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To Jackie and our future 



"As large telescopes probe further and 

further into space, more and more galaxies are 

discovered. Far from being the only one, the Milky 

Way is one of millions, which fill space out to 

some ten thousand million light-years, the farthest 

distance which our present-day telescopes can 

reach. 

The galaxies form the bricks out of which 

the large-scale universe is built, and they are 

separated by distances of a few million light­

years. But the distances are not fixed. The 

galaxies all seem to move apart, outwards from 
each other, as if the whole universe were 

stretching like a balloon which is being inflated. 

Why do they spread out in this way? Did 

they all start in one great huddle some thousands 

of millions of years ago, before being blown apart 

and scattering as we now see them? Or is there 

another explanation for the 'expansion of the 
universe', as it is called? We do not know. This 

remains one of the great mysteries of the 

universe." 

A Ladybird Book of the Night Sky, 1965. 
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Abstract 

Duncan Hale-Sutton 

Galaxy Clustering and Dynamics from Redshift Surveys 

The clustering and dynamical properties of the 368 galaxies in the 

redshift surveys of Metcalfe et al. (1989) and Parker et al. (1986) are 

investigated. These galaxies were selected from ten high galactic latitude 

fields complete to a magnitude limit of m(bJ)<;.17m. These complement the 

five similarly selected fields in the survey of Peterson et al. (1986) and so the 

overall clustering and dynamical properties of all three samples are 

discussed. 

Initial studies of the distribution of galaxies in the survey of Peterson 

et al. were carried out by Bean (1983). This thesis extends that earlier work 

by examining the conclusions of Bean in the larger volume of the new 

surveys considered here. It is found that, whilst the combined estimate of the 

line-of-sight peculiar motions in the three samples together is in reasonable 

accord with that found previously, the range of peculiar motions in the 

individual samples is larger than previously anticipated. The rms pair-wise 

velocity (w2)1/2 is found to be (w2)112=(600±140)kms-1 in the Metcalfe et al. 

survey as compared to (w2)112=(0±240)kms-1 and (w2)112=(190±90)kms-1 in 

the Parker et al. and Peterson et al. samples, respectively. These estimates 

of the motions of galaxies at spatial scales of -1 h-1 Mpc (H 0 =1 OOkms-1 

Mpc-1) together with measures of the clustering provide constraints on the 

mean mass density of the Universe through the Cosmic Virial Theorem. It is 

found that the mean mass density parameter for the three samples 

considered as a whole is 0 0 =0.18±0.09, on the assumption that galaxies 

trace the mass distribution.,and this constraint is similar to that obtained 

previously mainly because of the larger range of peculiar motions found. 

The clustering distribution of the galaxies in the new samples was 

investigated on spatial scales ranging from a few up to -100h-1 Mpc. It was 

found from the number-redshift and number-magnitude counts that these 



samples were fairly homogeneous at the largest scales and in good 

agreement with previous results from the Peterson et al. catalogue. Thus 
using these samples to estimate the mean clustering properties of galaxies, 

it was found, from the two-point correlation function ~5(s), that the galaxies in 

the new samples appear to exhibit a preferred clustering length at -2tr1 Mpc 

and this confirms the 'shoulder ' detected in the correlation function of the 
Peterson et al. data by Bean (1983). On the basis that this shoulder is a real 

spatial feature (and not caused by peculiar motions) the mean clustering 

length of galaxies in the three samples is r0 =(6.6±0.5)h-1 Mpc in the range 

2~s~?h-1 Mpc and this is significantly larger than the r0 =5h-1 Mpc that was 

previously thought to apply to galaxies in this region of separation. 

At scales larger than -?h-1 Mpc the correlation function in the 

combined sample of the three surveys indicates that the galaxy distribution 

rapidly approaches homogeneity. Although there are some tentatively 

detected spatial scale lengths in the galaxy distibution at these larger scales, 

the main conclusion from the correlation function for these galaxies is that 

there is no evidence of large-scale clustering at the 2 sigma statistical 

significance level from separations of -10 to 100h-1 Mpc. Thus on the 

assumption that these galaxies trace the mass distribution this implies that 

the Universe is homogeneous to -15% at these scales. 

Finally, some new redshifts of galaxies were presented that were 

observed with the FLAIR spectrograph on the UK Schmidt telescope. These 

observations indicate that this instrument is capable of performing 

systematic redshift surveys of m(bJ)~ 17m galaxies with a completeness of 

-80% and with an accuracy in redshift velocity of ±150kms-1 rms. This will 

then pave the way for future large area redshift surveys in the southern 

hemisphere. 
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Chapter 1 

Introduction 

Homogeneous and isotropic models for the description of the matter 

distribution on the largest spatial scales have become a common feature in 

studies of cosmology. These models, coupled with the dynamical equations of 

General Relativity, have had a remarkable success in helping to predict a 

wide range of phenomena from the abundance of the light chemical elements 

(Wagoner 1973, Olive et al. 1981, Yang et al. 1984) to the observation of the 

3K Cosmic Microwave Background radiation (Penzias and Wilson 1965). 

Whilst the homogeneity and isotropy may be demonstrable on these scales 

(for example, fluctuations in the observed microwave background temperature 

imply isotropy of the matter distribution to better than one part in 1 ()4 on a 

wide range of angular scales; see, for example, Wilkinson 1988 for a review), 

the Universe appears to be very inhomogeneous at much smaller separations 

as is illustrated by objects such as galaxies which are clearly strong 

enhancements in the matter distribution. The questions that naturally come to 

mind are then, what are the perturbations in the matter distribution which gave 

rise to objects such as galaxies and at what spatial scale do these fluctuations 

approach homogeneity? 

Knowledge of how the mass is distributed in the Universe is of prime 

importance in understanding the evolution of the matter fluctuations since 

gravity is the predominant force acting on large scales. However, as the 

visible parts of galaxies may only contain a small fraction of the total mass 

(see, for example, Faber and Gallagher 1979) the question then arises as to 

the relationship between the visible and non-visible components of the matter 

distribution; for example, it is not a trivial assumption that galaxies should 

trace an underlying mass component. In spite of this, any evolutionary model 

for an underlying mass distribution must eventually describe the formation of 

galaxies and galaxies themselves will in a dynamical sense act as test 

particles that move in the gravitational potentials of the mass fluctuations. 

Thus, observations of the spatial and dynamical distributions of galaxies 

(which are the most numerous and easily detectable objects at redshifts 

z~0.5) will provide significant information on the present day form and 
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evolution of the matter fluctuations in the Universe. 

As reviewed by Peebles (1980), there have been two general 

approaches to the study of large-scale structure from the two- or 

three-dimensional galaxy distributions. In the 'morphological' or 'botanical' 

approach various specific large-scale structures have been studied either 

individually (as, for example, in the 3-d map of the Perseus-Pisces filament; 

see Haynes and Giovanelli 1988 and the references therein, or in the BOOtes 

void; Kirshner et al. 1981, 1987) or collectively (as, for example, in the 

catalogue of rich clusters by Abell, 1958). Although such inspections of the 

galaxy distribution have been very fruitful in contributing to our understanding 

of such structures (see, for example, Oort 1983) there has always been the 

uncertainty over the subjective choice as to what constitutes an important 

structure. For example, it is possible that under the random processes 

involved in galaxy dustering there may be a considerable number of possibly 

'important' objects to observe and catalogue in this morphological way. 

The alternative approach to this 'botanical' method is to treat the 

galaxy distribution in an objective statistical fashion and measure the mean 

properties which apply to the whole distribution. This has the distinct 

advantage that, in the case where galaxies trace (in some sense) or 

dynamically follow the underlying mass distribution, these mean properties 

will also be directly important in constraining models for the evolution of the 

overall mass perturbations. Clearly, it is not, at present, feasible to collect the 

3-d positions of all the galaxies and so it is generally assumed that, like other 

global properties, galaxy clustering is a statistically homogeneous process. 

Thus, under this assumption, it may be possible to examine independent 

subsets of the global distribution that reflect the mean overall properties but 

differ from these in a random way. This so-called 'fair' sample hypothesis is 

central to such statistical studies of large-scale structure. 

Hence, to effectively characterise aspects of the mass distribution, the 

spatial positions of galaxies are required in a region of space that samples all 

the relevant clustering processes that are seen in the Universe. In this work 

statistical analyses of galaxy clustering and dynamics are performed on two 

new, relatively deep (z~0.1 ), redshift catalogues (Metcalfe et al. 1989,. 

hereafter the Durham/SAAO Survey, and Parker et al. 1986) in ten random 

areas of the sky sampled from lists of galaxies complete to an apparent 
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magnitude of bJ::::16m.8 (16m.5 in the Parker et al. sample). This extends and 

complements the earlier work of Bean (1983) on the redshift survey of 

Peterson et al. (1986, hereafter the Durham/AAT Survey) in five similar fields 

to an equivalent depth. 

Thus, in Chapter 2 the basic statistical methods used in this work are 

reviewed and the uncertainties of the statistical properties described. In 

Chapter 3 the new redshift samples are introduced and some aspects of the 

homogeneity of their 3-d distributions presented. The basic statistical results 

for these new samples is given in Chapters 4 and 5, with Chapter 4 describing 

the dustering and peculiar motions of galaxies at small (51tr1 Mpc 1) spatial 

scales. Using the virial methods described in Chapter 2 these observations 

can be used to constrain the mean mass density of the Universe. In Chapter 5 

measurements of the clustering of galaxies at large scales (~1 h-1 Mpc) are 

presented and the constraints on the evolutionary models of the mass 

distribution are discussed. In both Chapters 4 and 5 detailed comparisons are 

made between the results for these two samples and those from other redshift 

surveys (particularly the Durham/AAT Survey). Finally, Chapter 6 describes 

some preliminary observations of galaxies with a new spectrographic system 

on the UK Schmidt telescope which may pave the way for future redshift 

surveys covering a large area of the southern sky to a limit of bJ::::1?m. Some 

conclusions on the questions addressed in this thesis are given in Chapter 7. 

1 Throughout this work Hubble's constant is given as Ho= JOOh l!l1lS-4Mpc-1. 
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Chapter 2 

Review of the methods of clustering and dynamical analyses 

In Chapter 1 it was briefly indicated that important constraints on the present 

day form of the mass perturbations in the Universe may come from a study of 

the spatial and dynamical distributions of galaxies. In this chapter simple 

statistical measures are described (Section 2. 1) which can be applied easily 

and directly to the new redshift catalogues of galaxies that form the basis of 

this work. Since the observed redshift of a galaxy can contain both a Hubble 

recession velocity and a dynamical peculiar velocity, these measures applied 

in 'redshift space' provide information jointly on both the spatial and dynamical 

distributions of galaxies (Section 2. 1.2.2). Thus, in Section 2.2 models for 

these peculiar motions are described and the important information 

concerning the mean mass density of the Universe that can, in principle, be 

obtained, is discussed. 

2.1 Statistical measures of galaxy clustering 

As was discussed in Chapter 1 the aim of this statistical approach is to 

attempt to analyse the galaxy distribution objectively as a complete entity, 

rather than rely on a subjective division into its component 'morphological' 

parts. However, as was seen, general features of the galaxy dustering may 

be obtained from subsamples of the overall distribution provided that these 

approximate independent realisations of the same clustering process. Thus, 

the aim of this work is to utilise what are believed to be fair samples of the 

galaxy clustering to obtain estimates of quantities that may describe the 

distribution as a whole. 

On the other hand not all statistical measures will be useful. It is easy 

to think up statistical tests which have little relevance to the evolution of the 

galaxy distribution, and so, this objectivity needs to be directed by the 

observations and the underlying physical processes. A statistical measure . 

should, therefore, give reproducible results for independent galaxy samples 

and be governed, in some sense, by an underlying physical mechanism. 
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Importantly, it must be able to effectively distinguish between different classes 
of evolutionary model. 

Historically, the most popular statistic has been based on variants of 

the autocorrelation function and its related quantity the count of galaxies in 

cells (see Peebles 1980, Section 29). There have been many others; some of 

which are more specific to particular features in the observed galaxy 

distribution, such as the minimal spanning tree analysis for filaments (see, for 

example, Bhavsar and Ling 1988), while others are less specific (see, for 

example, the mutifractal analysis of Jones et al. 1988). However, the more 

complicated the statistical test the more difficult it is to express its physical 

evolution and the more demanding it is of the data. As pointed out by White 

(1979) some measures, in any case, have a strong dependence on the 

autocorrelation function and so may not provide much new information. A 

careful appraisal of the test and its relation to the autocorrelation function may 

thus prove a useful guide to its worth. 

Why is the autocorrelation function of such value? As Peebles notes 

this statistic has been successfully applied in other fields of study and so 

there is little reason why it should not be useful here. Initially, it was of 

particular interest in the analysis of 2-d galaxy catalogues, as estimates of the 

angular correlation function could be used to deduce the form of the spatial 

correlation function using a simple linear integral relation and, as seen below, 

(Section 2.1.2.4) this is still a useful way of constraining observations of either 

function. The scaling of the angular form with the depth of the galaxy 

catalogue also enabled tests to be made of the homogeneity assumptions 

discussed in Chapter 1 and possible systematic errors in the catalogues, such 

as induced by Galactic obscuration. 

Thus, although the statistic does contain limited information, it is, 

nevertheless, an easy one to estimate and it does provide data against which 

models of the galaxy distribution can be tested in detail. For example, the 

seale-free nature of the form estimated from galaxy catalogues directly 

motivated the suggestion that galaxies duster hierarchically, i.e. by clumping 

in a self-similar way (Peebles 1974). Further, as the mass autocorrelation 

function appears directly in the equations of motion of matter in the Universe 

(Section 2.2) observations of galaxy correlations may directly constrain the 

evolution of large-scale structures. For example, in the regime where these 
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mass correlations are small and gravity is the predominant force acting on 

large scales, then this function is expected to evolve in a simple linear way 

and this implies that the initial structure of the mass distribution may be 

inferred directly from the observations of galaxy correlations in this dustering 

regime under the assumption that these objects trace the mass. 

In the following sections the concept of the n-point correlation 

functions is introduced together with the methods for the estimation of low 

orders from redshift surveys. Simple models for their form are considered and 

interrelations between their properties described. The uncertainties of 

estimation, derived from models, from the data and from the simulations are 

discussed. 

2.1.1 Introduction to the n-point correlation functions 

The two- and three-point correlation functions are defined in 

Sections 2.1.2 and 2.1.3 below, but to illustrate their importance consider 

the count of galaxies in a cell (see Peebles 1980, Section 36). Imagine 

placing a cell, of volume V, at random within the galaxy distribution and 

counting the number, N, of galaxies that lie within its boundary. It is assumed 

that V is much larger than the typical volume of a galaxy. Repeating this 

procedure many times allows a discrete frequency histogram to be drawn up 

for the observed count N; the frequency with which N is recorded is plotted 

against the value of N. In the case where galaxies are randomly and 

homogeneously distributed in space the histogram would be Poisson, with a 

mean 

(N) = nV (2-1) 

and the second moment, or variance, 

((N-(N) )Z) = (N) (2-2) 

Here n is the mean homogeneous space density and, as usual, the dispersion 

is the square root of the variance, i.e. (N)1/2. If (N) is small ( S1) the frequency 

histogram is skew to low N but as (N) tends to large values the shape tends to 

that of a Gaussian. 

6 



Now consider the situation in which galaxies are clustered or, 

equivalently, correlated. It is easy to see that, for the case where the dustered 

and unclustered distributions have the same (N), the variation in the count N 

for the clustered galaxies will generally be different. This relative difference in 

the variance is directly related to the form of the two-point autocorrelation 

function. 

As an example, consider the model in which galaxies are clustered into 

tight clumps {of volume v«V) and each dump contains exactly m members. 

Consider, also, that the clumps, rather than the galaxies are randomly and 

homogeneously distributed in space, with the number counted in V being Nc. 

Thus, the mean of the count of N galaxies in V is, 

(N) = m(Nc) {2-3) 

{as N::::mNc) but unlike the previous unclustered distribution, the dispersion in 

this number is not (N)112, as it is the clumps that are randomly distributed. 

For this model the dispersion in the number of dumps in V is (Nc) 1/2 and that 

of the galaxies is m(Nc)112, i.e. {m(N))112. Therefore, in this dustered model 

the variance in the count of galaxies is increased by a factor m over the 

random distribution with the same (N), viz; 

((N-(N) )2) = m(N) (2-4) 

In general, the nth moment for the count N of galaxies is directly 

related to the n-point correlation function and this illustrates, that, although 

the two-point correlation function is limited in its information about clustering, 

higher order functions are more difficult to estimate because of their strong 

dependence on N (Nn). 
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2.1.1.1 The mean homogeneous number density, n. 

The mean homogeneous number density, n, plays an important rOle in 

quantifying galaxy clustering and since it is related to the first moment of the 

galaxy distribution it seems logical to discuss this in advance of the n-point 

correlation functions. The significance of determining the mean density lies in 

its use as a baseline for comparing densities at different points in space; 

clearly a clustered (or anticlustered) distribution will be over (or under) dense 

with respect to the mean. However, in order to make the measurement of n 

meaningful, the galaxy distribution must approach homogeneity at the largest 

scales as is already implicit in models for the evolution of the overall mass 

density. 

To illustrate the difficulty in estimating n, consider the clustered model 

for the distribution of galaxies described above in the introduction to Section 

2. 1. 1. A random placement of the cell leads to an estimate of the density 

n9 =NN where N is the count of galaxies observed in volume V. Since the 

galaxies are distributed in clumps of exactly m members, N has roughly a 

70% chance of lying within ±(m(N))1/2 of the mean count . Expressing this 

dispersion as a fraction of (N), this is (mi(N))1/2 which is small provided 

(N)»m, i.e. provided that the cell, on average, contains many independent 

clumps. If, on the other hand, the clumps are themselves clustered, the 

dispersion in N will increase and so the measurement of n becomes more 

uncertain. Coupled with this there will also be a tendency for cells that are 

closely placed to be correlated and this may lead to a further systematic error 

in the estimate of n. Thus, in order to obtain a fair estimate of (N), this simple 

model would suggest that the largest mean clustering length must be much 

smaller than a typical dimension of the sample volume. This problem of fair 

sampling is persistent in clustering studies (see, for example, de Lapparent et 

al., 1988) and is discussed further in Chapter 5. 

As well as the statistical uncertainties described above, there are also 

the practical difficulties with obtaining and using estimates of the mean 

density. It is clear from an observational point of view that it is necessary to 

select galaxies according to some specific criteria and so it is important to 

discuss the use and limitations of such samples in the current context. In 

particular, in the 17m redshift surveys described in this work, galaxies are 

selected in a blue photographic passband by total apparent magnitude m, so 
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that each galaxy in the sample is brighter than some limit mum. i.e. ~im· 

Thus, at a given distance only a limited range of absolute magnitudes, M, will 

be visible to the observer and, hence, the apparent density is a function of 

red shift 

napp=n(z) (2-5) 

In a Friedmann2 Universe, the relation between the apparent and 

absolute magnitudes for a galaxy selected in a narrow wavelength band is 

given by 

m-M = 51ogta(cz!H 0 )+25+[1.086(1-(b}+K]z = DM(z) (2-6) 

in which the apparent brightness is proportional to the absolute brightness 

divided by the square of the luminosity distance. DM(z) is the usual distance 

modulus of the galaxy. This equation is to first order in the observed redshift z 

with qo being the deceleration parameter (related to no. the density 

parameter, by q0 =0 0 /2 for a zero Cosmological Constant) and H0 is the 

Hubble constant. The units of distance have been expressed in Mpc and the 

K-correction3 has been represented as a polynomial in z. For a mean value 

of4 K=3.0 for blue selected galaxies, the ratio of the K-correction to curvature 

term is 3.1 for q0 =0.1 and 5.5 for qo=0.5 and so the curvature can be 

neglected for reasonable values of q0 . With the selection criterion that 

m:::mfim, equation 2-6 implies that at redshift z only galaxies with absolute 

magnitudes brighter than 

Mmax = mum-DM(z) (2-7) 

are within the sample. Clearly then, to estimate n(z) it is necessary to know 

the frequency distribution of absolute magnitudes (or luminosities) for 

galaxies. 

2 More correctly this is a Friedmann-Lemaitre world model with a Robertson-Walker space­
time metric. 

3 If (A1 ,A2) is the effective wavelength range observed, then at the source this corresponds to 
(A1,A2)/(1+z) and so the K-correction takes into account the difference in the bandwidth 
between the source and observer, as well as the shift in the source spectrum. 

4 This value is the weighted mean K-correction for galaxies of different morphological types in 
the J-photographic band (see Shanks et al. 1984). 
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To model this frequency distribution, the differential luminosity function, 

<P(M)dMdV, is defined as the mean number of galaxies expected in volume dV 

in an absolute magnitude range M to M+dM and, like the mean density, is an 

ensemble average property over fair samples of galaxies. Observations 

indicate that for bright galaxies (see, for example, Efstathiou et al. 1988) the 

distribution is well approximated by a Schechter (1976) function, which in 

luminosity, L, has the form 

¢(L )dL = ¢* (LIL * )ae-UL * d(LIL *) (2-8) 

The characteristic luminosity L * divides the two asymptotic forms of this 

function; at L«L*,<t>(L) behaves like a power law<t>(Lf:(LIL*)a, whereas, after 

the knee at L *, <t>(L) tends to an exponential, rapidly declining to small values. 

The parameter ¢* is a number per unit volume which can be adjusted to give 

the correct density for a given L * and a. Assuming that L is the B-band 

luminosity, then, LIL* can be 'Nritten as 

UL * = y = 1 ()0.4(M* -M) (2-9) 

and so the luminosity distribution as a function of absolute magnitude for a 

Schechter function becomes 

¢(M)dM = 0.4(1n10}t>*y(a+1)e-YdM (2-10) 

With the condition given in equation 2-7, a simple model for the apparent 

density is thus 

n(z) = J ~max(z) ¢(M)dM (2-11) 

which for the Schechter model in equation 2-10 becomes 

n(z) = ¢* J 00 

yae-Ydy = ¢*f(a+1 .Ymin(z)) 
Ymin(Z) 

(2-12) 

The lower limit on the luminosity is obtained from equation 2-9 with 

M=Mmax(z) and r(a,x) is the incomplete Gamma function. 
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Since the observations indicate that the value of ex lies in the range 

-1.25scxs-1 (see, for example, the review by Binggeli et al. 1988) certain care 

should be taken in using this model for n(z) since r diverges as z-0 for as-1. 

However, as the volume in which the intrinsically faint galaxies can be 
observed behaves like 1Q-0.6M and <J>{M)=1 Q-0.4(a+1 )M, the number of low 

luminosity objects tends to zero provided cx>-2.5. 

In the application of the above model for the mean density in equation 

2-11 to a galaxy sample it is important to use a self-consistent estimate of the 

galaxy luminosity function since errors in the estimate of <t>(M)dM may 

percolate through as errors in the correlation functions. Further, it is also 

important that this self-consistent estimate be measured in a way which is 

independent of the observed clustering within the sample, i.e. that the 

density-independent shape of <l>(M)dM is obtained as a function of position. In 

the Schechter model for n(z) in equation 2-12 the parameters M* and ex 

control the shape of <J>(M) while <l>* can be adjusted to give the appropriate 

normalisation. As was indicated earlier, an estimate of the density can be 

obtained from the total number of galaxies in a sample and this will be a fair 

estimate provided that the volume contains many of the largest mean 

clustering elements. Although, in a realistic situation there is uncertainty over 

whether a sample does approach this ideal, there are some reasons for using 

this form of self-consistent normalisation. One of these being that the 

measured density is appropriate to the selection procedures adopted, whether 

these are explicitly known or not and so this may help to avoid spurious 

detections of clustering. The question of the normalisation of n(z) will be 

returned to in Section 2.1.2.3. below where uncertainties in the estimate of the 

correlation function are discussed. 

So far in this section no consideration has been given to how the 

selection method may affect estimates of, say, the clustering in a sample of 

galaxies. Obviously, if there is a connection between the selection quantity 

and the property to be estimated, then the results may depend on the 

selection method adopted. For example, in the model for n(z) in equation 2-11 

above, intrinsically brighter galaxies are found at larger redshifts and, thus, a. 

correlation between clustering and luminosity may lead to different dustering 

results being obtained from a sample selected by apparent magnitude, than 
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one, say, selected by volume, since each sample weights galaxies in a 

different way. Such considerations are obviously important for obtaining a 

clear picture of galaxy dustering and this will be borne in mind in succeeding 

chapters. In particular, in Chapter 3 the selection aiteria for the 171Tl redshift 

surveys discussed in this work will be described in more detail and in Chapter 

5 estimates of dependencies, such as clustering on luminosity, will be 

presented. 

2.1.1.2 Galaxy counts and the normalisation of n(z). 

In the introduction to Section 2. 1. 1, it was shown how the counts of galaxies 

in a cell could be used to estimate the clustering properties of a sample of 

galaxies. In what follows now, the model for n(z) in equation 2-11 is used to 

predict the form of the mean counts for galaxies that are distributed uniformly 

within the sample volumes. This then not only allows for tests of homogeneity 

and fairness of the sample but also provides estimates of the form of 

dustering on various scales. As well as discussing the form of the models for 

these mean counts, some discussion of the uncertainties based on simple 

models will also be given. This then leads to a method for normalisation of the 

models. 

It has been seen how the apparent density depends on redshift 

through the selection of galaxies via apparent magnitude. A simple 

one-dimensional count of galaxies is obtained from binning galaxies in redshift 

such that aN(z) is the count of galaxies in redshift interval z to z+ill. In order 

to model this for the expected count a(N(z)), the volume of the sample is 

needed as a function of redshift. In a Friedmann world model, to 4th order in 

z, this is 

V(z) = (il/3)(czJH0 )3[1-1.5(1+q0 )z] (2-13) 

where .n is the solid angle of the survey. 

Thus, with the mean density in equation 2-11 the mean count of 

galaxies in an interval of redshift from z to z+dz is 

d(N(z)) = n(z)(dV(z)/dz)dz (2-14) 
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and this model for d(N(z)) using the Schechter model for <I>(M) (a=-1 in 

equation 2-12) is shown in Figure 2.1. In this figure the dashed line is for the 

spatially flat Universe with (b=0.5 and K=3.0 whereas the solid line is the 

Eudidean count which ignores K- and curvature corrections. In this latter case 

Ymin(z) in equation 2-12 is 

Ymin = r32 r3 = z/z* z* = HoD*/c (2-15) 

where the characteristic depth 0* is given by 

O* = 1()0.2(mnrrrM*-25) (2-16) 

and so, d(N(z)) scaled as a function of 0* can be simply written as 

(2-17) 

As the characteristic depth z*=0.076 is typical of the 17m surveys 

described in this work, the dashed line figure indicates that K- and curvature 

corrections to the luminosity and volume element are important at redshifts 

z~0.03 and so the simple model in equation 2-17 must be modified to take 

account of this. However, the q0 dependence in the luminosity relation and 

the volume element only has a small effect on the form of the dashed model 

(for example, the dotted line is the model which- neglects the q0 terms in 

equations 2-6 and 2-13) and so the K-correction will be generally kept 

whereas the curvature terms (involving ~) will be omitted. 

The characteristic depth 0* is a somewhat misleading term. It gives 

the distance to which an M* galaxy can be seen and yet still be a part of the 

survey. A more appropriate measure for the distribution d(N(z)) is the peak 

depth which lies dose to the mean or median. In the model in equation 2-17 

(a=-1) the peak lies at 0.660* (0.590* in the dotted model in Figure 2.1) and 

this is a much more useful way to gauge a survey's mean depth. 

As well as the differential counts .AN(z), one can also measure the 

integral counts as a function of apparent limiting magnitude which for 

homogeneously distributed galaxies takes the form 
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Figure 2. 1. The preditions for the mean count d(N(z)) from the 

Schechter model ( cx=-1) for n(z). The solid line is the Euclidean 

model count which neglects K- and curvature corrections to the 

luminosity and volume element. The dashed line is the 

predicted count for q0 =0.5 and K=3.0, whereas the dotted line 

is the count for K=3.0 but no q0 terms. The predicted numbers 

are normalised to (N*)=¢*00*3/3; the number of galaxies 

within the volume z<z* with density 4>* (in the Euclidean limit). 



(N(smum)) = J; d(N(z)) = J; n(z)(dV(z)/dz)dz (2-18) 

The model in equation 2-18 neglecting K- and curvature corrections leads to 

the well-known result that the expected (N(~mum)) and differential d(N(m)) 

number-apparent magnitude counts scale as 10J.6m. Given these models for 

the galaxy counts as a function of apparent magnitude and as a function of 

redshift one can examine how the counts behave for a galaxy sample. 

Deviations of the observed counts from the model can then be used to 

estimate the degree of homogeneity of the sample as well as testing the 

assumptions inherent in the model. 

So what sort of variations from homogeneity are expected given a 

clustered distribution? Consider again the model described in the introduction 

to Section 2.1.1 above in which galaxies are clustered into tight clumps of m 

members. Unlike the situation there the count of galaxies seen in a volume 

will depend on redshift. The probability that a galaxy at redshift z will be in the 

sample is given by the selection function 

cp(z) = n(z)/n (2-19) 

where n is the density expected in the absence of a selection by apparent 

magnitude (according to equation 2-12 this is obtained as z-0. in which case 

n diverges in the Schechter model without a faint-end cut-off if a:s-1). Thus, in 

a volume Vi (»v, the volume of a clump) at redshift Zi where the selection 

function is approximately constant, the observed count of galaxies is roughly, 

for large m (» 1) 

(2-20) 

where Nci is the observed count of dumps in Vi. The expected number over 

many independent volumes is thus 

(2-21) 

at redshift Zi and so the expected variance in the galaxy count is 

(2-22) 
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since the clumps are randomly distributed in Vi. 

Thus, where the volumes Vi are much larger than the clustering length 

this model predicts that the percentage rms error ((Ni-(Nj))2)112J(Nj)=1/(Nc~1/2 

is independent of the number of galaxies observed in each cluster, at least 

until 'Pi (extrapolated) approaches unity whence a single galaxy, on average, 

is observed in each duster ((Nj)=(Nc~) and the fluctuation again behaves like 

a Poisson distribution for the count of dusters. This again may be expected 

since it is the independent clusters which are causing the variance in Ni. As 

will be seen in the next section similar features to this model will also be seen 

when considering uncertainties in the estimates of the two-point correlation 

function. 

One aspect of this model is that the expected variance on the count Ni 

depends on the product cpj(Nj) and so the fluctuations will peak at a slightly 

different position from the peak in d(N(z)). Figure 2.2 shows the product of 

n(z)d(N(z)) for a model (solid line) in which n(z) is given by equation 2-12 with 

a=-1 and d(N(z}) by equation 2-14. The parameters for this model are the 

same as those for the dotted d(N(z)) model in Figure 2.1 (z*=0.076, K=3.0, 

and no q0 terms) and that model is reproduced in Figure 2.2 for comparison 

(dotted line). This latter figure shows that the peak in n(z)d(N(z)) occurs at 

-50% of the peak in d(N(z)). 

In the previous section the normalisation of n(z) was briefly discussed 

and it was suggested that there may be reasons for normalising to the total 

count of galaxies in the sample. Given the differential aN(z) and integral 

N (~mum) counts there are several ways to achieve this. One method (the 

minimum variance method, see Davis and Huchra 1982) would be to weight 

the contribution from the galaxies observed in volume Vi by the inverse 

square of the error, i.e. by 1/cpjm(Nj) (each galaxy by 1/cpjm}. Another would be 

to normalise just to the total number N(~mum). Since this latter count is 

dominated by the peak of the distribution of d(N(z)), the variance in N(~mum) 

is= 'Pipeakm(NiPeak) whereas the minimum variance method gives more 

weight to larger volumes. However, the simple approach is to normalise to 

N(~mlim) since this does not require a prior knowledge of the dustering within 

the sample (given by m) nor a knowledge of which model to assume (which 

may be affected by considerations of field shape, selection function etc.). In· 

the following analysis the simple approach is adopted and this will be returned 
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Figure 2.2. The Schechter model (a=-1) prediction for the 

form of the variance in the number count as a function of 

redshift. The solid line is the model n(z)d(N(z)) for the form of 

the variance which neglects the q0 terms in equations 2-12 and 

2-13 but has a K-correction of K=3.0. As will be seen below this 

model also describes the distribution of the count of galaxy 

pairs (see Section 2.1.2.2 below). The dotted line is the count 

d(N(z)) as in Figure 2.1 (also dotted). 



to in Chapter 3. 

2.1.2 The two-point correlation functions 

2.1.2.1 The spatial two-point correlation function ~(r) 

The two-point correlation function was introduced at the beginning of Section 

2.1.1 via the count of galaxies in a randomly placed cell; there it was seen to 

be related to the width of the frequency distribution of the count N. Although, 

this provides a useful way of illustrating the importance of the function, it is not 

necessarily the easiest way to define its measurement. A more direct method 

is via the count around a randomly chosen galaxy (see Peebles 1980) 

dP = n(1+e(r))dV (2-23) 

In this model, dP measures the conditional probability that a galaxy will be 

found in the elemental volume dV at a separation r from a galaxy randomly 

chosen from the global distribution. The two-point function e(r) thus measures 

the excess probability of finding a galaxy in dV over a distribution which is 

randomly and homogeneously distributed (given by dP=ndV where n is, as 

usual, the homogeneous number density). As intimated in Section 2.1.1.1 e>O 

( <0) implies a clustered (or anticlustered) distribution, whereas e=o is 

homogeneous. The two-point function has been written explicitly as a function 

of r only in keeping with the assumption of homogeneity and isotropy of the 

general distribution. Thus, although this makes this statistic an easy one to 

measure it also limits the information e can provide, since any estimate will 

average the distribution over spherical shells around typical galaxies. 

To estimate the correlation function from a sample of galaxies equation 

2-23 must be manipulated into a form which is more suitable for 

measurement. If galaxies are selected by apparent magnitude then the mean 

number of galaxies expected in volume A Vij at redshift Zj at a separation r 

from a randomly chosen galaxy i is (in which clustering is independent of 

luminosity) 

(Nu(r)) = n(zj)(1+e(r))A.Vij (2-24) 

where it is assumed that e and n are approximately constant over A.V ij· 
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Summing over all volumes AVij lying within the sample volume at separation r 

from i, and all contributions from randomly chosen galaxies i, the expected 

pair count is 

(2-25) 

The expression in curly brackets is the expectation value for the count of 

randomly distributed galaxies around the data 

(DR(r)) = I I n(zj)AVij 
i j 

and thus ~(r) can be written as 

(DD(r)) 
~(r) (DR(r)) - 1 

(2-26) 

(2-27) 

Thus, an estimate of ~(r) can be obtained from the sample by counting 

pairs DD(r) and DR(r) for all galaxies i in the sample and utilising equation 

2-27. However, it should be emphasised that the measurement of the 

two-point function from a sample of galaxies will lead to an estimate of the 

correlation function that will differ in some random or systematic way from the 

global form for the whole distribution given by equation 2-23 and different 

estimators from equation 2-27 will lead to varying results for ~ (see, for 

example, Sharp 1979 and Hewett 1982). 

2.1.2.2 The redshift two-point correlation functions ~v(cr,x) and ~s(s) 

In a sample of galaxies selected by redshift, the Hubble distance vw'Ho cannot 

be inferred directly from the observed velocity since there will, in general, be a 

component of peculiar velocity; 

(2-28) 
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. 
where~ is a unit vector along the line-of-sight and Yp is the peculiar velocity 

vector of the observed galaxy. The form of these additional velocities 

generated in excess of the Hubble flow are either random motions or coherent 

(or streaming) flows and both of these can distort the form of the spatial map 

in redshift space (obtained by assuming that vH =vobs. see Kaiser 1987, White 

et al. 1987). In this case the redshift distance s between two galaxies with 

observed velocities v1 and v2 separated by an angle 8 on the sky is given by 

(2-29) 

and this makes s a poor estimator of the true spatial separation r when the 

line-of-sight relative peculiar velocity w 5 between the two galaxies is -H 0 s. 

The distortion along the line-of-sight at s«vH /H 0 will be approximately 

symmetrical about that direction, suggesting that the correlation function ~v 

estimated in redshift space will be a function of the variables (Peebles 1979) 

(2-30) 

which are the perpendicular and parallel redshift separations between the two 

galaxies (s4::a2.nr2). 

Although the Hubble distance vH cannot be separated directly from 

the peculiar velocity Y.p·~ without a reliable independent estimate of the 

distance, ~(r} can, in principle, be obtained from ~v(cr ,1t) by inversion (see, for 

example, Davis and Peebles 1983). However, in this case ~v(cr,1t) needs to 

be known accurately at all separations for the inversion to provide an 

accurate estimate of ~(r) and this is often difficult to achieve where ~vis small 

and uncertain. Thus, there will again be some dependence of the estimate of 

~(r} on the form of the peculiar motions present in the galaxy distribution 

(and vice versa) and this tends to be a feature of the analysis of ~v(cr ,1t). 

-

A well known form of peculiar motions in redshift maps is the so-called 

'Finger of God' effect caused by random velocities associated with virialised 

clustering. In its simplest form, the frequency distribution of such random 

velocities between galaxy pairs is expected to be isotropic and only slowly 

5 For· a Gaussian distribution of line-of-sight velocities with zero mean, the rms relative 

velocity (w2)112=f2(( ~p-~)2)1/2 
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dependent on the separation between galaxies (Peebles 1976a). Thus if f(w) 

is the normalised frequency distribution of w then ~v(a,7r) can be modelled as 

a convolution off and~; 

(2-31) 

and this accounts for the smearing effect seen in redshift maps. Note that this 

assumes that the observed separation 1r is partly made up by a Hubble 

separation and partly by w/H 0 . In clusters that have separated from the 

Hubble flow this assumption may not be valid. Instead, the whole part will be 

made up by the relative peculiar motion w. 

In a dustering model that develops by gravitational growth, virialised 

motions must be important at small scales where the galaxies have had 

sufficient time to interact and randomise their velocities. Estimates of the rms 
relative peculiar velocity (w2)112 put this scale at ~3h-1 Mpc ((w2)11'2=30C>krns"1, 

see Chapter 4 Section 4.3.3). At larger separations where the density 

contrasts are small, galaxies, on the other hand, are still expected to be falling 

into regions of denser clustering. These larger scale coherent flows also 

influence estimates of the redshift correlation function causing a flattening of 

~v in the redshift direction. Models for this infall and a further discussion of 

virialised motions is given in Section 2.2.1 of this chapter. 

To estimate ~v(a,7r) from a sample of galaxies, a similar method is used 

to that described for ~(r) (equation 2-24). Instead, here, the mean number 

expected in volume A.Vij at redshift Zj from a randomly chosen galaxy i at 

coordinates (a,1r) is 

(2-32) 

As before, the observed counts DD(a,7r) and DR(a,7r) are formed by summing 

the contributions of all volume elements j lying in the sample volume V at 

separation (a ,1r) from galaxy i (the sum over j of A.Vij is just A7rll.Aj(<J) where 

AAi(a) is the area of the annulus in V) and all contributions from galaxies i in 

the sample. Since from isotropy f(w) in equation 2-31 is symmetric in w this 

makes ev(<J,7r) symmetric in 1f and so the counts at (a,7r) can be combined 

with counts at (a,-rr). 
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In the redshift surveys used in this work, samples of galaxies are 

obtained from fields with a small solid angle on the sky and this limits the 

information about ~v(cr,7r) in the perpendicular direction to the line-of-sight. In 

particular the expected count {DD(cr,7r)) for a singe field behaves like 

{DD(cr,7r)) = (1+~(cr,7r)~ilcr J;c(z,cr)n(z)d(N(z)) (2-33) 

where c(z, a) is the average circumference of the annulii within the field 

volume at redshift z. This assumes that 1r is smaller than the dscretrentin..c OJer 

1-Jhich nee) charses s!:Jnifico~J.It can be seen that at a «8fCz/H0 (where 8t is the 

maximum angular extent, in radians, of the solid angle of the field) c(z,cr)=27rcr 

whereas for cr:?;Btcz/H0 then c(z,cr)=O. From Figure 2.2 in Section 2.1.1.2 the 

peak of n(z)d{N(z)) occurs at r-0.023 for the surveys used in this work and so 

DD(cr,7r) will provide useful information up to around the equivalent separation 

in a, i.e. for 0$70e,h-1 Mpc (-Sh-1 Mpc for 8t=4°). This limitation in the a 

direction, which is a result of the narrow field shape used, is an important 

consideration for such surveys. 

As the estimator ~v(cr ,7r) attempts to describe a function of two 

variables, a complementary and less noisy estimator of the two-point function 

is the direction-averaged redshift correlation function ~5(s). This is estimated 

from a galaxy sample in exactly the same way as for ~(r) indicated above in 

equation 2-27, except that s, instead of r, is held constant making ~5(s) an 

average of ~v(cr,7r) over a spherical shell at s. This function can be modelled 

as 

(2-34) 

where J.1 is the cosine of the angle between the line-of-sight and the line 

joining the two galaxies. ~v'(s,J.l) is the function ~v(cr,7r) with the substitutions 

1T = SJ.l and (2-35) 

However, in reality, as was seen with the estimation of ~v(cr,7r), not all 

of the spherical shell will be available for this average in fields which are 

narrow in shape. In particular ~5(s) in this case will be more dominated by 
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pairs of galaxies that lie parallel rather than perpendicular to the line-of-sight 

and this, together with the effects of the selection function, makes this 

estimate more difficult to model directly. A more indirect numerical approach, 

and one which is favoured more by the author, is to use Monte Carlo 

simulations of the galaxy distribution for which the input form of e(r) is known 

and then to estimate ~5(s) using the selection functions, field shapes and 

random peculiar motions which are typical for the data. This then integrates 

the form of the model ~(r) indirectly to output a form for es(s). This approach is 

discussed more fully in Section 2.1.4 below. 

So far, the estimation of ~5 (s) has been discussed for scales of 

separation up to -10h-1 Mpc where peculiar motions are thought to cause 

deviations of ~5(s) from ~(s) but at larger scales ~5(s)-+ ~(s)- ~(r). For a survey 

of galaxies which contains several fields scattered over the sky it is possible, 

at these larger separations, to obtain an estimate of ~5(s) that comes from 

between fields as well as one that is estimated from within the volumes. 

According to equation 2-24 this interfield ~5(s) is measured by counting (Nij(S)) 

for pairs of galaxies i and j that lie between two fields whereas the within-field 

estimate comes from i and j in the same field. A discussion of the interfield 

correlation function is given in Chapter 5. 

2.1.2.3 The two-point correlation functions; errors in the estimates. 

The most important consideration in the estimation of any quantity is the 

careful appraisal of the systematic and random errors associated with its 

measurement. In this section, the form of the errors in the measurement of 

the two-point function are described and, based on the methods outlined 

above, appropriate models for the errors are given. However, to facilitate the 

discussion of these errors, the relationship between ~ and the variance in the 

count of galaxies in a cell (((N-(N) )2), see the introduction to Section 2.1.1) of 

volume Vis explicitly derived as in Section 36 of Peebles (1980). 

Imagine that the randomly placed volume V is divided up into elements 

of volume !::,.Vi where i labels the position of !::,.V in V. IfNi is the count of 

galaxies in volume !::,.Vi. and !::,.Vi is such that Ni is either 0 or 1 (with the 

probability of obtaining more than one galaxy in !::,. Vi being an infinitessimal of 

higher order), then, over many such volumes V the expected count is 
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(2-36) 

since Ni"=Ni. The count in V is thus 

(2-37) 

and its expectation value is 

(N) = I (Nj) = I M Vi = nV (2-38) 

as before. To find the variance in the count N the relation 

((N-(N) )2) = (N2)-(N)2 (2-39) 

can be used where the first term on the RHS can be split up into joint and 

disjoint volumes 

(2-40) 
i j i i;tj j 

the expectation value (NiNy (i;tj) is the joint probability of finding a galaxy in 

Ji Vi and in ll Vj and hence, using equation 2-23, this is given by 

Thus the variance takes the form 

((N-(N) )2) = (N)+ n2 L L ~(f!j)ll Vjll Vj 
i i;tj j 

which can be usefully expressed as 
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With the model given in the introduction to Section 2. 1.1 where 

galaxies are dustered into tight dumps (volume vccV) of exactly m members 

~aVd~ ~(rij)il'lj} = vfv~(r)dV (2-44) 
I J 

and so on comparison of equation 2-43 with equation 2-4 

3 
P> ':.[v (2-45) 

where J3(r) is the integral 

(2-46) 

This is an important relation for estimating errors in counts where the volume 

V is much larger than the volume occupied by typical clusters. However, 

where this assumption is not valid an effective value of m can be taken from 

equation 2-43. 

To illustrate the importance of this model for determining the 

significance of the two-point function consider the estimate in V (no selection 

by apparent magnitude) of ~(r) at large scales (where e is small) for a bin 

between separations r1 and r2. As seen above this estimate is obtained from 

equation 2-27 

~= DD(f) _1 
DR(f) 

(2-47) 

with DD(f) and DR(f) being the observed data-data and data-random pair 

counts respectively. Thus, fluctuations in ~e come from not only DD but also 

DR since this contains an uncertain number of centres 'D' and an uncertain 

normalisation for 'R'. With many estimates of ~e from random placing of V, the 

expected rms fluctuation is 

((~e-l;g)2) 1/2 = ([(DD/DR)-((DD)/(DR) )]Z) 1~ (2-48) 

where ~9 is the global estimate of the correlation function as given by 
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equation 2-23. It may be expected in certain circumstances (where, for 

example, an estimate of the global density is used to normalise the mean 

density n) that fluctuations in the count DO will dominate this error and so 
taking that DR=(DR) 

((DD-(DD) )2) 112 
((l:e-{g)Z)112:::: (DR) (2-49) 

If Np is the number of distinct pairs contributing to DD(F) (DD(r) counts 

galaxies twice according to the method outlined in Section 2.1.2.1 and so 

DD(F)=2Np) and the volume occupied by the shell between r1 and r2 is large 

compared to the dump size then 

((DD-(00) )2) 112 = 2m(Np) 112 (2-50) 

since, like the variance in the number counts (equations 2-4 and 2-43), the 

variance in the pair count is expected to be random in the number of clump 

pairs (NP'm2, Peebles 1973). Thus, from equation 2-49 the rms fluctuation in ~ 

is (Kaiser 1986a) 

(2-51) 

since for this model (DR ( F))=(DD( f)). Thus, the observed form of the 

large-scale ~ can be compared with fluctuations from zero derived from a 

model where galaxies are clustered into clumps of m members. 

In reality, equation 2-51 is only useful to a limited extent as there are 

other considerations to be taken into account in the model. As was seen 

above for ~5(s) field shape and selection function in a magnitude limited 

sample will modify the form of the error and make 5~e given above unreliable. 

For example, m given in equation 2-51, will depend on redshift not only 

through n(z) but also through the fact that the width of the bin in the direction 

perpendicular to the line-of-sight will be limited by the width of the field at 

redshift z. Further, the assumption that the volume of the bin is large 

compared to the dump size is likely to break down at smaller scales making 

equation 2-43 a more appropriate measure of the effective value of m. In any · 

case, at smaller scales the fonn of 5~e will depend on a different combination 
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of effects including the possible inclusion of higher order moments and 

peculiar motions. 

At this point it is worth discussing possible weighting schemes for 

galaxy pairs that might reduce the rms error in ee at large scales in this model. 

If each distinct galaxy pair contributes an independent amount 5p to 500 in 

equation 2-49 then (5DD(r))2::4Np5p2. and so, from equation 2-50, 5p=1/m. As 

the minimum variance in ee is obtained by weighting according to the inverse 

square of the error, each pair should get a weight (Efstathiou 1988) 

1 
Wp = m2 (2-52) 

This can be achieved by giving each galaxy in the survey a weight 1/m which 

again depends on redshift as previously described above. Note that this is like 

weighting according to the selection function for 4m(z)J3» 1 i.e. for m» 1 (Bean 

1983), however, with equation 2-52 there is a natural cut-off to Poisson 

weight, i.e. m-1, as z becomes large. 

As seen in Section 2.1.1.2 the advantage of this form of scheme over 

one which gives equal weight to each galaxy (wp=1, as in equation 2-47) is 

that equal volumes are given equal weight. However, the main difficulty with 

this method is that both the form of the correlation function and the 

appropriate model error for the sample is required in advance of the 

estimation of e. This and the fact that a stronger reliance is made on fewer 

pairs, which may or may not provide a more reliable estimate of e. may make 

this sort of weighting scheme unstable and difficult to implement. There is 

also the problem that at smaller scales m should be modified in some fashion, 

as in equation 2-43, to take account of the smaller bin sizes, otherwise the 

weight in equation 2-45 will make the error at small scales larger rather than 

smaller (Davis and Peebles 1983). Thus, in general, in the analysis described 

in this work wp is set to unity for samples selected in the same fashion and 

Monte Carlo simulations (see Section 2.1.4) are used to calculate the model 

errors; this then deals with the volume dependencies (which would in an 

analytical model be otherwise difficult to calculate) indirectly . 

So far in this section only random errors in the estimate of the · 

correlation function have been discussed. As was seen in Section 2.1.1.1 the 
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mean homogeneous density n is a variable and the measurement of this 

quantity can lead to further systematic uncertainties in the estimate of eCr). For 

a volume V, where N galaxies are observed {where again there is no 

magnitude selection), an estimate of the density would be ne=NN. Similarly, 

an estimate of the correlation function in V, using equation 2-27, would give, 

at a particular bin, 

DD 
ee= --1 

DR 
{2-53) 

{c.f. equation 2-47) where in the data-random pair count. DR, the estimate of 

the density 11e is used. Suppose now that the observed value for 11e was in 

error due to an unspecified cause and that a different value n8 ' was measured 

where ne' is not too dissimilar from ne. In this case, the estimate of the 

correlation function at the same bin becomes 

{2-54) 

where the superscript on R of DR' indicates that a different density estimate 

n8 ' has been used for the random pair count. From equation 2-26, it is dear 

that the ratio of DR to DR' is just given by 

{2-55) 

and so by equations 2-53, 2-54 and 2-55 the two estimates of the correlation 

function are related by 

{2-56) 

Thus, where the original estimate of the correlation function ee was either 

much greater or much less than unity, the erroneous estimate divides into two 

regimes:-

{2-57) 
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In the first instance it can be seen that, where the original correlation 

function is large, the erroneous estimate ~e I differs by a factor of n8 /n8 I, 

whereas where ~e is small ~e I has a constant positive {or negative) offset for 

when ne>ne I (or ne<ne ~). Thus, an error in the density estimate ne of, say, 

-10% can lead to a -10% systematic amplitude difference at small scales and 

a systematic offset of ±0. 1 at large scales. As will be seen in Chapter 5 it is 

important to bear in mind such possible variations in the estimates of the 

correlation function, especially at large scales where ~ is small. 

The source of uncertainty in the estimate of the density, ne. can either 

be random or systematic in origin. As was seen in Section 2. 1.1.1 random 

errors in ne can arise through sampling fluctuations where the observed 

number, N, of galaxies in Vis randomly drawn from a distribution. This is the 

case if the volumes V are well separated so that their mean separation is 

much greater than the largest correlation length between galaxies. However, 

estimates of the density ne are dosely related to those of ~e and it is not a 

trivial matter to separate out the variations of one upon the other. For 
- . 
example, in equation 2-53, if there is a large fluctuation in the count N of 

galaxies in V then this will also tend to be reflected in a larger pair count DO 

and a larger number of centres D and so fluctuations in n9 caused by 

variations in the sampled N are likely to be smoothed out, to some extent, in 

the ratio DO/DR {Davis and Peebles 1983). 

To obtain a handle on the expected variations in the estimate of the 

correlation function caused by fluctuations in the estimated density, the model 

above for an erroneous density estimate in the pair count DR will be 

expanded in more detail. In this case let the error in ne be assumed to be a 

process that is independent of the dustering in V, and, further, let the volume 

V be large enough so that ~e and ne approach their global forms; i.e. ~e=~g 

and ne=n9. Repeated observations of the correlation function ~a· {obtained 

with density measurement nel) in different volumes V leads to an expected 

rms variation of {see equation 2-56) 

({~1-l;g)2)112= {1+l;g)({ ~ -1 )2)112 
ne 

{2-58) 

Thus, with the assumption that nel is a small random fluctuation from ng 
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(2-59) 

then equation 2-58 becomes 

((~' -~)2) 112 = (1+l;g)(-m2)112 (2-60) 

to second order in e. For a random fluctuation about ng, (e)=O leading to the 

result that 

((~' -l;g)2) 1/2 = (1+l;g)(e2) 1/2 (2-61) 

and so at small scales (where e9»1) this is the expected rms variation in the 

observed density ne • about ng scaled up by the correlation function whereas 

at large scales (where eg« 1) this is just the rms variation. 

