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ABSTRACT 

•A finger function simulator and surface replacement prosthesis 

for the metacarpophalangeal j oint• 

Susan Marie Stokoe 

Joint replacement surgery in the treatment of arthritic disease is now 

commonplace and on the whole very successful. Research into the design 

and development of prostheses has made major advances since the 1940s 

resulting in complex devices for almost all articulating joints of the 

body. In this thesis, a programme of work to design and test a surface 

replacement prosthesis for the metacarpophalangeal joint is presented. 

The anatomy and kinematics of the MCP joint are discussed for both 

normal and abnormal joint function and, based on these considerations, 

the design of a new surface replacement prosthesis is described. 

Various materials are explored with respect to their biocompatibility, 

durability and ease of fabrication with special attention being paid to 

one material a new cross linked ultra-high molecular weight 

polyethylene - which is tested for wear and assessed for durability in 

long-term prototype tests. A finger function simulator is detailed 

which was designed and developed during this research programme, and 

results of tests on bone replicas, Swanson Silastic implants and 

prototypes of the new design are presented. The simulator can be easily 

modified to accept any MCP joint prosthesis for bench testing. Finally 

the stress response of the prototype design is studied using finite 

element analysis and modifications to the implant design and bone 

preparation are suggested. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 



1.1 INTRODUCTION 

Rheumatoid arthritis is a chronic progressive disease which can affect 

both males and females at any stage in their lives. Often the small 

joints of the hand are affected and sufferers have their quality of life 

severely impaired due to the pain, deformity and loss of dexterity. 

There is no cure for this crippling disease and treatment is 

conservative, usually involving a combination of drugs, physiotherapy 

and surgery. During the last thirty years engineers and surgeons have 

worked hard to develop joint replacement prostheses for the rheumatoid 

hand, spurred on by the successes in hip and knee implant surgery. This 

thesis describes a programme of work to develop a novel surface 

replacement prosthesis for the metacarpophalangeal (MCP) joint. 

The essential stages for the design of any surgical joint implant are as 

follows: 

i) A detailed study of both normal and abnormal joint function. 

ii) Analysis of the material properties of the prosthetic device. 

iii) The design of a prototype on the basis of experience gained in i) 

& ii). 

iv) Testing of the artificial joint in the laboratory before clinical 

use and modification of the prototype. 

v) The analysis of stress responses in the implanted joint and the 

investigation into possible failure mechanisms (again making 

necessary modifications to the prototype). 

vi) The clinical assessment of the functional result by objective 

measurements. 
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vii) The review of post-operative complications in order to define 

defects in material, design or surgical technique. 

The work presented in this thesis covers stages i) - v) and research is 

continuing at the University of Durham to progress to clinical trials. 

The thesis opens with an historical look at finger implant surgery and 

related fields of interest, along with a review of the available 

literature, though it is true to say that very little has been published 

during the last decade. For this reason it was necessary to enter into 

private communication with surgeons and designers internationally to 

effect a survey of current trends in surgical treatment of the 

rheumatoid hand. This correspondence has proved very fruitful and, 

while being mentioned here in Chapter 1, current philosophy is discussed 

in more detail in Chapter 8. 

In the opening review five topics are discussed which are essential to 

the understanding of the problems involved in the treatment of the MCP 

joint and it is intended that within this discussion some justification 

shall be given for the paths taken in the course of the research 

programme. Two topics which might also have been reviewed in Chapter 1 

were biotribology and finite element analysis. However, it was felt 

that these might be more helpful in context and hence they are included 

in the introductory sections of the relevant chapters. 

Chapter 2 comprises a description of the early design stages of the 

Durham surface replacement prosthesis based on information obtained from 

the literature. A programme of metrology performed on the bones of five 

hands is described in detail along with the preliminary assessment of 
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hand-made model implants. The design of a finger function simulator in 

which the prototypes were tested is discussed in Chapter 3, and an 

evaluation of its performance through commissioning trials and tests on 

the Swanson Silastic implant is presented in Chapter 4. Also in Chapter 

4 is a more detailed look at the mechanics and function of the MCP 

joint. The crucial bench testing of the prototype implant is related in 

Chapter 6 with a critical assessment of damage mechanisms and the 

implications for implant integrity. 

The implant material, prior to cross linking, was studied in wear tests 

described in Chapter 5, and finite element analyses, to highlight stress 

concentrations in the implanted joint under a heavy static load, are 

presented in Chapter 7. Chapter 8 concludes the thesis with a summary 

of the main results of the work and a general discussion about the 

achievements of the research, with recommendations concerning the 

continued development of this prosthesis in the light of current 

philosophy on the treatment of the rheumatoid hand. 
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1. 2 ANATOMY 

1.2.1 Osteology 

The bones of the hand comprise the carpals, metacarpals and phalanges. 

The wrist or carpus consists of eight small bones arranged in two rows. 

The bones are named in order from the lateral (radial) side to the 

medial (ulnar) side. 

Proximal 

row 

Distal 

row 

Scaphoid (articulates with radius) 

Lunate 

Triquetral 

Pisiform (smallest carpal bone) 

Trapezium (articulates with the 
metacarpal on the thumb side) 

Trapezoid 

Capitate (largest carpal bone) 

Hamate (bears the hamulus, a 
hook-like process projecting 
toward the volar surface) 

The bones of the palm are called metacarpals and are numbered I to V. 

The base of each is irregular in shape and articulates with the proximal 

phalanx of the corresponding digit. Each of the three bones in the 

finger (two in a thumb) is called a phalanx, the base of which is 

concave to receive the head of the metacarpal, and the head of which 

forms a pulley-like surface called the trochlea. 

The skeletal structure of the hand is illustrated in Figs 1.1 & 1.2. 
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M. extensor carpi 
rad ia I is longus 

M. extensor carpi 
radialis brev1s 

Metacarpal 

M. extensor pollicis 
_brevis 

M. extensor 
pollicis longus 

__ Trapezium 

Proximal phalanx 

M. extensor dig1torum 
communis 

Medial phalanx 

M. extensor digitorum communis 

Distal phalanx 

Left hand, dorsal surface. 

Lunate 

Fig 1.1 The skeletal structure of the hand (1). 
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M. adductor pollicis obliquus 

M. flexor carpi ulnaris 

M. abductor 
digiti quinti 

M. flexor carpi ulnaris 

M. adductor pollicis 
transversus 

M. opponens 

digiti quinti 

Mm. abductor 
and flexor digiti 

quinti brevis 

Left hand. palmar surface. 

M. abductor pollicis brevis 

Mm. opponens and flexor 

pollicis brevis 

M. flexor pollicis brevis 

"" --"".opponens pollic1s 

Mm. flexor and 

~"----- M. flexor digitorum profundus 

Fig 1.2 The skeletal structure of the hand (2). 
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1.2.2 Articulations 

The articulations of the hand are diarthrodal. A typical diarthrosis 

consists of: articular cartilage, which covers the articulating 

surfaces; an articular capsule, completely enveloping the joint and 

having two layers (an outer fibrous and an inner synovial); a joint 

cavity, a space within the capsule lined with the synovial membrane and 

containing a small quantity of synovial fluid; and ligaments, bands of 

connective tissue which bind the bones together, not generally very 

elastic but permitting movement and at the same time acting to limit the 

degree of movement. 

1.2.3 The Metacarpophalangeal Joint 

The articulation of the hand that is the focus of the research reported 

in this thesis is the metacarpophalangeal joint. This joint (Fig 1.3) 

is of the condyloid type with movements about two axes at right-angles 

(flexion/extension in the sagittal plane and abduction/adduction in the 

frontal plane). 

The metacarpal head is an approximately spherical articular surface 

which is broader anteriorly than posteriorly, and the base of the 

proximal phalanx has an ellipsoidal articular surface with spherical 

curvature. Attached to the palmar surface of the base of the phalanx is 

the 'volar plate' or ligament. Its attachment to the articular 

cartilage of the phalanx is formed by a small fibrous band called the 

'incisura' (Fig 1.3(3)) which acts like a hinge. During extension the 

medial cartilaginous half of the volar plate articulates with the 

metacarpal head. During flexion the plate moves past the metacarpal 
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Fig 1.3 The metacarpophalangeal joint. 
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head and glides along the palmar surface of the metacarpal. The flexor 

tendon sheath is attached to the palmar surface of the plate. 

An essential condition for the freedom of movement in this joint is a 

certain degree of flexibility in the joint capsule and synovium. This 

is provided by the 'dorsal' (Fig 1.3(4)) and 'palmar' (Fig 1.3(5)) 

recesses of the joint capsule. Also the presence of the palmar recess 

is essential for the gliding movement of the volar plate during flexion. 

On the dorsal surface of the base of the phalanx is inserted the 'deep 

attachment' (Fig 1.3(6)) of the extensor tendon. On each side of the 

joint there are two types of ligament (Fig 1. 3): the 'glenoidal' 

ligament, joining the metacarpal to the volar plate and controlling the 

movements of the latter, and the 'collateral' ligament, joining the 

metacarpal head to the phalanx base, which keeps the articular surfaces 

together and restrains their movements. The insertion of the ligaments 

into the metacarpal head is slightly dorsal to its centre of curvature. 

Thus they become lax in extension and taut in flexion. 

Abduction and adduction become more difficult when the MCP joint is 

flexed and in full extension. The maximum ranges are 20° to 30° either 

side. In the sagittal plane the MCP has a range of about 20° 

hyperextension to 90° flexion for the index which increases 

progressively to the little finger. Being a condyloid joint the MCP 

joint does not normally show active axial rotation. However, owing to 

laxity of the ligaments, a measure of passive rotation is possible with 

a range of about 60°, 
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1.2.4 The Flexor Tendons of the Fingers 

The muscles of the digital flexors lie in the anterior compartment of 

the forearm and are thus considered extrinsic muscles in relation to the 

hand. The tendons of these muscles pass across the hand and attach to 

the fingers. 

There are two main flexors of the fingers. The most superficial tendon 

is the 'flexor digitorum sublimis' (FDS) which has its insertion on the 

middle phalanx proximal to that of the deep tendon or 'flexor digitorum 

profundus' (FDP) which attaches to the base of the distal phalanx. 

Obviously then, the two tendons must cross each other and do this 

symmetri~ally to avoid any unwanted lateral force. To achieve this the 

profundus passes through the sublimis (Fig 1.4). Why is it that the 

attachments of the two tendons are this way round, necessitating such a 

crossing? By staying superficial to its insertion the sublimis 

maintains a greater angle of contact with the bone which enhances its 

efficiency. 

The action of the two flexors can be deduced from their points of 

insertion: the FDS is inserted into the middle phalanx thus flexing the 

proximal IP joint (Fig 1.4(3)). It is a weak flexor of the MCP joint 

when the proximal IP joint is flexed and has no effect on the distal IP 

joint. It has maximum efficiency when the MCP joint is extended by the 

synergistic action of the 'extensor digitorum communis' (EDC). The FDP 

(Fig 1.4(4)) is inserted into the distal phalanx and thus flexes the 

distal IP joint. It too flexes the proximal IP joint and is a weak 

flexor of the MCP joint. If the MCP and proximal IP joints are 

passively flexed the profundus cannot flex the distal IP joint because 

10 



MC 

1 

4- FDP 

6 

Fig 1.4 The tendons of the fingers. 
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it is too slack. Again it works to best advantage when the MCP joint is 

extended. 

1.2.5 The Extensor Tendons of the Fingers 

The extensors too are extrinsic muscles of the hand but having, on the 

whole, a convex path through the hand, they need fewer tunnels than the 

flexors. The extensor tendons passing through the wrist to the digits, 

media-laterally, are: 

i) The 'extensor digiti minimi' which more distally joins the 

extensor digitorum communis for the little finger. 

ii) The four tendons of the 'extensor digitorum communis' (EDC). 

iii) The 'extensor indicis' which more distally joins the EDC for the 

index. 

The EDC is a powerful extensor of the MCP joint and active in any wrist 

position. Extension of the MCP joint is via the extensor expansion, 

which is about 10 mm long, arising from the deep surface of the tendon, 

crossing the joint capsule and inserting into the base of the proximal 

phalanx (Fig 1.4(6a)). Its action on the proximal IP joint is through 

the median band (Fig 1.4(6b)), and on the distal IP joint is through the 

two lateral bands (Fig 1.4(6c)). This action, however, does depend on 

the degree of tension in the ligament, and thus the position of the 

wrist: appreciable when the wrist is flexed, weak when the wrist is 

straight, and negligible when the wrist is extended. Also the degree of 

tension in the digital flexors is important. 

The tendons of the extensor indicis and the extensor digiti minimi 
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behave in the same way as EDC but allow the index and little finger to 

move independently. 

1.2.6 The Interosseous and Lumbrical Muscles 

The interosseous and lumbrical muscles are intrinsic muscles of the hand 

which essentially act as synergists and antagonists to the actions of 

the flexors and extensors as well as producing movements of abduction 

and adduction. The interossei have two functions: abduction/adduction 

and flexion/extension. The ability to abduct and adduct arises from the 

attachment of part of their tendon insertion into the lateral tuberosity 

at the base of the proximal phalanx. The dorsal interossei 

(Fig 1.5(1&3)) run towards the axis of the hand, thus producing 

abduction. The middle finger will not move if the second and third 

interossei contract simultaneously. Abduction of the little finger is 

by the abductor digiti minimi (Fig 1.5(2)). The volar interossei are 

larger and more powerful than the dorsal interossei. The four lumbrical 

muscles (Fig 1.5(4)) arise from the radial aspects of the tendons of the 

FOP. Their tendons run distally then curve in medially and are at first 

separated from the tendons of the interossei by the deep transverse 

palmar ligament. Finally they blend with the third interosseous 

expansion distal to the extensor expansion. 
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POSTERIOR INTEROSSEI ANTERIOR INTEROSSEI 

4-

LUMBRICALS 

Fig 1.5 The intrinsic muscles of the fingers. 
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1.3 BIOMECHANICS 

The MCP joint is by no means a simple structure anatomically. The 

relative importance of local soft tissue structures in joint function 

and stability, and the magnitude of forces in ligaments, tendons and the 

joint itself must be known before its action can be successfully 

simulated. 

Research has dealt extensively with the analysis of MCP joint mechanics 

but the few attempts made to quantify joint forces have resulted in very 

different values, largely as a result of the variation in simplifying 

assumptions. 

One of the most informative pieces of work in this field was published 

by Weightman & Amis in 1982 (1) which presented a review of several 

biomechanical models and, by reconciling the differences between them, 

gave a guide as to which data are the most reliable. The paper went on 

to describe a new model, based on the successful elements of the 

reviewed models, and this will be discussed later in this section. An 

early paper written on this subject was by Smith et al in 1964 (2). The 

authors dissected a cadaveric index finger fixed in an unspecified tip 

pinch position, and from it measured moment arms which they then used in 

a two-dimensional model of the finger. They were able to work out a 

force polygon for the MCP joint and concluded that for a force P acting 

at the finger tip, the force at the joint due to the flexors would be 

7.5 P. Since no detailed description of finger position was given the 

results are unclear, but seem to differ considerably from results of 

other authors (as will be demonstrated). The answer to this may lie in 
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the fact that the assumptions of the model greatly simplified the 

contribution of the intrinsic muscles and ignored the capsula­

ligamentous structures surrounding the joint altogether. This is rather 

surprising in view of the fact that the authors went on to consider the 

aetiology of rheumatoid deformities and stressed the importance of the 

collateral ligaments and the presence of the volar plate for stability 

of the joint. In pinch action the long extensors were assumed to be 

relaxed. This assumption was based on evidence from electromyographic 

traces, as demonstrated by Long et al in 1970 (3), and is common to many 

biomechanical models of the MCP joint. The radial and ulnar interossei 

were treated as a single force - half acting on the proximal and half on 

the distal interphalangeal (IP) joint. The lumbrical muscle was assumed 

to exert a force equal to one sixth of the interosseous force. 

In 1968 Flatt & Fischer (4) published a very brief report which 

presented a graph showing the variation of forces acting on the MCP 

joint and its surrounding structures for a range of joint positions 

during finger tip action. Their results were very odd indeed, showing 

compressive ligament actions and joint forces varying from 0.8 P to 8 P 

(where P is the force applied at the finger tip) with the resultant 

force always acting 70° to 80° to the axis of the proximal phalanx. No 

explanation for these results can be found in the original paper but in 

a private communication from G W Fischer in 1976 a more detailed 

description of the model was given. The authors had treated the MCP 

joint as a free body in two dimensions with no consideration of the more 

distal joints of the finger. The long extensor tendon was assumed to be 

relaxed and the intrinsic muscles were ignored completely, leaving only 

a single flexor tendon force which was taken to equal 6 P. The actions 

of soft tissue structures were invoked to establish static equilibrium 
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in the joint and these were described in great detail, including 

contributions from the collateral ligaments, the glenoidal ligaments, 

the volar plate and the joint capsule itself. Clearly the problems of 

the model arise from the gross over-simplification of the major load 

carrying components of the finger and the misplaced emphasis on the soft 

tissue structures, commonly absent in other models. It is unlikely that 

any of the results in this report are of use. 

Berme, Paul & Purves (5) were dissatisfied with previous two-dimensional 

treatments of the MCP joint and criticised the fact that other models 

were not based on experimental measurements of external force, nor did 

they generally include consideration of ligamentous structures. In 1977 

the authors studied index finger MCP joint forces using a three­

dimensional model. Six female cadaver specimens were dissected and 

photographed from various angles to identify the dimensions and lines of 

action of the major load-carrying components within the MCP joint at 

four positions of flexion. Four healthy females were asked to perform 

tap turning and tip pinch actions on transducer devices and they were 

filmed from two orthogonal directions for skeletal geometrical 

information. The authors recognised the importance of finger posture in 

the assessment of these tests. Their model included consideration of 

the collateral ligaments and the intrinsic muscles and the flexor 

apparatus was simplified to a single force. Equilibrium of the PIP and 

MCP joints was considered with lateral moments and torsion being 

balanced by the intrinsic muscles and ligaments. Moment equations were 

solved using the constraint that no compressive forces could exist in 

muscle or ligament, and sometimes required long extensor activity. They 

revealed a mean MCP joint force of 5.5 P for an average tip pinch 

position. This is somewhat lower than the value reported by Smith et al 
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(2). In a later paper by Purves et al in 1978 (6) this work was 

extended and the model was modified to include a more detailed 

description of the PIP joint. However, for this joint the model was 

statically indeterminate (a problem common to three-dimensional models) 

and this forced further assumptions that the long extensor and also the 

collateral ligaments were relaxed. 

The other main champions of the three-dimensional approach were 

researchers from the Mayo Clinic who felt that simplified planar 

analysis was insufficient to provide quantitative data for the purpose 

of joint reconstructive surgery. In 1976 Chao et al (7) dissected fresh 

cadaveric fingers and manipulated the specimens to mimic pinch and grasp 

configurations. The tendons were marked with Kirschner wires and hi­

planar radiographs were taken for the determination of tendon 

geometries. The authors then devised a three-dimensional model of the 

finger in which no attempt was made to describe the stabilising effect 

of soft tissue structures. Rather, for this role, passive action of the 

long extensor was invoked. The function of the intrinsic muscles was 

fully described. Free body analysis was applied at each of the three 

joints from which were obtained nineteen equations with twenty-three 

unknowns. To solve this statically indeterminate problem the authors 

systematically relaxed sets of tendons to produce one hundred and 

twenty-six possible solutions. Those solutions giving compressive 

tendon forces, tensile joint forces or excessive extensor force 

magnitudes, were rejected and an average was calculated from the 

remaining solutions. Because of the unfortunate subjectivity of this 

method, and the fact that the results presented included three different 

types of pinch grip, the authors presented an MCP joint force prediction 

of 8.8 P which is rather higher than might be expected. It perhaps 
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would have been more appropriate if the authors had systematically 

applied constant, non-zero tensions to sets of tendons making the 

problem determinate, since there is no reason to relax anything other 

than the long extensors. 

This team published a further three papers in the following two years, 

all based on the same model but considering only tip pinch action. The 

first of these by Chao & An in 1978 (8) described new, more complex, 

relationships between the forces developed by the extensor and the 

intrinsic muscle structures, and an alternative method to the solution 

of the redundant problem using linear programming. This report gives 

similar muscle and joint force predictions to those of the first paper, 

quoting the MCP joint force to be 8.6 P. However this work was based on 

a rather more extended finger posture. In the same year Chao & An (9) 

published another paper, this time using the same finger posture as in 

the first report (7) but employing yet another method of solution 

involving graphical techniques. In this case the extensor contribution 

was concluded to be 4.1 P which is very much higher than any previously 

seen. Again in 1978 An et al (10) predicted no extensor action for tip 

pinch and joint forces at half the levels seen in their previous 

publications. Later, in 1985, An et al (11) used their model to compare 

forces in the normal and abnormal hand for various everyday activities 

and also to evaluate various treatment modes. In this paper the normal 

MCP joint force for tip pinch grip lay in the range 3.5 - 3.9 P. It is 

apparent that the considerable differences between the results of these 

reports, which employ basically the same model, raise serious doubts as 

to the validity of this method. 

In 1982 Weightman & Amis (1) looked very closely at all the models 
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described here in order to facilitate the formulation of a new model 

that was well defined and not over-simplified. The report attempted to 

reconcile the differences between the models and to give some indication 

of their overall validity. The authors did acknowledge that to model 

complex activities, such as lateral pinch and tap turning, a three-

dimensional model would be needed. They also, however, expressed 

serious reservations as to the accuracy of the predictions of these in 

view of the problems apparent in the Mayo Clinic models. As a result, 

Weightman & Amis reasoned that a two-dimensional model was sufficient to 

describe pinch grip and, if applied to assess force responses for 

several finger postures, would provide a great deal of information on 

finger function. They felt that previous models, which concentrated on 

a single posture, were lacking in their facility to aid joint designers. 

As in all the models described here, the authors assumed a pin-jointed 

model. All three joints of the finger were included and the intrinsic 

muscle relations were taken to be identical to those of Chao & An (8) in 

that: 

(a) one-third of the radial interosseous tension acts on the extensor 

slip and two-thirds on the proximal phalanx, 

(b) one-third of the ulnar interosseous tension acts on the extensor 

slip, one-third on the ulnar band, and one-third on the proximal 

phalanx, and 

(c) one-third of the lumbrical tension acts on the extensor slip and 

two-thirds on the radial band. 

However, they assumed the long extensor tendons to be relaxed where Chao 

& An did not. It was pointed out that the assumptions of the model were 

only valid in mid-range positions since tension proportions depend on 

20 



angles of flexion. In the first instance there was no consideration of 

ligamentous structures but later it was realised that the shear 

components of joint forces increase with flexion and that the predicted 

joint force acted at or outside the edge of the articular contact of the 

joint. This was a clear indication of the importance of capsula-

ligamentous support in preventing volar subluxation (the palmar 

dislocation deformity commonly seen in arthritis sufferers). The 

original model was modified to take account of the collateral ligaments 

making the following assumptions: 

(a) the lines of action of the collateral ligaments pass through the 

centre of rotation of the joint at a fixed angle of 45° to the 

axis of the proximal phalanx, originating from a dorsal position 

on the metacarpal head and inserting on the volar tip of the 

phalanx, and 

(b) the tension in the ligaments would not significantly affect the 

tendon tensions, since the moment arms of the collateral ligaments 

about the joint are very much smaller than those of the tendons. 

The ligaments were invoked to hold the angle of the resultant force at 

20° to the axis of the proximal phalanx thus stabilising the joint by 

keeping the resultant within the concavity of the articulation (as 

described by Walker & Erkman in 1975 (12)). The authors did not examine 

the capacity of the metacarpoglenoidal ligaments to absorb some of the 

shearing component of the joint force although this mechanism will be 

described briefly in Chapter 4 along with a more detailed review of the 

Weightman & Amis model. Generally, over the range of postures described 

in this work MCP joint forces were predicted to lie between 3.6 P and 

5.6 P, with the subluxing component of the force increasing with 

increased flexion. The model embodies the successful elements of the 
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previous models and has been carefully thought out. In this thesis no 

attempt has been made to formulate yet another MCP joint model but 

rather results are assessed in terms of their agreement with Weightman & 

Amis where it has been practical to do so. 

In the discussion of biomechanical models for the finger all MCP joint 

forces were expressed merely as a factor of P (the force applied at the 

finger tip) but, for the purposes of building a finger function 

simulator, pinch grip strength must be quantified. Many methods have 

been used for this purpose with varying results and measurements from 

some of the more recent strain-gauged devices are reviewed here. 

In 1974 Swanson et al (13) measured normal grip strength in a group of 

one hundred healthy subjects (fifty males and fifty females) who were 

asked to apply pulp pinch grip to a disc measuring 2.2 em diameter and 

0.5 em thick, being allowed to adopt their preferred posture (not 

recorded). The average tip pinch strength in the index fingers was 

found to be 53 N for males and 36 N for females. 

In 1977 Berme et al (5) measured four normal female subjects performing 

pinch grip with the index finger and thumb on a 45 mm diameter cylinder. 

Again the subjects used their preferred grip posture but were filmed 

doing so, that the postures might be recorded. The forces applied to 

the cylinder were in the range 18 - 21 N which is rather lower than the 

results of other authors. This may have been due to a fault in the 

apparatus or just a consequence of the small population tested. 

Also in 1977, Walker & Erkman (14) reported an average maximum pinch 

strength of 74 N in male index fingers and 56 N in females. Their 
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population consisted of sixty-five male and eighty female subjects. The 

apparatus used was not described in great detail but appeared to consist 

of two cantilevers separated by -1 em, the idea being to close the gap. 

Tests on pre-operative arthritic patients revealed a maximum pinch 

strength of only 13 N (some 20% of normal). The authors reported that 

strengths after implant surgery were not markedly improved though no 

figures were given. The same conclusion was reached by Opitz & 

Linscheid (15) in 1978 when they compared hand function in rheumatoid 

patients before and after MCP joint replacement with the Swanson 

silastic spacer. Tests were performed on a three-jaw chuck pinch. 

An et al in 1978 (10) modified the Walker & Erkman apparatus and used it 

on forty normal subjects (eighteen male and twenty-two female) to 

measure tip and pulp pinch forces. They found little difference between 

the two types of pinch and reported an average maximum strength of 65 N 

in male and 47 N in female index fingers (a little lower than the 

earlier results obtained using the same equipment). 

Again using similar apparatus, Weightman & Amis in 1982 (1) asked eleven 

healthy young female subjects to apply a pinch grip and obtained a mean 

value of 35 N for the strength in the index finger. In this report the 

authors compared strengths for different postures and observed no 

difference between them. This is in agreement with An et al (10). 

In 1985 Jones et al (16) measured pulp pinch strength in fifty-eight 

subjects (twenty normal and thirty-eight patients, sex not listed) as 

part of a programme of work to devise a comprehensive set of tests for 

hand assessment. For normals they measured a strength of 57 N in the 

index finger compared with 19 N for patients. In 1979 Linscheid & 
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Dobyns (17) reported pinch strength in the pre-operative rheumatoid 

patient to lie in the range 5 - 20 N. 

In all the papers described here the authors reported a large scatter in 

the data (-25% standard deviation) and it is not surprising therefore 

that the results obtained, using different equipment and sample 

populations, are quite varied. 

To sum up, the healthy male can exert a force of around 65 N in pulp 

pinch and the female some 72% of this. The force resulting at the level 

of the MCP joint due to this pinch is 3.6 - 5.6 times greater, that is, 

up to 364 N. In pre-operative arthritic patients strength is very poor 

(5 - 20 N) and it is not clear that there is much improvement after 

implant surgery. However, in 1978 Hagert (18) described reports of 100% 

increase in strength for the Flatt and Swanson models - in other words, 

a possible joint force of 224 N. The finger function simulator, 

described in Chapter 3, was designed with the specification that it 

should periodically apply a static joint force of 200 N with the joint 

at 30° flexion to simulate pinch action. 

The limiting factor in strength improvement will always be the condition 

of the soft tissue structures, particularly for implants with little 

inherent stability, and unless techniques to repair the soft tissues 

improve greatly there can be little hope of vast improvements in 

strength or joint stability. The reasons for this will become more 

apparent in the next section. 

The biomechanical models described in this section have all treated the 

finger as a pin-jointed structure with the joints having constant 
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centres of rotation. It should be recognised, however, that this is not 

an undisputed assumption - around 50% of researchers would disagree. It 

is therefore worth considering here since it must affect the design of 

the implant. For example, many elbow prostheses are hinge joints and 

hip replacements are ball and sockets. Both types indicate circular or 

spherical motion and hence fixed centres of rotation. On the other 

hand, many unconstrained knee prostheses are based on a moving centre of 

rotation concept. 

In 1971 Unsworth et al (19) and later in 1979 Unsworth & Alexander (20) 

reported very detailed measurements on the metacarpal and proximal 

phalanx. Their main conclusions were that the articulating surfaces of 

both the metacarpal and phalanx were spherical to within six percent, 

and specifically in the sagittal plane, the radius of the phalanx was 

generally a little larger than that of the corresponding metacarpal (the 

converse was true in the transverse plane). The authors stated that the 

geometry of the joints implied a constant centre of rotation. The 

spherical nature of the bones is not generally contested but, in their 

experiments to locate the centre of rotation of the MCP joint, 

Aleksandrowicz et al in 1974 (21) and Walker & Erkman in 1975 (12) 

concluded that not only does the phalanx slide around the metacarpal 

head but that it also rocks by virtue of the difference in radius 

between the bones and the action of the ligamentous structures. In 

other words, the point of contact moves from the dorsal side of the 

phalanx to the palmar side during flexion, which in turn implies that 

the centre of rotation must move. These studies both involved the 

passive movement of a relaxed cadaveric joint which makes them rather 

subject to error. In 1977 Pagowski & Piekarski (22) gave a mechanical 

description of this sliding and rolling action concluding that the 
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centre of rotation must move on an arc of radius 1.5 mm about the radius 

of curvature of the metacarpal head. 

Earlier in 1968 Bartel et al (23) performed an experiment in which 

subjects actively flexed the MCP joint with tracings of the motion being 

made on X-ray film. Using a method of over-determined collocation the 

authors concluded that the centre of rotation is fixed to within 0.25% 

of the radius. These results were confirmed in 1978 by Youm (24) using 

the far more sophisticated three-dimensional sonic digitiser on 

passively moved cadaveric fingers. In this case all the tendons were 

loaded to simulate physiological muscle tone. 

With the conflicting evidence it is difficult to say whether or not the 

described rocking motion occurs. Certainly, if it does occur it is a 

small effect and may have little significance on the function of the 

joint. Supporters of this idea suggest that the motion is important for 

movement of synovial fluid between the cartilage surfaces and also that 

wear will be more evenly distributed if the point of contact changes. 

The author finds it difficult to comment on the first point, this again 

being a large area of disagreement. The second point is hardly valid 

since the conforming radii are really very similar and cartilage is not 

rigid, thus the load is distributed over a reasonable area preventing 

localised wear. 

With these arguments in mind, the Durham surface replacement was 

designed to have exactly conforming surfaces. 

this are as follows: 

The advantages in doing 

i) Both surfaces being spherical sections are far easier to 

manufacture than trying to accommodate the 6% non-sphericity found 
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in some, but not all, bones. 

ii) The area of contact is maximal and hence local surface stresses 

are minimised - this will help reduce penetration. 

iii) A totally conforming joint has more resistance against subluxation 

- though admittedly only marginally so. 

In this way a constant centre of rotation is built into the design. It 

is of course possible to use different sizes of component thereby re­

introducing the propensity to rocking (if such exists) though it is 

difficult to see how complex motion of this nature can be assured after 

the disturbance of the soft tissue structures through disease and 

surgery. 
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1. 4 THE AETIOLOGY OF RHKUMATOID DEFORIIITIES OF THE KCP JOINT 

AND THEIR SURGICAL TRFATKENT 

Rheumatoid arthritis has a predilection for attacking the wrist and 

finger joints, severely limiting hand function. The synovial membranes 

of the joints and tendons become inflamed and thickened, secreting 

enzymes and this results in secondary changes in the surrounding 

structures which can cause near total destruction of the joint. The 

joint is distended by the proliferation of the pannus which causes 

severe pain and a reduction in movement. Secondly, the peripheral 

cartilage adjacent to the thickened synovium is eroded, exposing 

subchondral bone which is itself further eroded, causing large bony 

defects and skeletal shortening. Thus the basic factor for deformity at 

a joint is the loss of capsulo-ligamentous support through hyperlaxity 

of the ligaments, tendon rupture and progressive degeneration of 

diseased tissues. Detailed descriptions of how these processes affect 

all the joints of the hand and wrist were given by Tubiana & Toth (25) 

and also by Burke (26) in 1984. 

As damage to surrounding soft tissue structures occurs the unopposed 

action of adjacent muscles and tendons results in characteristic 

deformities such as volar subluxation (Fig 1.6) and ulnar drift 

(Fig 1.7). The interossei and long flexors have both been incriminated 

as causing volar subluxation due to their natural line of action. This 

action is accentuated when contractures develop in these muscles holding 

the joint in flexion and luxation (Beckenbaugh, 1989 (27)). There is a 

clear indication that in normal action the MCP joint relies on 

ligamentous support to prevent volar subluxation: thus if the ligaments 
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Fig 1.6 Volar subluxation. 

Fig 1.7 Ulnar drift. 
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are stretched or damaged then deformity will result. 

In 1984 and 1985 Minami et al (28,29) investigated capsula-ligamentous 

contributions to joint stability through load displacement tests on the 

MCP joints of fifteen human cadavers. The contribution of each ligament 

was quantified by measuring the reduction of load that induced a given 

joint displacement after sequential ligamentous sectioning. Their 

studies concluded that both the radial and ulnar collateral ligaments 

play primary roles in stabilising the joint against distal distraction, 

dorso-palmar dislocation, abduction-adduction rotations, and supination-

pronation rotations. The glenoidal ligaments were found to contribute 

primarily to abduction-adduction rotational stability, but contribute 

little to stabilising dorso-palmar dislocation or axial rotations. The 

palmar plate was seen to prevent dorsal dislocation at full extension. 

Smith et al in 1964 (2) and Linscheid & Chao in 1973 (30) also pointed 

out the importance of the action of the volar plate, the surface of 

which glides along the metacarpal head and beneath which is suspended 

the tendon sheath (the arrangement acting like a mobile pulley). 

Ulnar deviation of the fingers again appears to derive from a natural 

tendency towards this state arising both as a result of asymmetries 

within the MCP joint itself (Hakstian & Tubiana, 1967 (31)) and also the 

fact that the lines of action of the extrinsic tendons cross into the 

hand on the ulnar side of its axis. Normally the tendency is limited by 

the capsula-ligamentous structures and the action of the interosseous 

muscles but if the radial collateral ligament is damaged and the 

extensor tendon is dislocated medially then ulnar deviation must result 

(Smith & Kaplan, 1967 (32) and Harrison, 1978 (33)). Often the flexor 

tendon imbalance problem is exacerbated by instability and deformity in 
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the wrist which must be corrected before the problem can be addressed. 

The rheumatoid process is often one of gradual deterioration but the 

resulting disability can, on occasions, be reversed and maintained by 

well-timed appropriate surgery. It is important to note that surgery is 

only one of many methods of treatment for the rheumatoid hand and in 

general the most successful approach is one of collaboration between 

surgeons, rheumatologists and physiotherapists (Gschwend, 1987 (34)). 

The aims of surgery are to treat pain, improve function, prevent 

destruction, correct deformities and improve appearance. To this end 

the main surgical alternatives available at present are synovectomy, 

arthrodesis and arthroplasty (with or without implants). None of these 

operations is suitable in all conditions and varying combinations are 

used according to the circumstances. 

1. 4. 1 Synovectomy 

Despite scepticism about the long-term benefits of synovectomy, this is 

the most common surgery performed on the rheumatoid hand. This 

procedure reduces pain very effectively by relieving joint distension, 

and slows further articular and tendonous erosion, thus delaying 

destruction and deformity (Gschwend, 1987 (34)). The patients who most 

benefit from the operation are those in whom a small number of joints 

are involved with little or no deformity, but where persistent localised 

synovitis is present (Urbaniak et al, 1970 (35)). However, most 

patients present too late for synovectomy alone to be sufficient and 

thus it is usually performed in association with joint reconstructive 

surgery (Nalebuff, 1983 (36)). Early synovectomy is regarded as an 

absolute requirement if there is evidence of restricted tendon gliding 
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or nerve compression (Burke, 1984 (26)). Long-standing synovitis of the 

MCP joint may result in what has been described as a 'cup and saucer' 

deformity, the joint being relatively stable and mobile (Fig 1.8). 

Fig 1.8 The 'cup and saucer' deformity. 

If the motion is adequate and the joints are pain-free no further 

surgery is indicated (Swanson & de Groot Swanson, 1984 (37)). 

1.4.2 Arthrodesis 

Arthrodesis is commonly indicated for the proximal and distal 

interphalangeal joints and for the MCP joint of the thumb. It is 

performed on the MCP joints of the fingers only when there is good 

mobility at both IP joints and even then only as a last resort since it 

is obviously very limiting functionally (Flatt, 1983 (38)). Progress in 

joint arthroplasty has given surgeons the opportunity to avoid 

arthrodesis generally but it remains, on occasions, indispensable since 

any procedure designed to restore mobility must not sacrifice stability 

in the process. Arthrodesis reliably produces stability and a pain-free 

joint. 
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1.4.3 Arthroplasty 

Arthroplasty is the surgical remodelling of a diseased joint. To 

prevent the ends of the bones fusing after the operation, a large gap 

may be created between them (resection arthroplasty), a barrier of 

tissue or artificial material may be inserted (interposition 

arthroplasty), or one or both ends may be replaced by a prosthesis. 

The earliest and simplest of these procedures was the resection 

arthroplasty. For a stiffened, contracted joint surgical resection of 

the metacarpal was often successful in improving motion by shortening 

skeletal structures and relatively lengthening softened parts. A new 

joint space was developed with a supportive fibrous joint capsule and 

the method worked well if the joint space and alignment could be 

maintained. The procedure almost always relieved pain but range of 

motion and stability were very unpredictable. For this reason various 

methods of interpositional arthroplasty have been developed and have 

greatly improved in reliability over the years (Nalebuff, 1983 (36)). 

