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ABSTRACT 

The superconducting a.c. generator is expected to be the optimum 

choice among a.c. generation systems in future because of its reduced size, 

high efficiency, high terminal voltage and its contribution to the stability 

of the power system. Such machines also exhibit unique design problems 

which remain unsolved. The optimal selection of the basic design parameters 

is a current problem of interest. This thesis is intended as a contribution 

in this direction, and a general design strategy has been developed for the 

superconducting a.c. generator. 

Elements of the design process include magnetic field analysis, losses, 

and mechanical performance all which of are discussed in the thesis. 

An analytical model has been developed to help determine the dis

tribution of magnetic flux density inside the superconducting machine. This 

model takes into account the number, and the geometric structure, of the 

winding slots and allows the rotor of the superconducting machine to be 

designed with optimum magnetic field distribution. 

A general design strategy has been developed for the superconducting 

a.c. generator rotor for predicting the optimum design. The design opti

mization process incorporates "direct search" and random-shrinkage methods. 

Two direct search methods of minimization have been compared on mathe

matical functions and also on machine design problems. The best method is 

highlighted and discussed. 

A general computer program package is presented that will optimize 

and analyse machine design problems. The package is organised in such a 

way that future addition or deletion of performance specifications, constraints, 

optimization methods and design process elements are readily implemented. 
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1.1 Introduction 

CHAPTER 1 

INTRODUCTION 

In recent years the demand for electrical energy worldwide has almost 

doubled every ten years; a demand which has been met by building increasingly 

larger machine units. Economic advantages are realised in the capital and 

operational costs of both the prime mover and the generator as the unit rating 

increases. A point of diminishing return in economic advantages is reached 

for the generator above ratings of about 1300 MVA. The economy realised in 

conventional generators from increased unit rating is a result of the evolution 

of the generator cooling system permitting higher current densities in the 

rotor and stator windings. However higher current densities inevitably lead to 

increased losses in the windings. Thus any advance in the material utilization 

is limited by demand to keep generator efficiency at the present high level 

of 98.5% to 98.8%. Further, as the rated current for a given machine is 

increased, the per unit reactances of the machine are increased and inertia 

constant is decreased, both of which degrade the transient stability margin. 

To decrease synchronous reactance, air gap lengths must be increased resulting 

in the requirement for more excitation power and greater power losses in the 

field winding. Consequently very large rated machines with a well utilised 

armature can become less efficient and less economical than smaller machines 

in an operational sense (Woodson, et al, 1971]. The crossover occurs at rating 

of about 1300 MVA. 

The capital cost advantage associated with higher rated units is off-set 

above 1300 MVA for conventional generators by construction and shipping 

considerations. The stator iron makes the larger machines heavy so that they 
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must be shipped in p1eces and re-assembled at site. Rotor diameters are 

limited by mechanical stresses requiring length increases for increased power 

rating. Therefore weight increases, proportional to length, further complicate 

shipping and assembly. Lower rotor mechanical natural frequencies are another 

result of increased length. 

Generators with a superconducting field winding do not reqmre iron 

in the rotor or stator to produce high magnetic flux density and with no 

concern with iron saturation problems, the ampere-turns of the field winding 

can be increased to produce greater flux linkage of the armature winding. 

Elimination of the stator iron has several beneficial effects. Firstly, 

the elimination of iron within the armature provides space for more armature 

conductors whilst also reducing the machine weight. Insulation problems in 

the armature are also reduced because of the absence of iron at ground 

potential so that machines can be designed for higher voltages. Secondly, 

machines without iron have lower reactances and rotational inertia reduced so 

that the transient stability margin is improved over the conventional machine 

[Maki, 1980). 

The configuration for a superconducting a.c. generator is as shown 

in figure 1.1. The armature is at room temperature; it is similar to a 

conventional armature except for the absence of iron interleaved with the 

conductor bars. A winding scheme developed by Woodson [Woodson, 1971], 

permitts the use of much less insulation, and provides better utilisation of 

the armature space for carrying current. A laminated iron screen surrounds 

the armature to provide a uniform boundary for the magnetic field. 

The low-temperature superconducting field winding is located inside 

a liquid helium space in the rotor and is maintained at 4.2 K. Surrounding 

the field winding is a thermal screen maintained at approximately 70 K to 

intercept thermal radiation from the room temperature parts. The outer 
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part of the rotor is a conducting electrical screen to intercept asynchronous 

magnetic field produced in the armature. If the superconducting field winding 

was exposed to these harmonic fluxes, losses would be produced and the field 

winding would be driven normal. The layer of steel beneath the electrical 

screen provides structural support for the screen when it is subjected to large 

electromechanical stresses under fault conditions. 

Superconducting a.c. generators have been shown to process several 

operational and economic advantages over conventional machines such as 

higher efficiency, good performance stability, and smaller size [Bratoljic, 1973], 

[Appleton, et al, 1975], [Edmonds, 1976]. 

Since the successful operation of the first 45 KVA synchronous gener

ator with rotating superconducting field winding at MIT in 1969 [Thullen, et 

al, 1971], the development of superconducting generators has received growing 

attention througthout the world. Meanwhile, several industrial organizations 

and laboratories have been carrying out theoretical and experimental design 

studies on different ratings of low temperature superconducting generators. 

[Luck and Thullen, 1973], [Kirtely and Furuyama, 1975], [Minnich, et al, 

1979], [Parker, 1979], [Maki, et al, 1980], [Gillet, 1980], [Ross and Appleton, 

1980], [Lambrech, 1981], [Sabrie, et al, 1983], [Yamaguchi, 1984]. 

In recent years the discovery of high temperature superconductors has 

reawakend interest in the power engineering application of superconductors 

and in the development of a high critical current density superconductor into 

a form suitable for use in power applications. Already three years after 

the discovery of these high temperature materials considerable progress in 

Germany, the USSR, the U.S.A, Japan and Britain has been made towards 

realising these goals [Kirtley, 1988]. 

Initial studies on the development of superconducting generators in

dicated that the high magnetic field capability of the superconducting field 
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winding would allow an increase in the magnetic flux density at the armature 

compared to that of the conventional machine [Woodson, et al,1971] and that 

there would be a dramatic reduction in both weight and volume compared 

to the conventional machine. Later research (i.e. theoretical and experi

mental) suggested that these gains may be somewhat less dramatic [Kirtley 

and Furuyama, 1975], [Maki, al et, 1980], [Gillet, 1980]. However, using 

theoretical and experimental analysis methods to determine the characteristic 

of superconducting machines, there is no way of ensuring optimum charac

teristic. This is an unfortunate restriction since superconducting generators 

can have considerable economic advantages over the conventional machine if 

an optimum design can be ensured. The usefulness of such theoretical and 

experimental design methods can only be guessed until a strict mathematical 

design technique is available. The use of mathematical optimization design 

methods on superconducting machines has not yet been applied. Conse

quently, the purpose of this research is to present the design philosophy and 

implementation of a strict mathematical optimization procedure in the design 

of superconducting a.c. generators. 

1.2 Design tools and models 

In section 1.1, it has been shown that the design features of the 

superconducting generator differ considerably from those of the conventional 

generator. This has resulted not only in models to simulate the physical 

phenomena involved in the new design concepts but also new analytical 

methods. The absence of iron in the active volume of the machine results 

in magnetic field solutions which differ from those for a conventional machine 

(i.e. the active volume of the machine is treated as free space containing a 

region of uniform current density with boundaries of fixed permeability). The 
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development of a two dimensional magnetic field analysis for a superconducting 

rotor winding is an example of this [Hughes and Miller, 1977], [Kirtley, 1971]. 

In addition, the reliability of the superconducting generator should 

not be less than that of a conventional generator. To attain such a high 

reliability has demanded the development of accurate methods of predicting 

the performance characteristics of the machine during the design stage. Some 

of the perfomance indicators of concern in the design of these machines are 

reactances, short-circuit forces and losses. To evaluate these quantities, the 

electromagnetic fields of the machine must be accurately predicted. Further 

problems of concern in the design of the machine are related to the magnitude 

and nature of high localized flux densities appearing around the field winding 

open edge (outermost slot). Localised flux concentration particularly in this 

region, can cause performance difficulties [Bumby, 1981]. In addition, as 

in conventional machines, apart from increasing the electric and mechanical 

stresses, raising the specific outputs of a machine has meant a greater demand 

being made on the magnetic circuit. 

Although problems in such areas have been prominent for some time, 

it has been possible to produce analytic expressions to calculate the magnetic 

field distribution in and around the superconducting generator with simplified 

models of the machine geometry. Hughes and Miller [Hughes and Miller, 

1979] derived expressions for electrical parameters of the machine based on 

the current sheet (i.e. assuming the winding has zero thickness). Kirtley 

[Kirtley, 1971] and Martinelli [Martinelli and Morini, 1980] extended these 

expressions to take into account the thickness of the windings. In this thesis, 

the work is extended to include the number and geometry of slots of both 

field and armature windings. 

Stress analysis is of importance to design and optimization work in so 

far as it effects the geometric components. The inner rotor which contains a 
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liquid having a free surface in its internal space was quite a new case. Thus, 

the mechanism of stress analysis of the inner rotor will need to be considered 

m a fashion very different from the conventional rotor. 

Some solutions to these problems are discussed in the following chap-

ters. 

1.3 Optimization in the design process: 
An informatics point of view 

The design of a superconducting machine is normally accomplished 

by an interactive process such that a preliminary design is done based on a 

set of empirical assumptions. The dimensions are then used to determine the 

flux density distribution and consequently the performance of the machine. 

The final step involves the modification of the dimensions and assumed 

parameters to meet the desired specifications and constraints. The actual 

design process involving the selection of design parameters which meet the 

behaviour requirements are, in some sense, optimum but has mainly been left 

to the experience and intuition of the designer. 

With advances over the past two decades m digital computers, the 

computer now plays a dominant role in the design process of superconduct-

ing machines. In the situation described above, the use of computers in 

machine design starts with their application to the determination of machine 

characteristics. In fact, any designer wants to achieve the design that is 

best according to some properties, while not violating any of the imposed 

design constraints. In order to verify whether these goals are really met, the 

characteristics of the machine design are determined by using theoretical and 

experimental analysis methods. Very probably the first design will lack some 

essential characteristics or violate some constraints. The design is modified by 

changing some of the design parameters (i.e. rotor dimensions). The design 
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is repeatedly re-calculated and re-analysed until significant improvements can 

no longer be obtained, or it is decided that continuing the search is useless. 

In the situation described above, the computer is used only to derive 

parameters which are used in obtaining a satisfactory final design. A logical 

extension of this classical way of designing using computers is one in which 

the computer drives the parameters towards the final design. The analysis 

methods are then interactive with the optimization system which decides how 

to vary the design parameters in order to find the optimum with a minimum 

of effort. Furthermore, when a suitable mathematical optimization technique 

is used, this way of designing will be generally more efficient and the result 

really is an optimum. Besides, mathematical optimization is applicable to a 

higher dimensional space than the designer can manipulate. Therefore, using 

mathematical optimization techniques can be advantageous. 

Some powerful methods are available for use in optimization [Him

melblau, 1972). For machine applications, methods for constrained non-linear 

optimization problems are especially relevant. In recent years, research in this 

particular field has resulted in a number of efficient and reliable computer 

methods. Anderson [Anderson, 1967) used a Monte carlo random search 

method routine to optimize power transformers and generators. Ramarath

nam [Ramarathnam et al,1973], Singh [Singh et al, 1983), Nagrial [Nagrial 

and Lawrenson, 1978), [Bharadwaj et al, 1979), and Pavithran [Pavithran et 

al, 1987) used the sequential unconstrained minimization technique by Fiacco 

[Fiacco and McCormick, 1968) to optimize the design of an induction motor. 

Minzies [Minzies et at, 1975) and Chidambaram [Chidambaram et al, 1982) 

used an optimization program based on a least p-th approximation method 

by Handler [Bandler, 1972), for an optimized design of a large and small 

induction motor. 

The use of direct search optimization 1s also rapidly expanding m 
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different fields of engineering design e.g. field analysis, power system studies, 

circuit analysis, structural engineering, chemical engineering etc. They are 

very useful methods for finding the minimum of an objective function where 

derivatives can not be evaluated easily which is often the case in practical 

design problems. These techniques are iterative in nature and may use 

considerable computer time depending on the problem complexities so that an 

efficient and reliable routine is essential. Moreover, some optimization methods 

may solve simple mathematical functions, but fail to produce an acceptable 

solution to complex engineering problems. All the existing optimization 

methods have been developed to solve unconstrained problems (i.e. no 

constraint on the parameters), but most of the design problems place limits 

on the values of different parameters. There are no universal methods available 

for solving constrained non-linear problems. In practice a constrained design 

problem is transformed to an unconstrained one and then solved using some 

efficient method for unconstrained optimization. Special care is required in 

selecting the proper minimization method to reach a solution at reasonable 

cost. With this in mind, the principle reason for the selection of search 

methods of minimization wiU be discussed in detail in chapter 4. 

1.4 Design optimization of superconducting machines 

An optimum design for the superconducting a.c. generator can be 

defined in many ways depending on the performance requirements. The 

objective of this study is to examine the essential feature in the design 

optimization of a superconducting generator. The principle objective function 

of the design problem is to maximize the magnetic power of the inner rotor. 

This is achieved by applying non-linear mathematical programming methods. 

However, the objective function is formulated in terms of all the parameters 
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(or variables) associated with the machine magnetic circuit. These parameters 

are also used to formulate some important design peformance indices which 

act as inequality design constraints. 

1.5 Research presentation 

This thesis consists of six chapters. Chapter two discusses the mag

netic field analysis applicable to the electromagnetic design of the supercon

ducting machine. This includes a two dimensional field analysis by the most 

common types of models and a study which compares the differences involved 

in their adaption to the calculation of the magnetic field. This chapter also 

describes a new method for magnetic field calculation which takes into account 

the geometric structure of the slots. 

The third chapter presents the design procedure. This chapter de

scribes in detail the main behavioural requirements such as material stresses, 

critical speed, superconductor performance and stator core saturation. In 

addition, some analytical methods are developed to represent the behavioural 

constraints such as stresses due to critical speed and maximum flux density 

allowed in the stator core. 

The fourth chapter IS devoted to the study of direct search meth

ods of minimization for machine design. This chapter also discusses general 

non-linear programming 'applied to the design problem, its formalution, it's 

relation to other types of programming and its selection for optimal solution. 

Further sections in this chapter describe the direct search methods used in 

the minimization (or maximization) procedure. These methods are compared 

on standard mathematical functions and also on design problems. Different 

penalty function approaches are studied in conjunction with efficient opti

mization routines. The results illustrate the behaviour of the direct search 
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and the shrinkage methods when applied to test and design problems. The 

final section of this chapter draws the work to a conclusion by examining the 

performance of the direct search methods in general terms to provide a basis 

for the study of optimum design of the superconducting a.c. generator. 

The next chapter deals with the optimization of the rotor structure 

for a superconducting a.c. generator. This chapter presents the mathematical 

formulation of rotor design in the context of an unconstrained optimization 

problem in conjunction with a penalty function. This problem is solved using 

the methods of pattern search [Hook and Jeeves, 1961] and simplex search 

[Neider and Mead, 1965). A comparative study of the synthesis based on these 

procedures is given. In addition, a design optimization package developed to 

solve the design problem is presented. An overview of the package structure is 

given, and this is followed briefly with an outline of the constituent routines. 

In the final chapter, the main conclusions of this study are drawn 

together and recommendations for futher work made. 
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Figure 1.1 Longtudinal section of a generator with superconducting 

field winding 

(1) superconducting winding 

(2) inner rotor 

(3) rotor screen 

(4) refrigerator 

(5) helium 

(6) va.c connection 

(7) stator winding 

(8) inner stator structure 

(9) copper screen 

(10) water mainfold 

(11) outer stator casting. 



CHAPTER 2 

FIELD ANALYSIS OF A SUPERCONDUCTNG GENERATOR 

2.1 Introduction 

The concept of electromagnetic interaction between the mutually cou

pled rotor and stator magnetic fields remains the basis of operation any 

superconducting machine regardless of its configuration. The calculation of 

the the output voltage waveform, power, inductances as well as the magnetic 

forces, all depend on a knowledge of the magnetic field distribution. Thus it 

is essential to study the magnetic field distribution in a superconducting a.c. 

generator where concern is directed towards the optimum design criteria and 

improved performance of the machine. 

Perhaps the greatest constraint on the design of a synchronous machine 

with either a low, or high, temperature superconducting field winding is related 

to the superconductivity state. All superconductors exhibit a limitation on 

the conductor current density, this maximum current density being a function 

of the flux density at the winding. As a consequence of this, the maximum 

permitted current density in the superconducting field winding is limited 

because there are localised field concentrations around the winding resulting 

from space harmonics which tend to concentrate the flux density around the 

outermost slot [Bumby, 1981]. If the superconducting field winding is located 

in slots, it cannot be arranged freely without being affected by the geometric 

structure of the slots themselves. Consequently, it is important to determine 

the maximum magnetic field within the field winding, so that the behaviour 

of the superconducting wire can be predicted more accurately. At the same 

time the field winding configuration must produce a sinusoidally distributed 

flux density at the armature winding to minimise harmonic voltages in the 
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armature. 

In the past magnetic fields at the rotor and stator winding have been 

analysed on the basis of either a current sheet model [Hughes and Miller, 

1977], or by assuming the current density is uniformly distributed over the 

winding spread angle and thickness [Kirtley, 1976], [Martinelli and Morini, 

1980]. These models of the rotor and stator windings, although producing 

useful information, are based on simplifications concerning the geometry of 

the machine winding such that the finer points of the geometrical structure 

are overlooked. This chapter describes a new model, which permits the 

evaluation of the magnetic fields relative to the number and geometry of 

the slots. This approach has some similarities to the method adopted by 

Martinelli and Morini [Martinelli and Morini, 1981]. In their work Martinelli 

and Morini assumed the field winding to be distributed uniformly in all slots, 

assuming equal ampere-turns in all slots. The work presented here avoids 

such an assumption allowing the use of graded windings and different slot 

geometries to be studied if required. 

The new model is believed to be a useful contribution to the study 

of the magnetic field distribution inside superconducting machines. It can be 

applied without limitations to rotors with different winding arrangements. To 

show the effectiveness of the proposed method the model is applied to the 

analysis of the space harmonic magnetic fields produced by different structures 

of field winding with axial slots. The investigation shows that the magnitude 

of harmonic flux density components can be affected not only by choosing a 

suitable spread angle fo~ the winding but also by the aspect ratio of the slot 

to tooth width. 
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2.2 Field Analysis by Former Methods 

2.2.1 Model of Analysis 

Before describing the development of the new model, it is appropriate 

to summarize the performance of former models and give an indication of 

the magnetic fields computed using such models. The expressions for the 

magnetic field components produced by former methods have been used as a 

starting point from which to develop the new model proposed in this chapter. 

Former methods employ one of two types of model. These models are briefly 

described below:-

(a). Thin cylindrical current sheet model. In this model the 

thickness of the winding is ignored and all the current is assumed 

concentrated in a thin current sheet situated at the mean winding 

radius. The vector potential produced by current sheet is analyzed in 

Appendix 1. 

(b). Thickness model. Here the winding is represented by its 

actual thickness and therefore it is necessary to integrate the vector 

potential given by the current sheet model with respect to the winding 

thickness to derive the actual electromagnetic fields. The results of 

such an integration are shown in Appendix 1. These field expressions 

are presented in table 2.1. 

The electrical parameters of this machine are coefficient of the flux-

current relationship. 

1/Ja La Mab Mab Mal Mad Maq ~a 

'1/Jb Mab La Mab Mbt Mbd Mbd ~b 

'1/Je Mab Mab La Met Med Meq 
X 

'le 2.1 
'1/Jt Mat Mbf Met Lt Mtd 0 'tt 

'1/Jkd Mad Mbd Med Mtd Ld 0 'tkd 
'1/Jkq Maq Mbq Meq 0 0 ~kq 

These inductances are found by an additional integration of the flux 
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linkage produced by the fields listed in table 2.1 over the area of the winding 

(see appendix 1). These are represented by self and mutual inductance of set 

windings in the configuration of the machine which are given in table 2.2. 

Included in the expression for each parameter is an effective length. 

This effective length may differ between windings in the same machine, and 

may in fact not correspond to any physical length in the machine. 

Since the two dimensional work is used to describe a three dimensional 

effect with end effects not accounted for, provision for them must be included 

in the effective length, A. 

2.2.2 Field Solution by Former Models 

The analytical expressions for the magnetic fields derived from the 

above models are used to compute the flux density distribution produced by 

the superconducting rotor of a two pole 1300 MVA superconducting generator 

shown in figure 2.1. The main parameters for this generator are tabulated 

m table 2.3 

The radial variation of flux density produced by both the current and 

the thickness models are shown in figures 2.2, 2.3 and 2.4. These graphs 

are used as a basis for predicting and comparing the flux density distribution 

produced at no-load by the superconducting field winding. Figure 2.2 compares 

the peak value of the fundamental component of radial flux density calculated 

using the above models. Both the thickness and current sheet models give 

similar results with the only significant difference between the two being near 

the winding where the current sheet model is observed as being less accurate. 