Magnitude errors are an example of the type of error that can lead to 

fluctuations in the observed density. For instance, suppose that galaxies 

catalogued in V each have a small magnitude error NT1 which is the same for 

all objects in V, and that repeated observations of different volumes leads to a 

fluctuation in Nn. For a given observed volume, which is not very deep 

V»(D*)3 (2-62) 

which follows from equation 2-18 in the presence of a constant luminosity 

function. As before it is assumed that V is large enough so that ne=ng. Thus 

provided 0.6NT1 is small then 

ne' = ng(1-Q.61n(10)NT1) 

and so 

((ne· -ng )2)112 = 0.61n(10)(Am2)112 
ng 

(2-63) 

(2-64) 

i.e. the rms fluctuation on the density is directly related to the expected rms. 

fluctuation on the magnitudes from volume to volume (note that (LY11) is 

assumed to be zero in keeping with equation 2-59). 
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In general it should be noted that the expected value of te • over many 

volumes V does not equal that of the global-function e9 . In this case 

(2-65) 

with the assumptions above that the volume V is large enough that te=tg and 

n8=n9. Further from equation 2-59 

<ee·> = (1-t<e2))(11-l;g)-1 (2-66) 

again to second order in e. Note the dependence on e here is -(e2) whereas 

the rms fluctuation depended on (e2)112. This makes deviations of <te ')from 

~9 of the order -1/(e2) 1/2 smaller in this case. Thus again, like in equation 

2-56, there is a systematic difference between (~8 ') and ~9. Here where the 

true correlation function is much greater than or less than unity it is found that 

(2-67) 

and this is similar to the findings of Groth and Peebles (1977, equation 31) 

and Maddox et al. ( 1990a). The enhanced correlation function is 

understandable since the random errors in the estimation of the density 

mimics large-scale clustering in the volumes V and this shows up here. Note 

that the source of the increased correlation function comes from equations 

2-56 and 2-59; symmetric variations in ne' do not lead to symmetric variations 

in ~a·, with the bias being to positive correlations. 

So far sampling variations in the density ne due to clustering have not 

been discussed because of the interconnection between the estimated 

correlation function and ne in this case. However, as was noted above, the 

estimator for ~e in equation 2-53 is expected to be quite stable to clustering 

induced density fluctuations because Of ~ concew09 effect lf"l t:re 

rotio o+ DD/ oe c see above.). Suppose now that in volumes V, ~e 

approximates the global function ~9 but the estimator ~e· is measured using . 

the global density. From equation 2-56 it is seen that the rms fluctuation in ~a· 

expected in this case is 
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(2-68) 

which is very similar to equation 2-58. The rms fluctuation on the density for 

volumes of the same size is just 

(2-69) 

where N and (N) are the observed and expected count of galaxies in V 

respectively. According to the model for the clustering described in the 

introduction to Section 2.1.1 in which galaxies are gathered into tight clumps 

(vccV) of exactly m members, the variance on the observed count is given by 

equation 2-4 and thus, 

(2-70) 

which implies 59'e=(m/(N)) 1/2 at scales where e9 » 1 and Be=(m/(N)) 1/2 where 

e9 ((1. In this case the expected value of ea· is just <ee')=~g as may be 

anticipated since the expectation of n8 , (ne)=ng. 

As stressed above such models for the uncertainty in e(r) arising from 

clustering induced fluctuations must be treated with caution and are only a 

guide to the likely size of the errors. In a magnitude limited sample the 

variation in the count N observed to a limit mlim can be obtained from the 

appropriate (for the limit) two-point angular correlation function w(S) defined in 

a similar fashion to e(r) (see Section 2.1.2.4 below). In this case 

(2-71) 

(Peebles 1980, equation 45.6) where w(S) is integrated over the solid angle n 
of the survey. As will be seen in Chapter 5 this is a useful way of predicting 

the rms variance in the counts if a model for e(r) and the luminosity function 

for the sample is assumed. 

Finally, there is a further systematic uncertainty in the observed 
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correlation function arising from the use of the observed numbers of galaxies 

in a sample to normalise the mean background density n. This so called 

integral constrai.nt (Peebles 1980, Section 32) can be illustrated with a simple 

heuristic description again based on the model with galaxies distributed in 

tight clumps of m objects per clump (see the introduction to Section 2.1.1 ). 

Thus, at a separation r much larger than the size of the clumps but much 

smaller than the volume of the sample the observed number of data-data 

pairs for a sample of N galaxies is 

N 
ne=-v (2-72) 

since siting the centre of the shell of volume a V on a galaxy (and thus a 

dump) has biassed the mean density for this pair count low by ne-rnN. As the 

data-random count is just 

DR:::: Nf1ellV (2-73) 

this implies ~e will be biassed low by a constant of order (see equation 2-53) 

m 
C=-­

N 
(2-74) 

and this is small if the number of galaxies in the sample is large with respect 

to the mean number of galaxies per cluster. 

This simple heuristic model is difficult to apply to the magnitude limited 

surveys discussed in this work because of the necessary inclusion in this 

model of the field shape and selection function appropriate to these samples. 

In this case it is simpler to refer directly to the constraint on the estimate ~e in 

such a sample, viz; 

(2-75) 

which relates the integral number of pairs (LHS) observed in a volume V 

(»D*3) to the total number available (RHS). Here ne(R) is the estimate of the 

density at distance R (=cz!Ho) and since this is normalised to the observed· 

number of galaxies in the sample (brighter than some limit), this can be 
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written as 

N 
ne(R) = ~ ng(R) (2-76) 

Here n9(R) is the global estimate of the mean density and it is assumed that 

the luminosity function variations are small from sample-to-sample. Thus 

equations 2-75 and 2-76 give directly that 

(2-77) 

and, assuming that ~e differs from ~g by some constant C (as suggested 

above) this implies 

As will be seen in the following section (equation 2-85) the integral on 

the RHS over the volume V is related to the integral of the global angular 

correlation function w(812) over the solid angle n of the sample so that 

and together with equation 2-71 this gives 

c:::: -( l __ 1 ) - ((N-(N))Z) 
N ~ (N)2 

(2-80) 

and this relates C to the expected variation in the count of objects in the 

sample brighter than the apparent limit. Taking the expectation value of C 

over many independent samples and expanding 1/N as a function of (N) it can 

be shown that, to second order, 

m' 
(C)=-­

(N) 
(2-81) 

similar to equation 2-74 above except that m' is defined like equation 2-4 with 
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N refering to the count of galaxies brighter than the limit of the sample. This 

again is a particularly useful way to predict this effect on the estimated 

correlation function. 

2.1.2.4 The projected two-point correlation functions C1l(9) and mv(a) 

Prior to the advent of systematic redshift surveys objective studies of 

large-scale structure in the Universe were confined to 2-d catalogues of 

magnitudes and positions. Studies of the large-area (-half sky) maps such as 
those of Zwicky et al. (1961-68) and Shane and Wirtanen (1967, the Lick 

Catalogue), by Peebles and his collaborators (see Peebles 1980 and 

references therein) led to a first-order analysis of the galaxy distribution which 

motivated much of the present day work into the formation of galaxies and 

galaxy structures. With the construction of more homogeneous galaxy 

catalogues in the southern galactic cap from objective machine 

measurements (Heydon-Dumbleton et al. 1989, Collins et al. 1988b, Maddox 

et al. 1988, Maddox et al. 1990b, Maddox et al. 1990c) of deep UK Schmidt 

plates there arises the opportunity to obtain a more consistent picture of 

galaxy clustering from both the 2-d and 3-d distributions. However, because of 

the loss of signal-to-noise of the dustering in projection, the 2-d data is more 

prone to systematic errors such as non-uniformities in plate-to-plate detection 

and this makes the observation of structure at large angular (and spatial) 

scales still somewhat uncertain. 

The two-point angular correlation function is defined in a similar way to 

that of the spatial function (see equation 2-23); 

dP = N(1+w(8))d0 (2-82) 

Here dP measures the conditional probability that a galaxy will be found in an 

elemental solid angle cf.Q at an angular separation 8 from a randomly chosen 

galaxy. N is the mean density of objects per unit solid angle at the limit of the 

catalogue, i.e. N =(N(:::mum))/il in equation 2-18. 

As stated in the introduction to Section 2.1 the distinct advantage of the 

two-point correlation function is that there exists a simple linear integral 

relation between its spatial and angular forms (Limber 1953). In the Euclidean 
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limit and in the absence of a correlation between luminosity and clustering, 

this relation can simply be obtained as follows. From equation 2-23 (see also 

equation 2-41) the probability of observing a galaxy in volumes dV 1 and in 

dV2 at distances R1 (=cz1/H0 ) and A2 respectively is 

(2-83) 

where n(R) is the apparent mean homogeneous density at distance R and dV 

has been written as R2dRcf.O. The probability dP' that a galaxy lies in dQ1 and 

in d0.2 comes from summing all contributions from volume elements along the 

line-of-sight 

. Thus, from equation 2-82 it follows that 

(2-85) 

with 

(2-86) 

For the case where the correlation length between galaxies is much 

less than both the width of the distribution n(R)R2dR (which is d(N(R)), see 

equation 2-14 and Figure 2.1) and the distance to its peak, then equation 

2-85 becomes 

(2-87) 

This is the small angle approximation in which the separation r122 is written as 

a sum of the parallel (r112) and perpendicular [(R1812)2] distances. From this it 

is clear that ~(r) is smoothed in projection by both the integration over the 

separations r11 and R1 and this makes w(e) a poor discriminator of true spatial 

features in ~(r) (Fall and Tremaine 1977, Peebles 1980). 

With the scaling for the distance R as in equation 2-15 (R=~D*) w(e) 
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for a Schechter function (equation 2-8) takes the useful form (equation 2-87 
with equations 2-12 and 2-15) 

1 
=-W(SD*) 

D* 

(2-88) 

and this can be numerically integrated for any function e(r) to output the 

corresponding function w(e). Peebles (1980, Section 52) has shown that this 

approximation is reasonably accurate out to scales of -300. 

In Figure 2.3 the original observations of w(e) from the ms:s19m.o Lick 

(Groth and Peebles 1977) and the rns:s1sm.o Zwicky Catalogues (Peebles 

and Hauser 1974) are presented together with the results from a small 

objective machine-measured catalogue to bJ:s21m by Stevenson et al. (1985). 

Although these samples have been selected at different magnitude limits the 

scaling relation for w(e) (similar to equation 2-88 but incorporating curvature 

and K-correction terms) allows the deeper catalogues to be compared at the 

same depth as the Zwicky Catalogue. These results show that w(e) is quite a 

good power law in the range 0.04°:$8:SS0 with 

w(e) = 0.65 e-o.a (2-89) 

and this is shown as a dashed line in the figure. However, at scales larger 

than -6° there appears to be a break away from this small-angle behaviour 

although the position and existence of this feature is somewhat uncertain. 

From the peak in the AN(z) distribution in the CfA ms:s14m.s sample (Davis 

and Huchra 1982) the peak in the Zwicky ms:s1sm.o d(N(R)) sample is 

predicted to occur at Dpeak=SOh-1 Mpc corresponding to a 0* of -7Sh-1 Mpc 

and on a naive basis this would imply a break in the spatial correlation 

function at roughly -Dpeak8break =Sh-1 Mpc (d(N(R)) is peaked around Dpeak; 

see Figure 2.1 of Section 2.1.1.2). 

The evidence for a pure power law in w(e) over such a large angular· 

scale was taken as evidence that e(r) also exhibits a scale-free form (Peebles 
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Figure 2.3. Observations of the angular correlation function 

w(S) at the depth of the Zwicky Catalogue. The dashed line the 

power law which describes the observations in the range 

0.04°~8~6°. The solid line is the model for w(S) (equation 2-88) 

in which e(r) is the power law e(r)=(4.8/r)1.8 for r~Sh-1 Mpc and 

e(r)=O at larger scales. In this model a=-1 and D*=76h-1 Mpc. 



1974, see also the introduction to Section 2.1). With the assumption that ~(r) 

is represented as 

~(r) = (rJr)Y (2-90) 

with r0 as a clustering scale length andy the power-law index, ~(r) can be 

integrated via equation 2-88 to give 

w(O) = A01-v (2-91) 

The amplitude A for 0 in degrees is 

Joo ~r(a+1,~)2f35'Y 
A= (~ )Y( 1 ~0)1-v 2Hy ---'JO:.,_oo ____ _ 

[ ~r(a+1.~)~ ]2 
0 

(2-92) 

and Hy. given by 

Hy = J: dx(1+x2)-vl2 (2-93) 

converges to a product of Gamma functions for y> 1 

r( 1/2)f[(y-1 )/2] 
Hy = 2f()f2) (2-94) 

Thus, from the observed result for w(O) summarised in equation 2-89, y-:::1.8 

and rcr:4.8h-1 Mpc with the above D* (since for a=-1 A:::93(rJ0*)1.8) which is 

dose to the results in Groth and Peebles (1977). 

The discovery that a possible break scale in ~(r) occurs roughly at 

where ~(r)=1 is of strong physical interest since, on the assumption that 

galaxies trace the mass distribution, this separation is approximately where 

there is expected to be a transition between linear (~<1) and non-linear (~> 1) 

clustering (Davis et al. 1977). However, such inferences from the data need 

careful inspection in the light of the smoothing properties of w(O} (equation 

2-87). In Figure 2.3, the solid line is a direct integration, via equation 2-88, of 

a two-component model for ~(r); ~{r}=(4.8/r)1.8 for r::sSh-1 Mpc and ~(r)=O at 
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larger scales. As can be seen at angles less than -1 o there is close 

agreement between the model and data as might be expected and, further, at 

much larger separations the shape in the turnover of w(e) is also well 

matched. However, as noted by Bean (1983) the break in the model appears 

to occur at a much smaller angle than predicted above (8breaJ<=6° is marked) 

and this is a result of the small-scale (<5h-1 Mpc) form of ~(r) smoothing out 

with the break in projection. 

As pointed out by Soneira and Peebles (1978) these observations 

would seem to imply there is more large-scale power in ~(r) than the above 

model seems to suggest. However, because of the projection properties of 

w(e) this does not necessarily imply a simple continuation of the spatial 

power-law to larger scales (see Chapter 5), although this is a possibility. A 

careful analysis of the 2-d and 3-d distributions, as said above, may lead to a 

more consistent picture for the clustering. 

As seen in Section 2.1.2.2, in a redshift catalogue the correlation 

function ~v(o ,1r) differs from the spatial correlation function ~(r) at small 

separations due to the peculiar motions between galaxy pairs. However, as 

this distortion is confined to the line-of-sight, it is, as in w(e), possible to infer 

information concerning the form of ~(r) from a projection of ~v(o,Jr) along the 1r 

direction (Peebles 1979, 1980, Bean 1983, Bean et al. 1983). This makes use 

of pair conservation 

(2-95) 

( whele ·ire /irni+ 7lwt" i.> intnxluced -kr 1te c:toseNO'horQ/ tea.Sai'IE> d,.t;c.v.G.Eed l:eicw) 

which becomes 

(2-96) 

in the limit where 1rcut is large enough to indude the majority of pairs that are 

smeared by peculiar motions. For example, in the random motion model for 

~v(o ,1r) in equation 2-31, this will occur when 1rcut))(w2)112fH0 . 

The function wv(o) is then, in this limit, similar to the r11 integral in 

equation 2-87, but differs from w(8) in that the redshift information can be 

used to increase the signal-to-noise of the observations by excluding possibly 

37 



uncorrelated pairs at separations 1r>1rcut ·(in equation 2-87 the projected 

function is further smoothed with the distribution [d(N(R))/dR]2). Further, by 

reducing 1Tcut to where the galaxy signal-to-noise in ~v(a,7r) is significant, the 

inclusion of systematic offsets in e caused by background normalisation errors 

(see Section 2.1.2.3) can be avoided. However, as with w(e), the projection 

inherent in wv(a) makes the interpretation of the data ambiguous, and a 

careful treatment by direct modelling (i.e. numerical integration of equation 

2-96) is required, to understand the effects. 

Firstly, with a power-law correlation function for eCr) as in equation 

2-90, Wv(a) (equation 2-96) becomes 

Wv(a) = Hy(7rcut/a )r 0Ya(1-y) (2-97) 

Here, Hy(7rcutfa) is the integral 

Hy(1rcutla) = J :cut/a ( 1+x2)-yl2ctx (2-98) 

which asymptotes to Hy (equation 2-94) when 7rcuta»1 and y>1. In Figure 2.4 

the solid line with 1rcut=10h-1 Mpc, y=1.8 and r0 =Str1 Mpc is compared to the 

asymptotic model, 7rcut»a, (dashed line) with the same parameters. As may 

be expected, at small a (S1 h-1 Mpc) the dependence on 7rcut is relatively 

weak, but at larger separations the solid model decreases more rapidly than 

the power law of a-a.a, in spite of integrating the power-law eCr) to a larger 

separation r (for example, at a=10tr1 Mpc, r=14tr1 Mpc). To make this more 

apparent, the dotted line in Figure 2.4 is a direct integration of equation 2-96 

in which the correlation function is given by eCr)=(5/r)1.a for r~10tr1 Mpc and 

eCr)=O at larger scales; this decreases even more rapidly than the above 

models at the largest separations. 

This fall below a single power law in the model Wy(a) at a ~1tr1 Mpc is 

similar to that seen in w(e); the finite cut-off in equation 2-95 acts like a break 

in ~(r) and so the correlation function ~at rs10h-1 Mpc is effectively smoothed 

with ~=0 at larger scales (Bean 1983). The uncertain nature of ~(r) at r~10h-1 

Mpc makes wv(a) at a ~1 h-1 Mpc difficult to interpret and sensitive to the 

choice of 7rcut· In this light it is inadvisable to fit a a-a.a power law to the entire 

range of data up to a= 1 Oh-1 Mpc, as did Bean et al. (1983) for the 
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Figure 2.4. Model predictions for the projected two-point 

correlation function wv(a). The solid line is the model in 
equation 2-97 with ~(r)=(5.0/r)1.8 integrated up to a 1Tcut of 
1 Oh-1 Mpc. The dashed line is the power-law asymptotic form 

of this equation (same parameters) with 1Tcut»a. The dotted line 

model is a direct integration of equation 2-96 in which ~(r) is 

~(r)=(5/r)1.8 for rs10h-1 Mpc and ~(r)=O at larger scales. The 

open symbols in this figure illustrate the effects of random 

peculiar motions; here equation 2-95 is integrated directly 

using a model for ~v(a,1T) from equation 2-31. 



Durham/AAT Survey. A more consistent estimate of the correlation function at 

small scales may come fran o::s1h-1 Mpc. 

To assess the importance of the assumption of a finite 7rcut for inclusion 

of the majority of pairs smeared by peculiar motions, Figure 2.4 also shows 

(at various values of a) a direct numerical integration of equation 2-95 with a 

range of pair-wise rms velocities (w2)1/2 (the model for ev(o,7r) comes from 

equation 2-31). Here the spatial correlation function is again e(r)=(5fr)1.8 to a 

7rcut of 1Qrr1 Mpc and the figure shows that even with (u7)112=600kms-1 this 

limit in 1r leads to an underestimate of U>v(o) of only -6% in r0 . However, this is 

a model for random motions; there is also a possibility that infall may be 

present in the data and this is discussed later in Chapters 4 and 5. 

2.1.31he three-point correlation function 

The three-point correlation function is related to the third moment of the 

distribution of counts in a cell (see Section 2.1.1) and, as such, is more 

difficult to estimate than the two-point function e(r). A more practical definition 

of this function is through the probability of obtaining triplets of galaxies 

(Peebles 1980, Section 34) 

(2-99) 

in which dP is the probability of finding a galaxy in each of the elemental 

volumes dV1, dV2 and dV3 at the vertices of a triangle of sides r1. r2 and r3. 

~ (r1 ,r2.r3) is the reduced part of the 3-point function and, under the 

assumption of homogeneity and isotropy of the general galaxy distribution, is 

written as a symmetric function of r1, r2 and r3. Note that equation 2-99 

describes the distribution of galaxies around randomly chosen pairs, and so, if 

galaxies are tracers of the mass distribution, the three-point function provides 

the form of the gravitational potential well for such galaxies. As will be seen in 

Section 2.2.2. 1 below, this is an essential part of the Cosmic Virial Theorem 

(Peebles 1976a) applied to the distribution. 

To estimate ~(r1 ,r2,r3), consider the mean count of triplets of galaxies 

(DOD) in some small but finite volumes ilV2 and llV3 given that a galaxy has 

already been identified in ilV1 (Peebles and Groth 1975) 
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(2-100) 

in which (DRR)=n2aV2aVs. is the count of randomly distributed pairs around 

the data. The count of data pairs in aV2 and aVs for a randomly distributed 

galaxy identified in a V 1 is 

(2-101) 

where r1 is opposite the vertex for volume a V 1· Likewise, similar expressions 

can be written for each vertex, and so the total data pair count around a 

randomly placed galaxy is 

(DDR) = (RDD)rJ<DRD)zt(DDR)s (2-102) 

Thus it is easy to see that in equation 2-100, for aV1=aV~aVs 

(2-103) 

and so 

(ODD) - (DDR) 
~(r1.r2,r3) = (ORR) + 2 (2-104) 

It follows that an estimate of ~(r1.r2.r3) can be obtained from counting triplets 

ODD, DDR and ORR observed in the data for fixed triangles of sides r1. r2 

and rs and utilising the above equation. 

In redshift surveys of galaxies, as with the two-point function, the 

redshift form of the 3-point function is distorted by peculiar motions for scales 

where Hor=l'tpl· Thus, in order to reduce the effects of these velocities, a 

projected form of the three-point function zv(o1,02,o3) can be measured in a 

similar way in which OOv(o) was defined for ev(o,1l') (see Section 2.1.2.4). The 

projected 3-point function 7.v can be obtained from counting triplets ODD, DDR 

and ORR for fixed triangles of projected sides o 1. 02 and 03 within all 1l' 

separations up to a maximum 1l'cut· The expectation value of zv is then 

identical to ~ in equation 2-104 above in terms of these triplet counts. 
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In the surveys discussed in this work, the narrow fields again limit 

information about Zv(o 1.02,03) to separations o=Sh-1 Mpc (where galaxies 

have been given equal weight in the triplet counts). Thus unlike the two-point 

function, which can be derived from ~ to large s, the three-point function 

information gathered from such surveys is quite restricted. From the analysis 

of galaxy catalogues, Groth and Peebles (1977) showed that ~(r1.r2.r3) may 

be reasonably approximated by 

(2-105) 

and so zv looks like 

(2-106) 

where Wv(o) is formed from the mean data-data and data-random counts to 

1I'cut 

(DO) 
Wv(o)= --1 

(OR) 
(2-107) 

Hence, for the Cosmic Virial Theorem studies in this work, this form is 

assumed and so Q, the amplitude of the three-point function, is the single 

independent parameter to be estimated. 

2.1.4 Simulations of the galaxy clustering 

As suggested in Section 2. 1.2.2, a convenient way to model the measurable 

quantities for a sample of galaxies, where the effects of field shape and 

selection function are important, is through static Monte Carlo simulations of 

the galaxy clustering. Soneira and Peebles (1978) devised a suitable model 

for the galaxy distribution based on hierarchical clustering and this gave 

results for the spatial two- and three-point functions which agreed in form 

with the results summarised in equations 2-90 and 2-105. Following this, 

Bean (1983) and Bean et al. (1983) used this model to simulate the 

distribution in the Durham/AAT redshift survey (Peterson et al. 1986, see 

Chapter 3). In this work the methods developed by these authors are. 

continued but slightly different constructions and parameters are used which 

aim to reproduce the results for the studies in Chapters 4 and 5. 
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Each simulation is intended to represent an independent realisation of 

the model dustering process much in the same way that a fair galaxy sample 

is assumed to be an independent realisation of the overall galaxy distribution. 

This statistical model is achieved by randomly drawing a population from the 

probability distribution for each process (the Monte Carlo approach). With an 

accurate model for the clustering and selection properties of the galaxies in 

each sample it is then possible to form an ensemble of such simulations to 

derive statistical averages and standard errors for the observable quantities. 

As it is necessary to obtain the errors in the estimate of the interfield 

correlation function (described in Section 2.1.2.2) an important consideration 

for the model was the requirement for each simulation to represent a single 

clustering process over the exact positions of the field volumes in the 17fll 

surveys considered in this work. In view of this, the method for constructing 

the simulations was as follows. The hierarchical clump is a tree-like 

distribution constructed from pairs of points placed at random within spherical 

volumes of decreasing radii. The first two points, initially placed at random 

within a sphere of radius R1, become centres for the spheres, radii R1/A of the 

second level. The procedure is repeated up to the ninth level where 

eventually the 29=512 points in spheres of radii R11A8 are taken to represent 

the positions of galaxies. Such clumps randomly distributed in a volume 

reproduce the form of the two- and three-point spatial correlation functions in 

equations 2-90 and 2-105, over separation r from R1/t.8:Sr:SR1. In the 

catalogues in this work R1=6h-1 Mpc and 1-=1.8, thus giving e(r)::::(rc/r)1.82 and 

~(r)ocae(r)2 with Q::::0.5 (Peebles 1980, Section 61) over the range 

0.05:Sr:S6h-1 Mpc. At separations r?Sh-1 Mpc, e(r) breaks away from this 

small-scale behaviour and tends to zero at rm~26.8h-1 Mpc (the maximum 

correlation length between two galaxies). 

In view of the selection of galaxies by apparent magnitude, centres for 

the clumps were placed randomly within a spherical volume defined by 

Z!:;Zmax· Clumps that lay beyond the boundary of any field by more than rmax/2 

were rejected. For each clump that intersected a field, a new hierarchy was 

constructed as described above, but, to match the amplitude B=r01.82 of the 

observed small-scale (r:SR 1) correlation function, m points were chosen at 

random from the 512 available. Following this, each of these points was 

assigned an absolute magnitude in the range -21.5::sM::s-17.5 from a 
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Schechter (1976) function with M*=-20 and a=-1 (H 0 =100). Apparent 

magnitudes for the 'galaxies' were then calculated according to equation 2-6 

with a K-correction of K=3.0 (and no curvature correction) and those fainter 

than mum were rejected. The remaining galaxies were then assigned a 

line-of-sight peculiar velocity from a frequency distribution f(v)ocexp(-clvl312) 

that approximates the observations of such one dimensional random motions 

in the simulations of Efstathiou and Eastwood (1981). The dispersion (v'l)112 of 

this distribution was adjusted to give a pair-wise rms peculiar velocity of 
(w'l) 1~35Qkms-1. 

The simulation is terminated when the number of galaxies in the 

catalogue matches the number N(~mum) observed to that depth. According to 

Soneira and Peebles (1978) the mean density within dusters at resolution rat 

redshift z in this hierarchical model is 

1\(z)occp(z)mrY (2-108) 

where cp(z) is the selection function (equation 2-19). As the observed 

correlation function is ~e(r)=Br'Y at 0.05 ~r~6h-1 Mpc and since 

with z approximately at the peak of n(z)c:(N(z)), this implies 

m Soc­
- n 

(2-109) 

(2-110) 

Therefore, for an n fixed by N(~mlim). the amplitude 8 can be altered by 

varying m proportionately. 

For a match to the Durham/AAT and Durham/SAAO surveys 20 

catalogues of simulations were created with mum=16m.8 (z*=0.076, see 

equation 2-16 and Figure 2.1) and Zmax=0.1. With the observed number of 

galaxies per square degree at this depth being JV=:5.8deg.-2 (N(~mum)=1141 

for the 14 fields, see Chapter 3) a small-scale amplitude of 8=21 was 

obtained for m=38 and this gives a reasonable representation of the 

observations (see Chapters 4 and 5). To match the sampling in the 

Durham/SAAO Survey the galaxies in the simulated fields of this catalogue 
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were ranked in order of increasing apparent magnitude and every third object 

chosen for subsequent analysis. Figure 2.5 shows the observed mean spatial 

function ~(r) (solid line) for all the galaxies in the 20 simulations together with 

the errors of estimation. The dashed line is the model ~(r)=21r1.B fitted to the 

power law below 3h-1 Mpc and as can be seen there is some indication that 

the estimates fall below this model between 3<r<6h-1 Mpc suggesting that the 

break in ~(r) is somewhat smoother than suggested above. 

Finally, 20 catalogues of simulations were also generated for the 

Parker et al. Survey and the parameters chosen here were fTllim= 16.25 

(z*~0.059) and Zmax=0.07. In this case 5 fields similar in construction to the 

Parker et al. field were generated in each catalogue and a similar amplitude of 

&::21 was obtained with N ~2.9deg.-2 (N(~mum)=415 over 5 fields) and m=38 

(as before). A single field from each catalogue was used in the subsequent 

analysis. 

2.2 Measures of peculiar motions and their relation to the clustering of 
mass in the Universe 

The motions of galaxies that are observed as a distortion of the radial Hubble 

flow of the Universe have been well documented over the years and have 

been seen to occur in a wide variety of structures; from orbital motions in 

individual pairs of galaxies (Turner 1976), through to the dispersions in groups 

(Huchra and Geller 1982, Nolthenius and White 1987), clusters (Kent and 

Gunn 1982, Lucey et al. 1986) and even, possibly, superclusters (Bahcall et 

al. 1986). Recently, the observed dipole in the Cosmic Microwave 

Background (Fixsen et al. 1983, Lubin et al. 1985) has also led to a concerted 

study __ ~f peculiar motions of galaxies in the local (~1 OOh-1 Mpc) 

neighbourhood (Burstein et al. 1986, Dressler et al. 1987). In its simple 

interpretation this dipole implies the Sun is moving in the cosmic frame with 

a velocity of 377kms·1 towards 1"=267°, b"=50°. However, the Sun is known 

to be moving with respect to the Local Group with a velocity of 300kms·1 · 

towards 1"=90°, b"=0° and so the Local Group is, in the cosmic frame, · 

estimated to have a velocity of 614kms·1 towards 1"=269°, bll=28° (Lynden- i 

Bell 1987). Recently Rowan-Robinson et al. (1990) have claimed that mass 

distributed like IRAS galaxies may be responsible for this motion although . 

_thi~ remains a matter for strong debat~: 

As was suggested earlier in Section 2.1.2.2, it is worthwhile, at this 
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point, to make a clear distinction between two particular forms of peculiar 

motion (see Kaiser 1987, for example). To do this, suppose that in a small 

region of space it is possible to obtain all the peculiar velocity vectors Ypi for 

all the galaxies i that lie within the region's boundary. If the average (yp) has a 

non-zero value that is unlikely to have arisen by chance then the 

interpretation is that this region of space is undergoing a coherent or 

streaming flow with velocity (yp) for the particular scale size of the region 

viewed. If the velocity coherence length is larger than or of the same order as 

the dimensions of this region, then nearby volumes will exhibit similar velocity 

vectors. 

On the other hand, it is also possible that there is no coherent flow on 

this scale, in which case the average (yp) will be consistent with zero ( Q). but 

the individual velocities Ypi are non-zero (as shown by, say, the finite width of 

the frequency distribution in the magnitudes of Ypi). Here the galaxy velocities 

are described as incoherent or random over this scale size and velocity 

vectors observed in neighbouring volumes would not correlate. 

Generally, both forms of motion will be present in the galaxy 

distribution but to varying degrees depending on the position and size of the 

region studied. Since gravity is the dominant force acting on large scales it 

may be expected that most peculiar motions have been generated by the 

growth of small perturbations in the uniform mass (or energy) density. This 

perturbation can be characterised at any position ~ by the density contrast, 

------ (2-111) 
Pb Pb 

where Pb is the background mass density. There are two distinct regimes for 

the growth of structure in the Universe; in the regime where the density 

contrast is small, i.e. 5p/pb~1. perturbations grow in a linear fashion such that, 

after decoupling of matter and radiation, 5p/pb at time t is related to the 

fluctuation at an earlier epoch t0 by 

(2-112) 

where A(t) is an amplification factor depending on t. For example, in an fl0 = 1 

Universe A(t)oct2/3 for the growing mode of perturbations. However, where 
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6p/pb~1 growth of structure is non-linear and, generally occurs at a faster 

rate. 

For example, at small scales where the dustering eventually becomes 

strong (6p/pb» 1) dumps of matter may separate from the Hubble flow and 

have sufficient time, within the age of the Universe, to interact and randomise 

their motions. In this case, it would be expected that the distribution becomes 

virialised, i.e. that velocities are stably bound by the gravitational potential of 

the excess matter associated with the clustering. For particles at a radius r 

from an overdensity 

( 2) - GM(r) 
Vp -- r M(rF6pr3 (2-113) 

where 6p is the magnitude of the fluctuation within r. Since Pb=P 0 cflo 

(poc=3H 0 2/87rG, the critical density needed to close the Universe at the 

current epoch) this can be rewritten as 

(2-114) 

It is these virialised motions which are responsible for the dispersions in 

clusters and lead to the 'Finger of God' effects seen in redshift maps. A 

similar condition to equation 2-114 is used in the Cosmic Virial Theorem 

(Peebles 1976a) discussed below. 

At larger scales where the mass clustering remains small (6p/pbS1) it 

would be expected that galaxies are still falling into (or streaming out of) 

denser (or less dense) regions. This is the form of motion that is likely to be 

the cause of the dipole in the Cosmic Microwave Background discussed 

above. Here, mass particles experience an acceleration of - -GM(r)/r2 for 

approximately a Hubble time (-1/H0 ) and so their infall velocity, at the present 

epoch is 

(2-115) 

which can be expressed as 
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5p • 
(y p) =-no - (Hor) r 

Pb 
(2-116) 

Note that when 5p/pb<O, as for a void, the streaming velocity is outward in 

direction (which is equivalent to a repulsive force). As will be seen below, this 

equation is the basis for a model for the peculiar motion due to infall. 

In both these models for peculiar motions (equations 2-114 and 2-116) 

both the form of mass dustering (i.e.5p/pb) and the underlying density of the 

homogeneous material (given by no) play an important role in determining the 

magnitude of Yp· Further, as discussed in Chapter 1, there is also the 

question of the relation between the observed perturbation (defined by the 

visible galaxies) and the perturbation in the mass (which is 5p/pb). Oearly, the 

assumption that 5p/pb=5n/nb (the fluctuation in the number density of 

galaxies) is not trivial, and, indeed, several mechanisms have been 

suggested for the formation of galaxies which will lead to a bias with respect 

to the mass distribution (Dekel and Rees 1987, Kaiser 198Gb). One model 

(Kaiser 1984, Politzer and Wise 1984) is to introduce a bias parameter b of 

the form 

(2-117) 

where b is a constant. Thus, since galaxies are assumed to have peculiar 

motions similar to the mass (i.e. 'iprn:::::yp9) this implies directly from equations 

2-114 and 2-116 that 

(2-118) 

where noeff is no measured assuming that galaxies trace the mass. In the 

rest of this chapter possibilities for how the mass is clustered relative to the 

galaxies are discussed. 

In the following study of Chapter 4, estimates of peculiar motions will 
be derived from their line-of-sight distortion of the two-point correlation 

function measured in redshift space. The advantage of this method is that 

using approximately fair samples of the galaxy distribution mean estimates of 

pair-wise peculiar velocities can be obtained in a statistical average and this 
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circumvents the need for specifying the type and form of structures which are 

to be analysed (as is required, for example, in the measurement of 

dispersions in groups or clusters). However, it should be noted that this 

average is pair weighted and this may make the results more dominated by 

richer areas of clustering than a simple mean of peculiar motions would be, if 

they were known. 

Thus, in the following sections models and methods of estimation will 

be given for both the random and coherent (infall) aspects of peculiar motions 

as deduced from the redshift two-point function ev(a,n). After this, the virial 

theorems will be discussed as a means of constraining both n 0 and 

large-scale structure. 

2.2.1 Peculiar motions; models and methods of estimation 

2.2.1.1 Random motions; methods of estimation 

In the above introduction to Section 2.2 virial motions within dense regions of 

clustering were described and in Section 2.1.2.2 a simple model for their 

effect on the two-point function ~v(a,n) measured in redshift space was given 

(equation 2-31). In this section methods for estimating pair-wise random 

peculiar motions from ~v(a,n) are now discussed as these can then be used 

to obtain a constraint on the density parameter 0 0 through the Cosmic Virial 

Theorem. 

Firstly, it is clear that if the model in equation 2-31 is to be used 

directly, it is necessary to obtain or, at least, assume a form for the 

distribution of pair-wise peculiar velocities f(w) as this is not provided for by 

the virial theorems such as in equation 2-114. As was stated earlier, a general 

assumption is that in the virial limit motions of galaxies will be isotropic and 

only weakly correlated with position (as in equation 2-114 above with 5p/pb=r'Y 

and y=1.8). Thus a general constraint of f(w) is then that it is symmetric i.e. 

f(w)=f(-w) which implies 

J:f(w)wdw = (w) = 0 (2-119) 
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The constraint that 

(2-120) 

is, of course, required for a probability function. A simple way to quantify f(w) 

is to make it a function of only w and its second moment (#) which is 

(2-121) 

and several forms have been considered. However, as dynamic simulations 

prefer a form of the type 

(2-122) 

(Efstathiou and Eastwood 1981) this will be assumed in the future analyses. 

In this case the constraints in equations 2-120 and 2-121 give 

c1 = o. 75[(213)-312 = o.476 c2 = [(213)-314 = o. 797 (2-123) 

Thus, using equations 2-31, 2-122 and 2-123 and a function for ~(r), a model 

~v(o ,n) can be fitted directly to the estimates of ~v(o ,n) using, say, least 

squares. If the form for ~(r) is known (or assumed) then the parameter (w2)1/2 

can be obtained directly. As will be seen below (Section 2.2.2.1) this pair-wise 

rms peculiar velocity is used in the Cosmic Virial Theorem (see also equation 

2-114). 

This method of modelling ev(o,n) was preferred by Bean et al. (1983) 

but it is also possible to obtain (w2)1/2 directly from the 'width' of ~v(o ,n) 

without assuming a model for the peculiar velocity distribution f(w). This uses 

the second moment of ~v(o,n) (Peebles 1980), namely 

(2-124) 

which according to the random motion model for ~v(o,n) in equation 2-31 can 

be written as 
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(2-125) 

With the substitution that y=1r-w/H0 in the inner integral and the assumption 

that 1l"cut»(w2) 112/Ho this becomes 

M2 = I:f(w)dwJ 1l"cuty2e{[a2.ty2]112}dy + 
-1l"cut 

I 
00 

J 1l"cut 2 -oof(w)(w!Ho)dw ye{[a2.ty2]1!2}dy + 
-1l"cut 

I :f(w)(w!Ho)2dw J 1l"cut eUa2.ty2]112}dy 
-1l"cut 

(2-126) 

Thus according to equations 2-119, 2-120 and 2-121, an estimate for(w2) is 

(2-127) 

where the symmetry in 11" of ev(a,11") has been used. The advantage of this 

formulation of the estimator is that the first term on the RHS ((11"2)~v) can be 

measured from the data whereas the second term ((11"2)~) can be modelled 

directly using a function for e(r). Also, since both terms are stable to variations 

of the form e- Ae I this makes the estimator insensitive to amplitude 

fluctuations. 

Equation 2-127 can easily be understood since <n2>~v is the quadrature 

sum of the widths (11"2)~ 1/2 and (w2)1 1/2 (where the subscript denotes the 

appropriate weighting function). However, as stated previously for clustering 

which has separated from the Hubble flow (as required for virialisation, see 

above), or is infalling, the correction (11"2)~ is not strictly valid and so (11"2)~v 1/2 is 

an upper limit to (w2)112. 

As Bean et al. ( 1983) have discussed, this estimator is very sensitive to. 

the uncertain large-scale form of ev since it is weighted by 11"2 and for a 

power-law e(r) of the form e(r)=(r ofr)Y (equation 2-90), (11"2)~ becomes (see 
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also equation 2-98) 

(1r2) = a2[Hy..2(7rcutfa)-Hy(7rcutla)] 
e Hy(1rcutla) 

(2-128) 

which diverges for y<3 as 1rcutla-oo. As y=1.8 it is apparent that as 7rcut is 

increased equation 2-127 becomes the difference between two diverging 

terms and so small differences in the large-scale form of the observed ev and 

model e will lead to a large, but discrepant, value of (oo2)112. 

In Figure 2.6 (a) to (f), the (u)2.)112 estimator in equation 2-127 is shown 

as a function of 1rcut and a for when (1rZ>ev is obtained directly from the model 

for ev(a,7r) in equation 2-31 with f(w) as in equation 2-122. In each of the 

model lines (n2)~ has a e(r) of the form e(r)ocrY for rs10h-1 Mpc and e(r)=O at 

larger separations. On the other hand, e(r) for (1r2)e is modelled as a straight 

power law; e(r)ocr1.8 for all r (see equation 2-128). As can be seen in Figures 

2.6 (a) and (b), the estimates of (u)2.)112 at a<1.0h-1 Mpc peak near the true 

value of (w2)112=300kms-1 even though e(r) in (n2)ediffers from that in <n2>ev: 

the same also seems to be true in Figures 2.6 (d) and (e) where 

(w2)1/2=600kms-1. This shows that, at these separations, equation 2-127 

converges sufficiently to contain all smeared pairs before the uncertain form 

of the large-scale correlation function begins to dominate the estimates of 
(<#)112. 

At larger a values, the differences in the correlation functions for <n2>ev 

and (n2)ecause larger variations in the estimates of (u)2.)112 but would seem to 

be able to distinguish the (w2)112:60Qkms-1 from the (w2)112:300kms-1 models 

for f(w). This estimator, then, provides a useful complementary approach to 

the direct model fits to ev(a,7r) and should not be overlooked in the analysis. 

2.2.1.2 lnfall models 

In the introduction to Section 2.2 given above, the form of coherent infall into 

clusters at low density contrasts was described and a simple model for its 

form presented (equation 2-116). However, as peculiar motions are to be 

estimated from their distortion of the redshift correlation function ev(<J,1r) (or . 

~5(s)), a pair-wise model for infall is required and so two simple pictures for 

such motions are discussed below. 
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Figure 2.6. Model predictions for the second moment 

estimate of (w2)1/2 (in kms-1) at various projected separations cr 

(in h-1 Mpc) and at various limits ncut (in h-1 Mpc). The models 

are based on a direct integration of ~v( cr, n) (equation 2-31) for 

(n2)~v and a model for (n2)~ from equation 2-128. In (n2)~v the 

correlation function was of the form ~(r)ocrY for r~1Qh-1 Mpc 

and ~(r)=O at larger scales with y=1. 7 (short dash line), 1.8 

(solid line) and 1.9 (dot-dash line). In (n2)~ the correlation 

function was a uniform power law with y=1.8. In (a), (b) and (c) 

(w2)112=300kms-1 whereas in (c), (d) and (e) (w2)112=600kms-1 . 
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The first approach to the construction of a model for pair-wise infall is 

through the use of the second BBGKY (Bogoliubov-Bom-Green-Kirkwood­

Yvon) hierarchy equation which describes the dynamical conservation of 

particle pairs (see Peebles 1980, Section 71, p266). This can be written as 

(Peebles 1980, equation 71.6) 

(2-129) 

and expresses the conservation of the mean number of neighbours within a 

fixed comoving radial separation x from a randomly chosen mass particle 

(here em refers to the matter correlation function). Here, v(x,t) is the radial 

velocity of a neighbour at time t and position x and a(t) is the expansion 

factor. 

In the linear regime (~m51) it may be expected that the mass 
:z. 

correlation function ~nl::::A(t)B(x) (see equation 2-112). Thus, for B(x)ocx-Y (y<3) 

and A(t) dominated by the growing mode of perturbations 

2 ~ v = - -- !l 0.6 H r 
- (3-y) o (1+~m) o-

(2-130) 

at the current epoch. This is similar to the model described above (equation 

2-116) since ~m::::::((5p/pb)2) and (1+~m)::::::1 in the linear regime. Note that 

extrapolating this model to where ~m» 1 this equation has the property that 

y::::::-(2/(3-y})n0o.6H0 r and this cancels, to some extent, the Hubble expansion 

previously assumed in the form for ~v(cr,n) (equation 2-31) as is required for 

the dustering to be stably bound. Previously several groups of workers have 

used this model in equation 2-130; Bean et al. (1983) considered infall with 

0 0 =1 with the factor 21(3-y) neglected while in Davis and Peebles (1983) y 

was set to a value of 2 and the factor F=2Q0 0.6 left variable. 

Such streaming motions can be incorporated into the form for the 

galaxy correlation function ~v(cr ,7r} in equation 2-31. If it is assumed that the 

galaxy correlation function ~(r) is related to that of the mass by 

(2-131) 
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as in equation 2-117 <e==((5n/nb)2) and em==((5p/pb)2)), then the model for 

ev(o,7T) becomes 

(2-132) 

where 

(2-133) 

. 
and ~ is a unit vector along the line-of-sight. This model can then be used in 

direct fits to the observed data as described in Section 2.2.1.1 or it can be 

used to predict the form for the direction averaged correlation function es(s) as 

in equation 2-34. 

Kaiser ( 1986a) has also obtained linearised models for coherent infall 

from considering the power spectrum of low density contrasts in redshift 

space. Since the redshift two-point function is the Fourier transform of this 

power spectrum then equivalent expressions to equation 2-132 for the matter 

correlation functions emv(o,7r) and ems(S) can be found. In particular, for the 

direction averaged redshift correlation function, ems(S) Kaiser finds 

(2-134) 

whereas for the above model at small 1e m1 (equation 2-132 with b= 1) he 

obtains 

(2-135) 

which lacks a term proportional to .Q0 1.2. Such infall clearly leads to quite a 

strong amplification of the correlation function; in the Kaiser description in 

equation 2-134 this amounts to a factor of 28/15 for 0 0 =1 as compared to 5/3 

in the BBGKY model (equation 2-135). However, if galaxies are biassed 

relative to the mass, but are infalling at the same rate, then equations 2-130 

and 2-131 say that the effective value of no measured, on the assumption 

that galaxies trace the mass, is (c.f. equation 2-118) 
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no n eft- -
0 - tj. (2-136) 

where i-=10/3 and 5/3 for the BBGKY and Kaiser models, respectively. 

Clearly, this leads to a smaller amplification, via equations 2-134 and 2-135, 

.for the galaxy correlation function es(S) if b>1. 

2.2.2 Virial theorems and the relation to D.o 

2.2.2.1 The Cosmic Virial Theorem 

The balance between the kinetic energy of small-scale partide motions and 

the gravitational potential of their associated mass perturbations has been 

described in the introduction to Section 2.2 (see equation 2-114). As with the 

infall models discussed above, such a virial theorem needs to be extended to 

pair-wise peculiar motions and this has been provided for in the Cosmic Virial 

Theorem (CVT) of Peebles (1976a). Essentially, in this model, the spatial 

gradient of the 'pressure' of peculiar motions between partides of mean mass 

m is balanced in an equilibrium state by the attractive gravitational force of the 

surrounding excess matter. Under the assumption that peculiar motions are 

isotropic (i.e. that the radial component of the mean square pair-wise peculiar 

velocity (vf.) is half the transverse component (vf:>) and that stability occurs 

where em» 1, then this is (Peebles 1976a, equation 24 ); 

0 ?\ 2Gmp(r) 2Gp(r)pb I ..f.l A ~m(r,z.l r-~1) 
- a(p(rXvr/) = r2 + em(r) v U"'~ r -~ z3 (2-137) 

where the correlation functions of the mass partides are described by em and 

~-

This equation deals with the equilibrium at separation -r _from a 

randomly chosen mass partide m (see Figure 2. 7). The observed mean fluid 

pressure at r is ~p(r)(v1; directed along- r (where the mass density p(r) at r is 

-em(r)pb) and its (radial) gradient is o(p(r)(v1;)10r (LHS of equation 2-137). To 

balance this gradient at r, there are two sources of Newtonian gravitational 

interaction; the first is the 'binary interaction' between the matter at r and the 

mass partide m (amounting to a force of 2Gmp(r)/r2 directed along [;this is 
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Figure 2. 7. The spatial relationship between the mass 

particle m, the volume 5v, and the surrounding matter. The 

balance between the pressure force and the gravitational 

interactions is carried out in volume 5v. 



the first term on the RHS of equation 2-137). The second is a 'collective 

interaction' between the matter at r and all the surrounding particles; at 

separation ~ from 5v (see Figure 2. 7) this amounts to a force of 

2Gp(r)pb [.~~m(r,z,l r-~l)fem(r)z3 in the [ direction, which integrated over all ~ 
gives the second term on the LHS of equation 2-137. 

Generally it is assumed that the collective interaction term dominates 

equation 2-137 (~m»~m» 1) and so, with equations 2-90 and 2-105 as a model 

for the two- and three-point matter functions, respectively, the equality can be 

integrated over r to give (c.f. equation 2-114) 

(2-138) 

(Peebles 1976a, equation 29) where Cy is a constant depending only on y. 

This is the basic result which relates the peculiar motions of mass particles to 

the amplitudes of the two- and three-point matter correlations (Bm=r0 mv and 

am, respectively). This motion is only a slowly varying function of r if y:::1.8 

and supports the assumption of a nearly constant random peculiar velocity 

distribution as in equation 2-122. To obtain the one-dimensional motion as a 

function of the perpendicular separation a as in (w2)112, (vr2(r))_ must be 

averaged over separations r3 parallel to the line-of-sight, viz; 

I; l;{(cr2tr~) 1!.2Kvf[(a2.tr~)112Ddr3 
(w2) = oo I 

0 
~[(a2.tr~)1!.2]ck3 

(2-139) 

The assumptions that have been incorporated into the model in 

equation 2-138 are now briefly discussed. The assumption of stability requires 

that the matter distribution is not expanding or collapsing in proper 

coordinates and this is achieved if the peculiar motions dominate the 

expansion within the stability region of scale r, i.e. 

(vf(r))1!2 
Hor » 1 (2-140) 

Dynamical simulations seem to indicate that stability can be maintained on 

scales of less than -0.5h-1 Mpc (Efstathiou and Eastwood 1981, Davis et al. 

1985). 
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As well as assuming that the matter partides move on isotropic orbits, 

it is also feasible that other orbits may be applicable (from radial to circular) as 

considered by Davis and Peebles (1983) and Bean et at. (1983). Figure 7 of 

Bean et at. (1983) shows an anisotropic model for the pair-wise peculiar 

motion (w2)1/2 and the effect is similar to that produced by a cut-off in the 

gravitational potential as discussed below. 

The assumption of the power-Jaw form for the three-point function em 
leads to an unacceptably large contribution to the small-scale velocity 

dispersion in equation 2-138 arising from the diverging concentration of 

matter around the point at -r:: from m (see Figure 2. 7). This makes the 

integrated form (equation 2-137) of the third term in equation 2-105 divergent 

as z- 0. There are various physically acceptable ways of avoiding this based 

on modifying the gravitational potential of the mass distribution. Davis and 

Peebles (1983) replaced the third term in equation 2-105 with the second, 

whilst Peebles (1976b) and Bean et at. (1983) modified the potential by 

having a cut-off in the mass distribution (obtained by replacing rY with (rc+r)-r 

in ~(r) in the first instance and by replacing z3 in the third term in equation 

2-137 with (zc+z)3 in the second) at the scale rc typical of a galaxy. 

Finally, there is also the uncertainty over how matter is distributed 

around galaxies. Davis and Peebles (1983) have argued that the observed 

slow dependence of the velocity dispersion on radius (see Chapter 4) 

supports the hierarchical picture (equations 2-90 and 2-105) and so the two­

and three-point functions of the galaxies will be related to those of the mass 

by (c.f. equation 2-131) 

(2-141) 

However, Bean (1983) has pointed out that if the velocity dispersion is 

dominated by relatively few bright galaxies the binary interaction term in 

equation 2-137 may dominate the collective force and so the velocity 

dispersion will, for a point mass, behave like 

(2-142) 

Thus for a galaxy with a massive halo that has m(r)oc r that extends out to 
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several hundreds of kpc it is possible to achieve a velocity dispersion that has 

a very slow dependence on r (see, for example, Barnes 1987). 

2.2.2.2 The Cosmic Energy Equation 

Like the Cosmic Virial Theorem discussed in the previous section, the Cosmic 

Energy Equation (Fall 1979, Peebles 1980) relates the peculiar motions of 

particles to the gravitational potential of the underlying distribution of matter. 

However, unlike the previous virial theorem this cosmic energy equation 

connects all the rms peculiar motions at both small and large scales (not just 

where the distribution is stable) to the mass distribution. According to Fall 

(1979) the gravitational potential of the mass fluctuations written as 

(2-143) 

can be related to the 'kinetic energy' written as 

((vpZ) 1/2 3-d dispersion) (2-144) 

by 

d 1 da 
- (T+W) + -- (2T+W) = 0 dt adt (2-145) 

at an epoch t (with an expansion factor a(t)). In the early Universe .0 lies dose 

to unity and soT, Wand a(t) are all proportional to t2f3. From equation 2-145 

this implies 

(2-146) 

At much later times, after clusters have formed and collapsed, the 

virialised regions are expected to have (from the Cosmic Virial Theorem) 

(2-147) 

and so 
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T=-KW 

where K will lie in the range 

1 2 
-<K<-2- -3 

(2-148) 

(2-149) 

Thus, with Pb=3H0 2!lJ87rG at the present epoch equations 2-143, 2-144 and 

2-148 indicate that 

(2-150) 

where J2(r) is the integral 

(2-151) 

As will be seen in Chapter 5 this is a useful way in which to place an 

alternative constraint on large-scale structure from peculiar motions. 
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Chapter 3 

The redshift surveys and their properties 

In this chapter the form, construction and some general properties of the 

Durham/SAAO, Parker et al. and Durham/AAT surveys, which were briefly 

introduced in Chapter 1, are described in some detail in preparation for the 

spatial and velocity analyses given in Chapters 4 and 5. As was previously 

stated, the new information about such distributions is obtained from the first 

two of these catalogues, since Bean (1983) has studied the Durham/AAT 

Survey in detail. However, as these surveys are very compatible, 

comparisons, and, eventually, overall properties will be drawn from all three 

observations and this necessitates the inclusion of the Durham/AAT Survey in 

the description here. 

