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them relatively easy to study numerically in detail, and to quantise. They are

also generic:

“Any dynamical system with two degrees of freedom is isomorphic with the
motion of a particle on a smooth surface rotating uniformly about a fized azis

and carrying a conservative field of force with it.” [6]

Because of the complexity of classical chaos, and the difficulty of quantising
complex systems, we need as simple a model as possible without losing any of

the interesting chaotic behaviour.

Historically, the study of chaos began with Poincaré’s study of the three body
problem in celestial mechanics [7] . He showed that this problem is not solvable;
the perturbation expansion does not converge near commensurable tori, due to
the problem of small denominators, and Poincaré proved that an intricate web of

invariant manifolds with structure on all scales made the analysis incomputable.

It was more than half a century later that Arnol’d and Moser in 1962 (8,9]dis-
covered the celebrated KAM theorem, based on suggestions by Kolmogorov in
1954. The theorem proved that, under small perturbations of an integrable

‘system, ‘most’ tori are preserved.

In the meantime, ergodic properties of chaotic systems were rigorously proved
by Sinai [10] , Arnol’d and Avez [11] , and Pesin [12] , based on Shannon’s in-
formation theory [13] as applied by Kolmogorov [14] to dynamical systems.
The theory represents trajectories as infinite sequences of symbols, with chaotic
sequences being indistinguishable from random sequences (so-called Bernouilli
sequences). This led to the invention of various measures of chaos: Lyapunov
exponents, Kolmogorov entropy, and chaotic volume (fraction of phase space
which is chaotic). Many examples were proved to be chaotic: Sinai’s billiard [15]
, the stadium of Bunimovich [16] , and more recently, a whole class of billiards

with convex pieces of boundary {17] .

Periodic orbits were seen by Birkhoff [6] to be of utmost importance. Al-
though of zero measure, their influence extends across most of the phase space.
In chaotic systems, there is a large proliferation of periodic orbits, growing expo-

nentially with the orbits’ length. Bifurcations of periodic orbits are useful ways




























































Section 2.6 Stationary Billiards 23

theorem for billiards. The Sinai billiard and the stadium of Bunimovich are the

most chaotic systems of all.

Ergodic theorems exist for billiards, but tend to be specific to particular sys-
tems. This is due to the variety of billiards themselves rather than a failure of the
mathematicians. Using ergodic theory and ideas from Sinai’s work, Bunimovich
proved that the stadium billiard is a K-system (and, more recently, Bernouilli)
and Sinai has proved that the Sinai billiard is Bernouilli. Lazutkin has shown
that billiards with convex boundaries that are C°%® smooth are not ergodic (i.e.
some tori exist). Polygonal billiards are shown to have zero entropy—and are
hence regular—but singularities in the Poincaré section mean that the invariant
manifolds are not tori, but compact manifolds with genus greater than one. Berry
and Robnik have studied systems, such as the Africa billiard and heart-shaped
billiards, where concave portions of the boundary cause defocusing of trajecto-
ries and lead (computationally) to ergodicity. They are also the only ones (as far
as I know) to study billiards which approach the generality of Birkhoff—billiards
under the influence of a uniform magnetic field (which is equivalent to a rotating
billiard with a harmonic oscillator field at the centre of rotation strong enough

to cancel the centrifugal field).

The circular billiard is the integrable limit of the rotating circular billiard,
when the speed of the particle tends to infinity, or the speed of rotation tends
to zero. The frequency ratio 8 = wj/ws is simply %/m. Thus trajectories are
ergodic on the torus for § irrational, and periodic for B rational. We expect the
tori with 3 close to a rational value to be destroyed and replaced by island chains
according to the Poincaré-Birkhoff theorem, when the system is perturbed by

rotation.

2.7 Semiclassical Mechanics of Chaotic Systems

In this section, following the review by Gutzwiller [19] [20], and the work
by Balian and Bloch, we will develop semiclassical mechanics from the Feynman

path integral to the Gutzwiller trace formula.
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The exact Green function can be written in terms of the eigenfunctions ¢;(q)

of I?gbj = E;¢; giving

¢j(q”)¢’;(q’).

1 .

(2.49)

So

/qu [G(q'q”E)] ¢'=q"=q Z E _1 E; /qu ¢i(9)¢3(q) = z E -} E;
(2.50)

We define g(E) = ) E—lEj S0

9(E) = /qu [G(ggE))]- (2.51)

Again we see that the greatest contribution comes from those orbits where the
phase is stationary, because otherwise exp {iS(gqE)/h} varies wildly and de-
structive interference occurs for §S > A. Thus we consider the sum over clas-
sical trajectories in equation (2.48) as though it were an integral and consider
variations of S, where the endpoints are the same i.e. when ¢ = ¢ = ¢". Since

6S = 0 we have

a8 8s 0§
_8_] = (57 + 5—,> =p'-p' =0 (2.52)
91q=q'=q" q 9/ q=q'=¢"

Hence the main contribution comes from trajectories whose endpoints have the
same momenta as well as position, that is from periodic orbits. The action
S(qqE) does not depend on where on the periodic orbit one starts, so we only
consider variations normal to the periodic orbit. The second variation of S has

the quadratic form

9%S 82S S 82S 98
20 _ 90 2 _
6°S = aqz]l(éq) oq [aq,,z + 597" + 5457 + 8q’2]l 6  (2.53)

where ¢ has (N — 1) components normal (L) to the periodic orbit and 825/0q*
is an (N — 1) by (N — 1) matrix. Thus the stationary phase approximation,
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as before, gives a det_%(825/8q2) contribution to the amplitude and a phase
factor of > y_; im/4 where the signs are given by the signs of the eigenvalues
of 825/0¢®. Having done the (N —1) integrals with respect to ¢, we are left with
the closed integral around the periodic orbit. This combines with other factors

to give

- (.9 1 %S
qu {(q'[q-u)%]ql_d”_q det? <— 8q,aqu) = fd'r det? <——W> . (254)

The other factors can be shown to be constant along the periodic orbit, and so

the integral gives simply Tj, the period of the primitive periodic orbit.

The determinant of 825/04? can be evaluated using the monodromy matrix
or tangent map M of the Poincaré map. This is the matrix which describes the
local linear transformations of displacements between close trajectories, under
the action of the map. Suppose 6z’ is a (2N — 1)-dimensional vector on the

surface of section, and 6z" is this vector after the first return, then
sz = Mész'. (2.55)
Tt can be shown that the characteristic equation
F(o)=|M —ol| (2.56)

whose zeros determine the Lyapunov exponents: F(eiA) = 0, can be expressed
as

det (o 825/0q"* + 825/84'0¢" + 825/8q"8q" + 825/0q"?)

Flo) = det (825/9¢'0¢")

(2.57)

Hence the ratio of determinants in the equation for g(E) are simply I/F%(l),

and we obtain Gutzwiller’s semiclassical trace formula:

1 1 T} t X
=g(F) =~ go(E) + = I ex (—n -——na-). 2.58
S g (O~ B g D e (58 - gne ) 05

gosc(E)

»

where n is the number of repetitions of the 7' primitive periodic orbit. The

conjugate points are related to the old ones by o = v(+1), where the (+1)
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means there may be one extra conjugate point due to the 8%5/8¢* term. The
term go(F) is the asymptotic contribution due to zero length paths which do
not go anywhere else other than starting and ending at ¢ = ¢ = ¢". It is related
to the Weyl formula for the density of states, and will be discussed in a later
section. It depends only on geometric (rather than dynamical) properties of the
system, such as the shape and perimeter of the boundary, and the volume that

it contains.

There are some important remarks to make about equation (2.58). Firstly,
being a semiclassical sum rule, it relates purely quantum mechanical quantities
on the left hand side—energy eigenvalues—to purely classical quantities on the
right hand side—periods of closed orbits, classical actions, Maslov indices, sta-
bility exponents, and geometry. Secondly, it is conditionally convergent at best,
and so great care has to be taken in enumerating the infinite sum, in particular
in the ordering of the terms, and in obtaining all the periodic orbits. This 1s no
easy task for a general system—orbits proliferate exponentially with length for
a chaotic system, and so coding the orbits is very important. This is possible
for completely chaotic systems, but as yet no scheme has been found for mixed
éystems. One way of obtaining convergence is to smooth g(E), by for example

Gaussian smearing [45] .

Some remarks of Berry [24] are made below. The energy wavelengths AE;

of the oscillatory terms in equation (2.58) are given by

n ndS; n
5 [Sj(E + AEj) - Sj(E)] = EFE%AE]' = ET]'AE]'. (2.59)
Hence
2rh
AE; = nTj(E)' (2.60)

The mean level spacing (AE) is given by the asymptotic rule that an eigenvalue
takes up a volume A" in phase space so that (AE) ~ hN/%. Hence the

oscillations in the RHS of the sum are on a scale much larger than the level

spacing.
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2mm for the torus I,,,. Hence

2
N N 1 1 R TQ
d K(qd"t)| ,_ . :E /dG ~| Dy |2 fm 2T
/ ¢ K@) gmgmg 0 (Qm:h)%l mlFexp i\ 2

m

_ eV o~ e i (G - 5e)

(2mih)? m>0 t7 |det(3wi/31m,~)|

b

[XTEN RV

(2.70)
where R, = 2rl,.m — H(Iy)t. For the t integral, we can use the stationary
phase method, which gives H(I,) = E and hence the period T}, of the torus.
The amplitude factor is given by

2
—a——(pha,se) = —w(Im).aaL;n (2mih)?.

N=

(2.71)

ot?
Hence
1 (2m)N exp {12rm. (l;ln - %fl)}
p(E) = —Re > (2miR)(N-1/2 % 1 )
m>0 V7 T2 |det(8wi/0lm;)|? (—wm.OLn/t)? 21
2.72
_ 2 . Iy  om
= po(E) + WRG Z A, exp {227{'771. (7 - T)}
m#£0
m>0
‘where
9 N-1
2 = —mTw (2r) . (2.73)
NVHTN | det(Owi/Olm, )| (w(Im).01n/ 1)
2.9 The Asymptotic Level Density for Stationary Billiards
We return now to the level density p(E) defined by
p(E) =Y 6(E — Ej). (2.74)
J
This was mentioned briefly in section (2.7), and is related to g(E) by
Im
o(E) = ~—o(E). (2.75)

This must be evaluated carefully, because of the poles along the real axis. It is

conventional to take the contour below the real axis, by adding a small imaginary

part to E.
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We will be interested in statistical fluctuation properties of energy levels in
section (2.10), but here we discuss the average behaviour of levels. As with
g(E) we can treat p(E) as consisting of average terms contained in pg(E) and

oscillatory terms posc(E):

The calculation of pys. is just the same as gosc(E) given in section (2.7). Here
we will review some calculations of the asymptotic mean level density po(E) for
stationary billiards. The original results in physics are due mainly to Balian and
Bloch , but there are also many results from mathematicians; a definite review
is given by Baltes and Hilf [53] , and other sources are Berry [24] and Bohigas
and Giannoni [25]. The two approaches we adopt are the heat kernel method

and the time-independent Green function formulation.

Using the second approach, and the Green function defined by equation (2.42)
we find

1 . .
po(E) = ——lim [d" [G(d'q"E +ie) = G(q'd"E = i)] y_ gy

Im

=-— dNq [G(q'q”E)] (2.77)

q'=q"=q
Im
= ——qgo(F).
—90(E)
Here the ¢’ = ¢ = q constraint is only for zero length periodic orbits. The
commutation of the Im operator with the | operator must be done carefully,
and usually a convergence factor is introduced which we has not written for sake

of clarity.

The first result is for the level density inside a box, with infinite potential
walls, but with no potential inside the box—a stationary quantum billiard. We
approximate G(q'q" E) as simply the free particle Green function inside the box,

and zero outside. For ¢’ = ¢" this is

2im p(q) >%'_1 (1)
G(dd"E)~ — _ H "_dl/n 2.78
(4'¢"E) )i (|q,,_q,’ 5 (p(9)lg" - ¢'I/R) .( )

where H(_\})_l(x) is the Hankel function (Abramowitz and Stegun {54] ). Then
2
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po(E) is

wlE) ~ o [ d¥98(B ~ H(p0) = w5 (2.79)

where V(E) is the volume of phase space contained within the surface H(p,q) =

E. Equation (2.79) is simply the Weyl formula that each mode takes up a volume
RN in phase space.

This can also be calculated from the heat kernel defined by

(ﬁ - _(2) Ku(q'q"t) =0, t>0

ot ‘ (2.80)
KH(qqulo) — 6(q” _ ql)’
whose solution in terms of eigenfunctions ¢;(q) is
K qlqllt Z ¢] II —E t¢] (q ) (281)

and whose partition function is given by

[s o]
d(t) = / g Ku(dq"t) = Ze’Ejt = / dE e Ftpo(E). (2.82)
qr:q//?q 7 0
So the inverse Laplace transform is po( E). If we approximate Kg(q'q"t) as free

diffusion within the box so

1 n m \%
Kg(dqd't) = (2 ht) exp {—m(q /2ht} (2.83)
then
m 7 1%
®y(E) = . 2.84
B = (7)) (289
giving
1 T,
E)= L7 [e Bt :( = ) g7, 2.85
wiB) =567 [P0 = (555 ) T (2:89)

where V; is the g-space volume contained in the billiard, related to V(E) by

mFE 3 V.
V(E)_—-(zwhz) F(%il). (2.86)

Thus we arrive at exactly the same answer for po(E) as equation (2.79). However,

the Green function or heat kernel is not well approximated by the above formulae






Section 2.9 The Asymptotic Level Density for Stationary Billiards 38

In two dimensions, the volume term (2.85) and surface term (2.89) contri-

butions give

mA 1 (am\®
E)=~ -—— | = LE 2. 2.
w(m)~ 22— o (37) (290)

So the asymptotic number of modes is

1
mAE 1 (2m\? ., 1
e~ o -5 () et

(2.91)
o AR Lk
4 i
where
2mkE
k= ;" and A=V, L=5, (2.92)

These are the first two terms in an asymptotic expansion. The next term is a
constant due to the curvature  of the boundary and its corners of internal angle

B; (Balte and Hilf [53]):

zi: /Li&_(lsg)? +2 (% - %)/24- (2.93)

1

where s is the arc length along the boundary, i runs over all the corners, and L;

are the piece-wise smooth sections of boundary.

