between 

behaviour and diagnoses, or on the hypotheses of possible malfunctions which 

are tested against from the present observations. The generation of possible 

malfunctions comes from the combined knowledge of system design and that of 

potential flaws in implementation. This category includes medical, electronic, 

mechanical, and software diagnosis. 

Design systems are used to develop configurations of objects so that 

the constraints of the design problem can be satisfied. Design systems construct 

descriptions of objects in various relationships with one another and verify that 

these configurations conform to stated constraints. In addition, many design 

systems attempt to minimise an objective function that measures costs and 

other undesirable properties of potential designs. Such problems include circuit 

layout, building design, and budgeting. 

Planning systems design actions. These systems specialise in problems 

of design concerned with objects that perform functions. Planning systems 

employ models of agent behaviour to infer the effects of the planned agent 

activities. They include automatic programming as well as robot, project, 

route, communication, experiment, and military planning problems. 

- 58 -



Monitoring systems compare observations of system behaviour to fea­

tures that seem crucial to successful plan outcomes. These crucial features, 

or vulnerabilities, correspond to potential flaws in the plan. Generally, moni­

toring systems identify vulnerabilities in two ways. One type of vulnerability 

corresponds to an assumed condition whose violation would nullify the plan's 

rationale. Another kind of vulnerability arises when some potential effect of the 

plan violates a planning constraint. These correspond to malfunctions in pre­

dicted states. Many computer-aided monitoring systems exist for nuclear power 

plant, air traffic, disease, regulatory, and fiscal management tasks, although no 

expert systems for these problems have left the laboratory. 

Debugging systems prescribe remedies for malfunctions. They rely on 

planning, design, and prediction capabilities to create specifications or recom­

mendations for correcting a diagnosed problem. 

Repair systems develop and execute plans to perform a remedy for 

some diagnosed problem. Such systems incorporate debugging, planning, and 

execution capabilities. These expert systems will find their applications in the 

domains of automotive, network, avionics, computer maintenance. 

Instruction systems diagnose and debug student behaviour. They 

incorporate diagnosis and debugging subsystems that specifically address the 

student as the system of interest. Typically these systems begin by constructing 

a hypothetical description of the student's knowledge that interprets the student's 

behaviour. Then they diagnose weaknesses in the student's knowledge and 

identify an appropriate remedy. Finally they plan a tutorial interaction intended 

to convey the remedial knowledge to the student. 

Meta-control systems adaptively govern the overall behaviour of a sys­

tem. To do this, the control system must repeatedly interpret the current 

situation, predict the future, diagnose the causes of anticipated problems, for­

mulate a remedial plan, and monitor its execution to ensure success. They 

include air traffic control, business management, battle management, and mission 
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control. The technology of knowledge engineering should handle many control 

problems which cannot be solved by the traditional mathematical approaches. 

All these application systems are summarised in Table 3.1. 

Table 3.1 Generic Categories of Knowledge Engineering 

Category Problem Addressed 

Interpretation Inferring situation descriptions from observables 

Prediction Drawing likely consequences on the given situations 

Diagnosis Inferring system faults and malfunctions from observables 

Design Configuring objects under constraints 

Planning Designing actions 

Monitoring Comparing observations to plan vulnerabilities 

Debugging Prescribing remedies for malfunctions 

Repair Executing a plan to administer a prescribed remedy 

Instruction Diagnosing, debugging, and repairing student 

behaviours 

Control Interpreting, predicting, repairing, and monitoring 

system behaviours 

3.2.2 Components of expert systems 

There are three fundamental components in an expert system: the 

knowledge base, the inference engine, and the control engine (see Figure 3.1). 

The knowledge base is the collection of domain knowledge in a specific area, 

containing facts (data) and rules (or other representations) that use those facts 

as the basis for decision making. The inference engine is the general problem­

solving mechanism, containing an interpreter (interpreting the knowledge in the 

knowledge base) that decides how to apply the rules to infer new knowledge 

and a scheduler that decides the order in which the rules should be applied. 
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The control mechanism organises and controls the strategies taken to apply the 

inference process. 

In building the expert system, there are some common features, such 

as how to extract the domain knowledge from the expertise, how to represent 

this knowledge in the form of programmes, how to make decisions and how 

to communicate with the system, etc.. They are referred to in expert systems 

as knowledge acquisition, knowledge representation, inference engine, and man­

machine interface, respectively. They are essential in building an expert system. 

3.3 Related AI techniques 

In order to build an expert system or knowledge system which can act like 

a human expert, embedding the factual and experienced (heuristic) knowledge, 

the knowledge in the domain should be obtained first from the human experts 

and written into a form that can be used by a computer. So, the initial stage 

for building an expert system is knowledge acquisition. 

3.3.1 Knowledge acquisition 

Knowledge acquisition is the transfer and transformation of problem­

solving expertise from some knowledge sources to a programme. Knowledge 

in an expert system may originate from many sources, such as textbooks, 

reports, data bases, case studies, empirical data, and personal experience. The 

dominant source of knowledge in today's expert systems is the domain expert 

[96]. Knowledge acquisition is a bottleneck in the construction of expert 

systems [239], since it is difficult for human experts to express their knowledge 

completely, accurately, and consistently under any circumstances. The primary 

way of acquisition is that the expert interacts with a knowledge engineer. 

The knowledge engineers usually have to use techniques to extract (decompile) 

the knowledge from the domain expert, such as on-site observation, problem 

discussion, problem description, problem analysis, system refinement, system 

examination, and system validation. 
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The second method of acquisition is a conversation between the expert 

and an intelligent editing programme, instead of a knowledge engineer [96]. The 

editing programme must have sophisticated dialogue capabilities and considerable 

knowledge about the structure of knowledge bases. 

The final knowledge acquisition method is by acqumng the knowledge 

directly from textbooks [239]. This is the most ideal but difficult one as well 

since it needs a programme which can read a textbook and extract knowledge 

in a useful form. 

The knowledge base is constructed on the basis of the knowledge acquired 

from the experts. An expert system relies completely on the knowledge base. 

So knowledge acquisition plays a basic but important role in building the system. 

3.3.2 Knowledge representation 

The acquired knowledge is usually not in a form which computers can 

directly use. So it is essential to encode the knowledge in an appropriate 

form so that computers can process it. There are two most common systems 

to represent knowledge in expert systems: rule-based systems and frame-based 

systems [239]. Frame-based systems include using semantic nets and frames. 

3.3.2.1 Knowledge representation using rules 

a) Production rules 

The rule-based representation, the simplest and most popular type of 

knowledge representation technique, is to use the conditional IF-THEN state­

ments in the form [74, 171, 239]: 

IF a patient's age IS less than 10 years old, and the patient 

has a fever greater than 103 degree Farenheit, and the patient 

has a skin rash, THEN there is suggestive evidence that the 

patient has measles. 
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When a rule is fired (or executed), the IF portion of the rule is satisfied 

by checking against a collection of facts or knowledge about the current situation, 

the action specified by the THEN portion is then performed (see Figure 3.2). 

The advantage of usmg such production rules is that each rule can be 

readily changed in the light of new knowledge to improve upon the existing 

system. 

b) Inexact reasoning 

Sometimes, (for example in the example above, the "suggestive"), it is 

desirable to use a degree of uncertainty (inexactness) about the validity of a 

fact or the strength of a rule. There are usually three kinds of representation 

for this in expert systems: certainty factor (CF) [25, 74], probability theory 

[74], and fuzzy logic [74]. Thus, the rule, or fact needs one more portion for 

this uncertainty. 

Certainty factor, a contribution of MYCIN, is a number devised by 

Shortliffe [25] for measuring the confidence that could be placed in any given 

conclusion as a result of the evidence so far. A certainty factor is defined [25] 

as the difference between two component measures: 

where: 

CF[h: e] = MB[h: e]- MD[h: e] 

CF[h:e] is the certainty of the hypothesis h given evidence e; 

MB[h:e] is a measure of belief in h given e; 

MD[h:e] is a measure of disbelief in h given e. 

Certainty factor CFs can range from -1 (completely false) to +1 (com­

pletely true) with fractional values in between, zero representing ignorance. 

MBs and MDs, on the other hand, can range from 0 to 1 only. Thus the CF 

reflects a simple balancing of evidence for and against the hypothesis. 
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MBs can be updated with new evidence: 

MB[h: e1, e2] = MB[h: e1] + MB[h: e2] * (1- MB[h: e1]) 

This means the effect of a second piece of evidence ( e2) on the hypothesis 

h given earlier evidence e1 is to move the fraction of the distance remaining 

towards certainty indicated by the strength of the second piece of evidence. 

Another approach to inexact reasoning IS fuzzy logic (or "probabilistic 

logic"), was invented by extending classical logic to real numbers. In Boolean 

algebra, 1 represents truth and 0 is falsity. But, in fuzzy logic, in addition, all 

the fractions between zero and one are employed to indicate partial truth. For 

example, 

p(tall(X)) = 0.75 

states that the position that "X is tall" 1s in some sense three quarters true, 

one quarter false. 

3.3.2.2 Knowledge representation using semantic nets 

Knowledge can also be represented in semantic nets, which consist of 

points (called nodes) connected by links (called arcs). The nodes in a semantic 

net stand for objects, concepts, or events. The arcs represent relationships 

between the nodes. 

Common arcs used for representing hierarchies include is-a and has­

parts. The arcs establish a hierarchy of property inheritance in the net. Items 

in the lower net can inherit properties from items in the higher net (see Figure 

3.3). 
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The net can be searched by using knowledge about the meaning of the 

relations in the arcs. Semantic nets are a useful way to represent knowledge 

in domains that use well-established taxonomies to simplify problem solving. 

3.3.2.3 Knowledge representation using frames 

A frame is a network of nodes and relations organised in a hierarchy, 

where the topmost nodes represent general concepts and the lower nodes more 

specific instances of those concepts [239]. 

The concept at each node is defined by a collection of attributes (termed 

slots in AI, e.g., name, colour, size) and values of those attributes (e.g., Smith, 

red, small). Each slot can have procedures attached to it which are executed 

when the information in the slot is changed (see Figure 3.4). 

3.3.3 Inference mechanism 

An inference engine contains knowledge about how to make effective use 

of the domain knowledge and how to select the relevant knowledge to reach 

a conclusion. There are two basic methods: forward chaining and backward 

chaining. Forward chaining is essentially a data driven strategy which starts 

from the initial data and ends up with the appropriate hypothesis. Backward 

chaining is a goal driven strategy which starts from an initial hypothesis and 

backtracks, fitting data to it, until sufficient data appear to disprove it or 

suggest it is an unfruitful avenue of investigation or alternatively prove the 

hypothesis. The most successful expert systems use a mixture of both forward 

and backward chaining. 

In addition to an inference mechanism, knowledge systems generally 

also have a control mechanism [96], which controls the search and prevents 

the knowledge system from wasting its time exhaustively searching through 

irrelevant rules at random. Most commonly, the control mechanism is in the 

form of rules, known as meta-rules, either directing the order in which both 
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hypotheses and different lines of reasoning should be pursued, or using heuristics 

to score the rules used to confirm the truth of a hypothesis. 

3.3.4 Man-machine interface 

The man-machine interface allows the user to interact with the system 

by putting forward the problem and observing how the system goes through a 

series of steps and arrives at a feasible solution [74]. The main thing about 

expert systems is that the user can question the system as to why it followed 

a particular course of action. This is much the same as the way a human 

expert can explain to us why particular options were taken up or ignored. 

Since the expert system (or knowledge-based system) cannot completely 

replace the real human expert, intervention from the human is sometimes 

necessary. This requires an interface to provide appropriate communication 

between the human and the programmes. 

These are the most important aspects we have to pay attention to when 

building expert systems. In the next section the application of expert system 

techniques to practical problems is presented. 

3.4 Applications of expert systems 

Some of the current knowledge engineering (KE) applications other than 

power system engineering are listed in Table 3.2 [96]. 

Among these applications, MYCIN is one of the clearest representatives 

for its high performance, flexibility and understandability. MYCIN is an expert 

system designed to provide advice through a consultative dialogue, and explain 

the reasoning of the performance system by certainty factors. 
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Table 3.2 Current KE Application 

Application Expert system Objective 

Chemistry DENDRAL chemical data interpretation & structural 

elucidation 

SYNCHEM 2 synthesis of organic molecules without 

human assistance 

Computers XCON computer configuration 

YES/MVS monitoring of the MVS operating system 

Electronics PALLADIO design & test of new VLSI circuits 

ACE diagnosis of faults in telephone network 

Engineering REACTOR diagnosis and treatment of nuclear reactor 

accidents 

DELTA identification and correction of 

malfunctions in locomotives 

Geology DIPMETER ADVISOR interpretation of dipmeter logs 

PROSPECTOR evaluation of mineral potential of a region 

Medicine MYCIN diagnosis and treatment of bacterial 

infections 

INTERNIST/ multiple & complex diagnosis in general 

CADUCEUS internal medicine 

Others HEARSAY speech recognition 

MACSYMA algebraic simplification & integration 

problems 

Today, power systems have become more inter-connected, and more 

complicated. Their operation is time consuming not only for normal operation 

but also for the cases of emergency. Information arrives too fast in a power 

system emergency, so that it becomes difficult for operators to reach a correct 
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diagnosis of the problem and to formulate the correct decision when actions 

must be taken [251]. It is more and more essential to apply the techniques 

of expert systems with the expertise of experienced operators, as is stated in 

[135]: 

1) As part of the real-time system, an expert system can be applied to give 

suggestion (an assistance) to the operators in time, based on the incorporated 

expert knowledge. 

2) The knowledge required to perform a task can be represented in production 

rules, which is very close to natural language, therefore, it is easy for users to 

understand. 

3) Each production rule represents a piece of knowledge relevant to the task, so 

it is very convenient to add or remove a rule when more experience is gained. 

4) Each production rule can be provided with an explanation of why an action 

is taken under a certain situation. 

5) It can be used to train and assist less experienced engineers and operators. 

6) Expert systems can be integrated with mathematical modelling. 

Expert systems are being developed in almost every branch of power 

system operation and control: load flow planning, load forecasting, network 

maintenance scheduling, contingency selection, unit commitment, reactive power 

and voltage control, system restoration, verification of switching sequences, alarm 

processing, and network fault diagnosis. Most of these applications are currently 

at the stage of prototype testing. 

Here we briefly introduce the applications. Most applications use the 

rule-based representation as IF-THEN statements. The knowledge needed was 

acquired by drawing on literature and discussing with experts in the domain. 

The applications usually need to interface between expert systems and 

numeric programmes. The expert systems are used to improve the numeric 

programmes and explain the results of the numeric programmes. 
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Reactive Power and Voltage Control 

The traditional analysis for reactive power and voltage control is based 

on a contingency selection algorithm, i.e., considering single outages and double 

outages, etc. and then identifying the more severe ones for further study. It is 

obviously difficult to exhaust all possibilities for multiple outages, and because 

there exist heuristic rules in the area [135], the effective expert system can be 

utilised to help operators. 

The knowledge-based approach [35, 39, 43, 135, 238, 258] to reactive 

power and voltage control is to apply heuristic knowledge to detect voltage 

problems and to decide the reactive power controls, such as shunt capacitors, 

transformer tap changes, and generator voltages, based on empirical knowledge. 

The facts are stored in knowledge base, such as the upper and lower limits of 

voltage at each bus, the upper and lower reactive power limits of each load 

bus. The production rules should also be stored in the knowledge base. For 

example [135], 

If a load bus voltage drops below (or rises above) the op­

erating limit, it is most efficient to apply the reactive com­

pensation locally. 

If the problem is so serious that empirical judgement may not be reliable, 

then the expert system will aid in formulating the problem in order to utilise 

an available software package which provides a more systematic method. 

To identify the critical contingencies, some empirical rules are utilised to 

select the "important" outages. For example [135], 

If the control compensator is at full output and there are 

no more controllers to be checked, then severity = emer­

gency, and the reactive power dispatch algorithm should 

be utilised to find a feasible solution as quickly as possible. 
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By co-operation of expertise with analytical tools, the approach can 

reduce the computational burden and speed up decision-making time. The 

application [39] adopts a sensitivity factor for each bus voltage and control 

measure pair, and a weighting factor for each control measure. When one bus 

voltage is violated, the expert systems search sequentially for the most effective 

(the highest weighted sensitivity) control measure by using the sensitivity tree 

and calculate the control action needed to recover the voltage violation. 

Network Fault Diagnosis 

The most successful application of expert systems to power system opera­

tion and control is for network fault diagnosis [33, 113, 114, 143, 159]. Usually, 

the network fault diagnosis is performed by human operators on the informa­

tion received from the breaker and relay signals. The experienced operators 

know the correlation between the operation pattern of protection relays, circuit 

breaker signals and the cause of the fault, and can recognise its location. They 

start using a hypothesis which explains changes in the network configuration 

and the sequence of events following the disturbance. When several faults have 

occurred or some pieces of equipment have malfunctioned, the fault diagnosis 

will become more complicated and consume more time. In this case, the 

conventional diagnostic technology seems less satisfactory. In order to diagnose 

faults accurately, effectively, and quickly, plenty of experienced knowledge and 

all kinds of information about the relays and breakers in the network should be 

combined and encoded in the expert system which can act like an experienced 

operator. 

Two kinds of knowledge are represented in the knowledge base: the 

structure and function of each protective relay system and the human knowledge 

about the faults. For the former knowledge, the conjunctions of each element 

to be protected with the protective relays and breakers are represented usually 

in logic circuit form (called PROLOG facts [113]); For the latter knowledge, the 

rule-based system (called PROLOG rules) is used to represent the expertise, 

such as the patterns of different faults and the causes. As uncertainties exist in 
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the facts and rules, certainty factors, which are based on confirmation theory, 

are usually used for the inexact reasoning. 

Firstly, all possible hypotheses about the location of the fault are gen­

erated. The inference engine searches the IF portion of the rules, by forward 

chaining, on the basis of the changed states of circuit breakers and relays. 

When a rule is found in which the IF portion is true, the rule is fired and a 

possible fault and its location are produced. For each hypothesis, the inference 

engine will search through the knowledge base, by the backtracking mechanism, 

until the hypothesis matches the present conditions which correspond to the 

observed data, or the hypothesis contradicts the present conditions. During the 

searching process, if some elements cannot be the location of the fault for an 

obvious reason, they are removed from the list of hypotheses. Each hypothesis 

is tested and ranked [119] based on the available relay signals. Finally, all 

the diagnosed faults are listed in the order of probabilities. Usually the pure 

PROLOG environment has been used as an inference machine [143]. 

Here is an example of a rule in this type of system [143, 159]: 

"IF the circuit-breaker failure protection relay operates, 

THEN the location of the fault is in the protected area 

of the relay which sent the trip command to the breaker 

which failed to trip." 

Meta-level control rules [215] can be used to dynamically guide the use of 

knowledge during the inference process. They can improve system performance 

by selecting rules or ordering rules. Malfunctions and failures [143] of relays 

and circuit breakers can be deduced from other information that the fault was 

within the zone but they did not operate: 

If a possible fault location belongs to the zone which the 

relay X should protect, THEN there is a great probability 

that the relay X failed to operate. 
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Some special rules are needed to add to the knowledge base if there 

are some specially set relays which are different from normal due to system 

operational reasons. 

So, the developed expert system can help to diagnose the various faults 

in the power system with reliable solution and fast processing speed. 

After the fault is diagnosed, the relevant actions have to be done in the 

sequence: 

1) Fault (short-circuit) found; 

2) Protection system activated; 

3) Trip order emitted; 

4) Circuit breakers operated; 

5) Apparatus isolated; 

6) Fault eliminated. 

Load flow problem 

Because of solution methods, network conditions, and other operational 

factors, load flow packages are occasionally encounter problems of divergence, 

multiple, extraneous and false solutions. The application of an expert system 

[170] can improve the operators' use of power flow algorithms. Since the diver­

gence phenomena are due to choice of initial conditions, system ill-conditioning 

and method of solution, the expert system can provide additional intelligence 

for the decision-making as dispatchers do. The knowledge employed in the 

expert system is from the experience of the dispatcher. 

The knowledge base used in the expert system consists of IF-THEN 

rules which determine how the expert system will manipulate and process the 

input data. The inference engine manipulates the rules by making inferences. 

The conclusions are drawn up by the inference engine from the inputs. The 

production rules include rules about setting up, selecting methods and solution 
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types, evaluating telemetered information, assessing operational limits, deter­

mining network configurations, and avoiding erroneous conclusions. Operational 

rules, for example, can help to suggest the causes of divergence from the 

combinations of operational constraints. Rules are, for example, in the form of: 

if the system mismatch power remains large as iteration increases, 

and the Jacobian matrix is singular, 

and the initial conditions are normal, 

and all the network elements are not within their normal ratings, 

then power flow runs diverge. 

and 

if the bus voltage is outside the operating limit, 

and the power balance equation Is not satisfied, 

and critical lines are lost, 

and the var support is in deficit, 

then power flow solution IS false. 

So the indicators that cause divergence are set up to reduce the depth 

of mathematical analysis on a given network condition so as to reduce the 

computational time. 

The rules are written in Prolog [148, 170], and the power flow calculation 

is in Fortran, so it is necessary to have an interface between Prolog and Fortran. 

Load frequency control (LFC) 

The aim of LFC is to maintain a continuous balance between electric 

generation and varying load demand by adjusting the output in real-time on 

regulating units in response to frequency deviation, and net tie-line power flow 
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deviation. Modern control theory has been utilised in the development of LFC 

algorithms. The proper type of controller and the control gain for optimal 

performance must be selected from among numerous combinations, based on 

the characteristics of disturbances and the load level. 

An expert system has been applied for real-time load frequency control 

m a multi-area power system [157]. Empirical knowledge such as that required 

for selecting a control law and control gain tuning, are extracted and expressed 

in the form of production rules to determine the control command according 

to system conditions. The knowledge needed to identify disturbed area, select 

a control law, control gain tuning, treating control constraints, etc. is stored 

in the knowledge base. The knowledge-based system for multi-area LFC was 

developed and shown to allow selection of a proper type of controller and gain 

against various disturbances and load levels. It is expected to materialise a more 

flexible and robust control system which is not available from the conventional 

fixed controller structure. 

Unit commitment 

Unit commitment problems are generally solved by using dynamic pro­

gramming and/or linear programming to select the most economical schedule of 

units for a study period by taking account of power system requirements such as 

unit maintenance schedules, minimum up and down time requirements, required 

spinning reserve, and ramp rate constraints. Because of the large search space 

and constraint complexity, the programmes need a very long period of execution 

time to obtain a schedule, which is sometimes found operationally unaccept­

able. In order to produce lower cost and operationally acceptable schedules, 

an expert system based consultant has been developed [147] to assist power 

system operators in scheduling the operation of generating units. The expert 

system incorporates the knowledge of the unit commitment programmer and 

an experienced operator. By consulting with the operator on some questions 

such as whether to bring a combustion turbine unit on, the expert system 

unit commitment can limit the search space and operational constraints in the 

unit commitment programmes. The inference engine used is based on that of 
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EMYCIN which is the MYCIN expert system minus its knowledge base. The 

expert system uses a set of rules provided by the knowledge engineer in the 

knowledge base to determine values for the parameters. The expert system 

supports forward and backward searching when a parameter is set to a new 

value or to try to find a value for a parameter. The expert system can also 

give explanation to the operator about the solution obtained by the programme. 

By combination of the expert system and the unit commitment pro­

gramme, lower cost and operationally acceptable schedules can be obtained. 

Economic dispatch 

The aim of thermal scheduling is to select generator units to be sched­

uled over a horizon of one day or more to meet the forecast system demand 

and spinning reserve requirement, by minimising the operational and fuel costs, 

subject to some operational constraints. Commonly used methods are based on 

mathematical optimisation programming techniques such as dynamic program­

ming, mixed integer programming, and Lagrangian relaxation. Owing to the 

combinatorial explosion problem in scheduling the units, the process can be 

tedious and time consuming. 

The scheduling problem can be interpreted as a tree searching problem. 

The tree representing the scheduling problem is searched by the depth-first 

and heuristic search techniques in artificial intelligence. The heuristic searching 

is based on the characteristics of the problem and the units while other 

operational constraints can be incorporated in the tree searching process to 

reduce the combinatorial explosion problem. Wong [254] has developed the 

heuristic search methods to schedule generator units in order to meet the rising 

load demand and spinning reserve for a day. For example, 

Group capacity: 
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A unit in a group that has the largest amount of total 

capacity of generators yet to be scheduled on-line among 

all the groups is scheduled first. 

Group selection: 

At a scheduling point, a group from which a unit has been 

selected will have a lower priority for selection than the 

other groups at the next scheduling point. 

The efficiency of the search can be increased by eliminating identical 

units in the searching set. After a valid schedule is generated, an alternative 

schedule can be found by backtracking. 

In conclusion, use of heuristic rules can overcome the combinatorial 

explosion problem and determine the solution schedule with the lowest total 

generation capacity error at a higher computing speed. 

System restoration 

The objective of load restoration is that, when outages occur in the 

system following permanent faults, group restoration, zone restoration, and 

load transfer, and load shedding when necessary, should be undertaken within 

the operation constraints in order to restore a maximal number of zones. 

Therefore, it is under the assumption that the fault location has been already 

identified. The operators (dispatchers) have to consider many factors, such 

as the load requirements, frequency variations, system voltages, unbalanced 

conditions, protection, stability, and then plan a restoration scheme of switching 

actions. So in general, restoration is a heavy computation process. 

The restoration process consists of the following aspects: 
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1) Finding out the initial source: from the adjoining power systems, or from 

the generation plants with black-start capacity; 

2) Determining the restoration order of power stations; 

3) Finding out the best restoration route; 

4) Determining the strategies to connect the substations, and the switching 

actions. 

However, when the system is in a critical (severe emergency) condition, 

the operator is likely to panic and make irrational decisions which could cause a 

greater emergency and eventually a catastrophe. By applying expert systems as 

aids [124, 134, 237], several patterns of network situation and action which were 

extracted from operational experiences and manuals are stored in the knowledge 

base. For example [134], the following rule may be stored in the knowledge 

base: 

If a zone has more than one adjacent feeder, then the feeder 

with highest operating margin will be selected as the can­

didate feeder. 

If load shedding is inevitable, the following production rules [187] can be 

used on the basis of operational experience: 

If a bus has several overloaded lines, then determine the 

sum of flow reductions for incoming as well as outgoing 

overloads. 

If for a given line, the amount of adjustment of the real 

power is known, then calculate the proper tap setting of 

the available phase shifting transformers, and determine 

the revised status of the power system. 
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When checking operating constraints, the calculation of load flow was 

undertaken by the conventional algorithms. So, the overall computer application 

usually involves the combination of FORTRAN for load flow calculation with 

PROLOG or LISP for the decision-making. 

The expert system, which encodes heuristic knowledge, can give the great 

help to the dispatchers during system restoration especially under emergencies 

[60, 110, 210]. 

Transient stability 

Transient stability studies are utilised to answer questions about distur­

bances on power systems, such as faults and sudden load or generation loss, 

that result in significant time-varying response, in the range of 0.01 to 20 

seconds. The transient stability study of a power system concerns the following 

activities: 

1. Study organisation; 

2. Time simulation; 

3. Output analysis; 

4. Problem cause; 

5. Specification of new tests; 

6. Remedial measures. 

The expert system is applied [6] in this way: 

The knowledge base stores the knowledge in production rules (IF-THEN 

rules). Separate rule bases were provided for each of the activities, linking of 

information from one rule base to another was achieved where required. Since 

these rule bases are large and sparse, the inference engine was designed [6] in 

Fortran to incorporate special ordering procedures to ensure efficient processing. 

This ordering is achieved by assigning weighting and cost factors to each fact. 

If a fact is highly likely to be true , it is processed first. By contrast, if the 

- 81 -



cost of evaluating a fact, in terms of computation effect, is high, then it is 

processed last. 

Alarm processing 

In an energy management centre, there are many alarm messages sent to 

the operators, which report the operation of breakers, the removal from service 

of pieces of equipment, or the excursion of key variables in the danger zones, 

such as current limit exceeded [8, 33, 119, 215, 252]. As stated in [119, 120], 

a power system operator must perform five tasks when he receives an alarm: 

1. Become aware of the alarm; 

2. Determine the events that caused the alarm; 

3. Analyse the consequences of those events; 

4. Review the sequence of events leading to the alarm; 

5. Determining a course of action. 

However, the operators may receive as many as 300 sustained alarm 

messages and 600 burst alarm messages per minute [33]. Conventional alarm 

processing systems suffer from limitations, which make it difficult for the operator 

to perform these tasks in a reliable and satisfactory manner: 

1) Some alarm messages do not contain enough information; 

2) Some alarm messages contain too much information; 

3) Some alarms are needlessly repeated; 

4) Multiple messages are generated for the same condition; 

5) The number of alarms is sometimes overwhelming; 

6) Some alarms are false. 

With the help of expert systems built on the experience of the human 

operators, intelligent alarm processor can potentially provide the operators with 

a rapid reaction to emergency events by summarising information quickly and 

checking many more applicable rules than a human operator could in the same 

period of time. In the knowledge base, the alarms [250] are categorised as 
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breaker alarms, generation alarms, line/transformer status alarms, etc.. The 

production rules are categorised as alarm level rules, generation loss rules, 

suppress alarm rules, print alarm rules and special message rules. For example, 

some unimportant alarms such as that of indicating return to normal, can 

be suppressed. The line and transformer alarms which represent a worsening 

condition can be printed to operators. 

By classifying the types of alarms and summarising them, the intelligent 

alarm processor can reduce the number of alarm messages and 

1) Keep the operator aware of the most urgent alarms; 

2) Keep the operator aware of problems as they occur; 

3) Reduce alarm loading and present the strategic situation; 

4) Provide the ability to perform a deeper analysis. 

For example, for the alarms indicating breaker operation resulting from 

faults, the summary message [119] may indicate that a generator has been 

isolated or that a bus has been split. 

Expert systems have also been implemented for many other aspects of 

power system operation and control, such as security assessment [42], contingency 

screening [205], dispatcher training simulation [48], and switching operations for 

substation monitoring [201], although these are at the stage of designing and 

testing. 

