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A B S T R A C T 

In this thesis the effect of the strain which is present in a lattice 

mismatched quantum well (QW) on the properties of the device is inves

tigated. The k.p method is used within the envelope function framework 

to obtain the bandstructure and the wave functions of bound and unbound 

states in both lattice matched and strained quantum wells. The model 

includes spin and interband mixing effects. We show that the mixing of 

wave function character between adjacent subbands which occurs in a QW 

can be reduced in a strained structure, and that this can result in the 

ground state subband having a reduced effective mass. The effect of the 

reduction in mixing on the optical matrix elements for transitions between 

the conduction and valence bands is also investigated. 

A model is developed which enables the calculation of the gain and 

spontaneous emission spectra and threshold properties of a multiple quantum 

well (MQW) laser device. The model includes a full description of the non-

parabolic subband dispersion and the variation of the optical matrix elements 

along the subbands, together with an energy dependent lifetime broadening 

of the spectrum. The model is used to compare the performance of strained 

and unstrained I n G a A s / I n P M Q W devices operating at 1.3/xm and 1.55/xm. 

The reduced valence band edge effective mass of the strained devices is 

shown to lead to a reduced threshold current, temperature dependence and 

linewidth enhancement factor and an enhanced gainslope. 

The unbound states of the well are used to investigate the bound-

unbound intervalence band absorption rate in the above devices. The 

absorption coefficient for this process is found to be small (< 2cm~^) in all 

the cases considered. 
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C H A P T E R O N E 

I N T R O D U C T I O N 

In the last twenty years the techniques of molecular beam epitaxy 

( M B E ) and metal-organic chemical vapour deposition ( M O C V D ) , both of 

which make possible the reproduceable deposition of layers of semiconducting 

material with thicknesses on the nanometre scale, have been used to produce a 

wide variety of novel structures and devices. A recent exciting development 

has been the ability to grow epitaxial layers of one semiconductor on a 

substrate of a second material with a different lattice constant and maintain 

very low defect densities. Provided the epitaxial layer is sufficiently thin, 

it will be elastically strained by the substrate, experiencing either a biaxial 

tension or compression depending on the relative sizes of the substrate 

and layer lattice constants. Such strained layers have been successfully 

incorporated into quantum well and superlattice structures in the Si-Ge, 

I I I - V and I I - V I material systems. The strain field experienced by the 

well material in such a structure affects the electronic states, and can 

result in radically different optical and electronic properties from those 

observed in lattice matched devices. The relaxation of the requirement that 

heterostructures be grown from lattice matched materials also allows greater 

freedom to tailor the structure to the required device properties. 

In this thesis the way in which the strain modifies the bandstructure 



of a lattice mismatched semiconductor quantum well is investigated, and 

the results obtained are used to investigate the optical properties of these 

structures. In particular, the properties of strained layer quantum well lasers 

in the I n G a A s / I n P materials system are investigated. 

In chapter 2 we describe how the k.p method in the envelope fimction 

formalism can be used to calculate the bandstructure and the wave functions 

of both bound and unbound states in a quantum well. The model developed 

is illustrated by applying it to a study of an Ino.53Gao.47As/InP quantum 

well. Chapter 3 describes how the effect of strain is incorporated into this 

model, and demonstrates the influence of the strain on the bandstructure of 

the quantum well. In chapter 4 the optical matrix elements between bound 

conduction and valence band states in the quantum well are investigated. 

The way in which the strain present in a mismatched structure reduces 

mixing effects between adjacent subbands is illustrated and discussed. 

In chapter 5 we describe how the bandstructure details and optical 

matrix elements obtained from the k.p model can be used to investigate 

the performance of strained (and unstrained) quantum well lasers. The way 

in which gain and spontaneous emission spectra are calculated is discussed, 

together with the means of obtaining the threshold properties of the laser. 

The model is applied to an unstrained Ino.53Gao.47As/InP laser. In chapter 

6 the laser model described in the previous chapter is used to calculate the 

properties of strained InGaAs / InP devices suitable for operation at 1.3/xm 

and 1.55fxm, and comparison is made with the corresponding unstrained 



structures. The strained devices are shown to offer a variety of advantages 

over the unstrained structures, and the calculations give a reliable, quan

titative measure to these device advantages. The results confirm previous 

predictions obtained by less sophisticated models. 

The intervalence band absorption ( IVBA) process is thought to be a 

significant loss mechanism in long wavelength lasers. In chapter 7 we show 

how the states of the quantum well obtained from the k.p model can be 

used to obtain the I V B A rate in the lasers considered in chapter 6. 

The results obtained are summarised in chapter 8, together with a 

discussion of the conclusions reached and suggestions for further work. 



C H A P T E R T W O 

Q U A N T U M W E L L B A N D S T R U C T U R E 

2.1 I n t r o d u c t i o n 

In this chapter we describe in detail how the electronic states of a 

semiconductor quantum well (QW) may be calculated. Our method allows 

us to obtain the energy levels of quantum confined ('bound') states and the 

wave functions of both bound and unbound (continuum) states. 

A quantum well is a semiconductor 'sandwich' (see figure 2.1), 

consisting of a thin slice (typically ~ lOOA) of one semiconductor material 

surrounded on both sides by semi-infinite (in practice ~ lfj,m) slabs of a 

second semiconductor material. We shall only consider type I QWs, in 

which both electrons and holes are confined in region B by a potential well 

(clearly such a structure can only occur when material II has a smaller 

bandgap than material I ) . Henceforth we shall refer to regions A and C as 

the barriers and region B as the well. 

In essence, the quantum well is a physical realisation of the classic 

undergraduate quantum mechanical 'particle in a box' problem [l]. Electrons 

and holes are confined in the growth direction (which we shall label as the 

z direction), but are free to move in a constant potential in the (x,y) 

directions, i.e. parallel to the interface planes (in future we shall refer to a 
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F i g u r e 2.1 

Schematic diagram of a quantum well. 



direction in the {x,y) plane as 'in-plane'). This leads to a set of discrete 

energy subbands for both the electrons and holes, given by 

E^k) ^ AEr, + E\\{k\\) (2.1) 

where A £ „ is the energy of the nth subband at fcy = 0 and E | | is the kinetic 

energy due to the particle's motion in the {x,y) plane, characterised by its 

in-plane wave vector k^^. In the following sections we shall show how the 

precise form of En^k) and the associated wave functions can be calculated. 

2.2 M e t h o d of Solut ion 

The wave function of a carrier at a given energy in any of the regions 

A , B or C of the quantum well can be expressed as a linear combination 

of the allowed bulk states in that region at the appropriate energy. By 

applying appropriate boundary conditions to match up these wave functions 

and their derivatives at the interfaces, and by requiring physically sensible 

behaviour as 2 —> ± o o , we can obtain the allowed states of the Q W and 

the associated wave functions. 

Many methods have been put forward to calculate the bulk band-

structure of a semiconductor, those most commonly used being the effective 

mass [2], k.p [3], tight-binding [4] and pseudopotential methods [5]. We 

have elected to use an 8 band k.p model, with the effect of lower and 

higher-lying energy bands included as a perturbation, which maintains com-



putational speed (using 8 x 8 matrices (for bulk materials) compared with 

130 X 130 for a 65 plane wave pseudopotential approach) whilst including 

the effects of spin and mixing between the different subbands. An additional 

advantage of this approach is the ease with which it can be extended to 

study strained systems (see chapter 3). Obviously the use of only 8 basis 

states leads to a loss of accuracy in the bandstructure, but we expect the 

lowest subbands to be well represented near to the centre of the Brillouin 

zone [6]. (It should be pointed out that this approach is not suitable for a 

study of states derived from different points in the Brillouin zone, such as 

T — X mixing). 

2.3 Deve lopment of the k .p M e t h o d 

In the last four decades, the k.p method has been widely used to 

study a range of materials and devices within the field of semiconductor 

physics. Most of the early application of k.p theory to bulk semiconductor 

materials was carried out in the mid 1950's by Kane [7], Luttinger [8] and 

Dresselhaus [9], together with various coworkers. In the early 1970's Nedore-

zov [10] showed how the method could be applied to heterostructures, and 

investigated the valence band states in infinitely deep quantum wells. More 

recently the method has frequently been used to calculate the bandstructure 

of quantum wells and superlattices, the current popularity of the method 

being largely due to the work of Bastard [11] and Altarelli [12] who brought 



an awareness of the virtues of the method to a much wider audience in 

the early 1980's. These authors, however, neglected the effect of spin, and 

hence d id not include the spin-orbit split states. I n the last few years 

fu r the r work has been done by Schuurmans, ' t Hoof t , Eppenga and Colak 

6,13], who have included the r 7 states, and have shown their results to 

agree well w i t h the more sophisticated t ight binding work of Schulman and 

Chang [14]. Recently the method has also been applied to strained systems 

by Smi th and Mai lh io t [15] and O'Reilly [16 . 

2.4 B u l k B a n d s t r u c t u r e i n t h e k . p M e t h o d 

To calculate the bulk bandstructure of a semiconductor we expand 

the wave func t ion in terms of our chosen basis set, and substitute this, into 

the Schrodinger equation. Obviously we need to know the f o r m of the 

Hami l ton ian relevant to our chosen basis. We shall mainly be interested in 

states which lie close to the band edges, so since the valence band maximum 

of a tetrahedral semiconductor always lies at the T point (k = 0), and the 

conduction band m i n i m u m is also at the F point i n direct gap materials 

(to which we shall confine our investigations), i t is logical to use the zone 

centre (F) Bloch functions as the basis set. 

The valence band max imum in such a semiconductor is derived f rom 

atomic p orbitals, and is split by the spin-orbit interaction into an upper 

fourfold-degenerate Fg level w i t h j = 3/2 character [ j being the tota l angular 



momentum quantum number) and a lower twofold-degenerate Fy level w i t h 

j = 1/2 character. The conduction band m i n i m u m lies at the TQ point, 

where the wave func t ion is derived f r o m atomic s orbitals. Obviously there 

is a trade off to be made between the accuracy of the bandstructure obtained 

and the speed of calculation, and we thus restrict our basis to the eight 

zone centre states {TQ, Tr, Ts) shown in table 2.1, which w i l l represent 

the bandstructure realistically near to the band edges wi thout being too 

demanding on computer t ime. 

Diamond semiconductors (Si and Ge) possess inversion synametry, 

and so each state is doubly degenerate (so-called Kramers degeneracy). A l l 

the semiconductors we shall study w i l l be I I I - V compounds w i t h the zinc-

blende structure, and hence this degeneracy w i l l be l i f ted . This effect is 

small , however, and we shall assume all inversion asymmetry terms to be 

neglible. As a result, all the bandstructure obtained f r o m our model w i l l be 

at least doubly degenerate. Indeed, i t can be seen that the states \uz) —> \us) 

are jus t the Kramers counterparts of —> |u4). We should also point out 

tha t i f the state w i t h wave vector k exists, the states w i t h wave vectors A;*, 

—A; and —k* w i l l also. 

The bulk wave functions are wr i t t en as the product of a linear 

combination of the zone centre Bloch functions and a slowly varying envelope 

func t ion , which we assume to take the f o r m of a plane wave : 

rl^ = e''-ZFj uj) (2.2) 
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I 2 ' 2 / Light hole 

U 4 ^,[\{X + iY) i ) + \z T)] I 2 ' 2 / 
Spin-orbit 
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Tab le 2 .1 

T h e basis set 



The Hamil tonian is readily derived using k . p theory [3,7], and the effects of 

remote bands are included using Lowdin perturbat ion theory [17]. In our 

chosen basis, the Hamil tonian takes the f o r m shown in table 2.2 [13] (where 

we have set fe/2m equal to un i ty ) , w i t h a list of symbols given in table 2.3. 

I t should be noted that the Lutt inger parameters (71, 72, 73) are modified 

f r o m those normally quoted due to the explicit inclusion of the conduction 

band in the basis. They are obtained f r o m the true Lutt inger parameters 

('yi',72',73) as follows : 
71 = 7 f - A/2 

(2.3) 

72,3 - 72̂ 3 - A/4 

where 

, 4mP2 , , 
A - ^ ^ . 2.4 

3h^Eg ^ ' 

(P is the momentum mat r ix element |( <s | ^ | 2 ) | and Eg is the band gap). 

These modif ied Lut t inger parameters are related to the effective masses of 

the bands by [13 

m 

m 

m 

m 

m 

^hh{nx) 

71 - 272 (2.5) 

5 + A ( l + l / 2 r ) (2.6) 

71 + 272 + A (2.7) 

71 + l / 2 A r (2.8) 

71 - 273 (2.9) 

w i t h 

r = 
Eg 

Eg + A 
(2.10) 
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kx,ky,kz x,y,z component of wave vector 

k2 =kl + kl+kl 

/cjj = kl + ky (A;|| is the in-plane wave vector) 

71J72,73 modif ied Lutt inger parameters 

P momentum mat r ix element |( >s | ^ | 2 r ) 

Eg band gap 

A spin orbi t spl i t t ing 

s conduction band parameter 

T a b l e 2.3 L i s t o f S y m b o l s used i n H a m i l t o n i a n M a t r i x 



Hence a knowledge of these five effective masses enables us to determine all 

the coupling parameters which occur in the Hamil tonian. 

We can thus solve the Schrodinger equation 

Hip = Eip (2.11) 

to find the energy eigenvalues E and eigenvectors ip for any given wave 

vector k . However, to calculate states in a quantum well by the method 

described in section 2.2, i t is necessary to obtain the wave vector k at 

a given energy E, which can be effected by a rearrangement of equation 

(2.11) . 

For any given in-plane wave vector k^^, we can rewrite equation (2.11) 

in the f o r m 

(H2A;2 + Hifc^ + Ho)V' = 0 (2.12) 

where we have separated the Hamil tonian into terms H Q , H I , H2, which are 

respectively independent of, linear in and quadratic in kz, and have included 

the Eip t e rm in Hoip. 

I t is now possible to wr i te an eigenvalue equation in kz : 

( - H 2 - I H 0 - H ^ H i ) {k%)= {ktrp) (2.13) 

w i t h the top line being t r i v i a l and the bo t tom line derived f r o m equation 

(2.12) . The wave vectors of the bulk states at any given energy E can now 

be found by solving the eigenvalue equation. 

10 



2.5 T h e F o r m o f t h e C o m p l e x B a n d s t r u c t u r e 

I n general, the solution of the eigenvalue equation (2.13) w i l l yield 

states w i t h imaginary or general complex wave vectors i n addit ion to the 

Bloch functions (which must have real wave vectors). Any complete descrip

t i on of the allowed states in a semiconductor must include all three (real, 

imaginary and complex) types of solution; the complete dispersion relation 

of these states is known as the complex bandstructure of the material. 

The complex bandstructure of GaAs, obtained using the k . p method 

is i l lustrated in figure 2.2, for A;|| = 0. Note that for each point kz on the 

bandstructure, states w i l l exist w i t h wave vector kz, —kz. A;* and —A;*. States 

w i t h real wavevector kz (propogating states) are shown on the right hand 

side of the energy axis, and states w i t h imaginary kz are shown on the left 

hand side of the energy axis. The latter solutions, which may lie wi th in the 

forbidden energy gap of the semiconductor, correspond to states which decay 

or grow exponentially as they progress through the material. In an ideal 

bulk crystal , these states cannot manifest themselves due to the boundary 

condit ion tha t the wave funct ion must remain finite in the approach to plus 

or minus inf in i ty . However, these evanescent states become important in the 

region of a defect or interface, and hence in low dimensional structures, since 

evanescent wave functions defined in a semi-infinite half space or a layer of 

finite thickness can remain finite. Such states have been indirectly observed 

experimentally; for example they can give rise to tunnell ing effects which 

11 
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cannot be explained by any other means (see for example the experiments 

of Parker and Mead [18]). 

When A;|| ^ 0, as in figure 2.3, we also obtain general complex 

solutions, indicated by the dashed lines. These states are the product of an 

oscillatory wave funct ion and a decaying wave funct ion, and so appear as 

decaying waves. As w i t h states w i t h purely imaginary wave vector, these 

states can only occur in the region of interfaces or defects. 

We should at this point note that there are only three distinct 

bands i n the bandstructure shown in figure 2.2, since the conduction band 

and the l ight hole band are coupled by a band w i t h i n the energy gap 

corresponding to evanescent wave functions. Thus at every energy there 

are only 12 eigenvalues of equation (2.13) (three sets of four cis described 

above). Clearly this cannot be the case, since the mat r ix in equation (2.13) 

is a non-singular 16 x 16 mat r ix and so must have 16 eigenvalues. In 

fact , we do obtain four additional solutions. The Hamiltonian only contains 

m a t r i x elements between the three bands shown in figure 2.2, and hence 

the addit ional solutions can have no physical significance. I t is therefore 

desirable to ignore them when constructing the wave funct ion . This turns 

out not to be a problem, since we can always ensure that these solutions 

are rapidly decaying (having a large imaginary wave vector), at the cost of 

a slight misrepresentation of one of the other bands, by careful choice of the 

bandstructure parameters. For example, for intervalence band absorption 

calculations (chapter 7) the conduction band plays no part , so we can safely 

12 
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adjust the parameters to ensure that the unphysical solutions have large 

imaginary kz and m^;^, mf^j and m*^ are well fitted, wi thout worrymg about 

the quali ty of the fit to m*;. Similarly, for gain calculations (chapters 5 and 

6) , we can sacrifice the accuracy of the fit to the spin-orbit split-off band. 

These additional solutions have been commented on by several au

thors. Smith and Mai lh io t [15] and Whi te and Sham [19] (who referred to 

them as 'wing bands'), bo th found them to have large imaginary wave vector 

(and hence decay rapidly) for the materials they studied. These states have 

been discussed in detail by Eppenga et al [13], who found them to have a 

large real wave vector, and hence to be oscillatory in nature. 

2.6 B o u n d a r y C o n d i t i o n s o n t h e Q u a n t u m W e l l 

W a v e F u n c t i o n 

As we have mentioned in section 2.2, the quantum well wave function 

at a given energy can be expressed as a linear combination of bulk states 

in each region, i.e. 