In a later chapter, the case of a billiard in a scalar and vector potential
will be considered, and we will derive the area and perimeter terms, but not
the curvature term. As the curvature term is a constant, this can be estimated

numerically.

2.10 Spectral Fluctuation Properties

In this section, the theory of random matrices as applied to classically chaotic
systems will be reviewed. Mention shall be made of deviations from this theory

and their connection to the periodic orbits of the classical system.
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Random matrix theory was devised in the 1950’s and 1960’s by several nu-
clear physicists including C.E. Porter, E.P. Wigner, M.L. Mehta and F.J. Dyson.
A useful collection of original papers is [26]and a recent review is [55] . It is used
to describe the high energy levels of complex nuclei where the levels are so close
that it is impractical to consider individual levels and one becomes interested in
only the statistical properties of the spectrum. Their theory shows that one may
regard these levels as eigenvalues of a random matrix chosen from an ensemble

of matrices, invariant under certain symmetry transformations.

One way of understanding how this applies to non-integrable systems is to
consider the simplest case of a two by two Hermitian matrix. Suppose that the
system depends on a parameter o and consider the Hamiltonian f[(a-{— da) close
to H (o) where two eigenfunctions ¢1 and @2 have almost the same energies E)
and Ej. Since I-?(a + §a) is a small perturbation of f[(a) we can approximate

the eigenfunctions of ﬁ(a + 6a) by
b = agy + bgs. (2.94)

Now approximating H(a + 6) =~ H(a)+ (), the new levels are the solution
of

Ev+Vii—F Vi
o+ Vi 12 o (2.95)
Vi Eo+ V- FE
where V;; = (¢;|V|#;). This gives
Ei19=Ey+ %(Vll + Vao) £ %\/(Vu — Va2)?2 + 4|Vi]2. (2.96)

Thus the squared difference in energy levels is a sum of squares:
(AE)? = (Vi1 — Va2)? + 4|Vio|® (2.97)

For degeneracy, we require Vi1 = Vo, V12 = 0. If H is complex Hermitian then
Vy5 is complex and so these are three conditions in real variables. If H is real
symmetric two conditions are required. One may think of H as inhabiting a two-

or three-dimensional parameter space for real symmetric, complex Hermitian
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matrices respectively, with a degeneracy in energy at one point in this space.
This is the tip of a double cone, with the levels E 2 lying on the double cone for
all other values of the parameters. However H depends on only one parameter,
«. Thus as we vary this parameter we will in general miss this degeneracy, and
the slice through the double cone will show levels which ‘repel’ each other before

getting too close.

If one assumes that the two state analysis above is valid, so that the spec-
trum is dominated by avoided crossings, then one may derive the probability
distribution P(H)dH that H is taken from within a volume element dH of
an ensemble of random matrices (we have dropped the hat convention here for
convenience). Suppose that the ensemble is invariant under a tranformation,
H' = WHHW, then requiring P(H')dH' = P(H)dH gives the form of P(H).
For Gaussian orthogonal ensembles (GOE), where W is an orthogonal matrix,

it can be shown that (see review by Eckhardt [55]),
P(H) = 27% (y/2m)NN+D/4 exp(— Tr H? [4) (2.98)

where <y is a constant. For Gaussian unitary ensembles (GUE), where W 1s
unitary, it can be shown that
N

P(H)= 2“?(7/271')1\[2/2 exp(— Tr H/47). (2.99)

For the spacing distribution, we will consider just the case when H is real sym-

H= 4B 2.100
(1) an

We define new variables F4 and the angle ¢ which make H diagonal:

metric, and two by two:

A= E;cos’¢p+ E_sin’ ¢
B =(E+ — E_)cos¢sin¢ (2.101)
C=FE; sin®¢ + E_ cos? ¢,
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Figure 2.10.1.

level in the interval E + y to E + y + dy given that there is a level at E (figure
(2.10.1)).

Then

P(S)dS = (prob. of level in [E +y, E + y + dy]) x (prob. not in [E,E +y])

S
= dS ¢(S5) [1 —/0 P(z)dz| .

(2.108)
So

P(S) = ¢(S) /;0 P(z)dz. (2.109)

"This can be solved for P(S) to give

S
P(S) = g(S) exp (- /0 g(a:)da:) | (2.110)

Thus for GOE, ¢(S) = §S. Coming back to integrable systems, we can easily
see that the energy levels do not repel each other. Suppose Iin, = (m1+ai1/4)h,
Im, = (ma + a2/4)h label two nearby tori, then the energy levels are approxi-

mately degenerate if

Eml - Emz ~ H(Iml) - H(Imz)

(2.111)
~ R(my — ma).V 1 H (Iny + Imy)/2) = 0.

But V;H are the frequencies w. Hence this is the condition of resonance, which
is very common for integrable systems. Hence we expect energy levels to be

independent of each other. If they are random variables, we expect this to be
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expressed by g(y) = 1. This gives a Poisson process for the level spacing with
P(S)=¢75. (2.112)

This intuitive argument that g(y) = 1 has been properly proved for generic
integrable systems by Berry and Tabor [47] by considering the periodic sum
formula for the density fluctuations. They showed that for sufficiently small
spacings, the sum is dominated by the long orbits Tr, > AE /27h and these

have the universal property that

2 .
E ALS(T - T)) — et (2.113)

where (...) denotes average over the energy range within AF, and A?n is the
intensity of the m!! torus given by equation (2.73) and T, is its period. It
can then be shown that g(y) = 1. There are however exceptions to this, the
most notable being the case of a set of harmonic oscillators. These show level

repulsion, both theoretically and computationally.

A similar universality property to equation (2.113) occurs for completely
chaotic systems. Refer to the semiclassical trace formula of Gutzwiller (equa-
tion (2.58)). The factor F(1) is approximately exp(hgsT) for long orbits of
period T. Hence the amplitude of an orbit j is A; ~ Texp(—%hKST). This
can be combined with the exponential growth law of the number density p(T)

of orbits of period T' [56] ,
o(T) ~ exp(hgsT)/T T > 0. (2.114)

to give the Hannay-Ozorio de Almeida classical sum rule [57] :

ZAZ (T -T;)) —7;2 T >0 (2.115)

The universality of this rule is due to the fact that for a chaotic system the time-

averaged exponential divergence of trajectories is the space-averaged divergence
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(i.e. that hgg is the same for all points in phase space). This implies that for
long orbits this classical sum rule does not depend on the particular dynamics of
the system. Unfortunately, it is not as easy to find the level statistics from the
Gutzwiller trace formula, as it was for integrable systems. However, the univer-
sality of (2.115) does lead us to expect random matrix theory to be applicable
to chaotic systems, and indeed this has been seen numerically to be the case in

many systems.

For level spacing statistics the energy spacings are always small enough for
the universality to hold. But it would be interesting to study statistical prop-
erties where this law is no longer valid. We would then be able to see how the
particular dynamics of short orbits affects the statistical properties. This would
be seen as a deviation from random matrix theory. A long energy range statis-
tic that is particularly suitable is the Dyson A(L) statistic [58] , a two-point
correlation function defined as the local average of the mean square deviation
of the staircase N(E) from the best fitting straight line over an energy range

corresponding to L mean level spacings:

A(L) = <min (p(E)) /L/2(p)da: W(E+z)-A- Bx]2>

AB L Jorp

L/2{p) L/2(p) 2

— <ﬂ/ de N*(E + z) — [(—p)/ de N(E + z) (2.116)

L J_rj2p) L J_rj2p)

()2 [L20e) 2
—12 | dzzN(E+z)| ).

LE J-rsap)

P

The theory of spectral rigidity of chaotic and integrable systems below is due to
Berry [59] . For L < 1, the limit A(L) — L/15 is independent of the particular
distribution of the levels. For L in a range greater than the mean spacing, but

still semiclassical, one can use the Gutzwiller trace formula. For chaotic systems

p(E) = po + Re—-lﬁ Z ij exp {i(S;/h — ma;/2)}, (2.117)
™R

where j labels all periodic orbits, multiple, positive and negative (not zero) as
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well as primitive ones. And for integrable systems it is

p(E) = po +2Re Y Amexp {i2rm.(Im/h ~ am/4)}, (2.118)
m#0

where A, is given by equation (2.73).

One may write these as

p(E) = po(E) h"“ ZA exp {i(Sj/h — ma;/2)}, (2.119)
where
T; .
: p=20 for chaotic systems;
Aj = WF]?( )
Am, U= %(N -1) for integrable systems.

Integrating equation (2.119) gives

Aj

N(E) = No(E) + Re—; Z—T—exp (i(S;/h — ma;[2)}. (2.120)
J

If one approximates Sj(E + z) ~ S;(E) + «Tj(E), then substitutes for N(E)

into equation (2.116), one obtains

eXP {i%(us — i) } exp {i(Si — S;)/R}

A(L) = <h2u ZZ

Y [F@i —yy) - F(s)F () - 3F’<yi>F'(yj>} >

(2.121)

where F(y) = siny/y, y; = LTj/2hpo.
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(1) Integrable systems.

Consider the long orbit approximation I <« Lmax Where Lpax = hpo/Tmin ~
RN _1), where Ty, is for the shortest periodic orbit. For integrable systems,

lyi — yj| is very small for these orbits, so we can write

2

A(L) = =

[ emear i), (2.122)
o T
where

6y) =1 - [F) -3 [FW)]’
o(T) = < Z Z AjAjcos {(Si — S;)/h}6 (T — 3(Ti + Tj))> o (2.123)

? J
T:>0 7;>0

It can be shown that ¢(T") is dominated by the diagonal term in this case and

using equation (2.113), one obtains

A(L) = 2 dV/dE /0de

A% (am)N AL 5 G)

T2
L [*dy
= 2—7r/0 FG(ZI)-

The integral is simple but laborious, and yields the value 27 /15, giving

(2.124)

1
A(L)= —1L. 2.
(L) =z (2.125)
This is the universal regime of L < Lmax, and is also the result that would be

obtained from random matrix theory. For L >> Lyax, G(y) & 1 so

2 AZ,
A(L) = AN -1 2 T = const. (2.126)

Thus the spectral rigidity saturates above L = Lpax, and is linearly dependent
on L for I € Lpax. For L ~ Lpax, small oscillations in G(y) give a slightly
oscillatory A(L).
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(i) Chaotic Systems.

Here for L < Lmax, the diagonal approximation is again valid and using

(2.115), we obtain

T/4n2, for Tymax > T > Thin;
#(T) — { / “ (2.127)

pohi/2m, for T > Tyax,

where Tiax = 2mhpg = %g‘ (equation (2.61)). Thus A(L) can be calculated

using the simplest approximation for ¢(7"), namely

T/4n2, for T < Tmax;
o) = | T for TS T (2.128)
poh/2m, for T > Tax-
Then A(L) is simply
1 fTwex dT poh [® dT
A(L) = = — 2l =
W= [ o0+ [
nL 0
= _1_2 ﬁg(yﬂ_ i/ %y (2.129)
2m 0 Yy 27 wL y2

1
=53 {log(2nL) + v — 5},

where g is the BEuler constant 0.577.... This is exactly the form given by
random matrix theory for GUE. For time-reversal systems, formula (2.127) is
not valid. The reason is that there is coherence between time-reversed orbits,
so that the amplitude of ¢(T) is twice as large for Tax > T >> Tin. So the

correct interpolation (which is not linear) gives
1
A(L) = —5 [log(2mL) + 75 - T L (2.130)

This agrees with the formula given by random matrix theory for GOE.

When L > Lpyax, the universality of (2.115) breaks down—short orbits

become important. We have
> dT

Thus we can split the integral into two parts, a non-universal part for 0 < T<

Tinin, and a universal part for T > Thin. The universal part gives a saturation
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constant:

A(L) = 5% (log(Lmax) + 1] (2.132)

And the non-universal part gives oscillatory terms to A(L), which must be calcu-
lated for each system. For time-reversal systems this constant should be replaced

by
1
AL)~ — [log(Lumax) + 1 — 377] . (2.133)

Thus for chaotic systems, the saturation value of A(L) is approximately A1

larger than for integrable systems, reflecting the fact that spectral fluctuations
are much weaker, and the spectrum more rigid. Note that here saturation again

indicates deviation from random matrix theory.
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3. Classical Billiards in a Rotating Boundary

3.1 Introduction

A classical particle with mass m moves freely in a plane region which is
bounded by a perfectly reflecting smooth closed curve, rotating uniformly about
a fixed axis perpendicular to the plane. Between bounces the particle will travel
in a straight line at constant velocity, but it will lose or gain momentum in-
stantaneously on reflection. Thus the energy of the particle is not conserved,
and so we might not expect to find a' conserved Hamiltonian. However, when
the standard transformation is made to a frame rotating at the same angular
speed w as the boundary, it becomes clear that a suitable Hamiltonian can be

constructed.

It is convenient to parametrise the (z,y) co-ordinates of the particle in this
frame by the complex variable z = z + iy. Then suppose that at time ¢ = 0, the
particle is at a point z = a on the boundary, and that its velocity immediately
after reflection is b (in the laboratory frame). Then its position in the rotating

'frame at time ¢ is

z = (a+ bt)e ™ (3.1)
and its velocity is

2= be ™ — w2 (3.2)

In particular, its initial velocity is 29 = b—iwa. Equation (3.2) gives the equation

of motion,

5= —ws + w2, (3.3)

It is easy to show either from this, or by transforming the free particle Hamilto-

nian 2—17;}32 directly, that a Hamiltonian in the rotating frame can be constructed:

1

where p = (pz, py) is the conjugate momentum, and U is the infinite potential
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well,

0 inside boundary

Ulz,y) = { (3.5)

oo outside boundary.