Fowler & Vainio use the dorsal extrinsic extensor hood as a supporting 

mechanism against dorso-palmar instability. Another approach, favoured 

by Tupper, is to provide a sling from the palmar surface of the phalanx 

by attaching the volar plate to the dorsum of the shortened metacarpal. 

In both procedures there is a good interpositional barrier to prevent 

bony contact (Flatt, 1983 (38)). 

Resection arthroplasty is an uncertain procedure with recurrent 

deformity and limited motion as common complications. Because of this 

unpredictability attempts were made to develop replacement prostheses 

for the MCP joint. Researchers were encouraged by the success of 
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prostheses in restoring function to the larger joints of the lower limbs 

and could be forgiven for believing that the problems of the MCP joint 

would be far less. This has turned out not to be the case. 

34 



1.5 KCP JOINT PROSTHESES 

The development of MCP prostheses has now included three generations of 

design. The first generation was introduced in 1959 when Brannon & 

Klein, and later Flatt, developed rigid, single axis, metallic hinge 

implants based on the philosophy that a prosthesis should provide the 

stability of arthrodesis combined with the movement of an arthroplasty. 

The second generation was introduced in the early 1960's when Swanson & 

Niebauer developed silicone rubber prostheses. These were based on the 

'spacer' concept which provides an MCP joint arthroplasty that maintains 

length and provides some degree of initial stability, with long-term 

stability improving with the development of a suitable soft tissue 

capsule. Second generation devices are flexible one-piece implants, 

often freely movable within the medullary canal. Encouraged by 
/ 

Charnley's success with a cemented endoprosthesis in the hip, 

researchers tried to produce prostheses which would better imitate the 

physiology of the MCP joint. The first of these was introduced in 1973 

by Steffee et al. The third generation designs are articulated joints 

made of dissimilar materials. They provide much more stability than the 

second generation implants and usually require cement fixation of the 

stems. 

The first generation implants are no longer available. The second 

generation, and in particular the Swanson design, has experienced 

widespread use, continuing to the present day. They remain the most 

accepted implant at this time. Design of third generation implants has 

been prolific with many designs having been introduced and withdrawn in 

the last decade. There hasn't yet been sufficient time to assess 
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properly the results of this type of prosthesis and it is unclear 

whether any will yet become established. To do so they would have to 

demonstrate significant advantages over the Swanson design (which holds 

by far the greatest proportion of the market) and at the moment this 

seems unlikely. Some of the more prominent designs of each generation 

are reviewed below so that the problems associated with MCP joint 

replacement might be highlighted. 

1.5.1 First Generation 

The two pronged metal hinge of Flatt (Flatt, 1973 (39) and 1974 (40)) 

was designed to be a very stable joint replacement to be used for 

totally destroyed MCP joints (Fig 1.9). 

Fig 1.9 The Flatt metallic hinge. 

It consisted of two components of 18/8 stainless steel linked together 

by a screw which formed a fixed axis of rotation for flexion and 

extension. The stems were two pronged to combat the problem of 

rotational instability evident with the Brannon & Klein implant (41). 

In the original design the axis ~f the hinge was in line with the stem 

axes but in later developments' the axis was lowered relative to the 
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stems to improve active extension and better restoration of function was 

achieved. This is not surprising in the light of a later report by 

Unsworth & Alexander in 1979 (20) which concluded that the centre of 

rotation of the MCP joint lies 2.6 mm below the centre-line of the 

medullary cavity. 

In several long-term follow-up studies the Flatt metallic hinge was seen 

to have reduced pain and considerably increased strength (Girzadas & 

Clayton, 1969 (42)). The range of motion, although tending to decrease 

in time, was more favourably placed in extension (Flatt & Ellison, 

1972 (43)). However, there was almost invariably bone resorption 

accompanied by stem loosening and implant migration. Large subluxing 

and ulnar deviating forces led to metal fatigue fractures at the screw 

and stems which in turn led to recurrent deformity (Blair et al, 

1984 (44)). Also there was growing concern over long-term metallic wear 

and corrosion often resulting in black staining of the tissues. After 

the introduction of the second generation implants the unforgiving 

metallic hinge could not compete and has been withdrawn but it did 

provide some valuable lessons for the third generation designs. 

1.5.2 Second Generation 

In the late 1960's Calnan developed a polypropylene integral hinge at 

the Hammersmith Hospital in London (Fig 1.10 a)). The intramedullary 

stems were of a tapered square cross-section and required fixation with 

cement to maintain the hinge position (Calnan & Reis, 1968 (45)). 

After problems with tissue interposition of the hinge and resulting loss 

of motion, Calnan & Nicolle modified the design and encapsulated the 
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Fig 1.10 a) The Calnan polypropylene integral hinge. 

Fig 1.10 b) The Calnan hinge with encapsulation. 
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hinge in a ball of silicone elastomer (Fig 1.10 b)). The purpose of the 

capsule was to alleviate interposition problems, allow smooth gliding of 

adjacent tissues and give a good cosmetic appearance (Nicolle & Calnan, 

1972 (46)). Since it also maintained the joint space effectively, the 

capsule negated the need for cement fixation. However the capsule was 

sometimes seen to cause ulnar dislocation of the extensor tendon (Walker 

& Erkman, 1975 (12)) and the built-in 35° flexion contracture was felt 

to imply an imbalance in joint forces (Flatt, 1974 (40)). Problems with 

the joint were mainly associated with failure of the capsule due to the 

poor tear resistance of silicone rubber but stem fractures and recurrent 

ulnar deviation also occurred (Hagert, 1978 (18)). 

In 1977 Nicolle (47) described a further development of this implant by 

Griffiths & Nicolle. In this the polypropylene hinge has been replaced 

by a stainless steel cylindrical bearing, moving away from the spacer 

concept back to the metallic hinge. The capsule is still present and 

durability has improved somewhat but similar problems remain. In 

England this design did fairly well in the 1970's because it was 

relatively very cheap but the high complication rate has seen a 

reduction in usage (Evans, 1989 (48)). There is no indication that the 

implant is available in America. 

Another design that has been used very widely since 1968 is the 

Niebauer-Cutter silicone-Dacron implant (Fig 1.11) and it was first 

described in detail in 1969 by Niebauer et al (49). The device, produced 

by the Sutter Company, is made of silicone rubber and has a core of 

Dacron tricot mesh moulded within it in the frontal plane to reinforce 

the rubber. The stems are also surrounded by the Dacron fibre and 

intramedullary fixation of the stems is achieved by fibrous and bony 
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ingrowth into the mesh. The midsection consists of two blocks of equal 

size and shape, connected by a thin hinge which has a low centre of 

rotation with respect to the stems. Bending was designed to occur only 

at the hinge though this has clearly not been the case. Bending at the 

stems has been found to cause serious bone resorption often leading to 

joint buckling under load (Hagert, 1975 (50)). In common with the 

original Calnan hinge, the bending of the central hinge is often 

impaired due to interposition of tissue. This may occur in the early 

stages of healing or as a result of tissue passage over the implant 

being difficult. Failure of the hinge has been a common problem 

although the presence of a fracture does not preclude a good functional 

result (Urbaniak et al, 1970 (35)). The material strength has improved 

270% since the first release. The average range of motion for this 

implant is 51° (Goldner & Urbaniak, 1973 (51)) which is not 

significantly greater than the pre-operative range but the arc of motion 

has moved to a position of greater extension. There is some moderate 

recurrence of deformity after -5 years but generally the performance of 

the implant is good (Derkash et a1, 1986 (52)). However, the Niebauer 

implant fell into disfavour in the 1970's when it was seen to be less 

reliable than the Swanson design (Beckenbaugh et al, 1976 (53)). It is 

still available but not really utilised. 

Fig 1.11 The Niebauer-Cutter implant. 

40 



In the early 1980's the Sutter Company developed a new silicone hinge 

based on the Niebauer design which has better flexibility and more 

stability against rotation (Fig 1.12). So far it has no known 

advantages over the Swanson implant but there has been insufficient time 

for evaluation. 

c 

Fig 1.12 The Sutter implant. 

Still the most widely used and the most successful MCP joint prosthesis 

is the Swanson Silastic implant manufactured by Dow-Corning since 1966 

(Fig 1.13). The implant is of one piece and moulded from silicone 

rubber. The stems are of rectangular cross-section to resist rotation 

and are allowed to slide in the medullary canals. 

c:--4]:: 

Fig 1.13 The Swanson Silas tic implant. 
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The midsection is a transverse block which bears against the two bone 

ends to keep them apart, and bending of the implant takes place both at 

the midsection and in the stems. The implant acts as a dynamic spacer 

which maintains joint separation and alignment after a resection 

arthroplasty until the joint is stabilised by a new capsule. Stability 

depends on proper tendon balance and the development of a firm new 

capsule in the early stages of healing (Swanson & de Groot Swanson, 

1984 (37)). 

The performance of the Swanson prosthesis has been the subject of very 

many articles in the literature. Overall the results are pleasing and 

the Swanson implant has established a standard against which the 

performance of other designs is assessed. Only by improving on the 

Swanson can any new implant do well on the market. 

The post-operative range of motion for this implant, reported to be 

around 45° (Blair et al, 1984 (54), and Fleming & Hay, 1984 (55)), is 

only a marginal improvement on the pre-operative range but again is 

better placed functionally. Often there is a steady decrease in 

mobility due to fibrosis around the implant or migration of the 

prosthesis into the bone (Hagert et al, 1975 (56)). In time bony 

resorption is a severe problem with this device. The reduction of 

deformity is generally very good but there is a tendency for recurrent 

ulnar drift because of the inherent flexibility of the implant and some 

propensity to cold flow (Walker et al, 1983 (57), also Vahvanen & 

Viljakka, 1986 (58)). There remains a substantial rate of prosthetic 

fracture despite continual improvements in the material's tear strength. 

These fractures commonly occur at the junction of the phalangeal stem 

when a small nick produced by a sharp bone edge results in a stress 
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concentration and hence fracture. In their paper reviewing silicone 

rubber implants, Beckenbaugh et al in 1976 (53) reported a fracture rate 

of 26.2% compared with 7.5% reported by Swanson et al in 1986 (59) -

Swanson has consistently reported better results than any other surgeon. 

Most patients with fractured implants have suffered no functional loss 

but there is a greater tendency to recurrent deformity. In order to 

combat fracture problems and also to try to reduce bone resorption, 

Swanson introduced a titanium hemi-grommet in the early 1980's. In this 

country these were not widely utilised since they doubled the cost of 

the operation which is already considerable (Evans, 1989 (48)). They 

were used to some extent in America but had considerable rotation 

problems and thus have been discontinued. Now there is a new 

rectangular total grommet in the early stages of clinical trials 

(Beckenbaugh, 1989 (60)). Though it would appear to give little 

strength increase (Bieber et al, 1986 (61), also Mannerfelt & Andersson, 

1975 (62)), the Swanson implant has consistently given good cosmetic 

results and pain-free joints. It is also relatively simple to replace 

since it employs no bone cement for fixation and it seems set to remain 

on the market for the foreseeable future. However not all researchers 

are supporters of the spacer concept and a great deal of effort has gone 

into the third generation devices. 

1.5.3 Third Generation 

The earliest third generation implant was the Steffee design from the 

Mayo Clinic which was developed in the late 1960's. Very little has 

been published on the performance of this implant in the open literature 

and this is a problem common to all the third generation prostheses. 

The Steffee Mark I was made from two components which snapped together 
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to form a two-piece hinge with some lateral mobility in extension 

(Fig 1.14). The metacarpal component had a cobalt-chrome alloy stem 

with a plastic head. The all-metal phalangeal component comprised a T­

piece to snap into the plastic housing of the metacarpal component. It 

had a relatively short stem. The centre of rotation of the joint was 

fixed and level with the stems (Walker & Erkman, 1975 (12)). 

0 0~ 

Fig 1.14 The Steffee implants I, II & III. 

The greatest problem with the Mark I design was the severe reduction in 

the range of motion caused by extensor lag. This occurred as a result 

of the dorsal placement of the centre of rotation and this was lowered 

in 1974 when the Mark II version was introduced. Also at this time the 

metacarpal component was made wholly of polyethylene (Linscheid, 

1989 (63)). The range of motion was improved and was comparable with 

other designs at 42° flexion, but there was recurrent stem loosening and 

perforation of the cortex by the' distal stems due to bone resorption and 
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implant migration. In 1977 the Mark III version was released with 

rather longer distal stems (Fig 1.14) to disperse the intramedullary 

force and to project into thicker cortical bone. At the stem heads 

there were thin collars to locate against the bone ends which would 

prevent cement from welling out and also restrict implant migration. 

Unfortunately, while relief of pain was reliable there was inconsistent 

correction of deformity and frequent stem loosening. There was no 

measurable improvement in grip strength post-operatively which was 

disappointing, this being one of the main aims of the third generation 

designs. Complications included bone resorption, infection, fracture of 

the plastic housing and dislocation of the trunion bar. Because of the 

large amount of resection performed in the operation, revision was very 

difficult and this made the implant unattractive, thus it has been 

withdrawn from the market but development is continuing at the Mayo 

Clinic (Flatt, 1983 (38)). 

In 1971 Stellbrink et al (64) described the St Georg prosthesis which is 

rather like the Steffee design but with a hinge more akin to the Flatt 

implant. The metacarpal component is made of plastic with a grooved 

stem attached to a hollow sphere into which is machined a midline slot 

to accommodate the distal component. The phalangeal component is made 

of metal and has a ball end which pops into the metacarpal component. 

The two parts are connected by a transverse pin (Fig 1.15). The 

phalangeal component comes in two forms - the first is flat and 

rectangular and allows some lateral movement in extension; the second is 

triangular and permits no lateral movement. The device is cemented and 

has a fixed centre of rotation volar to the stems. 
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Fig 1.15 The St Georg prosthesis. 

The large lateral stresses seen to cause failure in the Flatt prosthesis 

are also a problem here and tend to distort the metacarpal component. 

In experiments to assess implant performance, Gillespie et al in 

1979 (65) placed the St Georg prosthesis into cadaveric finger rays and 

artificially loaded the tendons. They reported evidence of cold flow in 

the plastic stem of the proximal component. In 1973 and 1975 Englert 

published reports on the performance of the St Georg (66,67) describing 

a general loss of motion due to fibrosis caused by soft tissue 

interference in the mobile parts. A similar problem was seen in the 

Niebauer and Calnan designs. By 1983 it was evident that this implant 

suffered an especially high rate of loosening and that the benefits of 

high stability were outweighed by mechanical failures (Flatt, 

1983 (38)). 

Two rather similar designs are the Link arthroplasty, described in only 

one report by Devas & Shah in 1975 (68), and the Schetrumpf implant, 

also introduced in 1975 (69). The Link arthroplasty (Fig 1.16) is in 

two parts and made entirely of chrome-cobalt alloy. 
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Fig 1.16 The Link and Schetrumpf designs. 

The metacarpal component is a hollowed flat cylinder into which the flat 

disk of the phalangeal part is linked. The stems are cemented and 

movement is strictly in one plane. The only report available describes 

a 40° range of flexion with some stem loosening and weld failures in the 

metacarpal part. One point in favour of this design is that very little 

resection is needed. It is very unclear how well this design is doing 

or indeed if it is still available - it has never been mentioned in 

American reviews. 

J Schetrumpf presented a two-component implant similar to the Link 

prosthesis but with both parts being made of plastic. No cement is used 

and fixation to the bone is considered to be achieved by three wings on 

each stem cutting into cortical bone. There was no real description of 

performance. 

More recently another implant emerged from Japan (Doi et al, 1984 (70)) 

called the Alumina ceramic prosthesis (Fig 1.17). This is a hinge in 

three parts - a proximal stem o~polycrystal alumina, the proximal part 

of the hinge joint of high density polyethylene, and a distal stem of 
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single crystal alumina. The proximal stem and the polyethylene screw 

into each other. In the latest version some 20° of lateral movement is 

allowed and the stems fit tightly into the medullary canals with no bone 

cement. This is indicative of current moves away from bone cement in 

all joint replacement surgery and brings a new set of problems. The 

choice of ceramic was to reduce the risk of stem fracture and, indeed, 

in a four-year follow-up study no failures of this nature were recorded 

(Minami et al, 1988 (71)). 

~ 
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Fig 1.17 The Alumina ceramic implant. 

The average range of motion for the metacarpophalangeal joint was seen 

to be 36.5° and lack of extension was evident. The authors acknowledge 

a need to modify the design to bring the axis of rotation more volar to 

the stems. Radiographs of patients showed severe implant migration and 

perforation of the cortex. 

Other third generation designs not described here are those by Schultz, 

Strickland, Mathys GSB, Hagert and Weightman. One of the most unusual 

was the biomeric design by Kingsbury Heiple marketed by the Johnson 

company. It used a synthetic polymer polyafin secured to two titanium 

stems by a proprietary glue originally used in the manufacture of 

helicopter hubs. This design is•no longer manufactured. 
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1.5.4 The Vay Forward 

The attempts to provide MCP joint stability using constrained or semi­

constrained devices have placed impossible demands on the implants in­

vivo. All the third generation designs have suffered common, seemingly 

unconquerable, problems of stem loosening, bone resorption and implant 

fracture. It is perhaps time that the prostheses were regarded as 

complementary to, rather than an integral feature of, rheumatoid hand 

surgery with surgeons concentrating more on precise rebalancing of 

tendon and soft tissue support. In the early days of excisional 

arthroplasty greater reliability was often achieved by the introduction 

of interpositional materials such as polyethylene as sheets or cups and 

much can be learnt from this. In the past few years a small number of 

fourth generation implants have been developed based on the surface 

replacement concept that has been so successful in knee and elbow 

arthroplasty. These are not yet marketed but are generally used and 

developed at the site of origin. 

The problem of resurfacing the metacarpophalangeal joint was addressed 

by Welsh et al in 1982 (72). A contoured stainless steel metacarpal 

component is matched with a phalangeal component (also of stainless 

steel) with a high density polyethylene button inset to articulate with 

the metacarpal component (Fig 1.18) - opposing surfaces are exactly 

conforming. It is interesting to note that the metacarpal head has not 

been designed necessarily to mimic closely the anatomical shape, but 

provides a broad articulating surface with a large volar protrusion to 

aid in stability against volar subluxation. 
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Fig 1.18 The WEL resurfacing arthroplasty. 

The implant needs very minimal bone resection; only a squaring off of 

the metacarpal head. The stems are pressed into the medullary cavity 

and need no cement. This early report described the case of a 17 year 

old girl who had a stable and pain-free joint four years after surgery. 

At the Mayo clinic, R D Beckenbaugh has designed a non-cemented two­

component surface replacement prosthesis, the components in this case 

being made of pyrolytic carbon (Fig 1.19). The conforming surfaces are 

spheroidal. 

CP !J [:t[) 

Fig 1.19 The pyrolytic carbon implant. 

From 1983 one hundred and twenty of these devices were implanted and 

over three years they demonstrated good biological fixation and 

mobility. Problems occurrin~ were ulnar instability and carbon 

deposition around the synovial tissues and gradually their use was 
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discontinued in the Mayo clinic. However, only last year, the 

manufacturers restarted the development programme and there are several 

carbon designs under consideration (Beckenbaugh & Linscheid, 1989 (27)). 

There is no intrinsic stability of these joints except the 

anterioposterior support provided by the deep ball and socket joint. In 

this case some resection of the metacarpal head is necessary, incurring 

the loss of the collateral ligament attachments. 

It is believed that there are two other teams in the UK working on 

surface replacement designs - in Leeds and in Scotland - though there 

would appear to have been nothing published in the open literature at 

this time. 

It should be understood that a resurfacing arthroplasty is not to be 

used on grossly deformed joints or in cases where soft tissue 

rebalancing cannot be achieved. For this reason the surgery needs to be 

undertaken considerably earlier than it would for any other type of 

implant and thus minimal bone resection and ease of recovery are 

essential to make replacement with a more constrained device possible at 

a later stage should this prove necessary. 

The type of prosthesis considered in this thesis is a resurfacing 

arthroplasty since it would seem that all possibilities for constrained 

devices have been explored and this is therefore the best way forward. 

Soft tissue repair techniques stand the best chance of success given an 

improved articulation. In the next section the suitability of certain 

implant materials is discussed and their performance in joint 

applications is described. 
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1. 6 BIOHATKRIALS 

In choosing a material for a new surgical implant many things must be 

taken into consideration. The most important of these is the effect the 

material will have on the body and also the effect that the body will 

have on it. If it is established that a material would be well 

tolerated, it must be clear that its mechanical properties within the 

body (not necessarily the same as outside) are such that it can reliably 

perform the task intended for it. While the material properties may not 

be affected, the action of a device may be impeded by the ingrowth of 

tissue into any interstices or by deposition of tissue onto its surface. 

This was seen to occur in the St Georg MCP prosthesis and was reported 

by Englert in 1973 and 1975 (66,67). 

For joint replacement prostheses a wide variety of different materials 

have been employed. Metallic materials such as titanium, stainless 

steel and cobalt-chromium alloys (eg. vitallium) are used, as are softer 

polymeric materials such as polyethylene, silicone rubber, polypropylene 

and polyester (eg. Dacron) and, more recently, ceramics and composite 

materials. With the form of prostheses changing from mechanical hinges 

towards surface replacements, wear properties have become as important a 

consideration as strength and durability. In the knee, two component 

surface replacements employing dissimilar materials have been 

particularly successful - for example, the Leeds knee (Seedhom et al, 

1975 (73)) and the Total Condylar implant (Insall et al, 1976 (74)). 

They are also becoming more popular in the elbow with, for example the 

Ewald and Lowe designs (Ewald et al, 1980 (75) and Lowe et al, 

1984 (76)) and even in the shoulder with the Neer design (Cofield, 
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1984 (77)). 

Of course the fixation of a prosthesis is an important issue also and 

the mechanical loosening of cemented implants remains the number one 

comp 1 ica t ion to date. The generally poor performance of 

polymethylmethacrylate bone cement has fuelled efforts to produce a 

prosthetic implant with a surface potentially capable of enhancing a 

living ingrowth of tissue (Williams, 1971 (78)). In weight-bearing 

joints a tiny motion of the implant within its skeletal bed can give 

rise to considerable pain: hence the degree of rigidity of fixation 

eventually achieved by a porous surface is a critical issue. 

This review of the performance of some of the more common biomaterials 

will put these considerations into perspective and provide some 

justification for the choice of material made for the MCP surface 

replacement described in this thesis. 

1.6.1 Metallic Materials 

Metals and alloys are very strong but with some ductility which means 

that they are eligible to be used for structural purposes. Of the 

metallic materials used for prosthetic implants the most common are 

cobalt-chrome-molybdenum alloys, stainless steel and pure titanium. In 

general they are very expensive. Cobalt-chrome alloys are extremely 

hard and resistant to wear but are difficult to fabricate except through 

precision casting using the lost wax technique. Their poor ductility 

has sometimes proved a disadvantage (Williams, 1971 (79)). Stainless 

steel provides a compromise between wear properties and machinability. 

It too is a high modulus material and has excellent ductility but it is 
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the least inert of the implantable metals. Titanium is chemically the 

most inert but is more subject to wear and has a rather lower modulus. 

In using metals, great care must be taken in designing the component 

where in critical areas very high cyclic stresses may arise, since 

fatigue failure is common. In the body, locomotion is a prime cause of 

prosthetic cycling fatigue. In a review by Galante et al in 1975 (80) 

metal fatigue was seen to cause failure in the femoral stems of six 

total hip prostheses. Five showed metallurgical defects and only one 

did not. In this case, loosening of the prosthesis had led to 

overstressing. A similar review by Cahoon & Paxton in 1968 (81) also 

concluded that material defects or the occurrence of abnormal stresses 

due to poor design, malposition or loosening had caused fatigue failure 

of implants. This is particularly true for stainless steel and cobalt­

chrome alloys which are often subject to inclusions, porosity and 

surface cracks at manufacture. Metal implants, being very hard, can 

cause severe damage to the bone at any point of contact where there are 

high stresses. This is especially true if the implant has loosened and 

the ensuing bone resorption results in further loosening and implant 

migration. This was seen to occur with the Steffee MCP prosthesis 

(Linscheid, 1989 (63)). 

The human body is a very hostile environment for most metals. Body 

fluids are principally saline, and only the most corrosion-resistant 

materials can survive. Metals such as aluminium, chromium and titanium, 

which rely on a surface oxide film for protection, were initially used 

for implants and only recently was stainless steel included. Corrosion 

can take several forms: 
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1) Uniform attack over the whole surface of a metal causing rusting 

or fogging. 

2) Pitting - local attack resulting in deep pits sometimes filled 

with metal oxide debris. This can be aggravated by fretting due 

to disruption of the protective surface layer. 

3) Intergranular attack - attack on the grain boundaries of a metal. 

These may be deep and rapid leading to abrupt failure - stress 

corrosion cracking. 

Corrosion may be initiated if the implant comes into contact with 

haematomas or infected tissue after surgery since these have a very low 

pH (Laing, 1973 (82)). Cobalt-chrome has a low reaction to tissue 

unless wear occurs, when the wear particles will corrode. Titanium has 

excellent corrosion resistance but it is more subject to wear and again 

the wear particles will readily corrode. Stainless steel is the least 

corrosion resistant, often due to poor material quality on manufacture, 

and is subject to pitting though this may be alleviated to some extent 

by the addition of molybdenum. Dissimilar metals in close proximity 

will enhance corrosion electrochemically and this is generally to be 

avoided. Surface finish is very important for metals and high polish 

tolerances can now be achieved to reduce wear and inhibit corrosion. 

The presence of an implant can impair the body's natural ability to 

fight infection - thus if an infection does occur at the joint it is 

often necessary to remove the implant. Infection can exacerbate 

corrosion by altering the local pH (Laing, 1973 (82)). Tissue reaction 

to implants is time-related and the severity is linked to the size and 

shape of the implant, movement between the implant and the tissues, the 

amount of degradation/corrosion of the implant and the biological 
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activity of the by-products of corrosion and wear. Tissue response to 

metallic corrosion is inflammatory and results in implant loosening. 

Pigmentation of the tissues surrounding implants is commonly seen and 

must be attributable to metallic dissolution, either by corrosion or 

slow ionic transfer. Absorbed metals can be transported around the body 

to various organs and, indeed, cobalt and nickel, which appear to be the 

most active, have been observed to accumulate mainly in the spleen 

(Ferguson et al, 1962 (83)). Though this has caused some concern there 

have been no reported ill effects in patients to date. Pigmentation is 

greatest with titanium and is not associated with corrosion. This may 

be due to a slow rate of removal rather than to a high dissolution rate. 

In some patients there has been evidence of metal sensitivity, 

demonstrated in skin tests, especially to chrome, cobalt and nickel. In 

these patients metal absorption was thought to have caused bone necrosis 

and stem loosening resulting in the necessary removal of the implant 

(Evans et al, 1974 (84)). 

One important consideration for any material is carcinogenesis and 

almost all materials have been shown to induce tumour formation in rats, 

the occurrence being related to particle size and not to chemical 

activity. Until recently there had been only one confirmed case of a 

primary malignant tumour in man due to metallic implants and this 

occurred after thirty years of implant with dissimilar materials 

(Williams, 1971 (85)). In 1984 three cases of malignancy adjacent to 

metallic implants were reported (Hamblin & Carter, 1984 (86), Penman & 

Ring, 1984 (87), and Swann, 1984 (88)). 
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1.6.2 Cement 

In 1946 the Judet brothers introduced their acrylic femoral head 

prosthesis made of polymethylmethacrylate, heat cured. This material is 

now advocated as a bone cement for prosthesis fixation. The exothermic 

reaction, reaching up to 90°C, can result in damage to adjacent tissues 

and permanent scarring. There is some toxicity during the curing 

reaction from the excess liquid curing agent and this has a hypotensive 

effect which has been known to cause cardiac arrest during surgery 

(Cohen & Smith, 1971 (89)). In addition this material has been found to 

be unreliable under stress, resulting in loss of fixation, and cement 

debris entering the joint cavity causes tissue reaction which leads to 

bone destruction. Not surprisingly there is a strong move to design 

prostheses with an alternative mode of fixation, though this has proved 

rather difficult. One promising area has been in the development of new 

materials which will permit the ingrowth of bone into the surface 

thereby providing a natural bond between the implant and its host. 

Porous ceramic materials were the ideal candidate for this purpose and 

their use has increased during the last decade. Some porous metals are 

beginning to emerge and in 1975 Judet et al (90) described a new hip 

using porous cobalt-chrome alloy and no cement. In clinical trials new­

formed bone had completely filled the irregularities of the surface in 

ten weeks. In 828 operations there were only two displacements after 

one year with almost complete removal of pain. One disadvantage 

envisaged is that the surface area of a porous material, being four to 

ten times greater than a non-porous one, would greatly enhance toxic 

metallic ion leeching to the surrounding tissues. 
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1.6.3 Ceramics 

Ceramics are even stronger than metals in compression but, having no 

ductility, they are poor in tension and are usually used for large 

structures subject to static compressive stresses. Having a high bond 

strength they are far more resistant to attack than other materials and 

if the cost and mechanical properties of ceramics matched their 

inertness they would be used much more. Porous ceramics encourage bony 

ingrowth and hence promote a strong mechanical fixation between the bone 

and the implant but they may be more useful as porous coatings on a 

metal base. In this way the problem of brittleness is obviated. Dense 

alumina is the most commonly used ceramic and has been particularly 

popular in Japan, being used for hip, knee and finger prostheses 

(Hamaguchi et al, 1981 (91), Oonishi et al, 1981 (92), and Doi et al, 

1984 (70)). Its use in the finger, where stresses are relatively very 

low, seems excessive and the choice would seem to have been made for 

reasons of inertness and fatigue resistance. The device is expensive 

and unfortunately, only one year after surgery, evidence of bone 

resorption and implant migration can be seen caused by the extreme 

hardness of the material. 

1.6.4 Polymers 

Polymers have been used for surgical implants for many years. The 

inherent flexibility and inertness of these materials have been well 

exploited in the 'whole piece' prostheses of the finger, especially in 

the Swanson design (Swanson & de Groot Swanson, 1984 (37)). Molecular 

orientation can be controlled to increase polymer strength and this also 

has been used to great advantage, for example in the Calnan-Nicolle 
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finger implant (Calnan & Reis, 1968 (93)). They can be used alone or in 

conjunction with metals with no material incompatibility problems and 

this has been particularly popular in prosthetic design. 

Polymers, being soft, do not have such an adverse effect on bone. They 

are inexpensive but sometimes do not have the durability to stand up to 

the demands placed upon them although they can be strengthened by 

attaching a metal backing. Polymers are not very strong but come in 

many forms from the brittle acrylic, used in bone cement, to the 

flexible silicone elastomer used in the Swanson design. The most 

important polymers used in joint replacement surgery are Ultra-High 

Molecular Weight Polyethylene (UHMWP), polypropylene and silicone 

rubber. Polymeric implants sometimes suffer from environmental stress 

cracking which is the apparent brittle failure of the material when 

subjected to the combination of stress and a hostile environment. 

For some polymers the absorption of body fluids can be a problem. 

Polyethylene and polypropylene are not prone to this but nylon and 

polyurethanes are extensively degraded in the body - becoming very soft 

and losing up to 40% of their original strength due to hydrolysis of 

interatomic linkages (Williams, 1971 (78)). Silicone rubber also tends 

to absorb body lipids and this proved a very serious problem when 

encountered in prosthetic aortic valves in which the balls were found to 

become swollen (Bradley, 1969 (94)). Consequently these balls are now 

usually made of metal. It is debatable whether this is an important 

consideration in the performance of joint prostheses. For example 

silicone rubber is used very successfully in the Swanson MCP implant and 

it has been reported that surface damage from lipid absorption is not an 

important contributory factor in fatigue failure (Meester & Swanson, 
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1972 (95)). However, it has been seen to cause discolouration and also 

surface cracking, beginning at the point of maximum stress concentration 

(Weightman et al, 1972 (96) and Homsey, 1970 (97)). In spite of this 

silicone rubber is well tolerated in the body and produces a minimal 

reaction. Although its propensity to tearing has been a disappointment 

over the years improvements have been made in this area (Amstutz, 

1973 (98)). 

UHMWP is a highly crystalline polymer with a modulus twice that of other 

polyethylenes and it is thermoplastic which means that it can be 

moulded. However, this is rather difficult so it is often machined from 

blocks. It is inexpensive, has a high impact strength and can be 

prepared to have a very low coefficient of friction, hence its 

popularity as a bearing material, being used most commonly against 

metal. The coupling of metal against polyethylene was pioneered by 

Sir John Charnley in the design of his Low Friction Arthroplasty for the 

hip (Charnley, 1967 (99)) and has been very successful in all joints. 

The wear properties of UHMWP against metal are very good but against 

itself it does not perform so well. Indeed, in 1976 Atkinson (100) 

reported that the wear rate of polyethylene against polyethylene is some 

700 times worse than that of the polyethylene/metal system. His 

experiments were aimed at investigating the feasibility of an all­

plastic surface replacement for the MCP joint which is under relatively 

light loading and this will be looked at more closely in Chapters 5 & 6. 

One problem encountered with UHMWP, common in polymers, is its 

propensity to creep and deform under large loads, such that it may only 

serve in the weight-bearing joints if there is enough area of contact, 

reasonable thickness of material and good bone support. The creep 
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properties can be improved by cross linking which makes the material 

more rigid. For polymers radiation sterilisation has been adopted since 

there is a risk that chemicals, used in manufacturing sterilisation 

processes, which are toxic to man, could be absorbed by the implant and 

leeched out later. Bulk polymer is irradiated in the presence of a 

gaseous cross linking agent (eg. acetylene), resulting in highly cross 

linked polymer at the surface while the bulk material is largely 

unaffected. The new surface restricts cold flow, improves surface 

hardness and wear properties though some impact strength is lost. The 

effect is rather like the case-hardening of steel (Bruck & Mueller, 

1988 (101)). 

Surface damage, associated with fatigue, is quite often seen in UHMWP 

especially in non-conforming prostheses such as the knee. Fatigue is 

manifested as crack growth due to cyclic loading - as the contact zone 

moves, a point on the surface may be in compression in the centre of the 

contact zone and in tension when it is at the periphery - and this leads 

to surface pitting. This problem is more severe in knees than hips 

since the contact zone is smaller and the relative movement is larger. 

While surface damage does not in itself imply early failure, it is known 

that debris in the joint capsule can cause an inflammatory tissue 

reaction leading to prosthetic loosening (Skinner & Mabey, 1987 (102), 

and Wright & Bartel, 1986 (103)). If debris from wear and surface 

degradation can be kept to a minimum, the block material is very inert 

in the body with only a slight discolouration seen sometimes, and being 

much softer than metal, it produces minimal bone reaction. For these 

reasons this is the material chosen for the conforming, two-part MCP 

surface prosthesis described in this thesis. It is not anticipated that 

wear will prove a problem since in the finger there is unlikely to be 
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very much relative movement of the surfaces under a large load. 

Nevertheless this is not taken for granted and the wear performance of 

the implant is assessed carefully. The implant design is such that, 

should it prove necessary later, the metacarpal component can be 

switched to stainless steel. This is to be avoided since bone 

resorption and implant migration constitute a very serious problem in 

the finger and also the cost would be increased. 
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CHAPTER. 2 

THE KCP SURFACE REPlACEMENT PROSTHESIS 



2.1 MOTIVATION 

Metacarpophalangeal joint implants have been in existence for many years 

though it is true to say that they still enjoy only limited success. 

Many different desi.gns have been published but these have aimed mainly 

at providing joint stability by means of the prosthesis rather than the 

natural joint structures. Indeed the collateral ligaments are often 

sacrificed during the surgical procedure. A limited amount of soft 

tissue reconstruction is performed at present but following the success 

of surface replacement knee joints, it was felt that fingers could also 

benefit from a similar approach. Since hand surgery is often performed 

by plastic surgeons as well as orthopaedic surgeons, soft tissue 

reconstruction is a natural approach to solving the stability problem if 

the architecture can be restored by means of artificial surfaces. The 

intention, then, is to re-model the natural joint removing only the 

diseased surfaces, reshaping the bone ends, and inserting replacement 

surfaces which closely follow the topography of the healthy joint. 

Effectively the bones and capsulo-ligamentous structures of the joint 

will be left intact. Of course such a surface replacement could offer 

no contribution to joint stability and would be of little or no help to 

the surgeon in his battle against volar subluxation and ulnar drift; 

however, neither would it be a hindrance to the surgeon's soft tissue 

repair techniques where procedures involving gross bone resection almost 

certainly are. 

The procedure would undoubtedly have to be performed rather earlier than 

at present but this could be advantageous since surgical intervention 

may be delayed until the latest possible moment, when it is clear that 
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the patient requires joint reconstruction. As a result there is an 

increased risk of restricting tendon gliding and nerve compression. 

Also if a surface replacement proved unsuccessful for reasons of 

infection, recurrent deformity etc., the implant could be removed and 

replaced later with a different design of prosthesis such as the 

Swanson, giving the surgeon a welcome opportunity of revision. 

The design of the Durham surface replacement was undertaken on the basis 

of the considerations detailed below. There were obviously many choices 

to be made and it is intended that the account in this chapter will 

outline the options, detail the advantages and disadvantages of each, 

and justify the direction taken. 
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2.2 SPECIFICATION 

A successful MCP prosthesis needs to have a good range of motion. This 

is an inherent quality of a two component surface replacement which has 

no linkage restrictions to compromise natural motion. This is not true 

of 'pop-in' designs such as the Link arthroplasty in which lateral 

movement is lost or limited, and dissociation of the components is 

possible if hyperflexion occurs (Devas & Shah, 1975 (68)). On the other 

hand, with the surface replacement, hyperextension and rotational 

instability could be a problem. 

The aim is to retain as much of the natural joint structure as possible. 

