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Abstract 

I n this thesis we study the non-perturbative behaviour of the fermion propaga­

tor i n an Abel ian gauge theory, namely four dimensional, quenched QED -where 

by quenched we mean that we neglect the effect of the fermion loops i n the boson 

propagator. Wha t is of pr imary interest is the dynamical generation of mass. 

I n order to carry out this study we need to make use of the Schwinger-Dyson 

equations, which are the f ield equations of the theory. For the investigation of the 

fermion propagator, the f o r m of the three point interaction is of critical importance. 

We study the usual ansatz, the Bal l -Chiu fo rm , for the three point funct ion, that 

is obtained f r o m the Ward-Takahashi identities, and improve upon i t . This is done 

by making use of the powerful constraints that Mul t ip l ica t ive Renormalizability 

place upon the theory i n the perturbative (high energy) region. 

We in i t i a l ly study the theory i n the massless case, for simpHcity, where we f ind 

that using our improved ansatz we can obtain an exact, non-perturbative solution 

for the renormalised wave func t ion . 

Moving on, we then study the theory i n the massive case -where we have a 

brief interlude to look at the ladder approximation. We solve the theory i n the 

case where there is a finite cutoff and reproduce the well-known critical coupling 

poin t . We then consider the case where there is an inf ini te cutoff, when we find 

no cr i t ical coupling. We discuss and explain the differences. Returning to our 

improved ansatz for the fermion-boson vertex we solve the renormalised theory for 

bo th the wavefunction and mass funct ion and find that there is no cri t ical coupling. 

I n doing this having a f o r m for the fermion-boson vertex that satisfies both the 

Ward-Takahashi ident i ty and Mul t ip l ica t ive RenormalizabiUty is essential. These 



studies suggest that f u l l QED may t u r n out to be a theory without a critical 

coupling and thus be free of phase changes. 
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C H A P T E R O N E 

B A C K G R O U N D 

1.1 Introduction : 

Since earliest times, human beings have sought to understand the physical world 

i n which they exist, whether for the purpose of divinat ion or out of philosophical 

interest. I n Europe, the Greeks are seen as the first people to th ink about the 

underlying mechanisms (or laws ) of physics. Their theories about the matter i n the 

universe tend to come w i t h i n one of two broad schools of thought. I n the first school 

there was no void and no micro-structure. A N A X A G O R A S postulated that i n every 

volume there existed P O T E N T I A L I T I E S and the properties of the object was due 

to the predominating potentialities w i t h i n i t much like a mixture of pigments i n a 

given colour of paint . I n a way i t can be seen as a very crude field theory where 

the to ta l field is the sum of the orthogonal fields that make i t up. A R I S T O T L E 

believed that al l matter was made up of the four elements earth, water, fire and air. 

The properties of an object were dependent upon the concentrations of the various 

elements w i t h i n i t . He also allowed for one element to be changed into another. 

I t was this that led alchemists of the Middle Ages to attempt the transmutation of 

the base metals ( I ron and lead ) to the noble metals (gold and silver ) using the 

philosophers stone (the ul t imate meta-physical catalyst for an alchemist ) . 

I n the second school there was a void and micro-structure. This was the inven­

t i on of L E U C I P P U S and was developed by D E M O C R I T U S . I n these theories all 

there exists is void and atoms which cannot be broken down further . The atoms 

continue i n their mot ion and are only effected by collisions w i t h other atoms. D E M -



O C R I T U S attempted to account for all physical, biological and psychological oc­

currences using the atomist theory, and as such was the first attempt at a theory of 

everything (T .O .E . ) . P L A T O [1] saw the void as a geometrical mat r ix upon which 

geometrical shapes (matter) existed. Whi ls t the second school might be seen as 

closer to what we believe i n today they tr ied to fit the universe in to their plan for i t 

rather than the other way round. Indeed Plato believed that experimental knowl­

edge of the wor ld held no meri t . Aristot le on the other hand was well aware of the 

need for empirical investigation and that theories must bow to experimental results. 

I n this way he has more i n common w i t h modern science than does Plato who is 

more i n tune w i t h philosophy. Indeed two of Aristotle's students , THEOPHRAS-

TUS and S T R A P O , used his investigative methods to improve his theories and 

develop postulates that had something akin to micro-structure and void. 

The biggest problem that all of the Greek thinkers had was t ry ing to make 

quanti tat ive statements and indeed i t wasn't u n t i l the invention of calculus i n the 

17th century that the impetus was put back into physics. 

I n the 16th and 17th centuries, exploration and empire building by the Euro­

peans lead to a great need for bo th optical equipment and a theory for navigation 

and surveying. Hence a boom i n the investigation of the properties and f o r m of 

l ight occured. W i t h the pubhcation of 0 P T I C K S [ 2 ] , N E W T O N sort to set out his 

theories on the nature of l ight by experimental observations of refraction, reflection, 

interference and di f f rac t ion . I n his work he set out his belief i n the corpuscular 

theory of l ight ( that l ight is made up of a beam of particles ) even though his results 

on d i f f rac t ion explici t ly violated this and indeed were very suggestive of a wave fo rm 

for l igh t . Indeed Newton held a dogged disbeleaf i n the possibility of a wave f o r m for 

l igh t as he d idn ' t believe i t would explain the rectilinear propagation of l ight . This 

was even though C H R I S T I A N H U Y G E N S had shown[3] that this was possible using 

an envelope of secondary waves f r o m an extended source. Huygens showed that he 



could account for reflection and refraction w i t h his wave envelope but unfortunately 

d idn ' t go on to look at d i f f ract ion. However his revolutionary idea, of considering 

what had u n t i l then been considered to be a particle, had far reaching effects. For 

is not today's particle physics based upon the idea that the particles are all wave 

functions (packets) and i n solid state physical objects such as the phonon are waves 

moving through the crystal structure. 

The wave theory of l ight was not however universally excepted straight away. 

Indeed for the next century i t was the corpuscular theory that was generally accepted 

w i t h i n the scientific community (and total ly by the general public ) even though i t 

was opposed by such people as Huygens, Hooke, Leibnitz and Euler. This acceptance 

of corpuscular theory was i n main due to two things:-

Fi rs t ly , the near demi-god stature of Newton, to criticise h i m about any small 

aspect of his work was to criticise the whole - the infalhble creator of mechanics. 

Secondly, the d i f f icu l ty that the supporters of the wave theory had i n calculating 

experimentally observed results. (The ideas of phase difference and integration of 

wavelets simply just hadn' t been thought of as yet) . I n the face of these difficulties 

the meta-physical solutions offered by corpuscular theory was an attractive alter­

native. Experimentat ion was not however so moribund and the body of data was 

considerably extended during the century. 

I t wasn't u n t i l 1802 that the theoretical break-throughs that wave theory needed 

really started to happen. I n this year a physician by the name of T H O M A S Y O U N G 

published a work i n which he explained the occurence of Newton's rings using wave 

theory and the impor tan t concept of two waves of l ight cancelling and strengthening 

each other[4]; the interference principle had been stated. A t the same time a French 

engineer called A U G U S T I N FRESNEL started an exacting experimental and the­

oretical study of the properties of l ight . I n a series of works from 1815-24[5] he 

more or less explained al l the effects of reflection, refraction, diffusion and diffrac-



t ion of l igh t , br inging i n such concepts as phase angle of polarised l ight , integration 

of wavelets and l ight as a transverse wave. The theory at this time stiU used the 

concept of an ether i n which the waves travelled. The problem w i t h having an ether 

is that i n such a fluid medium i t is natural to presume that the waves are longitu­

dinal . The experiment of F I Z E A U (1849) which showed that fight travels faster i n 

air than i n a l iqu id showed that wave theory was the correct theory and thus the 

problem of the ether must i n some way be conceptual. 

I n 1873 after working on electricity and magnetism M A X W E L L proposed that 

l ight was i n fact electromagnetic waves that are propagated i n the context of electric 

and magnetic fields [6] (thus removing the problem of the ether ) . Thus visible Hght 

is just a small slice of the spectrum of electro-magnetic ( E . M ) radiation. (Indeed 

the usage of the t e rm visible l ight can be misinterpreted to mean that the visible 

wavelengths carry some sort of pigment w i t h them whereas of course colour is a 

physiological/psychological effect due to the l imitat ions of the cones i n the retina 

and the interpretat ion of the optic nerve sense data by our psyche[7]). 

I t is worthwhile at this point to wri te down Maxwell 's equations of E . M . radia­

t i on . They f a l l in to two groups, the Inhomogeneous Maxwel l Equations ( I . M . E . ) : -

V.E= p 

V x B - dtE= I 

dtP + V.J = 0 

and the Homogeneous Maxwel l Equations ( H . M . E . ) : -

V . S = 0 

VxE + d^B= 0 

where E_ and B_ are the electric and magnetic fields respectively and j and p are the 

electric charge density and electric current density respectively. We've taken = 1 

and absorbed SQ in to p and in to j . 

4 



By inspection of H . M . E . i t can be seen that we can rewrite the electric and 

magnetic fields i n terms of new fields (the electromagnetic potentials ) : -

E= - V j j ) -

5 = V x A 

Then under the fol lowing transformation i t is easy to see that E and B_ (ie. physical 

observables ) are left invariant by. 

Af'ix) A'''{x)= A''{x) + d''X{x), 8"= ( a ' , - V ) (1.1) 

(Greek indices refer to 4-D space-time coordinates and run over 0,1,2,3) 

Continuing on we then define the Faraday (or E . M . field ) tensor as 

This object is anti-symmetric and i n terms of the magnetic and electric fields is 

given b y : -

(Roman indices refer to 3-D space coordinates and run over 1,2,3) and as F^j, can 

be wr i t t en soley i n terms of the fields E^ and i t is manifestly invariant under the 

t ransformation (1.1). 

I t is now possible to wri te Maxwell 's equtions i n a more compact f o r m : -

H M E : -

d^F,^ + d^F^^ + d^F^^ = 0 (1.2) 

I M E : -

d^F'"'= f (1.3) 

where we have constructed the 4-vector j"^ out of the electric charge/current densities 

viz = {p,j)- Substi tut ing in to eq. (1.3) our defini t ion for the Faraday tensor we 

5 



reach an equation which has an interesting proper ty:-

d'A'^ix) - d'^id^A^ix)) = r (1.4) 

The th ing about this equation is that i f we t ransform the in i t i a l electromagnetic 

potentials, A'^(x)j, using a specific choice of A(a;), say x{^)^ such that the new value 

A^^(x) gives d^Af^lx) = K = const, then i t acquires a very simple fo rmr -

d^A'ix) = f (1.5) 

w i t h the subsidary condition that 

d \ { x ) + d^A'^ix)! = K 

These are two inhomogeneous massless Klein-Gordon equations. There is s t i l l a 

residual degree of freedom i n our choice of x{^) to g^t rid tWs we further 

choose xi^) such that 

d \ ( x ) = K. ie. d^A''{x)j = 0 

Thus we have a 4-D equation for A''(a;),(1.5), w i t h two subsidiary conditions. This 

means that A'^(x) has two degrees of freedom - just as we expect for a transversely 

polarised wave. I t is usual to take K = 0 ior s implicity and d.A = 0 is known as 

the Lorentz condit ion. 

As an aside i t is of interest to note that H M E (1.2) follows immediately f r o m the 

def ini t ion of F^^ and is i n the f o r m of a Bianchi identity. I M E (1.4) can be obtained 

f r o m the Euler-Lagrange equation for a Lagrangian 

£ = \F,^F^^ + j.A (1.6) 

6 



as 

0 = a (̂ ) -

= d'^id^A.ix)- d,A^ix))-j, 

= d'A-^ix) - d,{d.A) - 3u' 

W i t h his work on black body radiat ion. Max Plank introduced the idea of quan­

tised energy levels [8]. Einstein then developed this to explain the photoelectric 

effect by postulating that radiat ion is emitted and absorbed i n quanta or photons[9] 

(quantised wave packets). 

1.2 Gauge Theories : 

I n many areas of physics i t is common to come across the situation where physical 

results are independent of an overall change i n phase of the basic wave functions 

or fields of the theory. For instance i n forced vibrat ion theory i t is the relative 

difference between the phase of the dr iving and forced oscillators that is important , 

not the posit ion of the reference point i n the cycle (ie the overall phase). Such an 

invariance of a theory under a change of phase is known as a global symmetry as 

the phase angle 6 is constant for all points i n space-time. 

I n 1929[10] Weyl looked at the effect on a theory of making the phase angle space-

t ime dependent 9 9{x) . This is called a local or gauge symmetry transformation 

as the value of the phase angle is dependent upon the local value of the space-time 

coordinates. Theories that are invariant under such transformations are known as 

gauge theories. They give rise to new interactions, which, not surprisingly, are called 

gauge interactions. I t is possible to split gauge theories in to two classes depending 

upon whether the structure constants c,jjt of the basis group { T J of their underlying 

Lie algebra are identically equal to zero (abelian ) or not (non-abelian), where 



1.2a Abelian Gauge Theories : 

Let us now consider the Dirac equation for a free electron field <p{x) that trans­

forms under a U ( l ) Lie group t ransformation:-

CQ = (p(x)(i0 - m)(p(x) 

where <f(x) = (p^{x)-y^ and 0 = " f ^ d ^ . Now 17(1) is of dimension one and is such 

that V u{x) e C/(l) u{x)'^u{x) = 1. I t is easy to see that i n the fundamental 

representation the t ransform of (p{x) is wr i t t en as 

(p{x) ^ T>(u{x))(f(x) = u(x)(p(x) 

where X>(w) is the representation of a group element u for a local/gauge ?7(1) sym­

metry 

V{u{x)) = u{x) = exp{-i6{x)) 

which is t r iv i a l ly abelian. I n order for physics to be invariant under this gauge 

symmetry we need the Lagrangian to be invariant under this transformation. Clearly 

m^(a;)yp(a;) ^^m'i:p{x)V~^ {u{x))V(u{x))(p{x) 

=rrup{x)if{x) 

but the derivative t e rm is not however invariant as:-

^{x)$^{x) '^lp{x)V-\u)0{V{u)^{x)) 

=ip{x)0ip{x) + ip{x)V-^{u){0V{u))ip{x) 

^ip{x)0ip{x) - i<p{x){0d{x))yp(x). 

So we need to replace by a new object D^, the gauge-covariant derivative, which 



will make the derivative term invariant, ie 

D^<p{x) ^ [D^,p{x)]' = V{u)D^ip{x). 

To investigate this we shall write the gauge-covariant derivative as:-

where A^{x) is the gauge field and as we are dealing with free electrons g = e the 

electric charge. For invariance to be fulfilled we require that:-

[{d^ + z'eA^ = V{u){d^ + ieA^Mx) 

^ exp{-i6(x))id^ + ieA^Mx) = {d^ + ieA^)'<p{x)' 

= {d^ + ieA'^)V{u)^{x) 

= (d^+ ieA'^)exp(-ie{x))ip{x) 

=> ieA^ = ieA'^ - id^e{x) 

Remarkably this gauge transformation is the same as the Poincare transformation 

(1.1) on the electromagnetic potential with 6{x) — e\{x) and so we identify this 

A^ as the electromagnetic potential. Our Lagrangian now reads:-

C = Tp{x){i]]) — m)(p{x) 

= (p{x){i0 - m)(f{x) - A^e-i''if{x)ip{x). 

As we have introduced a new field A^ we also have to introduce a kinetic term for 

it , but what form should this take ? We expect that as A^ is a 4-vector it will 

be quadratic in derivatives, but what wiU it be specifically ? We are guided in our 

choice simply because we have associated A^^ with the electromagnetic potential and 

so we wish its Euler-Lagrange equation to give the I M E , eq (1.4) . Now we know 

9 



that a Lagrangian for given by eq (1.6) gives us I M E and also the form of 

thus defined also gives the H M E (eq (1.2) ) trivially. These F^^ being independent 

of the gauge transformation. So associating e'y'*Tp(x)(f{x)w\th. j ' ' in eq (1.6) we 

propose adding a term -^F^^^F^^" to the Lagrangian to give 

C= - i F ^ . F ' * " - V 7 V ( ^ M ^ ) + Hx)ii0- m)<p{x) 

with 

F^u = 9,A^ - 9,A^- (1-7) 

Should we also introduce a mass term rrij^A.A into the Lagrangian for this new 

field? The answer is no, because any such term would not be invariant under 

the gauge transformation for A^. Hence as we'd expect the field associated with 

our electromagnetic potential is massless. We have thus arrived in a moderately 

painless way at the Lagrangian for the quantum interaction of electrons and the 

electromagnetic field 

this is known as Q E D . 

We shall now note some points about this Lagrangian:-

(1) [D D^]i^{x)= ie{d^A,- d^A^)ip{x) - e^[A^,AMx) 
(1.8) 

as in an abelian theory = 0 

(2) There is no gauge field self-interaction term in the Lagrangian (as the Lie algebra 

is abelian - the gauge field has no U{1) quantum number/coupling constant) and 

so, in the absence of electrons, the theory is a free-field theory. 

10 



1.2b Non-abelian Gauge Theories : 

In 1954 Yang and Mills extended Weyl's original work to include non-abeHan 

gauge theories[ll]. For an example let us remember that in baryon physics the Pauli 

exclusion principle demands that from the existence of the A"'"+(= uuu), for exam­

ple, that the quarks have an internal colour SU(3) symmetry (Lie group). So let us 

consider the free, three component Lagrangian in the fundamental representation:-

q ^ V{u)q = expi-ie,(x)Xy2)q 

the A„ being the Gell-Mann matrices which express the non-abelian nature of SU(3). 

In the fundamental representation:-

[A„,Aj]= 2 i / , j A -

Setting the number of quark flavours to one, for simplicity, the initial Lagrangian is 

then the same as before:-

C, = q{i0 - m)q 

again it is the derivative term that breaks the gauge invariance of the Lagrangian 

and so we again replace by where now we write:-

D, = i\A^ 

where in the SU{Z) Lie algebra A^ = A^^X^. Requiring 

we get 

+ iU,)q = D'^q 

- (9, + iU',M^^)q 

11 



^ i'-A'^Viu) = Viu)i'-A^ - d^{V{u)) 

The question now is what derivative term shall we use? If we try using the Faraday 

tensor as defined in eq.(1.7) we end up with a kinematic term that transforms as 

follows :-

/II'-' d^{VA,V-'+ 'l(d^V)V-'}- d,{VA^V-'+ 'l{d^V)V-'} 
9 9 

d^iVA^V-^^ -(d''V)V-^}- d''{VA^'V-^+ -{d^'V)V-^) 
9 9 

which by inspection of the g^ terms on the R .H.S . is not gauge invariant. In order 

to find a sensible definition for we look back at the abelian case and try to find 

a genereJ definition for it that is independent of the particular gauge fields we are 

using. Equation (1.8) is one such candidate, it gives F^^, in terms of the covariant 

derivatives only and transforms in the following way:-

Now is constructed so that D'^V{u) = V{u)D^. Therefore 

'-^Fl,V(u)q= D'^V{u)D,q- D',V{u)D^q= V{u)D^D,q- V{u)D,D^q 

= V{u)[D^,D,]q 

This is more amenable to being formed into a gauge invariant object. Indeed 

ir(Fl,Fn = triF^^Fn (1.9) 

is gauge invariant. This definition for F^^ also obeys a non-abelian version of the 

12 



H . M . E . as from the Jacobi identity for a Lie group : -

0 = [D^,[D,,D,]]+ [D„[D„D^]]+ [D„[D^,D,]] 

0 = D^F,, + D,F,^ + D,F^, 

Projecting onto the Lie algebra of 5C/(3) we find that:-

F,. = Fl, = F ; , , A * = V{u)F^,,X'V{u)-' 

= V{u)X'V{u)-'F^,, 

^ Hvh = : A « P ^ / ( « ) F , 

where 'D'^J'(u) is the adjoint representation of the Lie group. So F^^, transforms 

according to the adjoint representation of the group 

Now for the Gell-Mann matrices <r(A"A*) = 2^"* therefore we have that 

HF,.F>^n = tr{X^^')F,,aFr = '^^"'F.^^F^ 

So F^^g^F^'^ is gauge invariant from (1.9) . Looking back to the abelian case it is 

natural for us to choose - ^F^^^F^" as the kinetic term for the gauge fields and so 

our Lagrangian becomes:-

^= -\F^.aFa"'+ q{iP- m)q. (1.10) 

Although this looks generically the same as the abelian Lagrangian it is dramatically 
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different. This is because the kinematic term of the gauge field has the form:-

-P̂ ii/a = ^iiA^a - ^i^A^a " gfaA^^^A^^ 

Thus in contrast to note (2) at the end of the abehan gauge theory section there are 

gauge self interactions in non-abelian theories and so in the absence of the spinor 

fields (quarks here ) the theory is N O T a free field theory. The particular theory 

that we have been looking at in this section is called Q C D . 

1.3 Quantisation of Gauge Theories [11] : 

To give a thorough explaination of the different approaches to quantising gauge 

theories would take up the rest of this thesis on its own. Even then it is doubtful 

whether full justice would be done to the field. Thus I will assume that the reader 

has an adequate working knowledge of this subject and just make some passing 

comments that are pertinent to the work in the rest of the thesis. 

In the canonical quantisation method the operators axe taken as A^{x) and 

their conjugate momenta -K^{X) = SC/{S{dA^)), their commutation relations are 

taken as inputs to the theory. Because there are only two real degrees of freedom 

for the gauge fields we then need some constraints to be applied to the operators. 

Examples of this are taking V . A = 0(Radiation gauge ) or ^3(2;) = 0 (Axial gauge) 

these however sacrifice manifest Lorentz covariance. A more popular formulation 

is to keep the explicit Lorentz covariance, allowing the extra degrees of freedom 

to give a Hilbert space with indefinite metric, then decouple the unphysical states 

14 



from the theory by use of a constraint applied to the final states. This is done 

by demanding that d.A{x) | v') 0 (Gupta-Bleuler method ) , this comes from 

the Lorentz gauge condition, d.A(x) = 0 , of classical electromagnetism. Though 

it is a weaker constraint than the classical one, it is more than adequate for the 

quantum theory. The common theme to all of these gauges is that at some point 

in the theory a condition is needed to remove the two spurious degrees of freedom 

from the gauge field. Thus when we turn to look at the more theoretically powerful 

method of Feynman Path Integrals it should not surprise us that we will need a 

gauge constraint. 

We shall look at the path integral formulation for an abelian theory ( Q E D ) with 

no fermion fields. (For a non-abeHan theory the process is substantially harder and 

requires the inclusion of Faddeev-Popov Ghost fields [11,12]). With this simplifica­

tion our path integral has the form:-

Z[J^] ^ ^ J 1^A''exp[iS] (1.11) 

where the action S[A] — J{C(A^) — J^A^)d!^x in four dimensions. (iV = Normal­

isation factor such that Z[Qi\ = 1). C = -^F^^Ff^" and J '^ is the source term. 

Then :-

Z[J^] = j VA^exp[ij d'x{-\{d^A, - d.A^Xd'^A^ - A>^) - J M ^ } ] 

= j VAi^expiiJ d'x{-^{d^A,d''A'' - d.A^d^A') - A^}\ 

= J VA'^expliJ d''x{^-A^iy)K'^'^ix - y )A , (x ) - J^A^}] 

where 

K'^'^ix - y ) = Six - y)[g'^-^dl - d'^d'^] (1.12) 

and we define the inverse by:-

/ dSK^'^ix - y)K;,\y - z) = g^Jix - z) 
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Now 

\A^(y)K>^''{x - y)A,ix) - \nx)A^(x) - ^ J ' ' (y)A, (y) 

= I (A^iy) - J d S r { z ) K - l { y - z ) j K'^'^ix - y) 

• ( A , { X ) - J d ' x K ; , \ z - x ) J - i z ) ^ 

d S r { x ) K ; ^ { y - x ) r { y ) . 

Redefining A!^{x) = A^{x) - J d^^xK-^z - x)J''{z) and assuming 

VA'^(x) = VAi^{x) we have:-

Z[J^] = J VA"'exp i j d^x{\A!^{y)K>^%x-y)A!,{x) 

-\Jd^yr{y))K;i{x-y)J'^{x)} 

^ exp - '-J d'xd'yr{y)K-;(y-x)J''(x) . 

thus joins two gauge field sources and is therefore the gauge propagator: 

J^{x) 

Now 

(1.13) j d'yK^^x - y)K;^{y - z) = g^J{x - z). 