A word of explanation is required here. In the rotating frame the boundary
appears stationary; thus the particle is specularly reflected in this frame, and
so (3.5) is the correct equation to use for the potential. This means that H is
conserved in the rotating frame even though the particle is gaining and losing
momentum in the laboratory frame. So the rotating frame is the natural one in

which to examine the problem.

The force from (3.3) consists of a Coriolis part, —2imwz, and a centrifugal
part mw?z. This is equivalent to the force on a particle of charge ¢ in the
presence of a uniform magnetic field of strength B = 2mw /¢ perpendicular to
the plane region, and an electric field £ = mw?z/q. We can rewrite H to make
this analogy more apparent:

1
(p — qA)? = Smutr? + U(r), (3.6)

H=—
2m

where A is the vector potential given by

04, 0A,

B=5t- 5" (3.7)

Equation (3.4) and (3.6) have to agree, so A = %(—y, r) giving

1 1
(pz + mwy)2 + —(py — mw:n)2 — %mwz(m2 + y2) +U(z,y). (3.8)

H =
2m

" om

The conjugate momentum p is not the true momentum mr, but is in fact
p=mr+ qA, (3.9)

SO

H = lme? - Lwr? £ U(r). 3.10
2

ro|—

In complex notation p = mz+imwz = mbe~**. Thus p is similar to the momen-

tum in the laboratory frame. Hence ﬁpQ and w(yp; — €py) are independently



Section 3.1  Introduction 51

conserved between reflections, and correspond to conservation of linear and an-
gular momentum in the laboratory frame. However they are not conserved on

reflection, although their sum is.

It will be useful later to think of the 3-dimensional ‘surface’ of constant
energy in 4-dimensional phase space. It is easier to use mv = m7 rather than
p as the ‘momentum’. Then the surface of constant energy E = H(p,r) is the
surface of a 4-dimensional hyperboloid (formed by rotating a two-dimensional
hyperbola about one axis into the third dimension, and then about the second
axis into the remaining dimension (figure (3.1.1)). The 4-volume contained below
the energy surface and within the walls of the billiard will be used to calculate the
density of states for the quantum problem, using the Weyl rule with corrections
due to the boundary. Because H is not positive definite we need to investigate
E < 0as well as E > 0. E < 0 is interesting; the velocity reaches zero at a
finite distance § = \/W from the axis of rotation, and the disc |r| < § is
classically forbidden. This can be seen in the pictures of trajectories within the
billiard, where there exists a caustic boundary at |r| = §. The energy surface is
a hyperboloid whose foci lie on the plane v = 0, and this surface is asymptotic
to the conic surface v2 = w?r?. As E increases from its minimum value (i.e.
when the forbidden region fills the whole billiard and ¢ is maximum), § decreases
and the energy surface becomes closer to the conic surface v? = w?r?, until at
E = 0 they join. For E > 0 the hyperboloid is inverted and has foci in the plane
r = 0, and the whole of the billiard is accessible. For E < 0 and for certain
boundaTIy shapes it is possible to have several classically disconnected regions of

motion. This could be interesting quantum mechanically, with the possibility of

quantum tunnelling between the regions.

3.2 The Rotating Circular Billiard

Possibly the simplest example of rotating billiards is the circular billiard
table, rotating about a point on its edge. This was the first example to be
studied, primarily because its boundary is C*°, and also because at zero rotation
it is integrable; any non-integrability is due to the rotation. Suppose that the

circle has radius p, and the equation of the boundary is |r| = p(1 + cos 6),
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Figure 3.1.1. The energy surface E = const. shown in three of the four dimen-
sions of phase space z, y and v = |v|, (a). for E > 0, (b) for

E <0.
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where (r,8) are polar co-ordinates from the centre of the circle, with the axis of
rotation at (r,8) = (1,7). We can rescale the problem using z = 2/p, t — wit,
H — H/mp?w? to obtain dimensionless variables. We now see that the energy
is the only parameter of the system; all changes in size of boundary, speed
of rotation and masses of particle are equivalent to a change in energy with

appropriate scaling. The rescaled Hamiltonian is
H=1v2-1r24+U(r) (3.11)
This gives the equation of motion
z = (a + bt) exp(—1t), (3.12)

with the boundary given by

z=1+¢%. (3.13)

Figure 3.2.1. The phase co-ordinates (6;, ;) of a typical trajectory in the rotat-

ing frame. Perspective view of the billiard.

The co-ordinates we use are defined in figure (3.2.1). Suppose that at ¢t =0
the particle is on the boundary at § = 6y and is projected at a speed v and
at an angle ¥y to the tangent of the circle (measured anti-clockwise). Then

the particle is at a point a = 1 + ¢® on the boundary, and has a velocity
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p=b—1a= ivetl@ot¥o)  Thus its position at time ¢ is
2(t) = [(1 + %) (1 +4t) + ivte"("”%)] e ™, (3.14)

We can write the distance of the particle from the boundary as d =1 — |z — 1],
so that it hits the boundary when d again becomes zero at t = T'. The condition
d(t) = 0 can be easily solved numerically, but we must be careful that the
shortest T is found. A little thought will show that there is the possibility of
one (and no more than one) minimum in d(t) which may just go below zero,
so that the root may be easily missed. The method we used to cope with this
problem was to have a large step size At = 0.1 and find when the situation
d(t; — At) > d(t;) < d(t: + At) occurs, which indicates a minimum, and then
find this minimum exactly using a standard NAG routine. If the minimum is
negative we can bracket the root between (t; — At, tmin). Otherwise, we continue
stepping t until d(¢;) < 0. We can then bracket the root between (t; — At,tj). T
must be less than 27 because this is the time for one complete revolution, and so
tj < 2m. This test checks any errors in the program. Having bracketed the root,
we can then use a standard root-finding NAG routine to find T exactly. This
method is likely to work for most trajectories. But for a trajectory in which a
minimum and maximum both occur within a time span of 2At, the first root

may not be detected. This is however a very rare event.

The reflection condition v' | = —v,, v’y = v) (where prime denotes quantity
I I

after reflection) has a particularly nice form using the complex notation:
Y b 2
Z=—-z(z — 1)~ (3.15)

Figure (3.2.2) shows why this is so. From the diagram we find that

2 = well®¥) = iy(z — 1), (3.16)

3 = jue'BtP) = jy(z — 1)e™. (3.17)
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Figure 3.2.2. Specular reflection of the particle in the rotating frame.

Hence

5= —iv(z —1)e"¥ = —iv(z - 1)7le, (3.18)

and so equation (3.15) follows.

Thus by numerically solving for T', and using the reflection condition, we can
build up a series of bounce co-ordinates (6o, %o), (61,%1),--.,(0:,%5),. ... Thus

the bounce map has been implicitly defined.

It is interesting to study the angular momentum L = (ypz — zpy), which is
conserved between bounces but changes at reflection. Using complex notation,

and equation (3.9) we can write
L = Im(zp) = Im(z2%) — |2 (3.19)

Consider the first term:

Im(z3) = Im [(z i 1) [z]

=1Im [(1 - 2)Z + 2] (3.20)
= Im(3' + %) + Im(2%).
Hence the change in L at reflection is
sL=0L-L= Im(zfi’ — 2%)
= —Im(3' + 2) (3.21)

___I
= vy+vy,
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;/ are the y components of velocity in the rotating frame immediately

before and after reflection, respectively. Because H is conserved, 6L is balanced

where vy, v

by an opposite but equal change in the linear momentum %p2.

3.3  Periodic Cycles of the Rotating Circle

The fixed points and periodic cycles (p-cycles) of a Hamiltonian system
reveal much about the dynamics of the system, and in particular the study of
periodic cycles is relevant to the Gutzwiller trace formula [20], which relates
these purely classical quantities to quantum mechanical quantities through a
sum rule. In dissipative one-dimensional systems the bifurcation of periodic
cycles by period doubling is well understood. In contrast, bifurcations in two-
dimensional Hamiltonian systems are much richer and varied and are still not

completely understood.

Consider the map

(841, ¥ir1) = F(8i, %i)- (3.22)
Then we define the set of points (6;,;), for i = 1,...,p which satisfy
FP(8;,4:) = (6i, 1) (3.23)

to be an p-cycle of the map, and in particular the case p = 1 is a fixed point.
A little thought using the symmetry of the circular billiard will show that there

can be at most one fixed point and this must occur at = 0.

Figure 3.3.1. The fixed point viewed in the laboratory frame.
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In the laboratory frame (see figure (3.3.1)), we have
T
2sin (5> = 2|o|T, (3.24)

where T is the time between bounces. Also, the angle of projection % in the

laboratory frame (as defined in figure (3.3.1)) is simply

P =

o=

T. (3.25)

The angle 1; can also be expressed in terms of the angle and speed of projection

in the rotating frame. Using b = etV = 4(2 + ve'¥) we find

vsiny

t = ——. 3.26
an i vecosYP + 2 ( )
We can express T similarly using the equation of motion

(1) = [2(1 + i) +ivte™] e (3.27)

At t = T, the particle returns to its original position z(T") = 2, so taking the
modulus of (3.27) gives

4 = |2(1 +14T) + wTe?, (3.28)

and so
_ vsin ¢
1+ vcosy + %vz'

(3.29)

Thus incorporating (3.25) and (3.26) with (3.29) gives ¢ as an implicit function

of v:

tan Zvsiny = ——U—SM—— (3.30)
4 + 4vcostp + v2 2+ vcosy

It can be easily seen that the maximum v for which a fixed point exists occurs

when the circle sweeps out an angle of 7 radians, i.e. when T = m. Then (3.30)
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gives vcosy = —2, and (3.29) gives
vsiny = (1l +vcosy + %vz). (3.31)

Hence

1
2

v =2(1+4/7%)2 ~ 2.37089 (3.32)

is the speed of projection above which the fixed point disappears, and occurs at

the energy,

8
E=1st= — ~ 0.810569. (3.33)

IbiT

TbIT

Figure 3.3.2. A two-cycle viewed in the laboratory frame.

A two-cycle is the next possibility. In the laboratory frame (see figure (3.3.2))
we see that a two-cycle occurs when the particle is projected directly at the axis
of rotation, at any speed large enough to avoid hitting the circle before reaching

the centre. In the rotating frame we have
b= —|b| =i(2 + ve'?). (3.34)

Therefore

tany = —4/2v? — 1 (3.35)

and

9 1
T=" =
1

1
b| ~  tany /sz—l.

The minimum speed mentioned occurs when the particle hits the axis tangential

(3.36)
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to the edge (in either the laboratory or the rotating frame). This occurs when

the circle rotates through § radians, so T'= 7. Then
1
v =2(1+4/7%)2 ~ 2.37089 (3.37)

This is also the speed for which the fixed point disappears. Hence the fixed point

bifurcates into a two-cycle here.

The stability of fixed points and p-cycles can be studied by linearising about
one point in the cycle. Let @ = (,%) and let {X1, X3, .. ., Xp} be the p-cycle
with

X; = F{(Xy) (3.38)

and

FP(X;) = X;. (3.39)

Define the map G = FP, then {X, X3,...,Xp} are fixed points of G. Now
regard a point close to X7, say ¢; = X + 6; and let

ziy1 = G(x;). (3.40)

Then linearising about X gives
z;1 = G(X1) + Jo(X1)di

= X1+ Jg(Xl)(si (3.41)
biv1 = Ja(X1)é;,

where
8Gy  9Gy
_ 08 00
oy O

Using the chain rule, we can express Jg in terms of Jp, so
diy1 = JF(Xp)JF(Xp—l) . JF(Xl)(Si. (3.43)

Jp is called the tangent map of F. Now §; can be written in terms of the
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eigenvectors u of Jg defined by Jeu; = oju;, so

2
61 = Zc]-uj. (3.44)
Jj=1
Hence
2
bn = cjofu;. (3.45)
i=1

So the condition for stability of the fixed point, i.e. that 6, is bounded as n — o0,
is that |oj| < 1 for all j. In particular, if |01 = 1 and |oa| = 1, the fixed
point is elliptic. In Appendix A, the Jacobian Jp is calculated in terms of
6,v,v and T, where T is calculated numerically for general (6,7) or by using
the above formulae for a fixed point or a two-cycle. Because the system is
Hamiltonian, |o1| = |oa| = 1 for a stable p-cycle and hence all stable p-cycles
of two-dimensional Hamiltonian systems are elliptic. The stabilities of the fixed
point and the two-cycle were calculated for —2 < E < 22.5. It was found that
the fixed point is stable for —2 < E < —0.39, and the two-cycle stable for
'1.51 < E < 00. The positions and stabilities of these are summarised in figure
(3.3.3), showing the bifurcation at E = 8/n2. There is also another two-cycle
which exists between the points of the first two-cycle, but it has been difficult
to find this using methods similar to those above, and less fruitful methods such

as Newton’s method in two dimensions are required.