Region A : *̂  = E E 4̂ *''̂  ' > (2.14) 
I j 

Region B : * ^ = E E ^ ' e ^ " - | u f ) (2.14) 

Region C : = E E A^F//'^- I"}) (2-15) 

13 



where I and I I represent the barrier and well material respectively, and the 

wave vectors k ; are given by the bulk bandstructure of the relevant material. 

The z component of k i may be imaginary or complex, giving growing or 

decaying states, as discussed in the previous section. The zero of energy is 

taken to lie at the bulk valence band edge in the well material; the energy 

relevant to a bulk barrier state is determined by the band offsets AEc and 

AEy (see figure 2.1). 

By applying the relevant boundary conditions to this wave function 

the expansion coefficients A,- appropriate to a QW confinement state can 

be determined. Clearly the wave funct ion ^ must be continuous at the 

interfaces (z = z\,Z'i) and remain finite i n the l imi t z ± 0 0 . We must 

also ensure that the derivative of the wave funct ion in the epitaxial growth 

direction, ^ is continuous across the interface planes. 

The requirement that the wave funct ion remain finite in the approach 

to i n f in i t y is readily implemented for bound states by restricting the sum 

over the bulk states i in the barriers to those states which decay away 

f r o m the interface. Since all bound states w i l l have an energy wi th in the 

band gap of the barrier material , the bulk barrier states used in the linear 

combination cannot have a real wave vector kz, and w i l l either decay or grow 

exponentially w i t h distance f r o m the interface plane. Thus we must include 

half of the bulk barrier states (those w i t h ^mag[k^ < 0 — t = l - + 8 , say) 

in and the other half (those w i t h '^mag[kz) > 0 — t = 9 ^ 16) in 

A l l the bulk well states must be included in . 
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Since and al l contain the te rm e*''' ' = e''=''^xe*''ll '"ll (where 

t̂- is the z component of k i ) , the wave funct ion can only be continuous at 

al l points ry on the interface i f the in-plane wave vector ky is the same in 

al l three regions of the Q W . 

I n order to greatly s implify the f o r m that the boundary conditions 

w i l l take, we assume that the Bloch functions juy > axe the same in both 

materials, i.e. 

u } ) = | u f ) for all J. (2.16) 

Provided the well and barrier materials are isoelectronic, and have a similar 

structure, (2.16) w i l l be a good approximation. Moreover we can tell how 

good the approximation is by comparing the mat r ix elements P (see below 

equation (2.4)) in the two materials. I f (2.16) holds exactly, then P^ = P^^, 

and as the approximation gets worse the mat r ix elements w i l l diverge. 

Clearly i t now follows f r o m the requirement that ^ be continuous 

tha t the coefficient of each \uj > (the 'envelopes') must be continuous, since 

the \uj > 's are orthogonal. Thus * is continuous when 

8 . 1 6 „ 
AfFlj^^''^ = £ AfFl/e^''< (2.17) 

t=i 1=1 
16 . 16 

E AlsFl.e^"''^ = E AfFf/e^'^''^^ (2.18) 
1=9 t=l 

or, i n ma t r ix f o r m , 

W ^ i , ] = W B L W (2.19) 

W A R r = W B R W (2.20) 
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w i t h 

where i' — i {t — 8) and the column vectors 1, r and w represent the wave 

func t ion i n the left-hand barrier, r ight-hand barrier and well respectively, 

i.e. 1(0 = A f , w(0 = A f , r{i) = A f . 

This can be rewri t ten as 

0 W A R 

W A L 0 _ , ^ 

or 

= W B W (2.21) 

where 

The final boundary condition we have to apply is to ensure conser

vat ion of probabi l i ty current, i.e. continuity of I t is far less obvious 

how this condit ion can be expressed in terms of the envelopes. I f a complete 

basis set were being used, continuity of | j j could be ensured by requiring 

tha t -g^ must be continuous for all j (which we w i l l label condition (a)), 

where the envelope Tj = Z)t .^t-fiye**"^. Similarly, i f we used only one basis 

func t ion the appropriate condition would be that ^}^z) Tz " i ^ ^ t be contin

uous (condition (b) ) , where m*[z) is a position dependent effective mass. 

The lat ter boundary condition has been used by many authors, notably 
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Bastard [ l l ] and Al ta re l l i [12]. I t has been suggested by Potz and Ferry 

[20] tha t the conditions appropriate to an n band k . p model are that B - ^ 

must be continuous (condition (c)) , where B is obtained by integrating the 

Hamil tonian across the interface, and this is the method used by Eppenga 

et al [13] (Indeed, this reduces to condition (b) in the l im i t n ^ l ) . Re

cently B u r t [21] has discussed this issue in some depth and has pointed out 

tha t al l three approaches should lead to the same result, since one of the 

assumptions made in deriving conditions (b) and (c) is that the effective 

masses of bo th regions are similar, and thus these conditions should reduce 

to condit ion (a). 

We have adopted the procedure suggested by Potz and Ferry (con

d i t ion (c)) , which involves integrating the Hamil tonian across the interfaces. 

This approach seems the most appropriate to an 8 band k . p model, since 

i t guarantees the conservation of probabili ty current. ( In the next section 

the results obtained in this way w i l l be compared w i t h those obtained by 

simply requiring the derivatives of the envelopes to be continuous). 

As mentioned previously, we can wri te the Hamiltonian as 

H = H 2 ^ + H i £ - h H o (2.22) 

(where we have wr i t t en kz explicit ly as the ^ operator). 

I n section 2.4 i t was assumed impl ic i t ly that all the terms in the 

Hami l ton ian are independent of z. When considering the matching of the 

wave func t ion across an interface (lying in the ( x , y ) plane), however, the 
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Hamiltonian will not be independent of 2, and we must rewrite equation 

(2.2) in the more general form 

„ d „ d 1 
dz dz 2 

d d 
+ Ho (2.23) 

Integrating this expression across an interface we obtain [13 

fi must be continuous (2.24) 

where f,- = { F n , F i j , . . . , Fi8)e**' .̂ In deriving this boundary condition it 

is necessary to assume that the matrix functions are slowly varying on the 

scale of the lattice parameter. 

Since = ikifi, we can express condition (2.24) as 

16 
t A f t B^Fh^^''^ = E E Bjl'F^e^'''^^ (2.25) 
1=1 /=i t==i /=i 

16 8 , 16 8 
E A -̂8 E BjiFie^'<^^ = E 4^ E Bjl'F^e^'"'^ (2.26) 
t=9 /=1 1=1 1=1 

where B-̂ * is the matrix Hj'/cf + I'H.f . (In practice in turns out that the 

H f term is very much smaller than the first term, and the inclusion of 

this term introduces numerical difficulties into the solution of the quantum 

well eigenvalue problem. For these reasons we neglect this term in our 

calculations). 
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Equations (2.25) and (2.26) can be expressed in matrix form 

D A L I = D B L W 

D A R F = D B R W 

where 

DAi.(K)(t,y) = E<i^^/e**/'^M^) 

and i', 1, r and w are as previously defined. Alternatively, as with the first 

boundary condition, we can write 

DAb = D B W (2.27) 

where D A = (^n^ rP 1 and D a = (^^^ V By simple rearrangement 

of (2.27) and (2.21) we have 

b - D - ^ D B W 

and 

w = W - ' W A b 

Hence 

W - 1 W A D T ^ D B W = W (2.28) 

We thus need to locate the eigenvectors of W B ^ W A D ' ^ D B which 

have an eigenvalue of 1 to obtain the wave function of a quantum 

well bound state. Alternatively we can search for the points at which 
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d e t ( W B ~ ^ W A D A ~ ^ D B — 1) = 0. Such eigensolutions will only exist at dis

crete energies (for any given in-plane wave vector A;||), corresponding to the 

energy levels of the bound states. These energies are located using a simple 

binary search. 

2.7 Bandstructure of Ino.53Gao.47As/InP Quantum Wells 

In recent years much interest has been shown in the InGaAsP/InP 

system, due to the scope it offers for optical devices. The alloy composition 

of the quaternary in such a device can be varied independently of the 

physical dimensions (e.g. quantum well width), which allows the device 

parameters to be tailored to some extent. By selecting the appropriate alloy 

composition, the band gap can be chosen to match the 1.3^m or 1.55/im 

optical fibre windows, the wavelengths at which transmission along optical 

fibres is most efficient. Indeed, it turns out that an In3Gai_2As ternary 

alloy lattice matched to InP (this requires x — 0.53) has a band gap within 

the 1.55/im window. 

We present in this section the results of a calculation of the energy 

levels and wave functions of the bound states of a Ino.53Gao.47As/InP quantum 

well. The bandstructure parameters used are given in Appendix A. Some of 

the effective masses of Ino.53Gao.47As are not well characterised, and where 

necessary we have interpolated linearly between the parameters of the InAs 

and GaAs binaries. 
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The in-plane bandstructure of a 50A Ino.53Gao.47As/InP quantum 

well is shown in figure 2.4. The full lines represent the [100] direction and 

the broken lines the [110] direction. Clearly the bandstructure is very nearly 

isotropic, and in our calculations on optical properties (see later chapters) 

we shall make this simplifying assumption. 

The conduction band can be seen to be almost parabolic, which 

suggests that a simple effective mass approach will give a reasonable repre

sentation of this band. In the valence band, however, marked non-parabolic 

behaviour is evident. The valence bandstructure is strongly influenced by 

interactions between subbands, such as those seen between the 1st and 

2nd subbajids at A;|| ̂  O.OSA ^ and between the 3rd and 4th subbands at 

A;|| ~ 0.06A .̂ These effects arise because the symmetry of the valence band 

states and the quantum well are such that the subbands cannot cross and 

anticrossing structure occurs. 

Figure 2.5 shows the form of the wave function for each of the 

subbands at fcy = 0 . The envelope Ij{z) = Z)t A-̂ iyc**̂ *̂  (i.e. the coefficient 

of each zone centre Bloch function \uj >) is plotted as a function of z for 

each j. The vertical lines indicate the limits of the quantum well. At 

= 0 the bulk heavy hole band is completely decoupled from the other 

subbands (see table 2.2), so for a heavy hole state only J2(hh) (or 7Q for 

a spin down state) will be non-zero. The light hole states contain some 

components derived from bulk zone centre conduction band and spin split-off 

states, and so will in general have non-zero values of Ji(el) and J4(so) in 
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1st valence subband. 

i b) 2nd valence subband. 

Figure 2.5 

Subband edge wave functions. 



c) 3rd valence subband 

d) 4th valence subband. 

Figure 2.5 (continued) 

Subband edge wave functions. 



e) 5th valence subband 

f) 6th valence 

subband. 

Figure 2.5 (continued) 

Subband edge wave functions. 



g) Conduction subband. 

Figure 2.5 (continued) 

Subband edge wave functions. 



addition to ^(Ih). At fcy 7̂  0 the bulk states are all coupled, so mixing 

between heavy holes and other states is possible. 

The first, third, fourth and sixth valence band bound states (figures 

2.5 a, c, d and f) respectively correspond to the first four heavy hole states, 

and the envelopes clearly correspond to the equivalent 'particle in a box' 

harmonics. Similarly, the second and fifth states (figures 2.5 b and e) are 

the so-called ground and first excited light hole states although, as discussed 

above, these states do contain a contribution from the bulk conduction and 

spin split-off Bloch states. In the same way, the conduction band bound 

state (figure 2.5 g) contains contributions from bulk light hole and spin 

split-off Bloch states. Note that in both of the light hole states and in the 

conduction band state the envelopes .^(Ih) and ^(so) have the same parity 

(odd or even), and Ji(el) has the opposite parity. In fact, the envelopes fall 

into two sets { J i , J2, hi ^s} and { J 3 , J4, J5, J^, with envelopes from the 

same set all having the same parity (within a given state) and envelopes 

from the other set having the opposite parity [14]. 

In the region of an anticrossing in the bandstructure, the wave 

functions of the states involved become very heavily mixed (see figure 2.6). 

It is no longer possible to describe the character of a state as the nth 

excited heavy or mth light hole level; rather it is an admixture of two such 

levels. In this case both of the first two subbands are admixtures of the 

ground heavy hole state with the ground light hole state. This is seen 

most clearly in figure 2.6a, which represents the wave function of the first 
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b) 2nd subband 

Figure 2.6 
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subband at kx = 0.05A ^, ky = 0. 

Essentially what is happening in such a region is that the character 

of the states is behaving as though the subbands were actually crossing. 

Beyond the anticrossing region the first two subbands can be seen to have 

exchanged character — the first subband looks like a ground light hole state, 

and the second like a ground heavy hole state (see figure 2.7). 

This anticrossing of the subbands and the mixing of their character 

can have a profound effect on the optical matrix elements between bound 

states, allowing transitions which would be expected to be forbidden by 

parity considerations applied to simple single band effective mass models. 

These effects will be discussed in detail in chapter 4. 

In the previous section we discussed the form taken by the boundary 

conditions on the quantum well wave function, and pointed out that Burt 

21] has suggested that the precise form of the boundary condition on the 

derivative of the wave function does not seriously affect the bandstructure. 

We have tested this assertion for a 50A Ino.53Gao.47As/InP quantum well 

(figure 2.8), and find discrepancies of up to around 10 meV in the positions 

of the subbands when the condition making continuous is used, rather 

than requiring B-g^ to be continuous (where the symbols are as defined in 

the previous section). The shape of the subbands is essentially unaffected by 

the boundary conditions used, and so for most applications Burt's assertion 

would appear to be a reasonable one, especially considering how poorly 

characterised the bandstructure parameters of some materials (particularly 
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2.8 Unbound States 

In the preceding sections we have described how the energy levels 

and wave functions of the bound states of a quantum well can be calculated. 

We now turn our attention to those states which lie at an energy above 

the top of the barriers, in either the conduction band or the valence band. 

Unlike the bound states, these 'unbound' states are not restricted to discrete 

energy levels, but form a continuum. 

Since the energy of an unbound state lies within the conduction or 

valence band of the barrier material, rather than in the band gap, its wave 

function will not, in general, decay away from the interfaces. Rather it will 

be oscillatory in the barriers, extending throughout all space. Whereas the 

nature of a bound state is largely determined by the properties of the well 

material, the nature of an unbound state will be intrinsically dependent on 

the form of this 'barrier wave'. The problem is essentially that of a free 

particle interacting with a potential well. We consider wave functions in 

the form of stationary waves. It would be perfectly possible to consider 

travelling waves in an alternative but essentially equivalent approach, but 

stationary waves are more convenient to deal with. 

One interesting aspect to the continuum states is the resonance effect 

which occurs when the energy of the unbound state is such that a half-

integral number of wavelengths of the wave function will fit exactly within 

the well. At this energy the probability of the particle (electron or hole) 
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being found in the well reaches a maximum. These resonant states have 

been investigated theoretically by Brum and Bastard [23], who referred to 

them as 'virtual bound states'. These states are indeed a continuation of the 

set of bound states, and can in principle exist even if the wave function in 

the barriers decays to zero rather than taking the form of a standing wave. 

They occur at certain discrete energies which correspond to the energies at 

which bound states would exist were the well depth to be infinite. 

Although the nature of the unbound state problem is somewhat 

different to the bound state calculation, the same techniques can be used to 

obtain the wave function. The boundary conditions on the wave function 

and its derivative at the interfaces take exactly the same form, and again 

the wave function must remain finite on approaching infinity, but now some 

of the bulk barrier states are oscillatory in nature. When calculating bound 

states all the bulk barrier states were restricted to either the left-hand or 

right-hand barrier, to ensure that the wave function remained finite, but 

these oscillatory states must be allowed to exist in both barrier regions. We 

thus have more bulk states to include in the linear combinations in regions 

A and C than was the case for a bound state, yet there are the same 

number of boundary conditions. The problem is now underspecified if only 

the interface matching conditions for the wave function are considered. It 

is necessary to specify the form of the barrier wave function to some extent 

before we can obtain the unbound state wave function. 

Consider an unbound conduction band state. There will be four 
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oscillatory conduction band bulk states in each of the barrier regions A and 

C — one 'ingoing' and one 'outgoing' wave of each spin state. The bulk 

valence band states are all evanescent and those which decay away from 

the interfaces are chosen for each region. In order to have 32 unknown 

expansion coefficients as before (16 in the well and 8 in each barrier) we 

must treat the coefficients of half of the oscillatory conduction band states 

in the barriers as 'unknowns' and specify the coefficients of the other half. 

Thus, for example, if we specify the coefficients of the ingoing wave of 

each spin state on both sides of the heterostructure we can determine the 

coefficients of the outgoing waves. Since one of the boundary conditions 

continuous) requires the conservation of probability current, if we set 

the coefficient of the ingoing waves of one spin state to zero, that spin state 

wil l be eliminated from the outgoing waves as well. We can specify the 

parity of the wave function (symmetric or antisymmetric) by choosing the 

coefficients of the ingoing waves of the required spin state on each side of 

the well to be equal or opposite (equal in magnitude but of opposite sign). 

For an unbound valence band state the situation is essentially the 

same, but there wi l l be more oscillatory states in the barriers, half of which 

wil l be light hole states and half heavy hole states (and at higher energies 

spin-orbit split-off hole states as well). We can follow a similar prescription 

to that described for the conduction band, and can eliminate one type of 

bulk hole state from the solution in the barrier by setting the coefficients 

of the appropriate ingoing waves to zero. 
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We can thus write the wave function of an unbound state as 

Region A : * ^ = E E AfFl^^- + ^ E U^F^,/^-' (2.30) 
» J 

Region B : * ^ = E E AfF//e^^"- | u f ) (2.31) 

Region C : = E E e- '̂̂  + ^ ^ C/f F/̂ -e-̂ ^ ' |u}) (2.32) 

» J 

where the first term (^^^ in vE''* and includes all the evanescent bulk 

barrier states and the outgoing oscillatory states, and the second term 

includes all the ingoing oscillatory states. I f we specify the U^'s and U^'s 

we can obtain the Ai's in each region by applying the same boundary 

conditions as for the bound states. 

Continuity of the total wave function then requires 

16 

E 
i=l c t=l 

16 . , 16 _ __ rj_ 

f : AfF/je'''^^+Y: U^F;/"''^ = f : A^FI^^^'^^ (2.33) 

and 

E A^tFli^^'"- + E t^f F/ye'^'^^ = E AfFffe^'"^- (2.34) 
t=9 c 1=1 

for all j. 