This should be expected as the superconducting field winding is represented 

by a current sheet of zero thickness whereas the thickness model takes into 

account the winding thickness, thus giving a more accurate result for the 

magnetic field at the winding. However, the main features of the two models 
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are reported in figures 2.3 and 2.4 which show, in more detail, how the 

methods compare at no-load. These figures show the variation of both radial 

and tangential flux density components at angle of 0,15,30 and 45 degrees 

relative to the rotor axis and the influence space harmonics have on the field 

distribution. Because of the space harmonics, there is a definite increase in 

the radial flux density component as the angle is changed from 0 to 30 degrees 

with a significant concentration of flux density at 30°, the outermost edge 

of a 120° phase spread winding. Typically this flux density concentration is 

1.32 times the value at () = 0. Further away from the winding the space 

harmonics rapidly diminish such that they have negligable influence on the 

magnetic field calculation. Similar flux concentrations have been reported 

previously [Bumby, 1981] and, as they are due to the geometrical design of 

the winding, this chapter extends the analysis to evaluate what effect the 

design of the actual slots, or conductor distribution, will have on the flux 

distribution. 

2.3 Theoretical Approach to the New Model 

2.3.1 Representation of a new model 

The new model proposed in this section assumes a winding to be 

built up from an independent set of slot pairs, each pair having independent 

currents. In this way field windings can be thought of as being distributed 

into several slot-pairs per pole-pair each shifted in space relative to each other 

by some angle a as shown in figure 2.5. The new two dimensional model 

allows the field winding to fall into many paired slots which may be of any 

size or shape. 
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2.3.2 The magnetic field analysis by the new model 

The magnetic field calculation is based on each paired slot so that 

the field winding becomes an aggregate of the many different slots involved. 

Assume that the field winding under consideration has several slots per pole. 

In this case the winding has, for every pole pair, S slot pairs separated 

by geometric angle (a) such that the calculated resultant of magnetic flux 

density is obtained by adding the magnetic flux density produced by the 

each slot pair i.e. B1(Bru Bth), B2(Br2 , Be2 ), ••• , Bs(Br., Be.). The radial 

and tangential flux density components for each slot pair are calculated using 

the thickness model equations but with the winding spread replaced by the 

spread angle of each individual slot. In addition the equations for each slot 

pair are phase shifted from the reference axis by the shift angle (a). Using 

the principle of superposition, the radial and tangential flux densities due to 

each of the winding slots-pairs are added vectorially, to obtain the resultant 

components, such that for the field winding: 

s 00 

Br1 (r,8) = L L Bir,n(r)cosnp(8 ± ai) 
i=l n=l 

n=odd 

s 00 

Be1 (r, 8) = L L Bi8 ,Jr)sinnp(8 ± ai) 
i=l n=l 

n=odd 

Whilst for the armature winding 

s 00 

Bra ( r, 8) = L L Bir,n ( r )cosnp( 8 ± ai - '1/J) 
i=l n=l 

s 00 

Bea(r, 8) = L L Bi8 ,Jr)sinnp(8 ± ai- .,P) 
i=l n=l 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

The full derivation of these equations is presented in Appendix 1 

whilst the results generated by these equations are presented in table 2.4. 
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2.3.3 Inductances calculation by the new model 

To determine the inductances of the slotted winding, the procedure 

is the same as in the thickness model with the exception of the geometrical 

angle (a). In this case, the magnitude of the winding flux linkages are 

derermined by combining the flux linkages of slot-pairs. As a result, the self 

and mutual inductances are 

self-inductance for the field winding 

s 00 

L1. = L L Li1s (n) x cosnp(ai) (2.6) 
i=l n=l 

self-inductance for the armature winding 

s 00 

La. = L L Lia. (n) X cosnp(ai) (2.7) 
i=l n=l 

Maximum inductance between armature winding 

s oo 27rn 
Mab. = L L Lia. (n) X cosnp(ai + 1/J- -) 

i=l n=l 3 
(2.8) 

Maximum inductance between armature and field winding 

s = 
Mal.= L L Lia1.(n) X cosnp(ai + 1/J) (2.9) 

i=l n=l 

2.3.4 Validation of the new model 

Using the 1300 MW generator data in table 2.3, the new model is 

validated by assuming there is no space between the rotor slots so that the 

radial flux density distribution can be compared with that calculated by the 

thickness model, figure 2.6. As expected both models agree in value and 

shape which confirms the validity of the new model. 
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2.4 The Influence of Slot Configuration on Magnetic Field 

2.4.1 General consideration 

As was noted in section 2.2.2 the geometry of the winding configuration 

can influence the magnetic field distribution within the winding itself and, 

as this can be critical to the safe operation of the superconductor, requires 

further investigation. As the rum of the designer is to minimise harmonic 

fields within the winding itself while producing a sinusoidal distribution at the 

armature correct selection of winding geometry is vital. Usually a winding 

spread angle of 120° is used as this eliminates the third harmonic component 

in the flux density waveform and, as flux density reduces with radius as 

( ( r 1/ r )np+l ), this eliminates a major cause of harmonic distortion at the 

armature. However, the effect on field concentration within the winding itself 

is much less clear as is the effect the individual geometry may have on any 

flux concentrations. This section, is aimed at exploring such effects. 

To analyse such slot geometry effects the magnitude of the flux density 

components have been determined for different values of Q, where Q is the 

ratio of tooth width to slot width (Q = aJtfaJ8 ). The data for the 1300 

MVA generator tabulated in table 2.3 is used for the study. Magnetic fields 

are calculated at no-load. 

2.4.2 Comparison Between New and Former Models 

To indicate the type of problems that may occur with the simpler 

analytical models figure 2. 7 and 2.8 present results for the radial and tangential 

magnetic field components calculated by the three models and show how 

these vary with both radius and circumferential position. In calculating these 

distributions all the influencing harmonics have been included whilst for the 

new model a tooth width to slot width ratio of Q = 1/5 has been used. In 
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addition figure 2.9 shows more clearly how the peak radial and tangential 

components of no-load flux density compare at (} = 0 and (} = 90° respectively. 

All the results show that the calculated magnetic field in regions signifcantly 

removed from winding coincide whereas significant differences are to be found 

in the region of the winding itself. The results also indicate that the 

difference between the new model and the thickness model is lower than the 

difference which appears between the thickness and the current sheet models. 

All the differences are due to the errors introduced into the calculations by 

the progressively simplifying assumptions made regarding the geometry of the 

winding in moving from the new model, through the thickness model to the 

current sheet. From the results, it can be seen that the new model has 

better accuracy than former models. 

Because of the importance of flux concentration in reliable operation 

of the superconductor figures 2.10 and 2.11 show the radial and tangential 

components of flux density (Br, BB) as a function of radius around the 

outermost slot of the rotor as computed by different models. As explained 

in section 2.2 the flux build up is due to the certain odd-space harmonics 

produced by the field winding configuration and, as can be seen, the current 

sheet model tends to overestimate the flux density whereas the thickness 

model underestimates compared to the new more detailed model. 

2.4.3 Results and Discussion 

In this analysis, four separate slot geometries, Q = 0, 0.25, 0.33 and 1 

are considered for a field winding with an overall spread angle 120, 134, and 

144 degrees respectively. In each case the winding is arranged m 12 slots. 

The harmonic component of both the radial and the tangential flux density 

is computed for each case and the results presented in table 2.5. This table 

is very instructive in obtaining an insight into the way the harmonic flux 
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density distribution depends on the structure of the superconducting rotor. 

All harmonics up to 7th have been shown in the table as beyond this they 

become individually negligible, firstly because their magnitude is very small 

and secondly because their windings factors are very low. From table 2.5 

it is clear that a spread angle u 1 = 120° completely eliminates the third 

harmonic whilst a spread angle of u1 = 144° eliminates the 5th harmonic. 

With a spread angle u 1 = 134 o the 3rd, 5th and 7th harmonic exist but may 

be used to reduce both the 3rd and 5th harmonic compared with u1 = 144° 

and u 1 = 120° respectively. 

Table 2.5 also demonstrates that the value of the varwus space 

harmonics is greatly dependent on Q, the width of tooth/slot-width. The 

ratio Q called the slot distribution factor, is always less than 1, and shows 

how the harmonic flux density of the magnetic field is affected by the width 

of the slot. 

The circumferential and radial variation of flux density produced 

by the different winding configurations is shown in figures 2.12 and 2.13 

respectively. Each figure comprises of six graphs, one for each of the Q 

factor stated above plus two additional intermediate values, whilst each graph 

consists of three curves, one for each of the three winding spreads used. 

Figure 2.12 shows how the radial flux density varies with tangential position 

at the mean winding radius and along with figure 2.13 clearly demonstrates 

the spacial oscillation of flux density due to the slot pitch. For any given 

winding spread angle as the ratio of tooth width/slot width increases so does 

the magnitude of this spacial distribution. This leads to an increase in the 

radial flux density at the outermost slot so that with a tooth width/slot 

width ratio of one the peak radial flux density is typically 11.6% greater than 

when the current density is assumed smeared over the full winding spread 

angle. Also apparent is the fact that as the winding spread is changed from 
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120° through 134° to 144° the peak radial flux density at outermost slot 

reduces. These variations in the peak radial and tangential flux density at 

the edge of the outermost slot is more clearly shown in figure 2.14 and 2.15 

where the radial and tangential variation of this flux density are shown for 

the different winding spread angles and tooth width/slot width ratios. For 

completeness figures 2.16 and 2.17 show how the radial flux density (8 = 0) 

and the tangential flux density (8 = 90°) vary with radial position. As can 

be seen the tangential flux density changes direction in passing through the 

winding whilst both show the reduction with increasing radius so that at 

typical armature radius all the winding configurations produce similar levels 

of flux density. 

2.5 Procedure of reducing harmonic content 

As shown in the magnetic field analysis of appendix 1, the magnetic 

field distribution for any given harmonic varies directly with many principle 

factors such as the value of current flowing through the winding, the number 

of turns in the slots, the distribution factor, the geometric factor ( r 1 so/ r )np+l 

and the relative position of the slot-pairs containing the field coils. Therefore, 

it is clear that when the new model is used, these factors can be employed 

to control the harmonic content of flux density waveform. As shown in the 

proceeding section, the rotor harmonics are caused mainly by the shape and 

configuration of the winding and solely eliminating a particular harmonic, does 

not necessarily reduce the undesirable flux concentration around the outermost 

slot. 
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2.6 Other applications 

As the new model includes information on a large number of the 

important dimensions making up the magnetic circuit it renders valuable 

service in the design of cylindrical rotors for superconducting a.c. generators, 

especially in the optimization of their magnetic parameters. In a number of 

variants it is possible to study the effect on the magnetic field of 

( 1) the spread angle and the number of slots, 

(2) changes in the slot geometry (or shape), 

(3) separating and shorting the slots near the polar regiOn, 

( 4) squeezing the slots near the neutral zone together. 

( 5) matching the depth of slots and height of the core to 

one another, 

(6) omitting the central bore. 

The use of the new model can also help to minimize the local 

flux concentration around the outermost slot and produce a valuable tool in 

diagnosing the problems which may be faced in the modification of the field 

winding design. 

2. 7 Summary and conclusions 

In this chapter a model has been developed to help determine the 

distribution of the magnetic flux density inside a superconducting a.c generator. 

The model takes into account the number, and the geometric structure, of 

the winding slots and allows the rotor of the superconducting machine to be 

designed with optimum magnetic field distribution. 

The results have shown that for a slotted winding of any given spread 

the maximum flux density at the outermost slot is influenced by the actual 

slot shape and ratio of tooth width/slot width used. Simply selecting a 120° 
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winding spread angle which eliminates the third spacial harmonic does not 

necessarily minimize the peak flux density at the winding. 

It is recognized that although the two dimensional analysis agrees 

with that obtained from the three dimensional analysis in the centre part of 

the winding they differ towards the winding ends. However, the average flux 

linkage can be obtained from a two dimensional analysis if appropriate length 

corrections are made to the machine windings. More analysis is required to 

fully define this problem. 

Essentially the new method is an extension to earlier magnetic field 

models where the winding was assumed smeared uniformly over its complete 

spread angle. Now full account has been taken of the slot geometry used. 
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TABLE [2.1] 
MAGNETIC FIELD DISTRIBUTIONS PRODUCED FOR THICKNESS MODEL 

When "" =:/::1 MAGNETIC FIELD DISTRIBUTIONS PRODUCED BY FIELD WINDING 

FOR REGION [1] r < r,, 

B .. ,= ..!!!dJ...... .. 1 !J.i. ± 2 -•p !.l1!. !I.!. ~ ( ) ( rp-2r ( r-·p ( )( ),.1'( ( )2+·p)J ~~ 2(2-np) r ;;: - rl• 2+•P "•' 1 - r1• cosnp8 
·=oM 

B, =- E ( ..!!!dJ...... )r(...!... rp-2[1- (!J.i. r-•p ± (b!2)(!.l1!.)'"'(1- (!I.!. )2+"P)]sinnp(8) 
I •=• 2(2-ap) "Jo "I• . 2+tap ~"•i PJo 

·=oM 

FOR REGION (2] r/i < r < rl• 

~ ( ) r ( )2+·1' ( rp-2 ( rp-2 ( )2+·p ( ( )2+·1') J B .. ,= I: 21 :.:~Y;,, 1 r -2np- (2- np) ~ + (2 + np) .. ;. ± (2- np) .. :, ~ 1 - ~ coanJi, 
•=1 

oaoM 

,., ( ) [ ( ) 2+•1' ( r,-2 ( rp-2 ( ) 2+., ( ( ) 2+•1') J B,1 = - ]; 2,:.:~Y;,• 1 r -4 + (2- np) ~ + (2 + np) .. ;. ± (2- np) .. :, ~ 1 - ~ sinnp8 
·= ... ~ 

FOR REGION (3] r/o < r <rei 

B.,= E ( ~ )r(!.l!!. )2+"P ( 1- ( !J.i. )2+"P) [1 ± ( ~ )2"P]comp8 
•=l 2(2+ap) .,. "I• "•• 

•=oM 

B,, = ~ (,r;:~';.J )r(~ r+•p (1- ( ;::) 2+•p) [1 ± (.:,f''~']sinnpB 
·-od4 

Wb en np_= 2 
TABLE (2.1b) 

FOR REGION [1) r < r,, 

B .. 1 = (~ )r[-zn(W.) ± (:)(~f(1- (;:;f)]cos28 

B,, = -(* )r[-zn(W.) ± (t)(~r(1- (W.f)]sin29 

FOR REGION (2) r1; < r < rl•• 

B .. ,=(~ )r[l- (~r +4ln(~) ± (~r(1- (;~!r)Jsin28 

B,1 = -(";~" )r[-1 + (~ r + 4ln(~) ± (~ r (1- (;::r)Jcos29 

FOR REGION (3) r1• < r < r., 

B.,1 = (~ )r(~ r(1- (;:!f)[l ± ( .. :.rJco829 

Bt1 = (*)r(~f(l- (?,:)')[l±(;;:)lnn28 



TABLE [2.2) 
SELF AND MUTUAL INDUCTANCES 

FIELD-SELF INDUCTANCE (L1 ) 

L = E 18,. .. -'1 [ Nt'''":r- r [ ( 2- n ) + ( 2 + n ) (-!:li r -4 ( !:Li) 2+np ± 2!=.!!.e ( ~ fnp ( 1 - ( !:Li) 2+npf] / { •) ( (::.J..!..r) p p r1o r1o 2+np r,.; r 1 .. n=l n3p11'a2 4-n2p2 1- • 
n=o4d I r/o 

ARMATURE SELF-INDUCTANCE (L,.) I 

L,.= ~ 18~'o-'o [ N .. ••~;-; r[(2-np)+(2+np)(~)
4

-4(~)2+np±2~(;:)
2

,.'(1-(t!)2+npf] 
n-1 n3p1ra2,(f-n2p2) (1-(:-AL)) 

n=odd 0 roo 

FIELD TO ARMATURE MUTUAL INDUCTANCE (M,.,) 

00 • ~~ .• ;a ( rp [ ]( ( ) 2+np) [ ( ( f-np) ( rnp ( ( ) 2+•p)] 
M,.J = ~ 32,.oNJHa-'o~(.n ~:) ~ ( ( • r)1( (' )') 1- ;:; 1- ~ ± ~~=: ~ 1- ~ 

n-1 t1.3p1f<7J<7o 4-R2p~ 1- .;.a&. 1- ::.J..!. 
-~d ~.. ~-

----- ----------- - ~~-----------



Table 2.3 
Electrical and physical data of a 1300 MVA 

turbo-generator rotor 

~arne Symbol Unit 

No. of pole pair:; p -

Rated power Pr MW 

No-load field current If A 

No. of slots per pole s -
No. of conductors per pole Nf -
Field winding inner radius TJi m 

Field winding outer radius T fo m 

Inner radius of iron o;nern Tzi m 

Ratio of tooth width to slot width Q -

Value 

1 

1300 

4984 

12 

1720 

0.395 

0.455 

l..t 

1/5 



TABLB (Ua) 
Wheu npi:: 2 MAGNETIC FIBLD DISTRIBUTIONS PRODUCED BY FIBLD WINDING 

FOR REGION (1) r < r,,. 

B.,= E E (,..1, .• )r(-• )•'-1 [1- {!!!!..)l-ap :1: {!.::!!!){!~.::..),.'{1- {!!!!..)2+•"\]comp(ll:i:a;) 
&cl ·-· 2(2-•p) ., •• , .,_, 2+.. .... ..,_, J 

··-

B,, =- E E (~·~·· )r(-• )•'-1 [1- (:!!!..)2-•• :1: (!.::!!!)(~) 2•'(1- (!!.!.:..)2+•p)]nnnp(B:i:a;) 
i=l ••• 2(2 •pi .. , •• , "J••. 2+•p .... ..,_, 

··-
FOR REGION (2) r,., < r < r1 .. 

B.,= E };, (2~;!~i~))r[-2np- (2- npl(~ r+ap + (2 + npJ(.,: •. f'- 2 ±(2- npl(.:.r-2 (~ )2+•'(1- (;;=.)2+•p)]comp(Ha; ...... 

B,, =-E ~ (,~;!~;~))r[-4 + (2- npl(¥ r·· + (2 + npl(.,:., )"'-2 ± (2- npl(.:.) ··-2 (~ ),..,(1- (;;=. r··')]nnnp(B±a; ..... 

FOR REGION (3] r/•• < r < ra~ 

B,
1 
= E E (,..7, .• )r(~)l+•'(1- (!!!!..)'+•"\ [1 ± (....t...)'"']comp(B :1: a·) 

i=l • .,, 2(2+ap) r "J••• J "•• • ...... 

B,, = E E (""7, .• )r(~),..'(l- (!L!!L),.""~[l:t (....t...),.']nnn (B:I:a·) 
i=l ·=· 2(2+•p} ,. .. ,... J "•• p • 

= ..... "' 

Wb en np = 2 

FOR REGION (1] r < r/n 

B., = £ c··~·• ) r [-In ( ?,:!:-) ± ( t )( ~ r ( 1 - (;:~ n] cod(B:i: a;) 

B,, =-E c··~·· )r[-ln(;;=.) ± (n(~ r (1- (~)')]•in2(Ha;) 

FOR REGION (2) r/n < r < r1 .. 