3.4 Approzimate Solutions for Adiabatic Skipping

We have seen that there is a wide variety of types of motion in the rotating
circle. There are fixed points and periodic orbits. There is also quasi-periodic
motion where the trajectory is restricted to a two-dimensional surface of phase
space. A subset of the latter occurs when the particle ‘skips’ in small steps along
the boundary of the circle. It is then possible to find the invariant curve in (6, %)

space along which these steps lie, by approximating 7" to be small. We start by
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-
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0.0

-2 -0 2 E 4 6 8
Figure 3.3.3. The angle of projection ¢ for the fixed point and a two-cycle,
versus the energy E. The full lines indicate that the periodic orbit

is stable, broken lines that it is unstable.

expanding z(T') as a power series in T’ to order T? to give

2v sin ¢

T~ . 3.46
v2 +2vcosy +cosf + 1 (3.46)

Suppose that A8, Ay, Av are the changes in 6,9, v respectively from one bounce
to the next. Then using the equation of motion (3.12) and the boundary condi-

tions (3.13) we obtain
U=(v+ Av)eHAI-v=0%) - [v(l —iT)e' —iT(1 + e-w)] e~ (3.47)

and

el = [(1 + e )1 +4T) + ivTei”[’] e~ — e, (3.48)
Equations (3.47) and (3.48) are exact. From these and using (3.46) we obtain
Af ~ vT cosp. (3.49)

But the calculation for Ay gives Aw & 0, which indicates that we need to find

the next term in 7. These further calculations could not be pursued for arbitrary
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¥ so we will restrict ourselves to small % and expand everything else to second

order in 7. Firstly we write
—T . 2 3
e T 14T - 372 44T (3.50)

SO
2T) ~ a+ 2T —i(s0 + Jia)T? — (30 + 3ia)t®, (3.51)

where g is the velocity in the rotating frame at ¢ = 0. This has one root greater

than zero, namely

2y 4v%(v + %) sinf

= 3
T= (v +1)2 1 cos6 + TR +O(°). (3.52)

We will write the first two terms as Ay and Bu? respectively for convenience.

As before we calculate A8 and Av. Equation (3.48) gives

A~ vAY + (vB — %Az sin 83 (3.53)

and equation (3.47) gives
U =~ [v— Ay sin 6]
+iv(1 = 24) — A(1 4 cos)] ¥ +1 [-B(1 + cosf) + A%sin 6 — 2vB] P
= 0"+ UMy + vy + Uy

(3.54)
Hence
argU ~ ( 1(,,)) ¢+ ( %,,.) - 1 (7.)12 11}2
UO UO [Ul ] (3 55)
= {1- A+ 2]}y |
+ {Asin() [1 —A (1 + lj:(;ose)] - B [2+ lizose]}q/)Z.
So A = A8 — ¢ — arg U gives
A~ 2(4v + 3cosf + 3)sinb 2 (3.56)

3[(v+1)% + cos 6]

Suppose diy/df is the tangent to the invariant curve. Then using the approxi-
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mation
dy dfdy v AY
dv ~ dvdd " sinf Af (3:57)
gives
dip (3v% + 8v — 6F)
dv ~ 3u(3v? +4v — 2E)¢' (3.58)
Hence
1
¥ ~ const (3v? + 4v — 2E)3 /. (3.59)

Equation (3.59) gives the shape of the invariant curves for small angle skipping
motion in the anticlockwise sense. It is interesting to pursue these calculations
for when ¥ ~ 7 and the motion is clockwise. We write ¢ = m — ¢ and again

calculate terms to second order, this time in e. By similar methods we find

2ve 4v%(—v + %)sin() 9
€

(v—1)24cosf  [(v—1)2+cos o)° O(%). (3.60)

T =

Let us write these coefficients of £ and €2 as A’ and B’ respectively. Then
A8~ —vA'e + (—uB' — 1A sin )¢ (3.61)

Ae & 2(4v — 3cosf — 3) si;19€2
3[(v — 1)% + cos 6]

: (3.62)

which gives

1
¢ = const (3v? — 4v — 2E)3 /. (3.63)

Equation (3.63) gives the invariant curves for small angle skipping motion in the

clockwise sense.

Let us see when equations (3.59) and (3.63) are valid. Both equations fail as
v approaches zero, because the respective angles v, e become large. Physically,
the particle is near the classically forbidden region, and is close to the point of
reversing direction. We also expect difficulties when the expressions inside the

cube roots become negative. This does not occur for equation (3.59) for any
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Figure 3.4.1. (a). Approximate invariant curves, (b). exact invariant curves for

the rotating circle. (i). E = —1.25. (ii). E = —2. (iii). E = —3.
(iv), E=0. (v). E=1 (vi). E=2 (vii) E=3. (vii)
E = 10.
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Figure 3.4.1. (continued) (iii). E = —3
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Figure 3.4.1. (continued) (iv). E = 0
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Figure 3.4.1. (continued) (v). £ =1
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Figure 3.4.1. (continued) (vi). E = 2
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70

Figure 3.4.1. (continued) (vii). £ = 3
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value of E. However, for equation (3.63), the negative sign of the 4v term means
that there is a singularity at (v — 1)? + cosf = 0, so that the corresponding

expression is negative for § in the range,
~5_2F - LV/1+6E <cosf < —§—3E+§VA+6E  (364)

with F in the range (,_%’ 2). This is interesting, because it is also the range of 6, E
for which glancing trajectories can occur, as we shall see in a later section. Here
in the clockwise motion (we shall see later) there is no possibility of glancing,
so invariant curves exist near ¢ = 0. In the anti-clockwise direction, there can
be glancing; these give discontinuities in the surface of section, and so invariant

curves do not exist near ¥ = .

Examples of both types of adiabatic motion are shown in figure (3.4.1).

3.5 The Poincaré Map

For the rotating circle the surface of section is given in terms of the co-
ordinates (,%) within the surface, as defined in section (3.2). The Poincaré
map is symmetric about the axis § = 0 due to invariance of the Hamiltonian

under time reversal and z-axis reflection combined (so-called T'S; symmetry).

The maps for various energies are shown in figure (3.5.1). One hundred
trajectories are followed on a ten by ten lattice for 250 bounces each. The first
energy E = —1.25 shows rings of island tori encircling the fixed point found in
section’(3.3). Between these tori are regions of chaos and from an examination
of the order in which the dots build up on the terminal screen (which the figures
cannot show), the chaotic trajectories do not pass from one region to another.
The explanation for this is that large tori, each one encircling the fixed point,
restrict these trajectories between them. Examples of these can be seen in the
figure. At E = —1 there is no evidence for these large tori, and if we look
at just one trajectory for a large number of iterations (figure (3.5.2)), we see
that it covers most of the Poincaré section except the outermost region. The
region of stability of the fixed point is much smaller than for £ = —1.25 and

the lack of influence of the fixed point accounts partly for the increase in chaos.
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(i). E = -1.25
Figure 3.5.1. Poincaré maps for 100 traj. ,initially ona 10 by 10 grid, followed
for 250 bounces. (i). E = —1.25, (ii). E = —1, (iii). £ =1, (iv).
E=2,(v). E=25,(vi). E =3, (vi). E=10.

At E = —0.38 the 4-cycle which appeared at E = —1 has disappeared and the
fixed point is again less stable. At E = 0 the fixed point cannot be seen; only
the analysis of section (3.3) shows that it still exists but is unstable. The phase
space appears completely ergodic here. At E=1a stable 3-cycle appears while
the 2—(i,ycle is still unstable. At E = 2 this has disappeared and the 2-cycle found
in section (3.3) has become stable, and remains stable for all higher energies.
The lower half of the maps have bands of invariant curves which increase in
number and extend to higher ¥ as E increases from F = 1 to E = 3.0. At
the energy E = 3.0 there reappear invariant bands in the upper plane which
separate chaotic regions. For very low E the Poincaré map becomes very regular
consisting mainly of invariant rings around a fixed point, and for very high FE the

map is also very regular consisting mainly of almost horizontal invariant bands

across the map.
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Figure 3.5.2. Poincaré maps for one trajectory followed for 25000 bounces. (i).
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Figure 3.5.3. Enlargement of one point of the three-cycle (right of centre, figure

3.5.2(iii)), showing bifurcations for a succession of energies.
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Figure 3.5.4. Joined Poincaré map for several bounces at E = 0 starting at

8y = 2.5, ¢9 = 0.5, showing mixture between chaotic motion and

regular motion in one trajectory.

Some sections of the map are enlarged and a sequence at different energies
displayed in figure (3.5.3), showing bifurcations of the periodic orbits into larger
p-cycles. At E = 0, where the map is most chaotic, we have shown one tra-
jectory drawn for many iterations with the dots in the Poincaré map joined by
straight lines (figure (3.5.4)). The purpose of this was to show possible regular
motion that would not be seen by just drawing dots. It can be seen that in the
anti-clockwise motion the trajectory appears to be regular, but this is not so
elsewhere. Thus the one trajectory appears to have both regular and chaotic
components. This possibility is not considered in the usual definition of chaotic
motion, where the Lyapunov exponent of instability is defined over infinite times
so that the regular component is swamped out by the chaotic component. It may

also explain why, in the computation of Lyapunov exponents, there still remains

some fluctuations other than statistical.
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3.6 Influence of Curvature of Trajectories

0‘0 Oe Oe Oe

(i). Fcor > Feent (ii). Foor < Feent (iii). Feor =0 (iv). Fcor-Feent > 0

Figure 3.6.1. Four types of trajectory possible for rotating billiards.

We shall see in this section that the changing curvature of the trajectories
in the rotating frame is a significant source of chaos in the rotating billiard. All
trajectories are arcs of four types of curve which were described by Frisk and
Arvieu [60] (see figure (3.6.1)). These may be obtained by considering the forces
acting at the point 7o when the particle is closest to the origin. From section

(3.1) the Coriolis force Fgor and the centrifugal force Fiepny expressed in vector

notation are

Foor = —2(Reliz], Im[i2]) = 2un (3.65)

Feent = (Rez,Imz) =r (3.66)

where u(r) is the speed of the particle at position 7 and n is the normal to the

trajectory as shown in figure (3.6.2).

At rg the two forces act in parallel. If the particle is moving clockwise at

this point then the forces act in opposite directions and we have three cases:

(1). Fcor > Feent at mo. Then the trajectory has the same sign of curvature

for all motion, and the curve is always convex.

(17). Foor < Feent at 7. Then the curvature changes sign near 7y and is

negative (concave) at 7.
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Figure 3.6.2. Trajectory showing unit tangent vector f, unit normal vector m,

and radius of curvature R.

(ii1). Foor = 0 at 7g. There is a cusp at g which is also at the boundary of the

energetically forbidden region.

If the particle is moving anti-clockwise the forces act in the same direction

and there is just one case:

(iv). Fgor-Feent > 0 at rg. There exists a loop in the trajectory passing through

0.

It is this fourth case with which we are interested in this section, as it leads to

“the possibility of trajectories which hit the edge of the circle tangentially, which
we shall call glancing trajectories. In the rotating circle they can only occur when

the impact is in the clockwise direction with % = 7 and only when the radius

of curvature of the trajectory is less than that of the boundary. For example

consider a set of trajectories starting from the same point on the boundary, but

at any angle 9o between 0 and 7. A typical set is shown in figure (3.6.3).

There are three groups of trajectories here. Some trajectories have ‘looped’
and split off from the main group and a third group breaks off after this. It can
been seen that these groups are separated by trajectories which just glance the
edge of the circle (at P and Q) and it is these which cause the discontinuities in
the angle #;. Figure (3.6.4) shows the group of trajectories as a vertical line in
the (6p, 1) plane which is mapped onto three disconnected curves in the (81, ¢1)

plane.

Here we see that an important source of the chaotic motion is the set of
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Figure 3.6.3. A set of trajectories originating from the one point with the same
energy, illustrating the discontinuity in position of the next bounce

due to the glancing points P and Q.

Figure 3.6.4. First iteration of the Poincaré map for the set of trajectories in

figure (3.6.3).

discontinuities in the map F. The mechanism that produces it is purely the cur-
vature of the trajectories, a feature previously studied only in the case of mag-
netic fields [28]. However, there the picture has other effects due to variations
and discontinuities in the curvature of the boundary. These glancing trajectories
are a major factor in determining whether the system exhibits chaos, because
they mark the points where nearby trajectories diverge. In particular, the kind
of chaos associated with them seems to be ergodic and mixing rather than the
weaker ‘quasi-integrable’ (as defined by Berry in [24]). These special trajectories
can only occur if the radius of curvature R of the trajectory at the boundary is

less than the radius of the circle. We follow the same method as [60]. In terms



Section 3.6 Influence of Curvature of Trajectories 84

of the tangential component and the normal component the acceleration of the
particle is given by
dv v?

. dv, 07 .
f=—t+pn (3.67)

where t and n are the unit vectors shown in figure (3.6.2). The normal compo-

nent is also

(FCOI' + Fcent.)-n~

Hence

2

= W+ rn

(3.68)

At the boundary of the circle n is parallel with the outward normal to the
circle but may be in the opposite direction. If they are in the same direction
the trajectory would curve in the opposite direction to the boundary. So the
particle must be travelling in the clockwise sense with n acting inwards, giving

rmn=1+cosf = %7‘2. Also, from energy conservation v?2 =2E + 12 so0

2F + r?
R= : 3.69
2v2E + 12 — 1r? (3.69)

For glancing trajectories to occur we require that 0 < R < 1, giving
4B + 4E(3? - 2) 4§t - 4r” <0, (3.70)
Using 72 = 2(1 + cos 6), this gives the limits for cos§ as follows

~2E-4/143E<cosf< -3 -3E+3y/1+3E. (3.71)

This requires that B > —% because otherwise the LHS of equation (3.70) is

e

positive definite. When the upper limit for cosf is —1, the maximum value
of the energy for glancing occurs at £ = 2. Thus there are several regimes.
For ——% < E < 0 there are two intervals for 6 in which glancing trajectories

can occur, one below and one above the z axis. For 0 < £ < 2 there is just
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Figure 3.6.5. Pre-image of glancing trajectories in the energy range —% <E<2.

one interval passing through cosf = —1. This interval decreases in length and

disappears at F = 2.