Using the same notation as before, we can express the boundary 

conditions in matrix notation : 

W A L I + = W B L W 

W A R r + U R = W B R W 
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and, similarly, to ensure conservation of probabilty current 

D A L I + d L = D B L W 

D A R r + d f t = D B R W 

with the column vectors U L , U R , and given by 

Crpl ikiz2 

and 

d L = B U L 

d a = B U R 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

with 

B = 

As before, we can combine the equations for the left and right hand 

interfaces together to obtain 

W A b + u = W B W 

D A b + d = D B W 

(2.39) 

(2.40) 

where u = (^JJ^) and d - ^ ^ ^ y Solving (2.39) and (2.40) gives 

b = ( W - I W A - D - ^ D A ) ' ' (d-M - W - ^ u ) 

w = ( W ; ! W B - D - ^ D B ) ( W - ^ U - D-M) 

(2.41) 

(2.42) 

Since u and d are completely specified by our choice of ingoing 

barrier waves we can solve (2.41) and (2.42) to obtain the unbound wave 
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function. Sample results are given in figure 2.10 for a 50A Ino.53Gao.47As 

quantum well. The wave functions are plotted in the same convention as 

for bound states, i.e. plotting the z dependence of the envelope of each 

zone centre Bloch function, and are shown for /:|| = 0. As discussed above, 

the nature and parity of the wave function is determined by the choice of 

'barrier wave', and as with the bound states the heavy and light hole states 

are completely decoupled for k^\^ = 0. 

2.9 Summary and Applications of the Method 

In this chapter we have described a method of obtaining the band-

structure and wave functions of both bound and unbound quantum well 

states. The method has the advantage of giving realistic bandstructure close 

to the r point without being too demanding on computer resources. Since 

the wave function is expressed as a linear combination of bulk states, each 

of which is expressed as the product a plane wave envelope and a zone 

centre Bloch function, the nature of a calculated state (whether it is a light 

or heavy hole, a ground or excited state, etc) is immediately apparent; this 

makes i t easy to achieve a physical understanding of the problem under con

sideration. In particular, mixing effects between quantum well subbands can 

be easily discerned by inspection of the relevant wave functions. Although 

all the results we describe have been obtained by numerical calculations, 

the approach we have used enables us to gain the kind of insight associated 
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a) Heavy hole even. 

b) Heavy hole odd. 

Figure 2.10 

Wave functions of unbound states. 



cl Light hole even 

d) Light hole odd 

Figure 2.10 (continued) 

Wave functions of unbound states. 



e) Conduction band even 

f) Conduction band odd. 

Figure 2.10 (continued) 

Wave functions of unbound states. 



with algebraic theory because of the small dimensionality of the matrices 

involved and the physical significance of the basis functions. 

Although the work in this thesis will be confined to studies of 

quantum wells, the approach we have described is equally applicable to su-

perlattice structures — the only difference occurs in the boundary conditions. 

In the next chapter, we shall describe how the method can be extended 

to study strained layer systems — heterostructures in which materials with 

different lattice constants in the bulk are used for the well and barrier. One 

great advantage of our model is the ease with which such enhancements can 

be introduced. 

The bandstructure calculations described in this chapter form the 

basis of all the work described in this thesis. In chapters 5 and 6 the 

method is applied to calculations of gain and spontaneous emission spectra 

in heterostructure lasers, and in chapter 7 the calculations of unbound states 

wi l l be used to investigate intervalence band absorption, a significant loss 

mechanism in the same devices. 

In addition, the model has been used to perform calculations of 

valence band states in GaAs/AlAs quantum wells [24]. The results of 

this work have been used as the foundation for a Monte Carlo study of 

hole transport in such a system [25,26]. Matrix elements were computed 

for deformation potential, non-polar optical, polar optical and piezoelectric 

phonon scattering processes from wave functions obtained using our k.p 

model. As wil l be shown to be the case in the optical processes described 
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later in this thesis, the matrix elements show marked deviations from 

those derived using a simple one band effective mass approach, because of 

the strong subband mixing effects. The scattering rates for the various 

phonon scattering processes have been derived from the matrix elements and 

bandstructure using Fermi's Golden Rule, and have formed the basis of both 

steady state and ensemble Monte Carlo simulations. These simulations have 

been used to study hole transport and relaxation in a GaAs quantum well 

25,26 . 
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C H A P T E R T H R E E 

S T R A I N E D L A Y E R Q U A N T U M W E L L S 

3.1 Introduction 

In the previous chapter we discussed the properties of quantum wells 

in which the lattice constant of both the well and barrier materials was the 

same. Much work has been carried out on such materials systems, especially 

in the GaAlAs and InGaAlAs/InP families. However, recent advances in 

epitaxial growth technology, especially the continuing development of molec

ular beam epitaxy (MBE) and metal organic chemical vapour deposition 

(MOCVD), have opened up the possibility of growing heterostructures in 

which there is a mismatch between the lattice parameters of the constituent 

materials. Provided the layers are thin (;S100A) ,̂ this lattice mismatch 

is accommodated via an elastic strain, which modifies the electronic prop

erties of the device. In particular the highest valence band state in a 

strained device may have a reduced effective mass, promising faster com

plementary logic devices and more efficient long wavelength lasers. The 

ability to grow heterostructures in new material combinations, in particular 

Ga(Al)InAs/Ga(Al)As and Si/Ge, and the prospect of being able to tailor 

t The thickness allowed depends on the degree of mismatch and on material and growth 
parameters. For most moderately (~ 1% ) strained systems this thickness will be ~ lOOA. 
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the properties of a device by varying the lattice constant and layer width 

have led to a great deal of interest being shown in strained layer structures 

in the last couple of years. 

Another technologically important application of the ability to grow 

strained layers is the prospect of combining optical devices grown from III-V 

materials and conventional silicon devices on the same chip. 

In this chapter, we shall show how the effect of strain can be 

included within the framework of our k.p quantum well model, and describe 

the effect that such a strain field has on a low dimensional device. 

3.2 Growth and Critical Epilayer Size 

We shall at this point consider the effect of attempting to grow an 

epilayer of a material with lattice constant on a substrate with a different 

lattice constant as (see figure 3a). We confine our attention to growth along 

the [100] crystal axis. The lattice mismatch can be accomodated in one of 

two ways, depending on the size of the mismatch and the thickness of the 

layers. 

One possibility (see figure 3.1b) is that the lattice of the epilayer 

can be elastically distorted such that its lattice constant in the plane parallel 

to the interface ay matches that of the substrate [ l ] . In this case, the 

epilayer relaxes in the growth direction by an amount determined by the 
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a) Free standing epilayer and substrate. 

b) Strained layer regime. 

c) Relaxed regime, showing dangling bond (A). 

Figure 3.1 

Growth of a lattice mismatched epilayer. 



two dimensional Poisson ratio 

wi th Aa^ the induced change in the lattice constant in the growth direction, 

and a the one dimensional Poisson ratio. This is known as the strained 

layer regime, since the perturbation of the lattice creates a uniform elastic 

strain field throughout the epilayer. The deformation energy of the strained 

epilayer is clearly proportional to its height h, and is given by [2 

Est = 2G ( ^ ] elh (3.2) 

where G is the shear modulus of the epilayer material, o is Poisson's ratio 

in the epilayer, and ey is the net in-plane strain, (a^ — ae)/ae. 

Alternatively, the epilayer may retain its natural lattice parameter 

and form as many chemical bonds as possible with the top atomic layer 

of the substrate (see figure 3.1c). In this relaxed regime the strain is 

accomodated by dangling bonds and other interface defects, some of which 

may propogate through the epilayer [3]. The deformation energy in this 

case is a property of the interface, and is largely independent of the height 

of the epilayer. 

I t is clear that for sufficiently thin epilayers, the strained layer 

regime wil l be energetically favourable. As the epilayer height is increased, 

a critical thickness wil l be reached at which the deformation energy is the 

same for the two regimes, and beyond this point dislocations start to form 
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and the relaxed regime is entered (see figure 3.2). This cri t ical thickness was 

investigated by Matthews and Blakeslee [ l ] in the m i d 1970's, who showed 

i t to be given by the equation 

l - a / 4 \ b 
(3.3) 

where b is the dislocation Burgers vector (typically ~ 4 A ) , 

This equation has more recently been verified in 

the InGaAs/GaAs system by Andersson et al [4]. 

The Matthews - Blakeslee formula predicts he ~ 9 0 A for = 1%. 

I n fact , i t is possible to grow stable strained layers of widths greater than 

he under certain conditions [5] since the energy required to nucleate a 

dislocation is greater than that required to sustain one which is already 

present. However, growth of layers thicker than he is only possible i f the 

growth process does not itself introduce too many defects, and hence the 

precise cr i t ical layer thickness depends upon the growth temperature and 

growth rate as well as on the interface quality [6,7]. 

3.3 M o d e l l i n g S t r a i n e d L a y e r S t r u c t u r e s 

I t is clear that the presence of an elastic strain field arising f rom 

the tetragonal distort ion of the crystal unit cell which occurs in lattice-

mismatched structures w i l l alter the electronic properties of a device. In 

this section we shall show how this effect can be described wi th in the 
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framework of our k . p model. 

I n a strained layer system, as we described in the previous section, 

the epilayer material is under a biaxial strain. I n the case of the quantum 

well structures we shall study, the well material w i l l be under a biaxial 

compression (or tension), and the barriers lattice matched to the substrate 

and hence unstrained. This biaxial compression (tension) is equivalent to a 

combination of a hydrostatic compression (tension) and a uniaxial tension 

(compression). The effects of both hydrostatic and uniaxial stresses on 

the electronic properties of semiconductors have been extensively studied 

experimentally [8,9,10] and theoretically [11,12]. 

For a strained-layer quantum well grown along the [100] axis, the 

strain tensor is diagonal, w i t h the following non-zero components [12] (where 

the growth direction is taken to be the z axis) : 

_ Aoo 
•XX — tyy s„„ = — (3.4) 

oo 

e.. = - 2 ^ e , , (3.5) 
c i i 

where ao is the natural lattice constant of the well material and A C Q is 

the dis tor t ion of this lattice constant in the ( x , y ) plane resulting f r o m the 

mismatched growth, i.e. A C Q = — ao w i t h being the substrate lattice 

constant; c n and c\i are the elastic modul i of the well material. 

Since the terms introduced into the Hamil tonian by the strain turn 

out to induce much smaller splittings than the spin-orbit parameter A and 

the Kane ma t r ix element Ep ( = 2moP^/^^) , as w i l l be seen in the next 
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section, the angular momentum quantum numbers j and my remain good 

quan tum numbers i n the strained system. Thus we may use the same basis 

funct ions as for the unstrained system. The strain terms which appear in 

the Hami l ton ian are then obtained f r o m the operation of the deformation 

potent ia l tensor (which is spin independent and diagonal in the S,Xy,Z 

basis) on the s t ra in tensor. I n the X,Y,Z basis the strain Hamil tonian is 

then diagonal, w i t h each 4 x 4 spin block being [12] 

/c(e^^ + e „ y + e j ^ ) 0 0 0 \ 

+ ^zz] 0 0 
0 0 ^^yy + ^(,^xx 

V 0 0 0 le^^-\-m{ex^^-eyy]J 

(3.6) 

where c, / , m and n are deformation potentials. 

These terms are readily transformed into our chosen basis, giving 

the s t ra in Hami l ton ian shown in table 3.1. 

We can then fol low exactly the same procedure to obtain the quantum 

well bandstructure and wave functions as we outl ined for unstrained wells in 

chapter 2, simply including the extra terms of table 3.1 i n the Hamiltonian 

of table 2.2. 
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3.4 T h e B u l k B a n d s t r u c t u r e o f a S t r a i n e d S e m i c o n d u c t o r 

Before going on to discuss the effect of an elastic strain on the 

bandstructure of a quantum well, i t w i l l be helpful to investigate how such 

a strain modifies the states of a bulk semiconductor. We shall imagine a 

bulk semiconductor which is somehow under a un i form biaxial strain, in the 

same way that the well material of a lattice mismatched quantum well is 

strained. 

The material we shall study is Ino.53GAO.47As, which is lattice matched 

to InP and is widely used in optoelectronic devices. The InGaAa alloy system 

forms the basis of many experimental investigations into the effects of strained 

layers because devices can be grown in which the alloy is either under a 

biaxial compression or a tension, by respectively increasing or decreasing the 

i n d i u m content f r o m 53%. 

The bulk complex bandstructure of unstrained Ino.53GAO.47As is i l 

lustrated in figure 3.3, fol lowing the conventions outlined in section 2.5. 

This material has a direct band gap of 0.75eV and a spin-orbit spl i t t ing of 

0.356eV. The effective masses and bandstructure parameters used are given 

in Appendix A . The bandstructure is isotropic for the unstrained material, 

which is i n fact a consequence of the degeneracy at the top of the valence 

band. When this degeneracy is broken, for example by a biaxial strain, the 

dispersion becomes anisotropic. This can be seen in figure 3.4, which shows 

the effect of a 1.5% biaxial compression on the bandstructure. The strain 
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is applied in the (x,y) plane, w i t h the uni t cell relaxing in the z direction 

to compensate; figure 3.4a shows the dispersion in the fcz direction (the ky 

direction being equivalent), figure 3.4b the kz direction. 

The effect of a biaxial compression is to raise the conduction and 

heavy (my = | ) hole band edges, whilst lowering the light (my = | ) hole 

(and to a much lesser extent the spin-orbit) band edge. The heavy (my = | ) 

hole band is now visibly lighter in the kj, direction than in the kz direction; 

this w i l l have impor tant consequences for quantum well devices, as we shall 

show in the next section. 

Figure 3.5 shows the effect of a 1.5% biaxial tension. I n this case, 

the conduction and heavy (my = | ) hole band edges are lowered in energy, 

whils t the l ight (my = | ) hole band is raised. The change in eff'ective 

mass between the kx and kz directions is much clearer in this case — the 

' l ight hole' band is in fact heavy and the 'heavy hole' band light in the kx 

direction. 

Clearly i t is not meaningful to refer to 'heavy' and ' l ight ' holes when 

discussing strained systems, and henceforth we shall refer to these states 

solely by their angular momentum quantum number my. 
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3.5 Q u a n t u m W e l l B a n d s t r u c t u r e i n t h e S t r a i n e d L a y e r 

R e g i m e 

We now t u r n our attention to the way in which the quantum well 

bound states are affected by the elastic strain field which is present when 

the well and barrier materials have a different natural lattice constant. 

We only consider the strained layer regime. I n order to compare results 

for a strained system w i t h those of the corresponding unstrained case it 

is necessary to change either the well or the barrier material so that the 

materials are lattice mismatched. This of course also modifies the bulk band 

gaps and effective masses of one of the constituent materials, which makes 

i t d i f f icu l t to isolate the effect of the strain. For this reason, in this section 

we consider an imaginary device consisting of a 50A Ino.53GAO.47As quantum 

well lattice mismatched to unstrained InP barriers. That is we assume that 

the barriers are fabricated f r o m an imaginary material which has the same 

electronic properties as InP but has a different lattice constant. We w i l l in 

fact assume the existence of a whole set of such materials, w i t h a range of 

lattice parameters. The only way in which these quantum well structures 

then differ f r o m that investigated in section 2.7 is through the presence of 

an elastic strain field i n the well region. 

Figure 3.6 shows the dependence of the valence subband edges on 

strain. I n this diagram Aao is the amount by which the lattice constant 

of the barriers differs f r o m that of InP. The states follow the pattern seen 
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for the bulk bandstructure — under biaxial compression the my = | states 

are raised in energy and the my = | states lowered; under biaxial tension 

the reverse is true. This effect is clearly seen for the first four subbands 

(i.e. the four w i t h the lowest hole energy). The fifth subband appears to 

be something of an anomaly, showing the opposite behaviour to that which 

would be expected for a my = ^ state. Close inspection of the wave funct ion 

of this state (figure 2.5e), however, reveals that the state contains a large 

contr ibut ion f r o m the (spin spli t -off) and \s) (electron) Bloch functions. 

The presence of a large 'electron-like' component in the wave funct ion w i l l 

tend to cause the subband to move up under biaxial compression and down 

under biaxial tension, and this is what is observed. 

This relative movement of the subband edges can have a dramatic 

effect on the in-plane bandstructure of the quantum well . I n the last chapter 

i t was shown that when an my = | state and an my = | state lie close in 

energy, the subbands can anticross, leading to marked non-parabolicity of 

the bandstructure, and mixing of the subband character. This is clearly seen 

in figure 3.7, which shows the bandstructure of a 50A Ino.53Gao.47As/InP 

quantum well w i t h an art i f icial biaxial tension of 1% {AOQ = -I-0.05689A). 

The first two subbands have my = ^ and my = | character respectively 

at A;|| = 0, and at this point the subbands lie less than lOmeV apart. 

This results in a substantial interaction between the subbands, and as a 

consequence the first subband has a negative (electron-like) hole effective 

mass fo r small A;||, before turning over at fcy ~ 0.04A \ This effect is seen 

44 



0. 00 

-0. 05 

-0. 10 

-0. 15 4-

-0. 20 4-

-0. 25 

-0. 30 4-

-0. 35 

0.00 O.OI 0.02 0.03 O.OA 0.05 0.06 0.07 0.08 

In-plane wave vector, k» (A~^) 

F i g u r e 3.7 

Bandstructure of 50A Ino .53Gao.47As/InP quantum well under a 1% 

ar t i f ic ia l biaxial tension. 



i n unstrained quantum wells for higher subbands, but never at the top of 

the valence band because the difference in bulk effective masses of my = | 

and rrij = | states results i n all the my — | subbands lying well below the 

first my = I subband. 