B.,= ,t("·~~·· )r[1- (~ r +41n(~) ± (~ )'(1- (;::::-)')]nn2(Ha;) 

B,, =- E(~-~~·· )r[-1 + (~ r +4/n(~) :1: (~ )'(1- (?,-::-)')]nn2(8:i:a;) 

FOR REGION (3) r/oo < r < r., 

B.,= E(~·~·· )r(~ )'(1- (;::::-f)[1 ± {i;)}od(ll±a;) 

s,, = .t c··~·· )r(:t;:-r ( 1- (;::::-f)[1 :1: (.:. rJ•in2(9 ±a;) 



TABLE (2.5] 
FIELD WINDINGS AND THEIR INTERACTION 

WITH THE SPACE-HARMONIC FLUX DENSITY COMPONENTS 

Amplitude of Brn 

a1=120, (N°of slots)=12 a1=134. (N°of slots)=12 at=144. (N°of slots)=12 

Q=O Q=O Q=O 

harmonic order harmonic order harmonic order 
so so 50 

1 3 5 7 E Br 1 3 5 7 E Br 1 3 5 7 E Br 
n-odd n-odd n-odd 

r = r1 3.049 0.000 0.485 0.325 4.702 3.093 0.126 0.110 0.340 4.505 3.064 0.332 0.000 0.124 4.419 

r =r~ 0.787 0.000 0.003 0.000 0.791 0.799 0.005 0.000 0.000 0.805 0.791 0.013 0.000 0.000 0.805 

r = r,. 0.532 0.000 0.000 0.000 0.533 0.539 0.002 0.000 0.000 0.542 0.534 0.006 0.000 0.000 0.541 

Amplitude of Brn 

at=120, (N°of slots)=12 at=134, (N°of slots)=12 at=144. (N°of slots)=12 

Q=1/5 Q=1/5 Q=l/5 

harmonic order harmonic order harmonic order 
so 50 so 

1 3 5 7 E Br 1 3 5 7 E Br 1 3 5 7 E Br 
n-odd n-odd n-odd 

r = Tf 3.033 0.000 0.462 0.344 4.831 3.064 0.148 0.084 0.334 4.624 3.040 0.353 0.000 0.104 4.523 

r = r~ 0.783 0.000 0.003 0.000 0.787 0.791 0.006 0.000 0.000 0.798 0.785 0.014 0.000 0.000 0.800 

r = r,. 0.529 0.000 0.000 0.000 0.530 0.534 0.002 0.000 0.000 0.537 0.530 0.006 0.000 0.000 0.537 

Amplitude of Brn 

a 1=120, (N°of slots)=12 at=134, (N°of slots)=12 at=144, (N°of slots)=12 

Q=1/3 Q=1/3 Q=1/3 

harmonic order harmonic order harmonic order 
50 so so 

1 3 5 7 E Br 1 3 5 7 E Br 1 3 5 7 E Br 
n-odd n-odd n-odd 

r = Tf 3.025 0.000 0.448 0.353 4.922 3.054 0.156 0.075 0.326 4.704 3.028 0.363 0.000 0.092 4.595 

r = r, 0.781 0.000 0.003 0.000 0.785 0.789 0.006 0.000 0.000 0.796 0.782 0.015 0.000 0.000 0.797 

r = r,. 0.528 0.000 0.000 0.000 0.528 0.533 0.003 0.000 0.000 0.536 0.528 0.006 0.000 0.000 0.535 

Amplitude of Brn 

at=120, (N°of slots)=12 at=134, (N°of slots)=12 a/=144, (N°of slots)=12 

Q=1 Q=1 Q=1 

harmonic order harmonic order harmonic order 
50 50 50 

1 3 5 7 E Br 1 3 5 7 E Br 1 3 5 7 E Br .. ,..,--;;dd n :odd n:-odd 

r = Tf 2.999 0.000 0.403 0.370 5.249 3.020 0.178 0.043 0.289 5.050 2.989 0.391 0.000 0.053 4.980 

r = r, 0.774 0.000 0.003 0.000 0.778 0.780 0.007 0.000 0.000 0.788 0.772 0.016 0.000 0.000 0.788 

T = Tz 0.523 0.000 0.000 0.000 0.524 0.527 0.003 0.000 0.000 0.530 0.521 0.007 0.000 0.000 0.529 



Amplitude of B," 

u t=120, (N°of slots)=12 ut=134, (N°of slots)=12 u t=144, (N°of slots)=12 

Q=O Q=O Q=O 

harmonic order harmonic order harmonic order 
so 60 so 

tadial 1 3 5 7 E B9 1 3 5 7 E B9 1 3 5 7 E B9 
n-odd n-odd n-odd 

= Tf -0.211 0.000 0.010 -0.007 -0.206 -0.157 -0.012 0.008 0.004 -0.158 -1.119 -0.017 0.000 0.006 -0.130 

= Ta 0.147 0.000 -0.001 0.000 0.145 0.110 0.010 -0.001 -0.000 0.118 0.083 0.014 0.000 -0.000 0.097 

= Tz 0.000 -0.000 0.000 0.000 0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 

Amplitude of B9" 

Ut=120, (N°of slots)=12 ut=134, (N°of slots)=12 Ut=144, (N°of slots)=12 

Q=1/5 Q=1/5 Q=1/5 

harmonic order harmonic order harmonic order 
so so so 

R.adial 1 3 5 7 E B9 1 3 5 7 E B, 1 3 5 7 E B9 
n-odd n-odd n-odd 

, = Tf -0.209 0.000 0.009 -0.007 -0.212 -0.155 -0.014 0.006 0.004 -0.167 -0.118 -0.118 0.000 0.005 -0.136 

, = Ts 0.146 0.000 -0.001 0.000 0.146 0.109 0.012 -0.001 -0.001 0.119 0.082 0.015 0.000 -0.000 0.098 

, = Tz 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 -0.000 0.000 

Amplitude of B9" 

ut=120, (N°of slots)=12 Ut=134, (N°of slots)=12 ut=144, (N°of slots)=12 

Q=1/3 Q=1/3 Q=1/3 

harmonic order harmonic order harmonic order 
50 50 so 

ladial 1 3 5 7 E B8 1 3 5 7 E B9 1 3 5 7 E B8 
... -;;dd n odd n odd 

= Tf -0.209 0.000 0.009 -0.007 -0.216 -0.155 -0.015 0.006 0.004 -0.170 -0.117 -0.018 0.000 0.004 -0.139 

= Ta 0.146 0.000 -0.001 0.000 0.147 0.108 0.012 -0.001 -0.000 0.120 0.082 0.015 0.000 -0.000 0.098 

= Tz 0.000 0.000 -0.000 0.000 0.000 0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 

Amplitude of B," 

u t=120, (N°of slots)=12 u t=134, (N°of slots)=12 u t=144, (N°of slots )=12 

Q=1 Q=1 Q=1 

harmonic order harmonic order harmonic order 
so so 60 

tadial 1 3 5 7 E B, 1 3 5 7 E B, 1 3 5 7 E B, 
n-odd n odd n odd 

= Tf -0.207 0.000 0.008 -0.008 -0.240 -0.153 -0.017 0.003 0.003 -0.192 -0.116 -0.020 0.000 0.002 -0.159 

= r. 0.145 0.000 -0.001 0.008 0.148 0.107 0.014 -0.000 -0.000 0.121 0.081 0.017 0.000 -0.000 0.099 

= Tz 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 -0.000 0.000 
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Fig. 2.8 Comparison of tangential flux density as calculated by 
the new model and former models at different radius. 
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CHAPTER 3 

ELECTRICAL AND MECHANICAL DESIGN CONCEPTS 

FOR A SUPERCONDUCTING GENERATOR ROTOR 

3.1 Introduction 

The morphology involved in the machine design process can be re

solved into fundamental components such as the recognition and definition 

of the design problem; this leads to the establishment of the specifications 

and requirements which the final design must satisfy. For an optimal ma

chine design, it will be appropriate to assess the main factors which define 

the electrical and mechanical behaviour of the machine and the mandatory 

requirements for the machine components. 

One of the most important elements in any superconducting generator 

design is the rotor; mechanical stress limits its physical size and hence places 

constraints on the excitation winding and the cross-sections of the magnetic 

circuit and cooling system. In choosing the rotor dimensions the mechanical 

properties of the rotor, which must withstand stress due to the maximum 

critical speed, are of prime importance. An analytical method has been 

developed to predict bursting speed by taking into account the geometry, the 

applied stresses and the material properties. Closely linked with the electrical 

and mechanical performance of the superconducting rotor design are the B/ J 

limitations of the superconducting field winding material and the tip speed 

of the rotor components. 

With these constraints in mind, the following sections describe calcula

tion methods which relate these different effects. These behavioural constraints 

are then used in the design optimization procedure presented in chapter 5. 
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3.2 Overall design criteria 

3.2.1 Design output equation 

The apparent power output expression of the superconducting gen-

erator elegantly shows the effect the machine geometry and superconductor 

characteristics has on the design of the machine. 

The output of a three phase machine may be written 

s,. = 3 X v X I VA 3.1 

Where V IS r.m.s voltage per-phase and can be expressed as 

Volts 3.2 

where w = 2 x 1r x f rad./s 

Substituting equation 3.2 int 3.1, gives the apparent power 

(3/2) S,. = -- X kwa X NG X B,., X r 8 X l X w X I 
p 

3.3 

Proceeding further, 

3.4 

where Ac is the cross-section of one phase conductor 

By substituting equation into 3.3, gives 

/2) S,. = (-- X kw8 X B,.. X Ja X T 8 X Va X W 
2xp 

3.5 

where 

Va = 6 X Na X Ac X l 3.6 
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B,.8 is the maxtmum value of the fundamental radial component of 

the flux density at stator winding. 

In view of dependence of the inner rotor magnetic power ( B,.s) on the 

geometrical dimensions and physical properties of the rotor, it is convenient 

to express the output of the machine in terms of these factors. From the 

two dimensional field analysis of a two pole machine, the radial flux density 

at the stator winding produced by the field winding is given by: (see chapter 

2) 

3.7 

where Ko is a factor that encompasses the geometric factors that determine 

the distribution of magnetic flux density in the (two dimensional) cross section 

of the machine. 

Substituting equation 3. 7 into 3.5, gives, 

where K = u~a X kws) is a geometric factor. 

3.2.2 Design strategy 

3.8 

The expression for apparent power S,., (3.5), shows the potential 

advantage of using a superconducting field winding is to increase the power 

output of the generator by increasing the magnetic field produced by the 

superconducting field winding. Howerever, as will be shown in this study, the 

ability to use a higher flux density at the stator is limited by many conditions 

which determine the output power as related to the dimensions of the 

machine. Mechanical and electrical parameters affect the power output which 

is considerably influenced by the construction arrangement. To understand 
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the importance and significance of this result, it must be seen in terms of the 

design constraints on the inner rotor magnetic power. As shown in equation 

3.6, the magnetic power of the inner rotor depends upon the dimensions 

and current density of the inner rotor. For optimal magnetic power (defined 

by KoJf ), the achievable flux density is restricted by rotor dimensions and 

the current density. Consequentely, for a given number of poles and a given 

critical speed, the maximum practicable inner rotor outer radius is determined, 

in the first instance, by the centrifugal forces acting on the slotted inner rotor. 

This in turn depends for the most part on the dimensions of the slotted 

inner rotor. Other constraints on the design as related to J1 are imposed 

by the characteristic of the superconducting material. A further constraint 

is the saturation in stator core material. Increasing the inner rotor magnetic 

power is also constrained by the design of the support required between the 

cryogenic inner rotor and its room temperature external structure. Aside from 

design considerations, construction and superconductor costs can be expected 

to be a strong function of the inner rotor magnetic power. There are thus 

strong incentives for maximizing the inner rotor magnetic power. 

3.3 Field winding design and support structure 

From the viewpoint of generator cost, a superconducting field winding 

should be designed so that the ampere-turns (ATs) of the field winding 

produce a flux density at the armature winding of about 1.0-1.5 T and a 

maximum flux density in the vicinity of the field winding of about 6.0 T 

[Maki, 1980]. 

It was noted in chapter 2 that the maximum flux density at the 

superconducting rotor winding depends on the winding geometry such that 

the maximum allowable current density of the superconducting winding is 

limited by localized flux concentrations which appear around the outermost 
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slot. Since flux concentration is caused by the field winding geometry this 

effect can largely be minimized by the use of a graded winding and different 

slot geometries (i.e. shortened outermost slot). This can be achieved by using 

the approach developed in the preceding chapter. This approach also provides 

a record of basic design information covering different slotted shapes of winding 

likely to be used in practice. The basic design has shown that a saddle shape 

winding is preferred with 120° and or 140° winding spread or with a limited 

amount of grading. However, for the same current density the fundamental 

component of radial flux density is larger when a 144° spread is used than 

when the winding spread is 120°. Further, the 3rd, 6th, 9th, . . . harmonic 

components can be suppressed by using a star-connected armature winding 

and therefore the field winding angle of 144° is clearly more advantageous 

from the viewpoint of magnetic field utilisation. 

Before making positive recommendations on the slotted, saddle shape, 

rotor design some other factors, particularly the effect of the helium system 

and mechanical aspects should be briefly emphasised. 

It is generally more effective to use a slotted saddle shape design as 

the geometrical structure provides effective helium cooling of the field winding, 

both in the slotted straight part and in the end turns of the winding. Because 

this system is based on a combination of radial and axial passages, fed from 

a helium storage container, the helium flows in a large number of relatively 

short paths. Helium is circulated primarily by channels through radial ducts. 

This type of cooling system implies the minimum risk of losses under variable 

operating conditions which can lead to temperature rise and would therefore 

result in normalisation of the winding. 

In such a slot design concept, the depth of the rotor slot is determined 

primarily by the choice of permissible maximum tangential stress at the rotor 

bore. Radial stresses in the rotor teeth determine the maximum width of 
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slot as well as the cross-section of the field windings and cooling ducts. The 

stresses are influenced by the shape and spacing of slots. Lower nominal 

stress levels are necessary in the tooth region than at the rotor bore in view 

of the higher stress concentration which exist at the tooth root and around 

the wedge dovetail. 

In determining the maximum permissible design stress at the rotor 

bore, it is preferable to assume that boring the rotor may be necessary 

to permit internal inspections, and allow samples to be taken. The better 

physical properties of the rotor forging material, available for use in the 

superconducting generator, make it possible to use a winding slot of larger 

dimensions. For example, the slotted inner rotor of 1300 MVA generator, with 

radius 0.45 m, an austenitic steel is used because of its excellent properties at 

low temperature, despite the large outer radius, and still retain a good safety 

margin. With this material, a value of 300M Pa is obtained for a mahine 

rating 1300 MW. 

To obtain maximum superconductor cross-section in the excitation 

winding, while conforming to acceptable radial stress level in the rotor teeth, 

it is necessary to employ a slotted saddle shape design which is wider near 

the rotor surface and which tapers to a narrower width at the tooth root. 

Such a structure more nearly equalizes the tooth stresses while allowing the 

slot to contain a significantly greater cross-section of superconductor for the 

same maximum stress. To ensure maximum reliability in the slot shape design 

the mechanical aspects of the design have been analysed in section 3.6 to 

determine the maximum stresses. 

Considering the choice of superconductor, present opm10n is generally 

in favour of the Nb - Ti conductors and this alloy will be used for early 

commerical generators. This is because of the extensive experience that exists 

for it in terms of superconductor fabrication and utilization in the prototype 
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machines and in design studies for large machines. With these conductors, 

it possible to attain current density in slot of about 108 Ajm2 when the 

continuous induction maintained is lower than lOT (the current density takes 

electric insulation, stabilisation, and refrigeration into account). 

3.4 Field winding performance 

As has been stated in the previous chapter, the maJor constraint on 

the design of the field winding is related to the superconductivity state. All 

superconductors exhibit a constraint on the current density, this maximum 

current density being a function of flux density at the winding. As consequence 

of this, the maximum permitted current density is limited because there is 

flux concentration around the open corner edge of the field winding. As 

shown in chapter 2, the radial flux density component at the open corner 

edge of the winding (i.e. at () = 30°) is typically 1.32 times the value of this 

component at fJ = 0°. 

Additional factors can be introduced to account for environmental 

1ron screen effect and the armature reaction effect at the superconductor, 

taking into account the fact that the superconductor is at 4 K. A typical 

fault is a three-phase short-circuit: the armature field is fully de-magnetised 

so the excitation field is a maximum when the iron screen is used. To obtain 

maximum reliability the field winding must be designed to cope with these 

effects and, hence, the following factors must be considered. 

(i). Margin on Bfnax and J1 to accommodate variation during 

short-circuit operating conditions. 

(ii). Reduction of Bfnax to allow for the effect of empirical 

factors such as flux concentration, armature reaction effects, and 

machine screen type. 

According to the above statements, the maximum flux density at the field 
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winding has to be lower than the critical flux density corresponding to the 

existing current density. The criterion: 

Bfnaz ~ B!(J) 3.9 

is one of the main electrical constraints on the field winding design. Here 

Bfnaz is a maximum flux density at the field winding, and will be described 

by (see chapter 2): 

(3.10) 

where concentration factor is kc ~ 1.32 and k9 is a factor that encompasses 

the geometry factors that determines the maximum field in the vicinity of 

the field winding and is defined in chapter 2. By considering the curve B/J 

in figure 3.1, the critical flux density and current density can be related as 

follows: 

B!(J) = -qJI + P {3.11) 

where p and q are the fitting constant which depend on the real characteristic 

of superconductor. Substituting equation 3.10 and 3.11 into equation 3.9, gives: 

(3.12) 

This equation {3.12) gives an acceptable margin of safety to avoid normaliza-

tion. 
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3.5 Environmental screen design 

Any machine design incorporates either a. laminated iron screen or 

solid copper or aluminum screen to screen the environment from magnetic 

fields produced inside the generator. According to the distribution of Br and 

B8 calculated in the previous chapter, the presence of an iron screen increases 

Br and decreases B8• B8 does not contribute to voltage generation. Since the 

copper or aluminum screen reduces the magnetic field for given field current, 

higher field currents may be necessary than if an iron screen were used. 

The iron screen will have losses resulting from eddy current and 

hysteresis which may be calculated by 

Watts 3.14 

Where 

lx is the length for calculating screen loss, m 

tx is the thickness of iron core, m 

Px 1s mass density of iron screen, kgjm3 

dx 1s the loss per unit mass 

Losses in the conducting screen are due to induced eddy currents and 

are given by 

Where 

7r X B~ . X Txi X lx 
Pco = z• 

JL~ X U X h 
Watts 

lx is the length for conducting screen loss, m 

h is the skin depth screen material. 

BB% is the value of BB at (r = rxi)· 
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The radial dimensions of the iron core may be estimated by assuming 

the iron core material to remain in an unsaturated state. The required iron 

core thickness could be then determined by the maximum flux density at 

inner radius (B,.c;) and the maximum flux density allowed in the core (i.e. 

flux saturation): 

3.16 

Where 

3.17 

where 

tz is the rmmmum thickness of the core, m, 

B(maz) is the maximum flux density allowed in the core, T. 
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3.6 Mechanical analysis aspect of the inner rotor 

3.6.1 Mechanical stress due to centrifugal force 

It is the purpose of this section to develop an improved method from 

which the rotor configuration is determined in such a way that the allowable 

stresses are not exceeded. 

Figure 3.2 shows the analytical model used for the analysis of the 

mechanical stresses and also a typical qualitative stresses distribution. The 

mechanical analysis of the superconducting inner rotor assumes the rotor is 

simply a rotating electromagnetic which is symmetrical with respect to its 

axiS of rotation and the action of centrifugal loading. The model is divided 

into the following regions: 

Region (1) (rfo ~ r ~ TJi) 

superconducting field winding with tensile strength (To) 

Region (2) (r/i ~ r ~ rc) 

core rotor body with tensile strength (T) 

Region (3) (rc ~ r ~ 0) 

liquid helium container region 

3.6.2 Analytical solution for stresses 

The geometric configuration illustrated in figures 3.2-3.3 was analysed 

as an elastic problem consisting of a circular slotted region, a circular smooth 

core body, and a hole which contains a liquid having a free surface. The 

method is based on the replacement of the inner rotor by three regions with 

variable dimensions as well as material properties and satisfying the conditions 

at the boundary. Considering the three regions as shown in figure 3.3, the 

expressions for radial and tangential stresses at r = r c and r fi will read, in 

normalized form as follows (see Appendix 2) 
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3.18 

UB<r=rc) = 12(1 ~ x2) {12( 1+x2)p;+8w2r~;Po (y3 -1 )+3w2r~;P( 1-x2) [ ( 1-v )x2+ ( 3+v)]} 

3.19 

UB<r=r,;) 12(1 ~ x2) {24p;x2+4w2r~;Po(y3 -1)(1+x2)+3w2rJ;P(1-x2 ) [ (1-v )+(3+v )x2]} 

3.20 

By applying the Tresca yield criterion the above expressions may be written 

in the following form: 

For slot/tooth (at r = r/i) 

3.21 

For core region (at r = rc) 

n < 12T(1- x2)- 12(1 + x 2 )p; 112 

- [8Po(Y3 -1) + 3p(1- x2)[(1- v)x2 +(a+ v)]] 
3.22 

For core region (at r = r /i) 

12T(1- x2) - 24p;x2 1/2 

n ~ [4Po(1 + x2)(y3 - 1) + 3p(1- x2)[(1- v) + (3 + v)x2]] 
3

'
23 

35 



where, 

11 is critical speed, 11 = W X Tji 

X is radii ratio, X = ..L:.. 
"fi 

y 1S radii ratio, y = !i.E. 
"fi 

p 1S rotor body density 

Po is slot wedge/tooth tip region average density 

3. 7 Rotor tip speed 

An additional constraint on the structure of the rotor, is that of 

the tip speed. This is limited by the strength of the material from which 

the rotor is fabricated. The rotor usually runs above its second or third 

critical speed. The machine should not operate close to a critical speed for 

mechanical vibration reasons, and there is a distinct advantage to operate 

below the first critical speed. The inner rotor is designed so that yielding 

should not occur until the operating speed is at least 1. 7 x rated speed, and 

for the outer rotor 1.5x rated speed [Appleton, 1975]. In addition, for the 

inner rotor an austenic steel is selected. Stainless steel has a yield stress of 

400 M Nfm2• For the outer rotor, non-magnetic stainless steel was proposed 

which has a maximum yield stress about 800 M Nfm2 

Moreover, at some radius the safe stress is just sufficient to with-

stand the centrifugal force on the material itself. This critical radius is a 

characteristic of the material, it is given by: 

For inner rotor: 

3.24 

For outer rotor: 

12 2 
Josd X W X Pd 

3.25 
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where 

los/ is the outer over-speed factor (inner rotor), los/ = ~ =1.7 

losd is the outer over-speed factor (outer rotor), los/ = ~ =1.5 

The feasiblity of these expressions depend again on the choice of the 

strength of the material, their density and burst speed. 

3.8 Result and discussion of some mechanical factors 
and their influence on design 

Befor considering design stresses computation by the analytical expres-

sions derived in section 3.6, a few words of caution in using these expressions 

should be made. Firstly, it should be noted that the stress expressions are 

sufficient to define the value of the radial and the tangential stresses because 

of the choice of proper conditions in the procedure which have been used to 

derive the stresses (see appendix 2) and consequently have practical advan

tages, particularly in the pre-stressing operation. Secondly, the express10ns 

define the lower limit of speed for bursting of a cylinder, i.e., it is assumed 

that, a cylinder could never burst at speed lower than that defined by these 

expressions. 

The analytical express10ns for stress components can now be manip-

ulated to produce design information. An illustration of the use of these 

expressions has been used to calculate the critical speed of the inner rotor of 

a two pole 1300 MW generator. The main data for such design is given in 

table 3.1. 

Comparisons of the critical speed expression with conventional formulae 

from the literature [Spooner, 1973] 

3T(1- x) r/2 
[Po(Y3 - 1) + p(l- x3) 

3.26 
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are given m figures 3.4-3.5. The result produced in figure 3.4 shows these 

two widely differing methods, this figure, however, shows that the value of 

the inner rotor critical speed is lower than that which would have been 

developed if Spooner's method is used. This should be expected as Spooner's 

procedure assummes that the effect of the radial stress is negligible where the 

new procedure takes into account these factors, thus giving a more accurate 

result for the stress distribution throughout the inner rotor. However, more 

features are given for the new method and are presented in figures 3.6 and 

3. 7 which, show in detail how to derive the critical speed for the inner rotor 

as function radius ratio rc/rfo and core radius. Figure 3.8 shows the radial 

stress being high at the bore radius (rc) and then tapering off to a relatively 

low value at the outer radius of slots (rJ0 ). Further, the graphs in figure 3.8 

are plotted to give directly the maximum radial stress in the core region and 

in the field winding as a function of the inner rotor radius and over speed 

factor(nmaz/n); the overspeed factor being varied from 1.5 to 1.8 to cover the 

effect of this factor. Higher stresses in the inner rotor thickness are however 

associated with higher value of overspeed factor. 

