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Neutron Scattering Studies of Materials Near the Magnetic Phase
: Transition

Paul Warren

Ph.D. Thesis, University of Durham, September 1990,
Abstract

Metals on the verge or just in the weakly magnetic state
offer a unique testing ground for current theories of itinerant
magnetism.

Three investigations of such systems using neutron scattering
are outlined in this work.

TiBe2 is of interest since the random substitution of copper

at Be atom sites expands the lattice allowing one to cross the
threshold from an incipient to a weakly magnetic state. Small
angle neutron scattering studies of spin density fluctuations in

TiBe1 5CuO 5 have shown that a single phenomonological model 1is

sufficient to describe the collected integrated intensities above
and below the magnetic phase transition temperature. Observations
below the transition temperature may be attributed to scattering
from damped spin waves.

Polarised neutron diffraction studies of a single crystal of
ZrFe2 are 1in contradiction with reported ©band structure

calculations of a strong ferrimagnetic ground state. The magnetic
distribution in real space around the Fe ions is highly spherical
and the form factor closely follows that of free Fe ions in
reciprocal space.

A small angle neutron scattering investigation of the helical
spin wave density wave in MnSi below the magnetic phase transition
and spin density fluctuations in the paramagnetic regime wunder
hydrostatic pressure has been performed.

The copyright of this thesis rests with the author.
No quotation from it should be published without
his prior written consent and information derived

from it should be acknowledged.
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CHAPTER 1

Introduction

This thesis contains experimental details of three different
neutron scattering investigations. The first gives measurements
of the magnetic scattering spectrum of an alloy upon TiBe2 with
small amounts of copper substituted at beryllium sites. The
second experiment has been designed to shed light on the dispute
over the magnetic nature of the binary alloy ZrFe2 using polarised
neutron diffraction investigations to ascertain its magnetic
moment distribution in real space. For this purpose single
crystals of ZrFe2 have been prepared using a specially designed
and built cold crucible rig with radio frequency induction
heating. The third experiment was a small angle neutron
scattering study of the helical magnetic system MnSi. A high
quality polycrystalline sample was grown from the melt to
investigate the renormalisation of its dynamical magnetic

properties with the variation of pressure.

The studied materials are thought to lie within the category
of itinerant ferrromagnets. That is the electrons with which the
magnetic moments of the systems are associated are free to move
within the crystals of the material. This behaviour stems from

the 3d transition metal nature of the bandstructure.
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Magnetism occurs in many elements and compounds. A general
description of the mechanism, on a microscopic scale, that causes
magnetism must be based upon the quantum mechanical nature of the
systems. The moment associated with an electron may arise from
two distinct sources, the angular momentum of the electron due to
its spin and that occurring from its motion around the nucleus.
In systems whose magnetism may be associated with the electrons of
the 3d shell the orbital angular momentum is normally to a large

extent quenched.

Bulk magnetism arises from an inbalance in the number of up
and down spins of electrons described by the magnetic quantum
number. Through Hund's rules it is clear that only unpaired
electrons may contribute. In ionic crystals where the valence

electrons are all paired no magnetic ordering can occur.

In metals any resulting magnetic ordering is associated with
either the conduction electrons or deep lying unpaired electrons.
The 3d energy levels of the transition elements lie at the Fermi
surface allowing electrons to move freely through the metal.
However it is a requirement of 3d metal itinerant magnetism that
these electrons, that all posses the same spin on an atomic level,
remain closely associated with the atom of origin. In the extreme
case of an electron gas it has been shown in an early calculation

R . 1
that ferromagnetism cannot exist .

The magnetism of the transition elements and their alloys is

in complete contrast to that of the rare earth alloys and their



alloys. In an insulator the unpaired electrons lie well below the
conduction band and the resulting magnetic ordering originates
from the unpaired electrons in atomic orbitals. The wunpaired
electrons in the 4f shell of rare earth elements that result in

magnetic ordering lie in deep energy levels.

On an atomic level it is the requirement of quantum mechanics
that any unpaired electrons should have the same spin number,
implying the existence of local magnetic ordering even if the
whole crystal has no resultant moment. The requirement of quantum
mechanics infers the existence of the paramagnetic state in which
a response may occur on a local level to align spins over more

than a single atomic position.

If the material in its ground state shows magnetic ordering,
in the absence of an external magnetic field, over a large number
of atoms (the domain) the material is said to be either
ferromagnetic, antiferromagnetic or ferrimagnetic depending upon

the ordering exhibited.

1.1 The Theory of Magnetism

For many years the theory of magnetism has posed problems.
Although there exist numerous empirical relationships to describe
the bﬁlk behaviour of magnetic materials no theory exists that can
adequately describe the properties of all magnetic materials.
This inability to produce an all encompassing theory stems from

the many bodied nature and resulting complexity of interactions



within the systems.

Two coﬁplementary but contrasting lines of thought exist as
to the origin of magnetic ordering. Whilst both have their origin
in the realisation that magnetism stems from the repulsive coulomb
interactions between electrons and the quantum mechanical
requirements of the Pauli exclusion principle neither can claim to
describe all but a few extreme systems. However they provide a
physical insight into magnetic ordering mechanisms and an

indication of the way forward.
1.2 The Heisenberg Model of Magnetism

The Heisenberg or localised model of magnetism describes the
origin of magnetic ordering through interatomic exchange
interactions which tend to align neighbouring electrons at atomic
sites either parallel or antiparallel. These exchange
interactions are dominant over the ordinary dipole interactions

between spin moments.

The basic Heisenberg model can only describe an integral
number of spins per atom whilst the moment is fixed in magnitude
but is free to vary in orientation. It has been used with some
success to describe magnetism in insulating materials and certain

rare earth metals.

The existence of systems with non-integral spins per atom

2
(i.e. transition metals and weak magnetic alloys Zan2 and
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ScIn3 ) has been approached theoretically by the generalised
. ., 4 5 .

Heisenberg models of Horwitz and Van Vleck where spins are

continually redistributed at different sites.
1.3 The Itinerant Theory of Magnetism

The itinerant model of magnetism is based upon the knowledge
that conduction electrons are able to move within a metal crystal.
In complete contrast to the Heisenberg model where electrons are
localised in real space this approach preaches localisation in k

space and is the origin of band models of magnetism.

The first major contribution to the field of itinerant
magnetism was made by Stoners'7 and Slatere. Their independent
work went beyond that of Bloch9 who discussed the possible
existence of ferromagnetism in an electron gas and Wigner10 who
showed that correlations between electrons in a electron gas act
to suppress any magnetic ordering. Both Stoner and Slater models
consider the effects of intra atomic interactions only in the

limit of the tight binding model.

These models describe the effect of excitations of an
electron above the Fermi surface to produce an electron hole pair.
The interaction between electron spins of conduction electrons is

simply replaced by an effective or mean field.

The major disadvantage of these simple models is their

inability to reproduce the observed thermal properties. They fail

10



to predict the observed Curie Weiss behaviour of the magnetic
susceptibility and the calculated Curie temperature Tc is in

general far greater than that observed.

The importance of the interaction between the excited
electrons and holes was first considered by Slatern in his theory
of bound collective modes in ferromagnetic insulators. This was
extended to ferromagnetic metals12 and developed in terms of the
dynamical Hartree-Fock approximation (or random phase
approximation R.P.A.) by Herringia. The introduction of electron
correlations results in the shift of the theoretical Stoner
response to lower frequencies resulting in the appearance of
collective spin wave modes at large wavelengths. At large
wavevectors the collective excitations enter the single particle

or Stoner continuum where they are damped.

The random phase approximation takes no account of the effect
of the resulting spin fluctuations upon the Stoner equilibrium

state and the theory again fails at finite temperatures.

The next step in the model or itinerant magnetism was made by
Murato and Doniach14 and further enhanced by Moriya and
Kawabata’s. By considering to first order the effects of finite q
modes upon the equilibrium state in a self consistent manner they
were able to predict both the Curie Weiss behaviour and a
reduction in Tc from that calculated using R.P.A.. This theory is

known as the self consistent renormalisation theory (S.C.R.).

11
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The S.C.R. theory of Murato and Doniach considers the local
magnetisation as a scalar quantity. This reduces the description
of the fluctuations upon the system to those that vary in
magnitude only that is to say longitudinal fluctuations This
means that the effect of transverse fluctuations i.e. spin waves
upon the renormalised state which are the major contribution to

the ferromagnetic state were ignored.

This problem was surmounted in the theories of Moriya
and Kawabatals. Both their modern theory and that of Lonzarich
and Taillefer16 initially consider the effects of Dboth
longitudinal and transverse fluctuations upon the system. The
approach adopted by Moriya reduces the model below Tc to a self
consistent calculation based upon transverse fluctuations only,
whereas the Lonzarich description includes a longitudinal
contribution in the equation of state. The Lonzarich model
includes only leading terms to the transverse fluctuations and a
natural temperature dependent cut off wavevector for thermally
excited modes is used in an effort to account for the systems

quantum dynamics.

1.4 Investigation Outline

The part of this thesis concentrating on the investigation of
Cu induced ferromagnetism in TiBez, through the alloying of Cu,
has been performed using small angle neutron scattering upon a
polycrystalline sample over a broad temperature range spanning the

magnetic phase transition. The addition of copper into the

12



lattice results in a transition from a paramagnetic to a
ferromagnetic state. The purpose of this work is to show that a
simple model based wupon the adjustment of two independent
microscopic parameters can be wused to describe the observed

behaviour.

In the second part of this work the magnetic structure of
ZrFe2 is under investigation. ZrFe2 is thought to be an itinerant
ferrimagnet. Using polarised neutron diffraction techniques its
true nature has been established. For this purpose a single
crystal of the material has been grown, thought to be the first of
its kind. Investigations using polycrystalline samples have been
and remain ambiguous in their conclusions the use of a single

crystal provides greater clarity.

13



CHAPTER 2

Small Angle Neutron Scattering Studies of TiBe1 5Cu0 5

2.1 Small Angle Scattering

Observations of magnetic excitations in the TiBeLSCu.5
system has been performed using the small angle scattering
instrument D11 at the Institut Laue Langevin(I.L.L).. The
spectrometer was chosen for this experimental study because of its
high angular resolution, high incident neutron flux and its
ability to detect low momentum transfer scattering events (low q).
No specific energy resolution is available on D11 and collected
data is simply a measure of neutron scattering intensity against
scattering angle (8, where elastic q=qo=kisin6 ). The observed
scattering intensities are directly proportional to the integrated

differential cross section convelved with the machines inherent

angular resolution.

In undertaking such an experiment the aim is to compare
experimental data to a theoretical description in order to
determine one or more unknown parameters. This is generally
achieved by convolving the machine resolution with the calculated

response rather than deconvolving it from the observed data.

14



2.2 Experimental Details
A schematic diagram of D11 is shown in figure 2.1.

The incident neutrons at the sample are produced at a cold
source and are monochromated by a helical slot velocity selector
providing a tuneable monochromated wavelength range from 4.5A to
20A with a full width half maximum of 9%.  For this work a
wavelength of 8A was chosen in order to eliminate the detection of
Bragg scattering events (Bragg cutoff=2a0//3=6.98A. a0=6.45A, is
the unit cell lattice parameter of TiBea.scuo.s)‘

The effects of multiple scattering by the sample upon the
collected intensities is very difficult to predict and in
principle may be present. 1In practice these have been neglected.
This is valid when (i) the sample is small so that multiple
scattering probability is low (ii) the sample absorption
cross-section is large compared to the scattering cross-section

and (iii) less than about 10% of the incident beam is scattered.

The detection of neutrons on D11 is carried out by a
2-dimensional multiwire BF3 proportional chamber that consists of
an array of 64 x 64, 1 x 1 cm2 elements. After the detection of
an individual neutron each element ﬁas a dead time during which no
further neutrons may be detected (~10-ss). If the incident
intensity becomes too great saturation may result. Saturation of

an individual cell also effects the neighbouring detector cells.

15



Figure 2.1 A schematic diagram of the D11 small angle scattering
spectrometer. The distance between the neutron guide tube and the
sample is equal to the sample-detector distance, both may be
varied up to 40m. The liquid Helium cryostat can be used to

create sample environments down to 1.2K.

16
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When this occurs it becomes necessary to either attenuate the beam

or mask out the affected cells.

A large proportion of the incident beam is transmitted
without scattering. The detector cells at very low angles to the
incident beam thus become saturated. For this purpose a neutron
opaque beam stop is placed directly in front of the affected
cells. A modification to the beam stop has been made with the
addition of five small holes cut parallel to the incident beam
direction. This modification allows a small percentage of the
transmitted beam to be analysed permitting the continuous
monitoring of the sample transmission as a function of time and

sample environment.

The sample is positioned midway between the end of the guide
tube and the'detector, this provides maximum angular resolution.
The sample detector distance may be varied from 2.5m to 40Om
permitting measurements of q down to 10-3A. Whilst the resolution
is increased with sample detector separation (r) the incident flux
decreases rapidly and the solid angle decreases as 1/r2. For the
experiments detailed in this work the sample detector distance was
set to either 2.5m or 5m and measurements were taken over periods
of 10 to 15 minutes, the actual time spent counting being governed
by a preset value of a low efficiency (1%) fission chamber placed

close to the sample between the guide tube and the sample.

17



2.3 The Inelastic Neutron Scattering Cross Section

In any neutron scattering experiment the partial differential
cross section is sought. This is a function of both energy and

momentum transfer from the neutron to the sample.

If the incident neutrons, in the most general case, have
intensity Io(neutrons/unit time/unit area) and energy Eo and the
scattered neutrons intensity I{neutrons/unit time) and energy E at
a position defined by the angles 6 and ¢ then the partial

. s . . 17
differential cross section may be determined .

A% 1(6,4,E,E') 1 2.1

AQAE I AQAE

The quantities AQ and AE are the resolution of solid angle
and energy transfer respectively and are functions peculiar to the

chosen instrument.

On the D11 spectrometer therz is no emergy resolution and the
collected intensities are the integrated response over energy, in

this case the determined quantity is the differential cross

section.

I 2.2
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This is true for scattering of a single neutron by a target
consisting of a single scattering centre and analysed with a
perfect detector in the absence of any background signal. In
reality there are many incident neutrons, many scattering centres,
imperfect detectors, background signals and bandwidths to the
incident neutrons and neutron scattering angles. For the accurate
analysis of the collected intensities fhese must be taken into
consideration. Further the incident neutron beam intensity I0
must be accurately known. This parameter may be determined in two
ways (i) by knowing the machine monitor count and its efficiency
or (ii) by calibration to a material with a well known neutron

cross section eg. vanadium.
2.4 Angular Resolution

In a real small angle scattering experiment the detected
signal is that produced by a finite source, scattered from a
sample with spatial extent and detected at a cell with finite
area. The resultant detected intensity is a combination of
scattering events with an angular spread defined by the machine
geometry (see figure 2.2). If the distribution 1n angular spread
is defined by the function P(G—Go), where 90 is the angle
subtended by the detector cell and the incident neutron flight
path from the sample centre,. Assuming isotropy in ¢, then the

observed cross section is given by

19



Figure 2.2 The theoretical scattering angle distribution is
calculated from all possible scattering events arriving at the
detector cells. The total experimental scattering intensity at
qel(=qo) is the addition of many cells at a fixed distance from
the detector centre.

Figure 2.3 The calculated normalised probability distribution
centered at an angle of 6=0.011 radians, where 0 is the angle

between the detector cell-sample centre vector and the wavevector k.

20



Figure 2.2
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max

- I P(6-6_) 2msind do(0) do 2.3
6=06 an

max

f P(6-0_) 2msind db

Where © and O are the minimum and maximum possible

min max
scattering angles for scattering events detectable by the detector
cell positioned a distance dtan9 from the detector bank centre. d
is the sample to detector distance (either 2.5 or 5m). © is the

angle between the incident and exit neutron wavevectors k and k'.

The functional form of P(9-9°) has been modelled using a
computer program. The source and detector have been considered by
subdivision into equal areas whilst the sample has been subdivided
into equal volume elements. For each element of the source,
sample and detector the scattering angle has been calculated and
the result binned to provide an angle dependent probability
function. The symmetry of the instrument eases this computation.
The result is close to a Lorentzian line shape centred at 6=90,
however there are distinct maximum and minimum limits outside
which there is no probability of observing a scattering response

and the distribution has a flat top (figure 2.3).

21



2.5 The Theoretical Neutron Scattering Cross Section

The theoretical cross section for scattering is defined in

. - , . , 18
general in the limit of the first Born approximation as .

d20 k' m 2 2
= ; [2Eh] } PP } <k&'x'|V|kox> 6(hw+El-Ex,) 2.4
AC Ato!

Where k' and k are the scattered and incident wavevectors
respectively. A and A' define the initial and final states of the
system whilst annd Po are the probabilities that the states A and
0, the neutron spin states of the system, exist. The potential V

includes both nuclear and magnetic components.

The state of the system both directly prior and after a
neutron scattering event includes information on the nuclei, their
spin and position as well as details of electron spin orientation

for a system exhibiting magnetic ordering.