The Fourier transform of K~^(y — z) is 

where as the gauge field is a vector field, D^,^{k) must have the following form:-

D.aik) = Hk')g,, + h{k'')kM 
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then (1.13) becomes, using (1.12) :-

J d'ySix-y)[g'^-^dl- d^^^] J A L e - . M . - ) [ a ( f c 2 ) ^ ^ ^ + b{k')KK] 

J (0 jd'y8{x-y)[-k^g^^+ k^k''Mk'')9,,+ fe(fc2)A:,y e-M^^-) 

d'^k 
= 9'. j -e -ifc.(x-z) 

(27r)4-

=^9'.= [ - f e V ^ + k>^k'^Mk'')g,,+ b(k')kM 

= aik'')[-k^g^ + k^k^] + bik^)[-ek^'k^ + 

= a(k'')[-k^g^ + ki^k,] 

which contradicts the setup. It is thus seen that (1.13) does not exist. This is because 

the functional integration is over all gauge fields, including those only related by the 

gauge transformation A^ ^ A^ + d^A . What we want to do then is to fix the 

gauge fields to those in only one specific gauge, we look at only one point on each 

fibre in the fibre space of the gauge fields. For example if we add a gauge fixing 

term CQP = —(5.A)^/2 to the Lagrangian then we get 

J d^xC = j d^'xiC + CGF) 

= J d'x^-A.d-'A^ - \A,d^d^A^ + \A,d^d^A>^ - ^A^] 

= jd'x[\A^d'A^~J'^A^] 

= j d'xf^id^A'^f-TA^] 

which gives the following Euler-Lagrange equation:-

- a ^ A ^ - h 7 " = 0 

(The I M E with the Lorentz gauge condition d.A = 0 ) . In order to get the more 
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general condition d.A = const, we write = —(9.A)^/(2^) where ( is called the 

covariant gauge parameter. We can then return to the path integral to calculate the 

photon/gauge propagator that is now generated. However, it shoidd be noted that 

as the path integral now stands (1.11) it is not formally well defined [13]. This is 

because the poles of the propagator in momentum space exist on the energy axis in 

Minkowski space-time. In order to make the path integral well defined in Minkowski 

space-time it is neccesary to deform the path of integration slightly, this is equivalent 

to taking the poles off the axis by an amount ±ie. Alternatively, one can make the 

path integral well defined by Wick rotating the time axis into the complex plane 

so that it lies along the pure imaginary axis t —> -f-ir . We are now in EucUdean 

space-time with metric (-,-,-,-). As with most texts on path integrals [11,13] we 

shall engage in our formal manipulations of the theory in Minkowski space-time and 

Wick rotate to Euclidean space-time only when we wish to calculate some physics. 

It is, however, an important point to remember that particle physics is only really 

well defined in Euclidean space-time. We leave this technical point to return to the 

calculation of the gauge propagator. The path integral is now:-

Z[J^] = J VAf^expiiJ d'x{C + Cap - J'A^}] 

= J VA^exp[ij d'xi^-A^d'A^^ - ^(1 - ^ ) A , a ' ' 5 M ^ - J M , } ] 

= J VA'^expiiJ d'x{^A^{y)K'^''{x - y)A,{x) - J^A^]] 

where 

K'^'^ix - y ) = 8{x - y)[g'^^d'' - (1 - j)d''d^] 

and from before we know that the inverse K~^{x - y) is the gauge propagator and 

is given by:-

j d'yK'^'^ix - y)K-„\y - z) = g^Six - y). 

Using the Fourier transformation of K~^{y—z) as before we have that for the Fourier 
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transformation of the propagator D^^{k) — a(k^)g^j^ + b{k^)k^k^, 

d'^k 

d'^k 

J d'ySix~y)[g^^dl- (1-^)5^^;;] J ^ e - » ' = - ( ^ - ) [ a ( f e 2 ) ^ , „ b { k ' ) k M 

^"J (27r)4' 

Hence 

=>9'a= [ - k V + ( l - ^ ) W ] [ a ( f c 2 ) p ^ ^ + b{k')kM 

= a{k')[-k'g^^ + (1- i ) F f c J - jb{k')k'k''k. 

- 1 k,k 
D,Ak) = ^ [ 9 , . - ( 1 - 0 ^ ] 

where, as an aside, we note that:-

^ = 1 is known as the Feynman gauge. 

^ = 0 is known as the Landau gauge. 

When we include the fermion fields once again we have in the Lagrangian a 

coupling '(pA^ip between the two types of field that leads to the gauge (and fermion) 

propagator being affected. The gauge propagator has the form:-

[9ai, r o - ] + ^ 

where, if the coupling e is small, Q(k^) has a perturbative series with the leading 

term being 1 (the result without fermions). By perturbative we mean that due to 

the 'smallness' of e any term 0(e") is strictly smaller than any term 0(e"+^). This 

allows us to expand any function in ascending powers of e up to an order ,say, iV 

plus a remainder Tl{N + 1), that decreases with increasing iV. We can also find the 

form for the fermion propagator by using a similar method, this time however we 

use Grassmann variables (anti-commuting) ri{x),j](x) as source terms. Our fermion 
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source term part then being 'r)(x)(p(x) + (p(x)r](x). In a perturbative expansion we 

get the following form for the fermion propagator:-

^ < * ' ' (1.14) >(- S ( F ) 

where the leading terms of ^{k'^) and S(fc^) are 1 and m respectively. 

The perturbative expansion parameter that is used in Q E D is a = e^/Air. As 

with all gauge theories it can be shown from the renormalisation group equation 

(see section 2.5a) that a varies with energy. In Q E D however the variation of a is 

remarkably small for a very wide range of perturbative energies. The figure that is 

often quoted for a is 1/137 which is a very small number and so any perturbative 

series will be very well ordered and appear to converge very quickly. This has lead to 

the calculations in Q E D being amongst the most accurate theoretical predictions of 

experimental results in the whole of physics! For instance the anomalous magnetic 

moment of the electron is known to an accuracy of 2 parts in 10^ [14]. Quite clearly 

we must present a compelling arguement to justify extending the study of Q E D to 

cover the whole non-perturbative energy region. Indeed to obtain this justification 

we need to discuss an experiment in nuclear physics. 

1.4 The Pauli equation and GSI: 

Within electrodynamics in nuclear physics there is the concept of critical charge. 

In order to see where this comes from we return to our Q E D Lagrangian (1.10) and 

look at the Euler-Lagrange equation for the (p spinor field:-

{i0 - m)ip(x) = 0 

which is known as the Dirac equation. Because in the area of nuclear physics we are 

interested in, the nuclei studied are heavy we can work in the non-relativistic limit. 

We are then able to make some reasonable approximations/assumptions. Firstly 
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as we have heavy non-relativistic objects their velocities will be small compared 

to their masses and so we can consider the system to be made up of steady state 

solutions, (p(x^) = i^(x)^e~'(^+"*)^o ^(xg = t) [15]. The Dirac equation is then:-

0 = {i0- eA- m)y>(x)£e-'(^+'")^o (1.15) 

We then use the C O U L O M B field representation for the gauge field in which 

A^ = (Ze/(47r | x | ) ,0) where Z is the atomic number of the large nucleus we 

consider scattering off. E q . (1.15) then simplifies to:-

/ / Za\ \ 
0= {ii_+ JO{E+ m l ( m ) <pix)E (1.16) 

V V X J ) 

We can write the 4-component spinor ^{x)^ in terms of two 2-component spinors 

viz:-

and with the usual notation for the 4 x 4 representation for the gamma matrices, 

namely:-

/ 1 0 \ / 0 o-,-" 

[o - l ) ' 0 

The <7-,- are the Pauli matrices, which obey the following equation:-

Substituting these into (1.16) we obtain the two following equations:-

-ig:.Y.v(x)+ ( E - ^ ^ x i x ) = 0 

+ia.Vx{x) + (^E + 2m- T]{X) = 0. 

Now in a non-relativistic theory we have that 2m E — (Za/ | x | ) so we have 

an identity for T]{X) from the second equation that when we substitute into the first 
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equation gives us:-

0 = 

which leads to:-

the Pauli Equation. We get from this that we now have in this model an effective 

coupling Za and ii Z > — — 137 we have what is known as super-critical charge and 

a pertubation expansion in Za is no longer valid. This calculation can be redone for 

two heavy colliding nuclei and we get that the effective coupling is now Za where 

Z = Zi + Z^ where Z-^ and are the atomic numbers of the two nuclei . 

So what happens experimentally in such a situation ? Now this question is 

interesting enough for experimental nuclear physicists to want to find out about. 

A great deal of work on this problem has been done in a series of experiments 

carried out at G E S E L L S C H A F T F U R S C H W E R I O N E N F O R S C H U N G (GSI) in 

Darmstadt, Germany[16]. In the first of a series of experiments, beams of U^^^ 

were fired at Cm^'** foil, thus giving a total Z = 188. Due to the large delta-e~ 

background that exists in the experiment only e+ were looked for. (The delta-e~ 

background is due to the atomic electrons in the Crri^^^ foil being knocked out by 

the U^^^ beam. In low energy nuclear scattering experiments they leave squiggly 

'delta' shaped tracks in the detectors.) They saw a peak over the background that 

isn't explicable by Rutherford theory. They suggested that this could be due to 

the formation of a meta-stable giant dinuclear system. In the second experiment 

they tested this suggestion by looking for the narrow e+- peak for various values of 

supercritical Z, ZgQ. This is because such a dinuclear system would give a peak 

position that scales as ^"^[16], where A = 0 ( lO) . What they found was that the 

peak position stayed fixed, ruling out the original suggestion. By analysing the 

Doppler broadening expected for projectile-Hke, recoil-like and centre-of-mass-Hke 
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emission sources and comparing to their restdts, they showed that the e+-peak came 

from a centre-of-mass source. They then put forward a new suggestion that a new 

neutral particle could be the source. This however would give back-to-back e'^e~-

pair emission. In the third experiment they also looked for e~ emissions though the 

removal of the delta-e~ background compHcated things. They found back-to-back 

e'^e~ emission peaks at 380 ± 15keV that didn't vary as ZgQ was varied. Using 

Monte Carlo generated data they showed that the peaks cannot be explained by 

internal effects of the colliding systems but could be explained by the decay of a 

neutral particle moving slowly in the centre-of-mass. 

It has been suggested [17] that such an effect could be explained if at some value 

for the effective coupling a' = Za there is a change of phase (to " the strong 

coupling phase", see sections 1.5 and 2.3). The vacuum for this new phase is made 

up of e+e~ bound pairs with negative energy. When the two nuclei with Z^Q collide 

a region of this new phase can exist in the extremely high electromagnetic fields 

present. This region of new phase is stationary in the centre-of-mass frame. With 

the moving away of the nuclei after the collision, the electromagnetic fields rapidly 

decrease to leave the strong coupling phase region existing as a quasi-stable vacuum 

which then decays to the weak coupling vacuum releasing mono-energetic back-to-

back e+e~ pairs, with energy independent of the particular value of ZgQ. This 

concept of a strong coupling vacuum made up of e'^e~ bound pairs is not new to 

physics. Cooper pairs in superconductivity have been around for some time. With 

these experimental results and possible theoretical schenario I hope to have justified 

why non-perturbative Q E D is worthwhile studying even though perturbative Q E D 

gives many experimental results to astounding accuracy. In the search for a strong 

coupling phase to explain the G S I experimental restilts we need to find a value for 

the coupling above which a theory with bare mass m = 0 in its Lagrangian can still 

generate a non-zero dynamical mass S(p^) in the fermion propagator (1.14) (chiral 

symetry is broken) and below which it cannot generate a non-zero dynamical mass, 
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(chiral symetry is unbroken). Such a coupling will be called a critical coupling. 

A number of techniques have been developed to look at the non-perturbative 

behaviour of gauge theories. The first we shall look at is :-

1.5 Lattice Gauge Theory Approach : 

The idea behind lattice gauge theory is to take the path integral of the theory 

under consideration and put it on a discretised lattice of space-time points, with 

distance a between neighbouring points, calculate the theoretical predictions you 

are interested in and then decrease a by a small axaount and continue the process. 

In this way predictions of results for the contimun theory can be made. It wasn't 

until the advent of the Wilson plaquette[18], and great strides in the quality of 

algorithms and machine architecture to combat critical slowing down as a 0 that 

lattice approaches could hope to tackle gauge theories in a non-perturbative way. We 

shall now discuss the work and results of just one typical group that are involved in 

using lattice gauge theories to look at QED[l9-22]. We shall follow the development 

of their work over a period of time in order to give a coherent discussion, they 

are headed by Dagotto, Kocic and Kogut ( D K K ) . (We could of course have chosen 

anyone of a number of groups). In lattice calculations what we want to do is to put 

m = 0 in our path integral and calculate the value of the dynamical mass (described 

by the condensate {lpip)(m = 0)). However because any lattice field we use will be 

finite in size, we cannot put m = 0. For any very small m and finite lattice, the 

numerical system wiU undergo tunnelling which will cause {(pip)(m) to vanish. What 

is done then is to take the value of the condensate for a series of small, decreasing 

m and extrapolate the value of the condensate to {<f(f)(0) [19]. What they find for 

example in Q E D 3 (with 1/iV expansion [23]) is that there is a critical number of 

flavours iV^ = 3 . 5 ± 0 . 5 above which {Jp(f){0) — 0 and below which {(p(f){0) > 0. For 

the situation where N > they find that 13 = 1/a cannot be taken to infinity with 

a non-zero (^(^)(0). {'ifip){0) obeys a mean-field behaviour with respect to ^ and 
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goes as A ( 4 - Pfl'^ for p < ^ 0.24[20] (c.f. magnetic susceptibility for T < 

using the Brillouin method, but with T ~ 1/^9). This means that for N > N,. as 

we try to go to the continuum theory, {<p(p)(0) undergoes a simple phase change as 

/3 goes past jS^ and becomes identically zero. This means that in QED3, using the 

1/iV expansion, we can write the dynamical mass as [19]:-

^dym^ e'^Nexp[-2Tr/y/NjN - 1 ] 

There is a correspondence that can be drawn between QED3 and quenched QED4[19] 

that allows us to write in quenched QED4:-

m dym Aexpl—n/yja/a^ — 1 

(where A is the momentum cut off.) So N,. corresponds to and we get a 

dynamical mass for coupling > a^. This looks all well and good but there are some 

fundamental problems with lattice gauge theories that put a big question mark over 

the whole approach. 

Firstly the errors involved in extrapolating the condensate to the zero mass case 

axe not really under control. For instance Taylor expanding the condensate in terms 

of the mass we get:-

{WKm)= m{lf<f)(Q)'+ — ( ^ ^ ) ( 0 ) " + . . . 

I f we extrapolate the condensate to its value at m = 0 linearly ((^y)/,„(0)) or 

quadratically ({^<p)quadi^)) ^^^^ ? as long as the values of non-zero m from which 

we extrapolate are small, our answers for (^V')/m(0) {^'P)quadi^) should be in 

good agreement with each other. What we find, however, is that they are not 

19]. Factors of five difference are common, as are differences of sign! More­

over, the steepness of the slope of {ip(p)(m) means that any small error in the 
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numerical calculation, because of finite machine accuracy, will give an amplified 

error in {(p<p)(0) (fig 1.1). As D K K say "predictions of chiral condensates are 

subject to considerable systematic uncertainties". This means that i t might well 

be impossible to tell the difference between a small dynanaical mass and zero dy­

namical mass. For instance, the usual values for m used are O(10~^) and the 

smallest used are O(10~*), remembering m cannot be too small otherwise nu­

merical tunnelling wil l set in. I f the systematic errors are « 1% then dynamical 

masses up to O(10~^) can't be distinguished from zero. Now from analytic work 

on QED3 (see for example page 111 Ref.[23] ) i t is believed that for N = 3.5 

^dyn ~ O(10~^^) (with no sign of a critical point), well below the resolution pos­

sible on the lattice. Secondly on the plots of vs./? that show the mean-field 

behaviour there is a residual ' ta i l ' for /? > 0.24 (fig 1.2). This is usually set to zero 

using the justification of systematic accuracy or a convenient parameterising of two 

or three points in the tail is done which shows that i t goes to zero quickly. Whereas 

i t is not clear whether the tail actually carries on to some very small asymptotic 

value as ^ —>̂  oo. Indeed in a work with m ~ O(10~') [21] i t is claimed that 

= 0.257 ±0 .001 (Ri 10% higher than before). Thirdly the finite size of the lattice 

can have a tremendous eff'ect. Work on quenched QED4 [22] on a series of lattices 

with sites (M = 8,16,24,32,48,64,80) has shown that the extrapolated values 

of {(fi(p)(0) are lifted from zero (to machine accuracy ) to some non-zero value and 

continue to increase with M (fig 1.3). Moreover the value of increases as M 

increases with no asymptotic value behaviour for being discernable (fig 1.4). So 

i t could be that and are just artefacts of using some value of the lattice size M 

and that as M ^ oo and iV^ both tend to infinity. In conclusion, the systematic 

errors are too big to see really small dynamical masses if they exist and instead 

calculations 'see' the finite size of the lattice. 
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1.6 Continuum Approach : 

I t was in an effort to liberate the theory from the problems associated with lattice 

gauge theories that a number of groups using a number of different methods have 

looked at the continuum (analytic ) theory and attempted to make non-perturbative 

calculations. The various methods used by the groups involved in continuimi calcu­

lations are all based upon the use of the Schwinger-Dyson equations (S-DE's), which 

are the fully non-perturbative Green's function equations for the gauge theory, and 

the Ward-Takahashi identities (W-TI's), the non-perturbative relationships between 

Green's functions. The S-DE's are a direct consequence of any given field dying off 

asymptotically in any direction in space-time, and the W-TI's come from the path 

integral (physics) being invariant under gauge transformations. In order to be able 

to see how these equations are generated we need to extend slightly our previous 

discussion on path integrals. We need to see how the path integral is related to 

the Green's functions of the theory and introduce the concept of the EFFECTIVE 

ACTION. For the sake of clarity we will consider a scalar theory (so we do not get 

bogged down in Grassmann algebra and the consideration of three fields (p^Jp and 

A^) instead of looking at QED or QCD. <f>^ is an example of a scalar theory, though 

in what follows we will be more interested in the source term J{x)<f){x) than in the 

interactions, which we will largely ignore. We now look at the path integral:-

Z[J]= N J V(f>exp i j d'^x(C(x)+ J{x)(i>{x)) . 

When we discuss the Green's functions of the theory i t will be easier to use a 

canonical version for the path integral. To obtain a canonical version we note that 

given the 'correct' normalisation factor iV then in the non-interacting (free) theory:-

ZQ[J] = (0 I T{exp i J d'^xJ{x)(f>{x) } | 0 ) 

where T is the time ordered product function and the zero on ZQ[J] stands for the 
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free theory. Together with the following identities:-

(0 I T{A[(j>]exp[i j d'^xJ{x)4>{x)]} \ 0) = A[-i-^]Zo[J] 

and 

ZolJ]-
\. f 4 f . d \ 

Z J = e x p i d XCT { — J ' T T ^ 
[J \ 9JJ 

(where Cj is the interaction Lagrangian) we get:-

Z[J] = (0 I T{exp i j d'^x{Cj{4>) + J{x)(f>{x)) } | 0 ) 

which is the canonical version of the path integral. The Green's functions of the 

theory are defined in terms of the canonical time ordered bra and ket notation. This 

is a historical hold-over from quantum mechanics from where the physical meaning 

of the Green's functions in particle theory comes. The definition of the Green's 

functions are given in the Heisenburg Picture (H), in which the states stay constant 

with respect to time whilst the operators change in time:-

ig,{x^,...,x,) := {H^\T{<t>{x,)...<t>{x,)}\0)jj 

Field theory, however, is formulated in terms of the Dirac (Interaction) Picture (D), 

in which both states and operators vary. In order to redefine the Green's functions 

in terms of path integrals (Dirac picture) we make recourse to the Gell-Mann-Low 

formula:-

{HQ\T{<j>{x,)...<j>M}\Q)H 

^ ( jO I T{^o{x,)... M^J^^Pji I d'yCj{cl>jj{y))]} | 0)^ • 

(^0 I T{exp[i J d^yCjiMvW I 0)D 

A l l our previous work on path integrals has been done in the Dirac picture and so 

we wil l now return to taking states to be implicitly in this picture. We can now see 
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that : -

(1.17) 
Z[0]^ dJ(x.)...dJ(xJ 

This is not the end of the story as eq (1.17) has some interesting properties that we 

don't really want in a physically meaningful object. To see this we pull out the (f>^ 

interaction term in our scalar theory and look at the second order Green's function 

^^2(^15 ^2) (usually written iA{xi — X2)) 

iA{x, - x^) = (0 I T{cf>{x,)cj>{x,)exp i j d^yCj{cj>{y)) } | 0) 

= (0 I T{cl>{x^)4>{x2)[l + i \ j d^y4>\y) 

- \^ j dSd^z<t>\y)<j>\z)+ 0 ( A 3 ) ] } | 0 ) 

= iA^{x^ - x^) + iX J d'y{0 I T{(j>{x,)4>(x2)4,\y)} | 0) 

- X' J d^yd'z{0 I T{<j>{x,)cf>{x,)<t>'{y)cl>\z)} \ 0) + 0{X') 

where iAo(xi,a;2) — I '^{<?^(*l)^(^2)} I 0), the Green's function in a non-

interacting theory. By writing 

<^ (̂a) = l im ^{w^)(j>(w2)(l>{w3) 

we are able to make sensible progress with the second and third terms on the RHS:-

iA(x^ - X2) = iA^ix^ - X 2 ) 

+ iX j ^̂ ŷ Hm (0 I T{cj>{x^)cf>{x2)(f>iw^)(f>{w2)<i>{ws)} \ 0) 

- y" d'^yrfS Um^ Hm^(0 | T{(l>{x^) ... .^(vj)} | 0) + O(X^). 

Wick's Theorem[24] tells us how to combine pairs of fields within a time ordered set 

of fields. For example:-

T{(l>{x^)cl>{x2)} = : (I>{x^)<f>{x2) : + iA^ix^ - x^) 

where : <p(xi)(l>(x2) is the normal ordered product (all creation operators are put 
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to the left of the annihilation operators). The term of order A on the RHS is of an 

odd order in (j> and therefore no matter how we combine pairs of fields we always 

end up with at least one normal ordered field, thus this term must give zero as 

(0 |: , . . :| 0) = 0. The term of order is even in <}> and therefore it is possible 

to combine pairs of fields in such a way that we end up with some combinations 

with no normal ordered fields. Applying the bra and ket we get non-zero objects 

from the A^ term of the form A A A . To get all the correct combinations of fields 

it is easier to work diagramatically, where we can also take the ti;,- -> y and u,- z 

limits. We start off with:-

/ - y 

and by exhaustively joining any two points with each other and letting w,- —» y and 

u,- —> z we have that the only possible diagrams are:-

o-o 
t O O -1 

So even if we can factorise out the vacuum bubble terms (which we can do as 

they exponentiate to give us:- the full set of diagrams = diagrams without vacuum 

bubble terms x exp( icj)). Where = the set of all connected vacuum bubble terms, 

0 6 3J), we see pictorially our equation for the Green's function is not connected:-

-@ @-
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where V/A represents the Green's function, and represents con­

nected diagram contributions. We can write the pictorial equation ais:-

i a ( a r i , X 2 ) = iG,{x^,z^)^ iOcMi^cM (1.18) 

where the subscript c denotes a connected diagram. The unconnected diagrams 

don't really maJce sense in a physical theory where we are trying to define a propa­

gator (or for any n point Green's function where we want all the fields to interact, 

ie be connected). What we want is a definition in which we don't have these un-

conected diagrams. We are able to do this in a simple way if, instead of considering 

the path integral Z[J], we work with the functional W[J] defined by:-

W[J]= - i - logZ[J ] . 

We can see that:-

dw 1 1 dZ 
ZdJ, 

as a one point function is connected. (We have used J j = J{x^)). Indeed (taking 

J = 0 cis implicit now):-

1 d^W 1 1 d^Z \ ( \ dZ 
IdJ^dJ^ 

1 dZ 
i2 z a j j d j ^ i'2 \ z d J ^ j \ z d j ^ 

= ig{x„x^)- iG,{xi)ig,{x^) 

= iGc{xi,x^) 

from eq (1.18). In general i t can be seen that 

i j dJ^...dJ^ 

We also define the CLASSICAL ACTION 4>J^x) by the following differential 

31 



equation:-

dW 
Ux) := 

d j 

This then lets us define what wiU become a very useful object known as the 

EFFECTIVE ACTION, r(<^,):-

W[J] = T{<t>,) + j d^xJ{x)<t>,{x). (1.19) 

So we see that V{^^) is just the Legendre transform of W[J\. 

As an aside we note that differentiating (1.19) with respect to J we see that 

r(^g) is independent of J , viz:-

dW dV ^ 

From (1.19) then we have the useful identities:-

dW , dT _ 

This means that 

^yc{^l,^2)- gj^Qj^- Qj^ d ^ 2 ~ ~W2 

1 d'^r 
So r(x„x,)= - ^ ^ = i ^ - i ( . ^ , , , ) . 

Thus we see that T{<f>), the Legendre transform of W[J], may be related to the 

inverse of as W is related to G^. Proceeding to differentiate (1.20) with respect 
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to J4 we get:-

/ d'x 

(1.21) 

as d<f)^/dJ^= d^W/dJ-^dJ^. Multiplying by /<i''x352W/aj35J4 and using eq (1.20) 

,(1.21) becomes:-

- I 

- I 

d^, d^^ d^, 
2 5 3 dj^Qj^ dJ^dJ^ dJ^dJ^ d4>^d<j)^d(j>^ 

d'^x^d'^Xr,d'^x^g^{x^,x^)G^{x^,X2)Q^{x^,x^) 
53 r 

which can be expressed diagramatically as:-

and 

r ( a ; i , . . . , x j : = y 
i 5(^1... d(f)^ 

(t>=0 

is the proper (or one particle irreducible) vertex, the inverse propagator for n = 2. 

Wi th these new tools we can proceed to investigate how the Schwinger-Dyson equa­

tions and Ward-Takahashi identities are generated. 

