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Abstract 

This work is concerned with the large class of nonlinear scalar field theories known as 

cr-models, and in particular with their classical solutions. It is shown how the <r-models can 

admit solitons in (2+1) dimensions; and how, in many cases, these solitons can be classified 

topologically. For the Kahler c-models, the instanton (i.e. static soliton) solutions are 

derived explicitly via the Bogomolny equations. 

The main part of the thesis looks at the behaviour of solitons under the influence of 

small perturbations, and at their (classical) interactions. Attention is confined to the 0(3) 

a-model and its close relatives. A recurring theme is the ability of solitons to change in 

size as they evolve, a feature which is attributed to the conformal invariance of the theory. 

There seem to be three possible approaches. In some special cases, the theory is in-

tegrable, in the sense that one can write down explicit time-dependent solutions. More 

often, one must resort to a numerical simulation, or else some sort of approximation. For 

theories that possess a topological lower bound on the energy, there is a useful approxi­

mation in which the kinetic energy is assumed to remain small. 

All three of these approaches are used at various stages of the thesis. Chapter III 

deals with the properties of wave-like solitons in an integrable theory, and reveals some 

hitherto unseen behaviour. Chapters IV and V develop a numerical simulation based 

on topological arguments, which is then used in a study of soliton stability in the pure 

0(3) model. The conclusion is that the solitons are unstable to small perturbations, in 

the sense that their size is subject to large changes, even though their energy remains 

roughly constant. Chapter VI uses the slow-motion approximation to investigate soliton 

interactions in the 0(3) model, and uncovers a plethora of possibilities. 

Finally, some suggestions are made regarding possible directions for future research. 

In particular, attention is focussed on ways of modifying the 0(3) model in an attempt 

to stabilize its solitons against changes in size. 
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Chapter I 

Introduction 

Introduction 1 

During the last 15 years there has been increasing awareness of the connection between 

many concepts in pure mathematics and theoretical physics. The physicist has found 

great benefit in learning a little pure mathematics; conversely, the mathematician has 

found new application for his own skills in helping to solve the problems of physics. Just 

one consequence of this fruitful exchange is the widespread interest in the large class of 

nonlinear field theories known as a-models. 

The aim of this thesis is to discuss the important properties of these models in general 

and then to concentrate on a few examples in particular. An effort is made to make explicit 

the relevance to both pure mathematics and theoretical physics, without emphasizing 

either aspect at the expense of the other. In fact, a large portion of the work uses numerical 

methods and various computing techniques; so, if one wants to attach any particular label 

to the overall approach, it should perhaps be that of applied mathematics. 

We shall work mostly in (2+1) dimensions, in which an important feature of the 

cr-models is the existence of "solitons": roughly speaking, these are lumps (or sometimes 

waves) of energy that move on a two-dimensional plane at constant velocity and without 

changing shape. Two interesting problems are to look at how a soliton is affected by 

small perturbations and at what happens when two solitons collide. This thesis attempts 

to answer these questions for several <7-models, highlighting the different broad types of 

behaviour that can occur. 

Before any detailed discussion, and to avoid confusion later on, it is worthwhile clearing 

up a small point of terminology: the word "soliton" was introduced in the 1960s by 

mathematicians to describe lumps of energy that were stable to perturbations and did 

not change either velocity or shape when colliding with one another. However, in the 

last 20 years all sorts of localized energy configurations have been called solitons in the 

literature. We shall go along with this looser definition. By a soliton we shall mean a 

lump of energy that moves at constant velocity and without changing shape; but we shall 

imply neither stability to perturbations nor a simple behaviour in collisions. 
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Solitons do not occur only in cr-models; in fact many partial differential equations 

have soliton solutions. However, it should be stressed that, for an equation picked at 

random, they are very much the exception rather than the rule. They can occur only 

when dispersion effects are exactly balanced by nonlinearities, for it is only then that a 

lump can move without changing shape. The simplest equation with this property is the 

wave equation, which is both linear and dispersionless; but in general the balance is much 

more delicate. In any case, the wave equation (as its name implies) has only wave-like 

solitons and not lump-like ones. 

The major breakthrough in soliton theory was the discovery in the late 1960s of the 

so-called inverse scattering methodf1 which provides a recipe for writing down soliton 

solutions to a large number of equations. Since then several other ways of constructing 

solitons and looking at their interactions have been developed, and considerable progress 

has been made. However, most of it is confined to (1+1) dimensions. In (2+1) dimensions 

(and higher) the subject is not nearly so well understood, and many of the solitons known 
• • • [6] 

at present are simply extensions of familiar examples from (1+1). One of the main tasks 

in soliton theory is to clarify the situation in higher dimensions. 

An important feature of higher-dimensional theories is their topology,'71 which is 

described mathematically using homotopy theory. We shall have much more to say about 

this in the next chapter, but the main result is that, in many models, the solitons may be 

assigned an integer-valued "topological charge", which is conserved as the soliton evolves 

in time. Moreover, in a collision of two or more solitons the total charge is also conserved. 

The topological charge has a natural physical interpretation. One can think of the 

solitons as subatomic particles, and of the topological charge as one of the conserved 

quantities of particle physics. The most successful model of this type is the famous 

model introduced by Skyrme almost 30 years ago.'81 At first it did not receive much 

attention, but interest has grown in recent years. It is a theory in (3+1) dimensions; the 

solitons are thought of as baryons, in particular protons and neutrons, and the topological 

charge is taken to be the conserved baryon number. These ideas lead to good qualitative 

agreement with many experimental results in baryon physics; a good review is contained 

in reference [9]. 

The Skyrme model is just one example of a <r-model appearing in physics. We now 

look briefly at the other important applications, which fall into two broad areas, namely 

particle physics and condensed matter physics. We begin with particle physics. 
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Although the Skyrme model was largely ignored when first proposed, <r-models were 

in fact popular in the early 1960s as models of the strong interactions between baryons, 

but in an alternative description, in which topology played no role. The baryons were no 

longer lumps of energy: instead they were represented within the framework of quantum 

theory by the nonlinear fields themselves. Their interactions were investigated using the 

techniques of current algebra. These models were popular for several years, although it 

was difficult to obtain any quantitative predictions from them. 

In the late 1970s the cr-models reappeared as "toy models" in which to investigate the 

topological structure of Yang-Mills theories. This interest was sparked by the suggestion 

that topological effects might be connected with quark confinement. It was found that 

taking proper account of topology in the cr-models could indeed lead to confinement, which 

gave increased hope that the same thing might happen in QCD. In fact this has never 

been fully demonstrated, but there is now no doubt that topology plays a very important 

role in any model that is based on Yang-Mills fields. 

To summarize, cr-models have appeared in particle physics firstly as a possible de­

scription of baryon physics and second as low-dimensional analogues of Yang-Mills fields. 

In both these applications they were treated mainly as quantum theories, in contrast 

with Skyrme's idea that they can be treated in a purely classical way, with the particle 

interpretation coming from the topological charge. 

Turning now to condensed matter physics, one cr-model has proved to be of particular 

importance: this is the 0(3) model, which is the main subject of chapters IV, V and VI. 

Classically it is the continuum limit of the Heisenberg ferromagnet; and recently it has 

been suggested that the quantum version of the model in (2+1) dimensions may provide 

mechanisms for high temperature superconductivity'101 and also for the quantum Hall 

effect!"1 At the centre of this latest speculation is the intriguing possibility of fractional 

statistics,'"1 which are neither bosonic nor fermionic and are peculiar to quantum theories 

in (2+1) dimensions. 

Many of these physical applications are discussed in more detail in chapter 10 of the 

recent book by Zakrzewski.'1*1 For the sake of completeness we remark that a-models 

are also important in pure mathematics as examples of harmonic maps. Many of their 
[14] 

properties have a natural description in the language of differential geometry. 

Finally, it should be stressed that this thesis deals exclusively with the classical theory 

of cr-models. Since most physical applications employ quantum theories, the most direct 
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relevance will not be in these areas, but in more mathematical areas, especially the theory 

of solitons. On the other hand, classical theories may be thought of as just the first 

approximation to the corresponding quantum theory; so it is possible that the results 

presented here might well turn out to have consequences for physics. In light of the current 

interest in condensed matter physics, this remark applies particularly to the sections 

dealing with the 0(3) model. 

The main body of the thesis is laid out as follows. Chapter II contains a brief review 

showing how the cr-models in (2+1) dimensions fit into the overall framework of nonlinear 

field theory. To begin with, the general a-model action and equations of motion are 

presented, along with the coset description of homogeneous target manifolds. The most 

familiar examples are discussed in a little more detail. It is then shown how Derrick's 

theorem helps to identify the most likely candidates in the search for models with soliton 

solutions; and how, in the particular case of (2+1) dimensions, it picks out the cr-models. 

The rest of the chapter is concerned with the central role played by the topology of the 

target manifold. We develop the basic homotopy theory that is necessary to carry out a 

topological classification of nonlinear field theories in general. It is seen that, in (2+1) 

dimensions, the Kahler tr-models are of particular interest from the topological point of 

view. We go on to construct a topological charge for these models, using the techniques of 

differential geometry and cohomology theory. Finally, the Bogomolny bound is introduced, 

and used to derive the instanton (i.e. static soliton) solutions explicitly. Throughout 

the discussion, comparisons are made with the <̂ 4 and sine-Gordon equations in (1+1) 

dimensions, and also with the Skyrme model in (3+1). 

Chapter III deals with a particular example of a modified cr-model that is "integrable", 

in the sense that procedures exist for writing down explicit multisoliton solutions in (2+1) 

dimensions. Although the model does not have any obvious application in physics, it 

is very interesting from the soliton theoretic point of view. For example, two lump-like 

solitons can pass through each other with no change in velocity and no lasting deformation. 

This type of behaviour is familiar from other integrable systems in (2+1) dimensions. But 

there are also wave-like solitons, about which very little is known at present. The work 

presented here constructs these waves, and investigates their interactions. In particular, it 
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is found that the interaction of a wave and a lump is quite different from any interaction 

occurring in other integrable models. 

The next three chapters concentrate on lump-like solitons in the (unmodified) 0(3) 

cr-model. A central question is that of soliton stability. Since there is no natural scale 

in the model, the solitons can take any size (although they always have the same general 

shape). There is the possibility that as a result of small perturbations they could either 

expand indefinitely, eventually covering the whole plane, or else shrink, so becoming in­

finitely tall spikes. It seems that to answer these questions, one must evolve the soliton 

configurations numerically on a lattice, since the 0(3) model is nonintegrable. An impor­

tant consideration in any numerical evolution is the choice of initial data. Specifically, to 

look at small perturbations, one wants to begin with a "discrete" instanton, i. e. a config­

uration that is static on the lattice. Chapter IV shows that by taking proper account of 

the topological aspects in the theory, one is led to a natural (but new) evolution scheme 

containing explicit discrete instantons. Using them as the basis for a study of soliton 

stability, chapter V reaches the conclusion that the 0(3) lumps are unstable. 

Moving on to the second important question, that of soliton interactions, chapter V I 

attempts to provide some answers by using an approximate technique in which the soli­

tons are assumed to be slowly moving. The method was first suggested as a means of 

investigating the scattering of magnetic monopolesj"1 but it is equally applicable to the 

cj-models. The basic idea is that one constructs all static &-lump solutions (a problem that 

is discussed towards the end of chapter II) . These solutions depend on a finite number (n^, 

say) of real parameters. When the kinetic energy is small, a good approximation to the 

full field dynamics is obtained by evolving just these n*. parameters. Chapter VI restricts 

attention to two-lump scattering in the 0(3) model. In the simplest head-on collisions, 

the lumps emerge at 90° to their original direction of motion; but there are also found to 

be several other, more exotic possibilities. Moreover, it found that soliton interactions also 

exhibit the instabilities revealed in chapter V. After scattering, the lumps either shrink 

to spikes or expand indefinitely, depending on their initial configuration. 

Finally, chapter VII outlines work currently in progress, and also suggests some possi­

ble avenues for future research, looking in particular at modifications to the 0(3) <r-model 

designed to stabilize the soliton against large changes in its size. 
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Chapter II 

Sigma Models and their Topology 

2.1 General Structure 

The o-models are a particular type of nonlinear scalar field theory, in which the scalar 

field takes values in an n-dimensional Riemannian manifold M.. Throughout this work it is 

assumed that they are denned on a (d+l)-dimensional Minkowski spacetime, with metric 

diag(—1,1,1,..., 1), although it is possible to consider them in more general geometries. 

The field equations are derived from the action 

S=\JJ 9iM) W 0 V d < * x d t > (2- 1) 

where <f>* (i = 1,2,... ,n) and gij are the coordinates and metric on M. respectively. The 

Greek indices take values 0,1, 2 , . . . , d and label the spacetime coordinates. Explicitly, the 

field equations derived from (2.1) are 

d ^ f + ^ ^ 8 ^ 8 ^ = 0, (2.2) 

where P -fc are the usual Christoffel symbols associated with the metric g. 

The field equations are in general nonlinear, owing to the presence of the term 

quadratic in the field derivatives. It is the distinguishing feature of a-models that the 

nonlinearities arise purely from the curvature of the target manifold A4. One does not 

need to add extra terms to the Lagrangian to introduce nonlinearities by hand; they are 

already an intrinsic part of the theory. As we shall see in the next section, it is precisely 

this type of model that can lead to soliton solutions in two spatial dimensions. Fur­

thermore, all these models are Lorentz invariant, in the sense of possessing an SO(d, 1) 

symmetry acting on spacetime. These are just two of the features that make such theories 

so interesting to physicists. 



Sigma Models and Their Topology 7 

An alternative formulation of the field equations involves taking a free field theory, 

containing m independent fields (where m > n), and then using Lagrange multipliers to 

impose (m — n) constraints, thereby restricting the fields to lie on /A. In essence, one is 

thinking of the n-dimensional manifold M as being embedded in H m . As an example of 

this approach, consider the 0(3) a-model, in which M. is just a two-sphere. It is common 

to use three real fields <f> = (^i,02>#3)i with the constraint <t>.<f> — 1. Introducing a 

Lagrange multiplier A, the relevant Lagrangian is 

£ = ldli<t>.d»<f>-\(<l>.<t>-l), (2.3) 

which leads to the field equations 

d»dfi<f> + (dfl<f>.dfl<f>)<t> = 0. (2.4) 

The 0(3) model is the central topic of chapters IV, V and VI; and the material in 

chapter III is based on a closely related model, namely the SU(2) chiral model, which 

may be formulated as follows. Suppose one adds an extra field to the 0(3) model and 

replaces the constraint <f>. tf> = 1 with 

^ + <£.<£ = 1. (2.5) 

The fields now take values on the three-sphere, which is topologically just the group 

manifold of SU(2). This equivalence is made explicit by writing the fields as a 2 x 2 

unitary matrix: 

J = fol + ia. <f>, (2.6) 

where tr are the usual Pauli matrices. The constraint (2.5) ensures that J has unit 

determinant. The a-model action may now be written in the form 

5 = ^ j j T x ( d ^ J d ^ J - l ) d d x d t 
(2.7) 

= - ^ J j T v [{J-1dllJ){J-1dtlJ)) ddxdt 

and the corresponding equations of motion are 

d^J-^&J) = 0. (2.8) 

In fact, the original cr-models of the early 1960s were very similar to this, although 

they used slightly different notation and were treated as quantum theories, in which the 
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fields were interpreted as creation operators: <f> was usually called TT and was the creation 

operator for pions, <f>o was usually called a and created so-called u-particles (hence the 

name that is now attached to virtually any nonlinear scalar field theory of this type). As 

a final remark, note that the 0(3) model can be thought of as a special case of the SU(2) 

model, obtained by requiring = 0. Geometrically this corresponds to restricting the 

fields to lie on the equator of SU(2). 

We now briefly consider the <r-models in a more abstract, geometrical way. This 

provides for a more systematic classification. From now on we shall assume that M. is a 

homogeneous space, with a continuous group of symmetries G acting transitively on it. 

All the a-models that are important in physics have this property, and it leads to a useful 

coset description for A4, in the following way. 

First of all, pick a base point yo € M and then construct the little group H of yo 

(sometimes called the isotropy subgroup), defined by 

H = {h€G : h(y0)=yo}. (2.9) 

In other words, H is the set of elements of G that act trivially on yo. Now suppose that 

gi and gi have the same action on j/Oi i-e-

0l(2/o) = 02(2/0) 

=^ 9i192(yo) = 2/0 

9il92 e H. 

Therefore g\ and c/2 belong to the same left coset of G with respect to H. Clearly the 

converse also holds, namely two elements in the same left coset have the same action on 

yo- Moreover, since G acts transitively, any point of M. may be obtained as the action of 

some left coset. Hence we can make the identification 

M = G/H = {gH : g £ G) . (2.10) 

Note that since M. is homogeneous, this construction is independent of the choice of 

2/0- Depending on the precise structure of /A, the model may be referred to in slightly 

different ways. In particular, if M is itself a Lie group, it is often called a "chiral model" 

(we have already met the SU(2) chiral model). This corresponds to H being trivial. 
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We now show explicitly how the coset description applies to three of the most im­

portant families of a-models, namely the O(n) models, the C P r t models1"173 and the 

grassmannian models.'1*1 

O(n) Models 

In the O(n) model the fields take values on the (n — l)-sphere, for which the symmetry 

group is just the connected group of rotations in n dimensions, namely SO(n). Having 

picked a base point yo, the rotations that leave it invariant are those about the direction 

of yo itself; so H is simply SO(n — 1). Hence we have 

M = SO(n)/SO(n - 1) = Sn~l, 
(2.11) 

dim M. — n —.1. 

The O(n) model can be formulated in terms of n — 1 real fields, but as already pointed 

out, it is more common to use n fields, together with a single constraint that forces them 

to lie on Sn~l. 

CP(n) Models 

In these models the fields take values in the complex projective space C P " . In terms 

of the coset description we have 

M = SU(n + 1)/(SU(n) x U(l)) = C P " , ^ 

dim M. — 2n. 

One can use either 2n real fields, or alternatively n complex fields. It is interesting to 

note that C P 1 is isometric to S2, so that the C P 1 model is nothing more than the 0(3) 

model in disguise. This equivalence may be made explicit by taking 

u = ' ( 2 - 1 3 ) 

where u is the (complex) C P 1 field and (<£i, <fo> <fo) a r e t n e usual 0(3) fields. However, 

there is no similar equivalence for higher values of n. One can take the view that the 0(n) 

and C P n models are two distinct extensions of the 0(3) model to higher dimensional 

target spaces. 
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Grassmannian Models 

In these models the fields take values in the complex grassmannian manifolds Gmin. 

In terms of the coset description we have 

M = SU(m + n)/(SU(m) x SU(n) x U(l)) = Gm,n, 
(2.14) 

dim M. = 2mn. 

One can use either Irmx real fields, or alternatively mn complex fields. Note that G\tn = 

C P n , and so the grassmannian models are a natural generalization of the C P " models, 

containing them as a subset. 

Finally in this section, we make a few remarks about Kahler cr-models. It turns out 

that if M. admits a Kahler metric then the equations of motion are considerably simplified. 

Both the grassmannian and C P n models have this property. To see how things work in 

general, suppose that M. is an n-dimensional complex manifold (i.e. 2n real dimensions), 

parametrized by coordinates uQ together with their complex conjugates ua, with a taking 

values 1,2,... , n. The cr-model action may be written 

S = \ J J 9 a p i u ) dnu<* PvPrfx dt, (2.15) 

where the barred subscript on the metric g labels conjugate coordinates. The model is 

said to be Kahler if the two-form 

u> = gap dua A dvP (2.16) 

is closed, i. e. da/ = 0. This condition implies that all the mixed Christoffel symbols vanish, 

i.e. 

r V r = r % = r % = r V r = 0 • ( 2 - 1 7 ) 

The equations of motions (2.2) are greatly simplified as a result, and may now be written 

in the form 

d^uQ + 9ahp6a ^ ^v? = 0, (2.18) 

where gpi1 denotes the partial derivative of g^ with respect to u1. As an example 

consider the (DP1 model. There is just one complex field u (so the indices a and (3 may 
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be dropped); u is related to the 0(3) fields by (2.13). Choosing g = 4(1 + uu)~2 in (2.15) 

yields the conventional action of the 0(3) model, and then from (2.18) the equation of 

motion for u is 

M 1 + uu V ' 

2.2 Derrick's Theorem 

For both mathematicians and physicists, it would be very useful to have a method 

of determining, solely from the form of the Lagrangian, whether a given theory possesses 

soliton solutions. At the moment such a goal seems a little out of reach; but there is 

an important result, due to Derrick,1201 which for a great many models can say when 

solitons will definitely not occur. It is instructive to go through the proof of the theorem, 

first because the method of argument is applicable to a wide range of other problems, 

and second because it gives an opportunity to introduce some new field theories, which, 

although not a-models in the strict sense, nevertheless have many features in common 

with them. 

Consider the (Lorentz invariant) nonlinear field theories, living in (d+l)-dimensional 

Minkowski spacetime, that are defined by the Lagrangian 

C = 19^8^8^ + V[<f>]. (2.20) 

These models may be thought of as an extension of the a-models, obtained by allowing 

an explicit potential term V[</>]. To ensure that the energy density is positive definite, 

V\{j>) is always assumed non-negative. The energy E may be split into two pieces: 

= S i M + S a M , (2.21) 

where 

(2.22) 

£2[<fl = J V[<t>]ddx. 

From the point of view of soliton theory, one is particularly interested in the possible 

existence of static lump solutions, localized in the sense that E is finite. Moving lumps 
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axe then obtained from the static ones simply by Lorentz boosting. Suppose then that 

</>(r) is a static lump solution where r is just shorthand for (x 1 , x 2 , . . . , xd). 

Derrick showed that the difference in the scaling behaviours of E\ and E2 places 

certain restrictions on the theories that have such solutions. Consider the one-parameter 

family of configurations 

4>A(r) = 4>(Ar) • (2-23) 

It is easy to see that E\ and E2 scale in such a way that the energy of these configurations 

is 

EX = E[<f>x} = \2~dEi[<j>] + \-dE2[</>]. (2.24) 

The crucial point is to note that <£(r) is a static solution only if it is an extremum of E, 

and in particular only if it makes E\ stationary with respect to variations in A. In other 

words dE\/d\ must vanish when evaluated at A = 1. In general we have 

^ = (2 - d)\x~dEi[(j>) - d\-d-lE2\<f>} (2.25) 
oA 

and so the following cases can occur, depending on the number of spatial dimensions. 

= 0 => Ei[<t>] - E2[<t>] = 0 . 
1 

= 0 E2[<t>] = 0. 
1 

is always negative. 
1 

The following conclusions can be drawn. First, in one spatial dimension the potential 

term must be present if there are to be soliton solutions. But in two dimensions the exact 

opposite is true, i.e. if the potential term is included then solitons certainly do not exist. 

As far as the a-models are concerned, this means that in (1+1) dimensions they are not 

very interesting, but in (2+1) they are precisely the models that one should consider in 

order to find examples of relativistic solitons. Finally, in 3 (or more) spatial dimensions 

things look a little bleak: there is no soliton in any theory of the form (2.20). However, 

three-dimensional solitons do occur in slightly more general models, and we shall return 

to this point shortly. 

d = 1 : 

d = 2 

d > 2 

dEx 
dX 

dEx 

dX 

dEx 
dX 

x= 

x= 
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The previous paragraph summarizes the main content of Derrick's theorem, but it is 

also instructive to look at the second derivative of E\, since this gives information about 

soliton stability. It is easy to check that 

= 2 £ 2 M > 0 , 

= 6E2[<t>] = 0. 

d= 1 : 
dA2 

d = 2 : 
d2E> 
d\2 

Therefore, in one spatial dimension, A = 1 corresponds to a minimum of E, i.e. the soliton 

has a preferred scale and resists attempts to change its size. However, in two dimensions 

the situation is somewhat different, since the theory now contains a zero mode. In this 

case there is no preferred scale and it is possible that the soliton could either shrink 

or expand under small perturbations. This feature is a consequence of the conformal 

invariance of the cr-models in two spatial dimensions, and is studied in some depth in 

chapters IV and V. 

We now briefly mention two models, both living in (1 + 1) dimensions, that have soliton 

solutions (often called kinks when d = 1). They are both of the form (2.20) (and so under 

the terms of Derrick's theorem have nonzero potential terms) and each contains just a 

single real field (f>. 

Phi-fourth Equation 

Lagrangian C = d^cj) + | ( ^ 2 - l ) 2 , 

field equation <f>xx - 4>u + <£(1 - <̂ 2) = 0 > (2.26) 

kink solutions (f> = ± t a n h ( - ^ ( x — XQ)) • 
\/2 
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Sine-Gordon Equation 

Lagrangian £ = d'V + 2(1 — c o s ^) » 

field equation <f>xx — <f>u — sin <j> = 0, (2.27) 

kink solutions <f> = ± 4 arctan (exp(x — X Q ) ) . 

To end this section we discuss ways of side-stepping Derrick's theorem in three spatial 

dimensions. The first possibility is to change slightly what one means by a static solu­

tion. For some models it is possible write down field configurations that are themselves 

dependent on time, but which have a time-independent energy density. Just one example 
• • [21] 

of such objects are the so-called Q-balls, which were originally introduced by Coleman. 

Another option is to move outside the realm of scalar field theories and to allow the inclu­

sion of gauge fields. Of particular interest are theories in which a Yang-Mills gauge field 

is coupled to a scalar Higgs field — these are the theories in which magnetic monopoles 

occur. 

The third possibility is to stay with scalar fields, but to include an extra term in the 

Lagrangian. This is the idea behind the Skyrme model, which may be constructed as a 

modification of the SU(2) chiral model in the following way. Recall that the fields may be 

written as an SU(2)-valued matrix J. The term added to the Lagrangian takes the form 

Akyrme = T r ( I ^ " 1 V . - ^ M [ J ' ^ J , J~lVJ] ) , (2.28) 

where e2 has the physical interpretation of a coupling constant. The extra term gives a 

(positive) contribution .Eskyrme t o t n e potential energy. The scaling behaviour of the total 

potential energy, i.e. the analogue of (2.24), is now 

E\ = X2~dEi[J] + \-dE2[J] + X4~d ESkyrme[J}, (2.29) 

and differentiating this in the case d = 3 yields 

^ = - A " 2 Ei[J\ - 3A"4 E2[J] + ^SkynneM • (2.30) 

It is conventional to set the potential term to zero, i.e. E2 = 0, in which case there is a 
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stationary point of E\ at 

A2 = - ^ - . (2.31) 
^Skyrme 

In contrast with the pure a-model there is the possibility of a soliton solution. In fact 

such a solution does exist and, not unnaturally, it has become known as the skyrmion. 

Its main importance is in playing the role of baryons in the Skyrme model of low-energy 

hadronic physics. Unfortunately the skyrmion configuration cannot be found analytically, 

and so its properties must be investigated numerically. Nevertheless, it is without doubt 

the most important example of a soliton having a direct interpretation in particle physics. 

2.3 Homotopy Theory 

So far we have looked at the general structure of the field equations for a-models, and 

in doing so have been concerned mainly with the local properties of the target manifold 

M.. In the remainder of the chapter we shall emphasize the global topology of M, which 

is very important in the classification of solitons and leads eventually to their explicit 

construction. To do this we shall first need to gather together some basic results in 

homotopy theory.'71 

Roughly speaking, one says that two continuous maps are homotopic if they can be 

continuously deformed one into the other. More precisely, if X and Y are two manifolds, 

and / and g are two continuous maps from X to Y, then / and g are homotopic if there 

exists a continuous map 

h : X x [0,1] - Y 

such that for all x € X 

h(x,0) = f ( x ) , 

h(x,l) = g(x). 

It is easy to verify that the notion of homotopy defines an equivalence relation on the 

set of all continuous maps from X to Y. Hence the maps are partitioned into homotopy 

classes, with any two maps belonging to the same class if and only if they are homotopic. 

It is conventional to denote the homotopy class of / by [/]. 

It is possible to define a binary operation between homotopy classes such that they 

take on a group structure. In general this involves a certain amount of technical detail, 
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but it is easy to illustrate the general procedure in a simple example. Suppose that X 

is just a circle 5 1 , parametrized by 0 in the range [0, 2TT], Then continuous maps from 

X to Y may be thought of as closed loops in Y. Consider only those maps that take a 

particular point of X to a particular point in V; specifically take 

/ : [0, 2TT] - > Y with /(0) = / ( 2 T T ) = y0, 

g : [0, 2TT] - Y with g(0) = g(2ir) = y0 . 

Now define a third map h : X —• Y by 

h ( e ) = ! f W i f O < 0 < , r . 
\ p(2(0 - TT)) if TT < 0 < 2TT , 

Clearly /i is continuous and also satisfies h(0) = /i(27r) = yo- It is conventional to write 

h = f + g. The crucial point is to realise that the homotopy class of h depends only on 

the homotopy classes of / and g, and so this binary operation between maps induces a 

binary operation between homotopy classes. In an obvious notation we write 

[/>] = [/ + <?] = [/] + [<?]• 

It is not difficult to convince oneself that, under this operation, the set of all homotopy 

classes now forms a group, conventionally denoted by 7ri(Y, yo) (the subscript 1 refers to 

the fact that X was taken to be a one-sphere). If Y has a continuous symmetry group 

G, acting transitively on it, then the homotopy group is independent of the choice of yo 

and one writes simply iri(Y). The whole construction described above can be generalized 

to the case where X is an n-sphere (see, for example, reference [7]), and the homotopy 

group is then denoted TrN(Y). 

The first two homotopy groups have a simple geometrical interpretation. Firstly, 

since S° consists of just two points, iro(Y) counts the number of disjoint pieces of Y. 

