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Heat Transfer Throt1gh a Piston by 
Electrical Analogy 
By J. E. R. CONEY and K. F. GILL 

A well established theoretical method for evaluating the heat transfer bv 
conduction within a solid body is used to estimate steady and transient heat 
transfer through a typical diesel engine piston. The method is that of using an 
electrical passive network to simulate the mathematical finite difference 

representation of the temperature variation in a solid body. 

M Ai'lY important problems in engin­
eering and physics require the solution 

of partial differential equations of the form 
v=J=g (Poissons Equation) where f is an 
unknown scalar function of the space co­
ordinates x, y. and z. In most practical cases 
no rigorous solution can be found and either a 
numerical solution(!) or an experimental 
analogy(2) must be used. The former is not 
normally suitable unless computing facilities 
are available because of the amount of 
tedious computational work necessary to 
obtain reasonably accurate results. Of the 
latter, the most adaptable technique, requir­
ing only a small initial capital outlay to 
obtain a solution, is the electrical resistance 
network analogue(3). 

An important p"roblem which can be 
investigated by use of such a network ana­
logue is that of heat transfer within the 
piston of an internal combustion engine. 
In the design of pistons for engines, it is 
essential that adequate allowance be made 
for thermal stresses, that beat dissipation 
is adequate to ensure acceptable piston 
temperatures and that the temperature 
distribution does not produce undesirable dis­
tortion. Hence, it is essential to have a know­
ledge of bow the temperature varies through-

out the piston. especiaily as engine '' orkin~ 
temperatures are continually incre:1sing due 
to the perpetual demand for higher po'' er­
wei!!ht ratios and efficiencies. 

From the need to determine these tem­
perature distributions experimemally, the 
followin!! methods have been used: 

(a) Temperature-sensitive paints: this 
method relies upon the irreversibie colour 
change of these paints on reaching certain 
known temperatures. 

(b) Hardness recovery: it is known that the 
hardness of certain alloys varies \vith pro­
longed temperature subjection. Hence. by 
detenninine: the chanQe in hardness or tb.<: 
piston material after a prescribed period of 
running, an estimate of the te::nperaturc 

Notation: 
a-Mesh size. 
C-E!ectrical capacitance. 
c-Specific heat (volume basis). 
k-Thennal conductivity. 
Q-Heat transferred. 
R-Eicctrical resistance. 

t, T-Time. 
V-Voltage. 

x, y, z-Spatial co-ordinates. 
«-Thermal diffusivity. 
~-Density. 
8--Temperature. 
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282 D J MULVANEY, DE NEWLAND AND K F GILL 

Recalculate the data 
values relative to 
the appropriate 
least-squares line 

Any of the following options can now be selected: 

Compute the r.m.s 
values for a I mm 
traverse 

Compute the 
Fourier spectral 
estimate 

Fig. 1 Flow diagram of the program used to acquire spectral 
estimates of surface roughness data 

affected by the smoothing techniques used in its calcu­
lation. This requirement is satisfied by each of the 
smoothing techniques used here. Segment averaging is 
equivalent to averaging the transforms of a number of 
separate traces, and the application of an appropriate 
spectral window is not normally considered to affect 
appreciably the area under the spectral curve unless a 
significant peak of bandwidth less than that of the 
window bandwidth is present. 

A computer program was specifically developed to 
enable a comparison to be made of the spectral esti­
mates of the surface data with the form of the power 
spectrum predicted by equation (1). A flow diagram of 
the program is shown in Fig. 1 (7). 

4 MACHINED SPECIMEN SURFACES 

A range of mild steel end-milled, fly-milled, slab-milled, 
shaped and turned surface specimens was prepared. The 
machining parameters were speed of cut, feed rate and 
depth of cut. By maintaining in turn two of these par­
ameters constant, three specimens were produced for 
each of three selected values of the remaining par­
ameter, resulting in a group of 27 different specimens 
for each of the machining processes. Figure 2 explains 
this in detail. The machining parameters were purposely 
seleeted in this manner so as to aid the identification of 
the cause of features in the spectral estimates. 
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The machining speeds were greater than those nor­
mally used in most of the series of investigative trials 
described in the literature; those adopted here are, in 
fact, more typical of industrial machining speeds. A 
range of ground mild steel specimens was also prepared 
(Fig. 3). Fig. 2 Machined specimens 
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1\ Feed 
mm 0·25 0·5 0·1 

:; 0·005 I 2 3 
u 

'o E 
.<:: E 0·01 4 5 6 
c. 
" 0 0·04 7 8 9 

Fig. 3 Ground specimens 

5 RESULTS OBTAINED FOR COMPARISON 
WITH THE THEORY OF VAN DEUSEN 

The data acquired from the specimens were obtained 
relative to a straight-line datum attached to a Talysurf 4 
profilometer and were unfiltered, except that they were 
re-evaluated with respect to the least-squares line fitted 
to the data. All the power spectral estimates closely 
approximated to a straight line of slope - 2 over the 
greater part of the frequency band available for investi­
gation. Examples of the spectral estimates are shown in 
Fig. 4; the broken line is the best-fitting least-squares 
line, having a slope of - 2, which can be applied to the 
spectral estimate curve in each figure. Compared with 
the form of the results predicted by equation (!), those 
shown in Fig. 4f are the worst encountered in this group 
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10-) ' 

10' 

95 per cent 
confidence 
interval 

10' 

_!_ 
Hz 
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Fig. 4 Fourier spectral estimates ror the roughness band 
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of trials. For the frequency band investigated, it was 
noted firstly that the slopes of a number of the spectral 
estimates had a smaller negative value at surface fre­
quencies less than of the order of 20 kHz 
(corresponding to a wavelength of 0.05 mm), for 
example Fig. 4e. Secondly, it was observed that 16 of 
the 144 specimens investigated displayed significant 
machining peaks, for example as shown in Fig. 4b and f. 
Machining peaks are defined here as those peaks which 
repeatedly occurred during successive calculations of 
spectral estimates of data obtained from separate, paral­
lel traces of the same surface. The term 'significant' is 
used to mean that the peaks were of greater magnitude 
than that of the confidence interval plotted. 

A logarithmic power axis permits a confidence inter­
val to be plotted (8) which is independent of the fre­
quency at which the individual spectral lines are drawn. 
and is calculated from a chi-square distribution having 
a number of degrees of freedom dependent upon the 
number of data transform blocks used and also upon 
the bandwidth of any spectral window applied. 

6 CALCULATION OF A NEW SURFACE 
TEXTURE PARAMETER 

Since the parameter k is defined as the intercept of a 
Fourier spectral curve on a logarithmic power axis (5), 
anyone wishing to comprehend how the estimated 
values for k are obtained would need to possess an 
understanding of random data processing theory. Equa­
tion (4) predicts that the variance of the profile, which is 
the area under the power spectral curve at wavelengths 
less than or equal to L, is directly proportional to the 
length of the trace, and hence the standard deviation of 
the data, for a fixed traverse length, is a parameter 
which would also locate the straight line described by 
equation (5). In order to facilitate the comparison of 
results which may be computed from/a range of trace 
lengths, a standard length of I mm was chosen and 
results calculated from different traverse lengths suit­
ably scaled to provide the root mean square (r.m.s.J 
value which, by assuming equation (I) applies to surface 
texture data, would have been obtained had a I mm 
trace been taken. Because roughness data have a zero 
mean value and r.m.s. values are more common in 
surface texture analysis, an r.m.s. value is employed in 
preference to a standard deviation value. Three methods 
are now described which enable estimates of the r.m.s. 
value per millimetre, denoted by 'I' 1 mm, to be com­
puted: 

I. If the spectral estimates are of the form predicted by 
equation (1), then, letting !max and fmin be the 
maximum and minimum surface frequencies respec­
tively of the frequency band currently being investi­
gated, the estimated variance in this band, i12

, is 

r1 2 
= k 2 df i/mn J 

/min J 

=k---( 
I I ) 

/min fmax 
where k is an estimate of k. Since !max is approx­
imately two orders of magnitude greater than !min, 

and letting fmin = / 1 mm, where / 1 mm = I kHz, then 

Proc lnstn Mech Engrs Vol t99 No C4 
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the total variance in the wavelengths equal to and 
less than 1 mm, that is the square of q..l mm, is 

~2 k 
'1'1 mm =-

1 I mm 
(6) 

If f\ mm is the estimated power at a wavelength of 
1 mm, letting/. and P. be respectively the arithmetic 
mean of the logarithms of the surface frequency 
values and the arithmetic mean of the logarithms of 
the estimated power values in a spectral estimate, 
and since equation (5) describes a straight line, then 

log 10 fi 1 mm = 2(/.- log10f1 mml + P. 
and, using equation ( 1), this yields 

'fl
1 

mm = 1Qifa+(l/2)P;,-(l/2)1ogiO!lmm! (7) 

enabling an estimate of 'I' 1 mm to be obtained from a 
combination of the estimated spectral values for 
surface data which exhibit a zero mean v;tlue. 

2. If equation (5) were to apply at all frequencies of 
engineering interest, then, substituting one logarith­
mic power value and the logarithm of the surface 
frequency at which it occurs for P. and f. respectively 
in equation (7), this would enable an estimate of 
'I' 1 mm to be obtained. The computation of an esti­
mate of a single spectral value is performed mathe­
matically more efficiently by a discrete Fourier 
transform, which requires 2N complex products and 
additions, than by the fast Fourier transform 
(method 1), which reauires as many operations in the 
calculation of a single transform coefficient as in the 
computation of the entire transform algorithm (9). 
The major disadvantage of using the estimate of a 
single spectral value is that it may coincide with a 
machining peak, resulting in an overestimate of the 
Value Of 'f' 1 mm • 

3. The estimated mean value P m of the estimates of the 
power spectral values fi(i) for an N-point transform 
is 

2 .\"'2 

fim=- L fi(i) 
N i=l 

since fi(O) = 0 for data exhibiting a zero mean value. 
The estimated variance of the N data values j{i) is 

or, alternatively, 

1'1{2 

a-2 = L PuJ 
i= I 

and hence 

2·2 
~ a 
P=­

m N 

Equation (1) yields 

2&2 
k=-

Nl'm 

(8) 

where l' m is the mean value of the inverse squares of 
the frequency values at which the N/2 spectral lines 
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are plotted, and is 

'f = 2 I'm" dJ 
m N 1min l 

By neglecting the line representing zero frequency 
and acknowledging that f~ax ~!min, this gives 

2 
l' =--

m Nj~in 

Applying equations (6) and (8) yields 

IJII mm = J{ j~in NI' f 2(i)} 
NJI mm i=O 

(9) 

enabling an estimate of the r.m.s. value per milli­
metre to be obtained without the need for a trans-
formation of the data. 

Due to segment averaging, the frequency band of the 
spectral estimates does not coincide with that all'ected 
by the use of a skid datum in preference to a straight­
line datum (7), and hence the use of a skid is optional if 
an estimate of 'I' 1 mm alone is to be calculated. If the 
sampled data are obtained relative to a skid datum. the 
estimation of 'I' 1 mm by method 3 will require, as is the 
case prior to segment averaging, that the data are first 
re-evaluated with respect to least-squares lines fitted to 
the individual data blocks, which are of shorter length 
than those wavelengths affected by the use of a skid 
datum. A segment length of 0.5 mm is used in the com­
puter program developed. 

7 ADVANTAGES OF THE R.M.S. VALUE 
PER MILLIMETRE COMPARED WITH OTHER 

SURFACE PARAMETERS 

In the comparison with k, the r.m.s. value per millimetre 
has the following advantages as a surface texture par­
ameter: 

I. The r.m.s. value per millimetre is defined in a manner 
which is comprehensible without the need for an 
understanding of the spectral estimates. 

2. The calculation time of an estimate of 'I' 1 mm using 
equation (9) is similar to the computation time of the 
roughness parameters, such as Ra, and involves 
1og 2 N times fewer operations than the evaluation of 
the transform algorithm used in the estimation of k 
(5). 

3. The expected variance of the r.m.s. value per milli­
metre, where 'f' 1 mm is obtained using method 3, is of 
the same numerical order as the expected variance of 
an r.m.s. value, yet smaller than the expected 
variance of k, which is of a magnitude dependent 
upon the mean square value of the data. This is 
emphasized in the results obtained for a number of 
the machined surface specimens as presented in 
Table I. 

The two main advantages of the r.m.s. value per milli­
metre as a surface texture parameter compared with the 
currently used roughness parameters are as follows: 

I. In contrast to the calculation of the roughness par­
ameter estimates, the calculation of 'f' 1 mm does not 
require that a standard filter is applied to the data 

©!MechE 1985 
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Table 1 A comparison of the coefficients of variance of 
'I' 1 and k calculated over five traverses each of 
length 10 mm 

Type of Parameter means and 
specimen coefficients of variance 

and specimen 
number 'I' I mm( X 106) k( X 101•) 

End-milled,2 3.92 O.D28 1.96 0.071 
Fly-milled,5 5.36 O.D3 3.51 0.065 
Slab-milled, 15 1.01 0.033 0.36 0.065 
Shaped,6 11.2 0.071 9.44 0.11 
Turned,20 11.1 0.032 10.1 0.084 

Ground,! 0.10 0.14 0.051 0.42 

(10). The difficulty arising in surface measurement 
because of the necessity to choose one of the range of 
standard filters available, and because of the change 
in the expected values of the parameters this 
involves, is thus avoided. The shape of the spectral 
estimates calculated in Section 5 will be affected by 
those standard filters of cut-off wavelength less than 
the segment length, and hence these should not be 
employed when obtaining an estimate of the r.m.s. 
value per millimetre. The variations with cut-off 
wavelength of the r.m.s. value per millimetre were 
compared with those of the Ra value and the results 
are presented in Table 2. 

2. Except when it relates to profiles having spectral esti­
mates which display relatively large machining 
peaks, the r.m.s. value per millimetre is able to give a 
complete description of roughness profiles. This 
arises since it is a parameter derived from the mea­
surable properties of the surface data, whereas the 
roughness parameters have been frequently used in 
attempts to describe some aspect of a surface profile 
without first acquiring this knowledge. Present 

Table 2 A comparison of the variation of the parameters 
'I' 1 mm and Ra with cut-off wavelength for traverses 
of length 10 mm 

Filter Parameter values 
Type of 

cut-off specimen 
wavelength '¥ 1 mm Ra 

and specimen 
number mm ( x t06) )lffi 

End-milled. 8 0.25 2.14 1.09 
0.80 3.17 1.71 
2.50 3.21 1.92 

Unfiltered 3.30 
Fly-milled, 24 0.25 2.19 0.92 

0.80 2.41 1.24 
2.50 2.43 1.47 

Unfiltered 2.51 
Slab-milled. 4 0.25 0.53 0.23 

0.80 0.66 0.62 
2.50 0.70 1.28 

Unfiltered 0.79 
Shaped, 5 0.25 6.12 3.43 

0.80 9.28 7.27 
2.50 10.0 10.7 

Unfiltered 9.95 
Turned, 8 0.25 6.28 3.27 

0.80 9.02 5.49 
2.50 9.96 6.92 

Unfiltered 9.61 
Ground, I 0.25 0.087 0.037 

0.80 0.091 0.039 
2.50 0.092 0.040 

Unfiltered 0.093 

© !MechE 1985 

analysis is based on the premise that certain aspects 
of roughness profiles can be uniquely identified for a 
particular surface, yet the results presented have 
shown that the form of the frequency distribution of 
the roughness data is independent of the machining 
process, except where machining peaks are present. 
The traverse length dependent r.m.s. value uniquely 
determines the 'smoothness' of the surface texture of 
the machined specimens in the roughness band. 

8 SUMMARY 

This paper has shown that the results of Van Deusen 
are applicable to a range of machined surface specimens 
and that there is an underlying form to the spectral 
estimates of the surface data in the roughness band. In 
addition, a new parameter, namely the r.m.s. value per 
millimetre, has been derived and developed which desi­
cribes the r.m.s. value of the surface roughness data for 
a I mm trace and which is also able to describe com­
pletely, apart from the machining peaks, the spectral 
estimates of the machined surface data at all roughness 
wavelengths. The new parameter overcomes the prob­
lems associated with the parameter proposed by Sayles 
and Thomas for two reasons: firstly, it is obtained 
without the need to transform the data and. secondly. 
its variance is similar to that of the commonly available 
roughness parameters. In addition, the description of 
the longer wavelengths introduced by Sayles and 
Thomas has now been extended to the shorter, rough· 
ness wavelengths of the surface profile. In contrast to 
the means of derivation of current roughness par­
ameters, the new analysis does not involve a subjective 
assessment of the characteristics of the data, and, more­
over, the r.m.s. value per millimetre is obtained without 
the requirement to select a standard cut-off filter. 

If the form of the estimates is the same for all wave­
lengths which are useful in the engineering sense. then 
the derived parameter, apart from the machining peaks. 
will be able to describe completely the form of 
machined surface data. The data would therefore have 
been proved t<i be non-stationary, as predicted by equa­
tion (4) and the assessments of Thomas (II). 

9 CONCLUSIONS 

In surface texture analysis, the maximum wavelength in 
the band analysed is normally decided by the use of 
skids and the application of standard filters. All longer 
wavelengths are generally regarded as being non­
stationary, but, prior to this investigation, it was not 
clear whether this was justified from the observed varia­
tions of parameter values with traverse length or 
because of the inherent nature of the surface texture. At 
present, surface data processing generally involves the 
computation of roughness parameters which arc 
capable of describing only certain aspects of the rough­
ness texture. In attempts to remedy this situation, 
several parameters have been defined which describe 
certain properties of statistical functions, which are 
themselves able to characterize the surface roughness. 
Since these parameters do not account completely for 
the form of the functions for a sufficiently wide range of 
surfaces, the usefulness of these parameters in engineer­
ing is limited. 

Proc lnsln Mech Engrs Vol 199 No C4 
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An advance in the investigation of surface texture 
arrived with the analysis formulated by Sayles and 
Thomas (5) based on work initiated by VanDeusen (4). 
They found that a general spectral form was apparent 
for the non-stationary longer wavelengths of a surface 
profile and that this form can be completely described 
by a single parameter. 

The results presented in this paper have verified that 
the analysis propounded by Sayles and Thomas is also 
applicable to a range of machined specimens in the 
roughness band. This work has also resulted in the 
development of a new parameter, namely the r.m.s. 
value per millimetre, which is also able to describe com­
pletely the form of the spectral estimates predicted by 
Van Deusen. This parameter has three principal advan­
tages over that of Sayles and Thomas. Firstly, its 
expected variance is less and is of the same order as the 
roughness height parameters. Secondly, its estimation 
can be performed directly from the surface data and 
hence its calculation time is less than that required for 
the estimation of the Sayles and Thomas parameter, 
which is computed from the spectral estimate of the 
data. Thirdly, in contrast to the Sayles and Thomas 
parameter, to understand the description provided by 
the r.m.s. value per millimetre, a knowledge of spectral 
analysis is not required. 

Since the current surface texture band extends to 
wavelengths as short as 5 Jtm, the acquisition of surface 
data from the stylus instrument requires that a stylus of 
this order of radius is used when tracing the specimen. 
This in turn determines the magnitude of the maximum 
permissible stylus force and the maximum permissible 
speed of traverse, while ensuring that an adequate tran­
sient response is provided. Because the slope of the 

Proc Instn Mech Engrs Vol 199 No C4 

.. 

spectral estimates of the machined specimens is con­
stant and known at this order of wavelength, and 
because machining errors are unlikely to occur at these 
wavelengths, a stylus of such a small radius will gener­
ally not be required. The use of a stylus which has a 
radius of the order of 0.1 mm would be adequate for 
most specimens, while still permitting the estimation of 
the new parameters developed here, thereby enabling a 
complete description of the texture at all surface texture 
wavelengths to be obtained. The tracing of the surface 
could then be performed at a higher speed and with a 
larger stylus force, enabling a consequent shortening of 
the data acquisition time. 
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Tl1e ·'P<'<'tral analrsis <~( surfi~ee texture data is extended so as to include tile lonyer ... a,.elen,ttlr ·,r,win<'-'·' {i'aturn in addi1ion 1o 1/r,· 
'rouylmess· aspects. Tlri., re.,ults in tl1e idL'ntificatinn of an under/.riny form in tile spectral estimates of <'n!Jineerin!} .<ur/iwes ... llo.,,. 
complete description requires only t\\·o parameters. Also. l>r shol\'inutilat the .<pectral estimates conrer!l<' 10 a final steadr roluc 111 th<' 
/on!wr •rart'len!}tils. the need tu select and apply a standard cur-of}filter is aruicied. 

I l!';TRODUCTION 

The previous investigation of surface texture by trans­
form analysis. described in (I), was confined to a band 
of surface wavelengths within the approximate range 
10 11m to I mm. This range is approximately that of the 
roughness band normally used in surface analysis. A 
more complete investigation will now be described. 
involving the inclusion of surface wa\·elengths outside 
this band. 

It is not common engineering practice to analyse 
surface data of wavelengths less than about 10 Jim. This 
is because surface undulations having wavelengths of 
the same order or shorter than the physical dimensions 
of the type of stylus normally used in surface instru­
ments cannot be accurately reproduced. However, this 
is not considered to be a disadvantage by the authors, 
since. in this wavelength region. the slope of the spectral 
curves is approximately -40 dB/decade and, moreover, 
machining peaks do not occur in the region (2). Hence 
the magnitudes of the spectral values obtained for wave­
lengths shorter than about 10 11m are, for practical pur­
poses, negligibly small when analysed as part of the 
roughness profile. 

A characterization of surface data in the roughness 
band is considered complete by most engineers involved 
in the field of surface measurement. However, the 
analysis of wavelengths in the 'waviness band', which 
consists of wavelengths longer than those in the rough­
ness band, has recently begun to receive increased atten­
tion and is of interest to the authors for the following 
reasons: 

I. It has not as yet been shown whether the power 
spectrum G(j) = k! f 2, predicted experimentally by 
Van Deusen (3), applies at wavelengths longer than 
those in the roughness band (1). The slopes of a 
number of the spectral curves in the longer wave­
length region of the roughness band have smaller 
negative values than those predicted by Van Deusen, 
these values becoming decreasingly negative as the 
wavelength increases. A further investigation is 
necessary to determine whether this trend continues 
into the waviness band. 

Thr MS M'4.t rrctifrJ on 31 Ma_\" 198.5 and was a,·uptt.>d for publication on I I 
0.-cul>.-r 1985. 

2. The expected surface frequencies (I) of some machin­
ing peaks, defined below, are less than those in the 
roughness band and, for completeness. it is necessary 
to include these in the analysis. Machining peaks (21 
are defined here as those peaks which repeatedly 
occurred during successive calculations of spectral 
estimates of data obtained from separate paralki 
traces of the same surface. The surface frequency at 
which these peaks occur depends on both the speed 
and feed rate of the machining process. For example. 
the machining peak in Fig. I occurs at a surface 
frequency of approximately 8 kHz. which can be cal­
culated by dividing the machining speed in revol­
.Jtions per minute by the feed rate in metres per 
minute. 

The spectral estimate in Fig. I was calculated for 
turned specimen number 25 (Table I) which dis­
played features termed 'pick-up marks' on its surface. 
These marks probably arise when. due to the high 
temperatures generated during machining. a piece of 
metal previously cut from the surface becomes 
momentarily attached ttl the ~.:utting toul. t..:mpo-

20.0 

t5.0 

~5: I SE 
'\.:) :s. 10.0 

5.0 

Fig. I Spectral estimate of turned specimen number 25 
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Table I Machined specimens 

Slab-milled 

Speed 
25 72 r/min 

\Feed rate 
mm/min 32 104 254 32 104 254 

:; 0·13 I 2 3 10 II 12 
u ..... 
o E 0·25 4 5 6 13 14 15 -5 E 
c. ... 
Ci 0·51 7 8 9 16 17 18 

Shaped 

Speed 
10 20 r/min 

!\Feed rate 
mm/min 0·30 0·63 0·94 0·30 0·63 0·94 

:; 0·13 I 2 3 10 II 12 
u 

o E 
0·25 4 5 6 13 14 15 -5 E 

c. ... 
Ci 0·51 7 8 9 16 17 18 

End-milled 

Speed 
105 230 r/min 

1\Feedrate 
mm/min 12·7 31·8 63·4 12·7 31·8 63·4 

:; 0·13 I 2 3 10 II 12 
0 

oe 0·25 4 s 6 13 14 15 -5 E 
c. 
~ 0·51 7 8 9 16 17 18 

Fly-milled 

Speed 
230 530 r/min 

1'\[eed rate 
mm/min 12·7 31·8 88·9 12·7 31·8 88·9 

:; 0·13 I 2 3 10 II 12 
0 

o E 0·25 4 s 6 13 14 IS -5 E 
c. ... 
Ci 0·51 7 8 9 16 17 18 

Thrned 

Speed 
125 260 r/min 

!\Feed rate 
mm/min 20 40 80 40 80 160 

= 0·13 I 2 3 10 II 12 
0 ..... 
o E 0·25 4 s 6 13 14 15 -5 E 
il' 
Ci 0·51 7 8 9 16 17 18 

206 

32 104 

19 20 

22 23 

25 26 

30 

0·30 0·63 

19 20 

22 23 

25 26 

530 

12·7 31·8 

19 20 

22 23 

25 26 

810 

12·7 31·8 

19 20 

22 23 

25 26 

540 

80 160 

19 20 

22 23 

25 26 

254 

21 

24 

27 

0·94 

21 

24 

27 

63·4 

21 

24 

27 

88·9 

21 

24 

27 

320 

21 

24 

27 

~ 
Fig. 2 Photograph of end-milled specimen number 27 dis­

playing grooves due to 'pick-up' during machining 

rarily causing the depth and other aspects of the 
nature of the maching to be changed (Fig. 2). Such 
marks were found only on the turned, end-milled and 
fly-milled specimens. Machining peaks were absent 
from the spectral estimates of those surfaces with no 
pick-up marks. A joint investigation of machining 
parameters and surface profiles revealed that the 
high temperatures necessary to cause pick-up marks 
were probably the result of a combination of high 
cutting speed and a relatively deep cut. For example. 
a prominent machining peak does not occur in the 
spectral estimate of turned specimen number 9 in 
Fig. 3, although the expected frequency of any 
machining peak is approximately the same as that 
expected for turned specimen number 25 in Fig. I. 
This is probably due to the fact that the cutting 
speed for specimen number 9 was one-quarter of that 
for specimen number 25 and so generated a lower 
temperature during machining. 

It has only been possible to derive the results 
obtained because the specimens manufactured for 
these trials were machined at the higher speeds which 
are more typical of those used in industry. rather 

35.0 

30.0 

25.0 

~

1 
20.0 

X N 

s 5. 
'C 15.0 

10.0 

5.0 

0.0 L---J.--::::..&.--L--:L:,--....L..-...1.--..L..---' 
0.0 4.0 8.0 t6.0 

fx w-• 
Hl 

Fig. 3 Spectral estimate of turned specimen number 9 
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than at the lower speeds adopted in most of the pre­
viously published experimental trials. 

3. Several cut-off wavelengths in the range 0.08-8 mm 
are recommended by the British Standards Institu­
tion (4) and the selection of the appropriate filter for 
a particular surface specimen rests on the experience 
of the stylus instrument operator. Spectral analysis of 
the waviness band taken in conjunction with the 
roughness band would determine whether the selec­
tion of the cut-off wavelength could be made on a 
more sound engineering basis. 

4. The spectral analysis referred to in (3) would also 
establish whether there is a valid engineering reason 
for restricting the analysis to the roughness band. 
This would be confirmed if the form of the spectral 
estimates in the roughness band described in (1) is 
found to continue unchanged into the waviness 
band, since the form of the estimates at all engineer­
ing frequencies would then be known. However, if as 
reported in the literature, the form of the spectral 
estimates is dictated by the particular path traced by 
the stylus on a surface to a greater extent than would 
be expected by statistical sampling variations, then 
the investigation of surface texture by the present 
stationary analysis techniques will not be acceptable 
at these longer wavelengths. Consequently, it would 
be necessary to continue to confine the range of 
investigation to the stationary shorter wavelengths 
until an instrument capable of analysing a significant 
proportion of the available surface is developed. 

2 A NEW SPECTRAL SMOOTHING TECHNIQUE 
WHICH PERMITS THE ANALYSIS OF THE 

LONGER WAVELENGTHS OF THE SURFACE 
TEXTURE 

As far as the authors are aware, waviness has not been 
previously investigated using spectral analysis owing to 
the difficulty in formulating an appropriate spectral 
smoothing procedure. Although in (1) traces of length 
up to 60 mm were taken, the application of a spectral 
window and segment averaging of an appropriate 
length reduced the maximum wavelength present in the 
spectral estimates to 0.5 mm. To smooth the spectral 
estimate curves (that is to reduce the variance of the 
spectral estimates) without truncation of the lower fre­
quency band, the Fourier transform of the data was 
performed in a single segment and a non-recursive 
second-order filter applied to the spectral data. The 
smoothed spectral estimate is computed by forming a 
weighted sum of the discrete, unsmoothed spectral 
values. For a point which is a distance n points in the 
unsmoothed spectral estimate from the point for which 
the smoothed spectral value is to be calculated, the 
weighting value rx is given by 

2rr 
rx=!V· 11=0 

IX = - I - 1t - e- 2nn/N 4rr ( 11) 
N N ' 

n=I,2, ... ,2N 

where N is the cut-off length in terms of the number of 
spectral points. Two smoothed spectral values are then 
computed and plotted for each cut-off length. By 
employing the technique of 'window closing', a smooth-

©!MechE 1986 

ing filter of the same cut-off length was found to be 
appropriate for all the specimens tested, for a given tra­
verse length. 

There are two main disadvantages in analysing this 
extended wavelength band of waviness and roughness 
combined, compared with analysing the roughness band 
only. The first disadvantage is that the computation 
time is longer for the same number of sampled data 
values, because the data are transformed in a single 
block rather than in a number of successive. shorter 
blocks. For N data values, where N is a positive integral 
power of 2, the calculation of the Fourier transform in a 
single segment requires that 2N log 2 N computations be 
performed. However, if the transform is performed in 
blocks each of length ,'\;[ data values, where M is a 
positive integral power of 2 and N > M. only 2N 
log2 M computations need to be carried out. In practice. 
using the filtering technique described above. the calcu­
lation times of the smoothed spectral estimates. 
obtained using a VAX 11/780 computer running 
FORTRAN, were approximately 35 seconds for a 
60 mm trace, 25 seconds for a 30 mm trace and II 
seconds for traces of 15 mm or less. The second dis­
advantage is that a skid cannot be employed to simplify 
the setting-up procedure when collecting the data, since 
the band of wavelengths to be analysed coincides with 
those wavelengths affected when using a skid datum. 

3 RESULTS OF THE SPECTRAL ANALYSIS 
OF COMBINED ROUGHNESS AND WAVINESS 

PROFILES 

Figure 4 shows typical spectral estimates of skidless 
traces of length 60 mm computed from a number of the 
specimens listed in Tables I and 2. The digital filter 
outlined in Section 2 was used to smooth the spectral 
estimates and its application truncated the surface fre­
quency content to a maximum of approximately 70 kHz 
(corresponding to a surface wavelength of about 
14 {tm), but this is not considered to be a disadvantage. 
At the higher surface frequencies in the band investi­
gated, the spectral estimates displayed the slope predict­
ed by Van Deusen (1), but the slopes of the spectral 
curves displayed a smaller negative value than that pre­
dicted by Sayles and Thomas (5) at lower frequencies. In 
agreement with the predictions of Reason (6) for the 
majority of the surface specimens, this slope apparently 
tended to zero with increasing wavelength, and hence 
the area under the spectral curve, that is the variance of 
the data, converges to a finite value and does not 
diverge as predicted in (1), which was derived as a con­
sequence of Van Deusen's investigations. For these 
surface specimens, the surface texture data are conse­
quently stationary, contrary to the findings in the liter-

Table 2 Ground specimens 

1\ Feed 
mm 0·25 O·S 0·1 

~· 
0·005 I 2 3 

-s e 0·01 4 s 6 

0 0·04 7 8 9 
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102 10·' 
_1_ 
Hz 

95 per cent 
confidence 
inlerval 

(a) End-milled number 4 

10·1 

_1_ 
Hz 

95 per cent 
confidence 
mterval 

(c) Shaped number 22 

C:,l" - E '\.:) :1. 

10_, 

10-• 

10-5 

10'' :~rr~ec:,~ I 
10-2 inlen·al 

10_, 

c:.r - E '\.:) :1. 10-• 

10-5 

10'" 
102 103 10. 

I 
Hz 

(b) Slab-milled number 5 

Sl'i:: 10-' 
'\.:) :1. 

102 IO·' 
I 

Hz 

(d) Turned number 28 

:~~~e~::' l 
interval 

102 101 104 

I 
Hz 

95 per c~nl 
coniiden~c 
inten;al 

(e) Fly-milled number 10 

Fig. 4 Fourier spectral machining 

ature (5, 7 and 8). However, the spectral estimates of a 
few of the specimens did not follow this trend, for 
example that illustrated in Fig. 4e, and the reasons for 
this behaviour are investigated in the subsequent 
section. 

Since for most of the specimens there is a difference 
between the shapes of the estimates at low and at high 
surface frequencies in the band investigated, it could be 
argued that there is also a difference between the forms 

30.0 

20.0 

~~[ '~:~.~WllmlliW~I!'Urllilj~ 
<( -10.0 

-20.0 

0.0 2.0 4.0 6.0 8.010.0 12.0 

Distance 
mm 

of roughness and waviness. An exact surface frequency 
at which a physical discontinuity exists between wavi­
ness and roughness is; however, not obvious in any of 
the spectral estimates. 

4 INVESTIGATION OF THE ERRORS OF FORM 

In the previous section, it was pointed out that the 
values of the slopes of the spectral estimates of a few of 

II[ 
E 
<( 

Distance 
mm 

(a) Fly-milled number 3 (b) Fly-milled number 2 

Fig. 5 Surface profiles of two fly-milled specimens 
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the specimens did not appear to be tending to zero at 
the longer wavelengths. For a number of these particu­
lar specimens, the depth of cut of the machining 
changed visibly along the length of the specimen in the 
direction traced. An examination of the profiles 
acquired from the remainder of these specimens, whose 
spectral estimates did not converge, revealed that they 
had also been machined in a non-uniform manner. For 
example. Fig. 5a shows the profile of a specimen whose 
spectral estimate diverged at longer wavelengths and 
Fig. 5b shows the profile of a specimen whose spectral 
estimate tended to zero slope at longer wavelengths. 
The occurrence of a non-convergent spectral estimate 
could always be directly linked to a non-uniformly 
machined specimen. The possible causes of such 
machining errors, termed 'errors of form·, are discussed 
in (2). Algorithms for detecting and assessing these 
machining errors are investigated in Section 7.2. 

5 SPECTRAL ESTIMATE MODELS WHOSE 
DESCRIPTION INVOLVES A SMALL NUMBER 

OF PARAMETERS 

Since the spectral estimates of those specimens manu­
factured without errors of form are nominally of identi­
cal shape, several models of these estimates which can 
be described by a small set of parameters are con­
sidered. One method suggested in the literature for 
obtaining a small set of parameters from data with 
known spectral estimates is that of fitting an auto­
regressive moving-average (ARMA) process (9) to the 
data. However, the power spectra of those ARMA pro­
cesses of low order do not correspond closely to the 
shape of the spectral estimates found from this work. 
The authors believe, therefore, that these models are of 
little practical use in surface texture measurement. A 
study of the frequency characteristics of linear systems 

to-' 
10-! 

.§llto--' 

95 per cem 
' confidence 

' in1en·al 

\ 

I 

102 IO-' 104 

f 
Hz 

(a) End-milled number t3 

' ' ' 
~~:.~e~;: I 
interval 

' ' 
10-sb-~----~--~--~ 

t01 tO·' t04 

f 
Hz 

(c) Shaped number I 3 

resulted in the identification of the shape of the spectral 
estimates as closely resembling that of the gain­
frequency response of a linear second-order system with 
unity damping factor. This model had an equation of 
the form 

K 
G(f) = -+-U-11~--,..)2 (I) 

where K is the intercept on the vertical power axis and 
f" is the cut-off surface frequency. Equation (I) extends 
the analysis of ( 1) to lower surface frequencies. since for 
f'$> }~this is of the same form as the equation predicted 
experimentally by Van Deusen. Note that equation (I) 
is the Fourier transform of the exponential autocorrela­
tion function used by Whitehouse and Archard ( 10) to 
describe certain aspects of roughness data. 

Since equation (I) can be written in the form 

K (!)" G(f) =I+ }; 12) 

a linear least-squares line could be used to obtain esti­
mates of the values of the parameters K and/~ from the 
spectral estimates of the surface data. However. because 
this curve fitting involved the calculation of frequency 
values to the power 4, and the frequency and power 
values in the spectral estimates vary over a range of J-4 
decades, this method proved to be ill-conditioned. 
Instead, a least-squares successive approximation was 
employed which involved fitting the logarithmic version 
of equation ( l) to the logarithmic spectral estimate. 
Figure 6 shows typical curves of the form of equation 
(l) fitted to the spectral data of specimens manufactured 
with no machining errors. The fitted curves approx­
imated to the spectral estimates within the confidence 
interval at all wavelengths in the band investigated. 

c:l" to--' -· E •<.:J "-

10-s 

95 per cen1 
confidence 
inlenal 

' 
' 

101 103 104 

..1_ 
Hz 

(b) Slab-milled number 14 

101 10·1 

f 
Hz 

95 peH'COI l 
confidem:e 
interval 

\ 

\ 

(d) Ground number 6 

Fig. 6 Fourier spectral estimates 
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Hence, for a sufficiently long traverse length, the under­
lying form of the spectral estimates could be described 
completely by only two parameters, namely K andfc in 
equation(!). 

6 MEANINGFUL PARAMETERS 

Although K and j~ are able to describe completely the 
form of surface data in the frequency domain, current 
engineering practice requires the following alternative 
description to guarantee a sound understanding. An 
estimate of the variance of the acquired data, &2

, can be 
obtained from the area under a curve represented by 
equation (I); hence 

a = K -
•2 • ifm,. df 

fm; 0 ( ( + J/JY 
(3) 

where K and fc are the estimated values of K and fc 
respectively and !max and /min are the maximum and 
minimum surface frequencies in the spectral estimate. 
Integrating equation (3) yields. 

enabling the variance of the data to be estimated from 
the parameters K andjc. If J:nax--> oo andfmin--> 0, equa­
tion (4) becomes 

-2 rri?.fc 
11o = -2- (5) 

where &5 is the total area under a curve of the form of 
equation (!). Dividing equation (5) by equation (4) 
yields 

A=~ {tan_, (r) _tan-[ ( ].i")r[ (6) 

where A is an adjustment factor. By forming the 
product of the variance of the data with A, an estimate 
of the total area under a curve of the form of equation 
(I) can be obtained. 

Two parameters can now be defined. The first param­
eter is termed the 'surface r.m.s. value', denoted by 1/J., 
and is the r.m.s. value that would be computed from a 
trace of infinite length. The value of the parameter is 
obtained from uJ A. Such a parameter was chosen since 
r.m.s. values are already established in surface texture 
analysis. The second parameter is termed the 'surface 
cut-off wavelength', denoted by A0 , and is the wave­
length corresponding to the surface frequency fo. The 
estimate of the surface cut-off wavelength f.< is the wave­
length at which the only discernible change in the form 
of the spectral estimates occurs, and is the half-power 
point of the spectral estimates. This parameter is purpo­
sely termed similarly to that of 'cut-off wavelength', 
which is employed to define the amplitude response 
characteristic of the standard filter used in the surface 
roughness analysis to remove the longer wavelengths on 
the surface texture. This is no coincidence. Since there 
are no other wavelengths at which an identifiable 
change occurs between roughness and waviness, A.< is 
the value which the standard filter cut-off wavelengths 
are used to simulate. 

Proc lnsln Mech Engrs Vol 200 No CJ 

Note that if the integral in equation (3) is performed 
between the limits of fo and fmax, the area under the 
spectral curve between these limits is 

rri?.fc 
4 

(7) 

and hence the line f = fc divides two regions of equal 
a·rea. Thus, the root mean square value of the data at 
surface frequencies greater thanfc, that is the root mean 
square value of the roughness data, is half the surface 
r.m.s. value. 

7 IDENTIFICATION OF MACHINING ERRORS 
AND INSUFFICIENT TRACE LENGTHS 

The two sources of machining errors, namely machining 
peaks and errors of form, which have been identified. 
cause the spectral estimates to depart significantly from 
the form of equation ( 1). For a complete identification 
of the surface texture of the machined specimens, algo­
rithms for the detection of the machining errors must be 
employed. 

The methods which enable the two types of machin­
ing error to be detected are now discussed with a view 
to including them in an identification program devel­
oped for the automatic assessment of surface texture. To 
verify the presence of errors of form, a check must be 
incorporated to ensure that the trace is of adequate 
length, since it is possible under certain circumstances 
to identify incorrectly non-uniform machining when in 
reality the traverse length was insufficient. 

7.1 Identification of the machining peaks 

The physical cause of the machining peaks has been 
discussed, and such peaks were found to be present in 
only fly-milled, end-milled and turned surface speci­
mens. It was also found that machining peaks could not 
be sustained at surface frequencies greater than about 
50 kHz. In addition, due to the physical dimensions of 
the cutting tool, these marks are unlikely to occur at 
wavelengths longer than a few millimetres. Hem:e, in 
order to detect these machining errors, it is necessary 
only to measure the magnitude of the spectral estimates 
relative to the fitted curve described in Section 5 in this 
wavelength band, and to record the maximum differ­
ence. If this is of a magnitude greater than that of the 
confidence interval for that spectral estimate, a machin­
ing peak is noted as being identified. 

7.2 Identification of the errors of form and 
insufficient traverse lengths 

Errors of form were discussed in Section 4 and resulted 
in the spectral estimates of the surface texture not con­
verging within the wavelength band investigated. The 
method used to identify this phenomenon required the 
estimation of an additional r.m.s. value. This involves 
splitting the acquired data record into two halves, recal­
culating the data relative to least-squares lines fitted to 
each half individually and then computing the mean of 
the two r.m.s. values obtained from each of these two 
sample records. An estimate of the surface r.m.s. value 
obtained from a trace half the length of the one actually 

©IML-chE 19K6 
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collected can then be computed. The change in the esti­
mated surface r.m.s. value by halving the apparent trace 
length can then be used as a measure of the relative 
convergence of the estimates as the wavelength 
increases. If the spectral estimates are such that they are 
of the form given by equation ( 1), then the two r.m.s. 
values should not differ significantly. However, because 
the estimates of the parameters become worse with 
decreasing traverse lengths (see Section 10), this method 
could incorrectly identify errors of form when short 
trace lengths are used. The method for distinguishing 
between the errors of form and insufficient trace length 
was to calculate the ratio of the trace length to the 
surface cut-off wavelength. If this is less than 2, a 
reasonable estimate of the surface texture parameters 
cannot be obtained (see Section 10), and the traverse 
length is insufficient for an analysis of the form errors. 

8 SURFACE IDENTIFICATION PROGRAM 

A How diagram of the program used for the identifica­
tion of the machined surface specimens is shown in Fig. 
7. The surface data must be acquired unfiltered and 
collected relative to a straight line datum rather than to 
a skid datum. The program is able to compute estimates 
of the two parameters described in Section 6. Machin-

Any of the following. opti~n!t can now be !>elected: 

Assess the machining errors 
and check if the uaverse 
length is sufficient for an 

adequate estimation of the 
parameters 

CompUie the 
Fourier !tpectral 

e!ltlmate 

Fig. 7 Surface identification program 
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ing errors due to pick-up marks and non-uniform 
machining are detected as described in Section 7 and a 
warning given if these are present. In addition, if by the 
method described in Section 7.2, the trace is found to be 
of insufficient length, a further warning is given that a 
longer trace is necessary for a proper assessment of the 
surface texture. If the traverse is of insufficient length 
and/or machining errors are present, values are esti­
mated for the parameters, but warnings are given that 
the values are likely to be poor estimates. 

9 A WRITTEN ASSESSMENT 

In addition to providing estimators of the surface 
texture parameters, the surface identification program 
also supplies a written assessment of the surface texture. 
The comments are based on the values of the various 
parameters calculated for all the machined specimens 
described in Tables I and 2. For the surface r.m.s. and 
surface cut-off wavelength parameters. these comments 
depend on the grade of membership of the parameters 
as given in Tables 3 and 4. Comments which depend on 
the magnitude of the machining errors, as discussed in 
Section 7, are also provided by the program and these 
are given in Tables 5 and 6. 

Table 3 Comments provided by the surface identification 
program depending on the grade of membership of 
the surface r.m.s. value 

Surface r.m.s. range 

Jlm 

> 20 
1(}.-20 
5-10 
2-5 
t-2 

0.5-1.0 
0.2-0.5 
0.1-0.2 

0.05-0.1 
0.02-0.05 
0.01-0.02 

<O.ot 

Comment on the magnitude of the 
surface undulations 

Extremely large 
Very large 
Large 
Quite large 
Greater than average 
Average 
Less than average 
Quite small 
Small 
Very small 
Extremely small 
Out of range 

Table 4 Comments provided by the surface identification 
program depending on the grade of membership of 
the surface cut-off wavelength value 

Surface cut-off 
wavelength range 

mm 

>4 
3-4 
2-3 

1.5-2.0 
1.0-1.5 
0.7-1.0 
0.5-0.7 
0.4-0.5 
0.3-0.4 
0.2-0.3 
<0.02 

Comment on the spacing 
of the lexture peaks 

Extremely widely spaced 
Very widely spaced 
Widely spaced 
Quite widely spaced 
Above average spacing 
Average spacing 
Below average spacing 
Quite closely spaced 
Closely spaced 
Very closet y spaced 
Extremely closely spaced 
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Table 5 Comments provided by the surface identification 
program depending on the grade of membership of 
the machining peaks 

Maximum devialion of 
lhe speclral values 

from the fitted curve 
relative to the 

95 per cenl confidence 
interval 

>4 
}-4 

2-3 
t-2 
<I 

Commenl on the 
pick-up marks 

Badly marked by pick-up 
Very significanl pick-up marks 
Significant pick-up marks 
Possible pick-up marks 
(No comment given) 

Table 6 Comments provided by the surface identification 
program depending on the grade of membership of 
the errors of form 

Percentage increase 
in the estimated 

r.m.s. value or the 
data compared with 

that or a traverse 
or half the length 

employed 

>40 
3(}-40 
21}-30 
t 1}-20 
1}-10 

Comment on the 
errors or form 

Extremely large errors of form 
Very significant errors of form 
Significant errors of form 
Possible errors or form 
(No comment given) 

10 LIMITATIONS OF THE PRESENT 
ANALYSIS 

The analysis formulated has resulted from gathering 
data from traverses of length 60 mm, but the variations 
in the parameter estimates will be related to the traverse 

' 

SI'E: 
•(,) "-

95 per cent l 
confidence 
interval 

\ 

I 

I 

I 

lo-6~--L---~----~~ 

SI'E: 10-5 
•(,) "-

102 to3 to• 
f 

Hz 

(a) Traverse length =60 mm 

, ~onfidence 
95 per cen1 I 

' mterval 
\ 

I 

I 
I 

length. Hence, in order to assess the applicability of the 
results when traverses of only a few millimetres are 
available, several traverses of various lengths were col­
lected and the variation of the parameter estimates with 
traverse length assessed. Figures 8 and 9 show the 
results for a smooth ground specimen {number 2) and a 
slab-milled surface (number 15) respectively. For the 
ground specimen, the surface cut-off wavelength was 
about 0.2 mm, and hence traverses as short as 0.4 mm 
were permitted by the surface identification program. 
For the slab-milled specimen, i:c was approximately 
6 mm, but the estimates of t/1, and i.e were only signifi­
cantly affected (by 5 per cent or more compared with 
the longest traverse) for traverses shorter than twice the 
surface cut-off wavelength (Table 7). 

Table 7 Parameter values and coefficients of variance for a 
number of traverses of different length for a ground 
specimen and for a slab-milled specimen 

Type of 
specimen and 

specimen number 

Ground, 2 

Slab-milled, 15 

SI'E: 
•(,) "-

Traverse 
length 

mm 

60.0 
30.0 
t5.0 
7.5 
3.75 
1.87 

60.0 
30.0 
t5.0 

103 

f 
Hz 

7.5 
3.75 
1.87 

' I 

Parameter estimates and 
coefficients or variance 

averaged over five traverses 

~ 
Jim 

0.34 
0.35 
0.36 
0.35 
0.31 
0.38 

6.52 
6.72 
6.91 
8.0t 
8.87 
4.77 

95 per cen1 I 
confidence 
imerval 

0.054 
0.071 
O.t2 
O.t6 
0.21 
0.24 

0.03t 
0.042 
0.052 
0.06t 
0.087 
O.tt 

I. 
-
mm 

0.12 O.IJ.IJ 
0.13 0.06Y 
0.12 0.12 
0.14 0.15 
0.16 0.18 
0.11 0.22 

6.07 0.032 
5.97 0036 
5.67 0.051 
5.64 0.052 
3.32 0.076 
1.64 0.092 

(b) Traverse length=30 mm 

10-5 

- E C. I" •(,) "-

95 per cen1 l 
..... ~onfidence 

' tnterval 

' ' 

(c) Traverse length= t5 mm (d) Traverse length=7.5 mm 

Fig. 8 Fourier spectral estimates of ground specimen number 2 
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(c) Traverse length= 15 mm (d) Traverse length=7.5 mm 

Fig. 9 Fourier spectral estimates of slab-milled specimen number 15 

The surface r.m.s. value is obtained from the surface 
texture data values and hence its expected variance is 
similar to that of other surface texture parameters, such 
as the r.m.s. value per millimetre, whose variances are, 
in turn, similar to that expected of the surface texture 
height parameters, such as Ra. Because the coefficients 
of variance of the surface r.m.s. value and the surface 
cut-off wavelength were generally similar in the tests 
performed. (Table 7), the variances of both parameters 
are of the order expected of the currently used rough­
ness parameters. 

Since the program permits a number of traces to be 
analysed simultaneously, data acquired from suitable 
parallel traces can be used in order to smooth the spec­
tral estimates and hence reduce the expected variance of 
the estimated parameter values. 

11 A SIMPLE THREE-DIMENSIONAL 
ASSESSMENT 

The specimens were purposely manufactured such that 
the machined face was square and of side 60 mm, and 
hence a traverse of at least this length could be obtained 
in any direction on the surface. Figure I 0 shows a 
typical result of taking traces at various angles with 
respect to that usually chosen, namely at right angles to 
the direction in which the surface was machined by the 
tool. The underlying form of the spectral estimates, as 
described by equation (I), was obtained independently 
of the direction of the traverse. In addition, it was found 
that the value of the surface cut-off wavelength for a 
traverse taken at an angle () with respect to the usual 
direction of traverse could be estimated by 

i. = .j i~ cos2 
() + l~0 sin2 

() (8) 

©IMechE 1986 

where i 0 and J90 are the estimated values of the surface 
cut-off wavelength for traces taken at angles of oo and 
90° respectively to that usually traced. Hence only two 
traverses are required in order to obtain an assessment 
of the surface cut-off wavelength for a three-dimensional 
surface texture. However, no similar relationship could 
be derived from the surface r.m.s. value, since its 
maximum value did not often lie in the usual direction 
of traverse and nor did it vary uniformly with the angle 
of traverse. 

12 GENERAL APPLICABILITY OF THE 
RESULTS 

To determine whether the results collected here are 
applicable only to the mild-steel machined surface speci­
mens, several other materials were tested. The spectral 
estimates shown in Fig. II were obtained from traces 
taken from an unmachined rolled bar, a reamed hole. a 
turned brass bar and a stylus instrument standard 
specimen which is used for calibrating the Talysurf 
instrument. The form of these spectral estimates is thus 
apparently not restricted to machined specimens and 
further investigations are necessary to determine the 
extent to which the present analysis applies. 

Figure 12a shows the spectral estimate of a ground 
specimen and Fig. 12b shows the spectral estimate of 
the same specimen after it has been subjected to wear. 
The form of the spectral estimates both before and after 
the wear test conformed to equation (1), and hence the 
surface texture parameters, whose values changed sig­
nificantly, were able to describe completely the changes 
which took place in the surface texture. 
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Fig. 10 Fourier spectral estimates of end-milled specimen number 7 at 
various angles with respect to the usual direction of traverse 
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Fig. II Fourier spectral estimates of a range of materials 
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Fig. 12 Spectral estimates of a ground specimen 

13 CONCLUSIONS 

It has been demonstrated how a complete description of 
the surface texture of machined specimens can be for­
mulated. If no machining errors are present, two param­
eters uniquely describe the shape of the spectral 
estimates and hence completely identify the surface 
texture. The first parameter is termed the 'surface r.m.s. 
value' and can be defined as that r.m.s. value of a 
surface profile obtained from a certain traverse length, 
greater lengths than which would yield a value of no 
significant practical difference: The second parameter is 
termed the 'surface cut-off wavelength' and can be 
defined as that wavelength which is intermediate 
between the waviness and the roughness bands of the 
surface texture. 

More precisely, the surface r.m.s. value is the asymp­
totic value of the r.m.s. value of the data as the traverse 
length is increased, and the surface cut-off wavelength is 
the wavelength at which the power in the spectral esti­
mate has fallen to half its maximum value. The surface 
cut-off wavelength is the approximate wavelength at 
which the form of the spectral estimate changes, the 

©!MechE 1986 

half-power point being the most common way of 
describing such a transition. Since there is necessarily 
only one such transition in these spectral estimates, this 
is the only wavelength at which a change from rough­
ness to waviness could conceivably occur. 

The derivation of these parameters does not depend 
on a subjective assessment. They are able to describe 
spectral estimates of surface profiles both within the 95 
per cent confidence interval and throughout the wave­
length range investigated of almost four decades. 
extending from a wavelength of 10 11m to a wavelength 
of 60 mm. This result was made possible by developing 
a digital spectral smoothing technique which did not 
truncate the low-frequency content of the spectral esti­
mates. By showing that the spectral estimate values 
converge to a final steady value at the longer wave­
lengths, the investigations revealed that surface texture 
data are stationary. 

If machining errors are present, then the values of the 
estimates for these two new parameters will be affected: 
the surface identification program developed will give a 
warning of the presence of the errors and provide a 
written assessment of their significance. For users not 
familiar with the expected magnitudes of the parameter 
values, a written account of the magnitude of estimated 
values is given. 

The surface texture description provided by the two 
new parameters derived here can be seen as having dis­
tinct advantages over that provided by the two param­
eters normally employed, namely the cut-off wavelength 
value and the Ra value. Although the latter have been 
widely applied without experimental justification of the 
accuracy of the surface texture characterization provid­
ed, their prevalence has confirmed the usefulness of the 
description they produce. The cut-off wavelength, which 
has five possible values (4), is an approximation to that 
wavelength at which occurs the only discernible change 
in the form of the spectral estimates, defined here as the 
surface cut-off wavelength. The value of the cut-olf 
wavelength is estimated solely by the stylus instrument 
operator from an inspection of the surface, a task 
requiring considerable skill. The machine computation 
of the surface cut-off wavelength eliminates the need for 
a skilled operator and consequently produces a desir­
able simplification of the surface texture measurement 
procedure. It is important to point out that since the 
cut-off wavelength value determines the time constant 
of the standard cut-off filter, its selection has a signifi­
cant influence on the values of the roughness param­
eters, including Ra (II). This problem is overcome in 
the computation of the surface r.m.s. value, when the 
need to select and apply a filter to the data is avoided. 

The general applicability of these results has yet to be 
proved, but investigations initiated in Section 12 
suggest that there will be a wide application for the 
analysis formulated here. 
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THE IDENTIFICATION OF SURFACE TEXTURE SIGNALS 

Abstract 
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The industrial analysis of surface texture 
entails the processing of data acquired from a 
stylus which traverses a single track across a 
surface. Until recently, the sole design crit­
erion for surface texture was that the mean 
amplitude of the measured surface undulations 
should be within specified tolerance limits and 
consequently it was only necessary to obtain a 
single roughness parameter to indicate the "av­
erage height" of the surface undulations. Al­
though this is the only parameter normally 
quoted, an additiona 1 parameter is in valved 
during the pre-processing of the data, namely 
the "cut-off wavelength". This parameter must 
be estimated by the stylus instrument operator 
in order that an appropriate filter can be app­
lied to the surface texture data before the 
roughness parameter is computed. However, with 
the increasingly· stringent demands being placed 
on the components of mechanica 1 systems, the 
necessity has arisen fer a more precise descrip­
tion of the form of surface texture. The work 
described in this paper is aimed at meeting this 
need by considering methods of improving the 
characterization of surface texture data. In 
particular, an analysis of the complete profile, 
rather than an analysis restricted to the sur­
face roughness only, is shown to permit the 
identification of an underlying Fourier spectral 
shape, whose complete description requires only 
two parameters. The first parameter, termed the 
•surface r.m.s. value", is an estimate of the 
root-mean-square value of the texture amplitude 
for a profile of infinite length. The second 
;-arameter, termed the "surface cut-off wave-
ength", is the result of automating the comp­

utation of the cut-off wavelength. Consequent­
ly, the analysis eliminates the need for the 
s~lus instrument operator to select an appro­
priate filter, thereby significantly simplifying 
the data acquisition procedure. The analysis 
has been incorporated into a surface identifica­
tion program, which enables these two new para­
~ters to be calculated and also permits the 
presence of the two types of surface machining 
error isolated in this work to be detected. 

I. Introduction 

The purpose of investigating surface tex­
Wre is the determination of engineering proper­
ties. For example, under the same operating 
conditions, a smooth surface will generally wear 
at a slower rate than a rough surface, yet a 
certain degree of roughness is required in order 
to maintain an oil film which is of sufficient 

· thiti:kness for 1 ubrication pu::poS':!!':. Other im­
portant properties which are dependent upon 
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surface texture include friction, corrosion, 
fatigue and both thermal and electrical con­
ductivity. 

The stylus instrument is the most popular 
device available for the assessment of surface 
texture. This instrument produces an ana 1 ague 
of the surface texture by amplifying the vert­
ical deflections of a stylus of radius approx­
imate! y 2 11m traversed _.across the sur face at a 
speed of about l mm s- 1 • A typica 1 surface 
texture signal produced by such an instrument is 
shown in figure 1. 

A variety of methods exist for processing 
surface texture signals; many of these methods 
are provided by stylus instruments. The most 
common procr.dure is to first high-pass filter 
the signal in order to reduce the effect o( the 
overall shape o( the surface on any subsequent 
analysis which is performed. Secondly, a single 
roughness parameter dependent upon the average 
height of the signal, usual-ly a root-mean-square 
(r.m.s.) parameter, or a similar quantity, is 
calculated. There are three major disadvantages 
associated wllh this procedure and these are now 
considered. 

(1) The cut-off wavelength (wavelength is 
used in preference to frequency in surface tex­
ture analysis) of the high-pass filter is sel­
ected by the stylus instrument operator from a 
set of five standard filters[l]. The cut-off 
wavelength values of these standard filters 
cover a range of two decades of wavelength. 
Because of this limited number of possible cut­
off values, an estimation error of 50% wi 11 
commonly result, thereby contributing to a sig­
nificant error in the value of the roughness 
parameter which is subsequently calculated. 
Moreover, there is also the possibility of human 
error in the selection procedure itself. Con­
sequently, there are two important improvements 
which could be made to the pre-processing o( 
surface texture signals, namely to automate the 
procedure of filter selection and to permit the 
cut-off wavelength to be selected from a contin­
uous range of cut-off values. 

121 There is no sound engineering basis 
for the need to filter the surface texture sig­
nal. Hence, a detailed analysis is needed in 
order to determine on what particular physical 
attribute of the surface texture such filterill':J 
is based. 

(3) With the increased use of surface 
texture analysis, the description provided by a 
single average height parameter is now proving 
in~dequatP. The need for a more detailed des­
cription of surface textui~ signals haG b~cn 



reflected in tho introduction in recent yuars of 
stylus instruments capable of calculnting a 
large numllar, often more than 30, new pilrn­
mctersl21. Rather than providing a solution, 
this prof us ion has bred con fusion 13 I. 1 n part­
icular, there art? no gen<>ra I agreements reqard­
ing th~ use of any onP parameter in any given 
,;~t of circumstnnces, or in what way physical 
piH!nom,•na are reflected in paramet~r vn lues. 
Con,.;,•qu<.'nt I y, there exists a requirement ror a 
n••w par·anrcter, or sma II numher of parameters, 
~o·hic:h cnn ~~~·scribe completely the form of sur­
fact' t<•xturc signals. 

l. ftnillysis procedure and results 

ft I <Hqe range of ana I ysis methods is ilVa i 1-
;rldt• to.1id the identification of signulsl4). 
In Lhis work, various orthogonal trilnsforms were 
compared as to their ability to charilcterize 
sur race texture signa lsl5]. From this initin 1 
comparison, the Fourier transform wns selected 
rur further investigation. The following pro­
co•s,;.i ng methods were adopted. 

(1) The norma 1 procedure of high-pass 
r i 1 tering was a voided, but a best-fitting 1 ine 
in the least-squares sense was computed and the 
data values recalculated relative to this line. 

(2) To assist in the detection of any 
overal I pattt?rn in the spectral estimates of the 
signa 1, traces of over 50 mm in 1 ength were 
acquired. This is of an order of magnitude 
longer than that normally used for surface tex­
ture ana lysis. 

(31 The raw spectral estimates were sm­
oothed by the "pplication of non-recursive sec­
_ond-order di~; al filter. This was applied in 
such a manner that the lowest frequency present 
in the spectral e"timates remained the same as 
that in the raw eb~imates. 

(4) A total of 144 mild-steel test speci­
mens were prepared by a range of processes, 
producing end-mi lied, fly-mi !led, slab-mi lied, 
shaped, turned and ground surfacesi6J. The 
unbroken lines shown in the spectral estimates 
of figure 2 are typical of the results obtained 
from t~e test spe·.,imens. In this figure, freq­
uency 1s the rec1: roca 1 of the wave I ength act­
ually present on the surface; for example 1 kllz 
corresponds to a wavelength of 1 mm. These 
results demonstrate that there is a common form 
to the spectral estimates of surface texture 
data. 

3. Identification of the spectral form 

To chnracterize the spectral estimates a 
number of mathematical functions and models for 
examp~e aut~reqressive moving-average proce~ses, 
were. 1nvest1gatotd. The most consistent resu 1 ts 
were produced by t!-re function 

G( fl = I< 
t 1 I 

where G( f I is the spectrum, f is frequency and K 
and fc are parameters determined from the sur­
face under investigation. The broken 1 ine11 i.n 
figure 3 are curves of this foam which 9ive th~ 
best fit .in a least squares sense to the spec­
tral est1mate of the surface under investiga­
tion. In fact, such a fit 1 ies inside the 95% 
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confidence inter va 1, e"xcept where one, or both, 
of the conditions outlined below occurred. 

Ill The spectral estimates of a few of the 
test specimens did not converge to a constant 
value with decreasing frequency, for example, 
figure 3. Inspection of the surfaces of such 
specimens revealed that they displayed "errors 
of form", th~t is, they had not been uniformly 
prepared. ln filet, it is probable that during 
production either lhe machining !Jarameters had 
changed, or the position of the machining bed 
had a 1 tered. 

(21 ft number of test specimens displ~yed 
•mnchining peaks" in their spectral estimates, 
figure 4. Such peaks occurred only for those 
specimens which displayed upick-up marks" on 
their surface, resulting in a texture which, 
over relatively short lengths, was almost sin­
usoida 1 in nature. 

4. Surface identification program 

The two mnin requirements for a surface 
identification program based on the new results 
are seen to be as follows. 

11) 1'hc parameters which describe t;,e 
spectral estimates need to be comprehensible in 
terms of parameters already in common use 1n 
surf ace texture ana I ysi s. 'l'he parameters Y. and 
fc in equation 1 completely describe the spec­
trill estimates, but to avoid difficulty in un­
derstanding of the meaning of the parameter K, 
the following alternative description is adopt­
ed. Integrating equation 1 between the limits 
f 111 in a_nd f 111ax' the minimum _and maximum fr_equen­
cles 1n tne spectral est1mate respect1vely, 
yields 

"'here o ~ is variance. If frnax - "'and fmin - 0, 
the right-hand side of equat1on 2 becomes 

nl<fc/2 I 3} 

Dividing equation 3 by equation 2 gives 

where ft is an adjustment factor. 

Two pnrametcrs can now be defined which are 
not only me3ningful to those conversant with 
surrac:e texture analysis, but also completely 
desc~1be thr form of the spectral estimates 
obta1ned f~om surface textur.; data. The first 
paranreter \5 termed the *surtace r.m.s. v~tlue·, 
dt?noted by 's· 'l's is the r.m.s. value that 
would be computed from a trace of infinite 
length and its value can be estimated by formi.ng 
ii/A, where the circumflex denotes an estimated 
value. The second parameter is termed the "sur­
[ilce cut-of[ wavelenqth", Ac, and is the recip­
rocal of fc. The wavelength Ac' being the half­
power point of the spectrum, 1s the wavelenc_:th 
at which the only discernible change in ~he form 
nf the !'(h•ct· ra 1 estimate uccurs. Consc"iuent I y. 
(o 1 1 owing the argument presented in the intro­
duction, this is the value which is estimated by 
the usc or standard filters. 



(2) The program will also need to identify 
the errors produced during the machining of the 
surface. The errors of form are identified by 
detecting whether there is a significant differ­
ence between the estimates of 's obtained from 
two traces, one twice the length of the other. 
The pick-up marks are recorded as identified if, 
at any frequency, the difference in power bet­
ween that indicated by the spectral estimate 
curve and that shown by the curve fitted to it 
is greater than the 95% confidence interval. 

A flow diagram of the surface identifica­
tion program developed in this work is shown in 
figure 5. 

5. Conclusions 

The proposals outlined in the introduction 
have been investigated in the work presented in 
this paper. 

(ll The need to select a cut-off wave­
length has been circumvented bY the new analysis 
proposed in this paper. The cut-off wavelength, 
now re-termed the surface cut-off wavelength, is 
now not only calculated automatically by the 
surface identification program, but is a I so 
obtained from a continuous range of values. 

(2) There is only one wavelength in the 
spectra I estimates at which any discernible 
change in the form of the estimates occurs. The 
most usua I way of defining such a change is the 
half-power wavelength. This corresponds to the 
value of the surface cut-off wavelength computed 
by the surface identification program. Con­
sequent I y, there does exist a physics I attribute 
exhibited by the surface itself on which the 
cut-off wavelength is based. However, there is 
no need to filter the data; indeed the complete 
analysis presented here has been produced with­
out needing to resort to the manual selection of 
a filter. 

(3) A surface manufactured without machin­
ing errors can be completely described by just 
two parameters. This is a significant improve­
ment on the present method of analysis, which 
does not offer a complete description and in 
which the value of the first parameter, used to 
describe the average height of the texture, is 
significantly affected by the value of the man­
ually-selected second parameter. Moreover, in 
the new analysis presented here, a surface id­
entification program is now available which is 
able to identify certain types of error intro­
duced in the machining process. 

References 

l. BS 1134: 1972 (British Standards Institu­
tion). 

2. Dagnell,H. Exploring surface texture. Rank 
Taylor Hobson, U.J<., 1980. 

3. Whitehouse,O.J. The parameter rash - is there 
a cure? Presented at the Second International 
Conference on Metrology and Properties of Engin­
eering Surfaces, Leicester, U.K., Apri 1 14-16, 
1982. 

4. Oppenheim.A.V. and Shafer,R.W. Digital signal 
processing. Prentice-Hall Inc., 1975. 

5. Mulvaney,O.J. Identification of surface tex­
ture signals by orthogonal transform anali}Sis. 

183 

21 

Ph.D. thesis, University of Leeds, U.K., 1983. 

6. Mulvaney,O.J., Newland,O.E. and Gi ll,R.F. 
Identification of surface roughness. Pcoc. Instn 
Hech. Engncs, 199, C4, 1985, pp. 281-286. 

Amplitude (~ml 

15 

10 

5 

0 

-5 

-10 

-15 

2 4 6 8 10 Distance 
(mm) 

figure I. Surface texture signal 

I 95% confidence 
', interva 1 

\ 
~ 
~ 

lo-• 

G< f 1 
(~ml l 

f(Hz) 

(a) end-milled specimen 

I 
95\ canfidenc~ 

interval 

f(Hz) 

(b) slab-milled specimen 

Figure 2. Spectral estimates ot 
surface texture s1qnals 



G( f) 
(~m2) 

r--=-==-=,__......._ I 
95\ confidence 

interval 10- I 

' ' \ 
' \ 

\ 

' \ 

~ 
\ 

' ' 10- 5 b---~~----~~----~--~~ 
10 2 10 3 10" f(llz) 

c< r> 
(~m2) 

(c) shaped specimen 

I 
95\ confidence 

interval 

10' f (liz) 

(d) ground specimen 

Figure 2(cont). Spectral estimates of 
surface texture signals 

10 3 

I 95% confidence 
interval 

Figure 3. Spectral estimate displaying 
an error of form 

184 

22 

I 95\ confidence 
interval 

Figure 4. Spectral estimate indicating 
a machining peak 

M)' of the follQol'ing cptiau: 
can ruw b? se I ected 

,---------. 

~n"'tf;Miofthe 
ce r.rn.s. value ard 

the surface cut-oft 
~lenqt.h value> 

o:::~Tp.~tE'~ 
fourier s~ral 

estunau• 

--,-----__.J 

assess the aactnn11'9 error! and 
~ U the tsaverse lenqt.h is 

su.frtcient for an iidcquatc 
estimation of the parameten 

f 
Figure 5. Flow diagram of the surface 

ide n t i !J...<::!!.~-~2..!!_1?..~09 ram 



PAPER 56 



23 

407 

A comparison of orthogonal transforms in 
their application to surface texture analysis 
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I INTRODUCTION 

The stylus instrument used in the acquisition of the 
su~face data was a Talysurf 4 (Rank Taylor Hobson, 
Leicester) and the stylus deviations were measured rela­
tive to a straight line datum. The stylus was a general­
purpose conical type, with a truncated flat tip of radius 
2.5 11m; use of the skid and standard filter were both 
avoided. 

For the data acquired from a range of machined 
surface specimens, the orthogonal transforms most 
com~only used in engineering applications. namely the 
Founer, Walsh, phase-shift-invariant Walsh, BIFORE, 
Haar and cosine, are computed. These orthogonal 
t~ansforms are defined, in discrete terms, in the Appen­
d_lx. In the tra~sform computations. fast transform algo­
n~hms (I) are Implemented because they require at least 
2N IN times fewer operations, where N is the number of 
sampled data values. The spectral estimates G(f) are 
calculated from the transform coefficients, as shown in 
the Appendix. In the spectral estimates to be presented, 
t~e upper frequency limit is imposed by the physical 
d1mens1ons of the monitoring stylus and the lower fre­
qu_ency limit results from the application of an appro­
pnate spectral wmdow. 

As a ~esult of its more extensive use, greater knowl­
edge . ex1sts about . the effects of windowing on the 
Founer spectral est1mates than on the spectral estimates 
of the remaining orthogonal transforms under consider­
ation. Cons~que~tly, o~ly segment averaging was imple­
me!'ted (wh1ch IS equ1valent to averaging the spectral 
es.tJmates of a number of shorter traverses), and spectral 
wmdows were not applied in these investigations due to 
the unduly favourable advantage this would have con­
ferred on the Fourier estimates. A technique known as 
wi~dow closi~g was employed. This involves firstly 
usmg the _versiOn of the window which is of length N, 
where N 1s the number of samples in the data record 
collected, and then successively halving the window 
le.ngth unti~ it is found that there are no significant 
differences ~ the spectr~l shapes when comparing the 
spectral estwates obtamed from consecutive calcu­
lations. The process produces successive discrete 

TM MS wa.s rt<till<d on Jo Oc1olwr 1985 and ..-as accepltd fo• publicotion on 5 
March 1986. 

increases in the bias and successive discrete decreases in 
the vari~nce o~ the spectral estimate. The chosen spec­
tral. est1m~t~ IS n~rmally considered to display the 
o~_>hmum b1asjvanance trade-off' for that particular 
~mdow and data record. A window length of approx­
Imately 0.5 mm was normally considered appropriate 
for the spectral estimates, and traverse lengths longer 
than 20 m~ generally gave adequate smoothing, 
although th1s was dependent upon the particular 
orthogonal transform being computed. The computer 
program developed enables a number of traverses to be 
analysed simultaneously, and hence the data for 
analysis need not have been collected entirely from the 
same trace, but could have been obtained from parallel 
traces of the same specimen, provided that the traverses 
were of a length at least equal to that of the spectral 
window. 

The sampling rate adopted to provide the results was 
approximately 200 Hz which, at the traverse speed of 
I mm/s employed, corresponds to a surface frequency of 
200 kHz. Surface frequency is defined here as the 
reciprocal of the corresponding wavelength on the 
surface. Approximately 200 sampled data values were 
therefore collected for each millimetre of surface tra­
versed, although the program ensures that the number 
of data values collected was always a positive integral 
power of 2, in order that all the data can be trans­
formed by the fast algorithms. The maximum number of 
sampled data values which can be collected in the 
program is 16 384, and hence traverses of lengths up to 
about 80 mm were permitted at this sampling rate. 

A comparison of the performances of the orthogonal 
t~nsforms is ~n~ertaken in the following two sections. 
F1rstly, a subjective comparison is made based on an 
inspection of the spectral estimates of all the machined 
specimens listed in Tables I and 2. Secondly, the rate of 
convergence of the spectral estimates is considered 
whic~ is ~mportant in assessing the quantity of dat~ 
requ1red m order to characterize the surface texture 
band being investigated. 

l THE SUBJECTIVE PERFORMANCE OF THE 
ORTHOGONAL TRANSFORMS 

Although all of the machined specimens listed in Tables 
I and 2 were assessed, two specimens are selected to 
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Table 1 Machined specimens Table 1 Ground specimens 

Slab-milled 

Speed 
2S 72 r/min I\ feed rate 

mm/min 32 104 2S4 32 104 

e 0·13 I 2 3 10 II 
.... 
o e 0·25 4 5 6 13 14 -se 
D. 

0 0·51 7 8 9 16 17 

Shaped 

Speed 
10 20 r/min 

1\Feedrate 
mm/min 0·30 0·63 0·94 0·30 0·63 

; 0·13 I 2 3 10 II 
u 

'Oe 0·25 4 5 6 13 14 -se 
D. 
u 
0 0·51 7 8 9 16 17 

End-milled 

~ lOS 230 r/min 

1\Feedrate 
mm/min 12·7 31·8 63·4 12·7 31·8 

:; 0·13 I 2 3 10 II 
u 

'Oe 0·25 4 5 6 13 14 -s e 
D. 
u 
0 0·51 7 8 9 16 17 

Fly-milled 

Speed 
230 530 r/min 

1\Feedrate 
mm/min 12·7 31·8 88·9 12·7 31·8 

~· 
0·13 I 2 3 10 II 

0·2S 4 5 6 13 14 -se 
0 0·51 7 8 9 16 17 

Turned 

Speed 125 260 
r/min 

1\Feedrate 
mm/min 20 40 80 40 80 

; 0·13 I 2 3 10 II 
u 

'Oe 0·25 4 5 6 13 14 -s e 
D. .. 
0 0·51 7 8 9 16 17 
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2S4 32 104 

12 19 20 

15 22 23 

18 25 26 

30 

0·_94 0·30 0·63 

12 19 20 

15 22 23 

18 25 26 

530 

63·4 12·7 31·8 

12 19 20 

15 22 23 

18 25 26 

810 

88·9 12·7 31·8 

12 19 20 

15 22 23 

18 25. 26 

540 

160 80 160 

12 19 20 

15 22 23 

18 25 26 

254 

21 

24 

27 

0·94 

21 

24 

27 

63·4 

21 

24 

27 

88·9 

21 

24 

27 

320 

21 

24 

27 

\ Feed -- 0·2S 0·5 0·1 mm 

~· 
0·005 I 2 3 

-s e 0·01 4 5 6 
u 
0 0·04 7 8 9 

display the features which distinguish the spectral esti­
mates of the various transforms. These two specimens 
are an end-milled specimen (number 11) and a turned 
specimen (number 19). Figures 1 and 2 show the spec­
tral estimates of the orthogonal transforms obtained 
from traces of these specimens. Peaks occurred in a 
number of the. spectral estimates at a surface frequency 
of 7 kHz for the end-milled specimen and at a surface 
frequency of 6 kHz for the turned specimen. The surface 
frequency at which these peaks arise can be predicted 
from the machining speed and feedrate used during the 
manufacture of the specimen. The term used for such 
peaks arising in the spectral estimates is 'machining 
peaks' (2), and several surface profiles were investigated 
in order to identify the surface features which give rise 
to these machining peaks. The majority of the machined 
specimens, however, did not display these machining 
peaks. 

Because of the familiarity gained by the abundant use 
of Fourier transform analysis in many branches of 
engineering, the performance of other orthogonal trans­
forms can reasonably be assessed by comparison with 
the results produced by the application of the Fourier 
transform. 

The Fourier estimates of most of the machined speci­
mens contained spectral coefficients which had their 
largest values in the lower frequency part of the band 
investigated, with the spectral coefficients becoming 
gradually smaller in magnitude with increasing fre­
quency. The only departure from this trend occurred in 
those specimens which contained a machining peak. 
The cosine spectral estimates closely approximated to 
those of the Fourier estimates for all the specimens, 
although a comparatively larger variance was 
occasionally present in the cosine estimates, for example 
in Fig. 1. 

The N-point Haar and BIFORE transforms provide 
only 1 + log2 N logarithmically spaced spectral coeffi­
cients. Because the spectral coefficients become more 
widely spaced in sequency as the sequency increases, the 
spectral shapes (Fig. 2c and d) are unable to follow that 
of the corresponding Fourier estimate. However, the 
Haar and BIFORE estimates were mostly similar to the 
underlying shape of the corresponding Fourier and the 
Walsh spectral estimates. The performance of the 
BIFORE transform was generally superior to that of 
the Haar transform in this series of trials, and an 
example of this can be seen in Fig. 1 where the 
BIFORE estimate (Fig. 1d) resolved the machining 
peak which remained undetected by the Haar estimate 
(Fig. 1c). Since their calculation time was at least one 
order of magnitude less than that of the other orthog­
onal transforms in these trials, the Haar, and particu-

~ !MechE 1986 
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Fig. 1 Spectral estimates obtained from turned specimen number 19 
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larly the BIFORE, transform could be of use in some 
applications, including surface texture analysis, should 
only a quick check rather than a detailed investigation 
of the spectral content of the data be required. 

The Walsh spectral estimates were of the same shape 
as the corresponding Fourier spectral estimates for 
most of the surface data, although the Walsh transform 
normally required a longer traverse length than the 
Fourier transform in order to provide similar spectral 
smoothing (Section 3). In contrast to the results of 
Weide et a/. (3), the respective spectral peaks in the 
Walsh and Fourier spectral estimates were of similar 
amplitudes, but the Walsh spectral estimates containing 
machining peaks often exhibited odd-sequency harmo­
nics of the peaks which were not present in the other 
spectral estimates, for example Fig. !e. Apart from these 
odd-sequency harmonics, the problems associated with 
the variation of the Walsh transform with circular time 
shifts of the data appear to be of little importance, since 
their effects are reduced by segment averaging and also 
since periodic signals are seldom encountered in surface 
texture analysis. 

The circular phase-shift-invariant Walsh spectral esti­
mates were generally of different shapes from those of 
the other spectral estimates, and many of the spectral 
coefficients had larger values than the corresponding 
coefficients encountered in the other estimates. In addi­
tion, any machining peaks which occurred were distrib­
uted over wider frequency ranges than those in the 
Walsh estimates. An explanation for these phenomena 
is now developed by considering the respective algo­
rithms of the Walsh and phase-shift-invariant Walsh 
transforms. Applying a phase-shift-invariant Walsh 
transform is equivalent to averaging the Walsh trans­
forms of all the possible time-shifted versions of the 
data. Each segment in a phase-shift-invariant Walsh 
spectral estimate will normally contain a less diverse 
range of leaked sequency components than is found in 
the individual segments which constitute the Walsh esti­
mates. Hence, on averaging the segments, the leaked 
values present in the individual segments are reduced 
more significantly in the Walsh spectral estimates than 
in the phase-shift-invariant estimates. 

The non-orthogonal R transform estimates followed 
the general shape of the Fourier and Walsh estimates at 
low sequencies. The computation time is similar to that 
of the Walsh transform, yet the R transform was unable 
to detect the machining peaks, which limits its use in 
surface texture analysis. 

3 RATE OF CONVERGENCE OF THE 
ORTHOGONAL TRANSFORMS 

A less subjective assessment of one aspect of the per­
formance of the orthogonal transforms was developed, 
namely that of the rate of convergence of the spectral 
estimates. This test consists of taking a series of suc­
cessively longer traverses until, for a fixed window 
length, there appeared no engineeringly significant dif­
ference between consecutive spectral estimates. 

One of the tests carried out is illustrated in Figs 3 and 
4. It was found that, in general, those transforms invari­
ant to circular time shifts of the data, namely the 
Fourier, cosine, BIFORE and the phase-shift-invariant 

© !MechE 1986 

Walsh transform, converged more quickly than the non­
circular phase-shift-invariant transforms, such as the 
Walsh, Haar and R transforms. 

4 CONCLUSIONS 

Various orthogonal transforms have been compared 
insofar as they apply to surface texture analysis. The 
advantages in computation time of a number of the 
digital orthogonal transforms are offset by their phase­
shift invariance, which dictates that a longer sample 
record is necessary in order to provide a convergence of 
the spectral estimates similar to that exhibited by the 
Fourier transform. The orthogonal transforms which 
produced a smaller number of spectral coefficients than 
the Fourier transform, namely the BIFORE and the 
Haar transforms, cannot be used to classify a number of 
data records whose frequency content differs only in 
relatively minor aspects. However, none of the spectral 
estimates of the data acquired from the machined speci­
mens contained more than one machining· peak, and 
hence the effect of the phase-shift invariance of the 
Walsh, Haar and R transforms was probably not as 
great as in some other engineering applications. Further 
investigations would be necessary to reveal whether 
there exists an underlying form in the spectral estimates 
of surface texture and, in particular, to determine the 
extent· to which the results obtained are related to the 
frequency band analysed. 

The performances of the Fourier and cosine trans­
forms were generally similar, and in surface texture 
analysis it suffices, therefore, to calculate either one of 
these transforms rather than both. The performance of 
the Walsh transform was similar to that of the Fourier 
transform except that it exhibited a lower rate of con­
vergence and also, if machining peaks were present, 
some additional odd-sequency harmonics were 
occasionally evident. In contrast to the results of Beau­
champ (4), the circular phase-shift-invariant Walsh 
transform did not appear to be a useful alternative to 
the Walsh transform in an engineering sense, since the 
shape of the spectral estimates was different from that of 
the remainder of the spectral estimates. The Haar and 
BIFORE transforms were normally unable to detect the 
machining peaks, but nevertheless detected the under­
lying spectral shape found in the Fourier, cosine and 
Walsh estimates. However, a new windowing method 
(5) which permits spectral analysis at longer wave­
lengths than those within the band investigated in this 
paper requires that a greater number of spectral coeffi­
cients is contained in the spectral estimates than the 
I +log N values present in the Haar and BIFORE 
spectra. At present, therefore, the analysis by the Haar 
and BIFORE transforms is limited to the roughness 
band investigated. 