The delta function is included to represent the fact that
energy is conserved during all scattering processes. For magnetic
scattering of a non polarised neutron beam in the absence of
nuclear scattering the magnetic part of equation 2.4 can be

reduced , for diffuse scattering including only spin-spin magnetic

scattering, to:

dzo _ |7e

2 12
vw} 1
- SR Y (6 -k k)
d0dE' |m c?| Nk «f "B o
e GB

22



m -
x f dt el¥t <8,4(2,t)85(-2,0)> 2.5
-®

The correlation function <sa(q,t)sB(—q,O)> is the expectation
value of the time dependent Fourier transform of the spin density
s(r,t), o and P describe the cartesian co-ordinates i,3i,k,
(Vez/mecz)2 = 40 where 0 is the neutron cross section (72.65
mbarns) and (N/V) is the number of atoms per unit volume in the
sample. su(k) are the Fourier transforms of the spin density of

the entire sample :

elk.Ri s 2.6

The unpaired electrons at a given site form a total spin s,

by Hund's rules. It follows from the Wigner~Eckart theorem

19
that

s(k) =% e ™" Ek) s 2.7

In a localised system for elastic scattering f(k) is referred
to as the magnetic form factor. The inelastic form factor is
unknown, however we are working in a limit where the the elastic
f(k) may be safely used. In an itinerant system f(k) becomes
increasingly difficult to interpret since by definition it
describes the Fourier transform of the normalised spin density at
a given lattice site. This apparent contradiction was first
approached by Izuyama, Kim and Kubo20 who showed that the

localised form factors may be used validly for itinerant systems

23



under the condition of 3d atomic orbitals in the tight binding

approximation. This is the approximation adopted in this work.

The form factors of the 3d atomic orbitals fall off very
slowly in the region of low q and in general is taken as unity in

the limit of this work21.

The scattering function defining the small angle scattering

cross section is defined through the response function S(q).

S(q) = f do $(q,0) 2.8

The angular and energy dependent scattering function is
related to the imaginary part of the generalised susceptibility

. . . . 18
through the fluctuation dissipation theorem

Nh xniq,w) = 2.9

S(q,0) = {1+n(w)}
2
(ghy)
® et
J dt et <sa(q.t)sB(-q,0)>
-

v

N

Where {n(w)+1} is the Bose Einstein thermal population

function-which is n(®w)+1 for scattering events where the neutron
1
(1-exp(-hw/k_T))

loses energy and n(w)= for events where the

neutron gains energy.

24



In the ferromagnetic state a general definition of the
partial differential cross section may be obtained in terms of the
imaginary part of the dynamical susceptibility X"(q,®w) in the
transverse and longitudinal directions. If the local direction of

magnetisation is in the z direction then (from equation 2.5)

2 . R
o Mo, Y (ed) (14n(0)) Xi(g,0)  2.10
dQdE' 1 2

E ine k NH(SFB)

a%o K v ~2

4o = X401 () (14n(0)) X'(g,0) 219
dQdE" inel ’ 2

dETy ine k N (gh,)

In the absence of an applied magnetic field (i.e. in an
isotropic q state) and averaging over several magnetic domains the

‘ following are true

kK2+kZ+k 2= 2.12
x y z
k 2=z k 2=z kx 2 2.13
S 4 Yy z
2

thus kz = 1/3 2.14

The Debye Waller factor has not been introduced into these
equations. This defines the effect upon the scattering owing to
thermal vibrations of the atoms about their equilibrium positions.

At low q and low temperatures this has little effect on the

25



observed magnetic scattering intensities and its value e-2w may be
taken as unity where 2W is merely the square of the dot product of
the mean displacement of the nucleus with the scattering

wavevector.

In the paramagnetic regime all directions are equivalent as
there is no direction of magnetisation. In this case again kz2
=1/3 and the longitudinal and transverse contributions to the
differential cross section become indistinguishable. In the
ferrpmagnetic regime the scattering cross section is dominated by

the spin wave contribution that is by the transverse component.

2.6 Modeling the Dynamical Susceptibility

The aim of this work is to describe the observed scattering
data for which a good model of X"(q,w) is essential. No

analytical solution exists for the system TiBe1 C under

5s°%.5
investigation due to its extreme complexity. The solution would
depend on all interactions experienced by the electrons in the
system in all q,®w space and require a detailed knowledge of the

system quantum mechanical band structure and variations with

physical conditions.

For this reason a simple phenomenological model is used that
may be a valid approximation in the long wavelength and low
frequency domain. This differs from the early approach used by
Izuyama, Kim and Kubo20 and that of Moriya in that it is not

limited by the constraints of a single parabolic band description

26
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or the tight binding limit. The description used within the same

framework by Lonzarich and Taillefer16 has proved successful in

accounting for observations both from neutron scattering and

de-Haas Van Alphen studies of weak itinerant ferromagnets
22,23, 24

.25
N13A1 , MnSi and the strongly enhanced paramagnet

. 26
NlaGa .
2.7 The Generalised Susceptibility in the Tight Binding Limit

The generalised susceptibility for a single parabolic tight
binding model is generally developed from the expansion of
Lindhard functions with the incorporation of interactions using

. . . . 19,20
the generalised mean field approximation .

X, (q,9) = 1 Lim } £ - fk+q 2.15
50 k
N €k+q - Ek -hw - i€

Where € is a small positive number, fi are the fermi

occupation numbers, € is the electron energy level and
X Yq,w0) = x;’(q,w) - 1(q,w) 2.16
Where I(q,w) is the interaction tensor.
In the static, long wavelength limit @ 3 0, q 2 0 , X(q,®) is

the measured bulk susceptibility and the above equation reduces to

the Stoner relationship relating the molecular field enhanced
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static susceptibility X8 to the Pauli susceptibility Xso

calculated in terms of the bare electron band mass.

Lim Xg(q,w) =0 2.17
w0
q=30
Lim X(')(q,w) = pe 2.18
w0
q-0
X
Then X(q,0) = X_= “so 2.19
1-1
1/1-1 is the Stoner enhancement factor.
In the random phase approximation
@
X(q,0) = To(3+®) 2.20

1_Ix0(q ’(“))

Where I is a function of ¢ and & for all q,w.

Figure 2.4 show contours of the imaginary part of the
transverse generalised susceptibility in the ferromagnetic state
in k,w space determined with the inclusion of electron
correlations. When electron correlations are added and the Stoner
enhancement factor is sufficiently large a collective spin wave
mode appears at small Kk corresponding to highly correlated
electron-hole excitations. Away from low q,®w the collective modes
enter the Stoner continuum (single particle excitations) and are

damped by decaying into Stoner excitations.
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Figure 2.4 Contour plot of the imaginary part of the transverse
generalised susceptibility in the ferromagnetic state. The spin
wave branch lies below the Stoner edge, scattering events

occurring outside this regime are damped by the Stoner continuum.
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The effect of spin fluctuations on the thermodynamic
properties of this class of material is important in the low
energy, long wavelength regime. It is essential to consider the
effects of feedback of magnetic fluctuations upon the dynamic
susceptibility in a self consistent manner. (known as Self

Consistent Renormalisation S.C.R.).

This has been approached in the work by Moriya27 who
considered a renormalisation process independent of q and @ whilst
demanding consistency between the calculated susceptibility and
that given by the equation of state in the zero frequency limit.
An additional contribution A(q,®w) is introduced into the model to
describe the effects of highly temperature dependent mode-mode

coupling. In general A(q,w) is approximated to A(0,0).

X,(a,0)
X(q,w) = 2.21
1"Ix0(q vw)"')‘(O,O)

The imaginary part of the susceptibility governing the

neutron scattering response is given by:

(143(0,0)) X(q,0)
X"(q,0) = ° 2.2

[1-1X!(q,)+A])*+[IX!(q,0)]°
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2.8 The Magnetic Regimes

In weak itinerant ferromagnetic materials three distinct
scattering regimes exist (i) T << Tc (ii) T » Tc and (iii) T > Tc.
In the region where T ® Tc or the critical scattering regime the
total scattering cross section becomes very large and correlations
persist over large distances and long time scales. The analysis

of such scattering is beyond the scope of this work.
(i) T <« Tc - The spin wave regime

When long range ferromagnetic ordering exists the inelastic
neutron scattering cross section is dominated by spin wave
excitations at low q,®, that is by the transverse component of the
generalised susceptibility. For undamped spin waves in itinerant
ferromagnets the imaginary part of the susceptibility can be shown

18
to be represented by :

X[(q,0) = ' m o X;(q) [ 8(ho-ho(q)) + S(hwrha(q)) 1 2.23
2

Where for small q the spin waves have quadratic dispersion
ie. ho »~ qu. D is referred to as the spin wave stiffness. This
is true only in the absence of internal anisotropy. D may be
related to the fundamental parameter ¢ used in the description of

. 16
the magnetic nature of the material .

D = 2Mc)M 2.24
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3 .
Where c¢; = ¢y = ¢ = and X 1(q) 5 cq2 below T_,in the

limit where the spontaneous magnetisation M is small.

In addition to c three other basic parameters are required to
provide a complete description of the magnetic nature of these
systems using the chosen phenomenological description. These are
a,b and 7. a and b may be determined from the magnetic field
dependence of the magnetisation in the T=0 limit (see chapter 4)

whilst ¥ can be found from neutron scattering.

For a detailed explanation of these parameters, the way in
which a,b and ¢ are related to a Ginzburg Landau expansion of the
free energy of the system and how ¥ is related to the fluctuation
relaxation period the paper by Lonzarich and Taillefer16 should be

referred to.

The spin wave stiffness (D) is temperature dependent to
lowest order, one anticipates the stiffness to scale as the
magnetisation (M) with a temperature dependency which may be

empirically expressed as:

3 =3

24 1/2
D(T) = M(T,0) = ( 1- J ] 2.25

D(0) M(0,0)

c

This functional form and its applicability has been studied

in the investigations of TiBe1 5Cu0 5 and discussion is provided
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later as to its applicability.
(iii) T > Tc - The paramagnetic regime

At temperatures above Tc the thermal energy is sufficient to
break long range magnetic ordering. Despite the absence of any
long range order the motions of close spins are still strongly
coupled. In this regime the transverse and longitudinal
susceptibilities loose their identity and the observed diffuse
response corresponds to over damped non propagating fluctuations.

X"(q,w) may be modeled in the following phenomenological form:

X"(q,0) = w X(q) T(q) 2.26

0 + T(q)?
with a relaxation frequency
I'(q) = ¥ q X '(q) 2.27
Further we may expand
XN = XM e, 2.28

Where in our model ¢ may be related to the spin wave damping

constant below Tc (equation 2.24).

In the light of previous successes of the qualitative self

consistent renormalised random phase approximation model of
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. . 16 . . g . .
Lonzarich and Taillefer in providing an interpretation of the
observed low q,®w characteristics in both enhanced paramagnets and
weak ferromagnets the model has been applied to observations of

TiBel sCu0 5 observed neutron small angle scattering intensities.

Poor fits between experimental data and calculated responses
however resulted in the search for an alternative model. It has
been shown in the case of the well known itinerant ferromagnet
Zanz29 that a more advanced description based upon damping of
spin wave modes is necessary to describe the observed neutron
scattering. The model of damping chosen in this work differs from
that used for Zanz, which was based upon a description of a
single dynamical variable29 by considering two dynamically coupled
variables corresponding to the transverse components of the

magnetisation vector.

The discussions of the chosen model begins with an account of
applications of the S.C.R. R.P.A. model to the collected data and
a brief description of this model within the quasistatic limit is
provided. The quasistatic limit model is often used in preference
as a starting point for the fitting of a restricted amount of data
points since it reduces the description to one depending upon a

single independent parameter.
2.9 Modeling the Data

If the incident neutron has wavevector k and is scattered

from a single point particle resulting in an exit wavevector k'
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then only specific events in q,®w space can occur within the

confines of the chosen model.

In general if the momentum transfer is hq = h(k'-k) and the
energy change (with respect to the neutron) is hw = 2.072(k2—k'2)
(in units of mev and A) then the locus of trajectory in q,0 space

is defined for scattering occurring with a scattering angle 6 by:

2
¢ = kz[z MO s [1 - h_‘f] ] 2.29
Ei

Where Ei is the incident neutron energy and the neutron

energy transfer ho = (h2/2m)[k2-k'2].

The dispersion of wundamped spin waves with spin wave
. . . 2 .
stiffness D is given by hw = Dq” + Eg vhere Eg is the energy gap

owing to crystal anisotropy.

Where these two curves intersect in q,®w space a scattering

event may occur (figure 2.5).

If 6 is less than the critical scattering angle 9c where the
two curves become tangential, four scattering events are possible,

two for neutron energy gain and two for loss, for each individual

scattering angle

When the spin waves are damped the line hw = qu + Eg defines

the pole position of the distribution that has finite width (along
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Figure 2.5 The trajectories in gq,® space corresponding to
detector angles of 1—60. The dotted line represents the spin wave
dispersion for hw=D(T)q2+Eg with E_=0 and D=60mevA® and the
critical angle lies at approximately 2 degrees. The energy and
momentum transfers have been scaled to the neutron incident energy
and momentum. If the resolution function where of a delta
function type response then the only region accessible for the
detection of neutrons is at angles below 2 degrees for scattering

from undamped spin waves.
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a constant q direction). Scattering events may occur in all q,w
space with a probability defined by the functional form of the
damped spin wave dynamic generalised susceptibility and the

position of the intersection with the constant 6 trajectory.
2.10 Within the Quasistatic Limit

When the neutron velocity is much greater than the phase
velocity of the system fluctuations the theoretical small angle
scattering cross section may be considered in the quasistatic
limit. In this case the fluctuations as viewed by the neutron are

essentially stationary.

Within the limits defined by small 8 (small angle scattering

6<5°) and energy E8<< 1 then q2 (equation 2.29) may be expanded in

E
1
ho
terms of @ and __ , to second order :
E,
2 .2 2 (hco)‘2
=Kk (6 + 2] 2.30

In the quasistatic limit the quadratic dependence on energy

is ignored and q is therefore equal to elastic q,,-

q % kB = ¢q - 2.31

el

For energies much less than typical thermal energies the

-hw -1,
population factor n(w) = ( 1 e /kBT ) is large and may be
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approximated to kBT/hw.

Additionally within this limit since k &% k' the scattering

cross section reduces to the form:(see appendix A)

do _ I ® 4%0(q,0) dE'

o= = constant T X(q) 2.32
daQ

-® dQdE'

Where X(q) is the static wavevector dependent susceptibility
and may be expressed in the ferromagnetic regime as the sum of the

longitudinal and transverse components.

X(a) = 2 Xy(a) + 1 Xy(q) 2.33
3 3

The longitudinal contribution is modelled below Tc as a
diffuse response centred at ®w=0 with the same form as the line
shape used to describe the paramagnetic susceptibility and is
generally found to be small, until close to T ® Tc and may be

safely omitted during the simulation of experimental data.

The quasistatic limit provides a model that has restrictions
in application to a limited region in q,® space. Often only three
or four experimental observations taken on the Df1 small angle
neutron scattering instrument meet the requirements for a given
temperature scan. It has been included here for completeness as

an initial step often taken in the analysis of the collected data.
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2.11 The S.C.R. R.P.A. Model

Analysis of the ferromagnetic transverse collective modes was
attempted using the response form developed from simple S.C.R.

R.P.A. theory. The response line shape of the model is given by:

£(q,0) = | ( 8(ho-hu(q)) + (hw+hu(q)) ) 2.34
2

2 . .
Where hw(q) = Dq  + Eg . Eg is the spin wave energy gap
arising from sample anisotropy and the generalised dynamical

susceptibility may be expressed as:
X"(q,0) = -n @ X(q) f(q,w) 2.35
. . . 19
from the Kramers-Kronig relationships.

To model the experimental data the theoretical response is
integrated along a constant & trajectory for the entire energy
spectrum. This corresponds to a skewed path in ®,q space that
requires an energy dependent correction factor for the area under
the integral (Jacobian of integration) to the differential cross

section.

The differential cross section for a single scattering

event may be written in the S.C.R. model for both neutron energy

gain and loss events as:
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49 _ constant f (n(he)+1} S(hothw(q)) do 2.36
a0

constant
theta

By setting hw t hw(q) = 2z

do _ [ dz n(ho(z)) 2.37
a0 I 1 £ 0w(q)dq
3q W

and knowing that

-1

1= %(q) ?E =J the Jacobian of integration 2.38
3q OJw
and 1D _ op 2.39
dq

using the first order approximation

2
& = K2 [ % + (T ] 2.40

16k

and differentiating

9q _ ho 2.41

. 2 2 a2 .
by letting a=w/4k  and solving 2asm9c =a + ec for a, since
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J=1x @ 2.43

sin®
C

Where Oc is the critical angle where the neutron flight path

and the spin wave dispersion become tangential i.e. ff(q)?ﬂ=1 '
dq Ow
the Jacobians of integration become infinite. Gc is also the

angle above which no undamped spin wave scattering is observable
in the absence of any internal anisotropy and is given by

. 2 .
s1n90= h for both neutron energy gain and loss.

2mD

The Jacobian of integration may be shown under these

conditions to be equal to:(see appendix A)

la] = (1-6%/6%)7°° 2.42

Using this formulation the expressions for neutron energy

gain and loss reduce to identical forms

IJl = IJTosel = IJ:ainl 2.44

Where Ji and Jt represent the Jacobians of integration
loss gain
for the four possible solutions of the quadratic equation

describing the intersection of the spin wave dispersion curve with

the constant 6 trajectory.

Considering both neutron energy gain and loss events the

complete expression for the cross section becomes:
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ﬂf = constant I [ n(hwi+1)J(hwi) + n(hwi)J(hwi) ] 2.45
dQ i=% g 9

b S . .
Where hwg . represent the four solutions of the quadratic
equation describing the intersection of the spin wave dispersion
and the neutron flight path in q,®w space for both neutron energy

gain (g) and loss (1) events.