For the range of energies —% < E < 2 the pre-image of the glancing trajecto-
ries were plotted in figure (3.6.5) , which shows the line discontinuities in the first
-iteration of the map. At £ = ——% there are two points at § = +(m — cos“l(%))
from which the line discontinuities originate. As E increases these grow in length
and join at E = 0; the single curve then decreases in length and disappears at
§ = —m,¢ =, E = 2. For some of these energies we have also plotted in figure
(3.6.6) the first iteration of the map for points on a hashed grid made up of
horizontal and vertical lines in (6, ) space. The image shows the effect of the
discontinuities of the map. There is a large distortion near the discontinuities
in the middle of the interval —% < E < 2. Tt can thus been seen how the glanc-

ing trajectories and the discontinuities they produce are an important source of

chaotic motion.

Within the range —% < E < 2 we expect the number of disconnected chaotic
regions to be less, but that these will be larger so that a chaotic trajectory will
visit a larger region of phase space. We expect this because invariant curves,
which normally separate chaotic regions by forming bands across the Poincaré

surface or rings about the fixed point, will be broken by the discontinuities,
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-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 3.6.6. Poincaré map showing the effect of the discontinuities of figure
(3.6.5) after (a) first iteration, (b) second iteration. (i). £ = -0.2,
(ii). £=01. (iii). E=1, (iv). E=2.
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Figure 3.6.6. (continued) (iii). £ =1




Section 3.6 Influence of Curvature of Trajectories

(b).

-3.0 -2.5 -2.0 -1.S -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

Figure 3.6.6. (continued) (iv). E = 2.
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allowing the chaotic regions above and below these curves to merge. These
invariant curves are indeed destroyed in this energy range, as shown by following
one chaotic trajectory for many iterations and looking at the region in which it
resides ( figure (3.6.7), also figure (3.5.2)). However these curves are still found
to be destroyed for energies just outside this range (E = 2.5 and £ = —0.75) ,
although for energies further outside (E = 3.0 and E = —1.25) they reappear.
Thus there does not need to be discontinuities for these invariant curves to
be broken. We still maintain that the discontinuities are the main factor in
producing ergodicity for some values of the energy, but that there is still merging
of chaotic regions when the Poincaré map is continuous ( i.e. outside the range

of energies for which there exist glancing trajectories).

There is another important set of trajectories which we have not discussed so
far. These are the sliding trajectories which occur when the particle is travelling
tangentially and cannot reflect off the edge, because the radius of curvature of
the trajectory is greater than the radius of the circle or in the opp sense This
is exactly the opposite regime to the glancing trajectories. The possibilities
are shown in figure (3.6.8). When -2 < E < —% the particle slides in both
directions for all allowable 8, but the motion is reversed at § = +cos™!(—E —1).
For —% < E < 0 the anti-clockwise motion is the same as before, but after
reflection it leaves the edge at a special glancing point where R = 1, u.e. at

6 = cos_l(—% - %E - %,/1 + %E) By T'S, symmetry it enters this trajectory
at another special glancing point where § = — cos_l(—%—%E—%\/l + %E) . For

5

the clockwise motion the particle enters the sliding motion at 6 = cos'l(—§ —
%E +54/1+ 3E) and leaves it at § = —cos™H{-3 — 2E + $y/14+2E) . For
0 < E < 2 the anticlockwise trajectory is a complete circle, and the clockwise
motion is the same as for —% < E < 0. For E > 2 the trajectories are complete

circles in both directions.

The sliding trajectories are special cases of periodic orbits. For E > 2 the
sliding trajectories are two continuous bands at ¢y = 0 and ¢ = 7. It 1s the
influence of the stability of these orbits which give rise to the quasi-periodic
bands seen between ¥ = 0 and ¢ = . For E < —% the back and forth sliding

motion between — cos™!(—E — 1) < 8 < cos™}(—E — 1) gives a rectangular orbit
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Figure 3.6.7. Poincaré maps for one trajectory followed for 3000 bounces. (i).

E=-125 0y=0, g =0.7, (11) E=-125 6=0, ¥g=14,
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Figure 3.6.7. (continued) (v). E =3, 6y = 1.5, 9 = 2.3, (vi). E =3, 6y =

1.5, 9o = 2.7.
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(ii).

(iii).

AY

Figure 3.6.8. Sliding motion (a) in billiard plane, (b) in Poincaré section for (i).
E < -2, (i) -2 < E <0, (il). 0 < £ <2, (iv). E > 2. Shaded
regions indicate forbidden zones; shaded curves indicate glancing

regions of boundary.
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in the Poincaré map, which surrounds the fixed point and is its counterpart. For
—% < E < 0 the anticlockwise and clockwise sliding trajectories are parts of
chaotic trajectories which enter into the midst of the phase space and seem to
pass through all the chaotic region. For 0 < E < 2 only the clockwise trajectory
is still chaotic, and the stability of the anticlockwise trajectory accounts for
chaotic motion being restricted to the upper half of the Poincaré map. As the
energy approaches £ = —% from below and E = 2 from above we can see that
the stability of the periodic motion of the sliding trajectories is reduced, and
this accounts for the destruction of the quasi-periodic invariant bands and rings
below and above these limits respectively. Thus although we do not require
there to be discontinuities in the map for these invariant curves to be destroyed,

it appears that an approach towards such maps is helpful, because they are

associated with the stability of important periodic motion.

Thus an examination of glancing and sliding trajectories has accounted for

some of the main features of the motion.

3.7 Lyapunov Ezponents and Chaotic Volume

The Lyapunov exponent A(z) is a convenient measure of the degree of chaos
in the neighbourhood of a trajectory z(t) (here z = (p,r)). It measures the
local divergence of nearby trajectories. For a system with N degrees of freedom
in 2N-dimensional phase space, we consider a volume element on the (2N — 1)-
dimensional energy hypersurface. At a small time 6t later this volume element
will be translated and deformed. The eigenvalues o; of the linearised deformation
tensor ( the tangent map) give how much the volume element shrinks or stretches
along each of its principal axes, the growth factor being locally o; = exp(A;6t)
for the ith axis. For a conservative system the volume element is unchanged in
volume, so Y. \; = 0. Over a period of time, the volume element will either
remain compact, because growth and contraction in each direction averages to
zero over a long period of time, or the deformity will grow exponentially along
some of the principal axes and shrink exponentially along the others. The former
case is regular motion and the latter is chaotic motion, where the maximal

exponent of the growth in the limit ¢ — oo is defined to be the Lyapunov
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exponent. That is, suppose D; is the maximum diameter of the volume element
§V (t) at time t and Dy is this diameter at t = 0, then we define the Lyapunov

exponent of the trajectory z(t) in the centre of 6V to be

1 D,

A(z) = lim lim —log | — 3.72
(@) = Jim Jim, t10g () (372
It is not necessary in practice to know a priori in which direction Dy is; the
smaller exponential growths in other directions will be negligible compared to
the maximal growth, and hence the initial diameter can be taken in almost any

direction.

We use the standard method of Bennettin and Strelcyn [61] for calculating
A(z), which is better for discrete maps. We consider two nearby trajectories dis-
tance Dy apart, and measure their separation D; after the first bounce. Rather
than continuing with these two trajectories we change the second for one which
is a distance Dy from the first, but whose separation vector is in the same direc-
tion. We then measure their separation Dy at the second bounce, replace this
by Dp and keep on going for several bounces. Suppose D; is the separation after

‘the ith bounce, then A(z) can be written as

Alz) = lim — Zlog (D;:/ Dy). (3.73)

n—oc 1N

Let An(z) be the value of A before the limit is taken. We have found numerically
that Ay(z) is independent of the length (for 10712 < Dy < 107°) and direction
of the initial separation vector, but that small fluctuations in A are observed (of
approximately 3%) as it approaches its limiting value even after 10000 reflections.

This is in agreement with the work of Bennettin and Strelcyn.

For the rotating billiard problem, the trajectory z(t) is given in terms of its
polar position (r,6) from the centre of the circle, and the speed and direction of
its motion. Conservation of energy restricts the trajectory to three dimensions,

and so at each bounce v is a function of theta only:

v}(0) = 2(cosf + E + 1). (3.74)
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The length ds of a line segment in phase space is thus givén by

. 2
o
ds? = (1 + 8‘22 ) do? + vidy?. (3.75)

The Lyapunov exponent measures very clearly whether a trajectory belongs
to a regular region or a chaotic one, and how chaotic that region is. If the
limiting value is zero ( numerically set to some cut-off point) then the region is
regular, otherwise it is chaotic. Negative A’s are never found for Hamiltonian
systems because the sum of the characteristic exponents is always zero, so the

maximal exponent is always positive.

The chaotic volume x(E) is defined as the proportion of classically accessible

phase space M which is chaotic; mathematically,

_ S O, ¥))du
Judu ’

x(E) (3.76)
where O is the Heaviside step function and u is the Liouville measure of the

flow. Using equation (3.75) we find

du = (v* +sin®0)? d6 dy. (3.77)

To calculate x, a Monte-Carlo method is used. A uniform distribution of
random points in (8, ) space is chosen. The Lyapunov exponent is calculated
for each trajectory starting at these points, and if A > 0.05 it is accepted as

chaotic. The Monte-Carlo estimate is

(f2) = ()

, 3.78
Norc (3.78)

/M £(6,)d0dy ~ Vol(M) | (f) £

where Njsc is the number of Lyapunov exponents sampled, and (f) denotes
the mean value of f. The numerator of (3.76) was calculated using this. The
denominator was found by the same method, and it was also calculated by a

quadrature method in order to test the Monte-Carlo method for accuracy.
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Figure 3.7.1. Chaotic volume x versus energy E for the rotating circle.

For each energy E, Lyapunov exponents for 250 orbits were calculated using
/300 bounces for each orbit. The resulting graph is plotted in figure (3.7.1).
The statistical errur from the Monte-Carlo integration is much larger than the
systematic error due to evaluating A(z) for this number of bounces, so the error

bars are two standard deviations thick as evaluated by the Monte-Carlo method.

The graph shows clearly the approach to integrable motion in the limits
E — —2 and E — oo, and the ergodic motion near —% < E < 0. The chaotic
volume does have the disadvantage that it does not give any indication of the
number of separate chaotic regions. It would perhaps be better to calculate the
chaotic volume for each chaotic region. For this one would have to either use the
fact that the Lyapunov exponent is the same throughout a single chaotic region
and different between regions, or use several trajectories to separate the phase
space into several regions before calculating Lyapunov exponents. The advantage
of the latter method would be that then only one Lyapunov exponent need be
calculated, and the chaotic volume for the region could then be calculated from

this and the size of the chaotic region.
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In this section we have not described the Kolmogorov entropy. This is be-
cause the level statistics for the quantum mechanical problem of a classical com-
pletely chaotic system do not depend on the strength of mixing, but only that
there is mixing. Thus the simplest assumption is that when there are some
regular and some chaotic regions there will again be no dependence on the Kol-

mogorov entropy. The chaotic volume appears to be the most natural alternative.
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4. Quantum Billiards in a Rotating Boundary

4.1 General Rotating Billiards

There are many reasons why rotating billiards are good systems to study
quantum mechanically. Firstly, the classical mechanics show strong chaotic mo-
tion for a good range of energies, and almost integrable motion for very small
and very large energies, making the study of the transition from integrability
to chaos possible. Secondly, the boundary can be simple, because the chaotic
motion is due purely to the rotation, so computations are easier to implement
than, for example, the stadium billiard. Thirdly, if the boundary does not have
reflectional symmetry, the system is time-reversal breaking, and the relation to
random matrix theory for GUE statistics can be tested. Fourly, rotating systems
are relevant to nuclear physics—they are two-dimensional examples of the model
of Inglis [62] , which was used to analyse the nucleonic response to the rotation

of the nuclear field.

We will be considering conservative systems with the Schrédinger equation

= el
HY = Zh'a—t, (4.1)

whose solutions are ¥ = 3. a;3i(z) exp(iEjt), where
]?f’(/)Z = E;;. (4.2)

The technique we use to solve equation (4.2) is the Rayleigh-Ritz variational

method, using a truncated set of orthonormal basis functions ¢; satifying

/¢ 43 d% =8, (4.3)

=0 on boundary.

In the Rayleigh-Ritz method, a functional I(yM) = I(ZT_ e QST) is mini-
malised over ¢,, where 1/)1M is an approximation to the true %; using the trun-

cated basis ¢; for i = 1,..., M and M is the size of the truncated basis. . The
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minimalisation is the solution of the eigenvalue problem,
M M M M
Hij ¢y = B, (4.4)

where
Hf;l = /¢;V2¢Z~ d%  fori,j=1,...,M. (4.5)

The matrices which diagonalise H;; being the coefficients cg). The eigenvalues
Ef” satisfy

and are the best upper bound on E; using the truncated basis. This is an

extension of the variational method used to obtain the ground state of a system,

often found in undergraduate texts on quantum mechanics.

The Hamiltonian operator corresponding to equation (3.4) is

T

-
3 V* + iwhdg + U(z, y), (4.7)

where » = (z,y) = (rcos8,rsind), and U(z,y) is the infinite potential well.

This can be written as

~ 1
= o (~itV - A + V(2,9) + U(e.0), (48)
where
A= w(—y,ﬂ?), (49)
V= —%mw‘?(m? +42). (4.10)

As before, we introduce some length scale p (which determines the size of the
billiard) and rescale the problem 7 r/p, t — wt, H — H/mp2w2, h —

h/mp*w to obtain
~ A
H= —7V2 +ih8p + U(z, y). (4.11)

Thus we see that H depends on one parameter, h for a particular choice of

boundary. Unlike stationary billiards, we cannot scale H to remove A, because
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the mechanics depend on the energy. We must therefore choose particular values
of % and find the energy eigenvalues, some of which may be in the chaotic energy
range, and some in the integrable range. The problem with this technique is that
we do not obtain eigenvalues which are associated with constant classical energy,
and hence with the same phase space behaviour. One modification, suggested
by Berry and used by Delande {63] is to find the eigenvalues of f; i.e. to regard
the energy E as a parameter which we fix, and 3 (not ﬁ) as an operator whose

eigenvalues we find from

hpi = hiti. (4.12)

This is a better method, we will shall discuss in a later chapter. Now we shall

continue with solving equation (4.2). First, we rescale H again to obtain
H = —V? + 2iady + U(z,y), (4.13)
where H = 2a2ﬁ, a = 1/h. Equation (4.13) has the eigenvalues,
Hpi = Ei. (4.14)

There are several boundaries that appear to be suitable for study. We shall only
consider in detail one of these—the circular billiard, but other models are the

rectangular billiard, and the circular sector.