1.6a Schwinger-Dyson Equations [25] : 

The S-DE's come about because in quantum theory all the fields are taken to 

die off towards infinity in any direction. This means that i f we integrate a field over 

a space-time sphere with radius tending to infinity we get zero. Then using the 
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divergence theorem we have that the derivative of the path integral with respect to 

a field of the theory is zero, ie : -

where (f)^ are the fields of the theory, X,- their source terms and <f)j the particular 

field we are considering. I f we choose to consider QED then we have :-

0 = J VA^VipV<f-^exp[i J d^z{C{z)+ J''A^+ rj{z)r{z) + <p{z)v{z))] 

/

d 
VA^V<pT><p—exp[iS] 

with C{z) = -IF^.F'^- + i f i i p - m)<p - ^ ( 5 M ^ ) 2 and <̂ .̂ = {A^,^,^}. As it is 

always instructive to work through a simple example to demonstrate how a generic 

method works we wil l consider = A^ and see how this leads us to a field equation 

for QED. As the method does not depend upon any ordering or 'throwing away of 

small terms' (eg by taking e to be small ) i t is valid for all momenta, field and charge 

sizes. Thus we have a method that gives us non-perturbative field equations. We 

then start from :-

VApVifV^-^jj^expliS] 

= J VA^V^V^p Q ^ i j d'z{C{z)+ r A , 

+ vi^M^) + ^{z)v{z)) exp[iS . 

When considering the action of derivatives on Z[J,r],rj\ we see that 

= _ ^ = A - = _ A 
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Now 

J d^zr{z)A,{z) = j d'zr{z)8{x - z ) ^ J^(x) 

f-id id\ f - i d \ , 
e I — 1 7„ ( — 1 + J^]Z[J,v,V.. s o o = - v a ^ m s f 

Also putting Z = exp iW we find that the equation becomes : 

^ 0 = + 

d 
exp[iW 

dW d ( dW\ dW dW 
dr] d f j 

(1.22) 

Using the preparatory work done earlier in this section, we can write the Legendre 

transform of W :-

W[J^,V,rj]= T[A^,<p,lp]+ J d 4 x ( J M ^ + lpjj+ rf<p) 

with 

J " 

dW dw dW 
dr) ' d f j 

dV dV dT 

dA^ , V dip ' ^ = 

d<p dr] 
drjdf] dr] dip 

(1.23) 

Using these we find that equation (1.22) becomes :-

0 = 
dV 

- 1 

(1.24) 

From the first term of the RHS of (1.24) we see that in order to obtain a field 

equation for say the inverse photon propagator d'^TI{i d-^^{x)dA^,{y))\j^^^^^^- we 
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can differentiate eq (1.24) with respect to A,,{y) and set A = (p = Ip = 0 we then 

have that : -

^=^r(o) _ ,,2 
= [ 5 V - (1 - OdMK^ - y) aAM(i)A' ' (y) ' ' " 

^1 ^'^'^i^\dlp{x)dip{z^)) dA''{y)dlp{z,)d<f{z2)\dlp{z2)d^{x)) 

where 5"r(0) = 5"r |^^^^_^g, the second term on the RHS comes about due to 

functional differentiation and the first term on the RHS is equal to the inverse of 

the non-interacting Green's function zAo(x, y). Then using the generalised form for 

the proper vertex for vector and fermi fields:-

a"+2mr(o) 
= 2-

dA^^ ( x i ) . . . dA^^{x^)d^{y,)... &p{yj)d^{y,)... d ^ { y j 

{n — no. bosons, m = no. fermi pairs ) we have the following equation:-

- i r ( 2 . 0 V . ' ' ( x , y ) = (z-Ao^''(x,y)) 

~iej^ ( - i r ( ° ' i ) ( x , z i ) ) " ^ ( - z T ( i . ^ ) ' ' ( y , z „ Z 2 ) ) {-iT(°'%,,x)) 

- 1 

=> r(2.0K-(x,y) = A r - ^ ( x , y ) + i e7 , r (0 . i ) - ^ (x , . i ) r ( ° - l ) - l ( . 2 ,x) r (^ - l ) ' ' ( y , z„Z2) 

as r̂ '̂* )̂ and r(°'^) are the inverse propagators for the photon and fermion respec­

tively we find that diagramatically the equation is : -

-1 -1 

X y X y 

(where we have picked up the minus sign from the definition of the fermi loop). This 

equation is known as the S-DE for the photon propagator. 
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If , however, instead of A^ we use = (p we obtain the S-DE for the fermion 

propagator, which diagramatically looks like : -

- • — - o 

Differentiating with an arbitary number of fields we generate and infinite set of 

S-DE's for the Green's functions F^"-"*). We note that from the diagrams for the 

propagators [2 ( = n + 2m) point functions] that they are given in terms of Green's 

function up to and including 3 point functions. Indeed upon analysing the general 

S-DE's i t can be seen that an N point Green's function is given in terms of functions 

up to and including N + 2 point Green's functions. This means that we have an 

infinite set of nested equations. Clearly this is going to present some difficulty in 

solving these equations. However before we think about how to tackle this problem 

we shall study another set of complimentary field equations that will help us in this 

task. 

1.6b Ward-Takahashi Identities [26] : 

As discussed in section 1.1, in a gauge theory, physical objects should be un­

changed under a gauge transformation. So we can demand that our physical theory 

(eg QED ) be gauge independent and see what restrictions this places upon the fields 

(and hence the Green's functions ) of the theory. We go about this by studjnng the 

constraints that we must have for the path integral Z (Heisenburg vacuum) to be 

independent of a gauge transformation. As with when we investigated the S-DE's 

the technique we use involves no ordering or approximations using a smaUness of e 

argument and so the equations obtained are non-perturbative. When the theory in 

question is QED the constraints are known as Ward-Takahashi Identities[27]. So 

for QED with a path integral : -
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Z[J,V,V]= J VA^Vy.Vipe'^ , S = J C ^ f f d ^ 

under the infinitesimal gauge transformation (where we only consider the transfor­

mation to 0{K)) 

+ ^ti^ 5 V y - '̂eAv? , ip -^ip+ iekip 

the first two terms of the effective Lagrangian are invariant under the transformation 

and so (assuming that X>A'̂  = VA^ , Vip' = V(p and Vip' = V^) we find that :-

Z[J,rj,rj] Z'[J,v,r}] = J VA^V^V<pe^^+ '^^ 

where 

SS= J d ' ^ x -j{d''A^){d''d^A)+J''d^A+Tj{-ieA<p)+ieATpT] 

= j d ^ x A { x ) -^d'^{d>'A^)- d^J"- ieTf<p+ ielp 

Therefore:-

ZV,rj,ri\ = jvA^V^Vipe'' 1 + i j d''xA{x){-jd\d^'A^) - d^r 

— ierjip + iecpT]} 

and as we demand gauge invariance of the theory this means that Z' — Z. Thence 

we have that : -

0 = iJ d ' ^ x A i x ) -^d^id^A^)- d^Jf"- ierjip + ie<pr] Z[J,ri,r]] 

This must be true for all gauge transformations A(x) and as such A(x) is an arbitary 
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function, giving us that the rest of the integrand is identically equal to zero :-

0 = 1 - jd^{d''A^) - d^J^ - ierjip + ielpr] Z[J,r],ri 

where we have used A^ = , (p = , p = - Substituting in Z = exp iW 

we have that :-

dW 

with the Legendre transformation (1.23) and its associated identities we immediately 

get the result :-

0 = + a , ^ ^ + .•e,(x)5^ - . . ^ ( . ) ^ (1.25) 

which is the generating functional equation for the WHOLE class of W-TI's for 

QED. 

We shall continue, as an example, by looking at the constraints we obtain when 

we differentiate with respect to p{x-^) and p { y i ) (We, of course, evaluate this at the 

point Ip = p = A^= 0 ). Equation (1.25) becomes 

-d. 
d^T{0) 

''dp{x,)d<p{y,)dA^(x) 
ieS{x — Xi) 

d^T(0) 
dp{x)dp>{y^) 

ie6{x - t/i) 
52r(0) 

dp{x^)dp{x) 

Taking the Fourier transform of this we have :-

q'r^{p,q,p + q)= Sp\p + q)- Sj'ip) (1.26) 

where Sp^{p + q) is the inverse fermion propagator, q^ the 4-momentum on the 

incoming photon and the 4-momentum on an incoming fermion. Diagramatically 

this is written as :-
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- I 

P + q 

This is the W - T I for the 3 point vertex T^. I t relates the 3 point vertex to the 

2 point fermion propagator. An infinite set of W-TI's can be generated from (1.25) 

relating iV point functions to lower point functions M ( < iV) 

Taking the —> 0 limit of (1.26) we obtain the older identity known as the 

Differential Ward Identity {d W-I) :-

dpf 
= r^(p,o,p) 

which diagramatically is :-

dpf 

- I 
•"OTO'O'OT 

This implies that the insertion of a photon, with zero momentum, into a fermion 

propagator is equivalant to differentiation of the inverse propagator. I t may seem 

from this that the W-TI's help with our problem of solving the infinitely nested 

S-DE's, as using the W-TI's for iV - f 2 and A'' -1- 1 point functions we can rewrite 

the S-DE for an iV point function in terms of functions upto and including A'' and 

no higher (whereas before we had to go upto iV -|- 2 point functions). Thus starting 
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from the S-DE's for the 2 point functions we can iteratively solve for each up to 

an arbitary value. However, a slightly more detailed look at (1.26) reveals that it 

does not tell us everything about T^. This is because is contracted with which 

acts as a Killing vector on masking all information about parts Fj^ of F that are 

transverse to and allowing us access only to the parts F ^ that are longitudinal 

We now look at two approaches that are commonly adopted in order to attempt 

to solve the S-DE's . 

1.7 Spectral Representation [28-34] : 

The first, and possibly theoretically more powerful, method is to write the prop­

agators of the theory in terms of spectral representations. In order to explain what 

we mean by this we shall look at Q C D and its confinement, an area where this 

method has had some notable theoretical success. From experimental observation 

and theoretical bias it is believed that quarks (and hence gluons ) are not free ob­

servable objects in Q C D (they don't appear in the S matrix ) and as such can be 

compared to longitudinal and scalar photons in Q E D . In Q E D the common method 

to work with this is to use the Gupta-Bleuler method (see section 1.3) which in­

volves the use of an indefinite metric and a condition on the physical states. On a 

detailed examination of the B R S transformation properties of Q C D (a description 

of which can be found in Refs. [29] and [30] ) we find that the generator of the B R S 

transformation Qg (known as the B R S charge ) is nilpotent (ie = 0). This 

means that the irreducible representations of the B R S transformation vector space 

are singlet and doublet subspaces only. is also Hermitian and gives the B R S 

transformation of an arbitary field (f) in the following way:- S(f> = i[QBj4']± ^ where 

± indicates commutator for non-ghost field (j) and anti-commutator for ghost field ^. 

Within the B R S transformation set there is also a further 'local' conserved charge, 

QQ, that satisfies ilQci^] = ^4' ? ̂  =ghost number of </> . QQ generates a scale 
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(not a phase) transformation and is Hermitian. and QQ obey IIQC^QB] ~ QB 

(i) (which together with Q | = 0 (ii) defines the B R S Algebra ). The B R S vector 

space, V, can then be decomposed into two orthogonal irreducible reps, namely 

V = V s ^ V j ) where:-

Vg is the B R S singlet space. V \s) G V5, QB\^) = 0 = iQcU) and (.s|s) > 0, 

V5 has a (+)ve definite metric. 

Vj) is the B R S doublet space and V \w) € (ti>|w;) = 0 [ 2 8 ] , h a s zero norm. 

Vj) can be further decomposed:-

Vj) = l̂ p 0 O^p =parent subspace, =daughter subspace) and 

V \p) G Vp 3 \d) G such that {p\d) ^ 0. Also 31 — 1 correspondence between Vp 

and given by QB\P) — \d) such a pair of states is called a doublet. If 

iQc\Pi) = iV|pi) then condition (i) of the B R S Algebra =̂> iQc\di) = {N + l ) | ( i i) . 

The condition on the physical states is (like in the Gupta-Bleuler method ) 

Qfflphys) = 0 [28] and we can easily define the physical subspace, Vpi^yg of V to be 

{! / ) • I / ) ^ V a n d Q ^ I / ) = 0}. Then from the stated properties of the subspaces 

^phys = ^5 0^<i then |a;), |a;') G Vp^yg have the form |x) = \d) + \s) and 

a;') = \d') + \s'). From the zero norm of and the orthogonality of V5and Vj) we 

get:-

{x\x') = {s\s') = {x\P(Vs)\x') 

where P(Vs) is the projection operator onto the singlet subspace. Thus the phys­

ically observable states (those that enter the S matrix ) are those in V5, hence 

we can consider B R S doublet states as C O N F I N E D . This is because non-confined, 

asymptotic fields are realised in perturbation (S matrix ) theory and confined, non-

asymptotic fields are not. We will use this as our definition of confined/unconfined 

gluons. The gluon propagator, iD^* (^) ' ° f course, the Fourier transform of 

{0\T{A^(x)Al(y)}\0), which in the Landau gauge is transverse and has the form 
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iDf^{k) = iS'^^ig^^ - ^ ) D { P ) where D{k^) is normalised at a point fi^ > 0 

such that k'^D{k'^) = 1- Now for our own seemingly perverse reasons (that 

will become clear later ) we wish to define a similar object using the projection 

operator P(Vs). We want to conserve the transversahty of the resultant object, so 

we can't use the obvious (0 |T{A»(a;)P(V5)A*(y)} |0) = (0|T{AP«(x)vl^*(y)}|0), 

is A" projected onto V5, which is no longer necessarily transverse. Hence we define 

AP^l = d^AP" - d^AP; and look at ( 0 | T { A P « (x)Aj* (y)}|0) (which is transverse in 

the sense that if either of the pairs fiu or p\ are contracted with fc's we get zero). 

The Fourier transform is now:-

iGltx(k) = iS'^'ik^Kg., - k^k.g,^ - k.k^g^, + k,k,gjDP{k') 

where DP{k^) is normalised in the same way as £)(fe^)[32]. (So if DP(fc^) ^ 0 gluons 

are N O T confined, from our earlier definition). We also define the dimensionless 

variable R{k^/n^,g) = k^D(k^,fi'^,g) where gik"^/n"^,go) is the effective coupHng 

and is such that g(l,gQ) = g^ = the bare coupHng that occurs in the Lagrangian. 

y is a Renormalisation Group invariant and obeys the following Renormalisation 

Group Equat ion(R-GE) (see section 2.5a):-

Vg^ 0 

where 

and 

^ = "It - ''('"^^ 

du 

which has the solution:-

u = exp / dxr^{x) 
'55 

(for small and g). Now Q C D is known experimentally to be asymptotically 
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free, which means that g 0 as fc^ —> oo (Minkowski space-time). For this to 

happen we must have that < 0 (in order to make g = 0 a U.V. fixed point). 

= —(11 — |A^y^)/(167r^) in all renormalisation schemes and gauges and so for 

/3o < 0 we must have the well known result iVy < 16, where is the number of 

quark flavours. Because of asymptotic freedom we have for large momentum 

Hm {{\o^{k-'ln^)g\k''lti\g,))= (1.27) 
fc2—•+00 

D(fc^) also obeys a R - G E , namely:-

where the integral of 7(5^0) anomalous dimension, ^{go) = 5'o(7i + 5o72 + • • •) 

and Ji is dependant on the gauge (but independent of the renormalisation scheme). 

In the Landau gauge:-

Solving the R - G E and substituting for R we get that 

R { k ' / f i \ g ) = R{l,g)exp / d x j { x ) r H x ) 

(for small g^ and g). R{l,g) — 1 from normalisation. Now the integrand is singular 

at X = 0 and so we split it into two parts using the expansions for 7(2;) and I3{x) 

that we have:-

j { x ) r \ x ) = 7i/?o~'*~' + ^(*) 

where T{X) is integrable at a; = 0. Then our equation for R{k'^lp?,g) becomes:-

2L r 2 n 
/ 2\ft, rg 

R{k^/n'^,g)= ^ exp / dxT{x) 
\9oJ [Jgl 
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Then using (1.27) we get 

R{k''/^i\g)k^^+oo - Cy [logk'^liP)-'^'^'^ (1.28) 

where 

Cv= [ o l m ) '''^"exp f dxr{x) 
Jgl 

> 0 

and hence:-

D{k',n\go)k^_^^^ - Cyk-' {logk^f^Y"'^^' • (1-29) 

In order for us to check whether we can write the propagator in terms of a 

spectral representation we need to study the asymptotic behaviour of the propagator 

along the cut on the (+)ve real axis (the cut is due to the physical thresholds). 

Because in this case there is no cut along the (—)ve real axis, in order to write the 

propagator in terms of a spectral function we need to show that Hmjt2_K3o D = finite, 

this is called the S U G A W A R A - K A N A Z A W A conditions[33]. Indeed from (1.29) we 

can see that lim^2_K3o D = 0 which is the Sugawara-Kanazawa condition for D 

to be written in the form of an unsubtracted K A L L E N - L E H M A N N S P E C T R A L 

R E P R E S E N T A T I O N [ 3 3 ] , viz:-

Dik\f^\g,)^ l ^ k ' ^ ^ ^ (1.30) 

where p(k'^) = ImD{k'^)/-K. Indeed upon inspection of (1.28) we can see that for 

7l//^o > 0 (ie Â y < 9 ) limjt2_,oo -R = 0 and so R can be written as an unsubtracted 

spectral function in its own right giving:-

RiP/^',g)= j ^ ' ^ i k ' ^ ^ i n . ( 1 . 3 1 ) 

Substituting (1.30) into (1.31) using the original definition of R in terms of D we 

have that:-

X P ^ n f c 2 - I jfc'2 - jt2 
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/ dk'^p(k'^) = 0 (1.32) 
Jo 

the super convergence relation for p(k'^). 

Now D (and hence p ) is defined on an indefinite metric and so (1.32) doesn't help 

us much. However there is a long proof, using the Lehmann-Symanzik-Zimmerman 

( L S Z ) reduction formula [31], that tells us that D and obey the same R - G E and 

so the results we have above hold true for their projected counterparts:-

/•OO 
and / dk'^pP(k'^) = 0 Nf<9 (1.33) 

(1.33) does now help us as (and hence p^) are defined with (+)ve semi-definite 

metric, thus ff{k'^) > 0 . Combining this result with (1.33) it is found that we must 

have f>P(k^) = 0 Vfc^ and iV^ < 9 giving D'P{k'^^g^) = 0 VÂ _̂  < 9, but from our 

definition of and our work on the B R S singlet/doublet subspaces we immediately 

see that for 0 < < 9 we have confined gluons. (Lower limit as < 0 =̂ '̂ = 

physics ). This is a sufficient but not necessary condition. However, the work of 

Nishijima (see for example the last sections in [30] and [31]) has shown it is highly 

probable that it is in fact a necessary condition. Using the reasonable assumption 

that gluon confinement is equivalent to quark confinement, we have confinement for 

0 < Nf < 9 (which is a much tighter bound on Nf than that of 0 < Nf < 16 

from asymptotic freedom). 

Whilst this theoretical result seems to bode weU for the spectral representation 

technique, attempts to compute p(fc^) (and hence D) non-perturbatively[34] have 

run into enormous problems. Indeed it seems that this technique is numerically 

intractable. 

In order to attempt a numerically tractable technique we turn to our third and 

final method (we devote the rest of this thesis to this method):-
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1.8 The Functional Substitution method [35] : 

In this method the infinite set of nested S-DE's are truncated down to the two 

point Green's functions by employing ansatze for the relevant three point Green's 

functions. The tensor properties of the two point Green's functions are known from 

the spin of the fields they represent and thus they can be written as general functions 

of momentum squared, multiplied by tensor structures. So, for instance, in Q E D 

the only two point Green's functions are the fermion and photon propagators, S f { p ) 

and A^^(p) respectively, which have the following forms:-

' ' - ^ < ^ ' ^ ( 1 3 4 ) 

^(jP') = the fermion wavefunction, S(p^) = the fermion mass function and 

Q{p'^) = the photon function. 

Note that there is no function with the covariant gauge parameter, ^, part, this 

comes directly from the Ward-Takahashi Identity for the photon propagator:-

from (1.34):-

hence the function in front of ^ in A(p)^j, is identically equal to 1. 

In order for the S-DE's for the two point Green's functions and the ansatze 

for the three point Green's functions to form a closed set (ie. in any way to be 

potentially solvable ) the ansatze can only be made up of the functions T{p'^), 

E(p^), G(p^) and various tensors. (In Q E D there is only one three point Green's 

function, the fermion-fermion-photon function ) . We then substitute (1.34) and 

47 



the ansatze into the S-DE's for the two point Green's functions and solve for the 

functions, using some numerical method. 

The main technical problems with this method are:-

(1) Choosing a sensible ansatz (which will be dealt with in the next chapter) 

(2) The art of solving the equations numerically (which we will look at in the 

subsequent chapters). 
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Fig. 1.1 Linear and quadratic fits to (v?(p)(m) vs. m, from Ref. 19. 
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C H A P T E R T W O 

T H E A N S A T Z 

2.1 Introduction : 

We begin this chapter by studying the various ansatze that are presently pop­

ular. We shall then make use of the mtdtiplicative renormalisation (M.R.) of the 

theory ( Q E D ) to guide us in proposing a new ansatz for the three point vertex. In 

the functional substitution method, as the full set of S-DE's are truncated to just 

the two point Green's functions plus an ansatz for the three point function a ftdl 

understanding of the consequences of the chosen ansatz is clearly of extreme impor­

tance as it is T H E major input into the theory and therefore the point at which the 

study can be most contaminated. 

2.2 Conventions : 

Before we undertake calculations we need to state our conventions. The trun­

cated S-DE's we are looking at are shown diagramatically in fig. 2.1, and are written 

in integral form as:-

a;J(p) = + S / d'kj^sAk)T'^{k,p)sM 

M (2.1) 

S-\p) = s y \ p ) - J ^ J ^ d'k^'^S^ik)T'^(k,p)A^,{q) 

where the integral J has Minkowski measure, q = k — p and the superscript 0 
M 

denotes the bare quantities. 5^ is the full fermion propagator and A^^ the full 

photon propagator. They are given by:-
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and { 7 ^ 7 ' ' } = 2^'"'. 

F " is of course the fermion-boson three point vertex and is given by the input 

ansatz. is the number of fermion fiavours. When we use these equations to 

calculate objects we shall make a Wick rotation to Euclidean space-time. When we 

do this we let XQ -Vi^Q and WQ -{-iw^ , {w = k oi p) then Jj^ d^x -* +i d^x. 

In order to be able to make a Wick rotation to link Euclidean and Minkowski space-

times there cannot be any mass poles of the theory in the complex momentum 

region of WQ that the rotation sweeps through. If there are such poles then we 

cannot identify Minkowski space-time with Euclidean space-time. However, as was 

pointed out in section 1.3, the path integral (and hence the theory) is only well 

defined in Euclidean space-time and that is where we will calculate objects. We 

gave the equations and propagators in Minkowski space-time as that is the form in 

which most people are accustomed to seeing the Feynman rides. Indeed when the 

Euclidean Feynman rules are written down the i's from the Wick rotation are often 

dropped explicitly and taken to be there implicitly. 

We now undertake a comparitive study of some ansatze that are in common 

use:-

2.3 Bare ansatz and the quenched approximation : 

A very popular ansatz at the moment is the Bare Vertex in which F*^ = 7**. This 

is of course just the lowest order (extreme perturbative ) form for the vertex. This 

has been used by the Kiev group [36,37] extensively in the quenched approximation. 

The rationale behind the quenched approximation is that in the propagator 

equations (2.1) for equal mass fermion flavours, the variable iV^ only explicitly 

appears in front of the fermion loop integral in the equation for the photon propa­

gator and as such we can treat it mathematically as a free variable. In the quenched 
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approximation we then set Nj' — 0 which simplifies the set of S-DE's to just the 

S - D E for the fermion (fig. 2.2 ) , as then ^(9^) = 1. We shall refer to quenched Q E D 

as q Q E D . Using a bare vertex in q Q E D is also known as quenched planar Q E D . 

In their work, the Kiev group substitute = 7** into the equation for the 

fermion and then project out the 7̂ * (1) parts by mtdtiplying by ^ (1) and tracing 

giving the equations for the fermion wavefunction and mass as:-

^ d^kFik"^) 1 
jfc2S2(fc2) g2 

E 

-2k.p 

S(p2) aQ f cf4jfcF(fc2)S(fc2) 1 

+ \ { { k ' + p ' ) k . p - 2 k V ) { ( - l ) 

f d'kF{k')i:{k^) 1 
J it2-^S2(jfc2) q2^ F ( p 2 ) 47r3 J jt2 + S2(jfc2) g2l 
E 

which on performing the angular integrals becomes 

(2.2) 

where A2 is the U .V . cut-off needed to regidarise the integral (see section 2.5), 

I 0 w;2 < 0. 

the bare mass, mg, has been taken equal to zero and the angular integral calculations 

are done elsewhere (see Appendix A ) . Working in the Landau gauge (̂  = 0) we 

then have that:-
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The dynamical mass that they obtain from this is: 

- 0 
E « 4 A exp for > 

where 0 is a positive constant and 11= 0 for < ot^. In the region > a^, as we 

take A^ ^ cx) (the continuum limit ) the dynamical mass, E , (energy gap) diverges. 