In particular, TTO(Y) = 0 if and only if Y is connected. Secondly, as suggested above, 

7ri(F) classifies the set of closed loops in Y. In particular, 7ri(Y) = 0 if and only if Y 

is simply connected. In general the higher homotopy groups do not have such a natural 

interpretation, but they still play important roles in the context of field theory. 
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We now make the connection between homotopy theory and a-models. The key 

observation is that (in two or more spatial dimensions) the requirement of finite potential 

energy means that the fields must tend to the same value at spatial infinity, regardless 

of direction. Hence the spatial degrees of freedom may be compactified from R d to Sd. 

Each possible field configuration may be thought of as a map 

<j> : Sd -* M. 

It is now clear that the configurations are classified by the homotopy group 7r<j(.M). As 

the fields evolve in time they do so continuously, and so <f> always remains within the same 

homotopy class (sometimes referred to as a topological sector). If all configurations are 

homotopic, i.e. liir^M.) = 0, then the model is said to be topologically trivial. Topolog-

ically nontrivial theories enjoy a topological stability, in the sense that each configuration 

cannot evolve out of its original topological sector. 

From Derrick's theorem it is known that, as far as the cr-models are concerned, the 

most interesting behaviour will occur in two spatial dimensions, and so one should look 

at iri(M.). Rather than go into the technical details of calculating homotopy groups, we 

shall just state the results for the cr-models that we have encountered so far. To begin 

with 

* » ( $ " ) = Z , , x 

(2 32) 
7rn(Sm) = 0 ( m > n ) . 

The first of these is the formal statement that a map from Sn to Sn is characterized by a 

winding number; the second is a generalization of the intuitive idea that a closed loop can 

"slip off" a two-sphere. The consequence for a-models is that, in d spatial dimensions^ the 

0(d+l) model is topologically nontrivial, but that all higher ones are trivial. In particular, 

the (2+l)-dimensional 0(3) model is nontrivial. 

The next result is especially concise: all the chiral models in two spatial dimensions 

are trivial, because for any Lie group G we have 

7r 2(G) = 0. (2.33) 

It remains to look at the grassmannian models. Here one needs to use two basic 
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results in homotopy theory: 

•nn{X x Y) = 7T n (X) © 7Tn(Y) , (2.34) 

7 r 2 p f / r ) = *i(Y) provided n0(X) = ^(X) = 0. (2.35) 

Since SU(n) is both connected and simply connected, (2.35) shows that the topological 

content of the grassmannian models is given by the first homotopy group of the denomi­

nator H in the coset description of the target manifold. Noting that TTI(U(1) ) = Z (since 

U ( l ) is topologically just 5 1 ) and using (2.34) to calculate the homotopy group of a direct 

product, one finds 

MGm,n) = TTi (SU(m) x SU(n) x U(l)) = Z . (2.36) 

In fact, for any compact Kahler symmetric space Ai, ^(M.) = Z , i.e. all such models are 

topologically nontrivial. This is another reason why the Kahler cr-models are of particular 

interest. 

In each of the above examples of nontrivial topology, the homotopy group is isomor­

phic to Z , the additive group of integers. It would be nice to make this isomorphism a 

little more concrete by labelling each homotopy class with an integer-valued "topological 

charge". To be of any real use, such a charge must be constructed so that it is invariant as 

the fields evolve in time. This problem is addressed in the next section. In some (exotic) 

cases, one would require two or more separate charges. For example, consider the flag 
[22] 

space 

Fn = SU(n + l ) / U ( l ) x ••• x U ( l ) , (2.37) 

where there are n factors of U(l) in the denominator. Using the results (2.34) and (2.35) 

as before, it is easy to see that 

7T2(F„) = Z © Z © ••• © Z (n times). (2.38) 

Therefore a cr-model with fields taking values in Fn would need n distinct topological 

charges to label its homotopy classes. 
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So fax we have said nothing about the construction of solutions to any particular 

a-model; but we have seen that the combination of Derrick's theorem and a little homotopy 

theory yields a great deal of information from very general assumptions. To summarize, 

in two spatial dimensions the a-models are precisely the scalar field theories that are 

capable of supporting soliton solutions. Moreover, in the case of the Kahler models it is 

expected that the solitons would be topologically stable (i.e. the soliton configurations are 

not homotopic to the vacuum). The solitons of the Kahler models will be constructed in 

section 2.5. However, it should be stressed that nontrivial topology does not guarantee the 

existence of solitons; as a counterexample consider the SU(2) chiral model (equivalently 

the 0(4) «j-model) in (3+1) dimensions. Conversely, solitons can occur in models that 

are topologically trivial (for example the SU(2) model in (2+1) dimensions). 

2.4 The Topological Charge 

In this section we construct the topological charge for the Kahler models in (2+1) 

dimensions. The most elegant approach uses differential geometry to take account of the 

Kahler property of the target manifold, and to do this requires a little of the machinery 

of differential forms!231 

Recall that a p-form a on a manifold M. is closed if da = 0 and is exact if a = d/3 

for some (p — l)-form (3. All exact forms are closed, since d 2 = 0; but all closed forms are 

exact only if M. is contractible (this result is essentially the Poincare Lemma). In general 

the closed p-forms on M. are partitioned into so-called cohomology classes, with a pair of 

forms being in the same class if and only if they differ by an exact form. It is conventional 

to denote the set of closed p-forms by Zp(Jvt) and the exact p-forms by BP(M.). Then 

the set of cohomology classes may be written as a quotient space: 

Hp(M) = Zp{M) I Bp(M). (2.39) 

Because the sum of two closed forms is closed and the sum of two exact forms is exact, 

addition induces a group operation on HP(A4), which is then known as the pth cohomology 

group of M.. 

Although cohomology is defined locally in terms of the exterior derivative, it actually 

conceals a great deal of information about the global topology of Ai. This hidden content 
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is made explicit by the Hurewicz theorem. In its simplest version, this says that if M. is 

both connected and simply connected with the lowest nonzero homotopy group Tn(M)t 

then Hn(M) = itn{M) and all lower cohomology groups are zero. In view of this result 

it is not so surprising that cohomology proves to be such a useful tool in the construction 

of a topological charge. 

The necessary groundwork is completed with the notion of a pullback mapping. Sup­

pose that Tp(X) and T*(X) are the tangent and cotangent spaces respectively at some 

point p of a (real) manifold X. Consider a vector V in Tp(X) and a one-form a in T*(X), 

given explicitly by 

F = 6 < ^ ' a = a i d x i -

There is an inner product, defined so that 

(a,V) = aibi, 

and if / is a real-valued function on X, then V acts on / according to 

Now introduce a second manifold V. Suppose that g is a real-valued function on Y y that 

<f> is a mapping from XtoY, and that a; is a one-form living in T£(j,)(Y)' Then <f> induces 

maps 

<f>> : T p ( X ) - T m { Y ) defined by (<j>mV)g = Vg{</,(p)) , 

<t>* •• T;(P)(Y) - T;(X) defined by V V) = (u,, <f>*V). <2-40) 

It is this last map, </>*, that is the pullback mapping, taking one-forms on Y into one-forms 

on X. These ideas easily generalize to pullback mappings between r-forms. 

The most important property of <f>* is that it takes closed forms to closed forms 

and exact forms to exact forms, and so may be considered as a map between cohomology 

classes. In the (2+l)-dimensional a-models, one views the field configurations as mappings 
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<t>: S2 —» M. So each configuration defines a pullback mapping 

<f>* : H2{M)^ H2(S2). (2.41) 

It is at this point that the Kahler form 

u> = gap dua A du^ (2.42) 

comes into play. Since u> is closed it lies in some cohomology class [u>] (this notation should 

not lead to confusion with homotopy classes). The topological charge may now be defined 

by 

Q(<t>) = c-1J *•( [«]) , (2.43) 

where c is a normalization constant chosen so that Q takes on integer values. It is easy 

to see that Q is well defined. Because S2 has no boundary, the integral of any exact form 

over S2 vanishes (by Stokes' theorem) and so it makes sense to talk about the integral of 

a cohomology class over S2. 

It only remains to prove that Q is invariant as the fields evolve in time. There is a 
[23] 

simple theorem in differential geometry, stating that if <f>\ and fa are homotopic then 

the pullbacks <j)\ and (fy are equal (when considered as maps between cohomology classes). 

We have already noted that, as the fields evolve, (f> remains in the same homotopy class, 

i.e. 4>* is unchanged. Hence Q is invariant. 

It should be stressed that Q is fundamentally different from the conserved quantities 

that arise as a result of continuous symmetries of the Lagrangian (for example a conserved 

energy arising as the result of time translation invariance). The existence of Q is due solely 

to the compactification of the spatial dimensions into a two-sphere, i.e. it is a consequence 

of the boundary conditions imposed to ensure finite energy. 

It is possible to recast Q in terms of a particular set of manifold coordinates. In the 

(2+l)-dimensional Kahler models one finds 

Q = ic~l J gap tij diu° djvP d2x , (2.44) 

where is the antisymmetric symbol on two indices such that ei2 = 1. As an illustration 

take the C P 1 model, with g = 4(1 + uu)~2 as before. It turns out that one must have 
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c = 87r to obtain an integer charge: 

/ 2TT 

dxudyu — dyudxu y 
(1 + uu) x . (2.45) 

If one now considers the equivalence with the 0(3) model, and relates u to <f> according 

to (2.13), then Q may be written in the form 

We now turn briefly to the topological content of theories living in (1+1) dimensions. 

In this case the spatial boundary consists of just two points, namely x = ±oo. Finite 

energy requirements dictate that at these points the field should be at a minimum of 

(possibly infinite). Then because the fields evolve continuously, <f> must remain constant at 

infinity, i.e. it cannot jump from one minimum to another without violating finite energy. 

Let us define 

Again the finite-energy configurations are partitioned into topological sectors, in the sense 

that a configuration with particular values of <f>+ and <j>- cannot evolve into one with 

different values. In the simplest case V[<j>] has only one minimum and there is just one 

topological sector, but in general the situation is more interesting. 

For example, in the <̂>4 equation (2.26) there are two minima of V[4>], at <f> = ± 1 . 

Hence there are four topological sectors. It is possible to label them with an integer-

valued topological index, given by 

^ J €ijd>.{did> x dj4>) Q (2.46) 

the potential V[d>], but not necessarily at the same one (i.e. there is no justification for 

compactifying space as in higher dimensions). Assume that V has a discrete set of minima 

4>+ = ^(+oo, t) , 

<f>- = (f>(-oo,t). 
(2.47) 

Q = \ ( J > + - < ! > - ) . (2.48) 

The solutions written down in (2.26) have Q = ±1; these are conventionally called the 

kink and antikink respectively. The other two sectors both have Q = 0. 
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The sine-Gordon equation (2.27) has yet a little more structure, since now V[<j>\ has a 

infinite number of minima, at <f> = 2nir. In this case the topological index is given by 

There are an infinite number of topological sectors, with Q able to take any integer value. 

For example, the kink and antikink solutions given in (2.27) have Q — ± 1 . However, 

static solutions do not exist in all sectors, because of a simple argument1"1 showing that 

any nontrivial static solution must connect adjacent minima. For the <ffi equation this 

result is irrelevant, since there are only two minima anyway; but for potentials with more 

minima, such as sine-Gordon, it means that there are no static solutions with charge two 

or more. In other words, the kink and antikink of (2.27) are the only static solutions. 

2.5 Bogomolny Bounds 

In this section it is shown how to construct static solutions to most of the topologically 

nontrivial field theories that we have discussed so far, using a general technique first 

suggested by the Russian physicist Bogomolny. Along the way one obtains a lower 

bound on the potential energy in each topological sector. To begin with consider the 

scalar field theories in (1+1) dimensions given by the Lagrangian 

(2.49) 

(2.50) 

The potential energy in these models is simply 

+ O0 

/ + v\4>\) dx 

—oo 

+ 00 

dx 

— cc 

+ 00 

/ H4>x - VvWtfdx + J y/vWW 
00 
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Therefore 

E > J y/V[(f>] d<j>, with equality if and only if \<f>x = y/V\$ . (2.51) 

4>-

This lower bound on E is known as the Bogomolny bound, and the condition for equality 

is the Bogomolny equation. For example in the Q = 1 sector of the <j>4 equation we find 

+1 r 

-1 

with equality if and only if 

V2 

Similarly, for the sine-Gordon equation one has 

^ x - 4 r ( l - ^ 2 ) = 0. (2.52) 

2ir 

E > —= \ y/1 - cos <j) d<f> = 4, 

with equality if and only if 

4>z ~ >/2(l - cos<£) = 0. (2.53) 

Solving (2.52) and (2.53) simply yields the kink (and antikink) solutions (2.26) and (2.27) 

respectively. 

At first sight the Bogomolny technique seems to involve nothing more than completing 

the square, and this is indeed the case; but it is no less powerful for that. The first thing to 

note is that the static solutions are obtained by solving a first-order equation, wheras the 

original field equation is always second order. In addition, their explicit form is not needed 

in order to find their energy: one need simply know that a solution to the Bogomolny 

equation exists. 
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These ideas may be extended to the Kahler a-models in (2+1) dimensions. In this 

case it is better to start from the identity 

J 9ap (diua ± ieijdju") (did3 T ^ikdkup) d2x > 0. (2.54) 

Using the relations 

E = ±Jgapdiuadiuf3d2x, 

(2.55) 

cQ = i J gap €ij diua djvP d2x, 

it is easy to recast (2.54) to give 

E>\\cQ\, (2.56) 

with equality if and only if 

diua ±ieijdjua = 0. (2.57) 

The Bogomolny equation (2.57) is sometimes referred to as the self-duality equation. 

It can be simplified dramatically by moving to a complex coordinate z = x + iy. If d and 

8 denote differentiation with respect to z and z respectively, then the upper sign in (2.57) 

leads to 

Bua = 0 , (2.58) 

while the lower sign gives 

dua = 0 . (2.59) 

In the first case u may be any analytic function of z\ these solutions are called instantons 

and have a positive topological charge. In the second case u is an anti-analytic function 

of z and gives rise to anti-instantons, which have a negative topological charge. 

The mathematical beauty of this formalism is undeniable. To see how things work in 

a particular example, consider once more the C P 1 model. Recall that c = 87r and so the 

Bogomolny bound becomes 

E>2ir\Q\. (2.60) 

The condition of finite energy restricts u to rational functions of z (instantons) or z (anti-

instantons). The degree of u is equal to the absolute value of the topological charge. If 
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\Q\ = k then a solution of charge Q is a rational function of degree k, which has Ak + 2 

real parameters. However, there is an invariance under global rotations of the target 

manifold, and this removes 3 parameters. Therefore a &-instanton depends on only 4A: — 1 

parameters. For example, when k = 1 one may take 

u=——, (2.61) 
z - fi 

where A is real but /x may be complex. The physical interpretation is that one has an 

instanton of size A, centred around a point /x in the complex plane. For k — 2 the 

instantons are given by 

U ~ Z 2 + 6 Z + € < 2 - 6 2 > 

with real and the other parameters complex; and likewise for higher charges. 

In the C P 1 model the instantons and anti-instantons exhaust all possible static so­

lutions. But in general the C P n models have static solutions that are neither instantons 

nor anti-instantonsj261 i.e. ua is a function of both z and z. Such solutions correspond to 

saddle points of the energy. 

Finally we return to the Skyrme model in (3+1) dimensions. It has a very similar 

topology to the cr-models: finite energy again imposes a compactification of the spatial 

variables, this time into a three-sphere. The possible field configurations are maps from 

S3 to 5 3 , and so are labelled by a winding number, usually called B (since from the point 

of view of particle physics it plays the role of the conserved baryon number). Explicitly 

B = 24lr2 / T * ( ( J ~ l d i J ) ( J ~ l d j J ) ( J ~ l d k J ) ) dZx , (2.63) 

where is the alternating tensor in three dimensions. By completing the square, the 

potential energy in the Skyrme model may be cast in the form 

E = - \ r T x ( j - l d i J ± \ t t j k \ J - l d j J , J - l d k J ) ) ± 1 2 T T 2 £ , (2.64) 

where the coupling constant e has been set equal to unity for convenience. The first term 

on the right hand side of (2.64) is always positive and so, just as before, there is a lower 
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bound on E: 

E > 1 2 T T 2 | J 3 | , 

with equality if and only if 

J~ldiJ ± \ e i j k [J~ldjJ, J~ldkJ] = 0 . ( 2 . 6 6 ) 

At this point an important distinction between the Skyrme model and the pure 

cr-models becomes apparent, because the Bogomolny equations ( 2 . 6 6 ) have no solution 

apart from the trivial one with zero energy, in which J is a constant. In other words the 

Bogomolny bound cannot be attained. In the language of condensed matter physics, the 

model is said to be "frustrated". The skyrmion configuration has no analytic expression; 

instead it must be computed numerically. It has been found that its energy exceeds the 

Bogomolny bound by about 23%.[ZT] (However, it is interesting to note that if the skyrmion 

is allowed to live in curved spacetime then the Bogomolny bound can be attained.'2 8 1) 

To sum up, for models with nontrivial topology one can construct a lower bound 

on the potential energy in a given topological sector. It is usually proportional to the 

topological charge. Provided that the bound can be attained, the corresponding (static) 

solitons arise as solutions of the (first-order) Bogomolny equations. For instance, this is 

the situation in the (2+l)-dimensional Kahler models (where the static solitons are known 

as instantons). However, there are also so-called frustrated models, such as the Skyrme 

model, in which the bound cannot be attained. In these cases one must either make do 

with an approximate solution, or else resort to numerical computation. 

( 2 . 6 5 ) 
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Chapter I I I 
Extended Waves in an Integrable Chiral Model 

Many nonlinear field theories are said to be "integrable". Roughly speaking, this 

means that procedures exist for writing down their solutions explicitly. For example, many 

models (especially in (1+1) dimensions) are integrable via the inverse scattering method. 

More formally, integrable theories are characterized by the existence of an infinite number 

of conserved currents, by the existence of a Lax pair,1 2 9 1 and by the Painleve property!301 

The a-models are integrable in both (1+1) 1 3 1 , 3 2 1 and (2+0) dimensions. Note that 

solutions in (2+0) may be thought of as static configurations of the same theory in (2+1). 

We have already exhibited integrability in this case by constructing instanton solutions. 

On the other hand, the full (2+l)-dimensional cr-models are nonintegrable, i.e. introducing 

time dependence destroys the integrability. 

From the physicist's point of view, it is interesting to have theories that are both 

integrable and Lorentz invariant. Some theories are fully integrable in (2+1) dimen­

sions, for example the Davey-Stewartson equation ( 3 3' 3 4 1 and the Kadomtsev-Petviashvili 

equation 1 3 5 1; but both these are a long way from being Lorentz invariant, in contrast with 

the cr-models, which are Lorentz invariant but nonintegrable. It is not known whether it 

is possible for a theory to possess both properties. If such a model did exist then it would 

surely be of great interest in physics. 

A partial remedy is to take an SO(2,1) invariant model and to modify it slightly in 

such a way as to trade Lorentz invariance for integrability. In particular, it is useful to 

look at modifications of the c-models. One may still hope for a "generalized" Lorentz 

invariance in the sense that the behaviour of the soliton solutions, or of some restricted 

class of soliton solutions, is Lorentz invariant. An integrable modification of the SU(2) 

chiral model has been studied by Ward! 3 0 1 It was found that there are lump-like solitons, 

which scatter trivially off each other in the sense that each lump continues to move in a 

straight line with constant velocity. The aim of this chapter is to investigate wave-like 

solitons in the same model. 
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3.1 Introduction 

The modified SU(2) chiral model studied by Ward is given by the field equation 

{rT + V a t a ^ ) ^ { J - l d v J ) = 0. (3.1) 

As before, J takes values in SU(2) and is thought of as a 2 x 2 matrix of functions of 

the spacetime coordinates (t,x,y), sometimes also written ( x ^ x 1 , a: 2). Greek letters are 

spacetime indices, taking values 0,1,2, and denotes partial differentiation with respect 

to x^. The quantity ea*iV is the alternating tensor on three indices (with e 0 1 2 taken equal 

to +1) and t f v = diag(—1,+1,+1) is the (inverse) Minkowski metric. Finally, Va is a 

constant vector in spacetime. 

Choosing VA = (0,0,0) corresponds to the unmodified chiral model, which is Lorentz 

invariant but nonintegrable. Note that a nonzero Va explicitly breaks Lorentz invariance 

by picking out a particular direction in spacetime. A case of particular interest occurs 

when V a is chosen to be a spacelike unit vector, i.e. V^V^ = +1, since then the theory 

appears to be integrable.'371 (Further motivation, in terms of reduction of the self-dual 

Yang-Mills equations, is given in appendix A. ) Moreover, if Vb = 0 then the theory 

possesses the same conserved energy-momentum vector as the unmodified chiral model, 

namely 

= + I v ^ W J - ' J a J - ' J p ) . (3.2) 

The corresponding energy density is 

P0 = -\Tr((J-J J t ) 2 + { J ~ l J x f + ( J - ' J y ) 2 ) . (3.3) 

Here 6^ is the Kronecker delta, Tr denotes the matrix trace and Ja = daJ. It should be 

emphasized that PQ is a positive-definite functional of the field J. 

If VQ 7̂  0 then it is not at all clear that a conserved energy-momentum vector exists 

and so from now on, in order to ensure integrability and a conserved energy, we shall 

take VA to be a spacelike unit vector with VQ = 0. To be specific, choose VA = (0,1, 0). 

Ward has shown that this model admits solitons, localized in two dimensions, which 

pass through each other without scattering or changing shape. It is the purpose of this 

chapter to construct extended plane wave solutions and to investigate their interactions. 



Extended Waves . . . 30 

Such waves are localized along the direction of motion, but have infinite spatial extent 

perpendicular to it. 

In fact, one family of extended solutions may be exhibited immediately by noting that 

(3.1) is a generalization of the sine-Gordon (SG) equation in (1 + 1 ) dimensions. Consider 

a J of the form 

( cos^(f> e~2tx sin\<f> 

-e2txsin^<f> cos\<f> 

where the field <}> depends on y and t, but not on x. The field equation (3.1) with 

Va = (0,1,0) is then equivalent to the S G equation for <p: 

<l>tt - <l>yy + 4 sin 4> = 0. (3.5) 

Furthermore, the energy density (3.3) becomes 

Po = l ( ^ t + ^ ) + 4 s i n 2 ^ , (3.6) 

which is precisely the energy density of the sine-Gordon theory. In other words, there are 

solutions which look like S G solitons living in the (l-l-l)-dimensional subspace spanned 

by (y,t), but spatially extended along the z-axis. Note that while the J of equation (3.4) 

depends explicitly on x, the corresponding energy density (3.6) does not. This illustrates 

a general feature of extended wave solutions: although Po depends only on time together 

with one spatial coordinate (along the direction of motion), J is necessarily a function of 

all three spacetime coordinates. 

3.2 Construction of Solutions 

This section summarizes the general method for constructing multisoliton solutions of 

the field equation (3.1). The technique is a variation of the well-known "Riemann problem 

with zeros" (see, for example, Forgacs et al.l3S]), and full details are to be found in the 

paper by Ward.'3 6 1 

There are two ingredients to an n-soliton solution. Firstly, a set of n complex numbers 

fj,k {k taking values from 1 to n), which must all be different and nonreal; secondly, for 

3.4) 
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each k, a meromorphic function f k of the linear combination 

wjfc = x + \ f i k ( t + y) + l n k \ t - y). (3.7) 

Now form the two-component objects m* = (1,/fc), so that a takes values 1,2 with 

m\ = 1 and mJj = f k . Then (the inverse of) a matrix J that satisfies the field equation is 

given by 

(j-*U = -±=(sab + J2f (r-1)"*^}), (3.8) 

where 

o=l 

and bar denotes complex conjugation. 

Clearly, the expression for J becomes very complicated very quickly as n is increased. 

Fortunately, there is plenty of analysis which can be done while still taking n small. For 

the rest of this section and the whole of the next, n will be equal to 1. Later on, a study 

of interactions (sections 3.4 and 3.5) will require n = 2. 

To get a feel for the physical picture, we shall first investigate a simple family of lump 

solutions, very similar to those discussed by Ward. Consider n = 1, in which case solutions 

are specified by a complex number n and a meromorphic function f(u). Equation (3.8) 

simplifies to give 

Writing fj, = me*6, the energy density becomes 

_ 2( l + m 2 ) W f l [ / I 2 

P° ~ m* (1 + | /P)2 ' ( 3 - 1 0 ) 

where / ' is the derivative of / as a function of u>. Keeping things simple, choose f(u) = 

aw + c where a € R and c 6 C . (One could generate a larger set of solutions by taking a 
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also in C , but this is a little more tricky to analyse and an unnecessary complication to 

introduce at this stage.) The factor | / ' | 2 in the numerator of ( 3 . 1 0 ) becomes just a 2 . So it 

is seen that the solution looks like a single lump located at the point where / = aw+c = 0. 

From (3.7), its velocity is computed to be 

. . /—2m cos 6 1 — m 2 \ / „ , , \ 

The parameters a and c have simple physical interpretations: /x specifies the soliton 

velocity via (3.11), c determines the position of the peak at time t = 0 and, finally, a fixes 

the ratio of the height of the lump to its width. Note that in the static case (n = i) one 

may easily integrate PQ over x and y to obtain the total energy E. The result is 

oo oo 

E= j J P0dxdy = STT, (3.12) 
— oo —oo 

which is independent of a. 

3.3 Extended Wave Solutions 

Now we shall set out to construct a family of extended wave solutions. Ward showed 

that taking / to be rational of degree N leads to a configuration with N peaks, which in 

the static case has energy 8Nir. An extended wave must have infinite energy and so no 

function of finite degree will do for / . The next candidate is some sort of exponential. 

Specifically, consider 

/(o>) = exp(6u; + c). (3.13) 

This leads to an energy density 

2(l + m 2 ) 2 s i n 2 f l | 6 | 2 l / [ 2 

P° = m* ( l + l / l 2 ) 2 • ( 3 - 1 4 ) 

Here /z = me%e as before. Note that PQ depends on c only through its real part and so, 

without loss of generality, we can take c ? E . However, b is in general complex. To see 
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that (3.14) does indeed look like a wave, rewrite it as 

P 0 = ( 1 + T ^ 2 2 8 i D 2 g H 2 sech 2 (Re( iu , ) + c ) . (3.15) 

Note that PQ is constant along each of the lines Re(6u>) + c = const. The wavefront 

(i.e. the crest of the wave) lies along Re(i>a/) + c = 0. For each value of i , this is the 

equation of a straight line in the xy-plane. As t varies, the wave maintains its shape and 

simply moves at constant velocity. 

To investigate this wave in more detail, write 6 = |6je*a. Then the equation of the 

wavefront may be written 

Ax + By = Ct + D, (3.16) 

where 

A = 2m cos a , 

B = m 2 cos(0 + a) — cos(# — a) , 

C = — m2 cos(0 + a ) — cos(0 — a ) , 

D = -2mc/\b\ . 

The velocity may be readily calculated: 

— 2m cos a: (cos(0 — a ) + m2 cos(0 + a) ) 
v* = 

(3.17) 

Vy = 

m 4 cos 2 (6 + a) + 2m 2 ( s in 2 6 + cos 2 a) + cos 2(0 - a ) ' 

cos 2(0 - a ) - m 4 cos 2(0 + a ) 

m 4 cos 2 (6 + a) + 2m 2 ( s in 2 6 + cos 2 a) + cos 2(0 - a ) 

The speed v is given by 

y2 = 1 4 m 2 s in 2 9 
V m 4 cos 2 (0 + a) + 2m 2 ( s in 2 0 + cos 2 a) + cos2(6 - a) ' ' 

and, although the integral of PQ over all space is divergent, one can instead calculate the 

energy per unit length along the wavefront, which turns out to be 

2 = 4 7 H l s i n 3 f l | ( l + m 2 ) 2 

m 4 cos 2(0 + a ) + 2m 2 ( s in 2 6 + cos 2 a ) + cos 2(0 - a ) ' ' 

where 7 = (1 — v2). 1 
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The question of classification of these solutions now arises. Clearly, c determines 

the position of the wave at time t = 0. On the face of it, there are four other real 

parameters (m, 6, \b\ and a ) , which one might naively think could be chosen to fix the 

velocity (two parameters), and the wave height and the wave width (one parameter each) 

all independently. If this were the case, it would support the conjecture of generalized 

Lorentz invariance. However, the following systematic study of some special cases shows 

that things are not quite so simple. 

It is not difficult to pick out the solutions which look like static waves aligned along 

the coordinate axes. A wave lying on the x-axis requires cos a = 0 and m = 1. Setting 

k = ib sin 6 leads to 

P 0 = 2k2 sech 2 ky , (3.20) 

which is (if one parametrizes the solution using k and 6, rather than |6| and 6) independent 

of 9. On the other hand, the conditions for a wave to he on the j/-axis are cos 6 = sin a = 0. 

Setting k = |6| leads to 

P o = ^2 8 e c h 2 k x ( 3 2 1 ) 

In the latter case the height and width may be chosen independently, while in the former 

they are determined by a single parameter, with 6 playing the role of an "internal" degree 

of freedom. Although these observations do not necessarily rule out a generalized Lorentz 

invariance (there may be other plane wave solutions, not generated by (3.13)), they make 

it seem unlikely. 