3.5 Expert systems for short-term load forecasting 

Most analytical methods developed for short-term load forecasting suffer 

from heavy computational burden because they need to process a great amount 

of historical data and/or weather information in order to build an appropriate 

model for prediction. Knowledge-based load forecasting has the advantages over 

the analytical tools of selective use of the data, the use of very recent data, 

and encoding system operator's expertise in analogous problem solving. 
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The knowledge is represented in production rules, and is extracted off-line 

based on human expertise and observations in most cases. Statistical packages 

have been used to support or reject some possible relationships between the 

changes in system load and changes in weather conditions. The rules are then 

stored in knowledge base; such as for different prediction lead times, appropriate 

algorithms are chosen; or for different seasons, the correspond prevailing weather 

data are used to represent weather-sensitive loads. 

In order to store minimal data in the database, only typical load patterns 

for different seasons and days-of-week are used, as well as the prevailing weather 

data. The length of data is determined by knowledge, in order to avoid 

insufficient prevailing conditions and to alleviate computational burden. 

Some intuitive knowledge is stored in the knowledge base, for instance, 

temperature rises will result in load decrease in winter, but load increase in 

summer. 

Therefore, the potential for improvement in the load forecasting will be 

increased by greater knowledge about the characteristics of the system load. 

The application of expert systems to power system short-term load 

forecasting is mostly to combine expert system techniques with the existing 

conventional programmes in order to develop a more sophisticated and accurate 

model. The techniques most widely used to date for short-term load forecasting 

has basically consisted of the analysis of time series using the Box-Jenkins 

methodology. The knowledge required is usually represented in the form of a 

rule-based system, and is used for considering special events such as national 

holidays, and popular television programmes. 

For example, Park [160] used the Relative Gap to indicate the holiday 

load reduction: 

R G (D ) 
= Load(D, t) - M(D, t) 

00
07' 

. . 't M(D, t) * 1 /o 
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where Load(D, t), M(D, t) are the actual holiday load and ordinary load for 

day D at time t. This R.G. is usually used by the experienced operator to 

judge the holiday load when the prediction day is a national holiday. 

Remior [ 17 4], in another way, used the production rule to select a holiday 

load curve: 

If it is 1st November, 

And it is not a Sunday, 

Then assign the Autumn holiday load curve. 

For television programme effects, a production rule is called such as [174]: 

If it is a Wednesday in March, 

And there is an important sports event on television, 

And it is not a holiday, 

Then correct hours 21 and 22 by a factor of 1.01. 

So, it can be seen that these special event/day load demands are predicted 

by the human knowledge represented in production rules. 

Although electrical demand is a random time series, it can be foreseen by 

appropriate analytical models and expertise. Different knowledge for different 

system loads can be built to assist the operator to perform prediction. 

3.6 Summary 

This chapter has presented the basic techniques in building an expert 

system such as knowledge acquisition, knowledge representation, inference engine 

design, and man-machine interfacing. Knowledge acquisition is needed to extract 

the expertise from the human experts, consequently it plays an essential role in 

building expert systems. The acquired knowledge must be represented in a way 

that computers can process. The inference engine is the central component, 

which contains knowledge about how to effectively use the domain knowledge 
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and to reach a conclusion. A man-machine interface is necessary as the users 

can sometimes question the expert system as to why the conclusion was reached. 

Also some systems need the user's intervention and data input. 

All the applications in power system control and operation mentioned 

in this chapter have shown that an expert system can make use of the 

operators'/ engineers' expertise and incorporate it with the existing specific 

algorithms in order to obtain better results. Knowledge-based systems can be 

successfully applied to fault diagnosis, due to the strong logical properties in 

the domain. It can be concluded from the authors' opinions that the more 

experience and expertise we have acquired, the more satisfactory results will be 

expected. Beside providing the final results, the expert system can provide the 

user with the explanation on how the results are obtained. Another important 

factor is that knowledge can be easily added to the knowledge base when more 

knowledge is acquired. The successful application of expert systems can improve 

the overall performance without the human intervention which is usually required 

by the more specific algorithms. Usually, the applications are on the basis of 

existing programmes (mostly in FORTRAN and C) and artificial intelligence 

languages, PROLOG (which provides the inference engine), LISP, and OPS5. 

Knowledge about the domains is represented in the form of production rules 

which can be easily understood by users. However, one has to bear in mind 

that the expert systems can never replace the human experts no matter how 

intelligent they are, because their knowledge is derived from the human experts. 
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CHAPTER4 

AN APPLICATION OF AN EXPERT SYSTEM TO 
SHORT-TERM LOAD FORECASTING 

4.1 Introduction 

Several numeric methods have been reviewed in Chapter 2 with respect to 

load prediction in the short term. These methods have been empirically shown 

to be rather satisfactory in predicting the electrical load for ordinary days under 

normal conditions. However, they are obviously unsuitable with the occurrence 

of unusual events, such as sudden changes of weather conditions and public 

holidays. In most cases, the effects of special events are normally predicted 

by human operators who use their operational knowledge and accumulated 

expertise. The recent development of powerful computers has enabled us to 

model human expertise by computers, which is referred to as expert systems. 

Chapter 3 has introduced some applications of expert systems to power system 

operation and control. The applications have shown successful and efficient 

use of expert systems if there is additional expertise and knowledge (deep 

knowledge) existing in domains in addition to shallow knowledge. This chapter 

will be devoted to establishing a new approach with the introduction of expert 

systems to short-term load prediction under unusual conditions. The form 

of this approach involves the disaggregation of overall electrical load into its 

composites, i.e., the individual loads for different purposes such as for lighting, 

heating, and industrial production. The need for disaggregating the overall 

electrical load and methods of doing this will be proposed and discussed in 

this chapter, particularly concerning how to define each component and how to 

estimate its weight in the overall load. The approach has been tested against 

the CEGB system load and the results are presented as well. 
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4.2 The necessity of decomposing the overall load into its components 

Numeric methods for load demand forecasting may not accurately predict 

load for special events, partially because the events are not repeatable in the 

short-term (e.g., only one Christmas day in a year), or they are unable to take 

special events into their modelling (e.g., from GMT to BST). In addition, the 

effective factors such as the weather variables, exert different influences upon 

different parts of the overall load. That is why some numeric methods predict 

load by considering two major composite components: weather-insensitive and 

weather-sensitive loads. As for the weather-sensitive loads, however, they may 

not behave in the same way in correspondence with weather conditions. For 

example, commercial lighting loads are not so sensitive to cloud cover changes 

as domestic lighting loads are. In addition, implementation of load management 

has changed the utilisation of electricity of some electrical loads. It has been 

noticed that load management [16, 99] is to monitor and control some electrical 

utilities, for example, domestic heating, so that the overall load peak can be 

reduced. As a result, the use of expensive generating units which are needed 

to meet the peak load can be avoided and the overall operating costs can 

be reduced. Obviously, it is impossible to implement load management if the 

utilisation behaviour of individual loads is not obtained. The load affected by 

load management can be predicted only when each load is predicted on the 

basis of known behaviour and controlling strategy. Therefore, it is necessary to 

disaggregate the overall load into its components in terms of consumer types, 

such as industrial loads, commercial loads and domestic loads. These are defined 

as follows according to their general characteristics: 

Industrial load: The largest part of the overall load is the industrial 

load. Basically this amount of load is consumed by large manufacturing and 

other large-scale process users. Types of heavy energy use are relatively few 

and the loads are usually localised at relatively few points in the system. 

Domestic (Residential) load: This is the electrical load used by 

households. The load is dispersed over large geographical areas and consumed 

by a variety of small devices. 
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Commercial load: This is intermediate between residential and in­

dustrial loads. It may include a variety of residential devices which demand 

moderately large amounts of energy for lighting, heating and cooling large areas. 

Typical commercial load users are hospitals, shopping centres, banks, airports, 

small businesses, and hotels. Commercial load is dispersed more widely than 

industrial, but not so much as residential load. 

Industrial and commercial loads are compared with each other in Table 

4.1 [216]. 

Table 4.1 Total Consumption of Industrial and Commercial 

Customers with Demand of 1 MW and over ( G WH) 

(1987 /1988) 

Industrial 

Commercial 

1-10 MW 10+ MW Total 

34,608 

7,954 

28,776 63,384 

1,229 9,183 

Each kind of component can be further divided into its sub-components. 

For instance, domestic load consists of heating, cooking, lighting loads, etc .. 

As has been pointed out, each component changes at a different rate with 

different factors, some are weather-sensitive (e.g., lighting and heating loads), 

but some are not (e.g., industrial load). Typically around time change-overs, the 

industrial loads change as the working shifts are rearranged. Nevertheless, some 

loads like lighting loads are not affected so much by the time system change, 

but rather, the lighting-up time and cloud cover. If all these components can 

be estimated individually, the overall load can be computed by a weighted sum 

of the components [83]. 
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4.3 Classification of electrical load 

Based on the analysis as above, the overall load can be classified into 

different load sectors in terms of their major usage categories: 

Industrial sector; 

Commercial sector; 

Domestic sector; and 

Residual sector. 

By analysis, each one can be further divided into subcomponents on the 

basis of end-use. 

The industrial sector consists of: 

Industrial base load; 

Industrial lighting load; 

Industrial space-heating load; 

Industrial water-heating load. 

The domestic sector is made up of: 

Domestic lighting load; 

Domestic space-heating load; 

Domestic water-heating load; 

Domestic cooking load; 

Domestic refrigeration load; 

Domestic entertainment load; 

Domestic clothes washing and drying 

The commercial sector comprises: 

Commercial lighting load; 

Commercial space-heating load; 
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Commercial water-heating load; 

and residuals. 

4.3.1 Representation of the components 

Figures 4.1, 4.2 and 4.3 show the average industrial, commercial and 

domestic demands on weekdays [221, 218, 223]. These types of curves can be 

represented using mathematical expressions. 

The following five basic curves have been suggested representing the 

complex components: 

1) Constant curve 

Constant curve lS defined m the form of a list: 

[canst h t1 t:a] 

where canst indicates the curve is a constant with a height of h and duration 

from t1 to t2. 

2) Ramp curve 

Ramp curve is defined in the form: 

which indicates a ramp curve with a slope of a from t 1 to t2. 

3) Normal distribution 
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Normal distribution is defined as: 

[norm h t u] 

which has the peak value of h at time t with spread indicator of u. 

4) Positive part of normal distribution: 

Defined as: 

[posnorm h t u] 

which indicates the left half part of a normal distribution curve. 

5) Negative part of normal distribution: 

Defined in the same way as posnom curve: 

[negnorm h t u] 

which represents the right half part of a normal distribution curve. 

These five basic curves are shown m Figure 4.4. 

4.3.2 Expression of components using the basic curves 

Based on existing knowledge and operator's expenence, load shapes of 

different components can be simply modelled and expressed as following: 

Industrial base load: 
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[[const 0.5 1 288] 

[posnorm 0.3 96 4] 

[const 0.3 96.1 192] 

[negnorm 0.3 192.1 4]]* 

which shows that the industrial load starts to increase in the morning and 

decrease from late afternoon. This is a typical two-shift industrial load. Three­

shift loads are included in the "const" part of the expression. 

Industrial lighting and heating loads are not greatly affected by weather 

conditions, thus, they can be included in the above industrial load in the process 

of disaggregation. 

Domestic lighting load: 

[[const 0.2 1 288] 

[posnorm 1.0 6 4] 

[const 1.0 6.1 36] 

[negnorm 1.0 36.1 4] 

[norm 0.5 72 6] 

[posnorm 1.2 216 4] 

[const 1.2 216.1 272] 

[negnorm 1.2 272.1 4]] 

This represents part of the curve in Figure 4.3. There is a peak load 

around breakfast time for the domestic lighting load. During the day time, the 

domestic lighting load is relatively low. In the evening, it starts to increase 

and reaches another pe.ak and then starts to drop gradually from midnight. 

Domestic automatic space-heating load: 

[[const 0.5 0.1 288] 

* time and period are presented in the expression of lists by slots: 1 slot 

5 minutes. 
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[posnorm 0.3 1 3] 

[const 0.3 1.1 36] 

[negnorm 0.3 36.1 4] 

[norm 0.5 45 6] 

[posnorm 1.0 216 4] 

[const 1.0 216.1 272] 

[negnorm 1.0 272.1 4]] 

Generally speaking, this is the automatic space heating load in winter, 

which behaves similarly to the lighting load. 

Domestic human space-heating load: 

[[norm 0.5 48 6] 

[norm 1.0 220 12]] 

This part is consumed by the switching on of heaters by residents. 

Domestic automatic water-heating load: 

[[posnorm 0.5 0.1 4] 

[const 0.5 0.2 84] 

[negnorm 0.5 84.1 4]] 

This load is relatively similar to the space heating load. 

Domestic human water-heating load: 

[[norm 0.25 78 6] 

[norm 0.5 240 12]] 

This load is more or less the same as the space heating load. 

Domestic cooking load: 
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[[norm 1.0 84 6] 

[norm 0.8 150 9] 

[norm 1.2 240 12]] 

This load is consumed around three-meal times. 

Tea-coffee break load: 

[[norm 0.5 126 6] 

[norm 0.5 180 12]] 

The domestic loads for entertainment can be included in the lighting 

and heating load, because they are consumed mostly in the evening together 

with lighting and heating load. The loads consumed by refrigerators are 

relatively small, and constant over 24 hours, although there are some variations 

with temperature changes. So, they can be left in the residuals. The other 

domestic loads such as clothes washing and drying loads are usually consumed 

on weekdends. They are small and irregular on weekdays. So, they are also 

left in the residuals. 

Commercial lighting load: 

[[posnorm 0.5 96 4] 

[canst 0.5 96.1 204] 

[negnorm 0.5 204.1 4]] 

This commercial lighting load is used around office working hours. 

Commercial automatic space-heating load: 

[[posnorm 0.5 96 4] 

[canst 0.5 96.1 204] 

[negnorm 0.5 204.1 4]] 
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This part is also similar to the lighting load. 

Commercial human space-heating load: 

[[posnorm 0.3 96 9]] 

This is extra part of the automatic heating load when work is started. 

Commercial automatic water-heating load: 

[[posnorm 0.5 0.1 4] 

[[norm 0.5 0.2 84] 

[negnorm 0.5 84.1 4]] 

This part is similar to the lighting load. 

Street lighting load: 

[[posnorm 0.5 0.1 4] 

[const 0.5 0.2 44] 

[negnorm 0.5 44.1 4] 

[posnorm 0.5 210 4] 

[const 0.5 210.1 287.9] 

[negnorm 0.5 288 4]] 

This load represents the lighting load affected by sunset and sunrise time. 

4.4 Summation of the components into the overall load 

The shape of each component has been defined by expressions . as above. 

How do they co-ordinate to form the overall load? In other words, what is the 

weighting factor of each component comprising the overall load? 
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Supposing weighting factors for the different components are 8 11 82 , ••• , 

8n, they can usually be estimated by applying a linear regression method: 

L(t) = X!(t) * 81 + X2(t) * 82 + ... + Xn(t) * 8n 

where Xi(t) and 8i are the load at timet and weighting factor of ith component 

respectively. 

Obviously, this formula should be applied over a period of 24 hours (t=l, 

2, ... , 48). However, when it is applied to the recorded load data of the CEGB 

system, it is found that the weighting factors 8, are far from satisfaction: some 

weights are negative. This is obviously not realistic. The reason is that not all 

of the components have been well expressed by the five basic curves. There are 

still a lot of trivial loads not included, for they occupy only a small amount 

among the overall load, compared with the industrial, domestic and commercial 

loads already defined. 

The problem now becomes one of how to fit the components to the 

actual load data and estimate their weights. The following sections present a 

new approach to solve the problem. 

4.5 Objective functions 

In order to derive a best fit for the overall load, we need to define the 

objective function. The initially defined curves do not provide a satisfactory 

result immediately, and it is therefore necessary to adjust the curves in order 

to minimise some cost functions, such as: 

1) to reduce the difference between the maximum and minimum of the 

residuals: 

Minimise (max.(residuals) - min.(residuals)) 

This objective is used to model load components during day time. 
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2) to minimise the maximum of residual loas: 

Minimise (max.(residuals)) 

This objective is used to model all the loads over 24 hours. 

In order to achieve the objective functions, the general procedure is 

conducted as follows: 

1) to find tma:z: which indicates the location of max!residuals); 

2) to modify pos-neg curves; 

3) to modify norm curves. 

The three steps are taken recursively until the objectices are met. 

4.6 Fitting of the components 

In order to fit each component to the overall load data, weights (or base 

loads) for different components are to be found, and the various curves can be 

modified. 

4.6.1 Estimation of weight for each component 

Before each base load is obtained accurately, an initial small value (e.g., 

1000 MW) is assigned to each component according to its relative weight in 

the overall load. Since the weight of industrial load is much higher than any 

other component, it can be given comparatively large initial value. 

The weights Si can be adjusted (increased) in order that the difference 

between the actual load and sum of the estimated components is minimised. 

At the same time, the defined component curves can also be modified, since 

the initial expression is only approximate. 
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4.6.2 Curve modification method 

For each basic curve, there are three parameters to define it. For 

example, the three parameters of a normal distribution curve are: its height, 

location, and its spread. Although all of them are equally important in defining 

the curve, it is necessary to order them in the following way according to their 

relative importance for the overall load. 

From the expression of the components defined earlier, it is seen that 

the normal distribution curve and the posnorm-constant-negnorm curve are the 

most concerned. We will analyse how to modify these two kinds of curve 

shapes in order to fit the components to the overall load. 

4.6.2.1 Changing normal curves 

For a normal distribution curve of the form: 

[norm h t u] 

Three parameters are: 

a) the height h. 

b) the location t; 

c) the spread u. 

The parameters can be adjusted in turn in the following order: 

a) the location t; 

b) the spread u; 

c) the height h. 

They are changed m the following way: 

a) to move the location oft 
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H the objective function has a maximum value at time tmaa: we can move 

its location to towards tmaa:, until the objective function is locally minimised. 

b) to change the spread u 

Since an approximate normal distribution curve spreads from to - 2 * u 

to to + 2 * u, the spread of u is widened, until the objective function is locally 

minimised, if time tmaa: is located between to - 2 * u and to + 2 * u. 

c) to magnify the height of h 

Finally, the error can be minimised by increasing the height of h. 

4.6.2.2 Changing pos-neg curves 

The change of a pos-neg curve is more or less the same as that of the 

norm curve. Suppose the pos-neg curve is in the form: 

[[posnorm h tt u 1 ][const h t 1 t2][negnorm h t2 u2]] 

Although there are 9 coefficients in the expression, there are in fact only 

5 independent parameters in the expression: 

a) the height h; 

b) the location t 1 , t2; 

c) the spread u1, u2. 

Similarly to the modification of a norm curve, these parameters are 

changed in the following order: 

a) the location t1, t2; 

b) the spread u11 u2; 
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c) the height h. 

They are adjusted in the following way so that the objective functions 

can be achieved. 

a) to move the location of tb t 2 

Parameters t 1 and t 2 can be modified only when the maximum error is 

at tma~~: which is between t1 - 2 * 0'1 to t1 or between t2 to t2 + 2 * u2. 

b) to change the spread u1, u2 

After t1 and t2 are determined, similarly, u1 and u2 can be widened if 

the maximum error is at tmaa: which is outside (tb t2). 

c) to magnify the height h 

Thirdly, by increasing the height h, we can minimise the error if time 

tmaa: is located between t1 - 2 * 0'1 and t2 + 2 * u2. 

The modification of the curves is illustrated in Figure 4.5. 

4.6.3 Sequence of modifications 

In the process of increasing base load and curve modification, the problem 

of change orders must be considered. 

4.6.3.1 Order of changing components 

After an initial assignment of base load to each component, each base 

load can be increased in order to reduce the residual between the overall load 

and the sum of components. Any base load could be chosen to be increased. 

However, priority is given in order, according to the relative weight in the 

- 108-



overall load. For example, base load of the industrial sector has the priority 

to increase over the others. 

4.6.3.2 Order of changing basic curves 

Generally speaking, since the pos-neg curves cover a longer duration of 

time than a single norm curve, we place the priority of curve changing in this 

way: 

pos-neg > norm. 

H there are several pos-neg curves that can be modified to minimise 

the error, for the same reason, the one with the longest spread time should be 

modified first. The same principle is applied for norm curves. 

The curves are changed generally according to the above order. However, 

some obvious constraints, such as the occurence times of components, can be 

applied to the modification in the form of production rules. 

The detailed procedures written in POP-11 are listed in appendix 3. 

4. '1 Results 

The proposed algorithm was tested using the CEGB system load data of 

1/2/1984 and 6/6/1984. The results are shown in Table 4.2 where "Decompose 

1" and "Decompose 2" indicate minimising the first and second objective function 

respectively. 

Figures 4.6 and 4.8 depict the residuals and the overall loads, where "RES 

1" and "RES 2" indicate minimising the first and second objective respectively. 

The dashed curves (in Figures 4.6 and 4.8) are quite flat, which means the 

load consumed between the peak and trough time has been well-modelled. The 

residuals (the dotted curves) are relatively small, which means most of the loads 

have been included in the components. It can be seen from both figures that 
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both peak and trough loads have been disaggregated both in summer and winter. 

Figures 4. 7 and 4.8 compare the summation of disaggregated components with 

the overall loads. It can be seen that the curves of summation of disaggregated 

components are different in winter and in summer, since the patterns of the 

overall load curves are different. For the winter load (Figure 4.7), the evening 

load is generally modelled. But there is much difference during the day time, 

simply because of the mis-modelling of lighting and heating loads. The difference 

around the time immediately after midnight can be removed if the heating load 

can be correctly modelled for the "economy 7" load. For the summer load 

(Figure 4.9), similarly, there is a deviation of loads around midnight. Moreover, 

the evening peak load is not fitted very well. Generally speaking, however, 

both objectives have been reached. Although there are no appropriate data to 

validate each of the components, the disaggregation is based on the knowledge 

of characteristics of the load components. 

Table 4.2 Residuals of Disaggregated Load 

01/02/1984 

Max. Min. 

Residual(MW) Time Residual(MW) Time 

Original 39,948 17:00 23,602 5:30 

Decompose 1 9,753 8:00 6,440 8:30 

Decompose 2 4,563 23:30 98 4:00 

06/06/1984 

Max. Min. 

Residual(MW) Time Residual(MW) Time 

Original 28,996 9:00 16,214 4:00 

Decompose 1 6,358 18:30 2,532 20:00 

Decompose 2 2,767 21:30 102 17:00 
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4.8 Summary 

Since the overall electrical demand is the sum of electricity consumed by 

each electric appliance in a power system, it is affected by many different factors. 

In order to obtain a good predictor, relationships between the composition of 

the overall load and the causal factors must be found. Implementation of 

load management makes electricity utilisation behaviour different from what it 

was. So, it is necessary to break the overall load into its components. After 

each demand of the composite is forecast, the overall load can be estimated 

"bottom-up". 

Usually, the overall load can be categoried as: industrial, commercial, 

and domestic loads. According to the different end usage, each load can be 

further disaggregated into its own composites. For example, domestic loads 

consist of domestic heating load, domestic cooking load, etc .. 

Usually, there are two approaches to disaggregate the overall load: sur­

veying and by heutistic methods. This chapter applies the latter one. 

Much effort has been devoted in this chapter to the definition and 

representation of each component, which is based on the adequate understanding 

of the characteristics of each class of load. The representation is constructed 

from the mathematical function of normal distribution and constant curves. 

Since the initial representation of each component was not perfect in fitting the 

overall load, it is essential to change the shapes and weights of the components 

in order to make up the overall load. 

Although there are not appropriate end-use data to validate the results 

of disaggregation, the residuals of the tests are relatively small. This means 

that the overall load can be broken into its composites. The next chapter will 

be devoted to load prediction around time change-overs (both from Greenwich 

Mean time to British Summer time and vice versa) based on the disaggregation 

technique porposed in this chapter. 
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CHAPTER 5 

LOAD PREDICTION OVER TIME CHANGE-OVERS 

5.1 Introduction 

One problem in short-term demand prediction is to cope with the time 

change-over from Greenwich Mean Time (GMT) to British Summer Time 

(BST), and vice versa. 

BST starts from the last Sunday in March and ends on the fourth 

Saturday in October. This involves setting the clock forward by one hour from 

GMT and hence causes the discontinuity of load data being stored. This is 

to say that, when the time system alters from GMT to BST, there will be a 

gap of load data for one hour, whereas when the time is changed from BST 

back to GMT, there will be one hour extra of data recorded. As a solution to 

this problem, the CEGB uses the Dispatch Project computer to store load data 

time-stamped by GMT all the time [27]. By this means, the load record time 

would be monotonically increasing, load data would not have to be thrown away 

at the end of the BST period, and no extra data would be added at the start 

of BST. The problem which remains, however, is that the change-over alters 

the consumer's use of electrical power, since some loads which are regulated 

by nominal clock time are shifted at the change-overs, while those which are 

governed by independent factors, such as off-peak time-switches and the onset 

of darkness, are not. 

During the period of time change-overs, load patterns change from week 

to week, even for the same days-of-week. And the effect of change-overs on loads 

does not simply shift their loads forward or backward by one hour. This makes 

the conventional time series method extremely difficult to predict future loads 
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in the short term. However, the time change-over affects the load behaviour 

in the same way from year to year, which enables load prediction easier if the 

historical loads, of as far as previous years, are available. So, when prediction is 

being made around the periods of time change-overs, the procedures which are 

suitable for prediction over this period should be adopted while the conventional 

time series method remains for use for the normal periods. 

This chapter proposes an approach to conduct prediction of load around 

time change-overs. The approach is based on the disaggregation method pro­

posed in chapter 4. First, section 5.2 illustrates the load characteristics around 

time change-overs, both from GMT to BST and from BST to GMT. The prob­

lems of conventional time series method encountered for short-term prediction 

over these periods are explained in section 5.3. Following the analysis of the 

characteristics, section 5.4 introduces the adoption of relative gaps the concepts 

of which have been widely applied to predicting loads for special events. Sec­

tion 5.5 presents a new approach which uses both weather information which 

indicates the effect of time change-overs on demand, and recent loads to predict 

the load behaviours after time change-overs. In this section, changes of time 

from GMT to BST and from BST to GMT are separately considered, but in 

a similar way. The approach predicts the overall load by separately forecasting 

two parts: lighting load and the rest. Section 5.6 lists some knowledge stored 

in knowledge base which is used by the approach. Next, section 5.7 assesses 

all these approaches. Finally, discussion and conclusion are given in the last 

section. 

5.2 Load characteristics around time change-overs 

By investigating the demand record (time-stamped by GMT) of two 

weeks over the period of change-over (one week before the change, the other 

after the change) from GMT to BST, it is found that the load patterns change 

greatly (see Figure 5.1). It is noted in this figure that the overall load was 

lower, moving forward from the morning on and having a rather significant 

trough before the evening peak, as compared with that of the same day-of-week 

in the previous week before the time change-over. But when the time changed 
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TITLE: Load Characteristics 

FIGURE: Effects of Time Change-overs (GMT -- BST) 

GMT_83 .P; · · · · · · · GMT_84 .P; 
- - - - BST 83 . P · ... ···· · ... BS'I" g 4 . P · 

L~~d (MW) 
35259. ;'--."·',.: . . . . . / .. , 

: .. -~.--........ : ... / ... .\ ' .. ,--"' :'"'- :--./ '• ...... ·, . ---··-.... ____ ,_, I '\ i'- ·. 
' I' ' . ·---"'<·· 'J \ , I .'j '- - ,. . ... , ·' ,. . . :'-- , .. 

!(/ .. , -- ~-- .. / ... ••• . . ,·. 
• I ' ·' ~ \ . 
:I ·I \ .... . . . \. 
; I .'/ \ I_, ' - / - ' . · 

; I .'

1
1 ' I \ \ "· , \ . · 

•I . ' .. • ' \ . 

f I :.'/ \ \ / / , ~'. \· .. 
;, ·I \ '.. ' ,._ \. 
;I .'I \ '•' I I'.._ \ · .. 

:, _.,1 ', ,' '\ \'. 
•I \ 

;, it '... / ~-,. '\·· .. 
:, ·I ' . 
:, :I ~ '. 
:I :I \ , ·._ 
;, .'1 1. \·. 
;, ·I l, \. 

;, .'I '· . ' I \. 
•I : \ \ ·. 

:1 ·I I, \ 

31658. -~ 

28056.--

:, .. , \ ·. 

24455. __ ·. ~~~\ . ,=~1 :-'! \ \ 
//,._-~--··. ;'t:j \ 

20853.-

--·1 , ' ..... . f/ . ' 
·I ' . , .. , .. I 

/ '~<_/! \\ 
_I , ' 

I I 

I 0 
I 

I 
·.I 

24 I 

Time (Hours) 

Figure 5.1 Effects of Time Change-overs on Load (GMT - BST) 
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from BST to GMT, the overall load shifted backward from the morning on, 

with a more considerable evening peak, while compared with that before the 

time change-over (see Figure 5.2). 

Both figures show that the morning load altered and end-of-the-working­

day peak load was affected by the change-over. 

5.2.1 From GMT to BST 

Comparing the daily load profile of one week before the time change with 

that of the week after the change, it is found that the overall load was lower, 

and shifted forward from the morning on, and a noticeable trough appeared 

before the evening peak. This could be explained as follows: 

After the time changed to BST, daily activities, such as industrial, 

commercial and domestic, alter by one hour to follow the time system. So, 

the morning loads start to increase one hour earlier than under GMT. The 

overall load around day time in BST was less than that in GMT, which was 

caused by the reduced heating load due to the warmer weather. The trough 

before the evening peak was due to the fact that most of the day activities 

had finished, but the domestic lighting load was not on by that time, because 

of later sunset. 

5.2.2 From BST to GMT 

Comparing the load of one week before the time change-over with that 

after the time changing, on the contrary, it is seen that the overall load has 

moved forward from the time of the first trough happening before the sunrise, 

and there was a significant peak around sunset. This is because the initial peak 

before the first trough resulted from the activities of the previous day, which 

was not affected by the lighting load altered by the time system. From the 

first trough onwards, the load moved by one hour mainly due to the changed 

time. The tremendous peak existing around sunset is due to the fact that the 
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day activities have not yet finished by that time because of the one hour delay, 

and the lighting load is on due to the earlier sunset. 