This poses quite a problem since, if the implant is not to impede the 

range of joint movement or the actions of the ligaments and tendons 

etc., there is very little space left in which to accommodate the 

prosthesis. Only the space originally occupied by the articular 

cartilage is available. 

The mode of fixation for a prosthesis is an important consideration 

since not only does it resist stresses which would tend to dislocate the 

implant but also largely determines the distribution of stress along the 

bone/implant interface. Conventional single component designs have 

commonly used cemented intramedullary stems designed to form a rigid 

link with the bone. This is important particularly for uni-planar 

designs since the restriction placed on joint movement results in large 

shear stresses across the implant. Often an implant has to be removed 

not because of implant failure but through failure at the bone/cement 

interface. For a surface replacement prosthesis there is little or no 
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pull-out force and only small rotational and shear forces due to 

friction. Fixation requirements are therefore minimal as with the 

Swanson Silastic implant. Certainly cement is not necessary and should 

be avoided since cement left during surgery can cause infection and 

implant damage. Also, removal of the prosthesis, should this prove 

necessary, would be considerably more difficult. 

The use of intramedullary stems, even without cement, would mean 

drilling holes in the bone-ends which is something that ideally should 

be avoided. However, a short well-designed stem would not interfere 

with joint function and would help to distribute large compressional 

joint forces more evenly through the prosthesis to the bone. To resist 

rotation a stem can be made with square cross-section and to resist 

pull-out it can have fins although the latter is only really feasible 

when using a flexible material. The stem itself is sufficient to hold 

the component against shear stress. The alternative to an 

intramedullary stem for the metacarpal component would be to extend the 

implant past a hemisphere and 'snap' the component over the bone head. 

Again this would only be feasible if using a flexible material and there 

is a risk of interfering with tendon movement. Gripping ridges could be 

incorporated in the dorsal and volar edges of the component to engage in 

grooves cut into the bone head. These would necessarily need to be 

small and would result in large stress concentrations. If the bone is 

in poor condition or the material is particularly hard the link would 

quickly fail. Because of the shape of the phalanx head, the phalangeal 

component could be simply seated inside a recess cut into the bone 

during surgery. In this case there is no real need for a stem but it 

can be used as an added precaution if bone resorption should occur at a 

later stage. Also if the component is held this way there is less risk 
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of it slipping out of position during surgery. The implant design must 

lend itself to a quick and simple insertion procedure - a surgeon has 

only a limited amount of time for the operation, most of which will be 

taken up in soft tissue repairs. 

The choice of material is one of the most important decisions to be made 

in prosthesis design since it is on the durability and suitability of 

this material, in its given application, that the success of the implant 

depends. The first consideration is one of biocompatibility and in the 

light of many years research a large number of materials (metallic, 

polymeric and ceramic) are available which are well tolerated in the 

body. For a surface replacement prosthesis it is necessary for the two 

components to be made of materials with good wear properties. They need 

not necessarily be made of the same materials provided the two materials 

are chemically compatible. They must also be strong enough to withstand 

the largest predicted joint forces and be fatigue resistant. Seemingly 

an ideal candidate for these requirements would be stainless steel. 

This is a material often used in joint replacement surgery for the hip 

and knee and has proved very satisfactory. However, these are weight 

bearing joints which require very much greater material strength than 

the finger joint and also have ample bone stock so that bone resorption 

(occurring as a result of hard material impinging on the bone) is far 

less of a problem. 

A polymeric material such as Ultra-High Molecular Weight Polyethylene 

(UHMWP) would be sufficiently strong for a finger prosthesis and would 

also be rather less expensive to manufacture. The softer material would 

result in less bone resorption but may suffer cuts initiating a possible 

fatigue failure mechanism. Admittedly, in wear tests UHMWP against 
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itself has not compared favourably with UHMWP against stainless steel: 

indeed it has been reported to be 700 times worse in reciprocating pin 

on plate experiments (Atkinson, 1976 (100)). A rather better wear 

performance could be expected in-vivo if fluid film lubrication is 

present. This has been proposed for the MCP joint by virtue of its 

geometry, light loading and fast movement. It may be that the wear 

properties of polymer against polymer in the finger are good enough for 

the implant to function for twenty years which would be an acceptable 

lifetime. If this were not the case the wear resistance could be 

improved by making one component (the metacarpal component) from 

stainless steel. 

The properties of UHMWP can be improved by cross linking. 

Chas F Thackray & Sons Ltd of Leeds have a new medical grade cross 

linked UHMWP which they have proposed as a possible material for the 

Durham surface replacement. The wear characteristics of this material 

are the subject of Chapter 6. 

The design of the surface replacement proceeded on the basis that it 

would be a two component polymeric implant with the proviso that, should 

the wear characteristics prove unsatisfactory, the metacarpal component 

may later be made from stainless steel or CoCrMo alloy. For such an 

implant a detailed knowledge of the bone topography is essential. 
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2. 3 BONE KODKLLING AND KEASUREMENTS 

Many of the dimensions necessary in the design of a surface prosthesis 

are given in the papers by Unsworth & Alexander, 1979 (20) and Unsworth 

et al, 1971 (19). In addition the major and minor axes <Rw and Rh) of 

the ellipsoidal recess of the phalangeal articulating surface are needed 

and, for the metacarpal component, the lengths a & b and angles 9, ~ & r 

(Fig 2.1). 

Fig 2.1 The articulating surfaces of the phalanx and metacarpal. 

Measurement of these quantities was performed first using radiographs. 

Because of the limitations of a two-dimensional image, the measurements 

from the radiographs were not directly very useful but did demonstrate 

that different lengths could be simply related, and these relationships 

were used to scale the components over a range of sizes. Later more 

detailed measurements were taken from the matched clean bones of five 

hands using a toolmaker's microscope. 

2. 3 .1 The Study of Radiographs 

When a patient presents with arthritic disorders of the hand a control 
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bone for density comparison is included on the radiographs taken. This 

bone is embedded in a wax block which also appears clearly on the film 

and from which can be obtained the magnification of the image, its true 

size being known. In this way each film can be calibrated 

independently, hence accounting for film shrinkage (assumed linear) and 

source-to-plate distance. 

The study was performed on radiographs from Middlesbrough General 

Hospital (Rheumatology Unit) taken during the period 1983 - 1986, during 

which time two blocks (1 & 2) were in use. The X-ray Department kindly 

provided two films (A & B) showing both blocks and incorporating a scale 

(Fig 2.2). The scale was of actual length 110 mm and had a mean length 

of 112.3 mm and 112.5 mm on films A & B respectively corresponding to a 

magnification of 1.02:1. Since radiographs of patients contain no scale 

it was necessary to measure the blocks in order to determine the 

magnification. A feasibility study was performed by calculating the 

magnification of films A & B from measurements taken of the blocks 

rather than the scales. A value of 1.03:1 for both films was obtained 

indicating that with care this method could be used with reasonable 

accuracy, only incurring an error of 0.1 mm in 10 mm. Measurements were 

taken from the radiographs of ten male and ten female hands, patients 

with severely degenerated joints being avoided to reduce error. Also, 

since angular measurements were not possible, only right hands were 

chosen. 

From the radiographs the lengths a, b and ~ were measured and tabulated 

(Tables 3.1- 3.4). In an attempt to relate the lengths a and b a graph 

of mean b against mean a was plotted (Fig 2.3). A least squares 

straight line fit is not valid in this case because the quantities of 
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Film A 

Film B 

Fig 2.2 Calibration radiographs of standard 
blocks 1 and 2 with scale. 



- - -
Index ~ (mm) a (mm) b (mm) 

Ml 11.49 8.41 14.56 
M2 10.84 8.74 12.46 
M3 10.58 9.45 12.50 
M4 11.43 8.89 12.70 
M5 11.59 9.52 14.76 
M6 11.27 9.05 11.90 
M7 10.63 10.79 14.44 
M8 13.17 8.89 15.08 
M9 12.74 11.12 16.67 

MlO 12.34 10.73 14.74 

Fl 10.58 9.30 13.30 
F2 9.38 7.28 12.78 
F3 11.76 7.51 13.56 
F4 11.33 5.99 9.87 
F5 9.47 8.01 14.38 
F6 10.48 7.94 9.52 
F7 10.78 9.64 13.40 
F8 11.11 8.73 13.97 
F9 10.52 6.80 11.97 

FlO 11.43 8.33 12.74 

Table 2.1 Index finger measurements from the radiographs of 
ten males and ten females. 

- - -
Middle ~ (mm) a (mm) b (mm) 

Ml 11.00 7.28 14.40 
M2 10.84 9.38 11.97 
M3 11.86 8.97 13.62 
M4 12.38 9.36 14.92 
M5 12.54 9.21 13.33 
M6 11.90 8.41 16.51 
M7 11.09 9.52 16.19 
M8 11.75 8.73 15.87 
M9 12.26 10.13 17.50 

MlO 12.17 9.61 16.99 

Fl 10.26 7.85 13.78 
F2 10.19 7.12 13.43 
F3 11.11 7.84 13.24 
F4 11.49 8.89 12.30 
F5 10.29 8.17 13.06 
F6 10.16 7.94 11.90 
F7 10.78 8.01 14.38 
F8 11.59 7.62 14.76 
F9 9.87 7. 77 13.92 

FlO 12.09 8.82 14.70 

Table 2.2 Middle finger measurements from the radiographs of 
ten males and ten females. 
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- - -
Ring ~ (mm) a (mm) b (mm) 

Ml 9.55 6.96 11.97 
M2 10.52 9.06 11.65 
M3 11.54 9.61 12.50 
M4 10.63 7.78 13.49 
M5 10.79 8.57 13.33 
M6 10.32 8.57 13.33 
M7 11.75 9.05 14.44 
M8 11.43 8.57 13.65 
M9 9.80 8.82 14.86 

MlO 11.38 7.69 15.55 

Fl 8.20 5.92 11.70 
F2 8.25 7.12 11.97 
F3 9.64 7.57 10.94 
F4 9.87 8.58 11.81 
F5 9.31 7.51 12.58 
F6 9.05 7.78 10.63 
F7 9.15 7.35 12.74 
F8 10.48 7.62 13.02 
F9 8.25 7.12 11.00 

FlO 9.80 7.84 12.42 

Table 2.3 Ring finger measurements from the radiographs of 
ten males and ten females. 

- - -
Little ~ (mm) a (mm) b (mm) 

Ml 8.09 7.28 11.97 
M2 10.19 8.74 11.00 
M3 9.30 8.12 11.22 
M4 8.25 6.98 12.54 
M5 9.36 8.41 10.63 
M6 10.00 7.78 11.90 
M7 9.52 7.62 12.06 
M8 9.84 7.62 13.02 
M9 9.80 7.84 13.06 

MlO 10.42 8.40 14.58 

Fl 8.81 5.92 10.89 
F2 8.58 7.12 10.19 
F3 8.49 7.35 10.94 
F4 8.74 7.44 11.16 
F5 8.49 8.49 10.78 
F6 8.73 7.62 9.68 
F7 8.82 6.05 11.44 
F8 9.05 7.46 11.43 
F9 8.25 6.31 9. 71 

FlO 9.15 7.85 10.62 

Table 2.4 Little finger measurements from the radiographs of 
ten males and ten females. 
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Fig 2.3 Graph of mean b against mean a for the metacarpal. 
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both axes are in error. However, in their paper giving linear 

correlations between sulphur-nitrogen bond distances and bond angles, 

Banister et al in 1985 (104) described a linear regression method which 

enabled them to deal with data from radiographs in much the same way as 

was required here. The model was adapted and used to give a straight 

line fit of b = 1.918a - 2.6601 which seems quite good despite the large 

scatter in data (19% in a and 12% in b). Polynomial and exponential 

regression fits were also tried but with far less success than the 

linear fit. The simplicity of the linear relationship encouraged 

investigation into other such simple relations during the more detailed 

study of bone topography, which proved fruitful. 

2. 3. 2 The Study of Bone Heads 

Clean matched bones of five hands were kindly lent by the Newcastle 

Medical School and measurements of the important lengths and angles were 

made using a toolmaker's microscope. This is an optical microscope 

incorporating a large illuminated specimen table which can be rotated 

and moved in the x, y & z directions using micrometer screw adjusters. 

Fine cross-hairs in the eyepiece enable the accurate measurement of 

'landmark' positions, distances and angles. The results obtained from 

this investigation are given in Tables 2.5 & 2.6. It should be noted 

that the measurements - apparently small when compared to published data 

(Unsworth & Alexander, 1979 (20), and Unsworth et al, 1971 (19)) - are 

those of completely clean bones. During surgery it is anticipated that 

the diseased articular cartilage will largely be removed before the 

implant is fitted. 
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Phalanges Metacarpals 

Finger ~ (mm) Rh (mm) ~/Rh h (mm) b (mm) r (mm) 

index 1 10.97 8.75 1.25 11.49 11.54 6.20 
2 10.03 7.57 1.32 10.80 11.13 5.45 
3 11.48 9.33 1.23 12.72 12.92 6.43 

*4 12.46 11.10 1.12 14.26 12.65 7.50 
*5 11.85 8.93 1.33 12.08 11.72 6.70 

middle 1 10.68 8. 77 1.22 13.90 11.13 7.00 
2 10.10 8.39 1. 20 11.10 9.94 5.55 
3 12.23 10.13 1.21 14.67 13.33 7.55 

*4 12.86 10.15 1.27 15.27 13.33 7.70 
*5 11.89 8.93 1. 33 12.36 10.72 6.50 

ring 1 10.17 8.27 1.23 11.73 9.28 6.10 
2 9.15 7.50 1. 22 10.49 9.01 5.25 
3 10.89 9.29 1.17 13.22 11.33 6.70 

*4 11.53 9.65 1.19 13.73 10.76 6.90 
*5 11.15 8.45 1.32 11.29 10.23 5.98 

little 1 9.55 7.80 1. 22 10.12 9.40 5.25 
2 9.18 7.64 1.22 9.00 8.53 4.65 
3 10.59 9.05 1.17 11.56 11.85 6.05 

*4 11.19 8.96 1.25 11.64 10.84 6.10 
*5 11.00 8.13 1.35 10.26 9.78 5.30 

* - Right hand bones 

Table 2.5 Length measurements from matched bones. 

Finger 8 4> 'T 

index 1 58°18' 86°54' +16°24' 
2 46°03' 81°00' + 8°36' 
3 5P33' 89°57' + 2°42' 

*4 86°12' 63°42' 0°00' 
*5 7Pl2' 50°06' - 8°54' 

middle 1 90°54' 72°06' +18°24' 
2 81°48' 74°06' +10°36' 
3 80°18' 71°42' +19°30' 

*4 70°48' 8P33' -25°40' 
*5 68°27' 76°12' - 4°30' 

ring 1 92°22' 75°06' + 4°24' 
2 87°24' 6r36' + 0°12' 
3 85°18' 76°00' +11°00' 

*4 79°00' 76°06' - 2°54' 
*5 64°18' 78°54' -11 °00' 

little 1 84°36' 68°03' - 6°48' 
2 73°33' 60°30' -20°36' 
3 73°03' 66°03' - 8°09' 

*4 70°36' 8P54' +10°27' 
*5 59°30' 74°33' +10°12' 

* - Right hand bones 

Table 2.6 Angular measurements from matched bones. 
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2.4 RESULTS 

It is probably easier to inspect the results of the metacarpal and 

phalanx bones separately since the phalanx shape is far less 

complicated. The lengths taken from the phalanx were the major axis ~ 

and the minor axis Rh. It seemed reasonable to suppose that some 

relationship existed between the two and, indeed, the graph of Rw 

against Rh gives a good straight line~= 0.9772Rh + 2.2982 (Fig 2.4). 

The graph showing the radius of curvature r against Rh also appears as a 

straight liner= 0.84046Rh- 1.33145 (Fig 2.5). The radius 

measurements taken were those of the respective metacarpal heads which 

may not necessarily be the same as those of the phalanges (Unsworth 

et al, 1971 (19)). Given the rather small number of data points, the 

straight line fits were remarkably good and it was a simple matter to 

produce a set of phalangeal component sizes based on a radius range of 

7 mm - 10 mm (in increments of 0.5 mm), the results being displayed in 

Table 2.7. 

Internal Radius (mm) 7.00 7.50 8.00 8.50 9.00 9.50 10.00 

Minor Axis (mm) 8. 72 9.32 9.91 10.51 11.10 11.70 12.29 

Major Axis (mm) 10.82 11.40 11.98 12.56 13.14 13.73 14.31 

Table 2.7 The range of phalanx sizes. 

The lengths taken from the metacarpal were the height h, the base width 

b and the radius of curvature r. The angles measured were 8, ~ and r 
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Fig 2.4 Graph of Rw'against Rh for the phalanx. 
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Fig 2. 5 Graph of r ··against Rh for the phalanx. 
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(see Fig 2.1). As expected, the metacarpal proved rather more difficult 

to deal with than the phalanx. The shapes of the articulating surfaces 

for a typical right and left hand are shown in Fig 2.6 and can be seen 

to be non-symmetrical and rather complex. 

particular is unusual. 

The index finger profile in 

INDEX MIDDLE RING LITTLE 

Fig 2.6 The articulating surface profiles of typical metacarpals. 

It was discovered from the measurements that the base width b and the 

radius of curvature r were directly proportional, the ratio b/r being 

1.75 with a standard deviation of 0.16. It is perhaps easier to see the 

similarities of the metacarpal heads through simple quadrilateral 

representations, obtained from the measurements (Figs 2.7 - 2.10). The 

superimposed circles are chosen to have the most suitable radii of the 

range defined previously (Table 2.7). In this way it is possible to 

envisage how a simplified articulating head can be modelled by cutting 

down a hemispherical shell. 

Putting aside the index finger for a moment, the general shape of the 

metacarpal heads was observed to be fairly consistent. Thus the 

statistical averages of measurements 9, ; and T were calculated and a 

standard geometrical shape was ·adopted which could be scaled in size 
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Fig 2.7 Quadrilateral representations of five left index fingers. 
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Fig 2.11 The standard shape of the metacarpal articulating surface. 

according to the radius (Fig 2.11). Since this shape was symmetrical it 

could be used for both right and left hand bones, cutting down the 

number of components necessary. The index finger, although rather 

different in profile to the rest, was investigated for its suitability 

for this standard shape and was found to be quite acceptable. The 

problems associated with the index finger are detailed later. The size 

range is shown in Table 2.8. 

External Radius (mm) 7.00 7.50 8.00 8.50 9.00 9.50 10.00 

Base Width (mm) 10.79 11.69 12.60 13.50 14.40 15.29 16.20 

Top Width (mm) 4.32 4.76 5.20 5.64 6.09 6.52 6.97 

Table 2.8 The range of metacarpal sizes. 

It may seem at first unreasonable to attempt to replace the natural 

articulating surface with components of such a simple form. It was 

apparent at an early stage that any form of surface replacement would be 

a compromise on the true shape of the bone head. If the shape were the 

only requirement the best approximation would be to take a series of 
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castings for each finger. This would result in at least 56 components 

for the metacarpal alone (7 sizes for each finger, both right and left). 

However, to do this would not only be expensive but would also limit the 

choice of material and serve to confuse the surgeon who undoubtedly 

would not wish to spend time searching through a large assortment of 

components to find a suitable one. Given that a simplification needed 

to be made, it was decided to employ a very practical design which would 

best satisfy the requirements of low cost, ease of manufacture, etc., 

without worrying unduly about the precise surface shape. After all, 

simplicity is so often the key to success as with the Swanson design for 

example. 

By adopting a symmetrical shape suitable for both right and left hands 

the necessary number of components is halved. Since the adopted shape 

is also suitable for all four fingers the only remaining consideration 

is size, reducing the minimum range to just seven components each for 

the phalanx and the metacarpal. The proposed material is UHMWP which is 

cross linked after moulding. This suits these components, which need to 

be injection moulded due to their complex shape. 

It was not easy to see exactly how good a covering could be achieved by 

such a component, particularly for the index finger, and so a series of 

acrylic models were made by hand for appraisal. The components for 

matching phalanx and metacarpal bones were cut from hemispheres of the 

same radius. The new joint, being totally conforming, would be a little 

more stable than the natural joint, and by increasing the surface 

contact the stresses transmitted across the joint are distributed more 

evenly. The models were made according to the following design. The 

modelling method and design improvements are described later. 
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2.5 DESIGN 

The proposed component designs are shown in Figs 2.12 and 2.13. The 

phalangeal component has a simple ellipsoidal shape with spherical 

curvature which will fit into the natural articulating recess of the 

phalanx. If a shallow recess is cut into the bone the component will 

sit inside, being prevented from slipping by the surrounding bone. It 

is very unlikely that any significant 'pull-out' force will occur since 

the joint is normally in compression. The metacarpal component has the 

simple quadrilateral form adopted during the measurement stage which 

approximates to that of the articulating surface. This too has 

spherical curvature and was cut from a hemisphere originally (later a 

20° extension on the volar aspect was found necessary to achieve full 

cover). 

Since neither component must interfere with capsula-ligamentous 

structures in any way it is essential that they do not protrude beyond 

the boundaries of the articulating surfaces and that any mode of 

fixation must be contained within these areas. In both cases the 

fixation comprises a short intramedullary stem. Frictional shear 

stresses and rotational forces should be well resisted by the geometry 

of the components but as an extra precaution the stems should be of 

square cross-section or contain fins. Certainly no cement is necessary 

and indeed is contra-indicated since the removal of the prosthesis 

(should this prove necessary) would then be difficult and damaging to 

the bone. Notice that the stem of the metacarpal component is offset 

dorsally from the centre of curvature: this is a very important 

consideration as discovered by Flatt in 1973 (39) who altered the design 
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Fig 2.12 Proposed phalangeal component design. 
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Fig 2.13 Proposed metacarpal component design. 
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of his metallic prosthesis to account for this. The amount of offset 

necessary is given in the paper by Unsworth & Alexander, 1979 (20). 

Both components will be made from a cross linked polyethylene in the 

first instance for reasons stated previously. However,should it prove 

necessary at a later stage of development, the metacarpal component 

could be made from a castable metal such as CoCrMo alloy. Up to the 

completion of this thesis this has not been seen to be the case. 

90 



2. 6 HAND-MADE KODKLS & PROTOTYPE KANUFACTUR.K 

Having put the basic design and size range on paper, the next stage was 

to make some first generation prototypes to assess feasibility. At this 

stage the mode of fastening was unimportant and could be omitted but the 

surface geometry was crucial, particularly for the index finger which 

might pose a problem. The first set of models was made to demonstrate 

how good a cover could be attained over the articulating surfaces of 

randomly chosen bones and to look at the suitability of the size range. 

The models were made from dental repair acrylic in the form of 

hemispherical shells and then cut down to the required shape. The 

method was as follows. 

Seven blind holes were drilled into two perspex blocks. The holes in 

the first block had radii ranging from 6 · 9 mm in 0.5 mm intervals and 

in the second block they ranged from 7 - 10 mm. Stainless steel balls 

of matching radius were placed in each of the holes and fixed using 

loctite (Fig 2.14). 

Fig 2.14 Perspex block with stainless steel balls. 

The first block was placed in a deep box and plaster of Paris poured 

over. When the plaster was dry ~t was detached from the first block and 

placed in its own box to be covered with silicone rubber. The second 
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block was placed in a similar box and silicone rubber poured over. The 

resulting rubber former and die could then be used repeatedly for making 

hemispherical shells of 1 mm thickness over a range of radii (Fig 2.15). 

Fig 2.15 Rubber former and die for hemispherical shells. 

A little dental acrylic was poured into each recess of the die then the 

former was lowered into place and weighted. When dry the shells were 

placed on the balls of the first block for support while the outline of 

the required component shape was drawn on in pencil. Lines were scored 

on the perspex block to help in this (Fig 2.16). 

---{·-'--- -- '1-T--
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Fig 2.16 Scoring of the perspex block. 

The drawn shapes were then cut out by using a fine piercing saw and a 

full set of phalanx and metacarpal components was made in this way. 
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When tested against several bones of different sizes the phalanx models 

appeared to cover the articulating surface very well indeed, as 

expected, and it was decided not to alter the profile at all. Second 

generation models were produced with 5 mm long intramedullary stems of 

square cross-section. The metacarpal shapes gave generally good cover 

of the articulating surfaces, for all non-index fingers, but tended to 

be rather short in the palmar aspect and sometimes left a narrow 

uncovered region medially. Contact was good in all places (Fig 2.17). 

Fig 2.17 Testing the fit of the hand-made models. 

For the index finger, again there was generally good cover for the 

articulating surface but there was consistently a large protrusion on 

the medial side. Contact was not always good everywhere and gaps 

occurred between the prosthesis and the bone head (Fig 2.17). In spite 

of these problems it was felt (because of the good cover) that it was 

not unreasonable to use this design for the index finger, particularly 

since it is intended that the implants will be sold with reamers and 

tools of the correct shape to prepare the bone surfaces. In this way 

problems of surface conformity are easily dealt with. 

The design was improved by making an extension beyond the hemisphere of 

20° on the volar aspect and decreasing the angle of the sides from 

14° 36' to 13°. This would result in a slightly wider body and provide 
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improved coverage on the volar side. 

The second generation of metacarpal models were produced, using a 

similar method to that previously described, and incorporating the 

design changes along with 5 mm intramedullary stems of square cross­

section. These stems were offset dorsally from the centre of curvature 

by 2.63 mm (Unsworth & Alexander, 1979 (20)). 

The new models were again tested against a selection of bones - this 

time with holes drilled to accept the stems and some surface preparation 

performed by hand with a file. The improvement was considerable. 

After consultation with a plastic surgeon (Mr Charles Viva), it was 

agreed that the design was worth pursuing and a preference was expressed 

for a small intramedullary stem fixation. In this way, should it prove 

necessary to re-operate at a later stage, it would be a simple matter to 

insert the Swanson implant at revision. The stem, it was felt, should 

be rather longer than that of the second generation model - in the 

region of 15 mm in length. Fins on the stem should be considered but 

this may cause similar problems to cement should removal prove necessary 

and so work should continue using stems of square cross-section for the 

time being. 

Contact was established with the company Chas F Thackray & Sons Ltd of 

Leeds who make a large range of medical equipment and also the Charnley 

hip prosthesis. They agreed to injection mould some prototypes in a new 

medical grade cross linked polyethylene that has been undergoing 

clinical trials for the past four years. Relatively little is known 

about the properties of this material though it would be expected to 
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behave in a similar way to normal UHMWP. It was decided that, along 

with fatigue and wear tests on the prototypes, an investigation into the 

wear properties of this new material and a brief stress analysis of the 

implant design should be carried out (Chapters 5 and 7). 

The moulding tool was designed and made jointly in the workshops of 

Durham University and Chas F Thackray & Sons Ltd initially for one 

average-sized pair of components (size 4 - see Fig 2.18). The 

prototypes also fit very well onto the bones although it was noted that 

the flexibility of the material (not a property of dental acrylic) 

tended to make the implant 'bounce' off a bone which had a radius that 

was slightly bigger than its own. It is recommended that an implant 

slightly larger than necessary should be preferred over one smaller if 

an exact fit is not possible. 

The cross linked prototypes have been assessed for durability in the 

finger function simulator and the results are very encouraging. The 

tests took place over a period of eight months and the results are 

discussed in Chapter 6. 
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Fig 2.18 Photograph of the prototype components. 



CHAPTER 3 

THE FINGER FUNCTION SIKOIATOR 



3.1 MOTIVATION AND SPECIFICATION 

Joint replacement surgery in the treatment of arthritic disease is now 

commonplace and on the whole very successful. Research into the design 

and development of prostheses has made major advances since the 1940's 

resulting in complex devices for almost all articulating joints of the 

body. Designers of such devices are increasingly using laboratory 

facilities to test their ideas before commencing clinical trials. In 

this way problems of wear and fatigue etc. can be monitored very 

closely. However, failure to simulate the situation pertaining in-vivo 

may leave one ignorant of inherent design problems however demanding the 

test procedures might be. As with, for example, the Swanson Silastic 

implant which, although it can be flexed several million times in the 

laboratory without failure, has commonly been prone to fracture in-vivo 

within a relatively short time of surgery. One device used to test this 

was built by Weightman et al in 1972 (96). Their machine used a form of 

scotch-yoke mechanism to flex the implants which were loosely held in 

Plexiglas blocks and immersed in serum. Although their tests revealed 

evidence of stress corrosion fatigue which would eventually cause 

failure, it is felt that this would have occurred rather sooner using a 

closer simulation. Some trials have been carried out using animals 

which are obviously helpful but also time consuming and lacking fine 

control. As part of the programme to design a new type of MCP joint 

replacement, a finger function simulator was designed to provide some 

method of realistic assessment. Several assumptions and simplifications 

had to be made to provide the closest simulation that could 

realistically be achieved mechanically. 
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If one considers the human hand in normal use there are really two modes 

of operation. Firstly, the finger should be capable of performing very 

delicate tasks needing dexterity of the fingers. An example of this is 

that when typing, the fingers will be moving quite quickly but are under 

very little load. Secondly, the hand may be required to apply a strong 

grip force when, for instance, turning a key or holding a pan. The 

movement of the fingers here is minimal but the joint force is very 

large. A successful MCP prosthesis needs to have a good range of motion 

and to be resistant to wear caused by sliding surfaces and to fatigue 

caused by cyclic flexion. It must also be able to withstand the 

stresses placed upon it during heavy loading. The simulator, then, must 

flex the MCP joint cyclically over the whole range of motion (0° - 90°) 

with very light loading and must also periodically apply a heavy static 

load to simulate grip. 

The motion produced need OlllY" be uni-planar since flexion and extension 

of the finger is by far the predominant action and therefore of greatest 

concern. To try to reproduce circumduction of the finger would greatly 

complicate the simulator design for little reward. Undoubtedly in the 

past the natural ability of the finger to move laterally has caused 

prosthesis failure as with, for example, the Flatt metallic hinge which, 

having been designed to restrict joint movement to a single plane, 

suffered hinge fractures and stem fatigue due to large stresses from 

recurrent ulnar drift (Blair et al, 1984 (44) and also Flatt, 

1983 (38)). However, for other designs, for example the Steffee 

prosthesis, in which some stability has been sacrificed in favour of 

increased freedom, the effects of lateral motion are similar to those of 

flexion/extension though to a lesser degree. This is particularly true 

in the case of a surface replacement prosthesis where the problems are 
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largely those of wear. It is possible, however, that stresses occurring 

due to persistent post-operative ulnar drift may combine with and 

accentuate the effects of stresses applied during flexion and extension. 

Some provision should be included in the simulator design to enable 

reproduction of this effect. 

To test fully the prosthesis it is insufficient to place it in the 

simulator without first inserting it into finger bones. The interaction 

of the implant with the bone is an important consideration since cuts 

from bony spurs can accelerate fatigue as for example with the Swanson 

Silastic implant. If the bones were m-ounted independently in clamps 

then the plane of motion could be rotated through 90° if required in 

order to look at abduction and adduction. The clamps must be easily 

removable for regular inspection of the implant during long term 

testing, and adaptable to accept bones of different sizes. 

The MCP joint is by no means a simple structure anatomically and it 

would be impractical to attempt to reproduce it exactly by mechanical 

means. This would not only be surplus to needs but also difficult to 

co-ordinate. The relative importance of local soft tissue structures in 

joint function and stability has been discussed in Chapter 1, and 

simplifications can be made in the light of information from the 

available literature. A single wire producing extension and one 

producing flexion is sufficient to represent the actions of all the 

muscles associated with the MCP joint since by far the greatest 

contribution to movement in this plane is made by the tendons of the 

FOP, FDS and EDC. Path restrictions normally imposed by the tendon 

sheaths can be provided by simple pulleys. The volar plate and 

metacarpoglenoidal ligament can be simulated using a mobile pulley 
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pivoted about the point of attachment of the ligaments just dorsally and 

distally from the centre of rotation of the joint. Stability against 

volar subluxation normally provided by the collateral ligaments must be 

included also. However, it should be remembered that the simulator 

needs to be capable of accommodating various designs of prosthesis in 

their normal mode of operation. In many cases the surgical procedure 

involves the resection of the metacarpal head and removal or relocation 

of ligamentous structures such as the volar plate. The function of the 

simulator must therefore not rely on their presence and they should be 

easily removable. 

It has already been seen that there are two levels of loading at the 

joint. During cyclical motion the load required is less than 20 N and 

can easily be applied by increasing the working tension in the 

'tendons'. In this way the load is also variable which is important 

since this aff~Gts the wear rate of sliding contacts. Tbe application 

of a heavy static load is more complicated and must also be applied 

through the 'tendons' in some way. During pinch grip the majority of 

the force is carried through the flexor apparatus with the extensors 

relaxed (Smith et al, 1964 (2), Weightman & Amis, 1982 (1)) and this has 

been shown using electromyographic techniques (Long et al, 1970 (3)). 

Since this results in large subluxing forces at the MCP joint that are 

potentially damaging to an implant it is vital that the simulator 

produces the same kind of loading. Some method of releasing the 

extensor apparatus, or at least of greatly reducing its effect in 

comparison with the flexor, is needed. If the finger is pulled against 

a restraining pin, representing the thumb, at a position of about 30° 

flexion (the average pinch grip position (Weightman & Amis, 1982 (1))) 

then force conditions very similar to those found in-vivo should be 
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achievable. Pre-operative pinch grip strength has been measured to be 

between 5 N and 20 N (Linscheid & Dobyns, 1979 (17)) compared with the 

normal pinch grip strength of between 50 N and 70 N (Walker & Erkman, 

1977 (14), Jones et al, 1985 (16)). Hagert in 1978 (18) reported that 

the strength of patients after joint replacement surgery was up to twice 

their pre-operative strength. 40 N would produce an MCP joint force of 

184 N (40 x 4.6) (Weightman & Amis, 1982 (1)). The load can be applied 

pneumatically and varied as required by regulating the supply pressure. 

Obviously the force needs to be monitored using transducers and since 

fatigue tests may run for several weeks, an automatic control and data 

collection system must be incorporated. To further imitate conditions 

in-vivo the joint should be immersed in saline at 37°C. 

By no means the least important consideration in the building of the 

simulator is cost, and the design must be kept as simple as possible 

withg~t ~ompromising its function. The following section describes the 

simulator as it now stands. It is a versatile machine and it is 

believed that it is one of the first devices of its kind, which 

hopefully will play an important role in the assessment and further 

development of finger joint prostheses. 

101 



3. 2 THE SIMOIATOR. DESIGN 

The simulator can be split into three main sections. The lower section 

(Fig 3.1) is a perspex bath containing saline solution held at 37°C in 

which the pulleys and clamps, holding the bones of the finger joint, are 

situated. The upper section is the drive and pinch force system through 

which the cyclical motion of the joint and the heavy static loading are 

achieved (Fig 3.2). The remainder of the rig (Fig 3.3) comprises the 

control and data collection circuitry. 

The lower section consists of two stainless steel clamps in which the 

metacarpal and proximal phalanx are held. It is very important, since 

the finger bones are mounted separately, to ensure that their long axes 

are in line. Real bones are a rather difficult shape to hold but the 

O\!ter profile of the shaft is irrelevant when testing MCP joint 

prostheses. It was decided, therefore, to set the shafts in acrylic 

cylinders of diameter 10 mm leaving the bone heads exposed. This 

enabled the clamp design to be kept very simple. The cylinder rests 

upon two v-shaped knife edges with a third in the middle being screwed 

down from above to give three-point fixing (Fig 3.4). In this way not 

only are the bones easily removable but are also certain to be properly 

aligned. Of course there is also the opportunity to alter the alignment 

of the bones and reproduce the effects of ulnar drift by putting a taper 

on the phalangeal cylinder. 

The phalangeal clamp is free to pivot through a 100° arc about the 

centre of rotation of the joint. It is supported on a low friction 

UHMWP slide and guided by ball bearings moving in a semi-circular track. 
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Fig 3.1 Clamp and pulley section of the simulator. 



Fig 3.2 Drive and lift section of the simulator. 



Fig 3.3 Control and data collection system 
of the simulator. 



Fig 3.4 The phalangeal clamp. 
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The function of the ball bearings is to restrain the movement of the 

joint to a single plane, this plane being horizontal rather than 

vertical to eliminate any gravitational effects on the joint action. At 

the front of the phalangeal clamp there is a locating peg which rotates 

inside an oversize hole in the baseplate. This affords some 

'ligamentous' stability to the joint by preventing the joint surfaces 

from separating. Because it is oversize it does not determine the 

centre of rotation of the joint and the loading passes through the joint 

rather than the baseplate. The metacarpal clamp remains stationary and 

is suspended from an overhead gantry by a strain-gauged cantilever beam 

through which force measurements in two directions can be made. 

The two artificial 'tendons' used to represent the actions of all 

muscles associated with the MCP joint pass through holes in the 

phalangeal clamp close to the bone and are retained at the back by 

washers. They then follo_w separate pulley systems to _the drive 

mechanism with their lines of action parallel to the centreline of the 

bone cylinders. During commissioning trials it was discovered that the 

subluxing force on the joint was not as large as expected. This was 

greatly improved by attaching the flexor 'tendon' to the proximal 

phalanx using a simple electrical cable tie to imitate the flexor tendon 

sheath. The 'tendons' themselves proved quite a problem initially since 

they need to be very flexible, strong enough to withstand forces of up 

to 200 N with minimal extension, and corrosion resistant. A form of 

braided nylon, although slightly extensible, has proved the most durable 

of all the materials tried. 

The flexor system includes a small freely moving pulley mounted above 

the joint and pivoted about the point of attachment of the 
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metacarpoglenoidal ligaments. This 'volar plate' can be easily removed 

if desired. 

The baseplate containing the clamp and pulley system fits into a perspex 

box filled with saline at 37°C. At a lower level is a thermostatically 

controlled tank containing a heater and stirrer. The saline is pumped 

from the lower tank to the upper one and returned by gravity through an 

overflow outlet at a level above the joint. 