The complete classification of waves generated by (3.13) appears to be difficult. There­

fore it is useful to study subsets of solutions obtained by imposing some extra condition 

on the parameters. For example, if one requires 

( 1 + m 2 ) t a n a = (1 - m 2 ) t a n 0 , (3.22) 

then the wave velocity (3.17) becomes 

. . / 2mcos6 l - m 2 \ ,„ 
( f x , « y ) = ( — r - 5" » 7 1 — 2 ] ' ( 3 - 2 3 ) 

\ 1 + ml 1 + mr ) 

which matches the expression (3.11) for lump solutions, and the energy per unit length 
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becomes 

E = Ay \b\ | s in 3 0 | . (3.24) 

In this scheme a physical interpretation becomes apparent: m and 0 specify the ve­

locity and |6| determines both the height and width, with a fixed by (3.22). To make the 

situation even more transparent, one can replace (m, \b\,9) with new parameters (k, <f>,A) 

defined by 

1 — ksin<f>\\ 
m 

_ ( i — «sm<p\ 2 
V l + ksiud>) ' + &sin</>> 

cosd= ~ k c o s \ , (3.25) 
y / \ - k2 s in 2 <j> 

\b\ = A^J I - k 2 sin2 <j>. 

The energy density then becomes 

2A2(\ - k2) 
PQ = i - -L sech 2 A(x cos <f> + y sin <f> - kt). (3.26) 

1 - kl sin <f> 

Now it is seen that k is the wave speed, <j> is the angle of the direction of motion relative 

to the x-axis and A is the width. The height is then a simple function of k, <j> and A. 

Taking <f> = 7r/2 and A = 2/\/l — k2 leads to the extended S G waves mentioned earlier, 

namely 

Note that in this case, equation (3.24) reduces to E = 87, so confirming the relativistic 

behaviour of S G solitons. 

3.4 Wave-Wave Interactions 

It was seen in the previous section that the classification of extended wave solutions 

is far from a trivial matter, and clearly a complete study of their interactions will be no 

simpler. Instead, we shall present an analysis of a few particular cases, pointing out the 

main features. It seems likely that the general case will be very similar. 
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For a two-soliton solution one takes n = 2 in the prescription of section 3.2. It 

turns out that the algebra is much simplified if fik is restricted to be pure imaginary, i.e. 

Bk = IT/2. So as an example of a solution containing two waves, W\ and W2, consider 

Mfc = ipk , / * ( « * ) = exp(6 f cw f c + ck), (3.28) 

where k takes values 1,2; pk is real and 

h = Ak({l+pl)cos(l>k -2ipksin(t>k). (3.29) 

Physically, the positive real parameter Ak fixes the width and height of each wave, <f>k € 

[0,7r] gives the direction of motion and the speed is 

sin<fo. 

Even with the simplification of taking Hk imaginary, the full expression for PQ is 

rather complicated, but one can investigate the asymptotic behaviour in the following 

sense. Recall that the equation of each wavefront is Re(6fcU>fc) -f ck = 0. Taking the limits 

Re(&iu>i) —> ±00 corresponds to moving far away from wave W\ on either side. If at the 

same time R e ^ t ^ ) ^ s kept finite, then roughly speaking we are keeping our eyes fixed on 

W2, but far away from W\. To keep things in terms of f k , note that Re(bku}k) —> +00 

implies —* 00 and Re(6/.wjt) —• —00 implies —* 0. 

Now let k' stand for "not k", so that l ' = 2 and 2' = 1. Then the asymptotics of the 

solution (3.28) may be summarized as follows: 

„ , p 2(p 2 - P I ) H P I + l?A\ ((pi + I ) 2 - (pi - I ) 2 s in 2 * k ) \fk\* 
\Jk' \ —* 00 , rn ~ 5 , 

Pl(\fk\2(pi ~ P2? + (PI + P 2 ) 2 ) 2 

, n p 2( P l

2 - p2)2(p2 + l)2Al((p2 + I ) 2 - (p2 - l ) 2 s i n 2 ^ . ) l M 2 

\tk' \ —* 0 , " 0 ~ 9 • 
P?.( IA | 2 (P1+P2) 2 + ( P 1 - P 2 ) 2 ) 2 

(3.30) 

The crucial point is the difference of sign in the denominators. It is not difficult to see 
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that the essential behaviour is 

\fk'\ -» <*> , 

I A ' l - o , 

PQ ~ sech 2 (Re(bkuk) + ck - 7) , 

P 0 ~ sech^Re^u;*) + ck + 7 ) , 
(3.31) 

where 

tanh 7 = 2piP2 (3.32) 
Pi +P2 

So the waves interact in a fairly simple way: each experiences a phase shift 27. The S G 

waves are present in the above solutions as the special case (j>k = ?r/2, Ak = l/|pfc|. 

Figure 3.1 shows a snapshot of the energy density at time t = 0 for the following 

choice of parameters: (pi,^4i,^i) = (l,2,7r/2), (p2,^2 (^2) = (2,1,TT/4). The phase shift 

suffered by each wave is clearly visible. Note also the highly nonlinear superposition in 

the region of intersection. 

One may ask whether internal parameters (which do not appear in the single wave 

energy density) can affect interactions. The answer is yes, as the following example 

will show. Consider W\ and W2 both parallel to the x-axis with W2 stationary, i.e. 

fa = fa = 7r/2, P2 = 1. Choose p\ = l / y / 2 . Then in the above scheme, tanh 7 = 2\/2/3. 

But now note that W% is equally well described by 

Repeating the calculation (although /X2 is not now pure imaginary, the parameters have 

been chosen to make the algebra as tractable as possible) one finds precisely the same 

asymptotic behaviour but with a new phase shift 7' given by tanh 7' = 2/3. 

To sum up, as two waves interact, they do not change shape or velocity, but each 

has a phase shift across the region of intersection, which may be dependent upon internal 

parameters. 

H2 = exp(i7r/4) , 72(^2) = exp(-2\/2iA2W2 + C2) • 
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FIG 3.1. A snapshot of the energy density for a two-wave interaction. The flatter wave is 

stationary along the x-axis, and the taller one is moving across it at an angle of 

45 degrees. 

3.5 Wave-Lump Interactions 

For simplicity, we shall consider only the case of a plane wave W\ incident on a 

stationary lump L^. In terms of the input to the two-soliton solution, take the same \i\ 

and fi as in section 3.4, but now with //2 = * and h{u<i) = A2U2 (A2 G K. as in section 

3.2). The effects of the interaction are again revealed by the asymptotic behaviour of PQ. 

Note that to look far away from L2 in any direction, the relevant limit is I/2I —> 00. One 
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finds the following: 

l / l l - » oo , PQ 
( I / 2 I 2 ( P 1 - 1 ) 2 + (P1 + 1 ) 2 ) 2 ' 

I/2I - 00 , P 0 

2A 2 (pf - l ) 2 ((p 2 + l ) 2 - (p 2 - l ) 2 s in 2 ft) | / i 1 

P ? ( | / i | 2 ( P i - l ) 2 + (Pl + l ) 2 ) 2 

The physical picture is this: the shape and velocity of the wave are the same long 

before and long after the collision, and it suffers no phase shift. The more remarkable 

feature is that the lump remains stationary, but changes its height by a factor 

4 

Pi 

kPI + 

Again the crucial point is the difference of sign in the denominators. A little care is needed 

at this stage, since it is not immediately clear which limit of corresponds to t —• —00 

and which to t —• +00. The answer to this question depends on the size of p\\ 

, t —+ -00 If\I —> 00 . 
For |pi| < 1 , { 

l / i I -» 00 . 

So for pi > 1 or — 1 < pi < 0 the lump decreases in height and for pi < — 1 or 0 < pi < 1 

it increases in height. Figure 3.2 shows a series of snapshots taken at time intervals of 

0.5, starting at t = —1.0, for the following parameters: (j>\ = IT/2, A\ = 0.1, Ai = 5, 

Pi = 10. In this case, W\ is an S G wave. The lump decreases in height by a factor (9/11) 4 

(w 0.45), but its total energy remains unchanged, equal to 8n. 

Perhaps the most puzzling feature is the transverse asymmetric kink acquired by the 

wave as it squashes the lump, and which then gradually dies away. It could be that this is 

due somehow to the absence of Lorentz invariance. Alternatively, internal parameters at 

work may provide the explanation. In any event, the interaction seems quite unlike any 

occurring in other integrable models. 
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FIG 3.2. A series of snapshots of the energy density for a wave-lump interaction. The lump 

is stationary at the origin and the wave is travelling parallel to the y-axis. Time 

runs down the page in intervals of 0.5, starting at t = —1.0. 
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3.6 Concluding Remarks 

The modified SU(2) chiral model and the Kadomtsev-Petviashvili ( K P ) equation have 

several features in common. The latter also possesses "rational" solitons, which look like 

lumps, and "exponential" solitons, which look like waves.13*1 In both models two lumps 

pass through each other without scattering and two waves interact with a phase shift. 

However, the wave-lump interaction of section 3.5 seems to have no analogue in K P ; 

compare, for example, with figure 9 of reference [39]. 

As a final remark, it might be interesting to consider letting the field J live in a 

noncompact Lie group such as SL(2 , R ) or SL(2, C ) . This would mean that the energy 

density is no longer positive definite, but should not rule out explicit construction of 

solutions. An SL(2, R ) model is expected to have embedded in it the Korteweg-de Vries 

( K d V ) equation in (1+1) dimensions, while taking J in SL(2, <D) will also include the 

nonlinear Schrodinger equation!*01 Maybe these models will exhibit a behaviour closer to 

K P , since they are both, in some sense, generalizations of K d V , unlike the current SU(2) 

model. 
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Chapter IV 
Discrete Bogomolny Equations in the 0(3) Model 

This chapter and the next deal with the 0(3) a-model, and in particular with an 

investigation of soliton stability. Since the solitons have no fixed size, their stability 

is a central question. Nontrivial topology guarantees that their potential energy can 

never fall below the Bogomolny bound; but there is still the possibility that under small 

perturbations they could shrink towards infinitely tall spikes of zero width. 

Since the model is nonintegrable, it is natural to consider numerical techniques, in 

which the field equations are discretized and then evolved on a lattice. A lattice study 

of soliton stability can be hampered by the absence of explicit static solutions. This 

chapter will show how to avoid this problem by taking proper account of the model's 

topological aspects. The application of the techniques developed here to the question of 

soliton stability is described in the next chapter. 

At first sight it is not clear how best to reconcile the nontrivial topological aspects 

with a lattice formulation, although there have been several proposals , [ 4 1 ~ 4 4 1 The approach 

adopted here is to construct a discrete analogue of the Bogomolny bound. This leads 

naturally to a numerical scheme that possesses explicit static solutions. In other words, 

the central idea is to find a set of first-order difference relations to play the role of the 

Bogomolny equations on a lattice. Solutions of these relations saturate the topological 

lower bound on the (discretized) energy. 

Only field configurations for which the energy density (but not necessarily the fields 

themselves) is radially symmetric will be considered here. In principle this restriction 

could be lifted, but the construction of the discrete Bogomolny relations is then more 

complicated. However, for the problem of soliton stability, the restriction to axial symme­

try is not a serious constraint, since nonaxial modes are unlikely to lead to instabilities. It 

is worth remarking that Mikhailov and Yaremchuk have considered imposing radial sym­

metry on the fields themselves. [4S] Then the model is integrable via an inverse scattering 

method, but all the solutions obtained in this way have topological charge zero. 

The rest of this chapter is arranged as follows. The next section reparametrizes the 
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fields to impose radial symmetry. Only then is the model discretized, and in section 4.2 

the discrete Bogomoiny relations are constructed. Section 4.3 discusses their properties 

( w i t h some of the more mathematical details gathered i n appendix B ) . I n sections 4.4 

and 4.5 they are incorporated into a f u l l evolution scheme (a program list ing is given 

is appendix C). Some preliminary results, indicating that the numerical simulation is 

working well, are presented in section 4.6. I n keeping w i t h convention, the min imum 

energy static solutions (i.e. those solutions that at tain the Bogomoiny bound) w i l l often 

be referred to as instantons. 

4.1 Radial Symmetry in the 0(3) Sigma Model 

I n the 0 ( 3 ) a-model the fields <j> take values on a two-sphere S of unit radius. I t is 

often useful to relate 0 to a complex scalar field u by means of a stereographic projection 

f r o m the north pole of S on to the complex •u-plane: 

" = w T ' ( 4 1 ) 

The radially symmetric instantons of charge N are given by u = A / z N where z = x + iy 

and A is a real constant. Note that the global 0 ( 3 ) invariance of the model has now 

been removed by impl ic i t ly choosing u —• oo (equivalently <j> —*• (0 ,0 ,1 ) ) as z —> 0, and by 

taking A real. When N = 0 the field is constant and the energy density is zero everywhere. 

For N = 1 the instanton looks like a lump peaked at the origin, and for N > 1 i t is a ring 

centred on the origin and peaked at 

where r is the polar radius in the ary-plane. Physically, A may be interpreted as the 

instanton wid th . 

W i t h these observations in mind, one may write down a more general family of radially 

symmetric configurations, namely 

where now A is allowed to be a (possibly complex) funct ion of r and t. The remainder 

of this chapter deals exclusively w i t h these configurations. I t seems that all radially 

1/2JV N - 1 A 1 / " 
N + l 

(4.2) 
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symmetric energy densities can be derived f r o m a field of the fo rm (4.3), at least i n some 

global gauge. 

The field u provides a concise description of the radial configurations. However, i t is 

not suited to numerical implementation, since i t possesses a singularity (at the origin). 

Instead, one reverts to the ^-picture , i n which (4.3) is equivalent to 

4>\ = f ( r , t) cos N6 + g(r, t) sin N6 , 

fa = - f ( r , t) sin N6 + g(r, t) cos N6 , (4.4) 

= h(r,t) , 

where / , g and h satisfy the constraint 

/ 2 + g2 + h2 = 1 , (4.5) 

and 6 is the polar angle i n the zy-plane. Roughly speaking, / comes f r o m the real part of 

X and g f rom the imaginary part (so the instantons have g = 0). The boundary conditions 

are h(0) = 1 and, for N # 0, h(oo) = - 1 . 

Now one is i n a position to reformulate the Bogomolny bound in terms of the single 

spatial coordinate r . Set g = 0 i n (4.4), since for the moment we are concerned only w i t h 

instanton solutions, and choose / to be positive. Then the kinetic and potential energies 

are given by 

T = \J (i-Tj?) ( 2 ? r r d r ) ' ( 4- 6 ) 

__ 1 / / h2

r N 2 ( l - h 2 ) \ / 0 J , 
4 J [r^h? +

 r 2 ) { 2 n r d r ) ' ( 4 > 7 ) 

o 

where the subscripts r and t denote partial differentiation. The topological charge density 

becomes simply 

P = - ^ r f • W x = • ( 4 - 8 ) 

The Bogomolny bound, V > 2TTN, is essentially the ident i ty 

oo , 2 

0 
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and the Bogomolny equations are 

rhr + N(l - h2 ) = 0 . (4.10) 

Explici t ly, the instanton solutions are given by 

( f , 9 , h ) = ( 
2XrN „ \ 2 - r ™ 

) • 
(4.11) 

for arbi trary real constant A. Note that (provided N ^ 0) h decreases monotonically as a 

funct ion of r , f r o m h = 1 at r = 0, to h = — 1 as r —* oo. 

4.2 Bogomolny Relations in a Discrete Formulation 

i n terms of a single real f ield h, which is a funct ion only of the polar radius r . I t w i l l now 

be seen how this description is useful in constructing discrete analogues of the topological 

charge and of the Bogomolny equations. 

Consider a discrete set of values hn (n € Z , n > 0) w i t h the properties that ho = 1 

and hn —• — 1 as n —• oo. ( In both this section and the next, the special case N = 0 w i l l 

be avoided, in order to ensure hn —* —1.) One expects the Bogomolny bound to take the 

general fo rm 

By analogy w i t h equation (4.9), the cross terms of the inf ini te sum in (4.12) should yield 

the topological charge; the remaining terms give the potential energy. So to fix up the 

charge one may take 

So far, all we have done is to re-express the (radially symmetric) instanton solutions 

V ( a n + / 3 n ) 2 = V - 2TTN > 0 (4.12) 
n=0 

(4.13) 

Turning to the energy, the form of (4.7) suggests the choices 

7T 
N a n 

(4.14) 

Inn 7rn (hn+i - hn) 
13 n 2 V^hl 

(4.15) 
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The only problem w i t h this is tha t (4.14) and (4.15) are undefined when n = 0. Clearly 

the origin must be treated i n a special way. One solution is t o arrange that c*o + Po = 0 

identically, while s t i l l being consistent w i t h (4.13). So choose 

J l - h "0 (4.16) 

/3o = - ^ V / T = H . (4.17) 

Pu t t ing the pieces together gives the following discretized potential energy: 

V . . . f f ( l - « + j f w ( ^ ^ ) . 

Apart f rom the leading term, which comes f r o m a § + /3q, this is perhaps what one 

would have wr i t ten down immediately as an analogue of (4.7). The advantage of the above 

approach lies in the appearance of the associated Bogomolny relations. There is equality 

in (4.12) i f and only i f an + f3n = 0 for n > 1. (Recall tha t ao + Po = 0 identically.) 

Substituting for an and pn f r om (4.14) and (4.15) one finds 

N{l-h2

n) + n ( h n + i - h n ) = 0. (4.19) 

This equation is the key to our lattice formulat ion. The proposal is that instantons 

on the lattice should satisfy (4.19). This discrete Bogomolny relation is a nonlinear first-

order difference equation for hn, and so its solutions contain one degree of freedom, which 

specifies the instanton size in some way. I t is simplest to th ink of h\ as the free parameter: 

roughly speaking, the closer h\ is chosen to 1 then the larger the w i d t h of the corresponding 

instanton. One should also be clear about the role of N. There is no equation giving the 

topological charge in terms of a specified set of hn. Rather, JV is now also a (positive 

integer) parameter to be specified. 

Given h\ and N, i t is clearly very simple to generate all other hn by repeated applica­

t ion of (4.19). So far, (4.19) has resisted all attempts to wr i te down the general solution 

in a closed form. But despite this one can s t i l l make considerable progress i n investigating 

the properties of lattice instantons: this is the subject of the next section. 
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As a final remark, one might ask how things would differ i f the restriction of radial 

symmetry were dropped. The answer is tha t one would now need two scalar fields, labelled 

w i t h two indices each. Moreover, to get the topological charge appearing in the Bogomoiny 

bound correctly, the right hand side of (4.13) would look like the area of a spherical triangle 

(see, for example, the paper by Berg and Li ischer ' 4 1 1 ) . 

4.3 Instantons on the Lattice 

A l l lattice instantons satisfy the Bogomoiny relations, but does the converse hold, 

i.e. are al l solutions of (4.19) lattice instantons? The answer is no: the requirement that 

hn > — 1 for all n puts a lower bound on the allowed values of h\, as the following argument 

shows. From (4.19) 

hn+i = hn - - ( 1 - h2

n) (4.20) 
n 

and so, assuming hn > — 1 , 

hn+i > - 1 hn + l > — ( 1 - hi) 
n 

N 
1 > - ( 1 - hn) 

n 

O h n > l - j . (4.21) 

The condition (4.21) is automatically satisfied i f n > 2N, but for n < 2N i t gives a set of 

2N — 1 inequalities, which are equivalent to pu t t ing a lower bound on h\. When N = 1 

one requires simply that hi > 0 (and, of course, hi < 1). For N = 2, (4.21) becomes 

hi > i , h2> 0, H > - \ . (4.22) 

Using the explicit Bogomoiny relations, namely 

ho = 2/i? + hi — 2 , 
(4-23) 

^3 = h2 + h2 - 1 , 

one finds that the three conditions in (4.22) are all satisfied i f and only i f hi > v / 3 / 2 . 
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These results are a l i t t l e curious. One possible interpretation is that the lattice 
"wants" to support only those instantons larger than a certain w i d t h . This is somehow 
in keeping w i t h the intui t ive notion that a good discrete representation w i l l put several 
lattice points inside the instanton. From now on i t is assumed tha t h\ is always large 
enough to satisfy (4.21). 

One further check must be made. I f \hn\ < 1 for some particular n then f rom (4.20) 

hn+i < hn < 1. Hence, subject to the above provisos on h\, {hn} is a monotone decreasing 

sequence bounded below by — 1 , and so must tend to some l i m i t , /, where / > — 1. For an 

instanton solution, one requires / = — 1, and i t is easy to show tha t this is indeed always 

the case: since {hn} tends to a l i m i t , the series 

oo 

^2{hn ~ hn+l) 
n=l 

converges. By (4.20) this series is equal to 

*—' n 
n=l 

and i f / > —1 then (4.24) diverges. So Z = — 1. 

One could argue that the classification of lattice instantons is now complete. However, 

hi is not a convenient parameter to work w i t h i n practice. I t would be much nicer to have 

a lattice analogue of the instanton w i d t h A, which appeared in (4.11). One possibility is 

to set 

A i - i ± 5 s » » (4.25) 
1 - hn 

and then to define 

A = l i m A n , (4.26) 
n—»oo 

provided this l im i t exists. The idea is that one could specify A and somehow relate i t back 

to h\. I t turns out that A is indeed well defined: the proof of this is given in appendix B. 

However, i t seems dif f icul t to relate A to h\. Instead, i t may be related to hHo for large 

(4.24) 
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( n 0 + 2JV - 1)! 

( n 0 - 1)! 

( l + h n o \ 
e x p ( - 4 J V ' S 0 ) + 0(ru<) , (4.27 

where 

So 
nn—1 

7T 

n=l 

(4.28) 

This result is also derived in appendix B . I t suggests the fol lowing procedure for con­

structing instantons on the lattice: 

1. Specify X and choose no large enough so that 0{TIQ 3 ) may be neglected. 

2. Calculate hno using (4.27). 

3. Calculate hn for n > UQ using (4.20). 

4. Calculate hn for 0 < n < no by solving (4.20) as a quadratic for hn: 

Consider (4.29) for a moment. As hn+\ varies between —1 and 1 so does hn, and i f 

| ^ n + i | < 1 then hn > h n + \ , i.e. step 4 is perfectly well behaved. The only problem w i l l 

occur i n step 3 i f no < IN and the value of causes (4.21) to be violated (in which 

case the derivation of (4.27) breaks down anyway). So to be completely safe, one should 

always choose no > 2N. 

To sum up, lattice instantons may be generated by choosing hi and then repeatedly 

using (4.20), but there is a lower bound on the allowed h\, which is dependent on JV. I t 

is much better to fix for some large no; first because one need not worry about the 

allowed values of h n o , and secondly because hno has been related, albeit approximately, 

to the w i d t h A. 

) 
AN ( N n 1 + 4 / 1 + n 2JV n n 

(4.29) 
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4.4 The Full Discrete Evolution Scheme 

We shall now address the question of incorporating the notion of lattice instantons 

into a f u l l numerical evolution scheme. One possibility is to wri te down the general t ime-

dependent equations of motion for the cont inuum model and then to discretize them in 

some way, but the lattice instantons of section 4.3 w i l l not in general be static solutions 

of these f u l l discretized equations. 

A better plan is to construct a discrete action in which the potential energy (4.18) of 

the lattice instantons appears, and then to vary the action w i t h respect to the fields at 

each site on the spacetime lattice. This method guarantees that solutions of the Bogo­

molny relations (i.e. the lattice instantons) are automatically solutions of the f u l l evolution 

scheme. 

I n the continuum model the kinetic and potential energy densities, ej< and ey, are 

given i n terms of / , g and h (defined i n (4.4)) by 

e r ( r , t ) = + + 

(4.30) 

eV(r,t) = \ ( f 2

 + g

2 + h2

r + ^ ( f 2 + g2)). 

I t is now convenient to wri te 

/ ( r , 0 + v ( r , 0 = « ( ' - , 0 e < l K r , ' ) , (4-31) 

so replacing / and g w i t h R and tp. (Note the instantons have g = 0, i.e. R = / , tft = 0.) 

We shall always choose R > 0. The constraint on the fields becomes R2 + h2 = 1, and so 

i t is straightforward to eliminate R in favour of h, eventually having a theory containing 

just h and ip. From (4.30) the action density may be wr i t t en 

£ = \{h2

T + R2

r + ^ + R2tf - h\ - R 2 - RH2) 

(4.32) 
1 / h2 N\l - h2) 2 , , h\ x 

= -A[rr^ +
 — J 3 — + ( i - M t o - i M - Y - j j j J • 

The first two terms are just the potential energy density (4.7) of instanton solutions; 

they w i l l be discretized according to (4.18). I n the f u l l lattice formulat ion, the fields 
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acquire a superscript to label the t ime slices. The discrete action derived f r o m (4.32) is 

S«. - - A T ) + ^ £ X > ( % ^ + 
m m n= l n 

- K ) 1 

* 2 ( 1 " h^) + (i - 0((Cn - « 2 - ̂ r 1 - c1)2)), 

(4.33) 

where 6 is the t ime interval between successive t ime slices. The evolution equations arise 

f r o m varying Sdis w i t o respect to hm and ipm separately. For convenience, introduce the 

shorthand notations h = hm, and also 

hR = K+\. 

hu = h™+1, 

hD = h™-1 

(4.34) 

and similarly for tp. Th ink of L, R, U, D as meaning lef t , r ight, up and down. Then 

varying Sdis w i t h respect to •0^* gives 

^ = i> - 6\ip - i,R) - 62 (lL-±) ( h S ) & - ^) + (iT^) ̂  ~ - (4-35) l - h 2 

while varying w i t h respect to /i™ gives 

{h - hu)(hhu - 1) = A{1 - h 2 ) 2 , (4.36) 

where 

A = < 

+ h(62(1> - i>R)2
 - ( ^ - M2) 

J ( h - h R ) ( h h R - l ) N2h 
' ( l - h 2 ) 2 + n 2 

n — 1 / h — hi 
+ 

h — hj) 

+ h ( 6 2 ^ - ^ R ) 2 -ii>-M2) 

(n = 1), 

(n > 1). 

Equations (4.36) and (4.35) together fo rm the evolution scheme for h and tj). Note that 

(4.35) gives if>u explicit ly in terms of the other quantities; but (4.36) is quadratic i n hjj 
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(unless h = 0, i n which case i t is linear). The correct choice for hu comes f r o m requiring 

that as 8 —• 0 (and hence A —» 0) then / V —• / i : 

{ A i ft = u i , 

* < i + * - o - ™ — ( 4 - 3 7 ) 

- / i 2 ) V T ^ 4 X 4 ) ( f c # 0 ) , 

I t should be emphasized that i f one sets h = h\j = /i£> (i .e. looks for time-independent 

solutions on the lattice) then the Bogomolny relations (4.19) i m p l y (4.36). I t is this feature 

that distinguishes the scheme f r o m a more naive approach; i n other words, one gets exact 

static solutions on the lattice. 

To be completely rigorous, one should carry out some sort of analysis of numerical 

stabil i ty for the discrete model. However, (4.35) and (4.36) are sufficiently complicated 

to make this far f r o m a t r i v i a l task. For the moment, one must be content w i t h the fact 

that extensive use of these difference equations has not revealed any instabilities. 

4.5 Boundary Conditions and Numerical Output 

The lattice formulat ion necessarily has a spatial boundary, at n = n m a x say. As in 

. any numerical evolution, the boundary conditions must be chosen w i t h care. I n this case 

they are chosen as follows. 

f / i m + 1 = hm 

For N = 1 I n m a X + 1 «max + l ' 

v>r + 1 4 . i = vv m 

For N > 1 flmax+J- "max Tlm&x V v ' •max ' / ' 

' Hmax "T A "max 

I n other words, for N > 1 the fields on the boundary behave like instanton fields, but for 

N = 1 they are fixed in t ime. The boundary conditions for N = 1 may appear somewhat 

severe, but they seem to be the only sensible choice for the fo l lowing reasons. 

There is a fundamental difference between the cases N = 1 and N > 1, which becomes 

apparent when one considers the so-called "slow-motion" approximation. ' 4 6 ' 4 7 1 Briefly, this 

approximation consists of le t t ing A depend on t but not on r i n equation (4.3), thereby 

truncat ing the f u l l dynamics down to a two-dimensional manifold , parametrized by the 
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complex parameter A. For N > 1 this idea has proved to be very useful (for example, 

a slightly more sophisticated version lies at the heart of the investigation of scattering 

processes presented i n chapter V I ) ; but when N = 1 the expressions for the kinetic energy 

are divergent and so the method cannot be used. The same feature also occurs i n numerical 

evolutions i n the sense that , i f one attempts to apply boundary conditions i n the N = 1 

sector that allow the fields to change w i t h t ime at arbi t rar i ly large distances, then the 

to ta l energy of the system grows rapidly and wi thout bound. I n short, one is forced to 

impose a fixed boundary condition. 

Turning now to the question of numerical output , i t w i l l sometimes be useful to look 

at a f u l l plot of the energy density; but for the most part i t is sufficient to use just three 

global measures of the evolution, namely the to ta l kinetic energy T, the to ta l potential 

energy V , and a measure W of the configuration wid th . A l l these quantities are calculated 

inside the region n = n c on the spatial lattice, where n c is a parameter to be specified 

in the model input . Clearly n c cannot be chosen larger than n m a x . I n fact, i n many 

situations i t is useful to take n c < n m a x , so removing the outer part of the mesh f rom the 

calculation. 