5.3 Prediction by ARIMA 

Certainly for this kind of load characteristics, the conventional ARIMA 

model can not predict accurately in short period. Tables 5.1 and 5.2 list 

the prediction results against the CEGB system load around time change-overs 

made from the ARIMA model of (1, 0, 1)1 X (1, 0, 1)48 X (0, 1, 1)336 • 

Table 5.1: Load Prediction Around Time Change-over by ARIMA 

(GMT --t BST) 

Date Day-of-week Original ARIMA (%) 

R.M.S. Max. 

26/3/1984 Monday 10.03 -27.67 

27/3/1984 Tuesday 10.86 24.95 

28/3/1984 Wednesday 10.67 -23.67 

29/3/1984 Thursday 10.89 -24.55 

30/3/1984 Friday 11.01 -23.54 

Table 5.2: Load Prediction Around Time Change-over by ARIMA 

( BST --t GMT ) 

Date Day-of-week Original ARIMA (%) 

R.M.S. Max. 

29/10/1984 Monday 10.46 -31.95 

30/10/1984 Tuesday 10.39 30.48 

31/10/1984 Wednesday 11.80 32.42 

1/11/1984 Thursday 11.84 33.67 

2/11/1984 Friday 11.73 34.99 

- 121 -



From these two tables, it is seen that the errors are extremely large and 

the results can not be accepted by on-line operation. It can be concluded that 

the conventional ARIMA model can not predict the load change caused by the 

time change-overs. 

Figures 5.3 to 5.7 show the difference between the actual recorded loads 

and the predicted loads made from the ARIMA model for the weekdays of first 

week following the time change-over (from GMT to BST) while Figures 5.8 to 

5.12 illustrate the results of that from BST to GMT. It can be seen from the 

figures that the load patterns predicted by the ARIMA model remains similar 

to what they were before time change-overs. Even though the influenced loads 

such as that of Monday and Tuesday are used in the parameter estimation, the 

predictions for Wednesday, Thursday, and Friday do not show any improvement. 

One of the important reasons is that the model needs a long period of time to 

habituate to the new load pattern, and the past load data exhibit more strong 

weekly cycles than daily cycles. 

From the load profiles shown in the figures 5.3 to 5.12, it can also 

be concluded that we could not simply shift the predicted load profiles which 

are obtained from the ARIMA model by one hour as the loads after the 

change-overs. Therefore, short-term prediction around time change-overs can 

not be made by the ARIMA model. Either enough past load data which 

reveal the similar effect of time change-over are available, or more information 

which indicates the utilisation of electricity is obtained, then the problem can 

be solved. 

A close inspection of Figures 5.1 and 5.2 indicates that time change-overs 

have similar effects on the load changes in successive years. It can be derived 

from this fact that load prediction can be made on the basis of historical load 

of previous years. 
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Figure 5.4 Prediction of GMT /BST Effects for Tuesday by ARIMA 
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Figure 5.5 Prediction of GMT/BST Effects for Wednesday by ARIMA 
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Figure 5.6 Prediction of GMT /BST Effects for Thursday by ARIMA 
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Figure 5. 7 Prediction of GMT /BST Effects for Friday by ARIMA 
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Figure 5.8 Prediction of BST/GMT Effects for Monday by ARIMA 
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Figure 5.9 Prediction of BST /GMT Effects for Tuesday by ARIMA 
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Figure 5.10 Prediction of BST/GMT Effects for Wednesday by ARIMA 
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Figure 5.11 Prediction of BST/GMT Effects for Thursday by ARIMA 
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Figure 5.12 Prediction of BST/GMT Effects for Friday by ARIMA 
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5.4 Prediction by adoption of relative gaps 

Since time change-overs influence load behaviours in a similar way each 

year, load prediction of this period may be easier if the load data of the same 

period in the past years are available. 

The concept of relative gap can be used here, which indicates the 

difference between the loads before and after the time change-overs. 

The first kind of Relative Gap (R. G. 1) is defined [160] as the load 

difference in megawatts [160]: 

R.G.1(D, t) = Loada(D, t) - Loadb(D, t) (5.1) 

where D is day-of-week, t is GMT time, R. G. 1 is Relative Gap, Loadb is the 

actual data before time change-over, and Loada is the actual data after time 

change-over. 

The second kind of Relative Gap (indicated as R. G. 2) is defined in 

(5.2) [160] as the load difference in percentage between the actual loads before 

and after the time change-over: 

R G (D ) 
= Loada(D, t) - Loadb(D, t) 

· '
2 't Loadb(D, t) (5.2) 

So, the current R. G. 1 and R. G. 2 should be obtained in the first 

instance, if it is assumed that the current year's R. G. 1 and R. G. 2 keep the 

same as that of the previous years. They can be calculated by applying the 

above equations with the data of the previous years. 

Load prediction by the two relative gaps has been tested against the 

same loads of the CEGB system around the periods of time change-overs in 
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1984. Results are listed in Tables 5.3 and 5.4. Figures 5.13 and 5.14 illustrate 

two examples of the predictions by relative gaps. 

Table 5.3: Results of Prediction by Relative Gaps 

(GMT--+ BST) 

Date Day-of-week R. G. 1 (%) R. G. 2 (%) 

R.M.S. Max. R.M.S. Max. 

26/3/1984 Monday 5.56 10.81 6.29 13.17 

27/3/1984 Tuesday 2.66 7.51 2.52 6.71 

28/3/1984 Wednesday 4.39 -9.72 4.25 -9.44 

29/3/1984 Thursday 5.67 -10.53 5.54 -10.34 

30/3/1984 Friday 18.36 -28.61 17.95 -28.73 

Table 5.4: Results of Prediction by Relative Gaps 

( BST--+ GMT) 

Date Day-of-week R. G. 1 (%) R. G. 2 (%) 

R.M.S. Max. R.M.S. Max. 

29/10/1984 Monday 2.48 -5.17 2.48 5.15 

30/10/1984 Tuesday 3.77 6.56 3.86 6.61 

31/10/1984 Wednesday 6.48 9.35 6.67 9.99 

1/11/1984 Thursday 3.59 6.20 3.64 6.50 

2/11/1984 Friday 4.04 7.82 4.18 7.89 

Both Figures 5.13, 5.14 and Tables 5.3 and 5.4 show that adoption of 

relative gaps can improve load prediction over time change-overs compared with 

the ARIMA model (in Tables 5.1 and 5.2). However, it is noticed that the 

prediction is not so good for Friday in Table 5.3 as for others. The reason is 

that the Friday in 1983 was a bank holiday: a Good Friday which altered the 
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Figure 5.14 Prediction of BST /GMT Effects by R.G.l and R.G.2 
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load from the normal Friday load. Also, both tables and figures show little 

difference between the use of relative gaps in megawatts and in percentage. 

It is known that executing the change of time system is mainly to make 

use of natural sunlight and save energy. Therefore, all the components (except 

the lighting load which is influenced by the alteration in time of sunrise and 

sunset) should be adjusted by one hour, if the difference of the actual time 

of sunrise and sunset from one week to another is neglected. In other words, 

only the lighting load should be separated from the whole load. This can avoid 

such cases as that for the Good Friday. 

5.5 Expert system approach 

The lighting load is assumed to be on 40 minutes after sunset, since the 

street lights are scheduled on about 40 minutes after sunset. In our case of 

CEGB system, the average lighting-up time (in the Midlands) are used. 

The lighting load in the evening is of the following form: 

[[posnorm 1.0 t1 6][ const 1.0 t1 t2][ negnorm 1.0 t2 6]] 

where t1 is the lighting-up time and t2, the finish time. 

The lighting load can be estimated by the approach proposed in chapter 

4. Figure 5.15 shows the resulted lighting load profile for the day of 24/10/1984 

(under BST) when the lighting-up time was 6:49 pm. 

When the lighting load is separated from the overall load in a prediction, 

it is easy to consider the problem due to the time change-over. 

The detailed analysis of the difference in load data prior to time changing 

and after showed that the period of one day may be divided into three parts 

for further analysis (see Figure 5.1 and Figure 5.2): 
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Part I: from the start of the day (midnight) till the first trough. In 

this part, the load record after the change showed a similar pattern to that 

before the change, the trough load seemed to be at the same level. 

Part II: from the first trough onwards, till the sunset. During this 

period, the load seemed to move by one hour. 

Part III: from sunset, i.e. the trough occurring when the time system 

changed from GMT to BST, or the evening peak around dinner time when 

changing from BST to GMT, till midnight. 

According to the different properties among these periods, the prediction 

can be made for each of the periods separately. 

5.5.1 From GMT to BST 

In part I, it was observed, from the successive years of data, that the 

the loads after time change-over were lower than that before time change-over. 

So, if it is assumed that the ratio of loads after time change-over to that before 

time change-over is the same from year to year, then the loads in this part 

can be estimated. 

In part II, it seemed that load could be forecast simply by shifting the 

overall load backward by one hour if the heating factors were excluded. 

In part III, since the sunset was later than that of one week before, the 

lighting load was easily calculated based on the time of sunset and the lighting 

load of last week. Prediction was made by summing the lighting load and the 

rest of the load which was obtained by shifting by one hour. 

Table 5.5 lists the results of predicting the weekday loads following the 

time change-over in 1984. And Figures 5.16 to 5.20 describe the predicted 

loads and the actual loads of the week following the GMT /BST change-over 

in 1984. It can be seen that the expert system approach can predict the time 
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change-over effects whilst the ARIMA method can not. Although the evening 

peak load and time of Monday can not be correctly predicted, the expert 

system approach can give better and better predictions when the affected loads 

are available. 

5.5.2 From BST to GMT 

In part I, from the successive years of data, it was observed that the 

trough load was at the same level as before time change-over, and the peak 

load was at the same level as the final load on the previous day. The time 

when the peak and trough loads happen can be drawn from the previous year. 

In part II, it seemed that load could be forecast simply by shifting the 

overall load forward by one hour if the heating factors were not considered. 

In part III, since the sunset was earlier than that of one week before, 

the lighting load was easily estimated based on the time of sunset and the 

lighting load of last week. Prediction was made by summing the lighting load 

and the rest of the load which was obtained by shifting by one hour. 

Table 5.5: Prediction by Expert System 

( GMT --+ BST ) 

Date Day-of-week Original ARIMA (%) Expert System (%) 

R.M.S. Max. R.M.S. Max. 

26/3/1984 Monday 10.03 -27.67 4.94 19.21 

27/3/1984 Tuesday 10.86 24.95 2.62 12.15 

28/3/1984 Wednesday 10.67 -23.67 2.37 -5.84 

29/3/1984 Thursday 10.89 -24.55 1.44 4.49 

30/3/1984 Friday 11.01 -23.54 2.15 5.10 
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TXTLB: Prediction Around Time Change-overs (GMT -- BST) 
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Figure 5.17 Prediction of GMT /BST Effects for Tuesday by ES 
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TITLE: Prediction Around Time Change-overs (GMT -- BST) 

FIGURE: For Wednesday by ARIMA & ES 
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Figure 5.18 Prediction of GMT /BST Effects for Wednesday by ES 

- 143-



TITLE: Prediction Around Time Change-overs (GMT -- BST) 

FIGURE: For Thursday by ARIMA & ES 
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Figure 5.19 Prediction of GMT/BST Effects for Thursday byES 
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TITLE: Prediction Around Time Change-overs (GMT -- BST) 

FIGURE: For Friday by ARIMA & BS 
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Figure 5.20 Prediction of GMT /BST Effects for Friday by ES 
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TITLE: Prediction Around Time Change-overs (BST -- GMT) 

FIGURE: For Monday by ARIMA & ES 
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Figure 5.21 Prediction of BST /GMT Effects for Monday by ES 
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TITLE: Prediction Around Time Change-overs (BST -- GMT) 

FIGURE: For Tuesday by ~MA & ES 
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Figure 5.22 Prediction of BST/GMT Effects for Tuesday byES 
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TXTLB: Prediction Around Time Change-overs (BST -- GMT) 

FIGURE: For Wednesday by ARIMA & ES 
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Figure 5.23 Prediction of BST /GMT Effects for Wednesday by ES 
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TITLE: Prediction Around Time Change-overs (BST -- GMT) 

FIGURE: For Thursday by ARIMA & ES 
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Figure 5.24 Prediction of BST/GMT Effects for Thursday byES 
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TITLE: Prediction Around Time Change-overs (BST -- GMT) 

FIGURE: For Friday by ARIMA & ES 
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Figure 5.25 Prediction of BST/GMT Effects for Friday byES 
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TITLE: Load Prediction Around Time Change-oves (GMT -- BST} 

FIGURE: RMS Error Comparison of Different Approaches 
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TITLE: Load Prediction Around Time Change-overs (GMT -- BST) 

FIGURE: Max. Error Compaison of Different Approaches 
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TITLE: Load Prediction Around Time Change-overs (BST -- GMT) 

FIGURE: RMS Error Comparison of Different Approaches 
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TITLE: Load Prediction Around Time Change-overs (BST -- GMT) 

FIGURE: Max. Error Comparison of Different Approaches 
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Table 5.6: Prediction by Expert System 

( BST--+ GMT) 

Date Day-of-week Original ARIMA (%) Expert System(%) 

R.M.S. Max. R.M.S. Max. 

29/10/1984 Monday 10.46 -31.95 2.59 -6.35 

30/10/1984 Tuesday 10.39 30.48 2.94 -6.12 

31/10/1984 VVednesday 11.80 32.42 4.02 7.31 

1/11/1984 Thursday 11.84 33.67 2.28 4.35 

2/11/1984 Friday 11.73 34.99 3.49 -8.04 

By this process, one week of loads around the time change-over from 

BST to GMT in 1984 were predicted. The results are shown in Table 5.6 and 

Figures 5.21 to 5.25. 

VVe can see from Figures 5.16 to 5.25 that by this method, the predicted 

loads have similar shapes to the actual ones which are quite different from 

those before the time change-overs. 

The procedures in POP-11 to predict loads around the time change-overs 

are demonstrated in appendix 3. 

5.6 Knowledge about lighting-up loads 

The following weather information, as an example, 1s stored in the 

knowledge base which is used to estimate the lighting load. The last element 

in the list following the date is the lighting-up time (in slots in GMT time) 

for that day. 

[26 3 1984 13 monday] 

[10.4 5.6 5.7 234] 

[27 3 1984 13 tuesday] 
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[10.2 3.5 5.8 234] 

[28 3 1984 13 wednesday] 

[7. 7 0.5 3.6 235] 

[29 3 1984 13 thursday] 

[11.0 2.6 3.6 235] 

[30 3 1984 13 friday] 

[11.8 -0.3 3.3 235] 

[29 10 1984 44 monday] 

[0 0 0 201] 

[30 10 1984 44 tuesday] 

[0 0 0 201] 

[31 10 1984 44 wednesday] 

[0 0 0 201] 

[1 11 1984 44 thursday] 

[0 0 0 200] 

[2 11 1984 44 friday] 

[0 0 0 200] 

The detailed procedures of load prediction around time change-overs are 

listed in appendix 3. 

5. 7 Assessment of different approaches 

There is another commonly used method to estimate the load around 

the time change-overs, i.e., directly using the load data of the same period 

in previous years as the prediction loads. Generally speaking, it is reasonably 

correct, since the utilisation of electricity is more or less the same from the 

viewpoint of end-use and the similar weather conditions. 

Tables 5.7 and 5.8 and Figures 5.26 to 5.29 compare the approach 

with the other four approaches introduced in previous sections in predicting the 

weekday loads of the week following the time change-overs. 
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Approach 

1 

2 

3 

4 

5 

Table 5. 7: Prediction by Different Approaches * 
(GMT--. BST) 

Error Monday Tuesday Wednesday Thursday 

(%) 26/3/1984 27/3/1984 28/3/1984 29/3/1984 

R.M.S 10.03 10.86 10.67 10.89 

Max. -27.67 24.95 -23.67 -24.55 

R.M.S 5.56 2.66 4.39 5.67 

Max. 10.81 7.51 -9.72 -10.53 

R.M.S 6.29 2.52 4.25 5.54 

Max. 13.17 6.71 -9.44 -10.34 

R.M.S 2.53 1.87 3.20 5.45 

Max. -4.08 -3.72 -6.40 -8.37 

R.M.S 4.94 2.62 2.37 1.44 

Max. 19.21 12.15 -5.84 4.49 

Friday 

30/3/1984 

11.01 

-23.54 

18.36 

-28.61 

17.95 

-28.73 

16.97 

-29.55 

2.15 

5.10 

It can be seen from Table 5. 7 that the expert system method is not so 

good at predicting the first two days as the load data of last year. The reason 

is that the proportion of lighting load in the overall load is not very accurate. 

But for the later three days, it is comparable with the one from last year. 

A problem may be encountered while using the load data of last year. It is 

that the time of changing from GMT to BST is usually in the end of March 

in which Easter weekends may locate. The difficulty is that sometimes both 

of them occur at the same time, but sometimes not. However, the method of 

expert systems, can use the pattern matching to find the appropriate reference 

load. For example, if the time change-over of this year occurs at the Easter 

weekend, it will first try to find if there is the same case occurring in the past 

and use the load as the reference. If it fails, it will use the procedure which is 

* See notes following Table 5.8. 

- 157-



suitable for holiday prediction, using the corresponding reference to the Easter 

holiday. 

Table 5.8: Prediction by Different Approaches 

( BST--. GMT) 

Approach Error Monday Tuesday Wednesday Thursday 

1 

2 

3 

4 

5 

Notes: 

(%) 29/10/1984 30/10/1984 31/10/1984 

R.M.S. 10.46 10.39 

Max. -31.95 30.48 

R.M.S. 2.48 3.77 

Max. -5.17 6.56 

R.M.S. 2.48 3.86 

Max. 5.15 6.61 

R.M.S. 2.05 3.25 

Max. -4.48 6.14 

R.M.S. 2.59 2.94 

Max. -6.35 -6.12 

R.M.S. Error: root mean squared error; 

Max. Error: maximum absolute error; 

Approach 1: the original ARIMA; 

Approach 2: R. G. 1; 

Approach 3: R. G. 2; 

11.80 

32.427 

6.48 

9.33 

6.67 

9.99 

2.26 

4.87 

4.02 

7.31 

1/11/1984 

10.84 

33.675 

3.59 

6.20 

3.64 

6.50 

1.97 

4.54 

2.28 

4.35 

Approach 4: estimation based on the last year's data; 

Approach 5: the expert system approach. 

Friday 

2/11/1984 

11.73 

34.99 

4.04 

7.82 

4.18 

7.89 

2.90 

-6.35 

3.49 

-8.04 

Although in Table 5.8 the prediction of the expert system approach does 

not improve on the one from last year's data, the expert system approach can 

be comparable with the method of relative gaps. Because the relative gaps use 

the load of the same day-of-week in previous week as a reference, as well as 
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TI'l'LE: Prediction Around Time Change-overs (GMT -- BST) 

FIGURE: Comparison of Three Approaches 
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TITLE: Prediction Around Time Change-overs (BST -- GMT) 

FIGURE: Comparison of Three Approaches 
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the loads of the same periods of previous years which reflect the load change 

around time change-overs, so generally speaking, the method can give better 

results than that only using the loads of last year. However, the expert system 

approach only uses the loads of current year without the use of previous year's 

data. 

Figures 5.30 and 5.31 represent the comparison of prediction errors over 

24 hours by the three methods stated above for the weekdays following the 

time change-overs when predictions are conducted at midnight. It can be seen 

from them that the ARIMA model has the worst prediction results. The result 

produced by the method using the load data of the previous year for prediction 

of the day following the time change-over from BST to GMT, presents a level 

of accuracy of almost the same scale as that by the expert system approach. 

However, because of the possibility of the occurrence of time change-over from 

GMT to BST at the same period as Easter weekends, the expert system 

approach has a better performance than the others, although it is not so good 

at predicting the evening peak loads at which the utilisation is complex. 

5.8 Discussion and conclusion 

The chapter has presented a new approach to predict loads around time 

change-overs, which can be compared with the most commonly used Relative 

Gap method for prediction of special events. As has been discussed in earlier 

sections, the prediction of electrical demand around time change-overs both from 

GMT to BST and from BST to GMT is a great difficulty in short-term load 

forecasting. This is because the load patterns change from week to week, even 

for the same days-of-week during the period of time change-overs. The reason 

is that the change-overs alter the consumer's use of electrical power. In other 

words, some loads which are regulated by nominal clock time are shifted at 

the change-overs, while those that are governed by independent factors, such as 

off-peak time-switches and the onset of darkness, are not. The effect of time 

change-overs on individual components may not be easy to draw up, which 

makes prediction very difficult. 
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Time change-overs have a similar effect on the utilisation of electricity 

from year to year, thus, the relative gaps can be used to predict the loads 

around the periods by reflecting the load change trend of the same periods 

m previous years. However, the concurrence of time change-over from GMT 

to BST with the Easter weekends causes variations. At this point, only the 

approach of expert systems can find the optimal prediction for this period. 

This chapter introduces a new approach based on the disaggregated results of 

chapter 4, which separates the lighting loads from the other loads. The lighting 

loads are generally governed by the sunset and sunrise time, whilst the rest 

of the loads are supposed to alter by the time change-overs only. After both 

loads are predicted, the overall load is obtained with a result that the approach 

can be comparable with the relative gap approaches. The advantage of the 

approach is that it does not require the load data of previous year, instead, 

the sun-set time only. 

Weather conditions have an important contribution to the errors. If the 

weather conditions around the periods of time change-overs change significantly, 

the weather-dependent loads will vary with the weather changes. The method 

of expert systems applied here only takes the factor of the lighting-up time into 

consideration without other weather factors. So, if the relationship between 

individual components and weather factors is obtained, more accurate prediction 

will be expected. 
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CHAPTER 6 

LOAD FORECASTING INCLUDING HOLIDAY EFFECTS 

6.1 Introduction 

The nature of electricity demand, possessing the pronounced daily and 

weekly periodicity, with only a relatively small variation in the demand shape 

and level from week to week, makes univariate forecasting an accurate and 

reliable method for short-term demand prediction. However, this method of 

prediction for short-term periods does not seem suitable for the prediction of 

national holidays that repeat themselves only from year to year and, more 

often, alter both the shape and level of the electrical demand during the period 

of holidays and a few days before and after. The demand data of this special 

period will upset prediction even over normal periods if they are used as part 

of the whole past data set from which modelling and prediction is carried out. 

These will sufficiently cause forecasting made by using conventional time series 

methods to be hopelessly inaccurate over these special periods. 

Thus, it is necessary to adopt a systematic approach to modify the 

prediction method over holidays, and to clean up the past demand series to 

remove the adverse effect of special periods. 

The results of disaggregation of loads introduced in chapter 4 may appear 

insufficient to be directly used to predict holiday loads. The reasons are that the 

disaggregated results of each component can not be validated because of lack of 

appropriate data at present and that the behaviour change of each component 

from normal situation to holiday is not known. Here, a novel approach 1s 

presented which can be used to make up that inefficiency in estimation of 

holiday effects. 
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This chapter will discuss the difference of loads on holidays from that of 

normal periods, and propose a new approach which can be applied to predicting 

holiday loads by reflecting what they were in the past. The knowledge is 

extracted from load behaviour in the past and represented in production rules. 

A method to eliminate the influence of holidays on normal periods is also 

presented. The chapter is arranged as follows: section 6.2 describes the load 

characteristics of holidays ranging from normal fixed Monday Bank Holidays to 

special holiday periods between Christmas Day and New Year's Day. In section 

6.3, an approach of estimation of holiday load is proposed which adopts the 

relative gap concepts. Followed by section 6.4 which introduces my method 

of estimation. In the first part of this section (6.4.1), details are given on 

the use of preceding weekend loads which are used to determine the level of 

holiday loads. The second part (6.4.2) shows how the weather information 

can be applied to improve the prediction of holiday loads. The final part of 

the section (6.4.3) is my introduction of a method to predict Good Friday 

loads, which I believe has not yet been touched upon although the problem is 

there. Efforts are made in section 6.5 to predict loads of special holidays such 

as Christmas Day, Boxing Day, and New Year's Day. Section 6.6 describes 

a method of predicting loads of other days between Christmas Day and New 

Year's Day. Section 6. 7 illustrates how effects of these special day loads can be 

eliminated in order to adopt the usual ARIMA model to predict loads for the 

following normal periods. Section 6.8 and 6.9 present some knowledge stored 

in knowledge base and some POP-11 procedures for predicting holiday loads 

respectively. Finally, a summary is given in section 6.10. 

6.2 Characteristics of load over special periods 

Electrical demand is greatly affected by such public holidays as Easter, 

and one-day bank holidays like Summer Bank Holiday. The electrical demand 

on Monday Bank Holiday is considerably lower (normally by 30 per cent) than 

on normal Mondays. Figure 6.1 shows three Monday load curves around the 

Spring Bank Holiday. The reason is that some industrial load is shut down 

and commercial load reduced (see curve III in Figure 6.1) during the holidays. 
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In England and Wales, bank holidays are usually on Mondays (which are 

referred to as normal holidays in later sections, while New Year' Day, Good 

Friday and Christmas Day are separately dealt with as special holidays). The 

holiday effects also impinge on the neighbouring days. Although there are at 

present only eight time-tabled bank holidays each year, the total number of 

days that present abnormal demand behaviour can amount to about thirty, 

with those days affected before and after the holidays included [196]. 

The difference of loads between Monday Bank Holiday and normal Mon­

days is not only in the level, but also in the shape (see Figure 6.1). During 

the public holidays, some commercial loads and the industrial loads decrease. 

The pattern on Monday Bank Holidays, however, is more or less like that 

on weekends (see Figure 6.2), although some particular days, Good Friday for 

example, have Saturday characteristics. From the following week onwards, the 

same day-of-week (Monday) load will be back to normal behaviour (see also 

Figure 6.1: curve I is the Monday load before the holiday week, curve IT is 

the Monday load after the holiday week). 

It is also found that the patterns of load are also different from one 

public holiday to another. An example of this characteristic is shown in Figure 

6.3 which compares the loads of Spring Bank Holiday with that of the Summer 

Bank Holiday in 1984. The solid curve indicates the Spring Bank Holiday in 

1984 and the dashed one for the Summer Bank Holiday. Although, in the 

figure, the evening peak loads are on about the same time and with the similar 

levels, the morning peak loads are totally different. The morning peak load of 

spring bank holiday is about 10% higher and appears much later than that of 

summer bank holiday. 

Load of special holiday periods between Christmas Day and New Year's 

Day have different characteristics from that of the fixed Monday Bank Holidays. 

They also change from year to year (see Figure 6.4). It seems that it is extremely 

difficult to predict load around this period. 
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FIGURE: Load on Weekend and Monday Bo1iday 
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FIGURE: Load Behaviour During Different Holidays 
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Estimation of loads for special days is difficult for an algorithmic method 

because there is a complexity of factors which affect load pattern and the 

factors themselves are not precise. Even if all factors are known, the effect of 

a certain factor is not regular. Based on the characteristics observed, a new 

approach is proposed as follows. 

6.3 Prediction by factoring the results of ARIMA 

Loads of public holidays can not be predicted by the conventional time 

series, due to the lack of repetition in the period of modelling and predicting. 

However, from year to year, for the same kind of holiday, the load changes in a 

similar way (see Figure 6.5). The solid curve in Figure 6.5 depicts the summer 

bank holiday in 1983 and the dashed one for that in 1984. The similarity is 

obvious. It is true that the same holiday occurs within one week difference 

and in the same season, from year to year (except Easter holiday the date of 

which may vary by one month either in March or in April). And, normally, the 

weather conditions do not change dramatically and consumer's use of electricity 

is more or less the same. 

Based on this observation, holiday effects can be predicted through 

observing what they were like in the past. Mealier [94] used ARIMA method of 

model (1, 0, 0) X (0, 1, 1h X (0, 1, 1)865 to forecast daily energy consumption 

one day ahead. His model might be good at forecasting loads for the holidays 

such as New Year's Day, Christmas Day, and Boxing Day, because the periodicity 

for them is exactly 365 days. But it will not work for other public holidays 

in Britain as the dates of holidays change from year to year. In addition, the 

model has as many as 138 parameters. 

The use of Relative Gaps (R. G.) can be introduced [160], considering 

the characteristics of similarity of load changing. The first kind of Relative 

Gap (indicated as R. G. 1) has been defined as in earlier chapter as in (6.1) 

as the load difference between the actual load and the predicted load for the 

holiday: 
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R.G.1(D, t) = Loada(D, t) - Loadv(D, t) (6.1) 

where Loada and Loadv are the actual and predicted loads for day D at time 

t respectively. Loadv is predicted from the model which assumes that the day 

D is a normal day with normal loads. 

The second kind of Relative Gap (indicated as R. G. 2) has been defined 

in (6.2) as the load difference between the actual load and the predicted load 

in percentage of normal load: 

R G (D ) 
= Loada(D, t) - Loadv(D, t) 

· '
2 

't Loadv(D, t) 
(6.2) 

In order to predict the holiday loads for the current year, the current 

R. G. 1 and R. G. 2 should be obtained in the first instance, if it is assumed 

that the current year's R. G. 1 and R. G. 2 remain the same as that of the 

previous years. They can be calculated by applying the above equations with 

the data of the previous years. Then, the estimation of the current holiday 

loads can be carried on by the following formulae: 

Loada(D, t) = R.G.1(D, t) + Loadv(D, t) (6.3) 

Loada(D, t) = R.G.2(D, t) * Loadv(D, t) + Loadp(D, t) (6.4) 

Based on the R. G. 1 and R. G. 2 estimated from loads of previous years, 

the prediction results are compared in Table 6.1 for some bank holidays of the 

CEGB system load in 1985. The results seem encouraging when compared with 

that of the original ARIMA model. 
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Table 6.1: Results of Predicting Load for Fixed Bank Holidays 

by R. G. 1 and R. G. 2 (1985) 

Date Original ARIMA (%) R. G. 1 (%) R. G. 2 (%) 

R.M.S. Max R.M.S Max R.M.S. Max 

5/4/1985 22.02 33.41 12.9 35.1S 10.42 27.62 

8/4/1985 35.14 59.53 4.92 -9.87 7.77 -14.91 

6/5/1985 33.70 54.34 10.89 19.Hl 8.65 16.78 

27/5/1985 38.76 65.31 5.65 11.25 5.51 10.42 

26/8/1985 28.17 46.87 1.87 4.04 1.35 -3.41 

It can be seen from the table that the original ARIMA model gave 

unacceptably large forecasting errors with R.M.S. error of 38.76 per cent and 

the maximum error of 65.31 per cent. The reason is that the original ARIMA 

method only lies on the daily and weekly periodicities of the actual past load 

data to fit the model. Since all the days in the past are all normal working 

days, therefore, the loads are high. However, when the fitted model is utilised to 

predict the load for the public holiday, the predicted load must be much higher 

than the actual load recorded for the holiday, as shown in Figure 6.1. Although 

the results of R.G.s are much better compared with that of the ARIMA model, 

the accuracy is still too big to be acceptable for on-line operation. It is easy 

to understand the large errors from the results by R. G. 1, which uses the load 

difference as the reference. The overall load keeps increasing over time because 

of the growth of industrial production and other economic development factors. 