Thus in Section 3.1 details of the Durham/SAAO, Parker et al. and 

Durham/AAT catalogues are given with a view to presenting the principal 

aims of the construction of such surveys. In Section 3.2 some preliminary 

aspects of the distribution of galaxies in these catalogues are discussed in 

order to assess the potential fairness of the samples chosen. 

3.1 Introduction to the bJS17'" Surveys 

Traditionally, samples of the galaxy distribution have been taken from 

complete magnitude limited galaxy catalogues, and here, the major constraint 

on the compilation of a redshift survey is the telescope time required to obtain 

sufficient signal-to-noise spectra for determination of the redshifts (see 

Chapter 6). However, given that N galaxies are to be observed there is some 

degree of freedom as to how these objects are to be selected from different 

parts of the sky. From equation 2-16, 2-17 and 2-18 it is seen that 

(N(~mum))ocfl1Q0.6mtim and so, for a given N, either !l can be small and mum 

faint, or n can be large and mum bright. Over recent years there has been a 

notable diversification in these two directions. Historically, the first complete 

catalogues of redshifts that covered a large area of the sky were based on the 

original Shapley-Ames (1932) Survey, which, recently revised (Sandage and 
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Tammann 1987), is an all sky map of 1200 galaxies approximately complete 

to a blue photographic magnitude of ms:::13m and has a depth of DpeaJ<=20tT1 

Mpc. Following this, the Center for Astrophysics (CfA) Survey (Huchra et al. 

1983) was the first systematic redshift survey which covered a large part of 

the north Galactic hemisphere (b11~40°, 00:0°) and some parts of the south 

(lolf<-3o~d~-2.5°).This survey, comprising of -2000 galaxies from the Zwicky 

Catalogue (Zwicky et al. 1961-1968), is complete to ms:::14.5m and has a 

corresponding depth of Dpea~40h-1 Mpc. More recently this work has been 

extended in the south (b"~-300, &=-17.5°) with the Southern Sky Redshift 

Survey (da Costa et al. 1988) which is selected from the ESO/Uppsala 

Catalogue of galaxies (Lauberts 1982) by apparent diameter and is complete 

to a similar depth. 

However, although these surveys have the advantage of being 

complete to their magnitude limits and the time taken to obtain good quality 

spectra of these bright galaxies is relatively short, the shallow depth of these 

catalogues may lead to sampling problems because of certain large 

inhomogeneities, such as the Virgo and Coma clusters in the north and the 

Fomax and Eridanus in the south, that are seen locally. Clearly, following the 

discussion in the previous chapter, if Dpeak is the same order of size as a 

typical fluctuation in the galaxy distribution, then these. samples may not be 

globally representative, even though, at first sight, they contain many 

galaxies. This is because with the large solid angle of these surveys there is 

a tendency to observe complete clusters whereas in narrow angle surveys 

many more parts of independent structures are intersected. Further, these 

shallow samples are quite severely affected by the motion of the Local 

Group with respect to more distant galaxies and this makes the predicted 

n(z) distributions sensitive to the choice of the measured motion (such as 

into Virgo, Davis and Huchra 1982). 

One way in which to avoid these problems is to probe deeper into the 

galaxy distribution and this has been the approach of de Lapparent et al. 

where the original CfA Survey has been extended to include Zwicky galaxies 

to ms:::15.5m in, currently, two complete 6° slices through the NGP (de 

Lapparent et al. 1986a, 1988). However, even at this depth (Dpeak::::SOh-1 

Mpc) inhomogeneities may still be persistent and, furthermore, there is also 

the question of how reliable the Zwicky magnitudes are beyond ms= 15;;0 
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(see Chapter 5). By narrowing the solid angle further and splitting the survey 

up into many fields, which are then placed at random positions over the sky, 

much deeper redshift surveys can be achieved which may intersect many 

more of the typical dustering features. This was the aim of workers such as 

Kirshner, Oemler and Schechter (1978, the KOS Survey, see also Kirshner et 

al. 1983) and Peterson et al. (1986) who first used such surveys to constrain 

the form of the galaxy distribution on scales of up 10QIT1 Mpc. 

More recently, however, it has been realised that, in a complete 

redshift survey, some of the information about the galaxy distribution is 

redundant at separations much larger than the typical clustering scale length 

(given by r0 in equation 2-90). Clearly, if there are m galaxies in an average 

cluster, all of these represent only one piece of independent information for 

the estimation of the clustering of clusters and so there is an m-fold 

redundancy. A simple way to reduce this over-sampling is to randomly select 

galaxies from the magnitude limited catalogue, thus increasing the volume 

surveyed whilst not increasing the telescope observation time drastically (see 

Kaiser 1986a). In this work such a survey is described (the Durham/SAAO 

Survey) which increases by a factor of -3·the volume covered by the original 

Durham/AAT Survey. More recently still, other workers have also used such 

sparse sampling techniques as, for example, in the 1-in-6 survey of IRAS 

selected galaxies by Rowan-Robinson et al. (1990, the QDOT Survey) and 

the 1-in-20 survey of bJ<17m galaxies in the APM Galaxy Catalogue (Maddox 

et al. 1990b) by Loveday (1989). As will be seen in Chapter 6 this approach to 

systematic redshift surveys may provide a suitable method of mapping large 

volumes of space. 

3. 1.1 The Durham/SAAO Survey 

As seen in the introduction to Section 3.1, the Durham/SAAO Survey 

(Metcalfe et al. 1989) is a large volume extension of the original Durham/AA T 

Survey (Peterson et al. 1986); whereas the latter catalogue contains 5 fields 

of -3°.75xS0.75 area limited to bJ :516m.8, the new survey contains 9 such 

fields of similar dimensions and magnitude limit. The original aim of the 

Durham/AA T Survey was to obtain accurate redshift velocities (:550kms-1 

error) for all the galaxies in the 5 fields to the magnitLide limit for the purposes· 

of estimating the mean mass density of the Universe via the Cosmic Virial 
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Theorem (Peebles 1976a, see also Chapter 2, Section 2.2.2.1). However, 

preliminary results on the form of the spatial galaxy distribution on scales of 2 

up to 100h-1 Mpc indicated several interesting features which needed to be 

investigated in a larger volume survey. Briefly, these were as follows; 

although the overall form of the two-point correlation function estimated from 

this survey at scales ~10h-1 Mpc approximately followed a power law of the 

form e(r)=(ro/r)1.8 (equation 2-90) as deduced from the projected correlation 

function w(e) (see Section 2.1.2.4), there were some indications that this 

simple picture needed to be modified. In particular, at -2h-1 Mpc es(s) 

showed a pronounced rise above the power law with r0 =4.5h-1 Mpc before 

breaking to smaller values at -5h-1 Mpc. At larger scales, the correlation 

function was consistent with homogeneity up to -1 OOh-1 Mpc, but with some 

evidence for low signal-to-noise features such as anticorrelation at s=14h-1 

Mpc and peaks at s=28 and 5Srr1 Mpc. 

Clearly, this form for es(s) and its interpretation for e(r) needs to be 

examined in more detail in a larger volume of space. To achieve this, without 

increasing the observing time significantly, galaxies in the Durham/SAAO 

Survey were sampled on a 1-in-3 basis from tre canplete- i i.et-5 of galaxies 

for each field ranked in increasing order of apparent magnitude. However, 

although the within-field pair count DD(s) (c.f. equation 2-25), at any particular 

separation s, is down, on average, by a factor of -1/5 relative to the 

Durham/AAT Survey (assuming that the same number of galaxies are 

observed in each field), not all of the pairs provide independent information in 

the estimates of ~5(s) even at small scales (~1Qrr1 Mpc). Indeed, at a small 

separation r (where ~» 1) it is expected that 5~e=5DD/(DD)==m(r)/(Np(r)) 1/2 

(Peebles 1973, see also equations 2-49 and 2-50), where m(r) is the mean 

number of galaxies per cluster at resolution r (see equation 2-45) and thus 

only at separations r where m(r)=1 will the lower pair count in the 

Durham/SAAO Survey lead to a larger error in e. 

In Figure 3.1 the 1o error estimates in ~5(s) from the simulations 

(Section 2:1.4) of both surveys are presented together (the third-sampling 

procedure being mimicked in the Durham/SAAO simulations) for separations 

ranging from 1 to 140h-1 Mpc. In Figure 3.2 and Figure 3.3 these estimates 

are compared to those from field-to-field fluctuations in these surveys (here, 

each field is treated separately as an independent sample) and this seems to 

show that the simulated errors are representative of the true fluctuations. 
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Figure 3. 1. Error estimates o( ~5 (s)) on the two-point 

correlation function ~5(s) obtained from the simulations of the 

Durham/SAAO and Durham/AA T surveys. The error is 

calculated in each bin from the rms variation in ~5(s) estimated 

from the 20 catalogues of simulations of each survey. 
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Figure 3.2. Measures of the error a(e5 (s)) on the two-point 

correlation function es(s) estimated from the Durham/SAAO 

Survey. The errors from the simulated catalogues are the same 

as those in Figure 3. 1. The field-to-field errors come from the 

rms variation in es(S) (es(S) being calculated from each field 

individually). This rms error in each bin is then divided by .f9 to 

give the error on the entire survey shown here. 



1 

.1 

1 

+ 

0 + + 

o simulations 
+field -to-field 

0 + + 

oo 
o+ 

09 
ct> 

10 

+ 

s(h -t Mpc) 
100 

Figure 3.3. Measures of the error o(~5(s)) on the two-point 

correlation function ~5(s) estimated from the Durham/AAT 

Survey. The errors from the simulated catalogues are the same 

as those in Figure 3. 1. The field-to-field errors come from the 

rms variation in ~5(s) (~s(s) being calculated from each field 

individually). This rms error in each bin is then divided by /5 to 

give the error on the entire survey shown here. 



Figure 3. 1 clearly indicates that the Ourham/SAAO Survey is capable of 

providing well-determined results for ~5(s) at small scales (~10h-1 Mpc) and 

somewhat better results than the Ourham/AAT Survey at the larger scales, as 

anticipated. 

Although the Ourham/SAAO Survey was aimed at the determination of 

the large-scale dustering of galaxies, Metcalfe et al. (1989) suggest that the 

typical errors on the redshift velocities are -±130kms-1 rms and although this 

is much larger than the ±SOkms-1 error for the Ourham/AAT Survey, it leads to 

a 1-d pair-wise error of -± 180kms-1 which is still smaller than the typical 

random motions of -±300kms-1 between galaxies (see Chapter 4). This 

suggests that the Ourham/SAAO Survey can also provide a check on the 

line-of-sight pair-wise peculiar velocities seen in the Ourham/AAT Survey and 

a further constraint on the mean mass density of the Universe. In Table 3.1 

the errors on the line-of-sight rms peculiar velocity (w2)1/2 estimated from 

~v(o ,n) for the simulations and for individual fields (again treated 

independently), are compared between the two surveys. Although the 

simulated error looks to be unrepresentative in both samples, both methods 

suggest that the uncertainties on (w2)1/2 are comparable between the two 

surveys and so such studies for the Ourham/SAAO Survey are worthwhile. 

Full details of the Ourharn/SAAO Catalogue, its photometry and its 

spectroscopic observations are given in the paper by Metcalfe et al. (1989). 

As the methods are similar to those given in Chapter 6 only a summary is 

presented here of the overall features. Fields for the catalogue were chosen 

at random from the high Galactic latitude (lbllj;z-40°), low extinction (~Q.1m), 

area of the UK Schmidt Telescope (UKST) photographic J (111-aJ emulsion 

plus a GG395 filter) survey of the southern sky. Photometric and positional 

information of galaxies were obtained from measurements of Atlas plates 

using the automated scanning machine COSMOS (MacGillivray and Stobie 

1984) at the Royal Observatory, Edinburgh. By thresholding the intensity 

maps at a faint isophote -2sm.o arcsec-2 approximately total magnitudes 

were obtained which were subsequently calibrated using ceo 8 and V 

photometry of on-plate galaxy sequences observed with the SAAO 1m 

telescope. These photographic magnitudes were shown to be approximately 

linear with the ceo magnitudes over the range 14m~tu~17l11 with a dispersion 

of -±Q.3m per galaxy, thus giving zero-point errors of ±0.1m for an average of 

5 calibrated galaxies. However, due to the limited dynamic range of 
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cr<1h-1 Mpc 

Durham/SAAO Durham/AAT 
(1) (2) (3) (4) 

sim 

68 
f-to-f sim 

117 46 

f-to-f 

108 

Table 3.1. Error estimates for the pair-wise rms peculiar 
velocity (w2)1/2 (in units of kms-1) along the line-of-sight. 

Columns (1) and (2) are, respectively, the simulated and 

field-to-field errors for the Durham/SAAO Survey. Likewise, 

columns (3) and (4) are these quantities, respectively, for the 

Durham/AAT Survey. 



COSMOS, some high surface brightness galaxies, such as E/SO 

morphological types, may have underestimated magnitudes. Table 3.2 lists 

the 9 fields chosen, their centres, sizes, and magnitude limits which vary 

slightly from field-to-field due to the absolute calibration being obtained after 

the spectroscopic data was observed. 

Redshifts for the 264 1-in-3 galaxies complete to b.F16m.8 were 

obtained in 6 one-week runs from September 1983 to October 1984 at the 

SAAO 1.9m telescope. For all runs except the last, the Image-Tube 

Spectrograph and Reticon Photon Counting System were used with a grating 

of 210Aimm to give spectra with a resolution of -7A FWHM. Using reduction 

methods similar to those given in Chapter 6 redshifts were measured from 

wavelength calibrated absorption and emission features in the range 

3500-7600A. Using the cross-correlation methods of Tonry and Davis {1979) 

to estimate the absorption redshifts and fitting the emission lines with 

Gaussian profiles, redshift velocities accurate to ±130kms-1 rms were 

obtained. Comparing with sources of velocities from other catalogues 

negligible zero-point error was observed. In this work the galaxies with high 

quality redshifts were used {codes 0, 1, 2, and 5 in the catalogue of Metcalfe 

et al. 1989) and the numbers of such objects available to the magnitude limit 

of each field is shown in Table 3.2. 

3.1.2 The Durham/AAT and Parker et al. surveys 

The Durham/AA T Survey contains redshifts for 329 galaxies in 5 high Galactic 

latitude fields to a magnitude limit of bJ= 16m .8. Spectroscopic and 

photometric methods for this catalogue are described elsewhere (Bean 1983, 

Peterson et al. 1986) but are similar to those described in the previous section 

and in Chapter 6. The photometry was calibrated in a photoelectric BJ system 

{Couch and Newell 1980) and this is dose to, but differs from, the bJ system 

in colour {see Shanks et al. 1984) 

{3-1) 

Further, bJ in the Durham/SAAO catalogue is close to a total magnitude 

whereas BJ in the Durham/AA T catalogue was measured at a higher isophote 

of 23m .6 arcsec-2 and this means that there is a galaxy profile deperdent 
isophotal correction between the two systems. On average, however, this is 
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(1) 

Field 

(2) 

RA 

(3) (4) (5) 

Dec w ht 

(6) (7) 

mum Nr 
h m o , o o bJ 

GNX 11 00.8 -10 01 3.75 3.75 16.70 90 25 

GNY 

GNH 

GNZ 

GSG 

GSM 

GSI 

GSN 

GSP 

12 30.4 +00 23 3.75 3.75 

14 40.8 - 15 03 3.75 3.75 

15 19.4 +02 14 3.75 3.75 

20 57.1 -25 09 3.73 3.73 

22 03.9 - 20 02 3. 75 3. 75 

22 35.5 - 40 01 3. 75 3. 75 

01 10.8 - 35 33 3.73 3.73 

03 49.7 -29 22 3.73 3.73 

17.00 82 

16.75 51 

16.90 89 

16.80 115 

16.80 104 

16.70 85 

16.65 122 

17.05 71 

25 

13 

27 

35 

31 

24 

35 

17 

Table 3.2. The Durham/SAAO Survey fields. Column (1) 

gives the field names and columns (2) and (3) the Equatorial 

co-ordinates (1950.0) of their centres. The width and height of 

the fields is given in columns (4) and (5). The number of 

catalogue galaxies in each field brighter than the apparent 

magnitude limit (column (6)) is indicated in column (7). Column 

(8) gives the number of 1-in-3 galaxies with well-determined 

redshifts (codes 0, 1, 2, 5 of Metcalfe et al.) 



approximately (Shanks priv. comm.) 

(3-2) 

and so with a mean colour of (B-V)=1 for the galaxies this gives 

(3-3) 

Thus, as the mean magnitude limit for the Durham/AAT Survey fields is 

BJ= 17.11, this corresponds to bJ= 16m. 76, which is dose to the bJ= 1 sm.82 for 

the Durham/SAAO Survey (see Table 3.2). 

As stated before, the Durham/AAT Survey was measured at a higher 

spectroscopic resolution (-1A FWHM) than the Durham/SAAO catalogue 

giving velocity errors of -s;50kms-1 rms. Comparison of the Durham/AAT 

Survey with other, overlapping redshift catalogues indicate that there are no 

serious velocity zero-point errors. 

In the survey of Parker et at. (1986) redshifts are presented for 104 

galaxies in a single field of area 5°.35x5°.35 sq. degrees centred at OOhoom, 

-35°00'. The catalogue is -80% complete to bJ=1Gm.5 and velocity errors are 

claimed to be accurate to -70kms-1 rms. In Section 3.2.3 it is seen from the 

differential number counts as a function of apparent magnitude that the 

incompleteness of this catalogue seems to occur beyond bJ=16m.25. Thus 

omitting objects fainter than this limit gives 80 galaxies in total for subsequent 

analysis. The field was previously chosen at random for a UKST 

objective-prism redshift survey and this data was to provide redshift 

information at the bright end of the catalogue. Since the photometric and 

spectroscopic methods used by Parker et at. were identical to those of 

Metcalfe et at., this sample of 80 galaxies is easily combined with the data 

sets already discussed above. 
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3.2 The observed spatial distribution and mean counts of galaxies 

In the following two chapters, a considerable emphasis will be placed 

on obtaining mean statistical measures from the galaxy samples so far 

discussed. However, before such methods are applied it is worthwhile to 

inspect the data visually to anticipate some of the features that are likely to be 

present. It has been seen how redshift maps offer a wide variety of 

information both on galaxy dustering and on line-of-sight peculiar motions. In 

the following section both the angular and, more importantly, the 'spatial' 

positions of galaxies will be inspected for such effects and an awareness will 

be kept for features that may also be detected in the following statistical 

analysis. 

As a further view of the overall properties of the catalogues, Sections 

3.2.2 and 3.2.3 contain the observations of the counts of galaxies. In Section 

3.2.2 the frequency distribution of absolute magnitudes is used to derive 

estimates of the luminosity function that aim to be independent of the 

clustering in the sample and, following this, in Section 3.2.3, models for the 

homogeneous number density are compared to counts of galaxies as a 

function of redshift and apparent magnitude. Such comparisons enable a 

study of the overall homogeneity and fairness of the samples and, again, such 

studies complement the objective analyses of the following chapters. 

3.2.1 Angular and spatial positions 

Perhaps the first dear pictorial view of the variety of forms of galaxy dustering 

came with the construction of the large-scale 2-d map of galaxy counts 

(Seidner et al. 1977) from the Lick Survey (Shane and Wirtanen 1967). This 

deep m;S19m map seem to indicate a hierarchy of clustering structures that 

appear to be interconnected by a network of filamentary chains and between 

these are regions apparently devoid of galaxies that hint at possible true 

spatial holes in the distribution. Although the overall properties of the map 

could be generated by simple numerical models (Soneira and Peebles 1978), 

certain features such as the 'filaments' or 'chains' were never reproduced 

satisfactorily in the simulations. However, in spite of these first few inspiring 

observations, there remained the difficulty of interpreting features from the . 

map in view of the inherent projection difficulties and the possible systematic 

variations in the counts from plate-to-plate (Geller et al. 1984, de Lapparent et 
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al. 198Gb). 

As redshift catalogues became available, it became clear that visually 

galaxies do appear to be strongly dumped with large intervening underdense 

regions and this has led to a variety of descriptions of the distribution such as 

'cellular' (Einasto et al. 1980), 'frothy' (Davis et al. 1981) and 'bubbiErlike' (de 

Lapparent et al. 1986a). Indeed, de Lapparent et al. (1988) have gone so far 

as to claim that the underdense regions or voids (of size, typically, -30h-1 

Mpc in diameter) are the main elements of the clustering distribution and that 

galaxies may fill the intervening spaces with uniform density. Clearly, this 

would inevitably imply that the clustering distribution has large-scale structure 

and this needs to be tested at some objective level. 

However, before such tests are made, it should be emphasised that 

voids of such size are readily reproduced in numerical simulations in which 

there is no such large-scale power in the correlation functions. In Figure 3.4, 

their maps of the galaxy positions in their 2-d declination slices (a,b) (Huchra 

et al. 1988) are reproduced next to model maps (c,d) of similar proportions 

taken from a simulation of the Zwicky catalogue based on random dumps 

(but with hierarchical clustering within the clumps as described in Section 

2.1.4 of Chapter 2). As can be seen, voids of similar dimensions to those in 

the slice data are visible in the simulated maps. 

There are, however, some strong differences between the model and 

observed distributions, particularly in the lower CfA declination slice (a). In the 

centre of this map is the Coma Cluster; a large overdensity with a central core 

that displays a line-of-sight rms dispersion of -1000kms-1 (Kent and. Gunn 

1982). From this central region there appear to be several extensions 

(referred to as the 'stick man') which include a 'wall' that extends right across 

this map at a redshift velocity of -10000kms-1; the same feature also seems 

to appear at th~ same position in the upper declination slice (b). Given that 

CI!Siet5 as rich os -tte Cor1ct Qvsifrac: ~ S£t:t) in the galaxy distribution (it is of richness 

class 2/3, Abell 1958) it is difficult to assess its affect on the overall 

appearance of these real maps. Certainly the clustering in the upper slice (b) 

is more like that in the simulated maps (c) and (d). 

There are other differences between the observed and model maps 

too; the boundary between the voids and the galaxies appears more 
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Figure 3.4. Redshift maps for slices through the observed and 

simulated Zwicky catalogues of galaxies. In (a) and (b) are 

shown two adjacent declination slices of the Zwicky Catalogue 

(ms<15m.5) reproduced from Huchra et al. (1988, Figures 3a 

and 3b). In (c) and (d) are shown two similarly defined adjacent 

slices from a simulation of the Zwicky Catalogue (ms< 15m .0) 

that is based on randomly distributed hierarchical clumps (see 

Section 2.1.4 of Chapter 2). The simulation parameters were 

chosen so as to match the mean density and amplitude of 

clustering in the ms<15m.o catalogue (see Section 2.1.2.4 of 

Chapter 2). In (a) and (b) the angular coordinate (R.A.) is in 

hours whereas in (c) and (d) it is in degrees. In all four maps 

the radial coordinate is the redshift velocity in kms-1. 
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continuous in the observed map. Some of this may be real, or it may be due 

to peculiar motions in a way suggested by Kaiser (1987). Certainly, the 

general appearance of the void boundaries in both the real and simulated 

maps is enhanced by the 'Finger of God' effect arising from random motions 

in clusters and cases where the void boundary points towards the observer 

can be found in all four slices. On the other hand, other structures in the data 

may also be narrowed by some degree of infall; an effect which is not present 

in the model. 

This shows that although visual inspections of the data can be 

profitable, they can also be misleading and care must be taken to understand 

some of the effects that can be present. With respect to the 2-d slices, it is 

difficult, in any case, to understand how de Lapparent et al. (1988) can draw 

such specific condusions about voids when, at the same time, they clearly 

state that their samples are not fair representations of the overall distribution. 

The hierarchical simulations in this work and those of Soneira and Peebles 

(1978), are only rough models for comparison, but better, and more 

consistent models, come from the evolution of simulated particles as, for 

example, in those of White et al. (1987) which are based on Cold Dark Matter 

(see Chapter 5 below). The main point here is that visually acceptable maps 

of the galaxy distribution can be produced that have no large-scale, i.e. 

~1Qh-1 Mpc, power in their low-order correlation functions (see their 

Figure 10). Finally, to emphasise that these shallow depth surveys may be 

inhomogeneous, Figures 3.5 (a) and (b) (see also Figure 3.12 below) show 

some of the slice data for the SSRS Survey (da Costa et al. 1988). This 

seems to have a somewhat different texture to the NGP slices and appears to 

be a closer approximation to the simulated maps in Figure 3.4. This again 

emphasises the need for deeper redshift surveys. 

With the above points borne in mind, the data for the deep redshift 

surveys are now discussed. In Figure 3.6 the positions of the Durham/SAAO 

and Parker et al. Survey fields (solid symbols) are plotted on a map of 

Equatorial ·coordinates with some of the delineating Galactic coordinates 

(lll,bll) superimposed. For comparison, the positions of the Durham/AAT 

redshift survey fields and other survey boundaries are marked. As can be 

seen there is some overlap of these 17m fields with the CfA (ms~14m.5) 

Survey (etA 1) in the north and the SSRS Survey in the south. 
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Figure 3.5. Redshift maps for two declination slices through 

the SSRS Survey of galaxies. These two maps are reproduced 

from Figures 7a and 7b of da Costa et al. 1988. In each case 

the radial coordinate is in kms-1 and the angular coordinate 

(R.A.) is in hours 
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Figure 3. 6. A cartesian map of the Equatorial coordinates 

R.A. and Dec. (1950.0) showing the positions of the 

Durham/SAAO, Parker et al. and other redshift survey 

boundaries. The solid symbols (of approximately proportionate 

area) are the positions of the Durham/SAAO and Parker et al. 

survey fields. Other fields with the prefix G are from the 

Durham/AAT Survey. Those fields with the prefix N or S are 

from Kirshner et al. (1978, the KOS Survey) and Kirshner et al. 

(1983). The areas delineated by a solid line are the ms<14m.s 

CfA Survey (CfA1, Huchra et al. 1983), the ms<15m.s CfA 

slices (CfA2, de Lapparent et al. 1988) and the SSRS Survey 

(SSRS, da Costa et al. 1988). The dashed lines are the 

Galactic coordinates bll=±20°. The R.A. coordinate is in hours 

the Dec. coordinate in degrees. 
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Since such a map distorts the relative separations between these 17m 

fields, Figure 3. 7 shows their positions on a polar projection of the north (a) 

and south (b) Galactic caps and Figure 3.8 shows the frequency histogram for 

their relative angular separations. Although the histogram in this latter figure is 

bimodal as a result of the fields being situated in both the north and south 

Galactic hemispheres (lblll>40°), both of these figures indicate that these 

surveys are likely to provide quite independent estimates of the galaxy 

distribution since the majority of fields lie more than 100 away (23h-1 Mpc at 

the peak depth; see Figure 2. 1 of Chapter 2, Section 2.1.1.2) from a nearest 

neighbour. The mean of the angular separations at 6t<80° is 37° which 

corresponds to 87h-1 Mpc at the peak depth and this is much greater than the 

typical clustering length of galaxies (r 0 =5h-1 Mpc, see Section 2.1.2.4, 

Chapter 2). 

Although much of the signal from a clustered distribution is lost in 

projection it is worthwhile presenting this information in the case of the 

Durham/SAAO Survey, as the redshift sample is a subset of the complete 

magnitude limited catalogue. In Figure 3.9 (a) to (i), the angular positions of 

those galaxies with redshifts (filled cirdes; codes 0, 1, 2, and 5 in Metcalfe et 

al. 1989) and those without (open cirdes) are presented for the 9 fields in this 

survey. As can be seen, the 1-in-3 sampling appears to be fairly uniform with 

no obvious biasses in the selection. From these figures it is evident that there 

are regions that are devoid of galaxies, even seen in projection, and this is not 

a result of noise introduced via the sampling for redshifts. Further, in GNX and 

GSG there are two clusters which merit more attention as they are, from 

these plots, fairly rich, if not very compact (likely members for these dusters 

are encompassed by a circle about their apparent centres). 

For comparison, similar 2-d plots of galaxy positions for the 

Durham/AAT Survey can be seen in Bean (1983) and for the Parker et al. 

Survey in Parker et al. (1986). As Bean points out, the former survey shows 

no evidence for any condensed structures which would, or have been 

classed, as of Abell (1958) richness. As will be seen below the GNX duster 

lies at a distance of 82 t,-1 Mpc and that in GSG at 115 tr1 Mpc. Bean states 

that 30 or so galaxies would be expected for an Abell cluster in a radius of 1 

Mpc at this depth (from a consideration of the duster-galaxy cross-correlation 

function of Seidner and Peebles 1977) and the duster on GSG appears to · 

have a membership that comes dose to this level (the circles in Figures 3.9 
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Figure 3.7. The postions of the 17m fields in a projection onto 

the north (a) and south (b) Galactic caps. The solid circles 

represent the position and approximate sizes of the 

Durham/SAAO and Parker et al. survey fields. The open circles 

represent those from the Durham/AAT Survey. The radial 

coordinate is the Galactic latitude bll whilst the angular 

coordinate is the Galactic longitude Jll. Both coordinates are in 

degrees. 
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Figure 3. 8. The frequency distribution for the angular 

separations between the fields in the Durham/SAAO, 
Durham/AAT and Parker et al. surveys. The number of angular 

separations N(Bt) in bins of 10° is plotted against the angular 

separation 6t (in degrees). 



Figure 3.9. The distribution of galaxies on the sky in the 

Durham/SAAO Survey. In (a) to (i) the galaxy positions for each 

field are presented as they would appear on the sky; the 

orientation East and North is indicated. The open and filled 

circles are for galaxies with and without redshifts, respectively 

(the galaxies with redshifts have codes 0, 1, 2 and 5 in Metcalfe 

et al. 1989). In (a) and (e) two clusters are indicated by circles 

{these have a projected radius of 1h-1 Mpc). The membership 

for these clusters is 22 ( 14 corrected) and >30 (>25 corrected) 

for the clusters on GNX and GSG, respectively {the corrected 

values are obtained after subtracting a background count). 
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(a) and (e) correspond to a radius of 1 Mpc at a depth of the clusters) 

although it has not been dassed as such (Metcalfe et al. 1989). In fad, there 

are probably two Abell dusters (Abell 1564 in GNY and Abell 2412 in GSM) 

which contribute to the Durham/SAAO Survey but these are at a high redshift 

(z=::0.077) and so only a few (2 for the former and 4 for the latter) of the 

members are seen. This implies that the expected m.mber of -3 Abell dusters 

in these three surveys together is, perhaps, being obtained (based on a 

cluster density of 4.8x1Q-6 Mpc-3 from Peebles 1980) and this indicates that 

rich areas of dustering are not being avoided. 

A better picture of the clustering distribution is obtained from the 

redshift maps. In Figure 3.10 (a) to (i), cone diagrams (plots of redshift 

velocity projected onto both the Right Ascension and Declination planes) for 

the Durham/SAAO Survey fields are presented, and below each is a 

histogram of the relative fluctuation in the count 5(LlN)/(LlN)=(LlN-(LlN))/(LlN) 

(see Section 2.1.1.2, of Chapter 2) in bins of 5tr1 Mpc in which the selection 

by apparent magnitude has been normalised out. The general view of these 

fields is that, similar to the Durham/AAT Survey, there is evidence for a 

distinct dumpiness down the redshift volumes (with prominent regions devoid 

of galaxies) but in contrast to that earlier work (see Bean 1983) the edges of 

the Durham/SAAO clusters generally exhibit less of the sharpness that was 

previously observed. To show that this is not necessarily a result of the 

sampling in the Durham/SAAO catalogue, in Figure 3.10 0) to (n) equivalent 

1-in-3 sampled versions of the Durham/AAT Survey are presented for 

comparison. As can be seen, in particular, in GSA and GSD there are clumps 

that appear to be quite tightly clustered along the line-of-sight (as shown by 

the values of 5(1:\N)/(t:\N)), whereas the Durham/SAAO fields more closely 

resemble GSF, in which this form of clustering is not so prominent. 

It is tempting to speculate on the causes of these differences. The 

suggestion of flat structures~;pen:Jic.Ua:-fo~ l\!!d!lhift-diAeeh.on... evokes the picture of 

the redshift fields intersecting voids or sheets as suggested in the model by 

de Lapparent et al. (1988) and it is profitable to look for any likely structures 

that may extend between the redshift fields. In Figure 3.11, the relative counts 

5(LlN)/(t:\N) are compared for 10 pairs of fields that lie within 18 degrees on 

the sky and as can be seen there is sometimes a good correlation between 

the counts (especially for fields GSP and GSF, for example). Using the· 

overlap in the south at v<12000 kms-1 between the Durham/SAAO, 
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Figure 3.1 0. Redshift cone plots of the galaxies in the 

Durham/SAAO, Durham/AAT and Parker et al. surveys. The 

cone plots and histograms of the relative fluctuations in the 

counts 5(.6.N)/(LlN)=(.6.N-{.6.N) )/(.6.N) are shown in (a) to (i) for the 

Durham/SAAO Survey, (j) to (n) for the Durham/AAT Survey 

and in (o) for the Parker et al. Survey. The Durham/AAT plots 

and histograms were obtained from a 1-in-3 sampled version 

of that catalogue. In all the figures the cone plot marked R.A. is 

the projection on to the Right Ascension plane. Likewise the 

cone plot marked Dec. is the projection onto the Declination 

plane (R.A. and Dec. both increase up the page). The 

horizontal axis in all plots is the redshift velocity in units of 
kms-1. 
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Figure 3. 11. The distributions of the relative fluctuations in 

the counts 5(L1N)/(L1N) for 10 pairs of fields in the 

Durham/SAAO, Durham/AAT and Parker et al. surveys that lie 

within 18° on the sky. The 5(L1N)/(L1N) distributions are the 

same as those in Figure 3.10 (a) to (o); for clarity the upper field 

has been offset by +20 in 5(L1N)/(L1N). The angular separation 

in degrees is marked. 
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Durham/AAT and Parker et al. surveys and the SSRS sample (DaCosta et al. 

1988}, extended structure can be searched for in more detail. In Figure 3.12 

(a) to (c) the bJS17m fields are reproduced on top of the appropriate slice of 

the SSRS sample and from this it can be seen that there appears to be some 

continuity in the dustering across the fields. For example, the 'wall' referred to 

in da Costa et al., and marked in Figure 3.11 (a), (b) and (c), can be seen to 

cut across 6 of the fields; GSA and GSP in (a}, GSN and the Parker et al. field 

in (b) and GSD and GSF in (c). Further, the large underdensity in GSP and 

GSF is also seen as an underdensity of diameter -50 tT1 Mpc in the SSRS 

Survey and this may make it comparable in size to the Bootes void of 

Kirshner et al. (1981, 1987). However, it should again be emphasised that 

although there do appear to be extended voids and filaments (or sheets) in 

these maps this does not necessarily imply that there is, on average, 

large-scale structure in the overall galaxy distribution; as seen before (Figure 

3.4 (c) and (d)) apparently extended structure can be caused by the overlap 

(or absence) of several randomly placed clumps of galaxies. 

The difference in the morphology of the clumps in the Durham/AAT 

and Durham/SAAO surveys could be caused by differences in the observed 

peculiar motions. In the presence of large random velocities it would be 

expected that the sharp edges in the distribution would be blurred by the 

fingering effect discussed previously (Chapter 2, Section 2.1.2.2). In the 

Durham/AAT Survey this does not appear to be the case and this is backed 

up by the study of the pair-wise line-of-sight peculiar motions in this sample 

which are seen to be (w2)1/2::::200kms-1 (Bean 1983, Bean et al. 1983). 

Alternatively, distinct edges and increased correlations perpendicular to the 

line-of-sight can be caused by some degree of infall as has been noted by 

Bean et al. ( 1983) and Kaiser ( 1987). As will be seen in the following chapter 

such tests can be made from an analysis of ~v(cr ,7t') which averages the 

various forms of clustering over the whole survey enabling a separation, to 

some extent, of the pair-wise velocities from the spatial clustering distribution. 

-The two clusters described above in GSG and GNX are clearly 

observable in the cone diagrams in Figure 3.10 (a) and (e) and are not just 

caused by the overlap of smaller clumps. Taking those members that lie 

within the projected circles in Figure 3.9 (a) and (e) with redshift velocities in 

the range 7200 to 9200 kms-1, in the case of GNX, and 10500 to 12500 · 

kms-1, in the case of GSG, line-of-sight rms velocity dispersions of 409 and 
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Figure 3.12. Overlaps between the fields in the 

Durham/SAAO, Durham/AAT and Parker et al. surveys and the 

SSRS Survey. The m(bJ)~ 17m redshift survey fields are 

overlayed on three of the declination slices of the SSRS 

Survey (see Figure 7a,b,c of da Costa et al. 1988). In the 

overlays (a), (b) and (c) the galaxies indicated (large open 

circles) are those that lie within the corresponding R.A. and 

Dec. range of the corresponding slice. All the galaxies with 

redshifts to the magnitude limit of the fields are shown and the 

positions of the galaxies indicated are exactly as they would 

appear in the underlying slice. The fields marked with a'+' are 

in the Durham/AAT Survey. The radial coordinate is the redshift 

velocity in kms-1 and the angular coordinate the R.A. in hours. 



461 kms-1 are found, respectively, for these dusters. These values agree well 

with typical velocities expected for such structures (Zabludoff et al. 1990) 

although the measurements are fairly uncertain because of the details of the 

cluster membership. 

Finally, a brief comment is made on the Parker et al. Survey. This one 

field is twice the solid angle of a single Durham/SAAO or Durham/AAT field 

and shows some extended continuous structure separated by regions of quite 

low density. Like the Durham/AAT Survey, the edges of the underdense 

boundaries appear to be fairly sharp and there seems to be little evidence for 

any pomc.ula~ remarkable clusters showing the fingeriqg effect. However, 

the concentration at -15000kms-1 does appear to be fairly prominent when 

the field is seen in projection (see Parker et al. 1986, Figure 1 ). As will be 

seen below this field provides a fairly well-determined correlation function and 

augments the data presented here. 

3.2.2 The galaxy luminosity function 

As well as providing a model for the mean number density of galaxies in a 

magnitude selected sample (as seen .in Chapter 2, Section 2.1.1.1 ). the 

luminosity function estimated from local fair samples (the so-called unevolved 

field luminosity function) also places constraints on a number of important 

processes, such as the local luminosity density of matter (e.g. Felten 1977), 

the evolution of galaxy counts (Ellis 1987) and, perhaps, the formation of 

galaxies themselves (Press and Schechter 1974). It has often been assumed 

that there is a universal luminosity function that is an ensemble average 

property over many fair samples (each sample providing an estimate of this 

function that differs in only a small random statistical way from the mean). 

However, it has become apparent that there may be dependencies of the 

luminosity function on properties such as galaxy colour or morphological type 

or environment (such as the local density; see Dressler 1980 for the 

density-morphology relation for galaxies in clusters). This may make the 

estimate of the luminosity function from a sample dependent on both its 

selection properties and the form of the inhomogeneities present within its 

volume, leading, inevitably, to larger errors (both systematic and random) in 

estimates of the dustering. However, provided these dependencies are small,· 

and the samples are large enough, the estimated luminosity functions should 
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be, to first order, non-variant, and the correlation functions comparable (save 

for counting errors) from sample-to-sample. 

In this work the luminosity function of the Durham/SAAO and Parker et 
al. surveys are measured as a means to obtain a model for the mean 

homogeneous number density n(z). A more detailed analysis and comparison 

with the Durham/AAT Survey is given in Shanks (1990); there the B and V 

galaxy magnitudes in the Durham/AAT (Metcalfe et al. 1990a) and Kirshner et 

al. (KOS 1978) surveys are used to derive dependencies of the luminosity 

function on colour. Here, methods for obtaining a density independent form 

for <P(M)dMdV are briefly described and this is followed by the results for the 

Durham/SAAO and Parker et al. surveys. These are then compared with the 

results from a reanalysis of the Durham/ AA T Survey. 

The basic luminosity function estimator (the BE method of Bean 1983) 

for a flux-limited sample is obtained from dividing the observed counts of 

galaxies as a function of absolute magnitude, ~N(M), by the appropriate 

volume Vmax(M) to which galaxies of magnitude M can be seen and, yet, still 

be part of the survey. If galaxies are truly homogeneously distributed within 

the field volumes or if V max(M) is much larger than the typical clustering 

length of galaxies then this method will give an unbiassed estimate of the 

sample luminosity function. The maximum redshift Zmax a galaxy with 

magnitude M can be seen to comes from inverting equation 2-6 with ITFmum 

thus giving Vmax(M)=V(zmax) (equation 2-13). However, where clustering is 

important the assumption that galaxies occupy the full volume V max(M) is 

inappropriate and a dustering insensitive estimator must be used. 

Methods for deriving dustering independent luminosity functions have 

developed over recent years (see the reviews by Binggeli et al. 1988 and 

Efstathiou et al. 1988) but are generally of two types. The first are methods 

based on a position dependent separation of the density and shape of the 

luminosity function; in the case of the Maximum Likelihood Estimator, or MLE 

method, of Bean (1983, based on a private communication of Peebles) the 

mean number of galaxies observed in absolute magnitude range Mi±~/2 

and in a distance modulus range DMj±DM/2 is written as 

(3-4) 

73 



in each field volume. Here, <Pi is the expected luminosity function for that 

magnitude interval and Pj is a density function that scales up~ to account for 

the clustering in that appropriate redshift range. By assuming that the 

probability of obtaining the observed count Nij in bins (i,j) is given by a 

Poisson distribution (with a mean as in equation 3-1) a Likelihood function can 

be formed. By maximising this function, recurrence relations for Pj and~ can 

be obtained that give a non-parametric (though bin dependent) form for the 

luminosity function. 

Other density independent methods for measuring the luminosity 

function rely on a quotient of functions of ¢(M); in the method of Sandage et 

al. (1979, the Maximum Likelihood Fitting, or MLF, method of Bean, 1983) the 

probability that a galaxy i has an absolute magnitude M at redshift Zi is 

¢(M) 

P; « I :max(z;) 4>(M)dM 
(3-5) 

By multiplying together all the probabilities, a Likelihood function can be 

formed which can again be maximised, but in contrast to the above method, 

¢(M) needs to be specified and the Schechter function (equation 2-10) seems 

to provide the best fit to the data. 

In Figure 3-13 (a) and (b), the luminosity functions from the BE and 

MLE estimators are presented for the Durham/SAAO and Parker et al. 

surveys, respectively. Here,. 0.4 magnitude bins were used in the range 

-22.2~M(bJ)~-16.2 and the arbitrary agreement between the two methods at 

M(bJ)=-20.8 is fixed by the need for normalisation of the MLE method. The 

errors are derived from Poisson fluctuations in the counts ..!lN(M) (the 

observed values are shown as histograms in Figures 3-13 (a) and (b)) in each 

bin and, although these may be unrepresentative, the estimates from both 

methods agree reasonably well over the entire magnitude range indicating 

that the dustering is reasonably homogeneous within the sample volumes. 

In Figure 3.14 (a) and (b), the BE and MLE estimates for these two 

surveys are compared with those for the Durham/AAT Survey (Figure 3.13(c)) 

using the correction for the magnitude system given in equation 3-3. Excellent 

agreement to within the errors is seen between all three of these surveys and 

this indicates that the luminosity functions in these samples are reasonably 
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Figure 3.13. BE and MLE estimates of the differential 

luminosity function <t>(M) in the Durham/SAAO, Parker et al. and 

Durham/AAT surveys. The estimates of <f>(M) in the upper 

section of all three figures were obtained in bins of 0.4 in Min 

the range -22.2::sM(bJ):S-16.2. The MLE estimates are arbitrarily 

normalised so that they agree with the BE method at M=-20.8. 

The 1cr errors shown for the BE estimates were obtained from 

Poisson fluctuation in .LlN(M). The solid line in each figure is the 

mean best fit to the luminosity function in each sample (in the 

range -22.2::sM(bJ)::s-17.4) from the MLE and MLF methods 

(a=-1, see equation 3-6). The lower section of each figure 

shows the observed counts .LlN(M). 
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Figure 3. 14. Intercomparisons between the estimates of the 

luminosity function <J>{M) in the Durham/SAAO, Durham/AAT 

and Parker et al. surveys. In (a) the estimates are compared 

between the three samples for the BE method. Likewise in (b) 

the estimates are compared for the MLE method. The values 

shown here are the same as those in Figure 3.15 (a), (b) and 

(c). Errors are indicated for the Durham/SAAO Survey. 
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representative of the overall luminosity distribution. 

To obtain a parametric form for the shape of <t>(M) in the Durham/SAAO 

and Parker et al. surveys the data in Figure 3.13 are fitted using a Schechter 

(1976) function (see equation 2-10). However, instead of using these 

estimates directly, a model for aN(M) was first obtained from <t>(M)Vmax(M)LW 

with <J>{M)aM given by equation 2-10 and Vmax(M) calculated as in the BE 

method but, in the case of the MLE method, corrected for clustering using the 

MLE estimates for <t>(M). This was then fitted to the observed aN(M) in the 

range -22.2!>M(bJ)!>-17.4 using (Bean 1983) weighted least squares (with 

Poisson errors on aN(M)) with a and M* as free parameters (a was 

constrained to be -1.0 for the smaller Parker et al. sample). Figure 3.15 (a) 

shows the best fits and 1cr error contours for the measurements in the 

Durham/SAAO sample in the plane of these two parameters. Also shown in 

the same figure is the result of the measurements from the MLF estimator. To 

intercompare the results from this survey and from the Durham/AAT (Figure 

3.15 (b)), Figures 3.16 (a) to (c) show the contours of the fits to <t>(M) for the 

three methods individually. 

From the 1cr contours in Figures 3-15 and 3-16, it is dear that all three 

estimators are reasonably consistent and, further, that both surveys agree 

reasonably well. The best estimates of M* and a for each of the estimators 

and for each of the surveys (including the Parker et al. sample) are presented 

in Table 3.3. Since the contours in Figure 3.16 are highly correlated (Bean 

1983) the final values forM* to be used in the models of n(z) (equation 2-12) 

are taken to be the average of the clustering independent MLE and MLF 

methods with a=-1. These are (Ho=10Qkms-1 Mpc-1) 

M* = -19.90±0.15 (Durham/SAAO) 

M* = -20.00±0.24 (Parker et al.) (3-6) 

M* = -20.18±0.20 (Durham/AAT) 

with the errors taken from the 1cr error contours (Table 3.3). 

These best fit parameters for <l>(M) in equation 3-6 are compared to the 

observations (using equation 2-10) of the MLE estimator in Figure 3-14 (a) to 

(c) (arbitrary normalisation) and it is seen that a good fit to the data is 
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Figure 3. 15. Results of the fits to the observed luminosity 

functions in the Durham/SAAO and Durham/AAT surveys. In 

each figure are shown the best values (solid symbols) and 1 cr 

error contours (lines) for the fits to the luminosity function in the 

plane of the Schechter ( 1976) parameters M* (bJ) and a using 

the BE, MLE and MLF methods. 



-.5 

-1 
t$ 

-1.5 

-1 

-1.5 

-2 

(a) Durham/SAAO 

---eBE 
---. • MLE 
- ·-.- • MLF 

/ 

\ 

/ 

/ 

/ 
/ 

/. ___ ,., 

/ 

/ 

-21 -20.5 -20 
M• ( +5 log1 0 h) 

(b) Durham/AAT 

eBE 
____ • MLE 

. -.-. • MLF 

,., ,.,. ,.,. ,.,. ,., 
/ 

/ 
\ 

\ _ _.. ..... 

-21 -20.5 -20 
M• ( +5 log 10 h) 

-19.5 

/ 

/ 

I 

I 

/ 

-19.5 



Figure 3. 16. An intercomparison of the fits to the luminosity 

functions in the Durham/SAAO and Durham/AAT surveys. In 

(a), (b) and (c) the best fits (symbols) and 1o error contours 

(lines) are compared between these two surveys in the plane 

of the parameters M*(bJ) and a for the BE, MLE and M L F 

methods, respectively. The best fits and error contours are the 

same as those in Figure 3-15. 
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Durham/SAAO Parker et al. Durham/AAT 

BE M* -20.0±0.13 -20.2±0.18 

a. -1.1±0.14 -1.1±0.13 
(a.=-1) M* -19.9±0.12 -19.95±0.23 -20.1±0.17 

MLE M* -20.2±0.15 -20.5±0.26 

a. -1.2±0.15 -1.1±0.14 

(a.=-1) M* -20.0±0.12 -19.9±0.20 -20.35±0.22 

MLF M* -20.1±0.20 -19.8±0.16 

a. -1.4±0.21 -0.8±0.18 

(a.=-1) M* -19.8±0.18 -20.1±0.28 -20.0±0.18 

Table 3.3. Estimates of the Schechter (1976) parameters M* 

and for a. for the Durham/SAAO, Durham/AAT and Parker et al. 

surveys using the BE, MLE and MLF luminosity function 

estimators. For each estimator the first two rows represent the 

best fit M* and a. for each sample whilst the third row is the 

best fit M* with the constraint that a.=-1. All M* values are in 

the bJ magnitude system and are for H0 =100kms-1 Mpc-1. 



obtained. As an overall estimate of the Schechter parameter M* it is found 

that, for the weighted average of the values in equation 3-6 (see the 

Appendix) 

M* = -20.00±0.11 a=-1 (3-7) 

and this is in rEOt;Proo~.goaf«5leffl'e'ltwit~Shanks (1990) who finds that M*=-19.9 

(a.=-1.2) provides the best overall fit to the luminosity function in the samples 

he considers. The steeper faint end slope in this case arises because Shanks 

fits a wider range of absolute magnitudes than has been considered here; 

some hint of a steeper slope is indicated at M>-17 in Figure 3-14. As seen 

from Efstathiou et al. (1988, Table 8) the result in equation 3-7 may be 

somewhat on the bright end (by about 0.311) of the range of values for surveys 

discussed by tra3eauiror& although part of this may arise from the uncertain 

transforms for the magnitudes systems. 

3.2.3 The observed mean counts and tests for homogeneity 

In the previous section clustering independent methods were used to 

measure the form of the luminosity function for the Durham/SAAO and Parker 

et al. surveys and there it was shown that the Schechter function provided a 

reasonable fit to these data over a wide range of absolute magnitudes. It 

follows, then, that the estimated values for the quantities M* and a are 

appropriate descriptors for the observed shape of <f>{M) and that these, and 

the Schechter function, can then be used to predict the form of the 

homogeneous density n(z) as a function of redshift (see Chapter 2, Section 

2.1. 1. 1 ). In this section this model is compared with the observed data 

through the counts as a function of redshift (A.N(z)) and of apparent 

magnitude (A.N(m)) with the emphasis on testing the overall homogeneity of 

the Durham/SAAO and Parker et al. surveys. Comparisons with the 

Durham/AAT Survey will be made and this eventually leads to overall 

estimates of the counts from all three catalogues. 

Before a model for n(z) is used, however, it needs to be normalised in 

some fashion. As discussed in Chapter 2 (Section 2. 1.1.2) there are various 

ways to achieve this but the simplest approach is to normalise to the total· 

number of galaxies with redshifts that are brighter than the magnitude limit. 

Since different selection procedures are used for the 17"1 samples discussed 
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here, this normalisation is carried out in a self-consistent way to avoid 

introducing any non-clustering correlations of the type discussed in Chapter 2 

(Section 2. 1.1.1 ). However, as seen in Section 2.1.2.3 this does lead to a 

specific bias in the correlation function estimates (the integral constraint) but 

this can be approximately corrected for as specified in that earlier section. 

The exact method for normalisation of the model for n(z) in the 

Durham/SAAO and Parker et al. surveys was as follows. Since ex and M* in 

equation 2-12 are determined from the luminosity function estimates for each 

survey (equation 3-6 with ex constrained to have a value of -1.0), the only free 

parameter to determine is <t>*. Thus, from equations 2-7, 2-9, 2-12, 2-13 and 

2-18 the expected number of galaxies contributing to a field k with magnitude 

limit ml<um and solid angle ilk can be modelled as 

.6.(Nk(:911kum)) = I: ~<t>*!lk(c/H0)3r(O, 1cP.4(M*-rrl<um+DM(zi)))[(zjt ~)3_(zi- ~)'3] 
I 

= <t>* I: Xik 
I 

(3-8) 

where it is assumed that r varies little over the bin .6.z at redshift Zi·Xik is the 

selection function weighted volume of this bin in field k. The distance modulus 

DM(Zi) is given by equation 2-6, in which, like the volume element, the Cb term 

has been neglected and the K-correction is given a mean value of 3.0 (see 

Figure 2.1, Chapter 2). The sum extends over all redshifts with a well defined 

selection function and these, for Durham/SAAO and Parker et al. surveys, 

were chosen to be 1 000scz:::30000 kms-1 and 2000scz:::21 000 kms-1 , 

respectively. The velocity bin width was c~=Skms-1. It follows, then, that from 

the total number of observed galaxies with redshifts, NG, in the above ranges 

and brighter than the field magnitude limits, 

(3-9) 

Thus using the values of M* estimated in equation 3-6 and the 

parameters concerning the fields in Table 3.2, the 232 galaxies in the 

Durham/SAAO Survey gave a <t>* of 
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Q>* = (2.68±0.3f)x10"3 h3 Mpc-3 (3-10) 

where the error comes from variations in this quantity from field-to-field. Note 

that this value of Q>* is approximately a factor of 3 down on a complete 

redshift survey. For comparison, the 80 galaxies with redshifts brighter than. 

bJ=16"1.25 in the Parker et at. Survey gave 

Q>* = 8.13x10"3 h3 Mpc-3 (3-11) 

while in the Durham/AAT Survey 

Q>* = (5.41±0.S'f.)x10"3 h3 Mpc-3 (3-12) 

and allowing for the factor of 3 difference in the mean and error in the 

Durham/SAAO Survey these three values agree reasonably well. However, 

the numbers are not strictly comparable because the values of M* in equation 

3-6 differ slightly from survey-to-survey and also the redshift data have slightly 

varying levels of completeness. 