I n the continuum model one has 

where e r ( r , t) and ey(r , t) are given by equation (4.30). The discrete versions of T, V, W 

come f r o m the discrete action (4.33): 

nc 
7dig(n c , m) = 2TT ^ neT(n, m), 

n = l 

nc 
T(nc,t) = 2*1 r£T{r,t) dr, 

o 
nc 

V{nc,t) = 2tt j r e v ( r , t ) dr, (4.38) 

o 

W(nc,t) 
2irj£cr*{eT(r,t) + ev(r,t))dr 

T(nc,t) + V(nc,t) 

nc 
Vdis(nc, m) = 27r 2J nev(n, m) + irN(l - h m ) (4.39) 

n = l 

Wdis(wc,ro) 
2 t t £ : Hl,c

=l n2 (eT{n, m) + cy ( n , m ) ) 

7dis(nc, m) + V d i s (n c , m ) 
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where 

e r ( n , m ) = ^ ( W ^ ^ + ( 1 _ fc^)^ - ffl

2) , 

(4.40) 

e v (n,m) = - ^ 1 _ ^ 2 + ~i + i 1 ~ hn )(V„+i - V»„ ) J • 

4.6 Preliminary Results 

This section checks the numerical evolution i n the simple cases of a charge-one instan­

ton and a slowly moving charge-two ring. Having already decided on boundary conditions 

in the previous section, the main discussion here centres on the choice of in i t i a l data. We 

w i l l f ind that using the discrete Bogomolny relations to construct in i t i a l data is much 

better then taking values directly f rom the continuum solutions. 

Figure 4.1 deals w i t h the charge-one instanton given by A = 30 evolved over the range 

0 < t < 100, and w i t h n c = n m a x = 100 and 6 — 0.1. Recall that the continuum solution 

is ip(r, i) = 0 together w i t h 

u, ^ A 2 - r 2 

R(r,t) = 

(4.41) 

A 2 + r 2 ' 

which, when substituted into (4.38), leads to T ( n c , t ) = 0 and 

T r / . 27T712 

W(nc,t) = 4((A 2 + n f j t a n - 1 ^ - An c ) 
n c A 

(4.42) 

These last two quantities are plotted in figure 4.1 as finely broken lines. 

The other curves are the results of numerical evolutions, for two different sets of in i t i a l 

data. Since the evolution equations are second order, the in i t i a l data must specify the 

field values at the first two time slices, m = 0 and m = 1 say. Suppose that hn(X) is the 
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FIG 4.1. The variations of T , V and W over the range 0 < t < 100 for a charge-one in­

stanton in the continuum model (finely broken line), and also for the numerical 

evolution. In the latter case, i n i t i a l data are taken both directly f r o m the con­

t inuum model (solid line) and f r o m the discrete Bogomolny relations (coarsely 

broken line). 
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value of h at lattice site n for a lattice instanton of w i d t h A. The coarsely broken line is 

derived f r o m in i t ia l data given by the discrete Bogomolny relations: 

- M A ) . 

rt = ri = o. 

As a comparison, the solid curve is derived f r o m in i t i a l data taken directly f r o m the 

continuum solution: 

h°n = hn = ( X 2 - n 2 ) / ( X 2

 + n 2 ) , 

^ = 4 = 0 . 

The most str iking feature is that in i t i a l data taken f r o m the continuum model lead to 

"lattice wobble", which is eliminated when the discrete Bogomolny relations are used 

instead. Of course, this is precisely what the discrete Bogomolny formalism was designed 

to do. 

Note f rom figure 4.1 that the Bogomolny relations lead to a value of W which is slightly 

larger than that predicted by the continuum analysis (a feature caused by A being redefined 

on the lattice to be the l im i t of { A n } ) . The absence of a natural scale in the problem 

means that this small difference is unimportant ; what matters is that taking in i t ia l data 

f rom the Bogomolny relations leads to numerical results which are qualitatively close to 

the continuum model. 

Turning now to time-dependent configurations, one could at tempt to reproduce some 

of the solutions which have been obtained analytically for N = 0. (Included in these is the 

special case h = 0, w i t h ip satisfying the radial wave equation.) However, taking A^ = 0 

does not test the abi l i ty of the model to handle nontr iv ia l topologies. Instead we shall con­

sider evolutions i n the charge-two sector obtained using the slow-motion approximation. 

One such evolution' 4 6 1 is given by 

A(i ) = a{b + it)2 , (4.45) 

where a and b are real constants. The kinetic energy is x 2 a (so the approximation is 

expected to be best when a is small) and the potential energy is Air. Physically, this 

solution corresponds to a ring, peaked at r = 3 - 1 / 4 y / a ( b 2 + t 2 ) , which contracts to a 

min imum radius at t = 0 and then expands again. Note tha t because the evolution is 

being approximated by a sequence of instanton configurations, the kinetic and potential 
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energies are conserved separately. Figures 4.2 and 4.3 show this evolution for a = 0.001 

and b = 1000, over the range 0 < t < 1000 and taking n c = 150. I n figure 4.2, n , ^ is set 

equal to 150, while i n figure 4.3 i t is increased to 300, i.e. figure 4.3 investigates boundary 

effects, by pu t t ing the boundary fur ther away but keeping n c fixed. 

I n the continuum model, (4.45) corresponds to 

7

4 - r 4 

R W = ^ A > (4-46) 

ip{r,t) = arctan 1 fc2 _ 2 I , 

where 7 = y/a(b2 + t 2 ) . Substituting these expressions into (4.38) yields 

T ( n c , t) = 2a, (f - t a n " 1 £ - , (4.47) 

7* + n* 

^ c , () = ̂ 7 ( 1 + j ) ( t a „ h - ^ 

where in (4.49) the principal range of arctan is taken to be [0,7r). These quantities are 

plotted as finely broken lines i n figures 4.2 and 4.3. 

As before, the other two curves are evolved numerically f r o m two different sets of 

in i t i a l data. First ly, the coarsely broken line shows the evolution of in i t i a l data derived 

f rom the discrete Bogomolny equations: 

h°n = hn(ab2), hi^hnia^ + S2)). 

,n , i ( 2W \ 

Wn = 0 » K = a r c t a n \ b2 _g2 ) • 

As a comparison, the solid line shows the evolution of in i t i a l data taken directly f r o m the 
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FIG 4.2. The variations of T, V and W over the range 0 < t < 1000 for a slowly expanding 

charge-two r ing i n the analytic slow-motion approximation (finely broken line), 

and also for the numerical evolution. I n the latter case, in i t i a l data are taken 

both directly f r o m the slow-motion analysis (solid line) and f r o m the discrete 

Bogomolny relations (coarsely broken line). 
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FIG 4.3. The variations of T, V and W for a slowly expanding charge-two ring. The 

parameters are the same as in figure 4.2, except that, in the numerical evolution, 

n m a x is set to 300, instead of 150. 
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continuum solution: 

0 _ a2b4 - n 4 . _ a 2(6 2 + 62)2 - n 4 

n ~ a 26 4 + n 4 ' n ~ a 2(6 2 + £ 2 ) 2 + n 4 ' 

ip® = 0, i>n = arctan 

Once again, taking initial data directly from the continuum solution leads to lattice wob­

ble. On the other hand, using the Bogomolny relations gives a much smoother numerical 

evolution. 

It is interesting to note that, since the fields are not fixed at the boundary in the 

charge-two sector, energy may flow off the edge of the lattice (or equally into the lattice 

from outside). In figures 4.2 and 4.3 approximately 0.75% of the original energy is "lost" 

in this way as the ring expands up to t = 1000. 

When the boundary is moved back (figure 4.3) there is very little change in the 

evolutions of V and W. The greatest change from figure 4.2 occurs in T: the solid line 

has a different shape, although it still fluctuates wildly, and the coarsely broken line now 

exhibits the gradual decrease predicted by the slow motion approximation. In short, it 

seems that to a large extent the boundary conditions are transparent to the flow of energy; 

but they are not completely invisible. However, since we using only a one-dimensional 

lattice, it is usually computationally feasible to make the boundary effectively invisible by 

taking n m a x ^ rcc, and we shall use this technique in the next chapter. 

4.7 Concluding Remarks 

The development of a set of discrete Bogomolny relations removes the lattice wobble 

that is observed in numerical simulations at low kinetic energies. Two particular cases 

have been studied in some detail and the numerical scheme appears to be working very 

well. In the next chapter we proceed to a full investigation of soliton stability. It may turn 

out that the absence of a natural scale in the model means that if a soliton is squashed 

then it eventually becomes an infinitely tall spike. On the other hand, the requirement of 

finite kinetic energy means that the fields must be fixed at infinity, and this may rescue 

the situation. Clearly it is essential that the lattice wobble be eliminated if one is to study 

small perturbations. 

/ 2bS \ 
lb2-6*J 
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Finally, we remark that the idea of discretizing the Bogomolny bound, in order to 

obtain static solutions on the lattice, may be applied to other models that have non-

trivial topologies. A few possibilities are the sine-Gordon equation in (1+1) dimensions, 

the Maxwell-Higgs model in (2+1) dimensions (which can describe vortices in supercon­

ductors) and the Skyrme model in (3+1) dimensions. Although there have been many 

numerical studies (see, for example, references [48]—[52]), this approach to a discrete evo­

lution scheme does not seem to have been considered up till now. 
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Chapter V 
Soliton Stability in the 0(3) Sigma Model 

In this chapter the question of soliton stability in the 0(3) <r-model is investigated 

numerically, using the evolution scheme developed in the previous chapter. All the calcula­

tions deal with the evolution of a single soliton of topological charge one. Correspondingly, 

the boundary conditions are such that the fields are fixed in time at n = n m a x . Qualita­

tively at least, all the results have been confirmed by Zakrzewski and Peyrard13] using a 

conventional Runge-Kutta technique. 

5.1 Introduction 

There are very many different types of perturbation which could be applied to an 

instanton solution, the only restriction being that the field is not perturbed close to the 

boundary. As before, suppose that hn(X) is the value of h at lattice site n for a lattice 

instanton of width A. Throughout this chapter the field configuration at time slice m = 0 

is always taken to be a lattice instanton, i.e. 

hi = hn(\), V£ = 0, (5.1) 

and the perturbation is encoded in the time slice m = 1. We shall consider perturbations 

specified by four parameters, vjt, v^, no and n\ (where no < n\), in the following way: 

hi = 

f hn(\ + Svx) 

' M» + fci^) + M A ) ( ^ ) 
\Tll — 7lQ/ \ni — HQ/ 

\hn(X) 

6vi> 
f n i - n \ 

Vni — no/ 

n < no) 

no < n < n\) 

n > n \ ) 

n < no) 

no < n < ni) 

n > n i ) . 

(5.2) 
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Physically the picture is this. Inside n = no, v\ is the initial rate of change of the 

soliton width; v\ < 0 corresponds to an initial contraction and vx > 0 to an initial 

expansion. Similarly, is the initial time derivative of ip. Outside n = n\ there is no 

perturbation at all. In the region no < n < n\ there is a continuous interpolation between 

the inner and outer regions. It is expected that this class of perturbations is sufficiently 

large to reveal all the qualitative types of behaviour that can occur. 

Before discussing any results in detail, recall that all the numerical output is calculated 

from the field values inside a radius n = n c . It is therefore useful to truncate the lattice 

analogue of the Bogomolny bound down to the same radius. In the notation of the previous 

chapter, it is easy to show that 

Vdis(nc, m) > 7rJV(l - / i n c + i ) , (5.3) 

with equality if and only if the field configuration is a lattice instanton. Note that provided 

n c ^ n m a x , the truncated Bogomolny bound may change as the fields evolve in time. In 

many cases much can be learned by plotting this bound on the same axes as the potential 

energy. 

5.2 Numerical Results 

We shall discuss four numerical evolutions in some detail. The first one takes place on 

a relatively small mesh and illustrates the effects that can arise from the boundary. The 

other three address the main question of stability on an infinite plane, and each reveals a 

different type of behaviour. 

The first evolution takes place on a mesh of Size TZjnax 

= 200, on which is placed a 

soliton of width 30. The initial perturbation is of the form (5.2) with 

n 0 = 30, ni = 60, vx = -0.5, = 0.0. (5.4) 

The kinetic energy is initially about 5% of the total. The configuration was evolved up 

to t = 4000 with a time step 6 = 0.5. Using double precision arithmetic on the Amdahl 

mainframe in Durham, this took about 12 minutes of CPU time. The total energy was 

conserved to within 0.01%. Note that, since = 0, ip is identically zero throughout the 
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calculation and the whole evolution is accounted for by the variation of h. Figure 5.1 

shows the kinetic energy density during the early stages. The first picture is the initial 

perturbation, which takes the form of a hollow ring (the spikes around the rim are due 

to the graphics package); subsequent pictures show a large burst of radiation travelling 

outwards at the speed of light, together with a residual motion in the central region 

occupied by the soliton. In the last picture the radiation has just reached the boundary 

at n = 200. After this it is reflected back, reabsorbed by the soliton and then another 

pulse is emitted a short time later; and so the process repeats. Figure 5.2 shows the time 

variation of W^s, taking n c = 200. There is a clear periodic behaviour, caused by the 

burst of radiation being repeatedly reflected back in from the boundary. 

We turn now to stability on the infinite plane. In order to eliminate boundary effects, 

we shall use a technique that is effective rather than elegant: simply take n m a x nc. 

Then, provided we do not evolve beyond t = 2 ( n m a x — n c ) , there is no time for radiation to 

travel out to the boundary and be reflected back inside the region n < nc. Of course, this 

is computationally expensive, but, because axial symmetry reduces the theory to (1 + 1) 

dimensions, it is perfectly feasible, and the advantages are twofold. Firstly, one can be 

sure that boundary effects do not come into play and second, it creates the illusion of 

radiation "falling off" the edge of the mesh. Figure 5.3 presents results for n m a x = 6000, 

n c = 1000 and 6 = 0.5, with the initial soliton having A = 50 and perturbation given by 

n 0 = 100, m = 175, vx = -0.05, v1p = 0.0. (5.5) 

The initial sharp drop in kinetic energy corresponds to the emission of a pulse of 

radiation, and the step around t = 1000 is caused by the radiation spreading outside 

n = n c. In rough terms, the emission of radiation causes a drop of about 40% in the kinetic 

energy; the pulse itself carries away another 50%, leaving a residue of about 10% in the 

region occupied by the soliton. The graph of shows that the soliton width decreases 

almost linearly. The numerics break down at t = 7380, by which time Wdis = 1.35, i.e. 

the soliton occupies essentially only one lattice site. Further computer experiments show 

that if the perturbation is more localised then a greater proportion of the initial kinetic 

energy is carried away by radiation. But there is only ever one burst of radiation and 

there is always some residual kinetic energy, how ever small, which will eventually cause 

the soliton to shrink to a spike (or to expand without limit in the case v\ > 0). 
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FIG 5.1. Pictures of the kinetic energy density obtained by evolving the initial perturbation 

(5.4) on the finite mesh n m a x = 200 with an initial soliton of width 30. 
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The graph of the potential energy gives an added insight into the evolution, partic­

ularly when plotted alongside the truncated Bogomolny bound (5.3). Beyond t = 1000, 

when the radiation has been removed from the calculation, the field configuration satu­

rates the Bogomolny bound very closely. Moreover, as the soliton shrinks, the amount 

of potential energy lying inside n = n c increases, eventually tending to 27r as the soliton 

becomes more spiky. 

We move on now to the next set of results. So far, both perturbations have had — 0 

in (5.2) and consequently ip = 0 throughout the evolution. Figure 5.4 presents results for 

the same mesh and initial soliton as figure 5.3, but now with a perturbation given by 

n 0 = 100, ni = 175, vx = 0, ^ = 0.0005. (5.6) 

The kinetic energy exhibits a very similar behaviour to the previous case: again a single 

burst of radiation is emitted, which is removed from the calculation at about t = 1000, 

after which point the Bogomolny bound is closely saturated. The essential difference is 

that the soliton now slowly expands, and appears to do so indefinitely. 

To understand this evolution further, it is useful to split the kinetic energy into two 

pieces, corresponding to looking at ht and ipt separately: 

T = Th + Tli>, (5.7) 

where 
oo 

0 
oc 

T v , = iy V t

2 ( l - / i 2 ) ( 2 7 r r ) d r 

(5-8) 

We have seen that if is initially zero then it remains zero. On the other hand, is 

in general not zero, even if it vanishes initially, as is the case here. So, for perturbations 

in which v^, ^ 0, it is useful to consider the way in which TjjT and T^/T vary with 

time. These quantities are plotted in figure 5.4. It is found that T^jT gradually decreases 

(and correspondingly T/JT increases). For example, at t = 10000 the time variation of ip 

accounts for only about 75% of the total kinetic energy. 
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The last type of evolution that we look at has both v\ and nonzero. The case 

when v\ < 0 is of particular interest. We have seen how the evolutions due to v\ and v^, 

separately cause the soliton to shrink and expand respectively, but it is not clear at first 

sight which effect will dominate when both are present. Figure 5.5 shows results for the 

same mesh and initial soliton as figures 5.3 and 5.4, but now with a perturbation given 

The total kinetic energy exhibits the now familiar fall-off, indicating the emission of ra­

diation. The potential energy again closely saturates the Bogomolny bound once the 

radiation has been removed. The graph of W îs shows that the soliton reaches a minimum 

width at about t = 2800 and then expands, apparently indefinitely. Looking at T/ j /T and 

Tt[,JT gives some clue to the mechanism which causes this behaviour. Initially, only 

accounts for about 6% of the total kinetic energy, but as the soliton shrinks this fraction 

increases until, at the minimum width, = T. Beyond this point, T^/T decreases as 

the soliton expands. 

To sum up, the soliton overcomes its tendency to become a spike by transferring its 

kinetic energy to the phase ip; but this does not stabilise it, since it eventually expands 

without limit. Numerical experiments with different values of v\ and always exhibit a 

similar behaviour, provided that the soliton does not shrink so much that the numerics 

break down before it reaches its minimum width. 

As a final remark, we make the general observation that, when ^ 0, a small soliton 

width is associated with a high value of T^/T and vice-versa. This feature is a consequence 

of the existence of the conserved integral of motion, M, defined by 

by 

n 0 = 100, ni = 175, vx = -0.1, vj, = 0.0005. (5.9) 

f i p t ( l - /i 2)(27rr) M dr, (5.10) 

0 

which arises from the invariance of the action under translations of ip(r,t) by a constant. 

Physically, M may be thought of as the angular momentum of the soliton. 
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5.3 Comparison with the Wave Equation 

The main conclusion of this numerical investigation is that a very small perturbation 

can cause an initially smooth field configuration to become very spiky. But this is not a 

phenomenon that is familiar from other (2+l)-dimensional field theories; in particular it 

does not happen in the (axially symmetric) wave equation, 

<t>rr + — - & t = 0, (5.11) 
r 

where ^ is a function of r and t. Why are these two theories different? The following 

"energy budget" analysis does not involve solving equations of motion, but it does at least 

make it plausible why the two theories should exhibit different behaviours. The idea is 

to use the numerical results to write down an approximate form for the continuum field 

configurations as the soliton shrinks, and then to calculate how much energy it costs to 

reach these configurations from the original one. It is useful to replace h(r, t) with 

X(r,t) = 
1/2 ( l + h{r,t)\ 

\ l - h ( r , t ) J 
(5.12) 

Then the instantons correspond to taking A(r, t) equal to a constant, analogous to the 

solutions <̂ >(r, t) constant in the wave equation. In terms of A, the potential energy of 

cr-model configurations is 

v. = J ( 2 H ( 1 + ^ " 2 ( ^ _ H ^ + ^ ) , r . (5.13) 
0 

Let us estimate V a for the shrinking soliton. Since the numerical evolution closely 

saturates the truncated Eogomolny bound inside r = 1000 (at least once the radiation is 

removed), it is a good approximation to take A equal to some constant, Ai, in this region. 

At large distances, the boundary condition fixes A to be some other constant, A2, which 

gives the size of the soliton initially. So we shall consider configurations of the form 

{ Ai (r < r i ) 

A(r) (ri < r < r 2 ) ( 5-14) 

A 2 ( r - > 7 - 2 ) , 

where A(n) — X\ and A(r 2 ) = A 2 . Since the kinetic energy is only a small fraction of 

the total (less than 0.1%), it is reasonable to take A(r) so as to minimise V a . This is a 
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straightforward variational problem, which is further simplified by assuming that Ai and 

A2 are much smaller than 7*1, so that 1 + A 2 / r 2 « 1 when r > r\. It is now easy to show 

that the minimum value of V a is 

+ 2 ^ 2 ) . (5.15) 

corresponding to 

% ) = l 3 - T ) r ' +

A ' j - " r ' . (5.16) 
V n - r\ ) 

Now consider the same analysis in the case of the wave equation, for which the po­

tential energy is given by 

wave 

0 

00 

= J{2irr)4?r dr. (5.17) 

Following the previous calculation, one considers field configurations of the form 

{ fa (r < n ) 

far) ( r i < r < r 2 ) (5.18) 

fa {r>r2), 

where far\) = fa and 0 ( r 2 ) = fa. As before, one wants to choose far) to minimise the 

potential energy. It turns out that this minimum value is 

^wave = 27T ^ 2 - f a ) 2 , (5.19) 
log r 2 - log r\ 

corresponding to 

If \ 01 log 7~2 - <P2 log n fa~ fa , fxnn\ 
far) = — - - + - - logr . (5.20) 

log r 2 - log r\ log r 2 - log 7*1 

Equations (5.15) and (5.19) are estimates of how much energy it costs to change the 

field to a value Ai (respectively fa) inside some finite radius 7*1, starting from an initial 

configuration in which the field takes the value A 2 (respectively fa) over all space. The 

example of a soliton shrinking, as presented above, is modelled by setting Ai = 0, A 2 = 50, 
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r\ = 1000 and ri = 6000; these values give V a « 9.0 x 1 0 - 4 . As a comparison, put <f>\ = 0 

and fa = 50 in (5.19) with the same r\ and ri\ this gives V^ave sa 8.8 x 10 3, i.e. seven 

orders of magnitude larger than the corresponding V a . Of course, this discussion does not 

prove that the cr-model solitons are unstable, but it does show how spiky configurations 

in the cr-model are much more energetically favourable than might be expected. 

5.4 Concluding Remarks 

This study has revealed that the instantons in the 0(3) cr-model are unstable to small 

perturbations. If the soliton does not acquire any angular momentum as the result of the 

perturbation, then it may shrink to a spike. On the other hand, it is conjectured that a 

nonzero angular momentum, how ever small, will eventually cause the soliton to expand 

indefinitely. 

It is natural to look for ways of stabilizing the solitons. Two possibilities are currently 

under consideration. The first involves adding both a Skyrme term (containing fourth 

derivatives) and a potential term to the action density. The former tends to make the 

soliton expand, while the latter makes it shrink. It is the combination of both these effects 

which leads to a stable configuration, although there is a price to pay, namely the loss of 

conformal invariance. In other words, there is now a natural scale in the problem, which 

determines the soliton size. 

Another possibility is to add only a potential term to the action. Normally this would 

preclude a static configuration under the terms of Derrick's theorem. But the theorem can 

be side-stepped by giving the solitons angular momentum, so that the fields themselves 

are not static; it is now only the energy density that is independent of time. A feature of 

this approach is that conformal invariance is preserved, i.e. the model still admits solitons 
[21] 

of arbitrary size. In many ways they are very similar to Coleman's (J-balls. 

For the moment the discussion will be left here, but some further remarks concerning 

both of these possible modifications are included in the final chapter. 
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Chapter V I 

Low-Energy Scattering in the 0(3) Model 

Unfortunately, investigations of soliton scattering cannot make use of the numerical 

procedures developed in the previous two chapters, since they are restricted to radially 

symmetric energy configurations. Although the central idea of incorporating topological 

aspects via the Bogomolny bound could theoretically be extended to a more general 

scheme, the details of its implementation seem prohibitively intricate. 

The aim of this chapter is to attack the question of scattering processes using a totally 

different approach, namely a more complete version of the "slow-motion" approximation 

mentioned in chapter I V (it is also sometimes called the "geodesic" approximation, for 

reasons that will become apparent). The technique was first suggested by Manton 1 1 5 1 in 

connection with the scattering of B P S monopoles, and it has also been applied to the 

interactions of critically coupled flux vortices in the abelian Higgs model. As far as its 

application here is concerned, it is best to think of the 0 (3) a-model in the guise of the 

C P 1 model, i.e. we shall talk about a single complex field, u. 

The slow-motion approximation may be applied to those theories which have both 

a nontrivial topology (with an associated Bogomolny bound), and static multisoliton 

solutions, i.e. no forces between isolated solitons. Often, these multisoliton solutions can 

be constructed explicitly. In the case of the Kahler <r-models, this was done in chapter I I . 

To take another example, static multimonopole configurations have been found using the 

powerful techniques of algebraic geometry, and are discussed briefly in appendix A. 

This is in contrast to the case of vortices, where no explicit solutions are known; but a 

common feature of all three examples is that there are no explicit time-dependent solutions 

(apart, of course, from the Lorentz boosts of static ones). 

To get round this lack of time-dependent solutions, Manton suggested that, if the 

kinetic energy is small, the true evolution may be approximated by a sequence of static 

multisoliton configurations. The full field theory is truncated to a finite-dimensional 

dynamical system, in which the degrees of freedom are simply the parameters of the 

general static solution. The static solutions form a manifold, which is equipped with a 

natural metric coming from the kinetic part of the action, and the evolution is given by 
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the resulting geodesies. One can think of the static solutions as lying on a valley floor, 

corresponding to the minimum of the action, as given by the Bogomolny bound. Because 

the kinetic energy is small, the trajectories of the system can move along the valley floor 

but cannot climb very far up the sides. 

The next section briefly reviews the approximation as applied to monopoles and vor­

tices, while the rest of the chapter is concerned solely with the C P 1 model. Although the 

approach is essentially analytic, a considerable amount of numerical work will be required 

later on, in order to carry things through to completion. 

6.1 Introduction 

The geodesic approximation may be used for any particular value k of the topological 

charge. The evolution takes place on the manifold Mk of static charge-A: solutions. In the 

simplest case, M\ describes the motion at constant velocity of a single soliton, although it 

does not predict any Lorentz contraction, a reflection of the fact that the scheme is valid 

only at small velocities. In fact, here the approximation is somewhat redundant, since 

the same solutions are obtained exactly by boosting the static ones. Of more interest 

are the manifolds Mk where k > 1. Asymptotically, Mk is flat and looks like k copies 

of M\. In this region the geodesies are straight lines and correspond to the motion of 

k well-separated solitons, each moving with constant velocity. However, the interior of 

Mjfc is, in general, curved and it is the nontrivial geometry in this region that can lead to 

nontrivial interactions. We are interested in tracing geodesies from the asymptotic region 

into the inner region and then back to the asymptotic region. Physically, this corresponds 

to initially well-separated solitons moving towards each other, scattering, and then moving 

apart once more. There is also the possibility of geodesies that form closed loops in M&, 

corresponding to bound states of two or more solitons, but we shall not be concerned with 

these here. 

In general, the evolution equations (i.e. the geodesic equations on Mk) take the form 

of / I * coupled nonlinear second-order (ordinary) differential equations, where is the 

dimension of Mj.. Things are somewhat simplified by fixing the centre of mass and also 

removing any overall phases, thereby effectively reducing n*. For example, in the case 

of monopoles in three dimensions the full manifold of static solutions has n*. = 4fc, but 

by fixing the centre of mass (three parameters) and removing an overall phase one has 
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effectively = 4k — 4. Likewise, for vortices n\. — 2k, but fixing the centre of mass (there 

is no overall phase here) reduces this to 2k — 2. Finally, for the C P 1 model, one has a full 

manifold of dimension 

but fixing the centre of mass (two parameters) and the (three) overall phases gives 

Before proceeding in any detail, we shall briefly look at the current understanding of 

soliton scatterings in the three models mentioned above. The simplest studies of soliton 

interactions correspond to k = 2. At first sight, vortices present the simplest calculation, 

with ri2 = 2, but progress is hampered by the absence of an explicit parametrization of 

the static solutions. Despite this, a qualitative picture of vortex interactions has been 

obtained.'541 The most interesting feature is that when two vortices collide head-on they 

emerge at 90° to their original direction of motion. This behaviour has been confirmed 

n u m e r i c a l l y ! " N u m e r i c a l studies also reveal that radiative effects are small provided 

that the impact velocity is less than about half the speed of light. This is a good indication 

that the geodesic approximation is valid for this range of velocities. 

In the case of monopoles the dynamics are richer, owing to the presence of an internal 

relative phase. Only certain special geodesies have been identified,'55'561 but they already 

reveal several qualitatively different behaviours. The relative phase determines the plane 

of the interaction. If the initial velocities lie in this plane (type I scattering) then so does 

the whole evolution, with a head-on collision producing a scattering angle of 90°. On 

the other hand, if the initial velocities are perpendicular to the interaction plane (type I I 

scattering) then two possible evolutions can occur, depending on the initial angular mo­

mentum, pL. When (i > 1 the motion is asymptotically planar. But when fi < 1 the 

monopoles always emerge along the line through the centre of mass perpendicular to the 

plane of the original motion. Moreover, their spatial angular momentum is converted into 

internal angular momentum. The physical interpretation is that the monopoles acquire 

equal and opposite electric charges. In other words, an interaction can convert monopoles 

into dyons. So far, these results have not been confirmed by numerical simulation, but 

at least there are analytic estimates of radiative effects in monopole scattering!5'1 It is 

claimed that for impact velocity v (in units where the speed of light is 1) the ratio of 

nk = 4k + 2 , (6.1) 

rife = 4k - 3 . (6.2) 
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radiative kinetic energy to total kinetic energy is proportional to v 3 . Hence it is expected 
that for monopoles the geodesic approximation, which ignores all radiation, is again valid 
for impact velocities up to about half the speed of light. 