Whi ls t undoubtedly an interesting phenomenon, this electron-like 

curvature of the first subband is of l i t t le use for the laser applications we 

consider i n this thesis. For these devices i t would be useful to make the top 

valence subband as l ight as possible, although the effect of a biaxial tension 

may be advantageous for optical amplifiers [13]. A close study of figure 3.6 

suggests that the reduced effective mass required for more efficient lasers 

may be achievable using strain. Just as a biaxial tension tends to move the 

my = I and my = | states closer together, leading to stronger intersubband 

mix ing and higher non-parabolicity, so a biaxial compression w i l l tend to 

move the my = ^ states deeper into the valence band and diminish their 

interactions w i t h the lowest (in hole energy) lying my = | states. Moreover, 

these my = | subbands can be expected f r o m the bulk behaviour i n figure 

3.4 to have an effective mass which is heavy in the growth direction but 

l ight i n the in-plane direction. 

Figure 3.8 shows the results of a valence bandstructure calculation for 

a 50A Ino .53Gao.47As/InP quantum well w i t h an art if icial biaxial compression 

of 1% (Aao = -0.05689A). I n this case the first valence subband is indeed 

light over a wide range of A;||, and is close to parabolic, especially over the first 

30 or 40 meV (corresponding to ~ | k T at room temperature). Comparison 
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with figure 2.4b reveals that the effective mass of this subband is lower than 

in the equivalent unstrained system. The second subband is heavy close to 

the band edge, but lies more than 2kT (at room temperature) higher in 

energy than the first subband, and so should not affect the performance of 

a quantum well laser based on such a structure. 

In order for a laser based on these effects to show enhanced per

formance it is obviously important that the conduction bandstructure is 

not adversely affected by the strain. Figure 3.9 shows how the quantum 

well conduction subband changes under the influence of strain in the 50A 

Ino.53Gao.47As/InP device under investigation. It is clear from this diagram 

that the main effect of the strain is to rigidly shift the subband in energy 

— a closer inspection shows that the effective mass is essentially unchanged 

and the subband remains virtually parabolic. This is an important result, 

since it suggests that strain can be freely used to engineer the valence 

bandstructure of a device without the risk of detrimentally affecting the 

conduction band. 

3.6 S u m m a r y a n d Dev ice Prospect s 

In this chapter we have shown how the k.p model described in 

chapter 2 can be applied to lattice mismatched quantum well structures, 

within the strained layer regime. We have discussed the way in which the 

in-plane bandstructure of such a device is modified by the strain, and have 
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shown that in the case where the well region is under a biaxial compression 

this can lead to a reduction in the effective mass of the first valence subband 

as well as a reduction of non-parabolicity eff̂ ects. 

It was mentioned in the previous section that the prospect of reducing 

the effective mass of the lowest valence subband suggests the possibility of 

improving the performance of certain devices. In particular, it has been 

proposed that this effect could be used to achieve faster complementary logic 

devices [14] and more efficient long wavelength lasers [15,16]. Much of the 

remainder of this thesis will be concerned with the use of strain to enhance 

the performance of quantum well lasers. 

It should be noted that all the calculations in this chapter have been 

based on an imaginary structure which utilises a fictitious barrier material. 

This was done in order to isolate the effect of strain from other effects such 

as differences in the band gaps and effective masses which are inevitable in 

any experimental comparison of strained and unstrained structures. In a 

physical device, the introduction of strain by changing the exact composition 

of one of the constituent materials may introduce undesirable effects which 

may outweigh the advantages gained by the strain. However these can often 

be compensated for by varying other device parameters. For example, a 

1.55/^m I n G a A s / I n P quantum well laser may show an enhanced performance 

when the indium content of the alloy is increased, and a biaxial compression 

exists in the well region. An unfortunate consequence of this is that the 

operating wavelength of the strained device will now be increased beyond 
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1.55^tm. This undesirable effect can be compensated by using InAlGaAs, 

for example, as the well material and increasing the aluminium content as 

the indium content is reduced, or more simply by changing the well width. 

In principle then, it is clear that strained layer structures offer the 

prospect of improved devices. The strain provides an additional variable 

parameter, which can be used to tailor the device parameters with the aim 

of enhanced performance. In chapter 6 we shall present a more detailed 

discussion of how this can be achieved in a 1.55;um multiple quantum well 

laser structure. 
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C H A P T E R F O U R 

O P T I C A L M A T R I X E L E M E N T S I N Q U A N T U M W E L L S 

4.1 I n t r o d u c t i o n 

In the remainder of this thesis, various optical properties of quantum 

well structures (gain and spontaneous emission in chapters 5 and 6 and 

intervalence band absorption in chapter 7) are investigated, and the way 

in which such properties are modified by the presence of strained layers is 

discussed. In all these processes the transition probabilities depend upon 

the optical (or dipole) matrix element between the wave functions of the 

initial and final states involved in the transition. 

The values of optical matrix elements in quantum well devices have 

been calculated by a number of authors. Initially many of them used 

a simplified parabolic band approach [1,2,3], but more recently Colak et 

al [4] have shown that the quantum well matrix elements calculated from 

wave functions obtained using a k.p model can differ markedly from those 

predicted by the simpler approcich due to subband mixing effects. The work 

of Colak's group agrees well with the more sophisticated tight-binding results 

of Chang and Schulman [5]. 

We thus need to calculate the optical matrix elements from the 

wave functions obtained from the k.p model described in chapter 2. In this 
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chapter the method of obtaining these matrix elements is described, and the 

form of their dependence on the in-plane wave vector is discussed for 

both unstrained and strained quantum wells. 

4.2 Q u a n t u m T h e o r y of O p t i c a l Trans i t ions 

The effect of an electromagnetic radiation field on the electronic 

states of a crystal can be obtained using standard non-relativistic quantum 

mechanical methods [6]. In the presence of an electromagnetic field, the 

Hamiltonian for an electron in a periodic potential V ( r ) is given by 

HT = :^{p+\e\A)' + V{T) (4.1) 
Zm 

The Lorentz condition implies V . A = 0, so neglecting non-linear 

effects (these arise from the terms in and can be shown to be small [6]) 

equation (4.1) reduces to 

HT - Ho + H' 

with 

HQ = unperturbed Hamiltonian 

H' = - ^ A . V (4.2) 
m 

The interaction term H' can then be treated using time dependent pertur

bation theory. 
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The vector potential A of an electromagnetic wave will take the 

form 

2 2 

and the electric and magnetic fields are obtained from 

E = — — 
dt 

and B = V X A . 

The time dependent perturbation H' is then given by 

H< = - i l ^ l ^ L - » C < — 0 + e'^^•r-t)^ A „ . v (4.4) 
2m J 

When compared with the typical wave vector of an electron or a 

hole the photon wave vector is very small, and we thus take k = 0. H' 

then contains two terms : the first is proportional to e"̂ ' and results in 

emission, and the second is proportional to e"*"̂ ' and results in absorption. 

Which term is dominant will depend on the initial and final states of the 

system; if the initial state is the ground state only absorption is possible, 

and similarly if the final state is the ground state only emission can have 

occurred. Both transition rates are determined by Fermi's Golden Rule, 

which states that the probability per unit time that a perturbation of the 

form H'e^^'^^ induces a transition from an intial state |*t) with energy Ei 

to a final state with energy Ef is 

27r 2 
Pi^f = y {^f\H'\^i) S{Ef - Ei T hio) (4.5) 
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where H' for an electromagnetic field is given by 

= - i l f l ^ A o . V 
2m 

Since E = Ao will lie in the direction of polarisation of the 

electric field, so Aq = AqE, where E is a unit vector in the direction of E . 

To obtain the rate at which optical transitions occur in semiconductors, we 

shall thus need to obtain the matrix element 

- | ( * ; | E . V | * , ) | ^ (4.6) 

This is sometimes referred to as the momentum matrix element since the 

V operator is proportional to the momentum operator, and determines the 

rate of both absorption and emission processes. 

4.3 C a l c u l a t i o n of the O p t i c a l M a t r i x E lements 

In chapter 2 we showed how the wave function of a quantum well 

state can be obtained using a k.p Hamiltonian in the envelope function 

formalism. We shall now show how the optical matrix element between two 

such states is calculated from these wave functions. Recall that the wave 

functions obtained took the form 

V' = EE .̂̂ .y«"'-1«;) (4-7) 

in each region of the heterostructure. We can write the total wave function 

of a given state as 

* = V'L + V'ty + V'fl (4.8) 
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where each x}) on the right hand side of equation (4.8) takes the form of 

equation (4.7) within one region (left-hand barrier, well, right-hand barrier 

for V'Lj i>W, i'R respectively) and is zero outside of that region. 

( * / | E . V | * i ) from two such We wish to obtain the matrix element 

wave functions ^ / ,^ , - . We consider only so called vertical transitions (in 

the bandstructure diagram), so that the in-plane (x,y) components of the 

wave vectors kf and ki are equal. 

The matrix element is given by 

rZ—Zi ^Z=Z2 /'Z=CO ^ 

(4.9) 

Consider for the moment any one of these integrals : 

rz=b 
= / * } E . V * , < i ^ r 

Jz=a 

= r ' E E E E A:i^.e-*''^S WE-V '̂Fiye-=' '"y'(r)(i^ 

The constant terms can be removed from the integral to give 

I = E COT r ' e^^^'-^'^ {i4u;ir)u^,{T) + t . ; . (r)E.Vuy,(r)} d^r (4.10) 

where Cijiiji = A^F^jA^iFiiji, and is the component of kj/ along the 

electric field direction. 

Since the in-plane components of kj^ and kj are equal (and real), 

the integrand is independent of x and y, so equation (4.10) can be reduced 
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to a one dimensional integral (the integration being performed in the growth 

direction): 

tjt'; 
...... ^ Ja 

(where we have used the relation {uj\uji) = 6jji). 

We can write this in the form 

/ = E Ciji'j' Qi'jj' lUi, (4.11) 

where 

Q.vyy, = i k p j j , + (uy|E.V|uy,) (4.12) 

and 

= /"*e''(*''-*'*)^rf2 (4.13) 
Ja 

There are 3 Us to calculate : 

, exp(-^•(A:,v - k*)L,l2) 
^ ^(^^^ifc*) 

I^Lii, = i:,sinc((A:i, - A;*)iz/2) (4.15) 

_ exp(t(fei> - fc*)X^/2) 
^(V^^*) 

where Z/^ is the quantum well width (= Z2 — z\). (Note that since the wave 

vectors in each barrier are equal in magnitude but of opposite sign the 

terms appearing in -^Lai and ^Lai are in fact the same). 

Clearly the C,yi/y/ and *L„7 are easily calculated from the initial 

and final state wave functions. We just need to obtain the values of Qi'jji 

(equation (4.12)). The first term {tkpSjji) is readily obtained from the wave 
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function of the initial state, but to obtain the second term (^uy|E.V|uy/^), 

it is necessary to know the momentum matrix element between each of the 

individual zone centre Bloch functions |uy). These terms are well known, 

and in the \S), \X), \Y), \Z) basis are given by (7 

{S\p.\X) = {S\py\Y) = {S\p,\Z) = ^ (4.17) 

if the states have the same spin; all other matrix elements are zero, 

is the X component of the momentum operator and P is the Kane matrix 

element (as appears in the Hamiltonian in table 2.2). The appropriate 

values for our chosen basis are readily calculated from equation (4.17); the 

results are shown in table 4.1. 

In fact, the first term in equation (4.12) turns out to be small 

compared with the second for most transitions. The contribution to \M\ 

from the first term is characterised by the wave vector associated with the 

in-plane kinetic energy of the state, which is typically ~ 10-100 meV, whilst 

the contribution of the second term is characterised by the wave vector 

associated with Ep (~ 20 eV). Also, for transitions between conduction 

band states (largely \S) like) and valence band states (largely \Y), or 

Z) like) the coefficients Caijji are very much larger for values of j and j' 

with large (uy|E.V|uy/) than for the case j — j'. Thus it is reasonable to 

neglect the first term in Qi'jji. 

Up to this point we have implicitly assumed the wave functions 

and to be normalised. However, it is easy to ensure normalisation of 
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the wave functions. We need to ensure that / *^* id^r = 1. Clearly this 

integral is just the same as the optical matrix element integral but with 

Qiijji = Sjji and = = the wave function to be normalised. We thus 

have 

\IL + IW + IR\' = 1 (4.18) 

with each / taking the form 

/ = E ^iji'j' o^tf <5yy/ 
iji'j' 

4.4 T E a n d T M mode transit ions 

In a bulk semiconductor, the matrix elements depend, in general, on 

the angle the electric field vector makes with the crystal axes. It is clear, 

however, that certain directions are equivalent — the labelling of the axes in 

a cubic crystal is arbitrary and so an electric field lying in the x direction 

will give exactly the same transition probability as one lying in the y ox z 

(or the — X , —y or —z) direction. In a quantum well structure, however, 

one degree of symmetry is broken, and there are two distinct situations to 

consider (see figure 4.1). 

One possibility is that the electric field vector lies in a direction 

parallel to the interface planes (i.e. in the (x,y) plane). This configuration 

is the transverse electric ( T E ) mode. Alternatively, the electric field vector 

may lie in the growth [z] direction; this is the transverse magnetic (TM) 
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Coordinate system used in discussion of T E and T M modes. 

Figure 4.1 



mode. This nomenclature is used since the electromagnetic field in the 

quantum well in one of these modes corresponds to that in the equivalent 

mode of a planar waveguide. Since the wave vector in the growth direction 

is quantised, whilst in the in-plane direction is not, the matrix element for 

a T M mode transition will not in general be the same as that for the 

equivalent T E mode transition. 

For the case of a transition between a bound conduction band state 

and a bound valence band state at the band edge (A;|| = 0), the dominant 

T E mode transition is that between an electron and a heavy (my = | ) 

hole, whilst for the T M mode the light (my = | ) hole transition dominates. 

Several authors [1-4] have investigated the dependence of the matrix elements 

on the in-plane wave vector using a simple parabolic bandstructure approach. 

They show that as the in-plane wave vector is increased (moving away from 

the subband edge), the quantum well optical matrix element for a vertical 

transition between bound states of the same excitation level n vary as 

(assuming ky = 0) [4] 

^Mo^ cos^ e 
2 ° 

c - h h 

\ 6 
\Ml c - l h 

-Ml sin^ e 
2 ° 

c - h h 

= f - s i n 2 ^ + 

Ve 
^COs2^) \Ml c - l h 

(4.19) 
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where 6 is the angle the total wave vector (fc^x + kzz) makes with the z 

axis, which is given approximately by 

cos 0 — — 

where En is the confinement energy of the nth subband at A;|| = 0 and 

en (= En + is the energy of the state at kx- Transitions between 

states wi th different quantum number n are forbidden.^ The results (4.19) 

predicted by a parabolic band model which neglects subband mixing effects 

are shown in figure 4.2. 

4.5 Results f r o m the k .p M o d e l 

The wave functions obtained from the k.p bandstructure model 

described in chapter 2 have been used to calculate the optical matrix 

elements of strained and unstrained quantum wells. Although the general 

trends outlined in the previous section are observed, the shape of the 

dependence of the squared matrix element on the in-plane wave vector is 

modified by the wave function mixing effects described in section 2.7. These 

effects can also give rise to non-zero matrix elements between pairs of states 

corresponding to transitions predicted by the simpler models to be forbidden. 

^ More precisely, transitions between states with different quantum number n are for

bidden in a quantum well of infinite depth. In a finite well these transitions are allowed but 

have very small matrix elements. 
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Figure 4.3 shows the variation of the squared T E and TM mode 

matrix elements with in-plane wave vector for a 50A Ino.53Gao.47As/InP 

quantum well, the bandstructure of which is given in figure 2.4. We follow 

the usual convention by converting the squared matrix elements into units 

of eV. All these matrix elements are for transitions between the nth valence 

subband and the first (and only) conduction subband. The first valence 

subband states are characteristic of bulk heavy holes (i.e. my = | ) at the 

two dimensional Brillouin zone centre, and hence have a large T E mode 

matrix element and a zero T M mode matrix element at this point. The 

second valence subband states are characteristic of bulk light holes (my = | ) 

at the zone centre, and as predicted by the simple model have a large TM 

mode matrix element, and a squared T E mode matrix element which is 

about one third of that of the T M mode, which is close to the ratio of 0.25 

predicted by the simple model. The matrix elements associated with higher 

(in hole energy) valence subbands are clearly non-zero however, and become 

more significant as fcy is increased. These transitions become allowed as a 

result of the mixing-in of wave function components characteristic of allowed 

transitions. This effect is most apparent in the large matrix element for the 

T M mode c-h3 transition (which would be expected to be forbidden since 

An 7̂  0), which arises as a result of mixing between the second and third 

valence subbands. 

Figure 4.4 shows the equivalent results for a 50A Ino.53Gao.47As/InP 

quantum well under an artificial biaxial compression of 1% (for the band-
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structure of this system refer to figure 3.8. The main effect of the biaxial 

strain, as discussed in chapter 3, is to raise the hole energy of the my = | 

like subbands with respect to the my = | like subbands, which in turn leads 

to a reduction in intersubband mixing. Thus the second valence subband is 

now characteristic of excited (n = 2) bulk 'heavy' (my = | ) holes, and the 

first my = I ' light' hole subband is now the third valence subband. This is 

clearly illustrated by the changeover in the behaviour of the optical matrix 

elements of these two subbands under the influence of strain. It is clear 

from a comparison of the T M mode matrix elements of the strained and 

unstrained structures that the matrix elements for states in higher subbands 

are significantly reduced in the strained structure, which is indicative of the 

reduction of anticrossing behaviour and mixing of wave function character 

which results from the raising in energy of the my = ^ subbands. 

However, such mixing effects are still present to some extent in 

the strained structure. The strained TE mode matrix elements exhibit one 

particularly clear example of the effect that wave function mixing can have 

on the optical matrix elements. Around /cy = 0.045 the cl-h3 matrix 

element drops off sharply, whilst over the same region of the cl-h4 matrix 

element increases strongly. This corresponds to a region of marked non-

parabolicity and anticrossing behaviour between these two valence subbands 

in the bandstructure diagram (figure 3.8), and demonstrates the exchange 

of wave function character described in section 2.7. 

I t is also interesting to investigate matrix elements involving states 
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in higher conduction subbands. However, the 50A wells we have so far 

considered only contain one bound conduction subband, and to obtain matrix 

elements for c2-hn transitions it is necessary to study a wider quantum well. 