Results for the counts of galaxies as a function of redshift velocity in 

the Durham/SAAO, Durham/AAT and Parker et al. Survey fields have already 

been presented in Section 3.2.1. There (Figure 3-10 (a) to (o)) the observed 

counts .6.Nik were compared to the model .6.(Nu~>=<t>* Xik (equation 3-8) by 

calculating the fluctuations (.6.N i~.Ll(N i0 )/.6.(N i0 (with Q>* in this case 

normalised to the numbers seen in each field). As discussed in Chapter 2 

(Section 2.1.1.2) a simple model for the variance in the count .6.N ik (where the 

volume sampled in each redshift bin is much larger than the size of the typical 

dumps) is given approximately by cpikm.6.(Ni0 (equation 2-22) where cpjk is the 

selection function for field k at redshift Zi and m is the number of galaxies 

associated with each independent (but identical) dump. 

In Figure 3.17 (a) and (b) the variance in the count .6.Nik from 

field-to-field is plotted as a function of redshift velocity for the Durham/SAAO 

and Durham/AAT surveys, respectively, (the counts in each field were 

corrected to a uniform magnitude limit of bJ=16m.8 and an area of 14.06 

deg2) and the scale is divided into intervals of 3000kms-1 to give suffident 

counts in each bin. Comparing these variations with the appropriate model for 

n{z)d(N(z)) in Figure 2.2 of Chapter 2, it can be seen that there is a 
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Figure 3.17. The field-to-field variance in the count of 

galaxies as a function of redshift velocity in the Durham/SAAO 

and Durham/AAT surveys. The variance was calculated from 

the observed counts aN in each field in bins of 3000kms-1 (the 

counts being corrected to a uniform magnitude limit of 

bJ=16m.a and a field area of 14.06 deg2). 
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reasonable similarity between these two functions and this indicates that this 

model for the fluctuation in the count may be providing an appropriate 

description for the fluctuations observed here, and, further, some constant 

value of m may have been reached in the volumes sampled (at 

v=25000kms-1 this corresponds to [20]3tr3 Mpc3). As will be seen in Chapter 

5 this seems to agree with the conclusions of the correlation analysis. 

However, it may be possible that the variations are suppressed by large-scale 

coherence between the fields, but given their wide angular spacing (Figure 

3.8) this seems unlikely unless all the local volume (z<0.1) were correlated 

(see below). 

In Figure 3-18 (a) (solid line) and (b) a test for the overall homogeneity 

of the Durham/SAAO and Parker et al. surveys is performed, by calculating 

the fluctuations (.!lNr.!l(Nj))/a(Nj) for the summed counts, over the fields, of 

aNik in each catalogue (in bins of 3000kms-1). Satisfactory agreement with 

the zero deviation line is seen over the entire range of velocities except for the 

first bin in the Durham/SAAO Survey (the errors in this sample come from a 

smooth fit to the field-to-field variance in Figure 3-17(a)). For comparison with 

the Durham/SAAO Survey. the results from the Durham/ AA T Survey are 

plotted as a dashed line in Figure 3-18 (a). From this figure it appears that the 

slight trend of increasing overdensity in the Durham/AAT sample at 

v>8000kms-1 (Bean 1983) is reproduced in the Durham/SAAO catalogue. 

However, given the errors in these estimates this overdensity does not appear 

to be very significant. The large overdensity at v<4000kms-1 does seem to 

reproduce between the samples (the same effect can be seen for the 

individual fields in Figure 3.10) and this may be caused by the local 

supercluster (see also da Costa et al. 1988). In Figure 3-18 (c) the overall 

l>(aN)/a(N) distribution for these two samples is shown (the estimate is 

obtained by averaging the solid and dashed lines in Figure 3-18(a) according 

to the relative errors; see the Appendix) 

Whilst these observations seem to indicate that the Durham/SAAO, 

Durham/AAT and Parker et al. surveys may be approaching reasonably 

homogeneous and, thus, fair samples of the Universe, there is some 

indication that this may not be so if the surveys are divided into northern and 

southern Galactic hemisphere subsamples. The distributions of l>(aN)/a(N) in 

the northern hemisphere fields in the Durham/SAAO and Durham/AAT 

surveys (solid and dashed lines, respectively) are compared to those in the 
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Figure 3. 18. The relative fluctuations 5(-llN)/.ll(N) in the 

observed counts as a function of redshift velocity in the 

Durham/SAAO, Durham/AAT and Parker et al. surveys. In (a) 

the estimates are shown for the Durham/SAAO (solid line) and 

Durham/AAT (dashed line) samples with the Durham/SAAO 

errors obtained from a smooth fit to the field-to-field variance in 

Figure 3.17 (a). In (b) the results are presented for the Parker et 

al. Survey. Figure (c) shows the combined estimate from both 

samples in (a). 
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south (dotted and dot-dash lines, respectively) in Figure 3-19 (a). This figure 

suggests that there does appear to be some north/south anisotropy in the 

range 10000~v~23000kms-1 with the northern fields being underdense with 

respect to the those in the south (see the overall north versus south 

distributions in Figure 3-19(b)) and this may be worth investigation in a larger 

survey. For comparison, however, these fluctuations do not appear as serious 

as those seen, for example, in the aN(z) distributions of the original CfA 

(ms<14m.5) sample (see Figure 5 of Davis and Huchra 1982), or the CfA 

(ms<1 sm.5) slices (see Figure 2 of de Lapparent et al 1986a). These surveys 

show considerable variation in the observed aN(z) from bin-to-bin and this 

makes a smooth fit to the counts very difficult to achieve. As will be seen in 

Chapter 5 this may lead to somewhat uncertain estimates of the correlation 

function in these shallower redshift surveys. 

Finally, the differential number counts aN(m) as a function of apparent 

magnitude m are discussed in terms of the more global homogeneity of the 

Durham/SAAO and Parker et al. surveys. These counts (in numbers per 

square degree per 0.25 magnitude bins) are shown for these two samples in 

Figure 3.20 (a) and (b), respectively; in the case of the Durham/SAAO Survey 

the complete (i.e. non 1-in-3 sampled) numbers for each field are given 

together with their mean. The Parker et al. Survey counts show a marked 

decrease beyond bJ=16m.25 suggesting that the 20% incompleteness lies in 

the faintest magnitude interval (see Section 3.1.2 above). 

For comparison with these figures the counts for the Durham/AAT 

Survey (corrected to the bJ system by equation 3-3) are shown in Figure 3.20 

(c) and the mean counts (and representative field-to-field errors) from all three 

samples are presented in Figure 3.20 (d). These results show that the 

Durham/AAT Survey has a slightly lower overall count with respect to the 

other two surveys and a slightly lower dispersion in its values. The mean 

count from all three samples is shown in Figure 3.20 (e) with a Schechter 

model for aN(m) based on equation 2-18 (incorporating equations 2-12 and 

2-13 with no Cb terms) with the overall M* from equation 3-7 (a=-1). It can be 
seen that this model is somewhat shallower in slope than the observed data 

(it is arbitrarily normalised to m=15.25 where <t>*=0.0069h3 Mpc-3) with those 

counts giving quite accurately a -o.s slope in log aN(m) versus m. According 

to the deeper Schmidt galaxy counts of Shanks (1990, see also Maddox et al. 

1990d) the normalisation of a no-evolution model at bJ=19m overestimates the 
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Figure 3. 19. North and south subsample variations in the 

relative fluctuations 5(.6.N)/.6.(N) in the counts as a function of 

redshift velocity. In (a) north and south subsample variations 

are compared between the Durham/SAAO and Durham/AAT 

surveys whilst in (b) the overall subsample variations are 

shown for both surveys combined together. 
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Figure 3.20. The differential number-apparent magnitude 

counts for the Durham/SAAO, Parker et al. and Durham/AAT 

surveys. In all the figures the counts per deg2 A.N(m) are for 

0.25 bins in apparent magnitude m(bJ) (the larger bins at the 

brighter magnitudes being corrected to this smaller bin size). In 

(a) the solid line and symbols are, respectively, the mean and 

individual field counts for the Durham/SAAO Survey. Figure (b) 

shows the counts in the Parker et al. sample and (c) the mean 

and individual counts for the Durham/AA T Survey. The mean 

counts from all three samples (with field-to-field errors on the 

Durham/SAAO estimates) are compared in (d) and in (e) the 

overall count from all three samples is compared to a no­

evolution model for A.N(m) based on equation 2-18. 
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counts at b.J= 1sm by about a factor of 2 and so this trend is continued into the 

deeper data. 

The cause of this discrepancy could have far reaching consequences 

for cosmology if such a steep count is a real feature of the galaxy distribution 

(see Shanks 1990). Part of the discrepancy may arise from the fact that the 

measuring machine, COSMOS, has a tendency to underestimate magnitudes 

for bright (S17"l) galaxies with high central surface intensities (Metcalfe et al. 

1989, see also Section 3.1.1) but this is likely to occur only for elliptical and 

SO type galaxies which represent -30% of the count (Bean 1983). If the 

underdensity at bright magnitudes is real then there is the possibility that the 

steeper count is due to either evolution or inhomogeneity in the galaxy 

distribution. In the former case this would appear to disagree with the 

observations of Broadhurst et al. (1988) that the galaxy counts are 

non-evolving at a mean redshift of -0.2 and in the latter case the underdensity 

would have to extend over a considerable volume (z<0.1 ). Some discussion 

of the latter suggestion is given in Chapter 5. 

Finally, the mean and rms field-to-field variations in the total counts to 

bJ::s16m.8 in the 14 Durham/SAAO and Durham/AAT fields is 

N (::s1sm .8) = 5.8±2.1deg2 (3-13) 

and as discussed in Chapter 2 (Section 2. 1.2.3) this can provide a useful 

alternative measure of the dustering in these surveys. 
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Chapter 4 

The mean mass density of the Universe from observations of 
small-scale (~1 h-1 Mpc) galaxy correlations and random 
peculiar motions. 

This chapter is devoted to the study of the form of galaxy clustering and 

pair-wise random peculiar motions at small ~1h-1 Mpc) scales from what are 

believed to be approximately fair samples of the overall galaxy distribution. 

Using the information gathered about such systems, the dynamical theorems 

for their stability (see Chapter 2, Section 2.2.2.1) can be used to place 

constraints, not only on the magnitude of the underlying mass density, but 

also the form of its relationship to the observed galaxies. Both of these 

descriptions are highly relevant in the understanding of the formation of 

galaxies; the density parameter no is critical, for example, in the rate of 

growth of large-scale structures (Peebles 1980) whereas the information on 

the relationship between the mass and galaxy distributions could specify any 

biassing mechanisms in their formation (Dekel and Rees 1987). As has been 

stressed earlier (Section 2.2, Chapter 2), the key point about this analysis is 

that mean properties of galaxies are being sought rather than making specific 

observations about certain aspects of the distribution (such as the velocity 

dispersions of structures in Abell galaxy clusters). This is clearly important if 

constraints are to be placed on the present form, and previous evolution, of 

the galaxy (or mass) distributions; analysis of specific structures may only 

lead to partial descriptions. 

This chapter is divided into four sections. The first (Section 4.1) deals 

with the observed structure of the small-scale (~1h-1 Mpc) galaxy dustering 

deduced from the projected forms of the two- and three-point correlation 

functions in the Durham/SAAO and Parker et al. surveys. Following this, in 

Section 4.2, the rms peculiar velocities from the samples_are __ obtained. Ihe 

results from these two sections are then compared to observations from other 

surveys (in particular the Durham/AAT) in Section 4.3 and finally, in Section 

4.4, the Cosmic Virial Theorem (see Section 2.2.2.1, Chapter 2) is used to 

estimate no. 
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4.1 The small-scale (S1h-1 Mpc) projected 2- and 3-point correlation 

functions 

In this section the form of the dustering structure at small scales is deduced 

from the projected forms of the redshift two- and three-point correlation 

functions in the Durham/SAAO and Parker et al. surveys. As seen in Chapter 

2 (Section 2.1.2.4 and Section 2.1.3) although this can lead to ambiguities in 

the interpretation of the spatial correlation functions, it does, nevertheless, 

allow for estimates which are reasonably independent of random peculiar 

motions (Figure 2.4). In Section 4.2.2 further estimates of ~(r) are obtained by 

directly fitting the redshift twcrpoint function ~v(a,n) with an appropriate model 

and the results for the dustering are compared to those obtained here. 

This section is divided into two parts; the first (Section 4.1.1) describes 

the observations of the projected redshift two-point function Wv(a) whilst the 

second (Section 4.1.2) that of the projected redshift three-point function 

Zv(01,02,03). 

4.1.1 The projected two-point correlation function U>v(a). 

In Figure 4.1 (a) and (b) estimates of the projected two-point correlation 

function Wv(a) are presented for the Durham/SAAO and Parker et al. surveys, 

respectively. The values have been calculated by summing estimates of 

ev(a,n) in the 1r direction (see Section 4.2 below) in bins of 1h-1 Mpc up to a 

maximum of 7rcut=1Qh-1 Mpc and this choice of limit in 1r minimises the 

contribution of an uncertain ~v at larger scales (see Section 2.1.2.4, Chapter 

2). The 1 a error bars in the figures are obtained from applying the same 

methods to the simulations and these are well backed up by the variations 

between the northern and southern hemisphere subsamples in Figure 4.1 (a). 

Firstly, these results are compared to a simple model for Wv(a) (solid 

lines) in which ~(r) is a single power law, ~(r-)=(:r-o/r)-1.8- (equation -2-90), 

integrated up to the maximum value of 1r, 7rcut (equation 2-97, Section 2.1.2.4, 

Chapter 2). However, as seen from these models and as discussed in 

Chapter 2 (see also Bean 1983), a power-law correlation function in e(r) does 

not project through to a power law in U>y(a) (or w(S)) when it is terminated at a · 

finite cut-off in 1r (or r) (see Figure 2.4). For example, in Figure 4.1 (c) the 
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Figure 4.1. Estimates of the projected two-point correlation 

function wv(cr). In figures (a), (b) and (d) the 1l"cut=1Qh-1 Mpc 

estimates of Wv(cr) are shown for the Durham/SAAO, Parker et 

al. and Durham/AAT surveys, respectively. In (e) these 

estimates are shown together (with the errors on the 

Durham/AAT points) and in (f) they are combined to provide an 

overall estimate from these samples. In (a) are also shown the 

variations in wv(cr) from north and south subsamples of the 

Durham/SAAO Survey. In (a), (b), (d) and (f) the solid line is the 

model for wv(cr) in equation 2-97 (the power law in ~(r) 

integrated to 1l"cut) with y=1.8 and 1l"cut=1Qh-1 Mpc (the 

correlation lengths r0 are as indicated in the figures). The mean 

estimates of wv(cr) from the simulations of the Durham/SAAO 

Survey are presented in figure (c); here the solid and dashed 

lines are the asymptotic (7rcut»cr) and non-asymptotic forms of 

equation 2-97, respectively (clustering lengths again as 

indicated). 
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mean estimates of 00y(cr) from the simulations of the Durham/SAAO Survey 

with 11'cut=20h-1 Mpc are compared to the asymptotic form of equation 2-97 

(with 11'cut»cr) which has OOv(cr)=1.84roYcr(1-v). The best least-squares fit of this 

model to this data gives r0 =(4.9±0.1 )h-1 Mpc with y=1.8 and this is 

significantly lower that the value of r0=5.4rr1 Mpc displayed by the simulations 

at small ($3rr1 Mpc) spatial separations (see Figure 2.5). In Figure 4.1 (c) the 

best fit of this power-law OOv(cr) is indicated as a solid line and this shows that 

the data is decreasing to smaller values faster than cr-O.a. This observation 

can be understood since the simulated e(r) is known to have a break at r=Sh-1 

Mpc. The dashed line in Figure 4.1 (c) is the non-asymptotic form of equation 

2-97 with a 11'cut of 1Qh-1 Mpc and the observed r0 of 5.4h-1 Mpc for the 

simulations at small spatial scales. As can be seen this provides a much 

better description of the simulated data. 

So following this method, the estimates of (J)y{cr) in Figure 4.1 (a) and 

(b) are first divided through by Hy(11'cutlcr) (equation 2-98) which allows the 

log1o(wv(cr)/Hy(11'cutlcr)) versus log1o(cr) data to be fitted with a straight line 

using least squares. If y is constrained to be 1.8 then it is found that 

r0=(5.6±0.5)h-1 Mpc for the Durham/SAAO Survey and r0 =(4.0±1.0)h-1 Mpc 

for the Parker et al. sample. 

These values of r0 have been used in the solid model curves (equation 

2-97) in Figure 4.1 (a) and (b) and it is seen that the fit to the points is quite 

reasonable over the entire range of cr. For comparison with these results, in 

Figure 4.1 (d) the 11' cut= 1 Oh-1 Mpc OOv( cr) values for the Durham/ AA T Survey 

are presented together with a best fit model of r0 =(5.0±0.6)h-1 Mpc (y=1.8). 

Given the errors on these estimates of r0 , the level of agreement between the 

correlation functions at ~10h-1 Mpc is very good and this is also shown in 

Figure 4.1 (e) where all three wv(cr) results are plotted together. Thus, to 

obtain an overall projected function, the values of Wv(cr) from all three samples 

are combined by weighting the individual estimates at each separation 

according to the inverse square of their error (see the Appendix). This 

weighted average is shown in Figure 4.1 (f) together-with--the 1cr·error bars·-­

obtained from the simulations assuming independence of the samples. The 

overall value of r0 , obtained in a similar fashion from the estimated values 

above, is r0=(5.2±0.4)h-1 Mpc. 

As was discussed in Chapter 2 (Section 2.1.2.4), the uncertain form for 
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~(r) at r~1Qh-1 Mpc can make the estimated U>v(a) difficult to interpret and the 

results sensitive to the choice of 1r cut· A more stable estimate of the dustering 

in this case may come from a~ 1 rr 1 Mpc; thus fitting the 7rcut= 1 Orr 1 Mpc model 

for wv(a) (equation 2-97) to the a~ 1 h-1 Mpc results in Figure 4.1 (f) a 

clustering length of r0 =4.8h-1 Mpc was found and this is in reasonable 

agreement with the value above. This value of r 0 is used in the model curve 

shown in the figure. As will be seen in Chapter 5, and as noted by Bean 

(1983), there is some evidence that the observed correlation function rises 

above this simple model extended from small separations. This can be seen 

quite clearly in Figure 4.1 (e) for the Durham/AAT and Parker et al. surveys, 

and to some extent in the Durham/SAAO sample. However, because of the 

projection properties of U>v(a) a significant feature in ~(r) may appear to be 

quite small in this figure. 

4.1.2lhe projected three-point correlation function zv<a1,02,a3). 

The amplitude of the 3-point correlation function, Q, was estimated for the 

Durham/SAAO Survey using the method described in Chapter 2 (Section 

2.1.3). The observed data-random pair and triplet counts DR, ORR and DDR 

were obtained from a catalogue of NR random points homogeneously 

distributed in the field volumes like d(N(z)) (equation 2-14) using Monte Carlo 

techniques. The model for d(N(z)) in each field is as given in equation 3-8 

above and the normalisation procedure was as is described in that section 

(Section 3.2.3, Chapter 3). To decrease the noise of the pair counts arising 

from fluctuations in the numbers of random points laid down, a total of 

NR=160NG points were used where NG (see equation 3-9) is the number of 

galaxies found in the volumes. The factor of NRJ'NG is then divided out once 

the pair counts have been obtained. To account for the smearing effect of 

random peculiar motions, pair and triplet counts were combined up to a 

maximum separation in 1r of 7rcut=5h-1 Mpc. 

As zv(a1.a2,a3) is assumed to be symmetric-in-its-arguments; triplets-of---­

galaxies can be counted in order of their triangles' shape and size. Thus, with 

a 1 <cr2<a3, the shape parameters a=a1 , u=a2/a1 and v=(a3-a2)/cr1 can be 

identified and the form of zv(a ,u,v) obtained for a range of bins in each 

parameter. The results for the measured parameter Q in the Durham/SAAO 

Survey are shown in Table 4.1. To make the significance of the data more 
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CJ u 
(h-1 Mpc) 1-4 

0.25 1.11 O<v<0.5 

0.44 0.5<v<1.0 

1-2 2-3 3-4 

0.75 1.11 0.73 0.92 O<v<0.5 

1.14 0.47 0.08 0.5<v<1.0 

1.50 0.09 -0.29 -0.07 O<v<0.5 

0.24 0.39 0.37 0.5<v<1.0 

Table 4. 1. The amplitude of the three-point correlation 

function a as estimated from the Durham/SAAO Survey. The 

amplitude a is shown at various values of the projected shape 

parameters a, u, and v. Pairs and triplets of galaxies were 

counted up to a maximum separation of 11'cut=5h-1 Mpc. 



uniform, the smaller sized triangles have been combined into a larger bin in 

the parameter u. The mean of the values in the table is 

a= 0.48±0.12 (4--1) 

where the error is obtained from fluctuations in the various bins. Applying 

identical methods to the DurhamiAAT Survey, Bean et al. (1983) found that 

a=0.60±0.06 and this agrees very well with the above result. However, the Qf<r 
-tne. largest a value in Table 4.1 appears to be somewhat smaller than the other 

two; for o:::1h-1 Mpc a=0.75±0.14 whereas for o>1h-1 Mpc 0=0.12±0.11. Like 

the projected two-point function Wv(o), the form of Zy(o,u,v) may be sensitive 

to the large-scale form of ~(r1.r2,r3) (and in this model ~(r)) and this may be 

the cause of the lower value of a seen in the largest bin. The possibly larger 

value of a for this sample will be bome in mind in the analyses below. 

4.2 The small-scale (S1h-1 Mpc) rms peculiar velocity (c#)112 

In this section the Durham/SAAO and Parker et al. surveys are used to 

measure the degree of pair-wise galaxy motions through the line-of-sight rms 

estimate (w2) 1/2 at small scales. In Section 4.2.1 the width of the distortion of 

~{r) in redshift space is used to estimate this quantity and this method is 

reasonably independent of both amplitude fluctuations in ~(r) and variations in 

the form of the frequency distribution for w. In the following section {Section 

4.2.2) a specific model for the redshift correlation function ~v(o,11") is assumed 

and the data is fitted directly. 

4.2.1 (tJY:)112. from the width of ~y{o,x) 

This method for estimating the width of the pair-wise peculiar motion 

distribution was not favoured by Bean et al. { 1983) but as shown in Chapter 2 

(Section 2.2.1.1) it still provides a complementary approach to the direct fitting· · 

of ~v(o,11") described below. In Figure 4.2 (a) to (d), the estimated rms peculiar 

velocity (w2)1/2 (solid line) and the width of ~v(o,11"), (71"2)~v1/2 (dashed line) for 

the DurhamiSAAO Survey are shown. as a function of various separations a 

and 11"cut (see Section 2.2.1.1 for the method). Here (71"2)~v1/2 (see equation · 

2-127) has been calculated directly from the data; i.e. from n2~v(o,11") binned in 
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Figure 4.2. Estimates of (w2)112 from the width of ~v(o,7r) in the 

Durham/SAAO Survey. Estimates of (#)1/2 as a function of the 

limit in separation 1r, 7rcut. are shown at various projected 

separations o. The solid and dashed lines are the values which 

incorporate and neglect the Hubble expansion correction, 

(7r2)~1/2, respectively. Open symbols indicate the variations 

between north and south subsamples. 
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1h-1 Mpc intervals and summed over the bins to the appropriate 7rcut. On the 

other hand the Hubble expansion correction to <n2>~v1/2, (n-2}~1/2, was obtained 

from the model in equation 2-128 with y=1.8.The open symbols in the figures 

are used to represent the estimates from the north and south subsamples. 

The behaviour of these estimators, anticipated in Section 2.2.1.1 (Figure 2.6), 

is reproduced here; (w2)1/2 rises steadily to a plateau as 7rcut increases and 

then both (w2)112 and (n2)~v 1/2 become unstable with (w2)112 declining 

declining to small values (consistent with a break in e(r)). 

As discussed in Section 2.2. 1.1 the plateau in the form of (w2) 1/2 as a 

function of 7rcut is taken to be a close estimator of the true random peculiar 

motions. In Table 4.2, the average values of (w2)112 from the plateau region of 

the solid lines in Figure 4.2 (a) to (d) are shown together with the average 7rcut 

at which these estimates were obtained. Also indicated are the average 

values of (n2)~v 1/2 over the same range. The better determined values of 

(w2)1/2 of between 400 to 560kms-1 at os2h-1 Mpc appear to be somewhat 

larger (although not significantly so) than the (w2)112=200kms-1 measured by 

Bean (1983) for the Durham/AAT Survey. The uncertainties in (w2)112, 

calculated from variations in (n2)~v 1/2 in the simulated catalogues of the 

sample, have been normalised up by a factor of 2 to take into account the 

larger variations in this quantity seen in the field-to-field errors (see Section 

4.3.3 below); however, the variations between north and south subsamples 

(Figure 4.2) seem to indicate that the estimates here are more stable than 

this. Due to the possible systematic errors of this method, a full discussion of 

the Durham/SAAO Survey result is left until the direct fitting of ev(o,n) has 

been employed. 

In Section 2.2.1.1 it was seen that (n2)~v112 is the upper limit to (w2)112; 

in the situation in which galaxies have collapsed to virial equilibrium or are 

infalling this value is the more appropriate measure of peculiar motions. 

However, as can be seen from Figure 4.2 and Table 4.2, the effect is only 

apparent at the larger a separations and even then not significantly so. This is 

further discussed in Section 4.2.2 below. 

Finally, in Figure 4.3 and Table 4.3, the results of estimating (w2)1/2 

and (n2)~v1/2 for the Parker et al. Survey are presented. These values indicate 

that (w2)1121ies in the range of 230 to 520 kms-1 at os2h-1 Mpc for this sample 

but again a discussion of this result will be left until Section 4.3.3 after the 
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(1) (2) (3) (4) 
(J ((1)2)112 (n2)~v 112 1rcut 

(h-1 Mpc) (km s-1 ) (km s-1) (h-1 Mpc) 

0.25 560±210 590 15.0 
0.75 430±400 510 13.0 
1.50 400±450 510 10.0 
3.00 110 400 9.5 

Table 4.2. Estimates of the rms peculiar velocity (~)1/2 from 

the second moment of ev(a,n) in the Durham/SAAO Survey. 
The values of ((1)2)1/2 and the errors from the simulations 

(column (2)) are presented at various separations a (column 

(1 )). Column (3) lists the estimates of the peculiar velocity 

which omit the Hubble expansion correction to ((1)2)1/2 and 

column (4) gives the average value of 7rcut at which ((1)2)112 and 

(n2)~v1/2 were obtained. 



Figure 4.3. Estimates of (wZ)112 from the width of ev(o,7r) in the 

Parker et al. Survey. Estimates of (w2)1/2 as a function of the 

limit in separation 1r, 1fcut. are shown at various projected 

separations o. The solid and dashed lines are the values which 

incorporate and neglect the Hubble expansion correction, 
(n2)~1/2, respectively. 
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(1) (2) (3) (4) 
CJ (w2)112 (7T2)ev112 1Tcut 
(h-1 Mpc) (km s-1 ) (km s-1) (h-1 Mpc) 

0.25 300 330 8.5 
0.75 520 590 12.0 
1.50 230 380 9.5 
3.00 460 640 12.0 

Table 4.3. Estimates of the rms peculiar velocity (w2)1/2 from 

the second moment of ~v(cr,7T) in the Parker et al. Survey. The 

values of (w2) 1/2 (column (2)) are presented at various 

separations a (column ( 1 )). Column (3) lists the estimates of the 

peculiar velocity which omit the Hubble expansion correction to 

(w2)112 and column (4) gives the average value of 7Tcut at which 

(w2)1/2 and (7T2)~)12 were obtained. 



direct fits to ev(cr,1r) have been perfooned. 

42.2 (u?)112 and ro from direct models of ev<a,1£) 

The estimates of ev(cr,1r) for the Durham/SAAO and Parker et al. surveys were 

obtained from the data-data and data-random pair counts DD(cr ,7r) and 

DR(cr ,7r), respectively, using the methods outlined in Chapter 2 (Section 

2.1.2.2). In particular, the pair count DR(cr ,1r) was estimated by summing 

contributions of n(z)Mi(cr)a7r at (cr,7r) and at (cr,-7r) from all galaxies i in the 

sample. As in Section 4.1.2 the mean homogeneous density n(z) was 

normalised using the methods in Section 3.2.3 but unlike that earlier section 

of this Chapter n(z) was calculated directly from the model. The area of the 

annuli Mi(cr) were estimated by laying random points uniformly over the 

entire ring at (o,1r) (or (o,-1r)) and then counting the fraction of points that were 

contained by the field volume, as described by Peebles (1979). 

In Figure 4.4 (a) to (d) are presented estimates of ev(cr ,1r) for the 

Durham/SAAO Survey as a function of both cr (dotted histogram) and 1r (solid 

histogram) in 1h-1 Mpc bins of either variable. In the absence of peculiar 

motions, ev(cr,7r) in these figures would be symmetric in 1r and (J and so the 

significant difference between the solid and dashed histograms is evidence 

for strong anisotropy in this sample. 

The method preferred by Bean et al. (1983) for estimating (u;2)1/2 from 

these figures is by fitting the model in equation 2-31 directly to the ev(cr ,1r) 

versus 1r data. Following their example, e(r) is assumed to be a power law of 

the form e(r)=(ro/r)Y (equation 2-90) with y=1.8 and f(w) is taken to be the 

distribution function of equation 2-122. In this procedure (w2)112 and r0 are left 

as free parameters to be defined by the best fit to the data. In this case a 

simple least-squares method was applied to each figure in the range 

Os1rs 16h-1 Mpc with equal weighting for each point. The best models using 

this procedure are shown as solid lines in Figure 4A-- and the· best-fit 

parameters for (w2)1/2 and r0 are given in Table 4.4 (columns (2) and (3), 

respectively). 

Looking at the models applied to the observed data in Figure 4.4, it is 

seen that a good fit is obtained in each case, except, perhaps, for Figure 4.4 
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Figure 4.4. Estimates of the redshift two-point correlation 

function ~v(cr,n) in the Durham/SAAO Survey. The solid and 

dotted histograms show the estimates as a function of the 

separations 1r and a, respectively. The solid and dashed lines 

are the models of ~v(cr,n) (which exclude and include infall, 

respectively) which best fit the ~v(cr,n) versus 1r data (the best fit 

parameters are indicated in Table 4.4). 
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{1) {2) {3) {4) {5) {6) {7) 

1rcut=16h-1 Mpc 7rcut= 1 Oh-1 Mpc lnfall 

a (w2) 112 ro (w2)112 ro (w2)1/2 ro 
{h-1 Mpc) {km s-1) {h-1 Mpc) (km s-1) (tT1 Mpc) {km s-1) (tT1 Mpc) 

0.25 680±150 5.8±0.7 720 6.0 710 5.8 

0.75 560±220 5.7±0.8 830 6.5 650 5.7 

1.50 620±450 7.3±0.7 940 8.4 700 7.1 

3.00 70±560 4.5±1.0 90 4.5 320 3.4 

{8) {9) {10) {11) {12) {13) {14) 

North South Simulations 

a (w2) 112 ro (w2)112 ro (w2)1/2 ro 
{h-1 Mpc) {km g-1) {h-1 Mpc) {km s-1) (tT1 Mpc) (km s-1) (tT1 Mpc) 

0.25 800 5.7 650 6.0 368 5.4 

0.75 600 5.7 550 5.7 375 5.4 

1.50 350 6.0 750 8.1 310 5.2 

3.00 200 6.0 0 3.4 320 5.1 

Table 4.4. The line-of-sight rms peculiar velocity (w2)1/2 and 

the correlation length ro as estimated from model fits to ev(a;rr) 

in the Durham/SAAO Survey. The values of (oo2)112 and r0 that 

give the best fit of the model in equation 2-31 to the solid 

histograms in Figure 4.4 are presented at various separations 

a (column (1)) in columns (2) and (3) {ncut=16h-1 Mpc) and in 

columns (4) and (5) (7rcut=1 Oh-1 Mpc). The values of these 

parameters that give the best fit of the infall model of equation 

2-132 to the solid histograms are similarly given in columns (6) 

and (7). The variations between the north and south 

sub-samples are shown in columns (9) to (12) and the mean 

values of (w2)1/2 and r0 from the simulations are indicated in 

columns (13) and (14). 



(c) where ~v appears to be somewhat flatter than the predicted model at 

1r<8tT1 Mpc. The large range in 1r of the fits was so as to indude the possibly 

correlated pairs of galaxies seen at separations 7r>10h-1 Mpc in the as1h-1 

Mpc figures. Since this is larger than the 1fcut=10h-1 Mpc used in the Wv(a) 

analysis of Section 4.1.1, Table 4.4 (columns (4) and (5)) lists the values of 

(w2) 1/2 and r 0 when the fits are constrained to cover this smaller range in rr. As 

can be seen, the measurements yield slightly larger estimates of (w2)1/2 and 

r 0 , but not significantly so. 

Table 4.4 (columns (2) and (4)) indicates that the better determined 

estimates of (w2)1/2 for the Durham/SAAO Survey at as2tT1 Mpc are in the 

range 560 to 680 kms-1 in good agreement with the previous result from the 

moments method (previous section) and this again appears to be larger than 

the (w2)112::200 to 250 kms-1 estimated from the Durham/AAT sample by 

Bean (1983) and Bean et al. (1983). The errors in the table are again 

obtained from applying the same methods to the simulations of the 

Durham/SAAO catalogue and, as before, they are normalised up by a factor 

of 2 to take account of the larger variations seen in the field-to-field errors 

(see Chapter 3, Section 3. 1.1 and Section 4.3.3 below). This level of 

uncertainty again appears somewhat larger than that shown by north and 

south subsampl e differences (columns (9) and ( 11), 1r cut= 16h-1 Mpc). 

Also shown in Table 4.4 are the mean values of (w2)1/2 estimated from 

the simulations at the various a bins (column ( 13)). As can be seen at a> 1 tT 1 

Mpc the mean estimate falls below the expected value of -350kms-1, although 

the average value over all 4 bins of (w2)112::(343±33)kms-1 is close to the 

input value. This may indicate that the Bean et al. two-parameter fitting 

approach is reasonably unbiassed as predicted. The results from the 

Durham/SAAO Survey, and the magnitudes of the sample errors, are further 

discussed in the section below. 

The values of the correlation length r 0 found here can be compared 

with the values obtained from wv(a) in Section 4.1.1 above. In Table 4.4 

(column (14)) are listed the mean values of r0 from applying these methods to 

the simulations of the Durham/SAAO catalogue. The average value of r 0 over 

all four separations in this case is r0=(5.3±0.2)tT1 Mpc which is in agreement 

with the known value of r0 =5.4h-1 Mpc for the observed ~(r) below the 

simulated break scale at r-6h-1 Mpc (Figure 2.5). This shows that the method 
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is quite sensitive to the small-scale r0 in spite of using a large 1l"cut of 13tr1 

Mpc for the fits and this again indicates that the a~4h-1 Mpc data can provide 

an accurate estimate of the small-scale correlation function. The mean value 

of r0 in the Durham/SAAO Survey at this scale is r0 =5.8h-1 Mpc and this 

agrees well with the r0 =(5.6±0.5)h-1 Mpc deduced previously for this sample 

from <Uv(a). This again confirms the assertion of Bean et al. (1983) that these 

direct fitting methods give a reasonably unbiassed estimate of the small-scale 

ro. 

In Chapter 2 (Section 2.2.1.2) a simple linear infall model for ~v(a,1t") 

was discussed (equation 2-130) and, similar to Bean et al. (1983) and Davis 

and Peebles (1983), this has been applied to the Durham/SAAO data to look 

for such effects. In this case, as with Bean et al., F and the bias parameter, b, 

in equation 2-132 have been set to unity corresponding to a high density 

Universe in which galaxies trace the mass. A pure power law for ~(r) was 

again assumed (equation 2-90) with y=1.8 and a two-parameter least-squares 

fit to the ev(a ,11") versus 1l" data again performed with 1l"cut= 16h-1 Mpc. 

However, in this case r0 in the infalling velocity component (equation 2-130) 

was set to the value previously obtained without infall (Table 4.4, column (3)). 

The best fit models are shown as dashed lines in Figure 4.4 and the best fit 

values for r0 and (w2)1/2 are indicated in Table 4.4 (columns (6) and (7), 

respectively). 

As with the moments method of the previous section, the inclusion of 

infall makes little difference to either the values of (w2) 1/2 or to the correlation 

length r0 , except, perhaps, at the largest a separations but even then not 

significantly. The tendency, as with the moments estimates, is to slightly raise 

estimates of (w2)1/2 as expected; part of the Hubble motion induded in the 

model in equation 2-31 is cancelled by the infall velocity in equation 2-130 (at 

large values of e it is completely cancelled). This is discussed further below. 

Finally, in Figure 4.5 (a) to (d) are presented the ev(a ,11") results 

estimated from the Parker et al. Survey, and these are ·presented in a similar 

fashion to those for the Durham/SAAO Survey in Figure 4.4. The key feature 

to notice about these figures is that, unlike that latter survey, there is little or 

no anisotropy apparent in ev(a,1t") and this appears at odds with the results 

from the moments method in the previous section, where (w2)1/2 was 

measured to be -230 to 520kms-1 at a~2h-1 Mpc, although the errors on this 
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Figure 4. 5. Estimates of the redshift two-point correlation 

function ev(o,7r) in the Parker et al. Survey. The solid and dotted 

histograms show the estimates as a function of the separations 

1r and o, respectively. The solid lines are the models of ev(o,7r) 

(equation 2-31) which best fit the ev( (J,1f) versus 1r data (the best 

fit parameters are indicated in Table 4.5) 
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latter method (see Table 4.2) would suggest that (w2)112::=Qkms-1 was, 

perhaps, a consistent result. 

The solid lines in Figure 4.5 and the values of (w2)1/2 and r0 in Table 

4.5 are the non-streaming direct fits to the evCo,7r) versus 1r data in the Parker 

et al. Survey (7rcut= 13h-1 Mpc). The largest bin in a proved to be too 

unreliable for measurement of these parameters and so has been omitted. 

The peculiar motion results confirm the visual impression observed in the 

data; (w2)1/2 is measured to be in the range 0 to 200<ms-1 at o~2h-1 Mpc. 

The difference between this and the results from the moments method can be 

seen to lie in the excess correlation or 'tail' in the ev versus 1r data at 7r=7 to 

10h-1 Mpc in Figure 4.5. Since the errors in the moments method are larger 

than those in Table 4.5 (and the results consistent with (w2)1!2::=100kms-1) it is 

assumed that the values here are more reliable. The errors in the table are 

again from the simulations but increased by a factor of 2. 

In terms of the correlation length r0 the average value of r0 =2.91T1 Mpc 

over the three bins in Table 4.5 agrees well with the r0=(4.0±1.0)1T1 Mpc from 

the Wv(o) analysis. Again, the similarity between these estimates suggest that 

the direct fitting method is reasonably unbiassed. 

4.3 Comparison of the small-scale (S1h-1 Mpc) r 0 , a and (w2)112 results 

with other surveys 

In this section the results obtained from the Durham/SAAO and Parker et al. 

surveys for the parameters r0 , a and (w2)1'2 at small scales, are compared to 

the observations of these quantities from statistical studies of other complete 

redshift surveys (see Section 3.1 in Chapter 3 above). Particular attention is 

paid to comparisons with the Durham/AAT sample as this, very comparable 

survey, has been analysed using methods which are identical to those used in 

the previous sections. Using statistical weights derived in a consistent manner 

from the simulations of all three samples, overall values for these parameters 

are presented. This then prepares for the Virial analyses of the next section. 

These overall values for the small-scale correlation functions and 

peculiar velocities are first compared to the results of other catalogues. In· 

particular, comparisons are made with the detailed studies of Davis and 
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( 1) (2) (3) 

a (w2) 112 ro 
(h-1 Mpc) (km g-1) (h-1 Mpc) 

0.25 100±250 2.9±0.8 

0.75 0±320 2.2±0.9 

1.50 200±510 3.6±1.3 

Table 4.5. Estimates of (w2)112 and r0 from the model fits to 

~v(a,n) in the Parker et al. Survey. The values of (w~1/2 and r0 

in columns (2) and (3) at various separations a (column (1)) 

represent the parameters that give the best fit of the model in 

equation 2-31 to the solid histograms in Figure 4.5. The errors 

shown here are from applying similar methods to the 

simulations. 



Peebles (1983) of the CfA (me<14m.5) Survey (Huchra et al. 1983), Peebles 

(1979) for the Kirshner et al. survey (KOS, 1978) and Efstathiou and 

Jedrzejewski (1984) for the deeper Kirshner et al. Survey (1983). Further 

comparisons are also made for r 0 and a with the results from the analysis of 

the Zwicky (Zwicky et al. 1961-1968) and Lick (Shane and Wirtanen 1967) 

magnitude galaxy catalogues by Groth and Peebles (1977). 

4.3.1 The two-point correlation length r 0 

Firstly, in Figure 4.6 the overall form of wv(cr) for the Durham/SAAO, 

Durham/AAT and Parker et al. surveys estimated in Section 4.1.1 (Figure 4.1 

(f)) is compared to a similar analysis of Wv(cr) in the CfA (me<14m.5) Survey 

obtained from the ~v{cr,7r) diagrams of Davis and Peebles (1983, their Figure 

5). In both estimates the summation in 1r is terminated at 7Tcut=10h-1 Mpc and 

the model for wv(cr) is as in Figure 4.1 (f) (a power law in ~(r) of the form 

~(r)=(rc/r)1.8 integrated to 7Tcut=10h-1 Mpc) which has an r0 of 4.8tr1 Mpc. The 

level of agreement (<1a deviations on all the points) between these two 

samples is remarkable given that they have been catalogued in quite different 

ways; the CfA survey is a relatively shallow (but large volume) sample and 

includes features of the nearby galaxy distribution (see Chapter 3, Section 

3.2.3) whereas the combined survey is -3 times deeper and has been 

obtained from many narrow shaped fields. Either this is a remarkable 

coincidence or it is indicating that the two-point galaxy correlation function 

estimated in this fashion (see Section 2.1.2.4 of Chapter 2) at separations 

~10h-1 Mpc is quite stable. This question of stability of these samples will be 

discussed more fully in Chapter 5 below. 

The model Wv( a) that has been fitted to separations a< 11T 1 Mpc in the 

combined sample of the 17m surveys appears not to match the data very well, 

at separations a>1h-1 Mpc, in either this or the CfA sample. This rise above 

the model containing a simple power law for ~(r) has been noted earlier 

(Section 4.1. 1) and by Bean ( 1983). In the absence of _strong infaiL this may 

imply that the amplitude of ~(r) rises above its small-scale form at a>11T1 Mpc 

or that ~(r) has a larger index than -1.8. The significance of this deviation is 

further discussed in the following Chapter where the projection effects 

inherent in Wy(cr) are not so prevalent. 
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Figure 4.6. Estimates of the projected two-point correlation 

function wv(cr) from the combined sample of the 17m surveys 

and from the CfA (me <14ffi.5) catalogue. The 7rcut=10h-1 Mpc 

estimates shown here for the combined 17m surveys are the 

same as in Figure 4. 1 (f); those for the CfA sample were 

obtained by integrating the ev(cr;rr) estimates of Davis and 

Peebles (1983, Figure 5) to the same 1I'cut- The solid line is the 

model for UJv(cr) in equation 2-97 (the power law in e(r) 

integrated to 7rcut) with y=1.8 and 7rcut=10h-1 Mpc (the 

correlation length r o are is as indicated) 



For a further comparison of the estimates of the correlation length r0 , 

Table 4.6 lists the values obtained from the non-streaming and streaming 

(values in brackets) direct fits to ~v(cr,n) in the Durham/SAAO, Durham/AAT 

and Parker et al. surveys (the estimates in Tables 4.4 and 4.5 being 

reproduced here for ease of study and in all cases apply to a power-law ~(r) 

with y=1.8). The final column of Table 4.6 shows the combined values 

averaged together according to their error (obtained from the simulated 

catalogues) and the overall uncertainty again assumes independence of the 

samples (see the Appendix). The non-streaming values of r o are also 

reproduced in Figure 4. 7, together with the estimates from the CfA 

(ms<14m.5) and KOS (1978) surveys (here r0 was obtained directly from the 

estimates of ~v(cr,7r) in Davis and Peebles 1983 and Peebles 1979; at each 

point this ~v(cr,n) was numerically integrated over 1r to 1Tcut=10h-1 Mpc, as in 

wv(cr), and r0 estimated using the model in equation 2-97 with y=1.8). Note 

that the error bars in this figure apply to the overall estimates of r 0 in the 17m 

surveys. 

There appears, from this figure, to be some scatter in these small-scale 

values of r0 . Considering the range cr<1h-1 Mpc, where the results are best 

defined and the scale is most appropriate for virial analyses, it is found that 

r0 =(5.8±0.6)h-1 Mpc for the Durham/SAAO Survey, as compared to 

r0 =(4.5±0.4)h-1 Mpc for the Durham/AAT and r0 =(2.6±0.7)h·1 Mpc for the 

Parker et al. sample. Given the level of uncertainty in these estimates (and 

their errors) the scatter around the mean of r0 =(4.5±0.3)h-1 Mpc seems 

reasonable. Note also that this estimate is in dose agreement with the 

r0 =4.8h-1 Mpc from the cr<1 h-1 Mpc fit to the overall wv(cr) in Figure 4.1 (f) 

(Section 4.1.1 ). 

As with the projected function wv( a) above, this overall value 

r0 =(4.5±0.3)h-1 Mpc at this scale is in good agreementiJimlhaCfA value of 

5.0h-1 Mpc from Figure 4.7, and the r0 =(5.2±0.3)h-1 Mpc (cr<2h-1 Mpc) or 

r0 =(5.4±0.3)h-1 Mpc as estimated for this shallower sample by Davis and 

Peebles (1983) and Efstathiou and Jedrzejewski (1984), respectively:---These 

latter authors also find r0 =(5.2±0.3)rr1 Mpc from the survey of Kirshner et al. 

(1983). Thus it appears from these observations and those of Peebles (1979) 

for the KOS sample (Figure 4.7) that all the redshift survey results seem to be 

converging on a value of r0~4.7rr1 Mpc at cr<1h-1 Mpc which is dose to the 

mean estimate of Groth and Peebles for the Lick and Zwicky catalogues (this 
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ro (h-1 Mpc) 

( 1) (2) (3) (4) (5) 

(J 

(h-1 Mpc) D/SAAO D/AAT Parker Overall 

0.25 5.8±0.7 (5.8) 4.5±0.4 (4.3) 2.9±0.8 4.6±0.3 (4.8) 

0.75 5. 7±0.8 (5. 7) 4.5±0.6 (4.3) 2.2±0.9 4.3±0.4 (4.8) 

1.50 7.3±0. 7 (7.1) 5.6±0.7 (5.3) 3.6±1.3 6.0±0.5 (6.1) 

3.00 4.5±1.0 (3.4) 6.9±1.2 (1.2) 5.5±0.8 (4.6) 

Table 4.6. Estimates of the correlation length r0 from model 

fits to ~v(a,11") in the Durham/SAAO, Durham/AAT and Parker et 

al. surveys. The unbracketed values (together with the errors 

from the simulations) in columns (2), (3) and (4) are the 

parameters that give the best fit of the no infall model to the 

~v(a,11") histograms in the Durham/SAAO, Durham/AAT and 

Parker et al. surveys, respectively. likewise the bracketed 

values are the estimates for the model that does include infall. 

Column (5) shows the overall estimates from all three samples 

(the infall values in this case coming from the Durham surveys 

only). 
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Figure 4. 7. Small-scale estimates of the correlation length r0 

from direct model fits to ev( o, 1r ). The values for the 
Durham/SAAO, Durham/AAT and Parker et al. surveys were 

obtained from direct fits to ev(o,7r) without infall. The overall 

estimate (solid circles) from these samples (with error bars) 

was found by averaging these values (see Table 4.6). The 

estimates from the CfA and KOS surveys was found by 

integrating ~v(o,7r) to 7rcut=1 Oh-1 Mpc (see text). The dashed 

line, with r0 =4.7h-1 Mpc, is the Groth and Peebles (1977) result 

for the clustering observed in the Lick and Zwicky 2- d 

catalogues. 



value is shown as a dashed line in Figure 4.7). 

At o>h-1 Mpc, there is again some evidence from Figure 4.7 for an 

increase in the value of the correlation scale-length, although the scatter is 

quite wide. Although the figures in brackets in Table 4.6 have been obtained 

using a high density Universe. infall model in the fits to ~v(o,7r) there is still 

some weak evidence for a rise in r0 . However, a more detailed discussion of 

this behaviour of the data will be left until the estimator ~ 5 (s) has been 

presented in Chapter 5. 

4.3.2lhe three-point amplitude a 

In Section 4.1.2 above, this quantity estimated for the Durham/SAAO Survey 

gave 0=0.48±0.12 at o<2h-1 Mpc although the more stable value of 

0=0.75±0.14 at o<1h-1 Mpc may be more appropriate. In either case, this 

agrees well with the a=0.60±0.06 obtained from the Durham/AAT sample. 

Similar estimates have also been observed in other samples; 

Efstathiou and Jedrzejewski find a=0.8±0.1 for the CfA (ms <14fll.5) Survey 

and a=0.5±0.1 for the sample of Kirshner et al. (1983). Peebles (1981a) also 

found a=0.68±0.05 for the compilation of redshifts by Rood (1982). These 

and the 17m samples seem to suggest that the overall value of a is a::::0.7 

and this is somewhat different from the 0=1.3±0.2 deduced from the Lick and 

Zwicky catalogues by Groth and Peebles (1977) and the a=1.3±0.3 for the 

KOS Survey by Bean et al. (1983). However, in the case of the Zwicky 

Catalogue the result for a is very sensitive to the inclusion (or removal) of 11 

galaxies in the core of the the Coma duster (the result being a=0.85 when 

the 11 galaxies are omitted rather than a=1.4) and so the former result from 

the magnitude catalogues should, perhaps, be viewed with caution. Similarly, 

most of the result in the KOS Survey comes from one rich field (NP4), the 

value of Q falling by a factor of 2 if this field is omitted (Bean 1983). 

Previously, the low value, with respect to the Zwicky and Lick 

Catalogues, of a=0.6 in the Durham/AAT Survey was taken, by Bean et al. 

(1983), to imply that this sample was lacking in rich areas of clustering. 

However, from the overall agreement of this value with that estimated from 

the Durham/SAAO and other samples, this conclusion seems no longer to be 
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justified. Certainly, this agrees with the observations in Chapter 3 (Section 

3.2.2) that Abell type dusters have not been missed in the 17m samples. 

4.3.3 The pair-wise rms peculiar velocity (r#)112 

In Table 4.7 the pair-wise rms peculiar velocity results from the 

non-streaming and streaming fits (in brackets) to ~v(o,7r) in the Durham/SAAO 

and Parker et al. surveys are compared to the values estimated from the 

Durharn/AAT Survey using identical methods. The Durham/SAAO and Parker 

et al. estimates, reproduced here for convenience, are the same as those in 

Tables 4.4 and 4.5 except that a correction has been made for the differences 

in redshift measuring error between the various surveys. This is 

(4-2) 

according to the assumption that the error in the redshift velocity 

measurement Bvz of a single galaxy (Table 4.8) adds in quadrature to to the 

true value of (w2)112. 

At o<1h-1 Mpc, where the estimates of the peculiar velocities in Table 

4. 7 appear to be well determined, there appears to be quite a wide spread in 

the observed values of (w2)112. In this scale range, (w2)1i2=(600±140)kms-1 for 

the Durham/SAAO Survey, (w2)1/2=(190±90)kms-1 for the Durharn/AAT and 

(w2)112=(0±240)kms-1 for the Parker et al. sample. Thus, according to these 

errors the Durham/SAAO Survey is 2.5o and 2.2o away from the 

Durham/AAT and Parker et al. values, respectively. 