The orthogonal transforms which can be recommend­
ed for use in surface texture analysis are the Fourier and 
cosine transforms, in view of their rapid rates of con­
vergence and also because of their ability to character­
ize the data and the machining peaks in particular. If, 
for example, it is known that the machining parameters 
employed will not produce machining peaks in the 
Fourier spectral estimates, then either the Walsh trans­
form or the BIFORE transform, both of which have a 
shorter computation time; can be used, although the 
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Fig. 3 Fourier spectral estimates obtained from shaped specimen number 17 
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BIFORE transform would be limited to an analysis of 
the roughness data. In the authors' opinion, however, 
for an appropriate characterization of the data, the 
orthogonal functions need to be of a similar nature to 
the signal to which the corresponding transform is 
applied. Consequently, the Walsh, Haar and BIFORE 
transforms have few applications in the analysis of ana­
logue signals and do not raise a significant challenge to 
the dominance of the Fourier transform in analogue 
signal identification. Orthogonal transform coding of 
digital signals is increasing in popularity, particularly 
for use in noise-contaminated digital communication 
channels, and this is the most likely field in which the 
digital orthogonal transforms will be found in the 
future. 
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APPENDIX 

Definition of transforms 

With the application of digital techniques in many 
branches of engineering, interest has developed in the 
investigation of orthogonal transforms which more 
closely relate to digital signals and whose transform 
values represent a series of square waves. The term 'fre­
quency' is not generally applicable to these series of 
square waves since the function crossings of the time 
axis are not always regularly spaced. The term 'sequen­
cy', which was defined by Harmuth (6) as one half of the 
number of time axis crossings in the interval over which 
the functions are defined, is normally used to classify 
the square wave orthogonal function series. The unit of 
sequency is 'Zps', an abbreviation of 'zero crossings per 
second'. 

@ !MechE 1986 

(a) The Fourier transform 

The Fourier transform is the most popular of the 
orthogonal transforms and this is mainly due to the 
elegant properties of the frequency domain representa­
tion of a large class of engineering signals. The Fourier 
function series, FOR(p, n), is given by 

FOR(O, n) = 1 

FOR(p, n) = sin{n(p + 1)n/N}, 

FOR(p, n) = cos(npn/N), 

p =I, 3, 5, .. . 

p = 2, 4, 6, .. . 

where 11 = 0, 1, ... , N- I. The discrete Fourier trans­
form off(n) is given by 

I N-1 

Fr{O) =- L f(n) 
N n=O 

1 N-t 

Fr{p) = N .~/(n){cos(2n:pn/N)- j sin(2npn/N)}, 

p = I, 2, ... , N - I 
or by 

I N-1 

Fc(P) = N .~/(n) exp( -j 2npnjN), 

p = 0, I, ... , N - I 

and the Fourier power spectral values Pc(iJ), q = 0. I, 
. .. , N /2, can be obtained from the transform coefficients 
as follows: 

Pc(q) = Ff(q), q = 0 I, ... , N/2 

(b) The cosine transform 

The cosine transform has been developed from the 
Fourier transform (7) and is defined as the real part of 
the Fourier transform. Since it is a sub-series of the 
Fourier series, the cosine function series must also form 
an orthogonal set of functions. The discrete cosine 
transform can be stated as 

.J2 N-1 

Fc(O) =- L f[n) 
N n=O 

2 N-1 

Fc(P) = N .~/(n) cos{(2n + l)pn/2N}, 

p=1,2, ... ,N-I 

and the cosine power spectrum as 

q = 0, I. ... , N/2 

(c) The Haar tramform 

The Haar function series (8) was the first complete set of 
digital orthogonal functions to be described, each func­
tion taking no more than three values in the interval 
over which it is defined, except at a finite number of 
discontinuities. The Haar functions can be expressed as 

HAR(O, n) = 1 

HAR(p, n) = r, 
(p ~_-_q!!..)N_ (p- q)N N 
- ;;;;n;;;; +-

q q 2q 

( .. P_-_q!.:...)N_ N (p - q)N N 
- +-;;;;n;;;; +-

q 2q q q 
= -r, 

=0, otherwise 
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where p = 1, 2, N _ 1, q = 211NTU••2 Pll, 

r = 211NT<Iou Pllll and INT denotes the integer part 
of a numerical variable. The discrete Haar transform 
Fh(p) is given by 

I N-1 

Fh(p) =- L f(n)HAR(p, n), p = 0, I, ... , N- I 
N n=O 

The Haar power spectrum 

Ph(O) = F~(O) 

F~(q), q = I, 2, ... , log1 N 

consists of only I + log2 N coefficients which are 
logarithmically spaced in sequency. 

(d) The Walsh transform 

The most popular of the square wave transforms is the 
Walsh transform. This is because computationally the 
transform is similar to the more familiar Fourier trans­
form, which has enabled the Walsh transform algorithm 
to be substituted for that of the Fourier transform in a 
number of applications. 

The Walsh functions were originally defined in 1923 
(9) and take only two values, namely +I and -I. 
except at a finite number of discontinuities. The Walsh 
functions are defined as follows: 

WAL(u,_ 1, u,_ 2 , ···t u0 ; v,_ 1, v,_ 2 , ... , v0 ) 

r- I 
= [1 ( -1)'"•-1-•lv,-v,.,Ji 

s=O 

where u and v are the Walsh function arguments 
expressed in binary notation. The Walsh transform is 
given by 

I N-1 

F w(P) = N .~/(n)WAL(p, 11), 

and the Walsh power spectrum by 

P w(O) = F!(O) 

Pw(q) = F!(2q- I)+ F!(2q), 

Pw(N/2) = F!(N- I) 

p = 0, I, 2, ... , N - I 

q =I, 2, ... , N/2- I 

Unlike the power spectra of the Fourier and cosine 
transforms, the Walsh and Haar power spectra are not 
invariant to circular time shifts of the data. This has led 
to the development of a number of phase-shift-invariant 
square wave transforms from, in particular, the Walsh 
transform. These are: 
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I. The orthogonal phase-shift-invariant Walsh trans­
form, which involves deriving the Walsh transform 
from the autocorrelation function by means of a 
series of translation matrices (10), which is equivalent 
to summing and averaging the Walsh transforms of 
the N possible circular time-shifted versions of the 
data. 

2. The non-orthogonal Ulman's R transform (II), 
which is formed by taking the absolute values of the 
terms obtained at each stage in the calculation of the 
fast Walsh transform. 

3. The orthogonal BIFORE transform (12) which has 
proved the most popular of these methods. 

(e) The Bl FORE transform 

The BIFORE (binary Fourier representation) power 
spectrum is obtained from the Walsh power spectrum 
as follows: 

NO)= Pw(O) 

N N/24 

P ( ) - -- " p (2q ?lq- "J 
b q - 21q+ IJ n';:l w II - - • 

q = I, 2, ... , log 2 N 

Hence, in common with the Haar transform. the 
BIFORE power spectrum contains only 1 + log 1 N 
spectral values spaced logarithmically in sequency. In 
order to ensure that the BIFORE spectrum is circular 
phase-shift invariant, a property of the Walsh transform 
is utilized. This property is that if a circular time shift is 
performed on the data, then power is always conserved 
in restricted groups of Walsh power coefficients, each of 
which contains a coefficient of 'fundamental sequency' 
2<P- 11, p =I, 2, ... , log2 N -1, together with 
N x 2-ip+IJ- I odd-sequency harmonics. The 
BIFORE spectrum is a graphical representation of the 
sum of the power in each of these spectral groupings 
plotted as a function of their fundamental sequency. 

Although a fast BIFORE transform is available 
which enables the BIFORE spectrum to be obtained 
directly from the data (13), to the authors' knowledge 
there has been no previous definition of a series of 
BIFORE functions. This series can be expressed as 

BIF(O, n) =I 

N . 
BTF(p, n) = 

2
q INT[cos{2qn(ll- p + 1)/N)], 

p = 0, I, ... , N - I 

where 11 = Q, 1, ... , N _ 1, q = 211ogzN-INTilog,N-pi-ll 

and INT denotes the integer part of a variable. The 
BIFORE series can be shown to be both orthonormal 
and complete. 
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Knowledge representation database for the 
development of a fixture design expert system 

A R Darvisbi, BSc, MSc, PhD and K F Gill, BSc, MSc, PhD, CEng, MIMechE 
Department or Mechanical Engineering, University or Leeds 

To meet the demands of the flexible manufacturing system, an exploratory approach to the design of fixtures using an expert system is 
presented. A small part of the range of knowledge existing is utilized to create a database framework that can be used to derelop a 
computerized approach to fixture design. 
The method allows for an expansion 10 a relatively large database that, when established, would encompass all of the important 
practical aspects of fixture design. 

I INTRODUCfiON 

Modern manufacturing practices demand medium to 
small batch production runs and this requirement has 
established the need for a computer integrated manufac­
turing (CIM) system. A variant of this is often referred 
to as a flexible manufacturing system (FMS), a concept 
that cannot be successfully implemented until signifi­
cant hardware and software development is undertaken. 

A major factor limiting the capability of the FMS is 
the component fixturing requirement. In the hierarchy 
of computer aided design and manufacture (CADCAM) 
a fixture design system is the interface between product 
design (CAD) and process planning on the one hand 
and part programming and manufacture (CAM) on the 
other. 

Fixture design is a complex task with many variants 
that must be satisfied simultaneously to achieve the 
optimum result. 

The results of this work reveal that the principal 
problem is one of knowledge representation and the 
authors believe that a technique based on artificial intel­
ligence (AI), particularly a rule-based expert system, 
offers a most promising solution. An attempt is made to 
adopt and utilize established expertise in the evolution 
of a logical automated approach to fixture design for a 
part family or a part in hand. 

By combining a knowledge of manufacturing 
methods and machine information with a special­
purpose computer language, developed primarily for list 
processing and symbolic manipulation, ground rules for 
a fixture design approach are suggested in this paper. 
The ideas presented are illustrated by application to a 
number of simple examples. 

l WORKHOLDING 

Whatever the production method, sophistication of the 
manufacturing process, a solution to how best to grip 
workpieces in the manufacturing phase must be found 
at the planning stage. For most components, the ques­
tion of 'bow to grip' must be answered many times as 
they progress through the machining. inspection and 
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assembly stages, indicating clearly that workholding is 
of major importance to the metal-working industry. 

Unfortunately, industry considers workholding only 
of secondary importance and as a result it is left to the 
production engineer, process planner, or tool designer 
to improvise as and when necessary. In answering the 
simplest question on workholding, there is a variety of 
approaches that will ultimately lead to a range of costs 
for the machining operation, whether for a single proto­
type or a special fixture for a long production run. In 
the first case, a few minutes may not be significant, in 
the latter, a few seconds lost may be economically unde­
sirable. 

The general trends that affect workholding and its 
economic effectiveness can be broken down into three 
broad categories: 

(a) changes in component design, method of manufac­
ture and plant operation, 

(b) developments in machine tool design and applica­
tion, and 

(c) evolution of tooling components and practices. 

Although the infinite variety of work pieces machined 
makes it impossible to generalize, some trends can 
nevertheless be perceived. The market life of products 
tend now to be shorter, which means that tooling must 
be amortized over shorter periods. Proliferation of 
models and variants of these emphasize the need for 
modular design and, now, attention to the family of 
parts (group technology) concept. These all contribute 
to the demand for greater versatility in fixture charac­
teristics ( 1 ~ 

Unfortunately design references (2, 3) do not give a 
clear indication of principles involved or specify a 
logical design approach. The philosophy is still one of 
trial and observation based on established company 
practice. 

1.1 Fixturing for NC madainiug centres 

A machining centre with either horizontal or vertical 
spindle can replace many separate machine tools and 
operational practice with tbese machines has directly 
affected fixture design. For optimum fixture design, 
information flow as depicted in Fig. 1 must exist and be 
integrated into the philosophy adopted by a manufac-
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Fig. I Information flow for optimum tool and fixture design 

turing team of product designer, process planner, tool 
designer and machine programmer. 

Gouldson (4) suggests for numerically controlled 
(NC) machine fixture design: 

(a) from a knowledge of the tool motion axis (usually 
the z axis) and employing the shortest tool consis­
tent with the machining operations to be performed, 
the best position of the fixture in one axis should be 
established; 

(b) the fixture allows access to difficult regions in the 
component; 

(c) permits the (majority) component reference datums 
and measurement directions to be orthogonal with 
the axis ofNC machine; 

(d) gives access to the maximum number of surfaces for 
the least number of changes in set-up. 

Smith (5) developed a clamping method which he 
maintains largely eliminates the distortion problem that 
generally occurs with castings and forgings by providing 
'floating ball' supports at points of contact. 

A ball is incorporated in each fixture element at every 
workpiece contact point and these are free to move 
within their sockets to adapt automatically to the 
irregular workpiece under-surface. This adaptation 
eliminates the need for preliminary mfchining at clamp­
ing points. 

Tuffentsmmer (6), developed a numerically controlled 
clamping machine, in which position determination, 
supporting and clamping mechanisms are designed 
separately, to make the independent movement of each 
system mechanism possible. In small batch production 
(or FMS) this approach is economically unsound 
because of component variations and the frequent 
change in machining sequence required. The NC clamp­
ing system is technologically sophisticated and requires 
significant capital investment. 

Reduced product life cycles and batch size make it 
essential that demanded variation to machining 
sequence, tooling and changes in composite fixture 
layout can readily be accommodated. Lewis (7) suggests 
the use of standard fixture elements. The system is 
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based on T-slot locations arranged in three groups for 
the clamping of small, medium and large components 
respectively. 

Graham, Woodwark and Neads (8) have explored the 
use of flexible fixturing kits. They argue that the advent 
of FMS and adoption of palletized workpieces have 
increased the demand for more flexibility to be intro­
duced into fixtures design and fabrication, and that 
machining fixtures are not economically sound for use 
with FMS. 

A solution would be the introduction of fixturing kits, 
the modular elements of which would allow a range of 
composite fixtures to be assembled. 

3 USE OF AI AND AI LANGUAGES IN FIXTURE 
DESIGN 

Markus et al. (9) have proposed a prototype fixture 
design approach, for a family of box-type workpieces 
from a fixture kit, using the artificial intelligence lan­
guage for logic programming named 'Prolog'. The input 
data describe the shape of the workpiece, the machining 
required and the coordinates of the supports and 
clamps to be realized. The computer produces a 
sequence of draft fixture arrangements and the engineer 
has the overall authority to guide the computer 
decision-making towards a specific fixture style. Unfor­
tunately, the paper leaves many important questions on 
workpiece shape, attributes and machining unanswered. 

Ingrand and Latombe (10) discussed an expert system 
for automatic fixture design, which defines fixture ele­
ments by their operational function and class, an 
approach adopted in this work. 

The system applies expert rules to select the resting 
surfaces and resting points that will eliminate six 
degrees of freedom from the component, taking into 
account the attributes of quality of surfaces, dimensions 
and geometrical relations of the surfaces. Generic ele­
ments are substituted for the resting and clamping 
points and finally, standard elements are chosen that 
inherit the constraints of the generic elements. 

The system is implemented in Maclisp, a dilect of 
LISP (ll) and includes only fixing and positioning func­
tions of the fixture. 

3.1 Production systems 

Progress towards solving the artificial intelligence 
related problems of how to represent and use knowl­
edge in computer programs has been made. Several dif­
ferent models of knowledge representation and use have 
been developed. The popular terms used for these lan­
guage types are production systems, with OPS5 and 
EXPERT (12) as specific languages. 

The production system paradigm has been used suc­
cessfully to solve a wide variety of problems such as 
medical diagnosis (13) and the automatic configuring of 
computers (14). 

Many of the application systems created with the 
production system paradigm are of a class known as 
expert systems or knowledge-based systems. The term 
'expert system' is used to refer to a computer program 
that is able to perform within a specific and limited task 
domain at the level of a human expert. An expert 
system has a large component of domain-specific 

©I MechE 1988 



33 

DATABASE FOR THE DEVELOPMENT OF A FIXTURE DESIGN EXPERT SYSTEM 39 

Inference engine 

Knowledge 
base 
(KB) 

--- Aow of data from KB 
- Aow of changed data to KB 

Knowledge base inclodes: 
working memory 
production memory 

Working memory is also called: 
data memory 
data store 

Production memory is also called: 
rule memory 
rule store 

Fig. 2 Architecture or a production system model 

knowledge embedded within it. When that knowledge is 
represented in an identifiable, separate part of the 
system rather than being dispersed throughout it, the 
implementation is referred lo as a knowledge-based 
system. 

The basic architecture of a computational 
production-system model is shown in Fig. 2 and 
includes three major components: 

(a) a data store, called data memory or working memory 
which serves as a global database of symbols rep­
resenting facts and assertions about the problem; 

(b) a set of rules constitutes the program: each rule has 
a condition part, usually indicated by the keyword 
'IF' and an action part, indicated by the keyword 
'THEN', which gives instructions for changing the 
data configuration; -. 

(c) an inference engine is needed to execute the rules. 

The preference for writing rule-based expert systems 
is that the human expert finds it intuitively appealing to 
express domain knowledge in terms of condition-action 
pairs. This work has been implemented on a VAX 
11/780 computer using the OPS5 production system 
language. The language OPSS was developed for appli­
cation in the areas of AI and expert systems (12) and its 
architecture includes the thr~major components of a 
production system. 

For the reader not familiar with OPSS, reference (12) 
should be consulted. 

4 FIXTURE DESIGN OBJECflVE 

The main objectjve in any tool design is to reduce the 
overall manufacturing costs, maintain quality and 
increase productivity within a framework of maximum 
flexibility. One approach to accomplish this is: 

(a) design simple, easy to operate tools; 
(b) adhere to basic principles; 
(c) avoid unnecessary complexity in design; 
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(d) design to avoid improper usage (include fool­
proofing features); 

(e) select tool materials which are known to give ade­
quate life and incorporate safety features at initial 
design stage. 

It is extremely difficult to find a precise and generally 
accepted definition for design. Dieter (15) adopts the 
definition: 'design establishes and defines solutions to 
and pertinent structures for problems not solved before, 
or new solutions to problems which have previously 
been solved in a different way'. 

The ability to design is both a science and an art. The 
science can be taught, the art is acquired through trial 
and observation and is more commonly referred to as 
expertise. 

The traditional industrial fixture design approach is 
wasteful of resources and prolongs lead time, because of 
the tenuous links that exist between design, develop­
ment and production. A strengthening of these links will 
inevitably: 

(a) lead to simplification; 
(b) facilitate ease of fixturing (including locating, sup­

porting and clamping); 
(c) make use of less expensive and easier to operate 

tools; 
(d) reduce handling between machines; 
(e) require less complex assembly procedures. 

4.1 Fixture selection 

The important criteria in the choice of an engineering 
fixture, as with any industrial product, are quality, 
quantity and cost of the product to be manufactured. 
Unfortunately these requirements can be forgotten 
when personal preference, excessive inventiveness and 
engineering dogma are not restrained. The use of a 
knowledge-based computer design scheme will help to 
introduce the essential philosophy to ensure that the 
optimum design is achieved. 
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Fig. 3 A free body in space and its six degrees of freedom (12 
directions of movement) 

In a production cycle, a fixture is required to fulfil a 
variety of functions, typically, locating, supporting, cen­
tralizing and clamping in addition to facilitating the 
operational requirements of loading and machining. 

Locating, centralizing and clamping assumes a special 
role in relation to the accuracy of the workpiece pro­
duced. To guarantee the exact relationship between the 
cutting tool and the workpiece, the relationship linking 
machine, machine sub-assemblies, fixture and workpiece 
must be unambiguously defined. 

5 LOCATING AND SUPPORTING RULES 

Locating refers to the establishment of a desired 
relationship between the workpiece and the fixture, and 
this in turn establishes a relationship between the work­
piece and the cutting tool. To guarantee the desired 
accuracy the workpiece must be precisely located and 
rigidly supported. 

A free body in space (Fig. 3) has a maximum of six 
degrees of freedom (6DOF), a linear and rotational 
movement for each of the three axes x, y and z. 

The most widely used method to ensure full location 
of a component is the three-two-one or six points prin­
ciple. The interpretation of this principle is three locat­
ing points are required for the first plane, two for the 
second and one for the third, assmning the planes are 
not parallel and are preferably at 90° to each other (see 
Fig. 4). This method when correctly applied will reduce 
the number of DOF to zero for all rigid workpieces 
without inclusion of redundant location features. For 
non-rigid workpieces extra support will always be 
needed. 

The number of faces or type of feature to be 
machined dictates the number of dimensions to be con­
trolled and hence the type of location required. 

Locating alternatives have been illustrated in Fig. 5. 
To machine one face the dimension 'a' (see illustration) 
is adequate and only one location plane is necessary, 
that is the exact location of the component is not 
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Fig. 4 Six points location (3-2-1) 

important. The machining of a simple slot requires 
dimensions 'a' and 'b' and two locating planes. All three 
dimensions 'a', 'b' and 'c' are required to mill a blind 
slot (three planes) and the component will now have 
zero DOF. 

5.1 Supporting and clamping elements 

These can be subdivided into three classification types 
of solid, adjustable and equalizing supports. The type of 
support employed must accommodate the surface shape 
and condition, and be able to withstand the clamping 
and cutting forces applied. 

The solid support is machined (or cast) or rigidly 
mounted in the fixture base and is not compatible with 
the modular design concept. The adjustabk support is 
most suitable with uneven surfaces, (that is cast parts) 
and allows the workpiece to be supported at the 
required orientation for machining. Equalizing supports 
function as connected units: if one point is depressed a 
second will rise to maintain contact with the workpiece 
and are appropriate for use with uneven surfaces. 

The clamping method adopted, whether simple or 
complex, should be the result of operational analysis 
and not prejudice. In selecting clamping elements for a 
given part, its shape and size must be carefully con­
sidered, for some clamps are of such design that they 
are more suitable for a particular size of workpiece. 
Clamping elements must be looked at with due regard 
to ease of operation and simplicity in design. The level 
of clamping force required may restrict certain design 
features on the workpiece as well as choice of clamping 
element. Surface finish or condition of the surface on 
which the clamps are to be positioned, whether finished 
or rough, limits the selection, because rough work sur­
faces require greater clamp travel in the clamping range. 

6 REPRESENTATION 

In the design of a new fixture, the tool or fixture 
designer relies heavily on past experience, an under­
standing of practices, manufacturing methods and 
machine information, on which the fixture is to be used. 
To use this knowledge most effectively within the time­
scale normally available to him, the design engineer 
does require computer assistance. 
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Partialloelltion Location Full location 

Using only one locating 
plane leaves the 
component with three 
degrees of freedom 

Using two location planes 
leaves the component with 
one degree of freedom 

Using three locating planes 
removes all degrees of 
freedom from the component 

Partial location Location Full location 
is. for example, is, for example. 

adequate for planing adequate for the 
machining of an open slot 

is. for example, necessary 
for milling a blind slot 

Dimensions a, b, c 

Degree of freedom z. x. 'I'., 

Fig. 5 Degrees of freedom and number of locating planes for differing pro­
duction requirements (14) 

To encourage the engineering use of such a facility 
does demand that the following criteria be met: 

(a) each component feature and characteristic fixture 
element should be known by an appropriate identi­
fier· 

(b) the 'designer must be able to represent uniquely the 
physical, geometrical and technological attributes of 
a component and 

(c) the system must be sufficiently flexible to allow a 
part with many attributes to be precisely repre­
sented. 

The approach adopted by these authors to the devel­
opment of a fixture design expert system follows and 
outlines a representation of the essential facilities 
required in the manufacturing environment. 

6.1 Overall representation of the component 

This describes in detail the component to be machined 
and is central to a fixture design. It contains the overall 
physical, geometrical and technological information on 
the workpiece. The data structure that contains this 
information is called PART. 'LITERALIZE', an OPSS 
statement, is used to declare the attributes associated 
with PART and these are: 

(a) Addressing attributes 
IS-A 
Part-name 

Type of object 
For identification of 

component 

Classification code 

(b) Physical attributes 
Type-of-material 

Magnetization-status 
Overall-weight 
Number-of-through-

holes 
Number-of-through­

pockets 
Number-of-slots 

(c) Geometric attributes 
Overall-shape 
Overall-size 
Relative-size 

Dimensional-variation 

Surface-list 

Code generated by a 
classification method 
used in group technology 
(GT) 

Engineering material or 
suppliers code 

Magnetic properties if any 
Integer value in any unit 
Integer value or NIL 

Integer value or NIL 

Integer value (all types of 
slot) or NIL 

Geometric form 
Major dimensions 
Subjective size description 

or code from group 
technology [helpful in 
selection of machine size 
or fixture and other 
related equipment; 
Table I from reference 
(16) shows size classes, 
dimensions and gives 
examples] 

Maximum range of 
dimensional variations 

Surfaces enveloping the 
component 

41 
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Table I Part family size classification 

Site 

Maximum 
dimension 

code in mm 

I 0.5 10 
2 2 50 
3 4 100 
4 10 250 
5 20 500 
6 40 1000 
7 100 2500 
8 400 10000 
9 1000 25000 

Feature-list 

(d) Technological attributes 
Is-the-part-a-family­

member 

Initial-state 

Batch-size 

Batch-repeats-in-12 
months 

Part-life-cycle 
Prior-machining-

operation 
Initial-surface-quality 
Heat-treatment 
Part-function-in-the-

assembly 
Spindle-direction 

Required-cutting­
direction 

Part-details 

Description Examples 

Sub-miniature Capsules 
Miniature Paper clip box 
Small Large match box 
Medium-small Shoe box 
Medium Bread box 
Medium-large Washing machine 
Large Pickup truck 
Extra-large Moving van 
Giant Railroad box-car 

Features existing on 
component (machined) 
and those to be 
machined. 

Boolean operator (yes or 
no): influencing the level 
of capital that should be 
invested for design and 
construction of fixture 

State of component (that is, 
CAST, AS FORGED etc) 

A positive integer (number 
of parts in a batch) 

Number of yearly batch 
repeats 

Life of product (years), 
Machining operation(s) 

completed. 
Rough, finish etc 
Work completed 
Location and purpose (for 

example base plate) 
Rectangular Cartesian 

coordinate system (left 
hand) 

Cartesian coordinates 

Simple details, ... , (see 
Table 2) 

All of these attributes and their respective values 
must be known to the engineer at the initial stage of the 
fixture design. Careful study of the component 
drawing(s) will reveal the pertinent information and the 
process plan. Figure 6 shows a data structure developed 
in terms of OPSS (using the system command LITER­
ALIZE) for an overall representation of a component 
named 'PART. 

Having declared the required data structure fo~ rep­
resenting a 'PART, instances of PART can eastly be 
created. 

6.2 Machine tool representation 

The fixture designer must have available to him the 
'machine reference sheet', or equivalent. 

The data structure representing a machine tool here, 
primarily aims at a machining centre. with three-~xis 
control (NC or CNC) or a typical honzontal (verttcal) 
milling machine. 
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Table 2 The most common details seen on engineer­
ing components and their classification 

Part details 

Simple detail 

Evenly spaced details 

Complex details 

Examples 

Slots. holes. plane surfaces and 
pockets 

Gears. splines, squares, hexagons, 
polygons, etc. 

Other than above 

The attributes employed to represent a machine tool 
are: 

IS-A 

Classification 

Generic-type 

Main-axis-direction 

Max-main-axis-thrust 

Milling-capacity 

Drilling-capacity 

Tapping-capacity 

Spindle-approach-relative­
to-table 

Max-spindle-distance­
from-table 

Describes class, a 
production tool in this 
case 

Machine code or company 
code to identify a 
particular machine 

Machine tool to be 
employed, for example 
three-axis machining 
centre 

z direction for a vertical 
spindle machining centre 

Force due to cutting action 
on component (fixture 
must absorb this together 
with clamping forces, 
typical value 15600 N) 

Maximum value, for 
example 180 cm3/min 

Maximum value, for 
example 50 mm diameter 
hole 

Maximum value for 
example M30 

The spindle stationary and 
table moves along the 'z' 
axis, or spindle moves 
vertically and approaches 
the table 

For vertical spindle 
machine distance is 
normally measured from 
the tip of the spindle to 
the machine table; for 
horizontal axis machines 
the distance is measured 
from the centre-line of 
the spindle to the table, 
typical value 600 mm 

Separate data structures have been developed to rep­
resent machine tool sub-assemblies. Typical of these are 
machine table, spindle, tool magazine, machinery oper­
ations and suggested fixture. To illustrate these, the 
machining operation and the suggested fixture will be 
presented. 

6.2.1 Machine table representation 

The machine table is mounted on the machine bed and 
carries the fixtures, workpieces, indexing unit and tail­
stock. Table movement in the horizontal plane is 
labelled as the x-y directions and the vertical movement 
as the z direction. 
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DATABASE FOR THE DEVELOPMENT OF A FIXTURE DESIGN EXPERT SYSTEM 

(LITERALIZE PART 

PART NAME 

CLASSIFIOOlON CODE 

IS.THE-PART-A·FAMILY-MEMBER 

PART-LIFE-CYCLE 

OVERALL-SIZE 
RELATIVE-SIZE 

OVERALL-SHAPE 

SPECIFIC-WEIGHT 

OVERALL-WEIGHT 

TYPE-OF-MATERIAL 

; ELEMENT CLASS REPRESENTING A COMPONENT OR A PART 

; A UNIQUE NAME FOR EACH PART 

; A UNIQUE CODE GENERATED BY ONE OF THE CLASSIFICATION 
METHODS COMMONLY USED IN "GROUP TECHNOLOGY" 

; YES OR NO 
THIS IS IMPORTANT IN CHOOSING KINO OF FIXTURE 10 BE USED 

; AS FOR THE ABOVE PURPOSE 

; X-DIM, Y·DIM & Z·DIM 
; SMALL. MEDIUM OR LARGE 

; PRISMATIC OR CYLINDRICAL 

; GRAMS PER CUBIC CENTIMETRE 

; A POSITIVE INTEGER THE UNIT OF WHICH COULD BE IN ''lb'' 
OR ''kg'' 

; AN ENGINEERING MATERIAL NAME LIKE ''GREY -CAST-IRON'' OR A 
CLASSIFIOOION CODE "ASTM" "AISI'', ETC 

MATERIAL·MAGNETISATION·STMUS ; MAGNETISABLE OR NONMAGNETISABLE 
INITIAL-STME 

DIMENSIONAL·VARIMION 

INITIAL·LENGTH 

INITIAL·WIDTH 

INITIAL·HEIGHT 

INITI_AL·ENCLOSING-BOX.VOLUME 

FINAL-LENGTH 
ANAL-WIDTH 

FINAL-HEIGHT 

FINAL-ENCLOSING-BOX-VOLUME 

; FOR INSTANCE ''AS-CAST'' OR ''FORGED'' ETC 

; THE RANGE OF DIMENSIONAL VARIATION THAT CAN BE EXPECTED 

; DIMENSIONS OF THE BOX 
; ENVELOPING THE INITIAL PART 

; FINAL DIMENSIONS OF THE COMPONENT 

: THESE DIMENSIONS WILL BE CHECKED AGAINST THE INITIAL 
; DIMENSIONS 10 MAKE SURE THAT THE BOX ENVELOPING THE 

INITIAL COMPONENT IS Nor SMALLER THAN THE BOX 
ENVELOPING THE FINAL COMPONENT AND ALSO 10 MAKE SURE 
THM THE INITIAL BOX IS Nor GREMER THAN THE BOX THE 
MACHINE lOOL CAN ACCOMMODATE 

INITIAL·SURFACE.QUALITY ; ROUGH FINISH, ETC 
BRINEL·HARDNESS ; FOR SELECTION OF MACHINING DATA 

BAlCH-SIZE ; A POSITIVE INTEGER USUALLY THE BAlCH SIZE. 200. 500 ETC 

BA1CH-REPS.IN·12 MONTHS ; NO OF TIMES THAT A BAlCH MUST BE REPEATED IN A YEAR 

SPINDLE-DIRECTION ; USUALLY IN '!Z:' DIRECTION 

PRIOR-MACHINING-OPERATION ; NIL FOR "NONE" OR FOR INSTANCE "SLAB-MILLING" AND SO ON 

HEAT TREATMENT ; NONE OR KINO OF HEM TREMMENT DONE 

0 

Fig. 6 Data structure developed in terms of OPS5 for component represen­
tation 

The attributes of the data structure corresponding to 
a machine tool are: 

Max-longitudinal-traverse x direction, for example 
IOOOmm, 

IS-A 

Machine-classification 

Table-size 
Max-cutting-area 
No-of-T -slots 

Distance-between-T -slots 

T-slot-throat-width 
T -slot-throat-depth 
T-slot-headspace-width 
T -slot-headspace-depth 

Max-table-load 

Object represented, for 
example machine element 

Classification code of the 
machine to which the table 
belongs 

Area of machine table 
Most efficient machining area 
Number depends on table size, 

usually three or four slots 
Solid table portion between 

two adjacent T -slots 
These attributes are the most 

important dimension or the 
T -slot, and dictate the bolt 
selection that can be used to 
hold the fixture 

Component plus fixture, pallet 
or indexing unit 
(overloading table will lead 
to poor repeatability and 
machine bed may be 
deformed) 

Max -cross-Ira verse 

Max-vertical-traverse 

Longitudinal-traverse­
feed-range 

Cross-traverse-feed­
range 

Vertical-traverse-feed­
range 

Table-position-accuracy 
Table-axes-drive 

Table-swivel-right 

Table-swivel-left 

Swivel-about-y-axis-right 
Swivel-about-y-axis-Ieft 
Direction-of-external-

normal 

y direction, for example 500 
mm, 

z direction, for example 
600mm, 

for example 6-90 mm/min 

for example 6-90 mm/min 

for example 3-45 mm/min 

for example 0.005-0.013 mm 
for example d.c. motor, range 

4-12 kW 
for example 45o for horizontal 

table 
for example 45°, swivel is 

about 'z' axis 
This feature is not common on 

most machines 
For a vertical axis machining 

centre this direction is 
opposite to spindle direction 
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(LITERALIZE SUGGESTEO.FIXTURE 

CLASSIFICATION 

TYPE ; GIVEN FIXTURE NAME 

PAfll'NAME ; PAfll'NAME FOR WHICH THE FIXTURE IS USED 

38 

PRODUCTION-SPEED ; THE DESIRED PRODUCTION SPEED EX: NORMAL. HIGH, ETC. 

NO.OF-FIXTURING-STATIONS ; EX: 1 OR 2 FOR SINGLE OR DOUBLE FIXTURING STATIONS 

PART-LOADING-METHOD ; EITHER MANUAL OR AU10MATIC 

USEO.TO-MAKE ; GIVES THE KIND OF PART THAT THE FIXTURE IS SUPPOSED 
10 HOLD 

PRODUCTION CYCLE 

PAfll'POSITION ; GIVES THE PART POSITION WITH REGARD 10 THE SUPPORTS 
OR LOCA10RS 

TOOL-POSITION-STATUS ; WHETHER THE lOOL IS STATIONARY OR NOT. FOR INSTANCE 
WHEN AN EVENLY-SPACEO.DETAILS IS PRODUCED THE TOOL IS 
NORMALLY STATIONARY 

PART-SIZE 

JAW-TYPE 

; THE RELATlVE PART SIZE FOR WHICH WE WANT A FIXTURE 

; TYPE OF JAW REQUIRED IF ANY. 

Fig. 7 The data structure for representing a requested/suggested fixture 

6.3 Requested and suggested fixtures 

The designed fixture must fulfil its principal functions of 
supporting, locating and clamping; and ensures that 
unclamping and unloading are physically realizable. To 
account for these, production speed, number of fix turing 
stations, loading and unloading methods and com­
ponent details must be established. The data structure 
holding the relevant knowledge for a fixture is shown in 
Fig. 7. For a fixture design to be optimum, these attrib­
utes must match those of the requested fixture. 

All engineering components both simple and complex 
are bounded by surfaces. A geometric surface is the area 
generated by the motion of a geometric line, either 
straight or curved. Reference (17) classifies the surface 
into two major categories, namely planar and curved. 

Most machined components are bounded by either 
plane or single-curved surfaces; cubes, prisms and pyr­
amids are bounded by plane surfaces while single­
curved surfaces (generated by a moving straight line), 
bound cylinders and cones. This work is concerned with 
these two categories of surface. When the term work­
piece, component or part is used, a component bounded 
by planar or single-curved surfaces is defined. 

6.4 Surface representation 

A data structure has been developed for representation 
of surfaces. It includes surface identification attributes, 
size (dimensions) attributes and their respective toler­
ances, form tolerances and surface quality parameters. 
Surface representation attributes, their interpretation 
and constraints are described below: 

IS-A 

Part-name 

Features-generic-type 

States what the element class is, 
for example a feature 

Name referring to the part on 
which the surface resides 

Specifying whether the feature 
(surface) is external or internal 

Proc tnsln Mech Engrs Vol 202 No 81 

Feature-type 

Surface-label 
Surface-type 
Surface-length 
Surface-length-to! 
Surface-width 
Surface-width-to! 
Dimensional-to! 

Surface-position 

Status 

Heat-treatment 

Surface-quality 

Direction-of-external­
normal 

Required-cutting­
direction 

Is-parallel-to-surfaces 

Is-parallel-to-features 

Parellelism 

Is-perpendicular-to­
surfaces 

Perpendicularity 

Features-starting-from­
this-surface 

Features-opening-to­
this surface 

Name specifying the type of 
common feature 

Identification and reference 
for example, planar 

This and the following three 
attributes represent major 
dimensions of the surface and 
their respective tolerances 

If no specific tolerance has been 
given for individual dimensions, 
these attributes would represent 
the overall tolerance of the 
surfaces 

For example, distance from a 
parallel surface 

Matching status of the surface, 
that is machined 

Type of heat treatment done or 
NIL 

Initial quality of the surface, for 
example rough 

Direction of external-normal to 
the specific surface, for example 
z 

Can be specified for features such 
as holes, counterbores and 
countersinks; for other features 
(for example slots) is the 
direction of first cut 

List of surfaces to which the 
surface to be represented is 
parallel 

List of features to which the 
surface to be represented is 
parallel 

A form of tolerance, f;>r example 
0.01 mm 

List of surfaces to which the 
surface in question is 
perpendicular, for example S2, 
SJ, S4, SS 

A form of tolerance, for example 
O.Ql mm 

For example Hl (denoting hole-1) 

For example slot-3 
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T-slot 

I LITERALIZE T -SLOT 
FEATURE-TYPE 
SLOT-TYPE 
PART-NAHE 
STATUS 
T -SLOT -LABEL 
HAJOR-AXIS-DIRECTION 
STARTIN6-FROH-FACE 
OPENING-TO-FACE 
T -SLOT -LENGTH 
T -SLOT-THADA T -WIDTH 
T-SLOT-THROAT-DEPTH 
T -SLOT -HEADSPACE-WIDTH 
T-SLOT-HEADSPACE-DEPTH 
T-SLOT-OVERALL-DEPTH 
T -SLOT -DIMENSIONAL-TOL I 

; e.g. SLOT 
; e.g. T -SLOT 
: e.g. P1 
; e.g. MACHINED 
; e.g. T -SLOT1 
; e.g. X 
; e.g. 53 
; e.g. 55 
: e.g. F 
; e.g. A 
; e.g, E 
; e.g. B 
:e.g. D 
:e.g. C 
; e.g. 0-01 mm 

Fig. 8 Attributes for a T -slot representation 

The interpretation of the required-cutting-direction 
attribute, is true for the last two attributes. For holes, 
the surface from which drilling starts, is the surface from 
which the feature (hole) has started, and in the case of a 
through hole, the surface into which the drill tip breaks, 
is the surface into which the feature (hole) opens. For 
slots the surface from which the first cut starts is the 
surface from which the feature starts by convention and 
the surface to which cutting action ends, is the surface 
to which the feature opens. 

6.5 T -slot representation 

T-slots are available on most machine tool tables for 
clamping purposes. A T-slot can be decomposed into 
two separate features, a slot and a groove. 

The important attributes of a T -slot are throat width 
and depth, headspace width and depth and their respec­
tive tolerances. These attributes together with the iden­
tifying attributes are included in the data structure 
shown in Fig. 8. 

6.6 Starting and opening features 

One or more features may start from or open into a 
surface. Holes, countersinks and counterbores can be 
defined without ambiguity; however, grooves, slots and 
notches are less precise and for this reason the surface 
from which the first cut starts is defined as the surface 
from which the feature starts. The surface to which the 
first cutting ends is defined as opening surfaces. The 
attributes representation (opening feature) are: 

Surface-label Surface from which the feature 

Part-name 
Feature-type 
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starts or opens into 
Part on which the feature exists 
Starting or opening feature, for 

example T -slot 

.. 

Feature-label 

Status 

Major-axis-direction 

Major-axis-is-parallel-to 
Location 

Feature-width/surface­
width 

Hole-dia-surface-width 

6. 7 Reference planes 

Feature in question, for example 
T-slot 

For example machined or 
to-be-machined 

Cutting direction (for boles, 
counterbores and countersinks 
or direction of first cut 

A surface or other feature 
Relative location of the feature, 

for example below or above 
surface from which they start 
or open into 

For example 0.25, an important 
attribute in selection of 
standard elements (that is 
when supports with adjustable 
heights are needed to contact 
a hole or recess in a 
component) 

For example 0.2 

The reference planes are faces on the component used 
for locating it on the fixture and it is required that all 
six degrees of freedom are specified. The most widely 
used method for locating a component is the three-two­
one or six points location strategy. That is, to position a 
component at least three locating points are required in 
the first plane, two in the second and one in the third. 

' Usually, stability is satisfactory if the three base buttons 
are widely spaced and the resultant cutting force hits 
the base plate well within the triangular area between 
the buttons. If it hits outside of this area, then it gener­
ates a moment which tends to tilt or overturn the part. 

No redundant s•Jpport should be incorporated in a 
fixture, but this is violated on occasions to improved 
stability, specially on the first reference plane. By the 
addition of a fourth locator in the base, the shape of the 
supporting area can be changed from a triangle to a 
rectangle and this provides the extra stability. This can 
be described the '4-2-1 locating principle'. For rough 
castings, one of the four base locators may require to be 
adjustable. 

Redundant or intermediate supports are only 
employed when the part does not have sufficient rigidity 
to withstand the operating forces without distortion 
(18). 

The three reference planes must have functional 
attributes and separate data structures have been devel­
oped for each. The reference plane data structure attrib­
utes are: 

Part-name 

Surface-type 
Surface-label 

Status 

Surface-quality 

Direction-of-external-normal 
Is-parallel-to-surfaces 

Parallelism 

Is-perpendicular-to-surfaces 

Part on which the reference 
plane is selected 

Usually planar 
Label of the selected 

reference plane 
For example machined or 

to-be-machined 
For example 

rough-machined 
For example z 
Surface to which the 

reference plane is parallel 
Form tolerance, for example 

0.01 mm 
Surfaces to which reference 

plane is perpendicular 
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Perpendicularity Form tolerance, for example 
0.01 mm 

Features-starting-from-FRP Features starting from first 
reference plane 

Features-opening-to-FRP Features opening into the 
first reference plane 

6.8 Representation of generic and standard elements 

A generic element is an assumed conceptualized fixture 
element that can fulfil in part or completely one of the 
functions of a required fixture. 

Constraints may be imposed on each or all generic 
elements associated with a particular reference plane. 
For instance, if three generic elements are to support a 
planar surface, they must not be co-linear. 

Standard elements are real world fixture elements 
that are capable of fulfilling all required functions. 
Expert rules map all properties of generic elements into 
standard element, that is qualitative, quantitative and 
constraints. 

Each data structure developed to represent standard 
fixture elements includes qualitative attributes describ­
ing functional properties, quantitative attributes listing 
the important dimensions, total number of each element 
stocked, number of elements in use and those available 
for use. 

Since generic elements will be mapped into standard 
elements, both are represented by similar attributes and 
the two separate data structures include the following 
attributes: 

IS-A 

Part-name 
Gen-el-code 
Associated-with 

AKO 

Type 

Generic-name 

Function 
Princ~ple-of-action 

Nature of contact 

Classification-code 
Max-dia 

Max-dia-tol 
Max-height 

Stem-dia 

Stem-dia-tol 

Points to an object, for example 
generic element 

For example, component 
Identifies generic element's code 
Reference plane code (or 

acronym) for generic or 
standard elements 

Abbreviation of A-KIND-OF, 
for example support 

Installing nature of the support 
or locator for example 
fix-machined-support 
(permanent support machined 
into the fixture body) 

Group to which the element 
belongs, for example solid 
supports 

For example supporting 
Intended function, for example 

fixed-in-position 
Nature of contact that will be 

established between support 
and surface of the component, 
for example point-to-plane 

Standard elements only 
This is required if the locator is 

to locate the component from 
a specific hole 

For example 0.01 mm 
Measured from the surface of. 

base plate and includes the 
top portion ofthe support 

Support stem has to correspond 
to diameter of hole in fixture 
body 

For example 0.01 mm ·-._; 
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Stem-length 

Ease-of-use-factor 

Economic-factor 

Type-of-height 
Adjustment-range 

Used-to-support-from 

Used-to-locate-from 

Friction-and-jamming­
factor 

Load-unload-factor 

No-of-elements-required 

Total-no-of-elements­
stocked 

Total-no-of elements­
available 

Must be long enough to ensure 
positive support installation 
in fixture body 

Ease with which a support or a 
locator can be positioned; 
some elements need less 
manipulative movement and 
effort 

Relative cost of a particular 
element that can fulfil the 
required function 

Adjustable or fixed 
Depending upon component's 

dimensional variation, it may 
be necessary to choose an 
adjustable height locator or 
support, supports must 
accommodate the variation 
expected 

External feature, for example a 
planar surface 

Locate from an external profile 
or internal feature, for 
example hole 

A relative factor, for example 
low: the greater the area of 
contact between the 
component and support the 
more likely the component 
will jam 

A relative factor: a locator that 
engages in an internal profile 
(for example a hole) resists 
loading and unloading more 
than a relieved pin 

Both standard and generic 
elements 

Standard element stocked 

Available for use 

6.9 Clamping element representation 

A clamp rigidly holds, without damage and distortion, a 
component during the machining cycle. Two major 
groups exist, the mechanical and non-mechanical 
devices. The selection made from either group is dic­
tated by the shape, size and material properties to be 
held. The most common types of mechanical clamp are 
strap, screw, swing, cam, wedge and chuck. 

The non-mechanical clamp would be magnetic 
(electromagnetic or permanent magnetic) or non­
magnetic (vacuum) and the two data structures devel­
oped for these are as follows: 

IS-A 

AKO 

Part-name 
Generic-name 

Function 
Used-on 

States what the element to he 
represented is, for example 
CLAMP 

Class type, for example strap 
clamp 

Component name 
Identifying the main liJOtip to 

which the element belongs, for 
example mechanical-clamp 

Primacy function of element 
Material characteristic (ferrous 

or non-ferrous) 
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Oamp-length 

Oamp-width 
Clamp-slot-length 
Clamp-slot-width 

Clamp-thickness 
Clamp-weight 
Suitable-for-part-size 

Nature-of-contact 
Clamping-surface­

quality 

Clamping-force-range 

Clamp-complexity­
factor 

Operating-method 
Operating-speed 

Ease-of-use-factor 

Economical-factor 

Friction-and-jamming­
factor 

Load-unload-factor 

No-of-elements­
required 

6.10 Fastening devices 

Overall length, for example 110 
mm 

For example 32 mm 
For example 30 mm 
Largest diameter of the bolt that 

can be used 
Measured at rear end 
For example 0.5 kg 
Some clamps are so designed to 

be used for certain size of 
work, for example small, 
medium or large 

For example point-to-plane 
The quality of surface on which 

the clamps will be set to some 
extent limits the clamp 
selection; normally rough 
surfaces require greater clamp 
travel in working range 

The level of clamping force 
required in a particular 
situation (depending on the 
component size, feeds, speeds, 
type of material) may 
eliminate certain design and 
makes of clamps; the level of 
vibration involved may also 
dictate selection of a clamp 
with higher clamping force 
range 

A relative factor pertaining to 
the complexity of the clamp's 
design 

Manually or automatic 
Speed with which the clamp can 

be used 
Relative ease with which a 

clamp can be positioned and 
tightened at point of contact 

Most economical element given 
the priority 

For example low 

Assigned to each clamp in a 
design group 

For example 4 

There are a great number of fastening elements used in 
a fixture assembly, typically screws, nuts and bolts, 
lock-rings, keys and pins. It is essential in the selection 
of these that non-standard elements be avoided when­
ever possible. Cost, reliability and life expectancy are 
the important attributes. 

Two separate data structures have been written for 
representing the nut and the bolt and, since both items 
are very closely related, the attributes uses are the same 
and include the following: 

(a) identification attributes; 
(b) thread characteristics: class, series and form; 
(c) major dimensions: diameters and their respective 

tolerances; 
(d) thread particulars: thickness, depth, helix-angle; 
(e) operating ease, speed and economic factor. 

I -
"-,_~ 
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7 APPLICATIONS 

To demonstrate the use of the knowledge representation 
database a number of typical examples are presented: 

1. Overall representation of a typical medium size pris­
matic component identified as COMPONENT 
(Fig. 9). 

2. A machine tool representation: a typical machining 
centre with three axes under NC control (courtesy of 
Wadkin Machine Tools pic) (Fig. 10). 

3. Machining centres table representation (Fig. II). 
4. Surface Sl of the prismatic component in Fig. 9 

(Fig. 12). 
5. A strap clamp (Fig. 13). 

Inspection of these examples do highlight the follow­
ing requirements of a database: 

1. It should include most facilities of a manufacturing 
environment including details on the machine tool 
and its sub-assembly classifications, machining oper­
ations, workpiece and fixture specifications. 

2. It must be organized into modules to allow direct 

(HAKE PART 
•1s-A 
•pART-NAME 
·IS-THE-PART -A-FAHIL Y -MEMBER 
•PART -UFE-CYCLE 
·aATCH-REPS-IN-12HONTHS 
• CLASSIFICA TION-COOE 
·ovERALL-SIZE 
•RELATIVE-SIZE 
·ovERALL-SHAPE 
"OVERAll-WEIGHT 
TYPE-OF-HA TERIAL 

•HA TERtAL-HAGNETISA TION-STA TUS 
"INITIAL-STATE 
"OIHENSIONAL-VARIA liON 
INITIAL-SURFACE-O.UAUTY 

•PART-DETAILS 
•BATCH-SIZE 

SPINDLE-DIRECTION 
REO.UIRED-CUTTING-DIRECTIONS 
PRIOR-MACHINING-OPERA liON 
PART ·FUNCTION-IN-ASSEHBL Y 
HEAT-TREATMENT 
SURFACE-LIST 
FEATURE-UST 
NO-OF-THROUGH-HOLES-IN-THE-PART 
NO-OF-THROUGH-POCKETS-IN-THE-PART 

PART 

COHPONENT1 
NO 
20 
1 
345-P1 
200-300-400 
MEDIUM 
PRISMATIC 
187·20kg 
FERROUS 
HAGHETISABLE 
FACE-HILLED 
·01 
FINISH 
SIMPLE-DEl AILS 
200 
z 
X 
HILLING 
BASE 
NIL 
51 52 53 54 55 56 
SLOT1 
NIL 
NIL l 

Fig. 9 Example illustrating the representation of a prismatic 
component 

Proc lnstn Mech Engrs Vol 202 No 8 I 



42 

48 A R DARVISHI AND K F GILL 

(MAKE MACHINE-TOOL 
MACHINE-CLASSIFICATION 
GENERIC-NAME 

MACHINE-ID-CODE 
MAIN-AXIS-DIRECTION 
MAX-MAIN-AXIS-THRUST 
MILLING-CAPACITY 
DRILLING-CAPACITY 
TAPPING-CAPACITY 

MILLING 
3-AXIS-MACHINING 
CENTRE 
V5-1()-CNC 
z 
15600; N 
180 ; cm3/min 

50; mm 

M30 
MAX-SPINDLE-HEIGHT-FROM.:rABLE 85 ; mm 

Fig. 10 Representation of a machine tool 

(MAKE MACHINE.:rABLE 
IS-AN-ELEMENT-OF 
MACHINE-ID·CODE 
TABLE-SIZE 
MAX.:rABLE-LOAD·CAPACITY 
MAX-CROSS.:rRAVERSE 
MAX·LONGITUDINAL.:rRAVERSE 
MAX-VEATICAL.:rRAVERSE 
TABLE-POSITION-ACCURACY 
TABLE-REPEATABILITY 
NO-OF-T-SLOTS 
DISTANCE-BETWEEN+SLOTS 

V5-10-CNC 
V5-10-CNC 
1150 600; mm 

1200; kg 
500; mm (Y-AXIS) 
1000 ; mm (X-AXIS) 
600 ; mm (Z-AXIS) 
0.025; mm +1-
+1- 0.013 
4 

130; mm) 

Fig. II Representation of machine tool sub-assembly 

(MAKE SURFACE 
IS-A 
PART-NAME 
FEATURES-GENERIC-TYPE 
FEATURE.:fYPE 
SURFACE-LABEL 
SURFACE.:fYPE 
SURFACE-LENGTH 
SURFACE-LENGTH-TOL 
SURFACE-WIDTH 
SURFACE-WIIJTH-TOL 
DIMENSIONAL.:roL 
SURFACE-POSITION 
STATUS 
HEAT-rREATMENT 
SURFACE-QUALITY 
DIRECTION-OF-EXTERNAL-NORMAL 
REQUIRED-CUTTING-DIRECTION 
IS-PARALLEL-TO-SURFACES 
PARALLELISM 
IS-PERPENDICULAR-TO-SURFACES 
PERPENDICULARITY 
FEATURES-STARTING-FROM-THIS-SURFACE 
FEATURES-OPENING TO-THIS-SURFACE 

FEATURE 
COMPONENT 1 
EXTERNAL 
SURFACE 
S1 
PLANAR 
400; mm 

.001; mm 

300 
.001 
.002 
200 

MACHINED 
NIL 
FINISH 
.z 
X 
56 
.001 
52 S3 54 85 
.001 
NIL 

Fig. ll Typical surface (belonging to part component I) rep­
resentation 

access to existing data structures, add data structures 
for new components and make modifications as 
experience with and knowledge from the system is 
gained. 

3. Each individual data structure developed should 
include a sufficient number of attributes to ensure an 
unambiguous representation. 

4. Workpiece description should include physical, geo-
metrical and technological attributes. .. 

5. To improve readability, mnemonic and informative. 
file identifiers must be chosen to indicate their func­
tions. 

Proc Instn Mech Engrs Vol202 No Bl 
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IMAKE CLAMPING-ELEMENT 
PART-NAME COHPONENT1 
10-COOE STRAP-S ; USER SUPPLIED CODE 
AKO MECHANICAL-CLAMP 
TYPE FORK-TYPE 
GENERIC-NAME STRAP-CLAMP 
FUNCTION CLAMPING 
CLAMP-LENGTH 120" ; mm L 
CLAMP-SLOT -LENGTH 40 ; mm I 
CLAMP-SLOT -WIDTH 12 ·50 ; mm 
CLAMP-THICKNESS 16 ; mm H 
CLAMP-WEIGHT .so kg 
SUITABLE-FOR-PART -SIZE MEDIUM 
PRINCIPLE-Of-ACTION FIXED-IN-POSI riON 
NATURE-OF-CONTACT PLANE-TO-PLANE 
CLAMP-COMPLEXITY -FACTOR SIMPLEST 
CLAMPING-SURFACE-QUALITY ROUGH 
OPERA liNG-SPEED NORMAL 
OPERATING-METHOD MANUAL 
EASE-OF-USE-FACTOR EASY 
ECONOMIC-FACTOR ECONOMICAL 
ADJUSTMENT -RANiiE 26 ; mm 
FRICTION-AND-JAHHINii-FACTOR LOW 
LOAD-UNLOAD-FACTOR LOW 
NO-Of-ELEMENTS-REQUIRED 4 I 

Fig. 13 Illustrates a fork-type strap clamp represented using 
the developed data structure 

6. All rules in a grouping associated with a specific 
module must be prefixed by an identifier unique to 
the function fulfilled. 

8 CONCLUSION 

A significant amount of knowledge on the part to be 
machined is required to permit a fixture design to be 
chosen for a given manufacturing environment. In addi­
tion knowledge on the process plan, machine tool and 
its sub-assemblies is necessary together with detailed 
information on the fixture elements available if an 
optimum fixture choice is to be made. 

The defined data structures presented should be uti­
lized to ensure that the best fixture design is arrived at 
within the constraints imposed. Many of the attributes 
defined are self-evident; however, several attributes, of 
which friction is one, must be defined subjectively 
because of the difficulty of evaluating a precise numeri­
cal value. 

The application of this concept requires that a pro­
duction system language be available and the represen­
tation tailored to the needs of the individual user. The 
rules governing the interrelationship of the represented 
objects and those governing the design function must be 
developed, with particular attention being paid to the 
parts at hand and the concept of part families. 

Progressive expansion, by the practitioner, of the 
limited knowledge base presented in this paper will 
ensure the database that evolves is applicable to the 
requirements of industry. 

@ !MechE 1988 
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Forum on Fuzziness 

Use of Fuzzy Logic in Robotics 

B.A.M. Wakileh and K.F. Gill 
Depanment of Mechanical Engineering, University of Leeds, 
Leeds LS2 9JT, U.K. 

An investigation is described that attempts to demonstrate the 
benefits that can be gained by the use of a fuzzy logic control 
law. Employing such an algorithm avoids the need for a 
detailed mathematical description of a manipulator link and 
the algorithm is inherently more robust than a conventional 
controller 

By adopting a multi-valued parameter mode of operation it 
is shown that good dynamic and steady state response for a 
wide range of input demands can be achieved. 

Keywords: Fuzzy logic, Controller, Robot control 
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1. Introduction 

It ha5 been recognised in the published work 
that real time control for a manipulator based on 
a detailed dynamic model is difficult to achieve if 
not impossible [1-3]. The equations used to repre­
sent a manipulator mathematically are both com­
plex and non-linear, difficult to handle computa­
tionally and require a relatively long computer 
"run time" for their solution. The requirement 
exists, therefore, for an alternative approach. 

It has been reported [4-16] that fuzzy logic 
controllers are successful when applied to plants 
that are difficult to model precisely. The general 
opinion is that its use should only be considered 
when conventional control design techniques have 
proven inadequate, yet a human operator has been 
shown to cope adequately in similar situations. If 
this recommendation was followed, the range of 
fuzzy logic application would be extremely limited. 
It has been reported in the- application studies that 
the fuzzy logic controller is more robust to plant 
parameter value changes than a classical control 
algorithm and has better noise rejection capabili­
ties. By the very nature of the fuzzy logic con­
troller design, one would expect it to be robust, 
which is clearly a very desirable characteristic to 
have and this alone may be sufficient justification 
for its wider use. It is therefore an area worthy of 
investigation that may lead to a more general 

Basel Waklleh was born in Jordan in 
1962. He graduated with a first class 
honours degree in Mechanical 
Engineering from the University of 
Leeds in 1983. Three years later he 
was awarded, by the same University, 
the degree of Ph.D. for his thesis: 
Adaptive control of serial open chain 
manipulators using fuzzy logic 
algorithms. 
Dr. Wakileh then returned to Jordan 
and is currently completing his mili­
tary service. 
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design philosophy in robotic control. 
A basic familarity with the •simple' fuzzy logic 

controller is assumed; the unfamiliar reader is 
referred to [17,18]. 

2. Description of Fuzzy Logic Control Law 

The fuzzy logic controller has been imple­
mented with little comment on its origin other 
than it reflected the linguistic control policy of an 
experienced operator. This is evident by the simi­
larity of approach adopted in the various pub­
lished applications employing a fuzzy logic control 
strategy. A typical structure would be as il­
lustrated in Fig. 1. 

Error or sum of errors in conjunctions with 
change in error are the most used antecedent fuzzy 
variables. Whereas, an absolute output fuzzy vari­
able or a change in the output is usually employed 
as a consequent. A combination of both is used in 
some cases as an attempt to optimize the response. 

Similar labels are adopted to quantify the fuzzy 
variables and these are typically, positive big P B, 
negative medium NM, etc. The discrete quantisa­
tion used in the fuzzy set operation, Q, in Fig. 1, 
range between 5 to 15 discrete levels in the major­
ity of cases. Only Kickert and Van Nauta Lemke 
[4] selected a functional form to describe the dis­
cretisation of a fuzzy set. 

GE 

Fuzzy Sets 
and 

Control Rules 

a - quantisation process 

Computers in Industry 

The most frequently used methods to generate 
a continuous output, from a controller operation 
M in Fig. 1, are: 
1. The mean of a maxima procedure in which the 

discrete element with the maximum member­
ship function value is selected or the average 
value of the maxima in the case of multiple 
maxima. 

2. The centre of area procedure in which the 
selected deterministic output has a value that 
divides the area under a fuzzy set into two 
equal halves. 
In all applications non fuzzy measurements are 

presented as fuzzy measurements are presented as 
fuzzy singletons. This enables the algorithm to be 
pre-calculated and expressed as a multilevel relay. 

3. Description of the Process 

To test the proposed control strategy the Stan­
ford manipulator, Fig. 2, was adopted for the 
study. This manipulator comprises six joints in 
which the third is prismatic, thus the structure has 
six degrees of freedom. 

The first three links of the manipulator called 
the post, shoulder and boom, with associated vari­
ables 01, 02 and d3 respectively, form the manipu­
lator's positional section and is the heaviest part 
of its structure. The last three joints form the end 

Robot 

motion 
trajectory 

H - deterministic output selection 
GE,GC - input scaling factors 

GU - output scaling factor 

Fig. 1. General Conn of the fuzzy logic controller. 
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SHOULDER 

BOOM 

I •Yo 
I I ' 
I I ', 

~""' 
Fig. 2. The Stanford Manipulator with reference frames of joint-link subassemblies. 

effector with the associated motion variables 84 , 85 

and 86 respectively. The axis system employed was 
defined by Denavit and Hartenberg [19] and the 
associated initial condition kinematic parameter 
values for the manipulator configuration shown in 
Fig. 2 are listed in Table 1 for reference. 

Each manipulator joint is actuated by a sep­
arate D.C. armature controlled electric motor; 
torque amplification being achieved by an ap­
propriate speed reduction gearbox. The supply 
voltage used is 90V and the pertinent dynamic 

Table 1 
Kinematic parameter values for initialisation configuration 

Joint (J d a 
number degrees metres metres 

1 0 0.54 0 
2 90 0.162 0 
3 -90 0 
4 0 0 0 
s 0 0 0 
6 0 0.25 0 

equation is listed here for completeness, i.e. 

K 1V=J(8)1J"+ C(8, tJ) + G(O) + K2iJ, (1) 

where 
v 
Kt 

6 X 1 vector of actuators supply voltage 
6 X 6 diagonal matrix defining actu­
ators gains 
6 X 6 diagonal matrix defining actuator 
feedback terms 

J(8) : 6 x 6 inertia matrix 
C( 8, iJ) : vector defining Coriolis and Centrifugal 

terms 

a Range 
degrees degrees 

-90 -180 to 180 
-90 -180 to 180 

0 0 to l.lm 
-90 -180 to 180 

90 -90 to 90 
0 -180 to -180 
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G(O) : vector defining gravity terms. 
All the relevant details of Eq. (1) can be found 

in (2) and in this study the design values for 
matrices K 1 and K 2 are: 

1.02 0 0 0 0 0 
0 3.37 0 0 0 0 
0 0 1.1 0 0 0 
0 0 0 0.113 0 0 
0 0 0 0 0.113 0 
0 0 0 0 0 0.08 

69.5 0 0 0 0 0 
0 229.5 0 0 0 0 
0 0 74.7 0 0 0 
0 0 0 5.5 0 0 
0 0 0 0 6.5 0 
0 0 0 0 0 7.9 

since these numerical values are not given in [2]. 

4. Design of a Fuzzy Logic Controller 

The design strategy to be adopted for a robot 
link is to actuate point to point movements of a 
single joint of the manipulator with all other joints 
in a temporary state of rest. By actuating individ­
ual joints sequentially along a pre-programmed 
displacement path, the end effector will eventually 
be located at a desired position in its own working 
environment. 

This sequential movement is adopted because 
of the difficulty of obtaining sufficient informa­
tion from which a "rule algorithm" can be con­
structed. This algorithm, if available, would allow 
corrections to be made for dynamic coupling and 
the non-linear properties of the manipulator when 
the joints are in motion simultaneously. A fuzzy 
logic controller is presented that will actuate joint 

Table 2 
Fuuy logic lingustic algorithm 

Joint Joint speed 
displacement PB PM PS 

PB NB NB NB 
PM NB NB NB 
PS NM NS NS 
PO NM NM NS 
NO NM NS zo 
NS NM NS PS 
NM PS PM PM 
NB PM PM PM 
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2 of the Stanford manipulator and the extension 
to the other joints is a relatively straightforward 
modification to introduce. Joint 2 is chosen be­
cause it demonstrates more clearly the impact on 
controller design of: 
1. significant gravitational and inertial forces, 
2. positional accuracy constraints, and 
3. major inertia variations with loading. 

It is assumed that displacement and speed data 
are available from sensors mounted at the joint. A 
fuzzy logic linguistic control algorithm is written 
using engineering intuition to describe a one input 
monotonic undamped process. The control al­
gorithm is intended to provide fast convergence 
consistent with adequate damping to achieve a 
high angular rotational accuracy. 

The proposed algorithm is represented by Table 
2 and is intended to be read as: 
IF joint displacement is PB and joint speed is PB 
THEN voltage input to joint actuator is NB 
ELSE .•• 

The variable identifiers used to describe the 
fuzzy values have the following meanings; 
P B Positive Big 
PM Positive Medium 
PS Positive Small 
PO Positive Zero 
ZO Zero 
NO Negative Zero 
NS Negative Small 
N M Negative Medium 
NB Negative Big 
and are consistent with those reported in most of 
the application studies. 

The terms NO and PO are introduced in 
accordance with Daley (16] to give finer tuning 
around the equilibrium state. Term PO defines a 
region that is slightly above zero and NO a region 

zo NS NM NB 

NB NM NM NM 
NB NM NM NS 
NS NS PS PM 
zo zo PS PM 
zo PS PM PM 
PS PS PS PM 
PB PB PB PB 
PB PB PB PB 
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that is slightly below zero in the state space. controller outputs when the compositional rule of 
Fuzzy sets formed to represent the discrete inference is used. These resultant outputs are com-

support universes consist of 13 elements for the puted off line and used in a multilevel relay, Table 
joint speed, 14 elements for the joint displacement 4, to dramatically reduce the number of control 
and 15 elements for the voltage input to an actu- algorithm manipulations required. The basic set 
ator. Appropriate membership functions are as- operations to calculate the multilevel relay values 
signed to each element of the support set using the using fuzzy calculus can be defined as follows: 
definitions by Mamdani and Assilian [14], an ap- l. The union of two fuzzy sets A and B of the 
proach employed in preference to a functional universe of discourse E denoted A U B has the 
method [4] because of its manipulative simplicity. membership function defined by 
This yields the fuzzy set values listed in Table 3. It 

P.Au 8 (e) =max.[p.A(e); p. 8 (e)] eEE. 
should be noted that + 0 and - 0 discrete support 
elements are the values chosen to ensure finer e is a generic element of E and expresses the 
control around the equilibrium state. membership value of e in A and Band taking 

The non-fuzzy measurements are expressed as a value in the interval [0,1]. 

fuzzy singletons in the algorithm whose output 11. Intersection of A and B is denoted An Band 
represents an absolute voltage and not a change in has a membership function defined by 
voltage. The magnitude of this voltage is gener- J.LAn 8 (e)=min[pA(e), p. 8 (e)] eEE. 
ated using the mean of the maxima procedure. 

lll. Complement of a fuzzy set A is denoted a 7A The flow diagram presented in Fig. 3 and the 
fuzzy sets in Table 3, allow the linguistic control and has a membership function defined by 

algorithm to be converted into a table of discrete J.L 1A(e)=1.0-pA(e) eEE. 

Table 3 
The fuzzy set definitions 

-6 -5 -4 -3 -2 -1 -0 +0 1 2 3 4 5 6 
PB 0 0 0 0 0 0 0 0 0 0 0.1 0.4 0.8 1.0 
PM 0 0 0 0 0 0 0 0 0 0.2 0.7 1.0 0.7 0.2 
PS 0 0 0 0 0 0 0 0.3 0.8 1.0 0.5 0.1 0 0 
PO 0 0 0 0 0 0 0 1.0 0.6 0.1 0 0 0 0 
NO 0 0 0 0 0.1 0.6 1.0 0 0 0 0 0 0 0 
NS 0 0 0.1 0.5 1.0 0.8 0.3 0 0 0 0 0 0 0 
NM 0.2 0.7 1.0 0.7 0.2 0 0 0 0 0 0 0 0 0 
NB 1.0 0.8 0.4 0.1 0 0 0 0 0 0 0 0 0 0 
a) Joint displacement 82 

-6 -5 -4 -3 -2 -1 0' 1 2 3 4 5 6 
PB 0 0 0 0 0 0 0 0 0 0.1 0.4 0.8 1.0 
PM 0 0 0 0 0 0 0 0 0.2 0.7 1.0 0.7 0.2 
PS 0 0 0 0 0 0 0 0.9 1.0 0.7 0.2 0 0 
NO 0 0 0 0 0 0.5 1.0 0.5 0 0 0 0 0 
NS 0 0 0.2 0.7 1.0 0.9 0 0 0 0 0 0 0 
NM 0.2 0.7 1.0 0.7 0.2 0 0 0 0 0 0 0 0 
NB 1.0 0.8 0.4 0.1 0 0 0 0 0 0 0 0 0 

b) Joint speed 82 

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 
PB 0 0 0 0 0 0 0 0 0 0 0 0.1 0.5 0.8 1.0 
PM 0 0 0 0 0 0 0 0 0 0.2 0.7 1.0 0.7 0.2 0 
PS 0 0 0 0 0 0 0 0.4 1.0 0.8 0.4 0.1 0 0 0 
NO 0 0 0 0 0 0 0.2 l.O 0.2 0 0 0 0 0 0 
NS 0 0 0 0.1 0.4 0.8 1.0 0.4 0 0 0 0 0 0 0 
NM 0 0.2 0."' 1.0 0.7 0.2 0 0 0 0 0 0 0 0 0 
NB 1.0 0.8 0.4 0.1 0 0 0 0 0 0 0 0 0 0 0 
c) The process input, V 
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IV. A fuzzy relation R from U= {x} to V= {y} 
is a fuzzy set on the Cartesian product U X V 
characterised by a function p.R(x, y) by which 
each pair (x, y) is assigned a membership 
value indicating to what extent the relation is 
true in ( x, y ). The linguistic statement "If A 

then B" is the fuzzy relation R =A X B. This 
has a membership function defined by 

P.R(x, Y) = P.Axa(x, Y) 

=min[p.A(x); P.a(Y)] 
xE U and yE V. 

Yes 

Yes 

Fig. 3. Flow chart for calculation of multilevel relay. 

Read linguistic rule 
matrix and fuzzy sets 

Select discrete support 
.inputQcambinat ion 

(e , 6 °) 

Select output support 
value vk 

Select rule 
er .. er .. V r 

Calculate the maxi11111111 value 
of ~R over the rules, ~rul 

and write to output fuzzy set V: 
~y/Vk) • ~rul 

Calculate mean.of 

maxlmaV0 from V and 
write to multilevel 

relay matrix 

Yes 



Computers in Industry 

v. Given the fuzzy relation R =A X B and a 
given fuzzy subset value A' of A, the corre­
sponding value B' is inferred from the relation 
using the compositional rule of inference as 

B'=A' o R=A' o (A xB), 

o denoting the composition operation, and the 
membership function is defined by 

J.Ls'(Y) =max min[JLA'(x); JLR(x, y )] . 

The mean of maxima procedure selects the dis­
crete element of a fuzzy set with the maximum 
membership function value or the average value of 
the maxima in the case of multiple maxima. 

5. Selection of Scaling Factors 

To permit the multilevel relay output to be 
used as the manipulated variable it must be scaled 
to the real universe of the process. 

The scaling of the controller output has been 
initially selected to provide the maximum chosen 
attainable actuator input of 90 volts. Therefore the 
output scaling factor GU is 

GU= 90/1 = 12.86 

Trial and observation procedure is adopted 
during controller development to choose the joint 
displacement scaling factor GE and the joint speed 
scaling factor GC. The choice of these factors is 
made on line, so as to tune the controller to the 

Input matrix 

BdXKI 

gravitational 
vector 

GU 
Multi level 

Relay 
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discrete computation interval of 0.01 second that 
is used in the study. 

The robustness of the fuzzy controller algo­
rithm, applied to a robot, is tested with joint 2 
subjected to the maximum permissible change in 
parameter values. The joint sustains its maximum 
inertial and gravitational forces when the manipu­
lator boom (link 3) is horizontal and at full exten­
sion. The arrangement of the robot links is: 
joint angles 01, 04 , 05 , 06 = 0 
joint angle 02 = 90 degrees, 
link d3 = 1 m, the initial condition for 

the robot. 
To obtain the maximum physically realizable 

joint displacement (radians) with maximum joint 
speed (radians/ second), the values of GE and GC 
are constrained to be: 

GE= 
6 

(maximum required joint displacement) 

and 

GC = 6/1.25 = 4.8, 

where the maximum joint speed attainable is 1.25 
radjsec. 

Employing these values, the robot arm, Fig. 2, 
is emulated on a Amdahl (470) digital computer 
and is incorporated in the block diagram shown in 
Fig. 4. The scheme assumes that the joint sensors 
are adjusted to zero for the starting configuration 
(initial condition); a practice normally followed 
with a robotic system. 

Output matrix 

C!Xd 

Set point 
+ 

Fig. 4. An outline of the manipulator joint and fuzzy logic controller. 
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Table 4 
Fuzzy logic control law modelled as multilevel relay 

-6 -5 -4 -3 -2 -1 

-6 7 6 7 6 7 7 
-5 6 6 6 6 6 6 
-4 7 6 7 6 7 7 
-3 6 6 6 6 6 6 
-2 4 4 1 2 1 1 
-1 4 4 2 1 2 2 
-0 4 4 3 2 1 1 

0 4 4 3 2 0 1 
1 4 4 2 0 -1 -1 
2 4 4 1 0 -1 -1 
3 -1 -3 -4 -4 -4 -4 
4 -1 -2 -4 -4 -4 -4 
5 -4 -4 -4 -4 -4 -4 
6 -4 -4 -4 -4 -4 -4 

Table 5 
GE values for different simulated joint displacements 

Joint displacement (degrees) 30 15 
GE values 11.5 23 

Simulation runs made for a range of joint dis­
placements, result in the GE values given in Table 
5 being selected. 

The time responses of Fig. 5 show a steady 
convergence to the equilibrium state for the range 
of input demands applied, unfortunately the steady 
state error in each case is relatively large. This 

INITIAL FINAL 
RESPONSE GE GC GU CONDITION CONDITION 

OEG. OEG 
a 85 4.8 12.85 90.0 86.00 
b 46 4. 8 12.85 90.0 83.00 
( 23 4.8 12.85 90.00 75.00 
d 11.5 4.8 12.85 90.00 60.00 

1.( (d) 
V1 

~c) "-' 
"-' 

~(b) cr 
CJ 
"-' 
Cl _!a) 

w F. C. 
0.15 0-30 0-45 0-60 0.75 -' 

CJ z SECONDS <( 

Fig. 5. Responses - simple fuzzy logic controller. 

0 

7 
6 
7 
6 
1 
2 
0 
0 

-1 
-1 
-6 
-7 

-6 
-7 
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error can be reduced by increasing the value of 
GE. The error magnitude ER/GE depends upon 
the discrete joint displacement value ER such that 
the actual steady state error is given in the range 
of 0.02 < ER/GE < 15 (degrees) for ER and GE 
constrained to the ranges 

1 < ER < 3 and 3000 < GE < 11. 

RESPONSE 

a 
b 

VI 
UJ 
UJ 
a: 
1.:1 
UJ 
Cl 

UJ 
-' 
1.:1 
z 
<t 

1.(. 

GE GC 

34.3 4.8 
171 4.8 

INITIAL FINAL 
GU CONDITION CONDITION 

OEG OEG 

12.85 90.0 89.00 
12.85 90.0 88.00 

0.30 0.4 5 Q.60 0.75 
SECONDS 

Fig. 6. Responses - simple fuzzy logic controller. 
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INITIAL FINAL 
RESPONSE GE (j( GU CONDITION CONDITION 

DEG OEG 
a 685 4.8 12.85 90.0 89.50 
b 685 8.8 6. 6 90.0 89.50 
c 685 17.8 3.4 90.0 89.50 

0.50 
VI 

~ 0-25 
,......(c) 
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SECONDS 

Fig. 7. Responses - simple fuzzy logic controller. 

Steady state error is inherent with the fuzzy 
logic system adopted due to the coarseness of the 
support set (14 elements) used to represent the full 
range of joint displacement. For instance, the dis­
crete error value + 0 in the fuzzy set is equivalent 
to a real displacement value somewhere in the 
range 0 to 5 degrees for GE = 11.5. 

To study the positional accuracy in detail, the 
input disturbances will be restricted to small angu­
lar movements. Using these small disturbances, 
Fig. 6, with values of GE in excess of 170 leads to 
oscillatory responses. 

A limiting condition is reached for a value of 
GE = 685, thereafter oscillatory motion results, 
Fig. 7a. 

In an attempt to minimise the steady state error 
the value of the scaling factor GC was varied. 
Increasing values of GC requires that the maxi­
mum permissable joint speed be reduced. This 
leads to a reduction in the process input scaling 
factor GU because of the assumed steady state 
operation relationship between maximum actuator 
supply voltage ( vmax) and the attainable joint 
speed ( Omax) at that input, i.e. 

(2) 

where Ke is the actuator constant of proportional­
ity. 

Initially, the maximum allowable joint speed is 
reduced to half its original value. This allows 
values of GE = 685, GC = 8.8 and GU = 6.6 to be 
used and Fig. 7 shows that the initial overshoot is 
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INITIAL FINAL 
RESPONSE GE GC GU CONDITION CONDITION 

OEG DEG 
a 3440 18 3.5 90.0 89.90 
b 3440 24 2.5 90.0 89.90 
c 3440 32 1.9 90.0 89.90 

w 0.1 0-2 0.3 0-4 0-5 

~ -0.065 SECONDS 

<( 

-0 ·130 

Fig. 8. Responses - simple fuzzy logic controller. 

reduced, but the response is still oscillatory. Im­
provement is made when the joint actuator speed 
is further reduced, Fig. 7c, using values for the 
scaling factor of GE = 685, GC = 17.8 and GU = 
3.4. 

Clearly using the above settings an improve­
ment in time response is achieved, but the steady 
state errors are still unacceptably large. It is also 
noted that improved response for large values of 
GE are achieved using larger GC values. The 
effect of increasing GC for small joint displace­
ment is tested for a joint displacement of order 0.1 
degrees, for the three different joint rate scaling 
factors GE = 3440, GC = 32, 24 and 18 and GU = 
1.9, 2.5 and 3.5. 

The responses, Fig. 8, show that there is no 
well defined optimum for constant scaling factor 
values at which the steady state error is deemed 
acceptable. The response rapidly becomes unsta­
ble at higher or lower speed values. 

6. An Improved Fuzzy Logic Control Algorithm 
Operating in a Multi-Valued Parameter Mode 

A design conflict between positional accuracy 
and transient behaviour has been demonstrated. 
Modification to the control law is possible that 
will combine both the superior transient response 
with steady state precision for a range of input 
demands. 
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Table 6 
Operation range of the multi-valued parameter controller 

Angle 
(degrees) 

GE 

82 >1 
1 >82 > 0.1 

82 < 0.1 

6/(ma.ximum joint displacement) 
340 
3440 

To maintain this performance over a wide range 
of input demands, the controller is made to oper­
ate in a multi-valued parameter mode. A switch is 
introduced that will permit changes to be made in 
the scaling factor values at the boundaries of 
predefined displacement speed regions and these 
are listed in Table 6. 

Before a switch ,can be actuated at a parameter 
value boundary, the inequalities 

abs {real joint displacement) < JsjGEb and 

abs {real joint speed) < JRsjGCb 

must be satisfied. The parameters GEb and GCb 
are the scaling factors before the switch and J s 
and JRs are scaled discrete values of the joint 
displacement and speed, respectively, when the 
switch is operated. In the event of divergence in 
the displacement speed responses, the switch has 
the capability to revert back to a convergent mode 
when 

abs {real joint displacement)> Jr jGEb and 

abs {real joint speed) >JRrjGCb. 

The parameters J r and J Rr are the scaled 
discrete joint displacement and speed, respec­
tively, after the switch is made. 

The values chosen for Js, JRs, Jr and JRr 
should be in the range 0 to 1 to allow the use of 
the full range of the multi-level relay. The actual 
values used for JRs, Jr and JRr was unity, how­
ever, for joint displacements greater than 1 degree, 
a better value of Js was found to be 3. A more 
reliable approach because of this Js value would 
be to observe the controller output and switch on 
the conditions 

abs (deterministic controller output)< 1 for} 

abs (real joint displacement) > 1 degree. 

(3) 

The scaling factor switch defined by Eq. (3) is 
tested for the two arbitrarily input demands of 5 
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Fig. 9. Responses - multi-mode controller. 

and 1 degree, respectively. The performance shown 
in Fig. 9 illustrates the improvement attained 
adopting this alternative control algorithm; the 
responses converge to an equilibrium region of 
width better than 0.06 degrees. When the end 

INITIAL FINAL LOAD MASS 
RESPONSE CONDITION CONDITION KG 

DEG DEG 
a 90.0 89.00 1.8 
b 90.0 85.00 1.8 
c 90.0 80.00 1.8 

Fig. 10. Responses - multi-mode controller. 
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Fig. 11. Responses- multi-mode controller. 

effector is carrying the maximum allowable load 
of 1.8 kg, the transient response of Fig. 10 shows 
some deterioration in positional accuracy. How­
ever, this is directly attributable to the changed 
value of effective link inertia with the loaded 
condition. An inertia variation of 5 : 1 exists be­
tween loaded and unloaded states. 

Operating the link from different initial condi­
tions, Fig. 11, produced no significant variation in 
the quality of the output response. The variations 
in performance with both changes in initial condi­
tions and input disturbance is sufficient to demon­
strate that the operating region to be used is an 
important feature and should be included at the 
design stage to ensure that the most satisfactory 
overall performance is achieved. 

7. Conclusions 

The basic idea behind the introduction . of a 
fuzzy logic controller is to avoid a design strategy 
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based on a detailed dynamic model by employing 
the approach of a human operator to an ill-de­
fined system. The application is presented in more 
general terms to observe any advantages it may 
possess over a conventional controller. 

The authors believe the study does demonstrate 
that fuzzy logic offers a novel approach to robot 
control that avoids the two major problems areas, 
accurate dynamic modelling over the whole of the 
operating environment and computational time 
constraints. The results have confirmed that fuzzy 
logic does allow the design of a robust control 
algorithm which is likely to find engineering appli­
cation with the more intelligent robot system. 
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Summary 

Previous assessments of the surfaces of machined components have 
failed to identify an underlying form to the texture and hence no method 
of completely characterizing a wide range of such surfaces has been devised. 
In this paper, the reason for this failure is shown to be the current standard 
practice of confining analysis to the shorter wavelengths of the texture. The 
extension of analysis so as to include the longer wavelengths permits the 
derivation of a complete description of the surface texture of machined 
components drawn from a large sample population and production 
processes. In addition, this approach enables surface texture to be fully 
described by only two parameters, both of which are defined so as to be 
easily understood in terms of present methods of analysis. 