Figure 4.5 shows the bandstructure of a lOOA unstrained Ino.53Gao.47As/InP 

quantum well, which has two bound conduction subbands. Only the first 

seven valence subbands (there are eleven altogether) are considered, since at 

room temperature or below significant hole populations would not be expected 

in the higher subbands, except at very high injected carrier densities. Figure 

4.6a shows the squared T E mode matrix elements for transitions involving 

the first conduction subband states, and figure 4.6b shows the corresponding 

results for transitions involving states in the second conduction subband. 

Figure 4.7 shows the T M mode results, again with transitions involving 

states in the first conduction subband in a) and those involving states in 

the second subband in b). 

It is immediately apparent from both the matrix elements and the 

bandstructure that far more wave function mixing effects are present in the 

lOOA well than in the 50A well. This is simply due to the reduced energy 

separation of the subbands (which, at the subband edges, is approximately 

inversely proportional to the square of the quantum well width) and is 

especially evident for the lower (in hole energy) subbands, since these lie 

closer together than the higher subbands. In particular, the sixth subband, 

which is characteristic of the first excited [n = 2) my = | 'light' hole level 

at the zone centre, hardly mixes with the other subbands at all. This is 
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manifested in the near parabolicity of the dispersion relation of this subband 

and in the T M mode c2-h6 matrix element following the expected c-lh 

dependence on k^^. 

The second and third valence subbands, however, mix strongly even 

at the centre of the two dimensional Brillouin zone. Their dominant 

character is 'hh2' (n = 2, my = | ) and ' I h l ' (n — 1, my = | ) respectively, 

as is reflected in the large T M mode cl-h3 and TE mode c2-h2 zone centre 

matrix elements. However, we also observe a large squared matrix element 

(around 2.5eV) for the cl-h2 T M mode transition, even though this valence 

band is supposedly of n = 2, my = | character. A simple model which 

neglect wave function mixing would predict this matrix element to be zero, 

since the quantum number n is not conserved. Likewise the c2-h3 TE mode 

matrix element, which might be expected to be zero for the same reason, 

has a value of just over leV. 

4.6 Conclusions 

The discussion in the previous section of the optical matrix elements 

obtained from the k .p model showed clearly that, whilst broadly following 

the patterns predicted by a simple model, the matrix elements can be 

strongly modified by the mixing of wave function character between states 

in adjacent valence subbands. I t is important to include such effects in 

any realistic description of optical processes in semiconductor quantum wells. 
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However it is worth noting that these effects may not always be significant 

since in many cases the mixing is small at the centre of the two dimensional 

Brillouin zone, where most carriers are to be found, and only dominates at 

large values of in-plane wave vector, which correspond to transitions lOOmeV 

or so above the fundamental absorption edge. For example, in a quantum 

well laser, which is discussed in detail in the next chapter, it is to be 

expected that wave function mixing effects will modify the shape of the 

gain spectrum, but are unlikely to have a significant effect on the threshold 

properties. 
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C H A P T E R F I V E 

Q U A N T U M W E L L L A S E R M O D E L L I N G 

5.1 Introduction 

In recent years i t has become apparent that semiconductor lasers 

based on quantum well structures can have considerable advantages over 

conventional double heterostructure (DH) lasers, such as reduced threshold 

current [1-4], lower temperature dependence [5-7], a narrower gain spectrum 

8], etc. Additionally they offer the ability to tune the lasing wavelength 

by the appropriate choice of QW width. Such tunability can also be used 

to improve device performance to some extent; this is especially true in the 

GaAlAs system, since in this case the alloy composition of the active region 

and the well width can be chosen independently. Relaxation of the lattice 

matching condition enables further tailoring of device parameters, and the 

prospects offered by strained layer lasers for still greater improvements in 

device performance wil l be investigated in the next chapter. 

The improvement in performance offered by QW lasers is mainly a 

result of the modified density of states in such a two dimensional structure. 

This allows a population inversion to be achieved with fewer injected carriers, 

which are injected into a small volume of active region (the QW itself). In 

fact, this active layer is often found to be too thin for the various optical 
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losses of the device to be overcome, and it is usually necessary to grow a 

multiple quantum well (MQW) structure (see figvire 5.1) rather than a single 

quantum well (SQW) in order to enhance the modal gain by increasing the 

total volume of active material. An alternative (or complementary) approach 

is to attempt to improve the optical confinement of the emitted beam in 

addition to the confinement of the carriers. The width of the emitted 

beam is usually much wider than the width of the quantum well, but a 

structure can be designed to confine the light over a much narrower region; 

such a structure is known as a separate confinement heterostructure (SCH). 

The most promising structure of this type is the graded index separate 

confinement heterostructure (GRINSCH), in which the composition of the 

substrate is graded until it reaches that of the barrier (see figure 5.1). Such 

a device was recently modelled by Chinn et al [9]. We consider only the 

M Q W structure in this work, although since the main difference between the 

MQW and GRINSCH lasers lies in the different optical confinement factor, 

i t would be straightforward to extend this study to GRINSCH structures. 

In this chapter the theory of QW laser devices is discussed, and 

the way in which such a device is modelled is described. The model used 

includes the effects of realistic bandstructure (see chapter 2) and optical 

matrix elements (chapter 4), and lifetime broadening effects. I t produces gain 

and spontaneous emission spectra, and can locate the threshold condition 

of a device, detailing its emission wavelength, current density, linewidth 

enhancement factor and gainslope at threshold. This model was developed 
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by the author of this thesis from an existing computer program written by 

Robbins [10] which calculated the properties of quantum well lasers using a 

simple parabolic subband approach. The latter has been extensively modified 

to allow the use of realistic bandstructure and matrix elements, enabling the 

study of strained layer devices. 

Sample results are presented in this chapter for an Ino.53Gao.47As/InP 

MQW laser device, comparing results obtained from a ful l k.p calculation 

of the QW states with those from a simple parabolic subband description. 

5.2 A b s o r p t i o n and Emission Rates i n Semiconductor 

Lasers 

The basic physics of laser operation is well established. The three 

processes of absorption and spontaneous and stimulated emission can result 

in the multiplication of photons under certain conditions. The rates of these 

processes for a two level system are given by [11] : 

Absorption = Bufi{l - f2)P{E2i) (5.1) 

Stimulated emission = ^21A(1 - fi)P{E2i) (5.2) 

Spontaneous emission r^^ = ^121/2(1 — / i ) (5-3) 

where A and B are the Einstein coefficients (transition probabilities), fi 

and /2 are Fermi occupation factors and P (£ '2 i ) is the density of photons 

of energy £'21. In a semiconductor 1 would refer to a state in the valence 
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band and 2 to a state in the conduction band. 

I t can be shown [11] that 

Bi2 — B21 

and 

^21 = - ^ ^ 2 1 (5.4) 

where n is the refractive index of the material, h is Planck's constant and 

c the velocity of light. We can thus combine the absorption and stimulated 

emission rates into a single rate 

Rtl'^Bi2{h-f2)P{E2i) (5.5) 

The absorption coefficient Q!(£^2i) is given by the ratio of the absorption 

rate to the photon flux 

where Vg (= c//x) is the group velocity of the radiation in the laser material. 

From equations (5.3), (5.4) and (5.6) we can express the spontaneous 

emission rate in terms of the absorption coefficient : 

8 V ^ | , . / 2 ( l - / i ) 

The Einstein coefficient B12 is given by Fermi's Golden Rule : 

Bi2 = ^\{^i\H'\^2)f (5.8) 

where H' = A.p (see chapter 4) 
m 

so B,2 = \M\' (5.9) 
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where \M\ is the optical matrix element between states 1 and 2. (See 

Casey and Panish [11] for further details). 

5,3 In t e rband Abso rp t i on and Emission Rates. 

In the above discussion the absorption and spontaneous emission 

rates were given between a single valence band state and a single conduction 

band state. Clearly in a semiconductor device there exists a whole range 

of states which can contribute to the absorption and emission rates, and 

the expressions obtained must be modified to take account of this. We 

need to integrate the one state expressions over all possible states, taking 

into account the density of states. We must only include states which are 

separated by the appropriate energy (£'21 = hu). 

Integrating the absorption coefficient (equation (5.6)) over the states 

of a given pair of subbands of a quantum well, and using equation (5.9) for 

the transition probability, we obtain an absorption coefficient for the pair 

given by 

Oi^ihu) = I ^ | | - ^ - ^ ^ ^ - ^ |M|J . (/„ - /c)<5(E,y(k||) - hu) (5.10) 

where i and j refer to the conduction and valence subband indices, and Eij 

is the energy separation of the states. Lz is the quantum well width. Then 

the absorption coefl[icient for the quantum well is given by 
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In laser theory it is usual to give the gain 

g{hu) = -aihu) = - X ; cqjihu) (5.11) 
»y 

In chapter 2 we showed that it is reasonable to assume that the band-

structure of a quantum well is isotropic in the {x,y) plane, and introducing 

this assumption the gain expression becomes : 

or 9 ( M = E / ; ; ; p ^ ^ ^ ; ^ M | ( / « - W * ( % W - M M J 5 . j (513) 

where the joint density of states pij is given by 

dk k 
Pij 

TP dEi^ 
(5.14) 

Similarly the spontaneous emission rate is given by 

r.p(/ta;) = - ^ ^ ^ ^ ^ E / Pijfd^ ' fv) 6{E,j{k) - hu)dE,^ (5.15) 

5.4 Densities of States 

Due to the set of discrete energy subbands resulting from the 

confinement of carriers, the density of states in a quantum well displays a 

step-like behaviour. This is easily derived from the assumption of parabolic 

subband dispersion. The number of states per unit area within the range 

of wave vector from k to k + dk is (assuming isotropic two dimensional 
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bandstructure) given by 

N{k)dk = 2 X 2iTkdk 

where the factor of 2 arises from the spin degeneracy. Hence the density of 

states per unit area is given by 

For a parabolic subband E = so 

k m* 
p{E)dE - - ^ — d E ^ —^H{E)dE (5.17) 

for each subband, with 

for E < AEo 
for E > AEo 

where AEQ is the subband edge energy. 

For a set of subbands, we thus have 

777. • 
p{E)dE = J2-^HiiE)dE (5.18) 

Similarly the joint density of states is 

HE)^'^ = Ei:;^^''^Ae)^^E (5.19) 

where 

for E > AEi + AEj 

with AEi, ^Ej the band edge energies for subband z, j. The sum over i 

includes all conduction subbands, and that over j all valence subbands. 
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I t has already been shown in chapter 2, however, that real quantum 

well subbands can exhibit marked non-parabolicity, due to inter-subband 

wave function mixing effects. This results in deviations from the simple 

step-like behaviour of the density of states in the parabolic model, and to 

obtain accurate results it is necessary to calculate k/jrldE/dk] from the 

bandstructure. In order to do this, the bandstructure is first fitted to an 

expansion of cubic splines using a NAG subroutine (E02BAF) — details of 

the fitting procedure are given in Appendix B. Al l the calculations which use 

realistic bandstructure described henceforth utilise this fitting procedure to 

allow the calculations to be executed on a reasonable timescale. A similar 

fitting procedure is used to enable the in-plane wave vector dependence of 

the optical matrix elements to be included. 

The valence band density of states is shown in figure 5.2 for a 50A 

Ino.53Gao.47As/InP quantum well. (Refer to figure 2.4 for the bandstructure 

of this structure). The solid line represents the results obtained from a k.p 

bandstructure calculation and the dashed line shows the step-like behaviour 

given by a simple parabolic band approach. The effective masses used 

in the parabolic model were obtained from an approximate fit to the k.p 

bandstructure, and the subband energies used are taken directly from k.p 

results. (The effective mass for the parabolic fit was obtained by averaging 

the effective masses necessary for the subband to pass through each of three 

calculated points along the band). The threshold energies for the second 

and fourth subbands differ in the two models since the simple model does 
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not take account of the initial 'electron-like' behaviour of these subbands, 

which results in the subband minima lying away from the centre of the two 

dimensional Brillouin zone. 

I t is clear from figure 5.2 that the density of states obtained using 

the k.p model differs dramatically from the step-like behaviour predicted 

by the simple model. In particular, singularities occur in the density of 

states at energies corresponding to the turning points of those subbands 

which are 'electron-like' close to k = 0. It is worth noting that if bulk 

effective masses had been used in the parabolic band model the discrepancies 

between the two sets of results would be greater still, suggesting that a 

realistic description of the quantum well bandstructure is important in the 

modelling of a laser device. 

Figure 5.3 shows the density of states for the conduction band of the 

same heterostructure. Again the k.p results deviate fron those of the simple 

model, but in this case the difference is less dramatic, and the conduction 

band density of states fails to reveal the degree of structure which appears 

in the valence band results. This is to be expected since the conduction 

subband is close to parabolic (see figure 2.4a). 

The joint density of states is illustrated in figure 5.4. Much of the 

structure observed for the k.p results in the valence band density of states 

is absent from the joint density of states due to the low effective mass of 

the conduction band. Only the singularity resulting from the turning point 

in the second valence band remains; the other singularity disappears because 
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the conduction band has a lower eff"ective mass close to = 0 than the 

fourth valence band, so the total kinetic energy for this band pair increases 

wi th increasing in-plane wave vector, and does not show a turning point. 

5.5 Occupation Factors and Quasi-Fermi Levels. 

The Fermi occupation factors fc and /„ appearing in the gain 

(equation (5.13)) and spontaneous emission (equation (5.15)) rates are given 

by the usual expressions : 

^'(^') = e x p p . - f i ) A r | + i l̂ -̂ ") 

fc and /„ axe the probabilities that the conduction and valence band levels 

at Ec and E„ respectively contain an electron. It is important to note that 

lasers operate under non-equilibrium conditions so the qucisi-Fermi levels Fc 

and Fv wil l not, in general, be equal. They are calculated from the total 

number of injected carriers using the conditions 

1 r°o 

^ = ^ E fc{E)pi{E)dE (5.22) 

P = ^E r^^'^'i^ - U[E))p,{E)dE (5.23) 
where n and p are the densities of injected electrons and holes respectively 

and Lz is the quantum well width. (The charge neutrality condition n = p 

is used in all our simulations). The sum over i includes all conduction 
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subbands, and that over j includes all valence subbands. In the parabolic 

band approximation these integrals can be performed analytically to obtain 

n 

(5.24) 
^ m)kT -AEj-F. 

^ + kT 

where AEi {AEj) is the band edge energy of the t th ( j th) conduction 

(valence) subband. 

In the ful l k.p calculation the integrals are performed numerically 

using a NAG subroutine (DOIAJF). The integrals are calculated in wave 

vector space : 

_ J _ ^ /-̂ o kdk 
""'TTL^^JO l + exp[{Eiik]-Fc]/kBT] ^^'^^^ 

V = / / r T- (5.27) 
TTL.^JO l + exp[(F,-Ejik))/kBT] 

The integral is cut-off at an arbitrary wave vector /CQ, beyond which 

the probability of the subband being occupied is assumed to be negligible. 

In the calculations described the value ATQ = 0.18A ^ is chosen, which gives 

virtually zero probability of finding a carrier at the cut-off point, in either 

the conduction or the valence band. 

Figure 5.5 shows the electron and hole quasi Fermi levels (QFLs) as 

functions of the injected carrier density at 300K. The solid lines are obtained 

using the fu l l k.p bandstructure and the dashed lines from the parabolic 

approximation to these results described in the last section. As is to be 

expected, the QFLs move deeper into the subbands as the carrier density 
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is increased. I t is apparent that the non-parabolicity of the subbands has 

very little effect on the quasi Fermi level, although it should be noted that 

because the parabolic band results shown here are based on a fit to the 

k.p bandstructure it is to be expected that they will give similar subband 

occupancies. 

Figure 5.6 shows the dependence of the QFLs on temperature for a 

fixed carrier density (lO^^cm"^). As the temperature is increased, the mean 

kinetic energy of the carriers is raised, resulting in the QFLs being lowered 

in carrier (electron or hole) energy in order to keep the total number of 

carriers in the bands unchanged. 

5.6 Lifetime Broadening Effects. 

In the preceding discussion and calculations it has been assumed 

that only transitions which conserve in-plane momentum are permitted (the 

so-called k-selection condition). I t is immediately apparent from experimental 

gain spectra, however, that this condition is not rigidly upheld in a real 

device. These spectra do not exhibit the predicted step like structure; rather 

a series of smoothed peaks is observed, due to a broadening of the spectrum. 

The mechanism causing this broadening, and the effect of carrier 

density and energy on the lifetime associated with the process has been 

discussed recently by Kucharska and Robbins [12] and by Asada [13]. Both 

papers consider the broadening resulting from intraband scattering processes, 
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and Asada also includes longitudinal optical phonon scattering. The simplest 

example of an intraband scattering process is illustrated in figure 5.7. When 

an electron in the conduction band recombines with a hole in the valence 

band by the process of stimulated (or spontaneous) emission, the hole which 

is left behind in the conduction band can be filled by an electron as 

i t undergoes scattering with another electron in the subband. Thus the 

hole formed by the recombination process has a lifetime associated with it 

which is determined by the intraband scattering process, and this results in 

a broadening of the emission spectrum. I t is easy to appreciate that this 

lifetime is dependent on both the density of electrons in the conduction band 

and on the initial energy of the recombining electron, since these factors 

afi"ect the probability of finding two further electrons in suitable energy states 

to fill the resulting hole by an intraband scattering process. The precise 

form of these dependencies is discussed in detail by both Kucharska and 

Robbins [12] and Asada [13]. 

Many authors have included broadening effects in their models of 

laser gain and spontaneous emission spectra; usually, however, this is done 

by means of a constant intraband scattering time [14,15]. I t is impractical 

to implement the fu l l descriptions of the works mentioned above [12,13 

in our calculations, since this would make them restrictively expensive in 

computer time, but we do include in our model a broadening energy Tcv 

which varies linearly with energy in the region where the intraband scattering 

is dominant, and which is a material dependent constant for higher energies 
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(see figure 5.8). This broadening is readily included in the expression for 

the gain of the laser : 

(5.28) 

with Eel = electron kinetic energy 

and T = — 

(r.n is the intraband relaxation time). 