This seemingly quite large variation in the line-of-sight peculiar motions 

has been investigated fairly thoroughly. At first, the discrepancy, as measured 

directly by the error in the simulated catalogues, appeared even larger than 

this. In Chapter 3 (Section 3.1. 1) the simulated and field-to-field errors on 

( w 2) 1/2 at a< 1 h-1 Mpc were compared for both the Durharn/SAAO-and 

Durham/AAT samples (the 'field-to-field' errors for the Durham/SAAO Survey 

were obtained from dividing the sample in three groups of three fields to 

achieve enough signal). That table is reproduced in more detail in Table 4.9 

below. It is apparent from this that the magnitude of the simulated errors is 

down on the field-to-field errors by a factor of -2 and, on the assumption that 
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(w2) 1~ (km s-1 ) 

(1) (2) (3) (4) (5) 

a 
(h-1 Mpc) Durham/SAAO Durham/AAT Parker Overall 

0.25 660±150 (690) 220±120 (230) 0±250 300± 90 (400) 

0.75 530±220 (630) 170±130 (220) 0±320 230±100 (230) 

1.50 600±450 ( 680) 190±230 (280) 170±510 260±190 (360) 

3.00 0±560 (270) 0±540 (190) 0±390 (390) 

Table 4. 7. Estimates of the rms peculiar velocity (w2)1/2 from 

model fits to ~v(a,7r) in the Durham/SAAO, Durham/AAT and 

Parker et al. surveys. The unbracketed values (together with 

the errors from the simulations) in columns (2), (3) and (4) are 

the parameters that give the best fit of the no infall model to the 

~v(a,7r) histograms in the Durham/SAAO, Durham/AAT and 

Parker et al. surveys, respectively (these are similar to the 

values in Tables 4.4 and 4.5 except that a correction has been 

made for the redshift measuring error; see text). Likewise the 

bracketed values are the estimates for the model that does 

include infall. Column (5) shows the overall estimates from all 

three samples (the infall values in this case coming from the 

Durham surveys only) 



Survey 

Durham/SAAO 

Durham/AAT 

Parker et al. 

CfA (ms<14m.s) 

5Vz 

(kms-1) 

120 
50 

75 
50 

Table 4.8. Redshift velocity measurement errors 5vz for four of 

the galaxy surveys discussed in the text. 



Durham/SAAO Durham/AAT 

a (1) (2) (3) (4) 

(h-1 Mpc) sim f-to-f sim f-to-f 

0.25 77 130 59 103 
0.75 109 229 63 118 

Table 4.9. Error estimates for the pair-wise rms peculiar 

velocity (w2)1/2 (in units of kms-1 ) along the line-of-sight (see 

also Table 3.1 of Chapter 3, Section 3.1.1). Columns (1) and 

(2) are, respectively, the simulated and field-to-field errors for 

the Durham/SAAO Survey. Likewise, columns (3) and (4) are 

these quantities, respectively, for the Durham/AAT Survey. 



the field-to-field errors are more likely to be representative of the true 

fluctuations in (w2)112, this implies a deficiency in the model for the 

simulations. 

An alternative explanation lies not in the simulated errors (although at 

odds with those from the field-to-field fluctuations) but in the estimate of the 

redshift velocity measurement 5vz for the Durham/SAAO sample. Figure 4.8 

shows the distribution of Tonry and Davis (1979) r-factors for the 

absorption-line redshifts used in this sample (quality ratings 1 and 2; see 

Section 3. 1.1 in Chapter 3) and these represent 79% of the total number of 

redshifts. According to Tonry and Davis this r-factor is related to the error 5vz 

by 

c 
5Vz = 1+r (4-3) 

Thus, using the mean calibration of c=688kms-1 for these quality rating 1 and 

2 objects from Metcalfe et al. (1989, this value accounts for the difference inc 

values between the observing runs) 5vz=112kms-1 for the mean r-factor of 

r-5.17 from Figure 4.8. The remaining redshifts (21% of the total) were from 

emission-line features which are known to give errors 5vz~ 100 to 15Qkms-1. 

Thus, the conservative estimate of 5vz~120kms-1 seems to rule out the 

suggestion that the 600kms-1 estimate for (w2)1/2 was due to a large 

measurement error (5vz needs to be -400kms-1 to reduce 

(w~ 1 12obs~600kms-1 to (~ 112corr200kms-1 ). Just to check this, the direct fits 

(no infall) to ev(a,7r) in the Durham/SAAO sample was repeated, but just on 

the galaxies with better determined absorption-line redshifts (r-factor ;:::4.0 for 

the quality rating 1 and 2 galaxies in Metcalfe et al. 1989). At a<1 h-1 Mpc 

(w2)112=630kms-1 (123 galaxies) in agreement with the value obtained 

previously (quality ratings 0, 1,2 and 5). 

Finally, it may be thought that the larger (w2)1/2 value of 600kms-1 in 

the Durham/SAAO Survey was biassed by the clusters seen in fields GNX 

and GSG (see Chapter 3, Section 3.2.1 ). the line-of-sight dispersions of which 

were measured to be (v2)1/Z::4Q9 and 461kms-1, respectively (this translates 

into pair-wise velocities of (w2)112~578 and 652kms-1 ). Thus it could be 

conjectured that these clusters were responsible for raising the estimate of 

(w~1/2 for the whole sample. To test this, the direct fitting to ev(a,7r) was again 
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Figure 4.8. The distribution of Tonry and Davis (1979) 

r-factors for galaxies with absorption-line redshifts in the 

Durham/SAAO Survey (these galaxies have codes 1 and 2 in 

Metcalfe et al. 1989). The number of galaxies N with a given 

r-factor is plotted against r. 



repeated on the Durham/SAAO sample with these two duster fields exduded. 

The results at o<1tT1 Mpc gave (w2)1~=700kms-1 (172 galaxies) which again 

illustrates that this dispersion is a property of the whole sample. Such a 

conclusion appears also to be supported by the textural differences between 

the Durham/SAAO and Durham/AAT catalogues as discussed in Section 

3.2.1 (Chapter 3). 

Thus, in conclusion, it is believed that the range of rms peculiar 

motions observed in the Durham/SAAO, Durham/AAT and Parker et al. 

surveys is a result of real (i.e. statistical) fluctuations in these samples. The 

best estimate of the error on (w2)1~ comes from the field-to-field variations but 

as we have seen these may themselves not fully describe the observed 

fluctuations seen in the samples as a whole. In contrast to Bean et al. (1983), 

it is also believed that the static simulations do not provide large enough 

fluctuations in (w2)112 (the errors in Table 4.7 have been increased by a factor 

of 2 to take account of this) and this may be improved by increasing the 

variety of clumps laid down in the simulated volumes, whilst, at the same 

time, maintaining the form of the two-point correlation function. Some of this 

could be achieved by increasing the amplitude of the three-point function (by 

introducing a varying number of levels to the simulated hierarchy; see Section 

2. 1.4, Chapter 2) from Q==O.S to Q==O. 7 or by increasing the higher order 

correlation functions. Certainly, the degree of textural variations between the 

Durham/ AA T and Durham/SAAO surveys seen in Section 3.2. 1, would allow 

for this. 

As a final note to this, such variations in the rms peculiar velocities 

have already been anticipated, to some extent, by Davis and Peebles (1983). 

They point out that in the Soneira and Peebles (1978) dustering prescription 

rare rich dumps can make a large contribution to (w2) 1/2 and this may lead to 

appreciable sampling fluctuations. They conclude from this that for the CfA 

(ms<14m.s) sample (see below) the true error may exceed their estimated 

internal errors. 

Other authors have also found evidence for large sampling fluctuations 

in the estimates of peculiar motions. For example Peebles (1979) reported a 

value of (w2)1~50Qkms-1 (uncorrected) for the KOS (1978) Survey. Similarly, 

Efstathiou and Jedrzejewski (1984) find (w2)1/2::::540kms-1 (uncorrected) for 

the extension to this work (Kirshner et al. 1983). 
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Thus, assuming that the variations seen in (w2)1/2 above are due to 

sampling fluctuations, the results for the Durham/SAAO, Durham/AAT and 

Parker et al. surveys are combined according to their relative weight (see the 

Appendix) in the final column of Table 4.7. The overall errors again assume 

that the samples are independent. These results are compared to those from 

the CfA (ms<14m.s) Survey (Davis and Peebles 1983) in Figure 4.9; here the 

filled and open symbols are for the non-streaming and streaming estimates of 

(w2)112. The CfA values were estimated in a similar way to the method 

described in Section 4.2.1 except that an exponential model (Peebles 1980, 

p290 equation 76.14) for the distribution of pair-wise peculiar velocities was 

used (for the estimates see F=0.1 and F=1 values in Table 3 of Davis and 

Peebles 1983). These results are in good agreement with the preliminary 

(w2)1/2 estimates (Davis 1987) from the SSRS Survey of da Costa et al. 

(1988). At present no details of this work have been formally presented. 

From Figure 4.9 it is seen that the overall estimates of (w2)1/2 in the 

17m surveys agree very well with the CfA values, in spite of possible large 

sampling fluctuations. De Lapparent et al. (1988) also find a similar peculiar 

velocity of (w2)112=3QOkms-1 applies to their data in the CfA (ms<15m.s) slices 

(although they omit the Coma cluster). Unless this is just a coincidence, this 

would seem to suggest that these samples are tending to be large enough to 

incorporate the diversity of peculiar motions present in the Universe; i.e. that 

they are approaching fair samples. This is again encouraging, given the quite 

different methods of selection for these various catalogues and the local 

inhomogeneities present in the CfA and SSRS surveys (see Section 3.2.1, 

Chapter 3). This intimation of fairness will be borne in mind in the following 

chapter, when discussing estimates of large-scale structure. 

As was discussed in Chapter 2 (Section 2.2.2.1) the form of the (w2) 1/2 

versus a relation can provide quite strong constraints on how the mass is 

distributed around galaxies. This is because galaxies act as test particles 

moving in the potential of their own (if the mass is held within galaxies) or the 

underlying (if the mass is a separate component) mass distributions. In Figure 

4.9 the dashed line is the overall a < 1 h -1 Mpc estimate of 

(w2)112=(290±70)kms-1 from the Durham/SAAO, Durham/AAT and Parker et 

al. surveys. The solid and dotted lines are the predictions from the Cosmic 

Vi rial theorem (see Section 2.2.2.1 ); in the former case this is the model in 
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the Cosmic Virial theorem of Peebes (1976); these are, 

respectively, the models in which either the collective or 

two-body interactions dominate the gravitational potential. 



which the mass is distributed like the two- and three-point correlation 

functions (equations 2-90 and 2-105, respectively) and the collective term 

dominates in equation 2-137 ((w2)1/2oco0.1, equation 2-138 with y=1.8). In 

contrast, the latter is the model in which the tvlo-body term predominates 

((w2)1/2oco-o.s in equation 2-142) and in both cases the models have been 

normalised so as to give (w'l)112=29Qkms-1 at o=O.str1 Mpc. 

It can be see from Figure 4.9 that it is difficult to place constraints on 

the form of the (w2)1/2 versus a relation from the data in the combined 17'11 

samples. At best, it can be said that the observed (w2)1/2 is consistent with 

being constant with separation, as was concluded by Bean et al. (1983) and 

Bean (1983). The lack of any tighter constraint on this observation is as a 

result of the larger estimates of error on the peculiar motions. Even with the 

CfA (ms<14m.s) data, the daimed rise with separation of (w'l)112oco0.13±0.04 is 

very sensitive to the indusion or omission of an infall model to the fit to ~v(o,n) 

(see also Figure 6 of Davis and Peebles 1983). Certainly the estimates 

without infall seem to agree better with (w2)112oco-o.s but the strong up tum of 

such a model at very small scales may be rejected by the motions close 

binary pairs (e.g. Turner 1976) 

4.4 The mean mass density parameter no 

In the last section it was seen that the combined sample of the 

Durham/SAAO, Durham/AAT and Parker et al. surveys could not provide 

much new information on the form of the separation scaling of peculiar 

motions and, thus, direct tests of the Cosmic Virial Theorem (CVT) 

assumptions and theory (see Chapter 2, Section 2.2.2. 1) could not be 

performed. This was seen to be a result of the larger peculiar motion 

variations detected in these surveys which had not previously been predicted 

by the static simulations of Bean et al. ( 1983). In what follows now, the 

normalisation of the CVT is the only parameter that is fixed by the new data 

and this gives an estimate of the mean mass density of the Universe, with the 

assumption that galaxies are accurate tracers of the mass distribution. 

A brief discussion is now given of what values of the parameters, r0 , 

(w2)1/2 and Q, should be adopted for use in the estimate of 0 0 from the 

various surveys described in this work. As has been seen in Chapter 2 

(Section 2.2.2.1) the stability condition of the CVT requires that peculiar 
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motions have had sufficient time to bring the gravitating system to equilibrium, 

i.e. that (w2)1/2fH0 r»1. As (w2)112=300kms-1 (see Section 4.3.3 above), this 

condition requires that rcc3h-1 Mpc. Evidence that such stability occurs at 

these scales is seen in the dynamic simulations of Efstathiou and Eastwood 

(1981) and Davis et al. (1985). According to these latter authors, stability is 

reached at ~0.2tr1 Mpc (see their Figure 7) in both open (il0 <1) and closed 

(il0=1) models of the Universe. 

In this work, the small-scale (cr<1h-1 Mpc) results of Sections 4.1.2, 

4.2.2 and 4.3 are considered to be applicable to this analysis. These 

estimates of r o and a are well determined and avoid the effects of larger scale 

variations (such as a possible break in ~(r), see Section 2.1.2.4 of Chapter 2). 

The values of (w2) 112 are also, of course, less affected by the influence of infall 

(see Sections 4.2.1 and 4.2.2). 

Thus, in the absence of any further evidence which would select the 

exact form of the CVT to use, the methods of Bean et al. ( 1983) are followed. 

This, then, also allows a direct comparison of these results with those 

obtained previously. In particular, these authors find that for the collective 

effect CVT model with a finite cut-off in the gravitational potential of E=10h-1 

kpc (see Chapter 2, Section 2.2.2.1) 

(4-4) 

at a=0.5h-1 Mpc (see their Figure 7). Thus assuming that galaxies are 

accurate tracers of the mass distribution estimates of no can be obtained 

from the measured values of r0 , a and (w2)112. 

In Section 4.3.1 it was found that at cr<1tr1 Mpc, the correlation length 

in the Durham/SAAO Survey was (y=1.8) 

r0 = (5.8±0.6)tr1 Mpc (4-5) 

and the corrected pair-wise rms peculiar dispersion was (Section 4.3.3) 

(w2)1/2 = (600±140)kms-1 (4-6) 

along the line-of-sight. Hence, with a=0.48±0.12 for the three-point correlation 

function amplitude (equation 4-1) equations 4-4, 4-5 and 4-6 give 
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fio = 0.6±0.2 (4--7) 

However, if the slightly larger value of a=0.75±0.14 at o<1tr1 Mpc is adopted 

flo= 0.4 (4--8) 

which is lower, but not significantly different from, the above value. Note that 

the error in equation 4--7 was obtained by assuming that the parameters r0 , a 

and (w2)1/2 are all independent from each other. For comparison, using the 

estimates of r0 =(4.5±0.4)tr1 Mpc, a=0.60±0.06 and (w2)1/2=(190±90)kms-1 

quoted for the Durham/AAT Survey in the previous section at o<1h-1 Mpc 

fio = 0.1±0. 1 (4--9) 

which is in agreement with the Bean et al. ( 1983) value of 0 0 =0. 14 ~:8~. The 

Parker et al. Survey, on the other hand, measures 0 0 =0, since the corrected 

peaJiiar velocity for this sample is (w~112=0kms-1 (Section 4.3.3). 

As with estimates of the rms peculiar motions there appears to be quite 

a wide variation in the estimates of the density parameter. However, as 

discussed in the previous section, this variation in the peculiar motions is 

believed to be a sampling effect and this carries through to the estimates of 

no here. This is because flooc((w~112)2 and this leads to a strong dependence 

of fio on (w~1 12 both in magnitude and error. This is in contrast to Bean et al. 

(1983) who claimed that their strongest source of error in 0 0 was in their 

estimate of the amplitude a which they believed to be uncertain by a factor of 

2 (see above). However, as pointed out by Bean (1983}, the internal (i.e. 

bin-to-bin) error in a is a reasonable measure of the fluctuations in this 

parameter (as seen from the simulated catalogues) and this is supported by 

the apparently stable values of this quantity that are estimated from different 

redshift samples in this and other works (see Section 4.3.2 above). 

Finally, for the Durham/SAAO, Durham/AAT and Parker et al. surveys 

together it was found that 

r0 = (4.5±0.3)h-1 Mpc (4--1 0) 

and 
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((l)2)112 = (290±70)kms-1 (4-11) 

at o<1h-1 Mpc. With a mean value of 0=0.58±0.05 for the Durham surveys, 

this implies 

no = o.18±a.os (4-12) 

or if 0=0.62±0.06 (with 0=0.75±0.14 for the Durham/SAAO sample) 

fl0 = 0.17 (4-13) 

Again the error in equation 4-12 was obtained by assuming independence of 

the various parameters. 

For comparison with these overall values, using the a< 1 h-1 Mpc 

estimates of r0 =5.0h-1 Mpc, ((l)2)112=290kms-1 and 0=0.8 quoted for the CfA 

(ms<14m.s) Survey in the previous section, the density parameter is found to 

be fl0 =0. 11 in good agreement with the overall values deduced above. This 

also concurs with the Davis and Peebles (1983) estimate of fl0 =0.14 ~} using 

similar methods. 

Hence, unless the agreement between these various observations is 

just a coincidence, it seems to suggest that, overall, the combined sample in 

this work and the CfA Survey may be approaching reasonably representative 

volumes, in spite of the larger variations in the peculiar motions observed 

from sample-to-sample. However, the constraint on flo (assuming that 

galaxies are tracers of the mass distribution) is similar to that obtained 

previously by Bean et al. and Davis and Peebles because of the larger 

sampling errors found. 
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4.5 Discussion 

The above estimate of 0 0 =0. 18±0.09 for the combined sample used in this 

work seems to suggest that favoured models of the Universe with 0 0= 1 are 

ruled out by about 9 s.d. It may be thought that this situation could be 

alleviated somewhat by the indusion of an infall model in the analysis as this 

will tend to raise the estimates of (#}112 and lower those of r0 , thus increasing 

the estimated 0 0 (see equation 4-4). However, as seen in Sections 4.3.2 and 

4.3.3, incorporating such a high density streaming motion model into the fits 

to ~v(cr,n) does little to change these parameters at this separation. 

Alternatively, it may be thought that this particular form of the CVT model is 

not applicable, but again, according to Bean et al. (1983), there is only -40% 

variations in 0 0 using quite different assumptions (see, again, their Figure 7). 

As has been suggested in the introduction to Section 2.2, the approach 

to reconciliation of equation 4-12 with 0 0 =1 models is to assume that galaxies 

are biassed tracers of the mass distribution. However, this bias must not 

contradict the observation that the (w2)112 versus cr scaling relation is 

consistent with being constant or slowly rising, and so the approach (e.g. 

Davis et al. 1985) has been to assume that the matter and galaxy correlations 

differ by some simple normalisation factor (see equations 2-131 and 2-141 ). 

However, it is not clear that the same biassing mechanism will apply at all 

scales since, for example, there is no a priori reason why biassing in the 

linear (5p/pb<1) and non-linear (5p/pt»1) regimes should operate in the same 

way. From the analysis above, if all the bias was in the twcrpoint function and, 

as in equations 2-131 and 2-141, ~9=b2~m then equation 4-4 implies that 

b=(il0 /Q0 eff)112. Here, .n0 eff is again the 0 0 estimated by assuming galaxies 

trace the mass (c.f. equations 2-118 and 2-136), whereas 0 0 is the true 

density parameter. In this case equation 4-12 would imply for 0 0 =1 that 

b=2.4. 

This value of the bias is similar to that used to obtain 'realistic' models 

of the galaxy distribution from Cold Dark Matter particles with 0 0=1 (Davis et 

al. 1985, White et al. 1987 and Lilje and Efstathiou 1989). The latter authors 

find that in the linear regime the bias factor is b=2.05±0.05 similar to the 

above value. However, the value of .n0 eff obtained above is measured at 

~9=15 (r=1h-1 Mpc, r0 =4.5h-1 Mpc) which implies, with b=2.4 that ~m=3. 

Clearly, this is approaching the non-linear regime where the thresholding that 
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gives ~9=b2~m in the COM simulations is going to start to break down. In any 

case no in equation 44 depends not only on ro. but also on the three-point 

amplitude a. In the simulations of Davis et al. (1985) a appears to be biassed 

to slightly lower values (a decreases by about 20%) and this increases b to 

around tr2. 7 at this scale. 

Clearly, an important consideration for future observations of galaxy 

peculiar motions is the measurement of the bias (i.e. il0
8 ff) relative to the 

mass as a function of scale as this will help to constrain models of galaxy 

clustering in which such mechanisms operate. As will be seen in the next 

chapter biassing may be an important factor in our understanding of 

large-scale structure and the formation of galaxies. 
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Chapter 5 

Galaxy correlation analysis at scales ~ 1 h-1 Mpc 

G1alaxies are the most numerous and most identifiable 

tracers of large-scale structures in the Universe and, as such, observations of 

their spatial distribution may provide significant insight into the processes of 

the formation and evolution of large-scale mass fluctuations. Observations of 

the second moment of this distribution have already motivated much study of 

the physical processes involved in the evolution of large-scale structure. Since 

estimates of ~(r) at separations r$10h-1 Mpc indicate density contrasts to be 

greater than or of the order of unity, this would seem to imply that. at these 

scales, the second moment is directly measuring the formation properties of 

galaxies themselves (as galaxies have, of course, 5p/pb»1). For example, 

early observation of ~(r) suggested that there were no preferred duster sizes 

in the galaxy distribution at these separations and this has led to a series of 

studies of evolutionary models which mimic this observation (Peebles 1974, 

Efstathiou and Eastwood 1981, Davis et al. 1985) 

At larger scales, where the density contrasts are small (5p/pbcc 1 ), 

galaxies may trace, and accurately constrain, the largest scale 

inhomogeneities in the mass density of the Universe. Since, under the 

influence of gravity, low density contrast fluctuations grow in a linear way (see 

Chapter 2, Section 2.2) these large-scale inhomogeneities may contain the 

initial imprint of fluctuations from a very early epoch in the history of the 

Universe. Thus, such observations will provide vital information concerning 

the progenitors of the large-scale structures we see today. 

It is again emphasised that, in this work, mean properties of the galaxy 

distribution are being sought, and it is hoped that the samples from which 

such observations are made, are reasonably representative of the Universe 

as a whole. In this chapter the visual impressions of large-scale structure 

discussed in Chapter 3 are investigated more thoroughly, using, primarily, the 

redshift correlation function ~5(s), (Sections 5.1 and 5.2). An important part of 

this study is to use the peculiar motion observations of Chapter 4 to better 

constrain the spatial correlation function ~(r). The results obtained from the 
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surveys described in this work are then compared to similar analyses of other 

redshift samples and to other measures of large-scale structure. 

Finally, in Section 5.3 the observations of large-scale structure made in 

this chapter are then discussed with relevance to evolutionary models of the 

mass distribution. A key issue in this is whether spatial galaxy correlation 

function e (r) has been correctly extracted from estimates of the redshift 

function es(s) and what relation e(r) has to that of the mass. Some discussion 

of future methods for dealing with these uncertainties are given. 

5.1 Galaxy clustering at scales S10 h-1 Mpc 

In the previous chapter it was seen how peculiar motions distort estimates of 

galaxy dustering in redshift space making the two-point correlation estimator 

ev a function of two variables, a and 11"; the separations perpendicular and 

parallel to the line-of-sight, respectively. In this section, and the next, the 

direction-averaged correlation estimator, ~5(s), is considered and, since it is a 

function of one variable, it has the advantage over ~v(o,x) of better 

signal-to-noise. Further, since the redshift separation swill approach the true 

spatial separation r, in the limit that r>>lvpi1H0 , where lv~ is a measure of the 

inherent peculiar velocities, then es(S) will in the same limit approach the 

spatial function e(s), i.e. e(r) (see Chapter 2, Section 2.1.2.2). 

In these two sections the approach to studying e (r) is to model 

estimates of redshift function es(s) (see Chapter 2, Section 2.1.2.2) using the 

parameters for peculiar motion obtained from the estimates of ~v(o,x) in the 

previous chapter. As will be seen this iterative procedure is very profitable as 

it leads to a better determination and understanding of the distortions in es(S) 

and hence better estimates of the true spatial dustering. 
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5.1.1 Observations of l;s(s) at ss1Qh-1 Mpc 

Prior to presenting details of the observed redshift correlation functions in the 

Durham/SAAO and Parker et al. surveys, the model for ~5(s) described in 

Chapter 2 (equation 2-34) is discussed in more detail. Firstly, in Figure 5.1, 

the solid line is the numerically integrated form for ~5(s) from equation 2-34 

with the random peculiar motion model for ~v(o,7r), as in equation 2-31. The 

distribution function for these pair-wise motions is again the exp(-CI wl312) form 

of equation 2-122 with (w2)112 set to the observed mean value of -300kms-1 at 

o<1h-1 Mpc taken from the previous chapter (equation 4-11). The spatial 

correlation function ~(r) is, again, a single power law of the form ~(r)=(r0/r)Y 
with y=1.8 (dotted line, assuming s=r) and r0 is set to the mean value of 4.5 

h-1 Mpc also obtained in Chapter 4 (equation 4-10). 

As can be seen from this figure, random peculiar motions tilt the power 

law to lower values of ~5(s) at separations s~3 tr1 Mpc making the slope in 

the log ~5(s) versus log s plane shallower than -1.8 at these separations 

(Bean 1983). At larger scales ~5(s) is very dose to the true spatial power law; 

the slight rise above the dotted line in the figure at between 3 and 10 tr1 Mpc 

is consistent with equation 2-31 (and, thus, 2-34) being a convolution (i.e. 

pairs of galaxies are conserved). Also shown in this figure are similar models 

to the solid line but with (w2)112=200kms-1 (dashed line) and (w2)112=6QOkms-1 

(dot-dash line). From these different dispersions it is seen that the tilt in the 

power-law below 3tr1 Mpc increases as (w2)1/2 increases but the correlation 

function ~ 5 (s) at larger scales remains virtually the same as the spatial 

power-law ~(r). 

These results would seem to suggest that, although there is observed 

to be quite a wide variation in the estimates of (w2)112 from sample-to-sample 

(see Chapter 4, Section 4.3.3), the redshift correlation function es(s) will be 

quite stable at separations ~3h-1 Mpc, at least when the spatial correlation 

function is a single power law. This seems quite encouraging for the 

determination of ~(r) from ~5(s) but it does not, however, take into account the 

narrow shape of the fields in the surveys discussed here. As shown in 

Chapter 2 (Section 2.1.2.2) not all the pairs in the spherical shell at separation 

s are available for the average indicated in equation 2-34. In this case ~5(s) is 

preferentially weighted to the 1r rather than the o direction and this may make 

the distortion for this function more like that observed in ~v(o,7r) at small o 
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(Peebles 1989). 

As discussed in Chapter 2 (Section 2. 1.2.2) a suitable approach to the 

modelling of es(S) is through the static hierarchical simulations. The 

advantage here is that complicated numerical integrals involving field shape 

and selection function can be handled indirectly and so this avoids the 

necessity of making simplifying assumptions in the model. In Figure 5.2 the 

es(S) estimated from the simulations with (w2)1/2::350kms-1 (filled cirdes) is 

compared to the spatial form of e(r) (open circles) shown in Figure 2.5. As 

with the approximate models for es(S) discussed above, this figure again 

shows that es(s) is fairly stable between 2~s$6h-1 Mpc although at larger 

separations there does appear to be some increase in es(S) beyond the scale 

at which e(r) exhibits a break in its power law. The apparent amplification in 

es(S) between 2$S$6tT1 Mpc is <20% and this is much smaller than the 50% 

claimed by Peebles (1989). To compare with these simulations, the solid line 

in this figure is the model for es(S) from equation 2-34 with (w2)112=350kms-1 

and e(r) based on a three power law approximation (dashed line) to the spatial 

form of e(r) in the simulations (open circles). This model again seems to 

slightly underestimate the observed es(S) beyond the break scale but is a 

reasonable approximation otherwise. 

Turning now to the observations of es(s), in Figures 5.3 and 5.4 (solid 

circles) are the within-field estimates of this function from the Durham/SAAO 

and Parker et al. surveys, respectively. These values of es(s) have been 

obtained from the straight pair counts DD(s) and DR(s) in bins of 0.1 in log1o s 

using the methods outlined in Chapter 2 (Section 2.1.2.1, see equation 2-27), 

and the results in these figures beyond -1 Oh-1 Mpc are not shown. To 

generate catalogues of random positions for the pair count DR(s). the method 

described in Section 4.1.2. was used. Again, the homogeneous number 

density n(z) was normalised to the numbers in each survey (Chapter 3, 

Section 3.2.3) using the appropriate Schechter parameters (equation 3-6). 

Here, NRfNG=300 for the Durham/SAAO Survey and 450 for the Parker et al. 

sample. The errors in these figures are from the catalogues of simulations 

and these are well backed up, in the Durham/SAAO sample, by field-to-field 

fluctuations (see Chapter 3, Section 3.1.1) and variations from north and 

south subsamples (shown as open symbols in Figure 5.3). For a direct 

inter-comparison of these results and that obtained previously from Shanks et 

al. (1983, see Figure 5.5), Figure 5.6 shows the Durham/SAAO, Parker et al. 
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and Durham/AAT surveys together. As can be seen the level of agreement 

between these samples is excellent; the result between 1~ss7h-1 Mpc 

appears to be very stable, as was anticipated above. 

To study these observations in more detail, in Figure 5.3 the estimates 

of ~5(s) from the Durham/SAAO Survey are compared to the ~5(s) model of 

equation 2-34. As above, this model (solid line) convolves a power law of the 

form ~(r)=(r0/r)1.8 (dashed line, assuming s=r) with the random peculiar 

velocity distribution of equation 2-122. Here the parameters of r0 =5.8tT1 Mpc 

and (oo2)112=620kms-1 are taken from the o<1h-1 Mpc direct fits to ev(o,Jr) in 

Chapter 4 (Section 4.2.2, Table 4.4). As is seen, the model accurately 

predicts the form of ~5 (s) below ss1 h-1 Mpc and this shows good 

self-consistency of the models and methods. However, at larger scales the 

observed ~5(s) appears to rise above this model, with the data consistently 

giving a larger value for r0 in the range 1 sss10 h-1 Mpc. From the observed 

~5(s) in the range 2:ss<7h-1 Mpc it is found that ro=(7.1±0.8)h-1 Mpc where the 

estimate and error (from the simulations) comes from a large bin over this 

range. 

In Figures 5.4 and 5.5 similar models for ~5(s) are compared to the 

observations in the Parker et al. and Durham/AAT surveys, with the 

parameters r0 and (w2)1/2 also taken from the ~v(o,Jr) analysis of Chapter 4, 

Section 4.2.2 (here r0 =2.6h-1 Mpc and (oo2)112=50kms-1 for the former and 

r0=4.5h-1 Mpc and (w2)112=210kms-1 for the latter). These data again show 

good self-consistency between the predictions and observations at s s 1-2fT 1 

Mpc, as expected. The somewhat wider variation in the estimates of ~5(s) at 

these scales for the 3 surveys (see Figure 5.6) is due primarily to the 

variations observed in (w2)112. However, as discussed in the previous chapter 

(Section 4.3.3) such variations are believed to be consistent with sampling 

fluctuations. 

As with the Durham/SAAO sample, these data are again showing dear 

evidence for an enhanced amplitude in ~5(s) between 2sss7h-1 Mpc. As 

above, by estimating ~5(s) for a large bin in s (2!::~7rr1 Mpc), it is found that 

r0 =(4.4±1.1)h-1 Mpc and r0 =(7.1±0.8)h-1 Mpc for the Parker et al. and 

Durham/AAT surveys, respectively, and these values are in good agreement 

with the r0 =(7.1±0.8)h-1 Mpc for the Durham/SAAO sample above for the 

same range in s. The errors are again from the simulations. This non-unique 
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power law behaviour, referred to as a shoulder in ~(s), has been previously 

noted by Bean (1983) and Shanks et al. (1983). From the discussion above, 

and in contrast to the claim by Peebles (1989), this feature is not believed to 

be caused by the combined effect of random peculiar motions and narrow 

field shape, since the spatial and redshift correlation functions differ little in 

this region of separation (see Figure 5.2). However, it remains a possibility 

that the enhanced amplitude is caused by infall (see Section 5.1.3 below). 

Assuming that the Durham/SAAO, Durham/AAT and Parker et al. 

samples are independent and that the variations seen in Figure 5.6 are 

statistical, Figure 5.7 shows the average estimate of ~5(s) for these surveys 

obtained by weighting the individual sample values according to their error at 

each point (see the Appendix). The overall errors are the combined estimates 

of the simulated errors for each survey assuming statistical independence. 

The solid model line in this case is the convolution of the distribution of 

peculiar velocities with {w2)112::310 kms-1 with a power-law ~(r) with ro=4.5h-1 

Mpc (dashed line). Again these parameter values are the combined estimates 

from the a<1tr1 Mpc ~v(cr,n) analysis of the previous chapter (see Tables 4.6 

and 4.7). In spite of obtaining an excellent match to the estimates of ~5(s) at 

5< 1 n-11VlFC- for the respective samples (Figures 5.3, 5.4 and 5.5) this model is 

a poorer fit to this data at these separations, and this may be caused by better 

determined results for the correlation function in the Durham/AAT Survey at 

the smallest separations. 

The overall estimate of ~5(s) in Figure 5.7 indicates that the correlation 

function is, now, very well determined as was implied by the high level of 

agreement between the various surveys in Figure 5.6 and the division into 

north and south galactic hemispherical parts (Figure 5.3, see also Figure 6.3 

of Bean 1983). As with the individual correlation function observations, the 

solid model line underestimates the data at all points between 2~s~7h-1 Mpc. 

Thus, taking the values of r 0 estimated for this range of s above it is found 

that, overall, r0 =(6.6±0.5)h-1 Mpc and this clustering length is indicated in the 

dotted line in Figure 5. 7. As can be seen from this figure, this model is a good 

match to the observations where the enhanced amplitude is seen. 

This shoulder feature observed in ~5(s) seems to exclude the possibility 

that ~(r) is a continuous power law, on the assumption that peculiar motions 

do not distort ~5(s) from ~(r) at s ~3h-1 Mpc. If the small-scale (s ~h-1 Mpc) 
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correlation function has a dustering length of r0 =4.5h-1 Mpc, as suggested by 

the data in this work, then the continuation of this power law to separations 

2:Ss:S7h-1 Mpc is rejected at the 4.2 signa level, according to the above 

estimate of r0 =(6.6±0.5)h-1 Mpc of the shoulder from the combined sample in 

this work. If r0 at s 51 h-1 Mpc is as high as Str1 Mpc, as perhaps allowed by 

sampling fluctuations, then the rejection is at the 3.2 sigma level. However, 

as mentioned above, it remains a possibility that the enhanced amplitude is 

caused by infall, and this is discussed below (Section 5.1.3). 

At separations larger than -7h-1 Mpc, es(s) in Figure 5. 7 appears to 

show a further deviation from its behaviour in the region 2:Ss:S7tT1 Mpc with 

the data decreasing more rapidly than a continuation of the -1.8 power law 

with r0 =6.6h-1 Mpc. This 'break' in es(s), although positionally uncertain, 

appears to occur in both the Durham samples (Figure 5.6) and is similar to 

the break expected from observation of w(e) (see Chapter 2, Section 2.1.2.4). 

However, this larger-scale form of es(s) will be discussed in more detail in the 

following section and there direct comparisons will be made with the 

observations of w(e). 

Finally, some observations of the dependence of galaxy clustering on 

luminosity are presented here as this is very relevant to possible mechanisms 

of biassing in the formation of galaxies. In Figure 5.8 are the estimates of 

es(s) for the combined sample of the Durham/SAAO and Durham/AAT 

surveys divided into two regimes of absolute luminosity; galaxies with 

absolute magnitudes M brighter than the Schechter parameter M* are shown 

as filled cirdes, those fainter than M* as open cirdes. These estimates were 

obtained in a similar way to that above except for the limits placed on M 

calculated from equation 2-6 (q0 term omitted). This requires an alteration to 

the background density model n(z) (equation 2-11) as follows; 
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n(z) = J ~(z) ¢>(M)dM Mmax(z):sM* 

M:sM* 

n{z) = J ~ ¢>(M)dM Mmax(z)>M* 

(5-1) 
n(z) = 0 Mmax{z)~M* 

M>M* 
JMnax(z) n{z) = M* ¢>(M)dM Mmax{z)>M* 

where Mmax{z) is the limit on the observable absolute magnitude at redshift z 

{equation 2-7). Separate catalogues of random points were then generated in 

the way described above for the Durham/SAAO Survey in Chapter 3, Section 

3.2.3, both for the two surveys and for the two regimes (i.e. 4 in all). The 

parameter M* was again the value appropriate to each survey with a=-1 

{equation 3-6) and the model for n(z) was normalised to the numbers 

observed in each of the 4 sub-samples. To combine the data from the two 

surveys a simple approach of co-adding the DD{s) and DR{s) pairs from each 

of the surveys was adopted with each galaxy in the Durham/AAT Survey 

given a weight of 1/3 (i.e. 1/9 for a pair; this is a similar approach to third 

sampling the Durham/AAT Survey, see Section 5.2.1 below). 

To check equations 5-1 above, Figure 5.9 (a) to (d) shows the 

observed aN(z) data and fits using the truncated forms of n(z) in both the 

Durham/SAAO and Durham/AAT surveys. These figures show that there are 

no serious discrepancies between the observed and predicted aN {z) 

distributions and so the estimates of ~5{s) will be reasonably representative. 

Thus, turning to the observations in Figure 5.8, it is dear that, in this 

combined sample of 247 bright and 259 faint galaxies, ~5{s) is not a strong 

function of absolute magnitude although there is some hint that the brighter 

sample estimates have a steeper power law. The representative errors on the 

faint galaxy estimates {based on the ratio of pair counts observed here in 

each bin to those obtained in the entire, bright and faint, samples) indicate 

that an increase, for example, in the amplitude (r0 Y) of the correlation function 

of about a factor of 2 or more would probably be detected in this data. 

Hamilton {1988) finds some evidence in the CfA {ms<14m.s) Survey for an 

increase of this order but the statistical significance again seems low {see his 
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Figure 5.9. The observed ~N(v) distributions for the 

intrinsically bright (M<M*) and faint (M>M*) galaxies in the 

Durham/SAAO and Durham/AAT surveys. The histograms and 

dashed lines are, respectively, the observed and model counts 

as a function of redshift velocity v. 
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Figure 1). Davis et al. (1988) find a similar result from this sample and from 

the SSRS Survey but the conclusions are based only on about 2% and 8% of 

the data, respectively, which can only be regarded as highly uncertain. Other 

authors (Phillips and Shanks 1987) have, similar to the analysis in this work, 

found a null result for this observation. 

Clearly, such observations are important if an understanding is to be 

reached about the relationship between the clustering of galaxies and the 

clustering of mass in the Universe. As was discussed in Chapter 2 (Section 

2.2) and at the end of Chapter 4 (Section 4.5), if there is considerably more 

'invisible' matter in the Universe than the virial estimates of .Q 0 seem to 

suggest (Chapter 4, Section 4.4), then this matter must be clustered less 

strongly than galaxies to avoid giving rise to larger peculiar motions than 

observed. Since, in general, the galaxy correlations measured are dominated 

by galaxies with M=M* this might imply that objects with MccM* will be 

correlated less strongly. However, such observations are only starting to be 

made and it is not dear from the present evidence as to what the situation is 

in reality. 

5.1.2 Comparison with other results 

In Figure 5.10 the combined within-field ~5(s) result for the Durham/SAAO, 

Durham/AAT and Parker et al. surveys (Figure 5.7) is compared to 

observations of the same quantity from the CfA (ms<14Jll.5) northern redshift 

survey (filled triangles, Davis and Peebles 1983), the diameter limited 

Southern Sky Redshift Survey (open triangles, Davis 1987) and the CfA 

(ms<15m.s) SO slice through the NGP (open squares, de Lapparent et al. 

1987). The points in this graph beyond 2Qtr1 Mpc are not shown. At first 

sight, this figure would seem to suggest that, whereas the estimates of ~5(s) 
at small (s$1-2h-1 Mpc) and large (s ~10h-1 Mpc) scales are somewhat 

variable, the results from the different surveys in the intermediate range 

(2~s~1Qh-1 Mpc) are exhibiting remarkable stability. The agreement between 

the different samples is well within the error bars of the combined 

Durharn/SAAO, Durham/AAT and Parker et al. result and this again seems to 

confirm the suggestion that ~5(s) shows an enhanced amplitude over a simple 

power law with r0 =4.5tr1 Mpc (dashed line) in this region. The dose similarity · 

between the correlation function for the overall sample presented here and 
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the original (me<14m.5) CfA Survey has already been anticipated, to some 

extent, in the projected correlation function Wv(a) (see Section 4.3.1, Figure 

4.S); there the results also seemed to indicate that the CfA Survey could be 

within the sampling fluctuations of the total sample discussed in this work (as 

was also observed with the peculiar motions, see Section 4.3.3). 

In spite of these observations, it still remains a possibility that the 

agreement between these samples in Figure 5.10 between 2$s$10h-1 Mpc is 

just a coincidence. For example, none of the authors for the comparison 

samples chosen above have indicated the level of uncertainty in their 

estimates and given the previous discussion in Chapter 3 (Section 3.1) about 

the relatively shallow depth of these surveys, the error on these estimates 

could be larger than that implied from the observed sample-to-sample 

variation in Figure 5.10. Indeed, Shanks et al. (1983) have pointed out that, 

according to the analysis of Davis and Peebles (1983}, the CfA (me<14m.5) 

correlation function results have a strong estimator dependence at small 

scales (S$2h-1 Mpc) and suffer from sampling fluctuations at large scales 

(s~10h-1 Mpc). The possible uncertainty in the estimates from the shallow 

depth surveys has been further taken up by de Lapparent et al. (1988) and by 

Davis et al. (1988); the first set of authors consider estimator dependencies in 

a new 12° strip of sky (consisting of the above mentioned so strip plus an 

adjacent so strip, see Chapter 3, Section 3.1) and the original CfA (me<14m.5) 

survey, whereas the second consider variations in the estimates of ~5(s) from 

different volume limited samples in the CfA (me<14m.5}, SSRS and IRAS 

(Strauss and Davis 1988) catalogues. 

Discussing the former work first, de Lapparent et al. (1988) have used 

three different forms for the estimator of ~5(s); the simple pair weighted 

estimator (equation 2-27) and the two similar estimators formed by giving 

each pair either 1/cp(Z1) or 1/cp(z1 }<p(z2) weighting (where cp(z) is the selection 

function of equation 2-19; see also Chapter 2, Section 2.1.2.3). These 

estimators are denoted by these authors as ~11. ~1cp and ~cpcp. respectively. 

Thus, de Lapparent et al. find that the correlation length 5o (based on fitting a 

power law of the form ~5(s)=(s0/s)Y to ~5(s)) is 5.1, 8.5 and 8.2tr1 Mpc for 

~11.~1cp and ~cpcp. respectively, for the CfA (me<15m.5) slice and 8.8, 5.8 and 

5.9h-1 Mpc in the original CfA (me<14m.5) northern survey. These values 

have been corrected to y=1.8 and are appropriate to the range 3.~~13.7h-1 

Mpc in the me<15m.5 sample and 3.~s~9.5tr1 Mpc in the me<14m.5 sample, 
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and this makes the estimates directly comparable to the overall estimate of 

the correlation length from the samples discussed in this work. 

The values of So from these surveys would seem to indicate that these 

samples are quite unstable to the application of different estimators; the 

fluctuations in the correlation length from estimator-to-estimator implies that 

the nns scatter -±1.8 (the mean and standard deviations are s0 =(7.3±1.9)h-1 

Mpc and So=(6.8±1.7)h-1 Mpc for the ~<15m.5 and ms<14m.5 samples, 

respectively) and this is about a factor of 3.5 times larger than the uncertainty 

of ±0.5 obtained for the combined sample of the Durham/SAAO, Durham/AAT 

and Parker et al. surveys. Thus, if this larger error estimate were more 

representative of the true fluctuations in es(S) at this scale then it WOUld make 

the shoulder feature much more likely to have arisen by chance, although it 

should be noted that the mean of 5o= 7. 1 h-1 Mpc agrees with the overall 

estimate of s0 =6.6h-1 Mpc obtained previously. 

De Lapparent et al. have suggested that the fluctuations in es(s) 

observed with these different estimators is as a result of (at 2::10tr1 Mpc) 

large-scale clustering in the CfA samples. They point out that the largest 

clustered structures that they see in these surveys are comparable in extent 

to the depth of these volumes and, on the basis that such structures are a 

common feature of the galaxy distribution, they arrive at the conclusion that 

large density fluctuations are to be expected from sample-to-sample (see 

equations 2-71 and 2-85). As evidence for this they show that the 5o 

fluctuation in the ms<15m.5 and ms<14m.5 samples is as a result of large 

structures seen in these volumes. The 1/cp weighting of the galaxies gives 

more weight to volumes at larger distances, and so in the ms<15m.5 sample 

the over-density at -10,000 kms-1 leads to an enhanced correlation function 

for the e1cp and ecpcp estimators (see Chapter 3, Section 3.2.1, Figure 3.4) 

whereas in the ms<14m.5 sample the opposite effect occurs; here Virgo at 

-1000kms-1 leads to an enhanced correlation for e11 (see Figure 5 of Davis 

and Huchra 1982). As further evidence for inhomogeneity, they quote a 25% 

difference in their measured values for the density 4>* between the faint and 

bright samples, where the Schechter parameter 4>* has been normalised to 

the numbers in each sample (see Chapter 3, Section 3.2.3). 

There are various points that can be made about the interpretation of 

these data. Firstly. it should be emphasised that apparently large structures 
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seen in redshift survey plots do not necessarily imply average large-scale 

correlations of the same order of size; it is easy for the eye to pick out 

connected structures which may in reality be the overlap of several randomly 

placed smaller units (see, for example, the simulated slices in Figure 3.4, 

Section 3.2.1 ). Thus, one should be careful about making conclusions about 

the fairness of samples on the basis of visual inspections of the data. 

However, the ~(z) distributions for the ms<15m.s and ms<14m.s samples 

(see Section 3.2.3 of Chapter 3) do appear to be quite noisy as compared to 

the quite smooth distributions of the Durham/SAAO and Durham/AAT 

samples (see Figure 3-18 of the same section), and a smooth model fit to the 

mean density in these brighter samples may lead to noisy estimates of ~5(s). 

It should also be noted that the weighting of pairs by 1/cp(z1) or 

1/cp(z1 )cp(;z2) will lead to estimates of ~5(s), at s :S1 Oh-1 Mpc, which are more 

uncertain than the simple pair-weighted estimate ~11 (Davis and Peebles 

1983) since a reliance is being made on fewer pairs of galaxies (see Chapter 

2, Section 2.1.2.3). If, coupled with this, the mean density model is, in some 

sense, a 'poor fit' to the data, then again quite large variations in ~5(s) may 

occur. De Lapparent et al. do see this in the CfA data; using a VNmax 

estimator for the luminosity function rather than the inhomogeneity 

independent technique (Lynden-Bell 1971, Turner 1979) they obtain a better 

fit to the LlN(z) distributions in the two samples and, accordingly, a reduction 

in the spread of the estimators ~ 11.~ 1 cp and ~cpcp by a factor of about 2. This 

would seem to indicate that poor modelling of the mean density, rather than 

large-scale density fluctuations, could be leading to the observed fluctuations 

in the correlation estimators. For example, a source of uncertainty may arise 

from the inconsistent use of the 1/cp weighting; de Lapparent et al. adopt 1/cp 

weighting in the pair counts for ~5(s), but fail to use it in the normalisation of 

n(z) (see Chapter 2, Section 2.1.1.2). 

Finally, the 25% difference in the density <t>* between the ms<14m.s 

and ms<15m.s samples could be explained by effects other than those of 

clustering induced large-scale density fluctuations. Using the observed 

projected two-point correlation function w(e) for the whole Zwicky (Zwicky et 

al. 1961-1968) catalogue at ms<15m.o, it is possible to predict what density 

fluctuations might be present in the me< 1sm.s slice. Thus, scaling the 

ms<15m.o Groth and Peebles (1977) result for w(e) (Chapter 2, Section 

2.1.2.4, equation 2-89) to ms<15m.s via equation 2-92, and integrating the 
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power law to a maximum of 6cut (in degrees), equation 2-71 (Section 2.1.2.3) 

can be used to predict the expected fluctuations in the number of galaxies in 

the me<15m.5 slice. The result (see also Section 5.2.2, equations 5-4 and 

5-5) gves rms fluctuations of bN/N=0.0426cuto.s and so 6cut=2Cf is required to 

obtain fluctuations -25%. Since the observed w(6) at rns<15m.o is observed 

to break at -6° (-4.8° to 15m.5) this would seem to suggest that 25% 

fluctuations (or 100% fluctuations in the case of the 14m.5 sample) may be on 

the large side. 

Some evidence for this comes from the knowledge that Zwicky 

magnitudes in the range 15m.O<me<1sm.5 may be systematically in error 

(e.g. Felten 1985), in the sense that Zwicky included many more galaxies in 

the catalogue which were fainter than me= 15m.5 and this was as a result of 

not being able to successfully judge galaxy magnitudes fainter than 

me= 15m .0. Figure 5.11 shows Zwicky magnitudes for a set of galaxies for 

which there are photographic (bJ) magnitudes calibrated via CCD sequences 

(Shanks priv. comm.), and this indicates that Zwicky magnitudes fainter than 

15m .0 are poorly defined. Thus, it can be questioned as to what extent the 

25% variation between the me< 14m .5 and me< 15m.5 samples is due to this 

sort of effect. 

Davis et al. (1988) have also examined the correlation estimates es(S) 

in the northern CfA (me<14m.5), SSRS and IRAS (Strauss and Davis 1988) 

catalogues in more detail. By volume limiting each of these surveys in three 

samples of Dmax=20, 40, and 80tr1 Mpc they find that, with a simple 

pair-weighted estimator (equation 2-27) for es(S), So (as determined from 

where ~5(s)=1) is 2.8, 6.0 and 8.0tr1 Mpc respectively in the CfA (ms<14m.5) 

sample, 3.4, 5.6 and 8.5h-1 Mpc in the SSRS Survey, and a more or less 

constant 4.4, 4.2 and 5.0h-1 Mpc in the IRAS catalogue. The mean and rms 

error for these samples are, respectively, s0 =(5.6±2.6)h-1 Mpc, 

s0 =(5.8±2.6)h-1 Mpc and So=(4.5±0.4)h-1 Mpc. This would again seem to 

suggest that the optically selected bright samples may be exhibiting larger 

fluctuations in es(s) than the estimate of r0 =(6.6±0.5)h-1 Mpc from the 

combined Durharn/SAAO, Durham/AAT and Parker et al. surveys. However, 

Davis et al. claim that the Dmax=20h-1 Mpc sample estimates may be low 

because they are dominated by the rich clustering of Virgo in the north, and 

the Fornax-Eridanus clusters in the south and that the Dmax=80h-1 Mpc 

sample values are high because these galaxies .. have a larger luminosity 
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and thus exhibit richer clustering (see the previous section). The IRAS 

Survey. on the other hand, is remarkably stable and it seems to indicate a 

certain insensitivity to strong clustering which may result from these galaxies 

being of mainly late-type. In clusters and in the field there is evidence that 

these objects avoid richer areas of clustering (Dressler 1980, Davis and 

Geller 1976). 

Thus, in conclusion, the observation of the bright optically selected 

galaxy samples may indicate larger fluctuations in the estimate of es(S) than 

the agreement between the various surveys in Figure 5.10 would seem to 

suggest. If rms density fluctuations due to dustering are responsible for the 

error in es(S) then equations 2-71, 2-89 and 2-92 suggest that, in the ms<1&n 

.5 CfA Survey, for example, rms clustering length variations of 

fro 1 5l; 0 6 - = -- = 0.0238cut · 
ro y e (5-2) 

might be expected for e=1. Thus with 8cut =6°, 5r0 /r0 =7% which is close to 

what is observed for the total Durham/SAAO, Durham/ AA T and Parker et al. 

surveys. To obtain 25% fluctuations in r0 then, 8cut =53° and this would 

certainly require the presence of large-scale structure, a matter which is 

currently a subject of strong debate (see following sections). However, in spite 

of these remarks the agreement between the surveys in Figure 5.10 remains 

an inspiring result. 

5.1.3 Discussion 

In the previous Section 5.1.1, it was seen that, on the observation that 

random peculiar motions are negligible at s=5h-1 Mpc, the correlation 

estimator es(s) in the combined sample of the Durham/SAAO, Durham/AAT 

and Parker et al. samples showed evidence for a correlation of length 

r0=(6.6±0.5)rr1 Mpc in the range 2 :ss:s7h-1 Mpc, and this is significantly larger 

than the r0 =5h-1 Mpc that is often used to compare with models of the 

large-scale distribution of matter (Peebles 1981c, White et al. 1983, Davis et 

al. 1985). In the previous section (Section 5.1.2) these results were compared 

to similar observations from other, larger solid angle, but shallower, redshift 

surveys and, although these other results appear to be less stable, there 

seemed to be some agreement that the 'shoulder' was a real feature Of es(S). 
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Here, possible uncertainties in the interpretation of the shoulder in terms of a 

real spatial feature are discussed and, given that these uncertainties are 

small, the spatial form for e(r) and the spatial integrals J2(r) and J3(r), are 

predicted. 