1. Introduction 

Surface texture data can be readily shown to have a random nature 
[1 - 3] and hence statistical methods of investigation are normally employed. 
Descriptions of previous attempts to produce characterizations of surface 
texture based on such investigations can be found in the literature [ 4 - 6]. 
Much of the work related to surface texture analysis has assumed that at 
the longer wavelengths the data are non-stationary and that only the shorter 
wavelengths are stationary, for example Whitehouse and Phillips [7]. This 
practice has become widely established; the British Standard [8] recom­
mends the use of one of five standard filters to attenuate the longer wave­
lengths in the data to be included for analysis. However, as a filter is selected 
by an operator according to a personal assessment of the nature of the 
surface texture, the selection of an inappropriate filter would adversely 
affect the values of the parameters calculated [ 9] . In the work presented 
here, it will be shown that such filtering is unnecessary and consequently 
subjective surface analysis can be avoided. 

0043·1648/89/$3.50 © Elsevier Sequoia/Printed in The Netherlands 
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2. Analysis of the longer wavelengths of the surface texture 

The only previous attempt to extend the analysis to longer wavelengths 
relied on the texture being non-stationary. This investigation was performed 
by Sayles and Thomas [6] and their description was based on 

k 
G(f) = [2 (1) 

where f is the surface frequency and G(f) is the power spectrum. The surface 
frequency is the reciprocal of the corresponding wavelength on the surface, 
for example a wavelength of 1 mm corresponds to a surface frequency of 
1 kHz. The term "topothesy" was used for k, a parameter whose value is 
determined by the nature of the surface and which, if the spectral estimate 
of the surface is of the form given in eqn. (1), will describe completely the 
form of the surface texture. 

To test the hypothesis of Sayles and Thomas, 144 specimens were pre­
pared so as to include examples of surface textures produced by end-milling, 
fly-milling, slab-milling, shaping, turning and grinding. The machinery 
parameters were speed of cut, feed rate and depth of cut. By maintaining in 
turn two of these parameters constant, three specimens were produced for 
each of three selected values of the remaining parameter, resulting in a group 
of 27 different specimens for each of the machining processes. Tab',es 1 and 
2 present this in detail. The machinery parameters were purposely selected 
in this manner so as to aid the identification of the cause of features in the 
spectral estimates. In the normal wavelength range for surface texture 
analysis [8], eqn. (1) can be seen to apply for a number of sample surfaces 
[10], Fig. 1. However, for the longer wavelengths termed "waviness", the 
results from a number of sample surfaces did not agree with the findings of 
Sayles and Thomas, for example Fig. 1(c), and this prompted the investiga­
tion now described. 

First, it is necessary to develop a smoothing technique which will 
preserve the lowest surface frequencies present in the data for display in 
the spectral estimates. The method used involved smoothing the periodo­
gram with a non-recursive second-order digital filter. As far as the authors 
are aware, waviness has not been previously investigated using spectral 
analysis owing to the difficulty in formulating an appropriate spectral 
smoothing procedure. Although in ref. 10 traces of length up to 60 mm 
were taken, the application of a spectral window and segment averaging 
of an appropriate length reduced the maximum wavelength present in the 
spectral estimates to 0.5 mm. To smooth the spectral estimate curves (that 
is to reduce the variance of the spectral estimates) without truncation of 
the lower frequency band, the Fourier transform of the data was performed 
in a single segment and a non-recursive second-order digital filter applied 
to the spectral data. The smoothed spectral estimate is computed by forming 
a weighted sum of the discrete, unsmoothed spectral values. For a point 
which is a distance n points in the unsmoothed spectral estimate from the 
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TABLE 1 

Machined specimens 

(a) Slab milled 

Speed (rev min- 1) 25 72 206 

Feed rate (mm min-1) 32 104 254 32 104 254 32 104 254 

Depth of cut 0.13 mm 1 2 3 10 11 12 19 20 21 
0.25 mm 4 5 6 13 14 15 22 23 24 
0.51 mm 7 8 9 16 17 18 25 26 27 

(b) Shaped 

Speed (m min-I) 10 20 30 

Feed (mm) 0.30 0.63 0.94 0.30 0.63 0.94 0.30 0.63 0.94 

Depth of cut 0.13 mm 1 2 3 10 11 12 19 20 21 
0.25 mm 4 5 6 13 14 15 22 23 24 
0.51 mm 7 8 9 16 17 18 25 26 27 

(c) End milled 

Speed (rev min-1) 105 230 530 

Feed rate (mm min-1) 12.7 31.8 63.4 12.7 31.8 63.4 12.7 31.8 63.4 

Depth of cut 0.13 mm 1 2 3 10 11 12 19 20 21 
0.25 mm 4 5 6 13 14 15 22 23 24 
0.51 mm 7 8 9 16 17 18 25 26 27 

(d) Fly milled 

Speed (rev min-I) 230 530 810 

Feed rate.(mm min- 1) 12.7 31.8 88.9 12.7 31.8 88.9 12.7 31.8 88.9 

Depth of cut 0.13 mm 1 2 3 10 11 12 19 20 21 
0.25 mm 4 5 6 13 14 15 22 23 24 
0.51 mm 7 8 9 16 17 18 25 26 27 

(e) Turned 

Speed (rev min-1) 125 260 540 

Feed rate (mm min- 1) 20 40 80 40 80 160 80 160 320 

Depth of cut 0.13 mm 1 2 3 10 11 12 19 20 21 
0.25 mm 4 5 6 13 14 15 22 23 24 
0.51 mm 7 8 9 16 17 18 25 26 27 
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TABLE 2 

Ground specimens 

Feed (mm) 0.25 0.5 0.1 

Depth of cut 0.005 mm 1 2 3 
0.01 mm 4 5 6 
0.04 mm 7 8 9 

G(f) I 95 Per Cent iim 1 95 Per Cent 
Confidence Interval ' Confidence Interval (~JmlJ ' ' 

(~mlJ 
10"5 

10"' 

' ' 10"6 ' 
10"5 ' ' 

10"7 

10-6 ' 
' 

10' 5 10' 4 105 t1 Hz I 

Ia I Slab-milled specimen lbl Fly-milled specimen 

ii lfl ' 95 Per Cent Gill 

(~JmlJ ' J Confidence (~mlJ 

10·5 
,, 

Interval 1Q•l 

' \ 

1<1' 

10-6 

10-5 

10 4 5 f lHzl 10' 105 f 1Hz I 

lcl Ground specimen (dl Turned specimen 

Fig. 1. Spectral estimates and fitted curves of the form of eqn. (1). 

point for which the smoothed spectral value is to be calculated, the weight­
ing value ex is given by 

27r 
ex= n=O 

N 

ex= ~ ( 1-1r;) exp(-2nn/N) n = 1, 2, ... , 2N 

where N is the cut-off length in terms of the number of spectral points. Two 
smoothed spectral values are then computed and plotted for each cut-off 
length. By employing the technique of "window closing", a smoothing 
filter of the same cut-off length was found to be appropriate for all the 
specimens tested, for a given traverse length. 
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3. Spectral estimate models 

The results for a number of sample surfaces for data obtained from a 
trace length of 60 mm and acquired relative to a straight line horizontal 
datum, adjusted with respect to a mean square line are shown in Fig. 2. 
From this figure, it can be seen that a common spectral shape is present. 
Figure 2 adequately demonstrates the effect is not by any means confined 
or dependent upon the long wavelength content of the estimates. The 
characteristic is in many cases clear by inspecting wavelengths well over an 
order of magnitude shorter than the 60 mm traverse length. The fitted curves 
in Fig. 2, shown as a broken line, are of the form 

K 
G(f) = 1 + (fffc ) 2 

(2) 

where K and fc are constants for a particular surface specimen. Inherent in 
the form of this equation is the hypothesis that the surface data are both 
random and stationary. By computing the best-fitting least-squares curve, of 
the form of eqn. (2), to the spectral estimates of the surface data, values of 
K and fc can be obtained for any sample surface. These two parameters are 
able to describe the spectral estimates of all but nine of the surface 
specimens investigated within the 95% confidence interval from a range of 
10 ,urn- 60 mm. Further investigation with these nine specimens revealed 
that the cause of the deviation from the form given by eqn. (2) could arise 
for two possible reasons. ' 
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-, J Confidence 

', Interval 
\ 

10
4 

f !Hzl 
lal End-milled specimen 

-1 

Gitl 10 

11Jm2 I 
2 10 

95 Per Cent 
I Confidence 

', Interval 

' 

95 Per Cent 
, I Confidence 

,. Interval 
\ 

\ 
\ 

\ 
\ 

101 10 3 104 f !Hzl 
(bl Slab-milled spedmen 

Hi 1 

Glfl 
(IJmZ I 

H) 4 

95 Per Cent I Confidence 
, Interval 

\ 

\ 

' \ 
\ 
\ 

104 f (Hz) 

lei Shaped specimen ldl Ground specimen 

Fig. 2. Spectral estimates and fitted curves of the form of eqn. (2). 
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{1) The specimen exhibited an error of form owing to an inadvertent 
change in one or more machining parameters along the length of the 
specimen during production. Errors of form produced spectral estimates 
which did not converge to a constant value at low frequencies. An example 
of the spectral estimate of such a specimen is shown in Fig. 3. 

{2) The surface of the specimen exhibited "pick-up marks". These 
marks probably arise when, because of the high temperatures generated 
during machining, a piece of material becomes temporarily attached to the 
cutting tool, thereby increasing the depth of cut. An example of the peak 
in the spectral estimate resulting from the presence of such a machining 
error is shown in Fig. 4. 

Methods for automatically detecting the presence of such machining 
errors were implemented and are summarized by the flow diagram Fig. 5. 
The surface identification program developed gives a warning of the presence 
of the errors and provides a written assessment of their significance. The 
comments are based on the values of the various parameters calculated for all 
machined specimens described. For the surface r.m.s. and surface cut-off 
wavelength parameters, the nature of comments depends on the grade of 
membership of the parameters as given in Tables 3 and 4. Comments relating 
to the magnitude of the machining errors are also provided by the program 
and these are given in Tables 5 and 6. 

To ensure a sound understanding in terms of current engineering 
practice, the following alternative description of the characterization of 
surface texture provided by eqn. {2) was developed. An estimate of the 
variance of the acquired data o2 can be obtained from the area under a curve 
represented by eqn. {2), hence 

fmax df 
(12 = kf 

fmin 1 + ({/ fc) 2 
{3) 

where K and fc are1the estimated values of K and fc respectively and f max and 

5 

Fig. 3. Spectral estimate indicating an error of form. 

Fig. 4. Spectral estimate displaying a machining peak. 
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Fig. 5. Surface identification. 
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TABLE 3 

Comments provided on the grade of membership of the surface r.m.s. value 

Surface r.m.s. range (p.m) 

> 20 
10. 20 
5. 10 
2. 5 
1. 2 
0.5. 1.0 
0.2. 0.5 
0.1. 0.2 
0.05. 0.1 
0.02. 0.05 
0.01 . 0.02 

<0.01 

TABLE 4 

Comment on the magnitude of the surface undulations 

Extremely large 
Very large 
Large 
Quite large 
Greater than average 
Average 
Less than average 
Quite small 
Small 
Very small 
Extremely small 
Out of range 

Comments provided on the grade of membership of the surface.cut·off wavelength value 

Surface cut·off wavelength range (mm) 

>4 
3. 4 
2·3 
1.5. 2.0 
1.0·1.5 
0.7. 1.0 
0.5. 0.7 
0.4. 0.5 
0.3. 0.4 
0.2. 0.3 

<0.02 

TABLE 5 

Comment on the space of the texture peaks 

Extremely widely spaced 
Very widely spaced 
Widely spaced 
Quite widely spaced 
Above average spacing 
Average spacing 
Below average spacing 
Quite closely spaced 
Closely spaced 
Very closely spaced 
Extremely closely spaced 

Comments provided on the grade of membership of the machining peaks 

Maximum deviation of the spectral values from the 
fitted curve relative to the 95% confidence interval 

>4 
3·4 
2·3 
1 . 2 

<1 

Comment on the pick-up marks 

Badly marked by pick·up 
Very significant pick-up marks 
Significant pick-up marks 
Possible pick-up marks 
(no comment given) 
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TABLE 6 

Comments provided on the grade of membership of the errors of form 

Percentage increase in the estimated r.m.s. ualue 
of the data compared with that of a trauerse 
of half the length employed 

>40 
30.40 
20-30 
10-20 
0-10 

Comment on the errors of form 

Extremely large errors of form 
Very significant errors of form 
Significant errors of form 
Possible errors of form 
(no comment given) 

f min are the maximum and m1mmum surface frequencies in the spectral 
estimate. Integrating eqn. (3) yields 

&2 = Kfc {tan-1(fmaxlfc)- tan- 1(fmmlfc)} ( 4) 

enabling the variance of the data to be estimated from the parameters K 
and fc, If fmax __. 00 and fmin __. 0, eqn. (4) becomes 

&o2 = 7Tfifc (5) 
2 

where &0
2 is the total area under a curve of the form of eqn. (2). Dividing 

eqn. (5) by eqn. (4) yields 

1T 
A = 2{tan-1(fmaxlfc)- tan- 1(fmmt/c)} -I (6) 

where A is an adjustment factor. By forming the product of the variance of 
the data with A, an estimate of the total area under a curve of the form of 
eqn. (2) can be obtained. 

4. Discussion 

Two parameters, both readily comprehensible in terms of current 
surface texture analysis, can now be defined. The first parameter is termed 
the "surface r.m.s. value", denoted by "1}1 s, and is the r.m.s. value of the 
surface data which would be computed from a trace of infinite length. The 
value of the parameter is obtained from a(A )112

• Such a parameter was 
chosen since the concept of r.m.s. values is already established in surface 
texture analysis. The second parameter is termed the "surface cut-off wave­
length", denoted by "Xc , and is the wavelength corresponding to the surface 
frequency fc • The surface cut-off wavelength is that wavelength at which 
occurs the only discernible change in the form of the spectral estimates, 
namely the "half-power point" of the spectral estimates. The parameter is 
purposely named similarly to the term "cut-off wavelength", whose value 
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defines the amplitude response characteristic of the standard filters. Since 
there are no other wavelengths at which an identifiable change occurs in 
the form of the spectral estimates, Ac is the value which the standard filter 
cut-off wavelengths are used to simulate. The machine computation of the 
surface cut-off wavelength thus produces both a desirable simplification 
of the data acquisition process and a more consistently accurate method of 
surface texture measurement. Moreover, in contrast to present analysis 
techniques, the description of the surface texture provided by the two new 
parameters is complete. 
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Applications 

An Experimental Evaluation of Normalised 
Fourier Descriptors in the Identification 
of Simple Engineering Objects 

B. Nikravan, R.M. Baul and K.F. Gill 
Department of Mechanical Engineering, University of Leeds, 
Leeds LS2 9JT. U.K. 

Proprietary vision systems based on Fourier transforms have 
already reached the prototype stage and will almost certainly 
be employed on high-speed production lines for the.inspection 
of components in the near future. In a related area. the 
development of a robotic system for picking unsorted compo­
nents from bins can only be achieved with the aid of a fast 
vision system. This paper examines the potential of a Fourier­
based analysis for the fast shape recognition of randomly 
positioned and orientated components. Two approaches are 

. presented; the first based on the coordinate points of the 
object boundary and the second on the information contained 
in the Freeman chain code. Both methods suggest, for the 
shapes considered. that the recognition process can be achieved 
reliably with a relatively small number of normalised Fourier 
descriptors. Each method has a particular advantage depend­
ing on the accuracy and the processing speed required. 

Keywords: Fourier descriptors. Object recognition. 
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I. Introduction 

The method most frequently used to describe 
the closed boundary of an object when viewed 
from a particular angle is either based on the 
chain code of Freeman [2] or the polygon ap­
proximation of Pavlidis [7]. Theoretical and ex­
perimental evidence available in the literature. 
however, indicates that the Fourier Descriptor 
(FD) is a more powerful way of classifying closed 
contours [4.8]. Features can be uniquely repre­
sented by a normalised FD and this can lead to a 
significant reduction in object recognition data 

R.M. Baul was born in Knaresbor­
ough. England in 1935. He obtained 
his engineering training. as an inde­
ntured student apprentice. with Cook~ 
Troughton & Simms Ltd. York. His 
academic training was gained initiallv 
at York Technical College and later at 
the University of Leeds where he was 
awarded a .BSc Honours Degree in 
1960 and PhD in 1966. Dr. Baul was 
an assistant engineer at P.E.R.A. Mel­
ton Mowbray during the p.:riod 

. . 1960-~3 and is ~urrently a Lecturer at 
the Uruversuy of Leeds, teaching Robotics. Design and Com­
puting in the Mechanical Engineering Department. 

K.F. Gill obtained his engineering 
training with a company manuractur­
ing large steam turbines and alternat­
ing equipment for t~•e electrical power 
supply industry. His academic train· 
ing was gained at the University of 
Durham and the Universitv of Bi­
rmingham. He was awarded the de­
grees of BSc in 1955. MSc in 1951! and 

\ PhD in 1961. From 1961 Dr Gill was / ·. f a Senior Scientific Officer at the Ad­
mirally Weapons Establishment, Port· 
land. For the last 25 years he has been 

a Lecturer, then Senior Lecturer at the University of Leeds. 
teaching control engineering and engineering dynamics to un· 
dergraduate students reading for an honours degree in Mech­
anical Engineering. 



67 

38 Applications Computers in Industry 

over the chain code and polygon approximation 
methods. Furthermore the normalised FD is in- 4ooo 

variant with respect to translation, rotation and 
scale of the object and images of similar shape 
should have identical descriptors. 

To demonstrate the benefit of this object clas­
sification procedure, existing data records, for a 
number of objects, have been adopted for comput­
ing FD values. Two methods have been consid­
ered. In the first the coordinate values of the 
contour pixels are used to obtain the Fourier 
transforms and in the second the orientation vec­
tors of the Freeman chain code are employed. 

The quality of the contour mapping will be 
dependent on the lighting system employed. For 
reference, Fig. 1 presents a typical histogram which 
shows the contrast between background and ob­
ject for the image processing carried out in this 
investigation. 

2. Fourier Descriptors (Review of First Method) 

The development of slope and curvature codes 
for -use in boundary description has led to the 
more general concept of the intrinsic equation [3]. 
The nature of contour data satisfies the mathe­
matical constraints for shape representation by 
Fourier descriptors since any single-valued peri­
odic function may be expressed as a Fourier trans­
form. 

In the first approach, using cartesian coordi­
nates, the two discrete series x( m ), y( m ), m = 
0, 1, ... , L- 1, are obtained by image segmenta­
tion and edge tracking; and since the boundaries 
are closed curves x( L) = x(O) and y( L) = y(O). 

The analysis involves the derivation of the "de­
scriptors" based on the Fourier series for each of 
the two series x( m) and y( m) defined as 

00 

x(m) = I: X( n) einw0 m, (1) 
n=- ex> 

00 

y(m) = I: Y( n) einw0m, (2) 
n= -oo 

where w0 = 2'rljL and X(n) and Y(n) are the 
complex Fourier coefficients, e.g. X(n) =an- jbn. 
The data interval used in the evaluation of the 

JOOO 
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2000 --- THRESHOLD 

OBJECT 

1000 

so 100 150 200 
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Fig. 1. Typical histogram for threshold determination. 

expressions is taken as the pixel length and the 
coefficients are estimated from: 

1 L-1 _ 

X(n)= L L x(m)e-Jn"'o"', 
m=O 

(3) 

1 L-1 . 

Y(n) = L L y(m) e-JnWom, 
m=O 

(4) 

where the parameter L is the number of pixels 
representing the closed contour. It is clear from 
the analytical derivation that the Fourier coeffi­
cients (X(n), Y(n)) contain no information relat­
ing to the translation and orientation of the ob­
ject. Therefore the descriptor defined as 

(5) 

is independent of orientation and this is con­
firmed by data given in Table l for a simple 
triangular object. 

The descriptors defined by (5), although in­
variant to object position and rotation, are in­
fluenced by object size. In order to compensate for 
this weakness a simple and direct normalisation 
procedure has been adopted and can be defined as 

S(n) = R(n)/R(1), (6) 

where R(1) is the first descriptor value computed. 
R(1) is available without further computation, un­
like the normalisation techniques described in [5), 
and computation time is therefore kept to a 
minimum. Results to support the use of (6) are 
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Table 1 
Influence of rotation on Fourier coefficient 

xn Yn Rn 

Real part Imaginary part Real part Imaginary part 

(a) Triangle 

-29.36 -0.42 -2.30 23.15 37.46 
-6.62 -0.32 -1.12 -5.75 8.85 
-0.60 0.11 -1.50 0.43 1.67 
-2.56 -0.17 -1.63 1.41 3.35 
-1.27 -0.06 -1.31 -0.84 2.01 
-0.64 O.Q7 -1.48 0.27 1.64 
-1.18 -0.09 -1.54 0.50 2.00 
-0.77 0.01 -1.34 -0.21 1.56 
-0.58 0.05 -1.46 0.24 1.59 
-0.86 -O.Q3 -1.51 0.28 1.76 
-0.60 0.04 -1.40 -0.01 1.52 
-0.57 O.o7 -1.45 0.26 1.58 
-0.71 -0.02 -1.44 0.25 1.62 
-0.54 0.09 -1.38 0.08 1.49 
-0.56 0.05 -1.44 0.24 1.57 

(b) Triangle rotated by 60 ° 

-20.33 -12.73 -16.31 24.26 37.81 
-6.10 2.37 -3.46 -5.63 9.29 
-0.92 0.42 -0.90 -O.Q7 1.35 
-1.91 -0.89 -2.29 1.55 3.47 
-1.73 0.26 -1.17 -0.70 2.22 
-0.90 0.24 -0.85 0.02 1.27 
-1.14 -0.27 -1.47 0.47 1.94 
-1.17 O.o7 -1.01 -0.19 1.56 
-0.88 0.20 -0.90 O.Q7 1.28 
-0.93 -0.09 -1.24 0.26 1.58 
-0.99 0.10 -0.94 -0.01 1.37 
-0.90 0.19 -0.88 0.10 1.28 
-0.89 0.00 -1.13 0.17 1.45 
-0.91 0.10 -0.95 0.08 1.32 
-0.88 0.16 -0.88 0.15 1.26 

Rn =( iXn 1
2 +I Yn 1

2
)
112

· 

given in Table 2 for triangular and L-shaped 
objects. 

3. Reconstruction of Contours Using Fourier Coef­
ficients 

A sufficient condition for the existence of a set 
of Fourier descriptors that unambiguously repre­
sents an object is that the object contour can be 
reconstructed by using the Fourier inverse for­
mulae. If the set of FDs is not unique, a recon­
struction of the contour could not take place. 

It is not obvious from Table 1 and Table 2, 
however, just how many Fourier coefficients would 
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be necessary to enable an object to be identified 
with a high degree of confidence. In an attempt to 
clarify this last point, equations (1) and (2), em­
ploying a finite number of coefficients, are used to 
create varying approximations to the original 
which can be seen in the reconstruction of the 
contour's data. Although these expressions do not 
provide enough information to allow a continuous 
series to be obtained, all the discrete values of 
x(m) and y(m) could be regained exactly if all 
the Fourier coefficients were employed. 

Figure 2 illustrates the reconstruction of a "tri­
angle" for different numbers of terms in the ex­
pressions (1) and (2) using the first method. These 
figures suggest that no sensible improvement will 
result if more than two coefficients are used for 
this shape. A subjective assessment of Table 1 
would support this because of the dominance of 
the first two terms over the remainder listed. The 
results demonstrate very clearly the valuable com­
pression of the boundary data that can be ex­
pected and illustrates the power of the descriptor 
as an aid to simple shape recognition. In this 
example six hundred pairs of contour coordinate 
values have been compressed to two descriptor 
values. 

4. Similarity Measurement and Recognition Al­
gorithm 

The normalised Fourier descriptor vector S for 
a particular boundary shape can be expected to 
change marginally as a result of scaling and rota­
tion, and to accommodate this likely variation an 

1 DESCRIPTOR 2 DESCRIPTORS 4 DESCRIPTORS 
r-, ,, -

0 (>--, 

---~ 

-
' -

[>
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-
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Fig. 2. Reconstruction of triangle using the first method. 
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Table 2 
EHect of scaling or contour dilation on Fourier coefficients 

Triangle Triangle rotated L-shaped 

R. s. R. s. R. 

37.46 1.00 37.81 1.00 55.06 
8.85 0.24 9.29 0.25 15.60 
1.67 0.04 1.35 0.04 7.46 
3.35 0.09 3.47 0.09 5.41 
2.01 0.05 2.22 0.06 2.20 
1.64 0.04 1.27 0.03 0.36 
2.00 0.05 1.94 0.05 1.63 
1.56 0.04 1.56 0.04 0.68 
1.59 0.04 1.28 0.03 1.02 
1.76 0.05 1.58 0.04 0.99 
1.52 0.04 1.37 O.o4 0.70 
1.58 0.04 1.28 0.03 0.37 
1.62 0.04 1.45 0.04 0.60 
1.49 0.04 1.32 O.o3 0.34 
1.57 0.04 1.26 0.03 0.52 

improved reference feature vector can be obtained 
by averaging the S descriptor vector, that is 

1 N 

F.=NLS;. 
i=l 

(7) 

where F. is the reference feature vector whose 
elements are the normalised Fourier Descriptors 
averaged over N nominally identical objects hav­
ing different sizes and orientations. Identifying the 
vector of the object to be inspected as st' the 
similarity between the two independent vectors, F. 

· and S1, can be estimated from the error 

(8) 

where k is the number of descriptors in each 
vector. In an environment where more than one 
shape is to be tested for recognition, the parame­
ter E must be evaluated for all the test vectors, the 
minimum value found yielding the recognised 
shape. 

In the test study conducted, 10 descriptors in 
each feature vector were adopted and the results 
are shown in Fig. 3. In Fig. 3(a) a reference 
triangle is compared with other simple shapes 
listed in the key and the minimum value of E 
clearly indicates the presence of a triangle in the 
group considered. In Fig. 3(b) the outcome of a 
trial with an L-shaped contour shows it to be a 
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Half-sized L Quarter-sized L 

s. R. s. R. s. 
1.00 28.22 1.00 15.42 1.00 
0.28 7.92 0.28 4.30 0.28 
0.14 4.30 0.15 3.28 0.21 
0.10 2.79 0.10 2.16 0.14 
0.04 1.81 0.06 2.16 0.14 
O.oi 0.86 0.03 1.66 0.11 
O.o3 1.42 0.05 1.90 0.12 
0.01 0.89 O.o3 1.62 0.11 
0.02 1.16 0.04 1.74 0.11 
0.02 0.97 O.o3 1.58 0.10 
0.01 1.04 0.04 1.63 0.11 
0.01 0.84 0.03 1.50 0.10 
0.01 0.98 0.03 1.54 0.10 
0.01 0.82 O.o3 1.43 0.09 
O.oi 0.92 0.03 1.44 0.09 

member of a family of L-shaped obJects labeled 1 
and 2 in the key. The corresponding FDs are 
listed in Table 2 in the raw and normalised form. 
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Fig. 3. Object recognition. 

KEY 

1 TRIANGLE ROTATED 90° 
2 SUUARE 
3 CIRCLE 
4 ELLIPSE 
5 RECTANGLE 
6 STAR 

KEY 

1 L SHAPE !HALF SIZEI 
2 L SHAPE IUUARTER SIZEI 
3 TRIANGLE 
4 SUUARE 
5 R[CT ANGLt 
6 CIRCLE 
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5. Fourier Descriptors (Review of Second Method) 

To take into account all the information stored 
in a Freeman chain code contour representation, 
allowance is made, in the second approach, for the 
perimeter length between contour pixels, a method 
first used by Kuhl et al. [6]. 

Consider the chain code C with k elements: 

C=a 1 a 2 a3 a 4 • • • ak, 

where each element a; is an integer number be­
tween 0 and 7. The direction of the vector labelled 
a; is given by: 

L(a;) = ( 'IT/4)a;. 

If the perimeter length of a contour is I, the length 
of each code vector, i.e. link, 6.1; is: 

6.t; = 1, if a; is an even number, 

6.t; = fi, if a; is an odd number. 
(9) 

From the definition of the chain code, the 
"time" required to traverse the first q links at 
"constant unit speed" as proposed in [5] is given 
by 

q 

Mq = [ 6.t; 
i=l 

(10) 

and the period of the chain code is defined as t k. 

The changes in the x, y coordinate values as the 
chain elements a; are traversed are: 

6.x; = Sgn(6- a;) Sgn(2- a;), 

ay, = Sgn(4- a;) Sgn(a;). 

where 

( 

1, 
Sgn(Z) = 0, 

-1, 

Z>O, 
z == 0, 
Z<O. 

If the first chain code element is positioned at 
the origin of the x - y axes, the projections on the 
x and y axis of the first q links are 

q 

xq = [ 6-x;. 
i=l 
q 

Yq = [ 6.y" 
i=l 

respectively. 

(11) 

(12) 

Adopting the Fourier representation for a dis­
crete series, the derivative of x( t) is given by: 

. ;, ( 2'1Tn . 2'1Tn ) 
X ( t) = t...., an COS--t + /3

11 
SIO --I , 

n=J tk tk 
(13) 
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where 

211~. 2'1Tn an=- x(t) cos--t dt, 
tk 0 lk 

a 211~. ( ) . 2'1Tn 
1-'n =- X I sm--1 dt. 

tk 0 lk 

Then for the interval tq-l ~ 1 ~ t" 

2 k 6.xq ~~ 2'1Tn 
a = - [ -- " cos--t d t 

n I k - 1 6. tq I l k q- q-l 

k A 
-1 uxq ( . 2'1Tn . 27Tn ) =-" -- sm--t - sm--t t...., A q q-1 
'ITn q=l utq tk tk 

and similarly 

k A ( , 1 uxq 2'1Tn 2'ITn 
/311 = - [ -;--- COS-- I'{ - COS-- I q _ i) . 

'ITn q=J utq lk tk 

The time derivative of the Fourier series for x(t) 
can (by definition) be written 

. 2'1Tn ;, ( . 2'1Tn 2'1Tn ) x(t) = -- '-' an sm--t- b, ·cos--t . 
tk n=J tk lk 

(14) 

Equating like terms in (13) and (14) yields the 
terms of the complex Fourier coefficients a, and 
b, 
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Fig. 4. Reconstruction of triangle using the second method. 
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Fig. 5. Reconstruction of wrench. 

and on rearrangement this gives 

tk k Axq 
a,=-

2 
2 2 L ~ 

'IT n q=l q 

Similarly, 
k A 

tk u.Xq h---"­"- 2 2 2 .t... At 
'IT n q=l q 

( 
. 2'1Tn . 2'1Tn ) 

X sm--tq- sm--tq-l . 
t k tk 

(15) 

(16) 

Expressions having the same form can be obtained 
for the y( t) series. 

Applying this second method to a "triangle' 
and a "wrench" generated the results shown in 
Figs. 4 and 5, respectively. These results clearly 
demonstrate that a progressive improvement in 
"fit" can be achieved with an increasing number 
of descriptors. The degree of similarity between 
objects, required to be identified or inspected, will 
dictate the number of Fourier descriptors to be 

employed. The associated descriptor values are 
given in Table 3 for information. 

6. Error Approximation as a Function of the Num­
ber of Fourier Coefficients Employed 

To obtain an indication of the sub-optimum 
number of descriptors necessary to ensure object 
recognition. an error function has been developed. 
Let 

A N 2n'TT . 2n'TT 
xN(t) = a0 + La, cosTt + b, smTt' 

n=l 

N 2n~ . 2n'TT 
.YN(t) = c0 + L c, cosTt + d, smTt 

n=l 

be the Fourier series truncated after N terms for 
the x( t) and y( t) series and let the actual error 
AE. be defined as: 

k 
t1 E. = max [ I x ( t) - x N ( t) I , I Y ( t) - },v ( t) I] , 

t=l 

(17) 
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Table 3 
A list of 30 Fourier descriptors for the triangle and wrench raw 
and normalised versions 

Triangle Wrench 

n R. s. R. s. 
I 73.562 99.407 1 
2 16.528 0.225 12.643 0.127 
3 2.696 0.037 15.536 0.156 
4 4.648 0.063 6.603 0.066 
5 2.023 O.D28 2.559 0.026 
6 1.162 0.016 1.549 0.016 
7 1.414 0.020 2.254 0.023 
8 0.651 0.009 0.810 0.008 
9 0.696 0.009 1.854 0.019 

10 0.643 0.009 1.163 0.018 
II 0.226 0.003 0.302 0.003 
12 0.528 0.007 0.768 0.008 
13 0.283 0.004 0.337 0.003 
14 0.096 0.001 0.056 0.000 
15 0.387 0.005 0.342 0.003 
16 0.142 0.002 0.478 0.005 
17 0.062 0.001 0.437 0.004 
18 0.240 0.003 0.082 0.000 
19 0.118 0.002 0.112 0.001 
20 0.073 0.001 0.290 0.003 
21 0.161 0.002 0.297 0.003 
22 0.062 0.001 0.164 0.002 
23 0.115 0.002 0.142 0.001 
24 0.085 0.001 0.109 0.001 
25 0.055 0.001 0.160 0.002 
26 0.093 0.001 0.155 0.002 
27 0.036 0.000 0.220 0.002 
28 0.059 0.001 0.047 0.000 
29 0.060 0.001 0.084 0.000 
30 0.061 0.001 0.172 0.002 

where k is the number of chain code elements 
available. 

To predict the error directly from the chain 
code data it has been shown by Kuhl and Giardina 
[5] that 6.£ can be approximated by the expres­
sion: 

where the total variation of the "time" derivative 
x(t) has been symbolised as V0T(x(t)) and of the 
derivative y(t) as V0T(j(t)). In this context the 
time period T is equal to tk. These derivative 
values are estimated from: 

. tlx,. 
x,.=~. 

u.t i 

fly 
y,. = tlt

1 

I 

for the Freeman code element a,.. 
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triangle. (a) Second method. (b) First method. 
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Fig. 7. Actual and estimated error curves for the reconstruction 
of the wrench. 
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The total variations of .X( t) ~nd y( t) are 

V0T(:t(t)) = ( ~I.X;-.X;-d) + I.Xk-.Xd, 

V0 T ( Y ( t)) = ( ~ I Y; - Y;- 1 I ) + I Y k - Y 1 I • 

respectively. The actual error d£
3

, for the trian­
gle, evaluated using (17), is shown in Fig. 6(a). 
The predictor error, d£P estimated from (18), is 
superimposed on the same plot and for complete­
ness a similar error estimation based on the first 
method has been made for the results of Section 2, 
and this is shown in Fig. 6(b ). 

An error curve has also been generated for the 
wrench, Fig. 7, and both figures indicate that the 
primary shape can be recognised by 10 descriptors 
with a high degree of confidence. · 

7. Engineering Applications of FD Recognition 

The principal characteristics which need to be 
identified in a reliable application of an FD based 
method are: 
(1) The FD vector derived from object image 

spatial data must adequately reconstruct the 
object when used in the inverse formulae. 

Fig. 8. Simple engineering components. 

73 

Computers in Industry 

(2) The hyperbolic shaped error curves, typically 
Fig. 6, must fall rapidly in the interval 0-10 
descriptors for high-speed recognition. 

(3) The simple normalisation procedure presented 
in this paper, which has the advantage of 
speed, must be shown to adequately com­
pensate for object size. 

(4) The error measure, obtained by means of (8), 
must exhibit good selectivity i.e. the standard 
deviation of the reference feature vector must 
be small compared to its mean value. 

To highlight the above points further tests were 
undertaken for two typical engineering compo­
nents, photographs of which are given in Fig. 8. 

The reconstructed contours of the 4- and ?­
bladed fans shown in Figs. 9 and 10 for both 
methods considered, demonstrate the creditability 
of the FD vector as a means of object identifica­
tion. The quality of the reconstruction can be seen 
from the comparison with the original contour. 
shown dotted, and this gives an indication of the 
necessary size of the FD vector to be employed in 
the recognition process. 

The error curves shown in Fig. 11 for the fan 
blades fall rapidly in the 0-10 interval and conse­
quently a small finite number of FDs would be 
required and these would give fast recognition of 
the component. The error measures listed in the 
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4 DESCRIPTORS 

' ' 

18 DESCRIPTORS 

6 DESCRIPTORS 

25 DESCRIPTORS 

Fig. 9. Reconstruction of the 7-bladed fan using the first method. 

upper part of Table 4 give likely variations due to 
orientation and size of the fan blades and are 
relatively small. The lower half of Table 4 shows 
the degree of selectivity that can be attained by 
the use of (8), indicating the potential of the 
method for component inspection, missing blades 
or part blades, and for component sorting for use 
in robotic handing. 

12 DESCRIPTORS 18 DESCRIPTORS 

12 DESCRIPTORS 18 DESCRIPTORS 
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12 DESCIPTORS 

SO DESCRIPTOPS 

8. Discussion and Conclusions 

The results demonstrate the value of the nor­
malised Fourier descriptor as a method for classi­
fying objects by virtue of their silhouette. It has 
been demonstrated that extensive contour data 
can be condensed to a relatively small number of 
numerical values which are virtually independent 

50 DESCRIPTORS 

50 DESCRIPTORS 

Fig. 10. Reconstruction of the 4- and 7-bladed fans using the second method. 
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of object size, location, and orientation relative to 
a fixed set of reference axes. 

Both simple 2-D shapes and more complex 
engineering components have been studied and in 
the latter case the silhouette has been shown to be 
adequate for inspection and identification pur­
poses. 

In the derivation of the Fourier descriptors two 
alternative approaches have been taken and com­
parisons have been made between the two meth­
ods based on the reconstructed contours. The first 
method based on the coordinates of the object 
boundary gives a rapid test approximation to the 

Table 4 
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object shape but does not possess the convergence 
and higher accuracy of reconstruction exhibited 
by the second method where a larger number of 
Fourier descriptors need to be employed. The 
second method based on the Freeman chain code 
can, therefore, be recommended particularly for 
the classification and recognition of more complex 
shapes, although computational times will be 
higher. 

In order to judge the degree of similarity be­
tween objects for inspection and sorting op­
erations the concept of a reference feature vector 
has been established. The lack of similarity is 

Similarity measured for the two engineering objects, i.e. the seven bladed and four bladed fans. for different sizes and positions with 
parts being masked (invisible to camera) 

First experiment 

Nature of comparison 

Fan with 7 blades compared to its rotated 
version 

Fan with 7 blades compared to its rotated 
version with a different size 

Fan with 7 blades compared to its scaled 
version, i.e. much smaller version 

2/3 of two of the 7-bladed fan masked and 
compared with a version where 2 of the 
blades were completely masked 

lj3 of two of the blades of fan with 7 blades 
masked and compared to its original version 

1/3 of two of the 7 blades masked and 
compared to a version where 2/3 of 2 of the 
7 blades were masked. 

1/3 of 2 of the 7 blades masked compared to 
a version where 2 blades were completely 
masked 

Original 7 bladed fan compared to a version 
where 2/3 of 2 of the blades were masked 

Original fan with 7 blades compared to a 
version where 2 blades were completely 
masked 

Fan with 4 blades compared to 7 bladed fan 
when two of the 7 blades were masked 

7-bladed fan compared to the 4 bladed fan 

a Error measure as calculated by (8). 

Error 
measure " 

0.7 

0.8 

0.8 

1.0 

1.1 

1.1 

1.9 

2.0 

2.6 

3.7 

3.4 

Second experiment 

Nature of comparison 

Fan with 4 blades compared to its scaled 
version 

Fan with 4 blades compared to its rotated 
version with a different size 

Fan with 4 blades compared to its rotated 
version 

1/3 of two of the four blades masked out 
and compared to the original 4 bladed fan 

2/3 of 2 of the 4-bladed fan masked and 
compared to a version where 1/3 of 2 of the 
blades were masked 

2j3 of 2 of the 4 blades masked and 
compared to a version where 2 of the 4 
blades were completely masked 

2/3 of 2 of the 4 blades masked and 
compared to the original 4-bladed fan 

1j3 of 2 of the 4 blades masked and 
compared to a version where 2 blades were 
completely masked 

Original 4-bladed fan compared to a version 
where 2 of its blades completely masked 

Original 4-bladed fan compared to a version 
of 7-bladed fan where 4 of its blades are 1/3 
masked 

4-bladed fan compared to the 7-bladed fan 

Error 
measure a 

0.2 

0.3 

0.3 

0.6 

0.6 

0.7 

1.1 

1.2 

1.6 

3.6 

3.4 
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Fig. 11. Actual and estimated error curves. (a) 4-bladed fan. (b) 
7-bladed fan. 

determined by an error function based on the 
differences in the normalised Fourier descriptor 
vectors for the reference and test object. This has 
been successfully employed in the identification of 
a number of different geometrical shapes. 

To predict in advance the sub-optimum num­
ber of Fourier descriptors necessary for reliable 
recognition and identification, a theoretical error 
function based on the truncated Fourier series for 
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the boundary data has been established and tested 
for a range of objects. The error magnitude has 
been shown to decrease rapidly with increasing 
number of Fourier descriptors before finally 
levelling out. This indicates the possibility of 
establishing an optimum gradient for automati­
cally assessing the required size of the Fourier 
descriptor vector. The CPU time, when using the 
fast Fourier transform algorithm given in [1], for 
the evaluation of the 50 descriptors for the 4- and 
?-bladed fans was 10 and 15 ms respectively on a 
DEC (VAX 8600) computer. These are well within 
the normal manufacturing and assembly time 
scales for most industrial applications. 
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Experimental evaluation of 'shape from shading' 
for engineering component profile measurement 

G A H Al-Kindi, BSc, R M Raul, BSc, PhD, CEng, MIMechE, and K F Gill, BSc, MSc, PhD, CEng, MIMechE 
Department of Mechanical Engineering, University of Leeds 

This paper examines the application of the 'shape from shading technique' for three-dimensional surface geometry measurements and 
object inspection. The results for diffuse, specular and combined models are presented for a range of components e.>thibiting flat to 
high/)• curved surfaces. A more representative relationship between surface radiance and image intensity has been dl.'lleloped which, 
when incorporated in the models, is shown to change the accuracy of profile measurement. 

1 INTRODUCTION 

In object recognition it has been established (1) that a 
minimum number of data points are required to achieve 
an adequate surface description. In the production of 
three-dimensional computer images, two principal cal­
culations are involved. The first and the most frequently 
discussed in the literature is the determination of visible 
attributes, their location and the gradient of the normal 
vector at each location. The second is to predict the 
image light intensity at a point (2. 3) from the gradient 
of the normal vector and the position and intensity of 
the light source. 

In the earliest work on image processing (4-9), a 
reflectance map was developed- and the image intensity 
gave a measure of the surface contouring. Strat (10) and 
Smith (11) improved on the reflectance map concept by 
introducing light reflection models and developed an 
image intensity equation to enable surface contouring 
to be defined more readily. Phong (12), Cook and Tor­
rance (13). Brasset (14), Blinn (2) and Woodham (15) 
proposed alternative image intensity models to improve 
contour estimation and extended the work of these 
earlier authors. 

By using analytical expressions, symbolic models of 
the image features can be established and shape from 
shading is one such analytical approach. Application of 
this allows a representation of shape suitable for surface 
contour measurement and object recognition (10). 

2 SURF ACE SHADING 

The shading of a surface point depends on the reflection 
characteristics, the local geometry and the lighting con­
ditions (16). The surface geometry is identified by mea­
surement of a normal vector at a point of intersection of 
the incident light (17). This type of representation for 
shape is favoured for machine vision (18) because 
surface normals undergo simple transformation with 
rotation while distance measurements from viewer to 
surface point changes in a less symmetrical fashion (19). 

In the treatment of surface reflection (16), three light 
components can be identified, which are ambient, 
diffuse and specular. The ambient component represents 
light assumed uniformly incident from the environment 
and is reflected equally in all directions by the surface. 

Tht MS wcu ,.,.iiJfld on 28 Nowmbn 1988 and wcu tJCUpt<dfor publication on 
18 August 1989. 

The diffuse and specular components are associated 
with illumination from a specific light source (13). The 
model used to describe the diffuse component is based 
on Lambert's law. This law implies that a surface will 
diffuse incident light proportional to the cosine of the 
angle between the normal vector at the surface and the 
vector to the light source (8) (Fig. I). For values of 
-rc/2 > 8 > rr/2 the light source will not illuminate the 
surface and the value of the radiance must be zero (2). 
The Lambertian model is 

1 ={cos 8, 
0, 

-rc/2 < 8 < rc/2 
otherwise 

where I is the radiance of the object surface at each 
point. 

The concept of specular light component introduced 
by Phong (12) proposes that the angles of the incident 
and reflected light are the same but on opposite sides of 
the normal vector, and unlike the ideal Lambertian 
model the radiance of a point on a specular surface is 
dependent on the viewing angle. If the surface was a 
perfect reflector, e.g. a mirror, light would only reach 
the eye if the surface normal vector was mid-way 
between the light source vector and the viewing vector. 
For a less perfect surface the radiance would fall as the 
angle t/J between the viewing vector and reflection 
vector increases. The relationship (16) incorporating this 
feature is the radiance model (Fig. 1): 

1 = {cos"' t/J, - rc/2 < q, < rc/2 
0, otherwise 

Specular reflection Surface normal vector 
vector 

SurfaL-e of objecl ~ 
Fag. 1 Vectors for light reflection and radiance models 

804488 C IMechE 1989 09S4-40S4/89 52.00 + .OS Proc: lnsln Me<:h Eogn Vol 203 
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Light source vector (Df, sp) 

Surface of object 

Nonnal vector (Df, sp) 

Viewing vector (sp) 

Df =diffuse 
sp = specular 

Fig. 2 Vectors used in diffuse and specular models 
(horizontal datum for shape measurement) 

where the coefficient m is a measure of the shininess of 
the surface. A bright surface would correspond to a 
large value of m and a dull surface would exhibit values 
nearer to· unity. 

3 SHAPE MEASUREMENT 

To estimate shape, the inclination of surface normals 
must be evaluated from surface radiance. If the light 
source angle is a and the surface normal is inclined at 
an angle fJ (Fig. 2) the Lambertian model gives 

fJ=a±cos- 1 1 

and the specular model gives 

fJ = t(a + y ± cos- 1 I''•) 

since by definition 

fJ = f(t/1 +a) 

(1) 

(2) 

Earlier work (2, 16, 20, 13) assumes the over­
simplification that the intensity (E) of an image is 
directly proportional to the radiance (/) of the object. 
Improved shape estimations should be possible if a 
more accurate relationship is developed for evaluating 
the radiance/. 

Patch area 6a; 
of intensity E 

R 

4 IMPROVED RADIANCE ESTIMATION 

Using the object-lens-image arrangement shown in Fig. 
3, the apparent area of the image patch (c5a1) as seen 
from the centre of the lens is bat cos e and its distance is 
g/cos e from this centre. The solid angle (21) subtended 
by the patch from the centre of the lens is 

O= ba1 cose 
(g/cos e)2 

Similarly, the solid angle of the object patch (ba0 ) is 

O= c5a.cosT 
(h/cos e)2 

(3) 

(4) 

and since these two angles are equal, equating equations 
(3) and ( 4) yields 

ba0 = cos B (~)2 
(5) 

!5a1 cosT g 

The power of the light originating on the object patch 
and passing through the lens is 

!5p = I!5a.o cos T 

where I is the radiance of the surface in the direction 
towards the lens. This power will be concentrated in the 
image, assuming losses in the lens are negligible; hence 
if no light from other areas reaches this image patch, 
then 

E = - = I - - - cos2 e cos T !5P ba0 n (d)
2 

hat hat 4 h 

Substituting equation (5) gives the intensity of the image 
patch (22): 

E = ~ 1(~Y cos
4 

e (6) 

where d is the lens diameter. 
If the area of the image patch is chosen to be that of 

one pixel in the image plane, equation (6) becomes 

E = ~ I(~Y cos
4 

(tan -
1 ~) (7) 

Lens of diameter d 

h 

F"Jg. 3 The relationship between the image radiance and the object radiance 

Part B: Journal of l!ogin<ering Manufacture © !MechE 1989 
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where r is the distance of each image pixel from the 
centre of the image plane. 

For a given physical arrangement, the diameter (d) of 
the lens and the distance from the lens to the image 
plane (g) are both known and of fixed value. Therefore, 
equation (7) indicates that the numerical value of the 
image intensity (E) at a pixel is not directly proportional 
to object radiance (I) but is influenced by the distance 
(r) to the pixel measured from the optical axis through 
the image plane. 

5 MONITORING EQUIPMENT 

All experimental results were obtained using a mono­
chrome camera, Link l09A, and a Matrox QFG01 
frame grabber. The image obtained in each case is a 
256 x 256 pixel matrix with each pixel having 256 pos­
sible grey level values. 

A DEC (LSI 11/23 (16 bit)) microcomputer was used 
for data collection and a DEC (VAX 8600) computer 
for image data processing. 

The light source and camera position, angles IX and y, 
were chosen to achieve a good-quality image by avoid­
ing unnecessary shadows and to simplify the algebra of 
the 'combined model' given below. The diagrammatic 
arrangement is shown, for reference purposes, in Fig. 4. 

6 COMBINED MODEL 

On the assumption that surfaces will not, in general, 
behave in a pure diffuse or specular manner the models 

_L r::c~U.Ww••« 
/'-~ . \1 . 

E I E ._ I 

~ ~ 1\ I 

j_ , I 

Background 

(a) Camera and lighting arrangement 

(b) System layout 

Fig. 4 Vision system 

© !MechE 1989 

Object 

previously given were combined to give 

I = a cos (ex - fJ) + b cosm (2P - ex - y) + c (8) 

The value of m = 1 is adopted because the objects used 
in the trials can be sensibly classified as dull. Therefore, 
for the arrangement shown in Fig. 4, equation (8) 
reduces to 

I = a sin P + 2b sin (p - b + c) 

If both IX and y are chosen to be 90°, this equation can 
be rearranged to yield the surface normal 

p = sin- 1 [-a± 0.25bj{a2 + 8b(I + b- c)}] (9) 

where a + b + c = 1 for the general case (4). 

7 RESULTS 

To test the performance of the three models described, 
several objects were selected so as to give a wide range 
of surface curvature. These objects are shown in Fig. 5 
and consist of a flat surface, two turbine compressor 
blades of varying curvature and a beaker. The com­
ponents were sprayed with matt white paint to elimi­
nate errors due to the discoloration present on the 
surfaces of the objects. 

Results are presented for the models represented by 
equations (1), (2) and (9) and for the same models incor­
porating the radiance estimation of equation (7). For 
the specular model, the small variation in the angle y 
(Fig. 2) resulting from the pixel distribution within the 
image is ignored. 

Fig. 5 Objects used 

Proc Instn Mecll Engrs Vol 203 
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(a) Small blade (uncorrected) 
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Fig. 6 Model results for compressor blades 

Typical compressor blade results are given in Fig. 6 
including, for comparison, the profiles obtained by a 
well-proven stylus instrument at the sections under 
examination. To facilitate comparison the surface 

8 

1 a) Uncorrected 

m = 0.5 

// m=l.O 

//m=l.5 

-----/~ ~ Actual 

10 
Chord 

mm 

Chord 
mm 

15 

(b) Corrected )equation 17) applied) 

Fig. 7 Specular model-variations with m 
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normal estimates have been mapped to surface profiles 
to give an improved visual indication of the relative 
accuracy achieved. 

The diffuse model incorporating equation (7) yields 
the most accurate surface profiles and a significant 
reduction in accuracy is shown in the case of the specu­
lar model, when the value of m equals I. Clearly the 
value of m will influence the results obtained from the 
specular model and the magnitude of the change to be 
expected is illustrated in Fig. 7. It is evident from these 
results that by selecting a value of m less than unity the 
accuracy of the specular model can also be improved 
when equation (7) is applied. 

In the measurement results presented, the most 
appropriate values of a and b were determined by trial 
and observation from all the data available. The values 
of (a + b) obtained experimentally from trials on the 
diffuse and specular models were found to be sensibly 
unity; hence the value of c was set to zero in the com­
bined model trials. As would be expected the results 
from the combined model are· good in all cases since the 
dominance of either the diffuse or specular model can 
be chalfged by adjusting the ratio of a and b values. 

The most severe test of the models is the measure­
ment of the cylindrical beaker because of the large 
changes in surface normal values. The results displayed 
in Fig. 8 favour the diffuse model used in conjunction 
with equation (7), provided the value of m in the specu­
lar model is retained at unity. These are in agreement 
with the results from the compressor blade trials. 

To obtain some idea of how surface texture and 
colour influences model performance, trials were con­
ducted on three different flat surfaces. The results (Fig. 
9) follow the same pattern as before with one exception, 

© !MechE 1989 
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- - - -- - Actual 
- - - Uncorrected 
----Corrected [equation (7) applied] 

(a) Diffuse model 

00~--------~L---------~ 

(b) Specular model (m = I) 

(c) Combined model 

Fig. 8 . Reconstruction or the 'beaker' profile 

namely that the specular model (m = 1) now gives the 
superior results. The results from the diffuse model 
without the advantage of the radiance correction 
[equation (7)] were abysmal and no clear explanation 
for this could be found other than surface texture 
effects. Profilometer measurements of the flat surfaces 
are provided in Fig. 10 for comparison. 

8 CONCLUSIONS 

In this paper three mathematical models for shape rep­
resentation using data from two-dimensional images 
have been used to measure surface profiles of varying 
curvature. An accurate datum for comparison of the 
experimental results was provided by conventional 
stylus measurement and these reference profiles are 
referred to as 'actual' profiles. 

The results obtained indicate that the accuracy of the 

@ IMec:bE 1989 

I Unpainted wooden surface, Ra = 3.85 I'm 
2 Painted wooden surface, Ra = 3.85 ,.m 
3 Smooth painted surface, Ra = 0.23 I'm 
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Fig. 9 Flat surface results 
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Fig. 10 Profilometer measurements for fiat surfaces 
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profiles obtained by 'shape from shading' is dependent 
on: 

(a) the model chosen, 
(b) the radiance reflection law adopted, 
(c) a range of combinations of the above (a and b) and 
(d) surface texture and colour variations, 

but would appear to be independent of surface curva­
ture. 

In any practical engineering application, therefore, 
preliminary results from trials and observation on 
actual components would need to be considered in 
order to establish the relative importance of the factors 
listed. 

Provided the combinations of model and parameter 
values are optimized the technique of 'shape from 
shading' would adequately distinguish components of 
varying curvature, and the accuracy of the results 
suggest that components could be detected reliably as 
parf of an- automatic sorting facility. The compressor 
blade cross-section shown in Fig. 11 provides a suitable 
illustration where the shaded area represents a small 
percentage of the actual cross-sectional area, · for 
example profiles (b), (d) and (e). Such data would also 
allow major imperfections to be identified automatically 
in engineering component manufacture. 

Tests carried out on nominally flat surfaces provide 
some initial information on texture and colour, and 
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,,---
.... 
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Fig. II Reconstruction ofsmall blade 
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clearly indicate the need for a more specific investiga­
tion in this area. Again stylus measurements of the 
surface profiles have been included for reference pur­
poses and for a visual indication of the accuracies 
achieved with varying texture and colour. 

In this case both the · diffuse and specular model 
surface normals show improvements in accuracy when 
the correction [equation (7)] is applied and the normals 
of the smooth surface are positioned, as would be 
expected, closest to the ideal 90° normals. 

The uniformly coloured surface of the wooden block 
compared to the natural surfaces gives the better result, 
implying that in any application random dis­
coloration of the surface could adversely affect the 
results. 
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RCB01' cetmTOL tEING SELF--a.G'\NISING FUZZY IOOIC 

WAKIIEH, B.A.M. and GIIJ.., K.F. 

A theoretical investigation is described that attempts to demonstrate 

fuzzy logic is an effective alternative algorithm for use in robot 

manipulator control. Employing such a control law avoids 

the need for a mathematical description of the robot and the 

algorithm is still able to compensate for the changing process 

characteristics that occur during operation. 

It is shown by employing a motion strategy, that synchronous motion 

of the manipulator joints can be achieved. 



1. INTROro::I'IOO 

It has been reccgnised in the published \\Ork that real time 

control of a manipulator based on a detailed dynamic model is 

difficult to achieve if not impossible [1-3]. The equations 

used to represent a manipulator mathematically are both complex 

2 

and non-linear, difficult to handle computationally and require a 

relatively lon;I computer "run time" for their solution. The 

requirement exists, therefore, for an alternative approach and 

these authors adopted fuzzy lcgic, a control strategy that has been 

successfully applied to processes difficult to model. 

Since its intrcxluction by Mamdani am Assilian [4] I the 

'simple' fuzzy lcgic controller has been implemented in many 

test cases and in actual industrial applications [5-12]. Its 

performance, however, is dependant upon the availability of a 

reliable linguistic control plan which is not always easily formulated 

[13,14]. An attractive solution to this problem is provided by the 

self-organising fuzzy lcgic controller (SOC) proposed by Procyk and 

Mamdani [15, 16] which uses closed loop performance data to generate and 

mcxlify the control rules. 

'Ihis paper describes an application study of the sec algorithum, 

Fig. 1, and highlights same of the design problems most likely to be 

encountered. The results represent a further contribution to the 

published work on fuzzy lcgic and indicate that the SOC is an adaptive 

control approach worthy of consideration for use in robotics. 

2. S.JMUIATICN 

In developing a computer emulation for a robot mechanism, it is 

necessary to formulate the rigid body equations of motion. 

The two principal methods adopted for the solution of these equations 
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are the numeric and symbolic techniques. Nonnally the preference is 

for a numeric solution as emphasis is placed on computational 

efficiency, because of its use in real time control. The symbolic 

technique, however, yields state equations that provide a better 

insight into the dynamic and control problems associated with 

manipulators and therefore is mofe suited to control system analysis 

and synthesis. The symbolic equations are complex and difficult to 

derive for a manipulator with more than three degrees of freedan, 

however, computer programs for the derivations of these equations have 

been developed [17] 

To test the proposed control strategy the Stanford manipulator [2) 

was adopted for the study. This manipulator comprises six joints,in 

which the third is prismatic, giving the structure six degrees of 

freedom. 

'ilie first three links of the manipulator called the post, shoulder 

and boom, with associated variables e1, 82 and ~ respectively, form 

the manipulator's positional section and is the heaviest part of its 

structure. The last three joints form the end effector with variables 

e4 , 85 and e6 respectively. The axis system employed was defined by 

Denavit and Hartenberg [18] and the associated initial condition 

kinematic parameter values for the manipulator configuration shown in 

Fig. 2 are listed on Table 1 for reference. 

Each manipulator joint is actuated by a separate d.c. armature 

controlled electric motor; torque amplification being achieved by an 

appropriate speed reduction gearbox. 

The symbolic technique selected is the I.agrauge-Euler formulation 

presented by Bejecy [2) and Paul [19] incorporating a 4 x 4 homogeneous 

transformation matrix. 'ilie formulation is simple, systematic and 

generates highly structured equations of the form: 



Ilw\ (~) 8 = AMEJ + EMV + DGM ( 8) + DVM (i, ~) (1) 

where IM(~) = effective link inertia matrix, 

AM = motor feedback gain matrix, 

BM = input matrix, 

DGM(~) =gravity force vector, 

and DVM(~, _!) = Carious and centrifugal force vector. 

This latter term is only significant at high manipulator speeds [1] and 

was equated to zero in this study. 

The manipulator mcxlel, Eq. 1, is simulated using the state 

variable notation 

ard for this nanenclature, Eq. 1 becanes 

I : l 1--~-f-~-
L o \Ar-1 

. 
X + 

- ,- l 
DD 11~ + IX; + BB::-: I 

L _I 
(2) 

All the relevant details of Eq. 1 can be found in [2] and the meaning 

of the additional terms in Eq. 2 are:-

• • • I 
e ]T 
6 ' 

E is a unity matrix and 0 is a null matrix. 



A discrete representation for Eq. 2 can be written as:-

x(kT+T} = Al x(kT) + Ql + B1 ~(kT) 

where 

B = F-l [eFT - E] DO-l BB 
1 

F = DD-l AA 

ard T = sample time. 

5 

'Ihe term A
1

, B1 , and o
1 

are variable and have to be canputed at 

h 1 . . . 1 . FT ha eac samp ll'lJ Instant. Hence a ser1es so ut10n to e t t converges 

rapidly is required. In the approach SUJgested by Franklin and Ebv.ell 

[20], the exponential is canputed for T/2k ard the value of k chosen 

by ensuring the largest element of FT/2k is less than unity. Employing 

this methoo, A1 is approximated to a value better than 0.001 in 20 

interations. 

The mooel proposed is a sound representation and should ensure 

that the results of the control study can be used with confidence. 

3. IErAIIS CF THE SEIP CRG\NISING CCNI'ROLIER 

3.1 '!be Perfonnance Index 

The SOC is an extension of the simple fuzzy logic controller that 

incorporates perfonnance feedback (Fig. 1} The perfonnance irdex 

measures the system output deviation fran a desired trajectory and 
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issues appropriate correcting commands at the controller output, the 

controller inputs chosen are joint position error and speed. 'Ihe 

perfonnance index is fonnulated linguistically using the same fuzzy 

terms and linguistic statement fonn as presented in [21] to describe a 

solution path during one sample interval. The same algorithn will be 

used for all manipulator joints although the real attainable trajectory 

for each joint may be different. This is possible because the 

perfonnance index value is dependant on scaling factor values which can 

be different for each joint. 

'Ihe perfonnance index rules, Table 2 (a), are written to generate 

control rules starting fran a controller containing no rules and does 

make for rapid rule generation as indicated by the few ZO terms 

employed. The weakness of an active perfonnance index rule table is 

the continuous rule modification when optimal conditions are attained. 

The 1 inguistic rules are transformed into a look up table of 

output commands using the standard techniques of fuzzy calculus [22] 

and the results are as shown in Table 2 (b). 

3.2 SEIH:TI:ON CF' PR~ MOIEL 

It has been shown by [15, 21] that the SOC performance is 

insensitive to the accuracy of the model used. Therefore, to reduce 

the canputational time in evaluating the SOC output at each sample 

interval, these authors have adopted the unit matrix for the process 

model. 

3. 3 RULE MODIFICATIOO AND OurPUr SET CAICUIATICN 

The six jointed manipulator requires a general rule that is 

written in implication fonn as:-
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where A., CA. and V. are fuzzy sets representing position error, 
1 1 1 

joint speed and volta:.Je supply respectively. The systan is designed to 

generate rules for an empty rule store. 'Ihus the initial rule is 

formulated by fuzzifyirg the initial conditions 

(al 
i i i i i i 

pil 
i i i where , ca1 

, a2 , ca2 
, • • • I a6 , ca6 

, , pi2 , • • • I pi6 ) 

(vl 
i i i i i i = 0). The fuzzification process is = v2 = v3 = v4 = vs = v6 

done by providing a s~etrical spread of manbership function values 

arourrl the sirgle support elanents, thus creatirg fuzzy sets that are 

the same for all the joints. These are: 

A = {(a - x), IJ.K (a - x)} 

CA = {(ca- x), IJ.K (ca- x)} 

V = {( v + P. - x) , IJ.K ( v + P. - x)} 
1 1 

where 

IJ.K (a- x) 

IJ.K (ca - x) = 

IJ.K (v + p, 
1 

- x) 

( 4) 

1.0 x= 0 

0.7 X= ± 1 

0.2 X= ± 2 

0.0 3 ~X $. -3 

At each sampling instant the element values of input and output 

fran the controller are stored as a new rule to be used for control and 

mcdification purposes. As the general manipulator rule requires 12 

antecedents and 6 consequents for a rule, each rule is stored usirg its 
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single elements (a ,ac , •• etc) in an 18 element array while lliniting 

the rule store to a capacity of 1000 rules. '!his arrangement is 

selected as a canpranise between canputer time required for the 

manipulation of the output set and stora;;Je. 

If the present sample time is kT ard the modification is ma:le to 

the controller output rT samples earlier, then the rules to be included 

result fran the fuzzification of the single elements a1 (kT-rT), 

ca1(kT-rT), a 2(kT-rT), •••.. , v
6

(kT-rT)+Pi
6

(kT) and the inclusion of 

new rules into the store may result in the presence of contradicting 

rules. 

Daley and Gill [21] overcame this by the deletion of rules that 

have identical antecedents to the rules to be included. This is 

implemented by canparing directly the coincident support sets of the 

respective rules. To reduce the number of rules generated (especially 

for a multi-input multi-output process) the procedure deletes rules 

unless the antecedents are displaced along the universe of discourse by 

more than one support value relative to the rule to be inclu:ied. '!his 

is expressed linguistically as: 

"r.eletes all rules that are about the same as the one to be 

inclu:ied" 

'Ib keep canputation to a minimun, the modification and remOITal 

procedure is applied at each sample instant. The removal procedure 

checks the antecedents of the most recent rule with the rest allowing 

only those rules with disslinilar antecedents to be stored. The most 

recent rule can be contrcrlicted by at most, one of the remaining rules. 

An existing contradictory rule will be deleted if it constitutes one of 

the recently non modified rules, otherwise the most recent rule is 

excluded. 
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The oontroller output set is obtained usinJ the canp::>sitional rule 

of inference. 'Ihis will be denonstrated for tY.D antecedents and one 

oonsequent rule to ease the presentation. It is readily exterrloo to 

the higher dimensional case. 'Ihe controller rule 

If 'A' then if 'CA' then 'V' 

is a fuzzy relation 

R=AxCAxV 

'Ihe rnenbership function is defined by 

~R (a, ca, v) =min {~A(a), ~CA (ca), ~v(v)} 

If the measured fuzzy sets at some instant are A and AC, the 
~ 

implied output fuzzy set V is obtainoo usinJ the canp::>sitional rule of 

inference, 

V = (AO (CAO (Ax CA x V))) 

aOO the membership function lS 

~V(v) =max min {[max min{~(a, ca, v), ~CA(ca) }] , ~A(a)} (5) 

For a oontrol algorithn that is can{X)sed of several oontrol rules, 

the output fuzzy set ,P is defined by menbership function 

~vo( v) = max j~v( v):/ 
rules - -
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The deterministic output (control action) is d:>tained by use of 

the mean of maxiina procedure. Clearly, the canputation time to 

estimate the output set deperrls on the form of the fuzzy sets A arrl CA 

used in the algorithm. For the general rule Eq. 3 and fuzzy sets 

formed using the process detailed in Eq. 4, it would require 4.lxlo20 

operations to generate vl to v6. 

'Ihe canputation time needed for these ~tions is excessive and 

drastic reduction in the number of these operations is required if the 

SOC is to offer a viable alternative to classical control methods. 

One approach to reducing the number of operations is to replace 

Eq. 3 by six separate expressions, 

for which v1 to v6 can be canputed using 2.3xl012 operations. A 

further reduction is possible by limitirg the canpositional rule 

evaluation to the non zero manbership function values. For example, 

the fuzzy sets A arrl A defined 
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-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 

A 0 0 0 0.2 0.7 1 0.7 0.2 0 0 0 0 0 

A 0 0 0 0 0 0.2 0.7 1 0.7 0.2 0 0 0 

yields for the minimum operation, min (IJ.A(a), IJ.A_(a)), the results 

0 0 0 0 0 0.2 0.7 0.2 0 0 

Only the part of the fuzzy set A that overlaps with the fuzzy set 

A produces non zero membership function values and thus contribute to 

the max-min operation. By defining the overlapping region betv.een a 

fuzzy set of an antecedent with its corresp:mdil'lJ fuzzy measurements in 

a rule and considering the fuzzy kernel fonn of Eq. 4, the fonnulation 

of Vl to V6 will need a maximum number of 2.4 X 106 operations. The 

same technique is used to exclude rules that do not contribute to the 

output set. These rules have resultant zero membership function values 

for all the supp:>rt sets values signifying that a fuzzy set and its 

corresp:>nding measurement do not overlap. Despite this modification, 

the number of operations is still high and the problem is aggravated 

with an increasing number of stored rules. 

An alternative approach is to consider elements of A and CA as 

fuzzy singletons in which case Eq. 5 can be written as: 

( 6) 

Usil'lJ Eq. 6, it lMJuld require 30 operations to fonnulate the fuzzy 

A A 

sets v1 to v
6 

, hov.ever, the use of fuzzy singletons reduces the 

impact of accurate measurement. 



12 

3. 4 SEI..B:l'IGI OF CCNiroLIER PAIWolE'l'ER) 

An alternative approach to that describEd by IE.ley and 

Gill [21] is enployErl for the initial selection of the scalirYJ factors. 

The maximun real joint pJSitional error and speed are mapped to the 

maximum descrete support value of the respective fuzzy sets, thus 

maximisirY:J the sensitivity of the respJnse durirY:J rise time. The 

values cbtained usirY:J this procEdure are shown in Table 3. 

3. 5 F<D1 <F ffiOCESS INFUl' 

Given the discrete controller output ~*(kT) at sample instant kT, 

tv.o fo.ons of process input ~(kT) are used, that is the increnental 

process input given by 

,.. * u(kT) = u [ (k-1 )T] + GV u (kT) 

and an absolute fo.on given by 

,.. * 
u(kT) = GV u (kT) 

The controller output sealing factor value GV is calculated for 

both fonns to allow for the maximum voltage supply to be used. The 

maximun voltage supply is mapped to the maximum discrete suppJrt set 

value of the controller output universe of discourse, via 

GV. = 90/7 = 12.85 for i=l,2 ••••.. ,6. 
1 

4. Morroo CCNiroL 

Improvenents to manipulator motion is made when the manipulator 

joints are actuated simultaneously alon:J pre-defined motion paths. 
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However, manipulator motion of this type irrluces significant dynamic 

cross coupling at the joints and gives rise to a more severe control 

problem. 

A motion trajectory can be described by 1 ine segments created by 

time deperrlent input disturbances, where ,[X)Sition, velocity arrl 

acceleration is defined alof'XJ every segment of the trajectory. This 

defined motion allows the manipulator joints to operate synchronously, 

each joint canpleting that fraction of the motion allotted to it at the 

same time. Consequently, the manipulator can execute all movements 

more quickly and has the capability to track a moving object. 

To execute a motion path, the manipulator is made to travel 

fran one location to another in a pre-determined time. The trajectory 

is created by two segments, a constant velocity segment to execute the 

principle motion and a transitional segment that interpolates between 

successive operations, Fig. 3, thus providing the necessary continuity 

in trajectory position, velocity and acceleration components to avoid 

era tic motion. 

To generate the trajectory, Paul [19] selected a polynanial 

function of time to describe the transitional trajectory segment 

over the time interval-t < t < t , Fig 3, where t is the time ace ace ace 

allowed for the manipulator to change its velocity. 

The function provides the necessary motion continuity for the 

trajectory arrl uses three bourrlary corrlitions at each errl of a segment. 

This would require the formulation of a 5th order ,[X)lynanial, however, 

because of symnetry of the transitional segment a 4th order polynanial 
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suffices, i.e. 

q( t) { 6) 

where q(t) is the generalised position. This expression, Eq. 6,does 

define both translational and rotational movenents of a joint. 

Differentiation with respect to tline yields generalised velocity 

and acceleration expressions ( q (t) ar.d q (t) respectively) \·hlch Paul 

[19 1 showed to be : 

q= 

q = [(tiC tacc +liB) (1 -h) 
T1 

where tiC = C-B 

AB = A-B 

t + t 
h = ace 

2t 
(see Fig .3) 

ace 

3h 
t2 

ace 

1 
t ace 

After the transitional period (time t ~ t ) the general - ace 

trajectory equations for the constants velocity segenent became: 

q = tiCh + B 

("I) 
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l:lC ! 
q = 

T1 

.. 
0 (8) q = 

h = t/Tl I 
J 

Employing a fixed acceleration time tacc and a travel time T1 , it 

is rot necessary to plan the entire task A to D, but to look ahead for 

the next operation in sequence (C) once the manipulator has reached the 

start of a transitional segement (A). 

To apply this procedure to all manipulator joints, the following 

information must be available. If J is an array containin;;J the current 

manipulator joint variable values at time t = T 1 - tacc and JC the 

joint variables corresponding to point C in Fig. 3, then the joint 

variables at point D can be evaluated as J
0

• The time needed to move 

to points J
0

, for each joint, can be estimated from: 

t. = 
1 

where e . 
max1 

. 
8 . rnax1 

is maximt.nn velocity of joint i. 

The travel time value (T1 ) is selected to be either ti or 

2t depending which is larger. Having estimated these values, the ace 

synchronised trajectories are generated for each joint from Eq. 7 and 

Eq. 8. 

5. SIMUlATION RESULTS 

To rigorously test the SOC algorithm, a motion path was selected 

to ensure that a diverse and large nt.nnber of rules would be created 
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during each trial. A transition segment perioo of 0.1 secorrls was 

coosen between the path segments to allow 'snooth' movement and use was 

merle of the whole actuator velocity range fran maximum p::>sitive to 

maximum negative value. 

All the results presented are obtained starting fran an empty 

controller store for each trial corrluctoo. Repeatoo trials urrler the 

same conditions along the same trajectory add a similar nunber of 

rules, but these are only marginally different fran toose of the first 

trial. The resp::>nses to a preplanned datun trajectory for the 

parameter values of Table 3 are shown in Fig. 4. 

The controller output is incremental in form and the rewards are 

directly assignoo to the rules created in the previous sanple. As 

indicated, only a slight change on the initial resp::>nse is obtained 

after the 6th run. The number of rules storoo in the initial run is 56 

rules and these increased to 321 rules after the 6th run. 

The two most critial parameter values that dictate the system 

performance are found to be the delay in reward paraneter and the form 

of controller output. Distributing the reward over several samples in 

accordance with previous SOC applications [15,21] leads to a poor 

manipulator resp::>nse as shown in Fig. 5. For this figure the reward is 

distributed over the rules created in the previous five samples. When 

the reward is distributed over several sanples the irrl ividual value to 

be added to each rule becanes too snall to be effective in initiating 

rule mooification. Consequently, fewer urrnooified rules are storoo and 

this will in general lead to a deterioration in system performance. 

To determine the impact on system behaviour of el iminati.llJ the 

delay in reward paraneter, the imminent action to be taken is rewarded 

arrl the challJes that result can be seen by canparison of Fig. 4 and 

Fig. 6. 
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Both the absolute arrl incranental forms of the process input have 

been tested successfully in the previous simple fuzzy lcgic controller 

applications cited. The absolute form of the process input, however, 

does give p:>Orer resp:mses for this particular application and Fig. 7 

soows larger response deviations fran the set point over: certain 

trajectory segments. This form of process input, coupled with a low 

resolution of the discrete support set values that are mapped to 90 

volts reduces the ability of the manipulator to follow the set-point 

trajectories. 'Ib avoid this weakness, the approach adopted has been to 

use the incranental form of process input because of its superior 

sensitivity in the vicinity of the varying set point trajectory. 

The behaviour: of the system based on error and change in error 

universes of discourse is cbtained for the scaling factors listed in 

Table 3 for canpleteness. 

Th.e responses, Fig. 8, soow that this arranganent yields less 

sensitive responses in canpar:ision with that of Fig. 4 in which speed 

is used instead of change in error. 'Ihe r:esul ts indicate that benefits 

can be gained by anploying different controller: input terms to tOOse 

previously used in sa:: applications. fvbreover, speed measur:anent is 

directly accessible and avoids the computation to evaluate the change 

in error. 

Responses using the controller par:aneter values of Fig. 4 for 

different manipulator configurations are soown in Fig. 9 arrl Fig. 10 

and these help to confirm that the sa:: algorithm is robust to process 

parameter charge. 

OJservation of joint motion for certain manipulator configurations 

has shown large sustained positional errors in parts of the trajectory. 

'Ihe joints driven at maximun actuators speeds are most affected, 

i.e. joints 1 and 3 in Fig. 4. It is krown that certain manipulator 



18 

configurations and or loadirg increases the effective joint inertia and 

the associated increased J;n~r danand on the actuators leads to an 

increased J;Ositional error. The problan is resolved by placirg an 

upper limit on the speed at which set-point variations can be dananded. 

Ehlployirg the controller parameter values of Fig. 4 and limitirg the 

trajectory speeds to 75% of the maximum actuator speed available, gives 

a marked improvanent in systan response, Fig. ll. 

6. CCR:UiiiONS 

The J;nint to J;Oint movanent for individual manipulator joints is 

considered inefficient by present robotic starrlards. A better IrDtion 

strategy is to move all the manipulator joints synchronously, thus 

reducirg travel times by exclu:lirg stoppa-Je delays. The inability to 

represent fully the detailed manipulator dynanic equations 

lirguistically does prevent the use of synchrooous motion with the 

simple fuzzy l<XJiC controller [4]. 'Ihis can be overcane by adopting 

the self organisirg fuzzy lCXJic algorthm [15,16]. The on-line SOC 

learning capability allows the rule algorithm to be generated and 

upjatoo simultaneously as the manipulator motion proceEds arrl the 

manipulator dynanic properties are implicitly reproduced within the 

control systan. The capacity of the controller to learn fran its own 

envirorment makes it a viable algorithm to control the synchronous 

motion of manipulator joints. 

Existing SOC algorithns ~re designed to resporrl to 'time 

invariant' system input disturbances. The requirement for synchrooous 

motion of manipulator joints is for time varying input disturbances. 

To overcane this problem, an additional assumption is made that the 

working range of the system is considerEd to be restricted to a sample 

interval. This leaves the SOC structural design intact. Scalirg 
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factor selection is more simple and direct, in canparison with other 

rep::>rted SOC applications. 1he delay in reward, ho\o.ever, must be 

accredited to recent actions unlike the earlier reported work [15,21]. 

In this application, an incremental form of process input is essential 

if the best performance is to be achieved. 

1he majority of motion control strategies employed in robotics 

utilise sane form of manipulator dynamic mc:rlel to maintain an 

acceptable motion control and this inevitably leads to canputational 

time problems. The principal reason for adoptir-g the SOC algorithn in 

this vork was to avoid the need for a detailed dynamic mc:rlel. In the 

first attempt to use the SOC it was found that the general rule E'q. 3 

and fuzzy set form E'q. 4 required many minutes of canputational time. 

The initial ideas of section (3.3) did not give sufficient time 

reduction and this led to all fuzzy measurements being represented as 

fuzzy singletons. With this algorithm mc:rlification, it was estimated 

that 0. 01 second of CPU time is needed to calculate the manipulated 

variables over 250 rules. 

1he SOC arrangement finally used incorp::>rates the unit matrix as 

the process mc:rlel and is shown to perform well on the canplex process 

of this study. The algorithm is computationally efficient, needs the 

minimum of computer storcqe and oould be implemented on a 

microcanputer. 
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jo~m: speed 
PB PH PS zo NS NH NB 

PB zo PS PH PB PB PS PB 

PM NS zo PS PM PS PB PB 

PS NM NS zo PS PM PB PS .. 
0 .. PO NB NM liS zo zo PM PB .. ., 
c NO liB NM zo zo PS PM PS 0 .... 
.u .... NS liB NB .. NH NS zo PS PM 
0 
c. 

NM tm NB liB NM liS zo PS 

NB NB tm NB NB NM NS zo 

a) 

JOl.nl: speed 

-6 -5 -4 -3 -2 -I 0 1 2 •. J 4 5 6 

-6 7.0 6.5 7.0 6.5 7.0 7.0 4.0 4.0 4.0 J.O l.O 0.0 o.o 

-s 6.5 6.5 6.5 5.0 6.5 6.5 4.0 4.0 4.0 2.5 1.5 o.o 0.0 

-4 7.0 6.5 7.0 5.0 4.0 4.0 4.0 l.o:. 1.0 l.O o.o -1.5 -l.O 

-3 6.5 6.5 6.5 5.0 4.0 4.0 4.0 1.5 1.5 l.O o.o -1.0 -1.5 

-2 7.0 6.5 7.0 4.0 1.0 1.0 l..:l o.o 0.0 -1..0 -l.O -4.0 -4.0 

-I 6.5 6.5 6.5 4.0 1.5 1.5 1.5 0.0 0.0 -l.O -1.5 -4.0 -4.0 

.. -o 7.0 6.5 4.0 J.O :!;.0 LO 0.0 0.0 o.o -3.0 -4.0 ~.5 -7.0 
0 .. ... ., +() 7.0 6.5 4.0 3.0 o.o 0.0 o.o -l.O '-1..0 -l.O -4.0 -6.5 -7.0 
c 
0 

~ 1 4.0 -4.0 1.5 1.0 c.~ 0.0 -l.S -l.S -1..5 -4.0 -6.3 ~.5 -0.5 
.... .. 
8. 2 4.0 4.0 1.0 l.O 0.0 o.o -1.0 -1.0 -1..0 -4.0 -7.0 ~.5 -7.0 

3 1.5 l.O 0.0 -1.0 -1.:·. -1.5 -1.0 -1.0 -4.0 -s.o -6.5 ~.5 -6.5 . 
4 l.O 1.5 0.0 -1.0 -L:l -1.0 -l.u -4.0 -4.0 -s.o -7 .o -6.5 -7.0 

5 0.0 0.0 -1.5 -2.5 -l.:l -1.0 -1.0 -6.5 .-6.5 -5.0 ~ ... ,:) ~.5 -6.5 

6 0.0 0.0 -1.0 -3.0 -1.0 -4.0 -4.0 -7.0 -7.0 -6 .. 3 -7.0 -6.5 -7.0 

b) 

Table ~ Perforoance index rule and look up tables 
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Joint 8 d a C1 Rarge 
nunber dearees metres metres dearees dearees 

1 0 0. 54 0 -90 -180 to 180 

2 90 0.162 0 90 -180 to 180 

3 -0 - 0 0 0 to l. Lrn 

4 0 0 0 -90 -180 to 180 

5 0 0 0 90 -90 to 90 I 
6 0 0.25 0 0 -180 to-180 I 

I 

Table 1 Kinematic parameter values for initialisation configuration 

a: GV 

Joint GX ~ 

nunber !;X)S i tional joint speed change in controller 
error error output 

1 460 4.6 460 12.85 I 
2 460 4.6 460 12.85 

3 460 4.6 460 12.85 

4 330 3.3 330 12.85 I 
5 330 3.3 330 12.85 I 

I 
6 660 6.6 660 12.85 I 

I 

i 

Table 3 Scaling factor values used in sec stu:iies 
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A CONTRIBUTION TO FIXTURE DESIGN RULES: AN EXPERT SYSTEM 

A.R. DARVISHI AND K.F. GILL 
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The capability of a Flexible Manufacturing System to meet the demands 

for small to medium size batch production can be limited by component 

fixturing requirements. The rule based method illustrated could lead to 

an optimum solution for the fixture design problem. 

To illustrate the approach proposed, the system has been used to design 

a fixture for a real, although simple, prismatic engineering component. 
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1. INTRODUCTION 

Modern manufacturing demands medium to small batch production 

runs and this requirement has established the need for the flexible 

manufacturing system (FMS) [ 1] . An essential preliminary to the 

creation of a FMS is fixture design, itself a complex task with many 

variants. Each design variant must be satisified if optimum results are 

to be attained. No single design philosophy has been established in the 

literature to achieve an optimum fixture design and the results of this 

work suggest that a principal difficulty is one of knowledge 

representation. The authors believe that the use of an 'Expert System' 

offers a promising solution to the fixture design problem. 

For readers not familiar with the expert system, a list of the 

most recent papers are references [2-18] and these indicate the type of 

data required to construct expert system tools. 

In the authors opinion the most relevant of these publications 

are [1-3]. Markus et al. [1] proposed a prototype fixture design using 

a family of box-type pieces from a fixture kit, Miller and Haunam [2] 

tried a CAD/CAM fixture design procedure and developed a knowledge base 

for subsequent use with an expert system. Ingrand and Latpmke [3] 

suggested the use of an expert system for automatic fixture design, 

which defines fixture elements by their operation function. 

An appropriate database for the development of a fixture design 

expert system is presented in [19] and looks at rule development for 

such a system. The example used to illustrate the approach adopted was 

chosen because the solution is understood and known to many engineers. 

The authors believe the example given, although simple, does allow the 

important ideas to be clearly described and effectively demonstrated. 

The work was implemented on a VAX 11/780 computer using the OPS5 

production system language [20], a language available for use in expert 

systems. 