Also different components of the overall load do not increase at the same pace. 

Therefore, R. G. 1 will not keep constant from year to year. For the same 

reason, the results made by R. G. 2 are also disappointing. 

An example of predicting loads for May-day of 1985 is shown in Figure 

6.6, where the actual loads are contrasted with the two predictions made by 

R. G. 1 and R. G. 2. The predicted loads depicted by Figure 6.6, obtained 
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TITLE: Load Prediction for Holidays 
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by R. G. 1 or by R. G. 2, are much higher than the actual loads, especially 

around the morning peak time. The following possible reasons may be the 

causes of this phenomenon. One is that the base load in the present year IS 

too high, which results in the high prediction of loads Loadp. The other IS 

that the actual loads in the previous year are too high probably as a result 

of bad weather conditions. So, it might be better to introduce some factors 

which can somehow indicate the level in which the holiday loads are located. 

Such a novel approach is proposed in the following section. 

6.4 Prediction by referring to preceding weekends 

As has been described earlier, the loads on normal holidays are more or 

less the same as they are on the preceding weekends. So, the loads of the 

weekends which are preceding the holiday may be used to estimate the level 

of holiday loads. The relationship between the holiday loads and that of the 

preceding weekends can be estimated by the past data. 

6.4.1 Predicting holidays by past data 

During the holiday, as is known, the industrial loads shut down, as on 

a Sunday. But the pattern of the commercial load does not exactly resemble 

the Saturday pattern, since the banks are closed on holidays; nor the Sunday 

pattern, because some shops are open on some holidays. Therefore, it may 

not be suitable to predict the holiday effect just on the basis of Saturday or 

Sunday patterns. Nevertheless, the loads on the regular public holidays, for 

example Spring Bank Holiday, are of the same level, and the load shapes are 

the same in successive years. 

Based upon this observation, we can estimate the holiday effects by 

taking the average of Saturday and Sunday load patterns in the following way: 

For a given Monday Bank Holiday, the overall load of the holiday can 

be factorised by that of the previous Saturday and Sunday. It is expressed by 

the following equations: 
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Lha~(t) 
fllat(t) = Lllat(t) (6.5) 

(6.6) 

where parameters laat(t) and !aun.(t) indicate the weights of overall loads of 

holiday on that of Saturday, Sunday at time t respectively; For a whole day, I 
is a list of 48 elements (half-hourly). 

The parameters I reflect the load change trend from weekends (Saturday, 

Sunday) to the holiday. Actually we can see from the past data that the fs 
are similar both in shapes and levels from year to year. H the fs are assumed 

to keep the same value from year to year, i.e., the overall load change from the 

preceding weekends to the holiday follows the same trend in successive years. 

Then, the loads of the holiday in year y2 can be calculated on the basis of 

loads of the preceding weekends and that during the holiday period in year Y1: 

L ( ) Lllat(Y2,t) L ( ) 
hol-aat Y2, t = L ( t) * hoi Yb t 

11at Yl' 
(6.7) 

( ) Lllun(Y2, t) * L ( t) 
Lhoi-IJun. Y2, t = L ( t) hoi Y1, 

llUn. Yb 
(6.8) 

where Lhol- 8 at(Y2, t) and Lhol- 8 un(Y2, t) are the estimation of holiday loads by 

the loads of preceding Saturday and Sunday respectively. Each of them, of 

course, can be used to approximate the holiday loads. 

However, in order to have the best estimation of holiday loads, the best 

combination of results from Saturday and Sunday may be obtained by the 

coefficients of It and h: 
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(6.9) 

where parameters /1 and h are the weights of Lhol- 8 at and Lhol- 8 un on the 

Lhol respectively. 

Since the holiday loads are in the level of that on the weekends, the 

relationship between 11 and f2 can be constrained as: 

11 + h = 1.0 (6.10) 

The parameters 11 and f2 can be easily estimated on the data of two 

earlier years. 

Therefore, the load of the holiday can be predicted on the assumption 

that 11 and 12 do not change for the same holiday in successive years. 

Figure 6. 7 shows an example of predicting the load for the Summer Bank 

Holiday in 1985. The results for different Monday Bank Holidays are listed in 

Table 6.2. 

It can be seen from Table 6.2 that the errors (R.M.S.) m predicting 

May-Day loads by any approach were very high. The reason was possibly 

the effect of weather not being included. In the spring, the weather changes 

rapidly, and the weather conditions of May-Days may be different from year to 

year. The results of prediction for the Summer Bank Holiday, however, were 

extremely accurate. The reason was possibly the converse of the above, because 

the weather conditions both in 1984 and in 1985 were quite similar. 
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Table 6.2: Comparison of Prediction by Different Approaches 

(Lead Time = 24 Hours) 

Notes: 

Approach Error Easter- Summer- May-

(%) Monday bank day 

1 R.M.S. 35.14 28.17 33.70 

M.A.P. 30.86 23.97 28.46 

Max. 59.53 46.87 54.34 

2 R.M.S. 4.92 1.87 10.89 

M.A.P. 4.04 1.42 8.62 

Max. -9.87 4.31 19.19 

3 R.M.S. 7.77 1.35 8.65 

M.A.P. 6.44 1.13 7.00 

Max. -14.91 -3.41 16.78 

4 R.M.S. 3.04 1.40 5.79 

M.A.P. 2.62 1.05 5.30 

Max. -5.84 3.00 9.71 

It 0.5 0.5 0.2 

h 0.5 0.5 0.8 

5 M.A.P. 6.79 2.44 

Max. 13.6 -6.6 

R.M.S. Error: root mean squared error; 

M.A.P. Error: mean of absolute error in percentage; 

Max. Error: maximum absolute error. 

Approach 1: the original ARIMA; 

Approach 2: ARIMA with R. G. 1; 

Approach 3: ARIMA with R. G. 2; 

Spring 

bank 

38.76 

33.84 

65.31 

5.65 

4.85 

11.25 

5.51 

4.82 

10.42 

3.93 

3.27 

-7.85 

0.2 

0.8 

Approach 4: estimation based on the earlier weekends; 

Approach 5: modified ARIMA by Smith. 
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Figure 6.8 R.M.S. Errors of Different Approaches for Holidays 

1: Easter Monday; 2: Summer Bank Holiday; 

3: May Day; 4: Spring Bank Holiday. 
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1: Easter Monday; 2: Summer Bank Holiday; 

3: May Day; 4: Spring Bank Holiday. 
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The results are also compared with that of Smith's method [196] in Table 

6.2. He used the Special Period Demand Shortfall (SPDS, as Relative Gap) 

as a intrinsic value to each Bank Holiday period, i.e., for a particular Bank 

Holiday period: SPDS is expected to be similar for the following year. 

It can be seen from Table 6.2 that the use of Relative Gaps (including 

Smith's) can improve the accuracy over the original ARIMA. But the results 

are still far away from that predicted by the approach proposed in this section. 

The key difference between them is that the Relative Gaps are the differences 

between the loads of holidays and that of normal periods, while the proposed 

approach is to use the earlier weekends as the reference. Because the holidays 

are regarded more or less as an extension of their weekends for consumers and 

the amount of their electrical demand on the holidays will not be very much 

different from that on weekends. With this in consideration, the weekend loads 

are then taken as reference for prediction in this approach. 

6.4.2 Including weather effects on holidays 

Load prediction for public holidays, so far, only takes the characteristics 

of past data, i.e., only reflecting what they were in the past. As weather 

conditions have effects on consumers' use of electricity, they will have great 

influence on the national holiday load as well. Because during the holiday, 

the industrial load shuts down, the main proportion of the overall loads is 

the domestic load and commercial load which are considerably affected by the 

weather condition changes. 

The proposed estimation method is based on the weekend loads preceding 

the holiday, which are also greatly influenced by the weather conditions. 

Based on the earlier estimation for holiday loads, weather effects are 

calculated in the following ways. 

First, the weather-sensitive part of the overall load on the past weekends 

is adjusted by their weather factors. Only maximum temperature is used, 
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in order that the weather-dependent loads correspond to the same weather 

conditions of the past holiday. The load/temperature rate is based on the load 

changes from the earlier weekends to this weekends. Saturdays and Sundays 

are separately considered, because their load characteristics are different from 

one another. 

Second, the same approximation method, as used in the earlier section, is 

used to determine the Saturday and Sunday weight on the holiday for previous 

years. After this is done, the preceding Saturday and Sunday loads of the 

current year are adjusted as well in order that the weather conditions on both 

days tone in with that of the predicted holiday. Finally, the holiday loads are 

estimated on the basis of the adjusted Saturday and Sunday loads. 

Table 6.3: Results of Prediction with Weather Considered 

for Public Holidays (1985) 

Approach Errors Easter- Summer- May- Spring-

(%) Monday bank day bank 

Without R.M.S. 3.04 1.40 5.79 3.93 

Weather Max. -5.84 3.00 9.71 -7.85 

Considered M.A.P. 2.62 1.05 5.30 3.27 

Coefficients 

/sat. 0.5 0.5 0.2 0.2 

/sun. 0.5 0.5 0.8 0.8 

With R.M.S. 2.51 1.40 5.64 3.60 

Weather Max. -4.73 3.00 9.28 -7.85 

Considered M.A.P. 2.17 1.05 5.13 2.79 

Coefficients 

/sat. 0.37 0.5 0.2 0.2 

faun. 0.63 0.5 0.8 0.8 
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The results of such an approach are listed in Table 6.3. A comparison of 

prediction results of with and without weather consideration is shown in Figure 

6.10. 

From Table 6.3 and Figure 6.10, it can be concluded that the prediction 

with weather considered performs better than that without the consideration of 

weather. This shows that the holiday loads are quite sensitive to the weather 

changes. The results for predicting the Summer Bank Holiday loads indicates 

that the weather condition of the holiday were similar to that in previous years, 

and of the preceding weekends. 

In conclusion, the proposed method can be used to predict normal 

Monday Bank Holiday load. The prediction accuracy can be improved by 

taking weather effects into consideration. 

6.4.3 Load prediction for Good Friday 

The method proposed in previous sections is based on the preceding 

weekend loads and the holiday loads in previous years. The reason is that 

Monday Bank Holidays can be regarded as the extension of weekends. Prediction 

of loads for Good Friday, however, is different, because the load pattern of 

Good Friday has the characteristics of Saturday loads. It has been proved 

infeasible in Table 6.1 to predict such loads even by modified ARIMA models 

either by R. G. 1 or by R. G. 2. A simple way of estimation would be to 

use a similar approach to that of Monday Bank Holidays. Instead of using the 

loads of the preceding weekends as the reference, the preceding Thursday loads 

are used as the reference for Good Friday. 

Weather effects on loads are also approximated for Good Friday in a 

similar way as in section 6.4.2. The results of testing are listed in Table 6.4. 

Figure 6.11 shows one of the results. 
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TITLE: Load Prediction for Specia1 Bo1idays 

FIGURE: Prediction for Good Friday (1985) 
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Table 6.4: Results of Prediction for Good Friday 

Years of Past Weather Condition Errors (%) 

Good Friday Considered R.M.S. M.A.P. Max. 

1 No 2.96 2.71 -5.39 

1 Yes 2.64 2.26 -5.39 

2 No 2.43 2.24 5.02 

2 Yes 2.37 2.14 5.02 

By this example, we can conclude that more past data available will 

lead to better prediction results, and the method with weather condition being 

considered certainly proves sounder than that without the consideration of 

weather conditions. 

6.5 Predicting loads of special holidays 

The greatest difficulty in predicting holiday load, so far, is to deal 

with the cases such as Christmas Day, Boxing Day, and New Year's Day, as 

they occur on a different day-of-week each year, unlike the ordinary Monday 

Bank Holidays. During these holidays, the load patterns do not resemble any 

weekend load profiles as the loads on ordinary holidays do. During these 

holidays, industrial loads behave differently according to what day-of-week the 

holiday is. However, it is found that the overall load shape on the same type 

of holidays of each year is very similar, i.e., little variation with days-of-week, 

although the magnitude was not the same when they occur on a different 

day-of-week. A weekday Christmas Day obviously demands more load than a 

weekend Christmas Day. This is because all the parts, except the industrial 

part which decreases from weekday to weekend, repeat themselves from year 

to year for the same type of holiday. Therefore, it is possible to use some 

modification factors to transfer the holidays effect from weekends to weekdays. 

That means if the holiday occurs on a weekday, no modification is needed, 
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or say, the modification factor is 1.0. If the holiday occurs on a weekend, 

modification factor which is greater than 1.0 is required. Different factors are 

required for Saturday and Sunday. After the factor is considered, the load will 

be at the same level for the same type of holiday. Different factors for different 

days-of-week are listed in Table 6.5. 

Table 6.5: Daily Holiday Correction Factors 

for S pedal Holidays 

Day type X-max day: Boxing day: New Year's Day: 

Monday 1.0 1.10 1.0 

Saturday 1.05 1.10 1.10 

Sunday 1.10 1.10 1.10 

Others 1.0 1.0 1.0 

Table 6.6: Results of Prediction for Christmas Day 

Using data Errors of Prediction (%) 
1983 1984 

R.M.S. M.A.P. Max. R.M.S. M.A.P. Max. 

1982 2.31 1.97 -4.82 

1983 2.46 2.16 -4.50 

1982 & 

1983 1.89 1.56 -3.34 
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Table 6. 7: Results of Prediction for Boxing Day 

Using data Errors of Prediction (%) 

1983 1984 

R.M.S. M.A.P. Max. R.M.S. M.A.P. Max. 

1982 2.85 2.21 6.36 

1983 1.61 1.36 -3.15 

1982 & 

1983 2.08 1.53 5.10 

Table 6.8: Results of Prediction for New Year's Day 

Using data Errors of Prediction (%) 
1984 1985 

R.M.S. M.A.P. Max. R.M.S. M.A.P. Max. 

1983 2.44 1.90 7.24 

1984 3.79 3.22 8.00 

1983 & 

1984 3.20 2.75 6.78 

By using the correction factors, the holiday load could be predicted on 

the basis of the loads of the same holiday in previous years. Tables 6.6 to 

6.8 listed the performance results for these holidays in 1983 and 1984. Figures 

6.11 to 6.13 represented the comparison of predicting load with the actual load 

for Christmas Day, Boxing Day and New Year's Day respectively. 

The prediction results in the above three tables are really remarkable 

with R.M.S. errors being all within 4%. It is generally held that the load 
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FIGURE: Prediction for Boxing Day (1984) 
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TITLE: Load Prediction for Specia1 Bo1idays 

FIGURE: Prediction for New Year's Day (1985) 
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prediction over the period from Christmas day to New Year's day is the most 

difficult, because some people still have their days off on holiday even though 

on weekdays. The overall load of weekdays during this period is about 50% 

- 80% of the normal working-day load only. The load of this period shows a 

mixture of weekday load with weekend load, with a considerable variation from 

one day to another. 

6.6 Predicting loads over periods between Christmas day and New Year's 

day 

During the periods between Christmas day and New Year's day (and 

the following two or three days), the actual loads on weekdays are a mixture 

of holiday loads and weekday loads. The reason is many people have their 

days off on holiday while some people have to keep on working in order to 

keep some industrial machinery and commercial activities running continuously. 

But the electrical demand seems to change from year to year indicated by the 

variation of load during the same period. It can be simply considered that 

more load consumed on Christmas day will result in more load being used on 

the following weekdays, simply because the people working on Christmas day 

have to work through the whole week. So, to predict the load of a day-of-week 

within this period, the similar load of the same day-of-week in the same period 

last year (or previous years) has to be used as a reference load. The correction 

factors for Christmas Day are used to modify the loads of reference day. 

Testing has been made for this period of two years and the results are 

shown in Tables 6.9 and 6.10. Figures 6.15 and 6.16 show two examples of the 

prediction results. 

Although weather conditions have a very strong effect on the holiday 

period loads, the situations can be different from that taken in 6.4.2 m that 

the load/temperature rate is difficult to determine. The weather-sensitive part 

can not be predicted precisely because there are too many uncertainties for it: 

the weighting factors of commercial, and domestic loads in the overall load; 
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TITLE: Load Prediction for Special Periods 

FIGURE: Prediction for 30/12/1984 (Sunday) 
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weather-sensitive loads inside each load category; response of the consumers 

towards the change of weather conditions. 

Table 6.9: Results of Predicting Load for Periods Between 

Christmas Day and New Year's Day (1983) 

Date Day-of-week Reference-day Error (%) 

R.M.S. MAX. 

27/12/1983 Tuesday 28/12/1982 2.87 7.00 

28/12/1983 Wednesday 29/12/1982 3.77 6.20 

29/12/1983 Thursday 30/12/1982 1.16 -2.68 

30/12/1983 Friday 31/12/1982 4.92 -14.00 

31/12/1983 Saturday 24/12/1983 2.56 6.50 

Table 6.10: Results of Predicting Load for Periods Between 

Christmas Day and New Year's Day {1984) 

Date Day-of-week Reference-day Error (%) 

R.M.S. MAX 

27/12/1984 Thursday 29/12/1983 2.67 5.60 

28/12/1984 Friday 30/12/1983 3.55 -6.50 

29/12/1984 Saturday 31/12/1983 2.80 5.49 

30/12/1984 Sunday 23/12/1984 3.10 7.90 

31/12/1984 Monday 24/12/1984 4.29 -7.14 

6. 7 Eliminating holiday effects on normal period prediction 

The holiday effect is not limited to the holiday itself, but also to the 

neighbouring days. The property of the holiday effects on neighbouring days 
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is greatly dependent on the model used: if the model of time series method 

is ARIMA with hourly and daily cycles only, then the prediction for the 

next two or three days following the holiday will be affected by the holiday 

loads. However, if the ARIMA model has a weekly cycle included as well, 

only prediction for the same day-of-week in the next week is affected. This 

is shown in Table 6.11 by testing the results of prediction of neighbouring 

days and weeks following the Spring Bank Holiday of 1983, and Summer Bank 

Holiday of 1984. From the table, it can be argued that the actual demand 

data for the periods of holidays cannot be employed by the predictors ( ARIMA) 

for modelling, otherwise, disappointing results might be obtained. Figure 6.18 

depicts the accumulative results of R.M.S. errors against lead time over one 

week using the actual load data by ARIMA with weekly cycle. 

Figure 6.18 shows the behaviour of the ARIMA model (including daily 

and weekly cycles) in predicting the load around the holiday period. Curve 

II presents the root-mean-squared error (in per cent) against lead time, for 

predicting loads from Tuesday until the Sunday in the holiday week. It 

shows that the Monday holiday load does not affect the load for the following 

days. Curve I in Figure 6.18 is the root-mean-squared error for predicting 

the whole week (from Tuesday until the next Monday) against the lead time. 

By comparison, we can see that the holiday effect, using the ARIMA model 

mentioned, was for the next normal Monday only, but not for the weekdays 

and weekends. 

So, the actual data recorded on the holiday must be avoided or replaced 

for further prediction. Some modification about the data must be done in order 

that the ARIMA model can be used further. It is processed in this way: 

For the weekdays and weekend (from Tuesday till Sunday), the actual load 

and the ARIMA model may be directly used for prediction. When predicting 

the load for the next Monday, the actual holiday loads have to be replaced by 

moving the actual Tuesday load to the holiday Monday and inserting a normal 

Tuesday load (the earlier Tuesday) as the load of this Tuesday. This is because 

the actual load data on that Tuesday which follows the holiday have the similar 
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pattern as that of normal Mondays: very low at the start of the day and then 

back to normal load on a working day. So, the actual loads of Tuesday can 

be used as the Monday load. And the normal Tuesday loads are then inserted 

for this Tuesday. In this way, the effects of the holiday on prediction will be 

diminished. 

Table 6.11 Effects of Holidays of ARIMA Method 

on Neighbouring Days and Weeks 

Date Error(%) Date Error(%) 

R.M.S. Max. R.M.S. Max. 

Holiday 30/5/1983 27/8/1984 

31/5/1983 7.68 14.71 28/8/1984 3.31 -7.08 

1/6/1983 5.74 16.24 29/8/1984 1.40 -4.91 

1st week 6/6/1983 25.61 -39.38 3/9/1984 21.98 -32.53 

7/6/1983 4.44 -8.27 4/9/1984 2.01 6.42 

8/6/1983 3.62 -9.87 5/9/1984 4.04 7.83 

2nd week 13/6/1983 2.42 -4.12 10/9/1984 2.93 -6.78 

14/6/1983 1.43 -3.24 11/9/1984 2.79 -7.98 

3rd week 20/6/1983 2.91 6.84 17/9/1984 1.62 -4.62 

21/6/1983 2.26 4.76 18/9/1984 2.29 5.10 

With this implementation, the overall performance of prediction for a 

whole week was shown in Figure 6.19 (see curve II) compared with that using 

the actual loads only. This was much improved over the prediction without 

any modification (see curve I). 
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6.8 Knowledge about special events 

Listed below is some knowledge about the dates of special events, which 

is stored in the knowledge base: 

[active holidays public-holidays [summer-bank-holiday 30 8 1982]]; 

[active holidays public-holidays [christmas_day 25 12 1982]]; 

[active holidays public-holidays [boxing_day 26 12 1982]]; 

[active holidays public_holidays [public-holiday 27 12 1982]]; 

[active holidays public-holidays [new_years_day 1 1 1983]]; 

[active holidays public-holidays [good.J'riday 1 4 1983]]; 

[active holidays public-holidays [easter_monday 4 4 1983]]; 

[active holidays public-holidays [may_day..holiday 2 5 1983]]; 

[active holidays public-holidays [spring_bank_holiday 30 5 1983]]; 

[active holidays public-holidays [summer_bank..holiday 29 8 1983]]; 

[active holidays public-holidays [christmas-day 25 12 1983]]; 

[active holidays public-holidays [boxing_day 26 12 1983]]; 

[active holidays public-holidays [new_years_day 1 1 1984]]; 

[active holidays public_holidays [good.J'riday 20 4 1984]]; 

[active holidays public-holidays [easter_monday 23 4 1984]; 

[active holidays public-holidays [may_day..holiday 7 5 1984]]; 

[active holidays public-holidays [spring_bank-holiday 28 5 1984]]; 

[active holidays public-holidays [summer_bank..holiday 27 8 1984]]; 

[active holidays public..holidays [christmas_day 25 12 1984]]; 

[active holidays public..holidays [hoxing_day 26 12 1984]]; 

[active holidays public_holidays [new_years_day 1 1 1985]]; 

[active holidays public..holidays [good_friday 5 4 1985]]; 

[active holidays public..holidays [easter..monday 8 4 1985]]; 

[active holidays public..holidays [may_day..holiday 6 5 1985]]; 

[active holidays public..holidays [spring_bank_holiday 27 5 1985]]; 

[active holidays public_holidays [summer_bank..holiday 26 8 1985]]; 

[active holidays public..holidays [christmas_day 25 12 1985]]; 

[active holidays public..holidays [boxing_day 26 12 1985]]; 

[active holidays public_holidays [new_years_day 1 1 1986]]; 
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[active days gmt-bst [29 3 1987]]; 

[active days gmt_bst [30 3 1986]]; 

[active days bst_gmt [26 10 1986]]; 

[active days gmt_bst [31 3 1985]]; 

[active days bst_gmt [27 10 1985]]; 

[active days gmt_bst [25 3 1984]]; 

[active days bst_gmt [28 10 1984]]; 

[active days gmt-bst [27 3 1983]]; 

[active days bst_gmt [23 10 1983]]; 

[active days bst_gmt [24 10 1982]]; 

[active christmas-day factor [saturday 1.05 sunday 1.10]]; 

[active boxing_day factor [saturday 1.10 sunday 1.10 monday 1.10]]; 

[active new_years-day factor [saturday 1.10 sunday 1.10]]; 

By storing these facts in the knowledge base, it is easy to find the 

day-type and the same type of day in previous years. For example, date of 

30 August, 1982 is a summer bank holiday (public holiday), so is 29 August, 

1983. And date 30 March, 1986 is the day when the time changes from GMT 

to BST while it changes from BST to GMT on 26 October, 1986. 

The last three lines store the correction factors for Christmans Day, 

Boxing Day and New Year's Day respectively depending on what days-of-week 

they are. 

6.9 Examples of programmes in POP-11 

The following two procedures show how the expert systems work m 

POP-11. 

Procedure I is used to find out what the day type is, a normal day-of­

week, or a public holiday. 
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define find_pu blic_day _type( day) ---+ speciaLday; 

vars day,speciaLday,dl,ml,yl,day_in,type,day...s,temp_day_up,temp_day_doWn; 

vars week_day,week_th,day _week; 

;;; variable declaration. 

if length(day) < 5 then 

day ---+ day _in; 

find_day(day) ---+ week_day; 

weekth_check (day) ---+ week_th; 

[""day "week_th "week_dayj ---+ day; 

endif; 

day(l) ---+ dl; day(2) ---+ ml; day(3) ---+ yl; 

["dl "'ml "'yl] ---+ day_ini 

iii to store date in variable day_in. 

[ ] ---+ speciaLdayi 

foreach [active holidays public_holidays [?type ??day...s]] do 

if day _in=day ...s then 

["type holiday] ---+ speciaLdayi 

endifi 

endforeachi 

,, search through the knowledge base if some holiday 

, has got the same date as day _in. 
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if speciaLday= [ ] then 

foreach [active holidays public..holidays [?type ??day..s]] do 

day--Ildays_follow(day..s,l) ---+ temp_day_up; 

day --11days.lollow( day ..s,-1) ---+ temp_day _down; 

if day=temp_day _up then 

["type run_up] ---+ speciaLday; 

elseif day=temp_day _down then 

[""type run_down] ---+ speciaLday; 

endif; 

endforeach; 

;;; try to find whether day_in is a day before (or after) a holiday 

;;; if the day_in is not a holiday. 

if speciaLday= [ ] then 

find_day(day) ---+ day_week; 

[normaLday "day_week] ---+ speciaLday; 

endif; 

endif; 

enddefine; 

So, the first element in speciaLday in the output of the procedure 

indicates the day-type: a holiday, a run-up (or run-down) day or a normal day. 
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Procedure II illustrates how to pick up the corrective factors for Christmas 

Day, Boxing Day, and New Year's Day if present day is one of such holidays. 

define type_factor(speciaLday,hoLdate,hoLref) ---+ f; 

;;; to pick up the correction factor for reference day. 

1.0 ---+ Lx; 

;;; assign initial value for reference day. 

if member(hd(rev(hoLref)),[saturday sunday monday]) then 

if present ([active %speciaLday(l)% factor [== %hd(rev(hoLref))% 

?Lx ==]]) then 

;;; doing nothing but pick up Lx. 

endif; 

endif; 

;;; for present day. 

1.0 ---+ f..n; 

if membeer(hd(rev(hoLdate)),[saturday sunday monday]) then 

if present ([active %speciaLday(l)% factor [== %hd(rev(dat_r))% 

?f..n ==]]) then 

iii doing nothing but pick up f..n. 

endif; 

endif; 

realof(Lx/f..n) ---+ fi 

enddefine; 
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6.10 Discussion and conclusion 

National holidays have a special influence on short-term load prediction, 

which often presents problems in producing satisfactory ans accurate prediction. 

This chapter has been devoted to the discussion of how to solve these problems, 

through the analysis of the characteristics of holiday loads and treating their 

features individually in the actual prediction process. 

Because the short period of load prediction lacks repetition of holidays 

which is of most concern in the procedure, the conventional time series methods 

prove to be unable to deal with the prediction of holiday loads. It is suggested 

in the chapter that they can be forecast separately from the neighbouring 

days by using different approaches. A new approach has been thus formed in 

the chapter to complete the task. This new approach uses the weekend load 

preceding the holiday as reference instead of relative gaps. 

Weather conditions also have a great influence on holiday loads as they 

do on normal loads. No load prediction can be ideal without considering the 

effects of weather conditions upon loads. This approach possesses the advantage 

of having the weather factors included in prediction process if these weather 

factors are adjusted in advance. However, other approaches neglect this and 

therefore can not fulfil the prediction of holiday loads. 

Predicting the loads of some special periods can also be meaningful, such 

as that of Christmas Day and New Year's Day. The author introduced for 

the first time the ways of estimating those loads. Having tested the method, 

the author found it feasible to produce good prediction results for those special 

periods by factoring the loads of same periods in past years depending on what 

days-of-week these holidays are. 

Another important finding in this study is that if more historical holiday 

data are available for use, better prediction results can be obtained for holiday 

load prediction. 
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Actual holiday load data must be altered or replaced in order that they 

will not influence the conventional time series method to predict loads for the 

neighbouring days. A simple replacement of the actual holiday loads by normal 

loads only, can diminish the holiday effects on neighbouring days when the 

ARIMA method of weekly cycle is used. 

The approaches for different holidays proposed in this chapter are simple 

and easy to use. The main computational time is spent on pattern matching for 

finding the appropriate load data in the past which are stored in the database. 