Computation results show that the overspeed factor and the rotor 

dimensions determine the ability of an inner rotor design to be satisfactory, 

i.e. the factor of safety at bursting depends on the inner, and outer radius, 

the ratio of the bore (i.e. rc/rJo), bursting speed factor, and the properties 

of the materials. Therefore, for safe design, the appropriate properties have 

to be known and factors of safety assigned that are consistent with these 

properties and the geometry of the inner rotor. It has also been noted from 

the results that the permissible stresses in the rotor body at over speed are 

set at a maximum of 60%-70% the yield stress of the material used and 

this ensures a sufficient design safety factor. The slotted rotors are of an 

austenitic stainless steel alloy 316 LN with a low carbon, 0.2%N2 content. 
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This alloy possesses the required mechanical properties at low and ambient 

temperature. 

For higher rating generators where weight is critical and maximum 

utilization of materials is desired, it is helpful to design for an optimum 

condition where failure, when it occurs, takes place in both parts of the inner 

rotor simultaneously and resulting best inner rotor geometry so that maximum 

mechanical performance may be expected with sufficient design factor. 

3.9 Summary and conclusion 

From this study it is concluded that the design of a superconducting 

generator is governed by confliciting mechanical and electrical requirements; 

both of which have to be taken into account when optimizing the rotor 

design. The major constraints which are placed on the generator rotor are 

the rotational centrifugal forces which should be known accurately since it is 

important in selecting the dimensions of the generator rotor to achieve various 

characteristics. 

In this chapter, an analytical expression has been developed to deter

mine the stresses distribution in the superconducting rotor components under 

rotating conditions. These expressions will be used to select the proper rotor 

dimensions. 

The results of the analytical techniques developed in this chapter 

will be considered as the main imposed design constraints in the design 

optimization procedure presented in the following chapters. 
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Table 3.1 
Data 

Name Symbol 

Dimensions 

Core radius r, 

Field winding inner radius Tfi 

Field winding outer radius Tfo 

Mechanical data 

Field winding yield strength To 

Inner rotor body yield strength T 

Outer rotor strength T 

Field winding average density Po 

Rotor body density p 

Maximum speed nmgz 

Rated speed n 

Passion ratio v 

Unit Value 

m 0.091 

m 0.395 

m 0.455 

MP,. 60 

MP,. 400 

MP,. 400 

kgfm3 7400 

kgfm3 7950 

r.p.m 5100 

r.p.m 3000 

0.3 



10 

J 
Field current density A/rr?-

Figure 3.1 Calculated current density charateristic 
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Tangential 
'stress u8 

Radial stress, u, 

Fig 3.2 Analytical model for the analysis of inner rotor stress. 



1200 

1100 

1000 

900 

BOO 

400 

300 

200 

100 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0. 7 0.8 0.9 1.0 
RciRfo Rc/Rfo 

Fig. 3.4 Comparison of the inner rotor critical speed calculated by 

the conventional and new methods. Where rc = 0.2rfo 

1200 

1100 

1000 

900 

800 

500 

400 

300 

200 

100 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0. 7 0.8 0.9 1.0 
Rc/Rfo 

Fig. 3.5 Comparison of the inner rotor critical speed calcula~ed by 

the conventional and new methods. Where rc = O.Brto 



"D 

j. 
-• ! .. 
6 

1200 

1100 

1000 

900 

BOO 

700 

600 

soo 

400 

300 

200 

100 

eo.p.rrecon of crflfcel epMCI celculaled 

by 1._ -.wncr-l ... hod 

• Ac.O. 2eRfo 

• Ac.O. 25.Rfo 

a Ac..O. 3..R fo 

• Rc.O. 4eRfo 

o Rc..O. Sell fo 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
RciRFo 

Fig. 3. 6 Inner rotor critical speed calculated by the 
conventional method. 

400 

350 

300 

100 

50 

eo.p.rr..,.. of critical a,_.! caolculeted 

by t._ ,.., .. chod 

a Rc.O. 2•R fo 

• Rc.O. 25.Rfo 

a Rc.O. !.A fa 

• Rc..0.4eRfo 

o Rc.O. S.Rfo 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Rc/Rfa 

Fig. 3. 7 Inner rotor critical speed calculated by the new method. 



9~------------------------------------------------------~ 

8 KEY 

N • 1.8 OVER SPEE~ FACTOR 
!: Ill 1. 7 OVER SPEED FACTOR -~ 7 • 1.6 OVER SPEED FACTOR 

e 1.5 OVER SPEED FACTOR 
c'" 
:1) x1Qs6 :1) 
v 
'-.... 
<ll 

-~ 
~ 

s 
~ = 

4 

3 

2 

0. 10 0. IS 0.20 0.25 0.30 0.35 0.40 0. 45 

r [m] 

Figure 3.8 Radial stress distribution in mner rotor. 



9~------------------------------------------------------~ 

8 KEY 

N " 1.6 OVER SPEE~ FACTOR e Gl 1, 7 OVER SPEED fACTOR -~ 7 • 1.6 OVER SPEED FACTOR 
e 1.5 OVER SPEED FACTOR 

... 
0 

"JJ xl 086 
"JJ v ... ... 
"JJ 

:0:: 
-:::l 

5 ... ..;;:: 

4 

3 

2 

0. 10 0.15 0.20 0.25 o.:so 0.35 0.40 0. 45 

r [m] 

Figure 3.8 Radial stress distribution in mner rotor. 



CHAPTER 4 

SEARCH METHODS OF MINIMIZATION FOR MACHINE DESIGN 

4.1 Introduction 

A variety of methods, involving ordinary and variation calculus, math

ematical programming, and a number of special techniques, are available to 

treat optimal design problems. Among these methods, the mathematical pro

gramming procedures appear to have the broadest range of application. As a 

consequence, these procedures have been found to be flexible, easy to adapt, 

and can offer an 'automatic' design computer solution [Chidambarab, et al, 

1982], [Nagrial and Lawrenson, 1978), [Ammasai, et al, 1988). The procedures 

solve, or attempt to solve, the design problem which can be stated as 

find vector X= {}:}which maximizes the value of f(X) n = 1, 2, ... , N 

( 4.1) 

subject to the M inequality constraints 

9m(x) > 0, m = 1,2, ... ,M ( 4.2) 

and the I equality constraints 

i = 1, 2, ... I I (4.3) 

In addition 'limit' constraints of the form 

(4.4) 
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In optimum machine design, /(ff) is the (scalar) property of the problem 

which has to be minimized. This could be magnetic power of the inner rotor, 

power output, volume, or any combination thereof. Minimizing a function 

is the same as maximizing the negative of the function so there is no loss 

of generality. The set, Xn 1 is a set of design parameters and could be, for 

example, dimensions, current density, and so on. On the other hand, Ym(ff) 

and hi(x) are a set of constraint functions which are used to control or define 

the behaviour of the design. The inequalities employed may be linear, or 

highly non-linear, functions for either superconductivity or mechanical stresses 

in a superconducting rotor. Inequality design constraints can also be used to 

control the values of the variables within certain limits (limit constraints) as 

presented in equation ( 4.4 ), where a;(u), :z:{l) are the upper and lower limits (or 

bounds) on the variables. The problem stated above is non-linear if one of 

the function g(xn) or f(xn) is non-linear, otherwise it is linear programming 

problem (i.e. linear objective and constraints). For those problems where all 

the equations are linear, the highly effective linear programming methods can 

reliably, locate the global optimum in a finite number of steps. Most computer 

libraries include such methods and enjoy wide popularity and utilization. 

Unfortunately this situation does not exist in the case of general nonlinear 

problems. None of the many nonlinear methods proposed can guarantee a 

solution except in certain relatively restricted formulation [Wilde, 1964]. 

In this chapter, some formal non-linear programming procedures to search for 

minimum or maximum will be discussed in detail. 
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4.2 Selection of non-linear programming NLP as optimization model 

Non-linear programming {NLP) methods are essentially optimal search 

strategies. They start from some arbitrarily selected point, usually in the 

feasible region, and then attempt to move toward the optimum on the basis of 

the local properties of the functions involved. The basic unconstrained non

linear problem is, by comparison with the general constrained linear problem, 

quite difficult. The difficulty is compounded when constraints are used. 

Equality constraints are particularly troublesome since they severely restrict 

the feasible region, thus substantially increasing search difficulty. Fortunately 

equality constraints can often be eliminated by using the equality to eliminate 

an independent variable thereby reducing the design problem dimensionality 

and difficulty, as will be seen in the next chapter. Thus, most non-linear 

optimization procedures used in design problems are essentially formulated to 

treat problems with inequality constraints. 

Generally speaking, the majority of constrained non-linear optimization 

procedures that have been proposed in the literature to date are centered 

upon one of three basic concepts: 

{1.) Extension of linear methodology to NLP problems by means of 

repeated linear approximation. Example: Kelly's cutting method. 

(2.) Transformations of constrained NLP into a sequence of uncon

strained problems through the use of a penalty function. Example: sequential 

unconstrained minimization method SUMT [Fiacco and McCormick, 1964]. 

{3.) Use of flexible tolerance to accommodate both feasible and 

non-feasible x vector. Example: the flexible tolerance method [Himmelblau, 

1972]. 

Generally methods of type ( 1) are most attractive for problems in which 
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the constraints may be approximated closely by means of linearisation, while 

type (2) is of special interest when the objective function as well as the 

constraints are strongly non-linear. In the present optimization procedure, 

the penalty function methods are used. The basic idea of these methods is 

that a penalty parameter is selected and used to transform the constrained 

problem of equations ( 4.1-4.4) into the first of a sequence of "unconstrained" 

problems which converge to the solution of the original problem. A wide 

variety of alogrithms exist for the solution of such unconstrained problems. 

It is natural to distinguish between: 

(1). Methods which use derivatives in optimization i.e. involve 

the calculation of gradients. 

8/ 
~,(x) = ax 

These methods are characterized also by each step of a best direction 

along which to move at each step and popular procedures such 

as steepest desent (or gradient), conjugate gradient or Newton are 

available. 

(2). Methods which do not use derivatives of the objective 

function i.e. methods that do not involve the calculation of gradient. 

(4.5) 

The methods which belong to type (2) are commonly known as direct 

search methods [Hook and Jeeves, 1961], [Neider and Mead, 1965]. With these 

methods, the solution is obtained in an iterative manner starting from some 

arbitrarily selected values and the improvement is achieved with successive 

iterations until the optimal solution has converged to the desired accuracy. 

However, these methods turn out to be preferable in the present work for 

following reasons: 

(1). The selection of the direct search method IS deter-
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mined principly by the formulation difficulty. The selection of a 

minimization algorithm was determined primarly by the choice of 

minimization packages available in the computer centre. All avail

able packages are based on gradient methods which are generally 

faster in computation time than direct search methods, but they 

need derivatives in order to solve the design problem. This is 

a practical disadvantage. Futhermore, the nature of the design 

problem under consideration rules out the possibility of formulating 

derivatives analytically and consequently direct search methods are 

mandatory. Furthermore, these gradient methods require relatively 

large amount of problem preparation by the user before the user 

introduces the design problem into algorithm, as compared with 

direct search methods. 

(2). Direct search techniques are fully general as they do 

not require regularity restriction and continuity of the objective 

function and the existence of derivatives. 

(3). In general, direct search methods are conceptually and 

mathematically simpler than other methods and are easier imple

mented in computer programming. 

There has been a limited number of attempts to compare current 

methods of minimization and formulate a general conclusion. However, Box 

(Box, 1969] has compared direct search methods on a number of mathematical 

functions and from his results, it has been shown that the simplex method 

(Neider and Mead, 1965] is the most efficient of the current sequential tech

niques. Kowalik [Kowalik and Osborne, 1963] confirms these results. Schnabel 

(Schnabel, 1966] also showed the simplex method as being a reasonable efficient 

technique. The direct search method of Hook and Jeeves [Hook and Jeeves, 

1961] has already found useful application in the design of conventional ma-
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chines involving a complicated design function and constraints. Ramaratham 

[Ramaratham et al, 1976] has given a comparison of some methods on the 

machine design problem and from the results, it is shown that the pattern 

search method [Hook and Jeeves, 1961] is as efficient as any other methods. 

At the same time, the pattern search of Hook and Jeeves has been successfully 

applied for predicting optimum design of induction motors [Chidambarab et 

al, 1982], (Menzies and Neal, 1975]. 

From the above discussion, it can be concluded that two direct search 

methods [Hook and Jeeves, 1961], [Neider and Mead, 1965] have been found 

efficient on a number of design problems. These methods have not been used, 

as far as the author is aware, on superconducting machines. It is difficult to 

choose a generally suitable alogrithm because the comparative data is limited 

and superconducting machine design may include difficulties not treated in 

mathematical programming literature or conventional design problems. For 

this purpose, more than one search procedure is used to choose the suitable 

search method for the design problem at hand. 

The direct search and random methods used in this procedure are 

compared on mathematical test functions used in earlier studies and the 

results are reported in this chapter. Two penalty function methods have been 

studied in conjunction with the direct search methods. 

4.3 Description of search methods of minimization 

4.3.1 General considerations 

Methods which do not rely explicity on the evaluation or estimation 

of partial derivatives of objective function at any point are called direct search 

methods. Generally speaking, they rely on the sequential examination of trial 

solutions in which each solution is compared with the best obtained up to 
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that time, with a strategy generally based on past expenence for deciding 

where the next trial solution should be located. 

In the next section, the essential features of the direct search methods 

[Hook and Jeeves, 1961], [Nelder and Mead, 1965] are described while in section 

4.4 a random and shrinkage method is outlined and compared with these 

direct search methods. 

4.3.2 The pattern search of Hook and Jeeves 

The pattern search of Hook and Jeeves [Hook and Jeeves, 1961] is 

designed to follow along fairly narrow valleys because it attempts to align a 

search direction along the valley. The alogrithm is as follows 

(1). Starting at some arbitrary initial point an exploratory 

search is begun by changing one variable a predetemined small 

positive step length. If this improves the optimization function, it 

1s used as the new reference value. If it does not, a negative step 

1s taken. If both fail, no step is taken. The best value from the 

search of :z:1 is used as the reference point for exploring :z:2. 

(2). The final result of a successful exploratory search 1s a 

new base point. 

(3). A pattern move is now made by moving each independent 

variable from the latest base point an amount equal to the difference 

between the new and old base point values. This difference will 

commonly include a previous move. 

(4). If the move fails to improve the optimization function, 

it is cancelled and a new search is made from the base point. If 

the move succeeds, it is followed by a new search. 

{5). The process is repeated until the univariate search can 
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not locate a better point. Then the step length is reduced by 

some arbitrary fraction, and an exploratory search is continued. 

After each failure the step length is reduced until it reaches some 

predetermined minimum, when it is assumed the optimum has been 

reached. The method is illustrated for two dimensions in figure 4.1 

Figure 4.2 shows an example of the pattern search strategy. The starting 

point x1 is first base point b1• The first exploratory move from x1 begins 

by incremeting x1 and resulting in x2. Since P < f 1 , x2 is retained and 

exploration is continued by incrementing x2 • P < P so x3 is retained in 

place of x2 • The first set of exploratory moves being complete, x3 becomes 

the second base point b2 • A pattern move is now made to x4 = 2b2 - b1 , i.e, 

in the direction b2 - b1, in the hope that the previous success will be repeated. 

The j4 is not imediately compared with f 3 . Instead, a set of exploratory 

moves are first made to try to improve on the pattern direction. The best 

point found in present example is x5 and, since / 5 < f 3 , it becomes b3
, the 

third base point. The search continue a pattern move to x8 = 2b3 
- b2 . 

When a pattern move and subsequent exploratory moves fail (as around 

x13 ), the strategy is to return the previous base point. If the exploratory 

moves about the base point fail (as at x8 ) the pattern is destroyed, the 

step length is reduced and the whole procedure restarted at that point. The 

search is terminated when the step length fall below prescribed levels. A flow 

chart illustrating the above procedure is given in figure 4.3. 

4.3.3 Nelder-Mead flexible polyhedron search 

This 'simplex' search of Nelder and Mead is an extension of the 

simplex method by Spendley [Spendley, et al, 1962]. Both methods utilize a 

regular geometric figure called simplex. This method accelerates the simplex 

method and makes it more general and has proved to be an effective strategy 
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easily implemented on digital computers. This procedure is based on the work 

by Neider [Nelder and Mead, 1965]. The basic concepts of this procedure are 

given below. 

{1). Intitialization 

A 'simplex' m N-space is a set of N + 1 points (vertices) such 

that the N-vectors from one point to the other span the space (i.e are 

linearly independent). The initial simplex represents a certain mode of local 

exploration defined by the points 1, s, and h and N-2 additional points in 

general N-dimensional problem. The points 1, s, h are the lowest, second 

lowest and greatest function value (f). The point o is the centroid of all 

vertices except (h). The first simplex is conveniently chosen as regular (with 

equidistant vertices) in a suitably scaled parameter space and, hence, the 

co-ordinates of its vertices can be obtained by a simple general formula 

1 N+l 

X0 = N{~ x1} ( 4.6) 

j~h 

when the location of its centroid and the vertex distance have been fixed. 

{2). Generation of new simplex 

The function is evaluated at each of the vertices, and the vertex 

which yields the highest function value is projected through the centroid of 

the remaining vertices into its systernetric image with respect to this centroid 

('reflection'). This and other moves ('expansions', 'contraction', 'reduction') 

accompained by function evaluation and comparisons, lead to a new, not 

necessarily regular, simplex with better vertices (in particular, the vertex 

with the highest function value is always replaced by a point with lesser 

function value). Figures 4.4 gives a pictorial representation of this strategy 

while a discription of the alogrithm is given in figure 4.5. For all the 
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numerical experiments in this study, the available co-efficients for reflection 

(a), contraction (/3) and expansion (-y) are given the value 1, 0.5, and 2 

respectively, as recomended by Neider [Neider and Mead, 1965]. 

{3). Termination 

As in other applications [Himmelblau, 1972], the criterion used to 

terminate the search is 

(4.7) 

where c is suitably chosen tolerance 

Alogritbm 

The alogrithmic procedure is as follow: 

(1 ). Initialization. Set up the initial simplex of abitrary size and 

evaluate Is, It, !h 

(2). Reflection. The first step is a reflection of xh through the 

centroid to give a new vertex, x,. 

(4.8) 

The point r should be better than h and probably better than s, unless 

it is in the vicinity of an optimum. 

(3). If Is > lr > It, Xh is replaced by x,., and a new simplex is 

formed. 

(4). Expansion. If lr < 11, the move is accelerated in r direction by 

the relation 

(4.9) 
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{5). Contraction. If in step 2, fh > fr > / 8 , then Xh 1s replaced by 

Xr and the simplex is contrcted by the expression 

{4.10) 

This situation is indicated in the vicinty of the optimum in figure 4.5. 

xh is replaced by Xc in a new simplex. 

(6). If in step 2, fr > /h, the contraction has taken palce as in step 

5 but without substituting Xr for xh. 

(7). In step 5 or 6, the contraction is successful if fh > fc, and xh 

is replaced by Xc in a new simplex. 

(8). Reduction. Finally, if step 7 has failed (i.e a case of failure 

fh < !c), the last simplex 1s shrunk about the point of the lowest 

function value xz by relation 

Xj = Xz + 0.5 X ( Xj - Xz) (4.11) 

(9). The process 1s then restarted at step 1 by the new simplex 

generated in 4, 5, 6, 7, or 8. 

(10). Termination. The stopping criterion used here to terminate the 

search ( i.e._ the search is presumed to be at optimum) 1s 

(4.12) 
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4.4 Random search with shrinkage methods 

4.4.1 Random strategy 

Random search methods do not reqUire derivatives and rely only 

on direct function evaluation. They are based on generating a sequence of 

improved approximations to the minimum, each approximation being derived 

from the preceding one. Figure 4.6 shows a much simpler strategy. The 

direction of search at any point in such methods is selected at random. These 

methods are commonly called Monte-Carlo methods. In this strategy a certain 

number of points are selected at random over the operating space (i.e. the 

estimated range of all variables). The best result obtained is assumed to be 

an optimum point. The randomly selected values of Xn can be obtained from 

the relation: 

(4.13) 

Where ln and Un are respectivily the lower and upper bounds on Xn and 

rn a random number between zero and one. If one decides to evaluate the 

optimization function f(x) for say 200 points one generates n random numbers 

rn for each point and equation 4.13 defines the values of the independent 

variables Xn which are used to evaluate f(x) for that point. A new random 

number is generated for . each of 200 points. 

4.4.2 Shrinkage or reduction strategy 

Random search (Monto Carlo) methods may be improved by applying 

the process sequentially. Different strategies based on this method have been 

developed. One such method is the shrinkage strategy developed by Mcarther 

(Mcarther, 1960]. It starts off like the random strategy with a random set 

of points over the operating space. However, after running a certain number 
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of sets, the best point is selected and the operating space is reduced by 

some arbitrary amount based on intuition using as a centre point that point 

which gave the previous best value of f(x). A new random set of values is 

calculated within this reduced operating space. The process is repeated until 

the space is shrunk to the desired amount. The shrink strategy consists of 

random search but in continually reduced operating space. The simple shrink 

strategy is shown in figure 4.6. 