If internal anisotropy exists within the scattering system
and the energy gap is finite then the critical angle of scatter

for small angle scattering is given by:

0.5
sind_ = ( 4 2E ) 2.47
2

| =] -1+ 1 [-1+ cos6 2.48
loss
. 0.5
sin®
c loss
1 -
E.
1
b S
|J =11+ 1 (-1+ cos® 2.49
gain 0.5
Sinec h(m:ain .
1+ 9
E.
1
and in general
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wtaxn = 2Ei ( sinec-1 ) Eg +1 + cos’O
g ———— 2 2E sin®
( 51n90-1) i c

0.5
tcos® | sin%0 - sin%0 - _E9 (1 - gino )°° 2.50
[o] . [o]
E, sinb
i c
and
wt = 2E1 ( sin® +1 ) Eg +1 - 00529
lose © 2E sinb
( sin6c+1) i c
Q.5
tcos6 sinze - sinze - FEg ( 1+ sin® )0'5 2.51
c — c
Ejsmec

It is clear from the definitions of the Jacobians of
integration that as 6 approaches Gc the integral becomes infinite.
To establish whether or not this is an artifact of the chosen
model or a real feature an analytical solution has been sought in

the Egﬁ 0 and O = GC limit.

A simple solution is obtained in the high temperature limit.

' 3 . =1
o _ 16 g0 N k kT 1n tan( } sin (62/90)) 2.52
@ 3m (gpy)” V k P
tan( 5 sin (91/90))

This solution does not diverge and includes both energy gain

and loss events. A computer program has been written in order to
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Fa

apply these models with a switch over from the numerical to the
analytical solution as the critical angle is approached to avoid
the singularity in equation 2.51. 1In addition the program models
the real spectrum by including all scattering events weighted by

P(G-Go).

No analytical solution has been found for Eg # 0 in the 6 =~

6 limit.
C

The observed scattering cross section at a given detector

angle O is represented by:

6 =6
2 max
bo _ } P, (6-6)) [ 2rsing 97(9) 4o 2.53
AQ ool 0
6 =6
1 wmwmin
62=emax
} Pi(9-91) I 2nsinB d6
6 =6
1 min

Pi is the probability function of the angular resolution.
are the limits of the angular scattering for the

min/max

scattering angle 9i defined by the instrument geometry.

2.12 The Damped Coupled Model of Collective Fluctuations

Due to a lack of refinement between the & function type
response and the experimental data a more general solution has

been sought. To this end an elementary phenomenological model has
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been used which reduces smoothly to a diffuse response in the
limit that the spin wave pole energy collapses to zero (ie. >Tc).
This model is based upon the vector nature of the magnetisation
density fluctuations in the ferromagnetic phase. A detailed
discussion and theoretical determination of this type of
distribution is give by Forster30 and a more basic discussion
based on coupled harmonic oscillators is provided in appendix B.
The imaginary part of the dynamic susceptibility wunder the
conditions of an isotropic ferromagnet, total spin conservation

and ignoring any lattice structure effects is given by:

2 2 2
X{(q,0) = X, (q) @ (@ @+, + T (a)) 2.54

(0°-02-T%(q)) *+4T* (q)0°

Where  X]'(q) = cq’+X]  and T'(q) = yqx]'(q)

2
hwo(q) is the spin wave energy at the pole equal to Dq +Eg.
Xil is zero in the absence of anisotropy or external magnetic

fields and ¢ is the same as discussed previously.

The choice of the form of T'(q) is governed by the RPA
theory20 and observations that ¥ is temperature and wavevector
independent for the data . Ignoring the longitudinal component of
the generalised susceptibility which is at least an order of

magnitude smaller than the transverse component contribution the

cross section is given by:
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a0 = 400 V k {n(w)+1} [g XI(Q.“)] 2.

adE  m(gn)® Nk

46



CHAPTER 3

Sample Preparation

Single crystals of ZrFe2 and polycrystalline ingots of MnSi
have been prepared. The production of high purity samples is

essential for neutron scattering investigations.

For this purpose a cold crucible technique has been employed
to grow samples by melting together their constituent elements.
The metal grower has been designed and built specifically to meet
the requirements of neutron scattering samples. A significant
proportion of the total effort reported in this thesis has been
spent in the design and production of the cold crucible and the

subsequent growth of the specimens.

3.1 The Cold Crucible

The cold crucible technique of metal growth essentially
consists of a horizontal copper boat through which cooling water
is continuously passed. The constituent elements sit on the boat
and are fused together using radio frequency induction heating.
The use of RF induction enables samples f6 be mixed thoroughly in

the melt by the motion of eddy currents.

The copper boat is suspended from one end, attached to a
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stainless steel chamber, inside a silica glass cavity that may be
either evacuated or filled with a highly pure inert gas
atmosphere. All gas and vacuum lines are attached to the stainless
steel chamber with ultra high vacuum couplings and valves. The

design details are shown in figure 3.1.

The cold crucible method of crystal growth allows samples to
be heated to temperatures in excess of 1600°C whilst the sample
receives very little contamination from the cooled copper boat.
The technique has several advantages over alternative methods of
sample preparation such as the hot crucible and electric furnace
systems. Not least of which is the ability to view the entire
sample at all times during any chosen heat, melt, cool cycles. In
addition crystal enhancement techniques such as Bridgman cooling
and zone refinement may be employed31. The major disadvantage is
that large heat gradients exist at the sample boat interface.
Such discontinuities are not conducive to the growth of large
crystals. This problem is negated if as is sometimes the case the
internal sample convection currents are large. This source of
potential anisotropy and its consequences to the crystal domain
structure of the cast ingot should be borne in mind when
attempting to cut orientated single crystals from the bulk,
preferential choice being given to specimens at the top of the

sample.

3.2 Temperature Measurements

The sample temperature is monitored at all times using an
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Figure 3.1 The horizontal cold boat crucible rig for the mixing
and growth of metallic samples. The samples are heated directly
by radio frequency induction. The crucible is totally enclosed in

a sealed environment.
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optical pyrometer. The pyrometer is first calibrated against pure
metals for which sample emissivity, absorption and melting points
are well known. For this purpose pure iron and zirconium were

used.

There are two potential inaccuracies involved in measuring
the temperatures of binary metal systems using this system. The
first is a consequence of binary metal systems for which
emissivity and unique melting points are not well established.
The second is associated with the matching of emission colour to
the hot glowing wire in the pyrometer using the naked eye. The
exact reproducibility of sample growth conditions is therefore
restricted. It has been estimated that any single temperature
reading 1is accurate to around tZOOC if no metal deposits on the
inside of the silica glass cavity, due to sample evaporation,

obscure the view of the heated sample.

3.3 The Atmosphere of Growth

To meet the specifications for sample quality (<100ppm
impurity level) the growth chamber and its atmosphere purity are
of great significance. The chamber has been designed to obtain
vacuum better than 10-7mbar or retain an inert gas atmosphere at
levels greater than atmospheric pressure. The vacuum can
comfortably be obtained on the system without recourse to lengthy
bake out procedures that are employed for highly hygroscopic
samples. An inert gas atmosphere of either Helium or Argon is

available with #™~1ppm impurities when necessary, however this
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impurity level corresponds to only a medium vacuum of 10-3 mbar,
preference being given to an evacuated chamber when ever

practical.

The growth of ZrFe2 necessitated the use of a gas atmosphere
due iron's high vapour pressure ( 1787OC v.p. of 1mmHg ).
Without an over pressure, differential evaporation occurs and an
off stoichiometric product results. Whilst helium gas can be
obtained in a purer form than argon simply by using the boiled off
gas from liquid helium it conducts heat away from the sample some
four times faster than argon. The limited RF power (25KW
continuous use) and the gas over pressure limit due to chamber
construction meant that argon gas was chosen as the chamber

atmosphere.

The argon obtained in a highly purified form was further
purified by passage through a B.0.C. rare gas purifier to reduce
quantities of hydrogen, oxygen, CO, CO2 and hydrocarbons to below
1ppm. The removal of hydrogen and hydrocarbon impurities from the
growth atmosphere is highly desirable when preparing samples for
neutron scattering owing to the large incoherent hydrogen cross
section that can obscure detail. Zr and Mn are excellent
atmospheric getters and readily absorb oxygen as an impurity
necessitating the greatest care to reduce oxygen levels to a

minimum.

The system was flushed a minimum of 10 times before finally

sealing in order to remove adhered impurities on the chamber walls
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and the copper boat.

To further ensure atmospheric purity a piece of Zr was
initially heated independently to getter the atmosphere prior to

melting the sample constituent elements.

The growth of MnSi from its elements presented further
hurdles. Again one of the components has a large vapour pressure
{Mn » 1mmHg at 100000) making the use of an argon gas atmosphere
essential. In addition silicon cannot be heated by RF induction
because of its nonmetallic nature. Mn was therefore placed on top
of the Si and melted into it. The resultant system is metallic
and in addition may be heated in a vacuum, unlike ZrFe2 that still
evaporates differentially. The melting of Mn into Si is performed
as quickly as possible to reduce Mn evaporation. MnSi is a line
compound, that is the phase diagram (figure 3.2) has no width to
the line joining the melting point to the room temperature points
for the 50:50 composition. The use of zone refining to improve
sample quality is thus an available option and in addition may be

performed under vacuum.

3.4 The Atmosphere Quality

If all impurities are assumed to originate from the in
leaking of atmospheric gases an upper bound for this type of

contamination to the metal sample may be calculated.

The pumping rate of the turbomolecular pump used to obtain a
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Figure 3.2 Mn-Si phase diagram taken from Shrunk 1969
-Constitution of Binary Alloys (second supp. ), New

York:McGraw-Hill page 507.
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%o

system vacuum of 10-7mbar is 1501/s. The system chamber has a
volume close to 21. The leak rate assuming all residual pressure
is caused by the in leaking of atmospheric gases is calculated as
1.5x10_5mbar/l. This assumption is not entirely accurate, no
account being given to chamber out gassing. However a
contamination level based upon this naive model for a 0.1mole
sample that interacts with all system gas impurities over a growth

cycle of 5 days of less than 100ppm of oxygen is predicted.

Light gases are not pumped as efficiently as oxygen and may
result in higher contamination. With an over pressure of argon in
leaking is significantly reduced and the above prediction is very

much an upper limit of potential contamination.
3.5 The Preparation and Growth of Materials

For the studies carried out in this thesis two distinct
material types have been prepared,. For determination of the
magnetic density distribution using polarised neutron scattering
(Chapter 4) a single crystal of ZrFe2 was required whilst for the
study of MnSi under pressure using small angle scattering a
polycrystalline sample was used. (Other samples used in this work
have been generously supplied by other groups). For the growth of
MnSi the =zone refining material enhancement technique was

employed. This promotes order and purity in the specimen.
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3.6 Preparation of ZrFe2

Zr and Fe were obtained from Johnson Matthey in specpure
form. These were first etched to the correct masses using
HF:HNOS:HZO 5:45:50 for Zr and CZHSOH:HNO3 90:10 for Fe. Both
samples were then washed thoroughly in distilled water before
placing on the cleaned copper boat. The copper boat was prepared

by cleaning with water, emery cloth and diamond paste before

washing in soapy water and finally cleaning in distilled water.

The boat was then sealed and flushed a minimum of 10 times
with argon, pumping out between cycles using a backing pump. The
system was ultimately left at 10 psi over pressure of argon. From
the phase diagram of ZrFe2 it can be seen that much emphasis must
be placed on the growth of a stoichiometric sample. The system is
not a line compound (Figure 3.3) and as such the zone refining
technique, although able to remove impurities will also result in
a probably off stoichiometric alloy. Thus a simplified method was

used without purity enhancement methods.

The constituents were melted together at 1650°C and mixed
thoroughly using the natural stirring property of R.F. induction
heating. Because of differential evaporation the elevated
temperature of the molten mixing state was held for a relatively

short period. The use of R.F. induction heating proved ideal as
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Figure 3.3 Zr-Fe phase diagram. Notice the ZrFe2 phase is not a
line compound. Moffatt W.G. , 1984, The Handbook of Binary Phase

Diagrams Volume 1, Genium Publishing.
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the natural electromagnetic stirring capability meant that there
was no need to wait for natural diffusion processes to occur which

may have taken an extended period.

The charge was then left at 150000 for 3 days to anneal
before cooling over a 24 hour period. These conditions were

chosen after much observation and many such growth cycles.

Using this method 3 single crystals of ZrPe2 were prepared

with dimensions of the order of 2.5mm x .75mm X .5mm.

3.7 Details of Crystal Growth of ZrFe2

The constituents were brought to 1650°C over a period of 15
minutes to allow for natural intermediate phases to occur with

minimum stress,

Problems arose with the charge held at around 700°C. A
reaction occurred capable of cracking the partially reacted metals
and causing pieces to be removed from the bulk of the material.
This was put down to one of two possibilities. The first cause
may have been a result of an exothermic reaction of the two
constituents whilst the second may have been a product of
electromagnetic repulsion of boat and sample seen to occur at a
set power level of the R.F. coils. Whatever the cause this
problem was alleviated by the use of a carefully chosen R.F. coil
initially to heat the constituents and by bringing the charge

quickly through 700°C to about 950°C before bringing gradually to
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a molten state.

The metals were then left to homogenise for 5 minutes at
1650°C before cooling to 1500°C. After 3 days of annealing and a
slow cool the resultant polycrystalline ingot was cut along its
length using spark erosion, polished and etched using ferric
chloride solution. The etch proved excellent in revealing grain

contrast.

Using the Laue back reflection X-ray technique large crystals
observed from the surface were orientated so that the [110]
direction was vertical, before cutting out again using a spark
machine. The crystals were finally polished to produce a clean

sample for neutron scattering.

In using this technique for the removal of crystals from the
bulk material one can never be sure that the final cut is a single
crystal as required. It may have voids or internal inclusions of
the same or different phase. The neutron scattering experiments,
detailed later in this work, reveal the samples obtained in this
manner to have excellent characteristics and to be single

crystals.

Further to this a measure of the residual resistance ratio
can provide an indication of the level of purity and order
disorder in the system. That is the ratio of resistances at 4.2K
and room temperature (RRR=p(293K)/p(4.2K)). From Matthesian's law

it is known that the scattering of conduction electrons from
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impurities is temperature independent whilst scattering from
phonon modes fall to zero at low temperatures. An indication of
the impurity level of the sample may be inferred from the

measurement.

The RRR cannot give an absolute indication of the impurity
concentration within a specimen and must be compared to similar
measurements taken on much studied materials. Similar systems
which are also not line compounds such as NiaGa and Zan2 have
RRRs of between 40 and 100 for the best quality samples ever
produced whilst MnSi shows rather higher values of wupto 23036

owing to an anomaly in the resitivity as a function of

87
temperature

Since ZrFe2 has a simple cubic structure similar to those of
Zan2 and NiaGa a value of the RRR of around 90 obtained for the
crystals gives strong evidence of a high quality product. The

variation of p(273K)/p(T) with temperature is shown in figure 3.4.

3.8 Annealing

The annealing stage of growth is of great importance. When
samples are cooled through their melting point either as a whole,
as in the case of ZrFez, or partially as in zone refining large
order disorder occurs due to the stresses caused by the change of
state. To promote the growth of a more highly ordered system and
large single crystals the system is brought to a temperature just

below the melting point of the bulk and left for an extended
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Figure 3.4 The resistivity ratio p(273K)/p(T) as a function of
temperature (T) for a specimen of ZrFe2 grown for neutron
scattering investigation using the cold crucible technique. The
measurements have been taken using a four point contact technique

using custom built apparatus.
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period for growth to occur with a minimum of stress.

By heating the samples in a more homogeneous environment
greater promotion of growth may be possible. The cold crucible
provided a highly successful annealing environment in this work.
The cold crucible may give rise to composition gradients as a
result of the large temperature gradients if diffusion constants
of the charge are not large enough to compensate. By the use of
either a hot crucible or electric furnace greater homogeneity may

be possible leading to the growth of larger single crystals.

3.9 Preparation of a MnSi Polycrystalline Sample

A polycrystalline sample was grown of the heli-magnetic
material MnSi to study spin waves under pressure at low
temperatures using small angle scattering on the D11 instrument at

the I.L.L..

Whilst preparing the pure elements for growth great care was
taken with the Mn which oxidizes very easily in air leading to
great amounts of impurity in the final product. To reduce this
potentially severe problem several precautions were observed. The
Mn was only allowed to come into brief contact with the atmosphere
whilst weighing (ideally this stage should be carried out in a
glove box) and placing the sample on the cold crucigle. At all

other times the Mn was either kept under vacuum or in an inert gas

atmosphere.
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The Mn and Si were obtained from Johnson Matthey with
purities quoted as 99.998% and 99.9999% respectively. The Mn was
first etched in a dilute solution of HNO3 and methanol and the Si
in a mixture of HNOa:glacial acetic acid:HF and bromi&e
(50:30:30:0.6) before being thoroughly washing in distilled water.
The constituents were weighed to within 50ppm of stoichiometric

composition before removal to the cold crucible.
3.10 Zone Refining

During the growth of binary metal systems many potential
problems are encountered with both the melt and solid. One problem
occurring both in mixed and elemental growth crystal growth is
inclusion of impurities found in the supplied raw material and,
for single crystals, internal structure imperfections such as

voids.