The employment of POP-11 makes it very efficient. 
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CHAPTER 7 

LOAD FORECASTING INCLUDING WEATHER EFFECTS 

7.1 Introduction 

Box-Jenkins time series methodology has been applied [2, 18, 65, 85, 

94, 126, 163, 191, 208, 234, 256] to short-term load forecasting, and shown 

to perform well in most cases. In short, the Box-Jenkins methodology is an 

iterative procedure by which a model is constructed. The process proceeds 

from the most simple structure, with the least number of parameters, to as 

complex a structure as is required to obtain an 'adequate' model - 'adequate' 

in the sense of yielding white residuals. Four steps are involved in building the 

model and performing prediction. The first step is an identification of structure 

(model) and employs sample autocorrelation patterns. After a structure has 

been chosen the next step involves an estimation of the coefficients inherent in 

the structure description. Next the optimal parameter estimates are inserted 

into the model to generate its estimated residuals. These are then subjected 

to diagnostic procedures to determine if they are indeed 'white'. If not, their 

sample autocorrelation function is used to hypothesise a new structure and the 

cycle is begun anew. If the model satisfies all diagnostic tests it may then 

be implemented for on-line testing. The benefits of such a methodology are 

many, but primarily one will always be assured of a model which has the 

fewest possible parameters while still explaining all the systematic variation in 

the random errors. As a whole, the method is to generate a model from the 

record of past load itself, to perform prediction on a series of 'white' noise. 

However, it has been realised [23, 54, 64, 92, 97, 132, 136, 182] that, in 

order to obtain an accurate prediction of future load, weather effect on electrical 

demand should not be neglected. Usually the overall load can be categorised 
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as non-weather- and weather-sensitive components. The seasonal cycle in the 

load is indirectly taken into account by the ARIMA model, because it takes 

more weighting on the recent data in the updating of the parameter estimates 

of the weather insensitive component. But when the weather conditions change 

abruptly, the weather-sensitive component has to be estimated separately. 

The most influential factors of weather conditions are temperature, wind 

speed, humidity and cloud cover, because they directly affect the heating load 

and lighting load. If weather information is used properly, the accuracy of load 

prediction can be improved. Some applications [32, 92, 127, 162, 182] introduce 

linear or non-linear transfer functions of temperature into the ARIMA model to 

provide multivariate predictor. Although some authors [18, 94, 162] presented 

better results by the introduction of such transfer functions, most do not favour 

it, because the model will become much more complicated, and need regular 

weather input. Otherwise, the model will be interrupted. 

Although it is proposed in chapter 4 that the overall load can be 

disaggregated into its components such as domestic heating load, commercial 

lighting load, on which weather effects can be easily taken into account, the 

disaggregated components can not be directly used in this chapter due to absence 

of proper data to validate the results. In order to simplify the load prediction 

procedure, the weather effect on loads is considered only for weekends. This 

is because the weather-sensitive loads make only a small contribution of the 

overall load during the weekdays. However, on the weekends, domestic loads are 

the dominant part of the overall load, and the weather-sensitive loads occupy 

a large amount of domestic load. Moreover, the developed ARIMA model can 

predict weekday loads with a satisfactory accuracy [79]. Consequently, weather 

conditions are used to be included in the model only for predicting the load 

for weekends. 

This chapter emphasises how load forecasting can be improved for week­

ends by taking the weather effect into consideration within an ARIMA model, 

rather than using a transfer function of temperatures. Due to limited available 

weather information, only the maximum temperature of a day is used as the 
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effective variable. The chapter is arranged as follows: section 7.2 discusses 

weather variables which have to be included in the prediction. Then follows 

the description of the data used for prediction including load and weather 

information. Section 7.4 presents the interface between FORTRAN 77 and 

POP-11. The next three sections will be devoted to the presentation and 

discussion of three modifications: in section 7.5, simple averaging of predicted 

load with the actual load is used for further prediction; section 7.6 takes into 

consideration quantitatively the weather information; then, in section 7. 7, real 

weather information is used to adjust the historical load data for prediction. 

A discussion and conclusion is drawn in section 7.8. 

7.2 Weather variables to be included in the models 

The relationship between the weather variables and electrical demand 

has to be found in order to predict further load on the condition that further 

weather conditions have been forecast for the predicted period of time. 

Some models [54, 97, 123, 131, 197, 224] have included many weather 

variables such as the maximum temperature, minimum temperature, wind speed, 

illumination, humidity, cloud cover by regression studies. Since these weather 

variables are provided by the Meteorological Office, there are sometimes errors 

in prediction. Use of such imprecise weather information could cause more 

load prediction errors compared with the univariate models. In addition, such 

multi-variate models need regular weather variable inputs when they are used 

for on-line prediction. Some models use selected weather variables, for example, 

the average daily temperature and the average wind velocity only. Because 

the relationship between the weather variables and the load is non-linear, some 

applications [92, 116, 127] use non-linear transformation of the temperature 

variable to formulate a linear weather-load model. One of the many possible 

transformations is of the form: 

{ 

TMP(i)- Til 
WV(i) = 0 

Tw- TMP(i) 

if TMP(i)> T11 

if Tw <TMP(i)< T11 

if TMP(i)< Tw 
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where Tw and Til are the fixed parameters of the transformation and TMP(i) is 

the average temperature on the ith day. This implies that the model is linear 

when the temperatures are higher (or lower) than the fixed parameters. Using 

this kind of transformation, Til and Tw have to be chosen carefully. 

However, the developed univariate ARIMA model generally performs well, 

especially when no abrupt changes exist in the past data and present load [79]. 

In order to make the most use of the advantage, the model is used to predict 

load for normal weekdays. For weekends, prediction can be improved by taking 

into account of weather effects. It is evident that the ARIMA model with 

weekly cycle 1s not disturbed very much by the weekday loads when it is 

used to predict loads for weekends. Therefore, only weather information of the 

weekends (previous and present) need to be added to the model to improve 

the prediction for the weekends. For example, only the weather data of past 

Saturdays or Sundays and of the present one are used. As stated earlier, too 

many weather variables may cause more errors in prediction because of weather 

forecast errors. Since the temperatures (maximum and minimum within a day) 

are the most influential factors of the weather information, and most large errors 

from the ARIMA model occur around the peak load time, the temperature, 

which causes the load change around peak time, should be modelled. In this 

case, only maximum temperatures of the weekends are introduced to improve 

the ARIMA model for weekend load prediction. 

7.3 Data for prediction 

So far, available data used to test the prediction performance are: 

Load data: 

Half-hourly recorded load data from the CEGB system, covering the 

whole area of England and Wales from the year of 1983 to 1985, stamped 

under the GMT time system. It is found that the loads on weekends have 

different demand characteristics from on weekdays, especially in the region of 

peak loads. The loads are found to be identical from one weekend to another. 
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Loads on weekends also change more frequently, during day-time and evening 

hours, than on weekdays. The data are reformatted into the form of a list of 

48 loads within 24 hours following the calendar date, in which indicators of the 

nth week of the year and of the day-of-week are included. For example, the 

following information is in database in order to be accessed for 24/6/1984: 

[24 6 1984 26 Sunday] 

[14101 13620 13204 12922 12719 12474 12253 11895 11815 11893 

12514 13131 14118 15276 16619 17863 18851 19748 20310 21025 

21519 22001 22312 22038 20666 19372 18635 18123 17626 17524 

17662 18121 18456 18613 18595 18672 18840 18707 18602 18600 

19444 20295 20521 19828 18071 16369 15021 13994] 

which means 24/6/1984 is the 26th Sunday with the load demand of 48 

half-hourly data in the list. 

As a result, load levels and date can be easily referred to. 

Weather data: 

Since detailed weather condition records which cover the same area as 

corresponding to the load data are not available, the only available weather 

information is that recorded by Heathrow airport, such as temperatures (both 

maximum and minimum), wind speed, and sun shine hours within one day. 

Because no meteorological forecast records are available to be used at each load 

prediction step, for the period under consideration, the load prediction errors 

due to incorrect weather forecast are neglected. 

The following weather data are stored in database in order to be accessed: 

[23 6 1984 25 saturday] 

[19.7 0 0 0] 

[24 6 1984 26 sunday] 

[18.3 0 0 0] 

[25 6 1984 26 monday] 
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[22.9 0 0 0] 

[26 6 1984 26 tuesday] 

[25.8 0 0 0] 

[27 6 1984 26 wednesday] 

[24.4 0 0 0] 

[28 6 1984 26 thursday] 

[17.4 0 0 0] 

[29 6 1984 26 friday] 

[18.8 0 0 0] 

[30 6 1984 26 saturday] 

[19.4 0 0 OJ 

[1 7 1984 27 sunday] 

[21.9 0 0 OJ 

In the list following the date, the weather data are stored in order of 

maximum temperature, minimum temperature, sun-rise and sun-set time. The 

"0" indicates non-data available. 

7.4 Interface between FORTRAN and POP-11 

The ARIMA model has been written in FORTRAN 77. The knowledge 

based system is written in POP-11 and all the programmes are run in POPLOG 

environment which supports POP-11, PROLOG and LISP languages. For the 

sake of simplicity and saving computation time, the subroutine of the ARIMA 

model is called directly in POP-11 by the function of "externaLload". 

The function of 'externaLload' is to access external procedures (written 

in FORTRAN, PASCAL, C) in POP-11. The 'ARIMAHOL' is a subroutine 

written in FORTRAN 77 to perform ARIMA prediction. The equivalent in 

POP-11 is named 'arimacall' which accesses the 'ARIMAHOL' by its objective 

file 'aihol.obj '. 

externaLload ( 'Larimahol', 

['aihol.obj'], 
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[ {type procedure} 

[ARIMAHOL arimacall]]); 

The following procedure is used as a medium to pass variables to and 

from the programme of ARIMA model. The variable 'lpast' is a vector of 

electrical demand data of the time series; 'mpast' is the length (number) of 

historical data while 'mpred' is the lead time of prediction. The three variables 

are produced in POP-11 procedures. When the three variables are passed to 

the ARIMA model, the ARIMAHOL is executed and the results are given to 

'pred' and 'rmserr' which are the predictions and the R.M.S. error respectively. 

define pred_calLarima(lpast,mpast,mpred} ---+ pred ---+ rmserr ---+ niter; 

vars lpast,mpast,mpred,pred,rmserr ,niter ,n past ,npred; 

;;; variable declaration. 

recordclass int32 dummy value:32; 

consint32{0,0} ---+ npast; 

consint32(0,0} ---+ npred; 

consint32{0,0} ---+ niter; 

mpast ---+ value(npast}; 

mpred ---+ value(npred); 

vectorclass vfloat decimal; 

initvfloat(mpast) ---+ past; 

for i from 1 to mpast do 

lpast(i) ---+ past(i); 

endfor; 

initvfloat(mpred) ---+ rmserr; 

initvfloat(mpred) ---+ pred; 

;;; the above is used for data linlc 

arimacall(past,npast,npred,rmserr ,pred,niter ,6,false); ;;; calling ARIMA. 

enddefine; 
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The variable 'lpast' is formed in POP-11 by different modifications of 

recorded historical data which are described in the next sections. 

7.5 Prediction by averaging predicted load with actual load 

The ARIMA model ((1, 0, 1)1 X (1, 0, 1)48 X (0, 1, 1)ss6 ) needs the pre­

vious six weeks of data for parameter estimation [79] in order to perform 

prediction. Since the load reflecting the unusual past weather conditions will 

affect further predictions, load data of the most recent weekends should be 

corrected for predicting the load corresponding to the present weather condi­

tions. In other words, if the weather conditions of the past weekends and the 

present one have the same trend (monotonically increasing or decreasing) m 

temperature changes, the past load data can be directly used in the model. If 

not, efforts should be made to modify the abnormal past load data under that 

particular past weather condition to an artificial one, so that more satisfactory 

load prediction can possibly be achieved for the current weather conditions. 

As has been stated earlier, the impact of weather conditions upon loads for 

weekends is more than on weekdays. Also as it has been seen in chapter six 

that, the ARIMA model for the CEGB system is sensitive to the loads of the 

same days-of-week in previous weeks, but not heavily affected by the loads of 

neighbouring days. So, if the weather conditions of the same days-of-week in 

previous weeks are not the same, nor of the same trend, then, the load increase 

or decrease, caused by the weather conditions of the same days-of-week, should 

be eliminated for further prediction. 

The simplest modification is to take the average of the predicted loads 

and the actual recorded loads of the previous day-of-week as past loads. If 

the prediction errors for the last weekend are very big, i.e., the predicted loads 

are far away from the recorded ones, it can be concluded that either the past 

weather conditions of the earlier weekends were contributors to the errors or the 

actual weather conditions of the day were special. The weather contribution for 

either case would be lessened for predicting the current loads if the predicted 

loads and the actual loads were averaged. 
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Table 7.1: Comparison of ARIMA with Load Averaging 

for 

Winter Saturdays 

Date Temp. ARIMA(%) Load-AVG(%) 

oc R.M.S. Max. R.M.S. Max. 

3/3/1984 8.0 5.34 13.81 3.57 10.35 

10/3/1984 8.1 2.22 -5.27 1.11 2.66 

17/3/1984 5.8 2.39 -4.01 3.15 -5.73 

24/3/1984 7.9 3.53 10.21 2.89 9.41 

Table 7.2: Comparison of ARIMA with Load Averaging 

for 

Winter Sundays 

Date Temp. ARIMA(%) Load-AVG(%) 

oc R.M.S. Max. R.M.S. Max. 

4/3/1984 7.3 5.92 11.82 4.71 10.91 

11/3/1984 10.5 1.23 2.56 3.56 6.89 

18/3/1984 5.8 2.42 -4.82 2.12 -3.78 

25/3/1984 7.8 7.07 19.85 6.75 19.89 
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Table 7.3: Comparison of ARIMA with Load Averaging 

for 

Summer Saturdays 

Date Temp. ARIMA(%) Load-AVG(%) 

oc R.M.S. Max. R.M.S. Max. 

9/6/1984 23.3 4.43 9.05 6.52 12.62 

16/6/1984 23.2 1.59 2.92 1. 76 4.16 

23/6/1984 19.7 2.53 -6.85 2.78 -7.06 

30/6/1984 19.4 2.92 8.05 1.75 4.38 

7/7/1984 28.2 1.05 2.91 2.08 5.32 

14/7/1984 19.9 2.74 -5.68 2.40 -5.60 

21/7/1984 27.3 2.97 5.35 1. 77 3.22 

28/7/1984 30.6 1.36 2.74 2.35 4.16 

4/8/1984 19.8 3.17 -8.63 3.12 -8.50 

11/8/1984 23.1 2.33 -4.78 2.06 -4.78 

18/8/1984 25.9 2.28 -5.20 2.43 -5.20 

25/8/1984 23.7 1.29 -4.13 1.38 -5.63 
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Figure 7.2 Comparison of ARIMA with Load Averaging 

of Summer Saturdays 
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Table 7.4: Comparison of ARIMA with Load Averaging 

for 

Summer Sundays 

Date Temp. ARIMA(%) Load-AVG(%) 

oc R.M.S. Max. R.M.S. Max. 

10/6/1984 24.6 4.14 8.43 5.60 11.59 

17/6/1984 25.3 1.14 4.29 2.10 4.69 

24/6/1984 18.3 2.67 -5.43 2.60 -4.68 

1/7/1984 21.9 2.14 4.73 1.30 3.26 

8/7/1984 31.7 2.87 7.06 3.64 8.21 

15/7/1984 18.9 3.76 -8.86 2.65 -5.78 

22/7/1984 25.8 5.16 8.64 3. 70 5.55 

29/7/1984 28.4 2.50 4.24 4. 72 8.09 

5/8/1984 19.8 4.81 -8.32 3.89 -7.46 

12/8/1984 23.6 1.87 -4.41 2.43 -8.25 

19/8/1984 28.8 1.61 3.40 2.24 -5.12 

26/8/1984 23.5 2.27 6.07 2.30 6.07 
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Prediction was tested over two periods (winter and summer) in 1984 by 

such a simple average. The results by this modification compared with that by 

the original ARIMA model are listed in Tables 7.1 to 7.4. The tables indicate 

root mean squared and maximum errors of 48 predictions for the next 24 hours 

when prediction was made at midnight on that day. 

From Tables 7.1 to 7.4, it can be seen that the prediction, simply by 

averaging the predicted load with the actual load for the previous day-of-week, 

does not always perform better than the original ARIMA prediction. The 

reason is simple. Because the averaged loads are based on the assumption 

that the corresponding weather conditions were normal and the recorded loads 

disagreed, in most cases, with the general load behaviour. This, nevertheless, 

might not be always true, as the present weather conditions do not naturally 

match the ones corresponding to the modified loads, and sometimes have sudden 

changes. So, it is necessary to determine what kind of load pattern and load 

level for the past load behaviour approaches closer to the present load under 

the current weather conditions. To solve the problem, the best way is perhaps 

to find out the decisive factors from all the contributing ones, although it seems 

to be very difficult to identify their relationships quantitatively. 

7.6 Prediction by error threshold detection 

Instead of simple averaging of predicted load with the actual load for 

previous day-of-week, a further modification has been investigated. An error 

threshold is used to determine the period of unusual loads occurring in previous 

weeks in order to eliminate the data noise. If the periods in which the errors 

were over the preset error threshold last longer than 2 hours, for example, 

it can be hypothesised that the loads were disturbed by a sudden change of 

weather conditions. In this case, the loads within such periods are averaged 

with the predicted ones for the previous day-of-week. If the errors are below the 

threshold, the actual load data are used directly. As an example, a threshold 

of 1.5 %, was tested over the same periods as those tested before, and the 

results are listed in Tables 7.5 to 7.8. 
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Table 7.5: Comparison of ARIMA with Error-threshold-detection 

for 

Winter Saturdays 

Date Temp. ARIMA(%) Load-AVG(%) 

R.M.S. Max. 

Error-T-D(%) 

R.M.S. Max. oc R.M.S. Max. 

3/3/1984 8.0 5.34 13.81 3.57 10.35 3.62 10.35 

10/3/1984 8.1 2.22 -5.27 1.11 2.66 1.12 2.67 

17/10/1984 5.8 2.39 -4.01 3.15 -5.73 3.07 -5.73 

24/3/1984 7.9 3.53 10.21 2.89 9.41 2.97 10.16 

Table 7.6: Comparison of ARIMA with Error-threshold-detection 

for 

Winter Sundays 

Date Temp. ARIMA(%) Load-AVG(%) Error-T-D(%) 

R.M.S. Max. R.M.S. Max. R.M.S. Max. 

4/3/1984 7.3 5.92 11.82 4.71 10.91 4.78 11.20 

11/3/1984 10.5 1.23 2.56 3.56 6.89 3.57 6.89 

18/10/1984 5.8 2.42 -4.82 2.12 -3.78 2.16 -4.00 

25/3/1984 7.8 7.07 19.85 6.75 19.89 6.77 19.90 
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Figure '1.4 Comparison of ARIMA with Error-threshold-detection 

of Winter Weekends 
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Table 7.7: Comparison of ARIMA with Error-threshold-detection 

for 

Summer Saturdays 

Date Temp. ARIMA(%) Load-AVG(%) Error-T-D(%) 

oc R.M.S. Max. R.M.S. Max. R.M.S. Max. 

9/6/1984 23.3 4.43 9.05 6.52 12.62 6.52 12.62 

16/6/1984 23.2 1.59 2.92 1.76 4.16 1.76 4.16 

23/6/1984 19.7 2.53 -6.85 2.78 -7.06 2.67 -6.85 

30/6/1984 19.4 2.92 8.05 1.75 4.38 1.73 4.38 

7/7/1984 28.2 1.05 2.91 2.08 5.32 2.06 5.32 

14/7/1984 19.9 2.74 -6.18 2.40 -5.60 2.60 -6.18 

21/7/1984 27.3 2.97 5.35 1.77 3.22 1.81 3.44 

28/7/1984 30.6 1.36 2.74 2.35 4.16 2.33 4.16 

4/8/1984 19.8 3.17 -8.63 3.12 -8.50 3.20 -8.62 

11/8/1984 23.1 2.33 -4.78 2.06 -4.78 2.12 -4.80 

18/8/1984 25.9 2.28 -5.20 2.43 -5.20 2.45 -5.20 

25/8/1984 23.7 1.29 -4.13 1.38 -5.63 1.43 -5.64 
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Table 7.8: Comparison of ARIMA with Error-threshold-detection 

for 

Summer Sundays 

Date Temp. ARIMA(%) Load-AVG(%) Error-T-D( %) 

oc R.M.S. Max. R.M.S. Max. R.M.S. Max. 

10/6/1984 24.6 4.14 8.43 5.60 11.59 5.59 11.59 

17/6/1984 25.3 1.14 4.29 2.10 4.69 2.06 4. 70 

24/6/1984 18.3 2.67 -5.43 2.60 -4.68 2.61 -4.90 

1/7/1984 21.9 2.14 4.73 1.30 3.26 1.34 3.26 

8/7/1984 31.7 2.87 7.06 3.64 8.21 3.59 8.21 

15/7/1984 18.9 3. 76 -8.86 2.65 -5.78 2.72 -5.78 

22/7/1984 25.8 5.16 8.64 3.70 5.55 3. 75 5.55 

29/7/1984 28.4 2.50 4.24 4.72 8.09 4. 72 8.09 

5/8/1984 19.8 4.81 -8.32 3.89 -7.46 3.92 -8.12 

12/8/1984 23.6 1.87 -4.41 2.43 -8.25 2.41 -8.25 

19/8/1984 28.8 1.61 3.40 2.24 -5.12 2.17 -5.13 

26/8/1984 23.5 2.27 6.07 2.30 6.07 2.28 6.07 
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From Tables 7.5 to 7 .8, it can be seen that this modification with error 

threshold detection is really a compromise between ARIMA and the simplified 

modification, even though it performs better for some special days. There 

are some problems associated with the modification, one of which is that, if 

it is used for on-line prediction, what threshold should be chosen? Should 

it be chosen off-line and kept constant on-line, or changed dynamically? The 

application of the modification will, of course, result in a number of practical 

problems. 

For both kinds of modifications, the actual effect of weather conditions is 

not really captured. As the ARIMA model has proved [79], the biggest errors 

usually occur around the time of midday, and the weather factor which would 

affect the load demand at that moment is the maximum temperature on the 

day. The maximum temperature is therefore thought to be the most important 

factor in causing prediction errors under normal circumstances. It is intuitively 

quite straightforward to determine the load change trend when the temperature 

change trend is known. 

Considering Table 7. 7, if maximum temperatures change monotonically 

on the days of which the recorded load data are used for prediction, then the 

univariate ARIMA gives better results than that from the modified approaches. 

For example, to predict load for the date of 28/7/1984 and 18/8/1984, the 

maximum temperatures increase gradually from 19.9°C and 19.8°C in the last 

days-of-week and to 30.6°C and 25.9°C on the current days respectively, the 

decreased loads, caused from the increasing temperatures, can be predicted by 

ARIMA implicitly. So predictions are good with R.M.S. errors of 1.36 % and 

2.28 % only. However, for the date of 4/8/1984, the maximum temperatures do 

not change monotonically. There is an increase from 27.3°C to 30.6 °C, then 

a dramatic decrease to 19.8 °C for the current day. In this case, the ARIMA 

model cannot eliminate the load variation caused by the effect of weather 

conditions. Thus, prediction error is as high as 3.17 %. Similar examples can 

be found for Sundays in Table 7 .8. 
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Table 7.9: Comparison of ARIMA with Combined Prediction 

for 

Winter Saturdays 

Date Temp. ARIMA(%) Load-AVG(%) Combined-P(%) 

oc R.M.S. Max. R.M.S. Max. R.M.S. Max. 

3/3/1984 8.0 5.34 13.81 3.57 10.35 3.57 10.35 

10/3/1984 8.1 2.22 -5.27 1.11 2.66 2.22 -5.27 

17/10/1984 5.8 2.39 -4.01 3.15 -5.73 3.15 -5.73 

24/3/1984 7.9 3.53 10.21 2.89 9.41 2.89 9.41 

Table 7.10: Comparison of ARIMA with Combined Prediction 

for 

Winter Sundays 

Date Temp. ARIMA(%) Load-AVG(%) Combined-P(%) 

oc R.M.S. Max. R.M.S. Max. R.M.S. Max. 

4/3/1984 7.3 5.92 11.82 4.71 10.91 4.71 10.91 

11/3/1984 10.5 1.23 2.56 3.56 6.89 1.23 2.56 

18/10/1984 5.8 2.42 -4.82 2.12 -3.78 2.12 -3.78 

25/3/1984 7.8 7.07 19.85 6.75 19.89 6.75 19.89 
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Figure 7. 7 Comparison of ARIMA with Combined Prediction 

of Winter Weekends 
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Table 7.11: Comparison of ARIMA with Combined Prediction 

for 

Summer Saturdays 

Date Temp. ARIMA(%) Load-AVG(%) Combined-P(%) 

oc R.M.S. Max. R.M.S. Max. R.M.S. Max. 

9/6/1984 23.3 4.43 9.05 6.52 12.62 4.43 9.05 

16/6/1984 23.2 1.59 2.92 1.76 4.16 1.76 4.16 

23/6/1984 19.7 2.53 -6.85 2.78 -7.06 2.53 -6.85 

30/6/1984 19.4 2.92 8.05 1.75 4.38 2.92 8.05 

7/7/1984 28.2 1.05 2.91 2.08 5.32 2.08 5.32 

14/7/1984 19.9 2.74 -6.18 2.40 -5.60 2.40 -5.60 

21/7/1984 27.3 2.97 5.35 1.77 3.22 1.77 3.22 

28/7/1984 30.6 1.36 2.74 2.35 4.16 1.36 2.74 

4/8/1984 19.8 3.17 -8.63 3.12 -8.50 3.12 -8.50 

11/8/1984 23.1 2.33 -4.78 2.06 -4.78 2.06 -4.78 

18/8/1984 25.9 2.28 -5.20 2.43 -5.20 2.28 -5.20 

25/8/1984 23.7 1.29 -4.13 1.38 -5.63 1.38 -5.63 
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Table 7.12: Comparison of ARIMA with Combined Prediction 

for 

Summer Sundays 

Date Temp. ARIMA(%) Load-AVG(%) Combined-P(%) 

oc R.M.S. Max. R.M.S. Max. R.M.S. Max. 

10/6/1984 24.6 4.14 8.43 5.60 11.59 4.14 8.43 

17/6/1984 25.3 1.14 4.29 2.10 4.69 1.14 4.29 

24/6/1984 18.3 2.67 -5.43 2.60 -4.68 2.60 -4.68 

1/7/1984 21.9 2.14 4.73 1.30 3.26 1.30 3.26 

8/7/1984 31.7 2.87 7.06 3.64 8.21 2.87 7.06 

15/7/1984 18.9 3.76 -8.86 2.65 -5.78 2.65 -5.78 

22/7/1984 25.8 5.16 8.64 3. 70 5.55 3. 70 5.55 

29/7/1984 28.4 2.50 4.24 4.72 8.09 2.50 4.24 

5/8/1984 19.8 4.81 -8.32 3.89 -7.46 3.89 -7.46 

12/8/1984 23.6 1.87 -4.41 2.43 -8.25 2.43 -8.25 

19/8/1984 28.8 1.61 3.40 2.24 -5.12 1.61 3.40 

26/8/1984 23.5 2.27 6.07 2.30 6.07 2.30 6.07 
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It is apparent that better prediction may be obtained if the maximum 

temperatures change monotonically from past days-of-week to the present day, 

then the real recorded load data can be directly used for prediction by the 

ARIMA. Otherwise the average of predicted load with actual load of the 

previous day-of-week is used to replace the actual load for that day m the 

ARIMA model. All these are written in the form of production rules m the 

prediction procedures. The results are presented in Tables 7.9 to 7.12. 

There are some unexpected results in Table 7 .11. One example is to 

predict load for the date of 30/6/1984. The R.M.S. error from the original 

ARIMA model is 2.92 % with a maximum error of 8.05 %, while the R.M.S. 

error from load averaging is 1.75 % with maximum error of only 4.38 %. If we 

examine the maximum temperature change trend, it is found that the maximum 

temperature of the previous day-of-week is only 19. 7°C, which is much closer 

to 19.4°C of the predicted day, while the earlier maximum temperature is as 

high as 23.2°C. Because the prediction of load averaging stems from the average 

of predicted load which may be corresponding to 23°C approximately, and the 

actual load corresponding to 19. 7°C; the temperature corresponding to this 

averaged load may be better located between 23.2°C and 19.4°C than 19.7°C. 

A similar explanation may also be given for the result of date 10/3/1984 in 

Table 7.9, even though the difference is very slight. 

This gives rise to the necessity of using the actual temperatures quanti­

tatively, which is analysed in the next section. 

7. 7 Prediction by employing actual weather information 

If we simplify the relationship between weather-sensitive load P3 and the 

temperature changes, as follows: 

P3 (d, t) = g(t)(T(d, t) - TN (d, t)) 

where: 
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T(d,t) is the actual temperature at time t of day d; 

TN ( d, t) is the expected temperature at time t of day d; 

g(t) is a multiplicative factor to give the additional consumption due 

to temperature change (in MW ;oc), referred to as load/temperature variation 

rate. The function g( t) is calculated by dividing the load changes by the 

corresponding temperature changes. 

Because only maximum temperature of a day is available, it is realised 

that T and TN may not occure at the same time t. So, g(t) is the average 

load/temperature variation rate. In addition, the life-style may be different 

from one day to another, g(t) can be different on Saturday from on Sunday. 

So, calculation of g( t) is simply based on the load and temperature differences 

of the same days-of-week of two adjacent weeks. 

There is a rule applied in the adjustment of g(t). Namely, the load 

change rate over temperature g(t) should be negative, which means: 

1) a positive load difference if the temperature difference is negative; 

2) a negative load difference if the temperature difference is positive; 

The reason is that, if temperature goes high (positive temperature dif­

ference), less electricity is needed for heating, and the whole load decreases 

(negative load changes); and, if temperature drops, an increasing load will be 

observed. So, the load/temperature variation rate, which is calculated from the 

past load and weather data, should be set to zero or an appropriate negative 

value if it is positive. 

Since there are measurement errors in both load data and temperatures, 

and sometimes the consumers are not so sensitive to slight changes of weather 

conditions. That means if temperature changes slightly; weather-sensitive load 

variation can be ignored. A temperature change threshold can probably be 

used to take this into account. Since the temperature change is calculated in 

the following way: 
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the following rule can be applied: 

If d(T) ~ 1.0, then no adjustment is needed for the variation 

of load because T2 is nearly the same as T1 • 

Here, 1.0 is referred to the temperature threshold. 

It might be necessary to set different temperature thresholds for different 

seasons because of the different sensitivity of weather-dependent load to weather 

changes. In spring, consumers are more sensitive to weather changes than in 

summer, so a lower temperature threshold can be used in spring than m 

summer. 