5.7 Optical Confinement Factor. 

So far we have only considered the optical properties of the active 

region of a quantum well laser device. However, the beam profile of the 

light emitted by such a device wil l , in general, be sufficiently broad that 

the light wi l l propagate not only in the active well and barrier regions, 

but also in a significant volume of the cladding regions of the device (see 

figure 5.9). In order to investigate the threshold condition of such a device 

(see following section), it is necessary to know what proportion of the light 

propagates within the active region (and experiences a positive net gain), 

and what proportion propagates within the barrier and cladding regions (and 

experiences a negative net gain). The important parameter to determine is 

the ratio of the light intensity within the active layer(s) to the total light 
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intensity, and is known as the confinement factor, usually denoted by F . 

Since the light intensity is given by the magnitude of the Poynting 

vector, which is proportional to the square of the electric field component 

parallel to the well-barrier interfaces, we obtain 

r = (5-30) 

for light which is propogating in the x direction and confined in the z 

direction. In general, the determination of T requires the calculation of 

the electric field distribution from the refractive index profile of the device, 

which is mathematically straightforward but computationally laborious. It 

has been shown by Streifer et al [16] that the transverse electric ( T E ) mode 

confinement factor of a multiple quantum well laser can be approximated 

by treating it as a single quantum well (three layer waveguide) device with 

the thickness of the active layer region equal to the total thickness, t, of 

the wells and barriers, and the refractive index of this region given by the 

average 

n = z (5.31) 

where t = Nwtw + NBIB (5.32) 

They show that this approximation gives results accurate to around 1% or 

better if the device only supports one T E mode, and to around 4% if the 

device supports two T E modes. 

Using this approximation the confinement factor is simply given by 

the appropriate three-layer confinement factor weighted by the proportion of 
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the central region which is active : 

7 is given by [17 

r = 7 ^ (5.33) 

7 ~ - J ^ (5.34) 

with r> = ^ ( n 2 - n 2 ) ^ (5.35) 

where Uc is the refractive index of the cladding region and Aq is the free 

space wavelength of the light. 

In figure (5.10) the variation of confinement factor with the num

ber of quantum wells in the structure is shown for three different M Q W 

laser devices. The solid line represents the confinement factor for an 

Ino.53Gao.47As/InP M Q W laser with 50A wells and 150A barriers. (The 

dependence of the confinement factor on the barrier width is small). This 

is the device structure we shall use to illustrate our model in this chap

ter. The dashed and dotted lines show the improvement that would be 

achieved by replacing the cladding InP region (with refractive index 3.19) 

by a region with refractive index of 3.1 and 2.9 respectively (a so-called 

separate confinement heterostructure (SCH)) . Clearly the structure we are 

considering is far from optimised with respect to optical confinement, but it 

will suffice to illustrate the model of laser properties and to evaluate trends. 

The optimisation of optical confinement and waveguiding properties can be 

regarded as a separate problem to that of the physics of laser operation, 

and since the former is well understood, we concentrate our attention in 
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this work on the latter problem. 

5.8 T h r e s h o l d Ca lcu la t ions . 

As the carrier density within the active region of a semiconductor 

laser is increased, the gain will be increased faster than the various optical 

losses (such as intervalence band absorption and light emission through the 

end facets), and eventually the gain will exceed the losses, resulting in 

the laser switching on. The properties of the laser in the region of this 

threshold condition are important factors in determining the usefulness of 

device. It is important to determine and optimise such properties as the 

operating wavelength (which depends upon the shape of the gain spectrum 

at threshold), the threshold current, and the gainslope, which is the 

rate at which the gain increases with increasing carrier density. The latter 

parameters determine the power consumption of the device, both at threshold 

and for a given intensity of the output beam. Clearly it is desirable to 

make the threshold current as low as possible, and the gainslope as high as 

possible. 

The threshold condition is readily identified from a consideration of 

gain and loss processes, and is given by [11 

Tgth = r a . + (1 - r ) a . + ^ I n (5.36) 

where T is the optical confinement factor, L the cavity length, R the end 
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facet reflectivity and OLO, and ac the optical losses within the active and 

cladding/barrier regions respectively. Intervalence band absorption is included 

in aa via a simple parameterisation of bulk values from the literature. The 

threshold condition is located using the N A G routine C 0 5 A G F to search for 

a zero net gain as the carrier density is varied. The threshold current is 

then obtained by calculating the total current due to spontaneous emission 

and Auger recombination at the threshold carrier density. 

5.9 R e s u l t s for a 5 0 A Ino.53Gao.47As/InP M Q W laser 

To illustrate the capabilities of the laser model we have developed, 

and to show how the results obtained differ from those obtained using a 

simple parabolic fit to the k.p bandstructure, we present the results of 

a study of the properties of a 50A Ino.53Gao.47As/InP multiple quantum 

well laser. The bandstructure and transverse electric mode matrix elements 

for a 50A single quantum well in this material system have already been 

discussed (in chapters 2 and 4 respectively), and we assume that the barriers 

are sufficiently wide that the structure acts as a set of iV ŷ independent 

quantum wells, rather than a short superlattice. The parameters used in 

these calculations are given in appendix 1. 

82 



5.9.1 G a i n S p e c t r a 

The importance of including realistic bandstructure details in the 

laser model is illustrated clearly by the gain spectra obtained (see figure 

5.11, which shows the gain spectrum of a 50A Ino.53Gao.47As/InP quantum 

well with an injected carrier density of 5xl0^^cm~^). The use of a parabolic 

band model overestimates the gain by about a factor of 2 — this confirms 

that the findings of Colak et al [18] for the G a A s / A l G a A s system hold 

more generally. This arises because of the reduced density of states near 

to the valence band edge predicted by the full model, and because the 

optical matrix element for this band edge transition is reduced slightly by 

intersubband wave function mixing. 

The results obtained using a rigid k-selection rule show clearly the 

relative strengths of the transitions between the different subband pairs, 

which show up as additional steps in the gain spectrum. The transition 

to the first light hole subband, which has a threshold energy of around 

0.93eV, is stronger in the k.p model than in the parabolic band model. 

This is due to the very high density of states of this subband near to the 

subband edge, which is not included in the simple approach. It is important 

to notice also that when lifetime broadening effects are included, the peak 

of the gain spectrum is shifted away from the QW band gap energy, and 

the peak gain is reduced slightly. For these reasons, it is important to 

include the broadening in any threshold calculations in order to obtain the 
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correct location of the threshold condition and hence the correct emission 

wavelength. 

Figure 5.12 shows the effect of increasing carrier density on the 

broadened gain spectrum. Obviously as the number of carriers present 

increases, the gain increases, but note that the band edge gain increases 

proportionately more as the carrier density is increased from 3 x lO^^cm"^ 

to 5 X lO^^cm"^ than it does when the carrier density is increased beyond 

5 X lO^^cm"^. This indicates that the first valence subband is very nearly 

full at p = 9 X lO^^cm"^, resulting in a saturation of the band edge gain. 

This conclusion is supported by the presence of a 'kink' in the gain spectrum 

at around 0.93eV in the p = 9 x lO^^cm"^ curve. This corresponds to the 

transition between the conduction subband and the second valence subband 

(which has n = 1 light hole character), suggesting that at this carrier density 

any further holes are mainly being injected into the second subband, rather 

than the first. 

5.9.2 Spontaneous E m i s s i o n 

Figure 5.13 shows the spontaneous emission spectrum of a 50A 

Ino.53Gao.47As/InP quantum well for an injected carrier density of 5 x 

lO^^cm"^. It is clear that the parabolic band model overestimates the 

strength of the spontaneous emission at the QW band gap energy, as is the 

case for the gain spectrum. Again this is due to overestimating the density 
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of states at the valence band edge. On the other hand, the strength of the 

spontaneous emission at the threshold energy for the transition involving 

the second valence subband is underestimated by the simple model; this is 

due to the sharp peak in the density of states at this point predicted by 

the k.p model, corresponding to the electron-like dispersion of this subband 

near to the centre of the two dimensional Brillouin zone. In fact, this 

transition can be seen to give rise to a larger spontaneous emission than the 

band edge transition in the k.p model at this carrier density. This becomes 

more pronounced when broadening effects are included. This effect of the 

spontaneous emission spectrum being dominated by transitions involving 

excited subbands is frequently observed experimentally, but rarely predicted 

by parabolic subband models (except at high carrier densities). 

5.9.3 T h r e s h o l d Ca lcu la t ions 

In this section the threshold condition for a 50A Ino.53Gao.47As/InP 

M Q W laser system is studied as the number of quantum wells in this 

structure is varied. A cavity length of 250//m and a facet reflectivity of 0.32 

are used for these calculations. If insufficient wells are present in the device, 

then the gain within the active region cannot easily overcome the losses in 

the outer cladding region of the device. If too many wells are present, there 

is an element of 'overkill' — once enough wells are included to ensure that 

threshold is easily achieved, any additional wells draw extra current without 
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significantly enhancing the light output, thus raising the threshold current. 

This is well illustrated in figures 5.14 and 5.15, which show the 

threshold carrier and current densities respectively. The solid lines show 

the results obtained by including the k.p bandstructure and matrix element 

details; the dashed lines are obtained using a parabolic fit to the k.p 

bandstructure. Both sets of results include lifetime broadening effects. The 

threshold carrier density reaches a minimum for Nw > 10 wells (in the 

full model), and the addition of further wells only marginally reduces the 

required carrier density. Since the current is proportional to the number of 

wells, however, the threshold current density is seen to increase for Nw > 10; 

clearly the optimum number of wells for this device is around 8 - 1 0 . 

The parabolic subband threshold current results appear to be similar 

to those obtained using the full model, but shifted with respect to the number 

of wells. For a small number of wells, the threshold carrier density is high, 

so the predicted gain at the emission wavelength (for a given carrier density) 

is much lower in the k.p model. The total spontaneous emission predicted 

by the two models, however, is of the same order, since this process is 

in this case dominated by transitions involving the highly populated second 

valence subband, and in this region of the spectrum the spontaneous emission 

curves obtained by the two models are similar. Hence the predicted threshold 

carrier density is higher in the full k.p model. For a large number of wells, 

the threshold carrier density is low, so whilst the k.p results predict a lower 

gain, they will also predict a lower spontaneous emission, since the number 
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of carriers in the dominant second valence subband will be reduced. These 

effects tend to balance each other, resulting in a slightly lower threshold 

carrier density (and hence threshold current density) than is obtained using 

the simple parabolic model. 

Figure 5.16 shows the gainslope at threshold of the device (the rate 

of increase of gain with carrier density). This determines the rate of increase 

of emitted light intensity with current once the device has reached threshold. 

The gainslope is lowest where the threshold carrier density is highest, since 

in this region the gain has started to saturate. The dramatic overestimate 

of the gainslope given by the simple parabolic subband approach clearly 

demonstrates the importance of including the full bandstructure and matrix 

elements in the model of laser performance. 

Figure 5.17 shows the variation with number of wells of the lasing 

energy at threshold — this is the photon energy at which the emitted 

intensity is the greatest. The results merely reflect the fact that the peak 

in the gain spectrum shifts to a higher energy as the carrier density is 

increased (see figure 5.12). 

Figure 5.18 illustrates the variation of linewidth enhancement factor, 

a, with the number of wells in the device, a is a measure of the improvement 

in the spectral linewidth over the conventional prediction that the linewidth 

varies inversely with the output power [19]. It can be seen that the predicted 

linewidth, which is determined by ( l + a^), is smaller in the full model than 

in the simpler approach. 
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5.10 Summary and Conclusions 

In this chapter we have discussed the physics of the quantum well 

laser, and outlined the way in which such a device can be modelled. 

The model which has been developed includes the effects of non-parabolic 

subband dispersion, matrix elements modified by intersubband wave function 

mixing, and an energy dependent lifetime broadening. The model enables 

the calculation of gain and spontaneous emission spectra and threshold 

properties, and is currently believed to be the most complete model of its 

kind reported. 

We have illustrated the importance of including the full k.p results 

and lifetime broadening effects by considering the results obtained for a 

50A Ino.53Gao.47As/InP MQW laser. Although the parabolic model used 

a fit to the full k.p results, and is hence a much better model than a 

more traditional effective mass type approach, it still proved to be incapable 

of reproducing many of the features of the full model, in particular it 

overestimates the gain by around a factor of two. 

In the next chapter we use the model described here to study 

the effect of strained layers on laser performance, using the strained layer 

bandstructure methods discussed in chapter 3. 
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C H A P T E R S I X 

S T R A I N E D L A Y E R Q U A N T U M W E L L L A S E R S 

6.1 Introduction 

In an earlier chapter we discussed how the presence of an elastic 

strain in a lattice mismatched heterostructure can modify the bandstructure, 

and in particular can lead to a reduction in the effective mass of the lowest 

valence subband through an increase in the separation of the light and 

heavy hole subbands. It was suggested independently by Adams [l] and by 

Yablonovitch and Kane [2] that this effect can be used to lower the threshold 

current of a multiple quantum well laser by reducing the number of carriers 

required to achieve population inversion, and offers the prospect of tailoring 

devices for optimum operation at the desired wavelength by independently 

varying the strain (through varying the material composition of the well 

region) and the quantum well width. The lower effective mass of the 

strained structure is also predicted to lead to reduced Auger recombination 

and intervalence band absorption losses [l], resulting in not only a reduction 

in the threshold current and an enhanced efficiency, but also in an improved 

temperature stability. 

Several authors have reported calculations of the threshold current 

and other device parameters in strained layer laser structures [3-6], and 
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have confirmed that such devices can possess significant advantages over 

conventional quantum well lasers. Some of these calculations, however, 

neglect valence subband non-parabolicity and/or energy dependent linewidth 

broadening effects, both of which were shown in the previous chapter to 

be significant omissions. There has also been considerable interest in these 

devices amongst experimental workers, and there have been several recent 

reports of the successful growth and operation of strained layer lasers [7,8 . 

The devices grown have, as expected, shown low threshold current, high 

output power and efficiency and a reduced temperature sensitivity. The 

InGaAs(P) materials system has generated most interest, with the active 

regions designed for 1.3//m or 1.55/im operation (these wavelengths correspond 

to optical fibre transmission windows); devices are usually grown on a GaAs 

or In? substrate. 

In this chapter we investigate the effect of strain on the performance 

of both 1.3/xm and 1.55/xm InGaAs/InP multiple quantum well lasers, and 

include the effects of realistic bandstructure and optical matrix elements and 

linewidth broadening, using the model described in the previous chapter. 
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6.2 Design of Strained Layer Structures 

The introduction of strain into a quantum well laser requires the 

alloy composition of the well (or in some materials systems the barrier) to 

be modified. This has the rather unfortunate effect of changing the bandgap 

of the active region, and thus altering the wavelength at which the device 

will operate. In order to overcome this problem, it is necessary to adjust the 

quantum well width of the device. An estimate of the well width required 

to preserve the operating wavelength can be obtained from 

Ex = E'g +E'o + El + AE° + A £ f (6.1) 

and A = - ^ (6.2) 
Ex 

where E\ — bandgap of strained QW 

E^ = bulk bandgap of unstrained well material 

EQ = confinement energy of lowest conduction subband 

El = confinement energy of lowest valence subband 

AEg = change in bandgap due to change in alloy composition 

of well material 

A£'^* = change in bandgap due to strain 

h — Planck's constant 

c = velocity of light 
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In practice A will not correspond exactly to the operating wavelength 

of the laser, since broadening effects will tend to shift the peak in the gain 

spectrum to higher energy, but selecting quantum well widths to give the 

same values of Ex will enable us to obtain comparable devices, and will 

eliminate any specifically bandgap dependent effects. 

Since Ex will only be an approximation to the actual emitted 

photon energy of the device, it is adequate to use simple expressions for 

the individual terms in equation 6.1. The bulk bandgap of the unstrained 

well material, Eg, is simply the bandgap of Ino.53Gao.47As, 0.75eV. EQ and 

*2 2 

EQ are obtained from the effective mass approximation £'0 — where 

Lz is the quantum well width, and AEg is calculated by assuming a linear 

bandgap dependence on the indium fraction x of the alloy between the limits 

X = 0.53 (Ino.53Gao.47As, Eg = 0.75eV) and x = 1.0 (InAs, Eg = 0.354eV). 

The change in bandgap caused by the strain is obtained using an empirical 

fit to the results previously described (chapter 3) which were obtained for 

a structure with an artificial strain (figure 3.6). 

Solving equations 6.1 and 6.2 allows us to obtain the quantum well 

widths appropriate for 1.3/im and 1.55/xm operation of InGaAs/InP devices 

with indium fractions of 0.53, 0.63 and 0.73. The results are given in 

figure 6.1. From this graph we obtain well widths of 80A, 53A and 43A 

for 1.55nm devices, and 40A, 35A and 31.5A for 1.3/xm devices for indium 

fractions of 0.53, 0.63 and 0.73 respectively. These well width estimates are 

considered sufficiently accurate for the calculations we perform, in which the 
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main concern is to ensure that the devices will operate close to the required 

wavelength in order to remove any wavelength dependent effects from the 

results. If information for the growth of these devices were required, the 

operating wavelength would be more critcal, and it would be necessary 

to adjust the well widths used in the model until the peak in the gain 

spectrum occured at the desired energy. This procedure is straightforward, 

but extremely time consuming, since each adjustment of the well width 

requires the calculation of a new set of quantum well bandstructure. 

The optical confinement factors of InGaAs/InP MQW lasers are 

relatively small, and for this reason InGaAlAs (lattice matched to InP and 

with the aluminium-gallium ratio chosen to give the InP band gap), which 

gives better optical confinement due to its higher refractive index, is often 

used as the barrier material instead of InP. However, the effective masses 

and bandstructure parameters of quaternary materials are not well known, 

and this introduces an uncertainty into calculations on structures containing 

InGaAlAs. In fact, the bandstructure of either barrier material does not 

make much difference to the properties of the bound states of the quantum 

well, because most of the wave function lies within the well region. Hence 

we adopt a compromise in this work, whereby the bandstructure of InP is 

used in the barrier regions, but the refractive index of InGaAlAs is assumed 

when calculating optical confinement factors. Thus although we refer to all 

the devices investigated in this chapter as InGaAs/InP devices, they could 

equally well be considered to be InGaAs/InGaAlAs structures. 
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6.3 Results for 1.55//m Devices 

6.3.1 Bandstructure and Optical Matrix Elements 

The effects of strain on the bandstructure of a quantum well were 

discussed in detail in chapter 3. It was shown that whilst the conduction 

band remains largely unaffected by the strain (apart from a shift in energy 

of the whole bandstructure), the valence band is modified by the shifting of 

the my = I 'light' holes to higher hole energies relative to the my = | 'heavy' 

holes as the strain increases. This reduces the influence of intersubband 

wave function mixing on the first valence subband, and can reduce the 

effective mass of this subband. In the structures considered in this chapter, 

the effect is enhanced by the increased separation of the subbands caused 

by the reduced quantum well width used in the strained structures. 

