
Durham E-Theses

On the synthesis and processing of high quality audio

signals by parallel computers

Bailey, Nicholas James

How to cite:

Bailey, Nicholas James (1991) On the synthesis and processing of high quality audio signals by parallel

computers, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/6285/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/6285/
 http://etheses.dur.ac.uk/6285/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

ON THE SYNTHESIS AND PROCESSING OF HIGH
QUALITY AUDIO SIGNALS BY PARALLEL

COMPUTERS

Nicholas James Bailey,

B.Sc. J.Hons (Dunelm)

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

~
1 8 AUG 1992

A THESIS SUBMITTED IN PARTIAL

FULFILLMENT OF THE REQUIRE

MENTS OF THE COUNCIL OF THE

UNIVERSITY OF DURHAM FOR THE

DEGREE OF DOCTOR OF PHILOSO-

PHY (Pn.D.).

DECEMBER 1991

Declaration

I hereby declare that this thesis is a record of work undertaken by myself, that it

has not been the subject of any previous appplication for a degree, and that all

sources of information have been duly acknowledged.

N. J. Bailey, February 1992

© Copyright 1992, N.J. Bailey

The copyright of this thesis rests with the author. No quotation from it should be

published without the written consent of the copyright owner, and information

derived from it should be acknowledged.

11

This work concerns the application of new computer architectures to the creation

and manipulation of high-quality audio bandwidth signals. The configuration of

both the hardware and software in such systems falls under consideration in the

three major sections which present increasing levels of algorithmic concurrency.

In the first section, the programs which are described are distributed in

identical copies across an array of processing elements; these programs run au

tonomously, generating data independently, but with control parameters peculiar

to each copy: this type of concurrency is referred to as isonomic.1

The central section presents a structure which distributes tasks across an

arbitrary network of processors; the flow of control in such a program is quasi

indeterminate, and controlled on a demand basis by the rate of completion of the

slave tasks and their irregular interaction with the master. Whilst that interaction

is, in principle, deterministic, it is also data-dependent; the dynamic nature of

task allocation demands that no a priori knowledge of the rate of task completion

be required. This type of concurrency is called dianomic. 2

Finally, an architecture is described which will support a very high level of

algorithmic concurrency. The programs which make efficient use of such a ma

chine are designed not by considering flow of control, but by considering flow of

data. Each atomic algorithmic unit is made as simple as possible, which results

in the extensive distribution of a program over very many processing elements.

Programs designed by considering only the optimum data exchange routes are

1from classical Greek: iso- meaning 'the same', nomos meaning 'law'.
2 dia- meaning 'apart' etc. as in diameter.

lll

said to exhibit systolic3 concurrency.

Often neglected in the study of system design are those provisions necessary

for practical implementations. It was intended to provide users with useful ap

plication programs in fulfilment of this study; the target group is electroacoustic

composers, who use digital signal processing techniques in the context of musical

composition. Some of the algorithms in use in this field are highly complex, often

requiring a quantity of processing for each sample which exceeds that currently

available even from very powerful computers. Consequently, applications tend to

operate not in 'real-time' (where the output of a system responds to its input ap

parently instantaneously), but by the manipulation of sounds recorded digitally

on a mass storage device.

The first ·two sections adopt existing, public-domain software, and seek to

increase its speed of execution significantly by parallel techniques, with the mini

mum compromise of functionality and ease of use. Those chosen are the general

purpose direct synthesis program CSOUND, from M.I.T., and a stand-alone phase

vocoder system from the C.D.P .. 4 In each case, the desired aim is achieved: to

increase speed of execution by two orders of magnitude over the systems currently

in use by composers. This requires substantial restructuring of the programs, and

careful consideration of the best computer architectures on which they are to run

concurrently.

The third section examines the rationale behind the use of computers in music,

and begins with the implementation of a sophisticated electronic musical instru

ment capable of a degree of expression at least equal to its acoustic counterparts.

It seems that the flexible control of such an instrument demands a greater com

puting resource than the sound synthesis part. A machine has been constructed

with the intention of enabling the 'gestural capture' of performance information

in real-time; the structure of this computer, which has one hundred and sixty

3 Also of classical Greek derivation: used in medical terminology to describe the contraction
of the heart. Hence it describes a system through which data is 'pumped' continuously.

4The Composers' Desktop Project

IV

high-performance microprocessors running in parallel, is expounded; and the sys

tolic programming techniques required to take advantage of such an array are

illustrated in the Occam programming language.

v

Acknowledgements

I would like to express my gratitude to the many people who have supported

and encouraged my work over the previous three years, including the 'users' who

have so carefully tested the software and hardware systems described here. I

am especially indebted to my supervisor, Dr Alan Purvis, for his administrative

support as well as his technical advice; also to my advisor on all musical mat

ters, Dr Peter Manning, without who's enthusiasm for using the products of this

research as teaching material, the project would have lacked a certain impetus.

Dr Michael Clarke of the Music Department at Huddersfield Polytechnic was also

of immense help in understanding the structure of the original CSOUND program,

having himself previously written additional unit generator modules for it.

The final part of this thesis describes the construction and testing of a parallel

computer using 160 !NMOS transputers as its processing elements. I wish to

acknowledge the generous donation of these parts by !NMOS Ltd., without which

the component cost of the machine would have made its construction impossible.

My thanks are also extended to my parents for patiently proof-reading the

draft document, of which they claim not to understand a single word.

VI

Contents

Abstract

Acknowledgements

1 Direct Audio Synthesis by Digital Computer

1.1 Introduction

1.2 Review ...

1.3 Direct Synthesis Programs in Use

1.4 Data Structures of a Direct Synthesiser

1.5 The Software Structure of CSOUND

1.6 Conclusion

lll

Vl

1

1

3

6

7

11

14

2 Exploiting Parallel Algorithms for Direct Audio Synthesis 15

2.1 Choosing a Multi-processing Strategy 15

2.2 Practical Multi-processing . . .

2.3 Workload Allocation Strategies

2.4 Benchmarks Against Existing Implementations .

3 A Processor Pipeline Synthesiser

3.1 Introduction

3.2 Language Extensions for Multiple Processors

3.3 Inter-module Data Flow and Protocols

3.3.1 Order of Events

3.3.2 Protocols in use during Initiation

Vll

18

20

22

24

24

25

27

27

28

3.4 Score Demultiplexing

3.5 Sound Sample Recombination

3.6 Deadlock A voidance in the Sound Buffer

3.7 Analysis of the Petrinets

3.8 The Supervisor Protocol

3.9 The Programmers' New 1/0 Library

3.10 Differences between Standard and Parallel CSOUND

3.10.1 Restrictions with Multiple Processors

3.10.2 Extended Command-line Options

3.10.3 Extended Overflow Reporting ..

3.11 Better Programming for Effective Parallelism.

3.12 Additional Score Commands

3.13 Conclusion

4 Performance Evaluation of an Isonomic System

4.1 Performance of a Multi-processor Systems

4.2 Execution Profiling

4.3 Buffer usage

4.4 Measured Performance Indices .

4.5 Conclusions

5 Sound Modification through Signal Processing

5.1 Introduction

5.2 An Alternative Concurrent Strategy .

5.3 Preparing a Concurrent Phase Vocoder

5.4 Supporting Dianomic Concurrency ..

5.5 Implementation of the Buffer/Flood Algorithm.

5.6 Conclusion

6 Performance Evaluation of the Distributed Phase Vocoder

6.1 Anticipated Benefits

Vlll

29

33

36

39

44

45

47

47

48

49

51

53

54

55

55

57

59

60

61

63

63

65

66

69

71

75

76

76

6.2 Benchmark Results

6.3 Checking the File Server Interface

6.4 Consequences of these Results ...

77

79

80

7 Considerations in the Construction of Real-time Electroacoustic

Instruments

7.1 Introduction

7.2 M.M.I. and Application Program Design Methodology

7.3 Man-Machine Interfaces from Scratch

7.4 More Traditional M.M.I.s

7.5 Real-time Methodology at IRCAM

7.6 Components of an Algorithmic Synthesis System.

8 Towards the Systolic Synthesiser: Craftsman, Composer,

former

8.1 Introduction

8.2 Music and Electronic Techniques

8.3 Consideration of Control and Synthesis

8.4 The Phase Vocoder and Intuitive Control .

8.5 An Analytical Approach

8.6 Phase Vocoders in a Control Applications

8. 7 Acquisition, Pre-processing and Analysis .

8.8 Partial Selection and Parametric Transformation .

8.9 Synthesis and Reproduction

8.10 Suggested Refinements and Extensions

9 Hardware and Software for a Systolic Machine

9.1 Algorithms which Exploit Concurrency

9.2 The Fourier Transformation Process .

9.3 Tracking Partials .

9.4 Adjacency Testing

IX

81

81

82

83

84

85

86

Per-

90

90

91

93

94

96

103

104

104

106

107

109

109

111

113

117

9.5 A Multi-processor Architecture . . .

9.6 Installing Highly Parallel Algorithms

10 Conclusion

Bibliography

Alphabetical List of References

Glossary of Terms and Abbreviations

A Adding a New Unit Generator to CSOUND

A.1 Introduction

A.2 Changing the Source

A.2.1 The Unit-generator Header File

A.2.2 The Unit-generator Code .

A.2.3 Updating ENTRY.C

A.2.4 Other Necessary Modifications .

B Transputer Task Configuration

B.1 The CsoUND Processor Pipeline .

B.l.1 One Processor Present ..

B.l.2 Several Processors Present

B.l.3 The Multi-processor Make-file

B.2 The Distributed Phase Vocoder ..

C Transputer Tree Hardware Manual

D Presentations and Publications

X

122

126

128

130

145

161

165

165

166

166

167

170

172

174

174

174

175

177

177

179

182

List of Tables

1

2

3

4

5

6

7

8

9

10

11

12

13

An Example Score File . . .

An Example Orchestra File

A Sorted Score

A Parallel-sorted Score

Experiment 1 Execution Times.

Experiment 2 Execution Times

Performance Indices

Execution Time in Seconds for Unmodified Resynthesis

Execution Time in Seconds for Analysis Only ..

Configuration file for a Single-transputer System .

A Configuration File for 3 Transputers

Configuration File for the Distributed Phase Vocoder

Tree P.C.B. Edge Connector Pin Designation

Xl

8

9

13

21

57

60

61

77

79

175

176

177

181

List of Figures

1 Software Structure 12

2 Relative Performance of Differing Implementations 23

3 Processor Pipeline Architecture . . 25

4 Internal Communication Channels . 28

5 Queues in the Score Buffering Module . 30

6 Petrinet of the Score Buffer Algorithm 32

7 Interrelation of Threads in the Buffering Algorithm 35

8 Data Structure of the Recombination Buffer 35

9 Petrinet of the Sound Buffering Algorithm 37

10 Profile of CsoUND Execution 58

11 Software Structure of the Parallel Phase Vocoder 68

12 Graph of the Frequency Response of a Four-bin Fourier Transform 97

13 Graph of a Band-limited Top-hat Function 99

14 Frequency Response of a Fourier Bin for Increasing r 102

15 Communicating Sequential Processes in the Occam Phase Vocoder 103

16 Schematic Diagram of Parallel Sort Program . . 116

17 Data Structures in the Occam Partials Tracker .

18 Basic Topology of the Transputer Tree

19 Physical Layout of Processors on each Tree P.C.B ..

20 Topology of Transputer Tree with Labelled Processors.

XII

119

126

179

180

Chapter 1

Direct Audio Synthesis by
Digital Computer

1.1 Introduction

DIRECT AUDIO SYNTHESIS refers to the method of sound generation where

an algorithm, designed to emulate some real or imaginary musical instru

ment, is executed by a digital computer in order to produce a numeric represen

tation of the required sound. The process may take place either in 'real-time',

when computation proceeds sufficiently rapidly to provide the next digital audio

sample as required; or in 'non-real-time', when the synthesising computer does

not have sufficient processing power to provide samples at such a rate. In the

latter case, the generated data may be stored onto some mass-storage medium

whence it may subsequently be replayed.

Occasionally, the term 'near-real-time' has been adopted, meaning that the

processing time required to produce a given sound is not much greater than

that sound's duration. Strictly, this is an abuse of the term 'real-time', as in

its true usage it denotes a system which responds apparently instantaneously

to demand. Any system for the generation of music which requires that the

sound be recorded and subsequently played back cannot be real-time. Even if a

computer existed which could generate a whole hour of music during the space of

a second, recording the program's results onto a hard disk, the system could not

be accurately described as real-time because the entire input data set had to be

1

1.1. INTRODUCTION 2

made available before processing could begin. In order to avoid this confusion,

the term 'actual speed' is used. A machine which produces a second's worth

of output sound in one second of processing time is working at actual speed,

although not necessarily in real- time.

The direct synthesis of sound from computers dates back to the mid-1950s

when Max Mathews began experimenting with the generation of waveforms us

ing digital techniques at Bell Telephone Laboratories, New Jersey. These were

quickly expanded into a series of software systems known generically as the MU

SIC programs, subsequently developed and extended by Mathews and others at

various computer music centres world-wide. Initially these programs were run on

mainframe computers, the digitised output samples being accumulated on tape

or disk for subsequent conversion via digital-to-analogue converters.

In due course versions were written for mini- and micro-computers, in par

ticular, in 1979, MUSICH for the PDP11 and, in 1986, CSOUND for machines

running C compilers, both produced at M.I.T. by Barry Vercoe.[1] These modern

derivatives provide a wide range of facilities to the aspiring composer including

the processing of external sound material acquired through digital capture. Soft

ware synthesis programs such as these offer the most general means for generating

and manipulating sound material, but at a significant cost to the user in terms

of computing time. Indeed, until very recently, it has been impossible to contem

plate running such systems in real-time or even in near-real-time. Commercial

synthesisers side-step this processing constraint by using custom-designed hard

ware and by restricting the choice of performance characteristics. The penalty is

a restriction on flexibility of control for the composer/performer.

The prospect of running software synthesis at or near actual speed has stim

ulated a renewed interest. In the late 1950s, delays between submitting tasks

to the batch stream of a computer and finally hearing the results were often

measured in days. The advent of mini-computers dedicated to the application

reduced typical turnaround times first to hours and then minutes as the speed of

these systems improved. This progression has not been entirely consistent for, as

1.2. REVIEW 3

will be seen in due course, the desire to increase accessibility at low cost has led to

the transfer of digital synthesis/processing programs[2] to microcomputers which

are still considerably slower than their contemporary mini-computers. This has

in turn stimulated a demand for a low cost computer which can not merely equal

but considerably surpass the performance of these machines.

1.2 Review

Direct synthesis, then, is computationally expensive. The most flexible form of

direct synthesis is additive synthesis, which relies on the fact that any periodic

waveform may be represented to an arbitrary degree of accuracy by the sum of

sufficient sinusiods of various frequency, amplitude and phase. This is an indis

putably powerful technique, as it is possible to generate any imaginable sound

using it. Unfortunately, although some implementations are available such as

the Bradford Musical Instrument Simulator and Workstation,[3] and software

modules which support additive synthesis are provided on many DSP oriented

hardware accelerators,[4] the algorithm generally fails to render its potential be

cause of the very high control bandwidth required: each oscillator, and there may

be twenty or thirty required for adequate results,[5] requires updating rapidly (in

principle, at the audio sample rate). The control bandwidth required is conse

quently very high, in fact exceeding the data-rate of the actual signal produced.

Work by Serra, Rubine & Dannenberg[6] and Sasaki & Smith[7] promises to re

duce the quantity of control information somewhat, although it remains a very

significant demand upon the control software, as well as a severe challenge to the

composer who must ultimately be the source of the control data. The advantage

of the additive synthesiser it that modification of the control parameters produces

intuitively obvious changes in the output signal.

Akin to additive synthesis is subtractive synthesis, where a signal rich in har

monics, or even noise, is passed through a filter to produce the desired result.

This can be as intuitively accessible as additive synthesis for certain applications,

1.2. REVIEW 4

and has been used to generate realistic vocal timbres.[8] Although some optimi

sation of the processing is possible by careful design of the filtering algorithms,

the control bandwidth a high-quality subtractive synthesiser remains necessarily

high.

More specialist direct synthesis algorithms have been developed for the charac

teristic demands of the computer musician; they share the claimed improvements

of reduced or more intuitive control requirements. Granular synthesis[9, 10] and

time-domain formant wave function synthesis [11, 12] exemplify these: the for

mer generates a signal by the summation of tonebursts with Gaussian amplitude

envelopes, or 'granules'; the latter by modelling the resonances of the vocal tract

in the time domain. Manipulations of a signal in a way which has some sonic ba

sis is also possible: ring modulation, or four-quadrant multiplication, introduces

sum and difference frequencies into the output signal; controlled harmonic dis

tortion may be achieved by applying transfer functions derived from Chebychev

polynomials, in a process known as wave shaping synthesis.

It is rarely feasible to produce high fidelity direct synthesis in real-time us

ing a general-purpose microprocessor, still less often is it possible to supply the

electroacoustic composer with real-time general-purpose direct synthesis software

which will meet his requirements. The reason for the continued popularity of

such programs lie in their flexibility and prototype development facilities. Direct

synthesis was used in the testing of the frequency modulation algorithms subse

quently implemented in VLSI integrated circuits and used in many commercial

synthesisers in the popular music industry. [13] The alternative to direct synthesis

is to use event-based synthesis systems, where remote dedicated synthesisers are

controlled by relatively low bandwidth control signals. The most popular proto

col which has evolved for this purpose, the Musical Instrument Digital Interface

(MIDI), expects that all of the (real-time) performance information will be trans

mitted down a single 32kbaud asynchronous serial line. This is clearly aimed at

the commercial musician, whose output is predominately note-event based and

where easily achieving rhythmical and dynamic uniformity is considered more

1.2. REVIEW 5

important than the provision of extended expressive capacity. Conversely, the

electroacoustic composer often writes gesturally, concentrating on the evolution

of particular sounds as well as their temporal position.[14, 15, 16]

That, briefly, is the case for allowing the level of control of a synthesiser to be

determined by the composer's demands rather than the restrictions of the control

mechanism. However, it would be not be fair to suggest that the role of the

MIDI synthesiser in 'serious music' composition is an inconsiderable one; moving

on to examine a specific implementation would be unwise before establishing

an understanding of the facilities of and concepts behind MIDI and similarly

controlled systems.

One of the principal uses of MIDI in music technology research is as a 'syn

thesis back-end' to projects which are concentrating on some problem at a higher

level than the synthesis algorithms themselves. Work by Zicarelly[17] resulted in

the production of two commercial interactive programs: 'M' maps gestural con

trol available from the computer's peripherals onto the parameter space defined

by MIDI's command set, thus enabling direct access to the (albeit restricted)

timbres available from a given synthesiser; 'Jam Factory' is a tool for algorithmic

composition which permits the use of Markov Chains as a method of computer

improvisation. The programs make no attempt to operate outside the MIDI com

mand set, and are therefore still significantly restricted by it; but they represent

an excellent example of the benefits of a sophisticated environment. Haus[18]

uses MIDI to realise automatic and semi-automatic compositions, the description

and performance of musical processes, musical transformation through homolo

gies, automatic score transcription from tape, score analysis, score synthesis using

two-variable functions, and transliteration of literary texts into music. Much algo

rithmic composition requires nothing more sophisticated than a MIDI synthesiser

on which to produce its output: Langston[19] considers six different methods for

machine composition; none of the algorithms is concerned with more than the

generation of discrete note events. It may also happen that the gestural informa

tion which MIDI does capture (normally only the pitch and loudness of a note

1.3. DIRECT SYNTHESIS PROGRAMS IN USE 6

is reported) is sufficient for the study being undertaken. The Kansei music sys

tem due to Katayose et al.[20] attempts the production of 'musically acceptable'

performances from the written score by variation to only time and amplitude pa

rameters; even a method for the analysis of the 'emotional content' of a piece of

performed music has been put forward[21] although it seems hard to understand

how to quantify such measurements. Finally, MIDI has been used as a shorthand

method of entering the note-event information into direct synthesis programs, for

subsequent, enhanced, non-real-time processing.[22]

1.3 Direct Synthesis Programs in Use

The composition of electroacoustic music presently requires a sound knowledge

of the fundamentals of acoustics and digital signal processing theory and com

puter programming, in addition to the creative skills associated with the nor

mal practice of a composer. Because the human performer is absent from the

finished piece, it is possible to make demands of the "performer" (i.e. the com

puter performing the synthesis) which would normally be technically unaccept

able. Consequently, the electroacoustic composer would be expected to have a

greater knowledge of the theories of perception and cognition than the classical

composer; McAdams & Bregman[23] write of the perception of separate musical

streams in the context of electroacoustic composition, where it is possible to in

crease the number of events per second almost indefinitely. Haynes[24] reviews

the musician machine interface in the context of non-real-time systems, and in

the late 1970's, the Structured Sound Synthesis Project[25, 26] within the Com

puter Systems Research Group at the University of Toronto, Canada, suggested

methods of optimising the ergonomics of a computer synthesis system.

CSOUND, a direct synthesis program with a wide range of facilities, has been

written and placed in the public domain by Barry Vercoe at M.I.T.: since there

was already much local experience in composition using a variant of this package,

1.4. DATA STRUCTURES OF A DIRECT SYNTHESISER 7

it seemed appropriate to make it concurrent with a view to increasing its per

formance by at least two orders of magnitude. Other research within the Music

Technology Group has shown the benefit of retaining the original program struc

ture as a powerful host for new synthesis algorithms: the Vocel synthesis module

coded by Clarke[27] in PDPll assembler took less than a day to install in its C

form on the new concurrent version. The CSOUND program is also distributed in

the U.K. by the Composers' Desktop Project Ltd. (C.D.P.),[28] in a version for

a microcomputer. 1 The C.D.P. was formed in the 1980's with the specific inten

tion of bringing general direct synthesis financially within the reach of individuals

rather than corporations, but the speed of their machine, chosen at the time for

its low price/performance ratio, led to program execution times so protracted as

to strain the patience of the most persevering user. Students of composition at

the University of Durham's School of Music, even though they were running a

similar program on a much faster PDPll series minicomputer, would often sleep

in the computer room awaiting the completion of the program: the microcom

puter version was almost an order of magnitude slower still. Before explaining the

strategy adopted in order to reduce execution times of the CsoUND package by

using multiple processors, it is necessary to be familiar with its internal program

and data-structures.

1.4 Data Structures of a Direct Synthesiser

Input data for CsoUND are partitioned into two files: the score file and the

orchestra file. The content and purpose of these two files is analogous to con

ventional score and orchestra. Information from these files is used by the direct

synthesis algorithms to produce digital audio samples, which are recorded onto

hard disk as a sound file.

Each line of the score file describes a single note event; each event has parame

ters appended such as duration, pitch, envelope information and so on, including

1the Atari Corp. range of machines.

1.4. DATA STRUCTURES OF A DIRECT SYNTHESISER

c score 100
t 0 60
f1 0 32 10 1
f2 0 512 10 3 7 6 2 1
f3 0 8 -2 1 1.4 0.9 1.1 0.5 0.7 1.5 0.8
c start dur amp freq ind depth speed
i3 0 -1
i1 0 6 5000 440 0 0.8 25
i1 1.8 7 5000 875 0 1.7 15
i1 3 6 5000 1200 0 0.8 35
i1 4.9 4 5000 575 0 0.5 27
i1 7.3 3.4 5000 270 0 0.5 45
i2 0.8 3 5000 1700 0 0.8 25
i2 2.1 6 5000 320 0 1.4 15
i2 3.9 4.5 5000 650 0 1.4 35
i2 6.1 4 5000 940 0 0.8 40
fO 11.5
e

Table 1: An Example Score File

8

information fields specified by the composer and used to pass instrument-specific

information into the program. An example CsoUND score is shown in table 1.

All lines have a similar format: the command, a single character sometimes

followed immediately by an integer qualifier; the start time of the command in

beats; a series of command specific parameters, the first of which will be dura

tion in beats if the command was to start an instrument. The score commands

are very much abbreviated, but some are recognisable musical directions: the

tempo is defined as 60 beats per minute; three 'function tables' (look-up tables)

are declared and initialised; instrument three is instantiated to run from zero

time and to continue 'forever' (the value -1 in the second field specifies infinite

endurance); instruments 1 and 2 then play various notes for the given start times

and durations.

The orchestra file contains a definition of each of the instruments available to

the score, using a simple declarative programming language. Part of an example

orchestra, designed to be used with the above score, is given in table 2.

1.4. DATA STRUCTURES OF A DIRECT SYNTHESISER

; orchestra 100
sr=48000
kr=2400
ksmps=20
nchnls=2

instr 1
gal init 0
k4 line p7 ,p3 ,p7/5
k5 line p8 ,p3 ,p8/5
al linseg 0 ,0.04 ,1 ,p3-0.09 ,1 ,0.04 ,0
kl phasor k5/ftlen(3)
k2 table k1*ftlen(3) ,3
a2 oscili 1 ,k5/2 ,1
a3 oscili a2*al*p4 ,p5+(p5*k2-p5)*k4 ,2
gal = ga1+a3
outsl a3

end in

instr 3
al reverb gal ,1.3
outs al ,al

gal = 0
en din

Table 2: An Example Orchestra File

9

1.4. DATA STRUCTURES OF A DIRECT SYNTHESISER 10

The score is divided into two sections: the former providing global information

about the output format required for the sound file that is generated, the latter

defining each of the instruments used in the score.

The assignments to the special variable sr defines the sample rate of the out

put file in samples per second. One of the standard commercial sample rates

is likely to be used (i.e. 32000, 41400 or 48000 samples per second), but lower

ing the sample rate obviously decreases the processor time spent in calculating

output samples proportionately. For this reason, sample rates of 24kHz or even

as low as 16kHz are often used for sketching. nchnls specifies the number of

output channels which are to be recorded on the sound file; samples from each

channel being interleaved. Permitted formats are monophonic or stereophonic.

This permits algorithms containing realistic reverberation and spatial movement

effects.

In order to achieve an economy of computation, CsoUND introduces the con

cept of a control rate. As will be seen, this is fundamental to the structure of the

modules which actually perform the synthesis. Some variables, for example those

used to envelope the notes, may be updated at a rate lower than the audio sample

rate with little impact on the perceived quality of the sound. Such control-rate

variables are calculated only kr times per second, or once every ksmps samples.

The values seen in the example of a control rate update occurring every twenty

audio samples is fairly typical.

The instrument definition part of the orchestra is a simple procedural pro-

gramming language, although its syntax is rather cryptic. The general form is:

(command):=[(resulUist)](operator) {(function)}

(resulLlist) := (variable){ (variable)}

(variable) := ['g ']('i 'II 'k 11 'a') (identifier)

A function may be any one of the synthesis functions taken from the CsoUND

command set; functions evaluate expressions involving constants including pa

rameters to read at run-time from the additional fields in the score. Like the

1.5. THE SOFTWARE STRUCTURE OF CSOUND 11

FORTRAN programming language, variable names have connotations. A vari

able is local to the instrument in which it is used, unless prefixed with a g which

causes it to be global to the entire orchestra. Depending upon the last (or only)

letter, the variable may be evaluated once per note (i denoting initialisation),

at the control rate ('k') or at the audio rate ('a'). During synthesis, execution

proceeds through the currently active instruments line by line for every sample

produced. It is because of the interpretive nature of CsoUND that its execution

becomes so computationally expensive.

A significant detail in the above example orchestra is that the instrument

which performs all of the sound sample calculations does not itself write the results

to disk. Instead, the global ga1 is used to accumulate the results from all of the

sounding instruments and pass the result to instr 3; a reverberation function is

then applied, the result written, and ga1 reset. Intra-orchestra communication

by global access shared variable, it will be shown, has significant impact upon

the strategy chosen in making the program run concurrently.

1.5 The Software Structure of CSOUND

The CsoUND source listings, as supplied by MIT, contain approximately twenty

separate source modules, written entirely in C. The interrelation between these

modules is shown in figure 1. The Root Supervisor module, RSUPER, is an addi

tion by Durham Music Technology which improves the efficiency of the program

on transputers.

Running the CsoUND synthesiser on a particular score and orchestra is a

two stage process. First, the score is pre-processed by the 'sort' program. This

program runs through the score sorting each event by start time and instrument

number. It is also necessary at this stage to perform an adjustment to the start

time and durations, which the composer will have specified in beats, so that the

version of the score available to CSOUND also contains absolute times in seconds.

This is a non-trivial process because, as well as coping with abrupt changes in

1.5. THE SOFTWARE STRUCTURE OF CSOUND 12

MUSMON-- RDSCOR
INSERT D

D
... SORT ... D l il

r ROORCH
D ~ I

........_
~ Tl........_ RSUPER OLOAD

"- ..,
"- .., - - D - -'f"__
~

........_

L{souNDIO • ugens1-5 '- ,...,
"' ~

Figure 1: Software Structure

tempo, the translation algorithm must also be able to provide accelerando and

ritardando capability (i.e. smooth increases and decreases in tempo). The manual

refers to the score processing, including the insertion of absolute time information

and rearrangement in order to produce the sorted version with all tempo changes

into account, as "time-warping". The sorted and 'time-warped' version of the

score shown previously appears in table 3.

This simple score has a tempo of sixty beats per minute throughout; con

sequently, the absolute time and duration (in seconds) will equal their original

value in beats. The 'warped' (fourth and sixth) fields in each line therefore con

tain copies of the third and fifth.

The score having been sorted, CsoUND is now invoked specifying the desired

orchestra. Program execution proceeds as follows: modules RDORCH reads the

ASCII text file containing the orchestra description, and this is semi-compiled

by OLOAD. The orchestra is stored internally as a structure containing pointers

to functions which will be called in the synthesis of sound samples. Modules

RDSCOR and INSERT then read lines of the score file, and construct a job-list

1.5. THE SOFTWARE STRUCTURE OF CSOUND 13

w 0 60
f 1 0 0 32 32 10 1
f 2 0 0 512 512 10 3 7 6 2 1
f 3 0 0 8 8 -2 1 1.4 0.9 1.1 0.5 0.7 1.5 0.8
]. 1 0 0 6 6 5000 440 0 0.8 25
i 3 0 0 -1 -1
i 2 .8 .8 3 3 5000 1700 0 0.8 25
i 1 1.8 1.8 7 7 5000 875 0 1.7 15
i 2 2.1 2.1 6 6 5000 320 0 1.4 15
i 1 3 3 6 6 5000 1200 0 0.8 35
i 2 3.9 3.9 4.5 4.5 5000 650 0 1.4 35
i 1 4.9 4.9 4 4 5000 575 0 0.5 27
i 2 6.1 6.1 4 4 5000 940 0 0.8 40
i 1 7.3 7.3 3.4 3.4 5000 270 0 0.5 45
f 0 11.5 11.5
e

Table 3: A Sorted Score

maintaining details of the start time and duration of each instrument instantia

tion. The UGENS and FGENS modules contain respectively the 'unit generator'

and 'function table generator' code: a unit generator is an algorithm which is re

sponsible for assigning values to an orchestral variable; a function table generator

can produce in-memory look-up tables for use by the unit generators. A range

of unit generators is available, from basic oscillators and random number gener

ators, to highly complex synthesis functions such as the FOF algorithm already

mentioned.

The MUSMON ('music monitor') module invokes the unit and function gen

erators in the appropriate order, which should result in the issue of synthesised

sound samples. Input and output of sound files between the CsouND program

and the file server is performed by the module SOUNDIO.

1.6. CONCLUSION 14

1.6 Conclusion

The direct synthesis of audio signals in non-real-time provides the opportunity for

the electroacoustic composer to specify musical constructions of arbitrary com

plexity. Direct synthesis programs have been written which enable the specifica

tion of a composition in terms of a score and an orchestra- entities more familiar

to conventional composers. The CsoUND package, originating from M.I.T., em

bodies most of the synthesis algorithms which the composer is likely to need,

and enables them to be coordinated through a simple declarative programming

language. Unfortunately, execution times can be unacceptably long if the pro

gram is run on microcomputers. Familiarity with the data-structure and with

the modules of the package allow a discussion of the large-scale modifications

required to enable the program to take advantage of multiple processors running

concurrently; such a discussion is contained in the following chapter.

Chapter 2

Exploiting Parallel Algorithms
for Direct Audio Synthesis

2.1 Choosing a Multi-processing Strategy

I N THEIR PERSPICUOUS and comprehensive book on highly parallel computing,

Almasi & Gottlieb[29] define a highly parallel processor as

A large collection of processing elements that can communicate and

co-operate to solve large problems fast. (sic)

Precisely the best method of achieving this end is dependent upon a number of

factors, including amongst others: the performance of the individual processors;

the capacity of the processing elements to perform input, output and communi

cation tasks; the memory available to each processor; the type and availability

of inter-process synchronisation; and the impact of performing communications

upon the throughput of each processor. These attributes, coupled with an ap

preciation of the inherent granularity and extent of the application program's

parallelism, must be considered in determining an optimal strategy for exploiting

the speed advantages of a multi-processor.

For a large software system, where the rewriting of the whole would be im

practical, there are two main methods of parallel decomposition which might be

considered. It is possible either to configure a system of parallel processors ac

cording to the control structure of the program, or according to the data structure

15

2.1. CHOOSING A MULTI-PROCESSING STRATEGY 16

of the program's result. The consequences of both of these points of view will be

considered.

The program control mechanism is expressible as a language, as clearly in

dicated by the structure of the score and orchestra already described. It would

be possible to parse the orchestra file, producing a list of required unit gener

ators along with an estimate of their demands upon processor time. A config

urable, parallel computer could be set up to emulate the data-flow in the or

chestra; processing elements might be allotted in a way which best establishes

an equilibrium between the production of data by one unit generator and the

rate of data consumption by those nearer to the root of the orchestral parse tree.

Messerschmitt & Lee[30] have pursued this course in the context of digital signal

processing; they have developed methods of algebraic description of a network

of sub-programs where the number of output samples for each input sample is

strictly defined. It is possible, using this representation, to prove the correctness

and establish the efficiency of a scheduling algorithm. In this scheme, processors

operate essentially synchronously if a balanced workload has been achieved, paus

ing for a negligible time (compared with that taken in computation of the whole

algorithm) if synchronisation is required. This corresponds to systolic parallelism.