Thus, the past load data can be converted by adjusting weather-sensitive 

load, to match the weather conditions which follow a smooth trend with that 

of the present day. 

Testing results are listed in Tables 7.13 to 7.16 in which 1.0°C and 

1.5°C are chosen as temperature thresholds for spring and summer seasons 

respectively. 

It is apparent from the tables that the performance of modification 3 

("weather") is on the whole better than that of the A RIMA, especially for the 

cases in which temperatures change irregularly. For example, to predict the 

load for the date of 21/7/1984, the maximum temperatures change from 28.2°C 

to 19.9 °C in the previous two weeks, and then to 27.3°C of the present day, 

the recorded load for date of 14/7/1984 is adjusted so that it corresponds to 

the temperature in the middle point of 28.2°C and 27.3°C, i.e., 27.7°C. The 

load change rate over the temperature g( t) is simply determined by the load 

variation over temperature changes from 7/7/1984 to 14/7/1984. 
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Table 7.13: Comparison of ARIMA with Weather-consideration 

for 

Winter Saturdays 

Date Temp. ARIMA(%) Weather(%) 

R.M.S. Max oc R.M.S. Max. 

3/3/1984 8.0 5.34 13.81 3.21 10.11 

10/3/1984 8.1 2.22 -5.27 1.28 -2.74 

17/3/1984 5.8 2.39 -4.01 2.39 -4.01 

24/3/1984 7.9 3.53 10.21 2. 73 8.95 

Table 7.14: Comparison of ARIMA with Weather-consideration 

for 

Winter Sundays 

Date Temp. ARIMA(%) 

oc R.M.S. Max. 

4/3/1984 7.3 5.92 11.82 

Weather(%) 

R.M.S. Max 

5.92 11.82 

11/3/1984 10.5 1.23 2.56 1.34 2.89 

18/3/1984 5.8 2.42 -4.82 1.27 3.54 

25/3/1984 7.8 7.07 19.85 6.48 19.88 
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Table 7.15: Comparison of ARIMA with Weather-consideration 

for 

Summer Saturdays 

Date Temp. ARIMA(%) Weather(%) 

oc R.M.S. Max. R.M.S. Max 

9/6/1984 23.3 4.43 9.05 4.20 8.65 

16/6/1984 23.2 1.59 2.92 1.34 2.92 

23/6/1984 19.7 2.53 -6.85 2.53 -6.85 

30/6/1984 19.4 2.92 8.05 2.35 6.36 

7/7/1984 28.2 1.05 2.91 1.05 2.91 

14/7/1984 19.9 2.74 -6.18 2.41 -5.62 

21/7/1984 27.3 2.97 5.35 1.91 3.46 

28/7/1984 30.6 1.36 2.74 1.59 3.06 

4/8/1984 19.8 3.17 -8.63 2.47 -7.56 

11/8/1984 23.1 2.33 -4.78 2.09 -4.80 

18/8/1984 25.9 2.28 -5.20 2.28 -5.20 

25/8/1984 23.7 1.29 -4.13 1.29 -4.13 
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Table 7.16: Comparison of ARIMA with Weather-consideration 

for 

Summer Sundays 

Date Temp. ARIMA(%) Weather(%) 

oc R.M.S. Max. R.M.S. Max 

10/6/1984 24.6 4.14 8.43 3.46 6.84 

17/6/1984 25.3 1.14 4.29 1.59 5.03 

24/6/1984 18.3 2.67 -5.43 2.67 -5.43 

1/7/1984 21.9 2.14 4.73 1.44 3.56 

8/7/1984 31.7 2.87 7.06 2.38 6.04 

15/7/1984 18.9 3.76 -8.86 2.50 -5.47 

22/7/1984 25.8 5.16 8.64 4.07 6.05 

29/7/1984 28.4 2.50 4.24 3.12 5.49 

5/8/1984 19.8 4.81 -8.32 2.86 -6.37 

12/8/1984 23.6 1.87 -4.41 2.00 -7.28 

19/8/1984 28.8 1.61 3.40 1.61 3.40 

26/8/1984 23.5 2.27 6.07 2.34 6.07 
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It is concluded that the general prediction should be performed with the 

use of the following production rule as: 

If the temperatures change monotonically, then the real 

load data are directly used to predict by ARIMA. If not, 

actual load should be replaced by the artificial load which 

corresponds to the natural weather changes. 

7.8 Discussion and conclusion 

A new approach has been presented in this chapter that takes weather 

effects into a univariate ARIMA model. The recorded historical load data have 

been modified with the weather information (historical and present) by the 

knowledge based system. Load prediction is made by the ARIMA model based 

on modified historical load. The analysis and testing show that weather has 

a significant influence on electrical loads, especially on the loads of weekends. 

But the effects of weather variables on load are complex, so, it is very difficult 

to express precisely the relationships between each weather variable and its 

corresponding components, unless each weather-dependent component, such as 

heating and lighting loads for each end-use, is measured and studied. 

There is a time delay between the change of consumer's utilisation of 

electricity and the weather changes. The load changes reflecting weather changes 

are aifto influenced by some psychological factors, e.g., if the current day and 

the one preceding the day are cold days, more load may be needed for the 

current day than the load on the preceding day. 

So, if all the contributing factors are known, good prediction may be 

expected. But, with the restriction that only the total load data of CEGB 

area and limited weather data recorded at Heathrow airport are available, some 

improvements can probably be obtained by taking the existing information into 

the well-developed univariate ARIMA model which has performed satisfactorily 

under normal situations. 

- 246 -



Three modifications have been made to the historical load data. The 

first one is to take the average of predicted load and the actual load to replace 

the actual load for the same day-of-week in previous week. The second one is 

to use the error threshold to determine whether the actual load data should be 

modified or not. The third one is to use the load/temperature rate to modify 

the actual load data. Then the ARIMA model is used to predict weekend 

loads. 

The ARIMA model gives good prediction results when the changes of 

contributing factors are in the same direction; Otherwise if the weather changes 

abruptly, the actual weather data have to be utilised to adjust the past loads. 

When the maximum temperatures of the previous two Saturdays or 

Sundays and the present one do not decrease (or increase) monotonically or 

change irregularly, the recorded load of last Saturday or Sunday is replaced for 

further prediction by an artificial load which is corresponding to the weather 

conditions that make the weather condition change in one direction. The 

artificial load is obtained by modifying the actual load by the loadftemperture 

variation rate which is calculated based on the earlier load and temperature 

data. 

Production rules have been written to chose the approprite modifition to 

adjust the historical load data for prediction. 

Although only the maximum temperature of 24 hours at Heathrow airport 

is used as the effective factor, the prediction seems promising. If more knowledge 

such as the load change rate per degree of temperature is obtained, better results 

can be expected. It is certain that if more weather information, which reflects 

the real weather conditions over the same area as the demand does, is available, 

then the actual influence of weather condition changes on electrical demand can 

be studied and the future demand can be estimated with better accuracy. 
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CHAPTER 8 

CONCLUSION 

8.1 Conclusion 

This thesis has presented the results of a study of short-term load 

forecasting with special emphasis on special events by using knowledge based 

expert system. The investigation has been based on the CEGB system load. 

Power system operation and control starts with load prediction which is 

to forecast electrical demand 2-4 hours or even days ahead in order to provide 

generation targets to power suppliers. 

Although the recorded load data has been shown to be a random and 

stochastic process, the system load shows strong periodical components such as 

daily, weekly and seasonal cycles. The periodicity makes the load predictable. 

For the CEGB system load, the weekly cycle has been found to have a stronger 

effect than the daily cycle. 

From the viewpoint of end-use, some part of the electricity is used for 

heating and lighting. So, any changes in weather conditions will definitely alter 

the use of electricity, and consequently, the load demand. 

The most profound weather variables in the U.K. are the temperature 

and illumination conditions. Changes of these variables have been found to 

directly affect the electrical demand. 

The commonly used methods for load prediction are based on the periodic 

characteristics of load demand and the causal effects of weather conditions. A 
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regression method is adopted to predict the weather-dependent load. The spec­

tral expansion method can be used to extract the load variation due to weather 

influence by eigen-function and eigen-values. The pattern recognition method, 

on the other hand, classifies all the historical load records into appropriate 

classes according to their similar attributes. In practice, however, it can not be 

put into use because of the large proportion of misclassifications. In practice, 

the choice of a specific method is dependent upon considerations such as the 

required prediction accuracy, availability of input data, ease of application, and 

cost of adoption. 

The A RIMA models (based on Box-Jenkin 's time senes analysis) have 

been shown to be the most suitable models for load forecasting. Since a proper 

ARIMA model can reflect the periodicity of the load demand, and have more 

weighting on the more recent loads, it can implicitly consider the weather 

influence on load. Many people have developed multi-variate ARIMA models of 

electrical demand and the influential factors. Unfortunately, the results showed 

not much improvement over the univariate model but more computation. The 

well-developed univariate ARIMA model with daily and weekly cycles can give 

a reasonable accuracy with acceptable computation time for predicting weekday 

loads. It can be adaptive without much human intervention, as opposed to the 

multi-variate model which needs regular inputs. 

On the basis of the ARIMA model, this thesis has investigated to improve 

the load prediction of weekend loads which are often affected by weather 

condition changes. Due to limited available weather data, only the maximum 

temperatures of 24 hours have been used as the dominant variable. Instead of 

using a transfer function of temperature, some modification is made to the load 

data, which are used as a part of the historical data, only when the temperatures 

do not change in the same direction (monotonically). The load/temperature 

rate, which has been used to correct the load data corresponding to abnormal 

weather conditions, has been drawn from earlier load data and temperature 

data. After the load data have been corrected, the ARIMA model has been 

used to perform prediction. The results show some improvement over the 

original univariate ARIMA model on weekend load predictions. 
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When the time system changes from GMT to BST (or vice versa), the 

load demand has been shown not just to move forward or backward by one 

hour. In fact, the load shape has changed, especially around peak load time. 

The reason is that change of the time system has altered the life-style by one 

hour, but the load which was used for lighting does not follow the clock time 

very much. So, it has been shown necessary to disaggregate whole load into 

its components. 

Based on the understanding about the usage of maJor consumers such 

as industrial, commercial, and domestic loads, as well as the sub-components, 

an appropriate curve is assigned to represent the demand for each component. 

As collecting the end-use load data for each component is a complex, time­

consuming, and expensive process, disaggregation . of the whole load into its 

composites has been found to be necessary in order to predict load around time 

change-overs. The study has applied the heuristic methods to disaggregate the 

overall load. Although there are no recorded data to validate the results of 

disaggregation, the curves obtained can be used for predicting the effects of 

time change-overs. 

The approach proposed in this thesis for prediction of system load around 

time change-overs is based on the idea that the rest of load except the lighting 

load, which is assumed to be determined by sun-rise and sun-set time, is 

altered by one hour. By predicting the two parts separately, the effect of time 

change-overs can be forecast without the use of load data of previous years. 

This approach can be comparable with the most commonly used Relative Gap 

method. 

Prediction of electrical load for public holidays is another problem. The 

usual mathematical model cannot accurately predict holiday loads, because there 

is not adequate historical load data within the time range of consideration. In 

England and Wales, the normal bank holidays are pre-determined on Mondays, 

and their load demand follows a similar pattern from year to year. Because 

of the load growth trend, it is not sufficient to simply use the recorded load 

data from previous years as the prediction. It has been observed that the 
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approach of using the preceding Saturday and Sunday loads to determine the 

load level, can improve the prediction accuracy over that obtained by using the 

historical holiday load data only. The approach can also take into consideration 

the weather effects on holiday loads. Difficulty is also found in predicting 

load for the special holidays such as Christmas Day and New Year's Day. 

Since the load level of the holiday will change according to the day-of-week 

on which the holiday is scheduled, knowledge about this 1s used to predict 

the load by production rules which take different corrective factors to modify 

the historical load depending on what days-of-week the holidays are. Much 

difficulty is involved in prediction of load for the period between Christmas Day 

and New Year's Day. During that period, load demand is totally governed by 

the number of people working on holidays. Prediction for this case must also 

be based on knowledge and expertise. It is dealt with by the approach which 

applies production rules to pick up appropriate reference loads and modify the 

loads. 

Holiday effects are not only important in predicting the holiday load 

itself, but the recorded holiday load will also affect the model for further 

prediction after the holiday. It has been shown that the effect can be avoided 

by replacing the actual data by ordinary load data of the same day-of-week. 

Therefore, as has been clearly shown in this thesis, the whole prediction 

procedure can be greatly improved by knowledge about the behaviour of the 

system load. 

In conclusion, a good prediction needs enough information, data, and 

knowledge, as well as the application of a powerful computer. The knowledge 

based system can improve prediction performance of traditional mathematical 

methods. 

8.2 Future work related to load prediction 

This thesis represents a significant improvement of load prediction by 

combining knowledge with mathematical models. There is, however, much work 
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to do m the future which is related to load prediction. 

As stated earlier, knowledge can improve the accuracy of load prediction, 

thus, more experience and knowledge can be acquired and obtained. For 

example, the television "pick-up" is still a problem to be solved. All the 

knowledge should be refined and improved. Better knowledge representation 

can also be investigated. 

As to the mathematical model, a method can be developed to forecast 

the probability of the prediction as well as the probability of prediction errors. 

Both probabilities (or certainty factors) may be obtained by combining the 

probabilities of forecasting influential factors with the method. 

It has been noticed that there is no perfect algorithm which can include 

all those causal factors, it may be sensible to apply appropriate knowledge to 

combine the prediction results from two or more methods. 

Since the electrical load varies over the day, the week, and the seasons 

of a year, more and more attention has been paid to load management which 

attempts to "flatten" or "reshape" the load demand so that the overall operation 

is more economic. Load management is to monitor and control the use of some 

of the electrical utilisation so that the peak load can be reduced. One example is 

to use off-peak storage heating for domestic heating, for instance, the "economy 

7" load in the U.K.. Spot pricing is another means to alter the use of 

electricity. As a result of implementation of tariffs and spot pricing, the overall 

load shape is influenced. So, in future work on load prediction, the effect of 

load management has to be included in the algorithm so that the result 1s 

much close to the actual demand. 
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APPENDIX 1 

CALCULATION OF AUTOCORRELATION FUNCTION 

For a times series z(t), t = 0, 1, 2, ... , n, its autocovariance at lag k is 

defined as: 

"fk = cov[Zt, Zt+k] 

= E[(Zt - JL)(Zt+k - JL)] 

where JL is the mean of the process: 

JL = E[(Zt)] 

The autocorrelation function at lag k is 

where u; is the variance of the process. For a stationary process, u; = 'YO· 

Thus, the autocorrelation function at lag k is 

"'k Pk =-
'Yo 
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which implies that Po = 1.0. 

The above is the theoretical autocorrelation function. A number of 

estimates of the autocorrelation function have been suggested by statisticians. 

But the most satisfactory estimate of the kth lag autocorrelation function Pk 

IS: 

where: 

1 N-k 

ck = N L (zt - z)(zt+k - z), k = 0, 1, 2, ... , K 
t=l 

is the estimate of the autocovariance "'k, and z is the mean of the time senes: 

1 N 
z=-Ezt 

N t=l 

The autocorrelation function reveals how the correlation between any two 

values of the series changes as their separation changes. Therefore, it can be 

used to detect periodicals in the time series. 
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APPENDIX 2 

LOAD FORECASTING PACKAGE 

The overall load forecasting package consists of two parts: an ARIMA 

{auto-regressive integrated moving average) model and a knowledge based system. 

The whole prediction package is shown in the figure. 

There are four components in the package: input, predictor, comparison 

and updating. 

Input: 

input the time and date to be forecast by users. 

Predictor: 

There are two parts in the predictor: 

One is an ARIMA model which is used to predict normal weekday loads 

and weekend loads {including weather influence for weekend load prediction); 

and another one is the knowledge based system used to predict loads of special 

events. 

When the ARIMA model is called, historical data are required to pass to 

the programme written in FORTRAN 77 in order to estimate the paramaters. 

The knowledge based system is written in POP-11. 
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Comparison: 

compare the forecasting results with the in-coming actual data. 

Updating: 

If the prediction is based on the ARIMA model, then the model param­

eters are updated; If the special event knowledge gives the prediction, then the 

knowledge is updated. 

The following procedure illustrates the above package, which can predict 

loads of any day in 1985 (while some loads of 1983 and 1984 are stored 

in database). If it is a holiday, 24 hours of prediction from the midnight is 

performed. For further specific time with specific lead time, the user is required 

to input data. In the procedure, plist: prediction load in MW; act: actual 

data in MW; eJist: error list in %; rmserr: r.m.s. error of the prediction. 
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define prediction( ) ~ plist ~ act ~ e_list ~ rmserr; 
vars rms_error ,niter ,rmserr ,hoLdate,11,lrest,inf,yin,yini; 
vars known,knownlist,partknownlist, unknownlist, wea...database; 
vars tues_day1 ,tues_day2 ,lrest 1, tuesJ.oad1 ,tuesJ.oad2 ,lrest3; 
;;; variable declaration. 
;;; request user to input date: 
'input the date (day month year)'==> 
[ ] ~ hoLdate; 
for s from 1 to 3 do 

inputJ.tem( ) ~ item; 
[""hoLdate "item] ~ hoLdate; 

endfor; 
;;; search through data base to find whether the date is a holiday. 
find_public_day _type(hoLdate) ~ speciaLday; 
if speciaLday(2)="holiday" then 

lb: 

;;; if it is a holiday, call the procedure to predict. 
pred_hol(hoLdate,speciaLday) ~ plist ~ act ~ eJ.ist ~ rmserr; 

;;; request the user whether it is necessary to predict with lead 
;;; time ( <24 hours). 
'Do you like to predict the load at t with lead time h? ( "y" ,or "n") ... '==> 
input_item( ) ~ yin; 
if yin= "y" then 

;;; if yes, input the time. 
input_time( ) ~ t ~ h; 
;;; based on prediction of "pred_hol", correct older prediction 
;;; error to new prediction, to output p: prediction value; 
;;; a: actual value; e: error in %; 
hoLt_h(plist,llist,act,t,h) ~ p ~ a ~ e; 

elseif yin= "n" then 
;;; do nothing; 

else 
;;; if no input, keep on requesting. 
goto lb; 

endif; 
goto Lend; ;;; to exit. 

else 
;;; if not a holiday, to see whether is a Monday following the Monday 
;;; Bank Holiday? e.g., the previous Monday is a holiday? 
day ..ndays_follow(hoLdate,-7) ~ reLday; 
find_public_day_type(reLday) ~ speciaLday; 
if speciaLday(2)="holiday" then 

'The day of last week is: '==> speciaLday==> 
day..ndays_follow(reLday,-6) ~ tues_day1; 
day_ndays_follow(reLday,1) ~ tues_day2; 
day ..ndays.lollow(hoLdate,-1) ~ last_day; 
day ..ndays_follow(hoLdate,-41) ~ first_day; 
if present ([== "first_day ?11 ??lrestl [""tues_day1 ==] 
?tues_load1 ??lrest2 [""reLday ==] ?hoLI [""tues_day2 ==] 
?tues_load2 ??lrest3 [""hoLdate ??inf] ?12 ==]) then 

{"first_day "11 ""lrestl [""tues_day1] 
"tues_load1 ""lrest2 [""reLday] "tues_load2 
[""tues_day2] "tuesJ.oad1 ""lrest3} ~ knownlist; 
;;; is yes, replace the Monday Bank Holiday loads, 
;;; form historical loads and call the ARIMA. 
goto Ia; 
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else 
'no proper past data for prediction ... '==> 
goto Lend; ;;; to exit. 

endif; 
else 

;;; to find whether the day is around time change-overs. 
hoLdate(3) ~ year; 
hoLdate(2) ~ month; 
if month~10 and present ([= = bsLgmt [??day ~year]]) then 

[""day ~year] ~ day1; 
day_ndaysJollow(day1,1) ~ new_day; 
day _ndays_follow(hoLdate,O) ~ hoLdate; 
if new_day(4)=reLday(4) then 

'the reference day of last week is around change-over: 
bst - gmt!'==> 

endif; 
if new_day(4)=hoLdate(4) then 

;;; the day is around bst-gmt change-over. 
;;; to call the procedure prediction_chg. 
[bst_gmt] ~ c_type; 
[[posnorm 1.0 216 6] [const 1.0 216.1 287.9] [negnorm 1.0 288 3]] 
~ light_old; 
4000 ~ s...share; 
prediction_chg(hoLdate,c_type,s...share) ~ plist ~ act 
~ e_list ~ rmserr ~ e..max; 
"n" ~ yini; 
goto Lend; 

endif; 
elseif month~3 and present ([= = gmt_bst [??day ~year]]) then 

[""day "year] ~ day1; 
day_ndays_follow(day1,1) ~ new_day; 
day_ndaysJollow(hoLdate,O) ~ hoLdate; 
if new_day(4)=reLday(4) then 

'the reference day of last week is around change-over: 
gmt - bst!'==> 

endif; 
if new_day(4)=hoLdate(4) then 

light_old; 

;;; the day is around gmt-bst change-over. 
;;; to call the procedure prediction_chg. 
[gmt_bst] ~ c_type; 
6 ~ n_fact; 
hoLdate(3) ~ year; 
gmt_bstJact(year,nJact) ~ fact; 
[[posnorm 1.0 216 4] [const 1.0 216.1 287.9] [negnorm 1.0 288 3]] ~ 

4000 ~ s...share; 
prediction_chg(hoLdate,c_type,s...share) ~ plist ~ act 
~ e.Jist ~ rmserr ~ e..max; 
"n" ~ yini; 
goto Lend; 

endif; 
endif; 

endif; 
endif; 
;;; else it is a normal day (no time change overs, no holidays, etc.) 
;;; to form historical load, calling the ARIMA. 
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;;; the ARIMA model requires 6 weeks of data to estimate parameters. 
'Today is:'==> find_public_day_type(hoLdate)==> 
day ..n.daysJollow(hoLdate,-1) ~ last_day; 
day_ndaysJollow(hoLdate,-41) ~ first_day; 
if present ([== "first-day ?11 ??lrest [""hoLdate ??inf] ?12 ==]) then 

{"first-day "11 ""lrest} ~ knownlist; 
;;; to form historical data used in the ARIMA parameter estimation. 

else 
'no proper past data for prediction ... '==> 
goto Lend; 

endif; 
Ia: 

'Do you like to predict the load at t with lead time h?("y" ,or "n") ... '==> 
input_item( ) ~ yini; 
if yini= "y" then 

input_time( ) ~ t ~ h; 
allbutlast((length(I2)-t-h),l2) --+ temp; , only <49. 
allbutfirst(t,temp) ~ temp; 
{"hoLdate "temp} ~ unknownlist; 
h+1 ~ mpred; 
allbutlast((length(l2)-t),l2) --+ known; 
{"hoLdate "known} --+ partknownlist; 

elseif yini= "n" then 
{"hoLdate "12} ~ unknownlist; 
49 --+ mpred; 
{[ ] [ ]} ~ partknownlist; 

else 
goto Ia; 

endif; 
{" "knownlist " "partknownlist} ~ known list; 
data_past(knownlist,unknownlist) ~ past; 
length(past) --+ mpast; 
pred_calLarima(past,mpast,mpred) ~ pred ~ rmserr --+ niter; 
allbutlast(1,rmserr) ~ rms_error; 
if yini= "y" then 

pred(mpred-1) ~ p; 
unknownlist(2)(mpred-1) ~ a; 
rms_error(mpred-1) ~ e; 

else 
, to calculate the errors. 
~ plist; 
--+ act; 
~ e.Jist; 

0 --+ rmserr; 
for i from 1 to mpred-1 do 

pred(i) ~ p; 
12(i) ~ a; 

l""act "a] --+ act; 
""plist "p] ~ plist; 

realof((p-a)/a)*100 ~ e; 
e*e + rmserr --+ rmserr; 
[" "e.Jist "e] ~ e.Jist; 

endfor; 
sqrt (real of( rmserr / ( mpred-1))) --+ rmserr; 

endif; 
Lend: 
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if yini="n" then 

nn: 

'prediction results? (y,n)'==> 
input.Jtem( ) ---+ t; 
if t="y" then 

;;; send results to user. 
'predict load is: (p)'==> 
'actual load is: (a)'==> 
'the error (%): (err)'==> 
'RMS error (%): (rms)'==> 
'no: (n)'==> 
input_item( ) ---+ t1; 
if tl="p" then 

plist==> 
elseif tl="a" then 

act==> 
elseif tl= "err" then 

eJist==> 
elseif tl= "rms" then rmserr==> 
endif; 
if tl/="n" then 

goto nn; 
endif; 

endif; 
elseif yini= "y" then 

'prediction results? (y,n)'==> 
input.Jtem( ) ---+ t; 
if t= "y" then 

'predict load is:'==> p==> 
'actual load is:'==> a==> 
'the error in per cent is:'==> e==> 

endif; 
endif; 

enddefine; 
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APPENDIX 3 

SOME POP-11 PROGRAMMES 

Listed below are some procedures used in load prediction of holidays, 

load around time change-overs, and the procedures to fit the overall load by 

individual components. In the POP-11, the sentence beginning with ";;;" is a 

comment. 

1) Procedures for predicting holiday loads 

After it is found that the "hoLdate" is a "holiday" day-type (the proce­

dure has been listed in the main chapter 6), the type of holiday is the head of 

"speciaLday", the following procedure is called to conduct load prediction and 

calculate its errors. 

define pred..hol(hoLdate,speciaLday) ---+ plist ---+ act ---+ e-list ---+ rmserr; 
vars hoLdate,plist,act,e_list,rmserr ,yin; 
vars speciaLday,database_83,database_84; 
if speciaLday(2)= "holiday" then 

iii if the date is a holiday. 
if member( speciaLday ( 1), [ christmas_day boxing_day new _years_day]) then 

'It is a holiday:'==> speciaLday(1)==> 
iii sending message to user, if the holiday is a special holiday. 
iii (not Monday Bank Holiday). 
'only refer to holiday load of last year (y,n)?'==> 
inputJ.tem( ) ---+ yin; 
if yin= "y" then 

1 ---+ nyearsi 
else 

'how many (2)?'==> 
inputJ.tem( ) ---+ nyears; 

endifi 
iii request for historical data (number of years) for references. 
pred...xmas(hoLdate,nyears) ---+ plist ---+ act; 
;;; call the procedure to predict and find its actual load. 

elseif member(speciaLday(1),[good_friday]) then 
'It is a holiday:'==> speciaLday(1)==> 
,, sending message to user, if the holiday is a Good_Friday 
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else 

;;; (not Monday Bank Holiday). 
'only refer to holiday load of last year (y,n)?'==> 
inputJ.tem( ) ~ yin; 
if yin= "y" then 

1 ~ nyears; 
else 

'how many (2)?'==> 
inputJ.tem( ) ~ nyears; 

endif; 
;;; request for historical data for references. 
'weather effect included (y,n)?'==> 
;;; ask whether weather effects (Max. temperature only) included. 
inputJ.tem( ) ~ wea; 
20 ~ n1; 36 ~ n2; 
pred..hoLgf(hoLdate,nyears,wea,n1,n2) ~ plist ~ act; 
;;; call the procedure to predict Good Friday load. 