As was seen in the previous Section 5.1.2, clustering induced 

large-scale density fluctuations may lead to significant errors in es(S) through 

modelling of the mean background density n(z) (see Chapter 2, Section 

2.1.2.3, equation 2-70), and it remains a possibility that these uncertainties 

will affect the condusions concerning the significance of the shoulder in ~5(s) 

observed in the combined sample of the Durham/SAAO, Durham/AAT and 

Parker et al. surveys. In Chapter 3 (Section 3.2.3) it was seen that the 

observed .LlN(z) distributions for the two larger Durham/SAAO and 

Durham/AAT samples were in good agreement and, using the inhomogeneity 

independent results for the luminosity functions (Section 3.2.2), satisfactory 

model fits to the aN(z) distributions in these samples were obtained. This 

seems to suggest that the fluctuation in density from sample-to-sample is 

small and that es(s) should be reasonably stable. The only suggestion of 

larger fluctuations in .LlN(z) comes from differences in this count between the 

north and south subsamples, but even here, this does not seem to affect the 

conclusion of es(s) at small scales (see Figure 5.3 and Bean 1983, Figure 

6.3). 

Similar evidence is also available from the field-to-field variations in the 

observed counts brighter than m(bJ)<16m.8 (see Chapter 3, Section 3.2.3). 

The rms fluctuation about the mean count of 5.8 deg2 was ±2.1 deg2 from 

field-to-field (equation 3-13). Thus, from the discussion in Chapter 2 

(equations 2-68 and 2-69) it might be expected that, at small scales, 

b~/~~(2.1/114)/5.~10% for the overall sample and hence br0;rct=5% (equation 

5-2) which is close to the error quoted on r0 . However, it still remains a 

possibility that there is more large-scale structure in the Universe than has 

been detected in this data or has been induded in the simulations. In the first 

instance correlations between the fields would tend to make the rms variation 

in the counts smaller and thus possibly reduce the expected error on r0 . For 

example, it is still a matter of debate as to whether the number-magnitude 

counts at bJ< 17m are low with respect to those at deeper magnitudes (see 

Chapter 3, Section 3.2.3), implying, in the absence of evolution, a large 

under-density in our (z<0.1) neighbourhood or whether this is due to some 
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other effect (such as evolution). 

If more large-scale ~10 h-1 Mpc) structure was introduced into the 

simulations this would naturally make the rms fluctuations in ~ 5(s) from 

simulation-to-simulation larger since the number of independent points in 

each is reduced (Chapter 2, Section 2.1.2.3, equation 2-51). However, from 

Figure 3.8 (Chapter 3, Section 3.2.1) it can be seen that the redshift fields are 

quite well separated on the sky, and unless the correlations extend over quite 

large scales then the error on ~5(s) depends just on the integral of ~(r) over 

the volume of the bin (see equations 2-4, 2-43 and 2-51 of Chapter 2), and 

this makes the contribution from larger scale correlations (~10rr1 Mpc) less 

important. 

This uncertainty in ~s (s) from fluctuations in the density should, 

perhaps, be added in quadrature to the simulated rms error on r0 anyway 

since the density for each simulated catalogue was taken to be a fixed value 

(rather than drawn from a distribution; see Chapter 2, Section 2.1.4). 

However, as was discussed in Chapter 2 (Section 2.1.2.3) the estimator 

~e=(DD/DR)-1 (equation 2-53), normalised to the numbers in a sample, is 

expected to be less sensitive to density fluctuations than global density 

estimates since DO and DR are of -ne2 where ne is the estimated density 

(Davis and Peebles 1983). For example, some evidence for this can be 

observed in the 20 simulations of the coherent sample of 14 Durham/SAAO 

and Durham/AAT fields (see Chapter 2, Section 2.1.4). Taking the 5 

Durham/AAT fields from each simulation it is found that the total count in this 

sample varies by 29 galaxies rms about a mean of 398 (this latter value being 

close to the expected value of 406). Thus, estimating the correlation function 

in each simulation by both a local and global density the observed variance 

for a small bin at sz4.5rr1 Mpc is larger by about 20% in the latter estimator, 

whereas the mean values of ~5(s) at this scale are negligibly different. Using 

equations 2-68 and 2-69 (Section 2.1.2.3) the predicted difference in variance 

between the two estimators (for ~5(4.5)=1.3) should be -0.03 and since the 

variance with the local estimator is -0.14 this increase is well matched to the 

observed value. Thus in conclusion, from the evidence of the surveys 

discussed in this work, it is believed that the shoulder is a significant feature 

in ~5(s) and that this should warrant a more careful appraisal of its physical 

significance. 
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One such physical consideration that has not been accounted for so far 

in the interpretation of ~5(s) is the effect of coherent infall. Thus, although 

random peculiar motions have been shown to have a small effect on the 

direction-averaged redshift correlation function at separations s~3h-1 Mpc, this 

may not be true with peculiar motions due to infall since these are prevalent 

where ~m<1 (Kaiser 1987). For example in Figure 5.12 the solid model line is 

the pair-wise infall model of equation 2-132 (Section 2.2. 1.2, Chapter 2) 

integrated via equation 2-34 (Section 2.1.2.2) with ~(r) a pure power-law 

(~(r)=(4.5fr)1.8) and F=b=1 (equation 2-132; this corresponds to the Bean et 

al. 1983 model where galaxies trace the mass). As in previous models the 

width of the random peculiar velocity distribution (equation 2-122 and 2-123, 

Section 2.2.1.1) is set to (w2)112=300kms-1 which is dose to the observed 

value in Chapter 4 (equation 4-11, Section 4.4) for the combined sample 

discussed in this work. The dashed and dotted lines are, respectively, 

comparison models with no infall but random motions (F=O), and no infall and 

no random motions (F=O=(w2)112, ~5(s)=~(s)=~(r)). 

The solid model line in Figure 5.12 clearly shows that infall can lead to 

a significant amplification of the spatial correlation function ~(r) observed in 

redshift space on the assumption that galaxies trace the mass distribution. 

The constant difference at ~2h-1 Mpc between this model and the dashed 

line (no infall) in log space implies an amplification factor of -1.4, and this may 

be compared with the prediction of Kaiser ( 1987), based on an analytic 

integration of equation 2-132 with e«1. Since F=1 and b=1 this implies the 

mean mass density in this model is 0 0 =0.43 (=O.SS/3, equation 2-130) and, 

thus, according to equation 2-135 es(s)=1.4e(s) in agreement with the direct 

numerical integration. On the assumption that the shoulder observed in es(s) 

is due to infall, this amplification falls significantly below the observed rise of a 

factor -2.0 in the combined sample of the Durham/SAAO, Durham/AAT and 

Parker et al. surveys. However, on the assumption that galaxies trace the 

mass, Kaiser's models predict that with 0 0 =1.2 (equation 2-134) or 0 0 =1.9 

(equation 2-135, the Bean model) such an amplification factor can be 

achieved. These analytic results of Kaiser (1987) for the amplification of e(r) in 

redshift space have been confirmed using N-body simulations of Cold Dark 

Matter (White et al. 1987) by Lilje and Efstathiou (1989). Thus it seems likely 

that using observations of ~5(s) it is possible to directly constrain 0 0 provided 

some knowledge of the spatial form ~(r) is known. 
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Figure 5. 12. The effect of coherent infall on the redshift 

two-point correlation function es(s) at small scales. The solid 

line convolves the spatial power-la~ e(r) with an rms peculiar 

velocity dispersion Of 300kms-1 using the model for es(S) in 

equations 2-34 and 2-31. The solid line is a similar model but 

incorporates the Bean et al. model for infall (equation 2-132 

with F=b=1). 



The suggestion tmt ~ =nwlcler" observed in ~5(s) can be explained by 

infall vvith no=1 is in direct contradiction to the virial estimate of no of -0.2±0.1 

measured from the combined surveys presented in this work (see Chapter 4, 

Section 4.4, equation 4-12). In the discussion at the end of Chapter 4 (Section 

4.5) it was argued that models of the Universe with ilo=1 could be recondled 

vvith the observed virial estimates of 0 0 if galaxies were biassed tracers of the 

mass distribution. There it was shown that if ~9=b2 ~m as in equation 2-131, a 

biassing factor of b=/5 is required if all the bias is in the two-point function. 

Thus if this biassing applies to scales larger than where the virial estimate 

was obtained, and galaxies infall with the same velodty as the mass, then the 

effective mass density parameter il0
8 ff is (equation 2-136) -5-513::0.068 in the 

BBGKY model at ~mcc 1 and il0
8 ff=(/5)-513::0.26 in the Kaiser description. This 

immediately implies that the amplification of ~5(s) for the galaxies is down to a 

factor of 1.1 in the former model (equation 2-135) and 1.4 in the latter 

(equation 2-134), and again this is significantly below the amplification of -2 

that is observed. 

The decrease in the amplification of ~s(s) is understandable because of 

the lower infalling velocity of the galaxies induced by smaller density contrasts 

in the mass. If the biassing between the non-linear and linear regimes is not 

constant so that, for example, b=1 where ~mcc1 then infall with 0 0 =1 could 

explain the shoulder in ~5(s) for the galaxies. However, this situation would 

then be somewhat contrived since ~(r) for the galaxies would have a pure 

power law form whereas ~m(r) for the mass would have a shoulder beginning 

at where ~m::: 1. All these arguments would seem to suggest that the shoulder 

observed in the galaxy correlation function ~5(s) is a real spatial feature in ~(r) 

and it is, at this point, now worth considering a computational form for ~(r) 

which will represent the observed data. 

In Figure 5.13, the approach used is to assume, as did Bean (1983), 

that ~(r) takes the form of 3 power laws. Thus, the shoulder in e(r) is 

represented as a sharp (discontinuous) rise in ~(r) from a power law of the 

form ~(r)= (4.5fr)1.8 at r::::1.6tr1 Mpc to the higher amplitude (by a factor of -2) 

function e(r)=(6.6/r)1.8 at larger separations. The break observed in e(r) is 

then included as a rapid decline in ~(r) of the form ~(r)=(6.9/r)7.5 at 

separations r>7h-1 Mpc. To compare this with the observed form of ~5(s) this 

numerical model for ~(r) was convolved with a peculiar velocity distribution 

(equations 2-122 and 2-123, Section 2.2. 1.1, Chapter 2) with an rms width of 
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Figure 5. 13. A simple model for the small-scale spatial 

correlation function e (r) in the combined sample of the 17m 

surveys. The spatial function e(r) is based on the three power 

laws shown with transitions between the forms occuring at 

r=1.6 and 7.0h-1 Mpc. 



310kms-1 and the form for ~s(s) computed via equations 2-31 and 2-34 

(Section 2.1.2.2). In Figure 5.14 this convolved model (solid line) is compared 

to the combined ~(s) result for the Durham/SAAO, Durham/AAT and Parker 

et al. surveys from Figure 5.7. The dose agreement between the data and 

model suggests that the 3 power law approach is a useful representation. 

Note how the sharp discontinuous rise in ~(r) at the shoulder is smoothed out 

by the peculiar motions. 

The proposed functional form for ~(r) in Figure 5.13 can now be used 

directly to predict values for the integrals over ~(r), J2(r) and J3(r) (equations 

2-151 and 2-46, respectively), that are often used to normalise models for the 

evolution of the galaxy distribution. In Table 5.1, columns (2) and (4), the 

results of the integrations are shown as a function of separation r out to a 

maximum of 20h-1 Mpc and in columns (3) and (5) these values can be 

compared to the model in which ~(r) is the often assumed power law of the 

form ~(r)=(5fr)1.8. It can be seen that the shoulder in ~(r) does lead to a larger 

normalisation for J2 and ~ in the important region where r-=r 0 and this should, 

perhaps, be taken account of in evolutionary models of the galaxy distribution. 

At separations r;c-1 Oh-1 Mpc J2 and J3 in columns (2) and (4) approach 

asymptotic values as the correlation function rapidly tends to zero whereas, in 

contrast, the single power-law model continues to increase. This is because 

these integrals are very sensitive to the large-scale (;c-10h-1 Mpc) form of ~(r) 

and in the case of a pure power law with y= 1.8 J2 and J3 would diverge as 

As will be seen in the following section this sensitivity is an important 

consideration for estimates of large-scale structure; power in ~(r) of only a few 

percent at separations »10rr1 Mpc can lead to large values of J2 and~ as~ 

is being weighted by rand r2 respectively (equations 2-151 and 2-46). This in 

turn leads to large rms fluctuations in the observed counts (equations 2-71 

and 2-85) and large streaming velocities (equation 2-150), if galaxies trace the 

mass. This is important to bear in mind when either proposing that there is 

truly large-scale power in ~(r) or when concluding there is large-scale 

structure from visual impressions of maps of the galaxy distribution. 
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Figure 5. 14. A comparison between the redshift correlation 
function form of the three power law model for e{r) and the 

overall small-scale es(s) estimated from the combined 17m 

sample. The solid line convolves the form for ~ (r) shown in 

Figure 5.13 with an rms peculiar velocity dispersion of 

310kms-1. The dashed line is the power-law ~(r) indicated. 



(1) (2) (3) (4) (5) 

r J2 ~ (ro=5) J:i J3 (ro=S) 
(h-1 Mpc) (h-2 Mpc2) (h-2 Mpc2) (h-3 Mpc3) (h-3 Mpc3) 

1.0 74.9 90.6 12.5 15.1 

2.0 89.8 104.1 35.4 34.7 

4.0 115.5 119.5 109.9 79.7 

6.0 132.2 129.6 192.5 129.6 

8.0 143.1 137.3 267.2 183.1 

10.0 145.8 143.6 291.1 239.3 

12.0 146.5 148.9 298.9 297.8 

15.0 146.8 155.7 302.7 389.3 

20.0 146.9 164.9 304.3 549.8 

Table 5. 1. Models for the integrals J2(r) and J3(r). Columns 

(2) to (4) tabulate the values of the integrals J2(r) and J3(r). The 

correlation function ~(r) integrated in columns (2) and (4) is the 

three power law model (see Figure 5.13) that is a good 

approximation to the correlation function observed in the 

combined Durham/SAAO, Durham/AAT and Parker et al. 

surveys. In columns (3) and (5) ~(r)=(5fr)1.8. 



5.2 Galaxy clustering at scales ~1Qt,-1 Mpc 

This section deals with the attempts to constrain the homogeneity of the 

galaxy distribution on scales much larger than the observed cluStering length 

of galaxies. Observations in Section 5.1.1 of the galaxy-galaxy correlation 

function in the combined Durham/SAAO, Durham/AAT and Parker et al. 

surveys seemed to indicate that the distribution was rapidly approaching rms 

fluctuations in the number density of ((5n/n)2) 112=30% (see Figure 5. 7) at 

separation scales -10h-1 Mpc. However, as was seen at the end of the last 

section even as small a contribution as this to the correlations of galaxies on 

larger scales may lead to apparent superclusters of galaxies (with many 

members per supercluster, see equation 2-45, Section 2.1.2.3, Chapter 2) 

and large density fluctuations within the survey volumes (equation 2-43). This 

apparent insensitivity of the estimator to large structures in the Universe 

(resulting from its direction averaged nature) is further compounded by the 

poor signal-to-noise of its estimates and this makes measuring large-scale 

structure from e (r) a statistically hard process. However, it should be 

emphasised that, as mass correlations at this scale are also expected to be 

small, then such perturbations will have grown in a linear fashion under the 

influence of gravity (see Section 2.2, equation 2-112). If these primordial 

fluctuations are Gaussian in origin (with random phase between the Fourier 

components) as is expected from inflationary models of the Universe (see for 

example Guth 1984) then the two-point function e(r) is the only statistic that 

provides information about large-scale ~10h-1 Mpc) structure (Maddox et al. 

1990a) and this makes it clear that such observations are highly relevant. 

In this section observations of the redshift galaxy correlation function 

es(s) are continued to separation ~1 Oh-1 Mpc in the Durham/SAAO and 

Parker et al. surveys and, by combining these results with those of Bean 

(1983) and Shanks et al. (1983) for the Durham/AAT Survey, the aim is to 

accurately constrain correlations of optically selected galaxies on scales of up 

to -1 OOh-1 Mpc for, perhaps, the first time. In the previous section it has been 

suggested that random and coherent motions may not be important in these 

surveys in determining the form of es(s) at 2 $S$1 Oh-1 Mpc and at larger 

scales it may be expected that es(s)- e(s)- e(r) (for r=s). Thus these 

observations, with some knowledge of the relationship between galaxy and. 

mass clustering, will provide strong constraints on the homogeneity of the 

Universe at large scales. 
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5.2.1. Observations of l;s(s) at s~1Qh-1 Mpc. 

The results so far for the redshift correlation function ~5(s) have been obtained 

from the within-field estimator (see Section 5.1.1 ), but now, at larger scales, it 

is also possible to obtain estimates from between the 15 similar fields in the 

combined sample of the Durham/SAAO, Durham!AAT and Parker et al. 

surveys (see Section 2.1.2.1 of Chapter 2). In Chapter 3, Figure 3.8 shows 

the distribution of angles between the fields in these surveys and this can be 

used to illustrate the sampling properties of the interfield correlation function 

estimate. Thus as the maximum depth sampled by ~s (s) in this case is 

-s/2sin(e/2) (where e is the angle subtended by s) then, at s=10tr1 Mpc, only 

the first 2 pairs of fields below -12.5° separation are sampled to 

-(1/3)Dpea!f=46h-1 Mpc and this small volume makes the interfield estimate 

very uncertain at this scale. However by s=40tr1 Mpc the 37 pairs of fields 

below 5~ are sampled by ~5(s) to this depth and this leads to an increasingly 

better estimate of ~5(s). 

This dependence of the interfield correlation function estimator on 

scale may, in the presence of magnitude errors (see Chapter 2, Section 

2. 1.2.3), lead to spurious bin-to-bin variations in ~5(s) which will tend to be 

absent in the within-field estimate. This arises because, as seen above, 

different fields can contribute to different separations in s in the former 

estimate, leading to fluctuations of the type indicated in equation 2-61, 

whereas in the latter all the fields contribute to each scale equally (save for 

the variations in the observed magnitude limits) and so the magnitude error 

tends to average out in the mean of the data-random pair count, DR, over the 

fields. However, the small rms scatter of -±0. 1m on the photometric 

calibration for the fields in these three surveys (see Chapter 3, Sections 3.1.1 

and 3.1.2) will only lead to, at most, 5~=0.1 (see equations 2-61 and 2-64) 

and, even then, the effect will tend to be seen more in the smaller (s$40h-1 

Mpc) rather than larger bins. As will be seen below (Figure 5.17) this error of 

5~=0.1 is comparable to or smaller than the observed rms fluctuation in the 

interfield ~5(s) below this scale, and this means that reasonable confidence 

can be placed in this estimate. 

The within-field and interfield estimates for l;5 (s) in the Durham!SAAO, 
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Durham/ AA T and Parker et al. surveys have been obtained from the straight 

pair counts DD(s) and DR(s) using the methods outlined in Chapter 2 (Section 

2.1.2.1 ). To generate catalogues of random points for the pair count DR(s) in 

the within-field estimator the methods of Section 5. 1.1 were followed except 

that here the ratio of random to observed galaxies NRI'NG was reduced to 100 

in the Durham/SAAO and Parker et al. samples. This reduction in the ratio 

saved on computational time without significantly increasing the noise in the 

data-random pair count. 

For the interfield correlation function similar methods were used (here 

NRfNG=40) but random catalogues were again generated self-consistently for 

each survey using the appropriate models and normalisation for n(z) (Section 

3.2.3, Chapter 3). Since the pair counts DD(s) and DR(s) are being combined 

directly in the interfield estimator some choice had to be made for the 

weighting of galaxies in the Durham/SAAO survey relative to the Durham/AAT 

and Parker et al. samples. Given the discussion in Chapter 2 (Section 2. 1.2.3) 

and in the previous section, the rrns error in ~ at these larger scales is 5~= 

m//Np for a bin in separation that is much larger than the typical size of 

largest dustering scale length. Since, in the case where the average number 

per duster m»1 (equation 2-45}, moen, the main density, and Np. the number 

of independent pairs contributing to the bin, is proportional to n2, it follows that 

the error 5~ will be approximately independent of the density. This would 

seem to indicate that as much weight should be given to the Durham/SAAO 

sample at this scale as would be given to a fully sampled survey of the same 

dimensions (provided that m was still >1 in the third sampled case) and so to 

prevent pair counts DD(s) and DR(s) in the Durham/AAT and Parker et al. 

surveys from swamping the Durham/SAAO counts, each galaxy in the former 

surveys was given 1/3 weight. However, as before, when it comes to 

combining the within-field estimates of ~s(s) from the different surveys (and 

the overall within-field results with the interfield estimate) the usual method of 

point-by-point weighting each ~5(s) estimate according to its simulated error is 

used (see the Appendix). 

In Figure 5.15 (a) and (b) are presented the within-field ~5(s) results for 

the Durham/SAAO and Parker et al. surveys respectively, again in 0.1 bins in 

log s as for the small-scale results (Section 5.1.1 ). The errors have again 

been determined from the catalogues of simulations and, as before, these are 

well backed up by the field-to-field variations in the observed ~s(s) (see 

126 



Figure 5. 15. The large-scale within-field correlation function 

~5 (s) estimated from the Durham/SAAO, Parker et al. and 

Durham/AAT surveys. The individual estimates of the 

within-field ~ 5 (s) from the Durham/SAAO, Parker et al. and 

Durharn/AAT surveys are shown in (a) (solid circles), (b) and 

(c). Figure (d) shows the Durham/SAAO and Durham/AA T 

survey estimates together (with errors indicated on the former). 

Variations in ~5(s) between north and south subsamples of the 

Durharn/SAAO Survey are presented in (a) (open symbols). In 

(a), (b) and (c) the solid lines are the extrapolated behaviour of 

~5(s) observed in each sample between 2~~7tr1 Mpc. 
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Figures 3.2 and 3.3, Section 3. 1.1, Chapter 3) and by variations between 

north and south subsamples (shown as open symbols in Figure 5.15 (a)). The 

solid model line in each of these figures is the continuation of the power-law 

correlation function observed previously in the range 2~s~?h-1 Mpc. In 

Figures 5.3 and 5.4 random peculiar motions have a relatively small effect on 

es(S) at this separation and SO es(S) is represented by ~(s=r)=(7.1/r)1.8 in 

Figure 5.15 (a) for the Durham/SAAO Survey and e(s=r)=(4.4/r)1.8 for the 

Parker Survey. For the better determined Durham/SAAO estimates, ~5(s) is 

observed to decrease more rapidly than this model to --Q.2 in e by -15h-1 

Mpc and the modulus of the point-to-point fluctuation about zero is always 

~0.2 thereafter. According to the errors these estimates of es(s) are consistent 

with the hypothesis that e(r)=O at separations r;c-10tr1 Mpc. This also seems 

to apply to the Parker et al. Survey results in Figure 5.15 (b). 

For comparison with the observations of Bean (1983) and Shanks et al. 

(1983) for the Durham/AAT Survey, in Figure 5.15 (d) the Durham/SAAO 

within-field estimates of es(s) of Figure 5.15 (a) are compared to their 

within-field estimates of es(s) in Figure 5.15 (c). As with the estimates of es(S) 

at smaller scales, these results are showing excellent agreement, to within the 

errors (shown representatively on the Durham/SAAO points), over the entire 

range of sup to -100h-1 Mpc. However, there is some evidence for a slightly 

more rapid dedine observed in the Durharn/AAT sample es(s) below s::::10tr1 

Mpc (with some evidence that e is anti-correlated at s::::15h-1 Mpc). 

At separations s;c-20h-1 Mpc Figure 5.15 (d) indicates that in both 

surveys the modulus of the point-to-point fluctuation in e(r) about zero is again 

~0.2. However, as pointed out by Shanks (1985) the degree of correlation 

between these estimates is remarkable, with the peaks and troughs tending to 

oscillate in a very similar fashion. Hence, unless this is just a coincidence, this 

would seem to suggest that very stable estimates of es(s) have been obtained 

from these two samples and this perhaps warrants .further investigation as 

was suggested by Shanks (1985). However, as seen before in just the 

Durham/SAAO estimate, errors on these observations do not rule out that 

e(r)=O on scales :?;20h-1 Mpc. Thus, to obtain an overall estimate of es(s) 

Figure 5. 16 shows the combined results from all 3 surveys with the solid 

model e(s=r)=(6.6fr)1.8 showing the continuation of the behaviour in the region 

2~s~?h-1 Mpc. As before the overall estimate is obtained by weighting 

point-by-point each sample according to the inverse of its squared error and 
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Figure 5. 16. The overall within-field correlation function es(s) 

estimated from the combined sample of the 17m surveys. The 

mean estimates of the within-field e s (s) from the 

Durham/SAAO, Durham/AAT and Parker et al. surveys are 

indicated. The solid line is the extrapolated behaviour of these 

estimates from between 2sss7tr1 Mpc. 



the combined error assumes independence of the samples (see the 

Appendix). 

To compare with this within-field estimate of ~5(s), in Figure 5.17 is 

presented the interfield correlation function result for the 15 fields in the 

Durham/SAAO, Durham/AAT and Parker et al. samples. The errors here are 

based on the 14 field simulations (Chapter 2, Section 2.1.4) but these are not 

expected to be much different from those estimated from 15 fields. As 

discussed above the results below - 20h-1 Mpc are very uncertain but there is 

some indication that ~5(s) for this total estimate is positive at s=15h-1 Mpc 

which is in contrast to the negative values of the within-field ~5(s) of this scale. 

Some evidence for this correlation between fields is seen in the comparison in 

Chapter 3, Section 3.2.1, of the .6.N(z) plots for fields lying close together on 

the sky (Figure 3.11) and it is tempting to speculate on the origin of the slight 

differences between the within and interfield results. As discussed previously, 

infall would tend to flatten ~(r) along the line-of-sight making the interfield 

correlation function (which in this case is more dominated by pairs 

perpendicular to the line-of-sight) larger than the within-field function (which is 

more dominated by pairs along the line-of-sight). However, again the results 

are not showing any really significant differences. At larger separations, 

where the interfield estimates become increasingly more well determined, 

there is good statistical agreement between the within and interfield 

observations, but the detailed shape Of es(S) as in the within-field estimates 

(Figure 5.16) is not repeated, except, perhaps for the peak at s=281T1 Mpc. 

On the assumption that the interfield correlation function is not too 

strongly subject to magnitude errors, as discussed above, Figure 5.18 shows 

the combined results from the within and inter-field correlation estimates. As 
previously, it is assumed that the observations from these two methods are 

independent and so the averaging methods in the Appendix are employed. 

The correlation function is increasingly dominated by the interfield result at 

s;zo4Qh-1 Mpc but below this scale is fairly similar to the within-field es(s) in 

Figure 5.16. The solid-·line·irf"Figure· 5:18 is again, e(s=r)=(6.6/r)1.8 as 

extrapolated from es(s) between 2_<s~71T1 Mpc and, given the errors on these 

estimates, the observed break away from a continuation of the smaller scale 

power law appears to be fairly significant. The data points in the range 

7~s~30IT1 Mpc lie consistently below the solid model line, with the points at 

s=14 and 18h-1 Mpc representing 2.8 and 2.5 standard deviations. However, 
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Figure 5.17. The large-scale interfield correlation function 

es(s) estimated from the Durham/SAAO, Durham/AAT and 

Parker et al. surveys. 
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Figure 5. 18. The overall estimate of the large-scale redshift 

correlation function es(S) from the combined sample Of the 

Durham/SAAO, Durham/AAT and Parker et at. surveys. The 

points shown here are the mean estimates from the within and 

interfield correlation functions of Figures 5.16 and 5.17, 
respectively. The solid line is again the extrapolated form of 

~5(s) from between 2 and ?h-1 Mpc. 



before firm conclusions can be made about the significance of the break, a 

careful appraisal needs to be made of the errors determined here and this will 

be left until the discussion in Section 5.2.3. 

Finally, at scales larger than -10h-1 Mpc, the overall conclusion is that, 

for this sample of 15 fields in Figure 5.18, ~5(s) is consistent with ~(r}=O at all 

separations between 1Q:;ss100h-1 Mpc at the -1a (0.1 at s=10h-1 Mpc to 

0.05 at s=100h-1 Mpc) confidence level. Indeed, with the mean of the 

estimates lying close to ~s=O these results seem to reject large-seale 

clustering of the form l~(r)I~0.2 to between ~ (at s=10tT1 Mpc) and ~4 (at 

s=100h-1 Mpc) standard deviations. However, this observation, and the 

degree to which a continued power-law in ~(r) is rejected, again depends on 

the appropriateness of the uncertainties calculated, the methods of estimation 

of ~s(s) and the fairness of the observed samples. A full discussion of this is 

left until comparisons with other observations of large-scale structure 

have been made. 

5.2.2 Comparison with other results 

In the previous section quite stringent constraints were placed on the 

large-scale (10sss100h-1 Mpc) inhomogeneity of the galaxy distribution from 

observations of galaxy correlations in the total sample of 15 fields in the 

Durham/SAAO, Durham/AAT and Parker et al. surveys. In this section other 

measures of large-scale (~1 Oh-1 Mpc) structure are described so as to 

provide a comparison for these data; in the first instance this will come from 

direct measurements of galaxy correlations in similar 'complete' redshift 

surveys but, after this, other, perhaps more indirect, constraints on large-scale 

structure will be obtained from other sources. In the following section (Section 

5.2.3) this information is used to attempt to condude upon the likely upper 

limit of galaxy fluctuations at large scales, and, with an assumption of how 

galaxies trace the mass, the implications for the inhomogeneity of the overall 

mass distribution will be considered. This then paves the way for the brief 

discussion in Section 5.3 of models of the evolution of the mass distribution 

which can mimic the current observations. 

Firstly, from Figure 5.10 of Section 5.1.2, it can be seen that the 

estimate of the break away from a power-law of the form ~(s=r)=(6.6/r)1.8 in 
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the combined Durharn/SAAO, Durharn/AAT and Parker et al. sample seems 

to occur at a smaller separation (-7tr1 Mpc) than in the shallower, but larger 

solid angle, redshift surveys. In the CfA (ms<14m.5) and SSRS samples this 

break-scale appears to occur at -10tr1 Mpc but in the CfA (rre<15m.5) slice 

the power-law continues to at least -20h-1 Mpc. The statistical stability of 

these other, brighter catalogues has already been discussed in detail in 

Section 5.1.2 and, although the variations in the observed es(S) for these 

samples appears to be quite large, there does seem to be some evidence that 

the break-scale might have been underestimated in the combined 15 field 

sample. Some larger correlations in the latter surveys are seen in the 

interfield estimate (Figure 5. 17) but these are not significantly different from 

those obtained from within fields in Figure 5.16. As will be seen in Section 

5.2.3. part of this discrepancy in the break-scale could arise from the integral 

constraint (see Chapter 2, Section 2.1.2.3). 

Given the level of uncertainty obtained for the estimates of es(s) at 

separations s1 Oh-1 Mpc in the shallower surveys (see Section 5.1.2) it is 

difficult to judge the accuracy of any results deduced from these samples at 

larger scales .. Turning now to the observations of es(s) from deeper flux 

limited redshift surveys Kirschner, Oemler and Schechter (1979) found some 

evidence for unity correlations in their complete sample of eight -4°X4°, 

I'TlJ<1sm.o fields (Kirschner, Oemler and Schechter, KOS 1978) to separations 

-30h-1 Mpc but the result could not be reproduced by Shanks et al. (1983) 

using the same data set; in contrast these latter authors found that es(S) from 

this sample was in good agreement with es(s) from the Durharn/AAT Survey 

(Figure 5.15 (c)). More recently Rowan-Robinson et al. (1990) have 

completed a one-in-six redshift survey of galaxies in the 0.6<s<2Jy flux range 

of the all sky IRAS Point Source Catalogue (Chester et al. 1987). Although 

this sample, known as the QDOT Survey, has a L\N(z) redshift distribution 

which is skew to low redshifts (Dpeak=50tr 1 Mpc) this data does sample some 

of the deeper redshift volumes (d(N(z))/d(N(ZpeaJJ)=0.15 at cz::::2000Qkms-1 ). 

In Figure 5. t9, tne· preliminary larg·e-scale redshift correlation function 

es(S) obtained from the northern (bll~40°) part of this SUrvey (EfstathiOU 1988), 

is compared to the results from the total sample of the Durham/SAAO, 

Durham/AAT and Parker et al. surveys (Figure 5.18). In this analysis 

Efstathiou gave each IRAS galaxy a weight of 1/(1+47rn(z)J3) as discussed in 

Chapter 2 (Section 2.1.2.3, equation 2-52) and this allows a better sampling 
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of the deeper redshift volumes. The exact value of 47TJ3 used was quite a 

large 13000h-3 Mpc3 which corresponds to ~(r)=(5.4fr)1.8 integrated to 30tT1 

Mpc (equation 2-46). As can be seen from Figure 5.19 there is very good 

agreement between these two observations at separations ~20h-1 Mpc, with 

the IRAS sample giving similar estimates for~ at these scales, but below this 

separation the larger solid angle survey is again suggesting that the 

small-scale power law of ~(s=r)=(6.6/r)1.8 (solid line) continues to larger 

separations as in the CfA and SSRS surveys. 

More recently, Efstathiou et al. (1990) have obtained estimates of the 

volume integral of ~5(s) from the entire 1-in-6 QDOT Survey using a new 

estimator based on the variance in the count of galaxies (see equation 2-43) 

in spherical shells centred on the observer. This again seems to confirm that 

a large-scale power law of clustering length r0=6.6h-1 Mpc to 20tT1 Mpc is 

consistent with the observations, in agreement with the preliminary work. The 

larger value of the clustering length needed at these scales seems at odds 

with the value of So=(4.5±0.4)h-1 Mpc obtained by Davis et al. (1988) for the 

IRAS galaxies (Strauss and Davis 1988) at smaller (4-5tT1 Mpc) separations, 

and this may be a source for concern. Previously it was noted that the low 

value of ~5(s) at -5h-1 Mpc may be a result of these objects avoiding rich 

areas of clustering; however, the rise in amplitude as a function of scale may 

be indicating that the I RAS galaxies have a more complicated clustering 

distribution than initially thought and at present this is not fully understood. 

The discussion so far has concentrated mainly on the distribution of 

galaxies in complete redshift surveys within the local (z<O. 1) volume of space; 

however, there has been some attempt to study the galaxy distribution at 

deeper redshifts in smaller areas of the sky, primarily, in order to place 

constraints on galaxy evolution. Provided these surveys are drawn from 

complete samples of galaxies in specified areas, then the clustering 

distributions can be probed for structures on much larger scales than the 

z<0.1 samples. For example, Broadhurst et al. (1990) have lately claimed that 

they see, in two, nearly oppositely aligned fields near the SGP-NGP axis, 

strong periodic peaks in the AN(z) distributions, with inter-peak separations of 

-128h-1 Mpc in co-moving co-ordinates (q0 =0.5). However, in spite of this 

quite remarkable result, such structure does not appear to show up as 

strongly in other fields to a similar redshift of z=0.5 and an analysis of the 

two-point correlation function in the 5, 2Qm.O<bJ<21 m.5 SGP fields of 
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Broadhurst et al. (1988) shows that ~s(s) is, again, not inconsistent with ~(r)=O 

to -1cr (-0.2) in the range 10<rce>-moving s60Qtr1 Mpc (Broadhurst 1988). 

The situation at nearer distances (z<0.1) is also not clear since the 

best fit peak positions (x[>O for NGP]=90t128n, where n=0,±1,±2, ... and xis 

the distance along the SGP-NGP axis) do not seem to coincide with any 

particularly remarkable structures in these volumes. For example, GSA, GSN 

and the Parker et al. fields all lie within -13° of the SGP-NGP axis and the 

.!lN(z) distributions for these fields in Figure 3.10 do not show particularly 

significant peaks at the positions stated. Further, the axis (aNGP=12.8hrs, 

5NGP=27°.4, and asGp=0.8hrs, 5sGp=-27°.4) also passes through the lower 

declination CfA me< 15m .5 slice in the north (Figure 3.4, Section 3.2.1, 

Chapter 3) and the -30°~5~-17° .5 part of the SSRS Survey in the south 

(Figure 3.12). Again, although there is structure around the positions of the 

peaks suggested by Broadhurst et al. (1990) (the n=O and n=-1 peaks lie 

close to the 'walls' described in Section 3.2. 1) there is also significant 

clustering elsewhere and this appears to confuse the simple picture. Indeed it 

is not clear why, for example, the large known over-density near z=O 

comprising of the clusters of Virgo, Fomax and Eridanus are not included in 

the study of Broadhurst et al. (1990). 

Other evidence for large-scale structure from deeper redshift volumes 

may come from the steep slope of the log AN(m) versus m differential number 

count relation in the Durham/SAAO and Durham/AAT surveys at bright 

(Q.Js18m) magnitudes (see Chapter 3, Section 3.2.3). Previously, it was seen 

that a no evolution model of the differential AN(m) counts (Shanks 1990) fitted 

to the deeper data in the range 18m$QJS20m.s over estimated the counts at 

bright magnitudes (14msbJS17m) by about a factor -2 and various reasons for 

this discrepancy were discussed in that section. However, for the purposes of 

the discussion here it can be considered as to whether this under-density in 

the redshift survey fields could be caused by large-scale structure or whether 

it is, perhaps, a likely random fluctuation in the numbers observed. 

In Chapter 3, Section 3.2.3 it was shown that the rms field-to-field 

variation in the count of galaxies in the 14 Durham/SAAO and Durham/AAT 

survey fields at bJ=::16m.8 was ±2.1deg2 about a mean 5.8deg2 and thus with 

the assumption that these fields are independently sampling the galaxy 

distribution, this implies that the total count for 14 fields is underdense with 
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respect to model count by -5.8/(2.1/114)=10 standard deviations. However, it 

can alternatively be asked, what would the rms fluctuation be on the total 

count for 14 fields if a model for the count and its variation is assumed. 

This question can be answered using the relation in equation 2-71 

(Chapter 2, Section 2.1.2.3) between the variance in the counts, the expected 

mean count and the angular correlation function w(e). For a power-law spatial 

correlation function of the form e(r)=(rc/r)Y (equation 2-90) the angular function 

is given by w(e)=Ae1-v (equation 2-91) where 

A=93(r ciD*) 1.8 (5-3) 

(e in degrees) for a Schechter parameter of a=-1 and y=1.8 (equation 2-92). 

Equation 2-71 then says that the percentage rms fluctuation in the count N for 

a single field is 

((N-(N) )2) 1/2 

* 
= 

(1+2nN J:effw(e)ede )112 

\N)1!2 
(5-4) 

where the double integral of w(e) over the small solid angle of the field, Ml, 

has been replaced by a single integration of up to an effective separation 8ett. 

i.e. 

(5-5) 

Hence, using equations 2-91, 5-3 and 5-4 vvith Ml=(3°.75)2, 8ett=(3°.7512) and 

D*=208h-1 Mpc (obtained for bJ!:: 16m.a, M*=-20+51og1oh and K=3.0, 

equation 2-6, Section 2.1.1. 1, Chapter 2) as for the Durham/SAAO and 

Durham/AAT fields 

(5-6) 

Thus, assuming independence of the survey fields equation 5-6 predicts that, 

with r0 as large as 6.6fT1 Mpc, the field-to-field rms fluctuation on the . 

observed counts at bJ!::16m.a should be ±2.3deg2 about a mean of 5.8deg2, 

and this is close to what is observed. On the other hand if the mean count is 
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11.6deg-2 the predicted rms fluctuation is ±4.6deg2 and so the 14 fields are 

then underdense by only -5.8/{4.6//14)=4.7 standard deviations. 

The decrease by about a factor of 2 in the significance level arises 

here simply from the fact that 5N is scaled up by a factor of 2 to account for 

the increase in density. However, the underdensity in the 14 fields still 

appears to be unlikely even in this model. Introducing correlations between 

the fields might be thought to alleviate the problem since rms fluctuations on 

the total count for 14 fields will increase through the integral of w(e) between 

fields. If, for example, w(e):::constant, C, at large angular scales then the 

contribution to the rms fluctuation on the total 14 field count from between 

fields is 5N=11.6(CNF(NF-1 )INF2)1/2 deg2 (Np=14). Adding this in quadrature 

to the fluctuation of ±4.6/114=±1.2deg2 implies that to obtain the observed 14 

field count as a 2.5a deviation the constant C has to be -Q.03 and thus if ~(r) 

was similarly a constant at large scales equation 2-85 (Chapter 2, Section 

2.1.2.4) predicts that ~(r) is similarly -0.03 in the range 10<r<100h-1 Mpc. 

Whilst the observations of ~ 5 (s) in the combined sample of the 

Durham/SAAO, Durham/AAT and Parker et al. surveys may not be able to 

exclude such a low level of dustering over such a scale, this may not be so if 

the clustering is more concentrated into a smaller separation. For example, if 

this structure at large scales was contained in a single peak in ~(r) between 

separations of 50 and 60h-1 Mpc, and ~ was zero elsewhere, then to obtain 

the same effective J3 as having a constant ~of order 0.03 between 10 and 

100h-1 Mpc, the peak would have to be ~=11 at this scale, and this is dearly 

excluded by the data. Similar constraints on the large-scale correlation 

function may now also be obtained from the observed estim~tes of w(8) (see 

below). 

At present , the evidence for underdensity in the local (z<0.1) galaxy 

distribution from other bright magnitude (14m~b.J~17m) galaxy counts is not 

very conclusive mainly because of the difficulty in transforming magnitude 

systems. Metcalfe et al. (1990b) find, for example, that there is some 

suggestion that the galaxy counts in the Zwicky (Zwicky et al. 1961-1968) and 

Kirshner et al. (1978) catalogues lie closer to the extrapolation of the 

no-evolution model from faint magnitudes. On the other hand the IRAS 60).lm 

source counts at s>1 Jy (Hacking et al. 1987) are again steeper than a no 

evolution model (DpeaJ<=80h-1 Mpc for s>1 Jy) but this has been attributed to 
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evolution. A better understanding of the exact form for these bright galaxy 

numbers will come from the large area APM (Maddox et al. 1990b,c) and 

COSMOS (Collins et al. 1988b) galaxy catalogues currently being constructed 

(see Maddox et al. 1990d). In the mean time it appears that either the low 

counts in the Durham/SAAO and Durham/AAT surveys have occurred by 

chance (which seems unlikely unless there is a very significant amount of 

large-scale structure) or some of the other effects mentioned in Chapter 3 

(Section 3.2.3) have caused the apparent underdensity (or it could be a 

combination of both). 

As was discussed in Chapter 2 (Section 2. 1.2.4) other constraints on 

the large-scale galaxy distribution can be obtained from the angular two-point 

correlation function w(8) and with the advent of automated plate scanning 

machines, such as COSMOS (MacGillivray and Stobie 1984) and APM 

(Kibblewhite et al. 1984), uniform large area catalogues of galaxies can be 

created which probe deeper depths than current redshift surveys. Thus the 

aim here is to create statistically large and fair samples of the galaxy 

distribution which can be used to compare with the data from redshift 

samples. However, the price paid here lies in the loss of signal-to-noise of the 

observed correlations, and the difficulty in interpretation (i.e. inversion) of the 

projected correlation function. For example, the loss in signal-to-noise of the 

observations means that at large angular scales, where w(8) is small, the 

results are more subject to systematic measuring errors than equivalent 

redshift catalogues and this remains a difficult obstade to overcome. 

In Chapter 2, Section 2. 1.2.4 it was shown how at small angles 

Limber's formula (Limber 1953, Peebles 1980) could be used to predict the 

form of w(8) for any spatial function ~(r). In Figure 5.20, the solid model line is 

the projection, via equation 2-88, of the three power-law model for ~(r) (Figure 

5.13, Section 5. 1.3) which is a convenient simplistic representation of the 

observed correlation function in the combined Durham/SAAO, Durham/AAT 

and Parker et al. surveys. Here the projection is carried out at the ms<15m.o 

depth of the Zwicky Catalogue (D*=76h-1 Mpc, cx=-1) where the Euclidean 

version of Limber's equation is applicable. Also shown is a similar model 

(dashed line) in which ~(r)=(4.5fr)1.8 to the break-scale at 7h-1 Mpc followed 

by a rapid decline of ~(r)=(6.3/r)7.5; i.e. a model which does not contain a 

shoulder feature in ~(r). 
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Figure 5.20. A comparison between the observations of w(e) 

at the Zwicky depth and models based on Limber's formula. 

The observations of w(S) are as discussed in the text. The solid 

line is a projection, via equation 2-88 (Section 2. 1.2.4, Chapter 

2), of the three power law e(r) in Figure 5.13. The dashed line is 

a similar model that omits the shoulder in e(r). The dotted line is 

the three power law model but with a break at 20 rather than 

?h-1 Mpc. 



For comparison with these models are shown observations of w(S) as 

in Figure 2.3 of Chapter 2, together with the more recent estimates of this 

function from the APM (Maddox et al. 1990a) southern galaxy catalogue. In 

the case of the deeper galaxy catalogues the results have been scaled to the 

Zwicky depth using curvature dependent equivalents of the scaling relation in 

equation 2-88. 

Firstly, both the solid and dashed model lines agree quite well at 

angular separations of up to 1° and this is consistent with the fact that the 

spatial correlation functions are equal at around this equivalent spatial scale 

(-1 h-1 Mpc). At larger angular separations, however, the models are 

somewhat different with the dashed model line again showing the behaviour 

seen in Figure 2.3 of Chapter 2, in that the break in w(S) appears to occur at a 

smaller angular separation than might be expected on the basis of the peak in 

the d(N (z)) distribution (the predicted angular break-scale is 

8break~:::(7/50)(180hr)~:::8o whereas the observed 8breaK=S0) and this is a result 

of the smoothing of the power-law ~(r) below r=7h-1 Mpc with the break in 

projection. A similar situation also seems to occur with the three power-law 

function and here the quite pronounced spatial feature is quite effectively 

washed out in w(S) (Bean 1983), so that. with the added observational error, it 

might not be easy to distinguish this model from one with a single power-law 

~(r) to a larger spatial break-scale. 

Thus the extra power in the spatial correlation function coming from the 

shoulder feature in ~(r) between 2 and 7 h-1 Mpc may show up in the angular 

function as an increased break-scale in w(S), and hence the more rapid 

dedine of the dashed model in Figure 5.20 may be boosted up by the extra 

feature in ~(r). This has already been noted by Soneira and Peebles (1978) in 

their static simulations of the Lick Catalogue where they included a shoulder 

in ~(r) at -1 Oh-1 Mpc to obtain a better fit to the roll-off in w(S) at the 

break-scale and a better visual map of the Lick data. Similarly Fall and 

Tremaine (1977) concluded that it was quite easy to hide quite significant 

features in ~(r) below -10 h-1 Mpc in the presence of a break at larger 

separations. 

Turning now to the observations of w(S) in Figure 5.20, it can be seen 

that there is reasonably good consistency between the estimates of w(S) and 

the predictions of the models at angular separations below ~1°. At angular 

136 



scales larger than -1° the estimates of w(e) are quite diverse and the 

break-scale ranges from -3° in the catalogue of Stevenson et al. (1985) to 

-20° in the APM Survey (corresponding to roughly 3 and 17tr1 Mpc 

respectively with r-=8Dpeak). The predicted form of w(e) from the redshift 

surveys seems to lie somewhere in between these results and does not 

appear to be exduded by the observations. 

The current debate concerning w(e) centres around its observed form 

at large angular scales. Since w (e) is small (-0.1 at e= 1 oo) at these 

separations it is possible that the variations in the observed positions of the 

break arise through systematic errors in the construction of the galaxy 

catalogues. Since all the catalogues discussed have been prepared from 

many inter-meshed photographic plates there is always the possibility that 

differences in counting efficiency from plate-to-plate (arising from variations in 

photographic sensitivity, observing conditions, etc.) may permeate the 

catalogue as large-scale gradients in the mean density (Groth and Peebles 

1977). As seen in Chapter 2, Section 2.1.2.3 such gradients can lead to errors 

of the form equivalent to equation 2-56 and thus where w(e) is small at large 

angular scales such variations may lead to the uncertain break-scale in the 

observed data. 

For example, as the Lick Catalogue was generated by different 

observers counting galaxies from uncalibrated plates it has been criticised 

extensively as a data base for statistical studies of the galaxy distribution 

(Geller et al. 1984, de Lapparent et al.1986b). However, Maddox et al. 

( 1990a) daim that the difference between the break scale in this and the APM 

Catalogue is a result of Groth and Peebles (1977,1986a,b) over filtering the 

Lick Catalogue to remove large-scale gradients in the data and, thus, Maddox 

et al. believe that such large-scale gradients in the APM Catalogue are real 

gradients in the galaxy distribution. Recent estimates of w(e) from the 

Durham/ROE Southern Galaxy Catalogue appear to confirm this larger break 

scale although earlier estimates (Collins et al. 1988a) gave better agreement 

with that from the Zwicky catalogue. 

The implied break-scale -20h-1 Mpc in the APM data would be in 

better agreement with the similar break-scale observed in ~(r) in the IRAS 

(Efstathiou 1988, Efstathiou et al. 1990) and etA (ms<15m.s) samples. For 

example, the dotted model line in Figure 5.20 is the same model as in Figure 
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5.13 of Section 5.1.3 except that the break has been moved to 20 h-1 Mpc. 

This shows that even this model (which has a large break and a shoulder 

feature in ~(r)) still underestimates the degree of large-scale structure seen in 

the APM Catalogue. However it remains to be seen if this extra large-scale 

power is really present in the data. 

Turning now to other measures of large-scale structure, the 

galaxy-galaxy two-point correlation estimates from the combined sample of 

the Durham/SAAO, Durham/AAT and Parker et al. surveys is very much lower 

than the rich (richness class :2::1) Abell cluster-cluster correlation function 

determined using similar techniques to the galaxy correlation function (Bahcall 

and Soneira 1983, Klypin and Kopylov 1983). In Figure 5.21 the galaxy 

correlation estimates of Figure 5. 18 are compared to a power law of the form 

~cc=(25fr)1.8 that is observed to match the cluster-cluster estimates out to -50 

to 1 00 h-1 Mpc and the amplitude of ~cc can be seen to be a factor of -11 

times larger than the galaxy result. Thus, if rich Abell clusters are accurate 

tracers of the mass distribution then this result would seem to indicate that the 

Universe is considerably more inhomogeneous than the observations of the 

galaxy distribution would suggest. However, rich Abell dusters contribute only 

a small fraction to the total number of observed galaxies (only 2-5% of 

galaxies lie within an Abell radius of a cluster centre; Bahcall and Soneira 

1983) and in some sense they must represent extreme aspects of the 

distribution of galaxies. Recently it has been shown that (Kaiser 1984) if Abell 

clusters form at the peaks of a Gaussian density field then the cluster 

correlation function can be biassed high with respect to the galaxy correlation 

function by a simple amplitude factor which is comparable to the observed 

ratio of ((r0 )cc/(r0 )99)1.8. This mechanism is similar to that used to obtain 

realistic models of the galaxy distribution in Cold Dark Matter (Davis et al. 

1985) 

On the basis that this biassing model was correct this would still seem 

to suggest that ~99(r) continues as a power law out to separations of -50rr1 

Mpc (where ~cdr) lies above the noise, Kaiser 1986a) and this again implies 

more large-scale structure than is observed in the galaxy correlation function 

(see Figure 5.20). Nevertheless there is some evidence that the 

cluster-cluster function may not be as high as expected due to possible 

biasses in the selection of the dusters in 2-dimensions (Sutherland 1988). 2-d 

selection tends to pick out over-densities that lie close together on the sky 
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Figure 5.21. The form of the rich Abell cluster correlation 

function compared to the overall large-scale galaxy correlation 

function es(S) estimated from the combined sample Of the 17m 

surveys. The galaxy correlation estimates are as in Figure 5.18. 

The solid line is a power law with a clustering length of 25h-1 

Mpc. 



(e.g. Lucey 1983) and this may artificially raise the correlation of clusters at 

large-scales. Thus, until more objective catalogues of clusters become 

available, and a better understanding of how the cluster distribution is related 

to that of the galaxies, it may be wise to view the cluster result with some 

caution. 

The lack of evidence for large-scale structure at the -2a (~=0.1 to 0.2) 

confidence level in the galaxy correlation function (Figure 5.18) is in better 

agreement with that of the QSO's (Shanks et al. 1987, Shanks and 

Hale-Sutton 1988). In the range 10<r<100h-1 Mpc the QSO correlation 

function of Shanks and Hale-Sutton (1988) is again consistent with ~(r)=O to 

the 1a (~=0.4 at 10tT1 Mpc to =0.05 at 100 tT1 Mpc) confidence level and 

similarly at larger scales to -1 OOOh-1 Mpc. Although QSO's are believed to 

exist in regions of clustering somewhere intermediate between Abell dusters 

and galaxies (Yee and Green 1984) these objects do not show a tail of 

correlations to large scales as seen in the rich Abell dusters. 

Other more indirect constraints on large-scale structure come from the 

isotropy measurements of the cosmic X-ray and microwave background 

radiations (Rees 1980). The cosmic X-ray background is believed to be 

generated by sources within the redshift range 1~z:S10 and as such its 

isotropy may help to constrain large-scale structure on scales of a -100 to 

-1000 h-1 Mpc. Measurements of the X-ray background by the HEA0-1 

satellite suggested that the energy spectrum in the 3-50 keV range could be 

adequately fitted by thermal bremsstralung from a diffuse plasma at a 

temperature of 45keV (Marshall et al. 1980) but observations from the lower 

energy (0.5-3 keV) but higher spatial resolution Einstein Observatory 

(HEA0-11) has provided evidence that point sources such as active galactic 

nudei (quasars, seyfert galaxies, etc.) may contribute significantly to the X-ray 

background. 