(). The Rectangular Billiard

We consider a rectangular billiard with sides of length 1 and a. The nor-

malised basis functions to use are

2 (wmm

¢i(z,y) = ﬁ sin

) sin(mny), (4.15)

which give matrix elements,



Section 4.1 General Rotating Billiards 103

Hij = (j|HI7)
m2
== 7T2 ('a_z + nz) 5mm’5nn’
([ 16ic mm’nn’(l - (_1)m+m')(1 _ (_1)n+n’)
72 (m2 - ml2)(n2 _ n’2)
a 1 ,
X[ 2 _ 12y 2_12] for’Z:ZZ
) fomm) el A ) © (416)
 (f ———————— n+n m=m
—2ia (=) (1 - (-1) ) for 75m
. mm/ , o
| Zie oy (1 (207, for 20"

This has been diagonalised numerically, but the convergence of the eigenvalues is
bad as the size of the matrix was increased. We can see why this is by considering

the off-diagonal terms and Gerschgorin’s theorom:

Theorem. Let A € C" x C". Then each eigenvalue of A lies in one of the
Gerschgorin disks D; in the complex plane, defined by

Di={A: A=Al <D |Aiglp, i=1,...,m
i#i

Consider, for example, the elements H;; for m = m', n 4+ n' = 2p 4+ 1 where

p is a positive integer. Then

2 > !
m 2 nn
A= 7(2( ) + nZ) < 81(711)1 + 87(711)1 + i —4aam, (4.17)
n'=2p+1-n
p=0

1 1 . . . .
where 8,(n7),,, S,(n,,)L are other sums which we are not interested in. Just consider

the last sum, with n fixed and n’ very large; then it is always greater than

o0

4aan
>oo- — (4.18)
n'=2p+1-n
p=0

which is divergent. Hence there is no guarantee that the method of diagonalising

the matrix at any size will give the true eigenvalues to any accuracy. Thus with
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this limitation, and without more promising basis functions, we will study the

quantum mechanics of this example no further.

A preliminary investigation of the classical mechanics has be made. From
the studies of the rotating circle, the rotating rectangle is expected to be more
chaotic (because, with straight walls, the possibility of glancing trajectories is
greater), and this is the case. There are however algorithmic difficulties with
the rectangle: for the circle, the distance function d(t) = 1 — |z — 1| was very
simple—it has at most two zeros. But for the rectangle, there are four distance
functions, one for each wall, and each one can have many zeros. We thus have
to be very careful to find the first zero, testing for shallow minima, maxima of
both the function and its derivative in order to correctly bracket the root for
each wall, before taking the lowest ¢ over all the walls. Secondly, the phase space
is more complex—the sharp corners mean that it is a patchwork of pieces joined
in a jagged fashion. If the particle hits the corner exactly, it is reflected straight

back.

(b). The Rotating Sector

Figure 4.1.1. The rotating sector billiard.

This is a sector of a circle of radius 1, angle ¢ subtended at the centre,
rotating about the point of the wedge (figure (4.1.1)). The rotating sector uses
the rotational symmetry of the 2iady term to advantage. The symmetry of the
circle, of which the sector is a part, is centred at the same point as the 2iady

term, so this simplifies the Hamiltonian matrix.
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Using the basis functions
Gt = leJm()‘mlr) sin(mO), (4.19)

where m = pr/¢ (integer p), and Apy is the I*® zero of the m't Bessel function,
and
Ny = 2 form> 0, (4.20)
|5 (At VO
gives
Hij = )‘En157nm’5ll'+
16:amm’ 1

p(m? — m'2) T} (M) Ty (M)
1
x [ drrJp(Agur)Jmt (Amorr)  for (m + m')¢/m odd integer;
0

0 elsewhere.

(4.21)
We have used only integer Bessel functions above, and this restricts ¢ to be
7 [integer.

Note that in the classical mechanics, the arc wall does not act any differently
from the stationary case. Thus all the chaotic motion is due to the straight walls.
We would like to study the behaviour of the off-diagonal terms in order to study
convergence. Unfortunately, it was not possible to find asymptotic expressions

for the integral of two Bessel functions above, so this could not be done.

(¢). Rotating Ellipses [60]

Of -particular interest is the elliptical billiard, rotating about its centre. In
the liquid drop model of nuclear physics, one may regard the nucleus as a bag of
liquid distorted into an oblate ellipsoid by rotation, and may to a first approx-
imation be modelled using a single particle wavefunction (62]. This is simply
the three-dimensional version of the rotating ellipse studied by Frisk and Arvieu.
They study the classical mechanics of the system, and show that (similar to the
rotating circle), it shows regular motion for very low and very high energies, and
chaotic motion for intermediate energies. It would be interesting to study the

quantum mechanics of this system.
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4.2 Energy Levels of the Rotating Circular Billiard

It is more appropriate to use polar co-ordinates whose origin is the centre of

the circular billiard. The Schrodinger equation becomes,

Hop =~V + 2ia { <1 + C°:9) 595 + sinQ%} )= EY (4.22)

Now using the orthonormal basis functions
Qsml = le-]m(/\ml'r)eime, (4-23)
where )\,,,; are the zeros of the Bessel functions, and

le = [\/7_rJ7,71(/\nll)] - (424)

we obtain the matrix elements of ‘H

“Houmetr = <m’ll1 H Iml>

A'?nl — 2am, for ' = l,m, =m;

1
= —27ra>‘mlelN1n’l' fd'f‘ TJ771(/\771lT)Jm(/\m’l’r)a for m, =md* 1;
0

0, ' elsewhere.
(4.25)

The Bessel functions were computed to 14 figure accuracy using NAG routines
for Jy(z) and Ji(z) and calculating J,,(z) from these by upward recursion for
large = (z > n), and downward recursion for small z. The zeros were found
by bracketing the root using McMahon’s formula and the asymptotic formula
for large orders [54] then using Newton-Raphson and bisection methods, and
were sorted in ascending order. The integrations were computed to 10 figures
using an adaptive Gauss 30-point and Kronrod 61-point NAG routine. This is
particularly good for oscillating integrands. Diagonalisation was performed using
another NAG routine which reduces matrices to real symmetric tridiagonal form,
and then uses the QL algorithm. [64] was a very useful source for many of these

routines.
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The eigenvalues are the diagonal elements of the diagonalised Hamiltonian
matrix. When a = 0 the matrix is already diagonal; the basis functions are also
eigenfunctions. But the diagonal elements >‘12nl are not in ascending order. We
expect the high-lying levels to be most affected as a increases, so the matrix
was re-ordered so that the low-lying levels are the first to be calculated. This
will increase the reliability of the computed eigenvalues. We thus sort the zeros
A in ascending order, using the mapping obtained [m,!] — 7 to re-order the

Hamiltonian matrix,
Hij = Hum()()n§)kG) (4.26)

In order to diagonalise this matrix numerically we need to truncate it to a finite
size. The difficulty is knowing when the truncated matrix is a good approxi-
mation for the infinite one, and how well the eigenvalues converge to their true
values as the size of the matrix is increased. Unfortunately, because we can-
not find asymptotic formulae for the Bessel integral, foldr I (A Y m(Amer),
we cannot use Gerschgorin’s theorem to set a theoretical bound. Resorting the
matrix elements as above must help, because we expect that the eigenvalues
for o # 0 are similar to those at a = 0, at least for small «. But as o — o0
(the semiclassical limit & — 0) high-lying elements of the matrix are likely to
affect the low-lying elements significantly. It is even hard to tell whether the
limiting matrix is even diagonalisable. Presumably it is, because otherwise a
semiclassical limit would not be possible. My own solution to this problem was
to always diagonalise two size matrices (in this case 300 x 300 and 380 x 380)
and to then compare their eigenvalues. If the relative error of eigenvalues is
greater than 10%, that value is rejected. By this criterion it was possible to
diagonalise matrices in the range 0 < a < 15. Seventy five matrices of each size
were diagonalised within this range. Only the first sixty gave enough accurate

eigenvalues to be used.

At the time of these calculations, I did not have a theoretical expression for
the asymptotic number of modes. So the staircase function N (E) was fitted nu-
merically. The semiclassical Weyl rule with corrections for a stationary billiard,

reviewed in section (2.9), gives terms in VE and €, and a constant. We assume
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Figure 4.2.1. The unfolded energy level spectrum ANy(E;) for the rotating cir-

cle versus @ = 1/h. The broken lines denote curves of constant

classical energy at (from bottom to top) £ = -1, —%,O, 0.5.

that the rotation causes a deviation from this. We tried several fits, the best

one occurred when adding a quadratic term, giving

No(E) = a + bE + cVE + dE? (4.27)
where a, b, ¢, d are constants. So

-1
(AE(E)) = [d—;/g—”(g)} . (4.28)

The ratio of the spacing to the local mean spacing is

Eiv1 — & _ d“AfO(ng — &) = No(Eiv1) — No(&). (429)

5i=TaEE)) © dE -

Thus we can use the ‘unfolded’ spectrum e; = Ny(&;), with S; = e;11 — €.
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The lowest fifty eigenvalues e;(a) of each matrix are plotted against the
parameter « in figure (4.2.1) For small « and high energy there are a large
number of apparent crossings, but the resolution of the graph is not good enough
to distinguish whether these are real or not. Upon closer inspection some appear
to be real, but they are more likely to be avoided crossings with exceedingly
narrow separations of the order exp(—constant/#). This is predicted by Berry
[24] for integrable systems from consideration of tunnelling between neighbouring
tori (which is disregarded in the semiclassical torus quantisation). Thus much
of the spectrum for low a appears to be ‘regular’. However for large o and low
energies the pattern of the spectrum changes. There are less level crossings, and
those which do exist are actually avoided crossings. The energy levels are also
much more evenly distributed. This is the transition of the regular spectrum
where there is a large probability of near degeneracies (P(S) — constant as
S — 0) to a chaotic spectrum where there is level repulsion and hence little
probability of degeneracies (P(S) — 0 as S — 0). Each near crossing shows
strong mixing between states, and wavefunctions appear to exchange quantum
numbers. This is manifested by the exchange of their slopes d€;/da. Such mixing
is required many times if we expect regular (in fact separable) energy levels at
a = 0 to be continuously deformed to the ‘random’ energy levels in the chaotic
region. Also on figure (4.2.1) has been plotted curves of constant classical energy
at E = —1, E = 0.5, between which the classical motion is mainly chaotic, and
E = —%—, E = 0 between which the motion is almost completely chaotic. The
figure clearly shows that between these curves there is little level crossing, but

outside them there is much level crossing.

4.3 Energy Level Spacing Statistics

The energy level spacing distribution is not a very useful property to plot
directly. P(S) can only be computed averaged over an interval, and in order
to have enough eigenvalues in each interval (or bin) a large size bin is required

which reduces the resolution of the graph. It is more natural to use the integral
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distribution:

S M
I(S) = / P(z)de = lim_ % Y oS - 5) (4.30)
0 =1

and then the spacing values are used fully. I(S) is approximated by the empirical

distribution function (EDF),

El

M
o(S - ) (4.31)
Y

We would like to investigate the spectrum around a particular energy E to
see whether its statistics are related to the degree of chaos in the classical phase
space. Thus Ip(S) was computed for several ranges of the quantum label 2
of the energy level e;. There are two properties we wish to maximise; we wish
there to be a large number of eigenvalues in order to distinguish between different
statistics, but opposing this we wish the energy range to be small enough in order
that the classical phase space does not change significantly over the energy range.
To be able to do this well we require i to be small ( « large). Ranges 1 =1 to
50, 7 = 50 to 100, = 100 to 150 were chosen. The classical energy ranges to
which these correspond are shown in table (4.3.1). The combined ranges 7 = 1

to 100 and 7 = 1 to 150 were also used.