An alternative shrinkage strategy has been proposed by Brooks 

[Brooks, 1958]. In this method a normal distribution at each stage after 

the first instead of flat density function. The shrinking is done by pro

gressively reducing the variance used. Use of a normal distribution has 

the advantage of tending to concentrate on the most likely vicinity of the 

optimum. 

A third shrinkage method developed by Dickinson [Mcaurther, 1960] 

generates an automatic rather than an arbitrary shrinkage factor. The intuitive 

basis for the method can be appreciated by referring to the following example. 

For six variables, the search is begun by evaluating 40 random points by use 

of equation 4.13. From these the best 10 are picked and used as the basis for 

a new and shrunken range for each variable. Within this new space 40 new 

random points are evaluated. These plus the previous 10 best are, sorted to 

yield~ a ~new-10 best and-new shrunken-space. The process is repeated until 

the range of each variable is acceptably small. 

4.5 Constrained minimization procedure 

The general non-linear constrained optimization problem was defined in 

section 4.1. Direct search minimization methods defined in the section 4.3 were 

developed to solve unconstrained optimization problems but can be adapted to 
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the constrained problem by means of penalty functions [Spang, 1962], [Fiacco 

and McCormick, 1964]. The use of an appropriate penalty function allows a 

constrained non-linear programming problem to be transformed into a sequence 

of unconstrained minimization problems. Whenever there is a violation of a 

constraint a penalty may be put on the objective function so that during the 

course of iteration the constraints will eventually be satisfied (see figure 4. 7). 

In this section, two methods of penalty function are discussed: 

4.5.1 Exterior penalty function 

A simple exterior penalty function has been developed by Spang 

[Spang, 1962] for the direct search method. The original objective function 

is replaced by a very large value whenever the inquality constraints are not 

satisfied so that the unconstrained optimization method is forced to search in 

the feasible region. This method is very simple and does not require an initial 

feasible slolution but it sometimes hangs on the ridged of the constraints. In 

this method the following transformation can be used 

M 

P(x) = F(x) + 1020 L: IBm(x)l ( 4.14) 
m=l 

Where P(x) is the unconstrained objective function used in the the 
~--M ---

search. 1020 E IBm(x)l is regarded as -a penalty -fador attached to the 
m=l 

objective function F(x) to be minimized (or maximized). 
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4.5.2 The sequential unconstrained minimization technique 
(SUMT) 

The sequential unconstrained minimization technique was adopted to 

solve the constrained optimization problem defined in section 4.1. This 

approach has been used extensively in recent years in application relating to 

conventional machine design [Nagrial, 1979], [Ramarathnam, 1973], [Bharadwaj, 

1979], and some very encouraging results have been obtained. Sequential 

methods generate within the feasible region, a series of functions whose 

successive unconstrained optima converge to the optimum of the constrained 

problem. For the case of inequality constraint only, the resulting penalty 

function is: 

M 

P(x, rk) = F(x) + E G[gm(x)] (4.15) 
m=l 

where: 

F(x) is the objective function to be maximized (or minimized). 

M is total number of inequality constraints. 

G[gm(x)] is the penalty function (based on constraints 9m(x)) 

Various forms can be assigned to G[gm(x)], the one used in this work being 

k = 1,2, ... (4.16) 

Where 

rk is penalty parameter. 

Wm are the postive weight given to the constraints. 

This form was first given by Carrol [Carrol, 1961] and was subsequently 
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adopted by Fiacco and McCormick [Fiacco and McCormick, 1964]. When 

equation 4.16 is substituted into the general equation 4.15 it gives 

M W 
P(x, rk) = F(x) + rk E (~) 

m=l 9m X 
(4.17) 

To use the technique an initial value for r~c, r 11 must be chosen 

along with the initial values of all the Xn and the weight Wm· The resulting 

unconstrained function is then minimized. The value of r 1 is then divided by 

a reduction factor (> 1.0) to give r 2 , so that P(x, r 2 ) has reduced penalty 

which more closely resembles F(x). This function is minimized using the 

optimum solution to the previous minimization as the new starting point as 

shown in figure 4. 7. Further reduction of rk and successive minimization 

create a series of optima that gradually tend to the optimum of objective 

function 

min.P(f, rk) - min.F(x) when (4.18) 

In order to use the sequential penalty technique it is necessary to 

ensure that starting variables lie within the feasible region. This requirement 

poses no problems with the superconducting machine design problem. However, 

it may happen that an initial feasible point is not a variable so that it is 

necessary to adapt an auxiliary procedure to reach the feasible region from 

the infeasible region and is given by Fiacco [Fiacco and McCormick, 1968]. 

SUMT can only guarantee to locate the true minimum if the function 

P(it, r~c) is strictly convex. If not then the method can only be guaranted to 

locate a local minimum solution which may or may not concide with the true 

minimum solution. If the solution located is the true minimum then it is 

called the global optimum solution, otherwise it is a local optimum solution. 
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The required convexity condition will apply if the original objective function 

F( x) is convex and the constraints are such that the feasible region is enclosed 

within a convex region. So far, the author has found that the rotor design 

problem does not meet the convexity requirement. As a result it is necessary 

to repeat the optimization several times with different starting point designs, 

and generate a number of approximiate local optimum the highest (or lowest) 

cost local optima must then be selected as the final solution. 

4.5.3 Weighting factors 

There are three weighting factors associated with the sequential penalty 

function, the value r 1 , the values of Wi and the multiplying factor to use in 

reducing the value of r~; successive descents. 

Box [Box et al,1969] found that the convergence of the sequential 

technique is more rapid when all the variables and constraints are scaled in 

order to be as far as possible of the same order of magnitude. However, 

Box further states that there is no analytical method or satifactory alogrithm 

avalible for calculating the optimum value of wi. As a result the author has 

followed the suggestion of Fiacco and McCormick [Fiacco and McCormick, 

1968] which involves taking all the Wm values as unity. 

__ Fiacc_q (l.~d _M~Cormick [Fiacco and McCormick, 1968] have mentioned 

that the rate at which r is reduced for successive minimization or penalty 

functions does not seriously affect the total efforts involved in finding the 

constrained maximum (or minimum). The larger the reduction factor, the 

fewer became the number of unconstrained minimizations required. Box 

[Box et al, 1969] found that the reduction in r~; by a multiplication factor 

of order 0.1 to give an extra decimal point at each minimization to be 
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advantageous. It is felt that this value is not particularly critical when 

solving the superconducting design problem. The value of the reduction 

factor of 0.05 is used in the author's computer program for all test problems 

used in this chapter. The selection of a suitable starting value of rk, r 11 

presents the greatest difficulty. The effect of choosing a suitable value for r 1 

can be critical in determining the solution speed of minimization and can also 

effect the rate of convergence. If too small a value is used the penalty term 

contribution to. the function value will be small and the function P(x, rk) 

will approximate too closely to the true function F(x) before the constrained 

minimum has been located. The effect of this can be to produce very slow 

convergence. Alternatively, termination of the process can occur at a point 

on the constraint boundary which does not correspond with optimum. If too 

large a value of r 1 is used, the minimum of the first few P(x, rk) functions will 

be forced well into the interior of the feasible region and will be dominated 

by the penalty term. 

The problem is to select a value for r 1 which gives optimal balance 

between the two conditions described above. The author's computer program 

uses the value of 1.0 suggested by Fiacco and McCormick [Fiacco and Mc

Cormick, 1968). This value has been found to be a reasonable starting point 

value for most problems described in this chapter. For the design problem, 

described in the ~~xt chapter,_ an alt~rnative proc~edure is_ used. 

For more detailed mathematical treatment and proof of convergence of 

this method the pioneer work of Carrol [Carrol, 1961), Fiacco and McCormick 

[Fiacco and McCormick, 1964], [Fiacco and McCormick, 1968] may be referred 

to. 
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4.6 Numerical results for test minimization problems 

This section summarizes the performance of the above minimization 

procedures on a number of unconstrained problems often used for comparing 

the minimization routines in the literature. Four test problems have been 

considered. These problems are quite typical ranging from simple quadratic 

functions to complicated ones with valleys and ridges. A brief description of 

the test functions are given below: 

(1). Kuester and Mize 

F(x) = -3803.84- 138.08xl - 232.92x2 + 123.08x1
2 + 203.64x22 + 182.25x1x2 

(4.19) 

This example is taken from [Kuester and Mize, 1973] and has been used for 

the comparison of minimization search procedure. 

(2). Rosenbrock 

( 4.20) 

The Rosenbrock function [Box, 1966] has been used as a test function for 

determining the -efficiency of-various types-oiSearch- proceauri. This -function 

has several features which prove daunting to an inefficient search procedure. 

This is a well known function with a narrow valley. 

(3). Powell 

(4.21) 
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This function was proposed by Powell [Powell, 1962] and has been used 

extensively for comparison of minimization search procedures since then. 

( 4.) high dimensionality 

10 

F(x) = L nx! ( 4.22) 
n=l 

This test function has been chosen to study the effects of high dimensionality 

(maximum =10 variables). 

The solution results of the test functions described above are sum-

marized in table (4.1-4.4). The convergence value adopted for terminating all 

the optimization methods was e = 10-5 • 

There is no universal basis for comparing minimization search proce-

dures but the number of function evaluations and computer execution times 

have been recommended quite often in the literature. The author shares the 

view with others in recommending the number of function calls and time 

execution as a basis of comparison and this has been quoted in the tables. 

The number of function calls for each method on some test problems is also 

represented graphically in Figures (4.8-4.10). 

In order to clarify the configuration of function evalution, equations 

4)_9-4.22 have be~~ explored for this p~_q>~s~. The evaluation of the minimum 

of Rosenborock's test function proves that pattern search which uses a certain 

degree of randomness and the results are considerably better than other 

search procedures used. Pattern search is particularly effective on narrow-

ridge functions such as equation (4.20). Table (4.1-4.4) indicates that the 

number of function evaluations of the simplex method are significantly larger 

than the other methods, probably because 'contraction' and 'expansion' imply 

trials which involve function evaluations but do not necessarily generate directly 
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the new simplex, while reduction implies a number of function evaluations 

for new simplex. Further, the computation effort of the simplex procedure, 

measured in terms of the number of function evaluations, increases not much 

quicker than proportionally to the variable number ( n), at least for small 

(n) [Himmelblau, 1972]. This is confirmed by tables 4.1-4.4. It can also be 

seen that the Hook and Jeeves method has used fewer function evaluations 

to reach certain minimum values for most of the test functions. This is due 

to its acceleration feature. 

That the function complexity is a more critical consideration than 

dimensionality in non-linear programming, is revealed comparing execution 

times for examples 3 (equation 4.21) and 4 (equation 4.22). In addition, the 

result tables suggest that the direct methods are superior to the random and 

shrinkage method. 

Finally, from the above computation experience, the method of Hook 

and Jeeves is seen to be a good choice. The minimization procedure can 

also be carried out using the simplex search of Nelder-Mead method, but 

this generally involves a greater computation effort and produces results 

with a greater accuracy than necessary. However, this conclusion is further 

strengthened when the above mentioned are compared on some complex 

constrained design problems. 

4. 7 Constrained optimization 

4. 7.1 Comparison on design problems 

In this section, some design applications of the direct search methods 

are presented. These design problems are used to test both the direct search 

methods, to illustrate SUMT in machine design problems and to gain more 

60 



insight into the perfomance of the algorithms. Though it is possible to 

generate different objective functions, the result presented are restricted to 

one which can be regarded as quite complex among constrained types of 

problems, the problem is briefly stated below. 

4. 7.2 Rosen-Suzuki problem 

This problem has been used in the literature [Himmelblau, 1972] to 

test various algorithms and although not related to any physical system is 

representative of the type of formulation required by a physical system. The 

problem is to minimize 

(4.23) 

subject to constraints 

A starting design point is taken as (0, 0, 0, 0). Results from both 

direct search methods are summarized in table 4.5. For another starting point 

of (3, 3, 3, 3) the same optimum was obtained. For both optimum points, 

constraint g3 is active at the optimum. 
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4. 7.3 Superconducting design problem 

The superconducting machine problem is that of the design of the 

generator rotor. The objective is to maximize the magnetic power of the 

inner rotor while meeting a number of design constraints. The objective 

function and constraints problem are given below and are fully described in 

the next chapter: 

(4.27) 

where 

F(rfi,rf0 ,JJ) =inner rotor magnetic power(Br11 ) = Co[r}o- r};]J! 

(4.28) 

91 = rfi - 0.2 > 0 (4.29) 

92 = 0.4- r/i > 0 ( 4.30) 

93 = rfo - 0.4 > 0 (4.31) 

94 = 0.6 - r/0 > 0 (4.32) 

95 = r/i - 2rfo + 0.6 > 0 (4.33) 
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97 = r!i > 0 (4.35) 

98 = rfo > 0 (4.36) 

( 4.37) 

This problem was tested using direct search minimization to establish 

the relative efficiency of the optimization methods. An optimization method 

was judged successful if it progressed towards the optimum and no constraint 

equation was violated by more than 10-6. The result of the constrained 

optimization problems indicates that both the pattern search method (Hook 

and Jeeves) and simplex search method (Neider and Mead) can be success

fully employed for machine design. However, it was found that the simplex 

routine is more sensitive to the choice of prescribed accuracy. Tables 4.6 and 

4.7 compare the number of function calls and time (CPU) during the mini

_II!!z~tion process for s~gu_e~!Lal pattern and si~p~x search u~ing S_{JMT. The 

computional results show that the increase of convergence criterion accuracy 

of the simplex method causes a noticable increase in the number of evalution 

functions as can be observed from the result tables and also illustrated in fig

ure 4.11. From computation results the pattern search method performed well 

in speed and accuracy. Despite the above comparison both methods show an 

agreement of results. From the limited computational results specified here, 

it appears that the sequential pattern search is preferable to the simplex 
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technique as it involves fewer function calls and has a faster solution speed. 

This is probably due to its greater ability to adjust the magnitude of the 

step move to minimize the objective function, despite the less sophisticated 

criteria for choosing move direction and acceleration in distance. However, 

this conclusion should be applied with caution as it is substantiated by lim

ited experience and because any assessment of merit of this type is problem 

dependant. It is worth mentioning that, for substantially different and much 

larger size problems, different comparative conclusions will be achieved in the 

next chapter. 

The computing time reported for calculation carried out on the Amdahl 

58/6032 M bytes digital computer. 

4.8 Conclusions 

In this chapter, the application of non-linear programming methods to 

mathematical functions and design problems have shown encouraging results. 

These results show that the two direct search methods of minimization so 

far considered to be effective in the class of direct search. The optimization 

methods have been compared on mathematical functions and SUMT has been 

used for handling constraints. 

The following conclusions -can be drawn from the present investigation: 

(1). Pattern search (Hook and Jeeves) and simplex (Nelder and 

Mead) have been found to be more efficient on most general mathematical 

test problems than the random and shrinkage method. 

(2). In evaluating the minimum of a test problem it has been 

seen that function complexity is a more critical consideration than that of 

64 



dimensionalty in NLP programming. 

(3). For all cases the simplex routine is more sensitive to the choice 

of parameters, such as prescribed accuracy and initial simplex. 

( 4 ). The pattern search method is much faster in finding the optimum 

solution compared to simplex. 

(5). More than one direct search method for machine design op

timization IS perferred because of greater generality and ease of checking 

results. 
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Table4.1 
Results of the test problem for Kuester 

Method No. of variables Min. funct. Min. "-ariables 

HOOK and JEEVES 2 -3873.92 0.2056 

0.4800 

SIMPLEX 2 -3873.92 0.2056 

0.4790 

Random and shrinkage 2 -3873.92 0.2057 

0.4800 

Initial variables x 1 =1.0, x2=0.S 

Table4.2 

No.of funct. call 

90 

235 

126 

es 80 e es pro em or ose ro R ult f th t t bl ti R nb ck 

Method No. of variable~ Min. funct. Min. variables No.of funct. call 

HOOK and JEEVES ~ 0.124 x w-25 1.0 85 

1.0 

SIMPLEX 2 0.495 X 10-s 1.0018 147 

1.0022 

Random and shrinkage 2 0.774 1.0139 206 

0.9025 

Table 4.3 
es so e es pro R ult f th t t bl em ti p or owe 11 

Method No. of variables Min. funct. Min. variables No.of funct. cal 

HOOK and JEEVES 4 5.953 x w-6 7.937 X 10-S 294 

-0.8326 x w-o 

2.1875 x w- 2 

2.1s15 x w- 2 

SIMPLEX 4 3.77 x w-6 -2.522 x w- 3 932 
-- - - -~ --

-3~9815 xro-3-
-- ~ ~ 

6.8i66 x w- 3 

6.3189 x w-3 

Random and shrinkage 4 p - -
p: Did not slove the problem. 
Initial variables x1 =3.0, x2=·l.O. x3 =0.0. x4 = 1.0 

Table4.4 
Results of the test problem for Hbth dimensionality 

CP'C time (s) 

0.743 

0.745 

0.613 

CPU time (s 

0.753 

0.725 

0.621 

CPU time (s 

0.766 

0.725 
- --

-

Method No. of variables Min. funct. Min. variables No.of funct. cal CPU time (s 

BOOK and JEEVES 10 1.73 x w-30 all 10 values 248 0.753 

of orderlo-16 

SIMPLEX 10 4.785 x w-6 all 10 values 2901 0.716 

of order 10-3 

Random and shrinkagE 10 1.977 X 10-3 p 2425 p 

p: Did not slave the problem. 
Initial value for alllO variables =1.0 



Table 4.5 
es so se- uz pro R ult f Ro S uki bl em 

Method No. of variable~; Min. funci Min. variables No.of funct. call CPU time (s 

HOOK and JEEVES 4 42.830 0.2500 243 0.706 

1.0500 

1.8500 

-0.9000 

SIMPLEX 4 43.595 0.0361 2344 O.i74 

0.7970 

2.0440 

-0.9016 

Initial variables x1 =x2 =x3 =x4 =0.0 

Table 4.6 
es so e mac e es1gn pro R ult f th hin d bl em 

Method No. of variables Min. funct Min. variables No.of funct. cal CPU time (s 

HOOK and JEEVES 3 0.518979 0.38519 572 0.738 

0.49202 

0.240125 X 108 

SIMPLEX 3 0.518974 0.38571 4663 0.806 

0.47859 

0.23265 X 108 

Initial variables Tti=0.395. Tf0 =0.455, J1 = 1.05 x 108 • Accuracy=0.00001 

Table 4.7 
Results of the machine design problem 

Method No. of variables Min. funct. Min. variables No.of funct. call CPU time (s) 

HOOK and JEEVES 3 0.518914 0.38515 523 0.735 

0.49202 

0.240125 X 108 

SIMPLEX 3 0.4940352 0.30709 1616 0.812 

0.45341 

0.22050 X lOS 

Initial variables rti=0.395, rto=0.455, J1 = 1.05 x 108 • Accuracy=O.OOl 
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CHAPTER 5 

USE OF DIRECT SEARCH METHOD IN OPTIMAL DESIGN 

OF A SUPERCONDUCTING GENERATOR ROTOR 

5.1 General 

An "optimum" design can be defined as a search for a "best" solution 

using mathematical methods. For present purposes, the term "optimized 

design" means the highest flux density obtainable with the permissible range 

of the variables that meet all of the design criteria. 

The use of mathematical optimization methods on superconducting 

design problems has not yet been applied. However, optimum design of 

conventional machines have been predicted using these mathematical techniques 

[Erlicki and Appelbaum, 1965], [Ramarathnam et al, 1973], [Bharadwaji et al, 

1979]. This chapter reports on the design optimization of a superconducting 

rotor. The behavioural requirements, discussed in chapter 3, are exploited in 

the optimization procedure as superconductivity, and mechanical constraints 

to ensure a secure and reliable design. The design procedure uses the direct 

search optimization techniques for minimization [Hook and Jeeves, 1961], 

[Neider and Mead, 1965]. SUMT method [Fiacco and McCormick, 1968] 

is used for handling constraints for reasons discussed in chapter 4. This 

procedure has resulted in a general purpose optimization system which can 

be applied to a variety of design optimization problems having the generic 

structure of a non-linear objective function which is to be a maximum or 

minimum yet subject to a set of linear and non-linear design constraints. In 

comparing the relative merits of the optimization system, emphasis is placed 

on the insight gained from answers. An analysis routine is linked to the 

optimization procedure to achieve such a purpose. The present study was 
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performed on a 1300 MW superconducting a.c. generator. 

5.2 Definition of design problem and choice of method of solution 

As noted in chapter 3, the superconducting generator has a very 

favourable power output compared with existing machine design by maximum 

the inner rotor magnetic power. Thus, the optimum design is to realise such 

a rotor whose magnetic flux output attains as high value as possible while 

satisfying all the given design requirements in order to maintain a practical 

design. This requires that before any consideration can be given to design 

optimization the factors influencing the magnetic field distribution must first 

be defined. The main factors to be considered may be summarized as; 

{a). The inner rotor geometric dimensions, (rc, Tfi, r10 ). 

(b). The field winding current density, (J1). 

(c). The environmental screen factor, (kr)· 

(d). The characteristics curve of the superconductor. 

{e). Mechanical performance requirement. 

(f). Stator core flux capability. 

In the design procedure of the inner rotor and excitation winding, the 

basic parameters associated with geometry and physical properties contribute to 

b_o!~ t_!J.~ _ iJ!n_er ro_~or E_~r&r!Ila~ce and_i!s_ ~~~~~ni~al and elec~~ca_l_ behaviour. 