This is an indicator that the energy of the ground state is not bounded from below 

giving a collapse of the wavefunction. (When the Bethe-Salpeter wavefunction of 

the system has an infinite set of zeros)[38]. To remove the collapse phenomenon, as 

A^ —^ C O , they make the bare parameter ttg depend upon the cut off A in such a 

way as to make S(A^ —> oo) finite, viz:-

This is not the usual way of renormalising the coupling constant 

(ie a(p,) = Z^{fi/A)aQ(A)). We see that is now acting as a U.V. fixed point in 

the massive phase as Q!q —> ct^ ^, whilst in the massless phase is a constant[36]. 

Then defining the /^-function as l3{a) := A ^ ^ we get 

- 2 a , ( « o K - 1 ) ' / ' «o > «c; 
0 Q!0 < "c-

(Analysis of unquenched Q E D has also been carried out [39] using a coupHng 

OQN, see for example [23], when they find a critical number of flavours, N^, above 

which there is no mass and below which there exists mass ). 

One should, however, have some major reservations about this ansatz:-

(1) The ansatz only obeys the W - T I in the Landau gauge in a theory with 
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E(p2) = const, as with F' ' = 7":-

s-Hk)- s - H v ) - - ^ 

These only allow ^ T " = Sp^{k) - Sp^{p) when F(fc2) = 1 = F(p2) (which only 

occurs in the Landau gauge for the bare ansatz, (2.2) ) and 

S(fc2) = Il(p^) VA;2,p2, In a gauge theory it seems highly suspect to use an ansatz 

for r** that only stands a chance of satisfying the gauge invarience of the theory 

in one gauge. Gauge invariance demands that F{p^) = 1 (which is satisfied with 

^ = 0) and Il(p^) = const, which is not possible from (2.3). Indeed how can we 

expect our 'physical' outputs to be gauge independent when our input (ansatz) isn't! 

(2) With a form like F'* = 7** we cannot include any non-perturbative behaviour into 

the vertex. Indeed it isn't even possible to include the usual perturbative corrections 

that are needed for high energy phenomenology. This seems very strange. To 

comment on a quote from ref. [36] "The appearance of such a point in the ladder 

approximation is caused by the dynamics which cannot be obtained in perturbation 

theory" the question has to be asked where do these non-perturbative affects have 

a chance of entering as the form F*^ = 7'' is a very strong suppressor of any 

affects, perturbative or non-perturbative. For example it is widely known that if 

we undertake a perturbative calculation of the dynamical mass with a non-zero 

current mass, mg, then even if we undertake an all orders resummation using the 

Renormalisation Group equations (see later in this chapter, section 2.5a) then we 

still only get an answer that is of the form:-

Hip') = m,Xip') 
00 n 

x(p') E «"A„5^,„iog-(pVA^) 
n=Om=0 

which always gives mg = 0 => S(p^) = 0, a perturbative result. This prompts the 
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comment "how can anything non-perturbative come out of the theory when only 

perturbative things have been put in". 

(3) In the work of the Kiev group they have found that in the dynamical mass 

generation phase (qiq > a^) that the electrons condense to form bound state tachyons 

('Cooper pairs'). This is a Q E D version of hadronisation/conflnement and as such 

you would expect F{p'^) at some point to equal zero, but F{p^) — 1 Vp^ and this is 

a problem. 

(4) Finally, if we look at (2.2) with ^ 7^ 0 and attempt to renormalise it in the 

usual multiplicitive way (for q Q E D Fji{p^/p?) = Z(n^/A'^)F(p^/A^) , = 

and = ^ see section 2.5) then we find that there is no way of succeeding in 

multiplicitavely renormalising the theory, which means that we don't really know if 

there is a continuum theory associated with the bare vertex. 

2.4 The longitudinal part of the vertex and the Ball-Chiu ansatz : 

In order to attempt to find a better ansatz than the bare one, we start off by 

saying that any ansatz must first and foremost obey the W - T I for all gauges (after 

all we are dealing with gauge theories here!):-

q^r>^{k,p) = s^\k) - s j \ p ) . 

Now q^ acts as a Killing vector on the transverse vertex space and as such we can 

split the vertex into two parts, the longitudinal part, F ^ , and the transverse part, 

F j . , then:-

T''ik,p)= Tlik,p)+ F^(fc,p) (2.4) 

where q^Tl{k,p) - Sp^{k) - Sp^(p) and q^T!^{k,p) = 0. It seems that there is 

an infinite uncertainty in F ^ as we can put arbitrary amounts of F^^ into it and still 
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satisfy (2.4). Indeed one example would be to wri te as:-

r^(k,p)^ Tl^{k,p)+ ^ ( 5 ^ ^ ( f c ) - S j \ p ) ) (2.5) 

which satisfies equations (2.4) [40]. This f o r m w i t h 

has recently been popularised[41]. I t is however singtilar when = 0 but qf^ ^0^. 

I n affect this means that the dW-1 is not non-tr ivial ly satisfied:-

To see this we Taylor expand Sp^(k):-

S j \ k ) = S j \ p ) + ( k - p ) , ? ^ ^ + 

Then (2.5) becomes: 

and when k^^ p'* we find that necessarily 

r ^ ( f c , p ) = [g"" - ^ ) rAk,p) 

and we are left w i t h the t r i v i a l ident i ty T^(k,p) = T^{k,p). Hence we can see that 

the f o r m i n ref. [41] is incorrect. Things are not all bad news though as combining 
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the dW-I w i t h the f o r m for the fermion propagator, Sp^{p) = — /F(p'^) 

we get 

which when we use the k^p symmetry of the vertex let's us wri te this i n a natural 

way : -

T'^{k,p)= Tl{k,p)+ T'^{k,p) 

w i t h 

2 \F(k^) ' F ( p 2 ) ; ' 2 ( fc2_p2) \F{k^) F(p2) 

( ^ + p) ' ' /S(fc2) s(p2) 

and 

r ^ ( p , p ) = 0. (2.6) 

This f o r m for Ti is known as the Ba l l -Ch iu vertex[42] and we shall denote i t by 

TBC. T h e n : -

where q^T''g(.{k,p) = S^^{k) - Sp^(p) , q^T!^{k,p) = 0 and T!^ip,p) = 0. Thus 

using 9 W - I we have the O N L Y way of spl i t t ing F in to and F^-. From physics, 

the vertex as a whole must be free f r o m kinematic singularities. From the lack 

of kinematic singularities i n F w e have then that F y is also without kinematic 

singularities. 

Whi l s t the W - T I and dW-I give us a U N I Q U E , known f o r m for Tj^(k,p) they 

don' t actually give us the f o r m for Fy(fc ,p) . The usual th ing to do then is to use the 

M i n i m a l Bal l -Chiu ansatz, where we put Tj^{k,p) = 0 leaving T'^{k,p) = F^(^(fc,p). 

This is not completely satisfactory, but at least our ansatz obeys the W - T I and it 's 
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a start ing point . Indeed using this ansatz i n massive 3 dimensional QED (which is 

related to qQED4) i t has been found that there is no crit ical point ( = 1/Q'g)[23], 

which is Q U A L I T A T I V E L Y different f r o m the results w i t h r** = 7** (and lattice 

results to date). I n massless Q C D i t has been used to find solutions for F(p'^) and 

^(P^) which give confinement[43]. However i t would be nice to t ry to find what 

Trp(k,p) is and see what improvements, i f any, we could obtain to these results. 

2.5 Multiplicative Renormalisation and Trp{k,p) : 

When we make calculations f r o m the in i t i a l Lagrangian (called the bare La-

grangian ) we find that the integrals that we end up w i t h are, i n the main, d i ­
ce 

vergent. For example / dk^/k^ is logarithmically divergent. I n order for us to be 

able to tackle this problem, and hopefully find a theoretical way of removing these 

divergences, we first of all need to R E G U L A T E them. That is we introduce some 

parameter that makes the integral finite except for some value of the parameter 

where the integral diverges again. For instance, i n dimensional regularisation the 

dimension of space t ime is increased by e which makes the integral finite except for 

when e = 0. Another example is cut off regularisation when the range of integration 

is cut off at a finite value A^, the integral is then finite except i n the l i m i t A^ —> 00. 

I t is this regularisation method that we shall use as i t is easier to look at numerically 

and as we deal only w i t h one loop calculations i t is a valid method (wi th two or more 

loops the cut-off method breaks gauge invariance and so cannot be used without 

caxe). We are now able to look at how to remove these regularised divergences, this 

is known as renormalising the theory. The usual method of renormalising theories 

is to use Mul t ip l i ca t ive Renormalisation ( M . R . ) , where we introduce renormalised 

fields/Green's functions and their associated Z functions. So for QED we have 

<p^ip\f^') = Z - ' % \ A ' M p \ A ' ) , 

A'^^{p\n')^ Z-'%\A')A>^ip\A'), 

T''J,ip,k,^i)^Z,{^l,A)T''{p,k,A) 
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and thus eji{fi) — 
ZoZ 2^3 

1/2 

where is the renormalisation point where we define objects to have a specified 

value. This gives us the renormalised Lagrangian ^R('PR,^R,AJI). 

The advantages of M R over other renormalisation schemes are:-

(1) i t is d i f f icu l t to envisage a different sensible renormalisation scheme. For example 

additive schemes would have to be very specifically chosen i n order to go through 

the calculations and cancel the divergences at the end ( in M R this is easily done 

as the renormalisation is 'bolted ' onto the field). Indeed i n BogoHubov-Parasiuk-

Hepp ( B P H ) renormalisation[45,46], of the perturbative theory, where corrections 

are added in to the bare Lagrangian to remove divergences of a given order a", 

s tart ing w i t h 0{a), one finds that for a renormalisable theory the correction terms 

must be of the f o r m of the original interaction terms of the bare Lagrangian. This 

means that as we remove the divergences order by order i n a" we bui ld up terms of 

the f o r m F ( Q : ) X interaction te rm, where Y{a) is a perturbative series i n a** (The 

proof that this renormalises the theory is called Hepp's Theorem[46]). We can then 

iden t i fy the series Y(a) w i t h a Z factor and thus rewrite the Green's functions as 

renormalised Green's functions. Thus we see that B P H renormalisation is equivalent 

to per turbat ive M R , and we have not gained a new method of renormalisation. 

I n fact M R is only rigorously known to work i n the perturbative region but i t is 

believed to work non-perturbatively as how else can we renormalise a theory ? I t is 

also believed to work because:-

(2) M R directly leads to the R-GE's, which give us such experimentally observable 

phenomena as scaling i n Q C D . So how do we get the R-GE's ? 
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2.5a The Renormalisation Group Equations : 

Let us consider Q E D , then the renormalised Green's functions are given by: 

ZiPi,...,Pn;Ql,---,gn'^9R,CR,fi) 

xr ' ' - - ' ' '> ' '"Hpi,--- ,Pn;9i , . . . ,9n;^,e,A) 

where n = number of photon fields and m — number of fermion/ant i-fermion fields. 

Now W - T I give us that Z = Z ^ ^ ^ and so (taking pf = as read ) : -

= ( e x p [ ^ l o g Z j e a ; p [ ^ l o g Z j r ' ' i > -' '^nKm)^ 

/ n J log Z 4 m log Z j . \ n m , . 

Therefore we obtain:-

where 

, w = .|1 

This is known as the (Stueckelberg-Peterman[47]) Renormalisation Group equation 

( R - G E ) . The R-GE can be used to wri te series for the Green's functions for a 

wide range of momenta (renormalisation flows), they also allow us to resum the 
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expressions we get for the first few orders i n a to inf ini te order expressions i n a 

(renormalisation improved resumation). For example, i n some massless type 

theory, i f we look at the n*'' order Green's funct ion, F" , w i t h , for example, dimension 

D then dimensional analysis gives:-

r ( " ) ( p . - , ^ , M ) = / ^ ^ / ( ^ , y ) 

f a dimensionless func t ion . Then i f we let p,- p,e' 

= > r W ( p , e ' , ^ , / . ) = / . ^ / ( ^ e 2 ' , ^ ) 

d d 
rW(p . . e ' , ^ ,M) = r > / / ^ / - f -

d_ d_ 

le T(-\pie\g,fi)= 0 

and the R-GE i s : -

| + / ^ ( . ) | + i ^ - n 7 ( . ) 

f("W,^,^) = o 

T(''Hpie\g,fi) = 0, 

the Inhomogeneous Callan-Symanzik Equation (ii D = 0 i t is the Homogeneous 

Callan-Symanzik Equation). P u t t i n g : -

9 

r ( " ) ( p . e ' , ^ , A . ) = exp W+ n I ^ d x ^ ^ ( p . e * , ^ , / . ) 

leads to 

Now 

Pia) = ^aii) where -p = ^ t = j 

5(0)= 9 

(2.8) 
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different iat ing w i t h respect to g we find tha t : -

dg{t) 1 
0 = 

dg mi)) m 

( " ^ + (2-9) 

(2.8) and (2.9) then te l l us that F ( " ) must depend upon t and g via g(t) only and 

therefore F ( " ) ( p i e ' , ^ , / / ) = F(^\pi,git),n). Now 

9 H*) 9 

0 0 g{t) 

t 

^H{g{t))exp - n J 7{g(i))dx 
0 

i 

F(")(p..e',5,/i) = F(")(p..,^(<),/x)exp W - n J yig(t))dx 

t 
tD is called the canonical dimension and —n / 'y('g{t))dx the anomalous dimension. 

0 
I t can be shown tha t : -

r < " ) f e e . , „ . ) = r W f e , m . ) ( ^ ) 7 f i ) ' where — = e* 

So to lowest order per turbat ion theory 

nTo//?o 
where 

(a standard result that can be found i n any postgraduate lecture course). 

I n a recent paper by Brown and Dorey[48] i t was suggested that a fur ther check 

on ansatze would be to calculate the results that they gave i n perturbation theory, 

up to some level, and check to see whether the forms given are M R . What we w i l l 
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do i n the fol lowing sections is to attempt to t u r n this the other way round. Instead 

of ansatze being checked against M R we attempt to use M R to bui ld an ansatz (ie 

to investigate the transverse part of the vertex). As the R-GE's are perturbative 

equations the f o r m of our ansatz w i l l , of course, only be well known in this region, 

however using the known symmetries of the vertex and the fact that i t must be 

made up of F{p^) and S(p^) we can generate a non-perturbative ansatz. Due to 

the complexities of dealing w i t h the R-GE's for f u l l Q E D we look at the R-GE for 

q Q E D , i n which instance we are left w i t h ( j i = ( and = e (as W T I =^ = 

and qQED =^ Z^ = 1). Thus the R-GE's, for massless qQED, are:-

J^rn{e))T''r-'"^-''^^= 0. (2.10) 

We now investigate the constraints that M R imposes on qQED. 

2.5b How MR restricts the forms for F(p^) and I l (p^) : 

I n qQED the renormalised fields are Vi^(p^M^) = •^2~^^^(/^^ A^) ? = ^ 

eji — e and ( j i = ^ , so for the renormalised wavefunction we have 

FR{P\,^')= Z ^ \ n \ A ' ) F i p \ A ' ) . (2.11) 

We wr i te these functions as a perturbative series. I n fact we shall start off by wr i t ­

ing them as leading log series, where we only have terms a" log" , this is permissible 

as these are the most divergent terms present i n the series, qQED being only loga­

r i thmica l ly divergent. The results we obtain aren't affected by sub-leading logs (as 

terms a" log"~^ can only affect terms that have equal or greater p, where n can 

vary) and the working is much easier to fol low. We start off by wr i t ing the series to 
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0 ( a 2 ) : -

2 2 

F ( p ^ A 2 ) = H - a A i l o g ^ - h « % l o g ' f 2 

Z , - V , A ^ ) = 1 + « 5 i l o g ^ + « ^ 5 2 l o g 2 ^ 
2 2 

F^(p2 ,M') = 1 -H aC,\og ^ + a^c^log^ ^ . 

Then (2.11) tells us that:-

2 2 
1 + « U i i « s x 2 + ^ i i ^ s x ^ 

+ « ^ ( ^ 2 l o g ^ i , + A , 5 , l o g g l o g ^ + B , W ^ ^ 

1 + a ( C i l o g | ^ - C i l o g ^ ' 

+ a ^ ( c 2 W ^ - 2 C , l o g ^ l o g ^ + C . l o g ^ g 

on equating powers of bo th log(p2/A2) and a. We then carry out an inductive proof, 

assuming that 

K= C,= ^ = ( - l ) " 5 n n! 

then : -

n=0 

Tl=0 
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Looking at (2.11) for 0 (Q ; ^ + ^ ) we have: 

^ nl ^ A^ (iV + l - n ) ! ^ A2 
n = l 

+ a N+1 log f , + « - - B , , , l o g - - ^ 

(iV + l ) ! ^ A 2 ^ (iV + l - n ) ! n ! (iV 

( _ X ) ^ + i 

( i V - h l ) ! 

(iV + l ) ! j 

(iV + 1)! r ^ A ^ - ^"^A^j 
iV-l-l 

+ a ^ + M o g ^ + ^ g 

iV-t-l 

{N + l)l 

(iV + l ) ! j 

- = ( - 1 ) ^ + ^ % ^ , 

the M R constraints on the leading log coefficients of the series. 

We now look at the series including next-to-leading log terms, we use the results 

already obtained f r o m the discussion of leading logs. As part of our renormalisation 

scheme we impose the normalisat ion:-

FR{P\H')= F { p \ A ' ) 2 A2> 
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ie Z2(A^,A'^) = 1 which has the affect of giving and F the same fo rm. 

°° An / 2 2 \ 

n=0 • ^ ^ 

n=0 • ^ ^ 
° ° /J n / 2 2 \ 

^ . ( p ' . ' ' ' ) = E ' ' " ^ ( ' 0 S " ^ + B n > ° « " - ' y 

We know that the leading log parts satisfy M R , (2.11), from before, so we concentrate 

on the next to leading logs at 0 ( Q : ^ + ^ ) : -

N+l Am ( A\N-^\-m r „2 ,,2 
V — - ^ ^ ^ ^ ^ ^ B l o g — i ^ W ^ + i — ^ 
m=0 

m ! (iV + 1 - m ) ! 

+ C j v + i _ „ l o g ^ l o g 

A2 

21 

A2 

A2 

0 = 
(iV + l ) ! m ! ( i V - m ) ! ^ ^ + ^ 

'm+1 (N - m)\(m + 1)\ 
C N+l-m (iV + 1 - m)!m! 

=^ 0 = 
(N + l - m ) (N + l - m ) 

(N + l ) ( m + 1) 

pu t t i ng m = 0 , N = k gives C^+j - Bi{k + 1) - Bj^+i 

and m = 1 , iV = A; gives C ^ + j = ^B2{k + 1) - Bk+21^ 

B,+2 = ^ B 2 - ik + 2)B,+ t ^ B 
k + l 

Bk+2 = ^B^ik + 2){k + 1 ) - B,{k + 2)k (2.12) 

by i terative subst i tut ion. So we have the M R constraints for next to leading log 

coefficients. 
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I t can be seen that even though we can , i n principle, find the M R constraints 

for the coefficients of any order of non-leading log each order has to be worked 

out ind iv idua l ly and as we get fur ther away f r o m leading logs the amount of effort 

involved increases rapidly. We shall leave the M R constraints at just the two we 

have calculated. 

I f we look at the perturbative series for S(p^) (we must have THQ non-zero here 

else we shall get the t r i v i a l E = 0 and no useful informat ion ) we have i n the same 

way: -

°° An / ^2 Jl 

E(p2,A2) = m o 5 ] a " — ( l o g " | ^ + ^ " l « s " " ' x 2 ) = ° 
n=0 • ^ ^ 

Z i \ ^ \ A^) = E ( l o g - g + C „ l o g - g \ C , = 0 

An / 2 2 \ 

n=0 \ A* / 

w i t h the same constraints on the Bf.^s as for F. We now look at what perturbative 

results we get f r o m the various ansatze. 

2.5c The Gauge dependence of the fermion mass[49] : 

( i ) We start off by looking at the bare ansatz, F ' ' = 7̂ ", i n the S-DE's (2.2), but 

w i t h a non-zero current mass (as we are working perturbat ively) . We look at the 

equations using the Born series, start ing off w i t h the lowest order answer and then 

repeatedly subst i tut ing in to the integral to generate up the higher order answers. 

We work perturbat ively keeping only the leading log results and neglecting TUQ w i th 

respect to k or p. The equations we end up w i t h are then:-

^ip') _ ^ , ( 3 + 0 « o 1 dk-^Fjk'nk') 
i P ( p 2 ) - " ^ o + 4^ J p / 
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Start ing w i t h the equation for F and the lowest order solution F{p^) = 1, after 

repeated subst i tut ion we obta in : -

F rom the equation for E and starting f r o m S(p^) = TUQ we obta in : -

3an. .9 
S(p^) = mo 1 - 2 2P' 

47r A2 

3 -2 
(2.14) 

( i i ) For the min ima l Bal l -Chiu ansatz (F*^ = F^^^) from (B.8 and B.9) i n Appendix 

B we find that the perturbative equations we have are:-

fc2 [4 4^F(p2)J 

F p ) " ° [2 ^ ^ ^F (p2)^^^^+ 2F(p2)^^^ 

again start ing f r o m F(p^) = 1 and S(p2) = rriQ we find:-

. 2 P I 
A2 

and 

mr 
3ac 
4^ 

, p2 / 9 3 A / a o ^ ^ 
A2 

+ - 16 
_ n f ^ y i o g 3 4 + 

8 y V47r>' ^ A2 ^ 

(2.15) 

(2.16) 

( i i i ) W i t h the real vertex, what ever i t is, we would repeat the Born process sub­

s t i tu t ing i n higher and higher order values of F , F and S to solve the equations. 
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We don' t know what the vertex is, but we do know that its perturbative expansion 

starts off as F'^ = 7** -|- 0(a), and so we can calculate and S to 0(Q!) (where we 

get the same result as for bo th the bare and Bal l -Chiu ansatze):-

F(p') = l+ ^ l o g | l - f 0{a') 
4TV 

S(p2) = mo ^ l o g f , + 0 ( „ ^ ) 

However f r o m the M R leading log constraints we know that for the real M R vertex: 

(2.17) 

S(p^) = mo 1 -
47r 

(2.18) 

I t is the mass that is the physical object and hence i t should be the mass that is 

independent of the gauge. I f we compare the three results f r o m the bare, Ball-Chiu 

and real vertices w r i t i n g the results as 

Hip') = mo 

+ ( ^ ) ' ( C „ + C , { + C , { ' ) l o g ' ^ + 

we have 

^0 ^0 ^1 Co C i 
Bare - 3 + 9 / 2 - 3 - 9 / 2 + 9 - 4 

B a l l - C h i u - 3 + 9 / 2 + 3 / 8 - 9 / 2 - 3 / 1 6 - 1 / 8 
Real - 3 + 9 / 2 0 - 9 / 2 0 0 

Table 2.1. Coefficients in the leading log. expansion of S(p^). 
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and the coefficients for and are plotted i n fig. 2.3. As we can see the results 

from the bare vertex vary dramatically w i t h the gauge. This shows how unsuitable 

the bare vertex is w i t h regard to the gauge invarience of physical objects (as studied 

i n section 2.3). The Bal l -Chiu ansatz gives much better results, but they are st i l l 

not what is expected f r o m the real vertex, especially the coefficients. I t is i n 

the difference between the Bal l -Chiu and the real results that the affects of the 

transverse vertex lie and i t is i n order to understand the transverse part that we 

move on to look at the perturbative expansion for the vertex. 

2.5d The Vertex (perturbative) : 

I n order to be able to get any sort of idea about F j - at all we look at the 

perturbat ive expansion of the vertex. We wish to study the affects that the vertex 

has on the fermion mass/wavefunction to leading logs.. I n order to do this we need 

to calculate those parts of F that affect the leading log. parts of the propagator. 

F rom a quick look at the S-DE for the propagator (2.1) we can see that i n the 

leading log. approx. the integral i n the equation is of the f o r m : -

/ ^ ( ^ - F mo)F(fc,p) 

and so using the fact that J odd powers = 0 we see that the leading log. results 

for the fermion are affected by terms 0(fc°) and 0(k~^) i n F. The checks that we 

carried out on the results f r o m the various ansatze i n the last section showed their 

first differences f r o m each other at 0(Q;2)^ which corresponds to knowing F to 0(0-). 

So the first clues to F j . should appear at 0 ( a ) i n F and so we start off by calculating 

the 0{k°) and 0(k-'^) contributions to F up to 0 ( a ) , w i t h fc^ > p^ > m2. The 

per turbat ive expansion for F (S-DE) to this order is shown i n fig. 2.4, and can be 

wr i t t en as:-

-ieT^'{k,p) = -ie-f" - ieA" 
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where 

leA" = J d'^w{-ieY)SF{k - w){-iej'')Sp{p - w)(-ie-f'')A^p{w) 

M 

w i t h 

and 

Sp{q)= I g2 — m2 

We can split the integral in to four discrete parts : -

: odd number of 7-matrices and 6,^^ part of the photon propagator. 

I2 : odd number of 7-matrices and w^Wp part of the photon propagator. 

: even number of 7-matrices and 6^p part of the photon propagator. 

74 : even number of 7-matrices and w^,Wp part of the photon propagator. 