In a systolic program, the output is redefined as a function of some monotoni

cally increasing variable. A network of processes may then be arranged such that

time is substituted for the monotonically increasing variable, with input data fed

into the system undergoing some operation as it passes (synchronously) through

each node. 1 A popular example of a systolic algorithm is two-dimensional array

multiplication, where a function of the array subscripts is used as the 'time' vari

able. Work which has been undertaken to better the accessibility of the orchestra

definition procedure for those composers less experienced in computer program

ming would also lead in the direction of a distributed program paradigm. Many

programs exist which enable the graphic definition of the orchestra rather than

1meaning, in this context, that the number of output data produced for a given number of
input data is known and constant

2.1. CHOOSING A MULTI-PROCESSING STRATEGY 17

a textual one; amongst them Patchwork[31] (written in Lisp), the window-based

editor environment of Decker et al.[32] and Tarabella's graphical synthesis algo

rithm editor[33] for a system based upon a single digital signal processor.

Whilst there is clearly a prima facie case for adopting a systolic approach,

there are also considerable drawbacks. The unit generators in the CsoUND al

gorithm operate in non-real-time; not being constrained by a hard deadline by

which a sample must be produced, they may be arbitrarily complex. The re

quired processing time may be difficult to estimate, or perhaps even impossible

to estimate without prior knowledge of the data presented at their control inputs.

Indeed, Sedgewick[34] asserts that:

Given a deadline and a set of tasks of varying length to be performed

on two identical processors, can the tasks be arranged so that the

deadline can be met?

1s an NP-complete 2 problem. Heuristic solutions have been attempted, but

they have usually demonstrated encouraging results only for smaller systems.[35]

Because the problem is NP-complete, as the orchestras increase in complexity,

the point will soon be reached when determination of the optimum schedule

takes longer than the execution of the score by a single processor!

An alternative solution, and in fact the one that was chosen, acknowledges

the program's data structure rather than its control structure. The output of the

program consists of a series of time-samples representing an audio signal. These

audio signals arise as a result of various orchestral instruments being invoked to

produce data by the commands contained within the score. We further observe

that most musical examples contain many score events, and that it is normal

for the final output to be the summation of the individual, concurrently sound

ing notes. An appropriate data-structure-driven multi-processor implementation

uses a pipeline of processors, subdividing the control data rather than the con

trol structure. Flynn[36] classified the pipeline structure as 'M.I.S.D.' (Multiple

2 Nondeterministic-Polynomial-Complete: that class of problems for which the only known
method of finding a best solution is to test all possible solutions

2.2. PRACTICAL MULTI-PROCESSING 18

Instruction, Single Datum), because a single data-stream arises from the action

of multiple instruction streams. It is felt that this is possibly a misleading label

for the application currently under consideration; although the output data is

indeed the result of the summation of the results of diverse instruction streams,

it is interpreted at the output as a super-position of many data rather than a

single datum. It is certainly the case that the pipeline is an isonomic structure,

where many copies of an identical program operate concurrently with differing

control data to produce the output; this is the preferred term in this instance.

Bowler[37] has demonstrated that an isonomic software architecture performs

well in the construction of a real-time additive synthesiser; this solution is very

similar to the proposed structure for CSOUND in that the final signal is com

posed of the summation of sinusoidal oscillators each operating with different

control data. Gould[38] has also shown that a systolic approach may be reduced

in efficiency if the communication and processing capacity are ill-matched; in

some cases, the addition of an extra processor has been demonstrated to reduce

drastically the throughput (on a per-processor basis) in a digital signal process

ing application. An isonomic structure was therefore preferred for the CSOUND

implementation, as it offers two fundamental advantages: the communications

bandwidth required to pass samples between processors does not increase as fur

ther processors are added; and that processing power to control data flow increases

linearly with the overhead.

2L2 Practical Muliti=processing

Whatever parallel strategy were chosen for the multi-processor CSOUND, it would

be necessary to simplify as far as possible the communications between the sub

tasks running in the network, and the host computer which is responsible for

screen/keyboard and mass storage 1/0. The M.I.T. modules were therefore mod

ified so as to exclude any explicit reference to host services: calls to open(),

printf (), scanf (), write(), etc. are now placed in a single module called

2.2. PRACTICAL MULTI-PROCESSING 19

RSU PER.C (Root Supervisor). Separate modules are also required to interface

between RSUPER, and the sound, score and orchestra I/0 routines within the

CsOUND program. CSOUND runs as a thread separate from the root supervisor,

although both share the same task to ease the passing of user command line pa

rameters. The Communicating Sequential Process model provides for inter-thread

communication via 'channels'. A channel is a shared variable which enforces syn

chronisation when accessed. A reading thread is automatically suspended until

a writing thread places data in the channel; this data structure is supported in

transputer hardware. Communication between the main CSOUND thread and the

supervisor thread uses such channels.

When this strategy was decided upon for the sake of ease of maintenance

and code partitioning, it was expected that a sacrifice in absolute processing

speed would be required. It is interesting to note that, in fact, the opposite is

the case, and that the supervisor thread spends a good proportion of its time

suspended awaiting the lumbering machinations of the host and its associated

mass storage. Because the entire data flow between the application program

and the host computer's file system is now forced to pass through this additional

supervisor thread, it is possible to insert a buffering program very easily. The cost

of a context switch on a transputer is very small indeed; CSOUND is therefore able

to spend usefully the time previously used in waiting for the file I/0 functions

to return, by beginning to calculate the next buffer-full of samples. Hence the

multi-thread version actually executes up to 5% faster than the early single-thread

development versions, despite considerable added complexity.

The hardware used for this implementation of the CsoUND package was de

termined in the first instance by the hardware available to the Music Technology

group. Since a large proportion of the time spent in execution requires floating

point operations to be carried out, it was decided that the use of TSOO trans

puters was a necessity. The package would probably run with as little as 512KB

of memory, although as explained later, increasing the degree of parallelisation

2.3. WORKLOAD ALLOCATION STRATEGIES 20

requires that more memory per node be fitted. Hence a TSOO with 1MB run

ning at 20MHz is used in the development system. Whilst faster transputers are

available, there is some difficulty in exploiting their higher clock speed in large

software systems which may not make best use of the on-chip memory, unless

expensive high-speed RAM is also provided.

2L3 Workload AHocation Strategies

Isonomic concurrency allows processor load to be allocated by a modified version

of the score sorting program. An optimum load-allocator requires knowledge of

the orchestra definition, as well as good estimates of the computational cost of

each orchestra command. Execution profiling tools are not currently available, so

two sub-optimum methods were tested: round robin and balanced job queue. (39}

The former consists of allocation of note initialisation commands contained within

the score on a revolving basis in order of start time. The latter is based on the

assumption that all orchestra commands have equal computational expense, and

then proceeds as follows:

1. The score is sorted according to the normal sorting rules.

2. Each processor is allocated an empty list of jobs.

3. For each note in the score:

(a) Delete all jobs in all job lists with an end time prior to the current

note's start time

(b) Either:

1. Allocate the current note to the processor associated with the

shortest job list, or:

n. Mark the event as 'global interest' for broadcast to all processors

Table 4 is the parallel-sort version of the score example presented previously,

configured for three processors.

2.3. WORKLOAD ALLOCATION STRATEGIES

!w 0 60
!f 1 0 0 32 32 10 1
!f 2 0 0 512 512 10 3 7 6 2 1
!f 3 0 0 8 8 -2 1 1.4 0.9 1.1 0.5 0.7 1.5 0.8
#1#i 1 0 0 6 6 5000 440 0 0.8 25
!i 3 0 0 -1 -1
#2#i 2 .8 .8 3 3 5000 1700 0 0.8 25
#O#i 1 1.8 1.8 7 7 5000 875 0 1.7 15
#1#i 2 2.1 2.1 6 6 5000 320 0 1.4 15
#2#i 1 3 3 6 6 5000 1200 0 0.8 35
#O#i 2 3.9 3.9 4.5 4.5 5000 650 0 1.4 35
#2#i 1 4.9 4.9 4 4 5000 575 0 0.5 27
#1#i 2 6.1 6.1 4 4 5000 940 0 0.8 40
#2#i 1 7.3 7.3 3.4 3.4 5000 270 0 0.5 45
!f 0 11.5 11.5
!e

Table 4: A Parallel-sorted Score

21

A line of score needs to be broadcast to the entire pipeline if it does not

contain note information; for example, lines beginning with the letter f are used

to invoke function generators which are responsible for building data structures

within the CsoUND program. As each copy of the program must be capable

of executing any of the following lines of the score, it follows that each of the

CSOUND processes must generate its internal data structure before synthesis can

proceed. It is also assumed that any instrument which is set to run indefinitely

is to be a broadcast line in the score. Such instruments are usually designed to

perform some sort of post-processing of the synthesised signal, and are therefore

to be instantiated on all of the processors.

It may be seen that the sort program has correctly identified the statements

that are of global interest and must be received by each copy of the CSOUND

program; these lines have an exclamation mark prefixed. The configurer assumes

that all events with a negative ("forever") duration are global; this permits the

correct operation of the reverberation instrument initialised by the i 3 state

ment. For other events, the destination processor number is delimited by hash

2.4. BENCHMARKS AGAINST EXISTING IMPLEMENTATIONS 22

signs. The above example actually reduces to a round-robin allocation, and it

seems that, as a general rule, so do a large part of many real score examples.3

It is quite possible that some processors in a multi-processor system using this

type of task allocation may, from time to time, be producing silence or all-zero

samples. In fact, this is not as inefficient as it may seem: CSOUND is very efficient

at the production of zero samples, there being a special routine provided in the

SOUNDIO module for this purpose. Little time is lost in skipping between periods

of sample generation provided there is enough RAM at each node to buffer the

periods of relative inactivity while other processors 'catch up'; this explains the

paradox concerning memory requirement and the number of processors put for

ward above. The fact that an unbalanced workload leads to a waste of processor

time was taken into account in writing the task allocation algorithm: when all

processors have an equal number of active instruments, the allocator resorts to

a round-robin approach in recognition of the desirability of a balanced computa

tional load. It is certainly the case that the balance of load between processors

is improved if the score contains many overlapping notes of short duration.

2.4 Benchmarks Against Existing lmplemen-

tat ions

The first version of CSOUND to be tested and working on a transputer system

was run on a 15MHz T400 with 1MB RAM. This was being compared with sim

ilar code running on an Atari ST as part of the Composers' Desktop Project

(C.D.P.)[28] - a 16-bit 68000 running at 8MHz- and with a PDPll/23 with

floating point processor previously used for teaching students of electroacoustic

composition within the School of Music at the University of Durham. The PDP

version of the program, Musrcll, is coded in assembler. Results of these bench

marks, and results of the same score compiled on a 20MHz T800 are set out in

3 A Mendelssohn Organ Sonata and one of Elgar's Enigma Variations also have this charac
teristic, being two extended 60-second score segments coded by users.

2.4. BENCHMARKS AGAINST EXISTING IMPLEMENTATIONS 23

Time taken to process the first 16 bars of Mendelssohn's A Major Organ Sonata

(3) 24

(2) 4.8

(1) 1

(1): TBOO Transputer, 20M Hz.

(2): PDP11 with Floating Point Accelerator FPF11 = T 414 Transputer, 15M Hz

(3): Atari ST with Composer's Desktop Project Software

Figure 2: Relative Performance of Differing Implementations

figure 2.

The fact that the main CsoUND program uses floating-point operations inter

nally is responsible for the large difference in performance between the floating

point (T800) Transputer, and the fixed point (T400) Transputer using floating

point library routines. What is more encouraging is the increase in speed of

the T400 compared with the 68000-based system; although the memory band

width and clock speed are both approximately doubled, the Transputer system

compiled the score to produce an audio output file almost exactly five times as

quickly as the 68000. It would seem that, at least for the single processor case,

the implementation is efficient.

We now continue to consider the finer details of a fully multi-processor version

of this program, the efficiency of adding extra processors to the system, and the

impact upon programming both at the user and system levels.

Chapter 3

A Processor Pipeline Synthesiser

3.1 Introduction

THE PREVIOUS CHAPTER HAS SHOWN that the speed of execution of CSOUND

can be considerably enhanced by running the program on an INMOS trans

puter, simply by virtue of this processor's proficiency in general purpose, floating

point calculation. Using only one T800 floating point, 20MHz transputer, the

speed of execution is some 24 times as great as a desktop P.C. based on an 8MHz

68000. An approximate load-balancing algorithm for mapping standard scores

onto multi-processor arrays has also been presented, as has a suitable topology

which avoids communications bottlenecks to a large extent for many digital signal

processing algorithms.

This chapter falls into three sections: firstly, the detailed structure of the ad

ditional program modules required for genuinely parallel execution is examined,

and their protocols and data structures explained; secondly, the I/0 library avail

able to the user in the writing of new modules for execution in this environment is

documented; thirdly, extra constraints placed upon the user by the new environ

ment are put forward. Consideration is given to advanced techniques available

to a user in the writing of score and orchestra files for a multi-processor network,

which should enable the best possible performance to be obtained.

Additional material relating to the concurrent version of this software is in

cluded as an appendix. This should enable the extension of the system to be

as easy as for the original CSOUND program, but avoids the technical minutiae

24

3.2. LANGUAGE EXTENSIONS FOR MULTIPLE PROCESSORS 25

To Host

t
I CSOUND I I CSOUND I I CSOUND I
I RSUPER I~ H MSUPER I : PSUPER I

Computed Sound Samples t---

Figure 3: Processor Pipeline Architecture

obscuring the relevant direction of the argument.

3.2 Language Extensions for Multiple Proces-

sors

The processor network architecture on which the parallel version of CsoUND was

implemented is shown in figure 3. This requires that the CSOUND source code be

modified in order to take into account its isolation from the host machine, and

also that the three different supervisor programs be written: RSUPER, residing

upon the root transputer, supervises file I/0 and other communication with the

host machine's file system and terminal; MSUPER, which is a 'pass through'

module for data from more remote transputers, provides the CSOUND program

with which it shares the processor pseudo-file and -console I/0 facilities; and

PSUPER, which is a special subset of the supervisor program found in the middle

of the pipeline, coded so as not to require input from a subsequent processor.

Addition of extra processors is simply a matter of inserting copies of the middle

processor, each running the main CsoUND program and the MSUPER supervisor

program.

The following brief review of terminology and notation includes a description

3.2. LANGUAGE EXTENSIONS FOR MULTIPLE PROCESSORS 26

of the extensions to the C programming language intended to support concur

rency. Execution of a concurrent system or program ('task') may be considered

as the simultaneous execution of many sub-programs or threads. Each thread has

its own private workspace, and shared access to global static variables and system

memory. It may or may not have unique code; sometimes different threads may

execute the same subroutine simultaneously, relying on the private nature of their

local data. In this case, the subroutine in question is said to be multi-threaded.

Communication between threads may be through shared memory, or through

channels. A synchronisation capability is provided automatically when channel

I/0 begins, but an additional data structure, the semaphore[40, 41] is provided

where no data need actually be passed. Semaphores appear as 'flags' upon which

two atomic (i.e. indivisible) operations are provided: signal and wait.

Waiting on a semaphore or channel I/0 causes negligible overhead in process

ing terms, as the latter is directly supported by hardware, and the former can be

implemented efficiently in assembly code.[42] Both operations, normally associ

ated with computationally expensive operating system features, are implemented

in hardware on the transputer. However, semaphores are essentially a special

shared memory attribute, and may therefore not be used for the synchronisation

of different tasks. Tasks can communicate only through channels. Channels are

unidirectional data paths which may connect different tasks on the same trans

puter, or connect tasks on adjacent transputers via the serial data links provided.

To avoid confusion as to the context of certain names, the following typograph

ical rules apply where possible: names in Sans Serif font refer to conceptual divi

sion or classification such as source code modules; names written in Typewriter

font refer to entities which actually exist within the CsoUND source code or one

of the supervisor modules.

3.3. INTER-MODULE DATA FLOW AND PROTOCOLS 27

3.3 Inter-module Data Flow and Protocols

There are two major data-flow paths through the parallel CsoUND system: the

dissemination of score and orchestra information along the pipeline, and the col

lection of the resulting sound samples. In the multi-processor environment, how

ever, it is necessary to provide special communications modules to link the source

of the data to its destination.

3.3.1 Order of Events

Before commencing a full explanation of the data paths in the parallel system, the

order of events in the execution of a standard CSOUND program is recapitulated.

• The initial phase of the CSMAIN module reads the command line parameters

(these are fully documented in the CSOUND reference manual) and saves

them in global variables. These will be accessed later in order to determine

information about the desired file format, orchestra file name and so on.

• The orchestra file is opened and read from the host file system. Its contents

are converted into semi-compiled form.

• The sound output file is opened which will eventually contain the sam

ples generated by CSOUND. A dummy header of length SIZEOF...HEADER is

written onto the hard disk. Sound sample generation begins.

• Score information is read from the file stdin. Sound samples are generated

and sent to the host file system.

• The end of the score file is detected. The output buffer is flushed and a

seek() performed on the output file.

• A new header is written at the beginning of the file containing the correct

information about file format, number of channels etc .. The output file is

then closed.

3.3. INTER-MODULE DATA FLOW AND PROTOCOLS 28

___..

tHARDWARE

{Jsndio[O])
{futp[left])

MIT COMMS SUPER- BUFFER
{Jinp[left]) CSOUND MODULE (J sndio [1])

VISOR MODULE ._
CSMAIN

___..

J
LINKS RSUPER

MUSMON SNDCOMM or SNDBUF
UGENS ORCOMM

(Jhostio[O])
MSUPER SCBUF

SOUNDIO EXTRAS or
(inp[right]) etc. PSUPER ._

Figure 4: Internal Communication Channels

• Execution terminates.

Throughout the above operations, a constant dialogue is maintained with the

host computer's terminal, via which the program advises the user of the progress

of the sound compilation, run-time errors, or overflows that may have occurred.

3.3.2 Protocols in use during Initiation

A minimal protocol is provided for the broadcast of command-line parameters

and orchestra data to the transputer network, since this process occurs exactly

once and before any other communication can take place.

Data transfer between a supervisor and its associated CSOUND code is vza

three channels: sndio [0] and sndio [1] which are primarily intended for com

munication of data from or to the host file system, and hostio [0] which is used

by data flowing towards the host machine's console (see figure 4).

At the very start of execution, the two threads startsuper and main begin to

run. main is halted by waiting on the semaphore args_valid while the command

line arguments are broadcast to the rest of the network. The commands protocol

IS:

word (n) :(asciiz)n---+outp [right]

where asciiz represents a string of zero or more ASCII characters terminated

by a NULL. Having noted and re-broadcast the values of the command line

3.4. SCORE DEMULTIPLEXING 29

arguments, the supervisor routine raises the args_valid semaphore; execution of

CsoUND proper then continues.

A similar procedure is followed for the broadcast of the orchestra. Before

any sound samples can be produced, an identical copy of the orchestra must be

loaded into each transputer. This transfer is achieved by the transmission down

the pipeline of a sequence of words representing the data in the orchestra file,

and terminated by an EOF (end of file) word. Just as with the command-line

arguments, each transputer copies this information to its CsoUND thread and

re-transmits it if it is not the last processor in the pipeline.

3.4 Score Demultiplexing

Conventional CSOUND expects score data to appear from stdin. In the paral

lel environment, however, there is no direct attachment of any of the CSOUND

threads to the host file system, so the usual file system support calls to read or

write information are not allowed. Additionally, the score data has been prefixed

by the parallel sort program to indicate the destination of each line of data: the

prefix is either an'!' which indicates that the line should be sent both to CSOUND

and to the rest of the pipeline, or '#(d)#' where (d) represents the destination

processor number- a non-negative integer.

The score demultiplexor has to run concurrently with the main code thread,

so it is important that it makes efficient use of processor time. In practice,

this implies that any waiting should be performed using either a semaphore or

channel I/0 calls, and that 'busy waiting', or polling, must be avoided. The

demultiplexor must perform three functions: read input lines from the host and

mark them according to their destination; send the necessary lines of the score

to the rest of the pipeline; strip the prefix characters and send the raw score data

to the CsouND thread. In this transputer implementation, these functions are,

broadly speaking, mapped onto three separate threads executing in parallel.

FIFO (First In, First Out) buffers for single thread environments are well

3.4. SCORE DEMULTIPLEXING

Incoming
Score
Data

Router

"'------'

Pipeline Score Data
FIFO length =
THRU SCORE BUF SIZE - - -

to Pipeline

Figure 5: Queues in the Score Buffering Module

30

understood(43) and several optimised algorithms exist for their implementation,

but the solution of the above problem requires that multiple threads share a

common data structure. The use of FIFO buffering for both local and egressant

data is highly advantageous; this avoids the processor waiting for score simply

because pipeline communications are not available, and likewise avoids the star

vation of the pipeline when the local CsoUND does not require any score data.

Unfortunately, if a single FIFO buffer were used, whilst the resulting algorithm

would be deadlock free because it is topologically free choice1[44], it would be

possible for either the pipeline or the local main thread to be suspended unnec

essarily because of the order in which the data arrive. It is possible to avoid

such inefficiency without the use of multiple FIFO queues by use of the 'Coloured

Ticket' algorithm [45) but this introduces an (albeit minor) increase in processor

overhead, and requires a non-trivial investment in writing the necessary code in

transputer-C.

The solution arrived at for the score buffering module (figure 5) implements

two autonomous FIFO queues: these are labelled mine for data destined for the

local CsoUND thread, and theirs for data to be transmitted along the pipeline.

1 For every possible data item appearing at its output, there is a transition (or event) which
can (eventually) remove that item.

3.4. SCORE DEMULTIPLEXING 31

After the command line arguments and orchestra have been transmitted, the

only data-flow away from the host machine is score data2; consequently no com

plex transport protocol is necessary and the score data is simply issued as 32-bit

words along the hardware links. Further, the size of theirs need only be small

in comparison with mine; exiting data will be read quickly by the next pro

cessor in the pipeline unless its score buffers are full. The sizes of the buffers

in the current version are set at compile time to SCORLBUF-SIZE = 32768 and

THRU_SCORLBUF-SIZE = 2048, which appears satisfactory.

Figure 6 shows a Petrinet[46, 4 7] representation of the concurrent score buffer

algorithm, excluding the decision process concerning the destination of the char

acters as they arrive. This may be determined by a simple state machine which

feeds the input places with the correct number of tokens, corresponding to the

number of characters read, as each input line arrives.

It has been shown that a system of a number of asynchronous processes

competing for a single resource require no additional arbitrating process;[48] the

Petrinet clearly demonstrates the interaction between the three threads achieves

this. The novel aspect of the control of the FIFO buffers is that instead of

relying upon the more usual pointer comparisons to determine the presence of

data within the queue, this test is performed using their associated semaphores.

Taking the pipeline output buffer as an example, the related semaphores would

be theirs_free, theirs_empty, and their_data. The initial values of these

semaphores are respectively 1 (True), THRU_SCORE...BUF_SIZE, and 0, indicating

that the pipeline output buffer is available (i.e. not being accessed by another

thread), has THRU-SCORE...BUF-SIZE free locations, and contains 0 items of data.

A thread writing to the queue first suspends until empty space is available

by waiting on theirs_empty. It then locks access to the queue and its associ

ated pointers by waiting for theirs_free. When permission has been granted,

the character is placed at the head of the queue according to the traditional

2This places some restrictions on the functionality of the CsoUND package - these are
covered in section 3.10.

3.4. SCORE DEMULTIPLEXING

my_data
p13

plO

Awaiting channel
request for

data

Space in pipeline
r--r-~r-:t2r- data queue becomes

available

Character
for

CSOUND

Character
for

pipeline

SCORE BUF SIZE

Data transfer
to pipeline

begins

Figure 6: Petrinet of the Score Buffer Algorithm

32

3.5. SOUND SAMPLE RECOMBINATION 33

algorithm, and its presence signalled on their_data. Finally, the queue is un

locked by signalling theirs_free. Conversely, a thread requiring input from the

queue waits for their_data before locking the structure, removing a character,

signalling on theirs_empty and finally unlocking it. This strategy would seem

arduous in the extreme to those familiar with using semaphores implemented

by operating system software, but since the 1/0 primitives in the transputer

instruction set can be used to enforce synchronisation, the processing overhead

which accompanies this algorithm is marginal. Also, there is a saving in that it

is no longer necessary to test for buffer overflow explicitly; this test is inherent in

waiting on the theirs-empty semaphore. Neither is any busy waiting required.

3.5 Sound Sample Recombination

Having demonstrated how each transputer in the pipeline receives a complete

copy of the orchestra and its own unique subset of the score, all that is required

to provide an understanding of the concurrent CSOUND system is an explanation

of the linear sound sample recombination and their storage in the host's sound

output file. Various simplifications which are valid in the case of the score demul

tiplexing algorithm are not applicable to data flow towards the host; in particular,

the information flowing in this direction may serve a variety of different purposes,

and a transport protocol is therefore required.

The transport methodology is a simple prefix-tagged protocol; each data block

travelling towards the host machine is prefixed by a word defining its class (or

meaning). The information received from the pipeline is processed by a separate

thread pipe() in module PIPE.C. The protocol definition is as follows:

wordPIPE-ABDRT I

word(PIPEJIOSTMSG, (origin), (size)) msg(size) I
wordPIPE_SAMPLES msg(BUFSIZE) I
wordPIPE-.LASTBLOCK I

Finished communication

Display msg on terminal

Block of samples

Last samples; flush buffers

3.5. SOUND SAMPLE RECOMBINATION 34

wordPIPE-OVERFLOW msg(sizeof(float) value) Remote arithmetic overflow

where msg(n) represents a string of exactly n characters (without a trailing

NULL).

If the avoidance of starvation is important in the case of score routeing, then

for the temporary storage of sound samples it is doubly so. A fundamental re

quirement for the significant increase in speed of computation is that processors

which are less loaded for a given section of the score may 'rush ahead'. Such pro

cessors store their output data locally in a large FIFO queue until such time that

data from the rest of the pipeline can be summed with it to produce the required

output. Similarly, data emerging from the pipeline must, if space permits, be read

and stored locally if the processor falls behind as the score becomes particularly

computationally intensive; failure to do so would block any other messages from

the pipeline, and may even result in a CsoUND main thread becoming suspended.

Whilst the score sorting algorithm takes steps to distribute the workload evenly,

there is inevitably some imbalance which must be absorbed by local buffering.

The conceptual interrelation of the three executing threads, the buffer space, and

a notional access permission arbitrator is shown in figure 7.

Because of the relatively large size of the data items involved (sound samples

are computed in buffers of 8KB length in the current implementation), it is un

acceptable to use two discrete buffers as for the score buffering example. Instead,

FIFO queues are built from 8KB blocks of RAM using three lists. Because of the

close analogy to the operation of a simple disk filing system, these SKB blocks of

RAM will be referred to as sectors. The data structure and its initial contents

used for sound buffering is shown in figure 8. All operations on this structure

are performed by routines in the module SNDBUF.C. As in the case of the score

demultiplexor, there are three threads to support this algorithm: one reads data

from the pipeline and enqueues them; one reads data from the local processor

and enqueues them; a third dequeues a sector of data from each queue, performs

a vector sum of their contents and sends the result towards the host.

3.5. SOUND SAMPLE RECOMBINATION

CSOUND synthesiser Data from pipeline

Access Contol
Mechanism

Data to pipeline

Solid rectangular
boxes indicate
'threads'.

Figure 7: Interrelation of Threads in the Buffering Algorithm

0
1
2
3

1
2
3
4 t--..;;;;._--1

unused head

intsamps_head

intsamps_tail

SNDBUFS-2 SNDBUFS
SNDBUFS-1 SB LAST

extsamps_head

SB LAST extsamps_tail

Statics

Semaphores soundbuf free 1 ~
int data 0
ext data 0

~uf empty SNDBUFS bJbJbJbJ .. .
1.nt empty SNDBUFS-3 ~~~~ .. .
ext empty SNDBUFS-3
applause ...

0

Figure 8: Data Structure of the Recombination Buffer

35

3.6. DEADLOCK AVOIDANCE IN THE SOUND BUFFER 36

The word array ram_alloc contains three interleaved lists of integers repre

senting the two FIFO queues and a LIFO (Last In First Out) stack within which

a free sector list is maintained. A valid entry in this array must be either a non

negative integer pointing to the next element in the queue, or a termination word.

A valid termination word is SB_LAST which normally signifies the end of the list,

or SB..FINISHED which indicates that the marked element is not only at the end

of the list, but that the thread which adds to that list has ceased the production

of samples because it has reached the end of the score. The head of the stack is

pointed to by the variable unused_head. Both FIFO queues require one variable

to point to the beginning and one to the end of the queue: for internally generated

samples, these are called intsamps_head and intsamps_tail; for incoming sam

ples from the pipeline the variables are extsamps_head and extsamps_tail. Data

present and space present conditions are flagged by semaphores following a simi

lar naming convention to the score buffering module: int-data and ext_data flag

the presence of sectors containing respectively internally or externally generated

samples; int_empty and ext_empty are raised if space exists for more samples;

buLempty is raised if there are free sectors in the buffer. The entire structure

is locked using the semaphore soundbuf _free to prevent interference between

concurrent threads attempting simultaneous access. All of the semaphores are

shown in the Petrinet description of the sound buffering module in figure 9.

3.6 Deadlock A voidance in the Sound Buffer

The access of a shared database by processes which may read or write information

therein is a well documented problem[49], and whilst the writing threads in this

instance should never be able to produce update anomalies (their write data

spaces being disjoint), errors may occur if poorly synchronised threads were to

update the control structure. The RAM allocation table is a relatively simple

multiple threaded list, so updating it requires little computational effort and

hence takes little time; a simple mutual exclusion flag (soundbuf _free) proves

3.6. DEADLOCK AVOIDANCE IN THE SOUND BUFFER

Read data from channel to buller
\

int_empty

Channel ito finishes

SNDBUFS Tokens

Copy samples from pipeline to buller

Figure 9: Petrinet of the Sound Buffering Algorithm

p15

SNDBUFS-3

37

3.6. DEADLOCK AVOIDANCE IN THE SOUND BUFFER 38

satisfactory. It is an advantage of this data structure that modification of the

buffer space supplied from the list may occur at any time, since space is allocated

to threads uniquely; the buffer need only be locked during RAM allocation and

freeing. It is therefore most unlikely that threads will be suspended for long

whilst awaiting access to a buffer.

There is a potential deadlock situation in the sound buffer module which

cannot occur in the demultiplexor. Suppose the local processor has raced ahead of

the processors further up the pipeline and filled all of available RAM. The sample

output thread cannot output a sector of samples because it has no sectors from the

pipeline in RAM with which it may perform its vector summation (ext_data is

lowered). The thread which reads samples from the pipeline is suspended waiting

for space in the external data queue to become available; this will never occur,

however, because data from the pipeline must be written into a buffer before this

can happen. This problem is similar to the 'dining philosophers problem';[40, 50]

there are no more chopsticks, and each philosopher has exactly one chopstick and

is therefore unable to eat anything. The solution implemented in SNDBUF.C,

without resorting to polling, is to introduce two further semaphores; one for each

writing process. For a process to be allowed to allocate a sector of RAM, is

must have either int_empty (for local data) or ext_empty (for remote data) and

buf_empty raised. Noting the initial values of the semaphores in figure 8, this

effectively extends the preconditions for writing to "There is at least one empty

sector in RAM and not more than SNDBUFS - 3 sectors are occupied by data

from this source". This removes one of the necessary conditions for deadlocks to

occur in a message passing system.[51]

After CSOUND has finished writing samples to the output file, a seek is per

formed so that an updated file header may be written. Clearly, it would be

unacceptable to permit the seek operation to proceed as soon as the CSOUND

thread had produced its final sample; there may be much information stored in

the sound buffer awaiting output. If a file seek was performed immediately, this

information may be written to the wrong place in the file, or the host machine

3. 7. ANALYSIS OF THE PETRINETS 39

may simply crash.

The mechanism provided to avoid the premature termination of the CsOUND

program is the applause semaphore. This semaphore is raised when the sound

writing routine has attempted to get a further RAM sector from the format array,

but received instead a SB..FINISHED token to indicate that the source routine has

no intention of writing further data into the buffer. The supervisor file seek

routine is called just before rewriting the file header; this awaits applause before

returning the 'success' code to CsoUND.

3. 7 Analysis of the Petrinets

Figures 6 & 9, the Petrinet models of the score and sound buffering modules,

permit a further insight into how the three threads interact dynamically; in par

ticular, they present concisely the resource sharing system. Beginning with the

simpler score buffering module (figure 6), the initial marking yields the following

interpretation: place p15 (mine_empty) has one token for each character of free

space in the local score buffer; likewise, p12 (theirs_empty) has a token for each

empty location in the pipeline forwarding buffer. The presence of a token in

p14 or p11 represents the availability of the buffers and their associated pointers

for access; these are the mutual exclusion semaphores. Tokens in p3 , p6 and p9

represent the program counters associated with the three buffering threads; their

relocation represents execution of the associated code.

When an input character becomes available, the routing algorithm will make

a decision about its destination and place a token in one of the input places p1 or

p2 • The data input thread may then proceed via the firing sequence (t 1 , t3) if the

data is destined for the local CsOUND, or via (t 2 , t4) if the item is to be passed

along the pipeline. Following the token around this route gives an indication

of the conditions necessary for execution to proceed, by observing the labels

associated with the transitions and their input places. The pipeline output thread

circulates through transitions (t7 , t8) as data is transmitted along the pipeline;

3. 7. ANALYSIS OF THE PETRINETS 40

similarly, the CSOUND service routine get...llly_char3 enables the sequence (t5 , t6).

By following the execution tokens around these transitions, the movements of the

memory resource tokens between the 'data' and 'empty' semaphores may also

be observed. A required property of the memory resource tokens is that they

are conserved; that is to say, the amount of memory which they represent is

constant. Conservation with respect to storage is now demonstrated formally,

using the matrix definition of the Petrinet.

Let the quadruple C1 = (P,T,D+,n-) define the Petrinet of figure 6, where

P = {pi}, the set of places,T = { ti}, the set of transitions. n+ and n- are

matrices defined by the forward and backward reachability functions as follows:

Let #(Pi, I(tj)) be the multiplicity of place Pi with respect to

the input function of transition tj. This takes a non-negative inte

ger value equal to the number of arcs connecting Pi to tj. Also, let

#(pi, O(ti)), the multiplicity with respect to the output function, be

the non-negative number of arcs between tj and Pi· Define

and

Define also the composite change matrix

D = n+- n-.

The Petrinet C1 is conservative with respect to a weighting vector w
if and only if

D.w=O

Element i of this vector, Wi, is referred to as the weight of place Pi·

3 An additional character input function provided for use within parallel CsOUND, called
when a supervisor module receives a SF ..KEY token: see section 3.9 on page 46.