When attempting the growth of intermetallic systems
additional problems arise. The levels of imperfection generally
increases and the production of a highly stoichiometric sample
become relevant. Inhomogeneities in the sample may occur due to
incomplete mixing with disorder of the lattice resulting.
Examples of this include the interstitial interchange of sites and

a lack of long range order.

Several of these problems may be alleviated by the use of
zone refinement. This method is used primarily to produce a cast

ingot with a concentration gradient of major elements in the
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system. In essence the technique moves excesses of one or more of
the elements along the ingot leaving a highly stoichiometric 'good
end' and a low quality 'bad end' by the unidirectional movement of

a solid liquid interface.

The phase diagram for the Mn-Si (diagram 3.3) system shows
that MnSi is a line compound. That is that the product MnSi forms
from the melt with no uncertainty in composition. This implies
that the solubility of extra atoms into solid MnSi is very small.
However no such thing as an ideal line compound exists i.e. some
width is always present on the cooling line and this results in

some extra unwanted atoms dissolving into the solid phase.

When considering the 2zone refining technique it is usual to
define the equilibrium coefficient K as the ratio of the
concentration of the extra atoms in the solid to those in the
liquid phases when solid and liquid are in thermodynamic
equilibrium. This concept is important when discussing the merits

of the zone refining technique.

For the MnSi alloy it can be observed from the phase diagram
that the system is formed at the maximum between two eutectic
points. This implies that K<<1 for either Mn or Si excess in
MnSi. This is the general requirement for the wunidirectional

. ., . 32 .33
refinement techniques such as Bridgman , Czochralski and zone

refining to be effective.

To carry out the process of zone refining it must be possible
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to heat a section about 10th of the ingot length above its melting
point at any one time. Starting from one end this zone of melt is

then moved slowly (1cm in 10 mins) along its length.

This process may be repeated with the movement of the
interface always in the same direction along the sample. If one
considers the first such pass along the length of the cast ingot a
near stoichiometric phase is resultant in solid form and as the
liquid solid interface moves so does the 1liquid excess that
contains the in balance of either one or other of the material
along with any impurities. This occurs due to the low solubility
of this liquid material into the MnSi solid phase which is defined
by the width of the line on the phase diagram joining the molten
and room temperature equi-compositional states of the alloy. Each
pass of the zone along the length of the ingot produces an
increase in sample quality at the good end. The concentration
gradient of impurities (cs) after one pass of the zone is a
function the initial wuniform concentration (co) the effective
distribution coefficient (K), the ratio m (total ingot

length/heated zone length and the heated zone length (1)34. .

c, = {1-(1-K) exp(-Km/1)} 3.1

|

For a single pass the process is less efficient than the
Bridgman cooling technique however on repeated application the
zone refining technique yields a lower level of impurities over

most of the ingot. Figure 3.5 shows the concentration
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Figure 3.5 Approximate zone refining distribution curves for a

system with k<1, an ingot length L=m x 1 and after n zone
34 , . .

passes . From Herrington E.F.G.~ Zone Melting of organic

Compounds 1963, Blackwell Scientific Publications.
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distribution variation with the number of passes and 1.
3.11 Final Stages Of Sample Preparation

Once zone refining was completed the metal ingot of MnSi was
annealed for 2 days before removing. Three sections were then cut
from the good end using a spark erosion machine. The zone
refining technique results in the production of highly pure
samples with no or little long range ordering due to the rapid
quenching of sections of the ingot as the heating zone passes
across it in addition large temperature gradients inherent in the
cold boat method result in dislocations due to stress. Each cut
section in turn was then submitted to mechanical stress using
silver steel cylinders to clamp the samples in a vice. This
technique was employed to reduce the crystal sizes still further
as a fine polycrystalline sample was required for the small angle
neutron scatting experiments. These samples where then annealed
for 24 hours at 800°C to promote a small degree of order and to

reduce residual stresses.

Before the final annealing stage slivers of the sample were
cut from the ingot. These slithers were etched to clean and then
used to determine the residual resistance ratio. A value of 80
was obtained from these measurements. This compares favourably
with samples used for other neutron scattering experimentsas,
however this is unfavourable compared to RRR measured by L.
Taillefer36 on large single crystals of 230. This difference is

thought to be due largely to the difference in sample morphology.
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To further increase the sample quality purification of the
starting products would be necessary. The Mn in particular shows
high levels of non metallic impurities. The final zoned ingot was
green at the 'bad end' indicating a high level of sulphur
impurity. The Mn would have to be zone refined before combination
with the silicon to improve thus situation. Further improvements
could be made to the zone refining process by the use of a finer

R.F. coil to produce a more uniform compact area of melt.
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CHAPTER 4
Bulk Magnetisation Measurements

Bulk magnetisation measurements on TiBe1 C

s & and ZrFe2

have been carried out using a vibrating sample magnetometer (VSM).

The measurements have been performed to obtain the value of
X-1(T) in the low field limit above the Curie Temperature and
Xﬁi(T) below. The form of the function X-i(T) is necessary to the
complete description of the model analysis for the small angle
scattering investigations of TiBe:.scuo.s in the paramagnetic
regime whilst Xﬁi(T) enables longitudinal fluctuations to be
included in the theoretical response in the ferromagnetic phase.
In addition the values of the magnetic moments per atom in a zero
(B=0) field at 0K have been found by extrapolation of finite field
and temperature measurements. The zero field magnetisation scales
the small angle scattering theoretical cross section below the
Curie temperature to enable comparison to the collected data
whilst for the polarised diffraction experiments on ZrFe2 it
provides a value of the q=0 magnetic structure factor £(000) that
governs the low q shape of the form factor. Literature values

have not been used in the present work as they may be éample

dependent.
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4.1 The Magnetic Equation of State

It is generally known that the observed magnetic properties
of structurally ordered materials may be represented both in the

. . 37,16
ferromagnetic and paramagnetic phases by .

A(T) M(T,B) + bM>(T,B) 4.1

o
n

-
]

2 2
a+b | 3<m>+2<m)> ]|+ ... 4.2

Where <mﬁ> & <mi> are the thermal variances of the local
magnetisation parallel and perpendicular to the average
magnetisation M respectively. a and b are the basic parameters
introduced in chapter 2 required to complement ¢ and 7Y in
providing a complete phenomenological description of scattering

from magnetic fluctuations in weak itinerant ferromagnets.

A>0 in the paramagnetic regime and A<0 in the ferromagnetic

phase.

In the ferromagnetic regime the bulk susceptibility

components may be described by:

;' - OB o oa e uf OB 4 oanw? 4.3
M oM ]

;0= Baa b4
M
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Whilst in the zero field limit

X} = 0=A+BY 4.5
2

and thus A=-bM

The longitudinal bulk susceptibility, in the limit Fﬁq x 0
M

becomes

Xp! = -2a 4.6

The value A can be found from bulk magnetisation experimental

data by plotting the measured values of MZ against B/M and
. . . 2 . 2
extrapolating the straight line to the M =0 axis. Plots of M

against B/M are known as Arrot plots. Above Tc, 7!z A.

The value of M(q=0,T=0) and thus the moment per atom is
obtained from hysteresis curves (M against B) as the extrapolated
large B field M response to the B=0 axis and corrected for finite
temperature using M(0,T) = M(0,0) (1—(T/Tc)2)0'5. This technique
is employed since the observed value of M(0,0) on the hysteresis
curve is dependent upon the domain structure of the sample. 1In a
small external field the domains begin to align, total alignment
being achieved at a finite field Bs. In an ideal situvation one
would wish to study a single domain crystal. However this is not

possible and the required measurement must be obtained by

extrapolation of the acquired data above the field at which
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alignment into a single domain occurs.

The study of ZrFe2 using the VSM has been performed with a
multi domain single crystal aligned with the magnetic field
perpendicular to the [110] direction. This alignment has been
chosen since it corresponds to the chosen orientation of the
crystal in the cryomagnet on the polarised neutron diffractometer
that produces a significant number of distinguishable reflections.
This orientation also corresponds to an easy direction of ZrFez.
The studied crystal has been cut to give a high aspect ratio in

favour of this direction.

The TiBe1 5Cu0 5 sample was provided in the form of non
uniform granules, small specimens have been selected for
measurement that approximate to spherical samples or that have a

high aspect ratios.

4.2 The Vibrating Sample Magnetometer

The vibrating sample magnetometer used in this work has been

described in detail by Hoon and Wilcockae.

In brief the VSM measures the magnetic moment of a sample at
q=0. It achieves this by oscillating the sample at a constant
frequency in a uniform magnetic field. Any change in the field
external to the sample owing to the sample motion is picked up
using the fixed coils placed in the magnetic field. As a direct

result of Lenz's law the emf induced in the pickup coils is
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proportional to the rate of change of flux at the coils caused by
the vibrating sample. This results in the production of an A.C.
voltage in the pickup coils that is directly proportional to the

magnetic moment of the sample and its vibrational amplitude.

The pickup coil geometry is arranged in such a way that the
sample is always within the saddle point of the detection and
wired together to eliminate detection of mechanical oscillations
that occur at the same frequency as the induced signal. The
resulting signal is enhanced by the use of a phase sensitive
detector to achieve a high ratio of signal to noise. The
reference signal supplied to the phase sensitive detector comes
from an induction signal of a pickup coil with a permanent magnet

attached to the motor shaft (see figure 4.1).

The sample vibrates in the vertical plane inside a cryostat.
The sample rod, driven by a electric motor and a double crank
mechanism is located centrally inside the cryostat by the use of a
PTFE bush. The whole assembly including the cryostat is located
centrally in a plane perpendicular to the collinear arrangement of

field and detection coils.

The sample rod is constructed from 7mm borosilicate glass
which is wholly inside the cryostat. It is connected to the drive
shaft by a custom built double diaphragm isolation attachment.

The sample is attached to the PTFE holder that is itself attached

to the glass rod using PTFE tape.
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Figure 4.1 Schematic diagram of the vibrating sample

magnetometer used in the study of sample bulk magnetism (q=0).
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The cryostat is a conventional Oxford Instrument CF1200
continuous flow type operating in the temperature range 4.2-200K.
The temperature controller wuses a gold 0.07 iron chromel
thermocouple attached to the heater block on the base of the
sample space and is accurate to 0.5K. This was calibrated against
a Rh-Fe resistor, placed at the base of the sample space, with a

39
reported accuracy of 0.1K before data collection.

The applied external field produced by a conventional two
pole magnet is cycled under computer control to fields of *1.1
Tesla and monitored by a Hall effect gauss meter mounted adjacent

to the cryostat in the magnet pole gap.

4.3 Calibration

An absolute measure of the magnetisation of the sample is
made by calibrating the observed response of the VSM pickup
voltage against a sample with a well known value of saturation
magnetisation. For this purpose a spherical polycrystalline
Nickel sample was used. The spherical shape of the calibration
sample meant that the demagnetisation field was easy to calculate

and corrected for.

By setting the external magnetic field to 1.1 Tesla and
measuring the Ni response with temperature it has been documented
that the shielding owing to the cryostat copper insert and heating
block increases significantly below about 60K39. Measurements

taken at low temperatures and calibrated against a room
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temperature Ni standard have been accordingly corrected. The
observed temperature dependent response for a nickel sample is

shown in figure 4.2.
4.4 VSM Background Signal

The sample holder, made from PTFE, has a diamagnetic response
to an external magnetic field. This behaviour has been removed
from the sample measurements by the removal of an empty sample
holder response with the magnetic field B. The actual deducted
background is that of a least squares fit to a straight line of

the observed weak diamagnetic response.

4.5 Demagnetisation

All magnetic samples in an external magnetic field Bapp
experience a reduced internal field Bo as a result of a
demagnetising field. The effect is produced by an apparent
surface pole distribution on the sample. The extent of the
demagnetising field depends upon the sample shape and the

magnetisation M of the sample. This is usually modeled using the

demagnetisation factor D, where:
B =B o " uoDM 4.7

D may be calculated exactly for magnetically uniform
ellipsoids and approximately for other uniform shapes. When M is

small as in the case of TiBe1 5Cu0 5 the external and internal
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Figure 4.2a The induced voltage in the pickup coils of the VSM

for a nickel sample against temerature used as a calibration

response
Figure 4.2b The hysteresis curve for the pure sample of nickel

(RRR=2000) at 4.2K. Errors in the calibrated and corrected

, . 39
magnetisation have been quoted as under 5% .
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fields are similar and the correction may be duly neglected.

For measurements where M is large the internal field is
significantly different from the applied external field. This is
the case for the ZrFe2 sample. However the nature of the
experiment requires the determination of M(0,T) for a single
domain specimen, if the sample is saturated or close to saturation
such that the magnetisation changes little for a change in field
the effect of demagnetisation upon the measurement of M(0,T) is

nulled.
4.6 Results

The TiBe1 5Cu system exhibits a paramagnetic response

0.5
above a temperature of #28K and a bulk ferromagnetic state below
this temperature. Hysteresis curves of magnetisation against
magnetic field are shown for the system at temperatures of 4.2,
16.9,27.5,29.1 and 35K in figures 4.3. The data has been reploted
in the form of an Arrot plot and is shown in figure 4.4. From the
straight line relationships the bulk susceptibility has been

calculated as described previously. The change of X-1 with

-1 . . .
temperature above Tc and X; below is shown in figure 4.5.
A hysteresis curve for ZrFe2 is shown in figure 4.6 for the

system at 140K. The measured zero field moments in Bohr magnetons

and measured magnetic transitions are shown.
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M(0,0) T
ZrFe2 3.26(15)uB per formula unit *

TiBe1 5Cu 0.22(1)uB per formula unit 27.5K

0.5

* - Tc above room temperature.
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Figure 4.3 The magnetic response (M(B,q=0)) of TiBe Cu0 s at

1.5
(a) 4.2K, (b) 16.9K, (c) 27.5K, (d) 29.1K (e) 35K. Uncertainty in

M is under 5%, less than 1% for B and *0.5K in temperature.
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Figure 4.4 Arrot plot of the VSM data [Mz(ua/atom)2 against B/M

(gauss/uB)].

Figure 4.5 X-i(T) predicted from the intercepts of the Arrot plot

best fit lines with the M°=0 axis.
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Figure 4.6 Hysteresis curve for a single crystal sample of ZrFez.
The extrapolation of the magnetisation to the B=0 axis, above
domain alignment, predicts a magnetic moment of 1.63(7)uB per

Fe atom.
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CHAPTER 5

Spin Density Fluctuations in TiBe1 5Cuo 5

5.1 The Parent Compound TiBe2

The magnetic nature of the binary metal alloy TiBe2 has been
the centre of a great deal of discussion, it being isostructural
and isoelectronic to the well know weak itinerant ferromagnet
ZanZ. TiBe2 was originally assumed to be an ordered
itinerant-electron magnet40 but it is now generally agreed that it

is best described as an enhanced paramagnet.

The first major interest in the compound was aroused
following bulk magnetic investigations41 and was followed by
evidence of a flat magnetic susceptibility below about 20K with a
smooth maximum at 10K42 like that observed for Pd near 80K. By
extrapolation of X-l(T) to T=0K the system shows a negative
intercept and the compound was labelled antiferromagnetic.
Neutron diffraction studies43 and specific heat measurements
failed to establish the existence of a phase change. Later

45,46,47

work have converged to the existence of a strongly

enhanced paramagnetic state at all temperatures.
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5.2 The Copper Induced Ferromagnetic State

Unpublished work48 predicted that with the substitution of a
small quantity of copper atoms into the C15 cubic laves structure
of TiBe2 at Be atom sites ferromagnetic ordering might result,
when the parent compound is considered as an enhanced paramagnet,
from the data obtained in a previous experimental investigation40
This was indeed proved to be the case49. How and why this
transition from an enhanced paramagnetic to ferromagnetic state
should occur is not completely understood. An explanation offered
by J. L. Smith is that a change in the density of states at the
Fermi surface arises through an expansion of the lattice upon the
introduction of Copper into the TiBe2 lattice. This transition is
by no means unique, Gadolinium substitution in YCoZ50 an& Y00351
also reveal this type of behaviour. However the introduction of
Gadolinium into TiBe2 does not result in a ferromagnetically
ordered state. The existence of a ferromagnetic ground state

would thus appear to depend critically upon the induced density of

states at the Fermi level.

It has been shown in the TiBel_eCuo.2 system using polarised
neutron diffraction investigationssz,similar to those detailed
elsewhere in this thesis, that the magnetic moment distribution
originates from the Ti lattice positions and that a degree of
" delocalisation exists. Similar studies of the parent compound5
reveal a similar magnetic moment distribution for a sample aligned

in an external field of 4.6T. The addition of copper into the

lattice may be likened to the application of an internal magnetic
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The transition from a paramagnetic to a ferromagnetic ground
state as a function of copper substitution (TiBez_xCux) has been
studied using both bulk magnetic measurements (xc=0.16)49 and
small angle neutron scattering54 (xc=0.07). This difference is
probably due to sample heterogeneities and uneven distribution of
copper in the sample resulting in different densities of states at
the Fermi level in a system already close to the magnetic phase

instability.
5.3 Sample Preparation

The material used in this study where provided by Felcher at
the Argon Laboratories. It was prepared from the high purity
elements Ti 99.99%, Cu 99.999% and Be 99.5% by arc melting in an
argon atmosphere on a water cooled copper hearth. Ti-Cu alloy was
first prepared by repeated arc melting to insure complete mixing.
The correct weight of Be was then added and the product again
repeatedly arc melted to insure complete homogeneity and
stoichiometry. The samples were then powdered and analysed using
room temperature Debeye-Scherer X-ray diffraction to confirm a C15
phase structure with the absence of or at least only a small

amount of any second phase.