For historical reasons we shall call and the massless parts and 73 and the 

massive parts. We now look at each one i n t u r n : -

(a)/i: 

f d^w (' _ d^w (7"(^ - i^h^^it - f h ' + m^'l^Y • 
* ' ^ «;2[(A;- w f - m 2 ] [ ( p - w f - m2] J 

M 

W i c k rota t ing we get:-

- (27r)4 ] 
E 

2 [ ( f c - « ; ) 2 + m 2 ] [ ( p - « ; ) 2 + m?] 

w'^[{k — w)2 + m2][(p— ii;)2 4- m2 
A 1 1- z 

^ j d ' w j d x J dy[{l - x){l - y)fj>^^ - y(l - y)f^^f 

0 0 

- x ( i - x)^7''^ + ^yh'^f - V ] / k ^ + Lf 
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using the Feynman integral rule w i t h : -

L = k'^x{\ — x ) + p^yil — y) — 2k.pxy + m^x + rri^y 

(see ( C . l ) Appendix C) . Now f r o m (C.2 and C.3):-

A 

/ ^4 W 
[ w 2 + L]3 2L 

and 
A 

/ = TT^log 
A2 STT̂  

Therefore 

1 1- X 

'^Jdx J dy [ ( 1 - x ) ( l - y ) ; ^ 7 - y ( l " y - ^ ( 1 - x)jtrjk 

0 0 ' -

+ xyjtrp ] /2L - ^T^aog ^ - I ) 

4 ^ 

r ^ ^ 
^ J dx J dz (1- x)[ - x { l - x)p-f''jt+ xz{l - x)^j''f 

n n 0 0 
+ (1 - x){l - z + xz)f^^'^ 

- z{l - x){\ - Z + xz)/^**^] IL 
1 1 

^t'' J d x j d z i l - x)( log 
A2 _ 3. 

L 2 ' 
0 0 

where y = z{\ - x). Now the only parts we want are those that give O^k^Xogk"^) 

or 0{k~^ log A;2) as these give the leading logs i n S-DE for the fermion propagator. 

Using the results of Appendix C, (C.7) and 0 = / dx x " ( l - x)IL n = 1 ,2 ,3 , . . . 

(C.8) , we see that 

k'' ^ P n , 
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2 (27r)4 J « ; 4 p - WF+ m 2 ] [ ( p - «;)2 + m2] 

- i 6 e 3 ( e - 1) 
J d'^w J dx j dy(l - x - y){yb + jtx + f y ) 

(27r)4 
0 0 

m - x ) - f y - ^pmpil - y ) - jtx- + ikx+ py)/{w' + Lf 

f r o m the Feynman integral rule for a repeated te rm i n the denominator and L the 

same as before. 

_ -z6 e3(^ - 1) , I , I ^ 

^ ~ (27r)4 ^ 2,4 + -'2,2 + -'2,0; 

where /2_,- = x fn(x,y) and f r o m (C .4-C .6):-
d^w; u;* or, A2 1 1 , f d'^w tt^ f d'^ww'^ or, 1 1 , f 

and 

t£;2+ L]4 3 L 
J4,.. ^2 

[«;2+ L]4 6L2' 

Then 

1 1 

0 0 
1 1 

2̂,2 = / / ^ ^ ^ T ^ [ - ^ " 4 ^ ^ " "^^^^ " ' + ^""^^ 
0 0 

- ^ 7 ( 1 - 2a:)(l - x)z - f^^^{\ - x f z 

+ ^^7"^^; (1 - 2x) - kf'^x (1 - 2x) 

- jf'^x (1 - 2: + xz)- f^-ff'^zx (1 - a;) 

- j f p x ( 1 - 2 x ) - p ' ' ^ x ( l - 2z+ 2zx)]{l- z) 

1 1 2 

h,o = ^^ J dx J dz^'^~J^ [ r 0 k ^ x \ l - x ) { l - z+ z x ) - 7 ^ ( 1 - a;) 

0 0 
- 77^A;2x2z( l - x)2 + ^ ^ " ^ 2 x ^ ^ ( 1 - x ) 

- ^J^'k^xhil- X ) 2 ] ( l - ^ ) 
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(where we have dropped terms down i n order of k and so cannot give const x log k^ 

terms). 

Using the results i n Appendix C, (C.7-C.12), we have that at the relevant order:-

1 « 2 i A2 

^2,0 = 0 

pu t t i ng this al l together we obtain: 

167r2 ^ A 2 ' 3fc2 

l ) r u, ^ 7 , 
- T b - ^ [ ^ ' ^ ^ ^ A 2 + i ^ ^ ° s J ' 

(c)/3: 

(27r)4 j w;2[(fc- u ; ) 2 + W?][{P - WF^ M^] 

" ( 2 ^ 7 

(i4«;(jfc/^ + - 2«;'') 

«;2 (fc — u;)2 + m2 (p — •»;)2 + m2 

1- I 
i8 e^m /• ^4 [ ^ [A;'*(l - 2x) + p ' ' ( l - 2y) - 2«;' ' ' 

0 0 

i 4m7r2 

(27r) 
(fx 

(1 - x)[k^'{\ - 2x) + p ^ ( l - 2 z + 2zxy 

0 0 

From Appendix C, (C.8 and C.9), to the order required:-

1 

j'^'k^r^-^ 

i e^m kt^ fc2 
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L = I (27r)4 J w'^Uk- wy+ m 2 i r ( p - + 
E 

1 1- X 

j d'^w J dx j dy{l - x - y){i/) + ^x + f y ) 
0 0 

( 1 - x ) f - f y - 7 ' ' [ ( i - y)i>- f^x- y>; 

{rjb+ ^x+ fy)l{w'^ + Lf 

ie^m{l- 0 6 / ,4 
(27r)4 j d'^w J dx J dy(l — x — y) 

w 2 C + D 

0 0 

where to the relevant orders, i n k:-

C = P ( l - 3x) 

D = -f'^^k'^x'^ - 2k*'k'^x^. 

Then, using (C.4 and C.5):-

L = 

1 1 

j dx J d z ( l -
0 0 

, f 2 C D 

- h,c + h,D 

where q and I^ jy are the C and D parts respectively. From Appendix C, (C.8-

C. IO) : -

167r2 j dz 2(1 - z) fc2 
1 

16;r2 A;2 °S ^2 

and 
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Thus giving us:-

i e^m(l - 0 , 
log 167r2 k^ 

Pu t t i ng this al l together we have:-

/ i + /2 + 3̂ + h 167r2 

+ ( 1 - 0 ( 7 ' ' l o g ^ + ^ ^ l o g ^ j 

k \ A;2 jfcM jb2 
+ 4 m — l o g — + m ( l - O ^ l o g ^ 

I ea 

jfc2 

fc2 

A2 ' jfc2 S + n ( ^ " ^ + (1 - Ofc'^^^) log ^ 

+ " ^ ( 3 + O j ^ l o g ^ 

47r 
e 7 ' ' l o g ^ + (1 

ki^ jb2 
+ m ( 3 + O j ^ l o g ^ 

0 ^ 7 ) log ^ 

(2.19) 

i n Euclidean space-time. 

F rom section 2.5c ( i i i ) we know that for the real vertex F(P^) and S(p^) are, up 

to 0{a) i n leading logs:-

(2.20) 

we also know that = F - F^; = F - F̂ ^̂ :? ô substi tuting (2.20) in to the identity 

for T^Q, (2.6), and using (2.19) we can f i n d F^^ for 0 ( a ) up to 0 ( f c ^ f c - l ) . Doing 
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this we have:-

^ pk a( {k'^jk + fc7 + pi^jk) ^ P \ n i a ki^ k^ 
r - ^ W 4 7 ^ ' + ^ ) f c 2 l - S ^ -

This is i n Minkowski space-time, as that is where we defined the W - T I and our 

Feynman rules. To undertake our comparison we need to perform a Wick rotation 

on (2.19) to br ing i t in to Minkowski space-time as well . We then have:-

to 0(a,k~^). When we substitute the gauge independent part of this into the 

fermion S-DE we find as expected i t does not contribute to the leading order con­

t r i bu t i on of the mass. Its contr ibut ion is, f r o m (2.1) : -

/74l. 1 4-2 5 

/

d^h ^2 
^tr[j'^^k'){fj>^^ - fc7)]log^ 

yi^leading logs. 

Surprisingly however the gauge independent part also does not contribute to the 

leading log contr ibut ion of the wavefunction:-

d'^h i-2 

d^k . r . „ ,1 . . 1 « . « « . 1 1 k"^ 

= / 0 ^ 4 4 ( M ^ - . V ] l o g ^ 

/dA:2 4 ,2 .^J5.2 p 

/ l e a d i n g logs. 

Now as stated before we are only interested i n the parts of Vj' that give leading log 
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contributions i n the fermion S-DE. We are therefore at l iber ty to drop the above 

gauge independent parts. We are then left w i t h : -

1 

The transverse vertex lies i n the vector space transverse to 5^ and so we shall 

wr i te F y i n terms of a basis set of this transverse vector space, which is eight d i ­

mensional. The basis set we shall choose is the one introduced by Bal l and Chiu[42], 

viz:-

= p'^ik.q) - k^ip.q) 

n = I'ik'^-p^) - {k+pn^ 

T!^ = hk^ - p2) [̂ /̂ (̂  + p)-p^'- k''] +{k+ pYp^'k'a^ 
up 

where â ,̂ = \bf,,lv\-
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Now T^jT^jT^jT'j have the wrong number of 7-matrices to wri te Fy in terms 

of them, they would have been associated w i t h anything non-zero coming f r o m the 

massive terms 73 4 that couldn't be accounted for by F^^;;. I f we look at the k^ ̂  p2 

l i m i t of the remaining tensors we see tha t : -

just the f o r m we need. As terms not contr ibuting to leading logs i n the fermion can 

be neglected we can w r i t e : -

We could have obtained an indication of this result by solely using M.R . to 

constrain our result, as f r o m (2.15 — 2.18) i n section 2.5c we know that the B a l l -

Chiu ansatz gives the fol lowing leading log results for the S-DE's i n the perturbative 

region:-

F(p2) 47r ^ A2 ' V 8 2 y V47ry ^ A2 

S(p2) 
— m F(p2) 

and the real vertex gives : -

1 - 7 f l o g l T + V TT log'"^^ F(p2) - A l t " A2 ' 2 V47r>' " 

A2 

So the extra transverse part must contribute -3^/8(a/47r)2log^(p2/A2) to the 1/F 

equation and -m3^/4(a /47r )2 log^(p2/A2) to the S / F equation. The extra leading 
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log piece that they contribute to the 1/F equation is: 

-a f d'^kF(P) 
4pH 

E 

. fd^kFj^) r . 
^ J -^^Hr^'^^TlS,, (2-22) 

and to the S / F equation:-

£ H j ^ ^ H r ( ^ + ^ ( > ' ' ) m ^ . (2.23) 
E 

As = Yll=l ^i^i substitute i n each of the basis vectors i n t u rn into 

(2.22 and 2.23) and generate some relations. We i n fact substitute i n a,(fc2,p2^ Q.̂ TV', 

where, because the extra pieces needed f r o m Tj- are ~ log^(p^/A"^), we know that 

a,- - a/(47r)log2(fc2/p2)^ as the only way to get log2(p2/A2) is f r o m / ^ l o g A : 2 . 

has dimensions (momentum)^ and so i n this leading log calculation we also include 

i n a,- enough powers of k^ to ensure this. As pointed out before 3^ 4 5 j are associated 

w i t h the massive terms, 73 4, and 32 3 g g (being odd i n 7-matrices) w i t h the massless 

terms I^ ^- I n order to obtain the correct dimensions we need to mul t ip ly T'i,4_5j by 

and T2 3 5 g by m ' ' . As can be seen f r o m the Bal l -Chiu ansatz the natural way 

to obta in (a/47r)log(fc2/p2) using F{p^) and ^{p^), (which is where this structure 

has to come f r o m ) is f r o m 1/F{p^) -1/F{k^) terms which give ^(a/47r) log(fc2/p2^^ 

whilst to obtain m(a/47r)log(A;2/p2) we should use S(/)2)/F(p2) - S(A:2)/F(fc2) 

terms which give m(3 + (,)(a/4:iT)\og(k^/p^). So we are lead naturally to wri te 

a <,-logfc2/p2 

and a2,3,6,8 - - ^ .̂(^^2) 

where are constants and X,(A;2) ensure the correct dimensions. ^i_2,7 = 

5 6 8 — s^nd — k • 
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Pu t t i ng these in to (2.22 and 2.23) and working to leading logs 0 ( a 2 ) (where as 

we have a,- ~ a\og{k'^Ip"^) we take F{k'^) = 1 and S(fc2) = m i n (2.22 and 2.23)) 

we obtain the fol lowing results:-

T e n s o r 

i 

1.1. cont. to l / :F (p2) 

X 1 2 £ i 

1.1. cont. to S (p2 ) / : r (p2) 

1 — — 

2 -
3 - 2 ^ + 2 ^ 

4 - -
5 - +2(3 + 0 

6 + 2 ^ 

7 - - ( 3 + 0 

8 + 2 ^ -

Pert. Answer H 

Table 2.2. Leading log. ontributions to the 0(a'^) part of the fermion S-DE's 

from the 0(a) component of the traverse basis set. 

Thus we have the identities : -

(-<2 - 2<3 + 2<6 + 2^8) = 1 

2Ch + 2(3 + 0^5 + ^Ch - (3 + 0^7 = ^ 

equating powers of ( i n the second equation we then have:-

0 = <7 - ^5, 2<3 + 2<6 = 1 , h+ - 2<8 = 0. 

A t t e m p t i n g to introduce the m i n i m u m number of parameters we see that we can i n 

fact set <7 = 0 = 5̂ = <2 = <3 = *6 = 1/2 and s t i l l satisfy the equations. 

82 



Indeed the equations are most suggestive of this k ind of simplification, this gives 

us: 

which is nothing but (2.21). 

There is of course no 'ipso facto ' reason to set 2̂ 3 5 7 8 ~ leVs us 

wr i te F j . i n the most minimalist f o r m i t is aesthetically very satisfying to see that 

i t gives us the same f o r m that we had from explicit ly calculating F^,. 

2.5e The Vertex (non-perturbative) : 

We have a f o r m for the leading log f o r m of Tj- up to 0(0;). How does this 

help us to obtain this non-perturbative ansatz for F y that was hinted to be the 

result of this chapter? The answer is that we use the perturbative f o r m as a shadow 

of ' the ' non-perturbative answer and t r y to construct the best ansatz we can for 

the non-perturbative answer using such aids as the symmetry of the vertex, 

anal i t ic i ty of physical objects, etc.... We then see whether our ansatz satisfies the 

M . R . constraints on F and S to next-to-leading order to check its validity (at least 

to next-to-leading order). So let us go ansatz bu i ld ing : -

We have to 0(a) i n leading logs:-

Now first of al l we'd like to wri te this i n a sHghtly less obviously perturbative way. 

To do this we remember that the structure of the ansatz can only depend upon F 

and E as they are the only functions left i n qQED. To 0(a) i n leading logs we know 

that 

„2> ^ a , p2 

E(p2) = m 
3 a , p2 
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(2.24) has no t e rm m i n i t and as we expect, f r o m W - T I and M . R . (ie. Z-^ = Z j ) , 

that these functions come in to F i n the f o r m 1 /F and S / F then i t is easy to see 

that we should wri te 

when (2.24) becomes 

r r ( * . r t = i ( ^ - 4 5 ) ) | -

W h i c h certainly looks a lot more non-perturbative than before. The denominator 

A;2 is a perturbative object and so we wish to wri te i t as d(k,p), say, which is non-

perturbat ive. Then : -

We want to find a sensible f o r m for d{k,p) and then we shall be content to call 

(2.26) our ansatz for Fy . 

As 1/F(A;2) — 1/F(p2) and Tg are bo th k,p anti-symmetric and the overall fo rm 

for F y must be k,p symmetric we know tha t : -

( i ) d{k,p) must be k,p symmetric. 

F rom dimensionality of and that F^^ must be dimensionless we know that : -

( i i ) d(k,p) must have dimensions of (momentum)2 and k"^ as k"^ oo. 

F rom the lack of kinematic singularities i n F and F ^ ^ we know tha t : -

( i i i ) d{k,p) must be such that F j . is free of kinematic singularities. 

For Trp to be a sensible physical object we know tha t : -

( iv ) d(k,p) must be an analytic funct ion oi k,p. 

84 



and finally as we believe that Minkowski and EucHdean space-times should be related 

via a W i c k ro ta t ion then:-

(v) d(k,p) should be such that Fy does not change sign under a Wick rotation. 

A n ansatz for d(k,p) which obeys all these requirements is given by : -

dik,p) = . 

I n the massive theory this then satisfies ( i ) , ( i i ) , ( i i i ) (at least for fc2 e 3? which is 

what we want) , ( iv) and (v ) . 

W h a t though about the massless, S = 0, theory? We can hand wave at that, 

after al l is there truely such a th ing as a massless theory? ( I f you beUeve i n a^ 

alr ight , but i f not then S(A;2,Q;) / 0 and no problem). I n a theoretical sense 

there is a big difference between a massless theory, defined as one i n which mass 

= 0 before calculations, and one i n which mass 0 after calculations, the former 

often leading to theories that are too divergent to work w i t h . This question crops 

up frequently i n such things as quark models of hadrons[51]. I n a strict theoretic 

sense we define here the massless theory to be the Umit mass —> 0 of the massive 

theory. Numerically i t makes no odds as the extra pole, when S = 0, from F in the 

fermion equation is finite when we integrate over i t , but i t is an important point to 

understand theoretically and had to be discussed. So we end up w i t h : -

F** = F'^^ + TfL 

where 

T^^(k,p) - 2 ( ^ ( p ) ^ ( p 2 ) ) d(k,p) 

(fc2- p2)2+ (S2(fc2)^ S2(p2))2 
dik,p) = j^^rj2 

(2.27) 

as our ansatz. 

85 



2.6 Checking against Multiplicative Renormalisation : 

I n order to see whether our ansatz stands any chance of being useful we check 

to see whether i t satisfies M . R , to next-to-leading logs for a perturbative expansion 

of F and S. As the ansatz is constructed to satisfy M . R . to 0{a) i n leading logs 

checking next-to-leading logs for al l orders i n a. w i l l be a reasonable in i t i a l test of the 

ansatz, at least i n the perturbative region. From (B.15 and B.16), for a perturbative 

leading log calculation (where fc2,p2 5]2 ^ ^^2^ have tha t : -

0 

ie. 1 = F (p2) + ^ / dk'[e{p'' - k') F{p')^ + eik'^ - p ' ) F ( f c 2 ) g ] 

0 

(2.28) 

and 

Â  

F (p2) An 
0 

1 

J dk^F(k^) 

+ 4 V (̂̂ )̂ F{p 

+ 

4 \F{k^) ' F{p 

4 \Fik^) F{p^) J k^- p^\ " ^ 2 + P )fc2 

i(4^-FP)>(^H^(^^-^\^-^(^^-^)p) 
_ J _ / S ( P ) _ / _ P _ p 2 \ 
P - p2 [F{k^) F ( p 2 ) J 1, ^ ^p2 + P ) p ) 

i f m . ^ E ( p 2 ) w j _ 

2 Urn ^ "^^^2 
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+ 4 \F(k^) F(p2) 

X ( e ( p ' - k ' ) ^ + e(k'-p') 
\ p^ 

fc2_ p2 

ie. S(p2) = mF(p2) + ^ J d k 

0 

^(p2 - 1 s(fc2) f ^ F ( f c 2 ) | ( F ( p 2 ) + F(A:2))' 

+ Hk' - P')^ U F ( k W ) + I ( F(P') + F(k')) S(fc2) 

+ e(p' - k') 
2 f c 2 - p2 

- S(fc2 ) F(fc2 ) ( 2 ^ - f l ) - f S(p2)F(fc2)^^ fc2 

p2j 

+ ^ ( i f c ' - p ' ) 2 Jfc2 - p2 S ( f c W ) ( f 2 + 1 

- i:(k')F(k') ( 2 ^ + 1^+ S(p2)F(fc2)g ' (2.29) 

To check whether M . R . is satisfied we use:-

00 / 2 

n=0 ^ 
00 / 2 

and S ( / ) = ^ a " C , ( l o g " + log 

n-1 r 
A2 

A2 

where Bq — 0 = Dg- Substi tuting these i n to (2.28) we get:-
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°° / 2 2 
^ « M „ l o g " | j + S „ l o g - ^ 
n=0 ^ 

n=0 

ky 

p. A2 
^ ( p ^ - ^ ^ ) ( ^ l o g " ^ + B „ S l o g " - ? , 

,2 

A2 

+ . ( . 2 - , 2 ) ( f ; i o g " ^ + B „ g l o g 1„„n-l P i 
A2 

n=0 A2 

' - ^ ^ ^ l o g " - £ ; - B „ l l o g " ^ 
n+1 

n=0 
4n A2 

to next-to-leading logs. Then equating coefficients of a^ we have:-

Ao= 1. 

Equating coefficients of a^ we have:-

0 = A l o g g + ^ A + M ( l - l o g g ^ , 

equating logs we get:-

Ai = —and 
1 
2" 

Equating coefficients of a^ we have:-

0 = A^log^^+ A^B^log^-'^+ A j , . , l [ l l o g ^ - ' ^ 
A2 47r L2 

,2. 
(2.30) 

0 = - I -
47r V iV 

l / ^ \ _ I / O 
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So leading logs are satisfied to all orders in a . (2.30) also gives us: 

0 = A^B^+ Aj^_-^-j--- A^_^Bj^_y^ 
47r2 ^^-^ ^ ^ - M 7 r i V - l 

N N 
B^ = B , - - - ( N - 2) 

^ BN+2 = \ B , { N + 2 ) - i ( A r + 2)A^ 

= \B^(N+ 2 ) ( i V + 1 ) + i ( i V + 2)iV 

= ^ 5 2 ( i V + 2 ) ( i V + 1)-B^N(N+ 2) 

ie. equation (2.12), the M.R. condition on next-to-leading logs. Thus our ansatz 

satisfies M.R. constraints on F(p^) for next-to-leading logs for all orders in a . 

Repeating this process for S(p^), (2.29), is longwinded in the extreme and of no 

use except for the result, which is that the ansatz satisfies the M.R. constraints on 

E(p^) for next-to-leading logs for all orders in a , with:-

C. = , D i = - 1 and D.= - 3 ^ 
^ 47r' ^ 6 2 9 

Our ansatz appears to be reasonable in the perturbative regime, where we con­

structed it, which isn't really too surprising. This does not, however, mean it is 

necessarily useful in the full non-perturbative space. What we need to do is to in­

vestigate the non-perturbative behaviour of the propagator, using our ansatz. The 

nature of the integrals in the non-perturbative region necessitates the use of a nu­

merical approach. We look at the propagator for the massless case (in the next 

chapter) and for the massive case (in subsequent chapters), where by massless we 

mean that we hold S(j»^) = 0 Vp^ throughout. In the massive case we set the 

current/bare mass (m) = 0 and study only the dynamical mass. 
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-1 -1 

2.1 The S-D.E's for the boson and fermion propagators in Q E D . Curly lines rep­
resent the bosons and non-curly lines represent the fermions. The black dots 
represent fuU ( as opposed to bare) Green's functions. 
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ig. 2.2 The S-D.E's for the fermion propagator in q Q E D . 
Lines and dots are as in fig. 2.1. 

k - p 

"O'OWO'O" + ' O ' O O O W 

'ig. 2.4 The perturbative expansion of T to 0 ( a ) . Lines and dots are as in fig. 2.1. 
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ig. 2.3 The gauge dependance of and coefficients in the leading log. expansion of 
the mass, S(p^), for bare (line 1), Ball-Chiu (line 2) and full (line 3) verticies. 
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C H A P T E R T H R E E 

M A S S L E S S qQED4 

3.1 Introduction : 

We start off our non-perturbative studies by taking a comparative look at the 

bare, minimal Ball-Chiu and fidl ansatze in massless qQED[52]. We do this for two 

main reasons. Firstly in order to look numerically at the massive theory it is easier 

to use the massless case as a stepping stone (we get a handle on F(p'^) before looking 

at F{p^) and S(p^)). Secondly in massless q Q E D the R G equation is very simple 

and so we are able to check whether our ansatz, the full ansatz, satisfies M.R. (ie. 

the R G equation) non-perturbatively. From (2.7) the R G equation for Sp (p^) in 

massless q Q E D is:-

In q Q E D the photon propagator is equal to the bare photon propagator and hence 

Zj^ = 1 = const., a = e^/47r = const, and ( = const, therefore:-

S(e) = 4 = 0 . 

Then (3.1) becomes:-

' d 
7i.(e)) S-^y) = 0. (3.2) 
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In massless q Q E D 

then (3.2) Fj^ ( p V ^ ' ) = A (^^) 

and F (PVA^) = B where 7 = 

(3.3) 

but of course we don't know what 7 is! (A is fixed by the normalisation of the 

renormalised wavefunction, eg A = 1 if F^(/x^) = 1), but we do know that if the 

fidl vertex is valid then the answer it gives for F(p^) should be of this form. When 

we undertake our numerical procedure to find the solution to the S - D E if we use a 

logarithmic mesh for our integral momentum, k, and exterior momentum, p, then 

the mesh points are related by a;,-̂  j = ax,- V i G mesh, x = k"^ or p^, where 

a — const.. Thus if a given ansatz is M.R. then from (3.3) we know that:-

^ = = con.t. (3.4) 

Thus if we use a logarithmic mesh we can plot this ratio from our solution and so 

obtain a graphical guide as to how close to M.R. the solution to a given ansatz is. 