3. 7. ANALYSIS OF THE PETRINETS 41

The appropriate weighting for each place in the network will now be consid

ered. A token in theirs_empty, their_data, my_data or mine_empty is a direct

representation of a memory location; hence assign w10 = w12 = w13 = w15 = 1.

Data storage locations are also 'possessed' by tokens outside these places for the

duration of the execution of the critical sections of code. These places must also

be considered in the weighting vector, because the buffer space which they use is

returned to the global buffer pool when the critical section of the code completes.

Thus we also assign w4 = w5 = w6 = w8 = 1. D is a fairly sparse matrix; the

non-zero elements are listed below:

D1 4 = D2 5 = D313 = D41o = D5 8 = D615 = D112 = D8 6 = 1
' ' ' ' ' , ' '

D115 = D2 12 = D3 4 = D 4 5 = D5 13 = D6 8 = D1 6 = D8 10 = -1
' ' ' ' ' ' ' '

Direct substitution into the equation of conservation yields:

D·w=

D8,4 + D8,5 + D8,6 + D8,8 + D8,1o + D8,12 + D8,13 + D8,15

Substitution of the values from the above lists shows directly that

A similar procedure may be followed for the sound sample recombination

buffers, although in this case there is the added complication imposed by the

deadlock avoidance strategy described in section 3.6. A corollary of imposing

this extra condition in order to avoid a deadlock in the shared memory system

is that a RAM sector can not be described as either 'in use' or 'empty'; a third

state is introduced where the RAM contains no useful data, but cannot be used

by a particular thread because it is reserved for data from another source. In this

case, the sector is said to be meta-empty.

3. 7. ANALYSIS OF THE PETRINETS 42

The introduction of another state in describing a RAM sector makes the

representation of a buffer element by a single token in the Petrinet far more

difficult. The system used here is that a sector is represented by a pair of tokens;

a token in place PI2 (buf_ernpty) symbolises the meta-emptiness of a sector, but

can not reflect emptiness unless combined with a token from one of places Pis

(ext _ernpt y) or PI6 (int_ernpt y). Thus a sector in use is represented by the

circulation of a doubly heavy token.

The non-zero elements of the weighting vector w for the sound buffer may

now be assigned.

• PI2 , Pis, P16 have weighting 1 as described above.

• int_data and ext_data (pi3 ,p14) contain tokens which represent data held

in store and are therefore have a weighting of 2.

• The states of requesting a sector and reading data into the sector require

an area of RAM to be both meta-empty and empty, so places P7, P8, P10, Pn

also have a weighting of 2.

• The action of summing the sound samples requires two full data blocks, so

place p2 has weighting 4.

Following a similar procedure to that used in the analysis of the score buffering

module, non-zero elements in the sound buffer's composite change matrix are

listed below.

DI I3 = D1I4 = D2 2 = Ds I2 = D6 1 = D1 8 = J J J I I 1

D8 12 = D8 1s = Dg 10 = D10 u = -1
' ' ' '

DI 2 = D2Is = D2I6 = Ds 1 = Ds I6 = D6 8 = ' ' ' ' ' ,

D7I4 = Dsio = Dgn = D10 13 = 1 J J I I

D2,I2 = 2

3. 7. ANALYSIS OF THE PETRINETS

4D1,2 + 2(DI,7 + Dl,S + Dl,lO + Dl,ll + Dl,I3+

D1,14) + D1,12 + D1,1s + D1,16

4D2,2 + 2(D2,7 + D2,s + D2,1o + D2,u + D2,13+

D2,14) + D2,12 + D2,1s + D2,16

4DI0,2 + 2(DI0,7 + D10,s + D10,1o + D10,u +

DI0,13 + D10,14) + D10,12 + D10,1s + D10,16

43

::::? the sound buffering algorithm is conservative with respect to memory re-

source.

As an addendum to this analysis of the multi-process multiplexing and demul

tiplexing buffer algorithms, it should be observed that in the case where there is

only one reading thread and one writing thread, then an access-locking semaphore

is not required. In this instance, the writing process and reading process can

communicate using only the semaphores which indicate the number of spaces oc

cupied and free in the buffer, which makes for a particularly elegant solution to

a classical buffering problem in a concurrent environment. It may be pointed out

that there is still a restriction imposed by the fact that the buffer array is used

cyclically, which reduces the viability of a version of the algorithm using dynamic

memory allocation, but this is of little consequence in transputer-based systems

where each processor has a single user associated with it. In the single user case,

the static allocation of uninitialised data-space in large quantities becomes less

irksome.

3.8. THE SUPERVISOR PROTOCOL 44

3.8 The Supervisor Protocol

The previous paragraphs described in detail how information of all sorts is passed

along the processor pipeline; the communication protocol between the CsoUND

modules and the supervisor module remain to be explained. The whole of

CSOUND has been modified to remove calls which assume direct connexion to

the host machine, such as fop en(), printf () 4 and so on.

Communication with ·the supervisor is via three channels: sndio [0] carnes

data from CSOUND to the supervisor; sndio [1] carries data in the opposite direc

tion; hostio [0] transfers data from CsoUND to the host's terminal display, and

is a free-protocol character stream. The following is a summary of the supervisor

protocol:

(wordSLREQUEST ¢= sndio [0]

asciiz(output filename) ¢= sndio [0]

word(file handle) =} sndio [1]) I
(wordSLWRITE ¢= sndio [0]

word(file handle) ¢= sndio [0]

word(block length) ¢= sndio [0]

msg(block length)¢= sndio[OJ) I
(wordSLSEEK ¢= sndio [0]

word(file handle) ¢= sndio [0]

word(offset from start) ¢= sndio [0]

word "1" =} sndio [1]) I
(wordSLCLDSE ¢= sndio [0]

word(file handle) ¢= sndio [0]) I

(wordSLKEY ¢= sndio [0]

word(score input character) =} sndio [1])

wordSLABDRT ¢= sndio [0] I

Name output file

Samples from CSOUND

Unix-style seek

Close a file

Read a score character

Kill thread

4 Software authors wishing to provide their own additional CsoUND modules which might
use these calls are referred to section 3.9 where their replacements are described

3.9. THE PROGRAMMERS' NEW I/0 LIBRARY

(wordSLOPENt {::: sndio [0]

asciiz(input filename) {::: sndio [0]

word(file handle) :::} sndio [1]) I
(wordSLREADt {::: sndio [0]

word(file handle) {::: sndio [0]

word(length) {::: sndio [0]

word (length read) :::} sndio [1]

msg(length read) :::} sndio [1]) I

Open input file

Samples to CSOUND

char(display output character) {::: hostio [0] Display text

45

Facilities marked tare not available with multiple processors- see section 3.9.

3Jjl 'I'he Programmers~ New I/0 Library

The previous section documents the hidden communications protocols and data

structures within the supervisor modules; this section continues to describe the

modifications of the standard CsoUND source, concentrating on the special I/ 0

routines available to the writer of new software modules in the insular context of

multiple processors.

Most modules of the conventional CsoUND package make reference to the

normal C I/0 library functions, and these must all be removed for the multi

processor version. Special interface calls to the low-level orchestra and score

support routines provided by the supervisor modules simulate a subset of the

UNIX-like I/0 routines usually expected of C run-time libraries. These interface

calls are to be found in the modules ORCOMM.C (orchestra communication),

SNDCOMM.C (sound file communication) and EXTRAS.C (the rest). Probably of

most interest to software writers are the functions provided by the SNDCOMM.C
'

and EXTRAS.(modules.

Software authors wishing to make calls to the host file system in order to

perform functions normally undertaken by the fread() and fwriteO calls can

3.9. THE PROGRAMMERS' NEW I/0 LIBRARY 46

use the equivalent functions provided by the SNDCOMM.C module. These are

well documented in the source code, and broadly speaking have the same name

as their familiar counterparts except that the letter 'f' is replaced by the prefix

'snd_',

Those wishing to modify or introduce CSOUND source which directly reads

the stdin stream will need to be aware of the routines which are used to replace

the scanf() function call. The following functions are included in the module

EXTRAS.C:

Functions which perform low-level reads in the standard input stream:

h_get char ()

No formal parameters.

Gets a character from the standard input stream.

Returns an integer.

h_getfp1 (flp)

Formal Parameter: pointer to float.

Reads a floating point number into the indicated variable.

Returns 1 on conversion, 0 otherwise.

h_getfp2(flp1, flp2)

Formal Parameters: pointers to float.

Reads two floating point numbers.

Returns number of successful conversions: 0, 1 or 2.

The other functions which are provided are designed to enable output to the

host screen and perform various housekeeping functions. The two most often used

are toJ10stO and sxt(). sxt() sign extends a 16-bit number into an integer,

and has to be provided because many of the M.I.T. routines unfortunately assume

that integers are 16 bits in length instead of the 32-bit entities supported by

transputers. to..host (1 ,p) provides a route by which messages can be displayed

on the host's terminal. It requires two parameters: 1 is the message length in

bytes, and p is a pointer to the first character of the message. Modules written

3.10. DIFFERENCES BETWEEN STANDARD AND PARALLEL CSOUND47

using this call will link and execute correctly on any of the transputers in the

pipeline, as it ensures that the lower level data transport functions are called

correctly. In fact, this call is invoked so often that a global workspace, host...rnsg

has been provided. In order to display an arbitrary string, it is possible to use

the fact that the library function printf () returns the number of characters

converted and written into RAM; the following code fragment is repeated many

times throughout the package:

to..host (sprintf (host...rnsg, format string, args), host...rnsg);

The low-level score and orchestra communication functions are not described

here, as their use is rather limited outside the score reading and orchestra com

pilation modules supplied by M.I.T .. Readers who desperately need to modify

these routines for some reason are referred to the source listings which contain

the necessary comments. In the vast majority of cases, it will be sufficient to rely

upon the data structures and global variables available to user routines from the

existing source.

Differences between Standard and Paral~

lei CSOUND

Whilst every effort has been made to ensure that the syntax and semantics of

M.I.T.'s CSOUND program have been maintained, there are inevitably some dif

ferences between composing for a single processor and composing for multiple

processors. The following sections highlight the differences, both technical and

stylistic.

3.10.1 Restrictions with Multiple Processors

There are two main restrictions in composing for parallel CSOUND in its current

state of development. These are:

3.10. DIFFERENCES BETWEEN STANDARD AND PARALLEL CSOUND48

• No input from sound files already stored on disk. The soundin facility is

supported on the single processor version, but not with multiple processors.

The reason is quite straightforward: if many processors were to attempt to

run whilst accessing the host's file system concurrently, an I/ 0 bottleneck

would almost certainly occur. In fact, the process of continually perform

ing random seeks on multiple input files, each of which is being multiply

accessed, would so increase the complexity of the root supervisor and make

so heavy a demand on the host's operating system that there would surely

be a massive decrease in performance as more processors were added.

• The output instrument must be linear; that is to say, the output from in

struments playing together must be identical to the summed output of each

instrument playing separately. This requirement is imposed because the

score is fragmented across different processors by the SORT program, and

has not been found too great a disability in practice.

These restrictions do not apply when using a single processor.

3.10.2 Extended Command-line Options

Now that the sorting program is responsible for the automatic partitioning of

the score and its allocation to different processors, the SORT command has been

extended to include two optional command-line parameters:

SORT (Score file} [(Processors} [(Output file}]]

(Score file} specifies the path of the input score file to be sorted, and must al

ways be supplied; (Processors} specifies the number of transputers in the pipeline,

and defaults to 1; (Output file} specifies the path of the file into which the sorted

score is written. The default is ".\SCORE.SRT".

3.10. DIFFERENCES BETWEEN STANDARD AND PARALLEL CSOUND49

The score sort package reports how well the score has been allocated to the

given processor array by generating an arbitrary number referred to as the "nice

ness" of the score. This concept was introduced as an aid to judging the effective

ness of the score sorting algorithm, but provided sufficient amusement to users to

warrant its continued existence. It is calculated as follows. As each note is placed

on a job list, the internal data structures of the sort program are scanned by a

simple loop. The local nastiness is assessed as the difference in length between

adjacent job queues. If any processor has no jobs, the nastiness is doubled, be

cause in this situation large amounts of buffer space will be used to store silence.

The accumulated nastiness is incremented by the local nastiness multiplied by the

duration under consideration, and divided by the number of processing elements.

Niceness is simply the total play time divided by the accumulated nastiness.

Some extra switches have also been added to the CsoUND package itself. The

-f flag now produces integer output files, but uses floating point communication

along the pipeline. This eliminates the effects of truncation to 16-bit integers at

each node, which potentially reduces signal-to-noise ratio if a large number of

processors are m use.

When using a large number of processors, the quantity of text displayed can

quite quickly reach levels where the host machine spends sufficient time printing

to slow down its disk operations quite significantly. The sheer quantity of text

produced under these circumstances presents quite a formidable and rather con

fusing display, so parallel CSOUND has two extra command line switches available

which help in these circumstances. The -s ('silence') switch suppresses messages

from all processors except the root, and the -S switch suppresses all messages

except for those giving reasons for termination

3.10.3 Extended Overflow Reporting

When the program is being used in the single processor version, the user is in

formed at regular intervals of the maximum amplitude of the output signal, and

3.1 0. DIFFERENCES BETWEEN STANDARD AND PARALLEL CSO UND50

the number of arithmetic overflows that have occurred. It is important that the

parallel version is also able to provide some method of reporting overflows occur

ring in the output data, but here the problem is compounded by the fact that

such errors may occur not only at the sound synthesis stage, but in the addition

of sound samples as they travel down the pipeline of transputers towards the

host. To this end, code was added to the supervisor modules which detects the

overflows as they occur, and passes a token to this effect down the pipeline.

In practice, this information proved insufficient to the composer using the

package; knowledge of the magnitude of the overflow is as important as its exis

tence if appropriate corrective action is to be taken. If a score produces output

which overflows the range of the 16-bit output device, but the magnitude of this

overflow is not reported, the composer may be forced to compile the score twice

more: once with very much reduced output level to assess the amount of atten

uation required, and again to restore the proper dynamic range to the output

file.

When data is passed along the pipeline as integer values, there is little that can

be done to remedy the situation. Under these circumstances, when an overflow

occurs, data is lost as the carry bit of the result is discarded. However, when the

floating point operation of the pipeline is selected, the effect of the overflow does

not become apparent until the final type conversion of the floating-point data to

15-bit integer just before delivery to the host. This enables the data following

the overflow token to be read and used with meaning; the supervisor program

stores the maximum absolute values between reporting overflows and displays

them as part of the supervisor message. To prevent the remote possibility of an

update anomaly occurring and loosing data contained in the variable biggest,

the semaphore big-lock is provided.

Overflows at any stage of the pipeline are flagged in this way, so as to indi

cate problems which would occur in fixed point mode and provide a consistent

environment which gives increased guidance in adjusting the score.

3.11. BETTER PROGRAMMING FOR EFFECTIVE PARALLELISM 51

3.11 Better Programming for Effective Paral

lelism

It has been shown how CsoUND requires the composer to divide synthesis tasks

into two distinct components: the score, and the orchestra. These entities are

broadly analogous to the conventional ones: the latter provides basic definitions

of each sound-producing module, or 'instrument'; the former its performance pa

rameters. The scope to vary the content of these components as well as their

functional relationship is considerable. At one extreme, it is possible to generate

a complete musical gesture of considerable complexity from a single line of score;

only the starting time and overall duration for an elaborate set of synthesis func

tions, all contained within one instrument, need be stated. At the other extreme,

a comparable degree of activity can be described by a score which invokes multiple

copies of much simpler instruments, each contributing to the overall effect.

The scheduling algorithm discussed above naturally favours the second ap

proach to musical composition (complex score, simple instruments) if the full

potential of the target multi-processor machine is to be realised. In this particu

lar implementation of Parallel CSOUND, no facility exists for mapping individual

components of an instrument across a network. In practice, the musical con

straints arising from this technical restriction are not too limiting. The majority

of composers seem to compose by building up individual layers of sound, rather

than constructing highly complex and completely self-contained instruments from

scratch. It therefore requires only a relatively minor change in approach to ensure

that the resulting orchestral definitions are split up into a number of less complex

instruments sounding concurrently, which may be assigned (automatically) across

the computing network.

Two interrelated factors materially affect the working environment for the

CSOUND composer: the first concerns the overall response of the system in terms

of the typical time delay which intervenes between presenting and auditioning a

3.11. BETTER PROGRAMMING FOR EFFECTNE PARALLELISM 52

synthesis task; the second concerns the variation in this delay as a function of

the task's complexity. In a conventional implementation of CSOUND the second

characteristic is closely related to the complexity of the score, no matter what the

speed of the processor in use. An increase in the number of voices in the score

results in a corresponding extension of the execution time, as does increasing the

number of algorithms within a single instrument. This is inevitable in a situation

where all the parallel processes of musical composition have to be simulated by

processing small segments of each component in turn and then accumulating the

result.

Musically, such an environment is most unsatisfactory, and compares badly

with traditional concepts of composition and performance. One would generally

expect that the rehearsal time for a large orchestra should compare favourably

with that required for a small ensemble, since every player is learning their part

at the same time as every other player. Any steps which can be taken to reduce

the fixed correlation between score complexity and processing time, as well as the

overall response time, are thus to be welcomed. The concurrent implementation

presented here achieves both objectives, and therefore encourages the composer

to take full advantage of the powerful synthesis and signal processing algorithms

offered by CSOUND. Indeed, simple orchestras are capable of 'Actual Speed'

execution on a single fast floating-point transputer at the time of writing, and no

doubt the speed of such devices will continue to increase. However, CsoUND was

never intended as a real-time compositional tool, and some fundamental issues

regarding its musical characteristics must be addressed if this is to be its ultimate

goal. It may well be that the flexible development environment, which permits

the user to add further synthesis operations without regard to the complexities

of machine-dependent I/0, is the program's main benefit; particularly successful

algorithms may be adopted for further optimisation, perhaps using dedicated

hardware, so that they can be used in real-time performance.

3.12. ADDITIONAL SCORE COMMANDS 53

3.12 Additional Score Commands

The method by which instrument initiations are distributed amongst the pro

cessors in the pipeline involves the use of balanced job queues, as described in

section 2.3. It is necessary for the SORT program to make assumptions about

which lines of score are of global interest, and therefore to be disseminated to

all processors, and which are genuine instrument instantiations and therefore to

be allocated a particular processor. It will be recalled that the rules currently in

force are as follows: any line in a normally sorted score which does not begin with

an 'i' is marked as global; all 'i' statements with negative duration parameters

(CSOUND's "forever" marking) are also to be considered global; all remaining

'i' statements are to be assigned a particular processor according to the rules of

the task allocator. This permits special 'instruments' which run for the whole

duration of the score, such as reverberation units,5 to be started on all processors

automatically.

Composers will frequently write instrument specifications which cause the

above algorithm to fail. The fairly limited control structures available to the

electro-acoustic orchestrator demand the frequent use of global variables. A pop

ular way of dynamically adjusting the values of such global variables within an

orchestra is to write an instrument which produces no audio output, but simply

performs such adjustment under the control of its parameter fields. This fails

disastrously when executed on a parallel system. The SORT program recognises

an 'i' statement with a non-negative duration, and accordingly assigns it to a

particular processor; instead of affecting all copies of the global variables in all

of the processors, only the orchestra of the (arbitrarily assigned) transputer ex

periences any change. This is particularly troublesome, as the resulting output

file may sound almost correct, especially in a system with few transputers; one

transputer will have indeed executed the score and orchestra as the composer

5 it should be remembered that the term 'instrument' in this respect refers only to an algorith
mic unit within the orchestra, and does not imply the generation of sound as in a conventional
orchestra.

3.13. CONCLUSION 54

intended, while the others produced samples with constant values of orchestral

variables.

Clearly, a mechanism was required which enabled the composer to force a

particular 'i' statement to be executed on all of the transputers in the pipeline.

This is achieved by the addition of the new 'g' command to the score sorting

program. A command line beginning 'g' has exactly the same semantic meaning

as one commencing with 'i', except that the resulting line in the sorted score

file is an 'i' statement marked as global. If only one processor is specified for

the sorting program, the 'g' character is simply replaced with 'i'. Judicious use

of the 'g' statement with instruments which rely upon the modification of the

orchestra's global variables ensure that a score will be portable between one- and

many-transputer systems.

3.13 Conclusion

This chapter studied the features and structure of concurrent CSOUND in depth.

Methods of running the standard sequential program in parallel form were dis

cussed, and the data structures of the selected method presented in detail. The

multi-thread algorithms for buffer/multiplexing have been examined formally us

ing algebraic and pictorial representations. The differences arising from using the

program in an isonomically concurrent environment have been listed, and their

impacts on the user established.

In the next chapter, the increase in speed is measured for two or three pro

cessors running a standard score and orchestra, and an estimated profile demon

strates how possible future work may further enhance the system.

Chapter 4

Performance Evaluation of an
lsonomic System

4.1 Performance of a Multi-processor Systems

A N IMPORTANT MEASURE OF THE UTILITY and performance of a computer

which executes programs concurrently on more than one processor is the

degree by which the program is scaleable. Using the optimum algorithm becomes

less important than the ability to run the program efficiently where there is a

larger number of processors, because even if some sacrifice in terms of absolute

speed is made initially, an effective concurrent solution (assuming one exists) can

always be made to perform better than the optimum single processor case. An

aid to judging the effectiveness of the concurrent solution compared with the

sequential one is the speed-up factor or performance index.

The performance index of a parallel computing system is calculated by divid

ing the speed-up relative to a single processor system by the number of processors

in the network. A good parallel system will have a performance index close to 1,

so that doubling the number of processors very nearly doubles the speed of execu

tion. In fact, this index may itself be a variable; if a program requires that much

computationally intensive work be done and the results written to a mass-storage

device, as is the case with CSOUND, the performance index for a carefully written

algorithm may be close to 1 for a small number of processors, but may fall away

as the available computational power becomes so large that the fixed overhead

55

4.1. PERFORMANCE OF A MULTI-PROCESSOR SYSTEMS 56

involved in writing to the mass-storage device becomes significant. In such a

parallel, non-real-time system, the von Neumann bottleneck has been removed

from the processor-memory interface and placed at the mass-storage device.

Other authors have addressed the problem of the most appropriate schedul

ing techniques, but most have concentrated on real-time systems which present

slightly different problems. Holm uses a similar scheduling algorithm to that used

by the SORT program, where events are placed in "Fundamental Clock Pulse

Lists" .[52] MIDI 'operating systems' which support multi-tasking and pipelining

from a common controller have also been written.[53] Of greater significance to

the CSOUND scheduling algorithm are the results of W.F.Walker[35] which sug

gest that the scheduler of this type may saturate for large numbers of processors,

especially in a real-time context.

The analysis presented here assumes that the processing time is broken into

three elements: useful computation, while the processor is performing calcula

tions which are directly involved in the production of sound samples; necessary

computation, while the processor is busy performing buffering or communication

subroutines which do not in themselves contribute to synthesis; and suspension,

an 'all else fails' state during which the processor awaits host I/0 with insufficient

buffer space to continue calculation. By manipulating the program source code

and input data, information can be gained as to the relative time spent in each

of these states.

Two scores and orchestras were used to benchmark the system. Programme 11

1s an example with many short events in the score and an orchestra which is

computationally inexpensive; programme 22 has fewer events in the score, but

has an orchestra which demands a great deal of computation.

1 Extract from Elgar's "Enigma Variations" performed on a simple pipe-organ model
2 Extract from J.S.Bach's "Die Kunst der Fuge" performed on a complex FOF model

4.2. EXECUTION PROFILING 57

Test Description Time/Sec.
(1) Normal Execution 497
(2) No Output from Program 332
(3) No Output to Disk 377
(4) Sparse Score 93

Table 5: Experiment 1 Execution Times.

4.2 Execution Profiling

The first experiment attempts to estimate how much time is spent in I/ 0 over

head, and how much is spent in useful computation. Programme 1 was compiled

by three processors in four different contexts:

1. Normal execution- sound output file produced on disk;

2. Output suppressed with the-n (no output file) option in the CSOUND com

mand line;

3. Normal execution with patched code in SNDBUF.C- all ofthe buffering and

data transfer takes place, but the final fwrite() statement is not executed so

that the data is discarded;

4. As 3, but the score is sorted for ten processors and all score lines referring

to processors which were not fitted removed.

The execution times are shown in Table 5.

By far the longest execution time is taken by test (1), indicating that, even

for a system expanded to only three Transputers, the delay incurred in writing

to the host's file system is already significant. When no output is produced by

the program, as in test (2), the execution completes in 67% of the time taken

when writing the sound-file to the disk. However, this does not necessarily mean

that the whole of this delay is introduced by the host machine and the server

program which performs the disk access; when CSOUND is invoked with the -n

4.2. EXECUTION PROFILING 58

Figure 10: Profile of CSOUND Execution

command line option, the sound sample buffering and recombination code will

never be used. The wasted 33% will be spent not just in a suspended state, but

also in necessary computation.

An estimate of the time spent in necessary computation can be obtained from

test (3). In this case, the main program is instructed to produce sound output,

but the sound output buffering module on the root processor is modified. Instead

of the output data being written to disk, the samples are discarded at the last

moment. All of the buffering and communication overhead is thus retained, but

no extra delay is incurred by waiting for mass-storage to be ready. From this

benchmark, we deduce that of total computation time, 88% is spent in useful

computation and 12% in necessary computation. Put another way, of the total

time spent in the compilation of this example: 24% is spent suspended pending

mass-storage operations; 67% is spent in useful computation; only 9% is spent in

necessary computation. Figure 10 presents these results graphically. This is an

encouraging indication of the ability of the Transputer to perform communication

operations between concurrent processes without great impact on the general

processor throughput.

Since resources did not permit a test of the parallel program on more than

three processors, a simulation was devised to estimate the behaviour of a larger

system. The score is sorted using the standard utility, but specifying a pipeline

4.3. BUFFER USAGE 59

of ten processors instead of three. The sorted score is then passed through a filter

program, which removes those lines marked to be routed to non-existent proces

sors. This produces a score with notes allocated sparsely amongst the processors

(test (4)), which is what one would expect in a large system where the number of

Transputers greatly exceeds the number of concurrently sounding notes. If there

is sufficient buffering to allow each processor to 'run ahead' freely, the execution

should take approximately 0.3 times as long on the ten-processor simulation as it

does running in its entirety on three processors (writing the sample data to disk

is suppressed as for test (c) in order to avoid introducing mass-storage delays).

In fact, table 5 shows that the execution time is cut to 25% of the original -

faster than expected. The additional speed-up results from the reduced overhead

in managing concurrently sounding instruments on a single processor, as search

ing instrument instantiation tables, memory allocation overheads, etc., occur less

frequently if a smaller number of currently active instruments are present. This

is an example of a system which exhibits 'superunitary speedup' as modelled by

Helmbold & McDowell. [54]

4.3 Buffer usage

Having produced an estimated execution profile of the parallel CSOUND package,

memory usage must also be considered. The prototype three-processor system

has 1MB of memory at each node. Of this, 256KB is allocated to the sound

sample recombination buffers. The quantity of memory available for this purpose

is defined by the manifest constant SNDBUFS in file BUF.H. The system normally

operates with 32 sound buffers, each 8KB in length.

A common failing of parallel programs which rely for their speed mcrease

on buffering between processes is that as more processors are added, the mem

ory requirement for buffering at each node also increases. In such a situation,

the parallel program cannot be extended beyond a limited number of processors,

4.4. MEASURED PERFORMANCE INDICES 60

SNDBUFS RAM Allocated Time/Min.
4 32KB 11.98
8 64KB 11.50
16 128KB 10.35
32 256KB 9.43

Table 6: Experiment 2 Execution Times

because to do so would require an excessive amount of buffering. The second ex

periment investigates the effect of variation of the number of sound buffers upon

the compilation time of Programme 2. Programme 2 was chosen because it con

tains fairly sparsely distributed score events, and each event is computationally

expensive. It is this combination which places the greatest stress on the buffering

mechanism. Table 6 shows the execution times for Programme 2 compiling with

three processors and various buffer sizes.

There is a 27% increase in compilation time with 4 sound buffers over the

time required with 32 buffers. This is a significant change, although it is quite

favourable compared with the performance of some algorithms mapped in corpora;

tota into a parallel environment. Increasing the number of buffers to 48 only

marginally increases performance, indicating that even this awkward example

has begun to converge at this level. This underlines the need for composers to

generate dense scores at the expense of orchestral complexity if the full potential

of the system is to be realised. To this end, it is encouraged that a set of score

generating tools be made available, which simplify the generation of scores with

a large number of simpler instruments.

4.4 Measured Performance Indices

As a final experiment, Programme 2 is compiled (and the output written to disk)

using one, two and three processors, and the performance index calculated. The

results are set out in table 7.

4.5. CONCLUSIONS 61

Processors Performance Index
1 =1.00
2 0.90
3 0.89

Table 7: Performance Indices

This is a very useful parameter, especially as it is an overall performance esti

mation in a real synthesis situation. The single-processor version of the program

runs with the greatest efficiency; this is as would be expected, as it has a far lower

communications overhead than the pipeline versions. The addition of an extra

processor (with the attendant communications software) reduces the performance

index to 0.90, but the addition of a third processor has a negligible effect upon the

performance index. It is this stability in the performance index with the addition

of an extra processor which indicates a successful mapping onto a limited parallel

environment.

4.5 Conclusions

The CsoUND program, originally developed by Barry Vercoe at M.I.T., provides

a flexible environment for the composition of electro-acoustic music and the in-

vestigation of novel synthesis algorithms. The penalty for this level of flexibility

is slow execution of the program, the execution times of complex algorithms on

personal computers being unacceptably protracted.

The use of a pipeline architecture with distribution of sound generation tasks

followed by signal superposition has been shown to be an efficient approach to

real-time synthesis. This architecture is suitable for CSOUND provided that ac

ceptable routeing and allocation algorithms are available, and that the commu

nications protocols do not place undue extra processing load on the chosen pro-

cessors.

Inmos Transputers perform particularly well in a multi-processor machine,

4.5. CONCLUSIONS 62

even when the software package is written in a language with poor support for

concurrent processing. A speed increase approaching a factor of 30 is achieved

when using one such processor, compared with a conventional 16-bit micropro

cessor, by virtue of the built-in floating-point hardware. This increases to over

80 times speed increase using three processors. Scores previously taking hours to

compile now complete in as many minutes.

Whilst there are a few extra restrictions placed upon the authors of new

synthesis modules, these are easily understood and do not generally effect the

algorithms directly. The time taken to transport the FOF unit generator module

from the conventional environment to the parallel one was tens of minutes for an

experienced C programmer.

Most scores and orchestras which perform correctly on one processor are ex

ecutable without modification in parallel. Certain advanced instruments require

the use of special score commands, but these are now supported by the single

processor package ensuring that all new scores may be executed in parallel af

ter a system expansion. There is every indication that significant increases in

performance are achieved with the addition of further processing elements.

This concludes the section concerning the re-writing of an existing, sequential

piece of software for an isonomic array. The next part moves on to describe a

different problem, for which an isonomic architecture does not provide an efficient

solution.

Chapter 5

Sound Modification through
Signal Processing

5.1 Introduction

T HE SECOND PART OF THIS THESIS deals with the problem of applying ar

bitrary manipulation to real sounds. This differs fundamentally from the

action of synthesis, as the quantity of input and output data is broadly simi

lar. Because the kinds of sound manipulation which are found interesting by

composers tend to require a large amount of computation, they are usually per

formed outside real-time, using files previously recorded on some mass storage

medium. A result of increasing the sound I/0 rate to and from the data storage

device, whilst the quantity of control information remains unchanged, is that far

heavier demands are made of the file-server node of the processor network.

It is a further property of the signal modification software that it is rarely

suitable for isonomic decomposition. The difference between a synthesis and a

sound manipulation program is that, in the former case, the control data structure

specifies discrete, autonomous events explicitly. Whilst algorithms such as digital

filters may be coded systolically after mathematical simplification, they are, in

essence, state machines; their output depends upon their current input and upon

a memory of their previous input. It is impossible to guarantee the present state

of an infinite impulse response filter without evaluating its response up until the

current time for all of the input data presented so far. A time-division, isonomic

63

5.1. INTRODUCTION 64

decomposition (as was used in the case of CsoUND) of such a problem is therefore

highly inappropriate, as each of the processors would need to perform all of the

operations from the beginning of the input stream before the correct initial state

could be established to continue the evaluation of a particular time-slice of the

output signal.

A popular vehicle for the manipulation of recorded sounds outside of real

time is the phase vocoder. [55] Since the final part of this work considers the use

of this program in a more novel application, it seems appropriate to delay a more

detailed examination of its development and operation until then. This brief,

second section contains sufficient introduction only to permit a discussion of the

concurrent program's mechanics.

The object of the phase vocoder is to present the electroacoustic musician

with the input signal in a form which is more intuitively useful and relevant for

the purpose of manipulation than the a series of time-samples. This is achieved

by taking overlapping Fourier transformations of the input signal to produce a

'spectrum' represented as a set of points on the reciprocal-space complex plane.

After conversion to phase and amplitude representation, the frequency of each

of the spectral components is determined by a differentiation of the phase data

against the stored previous frame. If the assumption is made that only a single

spectral component of the input signal is represented by each complex Fourier

transformation result, this technique allows the frequency of that component to

be determined to a resolution in excess of the bandwidth of the Fourier 'bin'. The

spectrum may then be modified by the user in an arbitrary fashion, before the

inverse operation is undertaken, followed by an overlap-and-add process[56] to

yield a modified time signal. Typical transformations possible using a non-real

time phase vocoder might be to change the pitch of a sound without changing

its duration, or vice versa, or to perform a timbral interpolation between two

differing sounds.[57] Pitch changing and time stretching have been demonstrated

by Lent[58] using computationally more efficient algorithms. His solution uses

5.2. AN ALTERNATNE CONCURRENT STRATEGY 65

windowing to reduce harmonic aberration and an adaptive 4th order I.I.R. pitch

tracking filter to retain the formant of the signal though the transformation. For

more ambitious effects, however, the fidelity and flexibility offered by the phase

vocoder are widely regarded as unrivalled.

It is the requirement to maintain the current state of the stored previous

phases of both input and output signal which makes the phase vocoder program

inherently unsuitable for isonomic implementation. This is not because of some

algorithmic optimisation (as is the case with, for example, minimum cross-entropy

analysis[59]), where several potentially parallel processes have been combined in

order to increase the efficiency of execution on a sequential machine, but because

of an intrinsic property of the problem: the calculation of the phase change

between analysis windows requires the storage of the phase information from the

previous analysis. This imposition of execution order denies concurrency.