The use of an incident long wavelength monochromated neutron
beam of the D11 instrument permits the study of polycrystalline

samples. For the experiment polycrystalline pieces upto 3mm x 3mm

84

NIER



X 3mm in size were used to fill the D11 sample holder of

dimensions 10mm thickness by 10mm diameter.

The measured RRR of these specimens is low at around 17 but
since this system is in effect impure due to the random
substitution of Cu atoms at Be atom sites it is quiet respectable

when compared to RRR's quoted for TiBe2 of 1945'40.

5.4 The Observed Neutron Scattering Cross-Section

In Chapter 2 the theoretical neutron scattering cross section
was discussed. To be able to compare collected intensity data as
a function of scattering angle from the small angle scattering
experiment collected data must first be corrected for background
scattering, sample absorption, counter cell efficiency and finally

calibrated.
Numerous background signals are present in any neutron
scattering experiment. If they are not treated with care,

especially in systems that show weak scattering, serious errors

may result.

The background noise of any neutron experiment may be broken

down into three possible sources.

(1) General noise from the counting system electronics.

(2) Stray neutrons from surrounding instruments and the
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neutron source.

(3) Neutrons scattered from the incident beam eg. from the

sample holder and cryostat tail.

Sources (1) and (2) contribute a flat response over the
entire neutron spectrum and may be simply deducted from the

scattering response if necessary.

To account for the background sources two scans are taken.
The first is taken with an empty sample holder and the second with
a neutron opaque material at the sample position, for this purpose
cadmium is generally used (at low temperatures). From these two

scans background sources may be obtained.

The difference between the empty cell (Iec) and cadmium cell
(ch) detector responses, that vary with counter cell position,
corrected for sample transmission (&(T)) provides a measure of the
background attenuated by the sample under investigation. All
unscattered neutrons either strike the beam stop (placed at zero
angle directly in front of the detector) or pass to cells close to
the detector centre and are ignored in the data analysis. The
cadmium only scan provides a measure of the background of neutrons

that reach the detector without passage through the sample. The

corrected sample intensity (Is corr) ﬁéy be calculated from the
total observed intensity profile (Is,total)’
8,cOrr = Is,total - ch - (xs(T) (Iec - ch) 5.1
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This calculation does not provide correction for: (1)
inelastically scattered neutrons prior to sample scattering and
the resulting wvariation in sample attenuation; (2) neutrons

scattered from the surroundings after sample scattering.

The sample transmission as(T) has been measured continuously
with the aid of a modified beam stop with 5 small holes cut in it
allowing a small fraction of the transmitted beam to be monitored
by the detector cells directly behind the beam stop. The sample
transmission of 0.368 was a good estimate over the entire

temperature range under investigation.

Counter cell efficiency is measured by obtaining a scattering
profile from a perspex sheet placed in the sample holder.
Polymethylmethacrylate has a strong incoherent elastic scattering
cross section permitting all cells to be scaled to a flat uniform

response after any background corrections have been performed.

=1 -1
c

plexi,i plexi total,i

(oo (D) - (D) T

d c

plexi

5.2

at cell 1.

To obtain an absolute calibration of the scattering cross
section a vanadium sample is placed in the sample position and a
scan taken. Vanadium has a large inccherent scattering cross

section that dominates the total scattering with little if no
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multiple scattering events provided that the sample is thin enough.

van,i = Lyan totar,i ~ Teq(1™%an(T)) -«  (T) I__ 5.3
Correction is made to this for counter cell efficiency. A
vanadium sample is not used to correct for cell efficiency itself
because at low ¢ anomalous scattering is observed believed to be
the result of scattering from absorbed hydrogen unremoved during
manufacture. Calibration of the data is obtained against an

average response observed at high q where the response is flat.

In addition to the background corrections the total cross
section includes contributions from sample dependent sources that
should be considered. These include phonon, impurity, defect and

incoherent nuclear scattering.

The low q regime of investigation means that phonon
scattering contributions are small. The zero phonon modes are
negligible since the chosen incident wavelength (8A) is well
beyond the Bragg cut off, likewise the single phonon absorption
processes occur at large transfer energies well beyond the D11
spectrometer range of detection. Multiphonon and inelastic
nuclear scattering provide a small k dependent contribution which
are approximately temperature independent and may be corrected for
by subtraction of a low temperature sample scan (1.5K in these
measurements) corrected for background and scaled for sample
transmission. Since there may still be a thermal dependent

magnetic contribution at 1.5K this subtraction is in fact an over
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subtraction. This has been considered by subtraction of a

theoretical 1.5K magnetic scan from the modeled data.

The total observed cross section is given by:

do I fof (Na/V)van A L o (T) 5.4

= "8 inc van van van

) van " )van (Na/v)a As Ls as(T)

Where
Ai = sample cross section perpendicular to the incident beam.
Li = thickness of sample
« = sample transmission

and Ivan and I8 have been corrected for counter efficiency.

Is = Is,observed X % (Pi/n) 5.5
P.
1
and I = % Vj/n 5.6
Pi = detector counts at cell i f(or groups of cells on a

defined annulus)

VJ = detector counts at cell group j for scattering from a
vanadium sample where j corresponds to large g where the

scattering is a flat response.
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5.5 Results

The temperature dependence of intensity difference data with
a sample detector distance of 5m and an incident neutron
wavelength of 8A is shown in figure 5.1. That is a low
temperature background scan has been removed. At such typical .
temperatures (1.5-2K) the magnetic scattering is small but finite
giving a small temperature dependent offset to each point. The
intensity falls away quickly above the Curie temperature , the
model chosen must be able to predict this behavior. An additional
test of the model is that unlike many others describing observed

28, 16,27 . . . .
*TTrT ., a single equation with the same Dbasic

scattering
parameters suffices to describe both the weak ferromagnetic and

the paramagnetic phases.

5.5.1 Modeling with the SCR RPA Theory

The data collected below the Curie temperature at both sample
detector distances (2.5 & 5m) were initially modeled using the two
pole delta function 1line shape described by the SCR RPA.
Empirical fits were attempted allowing the values of the spin wave
stiffness and the energy gap to vary freely. The goodness of fit
has been correlated using the Chi squared test and contour plots
of this quantity with the parameters D and Eg used as an indicator
to the best fit. Good fits to the data have been obtained over
all observed q for all temperatures below Tc for data collected
with a sample detector distance set at 5m. A value of the spin

-2 .
wave stiffness corrected to OK of D=35%5 mevA ° corresponding to a

90



Figure 5.1 Constant gq, temperature dependence of observed

intensity difference data of a TiBe, _C sample taken on the

1.5°%.5
small angle scattering spectrometer D11 with a sample-detector
distance set at 5m and with an incident neutron wavelength of 8A,
This data has had a 1.5K background removed. The observed

scattering intensity is directly proportional to the scattering

cross section when all cells have equal counter efficiency.
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critical cut off angle of 0.057 radians and an average energy gap

of 7x3uev is obtained.A

For data collected at higher q using the sample-detector
distance of 2.5m the story is not the same. Whilst the cut off
angle falls above the observed data (in q) for the 5m setting it
falls well within the observable q,, range of the 2.5m setting.
The discontinuity discussed in chapter 2 is predicted in the
spectrum around Gc whilst the intensity falls away quickly above
this value only extending beyond the associated cut off due to the
machine angular resolution. The difference between the observed
and predicted values of scattering cross section at higher q is a
good indication that scattering is occurring from damped spin wave

modes.
5.5.2 The Damped Spin Wave Model

The inconsistency of the SCR RPA prediction at high q has
been resolved using the two pole Lorentzian line shape model below
the Curie temperature based on a generalised damped coupled
harmonic oscillator. This model requires the use of three
essentially independent parameters D(T), Eg and T the relaxation
function. D(T) ,the spin wave stiffness, is the same as that
defined in the SCR RPA description and T' is the same function as
that used in the description of diffuse scattering in 'the

paramagnetic regime.

. 2
The energy gap term Eg is generally small compared to D(T)q
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Figure 5.2 Contours showing the goodness of fit to experimental
data of simulated cross section data based on the SCR RPA response
function at 10K for an incident neutron wavelength of 80.6A. The
contour levels are directly proportional to the statistical
goodness of fit parameter X2 calculated from the observed and

predicted data.

Magnetic scattering from longitudinal spin fluctuations are
not included in the predicted data as they have been calculated as
adding only a negligible quantity to the total scattering cross

section.
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Figure 5.3 The best fit data of D(T) and Eg at 10K predicted from
the contours in figure 5.2 have been used to simulate data
collected at a sample-detector distance of 5m using an incident
neutron wavelength of 8t0.6A using the SCR RPA model. The solid
line represents the simulated data using D=35 mevA_2 and Eg=6uev,
whilst the discrete data points represent the observed cross

sections inclusive of machine resolution.
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Figure 5.4 Wavevector dependence of the scattering cross section
observed at 10K relative to a low temperature 1.9K background at a
neutron incident wavelength of 8+0.6A. The solid line is a
resolution convolved fit to the SCR RPA response function with a
pole position of the quadratic dispersion hw(q) = D(T)q2+Eg (a)
Eg=0uev, (b) Eg=AUev. An analytical solution to the integrated
response has been used close to Gc the discontinuity in the
simulated response is still visible. This model is clearly not

satisfactory in describing the observed high q data.
The rise at high q of the simulated data is from neutrons

scattered through angles close to the critical scattering angle

picked up due to the machine resolution in angle.
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Figure 5.4b
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in the wavevector regime of study but dominates the response at
very low q. The value of this parameter may be misleading where
anomalous scattering occurs at low q due to sample or instrument
effects. The quantity cj, which effectively scales the intensity
and is temperature independent, has been assumed equal to c¢
defined by the paramagnetic scattering above Tc and the SCR RPA
below and is closely related to D(T). The relaxation function
I'(q) is a measure of the half width of the line shape function.
At low q, T'(q) is small and the Lorentzian line shape function
tends toward the delta function response of the SCR RPA model,
whilst at higher q the term may become large, widening the
distribution along the frequency axis, permitting the modeling of
a finite response beyond the critical angle defined in the SCR
RPA. This fits in well with the requirements made of a model to

supersede the SCR RPA in fitting the observed scattering data.

T(q) = yaX '(q) 5.7

X Nq) = cq? 5.8

The temperature independent parameter hy is the same as that

used in the description above Tc.

The computer program developed to model the collected data is
complex and uses a great deal of computer resource. The
additional complexities over the SCR RPA fit program arises
through the need to account for contribution to the total

scattering cross section from weighted contributions in all ®,q
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space rather than just the four contributions of the SCR RPA.
Additionally a new variable parameter is introduced to describe
the line shape width. This has limited the fitting of data to the
determination of only a few parameter combinations rather than the
blanket coverage used to produce contour plots. An effective
means of the best fit parameter combinations has been found by
iteration using the Xz fit quantity as a guide to the best fit of
data in three bands (i) all q (ii) high q (iii) low q. Using this
fit data and by visual inspection of the predicted curve to the
experimental calibrated data the parameter combinations have been
determined with good accuracy as can be seen from the figures 5.5
and 5.6 showing the fits for data at both sample detector distance
settings and at all observed temperatures below Tc. Table 5.1
summaries the observations. The problem in using this solution
rather than the contour plots is that errors in the parameters are
difficult to predict. Figures 5.10 and 5.11 show the variation in
hy and ¢ with temperature, the spread of the predicted points away
from the average model curves gives an indication of the errors in

the parameters.
5.5.3 Modeling the Data Above Tc
The theoretical diffuse scattering response above Tc

described through the imaginary part of the generalised

susceptibility by:
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wX(q)T'(q)

M(q,0) = S 5.9
w? + T'%(q)

T'(q) = 19X '(q) 5.10

X-i(q) =x1, cq2 5.11

has been used to fit data using values of ¢ and hy predicted below

. -1 .
Tc and using X (T) as a floating parameter.

The fits obtained at just above the Curie temperature
(27-28K) and at 35K from data collected at both sample-detector
distance settings are shown in table 5.2. The inverse
susceptibility parameter agrees well with that measured using the
vibrating sample magnetometer in chapter 4 providing a good check

on the models applicability in the description of observed

scattering. The fitted data is shown in diagrams 5.7 and 5.8.

5.6 Conclusions

Figure 5.9 summaries three fits at the 5m sample detector
distance setting at three temperatures spanning the Curie
temperature. This is the first documented account of the use of a
single model lineshape to describe observations of damped magnetic
scattering from a weak itinerant magnet below and above the
magnetic phase transition. Two fundamental parameters c¢ and hy

are sufficient to describe the observations. Figures 5.10 and
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5.11 show the variation of the empirical parameters ¢ and hy with
temperature, deviation from the average solid line in each case
describes the errors associated with the determination of these
values wusing the neutron scattering technique. It has been
proposed that the temperature variation of the spin wave stiffness
follows a simple form. The validity of this description is shown

in figure 5.12, the solid line representing the theoretical value

of D(T).

The use of a damped coupled harmonic oscillator description
collapsing to a single pole at the Curie temperature is effective
in the description of collective fluctuations in the TiBei_SCuO_5
system across the phase transition. Questions arise regarding the
fundamental nature of these fluctuations in the parent alloy. It
has been shown that with the application of an external magnetic
field53 an internal ferromagnetic state is induced. In this
situation are the collective fluctuations below Tc damped spin
waves or indeed best described by the undamped spin wave model of
the SCR RPA? The damped spin wave modes may for instance only be
associated with rather impure systems which by definition the

substitution of Cu in a lattice at random positions causes. The

study of TiBez_xCux for 0<x<0.5 may be revealing here.
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TABLE 5.1

Sample Temperature D_, E (Hev) hy(pevA) X
Detector (K) (mevA™ %) (£3) (1)
Distance(m) (£6)
5 5 32 2 3 10

10 35 4 3 11.6

20 24 2 3 17
2.5 5 30 3 3 5

10 30 5 3 2

20 20 10 3 8

22 25 6 3 6.7

TABLE 5.2
Sample Temperature hy(uevA) C . x! xZ
Detector (K) (£1) x10 (A%)
Distance(m) (£1.2)
5 27.5 2.7 5 15 4.9
2.5 27.6 2.7 5.3 20 3.35
35 3.5 5.4 200 21
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Figure 5.5 The normal scattering angle dependence (qel=2ﬂe/l for
small angles) of the observed scattering cross section difference
at a sample-detector distance of 5m, an incident neutron
wavelength of 8%0.6A at temperatures of (a) 5K, (b) 10K, (c) 20K.
The solid line is a resolution convolved fit to the two pole
damped harmonic oscillator response function with a pole at the
position hw(q) = D(T)q2+Eg. The parameters used in the fits are

given in Table 5.1.
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Figure 5.6 The normal scattering angle dependence (qel=2N9/X for
small angles) of the observed scattering cross section difference
at a sample-detector distance of 2.5m, an incident neutron
wavelength of 8+0.6A at temperatures of (a) 5K, (b) 20K. The
solid line is a resolution convolved fit to the two pole damped
harmonic oscillator response function with a pole at the position
hw(q) = D(T)q2+Eg. The parameters used in the fits are given in

Table 1.
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Figure 5.7 Scattering angle dependence (qel=271’9/7\) of the small
angle scattering measured at 27.5K and modeled using a single pole
X"(q,w) description of scattering from collective fluctuations
above the magnetic phase transition. X"(q,w) is defined in
equation 5.9 with a relaxation frequency l"(q)=7q(X‘1+cq2).

hy=2.7uev and c=5x10*A% with X '=15.
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Figure 5.8 The small angle scattering angle dependence of the
collective fluctuation above T, for (a) T=27.6K and (b) T=35K for
neutrons incideﬁt with a wavelength of 8%0.6A and a
sample-detector distance of 2.5m. The solid line is a resolution
convolved fit to a single pole description of X"(q,w).
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Figure 5.9 The wavevector dependence of the difference cross
sections observed and simulated at (a) 5K (b) 20K and (c¢) 27.5K
where Tc=27K. The spectrometer has been used in a configuration
with an incident wavelength of 8%0.6A and a sample~detector
distance of 5m. The simulated data parameter values of D and the

energy gap are given in Tables 5.1 and 5.2.
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Figure 5.10 The simulated temperature dependence of the torsional
constant ¢. In theory the variation from the mean should be due

only to experimental error in the determination of c.
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Figure 5.11 The temperature dependence of the model parameter hy,
in theory it is temperature independent. The error bars are those
predicted from calculation of the quantity at each individual

temperature, the true error in the parameter is that given by the

variation from the mean value.
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Figure 5.12 The spin wave stiffness calculated from the fitted

data against the proposed theoretical temperature dependence D(T)

= DO(1—(T/TC)2)1/2.

108



Figure 5.12
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CHAPTER 6

MAGNETIC DENSITY DISTRIBUTION DETERMINATION

6.1 Introduction

The neutron possesses no electrical charge whilst it
maintains a magnetic dipole moment. This combination provides a
unique probe of matter. The presence of a magnetic moment

provides scope for polarisation of a neutron beam with respect to

the spin quantum number.