The bandstructure of the three devices is shown in figure 6.2.̂  The 

only noticeable difference between the conduction band results is the presence 

of an additional bound subband in the unstrained (Ino.53Gao.47As/InP) device, 

due to the wider wells (80A) chosen for this structure. Note that the 

energy scale in each case starts at the bulk conduction band edge of the 

^ The kinks in the bandstructure at large in-plane wave vector are not real effects — 

the diagrams illustrate the bandstructure as fitted to a cubic spline expansion, as described in 

Appendix 2, and the cubic spline fit is replaced by a simple parabola outside of the range of 

calculated points. This gives rise to a small discontinuity in the derivative of the dispersion 

relation. 
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well material. The valence bandstructure, on the other hand, is markedly 

modified by the strain and by the reduced quantum well width. The 

expected reduction of wave function mixing and associated lowering of the 

effective mass of the lowest (in hole energy) subband can be seen when the 

unstrained and strained (with the well region under a biaxial compression) 

structures are compared closely. It is interesting to note, however, that most 

of the reduction in effective mass appears in this case to result from the 

presence of a moderate degree of strain (|% mismatch in lattice constant). 

The difference in effective mass of the first valence subband between the 

Ino.63Gao.37As/InP (|% mismatch) and Ino.73Gao.27As/InP ( l | % mismatch) 

is small. 

The removal of wave function mixing is also manifested in the optical 

matrix elements, which are shown in figure 6.3 for the transverse electric 

mode for transitions between the (first) conduction subband and the first 

five valence subbands. In the unstrained device all these transitions have 

an appreciable optical matrix element over a wide range of in-plane wave 

vector, but the strained devices follow the An = 0 selection rule far more 

closely, especially the Ino.73Gao.27As/InP quantum well. 

6.3.2 Gain and Spontaneous Emission 

The reduction of the effective mass of the lowest valence subband 

observed in the strained quantum wells, coupled with the increased subband 

separation resulting from the narrower well widths used in the strained 
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structures maJtes it easier for the carrier population to be inverted in the 

strained devices. For a given injected carrier density, a higher proportion 

of the injected holes will occupy states close to the valence band edge in 

the strained devices, resulting in higher gain around the band gap energy. 

This is illustrated in figure 6.4, which shows the peak gain achieved as a 

function of the injected carrier density for each of the three 1.55/xm devices. 

For hole densities p > 3 x lO^^cm"^, it is clear that the peak gain increases 

significantly with strain in the range considered. However, for hole densities 

between 2 and 3 x lO^^cm"^ the two strained devices are predicted to have 

similar peak gains. In the next section we discuss the impact of this result 

on the threshold properties of the device. 

Figure 6.5 shows the spontaneous emission current density as a 

function of injected carrier density for MQW devices containing six quantum 

wells. The strained devices show a reduced spontaneous emission current, 

which is not surprising since these devices have reduced well widths and 

hence a smaller volume of active material. However, this factor cannot 

account for all of the observed reduction in spontaneous emission and it 

appears that the strained devices exhibit an intrinsic reduction of this loss 

mechanism. 

Spontaneous emission is just one of the processes responsible for the 

device current; Auger recombination is also included in the device model 

(see chapter 5), although the current arising from that is not calculated 

with reference to the bandstructure of the device, and will be unaffected 
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6.8). Again, this can be seen from figure 6.4, which shows that the gain 

increases faster with increasing injected carrier density as the amount of 

strain in the structure is raised. The most highly strained structure shows 

a threefold increase in the gainslope at threshold. 

The linewidth enhancement factor, plotted as a function of the 

number of quantum wells in figure 6.9, is found to be very low (in absolute 

value) in the strained devices, lying in the range -0.9 to -1.0, compared 

with a value of -1.4 to -1.5 for the unstrained structure. This result is 

in good agreement with the recent experimental findings of Dutta et al 

[9]. The reader should recall that even the unstrained value is much lower 

than the value of around -2 predicted for unstrained devices by parabolic 

subband models (see chapter 5). However, once again it appears that most 

of the improvement offered by the strained devices can be achieved with a 

moderate degree of strain. 

The temperature dependence of the threshold current in the three 

devices has also been investigated, and the results are given in figure 6.10. 

It should be noted that the Auger recombination and intervalence band 

absorption (IVBA) rates in this calculation use parameters characteristic of 

an unstrained device for all three structures, and any possible reduction 

in these processes arising from the strain is neglected. Even omitting this 

factor, we still find the value of Tq (where J ( T ) = Joexp(r/ro)) for structures 

containing 6 quantum wells is increased from 96K in the unstrained device 

to lOOK in the moderately strained device and 109K in the highly strained 
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device, for temperatures in the range 200K to 300K. It thus appears that 

the strained devices offer an intrinsic improvement in Tq additional to that 

expected to result from changes in Auger and IVBA coefficients. 

6.4 Results for l.Sfiui Devices 

6.4.1 Bandstructure and Optical Matrix Elements 

The well widths of the MQW structures needed for 1.3^m operation 

are significantly smaller than those required for 1.55/im. This results in 

an increased separation of the confined valence subbands, and a reduction 

in their number. This is especially true of the unstrained structure (see 

figure 6.11a and compare with figure 6.2a), which has a well width of 

40A in the 1.3//m devices and 80A in the 1.55/.im devices. The strained 

structures (figure 6.11 b,c), most notably the Ino.63Gao.37As/InP well, have 

the interesting feature that the second and third valence subbands lie very 

close together (this is also true of the fourth and fifth subbands, but these 

bands are not highly populated for the carrier densities we consider). This 

results in a large amount of mixing of wave function character between 

states in the subbands. The mixing does not affect the first subband 

which, as was found for the 1.55/im wells, exhibits a reduction in effective 

mass as the strain in the structure is increased. Again this reduction can 

be achieved with only a moderate degree of strain, although the slight 

reduction in the mixing between states in the second and third subbands in 

101 



Unstrained 

0.10 + 

0.05 + 

0.00 0.01 0.02 0.03 0.0A 0.05 0.06 0.07 0.08 0.09 0.10 

In-plane wave vector, A;|| (A~') 

0.00 

-0.40 

H 1 1 1 H 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 

In-plane wave vector, fc|| (A"') 

0.07 0.08 0.09 0. 10 

Bandstructure of 40A Ino.53Gao.47As/InP quantum well. 

Figure 6.11a 



1 % lattice mismatch 

0.15 4-

0.00 0.01 0.02 0.03 O.O'i 0.05 0.06 0.07 0.08 0.09 0.10 

In-plane wave vector, fc|| (A~^) 

-0.05 4-

-0.10 

-0.30 + 

-0. 40 
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

In-plane wave vector, (A"^) 

Bandstructure of 35A Ino.63Gao.37As/InP quantum well . 

F i g u r e 6 .11b 



1 ^ % lattice mismatch 

D. 10 + 

0.00 0.01 0.02 0.03 0.0« 0.05 0.06 0.07 0.08 0.09 .0.10 

In-plane wave vector, fcii (A~^) 

0.00 

-0.05 4-

-0. 30 

-0.40 

-0.50 H h- H i 1 H 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

In-plane wave vector, ^|| (A"') 

Bandstructure of 31.5A Ino .73Gao.27As /InP quantum well . 

F i g u r e 6.11c 



the Ino.73Gao.27As/InP device compared w i t h the Ino.63GcLo.37As/InP device 

does result i n the former structure maintaining the reduction in the effective 

mass of the ground state subband over a larger range of in-plane wave 

vector than the latter. 

The T E mode optical mat r ix elements of these structures are shown 

in figure 6.12. I n al l three quantum wells the overall degree of mixing 

evident is less than that in the 1.55/xm devices, although the strong mixing 

between the second and t h i r d subbands in the two strained 1.3/xm structures 

results i n the c l - l h l oscillator strength being distributed between these two 

subbands in these devices. 

6.4.2 G a i n a n d Spon taneous E m i s s i o n 

The peak net gain of the three l.S/xm devices is shown as a funct ion 

of injected carrier density in figure 6.13. I n this case, the improvement 

offered by the highly strained Ino.73Gao.27As/InP wells over the moderately 

strained Ino.63Gao.37As/InP structures is less significant than for the 1.55/xm 

devices. The peak gain is lower in the more highly strained device for 

injected carrier densities below about 4 x lO^^cm"^. The strained structures 

again show a much higher peak gain than the lattice matched device, 

although the latter shows a considerably higher gain than the unstrained 

1.55/im device due to the increased valence subband separation resulting 

f r o m the reduced quantum well w i d t h . The spontaneous emission current, 

given in figure 6.14, is very similar in all three devices. The slight difference 
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seen is mainly due to the different well widths of the devices, rather than 

the strain. 

The net gain obtained for a given to ta l current density is shown 

in figure 6.15. The net gain is highest in the | % lattice mismatched 

Ino.63Gao.37As/InP device. The lower optical confinement factor of the 

l | % mismatched Ino.73Gao.27As/InP device results in this structure having a 

slightly lower net gain, but both of the strained devices have around twice 

the net gain of the unstrained device for a given current. As we discussed 

for the 1.55/xm structures, this arises f r o m the reduced effective mass at the 

valence band edge, which results i n a higher proport ion of the injected holes 

occupying states around this point . 

6.4.3 Threshold Properties 

The threshold properties of the l.Sfim devices show a strain de

pendence which is qualitatively similar to that of the 1.55/xm lasers. The 

threshold currents (figure 6.16) are all considerably higher in the l.S/zm 

devices due to the reduced optical confinement resulting f r o m the narrower 

quantum well widths used in these structures, but again the unstrained device 

shows a much higher threshold current density than either of the strained 

structures. The moderately strained ( | % lattice mismatch) device has a 

slightly lower threshold current than the highly strained mismatch) 

device, which reflects the fact that the latter device has a lower net gain 

than the former for injected carrier densities less than about 4 x l 0 ^ ^ c m ~ ^ , as 
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shown in figure 6.13. Tha t figure also showed that the gain increases more 

rapidly w i t h increasing carrier density in the highly strained structure, and 

this is confirmed by examining the gainslope at threshold shown in figure 

6.17. The gainslope of the lattice matched device is considerably lower than 

tha t of either of the strained structures. 

The l inewidth enhancement factor of the 1.3|xm lasers is also improved 

by the strain, as demonstrated by figure 6.18, but this improvement is not 

so marked as i t is i n the 1.55/im devices. This is because the enhancement 

factor of the unstrained device is lower (in absolute value) in the 1.3//m 

structure than in the wide well 1.55fxm device, which reduces the scope for 

improvement i n the former device. The enhancement factor of the strained 

devices is largely unaffected by the reduction in well w i d t h required to 

change the operating wavelength. 

The variat ion of the threshold current w i t h temperature is shown 

i n figure 6.19. The two strained devices bo th show a reduced temperature 

dependence (To = 103K for the Ino.73Gao.27As/InP device and Tq = 97K for 

the Ino.63Gao.37As/InP device) compared w i t h the lattice matched device 

(To = 82K) . Again i t must be noted that the effect of strain on the 

intervalence band absorption and Auger recombination coefficients has not 

been included in this calculation, so the actual improvement in temperature 

stabi l i ty offered by strain is likely to be even greater. 

104 



50 

45 4-

40 

35 4-

xlO -30 
Highly strained (Ino.73Gao.27As/InP) 

Moderately strained (Ino.63Gao.37As/InP) 

Unstrained (Ino.53Gao.47As/InP) 

- i 1 1 i 

8 10 12 14 

Number of quantum wells, Nw 

16 18 20 

Gainslope of 1.3/im devices. 

Figure 6.17 



-0. 80 . 

-0. 85 4-

a -0-90 4-
IH 

o 

(3 

E <u 
<J 

li 
IS 
V 

•73 

-0 .95 4-

.1.00 

.1.05 4-

.1 .30 

-1 . 15 

-1.20 4-

.1.25 

Unstrained (Ino.53Gao.47As/InP) 

B : Moderately strained (Ino.63Gao.37As/InP) 

C : Highly strained (Ino.73Gao.27As/InP) 

10 12 1A 

Number of quantum wells, Nw 

16 18 20 

L i n e w i d t h enhancement factor of 1.3Aim devices. 

Figure 6.18 



AOOO . 

's 

5500 4-

3000 4-

2500 

A : Unstrained (Ino.53Gao.47As/InP) 

B : Moderately strained (Ino.63Gao.37As/InP) 

C : Highly strained (Ino.73Gao.27As/InP) 

2000 4-

c 
V 

T 3 

o 
2 ,500 
-£3 

1000 

500 

1 1 1 1 1 H — 

too 120 140 160 180 200 220 

Temperature (K) 

240 260 280 300 

Temperature dependence of threshold current for 1.3;im devices. 

Figure 6.19 



6.5 Conclusions 

The results presented in this chapter demonstrate that the use of a 

lattice mismatched quantum well structure can enhance the performance of 

mult iple quantum well lasers, confirming the suggestions of Adams [ l ] and 

Yablonovitch and Kane [2] and the findings of several authors using less 

complete models. The results obtained show that such strained layer devices 

can have numerous advantages over conventional M Q W lasers including a 

reduction in the threshold current density and its temperature dependence, 

a reduction in the absolute value of the l inewidth enhancement factor, and 

an increase in the gainslope. Indeed, no property investigated here has been 

found to be affected detrimentally by the strain. 

I t has been quite widely believed that the enhancement in perfor

mance of a laser w i l l increase w i t h increasing strain. This work has shown 

tha t , at least for the devices considered here, this is clearly not the case. 

Whi ls t the current requirements at high output levels of the 1.55//m devices 

may show a monotonic reduction w i t h increasing strain (this appears not to 

be the case for the 1.3/im devices), this effect is certainly not linear, w i t h 

the reduction in current becoming proportionately less at higher levels of 

s t rain. For b o t h the 1.55/im and 1.3(j,m devices investigated in this chapter, 

most of the enhancement in overall laser performance can be achieved wi th 

moderate amounts of strain ( | % mismatch in lattice constant) present in 

the structure. 
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The reason for this can be seen from the quantum well bandstructure. 

Only a moderate amount of strain is necessary to shift the first my = | 

'light' hole subband to a sufficiently high hole energy that wave function 

mixing between states in this subband and states in the first my = | 'heavy' 

hole subband is eliminated, resulting in a reduction in the effective mass 

of the ground subband. This increases the proportion of carriers at the 

valence band edge, and thus enhances the gain. The reduction in quantum 

well width necessitated by the strain also plays a role by increaising the 

separation of the my = | subbands, but this advantage is countered by the 

reduced optical confinement factor of devices with narrow quantum wells. 

The reduced optical confinement is one reason why further increases in 

the level of strain are less effective in giving greater device performance. 

Another reason is the fact that once the my = | subband has moved to a 

sufficiently high hole energy that it no longer mixes at all with the first 

my = I subband, any further movement has no effect on the effective mass 

of the ground subband. 

Comparison of the performance of the unstrained 1.55^m and 1.3/im 

devices confirms that merely reducing the quantum well width does not 

give a better device — clearly the strain is the most important factor 

in explaining the improved characteristics of the Ino.63Gao.37As/InP and 

Ino.73Gao.27As/InP devices. 

The fact that enhanced laser performance can be achieved with only 

a moderate degree of strain becomes important when the critical thickness 
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of the strained epilayers is considered. The 1.55//m laser requires at least 5 

quantum wells to be present in the device if a low threshold current is to 

be achieved. This corresponds to a total strain (lattice mismatch x total 

strained layer thickness) of around 200A% for the Ino.63Gao.37As/InP device, 

but well over 300A% for the Ino.73Gao.27As/InP structure. A device with a 

total strain of 200A% is likely to be possible, but the prospects of growing 

reliable devices with over 300A% strain are less promising. 
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C H A P T E R S E V E N 

I N T E R V A L E N C E B A N D A B S O R P T I O N I N S T R A I N E D 

Q U A N T U M W E L L S 

7.1 Introduction 

In previous chapters of this thesis we described a method for obtain

ing quantum well bandstructure and wave functions in unstrained (chapter 

2) and strained (chapter 3) systems. The results obtained for the bound 

states of the quantum well were then applied to a study of gain and spon

taneous emission processes in quantum well lasers (chapters 5 and 6). It 

was also shown in chapter 2 that unbound states of the quantum well can 

be calculated using the same method. In this chapter the contribution of 

these unbound states to intervalence band absorption (IVBA) in strained 

and lattice matched quantum wells is investigated. 

7.2 The Intervalence Band Absorption Process 

Intervalence band absorption is the main optical loss mechanism in 

semiconductor lasers, and it has been suggested that it is partly or largely 

responsible for the temperature dependence of the threshold current of these 

devices [1-4], although this assertion has since been questionned by a variety 
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of authors, most of whom suggest that Auger recombination is the main 

cause [5-8]. The IVBA process involves the absorption of light with the 

excitation of an electron from a deep valence band state to an unoccupied 

level nearer to the valence band edge. Clearly this process requires the 

initial presence of a hole in the final state which is therefore usually close 

to the valence band edge. 

In a conventional double heterostructure (DH) laser, the main con

tribution to IVBA arises from transitions from the spin-orbit split-off" band 

to the heavy hole band, as shown in figure 7.1 [8]. A smaller contribution 

also arises from transitions to states in the light hole band. In a quantum 

well laser, however, there are two distinct types of process which can occur. 