By contrast, in the C P 1 model interactions are not well understood. A small amount 

of work has been donej4 6'4 7'5"1 and a few geodesies have been found analytically, but no 

systematic study has yet been made. One expects to find several qualitative differences 

from vortex and monopole scattering, since the theory is conformally invariant and there­

fore the solitons may have arbitrary size. (For both vortices and monopoles, the form of 

the Higgs potential provides a scale and thereby fixes their size.) To make these ideas 

more explicit, let us consider the time-in dependent solutions of the C P 1 model in a little 

more detail. The theory contains a single complex scalar field, u, which is a function of 

the space-time coordinates t, x and y. The action is given by 

8 ' I I I 
Here, /i labels the space-time coordinates and the space-time metric is assumed to be 

diag(—1, +1, +1). The topological charge may be written in the form 

It is now useful to write z = x + iy; then the multisoliton solutions of charge k are 

given by u being any rational function of z of degree ft. So, for example, the most general 

solution with unit charge is 

u = A + — — , (6.5) 
z — v 

where A, and v are complex constants. By using a stereographic projection, it is seen 

that the target space is topologically a two-sphere, which may be oriented in internal space 

how ever one likes, without affecting the action. The choice of orientation corresponds 

to fixing the three overall phases, thereby removing three real degrees of freedom from 

the solution. It is conventional to choose A to be zero, and \i to be real and positive. 

Physically, (6.5) then corresponds to a lump (soliton) of width fi centred at a position v 

in the complex plane. One could also fix the centre of mass by setting v — 0. Then the 

lump would sit at the origin. 

(6.3) 
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Moving on now to charge-two solutions, the most general expression for u contains 

ten real parameters and may be written 

2/3z + 7 . . . . 
u = a + - » , (6.6) 

z2 + 6z + e K J 

where a , /3, 7, 6 and e are complex constants. Again, one uses the overall phases to set 

a to zero, and (3 to be real and positive. The centre of mass is fixed by requiring that 5 

also vanishes. In this way, Mi is reduced to a five-dimensional manifold, parametrized by 

7 and e (complex) and f3 (real). Each point in M2 corresponds to a field u of the form 

- = ^ • (6.7) 

By analogy with the charge-one solutions, the natural physical interpretation is that 

there is a soliton located at each pole of u, with a width equal to the modulus of the 

corresponding residue. This is a good picture of things provided that the widths are small 

compared with the soliton separation, i.e. provided that we are in the asymptotic region 

of M2. Explicitly, the solitons are centred at z = i i e 1 / 2 and have widths 

2e!/2 + 0 and -0 (6.8) 

respectively. However, if either of the widths (6.8) becomes large compared with |e 1 / , 2 | then 

the picture of two well-separated solitons is no longer a good approximation. Although the 

energy density still has two maxima, the overall configuration may look quite complicated. 

One can take the view that the solitons distort each other when they are close together. 

As the solitons interact, their sizes can change. In particular, there is the possibility 

that (at least) one of them could become an infinitely tall spike of zero width. Physically, 

this corresponds to one of the widths (6.8) becoming zero. Algebraically, it corresponds 

to the expression (6.7) for the field u having a common factor in the numerator and 

denominator, so that effectively the degree of u is no longer equal to two. As far as the 

geodesic approximation is concerned, the manifold M 2 has a boundary, given by 

7 2 + 0 2 e = 0, (6.9) 

and a spike occurs if a geodesic coming in from the asymptotic region hits the boundary. 

This situation does not seem to arise for vortices and monopoles; in these cases all the 

evidence accumulated so far suggests that any geodesic coming in from the asymptotic 

region must eventually return there. 
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The remainder of this chapter is arranged as follows. The next section takes the 

kinetic part of the action (6.3) for fields of the form (6.7) and from it derives the geodesic 

equations of motion. At first sight, there will be five coupled differential equations (recall 

from (6.2) that n 2 = 5), but in fact it turns out that (3 must remain constant throughout 

the evolution, in order to avoid an infinite kinetic energy. Hence there are only four coupled 

equations, with /3 now a parameter to be specified but not evolved. In essence, the geodesic 

evolution takes place on some member of a family of four-dimensional manifolds, labelled 

by /3. Section 6.3 describes how to choose initial conditions for the geodesic evolution, i.e. 

how to relate (3, 7, e, 7 and e to physical parameters — positions, widths, velocities and 

dilations. It turns out that there are hidden degrees of freedom (analogous to the relative 

phase in monopole scattering), which do not affect the initial motion of the solitons but 

can have great bearing on the eventual evolution. 

Sections 6.4 and 6.5 deal with two special cases, in which the evolution is confined to 

a two-dimensional submanifold of Mi- In the first, ft is zero, with 7 and e real throughout; 

in the second, 7 is identically zero. The resulting simplifications mean that the scattering 

processes can be investigated analytically. Sections 6.6 and 6.7 present the numerical 

evolutions of some more general scatterings. The final section contains conclusions and a 

few general observations. 

6.2 The Geodesic Equations 

It seems that the full geodesic approximation is not tractable analytically; at some 

stage one must resort to numerical methods. The aim of this section is to formulate the 

problem in a way that is particularly suited to a numerical approach. Later on, we shall 

investigate some special geodesies using analytic techniques, but for the moment things 

remain completely general. 

The geodesic approximation is equivalent to making an ansatz for the sigma model 

field of the form (6.7), with 7 and e being functions of time. From the general sigma 

model action (6.3), the kinetic energy of such configurations is seen to be 

where r and 6 are the usual polar coordinates. For the purposes of numerical work, it is 

2ir 00 \y(z* + £) - i(2Pz + 7)f 
J r d r j 
0 0 

de 2 ' | 2 2 + e|2 + | 2 / ^ + 7 | 2 
(6.10) 



Low-Energy Scattering . . . 85 

useful to resolve 7 and e into their real and imaginary parts: 

7 = C + %D, 

* { 6 - U ) e = E + iF. 

Having done this, it is not difficult to write the kinetic energy (6.10) in the form 

T = P{C2 + t ) 2 ) + Q(E2 + F2) + 2R{CE + DF) + 2S(CF - DE), (6.12) 

where 

P E E j r d r jdO (E + r2coS29)2

 + (F + r2sin20)2 

A 2 

o o 

OO 27T 

f J / Ja ( C + 2/3r cos 9) + (Z? + 2/3r sin 9) 
Q = J rdr j d9 ^ 

o o 

oc 2ir 
^ - { E + r2 cos 29)(C + 2(3r cos 9) - (F + r2 sin 29)(D + 2pr sin 9) 
<L9 A 2 

0 0 

00 2ir 
1 I . J a (E+ r2cos29)(D+ 2(3rsin9) - (F+ r2sin29)(C+ 2/3rcos9) 

S = I rar I do ^ 
oo zir 

0 0 
(6.13) 

and 

A = ( C + 2/3rcos^) 2 + ( P - | - 2 / 3 r s i n ^ ) 2 - ( - ( ^ + r 2 c o s 2 ^ ) 2 + ( F + r 2 s i n 2 ^ ) 2 . (6.14) 

In this scheme, C, D, E and F are the coordinates on the four-dimensional manifold 

M2. The quantities P, Q, R and 5 are functions of C, D, E and F, but do not depend 

on time. The natural metric on Mi coming from (6.12) is 

ds2 = P(dC2 + dD2) + Q(dE2 + dF2) + 2R(dCdE + dDdF) + 2S(dCdF-dDdE). (6.15) 

The equations (6.12) and (6.15) simply provide two alternative ways of viewing evolution 

in the low-energy approximation. Since every configuration of the form (6.7) has the same 
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potential energy, the kinetic energy (6.12) may be taken as the Lagrangian for a restricted 

C P 1 model, in which C, D, E and F are the degrees of freedom. The Euler-Lagrange 

equations derived from (6.12) are then precisely the geodesic equations associated with 

the metric (6.15). 

Even at this stage, there are symmetries apparent in (6.12) which reveal (at least) 

three totally geodesic submanifolds of dimension two. First, T is invariant under the 

transformation D —» —D and F —• —F. To see this, make a change of variable 9 —* —9 

in (6.13) and (6.14). Hence, taking D = F = 0 (i.e. 7 and e both real) specifies a totally 

geodesic submanifold of M 2 . In other words, if the initial conditions are such that both 7 

and e (and their time derivatives) are real at t = 0, then they remain real throughout the 

evolution. Second, T is also invariant under C —• —C and F —• — F, as seen by taking 

6 —• 7T — 6 in (6.13) and (6.14). The associated totally geodesic submanifold has 7 pure 

imaginary and e pure real. Finally, T is again invariant under C —> — C and D —> —D 

(take 9 —• TT + 9), corresponding to a submanifold with 7 identically zero. There are almost 

certainly other examples, but they do not appear to have such simple parametrizations. 

It is interesting to note that if e is real throughout (as in two of the geodesic submani­

folds mentioned above) then the solitons are constrained to lie on either the real (if e < 0) 

or the imaginary (if e > 0) axis in the complex plane. In particular, if e were to evolve 

from a negative value to a positive one, or vice-versa, then one would see an interaction 

with a scattering angle of 90°. This is the first hint that the C P 1 solitons have scattering 

properties in common with other nonintegrable objects such as vortices and monopoles. 

Returning to the general case, we conclude this section with a few remarks concerning 

the evolution equations derived from (6.12) or (6.15). In the most convenient form for 

numerical implementation they are 

Qac — ROLE — Sap 

R2 + S 2 - PQ ' 

Qap + SCXE - ROLF 

R2 + S2-PQ ' 
(6.16) 

Sap + POCE - R<*c 

R2 + S2 - PQ ' 

Pap — Sac — R&D 
R2 + S 2 - PQ ' 

D 

E 
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In (6.16), etc, aD> aE a n d ap contain only first derivatives. More precisely, they are 

quadratic in the time derivatives of C, D, E and F, and linear in the derivatives of P, Q, 

R and S with respect to C, D, E and F. It is not particularly instructive to write them 

all out explicitly, but for example 

(dR dS\ • • fdS dR\ • • (dR dS\ •• l R A ^ 
+ 2 h — DE + 2 DF + 2 h — EF (6.17) 

\dD dC) \dD dCJ \dF dEj 

dP BP dP 

The scheme outlined above has been implemented in F O R T R A N on the Amdahl main­

frame in Durham, making extensive use of the N A G library routines (see the program 

listing in appendix C ) . At first sight, in addition to evolving the system (6.16), one must 

calculate P , Q, R, S and all their derivatives using the expressions (6.13). This represents 

a total of 20 two-dimensional numerical integrations merely to calculate the right hand 

sides of (6.16). However, this number is reduced to 16 by noting that there are four linear 

relations between the various derivatives: 

dQ dR dS 
dC dE dF 

dQ 
dD 

dR 
dF + 

dS 
dE ~ 

dP 
dE 

dR 
dc + 

dS 
dD ~ 

dp dR dS 

(6.18) 

dF dD dC 

Finally, there is a word of warning. From (6.16), it is clear that a numerical imple­

mentation could get into difficulty if R? + S2 — PQ = 0. However, it seems far from easy 

to see what is the corresponding condition on C , D, E and F. Suffice to remark here that 

extensive numerical work has not encountered this problem so far. 
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6.3 Initial Data and Physical Parameters 

In this section we move on to the question of choosing initial data for the geodesic 

evolution. Since the geodesic equations are second order, one must specify 7, e, 7 and e 

at time t = 0, in addition to the label j3 (recall that j3 cannot vary with time). To do this, 

we shall relate them to the physical parameters shown in figure 6.1. Instead of resolving 

7 and e into real and imaginary parts, as in the previous section, here it is more useful to 

write them in the form 

>y = Aei(7, e^2 = BeiT, (6.19) 

where A and B are positive (or possibly zero). 

The initial positions of the solitons are given by a dimensionless impact parameter J 

and an overall scale A, which is chosen to be much greater than unity, so that the initial 

configuration lies in the asymptotic region of the manifold Mi. Their widths are taken to 

be u;+ and with w+ > W-. It is useful to define w and 8 by 

w± = w ± 8, (0 < 8 < w). (6.20) 

The link with /3, 7 and e comes from the asymptotic picture described in the introduction, 

namely that in the asymptotic region of Mi the soliton positions are i i e 1 / 2 and their 

widths are 

2eV2 + i/3 and 7 
2eV2 

-z /3 (6.21) 

Without loss of generality, one can take the solitons to he in the top-right and bottom-

left quadrants of the xy-plane. Furthermore, it is clear from (6.21) that changing a by ir 

simply has the effect of interchanging the two solitons. Therefore, in what follows we can 

assume that 

-7r/2 < t < 0 and 0 < (a - r ) < 7r (6.22) 

Matching the positions and widths to 7 and e yields 

B = \w, 

T = c o s - 1 ( J / A ) , 

A = 2\wy/w2 + 82 - p 2 , 

(6.23) 

(6.24) 

(6.25) 
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FIG 6.1. The physical parameters used to specify initial conditions for the geodesic evolu­

tion. The quantity w is the average of the individual widths w±. 
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w8 = 0y/w2 + 8 2 - 0 2 sin(cr - r ) . (6.26) 

At this point, one should clarify the role of 0. In addition to the four physical parameters 

J, A, w and 8, one must also specify 0 in order to determine 7 and e. But what values 

can 0 take? Clearly, 02 cannot be greater than w2 + 82, to ensure that the square roots 

in (6.25) and (6.26) are real. However, since 0 < sin(cr — r ) < 1, (6.26) constrains 0 a 

little further. In fact, one finds that 

8 < 0 < w . (6.27) 

The natural interpretation is that 0 is a "free" parameter, subject only to the constraint 

(6.27). It does not affect the initial energy density, but will, in general, affect the form of 

the interaction. 

Turning now to the specification of 7 and e, the physical parameters to be matched 

here are the initial velocity, v, and the initial dilations d±, defined by 

d ± = d w ± 

dt 
(6.28) 

t=o 

Using the Lorentz invariance of the model, we are free to take the initial velocity to be 

parallel to the s-axis, as shown in figure 6.1. Performing the algebra yields 

B = u s i n r , (6.29) 

f = J v / \ 2 w , (6.30) 

y/w2 + 62 - 02 ( A - 2vsmry/w2 + 62 - 02 ) = \wD+ , (6.31) 

0 sin(<7 - r ) (A - 2v sin r y/w2 + 62 - 02 ) 

+ 20\wy/w2 + 62 - 02 (a - f ) cos(a - r ) = AwD_ , (6.32) 

where 

D+ = w+d+ + w-d- , 

D- = w+d+ — W-d- . 
(6.33) 

Note that (6.26) has in general two solutions for a, which lead to two different values of 

a from (6.32). However, using the symmetry of the metric under a —» —a and r —> - r , it is 
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not difficult to see that the two possibilities correspond to essentially the same interaction. 

Without loss of generality, one can take cos(<7 — r ) > 0, i.e. (6.22) can be modified so that 

To sum up, there are seven physical parameters, namely J , A, w, 8, v and d±. The 

free parameter (5 must be chosen to lie between 8 and w; then the values of 7 and e at 

t — 0 are determined by (6.23)-(6.26) in terms of J, A, w and 8. Likewise, v and d± 

determine 7 and e via (6.29)-(6.32). On the face of it, 7 and e should correspond to 

four physical parameters, instead of just three, but one is absorbed by taking the initial 

velocity parallel to the z-axis. Note that if v, d+ and d- are all scaled by the same factor 

then the geodesic that is traced out is unchanged, but it will be traced out at a different 

rate. As far as the geodesies are concerned, time is simply an affine parameter. 

We now have a general picture of things, but it is worth mentioning some special cases, 

in which extra free parameters emerge in return for a physical constraint on the relative 

dilations. They occur when 0 takes a value at the end of its range, i.e. when it is equal 

to either 8 or w. In addition, the situation is slightly different depending on whether 8 is 

equal to zero. So in all there are four special cases, which we shall consider in turn. 

This is the only case in which /3 = 0, and is the situation previously studied by Ward. 

From (6.32) one has the physical constraint that d + — d- = 0. In return, there appear 

to be two free parameters, namely a and a, but a may be absorbed into an overall phase 

(since /3 = 0) and is therefore irrelevant. On the other hand, we shall see later that the 

choice of a has a great bearing on the eventual interaction. Equations (6.25) and (6.31) 

simplify to give 

0 < (a- - T ) < TT /2 . (6.34) 

(i) 0 = <5 = (3 < w 

A = 2Xw2, 

A = 2w(\d+ + v sin r ) . 
(6.35) 
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(ii) 0 = 8 < p = w 

This is the only case in which A = 0. The physical constraint is d+ + d- = 0. It 

appears that a is a free parameter, but in fact this is spurious: since A = 0, a affects 

neither 7 nor 7. The free parameter comes from the fact that A and a are determined by 

a single equation, namely 

A sin((7 - r ) = 2\wd+ . (6.36) 

(iii) 0 < 6 = 0 < w 

Here the physical constraint is d+ — cL = 0 and the free parameter is a. The equations 

for cr, A and A simplify to give 

(7 = T + 7I-/2, 

A = 2Xw2 , 

A — 2iu(Ad + + u s i n r ) 

(iv) 0 < 6 < (3 = w 

Here the physical constraint is d + + eL = 0 and the free parameter is again a. The 

equations for cr, A and A become 

a = T + 7 r / 2 , 

A = 2\w6, (6.38) 

A = 2(\wd+ + v6 sin r ) . 

It is also instructive to look at the physical consequences of restricting the evolution 

to each of the three totally geodesic submanifolds identified in the previous section. It 

turns out that there are strong connections with the four special cases discussed above. 

(6.37) 
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(a) 7 real, e real 

In this case, a = 0 and r = — TT / 2 , with <r = r = 0. Physically, this means that the 

collision is head-on. In addition, from equation (6.26) 0 must be equal to either 8 or w, 

i.e. we have one of the four special cases already discussed, but without the extra free 

parameters. Explicitly, the initial conditions are as follows. 

If 0 = 8 then 

together with the constraint d+ — d_ = 0. 

If 0 = w then 

together with the constraint d+ + d- = 0. 

( 7 = 2Xw2 , 

7 = 2w(\d+ — v), 

e = -X2w2, 

k e = 2Xwv , 

' 7 = 2Xw8, 

7 = 2 (AW+ — 8v), 

= - A 2 

(6.39) 

(6.40) 

(b) 7 pure imaginary, e real 

In this case, a = r = —7r/2 and <r = f = 0. Again the collision is head-on; and there 

are also two further physical consequences. From (6.26), 8 = 0 and from (6.32), d+ = c L . 

Provided that 0 ^ w, the initial conditions are given by 

7 = —2iXw\/w2 — 02 , 

7 KJw^p v 

V ^ 2 - / 3 

e = - A V , 
e = 2Atuu, 

(6.41) 

while if 0 = w then one has case (ii) as discussed above (with d+ = d- = 0 and with 7 

arbitrary, subject to the requirement that it be pure imaginary). Note also that 0 = 0 

gives essentially the same evolution as (6.39), since they differ only by an overall phase. 
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(c) 7 identically zero 

This is another subcase of case (ii). Although the collision need not be head-on, the 

other physical constraints are quite severe. In particular, since A = 0, (6.31) and (6.32) 

imply that d+ = d- = 0. As far as 7 and e are concerned, one must simply have initial 

conditions with 7 = 7 = 0. 

6.4 Analytic Results : 7 and e both real, (3 = 0 

Having obtained a complete classification of the initial configurations, the next two 

sections look in more detail at two families of evolutions that may be understood ana­

lytically. They both correspond to motion on one of the totally geodesic submanifolds 

identified earlier. In this section, 7 and e are taken to be real throughout and (3 is set to 

zero, giving a particular example of (6.39) in which the initial widths of the solitons are 

both equal to w. As noted before, the initial dilations also have the same value, and this 

will be denoted by d. 

The most useful approach seems to be that adopted by Wardj 4 6 1 which parametrizes 

7 and e using two variables, R and ip, where R > 0 and 0 < ip < w. Explicitly, 

7 = R sin ip, 
(6.42) 

e = R cos ip . 

In terms of physical parameters, the initial data for R and ip (denoted by a subscript 0) 

are given by 

Rq = Atw 2 \A + A 2 , 

V»o = t a n _ 1 ( - 2 / A ) , 

2w , - K , (6.43) 

Ward showed that the kinetic energy of the system may be concisely written in terms of 
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elliptic integrals: 

T = ir^i^R^R2 + n{1>)Rij) + v{Tp)Ri)2) , (6.44) 

where 

£(YO = i £ ( c o 8 t f O , 

fi(il>) = tan ip (K(cos i>) - E(cos i>)) , ( 6 4 5 ) 

iz(V') = K(cos ip) - ^ ( c o s ip), 

with K and E the complete elliptic integrals of the first and second kind, respectively. 

The evolution equation for R may be integrated twice and that for ip integrated once to 

give 

R = T { ( t - a ) 2 + Q2)/(4irO, 

V*2 = g 2 / ( / W ( ( e - a ) 2 + Q 2 ) ) 2 , ( 6 ' 4 6 ) 

where Q (> 0) and a are real constants having the dimensions of time, and where 

I W , . (6.47) 

The function I(ip) is drawn in figure 6.2. It is always positive, reaching a minimum 

value of ^ when ip = -|. It tends to infinity as tp approaches either 0 or ir, but does so 

logarithmically, with the result that the area under the curve is finite. In fact 

y J(V') « 2.3162. (6.48) 

o 

The evolution contains three real constants, namely T, Q and a. (Note that T is 

conserved because all points of the manifold M2 correspond to configurations with the 

same potential energy, and so conservation of total energy becomes conservation of kinetic 

energy.) All three constants are easily determined in terms of the initial data using (6.44) 

and (6.46): 
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FIG 6.3. The variation of V'oo with d for w = 1, A = 5 and v = ± 0 . 1 (solid and broken lines 

respectively). 
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T = 7r(fti?o + ^Roi>o + ^o^oV'o) » 

Q = 4^0RQI(i;0)\M/T, (6.49) 

a = - T r ^ o ^ o + 2 £ 0 £ o ) / T. 

The key to understanding the evolution is the variation of ip. It starts out at a value 

close to 7r and as time evolves it varies monotonically. It may either increase or decrease, 

depending on the sign of ipo, but given ipo there are always two possibilities. 

become zero at some time t = t p . 
If ipQ < 0 then ip may { 

tend to some limit V'oo between 0 and ^o-

{ become equal to TT at some time t = t p . 

tend to some limit ipoc between ipQ and 7r. 

It is easy to translate the variation of ip into information about physical processes. 

First, if ip becomes either 0 or 7r then the solitons become spikes. Second, if ip passes 

through 7r/2 then the solitons scatter at 90°. Therefore the solitons may scatter at right 

angles and then become spiky (corresponding to ip decreasing to zero) or they may become 

spiky before scattering (corresponding to ip increasing to TT). But ip may also tend to a 

limit away from 0 and IT, and this leads to further, qualitatively different possibilities. 

Suppose that as t —> oo, ip —> V'ooi not equal to 0 or TT. Then 

7 —• kt2 sin ipoo , 

e —• kt cos^oc , 

where A; is a positive constant. Physically, (6.50) corresponds to two solitons moving apart 

at constant velocity and expanding at a constant rate. So it is possible for the solitons 

to scatter and then enter an expanding phase, or to expand without scattering. In these 

cases they never become spikes, i.e. the corresponding geodesic never hits the boundary 

of the manifold Mi. 

It only remains to match the various possibilities to different choices of initial condi­

tions, or equivalently to different values of T, Q and a. First, suppose that ipQ is negative, 
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i.e. ip decreases monotonically. From (6.46), ip reaches zero provided 

J I(i>)diP < I + t a i T 1 ^ ) . (6.51) 

o 

In this case the solitons become spikes after a time 

t p = a + Q tan dip - t a n - 1 ( ^ j j (6.52) 

at a distance 

4>o 

VP = Q ] f ^ sec ^ / ( ^ ^ - t a n - 1 ^ ) ^ (6.53) 

from the origin along the y-axis. On the other hand, if (6.51) does not hold then ip tends 

to a limiting value ipoc given by 

j IW)d1> = ^ + t a n ~ 1 ( | ) . (6.54) 

The corresponding equations in the case ipo > 0 are very similar. One simply has to 

change the ranges of integration to [ipo, ir] in (6.51)-(6.53) and to [̂ Oi 4>oo] in (6.54). Now 

(6.51) becomes the condition for tp to reach 7r. 

As an illustration of the way in which the various possibilities fit together, consider 

changing the initial dilation while keeping the other parameters fixed. The solid line in 

figure 6.3 shows the variation of ^oc with d when 

w = l , A = 5, v = 0.1. (6.55) 

The broken line shows the effects of changing v to —0.1, i.e. having the solitons initially 

moving apart. This does not strictly have a place in an investigation of scattering pro­

cesses, but is included for the sake of completeness. Concentrating on the solid line, there 
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Beta 0.0 

FIG 6.4. Scattering process for w = 1, A = 5, v = 0.1 and d = 0. 
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Beta = 0. 0 

FIG 6.5. Scattering process for w = 1, A = 5, v - 0.1 and d = 0.1. 
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are three qualitatively different behaviours. 

For d < -0 .02 , ^oc = * • 

For d e (-0.02,0.06158), Voo = 0. 

For d > 0.06158 , ^ o o € ( 0 , 7 r ) . 

These three regions correspond respectively to the solitons becoming spiky before scat­

tering, becoming spiky after scattering and reaching an expanding phase after scatter­

ing. When v > 0 they cannot reach an expanding phase without scattering. When 

d = —0.02 they become spikes at precisely the moment they both reach the origin, and 

when d = 0.06158 they scatter but neither shrink nor expand. In the limit d —• oo it 

can be shown that i^-x approaches 0.8403. However, it is questionable whether one should 

consider very large dilations, because in these cases the solitons eventually expand to cover 

the whole plane, i.e. the corresponding geodesic never returns to the asymptotic region 

of the manifold M%. If the values of w or A are altered then the boundaries between the 

three regions will move; but the general pattern is always the same. Moreover, d = 0 

always lies in the middle region. 

The evolutions for d = 0 and d = 0.1 are shown schematically in figures 6.4 arid 6.5. 

The circles are drawn in pairs at equally spaced values of time. The centres of the circles 

represent the soliton positions, and the radii their widths, as given by the asymptotic 

picture (6.21). So, for example, when t = 0 two circles of unit radius are drawn at the 

points ( ± 5 , 0 ) . As the system evolves, one can follow the soliton trajectories together 

with the associated changes in size. If at any particular time the pair of circles intersect 

(for example, during the interaction itself) then they are not drawn, first because the 

asymptotic picture is not reliable in such situations and second because it would make 

the figures unnecessarily complicated. It is worth remarking that the figures were gen­

erated using the numerical scheme set up in section 6.2; they are in excellent agreement 

with the analytic treatment developed above, and so provide evidence that the computer 

implementation is working well. For example, with reference to figure 6.4, (6.53) predicts 

that the solitons shrink to spikes at a distance from the origin of 2.325. 

Finally, it is interesting to consider the limit A —• oo in the case when d = 0. As 

remarked earlier, the solitons will scatter, then become spiky, and intuitively one does 

not expect the value of A to affect things very much. As A —• oo, - * * a n d using the 
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asymptotic properties of the elliptic functions one finds 

Q -» - v

/ 21n(2A) , a - * — . (6.56) 
v v 

Therefore, recalling (6.48), 

J I(ip)dip - tan _ 1( |p -» 2 .3162- ^ « 0.74544, (6.57) 

o 

and then (6.52) becomes 

t p « a + (0.92312)$ . (6.58) 

The fact that the coefficient of Q in (6.58) is close to unity, together with the much weaker 

dependence of Q than a on A suggests the following physical interpretation. Roughly 

speaking, a is the time taken for the solitons to reach the interaction region, and Q is 

the time taken from the interaction to the eventual collapse into spikes. As A increases, 

a increases linearly but the increase in Q is much slower. 

6.5 Analytic Results : 7 identically zero 

A second family of analytically tractable evolutions consists of those which take place 

on the two-dimensional submanifold of M2 that is obtained by setting 7 to zero. This 

submanifold will be denoted by S. Essentially, one is taking the field u to be of the form 

u = J ^ , (6.59) 

with the time dependence of u now wholly contained in e. From (6.21), it is seen that 

each soliton has initial width /3. Not only that, but in the asymptotic region the soliton 

widths are always equal to (3, i.e. scattering processes lead to no long-term change in 

width. However, if one moves away from the asymptotic picture and looks at the potential 

energy density arising from (6.59) in the inner region of Mi (where |e1/21 is no longer large 

compared to /3), then one finds that the soliton widths are now less than /3. In other words, 

the width of each soliton decreases as they approach each other, then eventually returns 

to its original value as they move apart. The only exception to this general behaviour 

occurs if e ever becomes zero, at which point the solitons become spikes. The point e = 0 

is the intersection of £ with the boundary of M2. 
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Getting down to details, it is useful to parametrize e using two variables, R and <f>, 

where R > 0 and 0 < (f> < 2ir: 

e = Re1* . (6.60) 

Hopefully this notation will not lead to confusion with previous parametrizations. From 

(6.10), the kinetic energy of the system may be written in the form 

T = 4/32f{R) (R2 + R24>2), (6.61) 

where 

/(*) = /*•/i« {T< + 0 V + 2

r

R T , c m 2 e + m ) , • («•«) 
0 0 

Note that / depends only on R and not on <j>. The angular integration in (6.62) is easily 

performed using standard tables. Introducing the variable y, defined by y = A(32/R, one 

finds that 

M - 3 f f i . (6-63) 

where 
00 

d I f dx 
H(y) = - y — \ / m . (6.64) 

dy\J ((a;2 + 2 / a . + 1 ) 2 _ 4 : c 2 ) 1 / 2 ' 

All the physical details of the evolution are encoded into the function H(y) and so it 

is worth making a few remarks about its evaluation. The denominator of the integrand 

in (6.64) is the square root of a quartic in x, namely 

q(x) = ( x 2 + yx + l ) 2 - 4x 2 , (6.65) 

and so using standard techniques,15"1 H(y) may ultimately be expressed in terms of elliptic 

integrals of the first and second kinds. When y < 4, q(x) = 0 has two real roots and two 

complex ones; when y > 4 it has four real roots. Correspondingly, there are two separate 

calculations to perform. After some lengthy algebra, involving use of the relations between 

elliptic integrals and their derivatives with respect to the modulus, one finds the following. 

f-i ^ A u l x 16Gi - y2Fl 2 ... 
For y < 4, H(y) = 1 6 _ y 2 - —± , (6.66) 
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Ay 9 

and for y > 4, H{y) = —y—, (K2 - E2 - F2 + G2) - —— , (6.67) 
16 - yl V + 4 

where 

*1 = F(k2 = 1 16 ' ^ = tan 

Gi = G(k2 = 1 16 ' w = tan 

K2 
= K(k2 = 1 y 2 ) , 

E2 = E(k2 = 1 -

F2 
= F(k2 = 1 = tan 

G2 = G(fc 2 = 1 
- 9 - * 

= tan 

- 1 2 ^ 

(6.68) 

2 / ' 

with F and G the incomplete elliptic integrals of the first and second kind, respectively, 

defined by 

F(k,ib) = J {I - k2 sm2 6)~ll2 d9, 

G{k,ib) = j \ \ - k2 s in 2 9 f l 2 d6 , 

o 

and, as before, K(k) and E(k) the corresponding complete integrals obtained by taking 

ib = 7r /2 in (6.69). The limits of (6.66) and (6.67) as y -» 4 from below and above are 

equal, namely H(4) = 7r /8 . 