Obviously there were many ways in which cyclical motion could be 

imparted to the joint through the 'tendons' using servo-controlled 

hydraulics or stepper motors etc. but the simulator was designed on the 

basis of low cost and simplicity. To be effective in fatigue and wear 

testing, the drive mechanism must be very durable and reliable in order 

to run continuously for periods of several weeks. The idea of the final 

des_ign Wl!S to red~ce the number of possibl,eareas of failure and to.keep 

the cost of replacing worn or damaged components to a minimum. The two 

'tendons' pass out of the bath and each is attached to a cam follower. 

The followers move in eccentric circular cam grooves cut into a 

Duralumin flywheel which is driven by a DC motor and gearbox at 

frequencies of up to 2 Hz. This converts the rotational motion of the 

disc to a linear displacement which is transmitted to the tendons. The 

motor is one which uses an ironless rotor and it is formed in three 

sections, the magnet, the ironless rotor and the endcap with carbon 

brushes. Motors of this kind have a unique linear characteristic and 

the advantage of low starting voltages. 

Fig 3.5 shows a plan view of the clamp and pulley system at positions of 

oo and 90° flexion. As the joint moves between these positions the 
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A 8 Fll.L EXTENSION 

A, B AND C ARE THE PULLEYS WHICH ACT AS TENDON SHEATHS. 
R g. S ARE THE POINTS OF ATTACHMENT OF THE TENDONS TO 
THE PHALANGEAL CLAMP 

A B AT 90• FLEXION 

Fig 3.5 Plan view of the clamp and pulle~ system. 
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'volar plate' pulley must move round in an arc in order to preserve 

equilibrium of forces. Scale drawings were made of this system at 10° 

intervals of increasing flexion and accurate measurements made of the 

change in the 'tendon' lengths. In this way the eccentricity needed for 

the flexor cam grooves was found to be 11.75 mm off-centre and for the 

extensor cam groove 12.0 mm 180° out of phase. 

The true shape of the cam grooves ought not to be circular but a very 

close approximation was achieved by choosing the groove radii such that 

the error in follower travel never exceeds 1 mm throughout the cycle 

(flexor groove radius = 52.5 mm and extensor groove radius 44.5 mm). 

The cam disc has been designed in order that its flywheel effect will 

help to maintain uniform velocity during cyclical motion against 

transient effects such as water resistance and increased friction etc. 

Its weight was limited to 2 kg since it forms part of the assembly 

lifted pneumatically during heavy loading and its moment of inertia is 

well within the capabilities of the motor and gearbox. One problem 

observed during commissioning trials was the occurrence of unwanted 

lateral forces on the cam followers. The original follower guides were 

replaced by larger steel blocks which greatly reduce the moment arms and 

act also as heat sinks. Calculations used in the design of the cam disc 

and drive shaft are detailed in Appendix 1. 

The speed of the motor, and hence cycle frequency, can be varied using a 

potentiometer. The motor and cam system is mounted in a light cage 

which is free to move vertically on rods which pass through brass 

brushes. During normal cyclical motion the cage rests on a lower shelf 

but is lifted vertically during simulation of tip pinch by a pneumatic 

cylinder which is flange mounted above the cage (Fig 3.6). 
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Fig 3.6 The drive and lift mechanism. 
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When the large static load is to be applied, a microswitch is pulled 

into the path of the flywheel by a solenoid. This deactivates the motor 

and activates another solenoid which prevents the flywheel from bouncing 

back off the microswitch (a problem initially encountered). In the 

lower section of the simulator a third solenoid is activated which then 

protrudes into the semi-circular track at a position of 30° flexion. A 

solenoid-operated pneumatic valve, controlling the air supply to the 

piston, then switches the air supply from the top of the cylinder to the 

bottom. The piston retracts pulling the drive cage vertically so that 

the phalangeal clamp is pulled hard against the restraining pin thus 

simulating tip pinch action. The tip pinch force is transmitted through 

the flexor 'tendon' and can be regulated by the supply pressure to up to 

200 N. 

Looking again at Fig 3.6 it can be seen that the 'tendons' are attached 

to the cam followers via two springs. In cyclical motion these act to 

smooth out any inaccuracies in cam position but play a rather more 

important role during heavy static loading. As the piston lifts the 

drive cage, the collar of the flexor 'tendon' spring is pressed hard 

against its base whereas the far longer spring of the extensor 'tendon' 

is hardly compressed at all. This means that all the force is carried 

through the flexor 'tendon' and this produces a force similar to that 

found in-vivo. In other words, a compressive force combined with a 

large subluxing force is applied to the joint. This force pattern can 

be very damaging to some designs of prosthesis. 

So that the rig could be left running unattended for long periods of 

time a means of synchronising the actions of both the drive and 

pneumatic systems was included. A series of cam controlled 
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microswitches is used to effect the following: 

i) The microswitch is pulled into the path of the flywheel. 

ii) The motor is disconnected and the cam arrested. 

iii) The restraining pin is activated. 

iv) The air cylinder lifts the drive cage and the phalangeal clamp is 

pulled hard against the restraining pin. 

v) After a pre-set time the air cylinder lowers the drive cage. 

vi) The microswitch is released, deactivating the restraining pin and 

reconnecting the motor. 

vii) Cyclical motion continues. 

The control circuitry is shown in Fig 3.7. 

In order to measure joint forces some form of strain-gauged transducer 

arrangement was needed. It was not considered possible to place the 

strain gauges on the joint itself in view of the obvious problems of 

attachment, the different geometries of prosthesis to be tested, and the 

corrosive environment. Rather, the joint force had to be measured 

remotely and a method of supporting the clamp such that all the joint 

force was transmitted through it to be detected by the gauges was 

devised. Lack of space beneath the clamp ruled out the use of any form 

of hydrostatic bearing and so a stainless steel beam was cantilevered 

down from a rigid overhead gantry into the bath to support the clamp 

(Fig 3.8). The cantilever beam contains two separate sets of strain 

gauges. This is necessary because of the very large difference in the 

magnitude of the forces involved. In addition, the direction of the 

force on the joint is continually changing during cyclical motion and it 

is necessary to measure the force in two perpendicular directions 

simultaneously. The beam itself is of square cross-section and is made 

up of two parts of different cross-sectional area. When a large static 
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Fig 3.7 The control circuitry. 
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Fig 3.8 The metacarpal clamp and cantilever. 
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force is applied, the beam is clamped at the lower thicker section so 

that bending is restricted to this region. In this way the upper, more 

sensitive, section is protected. Measurement of large forces is 

achieved through two full strain gauge bridge arrangements. During 

light dynamic loading the clamp can be removed allowing bending to take 

place along the full length of the beam. The small forces are measured 

by means of two half bridge configurations mounted at the top of the 

beam. Here the cross-sectional area is too small for full bridges and 

dummy resistors are used to complete the arms. 

Even though the strain gauges are protected by a plastic coating and are 

not, in fact, submerged in the saline environment, problems of 

electrical shorting were initially encountered during tests. After a 

short time the gauges came loose altogether and inspection revealed that 

saline, splashed onto the connecting wires, had seeped through the 

jacket and moved up underneath the plastic coating to the gauges. After 

their replacement the gauges and connecting wires were protected by a 

layer of silicone rubber. (For calculations concerning the strain gauge 

bridges see Appendix 1.) 

The signals from the Wheatstone bridge arrangements are fed into two 

amplifier units which give a low noise calibrated output of 0 - 1 V 

representing 0 - 1000 ~€. Since the two amplifiers are in close 

proximity they are connected in a master-slave configuration to 

eliminate the risk of beat frequencies being generated between the 

oscillators. As an early warning against bridge failure a digital 

voltmeter is connected to the amplifier outputs giving a continuous 

visual reading of strain. The analogue signals are passed from the 

amplifiers to voltage conditioner units ready for analogue to digital 
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conversion. The full scale voltage range for each unit is nominally 1 V 

but the gain and offset can be adjusted to suit the required peak input 

voltage (which in this case is 0.5 V). This facility greatly improves 

the digital resolution available. Each unit has its own secondary 

address for software scanning of the signals when the A-D converter 

accepts data from a conditioning module and converts it into a digital 

form for the IEEE-488 bus. Each reading is sent to the microcomputer as 

a code of three ASCII characters, representing a twelve bit number, plus 

a return marker. This can be decoded into a force reading in the 

software. The system has a sampling rate of 1 every 25 ~s which is 

quite adequate for our purposes. 

User friendly software has been developed in BASIC with menu options to 

facilitate the following: 

i) Choose a bridge configuration and set up a data file containing 

details of the test. 

ii) Take a set of force measurements and store them on disc. 

iii) Review the data stored in numerical form and make a hard copy. 

iv) Review the data stored in several graphical forms and make hard 

copies. 

The program is listed in Appendix 2. 
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3.3 CALIBRATION 

The strain gauges bonded to the metacarpal cantilever beam are connected 

as shown in Figs 3.9 & 3.10. The active gauges used are of 120 0 and 

gauge factor = 2.12. The resistors used to complete the half bridges 

are also of 120 0 with a tolerance of 0.01. The apex connections of 

either the half or full bridge arrangements are made at the rear of two 

amplifier modules via four 2 mm terminals. These modules, powered by a 

stabilised 18 V supply, energise and condition the signals from the 

bridges to give a calibrated low noise output of 1 V. The number of 

active gauges is set using a switch on the rear panel and, in order that 

the instrument can be read directly in strain, a scale factor control is 

provided where scale factor = 1/gauge factor. Since the two amplifier 

modules are in close proximity they are joined through the 7-pin DIN 

output connectors in a master-slave arrangement to eliminate the risk of 

beat frequencies being generated. 

After a warm-up time of 15 minutes the amplifier modules were internally 

calibrated in the following way. The self-oscillating master unit was 

calibrated first since the oscillator amplitude affects the slave unit. 

With the mode switch in 'Cal' position, scale factor = 0.5 and 

'Range' LVDT the output signal was adjusted to give the full scale 

reading of 1 V. With the mode switch at 'R' the input was shorted out 

and the amplifier balanced to zero. The mode switch was then moved to 

'X' and the quadrature control adjusted to compensate for cable 

capacitance etc. until a minimum output was obtained. With the mode 

switch at 'N' the correct scale factor was set and the range chosen to 

be 0 - 1000 ~E since the expected maximum strain for both static and 
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dynamic loading were calculated to lie within the range 300 - 400 ~E 

(Appendix 1). The same procedure was applied to the slave module after 

which both units were ready for normal use and it was then necessary to 

calibrate the strain-gauge bridges themselves to obtain a conversion 

factor from strain into joint force. This was effected in the following 

manner. 

The perspex box and baseplate were removed leaving the metacarpal clamp 

suspended alone. A wire was attached to the clamp and passed over a 

pulley to hang over the edge of the bench such that when the wire was 

loaded the line of action of the force was the same as that of the 

'tendon' force during normal use of the simulator. The strain gauges 

were connected to the amplifier modules with the output being fed to a 

digital voltmeter. The readings taken from the voltmeter were direct 

measurements of strain with 1000 mV = 1000 ~E. The calibration graphs 

of strain against force for both full and half bridge arrangements in 

each direction are shown in Figs 3.11 & 3.12. 

The conversion factors obtained were 

Forward Lateral 
(~E/N) (~E/N) 

Full Bridge 1.4 1.3 

Half Bridge 13.9 18.3 

These values have been incorporated into the software for data 

conversion (Appendix 2). Obviously it is not practical to use a digital 

voltmeter for data acquisition during simulator tests since the reading 

changes are rapid and written data storage is unwieldy. Rather, the 
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analogue signals are passed from the amplifiers through an interface 

system to be processed in a BBC microcomputer and stored on disc. The 

interface system comprises a mains-powered control frame containing the 

necessary circuitry for complete IEEE-488 bus operation, two input 

voltage conditioner units (one for each force direction) and a 12-bit 

A-D converter. The microcomputer communicates with the control frame 

through its primary address. Each conditioner module has its own 

secondary address and when called by the computer will pass its signal 

through the A-D converter to the IEEE-488 bus. The conversion time is 

less than 25 ~s which is quite adequate for the purposes of the 

simulator. The input voltage conditioner units feature continuously 

variable gain and offset controls and a 3-position voltage switch which 

selects the maximum full scale voltage as 0.1 V, 1 V or 10 V. It was 

necessary to calibrate these units to obtain the desired digital 

resolution. A short calibration program, written in BASIC, allowed the 

gain and offset controls to be adjusted for the signal characteristics 

expected. The program displayed the reading through the A-D converter 

on the screen. The signals from the strain-gauge bridges were expected 

to be mono-polar 0 - 0.5 V and the following procedure was adopted. 

The voltage switch was set to 1 V. The input leads were short-circuited 

and the 0 V level was set to the converted value of 0 using the offset 

control. It should be noted that too much offset would result in the 

A-D converter continuing to provide readings of 0 at voltages above 0 V. 

It was found better to set the 0 V level slightly inside the extreme 

reading. With an applied calibration voltage of 1 V the gain control 

was adjusted to give a converted reading just inside the 4095 extreme 

value. This gave a digital resolution of 0.25 N for heavy static loads 

and 0.025 N for light dynamic loads. Of course it would be possible to 
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double this resolution by setting 0.5 V equal to 4095 but this was 

considered unnecessary and would provide a sensitivity comparable to 

instrument error. Once the gain had been set the offset was readjusted 

to check the 0 V converted value. 

Because of zero drift in the amplifier modules, recalibration of the 

equipment was performed at regular intervals. The simulator was then 

ready for the commissioning trials which are described in Chapter 4. 
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CHAPTER 4 

COMMISSIONING TRIALS AND TESTS ON THE 

SWANSON SIIASTIG IMPLANT 



4.1 INTRODUCTION 

It was felt necessary to perform extensive commissioning trials on the 

simulator before embarking on experiments to evaluate the prototype 

Durham surface replacement prosthesis. This was to enable the equipment 

to be 'run in', so that unforeseen problems, occurring as a consequence 

of continuous use or design short-comings, could be dealt with at this 

stage. Hopefully this would result in a reduction of undesirable 

operating interruptions during long-term wear and fatigue tests. 

These trials were split into two sections. In the first part the 

capacity of the simulator to imitate the biomechanical situation in-vivo 

was fully investigated by obtaining both the dynamic and static force 

response curves for a normal joint and comparing them to published data. 

Based on this comparison further design changes were made to improve the 

subluxing force achieved by the rig. In the second part the well-

established Swanson Silastic implant was tested to 10 million cycles. 

Fatigue failure of a type commonly seen in patients occurred at the 

shoulder of the phalangeal intramedullary stem. Failure of the Swanson 

implant has not previously been achieved in the laboratory and the 

results are therefore very encouraging since they would seem to validate 

the claim that the simulator successfully imitates the finger function. 

The simulator has been developed such that it is possible to perform 

tests using cadaveric bones, and in this way problems of bone 

resorption, bone/cement interfacing strength and bone/prosthesis 

interaction can be investigated. In certain designs of prosthesis, eg. 

St Georg or the Link arthroplasty these would be very important 
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considerations. However the studies undertaken during this research 

programme have been involved with the Swanson Silastic implant and 

Durham surface replacement, neither of which are cemented, and being of 

such soft materials very little bone resorption is expected. In both 

cases the impingement of the prosthesis against the bone is an important 

factor in cycling and corrosion fatigue mechanisms but this can be 

similarly achieved using a hard material such as acrylic in place of 

bone. Weightman et al in 1972 (96) in their tests on the Swanson 

implant used Plexiglas blocks. 

Experiments to investigate fatigue necessarily take around eight weeks 

to complete. At regular intervals of only a few days cadaveric bones 

would need to be replaced with fresh ones. Not only would this involve 

a lengthy stoppage for the sterilisation of the equipment but it would 

also mean that experimental conditions were constantly being changed 

since no two bones can be prepared identically. For this reason (and 

also to reduce the biohazard) acrylic model bones were used and were 

made in the following way. 

Clean matched bones (kindly lent by the Newcastle Medical School) were 

thickly painted with silicone rubber and allowed to dry. A small 

plastic box was half filled with plaster of Paris and the coated bone 

pushed in up to half its depth, touching one end of the box. When the 

plaster was hard a coating of waterglass was applied to the surface and 

an upper layer of plaster poured into the box. The use of waterglass 

was to ensure that the two plaster layers could be easily separated, and 

careful slitting of the rubber released the bone. The rubber and 

plaster were put back together to serve as a re-usable mould for acrylic 

dental modelling plastic. 
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As mentioned previously, the outer profile of the bone shaft is 

irrelevant when testing an MCP joint prosthesis and it was decided to 

set the model shafts in acrylic cylinders of diameter 10 mm leaving the 

bone heads exposed. This was easily achieved by setting a brass 

cylinder in silicone rubber, inserting the bone replicas into the mould 

and pouring in acrylic. For the first part of the commissioning tests 

average sized models were used and thereafter a size was chosen suitable 

for the size of prosthesis under consideration. 
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4.2 RIG ASSESSMENT USING ACRYLIC REPLICA BONES 

In Chapter 1 the biomechanical behaviour of the MCP joint was discussed 

in the light of theoretical models and published data. The model of 

Weightman & Amis in 1982 (1) was felt to be a reasonable standard by 

which to measure the performance of the simulator since it was 

statically determinate, well thought out, and embodied the successful 

elements of previous models. In trials using acrylic replica bones it 

was hoped to obtain force response curves which could be compared with 

the theoretical model, and to make design improvements as a result. It 

was also hoped to determine the consistency of performance over a long 

period of time. The experiments were all performed using the same 

matched pair of average sized, middle finger, acrylic replica bones with 

cylindrical stems as described previously. In placing the bones in 

their respective clamps great care was taken to ensure that they were 

correctly aligned. The tensions of the 'tendons' were then adjusted and 

balanced until the cyclical motion was smooth over a range of 90° 

flexion with a dynamic load of around 10 N. This process was actually 

quite difficult and it required some patience to achieve a good range of 

motion and the desired average load whilst maintaining a smooth cycle. 

This was particularly true at high cycling speeds when the springs 

attached to the wire fasteners could not smooth the directional changes 

as effectively. This resulted in jumping of the bones. Because of this 

it was sometimes necessary to use lower speeds. 

The strain gauge amplifiers were switched on and saline at 37°C was 

cycled through the lower bath. The system was then allowed to reach 

steady state conditions over a period of two hours after which time the 
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data collection equipment was re-calibrated to allow for balance point 

drift of the temperature sensitive strain gauges. The motor and air 

supply were switched on and the cycle frequency (accurately measured 

over 500 cycles) was set to 2 Hz. Every 15 minutes joint force readings 

were gathered for several cycles and the motor speed was checked. 

However, when it became apparent that there was very good consistency in 

motor speed this check was discontinued. The force readings taken were 

stored on disc, which contained the joint force magnitude, joint force 

angle, angle of flexion and time. Static force readings were taken 

every 30 minutes and also stored on disc. 

During the early trials there was some problem in obtaining force 

readings beyond two hours of starting up the simulator. Upon 

investigation this was seen to be due to electrical shorting across the 

strain gauge bridge arms. Even with a protective coating on the strain 

gauges the saline appeared to be penetrating the jacket of the 

connecting wires and seeping up the wires to the bridge. To alleviate 

this problem the strain gauges and their associated wires were coated 

with silicone rubber and the bridges re-calibrated. No further problem 

of this nature occurred. 

Another problem encountered initially was that the simulator did not 

seem to apply enough subluxing force to the joint. This had apparently 

been compromised as a result of holding the finger bones in clamps 

which, although they were designed to be physically small, meant that 

the flexor 'tendon' remained at -10 mm from the joint rather than 

running alongside. This reduced the moment arm considerably. In 

addition, the volar plate in-vivo is not only attached to the metacarpal 

head through the glenoidal ligaments but is also attached to the base of 
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the phalanx through a small fibrous band called the incisura 

(Chapter 1). It is through this attachment that the joint subluxing 

force results (Fig 4.1). In the simulator it was not possible to attach 

the mobile pulley to the phalanx base and there was no advantage in 

attaching it to the phalanx clamps so this link was omitted. 

After identifying the problems resulting in the loss of subluxation it 

was a surprisingly simple matter to rectify the situation. A small 

plastic electric cable tie was placed around the flexor 'tendon' and the 

phalanx just behind the phalanx base. The 'tendon' was drawn tightly 

against the bone for its passage across the joint, relieving the first 

problem, and the cable tie acted as an effective link between the mobile 

pulley ('volar plate') and the phalanx base. Measurements then showed a 

subluxing component in the joint force and the replica test series 

continued. 

4.2.1 Biomechanics 

Before embarking on a discussion of the test results it is perhaps 

worthwhile to pause at this point to consider the forces in the MCP 

joint, for both the healthy and the diseased finger (to review the 

Weightman & Amis treatment of forces), and to look at how the simulator 

achieves the same behaviour. Fig 4.1 gives a representation of the 

forces produced in a finger during tip pinch due to the actions of the 

extrinsic flexor tendons alone. The EDP tendon is assumed to be relaxed 

and the intrinsic muscles have been omitted to simplify the diagram, 

although it is recognised that the interossei do contribute to a certain 

extent (Long et al, 1970 (3)). Fig 4.1 a) shows the distal IP joint 

under the action of the FDP tendon which attaches to the lip of the 
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distal phalanx (P1 ). In pinch action when the joint is in equilibrium 

the tension T1 produces a moment about the centre of rotation c 1 which 

is balanced by a reactionary moment at the finger tip. There is a 

resultant compressive joint force Fjl exerted on the middle phalanx (P2 ) 

by P1 in the direction shown which is the vector sum of F1 and R1 . 

Fig 4.1 b) shows the proximal IP joint which is now under the action of 

both the FDP and FDS tendons. The FDS attachment is in the middle of P2 

exerting a force T2 when under tension. The FDP passing through the 

tendon sheath produces a resultant force T. The moments produced by T 

and T2 about c 2 must balance the moment produced by the joint force Fjl 

acting at c 1 . The resultant joint force Fj 2 exerted by P2 on the 

proximal phalanx (P3 ) is the vector sum of F2 , F3 , and F4 . 

Fig 4.1 c) shows the MCP joint which is complicated by the presence of 

the volar plate and its attachment to the lip of the proximal phalanx. 

The combined effects of the FDP and FDS tendons passing through the 

tendon sheath of the proximal phalanx result in a force T' acting at the 

middle of P3 . In a similar way as they pass through the volar plate 

sheath the tendons produce a resultant force S. Most of this force will 

be counteracted by tension in the metacarpoglenoidal ligaments Sc but 

there will still be a component SI transmitted through the incisura to 

the proximal phalanx. Tension SR in the collateral ligaments maintains 

joint stability against volar subluxation. Moments produced by SI and 

T' about c 3 must balance with those produced by SR and the joint force 

Fj 2 acting at c 2 . The resulting joint force Fj 3 exerted by P3 on the 

metacarpal is the vector sum of F5 , F6 , F7 , and F8 . 

s1 constitutes the major part of the subluxing force acting on the 

132 



phalanx which presents a serious problem in the rheumatoid MCP joint. 

In a healthy joint most of the force S is resisted by the 

metacarpoglenoidal ligaments with the rest passing through the 

attachment to the phalanx. This in turn is resisted by the collateral 

ligaments which hold the phalanx and metacarpal bones together. When 

the joint is diseased, however, and both types of ligament are damaged, 

more of the force will be transmitted through the fibrous incisura which 

is not balanced by tension in the ligaments and eventually this causes 

dislocation of the joint. 

It should be noted at this point that no importance has been given to 

the phalangeoglenoidal ligaments (not shown in Fig 4.1 c)) since in a 

study by Minami et al in 1984 & 1985 (28,29) they were found to 

contribute primarily to abduction-adduction rotational stability and do 

little to stabilise dorso-palmar dislocation or axial rotations. 

The subluxing force SI also depends on the angle of the MCP joint since 

this largely determines the magnitude and direction of S and governs the 

angle of the incisura to the phalanx. In addition, since the collateral 

ligaments are attached dorsally and distally from the centre of rotation 

of the joint they become more taut with increased flexion, thus 

enhancing stability. This is sufficient to counteract the joint 

subluxing force which also increases with increased flexion. 

Consider the MCP joint force Fj 3 - during static loading its magnitude 

and direction are governed by the posture of the interphalangeal joints. 

For example if the IP joints were less flexed the joint forces Fjl and 

Fj 2 would be larger and directed more axially along their respective 

proximal bone. In turn Fj 3 would be directed more axially along the 
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metacarpal even though the MCP joint angle may have remained the same. 

Thus for one MCP joint position there are a range of possible joint 

force angles and magnitudes depending on the degree of flexion in the 

other joints of the finger. Unfortunately this is not a facility which 

is available with the finger function simulator since it contains only 

the MCP joint. There are some difficulties, then, in comparing the 

simulator behaviour with a model such as that proposed by 

Weightman & Amis in 1982 (1) which of course deals with all three 

joints. However, it is hoped to show in the commissioning trials that 

during its flexion cycle the simulator produces joint forces Fj 3 that 

are typical of the range predicted for each angle of the MCP joint. In 

particular as the angle of flexion increases so too should the magnitude 

of the joint force. 

Using a similar approach to that outlined above Weightman & Amis 

developed their two dimensional model to analyse a range of finger 

configurations from pulp to tip pinch. A pin-jointed model was assumed 

which included the intrinsic muscles. The tensions developed in these 

muscles were taken to be in proportion to their physiological cross­

sectional areas and the long extensor tendons were assumed to be 

relaxed. In its original form the model predicted that the resultant 

MCP joint force acted at or outside the edge of the articular contact of 

the joint. This highlighted the importance of soft tissue structures 

for joint support and the model was modified to include the effect of 

the collateral ligaments to reduce the volar shear component of the 

joint force. This treatment was rather simplified and the contribution 

of the metacarpoglenoidal ligaments was not considered at all, although 

their importance was recognised. Very generally the model predicted 

that joint force magnitudes increase with the finger extending towards 
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the cantilever position and shear forces increase as joints are flexed. 

Figs 4.2 & 4.3 show how the joint force magnitude and direction vary 

with angle of flexion for the MCP joint. The results shown are for the 

case where there is no ligamentous support for comparison with the 

simulator behaviour since it is important that in fatigue tests the 

simulator can apply forces which will severely test a prosthesis. In 

Figs 4.2 & 4.3 posture 1 is highlighted since, although it gives one 

possible force response for 20° flexion in the MCP joint, it is by no 

means the only one (as discussed previously) and therefore does not 

necessarily represent a stage in the force change progression as the 

joint flexion is increased. This is the difficulty associated with 

trying to compare a dynamic system with a static model. However, 

bearing in mind the limitations, it is still instructive to do so. 

Fig 4.4 is a schematic diagram of the way in which the simulator applies 

the correct force to the MCP joint. In normal dynamic motion there is a 

tension of relatively even magnitude in both 'tendons'. The tensions 

are adjusted by applying compression to the smoothing springs described 

in Chapter 3. The attachment of the 'tendons' to the phalangeal clamp 

produces the forces T1 and T2 but these alone would give little or no 

shear component to the joint force. This was evident at an early stage 

in the simulator trials and a simple cable tie was employed to attach 

the flexor 'tendon' to the phalanx. The resulting tendon angle at the 

point of attachment produces the force S which exerts the majority of 

the subluxing force on the joint. The joint force Fj is given by the 

vector sum of F1 , F2 , and F3 and increases in magnitude as the joint 

flexes due to the action of the springs. The shear component of Fj also 

increases with flexion because the angle at the cable tie becomes more 

and more acute, hence increasing the magnitude of S. 
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Fig 4.4 Force diagram for the simulator. 

The heavy static load applied by the simulator acts for a joint position 

of 30° (the average position for pinch grip) when the majority of the 

load passes through the flexor tendon. 

4.2.2 Replica Test Results 

The series of tests performed on replica bones is given in Table 4.1. 

The duration of each test was three hours with dynamic force readings 

being taken at 15 minute intervals and static readings every 30 minutes. 

The latter results are given in Table 4.1; the former results are 

summarised in the following discussions. 

Test number 1 was performed to investigate the consistency of the 

simulator over a long period of time. An average load of 12 N was 
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Test Dynamic load Speed Static load (N) 
Number (average)(N) (Hz) and angle 

1 12 1.92 184.2 30° 
2 12 2.08 180.4 25° 
3 12 1.78 184.0 30° 
4 12 1.67 186.1 32° 
5 8 1.92 189.9 34° 
6 10 1.92 182.9 28° 
7 14 1.92 187.8 32° 

Table 4.1 The series of tests. 

applied at a cycle rate of 1.92 Hz. Figs 4.5 a) & b) show how the joint 

force angle and magnitude vary with the angle of joint flexion for each 

time point of dynamic results recorded. The angle of the force is given 

relative to the phalanx and when above 20° indicates a significant shear 

force in the joint. During the early stages of the test it is evident 

that a drop in joint force magnitude has occurred, probably due to 

stretching in the 'tendons' and tightening of the knots. Between the 

first two time points there is a fall of -0.75 N but thereafter there is 

little change and a steady state is reached by the sixth time point with 

a total loss in joint force magnitude of -1 N. Looking at Fig 4.5 a), 

it can be seen that not only have the 'tendons' stretched but also the 

balance between them has changed during the early part of the test. 

Some of the subluxing component of the force has been lost, which 

implies that the flexor tendon has stretched more than the extensor. 

This is to be expected since during heavy static loading the majority of 

the force is applied through the flexor tendon. This would also explain 

why there is very little difference between time points 2 and 3 since 

the heavy static load occurs between time points 1 & 2, 3 & 4, 5 & 6 

etc. The extensor is only stretched during the light dynamic loading 

and therefore takes longer to reach its final state. Generally the 
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graphs show an increase in force magnitude and subluxing component 

between 15° - 75° flexion. Towards the ends of the cycle (0° - 15° & 

75° - 90°) both 'tendons' are acting and the springs act to smooth the 

motion during the change of direction, which causes the deviation of the 

curves from the expected trend. 

Also shown on Figs 4.5 a) & b) are the Weightman & Amis predictions for 

a finger tip force P of 2.5 N. Again posture 1 is shown separately for 

the reasons discussed previously: it is reasonable to suppose that a 

natural dynamic progression would follow the path 5-4-3-2. The 

simulator results seem to be in very good agreement with the predicted 

values although some shear force was sacrificed to preserve cycle 

stability. This is very encouraging if consistency of operation can be 

confirmed for other loads and cycle rates. 

Tests 2 to 4 were performed as an extension to test 1 to investigate the 

effect of changing the cycle rate within the range anticipated for use. 

Test 2 had a cycle rate of 2.08 Hz, on the limit of the possible speed 

range before the smoothing effect of the springs was badly compromised. 

Test 4 had a cycle rate of 1.67 Hz which, while not appearing 

particularly slow, would unnecessarily increase the duration of a 

fatigue test by several days. Since steady state had already been 

achieved in test 1 and no alteration was made to the 'tendon' balance 

for tests 2 to 4 the only effects seen in the force response curves for 

the four tests should be solely due to the change in speed. 

Figs 4.6 a) & b) show the direction and magnitude of the joint force 

against angle of flexion. Test 2 is beginning to show some deviation 

due to the failure of the smoothing mechanism but tests 1, 3 and 4 all 

have very similar response curves. As the cycle rate is increased there 
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is a slight fall in joint force magnitude. The origin of this drop is 

unclear but it may be due to the fact that proportionately more of the 

'tendon' force is needed to maintain the necessary accelerations for the 

motion. It would appear, then, that the simulator behaviour is very 

consistent with speed changes provided the cycle rate does not exceed 

around 1.92 Hz. 

Tests 5, 6 and 7 were performed to look at the effects of changing the 

load. The steady state results of these three tests, along with test 1, 

are shown in Figs 4.7 a) & b). The first thing that is apparent is the 

variability in the angle of force curve (Fig 4.7 a)). The general shape 

of the curves is maintained but there are modifications rather like 

those seen during the settling period of test 1 (Fig 4.5 a)). For each 

test in this series, unlike the previous series, the simulator 'tendon' 

tensions had to be adjusted and rebalanced. The balance between the 

tendons is important and it is evident that there is a range of relative 

tensions within which a smooth cycle can be obtained. Since the force 

response, and in particular the subluxing force, is very sensitive to 

this balance, a method had to be found by which to ensure consistency in 

simulator behaviour after stoppages. One way of doing this is to 

measure the length of the smoothing springs at rest and under tension. 

This method was employed for all ensuing tests. Fig 4.7 b) shows how 

the force magnitude curve is affected by an increase in the joint 

loading generally. The trend is very much as expected with the gradient 

of the curves gradually increasing with load and the initial dip 

becoming more and more pronounced. 

From the stage 1 commissioning trials it may be concluded that the 

dynamic behaviour of the simulator is consistent (if care is taken to 
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restore the correct 'tendon' balance after any interruption to a test) 

and compares well to the Weightman & Amis model. For tests 1 - 7 the 

static force applied was found to be very consistent for a particular 

test, with slight variability between tests (Table 4.1). The force 

applied was 180 - 190 N acting at 25° - 34° to the phalanx compared to 

the predicted angle of 26°. 

The results of the initial trials were felt to be successful and on this 

basis tests on the Swanson Silastic implant were performed. 

145 



4.3 TESTS ON THE SWANSON SILASTIC IMPLANT 

Tests were performed on two Swanson Silastic implants of greatly 

different sizes (size 2 and size 7). These were chosen to be the 

limiting sizes generally used in surgery although eleven sizes are 

manufactured with the size range extending from 00 to 9. Bone replicas 

of a suitable size were chosen for each prosthesis and prepared in the 

following manner, according to the recommendations made by 

Swanson & de Groot Swanson in 1984 (37). 

The head of the metacarpal was removed up to the flare of the metaphysis 

but no resection was performed on the phalanx. A rectangular, slightly 

tapered hole was opened in each bone using a hot broach and to imitate 

the reaming of the medullary canals, deep holes were drilled into the 

cylindrical bone shafts. The hole in the metacarpal was placed 

3 mm dorsally from the centre of rotation, as measured by 

Unsworth & Alexander in 1979 (20). 

To prevent any damage from sharp bone edges the replicas were filed and 

rounded to make all points of contact with the prosthesis as smooth as 

possible. Each prosthesis was tested in the holes for goodness of fit 

and modifications were made with a rat-tailed file until the midsections 

rested comfortably against the bone heads and a sliding movement was 

easy without too much slackness. The implants could resist rotation due 

to the rectangular nature of the holes (Fig 4.8). 

The replica bones and Swanson prosthesis were placed in the simulator 

and the 'tendons' adjusted to give a smooth cycle with the cams turned 
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by hand. The equipment, other than the motor, was switched on and left 

for a period of two hours to achieve a steady state 37°C. 

began after a recalibration of the system. 

The tests 

The simulator ran almost continuously throughout the duration of each 

test, only being stopped for necessary cleaning or tendon replacement at 

approximately four-day intervals. Measurements of both static and 

dynamic loading were recorded regularly to keep a check on simulator 

consistency and typical results are shown in Figs 4.9 & 4.10. 

Both the angle and the magnitude of the joint force exhibit the expected 

trends, in that both the magnitude of the force and its shear component 

increase with increasing flexion. In particular it can be seen that the 

subluxing force through both Swanson joints was consistently larger than 

any observed during the replica bone trials. Since the Swanson implant 

can carry more shear force across the joint than could be transferred 

through friction between two surfaces, this could be caused, in the 

first instance, when setting up an experiment if the 'tendons' were 

inadvertently adjusted to give a greater differential between the flexor 

and extensor 'tendons'. A smooth cycle could be achieved where in a 

replica test it would not. However, this is unlikely to be the 

explanation in this case since, for this very purpose, great care was 

taken to ensure that the smoothing spring lengths were adjusted to be 

the same as those in the replica bone tests. It would seem then that 

this effect was occurring as a direct result of the nature of the 

implant itself. Fig 4.11 shows what happens to the joint in the 

simulator. During flexion there is some compression at the midsection 

of the joint but the distal stem slides within the phalanx and bending 

occurs at C' - the intersection of the distal stem with the hinge. The 
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Fig 4.11 Volar subluxation of the Swanson implant in the simulator. 
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subluxing joint force causes a volar displacement of the phalanx as a 

consequence of the pliable nature of the implant. This displacement is 

limited by the stiffness of the silicone elastomer but is sufficient to 

alter the angles of the 'tendon' actions with respect to the joint, 

resulting in a larger subluxing component of the joint force for the 

same balance in 'tendon' tensions. An important consequence of this is 

the potentially damaging impingement of the bone against the implant 

during flexion. 

The performance of the Swanson implant in patients is well documented 

(Beckenbaugh et al, 1976 (53), Hagert et al, 1975 (56), Swanson, 

1972 (105)) and the basic mechanisms of failure are clear: failures 

usually occur within the first two years of surgery but this does not 

always indicate removal if function is maintained. Fracture most 

commonly occurs at the head of the distal stem and, less frequently, at 

the proximal stem. Sometimes fragmentation of the midsection occurs. 

The situation is complicated by lipid absorption, which may weaken the 

polymer system (Carmen & Mutha, 1972 (106)), and implant migration due 

to bone resorption, but initial surface damage propagated by stress 

cycling is the basic cause of failure. 

The idea behind the Swanson implant was said to be that it can act as a 

joint spacer and provide some stability during the early stages of 

healing after surgery. The stems are allowed to slide so that the 

implant will find the best position with respect to the centre of 

rotation thereby distributing the stresses more evenly. The 

architecture of the implant is felt to encourage the encapsulation and 

bone reformation process which will in time render the implant, and the 

joint itself, more stable. However, it would seem that if the 
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encapsulation process is compromised by recurrent degenerative 

synovitis, the sliding motion of the implant promotes an adverse bone 

reaction resulting in the growth of bony spurs and cortical erosion. 

The implant is not strong enough to withstand deviating forces which 

produce volar subluxation and ulnar drift: thus failure eventually 

occurs through pinching of the material and tear propagation. This 

process is partly imitated by the simulator where no encapsulation can 

occur. The ensuing bone resorption and spur growth are not present 

either and it might be expected, therefore, that implant failure would 

take longer than in-vivo. Failures would probably be manifested as stem 

fractures since it is unlikely that midsection fragmentation could 

occur, as this is probably a consequence of ulnar deviation which again 

is absent in the simulator. Volar subluxation is present, as 

demonstrated previously (Fig 4.11), and impingement of the phalanx 

replica on the distal stem of the prosthesis does occur. 