To each distribution the Kolmogorov-Smirnov and the W? EDF statistics
tests were made [65] , to determine the goodness of fit to either a Poisson or
a GOE distribution. The W? test seemed to be the most powerful test in this
case. The results for the W2 test are shown in table (4.3.2). Let us consider
the lowest 50 eigenvalues. For low o the test accepts both distributions, so we
cannot say which distribution the data fits. For o in the range 3.2 to 3.8 and
5.8 to 6.6 the data fits only the Poisson, and for « in the range 4.0 to 5.4 and
6.8 to 12.0 the data fits only the GOE. Above a = 12.0 the energy levels lose
accuracy. The results show that the spectrum does behave as expected for large
o. However there is not a smooth transition from Poisson to GOE statistics as
we might have expected, but an intermittant one. At one point the spectrum

becomes extremely regular, where we might have expected it to be quite chaotic.
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Table 4.3.1. The first, fiftieth, one hundredth, and one hundred and fiftieth
energy levels of the rotating circle, scaled to correspond to the
classical energy E. It shows that the energy range condenses onto

the most chaotic strata of hyperenergy surfaces in phase space.

a h E, Es E1o0 Eiso
0.400 2.5000 17.8 1274.9 2547.9 3808.3
0.800 1.2500 4.2 314.6 625.2 938.6
1.200 0.8333 1.7 137.9 272.3 411.0
1.600 0.6250 0.7 76.3 150.4 229.5
2.000 0.5000 0.2 47.1 95.3 145.1
2.400 0.4167 -0.1 32.0 65.6 99.8
2.800 0.3571 -0.3 22.8 47.7 72.3
3.200 0.3125 -0.5 17.0 36.1 55.0
3.600 0.2778 -0.6 13.2 28.2 42.8
4.000 0.2500 -0.7 10.5 22.5 34.4
4.400 0.2273 -0.8 8.3 18.1 28.1
4.800 0.2083 -0.9 6.6 14.8 23.1
5.200 0.1923 -0.9 5.4 12.3 19.4
5.600 0.1786 -1.0 4.5 10.3 16.5
6.000 0.1667 -1.0 3.9 8.8 14.2
6.400 0.1563 -1.1 3.3 7.5 12.2
6.800 0.1471 -1.1 2.7 6.5 10.6
7.200 0.1389 -1.2 2.3 5.7 9.3
7.600 0.1316 -1.2 2.0 4.9 8.2
8.000 0.1250 -1.2 1.7 4.4 7.3
8.400 0.1190 -1.2 1.4 3.9 6.4
8.800 0.1136 -1.3 1.2 3.4 5.7
9.200 0.1087 -1.3 1.0 3.0 5.1
9.600 0.1042 -1.3 0.8 2.7 4.5
10.000 0.1000 -1.3 0.7 2.4 4.1
10.400 0.0962 -1.3 0.5 2.2 3.7
10.800 0.0926 -1.4 0.4 1.9 3.4
11.200 0.0893 -1.4 0.3 1.6 3.0
11.600 0.0862 -1.4 0.2 1.4 2.8
12.000 0.0833 -14 0.2 1.3 2.5

The next range of eigenvalues from i = 50 to 100 has an energy range which
does not enter the chaotic region until a is about 8 or 9. There is some evidence
for a transition in the spectrum near o = 8.8, but above this eigenvalues are
unreliable, and there is again evidence for GOE statistics for small o (near 3.8).
The spectrum for ¢ = 100 to 150 shows little evidence for GOE statistics in the
range of a = 0.0 to 5.0 which could be tested. This is expected, because none

of the energies enter the chaotic region. For z =1 to 100 and i = 1 to 150 the
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Table 4.3.2. The W? statistic W2

mimp for the ntlh eigenvalue to the ni} eigen-

value. Table (4.3.1) gives the corresponding energy ranges. The
rejection of the fit is at a significance level of 5% (critical W2, =
0.460). The A or R after the statistic denotes acceptance or rejec-
tion respectively of the fit.

W? Statistic for Wigner Distribution W? Statistic for Poisson Distribution
o Wiso Wb 100 Wigo,150 Wi Wéo,100 Wito 150
0.4 0.300 A 0.604 R 0.507 R 0.257 A 0.124 A 0.101 A
0.8 0.257 A 0.441 A 0.546 R 0.294 A 0.162 A 0.074 A
1.2 0.228 A 0.578 R 0.576 R 0.400 A 0.081 A 0.084 A
1.6 0.267 A 0.770 R 0.785 R 0.416 A 0.063 A 0.066 A
2.0 0.320 A 0.624 R 0.390 A 0.235 A 0.045 A 0.144 A
2.4 0.166 A 0.552 R 0.272 A 0.328 A 0.140 A 0.232 A
2.8 0.300 A 0.392 A 0.703 R 0.293 A 0.176 A 0.135 A
3.2 0.523 R 0.284 A 1.068 R 0.100 A 0.338 A 0.040 A
3.6 0478 R 0.279 A 0.941 R 0.161 A 0.299 A 0.043 A
4.0 0.219 A 0.333 A 1.003 R 0.508 R 0.179 A 0.035 A
4.4 0.237 A 0479 R 0972 R 0.482 R 0.112 A 0.087 A
4.8 0.185 A 0912 R 1.277T R 0.822 R 0.043 A 0.048 A
5.2 0.131 A 1.854 R 0.742 R 0.695 R 0.174 A 0.051 A
5.6 0.302 A 1.413 R 0.638 R 0.229 A 0.056 A 0.056 A
6.0 0.852 R 1.086 R 0.780 R 0.113 A 0.039 A 0.041 A
6.4 0.809 R 0.857 R 1317 R 0.115 A 0.073 A 0.051 A
6.8 0.179 A 0.656 R 1.086 R 0.500 R 0.058 A 0.062 A
7.2 0.270 A 0.701 R 0.903 R 0.630 R 0.062 A 0.353 A
7.6 0.113 A 0.812 R 1.025 R 1.236 R 0.026 A 0.066 A
8.0 0.071 A 0.646 R 1.254 R 0.659 R 0.065 A 0.136 A
8.4 0.055 A 0.533 R 2.038 R 0.894 R 0.150 A 0.281 A
8.8 0.071 A 0.317 A 1.850 R 0.826 R 0.247 A 0.310 A
9.2 0.112 A 0.695 R 1.846 R 0.685 R 0.058 A 0.345 A
9.6 0.074 A 0.739 R 3115 R 0.968 R 0.114 A 0.671 R
10.0 { 0.097 A 0.958 R 3.906 R 1.182 R 0.102 A 0.940 R
10.4 0.080 A 1.353 R 3904 R 1.026 R 0.078 A 0.927 R
10.8 0.128 A 0.764 R 1.867 R 1232 R 0.028 A 0.362 A
11.2 0.129 A 0.503 R 1.027 R 1.509 R 0.202 A 0.147 A

11.6 0.159 A 0.178 A 0.782 R 1.836 R 0.609 R 0.196 A
12.0 0.196 A 0.138 A 1.455 R 2281 R 0.436 A 0.161 A

larger number of eigenvalues will make the statistical tests more powerful, but
the energy range is too large to expect uniform statistics except at very low «

where we expect Poissonian statistics almost everywhere.

Typical members of these sets of distributions are shown in figure (4.3.1).
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the integral (cumula-

tive) distribution (right) for the rotating circle. The broken curve

is the Poisson distribution, the chain curve is the Wigner distribu-

tion and the full curve is the distribution found by fitting the data

by least squares to equation (4.33). The figures (i)-(v) correspond

to a = 2,4,6,8,10 respectively, and are drawn for (a) the first 50

levels (b) the next fifty levels (c) the levels £19g to E150.
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4.4 Spacing Distributions for Mized Systems

We consider here a model, first described by Berry and Robnik [66] for
systems that have both regular and chaotic regions in phase space. This is a

simple model that assumes:

(1). each disconnected regular region in phase space gives a level sequence

whose statistics are Poissonian.

(i1). each disconnected chaotic region in phase space gives a level sequence

whose statistics are GOE, GUE (depending on the time-reversibility).

(431). the proportion of the total level sequence due to the ith region is equal to

the Liouville measure p; of that region (with Y, p; = 1).
(tv). the level sequences are superposed to give the total sequence of levels.

The reasoning behind (i) and (ii) is that regular regions will give regular
levels, and chaotic regions give irregular levels. We can justify (iii) because each
level ‘occupies’ a volume RN in phase space, so we expect the number of levels
due to a region of phase space to be proportional to the volume of that region
(except for boundary corrections). Assumption (iv) means we assume that the
two types of region do not classically communicate, and they can be treated as
separate quantum mechanically. An argument against this is that they are not
easily decomposed from each other, and the detail of their entanglement may be
significant when it is no longer semiclassical. That is quantum tunnelling may
be important. Item (iv) is the same as assuming that the Hamiltonian matrix is
block diagonal, with no coupling terms between each block (which represents a
disconnected region). Within a block there may be strong coupling, due to the
ergodicity of chaotic motion, or no coupling, due to the non-mixing nature of

regular motion.

From these assumptions Berry and Robnik show that the probability density
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function is,
d? M v
= —— _I’I'IS _— ’
P(S) 757 [e i|_|2 erfc ( 5 pﬁ)] , (4.32)

where p1 is the sum of all the Liouville measures for the regular regions, and
and p;, 1 = 2,..., M is the Liouville measure for each chaotic region. So P(0)
is 1 — wa u? If there are many chaotic regions of equal weight, say g =
(1 — p1)/(M — 1) then P(0) — 1 as M — oo, showing that there can be level
clustering, even if there is strong chaotic motion. Even if there is only one large
chaotic region, with say py = %—, P(0) is %. Thus to expect detectable level

repulsion, with few energy levels, we need to look at the most chaotic energies

of our rotating circle.

Before doing so, we should mention that this simple model has been chal-
lenged by Bohigas, Tomsovic and Ullmo [67] . They realised that important
contributions are present when the diffusion of a trajectory in a chaotic region
is hindered by partial barriers of the motion due to cantori and their associated
invariant stable and unstable manifolds. These partial barriers reduce the clas-
sical flux transfer between parts of the chaotic region. This introduces long time
scales for the trajectory to visit both sides of the barrier. Quantum mechanically,
this time scale may be longer than the break time beyond which quantum chaos
is suppressed by the AN graininess of phase space. Thus the partial barrier may
be a true barrier quantum mechanically, so that the two chaotic regions should

be regarded as disconnected.

From figure (4.2.1) it can be seen that for small o there are few levels that
are in the chaotic energy range, and so it is not possible to display level statistics
for such a small number of levels. As we have seen earlier, if we take the first
fifty levels for low a (4.0 < a < 5.4) we see what seems to be level repulsion.
But from figure (4.2.1) it can be seen that this is due to the non-random hash
pattern of the level, giving a statistically small number of crossings at some a’s.

We would expect better results with many more levels.

We would like to choose energy levels from the most chaotic region; however,

at low a there would not be enough levels. Hence we use the first fifty energy
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levels. These are mostly in the integrable region for small o, and mostly in the
chaotic region for large o. The Berry-Robnik model does not apply for small a,

because:
(3). it is not semiclassical in this region, since & = 1/a is large.

(43). it is not for a particular energy surface—the energy range is too large—
and so subsequences are not superposed randomly (there may be a Poisson

sequence adjacent to a GOE sequence).

However, we will still use the model, because it shows the transition from
Poisson to GOE, and we expect it to be a good model for large a. Also, for
simplification we suppose that there is only one large chaotic region of chaotic
volume g, and that the rest of phase space is regular of measure v, so p+v = 1.

The Berry-Robnik formula then gives
I(S;p) = 1 — pexp(—vS)exp (—in(pS)?) - vrerfc(3y/mpS), (4.33)

where I(S; 1) is the integral distribution.

For each distribution at each o and each of the three energy ranges, we find
u by numerically fitting I(S; x) to the data. The resulting fitting parameter u is
plotted against a for the three energy ranges in figure (4.4.1). Clearly, there is
a sharp change in statistics at a = 6 for the lowest fifty levels, and similarly for
o ~ 3.5 which reflect the non-randomness of the levels described earlier (they
correspond to the vertical bands of high clustering in figure (4.2.1)). There are
similar'changes for the higher level sequences. The lower eigenvalues fit an almost
pure GOE distribution for & > 9.6. This agrees well with the classical prediction
from figure (4.2.1). Only the first sixty eigenvalues are accurate enough at o =
12, so we cannot consider the levels higher than this. Above o = 11.4 there
is some tailing off of u, which may be due to the small regular regions still
remaining on the borders of the energy range, particularly —2 < FE < —1, which

is becoming large enough to affect some of the lowest levels.
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Figure 4.4.1. The fitting parameter p of the cumulative mixed distribution (4.33)

versus .

4.5 The Asymptotic Level Density for Rotating Billiards

We derive, using Balian and Bloch’s method reviewed in section (2.9), the
asymptotic mean level density for rotating billiards. The following calculation
generalises totating billiards to billiards in the presence of a uniform magnetic

field and a scalar potential. Firstly, we need the Green function for the un-

bounded case of a free particle in such fields:

(E — Ho)Golg - ¢') = 8(¢ — ¢), (4.34)

where

Hy = ﬁ (—ihV — A(q))* + V(q), (4.35)

with A, V defined by equations (4.9) and (4.10) (here we drop the bold notation
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for convenience). The Fourier transform of Go(g) defined by

1 ~ .
_——— pq
Go(q) G Ly pGo(P)e d% (4.36)
is
Go(p) = 1 (4.37)
W=V - L - AP '
Hence
1 eP(a=1) 4%
Go(g—¢') = /
) (2m)2 | E -V — 5 (hp — A)? (.38)

_ eiA.(q—q’)/h‘;if’L_H(l) (ﬂ_(E_—_V_).M - q’|>

after shifting p by A(g)/h. Balian and Bloch show that

po(E) ~ —I7m { [/deq Golg — Q')L_’ql = g% aBda [a—i—;F(a,ﬁ)] a:ﬂ} :
(4.39)

where n, is the normal at a point a on the boundary OB of the classically

accessible billiard B, and
F(a,8) = /d2q Go(a — 9)Go(q — B)- (4.40)

Greek letters are used to denoted points on the boundary. Balian and Bloch also
include a convergence factor, which we have left out of the formula for clarity,

but it should be taken into account.

To calculate 8F/An,, we use a one-dimensional Fourier transform on the

boundary defined by
' dv A v(y—")
Golg—¢q) = %Go(vz)e LAt (4.41)

where z, v — 7' are the local normal and tangential co-ordinates respectively,

such that ¢ = (2,7), ¢ = (2,7') with z = 0 on the boundary. From the
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previous Fourier transform (equation (4.37)) written in the variable w = (u,v) =

p — (A/R), we find

Go(w) e (4.42)
o0\w) = 2 . .
E-V - %";;wiz
Thus
~ . du ~ iuz
Go(v,z) = —Go(w)e*™. (4.43)
oo 2T
Hence

2m o du eiA7(7-7’)/h
TR ) 2m (W +a?)
om, et A (r=7)/1
TR 2a(v)

@0(1}) = Gp(v,0) =
(4.44)

where a? = v? — %(E — V), and A, is the component of A parallel to v — v

It can be shown that

OF  OF
L /dfy Gola = 7)Go(r — B). (4.45)

e (27)
(4.46)
= (2572)2/(1_:4@(1@)12 P {Z (U " éh_) (@ —ﬂ)}
This gives
{gn%}a:ﬂ - —475;1722(1)’ (4.47)
where k(a) is defined by
k(a) = V2m(E - Vie)) (4.48)

h

The first term of pg( E) is easily shown, from the pole in the Hankel function, to
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be
dqO(E - V). 4.49
25 4o -v) (4.49)
The second term of pg(E) is
Im K2 RPN —im? _om da (4.50)
T 2m 4h4k(a) T 4nh? Jog k(a) '
So the result is
(E) A O(E - V) - — do (4.51)
& 2rh? Jg arh? Jop k(a) ‘
Integrating this give the number of modes
k? k
No(E) ~ /qu—(q—) - / da-—(@ + const. (4.52)
B 47 8B 4T

When £ is a constant this reduces to the result for stationary billiards, No(E) ~

2
‘ ’ifr ﬁ, where A, £ are the area and perimeter of the billiard.