Using a logarithmic mesh is useful in another respect and that is that much of the 

dynamics of the systems occur evenly spaced out in logarithmic momentum space 

rather than in linear momentum space (the dynamics occur in the low momentum 

region). In order to carry out the integrations accurately it is important to use a 

log. mesh. An easy way to view this argument is to remember that the expected 

solution (3.3) is momentum to a power, and in such a case it is always numerically 

more accurate to use a log mesh rather than a Hnear mesh, because while linear 

curves are trivial to handle numerically more structured curves, like 1/(1 — x), can 

often be very tricky. 
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3.2 Numerical methods : 

There are a number of possible methods for numerically solving integral equa­

tions (cf. chapter 2 of ref. [23]), but they are all of the following basic form:-

(1) Take some input data for the function you are trying to solve for. 

(2) Put the input data into the integrals and use the S-DE's to calculate new 

'output' data for the functions. 

(3) Compare the output data to the input data, obtain a and generate an updated 

set of input data. 

This iterative process is then repeated until the goes to zero in a suitable fashion. 

(The term "in a suitable fashion" will be explained later). There is of course a 

problem with this technique and that is that the only measures the percentage 

difference between input and output data sets and not the output to the real solution. 

This is because we obviously don't know the real solution, if we did we wouldn't 

need to try to solve the equations numerically! This problem may not seem to be 

very important but let us use an example to show the potential problem. Consider 

the following example: define 5 ^ = J2n=i is known not to converge, 

— oo, however if we define x% = (^N ~ '^N- l)/'^N X% 0 as N oo, 

which shows the problem of the x^ as described above. However X// —̂  0 in a slow 

fashion, it tends to crawl slowly towards 0 and 5jy drifts across its target space (3?) 

both of which indicate that there is a problem with finding a solution. If we now 

look at T;^ = Z)nLi 1/"^ then we know that this will converge (to ((2) )and then 

X ^ = (Tjy — Tjy_ i)/Tjf —*OasJV—>oo very rapidly and Tj^ exhibits the typical 

behaviour of a series tending towards a finite asymptotic point, where the points 

squash up against some asymptotic wall. This is what was meant by "in a suitable 

fashion" in the above. 

In the work we undertake we shall be looking at more complicated 1-D functions 

with a potentially complex target space. It is quite possible that there will be local 
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minima and other target space topologies that might make finding 'the' solution a 

very complex process. One way to check to see whether we are in a local, rather 

than global, minimum is to nudge the solution and see whether it is returned to 

the same solution or not. Starting the iterative process 1 —> 3 from a significantly 

different initial data set and checking that the final solution is the same as that 

obtained from the first initial data set is also another good method for checking the 

solution. However the process is numerical in nature and hence there is no sure-fire 

way of saying that we have the correct solution. All reasonable checks are made. 

There is another problem that is inherent with numerical methods and that is 

due to numerical accuracy (this has been discussed in great detail in chapter 2 of 

ref. [23] and we shall only sketch out the problem here). We can divide this problem 

into two subsets. Firstly all computers have only a finite amount of accuracy and 

so trivial analytic cancellations that may occur in some regions of the integral will 

not be able to be reproduced numerically. This will be a major problem if the 

cancellations involve poles. In qQED4 we do not have this problem as our angular 

integrals give simple results, but in QED3[23], for example, it is a big problem. 

Secondly we get noise because of the form of our integrals and the fact that we do 

not initially know what the solution is. The way that this comes into our specific case 

is through so called G R A D I E N T terms present in the Ball-Chiu and full ansatze. 

These terms are of the form:-

where X = 1/F or X = Ti/F (in the massless case only the former is present). As 

we do not know the true solution to begin with we get the following problem. For 

close values of A;̂  and any difference we have in X from the true solution will 

be highly enhanced, leading to large errors either as noise (which is easy to deal 

with) or leading to large deformations from the true solution (which is not so easy 

to handle). For example, if the true solutions for X at fc^ = l.OOOlp^ and p^ are 
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1.0002 and 1.0000 respectfully then the gradient term, {X{p^) - X{k'^)) / ( fc^- p^), 

is 2, but if our input solution has an error of 1% on it, eg 1.0102 and 0.9900 when 

the gradient term is 202, it can lead to very large errors in the value of the gradient 

term- in our example upto a factor of about 100. 

In our present work it is the gradient terms that are our biggest problem and 

we have to use a variety of techniques to solve this problem, such as smoothing 

subroutines. The method that we shall use to obtain our solutions is the following: 

we shall use an n x n grid of points {k\, p^) where A;? = p?. For each point 

integrate over the A;̂ 's, using our input data for F (in the massive case S data as 

well), and then use the S - D E for F to compare the output for F at each point p? 

with the input. We write 

1 ^" 

Pi 

and create our new input by putting 

FNEW{P1) = {FIN(P1) + Fouriph) /2-

We take the average of Fjj^ and FQUJ^ in order to increase the stabiUty of our 

process. Our process is similar to Newton's iterative method for finding the roots 

of an equation. 

3.3 The equations : 

We now move on to the section where we shall state the equations that we are to 

solve numerically. We do this for completeness and to make absolutely clear what 

we are actually computing. We work in the Feynman gauge, ^ = 1, as from our 

work in section 2.5c we know that the effects of the transverse part of the vertex 

show up more clearly the larger | ^| becomes. There being no perturbative difference 

in the results in the Landau gauge, ^ = 0, which in this respect is special (more 
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trivial) compared to other gauges. The integral in the S - D E for the bare vertex can 

not be rendered finite by the normal means. So in order to be able to compare our 

different ansatze we do not renormalise any of our S-DE's. This does not affect the 

identity (3.4) as in a massless theory if we have a M.R. object then its dependence 

on will be the same for the renormalised and unrenormalised versions of it, as 

all we have done is replace /i^ by A"̂  in the ratio p^ jii^ and may be change an 

overall normalisation factor (see (3.3)). As we are not renormalising our equations 

the integrals will run over the fixed interval [0, A^] and we rescale our variables by 

1/A^ in order to have the convenience of integrating over the region [0, 1]. From 

Appendix B we then have the following S-DE's: -

3.3a The. bare vertex : 

where r** = 7̂ *, we have (B . IO): -

e { y - x)^ + e ( x - y ) l 
y X 

(3.5) 

3.3b The central kernel [23] : 

where 1/^= 7 ^ we have ( B . l l ) : -

'1+ ^ \ e ( y - x)- + e { x - y ) l (3.6) 

The central kernel is often used as a numerical stepping stone to the minimal Ball-

Chiu vertex as it is simple, has non-perturbative functions, i^, in it and the massless 

case is renormalisable. To obtain the central kernel we have dropped all of the 

gradient terms in the Ball-Chiu vertex and hence we do not have any noise problems 

from them, which makes things alot easier. The solution of the central kernel is then 

used as the initial input for the Ball-Chiu case. 
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3.3c The minimal Ball-Chiu ansatz : 

where T'' = V^^, we have (B.12):-

1 p 

0 ^ 

4 V F(y)J X - y V y x j 
(3.7) 

3.3d r^e ansatz : 

where F ' ' = F ^ ^ ^ j , , where the denominator d{x,y) = (x — y)^/(x -|- y) in the 

massless theory, we have (B.13):-

1 n 

F-\y)= 1+ ^ f d x d{y- x)-^ 9{x - y) 
47ry J y 

F{x)y 
F{y)x 

(3.8) 

We then solve (3.5-3.8) for a range of couplings = 2.0, 1.5, 1.0, 0.5. When we 

undertake our numerical calculations we use a log mesh, as described above. When 

using such a mesh we obviously cannot actually integrate from 0, we in practice 

integrate over [10~^, 1] where A is sufficiently large so that the region [0, 10""̂  

can be safely neglected. In our non-perturbative studies how big shovdd we make 

A ? Well in our perturbative studies of chapter 2 we found that for all the above 

ansatze 

F(y)= 1+ ^ l o g y + Oial) 

in leading logs and we also expect 

n=0 ^ ^ 

in leading logs from M.R. . In some sense then we can view ^ l o g y as our pertur­

bative expansion parameter and in order to make ^ log y of non-perturbative 
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size, ie ^^logy > 1, we need to extend our range of integration down to at 

least y = I Q - n (for — O-̂ ? ^ ~ l ) - order to have the region in which 

^ log y > 1 of a reasonably large enough size in order to be able to introduce 

non-perturbative behaviour we extend the region down to 10-^^. (In practice we 

integrate over [10"!^, 1] and drop the lowest decade in order to remove edge effects). 

We plot the solutions for all the ansatze, for a given ag, on the same graph in 

order to be able to compare them, fig. 3.1-3.4. Curves I , I I , I I I and I V correspond, 

respectively, to the bare, central, Ball-Chiu and ftdl ansatze. We define our equal 

to the average percentage error per point between input and output values of F(y). 

Typical values for ^̂ e then:-

ansatz x' 
Bare 

Central 
Bal l -Chiu 

Full 

0(1 X 10-14) 
0(1 X 10-14) 
0(1 X 10-3) 
0(1 X 10-14) 

Table 3.1. Typical values for the error on the minimisation of solutions 

for various ansatze in massless qQED. 

X^ — 1 X 10-14 corresponds pretty much with the machine accuracy (calculations 

being done in real*8, Fortran). The reason why the X'BC ^° much larger than 

the others is because, as seen from (3.7), it is the only ansatz which has gradient 

terms in the integral of its S - D E and is therefore the only one beset by the problems 

of noise. The smoothing subroutines used cope well with the noise, but getting 

X%c down to machine accuracy is not possible as smoothing subroutines are not 

strictly mathematically defineable, they depend nontrivially on the persona of the 

programmer. 

We then plot the ratio F{y-^ l)/-f'(2/«) ^'^^ ^^^^ ansatz, at a given OJQ , on the 

same graph and compare them fig. 3.5. 

100 



3.4 Comparing the results : 

We start by comparing the solution curves in fig. 3.1-3.4. We can see that as ex­

pected, from the form of the S-DE's , the solutions all decrease monotonically as the 

momentum decreases. All the solutions, for a given a , go to the same point as y —̂  1, 

p^ —> A^, this is not surprising as all the vertices give 1 -|- | | log(p^/A^) -|- O(a^) 

in the perturbative, high p^ region. The bare solution (curve I) decreases only 

very slowly. The central solution (II) decreases only slightly more rapidly than the 

bare one (being about a factor of 2 smaller than (I) at y = 10~^^ V a^). This 

is not surprising due to the similarity of the central kernal and the bare ansatz. 

What is a surprise though is just how close the full solution, (IV), is to the central 

one being only a factor of between 5 and 10 smaller than the central solution at 

y = 10~^^ V Q;Q. On these l o g F / l o g y plots a M.R. solution (3.3) will give a 

straight line. All of the curves (I), (II) and (III) appear to be fairly straight, which 

is a good start towards M.R. solutions. We know that (I) cannot be M.R. (as the 

S - D E for the bare vertex is not renormalisable). The Ball-Chiu solution, (HI), does 

not look too good, being so many orders of magnitude smaller than the rest and 

obviously not being a straight line. Things may not be as bad as they seem though: 

For high energies (y ~ 1) the curve is pretty straight, it then undergoes a region 

of high curvature and at low energy it is again pretty straight. The reason why 

it gets so small is that during the region of high curvature it gets pointed sharply 

downwards. 

We have commented on the general features of the solution curves, it is now 

time to look at the more important graphs of F(y,.,. i ) / F ( y , ) , which tell us about 

the M.R. of the solutions (See fig. 3.5). The curve for the bare ansatz is clearly not 

constant and indeed is never flat in any region of momentum space. The curve for 

the central kernel does not vary quite so much, but still is never flat. Clearly these 

two ansatze are not M.R.. The Ball-Chiu curve however is really quite interesting. 
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It starts off by being no worse than the above two curves. This is not surprising 

as in the perturbative region F ^ ^ ^bare/central" t^en undergoes a period 

of rapid change, corresponding to the highly curved region of its F{p^) solution 

curve, before becoming flat at low energies (to 1 part in 10^ ). This tells us that 

for high energies the minimal Ball-Chiu ansatz gives us a solution as good as any 

perturbative type ansatz, whilst for low energies it gives us M.R. solutions. However, 

in the intermediate region it has some problems. We can show formally that for low 

momentum, y, M.R. solutions, Ay^, are supported by the BaU-Chiu S - D E (by 

carrying out a consistency check on it). This involves substituting the form, Ay^, 

for F(x or y) into the R H S of equation (3.7) and checking that the result is consistent 

with the L H S , y~^/A. This method, however, does not give us the values of A or 

B, just whether such solutions can be supported. It is perhaps interesting to note 

that the value of the ratio F{y^^ l)/-^(yi) which it becomes constant is the same 

for a wide range of (constant to 3 parts in 10^ ). Indeed for < 0.9, where 

a constant ratio is not reached before y — lO-i^, we find that the ratio curves are 

undergoing behaviour which suggests very strongly that the constant value of the 

ratio will be the same as for those curves for > 0.9. (In the Ball-Chiu case 

we have a lot of intermediate solution curves for between 0.5, 1.0, 1.5, 2.0 , in 

fact every 0.1 step plus ag = 0.55, this is because when dealing with an equation 

which suffers from noise it was found necessary to use as initial input a solution for 

a nearby solution in parameter space, Q!Q here. In this case varying ag by steps of 

0.1 was as large as we could do and still use the previous solution as a useful initial 

input). We then have that in the flat region:-

V F{yi) ) \ Vi 

Then with our mesh size of 

) = loi/̂ o 
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and the observation that 

( ^ F ( y )̂ 0 " 

in this region gives us:-

B = 0.751910(7). 

This is independent of a^, but not necessarily independent of We do not need to 

examine the effect on B of varying ( because:-

The curve for the ful l ansatz is flat to machine accuracy. We have a M.R. 

solution-even non-perturbatively! Indeed looking at (3.8) we can see that it is a 

very simple looking equation. One might even be tempted to substitute in a M.R. 

form, (3.3), to see what happens. If we substitute in F(w) = Bw^F/2 j^to equation 

(3.8) we get:-

B-'y-^ = 1 + 
47r 2 y y 

if 'y = 0 =^ B ^ constant setup, 

if 7 ^ 0 

B - i y - ^ = 1 + ^ 
47r 

1 1 _^ 1 
-^—y ^ - -
2 7^ 7 

7 B= where K =^ 
1 + i K ' 1+ IK' 47r 

For the renormalised solution, F ^ , we normalise such that - F R ( I ) = 1, in which case 

we have that:- m (3.9) 

Now while the full ansatz has a complicated tensor structure, (2.27), in the massless 
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case under the integral a lot of cancellation occurs, giving us the simple form:-

(3.10) 

Now by looking at the S - D E for the bare ansatz, (3.5), we can easily see that we 

can get equation (3.10) by using instead the simple effective ansatz:-

re'fFective( '̂ P) = z.r L „ .M- (3-11) F[max(A;2, p2)]' 

3.5 Conclusions 

In massless q Q E D the bare and central ansatze do not give M.R. solutions. The 

minimal Ball-Chiu ansatz gives solutions that are M.R. for low energies, but no 

where else. The full ansatz gives solutions which are M.R. everywhere:-

m 
1 + 

If we assume this solution to be the 'real' one (rather than just a solution which 

happens to be M.R. ) then the Ball-Chiu solutions are many orders of magnitude 

too small in the low (y ~ < 10-^) energy region. 

We have checked our ansatz F ^ ^ ; ^ j ' in massless q Q E D , where it is good. We 

now have to proceed to check it in massive q Q E D , which is what we shall do in the 

next chapter. 
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Fig. 3.1 The solution curves for F{y) using the bare(I), central ( I I ) , Ball-Chiu (III) and 
fu l l ( IV) ansatie, in the Feynman gauge (^ = 1) with ag = 2.0. 
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Fig. 3.2 As in f ig. 3.1 but with = 1.5 
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Fig. 3.3 As in fig. 3.1 but with ag = 1.0 
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Fig. 3.4 As in fig. 3.1 but with = 0-5 
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Fig. 3.5 The ratio of nextdoor points, F(y,+i)/F(7/,) , for the solution F{y) in the Feyn-
man gauge with = 1.0 (ie. using data from fig. 3.3). 
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C H A P T E R F O U R 

M A S S I V E qQED4 

4.1 Introduction : 

We now extend our non-perturbative studies by looking at the fuU ansatz in 

massive qQED4. However before actually looking at the case in hand we first of all 

undertake some useful training exercises. 

4.2 The bare vertex : 

We look at the S-DE's for the bare vertex. Now we know that the bare ver­

tex ansatz only obeys the W - T I , and M.R., in the Landau (^ = 0) gauge, when 

F(p'^) = 1 Vp^. In the massless case of chapter 3 we didn't renormalise the S-DE 

for F(p'^) for the various ansatze and so mathematically we were formally able to 

look at the equations with ^ = 1 (Feynman gauge). We did this because the form 

expected for a M.R. solution was simple and only one function was being studied 

(the renormalised and unrenormalised functions being related by p^/fi^ —> p^/A^). 

Setting ^ = 0 would have lead to F j „ , ( p 2 ) = 1 = F,^^^,Jp^) = F;„„(p2) Vp2, by 

inspection of (3.5-3.7) (a trivial and unenlightening study!). However in the mas­

sive case we cannot solve the R-GEs to give functional forms for F(p^) and S(p^). 

This is because the R-GEs are perturbative equations whilst the S(p^) function we 

are studying is purely due to non-perturbative effects. Hence we do not know how 

to relate the non-renormahsed functions to the renormalised ones. Thus studying 

the unrenormalised equations is, in this case, pointless. As the bare ansatz is only 

renormalisable in the Landau gauge we must study i t there, where F(p^) = 1 V p^. 

The physical mass, m, occurs when m? = S^(m^). This, however, is in 

Minkowski space-time. When we Wick rotate into Euclidean space-time (where 
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we solve our equations) the physical mass obviously occurs at vn? — —E^(m^). The 

evaluation of this physical mass would require an analytic continuation of the result 

of the S-DE to < 0. To avoid this, we instead define a Euclidean mass, PQ, which 

is given by pi = 11^{PQ), which is standard. I t is this Euclidean mass that we shall 

refer to as the mass throughout the rest of this chapter. I t is expected to be of the 

same order of magnitude as the physical mass. 

4.2a The bare ansatz with finite cutoff: 

At present a conamon way of renormalising the S-DE for the bare ansatz is the 

standard cut-off method used for instance by Miransky et. al. [36,37] in which the 

cutoff in the S-DE is left finite:-

(4.1) 

This introduces a scale, A^, into the theory and so the dynamical mass must go 

as I)(f»^) ~ A. In order to renormalise the theory Miransky et. al. make the bare 

coupling aQ depend on A^ in a specific way, as described in section 2.3 and then 

m dyn - 4Aexp 
- 0 

In our numerical calculations we change to dimensionless variables y and S{y), where 

p2 — \2y Il(p^) = A5(y) . The mass is defined to be the point pg at which 

PQ — S(/)o) and thus we get:-

1/2 _ 

the 'dimensionless' mass. The S-DE with these dimensionless variables is:-

S{y) = 
3a 

47r 

dx S{x) 

+ S\x) 
x)- + 9{x 

y 
- y) (4.2) 
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and from Miransky et. al. we expect the dimensionless mass to vary with a as:-

- 0 
5(yo) = 4exp (4.3) 

We then undertake a numerical study of (4.2) in order to see how well we can cope 

with working with a theory with a critical point, a^, in i t and to see what numerical 

behaviour signals the onset of i t . We do this as a training exercise in case the ful l 

ansatz has a critical point in its mass solutions (We work on a log. mesh as before). 

The results for a variety of a are shown in fig. 4.1.. 

By looking at the 5(y) curves for different values of a we can see that the 

momentum at which the function ceases to be flat and starts to fall off decreases as 

{a — a^ ) decreases, indeed for o; = 1.065 and 1.060 we had to increase the range of 

integration from [10~^, 1] with A= 20 to A = 26 and A = 28 respectively. This 

preludes the collapse of the solution function at, and below, a = a^. 

As we took a —> Op the machine time needed to obtain convergence increased 

rapidly. Also the difference between doing the same calculations with different 

numbers of points per decade (ppd) on the mesh got to such a high degree that for 

the last few points i t was necessary to extrapolate the answer by calculating i t with 

three successive degrees of courseness for the mesh which had the number of ppd 

in each successive mesh of a constant ratio. I t was then assumed that the change 

in ^ ( J / Q ) was wholly due to the errors in the Simpson's Rule integration technique 

used and not to any great extent by further wanderings of the S{y) function over 

the solution space. Hence we were able to extrapolate to the answer for an infinite 

number of ppd, S^{yQ)^ by taking the answers for the three successive mesh sizes 

as the beginning of a geometric progression (fig. 4.2. is a plot of ^^^(yo) vs. Og). 

We tabulate the values for a = 1.080, 1.075, 1.070, 1.065 and 1.060 in table 4.1.. 
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Q: ^ooiyo) 
1.080 0.9737 X 10-'^ 
1.075 0.2091 X 10-'^ 
1.070 0.2769 X 10-8 
1.065 0.1618 X 10-9 
1.060 0.1912 X 1 0 - " 

Table 4.1. The value for the dimensionless mass (extrapolated to an 

infinite number of points per decade) for a variety of values of a. 

We then carried out a numerical fit to the 5(yo) solutions using a function with 

the same form as (4.3) viz:-

'^'(yo) = ^exp 
-B 

remembering that (4.3) is valid only for •y/ag/'^c ^ *^ 1- CERN h-

brary minimising package MINUIT and minimised over the solutions for the four val­

ues ag = 1.080, 1.075, 1.070, 1.070 and 1.065 . We did not minimise to = 1.060 

as the change between its three mesh solutions were large and so potentially there 

could be a non-negligble error in the extrapolation to S^{PQ). For ag = 1.080 

y/aQ/a^ — 1 = 0.1770. Of course there is the problem of whether this is <C 1? We 

are limited somewhat by the solutions we have to hand but its not unreasonable to 

say that 0.1770 < 1. 

The solution to the minimisation that we get is:-

A = 4.4295 

B = 3.1057 = 0.988587r 

C = 0.95465 = 0.99971-
TT 

with = 0.2612 x 10"^ percent per point. 

The values of B and C agree pretty well with those in refs. [36,37], B = -K 

and C = 3/7r. The value for A does not agree so well, A = 4 in refs. [36,37]. 
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This does not mean that the results are incompatible just that any errors in the 

extrapolation tend to show up more in A than in B or C. This is because being 

in the exponential, the errors on B and C are naturally damped as, for example, 

a ten percent error on ^(yo) is equivalent to an error of log ( l . l ) on the exponent. 

When S^PQ) W 1 X 10~^ the central value of the exponent is ~ —16 and the error 

on the exponent is only about 0.6 percent. In this work we cover a change of S'(yo) 

of 11 orders of magnitude. This is a lot better than the lattice calculations of refs. 

[19-22] which can only cover a change of 5(yo) of at best 2 — 3 orders of magnitude. 

Thus we are able to follow 5(yo) a lot closer to = than usual and hence get 

a value for that is only 0.03 percent away from the analytic value. 

4.2b The bare ansatz with infinite cutoff: 

The S-DE is now:-

oo 
rfA;2S(A;2) 

o{p' - k')^ + e{k' - p2) (4.4) 

One might naively expect that in the limit A^ —> oo equation (4.1) gives the same 

solution as (4.4). However, this is NOT the case! System (4.1) and (4.4) have 

COMPLETELY DIFFERENT PHYSICS [53]. (4.1) has a critical point, (4.4) does 

not have a critical point. The reason for this can be seen in two ways:-

Firstly (4.4) has scale invariance, ie. we can take the transformation:-

S(p2) -> {S(p2) : !:(AV) = AS(p2) , A G 5R} 

in a consistent fashion. Whereas in (4.1) A^ sets the scale and there is NO scale 

invariance. Thus in (4.1) we have a critical point where for ag < there is different 

physics than for > , a phase change. In (4.4) , due to the scale invariance, 

i f II(/>^) has a certain behaviour at a given a i t must have the same behaviour Va 

and so we can't have a critical point 
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Secondly the U.V. boundary condition of (4.1) is:-

,as(p2) 
,2' = 0 (4.5) 

p2= A2 
dp 

and of (4.4) is:-

- 0. (4.6) 
p2= A2 

In (4.5) we want II(p^) to cross the zero axis at a finite A2, a similar set up to a 

damped oscillator, which leads to sine type solutions having zero solutions for other 

p^ > A2. In (4.6) we want S(p2) to meet the zero axis only at infinity, like for an 

over-damped oscillator, which leads to sink type solutions that have no further zeros. 

The sine -like solutions of (4.5) lead to a A2 independent critical point = n/3 

and for ag > â , the further zeros lead to bound Cooper pairs of electrons. Whereas 

the sinh-like solutions of (4.6) lead to a continuous set of solutions. 

Because i t is a simple set up with F{p^) = 1 Vp^, S(p2) unknown (and so a 

good training exercise for the fu l l vertex where both F(p^) and S(p2) are unknown) 

and as a matter of pure interest we set about solving (4.4) numerically. 