2. EXPERT SYSTEM 

The fixture design expert system (FDES) proposed is divided into 

four modules, each intended to achieve a particular goal. The 

methodology employed is based on examining the design goals to be 

achieved and then creating rules to satisfy these imposed 

specifications. From these rules the fixture design evolves together 

with a list of all standard constructional fixture elements required to 

satisfy the production and manufacturing process needs. 

--------------------
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MODULE 1 : FIXTURE SELECTION RULES 

A fixture name usually emanates from the manufacturing process 

associated with the component to be machined and the machine application 

is used to identify the fixture type classification. Fixtures are also 

identified by a sub-classification, typically one designed for use only 

on a milling machine would be called a "milling fixture" [21]. 

The rules presented in the four selection modules of the FOES 

have been written for a milling fixture and expert rules have been 

developed for the more common types, that is, plate, angle-plate, 

modified, vise-jaw, indexing, duplex and the electromagnetic chuck. 

In addition to the physical and geomtric attributes associated 

with a component, manufacturing operations require other attributes must 

be used in the fixture selection process. Typically, production rate, 

machining cycle, fixture complexity and each of these attributes can be 

assigned values, for example:-

Production rate 

Machining cycle 

high 

normal 

low 

continuous 

one-by-one 

discrete 

short lead time (high throughout), 

production demands readily met, 

low throughput; 

high volume flow, 

normal operation, 

single item (infrequent requirement), 
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Fixture complexity 

simplest plate-fixture, 

simple duplex-fixture, 

complex special purpose fixture. 

Separate rules can be developed to govern the selection of each type of 

fixture. In the example selected, the reasoning behind the rule 

construction is the same for all rules, and only those rules dealing 

with the plate and multi-station fixture, together with the 

electromagnetic chuck will be presented to illustrate the method 

proposed. Expansion of the approach outlined will lead to a system of 

use to the practitioner. 

2.1.1 Plate Fixtures 

The most versatile and rudimentary form of fixture is the plate 

fixture. This device comprises a flat plate which allows a component to 

be supported, located and clamped using a variety of standard elements. 

The first rule governing the selection of a plate fixture is based on 

the component's physical and geometrical attributes and the production 

requirements. The left-hand-side or CONDITION part of a rule is 

expressed linguistically as follows: 

IF 

THE GIVEN PART HAS THE FOLLOWING CHARACTERISTICS: 

AND IF 

part is not a member of a 
relative size of the part is 
overall shape of the part is 
part details are 
batch size or number of the part to be 
machined in each run is not 
part life cycle is 
batch is repeated every 

part-family 
medium 
prismatic 
simple 

> N and < M 
24 months 
12 months 



THEN 

THE REQUESTED FIXTURE MUST HAVE THE FOLLOWING CHARACTERISTICS: 

operation 
production speed is 
no of fixuring station (s) is/are 
it is used to make 
part size that can be accommodated is 
part position is 
production cycle is 

(This is the "ACTION" part that must take 
conditions are simultaneously satisfied. 
entire left hand side has been found, the 
instantiated). 

milling 
normal 
one 
simple-details 
medium 
at-90-deg-to-support 
one-by-one 

place if the above 
When a match for the 
rule is said to be 

suggest "plate-fixture" is a "milling" fixture 
create a frame representing the suggested fixture 
ask for a name to be given to the suggested fixture 
create the suggested fixture 
put the supplied name in its "name" slot 
inform the user that the suggested fixture has been created 
put the created fixture in the "working-memory" (WM). 

Rules are initiated using the command "P" (for production) in the OPSS 
language. P takes as arguments the name of the Rule, e.g. 
FIXTURE==SELECTION=RULEl. The sequence of condition elements are 
partitioned from the action statements by the language separator'-->'. 
Employing the above procedure, the coding instructions are as shown 
in Table 1. 

2.1.2 Multistation Fixtures 

Multistation fixtures are primarily used for high-speed, 
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high-volume production where the machining cycle is continuous. Duplex 

fixtures (2 station) are the simplest form of multistation fixture 

and allow component loading and unloading to take place without impeding 

the maching operation in progress. For example, once the machining 

operation is completed at one station, the cycle is repeated at a second 

station and simultaneously the component at station one is replaced by 

the next unit to be machined. 

The selection of a multistation fixture, duplex in this case, is 

determined from similar condition elements to those presented in 



Section 2.1.1. The additional constraints include higher batch sizes, 

increased life-cycle, more frequent batch repetition. The rule 

construction and coding will be similar to those given in Table 1. 

2.1.3 Magnetic Chuck 

Most surface ground ferrous components are held during machining 

by this form of non-mechanical clamp fixed in a conventional manner to 

the machine table [22]. 

The Fixture-Selection-Rule which governs the selection of a 

magnetic chuck has more condition elements than the previous rule, 

however, the requirements of each condition element are more relaxed -

i.e. a number of solutions are possible that will satisfy the required 

conditions because of the versatility and ease of use a magnetic chuck 

affords. The OPSS coding for this rule is given in Table 2 and a 

description of its condition statements is as follows:-

a) First condition element PART : 

As it is seen in the condition element PART, some attributes can 

have more than one value. This kind of value set is called 

"Disjunctions". A disjunction specifies a set of values, only one of 

which must correspond for the LHS-value to match. Disjunctions are 

denoted by twin angle brackets 

typically:(PART RELATIVE-SIZE (<R-SIZE> <<SMALL MEDIUM LARGE>>}) 

40 
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The geometry and size of a magnetic chuck make it possible for it 

to accommodate small, medium and large components. Grinding operations 

can start from any point, in any direction, because interference with 

cutter movments can usually be eliminated. For optimal holding 

conditions, surface irregularities must be a minimum and preferably the 

mating surface should be machined. 

b) Second condition element requested - fixture: 

Naturally the unit will be classified as a grinding fixture. The 

facility of manual or automatic operation of the magnetic chuck allows 

the whole of the machining method spectrum to be accommodated, i.e. high 

to low production speeds, continuous to one-by-one production cycle, 

including automatic component placement. 

c) Third condition element - machining operation: 

Conditions in this element dictate the machining operation 

employed (grinding or lapping) and controls the depth of cut value. No 

constraints have been imposed on the range of attribute values available 

and traditional values can be modified to improve manufacturing 

efficiency. 

To conclude this module, a node-and-link representation of the 

production tool is given in Fig. 1 in which the emphasis is on the 

fixtures functional attributes. Node-and-link representation is 

sometimes referred to as "Semantic Net" which can virtually be used to 

represent any concept. 
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2.2 MODULE 2 : RESTING OR REFERENCE PLANES SELECTION RULES 

An attempt should always be made to develop at least one rule for 

each combination of the component's physical and geometrical attributes. 

This enables rule construction to be more easily understood, 

facilitates rule modification and the inclusion of additional rules when 

desirable. The latter might be deemed necessary at a later stage, as 

experience with the system grows. 

The first rule of module 2 requires the least number of condition 

elements and each additional rule becomes progressively more complex as 

the number of condition elements are increased. 

The condition elements associated with the selection of the first 

reference plane, (lSTRP) shown in Table 3 and illustrated in Fig. 3, can 

be expressed as follows: 

IF 

AND 

there is a request to select the lSTRP, i.e. there is a ~M 

(working memory) element matching the first condition 

element whose SURFACE-LABEL attribute has the value of NIL. 

the feature is a SURFACE, and its label is Sl (say) 

part name to which Sl belongs is Pl 

Sl is planar 

Sl is machined 

the quality of Sl is one of FINAL-FINISH, ROUGH-FINISH or 

ROUGH-MACHINED 
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direction of external normal to Sl is opposite to direction 

THEN 

AND 

AND 

of external normal of the machine table 

Sl form geonetry tolerances (parallelism and 

perpendicularity) = 0.01 mm. 

no features start from Sl 

no features open into Sl 

display the message: 

"lSTRP==SELECTION=RULE=" WAS FIRED 
AND SURFACE <surface-label> IS CHOSEN 
AS FIRST-REFERENCE-PLANE 

modify the WM matching the first condition element, i.e. map 

all attributes of surface Sl into the lSTRP and put it in WM 

display : 

THE "lSTRP" WAS CREATED AND ASSIGNED TO WM 

Rules governing the selection of the second and third reference 

planes follow the same pattern as those for the first. Employing the 

3-2-1 principle, the second and third reference planes must eliminate 

the remaining degrees of freedom (DOF) associated with the component. 

2.3 MODULE 3 : GENERIC ELEMENT SELECTION 

This module includes three groups of rules, each dealing with the 

selection of a class of element for the 1st, 2nd and 3rd reference 

planes respectively. A member of this class will be referred to as a 

generic element. 

In the selection of the generic elements (GE) associated with each 

reference plane, the important properties of STARTING and OPENING 



features are presented. The constraints imposed are: 

i) no feature starts from the lSTRP, 2NDRP or 3RDRP, 

ii) features starting from the reference planes will be machined 

during subsequent machining phases, 

iii) features starting from the reference planes are already machined, 

iv) whenever a feature opens into a surface chosen as the reference 

plane, provisions must be made to avoid damaging the locating and 

supporting elements when the tool breaks into that surface, and 

v) whenever a generic or standard-element is selected and the height 

is not specified, a fixed-height is assumed by default, unless 

otherwise stated. 

2.3.1 Selection of Generic Elements for (lSTRP) 

The first reference plane is the most important and must eliminate 

at least three of the component's degrees of freedom. Therefore at 

least three generic elements are associated with it. 

The first rule will satisfy the most basic requirements and 

contains the least number of condition elements. Each further rule will 

become progressively more complex, employing an increasing number of 

condition elements. 

44 



RULEl 

IF 

AND 

AND 

AND 

AND 

GENERIC==ELEMENT=SELECTION=FOR=lSTRP=RULEl 

there is a need to select a generic element for the lSTRP 

i.e. SELECTION-STATUS of a VM element type lSTRP=GEN=EL is NIL. 

lSTRP surface label is Sl (say) 

the part-name is Pl (say) 

Sl is planar 

Sl is machined 

feature opens into Sl 

suggested fixtures classification is either milling or grinding 

suggested fixture type is electromagnetic-chuck 

part is Pl 

type of operation i.e. lapping, grinding or finishing 

(or other operations, having shallow depths of cut) 

depth of cut is less than 1 mm (arbitrarily chosen, can be set 

to any value) 

machining phase could be any phase 

If part is Pl 

component material is magnetizable 

component's relative size is small or medium 
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THEN 

AND 

display the message 

;BECAUSE 

FIXTURE-TYPE IS : <TYPE> : AND THE: 

TYPE-OF-OPERATION IS : <T-0-0P> 

DEPTH-OF-CUT IS SHALLOW PART-MATERIAL IS 

MAGNETIZABLE AND THE lSFRP IS PLANAR: 

MACHINED AND NO FEATURE OPENS INTO 

IT •.•••••••••••••••••••••••••• THEN 

THE THREE RESTING POINTS ASSOCIATED WITH 

THE lSTRP ELIMINATES 3DOF AND CAN BE 

REPLACED BY 3 GENERIC-ELEMENTS HAVING 

; ; ; 

FUNCTION 

PRINCIPLE-OF-ACTION 

NATURE-OF-CONTACT 

SUPPORTING OR POSITIONING 

FIX-BY-ATTRACTION 

PLANE-TO-PLANE 

modify the first condition element and set the SELECTION-STATUS 

attribute to SELECTED 

AND 

associate the three generic elements GEll, GE12 and GE13 with 

the lSTRP, the attributes and values are: 

IS-A 

PART-NAME 

GEN-EL-CODE 

ASSOCIATED-WITH 

SUPPORT 

<PART-NAME> 

GEll 

lSTRP 
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AND 

FUNCTION 

PRINCIPLE-OF-ACTION 

NATURE-OF-CONTACT 

FRICTION-AND-JAMMING-FACTOR 

SUPPORT 

FIX-BY-ATTRACTION 

PLANE-TO-PLANE 

VERY-LOY 

LOAD-UNLOAD-FACTOR HIGH 

NO-OF-ELEMENTS-REQUIRED 1 

POSITIONING 

N.B. GE12 and GE13 will have the same attributes and values as 

GE11 

display the message 

;REQUIRED GENERIC-ELEMENTS YERE DETERMINED: 

AND ASSIGNED TO YM: 

GE11, GE12 and GE13 HAVE THE SAME ATTRIBUTES: 

AND CAN BE REPLACED BY THREE STANDARD ELEMENTS: 

OF THE SAME TYPE AND SIZE : 

RULE 2: deals with a situation where the 1STRP into which a feature 

opens is a machined planar surface. The opening feature(s) could be one 

or any combination of common features, i.e. holes, slots and must have 

been machined in a previous phase of operation. The fixture type is an 

electromagnetic-chuck and the other condition elements are as in Rule 1. 

In the following, since the type and status of the opening features play 

a major role in determining the generic elements, checks are made to 

ensure that: 

47 



IF THE OPENING FEATURE(S) IS ALREADY MACHINED: 

i) can the generic elements be replaced by the fixture's base plate or 

the machine-tool table, 

ii) if the opening feature is a hole and it has already been machined, 

checks are made to see whether the hole could be used for locating 

the component and 

iii) if a hole is to be machined and it opens into the lSTRP, the use of 

generic elements (which could be replaced by the support elements) 

is inevitable. Otherwise the drill tip will penetrate the machine 

table. 

Rule 3: accommodates the situation where a plate-fixture (milling 

fixture) is suggested as the required fixture, the machining operation 

is one of drilling, boring or counterboring, the component material is 

either ferrous or non-ferrous, there is a feature(s) opening into the 

lSTRP and the opening feature is TO-BE-MACHINED. 

The remaining rules in this group each deal with a specific 

situation eg. component attributes and manufacturing requirements. 

2.3.2 Generic-elements Selection for 2NDRP AND 3RDRP 

The second reference plane is perpendicular to the lSTRP, 

eliminates at least two component degrees of freedom and requires at 

least two generic-elements. 

The third reference plane eliminate at least one degree of fre~dom 

of the component. Hence, there is at least one generic element 

associated with it. The 3RDRP is perpendicular to both the first and 

the second reference planes. The reasoning behind the selection of 
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generic elements for the second and third reference planes is similar to 

those stated for the first reference plane and the only difference being 

the number required. 

2.4 MODULE 4 : SELECTION OF STANDARD ELEMENTS 

Rules governing the selection of standard elements, are presented 

in this module; typically supports, locators and clamps. 

Standard elements are real physical objects, capable of fulfilling 

certain functions and the rules to be developed will map the attributes 

of the generic element into a standard element capable of fulfilling the 

desired function. 

All constraints applicable to the generic element are transferred 

to the standard element, 

a) standard support elements of the lSTRP must not be collinear and 

b) standard support and locating elements of 2NDRP must be positioned 

as far apart as possible and collinear. 

The rules of this module are divided into four groups, selection of 

standard elements for the lSTRP, 2NDRP and 3RDRP, and creating a list of 

required elements needed for the construction of the suggested fixture. 
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2.4.1 Selection of Standard Elements for lSTRP 

RULE 1: 

IF 

AND 

AND 

AND 

there is a lSTRP, standard elements are to be selected 

if suggested fixtures classification is GRINDING or MILLING 

fixture type is electromagnetic-chuck 

part-name is Pl (say) 

part material is magnetisable (ferrous) 

part relative size is small or medium 

if the 3 generic elements of the lSTRP are the same, with 

at tributes: 

GENERIC-ELEMENT 

IS-A 

GEN-EL-CODE 

ASSOCIATED-YITH 

FUNCTION 

PRINCIPLE-OF-ACTION 

PART-NAME 

SUPPORT 

GEll 

lSTRP 

- SUPPORTING 

- POSITIONING 

- LOCATING 

FIX-BY-ATTRACTION 

Pl 

NATURE OF CONTACT PLANE-BY-PLANE 

FRICTION-AND-JAMMING-FACTOR LOY OR VERY-LOY 

LOAD-UNLOAD-FACTOR HIGH 

NO-OF-ELEMENTS-REQUIRED 1 

------
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~D 

~D 

THEN 

if machining operation is grinding, finishing, lapping or 

finish-cut 

lSTRP belongs to Pl 

and there is no feature opening into lSTRP 

display the message: 

: THE THREE ST~DARD-ELEMENTS ASSOCIATED 

WITH THE lSTRP ARE REPLACED BY THE: 

TOP-SURFACE OF THE ELECTROMAGNETIC: 

CHUCK. THIS CHUCK WOULD SERVE AS THE BASE 

PLATE OF THE FIXTURE THE SUPPORT 

ELEMENTS OF THE 2NDRP : 

~D 3RDRP WILL BE POSITIONED ALONG THE 

2NDRP ~D 3RDRP : 

write 

SUPPLY AN IDENTIFICATION-CODE OR A NAME FOR CHUCK 

read the supplied name or ID-code: 

modify the YM element matching the first condition element: 

create the required standard elements by mapping generic 

element attributes into standard element with attributes: 

·pART-NAME 

FUNCTION 

ASSCIATED-YITH 

PRINCIPLE-OF-ACTION 

<PART-NAME> 

<FUNC> 

lSTRP 

FIX-BY-ATTRACTION 
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RULE 2: 

NATURE-OF-CONTACT 

FRICTION-AND-JAMMING-FACTOR 

LOAD-UNLOAD-FACTOR 

IDENTIFICATION-CODE 

NO-OF-ELEMENTS-REQUIRED 

display message: 

PLANE-TO-PLANE 

<F-A-J-F> 

HIGH 

<ID-CODE> 

1 

REQUIRED STANDARD-ELEMENT DETERMINED 

AND ASSIGNED TO VM: 

(Feature opening into the 1STRP.) 

First to seventh condition elements of Rule 2 are identifical to 

Rule 1, the eighth and nineth condition elements are: 

IF 

. AND 

THEN 

RULE 3: 

1STRP belongs to Part P1 

and there are features opening into it 

opening features (into 1STRP) are of type - hole, simple-slot, 

T-slot or dovetail-slot 

and opening features are already machined 

- actions as in Rule 1. 

If the suggested fixture is either of type Plate or Duplex and if there 

is a 1STRP for which standard elements must be selected and suggested 

fixture classification is milling or grinding and there are three 

generic-elements for the 1STRP with attributes: 
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IS-A 

GEN-EL-CODE 

ASSOCIATED-YITH 

FUNCTION 

PRINCIPLE-OF-ACTION 

PART-NAME 

NATURE-OF-CONTACT 

FRICTION-AND-JAMMING-FACTOR 

LOAD-UNLOAD-FACTOR 

NO-OF-ELEMENTS-REQUIRED 

THEN 

- display: 

SUPPORT 

GEll 

lSTRP 

- SUPPORTING 

- POSITIONING 

- LOCATING 

FIXED-IN-POSITION 

Pl 

PLANE-TO-PLANE 

- VERY LOY 

- LOY 

HIGH 

1 

THE THREE STANDARD-ELEMENTS ASSOCIATED: 

YITH THE lSTRP ARE REPLACED BY THE: 

THREE SUPPORT ELEMENTS HAVING THE FOLLOYING: 

ATTRIBUTES: 

FUNCTION 

PRINCIPLE-OF-ACTION 

NATURE-OF-CONTACT 

SUPPORTING OR POSITIONING 

FIXED-IN-POSITION 

PLANE-TO-PLANE : 

AND - modify the YM element matching the first condition element 

AND - create standard element with the following attributes and assign 

to YM. 

STANDARD-ELEMENT SUPPORT 

TYPE FLAT-TOP-SUPPORT 
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PART-NAME 

ST-EL-CODE 

ASSOCIATED-WITH 

FUNCTION 

PRINCIPLE-OF-ACTION 

NATURE-OF-CONTACT 

FRICTION-AND-JAMMING-FACTOR 

LOAD-UNLOAD-FACTOR 

NO-OF-ELEMENTS-REQUIRED 

AND - display message: 

REQUIRED STANDARD-ELEMENTS: 

<PART-NAME> 

ST-EL-777 

lSTRP 

<FUNC> 

FIXED-IN-POSITION 

PLANE-TO-PLANE 

<F-A-J-F> 

HIGH 

3 

WHICH ARE THREE FLAT-TOP-SUPPORTS YERE DETERMINED 

AND ASSIGNED TO YM. 

2.4.2 Selection of Standard Elements for the 2ND AND 3RDRP: 

Rules governing the selection of standard elements for these two 

planes follow the same reasoning as those of generic elements for the 

respective planes. Some rules may differ, however, in one important 

respect that of type-of-height, i.e. the generic element(s) have 

adjustable height(s). 

2.4.3 Selection of Clamps and Listing of Elements Used 

Yhen selection of standard support and locating elements for the 

lSTRP, 2NDRP and 3NDRP is finalised, the appropriate rules fire and a 

description is created of the required clamping elements. Illustrated 

in Fig. 2 is a node and link representation of these clamp elements and 

their function~l attributes. 
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Finally, when the appropriate clamping elements are determined, a 

complete list of standard elements is displayed for the suggested 

fixture. The list includes type, identification and quantities required 

from each standard element, together with the overall number of elements 

selected. 

3. USING THE SYSTEM 

To execute the program the working memory (VM) must be initialised 

after the declaration and rule section blocks of the OPSS programming 

language have been loaded. The sequential steps in the execution of the 

program are:-

i) Loading and declarations i.e. data structures developed [23] for 

representation of individual objects. 

ii) Loading the four production rule blocks that contain the action 

files for the selection of: 

a) required fixture, 

b) reference or resting planes, 

c) generic elements and 

d) standard elements and output the list of standard 

elements required to construct the fixture, 

iii) initialise working memory and 

iv) execute program. 

4. OBJECTS REPRESENTATION 

As a prerequisite to fixture design, the component surfaces and 

fixtures must be defined, the machine tool to be used identified and the 



process plan specified including at least one phase of the machining 

operation to be performed. The list below itemizes the information 

required by the system for the represention of: 

i) component, 

ii) surfaces enveloping the component and features opening into and 

starting from each surface, 

iii) machine tool and sub-assemblies i.e. machine table, tool magazine, 

iv) phases of machining operations and 

v) requested fixture. 

Having defined and saved these files, execution yields: 

1. Computations for determining significant machining environmental 

volumes and weights. 

i. boxes containing the initial_and final component (i.e. 

volume), 

ii. the maximum working volume of the machine tool, 

iii. overall weight of the component, 

iv. overall weight of the component and fixture assembly. 

2. Machining operations required are checked to determine if they are 

within the machine capabilities. If not, warning messages are 

displayed. 

3. Fixture selection to hold the component for defined machining 

environment. 

4. Selection of three reference planes for component to eliminate six 

degrees of freedom. 
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5. Conceptualised generic elements associated with the three reference 

planes are chosen. 

6. Mapping of the generic element attributes into standard fixture 

elements for intended functions. 

7. Generation of standard element list (with identification 

attributes) for construction of required fixture. 

5. RESULTS 

The results obtained using the system for an 

engineering example is given below. The workpiece chosen is a medium 

sized prismatic component manufactured in low carbon steel. The 

machining details include a simple slot and three through holes starting 

from the uppermost surface S6 and opening into surface Sl. The process 

plan indicates the machining of the simple slot by end milling, followed 

by the drilling of the three holes; shown in Fig. 3 is the finished 

component. 

The fixture to be designed must satisfy the conditions 

a) machining speed is to be normal, 

b) single station fixture with manual load and unload 

capability and 

c) the preferred component placement direction is the z axis. 

Vith these engineering decisions taken the fixture design program 

would be executed [23] and a list of all· standard construction fixture 

elements required to satisfy the production and manufacturing process 

would be available on a monitor screen. A typical display would be as 

shown in Table 4 in which all the necessary elements have been itemized. 
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6. CONCLUSIONS 

The above program execution demonstrates very clearly the power of 

this novel system for fixture design. It will allow greater versatility 

than is now economically possible employing the traditional approach to 

fixture design. It must be emphasized this is a knowledge based 

approach and the system will be unable to make subjective judgments. 

The practising engineer would generally welcome a three 

dimensional display of recommended elements in preference to the 

itemised list given. It is the view of these authors that in parallel 

with the future developments of the fixture design expert system 

proposed, CAD software should be utilized to create a library of 

standard fixture elements that can be referenced by assigned features. 

The rules embodied within the expert system would be used to create 

a graphic representation for each selected element and the style 

recommended would be as shown in Fig. 4. The graphics facility would 

allow the system's user to generate a perspective assembly arrangement, 

as illustrated in Fig. 4e, to aid the actual machine set-up. 

It is appreciated that the expert system software that incorporates 

the proposed graphic displays would require a significant computing 

facility. The best estimate that can be made on the size, at this stage 

of development, would be to support a hardware capability that can 

handle a currently avalable commercial CAD package. 
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P FIXTURE==SELECTION=RULE1 
(PART APART-NAME 

A IS-THE-PART-A-FAMILY-MEMBER 
A RELATIVE-SIZE 
A OVERALL-SHAPE 
APART-DETAILS 
A BATCH-SIZE 
APART-LIFE-CYCLE 
ABATCH-REPS-IN-12 MONTHS 

Start of and if block ie. continuation of LHS 

(REQUESTED-FIXTURE 
A CLASSIFICATION 
A PRODUCTION-SPEED 
ANO-OF-FIXTURING-STATIONS 
APART-LOADING-METHOD 
A USED-TO-MAKE 
A PRODUCTION-CYCLE 
APART-POSITION 
APART-SIZE 

end of LHS: 
Start of the block ie. RHS 

<ANY-NAME> 
NO 
MEDIUM 
PRISMATIC 
SIMPLE-DETAILS 

{<NO> > 40 <= 200 } 
{<MONTHS> <= 24 } 
(<REPS< >= 1 ) ) 

MILLING 
NORMAL 
ONE 
MANUAL 
SIMPLE-DETAILS 
ONE-BY-ONE 
AT-90-DEG-TO-SUPPORTS 
MEDIUM 

(OPS::VRITE (CRLF) (TABTO 10) 
(OPS::VRITE (CRLF) (TABTO 10) 

(TABTO 10) 
(TABTO 10) 

(OPS::VRITE (CRLF) (TABTO 10) 

"RULE1 'WAS FIRED AND :) 
"PLATE-FIXTURE" 'WHICH IS AKO 
"MILLING-FIXTURE' IS SUGGESTED :(CRLF) 
FOR PART***: <ANY-NAME> :***:(CRLF) ) 
'WHAT DO YOU 'WISH TO CALL 

(TABTO 10) THE SUGGESTED FIXTURE : (CRLF) ) 

the end part of the RHS 

(MAKE SUGGESTED-FIXTURE 
ACLASSIFICATION . 
A TYPE 
APART-NAME 
ANO-OF-FIXTURING-STATIONS 
APART-LOADING-METHOD 
A USED-TO-MAKE 
A PRODUCTION-CYCLE 
APART-POSITION 
APART-SIZE 
ANAME (ACCEPT) 

MILLING 
PLATE-FIXTURE 

<ANY-NAME> 
ONE 
MANUAL 
SIMPLE-DETAILS 
ONE-BY-ONE 
AT-90-DEG-TO-SUPPORTS 
MEDIUM 

(OPS::VRITE (CRLF) : THE SUGGESTED FIXTURE IS CREATED AND PUT INTO "'WM" 
: (CRLF)) 

; end of RHS 

TABLE 1. CODING INSTRUCTIONS FOR PLATE FIXTURE 
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(P FIXTURE==SELECTION=RULE2 
(PART APART-NAME 

A RELATIVE-SIZE 
A OVERALL-SHAPE 
APART-DETAILS 
A TYPE-OF-MATERIAL 

A DIMENSIONAL-VARIATION 

<PART-NAME> 
{ <R-SIZE> <<SMALL MEDIUM LARGE>> } 

PRISMATIC 
SIMPLE DETAILS 

{ <T-O-MAT> <<FERROUS 
CAST-IRON STEEL >> } 

{ <DIM-VAR> <0.1 } 
A SPINDLE-DIRECTION 
AREQUIRED-CUTTING-DIRECTIONS { 
APRIOR-MACHINING-OPERATION { 

<ANY-DIR> 
<R-C-DIR> << ANY-DIR > } 
<P-M-OP> << MILLING 
SLAB-MILLING FACE-MILLING>> } 
<SURF-QUL> <<ROUGH AINITIAL-SURFACE-QUALITY { 

; 
(REQUESTED-FIXTURE 

A CLASSIFICATION 
A PRODUCTION-SPEED 
A PRODUCTION-CYCLE 

APART-POSITION 
APART-SIZE 
A USED-TO-MAKE 
ANO-OF-FIXTURING-STATIONS 
APART-LOADING-METHOD 

; 
(MACHINING-OPERATION 

APART-NAME 
A PHASE-NO 
A TYPE-OF-OPERATION 

A DEPTH-OF-CUT 

; 
(OPS::VRITE (CRLF) (TABTO 10) 
(OPS::VRITE (CRLF) (TABTO 10) 

(TABTO 10) 
(TABTO 10) 
(CRLF) 
(TABTO 10) 

(OPS::VRITE (CRLF) (TABTO 10) 
(TABTO 10) 

(MAKE SUGGESTED-FIXTURE 

A CLASSIFICATION 
A TYPE 
APART-NAME 
A NAME 

{ 
{ 
{ 

{ 

{ 
{ 

ROUGH-MACHINED FINISH 
FINAL-FINISH>> } ) 

<CLA> <<GRINDING LAPPING>> } 
<P-S> <<HIGH NORMAL>> } 
<P-C> <<CONTINUOUS 

ONE-BY-ONE» ) 
AT-90-DEG-TO-SUPPORTS 

<P-SIZE> <<MEDIUM SMALL>> } 
SIMPLE-DETAILS 

<N-0-F-S> <<ONE TVO>> } 
<P-L-M> <<AUTOMATIC MANUAL>> 

<P-NAME> 
<ANY-PHASE> 

GRINDING 

{ <D-O-C> <= 1 } 

} ) 

"RULE7" VAS FIRED AND : ) 
"ELECTROMAGNETIC CHUCK" VHICH IS AKO 
"NON-MECHANICAL-CHUCK OR CLAMP" : 
IS SUGGESTED : (CRLF) 

FOR PART***: <P-NAME> :***:(CRLF) 
VHAT DO YOU VISH TO CALL: 
THE SUGGESTED FIXTURE : (CRLF) 

GRINDING 
ELECTROMAGNETIC-CHUCK 

<PART-NAME> 
(ACCEPT) 

(OPS::VRITE (CRLF) THE SUGGESTED FIXTURE IS CREATED AND PUT INTO 
"VM" 

(CRLF))) 

TABLE 2 CODING INSTRUCTIONS FOR MAGNETIC CHUCK 
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(P 1STRP==SELECT==RULE 1 
; 
The following condition element checks that the "1STRP" does not already 
exist in the "WM" 

{(1STRP ~ SURFACE-LABEL NIL) <1> } 
; 
(SURFACE 

; 

~FEATURE-TYPE 

~PART-NAME 

"FEATURES-GENERIC-TYPE 
~SURFACE-LABEL 

~SURFACE-TYPE 

SURFACE 
<PART-NAME> 

EXTERNAL 
<SURF-LABEL> 

PLANAR 
~STATUS 

~SURFACE-QUALITY 

{ <STATUS-VAL> << MACHINE AS-CAST>>} 
{ <S-OUL-VAL> << FINAL-FINISH 

FINISH ROUGH-MACHINED>> } 
~DIRECTION-OF-EXTERNAL-NORMAL -Z 
~IS-PARALLEL-TO-SURFACES <PARA-SURFS> 
~PARALLELISM { <PAR-VAL> <= .01 } 
~IS-PERPENDICULAR-TO-SURFACES {<PERP-SURFS> <> <PARA-SURFS> } 
~PERPENDICULARITY {<PER-VAL> <= .01 } 
~FEATURES-STARTING-FROM THIS- NIL 

SURFACE 
"FEATURES-OPENING-TO-THIS­

SURFACE 
NIL ) 

(OPS::WRITE (CRLF) (TABTO 10) 
(TABTO 10) 

(CRLF) (TABTO 10) 

1STRP==SELECTION=RULE=YAS FIRED : (CRLF) 
AND SURFACE : <SURF-LABEL> IS CHOSEN 
AS "FIRST-REFENCE-PLANE : (CRLF) ) 

; 
(MODIFY <1> 

~SURFACE-LABEL 

~PART-NAME 

~SURFACE-TYPE 
~STATUS 

~SURFACE-QUALITY 

~DIRECTION-OF-EXTERNAL-NORMAL 
~IS-PARALLEL-TO-SURFACES 
~PARALLELISM 

~IS-PERPENDICULAR-TO-SURFACES 
~PERPENDICULARITY 

( OPS::WRITE (CRLF) (TABTO 10) 
(CRLF) (TABTO 20) 

<SURF-LABEL> 
<PART-NAME> 

PLANAR 
<STATUS-VAL> 
<S-OUL-VAL> 
-Z 
<PARA-SURFS> 
<PAR-VAL> 
<PERP-SURFS> 
<PER-VAL> ) 

THE 1STRP WAS CREATED AND ASSIGNED 
TO "WM" (CRLF))) 

TABLE 3. FIRST REFERENCE PLANE SELECTION RULE AND ITS CONDITION 
ELEMENTS 

-------------- -- -- -- -- --



********************************************************************** 
* * * LIST OF REQUIRED STANDARD ELEMENTS TO MAKE THE SUGGESTED FIXTURE * 
* * ********************************************************************** 

PLATE FIXTURE 

ITEM-NAME QUANTITY 

SUPPORT FOR 1STRP 3 
ST-EL-CODE ST-EL-777 
TYPE FLAT-TOP-SUPPORT 

SUPPORT FOR 2NDRP 2 
ST-EL-CODE ST-EL-2288 
TYPE FLAT-TOP-SUPPORT 

SUPPORT FOR 3RDRP 1 
ST-EL-CODE ST-EL-3144 
TYPE ADJUSTABLE-SUPPORT 

***ELEMENTS FOR CLAMPING*** 

CLAMP-TYPE SLOTED-STRAP 4 
NUT-TYPE SPHERICAL-NUT 4 
llASHER-TYPE SPHERICAL 4 
SCREll-TYPE CAP-SCREll 4 
SPRING-TYPE COMPRESSION-SPRING 4 

***FIXTURE-BASE*********** 

BASE-ID-CODE B-458 
BASE-MADE-OF CAST-IRON 
NO-OF-BASES-REQUIRED 1 

TOTAL-ITEMS I 27 

TABLE 4 TYPICAL OUTPUT DISPLAY 
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CLASSIFICATION 

USED ON 

TYPE 

PART SIZE 

PART POSITION 

USED TO MAKE 

PRODUCTION SPEED 

PRODUCTION CYCLE 

FIXTURE COMPLEXITY 

BASE TYPE 

NO OF FIXTURING STATIONS 

PART POSITION 

USED TO MAKE 

PRODUCTION SPEED 

PRODUCTION CYCLE 

NO OF FIXTURING ST A liONS 

TYPE 

PART SIZE 

PART POSITION 

USED TO MAKE 

PRODUCTION SPEED 

PRODUCTION CYCLE 

NO OF FIXTURING ST A liONS 

-

TYPE 

PART SIZE 

USED TO MAKE 

PRODUCTION SPEED 

PRODUCTION CYCLE 

~ < 
!:!! 

.;., 

NO OF FIXTURING ST A liONS 

TYPE 

PART SIZE 

USED TO MAKE 

PRODUCTION SPEED 

PRODUCTION CYCLE 

TYPE 

PART SIZE 

JAW TYPE 

USED TO MAKE 

PRODUCTION SPEED 

PRODUCTION CYCLE 

FIG. 1 NODE-AND-LINK REPRESENTATION OF PRODUCTION TOOL. 
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AKO 

TYPE 

OPERATING SPEED 

OPERATING METHOD 

COMPLEXITY FACTOR 

OPERATING SPEED 

OPERATING METHOD 

COMPLEXITY FACTOR 

"IS·A 

AKO 

AKO 

0 
AKO 

OPERATING SPEED ECONOMIC FACTOR 

OPERATING METHOD 

IS-A 

AKO 

ECONOMIC FACTOR 

OPERATING SPEED 

OPERATING METHOD 

COMPLEXITY FACTOR 

NODE_-::_AND-LINK REPRESENTATION OF CLAMP. 
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FIG.3 PRIS;IATIC COMPONENT. 
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b 
A strap clamp 

a 
A bracket- support assembly 

An assembly of a machine table. locating and 
clamping elements 

c 
A clamping unit assembly 

e 

A complete assembly of a fixture 
arrangement plus component 

z 

Fig. 4 GRAPHICAL REPRESENTATION OF TYPICAL STANDARD FIXTURE 
ELEMENTS USING A CAD SYSTEM 
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A COMPARISCN OF ORTH~"NAL TRANSFORMS 
IN ENGINEERING COMPUTER VISICN 

AL-KINDI, G.A.H., BAUL, R.M • .AND GILL, K.F. 

A comparison of a number of commonly used orthogonal transforms, when 
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applied to the recognition and visual inspection of engineering components, 

has been made. 

The impact on the performance and computational time for the machine vision 

process, due to varying numbers of transform coefficients is assessed. 

Department of Mechanical Engineering 

The university of Leeds 
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1. INTRODUCTION 

Orthogonal transforms are well established mathematical tools that 

have been successfully employed in engineering, typically in the fields of 

surface texture estimation, process identification and communications. 

More recently, image data processing has employed orthogonal 

transforms for the purposes of object recognition and feature extraction. 

In particular, published work [1] based on the Fourier transform has shown 

that only a small number of normalized descriptors are necessary for 

reliable object identification. This paper examines a number of alternative 

transforms and a comparison has been made in order to assess their relative 

suitability for machine vision applications. 

It is not always clear how many transform coefficients are 

necessary for an object to be identified with confidence. In this paper 

contours are reconstructed from inverse formula using varying numbers of 

coefficients. The reconstruction of a contour is a sufficient condition fer 

. the existence of a finite set of transform coefficients that unambig-..:ousl:­

represent a specific object boundary. 

2. REPRESENTATICN OF OBJECT'S BOUNDARY AS A DISCRETE SERIES 

The vision system used in this work contains a standard monochrc~e 

camera type LINK 109A, and a, MATROX Qfg-01/8, frame grabber which is 

capable of digitizing images into a 256 square array whose elements can take 

one of a possible 256 numerical values (grey levels). 

A PDP 11/23 microcomputer is used to control the frame grabber and 

to send the digitized images to a VAX 11/780 computer which is used to carr] 

out the analysis. Figure (1) shows a block diagram of the system hardware. 

Because it is possible to recognise many engineering components 

from their silhouette, establishing the x,y-coordinate values of object 

boundary pixels allows a contour to be readily extracted from image data. 
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The usual preprocessing operations performed on image data prior 

to the extraction of boundary coordinate values are illustrated in 

Figure ( 2). 

3. DISCRETE ORTHOGONAL TRANSFORMS 

Transform theory has played a key role in image processing and it 

continues to be a topic of interest in theoretical as well as applied work 

in this field [2]. 

To use the transforms in the processing of digital signals, 

transform pairs must be defined in discrete form and these are presented in 

the Appendix. 

In general, orthogonal transform pairs can be described by the 

following expressions: 

L-1 
F(u) = I: f(m) FTK(m,u) 

m=o 
L-1 

flm) = I: F(u) ITK(m,u) 
u=o 

where F(u) is the transform of f(m), FTK(m,u) is the forward transform 

kernel, IT~(m,u) is the inverse kernel and L is the number of pixels on a 

boundary. 

4. OBJEcr RECOGNITION, COMPARISON .AND INSPECTION USING 
ORTHOGONAL TRANSFORMS 

The theoretical and experimental evidence available [3,4,5] 

indicates that a set of normalized Fourier descriptors is an effective 

abstract representation of an engineering object. This is because the 

numerical values are invariant with object rotation and size and give a 

unique description. Other transform descriptors exist, however, which could 

provide alternatives that may improve object recognition for use in rr~chine 

vision. The method employed for the evaluation of the Fourier transform 
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descriptors in reference [1] has been applied to five of the better known 

transforms, i.e. Cosine [6], Haar [7], Slant [8], Walsh [9] and 

Hadamard [ 10]. 

Fourier transforms have also been evaluated to provide a basis for 

comparison. 

If X(u) and Y(u) represent the transform coefficients of the 

object's boundary coordinates, a normalized descriptor is defined as: 

S(u) [X(u) 2 + Y(u) 2 ]~ 

[X(o) 2+ Y(o) 2 ]~ 
( 1) 

Object recognition, comparison and inspection can be made with 

confidence using these normalized descriptors. If S1(u) represents the 

normalized descriptor series of one object and S2(u) L~at of a second 

object, then an "error measure" can be defined as: 

1 E =­
N 

N-1 '). 2 !, 

[ E ( S1 ( u) - S2 ( u)) r2 

u=o 
(2) 

where N is the number of descriptors in a set and E is a measure of the 

similarity of any two objects. Small values of E are associated with gocd 

matching. 

Comparing reconstructed objects for the range of orthogonal 

transform inverses listed, the error measure can be used to assess the 

relative effectiveness of each transform in a given vision application. 

5. RESULTS AND DISCUSSIONS 

Results for the two very different objects shown in Figure (3) 

(objects 1 and 2) were initially used for the evaluation of the 

effectiveness of the different transforms investigated. One is a part of a 

knee joint prosthesis and the other is the more conunon gear wileel, the 



73 

latter having a more complex boundary shape. All boundary pixel coordinates 

are employed in the evaluation of the forward transform formulae presented 

in the Appendix. 

In order to select the optimum number of descriptors needed for 

object recognition and comparison, reconstructions have been made (inverse 

transforms) with between 4 and 1024 coefficients from each object examined. 

A typical result is presented in Figure 4 for the knee joint and in Figure 5 

for the gear wheel. 

From the reconstructions made of the knee joint it was observed 

that for all the transforms examined, with the exception of the Hadnmard 

transform, Figure 6, 128 coefficients are sufficient for recognition. In 

the case of Hadamard transform, 256 coefficients were required to give 

results that were comparable and could be used with confidence. The C?U 

relative times required to compute the coefficients of the transforms tested 

are given in Table (1). For each reconstruction the 'relative time' 

required for computation is Jiver. It should be noted that the computing 

time for the calculations of the coefficients obtained from the Hadamard 

transform is the smaller on each occasion. 

In the case of the gear wheel the reconstructions indicate that 

256 coefficients are necessa~J for acceptable recognition for all but the 

Hadamard transform, Figure 7, where a full set of coefficients (1024) must 

be used for satisfactory recognition. 

Equation (2) has been applied for all similarity measurements for 

the transforms investigated. The changes in the value of the error measure, 

with variations in object angular position, are similar for all the 

transforms tested. Typical results with increasing numbers of descriptors 

to represent the object are shown in Figure 8. The exception is the 

Hadamard transform and the results of this transform is shown separately in 

Figure 9. To strengthen the results presented, additional tests •.vere 

. •· 
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conducted on the other objects shown in Figure 3 and these fully support the 

results of Figures 4 to 9 inclusive. 

6. crnCLUSIONS 

In this paper six orthogonal transforms have been tested for 

silhouette recognition and inspection. It has been shown that all 

transforms give adequate information and can recognise objects even when few 

coefficients have been employed except, however, in the case of Hadamard 

transform where a higher number of descriptors is needed for the recognition 

of an object. 

In the case of Hadamard transform, the error value behaves 

erratically and gives no clear indication of the number of descriptors to be 

used in the recognition process, Figure 9. In all of the other transforms 

employed the error variation shows a consistent trend, typically Figure 8, 

and indicates the benefits to be gained with increasing numbers of 

descriptors. 

The time for the computation of transform descriptors indicates 

that the Slant, Haar, Walsh and Fourier require almost the same amount of 

time while the Cosine transform requires twice as much time. The Hadamard 

transform has been shown to require the least time but the speed advantage 

is lost since a greater number of descriptors have been shown to be 

necessary for satisfactory recognition. It is left to the user to choose 

the right transform for each application. 
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APPENDIX 

Discrete .orthogonal Transfor.m 

1. FOURIER TRANSFORM 

The Fourier transform is the most popular of the orthogonal 

transforms and this is mainly due to the elegant properties of the frequency 

domain representation of a large class of engineering signals (11). 

The forward tra~sform can be represented by: 

1 F(u) = -
N 

N-1 -2njm 
N 

1: f(m) e 
m=o 

where F(u) is the transform of f(m). 

u = 0,1,2, N-1 

The inverse of such a transforms can be calculated from: 

N-1 

f(m) = F(u) e 
U=O 

2. COSINE TRANSFORM 

2njm 
N 

It is known that the Fourier series representation of any 

continuous real and symmetric function contains only real coefficients 

corresponding to the cosine term of the series (12). This leads to the 

definition of a Cosine transform which is a sub-series of the Fourier 

transform. This transform can be stated as: 

F(u) = ~C(u) 

where 

1 C ( u) = 12 when u = o 

and C(u) = 1 otherwise. 



The inverse is: 

f (m) = 

3. HAAR TRANSFORM 

The Haar function series was the first complete set of digital 

orthogonal functions to be described, each function taking no more than 

three values in the interval over which it is defined, except at a finite 

number of discontinuities (11). The Haar function can be expressed as 

HAR(u) = 1 when u = o 

HAR(u) r when (u-q)N 5 m < (u-q)N + ~ 
q q 2q 

HAR(u) = -r when (u-q)N + ~ 5 m < (u:9)N + ~ 
q 2q q q 

HAR(u) = o otherwise 

where 0 1 2 1 2I NT ( 1 o g~ u ) 
u = , , , . . . . N- q = ~ 

The forward Haar transform is: 

F(u) ~ N~1 f(m)HAR(u) 
m=o 

and the inverse is: 

N-1 
f(m) = E F(u)HAR(u) 

U=O 
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4. SLANT TRANSFORMS 

The Slant transform is an orthogonal transform that is designed to 

have the following properties [12]: 

( i) 

(ii) 

(iii) 

(iv) 
(v) 

Constant basis vector, 

slant basis vector, 

sequency property, 

fast computation algorithm and 

high energy compaction. 

The forward Slant transform can be computed from the formulae 

[ 12]: 

N 
F(u) = E f(m)SL(u,m) 

m=l 

and the inverse formulae is: 

N 
f(m) = E F(u)SL(m,u) 

u=l 

where SL is the Slant matrix which is expressed as: 

1 order 2 9 SL2 =/2 

OTder 4 ::t: SL 
'+ 

I 1 
I 

I a
4 I_ -

I o 
'-b L 4 

0 \ 1 0 ·~·I 
I I 

_b~ :-:4_ ~4- II !-s~~-
1 I 0 -1 : 

I ; I 

a-'i : b 4 a 4 I\ 0 
-1 -

SL 1 
'-

I I l 1 I 1 1 1 I I I I I 

a4 + b,: :4 - b1 
1 -a + b 1 -a - b 

1 - - _'+_ - - : __ 4_ - 4: __ 4_ - 4_ 
-- I I 

14 I I 

1 I -1 I -1 I 1 
I I I 
I I I 

a4 b4 ;-a4 - b4 a4 + b4; -a4 + b4 
I I 

I 
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- ,- l 0 1 0 I I 1 0 I I 

I I I I 

0 
I 0 I I 0 I 

I I I I 

0 aN bN 
I I 

-~ bN 
I I 

I I I I 

0 
I I I SL I 0 --- - -· J.- - -1- -I- I 

0 
I I N I 

I IN 
I I IN I 

0 0 I 0 I -· I 
I - 2 I I i.. ') I 
I I I I I 

0 1 I .., I I 2 I I 
* SLN = .!. ... I _I_ l. - - - - - ,- - - - - ,- - - -I 

12 
I I I 
I I I I 0 1 I I 0 -1 I 

I I I 

I 0 I I 

I 
I 

I I 

bN 
I 0 

I -b UN I I aN I 

N I I I 

I I I _j I 
- - - - L l. - I - - - - 0 SLN I 

I I I 
I I I I I I I -I 

I 0 N I 0 I N 
') 

I ') I 
I '- I ., i 

L 
') I ) '"' . I JL J 'l I 

I I 

\-ihere IK 15 K*K identity matrix 

a, = 1 
1 

1 

r 7 11 7 11 
I 3~~ I :.J--1 

a_" I and b..,l\' 
L;'l ..... 4 ~ ., 

4N'"'-l 4W·-1 
\ 



5. WALSH TRANSFORM 

The Walsh transform is the most popular of the square wave 

transforms, because it is computationally similar ~o the more familiar 

Fourier transform [11]. 

The Walsh function takes only two values, except at a finite 

number of discontinuities. It is defined as: 

n-1 b. (m)b 1 . (u) 
1 1 n- -1 

WAL (m,u) = N rr (-1) 
i=o 

where bk(z) is the kth bit in the binary representation of z and N = 2n. 

The Walsh transform is given by: 

F(u) - 1: - N 

and the inverse is: 

N-1 
I: f(m) WAL(m,u) 

m=o 

1 N-1 
f(u) = N I: F(u) WAL(u,m) 

U=O 

6. HADAMARD TRANSFORM 
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The Hadamard transform is based on the Hadamard matrix which is an 

array of plus and minus ones, whose rows and columns are orthogonal. The 

forward Hadamard transform is given by: 

1 F(u) = N 
N-1 

I: 
m=o 

f(m) (-1) 

n-1 . I: b. (m)b. (u) 
1=0 l. l. 

and the inverse by: 

1 N-1 
f(m) = N 1: F(u) (-1) 

n-1 • E b. (m)b. (u) 
1=0 l. l. 

U=O 

where bk (z) is the kth bit in the binary representation of z and N=2n. 
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NUMBER EVALUATION Tir<IES I OF 

I ~OEFFICIENT~ FOURIER COSINE HAAR SLANT HADAMARD WALSH 

512 0.16 I 0.26 0.15 0.16 0.08 0.15 

256 0.07 0.13 I 0.08 0.08 0.04 0.08 

l..,Q 
-'-' I 0.04 0.06 0.03 0.04 I 0.03 I 0.04 I 
64 0.02 I 0.03 0.02 0.02 0.0.2 I o.o.::. 

32 I 0.01 0.02 0.01 0.01 0.01 0.01 

16 I <0.01 0.01 0.01 l 0.01 l 0.01 0.01 I 
! 

8 <0.01 I 0.01 I 0.01 <0.01 <0.01 I 0.01 I 
4 <0.01 I <0.01 <0.01 <0.01 I <0.01 I <0.01 I 

Table 1. REU.TIVE CPU T D-IES FOR CCMP!J1T~G TR;\'iSFOR\! 
COEFFICIE\lS 
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Caph.:;e image 

'" 
Threshold the Jmage 

tr 

lmc;ge enhancement operations 

e. g. smoothing 

J 

Contour tracing and 
encoding 

OUTPUT -REDUCED IMAGE OAT A 

Fig. (2) Preprocessing operation 
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256 coefficients 
0. 31 unit time 

64 coefficients 
0. 08 unit time 

16 coefficients 
0 ·04 unit time 

4 coefficients 
less than 0·04 

unit time 

512 coefficients 
0 ·58 unit time 

· 28 coefficients 
0 ·12 unit time 

32 coefficients 
0 · 04 unit time 

Fig. (4) Reconstruction of simple engineering component 
using finite Haar transform coefficients 
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Fig. (51 

512 coefficients 

0. 15 unit time 

128 coefficients 

0. 04 unit time 

32 coefficients 

0. 01 unit time 

Reconstruction of a gear wheel using Walsh transform 

1024 coefficients 

0. 31 unit time 

256 coefficients 

o. 08 unit time 

64 coefficients 

0. 02 unit time 
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256 coefficients 
0.15 unit time 

64 coefficients 
0. 08 unit time 

• 
16 coefficients 
0 · 04 unit time 

0 

4 coefficients 
less than 0 • 04 unit time 

512 coefficients 
0. 30 unit time 

128 coefficients 
0 ·12 unit time 

0 

32 coefficients 
Q. 04 unit time 

• 
8 coefficients 

less than o. 04 unit time 

Fig. (6) Reconstruction of simple engineering component 
using finite Hadamard transform coefficients 
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512 coefficients 1024 coefficients 

0 .oa unit time 0.161 unit time 

0. 03 unit time 

0. 04 unit time 

L,;,; .... 
0 · 01 unit time 

0.02 unit time 

Fig. (7) Reconstruction of a gear wheel using Hadamard transform 
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MONITORING AND ASSESSMENT OF ENGINEERING 

SURFACE TEXTURES USING COMPUTER VISION 

ALKINDI G.A., BAUL. R.M. AND GILL K. F. 

ABSTRACT 

91 

A number of problems associated with texture measurement using vision systems 

are highlighted and some progress towards a model for surface texture measure­

ment has been made. It is shown that the examination of engineering surf<lieP.s 

using machine vision can give a reliable measure of surface texture based on 

space. Parameters based on amplitude are less certain. 

Mechanical Engineering Department, University of Leeds 
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1 Introduction 

The ability to carry out on-line measurement and real time assessment of a 

component surface would enhance the control of a wide range of manufacturing 

processes and allow current performance to be estimated. 

Currently the most popular methods of surface assessment involve stylus 

techniques [1], which have known limitations. Other methods available include 

comparator specimens, pneumatic gauging, interference microscopy and electrical 

resistance measurements [2]. 

The application of digital techniques and random process analysis has 

led to a significant increase in the number of parameters employed in surface 

measurement based on classical statistics [3]. 

An engineering surface will, in general, depart from the ideal envisaged 

because of limitations in the geometrical accuracy of machine tools, the nature 

of the process involved, material and environmental factors. Errors of form and 

surface texture are viewed as two dimensional space varying quantities, which 

can contain periodic and random elements in varying proportions [4]. In most 

surface measurements the information is separat.3d into two components namely 

waviness and roughness; usually achieved by filtering techniques. In addition the 
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generation of a reference line is basic to all approaches, Table(!). 

Three basic types of texture pru:ameter exist and each roughness parame­

ter has an equivalent in the waviness regime. These are summarized in Table(l) 

1. Roughness Amplitude parameters which measure the vertical charac­

teristics of surface topography, e.g. Ra and Rz values. 

2. Roughness Spacing parameters which measure the horizontal charac­

teristics of surface topography, e.g. S and Sm values. 

3. Roughness Proportion parameters which, indirectly, combine both am­

plitude and spacing characteristics of a surface, e.g. hq. 

2 Machine Vision Approach 

Although many researchers ha.Yt'! published material in the area of texture using 

machine vision [5], few have measured texture parameters for manufactured com­

ponents. The main area of interest has been the texture of geographical features 

of the countryside [6]. 
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The statistical methods employed in the vision approach are based on 

classical properties e.g. mean, variance and skewness of the data collected [7,8). 

Fourier series and autocorrelation function have also been used, but less fre­

quently [9,10). Recent surveys on texture models and experimental techniques 

using v:ision can be found in references [5,11,12,13). 

In this paper the capability of a machine vision system to monitor texture 

IS explored experimentally because surface colour, lighting conditions, surface 

texture, surface geometry and tarnishing will all create measurement problems. 

A block diagram for the system used in this work is presented in Figure(1 ). 

Images are stored in a 256 x 256 pixel array, having a grey level value in the range 

0 ~ 255. 

Specimen surfaces are aligned so that the lay is vertical. A horizontal 

row of pixels therefore corresponds to the track normally employed in stylus 

measurements. 

A earner;;; position of 90 degrees from the horizontal, and controlled dif­

fused lighting were found to give the best illmnination for the engineering surfaces 

studied. 
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3 Initial Assessment of The Vision System 

The initial tests conducted by these authors was for a range of surface rough­

nesses normally encountered in high precision manufactured components ( Ra 

in the range 0.4 to 1.0 J-tm ). Comparisons between vision grey level data and 

conventional stylus results, however, in both the spatial and frequency domain 

were severely limited because of the magnification of the camera employed and 

·the resolution of surface detail. 

Attention was therefore focused on rougher surfaces (Ra 6 to 100 vm ), 

where the available magnification was adequate. 

Four sets of standard tactile comparison specimens (1\tlicrosurf), Figure(2), 

each containing four samples with specified Ra values, were selected and examined 

using computer vision. 

Preliminary tests were carried out to investigate the effect of lighting. 

Results showed clearly that light intensity and direction has a significant effect on 

grey level values, but not on the spacing between peaks. Chang-ing the position of 

the sample within the field of view had only minimal effect on both the amplitude 

and spacing between peaks. These preliminary results indicated thai texture 

parameter data could be obtained by vision and that this data might be useful 
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to the practitioner if correctly interpreted and employed. 

To investigate the degree of similarity and to determine the possibility 

of establishing a calibration between vision and stylus data, a series of test was 

undertaken that would allow a comparison to be made between vision and stylus 

data. 

The computer images of the selected surfaces were examined and the 

number of peaks per unit length were estimated for both the vision and stylus 

techniques. A good correlation for this spacing parameter was observed. In the 

case of amplitude, however, an increase in roughness or stylus amplitude did not 

necessarily lead to a corresponding inc1·ease in vision amplitude. Typical results 

are presented in Figure (3) for a range of camera gains. 

The tests confirm the feasibility of a calibration for the spacing parame­

ters, but not for the amplitude parameters. This does not rule out the possibility 

of employing a control specimen with the vision method for specific manufactur­

ing processes. Aliassing is avoided by ensuring four pixels per cycle are monitored 

at the highest frequencies. This is confirmed in Figure( 4) for cylinclriral turned 

surfaces. 
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4 Data Processing and Analysis 

Earlier work on shape from shading by these authors [14] has shown that image 

intensity is influenced by the distance from the pixel to the optical axis taken 

through the image plane. All other effects, e.g. colour differences, lighting dis-

tribution speckles and tarnishing, were small and could be neglected. In this 

present study, however, these effects can not be ignored because of the higher 

magnification required for texture assessment. 

The principal difference between the current vision approach and the sty-

lus method is that the later monitors almost pure amplitude data whereas vision 

data can be corrupted by other surface properties unique to vision, e.g. colour 

and lighting. In addition the stylus method employs a filter,a skid and a cut-off 

value to separate waviness from roughness. The data collected and the reference 

lines calculated are therefore based on filtered signals. To allow a fair compari-

son, it is necessary to filter the raw vision data to isolate roughness from waviness 

and to remove the corruption caused by the non texture features. 

The normal expressiOn used in the calculation of the base line vector 

employed in stylus studies is 

1 N 
x =- I:x(j) 

N i=t 
(1) 

where x(j) is a sampled value and N is the number of samples. Typical results 



98 

for vision using Eq.l are shown in Figure(4.a) for a range of specimens. The 

reference line obtained does not always follow the direction of peaks or their 

envelope because of the corruption in surface data caused by the non texture 

features. 

The authors therefore propose an alternative approach in order to compute 

a more reliable reference line for the vision data. 

4.1 Reference Line Computation for vision data 

This approach averages the grey level values, in groups of 5 pixels and the result 

is centered on the middle pixel. The initial filtering expression employed is: 

1 j+2 

x(j) = ;- L x(k) 
\) k=j-2 

(2) 

where xis the sample vector containing the grey level values and j = 3, 4, 5, ... , N-

2. 

Repeated application of Eq.2 fo,. each grey level value, is made for a total 

of ~ applications. In the successive applications the filtered values are used in 

preference to measured values. Equation 2 can then be rewritten as: 

1 j+2 

x;(j) = 5 L Xi-1 (j) 
k=j-2 

(3) 

where i = 1, 2, 3, ... , ~ and j = 3, 4, 5, ... , N - 2. 
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The result of applying Eq.3 is shown in Figure( 4.a) and confirms that this 

expression gives a datum that follows the surface undulations more closely giving 

a satisfactory reference line for subsequent calculations. 

The raw image can be corrected to the new datum by application of 

Xc(j) = x(j)- X JY.(i) 
4 

(4) 

where Xc is the corrected data, x is original data and x iY. is the filtered data. 
4 

Final processing to produce equal areas on both sides of the reference line 

was carried out to produce a reference line equivalent to that normally obtained 

from stylus measurements, Figure( 4.b ). 

A comparison between normalized stylus and corrected vision data~ Fig-

ure(5), shows a mean error of less than 5.7% with a standard deviation of 7.5% 

of the mean value. The maximum mean error found for all surfaces examined 

was 14.5% and maximum standard deviation was 7.5% 

The slopes of the amplitude probability density function (APDF), Fig-

ure(6), for both the stylus and vision approach are very similar for each rough-

ness considered. The estimation of absolute amplitude using vision is not possible 

because the grey level range, as shown in Figure(6), does not follow a linear re-

lationship over the range of roughness considered. Parameters outside normal 
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control, typically variations in colour and tarnishing, could be significant factors 

influencing tlus non-linearity. 

To test the suitability of vision for on-line application, four samples were 

prepared using the same material and manufacturing process and Ra values were 

computed from both vision and stylus data. For each sample, 6 tracks separated 

by 2mm, were measured and the results are shown in Figure(7). Although no 

linear calibration can exist between stylus and vision results, as shown earlier, 

the scatter in vision was found to be no more serious than that of the stylus. This 

suggests that vision amplitude data could be usefully employed to detect changes 

occurring in a specific metal cutting process, where machining parameters should 

remain sensibly constant. Noting that the vision method provides field data as 

opposed to serial data from a stylus traverse, the on-line texture monitoring using 

vision could provide a fast and reliable assessment of a workpiece surface over a 

given area rather than a single track. 

4.2 A Proposal for a Visual Texture Measurement Pa-

rameter 

It has been shown that a reliable measure for the spacing parameter can be 

obtained using computer vision. However, the spacing parameter gives no in­

formation about peak shapes, slope, or amplitude, and consequently its use in 
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practical applications is limited if it is not supported by additional information. 

A vision parameter which combines both space and amplitude features 

could provide a solution. A parameter of this type can be defined as: 

Sv = C X h 
d 

(5) 

where C is the number of reference line crossings, h is the normalized height of 

peaks and d is the traverse distance. 

To gain some positive evidence to support the use of the Su parameter, it 

was evaluated for both vision and stylus data. The results showed variations of 

15% or less, demonstrating Sv could give an absolute measure compatible with 

that obtain by stylus. 

To maintain the performance indicated above, the raw vision data should 

be filtered to minimize colour differences and waviness. The estimation approach 

adopted is summarized in Figure(8) for the evaluation of parameter Sv. 

4.2.1 Real Application of Parameter Sv 

A possible application of the Sv parameter is in monitoring surface texture of 

samples used in standard tribology tests. The tribologist employs the tests to 



determine the load carrying capacity of lubricating fluids and is widely used for 

the specification of lubricants (15]. 

4.2.2 Visual Inspection 

Figure (2) shows a number of standard pieces after testing. Inspection of the 

surface wear is usually done by human eye and the operator must decide, by 

experience, whether the lubricant has passed or failed by visual assessment of 

the texture in the wear zone. 

4.2.3 Machine Inspection 

Figure ( 9) show images taken for a number of standard test pieces after wear. It 

can be noticed that the affected areas can be easily distinguished and a percentage 

measurement of that area can be obtained. Results of area measurement are 

presented in Table(2). Although the area is an important parameter, it does 

not give any indication about the resulting surface texture and possible scoring. 

Hence an estimation of the Sv parameter has been carried out, and the results 

are also included in Table(2). Although the parameter Sv is obtained numerically 

its significance can only be determined if available subjective information is also 

supplied. If the results are representative and a correlation can be established, the 
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test procedure may be worthy of automation and operator judgement minimized 

in the testing. 

5 CONCLUSIONS 

This experimental work, in the field of machine vision, extends that already 

published by the authors for the evaluation of component profiles. The results 

presented are based on measurements of more than 30 different specimens and 

therefore represent a reliable indicator of the importance of machine vision in 

engineering texture measurement. Although the tests have been limited to a 

range of surface roughness which exceed those normal found in precision man­

ufacturing, surface monitoring emplo:ring computer vision has been shown to 

have potential as an on-line proximity technique. The examination of smooth 

surfaces will be possible when higher camera gain and increased pixel resolution 

are commercially available. 

One important observation made is that the scatter for the vision surface 

measurements is no worse or no better than that of the equivalent stylus mea­

surements and reflects the inherent variations in surface topography from one 

part of the surface to another .. 
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The roughness proportion parameter for the vision system Sv has been 

shown to have the most merit, since it combines both space and amplitude data. 

The application of the technique to the objective assessment of a wear track 

in the evaluation of lubricants has been encouraging. The vision system has 

been shown capable of measuring both the area of the wear scar and the surface 

texture using Sv. Deep scratches can also be detected if present thus enabling a 

complete automation of the test. 
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J"=l,2,3, ... ,n · 1 ~ 3 n 
~ = ' .... , ' ... ' 

Reference I X 

l_ ____ L ___ ~ 
I 

a. Amplitude Parameters 

Ra = t foL I y(x) I dx 

Rt =The ma:cimum peak to valley height. 

Rz = The average of the highest five peak to the lowest 

:five valley measure~ents. 

b. SpaCing Parameters 

c. Proportion measures 

8q = Vt Jcf (B(x)- er dx 

where 8 = t foL B(x)dx 

. and B(x) = y'(x) II 

.-·Table 1 Surface te."rlure parameters. 



Test-Piece Results of Operator Area% Numerical value 

No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Judgement of Sv 

Failed 30.6% 4.795 

Failed 44.6% 4.688 

Passed 10.1% 6.180 

Failed 20.2% 4.832 

Passed 8.2% 6.512 

Failed 27.4% 4.582 

Passed 12.2% 6.316 

Failed 23.1% 4.911 

Failed 33.4% 4.612 

Failed 39.2% 4.331 

Failed 22.8% 4.112 

Table 2 Evaluation of the parameter Sv 

in real application 
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Figure 2 Specimens used in this study. 
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Preface to First Edition 

Since the early 1940s, the number of practical applications of the principle of 
feedback has grown rapidly and the range of application has become very 
wide, with the consequence that an increasing proportion of engineers, scien­
tists, and technologists require a basic appreciation of the fundamentals of 
automatic control theory. As the requirements for system dynamic per­
formance have become more exacting so also have the demands on the engi­
neer. Many who are new to the subject find feedback control theory difficult to 
understand, largely because of the rather abstract nature of some of the con­
cepts involved. Of the textbooks available many are so comprehensive in their 
coverage that they are more suited to the reader who already has some under­
standing of the subject rather than to the beginner. The sheer volume of 
theoretical material tends to discourage the latter type of reader, and the detail 
often obscures the significance of the main principles. 

The primary objective in writing this book has therefore been to sift from 
the large volume of literature on control theory the material believed to be 
most pertinent to industrial practice, and to present it in such a way that the 
student or practising engineer can attain a sound physical understanding of 
the basic principles of control. Familiarity with the material presented in the 
book will enable the reader to converse with specialists in the field, to design 
simple control loops adequate for many industrial applications, and with the 
aid of more advanced texts to design more complex control schemes. The aim 
throughout has been to present the fundamental theory in such a way that the 
reader can see the practical relevance of the material and that he can build up 
a clear mental picture to aid understanding. The mathematical manipulations 
can readily be mastered with practice; understanding the significance of the 
procedures and of their results is the real problem. 

The principles of feedback control theory are very general; thus the topic is 
broadly based and is of relevance for a wide range of dynamic systems. The 
main variation in the potential areas of application lies in the differing charac­
teristics and complexity of the systems to be controlled. Electrical engineers 
probably have the least difficulty in understanding control theory since many 
of the concepts are relevant to their other areas of study. They probably also 
face the fewest problems of application since the systems with which they deal, 
although often complex, are well defined because of the discrete lumped nature 
of most components and of the ease of measurement of system variables. 

Many existing textbooks are intended primarily for the electrical engineer. 
The method of approach used in this book should make it particularly useful 
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for mechanical engineers, chemical engineers, and other technologists and 
scientists (and in part also for life scientists, economists and others with an 
interest in the dynamic behaviour of systems and in the concept of feedback). 
The main problem in designing a control loop for non-electrical systems nor­
mally arises when attempting to obtain an adequate mathematical model for 
the system since, in general, components cannot readily be represented by 
simple discrete ideal elements; often non-linearities are dominant, measure­
ment is difficult, and noise is significant. 

J n our teaching of control to undergraduates, postgraduates, industrial engi­
neers and non-engineers we have experimented with the method of approach, 
the topics included, and the order of presentation. The approach that has 
evolved, and appears to be the most effective, forms the basis for this book. We 
have found that the 'classical' approach based on the transfer function and 
associated techniques of analysis is more easily comprehended and related to 
practice by the beginner than is 'modern control theory' which is based on a 
state space approach. The emphasis in this book is accordingly on classical 
linear control theory. Some understanding of the ideas of the state space 
approach and its relationship to the classical approach is nevertheless highly 
desirable; hence a chapter is included to introduce the reader to the more 
advanced theoretical procedures which have been developed over the last 
decade or so and which are particularly useful for the mathematical analysis of 
multivariable systems. The material is presented in such a way as to make the 
transition from the classical to the modern approach as smooth as possible. 
With regard to the order of presentation of material we have found definite 
advantage in analysing in some detail the dynamic behaviour of components 
of systems in both the time and the frequency domain prior to any detailed 
consideration of a closed loop system. This gives the student a clear awareness 
of the nature of the dynamic response of a system component and how the 
response varies with the form of the transfer function and the input excitation. 
lt shows him how the response to any given input can be calculated from a 
knowledge of the transfer function and conversely how a transfer function can 
be determined by practical testing of a system component. The latter, the 
process of system identification, is used for verifying mathematical models 
derived theoretically and may be the only means, or the easiest means, of 
obtaining a transfer function representation where theoretical derivation is 
difficult. When this foundation has been laid the principle of feedback can be 
introduced and rapid progress made in analysing the dynamic behaviour of 
closed loop systems and, in particular, how accuracy and stabi lity are affected 
by components within the loop. This then leads logically and easily to the 
most important stage, consideration of the design of feedback control systems 
to meet specific dynamic performance specifications. 

The material presented in this book should cover the control engineering 
content of most undergraduate degree schemes which include the subject of 
automatic control. T he book should be of equal value to the engineer in 
industry who did not include control in his studies but who is now faced with 
having to deal with some aspect of control or to communicate with others 
working in the field. It is suggested that at a first reading (or where a minimum 
of time is available) Chapters 5 and 7 can be omitted without detriment to the 
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understanding of later material. Where time is not available for these chapters 
it is nevertheless recommended that the reader tries to gain a general idea of 
the contents. 

We wish to express our thanks to those who have contributed most to the 
development of this book- the many students of differing backgrounds who 
by their attempts at learning control theory have highlighted points of particu­
lar difficulty in understanding. We are especially indebted to our colleague 
Mr. J . L. Douglas who has endeavoured to learn the fundamentals of the 
subject by using this book for self-teaching. In doing so he has made valuable 
suggestions which have enabled us to remove some of our errors and ambi­
guities, and to make minor additions where our steps have been rather large. 
We thank also Mrs M. Fernando for her valuable contribution of a neatly 
typed text. 

Leeds 
1978 

J. Schwarzenbach 
K. F. Gill 



Preface to Second Edition 

It is encouraging to find that this book appears to a large extent to have 
attained its primary objectives and that it is therefore helping to meet the need 
for textbooks which explain simply and clearly the basic fundamentals of 
control engineering. In the period since it was first published digital computers 
and microprocessors have come to play a very prominent role both as control 
system components and as tools for analysis, and the main purpose of this 
second edition is to introduce supplementary material to reflect this change. 
Sections have been incorporated describing digital simulation and simulation 
languages, Section 7.5 has been rewritten to include digital computation of 
correlation functions and power spectra, and a new chapter has been included 
to deal with the analysis . of discrete data systems. The important topic of 
design has also been given greater emphasis by expanding the final chapter. 
Solutions to the problems have been included, and the bibliography has been 
updated. 

Leeds 
1984 

J. Schwarzenbach 
K . F . Gill 
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Variables are assumed to be relative to appropriate datum or design values 
(system components are normally assumed to be linear). 

Starred sym bols are used to indicate time functions that are in sampled form 
e.g. f*(t), the sampled version of f(t), is the series of values f(O), f(T), f(2T), 
f(3T) ... ; it has Laplace transform F*(s) and z transform F(z) = .:r'[f(t)]. 
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r 

Input signal to system or system component 
Reference input to (or set point of) feedback system 

Output signal from sys tem or system component 

Error signal 
Noise signal 
Manipulated variable, output from controller 
Laplace operator, (real part a, imaginary part w) 
Transfer function of component of a system 
Transfer function of component in a feedback path 
Unit impulse function 
Unit impulse response, or weighting function , ..Sf - 1 [G(s)] 
Transfer function with s = jw ; gives harmonic characteristics 
of system, i.e. I G(jw) I = magnitude, L G(jw) = phase angle cp 
of output relative to input for input frequency w 
Poles of a transfer function (factors of denominator) i.e. roots 
of the characteristic equation 
Zeros of a transfer function (factors of numerator) 
Gain constant 
Time constant of a first order component (in Chapter 7, r 
represents time shift of a signal) 
Damping factor and undamped natural frequency, respec-
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tively, for a second order system component (or associated 
with a pair of complex conjugate roots) 
Sampling frequency 
Sampling interval, T = 2n/w. 
Alternative to Laplace operator used with sampled signals, 
z = e'T 
Pulse transfer function 
Positional, velocity, and acceleration error coefficients respec­
tively 
Peak magnification of a closed loop system, and the frequency 
at which it occurs 
Closed loop magnification 

Coefficients of P + I + D controller 
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1 
Introduction 

As technological processes increase in complexity, and the required per­
formance specifications become more severe, analytical design procedures 
assume great importance. It has become essential for engineers to have an 
understanding of the nature of the dynamic behaviour of systems, and of the 
methods available for analysing and improving dynamic performance. 

These requirements are making the use of mathematical modelling tech­
niques an essential part of design. The nature of the model and the methods 
employed in obtaining it are dependent on the depth of understanding needed 
at a particular stage of the design study, and on the use to which the model 
will be put. 

It is hoped that this book will give to both the student and the practising 
engineer a clear insight into the main facets of system modelling, linear control 
theory, and control system design, and that it will form a sound foundation for 
practical application or more advanced study. The level of mathematical 
knowledge assumed is a familiarity with simple differential equations and with 
complex numbers. 

1.1 What is a system 7 

It is desirable first to define what is meant by a system, a word which is 
frequently used in conversation. Broadly, a system can be thought of as a 
collection of interacting components, although sometimes interest might lie 
just in one single component. These components will often be discrete physical 
elements of hardware, but can equally well be functional parts of such physical 
components. The system of interest might be a power station, a steam turbine 
in the power station, or a control valve on the turbine; it might be an aero­
plane, its air conditioning, an engine, or part of an engine; a process plant for 
the production of a chemical, or a large or small part of the plant ; a human 
being, or some part of the body such as the muscle control mechanism for a 
limb; or it might be the economic system of a country, or any other from a 
wide range of fields . 

The system would normally be considered conceptually as being that part of 
the universe in which interest lay. There would be interaction between the 
system and certain parts of the surroundings known as the environment. The 
two would be separated by an imaginary boundary. In defining the system and 
its environment it is necessary to decide where this boundary should be 



2 Introduction 

placed ; this deci sion depends both on the physical entities involved and on the 
purpose of the investigation. 

In studying a power station, interest might he primarily in the relationship 
between the power station and the community, in which case the system and 
its environment might be envisaged as in Fig. 1.1. There might, however, be a 
more specific interest in the speed control system of the turbogenerator, in 
which case the system could be as in Fig. 1.2. 

Environment 

Fuel supply 

Vibration 

System 
Nuclear reactor , steam generator 
turb ine, condenser, generator, 
accessories. 

Waste 

Noise 

Electric power 

Cooling 

Fig.1 .1 Power station system and its relationship to the environment 

Environment 

Steam from 
bo iler 

Steam to 
'----- condenser 

Fig.1.2 Turbogenerator speed control system 

Electric 
power 

In abstracting from the whole the system of interest, it is necessary to 
consider ca refully where the boundary shall be placed, and closely allied is the 
need to decide what relevant signals cross the system boundary. In addition, 
there will be signals of interest within the system boundary, variables which 
help to describe and define the detailed system behaviour. Some of these 
signals will be measurable, some not or only indirectly ; some will be useful 
from the viewpoint of analysis, and some not. 

The signals which pass to the system from the environment will be termed 
the system inputs, while those passing out across the boundary will be the 
system outputs. Often there will be only one system input that is varying a nd 
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one system output which is affected. The systems to be considered in this book 
will be predominantly single-input-single-output systems, the type which 
occurs most frequently in practice. 

1.2 System control 

The aim of studying dynamic system behaviour is generally one of gaining an 
understanding of the system, with a view to controlling it to give specific 
values of certain important variables, to satisfy a required specification. 

For the p\lrpose of controlling the system it is necessary to adjust the values 
of one or more of the inputs to the system. Only certain of the inputs will be 
available for adjustment and these are referred to as the controlled inputs, 
whereas others will be disturbance inputs over which no control exists. In the 
heating of a room, for example, the heat input from the heating device can be 
altered as required, but the heat flow to or from the environment cannot be 
controlled in the same way. The variable chosen to be a measure of the desired 
system output may or may not give a true indication that the control is 
satisfactory. In the room heating control, the temperature of interest is prob­
ably the average temperature or the temperature in the part of the room where 
people sit, whereas the temperature measured is that at one specific point, the 
location of the thermostat. This may not even be positioned in the same room, 
so that appropriate allowances must be made in the design and utilization of 
the heating system. 

Sometimes the incentive for studying a system will be purely one of seeking 
an understanding of the way in which it functions. In this category come some 
physiological systems, for which possibilities for designing control loops or 
improving system behaviour are rather limited. 

Two broad classes of control system are available, open loop control and 
closed loop control and these are depicted schematically in Fig. 1.3. 

Input 
variable 

(a) 

Controlled 
output Input Output 

(b) 

Fig.1.3 Open loop and closed loop control (a) open loop (b) closed loop. 

(a) Open loop or scheduling control. On the basis of knowledge about the 
system and of past experience, a prediction is made of what the input should 
be to give the desired output; the input is adjusted accordingly. Familiar 
examples are automatic toasters, programmable washing machines, and inter­
est rate variations as they are used to affect economic systems. Such control is 
frequently unsatisfactory because any unexpected disturbances to the system 
can cause a deviation in the output from the desired value. The quality of the 
toast will vary with the type of bread and the initial temperature of the toaster, 
the cleanliness of the clothes will depend on correct assessment of amount of 
soap powder and length of washing cycle required, the effectiveness of an 
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interest rate change will depend on a host of other factors affecting the 
economy. 

(b) Closed loop or feedback control. The system output is measured and com­
pared with the desired value; the system continually attempts to reduce the 
error between the two. Familiar examples are thermostatic controls on domes­
tic and industrial ovens and other heating systems, level controls on water 
cisterns, and speed regulation by means of engine governors. Frequently the 
loop is closed through a human being; this is the case with road vehicles, as 
when a car is driven along an undulating road at a steady speed, or when the 
car is positioned in its garage at the end of the run. 

1.3 The need for analysis 
There are many examples of early control systems such as a device of Hero of 
Alexandria which opened a set of temple doors when a ceremonial fire was lit, 
and closed them again when the fire died down, or the much later centrifugal 
governor developed by James Watt for the speed control of steam engines. 
These systems were produced almost entirely by a trial and observation design 
process and without the assistance of any theoretical analysis. Simple control 
loops can still often be made to operate satisfactorily in this way because the 
specifications have a wide tolerance. As performance requirements become 
more demanding it becomes necessary to resort to a more analytical approach, 
since without this the cost in terms of time, manpower, and unnecessary 
complexity of equipment is not justifiable. 

Closing the loop can make the system more accurate by giving a much 
smaller or a zero steady state error, but it can make the system very oscillatory 
or even unstable. Basically, problems arise when delays occur within the 
system ; this causes corrective action to be applied too late, leading to alternat­
ing overcorrection and undercorrection. It is necessary to achieve a satisfac­
tory compromise between the conflicting requirements of accuracy and 
stabi lity. 

1.4 Methods of system representation 
It has been shown that the first step in the study of a system is the important 
one of defining clearly what constitutes the system of interest, and in what 
ways the system interacts with the surrounding environment. Having drawn a 
conceptual boundary round the system it is necessary to represent the system 
in a convenient pictorial and mathematical way. 

A useful and very frequently used pictorial representation of a system is the 
block diagram where individual blocks are used to represent separate function­
al parts of the system. Fig. l.3a is a simple block diagram representing a 
system with a single input and a single output, the lines indicating the signal 
flow paths, with direction of signal transmission given by the arrows. Where 
signals are added to or subtracted from one another, summ ing points are 
indicated, as shown in Fig. 1.3b. Although any single-input- single-output 
system could be represented by a single block as in Fig. l.3a, if the system 
comprises a number of interacting components it is more useful if it is rep­
resented by several blocks interconnected by the appropriate signal flow paths. 
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Fig. 1.4 Schematic diagram of pump and flow control on a gas turbine speed 
contro l system (with symbo ls for pressures . flows. spr ingrates. diaphragm areas. 
fl ow restri cti ons. etc. omitted) 

In arriving at a block diagram representation, an intermediate schematic 
diagram in which the functional parts are clearly shown would often be uti­
lized. Consider as an illustration that the system of interest is an aircraft gas 
turbine speed control system. The engineering drawings, although showing the 
physical arrangement, are too congested with detail and would not show the 
type of information required for a dynamic study. A schematic diagram of the 
form shown in Fig. 1.4 would however show how the system components 
function and form the basis for an analytical study, and enable the production 
of a block diagram of the form shown in Fig. 1.5. 

Block diagrams show only the interrelationships between the different parts 
of the system, and for analysis must be supplemented by a quantitative 

Throttle 
position 

Altitude air pressure 

I 
I 

Fig.1.5 Block diagram of engine and speed control system 

Actual 
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description in the form of appropriate mathematical expressions for each of 
the blocks on the diagram. Such a mathematical description of the system is 
termed a model. Evaluation of an accurate model is often difficult. Since 
dynamic conditions are being considered the equations relating the outputs to 
the inputs of the blocks will in general be differential equations. It will be seen 
in the next chapter that for control engineering purposes these are often 
written as transfer functions, defined as the ratio of the Laplace transforms of 
the output and input when initial conditions are zero. When these equations 
are combined to give an overall output- input relationship a single differential 
equation of high order results. 

An alternative method of mathematical representation which is particularly 
amenable to solution by means of the digital computer is the state space 
technique. Instead of a single nth order equation the problem is transformed to 
one of solving n first order equations. Unlike the classical approach, the com­
plexity of the method of solution does not increase rapidly with the complexity 
of the problem, and hence this approach is particularly suitable for complex 
systems. 

An alternative pictorial representation is the signal flow graph . This type of 
representation does not have to cater for the transfer function normally associ­
a ted with the block diagram and so is capable of giving a more detailed 
schematic representation of a complex system if needed. It illustrates the 
passage of signals through a system, as does the block diagram, but also 
includes a more basic description of the feedback paths associated with a 
system, and enables the effects of variation in all system parameters to be seen 
directly. 

The analytical equations would generally be obtained by a combination of 
theoretical analysis and experimental testing. If the component of the system is 
sufficiently simple, then it is possible to write down equations which govern 
the variables concerned, and hence obtain both the form of the equations and 
the va lues of the parameters of the equations. This is described for a number of 
physical components in Chapter 2. Subsequently the component would often 
be tested to verify the parameter values obtained. If the system is more 
complex, then simplifying assumptions must be made to arrive at the likely 
form of the equations; these assumptions must be confirmed and parameters 
obtained by testing. If the contents of the block are unknown (a so-called black 
box problem) then it will be necessary to arrive at the characteristics entirely 
experimentally. 

The resulting equations will be a parametric model of the component, and 
ideally the parameters will be associated with specific physical characteristics 
of the system. In the black box type of situation the latter would not be the 
case, and sometimes no at tempt is made to fit equations to the experimental 
response. In this situation the component is described by the actual response 
curve, and the model would be non-parametric. 