5.2 An Alternative Concurrent Strategy

The most demanding part of the phase vocoder process, computationally, is un

doubtedly the Fourier transformation. Typically, the user requests 512 or 1024

channel transformations, each window being separated by about half that num

ber of samples. The forward transformation is followed by a rectangular to polar

conversion, involving two products, a sum, a square root, and an arctangent

operation on each pair of data from the Fourier transformer. The inverse trans

formation is preceded by a polar to rectangular conversion of each data couplet,

requiring two products, a cosine and a sine operation.

Clearly, the data structure of the problem leaving no room for parallelisation,

it is the program structure which must be addressed. A systolic approach could

be feasible, as such algorithms for the implementation of the Fourier transfor

mation are readily available. However, the data-flow through the system is not

strictly defined at compile-time, instead being determined by the command line

parameters supplied by the user. For example, if a pitch change down one octave

5.3. PREPARING A CONCURRENT PHASE VOCODER 66

is requested, this may be achieved by padding the forward transformation data

with an equal number of zero-amplitude couplets, followed by a reverse transform

of twice the length. Further, the scaling may be entirely arbitrary, resulting in

variable numbers of channels in the transform process, and therefore requiring

the use of mixed-radix algorithms. If a systolic approach were to be adopted, the

program would have to take the form of a dynamically configurable systolic array

of some considerable sophistication.

Since the program essentially generates work-packets, consisting of a forward

or inverse Fourier transformation in addition to some simple data manipula

tion, interspersed by some relatively computationally trivial user-defined ma

nipulation, summation and buffer management, a dianomic ('processor farm')

approach seemed suitable where a small or medium-sized array of Transputers

was available. A program is dianomic if it sends out jobs to remote processors as

they become available, collecting results from the network when jobs terminate.

Koikkalainen & Sauer[60] have shown this approach to be a practical solution for

problems which can be broken down into an number of sub-tasks greater (prefer

ably, much greater) than the number of processors in the network. As well as

suiting the demands placed upon the software system, it is possible to construct a

dianomic program which configures itself automatically to the network available

as the program is booted. Indeed, the Transputer C compiler from 31 Ltd.[61]

provides function calls which send and receive jobs across an arbitrary network.

Kamangar, Duderstadt & Smith[62] have shown this technique to be efficient in

neural network simulation for up to 30 transputers.

5.3 Preparing a Concurrent Phase Vocoder

Rather than attempt the construction of a new phase vocoder from scratch, it

was decided to start from a reliable program and add the modules necessary to

support concurrency. To this end, the phase vocoder program used by the C.D.P.,

written by Bentley and Henderson, was obtained in the source code. This program

5.3. PREPARING A CONCURRENT PHASE VOCODER 67

uses a mixed-radix algorithm as for Fourier transformations; this has clearly been

transliterated from a FORTRAN version, as the C source retains the structure

of its predecessor exactly with regard to labels and the use of 'goto', although no

source is credited in the comments. It therefore carries with it, implicit in the

age of the original, a certain accepted reliability and numerical accuracy.

The first task for the programmer preparing to make the system operate

concurrently is to separate the program into three parallel threads: the first

reads data from the input file stored on the host file system and sends them

for forward Fourier transformation; the second performs the manipulations on

the results as specified in the command line, and then reissues the data to the

network for a reverse transformation; the third performs the weighted-overlap

and-add operation on the returned, modified time-samples, and writes the results

to disk. Principles borrowed from the development of the buffering algorithms

used in the CsoUND package are used to ensure minimum waiting, and these,

together with the modifications made to the structure of the sequential program,

will now be described.

Figure 11 shows the new program structure. When a program is configured

for a 'flood fill' application, which uses all the processors in an array of arbitrary

topology as 'slave' or 'worker' processes to the root's 'master', two executable

binary files are required. The first, 'master' process can be linked with the normal

C language run-time library which permits access to the host computer's file

system. The second 'worker' process, however, must be linked with the vestigial

stand-alone library, which assumes no direct connexion to the server's operating

system facilities. All input and output for the worker tasks is via the C language

extensions which provide network facilities.

The master task, running on the root transputer, has the additional responsi

bility of maintaining the ordering of work packets arriving back from the network.

Because all the processors in the network are running asynchronously and reading

data on a demand basis, the order in which work packets are returned is not guar

anteed to be the same as the order in which they were sent. An example program

5.3. PREPARING A CONCURRENT PHASE VOCODER

t Inpu
Sound

Samples

Storage

t Outpu
Sound

Samples

~

• Input buffer •
... - - Windowing

...X -l
v

_..
Forward FFT Request -

+
Forward FFT Result

Atbitrary Network of
User-defmed Arbitrary
Manipulation Size

\ __.
Reverse FFT Request -

(
Reverse FFT Result

Weighted Overlap
and Add

Output buffer Jj

Root Transputer

:

Figure 11: Software Structure of the Parallel Phase Vocoder

68

~:~
~
;.-:

::

,
·:

5.4. SUPPORTING DIANOMIC CONCURRENCY 69

provided by 31 1td.[63] performs the calculation of linear prediction coefficients

on an array of Transputers, using master and worker tasks written in FORTRAN.

The solution adopted is to force the host to re-order the result data: as the result

packets containing the predictor coefficients are received across the network, a

serial number is examined to establish the position in the output file in which

the data should be placed; the analogy to the FORTRAN 'DIRECT ACCESS' file in

the C programming language is to use the seek() function call to reposition the

output file pointer before the data are written.

Experience shows that maintaining as low a performance demand on the host

computer and its server program as possible is beneficial in the long term; so

for the phase vocoder, an alternative solution was sought. Indeed, the necessity

to perform the weighted overlap of the result packets enforces the serial writing

of the manipulated sound file, unless this summation process is to be delegated

to the host machine as well. The 31 technical note specifies the conditions to

be satisfied before an application might be considered suitable for dianomic re

coding: amongst these is that the result packets contain data which are completely

independent, and that

If the results of one sub-job are needed for the next (or some later)

sub-job, a processor farm can't be used, and some other technique of

parallelizing must be found.

5.4 Supporting Dianomic Concurrency

The method adopted to overcome the data-dependence objection is a modification

of the window-lookahead technique, well known from the field of telecommuni

cations. By inserting a buffer pool at the point where packets are sent to the

network, it is possible to reorder the received data without causing the master

task to wait, so long as the number of buffers in the buffer pool exceeds the er

ror in the ordering of the result packets. For example, suppose four buffers are

5.4. SUPPORTING DIANOMIC CONCURRENCY 70

available. Data packets requiring the forward F.F.T. processing are assembled

in these four buffers, and are transmitted to the network in the order (1,2,3,4).

Suppose further that the packets are returned in the sequence (1,4,2,3) due to the

different completion rates of the slave processors. Writing the second thread of

the program to remove in-sequence data as soon as it arrives means that the fifth

data packet can be sent to the network as soon as the first has been removed,

which may be before any of the other results have actually arrived. Thus, the

error in ordering of 3 has been absorbed because the buffer pool is more than 3

buffers in size.

It might be argued that this is a potentially restrictive solution, because the

buffer pool size must increase with the number of processors in the network. This

is a misunderstanding based on the (erroneously assumed) connexion between the

sequence number modulus and the number of slave Transputers. It would lend

more credence to this case if there were a single type of job and single buffer pool,

but in fact there are two buffer pools supplying forward and reverse F.F.T. data,

so that results are removed from the first as soon as they become available. Even

in the worst case of a very large transformation demanding more time of the slave

than it takes to fill the entire network with data read from the host file system,

the implementation limit of 16384 reals (65536 bytes) transforms imposed by

the original program means that a root node with only 1MB of RAM can easily

support upwards of 10 buffers. With a more normall024-point F.F.T., somewhere

in the order of 100 slave processors can be used with a one-to-one match with the

buffer space in the root's memory. The medium scale parallelism which is desired

can therefore be achieved with absolute task independence, even placing only

modest demands upon the memory capacity of the root processing element. It

should be emphasised that each of the slave tasks requires only sufficient memory

to hold and process one buffer of data, and that the slave memory requirement

is therefore relatively tiny.

5.5. IMPLEMENTATION OF THE BUFFER/FLOOD ALGORITHM 71

5.5 Implementation of the Buffer/Flood Algo

rithm

Memory is allocated to the buffer pools by calling the nq_ini t () subroutine in

the module netq .c. A constant MAX..NQ...MEM bytes is divided between the buffers

according to the following rules:

If the data on the disk is analysis (i.e. frequency domain) data, create two

analysis buffers and allocate the remaining memory to synthesis buffers;

Else if only the analysis phase is required, allocate all of the available memory

to analysis buffers;

Else divide memory such that the number of analysis buffers equals the number

of synthesis buffers.

Thus nq_ini t recognises that the disk file may contain data from a previous

analysis run, in which case forward F .F. T. requests will never be made to the

network, or that the user may request analysis only, in which case the results from

the forward F.F.T. are written straight to the output file, and the third thread

of the program (usually performing the weighted-overlap-and-add operation) is

never started. Having generated the buffer pools and assigned values describing

the number and size of buffers to appropriate variables, nq_ini t proceeds to set

up the buffer access locking semaphores. It will be recalled that the access barring

mechanism used in the CsoUND program used three semaphores to implement

a buffer/ demultiplexor structure, or five semaphores for a deadlock-free buffer

multiplexer. An extra level of sophistication is demanded in this case, however,

because the order of validation of buffers in the buffer pool is not guaranteed to

be sequential. An efficient solution is achieved by creating one (initially lowered)

semaphore for each buffer. The general network receiving thread, nq_recei ve 0,

is started, and nq_ini t returns.

5.5. IMPLEMENTATION OF THE BUFFER/FLOOD ALGORITHM 72

The detail of the buffer-pool mechanism is best understood by first examining

the data structures involved in the communication phase. Each message, be it

either a network request or a network result, consists of a task descriptor followed

by the contents of a buffer. The most concise way of describing the structure is

simply to quote its definition from the NETQ.H file:

typedef struct {

int sequence; I* Index into buffer array *I
int

int

action;

size;

I* Place result in anal or syn buffer *I
I* Length of following buffer in bytes *I

float *buffer; I* Locataion of source/result buffer *I
float pitchfac; I* Pitch change factor *I

} NQ_TASK;

Each field of this structure must be returned unmodified by the slave process

to the master; this is the mechanism by which the order of arrival of the results

is established. The integer sequence is the subscript into the array of pointers

to buffers associated with the appropriate buffer pool. The integer action can

take one of the special values NQ..FORWARD..FFT or NQ-REVERSE..FFT according to

the direction of the transformation required by the master. This field is also used

by the worker to determine whether the polar-rectangular or rectangular-polar

conversion should be performed, and by the master's network receiving thread to

determine whether an analysis or synthesis semaphore should be raised to validate

the returned data. The buffer field points at the buffer in which the original data

was stored. This is meaningless to the worker thread, as it represents an address

in the memory of the root Transputer, but is included to avoid the necessity for

the receiving thread to have to perform its calculation once again. The variable

pit chf ac is a floating point scaling value used by the worker, so that as much

computation as possible is decentralised.

When the first thread has read a buffer-full of sound samples from the input

file stored on the host machine's disk, a descriptor is constructed, specifying which

5.5. IMPLEMENTATION OF THE BUFFER/FLOOD ALGORITHM 73

buffer is to be transformed and in which direction the transformation is required.

The task descriptor and the buffer are sent to the network with one simple call to

the routine nq_send. The calling program then simply loops so long as there are

buffers free in which to place the input sound samples, and there is still data in

the input file; the former condition is established by the state of the semaphore

containing the number of free buffers, in much the same way as the multi-thread

buffer algorithms of CsOUND.

Eventually, the transformation will have been completed, and the (unmod

ified) task descriptor is sent back to the root Transputer. It is received by

the nq_recei ve thread, and the data in the source buffer is replaced by the

result of the transformation, which immediately follows. nq_recei ve then calls

nq...mark_as_valid(), passing a pointer to the received task descriptor as an ar

gument. This enables the semaphore associated with the new data's buffer to be

raised, indicating that it is ready for use by the second thread.

The second thread is responsible for transferring the data from the analysis

buffers as it returns from the workers to the synthesis buffers whence it is sent

to the network for resynthesis, with some user-defined modification en route. It

waits on one of the members of the array of semaphores which are associated with

the validity of data in the analysis buffers; the subscript of the semaphore which

is used in incremented cyclically modulus the number of analysis buffers. This

approach simultaneously provides inter-thread synchronisation and the mecha

nism for coping with out-of-sequence data being returned by the network; the

thread will simply wait until the buffer with which it is concerned is marked as

valid, and will continue to remove data from it and subsequent buffers until it

reaches one which has not yet been received. Having performed the manipulation

specified by the user, the frequency domain data (now placed one of the synthesis

buffers) are sent to the network, using a fresh descriptor which will request an

inverse transformation. The analysis buffer is now free, and this is indicated to

the first thread by signalling on the semaphore anaL.:free, indicating that one

more analysis buffer has become available.

5.5. IMPLEMENTATION OF THE BUFFER/FLOOD ALGORITHM 74

The third, and final, thread operates in much the same way as the second: it

waits on one of the array of semaphores associated with the synthesis buffers; and

reads data from valid result buffers and performs a weighted summation into the

output buffer, before signalling on syn..free that the number of buffers available

to the middle thread has increased. The master task is therefore described in

terms of three loosely coupled threads which collectively perform the function

of the phase vocoder, plus one very simple 'tooth-fairy' thread to receive results

from the network, and replace the original data with its transformation before

the receiving thread can awake.

Worthy of mention are the two exceptions to the above course of events,

when the user specifies either the synthesis only or analysis only option in the

program command line. In the case that only analysis is required, the second

thread writes frequency-domain samples onto the disk immediately the results

are returned from the network, and the third thread is never started; when only

a synthesis is expected, the course of events is largely unchanged, except that the

number of analysis buffers is reduced to two, and that the first thread marks data

as valid as soon as it is placed into an analysis buffer rather than sending it to

the network with a forward F.F.T. request.

The remaining code to describe is the worker task, and this is not too arduous.

The worker comprises two modules: MXFFT .C, which is an entirely unmodified

copy of the C.D.P. source code to perform mixed-radix fast Fourier transforma

tions; and FFTW.C, written to provide a harness through which the mathematical

routines may be called. Operation of the main program is simple: it loops in

finitely, receiving a task descriptor and a buffer full of data from the network;

then, depending upon the action field of the task descriptor, it either performs

a forward F.F.T. followed by a rectangular-to-polar conversion, or a polar-to

rectangular conversion followed by an inverse F.F.T .. The task descriptor is sent

back to the master task, followed by the result of the F.F.T., and the code repeats

da capo.

5.6. CONCLUSION 75

5.6 Conclusion

Isonomic decomposition has shown to be effective for large-scale programs such as

general purpose direct synthesisers. Unfortunately, some algorithms, the phase

vocoder being one of them, cannot be reduced in this way; their subsequent

output relies upon storage of the previous outputs. This necessarily imposes a

sequential order of execution, and makes independent copies of some program

running in isolation unable to produce an equivalent result. The parallel phase

vocoder which has been coded relies upon a concurrency of delegation rather

than cooperation; a master program issues slave programs with work packets,

the results of which are collated by the master regardless of the order in which

they actually arrive. The next chapter contains the results of the benchmark

tests and an evaluation of performance of this system, comparing it with the case

where both control and data are distributed.

Chapter 6

Performance Evaluation of the
Distributed Phase Vocoder

6.1 Anticipated Benefits

T HE STRUCTURE OF THE DISTRIBUTED PHASE VOCODER described in the

previous section derives its speed-up from the delegation of the most compu

tationally intensive part of the task, the Fourier transformation, to a network of

processors. There is therefore an innate restriction on the ultimate performance

of the system, because whatever the speed of the slave processors, some data

manipulation has to be performed by the master prior and subsequent to the

transformation taking place. Some performance enhancement is to be expected

as extra processors are added, but as the slave processing resource increases, the

point is approached where the master is using its entire capacity for the window

ing, user-defined data manipulation, and weighted overlap part of the process.

Another bottleneck occurs at the access to the host file system. The master

transputer communicates with the host through a server program written in C.

The data rate of the program in passing file information to and from the hard

disk is a limiting factor. Mention has been made in the first section that a

speed enhancement was achieved by buffering the output data path of a synthesis

program; this enabled the transputer to continue useful calculations of sound

output samples while waiting for the host file-system to respond. Users have

reported that programs to generate sounds simple enough to require less than

76

6.2. BENCHMARK RESULTS 77

Number of Processors
(N,D) 1 2 3 I 4

(2048,128) 291 169 No further reduction
(1024,256) 78 56 55 I No further reduction

Table 8: Execution Time in Seconds for Unmodified Resynthesis

approximately one-fifth1 of their specified duration to be computed suffered from

suspension due to limited I/0 bandwidth beyond the absorbtion capability of a

buffering algorithm.

6.2 Benchmark Results

The :flood-fill phase vocoder program automatically configures itself to use all

the processors in a transputer array when it is loaded; all that is necessary to

perform the speed test with a varying number of processors is physically to remove

processors from the array, by unplugging their link cables, before loading the

program.

The results of the benchmarks are interesting, because they illustrate the

efficiency of the fast Fourier transformation module. A monophonic soundfile

was generated by recording the utterance "Durham Music Technology Group"

by a female speaker. This lasts for 2.06 seconds, and occupies a disk space

of about 132KB at a sample rate of 32KHz. The distributed phase vocoder

program was then used to perform an analysis/synthesis of this file, producing

an output file sonically identical to the original. The test was performed twice,

using 2048-point transformations spaced at 128-sample intervals at first, and then

using a 1024-point transformation at every 256th sample. Table 8 contains the

reported timings: N is the number of points in the Fourier transformation; D

is the (unfortunately named) decimation factor, being the interval at which the

transformations were taken.

1 Using an Intel 80286-based file server running at a clock rate of 20MHz

6.2. BENCHMARK RESULTS 78

The additional processors were connected as a ternary tree, so as to reduce

the path length to the master as far as possible. Where the table carries the

legend "No further reduction", the addition of extra processors made absolutely

no difference to the speed of processing. In fact, it was even possible to discon

nect these processors while the network was running the program without any

interruption.

The maximum speed-up achieved with the 2048-point transformations is a

factor of 1. 7, using two processors. This corresponds to a performance index of

0.85. The speed-up in the second case where 1024-point transformations were

used is only a factor of 1.4 times, yielding a performance index of 0. 7. In view

of the fact that host file-system 1/0 is already buffered in this program, the

most likely cause of the bottleneck which prevents any further speed increase is

the processing power of the master node. Each worker packet containing time

samples needs to be multiplied by the windowing function specified by the user in

the command line. This function has to be performed independently for each of

the overlapping windows, and requires at least N multiplications in floating-point.

Data received must then be moved to a different area of memory before being

sent for reverse transformation, and the result of this transaction is to provide

N further data points which must be scaled according to a different windowing

function, and then summed with previous data to produce the final output signal.

With at least 3N floating-point operations performed by the master transputer,

it is easy to see that the computing demands are beginning to catch up with the

NlogN requirement of the Fourier transformation process as they are distributed

across more and more processors. With additional work, it would have been

possible to migrate the windowing function onto the slave processors by adding

a field to the task descriptor specifying the window length and type required.

Since it is guaranteed that, at most, two different windows will be used, worker

tasks could hold these window functions in arrays between receiving task packets,

avoiding the calculation of a trigonometrical function for each task. This would

require a slight increase in the slave node memory requirements, currently an

6.3. CHECKING THE FILE SERVER INTERFACE 79

Number of Processors
(N,D) 1 2 3

(512,128) 129 122 No further reduction

Table 9: Execution Time in Seconds for Analysis Only

extremely modest 128KB., and so was not undertaken. It might be considered

possible as a practical future extension, especially as the users of the system have

a three transputer machine fitted with 1MB per node. However, it will only

postpone the onset of the bottleneck demonstrated so effectively above.

6.3 Checking the File Server Interface

The explanation of the limited speed-up potential of the distributed phase vocoder

makes the assumption that the master transputer is compute-bound, and that

the 1/0 bandwidth of the host machine is not causing data starvation. This

assumption was made on the observation that the lamp on the front panel of the

host machine which indicates that the hard disk drive is being accessed remained

unilluminated for the most part. However, this result is also consistent with a

very fast disk drive fitted to a computer with a processing power too limited to

access it continuously under the control of the server program. A further test was

made to eliminate this possibility.

The phase vocoder was instructed to produce an analysis file containing 512

points of spectral information from the original utterance, with the Fourier trans

formations being taken at a decimation factor of 128. This results in 512 complex

data points being generated, each of eight bytes in length, for every 128 two-byte

input samples; the length of the output file is 16 times the length of the orig

inal, or some 2.1MB. Clearly, this not only places a greater strain on the file

server, but also halves the demand placed upon the transputer system; no inverse

transformation is required. The results are presented in table 9.

Since it requires at most 120 seconds to write a file of this size, the time taken

6.4. CONSEQUENCES OF THESE RESULTS 80

to write a resynthesis file should only be in the order of 25 seconds2
- much

less than the times recorded for the resynthesis experiments. Recalling that the

host 1/0 is buffered, the previous assertions regarding the fact that the master

processor is compute-bound are substantiated.

6.4 Consequences of these Results

The general rule that limited capacity to provide raw data and control information

is the cause of low performance indices in multi-processor systems is upheld.

Delegation of the mathematical operations in this system demonstrated the fact

that the speed-up factor tends towards a limit if there is no also way of delegating

control functions. The ramifications of this statement are that systems which

separate functional elements by control paths of limited bandwidth, such as the

Project Phi proposal by Cassady,[64] must ensure that there is a mechanism of

increasing this bandwidth as extra processors are added. This was the case with

the CSOUND example presented in the first part, as it is with systolic systems

based on fixed-ratio data movement,3 like the ring system proposed by Kirk.[65]

In the third and final section, armed with this knowledge and with the experience

of users' requirements, a machine with a large number of processors which avoids

these limitations will be described.

2since the data set is only two ninths of the size, one might expect the file access time to
be scaled accordingly, making the rather naive assumption that the time to write and read a
given data block are similar.

3 by which it is meant that the ratio between the number of input data and the number of
output data is fixed in advance and known.

Chapter 7

Considerations in the
Construction of Real-time
Electroacoustic Instruments

7.1 Introduction

T HE FIRST TWO PARTS have discussed the technical benefits of running mod

ified, existing software on an array of processors, in order to achieve a signif

icant increase in processing speed. In this, the final part, we turn to discuss the

implications of very high speed computers. It is suggested that, once sufficient

processing power is available to perform even the most demanding synthesis al

gorithms in real-time, the traditional man-machine interfaces become redundant

or unsuitable.

The sophistication of input and output devices is generally required to increase

as the available computing facility grows in power.(66] In the context of a real

time instrument, the approach to the design of man-machine interface must be to

reduce the number of input parameters required for the control of an instrument

to the absolute minimum consistent with the desired level of control. This has the

effects of increasing the ease of use of a particular item of equipment, and enabling

the user to make intuitive or investigative changes in real time. Thus a suitable

man-machine interface to a given software or hardware machine is essential to

realise the machine's functionality.

81

7.2. M.M.I. AND APPLICATION PROGRAM DESIGN METHODOLOG¥82

Numerous approaches to man-machine interfaces exist for non-real-time sys

tems, and these tend to fall into graphics driven or command driven partitions.

Invariably, the command language or graphics environment is evolved rather than

designed; the features that are presented to the user are those which occurred

to the programmer of the system in question and are those which drive the ap

plication in the easiest way. This is not the same as presenting the user with

an interface which conforms as closely as possible to the requirements which the

application was designed to satisfy. For example, many early digital synthesisers

permitted the direct input of a time-waveform via a graphics tablet: whilst this

gives the user total control over the timbre of a musical note in principle, the in

terface is unsatisfactory because a change in the input parameter is by no means

intuitively linked to the result.

7.2 M.M.I. and Application Program Design

Methodology

The point of connecting an application to the user through a Man-Machine inter

face module is that the possibly conflicting interests of ergonomics and program

efficiency are more rigorously partitioned. This is especially the case where par

allel processing is available: under such circumstances, the M.M.I. module of

a finished application may be run on different physical processors; no impact

whatsoever on the performance of the rest of the system <;tccrues.

It would seem to be the case that little exists in the way of graphic or other

representation of a single note's characteristics. Those definitions currently in

use are either couched in psychoacoustic terms, which are too loosely defined to

lend themselves to computer implementation, or else rely on scientifically con

crete ideas such as frequency, envelope and so on, which are too low level to

express conceptual ideas about a sound sufficiently concisely. What work has

been done in this field seems to be concentrated on the macro-definition of sound:

7.3. MAN-MACHINE INTERFACES FROM SCRATCH 83

Schaeffer's[67] syntax for Musique Concrete maps the whole of a musical sound

onto three two-dimensional graphs, but becomes less well defined where the spec

ification of physical note attributes (as may be required to control a synthesiser)

are concerned. The three plans which are used to describe a sound are based

on well-understood psychoacoustic parameters, but as Schaeffer's work was di

rected more towards the physical manipulation of sound recorded on tape, it does

not deal with the complex conversion procedure which must be used to extract

physical control parameters from their psychoacoustic correlates.

7.3 Man-Machine Interfaces from Scratch

Before considering the implementation details or even undertaking the functional

description of a man-machine interface, it is wise to spend some time defining

exactly what such an interface should do. The following attributes are required:

• The input to the M.M.I. is in a form most acceptable to the user, and

therefore, ipso facto, contains an element of user-definition. Little can be

achieved to aid composers unless they give some indication of what they

want.

• The output from the M.M.I. is in a form most acceptable to the applications

program writer. This implies a high degree of cooperation between the

author of the real-time system and the author of the M.M.I.

• Any real-time general purpose machine for the reproduction or synthesis of

sound inevitably has a very large number of control parameters associated

with it. The M.M.I. should successfully map any (user-defined) combination

of these control parameters onto the parameters required as inputs for the

rest of the machine. This is best thought of as mapping points in a low

dimensional domain onto points in a higher-dimensional range. The exact

configuration of the M.M.I. determines the nature of the mapping. Hence

the range of control inputs which can be achieved using the available input

7.4. MORE TRADITIONAL M.M.I.S 84

controls can be fine-tuned to permit the exploration of the desired part of

timbre-space.

7.4 More Traditional M.M.I.s

Assuming that the main problem of a man-machine interface module would be to

map ann-dimensional input control to an m-dimensional control parameter space,

it may be asked how many control parameters may the performer reasonably

expect to provide simultaneously. Let us consider the violin as a machine which

is to be controlled, and list some relevant control parameters.

Parameter N arne Method of Control Physical Effects

Pitch Choice and stopping of string Frequency

Volume Bowing (including weight, Amplitude,

speed, angle of bow) Harmonic Content

Timbre Distance of bow from bridge Amplitude,

Harmonic Content

Vibrato Movement of left hand Frequency

Envelope Bowing, plucking Amplitude/time

This table illustrates that the concept of a 'note' as imagined by the performer

must be expanded into several control parameters for a synthesising machine;

what the performer sees as a one-dimensional quantity in fact requires many con

trol dimensions. A M.M.I. may map a number representing a single 'envelope'

parameter (e.g. 0 for staccato through to 1 for legato) onto a curve in a far more

complex control-space (say, ADSR envelope, or even a more complex set of pa

rameters). Furthermore, the elements of the input vector need not be orthogonal:

in this example, both the bowing action and the distance of the bow from the

bridge affect the amplitude and timbre of the note. Clearly, the interpolation

required between adjacent points in the control space is in itself a non-trivial

problem and may require some considerable processing power. It must also be

7.5. REAL-TIME METHODOLOGY AT IRCAM 85

taken into consideration that the input parameters themselves may be non-linear:

pitch is related to log(frequency), and volume to log(amplitude), for example.

As if the problems of non-linear, multi-dimensional interpolation were not

enough, many synthesisers exhibit changes in output for smooth changes in input

parameters which verge on the discontinuous. A prime example is that of the

over-driven frequency modulator, where a change in the modulation depth causes

the partials of a tone suddenly to be shifted in frequency.

A successful M.M.I. kit will require tools to specify the interpolation laws along

a given dimension in the performer's control space, apply weighted averaging to

any of the specified control parameters, and even cope with functions which

are only piece-wise continuous. It will almost certainly make use of graphic

presentation methods and have sufficient built-in processing power to produce

the synthesiser performance parameters in real time.

7.5 Real-time Methodology at IRCAM

A new approach to the control of real-time instruments was suggested con

currently with the construction of the 4X multi-processor machine at IRCAM,

Paris.[68] Xavier Rodet pointed out that a 'Patched Note-list Function' system,

as used by CSOUND and many other non-real-time programs, is necessarily inap

plicable to the control of a real-time machine, relying as it does upon events with

a priori unknown duration. Since the duration of an event cannot be specified

by an observer until its completion, the note-list cannot be produced instanta

neously, but must lag behind the source by at least the duration of the event. It

is therefore impossible to perform a real-time control function using a 'Score and

Orchestra' system analogous to CSOUND's.

The proposed alternative, implemented on the Sun Mercury Workstation and

others, is that of 'Algorithmic Synthesis'. The rationale is not to define the pre

cise characteristics of each note explicitly by means of an orchestral command,

but instead to supply the synthesiser with generic information as to the desired

7. 6. COMPONENTS OF AN ALGORITHMIC SYNTHESIS SYSTEM 86

quality of the sounds. The subtleties of each note are provided by the performer

when the instrument is played; the same approach will be advocated in the fol

lowing chapters for real-time control. However, it seems that instead of becoming

an immediate success with composers, the prevalent feeling was that the original

'note-list' format was usually preferable.[27] The reasons for this should be prop

erly understood before a starting on the control software for a real- time machine,

lest we reproduce such an undesirable environment too accurately.

7.6 Components of an Algorithmic Synthesis

System

Typically, Algorithmic Synthesis systems retain the orchestral definition from

their imperative predecessors written in advance; the real-time part of the sys

tem replaces the score. Since the score is no longer an event-list which can be

compiled ahead of the output sample stream, the syntax of the orchestra is nec

essarily modified. The orchestra is now rule-based rather than imperative; an

analogy can be made with the distinction between functional and imperative

programming languages. Just as functional programming has failed to gain a

mass following for practical use by computer programmers, I suggest that com

posers may have been reticent about adopting such methods of specification for

their orchestras. Despite the more concise nature of functional programming lan

guages and their close approximation to rule-based semantics, the fact remains

that many composers prefer the syntax of imperative languages to the syntax of

a functional specification; the former is more familiar and is therefore generally

found easier, even though it is not inherently so.

It has been proposed that the solution to the control of a real-time instru

ment is to limit the number of control parameters collected from the performer

to direct the trajectory of the sound through a more restricted range of timbres.

7.6. COMPONENTS OF AN ALGORITHMIC SYNTHESIS SYSTEM 87

The particular range of timbres available becomes the choice of the 'orchestra

tor'; an analogy with conventional instrumental practice. However, this proves

a little too restrictive for the control of the vast range of sounds available from

an electroacoustic instrument. The solution is to divide the score into two com

ponents: a real-time source which is taken directly from the performer, and a

pre-programmed source which modifies orchestral parameters in the manner of

presets on an organ console. This permits the composer to specify an 'orchestra'

with a very broad range of possible timbres, and then to select an available set

which the performer may use. This is similar in some respects to the organ builder

providing various stops for the organist to select as he plays. The methods of

controlling an electroacoustic instrument are more sophisticated, including time

varying functions. An approach similar to this is used by the IMPAC system at

Stockholm,[15) where composers start with a granular synthesiser and sculpt the

range of timbre-space available to the performer.

The necessary components of a successful Algorithmic Synthesis system seem

to retain the score and orchestra entities, albeit in a modified form, and include

an additional score-like control for direct use by the performer. It is often difficult

to know in advance how a performance gesture should be translated into control

parameters suitable for use by the instrument. The performance interface should

therefore allow automatic assimilation of the significance of various performance

data, possibly using one ofthe 'teach-by-example' algorithms common in robotics.

Previous attempts at solving the M.M.I. problem have concentrated on build

ing machines which follow a human performer. inter alia, Morita[69) demon

strated a system in 1989 which processes the image from a C.C.D. camera to

enable a computer-music system to follow a human conductor; Vercoe[70, 71, 72)

has tracked polyphonic music using cognitive models to enable the construction

of a synthetic accompanist; and Dannenberg[73) has demonstrated a MIDI toolkit

which permits various sophisticated real-time interactions with live musicians. A

comprehensive review of the control possibilities offered by MIDI has been pre

sented by Yavelow.[74) These techniques have all exerted a considerable influence

7.6. COMPONENTS OF AN ALGORITHMIC SYNTHESIS SYSTEM 88

upon the interaction specification presented here, but are too loosely coupled to

be used directly in an electronic musical instrument. Several commercial units

are available which perform the conversion of an acoustical input into a MIDI

command sequence, and some of these apply advanced artificial intelligence tech

niques to increase the level of interaction.[75] Indeed, some demonstrations of

gestural capture devices have shown the MIDI interface to be capable of impres

sively accurate control. Waisvisz' performance at the Second STEIM Symposium

on Interactive Composition in Live Electronic Music received a critical accolade

from Curtis Roads who wrote:[76]

After several minutes, Waisvisz stood up and pulled on a belt at

tached to a long ribbon cable and two performance control devices

that he strapped to his hands ... These devices, called 'The Hands',

sense relative position and orientation in space, and contain switches

and potentiometers for controlling pitch, timbre, and selection of in

struments (patches) via the MIDI protocol. ... Thanks to Waisvisz,

computer music in performance has finally come into its own as a

completely new virtuoso medium, quite apart from traditional instru

ments or traditional clavier controllers

However, the final result, even of Waisvisz' impressive performance, must be

constrained by the limited bandwidth of a MIDI control wire, which is around

32Kb/s. The direct MIDI controller is still designed to collect data of interest to

the synthesiser, rather than data of interest to the musician.

In summary, patched note-list functionality is inadequate for the control of a

real-time system. Algorithmic Synthesis goes some way towards alleviating this

deficiency, but a purely rule-based system requires the use of functional tech

niques which are often unpopular with users. The following chapter contains

the description of a hardware and software approach to real-time gestural cap

ture. In attempting to collect control information which corresponds with the

7.6. COMPONENTS OF AN ALGORITHMIC SYNTHESIS SYSTEM 89

performer's conception of a musical rendition rather than the sythesiser's con

trol requirements, it is hoped to improve not only the range expression of which

an electronic instrument might be capable, but also to make the medium more

accessible to the less computer-literate musician.