Note that all the elliptic integrals in (6.68) have moduli k2 in the range [0,1], which 

is the conventional way of arranging things. However, if one allows k2 to take negative 

values as well then it is not difficult to show that (6.66) and (6.67) are in fact equal as 

functions of y. The integrals K, E, F and G remain real and well defined for negative 

k2, and there are no problems in their numerical evaluation. The upshot is that one can 

use either (6.66) or (6.67) over the whole range of values of y. It is natural to use (6.66), 

since it is slightly the simpler expression. Using N A G routines to compute G\ and Fi, 

H(y) is plotted in figure 6.6. It is always positive, and monotonically decreasing, with a 

maximum value of | at y = 0. A little straightforward algebra reveals the behaviour at 

very small and very large values of y. 

As y - 0, H(y) = l + ± y

2 \ n y + 0 { y 2 ) . 

(6.70) 

A s y - > o o , H{y) = l { \ n y - l ) + 0{y~2). 



Low-Energy Scattering . . . 105 

H (y) 
0.50 

0.45 

0.40 

0.35 

0.30 

0.25 

0.20 

0 . 1 5 

0 . 1 0 

0.05 

0.00 

10 15 20 30 35 40 

FIG 6.6. The function Hly). 

yH V H 

0.00 

10 15 20 50 35 40 0.05 

0 . 1 0 

0 . 1 5 

0 .20 

0.30 

0.35 

0.40 

0.45 

0.50 

0.55 

0.60 

0.65 

FIG 6.7. The graph of yH'(y)/H(y) against y. 
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We are now in a position to piece together a physical description of the evolution. The 

natural metric associated with (6.61) may be used to obtain a picture of S as a surface 

of revolution embedded in three-dimensional Euclidean space, along the lines of chapters 

12-14 of reference [56]. Beginning with a few general comments, suppose that one has a 

metric 

ds2 = a{y)2dy2 + b{yfd<f>2 , (6.71) 

where a and b are positive, real-valued functions of y. Since d/d(f> is a Killing vector of 

(6.71), it is natural to look for an embedding in which <p is the angle of revolution. Using 

cylindrical polar coordinates (p, (f>, z), one wants to choose p and z so as to recast (6.71) 

in the form 

ds2 = dp2 + dz2 + p2d(j)2 . (6.72) 

It is important to find any restrictions on a(y) and b(y) for this to be possible. Comparing 

(6.71) and (6.72), one must take p — b and then require that 

o.{yfdy2 = db2 + dz2 . (6.73) 

The condition for z to be well denned by (6.73) is 

a { y ) 2 - b ' ( y ) 2 > 0 . (6.74) 

Returning to the original problem, the natural metric coming from (6.61) is 

ds2 =4{32f{R){dR2 + R2d<t>2). (6.75) 

Using (6.63), this may be recast in the form (6.71), with 

4,t.fZ%L and 6 W ' = ^ , (6.76) 
y y 

and then the condition (6.74) becomes 

yH'(y) 
(6.77) 

The combination yH'/H may be obtained explicitly by taking H(y) from (6.66) and 

again using standard expressions for the derivatives of the various elliptic integrals. A 
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short calculation yields 

y»'(y)- y2 ' 2 + (»*- M ) 2 , j . ( 6 . 78 ) 
iT(y) 16 - y2 \ I6G1 - y 2 F x - 2(4 - y) 

This function is plotted in figure 6.7. It has a maximum value of 0, at y = 0, and decreases 

monotonically, approaching — 1 as y —* 00. In particular, (6.77) is satisfied, so confirming 

the claim that E may be pictured as a surface of revolution. 

Now suppose that E is swept out by some curve C as it rotates around the z-axis. To 

obtain a clearer picture, it is convenient to introduce the arc length £ along C, given by 

d£2 = dp2 + dz2 = a(y)2dy2 . (6.79) 

Here, y is essentially being used as a parameter for C, whose coordinates may be thought 

of as z(y) and p(y)- We already know that p(y) = b(y), and so from (6.79), together with 

the expressions (6.76) for a and b, 

dp _ 1 yH'jy) 

d t - 2 - i m - ( ] 

As the parameter y varies from 0 to 00, dp/d£ varies monotonically from ^ to 1. Hence 

S looks like a round-nosed cone. The vertex of the cone, where p = 0, corresponds to 

y = 00, or equivalently R = 0. Asymptotically, as y —* 0 and R —* 00, S looks like a cone 

with angle 7r/3. For the sake of completeness, the curve C is drawn in figure 6.8, taking 

(with no loss of generality) f32 = in terms of the parameter y, its coordinates are given 

by p(y) = b(y) and, from integrating (6.73), 

00 

z(y) = J yja(u)2 -b'(u)2du. (6.81) 

It is interesting to note that round-nosed cones very similar to S are found in the scat-

terings of both monopoles and vortices. However, there is one qualitative difference. 

Recalling (6.60), we see that the vertex of E corresponds to e = 0, which as remarked ear­

lier lies on the boundary of Mi- So strictly speaking, E is a round-nosed cone, punctured 

at the vertex. 
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FIG 6.8. The curve C, which sweeps out the surface E when rotated around the z-axis. 
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FIG 6.9. The variation of scattering angle A with impact parameter L. 
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We now have to identify the geodesies on E . To begin with, there are geodesies 

through the vertex, lying in planes that also contain the axis of E . As one follows such a 

geodesic in from the asymptotic region to the vertex, <fr does not change; this corresponds 

to two solitons in a head-on collision. At the vertex, the solitons collapse to infinitely tall 

spikes. However, if the vertex were present then the geodesic would emerge with <f> having 

changed by IT. Recall that (asymptotically, at least) the soliton positions are i ze 1 / 2 , 

so one would have scattering at right angles. Although the vertex of E is missing, one 

expects there to be geodesies close to these, corresponding to small impact parameters, 

with scattering angles close to 90°. 

Unlike the situation described above, the general geodesic does not lie in a plane, 

but winds around E , i.e. it does not have a constant value of <f>. The scattering angle, 

A (positive for repulsive interactions and negative for attractive ones), is related to the 

change in <j> by 

oo 

A = ir-~J j>{t) dt. (6.82) 

o 

To get a handle on (6.82) in terms of physical parameters, observe that the Killing vector 

d/d<j) of the metric (6.75) generates a second constant of motion, L say, in addition to the 

kinetic energy T. Explicitly, 

L = R2f(R)<fi, 
(6.83) 

T = 4(32f(R) (R2 + R2<t>2). 

We shall see shortly that L is essentially the impact parameter of the collision, and can 

be used to label geodesies on E . Without loss of generality one can fix the initial soliton 

velocities so that T = 4/32/ir. This does not affect the scattering angle, only the rate at 

which the geodesies are traced out. Then eliminating $ from (6.83), and using (6.63) to 

replace R with y, one finds 

y2 = ( m - L2V) • ( 6 - 8 4 ) 

From figure 6.6 it is clear that for positive values of L, H — L2y = 0 has a single 

positive root, at y = yp say. When y = yp, y = 0. As a geodesic comes in from the 

asymptotic region, y increases from 0 until it reaches a maximum value of yp at some time 
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t — t p . The geodesic then returns to infinity, its two halves being mirror images of each 

other. Suppose that at t = 0 the solitons are essentially at infinity (in the language of 

section 6.3 this means taking A —* oo). Then equation (6.82) may be rewritten 

A = 7T - J j>(t)dt. (6.85) 

Using (6.83) and (6.84), the integrand may be written entirely in terms of y, leaving A 

as a function of L: 
yP 

A(L) =*-L [-jrr-. dy (6.86) 

The results of this section are summarized in figure 6.9, where A is plotted against L. 

This curve is derived from (6.86) using NAG routines, both to find yp and then to calculate 

the integral. The first thing to note is that A is always positive, i.e. the interaction is 

always repulsive. Second, as argued earlier, A approaches TT/2 at small impact parameters. 

This type of variation of scattering angle with impact parameter is familiar from studies 

of vortices and monopoles. Compare figure 6.9 with, for example, figure 3 of reference 

[52] and diagram 16 of reference [56]. 

It only remains to clarify the interpretation of L as the impact parameter. To do 

this we shall calculate L from the initial data, which are denoted (as in section 6.4) by a 

subscript 0. Comparing (6.60) with (6.19), then using (6.23) and (6.30), shows that 

2vJ 
Ro = \2w2 and ^ 0 = T5~ • (6-87) 

Taking A oo, we see that R0 -> oo and so, from (6.63) and (6.70), f(Ro) -» IT/(8/32RQ). 

Substituting into (6.83) gives 

= ~4/P~' ( 6 - 8 8 ) 

and so it is natural to interpret L as an angular momentum. In particular, if the initial 

values of the width and velocity are kept fixed then L is simply a constant multiple of the 

impact parameter, J. 
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6.6 Numerical Results : Two-Dimensional Evolutions 

There are some two-dimensional geodesies which are not covered by sections 6.4 

and 6.5. They arise from evolving initial data of the form (6.39), (6.40) or (6.41), when 

j3 is nonzero. To illustrate some of the possibilities we shall take one example from each 

case. First, consider initial data given by (6.39), with 

(3 = 6 = 0.3, w = 1.0, A = 5.0, d+= 0, v = 0.1. (6.89) 

The results of evolving (6.89) are shown in figure 6.10. Initially, the solitons have widths 

0.7 and 1.3. After scattering, they emerge at right angles to the original motion, and with 

the same width. That this should happen is clear from (6.21), since e 1/ 2 evolves from 

being pure imaginary to pure real. What is not predicted analytically is the subsequent 

motion. As they emerge from the interaction, the solitons shrink, reach a minimum width, 

and then expand, apparently without limit. Further numerical experiments show that the 

minimum width attained is roughly proportional to the difference in their initial widths. 

The limiting case of this is, of course, figure 6.4, in which the solitons become spikes, i.e. 

they attain zero width. 

Next, we shall keep all the physical parameters of (6.89), but use a different value of 

/3, so that the initial data are given by (6.40), with 

(3 = w = l.O, 5 = 0.3, A = 5.0, d+ = 0, i> = 0.1. (6.90) 

The evolution is now very different (figure 6.11). A singularity develops in the energy 

density as the solitons approach each other. In figure 6.11, this is shown by the sharp 

decrease in width of the smaller one as it comes close to the origin. It is not clear from 

the picture, but it may be that the singularity occurs at the origin, when the two soliton 

positions coincide. Note that all pairs of circles are drawn, regardless of whether they 

intersect, so that one can see the singularity developing. 

Finally in this section, consider evolving initial data of the form (6.41), with 

13 = 0.6, iu = 1.0, A = 5.0, d+ = 0, v = 0.1. (6.91) 
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Beta 

FIG 6.10. Evolution of the initial data (6.89). 
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Beta 1.0 

FIG 6.11. Evolution of the initial data (6.90). 



Low-Energy Scattering 114 

Beta 

FIG 6.12. Evolution of the initial data (6.91). 
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The results of this calculation are shown in figure 6.12. Here, the solitons have the 

same width initially, but emerge from the interaction with different sizes (as predicted by 

(6.21), since 7 is now pure imaginary). The smaller one then rapidly shrinks to a spike. 

In many ways, the evolution is similar to that of figure 6.4, in which the solitons shrink 

to spikes simultaneously. 

6.7 Numerical Results : Four-Dimensional Evolutions 

In this section, we move away from the various two-dimensional submanifolds and look 

at some more general geodesies on Mi- However, we shall restrict attention to case (i) 

of section 6.3 (i.e. /3 = 6 = 0 and d+ = cL) , for which it has been shown by Ward [ 4 6 ) 

that there are two constants of motion in addition to the kinetic energy. Explicitly, if one 

writes 

7 = Rsmipeta, 

e = R cos V»e 9 , 

then d/da and d/d<i> are both Killing vectors of the natural metric, and the corresponding 

constants of motion are 

L = 2Ruj> + Rua, 
(6.93) 

M = IRvb + Rn(j>, 

where 

U> = 5 cos2 V* ^(cos tp), 

fi = - sin 2 V (^(cos il>) - £(cos ip)), (6.94) 

v = sin 2 iff (K(cosip) - \E(cos VO), 

with K and E the complete elliptic integrals of the first and second kinds, as before. 

Throughout section 6.4, L and M were both zero, so it is now natural to look at the 

consequences of taking nonzero values. There is an intuitive interpretation in terms of an­

gular momentum, in which one thinks of a spatial angular momentum, Js (corresponding 

to nonzero impact parameters), and an "internal" angular momentum, Ji (which takes 

account of the time-dependence of the phase a). Note from (6.35) that the initial value 

of a (and hence that of Ji) may be specified independently of the physical parameters. 
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The precise definitions of J$ and J\ are not immediately clear, but this does not rule 

out a heuristic discussion. From the asymptotic picture (6.21), one expects that 

Js = Rf(1>)4>, , x 

(6.95) 
Ji = Rg(1>)(2* - 4>), 

where / and g are some functions of tp alone. Then (6.93) may be written 

L = p{1>)Js + q(i>)Ji, 
(6.96) 

M = r(i;)Js + s(ip)Ji, 

for some p, q, r and s. The general idea is that p, q, r and s vary with time, because 

ip does; Js and Ji are conserved in the linear combinations (6.96), but not individually. 

In other words, there is an exchange between the spatial and internal angular momenta. 

This type of behaviour is familiar from the scattering of magnetic monopoles, in particular 

from the type II scattering mentioned in section 6.1. 

In the first example, J j is equal to zero initially, but Js is nonzero. Using the notation 

of section 6.3, the initial data correspond to the physical parameters 

w = 1.0, J = 0.5, A = 10.0, d = 0, v = 0.1, <r = 0, (6.97) 

where d is the initial dilation of each soliton (recall that d+ = cL) . The evolution is shown 

in figure 6.13. The solitons scatter at some positive angle, but then shrink to spikes a 

short time later. In this respect, things are very similar to figure 6.4. 

Next, consider Js initially zero but Ji nonzero. This corresponds to a head-on colli­

sion, but with the phase a given an initial time dependence. Figure 6.14 shows the results 

of taking a = 0.02, together with the same physical parameters as figure 6.4, namely 

w = 1.0, J = 0, A = 5.0, a = 0, « = 0.1. (6.98) 

This interaction seems quite unlike any occurring in other soliton theories. The scat­

tering angle is approximately 106°, i.e. the solitons "bounce back" beyond the perpendicu­

lar. Smaller initial values of a give scattering angles closer to 90°, while larger values cause 

the solitons to bounce back even more. In the central region, Js becomes nonzero, as the 

solitons move off the x-axis. However, asymptotically they appear to have emerged from 

the origin, i.e. Js vanishes as t —* oo. This observation gives rise to the conjecture that, 

although Js and Ji are not conserved throughout, they are conserved asymptotically. 
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FIG 6.13. Evolution of the initial data (6.97). 
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FIG 6.14. Evolution of the initial data (6.98). 
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Finally, we consider evolutions in which Js a n d Jl a r e both nonzero initially. In fact, 

some geodesies of this type were found analytically by Ward,'461 although at the time it 

was not known how they fitted into the general scheme of things. They correspond to a 

constant value of tp in (6.92), with 7 and e of the form 

7(i) = a sin ip(b + i(t — a)) , 

e(t) = a cos ip(b + i(t — a)) , 

for some real constants a, b and a. Since e 1/ 2 is linear in t, the solitons move in straight 

lines at constant speed, a behaviour more usually associated with integrable models. The 

soliton width is given by 

1/2 
w = \(asinipt&nip(b2 + (t - a ) 2 ) ) , (6.100) 

i.e. the solitons shrink as they approach, reaching a minimum width at t = a (the point 

of closest approach), after which they expand as they move apart. Moreover, since rp is 

constant, (6.96) shows that in these special cases Js and Ji are conserved individually. 

Figure 6.15 illustrates one particular process, obtained by evolving the initial data 

w = 2.0, J = 1.5, A = 2.5, d = -0.064, u = 0.2, <r = 0.048, (6.101) 

which correspond to 

l(t) = 4-5(l5 + i(t-20))\ 
(6.102) 

e(*) = i ( l 5 + i ( * - 2 0 ) ) 2 . 

That this process should be reproduced so accurately is a further indication that the 

numerical implementation is sound. 

As a comparison, figure 6.16 shows the results of evolving the same initial data, but 

now taking d = 0. The solitons now experience a deflection as they move by each other. 

So it is seen that a carefully chosen initial squashing, as in (6.101), can have the effect of 

"absorbing" the forces of repulsion that would otherwise be present. 

(6.99) 
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FIG 6.15. Evolution of initial data (6.101). 
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FIG 6.16. Evolution of initial data (6.101) with d now set to zero. 
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6.8 Concluding Remarks 

To sum up, we have classified all possible sets of initial data in terms of physical 

quantities, identifying in addition the various "internal" parameters, which do not change 

the initial energy density, but which are important in understanding the evolution as 

a whole. Using the geodesic approximation, some sets of initial data were investigated 

analytically. Other, more exotic, possibilities were studied numerically. It is clear that 

the C P 1 model exhibits scattering processes quite unlike those found in other soliton 

theories. The wide diversity of behaviour stems from the conformal invariance of the 

model, which allows solitons to change size as they move. In view of the current interest 

of the C P 1 model in relation to high temperature superconductivityand the quantum 

Hall effect,'111 there is also the exciting possibility that one might even be able to find 

experimental evidence for some of these interactions. 

In principle, the computer codes that have been developed could be used to compile 

a library of all possible scattering processes, but this would be a formidable undertak­

ing. It seems better to try to explain the apparent complexity by finding a few general 

rules. For example, it might be the case that the interaction is always repulsive. Alter­

natively, perhaps one could find a condition for the solitons to remain of finite width, i.e. 

for geodesies to avoid the boundary of M<i- Since Mi is four-dimensional and its bound­

ary two-dimensional, one expects that the formation of spiky configurations will be the 

exception rather than the rule. The results presented here support the conjecture that 

singularities in the energy density will not develop when a is initially nonzero, in keeping 

with the findings of chapter V, but at the moment no proof exists. It seems that answers 

to these questions will only come with a better understanding of the geometry of Mi. 

One should also bear in mind that the evolutions presented here were obtained using 

an approximation, the validity of which has never been rigorously established. Experience 

with vortices and monopoles suggests that radiative effects will be small for a wide range 

of initial velocities and dilations, but this should nevertheless be looked at in a numerical 

simulation of the full C P 1 model, such as that recently carried out by Zakrzewski, for 

which detailed results will be reported soon.1601 In numerical studies of this type, the fields 

are evolved on a two-dimensional lattice using a discrete analogue of the full field equa­

tions. Briefly, Zakrzewski's work shows, as hoped, that the amounts of radiation emitted 

during scattering processes are negligible. Unfortunately, a quantitative comparison with 
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the geodesic approximation is hampered by subtle numerical problems. I t appears that 

there are always small perturbations, arising from the lattice, which can build up over 

the course of an evolution to give a large effect. For example, in Zakrzewski's implemen­

tation, the solitons always shrink to zero width after interacting. Nevertheless, there is 

still qualitative evidence supporting all the processes discussed here, with the exception 

of that shown in figure 6.14, which remains the subject of some debate. 

As far as suggestions for future work are concerned, two projects come to mind. The 

first is to see how things get modified by quantum effects, perhaps using techniques similar 

to those described for monopoles in reference [61]. 

The second has already been mentioned at the end of chapter V, namely the possibility 

of modifying the model, in an attempt to prevent singularities ever developing in the 

energy density. Further comment is deferred until the end of chapter V I I . 



Some Open Questions 124 

Chapter VII 
Some Open Questions 

At first sight the integrable chiral model of chapter I I I is very different from the con­

ventional 0(3) model considered in the last three chapters; but in fact they are very closely 

related. For example, they possess essentially the same static solitons. In the formalism 

of the integrable model the static solutions come from taking fi = i and correspond to a 

matrix J of the form 

i (I - l / l 2 2 / 
l + l / P V 2 / - l + l / l 2 

for some meromorphic function f(z). I t is easy to check that any such matrix satisfies 

J 2 = — 1 , i.e. they all lie on the equator of SU(2), which is precisely the condition 

for reduction to the 0(3) model. The similarity becomes even more explicit when one 

considers the expressions for the potential energy in each case. In the integrable model, 

equation (3.10) shows that the configurations (7.1) have potential energy 

m = I (T+T/pp ** • ( 7 2 ) 

while for the 0(3) model the corresponding expression (parametrizing the two-sphere 

using the complex field u) is 

m J (l + |u|»)» * ' 

I t is now seen that for the time-independent solutions, / in the integrable model plays 

the same role as u in the 0(3) model. 

With the above observations in mind i t is natural to ask the complementary questions 

to the ones answered in this thesis. How do extended waves behave in the 0(3) ff-model? 

What are the stability properties of lumps in the integrable chiral model? The next two 

paragraphs outline what is known about these problems at the moment. 

7.1 
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As far as extended waves in the 0(3) cr-model are concerned, the simplest such solution 

is u = exp(z), which gives a wave that is static and lies along the y-axia. I t can be 

made to move by Lorentz boosting. To get a wave along some other direction, one 

would take u = exp(6z), where b is a complex parameter. This is in direct analogy with 

the construction of waves in the integrable chiral model. However, the question of wave 

interactions presents some new problems. A numerical evolution of the ful l field equations 

would require a very careful choice of boundary condition. On the other hand, for a 

slow-motion approximation, one has the problem of identifying the fu l l manifold of static 

two-wave solutions, and also the problem that waves have infinite energy. Nevertheless, 

some progress should still be possible. 

Turning now to the question of soliton stability in the integrable chiral model, a 

static lump wil l , of course, have the same zero modes as in the 0(3) model, i.e. i t is 

capable of shrinking or expanding indefinitely under small perturbations. But, in addition, 

the absence of a topological stability suggests the existence of negative modes, which 

correspond to the field J moving off the equator of SU(2). Because the model is integrable, 

one might expect that these modes could be constructed explicitly. A considerable amount 

of work has been done looking at small perturbations of the form 

J = J0{l + ib.a) + O(b2), (7.3) 

where Jo is the chiral field for a static lump, and the perturbation b is some function of 

x, y and t. The construction of explicit negative modes has proved to be difficult. Some 

results have been obtained restricting the form that 6 must take, but so far no negative 

mode has been found. Bearing in mind that scattering processes do not appear to excite 

any negative mode, i t is conceivable that none exist. At the moment this remains an open 

question. 

We now return in a little more detail to the questions raised at the ends of chapters V 

and V I , namely the possibility of modifying the 0(3) model so as to stabilize the solitons, 
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both under the influence of small perturbations and in interactions. As mentioned in 

chapter V, there appear to be two natural options, which are discussed in turn in the next 

few paragraphs. 

Firstly, one could add to the Lagrangian both a Skyrme-like term (containing higher 

powers of the field derivatives) and a potential term. I t is easy to see from the scaling 

arguments discussed in chapter I I that the Skyrme term drives the soliton towards a large 

width, wheras the potential term encourages i t to shrink. I t is these two competing effects 

that can lead to a stable configuration. As an explicit example, consider the Lagrangian 

£ = £o + i « i ( ( ^ ; ^ ) 2 - ( ^ . f t , 0 ) ( ^ . ^ ) ) + J ^ ( l + ^s) 4 , (7.4) 

where 

Co = \(dli<t>.dfl<f>) (7.5) 

is the Lagrangian for the unmodified model, and 6\ and 02 zxe (positive) real parameters. 

The term proportional to 6\ is- the Skyrme term, and contains fourth powers of the field 

derivatives. Its form is essentially unique, provided one requires that the Hamiltonian 

be positive definite, and that time derivatives appear only quadratically (so that the 

equations of motion may be calculated in the usual way). The main freedom lies in the 

choice of potential (i.e. in the term proportional to #2). As we shall see shortly, i t has 

been chosen here so that there is a simple analytic solution of the field equations. 

For the purposes of calculation, it is convenient to rewrite (7.4) in terms of the C P 1 

field u. After a little work, one finds that 

C' = CQ + 80i(1 + uu)~4 ((lm(uxuy))2 - {lm(utuy))2 - (lm(utux))2) 
V J (7.6) 

+ 462(uu)4(l + uu)~A , 

where 

Co = . (7.7) 
(1 + uuy 

The derivation of the field equations is straightforward, albeit a little messy. I t is not 

difficult to check that one particular solution, with topological charge equal to one, is 

u = — , where A = \ • (7.8) 
z V #2 

The most striking thing about (7.8) is that i t is also a solution of the unmodified model. 
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This is a consequence of the careful choice of potential in (7.6). However, note that no 

other value of A will do, i.e. the soliton width is fixed in terms of the parameters 6\ and $2. 

Moreover, one can see that i f 9\ —• 0 then A —• 0, since the potential term now dominates. 

Conversely, i f 02 —+ 0 then the Skyrme term dominates and A —• 00. 

I t is natural to refer to the solution (7.8) as a "skyrmion". The stability of this 

skyrmion to small perturbations has been demonstrated numerically, but it is not 

known whether there are any similar solutions with higher values of the topological charge. 

Certainly, all attempts to construct such objects analytically have failed; and further 

numerical work indicates the presence of forces between two isolated skyrmions, which 

tends to rule out the possibility of static two-lump configurations. Perhaps the best guess 

is that there are static solutions of higher topological charge, but that they are all radially 

symmetric and can only be constructed numerically. 

I t is worth mentioning that a Lagrangian very similar to (7.4) has recently appeared 

in a paper by Bogolubskaya and Bogolubsky.'631 The only difference is that the potential 

term is taken to be of the form (1 — ^ 3 ) , a choice motivated by considering the anisotropic 

Heisenberg ferromagnet. In this model, even the charge-one skyrmion must be found 

numerically, although i t is interesting to note that the two Russians also managed to 

calculate a radially symmetric solution of charge two. 

Finally, we mention some preliminary results on the scattering of skyrmions, ob-
f62l 

tained via numerical evolution of the ful l field equations. For a head-on collision of two 

skyrmions, there seems to be a critical impact velocity. Below the critical velocity, they 

bounce back along their original trajectories; above the critical velocity they scatter at 

90°. For velocities only just below the critical value there is a short-lived bound state. 

These features are very reminiscent of the <f>4 theory in (1+1) dimensions.16*'651 Clearly 

this subject merits further investigation. 

The second, and perhaps more elegant, modification of the 0(3) model also involves 

the addition of a potential term, but does not include a Skyrme term. To counteract 

the tendency of the solitons to shrink, the fields are given an internal rotation, in such a 

way that the energy density remains independent of time. Objects of this kind have be­

come known in the literature as "Q-balls", following the work of Coleman'2 1 1 and others'661 
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(although these original Q-balls lived not in two, but three spatial dimensions). Their sta­

bility depends on the existence of a conserved Noether charge, resulting from an unbroken 

continuous global symmetry of the Lagrangian. 

Strictly speaking, Q-balls arise when this is the only symmetry; but there may be 

other, spontaneously broken symmetries, and in these cases one tends to use the collective 

term "nontopological solitons". For example, a model in which there is a spontaneously 

broken discrete symmetry has been discussed recently in reference [67]. A similar model 

was discussed a few years ago by Friedberg, Lee and Sirlin, who also went on to look 

at models containing gauge m . and fermion1™1 fields. More recently, the same ideas have 

been used in the construction of so-called "soliton stars" f 7 1 ] These are cold, stable stellar 

configurations, which can have very large masses (much larger than neutron stars or white 

dwarves), without becoming black holes. 