As (4.4) is scale invariant there is an infinite degeneracy in the solution for S(p^) 

(via the relationship E(A2p2) = \'Ei(p^), VA 6 3? ). Quite obviously a computer will 

not be able to cope with this sort of problem. To tackle this, after each iteration we 

rescale our output for ^{p^) to some predetermined value, S(.Qj,gt(X2) say. This then 

means that we only ask the computer to solve for one of the infinitely degenerate 

solutions. Now by putting in forms for S into the RHS of (4.4) and seeing if the 

results are consistent with the LHS we can tell that the solution for S(p^) should be 

constant for small p2 and die off for large p2. The fact that S(p^) ^ const., for small 

p^, suggests that a sensible value to rescale to is Sj.Qj,gt(P^ = 0). What we do is to 

norinalise S(p2) = 1 x 10"^ for the lowest n̂ ĝ j points in our region of intergration 

(we vary nf^^^ in order to make sure that our solution is independent of i t ) . We then 
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take the output, S, from our integration and by comparing this to our input over 

the first nflat/-^ points we can calculate A, as:-

^p') ^ 1 S(PVA2) _ 1 
S(p2) A S(p2) A-

iV is chosen so that we are comfortably in the momentum region where we have that 

S(p2/A2) = E(/>2) = 1 X 10~^. We then use the calculated value of A to rescale the 

whole of the output values, S, back to the solution with S(0) = 1 x 10~^. Since 

S(p2) is flat for many decades of this simplifies the rescaling and means that we 

can take the average of A over a number of points, hence reducing any numerical 

instabilities. This is the new analytic difficulty that we learn to overcome by using 

(4.4) as a training exercise. I t would seem a little unfair i f we didn't also run into 

a new numerical problem that we had to overcome, and indeed we do run into one! 

The new numerical problem is another aspect of the age old computer problem of 

finite memory space. This time we have the problem that we integrate up to infinity 

in (4.4), a feet that we can not emulate on the computer, which leads to the following 

problem: 

I f we write:-

0 
A;2+ E2(fc2) 6ip' - k^)% + dik'' - p2) 

pi 

where X"^ is large enough so that p2 > S2(p2) and S(;)2) ^ A(p2/^2)-^ (for g ŝe 

we absorb {n^)~^ into A). Then:-

3a f dk' A (fc2)-^ 3a A 

X2 

A and /3 are calculated a few decades away from the upper l imit of the integration 

region, to avoid edge effects, and then used to calculate A.R which is added to all 
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points. The problem is then that i t is easier to minimise to a flat fine and thus 

the minimisation process makes ^ —> 0. AR then swamps out the rest of the 

integral and due to our rescaling mentioned previously we end up with the flat 

line S(p^) = 1 x 10~^ Vp2. Why is this due to the finite size of the machine? 

Well the problem is that our region of integration is a finite window on the infinite 

region we should really be integrating over and what /3 ^ 0 has the effect of 

doing is just to shift this window down to cover only a low momentum region where 

S (p2)= 1 x 1 0 - 3 . 

So what can we do to solve this? Well by looking at (4.4) and doing a consistency 

check for large p^ we know that solutions of the form S(/>^) oc {p"^)'^ are supported 

only when 0 < /3 < 1. From condensate theory we expect /3 = 1. Thus what we do 

is to hold /3 = 1 fixed and then minimise. This might well give largish edge effects 

near p^ — X^, but as 13 = 1 is most certainly the correct order of magnitude for P 

any errors will be negligible more than two decades away from the top edge of our 

integration region and after we have calculated the solution we discard the top two 

decades, which have these edge effects in them. 

We plot the graphs of II(p^) for a range of values of ag in fig. 4.3.. As can be 

seen they all have similar behaviour and there is no evidence for a critical point 

(this is as expected). We then calculated the value of pg = Il(pg) and a hst of these 

appear in table 4.2. We also plot S(pg) vs. ag in fig.4.4., which cleaxly shows that 

there is no critical coupling point^a^ (compare to fig. 4.2. where there is a critical 

coupling point). 
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a S(Po) 
2.00 0.8327 X 10--3 

1.75 0.8534 X 10--3 

1.50 0.8751 X 10--3 

1.30 0.8931 X 10--3 

1.10 0.9115 X 10--3 

1.05 0.9161 X 10--3 

1.00 0.9208 X 10--3 

0.90 0.9302 X 10--3 

0.70 0.9490 X 10--3 

0.50 0.9674 X 10" -3 

Table 4.2. The mass for a range of values of a for the bare vertex and infinite cut-off. 

4.3 The full ansatz : 

4,3a The equations : 

Finally we arrive at the main point of this chapter -the numerical study of the 

S-DE's for the fu l l ansatz, (2.27), for the vertex in a massive theory. Now we are in 

qQED, so as we have stated before the relationship between the renormalised and 

unrenormalised Green's functions are:-

- ( ^ ) = - 2 - ^ ; ( ^ ) . ( g ) 

r^(p,fc,/x) = Zi(Ax,A) r ' ' (p,fc,A) 

as Z i = Z2 from W - T I . So we can see that FR{P^/H^) = Z^\nyA.'^)F{p'^/A.^) as 

F is linearly dependent on the propagator (0 | Tp(p | 0). Z^in^/A^) is regulated by 

the cut-off A2 because i t is divergent - i n the perturbative region logarithmically so. 

The next question then is how do we renormalise the mass function 'S(p^/A'^)? As 

the bare mass is zero the Z factor for S is a bit different in that i t is a finite constant 

and so doesn't need to be regulated. (This stems from there being no mass fields in 
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the Lagrangian):-

p2 f j } p2 

Hence during the regularisation phase we can normalise Z^^^^^^{y?'/h?) = 1 giving 

us 

The renormalisation of the S-DE's can then occur giving us the finite equations 

(B.16 and B.17 appendix B ) : -

FR{P^) ~ 47r 7 P -f E2(A;2)'^'' AirJ P + S2(fc2)'^*^ '^ V^(p2) 

0 
and 

0 0 
oo 

gg / dp Fj,(P) 
4irJ P + S 2 ( P ) F ^ ( p 2 ) V • ^ 

dP 
P+ S2(A;2) 

0 

J(Ar2,p2)+ S(p2)/(fe2,p2) (4.8) 

where / and J are defined in appendix B, (B.14 and B.15). In them only appears 

in ratio (eg. Fj,{P)/Fj,{p')). 

4.3b Gauge invariance : 

Before we embark upon explaining how we solved the above equations numer­

ically, its important for us to be clear in our minds what are the gauge invariant 

objects for our theory ie. for the fermion propagator. This is important as it makes 

our tactics understandable and maybe even logical. The main benefit is that i t i l lu­

minates a sensible path to a gauge invariant renormalisation of the theory, after all 

i t would be silly to solve the equations using a non-gauge invariant renormalisation 

scheme and then compare the objects we believe to be gauge invariant! Anyway, to 

achieve a gauge invariant renormalisation scheme we must start off by studying the 

theory to understand its gauge invariant objects. 
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In fu l l QED the gauge invariant objects of the fermion are:-

1) the fermion mass: PQ = E(p^) (strictly i t is the physical mass rather than the 

Euclidean one). 

2) the fermion coupling: e ĵ = Z^^e /Z j = Zl^'^e 

(ie. the mass and charge on shell are physical objects therefore gauge independent). 

In qQED 2) becomes trivial and so we are left with the gauge invariant object:-

1) the fermion mass: PQ = S(PQ) 

What about Fl How does that behave? Well, from 1) in qQED (and QED) the 

natural gauge invariant point to renormalise Fj^ at is p^ = S(po)j at which point we 

define FJI{PQ,() — J some constant. We point out an important fact here and that 

is that in (4.7 and 4.8) Fji only appears in ratio and therefore what we are really 

determining is NOT Fj^{p^,i) but Fji(p^,()/FQ which means that when we find a 

solution for Fj^ip^O from (4.7) then {Fj^ip^O • Fnip'^O = AF^iP^O , ^ ^ 3?} 

is also a solution as FJ^/FQ -» FJ^/FQ = AFJ^/AFQ = FJI/FQ, we shall return to 

this later. So what we want to do is to renormalise the theories at pg = S(po) 

which point we shall choose FJ^(PQ,^) — 1, as is conventional. 

4.3c Numerical tactics : 

Now the renormalisation just put forward is what we should use. However, i t 

doesn't lend itself to easy minimisation. This is because even though we can, in 

principle, fix the scale of the S function (as (4.8) is scale invariant) by choosing 

a mesh point p2 at which we make PQ = Il(po) we don't know whether this is a 

good point, given the region [lO""^, 10^] that we are integrating over. We could, for 

instance, accidently choose p^ such that the solution doesn't start to die off before 

10^, making the A.R (section 4.2) calculation impossible, or such that the solution 

doesn't flatten off by the time we get down to lO""^, making a sensible solution 

impossible to find (This assumes that E(p2) has the same sort of form as i t does for 

^Bare infinite cut off ) . We can of course just change our region of integration, 
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but there are other problems as well. An important one is that i f we define pg we 

don't know what value, Eg, I)(p^) will have when i t becomes constant for low p^. 

I t is important to know Eg in order to damp the noise in the minimisation routine. 

This is because when a compHcated integrand gives a solution that is constant for a 

large number of decades, mesh (lattice) waves tend to build up along this constant 

region which quickly wreck the minimisation. I t is better to minimise by fixing Eg 

so that we can put in damping algorithms. This may seem to preclude any hope of 

using a gauge invariant renormalisation scheme, because how do we know how to 

vary Eg from gauge to gauge, but in fact i t is possible to incorparate the two by 

minimising in two steps and this is what we shall now outline. 

So for a given coupling a, say, we start off in a gauge ^ = (say { = 1), we fix 

Eg = 1 X IQ-^ and integrate over a suitable range ( found to be [10-^^, 10^]). As we 

don't yet know what pg is we renormalise such that F(p2 = 1) = 1. We solve the 

equations iteratively then calculate what Pg(^i) is, add this in as a new mesh point 

and rescale F(p^) such that i^(pg) = 1 (we do this by using the transformation 

F (p2) —> F(p^) = F{P^)/F{PI) which we can do as we are really solving (4.7) for 

F(P^)/FQ, see section 4.36). We then move to a different gauge ^ = 2̂ i^^Y ( = 0)? 

fix Eg = 1 X 10-3 p(^p2 — — I and solve. We then found that Po(^2) 

very close to Pg(^i) and so i t was easy to add Pg(^i) to the mesh and resolve with 

renormalisations E(po(^i)) = Po(^i) ^iP^ = 1) = 1 (the difference between 

Poi^i) Poi^i) renormalised solutions, for ( = were so close that noise didn't 

have a chance to build up). We then rescaled F(p2) so that i^(pg(^i)) = 1. 

Hence we have solved the equations, for a given coupling a, using the required 

renormalisation:-

pg = E(p2) and Fipl) = 1 

where pg is the gauge independent, as required. We fix the scale for S(p'^) by saying 

that pg is such that Eg(^ = 1) = 1 x 10-^ for arbitary coupUng ag. We then solve 

119 



the equations (4.7 and 4.8) (with ^ = 1 and 0) for a range of ag-

When we solve we shall use all the normal smoothing algorithms that we have 

been using and discussing throughout this thesis. We also have the same problem 

as in section 4.26 in calculating AR with S ~ A{p'^)~^ where ^ ^ 0 in the min­

imisation. We again get around this by fixing /3 = 1, however this time the errors 

introduced by this are even smaller as (X^)~^A/l3 is not the only term present. We 

now choose big enough so that not only does E ~ A{p'^)~^ but F ~ C{p^Y ^ 

well (we know that F wil l have this form for large p^ because as p2 oo, S —> 0 

quickly and so F has the form that it would have in a massless theory, which we 

have calculated in section 3.4). Wi th these forms i t is found that:-

AR= ^ 
47r 

3A(p2)i- ^(^2)^- ^ 3A(p2)i- /^(x2)^- 1 M r x 2 r ^ ' 
2{S - p - I) 2 ( 5 - 1 ) ' 

In table 4.3 we list Pg(^i) and Pg(̂ 2) ^'^^ ̂  range of ag. The reason that we fist 

PQHT) ^ w^ll t ° show just how close i t is to Pg(^i) for the whole range of ag. 

This then gives us confidence that our theory has a high degree of intrinsic gauge 

invariance. We plot solution graphs for some values of ag in fig. 4.5.-4.8. for and 

2̂ renormalised at Pg(^i) (it is noticable just how close the entire solution E^ (̂p2) 

is to E^ (̂p2) for each given ag). Also plotted is Po(^i) "'o 

that there is no critical point a^. 
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Q: Po(^2) 

2.00 0.8957 X 10--3 0.21 X 10--1 0.8887 X 10--3 0.15 X 10-•1 

1.75 0.9046 X 10--3 0.10 X 10--1 0.8991 X 10--3 0.21 X 10-•1 

1.50 0.9132 X 10--3 0.16 X 10--1 0.9104 X 10--3 0.10 X 10--1 

1.30 0.9230 X 10--3 0.76 X 10--2 0.9202 X 10--3 0.12 X 10-•1 

1.10 0.9333 X 10--3 0.26 X 10--2 0.9310 X 10--3 0.28 X 10-•2 

1.00 0.9389 X 10--3 0.35 X 10--4 0.9368 X 10--3 0.48 X 10-•5 

0.90 0.9448 X 10--3 0.74 X 10--3 0.9429 X 10--3 0.43 X 10--3 

0.70 0.9576 X 10--3 0.33 X 10--3 0.9560 X 10--3 0.80 X 10--3 

0.50 0.9715 X 10--3 0.92 X 10--5 0.9702 X 10--3 0.36 X 10- 6 

Table 4 . 3 . The mass for = 1 and 2̂ — ^ ^ range of a, 

with normalisation EQ = 1 x 10~^ in all cases. 

4.3d Fitting functional forms to the solutions : 

Our solutions for F and S are obtained by using an iterative minimisation 

process over a number of points. This gives us good solutions, but it would be nice 

if we could write them in some simple functional form and this is what we shall 

attempt in this section. 

4.3d(i) The F{p^) function : 

What we do here is to look at the solution graphs for F{p'^) for ^ = 1 and ^ = 0 

for a given and see if we can come up with a good functional form for F{p^). 

Looking at F{p^) for ^ = 1 we note that:-

1) for large p"^ F{p'^) oc {p'^y, indeed by comparing to solutions of F in the massless 

case we can see that:-

K 
7 where K = (4.9) 

1 + iK 

just as in the massless case. This is not surprising as for large p ,̂ Ti{p'^) has died 

off and so has very Httle effect in the S-DE. 
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2) for small p ,̂ F{p^) = const.. 

3) from our renormalisation F(PQ) = 1. 

In order to combine 1) and 2) we could use some form like F{p^) oc (D + p^y 

where D (with dimensions of momentum^) is a constant (like S^(/)Q)) or is some 

function that is constant when < D(p^) (like Il^(p^) for example). To satisfy 3) 

we can write as:-

P(r>')o. (4.10) 

where E has dimensions of momentum^, is such that at E = D + PQ and does 

not cause the function to violate 1) or 2). So two possible forms are (4.10) with 

D = I : \ P I ) , E = 2S2(p2) and D = E2(p2), E = 2i:\pl). 

Looking at F{p^) for ^ = 0 (when 7 = 0) in figs.4.5-4.8, we note that the 

function only varies by about 2 percent over the whole range of p^. This is not 

surprising as when we set ^ = 0 all we have left in the integrand of the F S-DE 

are objects that are premultiplied by E^, ie small totally non-perturbative objects. 

The solution looks like a one dimensional soliton and so a function of the form 

F(p2) = (1 + Xp'^)j{Y + Zp2) is needed. We want F{pl) = 1 and so we can then 

write:-
„2 1 + A ( 2 1 - 1) 

ir (p2)= )lo (4.11) 

By using a fitting routine, such as MINUIT, we find that (4.11) is a good function 

to fit to the solution. 

Now we want to use a general -F'(p )̂ that will work for all values of ^, in particular 

^ = 1 and ^ = 0. As -F'(p )̂ for ^ = 0 only varies by ~ 2 percent over the whole 

range of and is centered about 1, multiplying (4.10) by (4.11) wiU have very little 
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effect on the solution for ^ = 1. So we guess a general form for F of: 

1 + 5 ( 2 ^ - 1) V2S2(p2) 

where we fit A and B using the ^ = 0 data, as its more sensitive there, and see 

what D should be from the ^ = 1 data. It turns out that the best form for D is 

S2(p2) when we get a very good fit. Indeed it is encouraging to note that if we drop 

the prefactor for ^ = 1 and use only ((^^(p^) + p'^)/2'L^{pl)y we get a worse fit 

than if we use the prefactor fitted to ^ = 0 data! So a simple general functional 

form for F{p'^) is:-

1 + ^ ( f e - 1) / S V ) + F 

1 + ^ - 1 ) 

, 2 \ T 

2S2(p2) 

where 

7 — ^ with K = ^ . 
1 + kK 47r 

(4.12) 

In table 4.4 we give a list of A and B for given coupUngs as well as the x"^ for these 

functional forms compared to the solutions for ^ = 0 and ( = 1. 

a A B 

2.00 0.35682 0.33988 0.79 X 10--3 0.15 X 10" •1 

1.75 0.36302 0.34948 0.37 X 10--3 0.43 X 10" -2 

1.50 0.36451 0.35426 0.13 X 10--3 0.46 X 10--2 

1.30 0.36249 0.35467 0.54 X 10--4 0.36 X 10--2 

1.10 0.35243 0.34682 0.19 X 10" -4 0.77 X 10--2 

1.00 0.34543 0.34080 0.10 X 10" -4 0.80 X 10--2 

0.90 0.33868 0.33494 0.51 X 10--5 0.96 X 10--3 

0.70 0.32296 0.32074 0.76 X 10" -6 0.11 X 10--1 

0.50 0.27806 0.27703 0.65 X 10" -7 0.10 X 10--1 

Table 4 . 4 . The values for A and B in (4.12) after minimisation to ^ = 0 data 

and the x '̂g for the fits to ^ = 0 and ^ = 1 data. 
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4.3d(ii) The function : 

By looking at the graphs for the solutions of S(p^) we see that S has pretty much 

the same form regardless of a or ^. The question then is can we find a function that 

has this form? We shall try the generic form:-

/ = Tank + 1 

p2 + S2(p2)]-1 + [p2+ S2(p2) " + 1 

1 + E2(p2)]2-

where p^ is taken to be scaled by a momentum large compared to PQ. Why this 

form? Well for p2 < / ^ 2, due to '^^(PQ) being small (ie. we have that below 

Po E = constant). For p2 _> oo I ~ 2/p'* (ie. inverse power behaviour). Now 

obviously / = 2 for p2 < p2 jg large and J ~ 1/p^ p"^ ^ oo is probably to 

steep a decay, but we have the general feel of what Il(p^) is. The next step is to 

make it more sophisticated, so let's try:-

Tanh ( — -\og{p'+ S2(p2))+ log A + 1 

where A"^ helps set the point at which the constant value region ends, l / B sets the 

power law behaviour as p2 oo and C sets the constant value of Il(p^) as p2 0. 

When we minimise this we get a pretty good result. However, it is apparent that 

for p2 _ > C O the E solution has a slight convex curve to it, rather than being a 

pure power law. To rectify this we premultiply the log(p2 + S2(p2)) piece by Y 

which varies slowly with p^ in such a way as only to affect the power law decay 

region. After looking at how ratios of next door points behaved we decided to use 

Y = 1 + Dlog [ (p2 + E2(p2))/2p2 ]. Thus the final form we used was:-

Tank 
B 

Flog(p^+ S2(p2))+ log A + 1 
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where 

Y= l + D\og 
2pl 

(4.13) 

This gave us good minimisation results which are presented in table 4.5. The factor 

Y should not be regarded as physically significant. 

a A B C D x' 
2.00 1 0.7816 X 10--3 3.698 1.186 X 10--3 1.352 X 10--2 0.62 X 10--2 

1.75 1 0.9342 X 10--3 3.876 1.065 X 10--3 1.353 X 10--2 0.95 X 10--2 

1.50 1 1.133 X 10--3 4.087 0.9654 X 10--3 1.347 X 10--2 1.6 X 10--2 

1.30 1 1.358 X 10--3 4.293 0.8959 X 10--3 1.349 X 10--2 2.7 X 10--2 

1.10 1 1.723 X 10--3 4.533 0.8252 X 10--3 1.297 X 10--2 3.9 X 10--2 

1.00 1 1.968 X 10--3 4.670 0.7950 X 10--3 1.266 X 10--2 4.4 X 10--2 

0.90 1 2.328 X 10--3 4.822 0.7611 X 10--3 1.194 X 10--2 4.9 X 10--2 

0.70 1 3.490 X 10--3 5.169 0.6998 X 10--3 1.040 X 10--2 6.4 X 10--2 

0.50 1 6.365 X 10--3 5.577 0.6391 X 10--3 0.7489 X 10--2 7.8 X 10--2 

2.00 0 0.6552 X 10--3 3.881 1.326 X 10--3 1.365 X 10--2 0.45 X 10--2 

1.75 0 0.8352 X 10--3 4.005 1.138 X 10--3 1.349 X 10--2 0.87 X 10--2 

1.50 0 1.069 X 10--3 4.159 0.9970 X 10--3 1.329 X 10--2 1.7 X 10--2 

1.30 0 1.326 X 10--3 4.316 0.9081 X 10--3 1.302 X 10--2 2.6 X 10--2 

1.10 0 1.694 X 10--3 4.511 0.8323 X 10--3 1.258 X 10--2 3.7 X 10--2 

1.00 0 1.948 X 10--3 4.628 0.7979 X 10--3 1.226 X 10--2 4.3 X 10--2 

0.90 0 2.279 X 10--3 4.759 0.7652 X 10--3 1.182 X 10--2 4.9 X 10--2 

0.70 0 3.363 X 10--3 5.073 0.7035 X 10--3 1.045 X 10--2 6.4 X 10--2 

0.50 0 5.938 X 10--3 5.465 0.6436 X 10--3 0.7816 X 10--2 7.9 X 10--2 

Table 4 . 5 . The values for A, B, C and D in (4.13), for various a and ^, and their x^-

4.4 Conclusions : 

We showed in chapter 2 how it was possible, using the lowest order corrections to 

the bare vertex, to generate a non-perturbative ansatz for the three point function 

T'^(k,p). This involved knowing the form of the transverse basis set for V^, rewrit­

ing r ^ g r i terms of the functions -F'(p )̂ and S ( p 2 ) (which we needed to know to 

0(a^)), using the constraints imposed upon the theory by M.R. and the constraints 

imposed upon by physics (eg symmetry, W-TI,. . . ) . We could check our ansatz to 

next-to- next-to-leading logs in perturbation theory after which it became too time 
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consuming to continue. So we had an ansatz which we thought might be all right, 

it is :-

where 

and ^ ik,p) is the Ball-Chiu vertex[42]. 

In chapter 3 we showed that in the massless theory, in which E ( p 2 ) —> 0, our 

ansatz gives a fully non-perturbative M.R. solution:-

(4.15) 

^ " 1 + ' 47r 

which is a good sign. 

Then in chapter 4, after using T^^ .̂̂  with finite and infinite cutoffs as training 

exercises, we solved the S-DE's for F(p^) and S ( p 2 ) using a gauge invariant renor-

malisation procedure. We obtained masses PQ = E ( p 2 ) for a range of O Q , which 

were all gauge independent and we did not find a critical coupling a^. We were also 

able to obtain good functional fits to the solutions for -F(p^) and E ( p 2 ) , even though 

the S-DE's are far too complicated to be ever checked analytically, we have that:-
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' ^ ^ ^ 1 + B ( J - 1) V 2S2(p2) 

^ ~ 1 + I K ' 47r 

and (4-16) 

E(p2) = C Tank ( 4 
B 

Y = 1 + Dlog 

- F l o g ( p 2 + S2(p2))+ logA^ 

+ E2(p2) 

+ 1 

2pg 

We are thus lead to conclude that our ansatz is probably a good one. 

Our ansatz does not give results that have a critical coupling and this suggests 

that full QED4 might not have a critical coupling point either. This lack of critical 

coupling is backed up by results in QED3[23]. A question then is how can we explain 

the GSI results? After all a phase change at some critical coupling was postulated 

as a way to explain these results. One theoretical idea that has been suggested by 

Arbuzov et al.[55] is that a critical couphng is not needed. In their work they looked 

at the Bethe-Salpeter equation for the full four-point Green's function in the quasi-

potential approach (where XQ for the initial states are kept equal as are those for 

the final states, of course XQ initial *o final general). What they found was that 

as well as the usual Coulomb levels (for negative binding energies) they were able 

to obtain narrow width resonances (for positive binding energies) that they could 

associate with the GSI results. All this was done without the need for a critical 

coupling. A further point to note is the disagreement over the GSI results that 

has occured in the experimental community. Some groups have seen back-to-back 

narrow peaks and some groups have not[56]. The understanding and resolution of 

these experimental differences lies far out side the scope of this thesis, we leave it 

to the experimentalists! 
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4.5 Further Study : 

We conclude this thesis by briefly outlining some possible future studies. 

The first and easiest thing that can be done is to solve the S-DE's for F^^jj with 

finite cut-off, A 2 , when we can see whether we obtain different physics (eg a critical 

point ttg, as for F^^^ )̂ or if we get related physics. This would be of interest to check 

whether the results of Miransky et al. are at all physically valid or if they are just 

a quirk of F^^^^. 

Secondly to extend this work on qQED to full QED. In order to do this it will be 

necessary to calculate lowest order corrections to F'* that come from the full photon 

propagator. These corrections will stand out because they will be premultiplied by 

iVy, from fermion loops. Thus the new pieces in F'' , that come from the photon, wiU 

be solely due to the two 0{Q^) diagrams with fermion loops. Using M.R. to help us 

construct an ansatz will be more complicated, as now ^ 1 for A^, but we have 

^Funics = 1) as a guide. 