1.5 Methods of analysis and design 

When the input to a system changes as a function of time, the form of the 
resulting response is clearly dependent both on the nature of the input func-
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tion and on the equations describing the dynamic characteristics of the system 
and, provided that these equations are available, the output response can be 
calculated for any input function of known mathematical form. In practice 
external disturbances, often of unpredictable form, may act as additional 
inputs and modify the response in a random manner. Such disturbance inputs, 
generally referred to as noise when they consist of random fluctuations about a 
mean value, have negligible effect in many situations and hence are usually 
ignored in the earlier stages of the analysis of a system. The disturbance can 
also be a change in mean value of a variable which causes an alteration in the 
system datum operating point, and hence in the parameters of the system 
equations. It is unrealistic for the purposes of analysis to consider attempting 
to investigate the response of the system for all conceivable types of input 
function; thus usually only certain specific types of function are studied. These 
are chosen primarily for reasons of analytical simplicity and because design 
criteria have been developed for them. They include an instantaneous change, 
which is the most severe input change that a system can undergo, and certain 
other typically encountered input functions such as an input changing in a 
sinusoidal manner, or one changing at a constant rate. 

The input forcing functions most commonly considered are of three types : 

(i) transient disturbances such as step changes of magnitude, ramp 
changes, or impulsive changes, 

(ii) sinusoidal signals, 
(iii) statistical signals, which have random characteristics. 

The output response as a function of time can be obtained for any specific 
forcing function by analytical or computer solution of the differential equa­
tions. Study of the effects on the response which result from alterations in the 
mathematical model yields an understanding of the dynamic significance of the 
various terms in the governing equations, and hence the significance of the 
corresponding parameters in a physical system. For experimental verification 
of theoretically obtained dynamic equations, or for a black box approach to 
the identification of a mathematical model, a practical system component can 
be tested by recording the output for one or more of these input functions . 
Subsequently the measured response is compared with the response from a 
range of mathematical models; the model with the closest fit can then be 
chosen to represent the tested system component. 

Solution of a system differential equation can, in principle, be carried out 
using either a digital or an analogue computer. Chapter 3 describes the basic 
elements of an electronic analogue computer, and the method for deriving a 
circuit diagram which defines the appropriate interconnection of these ele­
ments, to produce a circuit whose governing differential equation is the same 
as that to be solved. The circuit is thus an analogue or simulation of the 
system and, if forced with a voltage input of the desired waveform, then the 
variation of the output voltage represents the time response of the system. The 
variation of any system variables other than the output can be noted by 
recording the voltages at appropriate points in the circuit. This is followed by 
a description of how the mode control buttons on the computer switch the 
circuit to enable the computation to be started, stopped, and otherwise 
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controlled in a useful manner, a list of some non-linear elements which are avail­
able for solving non-linear differential equations, and a discussion about time 
scaling and amplitude scaling. The chapter concludes with two sections on 
digital computer solution of differential equations. These expla in first the dis­
crete approach which is needed and the way in which integration routines are 
used to obtain an approximation to the solution, and then the use of a high 
level simulation language to simplify program writing and often to enable the 
digital computer to be used in an on-line interactive manner. 

Solution of the system differential equation can a lternatively be carried out 
by hand for simple transient changes of input and for sinusoidal input changes, 
the first two types of forcing function listed above. Chapters 4 and 6, which 
deal respectively with time domain analysis and frequency domain analysis, 
describe how the Laplace transform technique can be utilized to determine the 
response of a linear system of known transfer function or differential equation 
to such input functions. Systems of gradually increasing complexity are 
analysed ; in this way a clear mental picture can be built up of the nature of 
dynamic response and of the way in which changes in the form of the govern­
ing equation influence the response. The latter part of each chapter describes 
the converse process- testing an actual system component with one of these 
forms of input function , noting the resulting response, and determining a 
transfer function which would give a very similar response and which could be 
used as a mathematical model of the system component. Statistical signals, 
which have random characteristics and must be described by appropriate 
statistical functions rather than by analytical functions of time, form the third 
class of important forcing functions. They are particularly useful for this 
process of system identification for experimental testing in situations where the 
level of inherent system noise is significant ; by appropriate mathematical 
manipulation the effect of the noise can largely be eliminated and time or 
frequency response information obtained. Chapter 7 defines and illustrates the 
significance of autocorrelation functions and power spectral densities which 
are respectively time and frequency domain descriptions of such signals ; it a lso 
describes this method of system identification with particular reference to the 
most frequently used signal, the pseudo random binary sequence. 

The chapters whose contents are outlined above all utilize a dynamic system 
description which is in the form of a transfer function or the equivalent nth 
order differential equation relating output to input. The methods of analysis 
and design associated with this form of description are referred to as the 
classical methods. Chapter 5 describes the alternative state space approach to 
system representation and analysis, an approach which is fundamental to a 
range of techniques of analysis and design referred to as modern control theory. 
Methods are presented for deriving the tate vector differential equation, the n 
fir t order differential equations which constitute the state space description of 
a system component, a form of description which can be used equally well 
where there is more than one input and output. A method of solving the state 
vector differential equation is presented, and for a simple input function it is 
demonstrated that the analytical solution is the same as that obtained by the 
Laplace transform approach of Chapter 4. Normally however solution must be 
carried out by digital computer methods, and it is here, in the unified 
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approach that is possible, that the power of the state space description lies. 
The chapter concludes by giving an insight into the way in which such solu­
tion is carried out. The methods of analysis and design described in the later 
chapters are the classical methods, chosen because of the unrivalled under­
standing of system behaviour which is offered by time and frequency response 
techniques. Once a fundamental understanding has been gained in this way a 
deeper study of the modern approach is recommended particularly where 
design work must be carried out for systems with more than one input or 
output. 

The final four chapters are concerned broadly with designing or modifying a 
system to ensure that its dynamic behaviour is acceptable. Chapter 8 returns 
to the topic of system control already introduced in Section 1.2, and describes 
the main characteristics of feedback control systems. The steady state accuracy 
is evaluated in terms of the transfer function and of the input function; it is 
also shown that an increase of accuracy is accompanied by a tendency towards 
more oscillatory behaviour and might give rise to instability. The two main 
methods of stability analysis are described and illustrated, and the chapter 
concludes by showing how the overall response of the closed loop system can 
be evaluated from a knowledge of the dynamic response of the system com­
ponents within the loop. Chapter 9 describes the root locus method of 
analysis, a technique which assists the engineer to gain an understanding of 
system behaviour by showing what effect variation of system gain or some 
other variable has on the transient response. Chapter 10 explains the effect on 
system performance of introducing a sampler within the loop, thus converting 
a continuous signal to a discrete data form, and describes how the analytical 
techniques must be modified to extend to sampled-data systems. The final 
chapter explains the functioning of integral action and derivative action within 
a controller, and describes the general approach to system improvement by the 
use of additional compensation networks within the control loop. To con­
clude, the many facets of system modelling and control described throughout 
the book are brought together by presenting in outline form a case study for a 
practical system, an electrohydraulic position control for the slideway of a 
milling machine, designed to be numerically controlled. 



2 
Mathematical Description of 
System Components 

It has been indicated in Chapter I that for analysis and design of a system to 
give satisfactory dynamic behaviour it is necessary to obtain a suitable mathe­
matical model to represent the system. The combination of a block diagram 
and the mathematical expressions relating the input and output of each block 
provides a pictorial and a quantitative representation of the cause-and-effect 
relationship between the variables of the system. 

Although all systems with a single input and a single output may be denoted 
by a single block connecting the input a nd the output, the advantage of the 
block diagram concept lies in the fact that many systems are composed of 
several non-interacting elements whose output- input relationships can be 
determined independently. In this chapter it is shown how these relationships 
can be obtained for relatively simple components, and the form which the 
equations take. It is also shown how they can be combined to yield the overall 
output-input relationship for the system. 

Section 2. 1 considers the concept of linearity, and shows the way in which 
many non-linear systems can be linearized provided any perturbations from a 
datum are small. The Laplace transform technique is used widely in system 
analysis and synthesis, and for those unfamiliar with the method an intro­
duction and an outline of the most important features are given in Section 2.2. 
This is fo llowed by the definition of a transfer function, and the derivation of 
tra nsfer functions for some physical components. To complete the picture, 
representation of a system by means of state equations is introduced in Section 
2.6. 

2.1 Linearity of systems 

The expression relating input and output of a component of a system will in 
general be a differential equation. For ideal systems this is frequently linear 
and if it is possible to represent practical systems sufficiently closely by linear 
differential equations considerable analytical advantage is gained. 

A system is said to be linear if it obeys the principle of superposition. This 
requires that if the separate application of time dependent inputs u 1(t) and u2(t) 
produces outputs c 1 (t) and c2(t) respectively, then the simultaneous application 
of u1(t) + 11 2(t) will produce the output c1(t) +cit). The input u1(t) might be a 
step change, and uit) a ramp change where the input increases at a constant 
rate. Alternatively if u2(t) = u1(t) the result would be that a doubling of the 
step size would double the output response curve, or increasing the step size 
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by a factor of I 0 would merely scale up the response by 10. A differential 
equation which is linear does not contain any terms which are products of or 
powers of the variable and its derivatives. 

No real system component is completely linear, but often the range of 
operation is such that linearity can be assumed. This is the case, say, for a 
helical spring where the input is the force acting and the output is the spring 
length, provided the load does not exceed that which causes the spring to 
compress till the coils touch, and provided any tensile force does not cause 
material yield to occur. Similarly an electronic amplifier will saturate for very 
large inputs, but for inputs within the design range the gain should be substan­
tially constant. 

Many system elements are inherently governed by a non-linear relationship. 
The rate of flow of fluid through an orifice is proportional to the square root 
of the pressure difference across it ; doubling the pressure difference does not 
double the flow rate, and the principle of superposition does not apply. With 
such elements the function relating the input and output variables does not 
have any linear region. If the system is operating about a nominal datum 
condition (say point A on Fig. 2.1), and if the range of operation is such that 

Y Linear -----. 
approximation 

Datum 
ooint 

Fig. 2.1 Non -l inear relationship 

X 

movement from this datum is small, then the departure from linearity is small. 
Replacing the curve by the tangent at the datum point would allow linear 
techniques of analysis to be used. If the range of operation is large, linear 
techniques intelligently used could still give a useful indication of the nature of 
the expected performance. 

In analysing a system with such continuous types of non-linearity it is often 
useful to adopt a linear approach and carry out a small perturbation analysis. 
Linearization essentially consists of replacing the actual operating character­
istic functions by tangents at the operating point. 

Consider a non-linear relationship 

2.1 

Differentiation gives 

aY aY aY 
d y = -::> - dX I + -::> - dX 2 + -::> - dX 3 + .. . 

uX 1 uX 2 uX 3 

2.2 

Let a subscript 0 be used to indicate conditions at a datum point. Considering 
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dY, dX 1, dX 2 ... to be incremental changes from the datum [Y] 0 , [X 1] 0 , 

[X 2] 0 ... the partial derivatives will be evaluated at that datum and will be 
constants. Let the changes from the datum be y, x 1, x 2 , x 3 . .• The linearized 
equation then becomes 

y = C 1x 1 + C 2x 2 + C3 x 3 + ... 2.3 

where C1 = [:;J
0

, C2 = [:;J
0

, etc. 

Note that the variables are now not absolute variables but variables relative to 
a datum point. For this one section of the book absolute variables are rep­
resented by upper case letters and variables relative to the datum by lower 
case letters. The original non-linear relationship between the a bsolute vari­
ables has been replaced by a linear relationship involving the new variables. 

Example 2. 1. Consider a mechanical flyweight governor as shown schemati­
cally in Fig. 2.2. A reasonable assumption would be that the force F exerted by 

F 

10 

8 

6 

2 

N 
0 100 rev/min 

Fig. 2.2 Flyweight governor w ith force- speed relationship 

the flyweight s, ansmg from centrifugal action, will be proportional to the 
square of the rotational velocity N 

i.e. F = KN 2 where K is a constant. This is a non-linear relationship. 

1 
IfK=--

10000 

the force- speed curve is as shown in Fig. 2.2. 
If the datum point is 200 rev/ minute 

Hence the linearized equation is 

1 
J=-n 

25 

2 X 200 

10000 25 
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where force f and speed n are measured relative to the datum F = 4 and 
N = 200. 

To assess the error arising from linearization choose N = 250 rev/minute 

i.e. n =50. 

Thisgivesf=2 i.e . F=6 . 

(250)2 

The true value ofF= 
10000 

= 6.25 

The smaller the change from the datum the smaller will be the percentage 
error. If the datum point is 100 rev/minute 

2 X 100 

10000 50 

and the linearized equation is 

I 
f = -n 

50 

Example 2.2. Consider the equation for the flow of fluid through an orifice: 

where Q is the fluid flow rate, Cd the discharge coefficient, A the orifice area, 
!lP the pressure difference across the orifice and p the density of the fluid . 

If Cd, A and p are constant then this becomes 

Q = C .j(!lP) where C = constant 

In linearized form this is 

q = C!lp 

where q and !lp are changes relative to a datum [Q] 0 ,[!lP] 0 

and C = [d~Qp 1 = [2J~!lP)1 
If the area A is not constant, such as would be the case in a flow control valve, 
then the linearized equation would be 

where 

q = C 1a + C21lp 

cl = [:~1 = [ cdJC~P) 1 
c2 = [:iP1 = [.;(~;~P)1 
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If the density is also variable then the equation would be 

q = C1a + C2 11p + C 3 p 

Linearized equations can also be obtained directly from experimental 
curves. The constant coefficients are then obtained by measuring the slopes at 
the datum points directly from the plotted graphs. 

It should be noted that certain types of non-linearity cannot be dealt with 
by linearization. Notable amongst these are effects such as hysteresis or back­
lash where decreasing the perturbation size causes the effect to be more promi­
nent. Sometimes it is convenient to deal with such sys tems in a quasi-linear 
manner by writing down a set of linear equations for each distinct operating 
region. 

Throughout the remainder of this book all variables will normally be con­
sidered to be relative to a datum ; hence the need for maintaining a distinction 
between absolute and relative variables is not great. This allows use of the 
more usual convention that lower case letters are employed to denote fu nc­
tions of time and upper case letters the equivalent functions of the Laplace 
operator, as will be shown in the next section. 

2.2 Laplace transforms and their significance 

The Laplace transform technique is a very convenient method for assisting in 
the solution of differential equations. lt is helpful at first to consider this 
technique as being somewhat analogous to the use of logarithms to simplify 
such mathematical operations as multiplication, division and raising numbers 
to powers. When carrying out such operations, the original numbers of the 
problems are transformed into the logarithmic domain by the use of log tables, 
the solution in the logarithmic domain is obtained by a simpler process 
(addition instead of multiplication, multiplication instead of raising to a 
power, etc.), and finally the result is transformed back into the normal number 
domain by use of the anti-log tables. 

Similarly, when solving a differential equation using Laplace transforms, the 
equation is first transformed into the Laplace domain by changing the variable 
from time t to a new complex variable s = rr + jw, known as the Laplace 
operator. The solution of the differential equation is then effected by sim ple 
algebraic manipulations in the s domain yielding a solution which is a function 
of s. Finally, to obtain the desired time solution, it is necessary to invert the 
transform of the solution from the s domain back to the time domain. As with 
logarithms, tables exist and can be used to transform from one domain to 
another. 

The Laplace transform of a function of time f(t) is written as F(s) and is 
defined as 

00 

F(s) = .st'[f(t)] = f f(t)e -sr dt 2.4 

0 

where s = rr + jw is an arbitrary complex variable. 
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The transformation is thus an integration process applied to f(t) . F(s) is finite 
even when f(t) does not tend to zero, the only requirements being that the 
variable f(t) must be defined for all values of time t > 0 and be zero for t < 0, 
and that s is sufficiently large to ensure that the integral converges. There is a 
unique value of F(s) in spite of there being a large range of values of s which 
are suitable. By applying the above integration process the Laplace transform 
for any function f(t) can be obtained, and once obtained it need not be derived 
again. Tables of Laplace transforms have thus been compiled, and appear in 
many control engineering and mathematics textbooks. Table 2.1 lists the 
Laplace transform pairs of most importance in control work, and which will 
be used in this book ; the rather complicated f(t) describes a damped sine wave 
whose significance will be made clear later. 

Table 2.1 Common Laplace transform pairs 

f (I) F(s) f (I) F(s) 

unit step 
df (t) 

dr 
sF(s) - f (0) 

un it ramp r 
df" (t) 

s2 dl" 
s"F(s) -s" - ' f(O)- f"- ' (0) 

un •t impulse o (t) 
[
d"f (t)J 

where f"(O) = - n-
d l t •O 

e-"' ' w n e -(wo l sin w I / ( 1 - (') 
s+a J<1- (' ) " ' 

sin w r 
w 

52+ w 2 e-" t sin w t 

s 
e-"'' cos w t COS WI 

52+ w 2 

The following theorems are those of most frequent use : 

(a) Addition and subtraction: 

w n2 

w 

(s+a) 2 + w 2 

s+a 
(s+a) 2 + w 2 

2'[/t(t) ±/2(t)] = F 1(s) ± F 2(s) 
where 2'[/1(t)] = F 1(s), 2'[/2(t)] = F 2(s) 

(b) Multiplication by a constant : 

2'[Kf(t)] = K F(s) 

(c) Final value theorem: 

lim lim 
f(t) = 

0 
sF(s) 

t --> 00 s--> 

2.5 

2.6 

2.7 

This is useful since it gives the final value of a time function (i.e. the steady 
state value) by determining the value of its Laplace transform as s--> 0. The 
theorem is not valid if the denominator of sF(s) contains any root whose real 
part is zero or positive (which as will be seen later implies that the function 
tends to infinity as t --> oo ). 
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(d) Shifting theorem: 

lf ..<t' [f(t)] = F(s) then ..<t'[f(r - T)] = e - sT F(s) 2.8 

lt can be seen from the table that the Laplace transform of the nth deriv­
ative of a function is given by 

2[ d:~.t) J = sn F(s) - sn - 1/(0) - sn - 2_{'(0) - . . . - sF - 2(0) - F - 1 (0) 2.9 

The second and subsequent terms are dependent on the initial conditions, the 
values of the function and its derivatives at t = 0. Hence, if all initial condi­
tions are zero, transformation of a different ia l equation into the s-domain can 

be achieved by replacing~ by s, d
2

2 
by s 2, d

3

3 
by s3 etc. The linear differential 

dt dt dt 
equation thus becomes an algebraic equation ins. 

Inverse Laplace transformation, ..<t' - 1 [F(s)] = f(t) , is required to obtain the 
time response . A transformed solution will in general be a ratio of polynomials: 

rn m - 1 
F(s) = ams + am - 1s + ... Go 

sn + bn - lsn - 1 + ... bo 

When this is not in a form which can be found in the available tables it must 
be split by partial fraction ex pansion into a number of functions which are 
listed in the tables : 

F(s) = F 1(s) + Fis) + .. . 
thereforef(t) = ..<t' - 1[F 1(s)] + ..<t' - 1[F2(s)] + ... 

The process of using the Laplace transform technique in this way to solve 
the differential equation for a given system input function is illustrated in 
Chapter 4. Often however in control system analysis, information in the 
s-plane suffices, a nd it is not necessary to carry out the fina l step of trans­
forming the solution back into the time domain. 

2.3 Transfer functions and the characteristic equation 

The relationship between input and output of a dynamic system component 
will normally be described by a differential equation. For the purposes of 
sys tem analysis the control engineer uses Laplace transform notation, and if 
the component is linear writes the equation in the form of a transfer function. 

The transfer function of a linear system is defined as the ratio of the Laplace 
transform of the output to the Laplace transform of the input when all initial 
conditions are zero. Conventionally the symbol G(s) is used, but if the element 
appears in a feedback loop the symbol would be H(s) (see Fig. 2.3). 

It is thus seen that the transfer function is a property of a system and 
describes the dynamic characteristics of the system but is not influenced by the 
state of the system. Since initial conditions are assumed to be zero for evalu­
ating the transfer function it follows that the differential equation can be 
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(a ) 

~ redu ces to~ G 1 is) G2 (s) G31s) 

can be rea rranged __ . ..._ 
1
__, 

thus to avoid the 
inter linking loops 

1ich is 
uivalent 

since Cis) = G(s)E(s) 
= Gls) [Ris) - Cls) H(s)] 

which 
reduces 

to 

Cis) U(s) 
or 

R(s) 

Cis) 

1 + G2 (s)G 3 is)H21s) 

+ G 1ls)G 2 1s)H1(s) 

Fig. 2.3 Examples il lustrating bl ock diagram redu ct ion 

C(s) 

Cis) 
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transformed into the Laplace domain by replacing ~ by s, d
2

2 
by s2 etc. The 

dt dt 
resulting transfer function in the general case then takes the form 

G(s) = P(s) 
Q(s) 

where P(s) and Q(s) are polynomials in s. For the system to be physically 
realizable the order of the numerator cannot exceed that of the denominator. 

It will be seen in Chapter 4 that the form of the output response of a system 
when subjected to a changing input variable is determined by the values of the 
roots of the equation Q(s) = 0. This equation, obtained by equating the 
denominator of the overall transfer function to zero, is termed the character­
istic equation. The roots of the characteristic equation are referred to as the 
poles of the overall system transfer function , since they are values of s which 
cause the transfer function magnitude to become infinite. The number of roots, 
and thus the order of the characteristic equation is termed the order of the 
system. 

Where a complex system comprises many interconnected simple blocks the 
overall transfer function can be obtained by reduction of the block diagram to 
a simple one with a single block, which has however a complex transfer 
function . The process is one of simple algebraic manipulation, and is illus­
trated by Fig. 2.3. Where loops interlink as in Fig. 2.3d some additional 
manipulation is needed. 

2.4 Transfer functions for some simple elements 

Transfer functions will be obtained for six simple components to illustrate the 
form which they take and also the way in which they are derived analytically. 

Example 2.3. Ideal spring. Consider a simple coil spring of negligible mass, to 
one end of which a force f.(t) is applied, the other end being fixed (Fig. 2.4). 

f,(t) Force f, (t) 

F,(s) 

x (t) 

Fig. 2.4 Simple spring 

Spring 
G(s) 

Position x(t) 

X(s) 

There will be a deflection x(t) from the unloaded position of the end of the 
spring. This component could be represented by a block with input f.(t) and 
output x(t) . 

The equation relating input and output is 

f. (t) = K x(t), where K = spring stiffness 

x(t) 
f.(t) = K 
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Taking Laplace transforms yields the transfer function 

X(s) 1 
G(s)=-=-

F.(s) K 
2.10 

In this case there is no time dependence, and the transfer function is a pure 
gain term. This relationship assumes that the spring stiffness is constant, and is 
obviously valid only provided the force is not so large that the spring coils 
come together. 

Example 2.4. Ideal hydraulic damper. Consider now a piston of negligible mass 
sliding with some clearance in an oil-filled cylinder under the action of a force 
Ut) (Fig. 2.5). Again there will be a relationship between the position of the 

Piston 

Force 

Fig. 2.5 Hydraulic damper 

Damper 
G(s) 

Position 

x (t) 
X(s) 

piston x(t) and the applied force. This is obtained from the basic physical 
considerations which are that the viscous drag on the piston is proportional to 
the velocity of the piston in the cylinder. 

f. (t) = C dx(t) 
d dt 

where C = viscous damping coefficient = force per unit velocity 

Taking Laplace transforms gives, for zero x(O) 

Fd(s) = CsX(s) 

and hence the transfer function is 

G(s) = X(s) = _!._ 
Fd(s) Cs 

2.11 

2.12 

2.13 

Again no inertia has been included and it has been assumed that there is a free 
flow through the piston so that no pressure difference can arise across the 
piston. If either were not valid then the force balance equation (Eq. 2.11) 
would not be correct. Clearly these equations are only valid so long as the 
piston does not reach either limit of its stroke. 

Example 2.5. Mass-spring-damper. A frequently occurring physical arrange­
ment that can be represented by a force acting on a mass which is restrained 
by a spring and viscous damper is shown diagrammatically in Fig. 2.6. It is 
assumed that the mass is constrained to move in the direction of the applied 
force by friction-free guiding surfaces. 
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Fig. 2.6 Mass- spring-da mpe r 

The basic physical law relating the position of the mass to the force acting 
upon it is Newton's second law of motion i.e. the sum of the applied forces is 
equal to the rate of change of momentum. 

d2 x(t) 
f(t) - f ,(t) - Ut) = M dt2 

dx(t) 
but f. (t) = Kx(t) and Ut) = C dt 

d 2 x(t) dx(t) 
f(t) = M d(2 + C dt + Kx(t) 2.14 

For zero initial conditions the Laplace transform is 

F(s) = M s2 X(s) + CsX(s) + KX(s) 

Hence the transfer function is 

X(s) 

F(s) - Ms 2 + Cs + K 
2.15 

The most general form of equation 2.14, using the dot notation for differentia­
tion, is 

2. 16 

where u(t) is the forcing term, W 0 = (K/ M} is the system natural frequency, 
and the symbol ( is known as the damping factor. The full significance of these 
terms will be considered in Section 4.2. 

For zero initial conditions, the Laplace transform of Eq . 2.16 is 

(s2 + 2( W0 S + w/)X(s) = w/U(s) 

and thus the transfer function is 

2.17 

Ex ample 2.6. Liquid in glass thermometer. For a simple thermometer (or equiv­
alent temperature measurement device) there is a relationship between the 
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indicated temperature and the temperature being measured. Let 8;(t), the tem­
perature of the fluid around the bulb, be the input and 80(t), the temperature of 
the fluid in the thermometer, be the system output. The thermometer fluid 
volume will vary in proportion to its temperature, and the stem is graduated 
accordingly. The temperatures are both time varying and hence functions of 
timet. 

The rate of heat flow q(t) into the thermometer fluid is proportional to the 
temperature difference across the walls 

8;(t) - 80 (t) 
q(t) = k 

1 

2.18 

where k 1 is the thermal resistance and is determined by the coefficients of heat 
transfer from fluid to glass, through the glass, and from glass to inner fluid. 

Also, the rate of heat flow q(t) is proportional to the rate of temperature rise of 
the thermometer fluKI 

d80(t) 
q(t) =em~ 

where c is the specific heat and m is the mass of the thermometer fluid. 

d80 (t) 
8;(t)- 80(t) = k 2 -- where k 2 = k 1cm 

dt 

Taking Laplace transforms yields the equation 

8;(s) - 80(s) = k2 s80(s) 

80(s) _ I 
8;(s) - 1 + k2 s 

2.19 

2.20 

Note that the thermal capacity of the glass has been assumed to be negligible, 
and the overall coefficient of heat transfer assumed to be constant. 

Note also that the parameters have been considered to be lumped, which 
means that the thermometer fluid temperature has been assumed to be 
uniform in a spatial sense, as has the temperature of the fluid being measured. 
If the temperatures were to be considered as functions of both time and 
position, it would be necessary to describe the system by partial differential 
equations, and it would be termed a distributed parameter system. 

Example 2.7. Resistance- capacitance network. Consider the circuit shown in 
Fig. 2.7 with input voltage V;(t) and output voltage V0 (t). Assume that the 
output impedance is infinite. 

v,,,,f:j + lv·''' 
Fig. 2.7 R C network 
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i(t) = V;(t) - V0(t) = C d V0(t) 
R dt 

V;(s) - V0 (s) = RCs V0 (s) 

V0 (s) _ __ _ 
V;(s) - I + RCs 

2.2 1 

Example 2.8. Hydraulic servomechanism. Fig. 2.8 shows schematica lly a 
hydraulic servomechanism, a feedback device commonly found in practice, 

x(t) 

f 
A 

a 

Oil supp ly 
pressure -P, 

t e(t) b 

B (."' Drain 

Fig. 2.8 Hydraulic servomechanism 

l y(t) 

c 

Area A 

whose function is to move a load of mass M to a position y(t) in response to a 
command signal x(t) using a hydraulic or pneumatic supply to provide the 
power. Let the input and output be positive in the direction of the arrows and 
let the posi tion of the spool valve be given by e(t). Note that x, y, and e a re 
functions of time t. Increase of x, say, would cause the link AC (called a 
walking beam) to pivot about C, cause e to increase and the spool valve to 
move upwards thus allowing fluid to flow to the space above the piston and 
from the space below. The piston thus moves downward, so causing AC to 
pivot about A and thus e to decrease again. Ideally the whole system will come 
to rest when the valve is again in the centra l position. 

What is the relationship between output y(t) and input x(t)? 
IdeaJiy in the steady state, i.e. as t-HXJ, e = 0 and y = (b/a)x. Transiently 

however this is not true . 
b a 

By geomet ry e(t) = --b x(t) - --b y(t) 
a+ a+ 

and if a = b, then e(t) = x(t) - y(t) 
2 

2.22 
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Assuming that the pressure drop across the valve is constant, then the rate of 
flow through the valve q(t) is proportional to the area of opening (see Example 
2.2), 

say q(t) = Ce(t) 2.23 

But also this flow rate must equal the rate of change of volume of the chamber 
into which it is flowing 

Taking Laplace transforms 

q(t) = A dy(t) 
dt 

C[x(t) - y(t)] = A dy(t) 

2 dt 

2A 
X(s) - Y(s) = C s Y(s) 

Y(s) 

X(s)- 2A 
1 +-s c 

2.24 

2.25 

In addition to the assumption about constant pressure drop across the valve, 
many other gross assumptions have been made: no leakage, fluid is incom­
pressible, no inertia, constant temperature, no clearance at pin joints etc. In 
the next section some of these other effects will be considered. 

For each of the last three systems the transfer function has the same form, 

namely -
1
-. This form of relationship is called a simple time lag; the 

1 + rs 
constant r which is dependent on the system parameters is called the time 
constant. Although physically the systems are completely different, mathemati­
cally they are represented by the same form of model. They will thus all 
behave in a similar way and for analytical purposes can be considered to be 
identical. If the time constants are equal, and the excitation functions are of 
the same form, then the response functions will also be the same. 

2.5 Effect of secondary factors on transfer functions 

As has been shown above, in order to obtain the transfer function for a system 
element, it is necessary first to define clearly the boundaries of the system and 
the relevant signal variables. The relationships between these variables must 
then be determined by writing down the physical equations governing the 
system behaviour. Those variables which are not of direct interest must be 
eliminated leaving the relationship between input and output. The form of the 
resulting transfer function will be governed by what effects have been included. 
In a mechanical system, is the inertia of various parts significant? In a hydrau­
lic system, are fluid leakage or compressibility effects of importance? 
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To illustrate the significance of secondary factors consider the effect of 
various factors on the transfer function of a simple hydraulic ram. Let the 
piston area be A, the system input be the input flow rate q(t), the system 
output be the piston position x(t), and the fluid pressure be p(t) (Fig. 2.9). 

Piston position 

~ 

Oil f~~7, ra~te __ __.l Pi<l li~===:Ja 
Fig. 2.9 Simple ram 

(a) Simplest representation of ram. Neglect inertia and leakage ; assume that the 
fluid is incompressible and the piping and cylinder are rigid. The governing 
equation is the flow cont inuity equation 

( ) 
dx(t) 

qt =A-­
dt 

Laplace transformation and rearrangement gives the transfer function 

2.26 

2.27 

1 
This is the relationship for an integrator, the integration occurring at rate A. 

(b) Ram with inertia. Let the piston and whatever is connected to it have mass 
M . 

If there is no leakage past the piston then the flow continuity equation, Eq. 
2.26, is still valid and inertia has no effect. 

If leakage does exist this is likely to be viscous in nature with a flow rate 
proportional to pressure difference. Let the leakage flow be KLp(t) where KL is 
a leakage coefficient, p(t) is the fluid gauge pressure, and the pressure at the 
other side of the piston is atmospheric. The flow continuity equation is now 

dx(t) 
q(t) = A - + KLp(t) 

dt 
2.28 

It is necessary to obtain another equation to allow p(t) to be eliminated. In this 
case it is obtained by applying Newton's second law. 

2.29 

q(t) = A dx(t) + KLM d
2
x(t) 

dt A dt2 2.30 
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Taking Laplace transforms for zero initial conditions gives 

KLM 2 
Q(s) = AsX(s) + -A- s X(s) 

X(s) 

Q(s) 
2.31 

It can be seen that the effect of including inertia and leakage is to introduce a 
simple lag of time constant KLM/ A 2 proportional both to the mass and the 
leakage coefficient. 

(c) Ram with viscous load. If the resistance to motion arises not from inertia of 
the moving parts but from viscous drag forces then the following equations are 
relevant: 

and 

and hence 

dx(t) 
q(t) = A dt + KLp(t) 

dx(t) 
p(t)A = 11 -- where 11 = constant 

dt 

dx(t) KL11 dx(t) 
q(t) = A dt + A dt 

X(s) 

Q(s) 

In this case the effect is still one of integration, but at a slower rate. 

(d) Ram with inertia and viscous load. The equations are 

dx(t) 
q(t) = A dt + KLp(t) 

and ( 
dx(t) d 2x(t) 

p t)A - 11 dt = M ~ 

) 
dx(t) {M d

2
x(t) 11 dx(t)} 

q(t = A dt + KL A~+ A dt 

and 
X(s) 

Q(s) - ( KLJI) KLM 2 A+--s+--s 
A A 

2.32 

2.33 
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(e) Effect of compressibility. In writing down the flow continuity equation 
above it has been assumed that the fluid is incompressible. In practice, even 
liquids are not completely incompressible, and so if the pressure rises the fluid 
volume decreases slightly. Hence some of the fluid entering goes to make up 
the decrease in volume due to compressibility of the fluid (and expansion of 
pipes, if the containing system is not completely rigid). 

Compressibility is defined by the 

and 

lk d I 
change in pressure 

Bu mo u us K8 = . . 
change In vol ume per umt volume 

where v = volume of fluid under pressure 
t1v 

v 

v 
t1v =- t1p 

Ka 

dv v dp 
dt = KIJ dt = qcompressibility 

The flow continuity equation is 

qin = qvelocily + qleakage + qcompressibility 

also 

and 
X(s) 

Q(s) - s{ Mv s2 + (KLM + __!!!!_)s + (KLJ1. +A)} 
K 8 A A K 8 A A 

2.34 

2.35 

2.36 

It can be seen that the effect of inclusion of compressibility has been to raise 
by one the order of the polynomial in s in the denominator, and that the 
transfer function G(s) is a property of the system elements only and is indepen­
dent of excitation and initial conditions. Similarly, including compressibility, 
inertia and leakage for the hydraulic servo would give a third order equation. 
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2.6 State equations 

An alternative method of system representation developed since about 1960 
has been the characterization of dynamic systems by means of state equations 
instead of transfer functions. The state equation will be recognizable as no 
more than a set of differential equations which define the behaviour of a 
dynamic system in terms of the dependent variables, at least if these equations 
are written in a certain form . 

As a simple example to show the form taken by state equations, consider 
again the mechanical system shown in Fig. 2.6. 

The equation of motion, written in the general form of Eq. 2.16, is 

x(t) + 2( wnx(t) + w/x(t) = w/u(t) 2.37 

where x(t) is the horizontal motion (output) and u(t) is the forcing (input) 
function. The equation may be solved by the application of the Laplace trans­
form technique ; this will indicate the variation of the dependent variable x(t) 
with respect to the independent variable time. 

Eq. 2.37 can be rewritten as a pair of first order differential equations : 

2.38 

X 2(t) = - 2( wnx 2(t) - wn 2 x 1 (t) + w,/u(t) 2.39 

where x 1 (t) = x(t) (position) and x 2(t) = x(t) (velocity). The terms x 1 (t) and x 2(t) 
are the dependent variables of a pair of differential equations, written in a 
certain form, which define the behaviour of a second order system and are 
known as state variables. 

A two dimensional vector, having components x(t) and .X(t) also defines the 
state of the system and is known as the state vector. If the mass M is displaced 
a distance x0 from its static equilibrium position and released, the solution 
trajectory could be as shown in Fig. 2.10. This form of trajectory represents an 
oscillation which is decreasing until the system comes to rest. 

x (velocity) 

x 0 ; initial displacement 

Locus of 
state with 

Fig. 2.10 Typical solut ion trajectory 

I 
x (displacement) 
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The importance of the state vector is that a ll future system states are com­
pletely defined if the initial state and system inputs are known. To ill ustrate 
this, Eq. 2.38 and Eq. 2.39 are rewritten as a single vector matrix equation: 

{
il(t)} [ 0 
Xz(t) = -0Jn2 

or more briefly as 

{.i:(t)} = A{x(t)} + Bu(t) 2.40 

where {x(t)} is the state vector, A is a 2 x 2 square matrix and B is a two 
element column vector. Equation 2.40 relates the rate of change of the state of 
the system to the present state of the system and the input signals. Some 
examples of the derivation of state equations will be given in Chapter 5. 

The total space occupied by all possible va lues of the state vector is known 
as the state space. An nth order system will require a state vector having n 
components, and the equivalent state space will be n-dimensional. 



3 
Analogue Computers and 
System Simulation 

It has been shown how a system can be represented schematically by a block 
diagram, each block having associated with it a transfer function describing 
the relevant output-input relationship. Also, a complex block diagram incor­
porating many elements with relatively simple transfer functions can be 
reduced to a single block with a high order transfer function relating the 
system output to the system input. In studying system behaviour it is desirable 
to be able to determine how the system would react to various input or 
disturbance functions. 

If the form of the input function and of the transfer function are simple, then 
the dynamic response can be determined analytically by solving the governing 
differential equation, as will be shown in Chapter 4. If the response is required 
for a number of different input functions, or for a number of different system 
parameters, then the equation solution time can be excessive. It is useful to be 
able to obtain time response traces quickly, particularly for complex systems, 
or where it is necessary to investigate the effect of parameter changes. This is 
most satisfactorily achieved by computer solution of the governing equations, 
a very convenient method being by simulating the system on an analogue 
computer, or on a digital computer using a high level simulation language. 

3.1 Analogue and digital computers 

An analogue computer is a machine in which various physical components can 
be selected and interconnected in such a way that the equations describing the 
resulting computer arrangement are the same as those describing the physical 
behaviour of the system to be studied. The computer arrangement is then 
analogous to the system. It is a continuous data device which operates in a 
real time parallel mode, making it particularly suitable for the solution of 
differential equations and hence for the simulation of dynamic systems. Almost 
the only type now in use is the electronic analogue computer, in which volt­
ages at various points within the programmed computer circuit represent the 
variable quantities of the system being simulated. The ease of use, and the 
direct interactive control which the engineer has over the running of such a 
computer, allows full scope for engineering intuition and makes it an invalu­
able tool for the analysis of dynamic systems and the synthesis of any associ­
ated controllers. A facility which is frequently helpful is that of being able to 
slow down or speed up the problem solution. The accuracy of solution, since it 
is dependent on analogue devices, is generally only of the order of a few 
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percent but , for the purposes of system analysis and design, higher accuracy is 
seldom necessary ; also this accuracy often matches the quality of the available 
input data. 

The digital computer, by contrast, is a discrete data machine which basically 
operates in a serial mode and with which real time operation is generally not 
possible. It is a highly sophisticated calculating machine which performs 
simple arithmetic operations sequentially at very high speed. It has extensive 
capacity for storage of information; this memory is a very important feature of 
the machine and makes it different from the simple calculating machine. Solu­
tion of system equations is effected by writing appropriate programs but, with 
the modern sim ulation languages which are now available, this can be a simple 
process very similar to programming for an analogue computer. The accuracy 
of solution can be made as high as required by selecting a small enough 
sampling interval for the discrete data being handled, but the penalty is one of 
long computation times, particularly with the relatively inefficient compilation 
associated with high level simulation languages. With the development of 
interactive systems utilizing visual display units the advantage of a close man­
machine relationship is being extended to many digital computer installations. 

Because of the ability of both digital and analogue computers to solve 
complicated mathematical equations at high speed, digital or analogue com­
putational elements are often incorporated as part of the control system or as 
the complete control system. 

A number of hybrid machines were developed to combine the two and 
enable a problem to be programmed in such a way that each machine is used 
for the computations which it performs most efficiently. Much of the cost of 
such a machine arises from the rather complicated interface equipment which 
is required to make the necessary conversions between analogue and digital 
signals, and vice versa. Specific computational needs arising with certain 
control problems have contributed significantly to the development of the 
hybrid computer as, in earlier years, they did with the analogue computer. The 
cost of an analogue or hybrid computer is now justified only for certain large 
simulations where fast computing speed attained by parallel operation is 
important. 

3.2 Basic analogue computer elements (linear) 

(a) Summing amplifier. The basic building block of the analogue computer is 
the high gain d. c. amplifier, represented schematically by Fig. 3.1. When the 
input voltage is e;(t) then the output voltage is given by 

e0 (t) = - Ae;(t) 3.1 

where A, the amplifier voltage gain, is a large constant value. 

---e•~-)--~~~--e~.(-rJ __ 

Fig. 3.1 High gain d.c. amplifier 
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When this is used in conjunction with a resistance network, as shown in Fig. 
3.2, then the resulting circuit can be used to add a number of voltages. Let V1, 

Input resistors Summing junction 

Fig. 3.2 Circuit for summing amplifier 

V2 , V3 ... be voltages, relative to some base potential, which can be functions 
of time; also let these be applied to resistors R 1, R 2 , R 3 . .. At any given 
instant, applying Kirchoff's 1st Law to the summing junction, the point where 
the outputs of these resistors are connected, 

3.2 

where ir is the current through the feedback resistor, and i. is the input current 
into the high gain amplifier. If V. and V0 are the voltages at input and output 
of the amplifier respectively, then 

~ - v. ~-v. ~-v. V.-~ 
+ + = i. + R R 1 R 2 R3 r 

Now the amplifier voltage gain A will be of the order of 108 and the computer 
will have an operational range of ± 100 volts, or in some cases ± 10 volts. 
Hence, for V0 to remain within this range, V. must not exceed about 10 - 6 

volts ; it is then negligible compared to V1, V2 , V3 and V0 and is virtually at 
earth potential. The summing junction is thus referred to as a virtual earth 
point. 

Also, the input impedance of the amplifier will be of the order of 1010 ohms, 
compared to 106 ohms for the feedback resistor. Hence i. can also be 
neglected. 

If R 1 = R 2 = R3 = ... = Rr then 

V0 = - (V1 + V2 + V3 + ... ) addition of voltages. 

If there is only one voltage input 

Rr 
V0 = - - V ... multiplication by a constant. 

R, I 
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It should be noted that in all cases there is a sign inversion. Usually the 
available ratios RrfR 1 etc. are standardized to 1 and 10, the appropriate gain 
being selectable as required. The complete circuit comprising high gain ampli ­
fier, input resistors, and feedback element is termed an operational amplifier, 
and for it to act as a summing amplifier the feedback element must be a 
resistor. It is given a symbol as shown in Fig. 3.3. 

~ 
~ 

Fig. 3.3 Symbol for summing amplifter 

(b) Coefficient potentiometer. In order to multiply a voltage by a constant other 
than 10, use is made of a grounded potentiometer (usually a 10-turn helical 
potentiometer), as shown in Fig. 3.4. This permits multiplication by a constant 
in the range 0 to l. If larger values are required then one or more summing 
amplifiers with gain 10 must be used in series with the potentiometer. 

V; 

(a) Circu it (b) Symbol 

Fig. 3.4 Coetftctent potent iometer 

Coefficient potentiometers are generally set to the desired value when in 
circuit, as will be described in Section 3.4. Since the setting is affected by the 
loading, the load resistance shou ld be constant, hence two potentiometers 
should not be placed in series but should be buffered by placing an amplifier 
between them. 

(c) Integrating amplifier. T he circuit for the integrating amplifier shown in Fig. 
3.5a is similar to that for the summing amplifier, the difference being that there 

c vic 

v, 

Va 

(a) Circuit (b) Symbol 

Fig. 3.5 Integ rating ampli fier 
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is a capacitor instead of a resistor in the feedback path. Again the summing 
junction is a virtual earth point and i. is negligible. 

I 
The values Rc' the time constants of the integration, vary the integration rate, 

and again are generally standardized at I and 10. An initial condition voltage 
can be applied to the capacitance, and integration would then commence from 
this value. This involves the inclusion of two additional resistors as shown in 
Fig. 3.13. Fig. 3.5b shows the diagrammatic representation for the integrating 
amplifier with three inputs and an initial condition value applied. As with the 
summing amplifier there is always a sign inversion. 

3.3 Production of circuit diagrams to solve differential 
equations 

The three basic elements described in the section above are sufficient to simu­
late any linear system and hence to solve the corresponding differential equa­
tion. To illustrate the technique for deriving the computer circuit diagram 
consider a system with differential equation 

Ac(t) + Bi:(t) + c(t) = u(t) 

The transfer function corresponding to this is 

C(s) 

U(s) I + Bs + As2 

The following steps are carried out: 

3.5 

3.6 

(a) The equation is rearranged so that the highest derivative term is on the 
left hand side and all other terms arc on the right hand side of the equation : 

I.e. Ac(t) = u(t) - c(t) - Bi:(t) 3.7 

(b) It is assumed that a voltage representing the highest derivative term is 
available, then lower derivative terms can be obtained by successive integra­
tions. For a second order differential equation, as in this case, two integrators 
are required (Fig. 3.6). 

Adt) Ac(t) 

Fig. 3.6 Successive integration 
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(c) Potentiometers and summjng amplifiers are used to obtain the correct 
coefficients and signs of the lower derivative terms on the right hand side of 
the equation, and these signals are added to u(t) in a summing amplifier to 
produce Ac(t) at the point where it was assumed to be avai lable (Fig. 3.7). 

c(O) - c(O) 

+ c(t) 

Fig. 3.7 Analogue computer circuit for transfer function C(s )) = 2 ) 
U(s (1 + Bs+As 

(d) For identification purposes, numbers are assigned to the amplifiers and 
potentiometers on the circuit diagram; the interconnections are then made 
externally on the patch panel of the computer by means of plugs and leads. 

(e) The system can now be forced with any desired voltage waveform rep­
resenting u(t) and the resulting response c(t) can be observed and recorded if 
required. Potentiometer values can be altered to represent variation of system 
parameters and the resulting system behaviour change noted. Other system 
quantities, in this case - c(t) and c(t), can also be monitored if desired . If c(t) 
and c(t) are required to have values other than zero at the start of computation 
then these initial condition values are applied as voltages to the initial condi­
tion inputs of amplifiers 03 and 02. 

Normally the circuit diagrams might be modified for a number of reasons : 

(i) The circuit can generally be rearranged slightly to reduce the number of 
amplifiers used. In this example if the signal c(t) does not require to be moni­
tored amplifiers 01 and 02 can be combined as in Fig. 3.8, reducing the 
number of amplifiers needed from four to three. 

At(O) - Ac(O) 
u(t) 

c(t) 

Fig. 3.8 Circui t of Fig . 3. 7 using one less amplifier 
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(ii) The circuit may be rearranged so that each variable parameter is rep­
resented by a single potentiometer. Fig. 3.7 is better than Fig. 3.8 in this 
respect. Care must be taken to ensure that potentiometers are not placed in 
series, since alteration of one potentiometer setting would then affect the 
setting of the other. 

(iii) It may be found necessary to adjust the scaling of the problem to avoid, 
in certain parts of the circuit, voltages which are either so large that they 
exceed the linear range of the amplifiers, or so small that the poor signal to 
noise ratio causes significant inaccuracies. Also it may be found desirable to 
adjust the time scale of the problem to slow down or speed up the solution. 
The principles of amplitude scaling and time scaling will be described in 
Section 3.7. 

Example 3.1. For the block diagram of Fig. 3.9 consider the derivation of an 
analogue computer circuit diagram which could be used to investigate the 

Governor Plant 

R(s) E(s) M(s) 3.5 C(s) 

(s + 1) (s2 + 4s + 8) 

Transducer 

1 
1 + 0.2s 

Fig. 3.9 Block diagram of feedback control system 

effect on dynamic behaviour of the system of changes in settings of the pro­
portional plus integral governor. Assume that the operational amplifiers avail­
able have gains of 1 or 10. 

It would be possible to reduce this diagram by the methods illustrated in 
Fig. 2.3 to one single block with input R(s), output C(s), and transfer function 
which is of fifth order. The fifth order differential equation which this rep­
resents could then be simulated by following the above procedure and using 5 
integrators in series, from which would be obtained the 5 signals proportional 
to c(t), c(t), c( t), etc. which must be summed with r(t) to produce the highest 
order derivative term. (There would in this case be a difficulty, namely the 
need also to obtain derivatives of the input signal; the method of overcoming 
this is described in Section 3.6.) It is, however, much more useful and also 
simpler to draw a circuit diagram for each system component separately, and 
then to combine these in the appropriate way to obtain a circuit diagram for 
the overall system. This then gives a true simulation where all intermediate 
system variables can be easily identified and monitored. 

Obtain first a circuit diagram for the plant, noting that it comprises a first 
and a second order component which are in series, as represented by Fig. 
3.10a. 
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M(s) .. 3.5 

(b) 

C1 (s) .. 
G,(s) 

1 
S+T 

Plant 

.. s2+4s+B 

(a) 

(c) 

Fig. 3.10 RepresentatiOn of plant 

For block G 1(s) 

or 

C2(s) 

C 1(s) = s + I 

sC2(s) = C 1 (s) - C 2(s) 

c2(t) = c 1 (t) - c2(t) 

and this requires the circuit diagram of Fig. 3.1 Ob. 

For block G2(s) 

or 

s2 + 4s + 8 

s2 C(s) = C 2{s) - 4sC(s) - 8C(s) 

c(t) = c2(t) - 4c(t) - 8c(t) 

0.8 

C(s) 

• 

+c(t) 

which can be simulated by the circuit of Fig. 3.10c. The summer and the first 
integrator can be combined requiring one amplifier less. The constant 3.5 
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requires a potentiometer set to 0.35 in conjunction with an input into an 
amplifier in the gain 10 position. 

The circuit for the transducer is similar to that for G1(s), except that a 
potentiometer is required to give the time constant of 0.2 seconds. A summing 
amplifier enables e(t) to be obtained from r(t) and the transducer output. The 
governor output is obtained by addition of e(t) and a constant a times J e(t) dt, 
the whole being multiplied by the constant K. Combination of all of these 
parts, paying careful a ttention to ensure that the signs of signals are correct, 
yields the overall circuit diagram, Fig. 3.11. 

3.4 Computer operating modes 

If there is a voltage at the input of an integrating amplifier, then the output 
will increase continually until the amplifier saturates. It is necessary therefore 
to be able to control the operation of the amplifiers by starting and stopping 
the computation as required. Also it is necessary to be able to adjust poten­
tiometers to their required settings, and to be able to set the circuit variables 
to the desired initial conditions. These are achieved by means of a mode 
control swi tch or push buttons which energize relays in the amplifier and 
potentiometer circuits in the way described below for the usual operating 
modes. 

(a) 'POT SET' . This mode enables each potentiometer to be set while in 
circuit, and loaded by the normal amplifier input resistance. Switching to this 
mode connects the reference voltage supply, + 100 volts on many machines, to 
the input of all potentiometers and connects the summing junction (SJ) of all 
amplifiers to earth potential as shown in Fig. 3.12. By switching a digital 

Fig. 3.12 Potentiometer and amplifier in "POT SET mode 

voltmeter (DVM) to display a potentiometer output voltage, each poten­
tiometer can in turn be adjusted to its required setting. 

(b) 'RESET' or 'IC'. Two relays are actuated in each integrator circuit, as 
shown in Fig. 3.13, thus applying initial condition voltages to the feedback 
capacitors and setting each integrator output to the initial value of the vari-
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- V;c R R 

R, 

Fig. 3.13 Operational amplifiers in 'RESET' mode 

able which it represents. (The voltage applied to the initial condition socket 
must be of opposite polarity to J.'ic.) When no connection is made to the initial 
condition socket, the amplifier starts from an initial voltage of zero. The 
summing amplifiers remain in their normal operating state. 

(c) 'COMPUTE', or 'OPERATE'. The initial condition voltages are discon­
nected and the integrator inputs are connected, the integrators start, and the 
computation proceeds. Any variables of interest can be observed on an oscillo­
scope or can be recorded. 

(d) 'HOLD'. Switching the computer to HOLD causes the integrator inputs to 
be disconnected and the problem to be 'frozen', Fig. 3.14. The circuit voltages 

- V;c R R 

Fig. 3.14 Operational amplifiers in 'HOLD' mode 

can thus be measured at a given instant of time. Returning to the COMPUTE 
mode allows the problem solution to continue from the point at which it was 
frozen. 

(e) 'REP OP'. Sometimes a repetitive operation mode is available allowing 
automatic and continuous cycling between RESET and COMPUTE. 

On analogue computers intended for use in a hybrid installation, electronic 
switching controlled by logic signals replaces the mechanical switches in the 
amplifier circuits. With electronic mode control, there is usually available fast 
integration, achieved by using capacitors of about 1% or so of the normal 
values. In the REP OP mode the complete response can then be viewed as a 
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persistent trace on an oscilloscope, and the effect of a gradually changing 
potentiometer setting is very clearly seen. 

3.5 Non-linear analogue computer components 

The analogue computer is particularly useful for simulating systems where 
non-linearities are present, analytical solution then generally being complex or 
impossible. To dea l with non-linearities, several other computer elements are 
available, and these are described briefly below. 

(a) Multipliers. These enable two variables to be multiplied together or divided 
by one another, or the square root of one obtained, and are available in three 
main forms. Servo multipliers operate by positioning a shaft, connected to the 
wiper of a potentiometer, to an angular position proportional to the first 
voltage, applying the second voltage to the potentiometer winding, and taking 
the product from the wiper. By having several potentiometers ganged together 
one variable can be multiplied by a number of others. Being electromechanical 
these are not suitable for rapidly varying signals. Quarter square multipliers 
make use of electronic squaring circuits to mechanize the relationship 

3.8 

Time division multipliers alter the amplitude and mark/space ratio of a signal 
in proportion to the two signals and filter the resulting waveform to give a 
mean value representing the product. 

(b) Servo resolvers. These are servo multipliers which have speciall y wound 
sine/cosine potentiometers and produce the functions sin V and cos V when 
the input variable is V. Their use is of importance where there is transform­
ation between recta ngular and polar coordinates. 

(c) Diode function generators. The relationship v2 = f( VI) can be simulated by 
approximating the curved relationship by a series of straight-line segments. 
The break points and the slopes of the segments must be set prior to running 
the simulation. 

(d) Comparator relays. A relay which can be incorporated in the circuit is 
switched one way or the other according to whether the sign of the sum of two 
signals ( VL + V2 ) is positive or negative. This allows different parts of circuit to 
be connected depending on the magnitude of a variable VL relative to a refer­
ence variable V2 • For high speed repetitive operation the mechanical relay is 
replaced by its electronic counterpart, a D to A switch. 

In addition to these components which are built into the computer, effects 
such as saturation, deadband, and hysteresis can be simulated using external 
diodes and appropriate circuits. It is also possible to include a human being or 
items of physical equipment as part of the simulation. 
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3.6 Differentiation 

The method of solving a differential equation by analogue computation, which 
has been described in Section 3.3, requires the equation to be written in such a 
form that a circuit diagram can be produced which involves integration of 
system variables rather than differentiation. Although differentiation could be 
achieved by means of a high gain amplifier with a capacitor at the input and a 
resistor in the feedback path, it is something to be avoided since differentiation 
is a noise amplifying process. An unwanted noise signal A sin wt, say, with 
amplitude A and frequency w, would become a noise signal of amplitude wA 
after differentiation, or w 2 A after two stages of differentiation. Further prob­
lems arise when step changes of variables occur. Wherever possible, therefore, 
the equations must be manipulated so that integrators can be employed. 

A form of transfer function for which additional manipulation is required is 
one which has a polynomial in s on the numerator in addition to that on the 
denominator. The corresponding differential equation thus contains terms 
involving derivatives of the input function in addition to the derivatives of the 
output function. Consider the transfer function 

C(s) 2s2 + s + I 

U(s) - s3 + 5s2 + 6s + I 

which represents the differential equation 

c"(t) + 5C(t) + 6c(t) + c(t) = 2ii(t) + u(t) + ll(t) 

To simulate Eq. 3.9 introduce a new variable C1(s) so that 

_c_, (_s) _ --=----:----
U(s) s3 + 5s 2 + 6s + I 

The output C(s) is then given by 

C(s) = (2s2 + s + I)C 1(s) 

3.9 

3.10 

3.11 

3.12 

Equation 3.11 can be tackled by the methods of Section 3.3, and the output 
can then be obtained by addition of the appropriate derivative terms of the 
new variable as given by Eq. 3.12. The computer circuit which results is shown 
in Fig. 3.15. 

Situations sometimes occur where differentiation cannot be avoided. Satis­
factory results can then usually be obtained by the use of a circuit giving an 
approximation to differentiation, such as that shown in Fig. 3.16 with transfer 
function 

C(s) s 
U(s) - I +(I - k)s 

3.13 

It can be seen that the differential term is modified by the presence of a simple 
lag term with time constant (1 - k). It will be shown in Chapter 6 that this has 
the effect of attenuating high frequency components of signal input. In practice 
the potentiometer setting can be adjusted to be as close to unity as the noise 
permits. 
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u(t) 

C(s) = 2s 2 + s + 1 
Fig. 3.15 Circuit diagram for U(s) 53 + 552 + 

65 
+ 1 

u(t) 

c(t) 

Fig. 3.1 6 Circuit for approximate differentiation C(s) = 
5 

U(s) 1 + (1 - k)s 

3. 7 Problem scaling 

Circuit diagrams obtained by the method described in Section 3.3 usually 
requ ire some further modification, often of a minor nature, in order to obtain 
acceptable accuracy of solution by minimizing the effect of inherent physical 
limitations of the computer elements and of the recording device, and perhaps 
also to alter the speed of computat ion for reasons of convenience. For any 
given input signal the maximum values of the voltage signals within the 
circuit, which depend on the maximum values of each variable and its deriv­
atives, must neither be so large that the linear range of one or more amplifiers 
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is exceeded, with resulting errors in the solution, nor so small that poor 
signal-noise ratios cause unacceptable inaccuracy. An excessively slow solution 
is wasteful of computer and operator time and can introduce inaccuracy 
caused by integration of small voltage errors over a long period. At the other 
extreme a very short solution time can cause errors due to the limitations of 
the dynamic response of certain of the elements being used. Modification to a 
circuit diagram to minimize these problems takes two forms referred to as time 
scaling, where the solution time is altered, and amplitude scaling, where the 
variables are scaled to ensure that voltage levels throughout the circuit are as 
high as possible without exceeding the reference value. 

Inspection of the coefficients of the system equations and the gain values in 
the circuit diagram often suggests whether or not scaling is likely to be needed; 
suitable modifications can then be determined in a number of ways. It is not 
inappropriate to tackle the problem by a practical trial and observation 
approach, first making any changes which suggest themselves by inspection of 
the circuit diagram, patching in the resulting circuit on the computer, obser­
ving the response of the output voltage and of the voltages elsewhere in the 
circuit to see whether further scaling is desirable, and then making additional 
modifications if required. For any circuit the computer variables are directly 
proportional to the problem variables in such a way that a volts, say, represent 
one unit of the corresponding variable. The magnitude of the forcing function 
voltage can be increased so that the operating voltages within the circuit 
become as large as possible, without anywhere exceeding the computer refer­
ence voltage, and preferably until the scaling constant a is a convenient 
number. Provided that the problem solution time is reasonable and that volt­
ages are nowhere so small that unacceptable errors are likely to occur then no 
further action on scaling is required. 

If the solution time must be increased or decreased then time scaling is 
required. This is effected by a change of time variable 

t = f3T 

where t is the problem time, T is the computer or machine time, and f3 is a 
constant which is greater than unity if the solution is to be speeded up, and 
less than unity if it is to be slowed down. Hence l problem second = f3 
machine seconds, and when f3 = l the solution is referred to as a real time 
simulation. This change of variable causes a change in the magnitudes of the 
time derivatives of any problem variable such as c(t), hence 

dc{t) dc(T) dT l dc(T) d2c(t) I d2c(T) 
dt = dT dt = p dT' d(2 - pz dT'2' etc. 

The differential equation when written in terms of T is therefore the same as 
the original equation but with the coefficient of each derivative term multiplied 

l 
by the appropriate power of {J. The effect on the circuit diagram is to require 

the gain of each integrator to be changed by the factor {3. As illustration 
consider the differential equation Eq. 3.5 

Ac(t) + Bc(t) + c(t) = u(t) 
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which in terms of machine time T becomes 

A B 
{3 2 c(T) + {j c(T) + c(T) = u(T) 

This has the circuit diagram shown in Fig. 3.17 where for ease of comparison 
with Fig. 3.7 the integrating amplifier gains have been shown as having the 

c(T) 

ll 

Fig. 3.17 Analogue computer c ircuit corresponding to Fig 3 7 for solut ion 
speeded up by a factor /3 

value {3. Since amplifier gains normally ha ve va lues of 1 or 10 only, the time 
scaling would be Straightforward fo r f3 = 10 but would require the intro­
duction of additional potentiometers, and perhaps also summing amplifiers, to 
accommodate other values of {3. If when first drawing a circuit diagram ampli­
fier gains a re consistently high, as occurs inherently in equations for fast 
systems, then it is likely that the solution time should be increased whilst, if 
potentiometer se ttings are consistently low, it is probable that the time scale 
should be altered to speed up the solution. On many machines the integrating 
amplifier gains and hence the time scale can be changed automatically by a 
switch on the operating console, enabling the system to be studied visually on 
a n osci lloscope using repetitive operation and a fast solution time, and then 
slowed down to within the dynamic range of a pen recorder whenever a hard 
copy trace is required. 

The need for amplitude scaling is indicated if gains are very high or very low 
in certain parts only of the circuit, since the accuracy decreases as the signal 
amplitude reduces. If somewhere in a loop there is a gain of 100 or an attenu­
ation of 0.01 , say, then there is at least one point in the circuit where the 
voltage can at most be 1% of the reference voltage, and consequently small 
absolute errors in this voltage could cause large percentage errors in the 
solution. The procedure for amplitude scaling is not easily learned by reading 
alone and can best be understood by practical application on a computer. It is 
a compromise between obtaining the highest possible accuracy of solution and 
having a simulation where interpretation is easy a nd where least confusion can 
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arise. The procedure is as follows: 

(i) estimate the maximum values of each of the variables x 1 (t), x 2(t), x3(t) ... 
x,(t) . .. for the forcing function of interest 

(ii) determine scaling factors A 1, A 2 , ••• A,, . .. which are simple numbers 
and equal to or slightly less than the corresponding value of the ratio 

reference voltage 
maximum expected value of x,(t) 

(iii) rewrite the differential equations in terms of scaled variables A1x 1(t), 
A 2 x 2(t), .. . A,x,(t) ... 

(iv) draw the circuit diagram by the method of Section 3.3 
(v) try the circuit, observe maximum voltages throughout, and readjust 

where necessary. 

The result is that instead of each variable being represented by the voltage at 
an appropriate point in the circuit multiplied by the common scaling factor a, 
the variables appear in a normalized form and effectively have different scaling 
factors. This procedure has the effect of levelling out the maximum voltages 
around the various loops of the circuit, avoiding high gains being followed by 
large attenuation or vice versa, and ensuring that each amplifier has a range of 
operating voltage which is as large as possible. 

For many problems, where high accuracy of solution is not of prime impor­
tance, the above procedure for amplitude scaling need not be followed fully . 
The aim can be simply to arrange potentiometer positions and values, and 
amplifier gain settings, in a sensible manner when first drawing the circuit, and 
then to carry out the last step of the procedure, making adjustments if they 
appear necessary in a logical practical manner. 

Example 3.2. To illustrate the features of time and amplitude scaling consider 
the differential equation Eq. 3.5 in which A = 125 and B = 5 

t.e. 125c(t) + 5c(t) + c(t) = u(t) 

and prepare a circuit diagram which could be used to investigate the response 
to a step change of input for varying values of A and B. Assume that the 
computer reference voltage is 100 volts, and that the available amplifier gains 
are 1 and 10. 

The circuit diagram for A = 125 and B = 5 is that derived in section 3.3 
(Fig. 3.7) which, with the potentiometers set to the appropriate values, is 
shown in Fig. 3.l8a. It can be observed that the voltages at the circuit input 
and at the outputs of potentiometer P01 and amplifiers 02 and 03 are directly 
proportional to -u(t), c(t), -c(t) and c(t) respectively. For the value A = 125 
the setting of potentiometer P01 is very small, and hence to avoid errors which 
would arise from overloading of amplifier 01 the output voltage of P01 cannot 
be allowed to exceed 0.8 volt. The small magnitude of this voltage which is the 
input to the integrating amplifier 02 could lead to significant inaccuracy, and 
also suggests that the solution time may be long. Applying a step change of 50 
volts at the input, and measuring the resulting peak voltages throughout the 
circuit, yields the approximate voltage values shown in the diagram. The large 
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(a) 

(b) 

(c) 

5C(t) 
(16V) 

5t(r) 

(16V) 

0.5t(T) 

(16V) 

1 o.ooa =.:4 

0.2 =:; 

0.2 =:; 

t 
T= 10 

-t(t) c(t) 

(- 3.3V) (75V) 

0.04 

0.4 

Voltages shown in brackets are approximate 
values for a 50 volt step change of input, 
on a 100 volt reference machine. 

c (t) 

(75V) 

c(T) 
(75V) 

Fig. 3.18 Analogue computer circuit diagrams for simulation of differential equa­
tion Ac(t) + Bt(t) + c(t) = u(t) for A= 125. B = 5 (a) basic circuit (b) circuit modi­
fied by amplitude scaling (c) circuit further modified to decrease solution time by 
factor of 1 0 
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range of values suggests that amplitude scaling is desirable and study of the 
diagram suggests where changes could be made to avoid very small voltages. 
Initial experimental tests also show that the settling time is of the order of 200 
seconds which is inconveniently large; this confirms the desirability of time 
scaling the problem. Fig. 3.18b shows the circuit and the resulting peak volt­
ages after carrying out amplitude scaling by simple trial and observation or by 
the method described above. The attenuation of 0.008 is carried out in two 
stages with the result that the voltage output of potentiometer P01 now rep­
resents the signal 25c(t) rather than the signal c(t). The loop gains remain 
identical at 0.04 for the inner loop and 0.008 for the outer loop. Relatively 
small voltages at certain points (in this case the input to amplifier 03) cannot 
be avoided. The solution can be speeded up, say by a factor of 10, merely by 
altering the inputs of integrating amplifiers 02 and 03 to gain 10 (Fig. 3.18c). 
The voltage levels remain unchanged. For a complex simulation such a change 
is particularly convenient if push button time scaling is available. To decrease 
the solution time by a factor of 20 say, the settings of potentiometers P01 and 
P03 are also adjusted. With time scaling the loop gains are altered, in the case 
of Fig. 3.18c to 0.4 and 0.8 respectively. Study of the variations in the form of 
the transient response for changing values of coefficients A and B can now be 
carried out by altering the settings of potentiometers P 01 and P02 to the 
appropriate values. This is a particularly simple simulation which, however, 
demonstrates the method of approach which would be used to obtain an 
actual simulation diagram for a more complex dynamic model. 

3.8 Digital continuous system simulation 

An analogue computer simultaneously solves all of the differential equations 
which form the model for a physical system, and continuous voltage signals 
represent the variables of interest. This enables the machine to operate in real 
time which permits the incorporation within the simulation of actual items of 
equipment or of human beings where these form part of the system to be 
studied. Significant disadvantages of analogue simulation are the high cost of 
the computer due to the multiplicity of elements with demanding performance 
specifications, difficulties of problem scaling to avoid overloading of amplifiers, 
and relatively limited accuracy and repeatability due in part to amplifier drift. 
As a consequence of the very rapid development of digital computer hardware 
and software giving ever greater capability and flexibility at decreasing cost, 
system simulation is inevitably being carried out more and more on the digital 
computer. There is effectively no problem of overloading so very wide ranges 
of parameter variation can readily be accommodated, any desirable accuracy 
can be attained, and with the aid of appropriate high level languages program 
writing is straightforward. With the availability of the 'on-line' computer 
facility a simulation can be run interactively in a closely similar manner to 
that of the analogue computer. 

The solution of a differential equation involves the process of integration, 
and for the digital computer analytical integration must be replaced by some nu­
merical method which yields an approximation to the true solution. A con­
tinuous signal x(t) is represented by a series of numbers x0, x1, x2, x3, ..• Xn, 
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say, which define the signal amplitude at times !0, t1, t2, t3 , . • . t". These 
sample values are normally at equally spaced time intervals, and if the sam­
pling interval is chosen to be small enough then no information about the 
signal is lost (see Section 7.5). With such discrete representation of continuous 
signals differential equations are converted to difference equations and integra­
tion is carried out in a stepwise fashion. Integration of a signal x(t) of known 
form (where the sample values x 0 , xt> x 2 , •.. x" are known at the outset) can be 
effected by means of the trapezoidal rule 

f ()d -(x0 +x1 x1 +x2 x2 +x3 x"_ 1 +x")A 
X t t -

2 
+ 

2 
+ 

2 
+ ... + 

2 
ut 

The solution of a differential equation, however, requires integration of a 
signal x(t) which is itself a function of x(t). Consider the first order differential 
equation 

x(t) = ax(t) + bu(t) 3.14 

If the value of x(t) at time t is known then the value at time t + !J.t is given by 
t+<l.t 

x(t + !J.t) = x(t) + f x(t) dt 

t 

but to evaluate the integral term it is necessary to know x(t + !J.t)! Numerous 
integration algorithms are available to overcome this difficulty and enable the 
next value of x(t) to be estimated. To solve a differential equation the 
unknown solution trajectory x 1, x 2 , x 3 , ... x" is built up progressively, one 
integration time step at a time, starting from a known value x0 . 

The simplest integration algorithm is the Euler method which assumes that 
the function to be integrated, the derivative function, remains unchanged from 
t to t + !J.t with the value which it has at time t, i.e. x(t). Hence 

x(t + !J.t) = x(t) + !J.tx(t) 3.15 

which shows that the values x(t) and x(t) are used to estimate x(t + !J.t). For 
any specified input function u(t) starting from a known initial output value x(O) 
equations 3.14 and 3.15 can be alternately and repeatedly applied to calculate 
successive values of the output function as follows : 

x(!J.t) = x(O) + !J.t{ ax(O) + bu(O)} 

x(2!J.t) = x(!J.t) + !J.t{ ax(!J.t) + bu(!J.t)} 

x(3!J.t) = x(2!J.t) + !J.t{ ax(2!J.t) + bu(2!J.t)} 
etc. 

To help visualize this computational procedure consider Eq. 3.14 in which 
a= -5 and b = 1 

i.e. x(t) = u(t) - 5x(t) 

This corresponds to the transfer function 

X(s) __ 1_ _ 0.2 
U(s) - s + 5 - 1 + 0.2s 

3.16 
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which is a simple lag system with time constant 0.2 seconds and gain 0.2. For a 
unit step input function, u(t) = 1, an initial value x(O) = 0, and an integration 
step size of /1t = 0.1 seconds the output is given in discrete form by 

x( t + 0.1) = x(t) + 0.1{1 - 5x(t)} 

i.e. x(t + 0.1) = 0.5x(t) + 0.1 

The successive output sample values are thus 

x(O) = 0 = 0.0000 

x(0.1) = 0.5(0.0000) + 0.1 = 0.1000 

x(0.2) = 0.5(0.1 000) + 0.1 = 0.1500 

x(0.3) = 0.5(0.1500) + 0.1 = 0.1750 

x(0.4) = 0.5(0.1750) + 0.1 = 0.1875 

etc. 

3.17 

For comparison these discrete values together with the true analytical solution 
x(t) = 0.2(1 - e - 5

') are plotted in Fig. 3.19 and it can be seen that there is a 
significant difference in the solution trajectories. Reduction of the integration 
time step size Llt improves the accuracy of the solution at the expense of an 
increase in computation time. If Llt is reduced by a factor of 2 then the discrete 
equation becomes 

... 
)( 

3: c: 
8. 
Kl 

a:: 

0.2 

0.2 

x(t + 0.05) = 0.75x(t) + 0.05 

.a. Integration interval 0.1 second I Simp!e Euler 

+ Integration interval 0.05 second algonthm 

• Integration interval 0.1 second 

0.4 

2 stage Euler 
algorithm 

0.6 

Time t(seconds) 

3.18 

Fig. 3.19 Step response of 1st order system evaluated analytically and using 
discrete algorithms 
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from which x(0.05) = 0.0500, x(O.l) = 0.0875, x{O.l5) = 0.1156, x(0.2) = 
0.1367, ... There are twice as many computations, but the errors are approx­
imately halved. 

The Euler method is a helpful introduction for understanding the principles 
of integration algorithms but is not often used in practice since it employs a 
poor estimate of the mean value of the derivative function for the time interval 
~t. Better accuracy for a given integration step size is achieved by making use 
of multistage algorithms. The improved Euler method is a two stage computa­
tion in which a first estimate of the next point is made using the Euler method, 
the derivative is calculated for this estimated point, the average of this deriv­
ative value and that at the beginning of the step is evaluated and this average 
value used to calculate the next point. As an illustration of the method, con­
sider again the first order system of Eq. 3.16 with a unit step input and an 
integration step size of 0.1. As before 

x(t) = 1 - 5x(t) 

A first estimate of x(t + 0.1) is given by 

x.(t + 0.1) = x(t) + 0.1{1 - 5x(t)} = 0.5x(t) + 0.1 

The derivative value at this point is 

x.(t + 0.1) = 1- 5{0.5x(t) + 0.1} = 0.5- 2.5x(t) 

The average derivative value is then 

!{x(t) + x .(t + 0.1)} = 0.75- 3.75x(t) 

which is used to obtain an improved and final estimate of x(t + 0.1) as 

x(t + 0.1) = x(t) + 0.1{0.75 - 3.75x(t)} = 0.625x(t) + 0.075 3.19 

The solution using Eq. 3.19 shows a marked improvement in accuracy. In this 
example the solution is particularly simple since u(t) is a constant and thus x(t) 
is a function only of x(t), resulting in one single equation to be repetitively 
solved. Normally x(t), x.(t + M), x.(t + ~t), xmean• and x(t + ~t) must all be 
computed in turn for each integration time interval ~t. A similar two stage 
method referred to as the modified Euler method makes a first estimate of the 
next point, evaluates the derivative at the estimated midpoint, and uses this as 
the derivative value to calculate the next point. A more complex and efficient 
algorithm which, like the above, uses only the current value to estimate the 
next value, bnt estimates three or more usually four derivative values to do so, 
is the Runge- Kutta method. A different class of integration algorithm is that of 
predictor-corrector methods which make use of both present and past values to 
predict the next value, and then correct the predicted value by an appropriate 
algorithm, the prediction and the correction sometimes being done iteratively. 
A complication is that at the start there are no past values, hence one of the 
Runge- Kutta class of algorithms must be used for the first one or two steps of 
integration . Many algorithms are avai lable in standard software libraries and 
are documented in textbooks such as references 17 and 18. 
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The choice of value for the time interval L1t, referred to as the integration 
step size or integration interval, must clearly be a sensible one. Using the basic 
Euler method the above example suggests that the integration step size should 
be of the order of one tenth of the time constant or smaller (corresponding to a 
sampling frequency of approximately 60 times the bandwidth, a concept which 
is discussed in Section 6.5). If a large step size is chosen then quite erroneous 
results may be obtained since not only is the error significant but oscillations 
can occur, as illustrated in Fig. 3.20 for the above numerical example with an 

x(tl 

0.3 X 

Euler, 0.3 second step size 

0.2 

0.1 

0.5 1.0 1.5 

t (seconds) 

Fig. 3.20 Illustration of errors from use of large integration step 

integration step size of 0.3 seconds. The integration step size can be larger, say 
one quarter of the time constant, if using a better algorithm. With some 
algorithms the integration time step is not fixed but is changed automatically 
so that it is increased in value when changes are slow and decreased when the 
variable changes more rapidly. 

With the above background, together with some understanding of a scienti­
fic high level language such as Fortran or Pascal the reader will be able to 
write a digital computer program to evaluate the time response for any chosen 
simple system, and to output the results in an appropriate graphical or tabular 
form. A sample program is outlined in the next paragraph. A quicker and 
more convenient approach to simulation, if appropriate software is available, 
is to employ a simulation language, a special programming language for 
dynamic system simulation designed to require a minimum knowledge of com­
puter programming and computer procedures. Simulation languages are dis­
cussed in Section 3.9. 

Figure 3.21 lists a Fortran program which can be used to evaluate c(t) for 
the second order differential equation, Eq. 3.5, with a unit step forcing function 
u(t), and is thus a digital computer equivalent of the analogue computer circuit 
diagram of Fig. 3.7. The heart of the program which uses the Euler approach 
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to integration is the iterative application of the following three statements: 

CDDOTI (1.~- C(l) - B•CDOT(!))/A 

COOT(! + 1) =COOT(!) + DT • CDDOTI 

C(l + 1) = C(l) • DT'CDOT(l) 

The similarity between these (which correspond to equations 3.14 and 3. I 5) 
and the analogue computer circuit will be evident. The initial part of the 
program is written in a form such that the system parameters A and B, the 
integration interval DT, the run time, and the time interval between the solu­
tion values which are to be printed out can be chosen at run time and entered 

C SOLUTION OF SECOND ORDER DIFFERENTIAL EQUATION 
c 

c 

DIMENSION C(SG~l,CDOT(S~~),PRTPLT(61) 
DATA BLANK/1H /,CROSS/1HX/,DASHV/1H-/,DASHH/1HI/ 
DATA C~/~.~/,CDO TG/G.G/,CMAX/~ .G / 

C REQUEST DATA INPUT FOR SIMULATION RUN 
WRITE(6, 1G) 

1~ FORMAT('~ ••• STEP RESPONSE OF SECOND ORDER SYSTEM •••• / 
A•CDOOT+8 ' CDOT+1=U OR C(S)/R(S)=1/(A •S••2+8'5+1)'/ 

'G (INSERT NUMBERS IN REAL FORM -I.E. WITH DEC POINT)'/ 
•$COEFFICIENT "A 11 = I) 

READ(5,2G)A 
2G FORMAT(F1G.4) 

WRITE(G, 3Gl 
30 FORMAT( '$COEFFICIENT "8" = ') 

READ(5,2G)8 
WRITE(6,4G) 

40 FORMAT('$INTEGRATION INTERVAL (SECONDS)= ') 
READ(5,2G)DT 
WR ITE(G, SG) 

50 FORMAT( '$RUN TIME (MAXIMUM 5G0 •DT, SECONDS) ') 
READ(5,2~)FINTIM 
WRITE(6,6~) 

60 FORMAT('$PRINT INTERVAL (SECONDS)= ') 
READ(5,2G)Pl 
IP=lFIX(Pl/DTl 
N=IF!X(FINT!M/DT) 

c 
C COMPUTE C(T) USING EULER INTEGRATION 

CDDO TI=(1.G-CG-8' CDOT0)/A 
C(1)=C~+OT ' CDOTG 
CDOT(1)=G.G+DT•CDDOTI 
DO 100 1=1,N-1 

CDDOTI=(1.G-C(l)-8'CDO T(I))/A 
C(l+1l=C(I)+DT•CDOT(I) 
CDOT(I+1)=CDOT(i)+DT ' CDDOTI 

1G0 IF(C(l+1).GT.CMAX)CMAX=C(l+1) 
c 
C PRINT AND PLOT THE TIME RESPONSE 

WRITE(G ,120) 
12~ FORMAT(JX,'T!ME OUTPUT') 

PRTPL T( 1 )=CROSS 
DO 13~ K=2,61 

13G PRTPL T(K)=OASHV 
TTME=G .G 
WRITE(6,15G)TIME,C0,PRTPLT 
PRTPLT ( 1) =DASHH 
DO 140 K=2,61 

140 PR TPLT(K)=BLANK 
DO 16G J=1,N/IP 

PR TPL T( 1) =DASHH 
T!ME=J•JP•DT 
K=6G.~' C(J 'I P)/CMAX+1 
PRTPLT(K)=CROSS 
WR!TE(G,15G)TIME,C(J • !P),PRTPLT 

150 FORMAT(1X,F7.3,F1~.4,2X,61A1) 
PRTPL T(K )=BLANK 

16~ CONTINUE 
STOP 
END 

Fig. 3.21 Fortran program to solve Eq. 3.5 
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interactively. The initial values of C and COOT are selected to be zero. The 
third part of the program produces a simple print and plot of the output 
response in the form shown in Fig. 3.22 which gives the results for A = 1.0, 

TIM E 
~ . ~~~ 
~ . 5~~ 

1 . ~~~ 

1 . 51!~ 
2 .~~~ 

2 .51!~ 
3.\lllll 
3.51111 
4 .\lllll 
4 .51!11 
5 .1!1111 
5 . 51!11 
5 .1!1!11 
5.51111 
7 .1!11~ 
7.5\lll 
8 .~1111 

8 .51111 
9 .~1111 

9 .5111l 
1~.~~~ 

1 ~.5~11 
11.1111~ 

11.5 ~11 

12.111111 
1 2 .511~ 

OUTPU T 
\! .~~~~ X-- - -- -- ---- - ---------------------------------- - --- - -- ------ -
~.~97 5 I 
~.33 5 7 I 
~. 5 155 I 
~. 85 31 I 
1 . ~4 25 I 
1, 1444 I X 
1 . 178 3 I X 
1 ,1 5 38 
1 . 12 2 3 
1.11725 
1.~ 2 7 5 
~.9 9 44 X 
1!. 9752 X 
1!. 9683 
~ . 9 7~3 
~.9775 

~.9 8 54 

~ . 994 5 

1 . ~1111 5 X 
1 .\!114 3 X 
1 .111! 55 
1.1!1154 
1 .1!11 41 
1 .1!1125 
1 .~1! 11 

Fig. 3.22 Typical output from program of Fig 3.21; A = 1 0. B = 1.0, DT = 0.05 

B = 1.0, and DT = 0.05. The integration interval must be small but not every 
output sample value calculated is (or need be) printed out. Values of CDOT(I) 
are also stored and with suitable addition to the third part of the program 
could also be printed or plotted. If initial values other than zero are to be 
investigated alterations can be made so that they, too, can be supplied at run 
time. Such an approach can be used for any other simple simulation. The 
experienced programmer will be able to incorporate more efficient integration 
algorithms and more comprehensive output, perhaps producing a family of 
curves to show the effect of variation of one of the parameters, with hard copy 
output produced on a graph plotter. 

3.9 Simulation languages 

A number of special programming languages referred to as continuous system 
simulation languages (CSSL) or simply as simulation languages have been 
developed as analytical tools which can be used to study the behaviour of a 
wide range of dynamic systems without the need for a detailed knowledge of 
computing procedures. The languages are designed to be simple to understand 
and use, and they minimize programming difficulty by allowing the program 
to be written as a sequence of relatively self-descriptive statements. The prog­
rams may not have very high computational efficiency, but learning and 
writing time is minimized which can make them cost effective in an engi­
neering design situation and free the user to concentrate on interpretation of 
the results rather than on computational details. Familiarity with a high level 
programming language and an understanding of computer graphics may well 
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be helpful but is not necessary. Numerous different languages with acronyms 
such as CSMP, CSSL, DYNAMO, DARE, MIMIC AND TELSIM have been 
developed by computer manufacturers, software companies, universities and 
others, some for specific families of machines and others for wider application. 
Many features have now been standardized and thus a number of the lan­
guages tend to be broadly similar. Symbolic names are used for the system 
variables (these names being required to follow certain conventions) and the 
main body of the program is written as a series of simple statements based 
either on the system equations or on a block diagram representation of the 
system. To these are added statements specifying initial parameter values and 
values of system constants, and simple command statements controlling the 
running of the program and specifying the form in which the output is 
required . The short user written program is then automatically translated into 
a Fortran (or other high level language) program which is then compiled, 
loaded and executed to produce a time history of the variables of interest in 
printed or plotted form . System constants and initial conditions can be altered 
and the program rerun without the need to retranslate and recompile. Many 
of the languages are designed to be run interactively from a graphics terminal 
and have the facility of displaying on the screen whichever outputs are of 
interest and, if the solution is not developing as desired, the capability of 
interrupting the program, changing parameters, and rerunning immediately. 