Thus, to use the observed isotropy upper limits on the X-ray 

background to constrain large-scale ~10 h-1 Mpc) structure (for example, 

HEA0-1 measured rms fluctuations in the observed intensity of Lll/1<2-3% on 

scales of 5°; Schafer and Fabian 1983) it is essential to know how much 

different sources contribute to the total intensity observed (i.e. their luminosity 

function), how those sources evolve in luminosity and number density, and 

what contribution (if any) small-scale clustering (and its evolution) contributes 
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to the fluctuations. A further complication is, that, like the variance in the 

counts of galaxies (equation 2-43, Chapter 2, Section 2.1.2.3), in a large 

volume the isotropy can measure anti-clustering as well as dustering and so it 

is possible to obtain quite small limits on the isotropy and yet significant 

fluctuations in 1~1. Attempts to constrain large-scale dustering models (e.g. 

Meszaros and Meszaros 1988) with models containing voids -30h-1 Mpc (de 

Lapparent et al. 1986a) conclude that such models approach or just exceed 

the upper limits on the isotropy. 

The degree of isotropy of the Cosmic Microwave Background has long 

been recognised as pladng quite stringent constraints on the homogeneity of 

the mass distribution at large-scales (see e.g. Kaiser and Silk 1986 for a 

review). In the general interpretation, fluctuations in the black-body microwave 

temperature T observed at the current time are an 'imprint' of the fluctuations 

in the coupled matter-energy density at the time just prior to, and during the 

epoch (at a redshift ZcF1000) where free electrons 're-'combine with baryonic 

matter. After this epoch the small scattering cross-section of the newly formed 

neutral particles meant that photons could arrive virtually unimpeded to the 

current day observer. 

Thus, if the rms fluctuations in the temperature, ~ Tff, are observed 

over an angular scale eon the sky, then this angle is approximately related to 

a proper scale length d at a redshift z (z» 1/il0 ) by 

Hod iloZ &=:-­c 2 (5-7) 

where il 0 and H0 are the current values of the density parameter and 

Hubble's constant, respectively, and c is the velocity of light. This model is 

roughly applicable up to redshifts Zeq where matter and radiation contributed 

equally to the energy density 

(5-8) 

(T is in Kelvin and H0 =100h kms-1 Mpc-1) and so Zd<Zeq for 

(T/2.7)4(nof12)>0.024. Hence, equation 5-7 can be used to predict the current 

day co-moving scale to which the measurement angle e corresponds. Since 

the equivalent co-moving scale at the current epoch is 
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d0 = (1+z)d (5-9) 

this implies that for e in arc minutes 

do=1.88(iloh)-1 Mpc (Z» 1/00 ) (5-10) 

Since galaxies are strongly correlated on scales of up to d0 =10h-1 Mpc, 

the above relation (equation 5-10) seems to indicate that dues to the origin 

and formation of galaxies can be seen in temperature fluctuations on scales 

of up to 5-6 arc minutes. However, the evolution of the matter distribution at 

this scale is expected to be strongly non-linear and so it is not trivial to relate 

the clustering observations of galaxies today to the earlier density 

fluctuations. At larger (~10h-1 Mpc) spatial scales the evolution of the mass is 

expected to be linear and so it is possible, for example, to take the upper limit 

on the dustering measured from the combined sample of the Durham/SAAO, 

Durham/ AA T and Parker et al. surveys and compare it to the upper limits on 

the fluctuations in the microwave background at the equivalent angular scale. 

In Section 5.2.1 it was seen that the measured 2cr (-95% confidence) 

upper limit on the present day dustering was eo<0.2 at -10h-1 Mpc (8=5.7.00 

arc minutes) and eo<0.1 at -100tr1 Mpc (8=5600 arc minutes). If galaxies are 

accurate tracers of the mass distribution and 5p/pb evolves in a linear fashion 

then 

(5-11) 

for an 0 0 =1 Universe since e=(5p/pb)2 and 5p/pb grows like t213oc (1+z)-1 

(Chapter 2, Section 2.2). If it is assumed that, just prior to recombination, 

fluctuations in the density were adiabatic then 

(5-12) 

and so using equations 5-11 and 5-12 an upper limit of eo<x now implies that 

at z=Zd an upper limit in ~TIT of 

(5-13) 

Thus the equivalent upper limits on aT/T at z=:zc1=1000 from 
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observations of galaxy clustering at the current epoch are 1.5x1Q-4 at &:6 arc 

minutes to 1.1x1 CT4 at e= 1 o and this is close to but a little above what the 

upper limits are observed to be (see, for example, Wilkinson 1988). If galaxies 

are biassed tracers of the mass distribution (as is required, for example, if the 

virial estimate of !lo=0.2 is to be reconciled with .00 =1, see Chapter 4, Section 

4.5) then the upper limit on l>p/pb, and hence aTrr, needs to be reduced by a 

factor of -/5. 

Whereas such simple numerical calculations can be used to predict the 

order of size of the fluctuations in the microwave background, exact 

calculations require a knowledge of the spectrum of density irregularities, the 

processes that couple matter and radiation, the dominant mass particles 

(whether these be baryons, neutrinos and so on), etc. (more will be said about 

this in Section 5.3). However, at spatial scales larger than the horizon at 

decoupling the fluctuations in a T!T have a relatively simple form since 

processes like scattering become causally unimportant. As shown first by 

Sachs and Wolfe (1967) fluctuations in aT/T arise from Doppler frequency 

changes in photons emerging from within the gravitational potentials of 

density irregularities at the surface of last scattering. Since the horizon at 

decoupling has a proper size 

(5-14) 

and the epoch, ld. of decoupling is given by 

(5-15) 

for l1-1/.00 l<zd<Zeq. then this implies that at decoupling the Sachs-Wolfe 

effect is important on angular scales of 

(5-16) 

which corresponds to -36(.00 )112 arc minutes at z~1000. 

Peebles (1981b) has used the Sachs-Wolfe effect to predict the 

amplitude of temperature variations arising from uncorrelated clumps of 

galaxies at large scales assuming galaxies trace the mass distribution. 
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Expanding the temperature distribution on the sky in terms of spherical 

harmonics he finds that for no=1, the amplitude of the quadrupole (6=90°) 

moment has the form 

(5-17) 

where the integral over the galaxy correlation function, J3 (in units of h-3 

Mpc3), is given by equation 2-46 (Chapter 2, Section 2.1.2.3) since e(r) is 

assumed to be zero for separations r>rmax· Current constraints on the 

observed amplitude of the quadrupole moment suggest that 

(5-18) 

where y ranges from -1 to 10 and so with equation 5-17 this implies 

(5-19) 

For example, Fixsen et al. (1983) have measured y=8.8 at the 90% 

confidence level from balloon borne measurements of the quadrupole 

anisotropy and more recently Strukov et al. ( 1988) obtained a similar result of 

y=3 from the Relikt experiment aboard the Prognoz-9 satellite (Wilkinson 

1988). From equation 5.21 these results suggest that the upper limit on J3 lies 

in the range 204 to 1758tT3 Mpc3 with 0 0 =1 and extrapolating to smaller Q0 , 

the limit could be as small as the range 107 to 923 h-3 Mpc3 with 0 0 =0.2. 

Thus, comparing these upper limits on J3 with the asymptotic value of 

-304h-3 Mpc3 (rmax=20h-1 Mpc) from the J3 values in Table 5.1 (Section 

5.1.3; these values apply to the combined sample of the Durham/SAAO, 

Durham/AAT and Parker et al. surveys) it can be seen that these upper limits 

on the quadrupole moment are becoming very close to what would be 

predicted from current measurements of galaxy clustering on the assumption 

that galaxies trace the mass. The Relikt experiment, for instance, seems to be 

placing quite a severe constraint on J3 and would seem to exclude a 

continuation of the power law e(r)=(6.6/r:).L§_to20h:-1.Mpc.(J3=1130h-3 Mpc3) 

as suggested by the CfA (ms< 15m.5, de Lapparent et al. 1987), IRAS 

(Efstathiou 1988, Efstathiou et al. 1990) and APM (Maddox et al. 1990a) 

galaxy surveys, and a continuation to 50h-1 Mpc (J3=3438 h-3 Mpc3) as 

suggested by the Abell cluster correlation function. Also, both experiments 

would seem to rule out e=0.03 (J3=10233h-3 Mpc3) needed to explain the 

under-density in the bright (z$0.1) galaxy counts (Chapter 3 Section 3.2.3). 
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These constraints on e(r) from galaxy clustering studies could be 

alleviated somewhat if, for instance, galaxies were found not to trace the 

mass distribution or if there was anticlustering at some scale. In the first 

instance, if galaxies were biassed with respect to the mass so that 

e9(r)=b2em(r) (equation 2-131, see also Section 4.5, Chapter 4) then the 

quadrupole amplitude predicted from the galaxies would decrease by a factor 

of -b (b>1, equations 2-46 and 5-17), and the upper limit on J3 would 

increase by a factor of -b2. In the second instance anticlustering would lead 

to negative contributions to J3 which would tend to cancel the positive J3 from 

clustering on smaller scales. In either case such conclusions have an 

important bearing upon clustering formation and evolution and any further 

reduction on the upper limits of the quadrupole moment will yield even better 

limits on the large-scale form of e(r). It should be noted, in any case, that, 

generally, other effects will contribute to the observed quadrupole moment 

and this tends to make the observed upper limit on a2 even stronger than 

quoted here. 

Finally, constraints on large-scale (~1tr1 Mpc) structure may also come 

from measurements of large-scale streaming velocities as discussed in 

Section 2.2.2.2 (Chapter 2). In Chapter 4 the Cosmic Virial Theorem (Peebles 

1976a) was used to relate the gravitational potential energy of the galaxy 

clustering to random peculiar motions at small scales where the galaxy 

distribution is expected to be in virial equilibrium. The Cosmic Energy 

Equation (equation 2-145, Fall 1979), on the other hand, can be used to 

relate all particle peculiar motions to the gravitational potential associated 

with the clustering of the mass distribution. For example, the observed motion 

of the Local Group with respect to the Microwave Background of -SOOkms-1 

towards 111=269°, b''=28° (see, for example, Lynden-Bell 1987) may constrain 

the amount of large-scale structure in the local neighbourhood (Davis 1986). 

Thus, if the one-dimensional frequency distribution for peculiar motions on 

large scales is given by a Gaussian with an rms width of a kms-1 (see 

Chapter 2, Section 2.2.1.1) and zero mean, then the probability of observing a 

galaxy with a three-dimensional velocity vp=l>tplkms-1 in the range vp to 

vp+dvp is given by a Maxwellian distribution; 

(5-20) 
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Hence, by having an estimate of a, the probability, say, of obtaining a velocity 

vp as small as 600krn5"'1 can be measured. 

The expected three-dimensional mean square peculiar velocity, (vp2), 

is related, in this instance, to the one-dimensional width, a, by 

(5-21) 

and the Cosmic Energy Equation (equation 2-150) predicts that 

(5-22) 

for J2(oo) in tr2 Mpc and K=7/12 which is intermediate of the range indicated in 

equation 2-149. If galaxies trace the mass and ~(r)=O beyond 20h-1 Mpc, then 

Table 5.1 (Section 5.1.3) predicts that J2::: 14 7h-2 Mpc for the combined 

sample of the Durharn/SAAO, Durharn/AAT and Parker et al. surveys. Thus, 

usir:'lg the integral of equation 5-20, equations 5-21 and 5-22 predict that 

P(vp<600krns-1) = 0.76 (5-23) 

for n 0 =0.2 (equation 4-12, Section 4.4, Chapter 4). In other words, this 

probability indicates that the observed galaxy clustering at separations 520h-1 

Mpc and the virial estimate of no is suffident to explain the motion implied by 

the dipole in the microwave background, on the assumption that galaxies 

trace the mass. A similar result is obtained if galaxies are biassed tracers of 

the mass distribution and n 0 =1 since if IJ29=biJ2m (equations 2-131 and 

2-151), the increase in (vp2)1/2 due. to the larger no is just balanced by the 

decrease by a factor of 1/b=(n0 efftn0 )1f2 in J2. 

If there is more large-scale structure in the galaxy distribution than is 

measured in the combined sample then the associated increase in (vpZ) 1/2 will 

make the observed velocity of -600kms-1 a less likely occurrence. With 

n 0=0.2 and a break in ~(r) at 20h-1 Mpc (~200h-1 Mpc) 

P(vp<SOOkrns-1) = 0.62 (5-24) 

whereas with a break at 5Qtr1 Mpc (J~257h-2 Mpc) 
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P(vp<600kms-1) = 0.51 (5-25) 

The constraint on large-scale structure here is not as strong as the 

quadrupole constraint from the microwave background mainly because of the 

weaker dependence of J2 on r. Thus, for ~(r)=(r0 /r)Y for r:s:rmax and ~(r)=O at 

larger separations (vp~ 11201:.{ J-rr0Y12rmax(2-y)12:::rorrnax0.1 for y-:::1.8. Further, as 

with the quadrupole moment, if there is anti-clustering at some scale in the 

galaxy distribution this will again tend to counteract the positive clustering at 

smaller scales making it possible to have quite significant structure in ~(r) but 

only small resulting peculiar motions. 

5.2.3 Discussion 

In the previous section it was seen that various other measures of large-scale 

(~10h-1 Mpc) structure seemed to indicate that, perhaps, there were more 

large-scale correlations in the two-point galaxy correlation function than has 

been measured in the combined sample of the Durham/SAAO, Durham/AAT 

and Parker et al. surveys. Whereas the overall ~5(s) for this sample (Figure 

5.18, Section 5.2.1) exhibits a break in the power law of the form 

e(s=r)=(6.6/r)1.8 at -?h-1 Mpc, and is consistent with ~(r)=O at separations 

larger than -1 Oh-1 Mpc, studies of other galaxy samples suggest that this 

break-scale may continue to 20, 50 or even 100h-1 Mpc. Although the 

evidence for structure in e(r) to 50 or 100rr1 Mpc is tenuous, the continued 

power law to 20rr1 Mpc seen in the CfA (ms<15m.s) slice (de Lapparent et al. 

1987), the IRAS Survey (Efstathiou 1988, Efstathiou et al. 1990) and the APM 

Galaxy Catalogue (Maddox et al. 1990a) needs to be taken seriously and so, 

in this section, the significance of the break in the combined 17m surveys is 

re-evaluated in th~ light of these observations. 

In Figure 5.18 (Section 5.2.1) the observed break from a power law of 

the form e<s=r)=(6.6Jr)1.8 appeared to be significant at the 2.8 and 2.5 sigma 

level at ~~=14 and s=18rr1 Mpc, resp~i~ely,j[lJh~ o~erall estimate of es(s). 

However, the rms errors indicated in this figure are obtained from simulated 

catalogues in which the spatial correlation function exhibits a break at -sh-1 

Mpc and exactly zero correlations on scales larger than 28h-1 Mpc (see 

Figure 2.5, Section 2.1.4, Chapter 2). If the break-scale in the simulated 

galaxy distribution was increased to -20h-1 Mpc then this would, via equation 

2-51 (see Section 2.1.2.3, Chapter 2), increase the rms error on es(s) since 
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the larger average number of galaxies per cluster m (equation 2-45) would 

necessarily decrease the number of independent clusters in the simulated 

volumes (for the same mean density n). According to equation 2-45 and 2-46, 

extending the power law to 2Qh-1 Mpc would imply that m would increase by a 

factor of -(20/6)1.2=4 (provided m»1) and taking equation 2-51 to hold exactly 

5~ would increase by this factor, given the same number of independent pairs 

Np. This would then, of course, make the ~5(s) observations consistent with a 

continued power-law ~(r) to 2QIT1 Mpc (the significance would be reduced to 

-(2.8/4)cr at s=14tT1 Mpc) and the constraints on large-scale structure would 

be less strong. 

However, this simplistic model for the rms error on ~(r) may need to be 

modified significantly to take account of the shape and selection function 

properties of the fields belonging to these surveys and so the prediction of a 

factor of -4 increase in 5~ may not be appropriate. For example, as stated 

previously in Section 5.1.3, the fields in these surveys are quite well 

separated on the sky (Figure 3.8, Section 3.2. 1, Chapter 3) and so increasing 

the break-scale to 20h-1 Mpc will not make the field volumes much less 

independent (20IT1 Mpc corresponds to 9=8° at DpeaK=137h-1 Mpc). Thus, the 

full spherical integral J3 in equation 2-45 for m should be modified at some 

scale to a more linear integral (see equation 2-43) to incorporate the narrow 

shape of the survey fields (and also the bin size) and this smaller value for J3 

will not increase 5~ as much as factor of 4 (see Chapter 2, Section 2.1.2.3). 

As discussed before, the size of the errors shown in Figure 5.18 are in 

agreement with the field-to-field fluctuations in ~5(s) for these surveys (Figures 

3.2 and 3.3, Section 3. 1.1, Chapter 3) but, again, if considerably more 

large-scale structure (-50-100h-1 Mpc) has been missed in these catalogues 

through the lack of having a fair sample then these errors may be 

underestimating the true sample variations. 

The significance of the break away from a large-scale (~10h-1 Mpc) 

power law in ~(r) and the constraint on large-scale structure is also subject to 

further uncertainties associated with the ·estimation· of the· mean background 

density of galaxies (Chapter 2, Section 2.1.2.3). The case of clustering 

induced fluctuations in the background density has already been discussed in 

Section 5.1.3 while considering the significance of the observed shoulder 

feature in ~5(s). There it was seen that the observed field-to-field variations in 

the counts at m(bJ)::s1&n.8 in the 14 Durham/SAAO and Durham/AAT fields 
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was ±2. 1 deg-2 about a mean of 5.8deg-2 implying, via equation 2-68, an rms 

error of 5~~(2.1/114)/5.8~0.1 for the within-field ~ 5 (s) at large scales. 

Although this error is comparable to the rms error on the overall ~5(s) at s=14 

to 18tr1 Mpc (Figure 5.18) and should be added in quadrature to that result 

(see Section 5.1.3), it is expected that the estimator in equation 2-53 is likely 

to be less sensitive than this to such dustering dependent fluctuations. With a 

larger break-scale in ~(r) of -20h-1 Mpc it might be expected that the 

field-to-field variations in the counts would again be increased making this 

type of error more significant. However, as discussed above the fields are 

probably independent and narrow enough that the larger break-scale will not 

lead to much larger variations in the observed counts. 

Finally, the overall ~5(s) in Figure 5.18 is also subject to a further 

uncertainty due to the integral constraint which arises from the use of the 

observed number of galaxies in a survey to normalise the mean background 

density n(z). In the heuristic model for this effect (Section 2.1.2.3), it is 

expected that the mean value of the correlation function ~5(s) estimated over 

many equivalent surveys will be biassed low at large scales (where ~(rFO) by 

a constant lc~-m/(N) where (N) is the expected number of galaxies in a 

volume V and m is, as usual, the mean number of galaxies per duster. As 

discussed in Chapter 2, Section 2.1.2.3, the difficulty in applying this model to 

the magnitude limited redshift surveys described here again lies in the 

dependence of lc on the field shape and selection function properties of the 

fields. Using the exact integral constraint appropriate to a magnitude limited 

redshift survey (equation 2-75) an alternative estimate for lc was derived 

which relates lc to the expected variance in the counts within the survey 

volume (equation 2-80) 

lc ~ -(5N!(N) )2 (5-26) 

where (N) is now the expected count within the magnitude limited sample. 

The estimates of the within-field correlation function were obtained by 

normalising n(z) to the numbers of galaxies within each sample and since 

these estimates for the Durham/SAAO and Durharn/AAT surveys dominate 

the overall ~ 5 (s) in Figure 5.18 at s=14 and 18h-1 Mpc equally. it is 

appropriate to calculate an average value for the integral constraint from· 

these two samples. As discussed above increasing the break-scale to 20h-1 
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Mpc will not make the fields in these surveys much less independent and so it 

is possible to use the model for 5N/(N) discussed in the previous section 

(equation 5-6) to calculate lc for fields at this depth. Thus, as the percentage 

variance (5N/(N) )2 for NF fields is 1/NF times the percentage variance for a 

single field it follows that 

(5-27) 

for the model discussed in Section 5.2.2 (equation 5-6). This is a fairly good 

approximation since the fields in the two surveys are, on average, the same 

size and depth. Hence with a model in which ~(r)=(6.6/r)1.8 to a break-scale of 

20h-1 Mpc, equation 5-27 predicts lc=-0.021 ((N)=232) and lc=-0.033 

((N)=280) for the Durham/SAAO and Durham/AAT surveys, respectively. On 

repeated measurements of ~5(s) using similar surveys to the Durham/SAAO 

and Durham/AAT samples a constant of -0.027 would have to be added to 

the estimates at large scales to prevent a bias in the data. Adding a constant 

of this size to the overall estimate of ~5(s) in Figure 5.18 only reduces the 

significance of the break to -2.6 s.d. at s=14h-1 Mpc and so the continued 

power law to 20tr1 Mpc is still rejected on this basis. 

It is interesting to point out that there~ te oiter biasses introduced into 

the data which may counteract the effect of the integral constraint. For 

example, as discussed in Chapter 2 (Section 2.1.2.3), magnitude errors can 

cause a positive bias in ~5(s) at large scales of the order (0.61n10(.llm2)112)2 

(equations 2-64 and 2-67) and so an rms magnitude error of the order 0.1 

from field-to-field implies a positive bias -0.02 which is of the same order as 

the integral constraint above. 

Thus, in conclusion, although some other samples of galaxies may 

indicate that correlations of galaxies extend to -20h-1 Mpc there is still 

tentative evidence from the 1 7"1 galaxy surveys that ~s(s) breaks at a smaller 

separation of -7h-1 Mpc. From the discussion above it would seem that the 

errors on the overall ~5(s) in Figure 5.18 will still be roughly appropriate even 

in the presence of a larger break in ~(r) and so the conclusions in Section 
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5.2.1 on the constraint on large-scale structure still apply. With the 

assumption that peculiar motions have little effect on ~5(s) at scales greater 

than a few tr1 Mpc this implies ~5(s)~~(r) and together with some knowledge 

of how galaxies trace the mass, constraints on the large-scale mass 

distribution can be discussed. This is the subject of the following, and final, 

section. 

5.3 Constraints on evolutionary models of the mass distribution 

The aim of this section is to briefly review the current models for the formation 

of galaxies and to compare the predictions of these models with the 

observations of galaxy peculiar motions and dustering made in this and the 

last Chapter. This review is not intended to be comprehensive and for ease of 

discussion will generally follow the historical development of the subject. The 

main objective will be to draw attention to the general predictions of each 

model in terms of the properties measured in the preceding chapters. 

In Chapter 2 (Section 2.2) it was implied that most of the large-scale 

structures that are seen today (ranging from galaxies, groups, clusters and up 

to superclusters of galaxies) have developed under the influence of gravity 

from small perturbations in the mass (or energy) density. Whilst the degree of 

isotropy of the Cosmic Microwave Background (see Section 5.2.2) certainly 

places quite stringent constraints on the fonn of perturbation at early epochs 

in the life of the Universe {the upper limits of aT ff 51 Q-4 to 1 o-s suggest that 

the upper limits on the density fluctuation are similarly small at a redshift 

-1000; see equation 5-12), gravitational growth of mass perturbations is not 

necessarily the most important mechanism for the formation of large-seale 

structure, although this tends to be the main mechanism considered. 

For example, Ostriker and Cowie (1981) have proposed that the 

formation of galaxies could be quite simply seeded by the interaction of the 

protogalactic medium with shock waves emitted from explosive events such 

as the demise of massive stars or the birth of young galaxies or quasars. In 

their models an energy output of -1 054J may produce a shell of galaxies 

-10E540.2h-1 Mpc in diameter whereas a larger energy output of 1058J (such 

as may be produced by super-conducting 'cosmic strings', if they exist; 

Ostriker et al. 1986) may be sufficient to produce large (-30h-1 Mpc) voids 
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such as those currently seen in the CfA (me<15m.s) slices and the Southern 

Sky Redshift Survey (see Chapter 3, Section 3.2.1 ). Further, it is envisaged 

that the interstitial overlaps of these shells may produce filaments (for 2 

shells) or even rich dusters (for 3 shells Ostriker 1988). 

At this point it is worthwhile to consider what effects such common 

large-scale features would have upon the appearance of the auto-correlation 

function for galaxies. For example, consider the highly symmetric model in 

which galaxies are found on 'infinite' thin parallel sheets each of width&. and 

separated by constant distance L (Ax eel). By symmetry it is easy to show that 

if galaxies are placed at random within the sheets with average density n, 

then the mean overall density is just Mxll.. The auto-correlation function 

estimated on the basis of equation 2-27 (Chapter 2, Section 2.1.2.1) is quite 

simple to evaluate since choosing a random galaxy necessarily places the 

centre of the pair count on a sheet and by symmetry the pair distribution 

around that centre looks much the same wherever that centre is, provided 

r>>&. or r«Ax. Thus at r«Ax, DD=4nr2n.M and DR=4nr2(ML.)Mr' and so ~(r) 

becomes 

L 
~(r) = --1 

&. 
(5-28) 

whereas for P>&. but r<L, DO= 2~ and DR=47IT2n(Axll)M and so 

L 
~(r) = 2r -1 (5-29) 

This model therefore has the property that ~(r) approximates a power 

law of index -1 in the range dx:<<r«U2 which then steepens rapidly to become 

anticorrelated in the range (U2)<rsl with the minimum of the anti-correlation 

--Q.5 at r-L-Ax/2. Peaks in the correlation function occur at regular intervals of 

r=nl (n=1,2, ... ) but with decreasing amplitude as n becomes larger due to 

averaging over an increasing number of sheets. The height of the first peak 

can be estimated from the area of the pair-count shell that intersects sheets 

on either side of the pair-count centre. From the geometry, the pair count 

could be as large as DD=67rlrulx.6.r and so ~=0.5 at r-L. Thus, this model 

seems to reproduce some of the features observed in the galaxy correlation 

function of the 17m redshift surveys. 
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For example, in Figure 5.22 the within-field correlation function 

estimates es(s) for the combined Durham/SAAO, Durham/AAT and Parker et 

al. surveys (Figures 5. 7 and 5.16) is compared to the model with a sheet 

separation of L=28h-1 Mpc and thickness ax=3rr1 Mpc (solid line) similar to 

the suggestions made by de Lapparent et al. 1988 in their void analysis of the 

CfA me< 1sm.s NGP slices (see Chapter 3, Section 3.2.1 ). It is quite 

remarkable how using this model with its single parameter L (as long as L\x«L) 

can reproduce both the slope and amplitude of e(r) at small (s10h-1 Mpc; see 

(a)) scales and the positions of the tentatively observed anti-correlation and 

peak at larger scales (see (b)). However, it appears that the amplitude of 

these larger scale features is much stronger in the model and if such 

structures were present in the data they would probably have been detected 

at this signal-to-noise. 

Thus, this simple picture illustrates that quite significant amounts of 

large-scale structure in e(r) can be generated using geometrical models of 

this type and it would be worthwhile to constrain more sophisticated models of 

such bubble or frothy-like distributions by analysing e(r) and comparing it with 

the observed es(s) data (see Pierre et al. 1988 and Bahcall et al. 1990). 

However, it should be recalled that dynamic and static simulations of 

clustering with no (~1 Oh-1 Mpc) large-scale structure can produce quite 

acceptable replicas of the observed galaxy distribution (see Figure 3.4, 

Section 3.2.1,Chapter 3). 

The explosion scenarios of Ostriker and Cowie (1981) may, in any 

case, be excluded on the basis of observations of the Microwave Background. 

In the first instance large voids -30h-1 Mpc may generate fluctuations in aTrr 
which are above the current upper limits at small scales (Vishniac and 

Ostriker 1986, see also Section 5.2.2). In the second instance, the large 

amount of energy input into the proto-galactic medium may lead to spectral 

distortions of the background (Ostriker and Thompson 1987) which are in 

excess of what has recently been observed by the Infrared satellite COBE. 

Thus, although these particular models of large-scale structure may be 

excluded on the basis of these observations it should be remembered that 

hydrodynamic processes play an important role in galaxy formation since 

most of the objects that are 'seen' today have been formed by such 

mechanisms. In the discussion below it will be seen, however, that such 

processes are all too often neglected in the non-linear regime as a result of 
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Figure 5.22. The parallel plane model discussed in the text 

as compared to the overall within-field correlation function 

estimated from the combined sample of the Durham/SAAO, 

Durham/AAT and Parker et al. surveys. This solid model line 

approximately describes the correlation function of thin parallel 

sheets that are large in extent. 
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the complexity of calculation. 

On the assumption that large-scale structure has evolved by 

gravitational growth of small (Bp/pb« 1) mass or energy perturbations the 

evolution can be followed in a reasonably straight forward manner, up to the 

point where 5p/pb=1, since the equations of motion can be dealt with in linear 

theory (see also Chapter 2, Section 2.2). Generally, the evolution of Bp~.t)/pb 

at a certain position x and at cosmic time t is monitored in Fourier space 

(5-30) 

where f represents the spatial Fourier transform. Thus, if Bp~.t)/pb is a plane 

wave with wavelength A., this corresponds to a single frequency k=2Jr/A in 

Fourier space. The two-point correlation function of the matter perturbations 

at time t is just 

~m(r,t) = .f1((1~(t)12)) (5-31) 

where (IBJ$(t)12) is referred to as the power spectrum of density perturbations. 

It is generally assumed that in the absence of any process that picks 

out a particular spatial scale the initial power spectrum is taken to be a power 

law of the form 

(IBJ$(t)12) = Ak" -3<n<4 (5-32) 

where A is an undetermined amplitude. This specifies the initial two-point 

function ~m(r) but not its amplitude. The initial conditions for the higher order 

moments of the galaxy distribution (see Chapter 2, Section 2.1.1) are 

generally set to zero by assuming random phases between the Fourier 

components BJi(t). This makes the frequency distribution of mass within a 

random volume V Gaussian with a width set by equations 5-31 and 5-32. The 

favoured index n for the power spectrum in equation 5-32 is n=1 which is 

referred to as the Harrison-Zel'dovich spectrum (Harrison 1970, Zel'dovich 

1972). This power law has the property that, whilst all the other permitted 

spectra cause a divergence in the space-time geometry at either large or 

small wavelengths, this spectrum diverges logarithmically at both limits. 

153 



This constant curvature spectrum seems to come quite naturally out of 

Grand Unified Theories of matter which predict an inflationary phase (e.g. 

Guth 1984) of the Universe at epoch t-=1Q-35s. The spectnm is then a result 

of quantum noise generated in at very early times in the life of the Universe. 

Inflationary phases of the Universe also allow a way out of (see, for example, 

Guth 1986) the so called 'flatness' problem (why the microwave background 

appears to be so isotropic when initially the different parts of the Universe 

which generated it were not causally connected) and the 'fine tuning' of no (if 

no is dose to unity at the present epoch it will be infinitely close to unity at 

very early times). Thus n=1 is the only spectrum with some physical 

justification. 

Thus with the initial set of conditions and the linearised equations of 

motion for the density perturbation (which incorporate all the relevant physical 

processes, such as the coupling between matter and radiation, damping, etc.) 

it is possible to follow the evolution of the perturbation up to the time when 

bp/pb becomes -1. In this regime the resulting power spectrum at some late 

time t can be written as 

(5-33) 

where T K is the transfer function. Of particular interest is the evolution up to 

the epoch of decoupling of matter and radiation since at later times dissipation 

processes are negligible and so bK(t) evolves like 

(5-34) 

(see equation 2-112, Chapter 2, Section 2.2). Thus the imprint of the 

fluctuations at Mdec may be visible in the linear regime part of ~m(r) observed 

today. 

Initial attempts to model the formation of galaxies centred on baryonic 

matter as the main component for the mass density with either adiabatic or 

isothermal perturbations prior to decoupling. Adiabatic perturbations are 

fluctuations in the mass and photon distributions which conserve the number 

of photons per mass particle, whereas isothermal perturbations just involve 

fluctuations in the mass density. The isothermal model became very popular 

in the early 1970's as a result of the apparent scale-free nature of the angular 
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two- and three-point correlation functions being observed from galaxy 

catalogues at that time (see Section 2.1.2.4, Chapter 2 and Section 5.2.2), 

and from the low rms variations predicted in the temperature fluctuations in 

the microwave background at scales of arc minutes. In this model fluctuations 

in the mass density at scales below the horizon are prevented from growing 

by the viscosity between the photons and electrons. Thus, after decoupling at 

Zcf=1000 the spectrum of irregularities in equation 5-32 is preserved and the 

first objects that could collapse under gravity and overcome their internal gas 

pressure have a mass greater than 

(5-35) 

where M.J is the Jean's mass of the matter density just after the time of 

decoupling. It was therefore invisaged (see Peebles 1980 Section 26) that the 

first objects to form had masses -105 Msun and that these dustered together 

hierarchically thus generating apparently scale-free (or uniform power law) 

correlation functions. 

In this hierarchical model (Davis et al. 1977) the index of the two-point 

correlation function power law (equation 2-90) generated from a power 

spectrum of the type in equation 5-32, is, in the non-linear regime, 

9+3n 
y=-­S+n .0=1 (5-36) 

and so with an observed slope of y=1.8, the implied spectral index is n=O, 

which corresponds to Poisson noise initial conditions. 

As has been seen in Section 5.1.3, the observed spatial galaxy 

correlation function seems to indicate that there is in fact a strong feature in 

e(r) at -2h-1 Mpc which was previously hidden in the observations of w(B) as a 

result of projection effects. In spite of the fact that this single observation 

weakens the arguments for a hierarchical model (favouring instead models in 

which there is a proto-cluster scale length), such mechanisms still play an 

important role in many of the currently favoured models for galaxy formation 

(see below). The isothermal model became unfavourable in the early 1980's 

when it was realised that, at early epochs, isothermal perturbations could not 

survive the period when the baryonic matter was in equilibrium with the 

photons (Weinberg 1979). However, Peebles (1987) has recently revised this 
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model by assuming that the fluctuations are isocurvature, i.e. that fluctuations 

in the matter and radiation are such that the local curvature of space is 

constant. Although this loses the simplicity of the original hierarchy there is a 

suggestion that this formation picture could lead to a feature in ~(r) at -Sh-1 

Mpc. 

In contrast to the isothermal model, baryonic adiabatic perturbations 

give rise to several scale lengths in the matter distribution after decoupling of 

matter and radiation (Peebles 1981c). The afore mentioned Jean's scale AJ 

divides those perturbations which undergo uninterrupted growth up to the time 

of decoupling (A.>A.J) from those perturbations which oscillate like acoustic 

waves (A. <A.J). The present size of the Jean's scale just prior to decoupling is 

(Peebles 1980) 

(5-37) 

and this feature in the power spectrum (l5,~s(fd)l2) will lead to structure of about 

this scale in the currently observed correlation function. At smaller scales the 

acoustic behaviour of the perturbations will be damped by photons streaming 

out of the density enhancements (Silk 1967) and so modes with wavelengths 

smaller than 

(5-38) 

just prior to decoupling are severly damped. Thus, the cut off in the power 

spectrum at k>2rr/A5 similarly introduces a feature in ~m(r) at about the scale 

of A. 5 • The acoustic oscillation of perturbations with wavelengths A.5 <A. <A.J may 

also lead to a further, single peak in ~m(r) at 

r-2w==68(.0J¥)-112 Mpc (n=4) (5-39) 

since the power spectrum (l5,~sl2) has a sinusoidal form 

(5-40) 

in this range at decoupling. 
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As pointed out by Shanks (1985) the baryon dominated adiabatic 

model looks to be quite a promising way of providing quite a wide range of 

structures in the two-point correlation function. If 0 0 h2 is of order unity and h 

lies in the currently acceptable range of 0.5<h<1 then according to equation 

5-38 the Silk scale is quite dose to the position of the shoulder observed in 

~5(s) assuming galaxies trace the mass (see Section 5.1.3). Further, these 

values of 0 0 h2 and h will also put the features predicted at larger scales into 

the range where similar tentative peaks and troughs have been observed in 

the range 105s$100h-1 Mpc (see Section 5.2.1). However, in spite of these 

attractive possibilities for ~(r) this model has been taken to be exduded by the 

constraints placed on it due to the upper limits on the fluctuations in the 

microwave background at a few arc minutes (Uson and Wilkinson 1984) and 

by nucleosynthesis in the Big Bang. To match the abundance of light 

elements this latter constraint requires (see, for example, Olive et al. 1981) 

(5-41) 

and so with the currently favoured value of 0 0 =1 (see Section 4.5, Chapter 4 

for a discussion) for the mean mass density parameter (as required if the 

Universe passes through an inflationary epoch) h is outside the currently 

accepted values (h<0.22). 

However, the baryon adiabatic scenario may yet be retrieved as a 

suitable model for the formation of galaxies as it is one of the simplest ways of 

generating large-scale structure. As Shanks (1985) notes if Ho is as low as 25 

kms-1 Mpc-1 then the above nucleosynthesis constraint can still be met with 

nbaryon=1. However, the n=1 power spectrum that is also predicted by 

inflation has to be dropped in favour of the minimal n=4 spectrum (Peebles 

1981c) to avoid the Jean's scale (equation 5-37) from collapsing at the same 

time as the Silk scale (equation 5-38) thus leading to a too large a coherence 

length for galaxies and a too large a fluctuation in the microwave background. 

Thus with the advent of Grand Unified Theories of matter which allow 

inflationary phases in the Universe more emphasis was placed on models of 

galaxy formation with 0 0=1 and initial power spectra with n=1. These theories 

also allow the existence of a plethora of exotic weakly interacting particles 

which could provide the missing mass required to make up 0 0 =0.05-0.2 

(equations 5-41 and 4-12) to .Q 0 =1 and which would also be, conveniently, 
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undetectable. Whilst this conveniently surmounts the problems of causality in 

the early Universe and the fine tuning of flo, it leaves yet another coincidence 

in the form of the close similarity between Q 0 baryon and Q 0 exotic (Shanks 

1988). Such models do have the additional attractive features, however, of 

inducing small fluctuations in the microwave background (since the main 

component of the mass distribution decouples from the radiation at an earlier 

epoch where the fluctuations in the density are smaller) and being fairly 

straight forward to calculate numerically (via simulation) even in regions of the 

fluctuation where Bp/pb» 1 (since the equations of motion are dissipationless). 

Initially, much attention was focussed on neutrinos as the likely 

candidate for the dark matter especially since a mass of -30eV was reported 

by Lyubimov et al. (1980) and Reines et al. (1980). This so called 'hot' dark 

matter has a characteristic scale in the power spectrum after decoupling 

which arises from neutrinos having undergone relativistic free-streaming out 

of density enhancements (Landau damping) smaller than the horizon size at 

that epoch. This characteristic proto-pancake scale at the current epoch is 

(White et al. 1983) 

Av = 41m30-1e-1 = 13(0J'l2)-1e2 Mpc (5-42) 

where fT1:3o is the mass of the neutrino in units of 30eV and e is the microwave 

background temperature in units of 2. ?K. 

Although this model produces a correlation function that approximates 

a power law (the simulations, in fact, seem to show possible features in eCr)) 

this model has grown out of favour because for Universes with n=1 and 0 0 = 1 

the formation of galaxies occurs at a too recent an epoch (zt==1-2 for h=0.5 to 

1) with the normolisaliorL that rct=5h-1 Mpc for galaxies now. With 0 0h2 smaller 

than this Av becomes even larger (equation 5-42) and this makes the 

clustering length for galaxies considerably larger than 5t,-1 Mpc. Perhaps with 

new measures of the neutrino mass and larger values of r 0 some aspects of 

this model may be retrieved. 

Finally, the currently most popular model for large-scale structure and 

the one that has received considerable attention has been models for the 

dominant mass contribution being composed of 'Cold Dark Matter' (COM, 

Davis et al. 1985, White et al. 1987). These particles are named as such 
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since being massive (except the axion which is formed in a low excitation 

state), their velocities at early times are non-relativistic. The only modification 

to a Cold Dark Matter spectrum as it evolves is the so called Mezaros effed 

(Mezaros 1974) which causes a gradual bend in a power law spectrum from n 

to n-4 at scales below the horizon. This arises because in the radiation 

dominated era fluctuations within the horizon are 'frozen', since the rate of 

expansion exceeds that at which matter can collapse. Although with an n=1 

spectrum mass fluctuations at scales below the horizon at the time of 

decoupling behave like 5M/Mock3+n-4~ (and so are Poisson as in the original 

isothermal model), the non-linear part of the correlation function does not 

evolve in a self-similar way as expected for a hierarchy. Indeed ~(r) below the 

scale at which ~m(r)=1 proceeds at a faster rate than at scales where em(r)<1 

(Figure 5 of Davis et al. 1985) and so there has to be a fortuitous time to 

obtain a single power law. This may be regarded as more hopeful for 

observations where there are features in ~(r) (such as a shoulder); however 

the .00=1 models give too large peculiar motions without introducing biassing 

of the form indicated in equation 2-117 (see Chapter 2, Section 2.2). Even 

then the form of the peculiar motions appears to decrease with separation, 

where there is some evidence in the data that it increases (see Chapter 4, 

Section 4.3.3). 

Currently, however, this model gives the best fit to the observation in 

Section 5.2.1 that ~5(s) is consistent statistically with ~(r)=O on large scales. 

As discussed before in Chapter 3 (Section 3.2.1) it is remarkable how such 

dynamical simulations can reproduce features in the observed 3-d galaxy 

distribution (such as voids, filaments, etc.) without any large scale power in 

the two-point (or higher order) correlation functions. Thus, it can be seen that 

as yet there is no single model for the evolution of large-scale structures in the 

Universe which can reproduce all the necessary observed features. 
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Chapter 6 

Forward Look 

In the preceding chapters it has been seen how the statistically complete 

Durham/SAAO, Durham/AAT and Parker et al. redshift surveys have been 

used to provide significant information on the dynamical and clustering 

properties of galaxies and how these observations may constrain the 

formation and evolution of large-scale structures in the matter distribution. 

However, in spite of the success of these samples as statistical probes of 

I arge-scale structure it is clear that these surveys have lost some of the 

essential 3-d information about the galaxy distribution through the selection of 

small angle fields from random areas of the sky. In any future development 

which significantly advances our understanding of this subject it is important 

that such potential drawbacks in the physical choice of a redshift survey 

should not be over looked whilst at the same time still sampling sufficiently 

many of the representative large-scale structures that are likely to occur. 

As seen earlier (see, for example, Chapter 5, Section 5.2.2), the UK 

Schmidt telescope (UKST) together with automated photometer machines 

such as COSMOS (MacGillivray and Stobie 1984) and APM (Kibblewhite et 

al. 1984) can already provide homogeneous and well-calibrated maps of the 

galaxy and other source distributions to bJ=21m. In this chapter, some recent 

advances are described which utilize the large (-6°X6°) focal area of the 1.2m 

UKST to obtain spectroscopic information for galaxies to bJ= 17m (redshifts 

z<0.1) using the multi-object spectroscopic fibre system FLAIR. With some 

initial results from a new 9 field redshift survey using FLAIR the potential of 

this instrument for mapping a large contiguous area in 3-d to bJ=17m in the 

southern galactic cap is discussed. 

Thus Section 6.1 briefly describes the UKST-FLAIR instrumentation 

and current set-up. In Section 6.2 the details of the preparation and 

observation of the new nine field survey are given and in Section 6.3 the 

techniques for measuring the redshifts of the galaxies are described. In 

Section 6.4 some initial tests of the system from observations of a single 

Durham/AAT survey field are presented together with some preliminary 
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results from the nine-field survey. In Section 6.5 are discussed some future 

developments to the instrumentation and some aspects of the proposed 

Durham/ROE galaxy redshift survey. 

6.1 Instrumentation 

Following the successful application of multi-object fibre-optic spectroscopic 

systems to 4m dass diameter optical telescopes such as the Anglo-Australian 

Telescope (Gray 1983) it was soon realised that developing such a system for 

the UKST offered a unique opportunity for the spectroscopic observation of 

certain dasses of object through the large area coverage (-6°.4X6°.4) of that 

telescope (Dawe and Watson 1984). For example, if each equivalently bright 

object within the telescope imaging area n has a fibre to carry its light to a 

spectrograph, then the number of such objects, Nobs• that can be observed 

per unit time is 

(6-1) 

whereN is the surface density of the objects on the sky and dis the diameter 

of the telescope. The factor of d2 accounts for the fact that larger diameter 

telescopes take a shorter time to reach the same signal-to-noise ratio in the 

observed spectrum. Thus comparing the Schmidt with the 40 arcmin diameter 

FOCAP system on the AA T (Gray 1983), it is seen that the rate of collection 

of objects of the same brightness and surface density on the sky is 

-(6.4/0.35)2(1.2/4.0)2 =31 times faster on the Schmidt assuming all other 

aspects of the instrumentation (such as light transmission efficiencies etc.) 

are the same. Thus, with 100n fibres available for the gathering of light from 

objects, the UKST attains this advantage when N=2.4n per square degree. 

As suggested above, galaxy redshift surveys are potentially a very 

appropriate project for fibre spectroscopy on the UKST. In the Durham/SAAO 

Survey, sufficient signal-to-noise in the spectra of 17"1 galaxies at a resolution 

of -120kms-1 rms could be achieved in less than 60 minutes on a 1.9m 

telescope (Metcalfe et al. 1989). Thus with the same set-up on a 1.2m 

Schmidt, the same signal-to-noise could be reached in <2.5hrs, which is not 

unreasonable. In fact the simple optical set-up for the Schmidt (see below) 

means that the efficiency of the system can be much better than this (by 
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about 50%) which offsets the effect of the smaller aperture of the Schmidt. As 

seen in Chapter 3 (Section 3.2.3, equation 3-13) the mean number of 

galaxies expected on the sky at bJ=16m.8 is N=5.8 deg-2 and so -240 fibres 

would be required on average to observe every galaxy within the Schmidt 

imaging area. However, the experience with the Durham/SAAO Survey has 

shown that sufficient visual and statistical mapping of the galaxy distribution 

can be achieved at a somewhat lower sampling rate and so -80 fibres 

(one-in-three) may be a practicable target. 

The spectrographic system at the UKST thus consists of three parts 

(Watson 1986, 1988); a fibre-optic coupler (FLAIR; a 

Fibre-Linked-Array-lmage-Reformator), to transport the collected light from the 

focus of the UKST to an optical bench on the dome floor, a simple 

spectrograph consisting of a collimator (one Pentax lens to image the ends of 

the fibres and another to image the spectra onto the detector) and a blazed 

reflection grating, and, thirdly, a sensitive linear detector in the form of a liquid 

nitrogen cooled CCD mounted in a dewar (Oates 1990) and driven by a 

PDP11 computer. The light from the target objects is collected from the poorly 

accessible curved focus of the Schmidt by mounting the fibres on a plate copy 

of the appropriate field to be observed. Thus by aligning the telescope to that 

field (using 5 fibres situated on bright fiducial stars) light can be collected from 

the targets by centring the fibres on the equivalent target images on the copy 

plate. 

Initially, the fibres were bonded using a non-permanent UV curing 

cement on the rear (i.e. non-emulsion) side of a thin positive plate copy whilst 

the plate was supported in its curved shape by a specially constructed 

perforated (honeycomb) mandrel to be held in the plate-holder. Although this 

perforation gave the fibres access to the plate, up to 40% of the area of the 

plate remained obstructed. Following the successful commissioning of 

Auto-fib (Parry and Gray 1986) at the AAT, this obstruction was eliminated by 

cementing 90° prisms to the front surface (i.e. emulsion side) of the negative 

copy plate which reflected the incoming light into the attached fibre. This 

allows almost complete access to all the targets for observation; the only 

limitation being that two objects doser than 2mm (2.2 arcmins at the 67.1 

arcsecs mrrr1 plate scale of the Schmidt) cannot be observed simultaneously. 

The first fibre-coupler to be constructed consisted of 39 40J,Im diameter 
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(2.7 arcsec) fibres which covered only a small fraction of the area of a typical 

galaxy on the plate (the apparent diameter being -52(xly) arcsecs where xis 

the diameter of the object in units of 25kpc and y is its distance in units of 

100Mpc) and which had poor transmission properties at wavelengths 

A <5500A. At the same time as the modifications to the coupler were made at 

the focal surface, 35 larger diameter (100J.Im=7 arcsec) fibres were employed 

which had a much better efficiency in the blue part of the spectral region (85% 

in 10m of fibre at A=4200A). The number of fibres that can currently be 

employed in the coupler is limited by the unvignetted size of the imaging area 

at the input side of the collimator. The new modifications to FLAIR became 

known as PANACHE (PANoramic Area Coverage with High Efficiency; 

Watson 1988). 

The spectrograph can rurrently be used with a variety of dispersion 

gratings with various blaze wavelengths, but its properties in the blue are 

fairly limited because of the poor transmission and rapid defocussing with 

wavelength of the Pentax lenses at A<5000A (see below). However, the 

placement of the spectrograph on a vibrationally-isolated optical bench and 

the use of a ceo detector makes it possible to attain very stable wavelength 

calibration of the spectra. 

Initially only red sensitive GEC CCO's were available as the detector 

but with the advances in coating technology a more blue responsive GEC 

ceo was obtained by coating it with a blue sensitive dye at ESO (Cullum et 

al. 1985, Oeiries 1986). This dye results in an enhanced quantum efficiency at 

4000A of approximately 15%.This current CCD images an area of 400x578 

pixels (1 pixel has a size of 44J.Imx44J.Im) and when optimally cooled to -150K 

induces a read-out noise -4-SAOU per pixel with a gain of 2e-/AOU. Thus, 

assuming that the electron count in a pixel is Poissonian the observed 

spectrum becomes read-out noise limited at fluxes of 32 to 50 ADU per pixel. 

Since this noise source can become important at these low light levels (i.e. for 

faint galaxies or for the blue, A <4500A regions of the spectrum - see Section 

6.2 below) and since the imaged 100J.Im fibre covers -6 ceo pixels, on-chip 

binning was implemented on the ceo so that pixel counts could be co-added 

prior to reading out the chip. 

The general performance of the CCO is very good with only low levels 

(a few ADU) of 'dark current' being recorded over exposures of -3000s and 
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negligible charge smearing seen on the high count pixels. There is only one 

significant defect in the imaging area, that is an LED in one pixel; however 

some non-permanent LED effects have been seen. Background radiation or 

'cosmic ray' events were initially a serious problem but this has been rectified 

somewhat by replacing the dewar window with a fused-silica glass. Events 

are now seen at -2 per minute over the ceo imaging area. 

These improvements described above, primarily in the blue (I.<SOOOA) 
spectral range, meant that it was now possible to attempt spectroscopy in the 

range 1.=4000-SOOOA where it is expected that redshifted absorption features, 

such as the strong Ca II K and H (!.3934A and !.3969A) lines, are likely to be 

seen, whereas prior to these improvements galaxy spectroscopy was limited 

to A>5500A where there are relatively few of such features to be found. In the 

following section the set-up for the nine field Schmidt survey, which attempted 

to use this new information, is described in more detail. 

6.2 Observations 

The main aim of this work was to assess the performance of FLAIR in the 

field of galaxy spectroscopy and, in particular, to evaluate its potential in the 

construction of systematic redshift surveys. Once this assessment was 

complete, it was envisaged that a new redshift sample of galaxies could be 

formed which would enhance and supplement the information gathered from 

the previously observed Durham surveys. Whilst this evaluation is now 

complete and all the spectroscopic (and some of the photometric) data on the 

new nine field survey has been obtained, there currently remains much work 

to be completed on this catalogue. In this section the methods of assessment 

of the FLAI R/UKST instrument are discussed together with a description of 

the choice for the final observing set-up. Following this a brief description of 

the construction of the 9 field survey is given and the current status of the 

spectroscopic and photometric observations are presented. In Section 6.3 a 

detailed account of the methods for obtaining the redshifts from FLAIR is 

discussed and in Section 6.4 the results from the spectroscopic tests and 

some preliminary results from the nine field survey are presented. 

Clearly two important factors in the potential use of the UKST/FLAIR 

instrument in the construction of a systematic redshift survey are, firstly, to 
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what accuracy can the redshift velocities be measured with the system and, 

secondly, to what limiting magnitude can a complete sample of galaxies be 

measured with this accuracy. As discussed in the previous section a 

magnitude limit of bf=16m.8 might be achievable with this system, and so as a 

direct test of the UKST/FLAIR instrument it was decided to re-observe a 

redshift field which already possessed complete and accurate redshift 

information to this limit. 

The Durham/AAT redshift field GNA at -13h40+00 (UKST SERC field 

864) satisfied these requirements (the rms error on these velocities is 

-SOkms-1; see Peterson et al. 1986 and Chapter 3, Section 3.1.2) and was 

observable during the first commissioning observing run in May 1988. 

According to the lists of Peterson et al. there are 57 galaxies to this limit (with 

magnitude relation of equation 3-3) and so sampling their list, in magnitude 

order at a rate of 1-in-2, gave 28 suitable objects for observation. It was 

decided that of the remaining 7 fibres available, 6 would be devoted to 

monitoring blank regions of the sky (this, in future runs, became standard) 

and one would be placed on a bright 'template' galaxy (see below) with a 

known (non-Durham/AAT) and accurate catalogue redshift velocity. Thus, by 

re-observing these 28 objects sampled uniformly in apparent magnitude it 

was possible to test for the internal and external accuracy of the measured 

FLAIR velocities and the completeness to bJ::16m.8. 