Thirdly we could try to expand this to QCD. This will be much more complicated 

as we have triple gluon vertex functions, which will come into the lowest order 

calculations of F''"^ and also give extra factors in the lowest order corrections 

to the gluon propagator (from gluon loops). This will be extremely hard to do 

(as we have gluon and fermion loops[57]), but if successful will possibly make the 

calculations of E ( p 2 ) tractable. Without F ^ , the calculation of E ( p 2 ) in QCD is not 

really a well posed question as there are great problems getting a consistent in/out 

numerical fit to S ( p 2 ) in the intermediate energy region. There Fj , has its greatest 

effect since in the perturbative region, where p^ 1, T*^ + F ^ ̂  F ^ and at low 

momenta F ^ 0 as A;'' - p'* ^ 0. 
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Fig. 4.1 The solution curves for S(rj) with bare ansatz and finite cutoff, A^, 
for ao = 2.0 (I), = 1-25 (II), = 1.10 (III) and = 1-065 (IV). 
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'̂ig. 4.2 The points represent S^{yQ) at various values of ag, whilst the line represents 
the fitted functional form. It clearly shows the critical point, a^. 
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Fig. 4.3 The solution curves for S ( p 2 ) with bare ansatz and infinite cutoff for OQ - 2.0 
(I), ao = 1.5 (II), ao = 1.0 (III) and ĉ o = 0.5 (IV). 
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'ig. 4.4 S(p^) at various values of OQ for the bare ansatz. 
Clearly there is no critical point, a^. 
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a,= 2 . 0 : 

Fip') 

E ( p 2 ) 1 0 - , 

Fig. 4.5 ao = 2.0. Solutions for the full vertex (infinite cut off'). Top graph is F(p^) 
for ^ = 1, middle graph is Fdr^) for ^ = 0 and bottom graph is S ( p 2 ) for both 
^ = 1 and ^ = 0. 
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a. = 1 . 5 

S ( p 2 ) 1 0 - ^ ^ 

p^ 

Fig. 4.6 ao = 1.5. Otherwise as for fig. 4.5. 
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a,= 1 . 0 

F{p') 

F{p') 

S ( p 2 ) 1 0 -

P 

Fig. 4.7 = 1.0. Otherwise as for fig. 4.5. 
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Qfo = 0 . 5 

F{p') 

Fip') 

S ( / ) 1 0 - U 

P 

Fig. 4.8 ao = 0.5. Otherwise as for fig. 4.5. 
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Fig . 4.9 S(PQ) at various values of O Q for the f u l l vertex. 
Clearly there is no cri t ical point , a^. 
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APPENDIX A 

ANGULAR I N T E G R A L S 

I n this appendix we shall cover the angular integrations that are used i n other 

parts of this thesis. I t w i l l take the f o r m of a recap of appendix A of the thesis of 

N . Brown[43]. We are at l iber ty to choose our coordinate system i n such a fashon 

that the external momentum i s : -

p^^= (p, 0, 0, 0 ) . ( A . l ) 

Our integrals are over Euclidean space-time and we wri te our integration variable, 

ki^, i n terms of 4 -dimensional spherical polars:-

A;** = (kcosT/;, ksinipsin6cos(f), k simp sm6 sm(f>, k sinip cosd). (A.2) 

where k G [0, oo), ip e [0, TT] , 9 6 [0, TT] and <j) G [0, 27r]. We can easily 

calculate the Jacobian and then: -

d'^k = ^ dk^ sin^ tP sin 6 dd d(j>. (A.3) 

A l l of the integrands depend only upon A;̂ , p"^ and fc-p, thus f r o m ( A . l ) the integrands 

are independant of 6 and ^ . We are then able to per form the integrals over 6 and (j) 

which give an overall factor of 47r, hence (A.3) becomes:-

d'^k= 27rjfc2 dk'^sin^tP dip. (A.4) 

The general f o r m of the integrals involving ip are:-

sin"^ ip dtp 2 J. J J. i^-pT 

0 
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f r o m (A.2) and (A.3) k • p = \k\\p\ cos ^ and we shall define / „ ^ to be given by: 

cos" ^ 

Now we can wri te = k"^ + p^ — 2|p||fc| cos'^ = a — 6cos V', where a = fc^ + p^ 

and h = 2|p||A;|. I n order to calculate these integrals we start off by looking at / Q j , 

we make a change of variable to 2 = cos ip then another, y = a— bz, to simpUfy 

the denominator. We can then express / Q j i n terms of integrals of the f o r m 

a+ b . 

a- b 

which we can look u p [ A l ] . 

We then calculate Q, which is easy. For r = odd Q = 0, by symmetry, 

and for r = even we change the variable to u; = cos^ ^ to give us a Beta funct ion 

integral . So we know Iq J and I^ q. TO calculate the other integrals, up to m = 2, 

we make use of the i terative relations:-

_ 1 a 
K,l - --^^n- 1,0 + ^ - ' n - 1,1 

and: -

da 

Now i f we define:-

M . ) = 5 ( i + . - | i - . | ) = \ ^^^^ 
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Then we can w r i t e : -

^O'l = 2P 

^1.1 - 11:2 ^ U i 4Jt2 \p^ 

h,2 — 

h,2 = 

16A;2 \p» 

TT 1 

,4 /fc4 

2A;2 |p2 

7rp2 

2fc2 |p2 - jfc2| ^ 

37rp^ 1 
i 

8 -\p^ 

jt2 

A:2' 

2-2 ~ 8A;2 | p 2 _ jfc2| " V P V 8 fc2| 

(A.5) 
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APPENDIX B 

SCHWINGER-DYSON EQUATIONS 

I n this appendix we shall generate the S-DE's that are used i n the bulk of the 

thesis. We shall use the results (A.5) of appendix A i n order to do the angxilar 

integrals. We start off by w r i t t i n g the vertex F** i n the fol lowing way:-

F''(A;, p) = A r + B { f t + ^ ) { k + p f - C { k + pf 

+ D[^>^{k-'- {k+ pr{^-
( B . l ) 

I f we define 

2 \ F ( e ) ^ F(p^), 

2 \F{k^) F{p^)J fc2- p2 

D' = U 
2 yF{k^) Fip^)J d{k, p) 

. „ ( A : 2 - ; > 2 ) ^ + ( S 2 ( P ) + S2(p2))2 

Then we can use the generic f o r m for F**, ( B . l ) , to calculate a general S-DE once 

and then use the fol lowing table to convert the result in to the S-DE for the required 

ansatz. 
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ansatz A B C D 
Bare 1 0 0 0 

Central A' 0 0 0 
BaU-Chiu A' B' C 0 

Ful l A' B' C D' 

(B.3) 

to work i n the massless theory we just throw away the Yl{p'^)/F{p^) S-DE and put 

S(p2 or A;2) = 0 i n the F'^p'^) S-DE. From f ig . 2.2 the S-DE for qQED is : -

M 

e2 f d^k F(fc2) _̂  ^^^2)) ^ . ^ . . ( ^ ) 
S2(jfc2)-

where the photon propagator 

A'^'iq) = + (^ - 1 ) ^ , q"- ( k - p ) ^ 92 y ' - - 52 

I n order to separate out the equation in to those parts that are proportional to ^ ( 1 ) 

we m u l t i p l y through by ^ ( 1 ) and trace, g iv ing : -

' d ? ? / / - S(*^))7lA-(,) 
M 

(B.4) 

and 

S(p2) - J ! L ^ , , [ r ( f c , p ) ( ^ + S(fc2))7/ ']A'^ ' ' (g) (B.5) 
F(p2) '47r34 y jfc2 - S2(fc2) 

M 

respectively. W r i t i n g ^{k, p) (^ + S(fc2)) i n terms of odd and even powers of 
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gamma matrices we have:-

F^(fc, p){jk+ s(fc2)) = ^7"^^ + B{k^+ 0){k+ PY- ci:{k^){k+ PY 

+ I>[(fc2 - p2) {k+ PY m (even) 

+ AS(jfc2)7''4- Bi:{k^){1t+ f ) - C^{k+ PY 

Hence we have 

tr [f T%k, p) + E(fc2)) ^A'] A ' ' ' ' (g ) = 

n1 
A{ -2k.p+ 1 ) \ {(k'+ p-')k . p - 2kV)} 

+ p2)^.p^ 2fcV+ (e- ,2\2, 

and 

4 

(B.6) 

( 3 + 5S( fc2){ fc2+ p 2 ^ 2 f c - p + a - P ' ) ' } 

-C{k'+ k-p+ { ( - k.p)ik^- p')+ 3D^ik'){k'- p') 

(B.7) 

Subst i tut ing (B.6) in to (B.4) and (B.7) in to (B.5) we have, after Wick ro ta t ion: -
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i ^ - l r „ 2 ^ ^ l _ ^ / d^kFjk^) 1 
^ KP ) ^ 47r3p2 y A:2+ 2 2 ( ^ ) ^ 2 

A{ -2k.p+ (C- l)^{ik'+ p')k'p -2ky)} 

+ B{{k''+ p^)k.p+ 2ky+ { ( - i)\{k^- p'fk-p} 
q^ 

+ ci:ik'){k.p+ p'+ p\k.p- p2)} 

- 3Z>( j t2 - p'^)k-p 

and 

S(p2) _ _a_ f d^kFjP) 1 
F(p2) ~ 47r3 J k^+ E2(fc2)92 

E 

(3 0^S(A:2) 

+ B^k^){k^+ p-^+ 2k-p+ {(- i)-^(k'- p'?} 

-C{k'+ k-p+ l ) \ ( k ' - k-p){k'- p2) 

+ 3DE(jfc2)(A:2 - p2) 

Using the angular integrals (A.5) we can s implify the above in to 1 -dimensional 

integrals over ^2 ; -

F - i ( p 2 ) = i + 
a f dk^ fc2 F(fc2) 

S2(jfc2) 47rp2 J k^ + 

3 5 , . fc2 jb2 

- ^ S ( A : 2 ) { ^ o ^ + e C ( f c 2 - p 2 ) s ( A : 2 ) { ^ ^ ^ } 

(B.8) 
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and 

S(p2) a }dk^k^F{k^) 
F(p2) 47V J 

0 
jfc2+ S2(jt2) •p-

p 
+ 3 5 S ( A . 2 ) { ^ o ^ + e,^} -CBi:{k'){k'- p ' ) { e A - e,^} 

3 C _ k^ p 
{ ^ 0 3 + ^ i p } - - / ' ' H ^ i i ^ } Jfc2 

+ 3D^k')ik'- p'){9,-+ 9 , - } 
p. 

(B.9) 

where we have explici t ly put i n the integration l imi ts 0 and A (as this is the un-

renormalised S-DE's) and 6Q = 9{p^ — k^) and 9^ = 9{k'^ — p^). We can now use 

equations (B.8) and (B.9) , i n conjunction w i t h table (B.3) and the identities (B.2) 

to generate the S-DE's for all the various cases we are interested i n . 

MASSLESS qQED : 

(The equations for chapter 3). We drop equation (B.9) , the mass equation, and 

set S(jt2orp2) = 0 identically ( C = 0 and d{k, p) = (k^- p'^f / {k^+ p2)). We also 

make the t ransformation: p2 = yA2, P = X A 2 , F{p^) = F{y), S(p^) = A 5 ( y ) , . . . 

Thence f r o m (B.8) , (B.3) and (B.2) we have:-

Bare ansatz : 

Here we set A = 1 and B = C — 0 = D when we get:-

1 

9{y - x)- + 9(x - y ) ^ 
y X 

(B.IO) 

Central Kernal ansatz 

I n this case we have A — A' and B = C = 0 = D and we have:-

ny)J 
9{y - x ) ^ - f 9{x - y)^- ( B . l l ) 
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Minimal Ball-Chiu ansatz : 

Setting A= A', B = B',C = C 

1 

0 

0 and D = 0 gives us:-

0 

4 V i ^ ( y ) / a; - y y : 

Full ansatz : 

Now we set A = A ' , B = B', C = C = 0 and D = D ' , thus we obtain:-

1 

(B.12) 

0 

4[m-Fii))^y^'^'-'^y^'^'-'^-^^ 

i 
2\F{ 

2 \Fix) F{y), 

3 / 1 M (a: + 2/)(ar - y) 
A\F{x) F{y)J { x - y f 

X { % - x)- + ^(x - y f - ] 
y 

1 

(B.13) 
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MASSIVE qQED : 

(The equations for chapter 4 ) . We start f r o m eqs. ( B . 9 ) and ( B . I O ) . For the 

bare ansatz we t ransform to dimensionless variables: p"^ — y A2 , k"^ = y A2, 

F^p"^) = F(y) and S(p2) = A 5 ( j / ) . For the fuU ansatz we do not so transform. 

Bare ansatz : 

I n this case we have A = 1 and B = C = 0 = D, when we get:-

F - \ y ) 

s{y) 

= 1 + 
a( f dx X F{x) 

x+ S\x) Any J 
9{y - x)- + 9{x - y ) ^ 

y X 

a f dx X F{x)S{x) 
x+ 52(x) 

9{y - x)- + e{x - y)-
y X 

( B . 1 4 ) 

Full ansatz : 

For this ansatz we have A = A', B = B', C = C and D = D' which gives 

us:-

F - H P ' ) = 1 + 
dk^ 

jt2+ S2(jfc2) 

fc4 
H 0 i p ' - k r - + 9 i P - p r j ^ ^ } 

A 

47r J 

~ ^ fc2 F(p2)S(fc2);^^^^' ^ 

3(fc2 + p2) (S2(fc2) + S2(p2))2 

4(fc2_ p 2 ) ( p _ ^2)2+ (S2(jfc2)+ E2(p2))2 

F(fc2)\ o .o.fc^ 

F(fc2), 

X 1 

+ 

F(p2) 

3S2(fc2) F(fc2)S(p2) 

2(A;2 - p2) 

J 

and: 
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S(p2) _ a } dk^ 
F(p2) ~ 47r J k^+ E2(jfc2) 

3S(fc2) r / F ( f c ! ) ^ 
w ) ; 

+ (Ar2 _ p2)2 + (S2(fc2) + S2(p2))2 

jfc2 

/ _ F(fc2)\ 

V W ) J 

X - fc')^ + ^(^' - P')} 
P 

0 

d p F(fc2) 
jfc2-H S2(jfc2)F(p2) 

where:-

(B.15) 

/(fc2,p2) = 

3 (A;2 + p2) (S2(fc2)+ S2(p2))-

4 (A;2 - p2) _ p2)2 + (S2(jfc2) + E2(p2))^ 

X { ^(p2 - k')^ + e{k' - p2)} 

3 S 2 ( P ) / _ F i W Y ] r ^ . 2 _ , 2 ^ ^ + , . , 2 _ 2., 
+ 2 ( p - p2) F ( p 2 ) E ( p ) ; ^ ^ ^ ^ 

E2(fc2) / F { k W ) \ r ^ . 2 _ ^2^ fc!. _ . r ^ . 2 _ ;^2^^, 
- W ~ V " i^(p2)S(fc2); ^ ^ ^ > ^ ^ 

and 

S(p2) 
F(p2) 

a f dk^ 2 2N , « / " <ffc2 S(p2)F(fc2) 
A;2-t- S2(A;2) F(p2) 

(B.16) 
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where:-

J(fc2,p2) 

3 S(ifc2) 

H P ' ) J 

+ p 
( j t2_ p2)2+ (S2(fc2)-H S2(p2))2 \̂  ^^(^2)^ 

jt2 
X { V - ^ ' ) ^ + - P')} 

P 

- p ' ) } 

•F(p^) p^ 

We renormalised by setting FR{P'^Ip?) = Z^\n^/A^)F{p'^/A"^) and 

Hjlij?In"^) = S(p2/A2). The reason why the Z factor for S is 1 is discussed i n 

section 4.3. The rat io F{k^)/F{p'^) i n / and J become Fji{k^)/Fji{p'^). We renor-

malise at p2 = ^2 ^ ] i e n Fji{p,'^) = some constant to be defined (see section 4.3). 

Then we have:-

Fuip') 
0 

dk^ Fjjjk^) 
fc2+ S2(jfc2)'^- ^ ' 47r y jt2+ S2(fc2) F^(;x2) 

a f dk^ 2 2̂  , ^« /" 

-4^yfc2+s2(fc2)-^(^ '^)+ i 

cZfc2 F^(fc2) 
A;2+ i:2(A;2) F^(p2) 

and 

A;2+ E2(A;2)F^(p2) 

a f ^_d^__Tfi.2 2x , / 
4 ^ 7 P T ^ ^ ^ ' ^ ^ 47r J 

0 

(ffc2 S(p2)Fjt(fc2) 
fc2-F S2(fc2) F^(p2) 
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Fnifi') _ . a f dk' 
FRip') 

and 

0 

oo ^ ti-

a_ I de 2 ^2.FR{P?) (a f dk' Fj,{P) 
^ ATTJ k^+ S2(fc2)'^'^ ^Fjiip^) ^ 4irJ P + S2(A;2) Fj,(p-^) 

0 p 2 

( B . 1 7 ) 

0 
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APPENDIX C 

F E Y N M A N I N T E G R A L S 

I n this appendix we give the integral rules and expansions i n fc2 that we used i n 

the perturbat ive calculation of i n chapter 2.5d 

Feynman integral rules : 

The Feynman integrcd rules tel l us how to relate integrals i n which the denom­

inator is a complicated product to integrals i n which the denominator is a simple 

sum to a power:-

1 1 

/ d ^ ^ ^ = n l f d ^ w j d x , . . . j ^ ^1 ^ ( ^ - " i - ; j " ^ ) . 

0 0 

Then we can easily get:-

Ji* f M 
w;2[(fc - tf;)2 + rn'^'^Kp- w)"^ + 

1 1 1 

J J J J [zw'^ + X {k — wy + xm^ + y [ p - + ym^l'^ 
0 0 0 

1 1- X 
f(w' + xk + yp) 

0 0 
1 1- X 

j d^w j dx j dy 
f{w + xk+ yp) 

0 0 

Where w ' = w- xk - yp, L = k^x ( 1 - x)+ p^y ( 1 - y) - 2xyk-p+ xm'^ + yrn^. 
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I n an obvious way we also have that:-

/ d'^w 
f(w) 

w'^[(k — w)2 -|- m2][(j) — wY + m2 

= 3! J d^w j dx I \y^' - " - + + 
0 0 

The J d^w integrals : 

Af te r we have used the Feynman integral rules we are able to accomplish the 
A 
/ d'^w integrals using the fol lowing results:-

J + LP J K + LY " J [w^+ L]^ 
0 

A27r2 TT-
+ 'A^+ L]2 2 

L]2 
0 

0 

2 i : 

0 
t/;2+ i:]2 

(C.2) 

r d'^w _ 2 / dw'^w^ 

A 
2L L 2 

+ 

I log [ ^ ^ ^ 1 + 2L 
1 

A' 
L 2 1 

[«;2-h L ] 2 
0 

[i(;2+ L]2 

A ^ ^ o o 2, 37r2 
= - l o g - - — (C.3) 

A A 

f d^w - i d _ r 1 d r _ S 
3 a L . / [w;2-H L]3 6L2 

( C . 4 ) 
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y [«;2 + X]4 " 3 7 [«;2 + XJ^ ~ 3 L ^ ' ' 

A A 

/

(i^w _ [ d^w I d^w 

(C.6) 

1 1 
The J dx J dz integrals : 

0 0 

We go from the integral of y over the region [0,1— a;] to the integral of z over 

the region [0,1] by making the transformation y = z {1 — x). The Jacobian of the 

transformation is of course (1 — x). Then:-

1 1 - X 1 1 

j dx j dy\ogL= J dx J dz (1— a;)logX 

0 0 0 0 

where now L = a + bx + cx^ with a = p^z — p^z^ + m^z, 

b = - 2k-pz - p^z + 2p^z^ + - m^z and c = - fc^ + 2k • pz - p^z"^. 

Then, as k"^ > (p^, m^), it is clear that:-

1 1 1 1 

j dx j dz {I - x)\ogL - j dx j dz {I - x)\ogk'^ 

0 0 0 0 

to first two orders, and hence 

j da; log ^ = j dxlog^. (C.7) 

In chapter 2.5d we have a number of integrands of the form x^ jU^ which we 

need to look at. To do this we make extensive use of the identities in Ref.[Al] and 
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expand in terms of k'^. We now state our conventions and give some preliminary 

results:-

L = a+ bx -\- cx^ 

where a = p^z — p^z^ + rri^z, b = — 2k • pz — p'^z+ 2p^z^ + — rri^z 

and c — — k^ + 2k • pz — i^z^. 

A = 4 a c - _ A ; 4 + 4k^k-pz+ 0(k^) 

as we can take m? 0 with respect to k"^ and p"^. Some prehminary results that we 

need axe:-

ii 
= log log 

b + 2cx — y/b"^ — 4ac 

b+ 2cx+ y/b"^ - 4ac 

k' 
vn? J \p'^z'^ — p^z — •mP'z 

fc2 fc2 
log —2 + log - T - log + Z - Z' 

p^ \ p^ 

logL m 

0 

log - log -^z + z - z 
p. 

Then from Ref.[Al] we get the following: 

1 

/4 = 
0 

b + 2cx — Vb^ — 4ac 

L ~ \/62 _ 4ac \ b+ 2cx + y/b"^ - 4ac 
log 

1 2 k - p \ l , P , P 

+ Oik-"") 

1 

/ 2c J L 

2jb2 V 

+ Oik-'') 

P fc2 

l ° s : r 2 + ^ ° ^ m 2 
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1 

/ , a;' x 
dx— = — 

L c 2c2 
logL 

1 1 
fe2- 2ac 

+ 2c2 
0 0 

1 / 2k-p 
A;2 \ A;2 

+ 1 
2jt2 (-

+ o{k-

2k-p 

/4 
0 

k^ fc2 
l o g — ? + l o g ^ + log 

p^ 
p. 

V 

I X dx— = x" 

2c 

bx 6 2 - 2ac, ^ 

2c3 
0 

2A;2 
2k-p 

+ 1 + 
2)b2 V ' ' 

+ 0{k-^) 

ifc2 ,2 -, 
l o g — 2 + l o g ^ + log 2 

1 

/ dx- x" 

3^ 

11 
6jfc2 

+ 

; 2k-p' 

2fc 
1 + ^ T T ^ Z 2fc2 ' jfc2 

+ 0 ( f c - 4 ) 

fc2 jfc2 p2 
i o g z : 2 + ^ ° s - 2 + log—2 
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1 

/ , 1 b+ 2cx 
+ 

2c /4 
— ( — ^ 
A;2 V m2 a 1 + ^ 1 7 ^ 2 

ib2 

2 / 4A;-p 

log 
jt2 , P 

log — I + ^ 

I dx-^ = 
2a + fea; -1/4 

1 1 / 2fc-p 
T ^ - T 1 + - T ^ ^ A;2 m2 A;2 

1 / 4fc-p 

X 
k"^ k^ 

- log -z + z — z' 

+ 0(A;-4) 

1 

/ , a;2 a6 + (6^ - 2ac) x 
^ " Z 2 = ^ A L + 1/4 

jfc2 m2 ^ A;2 

-4^ + 0(A;-*) 
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1 

/ + 
a (2ac - 62) + 6 (3ac - b^) 

c^AL 

^ b ( 6 a c - 62) ^ 

2c2A 

1 1 / 2k-p 
jfc2 m2 jfc2 

1 + 2ifc4 V jt2 

+ ©(fc-'^) 

ifc2 fc'' • 
l o g — 2 + log-o + l o g - ^ 

k^ 

1 

J 
2b f , x^ 3a f , X 2 

L 2 

1 1 / 2k-p 
P m2 A;2 

1 / 4fc-p 

-4> + 0(A;-4) 

A;2 jt2 pi 

1 

/ L 2 2ci: 
36 
2c 

1 
2a / , a;-

dx—r 
c J L 2 

0 

fc2 m2 
2fc-p 

1 + 

+ 0(A;-4) 

\ r, A|2 , jfc2 p2 
log — + l o g ^ + log—2 

J I p^ 
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1 

/ , x^ x^ 
dx—r = L2 3cL 

1 1 1 
46 / , a;5 5a /" , 

- 3̂ 7 ^ " z ^ - ŷ̂ î̂  
0 0 0 

J _ J _ 
p ^ 2 fc2 ^ 

4k • p A;2 A;2 
^ ) log —2 + log ^ + log 

p^ 

+ 0 ( f c - 4 ) 

By inspection of the above results we can easily see that:-

1 

/ dx 
x " ( l - x) 

= 0 + 0{k-^, fc-Mogit^) n = 1, 2, 3, (C.8) 

} , (1 - x) 1 / 2k-p \ ifc2 , fc2 
log - y + log - log - ^ 2 ^ + z - z' 

p^ \ p^ 

1 it^ , fc2 , p 
l o g — 2 + l o g ^ + log—2 

2 V ° m'-̂  
+ 0(A;-4) 

1 / 2fc -p 
j f c 2 i ^ + fc2 ^ 

jb2 
l o g ^ + Oik-') (C.9) 

1 

/ i x 
X " ( l - x)2 

X2 
= 0 + 0(A;-'^, k-^\ogk^) n = 2, 3, 4, . . . (C.IO) 

/ dx 
x ( l - x)^ 

i:2 
1 / 4fc-2) ' ifc2 fc2 / ^ 2 ^ 

1 / fc2 fc2 

2 V 

1 / 4A;-p fc2 
log^V + ( C . l l ) 

(C.12) 
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