To illustrate the general nature of a simulation language and the way in 
which it is used CSMP (Continuous System Modelling Program), a widely 
available Fortran based language developed by IBM will be described in 
outline. The aim is to show the contrast both with analogue computer simula­
tion and with user written programs, and to give an appreciation of the 
facilities available. The ease of use, power and versatility can only be appre­
ciated by actually using the software, and the reader is strongly recommended 
to seek access to a simulation language and to undertake some simulation 
studies. The self-descriptive nature of the program statements is evident in Fig. 
3.23, a CSM P program for the feedback control system of Fig. 3.9. It can be 
seen that lines 7 to 12 describe almost directly the mathematical equations and 
physical variables of the system (the whole program is shorter than that of Fig. 
3.21 which is for a much simpler system). 

The basic elements which appear in the statements of such a program are (i) 
system variables (i.e. quantities which may change in magnitude during a 
program run) represented by appropriately descriptive symbolic names, (ii) 
numerical constants, (ii i) the basic arithmetical operators +, -, *, /, **, and 
( ), (iv) functions or functional blocks for more complex mathematical oper­
ations and (v) labels, which are key words at the start of certain statements to 
indicate the type of statement so that it is appropriately handled in the trans­
lation phase. A program is constructed from three classes of statement: 

(a) Structural statements: These define the model by relating the system vari­
ables to one another by the appropriate mathematical relationships and form 
the heart of the program. They are similar to Fortran statements, make wide 
use of functions, in particular one specifying integration, and are executed 
repetitively during the running of the program. (Writing these statements is 



CSM P S IM ULATION OF SVS TEM OF FI G 3 . 9 
- EFF EC T OF GA I N 'K ' AND I NTEGRAL AC TION SE TT ING 

' A' ON RESPONSE TO A UN IT STEP CH ANGE OF INPU T 

CON STAN T A= IL 5 
PARA H K=( ~. 5 , 2 . ~ , 3 . 5,5 .~) 

E=R - F 
M=K • (E+A ' IN T GRL( ~.~. E)) 
C1=3 . 5 ' M 
C2= R EA L PL( ~.~.1.~, C 1 ) 

C=C MPXPL( ~.~.~ - ~. 2/SQR T (B . ~ ), SQRT(B . ~) , CZ ) 
F= R EA L P L ( ~.~ . ~. 2 , C) 
R =S T EP( ~ . ~ ) 

TIMER DEL T = ~.~ 5,F I N T IM=12 . ~ , 0UTOEL= ~. 2 

OUTPUT C 
LABEL 1 . . . . SERVO RESPONSE FOR UN! T STEP INPUT " 
P AG E MERG E 
OU TPU T M 
LABEL 2 .. . . "CON TROLLER OU TPU T " 
PAGE MERGE 
END 

CONS TAN T A= 1 . ~ 
END 
STOP 
END JOB 

Fig. 3.23 Typ ical CSMP program 
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equivalent to drawing the circuit diagram and connecting it up tn analogue 
simulation.) 
(b) Data statements: These assign numerical values to the system constants 
and to the initial values of system variables. (This is a nalogous to adjusting 
potentiometer settings and amplifier gains, and to setting integra tor initial 
condition voltages.) 
(c) Control statements: These specify the conditions under which the program 
is to run, in particular the integration step size and the finish time for the 
solution, and specify the form in which the output is to be presented . (The 
latter is equivalent to selecting analogue computer voltages for display on 
oscilloscope or plotter, and the finish time corresponds to the length of time in 
the ·compute' mode). Control statements also determine what is to occur 
when the finish time is reached, whether to stop, or to alter a parameter value 
and repeat the computation. 

CSMP has available an extensive range of jimctions which can be grouped 
into the categories listed below. Certain of the most important functions are 
included so that the reader can understand the program of Fig. 3.23 and ca n 
himself write comparable programs. For other than simple systems reference 
must clearly be made to a programming manual or to a descriptive textbook 
such as reference 19. 

(i) Standard mathematical functions : All the standard Fortran mathematical 
functions such as sine, SIN(X), and square root, SQRT(X), are available for use 
within algebraic expressions. 
(ii) Integration function : The main simulation language function is INTGRL 
(IC, X), where IC is the initial condition and X the variable to be integrated. 
CSMP offers a choice of 7 or more integration methods, the default being the 
Runge-Kutta method with variable step size, or the user may incorporate his 
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own routine. The input variable X can be an algebraic expression, thus a 
typical statement could be 

OUTPUT = INTGRL (V~, ERROR • GAIN) 

(iii) Transfer functions: To facilitate simulation of a system whose mathemati­
cal model is available in block diagram form functions are provided for a 
simple lag, REALPL (IC, r, X), for a quadratic lag, CMPXPL (ICl, IC2, (, 
w", X) and for a lead-lag or lag-lead element. Higher order transfer functions 
must be split into factors by redrawing the block diagram with primitive 
blocks each with named input and output. 
(iv) Non-linearities: These are functions for common non-linearities such as 
time delay, saturation, and hysteresis, for arbitrary function generation, and 
for sampled data system elements. 
(v) Input functions : A unit step at time T can be called for by the function 
STEP(T), and corresponding functions are available for ramp, impulse, pulse 
and sinusoidal inputs. 
(vi) User defined functions: User written Fortran subroutines can be incorpo­
rated to define functions for specific features not already included, and groups 
of statements can be combined to form larger functional blocks which can be 
called whenever needed by a one-line statement. 

The first word of a data statement or control statement is referred to as a 
label and specifies the form of action required. A data statement of the form 

CONSTAN T A = 1 . ~ . C = 5 . 4, XOOT = g ,g 

is used to assign specific values to parameters which are constant for a 
program run and to initial conditions. By using variable names rather than 
numerical values in structural statements and assigning numbers with such a 
statement it is easy to alter parameter values at run time simply by a new 
CONSTANT statement. A sta tement of the form 

PARAH 8 = ( g, 2 , g, S , 1 , g , 2 ,g ) 

calls for separate runs in which one named parameter takes the successive 
values listed. 

TIMER DELT = g , g1, FINTIH = 1~. ~ . PROEL = g , 1 , OU TOEL = g,1 

is the form of the statement which is required to specify the variables which 
control the integration step size, the finish time for the run, the time increment 
for printed output, and the time increment for print-plotted output. The label 
PRINT followed by one or more variable names specifies which variables are 
to be printed out, and TITLE followed by an appropriate title allows the 
programmer to specify the heading for each page of printout. The label 
PRTPLT (or OUTPUT in CSMP III) followed by one or more variable 
names specifies for which variables a printer plot is required and LABEL 
indicates the heading for the output. CSMP Ill, an enhancement of earlier 
versions of CSMP, offers such facilities as multiple curves on the same plot 
(PAGE MERGE), contour plots and shaded plots. The statement END indi­
cates the end of a run. If additional runs are required with changes of variables 
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OUTPUT VARIABL E RANGES FOR ALL RUNS IN CASE 

VARIABLE 

TIM E 
M 

MINIMUM MAXIMUM 

~-~~~~ ~ ~E + ~~ 1 2 .0 0~0 
- 2 . 903968E - ~2 5 . 76765 

VARIABL~ MINIMU f~ MAXIMUM 

1 1 . . . . SER VO RE SPON SE FOR UNI T STEP INPUT 
0 MERGED OU TPUT PRESENTATION FOR C 
0 PARAMETER RUN 1 RUN 2 RUN 3 

TIME 
~-0~ ~ ~~E·~~ 
0 . 2 0000 
0 . 40000 
0 . 6 011110 
0.80000 

1 . 01100 
1 . 2 0~~ 
1 .4 000 
1.6000 
1 . 8 0011 
2 .11e0e 
2 . 2 e1111 
2 . 4 ~~~~ 
2 . 6000 
2 .811110 
3 .11110~ 
3 . 211011 
3.4 11011 
3.6111111 
3.8 1111~ 
4. 00~~ 
4 .20~~ 

4 .4~~~~ 

4 .60~0 
4 .80~0 

5 .0 ~~~ 
5 . 2 ~~~ 

5 . 4 ~~~ 
5 . 6 ~0~ 
5 . 8 000 
6 .0111111 
6 . 211110 
6 . 4000 
6 . 6 0~0 
6 . 8 000 
7 .0~~~ 
7 . 2 00~ 

7 . 400~ 

0 . 50000 2 . 000 0 3 . 5 ~0~ 

RUN 1 
~-~~~~~E+00 
1 . 85598E -Il 3 
1. 17418E -0 2 
3.12292E-Il2 
5 . 82712E -0 2 
8 . 96794E-112 
~ . 12248 
~. 15447 

0 .18 432 
0.21147 
~ . 23584 

0 . 25768 
~ . 27739 

0 . 29539 
0 . 3 12 0 6 
0 . 32770 
0.3425 7 
0.35683 
0 . 37059 
0. 38394 
1!.39693 
0 . 4~959 
~ . 42194 

~.43399 

1!.4457 7 
0 . 45728 
0 . 468 53 
~.479 53 

0 .4 9 0 29 
11. 5 1111 82 
11 . 51113 
0. 5212 1 
11. 531 08 
11 . 54 11 75 
11.551121 
11 . 55947 
11 . 5685 5 
11 . 57743 

0.00~~ E. ~~ 

0.00~~E·~~ 
~-~~~0 E+ ~ ~ 
0.~~~~E+ ~ ~ 

'0 '= 
r X o = 

-
'+ '= 

RUN 
RUN 
RUN 
RUN 

1.611~ 

1 . 61111 
1 . 6~ ~ 

1.611~ 

0-- - --------- -- 1- -------- - ---- I --- -- - - -- - - -- - I- ----- ----- -- - I 
0 I I I I 
• • XO I I I I 
I + X 0 I I I I 
I + 0 I I I 
I I 0 I 
I I 
I 0 I 
I I 
I I I X I 0 I 
1- ------ +-- -- - - I -- - - -- - -------•-- - -- -- - -- --- XI ---- O---- -- ---I 
i I I • X 0 I 
I I I OX I I 
I I I ' 0 I I 
I I I • I I 
I I 0 I • X I I 
I + I 0 IX I I 
I + I X • I I 
I ·ti 0 X" I 
I + i I XO I I 
I -- - -------- --- +- ----- - ----- - -I - X- - - 0 - - - - - - - - 1- - ----- --- - --- I 
I + I • X 0 I I 
I I+ I X 0 I I 
I I+ I X 0 I I 
I I• I 0 I 
I I + I 0 I I 
I I • I 0 I I 
I I I I I 
I I I 0 X I I 
I I I 0 X I I 
I- --------- - -- -1 - --+- ----- ----I-0 - -' - X-- -- --- I --- ---- --- - ---I 
I I I 0 • X I I 
I I I 0 ' X I I 
I I I 0 • X I I 
I I I OX I I 
I I I · XO I I 
I I l X 0 I I 
I I I • X 0 I I 

Fig. 3.24 Part of printer plot output from CS MP program of Fig. 3.23 

thi s is called for by defining each change after the END statement and con­
cluding it with another END statement. The final two statements are STOP 
and ENDJOB, and if there is any user defined subroutine this is interposed 
between the two. An asterisk at the start of any line indicates that what follows 
is comment. 

The above outline should explain the CSMP program listed in Fig. 3.23. If 
there is a likelihood of wishing to change any parameters other than the two 
controller settings, say the plant parameters, then these would be best included 
as variables and assigned values in the constant statement. With A = 0.5 there 
will be 4 runs, each evaluating the response up to a finish time of 12 seconds 
for a different value of K , and then the whole will be repeated for A = 1.0. For 
each value of A there will be a printer plot of C and one of M, each with the 4 
traces superimposed. Part of one of these is shown in Fig. 3.24 (with the 
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Fig. 3.25 Graph plotter output from CSMP program of Fig. 3.23 
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printed values for runs 2, 3 and 4 omitted for clarity). Due to the severe 
resolution limitations of a lineprinter the plots are rather uneven, and a much 
improved plot is obtained if a graphics display unit or graph plotter output is 
available (Fig. 3.25). 

It is hoped that the above gives some idea of the nature of digital simulation 
languages and of the advantages that they offer: simple program writing, 
accuracy and reproducibility, cost effectiveness, and, where interactive facilities 
exist, keyboard entry of program and running, inspection of plots on graphics 
display screen, on-line modification and rerunning. 



4 
Transient Response of Systems 

When concerned with dynamic systems it is of interest to know how the 
output of the system will change as a result of specific types of input change. 
On the basis of some appropriate criterion, an assessment can be made of 
whether or not the system behaviour is satisfactory and, if not, an attempt 
made to improve the response by a realizable modification to the system. With 
practical systems the exact form of the input excitation function may be 
known in advance, but most frequently the input will vary in a somewhat 
random and hence largely unpredictable manner (such would be the case 
where ambient temperature is a significant input variable for process plant or 
heating systems). 

For analysis and design certain basic input functions are chosen, mainly to 
bring the analysis into regions of reasonably simple mathematics, but often 
they may also represent the most typical or the most severe form of dis­
turbance to which the system is subjected. The forcing function giving the best 
insight for transient response studies is the unit step function- a sudden 
change in the inpnt, conventionally normalized to unit magnitude and con­
sidered to occur at an arbitrarily chosen time datum t = 0 (Fig. 4.1). The step 
change is the most severe disturbance possible for any given signal amplitude 
and is a type of change which frequently occurs in practice; mathematically it 
is simple to handle and the resulting system response is easily assessed for 
practical suitability. A forcing function which is less severe and more relevant 
for some physical systems, such as those possessing high inertia input charac­
teristics, is the ramp function , or step change in velocity. This would be applic­
able where a step function is undesirable or is not physically possible, or where 
a change in input velocity is the normal forcing function. A parabolic input 
function or step change of acceleration could be used in situations where even 
the ramp input is too severe. 

A further type of input function which is of considerable analytical impor­
tance is the unit impulse function , the limiting case of a pulse of unit area 
where the pulse duration tends to zero (Fig. 4.1). Although physical systems 
can seldom be satisfactorily tested with an impulsive forcing function , because 
of the very large change in input variable required to introduce sufficient 
energy into the system, the concept is one of great convenience. The impulse 
response can be obtained indirectly using random inputs and correlation tech­
niques as will be described in Chapter 7. Other important forms of input 
function are sinusoidal signals, and statistical signals such as white noise, 
described in Chapters 6 and 7 respectively. 
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u(t) u(t) 

Pulse 

Timet Timet 

Fig. 4.1 Basic system forc ing functions 

In this chapter is considered the calculation of the time response of systems 
of known dynamic characteristics for step, ramp, and impulse forcing func­
tions. The forcing function and system response are given the symbols u(t) and 
c(t) respectively. From the results can be seen the effect of variation of the form 
of the system equations and the magnitude of the equation coefficients on the 
nature of the resulting transient response. The ideas can also be applied to the 
identification of practical systems by experimental testing. It is shown how a 
physical system of unknown dynamic characteristics can be subjected to a 
disturbance of such a form, and the resulting response curve used to estimate 
the system transfer function. The chapter concludes by describing the convolu­
tion integral and its use in evaluating transient system response for a more 
complex form of input function. 

4.1 Response of first order system to step. ramp. or 
impulse function 

Consider any system, such as the thermometer or the simple hydraulic servo­
mechanism of Section 2.4, which is described by the first order differential 
equation 

dc(t) 
c(t) + r dt = u(t) 4.1 

If the initial value c(O) of the output is zero then this can be transformed into 
the Laplace domain by replacing dfdt by s, c(t) by C(s) and u(t) by U(s) giving 

C(s) + rsC(s) = V(s) 4.2 

In transfer function form this would be written as 

C(s) 
-----
U(s) l + rs 

4.3 

(a) Unit step. What would be the response c(t) of this first order system to a 
step change of input? In other words, for the examples given, how does the 
mercury level rise when the thermometer is suddenly inserted in hot water, and 
how does the piston position vary as a function of time if the servomechanism 
input position is suddenly changed to a new desired value? 
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The Laplace transform of the output is, from Eq. 4.3, 

C(s) = U(s) 
I+ TS 

I 
and the Laplace transform of the input U(s) for a unit step is -, 

s 

1 
C(s) =---

s(l + rs) 
4.4 

The time response c(t) can now be obtained by seeking the Laplace inverse of 
this expression from tables, or alternatively the expression can be split into 
partial fract ions before inversion, 

i.e. 

or 

I ' C(s) =----
s 1 + TS 

1 I 
C(s) =-- --

s I 
s+­

r 

4.5 

Each of the terms on the right appears in Table 2.1 and so the solution can be 
written directly as 

c(t) = I - e - '1' 4.6 

This is traditionally known as a simple lag or exponential lag and the con­
stant r is called the time constant. The form of the step response curve is shown 
in Fig. 4.2 and is such that 

(i) c(t) = 0.63 when t = r. 
(ii) a tangent to the curve at t = 0 meets the final value line at t = r. 

(iii) a tangent drawn at any point on the curve meets the final value line r 
seconds later. 

(iv) c(t) is within 2% of unity for t > 4r. 

The response can be considered to be in two parts, the transient response 
- e - '1' which decays to zero as 1- co, and the steady state response I which 

c(t) 
u(t) 

1 

T 

Fig. 4.2 Step response of first order system 

4r Timet 
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implies that in the steady state the output is equal to the input. These are 
respectively the complementary function and the particular integral obtained 
by classical methods of solution of the differential equation. All physical 
systems represented by a first order transfer function will have this solution 
trajectory. 

For a step of magnitude k the response is scaled accordingly, 

i.e. c(t) = k(l - e - '1') 4.7 

(b) Ramp. What would be the response c(t) of the first order system to an input 
which is changing at a fixed rate ? How does the mercury level rise when the 
thermometer is placed in water whose temperature starts to rise uniformly, 
and how does the servomechanism respond to a velocity input ? 

The Laplace transform of a unit ramp is~ 
s 

C(s) = U(s) = I 
I + rs s2

( I + u) 
4.8 

As before, the time response c(t) can be obtained directly from Laplace trans­
form tables, or by Laplace inversion after separation into partial fractions . 

i.e. C(s) = _!_ - ~ + _r_z = _!_ - r(!) + r(-1-) 
s2 s I + rs s2 s s + 1/ r 

and hence from Table 2.1 

c(t) = t- r + re - '1' 4.9 

The transient response is re - r; r which decays to less than 2% of r in time 4r, 
and the steady state response is t - r. It can thus be seen that there is a steady 
state error of magnitude r for a unit ramp input (Fig. 4.3). For large values of 
timet the output lags the input by a constant valuer. 

c (r) 
u(tl c(t) 

Timet 

Fig. 4.3 Response of first order system to unit ramp function 

For a ramp of magnitude k' i.e. for an input which increases steadily at k' 
units per second 

c(t) = k'(t- r + re - 'i') 

and the steady state error is k'r. 

4.10 
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(c) Unit impulse. The Laplace transform of the input is 

U(s) = 1 

and 

l ' C(s)=--=-
l +cs 1 

s+-
' 

l 
c(t) =- e - r/r 

' 

4.11 

4.12 

The response decays exponentially to a steady state value of zero after a 

sudden rise to~ at t = 0, the time of application of the impulse (Fig. 4.4). 

c(t) 

1 
T 

T 

3r 4T 

Fig. 4.4 Impulse response of first order system 

Timet 

4.2 Response of second order system to step, ramp, or 
impulse function 

Many mechanical systems are characterized by the presence of inertia, 
stiffness, and viscous damping and are thus described by the second order 
transfer function (Eq. 2.17) derived in Section 2.4. How does such a mass­
spring-damper system react to a sudden ly applied force, or to a steadily 
increasing force, or to an impulsive force? What will be the response to these 
inputs of an electrical or other system with this same transfer function? All 
have the same form of transfer function and thus will have the same form of 
response. 

The output response is given by 

C(s) = U(s)wn 
2 

s2 + 2(wns + wn 2 4.13 

I 
(a) For a unit step U(s) =-

s 
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w 2 

C(s)= 2 " 2 4.14 
s(s + 2(wns + wn ) 

I A 1 A 2 = - +--+ - - 4.15 
s s - p1 s - p2 

where A 1 and A 2 are constants, and p 1 and p2 are the roots of the character­
istic equation s2 + 2( wns + wn 2 = 0 

4.16 

where 1 ( d l ( 
At = - 2 - 2.}(( 2 - 1) an A z = - 2 + 2.}((2 - 1) 

p1 = -(wn + wn.j(( 2
- 1) and P2 = -(wn - wnJW- 1) 

Three distinct types of response are possible (Fig. 4.5) according to whether the 
roots p1 and p2 are real and unequal , real and equal , or complex, this being 
determined by the value of the damping factor (. 

Timet 

Fig. 4.5 Form of step response for second order system 

(i) ( > 1 : gives two negative real unequal roots, and an overdamped 
response where the coefficients A 1 and A 2 are also real. 

(ii) ( < I: gives a pair of complex conjugate roots and coefficients A 1 and 
A 2 which also form a complex conjugate pair. The expression for the 
system response can be rearranged to give 

e - - wn l 

c(t) = I - .)(
1 

_ ( 2) sin (w"J (l - e )r + cp) , where cp = cos - 1
( 4.17 

This is an oscillatory or underdamped response. 
(iii) ( = I: gives two negative real equal roots, a critically damped system 

corresponding to the minimum value of damping factor for which there 
is no overshoot. 

1 
(b) For a unit ramp input U(s) = 2 

s 
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2 

C(s) = wn 
s2(s2 + 2(wns + wn 2) 

4.18 

Bl B2 AI A2 
=2+-+--+--

s s s- P1 s- P2 

where B 1, 8 2 , A 1 and A 2 are constants which can be evaluated in terms of ( 
and W

0
• Their values are given by 

2( ' 2(
2 

- 1 
8 1 = 1, B2 =- wn' A 1 and A2 = wn ± 2wnJ((2 _I) 

c(t) = t- 2( +AI eP•' + A2 eP2' 4.19 
wn 

2' 
There is a steady state error of - _i_. The form of the transient part of the 

wn 
response described by the third and fourth terms is discussed below. 

(c) For a unit impulse input U(s) = I 
w 2 

C(s) = ' n 

s2 + 2~wns + wn 2 4.20 

and c(t) =AI eP•' + A2 eP2' 4.21 

where A~=-A2=2 ce- t) 
Whatever the type of input, whether a step ramp or impu lse, it can be seen 

that the transient part of the solution has the form 

A I eP•' + A2 eP2' 

where P1 and P2 = -(w" ± W 0 .j((
2

- I)= -(W 0 ±jw"J(l - ( 2
) 

are the roots of the characteristic equation. It is helpful to see how the values 
of these roots affect the transient portion of the response, in other words, how 
the position of the roots in the complex s-plane influences the time response . 

Consider a second order system with fixed value of w" but with varying (. 
As ( varies from zero to infinity the roots will trace the locus shown in Fig. 4.6. 

(i) For ( = 0 
Pi and P2 = ± jw" 

The roots are wholly imaginary, and the transient part of the solution is 

A I ei"'·' + A 2 e - jwnl 

For a unit step input A 1 = A2 = - t and c(t) = I -cos (1)
0

1 

For a unit ramp input A 1 = -A 2 = - j/ (l)n and c(t) = t + (2/wn) sin W 0 t 
For a unit impulse input A1 = - A 2 = - jwn/2 and c(t) = W0 sin W 0 l 
In each case the transient part of the solution is a sinusoidal oscillation of 
constant amplitude. 
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r =, 
\ -r .... "" 

Imaginary 
axis 
r = o 

s·plane 

Real axis 

r = o 

Fig. 4.6 Locus of roots of second order system with fixed w " as ( var1es from 
Oto oo 

(ii) For 0 < ( < I 
p 1 and p2 = - (w" ± jw 0 ) ( 1 - Cl and the locus of the roots is a semicircle 

of radius W 0 • If the angle subtended with the real axis at the origin is <p as 
shown in Fig. 4.6 then (w" = w" cos <p 

(= cos rp 4.22 

) 0 - Cl 
rp = cos - 1 

( or rp = tan - 1 
" 4.23 
~ 

The value w = wn)O - ( 2
) is often referred to as the conditionalfrequency or 

damped natural frequency. It is the frequency associated with the period of 
successive oscillations of the damped sinusoid. As (----> 0 then w----> w". 

(iii) For ( ;::: 1 the two roots lie on the negative real axis. When ( = I the 
roots are real and equal, with value -w0 , and as ( increases one root moves 
along the real axis towards the origin while the other moves towards - oo. 
The effect of the former root on the time response becomes dominant, while 
the effect of the distant real root decreases, and when more than about six 
times as far from the origin as the dominant root its influence is negligible. 
Hence as the value of ( becomes very large the response becomes very similar 
to that of a first order system. 

The effect on the step and impulse response of a second order unity gain 
system with varying damping factor is shown in Fig. 4.7 for a few selected 
values of (. It can be clearly seen how as ( decreases the response becomes 
more oscillatory and the damped natural frequency increases. The magnitude 
of the first overshoot is frequently of significance and can be found either from 
standard curves such as these or from Eq. 4.17 or Eq. 4.21 by finding the value 
oft for which c(t) = 0 and then inserting this in the expression for c(t). 
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Fig. 4.7 Transient response of second order system to unit step and unit impulse 
forcing functions 

4.3 Transient response of third and higher order systems 

ln the general case the transfer function can be written as 

C(s) P(s) 
U(s) = Q(s) 4.24 

where P(s) and Q(s) are polynomials in s. If Q(s) is of order N then the 
characteristic equation defined as Q(s) = 0 will have N roots p 1, p2, p3 , ... PN , 
and Q(s) can be factorized to give 

C(s) P(s) 

U(s) (s- pJ(s - p2)(s- P3) ... (s - PN) 
4.25 

Dividing this expression into partial fractions, and then taking the inverse 
Laplace transform gives for a unit step input 

N 

or c(t) = 1 + L AneP•' 4.26 
n =l 

where A 1, A 2 , ... AN are constants. 
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The transient portion of the response is thus composed of a summation of 
terms of the form A. exp p.t where the values p 1, p2 , . .• p., ... PN are the roots 
of the characteristic equation, which are at the same time the poles of the 
overall transfer function. The contribution which each term makes towards the 
overall response is dependent on the magnitude and sign of A., and on the 
position of the pole p. in the complex s-plane, each pole generally having a 
real part a and an imaginary part jw. The effect of pole position on the time 
response is shown schematically in Fig. 4.8, the magnitude A. being assumed 
the same in all cases. It should be noted that complex roots always occur as 
conjugate pairs, and the responses shown arise from the pairs of roots. 

It can be seen that the presence of any pole with a positive real part, which 
means any pole located in the right half of the complex s-plane, gives rise to a 
contribution to the time response which is increasing without limit. Thus if 
any pole lies in the right half plane the system will be unstable, where insta­
bility implies the fact that the output is unbounded for a bounded input. Of 
the poles in the left half plane, those farthest from the imaginary axis will have 
contributions to the transient response which decay most rapidly, and hence 
the system response will be influenced most by the poles closest to the imagin­
ary axis, called the dominant poles. A convenient rule of thumb approximation 
for design purposes is to assume that the effect of any roots more than 5 or 6 
times as far from the imaginary axis as the dominant roots can be neglected. 

In addition to the transient response, the value of the steady state gain is 
generally of interest. This can be evaluated quickly and conveniently making 
use of the final value theorem of Laplace transform analysis (Section 2.2). 

If 

then 

then 

C(s) 
-= G(s) 
U(s) 

lim lim 
c(t) = sC(s) by the final value theorem 

t -+ 00 S-> 0 

lim 1 
= 

0 
G(s) for a steady unit input, U(s) = -

S-> S 

if C(s) = 50(1 + 5s) 
e.g. U(s) (s2 + 3s + 16X1 + s) 

lim 50( 1 + 5s) 
[c(t)],_ "' = s-+0 (s2 + 3s + 16Xl + s) 

50 
for unit input 

16 

4.4 Perfonnance characteristics (time domain) 

What is a 'good' type of transient response? How should the transient 
response of a practical system, or the type of response desired for a system be 
described? The algebraic equation is not very helpful since the form of the 
response is not readily apparent. A plot of the response is not satisfactory since 
a numerical description is required for analysis. 
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A first order system can be completely described by specifying the value of 
the time constant. A second order system can be clearly described by 
specifying the two time constant values if overdamped, or the values of ( and 
w" if underdamped. For a higher order system, values of ( and w" cannot be 
specified since they do not exist- though values of these can be given for the 
dominant roots. 

In general the following parameters, shown in Fig. 4.9, give an adequate 
description and are used to describe the step response of a system: 

(i) maximum overshoot-this is usually expressed as a percentage of the 
step size, 

(ii) number of oscillations, 
(iii) rise time--this is usually defined as the time taken to rise from 5% to 

95% of the step size, or over some similar range ; defining rise time thus 
a voids the practical difficulty of having to determine the exact start of 
the transient, and the finish, if overdamped, 

(iv) settling time-the time taken until the output falls within and remains 
within ± 5%, say, of the steady state value, 

(v) steady state error. 

Output 
c(t) 

Settling time 

Timet 

Fig. 4.9 Parameters describing unit step response 

These parameters are interrelated, and requirements tend to conflict. The 
maximum overshoot can generally only be decreased at the expense of an 
increase in rise time, steady state error can generally only be reduced at the 
expense of making the transient more oscillatory. 

It can be useful to be able to describe a complete transient response by a 
single numerical value. Such a requirement commonly exists in adaptive 
control where, to compensate for general system changes, a specific system 
parameter is caused to be adjusted to maintain sensibly constant dynamic 
performance. Several types of function have been used for this purpose, the 
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chosen value being called the performance index. Tills generally involves inte­
gration of the transient response, some frequently used functions being 

00 

f I e(t) I dt integral of absolute error (IAE) 

0 

00 f e2(t) dt integral of error squared (IES) 

0 

00 

f t I e(t) I dt integral of time x absolute error (ITAE) 

0 

In general, the value of these functions will be large if the transient is either 
very sluggish or very oscillatory and, as a system parameter is changed to give 
a resulting response which varies from one to the other, there will be a value of 
parameter for which the performance index is a minimum. This would be the 
'best' transient response for the chosen performance index. 

The IES function accentuates large errors. The ITAE function, by intro­
ducing time weighting of the error signal, has the effect of placing small 
emphasis on the largely unavoidable large initial errors but great emphasis on 
long duration transients. In addition the ITAE criterion generally gives a more 
sharply defined minimum and it is thus the most selective. For a second order 
system with fixed wn and varying C the optimum is achieved for C = 0.7 
(ITAE), C = 0.5 (IES), C = 0.7 (IAE). For many purposes a damping factor of 
0. 7 is taken to be the ideal for a second order response. 

4.5 Step response testing of practical systems 

Whenever an existing design requires modification or forms a basis for a future 
design an appropriate mathematical model must be obtained for the practical 
system. The system may be one whose internal structure is not understood 
sufficiently to allow analytical formulation of equations, a so-called black-box 
system. In this case, the dynamic characteristics would have to be obtained by 
practical testing of the system itself, and the information used to determine a 
representative mathematical model. On the other hand, by making certain 
assumptions it may be possible to write down governing equations for the 
system, in which case the equipment could be tested practically to confirm the 
form of the theoretically obtained dynamic relationship, and to confirm or 
determine the parameter values for this model. 

Step response testing will usefully and relatively easily give a first idea of the 
general form of the transfer function and its parameters, and can also give 
some indication of how linear the system is. A step change of input can usually 
be applied fairly easily, and inspection of the resulting response for various 
magnitudes of step size and for step changes in a positive and a negative 
direction relative to the datum condition will indicate whether a linear model 
can realistically be assumed. If not, some idea of the type of non-linearity may 
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be forthcoming. If a large transportation lag or dead time is present then this 
is generally detectable from the transient response curve. 

The dynamic information may be suitably presented in the form of the 
actual transient response curves- a non-parametric model- but usually a 
parametric model is required and it becomes necessary to fit a transfer func­
tion or state space model to the response curve. To do this it is necessary to 
select some error criterion to quantify the goodness of fit , and then to adjust 
the model and its parameter values to minimize the chosen error index. 

(a) Response apparently of first order. If the step response apparently rises 
exponentially to the new steady state it is likely that the system is predomi­
nantly of first order. The dominant time constant can be found by any of the 
three measurements described in Section 4.1(a) and Fig. 4.2. Each should give 
the same value. 

Superimposing the curve I - e- '1' will show qualitatively whether this is a 
reasonable model, or whether it is necessary to use a higher order model. 

(b) Response apparently lightly damped second order. A mathematical relation­
ship between ( and the relative magnitudes of overshoots and undershoots can 
be found for the second order system with damping low enough to give more 
than one oscillation . This can be used to estimate ~ from an oscillatory step 
response. 

From Eq. 4.17 and Eq. 4.23 

c(t) = I - ej ( - (u:nt) sin (wn J( I - e)t + tan - I J(l -: (l)) 4.27 
(I - ( ) ~ 

dc(t) I v J 2 J v ) 

dt J (l _ eJ {exp (-~ w"t)cos [w 11 (I - ( )I + cpJwn (I - ~ -) 

+exp (- ~oV)(- (w") sin [w 11 J (I- ~ 2 )1 + <p] } 

exp ( - ( w"t) { . . J 2 J 
= J( I _ eJ (w" sm [w" (I - ( )t + cp 

- w" J (I - ( 2
) cos [w" J (l - ( 2)t + cp]} 

J(l - ( 2) 
= 0 when tan [wn J (I - e )r + cp] = ( -

J ( t- CZ) 
But cp = tan - 1 

-
( 

Hence peaks and troughs occur when W;, J (l - e Jr = mr 

i.e. when t = J r z) =c. where 11 = I, 2, 3 ... 
W 11 (I - ~ 

111£ 
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n = I gives the 1st overshoot: c(tJ = 

( 
2(rr ) 

11 = 2 gives the 1st undershoot: c(t 2) = I - exp - .j{ l _ ( 2) 

11 = 3 gives the 2nd overshoot : c{t 3 ) =I+ exp(- .j(l
3
':_ e)) 

Hence if x 1 and x 3 are the magnitudes of the 1st and 2nd overshoots (Fig. 
4.1 0) the ratio of these overshoot values is: 

4.28 

c(t) 

Timet 

Fig. 4.10 Step response of osci lla tory system 

Practically it is more often possible to obtain ( using the first overshoot and 
first undershoot 

Also, the interval between successive overshoots is 
2

1[ where w = Wn (1 - eJ 
w 

Hence for an experimentally obtained transient response which appears to 
be of a lightly damped second order system it is possible to quickly obtain 
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estimates of ( and wn . Again, comparison of the actual response with the 
second order response for the calculated values of ( and wn, and taking into 
account the use to which the model will be put, will show whether or not it is 
necessary to attempt to fit a higher order model to the response. 

(c) Overdamped second order response. For a second order system with 
damping factor greater than unity 

c(t) = 1 + A 1 eP'' + A 2eP2' 

where p1 and p2 are negative real numbers. 
There are two separate time constants. If these are an order of magnitude 

different, then the effect of the smaller time constant is only evident in the first 
part of the response, and the approximate value of the dominant time constant 
can be found from the slope of the later portion of the response curve (Fig. 
4.11). For more accurate values a curve fitting procedure is needed. 

c(t) 
u(t) 

c(t) 

Timet 

Fig. 4.11 Step response of overdamped second order system 

(d) Higher order overdamped system. In the general case of an overdamped 
system the response is of the form 

N 

c(t) = 1 - I A.e - '1'• 
n = l 

where r 1 > r 2 > r 3 > .. . > r N are the time constants of the system. 

1 - c(t) = A1e - '1" + A 2 e- ''' 2 + A3 e - ''' 3 + ... 
~ A 1 e - r/tt for large t 

• t 
loge [1 - c(t)] = logeA 1 - - for large t 

rl 

By plotting loge[1 - c(t)] against t (Fig. 4.12), and looking for a linear 
relationship at large values of t, the values of A 1 and r 1 can be estimated. The 
coefficient A 1 is the value of the intercept of the straight line with the t = 0 
axis. The dominant time constant r 1 is obtained from the slope of the line. 
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3 

1- c(t) 

~ 

~ 
I 0.6 

c 

0.2 

Timet 

Fig. 4.12 Evaluation of time constants and equat1on coefficients 

t 2 - /1 
I.e. r 1 = ------=---=------

log.[ I - c(t 2)] - loge[! - c(t 1)] 

Now 1 - c(t)- A1e - '1'' = A2 e - '1' 2 + A3 e - '1'' + ... 
~ A2e - '1' 2 for large t 

The procedure is then to subtract the A 1e - '1' 2 line from the curve 1 - c(t) to 
obtain a second curve, attempt to draw a straight line to fit this for large 
values oft and hence find values for A 2 and r 2 . It may then be possible to 
repeat this once more. 

This method gives values of the time constants fairly quickly providing they 
differ in magnitude by, say, more than a factor of 2 or 3. The accuracies of the 
result s for a second order system would then be about 10% and 25% for the 
primary and secondary time constants respectively. If the values of the time 
constants are closer together than this, the method fails, as it becomes impossi­
ble to detect linear portions of the curves. A severe constraint is always the 
value of the noise- signa l ratio pertaining when making practical measure­
ments. 

4.6 Comparison of transient forcing functions 

The main advantages of the step function as a test signal for a practical system 
are that step changes are physically easy to apply, and that the res ulting 
response curves very readily give an idea of the general dynamic character­
istics of the system. Simple observation shows whether a system is oscillatory 
or not, and hence by simple measurement can be determined the order of 
magnitude of the dominant time constant, or of the damping factor and 
undamped natural frequency. One can look for the presence of a transporta­
tion lag and, with different magnitudes of steps, look for signs of non-linearity. 
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There are, however, several important disadvantages: 

(i) the size of step required to give a transient response of the system which 
is detectable in the presence of the inherent noise may result in an 
unacceptably large disturbance to the system, 

(ii) the steady state point of the system changes, 
(iii) very small variations in the shape of the time response curve have a 

large effect on the higher order terms of the transfer function . 

An impulse forcing function does avoid the second problem above in that 
the steady state point before and after applying the disturbance is the same. 
The disturbance to the system is however even larger than for a step change, 
and is almost always unacceptable in the presence of noise. It is difficult to 
apply a true impulse with enough energy to give a transient which is detect­
able in the presence of noise, without saturating part of the system. A rep­
resentation of the impulse response curve can, however, be obtained using 
correlation techniques, as will be shown in Chapter 7. 

With some practical systems a step change which implies a substantially 
instantaneous change of a variable is physically impossible. In such cases it 
may be more relevant to consider a ramp input function, or a step change in 
velocity. An example might be an item of process plant where a motorized 
valve can only close at some finite rate. 

4.7 T11e convolution integral 

It has been shown above how, knowing a system transfer function, the 
response of the system to inputs of certain simple analytical forms can be 
calculated. Sometimes the response must be evaluated when the input is more 
complex and perhaps not even expressible in a deterministic manner. A pro­
cedure based on the convolution integral enables this to be done. In such 
situations the input can be considered as being made up of a series of pulses of 
varying amplitude, and the principle of superposition can be used to obtain an 
expression for the system output. 

For the linear system shown in Fig. 4.13, the output response is given by 

Y(s) = X(s)G(s) 

X(s) G(s) Y(s) 

x(t) g(t) or w(t) y(t) 

Fig. 4.13 Single-input-single-output linear system 

If the input is a unit impulse b(t) 

then X(s) = !l'[b(t)] = 1 
and Y(s) = G(s) 

y(t) = 2- 1 [G(s)] = g(t) or w(t), the unit impulse response. 
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If the input is now an arbi trary function x(t), consider it as being made up of 
an infinite number of impulses of width £5). and height x(t), Fig. 4.14. 

x (r) 

Timet 

Fig. 4.14 Representat ion of time function by a series of pulses 

The contribution 11y(t) to the output at time t due to an impulse applied A. 
seconds earlier (i .e. at time t - ).) will be the value of the impu lse response at 
time ), times the magnitude of the impulse which was applied at time t - X 

!1y(t) = w().)x(t - ).)<52 

The impulse response function is frequently called the weighting fun ction 
because it specifies by how much the input applied ). seconds in the past has 
decayed. 

The total system output is the sum of terms due to all impulses wh ich have 
occurred in the past prior to time t , the summation being performed in the 
limit by the integral 

f 

y(t) = I w().)x(t - ),) d), 

-oo 

Now w(t) = 0 fo r t < 0 for any real system 

f 

y(t) = I w().)x(t - ).) d), 

0 

This is cal led the convolution integral or superposition integral and is some­
times written as 

y(t) = w(t) * x(t) 

where the symbol * implies convolution. This has a similar form to the equiva­
lent Laplace domain relationship 

Y(s) = G(s)X(s) 

Physically the process of convolution can be illustrated by Fig. 4.15. 
If the system weighting function is as shown in Fig. 4.15a, and the input 

function as in Fig. 4.15b, then x(t- A.) will be as Fig. 4.15d and the product for 
this value oft will be as Fig. 4.15e ; y(t) is the area under this curve. 
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(a) (b) (c) (d) (e) 

Fig. 4.15 Illustra ti on of process of convolu tion 

It can be seen that the convolution integral can be eva luated by time 
shifting w(J.) rather than x(J.) giving the alte rnative expression 

, 

y( t) = I x(J.)w(t - ),) d), 

0 

Also, provided the signal is bounded, i.e. x(t) = 0 fort < 0, the upper limit of 
integration can be extended to infinity since x(t - }. ) = 0 for ). > t , or 
w( t - J. ) = 0 for }, > 1. Such ex tension of the limits from - oc to + x ca n 
simplify certain manipulations. 



5 
State Space Representation 
and Analysis 

Transfer function representation, described in Chapter 2, is one of two estab­
lished methods employed in the modelling and analysis of linear control 
system elements. The approach is based implicitly on the use of Laplace 
transforms, and associated design procedures for use with this method are 
described in Chapter 11. These design methods enable system performance to 
be predicted without actually solving to find the roots of the characteristic 
equation. It is against a design background requiring the use of trial and 
observation procedures, and with impetus given by the rapid development of 
the high speed digital computer, that the second approach to control system 
modelling has been developed . This method does not use a transfer function 
description, but replaces it by a state space representation, as introduced and 
described briefly in Section 2.6. The state space model representation makes 
possible the use of mathematical techniques that lead to a more systematic 
design process than is directly possible with a transfer function representation. 
Extensive use of the digital computer in design makes it necessary to be able 
to replace differential equations by difference equations, and to this end the 
first order state equations are easier to handle than the high-order equations 
associated with the transfer function. 

The state space procedure basically involves transforming a single nth order 
differential equation into a set of n first order simultaneous differential equa­
tions, employing matrix notation as a form of technical shorthand. This 
requires the introduction of additional variables, the state variables; the 
number of state variables required to define a system completely is equal to 
the order of the system. These variables are not unique and several different 
methods of choosing them are presented to illustrate this. The actual state 
variables used may be chosen to suit the particular problem and an appropri­
ate choice of variable at an early stage may well facilitate later solution. 

For example, the second order differential equation which describes mathe­
matically an electrical circuit consisting of a resistor, a capacitor, and an 
inductor in series, requires a two-state-variable description. The pair of vari­
ables could be the current flowing to the capacitor and the voltage across the 
capacitor, or alternatively the current from and voltage across the inductor. 
However, any other two variables such as the voltage across the resistor and 
the rate of change with respect to time of this voltage would be equally valid 
as state variables for this simple system. 

The use of matrices can simplify the computational manipulations since two 
matrices A and B, defined later in this chapter, specify the dynamic character-
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istics of a particular linear system and so the dynamic properties of the system 
can be studied by investigating the properties of these matrices. An additional 
advantage of the state space method is that the restriction to single-input 
single-output models, which is implicit throughout the preceding chapters, 
disappears and the state equation can be used directly to describe a multi­
variable dynamic system with many inputs and outputs. 

Section 5.1 describes three methods of obtaining the state equations and 
writes them both as a set of first order differential equations and also more 
compactly in matrix equation form. The section which follows extends the 
thinking to multi-input multi-output systems by defining the generalized state 
equations, and deriving them for an illustrative 2-input- 3-output system. 
Section 5.3 investigates the s-domain representation of the state equations and 
derives a matrix transfer function, a set of transfer functions, each of which 
relates one output to one input. Section 5.4 shows how in principle the state 
equations can be solved analytically to find the time response, although in 
practice only simple situations are amenable to such solution. The section 
following gives an insight into the principles of handling a discrete time model 
in computer solution of the state equations. 

A useful background for this chapter for those not familiar with simple 
matrix methods is given in Appendix C. 

5.1 State variable diagrams 

A convenient method for deriving state equations is based on analogue com­
puting techniques. A circuit diagram is constructed for the system equations in 
the manner illustrated in Chapter 3, and the integrator output signals are 
defined as the state variables. The integrator inputs then become the deriv­
atives of the state variables and the state equations can be written down 
immediately by inspection of the circuit diagram. 

The basic elements most frequently used in such diagrams are similar to 
those described in Section 3.2 and consist of the ideal integrator, ideal ampli­
fier and ideal adder as shown in Fig. 5.1. These differ from the practical 

~ 

y,(r) 

• 
y, (t) + V2(t) .. 

Ideal integrator 

Ideal amplifier 

Ideal adder 

Fig. 5.1 Symbols used in state variable diagrams 

analogue computer symbols because the integrator and adder do not incorpo­
rate a sign change, and the amplifier achieves multiplication by any constant 
within the range ± oo. 
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To illustrate the construction of state variable diagrams for the derivation of 
state equations, and to give an insight into the structure of a state variable 
expression, consider the transfer function relationship 

Y(s) s2 + 3s + 1 

U(s) - s(s2 + 6s + 8) 
5.1 

By expansion of Eq. 5.1 into partia l fraction form the transfer function can be 
written in an alternative way as 

_Y(_s) = _I_ + 5 + __ 2_ 
U(s) 8s 8(s + 4) 8(s + 2) 

or it can be written in factored form as 

Y(s) = (s + 2.62)(s + 0.38) 

U(s) s(s + 4)(s + 2) 

5.2 

5.3 

and by programming each of these equations separately three different state 
variable diagrams can be produced. From each diagram a different set of state 
variables results, which clearly indicates that no single set is unique to a 
particular dynamic system. 

To avoid confusion later in this chapter, the symbol Y(s) or y(t) is used to 
define the output response, instead of the symbol C(s) or c(t) used elsewhere in 
the text. 

(a) State variable diagram for Eq. 5.1. Since a transfer function can be treated as 
an algebraic expression, the numerator and denominator of Eq. 5.1 can each 
be divided by the highest power of s to replace all differentiating terms by 
integrating terms. Eq. 5.1 can thus be written as 

or 

where 

wh ich transposes to 

Y(s) s - 1 + 3s - 2 + s - 3 

U(s)- I + 6s - 1 + 8s - 2 

Y(s) = (s - 1 + 3s - 2 + s - 3)V(s) 

V(s)- U(s) 
- I + 6s - 1 + 8s - 2 

V(s) = U(s) - 6s - 1 V(s) - 8s - 2 V(s) 

5.4 

5.5 

The variable V(s) must be introduced to avoid the need for differentiation, 
as in Section 3.6. The state variable diagram, shown in Fig. 5.2, follows from 
Eq. 5.4 and Eq. 5.5 by integrating V(s) three times and combining signals as 
required. 

By designating the integrator outputs to be the system state variables, it can 
readily be seen by inspection of Fig. 5.2 that the sta te equations are: 

i 1(t) = x 2(t) 

X2(t) = X 3(t) 5.6 
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U(sl + 

u(tl 

• . . Y(s) s2 + 3s + 1 
F1g. 5.2 State var1able d1agram for --) = ( 2 6 

B) 
U(s s s + s + 

When written using matrix notation Eqns. 5.6 become 

or more concisely 

where 

{ x(t)} = A { x(t) } + Bu(t) 

I 
0 

-8 

The important points about this notation are: 

s- 3 V(sl 

x 1 (t) 

5.7 

5.8 

(i) {x(t)} is the state vector and has n components x 1(t), x 2(t), ... x,(t), where 
n is the order of the dynamic system. The brackets { } are used to represent a 
column matrix indicating a system vector. 

(ii) A and Bare matrices of order n x n and n x I respectively. The brackets 
[ ] are used to indicate a matrix representing the coefficient parameters of a 
system. 

Also, from inspection of Fig. 5.2 the system output y(t) can be seen to be 

y(t) = X I (t) + 3x 2(t) + X 3(t) 

or y(t) = C{x(t)} = [I 3 l]{x(t)} 5.9 

(b) Alternative state variable diagram, using Eq. 5.2. The second and third terms 

on the right-hand side of Eq. 5.2 which have the form _b_ can be expressed 
s+a 

as Y(s) = ~ ( U(s)- ~ Y(s)). enabling the ideas of Chapter 3 to be used . The 

circuit diagram for such an equation is shown in Fig. 5.3a and the state 
variable diagram Fig. 5.3b for Eq. 5.2 follows immediately. 

The integrator outputs are, as before, chosen to be the state variables; the 
set of simultaneous first-order dynamic equations can be written down by 
inspection of Fig. 5.3b. 
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(a) 

x,(t) 

U(s) + 

u(t) 

(b) 

Fig. 5.3 State variable diagram for (a) Y(s) = ____!!___ 
U(s) s+a 

Y(s) 

y(t) 

Y(s) 1 5 2 
(b) -- = - + +---

or 

U(s) 8s 8(s + 4) 8(s + 2) 

x1(t) = u(t) 

x2(t) = u(t) - 4x2(t) 

.X 3{t) = u(t) - 2x3(1) 

{x(t)} = [~ - ~ ~] {x(t)} + [ ~ J u(t ) 
0 0 -2 I 

and the output is given by 

y(t) = tx 1{t) + ix2(t) + jx3(t) 

or y(t) = [i i j]{x(t)} 

Y(s) 

y(t) 

5.10 

5.11 

5.12 

It can be clearly seen that these are not the same state equations or variables 
as those obtained by method (a). 

(c) Second alternative state variable diagram, using Eq. 5.3. Consider first a 
general transfer function 

Y(s) _ s + b 
U(s)- s +a 
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As shown in case (a), this can be written 

Y(s) 1 + bs - 1 

V(s) - 1 + as- 1 

and introducing a variable V(s) to avoid the operation of differentiation yields 
the pair of equations 

and 

Y(s) = (1 + bs - 1)V(s) 

V(s) = U(s) - as - 1 V(s) 

The diagram for these equations is shown in Fig. 5.4a; using this the state 
diagram for Eq. 5.3 can now be drawn, Fig. 5.4b. 

(a) 

(b) 

Fig. 5.4 State variable diagram for (a) 
Y(s) s+b 
-----
U(s) s+a 

(b) 
Y(s) = (s + 2 62) (s + 0 .38) 

U(s) s(s + 4) (s + 2) 

The state equations follow from Fig. 5.4b after some simple algebraic 
manipulations : 

or 

xl(t) = -2xl(t)- 1.38 xl(t) + x3(t) 

.Xit) = -4x2(t) + x 3(t) 

xit) = u(t) 

[ 

-2 -1.38 
{i(t)} = 0 -4 

0 0 

5.13 

5.14 
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The output is 

or 

y(t) = - 1.62 X 1 (t) - 1.38 X 2(t) + X 3(t) 

y(t) = [ - 1.62 - 1.38 1]{x(t)} 5.15 

The above example demonstrates very clearly that it is possible to charac­
terize the same system by different sets of state variable equations. So far as 
the authors are aware there is no rigorous method for determining which set is 
likely to prove the most useful analytically and the choice is largely dictated 
by the form in which the dynamic equations appear. 

5.2 Generalized state equations 

Up to this point only nth order systems having a single input and a single 
output have been considered. The state equat ions may be generalized to 
include the multi-input- multi-ou tput case by writing them in the form 

{x(t)} = A{x(t)} + B{u(t) } 

{y(t)} = C{x(t)} + D{u(t) } 

5.16 

5.17 

The additional term D{ u(t)} introduced in Eq. 5. 17 allows for possible inter­
action between system inputs and outputs. The terms in Eq. 5.16 and Eq. 5.17 
are referred to in the literature by the following names: 

{ x(t)} is the state vector 
{y(t)} is the response or output vector 
{ u(t)} is the control or input vector 
A is the coefficient matrix of the process 
B is the driving matrix 
C is the output matrix 
D is the transmission matrix . 

If a system has p inputs and q outputs, then {u(t)} is an input colu mn vector 
containing the p elements u 1 (t), u2(t) , .. . u;{t) ... up(t), and {y(r)} is an output 
column vector containing the q elements y 1(t), y2(t), ... y;(t), ... , yq(t). Conse­
quently the B matrix must be of order (n x p), the C matrix of order (q x 11) 
and the D matrix of order (q x p) to satisfy the rules of matrix multiplication 
(Appendix C). No standard notation has yet been accepted for Eq. 5.16 and 
Eq. 5.17 and other symbols will be found in the published literature, {c(t )} in 
place of {y(t)} and {r(t)} in place of {u(t)} being the most common. 

Example 5.1. As an illustration of the form of the state equations for a system 
with more than one input and output, consider the multi-tank system shown 
in Fig. 5.5. The input liquid flow rates are labelled q1(t) and q2(t) and the 
output variables, or sys tem response, will be assumed to be the liquid heads in 
the 3 tanks, designated h1(t) , h2(t) and h3(t) . 

For simplicity of modelling, the interconnecting and outlet pipes are 
assumed to have a linear head-flow relationship, so that the flow through each 
constriction is related to the liquid head difference across the constriction by 
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L1h(t) 
q(t ) = ­

R 

where L1h(t) is the liquid head difference and the co nstant R is the linear fl ow 
resistance. The ra te of change of fluid vo lume with in a tank ca n be described 

d 
by a - h(t) where a is the cross-sectiona l a rea of a ta nk . 

d t 
For each tank a fl ow continuit y equa tio n ca n be written in which the ra te of 

change of fluid vo lume is equa ted to the ra te of infl ow of fluid . By inspection 

llq,(t) 
:;;: a 1 

- - -. - - - -

h,(t ) 

Tank 1 

,,, ~ .... 
·~' 

Fig. 5.5 Mu lti - ta nk flow sys tem 

q2(t),r 
··: : 

of Fig. 5.5, and using the symbols shown, the fl o w continuity equa tio ns fo r 
ta nks I, 2, a nd 3 a re respecti vely 

a nd 
d I 

a3 - h3(t) = q2(t ) + - (h2(r) - h3(t )) 
dt R 2 

Rearranging equa tions 5.18 gives 
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The three expressions in li(t) which constitute Eqns. 5.19 are equivalent to the 
matrix equation 5.16, if corresponding terms are equated ; i.e. 

{x(t)} = A{x(t)} + B{u(t)} 

0 

0 

{u(t)} = {q,(t)}• B = 0 0 
qit) 

0 
a3 

The sys tem output is given by the matrix equat ion Eq. 5.17 

{y(t)} = C{x(t)} + D{u(t)} 

0 

The outputs are h1(t) , h2(t) and h3{t) which in this example are a lso the state 
variab les. 

Hence 

and 

{y(t) } = { h(t)} = { x(t)} 

D = O 

[1 0 OJ 
C = 0 l 0 

0 0 I 

Such a matrix with coefficients of l o n the principal diagonal and zero else­
where is called a unit matrix a nd is given the symbol/. 

5.3 State relations in the s-domain 

It may be desirable to develop a transfer function representation from a sta te 
model since, in engineering work, it is often necessary to confirm a mathemati­
cal model experimentally. A well established experimenta l modelling pro­
cedure is given in Chapter 6 and it will be seen that this is based on frequency 
response data, making direct comparison with a state model extremely diffi­
cu lt. In this section the relationship between the two model representations is 
derived. 

Ordinary differential equations are transformed into algebraic equations by 
using Laplace transformation to change from the time domain to the s­
domain . Since Laplace transformation is a scalar operation, it can be applied 
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to the generalized state equations (Eq. 5.16 and Eq. 5.17) to obtain the follow­
ing s-domain equations: 

s{X(s)}- {x(O)} = A{X(s)} + B{U(s)} 
{ Y(s)} = C{X(s)} + D{ U(s)} 

where {x(O)} =lim {x(t)} is the initial condition vector. 
( --> 0 

Eq. 5.20 can be written as 

s{X(s)} - A{X(s)} = {x(O)} + B{ U(s)} 

5.20 
5.21 

5.22 

To combine the terms on the left-hand side of Eq. 5.22, the rules for matrix 
addition and subtraction must be observed, namely that such an arithmetic 
operation can be performed only if the two matrices have the same order. 
Thus, since s is a scalar quantity, the unit matrix I must be introduced and 
Eq. 5.22 written as 

sl {X(s)} - A{X(s)} = {x(O)} + B{ U(s)} 

and the Laplace transformed state variable can now be expressed as 

{X(s)} =(sf- A) - 1({x(O)} + B{ U(s)}) 5.23 

Substitution of Eq. 5.23 into Eq. 5.21, yields the system response equation in 
algebraic form, i.e. 

{Y(s)} = C(sl - A) - 1({x(O)} + B{U(s)}) + D{U(s)} 5.24 

The transfer function representation as defined in Chapter 2 can be used to 
describe multivariable systems if the scalar variables and transfer functions are 
replaced by vector variables and matrix transfer functions respectively. There­
fore, using vector notation, the transfer function G(s) is given by 

{ Y(s)} 
G(s) = { U(s)} 

Substituting Eq. 5.24 into Eq. 5.25, for zero initial conditions, gives 

G(s) = C(sl- A) - 1B + D 

5.25 

5.26 

G(s) is a matrix transfer fun ction, and each element represents one component 
of the single variable output-input relationship 

~(s) 
G;is) = U,{s) 5.27 

Examination of Eq. 5.26 shows that the inverse matrix (sf - A) - 1 plays an 
important role in the solution of the system equations and in determining the 
transfer function. It is shown in Appendix C that (s/- A) - 1 can be evaluated 
as 

(sf- A) - I = adj(s/- A) 
lsi- AI 
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Expansion of the determinant I sf - A I yields an nth order polynomial in s. 
This determinant appears as the denominator of the transfer function, there­
fore the characteristic equation is given by 

I sf - A I= 0 

and the roots of this nth order polynomial are the poles of the transfer func­
tion. 

Example 5.2. To demonstrate the use of Eq. 5.26, the transfer function relating 
the input u(t) and the output response y(t) = x 1 {t) is deri ved for the second 
order system shown in Fig. 2.6. For a natural frequency of 2 rad/second and a 
damping factor of 0.5, it can be shown from Eq. 2.40 that the state equation is 

{~~~;~} = [ - ~ - ~J{:~~~n + [~Ju(t) 
In matrix form the system response is 

{y(t)} =[ I OJ{x(t)} 

hence from Eq. 5.26 

G(s) = C(sf - A) - 1 B + D = [I OJ[s -1 J-1 

4 s + 2 [~] 
Now adj(sf - A) = [ s + 2 1

] and I sf - A I = s2 + 2s + 4 
- 4 s 

(s
2 + 2s + 4)G(s) =[I OJ [~: 2 !] [~] 

= [I OJ [ :s J = 4 

I.e. 
4 

G(s) - -=---­
- s2 + 2s + 4 

The result is verified by the results from the conventional Laplace transform 
technique in Chapter 2, Eq. 2.17. 

5.4 Solution of the state vector differential equation 

As explained earlier in this chapter, one of the benefits to be gained from use 
of state space representation is that it enables system performance in the time 
domain to be more readily computed. The aim of this section is to develop a 
general solution for the vector differential equation, Eq. 5. 16, from which a 
system time response can be predicted. To simplify the mathematical develop­
ment of the general solution, first consider the solution of a simple one­
dimensional differential equation representing the dynamic behaviour of a 
first -order system, 
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i.e. i(t) = ax(t) + bu(t) 5.28 

This was solved in Section 4.1 for certain specific functions u{t). 
To determine the general solution of Eq. 5.28, the law of superposition is 

used, an inherent and unique property of a linear system. Consider x(t) to 
comprise two motions, a free component xi(t) with u(t) = 0 and initial condi­
tion x(O), and a forced component xi(t) for the actual input u(t) but with zero 
initial state, x(O) = 0. 

(i) Free motion xi(t) 
The equation is 

ii{t) - axi(t) = 0, with xi(t) = x(O) at time t = 0 

The laplace transform of this equation is 

(s - a)Xi(s) = x(O) 

and from the laplace transform table given in Section 2.2, the solution is 

(ii) Forced motion .x)t) 
The equation is 

xi(t) = x(O)e"' 

.xj(t) - axp) = bu(t), with xi(t) = 0 at time t = 0, 

and its laplace transform is 
(s - a)X/s) = bU(s) 

5.29 

5.30 

The most obvious choice for a solution for xp) is one of similar form to that 
of xi(t) 

i.e. e"'xP(t) = x/t) 

where xP(t) is an unknown function. 

d . 
Now dt [e"'xp{t)] = ae"'.x)t) + e"'xP(t) 

5.31 

Converting this to an algebraic form by use of the laplace transform gives, 
since initial conditions are zero, 

or 

s2'[e"'xP(r)] = a2'[e"'xp(t)] + 2'[e"'ip(t)] 

(s - a)2' [e"'xp(t)] = 2'[e"'ip(r)] 

Substituting for e"'xp(t) from Eq. 5.31 gives 

(s- a)Xi(s) = 2'[e"'iP{t)] 

and on substituting bU(s) for the left-hand side (Eq. 5.30), taking the laplace 
inverse yields 

' 
or xp(t) =I e - arbu(r) dr 

0 
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where t is a dummy variable of integration that will vanish when the integra­
tion limits are inserted. 

Thus 

t 

xi(t) =eat f e-atbu(t) dt 

0 

t 

= f ea(t-t)bu(t) dt 

0 

and the total solution to Eq. 5.28 is 
t 

x(t) = x(O)eat + f ea!t -tlbu(t) dt 

0 

5.32 

5.33 

An integral of a product of two functions of this form, Eq. 5.32, is called a 
convolution integral as was explained in Section 4.7. 

Since the vector equation, Eq. 5.16, is simply a collection of first order 
differential equations which must be solved simultaneously, then for the 
general case involving n independent state variables 

t 

{x(t)} = eAt{x(O)} + f eA!t -tlB{u(t)} dt 5.34 

0 

The exponential term eAt which is an n x n matrix that appears in both the 
free and forced motion portions of the solution is called the solution matrix or 
transition matrix q>(t). The final solution to the vector differential equation is 
written 

t 

{x(t)} = q>(t){x(O)} + f q>(t - t)B{u(t)} dt 5.35 

0 

The evaluation of the solution matrix q>(t) is possible by a series expansion of 
eAt, but this is impractical manually for all but the simplest problems. The 
most direct method is by taking the inverse Laplace transform of Eq. 5.23, that 
is 

{x(t)} = {x(0)}2'- 1[(s/- A)- 1] + _p - 1[(s/ - A) - 1B{U(s)}] 5.36 

Thus, to obtain q>(t) =eAt= .P- 1[(s/ - A)- 1], the inverse of the (sf- A) 
matrix is found and the inverse transform of the resulting matrix is evaluated 
term by term. 

From the definition of the inverse matrix 

;£[9'(t)] = adj(s/- A) 
isl-Ai 

5.37 
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Example 5.3. It will be illustrated in this example how Eq. 5.37 can be used to 
find all the elements of the solution matrix rp(t). 

Consider a second order system (with coefficients different to those m 
Example 5. 2 for a rithmetic simplicity) described by the transfer function 

X(s) 2 

U(s) s2 + 3s + 2 

which in state vector form is 

{x(t) } = [ - ~ - ~}x(t)} + [~Ju(t) 
The cha racteri stic equation is I sf - A I = 0 and ex pansion of this determinant 
yields 

I [s OJ _ [ 0 I J 1- O 
0 s -2 - 3 

... ,[ ~ ;~ 3 ]/=0 
s2 + 3s + 2 = 0 

or (s + I )(s + 2) = 0 

and from Eq. 5.37 

I [s + 3 I] 
..5f[rp(t)] = (s + 1)(s + 2) - 2 s 

..5f _ 1 l(s +
5 

l~s
3 

+ 2) (s + 1)

1

(s + 2) J 
rp(t) = -2 s 

(s + I )(s + 2) (s + I )(s + 2) 

According to matrix theory, the inverse Laplace transform of a matrix is a 
matrix whose elements are the inverse transforms of the corresponding ele­
ments of the original matrix . 

Now ..se- '( s + 3 ) _ ..se-'(-2- __ I_)_ (2e _ ' _ e - 2r) 
(s + I )(s + 2) s + 1 s + 2 

..se-'( I ) _ ..se- '(-1 _I ) _ (e - • e - 2r) 
(s + 1 )(s + 2) s + 1 s + 2 

..se -1 ..se-1 ( 2 - r 2 - 2r) ( -2 ) ( 2 2 ) 
(s + 1 )(s + 2) = s + 2 - s + 1 = - e + e 

..se-'( s )-..se-'(-2 ___ 1_ ) - (- e- '+ 2e - 2') 
(s + I )(s + 2) s + 2 s + I 
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and hence 

[
(2e - r _ e - 2r) (e - ' _ e - 2r) J 

tp(t) = (-2e - ' + 2e - 2') (-e - ' + 2e - 2') 

Note that the numerical value - 1 and -2 in the exponential terms are the 
roots of the characteristic equation defined by Is/ - A I = 0. 

To apply this solution matrix, consider first the case u(t) = 0, x 1 (0) = 1 and 
x2(0) = 0. This would mean, for a simple spring mass system, that the mass is 
released with zero initial velocity and finite initial displacement in the absence 
of a forcing function . 

From Eq. 5.35 

and 

{x(t)} = tp(t){x(O)} 

= tp(t{~] 
xt(t) = 2e - r- e - 2r 

x 2(t) = -2e - ' + 2e - 2' 

Secondly, consider the response to a unit step input. If the system is initially at 
rest with zero displacement, {x(O)} = 0. For this particular example 

B = [~] and u(r) = 1 for r > 0
1

; hence from Eq. 5.35 

and 

xl(t) = 2 I (e - <r- r)- e - 2(r - r)) dr 

0 

= 1 - 2e - r + e - lr 

r 

x2(t) = 2 I ( -e - (r - r) + 2e - l(r - r)) d. 

0 

= 2e - r- 2e - 2' 

This example demonstrates that from a knowledge of a system A matrix, the 
solution matrix, tp(t), can be found and hence the time response evaluated for a 
given set of conditions. Thus the evolution of an excited system from one state 
to another through time may be visualized as a process of state transition. 

5.5 Discrete time model 

If a system response or forcing function can be observed at discrete intervals of 
time only, that system is termed a discrete or sampled-data system and is 
mathematically modelled by difference equations rather than by differential 
equations. A digital computer solu tion must use a discrete-time model of the 
continuous time system. In formulating the discrete-time model a sequence of 
numerical and logical operations, known as a computer algorithm, is devised 
and programmed for digital computer solution. 
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The use of state model formulation avoids the need for the introduction of 
z-transform theory, a technique which extends the transfer function model into 
the realms of discrete data systems. Although striking similarities exist between 
Laplace and z-transform representation, the step from continuous to discrete 
system representation is more direct using the state model, and is more readily 
understood. 

The solution of the state equations, Eq. 5.16 and Eq. 5.17, has been derived, 
Eq. 5.34 or Eq. 5.35, and consists of a set of solutions of the form of Eq. 5.33. 

I 

x(t) = x(O)e01 + f ea<r - ''bu(r ) dr 

0 

(5.33) 

In order to carry out the integration digitally, the signals must be considered 
in sampled form, and the input function u(r) must be represented by a suitable 
approximation. If the sampling interval is T it is convenient to approximate 
u(r) by a series of steps forming a staircase, Fig. 5.6; the choice of the value of 

u(r ) 

u(r) 

Time r 

Fig. 5.6 Sampl ing of input functi on 

T dictates the resolution accuracy possible in the evaluation of x(t), but also 
dictates the computing time necessary to achieve the solution. Therefore in 
practical engineering situations a compromise between accuracy and comput­
ing time is always necessary. If tk = kT, where k is a positive integer, it will be 
assumed that for the time interval tk < t < tk + l • u(r) is a constant uk , and 
hence Eq. 5.33 can be written as 

T 

X(tk + 1) = X(tk)ea T + f ea(l"- ''buk dr 

0 

5.38 

5.39 
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To illustrate the application of Eq. 5.39 consider a unit ramp input, u(r) = t, 
and for arithmetic simplicity let a = - I and b = 1 which is equiva lent to a 
time constant of 1 second. The continuous response, obta ined by analytical 
so lution of Eq. 5.33 or from Eq. 4.9, for zero initial conditions, is 

x(t) = t - l + e _, 

which is plotted in Fig. 5.7. The discrete time solution is evaluated from Eq. 
5.39, and for a va lue of T = 0.5 seconds, since in this case uk = kT, the equa­
tion becomes 

x(tk+ d = e- 0
·
5x(tk)- (e - 0

·
5

- 1)0.5 k 

= 0.6065x(td + 0.1967 k 

Successive values of the discrete time solution are thus 

x(t) 

3 

2 

0 

x(t0 ) = x(O) = 0 

x(t 1) = x(0.5) = 0 + 0 = 0 

x(t 2 ) = x(l.O) = 0 + 0.1967 = 0.1967 

x(t3 ) = x(1.5) = (0.6065)(0. 1967) + 0.1967(2) = 0.5127 

etc. 

2 4 

Timet (seconds) 

Fig. 5.7 Response of first order system to unit ramp evaluated discretely 

The resulting response is shown in Fig. 5.7 together with the corresponding 
results obta ined for T = 0.25. As is to be ex pected, as the sampling interval is 
decreased the resulting response tends closer to the true continuous curve. It 
should be noted that reasonable accuracy has been achieved with a sampling 
interva l of 0.25 seconds; this is relatively large compared to the time constant 
of I second. 
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By inspection of Eq. 5.33 and Eq. 5.39, the general solution to Eq. 5.34, 
making use of the staircase approximation {u(r)} = {ud, yields 

{x(tk + 1) } = e·H{x(tk)} + [ - eA(T - r))bA - IB{uk) 

= eAT{x(td} + [eAT- /]A - I B{uk } 

or {x(tk+d} = q>(T){x(tk)} + [tp(T) - I]A - 1B{ud 5.40 

If the substitution A 1 = q>(T) and 8 1 = [tp(T) - /]A - 1 B is made in Eq. 5.40 

5.41 

The response {x(td} a t time tk = kT is computed by repeated application of 
Eq. 5.41 : 

{x(td} = A 1{x(O)} + B1{u(O)} 

{x(t2 )} = A 1{x(td} + BJ{ud 

= A/{x(O)} + A 1B 1{u(O)} + B 1{u1 } 

{x(t 3 ) } = ............ . . .... . ............ .. . . 

k - 1 

{x(tk) } = A,k{x(O)} + L A,k - 1- iBt{uJ 
j ; Q 

5.42 

The sampling interval T, involved in evaluating A 1 and 8 1, must be chosen to 
give the desired accuracy in the calculated time response. The most direct way 
to evaluate A 1 and 8 1 is to use the series expansion of eAT : 

AT I 2 
e = I+ AT + 

2
! (AT) + ..... = A 1 

and [eA T_ l]A - 1B=[[l+AT+;! (AT) 2 + . .. . . J-l]A - 1B 5.43 

The matrix inversion, A - 1
, is avoided in Eqs. 5.43 and the series expansion 

of A 1 and 8 1 can be truncated to any desired accuracy. 

It has been shown in this chapter that the transfer function and state matrix 
constitute alternative methods for the mathematical representation of a linear 
dynamic system. It is now recognized that in general the theoretical results 
needed in system design can be obtained equally well either by vector-space 
methods or by algebraic methods using Laplace transforms. 

The area in which the state concept is most effective is that of discrete and 
multivariable system studies. The state concept makes possible a systematic 
formulation for all systems, including those with arbitrary sampling patterns 
and non-linear operation. However, frequency response methods give an 
unrivalled engineering insight into system behaviour. 
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It must be emphasized that despite the unified approach that is possible by 
use of state description, the Laplace formulation of system equations remains 
significant with practising engineers. The particular problem to be studied, 
however, should always determine the preference of one approach to the other. 



6 
Frequency Response of 
Systems 

Chapter 4 has described how for specific forcing functions the time response of 
a system of known transfer function can be evaluated, and in what ways the 
form of the response is dependent on the form of the transfer function. In this 
chapter the equivalent response in the frequency domain is presented. Fre­
quency response methods of analysis have been very popular since the early 
stages of development of control theory, and are still of importance largely 
because of the physical understanding which they help the engineer to acquire. 
The methods are easy to apply, they are graphical, and they offer a good basis 
for synthesizing systems, in that they indicate clearly the type of change that is 
required to improve system dynamic behaviour. 

The description of a system in the frequency domain is given in terms of the 
response to a sinusoidally varying input signal after all initial transients have 
died out. Provided the system is linear this steady state output, which is the 
particular integral term of the solution of the governing differential equation, 
is a sinusoid of the same frequency as the input, but with a shift of phase and a 
change of amplitude. The ratio of the amplitude of the output sine wave to the 
amplitude of the input sine wave is usually referred to as the magnitude (or 
sometimes as the magnitude ratio, amplitude ratio, or gain) ; the shift of phase 
of the output sine wave relative to the input is termed simply the phase. The 
magnitude and phase are dependent both on the system transfer function and 
on the forcing frequency but not, with a linear system, on the amplitude. The 
variation of magnitude and phase with frequency is traditionally known as the 
frequency response or the harmonic response of the system. Any non-linearity 
which is present in the system introduces signal components at higher fre­
quencies, with the result that the output then contains the basic forcing fre­
quency plus certain of its harmonics. 

The main part of the chapter shows how the harmonic response information 
can be found from the transfer function G(s) by letting s = jw, and how it can 
be presented graphically by means of either a polar diagram or a Bode 
diagram. The physical significance of plots of various shapes is discussed to 
illustrate the understanding that can be obtained from a knowledge of the 
harmonic response characteristics of a system. Frequency response testing of 
practical systems, and the estimation of transfer functions from the measured 
frequency response, is then discussed. The chapter concludes by describing the 
criteria which are used to describe performance in the frequency domain. 
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6.1 The transfer function in the frequency domain 

The object of this section is to show that the magnitude and phase, the ratio of 
the amplitude of the steady state output to the amplitude of the input sine 
wave, and the phase shift between the output and input sinusoids, are given 
respectively by the modulus and argument of G(jw), the transfer function with 
s replaced by jw. 

For a linear system, the transfer function G(s) has been shown to be a ratio 
of two polynomials in s, each of which can be factorized to give 

G(s) = C(s) = K(s - z 1)(s- z2) ... (s - zm) 
U(s) (s - pJ(s- p2)(s- p 3) ... (s - P.) 

6.1 

z 1, z2 , ... z"' are defined as the zeros of G(s), values of s which make the 
function zero, while p 1, p2, p3 , . •• Pn are the poles of G(s), values which make 
the function infinite. 

If the input to this system is 

u(t) =sin wt 

a sine wave of unit amplitude and of frequency w radjsecond, then the Laplace 
transform of the input (Table 2.1) is 

w 
U(s) = 2 2 

s + w 

C(s) = G(s)U(s) = 2 Kw(s2- z d(s- z2) ... (s- zm) 6.2 
(s + w )(s - p 1)(s - P2) ... (s- P.) 

This expression can be rewritten by a partial fraction expansion to give 

G(s)w A 1 A2 B 1 8 2 B. 
C(s) = 2 2 = --.- + --.- + -- + -- + ... + -- 6.3 

S + W S - JW S + JW S - P 1 S - P2 S - Pn 

where A 1, A2 , 8 1, 8 2 , ... B. are constants. Taking the Laplace inverse (using 
the fourth transform pair of Table 2.1) gives the time response as 

c(t) = A 1eiwr + A2 e - jwr + B 1eP'' + B2 eP2' + ..... + B.ePnl 6.4 

The first two terms describe the particular integral component of the solution, 
frequently referred to as the steady state response, while the remaining terms 
describe the complementary function, the transient response. Provided the 
sys tem is stable and linear the poles p1 , p2 , .•. p. a ll have negative real parts 
a nd hence all of the modes in Eq. 6.4 decay to zero with increasi ng time t 
except the first two. 

Hence [c(t)], ~.., = A 1eiwr + A 2 e - i•" 

To determine the coefficient A 1 multiply both sides of equation 6.3 by (s- jw), 
and then let s = jw : 

A I = [(s -2jw)G~)w] = [ G(s):V J = G(j:V) = ~ I GUw) I eiLGOwl 
S +w s=jw S+JWs=jw 2J 2J 
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Similarly to obtain A 2 multiply by (s + jw) and let s = - JW : 

A2 = [(s +2jw)G~)w] = G(~j~) =-~I G(jw)le - iLGUwl 
S + W s = _ j w 2j 2j 

[c(t)],~ oc =I G(jw)l k {eiwt+jLG(jw)- e - jwr- jLG(jw)} 

i.e. [c(t)J, ~ oo = I G(j w) I sin (wt + L G(jw)) 6.5 

The magnitude and phase as functions of frequency can thus be obtained 
from the transfer function G(s) by replacing s by jw and determining the 
modulus and argument of G(jw), which for any particular frequency is gener­
ally a complex number. In the next section the magnitude and phase charac­
teristics are evaluated for different forms of G(s). 

6.2 Polar plots 

The frequency response information for a system can conveniently be dis­
played on an Argand diagram and is then referred to by the control engineer 
as a polar plot. The input sinusoid is considered to be represented by a unit 
vector lying along the positive real axis, and for any given frequency the 
magnitude and phase of the output can then be defined by a corresponding 
output vector. By convention a phase lag is represented by rotation of the 
vector in a clockwise direction ; the quadrants are also numbered in this direc­
tion relative to the real axis as datum. 

A polar plot is a plot showing the variation of magnitude and phase of the 
output on polar coordinates, for a constant amplitude input, as the frequency 
w is varied from zero to infinity. The curve drawn is the locus of the termini of 
the system output vectors, and a typical plot is shown in Fig. 6.1. The har­
monic information is evaluated discretely for specific values of w, and thus 
numerical values of frequency should be marked against points on this locus. 
The plot shown in the figure represents a third order system with a stead y 

3rd qu adrant 

2nd quadrant 

Imaginary 
axis 

Phase 

1st quadrant 

Fig. 6.1 Typical polar plot 

Real 
1 axis 



102 Frequency Response of Systems 

state gain of unity. At frequencies tending to zero the output has the same 
amplitude as the input and is in phase with it; as frequency increases the 
output amplitude is seen to decrease, tending towards zero for high fre­
quencies, while the output lags the input by an ever increasing amount tending 
towards 270° maximum for a third order system (180° for a second order 
system, etc. as will be shown later in this section). 

The harmonic information for such a plot can be calculated if the transfer 
function is known, or if an actual system is available for test it can be deter­
mined experimentally, provided that frequency response testing is feasible . 

Consider, first , plots obtained analytically for systems of known transfer 
function. 

(a) First order system, or simple lag. Examples of some physical systems having 
first order transfer functions have been given in Section 2.4 and their transient 
response characteristics have been studied in Section 4.1. The transfer function 
for unity steady sta te gain is 

1 
G(s)=--

1 + rs 

To obtain the frequency response characteristics replaces by jw : 

G(jw) = 1 = 1 - jwr = ( I ) _ j( wr ) 
1 + jwr 1 + w 2r 2 1 + w 2r 2 1 + w 2r 2 6.6 

This gives the real and imaginary coordinates of the harmonic locus, and can 
be rewritten in terms of magnitude and phase as 

For 

As 

G(jw) =I G(jw) I L G(jw) = J 1 
2 2 L(- tan- 1 wr) 

(I + w r ) 

w = 0 I G(jw)l = I and LG(jw) = 0 

W-> oo I G(jw) I 0 and L G(jw) -90° 

6.7 

The locus can be shown to be a semicircle as follows. In Eq. 6.6 let the real 
and imaginary coordinates for G(jw) at frequency w be x and y respectively 

and 
wr 

Eliminating w 

6.8 
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The harmonic locus for a simple lag is thus a semi-circle with centre (0.5, 0) 
and radius 0.5 as shown in Fig. 6.2. Frequency points can be marked on this 
locus by determining the phase lag qJ = tan - I wr. 

lm 

0.5 Re 

WT 

1 + w 2r2 

w=_!_ 
T 

w increasing 

1 
Fig. 6.2 Polar plot for first o rd er system . G( JW) = -

1
- .­
+ JWT 

When w = 1/ r, qJ = - 45o which corresponds to the mid-point of the semi­
circular locus. For a frequency 1/ r radjsecond the phase lag is 45o; for higher 
frequencies the lag increases but it never exceeds 90°. It must be realized that 
this single semi-circle represents all unity gain first order systems, irrespective 
of the value of the time constant, but that any single point on the locus 
represents different frequencies for systems with different time constants. 

(b) Second order system, or quadratic lag. The transfer function of this, Eq. 2.17, 
is, for unity gain, 

6.9 

By inserting a range of values of !:!... and evaluating the real and imaginary 
wn 

parts of Eq. 6.9 (or alternatively the magnitude and phase) the location of 
points on the polar plot can be calculated and the harmonic locus drawn to 
join them. 

e.g. for w = 0 G(jw) = I = I L oo 

W= OO 

2 

G(jw) = - ~ = OL -180° w2 

I I 90o G(jw) =- = -L-
j2( 2( 
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(
. 1 -3- j4C 

GJw)= - 3+j4C= 9+ 16C2 

(9 ; 16C2/(tan -
1 ~C- 18oo) 

etc. 

The completed locus is one member of a family of curves of which three are 
shown in Fig. 6.3, the shape of the curve being dependent on the value of the 

lm 
0.5 1 Re 

1.5 

w 2 

Fig. 6.3 Polar plots for second order system. G( jw ) = 2 2
" . 

wn - w + J2(wwn 

damping factor. For ( > 1 the magnitude is l for zero frequency, and decreases 
continuously with increase in frequency , while the phase lag increases to a 
maximum of 180°. For C < 1 there is a range of frequency for which the 
magnitude exceeds unity, and when C ~ l , as illustrated by the curve for 
C = 0.5, the phase lag increases very rapidly over a small range of frequency 
around W 11 • 

It shou ld be noted that for a second order system, for all values of damping 

factor (, when w = w" the phase lag is 90° and the magnitude is ~C. 

(c) Integrator. Consider now a device such as an electric motor or a hydraulic 
ram which integrates the input signal at a constant rate. Let this rate be one 
unit per second. 

I 
G(s) =-

s 

. I j I o 
G(Jw) = :- = - - = - L - 90 

JW W W 
6.10 
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The harmonic locus thus lies wholly on the imaginary axis (Fig. 6.4). The 
phase lag is 90° for all frequencies, and the magnitude is the reciprocal of the 

lm 

0 

w = 4 

w = 2 

- 1 w = 1 

- 2 w = 0.5 rad / second 

Re 

Fig. 6.4 Polar plot for integra tor . G ( JW) = 
JW 

frequency in rad/second. Hence as w---> 0 the magnitude becomes infinite, and 
as w ---> oo the magnitude tends to zero. 

(d) Higher order systems. The harmonic information and hence polar plot for 
any higher order transfer function can be obtained similarly by writing down 
G(jw), rationalizing, and inserting in turn different values of frequency w. If the 
transfer function appears in factorized form the magnitude and phase informa­
tion is likely to be more easily obtained by thinking of the system as a number 
of elements in series. The overall phase for any given frequency is then 
obtained by adding the individual phase components, and the overall magni­
tude is obtained by multiplying together the individual values of magnitude. 