Chapter 8

Towards the Systolic
Synthesiser: Craftsman,
Composer, Performer

8.1 Introduction

T HE PREVIOUS CHAPTER GAVE AN OVERVIEW of the problems facing the

designer of an electroacoustic instrument; this chapter proceeds to explain

a technique by which such an instrument might be constructed. By dividing

the task into three discrete fields, it should be possible to make the instrument

accessible to performers without special knowledge of computer music.

In the context of traditional music, the three skills of the instrument builder,

the composer and the performer are distinct and individual. In the field of electro

acoustic music, however, the composer is often expected to be fluent in the 'con

struction' of his orchestra, often using highly specialist computer algorithms, as

well as composing the music and possibly providing the mechanism for interaction

with human performers. A tripartite approach to the problems of electro-acoustic

music enables a more structured solution to the problems of using this medium.

One possible way for these three different skills to operate independently is to

provide a mechanism for the performer to select from a wide range of possible

timbres by means of gestural control. Since acoustic instruments already provide

an extremely well developed method of gestural capture, it is desirable to be able

to use the information which their sound contains to derive control parameters for

90

8.2. MUSIC AND ELECTRONIC TECHNIQUES 91

the electro-acoustic instrument. A move towards this end is the development of a

real-time phase vocoder, and its implementation on an array of microprocessors

functioning concurrently.

8.2 Music and Electronic Techniques

In his study for the International Music Council[77] entitled "Composer Performer

Public", Everett Helm states:

Since the early '50s when electronic compositions began to appear,

enough time has elapsed to afford a certain perspective. . .. It is clear

that the possibilities of electronic music are not infinite as was sug

gested in the euphoria of the early days. The kinds and varieties of

sounds that can be created electronically seem to be limited to certain

typical ones which recur constantly The enormously complicated

rhythmic, pitch and interval relationships that can be created elec

tronically have proved to be more advantageous in theory than in

practice, for it has become apparent that the human ear is not always

capable of perceiving the complications which the human brain can

devise.

These problems associated with electronic music from its beginnings in the

1950's may be the result of a misunderstanding of the purpose the new tech

nology is trying to achieve. It is indeed all too easy to produce "conveyer-belt

compositions, hardly distinguishable one from the others" (Helm again). It is no

coincidence that the title of this chapter is not dissimilar from the title of Helm's

treatise: the following sections will present a suggestion as to how the "infinite

possibilities" of electronic synthesis may be harnessed in live performance as well

as non-real-time ('tape') compositions.

Traditionally, a piece of music is performed by a specialist 'performer', whether

'live' in a concert hall or in front of a microphone in the recording studio. The

8.2. MUSIC AND ELECTRONIC TECHNIQUES 92

performer need have no training in composition; it is his job only to realise the

musical notation on the page in front of him as sound. Similarly, the composer

need have no performance capacity other than a technical appreciation of the

capabilities of the instruments for which he writes. Few symphonies would be

written if it were a prerequisite that the composer should be competent to perform

each orchestral part. It is also unnecessary for the craftsman who built the violin

to be skilled either in performance or composition; his function is to understand

intuitively the physical acoustics of the instrument he is constructing, and to build

one capable of performing well its orchestral role. By admitting the specialisation

of the delivery of a piece of music into these three separate phases, a vast level of

expertise has been accumulated over the past millennium, handed down by oral

tradition.

One of the aims of this chapter is to propose a solution to the problem of

providing such specialisation for the electro-acousticians of the 1990's, and to

explain the internal mechanism of a real-time electro-acoustic machine based on

these principles. With knowledge of the internal operation of this machine, it is

hoped that it should be evident why precisely that knowledge is not necessary

for the machine's tailoring by the specialist electro-acoustical craftsman, or its

use by the specialist composer.

As soon as such a machine begins to work in real-time, it becomes an in

strument. As soon as the machine becomes an instrument, its operator becomes

a performer. It is hoped that this approach will enable a greater number of

musicians to be involved in electroacoustic performances than has been possi

ble hitherto, and will ultimately be superior to any attempt to design special

electronic human-computer interfaces[78, 79], by virtue of not requiring the per

former to learn the use of any new instrument, but rather to modify the technique

applied to his existing one.

8.3. CONSIDERATION OF CONTROL AND SYNTHESIS 93

8.3 Consideration of Control and Synthesis

In fact, there is not an infinite number of perceivable sounds. From signal pro

cessing theory, it is known that a signal of given bandwidth may be represented

by a series of time-samples; the sample rate must be at least twice the signal

bandwidth, and the accuracy of these samples is related directly to the quantity

of noise in the reconstituted signal. By setting the sample rate sufficiently high

to capture all signals which the human ear is able to perceive, and by taking

samples of sufficient accuracy to equal the ear's dynamic range, a sound may be

regenerated which is acoustically an identical copy of the original. Furthermore,

it is possible to synthesise any repeating waveform to an arbitrary accuracy by

the summation of sine waves of different frequencies. This method of synthesis,

referred to as 'additive synthesis', has the advantage that it is capable of produc

ing arbitrary timbres, but requires that a large quantity of information is passed

to control the amplitude and frequency of many individual oscillators. However,

it is eminently suited to parallel processing, where each of the processors may

contribute a small number of partials towards the final signal. This approach has

been realised by the Durham Music Technology Group, using a small array of

Inmos transputers connected in a pipeline configuration.[37]

If the samples thus obtained are concatenated and read as one long number,

then the set of all sounds lasting a given time can be enumerated simply by writing

down all of the integers between zero and the largest possible within the limit

imposed by the duration of the signal. The problem of the electro-acoustical

craftsman is to build an instrument which synthesises only a fraction of these

possible sounds under the gestural control of the performer. Unfortunately, the

size of the set of possible sounds is rather large: sounds lasting up to one second, at

C.D. quality, number approximately 2100000 (about 1030000
); since the universe has

been in existence for a mere 1017 or so seconds, a listener who began to audition

these sounds at the creation would so far have heard an insignificantly small

8.4. THE PHASE VOCODER AND INTUITIVE CONTROL 94

fraction. 1 Clearly a method of gestural control is required which is extremely

selective.

8.4 The Phase Vocoder and Intuitive Control

The Digital Phase Vocoder described by Flanagan & Golden[80] was intended for

use in reducing the quantity of data transmitted along a telephone line during

speech transmission. A more computationally efficient implementation of the

Phase Vocoder, using the Fast Fourier Transform to replace a bank of filters,

was introduced by Portnof£.[81] A comprehensive introduction to the principles

involved is given by Dolson[82] and by Gordon & Strawn.[83]

An essential feature of the Phase Vocoder is that the output signal consists

of a sequence of spectra, illustrating the evolution of the partials present in the

input sound with time. This separates the timbral information of an input signal

from its temporal evolution. The former is represented in the relative amplitudes

of the partials in a given spectrum; the latter as the change of partials' amplitudes

and frequencies between the times at which the spectra are taken. An important

feature of the Phase Vocoder is that its output retains information about the phase

of the partials as well as their amplitudes. By using this phase information, it is

possible to interpolate a frequency trajectory as well as an amplitude trajectory

for each partial as the input sound evolves. Therefore, the output of the Phase

Vocoder accurately tracks the timbral information of its input signal.

Since the .output of the Phase Vocoder isolates the partials present in its in

put signal, it lends itself immediately to the transformation of digitally sampled

sound in real- or non-real-time. A brief summary of the musical applications of

Phase Vocoders has been presented by Moorer.[84] An example of the sophis

ticated use of the Phase Vocoder in electro-acoustic composition occurs in the

1 In fact, this number is only an upper bound on the 'number of one-second sounds'; it ignores
psychoacoustic results which demonstrate that large groups of the set thus enumerated would
sound identical. The point remains, however, that the synthesiser has a huge variety of timbres
from which to select according to a far more restrictive set of gestural controls.

8.4. THE PHASE VOCODER AND INTUITIVE CONTROL 95

now renowned piece 'Vox V' by Trevor Wishart, which exploits the intuitive na

ture of the program's output by devising complex transformations between two

different sounds. However, this exemplifies the use of technology by technically

knowledgeable craftsmen-composers and, by virtue of its non-real-time nature,

fails to provide a pathway to direct control of a musical instrument.

Speaking at the International Computer Music Weekend at the University of

Keel in 1991, Simon Emmerson said:

We need to evolve systems which give back to the performer a sensory

relation with the result; one that he/she can monitor and control

through this feedback in real-time - the expressive component.

A major problem in the control of our proposed electro-acoustic instrument

is one of permitting its use in performance by the technically naive user without

compromising its flexibility and diversity of timbre. It would seem that if a ma

chine existed which could track accurately the timbre, pitch and other relevant

parameters of some control signal, the problem of performance could be reduced

to asking the performer to generate a certain range of sounds in a familiar way for

instantaneous, arbitrary but repeatable transformation by the instrument. This

'range of sounds' might arise from the performer's voice, or from their playing a

conventional instrument with which they were familiar. It would then be possi

ble for to control the electro-acoustic performance by using a traditional musical

discipline: the consummate isolation of the gestural-capture mechanism. Addi

tionally, the intermediate representation of the control data is intuitively simple,

being a list of instantaneous partial amplitudes and frequencies. This is compat

ible with the requirements of the instrumental craftsman, whose responsibility it

is to design the transformation between the input and output timbres.

8.5. AN ANALYTICAL APPROACH 96

8.5 An Analytical Approach

Most documented implementations of phase vocoders in musical applications are

directed towards their use for analysis of a sampled sound in a non-real-time envi

ronment; the analysis is performed off-line using previously recorded data, and a

separate computer program is used either to modify the intermediate reciprocal

space representation before re-synthesis, or simply to display the results graph

ically. This is the case with the Composers' Desktop Project implementation,

as with the transputer farm version of it described in the second part. There

have recently been some notable attempts to move towards real-time working:

Real-Time CSOUND from M.I.T.[71] provides for a real-time re-synthesis phase

under the control of a mouse or some other such device; McGee & Merkley[85]

have shown how an entire real-time system with logarithmic frequency bands can

be implemented using one digital signal processing I.C ..

A pivotal problem in the design of the real-time phase vocoder is the re

sponse accuracy of the filter-bank. Whether these filters, which separate the

partials present in the input signal into their related output channels in the

frequency-space representation, are implemented directly or by Fourier trans

formation, there exists a fundamental limitation: the closer to the ideal response

that a band-pass filter is designed, the slower its output responds to an input sig

nal. McGee & Merkley use twelve filters per octave in order to imitate the piano

keyboard, and point out the fundamental limitation that the delay through the

filter is roughly one half of the inverse of the bandwidth. Considering a Fourier

implementation, this is equivalent to the bandwidth of the output bins being

dictated by the number of input data to each transform.

Because of the intention to use this implementation in a metrical application,

it may be desirable to sacrifice some speed of response of the filter bank in order

to improve not the number of filters, but rather the flatness of the filters in their

respective pass-bands. Figure 12 illustrates the frequency response of a four-bin

Fourier transform, ignoring alias products from presented signals which lie outside

8.5. AN ANALYTICAL APPROACH

\
\

\ '''\' ..
\
\
\

97

...... : ··\. .; :

. .

\ .
\.
,:

~ .. ~

Figure 12: Graph of the Frequency Response of a Four-bin Fourier Transform

the Nyquist sampling limit. These are similar in shape to the filters described

by McGee & Merkley in their real-time implementation. In fact, these authors

advocate the 'fine tuning' of their phase vocoder by variation of the sample rate

until the filter frequencies coincide exactly with the pitches in the diatonic scale

of the instrument being analysed. This is intended to avoid errors in amplitude

owing to partials missing the exact centre frequency of the appropriate filter. It

is not difficult to appreciate why this should be necessary; a signal of a frequency

lying just within the boundary of a given bin (the worst case) experiences an error

in measured amplitude by a factor of sine(1r /2). Since signal power is proportional

to the square of the signal amplitude, the measurement will be in error by a factor

of approximately 0.45; more than half the energy in the signal appears smeared

into other bins.

Having decided to use the phase vocoder as a data acquisition mechanism,

an occam version was produced with a view to installing a parallel version on

sufficient transputers to permit real-time operation. A different solution from

the fine-tuning one is provided in the occam implementation. An ideal low-pass

filter constitutes the multiplication of the frequency spectrum of an input signal

8.5. AN ANALYTICAL APPROACH 98

by a 'top hat' function; partials within a given range from OHz are passed unat

tenuated, and those outside that range are removed. By the law of convolution,

multiplication by this ideal filter-response function in frequency space is equiv

alent to convolution with its Fourier transformation in time. An idealised filter

with a cut-off frequency of ±(1/r) is realised by convolution with

h () sin(mr/r)
ideal n = I ,

n1r T

which, of course, stretches infinitely along the ordinate axis in both directions.

Shifting this ideal response away from the origin in frequency is achieved by the

multiplication by a complex exponential in time; this is the tenet of the Fourier

transformation. Thus a bank of equally spaced ideal filters Xk(n), representing

the frequency-space transform of x(t)hideal(n- t) (where x(t) is the time-varying

input signal) can be realised by a summation of the infinite series

00

Xk= L x(n+s)h(-s)W;(n+s)k
s=-oo

where Wn = ej(21r/N) and with the substitutions= t- n having been made. Port

noff goes on to show by mathematical manipulation that this may be realised

efficiently using well-understood Fourier transformation algorithms.

Since a profound understanding of the implications and effects of these pro

cesses is desirable before any attempt at an effective software implementation, an

alternative analysis of the effects of lengthening the sampled-data window and a

graphical presentation follow.

Restating the problem: starting with a larger number of discrete Fourier trans

formation channels of poor frequency response, it is desired to exchange some plu

rality of analysis channels for improved flatness of the pass-band within a channel,

resulting in a smaller number of channels of better frequency response. Portnoff

has achieved this with a two-fold manipulation in the time domain: aliasing and

windowing by a si~x function. Recalling that the Fourier transform is its own

inverse, and that aliasing in frequency is a result of undersampling in time, an

intuitive grasp of the purpose of the time-aliasing is possible. The effect of the

8.5. AN ANALYTICAL APPROACH 99

Figure 13: Graph of a Band-limited Top-hat Function

time-aliasing is to reduce the number of analysis channels, whilst maintaining the

sharpness of response of each channel. Considering as an example a 1024-point

transform with four-fold aliasing, the result would contain only 256 complex fre

quency samples, but the response of each of these filters would be as sharp as a

filter in the full 1024-point transform. The 256 filters in the time-aliased trans

form have higher quality factor (Q) than a 256-point transform without aliasing.

It is now required to widen the response of these filters without decreasing the

sharpness of transition between the pass-band and the stop-bands.

A method of increasing the bandwidth of each filter without such a reduction

would be to convolve the frequency response with a 'top-hat' function:

-A< X<,\

otherwise

hat1(x) is referred to simply as hat(x), and hatt(x) = hat(xjt). Figure 13 illus

trates the effect of this convolution: this curve was obtained by calculating the

band-limited transform of a hat function (hat4 (t) * sin(4t)j4t).

Convolution is a computationally-intensive operation, but in this instance an

equivalent effect is achieved by multiplication in the time-domain by the required

hat function's inverse Fourier transformation. As stated previously, the inverse

8.5. AN ANALYTICAL APPROACH 100

transformation of this function is sinct = si~t, which unfortunately stretches to

±oo. In the real case, the sine function which defines the band-pass filter response

is convolved not with a perfect hat function, but with the Fourier transform of a

truncated sine function. The gain of the of the filter Av is now of the form:

sinc(r f)* F[sinc(rt1r)hatr1r(t)]

sinc(r f)* hatr(f) * sinc(r f), (1)

where G(f) = Fg(t) is the Fourier transform of some function g, and the

binary operator * denotes convolution. The integer r is the rarefication factor:

r = 8 indicates that there are one eighth as many bins in the final transform as

there are input data points, r = 2 indicates half as many, and so forth.

Before constructing a final graphical representation of these responses for var

ious r, it may be noted that some simplification is possible.

sinc(r f) * hatr(f) * sinc(r f)

hatr(f) * [sinc(r f)* sinc(r f)]

hatr(f) * [Fhat;7r(t)]

hatr(f) * sinc(r f) (hat2 (x) = hat(x))

I: sinc(rr)hatr(f- r) dr

J
r-f

sine(rr) dr.
-r-f

(2)

Except for the limits of integration, this is identical to the sine integral func

tion si(x) = fcf sine(T) dr; the three-term convolution in equation 1 may therefore

be expressed by re-arranging in integral form equation 2 and then applying

Av(f) = si(r- f)- si(-r- f). (3)

The analytical solution of this integral is possible using Maclaurin's series:

8.5. AN ANALYTICAL APPROACH

sin(x)

sin(x)
X

whence si(q)

101

for all x

(4)

More generally, it is possible to evaluate to any degree of accuracy the fre

quency response of the prototype filter with r-fold rarefication by direct substi

tution using (2), (3) and (4) above:

(rq)2n+t 1 n [l
r-f

~(2n+1)(2n+1)!(-) q=-r-f
(5)

The family of curves thus obtained is presented in figure 14; it is clear that the

response of the Fourier bins improves as the number of input samples available

to the transform before time-aliasing increases. The number of alias points starts

with r = 1 to the left of the figure, increasing to r = 6 on the right.

Before moving on from the theoretical summary, it is worth mentioning a fur

ther advantage of the frequency-space intermediate signal representation avail

able when using the phase vocoder as a gestural capture device. Psychoacoustics

has investigated the characteristics of the human ear, and has demonstrated its

limitations with respect to masking and critical bandwidth.[86] Terhardt's modifi

cation of the Fourier transformation data by exponential windowing[87] has been

shown by Heinbach[88] to simulate the A uswerteinterval (the characteristic pat

tern sampling interval) of the human ear; Schlang & Mummert have shown how

a second-order windowing function can mimic the ear still more accurately.[89] It

may become possible to use these results at a later date to impart some attribute

of human perception to the gestural capture process.

102

8.5. AN ANALYTICAL APPROACH

.•:•.

·.·· ·' · ..

. ." .T :~.· ·.··2·-·:" ·. J ·'· ·:: '4 ··
. .

Figure 14: Frequency Response of a Fourier Bin for Increasing r

8.6. PHASE VOCODERS IN A CONTROL APPLICATIONS

Acquisition
/Pre-processing

Transformation ~~
Mapper

103

Figure 15: Communicating Sequential Processes in the Occam Phase Vocoder

8.6 Phase Vocoders in a Control Applications

The system chosen to support the implementation of a real-time phase vocoder

control system is the ternary X-tree developed for audio-rate signal processing

and control application.[90] This topology is conceptually similar to the Berkley

X-tree[91] but is of third order, rather than binary. It is fully described in the fol

lowing chapter. As the machine uses INMOS transputers as processing elements,

there is direct support at the hardware level for the C.S.P. 2 model of concurrent

computation and message passing. Using the Occam programming language, it

is possible to define and code a concurrent program using only one processor, and

then to delegate the constituent parts to the processors in the transputer array

after verification. The laws of Occam are designed to ensure that the execution

of a concurrent program on a single, multi-tasking, processor is logically equiva

lent to its execution on a multi-processor array. Program design and verification

is therefore possible using relatively inexpensive hardware comprising a single

processor with sufficient memory to simulate the entire target network.

Figure 15 shows how the highest level data-flow specification of the problem

maps directly onto a CSP model. The rest of this section presents a more detailed

description of each module.

2 Communicating Sequential Process

8. 7. ACQUISITION, PRE-PROCESSING AND ANALYSIS 104

8. 7 Acquisition, Pre-processing and Analysis

The controlling data for this system is collected from a microphone via suitable

digital-to-analogue converters. The continuous data stream must be divided into

a series of overlapping frames, with the length of the frame and the overlap defined

by easily-alterable compile-time constants. Pre-processing of this frame consists

of the time-aliasing and windowing procedure already defined. The number of

time-aliased points relates the length of the frame (measured in samples) to the

number of bins in the frequency analysis. It is important to specify sufficient

bins to guarantee the capture of the audibly significant partials for the lowest

frequency signal of interest, but too great a number makes it impossible to main

tain sufficient time-aliasing for the frequency response of each bin to be close to

the ideal. Increasing the number of bins permits the partials to lie close together

in frequency, but at the penalty of increasing the number of input data samples

required before calculating the frequency transform of each frame. Increasing the

rarefication factor improves the response of each individual filter, but is similarly

penalised. In either case, the effects are undesirable because an increase in the

frame length results in greater delay between the onset of the control signal and

synthesiser control parameters becoming available; too great a delay will make

the difference between real-time and non-real-time response.

8.8 Partial Selection and Parametric Transfor

mation

The result of the analysis is an array of frequency components, with one complex

number representing the portion of the input signal present in each frequency

band. There may be a large number of such values; 512- or 1024-point Fourier

transforms are quite feasible in real-time, especially where multiple processors are

available. In order that this intermediate representation of the input signal can

8.8. PARTIAL SELECTION AND PARAMETRIC TRANSFORMATION 105

be manipulated in an intuitive way, the data must be converted from complex

frequency to amplitude/phase format. This is achieved by applying the familiar

identities:

Amplituden - · 1SR_a2 + ~a2 and V n n

Phasen arctan (~::)

where an is the Fourier transform result for bin n.

The initial aim was to use a look-up table to provide arbitrary transformation

between the timbre of the control signal and of the synthesised signal. We are

assured in this respect by Wessel,[92] who has used the concept of timbre-space

to provide musically expressive manipulation in the context of additive synthesis

control: using line-segment approximation as a data reduction technique, ten and

fifteen points stored as ordinates in, respectively, two and three control dimensions

proved to be psychoacoustically sufficient. Moving across such a timbre space for

consecutive notes resulted in auditory stream segregation (for larger distances)

or melodic fusion (for smaller distances); Translations in this space from different

origins were also identified as consistent by listeners. To perform this isomorphism

for a vector of the same dimensionality as the result of the Fourier transformation

would require impractically large quantities of memory, and would also make the

design of the table intractable, notwithstanding the economies possible from Car

bonneau's study of the perceptual effects of data reduction.[93] The constituent

partials are therefore extracted, and sorted into order of decreasing magnitude.

Only those which of the highest amplitude are used; the rest are discarded. An

arbitrary limit is thus placed on the dimensionality of the look-up table, which

is under the control of the program designer. From results in the analysis and

reconstruction of the sounds of natural instruments[94, 6, 88, 93] in conjunction

with experimental work undertaken by the Durham Music Technology Group3

3 Experiments to test the implementation of an additive synthesiser using a pipeline of Inmos

8.9. SYNTHESIS AND REPRODUCTION 106

the required number of partials has been estimated. Using three processors, 21

oscillators with control-parameter interpolation have been implemented.

The storage of the conversion values in such a table, even when the dimension

ality is as low as ten in order of magnitude, can still require very large amounts

of memory if conventional hyper-cubic grids are used. However, Bowler[95] shows

that large savings can be made by storing hyper-simplex grids4 and by employing

a multi-dimensional co-ordinate transformation of the orthogonal abscissre.

8.9 Synthesis and Reproduction

A simple method for the generation of arbitrary timbres is additive synthesis,

although there is no fundamental reason why other techniques should be excluded.

Each entry in the look-up table of timbres may consist of a vector of control

parameters for an additive synthesiser, and simple linear interpolation might be

used as partials are tracked between frames. This explains how to cope with

the evolution of a continuous control signal, but some difficulty may arise during

transients or rapid changes at the system's input. The problem is to determine

whether the presence of a partial, indicated by a significant amplitude in one of

the Fourier analysis bins, is the result of the same partial having been tracked from

the previous analysis frame, or of the onset of a new control event. A tracking

algorithm described by Bowler[96] is used to isolate distinct new partials from

those which have been carried over from an already existing input signal. Partials

which do not persist for more than a given time may be safely synthesised using

an inverse Fourier transformation to generate an approximation to strictly band

limited noise; appropriate amplitudes inserted into the bins with randomised

phase will be perceived by the ear as a noise-like signal, because the time-sampled

output will not be strongly correlated over the period required by the ear for pitch

Transputers used the reconstruction of a clarinet tone as a test example; although successful,
results have not been formally presented

4 A hyper-simplex is ann-dimensional space-filling figure in the sequence point, line, triangle,
tetrahedron ...

8.10. SUGGESTED REFINEMENTS AND EXTENSIONS 107

estimation. An equally suitable pseudo-random residual for addition to the main

additive synthesiser output may be derived by subtractive synthesis based on a

wide-band noise source.

The final signal is reproduced by unbuffered digital-to-analogue conversion

followed by suitable amplification. The initial aim is to produce sufficient volume

to close the control loop from the performer's action back to his ear, via the

instrumental sound. However, there is no prima facie reason not to use the

synthesised signal as reinforcement for the controlling acoustical source.

8.10 Suggested Refinements and Extensions

This completes the outline description of a real-time, interactive electronic ma

chine for the performance of music. It should be emphasised that several refine

ments and extensions are necessary before it can be considered a viable performing

instrument.

One possibility might be to provide the 'instrumental craftsman' with a diverse

range of synthesis modules to produce the final output signal. Whilst this has

no theoretical advantage over a sufficiently sophisticated additive synthesiser in

the range of timbre available, it may ease the design of the translation map by

making the connexion between the input partial set and the consequent control

vector more intuitive. To take a simple example, if it were desired to provide

real-time control over the timbre space defined by an FOF synthesiser, it would

seem perverse to insist that the designer calculate the vast set of partial/formant

information for a sufficiently large number of FOF control vectors; better to use

an FOF synthesiser to generate the output than an additive one.

Whilst a satisfactory implementation would overcome the complex problem

of gestural capture by employing the services of highly developed conventional

instrumental skills, the electro-acoustic designer (or 'craftsman') will still require

the use of a battery of as yet unspecified tools. Such tools must facilitate the

construction of databases in higher dimensions; the optimum ergonomic for this

8.10. SUGGESTED REFINEMENTS AND EXTENSIONS 108

process is unclear, being in itself a suitable subject for extended research.

This detailed design needs special hardware and software for its execution;

the solutions which have been adopted are described in the final chapter.

Chapter 9

Hardware and Software for a
Systolic Machine

9.1 Algorithms which Exploit Concurrency

T HE SUPPOSITION THAT ADDING EXTRA PROCESSING ELEMENTS to a com

puter proportionally reduces the processing time to solve a given problem is

usually false. An additional processor brings with it an additional communication

and resource management overhead; after a certain number have been assembled,

a maximum benefit is accrued, and any further processors can only reduce the

efficiency of the system by increasing the burden of communications.

Let Ws be the quantity of work which must be performed sequentially in a

given program, and Wp the quantity which may be performed concurrently. On

the assumption that a machine with n processors can perform the parallel portion

of the program at n times the speed of a sequential computer, but is constrained

to perform the sequential part of the program no faster, the "speed-up factor" of

the n-processor machine compared with the single-processor one is given by

S(n) = Ws+ Wp.
W+.!f.E. S n

Because Ws, Wp and n can all be assumed to be greater than zero in a real

parallel system, it is a simple matter to derive the inequality

Wp
S(n):::; 1 + Ws.

On this assumption an upper limit is placed on the speed-up possible for any

109

9.1. ALGORITHMS WHICH EXPLOIT CONCURRENCY 110

given program, regardless of the number of processors available. It also follows

that

S(n) < n,

since W8 + ~ > Ws;We; i.e. superunitary speed-up can never be achieved.

However, there exist certain classes of algorithms which implicitly lend them

selves to being written for a machine with a highly parallel architecture, and there

is experimental evidence that superunitary speed-up can be attained.[97) The pos

sible classes of speed-up have been described by Helmbold & McDowel1[54) in the

following categories, in order of decreasing desirability:

Class Characteristic

Superlinear limn-+oo S(n)jn = oo

Linear Superunitary limn-+oo S(n)/n > 1

Unitary limn-+oo S(n)jn = 1

Linear Subunitary limn-+oo S(n)/n < 1

Sublinear limn-+oo S(n)/n = 0

Helmbold & McDowell go on to extend the speed-up model by putting forward

sufficient conditions for S(n) > n. In summary, it may be possible to produce

superunitary speed-up by: reducing overheads in task or operating system man

agement; increasing cache available through the introduction of an additional pro

cessor; hiding latency; and taking advantage of the variance of execution times for

random algorithms. Of these, only the first three are relevant to the application

under consideration.

The following paragraphs give detailed consideration to the most complex

modules within the gestural capture program: the Fourier transformation process

and the partial-tracking process.

9.2. THE FOURIER TRANSFORMATION PROCESS 111

9.2 The Fourier Transformation Process

Much work has been undertaken on the optimisation of the Fast Fourier Trans

form algorithms originally proposed by Cooley & Tukey[98] and Winograd.[99]

Since the advent of Very Large Scale Integration, it has been possible to realise

the Fourier Transform in hardware, as well as in software. This has given rise

to two genres of optimisation techniques: those designed to increase the speed

of computation on a general-purpose computer, and those designed to ease the

construction of a dedicated F.F.T. calculation unit 'on a chip'. The former tend

to reduce the number of calculations at the expense of storage, with regard to the

inevitable slowness of a general purpose sequential computer when compared with

the same algorithm 'set in silicon' (which is to say, constructed from dedicated

logic elements); the latter befit the inherently concurrent nature of an integrated

circuit, where, naturally, all of the constituent circuit elements operate continu

ously and simultaneously.

Many of the improvements intended for general purpose computation have

been cited by Macnaghten & Hoare;[100] for example: calculation of factors in

advance; improvements which can be made when the number of time-samples

is exactly a power of two; and recursive program structure. Fay[101] uses their

algorithm as a basis for an inherently parallel design written in Occam, which

might be a choice for implementation. However, when a system with a large

number of processors is available, the most suitable algorithm grows more sim

ilar to those intended for hardware implementation. The reason for adopting

algorithms which were originally hardware oriented has to do with planning com

munication paths; a hardware array will tend towards systolic concurrency, be

cause the clocked data flow through an integrated circuit essentially corresponds

to the substitution of one of the problem's variables for time.[102] Bergland[103]

gives an extensive survey and overview of implementations of the fast Fourier

transform in hardware, and the application of the transform in a massively paral

lel environment is covered by Snyder[104, 105] and Kailath.[106] Thompson[107]

9.2. THE FOURIER TRANSFORMATION PROCESS 112

surveys a number of hardware implementations with reference to the silicon area

occupied and the throughput of the circuit under consideration; this paper is par

ticularly interesting amongst hardware-oriented ones because it describes some

of the implementations as pseudo-code fragments. The efficiency of such a code

structure might be called into question when being executed as an array of com

municating processes since intuition would suggest that an array processor oper

ating in lock-step would have superior performance. However, Bronson, Cansa

vant & Jamieson[108] have constructed a machine capable of selecting between

M.I.M.D.-polled-network, S.I.M.D. and M.I.M.D.-barrier-synchronised (this last

being broadly equivalent to the communication mechanism in the architecture

demonstrated by the Durham University Music Technology Group). Experiments

with this machine show the M.I.M.D. modus operandi employing barrier synchro

nisation to be marginally faster than S.I.M.D. operation, and significantly faster

than an M.I.M.D. machine communicating by means of a polled network. Of the

implementations to be considered suited to a parallel array, pipelined solutions

such as those put forward by Swartzlander & Halnor,[109] Yuhang Wu,[llO] or

Groginsky & Works[lll] might be directly applicable. The algorithm suggested

by Yuhang Wu is a pipeline-parallel version of Bruun's algorithm,[112] which

computes the D.F.T. of a time sequence by evaluating its Z-transform at points

equally spaced around the unit circle.

Alternatively, the Arithmetic Fourier Transform (A.F.T.) arising from number

theory, uses the Mobius Inversion Series to effect a frequency-space transforma

tion. This has been extended by Reed et al.[113] to encompass odd and even

periodic functions. The A.F.T. is more desirable than the F.F.T. in that it lends

itself to parallel computation, but reconstruction error is worse than the F.F.T.

for a given word length. Where accuracy is a prime concern, this may be im

proved at the expense of calculation time by increasing the order of interpolators

used at a particular point in the analysis procedure.

Conceptually similar processes are the Number-Theoretical Transformations

9.3. TRACKING PARTIALS 113

(N.T.T.s) based upon the Fermat Number Transform; these have been identi

fied as an alternative to the F.F.T. in digital signal processing, and a hardware

architecture to support them is proposed by Truong et al.[114]1f a Fermat num

ber is chosen such that two is a root of unity, multiplications by powers of the

Fermat number are achieved easily by bit-shifting. The advantages over the con

ventional F.F.T. algorithm are that it is possible to construct transform systems

without the use of multiplications, using only integer arithmetic and introducing

no rounding errors. However, a modulus operator is required, which can be just

as slow as a multiplier in practice, and very large dynamic ranges are required in

the intermediate stages of longer transforms.

Successful transform procedures for tree-structured arrays like the one shortly

to be described include the Prime Factor Algorithms (P.F.A.) of Arambepola[115]

and Kolba & Parks.[116] Whilst Aloisio, Fox, Kim & Veneziani[117] have shown

them to be in some respects inferior to the standard F.F.T. when executed on

a hypercube topology, it is better suited to tree-based architectures where the

address calculation method is much simplified. Compare, for example, the net

work topology chosen by Lo, Siu, Lun & Purvis[118] with that of the University

of Durham machine.[90]

9.3 Tracking Partials

After conversion to polar representation, the result of the chosen n-point Fourier

transformation algorithm is a vector of couplets

((ao, <Po), (at, <P1),. · ·, (a(n/2)-t, </Y(n/2)-t))

denoting the amplitude and phase of partials in each of n/2 equally spaced fre

quency bands. It is now required to separate the most significant partials from

this vector, and to track them as they move from band to band. The list of

partials so formed constitutes the input data for the look-up table converter of

our instrument.

9.3. TRACKING PARTIALS 114

A candidate partial exists where there is a local maximum in the frequency

data, which is to say ak > ak-l and ak > ak+1 where 0 < k < (n- 1)/2. The

partials thus defined are assembled into a list and passed to a precedence sorter.

The dimensionality of the look-up map places an upper limit on the number

of partials which can be considered in choosing the control parameters for the

synthesizer. The precedence sorter implemented here retains the partials largest

amplitude couplets, along with information on the bin number in which they

appeared.