For instance, the simplest way to obtain greater inner rotor magnetic power 

consists of increasing the main dimensions of the rotor component. An 

mcrease in the inner rotor dimensions are particularly effective because the 

capability varies with the outer radius of the inner rotor. This possibility is 

limited by the physical properties of the inner rotor components which must 

safely withstand the centrifugal stresses that occur during maximum overspeed 

at the bore and on the conductors. 
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On the other hand, the current capacity of the conductor depends 

on the magnitude of magnetic field in which it is located. The larger 

the magnetic field, the smaller will be the current carrying capacity of the 

superconducting conductor. As the magnetic field strength is a function of 

the winding geometrical parameters. So the allowed current density of a. 

superconducting field winding is also a function of its geometrical parameters. 

Thus, the current density is a coherent parameter in its optimum design. 

As a result, in view of the. restriction imposed with regard to the current 

density, it is necessary to introduce the effect of the critical characteristic 

superconductor to the field current density. 

The inner rotor magnetic power 1s also affected by the type of 

environmental screen employed. The iron screen tends to increase the flux 

density by [ 1 + (r8 /1'zi) 2], while the conducting screen reduces the flux density 

by [ 1 - ( r 8 / r zi) 2] . The environmental iron screen looks the most promising 

from a magnetic flux density point of view. The dimensions of this screen are 

themself constrained by the maximum screen weight. Any attempt to operate 

the superconductor at higher fields results in a thicker stator core because 

of the magnetic saturation characteristic of the iron core. The optimization 

may be extended to include the geometric dimensions of the environmental 

iron screen. The dimensions can be chosen by considering the maximum flux 

density at the screen mner radius and the magnetic saturation of the core 

material. 

The need to optimise the inner rotor on the basis of its magnetic 

power is a consequence of the above factors. Besides, suboptimization of 

separate generator components, such a inner rotor, may be a practical and 

effective design approach (Appleton, et al, 1975). 

By considering the above factors, the optimum design can proceed in 

the following manner 
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( 1). Choose r fi, r fo consistent with mechanical consider

ations. The limiting parameter is mechanical stress due to the 

maximum critical speed in different parts of the inner rotor as well 

as allowing adequate room for the outer rotor and the radiation 

screen. 

(2). Choose the current density ( J1) consistent with the 

superconductivity constraint, i.e. the current density of the field 

winding must be kept below a critical current density to maintain 

superconductivity. 

( 3). Select the inner radius ( r zi) and thickness ( tz) of 

the environmental screen. These values are determined by the 

maximum flux density at the core and saturation flux density of 

the material. 

( 4). Design the inner rotor and field excitation to maXImize 

the magnetic power of the inner rotor. 

(5). Find Tfi, Tfo, Jf, Tzi, and tz to achieve an optimum. 

(6). Evaluate and repeat (1) through to (5) as required. 

While a maximum magnetic power of the inner rotor is always 

desirable, several restrictions on the rotor performance have to be recognized. 

Appleton [Appleton, et al, 1975] has discussed the use of a design approach 

in which: the inner ro~or magl!etic pow~ is_?laxim~zed subject to constraint 

parameters imposed by the properties of material (centrifugal forces) and the 

critical characteristics of the superconductor. In this classical way of design 

there is, obviously, a. wide variation in preparation time, cost, and accuracy of 

the results. Moreover, this method only allows the study of a small selection of 

design parameter influences. Furthemore, in this procedure, parametric studies 

are restricted to two-or three dimensions to establish a refined conceptual 

design. When suitable mathematical optimization methods are used, however, 
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this way of designing will generally be more efficient and conclusive. The 

optimization methods described in the following section provide economical, 

multidimensional designs that are a substantial improvement in both time and 

cost. As discussed in previous chapter, these methods should provide the 

capability to determine the combination of design prameters that produce the 

best design for the machine magnetic circuit. It should be able to identify 

an optimum design within conflicting requirements. 

5.3 Formulation of the optimum design problem 

5.3.1 Introduction 

Any optimization problem involves the identification of design variables, 

constraints, and objective function. However, this section describes the 

implementation of the design problem formaulation. 

5.3.2 Design variables 

As discussed in the previous section, it is desirable to select as 

variables only these which have a significant effect on the performance and 

magnetic power of the inner rotor. In the present investigation, the following 

design variables (x) are considered for formulation of the design problem: 

(i). Inner rotor core radius, rc 

{ii). Field winding inner radius, Tfi 

(iii). Field winding outer radius, Tfo 

(iv). Field winding current density, J1 

( v ). Stator core inner radius, r xi 

(vi). Stator core thickness, tx· 

Some of variables, such as the spread angle of the field winding (o't ), and 

mean radius of the stator winding (r8 ) are assumed to be "fixed" for a 

particular case. 
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5.3.3 Design constraints 

The values assigned to the design variables are usually restricted by 

a number of constraints imposed on the superconducting rotor as dictated by 

the actual design problem. Those presented in the following section thought 

to represent the variety of possible inquality constraints as well as being 

important in themselves. 

A desirable design would restrict the dimensions of the field winding so 

as the rotor can withstand the centrifugal stresses that occur during maximum 

over speed. With regard to this, two mechanical inequality constraints can be 

established from the mechanical analysis (see chapter 3). Although the stresses 

( u" ,u8 ) vary throughout the · inner rotor radius, only their maximum values 

have been included in the present analysis. According to the mechanical 

analysis, maximum stresses induced in the inner rotor are determined by 

centrifugal force and are required to be less than a specified yield strength of 

the materials. This requirement leads to a constraint relation for the stress 

in the slot/tooth region (at r = rc) of the form: 

(5.1) 

togther with the hoop stress of the core region (at r = r1,): 

9(ii) = T-(
12

(1 ~ x2)){8w2rJiPo(y3-1)+3w2r}1p(1-x2)[(1-v)x2+(3+v)]} 2::0 

(5.2) 

This equation assumes that the internal pressure, Pi, is zero. In equation 

5.1 and 5.2 To is the effective field winding/tooth region material to resist 

bursting, and T is the tensile strength of the bore material. The specified 

maximum tensile strength for both the effective field winding and bore material 
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are 60 M Pa and 400 Mpa respectively. Other parameters in equations 5.1-5.2 

are taken as fixed and are given in table 5.1. 

Another important constraint which must be considered in the opti

mization procedure is the limitation on the current density as a result of the 

characteristic curve of the superconductor. This limitation is essentially of 

the same form as discussed in chapter 3: 

9(z) = 10.0 - J1 X [J.to X kc X kg - 3.010-7
] ~ 0 (5.3) 

Since the environmental screen geometry is to be selected by consid-

ermg the maximum flux density and saturation flux density for the screen 

material, this defines another inequality constraint: (see chapter 3) 

{ 4 x J1 x sin!{ ( 1 ) [ 3 3 ] } 
9(z) = B(maz) -

3 
t -. rfo- r/i ~ 0 

1r X z Tza 
5.4 

In order to avoid undesirable shapes, ensure compatibility of the 

design, and to hold the design between fixed limits, extra geometry, or side, 

constraints are introduced using the inequality type: 

(5.5) 

which IS equivalent to two constraint relationships, namely 

9(x) = X - Xmin ~ 0 (5.6) 

and 

9(z) = Xmaz - X ~ 0 (5.7) 
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Side constraints must be set on design variables to stop them from 

attaining zero or negative values. This requires design variables to be positive: 

9(z) = x 2:: 0 (5.8) 

Design variable constraints can be introduced into the study usmg 

equality constraints, for example, the core radius must be 0.2 times the outer 

radius of the field winding, hence, the equality constraint [Appleton, et al, 

1975): 

(5.9) 

or m the standard form, 

h(x) = rc - 0.2rto = 0 (5.10) 

Equality design constraints often offer the opportunity to reduce 

the dimensionality of the problem. Such constraints represent functional 

relationships among the variables often allowing some variables to be expressed 

in terms of others. The design problem presented here can be formulated 

with the outer radius of the rotor as the only variable, thereby eliminating 

one variable and one constraint simultaneously, namely the variable rc and 

t-he-constraint- of-equation 5.-9. 'I'his-is-done- by- -substituting-equation 5.9- into 

equation 5.2. 

Finally, the rotor stress limits (T, T0 ), the characteristic superconduc

tor curve Jc(B) and stator core flux saturation (B(maz)) are all dependent on 

the design variables (x) and hence, the constraint equations 5.1-5.4 denote 

the behaviour constraints. Equations 5.5-5.8 represent the geometrical or side 

constraints which impose limits on the size of design variables. 
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5.3.4 Design objective function 

A design problem usually has .several solutions which may satisfy 

the specified functional requirements adequately. The objective function in 

a general optimization problem represents a basis for the choice between 

alternate acceptable designs. It was noted in the previous section that one 

of the primary causes of increasing the power output of the machine is to 

achieve maximum inner rotor magnetic power. Thus, the magnetic power 

of the inner rotor is chosen as the objective function. The expression for 

objective function is given by equation 3.7 (chapter 3) and will be denoted 

by F(x). 

5.4 Results and discussion 

5.4.1 Systematic optimization 

The synthesis of the design problem may now be formulated as a 

mathematical programming problem of standard form: 

Find x such that F( x) ---+ max. 

subject to a set of design constraints 9m(x) ~ 0 

(5.11) 

(5.12) 

As before (chapter 4 ), this inequality constrainted maximization prob-

lem is transformed into a sequence of constrained maximization by applying 

the Fiacco-McCormick penalty function method. In this case, the objective 

fu_!lct~~~ P(~,:!'.l!) is_ d~~ne£1 

11 1 
P(x, rk) = F(x) + rk L -(_) 

m=l 9m X 
(5.13) 

To determine the successive ma.XJ.ma of the modified objective function 

(P(x, rk)), two direct search methods [pattern search of Hook and Jeeves 

and simplex search of Nelder and Mead] are used, for reasons discussed in 

chapter 4. 
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To implement the systematic optimization approach a computer pro

gram package has been developed for this purpose and will be discussed in 

the following section. A series of results for this program are shown in figure 

5.1. For convenient reference., the results are also briefly summarised in table 

5.2. 

Table 5.2a illustrates the five dimensional design space (r,i, Tf0 , J1, 

Tzi, tz) with an initial design point (0.2, 0.275, 0.88 X 108 , 0.8, 0.5) chosen 

to lie within the feasible region. The first value of the penalty parameter rk 

is selected so that the penalty term of P(x, ri) is approximately equal to the 

flux density of the initial design, F(x) (in this case rk = 0.035). Subsequent 

maximization of sequences are performed dividing by 5. This design is 

systematically optimized by a sequence of maximization, using simplex search 

[Nelder and Mead, 1962] is shown in the figure 5.1 and table 5.2. 

It is seen that the penalty term acts as a "constraints repulsion" 

during the initial design synthesis, since the design point is forced away from 

the behaviour constraints. The optimization process then continue until an 

approximate maximum is found (after 11 evaluation). The first maximum 

point (0.2983, 0.3732, 0.4573 x 108 , 1.1075, 0.4819) is then used as the 

starting point for the next maximization in the sequence. For the second 

maximization the penalty is reduced to ~· This systematic optimization by 

maximization was terminated at a point design of (0.3337, 0.3854, 1.040 x 108 , 

0.9000, 0.6437). Table 5.2 shows the complete sequence of unconstrained 

maximization leading to an optimum design flux density. Here, the optimum 

flux density increase of about 12.5% has been obtained, as compared with 

the flux density which is obtained in the conventional way. 

The sequence of maximization is indicated in table 5.2b. It is seen that 

the constraint repulsion quality of the modified objective function P(x, rk) 

is felt only during the initial maximization. As the gain of the penalty 
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function (the penalty parameter rk) is gradually reduced, the maximum point 

apporoaches the constraint boundaries of stator core flux saturation. As 

table 5.2a illustrates the strength of the penalty function (indicated by ratio 

(P(x, rk)/ F(x)) gradually increase until for small rk the modified function is 

essentially equal to the objective function. 

5.4.2 Discussion of optimized design 

Result of the optimum design corresponding to the two main alogrithms 

namely the simplex search method and pattern search (which are implemented 

in the computer program) are given in table 5.3. 

It can be seen from the result table that both methods do optimize 

the design problem but with the slight difference observed being due to the 

different converge criteria imposed in both methods. 

The result of the design problem presented here indicate that direct 

search methods, namely simplex search and pattern search can be successfully 

employed for machine design problems. 

An interesting point should be made on the result in general, that 

simplex method is more sensitive to the choice of prescribed accuracy. Ex

perience shows that the increase of convergence criteria of simplex method 

causes a noticable increase in the number of function evaluation. A value of 

-convergence criteria-= -l-;O-x-104-was chosen. 'Fhis is-somewhat stringent, but 

if the method converges at all it has no difficulty satisfying this criteria. 

5.4.3 Computational considerations 

Some points in the basic SUMT alogrithm deserve further discussion. 

First of all, experience using SUMT has shown that the starting point (initial 

design point) is not very critical if the response factor (r1) is chosen large. 

If a good initial design is known, many extra computation can, however, be 
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saved by the application of a smaller value of r 1• When a large value of 

r 1 is used, the penalty term will dominate the search procedure for the first 

response surface and the first maximum tends to be pushed away from the 

constraint surfaces. For a small value of r 1 the starting point will be much 

more important. The influence of the penalty term will be rather small. 

Thus, for non-convex feasible region it is likely that the search will converge 

to the closest local optimum. 

The problem is then to select a value for r 1 which g1ves optimal 

balance between the two conditions described above. The simplest approach 

involves choosing the first value of rk, so that the penalty term of (P(a:, rk)) 

is approximately equal to the initial original design objective function. This 

approach was successful in improving the optimal result. 

A second consideration is the choice of the rate at which r is reduced 

for successive maximization. The choice of this factor does not seriously affect 

the total computational requirements of the optimization method. If the value 

of this factor is chosen too large, the fewer are the number of unconstrained 

maximizations needed, but the longer each of these maximizations takes. The 

author found a reduction of the order 0.2 on this factor to be a reasonable 

value for the systematic optimization procedure used in the previous section. 

In practical calculations, the convexity of the function to be maximized 

or minimized is difficult to check. Experience has shown that more than one 

solution may exist, and that each solution will yield a different value of the 

design function. 

Although multiple solutions exist, there is no way to determine how 

many there are. A new solution might be found by trying a new starting 

point, i.e. initial values of design variables. However, there is no way to 

determine beforehand whether or not the solution found is the best. 

A local maxima that has already been found may be eliminated from 
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the feasible region by imposing an additional limit constraint. This may be 

useful in cases where it is known that several local minima or maxima exist. 

5.4.4 The e:lfect of design constraints on the optimal solution 

It would be interesting to know how the design constraints influence 

the optimal solution. In this section a preliminary study has been carried 

out to assess the influence of the design constraints, namely the centrifugal 

stress, superconductor characteristic and stator core maximum flux density on 

the optimal design. 

To investigate the effect on the optimal solution of different allowable 

stress in the rotor body material, the design problem was run with different 

stress levels. Here, the tensile strength of slot/tooth material is the same 

value as in previous section (i.e.T0 = 60M Pa), except that the tensile strength 

of the inner rotor body material has been increased from 300 to 400 M Pa. 

A very interesting phenomenon occured when the problem was run 

under this condition. The results in table 5.4 and figure 5.2 serve merely as 

a quantitative measure of the effect the inner rotor material strength has on 

the optimal solution. The maximization sequence traced by the optimization 

process using the simplex search method leads to an optimum design as shown 

in table 5.4a. Its nearness to the behavioural constraint boundaries of the 

feasible design space is indi~a~e~ i!l __ table 5.4~:_ _ ~! exp!cted an increase in 

the tensile strength of the inner body material allows the radial dimensions 

of the inner rotor to be increased. This in turn leads to an increase in 

the environmental iron screen radius. This is an interesting observation, 

but it should also noted from the constraints indicated in table 5.4b, further 

increase in the magnitude of dimension of the machine components now depend 

sensitively on maximum flux density allowed in the stator core. Therefore, it 

was concluded that the optimal magnetic power of the inner rotor is governed 
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mostly by the allowable stress level in the inner rotor materials and saturation 

in the stator core, rather than the superconductor capability. For convenient 

references, the results for simplex search and pattern methods are also briefly 

summarized in table 5.5. 

5.5 Computer program package for design optimization 
of superconducting machine problems 

5.5.1 Program implementation 

As discussed in chapter 4, there is no single maximization or min-

imization routine that has yet been shown to be completely general. It is 

therefore necessary to try more than one direct search method because the 

method may work well on a given class of design problem, but fail to produce 

acceptable results on others. 

Since it would be very expensive to construct an individual optimiza-

tion procedure for each design problem, it has been the aim of the research to 

develop a general purpose optimization package whose methods and strategy 

can be applied to superconducting machine problems for which the analysis 

module is available. A simplified flow chart for the computer program package 

is shown in figure 5.3. The design optimization package is best explained in 

the following steps 

(a). To provide an effective tool to aid in the design of super

conducting machines (it is also COffi!Il.Only a:epli~~l?Je to the d~si_~_ 

problem of any machine). 

(b). To provide a general structure in order to permit other 

optimization methods to be easily introduced into the package and to 

permit further revisions without major re-design. 

(c). It is designed to handle inequality and equality design problem 

constraints. 

(d). It is easy to choose the non-linear optimization method which 
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is most suitable for the design problem. 

(e). Display of optimized design by tabulation of the results. 

5.5.2 Optimization methods 

The program possesses the following optimization strategies: 

{i). Pattern search of Hook and Jeeves 

{ii). Simplex search of Nelder and Mead 

For these methods the sequential penalty method is used to handle 

the design problem constraints. 

5.5.3 Analysis module 

The results of the optimization process have to pass through the 

analysis module in order to predict the behaviour of the design with the 

optimized parameters. 

The way in which the optimization and analysis modules are interfaced 

depends on the form in which the analysis module is implemented. In the 

optimization package the analysis module is formed as a subroutine. This is a 

rather simple approach to work with. The design variables are determined by 

the optimizer, these parameters have to be converted to input parameters of 

analysis subroutine as shown in figure 5.4. In this way, it is easily observed 

if the optimal design matches its requirements. If it does not, the areas of 

weakness are noted and the design changed within the specified constraints 

to improve the design. 

5.5.4 Computer program structure 

The optimization program consist of the main program and nine 

subroutines. A general flow chart of the computer program package structure 
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is shown in figure 5.5. 

This package is designed so that all input operation is handled in 

the main program. The package input is straightforward and the user is 

prompted by messages displayed on the screen. Safeguards are provided such 

that it is virtually impossible to break the package flow because of mistyped 

input value. Checks on the input values are made in an attempt to minimize 

input errors. A brief description of each subroutine is now given 

Subroutine SIMPLEX: This is optimization subroutine using simplex method. 

Subroutine PATTERN: This is the main routine for pattern search method. 

Subroutine SEARCH: The purpose of this routine to realize the pattern 

method. 

Subroutine OBJECT: This subroutine is used to calculate the value of the 

original objective function for a given set of design variables. 

Subroutine PENALTY: This subroutine is used to evaluate the modified 

objective function using the Fiacco and McCormick penalty fuction method. 

Subroutine CONST.: This subroutine evaluates the value of all inequality 

constraints of the design problem. 

Subroutine EQUL.: This subroutine is used to evaluate all the equality 

constraints of the design problem. 

Subroutine ANSWER: The subroutine is used to print out the optimal results 

and detailed behaviour of the optimum design. 

Subroutine ANALYSIS: This $Ubroutine is used to check the performance of 

the design problem. 

Finally, the package has been programmed to handle up to 20 variables 

and uses double precision arithmetic. 
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5.6 Summary and Conclusions 

The results of this chapter have demonstrated the feasibility of applying 

direct search methods of optimization to the complex rotor structure of a 

superconducting a.c. generator. During the course of this investigation a 

new design tool has been presented which permits the optimization of a 

superconduding generator to take place. 

Although this chapter discussed the special case of optimizing the 

magnetic field by selecting the magnetic parameters of the inner rotor, any 

property of the machine design, such as volume (or weight), or cost, can be 

optimized by using the optimzation package. The application demonstrated 

in this chapter is believed to be the first effort in this direction. 