The size 2 Swanson test ran for a period of one month at 1.92 Hz. After 

one million cycles (equivalent to approximately six months normal use) 

the implant was removed for inspection and showed some evidence of 

abrasion on both stems, but especially over a region of about 7 mm in 

length on the dorsal surface at the head of the phalanx stem. These 

scars had arisen as a result of the stems sliding in their holes. There 

was also some permanent deformation on each side of the implant 

midsection presumably occurring as a result of the large compression 

applied during the heavy static loads. The implant was replaced and 

inspected again after two million cycles when a crack could clearly be 

seen at the head of the phalanx stem directly above the point of maximum 

bending C' (Fig 4.11). The crack had a depth of approximately 3 mm and 

extended over three quarters of the width of the stem. The depressions 
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visible on the implant midsection did not appear any more pronounced 

although the wear scars were more developed on both stems. The implant 

was again replaced and the crack could be seen to open and close during 

cycling. The prosthesis eventually failed due to stem fracture after 

only approximately 3.2 million flexions and 1048 static loads of 185 N 

at 34° to the phalanx (Fig 4.12). This is equivalent to approximately 

nineteen months of normal use. 

The size 7 implant, though significantly greater in thickness, was not 

subjected to significantly larger forces than the size 2 (Fig 4.10). It 

ran at 1.92 Hz for a period exceeding three months and was examined at 

one million cycle intervals. Up to three million cycles very little 

damage was evident apart from some wear scarring on the volar and dorsal 

surfaces of the stems. At five million cycles the wear region on the 

dorsal surface of the distal stem head was well developed over a region 

of around 5 mm in length and a very small crack was visible at the 

distal edge of this region. A slight discolouration was visible in 

several areas of severe wear. The compression marks seen in the size 2 

hub were now clearly visible in the size 7 though they were by no means 

as deep. At seven million cycles the initial crack had grown to a depth 

of 3 mm extending across the whole width of the stem and another small 

crack had initiated at the proximal end of the wear region at the 

intersection of the distal stem with the midsection. The discolouration 

in this region was now more pronounced although there seemed to be 

little change in the wear scarring of other regions. The test was 

stopped after 10 million cycles and 2582 static loads of 192 N at 36° to 

the phalanx. The prosthesis still had not failed although the crack had 

propagated to a depth of 5 mm. Directly beneath this, on the volar 

aspect of the distal stem, the wear damage was localised and had a depth 
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Fig 4 . 12 Swa n s on size 2 implant after f ailure 
at 3,200,000 cycles. 



of some 2 mm. Very little damage could be seen in the metacarpal stems 

and the compression marks on the implant midsection had progressed no 

further (Figs 4.13 a) & b)). There is a photograph in a paper by 

Beckenbaugh et al in 1976 (53) which depicts two Swanson implants 

removed from patients after failure. The similarity between these and 

the damage received by the two test implants in the simulator is 

striking. Undoubtedly the simulator imitates the finger function very 

well and will provide an exacting and thorough test for any prosthesis 

design, producing results comparable to those which could be found 

in-vivo, to highlight any potential problems. The problems associated 

with the Swanson prosthesis are well understood and measures have been 

taken to improve the tear resistance of the material. Also over the 

past few years titanium grommets have been available which reduce the 

risk of implant damage from sharp bony edges and also prevent prosthesis 

migration. These however are not as widely used as they might be since 

they double the cost of the operation, which is very considerable 

already (Evans, 1989(48)). 
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Fig 4.13 swanson size 7 implant after 10,000,000 cycles. 



CHAPTER 5 

LUBR.ICATION AND VF..AR. 



5.1 LDBRIGATION 

5.1.1 Introduction 

Bio-tribology is the study of the lubrication, friction and wear of 

sliding surfaces as applied to biological systems. For very low 

friction to be achieved between surfaces some kind of element is 

generally needed to separate them such as balls, rollers or fluid. 

There are two main types of lubrication - boundary and fluid film -

which are very different in nature. 

In boundary lubrication a chemically reactive substance between the two 

surfaces modifies the friction. This substance may promote oxide 

formation or its molecules may attach to the surfaces. In this way, 

during sliding, the surfaces are protected by another layer in which 

most of the shearing takes place. Engineering bearings of this kind 

yield friction coefficients no lower than 0.01. Friction is independent 

of sliding speed (even starting from rest) and the coefficient of 

friction is independent of load. 

Fluid film lubrication can take several forms which all involve the 

total separation of the bearing surfaces with a pressurised layer of 

fluid in which the shearing takes place: they differ in the way in 

which the film thickness is maintained. 

In hydrodynamic lubrication, a viscous liquid is drawn by the moving 

surface through a converging inlet into the load-carrying region. This 

generates a high pressure in the fluid while the surface motion persists 
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and friction coefficients well below 0.01 can be achieved. This is a 

very popular type of bearing but the relative motion of the surfaces is 

essential. If the bearing slows the film gets thinner and friction 

rises with the contact of surfaces. For this reason motor oils have 

been developed with a boundary lubricating ability. 

Classical hydrodynamic lubrication assumes that the surfaces are rigid 

and do not deform under the generated pressures. However the surfaces 

are commonly compliant and the elasticity is such that the shape of the 

film is modified through the deformation of the surfaces. This is known 

as elastohydrodynamic lubrication and for a given load and sliding 

conditions the film is generally thicker than that of classical 

hydrodynamics. 

A very important form of fluid film lubrication is the squeeze film 

effect. Here the two surfaces approach each other - not necessarily 

sliding - and to permit this approach viscous fluid is expelled from 

between the surfaces. This generates a pressure within the fluid which 

again can carry a considerable load. Because the film thickness is 

extremely small compared to the contact width the outward flow of fluid 

is severely restricted so that it may be a long time before boundary 

conditions are reached. The squeeze film effect is important in 

dynamically loaded bearings such as human joints. 

Finally, fluid film lubrication can be produced indefinitely in a 

stationary bearing by pumping fluid into the film. This is known as 

hydrostatic or externally pressurised lubrication. 

In any bearing it is unusual for one mode of lubrication to act in 
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isolation and commonly several will act at certain times during the duty 

cycle. The extent to which these mechanisms contribute to human joint 

lubrication is a controversial issue and the subject of much research 

since the 1930's. It is interesting to look at the history of this work 

and the consequences for implant design. 

5.1.2 Historical Review 

In 1932 MacConaill (107) proposed that human joints were 

hydrodynamically lubricated mainly on the basis of their anatomical 

features. This was disputed when Jones, in 1936 (108) and later 

Charnley, in 1959 (109) measured joint friction experimentally and found 

that friction coefficients of 0.02 or less persisted even down to zero 

speed. In their experiments these men used human joints as the fulcrum 

of a pendulum and looked at the rate of decay of swing amplitude due to 

friction. In Jones's experiment the decay in amplitude appeared 

exponential and he concluded that he was seeing hydrodynamic lubrication 

which turned into a very efficient boundary lubrication at low speeds. 

However, in Charnley's experiment the decay was linear indicating, it 

would seem, boundary lubrication only. The reported coefficients of 

friction were as low as 0.005 which is unheard of in boundary 

lubrication and researchers began to look for a more complex description 

to explain the observations. It was commonly felt that joints were 

fluid film lubricated and that either the escape of the film was very 

slow or that it was somehow being replaced. 

In 1959 McCutchen (110) proposed that joints were lubricated by a 

mechanism which he called 'weeping lubrication' which was basically a 

self-pressurising hydrostatic mechanism. Cartilage is porous and 
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impregnated with fluid. Pressing on its surface initially raises the 

pressure of the fluid in its pores until it almost equals the applied 

pressure. Once the squeeze film has thinned so that asperities on 

opposite surfaces touch, they assume some of the bearing load which 

slightly lowers the pressure in the film. The pore pressure is then 

higher than the film pressure so pore fluid flows into the film and 

makes up the loss. As time passes the cartilage becomes more compressed 

and its skeleton carries more load. This lowers the pore pressure and 

also the film pressure leaving more load to be carried in solid contact: 

the friction rises slowly. Resoaking of the cartilage occurs regularly 

during joint cycling and some areas of cartilage do not touch at all. 

McCutchen's theory was supported by experimental tests in which he slid 

porous rubber (McCutchen, 1959 (110)) and later cartilage (McCutchen, 

1962 (111)) against a glass surface. In these tests he saw a very slow 

increase in friction with time as the deformation of the slider 

increased, and if he removed the load and allowed the cartilage to 

resoak for a short time, the friction coefficient dropped and some 

deformation recovered. However, the permeability of cartilage is very 

low and the resulting fluid flow rates are minute (Maroudas, 1967 (112)) 

which led researchers to doubt whether this mechanism could maintain the 

fluid film. 

In 1969 Maroudas (113) proposed the ultrafiltration theory. As two 

cartilages approach each other and before they touch some of the squeeze 

film liquid will escape by entering the cartilages and flowing through 

them. Because the pores in cartilage are about 60 A in diameter the 

larger molecules cannot enter and accumulate on the cartilage surfaces 

to provide lubrication when the surfaces come into contact. Maroudas 

calculated that a layer of gel 225 A thick will remain between the 
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surfaces with the film being stabilised by osmotic flow in. Opponents 

of this theory noted that no inflow took place with the surfaces at more 

than 2000 A but the roughness of cartilage is several times larger than 

this and the approach of the surfaces may be arrested before 

ultrafiltration can take place. Maroudas's theory requires synovial 

fluid but water is also a good joint lubricator. 

In 1968 Walker et al (114) performed some experiments similar to those 

of McCutchen in 1962 (111) and looked at the recovery of friction 

following each separation of the surfaces. This was too slow to be 

accounted for by an ordinary squeeze film and they proposed that the 

viscosity of the film must be higher than that of normal synovial fluid. 

To explain this they called on the Maroudas ultrafiltration mechanism 

aided by the trapping of pools of synovial fluid within depressions in 

the rough cartilage surface. This they called 'boosted' lubrication 

which was a squeeze film mechanism rather than McCutchen's hydrostatic 

mechanism, but both could largely be supported by the same experimental 

results with a difference of interpretation. It is possible that both 

mechanisms may occur in human joints under different conditions and this 

was demonstrated by Ling in 1974 (115). 

Hydrodynamic lubrication and in particular elastohydrodynamic 

lubrication still has its proponents. 

its viscosity rises as the shear 

Synovial fluid is thixotropic -

rate falls and in 1953 

Ogston & Stanier (116) suggested that human joints could be 

hydrodynamically lubricated. In 1959 Tanner (117) pointed out that the 

film would be so thin that the shear rate would be above the thixotropic 

range of synovial fluid causing it to act more like a thin Newtonian 

fluid. He returned to this point again (Tanner, 1966 (118)) after 
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making elastohydrodynamic calculations for the hip from which he 

concluded that a film thickness of 1000 A was possible. This is still 

rather smaller than the surface roughness of cartilage and it would seem 

unlikely, therefore, that elastohydrodynamic lubrication alone could 

explain human joint lubrication. In 1967 Dowson (119) obtained similar 

results but pointed out the importance of squeeze film action which in 

dynamically loaded joints would act to increase film thickness. 

Though it is generally acknowledged that human joints are fluid film 

lubricated in some way, it cannot be denied that intermittent use is a 

common phenomenon and boundary lubrication can be the only mechanism to 

combat cartilage damage on starting or stopping. Also, during a duty 

cycle several mechanisms can take place sequentially and during a 

walking cycle it is suggested that hydrodynamic, squeeze film, and 

elastohydrodynamic lubrication all occur. 

5.1.3 The Lubrication of Prostheses 

An artificial surface replacement prosthesis must give low friction and 

low wear in service. While patients do not notice high friction in 

their prostheses, it does give rise to increased stresses on the implant 

fixation and hence can cause loosening. Low wear obviously leads to a 

longer life for the prosthesis, and also reduces the possibility of an 

inflammatory reaction to debris. The question of lubrication in 

artificial joints must be addressed if they are to be designed able to 

withstand the demands placed upon them. 

In 1969 Scales et al (120) measured the friction in artificial hip 

joints lubricated with bovine serum, and they concluded that no form of 
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fluid film lubrication could be produced in these joints. This point 

was contested in 1978 when Unsworth (121) saw evidence of mixed and 

fluid film lubrication in a Muller prosthesis which he tested in a 

pendulum using silicone fluid of different viscosities as the lubricant. 

The viscosities needed for fluid film lubrication were in excess of 

0.5 Pas which certainly would not be found in pathological synovial 

fluid from an arthritic joint, values of 0.01 Pas being much more 

likely. Since artificial joints are generally made of fairly stiff 

impervious rna ter ials, they would not be 1 ike ly to generate 

elastohydrodynamic films and hence film thicknesses between their 

surfaces would be three to four times smaller than between compliant 

surfaces. For most practical purposes it would seem then that the 

artificial joint must rely solely on the boundary lubricating ability of 

synovial fluid. For this reason, extensive wear test programmes are 

carried out to determine the hardest wearing materials available for 

use, with a view to making implants with a lifetime in excess of fifteen 

to twenty years at normal wear rates. In this research also, wear tests 

have been performed on the polyethylene/polyethylene system to ensure 

that wear rates in the MCP surface replacement prosthesis will be 

acceptable. It might be noted, however, in view of the very light 

loading and fast movement of the finger, that fluid film lubrication may 

indeed be possible in this implant, though this is not assumed. When 

the finger is under a large load there is little relative movement of 

the surfaces in general. 
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5.2 WEAR 

5.2.1 Introduction 

Durability of implants is an area of increasing concern since total 

joint replacement procedures are being performed increasingly in the 

young patient population who are very active. Indeed, patients as young 

as fourteen (Cole, 1979 (122)) have undergone this type of surgery. 

Materials need a low coefficient of friction to allow functioning of a 

joint without excessive energy expenditure, and wear rates need to be 

low to allow a long service with minimum release of debris. It is 

commonly felt that laboratory bench-testing of the friction and wear 

properties of biomaterials and joint replacements should be a necessary 

and routine procedure prior to trials in a patient. At least two 

materials, PTFE and polyester were used in prostheses after insufficient 

or inappropriate laboratory evaluations with disastrous clinical results 

(McKellop, 1981 (123)). As yet there is no agreement about whether a 

simple material test rig or a complex physiological simulator should be 

used. Either way, proper consideration must be given to the wear 

measurement method, the test duration, and the criteria for judging a 

material's performance (Clarke, 1981 (124)). In general it is more 

common to perform wear studies using standard, simple wear testing rigs 

(eg. pin-on-plate, pin-on-disc, cylinder-on-cylinder), the type being 

chosen to be the most suitable for the k~nd of motion under 

consideration. The reciprocating pin-on-plate method is the most 

suitable choice for a finger joint since the track length can be 

accurately controlled and it provides more opportunities for debris to 
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act as abrasive particles between the surfaces, as probably occurs in 

situ. Due to lack of confidence in accelerated wear tests, the majority 

of experiments should be run close to the physiological velocities. 

There are four main types of wear: adhesive, abrasive, corrosive and 

fatigue. In general they do not act in isolation: commonly two or more 

will occur together or sequentially. 

Adhesive wear is the most common. As two surfaces slide over each other 

intimate contact is made with opposing asperities, which causes very 

high local stresses. These stresses lead to a cold welding at the 

junction. If the welded junction is then stronger than the 

corresponding junctions between the asperities and their respective 

surfaces, the weaker asperity/surface junction will be severed. This 

process causes the transfer of material from one surface to the other. 

If it is continued, a transfer film is formed which may be destroyed to 

cause loose wear debris. In 1953 Archard (125) proposed a model for 

adhesive wear in which he said that the volumetric adhesive wear V is 

directly proportional to the real area of contact A, and the sliding 

distance x: 

v kAx ... ( 1) 

where k is known as Archard's constant. k is a statistical factor: 

Archard said that each time two asperities come into contact there is a 

constant probability k that an adhesive fragment will be. formed. 

Now A = N/H where N is the normal load and H is the hkrdness of the 

softer material. Thus: 
I 
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V k N x 
... (2) 

H 

and if k/H K then 

v K N x ... (3) 

where K is the wear rate coefficient with the units mm3/Nmm. 

This is the simplest representation of wear and is particularly good for 

polymeric materials (Dawson & Wright, 1976 (126)). 

Dividing by the apparent area of contact, equation (3) can be expressed 

alternatively as: 

d K P X ... (4) 

where d is the depth of wear and P is the nominal contact pressure. 

Two-body abrasive wear occurs when a rough hard surface (or a surface 

containing hard particles) slides on a softer surface. This type of 

wear is characterised by long deep scratches in the softer surface lying 

in the direction of the motion, and is minimised when the surfaces are 

smooth, especially with the metal/plastic system. For this reason it is 

commonly seen at the start of a wear test, when surfaces are rough from 

machining marks. When the surfaces have smoothed it may disappear but 

reappear later as three-body abrasive wear if loose debris becomes 

trapped between the surfaces. 

Corrosive wear is mainly a problem with metallic surfaces. During 

sliding, should a natural protective coat such as an oxide film be 

rubbed off, exposing the bare material, then corrosion will occur. The 
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products of this chemical reaction are rubbed off with further sliding 

to again expose bare surface, and hence the process continues. This is 

known as corrosive wear and the corrosion products may well go on to 

cause three-body abrasive wear. 

Fatigue occurs after many sliding cycles due to the continual loading 

and unloading of a material. Eventually surface and subsurface cracks 

will appear, leading to the removal of material from the surface. This 

type of wear is characterised by surface cracking and pitting with the 

cracks often occurring across the sliding direction. It is particularly 

common in heavily loaded, non-conforming joint implants such as those 

used for the knee. 

5.2.2 The Wear of Prostheses 

Wear is a very complex phenomenon and not only are the material 

properties important but also the implant design and the prosthesis 

forming technique. The conformity of the surfaces is a very important 

consideration. If contact occurs over a large area and the lubricant 

does not have good access to the surfaces, then wear will be high 

because the real area of micro-contact will be high (increasing adhesive 

wear) and the debris cannot readily escape (increasing three-body 

abrasive wear). A less conforming design, while tending to reduce these 

types of wear, will increase local contact stresses and so promote creep 

and fatigue problems. A compromise has to be made appropriate to the 

desired function of the prosthesis. 

There are three types of wear test reported in the literature: 
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1) High speed tests in which there is no attempt to simulate 

physiology. 

2) Tests where there is no simulation of dynamic joint loading 

profiles but in which other parameters such as stroke amplitude, 

frequency and contact stress are controlled. 

3) Tests using complex joint simulators in which both the material 

and the design are evaluated. 

A well-designed simulator has the capacity to provide very accurate and 

detailed information about the behaviour of a prosthesis but simulator 

tests are very time consuming and standard bench tests therefore do have 

a place. In this research programme tests have been performed using 

both methods and it is hoped in this way to give a fuller picture about 

the suitability of the material choice and the design features of the 

prototype implant in respect of wear and fatigue. The wear of an 

implant material is expressed as the amount of wear per year of 

equivalent use, with one year representing an estimated fixed sliding 

distance under load. This provides a wear factor that can be readily 

interpreted in terms of the potential clinical performance of the 

material. 

The wear of biomaterials can be assessed by recording either dimensional 

changes or weight loss of specimens. The majority of wear studies have 

relied on dimensional changes to define wear (Clarke, 1981 (124)). 

However, dimensional changes generally give results showing considerable 

scatter. This problem arises principally because of the tendency of 

many polymers, particularly polyethylene, to creep under load. Creep of 

a polymer specimen is a function of material, geometry, temperature and 

loading conditions and may result in dimensional changes much larger 
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than those produced by wear (Rose et al, 1980 (127), Atkinson et al, 

1980 (128)). The measurement protocol must be able to distinguish 

between creep and wear. Weight measurements too are not without their 

drawbacks. Polymers have a tendency to absorb or adsorb fluid and 

thereby gain weight. If the wear rate is low the specimens may be 

heavier after the test than before. The error due to fluid absorption 

can be minimised by the use of soak control specimens. 

One of the problems in obtaining significant wear data is the time 

factor. Since it is important to run wear tests close to physiological 

velocities (approx. 40 cycles/min), one wear test will take more than 

one month to complete even with twenty-four hours of testing per day, 

because machine down-time is required for wear measurements and cleaning 

operations. In addition replicate tests must be performed to increase 

confidence. However, this represents an impossible time commitment with 

any single channel machine. A multiple-channel test capability is 

therefore of paramount importance in overcoming this limitation. With a 

simulator this is not possible and hence the necessity for standard wear 

testing. 

The wear test duration is a very important consideration. In 1976 

Rostoker & Galante (129) compared the wear rates of polyethylene at two 

contact stresses at both short- and long-term wear durations. They 

concluded that a sliding distance of at least 25.4 km was required to 

establish the long-term wear behaviour of materials such as 

polyethylene. On the basis of laboratory tests, Atkinson et al 

in 1978 (130) predicted that surface fatigue will occur in polyethylene 

in-vivo after eight to nine years of use for the metal/plastic joint. 

If this fatigue mechanism changes the observed wear rates substantially, 
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the laboratory tests will need to be long enough to encompass this 

regime. For a finger joint a sliding distance of around 70 km is 

equivalent to approximately five years use assuming, as a rough 

estimate, that a metacarpal with an 8 mm diameter head will perform 

100 cycles per hour through 60° flexion. This would seem a reasonable 

distance over which to run bench wear tests for a surface replacement 

prosthesis for the MCP joint. 
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5.3 A FOUR-STATION BENCH VEAR. TEST RIG 

The wear test rig was adapted from an existing piece of apparatus used 

at Durham University since 1978. Basically the rig consisted of a mild 

steel sledge moving in a reciprocating motion along two fixed, parallel 

bars. This sledge provided the base for the plate holder and heating 

bed (Fig 5.1) and was driven by a 0.125 hp DC motor via a 10.5:1 

reduction gear box. The gear box provided a slow speed, high torque 

motion and prevented any changing frictional forces from having a 

significant effect on the speed of the sledge. A slow speed of 

41 cycles/min and path length of 56 mm were chosen to imitate the motion 

of a finger joint in normal use. 

Heating was provided by a small cartridge heater placed within a 

centrally drilled hole in the mild steel heating bed. Temperature 

me a sure men t s were made o f the u n de r - s i de o f the p 1 ate s vi a 

thermocouples, and the lubricant temperature was periodically recorded 

during each test such that the pin and plate wear surfaces were held at 

-37°C. The test plates were clamped to the heating bed by a retaining 

brass plate in which were milled four slots to provide a firm seating 

for each plate and which also formed wells over the plates for the 

lubricant. In this experiment the lubricant was distilled water drip­

fed to the plates through rubber capillary tubing. 

The wear pins were held in aluminium holders (Fig 5.2) which fitted into 

brass bushes supported by cantilevers (Fig 5.3). This arrangement meant 

that each wear pin rested on its plate and was restrained to move 
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vertically. It was loaded by placing weights over the long stem 

attached to the pin holder. The design of the pin holder was such that 

a pin was always replaced in the same orientation to the plate after 

cleaning. 
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5. 4 MATERIALS AND METHOD 

5.4.1 Test Material 

All the tests were carried out using ultra-high molecular weight 

polyethylene (density 0.954 gjcm3 ) supplied by Chas F Thackray & Sons 

Ltd. This was block material, tested before cross linking which is 

thought to improve wear properties somewhat. Since the cross linked 

material is under development by the company it was not available at the 

time of these tests. However, the prototypes used in the simulator wear 

tests were cross linked and the wear rates will be compared with the raw 

material tested here. The purpose of the study was to look at wear 

mechanisms occurring when polyethylene is rubbed against itself. 

The wear pins were solid cylinders of length 20 mm and diameter 5 mm, 

turned from a block of UHMWP. A notch was cut out for positioning 

(Fig 5.2). The polyethylene counterfaces were rectangular, 45 mm long 

and 25 mm wide, and were also machined from solid blocks of UHMWP. The 

counterface surface itself was milled. Lubrication of the surfaces was 

maintained by distilled water. 

The initial roughnesses of the pin and plate surfaces were measured 

using a Taylor Hobson Talysurf Mark IV and the results are shown in 

Table 5.1. The average roughness of the pins was -0.695 ~m, and of the 

plates was -0.782 ~m longitudinally and -0.656 ~m transversely. Fig 5.4 

shows electromicrographs of an unused counterface at x37.7 and x310 

magnification using a Cambridge Stereoscan 600 SEM. On completion of 

each test the surfaces of both pin and plate were examined in this way. 
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Pin & Roughness Ra (J'm) 
Counterface 

Number Plate Plate Pin 
Longitudinal Transverse 

1 0.821 0.646 0. 712 
Test A 2 0.797 0.621 0.694 

3 0.840 0.671 0.695 
4 0.799 0.708 0.609 

1 0.814 0.630 0.803 
Test B 2 0. 764 0.629 0.698 

3 0.766 0.664 0. 711 
4 0.705 0.663 0.697 

1 0.839 0.600 0.659 
Test C 2 0.801 0.690 0.689 

3 0.702 0.626 0.677 
4 0.733 0. 721 0.704 

Overall mean 0.782 0.656 0.696 

Table 5.1 Initial roughness of the pins and plates. 
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Fig 5 .4 Micrographs of an unworn counterface. 



Specimens were mounted on Dural stubs and coated with gold/palladium in 

an evaporation unit before being placed in the SEM. Since the 

polyethylene has a tendency to blister under the electron beam, a 

relatively low accelerating voltage of 15 kV was chosen. 

5.4.2 Test Procedure 

Wear is a very complex phenomenon dependent upon many variables and it 

is essential, therefore, to maintain a strict standard procedure during 

testing. Prior to the start of each test the sledge, wear pins, control 

pin and counterfaces were cleaned with alcohol and dried using a 

hairdryer. The wear and control pins were then carefully weighed and 

the average of five readings recorded. The counterfaces were loaded 

under the retaining plate and the reservoirs filled with lubricant from 

the drip-feed. Without the pins in place, the motor and cartridge 

heater were turned on for a warming up period of -2 hours during which 

time the lubricant temperature and the motor speed were regularly 

monitored. When the motor speed had stabilised it was stopped briefly 

to allow the pin holders, loaded with the pins and the appropriate 

weights, to be placed in their brass bushes. The motor was started to 

begin the wear test after the control pin was placed in the lubricant. 

During a test the ambient and lubricant temperatures were recorded such 

that 37°C could be maintained at the plate surface. However, since the 

cartridge heater was manually controlled, it proved to be better to 

maintain a stable temperature than to try to compensate for a drop in 

temperature, for instance, on an unusually cold day. 

temperature over a whole test was 37°C. 
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Periodically, during a test, the motor was stopped for the weighing of 

the pins. This was performed rather frequently early in the test when 

the results were quite variable due to the presence of machining marks 

on the surfaces. Later in the test the interval between weighings was 

increased to about 48 hours. The plates were not weighed since the 

changes in weight would be very small compared to their original weight. 

Also, it would be difficult to replace them under the retaining plate at 

the correct orientation. The weighing of the pins obeyed the following 

procedure. 

Firstly, the motor was stopped and the pins removed from their holders. 

They were tissue dried, ultrasonically cleaned and then washed in 

alcohol and dried using a hairdryer. Each pin, including the control, 

was weighed carefully and the average of five readings was recorded 

along with the accumulated sliding distance. The weight loss of the 

wear pins was converted into a volume loss, taking into account any 

weight changes in the control pin. This then removed any fluctuations 

in weight due to water absorption or instrument variability, to reveal 

the amount of wear that had actually taken place. After a set time of 

one hour the pins were replaced in their holders and loaded against the 

plates. The test resumed when the motor was switched on. The test 

ended after a sliding distance of around 70 km (or 23 days) and was 

repeated twice more to give an indication of reproducibility of results. 
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5.5 RESULTS 

5.5.1 Volume Losses 

The load conditions in each test are shown in Table 5.2 and the results 

for each are recorded in Tables 5.3 - 5.5 which present the values of 

volume loss due to wear after different sliding distances. Volume 

losses were calculated from the mean weight change using a density of 

0.954 gcm- 3 for the polyethylene. The measurement error in the 

weighings was ±0.5 mg which was equivalent to ±0.52 mm3 in volume. Not 

surprisingly, during the course of the tests, some volume changes 

appeared positive (starred in the Tables) but these only occurred in the 

initial 10 km during the wearing-in period. They were seen to be 

unimportant in the final analysis. Graphs were plotted of the volume 

loss due to wear V (10- 2 mm3 ) against sliding distance L (km) (Fig 5.5). 

The slope of any straight line portion of the graph, divided by the 

normal force P (N) on each pin, is defined as the wear rate coefficient 

K (mm3/Nm) at that time (equation (3)). The gradients were calculated 

using the method of least squares and are shown in Table 5.6 for each of 

the four loads. Since the results were found to be reproducible, 

All Tests Load Stress 
Pin & Plate (N) (MPa) 

1 19.0 0.968 
2 8.5 0.433 
3 5.0 0.255 
4 14.0 0.713 

Table 5.2 Test load conditions. 
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Time Distance TAMB TSAMP 6V1 6V2 6V3 6V4 

(hrs) (km) (oC) (oC) (l0- 2mm3) (l0- 2mm3) (l0- 2mm3) (l0- 2mm3) 

0.00 0.00 20 35 0.00 0.00 0.00 0.00 
7.24 0.997 18 37 -10.48 -10.48 -10.48 -21.00 

19.24 2.65 19 36 -41.90 -31.40 -21.00 -21.00 
67.50 9.30 18 38 -52.40 -41.90 +21. oo* +l0.5o* 

113.70 15.66 18 37 -155.70 -52.40 +l0.5o* -103.40 
165.20 22.76 17 38 -294.60 -88.60 -41.90 -189.80 
209.10 28.80 17 36 -426.50 -128.40 -52.40 -270.10 
255.10 35.14 17 35 -632.20 -163.10 -59.90 -344.70 
290.40 40.00 20 38 -909.40 -202.40 -73.70 -471.00 
326.00 44.91 16 38 -1179.50 -297.80 -80.90 -628.60 
393.40 54.20 18 36 -1701.60 -481.20 -130.80 -932.90 
448.80 61.83 17 37 -2163.70 -646.30 -170.00 -1195.40 
497.20 68.50 17 37 -2503.10 -781.60 -212.30 -1410.80 
540.70 74.49 18 37 -2807.90 -908.10 -249.50 -1622.10 

Table 5.3 Volume changes in test A. 

Time Distance TAMB TSAMP 6V1 6V2 6V3 6V4 

(hrs) (km) CC) CC) (10- 2mm3) (l0- 2mm3) (l0- 2mm3) (10-2mm3) 

0.00 0.00 17 37 0.00 0.00 0.00 0.00 
12.00 1.65 17 36 0.00 -10.48 -10.48 -10.48 
23.57 3.25 18 37 -20.96 -20.96 -10.48 -10.48 
35.57 4.90 19 35 -60.30 -10.90 +10.90* -10.90 
55.17 7.60 19 38 -39.60 -24.30 -30.40 +5.20* 
84.20 11.60 16 39 -87.50 -26.60 -26.00 -69.70 

109.61 15.10 19 37 -138.10 -53.10 -29.90 -101.90 
148.81 20.50 18 38 -271.10 -92.80 -22.20 -173.60 
207.61 28.60 16 36 -412.80 -134.40 -61.10 -264.80 
242.45 33.40 17 37 -559.40 -179.50 -73.80 -340.20 
281.65 38.80 17 36 -764.70 -221.30 -62.70 -469.80 
325.91 44.90 20 36 -1233.40 -320.00 -63.80 -661.90 
368.03 50.70 19 38 -1498.20 -435.90 -124.30 -859.10 
435.90 60.05 18 37 -2119.60 -641.50 -172.70 -1177.30 
489.98 67.50 18 37 -2402.40 -780.00 -187.20 -1402.60 

Table 5.4 Volume changes in test B. 
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Time Distance TAMB TSAMP 5V1 5V2 5V3 5V4 

(hrs) (km) CC) CC) (l0- 2mm3) (10-2mm3) (l0- 2mm3) (l0- 2mm3) 

0.00 0.00 19 36 0.00 0.00 0.00 0.00 
12.00 1. 65 17 37 0.00 -10.48 +10.48* -20.96 
21.39 2.95 18 37 -10.48 0.00 -20.96 -10.48 
33.39 4.60 16 39 +10.90* -5.60 +10.90* -10.90 
53.72 7.40 16 37 -5.90 -30.40 -10.60 -40.60 
71.86 9.90 18 38 -30.10 -50.60 -20.90 -48.30 
95.82 13.20 17 38 -99.90 -51.20 -24.10 -69.70 

137.92 19.00 17 36 -209.20 -72.70 -38.60 -113.80 
178.57 24.60 15 37 -373.70 -133.60 -70.00 -238.20 
233.01 32.10 18 36 -467.50 -117.90 -69.20 -270.10 
258.42 35.60 17 38 -740.20 -190.10 -43.50 -376.80 
299.07 41.20 17 37 -1074.60 -251.00 -95.10 -555.40 
368.76 50.80 16 37 -1591.40 -397.40 -86.70 -801.20 
422.47 58.20 17 36 -1846.20 -539.50 -132.90 -1033.10 
460.95 63.50 18 37 -2280.60 -725.30 -206.60 -1288.70 

Table 5.5 Volume changes in test C. 

V/L Wear Rate Coeff. K 
All Tests Load P (10- 5 mm3/m) (10- 6 mm3/Nm) Depth 

Pin & Plate (N) (mm) 
Low High Mean Low High Mean 

1 19.0 20.33 55.37 35.71 10.7 29.1 18.8 1.16 
±0. 72 ±0.95 ±1.54 ±0.38 ±0.50 ±0.81 

2 8.5 5.89 20.03 10.55 6.9 23.6 12.4 0.37 
±0.42 ±0.61 ±0.58 ±0.5 ±0.7 ±0.68 

3 5.0 2.01 5.94 2.78 4.0 11.9 5.6 0.105 
±0.40 ±0. 70 ±0.16 ±0.8 ±1.4 ±0.32 

4 14.0 12.32 32.49 19.91 8.8 23.2 14.2 0.656 
±0.56 ±0.59 ±0.89 ±0.4 ±0.4 ±0.6 

Table 5.6 Wear rate results. 
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tests A, B & C at each load were taken together. For each load three 

wear rates are given since in each case it was clearly apparent that a 

higher wear regime was taking over after a certain sliding distance, 

even for the 5 N load test. The wear rates of both regimes are given 

along with the mean wear rate for the whole test. Also given in 

Table 5.6 are the expected wear scar depths for the components (total 

volume lost/ area of contact). Fig 5.6 shows how the volume lost per 

unit sliding distance varies with the applied load. 

5.5.2 Electron Microscopy 

Fig 5.7 shows the wear scar cross-section for one plate of each of the 

four loads tested using a magnification of x5. The depth of wear 

clearly increases with load and, from photographs, the mean wear depths 

for the pins were measured to be 1.2, 0.4, 0.1 & 0.6 mm for tests 1 - 4 

respectively, which are largely in agreement with the expected values 

given in Table 5.6. The plates, however, did not seem to have worn 

quite as much as the pins and the mean scar depths were 0.8, 0.2, 0.1 

& 0.4 mm. 

Fig 5.8 shows evidence of abrasive wear with clear grooves marking the 

plates in the direction of travel. In general the wear surfaces of both 

the pin and plate took on a polished appearance with the surfaces of the 

high load tests being very much smoother than those of the low load 

tests. Figs 5.8 a) - c) show the progression of smoothness as the load 

increases. This would imply that abrasion is a more important wear 

mechanism in lightly loaded tests and is superseded by other mechanisms 

for higher loads. For two-body abrasion the surface asperities will 

quickly wear away under a heavy load. In fact, none of the initial 
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Fig 5.7 a) Wear scar cross-section for plate 1 test A. 

Fig 5.7 b) Wear scar cross-section for plate 2 test A. 



Fig 5.7 c) Wear scar cross-section for plate 3 test c. 

Fig 5.7 d) Wear scar cross-section for plate 4 test B. 



Fig 5.8 a) General view of worn surface - plate 3 test B. 

Fig 5.8 b) General view of worn surface - plate 2 test B. 



Fig 5.8 c) General view of worn surface - plate 1 test c. 



machining marks could be seen on any pin or plate after the tests. 

Debris fragments can be clearly seen on all three photographs of Fig 5.8 

with particle sizes ranging from a few microns to over 0.5 mm. These 

will have resulted in three-body abrasion trapped between conforming 

surfaces. 

Some material is passed from one surface to the other through adhesion. 

This is film transfer where the material is smeared (or cold welded) 

onto the opposing surface. Examples of this are shown in Fig 5.9. In 

time the transfer film may be removed again and remain loose to cause 

three-body wear. 

Figs 5.10 a) & b) show very clearly the extensive fine surface rippling 

that could be seen on all pins and plates. The ripples lie 

perpendicular to the direction of travel and are the result of adhesion 

and cold flow during the reciprocating motion. 

Fig 5.10 b) is interesting in that small round particles appear to have 

been pressed deeply into the surface of the plate. Analysis revealed 

them to be NaCl and Fe particles which may have been impurities in the 

lubricant. If small bone particles were to become embedded in this way, 

severe abrasive wear to the prosthesis would result. 

Fig 5.11 shows the two types of surface cracking visible in areas of 

each sample after the tests. Fig 5.11 a) shows brittle cracks up to 

5 ~m in length which run along the surface ripples perpendicular to the 

sliding direction. These are undoubtedly fatigue cracks propagated by 

the repeated change in direction of the motion. Fig 5.11 b) also shows 

cracks perpendicular to the sliding direction but these appear to be 
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Fig 5.9 a) Film transfer and adhesion - pin 1 test A. 

Fig 5.9 b) Film transfer and adhesion - plate 1 test A. 



Fig 5.9 c) Film transfer and adhesion - pin 2 test c. 