Recalling that the target algorithm demands a fine-grain, systolic concurrency,

the traditional sorting algorithms seem less suitable. Such sorters tend to require

that the whole data set be maintained in the processor's local memory, which

leaves little space for other code and data in a machine with limited RAM per

node. Taking advantage of Occam's facility of expression for concurrent programs,

it is possible to write code which is easily distributed across many processors

using only small local data space. The model precedence sorter shown in the

Occam code below is worthy of note because it requires that only partials data

tuples be retained in main memory, and also that these data may be distributed

across processors to cut the local memory demand still further. For example, in

a working system, 512 amplitudes and phases may be produced for each analysis

frame, and the number of partials which may be used as control parameters

may be limited to approximately twenty. This program is very similar to the

sort program example given in the Occam Programmers' Manual;[119] it defines

partials concurrent tasks connected in a pipeline. Data arriving at a process

is compared with the data already stored; the smaller of the two is passed to

the next process in the chain, while the larger is retained for future comparison.

After the entire list of results has been sent into the pipeline, a Flush token is

sent. This causes the process which receives it to emit its stored value followed

by the Flush token, and then to reset to its initial state. Hence the data stored

in the pipeline appears at its end, the smallest value first.

--{{{ Sort partials

9.3. TRACKING PARTIALS

[partials][2]REAL32 biggest
[partials][2]REAL32 results
[partials]IHT16 result.bins
[partials+l]CHAH OF Sort.Data sieve
[partials]BOOL run.sieve

Array of partials to be considered
Final set of largest amplitude ptls
Bin number of above partials
Communications pipeline for sieve
Termination flags for sieve

BOOL running :
SEQ

initialise

[2]REAL32 nev.partial
IHT16bin
PAR

WHILE running
ALT

to.sorter ? CASE
Partial ; nev.partial bin

BOOL scratch :
[2]REAL32 reject
IHT16 rejbin :
PAR

sieve[O] ! Partial ; nev.partial ; bin
read and discard rejected partial

Flush ; running
PAR

sieve[O] ! Flush running
SEQ

Read result from sieve sort
from.sorter ! results ; result.bins running

--{{{ seive sort partials
[partials][2]REAL32 nev.partial
[partials]IHT16 bin, nev.bin
PAR i = 0 FOR partials

WHILE (run.sieve[i])
ALT

--}}}

sieve[i] ? CASE
Partial ; nev.partial[i] ; nev.bin[i]

IF
(nev. partial [i] [0] > biggest [i] [0])

SEQ
sieve[i+l] ! Partial ; biggest[i] bin[i]
biggest[i] := nev.partial[i]
bin[i] := nev.bin[i]

TRUE
sieve[i+l] ! Partial nev.partial[i] nev.bin[i]

Flush ; run.sieve[i]
SEQ

sieve[i+l] ! Partial ; biggest[i] ; bin[i]
biggest[i] := [O.O(REAL32), O.O(REAL32)
bin[i] := O(IHT16)
sieve[i+l] ! Flush ; run.sieve[i]

115

Candidate partials are received down the channel to. sorter. An additional

boolean variable is also read; this indicates whether the master process has fur

ther frames to analyse, or whether the processes should terminate. This parallel

program is shown schematically in figure 16.

9.3. TRACKING PARTIALS 116

Min

•••

Data in Data out

Figure 16: Schematic Diagram of Parallel Sort Program

9.4. ADJACENCY TESTING 117

9.4 Adjacency Testing

Having constructed a list containing the partials of greatest amplitude, an algo

rithm is required which will retain the continuity between analysis frames. It is

necessary that the ordering of the partials in a control block is retained between

frames, ignoring their amplitudes, as it may be the case that the result from the

partial tracking software subsequently undergoes interpolation at a rate higher

that the analysis frame rate. A simple resynthesis stage might perform linear

interpolation between successive amplitude and frequency results; if the partials

did not retain their position in the output vector from the analyser, but instead

changed position within that vector according to their relative magnitudes, an

attempt to perform element-wise interpolation between the successive analysis

frames would give invalid results.

Let the output vector a contain elements describing the (at most partials)

most significant partials at frame <I>. Frame <I> + 1 yields a new vector of partials a'
ordered by amplitude, to be reordered so that a' represents the partial-by-partial

evolution of the elements of a up until the time of analysis window <I>+ 1. A new

partial represents an evolution of an old partial if the new partial occupies a bin

which is the same as or adjacent to the bin occupied by the old partial. Since the

presence of a partial is detected by a local maximum in the frequency spectrum

of the signal undergoing the Fourier transformation, it is impossible that there

can be two partials occupying adjacent bins in the same analysis frame. It is

possible, however, that an element of a occupying bin n disappears, and that a'
has elements at bins n + 1 and n - 1. In this case, the element of a is deemed

to have moved up or down one bin, according to whether the vanishing element

is above or below the centre frequency for bin n. A better algorithm for this

eventuality would be to take account of the difference in phase between the old

partial and the new candidate partials, making a choice based upon the smallest

change of phase. However this is an heuristic which may be difficult to justify

without reference to the movement of the surrounding partials, which would lead

9.4. ADJACENCY TESTING 118

to a program of unacceptable complexity.

a' is decomposed into two lists: create, being a list of partials which do not

match any of the elements of a and are aspirants awaiting entry in the current

list should room become available; and maintain, which contains those partials

which do match with an element of a. A third list, delete, is also generated: this

contains all of those partials which appear as elements of a which are no longer

represented in a'. If the number of partials thus nominated exceeds the globally

defined maximum (i.e. the number now under consideration exceeds the number

of dimensions of the subsequent mapping process), those of smaller amplitude

from the create and maintain lists are removed and marked for deletion by

addition to the delete list.

The data structures used in the partial tracking algorithm are shown in fig

ure 17. Pointers are maintained into alternative register sets for the current and

next data sets, and these are alternated for each iteration of an analysis window.

The three lists described previously are stored as simple array/ counter structures.

The only potential problem arising is to find a method by which the adjacency

test can be applied efficiently. A solution is found by considering a partials set

rather than a list. We define:

A {p: pEa}

P {q: q E a'}.

This enables the re-specification of the tracking algorithm in the following terms:

M PnA

C P-A

D. (A- P) US

where S is the set formed by removing the element of smallest magnitude from

M U C while n(M U C) > d, the order of the control vector for the mapping and

resynthesis unit.

9.4. ADJACENCY TESTING 119

0

~
partials

0

~
partials

phase.shift
(REAL32)

results
(REAL32)

··············t··············
··············t··············

·······························
·······························

.............. t··············

··············t··············

...............................
·······························

···--·········t··············
··············t··············

.............. t··············

index for n.bins index for n.bins

maintain
~

create
(INT16) (INT16)

~: _.,Jr---+ ~{ -

I·.·. INT rn.count Uk I
·:':l INT c.count oU

'''''I INT d. count •L=

~
delete
(INT16)

bins
(INT16)

index for c.bins

r

Figure 17: Data Structures in the Occam Partials Tracker

9.4. ADJACENCY TESTING 120

Set representation as a data structure within a computer system normally

relies upon the use of bit-fields. Sufficient bits are reserved for the maximum

number of elements of the set: a set bit represents the presence of the corre

sponding element; a reset bit represents its absence. Although the data type 'set'

is not supported directly by the Occam programming language, the use of this

convention enables efficient storage of sets and also enables the adjacency crite

ria to be applied easily. Consider the following code fragment from the partial

tracking program:

--{{{ Sort partials into three lists

-- Each of the partials under consideration is entered into the
appropriate list (stored as an array):

maintain- the partial is tracked from the previous P.V.
frame;

delete - no partial exists in this bin where it previously
existed in this bin or an adjacent bin;

create - no partial previously existed in this bin or an
adjacent bin, but a new partial of significant
amplitude has been born.

It is important that len(maintain) + len(create) - len(delete)
<= partials

BOOL present
SEQ

vrite.char(screen, '{')
sc.tab IS score.tab[current.bin.index]
SEQ i = 0 FOR partials

SEQ
--{{{ Check for adjacency - result in BOOL present

IF

Test the score table of the previous frame for the presence of
of a partial in this or adjacent bins. If one is identified
then remove it, and set the BOOL variable to true. In the
event of a partial being between two existing partials, the
lover partial is matched if the phase lags, and the upper if
it leads.

n.bins[i] = O(INT16)
present := FALSE

TRUE
INT word, displacement
SEQ

word := ((INT n.bins[i]) >> 5)

displacement := (((INT n.bins[i]) - 1) /\ 31)
IF

displacement = 31
word := word - 1

TRUE
SKIP

VAL bit IS INT32 (7(INT32) << displacement)

9.4. ADJACENCY TESTING

IBT32 result
SEQ

IF
(bit = #80000000(IBT32))

result := (((sc.tab[vord] /\ bit) >> 31) \/
((sc.tab[vord+l] /\ 3(IBT32)) << 1))

(bit = #COOOOOOO(IBT32))
result := (((sc.tab[vord] /\ bit) >> 30) \/

((sc.tab[vord+l] /\ 1(IBT32)) << 2))
TRUE

result := ((sc.tab[vord] /\ bit) >> displacement)
present := result <> O(IBT32)

121

An array score. tab of thirty-two-bit integers is dimensioned so that it pro

vides sufficient contiguous memory to hold a bit-field representing the result-bins

of the Fourier transformation. The prototype program uses a 1024-point F.F.T.,

which yields 512 amplitude and frequency values. 512 bits occupies 16 long words

of memory. The test for adjacency to a partial in bin n is performed by construct

ing a bit-mask ("bit") consisting of binary 111 shifted left nmod32 times. When

a bitwise logical-and operation is performed between the mask and appropriate

word of the score. tab array, the result is non-zero if a partial is already iden

tified as occupying the same or an adjacent bin in the previous analysis frame.

'The appropriate word' means that word which is indexed by the integer result of

dividing the bin number by the word length in bits; this ensures that the array is

treated as a continuous 512-bit field. The final conditional statements ensure that

an overflow from the left-shift of the three-bit mask is trapped, and the necessary

test made on the next word of the array.

The Boolean variable present is now set if the partial currently being con

sidered existed in the previous analysis frame. The generation of new control

block requires that the flag is now reset and the appropriate partial added to the

maintain list. A subsequent operation will test build the list of partials due for

deletion from the flags remaining in the score table. Identified partials which are

not represented in the previous frame are added to the create list. At the end of

the loop, the new score table (score. tab [n. index]) is built, which will provide

the comparison data for the next iteration of the main program.

--{{{ Delete partial (if matched) from score table
IBT matched :

9.5. A MULTI-PROCESSOR ARCHITECTURE

SEQ
IF

BOT present
SKIP

result = 4(IBT32)
matched := ((IBT n.bins[i]) + 1)

result = 2(IBT32)
matched := IBT n.bins[i]

result = 1(IBT32)
matched := ((IBT n.bins[i]) - 1)

result = 5(IBT32)
IF

results[n.index][i][1] > O.O(REAL32)
matched := ((IBT n.bins[i]) + 1)

TRUE
matched := ((IBT n.bins[i]) - 1)

VAL vord IS IBT (matched >> 5) :
VAL bit IS IBT32 (1(IBT32) << (matched /\bsl\ 31))
sc.tab[vord] := (sc.tab[vord] /\bsl\ (•bit))

--}}}
--}}}

IF
present

SEQ -- Partial carried over from last frame
maintain[m.count] := IBT16 i
m.count := m.count + 1

TRUE
SEQ -- If not, must be a nev partial

create[c.count] := IBT16 i
c.count := c.count + 1

{{{ Insert this partial into the bit-table of nev partials
One of the arrays '[partials]IBT16 bins' contains the bin numbers
corresponding to the oscillator frequencies required at the

-- beginning of this analysis frame. This routine bilds a bit-vise
-- set of the incoming bins, vhich vill enable a rapid test of adjacency
-- to the bins in the other frame. The result is vritten in the
-- vord array 'score.tab[n.index]'
SEQ

IF
n.bins[i] > O(IBT16)

VAL bit IS IBT32 (1(IBT32) << ((IBT n.bins[i]) /\bsl\ 31))
vord IS score.tab[n.index][(IBT n.bins[i]) >> 5] :
vord := vord \bsl/ bit

TRUE
SKIP

--}}}

122

It can be seen that care has been taken to reduce memory requirement rather

than to achieve absolutely optimal speed of execution. The final sections, de

scribing the target machine, will demonstrate why this is the case.

9.5 A Multi-processor Architecture

Real-time digital signal processing and musical applications place unconventional

demands on a computing system, by requiring very high computational speed in

9.5. A MULTI-PROCESSOR ARCHITECTURE 123

preference to large storage. A novel architecture based upon a minimum memory

principle is used for this machine. It will be shown that more general-purpose

applications can still be run, but that these require a substantially modified ap

proach from that taken with von-Neumann machines; computation becomes rel

atively inexpensive, while memory intensive structures such as look-up tables

become less feasible.

The non-real-time programmer is free to use large storage structures and

introduce algorithms with unpredictable and largely varying execution times;

provided the average computation time required to produce a sample remains

reasonable, the mass storage device used as an intermediate storage for the output

will absorb local variations. A characteristic of real-time machines is that they

absorb a very large quantity of information via video or audio input, and reduce

this information to a much more limited bandwidth which may be used directly

for the control of the synthesis programs already described. They must also

perform this operation at the greatest possible speed, since if the delays between

applying the input stimulus and obtaining the result become too long, the control

loop is no longer closed, and the machine can no longer be considered 'real-time'.

The virtuoso pianist employs many subtleties of technique called variously

'fingering', 'touch' etc.[120] to produce the desired effect. The mechanical mech

anism of the piano is such that the hammer is moving ballistically when it strikes

the string; it therefore reduces all of this high-level performance data by a process

of mechanical filtering to five parameters: strike time, strike rate, terminal key

velocity, release time, and release rate. This information is transmitted to the

sounding part of the instrument, where it is used to stimulate a complex network

of subtly inter-connected resonators and produce the piano sound. This whole

process of high-level, high-bandwidth control, reduced to a lower bandwidth in

ternal representation, and finally used to produce a complex output has been

evolved within the electronic instrument domain. The problem arises of how to

devise a computer which is naturally suited to such processes.

Hierarchical structures have been popular in the literature, as it is observed

9.5. A MULTI-PROCESSOR ARCHITECTURE 124

that the event and control rates, being different from the audio data rate by orders

of magnitude in conventional patched note-list event systems, might usefully be

handled by a few processors controlling a larger number.[121] More recently, the

emphasis seems to have shifted towards distributed real-time hardware without

hierarchical control, preferring instead to delegate specific parts of an algorithm

to digital signal processing microprocessors;[122] this is often referred to as the

'hardware subroutine' approach. Much material has been published concerning

the best 'general purpose topology' for a parallel computer,[123] but results so

far appear to be highly application dependent and largely heuristically based.

The strict data-movement discipline of real-time electroacoustic synthesis may

mean that the architectures which are chosen for it are also relevant in neural

network simulation. Some work has been undertaken in the application of neu

ral networks to topics in music technology,[124, 125, 126] but this field is still

insufficiently understood to tell if it is capable of the type of higher dimensional

operations which are required. Work in non-linear system identification using

neural networks[127] suggests that this sort of mapping is indeed possible, but

that the quantity of training data required becomes prohibitive as the number of

dimensions increases.

The suggestion that a systolic mode of operation is inefficient when data

availability determines the flow of program control[128] relies on the assumption

that the overhead in context switching on an event is high; this is not the case

with a transputer. This does not suggest that the choice of topology is unim

portant or non-application-specific, however. One solution might be to build a

computer which is totally configurable, rather along the lines of the configurable,

highly parallel (CHiP) computer due to Snyder,[129] for which code placement

and memory usage heuristics are already beginning to be understood.[130] If

only a small quantity of memory is provided at each node, however, the routeing

algorithm for a machine which is abitrarily reconfigurable might represent a con

siderable overhead as a proportion of total system resource. Since storage implies

9.5. A MULTI-PROCESSOR ARCHITECTURE 125

delay, which is certainly undesirable in a real-time system, and may be indica

tive of a poorly conceived algorithm in a systolic environment, a fixed topology

was preferred. Tanimoto[131, 132] has already demonstrated that a fixed, hier

archical topology is appropriate in the processing of two-dimensional data (such

as video images); this pyrimidal structure was eventually modified to be more

suitable for the one-dimensional data manipulated by the music technologist. A

competing architecture, the 'perfect shuffle' ,[133] where the connexion pattern

resembles the order of cards in a perfectly shuffled deck, is attractive in certain

applications; Fourier transformation[134] is particularly well suited to this con

figuration. However, a significant part of the implementation of an electronic

musical instrument consists of the control algorithm, and it is not clear that the

perfect shuffle structure would be particularly suited to this.

The first part of this thesis has shown that an efficient architecture for DSP

and synthesis is a pipeline of processors with additional control data routes being

made available. This structure has the property that audio samples pass down

the pipeline at a constant rate regardless of the number of processors, and that

the addition of further processors increases the control bandwidth linearly with

the number of processors.

Using lnmos transputers, each processor has available four hardware com

munications links which permit the construction of a ternary tree, providing

hierarchical control. Whilst the tree structure provides short path lengths be

tween arbitrary nodes, the algorithms for which the machine is designed tend to

use hierarchical data structures. This gives rise to a requirement for horizontal

communication across the tree, between siblings at the same level. The funda

mental element actually employed by the machine is therefore a modified version

of the basic ternary tree; atoms of its structure is shown in figure 18 by darker

shading. This configuration combines the advantages of a tree structure (hier

archical control; increasing control bandwidth with additional processors) with

those of a pipeline (a lack of communications traffic 'hot-spots'; trivial routeing

algorithm). Figure 18 illustrates the inter-connection of such modules to provide

9.6. INSTALLING HIGHLY PARALLEL ALGORITHMS

D Transputer
o Expansion points

lliim Single Element

m:::'! Extent of P.C.B.

Figure 18: Basic Topology of the Transputer Tree

126

a tree/pipeline network. Four of these modules, a total of 16 processors, can be

accommodated on each 3U Printed Circuit Board in the prototype machine; this

represents 140MIPs processing, and 560Mbs-1 (peak) off-board communications

capacity, using the less expensive 17 · 5MHz parts. The reason that such a high

processing density can be achieved is that no external RAM is fitted; each Trans

puter uses only its internal 4KB of RAM for data and program storage. Our

initial prototype comprises ten such boards, making a 1400MIP system. This

quantity of memory may be considered impractically small, but the approach

was encouraged by the results of van Renterghem,[135] who shows that such an

array is useful in finite element analysis.

9.6 Installing Highly Parallel Algorithms

The absence of large quantities of RAM attached to each processor radically

affects the approach to programming, but need not necessarily reduce the ma

chine's functionality. H the full parallel potential were to be realised, then each

PCB could be regarded as a single 140MIP processor with 64KB of zero wait-state

memory. The restriction falls upon the quantity of memory available locally (a

9.6. INSTALLING HIGHLY PARALLEL ALGORITHMS 127

relatively small 4KB), which may force the partitioning of tasks which demand

larger quantities across several processors.

A class of algorithm which tends to require a large quantity of memory is those

using look-up tables. These usually submit to one of three approaches. If the look

up table is providing values for a mathematically determined function (as would

be the case in a digital oscillator), an evaluation may be considered as an alterna

tive, with several processors being used to provide for the greater computational

demand. A second possibility is to distribute the lookup over a pipeline, with

only a small portion of the table stored at each processor. Data to be converted

are passed down the pipeline, tagged as 'Domain' data. If the current processor

has available locally the necessary information to perform a transformation, this

is done and the data tagged as 'Range'. By the time a block has emerged from the

pipeline, all of the data should have been converted, and any items still tagged

'Domain' must have unknown or illegal values. The third approach, and one

which has been used in the construction of digital oscillators,[136, 137) is to omit

a large quantity of the data in the look-up table, using instead an interpolation

function to provide intermediate points. Similarly, programs with larger data

structures are often decomposable into smaller subproblems; consider digital in

terpolator and filter decomposition[138) or the partitioning of larger matricies for

processing by a smaller systolic array. Other special algorithms for highly parallel

machines are also documented; Akl & Meijer[139) have published a parallel bi

nary search algorithm for a machine with exclusive-read-exclusive-write memory,

such as the design presented here, which actually outperforms a concurrent-read

exclusive-write system, the most usual shared memory paradigm.

The construction and initial testing of this computer are now complete, and

work is required to distribute the algorithms already described amongst its proces

sors. The plate shows an early prototype and the final machine running a network

test program which saturates the communication links with pseudo-random data,

and ensures that acceptable bit error rates are achieved.

The Transputer-tree Machine

Prototype board with 16 transputers
running a network testing program

Lower half of case occupied by ten
professionally manufactured circuit boards

running the same network test program

Chapter 10

Conclusion

COMPUTER MUSIC is a discipline which demands very high performance

machines. Even with the highest-speed processors of 1991, the synthesis

and manipulation of high fidelity sounds in real-time requires more processing

power than is available from a single, general-purpose microprocessor.

Three different problems have been examined with a view to solving them

through the use of an array of transputers. The transputers used were developed

by Inmos, as these are the only monolithic ones currently available. Each solution

is representative of a different class of parallel programs. The first, the general

direct synthesis of audio signals, runs efficiently using a isonomic software archi

tecture; each processor uses an identical copy of the program, with partitioned

input data sets describing the required result. The final result of this system is

gained by combining the results of each of the programs. The second algorithm

to be recoded for concurrent operation runs most efficiently on a dianomic ar

chitecture; the processing 'hot-spot' of the phase vocoder program, the forward

and reverse Fourier transformations, are delegated to a task force of 'worker' pro

cessors by a 'master' process residing on the root node of the network. Thus all

transfers to and from the host file system are naturally concentrated at one node,

avoiding the potential bottleneck of multiple processor disk accessing, which was

one of the restricting attributes in the first case.

Having demonstrated two different approaches to parallel software configura

tion as working parallel systems which are in day-to-day use 'in the field', atten

tion was turned to developing the hardware and software required to improve the

128

129

utility of computers in electroacoustic music. Present systems suffer from there

quirement of a certain level of technical knowledge. This prohibits some musicians

from using them, as traditional musical expertise demands no such ability. The

construction of a real-time performing instrument which is capable of transform

ing gestural inputs into arbitrary sound outputs benefits from the partitioning of

the problem into three discrete areas: instrument definition; musical composition;

and live performance. So that a new and therefore unknown human-computer in

terface is not introduced, a machine which is potentially capable of capturing the

gestural information from a conventional musical instrument is specified. This

machine, capable of sustaining almost one and a half thousand millions of in

structions per second, has been built and tested. The hardware architecture used

is based heuristically upon the structural requirements of the gestural capture

algorithms, and although conventional, general-purpose programs cannot be run

on this configuration immediately, many can be modified or rewritten to take

advantage of this new hardware configuration. The finished machine provides

exciting opportunities for further work in real-time algorithms for electroacoustic

mUSIC.

Bibliography

[1] Vercoe, B CsoUND Reference Manual MIT Press, 1986.

[2] Chamberlain, H Musical Applications of Microcomputers Hayden Books,

Howard W Sams &Co. 4300 West 62nd St., Indianapolis, Indiana 64268

USA ISBN 0-8104-5768-7 (1987 2nd Edition)

[3] Comerford, P J, Eaglestone, B M Bradford Musical Instrument Sim

ulator and Workstation Proceedings of Euromicro '88 conference on Su

percomputer Technology and Applications, Zurich. Microprocessing and

Microprogramming 24 (1988), pp73-78.

[4] Lowe, W, Currie, R Digidesign's Sound Accelerator: Lessons Lived and

Learned Computer Music Journal13(1) pp36-46 (1989)

[5] Grey, J M Doctoral Thesis Psychology Department of Stanford University,

USA (Feb. 1975)

[6] Serra, Marie-Helene, Rubine, Dean, & Dannenberg, Roger D The

Analysis and Resynthesis of Tones via Spectral Interpolation Proceedings

of the International Computer Music Conference 1988, pp322-332

[7] Sasaki, Lawrence H, & Smith, Kenneth C A Simple Data Reduction

Scheme for Additive Synthesis Computer Music Journal 4(1) pp22-24.

[8] Cook, Perry R Synthesis of the Singing Voice Using a Physically Param

eterised Model of the Human Vocal Tract Proceedings of the International

Computer Music Conference, Ohio, 1989. pp69-72

130

BIBLIOGRAPHY 131

[9] Roads, C Granular Synthesis of Sounds Computer Music Journal 2(2)

pp61-62 (1978)

[10] Truax, B Real-Time Granular Synthesis with a Digital Signal Processor

CMJ 12(2) Summer 1988.

[11] Rodet, X Time-Domain Formant- Wave-Function Synthesis Computer

Music Journal, 8(3), 1984 pp 9-14

[12] Rodet, X, Potard, Y, Barriere, J The Chant Project Computer Music

Journal, 8(3), 1984.

[13] Rivas, D, Watkins, S, Chau, PM VLSI for a Physical Model of Musical

Instrument Oscillations Proceedings of the International Computer Music

Conference, Ohio, 1989. pp253-256

[14] Emmerson, Simon (Editor) The Language of Electroacoustic Music

Macmillan Press Ltd 1986. ISBN 0-333-39760-6.

[15] Manning, P D Electronic and Computer Music Oxford University Claren

don Press (1985) ISBN 0-19-311981-8

[16] Roads, C Composers and the Computer William Kaufmann Inc., LA,

California. 1985

[17] Zicarelli, D M and Jam Factory Computer Music Journal, 11(4) (Winter

1987) pp13-29

[18] Haus, Goffredo Music Processing at L.I.M. Proceedings of Euromicro '88

conference on Supercomputer Technology and Applications, Zurich. Micro

processing and Microprogramming 24 (1988), pp 435-441.

[19] Langston, P S Six Techniques for Algorithmic Music Composition Pro

ceedings of the International Computer Music Conference, Ohio, 1989.

pp164-167

BIBLIOGRAPHY 132

[20] Katayose, H, Takami, K, Fukuoka, T, & Inokuchi, S Music Inter

preter in the Kansei Music System Proceedings of the International Com

puter Music Conference, Ohio, 1989. pp147-150

[21] Katayose, H, Kato, H, Imai, M, & Inokuchi, S An Approach to an

Artificial Music Expert Proceedings of the International Computer Music

Conference, Ohio, 1989. pp139-146

[22] Strasburger, Hans, Kohler, Stefan, & Radauer, Irmfried Score In

put to CsoUND via the MIDI Keyboard Proceedings of the International

Computer Music Conference, Glasgow, 1990, p208

[23] McAdams, Stephen, & Bregman, Albert Hearing Musical Streams

Computer Music Journal 3(4) (1979) pp26-43,60,63

[24] Haynes, Stanley The Musician-Machine Interface in Digital Sound Syn

thesis Ph.D. Thesis, Department of Music, University of Durham

[25] Buxton, W Design Issues in the Foundation of a Computer-Based Tool

for Music Composition Structured Sound Synthesis Project, Computer Sys

tems Research Group, University of Toronto, Toronto, Ontario, Canada

M5S 1A4.

[26] Buxton, William, Sniderman, Richard, Reeves, William, Patel,

Sanad, & Baeker, Ronald The Evolution of the SSSP Score-Editing

Tools Computer Music Journal 3(4) (1979) pp14-25

[27] Clarke, M, Manning, P D, Berry, R, Purvis, A Vocel: An FOF

Unit-Generator for MUSIC11 International Computer Music Conference,

Cologne, 1988.

[28] Endrich, T C.D.P. Reference Manual C.D.P. Limited, 1987.

[29] Almasi & Gottlieb Highly Parallel Computing Benjamin/Cummings

Publishing, ISBN 0-8053-0177-1

BIBLIOGRAPHY 133

[30] Lee, Edward Ashford, & Messerschmitt, David G Static Schedul

ing of Synchronous Data Flow Programs for Digital Signal Processing lEE

Transactions on Computers Vol C-36, No 1. January 1987.

[31] Laurson, M, & Duthen, J Patchwork: A Graphic Language in Preform

Proceedings of the International Computer Music Conference, Ohio, 1989.

pp172-175.

[32] Decker, S L, Kendall, G S, Schmidt, B L, Ludwig, M D, & Freed,

D J A Modular Environment for Sound Synthesis and Composition Com

puter M~sic Journal 10(4) pp28-40 (1986)

[33] Tarabella, L, Bertini, G A Digital Signal Processing System and a

Graphic Editor for Synthesis Algorithms. Proceedings of the International

Computer Music Conference, Ohio, 1989. pp312-315

[34] Sedgewick, Robert Algorithms Addison-Wesley 1983. ISBN 0-201-

06672-6

[35] Walker, W F KIWI: A Parallel System for Software Sound Synthesis

Proceedings of the International Computer Music Conference, Ohio, 1989.

pp328-331

[36] Flynn, Michael J. Some Computer Organisations and their Effectiveness

IEEE Transactions on Computers C21 pp948-960 (1972)

[37] Bowler, I W, Manning, P D, Purvis, A, Bailey, N J A Transputer

Based Additive Synthesis Implementation Proceedings of the International

Computer Music Conference, Ohio 1989. pp58-61.

[38] Gould, L, Bowler, I W, Purvis, A Real-Time Multi-Channel Digital

Filtering on the Transputer Submitted to Computer Architecture and Dig

ital Signal Processing lEE Conference, Hong Kong, 1989.

[39] Tannenbaum, A S Operating Systems Prentice Hall, 1987

BIBLIOGRAPHY 134

(40] Dijkstra, E W Cooperating Sequential Processes in 'Programming Lan

guages' ed. Genuys, F New York Academic Press (1968) pp34-112

(41] Dijkstra, E W Solution of a Problem in Concurrent Program Control

Communications of the Association of Computing Machinery, Vol. 8(5)

(Sept 1965) p569.

(42] Tayli, Murat, & Benmaiza, Mohamed Transputer Implementations of

General Semaphores Occam User Group Newsletter, No. 14 (January 1991)

pp50-60

(43] Knuth, D E The Art of Computer Programming, vol. 1, sec 2.2 pp234 et

seq. Addison-Wesley (1968)

(44] Finkel, A, Choquet, A FIFO Nets Without Order Deadlock Acta Infor

matica 25(1) (1986) pp15-36

(45] Fischer, Michael J, Lynch, Nancy A, Burns, James E, & Borodin,

Alan Distributed FIFO Allocation of Identical Resources Using Small

Shared Space ACM Transactions on Programming Languages and Systems,

11(1) pp90-114

(46] Peterson, James L Petri-net Theory and the Modeling of Systems

Prentice-Hall (1981) ISBN 0-13-661983-5

[47] Murata, T Petri-nets: Properties, Analysis and Applications Proc. IEEE

77(4) (April1989) pp 541-580

[48] Lynch, Nancy A, & Fischer, Michael J A Technique for Decomposing

Algorithms which use a Single Shared Variable Journal of Computer System

Science 27(3) (1983) pp350-377

[49] Courtois, P, Heymans, F, & Parnas, D Concurrent Control with (Read

ers' and (Writers' Communications of ACM 14(10) (Oct. 1971) pp667-668

BIBLIOGRAPHY 135

[50] Cooprider, L Petri-nets and the Representations of Standard Synchroni

sations Dept of Computer Science, Carnegie-Mellon University, Pittsburgh,

Pennsylvania (Jan. 1976)

[51] Peacock, J Kent Deadlock Avoidance in Loosley-Coupled Multiproces

sors with Finite Buffer Pools ACM Operating Systems Review 23(2) (April

1989) pp20-24

[52] Holm, Frode Frequency Scheduling: Real-Time Scheduling in Multipro

cessing Systems Proceedings of the International Computer Music Confer

ence, Ohio, 1989 ppl27-130

[53] Orlarey, Y, & Lequay, H MIDI Share: A Real- Time Multi Tasks Soft

ware Module for MIDI Applications Proceedings of the International Com

puter Music Conference, Ohio, 1989. pp 234-237

[54] Helmbold, David P, & McDowell, Charles Modeling Speedup(N)

Greater Than N IEEE Transactions on Distributed and Parallel Systems

1(2) (April1990) pp250-256

[55] F Richard Moore Elements of Computer Music Prentice Hall, 1990.

ISBN 0-13-252552-6

[56] Allen, J B Short Term Spectral Analysis, Synthesis, and Modification by

Discrete Fourier Transform IEEE Transaction on Acoustics, Speech and

Signal Processing, ASSP-25(3) (June 1977) pp235-238

[57] Wishart, T C.D.P. Phase Vocoder Reference Manual C.D.P. Limited,

1989.

[58] Lent, K An Efficient Method of Pitch Shifting Digitally Sampled Sounds

Computer Music Journal 13(4) (Winter 1989) pp65-71

[59] Schroeder, M R Linear Prediction, Entropy and Signal Analysis IEEE

ASSP Magazine, July 1984

BIBLIOGRAPHY 136

[60] Koikkalainen, Pasi & Sauer, Frank Architecture-independent Multi

computing via a self-distributing communication Harness Information Pro

cessing Laboratory Publication, Lappeenranta University of Technology,

POBox 20, SF-53851, Lappeentanta, Finland. Abstracted by 1st Nordic

Transputer Seminar, Turku, Finland (1990).

[61] 3L Limited 3L Parallel C Version 2.0, Manual 3L Limited 1988.

[62] Kamangar, F A, Duderstadt, R A, Smith, J 0 Implementing the

Back-Propagation Algorithm on the Meiko Parallel Computing Surface Pro

ceedings of the International Conference on the Applications of Transputers,

Liverpool, 1989. Published as 'Applications of Transputers, Volume 1', Len

Freeman and Chris Phillips (ed.) lOS Press (1990) ISBN 90-5199-025-1.

[63] 3L Technical Note No. 8 Processor Farms ref. 02708, January 18, 1990.

3L Ltd., Peel House, Ladywell, Livingston, EH54 6AG, Scotland, U.K.

[64] Casserley, Lawrence Seried Phi Real-Time Digital Signal Processor Pro

ceedings of the International Computer Music Conference, Glasgow, 1990,

pp124-126

[65] Kirk, R & Orton, R MIDAS A Musical Instrument Digital Array Signal

Processor Proceedings of the International Computer Music Conference,

Glasgow, 1990, pp127-131

[66] Foley, J D Interfaces for Advanced Computing Scientific American, 1987

pp83-90

(67) Schaeffer Esquisse d'un Solfege Concret (1952).

[68] Boulez, Pierre, & Gerzo, Andrew Computers in Music Scientific Amer

ican, 258(4) April1988.