The bound-bound transition, shown as A in figure 7.2, in which an electron 

in a bound spin split-off subband^ is excited into a bound light or heavy 

hole subband wil l tend to dominate in structures where the band gap Eg 

and the spin-orbit splitting energy A are comparable. In InGaAs devices 

suitable for operation in the 1.3fj,m to 1.55/im range, however, the band 

gap is 2-3 times the spin-orbit splitting. In such systems the bound-bound 

transitions can only occur (neglecting phonon assisted transitions) between 

states with very large in-plane wave vector where few holes reside. However, 

^ The spin split-off states experience a confining potential due to the different spin orbit 

splitting energy A and valence band offset AEy of the well and barrier materials in the same 

way as electrons and light and heavy holes are confined by the band edge potential. In general 

the depth of the spin split-off well will differ from that confining the other holes. 
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the bound-unbound process, shown as B in figure 7.2, which can occur even 

at zero in-plane wave vector, could be important. 

Calculations of IVBA in bulk materials, and of bound-bound pro

cesses in (unstrained) quantum wells have been carried out using approaches 

of varying sophistication [8-11], but to the author's knowledge there have 

previously been no reports of calculations of bound-unbound absorption 

rates. The bound-bound IVBA rate is straightforward to calculate using 

the k.p model described in chapter 2. Essentially the procedure to be 

followed is similar to that used to obtain gain and spontaneous emission 

spectra described in chapter 5, the only significant difference being that both 

of the subbands involved have the same type of curvature. The bound-

unbound absorption process is somewhat different because transitions of a 

given energy can occur to all the states occupied by holes in a given bound 

subband, even when the k-selection rule is strictly applied. In contrast the 

bound-bound transitions occur only for wave vectors on a closed curve in 

the two dimensional wave vector space for which the intersubband energy 

separation is the appropriate value. For this reason a new set of unbound 

wave functions and optical matrix elements must be calculated each time 

the transition energy is changed, which means that a large processing time 

is required to obtain a spectrum containing points at more than a few 

different wavelengths. I t is somewhat easier to adjust the temperature or 

hole density in the calculation at a given wavelength, and in this thesis we 

concentrate on the influence of these parameters on the IVBA rate, with 
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only a brief investigation of the wavelength dependence. 

7.3 Theory of Bound-Unbound F V B A Processes 

The absorption rate for intervalence band transitions is obtained in 

the same way as that for the fundamental absorption as described in chapter 

5, and for the bound-unbound process is given by (cf. equation 5.10) 

a = , ^ f UB - fu)8{EB -Eu- aa;)d«k (7.1) 

JB and fu now represent the probability of the bound and unbound 

states respectively being occupied by a hole. \M\^^ is the optical matrix 

element (averaged over TE and T M modes) between the initial unbound 

and final bound states. 

The delta function can be transformed in the standard manner to 

facilitate the integral over wave vector 

dEjj 
dkz 

The kroot are the values of the z component of the wave vector of the 

unbound states which are the roots of the delta function for a given in-

plane wave vector /:||. UB represents the bound subband index. 

For a given transition energy hu; the unbound states corresponding 

to the roots of the delta function lie on a 'quasi-subband' which has the 

same dispersion with A;|| as the bound subband but displaced by an energy 
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huj, as shown in figure 7.3. The roots can be categorised according to the 

nature in the barrier material of the corresponding unbound state. Hence 

the sum over the roots includes unbound light and heavy hole states and 

(at energies above the top of the spin split-off well) spin split-off holes. At 

any energy the z dependence of the unbound state wave functions exist with 

both even or odd parity and for each of these two spin states are possible. 

The absorption rate is obtained by carrying out the integration over wave 

vector : 

a = E [ i f B - f u ) T , E E m l B 
«_•/ 1_T__JJ !_ 

27rk 1 
dEf, 
dkz kz 

-dk, (7.3) 

Ih even so 

dEuIdkz\~^ is actually proportional to the density of unbound states 

at a given A;||. This density of states is determined by the behaviour of 

the wave function in the barrier region, and is obtained from the bulk 

bandstructure of the barrier with in-plane wave vector The integral 

in (7.3) is evaluated numerically using the trapezium rule, calculating the 

integrand at 20 points along the subband from /cy = 0 to fcy = O.lA ^ for 

each bound subband. 

7.4 Results and Discussion 

Intervalence band absorption rates have been calculated over a range 

of carrier densities and temperatures for each of the six devices described in 

the previous chapter, namely InGaAs/InP quantum wells suitable for 1.3/̂ m 
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and 1.55/im laser operation with 0%, | % and 1^% mismatch in lattice 

constant between the well and barrier materials. 

Figure 7.4 shows the temperature variation of the bound-unbound 

I V B A coefficient for the 1.55//m devices for transitions at the band gap 

energy with a hole density of 2 x lO^^cm"^. The overall magnitude of all 

the absorption coefficients are considerably smaller than those obtained for 

calculations of bound-bound IVBA rates [ l l ] . This is because the bound-

bound process is dominated by transitions form an n = 1 spin split-off 

subband to an n = 1 heavy or light hole subband. The overlap between 

the envelopes of two n = 1 states is considerably larger than the overlap 

between an n = 1 state and an unbound state which has several nodes. 

The unstrained and moderately strained devices show only a small 

increase in IVBA as the temperature is increased. The highly strained device 

shows a higher temperature dependence, although even for this structure the 

absorption only increases by a factor of 3 over the range of temperatures 

considered (lOOK to 400K), which is considerably less than that predicted for 

bulk InGaAs [8]. Figure 7.5 shows the effect of temperature on the bound-

unbound absorption rate at the band gap energy for the 1.3/iim devices, 

at the same hole concentration as above. Al l of these devices have IVBA 

coefficients which are largely unaffected by temperature. 

The small temperature dependences observed arise because the re

distribution of carriers within the subbands as the temperature changes does 

not greatly modify the absorption. For the bound-bound (and bulk) tran-
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sitions, moving a hole along a subband will change the possible transition 

energies associated with that carrier, and hence modify the spectrum. On 

the other hand, for the bound-unbound process, transitions of a given energy 

are possible into all states of the bound subband, as long as the energy 

is sufficient to allow bound-unbound transitions. The effect of temperature 

on the bound-unbound absorption rate is thus dominated by the effect of 

exciting holes into higher subbands. This wil l increase the overlap between 

the bound and unbound wave functions and hence enhance the optical matrix 

element. 

The dependence of the absorption coefficient on the hole density is 

shown in figure 7.6 for the 1.55/zm structures and in figure 7.7 for the 1.3fim 

devices. The IVBA rate is found to increase linearly with hole concentration, 

which is the same result as has been obtained for both bulk materials [8] 

and for the bound-bound quantum well rate in the GaAs/AlGaAs system 

11 . 

The bound-unbound absorption spectrum has been investigated for 

the 1.3/.im devices. (The large requirements of CPU time (3500s per point 

on the spectrum per device) made this calculation possible for only one 

set of devices). The results are shown in figure 7.8. For the unstrained 

and moderately strained devices the absorption increases with increasing 

wavelength. This result is to be expected since as the transition energy 

decreases the number of nodes in the wave function of the unbound state 

wil l decrease, resulting in an increased overlap between the bound and 
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unbound state wave functions and leading to a larger optical matrix element. 

This effect is masked in the highly strained structure because the threshold 

wavelength for the onset of unbound spin split-oflf states (i.e. the wavelength 

corresponding to the energy of the top of the spin split-off potential well) 

occurs at around 2.3//m at the zone centre, and at around 1.5fj.m at 

A;|| = O.lA ^. This is illustrated in figure 7.9, which demonstrates the 

variation with in-plane wave vector of the spin split-off potential well, with 

the locus of unbound states appropriate to the 1.3//m transition to the 

ground state bound subband given for comparison. As the wavelength 

increcises, the transition energy decreases and the locus of unbound states 

wil l enter the spin split-off well. This makes i t clear that the decrease in 

I V B A from 1.55/xm to 1.92/im for this device results from the fact that the 

unbound spin split-off states which can be involved in transitions to the 

ground state bound subband only exist near to the zone centre when the 

transition energy corresponds to a wavelength of 1.92/im. Away from the 

zone centre, the required initial energy for such transitions lies within the 

spin-orbit potential well and processes involving spin-orbit unbound states 

are not possible. Transitions involving bound spin split-off states might be 

possible at certain energies in addition to transitions involving light and 

heavy hole unbound states. This effect is also responsible for the flattening 

of the curve for the moderately strained structure for A > 2//m, but does 

not occur in the unstrained structure in the wavelength range considered 

due to the different line-up of the bulk subband edges in this structure. 
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The peak in the highly strained spectrum at A = 1.38/zm may arise 

f rom a spin split-off resonance feature. This can occur i f the locus of 

unbound states coincides with the position at which a bound spin split-off 

subband would lie i f the potential well were sufficiently deep. When this 

happens, the overlap between the bound and unbound wave functions will 

be considerable enhanced, leading to increased absorption. 

The effect of strain on the IVBA coefficients appears to be dominated 

by the decreased well width and modified spin split-off band line up of the 

strained structures. The reduced well width enhances the bound-unbound 

matrix element by reducing the number of nodes in the unbound matrix 

element at a given energy. 

7.5 Summary 

In this chapter we have shown how the unbound states of the 

quantum well obtained from the k.p model described in chapters 2 and 

3 can be used to calculate bound-unbound intervalence band absorption 

rates in strained and lattice matched systems. The absorption coefficient 

for bound-unbound transitions is considerably smaller than for bound-bound 

or bulk transitions, which suggests that structures such as those considered 

here in which bound-bound transitions do not occur at the band gap energy 

should have negligible intervalence band absorption at this energy. The 

temperature dependence of bound-unbound IVBA is generally small, and 
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absorption increases linearly with hole concentration. 
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8 C O N C L U S I O N 

8.1 Summary 

The aim of this work has been to investigate the effect of strain 

on the bandstructure and optical properties of quantum wells. Particular 

emphasis has been given to the properties of strained layer multiple quantum 

well lasers. 

In chapter 2 it was shown that the k.p method used within the 

envelope function framework provides an efficient means of obtaining the 

bandstructure and wave functions of a quantum well. This model forms 

the starting point for all of the work described in this thesis. It includes 

an explicit description of the conduction and valence subbands, together 

wi th spin effects. The bandstructure and wave functions obtained from the 

model are strongly influenced by intersubband mixing effects, resulting in 

anticrossing behaviour between adjacent subbands. The method also enables 

the unbound states of the conduction and valence band wells to be obtained. 

Chapter 3 described the inclusion of strain effects into the bandstruc

ture model. The effects of artificial biaxial compression and tension on the 

bandstructure of an Ino.53Gao.47As/InP quantum well were investigated, and 

it was shown how strain changes the relative positions of the my = | and 

my = I subbands. In particular, it was shown that a biaxial compression 

can be used to shift the my = | subbands to higher hole energy, causing a 
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reduction in intersubband mixing effects and resulting in a lowering of the 

in-plane effective mass of the ground state subband. 

In chapter 4 the transverse electric mode optical matrix elements 

between bound conduction and valence band states were calculated for both 

unstrained and strained quantum wells. The wave function mixing which 

occurs in the unstrained quantum well strongly modifies the matrix elements, 

causing some transitions to have appreciable matrix elements when they are 

expected from simple selection rules to be forbidden. Conversely, some 

transitions which are expected to be strong turn out to be considerably 

diminished. The reduction of mixing in the strained structures can be 

clearly seen in the matrix elements. 

Chapter 5 showed how gain and spontaneous emission spectra, to

gether wi th a range of threshold properties, of a quantum well laser can 

be calculated from the k.p bandstructure and optical matrix elements. The 

model developed also includes lifetime broadening effects through an en

ergy dependent Lorentzian function. The importance of including a realistic 

description of the subband dispersion and the optical matrix elements was 

demonstrated by comparing results obtained from the fu l l model with results 

obtained using a parabolic fit to the bandstructure and simple selection rules. 

In chapter 6 the model was used to compare the properties of strained and 

unstrained InGaAs/InP quantum well lasers, for operation at 1.3//m and 

1.55//m. The strained devices exhibit a number of advantages, such as 

reduced threshold current and linewidth enhancement factor, and improved 
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gainslope and temperature stability. Most of the enhancement in these 

devices could be obtained using only a moderate degree of strain ( | % lattice 

mismatch). The improved performance offered by the strained layer lasers is 

largely attributed to the reduced effective mass of the first valence subband. 

In chapter 7 the bound-unbound intervalence band absorption rate 

in the lasers studied in chapter 6 was investigated. In all cases the IVBA 

coefficent for the bound-unbound process was found to be small (< 2cm~^, 

compared with typical values in the bulk of around 30cm~^ [ l ] ) , which is a 

consequence of the very small overlap of the bound and unbound state wave 

functions at the transition energies considered. The absorption coefficient 

is found to increase linearly with increasing hole concentration and to vary 

only slowly with temperature for all of the devices considered. 

8.2 Suggestions for Further Work 

The work in this thesis has concentrated on applying the bandstruc

ture model described in chapters 2 and 3 to a study of the properties of 

strained layer quantum well lasers. Whilst the laser model itself would not 

stand any increased sophistication since it already requires substantial pro

cessing time to calculate broadened spectra and threshold properties, several 

important processes which are important in such structures have merely been 

parameterised using unstrained results from the literature. In particular, 

Auger recombination and intervalence band absorption are only included in 

121 



a simplistic fashion and improvements are desirable. With the intention of 

providing better descriptions of such processes, a start has been made in 

this work to investigate IVBA in strained materials, but the bound-bound 

processes have not been considered. Whilst this omission is not important 

in the particular devices considered in this thesis, this is certainly an area 

where there is a need for further calculations. An investigation of bound-

bound IVBA in strained quantum wells would require little further effort, 

since the bound spin split-off states can be calculated using the k.p model 

wi th an appropriate modification of the boundary conditions, and the matrix 

elements can be obtained as described previously. 

Also of importance in quantum well lasers is Auger recombination 

[2|. The k.p strained quantum well model could be used to extend the 

recent work of Taylor et al [3] to strained layer structures. Such work 

is particularly important since the reduced IVBA coefficients obtained in 

chapter 7 suggest that Auger recombination is likely to be the dominant 

loss mechanism in InGaAs/InP strained quantum well lasers in the 1.3^m 

to 1.55/zm range. 

The models described in this work could also be applied to a study 

of semiconductor optical amplifiers. These devices have always suffered from 

the large difference between the TE mode and T M mode gain in a quantum 

well. I t has been suggested recently that the use of a quantum well under 

biaxial tension can overcome this difficulty by enhancing the T M mode gain, 

allowing this structure to be used as a polarisation insensitive amplifier [4 . 
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I t has already been mentioned that bandstructure obtained from the 

model described in chapter 2 has been used in a Monte Carlo calculation 

to study hole relaxation in GaAs quantum wells [5,6]. The availability of 

strained bandstructure would allow a thorough investigation of the transport 

properties of devices such as InGaAs/GaAs pseudomorphic high electron 

mobility transistors (HEMTs) and similar structures in which the strain can 

be used to produce high mobility holes. 
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A P P E N D I X A 

Parameters used in the Calculations 

a) Bandstructure Calculations : 

Ino.53Gao.47As Ino.63Gao.37As Ino.73Gao.27 As InP 

Eg (eV) 0.75 0.643 0.535 1.351 

A (eV) 0.356 0.359 0.362 0.11 

5 -1.86 -8.37 -8.38 -1.34 

11 1.28 -1.34 -1.65 0.036 

12 -0.438 -1.77 -1.94 -0.751 

13 -0.193 -1.50 -1.66 -0.751 

Ep (eV) 22.09 25.83 23.91 19.89 

AEr> (with InP) 0.32 0.377 0.434 

m 1.70 1.70 1.70 

c -6.93 -6.93 -6.93 

/ -3.40 -3.40 -3.40 

The parameters were derived from effective masses taken from 

Landolt-Bornstein Vol. 17 Semiconductors, Subvolume a, ed. O. Madelung, 

Springer-Verlag (1982). Where necessary, a linear interpolation between 

values for InAs and GaAs was used. 
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b) Laser calculations : 

Cavity length 250/xm 

Facet reflectivity 0.32 

I V B A coefficient 40cm~^ at n 

Auger coefficient lO^^cm'^s"^ 

Mirror plus cavity loss 45cm-^ 

Broadening AE = 8meV 

Background broadening ImeV 

i l 8 ^ ^ - 3 

(D.J. Robbins, private communication) 
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A P P E N D I X B 

Bandstructure Fitting Procedure 

The quantum well bandstructure calculations described in chapter 2, 

whilst fairly efficient as regards computer time, are too complex to be carried 

out from within a laser modelling or intervalence band absorption (IVBA) 

calculation. To overcome this difficulty, all the bandstructure obtained from 

the k.p model is fitted to a cubic spline expansion, and decoded as required 

by the laser and IVBA calculations, using NAG library routines (E02BAF 

and E02BBF). 

Rather than fit the energy as a function of in-plane wave vector, a 

function which is, in principal, more slowly varying is chosen, in the hope 

of maximising the accuracy of the fit. This is done by removing the /cy 

dependence of the energy by writing the dispersion relation for each subband 

in the form 

^iih) = {A2.1) 

and fitting the 'non-parabolicity correction factors ' Qi to the cubic spline 

representation. This approach allows the results of the ful l calculation to 

be easily compared with those of a simple parabolic band model, which are 

obtained by simply setting giik\\) = 1 for all fcy. gi is set to 1 for wave 

vectors beyond the range of calculated values. 

I t should be noted that although the effective masses of the subbands 
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are used in calculating the cubic spline fits, we are free to use any value 

of m* in the fitting procedures, provided that the same value is used to 

decode the fit. As this parameter is somewhat arbitrary, and included only 

for the purpose of normalising the Qi to unity, the effective masses used in 

the calculations described in this thesis are approximate values obtained by 

inspection of 3 or 4 points along each subband. 

The joint density of states is readily obtained from the fit using 

JDOS a {A2.2) 
2m* 2m* 

for a given conduction (c) and valence [v) subband pair, g' is the derivative 

dgjdk^y I t can be seen that the parabolic subband result 

m!m.* 
JDOS « (^2.3) 

m* + m j ^ ' 

is obtained from (A2.2) by setting g - l and g' = 0, as expected. 

The matrix elements are also fitted to a cubic spline representation 

for use in the laser model; in this case the cubic splines are fitted directly 

to the squared optical matrix element. 
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