Example 6.1. Obtain a polar plot for a system with transfer function 

I 

Letting s = jw 

G(s) = -( l-+-2s-)(-s2,---+_s_+_l) 

. I 
G(jw) = . . 

(I + j2w)(l - w 2 + JW) 

I 

I - 3w2 + j(3w - 2w 3
) 

(I - 3w 2
)- jw(3 - 2w 2 ) 

I + 3w2 
- 3w4 + 4w6 

Now insert a range of numerical values of frequency w rad/second 

e.g. for w = I G(jw) = -0.4 - j0.2 

w = 0.5 G(jw) = +0.154- j0.77 

etc. 
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Such calculation is rather tedious and errors easily occur, particularly with 
high order transfer fu nctions. Considering G(s) as two factors multiplied 
together, curves fo r the first and second order factors can be drawn with the 
relevant frequencies marked on (as Fig. 6.2 and Fig. 6.3) and for corresponding 
frequency points the vectors can be combined graphically. Easiest, however, is 
to use the graphical method as an aid to understanding, but to do the multipli­
cation of magnitudes and addition of phase angles in tabular form, obtaining 
the component magnitudes and phases by calculation, or from standard curves 
or tables (Table 6.1, Fig. 6.5). 

1+ 
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G(jw)= 1 
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Fig. 6.5 Polar plot for system with transfer function G(s) = 
(1 +2s)(s2 +s+1) 

6.3 Bode plots 

An alternative method for obtaining and presenting system frequency response 
data which is particularly useful where the transfer function is available in 
factorized form is the Bode plot. This consists of two plots normally drawn on 
semi-logarithmic graph paper : a magnitude plot, log I G(jw) I, and a phase 
plot , L G(jw), both on a linear scale, against frequency w plotted on a 
logarithmic scale. The magnitude is most commonly plotted in decibels i.e. 
20 log10 I G(jw) 1. One reason for this choice of graph is that, since the magni­
tude is plotted in logarithmic form, the overall magnitude and phase informa­
tion can both be obtained from the component parts by graphical addition. A 
second important advantage of such a plot is that certain approximations 
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Table 6.1. Tabu lar eval ua t ion of harm onic response (Example 6.1) 

Frequency (radjsecond) 0 0 .2 0.4 0 .7 2 

11 + 

1

i2w l = 

1 

(1 + 4w2) 
0 .928 0 .781 0 .581 0.447 0 243 

1 1- w~+jw l= J{ (1- ~2)2+ w2} 1.020 1.075 1.155 1 000 0 .277 

IG(jw)l 1 0 .947 0 .840 0 .671 0 .447 0 .067 
etc. 

L ( -
1
-. -) =tan- 1 2w (degrees lag) 

1 + J2W 
0 21.8 38.7 54.5 63.4 76.0 

L = tan - '--( 1 ) w 
1 - w 2 + jw 1 - w 2 

0 11 .8 25 .5 53.9 90.0 146.3 

(deg rees lag) 

L G(jw) (degrees lag) 0 33.6 64.2 108.4 153.4 222 .3 

using straight line constructions can be quickly drawn and often suffice for 
accuracy. 

It has been shown in Section 6.1 that any transfer function can be factorized 
into the form 

K(s - z 1)(s - z2 ) ... (s- zm) 
G(s) = ----'----'-'-'---=--'----= 

(s - Pd(s - P2) · · · (s - P.) 

The zeros z1, z2 ... z"' and the poles p 1, p 2 , . . • Pn will each be either zero, rea l, 
or complex, and thus in general G(s) can be considered to be composed 
entirely of terms of the four following types appearing on the numerator or the 
denominator : 

Hence G(jw) is composed of multiples or quotients of terms of the form 

. . wn2
- w2 + j2(wwn 

K , JW, I +JWT, 2 
wn 

Consider now the Bode plots for these types of component term, and the way 
in which they can be added to produce a plot for a known transfer function . 

(a) Constant term (gain term) 

G(s) = K , G(jw) = K 

The magnitude is 20 log 10 K dB; the argument is zero (Fig. 6.6). Hence a 
gain term has a constant multiplying effect irrespective of frequency, and thus 
merely shifts the overall magnitude plot up or down by a certain number of 
dB. There is no effect on phase. 
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Magnitude 
(dB) 

0~----~----~~----4-

~0~----,_-----+----~-
Phase 

(degrees) 0 1----+---+----+-

-sor-----,_-----+------~ 

0.1 10 100 

w rad ·second 

Fig. 6.6 Bode plot for constant term 

(b) Integral term or derivative term {pole or zero at origin) 
(i) Pole at origin: 

1 
G(s) =-

s 

. I 
G(jOJ) = ~ = 

jOJ OJ 

The magnitude is_!_, or -20 log10 OJ dB, which has value 0 dB when the 
OJ 

frequency is I radjsecond and decreases by 20 dB for a tenfold increase in 
frequency. With OJ plotted on a logarithmic scale the magnitude is represented 
by a straight line of slope -20 dB per decade of frequency and passing 
through 0 dB for OJ= I rad/second (Fig. 6.7). The phase is - 90°, a constant 

Magnitude 
(dB) 

Phase 
(degrees) 

~k-----~----~~--~~ 
1' , 

20 L~~~-+----~~~iw--
~' ... ··· 

0 -............ • 

- 20 •• ······~ 

' -~ 1-------+- 1 
(jw)2 

1 

=:S: 
jw 

.... 

+90 -------· ... 

0 1------~-----lf--- 1 -

lw 
-00~----+-----,_~--~ 

- (;...)2 -
JW 

- 1BO!-- --

0.1 10 100 
Frequency (rad1second) 

Fig. 6.7 Bode plot for poles or zeros at origin 
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I 
lag, which does not vary with frequency. If a double pole is present, G(s) = 2, 

5 

the magnitude line has twice the slope, and the phase is a constant - 180°. 

(ii) Zero at origin : 

G(s) = s 

G(jw)=jw 

The magnitude is 20 log 10 w dB, a straight line of slope + 20 dB per decade 
passing through 0 dB at w = I rad/second. The phase is 90°, which means that 
the output would lead the input by 90° irrespective of frequency. 

(c) Simple lag or lead (real pole or zero) 
(i) Real pole : 

I 
G(s)=--

1 + rs 

. I 
G(JW) = . 

1 + JW! 

The magnitude is I G(jw) I = /(J 2 2 ) 

"' +wr 

= - 20 log 10~( I + OJ 2 r 2
) dB 

A linear asymptotic approximation is frequently used, making use of the fol­
lowing: 

for OJr ~ 1 

for wr ~ I 

I G(jOJ) I dB~ -20 log 10 I = 0 

I G(jOJ) IdB ~ - 20 log 10 OJr 

The latter is a straight line of slope -20 dB per decade of frequency, which 
intersects the zero dB line when OJ< = I i.e. at OJ = 1/ r. This is termed the 
break point or corner frequency. The true plot rounds off the junction as shown 
in Fig. 6.8, the maximum error being 3 dB at the break point. On either side of 

h. h (2 0.5) t IS t e errors are 1 dB at ± 1 octave of frequency - and - and 0.3 dB at 

(
10 0.1) r r ± 1 decade of frequency --; and ~ . The rounding if required can generally 

be done sufficiently accurately by hand through these points. 

The phase is L G(jOJ) = -tan - I OJ< 

A linear approximation can also be used for phase, as shown in Fig. 6.8, 
namely oo for OJ:$; 0.1/ r , -90° for w ~ 10/r, and a linear variation between. 
The true curve is gently curving, the error being approximately 5ta at w equal 
to 0.1 /r, 0.4/ r, 2.5/r, and 10/ r . The error is zero at the break point frequency 
since the lag is exactly 45° when OJ = 1/r. 
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Magnitude 
(dB) 

Phase 
(degrees) 

Frequency (rad second) 

Fig. 6.8 Bode plot for a simple lag 

(i i) Real zero 

G(s) = I + rs 

G(jw) = 1 + jwr 

The expressions for magnitude and phase are identical to those for a real pole 
except that they have the opposite sign. The curves on the Bode plot are thus 
mirror images about the 0 dB and 0 degree lines. The magnitude and phase 
therefore both increase with frequency, the latter tending towards 90° (a phase 

lead) for frequencies in excess of 
10

. 
r 

For different values of r the curves are merely shifted a long the frequency 
axis. If curves are to be drawn frequently, templates can be produced to enable 
the true curves to be drawn quickly and easily. 

(d) Quadratic lag or lead (pairs of complex conjugate poles or zeros) 
(i) Pair of conjugate poles : 

(
. 1 

G JW) = ( 2
) ( ) 

1-:/ + j 2( :n 
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The magnitude is - 20 log!OJ{(1- :n22y + e~~Y} dB 

and the phase is 

w 
For- ~ I 

wn 

w 
and for- ~ 1 

wn 

(rw) - tan - 1 ~ ~ 
(1}2 

1 - -
w 2 

n 

IG(jw)l~ -201og 10 I =OdB 

The straight line approximation for magnitude is thus a line at 0 dB for low 
frequencies, changing to a line of slope -40 dB per decade at the break point 
given by w = W 0 , the undamped natural frequency. The shape of the true curve 
depends on the value of(, the error being least for ( ~ 0.5. Curves for a range 
of values of ( are shown in Fig. 6.9. (For 0.35 < ( < 0.7, the error < 3 dB.) 

w 0 w 
The phase curve varies from oo for- ~ 1 to - 180 for- ~ 1, and passes 

wn (t)n 

through the -90° point at w = W 0 • There is no convenient straight line 
approximation, the transition again being a function of (, and being most 
rapid for very small values of (, as shown in Fig. 6.9. 

(ii) Pair of conjugate zeros : 

The magnitude and phase are numerically the same as for a pair of poles 
but of opposite sign, and are thus represented on the Bode plot by families of 
curves which are the mirror images of those of Fig. 6.9 reflected about the 
0 dB and the 0 degree lines. 

Here, even more than with the simple lag, templates can prove useful. The 
curves for the calculated value of ( can be quickly drawn at the position along 
the frequency scale corresponding to the appropriate W

0
• 

Example 6.2. Using straight line approximations draw a Bode diagram for a 
system with transfer function 

10 
G(s) = -s(-1 -+-0-.5-s)_(l_+_0-.1-s) 
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0.1 2 3 4 5 6 7 8 910 

Fig. 6.9 Bode plot for quadratic lag 

This transfer function can be seen to be made up of 4 cons6tuent components : 

(a) a constant gain term of 10 
(b) an integrating term l/s 
(c) a simple lag of time constant 0.5 second 
(d) a simple lag of time constant 0.1 second 

Using straight line approximations the contributions of these terms to the 
overall magnitude are respectively : 

(a) a constant of 20 log10 10 = 20 dB for all frequencies 
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(b) a line of slope -20 dB/decade, passing through 0 dB at the frequency I 
rad/second 1 

(c) a magnitude of 0 dB up to a break point at - = 2 rad/second, and 
thereafter a line of slope -20 dB/decade 0.5 

1 
(d) a magnitude of 0 dB up to a break point at - = 10 rad/second, and 

thereafter a line of slope - 20 dB/decade 0.1 

These magnitude contributions are shown in Fig. 6.10 together with the 
overall magnitude curve which results from summing them. The overall curve 

Magnitude 0 
(dB) 

- 20 

- 40 

- 60 

- 80 

Phase 0 
(degrees) 

- 90 

- 180 

- 270 

Straight line approximation 

---(a) 

(c) 

~----------~----------~------~--~--------~(b) 

(b) 

0.1 10 

w(rad/second) 

100 1000 

10 
Fig. 6.10 Bode pl ot for transfer function G(5) = )(

1 01 
) 

5 ( 1 + 0 . 55 + . 5 

is in error particularly in the region of the break points. The true curves for (c) 
and (d) and hence for the overall curve can be drawn in with sufficient accu­
racy for most purposes by interpolating by eye, using the guide points of error 
being 3 dB at the corner frequency, I dB at ± I octave, 0.3 dB at ± I decade. 
It can be seen that the result is a rounding of the corners. 

The contributions of these four components to the overall phase are respec­
tively: 

(a) no effect. 
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(b) a consta nt phase lag of 90° for all frequencies. 
(c) zero lag to w = 0.2 radjsecond, 90° lag for w > 20 radjsecond, and a linear 

variation between, with a lag of 45° at w = 2 radjsecond, the corner fre­
quency. 

(d) a similar curve to (c), but centred about w = 10 radjsecond. 

The true curves for phase vary from these straight line approximations by a 
maximum of 5f0

, as descri bed earlier in this section, and they can be drawn in 
by eye very easily. 

Example 6.3. Draw a Bode diagram for the transfer function 

5 
G(s) = (1 + 2sXs2 + 3s + 25) 

This transfer function is made up of three components for which the Bode 
plots can readily be drawn : 

(a) a constant gain term of 2_ = 0.2. This contributes a constant magnitude of 
25 

20 log 10 0.2 = - 14 dB at all frequencies , and has no effect on phase. 
(b) a simple lag of time constant 2 second. This gives magnitude and phase 

contributions as in the previous example, but centred on a break point at 
0.5 radjsecond. 3 

(c) a quadratic lag with w" = )25 = 5 and ( = - = 0.3. The straight line 
2w" 

approximation is 0 dB to the corner frequency 5 radjsecond, and falling at 
40 dB per decade beyond this. With a value of ( = 0.3 the true curve peaks 
very close to 5 radjsecond and can be drawn from Fig. 6.9. The phase curve 
passes steeply through 90° at w = w" = 5 rad/second and can also be 
drawn from Fig. 6.9. 

T he overall magnitude and phase can now be obtained by addition, Fig. 6.11. 
It should be noted that the effect of the quadratic lag is felt at high frequencies 
where the amplitude has already been markedly attenuated by the simple lag. 
This is consistent with the fact that the poles at - 1.5 ± j4.77 are three times as 
far from the imaginary axis in the s-plane as the dominant root at - 0.5 (see 
Section 4.3). 

6.4 Frequency response testing of practical systems 

Methods have been described in the earlier part of this chapter by means of 
which the frequency response information for a system can be calculated, 
provided that the transfer function is known. In the derivation of the transfer 
function from the basic physical laws certain assumptions have been made, 
and the va lidity of these should be confirmed by experimental testing of the 
actual system, provided that this is possible. With some physical components 
theoretical derivation of a transfer function is impossible and in such cases 
experimental testing can provide a means of determining a transfer function 
for the component. The form of the testing is dependent on various factors e.g. 
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Fig. 6.11 Bode plot for transfer funct ion G(s ) = 

(1 + 2s) (s 2 +3s+ 25 ) 

Can the system be tested off-line? Wha t types of forcing function are physi­
ca lly realizable ? How much disturbance to the system can be tolerated , and 
what is the no ise level present? These aspects will be discussed further in the 
nex t chapter, particula rl y considerations of signal level and no ise. 

C learly, provided tha t the input can be va ried in a sinusoida l manner then 
the output or some variable representing it can be monitored, and its ampli­
tude and phase measured for a range of frequencies . Any distortion of the 
waveform would suggest the presence of non-linearities in the system. The 
magnitude a nd phase information can be obtained in a number of ways, a 
convenient one being by using a transfer function analyser, a specia l purpose 
instrument which generates a sin usoidal forcing vo ltage for use as the system 
input, and which compares the system output vo ltage with this as reference to 
produce a direct readout of the ha rmonic information. Less accurate measure­
ments can, however, be made in other ways no t involving specialized 
equipment , such as by the use of a n XY oscilloscope a nd a waveform gener­
ator. A sine wave from the signal genera tor is used to force the system input , 
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the voltage from the transducer which measures the system output is applied 
to the Y input of the oscilloscope, and an auxiliary triangular waveform from 
the signal generator in phase with the forcing sine wave is applied to the X 
input of the oscilloscope. The amplitude and phase shift can be measured 
directly from the resulting trace. 

The harmonic information would normally be presented on a polar or Bode 
plot. The polar plot gives by inspection a good idea of the likely form of the 
transfer function and, if the system approximates to one of first or second 
order, the values of r or ( and w" can be estimated. In principle, on the 
magnitude against frequency Bode plot it should be possible to draw straight 
lines whose slopes are multiples of 20 dB/decade and from the intersection of 
the asymptotes determine time constants; where complex lags are present ( 
and w" can be estimated by comparison with standard curves. In practice, 
where time constants are close together it is difficult to decide where to draw 
asymptotes; hence prior knowledge of the theoretically expected form of the 
transfer function is of considerable help. 

It will be clear from Section 6.3 that for a linear system there is a unique 
phase relationship associated with any given magnitude relationship. Study of 
the phase curve can assist significantly in the attempt to fit asymptotes to the 
magnitude curve with a view to determining factors of the transfer function. 
Lack of correspondence between experimenta lly obtained magnitude and 
phase curves would suggest the existence within the system of some non-linear 
effect. Any non-linearity increases the phase lag from that expected for a given 
magnitude curve, and is thus frequently referred to as a non-minimum phase 
effect. 

Once an approximate transfer function has been determined an estimate of 
its accuracy may be made by evaluating its frequency response and comparing 
with the experimental data. A common criterion for 'goodness of fit' is the 
integral squared error 

00 

; f I Gcalc{jw) - Gexp{jw) 1
2 dw 

0 

At this stage of curve fitting a digital computer program can clearly be of 
great assistance when attempting to minimize this function. 

Certain difficulties arise in practice indicating that harmonic testing has 
distinct limitations. If the input variable is not a voltage, current, position, or 
other easily controlled variable then variation of the input in a sinusoidal 
fashion of known amplitude may be very difficult or impossible. If the system 
is relatively slow, a long period of testing is required since each frequency in a 
wide range must be used in turn, and the system allowed to settle to a steady 
state each time before amplitude and phase measurements can be averaged 
over a number of cycles. The system characteristics may well change during 
the test period, especially when considering process or boiler plant, where 
ambient conditions have a significant influence. Finally, for perturbations of 
an amplitude that are relevant and tolerable, the response of the system may 
be masked by uncontrollable disturbances collectively referred to as noise. 
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6.5 Frequency domain perfonnance criteria 

Having described how to determine the harmonic characteristics of a system of 
known transfer function, or of a physical system which can be practically 
tested, it is necessary to decide what form of response is likely to be most 
acceptable. Consider the case where the system in question is a positional 
control, a measuring system, or other system where the output is intended to 
be equal to the input, or directly proportional to it. Ideally, the overall magni­
tude which in such cases is generally referred to as the magnification would be 
specified to be unity (or a constant) for all frequencies from zero to the 
maximum frequency component of interest in the input signal, and zero for 
higher frequencies which can be thought of as unwanted noise. Ideally also 
there should be no phase shift for the frequencies of interest. The input signal 
of interest would then be handled in an undistorted way and any noise at 
higher frequencies would be filtered out. 

Such an ideal characteristic cannot be achieved in practice, but the form of 
curve which is typical is shown in Fig. 6.12 where the overall magnification M 

Magnification 
M 

Mp 

Bandwidth 

a-oscillatory system (curve b) 

b-overdamped system t----6'-:a_n_dw_id-:-th __ -:-----t 
(curve a) 

Wp 

Phase 

~Lag increasing 

w 

Fig. 6.12 Typical frequency response characte ri sti cs for unity ga in systems 

has been normalized to unity for low frequencies. It can be seen that there is 
no sharp cut-off. The response characteristics are often described by the fol­
lowing parameters : 

(a) bandwidth~defined as the frequency beyond which the magnification 
drops more than 3 dB from the low frequency value ; i.e. below 0.707 for 
the unity gain system. All frequency components of interest should lie 
within the bandwidth. 
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(b) peak magnification M P- the height of the peak, which should ideally be in 
the range 1.1 to 1.5 for good transient behaviour. For an overdamped 
system there will be no peak. 

(c) wP- the frequency at which the peak magnification occurs. In the case of 
an underdamped second order system this is close to the undamped natural 
frequency. 

(d) cut-off rate-the rate at which the magnification curve falls beyond the 
peak, and is thus a measure of the selectiveness of the filter characteristics. 

For accurate measurement, say recording of a dynamic trace, it is important 
that the gain and phase are as close as possible to a constant and zero 
respectively for the frequency range being covered. Transducers not infre­
quently have very low damping ratio and thus a very large value of M P; in this 
case the fiat region must be used otherwise there is likely to be severe distor­
tion of the signal. In such instances the transducer chosen should have a value 
of w" which is some ten times larger than the maximum frequency of interest. 



7 
Statistical Methods for 
System Identification 

System identification is the process of determining by means of practical testing 
the transfer function or some equivalent mathematical description for the 
dynamic characteristics of a system component. This of necessity requires the 
application to the component of some specific input signal since it relies on the 
analysis of input and output signals to identify the relationship between them. 
Traditional experimental procedures involve subjecting the system to step, 
ramp, pulse or sinusoidal input variations, and then carrying out relatively 
simple analysis of the output response curves, as outlined in Chapters 4 and 6. 
The advantages of these test inputs, which are typical of many normally 
occurring system inputs, have already been described from the point of view of 
the relative ease of signal generation and ease of analysis, and the physical 
understanding of system response which results. Unfortunately, response 
testing with these input functions is not always practical because of limitations 
imposed by the existence of system noise. Consider a component of process 
plant whose transfer function is to be determined, and which normally oper­
ates in a nominally steady state condition. With such a practical system com­
ponent the output often varies randomly with time, even with a constant 
input, this variation arising from disturbances to the system component and 
being referred to as noise. The amplitude of the forcing functions when 
response testing must then be large enough to avoid the resulting output 
response being swamped by the noise signal, and this often requires input 
signals much larger than the normally occurring input variations. The results 
may not then be representative, as they are likely to include non-linearities 
and make small perturbation analysis invalid. Also, for large plant com­
ponents the input variations would often need to be larger than the plant or 
the management can tolerate, so these methods find somewhat limited applica­
tion where the component can be isolated for off-line testing. 

This chapter describes a statistical method of identification applicable to the 
determination of transfer functions by on-line testing during normal plant 
operation with minimum disturbance to that operation. The method uses a 
non-deterministic forcing function which has random characteristics, unlike 
the above deterministic signals which are explicit functions of time, and which 
must thus be described by means of an appropriate statistical function . It can 
be considered as a wanted noise signal, and its amplitude can be small enough, 
if necessary, for it to be almost indistinguishable from the normal input signal. 
The effect of this forcing function on the output is not obviously noticeable 
from the plant operating records since it is buried in the inherent natural 
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noise. Nevertheless, when the appropriate statistical procedure is used to 
analyse the signals, the effect of the inherent noise is largely eliminated and the 
response characteristics can be determined. The penalty of using a small 
amplitude forcing signal is that it must be applied for a long time period, of 
the order of 10 to 100 times the largest time constant of the plant but, because 
the effect of the test disturbance is not obviously detectable in the output, 
normal operation need not be interrupted. Occasionally it may be necessary to 
try to extract information from the inherent noise on the input and output 
signals, but the bandwidth of the input noise is seldom wide enough to yield 
adequate information by this means. 

The primary purpose of this chapter is to describe this method and its 
advantages. As a background to understanding the method it also introduces 
the general ideas of correlation and spectral analysis, mathematical techniques 
employed widely in the handling of non-deterministic signals. The chapter can 
be omitted at a first reading since an understanding of the contents is not 
essential to the later chapters of the book. 

The first section introduces the concept of correlation and defines the auto­
correlation function , one of the ways available for describing a nondeter­
ministic signal which is of particular use to the engineer. The autocorrelation 
functions for certa in signals are given to illustrate the forms they can take ; 
their main properties are also outlined. The section concludes by defining the 
cross correlation function which is used to describe the dependence of one 
signal upon another; in system identification these signals are the system input 
and output responses. Section 7.2 describes how correlation can be used to 
determine the impulse response of a practical system when the forcing function 
is chosen to be a signal which is equivalent to an ideal random signal known 
as white noise. Section 7.3 defines and gives examples of power spectral 
density, the frequency domain description of a signal and Section 7.4 discusses 
the determination of the harmonic response of a system by means of spectral 
analysis. This explanation of correlation functions and power spectral density 
functions and their use is followed by guidance on how they can be estimated 
for a given continuous signal by sampling and digital computation. Section 7.6 
describes the pseudo random binary sequence, or PRBS signal, which is the 
forcing function most frequently used for the statistical testing of systems. The 
chapter concludes by illustrating graphically the forms of the various functions 
involved in the identification of a noisy second order system. 

7.1 Correlation functions 

A non-deterministic signal cannot be defined by means of an explicit function 
of time but must instead be described in some probabilistic manner. When 
undertaking system identification with non-deterministic forcing functions and 
carrying out the analysis in the time domain the appropriate statistical 
descriptions for the signals are termed correlation functions. The concept of 
correlation is a familiar one, there being for example an obvious correlation 
between a flash of lightning and the thunder which follows, and between the 
depth of water in a river or reservoir and the variation over a period of time of 
the rate of rainfall. Mathematically, the correlation of two random variables is 
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the expected value of their product; it shows whether one variable depends in 
any way on the other. If the variables have non-zero means, it is sometimes 
preferable to subtract the mean values before determining the correlation ; the 
result is usually known as the covariance, by analogy to the variance of a 
single variable. If the two variables are values of a random signal at two 
different time instants then the expected value of the product depends on how 
rapidly the signal can change. A high correlation might be expected when the 
two time instants are very close together, but much less correlation when the 
time instants are widely separated. It thus becomes appropriate to define a 
correlation function or covariance function in which the independent variable is 
the time separation of the two random variables. If the random variables come 
from the same signal the function is called an autocorrelation function, if from 
different signals a cross correlation function. 

The autocorrelation function (or ACF) of a signal x(t) is given the symbol 
cpxx(r) and is defined as 

or 

T 

lim I I 
lP.u(r) = T _, oo 2T 

- T 

T 

x(t)x(t + r) dt 

lim I I (/Jxx(r) = T-> 
00 

lT x(t - r)x(t) dt 

- T 

7.1 

7.2 

i.e. it is the time average of the product of the values of the function r seconds 
apart as r is allowed to vary from zero to some large value, the averaging 
being carried out over a long period 2T. The process is shown graphically in 
Fig. 7.1 and consists of operations of displacement of the signal x(t) through a 

Time shift r 1 

x(t) 

x( t+r,) 

x (t)x(t + r 1 ) 

x (t) 

Timet 

'l>xx (r1) = mean value of 

x(t)x(t + r 1 ) 

(value of ACF forT= r 1) 

Time (t) 

Fig. 7.1 Calculation of ACF of x(t) for one value of time shift 
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time -r, multiplication of x(t) by x(t + -r), integration of the product, and divi­
sion by the integration time to give the value of fPxx(•) for that single value of 
-r. This process is repeated for other values of' to yield fPxx as a function of -r. 
The autocorrelation function is a measure of the predictability of the signal at 
some future time based on knowledge of the present value of the signal. If the 
value' seconds from now is closely dependent on the present value then fPxx(•) 
will generally be large. 

Consider first the forms which the autocorrelation function could have by 
evatuating it for certain signals which are functions of time. 

Example 7.1. Sine wave. Consider the deterministic signal ft(t) = A sin (wt + 1/1) , 
a sine wave with amplitude A , frequency w, and phase t/1 relative to the zero time 
datum (Fig. 7.2). 

f 1 (t) =A sin (wt + oj!) 

Timet 

Fig. 7.2 Sine wave and its ACF 

Using the above definition (Eq. 7.1) the ACF is given by 

T 

fPu(-r) =lim -
1
- f A sin (wt + t/1) A sin (wt + w-r + t/1) dt 

T--+ cx:J 2T 
- T 

Since the signal is periodic it is theoretically only necessary to average over 

one period, the time 
2
n, where w is the frequency in rad/second. 

w 

w 2 (/Ju(-r) =-A 
2n 

2~/w f sin (wt + t/1) sin (wt + w-r + t/1) dt 

0 
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This integration can be carried out most conveniently by means of a change of 
variable. 

Let u = wt + rjJ 

du = w dt or dt = du , since rjJ is a constant. 
w 

2n+l/l 

Az f . . ) d q>11(r) = Zn sm u sm (u + wr u 

"' 
2n+l/l 

= A
2 f [sin 2 u cos wr +sin u cos u sin wr] du 

2n 

"' 
2n+l/l 

= ~; f [cos wrC - c
2
os Zu) + sin wrein

2 
Zu) J du 

"' 
= ~; [cos wr(~ - sin

4 
Zu) +sin wr( - co: lu) I"+"' 

Az 
q> 11 (r) = 2 cos wr 7.3 

Although a sine wave is not a random function many non-deterministic signals 
contain sinusoidal components and it is important to know what their effect 
would be on the overall autocorrelation function. This will be discussed later 
in this section. Note that the amplitude A and frequency w appear in the 
autocorrelation function, but the phase angle rjJ is absent, so movement of the 
sine wave function relative to the time axis has no effect on the autocorrelation 
function. 

Example 7.2. Random binary function. Consider now a signal fit) which has the 
general form shown in the upper part of Fig. 7.3. (It will be seen in Section 7.6 
that a deterministic and hence repeatable function of this form, termed a 
pseudo random binary sequence, is a very suitable input disturbance for the 
statistical testing of systems.) The signal has zero mean, only two possible 
values ±a, and is able to change from one to the other only every At seconds, 
there being an equal probability of the signal being +a or -a in each interval 
At. What is the autocorrelation function of this signal? 

Let the function fit) be shifted r seconds along the time axis, and evaluate 
the ACF by determining the time average of the product of / 2(t) and / 2(t + r) 
as a function of r. When I r I > At, then any time instant t 1 and the subsequent 
t 1 + r cannot lie in the same At interval, hence f 2(t tl and f 2(t 1 + r) are sta­
tistically independent; the value of the product is thus equally likely to be + a2 

or -a2 , and the time average is zero. When I r I <At, then the probability that 
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Time shift T 

Fig. 7.3 Random binary function and its ACF 

t1 and t1 + r lie in the same interval is !1t~t l r l, i.e . 1 for T =O , 0 for 

r = ± !1t , and a linear variation between . When they are in the same interval the 
product f2(t 1)f2(t 1 + r ) is +a2

, when they are not in the same interval the average 
value of the product is again zero . 

Hence the ACF is given by 

{ 

2 ( lr l) a 1--
cp n(r) = 

0 

l:lt 
for I r I :::;: /11 

7.4 

for I r I > l:lt 

This same autocorrelation function results also from certain other random 
time functions, such as one where the magnitude can take a random value to 
be held constant for each of the time intervals l:lt. 

Example 7.3. White noise. This is a completely random signal with defined 
properties which will be described in terms of its frequency characteristics in 
Section 7.3. Let it be referred to as the signal f 3(t). 

The correlation is zero for all time shifts r except r = 0. 
For r = 0 

T 

cpdr) = - f/(t) dt = mean square value lim I f 
T -> oo 2T 

- T 

7.5 

The autocorrelation function thus consists of an impulse of magnitude equal 
to the mean square value occurring at r = 0, and is zero elsewhere. It can be 
seen that such a function results from letting M 0 in Example 7.2. 

These examples illustrate certain important properties of autocorrelation 
functions and , to give a more complete understanding of the nature of the 
autocorrelation function cpxx(r) of a signal x(t), some of these properties are 
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outlined below. 

(i) the ACF is an even function of r, i.e. IPxx(r) = IPxx( -r), because the same 
set of product values is averaged regardless of the direction of trans­
lation in time. 

(ii) IPxx(O) is the mean square value, or average power of x(t). 
(iii) IPxx(O) is the largest value of the ACF, but if x(t) is periodic, then IPxx(r) 

will have the same maximum value when r is an integer multiple of the 
period. 

(iv) if x(t) has a d.c. component or mean value, then cpx..(r) also has a d.c. 
component, the square of the mean value. 

(v) if x(t) has a periodic component, then IPxx(r) also has a component with 
the same period, but with a distorted shape resulting from the lack of 
discrimination between differing phase relationships of the constituent 
sinusoidal components. 

(vi) if x(t) has only random components, IPxx(r) -> 0 as r-> oo. 
(vii) a given ACF may correspond to many time functions, but any one time 

function has only one ACF. 

A consequence of (iv), (v), and (vi) is that examination of the autocorrelation 
function for large values of t shows whether any d.c. level or any periodic 
component is present in the signal. 

Frequently there exist two signals x(t) and y(t) which are not completely 
independent (in system identification these would be an input and an output); 
a measure of the dependence of one signal on the other is given by the cross 
correlation function (CCF) which is defined as 

T 

lim 1 I IPxy(r) = -
2 

x(t)y(t + r) dt 
T-> oo T 

7.6 

- T 

T 

or lim 1 I (/Jyx(r) = T -> 
00 2

T y(t)x(t + t) dt 7.7 

- T 

Two analytical functions are defined, since time shifting y(t) yields a different 
result to that obtained by shifting x(t). If the two signals are from independent 
sources, and if they have zero mean values, then the cross correlation function 
is zero and the signals are said to be uncorrelated. If the mean values x and y 
are both non-zero, then the cross correlation function has a d.c. value equal to 
the product x y. The CCF is not an even function, though there is a type of 
symmetry because IPxy(r) = IPyx( -r), since shifting one function forwards gives 
the same result as shifting the other backwards. IPxy(O) and (/Jy..(O) have no 
particular significance and the CCF generally does not have a maximum at 
r = 0. Examples of cross correlation functions are given in Fig. 7. 20. 

The ACF of the sum of two signals, say a sine wave plus noise, can be 
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expressed in terms of the ACF and CCF of the individual signals thus : 

T 

lim 
cp(x +)•)(x +y)(T} = T --+ 2~ f [x(t} + y(t)][x (t + -r) + y(t + -r)] dt 

- T 

T 

= lim _I f [x(t)x(t + -r) + y(t}y(t + -r) + x(t}y(t + -r} 
T --+ oo 2T 

- T 
+ y(t)x(t + -r)] dt 

cp(x+y)(x +y)(T} = cpxx(T} + (/)yy(<} + (/)xy(<} + (/Jy_.{T} 7.8 

Provided that x(t) and y(t} are uncorrelated then the third and fourth terms 
each have the value:< y, and hence 

7.9 

A no isy sine wave would thus have an ACF as in Fig. 7.2 but rising to a peak 
at r > 0. 

The general nature of correlation functions has been explained in thi s 
sect ion, together with the principle of evaluation using the three operations of 
time shifting, multiplication, and averaging. Evaluation of the correlation func­
tions of continuous signals by analogue methods using electronic circuits, tape 
recorders and analogue computers has almost completely been superseded by 
digital methods operating on discrete data representations of the signals. 
Digital eva luation of correlation functions is described in Section 7.5. This 
principle can perhaps be best understood by hand calculat ion for a signal with 
a small number of sample values, though normally the equations are prog­
rammed for digital computer solution. 

7.2 Dynamic testing using correlation techniques 

First the analytical background will be considered and then the method of 
implementation . Assume the system to be tested is as in Fig. 7.4a with trans­
fer function G(s), and impulse response or weighting function w(t). It has been 
shown in Section 4.7 that for an input x(t) the output y{t) is given by the 
convolution integral 

r 

y(t} = f w(A.)x(t - A.) dA. 

0 

00 

or y(t) = I w(A.)x(t - A.) dA. 7. 10 

-oo 
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X(s) 

x (t) 

X(s) 

x (t) 

G(s) 
w(t) 

(a) 

G(s) 
w(t) 

(b) 

Y(s) 

y(t) 

N(s) n(t) 

C(s) + 
~~--(+ 

c (t) 

Y(s) 

y(t) 

Fig. 7.4 Sing le-i npu t-single-ou tput system (a) without noise (b) with noise 

Also, the cross correlation function between x(t) and y(t) is given (Eq . 7.6) by 

T 

lim I f (Pxir) = T --> 
00 2

T x(t)y(t + r) dt 

- T 

T "" 

cpxy(r) = ~m--> 
00 2~ f x(t)( f w(ic).x-(1 + r - i,) di.) dt 

- T - oo 

Interchanging the order of integration gives 

oo T 

(Pxy(r) = f w(),{~: 
00 2~ f x(t)x(t + r - ),) dr) di. 

- oo - T 

CQ 

cpxy(r) = f w(),)cpxJr - ), ) d ). 7.11 

-oo 

It should be noted that this equation is very similar to Eq. 7.10 above. 
Comparing the two, it can be seen that if a signal x(t) whose autocorrelation 
function is cpx)r) is applied to a system with weighting function w(t), then the 
cross correlation function of the input and output signals is equivalent to the 
time response of the system when subjected to an input signal cp.u(r). In 
particular if the input signal x(t) is chosen to be the idealized signal called 
white noise then, as has been seen in Example 7.3, the autocorrelation function 
cpxAr) is an impulse; hence cpxy(r) is proportional to the impulse response or 
weighting function . This is the basis for statistical testing methods. A true 
white noise signal is not physically realizable but approximations to it, in 
particular a form of the random binary function of Example 7.2 (to be 
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described more fully in Section 7.6), can be used as system forcing functions 
and can yield close approximations to the system impulse response. 

This testing technique is at its most useful where noise is present in the 
system output, since the process of cross correlation extracts from the output 
only that part which is correlated with the test input. The noise disturbance 
n(t) is conventionally represented as an additive signal as shown in Fig. 7.4b; 
c(t) is assumed to be the system output which would exist in the absence of this 
noise. The cross correlation function between x(t) and y(t) is given as above by 

'f 

lim I f cpxy(r) = -
2 

x(t)y(t + r) dt 
T -->oo T 

- 1' 

But y(t) = c(t) + n(t) 

'f 'f 

lim l 
<fJxJ,(r) = T --> oc 2T f lim I f 

x(1)c(t + r) dt + T __. x 2T x(t)n(t + r) dl 

- 'f T 

Normally, the noise disturbance is not correlated with the test input signal, 
hence qJxn(r) = 0 and then 

(/Jxy(r) = qJxc(r) 

This relationship shows that the cross correlation of the output and input 
signals is the same whether or not there is any noise present, provided the 
noise is uncorrelated. 

The test signal, which for convenience is usually referred to as white noise, 
although not physically realizable and hence in practice replaced by an 
approximation to white noise, is added to the normal system input and cross 
correlation is carried out between the system output and the test signal. The 
configuration required for obtaining one point on the impulse response curve 
by analogue methods is shown in Fig. 7.5. The output y( t) of the system under 
test, corrupted by additive noise, is multiplied by x(t + r 1), the test signal 
delayed r 1 seconds. The multiplier output z 1 (t) is then integrated for a given 
period of time to obtain an estimate of w(r d, the value of the impulse response 
for time r 1. When the system component has a large bandwidth the integrator 
may be replaced by an averaging filter. Additional points can be obtained by 
adding more delay-multiplier-integrator paths and/or repeating the testing 
with different values of time delay. It is much more common now to use a 
digital computer either on-line or off-line to carry out the correlation, and in 
either case the signals x(t) and y(t) must be sampled to obtain time series 
representations as input data for the correlation program. If a special 
purpose correlator is avai lable the signals are fed directly to the instrument 
and the resulting correlation fu nctions are usually displayed on a screen; a 
choice of algorithm for averaging is common, whereby the picture may grad­
ually be built up over a selected time period, or an approximation may appear 
almost immediately and then be gradually improved by continual updating as 
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System 
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G(s), w (t) 
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Fig. 7.5 Config uration for determi ning impulse response by stati st ical testing 
using analogue methods. 

more data becomes available. Typical traces obtained from a correlator are 
shown in Figs . 7. 19 and 7 .20. 

A disadvantage of using a white noise signal is that a long averaging time is 
required to obtain an accurate and consistent estimate of its autocorrelation 
function, necessary to ensure that changes in the autocorrelation function of 
the input are not affecting the cross correlation function ; also, if the period of 
testing is too long, the system characteristics may not remain constant. It is 
thus generally preferable to attempt to generate a white noise signal which is 
periodic and which has an autocorrelation function as shown in Fig. 7.6, in 

rJ>xx (T) 

Time shift r 

Fig. 7.6ACF of periodic white noise 

which case the autocorrelation function can theoretically be computed to its 
full accuracy by correlation over one period of the input signal. With a noise 
free system the cross correlation function and hence impulse response could 
then theoretically be obtained to its full accuracy by correlation for one 
period. In a real system where noise is present correlation must be carried out 
for an integral number of periods of the input signal; the smaller the signal­
noise ratio the longer the correlation time required to integrate out the inher­
ent system noise. Results can be obtained with signal-noise ratios significantly 
less than unity. 
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7.3 Power spectral density 

The autocorrelation function describes the statistical properties of a signal in 
the time domain but for many purposes it is convenient to describe the signal 
in terms of frequency domain characteristics. This particularly applies where 
artificial inputs are not possible and where information must be obtained from 
naturally occurring signals. The function used is the power densit y spectrum or 
power spectra l density <l>xAw) which is the Fourier transform of the autocorrel­
ation function : 

00 

<l>_u(w) = f <'PxAr)e - j wr dr 7.12 

-oo 

The transformation can be seen to be similar to Laplace transformation , 
though in this case the real part of the power of e is zero and the integra tion 
ex tends from - oo to + oo. 

Now e - i wr = cos wr - j sin wr 

00 

<l>x_iw) = f <'P xx(r)(cos wr - j sin wr) dr 

Also, <'PxA<) has been shown to be always an even function , hence the product 
(Pxx(r) sin wr integrates to zero 

"" 
<l>xx(w) = f <'Px)r) cos wr dr 7.13 

-oc 

It can be seen that the power spectral density is a real and even function . 
Applying the inverse Fourier transformation gives 

-oo 

or, since <~>xx(w) has in Eq. 7.13 been shown to be an even function of w, 

Letting r = 0 gives 

I 
<'Px)O) = ln 

-oo 

oo T 

<1> (w) dw = -f lim 1 f 
XX T ----> 00 2T 

-oo - T 

7.14 

lf x(t) were a voltage or current for a 1 ohm load, then the mean square value 
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would be the mean power taken by the load ; by borrowing this terminology 
CJlx)O) is termed the mean power of the signal x(t). 

,,, 

Hence f <I>xx(w) dw = 2rr x mean power 7.1 5 

- x. 

and the power spectral density is a measure of the energy distribution of the 
signal within the frequency spectrum. It is never negative, and extends over a 
frequency range from - oo to + oo , thus being defined also for a hypothetical 
negative frequency region. 

As with the ACF, the relative phase of the various frequency components is 
lost, and a given power density spectrum can correspond to a large number of 
different time functions. If the input signal has a periodic component such that 
the Fourier series for this component contains terms at frequencies w 1, w 2 , ••• 

then <I>.u(w) will have discrete values at ±w1, ±w2 , • .• 

The cross power spectral density <I>xy(w) bears the same transform relation­
ship to the cross correlation function fP xr(r) as does the power spectral density 
to the autocorrelation function . 

Example 7.4 . Whit e noise. This is defined as a signal having uniform power 
content at all frequencies 

t.e. <I> 11 (w) = constant, for - oo < oJ < oo 

The ACF, given by the inverse transform of a constant , is an impulse at r = 0. 
It can now be seen why this is only a convenient theoretical function , since it 
implies that the mean power (Eq. 7.15) is infinite. 

Example 7.5. Band limited white noise. Here, the power spectral density is 
constant for all frequencies less than some given frequency w 1• and zero for all 
higher frequencies. 

i.e. 

Hence 

X> 

fP11(r) = 
2

1
rr f <1> 11 (w) cos wr dw 

- ex 

W ! 

=; f cos wr dw 

0 

Asin w 1r 

rr r 
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This has the form shown in Fig. 7.7; it can be seen that as w 1 -> oo the ACF 
will tend towards an impulse. Provided that w 1 is an order of magnitude 
larger than the bandwidth of a system being tested, then such a signal is an 
adequate approximation to true white noise. 

-Frequency w 

Fig. 7.7 Power spectral dens1ty and ACF of a band limi ted white noise signal f, (I) 

Example 7.6. Random binary fun ction. Consider the random binary function of 
Example 7.2. 

cpn(r) ={a<t- ~~n for lrl < l\t 

0 for I r I ~ l\t 
<T 

Now <l>22(w) = I cp 22(r) cos wr dr 

-oo 

<I. I 

<l>n(w) = I a2( 1 - ~~~~) cos wr dr 

- <l.r 

6r 

I ( r cos wr) = 2a2 cos wr - l\r dr 

0 
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=2a ---- +--2[sin wr I (r sin wr cos wr)]d' 
w At w w 2 

0 

2a 2 

= - 2 - (I - cos wAt) 
wAt 

_ 2 (sin wAt/2)
2 

-a At w At/2 

The form of this is shown in Fig. 7 .8. 

</>22 (T) 

T 

w 

Fig. 7.8 ACF and power spect ra l density of random binary function 

Fourier analysis allows any continuous signal x(t) which is periodic with 
period T to be represented by the summation of a number of sine and cosine 
waves of varying amplitudes with frequencies w, 2w, 3w, . . . , nw where 
w = 2n/ T radians per second, 

I.e. x(t) = a0 + a 1 cos wt + a2 cos 2wt + a 3 cos 3wt 

+ ... +an cos nwt + b 1 sin wt + b2 sin 2wt + ... +b. sin nwt 

By combining cosine and sine terms of like frequency the Fourier series rep­
resentation of x(t) can be written as 

x(t) = a0 + c 1 cos (wt + cpJl + c2 cos (2wt + cp 2 ) 

+ c3 cos (3wt + cp 3) + ... + c" cos (nwt+ cp") 
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The signa l can thus be seen to have a mean value a0 , and to have its energy at 
specific discrete frequencies w, 2w, 3w, ... nw (the fundamental frequency w 
and integer multiples of it), the energy con tained in the respective constituents 
being given by c/, c/, c/, ... c. 2. The energy or power in the signal can be 
represented by lines of appropriate length spaced w apart on a plot of power 
agai nst frequency (as in Fig. 7. 12 say). As the period T increases w decreases 
and the discrete frequency values come closer together. In the limit for a 
non-periodic signal (T-> oo) the discrete line spectrum tends towards a contin­
uous spectrum. This is the power density spectrum. The power spectral density 
for a signal can thus be eva luated by first obtaining the autocorrelation func­
tion and then carrying out Fourier transformation, as in the above definition, 
or directly from the signa l itself by Fourier transformation of the signal. 

The approach adopted for evaluating power spect ral density is dictated by 
the nature of the signal of interest and the equipment available. If the signal is 
a continuous voltage waveform of large bandwidth, a good estimate of the 
power spectral density can be obtained by means of a wave analyser. This is 
an instrument which utilizes a tuneable bandpass filter and measures the signal 
power contained in narrow bands of frequency, usually scanning automatically 
through a wide frequency range. Many signals from industrial processes have 
a bandwidth which is low in comparison to the smallest frequency that can be 
discriminated, allowing only a very approximate estimate of the power spectral 
density curve to be obtained by this method. A more flexible approach to 
determination of spectral density is by digital computation, operating on a 
sampled representation of the signal as outlined in Section 7.5. Direct compu­
tation of the Fourier coefficients and hence power density spectrum of a signal 
by means of a digital computer involves the handling of a vast amount of data, 
and the computation time increases very rapidly as the number of sample 
va lues increases. Prior to the development of computer algorithms known as 
Fast Fourier Transforms the power spectral density function was evaluated 
from the autocorrelation function. Now, however, the spectrum is usually 
evaluated directly using one of these algorithms and their computational effi­
ciency is such that the correlation function is often evaluated from the density 
spectrum rather than directly from the time series data . 

7.4 System identification using spectral density functions 

The preceding section has shown that the power spectral density is a function 
of frequency and that it describes quantitatively how the energy in a signal is 
distributed over the frequency spectrum. From Chapter 6 it should be clear 
that a system affects the magnitude and phase of input signa l components of 
different frequencies by different amounts. The amplitude of the output of a 
system with transfer function G(s), for a frequency w 1, is the input amplitude 
multiplied by I G(jw1 ) I, while the phase of the output relative to the input is 
L G(jw 1). For a statistical input signal it should thus be possible to determine 
the transfer function from a knowledge of the power density spectra of the 
input and output signals and the appropriate cross spectra. Consider now the 
form of the relationships between these for the system of Fig. 7.4. 
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The output of the system can be described by the convolution integral , Eq. 
7.10, in the form 

OC• 

y(t) = f w(). 1)x(t - i.1 ) d i. 1 

and for time t + r the output is 
00 

y(t + r) = f w(i.2 )x(t + r - i .2) d/.2 

-oc 

The dummy variable ),2 has been introduced in place of i.1 so that the two 
integrals can be kept distinct later in the analysis. 

From the definition, Eq. 7.1, the autocorrelation function of the output is 

T 

lim I f 
IPyy(r) = T --+ 

00 2
T y(t)y(t + r) dt 

- T 

Substitution for y(t) and y(t + r) from above gives 

T co :c 

IPn.(r) = ~: 
00 2~ f dt f w(i. 1 )x(t - i.d dJ. 1 f w(i. 2 )x (t + r- /.2) di.2 

- T - oo - x 

Interchanging the order of the limit process and the integration enables this to 
be written as 

where the expression in brackets { } is, by definition, Eq. 7.1. the input auto­
correlation function IPxx(r + ),1 - ) , 2 ) 

00 00 

IPn(r) = f w{}cd di. 1 f IPxAr + ).1 - ). 2)w(),2 ) d).2 7.16 

-oo 

Now the power spectral density of the output signal is the Fourier transform 
of the autocorrelation function of the output, hence 

00 

<llyy(w) = f cpJ'J'(r)e - jwr dr 

-oo 

00 00 Xl 

= f e - iwr{ f w(J.I)d). l f 1Pxx(r+),t-)'2)w(),2)di.2} dr 

-oo -oo - oo 
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00 00 00 

= f w(At)ei"'J.' d ),l f w(J.2)e - jw.l.2 d).2 f cp,jr + },1- ).2) 

- a; -oo -oo 

From the Laplace transform relationship between w(t) and G(s) 

00 

G(s) = f w(t)e - •1 dt 

0 

and letting s = jw, since o nl y frequency domain information is of interest 

~ 

G(jw) = f w( t)e - iwr dt. 

0 

Hence, since w(t) = 0 for t < 0 
oc 

G( jw) = f w(t)e - iwt dt 

-r 

Now also 

X ~ 

7.17 

7.18 

f cpxx("r + i ,l- A2)e - jw(r +). , - ;.ll dr = f cpxx(r)e - jwr dr = <Dxx(w) 7.19 

Using Eq. 7.18 and Eq. 7.19 to sim plify Eq. 7.17 

<Dyy(w) = G( - jw)G(jw)<Dxx(w) 

But G(jw) is the conjugate of G(- jw) 

<Dyy(w) = I G(jw) i2<DxAw) 7.20 

Hence the output spectral density is obtained from the input spectral density 
by multiplying by the square of I G(jw) 1. This is to be expected since the 
spectra l density represents signal power, or amplitude squared. For system 
identifica tion purposes, knowing <Dxx(w) and <Dyy(w), I G(jw) I can be found , and 
thus the magnitude curve of the Bode plot can be drawn. 

The derivation of the corresponding phase relationship is somewhat 
lengthy; hence it will be stated without proof: 

<Dxy(w) _ G(jw) _ ( - .2 G( . )) 
<l>yx(w) - G(-jw) - exp J L JW 7.21 

Using this the phase curve of the Bode plot can be obtained. 
In principle this is a useful method for determining experimenta ll y the trans­

fer function of a system component. It has the advantage that provided the 
normally occurring input signal has a wide enough frequency spectrum then 
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an estimate of the transfer function can be made using only the information 
contained in the normal operating data. The value of the method, however, 
decreases rapidly as the level of internally generated system noise increases. If 
this inherent noise n(t) affects the recorded system output as shown in Fig. 7.4b 
then the power spectrum of the noise contaminated output is that of the clean 
system output added to that of the noise; i.e. 

<l>yy(w) = <llcc(w) + <lln.(w) 

which means that Eq. 7.20 must be written as 

<l>yy(w) = I G(jw) l2<ll .... (w) + <llnn(w) 7.22 

Unfortunately, the noise power spectrum <l>nn(w) cannot be measured directly. 
However, an expression called the coherence function can be evaluated to 
estimate the degree of distortion of the clean output caused by the presence of 
noise. The coherence function is defined as 

2 _ I <I> .. y(w) 1
2 

y xy(w) - <ll .... (w)<l>yy(w) 7.23 

and has a value of unity for a noise-free output. It is common practice to 
accept the data of the spectral analysis if the coherence function has a value 
greater than 0.8. 

7.5 Digital evaluation of correlation functions and power 
spectral density 

The present approach to signal analysis is to convert the continuous function 
x(t) to a discrete time series representation x 1, x2, x 3 , .• • x,, ... xN by sampling 
at regular intervals M (Fig. 7.9a) and then to obtain an estimate of the correla­
tion function or spectral density by digital computation. The choice of the 
sampling frequency and the length of the sample record to be analysed must 
be made with care since poor selection of either adversely affects the accuracy 
of the results, and both directly influence the computation time required. 
Intuitively one can see that in Fig. 7.9b the sampling interval is too large, 
detail is missing and results will be lacking in reliable data for the high 
frequency content of the signal, and conversely in Fig. 7.9c no information 
would be lost and computation time decreased if the sampling interval were 
increased significantly. 

For the samples to be truly representative of the original signal it must be 
possible to recreate the signal accurately from the samples. It is well known in 
communication theory that this is possible only when the sampling frequency 
is at least twice the highest frequency component present in the signal. To be 
able to determine the dynamic characteristics of a process it is necessary that 
the time series shall contain all components of the signal at frequencies up to 
one or two orders of magnitude greater than the reciprocal of the smallest 
significant time constant of the process. This will determine the value of the 
minimum acceptable sampling rate. In practice the signal from the process 
almost always contains components extending to much higher frequencies 
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X (t) 

X (t) X (t) 

{b) (c) 

Fig. 7.9 Sampling of a continuous function (a) derivation of time series representa­
tion (b) .1ttoo large (c) .1tunnecessarily small 

than the wanted data because of noise pick-up, and this noise must be taken 
into consideration. It would be computationally wasteful to process the exces­
sively large amount of data resulting from sampling at a rate sufficiently high 
to record the noise accurately. Merely reducing the sampling rate can give 
misleading results since the high frequency components then appear as though 
they are of lower frequency. This phenomenon, known as aliasing, is illustrated 
in Fig. 7.10, where a signal of constant magnitude but contaminated by noise 
at 50 Hz would appear to have a 2 Hz oscillation if sampled at 16 samples/ 
second. The normal way to avoid this is to use an analogue filter to remove 
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Fig. 7.10 Illustration of phenomenon of aliasing 
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the high frequency noise before sampling. It is not possible to remove aliased 
components after sampling since they are indistinguishable from signal com­
ponents at the aliased frequencies . 

Consider a continuous signal x(t) which has been sampled at regular inter­
vals At to yield a time series x 1, x 2 , x 3 , ... xN as in Fig. 7.9a. An estimate of the 
autocorrelation function of x(t) can be obtained from the N sample values by 
time shifting, multiplying and averaging as follows: 

(0) I ( 2 2 2 2 2) fPxx = N x1 + x2 + x3 + ... XN - 1 + XN 

etc 

Values are estimated for r = 0, r =At, r = 2At, r = 3At etc., but there is no 
information about intermediate values of r. It is clear that N should be large 
and that the estimates of fPxx(r) can only be realistic if r ~NAt. It may be that 
the signal is periodic such that xN+ 1 = x 1, xN + 2 = x 2 , etc. in which case each 
value of fPxx(r) can be evaluated from N products rather than from a decreas­
ing number of products as above, the computations then being of the form 

I 
fPxx(2At) = N (x 1x 3 + x 2 x 4 + ... xN _2xN + xN _ 1 x 1 +xNx2) 

and only one complete cycle need be considered. The resulting plot of fPxx(r) 
against r is often referred to as a correlogram. In practice a smooth curve is 
often drawn through the points, or alternatively they are joined by straight 
lines, to highlight more clearly the general form of fPxx(r). For a signal which is 
not periodic an increase in the number of samples N should yield a better 
estimate of fPxx(r) at the expense of increased computation time. Increasing the 
number of samples N and simultaneously decreasing the sampling interval At 
gives a correlogram with more closely spaced points, which is desirable when 
the correlation function changes rapidly in magnitude from one value to the 
next. 

As was stated in Section 7.3 the power spectral density of a signal is now 
usually determined digitally from a discrete time series representation of the 
signal, and generally by utilizing a Fast Fourier Transform (FFT) algorithm 
since it is very much faster than normal Fourier transformation on a digital 
computer. Spectral density plots for analogue signals can be most easily 
obtained if a proprietary spectrum analyser can be used, or if special software 
is available on a general purpose digital computer with analogue-to-digital 
converter. Failing this a program can be written incorporating the FFT algo­
rithm from a software library, or the FFT routine can be obtained from a 
textbook. Any reader interested in the operation of the algorithm is referred to 
a textbook such as reference 29 in Appendix B which gives a clear description. 



140 Statistical Methods for System Identification 

An appreciation of the artefacts associated with spectral density evaluation is 
essential, and the main object of the next few paragraphs is to explain some of 
these with the aid of simple pictorial representation so that spectral analysis 
can be undertaken sensibly and results interpreted correctly. 

The FFT algorithm requires a number of samples which is a power of 2, i.e. 
N = 2" (say 2048, 4096, 8192, or 16384) and yields a discrete spectrum with 
2" - 1 frequency lines. The length of data record analysed is therefore N t..t, and 
spectral information is evaluated for the frequencies !/ NAt , 2/ NAt, 
3/ NAt, ... !/2M, but not for any intermediate frequencies or higher fre­
quencies. (Points can be joined by straight lines or by a smooth curve to 
highlight the trend.) The sample function of the signal or the autocorrelation 
function is thus truncated to a specific finite length prior to processing and this 
introduces some distortion in the spectral density curve estimated from the 
data. The signal x(t) to be transformed is viewed through a window or gate, 
normally a rectangular window function hence 

xr(t) = x(t) W(t) where W(c) = 
{

I for I t I~~ 
T 

0 for It I > 2 

The window function and its effect on the signal x(t) are shown in Fig. 7.1 1 a 
together with the Fourier transform of the window function 

(
sin wT/2) 

F(w) = T w T / 2 

The finite width of the window with its sharp edges and discontinuity between 
the ends introduces spurious harmonic information and thus a pure sine wave 
would be seen to have side lobes. The amplitude spectrum of a sine wave 
would then have the form shown in Fig. 7.lla instead of being a single line, 
and the power pectrum would be the square of this function . 

Consider in a little more detail the effect of evaluating the power spectral 
density of a portion of sine wave using the FFT algorithm. If NAt, the width of 
the window, corresponds to an integer number of cycles of the sine wave then 
the spectral line spacing is 2n/ NAt = 2n/ T radians per second and one of these 
frequency values will correspond exactly with the frequency of the sine wave. 
In this case a single spectral line results, all other values being zero- if say 
there are 5 complete cycles then the 5th spectral line will have amplitude A, 
power A 2 and all others will be zero. Almost invariably, however, since N 
must be a power of 2 and At is a rounded time interval such as 10 ms or 
0.05 ms, say, the product NAt will not correspond to an integer number of 
cycles. None of the frequencies for which spectral information is obtained will 
then coincide with the frequency of the sine wave, and the signal power will be 
shared across a number of frequencies, with the highest value corresponding to 
the frequency closest to that of the sine wave. Fig. 7.12 illustrates the effect. 
The shape and the peak amplitude change markedly with change in frequency. 
Note that an increase in N for the same At increases T and hence compresses 
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Fig. 7.11 Window function. its Fourier transform. and effect on spectral density of 
a signal (a) rectangular window (b) triangular (Bartlett) window (and Hanning window. 
shown dotted) 

w 

the effect to a narrower range of frequency but does not eliminate it. A square 
wave can be represented by the Fourier series 

4 
x(t) =-(cos wt - t cos 3wt +!cos 5wt - i cos 7wt + ... ) 

n 

Hence there should be spectral lines for odd multiples of the fundamental 
frequency, and the successive power spectral values will be in the ratios 1, ~. 2

1
5, 
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Fig. 7 .12 Line spectrum for truncated sine wave (5.3 cycles. unit amplitude) 

4
1
9 , 8\, Th etc. or 0, - 9.5, - 14.0, - 16.9, - 19.1 . .. on a decibel scale. If an 

integer number of cycles of the square wave fills the window N ~t then these 
lines and only these will appear on the spectral plot. Normally , however, each 
shows the windowing effect (Fig. 7. 13) in which case there is a leakage of 
power to adjacent frequencies . 

If a signal contains frequency components which are close together then the 
spectra tend to merge blurring the distinction between them (Fig. 7.1la). The 
resolvability is improved with a wider window (longer length of sample func­
tion analysed). Other window shapes, such as the triangular or Bartlett 
window and the raised cosine Hanning window, which reduce the emphasis on 
parts of the function towards the ends are sometimes used especially where a 
smoother spectrum is desired. The Fourier transform of the Bartlett window, 

) (
sin wT/4)

2 

F(w = T wT/4 

is shown with its effect on a pure sine wave in Fig. 7.11 b. The rectangular 
window is simple but suffers from large amplitude side lobes and poor ampli­
tude accuracy. At the expense of an increase in bandwidth both the Bartlett 
and the widely used Hanning window have smaller side lobes and better 
amplitude accuracy. 

7.6 Pseudo random binary sequences (PRBS) 

These are very useful approximations to periodic white nmse and are the 
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Fig. 7.13 Discrete spectrum for truncated square wave (5.3 cycles. unit amplitude) 

forcing functions most widely used in statistical system testing. Their general 
form is shown in Fig. 7.3 since they are special cases of the random binary 
function of Example 7.2. They are signals which can take on only two possible 
states, say +a and -a, the state can change only at discrete intervals of time 
fit , the change occurs in a deterministic pseudo random manner, and the 
sequence is periodic with period T = NAt where N is an integer. 

These deterministic repeatable signals all satisfy a set of 'conditions of ran­
domness': 

(i) Balance property : in any period of the sequence the number of logic 
ones (+a) should not differ from the number of logic zeros (-a) by 
more than one. 

(ii) Run property : among the runs of one, two, three etc. in the period half 
should be of length 1, a quarter of length 2, an eighth of length 3 etc. 
and there should be as many of each run of logic one as logic zero state 
(these requirements cannot be satisfied exactly since sequence lengths 
are not powers of 2). 

(iii) Correlation property : if a period of the sequence is compared term by 
term with any cyclic shift of itself then the number of agreements and 
disagreements should not differ by more than one. 

When these conditions are satisfied the sequence can be thought of as being as 
random as is possible for any given length. 
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The most commonly used type of PRBS is the maximum length sequence, 
which is of length N = 2"- 1, where n is an integer (i.e. N = 15, 31, 63, 127, 
255 ... ). This can be generated by an n stage shift register with the first stage 
determined by feedback of the appropriate modulo two sum of the last stage 
and one or two earlier stages (Fig. 7.14). Modulo 2 addition is the logic func­
tion 'exclusive or' i.e. if the inputs are the same the output is logic 0; if the 

Clock pulse (to shift contents every tl.t second) -----

Fig. 7.14 Generation of PR BS by shift register 

Flip flops 

Modulo two 
addition 

inputs are different the output is logic l ; alternatively it can be thought of as 
binary addition where only the least significant digit is recorded. The logic 
contents of the shift register are moved one stage to the right every !!..t seconds 
by simultaneous triggering by a clock pulse. All possible states of the shift 
register are passed through except that of all zeros. The output can be taken 
from any stage and is a serial sequence of logic states having cyclic period 
N !lt. If feedback is taken from the modulo 2 sum of the wrong register stages 
then the resulting cyclic sequence has a length less than the maximum length, 
and will not be suitable. The correct stages for the most commonly used 
lengths are : 

n 4 5 6 7 8 9 

N 1 5 31 63 1 27 255 511 

Feedback from modulo 
tw o addition of stages : 3 & 4 3 & 5 5 & 6 4 & 7 2. 3. 4 & 8 5 & 9 

Delayed versions of the sequence can easily be obtained by modulo 2 addition 
of appropriate stages making use of a shift and add property which states that 
'if a binary maximum length sequence is added modulo two to the same 
sequence delayed from the original then the resulting sequence is also a 
delayed version'. 

Example 7.7. Consider as illustration of the above a 4 stage shift register with 
feedback from stages 3 & 4. Successive states of the shift register, starting all 
ones, are: 

Stage 
I 0 0 0 1 0 0 l 1 0 I 0 l 1 
2 I 0 0 0 1 0 0 1 1 0 l 0 1 and the pattern 
3 0 0 0 1 0 0 1 0 l 0 l repeats 
4 1 0 0 0 1 0 0 1 0 1 0 
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Hence the sequence length is 15, which is 2n - I with n = 4. With feedback 
from stages 2 and 4 the states would be: 

Stage 
I 
2 
3 
4 

0 0 I I I 
I 0 0 I I 
I I 0 0 I 
I I I 0 0 

and the pattern repeats, after only 6 states. 

Investigate now the three properties of randomness when applied to the full 15 
bit sequence: 

(I) Balance property : 
Number of ones = 8 
Number of zeros = 7 

(2) Run property: 
Length of run I 
Number of runs 4 
Actual ratio 4/8 
Ideal ratio 1/2 

." . difference = I 

2 3 4 
2 I 1 Total= 8 

2/8 1/8 1/ 8 
1/4 1/8 1/ 16 

There are equal numbers of runs of I and 0 except 3 and 4. 
(3) Correlation property : 

Compare stages I and 4, say. 
Number of agreements= 7 
Number of disagreements = 8 . ·. difference = I. 

If the output is from stage I then stages 2-4 give delays 1- 3 
4 EB I gives 0 I I I I 0 0 0 1 0 0 I I 0 I i.e. delay 4 

(4EB I)EB3 gives I 0 0 I 1 0 I 0 1 1 I I 0 0 0 i.e. delay 11, etc. 

There also exist other PRBS sequences e.g. quadratic residue codes which 
exist for N = 4k - 1 bit sequences, where k is an integer and N is a prime 
number (i.e. 11 , 19, 23, 31, 43, 47, ... ). These are difficult to generate using logic 
circuitry, but the sequences can be precomputed and read from paper tape, 
say, for slower applications. An advantage is that successive sequence lengths 
are much closer together. 

Autocorrelation function and power spectral density of PRBS. Consider, first, 
values at r = ki!t where k is an integer. Let values of the sequence for suc­
cessive intervals M be x(1), x(2), x(3), ... x(N). The ACF is 

I N 
lfJxx(k) = - L x(j)x(j + k) 

N i = t 

a2 
= N x (Number of matching digits - number of differing digits) 

7.24 
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It can be shown by considering area changes that the ACF is linear between 
these points. Hence the form of the ACF is as shown in Fig. 7.15. As ~~ ........ 0 
and N becomes large the ACF tends closer to that of true periodic white noise 
(Fig. 7.6). 

The power spectral density, also shown in Fig. 7.15, differs from Fig. 7.8 in 
one respect- it is a line spectrum and not a continuous spectrum. This occurs 

T 

NM 

3dB 

w 

Fig. 7.15 A utocorrela tion fu nct ion and power spect ral density of PRB S 

because the lowest frequency component in the PRBS signal is that corre­
sponding to the period, i.e. 2n/ NM radians/second, and all other frequencies 
present are integer multiples of this value. 

Advantages of PRBS and practical considerations 
(a) The binary nature of the signal simplifies the cross correlation calcu­

lation since the multiplication can be replaced by simple gating of the output 
time function and its inverse. 

(b) The binary signal is easy to generate and introduce into a system (using 
say a solenoid), and the constant M avoids the distortion which can occur 
with attempting too rapid switching which can be required with a completely 
random binary signal. 

(c) The signal intensity is low, with energy spread over a wide frequency 
range, hence it is a suitable forcing function for a plant operating normally as 
it causes little disturbance from the operating condition. 

(d) The power of the noise can be .arranged to be in the band of frequencies 
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of interest by appropriate choice of L\t and N. Choose M ~ smallest system 
time constant, and NL\t > settling time (some prior knowledge of the order of 
magnitude of system parameters is helpful) . 

(e) The input ACF is calculated to its full accuracy by correlation over one 
period ; hence, to average out the effects of system noise, the cross correlation 
should be carried out for an integral number of input sequences. The smaller 
the PRBS amplitude relative to system noise, the longer the averaging time 
required. One sequence must be input to set the initial conditions correctly. 

7. 7 Illustrative example 

To conclude the chapter, and to highlight the significance of its contents, this 
section presents and discusses briefly a typical set of graphs of the various 

Normal input + 
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u(l) 

PRBS test signal 

x(t) r-
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Disturbance signal 
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1 

c (t) 
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..1 

Fig. 7.16 Block diagram of system being identified 

Output 
response 

y(t) 

functions described earlier. The curves have been obtained from tests on a 
simulated second order system in the presence of noise, using a PRBS signal as 
forcing function. The system has been arbitrarily chosen to have w" = 6 rad j 
second and ( = 0.3; the results of statistical testing should therefore confirm 
these values. It is assumed that the normal input may include a noise com­
ponent, and that a disturbance signal introduces further noise within the 
system, both contributing to give a noisy output signal y(t), in the manner 
depicted schematically in Fig. 7.16. 

In the absence of noise, the system can be subjected to an input change in 
the form of a step or an impulse function, and the resulting response recorded. 
Fig. 7.17 shows the response curves for a step of magnitude unity and an 
impulse of magnitude 1/4. Comparison of these curves with those of Fig. 4.7 
would enable values to be estimated for w" and (, and the closeness of fit of 
each experimental response curve and the appropriate standard curve would 
indicate how well the system can be represented by a second order transfer 
function. In the presence of noise on the system output, these waveforms 
would be masked unless the input changes were of very large amplitude; with 
a real system a large enough step change to allow even an approximate 
estimate to be made would probably be unacceptable, and an impulse change 
would certainly not be acceptable. In this situation statistical testing can yield 
an impulse response curve with minimum disturbance to the system. 
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Fig. 7.17 Step response and impulse response of noise free system 

Fig. 7.18b shows a typical sample trace of the output response of the system 
in the presence of noise for a nominally constant input (the noise character­
istics have been arbitrarily chosen). A 63 bit PRBS signal of bit interval 0.1 
second is used as input excitation for system identification; Fig. 7.18a shows 
the form of the PRBS input and the resulting system output in the absence of 
noise. The bit interval and the sequence length can be chosen on the basis of a 
preliminary estimate of the order of magnitude of the dominant roots of a 
system, and later can be confirmed as being satisfactory by inspection of the 
correlation functions. The chosen PRBS amplitude value gives a response 
amplitude which is of the same order of magnitude as the noise amplitude, 
although it can be seen to have quite different harmonic characteristics. The 
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Fig. 7.18 Typical traces of output response of system (a) forced by PRBS in the 
absence of noise (b) without PRBS in the presence of noise (c) forced by PRBS in 
the presence of noise 
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response of the system to the PRBS signal in the presence of noise is shown in 
Fig. 7.18c and , although a clear difference can be seen between this and the 
normal noise output of Fig. 7. I 8b, the difference is not very ma rked . Smaller 
PRBS amplitudes could be used resulting in a less obvious effect on the output 
response, but a longer period of correlation would be required, a nd fo r ve ry 
low signal- no ise ra tios results would tend to be poor. 
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Fig. 7.19 Autoco rrelation fu nctions of input and output signals 

(seconds) 

The autocorrelation functions of these input and output signals are shown 
in Fig. 7.19. The ACF of the PRBS signal has the form theoretically expected, 
whilst that of the system output in the absence of noise shows a reduction in 
signal power to somewhat less than half of the input power, and a marked 
tendency in the short term towards harmonic change at about I Hz. The ACF 
of the noise signal shows that there is a significant component of the signal 
which approximates to white noise with, in addition, some increase in power 
at frequencies around I to 1.5 Hz. The system is linear and hence the ACF of 
the noisy output is broadly the sum of the previous two. Such information 
from interpretation of the ACF curves confirms and quantifies trends predict­
able in this case from visual inspection of the response traces, and can be 
supplemented by information obtained from the corresponding power spectral 
density curves. Correlation for each curve shown was carried out for a time 
duration of about 130 seconds, which corresponds to about 20 periods of the 
PRBS ; a longer period of correlation would help to smooth out the curves at 
the larger values of time shift -r, provided the dynamic characteristics of the 
system being tested remained unchanged over the longer time span involved. 
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Cross correlation of the system output signal with the PRBS input should 
yield a good approximation to the impulse response of the system, provided 
that the bit interval and sequence length are wisely chosen. Fig. 7.20 shows 
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Fig. 7.20 Cross corre lation functions 

typical traces for the CCF with and without system noise ; the former curve 
approaches the latter more closely when the correlation is carried out for 
longer time durations. The chosen bit interval of !J.t = 0.1 second can now be 
seen to be a value which gives an adequate approximation to white noise for 
this system, and the period of 6.3 seconds correctly exceeds the system settli ng 
time (a sequence of length 31 bits could have been used instead). cp_.-y(r) can be 
seen to start from a small positive value for r = 0, consistent with the curve 
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Fig. 7.21 Pow er spectra l density cu rves of input and output cu rves 
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being the response to a narrow triangular pulse starting at time - M, and not 
a true impulse. This is confirmed by noting the form of CfJyx('r), where the 
output response curve is shifted in the opposite direction when correlating and 
which thus gives values of cPxy(<) for negative values of r. 

The power spectral density curves for the input and output signals, plotted 
against a logarithmic frequency scale, are shown in Fig. 7.21. It can be seen 
that with a PRBS input almost the entire power of the output signal is con­
tained in the frequency range 0 to 2 Hz, and the curve for <I>xAw) shows that 
over this frequency range the input PRBS signal has a substantially constant 
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Fig. 7.22. Bode plot and polar plo t obtained from CCF 

power spectral density. This confirms that the bit interval used gives an excita­
tion signal which is a good approximation to true white noise for the system 
tested. In the absence of noise the magnitude of the transfer function can be 
calculated from the input and output power spectral densities using Eq. 7.20. 
The power spectrum of the noise signal shows it to have a bandwidth of about 
5 Hz, and confirms that it has white noise characteristics with additional 
power at frequencies around 1.2 Hz. The presence of this noise in the system 
output would clearly introduce large errors if Eq. 7.20 were to be used to 
determine I G(jw) 1. The final figure, Fig. 7.22, shows the Bode and polar plots 
for the system obtained by evaluating the cross spectrum from the cross correl­
ation function for the noisy system shown in Fig. 7.20. The results are clearly 
consistent with those expected for a second order system with w" = 6 rad/ 
second and ( = 0.3. The main evidence of errors arising from the presence of 
the noise shows up in the poor results for frequencies beyond about 3 Hz. 



8 
Feedback Systems-Accuracy 
and Stability 

The earlier chapters of this book have been primarily concerned with describ­
ing how a dynamic physical system can be represented in certain convenient 
mathematical ways, and with showing how different types of system react to 
certain forms of forcing function . The main aim has been to present a clear 
picture of the nature of the dynamic behaviour of linear systems. This chapter 
and those following discuss the way in which the principle of feedback can be 
used to achieve a desired performance specification ; some of the design 
methods available for synthesizing closed loop control systems are described. 

Section 8.1 considers some general characteristics of systems incorporating a 
single feedback loop. It is shown that requirements for high accuracy of 
control and for fast well damped behaviour conflict, and that often a compro­
mise must be made. Section 8.2 discusses the nature of steady state error and 
shows how it is a function both of the type of input and of the dynamic 
characteristics of the system. Sections 8.3 and 8.4 outline two widely used 
methods available for stability analysis, which are respectively relevant to time 
domain and frequency domain analysis ; Section 8.5 defines gain and phase 
margins which are used to describe the degree of stability. The chapter con­
cludes by considering the relationship between open loop and closed loop 
frequency response, and the graphical presentation of this information on a 
Nichols chart. 

8.1 Closed loop or feedback control 

An open loop or scheduling control, of whjch some everyday examples were 
given in Chapter 1, takes the form represented by Fig. 8.1. There is no com­
parison between the actual output variable of the system, usually referred to as 
the system response or controlled output c(t), and the desired output of the 
system which would be some function of the input variable, usually referred to 

Input variable 
(reference input) R(s) 

r(t) 

Controlled system 
G(s) 

Output variable 
(controlled output) C(s) 

c(t) 

Fig. 8.1 Block diag ram of open loop control system 
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as the reference input r(t). The output, using Laplace transform notation, is 
given by the relationship 

C(s) = R(s) G(s) 8.1 

and is thus determined by both the input R(s) and the transfer function G(s) of 
the system. External disturbances or deterioration with increasing age may 
well cause changes in the parameters of G(s); hence even in the steady state the 
system will only give the desired value of output at the design point. 

Introduction of a negative feedback path allows the actual system output to 
be compared with the desired value, as shown in Fig. 8.2a, and an error signal 

Reference input Error signal Controlled output 
R(s) f(s) = R(s) - C(s) System C(s) 

+: G(s) 
r( t) - e(t) c(t) 

(a) 

R(s) C(s) 

(b) 

Fig. 8.2 Block diagram of simple feedback system (a) with unity feedback (b) 
with elements in the feedback loop 

to be generated, this then forming the system input. This is termed closed loop 
control or feedback control. By inspection it can be seen that 

C(s) = G(s) E(s) 

and E(s) = R(s) - C(s) 

Elimination of E(s) from these equations gives the output as 

C( _ G(s) (. 
s) - l + G(s) R s) 8.2 

Again the output is dependent on the system transfer function and on the 
input function, but the effect of a change in G(s) is less than for the open loop 
system, and by appropriate choice of G(s) the error can be made small and the 
effects of external disturbances can be largely cancelled out. 

If there is an element with transfer function H(s) in the feedback path, 
representing perhaps the dynamic characteristics of the transducer measuring 
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the output signal and converting it to the same form as the reference input 
signal, Fig. 8.2b, then 

C(s) = G(s) E(s) 

= G(s)[R(s) - C(s) H(s)] 

C(s) G(s) 

R(s) - 1 + G(s) H(s) 
8.3 

The characteristic equation as defined in Section 2.3 is the denominator of the 
transfer function equated to zero, and is thus 

1 + G(s) H(s) = 0 8.4 

Although closing the loop allows the steady state error to be reduced or 
eliminated completely, the system can become very oscillatory or even 
unstable. This arises as a result of the lags that occur within the loop; these 
lags cause a delayed response to the corrective action and often also a delayed 
sensing of the error signal. In an extreme case this results in pronounced 
overcorrection leading to large overshoots and undershoots. The requirements 
of accuracy and stability conflict; the engineer must be aware of this and must 
be able to design the feedback system to achieve a satisfactory compromise. 
Basically, design can be regarded as a problem of arranging the location in the 
s-plane of the roots of the characteristic equation in such a way that the 
corresponding system performs according to prescribed specifications. 

Figure 8.3 shows the general form taken by a feedback control system. Most 
commonly the error signal obtained from the error detector is amplified and 

Reference 
input 

Error 

Power device 

Monitoring 
transducer 

Fig. 8.3 General form of feedback control system 

Output 

then fed to a power device which effects the necessary changes to the system, 
as shown in the figure. Often there are also compensating elements, auxiliary 
feedback loops, or other modifications designed to achieve the desired system 
performance. Some of these features will be illustrated in Chapter 11. 

Servomechanisms or servos are, strictly speaking, a special group of feedback 
control systems where the output is a position or velocity. The term is, 
however, used much more widely and in many cases synonymously with feed ­
back control systems. The input (or desired value) will in general be varying, 
and the output is designed to follow the input. 

Regulators form another group of feedback control systems in whkh the 
reference input, although adjustable, is held constant for long periods of time 
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(e.g. as in most temperature controllers). The output is maintained approx­
imately constant at the value corresponding to the reference input, irrespective 
of external disturbances to the system. In process control, where regulating 
systems are widely used, the reference input is generally referred to as the set 
point. 

Closed loop control action is frequently achieved in everyday life and in 
industrial situations by incorporating a human being within the feedback loop. 
Consider the action of moving to switch on a light, in relation to the gener­
alized diagram, Fig. 8.3. The location of the switch can be thought of as the 
reference input, the position of the hand as the controlled output; there is no 
monitoring transducer, and the eyes act as the error detector. The eyes and 
brain generate the error signal and amplify it to give inputs to the muscles, the 
power device, which move the body and hand towards the switch and cause 
the hand to actuate the switch in the required manner. The importance of the 
feedback path can be seen by considering what occurs when it is broken by 
blindfolding or by complete darkness. It is worth noting that other feedback 
systems are also involved in this apparently simple action; for example, servo­
mechanism action positions the pupil of the eye to focus on the hand and the 
switch, and regulator action alters the size of the iris to make adjustment for 
varying light intensity. The human being, although having a number of physi­
cal limitations and bringing with him problems of reliability, can act as a very 
sophisticated controller. 

8.2 Steady state error 

The prime reason for using feedback 1s to minimize the error between the 
actual system output and the desired system output. The magnitude of the 
steady state error, the value to which the error signal tends as the transient 
disturbance from any input change dies out, is of importance since it is a 
measure of system accuracy. To demonstrate what factors affect the value of 
the steady state error consider first the unity feedback system of Fig. 8.2a. The 
error signal e{t) is the difference between the reference input and the controlled 
output : 

e(t) = r(t) - c(t) 

The reference input signal can thus be thought of as the desired output. The 
steady state error e •• is the limiting value of the error e(t) as time t becomes 
very large: 

lim lim 
steady state error = e •• = e(t) = 

0 
sE(s) 

t --> 00 s--> 
8.5 

by the final value theorem of Laplace transform analysis. 

But E(s) = R(s) - C(s) 

= R(s) - G(s) E(s) 

E s)- R(s) 
( - I + G(s) 
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Hence the steady state error is 

lim ( sR(s) ) 
e,. = s--> 0 1 + G(s) 8·6 

This equation shows that the steady state error is a function both of the type 
of system as described by the transfer function G(s) and of the type of input 
R(s). Consider in turn three types of input. 

(a) Step input function. i.e. a constant input for values of time t > 0. Let the 
magnitude of the step be k. The Laplace transform of the input is then 

Inserting this in Eq. 8.6 gives 

k 
R(s) =­

s 

e _ lim ( k ) _ k _ _ k_ 
ss- s-> 0 1 + G(s) - lim G( ) 1 + KP 

1 + 0 s S-> 
lim 

where KP = s-> 
0 

G(s) is called the positional error coefficient, or positional 

error constant. Rearranging the expression for e,. gives 

K = k- e,, 
P e,, 

Hence 
lim ( desired output - allowable steady state error 

K = G s) = 8.7 
P s-> 0 allowable steady state error 

Thus for the steady state error to be zero it is necessary that KP =limO G(s) = oo, 
S-+ 

which requires G(s) to have included in it a factor s in the denominator, an 
integral term. If no integral term is present then, for example, for an allowable 

steady state error of 1% of the step size, KP must be at least 
1 

-
0

·
01 

= 99; for 
0.01 

an error of 5% it must be at least 19. Hence, if an allowable steady state error 
is specified for a constant input, a restriction is placed on the system transfer 
function G(s) by requiring the gain to have a certain minimum value. In the 
field of process control this steady state error is termed the offset. 

(b) Ramp input function . i.e. input changing at a constant rate. Let the input be 
a ramp increasing at k' units/ second 

i.e. r(t) = k't 

The Laplace transform of the input is then 

k' 
R(s) = s2 

k' lim ( k' ) 
e •• = s-> 0 s + sG(s) =lim 

0 

sG(s) 

S-> 
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where K. is called the velocity error coefficient or velocity error. 

lim ) desired output velocity 
K = sG(s = --------=------=--

• s-+ 0 allowable steady state error 
8.8 

It should be noted that this does not refer to an error in velocity, but rather a 
positional error in following a velocity input. K. has units of seconds - 1

. 