BIBLIOGRAPHY 137

[69] Morita, H, Ohteru, S, & Hashimoto, S Computer Music System which

Follows a Human Conductor Proceedings of the International Computer

Music Conference, Ohio, 1989. pp207-210

[70] Vercoe, B, & Cumming, D Connection Machine Tracking of Poly

phonic Audio Proceedings of the International Computer Music Conference,

Cologne, 1988.

[71] Vercoe, Barry, & Ellis, Dan Real-Time CSOVND: Software Synthesis

with Sensing and Control Proceedings of the International Computer Music

Conference, Glasgow, 1990. pp209-211.

[72] Vercoe, B, & Puckette, M Synthetic Rehearsal: Training the Synthetic

Performer Proceedings of the International Computer Music Conference,

1985, pp275-278

[73] Dannenberg Software Techniques for Interactive Performance Systems

Proceedings of the International Workshop on Man-Machine Interaction in

Live Performance, Computer Music Department CNUCE/CNR, Pisa, June

1991.

[74] Yavelow Music f3 Microprocessors: MIDI and the State of the Art in 'The

Music Machine', ed. Roads, pp199-241, M.I.T. press, 1989. ISBN 0-262-

18131-2

[75] Baird, Bridget, Blevins, Donald, & Zahler, Noel The Artificially

Intelligent Computer Performer on the Macintosh II and a Pattern Match

ing Algorithm for Real- Time Interactive Performance Proceedings of the

International Computer Music Conference, Ohio, 1989 pp13-16

[76] Roads, C The Second STEIM Symposium on Interactive Composition

in Live Electronic Music Computer Music Journal, 10(1) (Summer 1986)

pp44-50.

BIBLIOGRAPHY 138

[77) Helm, E Composer, Performer, Public: A Study in Communication Inter

national Music Council; Music & Communication; 1. Florence, 1970

[78) Boie, Bob, Mathews, Max, & Schloss, Andy The Radio Drum as a

Synthesiser Controller Proceedings of the International Computer Music

Conference, Ohio, 1989. pp42-45.

[79) Keane, D, & Gross, P The MIDI Baton Proceedings of the International

Computer Music Conference, Ohio, 1989.

[80) Flanagan, J L, Golden, R M The Phase Vocoder Bell System Technical

Journal 45 pp1493-1509 (1966)

[81] Portnoff, M R Implementation of the Digital Phase Vocoder using the

Fast Fourier Transform IEEE Transactions on Acoustics, Speech and Signal

Processing, ASSP-24(3) (June 1976)

[82] Dolson, M The Phase Vocoder: A Tutorial Computer Music Journal10(4)

pp14-27 (1986)

[83] Gordon, J W, Strawn, J An Introduction to the Phase Vocoder in 'Dig

ital Audio Signal Processing - an Anthology' The Computer Music and

Digital Audio Series ed. Strawn J: William Kaufmann, Inc., 95 First Street,

California 94022 ISBN 0-86576-082-9.

[84] Moorer, J A The Use of the Phase Vocoder in Computer Music Ap

plications Journal of the Audio Engineering Society 26(1) pp42-45 (Jan

uary /February 1978)

[85) McGee, W F, Merkley, Paul A Real- Time Logarithmic-Frequency Phase

Vocoder Computer Music Journal 15(1) pp20-27 (Spring 1991)

[86) Zwicker, E, & Terhardt, E Analytical Expressions for Critical-Band

Rate and Critical Bandwidth as a Function of Frequency Journal of the

Accoustical Society of America, 65(5) (Nov 1980) pp1523-1525

BIBLIOGRAPHY 139

[87] Terhardt, E Fourier Transformation of Time Signals: Conceptual Revi

sion Acustica 57 (1985). pp242-256

[88] Heinbach, W Aurally Adequate Signal Representation: The Part Tone

Time Pattern Acustica vol. 67 (1988) ppl13-121

[89] Schlang, Martin F, & Mummert, Markus Die Bedeutung der Fen

sterfunktion Fiir die Fourier- T- Transformation als Gehorgerechte Spektral

analyse Lehrstuhl fur Elektroakustik, TU, Miinchen

[90] Bailey, N.J., Purvis, A., Bowler, I.W., & Manning, P.D. An Highly

Parallel Architecture for Real-time Music Synthesis and Digital Signal Pro

cessing Application Proceedings of the International Computer Music Con

ference, Glasgow, 1990. pp169-171.

[91] Despain, Alvin M, & Patterson, David A X- Tree: A Tree Struc

tured Multi-Processor Computer Architecture Proceedings of the 5th An

nual Symposium on Computer Architectures, April1978, pp144-151

[92] Wessel, David W Timbre Space as a Musical Control Structure Computer

Music Journal 3(2) (1979) pp45-52

[93] Carbonneau, Gerard R Timbre and the Perceptual Effects of Three Types

of Data Reduction Computer Music Journal 5(2) pp10-19

[94] Serra, X, Smith, J 0 Spectral Modeling Synthesis Proceedings of the

International Computer Music Conference, Ohio, 1989. pp281-284

[95] Bowler, I W, Manning, P D, Purvis, A, Bailey, N J On Mapping

N Articulation- onto M Synthesiser-Control Parameters Proceedings of the

International Computer Music Conference 1990, Glasgow. pp181-184

[96] Bowler, I W, Manning, P D, Purvis, A, Bailey, N J New Techniques

for a Real- Time Phase Vocoder Proceedings of the International Computer

Music Conference 1990, Glasgow. pp178-180

BIBLIOGRAPHY 140

[97] Parkinson, D Parallel Efficiency can be greater than Unity Parallel Com

puting 3 pp261-262 (1986)

(98] Cooley, James W, Tukey, John WAn Algorithm for the Machine Cal

culation of Complex Fourier Series Mathematics of Computation 19 (April

1965), pp297-301

[99] Winograd, S On Computing the Discrete Fourier Transform Mathematics

of Computation, 32(141) (Jan 1978) pp175-199

(100] Macnaghten, A M, Hoare, C A R Fast Fourier Transform free from

Tears The Computer Journal 20(1) (1977) pp78-83

[101] Fay D Q M An Implementation of the Fast Fourier Transform in Occam

Computer Science and Informatics 14(2) pp3-12

[102] Tsay, J ong-Chuang, & Yuan, Sy Systolic Flow Journal of Parallel and

Distributed Computing 8 (1990) pp 286-291)

[103] Bergland, Glen D Fast Fourier Transform Hardware Implementations

An Overview IEEE Transactions on Audio and Electroacoustics AU-17(2)

(June 1969) pp104-108

[104] Snyder, L The Role of the CHiP Computer in Signal Processing In "VLSI

and Modern Signal Processing" ed. Kung, Whitehouse and Kailath, Pren

tice Hall, 1985. ISBN 0-13-942699-X

[105] Snyder, L Configurable, Highly Parallel (CHiP) Approach to Signal Pro

cessing Applications SPIE Technical Symposium East 1982 Proceeding

[106] Kailath, T Signal Processing Applications of Concurrent Array Processors

In 'VLSI and Modern Signal Processing' ed. Kung, Whitehouse and Kailath,

Prentice Hall, 1985. ISBN 0-13-942699-X

[107] Thompson, Clark D Fourier Transforms In VLSI IEEE Transactions on

Computers C-32(11) (Nov 1983) pp1047-1057

BIBLIOGRAPHY 141

[108] Bronson, E C, Casavant, T L, Jamieson, L H Experimental

Application-Driven Architecture Analysis of an SIMD/MIMD Parallel Pro

cessing System IEEE Transactions on Parallel and Distributed Systems,

Vol. 1, No. 2, April 1990, pp195-205.

[109] Swartzlander, E E, Jnr, & Halnor, G Frequency Domain Digital Filter

ing with VLSI In 'VLSI and Modern Signal Processing" ed. Kung, White

house and Kailath, Prentice Hall, 1985. ISBN 0-13-942699-X

[110] Yuhang Wu New FFT Structures Based on the Bruun Algorithm IEEE

Transactions on Acoustics, Speech and Signal Processing 38(1) (Jan 1990)

[111] Groginsky, Herbert L, & Works, George A A Pipeline Fast Fourier

Transform IEEE Transactions on Computers, Nov 1970, pp1015-1019

[112] Bruun, George Z- Transform DFT Filters and FFTs IEEE Transactions

on Acoustics, Speech and Signal Processing ASSP26(1) (Feb 1978) pp56-63

[113] Reed, I S, Tufts, D W, Yu, X, Truong, T K, Shih, M-T, Yin,

X Fourier Analysis and Signal Processing by use of the Mobius Inversion

Formula IEEE Transactions on Acoustics, Speech and Signal Processing

38(3) (March 1990)

[114] Truong, T K, Reed, I S, Yeh, C-S, Chang, J J, Shao, H M A

Parallel VLSI Architecture for a Digital Filter using a Number- Theoretic

Transform In "VLSI AND MODERN SIGNAL PROCESSING" ed. KUNG,

WHITEHOUSE AND KAILATH, Prentice Hall, 1985. ISBN 0-13-942699-

X

[115] Arambepola, B Discrete Fourier Transform Processor based on the

Prime-Factor Algorithm lEE Proceedings Voll30 Part G No 4 (Aug 1983)

ppl38-144

BIBLIOGRAPHY 142

[116] Kolba, Dean P, Parks, Thomas W A Prime-Factor FFT Algorithm

Using High-Speed Convolution IEEE Transactions on Acoustics, Speech and

Signal Processing ASSP25(4) (Aug 1977) pp218-294.

[117] Aloisio, G., Fox, G.C., Kim, J .§., & Veneziani, N. A Concurrent Im

plementation of the Prime Factor Algorithm IEEE Transactions on Acous

tics, Speech and Signal Processing, vol 30, pp160-170.

[118] Lo, K C, Siu, W C, Lun, D P K, Purvis, A Address Generation

of Prime Factor Algorithm in a Multiprocessor System Presented at IEEE

Conference on Circuits and Systems, Singapore, July 1991

[119] Jinmos Ltd. Transputer Development System ch. 5-7 Prentice Hall ISBN

0-13-928 995-X

[120] Cadoz, C, Luciani, A, & Florens, J Responsive Input Devices and

Sound Synthesis by Simulation of Instrumental Mechanisms: The Cordis

System Computer Music Journal, vol. 8 no. 3 (Autumn 1984).

[121] Snell, J M General-Purpose High-Fidelity Affordable Real-Time Computer

Music System 1987 ICMC Proceedings, pp130-137.

[122] Boynton, L, Cumming, D A Real- Time Acoustic Processing Card For

The Mac-II Proceedings of the International Computer Music Conference,

1988, pp349-356

[123] Baude, Franc;oise, Carre, Franc;oise, Clere, Pascal, & Vidal

Naquet, Guy Topologies for Large Transputer Networks: Theoretical As

pects and Experimental Approach Research Paper: Laboratories de Mar

coussis, CGE Research Center, Route de Nozay, 91460 Marcoussis, France.

[124] Lippmann, R P An Introduction to Computing with Neural Nets IEEE

ASSP Magazine April 1987 pp4-22

BIBLIOGRAPHY 143

[125] Laden, B, Keefe, D H The Representation of Pitch in a Neural Net Model

of Chord Classification Computer Music Journal13(4) (Winter 1989) pp12-

26

[126] Dolson, M Machine Tongues XII: Neural Networks Computer Music Jour

nal13(3) (Autumn 1989) pp28-40

[127] Chen, J R, Mars, P Artificial Neural Networks and Nonlinear System

Identification Internal report: School of Engineering and Applied Science,

Uuniversity of Durham, South Road, Durham, United Kingdom (Jan 1990)

[128] Loy, Gareth On the Scheduling of Multiple Parallel Processors Executing

Synchronously Proceedings of the International Computer Music Confer

ence, 1987. ppl17-124

[129] Snyder, L Introduction to the Configurable, Highly Parallel Computer

Computer 15(1) (1982) pp47-56

[130] Snyder, L Overview of the CHiP Computer In 'VLSI81' ed. J P Gray,

Academic Press, New York (1981) ISBN 0-12-296860-3

[131] Tanimoto, S LA Pyramidal Approach to Parallel Processing Proceedings

of the lOth international symposium on computer architecture, Stockholm,

June 1983

[132] Tanimoto, S, Pavlidis, T A Hierarchical Data Structure for Picture Pro

cessing Computer Graphics and Image Processing 4 ppl04-119 (1975)

[133] Stone, Harold S Parallel Processing with the Perfect Shuffle IEEE Trans

actions on Computers C-20(2) (Feb 1971), pp153-161

[134] Pease, M C An Adaptation of the Fast Fourier Transform for Parallel

Processing Journal of the Association of Computing Machinery 15(2) (April

1968) pp252-264

BIBLIOGRAPHY 144

[135) van Renterghem, P Applicability of a 16-Node Transputer Array Without

External Memory in 'Applying Transputer Based Parallel Machines' ed.

Bakkers, A lOS Press, Netherlands, 1989. ISBN 90-5199-011-1

[136) Rabiner, L R, Gold, B Theory and Application of Digital Signal Process

ing Prentice-Hall International (1975) ISBN 0-13-914101-4. Section 9.12

(pp563-565)

[137) Oppenheim, A V, Schafer, R W Digital Signal Processing Prentice-Hall

International (1975)

[138) Oetken, Geerd, Parks, Thomas W, & Schuessler, Hans W New Re

sults in the Design of Digital Interpolators IEEE Transactions on Acoustics,

Speech and Signal Processing, ASSP-23(3) (June 1975) pp301-309

[139) Akl, Selim K, & Meijer, H Parallel Binary Search IEEE Transactions

on Parallel and Distributed Systems 1(2) (April1990) pp247-250

Alphabetial List of References

3L Limited 3L Parallel C Version 2.0, Manual 3L Limited 1988. First cited on

page 66

3L Technical Note No. 8 Processor Farms ref. 02708, January 18, 1990. 3L

Ltd., Peel House, Ladywell, Livingston, EH54 6AG, Scotland, U.K. First cited

on page 69

Akl, Selim K, & Meijer, H Parallel Binary Search IEEE Transactions on Parallel

and Distributed Systems 1(2) (April1990) pp247-250 First cited on page 127

Allen, J B Short Term Spectral Analysis, Synthesis, and Modification by Discrete

Fourier Transform IEEE Transaction on Acoustics, Speech and Signal Processing,

ASSP-25(3) (June 1977) pp235-238 First cited on page 64

Almasi & Gottlieb Highly Parallel Computing Benjamin/Cummings Publishing,

ISBN 0-8053-0177-1 First cited on page 15

Aloisio, G., Fox, G.C., Kim, J.S., & Veneziani, N. A Concurrent Implemen

tation of the Prime Factor Algorithm IEEE Transactions on Acoustics, Speech

and Signal Processing, vol 30, pp160-170. First cited on page 113

Amdahl, G Validity of the single processor approach to achieving very large scale

computing capabilities Proceedings of AFIPS Computing Conference, v.30 (1967)

pp 483-485

Andre-Obrecht, R A New Statistical Approach for the Automatic Segmentation

145

ALPHABETICAL LIST OF REFERENCES 146

of Continuous Speech Signals IEEE Transactions on Acoustics, Speech and Signal

Processing 36(1) (Jan 1988)

Arambepola, lB Discrete Fourier Transform Processor based on the Prime-Factor

Algorithm lEE Proceedings Vol 130 Part G No 4 (Aug 1983) pp138-144 First

cited on page 113

Bailey, N.J., Purvis, A., JBowler, Jr.W., & Manning, P.D. An Highly Parallel

Architecture for Real-time Music Synthesis and Digital Signal Processing Appli

cation Proceedings of the International Computer Music Conference, Glasgow,

1990. pp169-171. First cited on page 103

Baird, Bridget, Blevins, Donald, & Zahler, Noel The Artificially Intelligent

Computer Performer on the Macintosh II and a Pattern Matching Algorithm for

Real- Time Interactive Performance Proceedings of the International Computer

Music Conference, Ohio, 1989 pp13-16 First cited on page 88

JBaude, Franc;oise, Carre, Franc;oise, Clere, Pascal, & Vidal-Naquet, Guy

Topologies for Large Transputer Networks: Theoretical Aspects and Experimental

Approach Research Paper: Laboratories de Marcoussis, CGE Research Center,

Route de Nozay, 91460 Marcoussis, France. First cited on page 124

lBergland, Glen D Fast Fourier Transform Hardware Implementations - An

Overview IEEE Transactions on Audio and Electroacoustics AU-17(2) (June

1969) ppl04-108 First cited on page 111

Biyabani, § R, Stankovic, J A, & Ramamritham, K The Integration of

Deadline and Criticalness in Hard Real- Time Scheduling Proceedings of the IEEE

Real-Time Systems Symposium 1988 pp152-160

Boie, JBob, Mathews, Max, & Schloss, Andy The Radio Drum as a Synthe

siser Controller Proceedings of the International Computer Music Conference,

Ohio, 1989. pp42-45. First cited on page 92

ALPHABETICAL LIST OF REFERENCES 147

Boulez, Pierre, & Gerzo, Andrew Computers in Music Scientific American,

258(4) April1988. First cited on page 85

Bowler,][W, Manning, P D, Purvis, A, Bailey, N J A Transputer-Based

Additive Synthesis Implementation Proceedings of the International Computer

Music Conference, Ohio 1989. pp58-61. First cited on page 18

Bowler,][W, Manning, P D, Purvis, A, Bailey, N J New Techniques for

a Real- Time Phase Vocoder Proceedings of the International Computer Music

Conference 1990, Glasgow. pp178-180 First cited on page 106

Bowler,][W, Manning, P D, Purvis, A, Bailey, N J On Mapping N

Articulation- onto M Synthesiser-Control Parameters Proceedings of the Inter

national Computer Music Conference 1990, Glasgow. pp181-184 First cited on

page 106

Boynton, L, Cumming, D A Real- Time Acoustic Processing Card For The Mac

II Proceedings of the International Computer Music Conference, 1988, pp349-356

First cited on page 124

Bronson, E C, Casavant, T L, Jamieson, L H Experimental Application

Driven Architecture Analysis of an SIMD/MIMD Parallel Processing System

IEEE Transactions on Parallel and Distributed Systems, Vol. 1, No. 2, April

1990, pp195-205. First cited on page 112

Bruun, George Z-Transform DFT Filters and FFTs IEEE Transactions on

Acoustics, Speech and Signal Processing ASSP26(1) (Feb 1978) pp56-63 First

cited on page 112

Buxton, William, Sniderman, Richard, Reeves, William, Patel, Sanad,

& Baeker, Ronald The Evolution of the SSSP Score-Editing Tools Computer

Music Journal 3(4) (1979) pp14-25 First cited on page 6

Buxton, W Design Issues in the Foundation of a Computer-Based Tool for Music

Composition Structured Sound Synthesis Project, Computer Systems Research

ALPHABETICAL LIST OF REFERENCES 148

Group, University of Toronto, Toronto, Ontario, Canada M5S 1A4. First cited

on page 6

Cadoz, C, Luciani, A, & Florens, J Responsive Input Devices and Sound Syn

thesis by Simulation of Instrumental Mechanisms: The Cordis System Computer

Music Journal, vol. 8 no. 3 (Autumn 1984). First cited on page 123

Carbonneau, Gerard R Timbre and the Perceptual Effects of Three Types of

Data Reduction Computer Music Journal 5(2) pp10-19 First cited on page 105

Casserley, Lawrence Seried Phi Real- Time Digital Signal Processor Proceedings

ofthe International Computer Music Conference, Glasgow, 1990, pp124-126 First

cited on page 80

Chamberlain, H Musical Applications of Microcomputers Hayden Books, Howard

W Sams &Co. 4300 West 62nd St., Indianapolis, Indiana 64268 USA ISBN 0-

8104-5768-7 (1987 2nd Edition) First cited on page 3

Chen, J R, Mars, P Artificial Neural Networks and Nonlinear System Identifi

cation Internal report: School of Engineering and Applied Science, Uuniversity

of Durham, South Road, Durham, United Kingdom (Jan 1990) First cited on

page 124

Clarke, M, Manning, P D, Berry, R, Purvis, A Vocel: An FOF Unit

Generator for MusiCll International Computer Music Conference, Cologne,

1988. First cited on page 7

Comerford, P J, Eaglestone, B M Bradford Musical Instrument Simulator

and Workstation Proceedings of Euromicro '88 conference on Supercomputer

Technology and Applications, Zurich. Microprocessing and Microprogramming

24 (1988), pp73-78. First cited on page 3

Cook, Perry R Synthesis of the Singing Voice Using a Physically Parameterised

Model of the Human Vocal Tract Proceedings of the International Computer Mu

sic Conference, Ohio, 1989. pp69-72 First cited on page 4

ALPHABETICAL LIST OF REFERENCES 149

Cooley, James W, Tukey, John WAn Algorithm for the Machine Calculation

of Complex Fourier Series Mathematics of Computation 19 (April1965), pp297-

301 First cited on page 111

Cooprider, L Petri-nets and the Representations of Standard Synchronisations

Dept of Computer Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania

(Jan. 1976) First cited on page 38

Courtois, P, Heymans, F, & Parnas, D Concurrent Control with 'Readers' and

'Writers' Communications of ACM 14(10) (Oct. 1971) pp667-668 First cited on

page 36

Dannenberg Software Techniques for Interactive Performance Systems Proceed

ings of the International Workshop on Man-Machine Interaction in Live Perfor

mance, Computer Music Department CNUCE/CNR, Pisa, June 1991. First cited

on page 87

Decker, S L, Kendall, G S, Schmidt, B L, Ludwig, M D, & Freed, D J

A Modular Environment for Sound Synthesis and Composition Computer Music

Journal10(4) pp28-40 (1986) First cited on page 17

Despain, Alvin M, & Patterson, David A X- Tree: A Tree Structured Multi

Processor Computer Architecture Proceedings of the 5th Annual Symposium on

Computer Architectures, April 1978, pp144-151 First cited on page 103

Dijkstra, E W Cooperating Sequential Processes in 'Programming Languages' ed.

Genuys, F New York Academic Press (1968) pp34-112 First cited on page 26

Dijkstra, E W Solution of a Problem in Concurrent Program Control Communi

cations of the Association of Computing Machinery, Vol. 8(5) (Sept 1965) p569.

First cited on page 26

Dolson, M Machine Tongues XII: Neural Networks Computer Music Journal13(3)

(Autumn 1989) pp28-40 First cited on page 124

ALPHABETICAL LIST OF REFERENCES 150

Dolson, M The Phase Vocoder: A Tutorial Computer Music Journal10(4) pp14-

27 (1986) First cited on page 94

Duhamel, P, Piron, B, Etcheto, J M On Computing the Inverse DFT IEEE

Transactions on Acoustics, Speech and Signal Processing, 36(2) (Feb 1988),

pp285-286

Emmerson, Simon (Editor) The Language of Electroacoustic Music Macmillan

Press Ltd 1986. ISBN 0-333-39760-6. First cited on page 5

Endrich, T C.D.P. Reference Manual C.D.P. Limited, 1987. First cited on page 7

F Richard Moore Elements of Computer Music Prentice Hall, 1990. ISBN 0-13-

252552-6 First cited on page 64

Fay D Q MAn Implementation of the Fast Fourier Transform in Occam Computer

Science and Informatics 14(2) pp3-12 First cited on page 111

Finkel, A, Choquet, A FIFO Nets Without Order Deadlock Acta Informatica

25(1) (1986) pp15-36 First cited on page 30

Fischer, Michael J, Lynch, Nancy A, Burns, James E, & Borodin, Alan

Distributed FIFO Allocation of Identical Resources Using Small Shared Space

ACM Transactions on Programming Languages and Systems, 11(1) pp90-114

First cited on page 30

Flanagan, J L, Golden, R M The Phase Vocoder Bell System Technical Journal

45 pp1493-1509 (1966) First cited on page 94

Flynn, Michael J. Some Computer Organisations and their Effectiveness IEEE

Transactions on Computers C21 pp948-960 (1972) First cited on page 17

Foley, J D Interfaces for Advanced Computing Scientific American, 1987 pp83-90

First cited on page 81

ALPHABETICAL LIST OF REFERENCES 151

Gordon, J W, Strawn, J An Introduction to the Phase Vocoder in 'Digital Audio

Signal Processing- an Anthology' The Computer Music and Digital Audio Series

ed. Strawn J: William Kaufmann, Inc., 95 First Street, California 94022 ISBN 0-

86576-082-9. First cited on page 94

Gould, L, Bowler, I W, Purvis, A Real-Time Multi-Channel Digital Filter

ing on the Transputer Submitted to Computer Architecture and Digital Signal

Processing lEE Conference, Hong Kong, 1989. First cited on page 18

Grey, J M Doctoral Thesis Psychology Department of Stanford University, USA

(Feb. 1975) First cited on page 3

Groginsky, Herbert L, & Works, George A A Pipeline Fast Fourier Transform

IEEE Transactions on Computers, Nov 1970, pp1015-1019 First cited on page 112

Haus, Goffredo Music Processing at L.I.M. Proceedings of Euromicro '88 confer

ence on Supercomputer Technology and Applications, Zurich. Microprocessing

and Microprogramming 24 (1988), pp 435-441. First cited on page 5

Haynes, Stanley The Musician-Machine Interface in Digital Sound Synthesis

Ph.D. Thesis, Department of Music, University of Durham First cited on page 6

Heinbach, W Aurally Adequate Signal Representation: The Part Tone Time Pat

tern Acustica vol. 67 (1988) ppl13-121 First cited on page 101

Helm, E Composer, Performer, Public: A Study in Communication International

Music Council; Music & Communication; 1. Florence, 1970 First cited on page 91

Helmbold, David P, & McDowell, Charles Modeling Speedup(N) Greater Than

N IEEE Transactions on Distributed and Parallel Systems 1(2) (April 1990)

pp250-256 First cited on page 59

Holm, Fro de Frequency Scheduling: Real- Time Scheduling in Multiprocessing Sys

tems Proceedings of the International Computer Music Conference, Ohio, 1989

pp127-130 First cited on page 56

ALPHABETICAL LIST OF REFERENCES 152

Inmos Ltd. Transputer Development System ch. 5-7 Prentice Hall ISBN 0-13-

928995-X First cited on page 114

Kailath, T Signal Processing Applications of Concurrent Array Processors In

'VLSI and Modern Signal Processing' ed. Kung, Whitehouse and Kailath, Pren

tice Hall, 1985. ISBN 0-13-942699-X First cited on page 111

Kamangar, F A, Duderstadt, R A, Smith, J 0 Implementing the Back

Propagation Algorithm on the Meiko Parallel Computing Surface Proceedings of

the International Conference on the Applications of Transputers, Liverpool, 1989.

Published as 'Applications of Transputers, Volume 1', Len Freeman and Chris

Phillips (ed.) lOS Press (1990) ISBN 90-5199-025-1. First cited on page 66

Karp, R, Miller, P Parallel Program Schemata Journal of Computer and Systems

Science 3(4) (April1968)

Kasparec, F, Doppelbauer, J, Graebner, H, Mandl, T Advanced Trans

puter Interconnection Techniques Proceedings of the International Conference on

the Applications of Transputers, Liverpool, 1989. Published as 'Applications of

Transputers, Volume 1', Len Freeman and Chris Phillips (ed.) lOS Press (1990)

ISBN 90-5199-025-1.

Katayose, H, Kato, H, Imai, M, & Inokuchi, S An Approach to an Artificial

Music Expert Proceedings ofthe International Computer Music Conference, Ohio,

1989. pp139-146 First cited on page 6

Katayose, H, Takami, K, Fukuoka, T, & lnokuchi, S Music Interpreter

in the Kansei Music System Proceedings of the International Computer Music

Conference, Ohio, 1989. pp147-150 First cited on page 6

Keane, D, & Gross, P The MIDI Baton Proceedings of the International Com

puter Music Conference, Ohio, 1989. First cited on page 92

ALPHABETICAL LIST OF REFERENCES 153

Kirk, R & Orton, R MIDAS A Musical Instrument Digital Array Signal Pro

cessor Proceedings of the International Computer Music Conference, Glasgow,

1990, ppl27-131 First cited on page 80

Knuth, D E The Art of Computer Programming, vol. 1, sec 2.2 pp234 et seq.

Addison-Wesley (1968) First cited on page 30

Koikkalainen, Pasi & Sauer, Frank Architecture-independent Multicomputing

via a self-distributing communication Harness Information Processing Labora

tory Publication, Lappeenranta University of Technology, POBox 20, SF-53851,

Lappeentanta, Finland. Abstracted by 1st Nordic Transputer Seminar, Turku,

Finland (1990). First cited on page 66

Kolba, Dean P, Parks, Thomas W A Prime-Factor FFT Algorithm Using High

Speed Convolution IEEE Transactions on Acoustics, Speech and Signal Processing

ASSP25(4) (Aug 1977) pp218-294. First cited on page 113

Laden, B, Keefe, D H The Representation of Pitch in a Neural Net Model of

Chord Classification Computer Music Journal13(4) (Winter 1989) pp12-26 First

cited on page 124

Langston, P § Six Techniques for Algorithmic Music Composition Proceedings

of the International Computer Music Conference, Ohio, 1989. ppl64-167 First

cited on page 5

Laurson, M, & Duthen, J" Patchwork: A Graphic Language in Preform Proceed

ings of the International Computer Music Conference, Ohio, 1989. ppl72-175.

First cited on page 17

Lee, Edward Ashford, & Messerschmitt, David G Static Scheduling of Syn

chronous Data Flow Programs for Digital Signal Processing lEE Transactions on

Computers Vol C-36, No 1. January 1987. First cited on page 16

Lent, K An Efficient Method of Pitch Shifting Digitally Sampled Sounds Computer

Music Journal13(4) (Winter 1989) pp65-71 First cited on page 64

ALPHABETICAL LIST OF REFERENCES 154

Lippmann, R P An Introduction to Computing with Neural Nets IEEE ASSP

Magazine April1987 pp4-22 First cited on page 124

lLo, K C, Siu, W C, lLun, D P K, Purvis, A Address Generation of Prime

Factor Algorithm in a Multiprocessor System Presented at IEEE Conference on

Circuits and Systems, Singapore, July 1991 First cited on page 113

lLowe, W, Currie, R Digidesign's Sound Accelerator: Lessons Lived and Learned

Computer Music Journal13(1) pp36-46 (1989) First cited on page 3

lLoy, Gareth On the Scheduling of Multiple Parallel Processors Executing Syn

chronously Proceedings of the International Computer Music Conference, 1987.

pp117-124 First cited on page 124

lLynch, Nancy A, & Fischer, Michael J A Technique for Decomposing Algo

rithms which use a Single Shared Variable Journal of Computer System Science

27(3) (1983) pp350-377 First cited on page 31

Macnaghten, A M, Hoare, C A R Fast Fourier Transform free from Tears The

Computer Journal 20(1) (1977) pp78-83 First cited on page 111

Manning, P D Electronic and Computer Music Oxford University Clarendon

Press (1985) ISBN 0-19-311981-8 First cited on page 5

McAdams, Stephen, & Bregman, Albert Hearing Musical Streams Computer

Music Journal 3(4) (1979) pp26-43,60,63 First cited on page 6

McGee, W F, Merkley, Paul A Real- Time Logarithmic-Frequency Phase

Vocoder Computer Music Journal 15(1) pp20-27 (Spring 1991) First cited on

page 96

Meller, D Partitioning Big Matrices for Small Systolic Arrays In 'VLSI and Mod

ern Signal Processing' ed. Kung, Whitehouse and Kailath, Prentice Hall, 1985.

ISBN 0-13-942699-X

ALPHABETICAL LIST OF REFERENCES 155

Moorer, J" A The Use of the Phase Vocoder in Computer Music Applications

Journal of the Audio Engineering Society 26(1) pp42-45 (January /February 1978)

First cited on page 94

Morita, H, Ohteru, S, & Hashimoto, S Computer Music System which Follows

a Human Conductor Proceedings of the International Computer Music Confer

ence, Ohio, 1989. pp207-210 First cited on page 87

Murata, T Petri-nets: Properties, Analysis and Applications Proc. IEEE 77(4)

(April1989) pp 541-580 First cited on page 31

Oetken, Geerd, Parks, Thomas W, & Schuessler, Hans W New Results in

the Design of Digital Interpolators IEEE Transactions on Acoustics, Speech and

Signal Processing, ASSP-23(3) (June 1975) pp301-309 First cited on page 127

Oppenheim, A V, Schafer, R W Digital Signal Processing Prentice-Hall Inter

national (1975) First cited on page 127

Orlarey, Y, & lLequay, H MIDI Share: A Real-Time Multi Tasks Software Module

for MIDI Applications Proceedings of the International Computer Music Confer

ence, Ohio, 1989. pp 234-237 First cited on page 56

Parkinson, D Parallel Efficiency can be greater than Unity Parallel Computing 3,

pp261-262 (1986) First cited on page 110

Peacock, J" Kent Deadlock Avoidance in Loosley-Coupled Multiprocessors with

Finite Buffer Pools ACM Operating Systems Review 23(2) (April1989) pp20-24

First cited on page 38

Pease, M C An Adaptation of the Fast Fourier Transform for Parallel Processing

Journal ofthe Association of Computing Machinery 15(2) (April1968) pp252-264

First cited on page 125

Peterson, J" ames lL Petri-net Theory and the Modeling of Systems Prentice-Hall

(1981) ISBN 0-13-661983-5 First cited on page 31

ALPHABETICAL LIST OF REFERENCES 156

Portnoff, M R Implementation of the Digital Phase Vocoder using the Fast

Fourier Transform IEEE Transactions on Acoustics, Speech and Signal Process

ing, ASSP-24(3) (June 1976) First cited on page 94

Rabiner, JL R, Gold, B Theory and Application of Digital Signal Processing

Prentice-Hall International (1975) ISBN 0-13-914101-4. Section 9.12 (pp563-

565) First cited on page 127

Reed,][§, Tufts, D W, Yu, X, Truong, T K, Shih, M-T, Yin, X Fourier

Analysis and Signal Processing by use of the Mobius Inversion Formula IEEE

Transactions on Acoustics, Speech and Signal Processing 38(3) (March 1990)

First cited on page 112

Rivas, D, Watkins, §, Chau, PM VLSI for a Physical Model of Musical Instru

ment Oscillations Proceedings of the International Computer Music Conference,

Ohio, 1989. pp253-256 First cited on page 4

Roads, C A Tutorial on Non-Linear Distortion or Waveshaping Synthesis Com

puter Music Journal 3(2) pp29-34 (1979)

Roads, C Composers and the Computer William Kaufmann Inc., LA, California.