'It is a Monday Holiday:'==> speciaLday(1)==> 
iii sending message to user. 
'weather effect included (y,n)?'==> 
input_item( ) ~ yin; 
if yin= "y" then 

20 ~ n1i 36 ~ n2; 
pred..hoLcor_t(hoLdate,n1,n2) ~ plist ~ act; 

;;; to predict holiday loads with weather effects considered. 
;;; details listed below. 
else 

pro..hol(hoLdate) ~ database_83 ~ database_84 
~ act ~ sat_85 ~ sun_85i 
iii to find the appropriate reference load and best coefficients for 
iii Saturday and Sunday loads. Details listed below. 
post..hol( database_83,database_84,sat_85,sun_85) ~ plist; 

,, perform prediction. details listed below. 
endifi 

endifi 
0 ~ rmserri 
[ ] ~ eJisti 
for i from 1 to length( act) do 

realof((plist(i)-act(i))/act(i))*100 ~ e; 
e*e+rmserr ~ rmserri 
f""'e_list "'e] ~ e_listi 

endlori 
sqrt(realof(rmserr/length(act))) ~ rmserr; 
iii calculating the rms error: rmserr. 

endif; 

enddefinei 

The following procedure is to find the best coefficients for the change 

trend from the Saturday and Sunday loads to the Monday Bank Holiday: sat_a, 

sun_a, which are used by post..hol. 
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define hoLcoef( database_83,database_84) --+ sat_a --+ sun_a; 
vars database_83 ,database_84 ,sat_a,sun-a; 

l_s: 

vars ii,list 1 ,list2,list_sat ,list_sun,n_iter ,sun_a,sat_a,sun_an,sat_an; 
vars fact..n,preJ.oad ,act-load ,error _pent ,error _com; 
vars suiiLerror Jj, t ,suiiLcom,sign_a; 
0.5 --+ sat_a; 
0.5 --+ sun..a.; 
;;; default values are 0.5. 
1 --+ ii; 
database_83(ii+1) --+ listl; 
database-84(ii+1) --+ list2; 
divLlist(list2,listl) --+ list_sat; 
database-83(ii+3) --+ listl; 
database-84(ii+3) --+ list2; 
divLlist (list2 ,list 1) --+ list_sun; 
-1 --+ n_iter; 
0.5 --+ sat_an; 0.5 --+ sun_an; 
-1 --+ sign_a; 

[%repeat 48 times 0 endrepeat%] --+ fact; 
1 +nJ.ter --+ n_iter; 
multiply(list_sat,sat..a.n) --+ list; 
addup(list,fact) --+ fact_n; 
multiply(list_sun,sun..a.n) --+ list; 
addup(list,fact..n) --+ fact..n; 
timesJ.ist(fact_n,database_83(ii+5)) --+ preJ.oad; 
copy list( database_84(ii+5)) --+ act_load; 
divLlist( difference(pre_load,actJ.oad) ,actJ.oad) --+ error _pent; 
error..rms(error_pcnt) --+ suiiLerror; 
;;; actually, it is rms of error. 
if n_iter=O then SUIILerror --+ SUIILCOmj 

error -Illax --+ error _com; 
sat_a+sign_a *0.01 --+ sat_an; 
sun_a-sign_a*0.01 --+ sun_an; 
goto Ls; 

elseif suiiLerror<suiiLcom then 
SUIILerror --+ SUIILCOmj 
sat_an --+ sat_a; 
sun..a.n --+ sun..a.; 
sat_a+sign_a*0.01 --+ sat..a.n; 
sun..a.-sign_a*0.01 --+ sun..a.n; 
if sat_an>0.20 and sun_an <0.8 then 

goto l_s; 
endif; 

elseif nJ.ter= 1 then 
-sign..a. --+ sign..a.; 
goto Ls; 

endif; 

enddefine; 

The following procedures can be used to predict loads for Christmas Day, 

New Year's Day, Boxing Day. 
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define pred..xmas(hoLdate,nyears) ---? plist ---? xmas.Joad; 
vars hoLdate,nyears,plist,e_list,rmserr,speciaLday,a,e,i; 
find_public-day_type(hoLdate) ---? speciaLday; 
if speciaLday(2)= "holiday" then 

pred...spec-.hol(hoLdate,nyears) ---? plist; 
if present ([== ['"'hoLdate ??inf] ?xmas_load ==]) then 
else 

'no actual load found in the database.'==> 
endif; 

end if; 

end define; 

define pred...spec_hol(hoLdate,nyears) ---? p.Jist; 
vars hoLdate,nyear ,speciaLday,day _t,p_year ,d,hoLd,hoLref,p_year _l; 
vars hoLn,inf,dat..r ,f,xmasJoad,ii,m_load; 
find_public-day_type(hoLdate) ---? speciaLday; 
day -11days.J"ollow(hoLdate,O) ---? day _t; 
hoLdate(3)-nyears ---? p_year; 
if present ([active == [%speciaLday(1)% ??d "p_year]]) then 

[A"d "p_year] ---? hoLd; 
;;; to find the date of the same holiday in historical data. 
day _ndays.J"ollow(hoLd,O) ---? hol..ref; 

end if; 
hoLdate(3)-nyears+1 ---? p_year-1; 
if present ([active == [%speciaLday(1)% ??d "p_year_l]]) then 

[""d "p_year-1] ---? hoLd; 
;;; to find the date of the same holiday in historical data. 
day_ndays.J"ollow(hoLd,O) ---? hol_n; 

endif; 
if present ([== [""hol..ref ??inf] ?xmas.Joad ==]) then 

;;; find the historical holiday loads. 
[" "hol..ref "A inf] ---? dat..r; 
type.J"actor(speciaLday,hol_n,dat..r) ---? f; 
multiply(xmasJoad,f) ---? pJist; 

endif; 
if nyears>1 then 

for ii from 1 to nyears-1 do 
hoLdate(3)-nyears+ii ---? p_year _l; 
if present ([active == [%speciaLday(l)% ??d "p_year-1]]) then 

[AAd Ap_year_1] ---? hoLd; 
day_ndays.J"ollow(hoLd,O) ---? hol..ref; 

endif; 
hoLdate(3)-nyears+ii+1 ---? p_year_l; 
if present ([active == [%speciaLday(l)% ??d "p_year_l]]) then 

[""d Ap_year_1] ---? hoLd; 
day_ndays.J"ollow(hoLd,O) ---? hol_n; 

endif; 
if present ([== ["Ahol..ref ??inf] ?xmasJoad ==]) then 

["A hol..ref " "inf] ---? dat..r; 
type.J"actor(speciaLday,hol_n,dat..r) ---? f; 
addup(p_list,xmas.Joad) ---? m.Joad; 
multiply(m.Joad,O.S) ---? xmas_load; 
;;; average of predictions from historical holiday loads. 
multiply(xmas.Joad,f) ---? p.Jist; 
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end if; 
endfor; 

endif; 

enddefine; 

This procedure is used for predicting Monday Bank Holiday load (24 

hours ahead), used by post-hol (pred-hol). 

define pred_hoLp( database_84,sat_85,sun_85,sat..a,sun_a) ----+ pred_load; 
vars database_84,sat_85,sun_85,sat..a,sun_a,pred_load; 
vars fact,ii,listl,list; 
[%repeat 48 times 0 endrepeat%] ----+ fact; 
1 ----+ ii; 
database-84(ii+ 1) ----+ listl; 
;;; Saturday load. 
divLlist( sat_85,list1) ----+ list; 
multiply(list,sat_a) ----+ list; 
addup(list,fact) ----+ fact; 
database-84(ii+3) ----+ list1; 
;;; Sunday load. 
divLlist(sun_85,listl) ----+ list; 
multiply(list,sun_a) ----+ list; 
addup(list,fact) ----+ fact; 
timesJist(fact,database_84(ii+5)) ----+ predJoad; 

enddefine; 

This is used in pred_hol. It is used to find the historical load data of 

the same day type as the current day. 

define pro_hol(hoLdate) ----+ database_83 ----+ database_84 ----+ act ----+ 
sat_85 ----+ sun_85; 

vars hoLdate,speciaLday,d...sun_85,d...sat_85,saL85,sun_85,act,p_year,day; 
vars p_hol,llist,d...sun_84 ,d...sat_84,sat_84 ,sun_84 ,d_mon,mon_84 ,datahase_84; 
vars d...sun_83,d...sat_83,d...sat,d...sun,d_mon,mon_83,database_84; 
vars sat_83,sun_83 ,days ,change_date,hoLdate_ref; 
day ..ndays_follow(hoLdate,O) ----+ hoLdate; 
-1 ----+ days; 
day ..ndays_follow(hoLdate,days) ----+ d...sun_85; 
day ..ndays_follow(hoLdate,days-1) ----+ d...sat_85; 
find_public_day _type (hoLdate) ----+ speciaLday; 
if present ([== "d...sat_85 ?sat_85 "d...sun-85 ?sun_85 == "hoLdate ?act ==]) 
then 

;;; find the weekend loads preceding the holiday in present year. 
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hoLdate(3)-1 ---+ p_year; 
[ ] ---+ llist; 
if present ([active holidays = [%speciaLday(1)% ??day "p_year]]) then 

;;; to look for the data of same holiday last year. 
[""day "p_year] ---+ p_hol; 
if member(p-hol(2) ,[3 4]) then 

if present ([= = gmt_bst [??date "p_year]]) then 
[""date "p_year] ---+ change_date; 
day _ndays..follow( change_date,1) ---+ change_date; 
change_date( 4) ---+ weekth; 
day _ndays..follow(p-hol,O) ---+ hoLdate_ref; 
if hoLdate_ref( 4) =weekth then 

'the reference day is around gmt - bst change-over!'==> 
;;; sending message to user if the holiday is 
;;; around time change-overs. 

endif; 
end if; 

endif; 
day _ndays..follow(p_hol,days) ---+ d_sun_84; 
day _ndays..:follow(p-.hol,days-1) ---+ d_sat_84; 
if present ([== [""d_sat_84 ??d_sat] ?sat_84 [""d_sun_84 ??d_sun] 
?sun_84 == [""p_hol ??d..mon] ?mon_84 ==]) then 

[""d_sat_84 ""d_sat] "sat_84 [""d_sun_84 ""d_sun] "sun_84 
" "p_hol ""d..mon] " mon_84] ---+ database-84; 
"mon_84 "" llist] ---+ llist; 

;;; to search for the reference load in previous year. 
endif; 

endif; 
hoLdate(3)-2 ---+ p_year; 
if present ([active holidays = [%speciaLday(1)% ??day "p_year]]) then 

[""day "p_year] ---+ p_hol; 

else 

day_ndays..follow(p..hol,days) ---+ d_sun_83; 
day _ndays..follow (p..hol,days-1) ---+ d_sat-83; 
if present ([==[""d..sat_83 ??d..sat] ?sat_83 [""d..su n_83 ??d..sun] 
?sun_83 == [""p..hol ??d..mon] ?mon_83 ==]) then 

[[""d..sat_83 ""d..sat] "sat_83 [""d_sun_83 ""d..sun] "sun_83 [""p_hol 
""d..mon] "mon-83] ---+ database_83; 
["mon_83 ""llist] ---+ llist; 
;;; to search for the reference load two years ago. 

endif; 

[ ] ---+ database_83; 
endif; 

endif; 

enddefine; 

The following procedure is for prediction when appropriate historical loads 

are available, used in pred-.hol: 
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define post_hol( database_83,database_84,sat_85,sun_85) ---+ plist; 
vars hoLdate,database..83,database_84; 
vars plist,sat_a,sun..a,i,t,h,e,item,sat_83,sun_83; 
hoLcoef( database_83 ,database_84) ---+ sat..a ---+ sun_a; 
pred_hoLp ( database_84,sat_85 ,sun_85 ,sat_a,sun_a) ---+ plist; 

enddefine; 

The following one is for Monday Bank Holiday load prediction with 

weather effects included, used in pred_hol: 

define pro_hoLcor_t(hoLdate,n1,n2) ---+ database_83 ---+ database_84 
---+ act ---+ sat_85 ---+ sun_85; 

vars hoLdate,speciaLday,d..sun_85,d..saL85,sat_85,sun_85,act,p_year ,day; 
vars d..sun_83,d..sat_83,d..sat,d..sun,d..mon,mon_83 ,database_84; 
vars p_hol,llist,d..sun_84,d..sat_84,sat_84,sun_84,d..mon; 
vars mon_84 ,database_84 ,change_date, t_ob 1, t_ob2; 
day..ndays_follow(hoLdate,-1) ---+ d..sun_85; 
day ..ndays_follow(hoLdate,-2) ---+ d..sat_85; 
;;; to find the preceding weekend loads. 
find_public_day _type(hoLdate) ---+ speciaLday; 
if wea_database matches [== ["""hoLdate ==] ?wea_inf2 ==] then 

;;; to search through database to find the weather information. 
wea...inf2(1) ---+ t_ob; 
;;; temperature for forecast day. 
if present ([==["'"'d..sat_85 ==] ?sat_85 ["'"'d..sun~85 ==] 
?sun_85 == ["'"'hoLdate ==] ?act ==]) then 

load_cor_t_hol( d..sat_85,n1,n2,t_ob) ---+ saL85; 
load_cor_t_hol( d..sun_85,n1,n2,t_ob) ---+ sun_85; 
;;; correct the preceding weekend loads by the temperature deviations. 
hoLdate(3)-1 ---+ p_year; 
[ ] ---+ llist; 
if present ([active holidays = [%speciaLday(1)% ??day "'p_year]]) 
then 

["'"day "'p_year] ---+ p_hol; 
;;; date of the holiday in previous year. 
if member(p_hol(2),[3 4]) then 

if present ([= = gmt_bst [??date "'p_year]]) then 
["'"'date "' p_year] ---+ change_date; 
day ..ndays_follow( change_date,1) ---+ change_date; 
change_date(4) ---+ weekth; 
day..ndays_follow(p_hol,O) ---+ hoLdate_ref; 
end if; 

endif; 
if wea...database matches [== ["'"'p_hol ==] ?wea_inf2 ==] then 

;;; to find the weather information of the holiday last year. 
wea_inf2(1) ---+ t_ob1; 
day..ndays_follow(p_hol,-2) ---+ d..sat_84; 
day ..ndays_follow (p_hol,-1) ---+ d..sun-84; 
load_cor_t_hol( d..sat_84,nl,n2,t_ob1) ---+ sat..84; 
load-cor _t_hol( d..sun_84 ,n1 ,n2, t_ob 1) ---+ sun_84; 
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;;; correct the weekend loads by the holiday temperature. 
if present ([== [""p_hol ??inf] ?mon_84 ==]) then 

[ "d_sat_84 "sat_84 "d_sun-84 "sun-84 
"p_hol "mon_84] ---+ database_84; 
["mon_84 ""llist] ---+ llist; 
hoLdate(3)-2 ---+ p_year; 
if present ([active holidays = [%speciaLday(1)% ??day "p_year]]) 
then 

[""day "p_year] ---+ p_hol; 
if wea_database matches [== [""p_hol ==] ?weaJ.nf2 ==] then 

wea...in£2(1) ---+ t_ob2; 
day..ndays_follow(p_hol,-1) ---+ d_sun_83; 
day ..ndays_follow(p_hol,-2) ---+ d_sat_83; 
load_cor_t_hol(d_sat_83,n1,n2,t_ob2) ---+ sat_83; 
load_cor_t_hol(d_sun_83,n1,n2,t_ob2) ---+ sun_83; 
if present ([== [""p_hol ??inf] ?mon_83 ==]) then 

["d_saL83 "sat_83 "d_sun_83 "sun_83 
"p_hol "mon-83] ---+ database_83; 
["mon-83 ""llist] ---+ llist; 

endif; 
endif; 
;;; doing the same for the reference loads two years ago. 

else 
[ ] ---+ database_83; 

end if; 
else 

'no weather data (holiday) for year:'==> p_year==> 
endif; 

else 
'no weather data (holiday) for year:'==> p_hol==> 

endif; 
else 

'no load data (holiday) for year:'==> p_year==> 
endif; 
;;; sending message to user if there is no weather information found. 

endif; 
endif; 

Lend: 

enddefine; 

The following is load prediction for holidays when temperatures are used 

to correct the reference loads, used in pred_hol. 

define pred_hoLcor_t(hoLdate,n1,n2) ---+ plist ---+ act; 
vars hoLdate,plist,act,e_list,rmserr; 
vars speciaLday,database_83,database_84; 
find_public_day_type(hoLdate) ---+ speciaLday; 
if speciaLday(2)="holiday" then 

pro_hoLcor_t(hoLdate,n1,n2) ---+ database_83 ---+ database_84 ---+ act 
---+ sat_85 ---+ sun_85; 
post_hol( database_83,database_84,sat_85,sun_85) ---+ plist; 
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endif; 

enddefine; 

2) Prediction around time change-overs 

The following procedures are used to predict loads around time change-

overs. 

iii the c_type indicates the time to change from bst to gmt or from gmt 

to bst. 
define pred_change(hoLdate,c_type,s..share) ~ pred_load ~ data..Jist 
~ e_list ~ rmserr ~ e..max; 

vars hoLdate,pred_load,data..Jist,eJist,rmserr ,e_max; 
vars test_day,pred_load_t ,dataJist_t,pred_load_n,error _load; 
vars item,error_rmserr; ;;; variable declarartion. 
hoLdate(3) ~ year; 
if present ([= = ""c_type [??day "year]]) then 

;;; find the date of time change-overs this year. 
[""day "year] ~ day1i 
day_ndays_follow(day1,1) ~ new_day; 
day _ndays_follow(hoLdate,O) ~ hoLdatei 
if new_day(4)=hoLdate(4) or 

hoLdate(4)=new_day(4)+1 and hoLdate(5)="sunday" then 
'around the time change-over: '==> c_type==> 
; ; ; send message to user that the forecast day is around time change-over. 
day _ndays_follow~hoLdate,-7) ~ reLdayi 
day_ndays_follow hoLdate,-1) ~ prev_day; 
if present ([== ""reLday ==] ?data.Jist_old == [""prev_day ==] 
?prev_data [""hoLdate ==] ?data_list ==]) then 

iii find the load (same day-of-week) before time change-over. 
if wea...database matches [== "reLday ?wea_infl ==] and 
wea...database matches [== [""hoLdate ==] ?wea..inf2 ==] then 

iii to search for weather information. 
'using data of last year as prediction: 1 '==> 
'using data of this year only: 2'==> 
input_item( ) ~ item; 
if item=1 then 

bg_rg(c_type,hoLdate,1) ~ load_gmt_ref 
~ pred_load ~ load_reL2 ~ load_a; 
iii refer to the load of the same period last year. 

else 
if hoLdate(5)= "monday" then 

pred_gb..monday (hoLdate,c_type,s..share) ~ pred_load; 
else 

;;; from new_day to hoLdate-1. 
if member(hoLdate(5) ,[saturday sunday]) then 

pred..bg_load(hoLdate,c_type,s..share) ~ pred_load; 
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Lb: 

else 
pred_bg_load(hoLdate,c_type,s..share) - pred_load_n; 
[%repeat 48 times 0 endrepeat%] - error_load; 
copylist(new_day) - test-day; 
0- n; 

pred_bg_old(test_day,c_type,s..share) - pred_load_t 
- data..Jist_t - e..Jist - rmserr - e_max; 
addup( error J.oad,difference(predJ.oad_t,data..Jist_t)) 
- error _load; 
1+n- n; 
day_ndays_follow(test_day,1) - test_dayi 
if test_day I =hoLdate then 

goto Lbi 
endifi 
multiply (error J.oad,realof( 1 In)) - error J.oadi 
difference(predJ.oad_n,error_load) - predJ.oadi 
iii errors of load prediction of previous days 
iii to correct the current prediction. 

end if; 
endifi 

endifi 
else 

'no weather data available!'==> 
endifi 
'predict loads are:'==> pred_load==> 
'actual loads are:'==> dataJist==> 
error_rmserr(pred_ load,dataJist) - e_list - rmserr - e_maxi 
'rms error over 24 hours is:'==> rmserr==> 
'maximum error in percentage :'==> e_max==> 

endifi 
endifi 

endif; 
Lend: 

enddefinei 

The following procedure is used to predict loads around change-overs, 

but day-type is holiday, used in overall predictor. 

define pred_change_hol(hoLdate,c_type) - predJoad - data_list 
- e_list - rmserr - e_max; 

vars hoLdate,pred_load,data_Jist,eJ.ist ,rmserr ,e_max:i 
vars year ,speciaLday,day ,day 1 ,new _day,nyear ,p_year ,item; 
vars p_hol,date,change_date,weekthO,hoLdate_ref,load_gmt_ref, load_reL2i 
hoLdate(3) - year; 
find_public-day_type(hoLdate) - speciaLdayi 
if speciaLday(2)="holiday" then 

'Today is holiday!'==> speciaLday(1)==> 
if present ([= = '"'c_type [??day "year]]) then 

["'"day "year] - day1i 
day_ndays_follow(day1,1) - new_dayi 
day_ndays_follow(hoLdate,O) - hoLdate; 
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11: 

if new_day(4)=hoLdate(4) or 
hoLdate( 4)=new_day( 4) + 1 and hoLdate(5)= "sunday" then 
'around the time change-over: '==> c_type==> 
'using the data of previous years as prediction: 1 '==> 
'using holiday rules to predict: 2'==> 
input..item( ) ___. item; 
if item=1 then 

1 ---t nyear; 

hoLdate(3)-nyear ---t p_year; 
if present ([active holidays = [%speciaLday(1)% ??day "p_year]]) then 

[""day "p_year] ---t p_hol; 
if member(p_hol(2),[3 4]) then 

if present ([= = ""c_type [??date "p_year]]) then 
[""date "p_year] ---t change-date; 
day _ndays..follow( change_date,1) ---t change_date; 
change_date(4) ---t weekthO; 
day _ndays..follow(p-hol,O) ---t hoLdate_ref; 
if hoLdate_ref( 4) / =weekthO then 

nyear+ 1 ---t nyear; 
if nyear<3 then 

goto 11; 
else 

'no similar case in the past!'==> 
end if; 
;;; to search for the same case in the historical data. 

else 
bg..rg( c_type,hoLdate,nyear) ---t load_gmt_ref 
---t pred_load ___. load..reL2 ---t data_list; 

endif; 
end if; 

else 
nyear+1 ---t nyear; 
if nyear<3 then 

goto 11; 
else 

'no similar case in the past!'==> 
end if; 

endif; 
endif; 

else 
pred..hol(hoLdate) ---t pred.Joad ---t data_list ---t e_list ---t rmserr; 

endif; 
'predict loads are:'==> pred.Joad==> 
'actual loads are:'==> data.Jist==> 
error ..rmserr(pred_load,data_list) ___. e_list ___. rmserr ---t e_max; 
'rms error over 24 hours is:'==> rmserr==> 
'maximum error in percentage :'==> e..max==> 

endif; 
endif; 

end if; 

enddefine; 

The following procedure, used in pred_change, 1s used to predict load 
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of Monday immediately after the time change-over. The procedure divides the 

overall load into two parts: lighting load, and the rest. The "s...share" is the 

basic load for lighting load, the shape of which is stored in the knowledge base. 

define pred_gb__rnonday(hoLdate,c_type,s...share) -+ pred_load; 
vars hoLdate ,year ,day,reLday,load_gmt ,load_a,load_reL2 ,load_gmt_ref; 
vars e..max,e_list,rmserr ,c_type,prev _day,light_old,s..share; 
vars data._lisLold,prev _data,load_r ,Ll ,mid__rn,Lmax,load_p ,p_min,l__rnin; 
vars Ldelt,day1,new_day,p__rnax,i,t; 
hoLdate(3) -+ year; 
if present ([= = ""'c_type [??day "year]]) then 

[""day "year] -+ day1; 
day_ndays_follow(dayl,l) -+ new_day; 
day _ndays_follow(hoLdate,O) -+ hoLdate; 
if new_day(4)=hoLdate(4) then 

'around the time change-over: '==> c_type==> 
day ..n.days_follow(hoLdate,-7) -+ reLday; 
day ..n.days_follow(hoLdate,-1) -+ prev _day; 
if present ([== [""reLday ==] ?data._list_old == [""prev_day ==] 
?prev_data ==]) then 

if wea._database matches [== "reLday ?wea_inf1 ==] and 
wea._database matches [== [""hoLdate ==] ?wea_inf2 ==] then 

if c_type= [bsLgmt] then 
bst_gmt_ps(light_old,s..share,data.Jist_old,wea._inf2, 
wea._inf1) -+ pred.Joad; 
hd(rev(prev_data)) -+ load_r; 
load_r-500 -+ Ll; [" L1] -+ mid...m; 
load_r -+ l...max; find_peak(pred_load) -+ load_p; 
hd(load_p(4)) -+ p..min; pred_load(p...min) -+ Lmin; 
find_peak(prev _data) -+ load_p; 
hd(load_p(2)) -+ p_max; hd(load_p(4)) -+ p...min; 
realof(Lmax-l..min)/(p...max-p..min+1) -+ Ldelt; 
for i from 0 to (p..m.in-p...max-1) do 

l..max+i*Ldelt -+ t; 
[""mid...m "t] -+ mid..m; 

endfor; 
[""'mid...m "'l..min] -+ mid...m; 
if p_min>p__rnax then 

allbutfirst(p..min-p...max,pred.Joad) -+ pred_load; 
endif; 
["'"'mid..m ""pred.Joad] -+ pred_load; 
;;; to predict load when from bst changed to gmt. 

elseif c_type= [gmt_bst] then 
gmt_bst_ps(light_old,s..share,data_list_old,wea._inf2, 
wea._infl,fact) -+ pred_load; 
allbutfirst(46,prev_data) -+ t; 
["'"'pred_load "'"t] -+ pred_load; 
;;; to predict load when from gmt changed to bst. 

end if; 
else 

'no weather data available'==> 
endif; 

endif; 
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endif; 
end if; 

enddefine; 

The proceudre is used to predict loads of day which is not Monday but 

following the time change-over. 

define pred_bgJoad(hoLdate,c_type,s..share) ~ pred_load; 
vars hoLdate ,pred_load,data..Jist ,eJist ,rmserr ,e_max:; 
day..ndays_follow(hoLdate,-7) ~ reLday; 
day_ndays.J"ollow(hoLdate,-1) ~ prev_day; 
if present ([== ['""reLday ==] ?data..Jist_old == r "prev_day ==] 
?prev _data ==]) then 

if wea._database matches [== "reLday ?wea.Jnfl ==] and 
wea._database matches [== ["' "hoLdate ==] ?wea.Jnf2 ==] then 

if c_type= [bst_gmt] then 
bst_gmt_ps(light_old,s..share,dataJist_old,wea._inf2,wea _ _infl) 
~ pred_load; 
hd(rev(prev_data)) ~ load..r; 
load..r-500 ~ Ll; ["Ll] ~ mid_m; 
load..r ~ l_max:; find_peak(pred_load) ~ load_p; 
hd(load_p(4)) ~ p_min; pred_load(p_min) ~ Lmin; 
find_peak(prev _data) ~ load_p; 
hd(load_p(2)) ~ p_max:; hd{load_p(4)) ~ p_min; 
realof(l_max:-l_min)/(p_max:-p_min+l) ~ Ldelt; 
for i from 0 to (p-min-p_max:-1) do 

l_max:+i*Ldelt ~ t; 
[""mid_m "t] ~ mid_m; 

endfor; 
[""mid_m "}_min] ~ mid_m; 
if p_min>p_max: then 

allbutfirst(p_min-p_max:,predJoad) ~ pred_load; 
end if; 
[""mid_m ""pred_load] ~ pred_load; 

elseif c_type= [gmt_bst] then 
gmt_bst_ps(light_old,s..share,data._list_old,wea._inf2, 
wea._infl,fact) ~ pred_load; 
allbutfirst(46,prev_data) ~ t; 
[""pred_load ""t] ~ pred_load; 

endif; 
else 

'no weather data available!'==> 
endif; 

endif; 

enddefine; 
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3) Load disaggregation 

The following procedures are used to fit curves to overall load. 

define delt.Joad_pos_neg_max( week_day, Ldatabase ,load_delt, inLd1_list ,sJist, 
s_type,load_tol,s..share,share_list,type,t_time_max,time_delt) 
__. tn_database __. load_delt_loc-ini; 

vars week_day,t_database,load_delt,inLdLlist,s_list,s_type,load_tol,s..share; 
vars share.Jist, type, t_time_max, time_delt, tn_database ,load-delt_loc_ini; 
vars d1,d100,d11,d1100,d2,d200,d111,d11100,d222,d22200,sLlist,slLlist; 
vars temp-load.Jist ,new _s_list ,load-delt-loc,load_delt_temp-list; 
vars delt.Jist, t_time_max.Jist,p 1 ,p2,pos.J,neg_l,delt,fl, u1 ,old,new; 
vars cook_p 1, temp_new ..s.Jist, temp-dLlist,n_max_temp,load_ma.x..temp; 
vars n_min_temp,load_min_temp ,load_delt_temp ,f2, u2 ,cook_p2 ,n..s, t_time_max_n; 
vars fact ,res.Jn_com, tt_database; 
vars delt.i,Lold,f_new ,n1 ,n2; 
t_database -- [== [== [domestic cooking day] 
[[norm = ?cook_p1 =] = [norm = ?cook_p2 =] ==] ==] ==]; 
t_database -- [??d1 [??d11 "s_type [??d111 ""sJist ??d222] ] ??d2]; 
copylist(d1) __. d100; copylist(dll) __. d1100; copylist(d2) __. d200; 
copylist(d111) __. d11100; copylist(d222) __. d22200; 
load_delt __. load_delt_loc_ini; 
caUist(s_list) __. sUist; 
multiply(sLlist,s..share) __. slUist; 
addup(inLdl.Jist,slUist) __. temp_load_list; 
copylist(s_list) __. new..sJist; 
load_delt_loc_ini __. load_deltJoc; 

Lagain: 
if s_type(1)/="street" then 

new..sJist -- [[posnorm ?fl ?p1 ?u1] [negnorm ?f2 ?p2 ?u2]]; 
] __. load_delt_tempJist; 

l __. deltJist; 
__. t_time_max_list; 

if s_type( 1) /="industrial" then 
if t_time_max<p1 then 

true __. posJ; 
false __. neg.J; 
for delt from -3 by -3 to (-time_delt) do 

[posnorm "f1 "p1 "u1] __. old; 
[posnorm "fl %p1+delt% "u1] __. new; 
if s_type ( 1) = "commercial" and cook_p 1 ~new ( 3) then 

goto Lcook..ind_max; 
end if; 
if (p1 +delt) >0 then 

flat_curve(new..sJist,old,new) __. temp_new..s_list; 
caLlist (temp-new _s_list) __. sUist; 
multiply(sLlist,s..share) __. slLlist; 
difference(temp_load_list,slLlist) __. temp_dLlist; 
max(1,(p1+delt-2*u1) div 6) __. n1; 
min(n1,(t-time_max div 6)) __. n1; 
min(48,(p2+2*u2) div 6) __. n2; 
max(n2,(t-time_max div 6)) __. n2; 
maximuiiLI'ang(temp_dLlist,nl,n2) __. n_max_temp __. load_max_temp; 
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Lw: 

minimum..rang(temp_dLlist,n1,n2) ---+ n_min_temp ---+ load_min_temp; 
load_max._temp-load-ffiin_temp ---+ load_delLtemp; 
if load-min_temp>load_tol then 

[
""'delt_list "delt] ---+ deltJist; 
A "t_time_max._list "n-max._temp] ---+ t_time_max_list; 

[A "load_delt_temp_list "load_delt_temp] ---+ load_delt_temp_list; 
endif; 

end if; 
endfor; 

elseif t_time-max>p2 then 
true ---+ neg_l; 
false ---+ pos-1; 
for delt from 3 by 3 to ( time_delt) do 

[negnorm "f2 "p2 "u2] ---+ old; 
[negnorm "f2 %p2+delt% "u2] ---+ new; 
if s_type ( 1) = "commercial" then 

if week_day= "thursday" then 
if new(3)>240 then 

goto Lw; 
endif; 

else 
if new(3)>216 then 

goto Lw; 
endif; 

endif; 
end if; 
if (p2+delt)<288.1 then 

:flat_curve( new _s_list ,old,new) ---+ temp_new _s_list; 
caLlist (temp _new _s_list) ---+ sLlist; 
multiply(sLlist,s_share) ---+ slLlist; 
difference ( temp_load_list ,slLlist) ---+ temp_dLlist; 
max(1,(p1-2*u1) div 6) ---+ n1; 
min(n1,(t_time_max div 6)) ---+ n1; 
min(48,(p2+delt+2*u2) div 6) ---+ n2; 
max(n2,(t_time_max div 6)) ---+ n2; 
maximum_rang(temp_dLlist,n1,n2) ---+ n_max_temp ---+ load_max_temp; 
minimum..rang(temp_dLlist,n1,n2) ---+ n_min_temp ---+ load_min_temp; 
load_max_temp-load_min_temp ---+ load_delt_temp; 
if load_min_temp>load_tol then 

A" deltJist "delt] ---+ deltJist; 
""t_time_max._list "n_max._temp] ---+ t_time_maxJist; 
A "load_delt_temp_list "load_delLtemp] ---+ load_delt_temp_list; 

endif; 
endif; 

endfor; 

endif; 
endif; 