The following methods that were used in the observation of field 864 

became a standard for the observations of the 9 field survey.The main aim of 

these spectral measurements was take advantage of the improved blue 

sensitivity shortwards of t.SOOOA as discussed above. Since the large 

diameter 100JJm fibres tended to dominate the spectral resolution (the FWHM 

of the arc lines remains approximately a fixed 6 pixels on the ceo at both 

reciprocal dispersions of 190 and 98Aimm) a choice had to be made between 

wavelength coverage and spectral resolution. The final choice of the 1200V 

grating (with a blaze wavelength at t.4620A) and a grating angle of -175°, 

gave a wavelength coverage, on average, of 394Q-5160A (Ca II H and K 

occur at -t.4123A at a mean redshift of r-0.043) at a resolution of 11A FWHM 

(at 1.>4500A) although worse in the blue (see Section 6.3 below). In the 

Durham/SAAO Survey Metcalfe et al. (1989) achieved a velocity accuracy of 

-120kms-1 rms on average from a spectroscopic resolution of -7A FWHM, 

and so working at the same signal-to-noise the velocity accuracy for this 
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FLAIR set-up was predicted to be in the range 150 to 20Qkrns-1 rms. 

With this optical configuration the ceo was set-up to co-add 3 pixels 

perpendicular to and 2 pixels parallel to the dispersion direction giving an 

average dispersion of -4.2A per (binned) pixels and a resolution of -2.6 

FWHM (binned) pixels. The ceo images thus had on average 2 (binned) 

pixels per spectrum across the dispersion direction with an inter-fibre spadng 

of 1 (binned) pixel. Since this set-up was used throughout the pixel sizes 

mentioned below will refer to those as appearing on the ceo image after 

read-out. 

Since the combination of the CCO and fixed platform for the 

spectrograph makes the system a very stable one for wavelength calibration, 

it was only necessary to take arc spectra at the beginning and end of each 

observing session. For this purpose Mercury-cadmium and Helium arc lamps 

were used, but the former was preferred in the data reduction since high 

signal-to-noise spectra could be obtained in short (20s) exposures with 

virtually no cosmic ray contamination. 

As fibre transmission varies because of prism tilt and inherent fibre 

differences high signal-to-noise flat-field frames were taken of the twilight sky, 

so that this vignetting could be accounted for in the data reduction. On one 

occasion dome flat-fields were also successfully used for this purpose. ceo 
bias and dark frames were taken throughout the observing session to monitor 

the performance of the ceo. 

To calibrate the redshift velocity scale and to provide template spectra 

for the purposes of cross-correlation (see Section 6.3 below), at least one 

bright (ms=11/12m) galaxy with an accurate (catalogued) velocity was sought 

on each field so as to provide a suitably high signal-to-noise spectrum. With 

the addition of 2 stellar spectra (one of which was a solar spectrum) and 

several other suitable templates found in the lists of target galaxies after 

observation, 19 templates were available for cross-correlation purposes (see 

Table 6.3 of Section 6.4 below). 

Thus out of the 35 fibres available 28 were used on average to observe 

the spectra of target galaxies. A rough estimate of the signal-to-noise of the 

resulting spectra could be judged from initial estimates of the flux from 
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galaxies and from the sky. Thus as 2 pixels from each fibre are co-added from 

the ceo image to give one pixel in the final spectrum, the signal-to-noise per 

pixel is (see the previous section) 

SIN= Fsource 
[(Fsource+Fsky)/g+2aR21112 (6-2) 

where g is the gain in e-/ADU and OR and F (in the final spectrum) are the 

read-out noise and flux per pixel in ADU (aR=4-5 ADU). Thus as fluxes of 

Fsource=200 ADU and Fslf150 ADU are obtained from a limiting magnitude 

(bJ=16m.8) galaxy in an exposure of 3000s at A.=SOOOA this implies the final 

spectrum has a signal-to-noise -13 at this wavelength. At 41 OOA the read-out 

noise becomes more important with Fsource=25 ADU and Fsky =35 ADU in 

3000s and so the signal-to-noise -3. However, to detect Ca II H and K, for 

example, a signal-to-noise -5 or 6 is required and this can be achieved in a 

minimum of 3 to 4 such 3000s exposures (2.5 to 3.3 hrs). 

The methods of construction of the 9-field Schmidt survey follows very 

closely those of Peterson et al. (1986) and Metcalfe et al. (1989) (see also 

Chapter 3, Sections 3. 1. 1 and 3. 1.2) and so only a brief description of these 

methods are given here. The basic photometric and source material for the 

new survey comes from COSMOS scans of UKST photographic J plates in 

nine UKST-SERC fields at high (lb'll~40°) galactic latitudes. High quality 

copies of SERC Atlas plates were used for the scans and COSMOS was set 

to threshold map the intensity distribution at a faint isophote of -8% of the sky 

background intensity (-24m.74 arcsec-2 at m5~22m arcsec-2) which makes 

the calibrated galaxy magnitudes approximately total (see Section 3.1.1 ). 

However, unlike the Durham/SAAO and Durham/AA T surveys the area 

scanned for these nine-fields covered -5°.35x5°.35, and this makes these 

fields approximately twice the area of the fields in the earlier surveys. 

The main aim of this survey was to attempt to continue obtaining 

galaxy redshifts down to a competitively deep limit of bJ=16m.8 (z<0.1) as in 

previous Durham surveys. However, as discussed in the introduction to this 

chapter, a stronger bias towards a more visually acceptable 3-d map of the 

galaxy distribution was felt to be needed (c.f. the slice maps of De Lapparent 

et al. 1986a and DaCosta et al. 1988 as in Figures 3.4 and 3.5 of Chapter 3, 

Section 3.2. 1) and so the approach to the choice of fields was to aim for more 

contiguous areas. Figure 6. 1 shows the position and area of the 9 Schmidt 
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fields with respect to the earlier Durham/SAAO and Durham/AAT survey fields 

on a plot of right-ascension and declination (see also Figure 3.6). Subject to 

the availability of UKST Atlas plate material it was decided that the RA strip 

along zero degrees declination from -10.5hrs to 15.5hrs afforded a useful 

place for the FLAIR work since there were already 4 previous survey areas in 

this RA range. This also had the potential advantage that overlaps between 

the COSMOS measured areas could be used to provide a uniform 

photometric calibration. Figure 6.1 shows that some continuity was achieved 

at -12.5hrs to 14hrs (00 dec.) and at 21.5hrs (-25° to -35° dec.). 

At b.J=16m.8 it is expected that -166 galaxies will be available for 

observation in each Schmidt field and thus a sampling rate of 1-in-6 allows on 

average 28 of the 35 100JJm fibres to be used for observation (leaving 6 fibres 

for offset sky and 1 for a template object; see above). In practice galaxies 

were sampled at a rate of 1-in-6 from complete lists of galaxies in order of 

apparent magnitude until -28 of the fibres were filled with a target object. This 

constant surface density of observed objects will necessarily mean that the 

magnitude limit ot the fields will vary from field-to-field. 

Thus it is expected that the final catalogue will have redshifts for up to 

-250 galaxies covering a volume which is about equal to (if not a bit larger 

than) the original Durham surveys. Thus the large-scale (~ 10h-1 Mpc) 

statistical power of ~5(s) of this sample will be similar to that observed in 

Figure 5.18 of Chapter 5 (Section 5.2.1 ), whereas at smaller scales the 

velocity resolution of -150-200kms-1 rms will allow some further description of 

the small-scale ~5(s) and the peculiar motions of galaxies. 

The methods for preparing the complete magnitude limited and 

calibrated samples of galaxies have been described quite thoroughly 

elsewhere (for example, Shanks et al. 1984) and so only a brief description is 

given here. Initial star-galaxy separation of the COSMOS detected images to 

bJ=2Qm was carried out using the image parameters of logarithmic isophotal 

area and apparent magnitude. Prior to this, nine areas of the plate were 

examined for variations of the stellar locus from area to area in the plane of 

these two parameters. Due to the limited dynamic range of COSMOS, stellar 

(but generally not galaxy) images sometimes had a tendency to saturate in 

magnitude causing an apparent variation (with local sky intensity) of the 

stellar locus across the plate (Heydon-Dumbleton et al. 1989). In this case no 
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Figure 6. 1. A cartesian map of the Equatorial coordinates 

R.A. and Dec. (1950.0) showing the positions of the fields in the 

new Schmidt survey (solid symbols of approximately 

proportionate area). The other fields are from the 

Durham/SAAO, Durham/AAT and Parker et al. surveys. The 

dashed lines are the Galactic coordinates b"=±20°. The R.A. 

coordinate is in hours the Dec. coordinate in degrees. 
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machine based star-galaxy separation could be relied upon at any magnitude 

to give an accurate sample of galaxies and so generally, in this case, the 

entire plate was separated by eye to -11m. Where such variations in the 

stellar magnitudes were not seen, the star-galaxy separation could be used to 

classify galaxy images at magnitudes fainter than -1 sm and in the final lists, 

all objects brighter than this limit and all dassified galaxies fainter than this 

limit (to -1 ?m) were checked visually. 

Rough photometric calibration of the COSMOS magnitudes for the 

Schmidt fields was achieved by matching the observed number-apparent 

magnitude counts at bJ=18m to 19m to calibrated counts at the SGP (Shanks 

et al. 1984). Other preliminary photometric calibration has been provided from 

ceo B and V observations of galaxies on the INT 2.5m and SAAO 1.0m 

telescopes (Metcalfe priv. comm.). In Table 6.1 are listed the relevant details 

associated with the physical characteristics, sample lists and photometric 

calibrations of the 9-fields. 

The spectroscopic observations for this Schmidt survey were carried 

out over 5 runs at the UKST from May 1988 to February 1989. Table 6.2 lists 

the observations carried out on each field (including the 864 field). In two 

instances (SERC fields 464 and 891) some attempt was made to complement 

the blue observations with other exposures in the red (A.=578Q-6980A) as this 

will, hopefully, enable a better detection of later-type galaxies with, for 

example, Ha (A.=6563A) or N II (A.=6584A) in emission. Some degree of 

success in this mode of observation has already been reported by Parker and 

Watson (1990). 

6.3 Reduction techniques 

The following techniques used for reducing the spectroscopic observations 

from the 864 'test' field (Peterson et al. 1986) also apply, in general, to the 9 

field Schmidt survey. As the methods of reduction are similar to those of 

Metcalfe et at. (1989) only a brief overview is given here. Figure 6.2 shows a 

raw, 3000s exposure, data frame of the 28 galaxies chosen from the 864 field. 

Fibres marked with an S are sky fibres while that marked by a T is a template 

galaxy (NGC5329, see Table 6.3 below); the remainder are target galaxies. It 

can dearly be seen that prominent absorption features such as Ca II H and K 
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(1) (2) (4) (5) (6) (7) 

SERC R.A 

(3) 
Dec. msky source "'im Nabs 

862 

865 
867 
464 
402 

891 
747 

861 
863 

h m 0 , bu bJ 

13 oo.4 -oo 23 21.90 ceo 
14 00.4 -00 22 22.10 N(m) 

1438.7 -oo 08 21.62 ceo 
21 03.6 -30 07 22.00 N(m) 

21 10.2 -35 08 22.02 N(m) 

22 38.5 -oo 09 21.88 ceo 
22 38.5 -10 09 21.72 N(m) 

12 40.5 -00 22 22.03 OIL 

13 20.3 -00 21 22.08 OIL 

16.81 26 
16.79 27 
16.69 28 
17.01 27 

16.90 27 
16.74 28 

16.68 27 

16.76 27 
16.76 27 

(8) 
Nnm 

151 
157 
163 
157 

169 
163 
163 

158 
159 

Table 6.1. Details of the fields in the Schmidt survey. The A.A. 

and Dec. (1950) of the fields (SERC Nos. in column (1)) are 

given in columns (2) and (3). The sky brightness of the 

photographic plate is given in column (4) (in units of mag 

arcsec-2) together with its calibration source (N(m) refers to a 

number count. OIL is from an overlap; in 861 and 863 this was 

with 862). The numbers of galaxies observed to the magnitude 

limit (column (6)) is given in column (7). Column (8) gives the 

numbers of galaxies catalogued to the same limit. 



(1) (2) (3) (4) (5) 

No. of Frames 

Field Date Blue Red Comments 

864 10/11.5.88 5 Moon affecting 1 

862 12/13.5.88 6 

865 19/20.5.88 4 Cloud affecting 4 

20/21.5.88 1 Cloud affecting 1 

21/22.5.88 6 

867 08/09.6.88 5 

464 10/11.7.88 3 

11/12.7.88 8 

402 13/14.7.88 8 Cloud affecting 4 

891 12/13.9.88 2 Cloud affecting 2 

13/14.9.88 7 A.-scale affected on 2 

747 16/17.9.88 4 Cloud affecting 1 

861 05/06.2.89 3 

863 08/09.2.89 4 

Table 6.2. Spectroscopic observations carried out for the 9 

field Schmidt survey. Columns (1) and (2) list the UKST/SERC 

fields and their date of observation, respectively. The number 

of ceo frames taken with the blue and red blazed gratings is 

indicated in columns (3) and (4) (the blue exposures were all of 

3000s duration; those taken in the red were either 1800s, in the 

case of 464, or 3000s in the case of 891). Column (5) provides 

some comments on the quality of the frames (in the case of the 

blue observations for field 891 the spectrograph box was 

disturbed towards the end of the night). 



Figure 6.2. A CCO image of galaxy spectra in the 13h40+00 

field. This is a single raw exposure of 3000s (with the ceo 
binning in 3x2 mode) and shows 35 spectra (vertically spaced) 

with increasing wavelength running from left to right. The 

numbers on the overlay refer to the galaxy identification in 

column (1) of Table 6.4 whereas spectra marked with an S are 

of the sky background. The single spectrum marked with a T is 

the template galaxy (NGC5329, see Table 6.3). Several strong 

absorption and emission features seen in the spectra are 

marked. Approximately 1 00 cosmic ray events are recorded on 

this frame and these appear as white, sharply defined, spots 

(about 4 pixels in area) in this presentation. 
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are visible in the spectra (galaxy Nos. 9 and 56 at the blue end) as well as 

strong emission lines (galaxy Nos. 12 and 32 at the red end). The blue end of 

the spectra show evidence for the defocussing as discussed above (Section 

6. 1) and arc spectra confirm that the resolution decreases from -11A FWHM 

in the range ).=4500-SOOOA to -21A at ).=4000A. This frame also shows a 

large number (-100) of cosmic ray events which have to be removed in the 

data reduction procedure. 

The reduction of the data was carried out using a variety of STARLINK 

and local software on various VAX machines at Durham. Firstly, the arc 

frames taken at the beginning and end of the night were inspected for any 

noticeable shift in the position of the arc lines over the course of the 

observations. Such shifts were rarely seen. With the data frames, parameters 

such as read-out noise, scattered light, sky and source levels were monitored 

and frames that were of too low signal-to-noise were removed from the 

reduction. The arc and data frames were then debiassed by subtracting a 

mean background count from 'unexposed' areas on the ceo away from the 

fibres. In general, as the dispersion of the fibres lay parallel to the columns of 

the ceo, arc and galaxy spectra were extracted by co-adding the two highest 

count columns of each fibre. In cases where the dispersion direction did not 

fall parallel to the ceo columns, the dispersion had to be followed on the 

twilight sky frames using routines available in FIGARO (FINDSP) and then 2 

pixels width of spectra extracted (using POLEXT). 

The next step in the reduction was to remove the cosmic ray events in 

the extracted data frames by individually median filtering each spectrum over 

generally more than three renormalised 3000s exposures. Figure 6.3 shows 

the application of this median filtering to the 4 debiassed (but not extracted) 

exposures in the 864 field. As can be seen this process removes the vast 

majority of the original events. 

The extracted and co-added (over several exposures) arc frames were 

then used to calibrate the wavelength scale in each fibre using FIGARO 

routines (ARC, IARC). Figure 6.4 shows an example of the Mercury-cadmium 

arc spectrum and, although there are only 5 arc lines, this is sufficient to fit the 

pixel number/wavelength relationship given the low level of norrlinearity in the 

wavelength scale. Using a second order polynomial for the fit, rms dispersions 

of typically 0.3A for the arc line positions were obtained. The individual 
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Figure 6.3. A median filtered image of galaxy spectra in the 

13h40+00 field. This frame is median filtered over 4x3000s 

exposures and is presented in an identical fashion to that in 

Figure 6.2. Note that all the cosmic ray events, save 4, are 

removed (the white spot marked H P on the overlay is a hot 

pixel) 
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Figure 6.4. The Mercury-Cadmium arc spectrum. This shows 

3x15s exposures combined into one spectrum. Wavelengths 

for the emission lines come -from the MIT wavelength tables 

(Harrison 1939). The measured FWHM for each of the lines 

(based on a Gaussian fit) is indicated in brackets. 



polynomial fits for each fibre were then used to rebin the spectra in the filtered 

data frame on a linear wavelength scale. 

Frames of the twilight sky were then used to estimate the relative 

transmission of each fibre. Prior to summing the counts in each fibre spectrum 

cosmic ray events were removed by median filtering the individual frames 

using BCLEAN in FIGARO. The spectra in the cleaned data frame were then 

renormalised to take out the fibre-to-fibre variation (which lay at -12% level). 

For the sky-subtraction, the six sky fibres on the data frame were 

averaged and the result subtracted from each galaxy spectrum. The mean 

sky observed in the 864 field is shown in Figure 6.5 and it can be seen that 

there are no very strong emission lines within the observed wavelength range. 

The resullting 28 filtered, wavelength-calibrated and sky-subtracted 

galaxy spectra were then used to estimate redshift velocities. This was 

achieved by two means; firstly by fitting identifiable, high signal-to-noise 

emission lines with Gaussian profiles using GAUSS in FIGARO (the redshift 

velocity being given by v=c(A - Ao)/Ao where A and A 0 are the peak 

wavelengths of the feature in the observed and rest frames, respectively and 

cis the velocity of light) and, secondly, by obtaining absorption redshifts via 

the cross-correlation methods of Tonry and Davis (1979) as implemented in 

the DUSDERS software package (Inglis 1985). Briefly this latter method 

involved the following. Prior to carrying out this procedure galaxy spectra 

were inspected for any remaining cosmic ray events and these were then 

removed together with the emission lines. The spectra were then continuum 

subtracted and rebinned into 256 logarithmic wavelength channels and then 

Fourier filtered to remove high frequency noise and low frequency distortions 

introduced by continuum subtraction. The galaxy spectra were then 

individually cross-correlated against the 19 available templates (see Table 6.3 

in Section 6.4 below) and the highest peak searched for in each of the 

cross-correlation spectra. Thus with a relative shift of VA kms-1 with respect to 

a template with a velocity of Vr krns-1 the redshift velocity is 

(6-3) 

where all measured velocities are corrected to a heliocentric co-ordinate· 

system. 
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Figure 6. 5. The mean sky spectrum observed in the 

13h40+00 field. This spectrum is a mean over the six sky 

spectra seen in the median filtered image in Figure 6.3. Note 

the lack of any prominent emission features. 



The templates (see Table 6.3 below), chosen to give a wide range of 

possible spectral types with which to match the galaxy spectra, were initially 

cross-correlated against each other to provide an internally consistent set of 

redshift velocities. The zero-point for these assigned velocities was then set 

by requiring that the mean was equal to the mean of the velocities quoted in 

the original catalogues. 

6.4 Results 

This section describes the results of re-observing the 864 field of Peterson et 

al. (1986) with the UKST/FLAIR instrument and the tests made on the 

accuracy and completeness of the redshift information gathered. Also 

described are the preliminary observations of SERC fields 862 and 865 which 

form part of the new 9 field Schmidt survey discussed in Section 6.2 above. 

These data are used to show that the new modifications to FLAIR now make 

the UKST/FLAIR set-up capable of performing large-scale redshift surveys. 

Systematic and random errors in the estimated redshift velocities can 

be induced at various places in the data reduction, particularly in the 

wavelength calibration procedure. With no night-sky lines to make a simple 

check of this calibration (by comparing their measured wavelengths with their 

rest values) an alternative high signal-to-noise 'rest' spectrum had to be 

sought with identifiable and measurable spectral features. The solar template 

(see Table 6.3 below) obtained from a frame of reflected sunlight provided 

such a spectrum and so measuring the wavelengths of 4 prominent 

absorption lines (again using GAUSS in FIGARO) and comparing these with 

their rest values, an rrns of ±34kms-1 was obtained for the corresponding 

velocity differences around a mean of -6kms-1 indicating that there may not 

be any serious problems with the calibration of the wavelength scale as 

anticipated (see Section 6.2 above). 

A further test of the zero-point for the redshift velocity scale and 

possible random errors in the velocity measurements came from differences 

between the published heliocentric velocities for the templates and the 

velocities measured by FLAIR. In Table 6.3 the results of 

inter-cross-correlating the template spectra to obtain a consistent set of 
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Table 6.3 Details of the template objects. 

(1) (2) (3) (4) 
Name Field mB Type 

NGC5258 864 13.7 Sa 
NGC5329 864 14.4 E 

865 
GNA003 864 14.6 Sab 
GNA009 864 15.7 so 
NGC4753 862 10.9 SO(P) 
NGC4772 862 {12.4) Sa 
NGC4996 862 14.4 SO/a 
NGC4845 862 12.3 Sab 
NGC5713 867 12.0 Sbc(P) 
NGC5746 867 11.8 Sb 
A2058-28 464 
MCG05-50-02 464 
E402-IG10 402 
E402-G26 402 
NGC7391 891 13.7 E 
NGC7371 747 12.8 Sa 

HD215110* 891 (8.0)v dG4 
Sun• dG2 

Notes: 

•stars; ( h' indicates visual magnitude. 
()Numbers in brackets are approximate. 

References: 

(5) 
Vc 

kms- 1 

6793 
7109 

3782 
14380 
1288 
1042 
5488 
1232 
1883 
1724 

11505 
5953 
5330 
2796 
3085 
2685 

-9 
0 

(6) (7) (8) (9) {10) 
o-(Vc) Source Vp rp ~v 
kms- 1 kms- 1 kms- 1 

16 AARS 6825 4.5 32 
25 CfA 7131 9.2 22 

7081 8.5 -28 
17 AARS 3865 8.4 83 
18 AARS 14321 6.8 -59 

(50) RSA 1139 9.6 -149 
10 RSA 1159 9.6 117 
26 CfA 5447 8.6 -41 
20 CfA 1267 9.0 35 
6 RSA 1919 4.2 36 

10 CfA 1808 9.7 84 
107 SRC 11804 7.6 299 

FJ 5905 7.1 -48 
FJ 5370 7.3 40 
FJ 2749 6.8 -47 

26 CfA 2851 8.9 -234 
15 RSA 2496 9.0 -189 

SRV 15 8.4 24 
-6 6.0 -6 

AARS. The Anglo-Australian Redshift Survey. Peterson, B.A., Ellis, R.S., Efstathiou, G., Shanks, T., 
Bean, A.J., Fong, R., & Zen-Long, Z., 1986. Mon. Not. R. astr. Soc., 221, 233. 

CfA. The Center for Astrophysics Redshift Survey. Huchra, J., Davis, M., Latham, D., & Tonry, J., 1983. 
Astrophys. J. Suppl., 52, 89. 

RSA. A Revised Shapley-Ames Catalogue of Bright Galaxies. Sandage, A., & Tammann, G.A., 1987. 
Carnegie Institution of Washington Publication 635. 

SRC. Second Reference Catalogue of Bright Galaxies. de Vaucouleurs, G., de Vaucouleurs, A., & Corwin, 
H.G., 1976. University of Texas Press, Austin. 

FJ. Fairall, A.P., & Jones, A., 1988. Publ. Dept. Astr. Univ. Cape Town, No. 10. 

SRV. General Catalogue of Stellar Radial Velocities. Wilson, R.E., 1963. Carnegie Institution of Wash­
ington Publication 601. 

The columns are as follows; (1) object identification, (2) UKST/SERC field of observation, (3) appar­
ent blue magnitude (as quoted in original reference; in the RSA this is BT), (4) morphological (gala.x.ies) 
or spectral (stars) type, (5) catalogue heliocentric velocity, (6) quoted error on Vc, (7) catalogue identi­
fication, (8) heliocentric absorption velocity from FLAIR, (9) Tonry and Davis r-factor associated with 
Vp and (10) the difference Vp- Vc. 



measured FLAIR velocities are presented (column (8)) together with the 

published source material (column (5)). The mean of the differences between 

the measured and 'published velocities (column (10)) is -2kms-1 with a scatter 

of ± 117 kms-1 and this small offset confirms the zero-point of the overall 

velocity scale (no zero-point correction has been adopted for the FLAIR 

velocities in column (8)). Despite the high signal-to-noise of the templates, the 

observed scatter about the mean is quite large and, although part of this error 

may come from the low spectroscopic resolution of the observations (11A 

FWHM corresponds to 730kms-1 at A.=4500A), it is suggested below that there 

may also be some contribution to the dispersion from the catalogue velocities 

(e.g. A2058-28). 

Observations of the 28 target galaxies from the 864 field of Peterson et 

al. (1986) are now considered and in Figure 6.6 (a) to (d) examples of the 

UKST/FLAIR spectra are shown for faint (bJ>16m.6) objects. The most 

prominent absorption features are marked and in most cases show high 

signal-to-noise. In Table 6.4 the estimated UKST/FLAIR absorption (column 

(4)) and emission (column (6)) velocities for the 28 galaxies are shown 

together with an adopted velocity for each object (column (8)). The method of 

obtaining the adopted velocity depended upon the Tonry and Davis (1979) 

r-factor of the measured absorption velocity (both the r-factor and velocity, in 

this case, being averaged over, generally, the largest number of templates 

that gave a consistent velocity for the object to within ±500kms-1 of the 

mean). For galaxies with high r values (r>2.5) the absorption velocity was 

adopted as the final UKST/FLAIR velocity whilst those with low r values 

(rs2.5) the emission-line velocity was taken, if available. In the remaining 

three cases (GNA010, GNA016, and GNA055) where the cross-correlation 

procedure gave r-factors of s2.5, averaged over a reasonable number of 

templates, and the galaxies showed no emission lines, the spectra were 

inspected visually (Figure 6.6 (e), (f) and (g)) to check the cross-correlation 

result and the absorption velocity was subsequently adopted (this visual 

inspection was further carried out on all the spectra to confirm the final 

adopted velocities). Finally, there were 6 galaxies, which were generally of 

late morphological type, that gave mostly low cross-correlation r-factors, and 

whose spectra showed neither significant emission or absorption features; no 

velocity could be daimed for these galaxies. 

Column (9) of Table 6.4 gives the original estimates of the redshift 
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Figure 6.6. The observed of galaxies in the 13h40+00 field 

median filtered over 4x3000s exposures (see Figure 6.3). The 

first four figures, (a) to (d), demonstrate the high performance of 

FLAIR for galaxies near the limiting magnitude of 

m(bJ)=16m.76. These spectra also show the variations for early 

and late-type galaxies. The spectra in (e), (f) and (g) are for the 

galaxies that showed low cross-correlation significance (r<2.5) 

and no significant emission lines (see text and Table 6.4). In all 

cases absorption and emission features with high 

signal-to-noise are marked. 
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Table 6.4 FLAIR observations of galaxies in the 13h40+00 field. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
GNA m• Type va rp ve Ne Vp VARRS D.V bJ F F 

kms- 1 kms- 1 kms- 1 kms- 1 kms- 1 

2 13.32 Sa 6825 4.5 6693 1 6825 6793 32 
3 14.27 Sab 3865 8.4 3865 3782 83 
4 15.15 She 11981 2.8 12192 1 11981 12106 -125 
9 15.38 so 14321 6.8 14321 14380 -59 
7 15.55 Sb 13816 2.4 14095 1 14095 14195 -100 

10 15.59 Sb 18107 t2.0 18107 17859 248 
15 15.84 so 11836 4.2 11836 11916 -80 
12 15.89 Sc 4396 3(23) 4396 4596 -200 

16 16.10 Sb 21603 t2.1 21603 21763 -160 
18 16.13 so 6841 6.1 6841 6731 110 
17 16.18 She 14170 4.1 14170 14246 -76 
29 16.30 so 8008 4.9 8026 1 8008 7791 217 
25 16.39 Sa 21399 
33 16.44 so 26825 3.7 26825 26563 262 
27 16.44 Sc 18477 
26 16.52 Sc 27506 
39 16.53 Sb 21948 2.9 21948 22025 -77 
31 16.54 Sa 3815 3(40) 3815 3810 5 
34 16.55 Sb 17305 
41 16.57 Sb 14351 
32 16.64 Sed 3763 3(16) 3763 3674 89 
58 16.65 S(P) 21612 2.3 21319 1 21319 21559 -240 
56 16.66 so 23053 3.9 23053 22944 109 

55 16.69 so 26722 t2.3 26722 26563 159 
57 16.70 so 26044 3.8 26044 26015 29 
43 16.71 Sed 27099 
60 16.72 so 21925 3.2 21925 22015 -90 
51 16.76 She 25149 2.6 25149 25254 -105 

Notes: 
tsee Figure 6.6 (e,f,g). 

The columns are as follows; (1) Peterson et al. galaxy identification, (2) apparent total blue magnitude, 
(3) morphological type, ( 4) absorption velocity from FLAIR, (5) Tonry and Davis r-factor associated with 
V}, (6) emission-line velocity from FLAIR, (7) number of observed emission lines and the line-to-line 
error (in brackets), (8) the adopted FLAIR velocity, (9) the velocity from Peterson et al. and (10) the 
difference Vp - VAARS. 



velocities for these 28 galaxies from Peterson et al. (1986) and in column (10) 

the difference between these and the adopted FLAIR velocities are shown. 

The mean and rms dispersion of these values are 

VFL.AIR- VAARS = 1±144 kms-1 (6-4) 

On comparing just the absorption-line velocities, the mean and dispersion are 

VFLAIR- VAARS = 8±160 kms-1 (19 galaxies) (&-5) 

and this agrees well with the values for the emission-line galaxies 

VFLAIR- VAARS = -28±161 kms-1 (8 galaxies) (&-6) 

Thus this seems to show that the original estimate of error for the FLAIR 

velocities of between 150 and 200 kms-1 was justified (given that there is a 

much smaller uncertainty on the Peterson et al. redshift values). 

A further check on the accuracy of the absorption-line velocities was 

obtained by calibrating the Tonry and Davis (1979) r-fador using the method 

of Bean ( 1983, see also Peterson et al. 1986, Metcalfe et al. 1989 and 

Section 4.3.3 of Chapter 4). As discussed in Chapter 4 the one-sigma error 

5vz on a measurement of the redshift velocity via cross--correlation is related, 

theoretically, to the r-factor (the ratio of the height of the principal peak in the 

cross-correlation spectrum to the average height of the peaks) by equation 

4-3. By degrading a typical template spectrum by adding Poisson noise to 

each pixel in proportion to the square root of the observed count, the 

distribution of errors 5vz at a given r can be determined by cross-correlating 

many degraded spectra (at various signal-to-noise levels) with the original 

template. The result of this procedure for the template NGC5329 is shown in 

Figure 6.7. The dashed lines indicate a fit of equation 4-3 to the 1a error 

giving 

c = 789 kms-1 (&-7) 

Thus, at the average value of r=7.9 for the template galaxies (based on 

the inter-template cross-correlations, see Table 6.3, column (9)) this 

procedure predicts an rms error of ±89kms-1 as compared to the ± 117 kms-1 

error found above from direct comparisons with the published catalogue 
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velocities. Some of this difference between the two estimates may arise from 

residual errors associated with the catalogue redshifts. At the average 

cross-correlation value of r-3.8 for the 864 galaxies, the predicted error is 

±164 kms-1 in reasonable agreement with the ±152 kms-1 of equation 6-6 

inferred from the comparison with the Peterson et al. data, assuming an error 

of ±50 kms-1 for their previous work. Thus this procedure confirms that galaxy 

velocities to an accuracy of ±150kms-1 rrns are now available from the UKST 

data. 

Since redshift information, at this accuracy, was obtained for 22 out of 

28 of the galaxies observed in the 864 field, the corresponding completeness 

is -80%.As discussed above (Section 6.2), since the spectra of the remaining 

6 generally late-type galaxies exhibit only very weak features (in spite of 

having reasonable signal-to-noise) the best chance of obtaining redshifts for 

such objects may be by taking short exposure observations with the red 

blazed grating to try to detect features such as the redshifted emission lines 

(e.g. H~(4861), [0 Ill] (4959, 5007), Ha (6563) and N II (6584)) that frequently 

occur in such galaxies. 

Finally, in Tables 6.5 and 6.6 are presented some preliminary results 

for the nine field redshift survey for fields 862 and 865, respectively. The 

redshift completeness rate in these two fields was 85% and 89%, 

respectively, to a limit of bJ=16m.8 with an average r-factor of r-4.0 and r-4.3. 

Since the observational set-up was virtually the same in all the UKST 

observing runs for this survey equations 4-3 and 6-7 imply that the predicted 

errors for the velocities in these fields is ±158 and ±149 kms-1 rms, 

respectively, and this further indicates that the UKSTIFLAIR instrument is now 

clearly capable of performing a galaxy redshift survey to bJ=16m.8 over an 

extended region of the southern sky. 
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Table 6.5 FLAIR observations of galaxies in the UKST/SERC field 862. 

(1) (2) (3) (4) (5) (6) (7) (8) 
No. RA Dec m• 

bJ 
va 

F rp v• F N• Vp 
h m s 0 " kms- 1 kms- 1 kms- 1 

G1# 12 55 27.8 1 50 45 11.71 1267 9.0 1114 3(14) 1267 
G7 12 54 37.8 -1 26 13 13.91 3185 4.4 2898 2(10) 3185 
G13 13 7 7.0 -0 46 56 14.71 7798 4.5 7798 
G19 12 53 24.3 -1 4 39 15.29 3039 3(17) 3039 
G25 12 58 20.3 -1 4 39 15.43 6950 3.9 6985 2(42) 6950 
G31 12 56 30.4 -2 52 36 15.68 14406 3.9 14406 
G37 12 52 42.8 0 31 3 15.83 14210 6.3 14210 
G43 13 5 29.7 1 13 35 15.96 12643 3.8 12643 
G49 13 10 22.7 1 12 21 16.09 14571 3.1 14571 
G55 12 51 42.1 -1 45 51 16.18 
G61 12 50 24.7 -2 12 29 16.26 
G67 13 9 35.0 0 1 33 16.32 12392 2.3 12392 
G73 12 58 7.1 1 20 17 16.36 24646 3.2 24646 
G79 12 58 26.4 -1 42 33 16.40 1521 3(21) 1521 
G85 12 50 6.1 -2 27 54 16.43 
G91 13 9 2.6 -0 13 4 16.47 26959 2.8 26959 
G97 13 8 56.3 0 24 52 16.49 19219 6.0 19219 
Gl03 12 51 43.5 -2 19 7 16.54 14322 3.0 14237 1 14322 
Gl09 13 7 9.5 0 2 28 16.59 28678 3.8 28678 
Gll5 12 59 9.7 1 7 42 16.62 24827 2.2 24827 
Gl21 12 56 4.0 -1 18 19 16.66 25955 4.4 25955 
G127 12 54 20.0 -1 32 28 16.70 
G133 12 56 47.5 -1 44 37 16.73 25407 2.9 25407 
G139 13 8 0.0 -0 14 17 16.75 19202 3.3 19202 
G145 12 59 58.8 0 36 49 16.78 20500 3.9 20500 
G151 12 53 47.5 -2 31 6 16.81 21394 2.8 21394 

Notes: 

#NGC4845 (see Table 6.3) 

The columns are as follows; (1) gala.xy identification, (2) 1950 equatorial coordinates, (3) apparent 
total blue magnitude, ( 4) absorption velocity from FLAIR, (5) Tonry and Davis r-factor associated with 
V}, (6) emission-line velocity from FLAIR, (7) number of observed emission lines and the line-to-line 
error (in brackets), .(8) the adopted FLAIR velocity. 



Table 6.6 FLAIR observations of galaxies in the UKST /SERC field 865. 

{1) {2) {3) {4) (5) {6) (7) {8) 
No. RA Dec m• 

bJ 
v;a 

F rp v:• F N" Vp 
h m s 0 " kms- 1 kms- 1 kms- 1 

Gl# 13 50 19.9 -0 52 7 12.18 1648 4.2 1648 
G7 14 6 8.9 -0 55 31 14.19 1426 4.5 1426 
G13 14 2 17.8 -0 24 11 14.77 7232 9.9 7232 
G19 13 55 33.1 -0 8 58 15.02 9039 3.0 8848 1 9039 
G25 13 50 16.0 -2 21 23 15.29 22953 2.4 22953 
G31 14 6 6.6 -2 45 59 15.40 8889 2.8 8775 1 8889 
G37 13 59 31.7 -1 9 22 15.48 7389 9.4 7389 
G43 13 57 46.9 -2 4 29 15.57 9214 3.7 9214 
G49 13 56 27.8 0 29 1 15.77 9899 5.2 9899 
G55 13 49 55.4 2 11 31 15.82 9972 4.9 9972 
G61 14 2 51.1 -0 34 23 15.89 14713 3.6 14713 
G67 13 50 10.6 0 22 34 15.99 4781 2.9 4614 4{28) 4781 
G73 14 3 1.9 1 47 24 16.09 12890 7.0 12890 
G79 13 59 11.9 1 56 52 16.18 25937 2.4 25937 
G85 14 10 38.1 2 0 17 16.22 14489 3.6 14489 
G91 14 4 39.0 -2 29 24 16.35 16727 3.7 16727 
G97 13 55 38.5 -1 8 24 16.40 7613 1 7613 
G103 13 50 20.7 -1 41 32 16.47 
G109 14 2 6.2 -2 4 44 16.56 20217 2.7 20217 
Gl15 13 55 53.8 -1 26 44 16.58 14066 6.5 14066 
G121 13 58 55.0 2 12 50 16.60 7464 2{69) 7464 
G127 13 54 52.6 -2 43 17 16.63 8007 3.0 8007 
G133 14 3 46.9 -1 48 7 16.66 16373 2.6 16373 
G139 13 56 9.2 -2 34 7 16.69 7012 5.3 7012 
G145 13 51 58.9 1 7 50 16.74 
Gl51 14 2 35.8 -1 28 49 16.76 
G157 14 10 2.2 -0 48 10 16.79 16333 1.8 16333 

Notes: 

#NGC5334, an Sc galaxy with a measured velocity of V = 1383kms- 1 from 21cm radio observations 
{Fisher and Tully 1981). 

The columns are as follows; {1) gala."<y identification, (2) 1950 equatorial coordinates, (3) apparent 
total blue magnitude, ( 4) absorption velocity from FLAIR, (5) Tonry and Davis r-factor associated with 
V}, (6) emission-line velocity from FLAIR, (7) number of observed emission lines and the line-to-line 
error (in brackets), (8) the adopted FLAIR velocity. 



6.5 Future developements 

In the previous section it was shown that using the current multi-object 

UKST/FLAIR spectrograph redshitts could be attained (at an accuracy of 

-150kms-1 rms and at a rate of 14 objects per hour) for 80 to 90% of galaxies 

in a magnitude limited catalogue complete to bJ=1&n.8. As well as completing 

and analysing the 9 field redshift survey of -250 galaxies, there are plans to 

extend these observations to cover the 60 plate contiguous area (at 

bJ<16m.8) of the ROE/Durham Southern Galaxy Catalogue around the SGP 

that is currently being completed (Collins et al. 1988). Eventually the hope is 

to spectroscopically map the entire area of the south galactic hemisphere to 

this depth using a complete catalogue similar to the APM Galaxy Survey. 

In preparation for the requirements of such surveys several 

developments in the present UKST/FLAIR system are now under-way. To 

improve the rate of collection of spectra a duai-CCD system has recently been 

introduced at the UKST (Watson et al. 1990). This uses the existing 

technology of FLAIR but doubles the number of fibres available by having two 

bundles of 35, 100J..Im fibres, two identical spectrographs and two blue 

sensitive GEC CCDs; the read-out of the chips being controlled by the same 

computer hardware. Initial tests of this system in July/August of 1989 have 

proved successful and this system will provide the initial data for the 60 field 

redshift survey. 

More general improvements to the system are included in the FLAIR II 

proposal. This includes an improved blue (4000A) throughput and a higher 

instrumental resolution spectrograph (FISCH, Gray and Watson 1990) and 

more automated methods of fibre positioning and loading the fibre 

plate-holder into the telescope. The new spectrograph will have little of the 

defocussing of the current Pentax lens system and will be able, initially, to 

image -70 of the 10D,Jm fibres (although with improved, larger area detectors 

this could be increased to well over 100). The current FLAIR plate-holder was 

designed with little modification to the telescope itself and so the loading of 

the plate-holder and the slow manual set-up of the positions of the fibres on 

the copy plates represents a considerable amount of work for each 

observation. With new modifications to the telescope and plate-holder, and an 

automated fibre positioner (based on a TV alignment system) it is hoped that 

the 'tum-around time' for the observation of fields can be reduced to several 

176 



hours. Thus the aim is to be able to make the observations of -100 objects a 

matter of routine. 

Such improvements are now under way, and so it ncm seems possible 

that a large-map of the galaxy distrubution (sampled at a high rate of greater 

than 1-il'}-3) to a competitively deep depth of z<0.1 over an area of -o.sstr can 

now be produced. With such a large contiguous volume survey (the volume of 

such a survey is -20 times the volume of the original CfA ~<1sm.s slice of 

de Lapparent et al. 1986a), it would be possible to analyse the distribution of 

various currently 'observed' structures (such as 'voids', 'walls', 'filaments', 

clusters etc.) as well as carrying out similar statistical analyses to the ones 

described in this thesis. This will eventually lead to a considerable 

improvement of our knowledge of large-scale structure and our understanding 

of what models best describe their evolution. 
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Chapter 7 

Conclusions 

The main aim of this thesis was to provide some constraints on the likely form 

of matter perturbations in the Universe using the dynamical and clustering 

information provided by systematic redshift surveys of galaxies. In respect of 

this aim the following conclusions about the matter distribution were drawn 

from a study of the -700 galaxies in the Durham/SAAO, Parker et al. and 

Durham/AA T redshift surveys:-

1) From an analysis of the 3-d spatial distribution of these galaxies in 

Chapter 3 (Section 3.2.1 ), it appeared that these volumes have not 

under-sampled specific 'large-scale' structures that have been claimed are 

visible in the general galaxy distribution (e.g. large 'wall-like' structures, Abell 

type clusters etc). 

2) Using luminosity function estimators that attempt to measure the 

luminosity distribution in a way which is independent of the galaxy dustering 

in a sample, the new Durham/SAAO and Parker et al. surveys gave, 

respectively, (Chapter 3, Section 3.2.2) 

M* = -19.9±0.15 and M* = -20.0±0.24 

for the Schecter (1976) parameter M* (with cx=-1 and H0=100kms-1 Mpc-1) 

over the range -22sM(bJ)~17.4 and this is in good agreement with 

M* = -20.18±0.20 (cx=-1) (7-2) 

obtained for the Durham/AAT Survey. Overall this gives 

M* = -20.00±0.11 (cx=-1) (7-3) 

for these three samples which is somewhat brighter than other catalogues. 

3) Using the results of 2) to predict the mean counts of galaxies as a 

function of redshift it was shown (Chapter 3, Section 3.2.3) from the observed 
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counts that these three samples were fairly homogeneous on scales ;c-SOh-1 

Mpc. On the other hand variations between northern and southern Galactic 

hemisphere halves showed some deviation in their behaviour. 

4) Similar models to 3) applied to the differential counts as function of 

apparent magnitude (Chapter 3, Section 3.2.3) suggested that there was 

some trend (confirmed by deeper galaxy counts) that the observed slope of 

log aN(m) versus m is steeper than a simple no-evolution model at 

m(bJ)=17m. This trend has, as yet, not been fully explained; if it is real (i.e. it is 

not an artefact of the observing procedure), it either implies evolution at 

relatively bright (-17m) magnitudes or large-scale clustering on scales of 

-300h-1 Mpc, however the latter (see Chapter 5, Section 5.2.2) hypothesis 

seems unlikely on the basis of the observed two-point correlation function. 

5) The small-scale (a~ 1 h-1 Mpc) projected correlation functions 

measured in the new Durham/SAAO and Parker et al. surveys gave values of, 

respectively, (Chapter 4, Section 4.3.1) 

r0 = (5.8±0.6)rr1 Mpc and r0 = (2.6±0.7)rr1 Mpc (7-4) 

for the two-point clustering length (y=1.8) and (Section 4.1.2) 

a=0.48±0.1 (7-5) 

for the Durham/SAAO three-point amplitude (although it was suggested that 

the latter was perhaps a somewhat larger a=0.75±0.14). These are in 

reasonable statistical agreement with r0 =(4.5±0.4)h-1 Mpc (Section 4.3.1) and 

a=0.60±0.06 (Section 4.1.2) from the Durham/AA T Survey and in good 

general accord with the values from other redshift catalogues (Sections 

4.3. 1 and 4.3.2). The overall values for r 0 and a in these 3 samples at this 

scale is thus (Section 4.4) 

r0 = (4.5±0.3)tT1 Mpc and a = o.5a (0.62) ±0.05 (7-6) 

(the value in brackets for a incorporating the larger value of a for the 

Durham/SAAO sample). 

6) The range of small-scale (a~1 h-1 Mpc) line-of-sight rms peculiar 

motions exhibited by these catalogues is larger than has previously been 
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anticipated by Bean et al. ( 1983). For the new surveys (Chapter 4, Section 

4.3.3) 

(wZ)1/2 = (600±140)kms-1 and (wZ)1/2 = (0±240)kms-1 (7-7) 

for the Durham/SAAO and Parker et al. samples, respectively, as compared 

to 

(wZ)1/2 = (190±90)kms-1 (7-8) 

for the Durham/AAT Survey. The large value for the peculiar motion in the 

Durham/SAAO Survey is not believed to be a result of excessive redshift 

measurement error or dominance by clusters observed in the distribution. 

Such a result also seems to be confirmed by the visual appearance of the 

redshift distributions (Chapter 3, Section 3.2. 1 ). Overall, the rms peculiar 

velocity is (Section 4.3.3, Chapter 4) 

(wZ)1/2 =(290±70)kms-1 (7-9) 

which in spite of the larger errors measured, is in good agreement with the 

observations of such motions in other samples. 

7) Using the Cosmic Vi rial Theorem (Chapter 2, Section 2.2.2. 1) of 

Peebles (1976a) an estimate of the mean mass density parameter no was 

obtained assuming that galaxies trace the mass distribution. For the 

Durham/SAAO Survey, using the results presented in 5) and 6) above 

no= o.6 coA) ±a.2 (7-10) 

(the value in brackets again incorporating the higher value of Q) whereas for 

the Durham/ AA T survey 

no= 0.1±0.1 (7-11) 

Here the larger errors in (wZ)1/2 carry through to these estimates of no. 

The best estimate for all 3 catalogues is 

no = 0.18±0.09 (7-12) 
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which confirms that .Oo=1 models are excluded unless galaxies are biassed 

tracers of the mass distribution with bias parameter 

b = 2.4±0.6 (7-13) 

8) Measurements of the direction-averaged redshift two-point 

correlation function es(s) on scales s<1tr1 Mpc indicate (Chapter 5, Section 

5.1.1) that the above estimated parameters for r 0 and (c#) 1/2 (points 5 and 6) 

are a good representation of es(S) in these surveys at these separations when 

compared to the data using the model in equation 2-34 (Chapter 2, Section 

2.1.2.2). At larger scales between 2$s$7 tr1 Mpc such models significantly 

underestimate the observed es(S) with 

r0 = (7.1±0.8)tr1 Mpc 

r0 = (7.1±0.8) h-1 Mpc 

r0 = (4.4±1.1)tr1 Mpc 

Durham/SAAO 

Durham/AAT 

Parker et al. 

(7-14) 

being appropriate for this region in these samples. It is suggested that such 

an enhancement is not a result of random peculiar motions in these samples. 

The overall result of 

ro = (6.6±0.5)1T1 Mpc (7-15) 

is significantly different from r0 =4.5h-1 Mpc by -4 s.d. In an overview of the 

estimates of es(S) in this range Of Separation from other brighter magnitude 

limit surveys it was concluded that the evidence for this 'shoulder' feature in 

es(s) was encouraging but the uncertainties were measured to be larger than 

indicated in equation 7-15. However, it was argued that, rather than this larger 

error being due to the influence of large-scale (-50 tT1 Mpc) mean dustering, 

these fluctuations may be caused by other sources of error (for example, 

magnitudes, selection functions and weighting schemes). This is supported to 

some extent by the dose agreement between the shallow and deep (z<0.1) 

sample estimates of the small-scale (~ 1 h-1 Mpc) clustering and peculiar 

motions (Chapter 4, Section 4.3) 

9) On the basis that the samples in these surveys are fair 

representations of the general clustering distribution (see points 3 and 4 

above) and that other sources of error (for example, number density 
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fluctuations) in the estimation of ~5(s) in the region ~s:S7tr1 Mpc are small, 

the likely implication of the shoulder in ~5(s) was discussed (Chapter 5, 

Sedion 5.1.3). It was suggested that such an amplification of ~(r) could only 

be caused by infall if .0 0 =1 and this is in dired contradiction to 7) above 

unless the galaxies were biassed by a factor of order given in equation 7-13. 

In such case this would again seem to make the amplification of ~(r) too 

small. This suggests that the shoulder is then a real spatial feature in ~(r). On 

this basis a simple three power law model for ~(r) was suggested and the 

integrals J2 and J3 gave 

(7-16) 

at r-1 Oh-1 Mpc. 

10) At larger scales (~10h-1 Mpc) the within-field ~5 (s) in the 

Durham/SAAO Survey displays a break from the power law in the region 

2:Ss:S7tr1 Mpc at -9tr1 Mpc and decreases rapidly to zero by -10h-1 Mpc. At 

s~10h-1 Mpc ~5(s) in this sample is consistent, statistically, with ~(r)=O at 

scales of up to 100 h-1 Mpc. Although similar behaviour was seen in the 

Durham/AAT sample some of the peak-trough-peak structure was quite well 

repeated in both samples. The interfield correlation function estimate 

appeared somewhat different from the within-field estimates but again was 

statistically consistent with ~(r)=O at these scales. The overall conclusion from 

all 3 samples is that ~5(s) breaks to smaller values at -7h-1 Mpc and is 

consistent with ~(r)=O at all separations from 10 up to 100 tr1 Mpc at the 1cr 

(0.1 to 0.05 in ~. respectively) confidence level assuming that a fair sample of 

the clustering has been obtained. Similarly large-scale dustering of the form 

le(r)I::::0.2 can be rejected at between 2 (at 10rr1 Mpc) and 4 (at 100h-1 Mpc) 

standard deviations over this scale range. 

11) In a detailed comparison of the results from 10) with other 

measures of large-scale (~10h-1 Mpc) structure (Chapter 5, Section 5.2.2) 

there was tentative evidence that ~(r) continued like e(r)=(7/r)1.8 to -50 tr1 

Mpc (from the rich Abell clusters) and some fairly strong evidence that e(r) 

was such a power law to at least 20tr1 Mpc (from the QDOT IRAS, CfA 

(m8 <15m.5) and APM galaxy catalogues). Other measures appear to agree 

with the conclusions of 1 0) above (from the QSO's and the Quadrupole and 

Dipole moments in the Microwave Background). 
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12) On the basis of more large-scale structure to -20h-1 Mpc as 

indicated in 11) the -2.5 to 2.8 s.d. significance of the break from 

eCr)=(6.6/r)1.a in the overall correlation function from the combined 17m 

samples was questioned. Based on the shape and independence of the fields 

in these samples it was argued that the errors in es(S) will not increase 

dramatically as a result of the larger correlations claimed and so there is still 

evidence that the break in these samples occurs at -7 tr1 Mpc. 

13) Confronting the observations of 1) to 12) with models for the 

dynamical evolution of the mass distribution (Chapter 5, Section 5.3) it was 

seen that the explosive scenarios, and growth of structure from adiabatic 

perturbations with baryons or neutrinos could provide a variety of scale 

lengths in the mass distribution. In this respect possibilities for the observed 

features seen in e(r) (points 9 and 10 above) were hinted at. The COM model, 

while not providing exact duplication of the observed data gave e(r)::::O at 

r?10h-1 Mpc, consistent with the observations in these samples. 

14) Finally, the multi-object spectrographic instrument, FLAIR, on the 

UKST was demonstrated (in Chapter 6) to be capable of performing large 

angular scale redshift surveys to a limit of bJ:::: 17m with an rms accuracy of 

-150kms-1 in velocity and with a completeness rate of 8Q-90%. This will pave 

the way for future large area coverage redshift surveys in the southern 

Galactic hemisphere. 
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Appendix 

Combining measurements of a quantity with a normal distribution of 
errors 

If independent measurements of a quantity x (x1, X2 •... etc) are made 

such that the distribution of errors on x (with rms widths 01, o2, ... etc) are 

normally (i.e. Gaussian) distributed and dra'M'l from the same normal parent 

distribution, then the best overall mean value of x is given by (see, for 

example, Barford 1967) 

(A-1) 

where the variance of the resulting normal distribution of (x) is 

(A-2) 

Such measurements of x are therefore combined by weighting the individual 

estimates according to the inverse square of their 1-signa errors. 
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