1985 First cited on page 5

Roads, C Granular Synthesis of Sounds Computer Music Journal 2(2) pp61-62

. (1978) First cited on page 4

Roads, C The Second STEIM Symposium on Interactive Composition in Live

Electronic Music Computer Music Journal, 10(1) (Summer 1986) pp44-50. First

cited on page 88

Rodet, X, Potard, Y, Barriere, J The Chant Project Computer Music Journal,

8(3), 1984. First cited on page 4

Rodet, X Time-Domain Formant- Wave-Function Synthesis Computer Music

Journal, 8(3), 1984 pp 9-14 First cited on page 4

ALPHABETICAL LIST OF REFERENCES 157

Sasaki, Lawrence H, & Smith, Kenneth C A Simple Data Reduction Scheme

for Additive Synthesis Computer Music Journal 4(1) pp22-24. First cited on

page 3

Schaeffer Esquisse d'un Solfege Concret (1952). First cited on page 83

Schindler, K W Dynamic Timbre Control for Real- Time Digital Synthesis Com

puter Music Journal, 8(1) (Spring 1984)

Schlang, Martin lF', & Mummert, Markus Die Bedeutung der Fensterfunktion

Fiir die Fourier- T- Transformation als Gehorgerechte Spektralanalyse Lehrstuhl

fiir Elektroakustik, TU, Miinchen First cited on page 101

Schroeder, M R Linear Prediction, Entropy and Signal Analysis IEEE ASSP

Magazine, July 1984 First cited on page 65

Sedgewick, Robert Algorithms Addison-Wesley 1983. ISBN 0-201-06672-6 First

cited on page 17

Serra, Marie-Helene, Rubine, Dean, & Dannenberg, Roger D The Analysis

and Resynthesis of Tones via Spectral Interpolation Proceedings of the Interna

tional Computer Music Conference 1988, pp322-332 First cited on page 3

Serra, X, Smith, J 0 Spectral Modeling Synthesis Proceedings of the Inter

national Computer Music Conference, Ohio, 1989. pp281-284 First cited on

page 105

Snell, J M General-Purpose High-Fidelity Affordable Real- Time Computer Music

System 1987 ICMC Proceedings, pp130-137. First cited on page 124

Snyder,]L Configurable, Highly Parallel (CHiP) Approach to Signal Processing

Applications SPIE Technical Symposium East 1982 Proceeding First cited on

page 111

Snyder,]L Introduction to the Configurable, Highly Parallel Computer Computer

15(1) (1982) pp47-56 First cited on page 124

ALPHABETICAL LIST OF REFERENCES 158

Snyder, lL Overview of the CHiP Computer In 'VLSI81' ed. J P Gray, Academic

Press, New York (1981) ISBN 0-12-296860-3 First cited on page 124

Snyder, lL The Role of the CHiP Computer in Signal Processing In "VLSI and

Modern Signal Processing" ed. Kung, Whitehouse and Kailath, Prentice Hall,

1985. ISBN 0-13-942699-X First cited on page 111

Stapleton, J C, lBass, § C Synthesis of Musical Tones Based on the Karhunen

Loeve Transform IEEE Transactions on Acoustics, Speech and Signal Processing,

36(3) (March 1988) pp305-319

Stone, Harold § Parallel Processing with the Perfect Shu.ffie IEEE Transactions

on Computers C-20(2) (Feb 1971), ppl53-161 First cited on page 125

Strasburger, Hans, Kohler, Stefan, & Radauer,][rmfried Score Input to

CSOUND via the MIDI Keyboard Proceedings of the International Computer Mu

sic Conference, Glasgow, 1990, p208 First cited on page 6

Swartzlander, E E, J nr, & Hal nor, G Frequency Domain Digital Filtering

with VLSI In 'VLSI and Modern Signal Processing" ed. Kung, Whitehouse and

Kailath, Prentice Hall, 1985. ISBN 0-13-942699-X First cited on page 112

Tanimoto, § lL A Pyramidal Approach to Parallel Processing Proceedings of the

lOth international symposium on computer architecture, Stockholm, June 1983

First cited on page 125

Tanimoto, §, Pavlidis, T A Hierarchical Data Structure for Picture Processing

Computer Graphics and Image Processing 4 pp104-119 (1975) First cited on

page 125

Tannenbaum, A S Operating Systems Prentice Hall, 1987 First cited on page 20

Tarabella, JL, lBertini, G A Digital Signal Processing System and a Graphic Ed

itor for Synthesis Algorithms. Proceedings of the International Computer Music

Conference, Ohio, 1989. pp312-315 First cited on page 17

ALPHABETICAL LIST OF REFERENCES 159

Tayli, Murat, & Benmaiza, Mohamed Transputer Implementations of General

Semaphores Occam User Group Newsletter, No. 14 (January 1991) pp50-60 First

cited on page 26

Terhardt, E Fourier Transformation of Time Signals: Conceptual Revision Acus

tica 57 (1985). pp242-256 First cited on page 101

Thompson, Clark D Fourier Transforms In VLSI IEEE Transactions on Com

puters C-32(11) (Nov 1983) pp1047-1057 First cited on page 111

Truax, B Real- Time Granular Synthesis with a Digital Signal Processor CMJ 12(2)

Summer 1988. First cited on page 4

Truong, T K, Reed, JI S, Yeh, C-S, Chang, J J, Shao, H M A Parallel VLSI

Architecture for a Digital Filter using a Number-Theoretic Transform In "VLSI

AND MODERN SIGNAL PROCESSING" ed. KUNG, WHITEHOUSE AND

KAILATH, Prentice Hall, 1985. ISBN 0-13-942699-X First cited on page 113

Tsay, Jong-Chuang, & Yuan, Sy Systolic Flow Journal of Parallel and Dis

tributed Computing 8 (1990) pp 286-291) First cited on page 111

Vercoe, B, & Cumming, D Connection Machine Tracking of Polyphonic Audio

Proceedings of the International Computer Music Conference, Cologne, 1988.

First cited on page 87

Vercoe, B, & Puckette, M Synthetic Rehearsal: Training the Synthetic Per

former Proceedings of the International Computer Music Conference, 1985,

pp275-278 First cited on page 87

Vercoe, Barry, & Ellis, Dan Real-Time CSOUND: Software Synthesis with

Sensing and Control Proceedings of the International Computer Music Confer

ence, Glasgow, 1990. pp209-211. First cited on page 87

Vercoe, B CsouND Reference Manual MIT Press, 1986. First cited on page 2

ALPHABETICAL LIST OF REFERENCES 160

Walker, W F KIWI: A Parallel System for Software Sound Synthesis Proceedings

of the International Computer Music Conference, Ohio, 1989. pp328-331 First

cited on page 17

Wessel, David W Timbre Space as a Musical Control Structure Computer Music

Journal 3(2) (1979) pp45-52 First cited on page 105

Winograd, S On Computing the Discrete Fourier Transform Mathematics of Com

putation, 32(141) (Jan 1978) pp175-199 First cited on page 111

Wishart, T C.D.P. Phase Vocoder Reference Manual C.D.P. Limited, 1989. First

cited on page 64

Yavelow Music & Microprocessors: MIDI and the State of the Art in 'The Music

Machine', ed. Roads, pp199-241, M.I.T. press, 1989. ISBN 0-262-18131-2 First

cited on page 87

Yuhang Wu New FFT Structures Based on the Bruun Algorithm IEEE Transac

tions on Acoustics, Speech and Signal Processing 38(1) (Jan 1990) First cited on

page 112

Zicarelli, D M and Jam Factory Computer Music Journal, 11(4) (Winter 1987)

pp13-29 First cited on page 5

Zwicker, E, & Terhardt, E Analytical Expressions for Critical-Band Rate and

Critical Bandwidth as a Function of Frequency Journal of the Accoustical Society

of America, 65(5) (Nov 1980) pp1523-1525 First cited on page 101

van Renterghem, P Applicability of a 16-Node Transputer Array Without Exter

nal Memory in 'Applying Transputer Based Parallel Machines' ed. Bakkers, A

lOS Press, Netherlands, 1989. ISBN 90-5199-011-1 First cited on page 126

Glossary of Terms and

Abbreviations

A.D.S.R. "Attack, Decay, Sustain, Release": a simple envelope model used to

control the variation in the amplitude of the audio signal in early electronic

synthesisers.

A.F.T. "Arithmetic Fourier Transform(ation)": a method of deriving the Fourier

transformation of a data set making use of results from number theory.

C.C.D. "Charge-Coupled Device": an electronic device which depends upon the

storage and transfer of charge for its operation.

C.D. "Compact Disk": a digital audio playback medium upon which commer

cially made recordings are distributed. The design specification, 41000 sam

ples per second each of 16 bits accuracy, closely approaches the capability

of the human ear.

C.D.P. "Composers' Desktop Project": a limited company established to pro

mote and coordinate research in electroacoustic composers' tools in the U.K.

and abroad.

C.S.P. "Communicating Sequential Processes": a calculus for the description of

parallel computer programs, which is capable of determining the deadlock

freeness of a system.

161

GLOSSARY OF TERMS 162

CHiP "Configurable, Highly Parallel": the CHiP computer was constructed us

ing many processors connected by communications paths which are recon

figurable at run-time.

D.F .T. "Discrete Fourier Transform(ation)"

Dianomic An attribute of a computer program which obtains its concurrency

by distributing discrete work-packets and their associated data across a

processor array for asynchronous exection.

D.S.P. Variously "Digital Signal Processing", "Digital Signal Processor" etc.

F.F.T. "Fast Fourier Transform(ation)": a type of D.F.T. q.v. which requires a

reduced number of arithmetic operations compared with the original algo

rithm.

FOF "Formes d'Onde Formatique" ("Formant Wave-function Synthesis"): a

method of audio synthesis capable, amongst other things, of remarkably

accurate simulations of the singing voice.

Gesture A physical movement or group of movements. Applied musically, the

term refers to the sound arising from a performer's movement or group of

movements, and can be regarded as similar to a phrase (although a phrase

may be composed of many gestures). Also applied abstractly to computer

mUSIC.

I.I.R. "Infinite Impulse Response": a class of digital filter having the charac

teristic that the length of response to an impulse at the input is infinitely

long.

IRCAM French government-funded institution researching into computer and

electroacoustic music.

Isonomic An attribute of a program which obtains its concurrency by executing

the same algorithm on many processors, but with a different set of data in

GLOSSARY OF TERMS 163

each case.

MIMD "Multiple Instruction, Multiple Data": a class of parallel computer

which executes many instructions on many different data simultaneously.

M.I.S.D "Multiple Instruction, Single Data(sic)": a parallel computer which

executes many instructions on a single datum. Not an oft-used abbreviation,

although Flyn equates it to a pipeline.

M.M.I. "Man-Machine Interface": that part of a system (hardware or software)

which is responsible for receiving user instructions and presenting results.

Referred to increasingly as H.C.I. (Human-Computer,lnterface) especially

in the U.S.A., because of pressure from the Feminist lobby.

MIDI "Musical Instrument Digital Interface": an interface specification for the

control of commercially available synthesisers.

N.T.T. "Number Theoretical Transform(ation)": a class of A.F.T. q.v.

Parallelisation The process of converting a sequential computer program into

a form suitable for execution by several processors concurrently, for the

purpose of achieving a decrease in the time required to complete processing.

P.C.B. "Printed Circuit Board": a perforated composite board, usually fibre

glass, with a pattern of copper conductors, into which electronic components

are inserted.

SIMD "Single Instruction, Multiple Data": a class of parallel computer which

executes a single struction on many data simultaneously.

Systolic An attribute of a computer which obtains its concurrency by using

many processors to perform operations on data as soon as the data are pre

sented, whereupon the result is immediately transmitted to the processing

element which requires it.

GLOSSARY OF TERMS 164

Transputer A digital computer designed in such a way as to permit the simulta

neous communication with other devices and processing of data. Supports

the C.S.P. q.v. model of parallel computation.

Vocoder "Voice Coder": a method of representing an audio signal, originally

intended to be a speech signal in telephony, as a set of data corresponding

to the amount of energy in several frequency ranges.

Appendix A

Adding a New Unit Generator
to CSOUND

A.l Introduction

CSOUND IS A HIGHLY FLEXIBLE synthesis system: the user is able to build

his own synthesis 'instruments' from modules, known as 'unit-generators'.

A unit-generator is in fact a subroutine in the program, and the user creates an

instrument by compiling a sequence of such subroutine calls. CsoUND calculates

blocks of sound, calling the unit-generator routines not at every sample but at

a slower control rate. The audio-rate information is calculated by internal loops

within the unit-generator and the results stored in buffers. Each unit-generator

has its own data structure attached to it so that local data can be preserved from

one pass to the next where necessary. A separate copy of this data structure

is created for each instance of the unit-generator within the orchestra. A wide

variety of unit-generators is already available in the standard CsoUND covering

all the normal functions required in sound synthesis. There are, for example,

table lookup routines (with or without interpolation), F.M. generators, random

generators, filters, breakpoint functions etc. For much of the time it will not

therefore be necessary to add further unit-generators to CSOUND: the user will

be able to build whatever is required out of the existing building blocks. However

as new algorithms are discovered and applied to music synthesis there will be

occasions when it is necessary to add a new unit-generator to the existing library.

165

A.2. CHANGING THE SOURCE 166

An example of this is the F.O.F. algorithm used in the CHANT program of IR

CAM. Clarke wanted to be able to use this algorithm in the context of CSOUND

in order to be able to explore its potential in new ways. It is a tribute to the

flexibility of CsoUND that it was possible to recreate this extremely complex al

gorithm as a CsoUND instrument using the standard unit-generators. However,

this led to a very large and cumbersome orchestra file which was also inefficient

to run, and so it seemed advisable to write a new unit-generator specifically for

this task. The addition of this new F.O.F. unit-generator will be taken as an

example of how to add a new module: because of its complexity the algorithm

illustrates many of the problems likely to be encountered. The standard library of

unit-generators is found in the CSOUND files UGENSl.C, UGEN$2.(etc., together

with the associated header files (UGENSl.H etc.). It is necessary to add the new

routine to one of these files or, preferably, to add the new routine in new files

(in the C.D.P. release of the extended CSOUND the F.O.F. routines are in the

files UGENSM .C and UGENSM .H). If new files are added an additional 'include

"newfile.h"' statement must be put in the file ENTRY.(referencing the header

file for the new unit-generator. The additional statement in ENTRY.(for the

F.O.F. addition is "#include "ugensm.h""

A.2 Changing the Source

A.2.1 The Unit-generator Header File

This file may contain any definitions required for the new unit-generator. For

example, in the F.O.F. generator header file the following is one of the statements:

#define LOCAL_BUFFER_SIZE 11

The most important feature of the file, however, is that it contains the def

inition of a structure for the unit-generator. This structure is the data space

required for each instance of the generator. This is an abbreviated summary of

the structure for the F. 0 .F. unit-generator:

A.2. CHANGING THE SOURCE 167

typedef struct {

OPDS h;

float *ar, *xamp, *xfund, ... ;

float clock_incr, duration, ...
long fundphs, fund_incr, ... ;

short fund_per_flag, fof_count,

char *auxds, **auxpchain;

FUNC *ftp1, *ftp2;

} FOFS;

OPDS is itself a structure (defined in CS.H) and provides the space necessary

for the program in creating an instance of the generator and linking together the

modules that comprise the instrument. This is followed by a list of the pointers

to the output and input buffers. *ar is the output buffer of the F.O.F., *xamp is

the amplitude input, and so on. After this follows a list of the variables used by

the unit-generator. Only those that need to be saved from one k-pass to another

need to be declared here, those not requiring storage do not need to be part of this

data structure and may be declared locally. (fund-phs, for example, is the phase

of the fundamental and its value must obviously be saved at the end of a k-rate

pass for use the next time around). The two variables *auxds and **auxpchain

appear because the F.O.F. routine makes use of additional reserved memory space

(for data about each of the overlapping F.O.F.s). Most unit-generators will not

require such space. *ftp1 and *ftp2 are the pointers to the stored function

tables.

A.2.2 The Unit-generator Code

The file that is to contain the code for the unit-generator will probably need to

contain include statements for at least these two files: <rna th. h>, and CS. H (being

the main header file for CSOUND). It will, of course, also need to include its own

header file (UGENSM.H for the F.O.F.s). Externals which may well be needed

A.2. CHANGING THE SOURCE

(and therefore declared) are as follows:

Floats:

Ints:

esr

ekr

sicvt

kicvt

max len*

PMASK

dv32768

ksmps

Chars:

errmsg[]

Functions:

*auxalloc()

*spalloc()

Audio Sample Rate

Control Rate

224
/ esr

224
/ ekr

224

224- 1

1/32768

Number of Samples perk-Period

Used for Error Messages

System Memory Allocator

Ditto

168

In the standard CSOUND table-lookup routines the phase is calculated as a

24 bit integer: the user's floating-point input (between 0 and 1) is multiplied by

maxlen and converted to type long. Later it is scaled to the size of the lookup

table by bit-shifting: each function table has stored as a member of its data

structure the variable lobi ts which is used for this purpose. The unit-generator

code itself is normally in two parts; that used for the initial pass, and that used

for subsequent control-rate passes. CsouND convention is to end the name of the

initiation subroutine set() (for example: oscset 0, linset 0, fofset 0, etc.).

The initial pass makes any necessary preparations in advance of the calculation of

the audio signal. It will usually be very short, though the complexity of the F.O.F.

algorithm means that fofset () is longer than average. A simpler example is the

initialisation for the oscillator routines oscset () (found in UGENS2.C), which is

A.2. CHANGING THE SOURCE 169

only 10 lines of code (3 of which are just brackets). It checks the presence of

the lookup table and finds its location, and then calculates the initial phase as a

24-bit integer. The longer F.O.F. initialisation has to locate two lookup tables,

allocate extra memory space according to the maximum number of overlapping

F.O.F.s, and prepare many flags and variables.

The code for the control rate passes will normally have the following general

structure, (illustrated here by reference to one of the oscillator subroutines):

oscak(p)

OSC *p; /*OSC is the structure for the unit-generator*/

{

}

register FUNC *ftp; I* the structure for the stored table*/

register float *ar, *ampp ,*ftbl; /*pointers to i/o buffers*/

register long phs, inc, lobits, nsmps = ksmps; /*local data*/

... control-rate code ...

do {

... audio-rate code ...

} while(--nsmps);

... more control-rate code ...

This code will be called once each control period. Calculations at audio rate

(if any) are performed in a loop, for which nsmps (initialised from the global

ksmps) is used as a counter. Declarations include that of the pointer to the unit

generator structure *p, and local declarations of pointers to the input/output

data, and of variables.

A.2. CHANGING THE SOURCE 170

A.2.3 Updating ENTRY.C

In order for the unit-generator to be recognised by the control part of the pro

gram, information about it must be placed in the file ENTRY.C. If the addi

tional unit-generator has been placed in new files then the file that contains the

header information for the new generator (in particular its control structure)

must be "#included" at the beginning of ENTRY.((where #include statements

for the other unit-generator files will be found). A little later in this file all the

unit-generator functions are declared. Both the initialisation subroutine and the

control-rate subroutine (and any others) must be added to this list, for example:

int fofset(), fof();

Further into the file will be found a description of each unit-generator, the

description added for the F.O.F. generator was as follows:

{ "fof", S(FOFS), 5, "a", "xxxxkkkkkiiiiop", fofset, NULL, fof},

For every such line added to the list of operators the manifest constant

"DPLSTMAX", defined near the top of ENTRY.(, must be increased by one. The

above description is more complex than for most unit-generators, but its meaning

is as follows:

"fof" The opcode used to call the generator in the orchestra file.

S (FOFS) S means sizeof (defined earlier in ENTRY.C), this is therefore the size

of the unit-generator's data structure (FDFS was the name given to this

structure in the header file described above).

5 This is the "thread" value (not to be confused with the parallel processing con

cept of a thread). The threads are defined earlier in ENTRY.(and are a

binary coding describing the subroutines used by the unit generator:

bit 0 set if a subroutine exists for initialisation;

A.2. CHANGING THE SOURCE 171

bit 1 set if a subroutine exists for k-rate output;

bit 2 set if exactly one subroutine exists for a-rate output;

bit 3 set if a variety of subroutines exist for a-rate output depending on the

variable ('x') input-rates.1 (The routines themselves are listed later in

this line of code in the order: i-rate, k-rate, a-rate, input dependent

-see below.) In our example bits 0 and 2 are set (0101)2, meaning

that this unit-generator has an initialisation subroutine and another

subroutine for a-rate output.

"a" the output rate (audio-rate in this case), alternatives include:

"i" init rate;

"k" control rate;

"s" control or audio rate;

"" no output;

"mmmm" optional outputs (max = 4);

"x .. " the rates of the inputs in the order in which they occur:

"x" audio or control rate;

"k" control rate;

"i" init rate;

"o" optional input, defaults to 0;

"p" optional input, defaults to 1;2

fofset the init pass routine (bit 0 in coding above);

1The most complicated set of alternative subroutines in the standard CsoUND is that for
the oscillator (its thread value is 11 (decimal)). This is no doubt in order to maximise the
efficiency of a very commonly used generator: oscset is the initialisation routine; koscil() is
the routine called for output at the k-rate; osckk(), oscka(), oscak(), or oscaa() are invoked
depending upon the data rate of the 'x' inputs, amplitude and frequency

20ther defaults are described earlier in ENTRY.(and defined in RDORCH.C. The number
of input fields for the F.O.F. generator is unusually large, and the number of "x" inputs made
it necessary to revise RDORCH as described

A.2. CHANGING THE SOURCE 172

NULL there is no k-rate output routine (bit 1);

fof the a-rate output routine (bit 2).

A.2.4 Other Necessary Modifications

Apart from the addition of the new code itself, and a change to the make file

and LN K files to indicate the presence of a new module, the above modifications

to ENTRY.(are all that would usually be necessary for the addition of an extra

unit-generator. The complexity of the F.O.F. generator however is such that

further special features were needed. Brief notes on these follow in case they are

of use in other situations.

RDORCH.C

The standard CsoUND unit-generators use no more than two "x" inputs (variable

audio or control rate inputs). In RDORCH.C a binary coding is used to record

which type of input is actually in use in any particular instance. The F.O.F.

generator has 4 "x" inputs and it was therefore necessary to extend this coding

procedure. A simple 4 line patch was all that was needed.

Auxiliary Memory Space

A few unit-generators such as delay and comb make use additional system mem

ory spaces (one for each instance of the generator), which is outside the nor

mal data structure, because its size is determined at initialisation time by input

data. (In delay the size of the extra space depends on the delay time). The

F.O.F. unit-generator also required additional disk space for storing data local

to each overlapping F.O.F. excitation. The extra space is allocated by calling,

. e.g., "auxp = auxalloc (xds, &p->auxds) ; " during the initialisation pass. (the

code may be found in AUXFD.C). auxalloc() takes two arguments: the size of

the space required in bytes; and the location for the storage of a pointer to the

address of the auxiliary space. The routine also returns this same pointer. If

A.2. CHANGING THE SOURCE 173

this procedure is to be used the data structure for the unit-generator must con

tain two declarations to which the routine will write (failure to declare these will

be disastrous!): "char *auxds, **auxpchain;" The use of *auxds has already

been seen, *auxpchain is used internally to keep track of the memory allocations.

Stored Function-tables

CSOUND provides 'gen routines' to create stored function tables. Each table is

numbered and unit-generators may reference them, the user specifying the table

to be used as one of the input parameters. To do this the unit-generator must

include a pointer to the table in its data structure: e.g. FUNC *ftp;

In the initialisation pass of the unit-generator the routine ftfind() (the code

for which is found in FGENS.C) is used to find the pointer to the function table

specified by the user in the "score" file. Typical code for this is as follows:

if (((ftp = ftfind(p->ifn)) != NULL)

p->ftp = ftp;

The first line finds the pointer to the table, if it exists, and this is then stored

in the data memory of the particular instance of the unit-generator.

Appendix B

Transputer Task Configuration

B.l The CSOUND Processor Pipeline

B.l.l One Processor Present

CSQUND IS A FIXED TOPOLOGY PROGRAM with needs a definition of the

network hardware as well as placement instructions for its constituent tasks.

This information is to be found in the file CSOUND.CFG. It needs to be updated

if:

• the hardware configuration is modified, for example upon the addition of an

extra transputer, or

• the amount of memory on the transputer network is changed, as might

happen if the transputer cards themselves are upgraded.

Table 10 is a listing of a configuration file for a system with one transputer.

The second task command instructs the configurer to allocate 640KB of data

space (stack and heap) for the CS task. This is an appropriate figure for a trans

puter with 1MB of memory. Note that if more memory is available, this figure

should be increased accordingly, and changes should be made to the constant

SNDBUFS (defined in file 8 U F. H) if it is desired to change the quantity of memory

reserved for sound buffering.

174

B.l. THE CSOUND PROCESSOR PIPELINE

processor host
processor root
wire jumper host[O] root[O]

task afserver ins=1 outs=1
task cs ins=2 outs=2 data=640K
task filter ins=2 outs=2 data=10k

place afserver host
place cs root
place filter root

connect ? filter[O] afserver[O]
connect ? afserver[O] filter[O]
connect ? filter[1] cs [1]
connect ? cs [1] filter [1]

Table 10: Configuration file for a Single-transputer System

B.1.2 Several Processors Present

175

When more than one processor is fitted, the above comments still apply, but

multiple copies of the main module must be configured. The source files to

achieve this are supplied in a different directory from the one-processor case, as

other modifications have also been made (see section 3.10).

Table 11 shows the configuration file for a three processor system similar to

the one in use at the University of Durham School of Music. The Unix-compatible

make-file will generate the necessary binary executable files:

CS contains the root supervisor process and therefore resides on the transputer

connected to the host;

CSM is designed to load intermediate processors in the pipeline (incorporating

the MSUPER module)- this is the binary file which is duplicated when an

additional processor is added;

CSEL contains the pipeline end module PSUPER and should therefore be loaded

onto the final processor.

B.l. THE CSOUND PROCESSOR PIPELINE

processor host
processor root
processor pip1
processor pip2

wire jumper host[O] root[O]
wire pi root[1] pip1[2]
wire p2 pip1[1] pip2[2]

task afserver ins=1 outs=1
task cs ins=3 outs=3
task filter ins=2 outs=2 data=10k

task csel ins=1 outs=1
task csm ins=2 outs=2

place afserver host
place cs root
place filter root
place csm pip1
place csel pip2

connect ? filter[O] afserver[O]
connect ? afserver[O] filter[O]
connect ? filter[1] cs[1]
connect ? cs[1] filter[1]

connect ? cs[2] csm[O]
connect ? csm[O] cs[2]

connect ? csm[1] csel[O]
connect ? csel[O] csm[1]

Table 11: A Configuration File for 3 Transputers

176

B.2. THE DISTRIBUTED PHASE VOCODER 177

Task Master Urgent File=pvmain Data=720K
Task Worker File=pvfft Stack=2K Heap=64K Opt=stack Opt=code

Table 12: Configuration File for the Distributed Phase Vocoder

It will also be required to change the task and processor declarations if the network

is extended; the C compiler manual[61] described the syntax in detail and includes

illustrative examples.

Note that the numeric constants in the connect statements in table 11 refer

to logical channel numbers and must not be changed; it is the wire statements

which define the network topology.

B.l.J The Muliti~processor Make~fHe

The file MAKEFILE contains all the information necessary to generate a working

CsoUND, using the files with sf CFG and LN K extensions. Switches are provided

to enable the generation of a text-only (windowless) 1 version of the program, and

to define what sort of processors are used in the network. These switches are

fully commented.

B.2 'I'he Distributed Phase Vocoder

Configuring the distributed phase vocoder is altogether far simpler than config

uring the processor pipeline. The configuration file for a flood-filled network is

but two lines long- see table 12.

The salient points are:

'Urgent' means 'run this task at high priority', thus affording the communica

tions task interrupt service status. In systems where there is a task which

1 A windowless version must be built unless the specially upgraded version of the server
VCSERVER is available

B.2. THE DISTRIBUTED PHASE VOCODER 178

performs inter-process arbitration, it is normal to run it at the higher pri

ority level for reasons of efficiency;

'File= ... ' refers to the binary files generated by the make file;

'Data=720K' is an appropriate allocation for a transputer with 1MB- the buffer

space associated with this memory is allocated by the NETQ module (sec

tion 5.5);

'Opt=stack Opt=code' specifies that the fast internal RAM of the transputer

should be used for the worker to store the stack, and that what remains

should be used to store as much worker code as possible.

Appendix C

Transputer Tree Hardware
Manual

The transputer tree machine consists of a cross-linked tree of 160 processors. The

transputers are 15MHz INMOS T800 devices, fitted with no external memory.

Thus each processor has only 4KB of RAM, making a total of 640KB for the

whole system.

The hardware is organised as 10 P.C.B.s, each of which contains 16 processors

as shown in figure 19. These processors have their links wired as per figure 20.

The root P.C.B. has 9 links appearing at the base of the tree; each of these

links is connected to another board via the backplane connexions. All links are

configured to run at 20Mb/ s.

The error flag, links 1, 2, and 3 of all transputers are monitored by a front

panel display. The L.E.D. dot-matrix packages are arranged so that a high signal

level illuminates a lamp in the left column for the error flag, or the 3rd, 4th
J

M AB

BA BB

CA CB

Figure 19: Physical Layout of Processors on each Tree P.C.B.

179

180

8j Transputer (links as shown) t~=~-===~ Single Element

o Expansion points :::=:::=:::' Extent of P.C.B.

Figure 20: Topology of Transputer Tree with Labelled Processors

or 5th column for the monitored links. The 2nd column is unused. Horizontal

organisation is into groups of four lines, separated each by one unused line, with

an additional unused line at the very top and bottom of the display. These groups

are identified in figure 20 as R (root), A, B and C. Hence reading from the top

down, each line monitors processor R, RA, RB, RC, A, AA, ... , CB, CC.

Links shown in the diagram as emerging from the P.C.B. appear at the edge

connector for the backplane. The pin designations are given in table 13.

181

Pin Label

16a DOWNNOTANAL YSE
16b UPNOTRESET

17a UPNOTERROR
17b UPNOTANAL YSE

18a ROUTO
18b DOWN NO TERROR

19a RAOUT1
19b RIND

20a RCOUT3
20b RAIN1

21a AAOUT1
21b RCIN3

22a AAOUT2
22b AAIN1

23a ABOUT2
23b AAIN2

24a ACOUT2
24b ABIN2

25a BAOUT2
25b ACIN2

26a BBOUT2
26b BAIN2

27a BCOUT2
27b BBIN2

28a CAOUT2
28b BCIN2

29a CBOUT2
29b CAIN2

30a CCOUT2
30b CBIN2

31a CCOUT3
31b CCIN2

32a DOWNNOTRESET
32b CCIN3

Table 13: Tree P.C.B. Edge Connector Pin Designation

Appendix D

Presentations and Publications

Seminars and Lectures

The following presentations arose from the work described in this thesis:

'The Durham Transputer Project' Huddersfield Contemporary Music Festival,

November 1989.

'Music Technology for the Composer' Durham University School of Music, De

cember 1989.

'CSOUND and the Transputer' University of York Music Department, June 1990.

'Transputers in Non-Real-Time Musical Synthesis' Henndorf am Wallersee, Aus

tria, October 1990.

'Craftsman, Composer, Performer' Queen's University, Belfast, April 1991.

Invited Papers

The following paper was an invited contribution, and was given at the opening

of the Computer Teaching Initiative conference:

Bailey, N J, Purvis, A, Manning, P D, & Bowler, I W CsouND In

side and Out: Today 's Software, Tomormw 's Computers Proceedings of

the Computer Teaching Initiative Conference on Computers in Music and

Higher Education, Lancaster, 1990. At press.

182

183

ContJdbuted PubHcations

The following have been published as part of proceedings of the indicated confer

ences:

As primary author:

JBailey, N .T, Purvis, A, Manning, P D, & Bowler, I W An Im

plementation of CsoUND on the Transputer Proceedings of the In

ternational Conference on the Applications of Transputers, Liverpool,

1989. Published as 'Applications of Transputers 1', Len Freeman and

Chris Phillips (ed.) lOS Press (1989) ISBN 90-5199-025-1.

JBailey, N .T, Purvis, A, Manning, P D, & Bowler, I WAn Highly

Parallel Architecture for Real-time Music Synthesis and Digital Sig

nal Processing Application Proceedings of the International Computer

Music Conference, Glasgow, 1990. pp169-171.

JBailey, N .T, Purvis, A, Manning, P D, & Bowler, I W Concurrent

CsoUND: Parallel Execution for High-speed Direct Synthesis Proceed

ings of the International Computer Music Conference, Glasgow, 1990.

pp46-49.

JBailey, N .T, Purvis, A, Manning, P D, & Bowler, I W On the

Solution of some Classical Scheduling Problems using Parallel C Pro

ceedings of the International Conference on the Applications of Trans

puters, Southampton, 1990. Published as 'Applications of Transputers

2', David J Pritchard and Christopher J Scott (ed.), lOS Press (1990)

ISBN 90-5199-035-9.

JBailey, N .T, Purvis, A, Manning, P D, & Bowler, I W Appli

cations of the Phase Vocoder in the Control of Real-time Electronic

Musical Instruments Proceedings of the International Workshop on

Man-Machine Interaction in Computer Music, Pisa, June 1991.

184

Bailey, N J, Purvis, A, Manning, P D, & Bowler, I W Some Ob

servations on Hierarchical1 Multiple-Instruction-Multiple-Data Com

puters Proceedings of Euromicro91 conference, Vienna, September

1991. European association for Microprocessing and Microprogram

ming, PO Box 2346, NL-7301 Apeldoorn, The Netherlands.

As co-author:

Bowler, I W, Manning, P D, Purvis, A, & Bailey, N J A Trans

puter-based Additive Synthesis Implementation Proceedings of the In

ternational Computer Music Conference, Ohio 1989. pp58-61.

Bowler, I W, Manning, P D, Purvis, A, & Bailey, N J On Map

ping N Articulation- onto M Synthesiser-Control-Parameters Proceed

ings of the International Computer Music Conference, Glasgow, 1990.

pp181-184.

Bowler, I W, Manning, P D, Purvis, A, & Bailey, N J New Tech

niques for a Real-time Phase Vocoder Proceedings of the International

Computer Music Conference, Glasgow, 1990. pp178-180.