Fig 5.9 d) Film transfer and adhesion - plate 2 test c. 



Fig 5.10 a) Surface rippling perpendicular to wear track 
pin 3 test A. 

Fig 5.10 b) Surface rippling with embedded NaCl and Fe 
plate 1 test B. 



Fig 5.11 a) Fatigue damage parallel to ripples 
pin 1 test B. 

Fig 5.11 b) Fatigue damage in the absence of ripples 
plate 4 test A. 



different in nature. The cracks are some 10 ~m in length, larger and 

apparently deeper than the brittle cracks, and are situated in a smooth 

unrippled area of the wear scar. They do not appear to be brittle 

cracks, taking on more of an appearance of surface tears, but are likely 

also to be attributable to surface fatigue mechanisms. In general, the 

brittle type cracks were more common on the pins whereas the tear-like 

cracks were usually on the plates. 

than the plates. 

The pins were often more rippled 

More evidence of adhesive wear is given in Figs 5.12 a) & b). The 

surfaces look scuffed through material being pulled or plucked away by 

bonding to the opposing surface. These areas will result in enhanced 

abrasive wear until they come loose altogether and escape the wear zone. 
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Fig 5.12 a) Evidence of adhesion - plate 1 test A. 

Fig 5.12 b) Adhesion and abrasion- plate 1 test B. 



5.6 DISCUSSION AND CONCLUSIONS 

Looking at Fig 5.5 the graphs for each of the four loads tested show 

that initially there is rather variable behaviour during a 'wearing-in' 

period of up to 10 km before the wear graph for each test settles into a 

steady state straight line. In these early stages there is some two­

body abrasion, resulting in fine score marks of width -10 ~m, enhanced 

by the presence of the machining marks. Adhesive wear is the 

predominant mechanism at this stage and causes surface polishing, film 

transfer and some three-body abrasion through loose debris being trapped 

between the conforming surfaces. Evidence for these effects was seen in 

Figs 5.8 - 5.12. It is probable that the positive volume changes 

recorded in Tables 5.3 - 5.5 were the result of film transfer from the 

plate to the pin. While film transfer has been a strong feature of 

these wear tests this may not be the case for a prosthesis in-vivo. 

Polymer transfer layers have been seen in metal-polymer bench wear tests 

using distilled water or saline but have not been seen in tests using 

serum (McKellop, 1981 (123)). Neither have they been seen on prosthetic 

joints after removal (Charnley, 1975 (131)). This was thought to be due 

to the boundary lubricating ability of synovial fluid. However it isn't 

certain whether an all-polyethylene surface replacement would behave in 

the same way. 

All the wear graphs show a distinct change in slope to a higher wear 

rate regime after a sliding distance of between 32 and 47 km, which 

depends upon the applied load. In each case the higher wear rate is 

some three times the lower rate and this has a strong effect on the 

overall mean value (Table 5.6), which highlights the importance of 
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running laboratory wear tests for a sufficient duration. This kind of 

behaviour is commonly seen in metal-polyethylene systems and can be 

attributed to the onset of a fatigue wear mechanism (Dowson et al, 

1974 (132)). The cracking seen in Fig 5.11 is undoubtedly a feature of 

this fatigue wear mechanism and has been seen, along with the surface 

rippling effect, by other researchers in metal-polyethylene wear tests 

(Atkinson, 1976 (100), Walker, 1977 (133)). 

Much of the wear testing that has already been performed concerns the 

wear of plastics on metals using a variety of lubricants under running 

conditions that are applicable to the design of lower limb prostheses. 

Very little work has been done on the wear of the polyethylene­

polyethylene system since it has not yet been utilised in joint 

prostheses. However, in 1976, Atkinson (100) performed some such tests 

at the request of ICI over sliding distances of around 30 km. These 

tests revealed wear rates of between 6.3 x 10- 6 and 28.2 x 10- 6 mm3/Nm 

for a load range of 6 - 32 N. These values compare very well with the 

results reported here in which wear rates between 5.6 x 10- 6 and 

18.8 x 10- 6 mm3/Nm were found for loads of 5 - 19 N. In a private 

communication in 1990 Dowson (134) reported rather worse wear 

performance for UHMWP, quoting -10- 4 mm3/Nm, though the sliding distance 

of each test was only 1 km, which is very low indeed. 

In experiments to measure the wear rate of UHMWP against stainless 

steel, Seedhom et al in 1973 (135) recorded values of 0.9 x lo- 7 to 

8.7 x 10-7 mm 3 /Nm. In 1974 Dumbleton et al (136), and later 

Shen & Dumbleton (137), recorded wear rates of between 1.0 x 10- 7 and 

5.0 x 10-7 mm3/Nm. From the results obtained here, the wear rate of the 

metal-polyethylene system is up to 250 times lower than the all-plastic 
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system in terms of single component durability. In terms of the amount 

of debris released into the joint cavity this value is doubled. 

Consider an MCP surface replacement prosthesis with a contact area of 

-80 mm2 and radius 8 mm which undergoes 100 cycles per hour through an 

arc of 57° flexion under a load of 12 N. One year of motion of such a 

joint represents a sliding distance of 13.9 km which, for an all­

polyethylene design, means a loss of -3.32 mm3 in volume or 0.04 mm in 

depth for each component per year beyond the first two or three years 

(wear rate coefficient= 19.88 x 10- 6 mm3/Nm). For a polyethylene-metal 

design this means a loss of 0.08 mm3 in volume or 0.001 mm in depth for 

the polyethylene component per year (wear rate coefficient = 

0.5 x 10- 6 mm3/Nm). 

In terms of debris released into the Joint cavity, the all-polyethylene 

system will yield 6.64 mm3 of material or 6640 particles of size 

10 x 1 x 1 ~m yearly compared with only 80 for the metal-polyethylene 

system. It is this aspect of the wear problem that is cause for most 

concern for the reasons discussed earlier. While implant durability 

does not seem a problem the debris produced in wear must be minimised 

and it is hoped that cross linking of the UHMWP will reduce this problem 

significantly. An indication of the success of this technique will be 

given in the report of the prototype simulator tests. 
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CHAPTER 6 

PROTOTYPE TESTS USING THE FINGER. FUNCTION SIMUlATOR 



6 .1 INTRODUCTION 

The most important work performed in this research programme was the 

extensive testing of the Durham surface replacement prosthesis in the 

finger function simulator. This major test series ran twenty-four hours 

per day for more than eight months and effectively completed the 

laboratory evaluation of the new prosthetic device. 

The aim of the simulator tests was to subject the prosthesis to a 

programme of motion equivalent to a lifetime (some ten or twenty years) 

of normal service in-vivo. In the time available it was possible to 

test five prostheses in this way. The extensive commissioning trials 

and, in particular, the Swanson implant tests have shown clearly that 

any prosthesis will be severely tested in the finger function simulator. 

More importantly, since the common mode of failure in the Swanson device 

was successfully reproduced, it can be seen that the simulator 

accurately reproduces the physiological load patterns of the MCP joint. 

Prior to clinical trials, simulator experiments give the best indication 

of the performance and durability of a prosthesis and highlight 

potential problems for consideration in the future. They have been used 

extensively for hip and knee prostheses and have an important 

contribution to make in the development of such devices in the 

laboratory. Of course, cadaveric studies and clinical trials must be 

performed if questions of implant migration, biocompatibility and 

stability in-vivo are to be addressed, but these are beyond the scope of 

the laboratory programme. 
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The main aims of the Durham surface replacement trials were: 

i) To look for modes of fatigue failure or any damage that would be 

likely to result in premature failure. 

ii) To assess whether an uncemented, square cross-section stem would be 

sufficient to hold each component in position adequately by looking 

for evidence of stem deformation and observing the direction of the 

wear marks. 

iii) To look for evidence of cold flow deformation, which is commonly a 

problem with polyethylene components, and to decide whether this is 

prohibitive. 

iv) To assess the extent of wear both from the point of view of 

component durability, and also considering the amount of debris 

released into the joint cavity. Comparisons with the standard bench 

wear tests were useful here. 
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6.2 MATERIALS 

The five tests were carried out using cross linked UHMWP prototype 

components manufactured by Chas F Thackray and Sons Ltd of Leeds 

(Fig 6.1) of the design described in Chapter 2. In the first test the 

metacarpal component was a mark 1 prototype in which the dorsal aspect 

was considerably narrower than in the final mark 2 design. 

For all five tests the components were of size 3 (out of the range of 

seven given in Tables 2.1 & 2.2). The components were implanted into 

two acrylic bone replicas, moulded from a suitable pair of matched bones 

using the technique described in Chapter 4. As with the Swanson tests 

these replicas were mounted on cylindrical stems for ease of grip in the 

simulator and the heads were carefully prepared by hand to receive the 

implant components. The bone heads remained intact and a square, 

slightly tapered hole was opened in each bone using a hot broach. To 

imitate the reaming of the medullary canals, deep holes were drilled 

into the cylindrical shafts. The hole in the metacarpal was placed 3 mm 

dorsally from the centre of rotation as reported by Unsworth & Alexander 

in 1979 (20). The articulating surface of the phalanx was filed out 

such that the component might sit inside a shallow ellipsoidal recess. 

That of the metacarpal was smoothed to conform with the back of the 

implant. Later in the development of the prosthesis, cutting tools will 

be designed such that the surgeon can quickly prepare each bone head and 

medullary canal. 

To prevent any damage from sharp bone edges the replicas were filed and 

rounded to make all points of contact with the prosthesis as smooth as 
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Fig 6.1 Durham surface replacement prosthesis 
- crosslinked prototypes. 



possible and the components were tested for rotation to ensure that the 

bone holes were not too large. For consistency, the same acrylic 

replica pair was used for each test and this is shown, with two 

implanted components, in Fig 6.2. 

The main aims of the tests were to reveal fatigue failure mechanisms and 

to assess the wear resistance of the polyethylene prototypes. For this 

reason the results were assessed in comparison with the standard bench 

test wear data. The initial roughness of the prototypes appeared 

less than that of the bench test samples since they were injection 

moulded and not machined. However, they were still not very smooth 

compared to the highly polished metal surfaces used in hip prostheses. 

The metacarpal component heads appeared to have small rounded 

protuberances distributed across the articulating surface, whereas the 

phalangeal components displayed quite definite circular markings. 

Fig 6.3 shows electron micrographs of an unused pair of components at a 

magnification of x36, taken using a Cambridge Stereoscan 600 SEM. On 

the completion of each test the surfaces were all examined in this way 

and the components were studied generally using macrophotography. 

205 



Fig 6.2 Prototype components mounted on replica 
bones for the simulator trials. 



a) Metacarpal component. 

b) Phalangeal component. 

Fig 6.3 Electron micrographs of the unused 
prototype surfaces. 



6.3 METHOD 

The replica bones and prototypes were carefully placed in the simulator 

and the tendons adjusted to give a smooth cycle with the cams turned by 

hand. For this series, unlike the Swanson trials, the volar plate 

pulley was in position. 

The equipment, other than the motor, was switched on and left for a 

period of two hours in which to achieve a steady state 37°C in the 

saline bath. The tests began after recalibration of the data collection 

system. For each test the simulator ran almost continuously for a 

period of five to eight weeks, with short interruptions for cleaning, 

tendon replacement and sample weighing. Tendons were replaced as 

necessary and this could be performed in fifteen minutes. Cleaning and 

sterilisation of the rig was undertaken weekly and took three hours. 

The samples were weighed at least twice weekly and always while the 

simulator was being cleaned - this took one hour. A record of stoppage 

times was kept as far as possible but when tendon or motor failure 

occurred during the night it was estimated that the simulator had not 

functioned for 50% of the unattended period. This means that in any 

twenty-four hour operating period the uncertainty could be eight hours 

which over the duration of the tests would be equivalent to between 

5 and 10 km error in the quoted sliding distance. During each test 

measurements of both static and dynamic loading were recorded 

periodically to ensure simulator consistency. 

Since the study of wear was the most important aspect of this work, 

great care was taken that a strict standard procedure was maintained in 
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weighing the samples. Prior to the start of each test the components 

and their respective controls were cleaned with alcohol and dried using 

a hairdryer. They were then carefully weighed and the average of five 

readings recorded. The test components were mounted on the replica 

bones which were then carefully aligned in the simulator clamps. The 

controls were weighted and placed at the bottom of the simulator bath 

which was then filled with saline and heated until steady state 

conditions were achieved. Throughout the test the motor speed and 

temperature were carefully monitored. At no time, after the start of a 

test, were the replica bones removed from their clamps. For cleaning 

and sample weighing the tendons were released and the test components 

were gently removed from the replicas. This precaution was to ensure a 

consistent sliding direction. The weighing of the samples followed the 

same procedure as was used for the bench wear tests described in 

Chapter 5. 

continued. 

Then they were replaced in the simulator and the tests 

Three of the five tests ran for 130 km and two ran for 

-300 km. These distances are equivalent to -10 and 20 years normal use 

assuming that a finger joint performs 100 cycles per hour through 60° 

flexion. It had been hoped to allow test 5 to run on but the phalangeal 

component was badly damaged in a simulator failure after 300 km sliding 

distance. 
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6.4 RESULTS 

A summary of the test conditions is given in Table 6.1 and the ranges of 

the dynamic force response curves are shown in Fig 6.4. Both the angle 

and the magnitude of the joint force were seen to exhibit the expected 

trends (Chapter 4) and were generally consistent throughout the test 

series. 

Mean Load 
Test Angle Mean Cycle Test 

No. Dynamic Static of Load Stress Speed Duration 
(N) (N) C) (MPa) (Hz) (days) 

1* 12.163 181.33 30 0.152 1. 78 33.1 
2 11.830 180.97 32 0.148 1. 76 33.6 
3 11.860 180.96 32 0.148 1. 78 32.4 
4 12.190 181.18 28 0.152 1.77 65.8 
5 11.990 180.96 30 0.150 1.77 77.8 

* Mark 1 prototype with a narrow metacarpal component 

Table 6.1 The test details for the prototype tests. 

The volume losses for each test are recorded in Tables 6.2 to 6.6 along 

with the mean load and temperature readings, the cycle count and the 

sliding distance. As in Chapter 5, volume losses were calculated from 

the weight changes using a density of 0.954 gcm- 3 for the polyethylene. 

Again the error in a weight measurement was equivalent to ±0.52 mm3 in 

volume. 

Graphs were plotted of the volume loss due to wear V (mm3 ) versus 

sliding distance L (km) for each of the five tests (Figs 6.5 to 6.9) 

with the phalangeal and metacarpal components given by different 
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Fig 6.4 a) Angle of force vs angle of flexion. 
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Fig 6.4 b) Magnitude of force vs angle of flexion. 
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Time Dist. Temp Number Dynamic 
of 

(hrs) (km) ( o C) cycles 

8.99 1.45 36 57,857 
18.47 2.99 36 118,928 
25.94 4.20 36 167,142 
49.88 8.08 37 321,428 
73.82 11.96 37 475,714 
91.78 14.86 37 591,428 

102.75 16.64 38 662,142 
126.70 20.52 36 816,428 
140.66 22.78 36 906,428 
164.60 26.66 34 1,060,714 
194.28 31.47 37 1,251,964 
218.23 35.34 37 1,406,250 
237.18 38.41 37 1,528,393 
261.12 42.29 34 1,682,679 
283.07 45.84 34 1,824,108 
288.06 46.65 36 1,856,251 
297.04 48.11 38 1,914,108 
325.97 52.79 38 2,100,537 
333.95 54.08 37 2,151,966 
357.89 57.96 37 2,306,252 
381.83 61.84 38 2,460,538 
405.78 65.72 38 2,614,824 
422.74 68.46 37 2,724,110 
446.68 72.34 37 2,878,396 
485.09 78.56 37 3,125,896 
509.03 82.44 36 3,280,182 
525.24 85.07 3ot 3,384,646 
634.99 102.84 36 4,091,875 
657.82 106.54 36 4,239,013 
676.91 109.63 37 4,361,986 
754.91 122.26 37 4,864,618 
794.91 128.74 37 5,122,378 

t Blocked pump or heater failure. 

* Mean value for the period. 

load 
(N)* 

12.050 
12.050 
12.325 
12.675 
11.850 
11.525 
12.075 
13.025 
12.450 
12.100 
12.575 
11.425 
11.675 
12.800 
13.350 
12.550 
12.050 
11.975 
11.600 
12.450 
12.225 
13.025 
11.875 
12.450 
12.000 
12.275 
11.075 
11.250 
12.400 
11.875 
11.650 
12.550 

No. Static Vol.loss 
of load Phalanx 

loads (N)* (mm3) 

18 181.50 -0.105 
37 181.50 0.105 
52 181.50 0.520 

100 181.75 0.670 
148 181.00 0.980 
184 180.50 1. 580 
206 181.25 1. 890 
253 182.00 2.350 
281 181.50 2.760 
329 181.25 3.105 
389 181.75 3.805 
436 180.50 4.600 
474 180.75 5.102 
522 181.75 5.605 
566 182.25 5.980 
576 181. 75 6.000 
594 181.25 6.405 
652 181.00 6.890 
668 181.00 7.570 
716 181.75 8.105 
764 181. so 8.906 
812 182.50 9.606 
845 181.75 10.102 
893 181. so 10.400 
970 181.25 11.280 

1018 181.25 11.672 
1050 180.00 12.000 
1270 180.50 15.450 
1316 181.50 15.860 
1354 181.00 16.205 
1510 181.00 18.665 
1590 181.75 19.890 

Table 6.2 Volume loss and load details for test 1. 
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Vol. loss 
Meta§arp 

(mm ) 

0.056 
0.240 
0.240 
0.960 
0. 720 
0.940 
1. 025 
1. 950 
1. 990 
2.200 
3.000 
3. 710 
4.105 
4.215 
4.810 
5.400 
5.805 
6.102 
6.600 
7.015 
7.890 
8.105 
8.809 
9.503 

10.204 
10.986 
11.103 
13.679 
14.100 
15.086 
16.540 
18.252 



Time Dist. Temp Number Dynamic No. Static Vol.loss Vol. loss 
of load of load Phalanx Metacarp 

(hrs) (km) CC) cycles (N)* loads (N)* (mm3) (mm3) 

20.75 3.36 38 133,713 11.050 42 180.25 0.201 -0.152 
24.42 3.95 37 157,362 11.175 49 180.25 0.102 0.150 

161.92 26.22 36 1,043,412 12.000 324 181.00 2.150 2.240 
259.92 42.10 37 1,674,924 12.225 520 181.25 4.421 4.012 
277.42 44.93 37 1,787,694 11.650 555 181.00 4.692 4.194 
279.17 45.21 36 1,798,971 12.100 558 181.00 4.579 4. 301 
298.42 48.33 37 1,923,018 11.525 597 180.75 5.410 4.617 
322.42 52.22 32t 2,077,674 12.850 645 181.75 5.990 5.115 
394.17 63.84 32t 2,540,031 12.125 788 181.50 7.843 6.814 
419.17 67.89 37 2,701,131 11.550 838 181.00 8.027 6.905 
441.42 71.49 37 2,844,510 11.775 883 181.00 9.105 8.021 
489.92 79.35 37 3,157,044 12.100 980 181.25 10.345 8.654 
495.92 80.32 29t 3,195,708 11.200 992 180.50 10.906 8.801 
559.17 90.56 37 3,603,291 12.675 1118 181.75 11.210 10.025 
584.17 94.61 36 3,764,391 11.050 1168 180.00 12.302 11.651 
606.42 98.21 37 3 '907' 770 13.025 1213 182.00 12.650 11.920 
638.42 103.39 37 4,113,978 11.175 1277 180.25 13.397 12.612 
657.42 106.47 39 4,236,414 11.650 1315 180.75 13.982 13.011 
726.17 117.61 37 4,679,439 12.250 1452 181.50 15.242 14.219 
734.17 118.90 37 4,730,991 12.000 1468 181.50 15.612 13.914 
750.17 121.49 37 4,834,095 12.475 1500 181.50 16.141 15.010 
773.42 125.26 37 4,983,918 11.275 1547 180.50 16.571 15.050 
781.42 126.56 38 5,035,470 11.750 1563 180.75 17.331 15.513 
805.42 130.44 37 5,190,126 11.350 1611 180.25 17.901 15.992 

t Blocked pump or heater failure. 

* Mean value for the period. 

Table 6.3 Volume loss and load details for test 2. 
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Time Dist. Temp Number Dynamic 
of 

(hrs) (km) CC) cycles 

7.00 1.13 37 4S,l08 
46.7S 7.S7 37 301,2S7 
96.00 lS.SS 37 618,624 

141. 7S 22.96 37 913,437 
16S.2S 26.76 26t 1,064,871 
213.00 34.SO 36 1,372,S72 
23S.SO 38.14 36 l,Sl7,S62 
307.2S 49.76 38 1,979,919 
31S.2S Sl.06 37 2,031,471 
338.00 S4.74 37 2,178,072 
361.7S S8.S9 36 2,331,117 
387.2S 62.72 37 2,49S,439 
4S7.SO 74.09 36 2,948,130 
481. 2S 77.94 36 3,101,17S 
487.7S 78.99 38 3,143,061 
sos.oo 81.79 38 3,2S4,220 
S28.7S 8S.63 37 3,407,26S 
S31.7S 86.12 37 3,426,S97 
719.SO 116.S3 37 4,636,4S8 
767.SO 124.30 37 4, 94S, 770 
777. so 12S.92 37 S,010,210 

t Blocked pump or heater failure. 

* Mean value for the period. 

load 
(N)* 

11.97S 
12.400 
11.2SO 
11.000 
12.27S 
12.100 
11.3SO 
11.400 

-
-

13. 02S 
-
-

11.1SO 
-
-

12.0SO 
-

12.07S 
-

12.17S 

No. Static Vol.loss 
of load Phalanx 

loads (N)* (mm3) 

14 181.00 0.118 
94 181. so 0.627 

192 180.SO 1.241 
284 180.00 2.218 
331 181. 2S 2.913 
426 181.2S 3.601 
471 180.SO 4.231 
61S 180.SO S.986 
631 - 6.401 
676 - 7.022 
724 182.00 7.413 
77S - 7.702 
91S - 9.904 
963 180.SO 10.871 
976 - 10.804 

1010 - 11.246 
10S8 181.00 11.964 
1064 - 11.871 
1439 181.00 16.987 
1S3S - 17.800 
lSSS 18l.SO 18.60S 

Table 6.4 Volume loss and load details for test 3. 
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Vol. loss 
Metacarp 

(mm3) 

0.006 
O.S93 
1.483 
2.016 
2.421 
3.201 
3. 921 
6.201 
6.021 
6.813 
7.001 
7.S64 
8.901 

10.017 
10.121 
10.200 
10.882 
10.901 
lS.002 
16.841 
17.272 



Time Dist. Temp Number Dynamic No. Static Vol.loss Vol.loss 
of load of load Phalanx Metacarp 

(hrs) (km) CC) cycles (N)* loads (N)* (mm3) (mm3) 

9.00 1.45 37 57,996 13.150 18 182.00 -0.002 0.204 
52.75 8.54 37 339,921 - 106 - 0.521 0.102 

112.45 18.21 37 724,628 - 225 - 1.306 1. 310 
150.17 24.32 37 967,695 12.675 300 182.00 2.703 1. 914 
201.40 32.62 37 1,297,822 12.150 403 181.00 4.117 3.001 
209.40 33.91 36 1,349,374 - 419 - 3.907 3.421 
301.17 48.78 32t 1,940,739 12.075 602 181.00 6.831 6.245 
349.17 56.55 36 2,250,051 12.025 698 180.75 7.923 6.674 
403.75 65.39 37 2,601,765 - 808 - 9.871 8.002 
427.75 69.28 38 2,756,421 - 856 - 10.246 8.682 
472.45 76.56 37 3,046,401 12.675 945 182.00 11.992 9.490 
521.10 84.39 37 3,357,968 12.550 1042 181.50 12.712 10.481 
555.45 89.96 38 3,579,320 - 1111 - 13.861 11.782 
624.10 101.08 38 4,021, 700 11.050 1248 180.00 15.620 13.910 
689.75 111.71 37 4,444,749 11.675 1380 180.75 17.812 15.005 
720.50 116.69 37 4,642,902 - 1441 - 18.619 16.217 
727.50 117.82 36 4,688,010 - 1455 - 18.810 16.349 
804.60 130.31 37 5,184,842 12.000 1609 180.75 21.740 17.879 
867.17 140.44 37 5,588,043 12.125 1734 181.00 21.360 18.891 
912.50 147.78 37 5,880,150 - 1825 - 22.645 19.602 
995.45 161.22 37 6,414,680 13.050 1991 181.75 24.421 21.984 

1041.75 168.72 36 6,713,037 12.400 2084 181.50 26.609 23.001 
1102.25 178.52 37 7,102,899 - 2205 - 28.698 24.862 
1113.25 180.30 38 7,173,783 - 2227 - 29.041 26.013 
1118.75 181.19 37 7,209,225 - 2238 - 29.502 26.002 
1265.17 204.90 38 8,152,755 12.150 2530 181.25 30.621 27.914 
1327.50 214.99 37 8,554,410 12.550 2655 181. 25 32.781 29.681 
1397.20 226.28 37 9,003,557 11.650 2794 181.25 35.602 31.256 
1453.60 235.42 37 9,366,998 - 2907 - 36.400 31.656 
1465.10 237.28 3ot 9,441,104 - 2930 - 36.394 32.524 
1502.50 243.34 26t 9,682,110 11.550 3005 180.75 37.998 34.021 
1536.75 248.88 37 9,902,817 12.050 3074 181.00 38.771 34.391 
1578.50 255.65 37 10,171,854 12.125 3157 181.00 41.514 35.812 

t Blocked pump or heater failure. 

* Mean value for the period. 

Table 6.5 Volume loss and load details for test 4. 
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Time Dist. Temp Number Dynamic No. Static Vol.loss 
of load of load Phalanx 

(hrs) (km) (oC) cycles (N)* loads (N)* (mm3) 

23.75 3.85 36 153,045 12.050 48 181.00 0.308 
72.61 11.77 37 467,899 12.250 145 181.25 0.502 

131.40 21.30 37 846,742 - 263 - 1.241 
187.75 30.44 37 1,209,861 12.700 376 181.75 3.461 
231.91 37.59 37 1,494,428 11.950 464 181.00 3.941 
252.00 40.85 37 1,623,888 - 504 - 4.510 
270.50 43.85 38 1,743,102 - 541 - 5.117 
314.15 50.93 38 2,024,383 11.200 628 180.50 6.210 
363.75 58.97 36 2,344,005 12.275 728 181.50 7.692 
392.10 63.56 37 2,526,692 - 784 - 8.702 
408.50 66.22 37 2,632,374 - 817 - 8.910 
521.40 84.52 37 3,359,902 12.475 1043 181.50 11.540 
568.20 92.11 3ot 3,661,481 11.050 1136 180.00 12.670 
610.50 98.97 28t 3,934,062 - 1221 - 13.567 
687.00 111.37 36 4,427,028 11.475 1374 180.25 15.401 
706.60 114.54 26t 4,553,330 12.075 1413 181.00 15.324 
778.00 126.12 37 5,013,432 - 1556 - 17.610 
806.00 130.66 37 5,193,864 - 1612 - 18.471 
851.25 137.99 37 5,485,455 12.650 1703 181.50 19.651 
942.40 152.77 38 6,072,826 11.600 1885 180.75 20.698 

1021.50 165.59 37 6,582,546 11.250 2043 180.25 23.501 
1101.00 178.48 37 7,094,844 11.800 2202 180.75 24.603 
1149.50 186.34 37 7,407,378 - 2299 - 26.320 
1204.00 195.17 36 7,758,576 12.325 2408 181.50 27.514 
1256.17 203.63 37 8,094,759 - 2512 - 28.712 
1304.80 211.51 38 8,408,131 - 2610 - 30.614 
1407.60 228.18 38 9,070,574 12.000 2815 180.75 33.010 
1468.00 237.97 37 9,459,792 - 2936 - 34.813 
1501.01 243.32 37 9,672,508 11.975 3002 180.75 35.912 
1642.50 266.26 37 10,584,270 12.150 3285 180.75 39.601 
1709.25 277.08 36 11,014,407 12.950 3419 182.00 43.441 
1761.50 285.55 37 11,351~106 - 3523 - 44.012 
1866.15 302.51 37 12,025,471 11.550 3732 180.50 45.667 

t Blocked pump or heater failure. 

* Mean value for the period. 

Table 6.6 Volume loss and load details for test 5 
before simulator failure. 
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Vol.loss 
Metacarp 

(mm3) 

0.219 
0.201 
1.641 
3.024 
3.416 
4.066 
4.671 
5.667 
6.244 
6.791 
6.991 
9.361 

10.761 
11.513 
12.946 
13.002 
14.671 
15.902 
16.772 
18.960 
20.301 
21.902 
23.604 
24.912 
26.006 
26.712 
28.991 
31. 321 
32.001 
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symbols. Also shown on each graph are the extrapolations of the bench 

wear test results for reference. Fig 6.10 summarises the test series 

graphically, showing an upper and lower limit to the wear rate of the 

prototype under -12 N normal load. 

The mean wear rate (mm3/m) and the wear rate coefficient (mm3/Nm) were 

calculated in each case using the method of least squares and are shown 

for both the metacarpal and the phalangeal components in Table 6.7. The 

mean values for the whole series are also given. 

Phalanx Metacarpal 

Test Wear Wear rate Depth Wear Wear rate Depth 
No. rate coeff. lost rate coeff. lost 

10- 5mm3 /m 10- 6mm3 /Nm mm 10- 5mm3 /m l0- 6mm3/Nm mm 

1 15.58±0.15 12.81±0.12 0.25±0.002 14.33±0.23 11.78±0.19 0.07±0.001 
2 14.21±0.24 12.01±0.20 0.23±0.003 13.07±0.24 11.05±0.20 0.07±0.001 
3 15.20±0.27 12.82±0.23 0.24±0.004 13.95±0.25 11.76±0.21 0.07±0.001 
4 16.07±0.15 13.18±0.12 0.51±0.002 14.36±0.12 11. 78±0 .10 0.15±0.001 
5 15.38±0.17 12.83±0.14 0.58±0.006 13.44±0.09 11. 21±0.08 0.16±0.001 

All 15.61±0.11 13.00±0.09 13. 72±0.10 11.43±0.08 
Mean 

Table 6.7 Test results summary. 

6.4.1 Kacrophotography 

At the end of each test the samples were examined using macrophotography 

at magnifications of x4 to xlO. Three sets of photographs are given in 

this section. The test 1 components are shown since the metacarpal 

component was a mark 1 prototype. Tests 2 & 3 were very similar in that 

they were mark 2 prototypes which both ran for a sliding distance of 
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-130 km. The test 2 photographs are shown here since they contain some 

interesting features but comparisons are drawn with test 3 where 

differences were observed. Tests 4 & 5 again were similar, both running 

for about 300 km, but the test 5 components which were intended to 

undergo an extended trial were damaged in a simulator failure. The 

results recorded for test 5 are up to the last sample weighing before 

the failure and no photographs were taken. 

Figs 6.11 a) & b) show the articulating surface and lower edge of the 

test 1 phalangeal component. The surface had a slightly polished 

appearance with a few wear marks running at an angle of -20° to the 

dorsal, suggesting that the component may have rotated a little during 

the test. The circular marks originally present were still clearly 

visible, and the most important scar was a single deep scratch on the 

ulnar side, apparently corresponding to the edge of the metacarpal 

component. There was also some significant damage on the volar side of 

the articulating surface and material degradation and thinning were most 

marked here. There was some thinning of the component in general -

possibly as much as 0.25 mm in depth - and it appeared more translucent 

than the control. There was no apparent gross deformation of the 

component attributable to cold flow of the polyethylene other than a 

noticeable smearing of the edge of the articulating surface. This 

effect has been seen in some polyethylene knee components. At the back 

of the component there was some very slight marking due to contact with 

the prepared bone surface qut there was no stem damage of any kind. 

Fig 6.12 shows the articulating surface of the test 1 metacarpal 

component which is significantly narrower in the dorsal aspect than the 

mark 2 design, shown in Fig 6.1. The surface had a very shiny 
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Fig 6.11 a) Surface of the test 1 phalangeal component. 

Fig 6.11 b) Edge of the test 1 phalangeal component. 



Fig 6.12 Surface of the test 1 metacarpal component . 



appearance with clear abrasion marks running from oo - goo flexion, the 

deepest of which occurred at around oo - 10° flexion on the ulnar side 

and at 60° - goo flexion in the centre. There was a single impression 

mark at 10° hyperextension which was not associated with any abrasion, 

and there were some marks on the back of the component due to contact 

with the bone. There was no obvious thinning or cold flow deformation 

in the component, neither was there any stem damage. 

Figs 6.13 a) & b) show the articulating surface and volar edge of the 

test 2 phalangeal component. Tests 2 & 3 ran for approximately the same 

duration as test 1 and their post-test appearance was generally very 

similar. The phalangeal components of tests 2 & 3 were noticeably 

thinned and more translucent than the controls, again perhaps 0.25 mm in 

depth. The surfaces showed clear evidence of abrasion with a loss of 

the pre-test circular marks which was not the case in test 1. The 

edges, and in particular the volar edge, were sharp and thinned, again 

indicating high stresses and cold flow. In both cases there was a 

definite material degradation at the palmar edge and this would appear 

to correspond with the moulding tool vent position. In contrast to 

test 1, neither test 2 or 3 displayed any deep marks in the surface of 

the phalangeal component since the mark 2 metacarpal component width 

exceeded that of the mating surface. There was no apparent stem damage 

or gross deformation in either case. 

Figs 6.14 a) & b) show the upper and lower sections of the test 2 

metacarpal component articulating surface. In tests 2 & 3 the 

metacarpal component surfaces were highly polished with abrasion marks 

that were particularly clear on the volar aspect. In test 3 these marks 

ran true but were at an angle of almost 45° to the dorsal on the test 2 
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Fig 6.13 a) Surface of the test 2 phalangeal component. 

Fig 6.13 b) Edge of the test 2 phalangeal component. 



Fig 6.14 a) Upper half of the test 2 metacarpal 
component surface. 

Fig 6.14 b) Lower half of the test 2 metacarpal 
component surface. 



component. In addition, while there was no gross deformation in the 

test 3 component, the stem was twisted in test 2 and bent towards the 

volar and ulnar edges. Looking from the back (Fig 6.15), the lower 

ulnar corner of the component was seen to be slightly displaced toward 

the stem. It was apparent that the deformation in the test 2 component 

was consistent with the angled abrasion marks and would seem to suggest 

that the component had twisted on the bone during the test and not that 

the bone was twisted in the clamp. In hyperextension there were again 

some impressions on both components not associated with abrasion marks. 

It would appear that under heavy static loading the components impinged 

on the adjacent pulley though it was not apparent at the time that this 

was occurring. On the test 2 component there was a single, quite wide, 

prominent scratch running from about oo - 30° flexion which corresponded 

to the area of roughened material at the volar edge of the phalangeal 

component. 

Figs 6.16 a) & b) show the surface and edge of the test 4 phalangeal 

component which had undergone -10 million cycles in the finger function 

simulator. Thinning was considerable, with the component having lost in 

excess of 0.5 mm in depth. The abrasion marks were clear, some being 

quite deep, and the surface was very polished generally. The edges of 

the component were again smeared and this resulted in a 1.5 mm increase 

in the minor axis width. Surprisingly, perhaps, the palmar edge damage 

was not so severe. It is possible that the weak material had been worn 

away completely. There were some shallow marks on the back of the 

component but these were not noticeably worse than those of the shorter 

term tests. 

Figs 6.17 a) & b) show the upper and lower sections of the test 4 
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Fig 6.15 Rear view of the test 2 metacarpal component. 



Fig 6.16 a) Surface of the test 4 phalangeal component. 

Fig 6 . 16 b) Edge of the test 4 phalangeal component. 



Fig 6.17 a) Upper half of the test 4 metacarpal 
component surface. 

Fig 6.17 b) Lower half of the test 4 metacarpal 
component surface. 



metacarpal component surface. The pulley mark could be clearly seen in 

hyperextension and abrasion was visible between 0 & goo flexion. The 

most significant area of damage on this component was on the volar 

aspect of the articulating surface. A patch some 5 mm long and 2 mm 

wide was quite badly degraded. The appearance of this area was rather 

like the volar edge damage seen in the phalangeal components of tests 1 

to 3, and would seem to be attributable to some surface fatigue 

mechanism rather than abrasion. The scar did not penetrate deeply. In 

this component and also that of test 5, there was some measurable 

thinning though only about 0.25 mm in depth. There was no damage or 

deformation in the stem or body of either component. 

6.4.2 Electron Micrographs 

Fig 6.18 shows a fairly low magnification view of the test 2 metacarpal 

component. The abrasion marks can be clearly seen with some indication 

of material plucking, but there are no debris fragments or transfer 

films visible. The most striking feature of this view is the series of 

small black spots scattered over the surface. On close inspection these 

were seen to be small pits in the surface, sometimes containing debris 

particles. Areas of pitting were seen on all the components examined 

and extensively on the volar aspect of the test 4 metacarpal component. 

They were less prominent on the phalangeal components. 

At a similar magnification Fig 6.19 shows part of the area of severe 

damage on the volar aspect of the test 4 metacarpal component (shown 

earlier in Fig 6.17 b)). It would appear that a complete breakdown of 

the surface structure has occurred here and would no doubt have been 

associated with a significant loss of material. It is interesting to 
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Fig 6.18 Onset of surface pitting - test 2 
metacarpal component. 

Fig 6.19 Gross surface degradation - test 4 
metacarpal component. 



note that at either side of this area there were large regions of 

pitting as shown in the previous micrograph. In Fig 6.19 these can just 

be seen in the upper right and lower left corners of the view. This 

would suggest that the fine pitting is a pre-cursor to the more severe 

surface failure seen here. 