The neutron interacts with matter both by non-magnetic and
magnetic scattering the latter occurring through three distinct
interactions. The first of these is through the electron spins
the second is through the orbital angular momentum of unpaired
electrons and the third is through interactions with the nuclear

spins.

Of primary interest in this work is the interaction with
electrons from the incompletely filled atomic electron shells such
as the 3d and 4d orbitals of the transition elements. The
contribution to the total neutron scattering cross section arising
from magnetic scattering from the electron current is of little

importance in transition metal systems owing to the presence of a
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crystal field that 1lifts the orbital degeneracy of the ground
state wave function and effectively quenches the orbital
contribution. The ion of the rare earth elements posses both spin
and unquenched orbital angular momentum. Since the system under
investigation contains both 3d (Fe) and 4d (Zr) transition ions
the presence of a significant magnetic moment at the Zr atom site

might well require that orbital degeneracy effects be considered.

In any neutron diffraction experiment the most general aim is
the determination of a complete set of structure factors out to a
specified position in reciprocal space. The structure factor,
defined at a given Miller index bhkl, Fhkl is reiated to the

distribution of scattering centers within a given crystallographic

cell:

ik.r —wisinzei/xf
Fhkl = ?Aifi(k) e e 6.1

C . . th . .

Where i is the position of the i scattering center with the

., 2 2

-v, sin Gl/ki
scattering power Ai and the form factor fi(k). e is
the Debye Waller factor that is a measure of the scattering
response variation with temperature due to thermal vibrations of
the scattering center. 28 is defined as the angle between the

incident and exit wavevectors for diffraction experiments (in

contrast to small angle quasielastic scattering).

Fhkl describes either the nuclear or the magnetic scattering
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structure factors. In the case of nuclear scattering the A‘fi(k)
term may be replaced by the single parameter b, the scattering
amplitudese. No form factor is required in this description
because of the short range of the interaction (’*‘10-12 to 10-13 cm)
compared to the wavelength of a thermal neutron (~10-8 cm)
resulting in isotropic scattering. Magnetic scattering is primary
due to the outer electrons whose spatial distribution is
comparable with thermal wavelengths, a form factor is thus

involved in the scattering description and may be Fourier inverted

to yield a spatial distribution of the magnetisation density.

The distribution of scattering centers (p) within the crystal

cell may be calculated from:

?F e 6.2

where V is the volume of the unit cell.

Thg way in which individual structure factors are related to
the diffracted intensities is not unique but dependent upon the
crystal perfection. In the case of an ideal crystal, where
coherence is maintained throughout the whole crystal, the
intensity is dynamically exchanged between the incident and
diffracted beams. The first Born approximation cannot be used to
simplif; calculation. In this dynamical scattering limit the
integrated intensities, after complex theoretical analysis may be
Iie

shown to be proportional to IFhkl
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Most crystals however possess irregularities in their atomic
arrangements resulting in the whole consisting of many small
crystallites as a consequence of dislocations, point defects and
sub grain boundaries. These inhomogeneities destroy the
coherence between the components of the incident beam scattered
by different parts of the crystal. The individual crystallites
are themselves sufficiently perfect to reflect the Dbeam
coherently. In this limit scattering may be considered in the
kinematical limit in which the first Born approximation may be
used. In this case the system can be thought to consist of a
mosaic spread of blocks the scattering from which results in an

angular broadening of the scattered beam.

In the kinematical limit the scattering intensities can be
shown to be proportional to the sum of the squares of the magnetic

and nuclear scattering factors (see section 6.3).

It is possible to measure the magnetic contribution to the
diffracted intensities wusing standard neutron diffraction
techniques assuming a knowledge of the nuclear scattering factors
is available from theoretical calculations. The main disadvantage
of this method is that for weak magnetic systems the magnetic
scattering intensities become small quickly away from q=0 events
when compared to the nuclear scattering intensities. This is due
to a combination of the magnetic from factor which falls quickly
with increasing momentum transfer and the small magnetic moment

that governs the magnetic scattering power.
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Using a polarised incident beam (all incident neutron spins
either up or down ) provides an alternative and potentially more
refined method for the determination of the magnetic structure
factors. The major disadvantage of this method is that to produce
a polarised beam there is a large reduction in intensity of the
incident beam over a conventional beam. Until recently this lack
of intensity on polarised neutron instruments was low enough to
discount all but the easiest of experiments. The relative
intensity between the unpolarised and poiarised beams remain very
similar to this day but the absolute intensity has increased to a
level where many experiments may be carried out. One must balance
one technique against the dther before deciding on the more
appropriate method and use of beam time. Because of the
requirement for accurate determination of a possibly weak magnetic
signal and good data for the production of a fourier map of the
magnetisation density of the sample, the polarised neutron

technique was chosen.

6.2 Sample Requirements

There are several requirements made of the sample for
effective use of a polarised source. A good quality single
crystal of the material is highly desirable, that is one with high
order, stoichiometry and purity. The magnetic and nuclear
structure factors, defined by the crystallographic structure of

the material, must neither be zero nor in phase quadrature to one
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another. The determination of wunambiguous results is only
possible if the nuclear structure is centrosymmetric since the
magnetic form factor cannot be found exactly even when the
amplitude and phase of the nuclear structure factors are Kknown.
These requirements are satisfied by the C15 cubic laves structure
of ZrFez. The magnetic structure factors are also centrosymmetric

furthering the ease of analysis.

6.3 The Polarised Neutron Technique

The present work involves the study of an ordered magnetic
system in a large magnetic field (4.6 Tesla) applied perpendicular
to the scattering plane. It is preferential for analysis of the
collected intensities that all domains in the crystal are aligned

otherwise depolarisation of the beam may result.

In the case of an incident polarised beam of neutrons
scattering from a solid througﬁ both nuclear and magnetic
interactions the theoretical differential cross section in the
first Born approximation consists of 4 termsie. Two of these
terms are simply the purely nuclear and magnetic scattering cross
sections as in the case of an unpolarised experiment. The two
additional contributions arise from (i) interference between
nuclear and magnetic scattering and (ii) an additional magnetic
term that does not contribute to the scattering cross section when

all system spins are aligned either parallel or anti-parallel.

For a system where the term (ii) is zero the differential
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cross section has been shown by Halpern and Johnson5 to reduce

to:
0 = b%+ 2bph.q + poq° 6.3

For scattering from a single atom, where q is the magnetic

interaction vector defined by:
q = €(e.k)-k 6.4

and k is the unit vector in the direction of the atomic magnetic
spin and € is a unit vector in the direction perpendicular to the
effective reflecting planes of the crystal i.e. the scattering
vector. b is the nuclear scattering length whilst p, for a system
where the orbital contribution to the magnetic scattering is fully

quenched, is defined by:

2
p= | &7 |osf 6.5

f is the magnetic form factor and 2S is equal to the magretic

moment of the system in Bohr magnetons.

The geometry in this experiment has been chosen, as far as

2
possible, such that q =1. -
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6.4 Diffracted Intensities

The study of scattered intensities due to an an incident
polarised beam of neutrons was performed at the I.L.L. on the D3
diffractometer. This machine is a two axis diffractometer on
which the incident beam is either parallel or antiparallel to the
specimen rotation axis ®, which is in general the sample
magnetisation direction. The detector moves about two axes, ¥
parallel to ® and V that allows the detection of reflection out of

the equatorial plane.

The polarised beam is produced by reflection from the (220)
plane of a CogePeBmonochromator. This particular reflection
satisfies the condition that IFNI ~ IFMI which is the criterion at
which nearly total polarisation occurs. .The actual polarisation
of the incident beam is dependent upon the incident wavelength

but on D3 always falls within 98%1%.

Figure (6.1) shows a schematic representation of the D3

diffractometer.

The polarisation of the beam P is given by the ratio defined

in equation 6.6. n' and n” signify spin parallel and antiparallel.

p=1 ~1D 6.6
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Figure 6.1 The D3 polarised neutron diffractometer at the
Institut Max Von Laue, Paul Langevin (ILL), Grenoble, France.
Taken from the ILL publication -Neutron Research Facilities at the

ILL High Flux Reactor (1983).
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Figure 6.1

L
T
.oojn..‘l ..lll
Mt T Tt
."-’. '-.
N ol.‘.”)o»
...)..PO
et A Ny
v
AaYes o Lave, L ETMA G v
, -7 & ¢ .vo' KIS o/&.o
\- ol'g ‘)A [\ oh: - a« p
- Jt \ y I.J'. *
. .
” .Alwbwguzou ey AA'J - .,a
. ¢Cuo .».aﬂl)’o’l'!.... 00)
Y Iy e U
e 4 a
. yo .
je 7d'll’o
SR P
) '0A4I.\\10
# . -~ 0"
% 8! 5r"4)..0
‘g ®
b 4 —o -n8 N

O id  WOLY AOMHIONONW

¥ 40 NOI OV MIXI




For scattering from an assembly of atoms a phase difference
term is included for scattering from different atoms. This
results in b and p in equation 6.3 becoming equal to the
scattering factors. If the magnetic scattering amplitude includes
a significant contribution from the orbital angular momentum of
the unpaired electrons the definition of p becomes significantly

more complex.

When the orbital contribution to the total scattering

. . . . . C e . 18
intensity is quenched the diffracted intensities are given by

I(K) « F:(k) + Fi(k) + 2 P F (K).F,(K) 6.7

From this equation it can be seen that even when the magnetic
structure factor Fn becomes small compared to the nuclear
structure factor Fn the cross term may add significantly to the
diffracted intensities. This technique therefore lends itself
well to the analysis of ordered weak magnetic materials. By
analysing the spins of the diffracted beam one may gain further
information, specifically about the absolute direction of the
magnetic structure factor in the plane perpendicular to the
scattering vectorse. This is due to the unique nature of magnetic
scattering when the effective magnetisation components are
perpendicular to the polarisation direction resulting in spin flip
processes. Further this technique may be employed to distinguish
between magnetic and nuclear scattering in a powder sample. D3

has no such facility and this shall be discussed no further.

118



6.5 Spin Flip of the Polarised beam

The sense of polarisation of the incident beam is kept by the
application of a magnetic guide field parallel to the polarisation
direction and perpendicular to the direction of flight. 1In order
to alter the direction of polarisation several distinct methods
have been developed. The traditional technique involves the
flipping of neutrons adiabatically using a radio frequency coil to
produce a magnetic field H1 perpendicular to the neutron beam and
guide field HOSB. The r.f. frequency is applied such that the
change in resultant field direction BO+H1 varies less than or
equal to the Larmor frequency of the precessing neutrons. When
the neutrons initially enter the influence of the r.f. field
their velocity is large enough to cause a very quick change in
magnetic surroundings. This does not however effect the
wavefunction of the neutrons that by definition must remain
continuous and no change in polarisation sense is caused. This is
often referred to as the 'Sudden ' approximation. By choosing the
correct conditions of field, dimension and frequency the r.f.
technique has been used to produce a spin flipper with a change in
polarisation direction of ®. The disadvantage of this method is
that a time dependent polarisation is produced that changes with

the r.f..
.60 . .
Mezei developed an alternative system using rectangular

coils with the application of a direct current to achieve the

required results of a stable continuous flipped beam. If a neutron
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is considered to enter a magnetic region produced by such a coil,
by using the Sudden approximation, it can be seen that the neutron
enters the field produced by the coil with unchanged spin. The
field produced by the coil H1 causes an internal field of HO+ H1
that makes an angle 6@ with the field outside the coil Ho‘ By
choosing that |H0|=|H1| and H .H =0 and that the transit time
within the coil corresponds to the Larmor frequency then the
neutron is caused to precess about 8=n/4 and turn through m/2. By
using two such coils a total change in spin direction of ® is
obtainable. One disadvantage of such a system is that neutrons of
different velocities from that for which the coil has been
specifically designed are not totally spin reversed. By setting
the two coils back to back with H1 in opposing directions in the
two coils, it is possible to overcome this problem. In this case
the spin of each neutron in the beam undergoes exactly the same
number of Larmor precessions between entering the influence of the
first coil and exiting the field of the second. 1In this way all
neutrons of all wavelengths may be spin flipped with reference to
the incident neutron spin alignment. For this technique to work
well a sudden field reversal is required and interaction between
the two coils must be minimalsj. This may be achieved by placing a
superconducting sheet between them. A superconductor is a perfect
diamagnet (Meissner effect of a type I superconductor) below the
critical field and therefore acts as a barrier between the two

fields if the field in the coils is low.

On D3 the device used to invert the polarisation vector is

different. The sense of polarisation is turned around by the use
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of a Meissner-Majorana cryoflipper. The device is a non-adiabatic
spin flipper. The magnetic guide fields as seen from the
neutron's frame are reversed, in such a device, in a time much
shorter than than the Larmor period. The neutron spin vector can
be considered to remain fixed in the laboratory frame as it
traverses the magnetic discontinuity but reversed with respect to
the guide field. Figure (6.2) shows the design of the D3
instrument with reference to the magnetic fields. The polarised
neutrons enter the flipper and are held in a guide field. They
then traverse a region of 'free space' in which adiabatic spin
change processes may take place, before again entering a well
defined magnetic region. This second magnet may have a field
either parallel to the first, in which case the polarisation of
the beam remains the same, or in the opposing direction. If the
field is different then within the region of free space the
neutron spin is caused to flip. Upon entering the region
surrounded by the second magnet the spin will have either flipped
or remained unchanged. At the interface between the second and
third magnet a superconducting sheet of niobium is used to isolate
the two sections of guide field. The neutrons traverse this area,
as in the case of back to back Mezei coils, without change in
spin, as a result of the Sudden approximation. The third and
fourth magnets act to keep the polarisation in either its new or
old orientation. Beyond the influence of the free space region
non-adiabatic processes only occur. The first and fourth guide
fields are produced by permanent magnets on D3, whilst the other
two are a product of coils with direct current. The second coil

can easily be set to produce spin flip or otherwise by changing
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Figure 6.2 The non adiabatic spin flipper on the D3 polarised

neutron diffractometer.
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the current direction.
6.6 The Determination of the Flipping Ratio R

The cryoflipper allows the measurement of diffracted
intensities of the incident beam in two spin states. The ratio of

these two intensities R can be measured.

6.8

The ratio of diffracted intensities is also dependent upon
the extent of polarisation of the incident beam defined through
the vector quantity P. The system ZrFe2 is centrosymmetric

lending itself to simple analysis:

1 (k)_IFA(K) 12 + 1ER(K) 12 + 2|R|F(K). FA(K)

R(K)=
I7(k) IFA(K)1Z + IFN(K)IZ - 2|P|PA(K).FN(K)
6.9
If we assume that IP'1 = IP7l = IPl = 1 then
Rz L OO_IFAGO1® + 1PRG)1® + 2PA(K) FR(K)
I (k) IFm(k)12 + IFR(k)1Z - 2FA(K).FR(K)
6.10

FH is the transverse component of the magnetic scattering

factor F"= FHsine where 6, is the angle between the scattered
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wavevector and the magnetisation direction. If the condition is
set such that k is perpendicular to the magnetic field direction

placed on the crystal, which is the case on D3, then R becomes:

+ +.2 +,2 + _+ + +. .2
R(K)= I (k)leMI + IFNIT + 2FH.FN=|FH + F¥l

1°(k) IFPM12 + IFNIZ - 2PH.FN IFH - PNIZ
6.11

. + L . .
Since FM.P now becomes tFM it is usual to define the ratio

2
FH/F"= Y. Hence R = (1+7)2. If ¥ is small this reduces to
(1-7)
Rz (14274 32 ) (14 2y +.....) &1+ 4y 6.12

Which is the case for weak itinerant ferromagnets such as
Zanz. In the case of ZrFezthe magnetic structure factors were
initially unknown and this approximation was thought and indeed
proved to be inconsistent with the system under investigation. ¥

is defined in full as one of the two roots of the equation:

AL (2r)°-®
R - 1

Thus by measuring the flipping ratio R for a given Bragg
reflection the ratio of magnetic to nuclear scattering may be
determined. For complete analysis an wunpolarised neutron

diffraction experiment, with the sample in a zero magnetic field

was also carried out in order to determine the nuclear structure
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factors by experiment (as well as to determine further parameters
used in the analysis of the polarised neutron data as discussed
later in this chapter). The D15 diffractometer at the I.L.L. was
used for this purpose. Using this instrument one can measure the

sum of the squares of the nuclear and magnetic structure factors.

2 2
I «F.+ EFM 6.14
3

The factor of 2/3 arises because 2 out of 3 components of the
magnetic structure factor lie in the plane perpendicular to the
incident wavevector. The nuclear structure factors may thus be
determined. This in itself requires an initial approximation.
One must assume that a calculated theoretical value based upon a
model of Fe site only magnetism of FH is true in order that FN be
obtained. By including an interaction between the nuclear and
magnetic structure factor terms determined from polarised and
unpolarised diffraction analysis the estimation of FM becomes less

critical.
6.7 Corrections to the collected data

There are two main sources of error associated with the
collection of data by the diffraction of neutrons. The first type
are those that arise due to the inherent incapabilities of the
machine. These include A/2 contamination of the beam due to
reflection from the monochromator, momentum spread of the incident

beam and in the <case of polarised neutrons incomplete

125



polarisation. The second source of errors are those that arise
from imperfections in the specimen used for study. Examples of
this type of problem are depolarisation and absorption of the beam
along with multiple scattering and extinction. In order to obtain
results from the data, corrections and refinements have been
carried out using a computer. During the course of the data
analysis programs and subroutines of the Cambridge
Crystallographic Subroutine Library (CCSL) have been extensively
usedez. Using this program suite these corrections have been

relatively easy to make.