82 



\ 

Table 5.1 
Constant data for optimum design problem 

Name Symbol Unit Value 

No. of pole pairs p - 1 

Field winding spread angle UJ degree 120 

Armature mean radius r. m 1 

Max. flux density allowed the stator core B(maz) T 1.4 

Field winding yield strength To MPo. 60 

Inner rotor body yield strength T MPo. 400 

Field winding average density Po kgfm3 7400 

Rotor body density p kgfml 7950 

Maximum speed nmaz r.p.m 5100 

Rated speed n r.p.m 3000 

Passion ratio v 0.3 



Methods 

Hook 

& 

Jeeves 

Neider 
--

& 

Mead 

Table 5.3 
Initial and optimum design variables for 

inner rotor magnetic circuit 

Optimal design variables 

First starting point Second starting point 

Design Bounds initial optimum initial optimum 

Variables Lower Upper point point point point 

Core radius, rc - - - 0.764 - 0.076 

Field winding inner radius, r fi 0.00 0.670 0.200 0.322 0.300 0.320 

Field winding outer radius, Tfo 0.00 0.685 0.275 0.382 0.375 0.382 

Field winding current density, J1 0.000 4.4 X 108 0.88 X 108 1.031 X 108 1.0 X 108 1.039 X 108 

Environmental screen inner radius, Tzi 0.000 1.600 0.800 0.800 0.985 0.825 

Enviromental screen thickness, tz 0.000 0.800 0.600 0.649 0.600 0.649 

Core radius, rc - - - 0.764 - 0.076 
------ ----- ·- - --· -- ----~- - - --

Field winding inner radius, Tfi 0.000 0.670 0.200 0.333 0.300 0.385 

Field winding outer radius, Tfo 0.000 0.685 0.275 0.385 0.375 0.375 

Field winding current density, J1 0.000 4.4 X 108 0.88 X 108 1.040 X 108 1.0 X 108 1.034 X 108 

Environmental screen inner radius, Tzi 0.000 1.600 0.800 0.900 0.825 1.034 

Enviromental screen thickness, t 2 0.000 0.800 0.600 0.643 0.600 0.620 

Note: This optimal results for design problem, where T = 300M Po and T0 = 60M Po 
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Table 5.5 
Initial and optimum design variables for 

inner rotor magnetic circuit 

Optimal design variables 

First starting point Second starting point 

Design Bounds initial optimum initial optimum 

Methods Variables Lower Upper point point point point 

Hook Core radius, rc - - - 0.090 - 0.0902 

& Field winding inner radius, r /i 0.000 0.670 0.200 0.407 0.300 0.410 

Jeeves Field winding outer radius, r fo 0.000 0.685 0.275 0.450 0.375 0.451 

Field winding current density, J1 0.000 4.4 X 108 0.88 X 10s 1.303 X 108 1.0 X 108 1.347 X 108 

Environmental screen inner radius, Tz 0.000 1.600 0.800 1.303 0.885 0.986 

Enviromental screen thickness, tz 0.000 0.800 0.600 0.649 0.600 0.649 

Neider Core radius, rc - - - 0.090 - 0.088 
- ---- - - - - --- -- -- - ----------

& Field winding inner radius, r /i 0.00 0.670 0.200 0.407 0.300 0.379 

Mead Field winding outer radius, TJ 0 0.000 0.685 0.275 0.450 0.375 0.442 

Field winding current density, J1 0.000 4.4 X 108 0.880 X 10' 1.303 X 108 1.0 X 108 1.047 X 108 

Environmental screen inner radius, rz 0.00 1.600 0.800 1.303 0.825 1.510 

Enviromental screen thickness, tz 0.000 0.800 0.600 0.649 0.600 0.623 

Note: This optimal results for design problem, where T = 400M P4 



·····························································•********** 
OPTIMIZATION PACKAGE 

ENGINEERING DEPARTMENT OF DURHAM UNVERSITY 
********************************************** 

---GIVE COMMON DATA FOR THE PACKAGE 
COMMON DATA FOR THE PACKAGE 
NUMBER OF DESIGN VARIABLES 5 
NUMBER OF INEQUALITY CONSTRAINTS 11 
NUMBER OF EQUALITY CONSTRAINTS 0 
INTERMEDIATE OUTPUT EVERY INPUT CYCLE 0 
INTERMEDIATE OUTPUT 

ESTIMATED UPPER BOUNDS ON X(II 
0.670000E+00 0.685000E+OO 0.440000E+09 
0.160000E+01 0.800000E+OO 

ESTIMATED LOWER BOUNDS ON X(II 
O.OOOOOOE+OO O.OOOOOOE+OO O.OOOOOOE+OO 
O.OOOOOOE+OO O.OOOOOOEtOO 

---GIVE STARTING VALUES OF X(I) 
STARTING VALUES OF X(II 

0.200000E+OO 0.275000E+OO 0.880000E+08 
0.800000E+OO 0.500000E+00 

---SELECT FUNCTION MINIMIZATION METHOD 

I 

--------------------------------------------------------------~--------
YOU HAVE CHOSEN SIMPLEX METHOD (NELDER ' MEADI 

---GIVE DATA FOR METHOD 
DATA FOR THE METHOD 
DESIRED CONVERGENCE 
SIZE OF INITIAL POLYHEDRON 
PENALTY PARAMETER USED IN SUMT 
REDUCTION FACTOR FOR (R) AFTER EACH CYCLE 
MAXIMUM NUMBER OF MOVES PERMITTED 
NUMBER OF SIMPLEX POINT GENERATED 

I 
0.10000E-03 
0 .10000E+O~I 
0.35000E-01 
0.20000E+O~ 

2000 ' 
6 

---------------------------------------------------------------·--------

(a) OPTIMIZATION USING NELDER ' MEAD METHDOD 

OPTIMIZATION SEQUENCE FOR A DESIGN PROBLEM 

SEQUE. PENALTY MODIFIED ORIG. 
MEMBER PARAMETER OBJ. OBJ. 

k r P(x,r) F(xl 

FUNCT. 
RATIO 
P/F 

DESIGN VARIABLES 

rfi rfo Jf rxi 

I 
tx 

1 0.35000E-01 
2 0.70000E-02 
3 0 .14000E-02 
4 0.28000E-03 
5 0.56000E-04 
6 O.ll200E-04 
7 0.22400E-05 
a o. 44800E- 06 
9 0.89600E-07 

0.50265 -0.48778-1.03048 0.2983 0.3732 0.4573E+08 1.1075 0.4819 

10 0 .17920E-07 
11 n.1~R4M>OR 

-0.30850 -0.53161 0.58032 0.2983 0.3732 0.4587E+08 1.0143 0.5093 
-0.76812 -0.85313 0.90036 0.3063 0.3809 0.8554E+08 0.9921 0.5634 
-1.00367 -1.04757 0.95810 0.3309 0.3839 0.1090E+09 0.9783 0.6373 
-1.04661 -1.06175 0.98574 0.3332 0.3840 0.1075E+09 0.9221 0.6393 
-1.06146 -1.06707 0.99475 0.3339 0.3841 0.1072E+09 0.9076 0.6396 
-1.07313 -1.07539 0.99790 0.3337 0.3854 0.1041E+09 0.9026 0.6436 
-1.0756' 1.07665 0.99905 0.3118 0.3854 O.l041E+09 0.9010 0.6437 
-1.07670 -1.07716 0.99958 0.3338 0.3854 0.1041E+09 0.900~ 0.6437 
-1.07716 -1.07745 0.99973 0.3338 0.3854 0.1041E+09 0.9003 0.6437 

1 .0771~ -1 n7,1R n qqqq, n 111n n •n~~ n 10~n~o~Q n qnn1 n ~~,, 
I 

SEQUE. 
MEMBER 

k 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

(b) BEHAVIOUR CONSTRAINTS FOR A DESIGN PROBLEM 

PENALTY STRENGTH STRENGTH SUPERCONDUCTOR 
PARAMETER CONSTRAINT CONSTRAINT CONSTRAINT 

r g1 g2 g3 

0.35000E-Ol 0.1896Ut05 0.31187Et07 0.51016E+Ol 
0.70000E-02 0.12029Et05 0.34692Et07 0.50030Et01 
0 .14000E-02 0. 20185Et07 0.30028E+07 0.21279E+OO 
0.28000E-03 0.16553£+08 0.28177E+07 0.41622£+00 
0.56000£-04 0.18610Et08 0.25542£+07 0. 71594£+00 
0 .11200£-04 0.18893£+08 0.26456Et07 0.75492E+00 
0.22400E-05 0.17688£+08 0.31966£+05 0.86812Et00 
0.44800£-06 0 .1 7716Et08 0.55215E+05 0.87162£+00 
0.89600E-07 0.17706E+08 0.33334E+05 0.87180E+00 
0.17920E-07 0.17712Et08 0.52462Et05 0.87086E+00 
0.35840E-08 0.17700Et08 0.15431E+05 0.87267E+00 

* OPTIMUM FUNCTION VALUE- 1.07738 

* OPTIMUM DESIGN VARIABLES 
0.33376 0.38542 0.10404867E+09 0.90027 0.64375 

*RESULTS OF OPTIMIZATION ON THE DESIGN PROCESSES* 

******************************************************** 
TABLE DESCRIBING THE DESIGN PROBLEM SPECIFICATION 

******************************************************** 

NUMBER OF ROTOR POLES --------- P - 2 
ROTOR POLE ARCE---------------- SIGMA - 120 deg. 
STATOR CORE SATURATION--------- Bmax • 1.500 T 

STATOR CORE 
CONSTRAINT 

g4 

0.59986£+00 
0.55547Et00 
0.13898E+OO 
O.l9747E-01 
0.89137£-02 
0.39952E-02 
0. 25777E-02 
O.lll14E-02 
O.S9808E-03 
0 .17109E-03 
0.20031E-03 

ROTOR SPEED-------------------- Na • 3000 rpm 
MAX. YIELD STRENGTH OF SLOT REGION To • 60.00 MPa 
MAX. YIELD STRENGTH OF ROTOR BODY T • 300.00 MPa 
AVER. ~SS DENSITY OF FIELD WINDIN Po -7400.00 kg/m 
MASS DENSITY OF ROTOR BODY----- P -7950.00 kg/m 
LIMIT VALUE OF CORE RADIUS----- rc •0.2rfo m 



*************************************************•••·•·· 
TABLE OF INITIAL FEASIBLE DESIGN PROBLEM 

**************************************************••••·· 

CORE RADIUS-------------------- rc 
FIELD WINDING INNER RADIUS----- rfi 
FIELD WINDING OUTER RADIUS----- rfo 
FIELD WINDING MEAN RADIUS------ rf 
FIELD WINDING THICKNESS-------- t 
FIELD WINDING CURRENT DENSITY-- Jf 
STATOR CORE INNER RADIUS------- rxi 
STATOR CORE THICKNESS---------- tx 

0.0550 !"' 
0.2000 ,m 
0.2750 m 
0.2375 !m 
0.0750 ;m 

- 0.8BOE+08 
0.8000 '"' 
0.5000 1m 

******************************************************** 

*****************************************************•** 
CRARACTERSTIC AND PARAMETERS OF OPTIMIZED DESIGN 

*****************************************************•** 

RESULT OF GEOMETRIC CONFIGURATION 

CORE RADIUS------------- rc 
FIELD WINDING INNER RADIUS----- rfi • 
FIELD WINDING OUTER RADIUS----- rfo • 
FIELD WINDING MEAN RADIUS------ rf 
FIELD WINDING THICKNESS-------- tf 
STATOR CORE INNER RADIUS------- rxi • 
STATOR CORE INNER RADIUS------- rxo • 
STATOR CORE THICKNESS---------- tx 

RESULT OF ELECTRICAL QUANTITIES 

Bo -
Bll -
Bmex• 

0.0771 m 
0.3338 m 
0.3854 m 
0.3596 m 
0.0511 m 
0.9003 m 
1. 5440 Ill 

0.6437 m 

5.6933 T 
1.0775 T 
1.4999 T 

FIELD WINDIN MAX. FLUX DENSITY
RADIAL FLUX DENSITY AT STATOR-
STATOR CORE FLUX SATURATION---
FIELD WINDING CURRENT DENSITY-
FIELD WINDING CURRENT DENSITY-
APPARENT POWER-----------------

J(B)• 0.460E+09 
Jf - 0.104E+09 
Pr • 1193.0564 MW; 

RESULT OF MECHANICAL QUANTITIES 

CENTRIFUGAL HOOP STRESS------- T •299.995586 MPa ' 
' 

******************************************•***********~* I 

---00 YOU WANT TO SELECT ANOTHER OPTIMIZATION METHOD 
---00 YOU WANT TO GIVE NEW STARTING VALUES OF X(I) 
---00 YOU WANT TO CONTINUE CALCULATIONS 
---END OF JOB,THANK YOU---

Figure 5.1 Printout of results for T=300 M Pa anda To = 60 M Pa for 
thP. r!Psifm nr()hlPm nc:in~r, simnlPX search of Nelder and Mearl. 



...............••••........................................... ~ •...•.•.. 
OPTIMIZATION PACKAGE 

ZN~INZERING DEPARTMENT OF DURHAM UNVERSITY 
********************************************** 

---GIVE COMMON DATA FOR THE PACKAGE 
COMMON DATA FOR THE PACKAGE 
NUMBER OF DESIGN VARIABLES 
NUMBER OF INEQUALITY CONSTRAINTS 
NUMBER OF EQUALITY CONSTRAINTS 
INTERMEDIATE OUTPUT EVERY INPUT CYCLE 
INTERMEDIATE OUTPUT 

5 
11 

0 
0 

ESTIMATED UPPER BOUNDS ON XIII 
0.670000E+00 0.685000E+OO 0.440000E+09 
0.160000E+01 0.800000E+OO 

ESTIMATED LOWER BOUNDS ON XIII 
O.OOOOOOE+OO O.OOOOOOE+OO O.OOOOOOE+OO 
O.OOOOOOE+OO O.OOOOOOE+OO 

---GIVE STARTING VALUES OF XIII 
STARTING VALUES OF X(II 

0.200000E+00 0.275000E+OO 0.880000E+08 
0.800000E+OO 0.500000E+OO 

---SELECT FUNCTION MINIMIZATION METHOD 

YOU HAVE CHOSEN SIMPLEX METHOD (NELDER ' MEAD) 
---GIVE DATA FOR METHOD 

DATA FOR THE METHOD 
DESIRED CONVERGENCE 
SIZE OF INITIAL POLYHEDRON 
PENALTY PARAMETER USED IN SUMT 
REDUCTION FACTOR FOR (RI AFTER EACH 
MAXIMUM NUMBER OF MOVES PERMITTED 
NUMBER OF SIMPLEX POINT GENERATED 

0 .10000E-03· 
0 .10000E+OO, 
0.35000E-01 

CYCLE 0.20000E+00 
2000 . 

6 

---------------------------------------------------------------~-------

OPTIMIZATION USING MELDER & MEAD METHDOD 

(a) OPTIMIZATION SEQUENCE FOR A DESIGN PROBLEM 

SEQUE. PENALTY MODIFIED ORIG. 
MEMBER PARAMETER OBJ. OBJ. 

k r P(x,rl F(xl 

FUNCT. 
RATIO 
P/F 

DESIGN VARIABLES 

rfi rfo Jf rxi tx 

1 0.35000E-01 0.50265 -0.48778-1.03048 0.2983 0.3732 0.4573E+08 1.1075 0.4819 
2 0.70000E-02 -0.30850 -0.53161 0.58032 0.2983 0.3732 0.4587E+08 1.0143 0.5093 
3 0.14000E-02 -0.76812 -0.85313 0.90036 0.2463 0.3279 0.8554E+08 0.9421 0.5634 
4 0.28000E-03 -1.03177 -1.07365 0.96099 0.4160 0.4524 0.1376E+09 1.2487 0.6369 
5 0.56000E-04 -1.07726 -1.08859 0.98959 0.4136 0.4518 0.1391E+09 1.3136 0.6349 
6 0.11200£-04 -1.10360 -1.11083 0.99349 0.4100 0.4511 0.1318E+~9 1.2954 0.6474 
7 0.22400E-05 -1.11063 -1.11337 0.99753 0.4097 0.4510 0.1311E+09 1.2906 0.6485 
8 0.44800E-06 -1.12077 -1.12156 0.99930 0.4081 0.4507 0.1316E+09 1.3287 0.6478 
9 0.89600E-07 -1.12146 -1.12175 0.99974 0.4081 0.4507 0.1316E+09 1.3284 0.6479 

10 0.17920£-07 -1.12184 ·1.12200 0.99986 0.4081 0.4505 0.1316E+ti9 1.3280 0.6479 
11 0.35840£-08 -1.12324 -1.12339 0.99986 0.4077 0.4505 0.1304E+Q9 1.3186 0.6499 
12 0.71680E-09 ·1.12384 ·1 .12396 0.99989 0.4076 0.4505 0.1303E+d9 1.3204 0.6499 
' ~ . ' ., ~ ') , - I • f\ 'I , . II' .- ... • ) , ' ' I 

SEQUE. 
MEMBER 

It 

1 
2 
3 
4 
5 
6 
1 
8 
9 

10 
11 
12 
13 

(b) BEHAVIOUR CONSTRAINTS FOR A DESIGN PROBLEM 

PENALTY STRENGTH STRENGTH SUPERCOHDUCTOR 
PARAMETER CONSTRAINT CONSTRAINT CONSTRAINT 

r g1 g2 g3 

0.35000E-01 0.1U66E+05 0.10312E+09 0.51016E+01 
0.70000E-02 0.12029£+05 o.10347E+09 0.50030£+01 
0.14000E-02 0.20185E+07 0.16003E+09 0.21279E+00 
0.28000E-03 0.25220E+08 0.30422£+06 0.34307E+OO 
0.56000E-04 0.23549E+08 0.18244E+06 0.41047E-01 
0 .11200E-04 0.20753E+08 o.21!l48E+05 0.15175E+OO 
0.22400E-05 0.20570E+08 0.31333E+05 0.11361E+00 
0.44800E-06 0.19399!+08 0.19344E+05 0.37679E-02 
0.89600E-07 0.19400E+08 0.65059E+04 0.41598E-02 
0.17920E-07 0.19398E+08 0.88032E+04 0.44706E-02 
0.35840E-08 0.19146E+08 0.85165E+05 0.49426E-01 
0. 71680E-09 O.l9060E+08 0.16036E+05 0.48202E-01 
0.14336E-09 0.19058E+08 0. 76348E+04 0. 47050E-01 

* OPTIMUM FUNCTION VALUE • 1.12396 

* OPTIMUM DESIGN VARIABLES 
0. 40761 0.45054 0.13031975£+09 1.32035 0.64994 

*RESULTS OF OPTIMIZATION ON THE DESIGN PROCESSES* 

******************************************************** 
TABLE DESCRIBING THE DESIGN PROBLEM SPECIFICATION 

******************************************************** 

NUMBER OF ROTOR POLES --------- P • 2 
ROTOR POLE ARCE---------------- SIGMA • 120 deg. 
STATOR CORE SATURATION--------- Bmax • 1.500 T 

STATOR CORE 
CONSTRAINT 

g4 

0.59986E+OO 
0.55547£+00 
0 .13898E+00 
0.18644E-01 
0.10144E-01 
0.51878E-02 
0.21337E-02 
0.86332E-03 
0.83342E-03 
0.33037E-03 
0 .14973E-03 
0.75610E-04 
0. 51121E-04 

ROTOR SPEED----------·---------- Na • 3000 rpm 
MAX. YIELD STRENGTH OF SLOT REGION To • 60.00 MPa 
MAX. YIELD STRENGTH OF ROTOR BODY T • 400.00 MPa 
AVER. MASS DENSITY OF FIELD WINDIN Po •7400.00 kg/a 
MASS DENSITY OF ROTOR BODY----- P •7950.00 kg/a 
LIMIT VALUE OF CORE RADIUS----- rc •0.2rfo m 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••• 



***************************************************·~··· 
TABLE OF INITIAL FEASIBLE DESIGN PROBLEM 

····················································~··· 
I 

CORE RADIUS-------------------- rc - 0.0550 m 
FIELD WINDING INNER RADIUS----- rfi - 0.2000 m 
FIELD WINDING OUTER RADIUS----- rfo - 0.2750 m 
FIELD WINDING MEAN RADIUS------ rf - 0.237S m 
FIELD WINDING THICKNESS-------- t - 0.0750 m 
FIELD WINDING CURRENT DENSITY-- Jf - 0.880E~08 
STATOR CORE INNER RADIUS------- rxi - 0.8000 m 
STATOR CORE THICKNESS---------- tx - 0.5000 m 

******************************************************** 

***************************************************·~··· 
CHARACTERSTIC AND PARAMETERS OF OPTIMIZED DESI~N 

******************************************************** 

RESULT OF GEOMETRIC CONFIGURATION 

CORE RADIUS------------- rc 
FIELD WINDING INNER RADIUS----- rfi • 
FIELD WINDING OUTER RADIUS----- rfo • 
FIELD WINDING MEAN RADIUS------ rf 
FIELD WINDING THICKNESS-------- tf 
STATOR CORE INNER RADIUS------- rxi • 
STATOR CORE INNER RADIUS------- rxo • 
STATOR CORE THICKNESS---------- tx 

RESULT OF ELECTRICAL QUANTITIES 

0.0901 Dl 

0.4076 m 
0.4505 m 
0.4291 Dl 

0.0429 m ' 
1.3204 m 
1.9703 m 
0.6499 m 

FIELD WINDIN MAX. FLUX DENSITY- Bo • 5.6522 T 
RADIAL FLUX DENSITY AT STATOR-- Ba • 1.1240 T 
STATOR CORE FLUX SATURATION---- Bmax• 1.5000 T 
FIELD WINDING CURRENT DENSITY-- J(B)• 0.964E+09 
FIELD WINDING CURRENT DENSITY-- Jf • 0.130E+09 1 

APPARENT POWER----------------- Pr • 1244.5226 ~ 

RESULT OF MECHANICAL QUANTITIES 

CENTRIFUGAL HOOP STRESS------- T •399.999208 MPa 

******************************************************** 
---00 YOU MANT TO SELECT ANOTHER OPTIMIZATION METHOD 
---DO YOU WANT TO GIVE NEW STARTING VALUES OF X(II 
---00 YOU WANT TO CONTINUE CALCULATIONS 
---END OF JOB,THANK YOU---

Figure 5.2 Printout of results for T=400 M Pa anda T0 = 60 M Pa for 

the design problem, using simplex search of Neider and Mead. 
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CHAPTER 6 

SUMMARY, GENERAL CONCLUSIONS, AND 

SUGGESTIONS FOR FURTHER WORK 

6.1 Summary and General Conclusions 

The work presented in this thesis has been concerned with the de-

velopment of a general design strategy for the superconducting generator 

rotor. In chapter 1 an overall description of the design and construction of 

individual components of the generator was presented along with a review of 

the general concept of the superconducting generator. This type of machine 

was compared with the present day copper-iron machine and the potential 

advantages of this new concept, both technical and economic, outlined. 

As shown in chapter 1, the use of a superconducting field winding in 

a.c. generators holds bright prospects of increasing the unit power ratings. 