Surprisingly, the transverse surface rippling and cracking, so evident 

in the bench test specimens, were not observed at all in any of the 

prototype components examined. Fig 6.20, which is a high magnification 

view of the test 1 metacarpal component, shows just how smooth the wear 

surfaces were away from the degraded areas. There is some evidence of 

surface smearing here, and sub-micron sized pits are just visible on the 

right hand side of the view. 

The phalangeal components generally showed more clear abrasion marks 

than the metacarpals and rather less surface degradation. This type of 

damage was only seen near to the vent sites on the volar edge, as shown 

in Figs 6.11 a) & 6.13 a). Surface plucking was commonly seen along the 

abrasion markings and a typical view is given in Fig 6.21. 

At very high magnification, Fig 6.22 shows the edge of the damaged 

region of the test 4 phalangeal component. This area again shows a 

complete breakdown in the surface structure but in this case is not 

associated with the progression of a surface pitting mechanism. The 

appearance of the material is also quite different here and may actually 

be attributable to an as-manufactured material defect at the vent site. 
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Fig 6.20 High magnification view of the test 1 
metacarpal component. 



Fig 6.21 surface plucking on the test 2 
phalangeal component. 

Fig 6.22 Surface degradation of the test 4 
phalangeal component. 



6.5 DISCUSSION AND CONCLUSIONS 

6.5.1 General Comments 

The five prototype pairs all survived severe testing in the finger 

function simulator with no indication of premature failure after cycling 

distances of some two to five times that required to fail the Swanson 

joint (Chapter 4). This is very encouraging. The bone cuts and stress 

fractures, so often a problem with finger joint implants, were not seen 

in this experimental programme other than some very minor markings at 

the back of the components. Cold flow was evident to a degree, 

particularly at the edges of the phalangeal component (Figs 6.11 b), 

6.13 b) & 6.16 b)) and while this edge smearing was not too worrying, it 

has proved a severe problem in the polyethylene tibial components of 

surface knee replacements (Morrey et al, 1979 (138)). To reduce this 

problem it would be beneficial to seat the phalangeal component more 

deeply into the bone, perhaps filing the head back until it was flush 

with the polyethylene. Further evidence of cold flow was seen in the 

stern and volar edge of the test 2 metacarpal component (Fig 6.15). The 

twisting of the component on the bone head during testing has resulted 

in this permanent deformation. This is more worrying since it would 

seem that while the stern has held its orientation within the medullary 

canal the softness of the material has still allowed the component head 

to twist. The question was asked whether an uncernented, square cross­

section stern would be sufficient to prevent rotation of the implant but 

clearly a stern of any geometry would suffer this problem. It is not 

known why rotation occurred in this case and indeed no other sterns in 

the series showed any similar deformation. However, it should not be 
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taken too lightly and consideration may be given to strengthening the 

stem. 

The wide metacarpal mark 2 design was undoubtedly more suitable than the 

mark 1 design used in test 1 which imparted a deep cut to the phalangeal 

component, possibly during heavy static loading (Figs 6.11 a) & b)). 

One important feature in all the tests was the surface damage in the 

area surrounding the mould vent position (Figs 6.11 a) & 6.13 a)) which 

was particularly striking in the phalangeal components but also evident 

to some degree in the metacarpal components. These areas, when examined 

using the SEM, had a rather odd appearance compared with other worn 

areas (Fig 6.22) and, though it is not certain, it would seem likely 

that some as-manufactured defect is present here. It would be advisable 

to move the vent, if possible, onto the rear surface of each component. 

6.5.2 The Wear Performance 

The first observation to make on the wear behaviour of the prototypes is 

that the mechanisms occurring are not the same as for the non-cross 

linked material. Apart from the wear graphs lacking the distinctive 

dog-leg at -40 km, the SEM micrographs show significant differences. As 

in the bench tests, abrasion is a prominent feature with clear wear 

scratches and a polished appearance of all the articulating surfaces. 

Some evidence of adhesion can also be seen (Fig 6.21) where material has 

been plucked from the surface as in Fig 5.12. However, film transfer 

does not seem to have occurred to any great extent at all, which is 

surprising. When two surfaces are totally conforming, as the prototypes 

are, it is more likely that wear debris will remain between the 
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surfaces, acting to enhance abrasion. In the case of the bench tests 

this was certainly true and transfer films were clearly present 

(Fig 5.9). It would seem that either the debris escaped, with the 

prototypes sliding at a greater speed than the bench tests, or that it 

did remain to cause three-body abrasion but was too hard to be smeared 

over the surfaces as a result of cross linking. The surface features of 

rippling and cracking (Figs 5.10 & 5.11), attributed to material fatigue 

in the bench tests, are also absent from the prototype micrographs. 

This would explain the absence of the dog-leg in the wear graphs. Even 

so, some form of fatigue is evident with the cross linked material 

(Figs 6.18 & 6.19) with surface pitting progressing to quite severe 

surface degradation in time. This mode of failure occurs after much 

greater sliding distances, probably in excess of 100 km (-7 years use) 

and severe damage was only seen in the test 4 metacarpal component which 

had performed in excess of 300 km. Its progression must have been 

rather gradual since there was no obvious change in wear rate as a 

result. 

It is a pity that test 5 did not survive its intended duration since an 

upturn in the wear graph may eventually have appeared. Interestingly, 

the fatigue damage described here was only really seen on the metacarpal 

component surfaces on which a given area is repeatedly under tension and 

then compression during cycling. This is reminiscent of the situation 

in the knee joint though on a much smaller scale. In knees surface 

damage to the polyethylene tibial component is a common problem and 

damage very similar in appearance to that shown in Fig 6.19 was 

described by Wright & Bartel in 1986 (103) as 'delamination'. These 

authors reported that the severity of the surface damage was a function 

of patient weight, component thickness and duration of implantation. 
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While stresses in a finger joint are an order of magnitude less than in 

the knee, the component thickness is also very much less and it is 

possible that an increase in thickness may help. A fatigue mechanism 

for the creation of pits on the surface of polyethylene components was 

proposed by Rose et al in 1979 (139). Strictly it is not realistic to 

try to compare the wear performance of two materials from tests that are 

so different in nature, particularly as it is clear that the materials 

do not behave in the same way. However, it is instructive to do so if 

the conclusions are treated with due caution. 

Fig 6.10 gives a graphical summary of the wear results for the prototype 

series along with the extrapolated bench test results for reference. 

The first observation to make is that the phalangeal components have 

worn slightly more than the metacarpal components in general. This 

difference was also seen in the bench tests with the pins wearing more 

than the plates. 

The absence of the dog-leg in the prototype wear data has meant that the 

final volume loss at the end of each test at 12 N was below that 

expected for 8 N in the bench tests. In Chapter 5 it was stated that an 

MCP prosthesis made from non-cross linked polyethylene could be expected 

to lose -3.32 mm3 (or 0.04 mm in depth) per component per year after the 

first two or three years (wear rate coefficient= 19.88 x 10- 6 mm3/Nm). 

With regard to the debris released to the joint, this amounts to 

66.4 mm3 of material over ten years compared with only 0.8 mm3 for a 

metal-polyethylene system (wear rate coefficient= 0.5 x 10- 6 mm3/Nm). 

On the same basis, a surface replacement made from cross linked 

polyethylene may be expected to release 38.1 mm3 of debris into the 

joint over ten years (wear rate coefficient= 12 x lo- 6 mm3/Nm). This 
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is a significant improvement on the non-cross linked material. 

6.5.3 Overall Performance 

The results of the prototype test series are very pleasing indeed and, 

while some improvements could be made to increase component durability, 

no real problems are envisaged in continuing the development of the 

implant as an all-polyethylene system. 
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CHAPTER 7 

FINITE ELF..MENT ANALYSIS 



7 .1 INTRODUCTION 

With more than half a million prosthetic joint implantations being 

performed annually and the increased life expectancy of these devices, 

progress is being directed towards mechanical optimisation to extend 

their functional life. The knowledge of the stress behaviour of 

orthopaedic implants and the supporting bone tissue is an important link 

to understanding the success or failure of such devices. 

The mathematical tools available for stress analysis in classical 

mechanics are not really suitable for the highly irregular structural 

properties of bones and so researchers have moved to the finite element 

method, which has been employed in other areas of engineering for more 

than thirty years. In 1972 Brekelmans et al (140) wrote a paper on the 

use of finite elements to study stresses in healthy human bones. Since 

that time the numerical method has been used for bone/prosthesis 

structures, fracture fixation devices and soft tissues such as the heart 

and lungs. A description of its principles, possibilities and 

limitations, in orthopaedic biomechanics specifically, was published by 

Huiskes in 1983 (141). Also in 1983 a survey of the first decade of 

finite elements in biomechanics was reported by Huiskes & Chao (142) 

which included over one hundred references. 

In the past five years the use of finite element techniques in 

bioengineering has really taken off even though, as yet, the methodology 

is still being explored and the results are largely qualitative and not 

quantitative. While this method has not yet had an enormous impact on 

the clinical orthopaedic community, it is likely to become increasingly 
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important over the next few years as the dialogue between clinicians and 

engineers improves. For this reason, and also for completeness, a brief 

finite element study of the Durham surface replacement prosthesis has 

been included here. While it is not intended to go into too much 

detail, it is hoped that this will demonstrate the potential of 

numerical stress analysis in the future development of this device. A 

thorough analysis could form the basis of a whole research programme. 

245 



7. 2 METHOD AND ASSUKP'flONS 

A finite element model is created by providing input data to describe 

the geometry of the structure, its material properties, and the applied 

loads. In biomechanics the essentially two-phase nature of the bone 

material, consisting of solid but porous matrix and an interstitial 

fluid, poses a problem of definition. Furthermore, bone is a living 

tissue and responds to stress by resorption or by forming cortical bone 

for strengthening. There is only sparse information available on the 

actual behaviour of bone and on the mechanical distinction between 

cortical and trabecular bone. While being anisotropic and non-

homogeneous in nature, both behave approximately in a linear elastic 

way. Some very sophisticated models in two and three dimensions have 

been produced, especially on the femur, which have attempted to take 

non-homogeneity and anisotropy into account. However, in this study the 

bone is treated as a continuum material in two dimensions for 

simplicity. The solution follows a direct stiffness plane strain 

formulation with linearly elastic material properties using the computer 

package PAFEC 5.1. The material properties are given in Table 7.1. 

Material Young's Modulus Poisson's Ratio Density 

(MPa) (gem- 3) 

Bone 14,000 0.30 1.4 

UHMWP 1,100 0.43 0.954 

Table 7.1 Material properties employed in the study. 
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The element meshes for both the metacarpal and phalangeal bones are 

shown in Fig 7.1. These were produced by hand but there are ways of 

automatically generating suitable meshes which are particularly useful 

for three dimensional and symmetrical systems. No attempt has been made 

to reproduce the true geometry of the bones but, compared to the 

polyethylene, the bones are effectively rigid bodies and the cylindrical 

geometry chosen will therefore have little effect on the stress 

calculations. 

Each mesh is made up of isoparametric curvilinear elements for plane 

stress and plane strain, in which it is assumed that stresses do not 

vary through the thickness of an element (taken here to be 2 mm). The 

bone is represented by six-noded triangular elements and the implant 

components by eight-noded quadrilateral elements. The phalangeal mesh 

is made up of 420 elements and 1035 nodes compared to 427 elements and 

1087 nodes in the metacarpal mesh. 

In the majority of studies reported previously the prosthesis and bone 

have been taken to be solidly joined by a cement interface. In this 

study there is no cement involved and the component/bone interface is 

represented by a friction gap of ~ = 0.5 such that any relative movement 

normal to the interface is free and any parallel to the interface is 

subject to friction. 

In the calculations performed the load applied to the joint was 200 N 

which is the maximum expected for the implant. This was uniformly 

distributed over the articulating surface of the phalangeal component 

and over an equivalent area for the metacarpal component. 
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0 

Fig 7.1 The finite element models used. 
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Finite element runs are time consuming and expensive and so a limited 

investigation was performed here. In the past researchers have spent a 

great deal of time and effort on detailed analysis without really 

gaining very much. It is important to define the aims before embarking 

on work of this nature. The aim of this work was to identify areas of 

stress concentration, assess the suitability of the stems, and suggest 

design changes in the light of the results. To this end four cases were 

run. For the first case the load was applied parallel to the x-axis of 

the phalanx. In general this is a reasonable test of the component 

since it has been shown (in Chapter 4) that the joint load will always 

stay within _zoo of the phalangeal axis. A trial performed with the 

load at zoo actually made very little difference to the stress pattern 

observed (results not shown). The other three cases were performed on 

the metacarpal at -30°, 0°, and 75° flexion respectively with the load 

acting through the centre of rotation of the bone. This again is not 

always the case in-vivo but the angle of flexion is much more important. 
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7.3 RESULTS 

Fig 7.2 shows vector and contour plots for the principal stresses on the 

phalangeal system. Not surprisingly, stress concentrations can be seen 

at the head of the stem and at the rear edge of the articulating section 

of the component. In the prototype simulator trials very little damage 

was seen at the head of the stem, undoubtedly due to the way in which 

the stem canal was prepared. The head of the canal was slightly flared 

using a tapered broach, and the edges were rounded with a file. The 

result of this preparation was to reduce successfully the stress at the 

stem head. 

The high stresses at the edge of the articulating section were actually 

enhanced in the simulator trials through the component protruding 

slightly beyond the bone surface. This resulted in cold flow of the 

polyethylene with the edges being thinned out. 

Stresses in the stem can be seen to have diminished over a distance of 

~5 mm - about half the stem length. This is shown more clearly in 

Fig 7.3 which is a graphical representation of the minimum principal 

stresses along the lower edge of the stem. From this it is established 

that the stem is of sufficient length. 

Figs 7.4 to 7.6 show vector and contour plots for the principal stresses 

on the metacarpal system at positions of -30°, 0°, and 75° flexion. The 

first two positions show the expected stress concentration at the stem 

head which again was reduced in the simulator trials by careful canal 

preparation. At the 75° position, while the stem stresses are 
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significantly reduced, there is evidence of some stress concentration 

along the volar edge of the component which could result in cold flow of 

the polyethylene. 

At positions of hyperextension there are high stresses through the 

dorsal section of the bone which is only some 2 to 3 mm in thickness 

close to the stem head. Fracture of this section of bone under heavy 

loading cannot be ruled out. Since the simulator trials involved the 

use of acrylic replicas the likelihood of this occurring could not be 

explored. 

Potentially the most worrying aspect of the loading in the metacarpal 

component is the tension/compression cycling. This is shown in the 

contour plots of Figs 7.4 to 7.6 and is the consequence of the fact that 

the area of loaded contact is small and the loading pattern changes 

greatly as the phalanx moves around the metacarpal head. Over a long 

period of time this could result in fatigue damage, as seen in the 

tibial components of some knee prostheses. Indeed, some evidence of 

surface fatigue was seen in the simulator trials but, due to the 

relatively light dynamic loading in the finger, it would not be expected 

to cause premature failure. 

The stem length is again shown to be adequate in distributing stress 

(Fig 7.7) but the stem head is seen to undergo quite severe cyclic 

stressing. This highlights the importance of moves to reduce stress at 

this point. 
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7.4 CONCLUSIONS 

Finite element analysis revealed areas of stress concentration in both 

components which can be reduced with careful bone preparation as 

demonstrated in the simulator trials. Some redundancy in stem length 

was highlighted which is also easily dealt with. Perhaps the most 

worrying discovery in this study was the possibility of fracture in the 

dorsal aspect of the metac~rpal head where stresses are high in 

hyperextension. While this may turn out not to be a problem, it could 

not be seen in the simulator trials carried out so far since acrylic 

models were used. It would be advisable for tests to be performed using 

real bone to investigate the likelihood of failure in this region. 

Fig 7.8 shows the recommended bone/implant configuration for the 

phalangeal system in the light of this work. The stem has been 

shortened, the stem canal flared, and the articulating section recessed 

a little deeper into the bone to prevent edge smearing. 

Fig 7.8 Recommended bone preparation for the phalangeal component. 
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Similar treatment of the stem and canal may be sufficient for the 

metacarpal system also. However, should fracture occur in the dorsal 

aspect of the metacarpal head, it may prove necessary to alter the 

component design as shown in Fig 7.9. Since the idea of the surface 

replacement is to cause as little disturbance to the bones as possible, 

this option should only be considered as a last resort. 

Fig 7.9 Possible modification to the metacarpal component. 

While intended to be a demonstration of the potential of finite element 

studies in the development of prostheses, this work has augmented the 

laboratory experiments to some degree in assessing the Durham design. 

More detailed, perhaps three dimensional, studies could be performed 

later, perhaps in parallel with clinical trials, as minor modifications 

are made. 
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CIIAPTER. 8 

CONCIDSIONS 



8 .1 SUMMARY OF ACHIEVEMENTS 

The design of an uncemented two-component surface replacement prosthesis 

for the MCP joint has been undertaken. The development was based on a 

firm foundation of background investigations which are described in some 

detail in Chapter 1, and which are essential in work of this nature. 

The component geometries, derived from a study of bone surface 

topologies (Chapter 2), are really very simple and, being made of 

cross linked UHMWP, are also easy to manufacture. The material was 

chosen for its inertness, wear resistance and its minimal effect on the 

bone. Its use in hip and knee joint implants has proved highly 

successful. 

Increasingly, newly developed prostheses are being extensively tested in 

the laboratory before any clinical work is performed. For this reason a 

finger function simulator (described in Chapter 3) was built to test the 

prototypes. The design of the simulator was based on a careful 

biomechanical study of the MCP joint and its performance was assessed by 

testing the Swanson Silastic implant - Chapter 4. The failure of this 

implant in the laboratory has not previously been achieved. However, in 

the finger function simulator premature failure of the device did occur 

in a relatively short time and was seen to be very similar in nature to 

failures occurring in-vivo. 

Five Durham surface replacement prototypes were tested in the simulator 

for periods estimated to be equivalent to 10 to 20 years use. None of 

the components failed or showed any tendency to premature failure which 
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was very encouraging indeed. Some cold flow was seen at the edges of 

the phalangeal component but this could be alleviated by a deeper 

insertion into the bone. Being a surface replacement the wear behaviour 

of the components is a very important consideration. Careful weight 

loss assessments were made on the test components during the simulator 

trials and electron micrographs were taken of the component surfaces 

afterwards (Chapter 6). In conjunction with the bench test results of 

Chapter 5, performed on non-cross linked UHMWP, a reasonable picture was 

built up about the wear mechanisms occurring in the implant, and the 

effects of cross linking on UHMWP. 

cavity is cause for some concern. 

Release of debris into the joint 

Chapters 1 - 6 really fulfilled the aims of this research programme but 

for completion, and as a pointer for the future, a brief two dimensional 

finite element study of the prototype was described in Chapter 7. 
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8 . 2 FUTIJRK VORK 

The development of the Durham surface replacement prosthesis has 

progressed now to the point where clinical investigations would be 

worthwhile. Clinical trials on patients will come much later but sizing 

trials on cadaveric specimens, and a study of the surgical techniques of 

implantation should be the next stage in the development. In addition 

to this, some aspects highlighted in this research programme should be 

addressed and the necessary action taken. In particular, questions 

raised in Chapter 6 about the suitability of the chosen material warrant 

further investigation. Certainly the components were seen to be durable 

enough to survive 10 to 20 years service, but the amount of debris 

released to the joint may prove prohibitive. It is recommended that 

further bench tests are undertaken to assess in more detail the surface 

fatigue mechanisms occurring in the cross linked UHMWP. Another 

important question remaining to be answered is that of the effect of the 

implant on the surrounding bone. Finite element analysis, detailed in 

Chapter 7, has suggested that there may be a problem with high stresses 

in the dorsal aspect of the metacarpal head. It would be advisable for 

a series of simulator trials to be performed using real bones such that 

any tendency to fracture will become apparent. Real bones were not used 

in the prototype trials of Chapter 6. Suggested design changes to the 

phalangeal and metacarpal components should be borne in mind but not 

necessarily employed until follow-up work has endorsed them. 
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8. 3 CURRENT PHILOSOPHY 

In correspondence with surgeons and researchers internationally it was 

interesting to learn the current philosophy regarding MCP joint 

replacement surgery. There has recently been a decided entrenchment in 

the work in this field and hence the lack of literature during the last 

decade. The reasons for this are: 

i) A general dissatisfaction with the prosthetic designs over the 

last two decades. 

ii) Decreased interest by manufacturers due to the high cost of 

development and the low rate of return on such materials. 

iii) Widespread concern by many hand surgeons, particularly plastic 

surgeons, about the efficacy of cemented fixation in the hand and 

wrist. 

iv) The difficulty of soft tissue balancing procedures following joint 

replacement. 

v) In the medico-legal climate in the United States the continued use 

of unreliable devices is not justifiable and they are quickly 

withdrawn. 

In recent years a trend back to the older resection arthroplasties has 

been evident. However, surgeons admit that the desire would be to have 

an anatomical resurfacing device, augmented by techniques to balance 

soft tissues which would diminish stresses and the tendency toward 

recurrent deformities. Currently this is not the case and researchers 

are tempted to add constraints to the design of implants which are 

associated with problems of loosening, fracture etc. 
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The way forward is undoubtedly the uncemented two-component resurfacing 

arthroplasty such as the one described in this thesis. The last five 

years have seen a renewed interest in this area particularly in the 

United Kingdom and the USA. It is true to say that the success of these 

devices lies not really in their design but in future progress in 

surgical techniques to repair the soft tissue structures of the joint. 

Without great improvements in this area a surface replacement is bound 

to fail and this should be the major consideration in the clinical stage 

of development. Having said this, researchers should not be deterred 

from their efforts in this field which looks to have great potential in 

the near future. 
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APPENDIX 1 

SIKUIATOR DESIGN CALCUlATIONS 



DG Motor Characteristics 

Maxon DC motor 

Nominal voltage 12 v 

Max. power output 10.3 w 

Max. continuous current 1.2A 

Max. permissible speed 9200 rpm 

No load speed 4750 rpm 

No load current 35 rnA 

Stall torque 87.5 mNm 

Stall current 3.8 A 

Spur gearbox 

Reduction ratio 30:1 

Max. continuous torque 0.2 Nm 

Max. peak torque 0.6 Nm 

Pneumatic System Characteristics 

Enots K2305 00 0000 double action piston 

Bore 

Area 

Pressure:thrust ratio 

Thrust at 5.5 bw 

Stroke length 

40 mm 

1256 mm2 

1:125.6 

693 N 

25 mm (max.) 

Type 5/2 solenoid activation valve 

Filter/drier/regulator unit type M2H-201-M3ED 
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Cam Disc Inertia 

Need a flywheel effect but with reasonable acceleration from stationary. 

Disc dimensions 

Diameter 

Thickness 

Disc material 

Duralumin, density 

160 mm 

31 mm 

2800 kg/m3 

Mass of disc MD 

Groove number 1 

~(0.08) 2 X 0.031 X 2800 1. 745 kg 

Inside radius 36 mm 

Outside radius 51 mm 

Depth 7mm 

Mass of removed material Mgl ~(0.051 2 -0.0362) X 2800 X 0.007 

0.08 kg 

Groove number 2 

Inside radius 44.5 mm 

Outside radius 59 mm 

Depth 7mm 

Mass of removed material Mg2 ~(0.0592 -0.0445 2 ) X 2800 X 0.007 

0.092 kg 

Total mass of cam disc M 1.745 - 0.08 - 0.092 1. 573 kg 

Moment of inertia I 0.005 kgm2 

Max. continuous torque r 0.2 Nm (gearbox specification) 

Therefore: 

r 
Acceleration a: 40.0 s- 2 

I 

which is not too slow. 
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Static Shaft Loading Calculations 

Length of shaft - 150 mm 

Centrally point-loaded by cam & 'tendons', P 220 N 

{. 

Q. 

a· • ~ lp 
Consider fixed end moments. 

A 8 

Pa(l-a) 2 

At A: MFA = 
12 

At B: MFB 

X -
1· 

Consider free bending moments 

on the shaft. 

Pa 
Taking moments about A => R8 

1 

Balancing forces vertically => RA + R8 P 

p 
Hence (1-a) 

1 

Consider bending moment at x where 0 ~ x ~ a 

p 

(1-a) x 
1 

Adding fixed end moments: 

=> 

=> 

X p 

M = - MFA+ (MFA-MFB) - + (1-a) x 
1 1 

Pa(l-a) 2 

+ [ 
Pa(l-a) 2 Pa2 (1-a) 

M = 
12 12 12 

P(l-a) 2 

[ - al ] M = x(l+2a) 
13 
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-+- (1-a) x 
1 1 



Maximum bending moment occurs at x a: 

M 

Substituting P = 220 N, 1 0.15 m, a 0.075 m gives 

M 4.125 Nm 

Maximum stress o = MR/I where R shaft radius 6mm, and I 

4M 
0 2. 43 x 10 7 Nm- 2 

The yield stress of steel is 37.0 x 107 Nm- 2 , hence there is no problem 

of failure. 

Beam Deflection 

d2v 
M EI 

dx2 

=> 
dv P(l-a) 2 x2 

- alx ] EI [ ; (1+2a) +A 
dx 13 

=> 
P(l-a) 2 x3 alx2 

Eiv [ ~ (1+2a) - -
2
- ] + Ax + B 

13 

Boundary conditions: 

dv 
0 at X= 0 => A 0 

dx 

v 0 at X = 0 => B 0 

Hence at X= 75 mm, 

Eiv -3.867 x lo-3 
=> 

-3.867 X 10- 3 

v 
2 X 1011 X 1.018 X 10- 9 

1.899 x 10- 5 m 

Hence the deflection is negligible. 

287 



Strain Gauge Calculations 

Consider the strain-gauged cantilever beam of square cross-section, 

side b. 

Light loading: 

~ 
l~· F = 15 N, 1 = 100 mm 
I 

1oo,.....,., b = 5 mm, E = 2 X 1011 N/m2 

Moment M F X 1 1.5 Nm 

b4 (0.005) 4 

I 5.2 X 10-ll m4 

12 12 

Mb 1.5 X 0.005 
Stress a 7 . 2 x 10 7 Nm- 2 

2I 2 X 5.2 X 10-ll 

=> 

a 7.2 X 107 

Strain E 360 j.J.E -> suitable gauge chosen. 
E 2 x 1oll 

Heavy loading: 

c: llOON 
F = 200 N, 1 = 50 mm 

I b = 10 mm, E 2 X lOll N/m2 .. so....., 

Moment M = F x 1 10 Nm 

b4 (0.01) 4 

I 8.33 X 10-lO m4 

12 12 

Mb 10 X 0.01 
Stress a = - = 6.0 x 107 Nm- 2 

2I 2 X 8.33 X 10-lO 

=> 

a 6.0 X 107 
Strain E ... 300 j.J.E -> suitable gauge chosen. 

E 2 X 1011 
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Deflection under light loading: 

a 1~· 

At A 

At B 

At B' 

M 

l1i 
EZ I 

EI 

M 

EI 

M 

EI 

A 

~§I::A·-· ~~= .. :: ====~~ e 
It-Om,. COO,_,. 

15 X 0.1 

2 X 1011 X 5. 2 X 10- 11 
0.144 m- 1 

15 X 0.06 

2 X 1011 X 5. 2 X 10- 11 
0.0865 m- 1 

15 X 0.06 

2 X 1011 X 8. 33 X lo-10 
0.0054 m- 1 

Sum of the moments of the M/EI diagram to calculate the deflection:-

(0.144-0.0865) X 0.04 [ 
0.06 + 

2 

+ (0.0865 X 0.04) (0.06 + 0.02) 

+ (O.OOS4

2

x 0.06) [ 2 x

3

0.06 l 
3.8 x 10-4 m -> very small. 

Deflection under a heavy load: 

ZCON 

3EI 3 X 2 X lOll X 8.33 X 10-10 
= 5 x 10- 5 m 
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APPENDIX 2 

SIHUIATOR PROGRAMS 



Simulator data collection program 

10 REM 
20 REM PROGRAM MENU 
30 REM 
40 DIM d%(20) 
50 DIM e%(20) 
60 DIM s%(20) 
70 DIM f%(20) 
80 DIM r%(20) 
90 DIM g%(20) 

100 DIM w%(20) 
110 DIM h%(20) 
120 DIM s(20) 
130 DIM d(20) 
140 DIM r(20) 
150 DIM w(20) 
160 DIM H$(4) 
170 DIM J$(5) 
180 DIM T%(20) 
190 DIM F$(3) 
200 DIM F%(3) 
210 DIM A(20) 
220 DIM A%(20) 
230 DIM binary%(12) 
240 DIM sa$(20) 
250 DIM sb$(20) 
260 MODE 135 
270 DIM D$(4) 
280 D$(l)="Run Tests." 
290 D$(2)="Display Data." 
300 D$(3)="Display Graphs." 
310 D$(4)="Help." 
320 J$(l)="View the same data again." 
330 J$(2)="Choose another file." 
340 J$(3)="Look at the stored files." 
350 J$(4)="Go back to the menu." 
360 J$(5)="Get a hard copy of data." 
370 H$(l)="Resultant Force against 
380 H$(2)="Angle of Force against 
390 H$(3)="Lateral Force against 
400 H$(4)="Forward Force against 
410 *KEY3 CHAIN"MENU":M 
420 VDU 23,1;0;0;0;0; 
430 CLS 
440 CLG 
450 PRINT 
460 REM 
470 REM FIRST PAGE 
480 REM 
490 PRINT CHR$151; 
500 FOR I=l TO 37 
510 PRINT CHR$175; 
520 NEXT 

Angle of 
Angle of 
Angle of 
Angle of 

530 PRINT TAB(5)CHR$14l;CHR$15l"FINGER FUNCTION SIMULATOR" 
540 PRINT TAB(5)CHR$14l;CHR$15l"FINGER FUNCTION SIMULATOR" 
550 PRINT CHR$151; 
560 FOR I=l TO 37 
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Flexion/Time." 
Flexion/Time." 
Flexion/Time." 
Flexion/Time." 



570 PRINT CHR$175; :NEXT 
580 PRINT 
590 PRINT " Select program required-" 
600 @%=6 
610 FOR I=l TO 4 
620 PRINT I;". ";D$(I) 
630 NEXT 
640 PRINT 
650 PRINT 
660 PRINT 
670 PRINT CHR$151; :FOR I=l TO 37:PRINT CHR$175; :NEXT 
680 PRINT 
690 PRINT SPC(l)CHR$137;CHR$135;" Please ensure that the" 
700 PRINT SPC(l)CHR$137;CHR$135;" results disc is loaded" 
710 PRINT SPC(l)CHR$137;CHR$135;" into drive 1." 
720 PRINT CHR$151; :FOR I=l TO 37:PRINT CHR$175; :NEXT 
730 REPEAT 
740 *FX21,0 
750 A=GET 
760 UNTIL A>48 AND A<53 
770 PRINT TAB(O,A-40-(-l)*(A-50))CHR$134;CHR$136;"]";CHR$137; 
780 FOR I=l TO 7000 
790 NEXT 
800 A=A-48 
810 REM 
820 REM TAKE CHOICE 
830 REM 
840 ON A GOTO 880,3670,5050,850 
850 *MOUNTO 
860 *DIR 
870 CHAIN "$.HELP1" 
880 REM 
890 REM CHOICE 1. RUN TEST 
900 REM 
910 CLS 
920 CLG 
930 VDU 26 
940 PROCoptionl 
950 MODE 135 
960 PROCstoredata 
970 GOTO 2920 
980 DEFPROCoptionl 
990 REM 

1000 REM SET UP PAGE FOR OPTION 1. 
1010 REM 
1020 CLS 
1030 VDU 23,1,0;0;0;0 
1040 CLS 
1050 CLG 
1060 PRINT CHR$(135) ;CHR$(157) ;CHR$(132) ;CHR$(141)" 
1070 PRINT CHR$(135);CHR$(157);CHR$(132);CHR$(141)" 
1080 PRINT TAB(1,3) "File Name ......... " 
1090 PRINT TAB(l, 11) "Test Description .... " 
1100 PRINT TAB(1,7) "Which Bridge? .... 1) HALF 2) FULL" 
1110 PRINT TAB(1,15) "Input Speed (1/100 s) .... " 
1120 VDU 23,1,1;0;0;0 
1130 PRINT TAB(1,24) II 

1140 REM 
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II 

COLLECT DATA" 
COLLECT DATA" 



1150 REM 
1160 REM 

INPUT FILE NAME 

1170 PRINT TAB(l8,3); 
1180 INPUT""Ref$ 
1190 REM 
1200 REM 
1210 REM 

INPUT BRIDGE 

1220 PRINT TAB(18,7); 
1230 REPEAT 
1240 A$=GET$ 
1250 UNTIL A$-"1" OR A$="2" 
1260 IF A$="1" THEN L$="HALF" 
1270 IF A$="2" THEN L$="FULL" 
1280 PRINT TAB(18, 7) ;L$; II 

1290 REM 
1300 REM 
1310 REM 

INPUT FILE INFORMATION 

1320 PRINT TAB(20,11); 
1330 INPUT""Des$ 
1340 REM INPUT SPEED 
1350 PRINT TAB(24,15); 
1360 INPUT""P 
1370 VDU 23,1,0;0;0;0;0 

II 

1380 PRINT TAB(l,l8) "Do you wish to alter anything? (Y/N)" 
1390 B$=GET$ 
1400 IF B$="Y" GOTO 1040 
1410 IF B$="N" GOTO 1420 ELSE GOTO 1390 
1420 ENDPROC 
1430 REM 
1440 REM 
1450 REM 

TAKE TWENTY READINGS 

1460 DEFPROCstoredata 
1470 *MOUNT 1 
1480 *DIR 
1490 PROCpage 
1500 TIME=O 
1510 Tr=TIME 
1520 *IEEE 
1530 cmd%=0PENIN("COMMAND") 
1540 data%=0PENIN("DATA") 
1550 PRINT£ cmd%,"BBC DEVICE NO",O 
1560 PRINT£ cmd%,"CLEAR" 
1570 PRINT£ cmd%,"REMOTE ENABLE" 
1580 PRINT£ cmd%,"END OF STRING",CHR$(13) 
1590 FOR I%=1 TO 20 
1600 fwdbridge%=0PENIN("7,1") 
1610 PRINT£ cmd%,"UNLISTEN" 
1620 PRINT£ cmd%, "LISTEN", fwdbridge%, "EXECUTE" 
1630 PRINT£ data%,"1000mstrainl" 
1640 PRINT£ cmd%, "UNLISTEN" 
1650 PRINT£ cmd%, "TALK", fwdbridge% 
1660 INPUT£ data%,sa$(I%) 
1670 PRINT£ cmd%,"UNTALK" 
1680 CLOSE£ fwdbridge% 
1690 sidbridge%=0PENIN("7,2") 
1700 PRINT£ cmd%,"UNLISTEN" 
1710 PRINT£ cmd%, "LISTEN", sidbridge%, "EXECUTE" 
1720 PRINT£ data%,"1000mstrain2" 
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1730 PRINT£ cmd%,"UNLISTEN" 
1740 PRINT£ cmd%, "TALK" ,sidbridge% 
1750 INPUT£ data%,sb$(I%) 
1760 PRINT£ cmd%,"UNTALK" 
1770 CLOSE£ sidbridge% 
1780 T%(I%)=TIME 
1790 NEXT I% 
1800 CLOSE£ data% 
1810 CLOSE£ cmd% 
1820 REM 
1830 REM CONVERT TO DECIMAL 
1840 REM 
1850 FOR I%=1 TO 20 
1860 F$(1)=LEFT$(sa$(I%),1) 
1870 F$(2)=MID$(sa$(I%),2,1) 
1880 F$(3)=RIGHT$(sa$(I%),1) 
1890 FOR number=1 TO 2 
1900 FOR M=1 TO 3 
1910 IF F$(M)="@" THEN F%(M)=O 
1920 IF F$(M)="A" THEN F%(M)=1 
1930 IF F$(M)="B" THEN F%(M)=2 
1940 IF F$(M)="C" THEN F%(M)=3 
1950 IF F$(M)="D" THEN F%(M)=4 
1960 IF F$(M)="E" THEN F%(M)=5 
1970 IF F$(M)="F" THEN F%(M)=6 
1980 IF F$(M)="G" THEN F%(M)=7 
1990 IF F$(M)="H" THEN F%(M)=8 
2000 IF F$(M)="I" THEN F%(M)=9 
2010 IF F$(M)="J" THEN F%(M)=10 
2020 IF F$(M)="K" THEN F%(M)=11 
2030 IF F$(M)="L" THEN F%(M)=12 
2040 IF F$(M)="M" THEN F%(M)=l3 
2050 IF F$(M)="N" THEN F%(M)=14 
2060 IF F$(M)="0" THEN F%(M)=15 
2070 NEXT M 
2080 A=F%(1) 
2090 B=F%(2) 
2100 C=F%(3) 
2110 1=4 
2120 N=8 
2130 count=1 
2140 D=A/N 
2150 IF D>=1 THEN D=1 ELSE D=O 
2160 binary%(count)=D 
2170 A=A- (N*D) 
2180 N=N/2 
2190 count=count+1 
2200 IF count<=! THEN GOTO 2140 
2210 I=I+4 
2220 N=8 
2230 A=B 
2240 B=C 
2250 IF 1<>16 THEN GOTO 2140 
2260 N=2048 
2270 IF number=2 THEN GOTO 2370 
2280 d%=0 
2290 FOR J=1 TO 12 
2300 d%=(binary%(J)*N)+d% 
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2310 N=N/2 
2320 NEXT J 
2330 F$(1)=LEFT$(sb$(I%),1) 
2340 F$(2)=MID$(sb$(I%),2,1) 
2350 F$(3)=RIGHT$(sb$(I%),1) 
2360 NEXT number 
2370 s%=0 
2380 FOR J=1 TO 12 
2390 s%=(binary%(J)*N)+s% 
2400 N=N/2 
2410 NEXT J 
2420 REM 
2430 REM CHOOSE FULL OR HALF BRIDGE 
2440 REM 
2450 IF L$="FULL" THEN GOTO 2490 
2460 d%=d%/(4.095*0.1387) 
2470 s%=s%/(4.095*0.1835) 
2480 GOTO 2510 
2490 d%=d%/(4.095*0.01444) 
2500 sX=s%/(4.095*0.01348) 
2510 e%(I%)=d% MOD 100 
2520 f%(I%)=s% MOD 100 
2530 d(I%)=d%/100 
2540 s(I%)=s%/100 
2550 d%(I%)=d% DIV 100 
2560 s%(I%)=s% DIV 100 
2570 REM 
2580 REM CALCULATE RESULTANT FORCE 
2590 REM 
2600 r(I%)=(d(I%)*d(I%))+(s(I%)*s(I%)) 
2610 r%=SQR(r(I%))*100 
2620 g%(I%)=r% MOD 100 
2630 r(I%)=r%/100 
2640 r%(I%)=r% DIV 100 
2650 REM 
2660 REM CALCULATE ANGLE OF FORCE TO MC 
2670 REM 
2680 IF d(I%)=0 THEN w(I%)=90 ELSE w(I%)=DEG(ATN(s(I%)/d(I%))) 
2690 w%=w(I%)*100 
2700 h%(I%)=w% MOD 100 
2710 w(I%)=w%/100 
2720 w%(I%)=w% DIV 100 
2730 @%=&0002020A 
2740 NEXT I% 
2750 REM 
2760 REM PUT TIME, FORCE, ANGLE OF FORCE, ANGLE OF FLEXION, 
2770 REM BOTH COMPONENTS OF FORCE AND A DESCRIPTION OF FILE. 
2780 REM 
2790 *ADFS 
2800 fi1e=OPENOUT(Ref$) 
2810 FOR I%=1 TO 20 
2820 PROCconvert 
2830 IF I%<>1 THEN GOTO 2860 
2840 PRINT£ fi1e,P,A$,Des$,A(I%),T%(I%),s(I%),d(I%),r(I%),w(I%),s%(I%),d%(I%) 