Lcook_ind-mj!;X: 
if length t load_delt_temp_list) >0 then 

minimum(load_delt_temp_list) ---+ n_s ---+ load_delt_temp; 
t_time_max_list ( n_s) ---+ n_max._temp; 
if load_delt_temp<load_delt_loc-10 then 

load-delt_temp ---+ load_delt_loc; 
n_max_temp*6 ---+ t_time_max; 
deltJist(n_s) ---+ delt; 
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if pos_l then 

lposnorm "fl "'pl "'ul] -t old; 
posnorm "'fl %pl+delt% "'ul] -t new; 

flat-.eurve (new ...s_list ,old ,new) -t new ...sJist; 
elseif negJ then 

lnegnorm "f2 "p2 "'u2] -t old; 
negnorm "'f2 %p2+delt% "'u2] -t new; 

flat-curve(new...s_list,old,new) -t new...s_list; 
endif; 

end if; 
endif; 

endif; 
;;; changing u: 
new...s_list --t [[posnorm ?fl ?pl ?ul] ?d2 [negnorm ?f2 ?p2 ?u2]]; 
if t_time_max<pl and t_time_max>(pl-2*u1-time_delt) then 

[[posnorm "'f1 "'pl %u1+3%] "'d2 [negnorm "'f2 "'p2 "'u2]] -t temp_new_s_list; 
caLlist(temp_new...sJist) -t sLlist; 
multiply(sLlist,s...share) -t slLlist; 
difference(tempJoadJist,slLlist) -t temp_dlJist; 
max(l,(p1-2*u1-6) div 6) -t n1; 
min(n1,(Ltime.ma.x div 6)) -t n1; 
min(48,(p2+2*u2) div 6) -t n2; 
ma.x(n2,(t-time.ma.x div 6)) -t n2; 
maximum_rang(temp_dLlist,n1,n2) -t n.ma.x_temp -t load.ma.x_temp; 
minimum_rang(temp-dLlist,n1,n2) -t n_min_temp -t load.min_temp; 
load.max..temp-load.min_temp -t load_delt-temp; 
if load_delt_temp<load_delt_loc-10 and load.min_temp2::load_tol then 

load_delt_temp -t load_delt_loc; 
copy list ( temp_new ...sJist) -t new ...sJist; 
n.max..temp*6 -t t_time.ma.x; 
goto Lagain; 

endif; 
elseif t_time.ma.x>p2 and t_time.ma.x<(p2+2*u2+time_delt) then 

[[posnorm "'fl "'p1 "'u1] "'d2 [negnorm "'f2 "'p2 %u2+3%]] -t temp_new...sJist; 
caLlist (temp-new ...s_list) -t sLlist; 
multiply(sLlist,s...share) -t slLlist; 
difference( temp_load_list,slLiist) -t temp_dLlist; 
ma.x(l,(pl-2*ul) div 6) -t nl; 
min(n1,(t-time.ma.x div 6)) -t n1; 
min(48,(p2+2*u2+6) div 6) -t n2; 
max(n2,(t-time.ma.x div 6)) -t n2; 
maximum_rang(temp_dLlist,n1,n2) -t n.max_temp -t load_ma.x_temp; 
minimum_rang(temp_dLlist,n1,n2) -t n.min_temp -t load.min_temp; 
load.max..temp-load.min_temp -t load_delt-temp; 
if load_delt_temp<load_delt-loc-10 and load.min_temp2::load_tol then 

load_delt_temp -t load_delt_loc; 
copylist(temp_new...sJist) -t new...s_list; 
n.ma.x_temp*6 -t t_time.ma.x; 
goto Lagain; 

endif; 
endif; 
0.8 -t delt..f; 

lLpn_u_p: 
new...sJist --t [[posnorm ?Lold ?p1 ?ul] = [negnorm = ?p2 ?u2]]; 
if t_time.ma.x>(p1-2*u1) and t_time_ma.x<(p2+2*u2) then 
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Lold*(1+delt_f) -+ Lnew; 

[
posnorm "'f_old "'p1 "'u1] -+ old; 
posnorm "'fJtew "'p1 "'u1] -+ new; 

flat_curve(new..sJist,old,new) -+ tempJtew..s_list; 
caLlist ( tempJtew _s_list) -+ sLlist; 
multiply(slJist,s..share) -+ slLlist; 
difference(temp_load_list,slLlist) -+ temp_dLlist; 
max(1,(p1-2*u1) div 6) -+ n1; 
min(n1,(t_time_max div 6)) -+ n1; 
min(48,(p2+2*u2) div 6) -+ n2; 
max(n2,(t_time_max div 6)) -+ n2; 
maximum_rang(temp_dLlist,n1,n2) -+ n_max_temp -+ load_max_temp; 
minimum__rang(temp_dLlist,n1,n2) -+ n_min_temp -+ load_min_temp; 
load_max_temp-load_min_temp -+ load_delt_temp; 
false -+ fact; 
if load_delt_temp<load_delt_loc-10 and load_min_temp>load_tol then 

["'"'d100 ["'"'dllOO "'s_type ["'"'d11100 
"'"'tempJtew..sJist "'"'d22200Jl "'"'d200] -+ tt_database; 
constraintJ.nd_com( tt_database,shareJist, type) -+ res_m_com; 
if not(resJ.n_com) then 

goto Lind_com_max; 
endif; 
calJist(tempJtew..sJist) -+ sLlist; 
multiply(sLlist,s..share) -+ slLlist; 
difference( tempJoadJist,slLlist) -+ temp-dLlist; 
max(1,(p1-2*u1) div 6) -+ n1; 
min(n1,(t-time_max div 6)) -+ n1; 
min( 48,(p2+2*u2) div 6) -+ n2; 
max(n2,(t-time_max div 6)) -+ n2; 
maximum__rang(temp_dLlist,n1,n2) -+ n_max_temp -+ load_max_temp; 
minimum__rang(temp_dLlist,n1,n2) -+ n_min_temp -+ load_min_temp; 
load_max_temp-load_min_temp -+ load_delt_temp; 
if load_delt_temp<load_deltJoc-10 and load_min_temp~load_tol then 

load_delt_temp -+ load_delt-loc; 
copylist(tempJtew..sJist) -+ new..s_list; 
n_max_temp*6 -+ t_time_max; 
true -+ fact; 

endif; 
endif; 

Lind_com_max: 
if not(fact} and delt_f~0.02 then 

0.5*delt_f -+ delt_f; 
goto lLpn_u_p; 

endif; 
end if; 
if load_delt-loc<load_delt-locJ.ni-10 then 

load_deltJoc -+ load_delt_loc_ini; 
goto Lagain; 

endif; 
["'"'d100 ["'"'dllOO "'s_type ["'"'d11100 "'"'new...sJist "'"'d222001J "'"'d200] 
-+ tn_database; 

enddefine; 
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define deltJ.oad_nornwnax:( t_database,load_delt ,inLdLlist ,s-list,load_tol, 
sub_curveJ.ist,share_list,type,s_type,s..share,t_time-Illax:,time_delt) 
--+ tn_database --+ load-deltJoc_old; 

vars t_database ,load_delt ,load_delt ,inLdLlist ,s_list ,load_tol; 
vars sub_curve_list ,s_type,s..share, tn_database,load_delt_loc_old, share-list, type; 
vars dl,dlOO,dll,dllOO,d2,d200,stl,stll,st2,st22,sLlist,slLlist; 
vars temp_loadJ.ist ,n-Illax:,load-Illax, t_time_n,new ..sJ.ist ,load_deltJ.oc ,p 1; 
vars ul,delt_list,time_list,load_delt-temp_list,sign_delt,delt,p1_new,fl; 
vars temp_new..sJ.ist,temp..sub_curve_list,ind_pl,ind_p2,ind_cook_res,res1; 
vars temp-dlJ.ist,n-Illax:_temp,load_max:_temp,n-Illin_temp, load-Illin_temp; 
vars n..s,t_time-Illax:_n,deltJ,fact,Lold,f_new ,tt_database, res_in_com,t2,res; 
vars new_curveJ.ist,nl,n2,load_delLtemp; 
t_database ---+ [== [== [industrial load day] 
[= [posnorm = ?ind_pl =] = [negnorm = ?ind_p2 =] ==] ==] ==]; 
Ldatabase ---+ [??d1 [??dll "s_type "sub_curveJist] ??d2]; 
copylist(dl) --+ dlOO; copylist(dll) --+ dllOO; copylist(d2) --+ d200; 
sub_curve_list ---+ [??stl "sJ.ist ??st2]; 
copylist(stl) --+ stll; copylist(st2) --+ st22; 
load_delt --+ load_delt_loc_old; 
caLlist(["s-list]) --+ sLlist; 
multiply(sLlist,s..share} --+ slLlist; 
addup(inLdlJ.ist,sllJ.ist) --+ temp-load_list; 
maximum( tempJ.oad_list) --+ n-Illax: --+ load_max:; 
n-Illax:*6 --+ t_time_n; 
copylist(s_list) --+ new..s_list; 
load_delt_loc_old --+ load_deltJoc; 

Lagain: 
new..sJist ---+ [norm ?fl ?p1 ?ul]; 
if abs(t_time_n-p1)<(2*ul +time_delt} then 

] --+ deltJist; 
] --+ timeJ.ist; 
] --+ load_delt_tempJ.ist; 

if abs(t_time-ID.ax:-p1}<(2*u1+time_delt) then 
sign(Ltime-ID.ax-p1} --+ sign_delt; 
if sign_delt / =0 then 

for delt from sign_delt*3 by sign_delt*3 to 
sign_delt * (min ( time_delt ,abs ( t_time_max-p 1) +3)) do 
delt+pl --+ pl_new; 
if p1_new>O and p1_new<288 then 

[norm "fl "p1_new "u1] --+ temp_new..s_list; 
if s_type(l}="cooking" then 

[""'stU "temp_new..s_list ""st22] --+ temp..sub_curveJist; 
constraint_ind_cook (ind_p 1 ,ind_p2, 
temp..sub_curveJist,temp_new _s_list) --+ ind_cook_res; 
if not(ind_cook_res) then 

goto lc1; 
end if; 

endif; 
cooking_time_constraint ( s_type,s_list, temp_new ..s_list, 
sub_curveJ.ist,ind_p1,ind_p2) --+ res1; 
if not(resl) then 

goto lcl; 
endif; 
caUist(["temp_new_sJist]) --+ sLlist; 
multiply(sLlist,s_share) --+ slLlist; 
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lcl: 

difference ( temp_load_list,slLlist) -+ temp_d Llist; 
max(1,(p1+delt-2*u1) div 6) -+ n1; 
min(n1,(t_time_max div 6)) -+ ·n1; 
min(48,(p1+delt+2*u1) div 6) -+ n2; 
max(n2,(t_time_max div 6)) -+ n2; 
maximum_rang(temp_dLlist,n1,n2) -+ n_max_temp -+ load_max_temp; 
minimum_rang(temp_dLlist,n1,n2) -+ n_min_temp -+ load_min_temp; 
load_max_temp-load-ffiin_temp -+ loa<Ldelt_temp; 
if load_min_temp>load_tol then 

[""'delt.Jist "delt] -+ delt.Jist; 
[""time.Jist "n_max_temp] -+ time_list; 
[" "load_delt_temp.Jist "load_delt_temp] -+ load_delt_temp_list; 

end if; 
endif; 

endfor; 

if length(load_delt_temp_list)>O then 
minimum(load_delt_temp_list) -+ n....s -+ load_delt_temp; 
time.Jist(n....s) -+ n_max_temp; 
if load_delt_temp<load_delt.Joc-10 then 

load_delt_temp -+ load_delt-loc; 
delt_list(n....s) -+ delt; 
n_max_temp*6 -+ t_time_max; 
[norm "fl %p1+delt% "u1] -+ new....s.Jist; 

end if; 
endif; 

endif; 
endif; 

end if; 
;;; changing u: 
0.8 -+ delt-f; 
new....s_list --+ [norm ?fl ?pl ?u1]; 
if abs(Ltime_max-p1)$(2*u1+time_delt) then 

copylist(new....s.Jist) -+ temp-new....s_list; 
temp-Ilew_s_list(4)+3 -+ temp-new_s_list(4); 
caLiist(["temp_new....s_list]) -+ sLlist; 
multiply(sUist,s....share) -+ slLlist; 
difference( temp_load_list,slLlist) -+ temp_d1.Jist; 
max(1,(p1-2*u1-6) div 6) -+ n1; 
min(n1,(Ltime_max div 6)) -+ n1; 
min(48,(p1+2*u1+6) div 6) -+ n2; 
max(n2,(t-time_max div 6)) -+ n2; 
maximum_rang(temp_dLlist,n1,n2) -+ n_max_temp -+ load_max_temp; 
minimum_rang(temp_dLlist,n1,n2) -+ n_min_temp -+ load_min_temp; 
load_max_temp-load_min_temp -+ load_delt_temp; 
if load_delt_temp<load_delt_loc-10 and load_min_temp2:load_tol then 

load_delt_temp -+ load_delt.Joc; 
n_max..temp*6 -+ t_time_max; 
copy list ( temp-11ew ....s.Jist) -+ new ....s.Jist; 
goto Lagain; 

endif; 
endif; 

lf2: 
new....s_list --+ [norm ?Lold ?p1 ?u1]; 
false -+ fact; 
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if abs(p1-t_time..max) <2*u1 then 
Lold*(1+delt.i) --+ Lnew; 
[norm "Lnew "p1 "u1] --+ temp_new_s_list; 
caLlist(["temp_new_s.Jist]) --+ sLlist; 
multiply(sLiist,s_share) --+ slLlist; 
difference(temp_load_list,slLlist) --+ temp_d1Jist; 
max(1,(p1-2*u1) div 6) --+ n1; 
min(n1,(t_time..max div 6)) --+ n1; 
min(48,(p1+2*u1) div 6) --+ n2; 
max(n2,(Ltime..max div 6)) --+ n2; 
maximUIILrang(temp_dLlist,n1,n2) --+ n..max_temp --+ load..max_temp; 
minimuiiLrang(temp_dLlist,n1,n2) --+ n..min_temp --+ load..min_temp; 
load..max_temp-load..min_temp --+ load_delt_temp; 
if load_delt_temp<load_delt_loc-10 and load..min_temp~load_tol then 

[""d100 [""dllOO "s_type [""st1 "'temp_new_s_list ""st2]] ""d200] 
--+ tt_database; 
constraint.Jnd_com( tt_database,shareJist, type) --+ res_m_com; 
if not(res.Jn_com) then 

goto Lind_com..max; 
endif; 
if s_type ( 1) ="cooking" then 

if sub_curve_list matches ["sJist ??t2] then 
["temp_new_s_list ""t2] --+ temp_sub_curve_list; 
constraint_cook.iac(temp_sub_curve_list) --+ res --+ new_curve_list; 
if not(res) then 

copy list (hd (new _curve_list)) --+ new _s_list; 
goto Lind_com..max; 

endif; 
elseif sub_curveJist matches [??t2 "s.Jist] then 

[""t2 "temp_new_s_list] --+ temp_sub_curveJist; 
constraint_cook.iac(temp_sub_curve_list) --+ res --+ new_curve_list; 
if not (res) then 

copylist(hd(rev(new_curve_list))) --+ new_s_list; 
goto Lind_com..max; 

endif; 
end if; 

endif; 
load_delt_temp --+ load_deltJoc; 
n..max_temp*6 --+ t_time..max; 
copy list (temp _new _s_list) --+ new _s_list; 
true --+ fact; 

endif; 
Lind_com..max: 

if not(fact) and deltJ~0.02 then 
0.5*delt_f --+ delt_f; 
goto lf2; 

endif; 
endif; 
if load_deltJoc<load_delt.Joc_old-10 then 
load_delt.Joc --+ load_delLloc_old; 
goto Lagain; 
endif; 
[""d100 [""dllOO "s_type [""stll "new_s_list ""st22]] ""d200] 
--+ tn_database; 

end define; 
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The following procedure is used to fit curves of pos-neg, norm, m order to 
minimise the load_delt. 

define delt-load..fit_curve( day,type,data_Jist,share-list,share....step, 
time_delt) --+ temp_database --+ shareJist --+ load_delt_old; 

vars day,type,data-list,share_list,share....step,temp_database; 
vars shareJist,load_delt_old,load_deltJoc,load_tol; 
vars in_load_max,load_maJcold,temp_database; 
vars load_max, week-day,n_max,load_max,curve_list ,inLdlJist; 
vars n-ID.in,load-ID.in,time_delt,load_delt; 
vars t_time_max,p_pos..neg_list ,pos..neg_list, type_pos..neg_list; 
vars Lpos..neg,pos..negJoad_delt,temp_databaseJist; 
vars n_},n_p..x,sJist,s_type,dl ,s....share; 
vars load_max_t,tn_database,d2,nJoad; 
vars t_time_min,p..normJist,norm..list; 
vars type..normJist,nornLlist..all,length-Ilorm,nornLload_delt; 
vars sub_curve_list,load_delt__x,temp_database_t; 
day(5) --+ week-day; 
add..normal....state(day,type) --+ temp_database; 
;;; to form original components. 
maximum( dataJist) --+ n_max --+ load..max; 
2*share....step --+ load_tol; 
deltJoad_find....share( type ,dataJist,shareJist ,share....step, temp_database, 
load_tol,load_max) --+ curveJist --+ share..now --+ share-list --+ inLdLlist; 
maximum(inLdLlist) --+ n_max --+ load_max; 
minimum(inLdLlist) --+ n..min --+ load..min; 
load_max-load..min --+ load_delLold; 
loa<Ldelt-old --+ load-delt; 

Lpos..neg..max: 
;;; change pos-neg curves in order to minimise (max(residuals)-min(residuals)). 
deltJoa<Lfind....share( type,data_list,share_list,share....step, temp_database, 
load_tol,load_delt) --+ curveJist --+ share..now --+ share_list --+ inLdLlist; 
maximum(inLdLlist) --+ n_max --+ load..max; 
n_max*6 --+ Ltime..max; 
minimum(inLdLlist) --+ n..min --+ load..min; 
load_max-load_min --+ load_delt; 
find_chang_order _pos-neg( curveJist,share..now, type, t_time..max, time_delt) 
--+ p_pos..negJist --+ pos_neg_list --+ type_pos_negJist; 
length(p_pos..negJist) --+ Lpos-Il.eg; 
if Lpos..neg>O then 

( l --+ pos..neg_load_delt; 
--+ temp_databaseJist; 

until p_pos..neg_list=[ ] do 
maximum(p_pos..negJist) --+ n_l --+ n_p..x; 
pos-Il.eg_list(nJ) --+ s_list; 
type_pos..negJist(n_l) --+ s_type; 
type ---+ [??dl "s_type ??d2]; 
share_list(length(dl)+ 1) --+ s....share; 
deltJoad_pos-Il.eg_max( week_day, temp_database,load_delt, inLd Llist, 
sJist,s_type,load_tol,s....share,shareJist,type, t_time..max,time_delt) --+ tn_database 
--+ load_deltJoc; 
pos-Il.eg_list ---+ [??dl "s_list ??d2]; 
[" "dl ""d2] --+ pos-Il.eg_list; 
type_pos..negJist ---+ [??dl "s_type ??d2]; 
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[A A dl A A d2] ---+ type_pos_negJist; 
p_pos_negJist ----+ [??dl An_p..x ??d2]; 
AAdl A"'d2] ---+ p_pos_negJist; 
A Apos_negJoad_delt Aload_delt_loc] ---+ pos_neg_load_delt; 
A Atemp_database_list Atn_database] ---+ temp_database_list; 

enduntil; 
until pos_negJoad_delt= [] do 

minimum(pos_neg_load_delt) ---+ nJoad ---+ load_delt..x; 
copy list ( temp_databaseJist ( n_load)) ---+ temp_database_t; 
if load-delt..x<load_delt_old-10 then 

res_load( temp_database_t,data_list,type,share_list) ---+ dLlist; 
maximum( dLlist) ---+ n_ma.x ---+ load_ma.x; 
minimum( dlJist) ---+ n_min ---+ load_min; 
load_ma.x-load_min ---+ load-delt; 
if load_delt<load_delt_old-10 and load_min>load_tol then 

load_delt ---+ load_delt_old; -
copy list ( temp-database_t) ---+ temp-database; 
goto Lpos_neg_ma.x; 

endif; 
pos_negJoad_delt ----+ [??d1 Aload_delt..x ??d2]; 
[A A d1 "A d2] ---+ pos_negJoad_delt; 
temp_database_list ----+ [??d1 Atemp_database_t ??d2]; 
[A A d1 A A d2] ---+ temp_database_list; 

else 
go to l_next 1; 

endif; 
end until; 

endif; 
Lnextl: 

load_delt_old ---+ load-delt; 
deltJoad_find....share(type,dataJist,shareJist,share....step,temp_database, 
load_tol,load_delt) ---+ curveJist ---+ share_now ---+ share_list ---+ inLdLlist; 
ma.ximum(inLdLlist) ---+ n_ma.x ---+ load_ma.x; 
minimum(inLdLlist) ---+ n-Illin ---+ load-Illin; 
n-Illin *6 ---+ t_time-Illin; 
load..ma.x-load_min ---+ load_delt; 
find_chang_order_pos_neg( curveJist,share_now ,type, t_time_min, time_delt) 
---+ p_pos_negJist ---+ pos_neg_list ---+ type_pos_negJist; 
length(p_pos_negJist) ---+ Lpos_neg; 
if Lpos_neg>O then [ l ---+ pos_neg_load_delt; 

[ ---+ temp_database_list; 
until p_pos_neg_list= [ ] do 

maximum(p_pos_neg_list) ---+ n_l ---+ n_p..x; 
pos..neg_list(n_l) ---+ s_list; 
type_pos_negJist(n-1) ---+ s_type; 
if s_type ( 1) /="industrial" then 

type ----+ [??d1 As_type ??d2]; 
shareJist(length(d1)+1) ---+ s....share; 
deltJoad_pos_neg_min( temp_database,load_delt, 
inLdLlist ,s_list ,s_type,load_tol,s....share,shareJist, type, t_time_min, 
time_delt) ---+ tn_database ---+ load_delt_loc; 
[A Apos_neg_load_delt A load_delt_loc] ---+ pos..neg_load_delt; 
[A Atemp_databaseJist Atn_database] ---+ temp_databaseJist; 

end if; 
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pos..neg_list --+ [??d1 As-list ??d2]; 
[AAd1 A"d2] -+ pos..neg_list; 
type_pos..negJist --+ [??d1 "s_type ??d2]; 
[""d1 ""d2] -+ type_pos..negJist; 
p_pos..negJist --+ [??d1 An_p..x ??d2]; 
[AAd1 ""d2] -+ p_pos..neg_list; 

end until; 
until pos-negJoad_delt=[] do 

minimum(pos..negJoad_delt) -+ nJoad -+ load_delt..x; 
copylist(temp_databaseJist(n-load)) -+ temp_database_t; 
if load_delt..x<load_delt_old-10 then 

res_load( temp_database_t,data..Jist,type,share_list) -+ dLlist; 
maximum( dLlist) -+ n_max -+ load_max; 
minimum( d1Jist) -+ n_min -+ load_min; 
load_max-load_min -+ load_delt; 
if load_delt<load_delt_old-10 and load_min>load_tol then 

load_delt -+ load_delt_old; -
copy list ( temp_database_t) -+ temp-database; 
goto Lpos..neg_max; 

endif; 
pos..negJoad_delt --+ [??dl Aload_delt..x ??d2]; 
[A "dl A A d2] -+ pos_negJoad_delt; 
temp_databaseJist -+ [??dl "temp_database_t ??d2]; 
["Ad1 "Ad2] -+ temp_databaseJist; 

~lee 
goto l..next2; 

endif; 
enduntil; 

endif; 
;;; to change norm curves so that the objective function is locally minimised. 
l..next2: 

load_delt_old -+ load_delt; 
del-_load_find..share(type,data_list,share_list,share...step,temp_database, 
load_tol,load_delt) -+ curve_list -+ share_now -+ share_list -+ inLdLlist; 
maximum(inLdLlist) -+ n_max -+ load_max; 
n_max*6 -+ t_time_max; 
minimum(inLdLlist) -+ n_min -+ load_min; 
load_max-load_min -+ load_delt; 
find..chang_order ..norm( curve_list ,share..now ,type, t_time_max,time_delt) 
-+ p..norm_list -+ norm_list -+ type..norm_list -+ norruist_all; 
length(p..norm_list) -+ length..norm; 
if length..norm>O then [ l -+ norm_load_delt; 

[ -+ temp_databaseJist; 
until p..normJist= [ ] do 

minimum_abs(p..norm_list) -+ n_l -+ n_p..x; 
if n_p..x<time_delt then 

norm_list(nJ) -+ s_list; 
type-norm_list(n-1) -+ s_type; 
type --+ [??d1 As-type ??d2]; 
shareJist(length(d1)+1) -+ s...share; 
norm_list..all(n-1) -+ sub_curveJist; 
deltJoad..norm_max(temp_database,load_delt,inLdLlist,s_list, 
load_tol,sub_curveJist ,shareJist ,type ,s_type ,a ...share ,t_time_max, 
time_delt) -+ tn_database -+ load_delt_loc; 
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norm_list ----+ [??d1 As-list ??d2]; 
["Ad1 AAd2] ---+ norm_list; 
type_normJ.ist ----+ [??d1 As_type ??d2]; 
["A d1 A A d2] ---+ type_normJ.ist; 
p_normJ.ist ----+ [??d1 An_p..x ??d2]; 
[AAd1 AAd2] ---+ p_normJ.ist; 
norm_list_all ----+ [??d1 Asub_curve_list ??d2]; 
[A A d1 A A d2] ---+ norm_list_all; 
[A A normJ.oad_delt A load_delt_loc] ---+ normJ.oad_del t; 
[A Atemp_databaseJist Atn_database] ---+ temp_databaseJist; 

else 
goto l_next3; 

endif; 
enduntil; 
until norm_load_delt=[ ] do 

minimum(norm_load_delt) ---+ n_load ---+ load_delt..x; 
copy list ( temp_databaseJist ( n_load)) ---+ temp_database_t; 
if load_delt..x<load_delt_old-10 then 

res_load( temp-database_t,data..Jist,type,share_list) ---+ dLlist; 
maximum( dLlist) ---+ n..max ---+ load-max; 
minimum( d1Jist) ---+ n..min ---+ load..min; 
load..max-load..min ---+ load_delt; 
if load_delt<load_delt_old-10 and load..min>load_tol then 

load_delt ---+ load_delt_old; -
copy list ( temp_database_t) ---+ temp-database; 
goto Lpos_neg..max; 

endif; 
norm_load_delt ----+ [??d1 Aload_delt..x ??d2]; 
[" A d1 A A d2] ---+ norm_load_del t; 
temp_database_list ----+ [??d1 Atemp_database_t ??d2]; 
[AAd1 AAd2] ---+ temp_database_list; 

else 
goto l_next3; 

endif; 
enduntil; 

endif; 
Lnext3: 

load_delt_old ---+ load_delt; 
deltJoad_find_share(type,dataJist,share_list,share_step,temp_database, 
load_tol,load_delt) ---+ curveJist ---+ share_now ---+ share_list ---+ inLdLlist; 
maximum(inLdLlist) ---+ n..max ---+ load..max; 
minimum(inLdLlist) ---+ n..min ---+ load..min; 
n..min *6 ---+ t_time..min; 
load..max-load..min ---+ load_delt; 
find_chang_order _norm( curve_list ,share_now ,type, t_time..min, time_delt) 
---+ p_norm_list ---+ norm_list ---+ type_normJ.ist ---+ norm-list_all; 
length(p_normJist) ---+ length_norm; 
if length_norm>O then 

[ ] ---+ norm_load_delt; 
[ ] ---+ temp_databaseJist; 
until p_normJist= [ ] do 

minimum_abs(p_norm_list) ---+ n_l ---+ n_p..x; 
normJ.ist(n_l) ---+ sJist; 
type_norm.Jist(nJ) ---+ s_type; 
type ----+ [??dl "s_type ??d2]; 
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share-list(length(d1)+1) -+ s_share; 
norm_list_all(n.J) -+ sub_curve_list; 
delt_load..norm_min( temp_database,load_delt ,inLdLlist ,s_list, 
load_tol ,sub_curve.Jist ,s_type,s_share,t_t ime_min ,time_delt) 
-+ tn-database -+ load_delt_loc; 
norm_list --+ [??d1 As.Jist ??d2]; 
[AAd1 AAd2] -+ norm_list; 
type..norm.Jist --+ [??d1 As_type ??d2]; 
[A Ad 1 A A d2] -+ type..noriiLlist; 
p..noriiLlist --+ [??d1 An_p...x ??d2]; 
[AAd1 AAd2] -+ p..noriiLlist; 
norm_list_all --+ [??d1 Asub_curveJist ??d2]; 
A A d1 A A d2] -+ norm_list_all; 
A AnoriiLload_delt "load_delt_loc] -+ noriiLload_delt; 
"Atemp_database-list Atn_database] -+ temp_database_list; 

enduntil; 
until norm_load_delt=[] do 

minimum(noriiLload_delt) -+ n_load -+ load_delt...x; 
copy list ( temp_database_list ( n_load)) -+ temp_database_t; 
if load_delt...x<load_delt_old-10 then 

resJoad( temp_database_t,data.Jist ,type,share_list) -+ dLlist; 
maximum( dLlist) -+ n_max -+ load_max; 
minimum( d1Jist) -+ n_min -+ load_min; 
load_max-load_min -+ load_delt; 
if load_delt<load_delt_old-10 and load_min> load_tol then 

load_delt -+ load_delt_old; -
copylist(temp-database_t) -+ temp_database; 
goto Lpos_neg_max; 

endif; 
norm_load_delt --+ [??d1 "load_delt...x ??d2]; 
[""d1 ""d2] -+ noriiLload_delt; 
temp_database_list --+ [??d1 Atemp_database_t ??d2]; 
["Ad1 ""d2] -+ temp_database_list; 

else 
goto Lnext4; 

end if; 
enduntil; 

endif; 
l..next4: 
enddefine; 
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The following rule 1s used to estimate Christmas-day holiday load: 

If it IS a Christmas-day holiday, 

And it is a Sunday, 

Then the holiday correction factor is 1.10. 
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