To get back to the matter in hand, the objects discussed below are slightly different; 

first because they live in just two spatial dimensions, second because they have both 

a Noether charge Q, and the usual topological charge k. In this sense they have both 

topological and nontopological aspects. To distinguish them from conventional Q-balls, 

they will be referred to as "Q-lumps". Taking a specific example, consider the Lagrangian 

where Co is the Lagrangian for the unmodified 0(3) model, given by (7.5), and a is a real 

constant. In terms of the complex field u, 

CQ = £0 + la2(l-<t>l), (7.9) 

CQ = £o + 
a uu (7.10) 

(1 + uu)2 ' 

The corresponding equation of motion is 

2u d^u d^u a 
1 + uu 

u(l — uu) 
1 + uu 

= 0. (7.11) 

The conserved charge Q arises from the invariance of CQ under the multiplication of u 

by a global phase. Once again, the form of the potential has been carefully chosen to give 

simple analytic solutions, which may be constructed as follows using an analogue of the 
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Bogomolny equations. First of all, consider the following expressions for the total energy 

E, the topological charge A;, and the Noether charge Q: 

r djudju 2 [ J t ^ _ d 2 x , f d2x 

* J (l + uu)2dX + J (l + uu)**** J (1 + UU)* ' 

k = i _ f d X U d U - d y U d X U d , 
2tt J (1 + txu)2 ' \ J 

_ . /" udtu — udtu j 2 U = la I —; —;— a x, 

where the subscript i labels the spatial coordinates x and y. Now consider the identity 

J(l + ui2) - 2(9,tt ± ie^-5ju)(5fii +" ieifĉ jfeil) d 2x 

(7.13) 

+ / (1 + u f i ) - 2 ( # t u ± z'au)(9tfi ^ iau) d2x > 0. 

Using (7.12), (7.13) may be recast in the simple form 

E>2ir\k\ + \Q\. (7.14) 

Given particular values of the (integer-valued) topological charge k, and the (real-valued) 

nontopological charge Q, (7.14) gives a lower bound on the total energy E, which is 

attained when 

diu ± ieijdju — 0 and dtu ± idu = 0. (7.15) 

The first of these conditions determines the spatial dependence of u and is familiar from 

the unmodified model; namely, i f one writes z = x + iy then u must be an (anti)-analytic 

function of z. The second part of (7.15) is new, and says simply that u should rotate in 

internal space with constant angular velocity a. Putting these two pieces together, one 

finds that the lower bound on the energy is attained if and only if 

u(z, t) = UQ(Z) e x p ( ± i a t ) , (7.16) 

where UQ(Z) an arbitrary (anti)-analytic function, i.e. a solution of the unmodified model. 

If ^ 0 ( 2 ) is chosen to be a k-instanton solution then u(z, t) describes a system of k Q-lumps. 
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I t only remains to check that the configurations (7.16) do indeed satisfy the field equation 

(7.11), but this is easily done. Moreover, i t is also clear that the corresponding energy 

densities are independent of time, which shows that there are no forces between isolated 

Q-lumps (in contrast to the skyrmions discussed above). 

The explicit form of these new Q-lumps is so simple that i t is almost deceptive. I t 

stems from the existence of the modified Bogomolny bound (7.14), and this in turn is a 

consequence of the careful choice of potential in (7.10). I f one changes the potential, the 

Bogomolny bound is lost, along with the simple analytic solutions; so i t seems that the 

model we have constructed is very special indeed. 

I t is now natural to ask about the stability and scattering of Q-lumps. First of all, 

note that if u(z,t) has unit topological charge, i.e. i f 

tioOO = — , (7.17) 
z - fi 

then Q (and hence also E) is infinite. In other words, i f one restricts attention to finite-

energy solutions then the minimum topological charge allowed is two. Using a refinement 

of the techniques developed in chapter TV, it has been verified that Q-lumps with k > 2 

are stable to radially symmetric perturbations. However, i t seems that under more general 

perturbations they may undergo fission, in a manner similar to conventional Q-balls when 

the continuous symmetry group is nonabelian.'661 For example, a Q-lump of topological 

charge two may split into two Q-lumps, each with unit charge. 

Answers to this question, and also to the wider issue of Q-lump scattering, could come 

from a slow-motion approximation, in which the evolution is restricted to the manifold of 

configurations that saturate (7.14). Suppose this manifold is denoted by M'k(Q). Clearly 

M'k(Q) is a submanifold of (recall from chapter V I that Mf. is the manifold of charge-/: 

static solutions in the unmodified model). The simplest case is k = 2, corresponding to 

= . (7-18) 

where /3 is real, but 7 and e may be complex. The condition that Q is finite forces 0 to 

vanish, and then the phase of 7 becomes irrelevant (see section 6.3). In addition, the fact 

that Q is conserved places a further constraint on 7 and e, with the result that M^Q) 

has dimension two. Any work along these lines would be all the more interesting in view 
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of the fact that, up t i l l now, investigations of Q-ball scattering have been confined to 

(1+1) dimensions. 

As a final suggestion, it would be interesting to look at the whole family of modified 

a-models that are given by 

W + V ^ ) d„{J-xdvJ) = 0, (7.19) 

where J lives in SU(2) and Va is a constant vector in spacetime. We have already seen 

that i f Va = (0,1,0) then the model is integrable, and that i f Va = (0,0,0) then one has 

the conventional SU(2) chiral model. I t is natural to consider models corresponding to 

intermediate values of V. In particular, one may ask how the scattering properties change 

as Va changes from (0,0,0) to (0,1,0), i.e. as the model changes from being Lorentz 

invariant to being integrable. The static solutions are always the same, regardless of the 

value of V, and so a slow-motion analysis may well be feasible, especially i f the model 

contains no negative modes. 

Perhaps such an investigation would give a valuable insight into the apparent nonexis­

tence of (2-|-l)-dimensional soliton theories that are both Lorentz invariant and integrable. 

I t might also establish a link between the geodesic approximation and the inverse scat­

tering transform (IST), bearing in mind that, in general, the spectrum of eigenvalues in 

the IST contains both a continuous piece, corresponding to radiative components, and a 

discrete piece, corresponding to the solitonic components. One could think of the geodesic 

approximation as an inferior (and in some cases inadequate) substitute for the IST, in 

which one ignores all radiative effects and evolves only the solitonic components. This 

point of view is apparent in reference [73], which contains a comprehensive review of 

soliton dynamics in nearly integrable systems in (1+1) dimensions. 
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Appendix A 

The main purpose of this appendix is to provide a motivation for the integrable chiral 

model of chapter I I I , by showing that i t may be obtained as a reduction of the self-dual 

Yang-Mills (self-duality) equations in (2+2) dimensions (by (2+2) dimensions i t is meant 

that the spacetime metric has signature (+-) )) . In addition, we take the opportunity 

to mention some other reductions of the self-duality equations, especially reductions from 

spacetime signature ( + + + + ) , i.e. from fields defined in (4+0) dimensions. For example, 

the solutions of the simplest reduction from (4+0) dimensions to (3+0) are the BPS 

monopoles, which were discussed in chapter V I . I t seems that the self-duality equations 

and their generalizations occupy a central role in the theory of integrable systems,1741 in 

the sense that many (and maybe all) integrable equations can be obtained from them by 

some suitable reduction. 

Briefly, the self-duality equations take the following form. A more complete treat­

ment may be found in any of the standard texts, for example reference [23]. One has a 

gauge group G, with Lie algebra g, and a gauge potential A, which is a g-valued 1-form 

transforming as a connection under the action of the gauge group. The gauge field F 

(interpreted geometrically as a curvature) is a g-valued 2-form, defined by 

where d is the usual exterior derivative. In general, the covariant derivative of a matrix-

valued p-form V is given by 

F = dA + A A A, ( A . l ) 

DV = dV + A AV - (-)pV A A. (A.2) 

The ful l Yang-Mills equations are simply 

D*F = 0 (A-3) 

where * is the Hodge duality operator. Being nonlinear, they are very difficult to solve, 
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but progress may be made by making use of the Bianchi identity, namely 

DF = dF + A/\F-FAA 

= d(A A A) + A A dA - dA A A (A.4) 

= 0. 

From (A.4), i t is clear that a particular set of solutions to (A.3) consists of those gauge 

fields which satisfy 

*F = \F, (A.5) 

where A is a (possibly complex) constant. Equations (A.5) are the self-duality equations, 

and are much easier to solve than the ful l Yang-Mills equations. 

I t turns out that the possible values of A depend on the spacetime signature. Applying 

the Hodge operator to (A.5) yields 

and now one can use the standard results concerning the action of the repeated Hodge 

dual, namely that for a p-form V defined on an n-dimensional spacetime, 

where s is the number of minus signs in the spacetime signature. The conclusion is that 

when s is even, the allowed values of A are ± 1 , while for s odd they are ± i . 

The above discussion applies to arbitrary spacetime geometries and arbitrary gauge 

groups; but for the rest of the appendix, attention is restricted to flat four-dimensional 

spacetimes and to the gauge group SU(2), for which the individual components of the 

gauge potential must be real. This in turn means that A must be real. In other words, 

one is restricted to signatures ( + + + + ) , which is essentially the same as ( ), and 

F = X*F = X2F, (A.6) 

v = ( - r n-p)+a (A.7) 
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( -H ). The signature (++H—) is precluded, although i t would be allowed i f the gauge 

group were changed to (say) SL(2, C). By convention, fields which satisfy 

*F = F (A.8) 

are called self-dual and those which satisfy 

*F=-F (A.9) 

are called anti-self-dual. In (4+0) dimensions the finite-action configurations of these 

types are known as instantons and anti-instantons respectively. 

To begin with, we shall discuss the reduction from the self-dual Yang-Mills equations 

to the Bogomolny equation for monopoles. Consider a spacetime with signature ( + + + + ) 

and coordinates ( x ^ x ^ x ^ x 4 ) ; then the gauge potential may be written A = Aidx%, 

where i takes values 1, 2, 3 and 4. The simplest reduction is to take the fields to be 

independent of one coordinate, say by setting 84 = 0. Now write 

A = A + $, (A.10) 

where 

A = Aidx1 + A2dx2 + Arfx3 and $ = A±dx4. ( A . l l ) 

Suppose that the fu l l four-dimensional spacetime is denoted by S (here S is simply R 4 ) 

and that S is the three-dimensional subspace obtained by dropping the coordinate x 4 . 

We shall use a tilde to denote any object defined on S rather than S (note that d = d, 

since 84 = 0). From the definition of the gauge field, 

F = dA + d$ + (A + * ) A (A + $) 

= F + d$ + i A $ + $ A i (A.12) 

= F + D$ . 

In this way, F is decomposed into two pieces. The first, F, has no component involving 

dx4; conversely, dx4 appears in every component of D$. Under the action of the Hodge 

dual, the two pieces are interchanged, so that *F = D$ and = F. We can remove 
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all reference to x 4 by writing <j> = A4 and letting the Hodge dual act in S, so that i t now 

takes 1-forms to 2-forms and vice-versa. I t is conventional to define the 1-form B to be 

the dual of F; then taking a little care with signs, i t is easy to see that (A. 8) becomes 

B = D<}>. (A.13) 

This is the Bogomolny equation for monopoles. Note that the component of the gauge 

field corresponding to the redundant coordinate s 4 is now playing the role of the Higgs 

field. 

A vast literature has been generated by the search for solutions to (A.8) (instantons) 

and (A.13) (monopoles). In both cases, the finite-energy configurations are classified by 

topological charge. Historically, the instantons were constructed before the monopoles. 

Indeed, for several years there were no examples of monopoles with charges greater than 

one, but eventually these solutions were found using techniques derived from the earlier 

work on instantons. A good review of monopoles, instantons, and the methods used 

to construct them may be found in reference [75], although i t was written before the 

higher-charge monopoles were discovered. 

To look at other reductions of the self-duality equations, i t is convenient to use an al-
1761 

ternative formalism, originally put forward by Yang, in which one defines new spacetime 

coordinates, y, y, z and z, in such a way that the spacetime metric is 

ds2 = dydy + dzdz. (A.14) 

The overbar may denote complex conjugation, but equally may not, depending on the 

spacetime signature. 

„ , . . . . , . V = xi + ix2 , z = 2:3 + 1x4 , . A ^ . 
I f the signature is ( + + + + ) then { (A.15) 

y = x\ — ix2 , z = X3 — 1x4 . 

. y = x\ + X2 , z = xz + X4 , 
I f the signature is ( + H ) then ^ (A.16) 

y = x\ — X2 , z = £ 3 — X4 . 
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One also introduces new components for the gauge potential, as follows. 

„ . . . , x , f Ay = A\ + iA2 , Az = A3 + iA±, 
If the signature is ( + + + + ) then < (A.17) 

[^4y = - iA2, >1« = A3 - iA±. 

T , , . . , \ * f = + M, -A, = ^3 + A4, 
If the signature is (+H ) then < (A.18) 

Ay = Ai - A2 , ^ 2 = ^3 - . 

The key to Yang's formalism is to write these new components in terms of two 2 x 2 

matrices, D and D, which may be taken to have unit determinant: 

Ay = D~ldvD, Az = D~ldzD, 
V (A.19) 

Ay = D~ldyD, At = D~ldzD. 

The advantage of doing this is apparent when one considers that the self-duality equa­

tions are essentially three equations, equating pairs of the six independent components of 

F (recall that F is an antisymmetric object with two indices, each taking values 1, 2, 3 

and 4). By writing A in the form (A.19), two of these three equations are automatically 

satisfied, and the third takes the form 

dy{J~ldyJ) + dz{J~ldzJ) = 0, (A.20) 

where 

J = DD~l. (A.21) 

The similarity with the chiral field equations is now emerging; but before proceeding, 

we should mention a subtle difference between the signatures ( + + + + ) and (+-] ), 

which stems from the fact that the Ai (i = 1,2,3,4) may be thought of as 2 x 2 anti-

hermitian matrices. In ( + + + + ) , this means that Ay = —Ay, so relating D and D via 

(A.19). Given a particular gauge potential, D is not uniquely determined in terms of £), 

but i t is easy to see that one possible choice is always 

5 = ( Z ) t ) " 1 . (A.22) 

This has the result that J is hermitian (in addition to having unit determinant). 
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I t should be stressed that (A.22) applies only to signature ( + + + + ) . In contrast, 

for signature (+- | ), Ay, Ay, Az and Az are themselves antihermitian; so D and D, 

and hence also J, may be taken to live in SU(2). Concentrating on this case, since i t 

is of particular relevance to the a-models, we now exhibit a few particular reductions, 

including the integrable chiral model of chapter I I I . First of all, set d% = 84 = 0; then 

(A.20) becomes 

di(J-ldiJ) = 0 , (A.23) 

where i takes values 1 and 2. This is simply the SU(2) chiral field equation in (2+0) 

dimensions. I f J is restricted to lie on the equator of SU(2) then one has the 0(3) 

cr-model. 

The integrable chiral model comes from setting 84 = 0 and relabelling the other three 

coordinates so that 

z 2 — *, (A.24) 

£3 —• x. 

Equation (A.20) then reads 

(8y - dt)(J-l{dy + 8t)J) + 8x(J-l8xJ) = 0, (A.25) 

or alternatively 

8x(J~l8xJ) + 8y(J-ldyJ) - 8t{J-ldtJ) 
(A.26) 

+ d y ( J - l 8 t J ) - d t ( J - 1 d y J ) = 0, 

which is precisely the equation studied in chapter I I I . 

Of course, there are many more possibilities. Mason and Sparling 1 4 0 1 have described 

how to obtain the Korteweg-de Vries and nonlinear Schrodinger equations; and yet more 

reductions are pointed out in reference [74]. A l l the equations obtained in this way are 

integrable, by virtue of the fact that the self-duality equations from which they are derived 

are themselves integrable. Indeed, their solutions can often be found by tailoring the 

techniques used to construct instantons. 
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Appendix B 

This appendix fills in the mathematical details that were omitted from chapter IV. 

There are two main tasks: firstly we must show that i f quantities A n are defined for lattice 

instantons according to (4.25) then they have a finite l imit A as n tends to infinity. Second, 

we have to derive equation (4.27), which relates A to for some large no. In fact, (4.27) 

will arise as a corollary of the proof that A exists. Along the way, we shall need several 

intermediate results (lemmas 1-3), which allow us to pin down the asymptotic behaviour 

of the discrete Bogomolny relations. 

First of all, we shall introduce another first-order difference relation, which is closely 

related to the Bogomolny relations (4.20) in the following sense. Take c small and look 

for a solution to (4.20) of the form 

hn = = 1 - 2ane + 0(e2). (B . l ) 
1 + On€ 

To leading order in e, (4.20) becomes 

an+1 = an(l + — J (n > 1) , (B.2) 

which has general solution 
• _ oi (n-••+ 2N - 1)! 

ttn ~ j2N)i. ( n - 1 ) ! * ( 3 ) 

This provides the motivation for defining a new set of lattice quantities, 

1 + On 

which, it is easily checked, are the general solution of the difference equation 

_ h'n - (N/n)(l - h'n) 
k n + l ~ 1 + (N/n)(l - h>n) • ( B ' 5 ) 

This difference relation, with its explicit solution, is the key to the whole proof. Assume 

that a\ is chosen to be positive. Then an > 0 for all n > 1; moreover an+i > an and 

a,n —• oo as n —• oo. So from (B.4) it is seen that {h'n} has the following properties in 

common with {hn}: 
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1. K\ < i . 

2. h'n+1 < h'n. 

3. h'n —> — 1 as n —• oo. 

It is now useful to define counterparts to the Xn for the new quantities h'n: 

,2AT 
i J ? h ( i ± & ) b » . ^ , m 

where the last equality follows from (B.4). Using the explicit form of an given in (B.3), 

one finds that 

V j 2 ^ V 2 = W asn-^oo . (B.7) 
ai 

The required sequence of lemmas may now be constructed. 

Lemma 1. Suppose that {h'n} and {h„} both satisfy (B.5) and that h'n > h'^ for some 

n. Then h'n+l > h^v 

Proo f . Let D = ( l + £ ( 1 - h'J) ( l + f (1 - h%)) > 0; then (B.5) implies 

C - i - <+ i = £ ( K " f (1 " KS) ( l + f (1 " O ) - (h'n ~ 

= > ' „ - 0 ( l + f ) 

> 0 . • 

Lemma 2. Suppose that {hn} satisfies the Bogomolny relations (4.20), that {h'n} satisfies 

(B.5) and also that h'n = hn for some n. Then h'n+l > hn+i. 

P r o o f . Let D = 1 + ^(1 - hn) > 0; then (4.20) and (B.5) imply 

h'n+l ~ hn+l = j}(hn- f (1 " *») " ( l + f U ~ *»)) (^u - f (1 - / £ ) ) ) 

1 AT2 

>o. • 
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Lemma 3. { A 2 } is bounded. 

Proof . Lemmas 1 and 2 together show that if h'^ = for some no then h'n > hn 

for all n > 7io- Therefore AJ2 > A 2 for n > no. But, given 6 > 0, Aj 2 < A'2 + 6 

for sufficiently large n. Clearly { A 2 } is bounded below by zero, and so 

0 < A2 < A'2 

for sufficiently large n. • 

The final stages of the proof now follow. From (4.20) 

l - / h H - i = ( l - M ( l + ?(! + *»)). 

l + h n + l = (l + h n ) { l - % ( l - k n ) ) . 

Dividing one of these equations by the other, and using (4.25), 

*n + i / . , U 2 * l - (N/n)(l-hn) 
A 2 ~V1 + J l + (N/n)(l + hn) ' ^ 

The fact that { A 2 } is bounded, together with the form of (4.25), means that hn must 

approach —1 at least as fast as l / n 2 N , i.e. for sufficiently large n, hn = — 1 -f 0(n~2N). 

Therefore, expanding (B.8) in powers of 1/n: 

A2 

A 2 
f = ( l + f + ^ , ) ( l _ ^ + 0 ( „ _ 3 ) 

n* 

which shows that { A 2 } is monotonically decreasing for sufficiently large n. Since { A 2 } is 

bounded below by zero, it must tend to a finite limit A 2. • 

Having shown that A is well defined, we now carry on to show how equation (B.9) leads 

to an approximate value for A in terms of hno. By definition 

oo x2 

A 2 = 4 [ I f • (B.10) 
n—ria n 
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Take logarithms and choose no sufficiently large so that for n > no the 0(n 3 ) terms in 

(B.9) are small compared with 0(n~2). Then 

. . 2 . . 2 ^ N(2N +1) 
logA" w logA^ - ^ j — 

n=no 

( 2 « o - l , \ 
T ^ £ ^ ) . ( B- n) 

n=l ' 

where in the last step we have used the result 

, ril 6 n=l 

Introducing the notation 
_2 "o- l , 

n=l 

we get 

A2 « A^, exp(-S 0W(2JV + 1)) . (B.14) 

As it stands, (B.14) is of limited use because it still involves A 2

0 . It is much better to 

rewrite it by relating A 2

o to A'2. Using (B.6) and then (B.3) one finds 

A n + l _ L + ± \ Q n 

= 1 + i ! [ ( 2 ^ - l ) + 

If we again choose no sufficiently large so that the C?(n~ 3) terms are small then 

A'2 « A;2 exp{S0N(2N - 1)) . (B.16) 

But now recall that hno = h'm and so A, l 0 = X'1l0. Hence comparison of (B.14) and (B.16) 
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yields 

A 2 « A' 2exp(-4iV 25o). (B.17) 

The final step involves rewriting A'2 in terms of h^. Recall that in equation (B.7), A'2 

was given in terms of ai, but it may equally be expressed in terms of (or h^) by using 

(B.3), (B.4) and the fact that = h'^ : 

l 2 _(n0 + 2N-l)\ _ (n0 + 2N-l)\ / l + . ^ N . 

a ^ ( n o - l ) ! (no-1)1 U - k J " V ' > 

So finally we obtain equation (4.27): 
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Append ix C 

This appendix contains listings of the computer programs that were used to obtain 

some of the results in this thesis. The first, called CP1 (on pages 144 to 152), is an 

implementation of the topology-based evolution scheme that was developed in chapter IV 

and used in chapter V. The second, called CP1SLOW (on pages 153 to 159), applies the 

geodesic approximation discussed in chapter VI to the general problem of soliton scattering 

in the 0(3) model, and makes extensive use of the NAG (Numerical Algorithms Group) 

routines. 

Both programs are written in standard FORTRAN 77. They are designed to be 

reasonably efficient, but not at the expense of clarity. It is not intended to provide any 

documentation other than that contained in the listings themselves. 

However, it is worth mentioning the behaviour of each numerical procedure as the 

soliton width approaches zero. In the program CP1, the time evolution takes place in 

a subroutine called S T E P (page 150), which at one point takes the square root of a 

complicated argument. It seems that if the soliton width becomes smaller than some 

critical value then this argument becomes negative, causing the program to "crash". The 

critical width corresponds to a soliton occupying essentially only one lattice site, and 

is probably related to the minimum width of instanton that the lattice can support, as 

discussed in chapter IV. 

Program CP1SL0W behaves somewhat differently. The values of 7 and e (see chap­

ter VI) are printed at equally spaced time steps. If the width of either soliton becomes 

zero, then the program does not crash, but the next time step is never reached, no matter 

how much computer time one allocates. To be sure that a singularity has been found, one 

should run the job again, with an increased allocation. This is not entirely satisfactory 

(in addition to being expensive on computer time), but it is difficult to see how things 

might be improved, since the cause of this behaviour is presumably hidden deep inside 

the NAG routines. It certainly does not seem that the appearance of a singularity in the 

energy density corresponds to anything so simple as a vanishing denominator in the field 

equations (6.16). 



PROGRAM CP1 
IMPLICIT DOUBLE PRECISION (A-H.O-Z) 
IMPLICIT INTEGER*4 (I-N) 
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Q ********************************************* 
C **** RADIALLY SYMMETRIC C P 1 MODEL **** 
Q *********************************************************************** 

C NMESH is the number of points in the radial mesh, and NCALC is the 
C number of those points used to generate the output (potential energy, 
C kinetic energy etc). 

PARAMETER ( NMESH = 6000, NCALC = 1000 ) 

C Specify the topological sector and the time step for the evolution. 

PARAMETER ( NCH = 1 ) 
PARAMETER ( TSTEP =0.500) 

C The basic output is printed after every NPRINT time steps up to a 
C maximum time TMAX. More detailed output, handled by the subroutine 
C PLOT, is printed after every NPLOT time steps up to a maximum time 

' C TPLOT. Either type of output may be turned off by setting NPRINT 
C or NPLOT to -1. 

PARAMETER ( NPRINT = 10. TMAX = 1.0D4 ) 
PARAMETER ( NPLOT - -1. TPLOT - 1.6D2 ) 

C The type of boundary condition is specified by IBTYPE (see the 
C subroutine BOUND); the type of initial configuration is specified 
C by IHTYPE (see the subroutine INIT). 

PARAMETER ( IBTYPE - 0 ) 
PARAMETER ( IHTYPE = 2 ) 

C The fields are all stored in the matrix F; The first index labels 
C the three components SQRT(1-H**2), PSI and H; the second index 
C specifies the position in the radial mesh; and the third index 
C labels the three most recent time slices. 

REAL*8 F ( 1:3. 0:NMESH+1. 0:2 ) 

C The following data are used in the construction of the initial 
C configuration (see the subroutine INIT). 

DATA TL, NO. Nl, A. B. XL I 
1 O.ODO, 100, 175. 1.00-3. 1.0D3. 5.0D1 I 

DATA TP I 
1 5.0D-4 I 

********************************************* 
***** 5 e t Up required common blocks ***** 
********************************************* 



COMMON I MODEL I TS. PP. NM. NC. NL 
COMMON I BTYPE I IB 
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TS = TSTEP 
PP = A.000 * DAT AN (.1.000) 
NM = NMESH 
NC = NCH 
NL = NCALC 
IB = IBTYPE 

Q *************************************** 
Q **** MAIN PROGRAM **** 
r *************************************** 

NOW = 0 
TIME = O.ODO 
WRITE (6,100) 
CALL INIT ( IHTYPE. F, A. B, XL, TL, NO, Ml. TP ) 
CALL STEP ( F, NOW ) 
IF ( NPRINT .NE. -1 ) CALL OUTPUT ( F, TIME, EN. EO. NOW ) 
IF ( NPLOT .NE. -1 ) CALL PLOT ( F, NOW, TSTEP ) 
NSTEP = INT ( TMAX I TSTEP ) + 1 
DO 200 I = 1. NSTEP 

TIME = TIME + TSTEP 
CALL STEP ( F. NOW ) 

IF ( NPRINT .NE. -1 .AND. MOD ( I, NPRINT ) .EQ. 0 ) 
1 CALL OUTPUT ( F, TIME, EN, EO, NOW ) 

IF ( NPLOT .NE. - J .AND. MOD ( I. NPLOT ) .EQ. 0 .AND. 
1 TIME .LT. TPLOT ) CALL PLOT ( F, NOW, TSTEP ) 

CONTINUE 
FORMAT (//'Radially symmetric CP1 MODEL in (2+1) dimensions'/) 
WRITE (6,*) 
END 

****************************************************************** 
***** Specification of initial configuration and perturbation ***** 
*********************************************************************** 

SUBROUTINE INIT ( IHTYPE. F. A, B, XLO, TL. NO, Nl. TP ) 
IMPLICIT DOUBLE PRECISION (A-H.O-Z) 
IMPLICIT INTEGER*4 (I-N) 
COMMON I MODEL I TSTEP. PI. NMESH. NCH 
COMMON I BTYPE I IBTYPE 
REAL*8 F ( 1:3. 0:NMESH+1, 0:2 ) 

C The option IHTYPE=0 is used for one-off configurations. It is set up 
C here to take initial data from the continuum instanton solutions, or 
C from the slow-motion approximation to a charge-two ring. 

IF ( IHTYPE .EQ. 0 ) THEN 
WRITE (6.10) 

10 FORMAT(IX. 'One-off initial data specification'/) 



DO 20 J = 0. 1 
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GAM = DSORT(A) * DSQRT ( B**2 + T**2 ) 
DO 30 I - 1. NMESH+1 

R = DFLOAT ( I ) 
DEN = GAM**4 + R**4 
F(l.I.J) - 2.0D0 * XLO * R I ( XL0**2 + R**2 ) 
F(3,I,J) - ( XL0**2 - R**2 ) I ( XL0**2 + R**2 ) 
F(2,I,J) = O.ODO 
F(l.I.J) = 2.0D0 * GAM**2 * R**2 I DEN 
F(3,I.J) = ( GAM**4 -R**4 ) I DEN 
F(2,I.J) = DATAN ( 2.0D0*B*T I ( B**2 - T**2 ) ) 

CONTINUE 
CONTINUE 

The option IHTYPE=1 sets up static instanton fields. The parameters 
used are NCH (the topological charge), NO (see chapter IV) and XLO (the 
instanton width). 

ELSE IF ( IHTYPE .EQ. 1 ) THEN 
WRITE (6.100) NCH 
FORMATdX, 'Single charge ',11.' static instanton'/) 
PS = O.ODO 
DO 101 J = 0. 1 

CALL STATIC ( J, NO, XLO, PS, F ) 
CONTINUE 

The option IHTYPE=2 applies perturbations to an instanton configuration. 
In addition -to NCH. NO and XLO, there are parameters to specify the . 
perturbation. TL and TP specify its size; Nl (together with NO) 
specifies its shape. 

ELSE IF ( IHTYPE .EQ. 2 ) THEN 
WRITE (6,300) NCH 
FORMAT (IX, 'Charge ' .11,' perturbed soli ton'/) 

The procedure ..comes in .two parts. First, the perturbation given 
by TL and TP is constructed in timeslice J°l, taking no regard of 
the perturbation shape. 

DO 302 0=0,1 
IF ( J .EQ. 0 ) XL = XLO 
IF ( J .EQ. 1 ) XL = XLO + TSTEP * TL 
PS - TP * DFLOAT ( J ) * TSTEP 
CALL STATIC ( J, NO. XL, PS. F ) 

CONTINUE 

Now the shape of the perturbation is taken into account. The fields at 
timeslice J = i are taken to be a linear combination of those calculated 
in the previous section. First, there is no perturbation beyond N-Nl. 