We shall now calculate Ny(E) for the rotating circle. Here we consider the
Hamiltonian with m = 1, w = 1 giving k2 = E + 1q2 The first integral is over
the classically allowed region, t.e. for §q > —FE. For -2 < E < 0, thisis a
region between two circles, as shown in figure (4.5.1). The second integral is

over the boundary of the billiard, which is touching the shaded region.

Figure 4.5.1. The classically allowed region of the rotating circular billiard.
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The integrals are easily evaluated using polar co-ordinates at the point of

rotation, giving

(1 V2E ¥4
47rh2(27rE +37) - ﬂ_—hEel(mel) for E > 0;
= 1 . V2E + 4
'MO(E) =9 Z;r—}? [,3(2 + cos43) — %sm4ﬂ] — 7r—h+

1 -
2

1
X [mé a(mg') - (mel ~ my ) Kel(me‘ll)] for E < 0,
| (4.53)
where Kg(me), Eel(me) are the first and second complete elliptic integral [54]

N

and
f=cos™ ( V. /2> ’ (4.54)
me = 1/(1 + E/2).
./Vb(E) 50}

Figure 4.5.2 The spectral staircase Ny(E) for the rotating circular billiard at
a = 6. The curve shows the theoretical asymptotic mean number

of modes.
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The result for Np(E) cannot be compared directly with the numerically
determined spectrum. The reason for this is that not all the levels were calculated
but only those with positive angular momentum m. These levels are slightly
inaccurate due to a coupling between the m = 0 states and the m = %1 states,
but this is unlikely to be significant. The positive and negative m states do not
contribute equally to Ng( £) due to the asymmetry introduced by rotation, hence
we cannot simply halve Ng(E) to compare with the positive m results. Instead
I diagonalised a 380 by 3B0 matrix with elements of positive and negative m at
some values of a, and compared the eigenvalues of this with No(E). The result
for & = 6 is shown in figure (45—2) This shows excellent agreement with the
theoretical curve, and gives credibility to the accuracy and completeness of the

spectrum, at least above the scale of the mean level spacing.
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5. Discussion

The classical rotating circular billiard is seen to have the usual structures of
KAM tori, mixed with chaotic motion. It is seen to approach integrability when
the energy E is very high or very low, and to be almost completely ergodic and

mixing for some intermediate energies.

A study of the periodic cycles has revealed the usual bifurcations, and period
multiplying as the system becomes more chaotic. We have found the main fixed
point and its bifurcation into a two-cycle. We have seen that these periodic
orbits are unstable in the most chaotic energy range, and that the bifurcation
also lies in this range, and happens when the trajectory from the fixed point

glances the boundary.

This association between the glancing trajectory and chaotic motion has
been seen to be due to a more general role of glancing trajectories: they cause
discontinuities in the Poincaré map, and lead to stronger chaos than would be
associated with the usual folding and stretching of the Hamiltonian flow. The
range of energies for which glancing trajectories occur has been found theoret-
ically, and is shown to correspond to the range for which the system is most

chaotic.

Approximate invariant curves have been found, which agree well for anti-
clockwise motion, but not so well for clockwise motion. The clockwise type fail
particularly badly for those energies where there are glancing trajectories, which
occur only for clockwise motion. We note that a special type of periodic orbit—
the set of sliding trajectories, with infinite bounces in a finite time—has an
important influence on the behaviour of much of the motion. These sliding tra-
jectories become chaotic when there are glancing trajectories, again accounting

for the ergodicity of the system at these energles.

A more detailed analysis of the system, calculating Lyapunov exponents and
chaotic volume has shown exactly when the system becomes most chaotic and

when it becomes most integrable.

Studying the rotating circular billiard quantum mechanically, we have seen

that where the classical mechanics is completely integrable, the spectrum of
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energy levels shows considerable clustering and level crossing, and that where
the classical mechanics is completely chaotic, the spectrum shows much rigidity
and level repulsion. We have seen that these results appear to be good, in spite of
the lack of a good test for the accuracy of the eigenvalues at the fluctuation scale,
although they agree well with the theoretical asymptotic mean level density. We
have seen that as A is reduced, the size of matrix required to obtain the same
number of accurate eigenvalues is increased dramatically. This may be related
to questions of quantum algorithmic complexity to be discussed later. We find
good agreement between the range of energies for chaotic motion implied by the
study of energy levels, and the range implied by the study of the classical motion.
Studying the levels statistically has shown the usual Poisson and Wigner results,
but this more detailed analysis has not revealed more than has be learnt from
simply seeing the levels graphically against i. There are two reasons. Firstly,
the statistics use only one value of i at a time, whereas the eye distinguishes
the pattern over a range of A. Secondly, there are really too few levels for good

statistics.

In conclusion, the classical rotating circular billiard exemplifies a typical non-
‘integrable conservative bound system, and the energy spectrum of the quantum
rotating circular billiard show level crossing or level repulsion, corresponding
well to the system being respectively classically integrable or classically chaotic.
This is an example of quantum chaology [68] which though interesting does not
tell us that the quantum system is chaotic. To do this requires the study of the
time behaviour of quantum wavepackets, which we have not considered in this

thesis.

We have by no means exhausted the work that can be done on rotating
billiards. It would be interesting, using symbol sequences and an appropriate
partition, to code the periodic orbits and hence aid their complete enumeration.
Then Gutzwiller’s trace formula could be studied in greater detail, testing the
lower energy levels found from this against those found by the Rayleigh-Ritz
method. We have not studied wavefunctions. This is because eigenfunctions
of the rotating circle, written in terms of the Bessel basis functions, are com-

puter intensive to plot. Heller [69] has given a method that will find very high
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frequency eigenfunctions directly, using a boundary method, without having to
find all the lower ones. It is much more efficient, because it uses sine and cosine
basis functions. It can also be used to find eigenvalues. We mentioned earlier
a better method for finding eigenvalues using the & operator. This is a useful
method because one finds all the levels along a line of constant classical energy
in the Ef-plane (e.g. along one of the dashed lines in figure (3.2.1)), and so the
levels correspond to one particular Poincaré map rather than a whole range of
maps. Suppose the A operator finds the eigenvalues of 1/h2, then rearranging

Schrédinger’s equation for a stationary billiard gives

2mE
—Vy; = ?—z/;i (5.1)

where we have made A the eigenvalue instead of E. So the k operator is defined

by:
1 V2
(?) = T 9mE’ (5.2)

giving the eigenvalue equation

Aoy

The operator is simple because stationary billiards are scaling systems. But
rotating billiards are not scaling, and it is not so easy to find the correct &

operator. Rearranging Schrodinger’s equation for rotating billiards gives
(—ihV — A)? = 2m(E - V). (5.4)

Here it is not so clear what the operator should be, because the i cannot be
isolated from the A without introducing some direction to —iiV — A which

cannot be determined. It would, however, be worth pursuing this.

It is conceivable that, because we have changed the line in the Eh-plane

along which to find eigenvalues, for some energies the line may pass between
~2

a gap where two levels repel. The eigenvalues of 1 /R would then be complex

rather than real, which is plausible because the operator is not Hermitian.
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I discussed this with Michael Berry, and upon his suggestion used Feynman’s
theorem {70] :

o8, _

oOH
a (1//A-,|‘8—(;|¢k), (5.5)

where Ej, ¥ are the respective eigenvalues and eigenfunctions of H (a), and
~2
a = 1/h. For stationary billiards, the eigenvalues of 1/h are never complex,

because

OBk _ _2 (g, — vy (5.:6)

B «

is always negative, and we require dFy/0a to be zero for the situation to occur.

For rotating billiards I was unable to reach a conclusion, because

0F, _ 2B

o + 25 (Unlidale), (5.7)

and I could not find out enough information about (¥y|i0s|) to tell whether

this ever cancels 2E/ow.

It would be interesting to study other rotating systems in more detail. Clas-
sically, rotating ellipses [60] and the rotating square [71] have been considered.

Perhaps these could now be studied quantum mechanically.

Many questions remain unanswered. We know that quantum mechanics
suppresses chaos, but we have not been able to resolve whether the full classical
regime is revealed in the limit A — 0. We have not addressed interpretational
questions of quantum mechanics, or discussed methods which regard the mo-
tion as a mixture between classical, semiclassical and fully quantum mechanical

regions, depending on the detail of the phase space structure in that region.

There are possible avenues of research that may bring answers to these.
Joseph Ford [72] believes that quantum mechanics is never algorithmically com-
plex, and hence it can never relate to classical chaos, which is. He has shown
that for two simple systems, one classically chaotic and the other not, both have
zero complexity in their time evolution. He has shown that the energy spectrums
also have zero complexity. What is not clear is whether the complexity magically

materialises when % actually vanishes. This is a non-analytic limit (analogous to
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limits between geometric and wave optics, or between perfect fluids and viscous
fluids), and such a result would not be surprising if it were true. If it is false,

then the correspondence principle fails.

A recent example, that I find particularly interesting by Shudo (73] is the
algorithmic complexity of the eigenvalue sequence of the following tridiagonal

matrix:

Hi; = %(Oz'm2 + n2) (5.8)
C1 1 even,

Hipri=Hiz1 = Co i odd (5.9)
2 3

where Cj, Cy are constants less than one. This is not a real system, but has the
eigenvalues of a rectangle for C1 = 0, Cy = 0. The matrix shows a Wigner-type
distribution for the level spacing, for C; = 0.4, C2 = 0.9. Using Gerschgorin’s
theorem and the Strum theorem, Shudo shows that the sequence of levels has

zero complexity.

This may appear to show that quantum mechanics is not algorithmically
complex, but to analysis quantum mechanics fully, one needs to consider a
wavefunction, not just eigenfunctions, and the wavefunction is a superposition
of many eigenstates. For this one needs to consider the time dependence of
Schrédinger’s equation. Peres and Schulman [74] do exactly this. They ask the
question, if one has a wavepacket and wishes to simulate the classical motion
accurately how large does the Hilbert space (that is the size of the truncated
basis functions) need to be? They show that this size must increase exponen-
tially with the planned duration of the simulation, showing that although the
eigenvalue sequence may have zero complexity, the total Hilbert space required

for the correspondence principle does have complexity.

The study of time dependence in quantum mechanics is important for other
reasons. Increase in the disorder of systems, and thus the second law of thermo-
dynamics, is thought to be caused by chaotic motion and is said to give the arrow
of time. If there is no chaos in quantum mechanics, then how do we explain this
arrow or indeed the second law? There is also the grave difficulty in unravelling

the double limit A — 0, ¢ — oo required for quantum chaos. We have seen that
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taking the ¢ — oo limit first, and then the A — 0 limit gives zero complexity.
But reversing the order of the limits will give a different answer—they do not
commute [75] . This is due to the non-analyticity of the double limit. Answers
to these questions are not easy; recently Berry has increased the effectiveness
of asymptotic expansions to release information from the divergent tails of the
series, by a method known as resurgence invented by Ecalle [76] . Perhaps this

will lead to a complete understanding of quantum chaos.
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APPENDIX A

Here we evaluate the tangent map Jr(8,%) as defined in section (3.3). For

simplicity, we write

(0,%) = F(8,). (A1)
Then
90 89
h=(% o ) (42
E

From the equation of motion (3.12), we have for the time T between (¢,%) and

(©,9),

2(T)=1+¢®°=(a+ bT)e™ T, (A3)
2(T) = iv(T)e"®™Y) = be™T — iz(T), (A4)

where
a=1+¢e" (A5)
b= ia+ jvel?t¥) = i1+ e 4 vet0t¥), (A6)

So

AT)=1+¢© = [(1 + ) (1 +4T) + iuTe"(”“’)] e=iT (A7)
AT) = iv(T)e® Y = [(1 + et 4 yeiltH))e—iT _ z] . (A8)

From equation (A7) we find that

Imz(T) _ V(8,¢,T)
Re[(T)-1] U,¢,T)

tan © =

This gives

%—% =(UVp - VUg) +Ty(UVr - VUT) (A10)
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00

3 = (UVe = VUy) + Ty(UVr = VUr). (A11)
Also
Ims  H(6,9,T)
¢ T _P) = = y ¥ ‘
an(7 +0© ) Re: = G(6,4,7) (A12)
This gives
je ov 1
= _ = = GHg — HGy) + Ty(GHT — HGT)}. A13
56 90 (1) {(GHy 6) + To(GHT )} (A13)
00 oV 1

5 9 () {(GHy - HGy)+ Ty(GHr - HGr)}  (Al4)

Using equations (A10) and (A11) we can find 0¥ /06, 0©/0¢. Thus using equa-
tions (A7) and (A8) we can find U, V, G, and H in terms of 8, ¢, and T. It

only remains to note that

UUg+VVy
Ty=-——2"1 " "¢ Al5
= TUUr+ vy (A15)
UU¢+VV¢
T, = — ———*, Al6
v Ulp +VVr (A16)

to see that we can find Jp in terms of 8, ¥, and 7. Thus we only need to

calculate T numerically in order to calculate Jp.
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