6.8 Correction Overview

The errors due to spin reversal and imperfect polarisation
are discussed by J.B. Forsythea. The extent of polarisation from
the CogaFe8 monochromator is well known. If the depolarisation
coefficient is D and € is the flipping efficiency the equation for
R can be solved for ¥ = ¥sin@ where @ is the angle between the

. . . 64
polarisation vector and the scattering vector k .

2 2 2
7 = x(est) + F(EHD (R 6.15
R-1
where
X = P.DF'sin6lF_|= P Dsin® 6.16
i N N i
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1]
for a centrosymmetric system. Pi is the incident polarisation FN

is the real part of the nuclear scattering factor and IFN| is the
modulus of the nuclear structure factor. D is different for each

reflection and is calculated by

D = I exp(Cd) dv 6.17
crystal
volume
1
C=<-1n i 6.18
t p'

and the transmitted polarisation P' is measured for a sample
thickness t64. The effect due to depolarisation may be reduced by
using a crystal that is orientated in the magnetic field of the
cryomagnet such that the sample is magnetised along an easy
direction. By using a sample with a large aspect ratio the path
length of the neutrons inside the crystal can be reduced thus
reducing the effects of absorption. By using a sample of this
kind saturation of the sample in the magnetic field of the D3

experiment is more likely.

The A/2 contamination of the incident beam is negligible when

using an incident beam of A<1A and a CoFe monochromator.

The last of the corrections and probably the most difficult
to solve is the one of multiple scattering. This gives rise to
extinction at large scattering intensities and evidence of
flipping ratios at systematically absent reflections. These

corrections apply equally to diffracted intensities from a
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polarised neutron experiment as to an unpolarised one. Any
corrections for extinction or multiple scattering have been
calculated for the D15 data and carried over to the D3 data. For
this process to be valid the same crystal in the same orientation

at the same temperature (4.2K) has been used in both experiments.

Corrections for multiple scattering, other than the special
case of extinction, are difficult to make and have not been
undertaken in this work. The extent of extinction in a sample is

modeled through the mosaic spread.

6.9 The Mosaic Spread

If the single crystal used in this experiment were perfect
all incident neutrons would be Bragg scattered within a few atomic
layers of entering the crystal and most of the sample would only
be irradiated by previously scattered neutronms. Thus multiple
scattering would make the experiment very difficult if not
impossible. This is referred to as primary extinction. This
problem is surmounted by the use of crystals that posses a mosaic.
In this situation , as pointed out by Darwinss, the whole is made
up of small blocks formed by dislocations. These small blocks
show a spread of slight misorientations from one another. Thus
incident neutrons are scattered at slightly differing Bragg angles
from each block allowing deep penetration of unscattered neutrons
into the crystal. Therefore the collected intensity is increased
since a greater angular range of reflections are observed at the

collector. As the beam penetrates if the crystal is thick the
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scattered neutrons have a greater probability of striking a second
crystallite with the same orientation as the first. This may
cause what is known as secondary extinction. An ideal sample for
this type of experiment has a size and mosaic such that secondary

extinction is the only type that need be considered.

The Becker Coppens model of extinction67 has been used to
predict the extent of the correction required to the collected
intensity. The crystal is modeled as a collection of mosaic
blocks with a distribution of orientation described by the
Lorentzian 1line shape. For this purpose two parameters are
introduced one to describe the domain radius and the other the
distribution. It should be noted that the effects of extinction
and multiple scattering are distinct from that of absorption where
the neutrons are captured and result in the production of Y-ray
emissions. Corrections for absorption of the beam can be made if

necessary if the absorption coefficients are known.

6.10 The Unpolarised Neutron Experiment

To obtain nuclear structure factors a set of integrated
intensities must be measured using an wunpolarised neutron
diffractometer. In order to determined the observed values of the
nuclear structure factors from these integrated intensities

several stages of correction and refinement are required.

As previously mentioned the collected data from such an

experiment for a magnetic sample actually corresponds to the sum
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of the squares of the nuclear structure factors for the nuclear
and magnetic parts. To help in the analysis of the magnetic
system the C.C.S.L has kindly been extended to take this into

68
account

6.11 The Incident and Monochromated Beam

When considering the collection of data from a diffractometer
the experimental resolution of the peak is of primary importance.
From this peak and its integrated intensity must be deconvolved
the nuclear structure factors. In the simplest situation the
incident neutrons at the sample consist of all one wavelength and
when scattered by an ideal crystal produce a & function type
response. This is not the situation when considering scattering
using a real machine. The collimation, mosaic of sample and
crystal monochromator are all finite. This produces a finite

width in both wavelength and real space spread.

The incident thermal neutrons enter the diffractometer as a
collimated beam. They then strike the monochromator that posses
mosaic that is a result of the necessity for the production of an
intense beam. This results in the production of a wavepacket, at
any given instance at the monochromator, that has width in
wavelength defined by the mosaic and collimation. On leaving the
monochromator the beam hits the sample, that itself has mosaic
which further acts to broaden the beam in both angular spread and
momentum. To obtain results that are independent of the mosaic of

the monochromator the integrated intensities of the scattered beam
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are measured. To achieve this the crystal is rotated by a stepper
motor and intensities measured so that all components of the
primary beam are diffracted by all parts of the crystal. The
detector used for this purpose must satisfy the condition that it

is larger than the angular divergence of the crystal.

By convoluting the distribution of the incident collimated
beam upon the monochromator with that for a perfect crystal the
momentum packet of the monochromated beam may be obtained. The
same results may alternatively be achieved by convoluting the
distribution for a fully collimated beam with that for a crystal
with finite mosaic spread. By doing this and considering the half
width for a perfect crystal69 it is possible to obtain the half

width of the resulting rocking curve.

Where T and C,l are the mosaic of the crystals ({=0 for a
perfect crystal) and « describes the collimation (a=0 for perfect
collimation). © and 91 are the Bragg angle and average scattering
angle of the monochromator. It can further be shown that the

resulting monochromatic beam has a bandwidth given by
Ad - 6.20

_)‘ = Aecot:e1 +

>
o

Where Ad is the variation in lattice constant of the
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monochromating crystal. In order to obtain the required
characteristic beam the monochromator may be designed with
required mosaic, lattice constant gradient and curvature. These

o . . . 69
conditions are discussed in some detail by Dachs

The neutron scattering factors may be related to the
magnitude of the collected integrated intensities69 by
NokaLplFIZSV where N0 is the number of unit cells per unit volume,
p is the polarisation factor and L is the Lorentz factor. The
Lorentz factor accounts for the resulting spread of incident
wavevectors that arrive at the sample. Any mosaic properties of
the sample are dealt with independently of this factor. By
definition the Lorentz factor is a geometrical term that corrects
for the differing rates at which the reciprocal lattice points
sweep the area of reciprocal space defined by the Ewald sphere
construction that represents all possible reflections for the
incident beam when the crystal is rotated at constant angular
velocity about the @ axis. This in effect means that at differing
reflections the collected integrated intensity vary by a factor
that is dependent upon the Bragg angle. For scattering from a
single crystal in normal beam equatorial geometry of the

diffractometer

L= 6.21

sin26 -

In general, for example in 4-circle geometry
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L = ! 6.22

cosacos{siny

For normal beam geometry =26, o={=m, In this way the

collected intensities may be corrected for momentum spread in the

real system.

As previously discussed the resulting collected intensities
must be corrected for mosaic spread and thermal vibrations of the
specimen crystal. To obtain nuclear structure factors it is
therefore necessary to least squares fit the Lorentz corrected
intensities to the theoretical values. This is achieved in two
stages using the C.S.S.L.. The two parameters describing the
extinction and multiple scattering factors are estimated, the
domain radius is set to a fixed large value. The isotropic
temperature factors v, and the linear scaling factor are then used
as variables. From the resulting observed nuclear structure
factors the final structure factors are obtained by use of the

Becker Coppens model of extinction.

6.12 The Polarised Neutron Experiment

Investigation into the magnetic distribution is carried out
using the polarised neutron technique. The results from this type
of experiment require similar corrections and refinement to those
used on 515 data. A simplificatign to these modifications arises

through the need for the determination of a ratio. This makes

unnecessary the stages associated with the determination of
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absolute structure factors from the <collected integrated
intensities. Corrections for extinction, absorption and multiple
scattering are still required, however the values of the
parameters describing these phenomena for unpolarised scattering
are equally relevant for scattering of a polarised beam and the
results may be carried across. This requires that the same

crystal be used for both experiments.

The D3 instrumentation is fully computer controlled. The
sample is held in a steady field and temperature environment using
a split coil cryomagnet. Once the crystal is located inside the
cryomagnet it becomes essential to define its position and
orientation in real space. The shafts of the diffractometer are
set according to the crystal orientation and reflection

conditions.

The determination of the orientation is achieved by locating
several strong reflections and describing the crystal sense using
a matrix. From this so called UB matrix70 the machine is then
able to locate the required positions of the detector and crystal

such that any predefined Bragg reflection is found.

The precise position of the peak variés from that defined by
the UB matrix and the shaft settings. This in general is due to
several compound effects’such as: a slightly incorrect matrix;
sample location within the magnetic field and an imperfect

crystal. It is essential that the peak of the rocking curve is

located for the production of good flipping ratios with small
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errors.

The precise position of the peak is found by moving the
crystal about the w-axis whilst keeping the shaft settings and
detector position constant. In taking measurements at these
slightly different settings the peak position may be located.
Measurements for incident up and down spin states are collected at
this stage in order that time for further investigation may be
allotted efficiently. The time for each scan is set by the user

at this stage. In this case scans of 5.7 seconds proved adequate.

Once located the counting of flipping ratios can begin. The
actual intensities measured are a combination of the required
intensity and background. The background rate must be determined
and subtracted from the signal. This is achieved by collecting
intensities either side of the peak and subtracting from the main

peak intensity.

The background may be different for the two incident spin

polarisations and thus to compensate background scans taken some
o . .

1-4  either side of the Bragg peak beyond the rocking curve are

taken for both spin up and spin down states.

The optimum time distribution for the complete collection is
determined such that the time spent collecting the 4 data sets for
the reflection and background are measured to an accuracy that

contributes an equal weighting to the estimated error.
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The up to down time ratio is used to determine the amount of
time spent counting within each measurement cycle. Each cycle
consists of a period of some 1 to 2 seconds in which time the spin
is flipped once and the scattered intensities are collected in

separate counters.
6.13 Further Corrections

There are two potential problems that must be appreciated and
if necessary corrected for that originate as a result of the

superconducting cryo-magnet.

It can be shown that a force is present on a neutron as it
passes through a magnetic field gradient71. The direction of this
force is opposite for the two different polarisation states. This
results in a change in velocity of the neutrons, the direction of
which depends on the spin state. This amounts to a difference in
wavelength and thus a change in Bragg angle for the two states.
Moon has given an equation for this in the form of an error in the
observed flipping ratio. It turns out that if the crystal is
positioned such that the change in rocking curve with angle is

zero or small that this problem becomes of little significance.

ARdE = - 2'“»«‘“““6 dn(e) 6.23

2
m v n(o)

Where H is the central field, v is the neutron velocity and

n(8) is the rocking curve distribution. The ideal crystal for
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such an experiment has a rocking curve with a flat top
distribution in light of this error and the difficulty in holding

the sample steady in a large magnetic field.

The second problem arises from a requirement for the
production of an asymmetrical field using the split coil magnet
available on D3. This asymmetry is incorporated into the design
of the magnet so that no zero field regions exist along the
neutron flight path that may cause depolarisation of the beam.
This results in the production of a vertical field that causes
separation of the two spin states in the same way as the Stern
Gerlach experiment. It can be shown72 that the angular separation

of the two beams in the vertical plane is given by:

6.24

o, -

Z!uul j fﬁdz
> Sz

v neutron
mN path

This effect may be of little significance if the crystal is
orientated such that the reciprocal lattice vector is in the
horizontal plane since any divergence in the beam is easily
collected at the detector. However if this is not the case any
slight misorientation may result in an incorrect flipping ratio.
By masking out alternatively the top and bottom halves of the
scattered beam at the detector the measured results show equal

error but in opposing directions. Thus the effect may be

accounted for.
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CHAPTER 7

Magnetisation Density Distribution in ZrFe2

7.1 Introduction

The binary metal alloy ZrFe2 is magnetic with a MgCu2 (C15)
cubic Laves phase structure which is stable over a narrow range of
composition about the ideal 66.7 atomic percent iron. The space
group is Fd3m with Z=8. This structure may be described in two
ways depending upon the position of the centre. With the centre

(3m) at the origin, the atomic positions are fixed at:

Table 7.1
Atom Site Symmetry X y z
Fe 16(d) 3m 0 0 0
ir 8(a) 43m 1/8 1/8 1/8

The structural stability has been investigated by Brukner et.
73 . . . .
al. and related to changes in cell dimension and bulk magnetic
, 74 . 75
properties by Bruckner et. al. and by Kai et. al. . The latter
authors find a much narrower range of stability for the Ci15
structure from 66.0 to 67.2 at¥ Fe and a range of stability for
the hexagonal phase (MgNiz) Laves phase from 68.6 to 72.7 atZ% Fe,
whearas the study by Bruckner at. al. associate the whole range

66.0 to 73.0 at%¥ Fe with the cubic phase,. Despite these

differences, there is general agreement on the rates of change of

138

"t"



cell dimension, Curie temperature (Tc) and saturation
magnetisation (Gm) with iron concentration in the ideal
composition region, which is characterised by Tc = 600K, sz 3.09
u /formula unit at 4.2K and a cell dimension of 7.070"° or 7.089
A73: these rates are some -0.012 A, 36°C and 0.048uB per at®
increase in Fe concentration, receptively. There 1is some
indication that the rates of change in the Curie temperature and
saturation magnetisation change at the ideal composition, being
lower than the average values quoted above 66.7 at¥ Fe and higher

on the Fe-rich side of ZrFeZ.

The saturation magnetisation of ZrFe2 at room temperature
(300K) has been reported by Peigger and Craig76 and also by
Bruckner et. a1.74: both sets of authors find a value of 2.6
uB/formula unit at the composition ZrFez, though the rate of
change of this quantity with composition is much higher (0.25 uB
/at% increase in Fe) than at low temperature due to the relative
proximity of the composition dependent Tc. An ambient temperature
polarisation neutron study by Kocher and Brown77 on a large
grained, polycrystalline specimen found that the moment
distribution at the Fe site corresponded to a more extended form
factor than that in a-iron and that there was no significant
moment at the Zr site. No value for the iron moment was given but

the saturation magnetisation at 4.2K and ambient temperature were

measured as 3.12 and 2.56 uB/formula unit, respectively.
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7.2 Theoretical Background of ZrFe2

Three theoretical band structure calculations and their
unique solutions have been focused upon. These three models agree
with each other and also with experimental results, within the
accuracy of the methods employed, in the absolute value of the
integrated saturation magnetisation. However the calculated local

moments differ for each calculation.

. 78 .. L. .
Klein et, al. used a rigid band splitting mean field
Stoner model. The calculated moment in the system is some three
times too small. This short fall has been attributed to the

. ., 79
presence of covalent magnetisation .

The concept of hybridisation of orbitals has been used in the

. . 80 81
calculations of Yamada and Shimuza and Mohn and Schwartz to
predict the existence of a negative magnetic moment at Zr atom
sites. The Mohn and Schwartz model is based upon self consistent,
non relativistic, spin polarised band structure calculations
utilising the augmented spherical wave methods of Willaims et.

79 , . . .
al. arnd predict a diffuse negative moment at the Zr atom sites
with 20% contribution to the total moment originating from s and p
orbitals. This model has been used to predict the valence core
states of the system allowing quantities such as the hyperfine

. , 82 83

field to be estimated . Armatage at. al. have performed
measurements on the forced magnetostriction of ZrFe2 and justified

the existence of a ferrimagnetic ground state through the use of

this model.
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Yamada and shimuza based their theory upon the tight band
structures of d electrons using the tight binding limit84 and
justified neglecting d states with s and p hybridisation through
the work of Klein et. al. where they showed that greater than 92%
of the local density of states of either atom is due to the d
electrons alone. The existence of a negative moment associated
with the Zr atoms is explained through the hybridisation of 3d and
4d electron orbitals. The predicted moment distribution is less

diffuse than that predicted by the Mohn and Schwartz model.

Table 7.2
Moments Klein et. al. Mohn et. al. Yamada et. al.
(ug/atom)
Fe 1.62 1.9 1.87
Zr 0 -0.56 -0.53
Total 1.62 1.62 1.61

(uB/Fe atom)

7.3 Experimental

A single crystal study of ZrFe2 is reported in which
unpolarised neutron diffraction data have been used to determine
its thermal parameters at 4.2K and to characterise the small
degree of extinction present in the sample. These data have been
used with polarised neutron flipping ratio measurements, made at’

the same temperature, to obtain an accurate description of the

spatial distribution of magnetisation in the compound. This
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experiment provides the first single crystal experiment capable of

resolving the inconsistencies of the described theoretical works.