DO 305 I = Nl+1, NMESH+1 
F(3.I.l) = F(3.I.O) 
F(2.I.l) = F(2.I.O) 
F(l.I.l) = F(1.1,0) 
CONTINUE 
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In the central region, the shape is that of a linear ramp. 

DO 307 I = NO, Nl 
PI = DFLOAT ( Nl-I ) I DFLOAT ( HI-HO ) 
P2 - l.ODO - PI 
F(3,I,1) = PI * F(3.I.l) + P2 * F(3.I.O) 
F(2,I,1) = PI * FC2.I.1) + P2 * F(2,I,0) 
F(l.I.l) = DSQRT ( l.ODO - F(3.I.1)**2 ) 

307 CONTINUE 

C The option IHTYPE=3 is used to set up properly discretized initial data 
C for a slowly moving charge-two ring. The parameters used are A, B (see 
C chapter IV), and also NO. Ensure that NCH is set to 2 !!! 

ELSE IF ( IHTYPE .EQ. 3 ) THEN 
WRITE (6,200) 

200 FORMAT(IX, 'Slowly moving charge 2 ring'I) 
DO 202 J = 0. 1 

T = DFLOAT ( J-l ) * TSTEP 
XL = A * ( B**2 + T**2 ) 
PH = DATAH ( 2.0D0*B*T I ( B**2 - T**2 ) ) 
CALL STATIC (. J. NO, XL, PH. F ) 

202 CONTINUE 
END IF 

C For any type of initial configuration, the fields at the origin must be 
C of the form (O.psi.l). The following lines are included to be safe. 

DO 999 J = 0,2 
Ft 1.0.J) = O.ODO 
F(2,0,J) = F(2,1.J) 
F(3.0.J) = l.ODO 

999 CONTINUE 

C The last thing to do is to set the boundary values correctly. 

IF ( IBTYPE .NE.. 0 ) CALL BOUND ( F, 0. IBTYPE ) 
CALL BOUND ( F, 1, IBTYPE ) 
CALL BOUND ( F. 2. IBTYPE ) 
RETURN 
END 

*********************************************** 
***** Calculation of instanton fields ***** 
******************************** 

SUBROUTINE STATIC ( J. NO, XL. PS. F ) 
IMPLICIT DOUBLE PRECISION (A-H.O-Z) 
IMPLICIT INTEGER*4 (I-N) 
COMMON I MODEL I TSTEP, PI, NMESH, NCH 
REAL*8 F ( 1:3, 0:NMESH+1, 0:2 ) 

XCH = DFLOAT ( NCH ) 
SO = PI**2 I 6.0D0 



RO = l.ODO 
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C This routine is called by several of the options in subroutine INIT. 
C It calculates the lattice instanton fields given by NO. XL and PS, 
C and then stores them in timeslice J. 

DO 100 1=0. 2*NCH-1 
RO = RO * DFLOAT ( NO+I ) 

100 CONTINUE 
DO 101 1=1. NO-1 
SO = SO - l.ODO I DFLOAT ( 1**2 ) 

101 CONTINUE 
EP - XL**2 * DEXP ( 4.0D0 * XCH**2 * SO ) I RO 

C Calculate the fields at position NO f i r s t , and then the others. 

F(3,N0,J) - - ( l.ODO - EP ) I ( l.ODO + EP ) 
FC2.N0. J) = PS 
F(l.NO.J) = DSQRT ( l.ODO - F(3.N0.J)**2 ) 
DO 102 I = NO. 2.-1 

R = DFLOAT ( 1-1 ) 
0 = l.ODO + 4.0D0 * XCH * ( XCHIR + F(3.I.J) ) I R 
FC3.I-1.J) = R I 2.QD0 I XCH * ( DSQRT ( 0 ) -l.ODO ) 
FC2.I-1.J) = PS 
F(1,I-1,J) = DSQRT ( l.ODO - F(3.1-1,J)**2 ) 

102 CONTINUE 
DO 103 I = NO. NMESH 

F(3.I+1.J) = F(3.I,J) - XCH * F(1,I.J)**2 I DFLOAT ( I ) 
F(2.1+1.J) - PS 
F(1.I+1.J) = DSQRT ( l.ODO - F(3.1+1,J)**2 ) 

103 CONTINUE 
RETURN 
END 

************************************************** 
***** Summary output: energies and width ***** 
************************************************** 

SUBROUTINE OUTPUT ( F. TIME. EN. EO. NOW ) 
IMPLICIT DOUBLE PRECISION (A-H.O-Z) 
IMPLICIT INTEGER*4 (I-N) 
REAL*8 F ( 1:3. 0:NMESH+1. 0:2 ). KE, KEH. KEP 
COMMON I MODEL I TSTEP. PI. NMESH, NCH. NCALC 

C Check for incorrectly normalized fields - there should never be any 1! 

DO- 100 I - 0. NMESH+1 
F2 = F(1.I.N0U)**2 + F(3,I.N0U)**2 
IF ( DABS(F2-1.0D0) .GT. 1.0D-8 ) URITE(6.*) I.F2 

100 CONTINUE 

C 
C 
C 

Calculate the total kinetic energy (KE). potential energy (PE) and the 
width (HI). KE is split into KEH. due to the time derivative of H, 
and KEP, due to the time derivative of psi. 
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UI - O.ODO 
KEH = 0. 0D0 
KEP = O.ODO 
M f f = MOD ( NOU+1. 3 ) 
DO 200 I - 0. NCALC 

IF ( I .EO. 0 ) AREA = 4.0D0 
IF ( I .NE. 0 ) AREA = 2.0D0 * DFLOAT ( I ) 
PTE = EPT ( F, I. NOW. PTKH, PTKP. PTP ) 
PTK = PTKH + PTKP 
KEH = KEH + PTKH * AREA 
KEP = KEP + PTKP * AREA 
KE = KE + PTK * AREA 
PE = PE + PTP * AREA 
Ml = UI + PTE * AREA * DFLOAT ( I ) 

200 CONTINUE 
KEH = PI * KEH 
KEP - PI * KEP 
KE - PI * KE 
PE = PI * PE 
MI - PI * MI 
EN = KE + PE 
UI = UI I EN 

IF ( TIME .EO. O.ODO ) THEN 
EO = EN 
URITE (6.112) EN 
URITE (6.113) 

ENDIF 

C Output statements. It is useful to print F(3.NCALC+1.NOW) so that one 
C can calculate the discrete Bogomolny bound. 

WRITE (6.111) TIME. KE. PE. WI. EN/EO 
WRITE (6.114) KEP. F(3.NCALC+1.NOW) 

111 FORMAT (1X.F7.2.2X,3(D15.8.2X),D16.9) 
114 FORMAT (10X.D15.8.2X.D15.8) 
112 FORMAT (IX. 'Initial energy = '.D15.8D 
113 FORMAT (4X. 'Time'. 

1 UX.'Kin En'.llX.'Pot En'.12X.'Width',12X.'Rel En'I 
1 19X. 'KE Psi'.UX. 'Bbound'/) 

RETURN 
END 

********************************************************** 
***** Calculation of the discrete energy density ***** 
********************************************************** 

DOUBLE PRECISION FUNCTION EPT ( F . I . NOW. KEH. KEP. PE ) 
IMPLICIT DOUBLE PRECISION (A-H.O-Z) 
IMPLICIT INTEGER*4 (I-N) 
COMMON I MODEL I TSTEP. PI. NMESH. NCH 
REAL*8 F ( i:3. 0:NMESH+1. 0:2 ). KEH. KEP 
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FP - O.ODO 
AT = TSTEP** 2 

IF ( I .EQ. 0 ) THEN 
FR = DFLOAT ( NCH ) * ( 1.000 - F(3.1.NOW) ) 

ELSE 
FR = DFLOAT ( NCH**2 ) * F( 1,1 .NOW) **2 I DFLOAT ( 1**2 ) 
FR = FR + ( F(3,I+1.N0W)-F(3.I.N0W) ) ** 2 I F(l.I,N0W)**2 
FR = FR + ( F(2,I+1,N0W)-F(2.I.NOW) ) ** 2 * F(l,I,N0W)**2 
FH - C F(3,1.NXT)-F(3,1.NOW) ) ** 2 I F(l. I,N0W)**2 I AT 
FP = ( F(2.1,NXT)-F(2.1.NOW) ) ** 2 * F(l.I,N0W)**2 I AT 

ENDIF 

KEH = FH I 4.0D0 
KEP = FP I 4. 000 
PE = FR I 4.000 
EPT = KEH + KEP + PE 
RETURN 
END 

************************** **************** 
***** single step time evolution ***** 
****************************************** 

SUBROUTINE STEP ( F. NOW ) 
IMPLICIT DOUBLE PRECISION (A-H.O-Z) 
IMPLICIT INTEGER*4 (I-N) 
REAL*8 F ( 1:3. 0:NMESH+1. 0:2 ) 
COMMON I MODEL I TSTEP. PI. NMESH. NCH 
COMMON I BTYPE I IBTYPE 

NOW = MOD ( NOW+1. 3 ) 
NXT = MOD ( NOW+1. 3 ) 
LST = MOD ( NXT+1. 3 ) 
XCH = DFLOAT ( NCH ) 
AT - TSTEP**2 

C Set up some useful shorthand notation. 

DO 100 I - 1. NMESH 
FT = DFLOAT ( 1 - 1 ) 1 DFLOAT ( I ) 
H = F(3.I,N0W) 
HL = F(3.I-1.N0W) 
HR = F(3.1+1.NOW) 
HD = F(3.I,LST) 
P = F(2.I,N0W) 
PL = FX 2.1-1.NOW) 
PR = F(2.1+1.NOW) 
PD = F(2.I.LST) 

C First, do the evolution for psi, or F(2,I,J). 

Al = ( HD**2 - 1.0D0 ) * ( P - PD ) 
A2 = FI * AT * ( HL**2 - l.ODO ) * ( P - PL ) 
PU = P • AT * ( P - PR ) + ( Al - A2 ) I ( H**2 - l.ODO ) 



F(2,I,NXT) = PU 
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C Second, do the (more complicated) evolution for H. or F(3.I.J). 

B - ( H - HR ) * ( H*HR - l.ODO ) I F(l.I.N0U)**4 
IF ( I .EQ. 1 ) THEN 
6 = 8 + XCH * ( XCH*H + l.ODO ) 
ELSE 
B = B + XCH**2 * H I DFLOAT ( 1**2 ) 
B - B - FI * ( H - HL ) I (l.ODO - HL**2 ) 
ENDIF 
B = B * AT 
B = B + ( H - HD ) I ( l.ODO - HD**2 ) 
B = B + H * ( A T * ( P - P R ) ** 2 - ( P - PU ) ** 2 ) 
IF ( H .EQ. O.ODO ) THEN 
F(3.I.NXT) = B 
ELSE 
ROOT = ( l.ODO - H**2 ) * DSQRT ( l.ODO - 4.0D0 * H * B ) 
F(3.I.NXT) = ( l.ODO + H**2 - ROOT ) I ( 2.0D0 * H ) 
ENDIF 
Fd.I.NXT) - DSQRT ( l.ODO - F(3,1,NXT)**2 ) 

100 CONTINUE 

C Finally, set the boundary values according to the chosen boundary cond. 

CALL BOUND ( F. NXT. IBTYPE ) 
RETURN 
END 

**************************************** 
***** Detailed output of the fields and energy density ***** 
**************************************************************** 

SUBROUTINE PLOT ( F. NOW. TSTEP ) 
IMPLICIT DOUBLE PRECISION (A-H.O-Z) 
IMPLICIT INTEGER*4 (I-N) 
REAL*8 F ( 1:3. O-.NMESH+l. 0:2 ) 
COMMON I MODEL I T. PI, NMESH. NCH. NCALC 

C This routine is controlled by NPLOT. and can be used to output either 
C various components of the field, or one of the energy densities, etc. 

WRITE (9,*) NCALC 
DO 100 I. = 0. NCALC 
XE = EPT ( F. I, NOW. XKH. XKP, XP ) 
XK - XKH + XKP 
WRITE (9,*) XK, XP, XE 

C WRITE (9.*) F(2.I,N0W) 
100 CONTINUE 

RETURN 
END 

******************************************************* 
***** Specification of the boundary condition ***** 
******************************************************* 
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IMPLICIT DOUBLE PRECISION (A-H.O-Z) 
IMPLICIT INTEGER*4 (I-N) 
COMMON I MODEL I TSTEP, PI, NMESH, NCH 
REAL*8 F ( 1:3. 0:NMESH+l. 0:2 ) 

C IBTYPE = 0 <-> Fixed boundary values. 
C IBTYPE = 1 <-> Zero gradient on the boundary. 
C IBTYPE =2 <-> Charge NCH falloff on the boundary. 

IF ( IBTYPE .EQ. 2 ) THEN 
X = F(3,NMESH, NXT) 
Y = DFLOAT ( NCH ) I DFLOAT ( NMESH ) 
F(3.NMESH+l.NXT) = X - ( 1.0000 - X**2 ) * Y 
F(l.NMESH+1.NXT) - DSQRT ( l.ODO - F(3.NMESH+l.NXT)**2 ) 
F(2.NMESH+l.NXT) = F(2.NMESH.NXT) 
ENDIF 

IF ( IBTYPE .EQ. 1 ) THEN 
F(3.NMESH+l,NXT) = F(3,NMESH.NXT) 
F(l,NMESH+l,NXT) = F(l,NMESH,NXT) 
F(2,NMESH+l,NXT) = F(2.NMESH.NXT) 
ENDIF 

IF ( IBTYPE .EQ. 0 ) THEN 
NOW = MOD ( NXT+2. 3 ) 
F(3,NMESH+l.NXT) = F( 3, NMESH+l .NOW) 
F(2.NMESH+l.NXT) = F(2,NMESH+l .NOW) 
F(l.NMESH+l.NXJ) = F(l.NMESH+l,NOW) 
ENDIF 

C In addition, set the gradient of psi at the origin to zero. 

F (2.0. NXT) = F(2.1, NXT) 
RETURN 
END 



PROGRAM SLOW 
IMPLICIT DOUBLE PRECISION (A-H.O-Z) Appendix C 153 
IMPLICIT INTEGER*4 (I-N) 

Q ******************************** 
C **** C P 1 GEODESIC APPROXIMATION **** 
Q ******************************************************************* 

C N is the number of first-order equations to be solved. There are four 
C coupled second-order equations, which are equivalent to eight first-
C order equations. 

PARAMETER ( N = 8 ) 

C Specify the value of beta. 

PARAMETER ( B = O.ODO ) 

C Specify the initial values of C. D. E. F. and their time derivatives . 

PARAMETER ( C - 1.0D1. D -O.ODO ) 
PARAMETER ( E - -25.0DO. F = O.ODO ) 
PARAMETER ( CT - -Q.2D0. 07" = 0.2D0 ) 
PARAMETER ( ET = 1.0D0. FT = O.ODO ) 

REAL*8 Y(N). W(23+21*N) 
EXTERNAL D02CBF. FCN. OUTPUT 
COMMON I MODEL I TSTEP. Tl 
COMMON I PARAMS I BETA 
BETA = B * 2.0DO 

C Put the initial values into the correct places in the array Y(N). 

Yd) = C 
Y(2) D 
Y(3) • E 
Y(4) = F 
Y(5) = CT 
Y(6) = DT 
Y(7) = ET 
Y(8) = FT 

C TO is the initial time (it may be different from zero if one wants to 
C restart a previous evolution). Tl is the time at which the evolution 
C will stop, and TSTEP is the time interval at which the values of C. D. 
C E and F will be printed out. 

TO = O.ODO 
Tl = 1.5D2 
TSTEP = 0.5D0 

C The equations are evolved using the NAG routine D02CBF. 

TOL = 1.0D-6 
I FAIL = 0 
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IRELAB = 0 
M = N 
WRITE (6.100) B. Yd). Y(2), Y(3). Y(4) 
WRITE (6.101) Y(5). Y(6), Y(7). Y(8) 
WRITE (6.102) TOL 
WRITE (6.103) 
CALL D02CBF ( TO, Tl. M. Y. TOL. IRELAB. FCN. OUTPUT. W, I FAIL ) 
WRITE (6.*) 
CALL ERROR ( I FAIL, 3 ) 
IF ( TOL .LT. 0.000 ) WRITE (6.104) 

100 FORMAT(/IX, 'SLOW MOTION CP1 EVOLUTION' 
1 /IX.' ' 
1 IIIX, 'Initial parameter values specified as follows :-' 
1 I1X. 'Beta - '.016.9 
1 /IX.'Gamma = ',016.9,'+ i ',016.9 
1 HX.'Epsilon = '.016.9.'+ i ',016.9) 

101 FORMAT( IX.'Gamma dot = '.016.9.' + i '.016.9 
1 IIX. 'Epsilon dot - '.016.9.' + i '.016.9) 

102 FORMAT( IX. 'Error tol - '.016.91) 
103 F0RMAT(/4X. 'Time',6X. 'C=Re(gamma) ',6X. 'Chlm(gamma)'. 

1 4X, 'E=Re(epsilon)',4X, 'F=Im(epsilon)'I) 
104 FORMAT(IIX, 'Range of integration too short for TOL') 

END 

****************************** 
***** Output routine ***** 
****************************** 

SUBROUTINE OUTPUT ( TSOL, Y ) 
IMPLICIT DOUBLE PRECISION (A-H.O-Z) 
IMPLICIT INTEGER*4 (I-N) 
PARAMETER (N=8) 
REAL*8 Y(N) 
COMMON I MODEL I TSTEP. Tl 
WRITE (6,100) TSOL, ( Yd). 1 = 1 . 4 ) 
WRITE (9) TSOL. ( Yd). 1=1. 8 ) 

100 FORMAT(IX, F7.2,3X,4(014. 7.3X)) 
TSOL - TSOL + TSTEP 
RETURN 
END 

****************************** 
***** Error handling ***** 
****************************** 

SUBROUTINE ERROR ( IFAIL, I ROUTE ) 
IMPLICIT DOUBLE PRECISION (A-H.O-Z) 
IMPLICIT INTEGER*4 (I-N) 

IF ( I FAIL .EQ. 0 ) GOTO 10 
IF ( IROUTE .EQ. 1 ) WRITE (6.100) I FAIL 
IF ( IROUTE .EQ. 2 ) WRITE (6.101) I FAIL 
IF ( IROUTE .EQ. 3 ) WRITE (6.102) I FAIL 
STOP 

100 FORMAT (/IX,'NAG error in routine D01AMF - I FAIL = ',11) 
101 FORMAT (/IX,'NAG error in routine D01AJF - IFAIL - '.ID 



102 FORMAT (/IX,'NAG error in routine D02CBF - IFAIL - ',11) 
10 CONTINUE Appendix C 155 

RETURN 
END 

*********************************************** 
**** FUNCTION LIBRARY **** 
*********************************************** 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
**** RINTEG ( NFUNC, Y ) **** 
*********************************** 

C On entry. NFUNC specifies one of 16 possible functions to be integrated. 
C Y(N) contains the current values of C, D, E, F etc, which may appear 
C as coefficients in the function NFUNC. On exit. RINTEG contains the 
C integral of the function NFUNC over all space, evaluated using the 
C current values of Y(N). 

DOUBLE PRECISION FUNCTION RINTEG ( NFUNC, Y ) 
IMPLICIT DOUBLE PRECISION (A-H.O-Z) 
IMPLICIT INTEGER*4 (I-N) 
PARAMETER ( LU - 2000, LIU = 252, N = 8 ) 
REAL*8 H(LU). Y(N), YCOPY(N) 
INTEGER*4 IU(LIU) 
EXTERNAL Fl 
COMMON I PARAMS I B, YCOPY, DUMMY, NFCOPY 

C Take a copy of the current values of Y(N) to be stored in COMMON. 

DO 10 I - 1, N 
YCOPY(I) = Yd) 

10 CONTINUE 
NFCOPY - NFUNC 

C The radial integration is performed by the NAG.routine D01AMF. 

EPSABS = l.OD-8 
EPSREL = 1.0D-5 
INF - 1 
BOUND =0.000 
IFAIL = 0 
CALL D01AMF ( Fl. BOUND. INF. EPSABS. 

1 EPSREL. RESULT. ABSERR. W, LU. IW, LIU. IFAIL ) 
CALL ERROR ( IFAIL. 1 ) 
RINTEG - RESULT 
RETURN 
END 

**************************** 
**** F i ( RC0PY ) **** 
**************************** 

C This is the angular integration routine used by RINTEG. On entry, 
C RCOPY contains a value of R. which is integrated over by RINTEG. 
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C The angular integration is performed by the NAG routine, D01AJF. 

DOUBLE PRECISION FUNCTION Fl ( RCOPY ) 
IMPLICIT DOUBLE PRECISION (A-H.O-Z) 
IMPLICIT INTEGER*4 (I-N) 
PARAMETER ( LW = 2000. LIU = 252. N - 8 ) 
REAL*8 U(LU). Y(N) 
INTEGER*4 IU(LIU) 
EXTERNAL F2 
COMMON I PARAMS I BETA. Y. R. NFUNC 

C Store the value of R in COMMON, so that F2(T) can access i t . 

R = RCOPY 

C Integrate with respect to T over the range 0 to 2*PI. 

EPSABS =1.00-8 
EPSREL - 1.0D-5 
A = 0.000 
B - 2.000 * XOIAAF(B) 
I FAIL = 0 
CALL D01AJF ( F2. A. B. EPSABS. 

1 EPSREL. RESULT. ABSERR. W, LW, IU. LIU, I FAIL ) 
CALL ERROR ( I FAIL. 2 ) 
Fl = RESULT 
RETURN 
END 

************************ 
**** f2 ( T ) **** 
************************ 

C This routine calculates the integrand used by Fl ( RCOPY ). It takes 
C the values of NFUNC and Y specified in RINTEG. along with the value of 
C RCOPY specified by Fl. and computes the corresponding function value. 

DOUBLE PRECISION FUNCTION F2 ( T ) 
IMPLICIT DOUBLE PRECISION (A-H.O-Z) 
IMPLICIT INTEGER*4 (I-N) 
PARAMETER (N-8) 
REAL*8 Y(N) 
COMMON I PARAMS I B. Y. R. NFUNC 

C All the functions are built out of the following five quantities. 

XC - Y(l) + B * R * DCOS(T) 
XD = Y(2) + B * R * DSIN(T) 
XE - Y(3) + R **2 * DC0S(2.0D0*T) 
XF = Y(4) + R **2 * DSIN(2.0D0*T) 
DEN - XC**2 + XD**2 + XE**2 + XF**2 

C Choose the function specified by NFUNC. 

IF ( NFUNC . EQ. 1 ) THEN 



F2 = ( XE**2 + XF**2 ) I DEN**2 
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ELSE IF ( NFUNC .EQ. 2 ) THEN 
F2 - ( XC**2 + XD**2 ) I DEN**2 

ELSE IF ( NFUNC .EQ. 3 ) THEN 
F2 = ( -XC*XE - XD*XF ) I DEN**2 

ELSE IF ( NFUNC .EQ. 4 ) THEN 
F2 = ( XD*XE - XC*XF ) I DEN**2 

ELSE IF ( NFUNC .EQ. 5 ) THEN 
F2 = -4.0D0 * XC * ( XE**2+XF**2 ) I DEN**3 

ELSE IF ( NFUNC .EQ. 6 ) THEN 
F2 = -4.0D0 * XD * ( XE**2+XF**2 ) I DEN**3 

ELSE IF ( NFUNC .EQ. 7 ) THEN 
F2 = -4.0D0 * XE * ( XE**2+XF**2 ) I DEN**3 + 2.0D0*XE/DEN**2 

ELSE IF ( NFUNC .EQ. 8 ) THEN 
F2 = -4.0D0 * XF * ( XE**2+XF**2 ) I DEN**3 + 2. ODO*XF/DEN**2 

ELSE IF ( NFUNC .EQ. 9 ) THEN 
F2 = -4.0D0 * XC * ( XC**2+XD**2 ) I DEN**3 + 2.ODO*XC/DEN**2 

ELSE IF ( NFUNC .EQ. 10 ) THEN 
F2 = -4.0D0 * XD * ( XC**2+XD**2 ) I DEN**3 + 2.ODO*XD/DEN**2 

ELSE IF ( NFUNC .EQ. 11 ) THEN 
F2 = -4.0D0 * XE * ( XC**2+XD**2 ) I DEN**3 

ELSE IF ( NFUNC .EQ. 12 ) THEN 
F2 - -4.0D0 * XF * ( XC**2+XD**2 T I DEN**3 

ELSE IF ( NFUNC .EQ. 13 ) THEN 
F2 = 4. ODO * XC * ( XC*XE + XD*XF ) / DEN**3 • XEIDEN**2 

ELSE IF ( NFUNC .EQ. 14 ) THEN 
F2 = 4. ODO * XD * ( XC*XE + XD*XF ) 1 DEN**3 . • XF/DEN**2 

ELSE IF ( NFUNC .EQ. 15 ) THEN 
F2 = 4. ODO * XE * ( XC*XE + XD*XF ) 1 DEN**3 • XCIDEN**2 

ELSE IF ( NFUNC .EQ. 16 ) THEN 
F2 = 4. ODO * XF * ( XC*XE + XD*XF ) 1 DEN**3 • XDIDEN**2 

ENDIF 
F2 = R * F2 
RETURN 
END 

****************************************************** 
**** Computation of the evolution equations **** ****************************************************** 

SUBROUTINE FCN ( T, Y. F ) 
IMPLICIT DOUBLE PRECISION (A-H.O-Z) 
IMPLICIT INTEGER*4 (I-N) 



PARAMETER (th8) 
REAL*8 Y(N), F(N) 
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p = RINTEG ( 1. Y ) 
0 = RINTEG ( 2. Y ) 
R = PINTEG ( 3, Y ) 
S = RINTEG ( 4, Y ) 
PC = RINTEG ( 5. Y ) 
PD = RINTEG ( 6. Y ) 
PE RINTEG ( 7, Y ) 
PF - RINTEG ( 8, Y ) 
OC = RINTEG ( 9. Y ) 
QD RINTEG ( 10, Y ) 
QE - RINTEG ( 11. Y ) 
QF = RINTEG ( 12, Y ) 
RC = RINTEG ( 13. Y ) 
RD RINTEG ( 14, Y ) 
RE = RINTEG ( 15, Y ) 
RF = RINTEG ( 16, Y ) 

C Use the four linear relations between the various derivatives to 
C calculate the derivatives of S with respect to C, D, E and F. 

sc = PF - RD 
SD = RC - PE 
SE = RF - QD 
SF = OC - RE 

C Check for a zero denominator in the field equations. 

DEN - R**2 + S**2 - P*Q 
IF ( DEN .EQ. O.ODO ) THEN 
WRITE (6,100) P. Q, R. S 
STOP 
END IF 

100 F0RMAT(/IX, '*** Zero denominator in evolution equations ***'/ 
1 6X. 'P = '.014.7/ 
1 6X, 'Q - ',014.71 
1 6X. 'R = '.014.7/ 
1 6X. 'S = '.014.71) 

C Now construct the right hand sides of the evolution equations. 

CTCT - Y(5) **2 
DTDT = Y(6) **2 
ETET = Y(7) **2 
FTFT = Y(8) •k*2 

CTDT = Y(5) *Y(6) 
CTET = Y(5) *Y(7) 
CTFT = Y(5) *Y(8) 
DTET = Y(6) *Y(7) 
DTFT = Y(6) *Y(8) 
ETFT = Y(7) *Y(8) 

AC - PC*CTCT - PC*DTDT 
1 + 2.0D0*PD*CTDT + 2.0D0*(RD+SC)*DTET + (2.0D0*RE-QC)*ETET 
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+ 2.0D0*PE*CTET - 2.0D0*(RC-SD)*DTFT + (2.ODO*SF-QC)*FTFT 
+ 2.0D0*PF*CTFT + 2.0D0*(RF+SE)*ETFT 

AD = PD*DTDT - PD*CTCT 
1 + 2.0D0*PC*CTDT - 2. 0D0*(RD+SC)*CTET - (2. ODO*SE+QD)*ETET 
1 + 2.0D0*PE*DTET + 2.0D0*(RC-SD)*CTFT + (2. ODO*RF-QD)*FTFT 
1 + 2.0D0*PF*DTFT + 2.0D0*(RE-SF)*ETFT 

AE = QE*ETET - QE*FTFT 
1 + 2.0D0*QC*CTET + 2.0D0*(RD-SC)*CTDT + (2.0D0*RC-PE)*CTCT 
1 + 2.0D0*QD*DTET + 2.0D0*(RF-SE)*CTFT - (2.0D0*SD+PE)*DTDT 
1 + 2.0D0*QF*ETFT - 2.0D0*(RE+SF)*DTFT 

AF = OF*FTFT - QF*ETET 
1 + 2.0D0*0C*CTFT + 2.0D0*(RC+SD)*CTDT + (2.0D0*SC-PF)*CTCT 
1 + 2.0D0*QD*DTFT - 2.0D0*(RF-SE)*CTET + (2.ODO*RD-PF)*DTDT 
1 + 2.0D0*QE*ETFT + 2.0D0*(RE+SF)*DTET 

AC 
AD 
AE 
AF 

0.5D0 * AC 
0.5DO * AD 
0.5D0 * AE 
0.5D0 * AF 

F(l) = Y(5) 
F(2) = Y(6) 
F(3) = Y(7) 
F(4) = Y(8) 
F(5) = ( Q*AC - S*AF 
F(6) = ( Q*AD + S*AE 
F(7) - ( S*AD + P*AE 
F(8) = ( P*AF - S*AC 

R*AE ) I DEN 
R*AF ) I DEN 
R*AC ) I DEN 
R*AD ) I DEN 

RETURN 
END 
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