,r%(I%),w%(I%),e%(I%),f%(I%),g%(I%),h%(I%) 
2850 GOTO 2870 
2860 PRINT£ fi1e,A(I%),T%(I%),s(I%),d(I%),r(I%),w(I%),s%(I%),d%(I%),r%(I%),w% 

(I%),e%(I%),f%(I%),g%(I%),h%(I%) 
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2870 NEXT I% 
2880 CLOSE£ file 
2890 *ADFS 
2900 *MOUNT 0 
2910 ENDPROC 
2920 CLS 
2930 VDU 23,1,0;0;0;0 
2940 CLS 
2950 CLG 
2960 PRINT CHR$(135);CHR$(157);CHR$(132);CHR$(141)" 
2970 PRINT CHR$(135);CHR$(157);CHR$(132);CHR$(141)" 
2980 PRINT TAB(l,3) "FILE NAME ......... " 
2990 PRINT TAB(l,7) "BRIDGE ............ " 
3000 PRINT TAB(l,ll) "TEST DESCRIPTION .... " 
3010 VDU 23,1,1;0;0;0 
3020 PRINT TAB(l,24)" 
3030 PRINT TAB(l8,3);Ref$ 
3040 PRINT TAB(l8,7);L$ 
3050 PRINT TAB(20,ll);Des$ 
3060 PRINT 
3070 PRINT 

II 

COLLECT DATA" 
COLLECT DATA" 

3080 PRINT CHR$134;CHR$136;" 
3090 PRINT 

TESTING COMPLETED";CHR$137 

3100 PRINT 
3110 PRINT 
3120 PRINT CHR$151; :FOR I=l TO 37:PRINT CHR$175; :NEXT 
3130 PRINT CHR$135;" 
3140 PRINT 

Would you like to:" 

3150 PRINT "(l)Take more readings, (2)Go to menu." 
3160 PRINT CHR$151; :FOR I=l TO 37:PRINT GHR$175; :NEXT 
3170 *FX21,0 
3180 E$=GET$ 
3190 IF E$="1" THEN GOTO 940 
3200 IF E$="2" THEN GOTO 420 ELSE GOTO 3180 
3210 REM 
3220 REM 
3230 REM 

CONVERT TIMES TO ANGLES OF FLEXION 

3240 DEFPROCconvert 
3250 IF T%(I%)<=P THEN A%(I%)=(90*T%(I%)/P) 
3260 IF T%(I%)>P AND T%(I%)<=P*2 THEN A%(I%)=(180-(90*T%(I%)/P)) 
3270 IF T%(I%)>P*2 AND T%(I%)<=P*3 THEN A%(I%)=(-180+(90*T%(I%)/P)) 
3280 IF T%(I%)>P*3 AND T%(I%)<=P*4 THEN A%(I%)=(360-(90*T%(I%)/P)) 
3290 IF T%(I%)>P*4 AND T%(I%)<=P*5 THEN A%(I%)=(-360+(90*T%(I%)/P)) 
3300 IF T%(I%)>P*5 AND T%(I%)<=P*6 THEN A%(I%)=(540-(90*T%(I%)/P)) 
3302 IF T%(I%)>P*6 AND T%(I%)<=P*7 THEN A%(I%)=(-540+(90*T%(I%)/P)) 
3303 IF T%(I%)>P*7 AND T%(I%)<=P*8 THEN A%(I%)=(720-(90*T%(I%)/P)) 
3304 IF T%(I%)>P*8 AND T%(I%)<=P*9 THEN A%(I%)=(-720+(90*T%(I%)/P)) 
3305 IF T%(I%)>P*9 AND T%(I%)<=P*l0 THEN A%(I%)=(900-(90*T%(I%)/P)) 
3310 A%(I%)=A%(I%)*100 
3320 A(I%)=A%(I%)/100 
3330 ENDPROC 
3340 REM 
3350 REM 
3360 REM 

DISPLAY PAGE WHILE TAKING READINGS 

3370 DEFPROCpage 
3380 VDU 23,1,1;0;0;0 
3390 CLS 
3400 CLS 
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3410 CLG 
3420 PRINT CHR$(135); CHR$ (157); CHR$ (132); CHR$(141)" 
3430 PRINT CHR$(135);CHR$(157);CHR$(132);CHR$(141)" 

COLLECT DATA" 
COLLECT DATA" 

3440 PRINT TAB(1,3) "FILE NAME ......... " 
3450 PRINT TAB(1,7) "BRIDGE ............ " 
3460 PRINT TAB(1,11) "TEST DESCRIPTION .... " 
3470 VDU 23,1,1;0;0;0 
3480 PRINT TAB(1,24)" 
3490 PRINT TAB(18,3);Ref$ 
3500 PRINT TAB(l8,7);L$ 
3510 PRINT TAB(20,ll);Des$ 
3520 PRINT 
3530 PRINT 
3540 PRINT 

II 

3550 PRINT CHR$151; :FOR I=l TO 37:PRINT CHR$175; :NEXT 
3560 PRINT 
3570 PRINT SPC(l) CHR$137;CHR$135;" Please ensure that the joint" 
3580 PRINT SPC(l) CHR$137;CHR$135;" is at 0 deg flexion as the" 
3590 PRINT SPC(l) CHR$137;CHR$135;" space bar is pressed!" 
3600 PRINT CHR$15l;:FOR I=l TO 37:PRINT CHR$175; :NEXT 
3610 VDU 23,1,0;0;0;0;0 
3620 PRINT TAB(l,23) " PRESS SPACE BAR TO START TEST" 
3630 IF INKEY-99 GOTO 3650 
3640 GOTO 3620 
3650 PRINT TAB(1,23) CHR$134;CHR$136;" 
3660 ENDPROC 

TAKING READINS 

3670 *MOUNT 1 
3680 *DIR 
3690 CLS 
3700 CLG 
3710 VDU 23,1,0;0;0;0 
3720 CLS 
3730 PRINT CHR$135;CHR$157;CHR$132;CHR$141" 
3740 PRINT CHR$135;CHR$157;CHR$132;CHR$141" 
3750 PRINT 
3760 PRINT "Do you want to see stored files? (Y/N)" 
3770 C$=GET$ 
3780 IF C$="Y" GOTO 3800 
3790 IF C$="N" GOTO 3830 ELSE GOTO 3770 
3800 PROCcat 
3810 IF INKEY-99 GOTO 4010 
3820 GOTO 3810 
4010 CLS 
4020 CLG 
4030 VDU 23,1,0;0;0;0 
4040 CLS 
4050 PRINT CHR$135;CHR$157;CHR$132;CHR$141" 
4060 PRINT CHR$135;CHR$157;CHR$132;CHR$141" 
4070 PRINT 
4080 PRINT TAB(1,3) "Filename? ........ " 
4090 PRINT TAB(18,3); 
4100 INPUT""File$ 
4110 that one=OPENIN(Fi1e$) 
4120 INPUT£ that_one,P,A$,Des$ 
4130 FOR I=l TO 20 

VIEW DATA" 
VIEW DATA" 

VIEW DATA" 
VIEW DATA" 

II ;CHR$137 

4140 INPUT£ that_one,A(I),T%(I),s(I),d(I),r(I),w(I),s%(I),d%(I),r%(I),w%(I),e 
%(I),f%(I),g%(I),h%(I) 

4150 NEXT 
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4160 CLOSE£ that one 
4170 PRINT "Speed ... ";P;" Description .... ";Des$ 
4180 PRINT "ANG FLX(DEG) FORCE(N) ANG FORCE(DEG)" 
4190 FOR I=1 TO 20 
4200 IF g%(I)<10 AND h%(I)<10 GOTO 4290 
4210 IF g%(I)<10 AND h%(I)>=10 GOTO 4270 
4220 IF g%(I)>=10 AND h%(I)<10 GOTO 4250 
4230 PRINT A(I)," ",r%(I);".";g%(I);" ";w%(I);".";h%(I) 
4240 GOTO 4300 
4250 PRINT A(I)," ",r%(I);".";g%(I);" ";w%(I);".0";h%(I) 
4260 GOTO 4300 
4270 PRINT A(I)," ",r%(I);".O";g%(I);" ";w%(I);".";h%(I) 
4280 GOTO 4300 
4290 PRINT A(I)," ",r%(I);".O";g%(I);" ";w%(I);".0";h%(I) 
4300 NEXT 
4310 IF INKEY-99 GOTO 4330 
4320 GOTO 4310 
4330 CLS 
4340 CLG 
4350 VDU 23,1,0;0;0;0 
4360 CLS 
4370 PRINT CHR$135;CHR$157;CHR$132;CHR$141" VIEW DATA" 
4380 PRINT CHR$135;CHR$157;CHR$132;CHR$141" VIEW DATA" 
4390 PRINT 
4400 PRINT TAB (1, 3) "Filename ......... " ; File$ 
4410 PRINT" Description .... ";Des$ 
4420 PRINT "LAT FORCE(N) FOR FORCE(N) TIME(1/100s)" 
4430 FOR I=1 TO 20 
4440 IF e%(I)<10 AND f%(I)<10 GOTO 4530 
4450 IF e%(I)<10 AND f%(I)>=10 GOTO 4510 
4460 IF e%(I)>=10 AND f%(I)<10 GOTO 4490 
4470 PRINT s%(I);".";f%(I),d%(I);".";e%(I),T%(I) 
4480 GOTO 4540 
4490 PRINT s%(I);".0";f%(I),d%(I);".";e%(I),T%(I) 
4500 GOTO 4540 
4510 PRINT s%(I);".";f%(I),d%(I);".0";e%(I),T%(I) 
4520 GOTO 4540 
4530 PRINT s%(I);".O";f%(I),d%(I);".0";e%(I),T%(I) 
4540 NEXT 
4550 IF INKEY-99 GOTO 4570 
4560 GOTO 4550 
4570 CLS 
4580 CLG 
4590 VDU 23,1,0;0;0;0 
4600 CLS 
4610 PRINT CHR$135;CHR$157;CHR$132;CHR$141" VIEW DATA" 
4620 PRINT CHR$135;CHR$157;CHR$132;CHR$141" VIEW DATA" 
4630 PRINT 
4640 PRINT "CHOOSE FROM THE FOLLOWING OPTIONS:-" 
4650 @%=6 
4660 FOR I=1 TO 5 
4670 PRINT I;". ";J$(I) 
4680 NEXT 
4690 PRINT 
4700 PRINT 
4710 PRINT 
4720 REPEAT 
4730 K=GET 
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4740 UNTIL K>48 AND K<54 
4750 PRINT TAB(O,K-41-(-2)*(K-50))CHR$134;CHR$136;"]";CHR$137; 
4760 FOR I=l TO 7000 
4770 NEXT 
4780 K=K-48 
4790 ON K GOTO 4800,4010,4900,420,5210 
4800 CLS 
4810 CLG 
4820 VDU 23,1,0;0;0;0 
4830 CLS 
4840 PRINT CHR$135;CHR$157;CHR$132;CHR$141" VIEW DATA" 
4850 PRINT CHR$135;CHR$157;CHR$132;CHR$141" VIEW DATA" 
4860 PRINT 
4870 PRINT 
4880 PRINT TAB(l,3)"FILENAME ......... ";File$ 
4890 GOTO 4170 
4900 CLS 
4910 CLG 
4920 VDU 23,1,0;0;0;0 
4930 CLS 
4940 PRINT CHR$135;CHR$157;CHR$132;CHR$141" VIEW DATA" 
4950 PRINT CHR$135;CHR$157;CHR$132;CHR$141" VIEW DATA" 
4960 PROCcat 
4970 IF INKEY-99 GOTO 4010 
4980 GOTO 4970 
4990 DEFPROCcat 
5000 PRINT 
5010 *CAT 
5020 PRINT 
5030 PRINT TAB(l,23) " PRESS SPACE BAR TO CONTINUE" 
5040 ENDPROC 
5050 *MOUNT 1 
5060 *DIR 
5070 CLS 
5080 CLG 
5090 VDU 23,1,0;0;0;0 
5100 CLS 
5110 PRINT CHR$135;CHR$157;CHR$132;CHR$141" VIEW GRAPHS" 
5120 PRINT CHR$135;CHR$157;CHR$132;CHR$141" VIEW GRAPHS" 
5130 PRINT 
5140 PRINT "Do you want to see stored files? (Y/N)" 
5150 F$=GET$ 
5160 IF F$="Y" GOTO 5180 
5170 IF F$="N" GOTO 5540 ELSE GOTO 5150 
5180 PROCcat 
5190 IF INKEY-99 GOTO 5540 
5200 GOTO 5190 
5210 CLS 
5220 PRINT "Filename ....... ";File$ 
5230 PRINT "Speed ... ";P;" Description .... ";Des$ 
5240 PRINT "ANG FLX(DEG) FORCE(N) ANG FORCE(DEG)" 
5250 FOR I=l TO 20 
5260 IF g%(I)<l0 AND h%(I)<l0 GOTO 5350 
5270 IF g%(I)<l0 AND h%(I)>=l0 GOTO 5330 
5280 IF g%(I)>=l0 AND h%(I)<l0 GOTO 5310 
5290 PRINT A(I)," ",r%(I);".";g%(I);" ";w%(I);".";h%(I) 
5300 GOTO 5360 
5310 PRINT A(I)," ",r%(I);".";g%(I);" ";w%(I);".0";h%(I) 
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5320 GOTO 5360 
5330 PRINT A(I)," ",r%(I);".O";g%(I);" ";w%(I);".";h%(I) 
5340 GOTO 5360 
5350 PRINT A(I)," ",r%(I);".O";g%(I);" ";w%(I);".0";h%(I) 
5360 NEXT 
5370 *GDUMP 
5380 CLS 
5390 PRINT "LAT FORCE(N) FOR FORCE(N) TIME(1/100s)" 
5400 FOR I=1 TO 20 
5410 IF e%(I)<10 AND f%(I)<10 GOTO 5500 
5420 IF e%(I)<10 AND f%(I)>=10 GOTO 5480 
5430 IF e%(I)>=10 AND f%(I)<10 GOTO 5460 
5440 PRINT s%(I);".";f%(I),d%(I);".";e%(I),T%(I) 
5450 GOTO 5510 
5460 PRINT s%(I);".0";f%(I),d%(I);".";e%(I),T%(I) 
5470 GOTO 5510 
5480 PRINT s%(I);".";f%(I),d%(I);".0";e%(I),T%(I) 
5490 GOTO 5510 
5500 PRINT s%(I);".0";f%(I),d%(I);".0";e%(I),T%(I) 
5510 NEXT 
5520 *GDUMP 
5530 GOTO 4570 
5540 CLS 
5550 CLG 
5560 VDU 23,1,0;0;0;0;0 
5570 CLS 
5580 PRINT CHR$135;CHR$157;CHR$132;CHR$141" VIEW GRAPHS" 
5590 PRINT CHR$135;CHR$157;CHR$132;CHR$141" VIEW GRAPHS" 
5600 PRINT 
5610 PRINT TAB(1,3)"Filename? ........ " 
5620 PRINT TAB(18,3); 
5630 INPUT""File$ 
5640 PRINT TAB(1,3) "Choose from the following:-
5650 @%=6 
5660 FOR J=1 to 4 
5670 PRINT J;". ";H$(J) 
5680 NEXT 
5690 PRINT 
5700 PRINT 
5710 PRINT 
5720 REPEAT 
5730 K=GET 
5740 UNTIL K>48 AND K<53 
5750 PRINT TAB(O,K-41-(-2)*(K-50))CHR$134;CHR$136;"]";CHR$137; 
5760 PRINT TAB(O,K-40-(-2)*(K-50))CHR$134;CHR$136;" ";CHR$137; 
5770 FOR I=1 TO 7000 
5780 NEXT 
5790 K=K-48 
5800 ON K GOTO 5810,6260,6310,6400 
5810 MODE 128 
5820 PROCfile 
5830 IF A$="2" GOTO 5870 
5840 PROCaxis one 
5850 PROCplot_one 
5860 GOTO 5890 
5870 PROCaxis one a 
5880 PROCplot_one_a 
5890 PRINT TAB(l4,3)" Do you require a printout? (Y/N)" 
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5900 L$=GET$ 
5910 IF L$="Y" GOTO 5930 
5920 IF L$="N" GOTO 6000 ELSE 5900 
5930 PRINT TAB(14,3)" 
5940 *MOUNT 0 
5950 *DIR 
5960 *LOAD $.EPFX80M 900 
5970 CALL &900 
5980 *MOUNT 1 
5990 *DIR 
6000 MODE 135 
6010 CLS 
6020 CLG 
6030 VDU 23,1,0;0;0;0 
6040 CLS 
6050 PRINT CHR$135;CHR$157;CHR$132;CHR$141" 
6060 PRINT CHR$135;CHR$157;CHR$132;CHR$141" 
6070 PRINT 
6080 PRINT " Would you like to:" 
6090 PRINT 
6100 PRINT" 1)View another graph." 
6110 PRINT 
6120 PRINT" 2)Choose another file." 
6130 PRINT 
6140 PRINT" 3)Go back to menu." 
6150 E$=GET$ 
6160 IF E$="1" GOTO 6190 
6170 IF E$="2" GOTO 5540 
6180 IF E$="3" GOTO 420 ELSE GOTO 6150 
6190 CLS 
6200 CLG 
6210 VDU 23,1,0;0;0;0 
6220 CLS 
6230 PRINT CHR$135;CHR$157;CHR$132;CHR$141" 
6240 PRINT CHR$135;CHR$157;CHR$132;CHR$141" 
6250 GOTO 5640 
6260 MODE 128 
6270 PROCfi1e 
6275 IF A$="2" GOTO 6295 
6280 PROCaxis two 
6290 PROCp1ot_two 
6291 GOTO 6300 
6295 PROCaxis two a 
6296 PROCp1ot_two 
6300 GOTO 5890 
6310 MODE 128 
6320 PROCfile 
6330 IF A$="1" GOTO 6370 
6340 PROCaxis three a - -
6350 PROCp1ot_three_a 
6360 GOTO 6390 
6370 PROCaxis three 
6380 PROCplot_three 
6390 GOTO 5890 
6400 MODE 128 
6410 PROCfile 
6420 IF A$="1" GOTO 6460 
6430 PROCaxis four a - -
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6440 PROCp1ot_four_a 
6450 GOTO 6480 
6460 PROCaxis four 
6470 PROCp1ot_four 
6480 GOTO 5890 
6490 DEFPROCaxis one 
6500 CLS 
6510 CLG 
6520 PRINT TAB(20, 1)" Filename ......... ";File$ 
6530 VDU 29,100;50; 
6540 VDU 5 
6550 MOVE 0,0 
6560 DRAW 0,900 
6570 MOVE 0,0 
6580 DRAW 1000,0 
6590 FOR J=100 TO 1000 STEP 100 
6600 MOVE -10,J 
6610 DRAW 10,J 
6620 NEXT J 
6630 FOR J=S00/9 TO 1000 STEP 500/9 
6640 MOVE J,10 
6650 DRAW J, -10 
6660 NEXT J 
6670 FOR L=100 TO 1000 STEP 100 
6680 W=1000/L 
6690 Y=20/W 
6700 IF Y>=10 MOVE -95,L+10 
6710 IF Y<10 MOVE -80,L+10 
6720 PRINT;Y 
6730 NEXT L 
6740 MOVE -50,950 
6750 PRINT "RESULTANT FORCE (N)" 
6760 FOR I=S00/9 TO 1000 STEP 500/9 
6770 X=(I*9) DIV 50 
6780 MOVE I-10,-25 
6790 IF X>90 GOTO 6820 
6800 PRINT;X 
6810 GOTO 6840 
6820 X=180-X 
6830 PRINT;X 
6840 NEXT I 
6850 MOVE 1000,10 
6860 PRINT "ANG.FLEX 

6870 VDU 4 
6880 ENDPROC 

(DEG)" 

6890 DEFPROCp1ot_one 
6900 VDU 5 
6910 FOR I%=1 TO 20 
6920 T%(I%)=T%(I%) MOD (P*2) 
6930 MOVE T%(I%)*500/P-7,r(I%)*50+10 
6940 PRINT CHR$42 
6950 NEXT 
6960 VDU 4 
6970 ENDPROC 
6980 DEFPROCp1ot_two 
6990 VDU 5 
7000 FOR I%=1 TO 20 
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7010 T%(I%)=T%(I%) MOD (P*2) 
7020 MOVE T%(I%)*500/P-7,w(I%)*10+10 
7030 PRINT CHR$42 
7040 NEXT 
7050 VDU 4 
7060 ENDPROC 
7070 DEFPROCp1ot_three 
7080 VDU 5 
7090 FOR I%=1 TO 20 
7100 T%(I%)=T%(I%) MOD (P*2) 
7110 MOVE T%(I%)*500/P-7,s(I%)*50+10 
7120 PRINT CHR$42 
7130 NEXT 
7140 VDU 4 
7150 ENDPROC 
7160 DEFPROCp1ot_four 
7170 VDU 5 
7180 FOR I%=1 TO 20 
7190 T%(I%)=T%(I%) MOD (P*2) 
7200 MOVE T%(I%)*500/P-7,d(I%)*50+10 
7210 PRINT CHR$42 
7220 NEXT 
7230 VDU 4 
7240 ENDPROC 
7250 DEFPROCfile 
7260 that one=OPENIN(Fi1e$) 
7270 INPUT£ that_one,P,A$,Des$ 
7280 I%=0 
7290 REPEAT 
7300 I%=!%+1 
7310 INPUT£ that_one,A(I%),T%(I%),s(I%),d(I%),r(I%),w(I%),s%(I%),d%(I%),r%(I% 

),w%(I%),e%(I%),f%(I%),g%(I%),h%(I%) 
7320 UNTIL EOF£ that one 
7330 CLOSE£ that one 
7340 ENDPROC 
7350 DEFPROCaxis two 
7360 CLS 
7370 CLG 
7380 PRINT TAB(20,1)" Filename ......... ";File$ 
7390 VDU 29,100;50; 
7400 VDU 5 
7410 MOVE 0,0 
7420 DRAW 0,900 
7430 MOVE 0,0 
7440 DRAW 1000,0 
7450 FOR J=100 TO 1000 STEP 100 
7460 MOVE -10,J 
7470 DRAW 10,J 
7480 NEXT J 
7490 FOR J=500/9 TO 1000 STEP 500/9 
7500 MOVE J, 10 
7510 DRAW J, -10 
7520 NEXT J 
7530 FOR L=100 TO 1000 STEP 100 
7540 W=L/10 
7550 MOVE -95,L+10 
7560 PRINT;W 
7570 NEXT L 
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7580 MOVE -50,950 
7590 PRINT "ANGLE OF FORCE (DEG)" 
7600 FOR I=500/9 TO 1000 STEP 500/9 
7610 MOVE I-10,-25 
7620 X=(I*9) DIV 50 
7630 IF X>90 GOTO 7660 
7640 PRINT;X 
7650 GOTO 7680 
7660 X=180-X 
7670 PRINT;X 
7680 NEXT I 
7690 MOVE 1000,10 
7700 PRINT "ANG.FLEX 

7710 VDU 4 
7720 ENDPROC 

(DEG) II 

7730 DEFPROCaxis three 
7740 CLS 
7750 CLG 
7760 PRINT TAB(20, 1)" Filename ......... ";File$ 
7770 VDU 29,100;50; 
7780 VDU 5 
7790 MOVE 0, 0 
7800 DRAW 0,900 
7810 MOVE 0,0 
7820 DRAW 1000,0 
7830 FOR J=100 TO 1000 STEP 100 
7840 MOVE -10,J 
7850 DRAW 10,J 
7860 NEXT J 
7870 FOR J=500/9 TO 1000 STEP 500/9 
7880 MOVE J,10 
7890 DRAW J, -10 
7900 NEXT J 
7910 FOR L=100 TO 1000 STEP 100 
7920 W=1000/L 
7930 Y=20/W 
7940 IF Y>=10 MOVE -95,L+10 
7950 IF Y<10 MOVE -80,L+10 
7960 PRINT;Y 
7970 NEXT L 
7980 MOVE -50,950 
7990 PRINT "LATERAL FORCE (N)" 
8000 FOR I=500/9 TO 1000 STEP 500/9 
8010 MOVE I-10,-25 
8020 X=(I*9) DIV 50 
8030 IF X>90 GOTO 8060 
8040 PRINT;X 
8050 GOTO 8080 
8060 X=180-X 
8070 PRINT;X 
8080 NEXT I 
8090 MOVE 1000,10 
8100 PRINT "ANG.FLEX 

8110 VDU 4 
8120 ENDPROC 

(DEG) II 

8130 DEFPROCaxis four 
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8140 CLS 
8150 CLG 
8160 PRINT TAB(20,1)" Filename ......... ";File$ 
8170 VDU 29,100;50; 
8180 VDU 5 
8190 MOVE 0,0 
8200 DRAW 0,900 
8210 MOVE 0,0 
8220 DRAW 1000,0 
8230 FOR J=100 TO 1000 STEP 100 
8240 MOVE -10,J 
8250 DRAW 10,J 
8260 NEXT J 
8270 FOR J=S00/9 TO 1000 STEP 500/9 
8280 MOVE J,10 
8290 DRAW J,-10 
8300 NEXT J 
8310 FOR L=100 TO 900 STEP 100 
8320 W=1000/L 
8330 Y=20jW 
8340 IF Y>=10 MOVE -95,L+10 
8350 IF Y<10 MOVE -80,L+10 
8360 PRINT;Y 
8370 NEXT L 
8380 MOVE -50,950 
8390 PRINT "FORWARD FORCE (N)" 
8400 FOR I=S00/9 TO 1000 STEP 500/9 
8410 MOVE I-10,-25 
8420 X=(I*9) DIV 50 
8430 IF X>90 GOTO 8460 
8440 PRINT;X 
8450 GOTO 8480 
8460 X=180-X 
8470 PRINT;X 
8480 NEXT I 
8490 MOVE 1000,10 
8500 PRINT "ANG.FLEX 

8510 VDU 4 
8520 ENDPROC 

(DEG)" 

8530 DEFPROCaxis one a 
8540 CLS 
8550 CLG 
8560 PRINT TAB(20,1)" Filename ......... ";File$ 
8570 VDU 29,100;50; 
8580 VDU 5 
8590 MOVE 0,0 
8600 DRAW 0,942 
8610 MOVE 0,0 
8620 DRAW 1000,0 
8630 FOR J=90 TO 900 STEP 90 
8640 MOVE -10,J 
8650 DRAW 10,J 
8660 NEXT J 
8670 FOR J=500/9 TO 1000 STEP 500/9 
8680 MOVE J,10 
8690 DRAW J,-10 
8700 NEXT J 
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8710 FOR L=90 TO 900 STEP 90 
8720 Y=2*L/9 
8730 MOVE -95,L+l0 
8740 PRINT;Y 
8750 NEXT L 
8760 MOVE -50,950 
8770 PRINT "RESULTANT FORCE (N)" 
8780 FOR I=500/9 TO 1000 STEP 500/9 
8790 MOVE I-85,-25 
8800 X=(I*P)/5 
8820 x%=X DIV 100 
8830 PRINT x% 
8860 NEXT I 
8870 MOVE 1000,10 
8880 PRINT "TIME 

8890 VDU 4 
8900 ENDPROC 

(1/lOOs)" 

8910 DEFPROCaxis three a - -
8920 CLS 
8930 CLG 
8940 PRINT TAB(20,1)" Filename ......... ";File$ 
8950 VDU 29,100;50; 
8960 VDU 5 
8970 MOVE 0,0 
8980 DRAW 0,942 
8990 MOVE 0,0 
9000 DRAW 1000,0 
9010 FOR J=90 TO 900 STEP 90 
9020 MOVE -10,J 
9030 DRAW 10,J 
9040 NEXT J 
9050 FOR J=500/9 TO 1000 STEP 500/9 
9060 MOVE J,10 
9070 DRAW J,-10 
9080 NEXT J 
9090 FOR L=90 TO 900 STEP 90 
9100 Y=2*L/9 
9110 MOVE -95,L+10 
9120 PRINT;Y 
9130 NEXT L 
9140 MOVE -50,950 
9150 PRINT "LATERAL FORCE (N)" 
9160 FOR I=500/9 TO 1000 STEP 500/9 
9170 MOVE I-85,-25 
9180 X=(I*P)/5 
9200 x%=X DIV 100 
9210 PRINT x% 
9240 NEXT I 
9250 MOVE 1000,10 
9260 PRINT "TIME 

9270 VDU 4 
9280 ENDPROC 

(1/lOOs)" 

9290 DEFPROCaxis four a - -
9300 CLS 
9310 CLG 
9320 PRINT TAB(20' 1) II Filename ......... ";File$ 
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9330 VDU 29,100;50; 
9340 VDU 5 
9350 MOVE 0,0 
9360 DRAW 0,942 
9370 MOVE 0,0 
9380 DRAW 1000,0 
9390 FOR J=90 TO 900 STEP 90 
9400 MOVE -10,J 
9410 DRAW 10,J 
9420 NEXT J 
9430 FOR J=500/9 TO 1000 STEP 500/9 
9440 MOVE J,10 
9450 DRAW J , -10 
9460 NEXT J 
9470 FOR L=90 TO 900 STEP 90 
9480 Y=2*L/9 
9490 MOVE -95,L+10 
9500 PRINT;Y 
9510 NEXT L 
9520 MOVE -50,950 
9530 PRINT "FORWARD FORCE (N)" 
9540 FOR I=500/9 TO 1000 STEP 500/9 
9550 MOVE I-85,-25 
9560 X=(I*P)/5 
9580 x%=X DIV 100 
9590 PRINT x% 
9620 NEXT I 
9630 MOVE 1000,10 
9640 PRINT "TIME 

9650 VDU 4 
9660 ENDPROC 

(1/100s)" 

9670 DEFPROCp1ot_one_a 
9680 VDU 5 
9690 FOR I%=1 TO 20 
9700 T%(I%)=T%(I%) MOD (P*2) 
9710 MOVE T%(I%)*500/P-7,r(I%)*9/2+10 
9720 PRINT CHR$42 
9730 NEXT 
9740 VDU 4 
9750 ENDPROC 
9760 DEFPR0Cp1ot_three_a 
9770 VDU 5 
9780 FOR I%=1 TO 20 
9790 T%(I%)=T%(I%) MOD (P*2) 
9800 MOVE T%(I%)*500/P-7,s(I%)*9/2+10 
9810 PRINT CHR$42 
9820 NEXT 
9830 VDU 4 
9840 ENDPROC 
9850 DEFPROCp1ot_four_a 
9860 VDU 5 
9870 FOR I%=1 TO 20 
9880 T%(I%)=T%(I%) MOD (P*2) 
9890 MOVE T%(I%)*500/P-7,d(I%)*9/2+10 
9900 PRINT CHR$42 
9910 NEXT 
9920 VDU 4 
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9930 ENDPROC 
9940 DEFPROCaxis two a 
9950 CLS 
9960 CLG 
9970 PRINT TAB(20,1)" Filename ......... ";File$ 
9980 VDU 29,100;50; 
9990 VDU 5 

10000 MOVE 0,0 
10010 DRAW 0, 900 
10020 MOVE 0,0 
10030 DRAW 1000,0 
10040 FOR J=lOO TO 1000 STEP 100 
10050 MOVE -lO,J 
10060 DRAW lO,J 
10070 NEXT J 
10080 FOR J=500/9 TO 1000 STEP 500/9 
10090 MOVE J,lO 
10100 DRAW J,-10 
10110 NEXT J 
10120 FOR L=lOO TO 1000 STEP 100 
10130 W=L/10 
10140 MOVE -95,L+l0 
10150 PRINT;W 
10160 NEXT L 
10170 MOVE -50,950 
10180 PRINT "ANGLE OF FORCE (DEG)" 
10190 FOR I=S00/9 TO 1000 STEP 500/9 
10200 MOVE I-85,-25 
10210 X=(I*P)/5 
10220 x%=X DIV 100 
10230 PRINT x% 
10240 NEXT I 
10250 MOVE 1000,10 
10260 PRINT "TIME 

10270 VDU 4 
10280 ENDPROC 
10290 END 

(1/lOOs)" 

Simulator data collection help program 

5 MODE 135 
10 VDU 23,1,0;0;0;0;0 
20 VDU 14 
30 PRINT SPC lS"USER GUIDE" 
40 PRINT 
50 PRINT 
60 PRINT "INTRODUCTION" 
70 PRINT 
80 PRINT "The package you are using will enable 

ments at will during cyclical testing of a finger 
simulator." 

you to take force measure 
joint prosthesis in the 

90 PRINT "All the important data will be stored onthe results disc in drive 
1 and can be viewed either in table form or graphicalform via this program." 

91 PRINT "It is also possible to obtain hard copies of the data and th 
e graphs but the discs must first be transferred to aBBC connected to a prin 
ter!" 

92 PRINT 
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93 PRINT 
94 PRINT " PRESS SHIFT TO SCROLL ON" 
95 PRINT 
96 PRINT 

100 PRINT "Set up the simulator and run it as usualmaking sure that the stra 
in gauges, amplifiers etc, have had ample time to warm up and reach stead 
y state (about 1 hr)." 

110 PRINT "Load the systems disc into drive 0 and the results disc into dri 
ve 1 then pressshift/break to obtain the program menu." 

129 PRINT 
130 PRINT "MENU" 
140 PRINT 
150 PRINT SPC lO"l)Run Test" 
160 PRINT SPC 10"2)View Data" 
170 PRINT SPC 10"3)View Graphs" 
180 PRINT SPC 10"4)Help" 
190 PRINT 
200 PRINT " When this appears type in the number you req 

uire." 
210 PRINT 
220 PRINT 
230 PRINT 
235 PRINT 

which is 
240 PRINT 
250 PRINT 

"RUN TEST" 

"It is important to note that this optionwill only run on this BBC 
connected to an IEEE interface!" 

"The first screen asks for the following information:" 

260 PRINT SPC lO"Filename?" 
270 PRINT SPC lO"l)Half or 2)Full Bridge?" 
280 PRINT SPC lO"Test Description?" 
290 PRINT SPC lO"Speed (1/100 s)" 
300 PRINT 
310 PRINT "For the filename just type the name of the file you wish to crea 

te and press return. It may be useful to call it by the date or something." 
320 PRINT "For the bridge you must decide whether you want to measure large 

static forces (Full) or small dynamic ones (Half or Full). Check the amplif 
ier connections then type 1 or 2 followed by return." 

330 PRINT "For the description you may type anything you wish that wi 
11 describe thetest you are doing. For instance, you may wish to include the 
date and the name of the prosthesis. Again you must type return on comple 

tion." 
360 PRINT "For the speed you are required to input the time taken for the jo 

int to flex from 0 to 90 degrees. This must be in 1/100 s (EG.50) then pr 
ess return." 

370 PRINT 
380 PRINT "When you have put in all the required information the computer 

will ask if youwish to alter anything. If you have mis-typed something it can 
be altered at this stage." 

390 PRINT "When you are happy with everything you will be prompted to press 
the space bar when readings are to be taken." 
400 PRINT "Since the simulator is not computer controlled the bar must b 

e pressed as the joint reaches 0 degrees flexion." 
410 PRINT "The computer will take and store the readings and then ask if 

you would like to:" 
420 PRINT 
430 PRINT "l)Take more readings, 2)Go back to menu." 
440 PRINT 
450 PRINT SPC 8"Type the required number." 
460 PRINT 
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470 PRINT "VIEW DATA" 
480 PRINT 
490 PRINT "This will give you the opportunity to view the files stored on 

the results disc and then ask you to choose a file to view." 
500 PRINT "The data will be displayed over two screens and then a furthe 

r five options given. Type in the required number but beware the hardcopy opt 
ion needs a printer." 

510 PRINT 
520 PRINT "VIEW GRAPHS" 
530 PRINT 
540 PRINT "This will give you the opportunity to view the files stored on 

the results disc and then ask you to choose a file to view." 
550 PRINT "You must choose from a choice of four graphs (again hardcopies 

can only be made when connected to a printer)." 
560 PRINT "After each graph you may choose to view a different graph, choose 

another file or go back to menu." 
565 PRINT 
566 PRINT " PRESS SPACE BAR FOR MENU" 
567 IF INKEY-99 GOTO 580 
568 GOTO 567 
570 VDU 15 
580 CHAIN "$.MENU" 
590 END 