A similar experiment has Dbeen reported on the C15
intermetallic alloy LuFe2 using a single crystales. Enough data
was collected to enable fourier density maps of the magnetisation
to be constructed. The work concluded that there was no evidence
of a magnetic moment at the rare earth atom sites whilst the
magnetisation distribution around iron sites is tetragonal. This
is consistent with the tetragonal configuration of the Fe atoms
within the lattice work. The presence of a tetragonal crystal
field resulting in the removal of the 5-fold 3d degenerate orbits
into a singlet and two doublets. This description accounts well
for the observed magnetisation distribution and a difference
between the integrated moment at the Fe sites and that measured
using bulk magnetisation measurements was attributed to electron

polarisation effects.

The bulk single crystal was grown as part of this work. Its

growth is discussed in detail in chapter 4.

Its saturation magnetisation has been determined using a
V.S.M., discussed in chapter 5, and is 3.26uB/formu1a unit at
4, 2K. Both wunpolarised and polarised neutron diffraction
measurements have been made at 4.2K on a single crystal pillar
elongated parallel to the <110> direction, corresponding to the
magnetisation easy direction, with dimensions 1x0.5X0.5 mm. The

former data was collected using the D15 diffractometer at the
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Institut Laue Langevin (ILL), Grenoble. In the determination of
the UB matrix that defines the position of the crystal and its
orientation in the 4 <circle diffractometer so that Bragg
reflection may be located by the control computer in real space,
the cell dimension has been determined. With an incident
wavelength of 1.171A, 11 strong reflections have been located
manually in order to determine the orientation matrix and a cell
paramter a of 7.05(2)A found. With the neutron wavelength set to
0.8519A the same result has been determined. A total of 396
reflections were measured out to a sinf/A limit of 1.OA-1: after
averaging over equivalents , which gave a merging R factor of
2.97% on F2 and a x? of 19 using an incident neutron wavelength of
1.1713(48)A, the 97 inequivalent observed moduli of structure
factors were used in a weighted least squares refinement of a
model in which the variables were the isotropic temperature
factors on Zr and Fe, the Fe magnetic moment, a scale factor and a
mosaic spread parameter to describe the small degree of extinction
in the sample using the Becker-Coppens formalism (see chapter 6
for a complete description). The weighting scheme was 1/02, where
0 is the standard deviation in the structure factor derived from

the agreement between equivalent reflections.

2 _ 2 L2 2
Rw = ? ( aiIFi(obs) Fi(calc)' ) 7.1

2
% aiFi(obs)

Where o is equal to the reciprocal of the standard deviation

squared.
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The form factor for the Fe moment was derived from the
wavefunction for Fe 3d given by Clementi and Roetties. In the
refinement, Zr was assumed to carry no moment and the excellent
final R-factor of 1.08%, Weighted R factor, RH=1.03% and X2=2.6
showed that the data are not sensitive to the presence of a small
moment at the Zr site. The refined values for the temperature
factors and the mosaic spread, which are listed in table 7.1, were
then used to derive the observed magnetic structure factors from
the polarised beam flipping ratios measured on the D3 instrument,
also at the ILL. These measurements were made with an incident
wavelength of 0.84A and in a field of 1.5T, sufficient to saturate
the sample with its pillar axis vertical, parallel to the ® axis
of the normal beam instrument and to the applied field direction.
The UB matrix , determined from the position 11 Bragg reflections
revealed an a0=7.07(2). A total of 283 flipping ratios were
averaged over the equivalent reflections to produce 55 unique
structure factor, corrected for imperfect incident beam

polarisation (0.975)
7.4 The Moment Distribution

The magnetic moment structure factors derived from the D3
measurements provided the observed data for an initial weighted
least-squares refinement of a magnetic model with the form factors
specified aone. The final R-factor was 11.1%, RH=8.5% and a xz
of 23 with Fe and Zr moments of 1.79(4) and -0.16(8) Hgo

respectively. The weighted scheme was as before. At this stage
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in the refinement there was no indication of a significant
expansion or contraction of the observed form factor relative to
the model. One reflection, 1 1 1, has a magnetic structure factor
close in magnitude to its nuclear one. In these circumstances,
the polarised beam technique gives poor accuracy and this
reflection was omitted from the refinement leaving 54 observed
magnetic structure factors. Difference Fourier sections,
calculated from the observed structure factors, parallel to (001)
through both the Fe and Zr atoms were computed in the belief that
they would show the deficiencies of our model: in the latter case,
since these would be most affected by a weak moment on the Zr.
There is little visual indication of an aspherical distribution in
magnetisation density from the Fourier maps (figures 7.2 to 7.7),
that show a set of orthogonal planes through the lattice viewed
from different positions. The magnitude of the moment predicted
from band structure calculations would be expected to distort the
moment distribution around the Fe atom sites from spherical and
the negative moment distribution at the Zr atom sites should be

clearly observed.

Departure from the spherical symmetry in the spatial
distribution of the magnetisation about the centre of a magnetic
atom can result from the action of the crystalline field. To
investigate this possibility, the moment distribution centred on
the Fe was modeled by a multipolar expansion of the products of
spherical harmonics and radial integrals, <jn>. The site symmetry
in 3m which leads to three independent mutipoles Yzo’ Y40 and Y45

(referred to quantum axes Z parallel to [111] and X parallel to
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[110]) in addition to the Yoo<j0> spherical term. A significant
improvement in fit was obtained by refining the amplitudes of
these products: R=7.9%, Rw=5.1Z with X2=9 for 6 basic variables
and the 54 observations. Table 7.2 gives the values of the
parameters of this model and their standard deviations, there is a
slight but barely significant indication of some expansion of the
Fe radial form factor as indicated by the coefficient for <j2>

which was added to <j0> to model this effect.

The level of sphericity around the Fe sites is remarkable on
two accounts. First the presence of a barely significant moment
at the Zr site has no effect on the distribution, this is
understandable when one compares the magnitude of the ratio of the
moments at the two sites. Secondly and perhaps more significantly
the radial distribution is surprising in its uniformity being
close to that associated with free Fez’ rather than that observed
in LuFe2 that follows a distribution associated with the

tetragonal distribution of the Fe atoms.

The relevence of these results andconclusions to the ground
state of ZrFe2 magnetism are based upon the assumption that no
metamagnetic phase transition occurs with the application of a
large external magnetic field. This is supported by the bulk
magnetisation measurements of Y. Muraoka et. al.96 in fields upto

50KQe.
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TABLE 7.1

The refined parameters for the structure of ZrFe2 at 4.2K derived

from the unpolarised neutron integrated intensity data.

Atom Parameter Value
Fe ITF 0.12(1) A®
moment 1.63(5) Hy
Zr ITF 0.15(1) A®
moment 0
mosaic spread 0.077(3)x10-4 radians-i
TABLE 7.2

The multipole amplitudes and their standard deviations for the

best fit to the magnetisation in ZrFez.

Fe Yoo 1.68(3)<j,>+0.027(22)<j >
Yoo 0.03(2)<j >
Y.o 0.16(4)<j >
Y3 -0.30(4)<j >

Zr Yo, ~0.21(4)<3,>
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TABLE 7.3
Some of the experimental iron structure factors determined from
the polarised neutron flipping ratios calculated on the basis that
the moment on the Zr atoms is zero. The type of reflection
corresponds to the theoretical structure factors
N(q)=?bjexp(iq.Rj)exp(—wj) where the sum is over all the atoms i
the unit cell with position Rj and b and W denote the scattering
length and the Debye Waller factor respectively where
Wj=wj(sin26)/k2 with the temperature factor v, used in the
refinement of data. If the scattering lengths for Fe and Zr are

bFe and bZr respectively then a=bre—b2r//2, b=bZr, c=bFe+bZr//2,

d-ZbFe, e—ZbFe—bZr, f—ZbFe+bZr.

reflection sinB/A type |uf|Fe
11 0.13 a 1.36
311 0.24 c 1.13
222 0.246 d 1.03
400 0.28 e 0.933
511 0.37 c 0.645
440 0.4 f 0.49
533 0.465 c 0.351
444 0.491 e 0.299
551 0.507 c 0.274
711 0.51 a 0.27
731 0.545 c 0.255
800 0.57 f 0.22
880 0.80 f ~-0.06
12 00 0.85 d 0.033
888 0.9827 f 0.0728
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Figure 7.1 Positions of the Fe and Zr atoms in the unit cell of

ZrFe2 which has the cubic C15 structure.
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Figure 7.1



Figures 7.2 to 7.7 Magnetisation density maps in real space of
the cubic Ci15 binary alloy ZrFe2 with the contours O.2uB apart for
the Fourier transforms of the experimentally determined structure
factors out to sin9/l=1A-1.

Figures 7.2 shows the fourier density map through the (110) plane
passing through the origin with different axes. Views through the
orthogonal planes (110) and (112) also passing through the origin
are shown in figures 7.2 and 7.3 respectively

Figures 7.5,7.6 and 7.7 show sections through the orthogonal

planes (110),(111) and (112) respectively.

150



Figure 7.2
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Figure 7.3
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Figure 7.4
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Figure 7.5
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Figure 7.7
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Figure 7.8 The experimental and theoretical form factors for Fe.
The solid line represents the free Fe2+ form factor with a
magnetic moment of 1.63uB/Fe atom. The most striking feature is
how closely the two match, there is no obvious contraction or

expansion of the Fe magnetisation in reciprocal or real space.
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CHAPTER 8

Spin Density Fluctuations in MnSi Under Pressure

8.1 Introduction

The material MnSi has been the focus of a great deal of
investigatione7'88'89’90. It exhibits a helical spin density wave
below a transition temperature at 229K (wavelength = 0.035(5)A-1),
ordering ferromagnetically in a small external magnetic field
(6KGauss) with a moment of O.AUB/Mn atom, with the characteristic
behaviour of itinerant ferromagnets: not fully saturating in
fields as high as 150 KGauss; above Tc, in the paramagnetic phase,
the bulk magnetic susceptibility follows the Curie-Weiss

92,93,94 , , ,
m T, The theoretical ordering temperature is

for
renormalised due to spin fluctuations by an order of magnitude
over that predicted by the Stoner picture. The electron mass is
higher by a factor of 5 over the band mass and MnSi is often
viewed as an intermediate between the typically weak metal

. 22 2 .
ferromagnets (eg. N13Al ,Zan2 ) and the heavy fermion systems

9
(eg. UPt3 5).
8.1 Collective Fluctuations in MnSi

This chapter describes briefly an experimental investigation

of collective fluctuations in MnSi using the small angle neutron
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spectrometer D11 at the ILL. Using the description detailed in
chapter 2 the fundamental collective modes in MnSi can be
described using the microscopic parameters a,b,c and ¥ above Tc.
The work was designed to follow the change in ¢ and Y with
variation in pressure following work showing96 that the
application of a hydrostatic pressure reduces the transition

temperature falling to 0 Kelvin at a pressure of 15Kbar.

A pressure cell using an organic pressure medium (fluorinert)
was loaded with a polycrystalline specimen of MnSi, a pressure
applied, then introduced into the cryostat (see figure 2.1). A
sample detector distance of 2.5m was set with an incident neutron
wavelength of 7A to be beyond the Bragg cut off and at the same
time to keep the flux high (flux peak at 6.5A). Unfortunately
scattering from the pressure medium in the low q region probed by
D11 proved to be larger than the expected intensities from
scattering owing to the MnSi response. This background could not
be systematically deducted from the total scattering response
owing to its high temperature dependency and hysteretic nature.
These difficulties have been associated with changes in the
pressure cell medium causing specimen motion and anomalous low ¢
scattering. This was the first time the cell had been used on the
small angle scattering instrument, any subsequent work requiring
the use of an alternative pressure medium. No alternative was
available so study of the poéition of scattering from the helix in
q space as a function of hydrostatic pressure became the primary

interest.
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8.2 Observation of Helical Spin Density Waves

A limited number of spectra were obtained below Tc with no
evidence of a change of the helix in spatial extent (£0.007A in
q) between scans taken with hydrostatic pressures of 0 and 8.5
Kbar. At 10K a spiral peak has benn observed centrerd at q,,

0.036(3)A.

8.3 Conclusions

The use of the supplied standard pressure cell is not advised

for future temperature dependant work.

This work was the first of its type and has lead to further
work wusing triple axis spectrometer at the ILL where the
elastically scattered neutrons from the pressure cell can be
eliminated by energy analysis. This has been documented in

reference 91.
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Figure 8.1 Intensity data for scattering from the helical spin
density waves of MnSi collected on the small angle scattering
spectrometer D11 normalised to a monitor count of 1000. (a) The
helical spin density wave at q=0.036(3)A observed at 10K under a
hydrostatic pressure of 400 bar. (b) a second spectra taken at
10K under 400 bar. The helix peak is obscured by anomalous low g
scattering from the pressure cell medium. (c) a background scan

taken with an empty pressure cell at 200K, O bar.
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Appendix A

Undamped Spin Wave Cross-Section

The cross section per atom integrated over the energy for

unpolarised neutrons may be written:

2 2
a0 .y (M) 6 B K o) nhe)laly + £ X (o anialy
0 0 5 3 j=1k' j 1=1k' 1

Where (n*—n¢) is the temperature dependent difference in the
number of up and down spins per atom and 1J| is the Jacobian of
integration. The energy of interaction hwj, hwl for a quadratic
spin wave spectrum with stiffness D and energy gap Eg when
observing at an angle 8 between the incident and scattered neutron

wavevectors may be calculated by considering energy and momentum

conservation.
2 ]
k%' ?) =pg® + E : K'-k =q
2m 9
which gives
k cosf + sin'®@ - sin' @ - "g sin® (1+sinf ) _ %
= [+] K c c = &
- Ei 1
k
1 + sin®
C
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k'_ cosB + y/sinz@c - sin0 - Eg sinec(1-sin9c) R
E Ei T g

1 - sinf
(o]

. . 2
for neutron energy loss (1) and gain (g) events. smGc = h"/2mD
2. 2 .
and Ei = h"k"/2m. When the terms inside the square roots go to
zero the critical angle ¢ beyond which there is no spin wave

scattering is reached.

The Jacobians of integration can be shown to be:

175 = I e V(s ety
1 5 :
sinB o
1
lJtl - ' 1+ 1 ( -1 cosf ) | 1
s1n9c ai
g

and the energy transfers are

ho

+
Ei (1-al)

how

+
-Ei (1—ag)

If the Jacobians of integration are approximated to lowest order
by:
2.1/2

+
(gl = lJl/gl =(1- (6/60) )

the population factors for neutron energy gain and loss are set
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equal to their high temperature limit and k' set equal to k; then,

summing over energy gain and loss:

99 - 96 (atony) * KT |1 L]
0 3 — qz qz
daQ DIl 1 2
to solve for 1 +1 at energy transfers hw/Ei<<1 and angles
—2 —2
14, 9;
0
6<5" then use:
2 2 2 2
q- = k| 8 + | tw
2E.
1

q, and q, are given by the simultaneous solution of this equation

. 2 . .,
with hw=Dq~ giving

2 4 2
Dq_q+62=0
4E° kS
1
2 2
hence q, +4q, ) 1 ) 1
2 2 2.2 T2
9,4, k'8 q,

where q, is the magnitude of the elastic scattering wavevector.
The cross-section (quasistatic) thus depends only only one

parameter {D) at temperature T.

ES = 20 (nT—n¢) f kBT 1

0
a9

3 — —_—

plJl qf)
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Appendix B

A classical derivation of the two pole damped model of spin waves.
When considering damped 9oscillating magnetisation density
fluctuations care must be taken in setting up the initial
equations to be symmetric in the components {mx,my} of the vector.
This 1is to be contrasted with the simple damped harmonic
oscillator model18 which is a scalar model. Considering the
simple classical case:

Consider two variables x and y. x decays and feed into variable y

and decays into the heat bath and visa a versa.

dx

__ =Wy -7.X

at 1 1

o 1y

dt

) 2
from which d x _ © dy _ dx

AR g 71__
dat? dt dt

dx
o, (-ox - 1,y - 1, &

dt
= wox -7, +1)% -y rx
- 12 2V 2’— 1%2
dt
or
dzx dx
0= — + (Y1 + 72)__ + (wlwz + 7172)x
dt dt
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if symmetric then ®, = w_ = &_ and 71 = Y. = ¥ a solution to this

1 2 ]
=7

2

equation is x = Ae tcos(w°t+¢).

Creating the correlation function

S(t) = <x(t)x(0)> it can easily be shown that

S(t) = <A2> e—ytcoswot

and forming a one sided Laplace transform, since the Fourier
transform of primary interest to neutron scattering goes to zero:

é(z) = f: dt eiZt S(t) and S(w) = 2 Re é(t).

if z= W +i€ then

Re S(z) = constant Ve + I+e

(w+wo)2+(7+e)2 (w—w0)2+(1+e)2

now €=0 then

S(w) = constant ! + !

2 2 2 2
(w+w0) + 7 (w—mo) + 7

this contrasts to the damped harmonic oscillator solution

Yob ]

S(®w) = constant f

L (wz—wz)2 + wzyz ]
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(see reference 18 appendix B).
Appendix C

If I is the peak intensity then the statistical Chi-Square
and R factors are defined for observed data (obs) and predicted

data (calc) by:
X% - (= wi(Ii(obs)-Ii(calc))z] /(N-P-C)

. . 2 )
Where w, is the weighted factor equal to 1/0i for observation
i, N is the number of observations, P is the number of variables

and C is the number of constraints. The R factors are defined

through:

R =2 11 (obs)-I (calc)!
1 1 1

%~ I (obs)
1 1

R =[S wiI (obs) - I (calc) ]2
1 i i i

2
? wiIi(obs)