Such machines also exhibit unique theoretical and practical design problems 

which still remain to be solved. The optimal selection of the principle design 

parameters of the superconducting generator constitute a problem of relevant 

interest. The work in this thesis is a contribution to this and has proposed 

the use of mathematical optimization techniques to allow an optimal solution 

to the machine design problem. 

Along with developing an understanding of the concept of the elec-

tromagnetic interaction and the limitations that this configuration imposes on 

the magnetic field design, the specifications demand the development of an 

accurate method for magnetic field calculation, in order to predict the perfor-

mance charateristics of the machine. Chapter 2 presents a new method for 

calculating the magnetic field inside the machine in which the theoretical field 
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distribution is modified to take into account the slot geometry of the machine. 

The new method of calculation was applied to a generator as an example, 

and the results obtained were compared with former methods which are based 

on the current sheet and winding thickness models. An interesting outcome 

of the computation results is the conclusion that the new method has better 

accuracy than former methods. Further, the results indicate that the effect 

of certain odd harmonic (localised flux concentration) around the outermost 

slot has very adverse influence on the machine performance. As it is the 

Jc- Be characteristic of the superconducting conductor which determines the 

relationship between current density and magnetic field in the superconductor, 

the maximum permitted current density in the superconducting field winding 

is limited by the localised flux concentration. Therefore, the magnitude and 

location of maximum magnetic field within the field winding can now be 

predicted more accurately by using the new method. 

The analytical expressions for the new method have also been applied 

to an investigation of the structure of the field winding slots and the effect 

they have on the harmonic fields. The results of this investigation have shown 

that for a slotted field geometry of a given spread angle the maximum flux 

density at the outermost slot is influenced by the actual slot shape and ratio 

of tooth width/slot width used. Simply selecting a 120° winding spread angle 

which eliminates the third special harmonic does not necessarily minimize the 

peak flux density at the winding. 

An initial aim of the thesis was to present an implementation of a 

strict mathematical optimization technique which allows the optimum design 

parameters of the generator to be calculated. In order to optimize a machine 

design it is first necessary to describe and analyse the machine design problem. 

In chapter 3, special attention was paid to the mechanical and 

electrical constraints which define the limits of the rotor design. These 
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constraints included bursting stresses, tip speed, superconductor capability, 

maximum flux density allowed in the stator core all of which have been 

specified and analysed. An analytical method of determining the tangential 

(hoop) and radial stresses due to centrifugal force was developed. The 

analytical expressions for the centrifugal stresses have been applied to the 

constrained optimisation problem, and it has been shown that, at least for 

material strength, overspeed factors, and dimensions determine the design of 

the inner rotor. It was also noted that the permissible stresses in the inner 

rotor body are at a maximum bursting speed of 1.6 to 1.7 times rated speed 

so as to ensure a sufficient safety factor in steady state operation. 

Since the research into superconducting machines design was to use 

direct search methods, three direct search optimization procedures have been 

tested on mathematical functions in chapter 4. It was found that the direct 

search method is well suited to these problem and is effective for design 

problems for two reasons. Firstly since only two parameters are to be chosen 

(step size and convergence), much of the " art" encountered in using "hand" 

design is removed. Secondly, the amount of effort to use these procedures is 

relative low and problem preparation is usually simpler. 

Consequently, other methods may be used in the optimization proce

dure (such as Powell's method) for providing computational gains and should 

be comparatively tested. The computer time for all mathematical test func-
- -- - -- --- - - -- --- - ------------- -----

tions and design problems have been shown to be negligible, for example, in 

every case the optimum was found in less than 1 second. Although there is a 

chance that the methods may fail to reach the global optimum, the experience 

gained from numerous examples gives confidence that these procedures will 

be useful. 

Chapter 5 shows non-linear programming lS a practical and useful 

approach of optimizing machine design problem. Although this chapter 
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discussed the special case of optimizing flux distribution by selecting the field 

winding dimensions (rfi, TJo), the current density (J1 ), and the dimensions 

of the environmental screen (rzi, tz), any property of the machine design 

problem such as power output, volume (or weight), or cost, can be optimized. 

Chapter 5 shows that the optimal design is governed mostly by 

magnetic properties of the stator core and the allowable strength of the inner 

rotor materials, rather than the superconductor capability. 

6.2 Recommendations for Future Work 

6.2.1 Recommendations for design process 

(1). Future work is required to minimize the higher localised 

flux concentration around the outermost slot by modifying the field 

winding design using the new analytical method developed in this 

thesis. 

(2). The self inductance for a three-dimensional generator 

can be based on two-dimensional analysis if the former is corrected 

by using the effective length equation. This problem needs further 

detailed analysis. 

(3). The electromagnetic forces on the outer rotor are the 

main outer rotor design requirements and are of particular interest 

_when the generator ~s optimize~~ __ As a result, a~_!'-nalytical_ meth?d 

is required to predict accurately the maximum critical forces which 

cause the outer rotor to be unstable and buckle during short-circuit 

operating period. 
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6.2.2 Recommendations for optimization process 

Undeniably, the use of optimization techniques in superconducting 

machine design will continue to expand. It is worthwhile to guide this 

development in such way that the experience gained is beneficial to the entire 

range of superconducting machines. For this reason, the optimization has been 

discussed and described in the context of the total machine design process. 
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Al.l Assumption 

APPENDIX 1 

FIELD ANALYSIS 

To facilitate the two dimensional magnetic field analysis the following 

assumptions are made: 

(1). The winding is assumed to be infinitely long in the axial z direction 

so that the vector potential has only the axial component Az. 

(2). The iron screen is infinitely long in the axial direction and its 

permeability is very large n.e., p..,. = 00) and its conductivity is zero (i.e., 

p=O). 

A1.2 Field Analysis by former Models 

A1.2.1 Current Distribution 

Assuming the winding to be represented by a current sheet at its 

mean winding radius (fig. A1.1) the current distribution could be represented 

as a Fourier series of currents 

00 

K(O) = L KnsinnpO 
-- - - -n=l- -~ 

n=odd 

A/m (A1.1) 

the magnitudes of current component are found by standard technique to be 

ntT .!!=!. K _ N1!J sin7'.( -1) 2 

n - 'Trrf ";! Afm (A1.2) 

but 

. !!!1. ( 1 ) .!.!..=! 
k 

stn 2 • - 2 

wn = !!!1. (A1.3) 
2 
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substituting eqn. (A1.3) into eqn. (A1.2), gives 

A/m (Al.4) 

Therefore 

(A1.5) 

If the actual thickness of superconducting field winding is taken into 

account (fig. A1.2), then the amplitude of field current density (A/m2 ) is 

obtained by Fourier analysis (see fig. A1.3) 

Where 

00 

J1(6) = L J1nsinnp6 
n=l 

n=odd 

with the current density of the actual winding being 

substituting eqn. (A1.8) into (A1.7), gives 

J = J (4siny.( -1)¥) 
In I mr 

Eqn. (A 1. 7) may be rearranged into the form 
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(Al.6) 

(A1.7) 

(A1.8) 

(A1.9) 

(Al.9) 



Where 

(Al.lO) 

(Al.ll) 

Comparing eqns. (A1.4) and (A1.9) establishes the relationships 

between the linear current density of the field winding current sheet (A/m) 

and the current density of the field winding thickness model as: 

A/m (A1.12) 

A1.2.2 Vector potential Solution 

The vector potential produced by the current sheet may be obtained 

from Laplace's equation expressed in cylindrical co-ordinate as: 

Assuming a constant vector potential in the axial direction, then 

ana equation (.i\1.13) reauces to 

8Az = O 
8z 

The solution for equation (A1.16), is given by 

00 

Az(r, 8) = L (arnp + br-nP)(c.cosnpfJ + d.sinnp(J) 
n=l 

n=odd 
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(A1.15) 
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The value of the constants a, b, c and d are determined according to the 

following boundary conditions: 

1. at r < r1 r...:...o Br, Bs finite 

2. at r=r1 (at the point where the current sheet exists): 

Br (inside)=Br(outside) 

00 -
aBs = Bs(inside)- Bs(outside) = -J-£0 E Knsinnp8 

n=l 
n=odd 

3. at r = rxi (at the inner radius of stator environmental screen): 

If the environmental screen is an iron screen, B6 = 0, whilst if 

the environmental screen is conducting, Br = 0. 

The solutions of the magnetic field distributions are given by Hughes [Hughes, 

1977] 

In region [1] where r < r1 , the solution 1s 

f: J1,0 Kn ( !._) np-1 [ 1 ± ( r '.) 2np] cosnp() 
n=l 2 r, rx, 

(A1.17) 

n=odd 

f: Jl,oKn ( !._ rp-1 [ 1 T ( Tf )2np] sinnp8 
n=l 2 Tf Txs 

(A1.18) 

n=odd 

In region [2] where rxi > r > r1 , the solution is 

(A1.19) 

B ~ Jl,oKn (rl )np+l [1 ( r )2np] . () 
28 = L....J -- - =F - smnp 

I n=l 2 r Txi 
(A1.20) 

n=odd 

The double sign ( ±) in the above equations indicate the effect of the envi-

ronmental screen. The upper sign is for an iron environmental screen and 

the lower sign for a conducting environmental screen. 
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Winding thickness can now be accommodated by assuming the winding 

to be made up from a number of thin current sheets each of thickness dr1 

when the linear current density of each sheet is given by 

{A1.21) 

Expressions for the magnetic fields of the thickness model in which 

the field coil is assumed to be uniformly distributed in a single slot per pole 

(i.e 8=1) can now be derived by substiting lKn for Kn in equations (A1.17) 

to (A1.20) and integrating with respect to the thickness dr1 of the field 

current sheet. The flux density components for three cylinderical regions are 

obtained: 

For region 1 (r < r/i) 

(A1.22) 

(A1.23) 

For region 2 (rfi < r < Tfo) 

. f1H.24) 

{A1.25) 

For region 3 (r > Tfo) 

(A1.26) 
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(A1.27) 

The evaluation of the integrals in equations (A1.22-A1.27) are straightfoward 

but rather tedious, and so are not carried out here. However, the solution 

of magnetic field distribution for three regions was found and are reported in 

table 2.1. For example, the radial and tangential magnetic field components 

in region 1 (r < rti) can be writtern as: 

For np :f. 2 

f Jl-o1,n r( ..2:... rp-2 [1- (r'i )2-np± 2- np (r'o tnp (1 _ (r'i )2+np) JcosnpfJ 
n=l 2(2- np) rfo rfo 2 + np rxi rfo 

n=odd 

(A1.28) 

(A1.29) 

For np = 2, i.e. the case when n = 1 and p = 2 

(Al.30) 

(A1.31) 

The radial and tangential magnetic field components for thickness model can 

briefly expressed as: 

00 

Br(r, 8) = L Br,n(r)cosnp8 
n=l 

n=odd 
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(A1.32) 



00 

B9(r, B) = L BB,n(r)sinnpB 
n=l 

n=odd 

A1.2.3 Machine inductances calculation 

(A1.33) 

Once the magnetic fields are found, various self and mutual indue-

tances are determined by calculating the winding flux linkages. This is a 

matter of integrating the flux density, B(r,n)(r), over appropriate winding area. 

Integrating over a two dimension winding distribution which varies sinusoidally 

in both dimension can be done as follows. By considering coil of constant 

turns, the flux linkages of these dN turns is found by integrating the radial 

of B(r,n)(r) over area A. The total flux linkages of the nth harmonic are then 

found by the flux linkages of the coil by multiplying the flux linkages of the 

coil by number of coils per winding and thus, the flux linkage, '1/J, of the 

winding can easily be found by 

Where 

K _ 2N 
w- a(r~- rr) 

(A1.34) 

(A1.35) 

The term p appears in equation A1.34 because total flux is time flux linked 

by single coil. N is total number of turns in the winding. This process is 

straight forward but tedious. As result, the self and mutual inductanes for 

the winding are 

'1/J L=
I 

100 

(A1.36) 



and 

7/J M=-
1 

(A1.37) 

substituting the expressiOn for magnetic field in preceding section, self and 

mutual inductances are found and they are presented in table 2.2. 

A1.3 Field Analysis accounting for slot geometry 

It is assumed that the field winding under consideration has several 

slots i.e that S 2:: 1, so that the field winding has, for every pole-pair, S 

slot-pairs separated by the geometrical angle a as shown figure 2.5. 

The Fourier current density components of the field winding are now 

obtained by summing the individual slot components so that 

Where 

where 

but 

s 00 

Jfs(O) = L L Jfsn; sinnp(O ± ai) 
i=l n=l 

n=odd 

O:fs = S + (S- 1)~ 
UJa 
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(A1.38) 

(A1.39) 

(A1.40) 

(A1.41) 

(A1.42) 



therefore 

Q = Ujt 

Ujs 

Ujs = S + (S- l)Q 

(A1.43) 

(A1.44) 

Similarly, the flux density components corresponding to the S slot

pairs shown in figure 2.5 can be calculated as before. They have the same 

maximum of Br,n(r) and BB,n(r) but they are phase shifted because the slot-

pairs in equation are spaced apart by a. Using the principle of superposition, 

the resultant radial and tangential magnetic field components are expressed 

as follows: 

Where BrT =resultant radial flux density component 

and B8T =resultant tangential flux density component. 

(A1.45) 

(A1.46) 

Using the above definition, the resultant of magnetic field components of field 

winding can be expressed as follows: 

s 00 

BrT = L L Bir,n ( r )cosnp( 8 =F a;) 
i=l n=l 

n=odd 

s 00 

BBT = L L Bi6 ,Jr)sinnp(8 =Fa;) 
i=l n=l 

n=odd 

(A1.47) 

(A1.48) 

The above result can be easily be generalized for any symmetrical distribution 

S slot-pairs of saddle (conventional) type, or any configuration of the slot

pair distribution. The field winding as function of S slot-pairs are to be 
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independent as described above. However, the results generated by equations 

(AI.47-A1.48) are reported in table 2.4 

Finally it worth mentioning that the above results can easily be 

generalized for three-phase armature windings. The procedure is exactly the 

same for these windings except that (6 - ai), Jf81 Uf81 rf8o1 and Tf8i are 

replaced by (6- O:i- ,P), Ja81 Ua81 Ta801 and rasi, the corresponding armature 

values. 

103 



stator screen 

current sheet 

Fig. [t\ 1.1) current sheet model for magnetic field calculation 

stator screen 

Fig.jAl.~ Thickness model for magnetic field calculation 



Fig.(Al.~ Distribution of field current density 



A2.1 Assumption 

APPENDIX 2 

STRESS ANALYSIS 

It is assumed in the analysis stress procedure that 

(1). The material of the inner rotor body which carry the. super

conducting winding is made of non-magnetic steel. At present the material 

adequately matches the following requirements of the inner rotor 

(a). high strength 

(b). high ductility 

(c). non-magnetic properties 

(d). low-thermal conductivity 

(2). The field winding region is assumed to be a series of annular 

slots of constant width (i.e u9 :::;:;: 0 ). 

(3). In this analysis the tresca criterion has been used to predict the 

failure of the material under the action of centrifugal forces. If the tresca 

criterion is obeyed for the slot region and has yield strength (To) and for the 

core region has yield strength (T), then the critical conditions must take the 

following form: 

(A2.1) 

(A2.2) 

(A2.3) 
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(4). All pressure values are considered positive when compressive and 

negative tensile. 

A2.2 Stress analysis 

A2.2.1 General equations 

Assuming plane strain the general basic equations consist of the following: 

strain-stress: 

(A2.4) 

(A2.5) 

(A2.6) 

Where, in a cylinderical co-ordinate (r, 8, z), a.,., a6 , and az are the direct 

stresses, c.,., c6 , and cz are the strains, E is Young's modulus, v is Poisson's 

ratio. 

Equilibrium: 

The general equilibrium equations corresponding to axi-symmatric solid 

. of-revolution-with--centrifugal-body-force-are- expressed- -as- follows 

8a.,. 8az a.,. - ag r;o 
0 -+-+ +.cr= 8r 8z r 

8ae = 0 
86 

8az 8az az F O -+-+-+ z= 8r 8z r 
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(A2.8) 

(A2.9) 



A2.2.2 Analytical solution for stresses 

Analytical solution for stress in the respective region can be analyzed 

in the following procedure 

(i) Solution for core region 

First consider the body of the mner rotor as a circular shape of 

uniform thickness rotating with constant speed w rail/sec. The body force is 

centrifugal force figure 3.3. 

{A2.10) 

where p is the average density of the material of the mner rotor and the 

equilibrium equation {A2. 7-A2.9) reduce to one only 

au,. u,. - t:1(J 2 0 -a + +pwr= r r 
(A2.11) 

The strain compatibility is represented by the usual expression 

(A2.12) 

substituting for e,. and e9 from the stress-strain equations A2.4-A2.5 into 

equation A2.12 

a 
( 1 + v) ( u,. - u9) = r ar ( t:19 - vu,.) (A2.13) 

and from equation {A2.11) for (u,. - u9) giving: 

(A2.14) 

Whence 
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Again, adding this to 

r8ur 2 2 
Ur - U9 = --- - pw r 

8r 

From equation (A2.11), it can be seen: 

....l(._3_+_v.!-) pw2r3 + c r 
2 1 

This can be integrated, giving 

(A2.15) 

(A2.16) 

(A2.17) 

(A2.18) 

(A2.19) 

(A2.20) 

The arbitrary constants A and B are calculated by considering the boundary 

conditions for inner rotor case. 

Boundary condition 

For core regions of the inner rotor subjected to internal pressure Pi 

and external pressure p0 , figure 3.3, the boundary condition will be assumed 

to take the following form 

p =Pi at r = rc hence Ur(r=rc) = -pi 

p =Po at r = Tfi hence Ur(r=rtd =Po 
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By re-calling the stresses distribution equation (A2.18) and applying 

the above boundary conditions, the resulting expressions for A and B are 

obtained as follows: 

(A2.21) 

(A2.22) 

ii. Solution for sl<;»t region 

The slot reg.on IS subjected to internal pressure and fitted to the 

solid bore region, due to the interfance fit with solid core region figure 4.4. 

Consequently the tangential stress ( a9) will be equal to zero (according to 

the assumption shown in section A2.1) 

C19 = 0 at Tfi ~ r ~ Tfo 

and by adopting the following boundary conditions: 

p =Po at r = Tjo hence C1r(r=fo) = 0 

P = Pi at r = Tfi hence Ur(rJ;) = Pi 

Again, by re-calling the equilibrium equation (A2.11), and this would read 

or 

a(ra,.) 
8r 

But 

(18 = 0 
r 
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(A2.24) 

(A2.25) 



By intergrating equation (A2.26) 

Applying the boundary conditions, the constants A would be read 

or 

2 3 
A= PoW rfo 

3 

2 2 
a = _PoW rfi [1 _ (TJ0 )3] 

T(r=rf;l 3 Tfi 

2 2 
PoW T fi [ ( r fo) 3] 

Po=- 1- -
3 Tji 

iii. Solution for the inner rotor regions 
-

(A2.26) 

(A2.27) 

(A2.28) 

(A2.29) 

(A2.30) 

(A2.31) 

Now the solution of the whole problem could easily be obtained by 

substituting the equation (A2.31) into equations (A2.21) and (A3.22), the 

constant A and B would read: 

(A2.32) 

or 
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and 

or 

Where 

S) is critical speed, S) = W X r fi 

x is radii ratio, x = ..!1:... 
Tfj 

y is radii ratio, y = ;; 
p is rotor body density 

Po is slot/tooth effective density 

(A2.33) 

(A2.34) 

(A2.35) 

Finally, substitute equations (A2.33) and (A2.35) into (A2.19), The 

resulting expressions for hoop stress at r c and r /i will read in normalized 

form as follows: 

UB<•=•cl = 12(1 ~ x 2 ) {12(1+x2)Pi+8w2r;iPo(y
3
-1)+3w

2
rJiP(1-x

2
) [(1-v)x

2
+(3+v)]} 

(A2.36) 

UB<•=•t;> 
12

(
1 
~ x2 ) {24pix2+4w2rJiPo(y3-1) ( 1+x2)+3w2rJiP( 1-x

2
) [ ( 1-v )+( 3+v )x

2 

(A2.37) 
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But 

and according to the following critical conditions 

Ue(r=rc) ~ T 

Ue(r=r/il ~ T 

Then, equations A2.30, A2.36, and A2.37 may be written as 

At r = Tfi 

At r = rc 

(A2.38) 

T ;::: ( 12(1 ~ x2)){12( 1+x2)Pi+Bn2Po(Y3-1 )+3n2p( 1-x2
) [ (1-v )x2+( 3+v)]} 

(A2.39) 

At r = Tfi 

T;::: (12(1 ~ x2)){24pix2+4n2Po(y3-1)(1+x2)+3n2p(l-x2)[(1-v)x2+(3+v)]l 

(A2.40) 

From equations A2.38 and A2.39, tlie inner rotor bursting speed musCal.Ways ~ 

be subject to the constraint 

(A2.41) 
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and 

and 

12T( 1 - x2
) - 24x2pi ] 1/2 

0 ~ [4p0 (y3 -1)(1 + x2) + 3p(1- x2)[(1- v)x2 + (3 + v)] 
(A2.43) 
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APPENDIX 3 

PUBLICATIONS 

3.1. Introduction 

Two papers will be published in connection with the research presented 

in this thesis. They are as follows, 

Paper 1 : Safi, S.K. & Bumby, J.R., A Two-Dimensional 

Analysis of the Space Harmonic Magnetic Fields in a Supercon

ducting a.c. Generator., Electric Machines and Power System, 

Paper to be published 1990. 

Paper 2 : Safi, S.K. & Bumby, J.R., Application of Optimiza

tion Methods in the Design of a Superconducting a.c. Generator 

Rotor., Paper in preparation. 

113 