For the steady state error to be zero with a ramp input, K. must be infinite; 
this requires G(s) to have a factor s2 on the denominator. If the error must be 
kept within 1% of k', then K. = 100, but if an error of 5% is allowable then 
the gain can be reduced until K. = 20. 

(c) Acceleration input function . In this case 

Ka = acceleration error coefficient = lim 
0 

s2 G(s) 
S-+ 

desired output acceleration ( d _ 2) 
= secon s 

allowable steady state error 
8.9 

The analysis of these three types of input function shows that whether or 
not there is a steady state error for a given type of input depends on a, the 
power of s in the factored denominator of the open loop transfer function 

K(s- z1Xs- z2) ••. 
G(s) = ----'----=.:...'----=--

s«(s- PtXs- P2Xs- PJ) . . · 
8.10 

Systems are classified as being Type 0, 1, or 2, where the type number is the 
value of a, which corresponds to the number of open loop poles at the origin. 
The values of the steady state error for these system types are summarized in 
Table 8.1. 

Table 8.1 Steady state error for type 0 . 1. and 2 systems 

Steady state error with : 
System steady input ramp input acceleration input 

Type 0 
Type 1 
Type 2 

finite 
0 
0 

infinite 
finite 

0 

infinite 
infinite 
finite 

When there is an element with transfer function H(s) in the feedback loop 
the error signal must be defined as E(s) = R(s) - C(s) H(s). This causes certain 
differences in the above evaluation of steady state errors. 

8.3 Routh-Hurwitz stability criterion 

It has been shown in Section 4.3 that the form of the transient response of a 
dynamic system is largely dependent on the location in the s-plane of the roots 
of the characteristic equation. For a system to be useful it must clearly be 
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stable at all times, where, considered in simple terms, it is defined as being 
stable if the output response to any bounded input function is finite. This 
implies that no roots of the characteristic equation can lie in the right half of 
the complex s-plane. A complex conjugate pair of roots with positive real part 
would give rise to an oscillation with amplitude increasing progressively and 
limited only by physical failure or saturation in part of the system. With a 
positive real root the output would increase exponentially and be limited for 
the same reasons. The problem of determining the stability of a linear system 
can thus be viewed as one of finding the roots of the characteristic equation. 

If the characteristic equation is of high order then the task of determining 
the values of the roots can be tedious and time consuming. It is desirable to be 
able to determine more quickly and easily whether a system of known transfer 
function is stable or not. Around 1880 Routh and Hurwitz independently 
developed somewhat similar methods of determining whether any roots of a 
linear equation in the complex variable s have positive real parts, without 
having to solve the equation to find the values of the roots. The procedure is 
now used primarily as a rapid check on stability when all system parameters 
are fixed , and as a means of determining the limiting value for a variable 
parameter beyond which the system would become unstable. 

Consider the general form of the characteristic equation, a polynomial in s: 

This has n roots , and these may be located anywhere in the complex s-plane. 
For there to be no roots with positive real parts there is a necessary but not 

sufficient condition that all coefficients have the same sign and that none are 
zero. Hence, provided coefficient a0 is positive, if inspection shows that one or 
more coefficients is negative or that one of the powers of s is absent, the 
equation is known to have at least one root in the right half of the s-plane. The 
system represented by that characteristic equation can then be said to be 
unstable without any further analysis being required. This can give a useful 
warning if an error of sign has been made in the theoretical derivation of a 
transfer function for a physical arrangement which is intuitively expected to be 
stable. 

If this condition is satisfied then the necessary and sufficient condition that 
none of the roots has positive real parts is that the Hurwitz determinants of 
the polynomial must all be positive, where the determinants are given by 

a3 as a7 
a2 a4 a6 

, etc. at a3 as 
0 a2 a4 

The arithmetic involved in evaluating these determinants can largely be 
avoided since the Routh technique effectively does this more simply. An array 
of the following form is produced: 
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s" ao a2 a4 a6 
s" - ' a, a.3 a5 a? 
s" - 2 b, b2 b3 
s" - 3 c, c2 ('3 
s" - 4 d, d2 

The first two rows are formed by writing down alternate coefficients of the 
polynomial equation. Each value in the subsequent rows is calculated from 
four of the previous values according to the following pattern 

d - b - b,c2 
1 - 2 ' etc. 

c, 

Coefficients are calculated until only zeros are obtained, the rows shortening 
until the s0 row contains only one value. 

Every change of sign in the first column of this array signifies the presence of 
a root with positive real part. For stability, therefore, all values in the first 
column of this array must be positive. 

Example 8. 1. Consider the characteristic equation 

s4 + 2s3 + s2 + 4s + 2 = 0 

All coefficients are present and positive; hence, to determine whether the 
system is stable, form the Routh array by writing down these coefficients in the 
first two rows, and then evaluating from them the subsequent rows. 

s4 2 

s3 2 4 

s2 -1 2 b
1 

= I - (1)(4) = - I b
2 

= 2 - (I )(O) = 2 
2 2 

s' 8 0 c = 4 - (2)(2) = 8 etc. 
so 2 1 (-I) , 

There are two sign changes in the first column, hence there are 2 roots with 
positive real parts and the system represented by this characteristic equation is 
unstable . Note that the method does not give the value of these roots. 
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Special cases. Two kinds of difficulty can occur as a result of zeros in the 
array. 

(a) If a zero appears in the first column and the remaining terms in the same 
row are not all zero, then the terms in the subsequent row would all be infinite. 
The procedure for applying the Routh criterion is then to replace s by a new 
variable 1/a and thus obtain a new equation where the order of the coefficients 
has been reversed. If this equation has no roots with positive real parts then 
neither will the original equation have any. 

Example 8.2 

The Routh array is : s5 I 4 2 
s4 1 4 1 
s3 0 1 0 
s2 -00 
sl 

... and the table cannot be completed . 

Letting s = ! , the equation becomes 
(] 

and the array is : 

a5 1 4 
a 4 2 4 
a 3 2 0.5 
a 2 3.5 1 
a 1 - 0.07 
(]0 1 

There are two changes of sign; hence each equation has two roots with posi­
tive real parts. 

(b) If a complete row of zeros occurs then again the table cannot be completed. 
This condition indicates that one or more pairs of roots (real, imaginary, or 
complex) are an equal radial distance from the origin but diametrically 
opposite. The condition where one pair of conjugate roots lies on the imagin­
ary axis is of most interest, since then the system will oscillate with constant 
amplitude, a condition of marginal stability. The equation corresponding to 
the coefficients just above the row of zeros is called the auxiliary equation, and 
has as its highest order term the power of s indicated in the reference column 
to the left of the row. The order is always even and indicates the number of 
root pairs, e.g. second order indicates presence of two equal and opposite 
roots. The value of these roots can be obtained by solving the auxiliary equa­
tion, and these roots are roots of the characteristic equation. 

To complete the Routh array, differentiate the auxiliary equation with 
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respect to s, insert the coefficients of the resulting equation in place of the row 
of zeros, and then calculate the remaining coefficients as before. 

Example 8.3 

The table begins : 

The auxiliary equation is: 
Differentiate : 

s3 + 1 Os2 + 16s + 160 = 0 

s3 I 16 
s2 10 160 
s 1 0 0 

10s2 + 160 = 0 
20s = 0 

and cannot be completed. 

This coefficient is inserted as the s1 row, and the table completed 

s3 1 16 
s2 10 160 
s1 20 0 
s0 160 

There are no sign changes in the first column, hence there are no roots in 
the right half of the s-plane. The pair of roots is obtained from the auxiliary 
equation l0s2 + 160 = 0, or s = ±j4, i.e. a pair of conjugate imaginary roots, 
indicating undamped oscillations of constant amplitude at a natural frequency 
of 4 rad/second. 

Note : When analysing practical systems the coefficients often vary greatly in 
order of magnitude, in which case a substitution of the form a = lOs can help 
to ease the arithmetic. 

8.4 Nyquist stability criterion 

The Routh-Hurwitz criterion determines stability only in a binary sense (i.e. 
either stable, or unstable) and gives no information about the degree of stabil­
ity ; even although a system may be theoretically stable, oscillations may take 
too long to die out. Consider now the frequency domain. On the closed loop 
magnitude frequency plot (see Fig. 6.12) the absolutely unstable condition 
theoretically appears as a discontinuity, with amplitude tending to infinity at 
the frequency of instability. In practice, however, the amplitude is either 
limited to a steady value due to non-linearities, such as saturation within 
system components, or oscillation builds up to a point at which failure occurs. 
With sustained oscillations energy is transferred back and forth between two 
energy storage media (e.g. inertia and spring, or inductance and capacitance) 
and the external energy source only needs to make up the losses. 

The Nyquist diagram, defined as an open loop polar plot, a polar plot of the 
system with the loop opened and hence a plot of G(jw)H(jw), enables one to 
find whether any roots have positive real parts, without actually evaluating 
them. It also shows how near to instability that a system is, and thus can be 
used as one way of determining how best to improve the system stability. 
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Harmonic information experimentally obtained can also be used, without any 
need to determine the transfer functions. 

In general the characteristic function will have the form 

1 + G(s)H(s) = a K(s- z d(s- z2) ... 

s (s- p1)(s- p2 )(s- p3 ) . .. 
8.12 

For stability, none of the zeros of the characteristic function (roots of the 
characteristic equation) can have positive real parts. There is no particular 
restriction on the poles of l + G(s)H(s), which are also the poles of G(s)H(s). If 
any of the poles of G(s)H(s) lie in the right half of the s-plane (as can occur if 
there is a secondary feedback loop within the forward path) then the open 
loop system will be unstable, but the closed loop system can nevertheless still 
be sta ble. 

The Nyquist stability criterion in its most comprehensive form is somewhat 
complex, and to understand it requires familiarity with the mathematical 
process of conformal mapping. For most practical systems, those in which the 
open loop system is itself stable, a simplified form of the criterion can be 
applied ; the full criterion is only needed when the open loop system is 
unstable. 

The simplified Nyquist stability criterion states that if an open loop system 
is stable then the system with the loop closed is also stable provided that the 
G(jw)H(jw) locus on the polar plot does not enclose the ( - 1, jO) point. This is 
illustrated by Fig. 8.4. If the locus passes through the critical ( - 1, jO) point, 

Imaginary 
w increasing_,.,_. __ 

/-' ... " ...... 

" - 1 ' Real 

I / I 
Critical 

G(jw) H(jw) for---' 
unstable system ,' 

point 

Fig. 8.4 Open loop polar plots of stab le and unstable systems 

this corresponds to a system of marginal stability, one with a pair of wholly 
imaginary roots. 

The simplified Nyquist criterion can be described in an alternative way : a 
system is unstable if the open loop magnitude exceeds unity when the open 
loop phase lag is 180". Physically, the condition of instability can be visualized 
as follows. If the reference input to a closed loop system is a sine wave, then 
the signal returning to the error detector will have a different amplitude and 
phase. If the phase lag is 180°, then the returning signal, when inverted and 
added to the reference input, will reinforce the signal. If the amplitude of the 
returning signal is less than that of the input signal at this phase lag, a steady 
condition will be reached, but if the amplitude is greater then the amplitude 
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will build up continuously until the system saturates. Even if the input signal is 
removed the system continues to oscillate. 

8.5 Gain margin and phase margin 

The previous section makes it clear that the position of the G(jw)H(jw) open 
loop polar plot relative to the ( - l , jO) point has great significance when 
considering system stability. It is desirable to be able to quantify the degree of 
stability or relative stability of a system, and this can be done by indicating 
how close the Nyquist plot passes to the critical point. The measures used are 
the gain margin and the phase margin; these are defined below and illustrated 
in Fig. 8.5. 

Gain margin (dB) --+------;c.---.--+---

= 20 log10 I G~ lc 
Phase 
margin (degrees) 

- j 

G(jw)H(j w ) 

Fig. 8.5 Definition of ga in margin and phase margin 

The gain margin is defined as the amount by which the system gain can be 
increased before instability occurs, and is normally quoted in decibels. 

Hence gain margin = 20 log 10 I G~ lc dB 8.13 

where I GH lc is the open loop magnitude at the crossover point on the nega­
tive real axis, the magnitude corresponding to a phase lag of 180°. Thus for the 
plot of Fig. 8.5 which crosses at around the value 0.4 the gain margin would 
be 20 log10 2.5 = 8 dB. For first and second order systems the plot never 
crosses the negative real axis, and hence the gain margin is infinite. If the plot 
passes through the critical point the gain margin is zero, while if it encloses the 
critical point the gain margin is negative and gain must be reduced to attain 
stability of the feedback system. The gain margin by itself may not be sufficient 
to indicate relative stability, as can be seen from Fig. 8.6a where two plots 
each have an infinite gain margin although one passes very much closer to the 
critical point than the other, and Fig. 8.6b where the plot with the larger gain 
margin passes closer to the critical point. 
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- 1 - 1 

(a) (b) 

Fig. 8.6 Polar plots illustrating limitation of gain margin on its own as a measure 
of relative stability 

The phase margin is defined as the angle through which the Nyquist locus 
must be rotated in order that the unity magnitude point on the locus passes 
through the critical point. It is thus the amount by which the open loop lag 
falls short of 180° at the frequency where the open loop magnitude is unity. It 
is particularly significant when investigating the effect on stability of system 
changes which primarily affect the phase of G(jw)H(jw). 

The gain and phase margins can be read directly from a Bode plot (Fig. 8.7). 
The gain margin is the attenuation at the phase crossover frequen cy, while the 
phase margin is the phase lag at the gain crossover frequency deducted from 
180°. When a numerical value is specified for the minimum acceptable gain 
margin or phase margin, then the required value of loop gain can be deter­
mined by shifting the magnitude plot up or down on the graph until the 

Magnitude 
(dB) 

Phase - 90 
(degrees) 

- 270 

Frequency 

Fig. 8.7 Gain margin and phase margin on Bode plot of G(jw)H(jw} 



8.6 Loci of constant closed loop magnitude and phase 165 

specified value is achieved, and then calculating the corresponding value of 
gain. This frequently results in a value of gain which is satisfactory for stability 
but too low to give an acceptable steady state error. Where this is the case it is, 
in principle, possible to increase the gain to satisfy the accuracy requirements, 
and then to improve the correspondingly low stability margin by introducing 
additional components into the loop to reshape the harmonic locus in the 
vicinity of the gain and phase crossover points in such a way as to increase the 
gain and phase margins. This process of system compensation is outlined in 
Chapter 11. 

It must be stressed that when investigating the stability of a closed loop 
system by frequency domain methods it is the open loop polar diagram which 
is studied, and it is this plot of G(jw)H(jw), referred to as a Nyquist plot, 
which must not pass too close to the critical ( -1, jO) point. It is, however, the 
closed loop and not the open loop which is potentially unstable. As a conse­
quence, a practical system can be response tested with the feedback loop left 
open, and the margin of stability can be determined and any necessary alter­
ations made before the loop is first closed. 

8.6 Loci of constant dosed loop magnitude and phase 

The values of gain margin and phase margin form only one aspect of the 
description of the dynamic response of a feedback system, and there will 
frequently be a requirement to determine completely the variation of overall 
magnitude and phase with frequency, the closed loop frequency response. This 
can readily be evaluated from the open loop frequency response, whether 
obtained experimentally or analytically, with a small amount of calculation, 
and can be presented as a polar plot or as separate curves of closed loop 
magnitude and phase plotted against frequency. 

Consider a unity feedback system. The overall transfer function is given by 
Eq. 8.2 and is 

or, in the frequency domain, 

C(s) G(s) 
R(s) - I + G(s) 

C(jw) _ G(jw) 

R(jw) - I + G(jw) 

Hence the closed loop magnitude, by convention given the symbol M and 
often referred to as the magnification, is 

M = I C(jw) I = I C(jw) I = I G(jw) I 
I R(jw) I R(jw) 11 + G(jw) I 

8.14 

For any given frequency the magnitudes I G(jw) I and 11 + G(jw) I can be mea­
sured from the plot as illustrated in Fig. 8.8, and the value of M calculated by 
dividing one by the other. It is clear that if the open loop plot approaches 
close to the ( -1, jO) point, then for a certain range of w, 11 + G(jw) I ~ I G(jw) I 
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Fig. 8.8 Open and closed loop polar plots for unity feedback system with G(s) of 
1 

the form ) 
S(1 + TS 

and the closed loop magnification M rises to a maximum in the vicinity of one 
particular frequency. This is the peak value M P occurring at frequency wP (see 
Section 6.5), and at the limiting point of stability M P becomes infinite. The 
closed loop phase is given by 

LC(jw)- L R(jw) = L [C(jw)/R(jw)] = L G(jw) - L [l + G(jw)] 8.15 

and this angle can be measured directly from the plot. 
Since every point in the complex plane of a Nyquist diagram has associated 

with it a value of closed loop magnitude and one of phase, then points with 
the same value of one or the other can be joined to form loci of constant 
closed loop magnitude and phase. These are referred to as M contours and N 
contours respectively, and can be shown to be two families of circles. 

Let the coordinates of a point on the plot G(jw) be represented by x + jy. 

Then I 
C(jw) I I G(jw) I I x + jy I J(x

2 
+ y

2
) 

M = R(jw) = 1 + G(jw) = 1 + x + jy = J{(l + x)2 + y2 } 

M2[(1 + x)2 + y2] = x2 + y2 

.'. (1 - M 2)x 2 
- 2M2x + (1 - M 2)y2 = M 2 

Dividing through by (1 - M 2
) , and adding the common term ( M

2 

2)

2 

to 
both sides gives 1 - M 

or 8.16 
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equation of a circle with centre ( 
1 
~~2 , jO) and radius 

family of circles can thus be drawn on the Nyquist diagram ; 

these circles are loci of constant M , as shown in Fig. 8.9. M = I is a specia l 

Imaginary 

- 4 

Fig. 8.9 M contou rs on pola r diagram 

case giving a locus which is a straight line at x = - 0.5; as M becomes very 
large the circles become small and tend towards the critical ( -1, jO) point. 
When an open loop polar plot for a unity feedback system is superimposed on 
this, each intersection with an M circle gives a point on the M against w plot, 
the value of w being obtained by interpolation on the G(jw) locus. The M 
circle which is just tangential to the G(jw) locus gives the value of M P' and wP 
is read off at the tangent point. 

In a similar way it can be shown that contours of constant phase shift, the N 

loci, also form a family of circles. These loci have centres at (- 0.5, - j ~) 
and have radii 0.5 J( N~-+; 1 

)where N is the tangent of the phase angle; they 

thus take the form shown in Fig. 8.10. 
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-3 

Fig. 8.10 N contours on po lar d iag ram 

For analysis and design it is more convenient to have the M and N loci 
plotted in the gain-phase plane rather than the polar plane. Such a plot is 
called a Nichols chart and is shown in Fig. 8.11 for the region of most interest 
to the engineer. The co-ordinates are open loop magnitude (in decibels) and 
open loop phase (in degrees), and the M and N circles when transferred to this 
plot take the form respectively of one set of contours encircling and another 
set radiating from the critical 0 dB, - 180 degree point. When the open loop 
frequency response information is plotted on a Nichols chart, then the closed 
loop harmonic response information can be read off direct ly from the intersec­
tions of the locus with the M and N contours. Gain margin , phase margin, 
M P' wP, and bandwidth can be determined as shown in Fig. 8.12. To find the 
required value of gain to meet a specified value of any of these parameters the 
G(jw) locus is drawn for unity gain ay, and the resulting locus shifted as 
required in the direction of the lines of constant open loop phase, the amount 
of shift then giving the value of open loop gain needed. 
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9 
The Root Locus Method 

The transient response of a linear system to deterministic forcing functions has 
been shown to be dependent on the roots of the characteristic equation . The 
root locus method is a graphical procedure which was devised for determining 
the changing values of the roots of a characteristic equation for variation in a 
given system parameter. This parameter, often a simple multiplying factor 
proportional to the loop gain and normally labelled K , can be considered an 
independent variable and all roots of the characteristic equation become 
dependent on the parameter K . A set of loci drawn in the s-plane, showing 
how the root positions move in the plane as functions of the parameter K , is 
called a root locus plot. 

Appropriate digital computer programs are available for root evaluation , 
for plotting of the loci, and for Laplace inversion if time responses are 
required , and these programs ease the computational effort required . 
However, plots showing the approximate form of the root loci can be pro­
duced manually in a comparatively short time ; frequently these will suffice to 
give a useful qualitative understanding of system behaviour and of the influ­
ence of parameter and system variations. For example, if a system has several 
roots, then those which move towards the imaginary axis with an increasing 
value of K will become more dominant , while those moving away have pro­
gressively less influence on the transient behaviour. The influence of root 
position on the transient response has been described in Section 4.3. A value of 
K that gives a negative real root close to the origin can result in a sluggish 
exponential type of response. Roots lying along the same horizontal line have 
the same damped natural frequency of oscillation, while roots lying along a par­
ticular vertical line constrain the amplitude of the decaying response to the same 
exponential envelope exp ( - ( w 0 t). Every pair of complex roots yields an oscilla­
tory term in the response but the pair nearest the origin dominates the response . 

After defining in detail what is meant by a root locus plot and showing how 
one can be produced, Sections 9.1 and 9.2, a number of aids to construction 
which simplify the manual plotting of a diagram are listed and explained in 
Section 9.3. Examples are given to illustrate the use of these aids, then Section 
9.4 discusses the information obtainable from completed plots and the way in 
which such plots can be used . Finally, to cater for variations in more than one 
parameter, and to include situations where the independent variable is not a 
simple multiplying factor, the technique is generalized, Section 9.5, and the 
term root contours is then used to represent the loci of the roots of the charac­
teristic equation. 
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9.1 Root locus plots 

Consider a simple design situation in which the response of the mass-spring­
damper system shown in Fig. 2.6 is to be investigated for a range of spring 
sti ffness constants K. Variations in the numerical value of this parameter cause 
changes in the values of the roots of the characteristic equation, and thus an 
alteration in the position of the roots in the s-plane. 

For arithmetic simplicity, let M = C = I ; the transfer function , Eq. 2. 15, 
then reduces to 

X(s) 

F(s) s2 + s + K 

The roo ts of the characteristic equation 

s2 + s + K = 0 

can in this case be evaluated algebraically as 

Pu =!{-! ± J(1 -4K)} 

9.1 

9.2 

When K = 0 the two roots are both rea l, p1 = 0 and p2 = - I. If K is grad­
ually increased through the range 0 < K < 0.25, the two roots move towards 
each other along the negative real axis, starting from p1 = 0 and p2 = -I 
until they coincide for K = 0.25 resulting in a double root at s = - 0.5. 
Further increase in the value of K results in the roots becoming a complex 
conjugate pair, i.e. 

Pt ,2 =!{-1 ±jJ(4K -1)} 

and the response then becomes oscillatory in nature. ForK = oo the values of 
these roots are 

Pu = -! ± j oo 

which corresponds to an oscillatory response with infinite natural frequency, 
but nevertheless constrained within an amplitude decay envelope of exp - t/2. 

The loci of the two roots, when K varies from 0 to oo, can now be drawn as 
shown in Fig. 9.1a. The step responses in Fig. 9.1 b demonstrate how the 
system response changes with changing root position and how dependent the 
damped sinusoidal responses are on the parameter K. This result, of course, is 
not unexpected since for the second order transfer function , Eq. 9.1 , the 
undamped natural frequency has the value J K and the damping factor has 
the value 1/(2v' K) . Both the transfer function and the nature of the physical 
system lead one to expect the change of steady state value with K as shown . 

It will be appreciated that although theoretically such a system is inherently 
stable for all values of K , an acceptable engineering response is likely to 
require a value of K of the order of unity. A value of K = 10 is likely to be 
unacceptable because of the large initial overshoot which in certain situations 
would lead to mechanical failure. 
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By inspection of the root locus plot, the following information about the 
transient and frequency response is obtained for the system of Fig. 2.6 with 
transfer function given by Eq. 9.1. 

(i) Stability: The system is inherently stable for all values of stiffness K, no 
roots appearing in the right half of the s-plane. 

(ii) Transient response : For all values 0 < K < 0.25, the system is over­
damped, as there is no imaginary part contributing to the time solution. 
For 0.25 < K < oo , the system is under-damped, critical damping 
occurring at K = 0.25. The undamped natural frequency w" increases 
and the damping factor ( decreases with increase in K, but the ampli­
tude of the decaying response is constrained to the same exponential 
envelope. 

(iii) Frequency response : For any given value of K the roots p1 and p2 are 
directly available from the root locus plot enabling the transfer function , 
Eq. 9.1, to be written as 

X(s) 

F(s) (s- p1)(s- p2 ) 
9.3 

The Bode diagram can now be constructed by the methods of Section 
6.3, enabling frequency response studies to be made. 

To illustrate these ideas further consider a simple control engineering situ­
ation where feedback is used to maintain near constant speed of an internal 
combustion engine under varying load conditions. The arrangement assumed 
is that shown in block diagram form in Fig. 9.2a. The governor is a simple one 
with proportional gain term k 1 only, the actual engine speed is sensed by an 
electrical tachometer with a first order transfer function, and a reciprocating 
engine can for such a general study be adequately described by a second order 
transfer function (Eq. 2.17). At the design stage, one problem would be to 
evaluate the variation in dynamic performance resulting from changes in gov­
ernor gain setting k 1. [f, for this example, the numerical values of the system 
parameters are arbitrarily chosen to be r = 1 second, w" = 5 rad/second, and 
( = 0.9, then the open loop transfer function can be written as 

C(s) K 
G(s)H(s) = E(s) = (s + 1)(s2 + 9s + 25) 9.4 

where K = k 1k 2 k 3 , and H(s) = 1, as it is a unity feedback system. The closed 
loop transfer function is then 

C(s) K 

R(s) (s + 1)(s2 + 9s + 25) + K 
9.5 

from which the characteristic equation is 

(s + l)(s2 + 9s + 25) + K = 0 9.6 

For K = 0, it can be seen that the roots of Eq. 9.6 are the poles of the transfer 
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function G(s)H(s), Eq. 9.4, and these poles are the starting points for the 
separate loci. For the numerical values selected there is one real root at - 1 
and a complex conjugate pair at -4.5 ± j2.18. As K increases the values of 
these roots alter and the roots trace out the paths shown in Fig. 9.2b. 

Transient response curves for varying values of K can be obtained by simu­
lation of the system represented by the block diagram. Inspection of the mea­
sured engine speed response, Fig. 9.2c, obtained from simulation, to a unit step 
change in set point for a value of K near zero, shows a response similar to that 
of a first order system indicating that the real root close to s = - 1 is domin­
ant. As K increases the position of the real root moves to the left along the 
real axis while the complex roots move towards the right half of the s-plane 
and thus become more dominant. For a value of K = 315 the complex roots 
lie on the imaginary axis, the condition of marginal stability. As K increases 
from zero to infinity the system response varies from a rather sluggish over­
damped response for small values of K, through what might be considered a 
'good ' response at a value of around K = 35 when the damping factor of the 
dominant roots is 0.7, to the unstable condition which exists forK > 315. 

It is seen from Fig. 9.1 a and Fig. 9.2b that a root locus plot consists of 
distinct loci each plotting the variation in the value of one root as the indepen­
dent variable K is changed in value from zero to infinity. The number of root 
loci is equal to the order of the characteristic equation, and the plot is sym­
metrical with respect to the real axis, since complex roots must always occur in 
conjugate pairs for linear rational functions . Each locus starts (K = 0) at an 
open loop pole and finishes (K = oo) at an open loop zero or else moves off to 
infinity. 

9.2 Construction of root loci 

The most general form of the characteristic equation for a feedback system is 
(Section 8.1) 

I + G(s)H(s) = 0 9.7 

Since G(s)H(s) is generally derived from the grouping of several system ele­
ments, each with relatively simple transfer function , it normally appears in 
factored form 

G(s)H(s) = K(s - z 1)(s - z2 ) • • • (s- z'") 
(s - P1)(s - P2) . .. (s - p,) 

9.8 

where K is a constant. Any point s in the s-plane which satisfies Eq. 9.7 is a 
point on the root locus plot; the procedure for finding such points is the basis 
of the root locus method. 

The test to determine whether any point s lies on a locus is developed from 
Eq. 9.7 by substitution of Eq. 9.8, resulting in the equation 

K(s - z 1Xs - z 2) • • • (s- zm) 
__:._ _ __:.::...:..___..::.:...__.:...____;= = - 1 
(s - P1)(s - P2) . . . (s - p,) 

9.9 

As explained earlier, the standard terminology used in the literature is to 
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define the roots of the numerator labelled z as zeros, since they are the values 
of s that make the value of G(s)H(s) zero, while the roots of the denominator 
labelled p are known as poles since they make G(s)H(s) infinite in value. The 
left-hand side of Eq. 9.9 is a complex expression, therefore the equation is fully 
defined if the modulus and phase angle conditions are both satisfied. Writing 
Eq. 9.9 in modulus and angle form yields the equations 

Kls- z1 lls -z2 l ... ls -zml = 
1 

I S - P 1 II S - P2 I · · · I S - Pn I 
9.10 

[L(s - Z 1) + L(s- Zz) ... L(s- zm)]- [L(s- P1) + L(s- p2) . .. 

L(s- Pn)J = odd multiple of n 9.11 

The terms Is - z I and Is - p I will be recognized as the lengths of vectors 
drawn from either a zero or a pole to a points, whilst L(s- z) and L(s- p) 
are the arguments of these vectors measured relative to the positive rea l axis in 
the s-plane. By repeated application of Eq. 9.10 and Eq. 9.11 a root locus 
diagram can be drawn. The angle condition, Eq. 9.11, is used to locate points 
which are on the loci and hence determine the shape of the root locus plot. 
The magnitude condition, Eq. 9.10, then enables values of K to be assigned to 
specific points on each locus. 

As an illustration of the application of Eq. 9.10 and Eq. 9.11 , consider the 
open loop transfer function 

K(s + 1)(s + 2) 
G(s)H(s) = s(s2 + ls + S) 

which has poles marked x, and zeros marked o at the locations shown in Fig. 
9.3. If an arbitrary point s 1 in the s-plane is chosen and vectors a, b, c, d and e 
are drawn to the zeros and poles, Fig. 9.3, then s1 is a point on a root locus if, 
and only if, the ang le condition defined by Eq. 9.11 is satisfied. Using the 
symbols given in the figure, this requires that 

({3 1 + {3 2)- (a 1 + a 2 + a 3) =odd multiple of n 

If this is so, then the point s 1 lies on one of the loci and the value of K at this 
s 1 location can be evaluated from the magnitude condition, Eq. 9.10, 

Kab 
-=1 
cde 

cde 
K=­

ab 

Given the pole-zero configuration of the open loop transfer function 
G(s)H(s), the construction procedure for manual plotting of a root locus 
diagram can be summarized as follows : 

(i) find, by trial and error, points in the s-plane that satisfy the angle condi­
tion given by Eq. 9.11 , and join them to form the root loci. 

(ii) calculate the K values at points on the root loci by using the magnitude 
condition, Eq. 9.10. 

It can now be seen that the root locus technique enables the position of the 
roots of the characteristic equation in the s-plane to be determined without 
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actually solving analytically for the roots of the characteristic equation for 
varying values of an independent variable. At first sight the application of (i) 
would appear to be a most impractical procedure to implement manually for 
all but the simplest of systems. However, with the aid of a series of rules which 
are described in the next section, the field of search can be reduced markedly 
and a root locus diagram can be drawn more readily. 

9.3 Aids to construction of root locus diagram 

A number of rules developed from Eq. 9.10 and Eq. 9.11 significantly aid the 
manual plotting of a root locus diagram and are of real value since, when 
methodically applied, they give a very good idea of the shape of the loci . The 
rules are given without rigorous proofs, but simple justification for each rule is 
provided whenever possible. 

I. Starting point of loci : The loci start, K = 0, at the n poles of the open 
loop transfer function G(s)H(s) . 

Using the relationship G(s)H(s) = KP(s), then the characteristic equation is 
Q(s) 

Q(s) + K P(s) = 0. From this equation it can be seen that the values of s tha t 
satisfy this equation when K = 0 are the factors of Q(s), the poles of the open 
loop transfer function . 

2. Number of loci : The number of loci is equal to the order of the character­
istic equation. 

Each root traces out a locus as K varies from 0 to infinity. The loci are 
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continuous curves and, since complex roots must occur in conjugate pairs, the 
plot is symmetrical about the real axis. 

3. Termini of loci : The root loci end at them zeros of G(s)H(s), and if m < n 
as is usually the case the remaining (n - m) loci end at infinity. 

The loci terminate as K oo, and the magnitude condition, Eq. 9.1 0, can 
then only be satisfied either if one of the terms 1 s - z I is zero or one of the 
terms Is - pI is infi nite. 

4. Loci on real axis: Portions of the rea l axis are sections of root locus if the 
number of poles and zeros lying on the axis to the right is odd. 

Consider a trial point on the real axis. The angle contribution from any pair 
of complex conjugate poles is 2n (in Fig. 9.4 when s 1 is on the real axis then 

lm 

Re 

K=O K =O 

K=O 

Fig. 9.4 Root loci on real axis 

a 2 + a 3 = 360°), the angle contribution from a real pole or zero to the right is 
- n or + n respectively, while that from a real pole or zero to the left is 0. 
Hence the total angle is an odd multiple of n only if there is an odd number of 
poles and zeros lying on the real axis to the right of the trial point. 

5. Angles of asymptotes: Those loci terminating at infinity tend towards 
asymptotes at angles relative to the positive real axis given by 

3n 5n {2(n - m) - l}n 
, ' ' ... , n - mn - mn-m n- m 

This can be shown by considering the angle condition as applied to a point 
far from the group of open loop poles and zeros. The angle contribution from 
each pole and zero is then numerically equal. The effect of each zero is can­
celled by that of a pole, and the sum of the angles for the remaining (n - m) 
poles is then an odd multiple of n, provided points lie along lines at the above 
angles. If one locus goes to infinity it does so at 180°, i.e. along the negative 
real axis, if two loci go to infinity they approach asymptotes at angles 90° and 
270°, if three a t 60°, 180°, and 300° etc. 

6. Intersect ion of asymptotes on real axis : This occurs at the 'centre of 
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gravity' of the G(s)H(s) pole zero configuration , where the centre of gravity is 
determined from the following expression: 

l)numerical values of G(s)H(s) poles) - l)numerical values of G(s)H(s) zeros) 

n - m 

7. Intersection of root loci with imaginary axis: This is the limiting condi­
tion for stability; the value w on the imaginary axis at intersection, together 
with the value of K , can be determined by application of the Routh- Hurwitz 
criterion as presented in Section 8.3. 

8. Breakaway from real axis : A point in the s-plane where multiple roots 
exist is called a breakaway point ; it occurs when two or more loci meet a t the 
point and subsequently break away again along separate paths. The location 
of breakaway points can be found a nalytically by solving the equation 
dK/ds = 0. 

Practical computational difficulties limit the ease of application of this rule, 
and it should be noted that not all of the roots of the equation dK /ds = 0 
correspond to breakaway points. The actual breakaway points are those roots 
of the equation at which the root locus angle condition is satisfied. If the 
polynomial is of high order it may be easier to find the breakaway points 
graphically by use of the angle condition than by solution of this equation. In 
many engineering situations the poles and zeros of G(s)H(s) all lie on the real 
axis, making it possible to use a graphical approach to find the breakaway 
point. Consider a case where there are three real poles at s = 0, s = - I , and 
s = - 2 respectively, Fig. 9.5. A breakaway point must exist on the real axis 

K=O 

- 2 1 Re 

Fig. 9.5 Breakaway from real axis- mu ltiple root condi tio n 

somewhere between s = 0 and s = -I (rules 2 and 4). Choose a trial point 
which is very close to the axis and whose distance along the negative real axis 
is b, then application of Eq. 9.11 requires that 

- (a 1 + a2 + a3 ) = odd multiple of rr 

or 

hence 3b2
- 6b + 2 = 0 

b = 0.42 (or 1.58 which does not represent a breakaway point) 

This procedure of constructing an algebraic equation by use of the angle con­
dition and solving to find the breakaway point is a more direct and practical 
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method. The root loci leave such a breakaway point in a direction normal 
to the real axis. 

9. Angle of departure from complex pole: An indication of the initial direc­
tion in which a locus leaves a complex pole can be determined by applying Eq. 
9.11 to a point very close to the pole of interest. 

To illustrate, consider a situation in which a pair of complex poles is situ­
ated at - 1 ± j with a third pole at the origin as shown in Fig. 9.6. Let s 1 be 
the trial point of interest, then 

- (a 1 + a 2 + a 3 ) =odd multiple of rr 

lm 

Re 

- 1 

/ 
- 1 

K= 0 

Fig. 9.6 Angle of departure of locus from complex pole 

Since s 1 is very close to the pole, a 1 = 135° and a 3 = 90° irrespective of the 
value of a 2 , 

hence 

and 

- (135 + (X2 + 90) = - 540° 

(X2 = 540 - 225 = 3 15° 

which indicates that the locus will initially leave the complex poles in the 
direction of the origin. This approach is also useful for finding the angle of 
arriva l at complex zeros. 

By application of these nine simple rules a good approximation to the shape 
of each locus can be found , enabling the general form of a root locus diagram 
to be sketched. If a more accurate location of certain intermediate points is 
desired, then these sketched locus paths will give guidance as to the location in 
which the search to satisfy the angle condition, Eq. 9.11 , should be conducted. 
Finally, numerical values of K are then directly obtained by application of the 
magnitude condition, Eq. 9.1 0. 

Example 9./. As an exercise to illustrate the use of these rules, consider the 
speed regulating system shown in Fig. 9.2a which has the characteristic equa­
tion defined by Eq. 9.6, i.e. 

(s + l)(s2 + 9s + 25) + K = 0 9.12 
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Details are inserted on the s-plane (Fig. 9.7) as they are determined from the aids: 
1. Starting point of loci: The loci start at the poles of G(s)H(s) , i.e . the roots 

of Eq. 9.12 when K = 0. These are 
s= - l,s= - 4.5±j2.18 

2. Number of loci: The number of loci is equal to the order of the character­
istic equation, and Eq. 9.12 is of order 3. 

3. Termini of loci: There are no zeros of G(s)H(s), hence all loci move 
towards infinity as K becomes very large. 

4. Loci on real axis : There will be a section of root locus between s = - I 
and s = - oo, since along this section of the real axis the total number of poles 
and zeros to the right is one, and hence is odd. The remainder of the real axis 
does not form part of a root locus. 

5. Angles of asymptotes: Since all 3 loci move to infinity, they approach 
asymptotes at 60°, 180°, and 300° to the positive real axis. 

6. Intersection of asymptotes on real axis : The position of this point is at the 
centre of gravity of the 3 poles, which is given by 

(-I -4.5 + j2.18- 4.5- j2.18) 
s = 3 - 3.33 

Increasing K 

4 Re 

-8 

Fig. 9.7 Sketch of root locus diagram for speed regulating system of Fig 9.2 
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7. Intersection of root loci with imaginary axis: This is found by construc­
tion of the Routh array for the characteristic equation, Eq. 9.12, viz 
s3 + 1 Os2 + 34s + 25 + K = 0 

34 

25 + K 

s
1 34 _ C\~ K) 0 

s0 25 + K 

The limiting condition for a positive value of K is 315, and the frequency value 
is found from solution of the auxiliary equation 

l Os2 + 25 + K = 0 

On the imaginary axis s = jw, which yields 

J(25 + K) 
w = 

10 
= J34 = 5.84 radjsecond 

8. Breakaway from real axis: There is a single locus on the real axis moving 
from the pole at - 1 to - oo and no multiple roots occur on the real axis. 

9. Angle of departure from complex poles : Use of the angle condition, Eq. 
9.11, and measuring angles from the diagram, yields 

-(a1 + a 2 + a3) =odd multiple of n 

- (149 + (X2 + 90) = - 540 

a 2 = 540 - 239 = 301 degrees 

The exact location of a number of intermediate points on the dominant locus can 
now be found graphically by application of Eq. 9.11. The magnitude condition, 
Eq. 9.10, can be applied to find values of Kat specific points on the loci. For 
example for the point s1, Fig. 9.7, a=2.3 , b=l.9, and c=3.5, obtained by 
measurement, hence 

K = 2.3 X 1.9 X 3.5 = 15.3 

In many engineering design situations this approximate root locus diagram 
would be adequate for preliminary design purposes. 

9.4 Interpretation of the root locus diagram 

To help understand the significance of the root locus technique, and to use it 
as a design tool, it is necessary to know what effect altering the position of 
poles and zeros or introducing new poles and zeros has on a root locus plot 
and hence on the system dynamic behaviour. A control engineer must build up 
a background of knowledge that enables him to relate root position to tran­
sient behaviour if he wishes to use the root locus approach as a guide for 



9.4 Interpretation of the root locus diagram 183 

better system design. For example, he must be fully aware that introduction of 
an additional pole or moving a pole towards the right pushes the dominant 
complex loci towards the imaginary axis and by so doing reduces the system 
relative stability. Conversely, the introduction of a zero pulls the dominant loci 
away from the imaginary axis, shortens the dominant portion of real locus and 
thus tends to make the response more sluggish for a given value of system 
gain. The root locus diagram shows where a dominant branch comes from and 
how it is affected by open loop poles and zeros; a designer's attention is 
usually focused on the specific aspect of how close this dominant branch runs 
to the imaginary axis rather than on the overall pattern of the loci. A final 
choice of root position, however, can only be made with the aid of physical 
understanding of the system and sound engineering judgement and skill. 

To highlight some of the more important points of interpretation, the per­
formance changes occurring in a system with a second order process and three 
different controllers will be studied. The system is shown in block diagram 
form in Fig. 9.8a for a controller with the simple transfer function of unity, and 
a process with a pair of complex poles -2 ± j2, which are the factors of 
s2 + 4s + 8. Fig. 9.8b, the root locus diagram for the overall system, shows 
that the closed loop system is always stable for all positive values of K . The 
inherent weakness of a system having these controller/ process characteristics 
can be seen from Fig. 9.8c, in that although the system exhibits a typical 
second order step response of acceptable form when K = 10, it also shows a 
steady state error from the set point of 45 %. This magnitude of set point error 
normally would not be acceptable in engineering practice, making it necessary 
to modify the controller characteristics. A steady state error can be avoided by 
the introduction of a pole at s = 0, which is achieved by using an integral 
action controller, as shown in the block diagram Fig. 9.9a. The root locus 
diagram is shown in Fig. 9.9b. For small values of K the response would be 
sluggish, as can be seen from Fig. 9.9c for a value of K = 1, and hence unac­
ceptable in engineering practice. For values of K in excess of 32, instability 
occurs. Again a value of K = 10 gives a transient response that would be 
acceptable, still resembling the response of a second order system with 
damping factor 0.4, but with this controller the steady state positional error is 
now zero. 

Guaranteed absolute stability can be restored for all positive values of K by 
the introduction of an open loop zero which pulls the complex loci of Fig. 9.9b 
away from the imaginary axis. An open loop zero results if the characteristics 
of each controller are added to create the controller shown in Fig. 9.10a. This 
type of controller is referred to as a proportional plus integral (P + I) control­
ler and finds extensive use in engineering. There are still three loci but one now 
terminates at the zero at - 1, and two move to oo as shown in Fig. 9.10b. The 
asymptotes are at 90° and 270° and they intersect the real axis at - 1.5 ; on the 
real axis there is a portion of locus only between 0 and - I. This demonstrates 
that the introduction of the lead term (1 + s), in the numerator of G(s)H(s), 
has made the system stable for all values of K but has changed the system 
characteristics in such a way that the slow exponential decay term is more 
prominent for any given value of K. This undesirable condition must be 
minimized during design by appropriate positioning of the zero achieved by 
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Fig. 9.8 System with proportional control action (a) block diagram (b) root locus 
diagram (c) step response of system 
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Fig. 9.9 System with integral control act ion (a) block diagram (b) root locus 
diagram (c) step response with variation inK 

introducing a second controlled variable into the controller eq uations, i.e. 

M(s) = k 1 ( I + -
1
-) E(s), a design situation discussed in C hapter I 0. Transient 

T;s 
responses forK= 10, 20, a nd 100 a re shown in F ig. 9.10c, indicating that the 
best value of K would be in the region of 20, an increase of a fac tor of 2 over 
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the previous two controllers, resulting from the need to partially counteract 
the effect of the root on the shortened locus on the real axis. 

The value of studying changes in the root locus pattern resulting from 
changes in the controller characteristics, and the design ideas that might 
emerge from consideration of these, are limited by the fact that there is no 
generally known acceptable specification for the optimum location of the roots 
of 1 + G(s)H(s) = 0. Were this not so, the problem would be reduced to 
adjusting loop parameters or changing components in the loop to obtain the 
desired root positions. 

It must be emphasized that the root locus plot shows the locus of the roots 
of the system characteristic equation only, and for the general case, Section 2.3, 
the transient response is also influenced by any closed loop zeros which are 
present. Therefore, when attempting to predict the transient response from a 
root locus pattern, the influence of both closed loop poles and zeros must be 
taken into account either by use of simulation studies or by direct solution of 
the equations. Having obtained a root locus plot, extension of the ideas pre­
sented in Section 4.3 enables an analytical expression for a closed loop tran­
sient response curve to be derived for any given value of K . The method is 
illustrated in the next example. 

Example 9.2. For the system shown in block diagram form in Fig. 9.1 Oa, find 
an analytical expression for the output response c(t) for a unit step change in 
the set point r(t). 

The closed loop transfer function for this unity feedback system is 

where 

Hence 

where 

C(s) G(s) 

R(s) I + G(s) 

G(s) = forward path transfer function . 

C(s) 

R(s) s3 + 4s2 + 8s + k 1k 2(s + I) 

K(s +I) 

s3 + 4s2 + (8 + K)s + K 

K = kJ 2 

9.13 

Examination of the root locus diagram, Fig. 9.10b, might suggest that a value 
of K = 20 is likely to give an acceptable transient response. The roots of the 
denominator of Eq. 9.13 for this value of K can be found from the plot or 
analytically and, with the root values rounded off to one decimal place, the 
equation can then be written in factored form as 

C(s) 20(s + I) 

R(s) (s + 0.8)(s + 1.6 + 4.8j)(s + 1.6 - 4.8j) 
9.14 

Letting R(s) = ~, a unit step input, and expanding C(s) into partial fractions, 
s 
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as in Section 4.3, enables the output response to be written as 

( ) 
ro _ 1 {A B Ds + E } c t = ~ -+ +-=------

s (s + 0.8) s2 + 3.2s + 25.6 

Solving for the constants A, B, D, and E gives A = 1, B = -0.24, D = - 0.76, 
and E = - 2.64, hence 

() _ 1 {1 0.24 0. 76s + 2.64 } 
c t = !t' ~ - (s + 0.8) - (s2 + 3.2s + 25.6) 

Expressing c(t) in a form that enables the Laplace inverse of each term to be 
found from Table 2.1 gives 

c t _ 
2

_1{! _ 0.24 _ 0.76(s + 1.6) _ 0.30 x 4.8 } 
( ) - s (s + 0.8) (s + 1.6)2 + (4.8)2 (s + 1.6)2 + (4.8)2 

= 1 - 0.24e - 0 · 8 ' - 0.76e - 1. 6 ' cos (4.8t)- 0.30e - 1. 6 ' sin (4.8t) 

= 1 - 0.24e - 0 · 8 ' - 0.82e - 1.6 ' sin (4.8t + tan - 1 2.54) 

By inserting discrete values of t, output values can be calculated and the step 
response curve drawn. 

If the open loop zero had appeared in the feedback path instead of the 
forward path 

I.e. 
K 

G(s) = s(s2 + 4s + 8) , H(s) = s + 1 

then the characteristic equation and the root locus plot would have been 
identical to the above. There would, however, be no zero in the closed loop 
transfer function, Eq. 9.14, and the resulting step response would be given by 

c(t) = 1 - l.08e- 0 ·8 ' - 0.17e - 1. 6 ' sin (4.8t - tan - t 0.53) 

which is clearly not the same as that evaluated above. This demonstrates the 
importance of not overlooking closed loop zeros, as can happen when using a 
root locus diagram alone for design purposes. 

Evaluation of a transient response equation can be a lengthy procedure for 
systems with high order characteristic equations. However, some simplification 
to the characteristic equation can be made by neglecting any root whose 
distance from the origin is more than 5 to 6 times that of the dominant roots, 
the resulting error being very small. It is more convenient to simulate a system 
on a computer, either analogue or digital, to obtain data on transient behav­
iour, and to use the root locus plot as a guide to the importance of, and likely 
changes resulting from, variation in system parameters. This approach has the 
advantage of avoiding the need for lengthy computer trial and observation 
periods. 
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9.5 Root contours 
To enable the root locus technique to be applied to engineering design prob­
lems in which a number of independent variables are to be chosen, the tech­
nique was extended to allow additional loci to be added to a root locus 
diagram. Such loci representing variation of roots with a second independent 
variable, and each corresponding to a given value of the first independent 
variable (K), are known as root contours. The approach also enables a root 
locus diagram to be plotted for an independent variable which is not normally 
a simple multiplying factor. The method employed to construct root contours 
necessitates the rearrangement of the system equations tq form an equivalent 
transfer function in which the independent variable does in fact appear as a 
simple multiplying factor; after this the plot can be drawn as described in 
Sections 9.2 and 9.3 above. 

To illustrate the method of approach, consider the block diagram shown in 
Fig. 9.11 a, where T is taken as the independent variable of interest, and the 
system gain constant K on this occasion has been previously specified. A root 
locus diagram is required to show the variation in the roots of the character­
istic equation as T increases in value from 0 to oo for certain fixed values of K . 
To be able to study this effect of a variable amount of derivative action in the 
feedback loop on the roots of the characteristic equation, the closed loop 
transfer function must be rearranged as follows. The closed loop transfer func­
tion for the system shown in Fig. 9.lla can be written as 

C(s) K 

R(s) s3 + 4s2 +8s +KTs +K 
9.15 

Divide through by terms not containing the independent variable T to yield 

C(s) 

R(s) 

K 

s3 + 4s2 + 8s + K 

KTs 
I + -=----=----­

s3 + 4s2 + 8s + K 

9.16 

The transfer function written in this form corresponds to an equivalent system 
with different values of G(s) and H(s) but with the same characteristic equation. 
By inspection it can be seen that 

KTs 
[G(s)H(s)].quiv = sJ + 4s2 + 8s + K 9.17 

where the independent variable T is now a simple multiplying factor and 
hence a root locus diagram can be plotted in the normal way. If a family of 
curves is constructed from Eq. 9.17 for a range of values of K , then the root 
contours begin at the poles of [G(s)H(s)]equiv and end at its zeros. A closer 
inspection of Eq. 9.17 reveals that the poles in this equation are the roots of 
the characteristic equation of Eq. 9.15 when T = 0. Hence the starting points 

of the root contours are points on the root loci for G(s) = K for 
s(s 2 + 4s + 8) 
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specific values of K . This is shown in Fig. 9.11 b for a pair of values of K, and 
the independent parameter T. The introduction within the feedback loop of 
the transfer function H(s) = I + Ts has made the system inherently stable but, 
for increasing values of T the response becomes sluggish, as can be seen from 
Fig. 9.11 c, and these responses would , in general, not be satisfactory in an 
engineering situation. 

The dynamic behaviour of this system would be affected by the presence of 
a simple time constant r in the feedback loop, as shown in Fig. 9.12a. In a 
practical system this simple time constant could represent the dynamic charac­
teristics of a monitoring transducer. Alternatively the combined feedback 
blocks can be viewed as a compensation network introduced into the system 
loop in an attempt to achieve a specific change in the system dynamic behav­
iour. Part of any design task would be to study the effect on system per­
formance of variation in this parameter. 

The approach is again to find from the actual closed loop transfer function 
an analytically equivalent open loop tra nsfer function which enables the root 
locus diagram to be constructed. From inspection of Fig. 9.12a the closed loop 
transfer function is 

C(s) K(rs + I) 
R(s) s(s2 + 4s + 8)(rs + I) + K(l + T s) 

Choosing a value of K = 8 

C(s) 

R(s) 

8(rs + I) 

8(rs + I) 

s3 + 4s2 + (8 + 8 T)s + 8 

rs 2(s 2 + 4s + 8) 
+~--~~------~---

s3 + 4s2 + (8 + 8T)s + 8 

which yields an equivalent open loop transfer function 

rs2(s2 + 4s + 8) 
[ G(s)H(s)] . = ----c----- -7-----------'-­

equ•• s3 + 4s2 + 8(1 + T)s + 8 

9.18 

9.19 

For any chosen value of T , the root locus is plotted in the normal way, Fig. 
9.12b. The loci start at the roots of the characteristic equation defined in Eq. 
9.15 and end at the zeros - 2 ± 2j, 0 a nd 0 of Eq. 9. 19. It will be noticed that 
since the order of the numerator of Eq. 9.19 is greater than that of the denomi­
nator, one of the three loci starts at infinity. In this case the portion of the real 
axis to the left of - 1.5 forms part of a root locus; this is a necessary condition 
to satisfy Rule 4 of Section 9.3, and there will be a breakaway point to the left 
of the - 1.5 point. 

A most interesting result has emerged for the value ofT = i; a fast response 
system has resulted with guaranteed stability as can be seen from inspection of 
Fig. 9.12b and Fig. 9.12c. 

This illustration demonstrates clearly that the simple rules employed for 
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constructing a root locus diagram can be extended to root contours for varia­
tion of any poles or zeros. If a pole and zero are both to be varied, then two 
sets of root contours are necessary, the poles of the second being roots on the 
first. This makes possible the design of compensation networks of the type 
shown in the feedback loop of Fig. 9.12a, via a root locus plot. Further 
illustration of the use of the method for design purposes is given in the con­
cluding chapter. 



10 
The Sampled- Data Process 

Comparisons are made in this chapter between the discrete data and the 
continuous data system. These are used to illustrate the impact on system 
performance result ing from the introduction into the closed loop control 
scheme of a sampler, a device that converts continuous data into a discrete 
data form. Typically this might simply be to replace an analogue control 
device by its digital equivalent. However, the wider use of computer control 
resulting from increased availabi lity of micro-electronic devices does extend 
the range of control algorithms that can be physically realized by the design 
engineer without significantly increasing equipment cost. Expanding the 
number of control algorithms readily available will enable more efficient 'start­
up' and 'shut-down' procedures to be designed and so ensure less product 
waste . The improvement possible in servomechanism and regulator system 
performance will lead to better process dynamics and the manufacture of 
higher quality product, particularly when frequent quality changes are necess­
ary on the same plant. 

In its most basic form the sampled-data scheme can be defined as one in 
which the error signal is intermittently sampled at a constant rate. The error 
signal is then transformed into a sequence of pulses which are amplitude 
modulated in accordance with the continuous function of the signal from 
which the samples are taken. This basic form of sampled-data system is illus­
trated in Fig. 1 0.1. The symbols r(t), c(t) and e(t) represent the set-point dis­
turbance (reference input for servo system), the output response and the 

Sampler 

Process 
c(t) r(t) e*(t) Discrete data networks 

and control algorithm ...,__--I 

discrete data continuous data 

Fig. 10.1 Block diagram of sampled-data controller and process 

actuati ng error signal respectively and each is a continuous time function . A 
starred symbol is used to indicate that a time function is in sampled form, thus 
the error variable denoted e*(t) is the discontinuous time function which is the 
input disturbance to the controller. 
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10.1 Mathematical description of sampling process 
Although the process of sampling can be performed at a constant rate, at a 
variable rate, or at random, in the following analysis and in most practical 
a pplications constant rate periodic sampling is used . The sampling device 
permits the input disturbance to be sensed only during the short interval (Ll) of 
a sampling period and ignores this disturbance during the much longer time 
interval (T - Ll) until the next sampling instant , Fig. 10.2. In most engineering 

"" '!1 I I I I I I I I I 
~ 
t 

e(t) 

ei3Tl 

e •(t) 

0 T 2T 3T 

/ 

/ 

2T 3T 

t. « T 

~G--

Fig. 10.2 The process of sampling a continuous signal. Eq 10.1 

applications the width Ll of the sampled pulse is small in comparison with the 
dominant process time constant and hence the sampler output can be rep­
resented without serious loss of accuracy as a train of rectangular pulses. The 
information from the continuous error signal is then contained in the ampli­
tude variations that occur in the pulse train. The assumption of rectangular 
pulses of negligible width simplifies significantly the synthesis and analysis of 
sampled-data control schemes. 

With e(t) as the continuous input disturbance and e*(t) as the sampler 
output, the input and output variables for the sampler can be related by 

e*(t) = br(t)e(t) I 0.1 

where c:5r(t) is the ideal sampling function which is a train of unit strength 
impulses described by 

X. 

c:5r(t) = L b(t - nT) 
n=O 
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The nomenclature c5( t - nT) by convention implies a unit impulse at time nT. 
To aid the understanding of the fundamental concept of sampling, each of the 
terms used in Eq. 10.1 is shown in Fig. 10.2. 

Thus, Eq. I 0.1 can be written as: 

"' 
e*(t) = e(t) L c5(t - nT) 

n=O 

if 

= L e(nT) c5( t - nT) 10.2 
n=O 

where e(nT) is the amplitude of e(t) when t = nT. Applying Laplace transform­
ation gives 

::r 

E*(s) = Sf[e*(t)] = Sf L e( nT) c5(1 - nT) 
n=O 

= Sf[e(O) c5(t ) + e(T) c5(t- T) + e(2T) c5(t- 2T) + ... ] 
Using Eq . 2.8 and Table 2. 1 yields 

E*(s) = e(O) + e(T)e Ts + e(2T)e l Ts + ... 
y 

I.e. E*(s) = L e(nT)e - nTs 

tt = O 
10.3 

Jury (reference 24) shows th at a n equ ivalen t harmonic representation is 

I r 

E*(s) = - L E(s + jnw5 ) I 0.4 
T , = - f 

where ws denotes the sampling frequency 2n/ T. 
The first of these two equations (Eq. 10.3) is a convenient representation for 

analysis in the time domain and allows the introduc tion of z-transform theory 
which is the di screte counterpa r t to the Laplace transform of continuous data 
sys tem analysis. The second equation (Eq. 10.4) is a t heoretica l basis for the 
extension of the basic frequency ana lysis methods to sampled-data systems. 

10.2 Transfer function of sampled-data element 

In the sampler a nd process arrangemen t of F ig. 10.3 the response c(t) is 
sampled synchronously with t he manipulated va riable m(t) to yield the pulsed 
time responses c*(t) and m*(t) ; the function g(t) is the impulse response func­
tion of a linear process wit h transfer fu nction G(s). 

The process input disturbance m*(t) is a train of ideal narrow pulses of 

c• (t) 

Fig. 10 .3 Process with synchronized samplers 
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varying amplitude and for the linear process the output will be the sum of the 
individual impulse responses appropriately displaced in time. That is, for the 
time period 0 ::;; t ::;; n T 

c(t) = g(t)m(O) + g(t - T)m(T) + g(t - 2T)m(2T) + . . . 10.5 

Taking the Laplace transform of Eq. 10.5 and using Eq. 2.8 gives 

C(s) = G(s)m(O) + G(s)m(T)e - Ts + G(s)m(2T)e - 2 rs + ... 
00 

= G(s) L m(nT)e - nTs 
n = O 

C(s) = G(s)M*(s) 10.6 

Equation 10.6 implies that the Laplace transform of the output variable c(t) is 
equal to the product of the Laplace transform of the pulsed input variable and 
the transfer function of the process. Note the similarity between Eq. 10.6 and 
that for the same arrangement but without the samplers given as Eq. 8. l. 

By a similar argument it can be demonstrated that 

C*(s) = G*(s)M*(s) 10.7 

where G*(s) is the overall transfer function of the sampled-data process and is 
defined (Eq. 1 0.4) as 

1 00 

G*(s) = - L G(s + jnw.) 
T n= - oo 

It should be noted that the sampled-data transfer function gives information 
only at sampling instants. 

10.3 Closed-loop transfer function 

Drawing an analogy with Fig. 8.2b, the basic sampled-data system would be as 
shown in Fig. 10.4a. To help in the development of the transfer function 
relationships, Eq. 10.3 allows E*(s) to be written as 

00 

E*(s) = L [r(nT)- b(nT)]e-nTs 
n=O 

= R*(s) - B*(s) 

and hence the equivalent circuit shown in Fig. 10.4b can be introduced for 
analytical purposes. 

Inspection of Fig. 10.4b reveals that 

C(s) = G(s)E*(s) 

E*(s) = R*(s) - B*(s) 

B*(s) = GH*(s)E*(s) 

10.8 

10.9 

10.10 

where GH*(s) is the pulsed transfer relationship of the product G(s)H(s). These 
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representation 

expressions can be treated as algebraic equations in an identical manner to 
those in Sections 2.3 and 8.1 . 

Substituting for B*(s) from Eq. 10.10 into Eq. 10.9 gives 

E* s - R*(s) 
( ) - 1 + G H*(s) 10.11 

Inserting Eq. 10.11 into Eq. 10.8 yields the Laplace transform for the output 
variable c(t) of the sampled-data system 

C(s) = G(s)R*(s) 
1 + GH*(s) 

10. 12 

Using Eq. 10.4 to replace the starred terms in Eq. 10.12 and substituting 
s = jw yields the frequency function 

co 

G(jw)T - 1 L R(jw + jnw.) 

C(jw) = •; - 10.13 

1 + r - l L GH(jw + jnw,) 
n ==- co 

The function GH*(s) is defined as the open-loop transfer function of the 
sampled-data control system. 
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10.4 Polar plots 

Graphical representation of the frequency response information for GH*(s) can 
be obtained from the Argand diagram as described in Section 6.2 if the fre­
quency response function is written as 

X 

GH*(jw) = T - 1 L GH[j(w + 11W5 )] 

11 ::;- X 

= T - 1{GH[jw] + J
1 
GH[j(w + 11W5 )] + ,t GH[j(cv - llW5 )]} 

= T - 1
{ GH[jw] + GH[j(w + ws)] + GH[j(w - w.)] 

+ GH[j(w + 2w5 )] + GH[j(cv- 2cv5)] + ... } 10. 14 

and then the vectors for the component functions in this expression are com­
bined graphically or numerically. Since the sampling frequency is usually 
chosen to be at least 4 or 5 times the system bandwidth, Eq. 10.14 can be 
approximated by the first three terms without serious loss of accuracy in the 
polar plot, i.e. 

GH*(jw):::::: T - 1GH[jw] + T - 1GH[j(w + w,)] + T - 1GH[j(w - w
5

)] 10.15 

The contribution made by the second term with increasing values of w 
becomes less significant and can often be omitted from Eq. 10.15. The 

lm 

T- lGH(jw) 

Re 

c, 

Fig. 10.5 Approximate polar plot for sampled-data system 
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sequence of events for the construction of GH*(jw) using the remaining two 
terms, illustrated in Fig. 10.5, is : 

l. Draw the polar plots for both positive and negative frequency values, as 
described in Section 6.2. 

2. Label the points for specific frequency values w 1 , w 2 , •.• , w,, as A1, A2 , . .. , 

A, on the positive plot and the points corresponding to (w 1 - w.), (w 2 - w.), 
... , (w, - w,) as B, , B2 , ... , B, on the negative plot. 

3. Add graphically the vectors OB 1, OB 2 , ... , OB, to the vectors OA 1, OA 2 , 

.. . , OA, respectively to give points labelled C 1, C 2 , ... , C.-
4. The line trajectory through these points is a first approximation to the 

sampled-data polar plot, as shown by the broken line in Fig. 10.5. 
5. A better estimate would result if the vector T - 1GH[j(w + w.)] were 

included, particularly at low va lues of w. 

Example 10.1. To demonstrate the application of this procedure, consider the 
second order transfer functi on represented graphically by Fig. 6.3. For the 
largest of the polar plots shown , with w, = 1 rad/ second and ( = 0.5 , the 
equat ion is: 

G( . ) - l 
J W - ( l - w 2) + jw 

Using the three terms of Eq. I 0.15 the pulsed polar plot is described by 

TG*(jw) = G[jw] + G[j(w- w.)] + G[j(w + w,)] 

I I 

=( I - w 2
) + jw + [1 - (w- w.) 2

] + j(w- w.) 

I 

+ [I - (w + w,)2
] + j(w + w,) 

The continuous process has a natural frequency of 1 rad/second and Fig. 6.9 
indicates the process bandwidth to be approximately 1.5 rad/second. A sam­
pling frequency of 6 radjsecond will be adequate to obtain representative 
process data . This corresponds to a sample interval of n/ 3 seconds ( ~ 1), hence 

I I 
G*(jw) = + ----..,.-----

(1 - w 2
) + jw [1 - (w - 6)2

] + j(w- 6) 

I 

+ [I - (w + 6)2
] + j(w + 6) 

Values obtained from this equation are plotted in Fig. 10.6 for 0 :s; w :s; 4, and 
show the contribution of each term of Eq. 10.15 to the shape and size of the 
polar plot. The most ignificant point to observe is that whilst the locus of 
G(jw) indicates a process which is stable for any value of gain, the introduction 
of the sampler destroys this property (the simplified Nyquist criterion of 
Section 8.4 can still be applied). For frequencies in excess of w 2, 3 rad/second 
in this example, the polar plot becomes a mirror image of itself about the real 
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Fig. 10.6 Effect of sampler on polar plot of second order system 
G(s) = 1/ (i' + s + 1 ). w5 = 6 rad/second 

axis, a consequence of the harmonic distortion introduced by the process of 
sampling (described in Section 7.5). 

This illustrates that the sampling operation undermines system stability and 
that the harmonic characteristics as given by the shape and size of the polar 
plot are a function of both process gain and sampling frequency. Therefore, in 
system design, variation in the parameter T (sample interval) must be included 
when dynamic behaviour is investigated. 

10.5 Pulse transfer function 

The requirement to evaluate the infinite series specified by Eq. 10.3 can be 
avoided by the introduction of a new variable z defined by 

Application of this transformation to Eq. 10.3 yields 

£*(_!_In z) = E(z) = I e(nT)z-" 
T .n = O 

10.16 

where E(z) is defined as the z-transform of e*(t). In general, any continuous 
function that possesses an s-transform will have an equivalent z-transform and 
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it is common to write 

E(z) = 5 [e(t)] 

To derive a pulse transfer function this concept will be applied to Fig. I 0.3. 
The output response for this arrangement , using the definition implied by 
Eq. I 0.16, is 

"' C(z ) = L c(nT)z - n 10.17 
11 ;:; 0 

The value of the process output at the sampling instant t = nT is, from 
Eq. 10.5, 

c(nT) = g(nT)m(O) + g(nT - T)m(T) + g(nT - 2T)m(2T) + .. . 
n 

= L g(nT - kT)m(kT) 10.18 
k=O 

Since g(nT - kT) = 0 for values of k > 11 , Eq . 10.18 can be written 

r 

c(nT) = L g(nT - kT)m(kT) 10.19 
k =O 

Substituting Eq . I 0.19 into Eq . I 0. 17 yields the output response functi o n 

C( .::) = ,t L±o g(nT - kT)m(kT)} - " 

fn view of the fact that g(nT - kT) = 0 when k > n this express ion is the same 
as 

1. ' 

C(z) = L y(pT)z r L m(kT)z k 

p =O k =O 

Using the definition of Eq. I 0.16, the right hand side of the above equation can 
be abbreviated to 

C(.:: ) = G(z}M(.:: ) 10.20 

Equation 10.20 is the z-transform equivalent of the Laplace transform equa­
tion given as Eq. I 0.7, and G(z) is known as the process pulse tran.'if'erfimction. 

Although ::-transformation is only applicable to discrete signals, it can be 
applied to a continuous proces response if signal values are required at the 
sampling instants only and no information is needed between sample instants. 

To demonstrate the use of Eq. I 0.17 for deriving z-transforms two imple 
examples are given. 

Example 10.2. Consider a step disturbance of magnitude K applied at time 
t = 0 

i.e. .f(t) = K for t ~ 0 
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The output of the sampler is then 

f(n T) = K for 11 = 0, I, 2, .. . 
~ 7 

Hence F(z ) = I f(nT) z - " = I K z - " 
n = O 11 = 0 

= K( I + z- I + z- 2 + z - 3 + .. . ) 

where the term in brackets is the binomial expansion of (I - z- 1
) -

1 for 
I z - 1 I < I. Hence the z-transform of a step disturbance is 

K z 
F( z) = --

z - I 

The Laplace transform counterpart is 

K 
F(s) =-

s 

Example 10.3. Consider the Laplace transform 

K 
F(s) = s2 + 4s + 8 

From Table 2.1 the time responsef(t) is 

f(t) = -!-Ke- 2' sin 2t 

At 1 = nT 

f(nT) = -!-Ke - 2"T sin 2nT 

= 1Ke - 2nT _!_ (ei 2nT _ e-j2nT) 
2 2j 

and hence 

= ~ [1 -e - 2 ~ei2Tz - 1 - 1-e - 2T
1
e - i2Tz - 1] 

by inspection of Example 10.2. 

Hence 

K [ ze - 2T sin 2T J 
= 2 z 2 - 2ze - 2 T cos 2T + e - 4 r 

Some widely used z-transform pairs are listed in Table 1 0.1. 
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Table 10.1 Laplace and z -tra nsforms for basic time functions 

Time fu nction 
f (t) 

o (t) 

o (t - nT) 

unit step 

e-• r 

re-• ' 

sin w t 

COS Wt 

e-"' sin w t 

e-• ' cos wt 

Laplace 
transform 

F(5) 

e-n Ts 

5 

52 

5+a 

(5+a) 2 

w 
s2 + w 2 

5 
52+ w 2 

w 

(5+a) 2 + w2 

5 + a 

(5+ a)2 + w2 

z-tra nsform 
F(z) 

z 

z-1 

Tz 

(z- 1) 2 

z 

Tze-• 1 

(z-e-•1)2 

z sin w T 

z 2
- 2z cos w T + 1 

r-zcos w T 

z 2
- 2z cos w T + 1 

ze-" 1 sin w T 

z 2 - 2ze-• 1 cos wT + e-2ar 

z 2
- ze-" 1 cos w T 

z 2
- 2ze-• 1 cos wT + e- 2

"
1 

10.6 Block diagrams 

To illustrate the use of Eq. 10.7 and Eq. 10.20 in the derivation and manipula­
tion of block diagrams, the three principal loop arrangements of Fig. 10.7a, b, 
and c will be studied; other configurations are reducible to combinations of 
these loop arrangements. 

(a) Processes in cascade- Fig. 10.7a 
The output responses from the two sections are 

U 2 *(s) = G1 *(s)U 1 *(s) 

and C*(s) = G2 *(s)U 2 *(s) 

Eliminating U 2 *(s) gives the starred transfer function 

C*(s) _ *( ) *( 
U

1
*(s) - G1 sG2 s) 
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u 1(t) ~~1"(t) u2(t) . ~ I c(t) -r,, G 1(s) -a G2(s) j • 
• T IT ..______ l- -«-- ~~ 

(a) I ________ I_ _ __ . _ r 

r(t) c(t) 

L---rY-~·~ 
---·-- T 

(b) 

r(t) c"(t) 

(c) 
b(t) 

Fig. 10.7 Block diagrams for systems with sampling (a) processes in cascade (b) 
closed loop with one sampler (c) closed loop w ith two samplers 

and the corresponding pulsed transfer function is 

C(z) 
U

1
(z) = G1(z)G 2(z) 

i.e. the product of the individual pulsed transfer functions . 

(b) Closed loop with one sampler- Fig. 10.7b 
The starred error signal is 

E*(s) = R*(s) - B*(s) 

where 

B*(s) = GH*(s)E*(s) 

Eliminating B*(s) gives on rearrangement 

E* s)- R*(s) 
( - I + GH*(s) 

which is the Laplace transform of the sampler output response. The output 
response from the system at the sample instants is: 

C*(s) = G*(s)E*(s) 
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Substituting for E*(s) yields 

C*(s) = G*(s)R*(s) 
I+ GH*(s) 

and in terms of the z-transform 

C(z) = G(z)R(z) 
I+ GH(z) 

The equation only describes the values of the output response at the sampling 
instants and the term GH(z) is ob tained by first multiplying together the G(s) 
and H(s) funct ions, then the z-transform of the product is obtained. 

(c) Closed loop with two samplers- Fig . 10.7c 
The starred error signal is 

Also 

and 

E*(s) = R*(s) - B*(s) 

C*(s) = G*(s) E*(s} 

B*(s) = H*(s) C*(s) 

Elimina ting E*(s) and B*(s) gives the starred Laplace transform of the system 
response as: 

G*(s) R*(s) 
C*(s} = I + G*(s) H*(s) 

The correspo nding z- transform is 

G(z) R(z) C(-) - _..:._:___:_:.__ 
" - I + G(z) H(z} 

Note that G(z)H(z) is not the same as GH(z), but is the product of the individ­
ual z-transforms of the functions G(s} and H(s). 

10.7 Inverse operation 

To obtain the time response f*(t) of a process where F(::) has been eva luated 
by an equation in the form of Eq. 10.20, a mathematical procedure known as 
inverse z-transformation must be carried out. The most direct route available 
to this end is to adopt either a partial fraction or a power series expansion 
approach. 

The former method requires the expansion of z - 1 F(z) into partial fractions 
such that the inverse z- transformation of each term multiplied by :: is recog­
nizable from z- transform tables in an analogous manner to Section 2.2 and 
Chapter 4. In the latter, the easier of the two methods to implement, F(z) is 
expanded into a power series of z - 1 by long division ; the coefficient of the z - " 
term corresponds to the value of the time function f*(t) at the nth sampling 
instant. 

In order to obtain the va lue of f*(t) as time becomes infinite, assuming F(s) 
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has no poles on the imaginary axis or to the right of it in the s-plane, use is 
made of the final-value theorem : 

t.e. 

lim . lim {z - I } 
t - > oc {j *(I)} = z -> I ----;---- f(z) 

z- 1 
it is given by the value of-- ftz) as z approaches unity. 

z 

10.8 Data reconstruction 

10.2 1 

Reconstruction of continuous data from a sampled record is performed by 
starting with known data about the signal up to a given sample instant a nd 
then estimating by extrapolation data values up to the next sample instant. A 
mathematical approximation for the signal in the interval nT :s; t < (11 + I)T 
can be derived from the Taylor's power series expansion 

· hnn 
j,.(t) =.f(nT) +/(nT)(t- nT) + -

2
!- (t- nT) 2 + ... 

where };,(t) is the estimate for f(t) between the two measured consecutive 
samples. The most widely used data reconstruction device is the :era-order 
hold in whichf(t) across the interva l is approximated by the constant value 

};,(!) = f(IIT) for nT :S: t < (11 + l)T 

For the zero-order hold device the output is thus a set of flat-top pulses of 
width T . as illustrated in Fig. 10.8a. In contrast a first order hold device 

Input 

Output 
(a) 

Output 
(b) 

/ 

0 

0 2T 3T 4T 

Fig. 10.8 Data reconstruction (a) zero order hold (b) 1st order hold 
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incorporates the first two terms m the Taylor's power series expanswn, 
Fig. 10.8b. 

Mathematically, the zero-order hold device can be described by use of 
Eq. 2.4 applied to the signal of Fig. l0.8a, which results in the Laplace trans­
form of the output function 

F(') ~ I f(O)o _, dt + J f(T)o . ,. dt + .. . + '"JT f(nT)o - " dt + ... 
0 T nT 

I -e - sT "' 
= L f(iT)e - isT 

s ;~o 

I -e - sT 
--- F*(s) 

s 

The transfer function of a zero-order hold ci rcuit is thus 

10.22 

The frequency response function Gho(jw) is obtained by effecting the substi tu­
tions= jw in Eq. 10.22. 

Example 10.4. The open-loop transfer function used in Example I 0.1 will be 
studied further to illustrate the power series expansion method as a means of 
obtaining the inverse z-transformation , and the use of Eq. 10.21 to determine 
the steady tate value. 

The combined transfer function is 

(I - e - sT) ( I ) 
Gho(s) G(s) = 2 I 

s s + s + 

and hence 

_
1 

[ I J GhoG(z) =( I - z ),q' ( 2 I) 
s s + s + 

= ( I - 2 - I) ;2' [ ~ - s2 : ~ ~ I J 
I .· [I s + 0.5 0.5 J 

=( I - z - )2" ~- (s + O.W + 0.866 2 - (s + 0.5) 2 + 0.866 2 

From Table 10.1 

_ _ 1 [-z- z2 + e - o.sT(0.5774 sin 0.866T - cos 0.866T)z] 
GhoG(z)- (I - z ) z- I - z2 - 2ze - o.sT cos 0.866T + e- T 
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If the sampling interval is chosen to be 1 second, for the reasons given in 
Example 10.1 

0.3404z + 0.2415 = C(z) 
GhoG(z) = z2 - 0.7859z + 0.3679 U(z) 

The output response for a unit step input is 

C(z) = (-z-)[ 0.3404z + 0.2415 J 
z - l z2 

- 0.7859z + 0.3679 

0.3404z2 + 0.241 5z 

z3 - 1.7859z2 + l.1538z - 0.3679 

This eq uation can now be expressed in the form 

C(z) = a0 + a 1z - 1 + a2 z - 2 + .. . 

by use of manua l long division (or a simple computer program) as follows: 

z3
- 1.7859z2 0.3404z- 1 + 0.8494z- 2 + 1.1241z- 3 + ... 
+ 1.1538z- 0.3679 0.3404z2 + 0.2415z 

0.3404z2 
- 0.6079z + 0.3928 

+ 0.8494z - 0.3928 
0.8494z - 1.5169 

+ 1.1 241 

1.1 241 

- 0.1252z - 1 

+ 0.1252z- 1 

+ 0.9800z - 1 + ... 
- 0.8548z - 1 

Continuing in this way will yield successive coefficients for z - ". The time 
function at the instants of sampling is therefore given by 

c*(t) = 0.34 b(t- T) + 0.85 b(t - 2T) + 1.1 2 b(t- 3T) + .. .. 

Using Eq. 10.21 will give the va lue of c*(t) as t becomes infinite for a step 
disturbance in u(t) 

lim lim { 0.3404z + 0.2415 } 
{ c*(t)} = 

oo z-> I z2
- 0.7859z + 0.3679 

= 1 

For comparison the time response to a unit step input disturbance for the 
continuous data process has been computed, and the continuous and the 
sampled system responses are both shown in Fig. l0.9b. Because the input 
disturbance is a step function , no approximation error exists at the output 
from the hold circuit, hence the sampled-data points are coincident with those 
from the continuous data process. This will be the case whatever value of 
sampling interval is chosen. Also included in this figure are typical response 
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0.4 Sampled system without hold 

T = 1 second ( +) 

T= 0.5 second (x ) 

0.2 

2 4 

(b) 

Hold 

(a) 

6 8 

Process 

10 

Time (seconds) 

Fig. 10.9 Effect of sampling. Example 10.4 (a) block diagram (b) un1t step response 
curves 

cu rves for the same system but with the hold circuit omitted. These show that 
the system output signal increases in magnitude for reducing sampling inter­
val , as would be expected as a consequence of the sampler output for a unit 
step input being a train of unit strength impulses (Eq. 10. 1). 

Example 10.5. For the closed loop arrangement shown in Fig. lO. IOa with 
sampling interval I second estimate the process sampled-data time response to 
a unit step disturbance for 10 sample intervals, with and without the hold 
circuit present. Calculate the final steady state value of this output response for 
both cases. 

For Fig. 10.7b it has been established tha t 

C(z) = G(z)R(z) 
I+ GH(z) 

hence for Fig. IO.!Oa the closed loop pulsed transfer function is 

C(z) GhoG(z) 
R(z) - I + GhoG(z) 
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Input disturbance 

R(s) 

0.8 

,, 
' I 

0.6 

::>utput 
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•• .. I 
•' 
~ I 
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I 
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Controller Process 
Hold G(s) 

Feedback transducer 

(a) 

----- - ---

Continuous system 

10 15 

(b) 

Output 
response 

C(s) 

20 

Time (seconds) 

Fig. 10.10 Effect of sampling and hold circuit. Example 10.5 (a) block diagram (b) 
unit step response curves 

and in Example 10.4 where this open loop system is analysed it is shown that 

0.3404z + 0.2415 
GhoG(z) = z2 - 0.7859z + 0.3679 

The closed loop pulsed transfer function is therefore 

and hence for 

C(z) 0.3404z + 0.2415 

R(z) - z2 
- 0.4455z + 0.6094 

z 
R(z) =-­

z- I 
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0.3404z2 + 0.2415z 
C(z) = z3 - 1.4455z2 + 1.0549z - 0.6094 

Using Eq. 10.21 yields the steady sta te value 

lim 0.5819 
t --> oo {c*(t)} = 1.1639 = 0·5 

With the hold device omitted from the loop the output is 

0.5335z 2 

C(z) = 2
3 - 1.2524z2 + 0.6203z - 0.3679 

and the steady state value is 

lim 
{ c*(t)} = 0.48 

t --> 00 

For each of these C(z) expressions, the power series expansion method gives 
the coefficients of the terms c5(t - nT) and these are listed together with the 
steady values in Table I 0.2. For clarity the system output responses are 

Table 10.2 Results of Example 1 0 5. T = 1 second 

Coefficient 
n 

c*(t) with 
hold 
c* (t) without 
hold 
Continuous 
data system 

Coefficient 
n 

c*(t) with 
hold 
c*(t) without 
hold 
Continuous 
data system 

2 3 4 5 6 

0 .34 0 .734 0.701 0.447 0 .354 0.467 

0 .534 0 .668 0 .506 0.415 0.452 0.494 

0 .739 0 .665 0.461 0.428 0.493 0 .524 

Steady 
7 8 9 1 0 state value 

0 .574 0 .553 0.478 0.458 0 .5 

0.492 0.475 0.472 0.477 0.48 

0 .510 0.494 0.495 0 .5 0 .5 

plotted in Fig. lO.lOb. In this figure the continuous output response trace for 
the sampled system is created by connecting the discrete output sequence by a 
smooth curve. Such an approximation can be used with confidence if the 
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sampling frequency is substantially higher than the natural frequency of the 
system. The response curves which correspond to the smaller sampling interval 
of 0.5 second are also shown. These traces, together with those of Fig. 10.9b, 
focus attention on the need for adequate data reconstruction in control system 
design and it is now established practice to introduce a hold circuit after each 
sampler in a loop to guarantee this end. 

10.9 The z-plane 

The Laplace transform method is the basic tool for controller design in linear 
continuous data systems. In a similar manner the z-transform method offers 
scope for analysis and synthesis of sampled-data systems. A study of the 
pole-zero configuration of the characteristic equation is one common design 
approach and requires the facility of being able to transfer root locations in 
the s-plane to their corresponding positions in the z-plane. This mapping 
process is achieved by employing the transformation z = eTs, where T= 27r/ws 
is the sampling interval and s the Laplace operator. 

If the s-plane is divided into horizontal strips w5 wide and symmetrical 
about the real axis, the perimeter of the first of these strips, shown in 
Fig. 10.11 and referred to as the primary strip, can be mapped into the z-plane 
as follows. The path from the origin along the positive imaginary axis in the 
s-plane becomes 

z = ei(2nw/ro,) 

=cos 27Tw/ w5 + j sin (27rw/ w5 ) 

and substituting all values for w in the range 0 ::; w ::; tws gives the locus CD to 
(2) in Fig. 10.11 b. 

3w5 lm 
-2-

s-plane 

Ws Primary strip 
22 

(a) 

lm 

z-plane 

(b) 

Fig. 10.11 Transformation using mapping function z = e Ts (a) s-plane (b) z-plane 

Re 
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For the boundary J · 
S = (J + 2JWs 

z = e2n/w,(a+( l / 2)jw,) 

and for values of 0 s (J s -co gives values for z in the range - I to 0, which 
determines the route from @ to Q). Continuing in this way around the perim­
eter enables the route Q)---@---{D--(D to be mapped, illustrating that this 
portion of the left half of the s-plane is mapped into a circle of unit radius 
centred at the origin in the z-plane. Any root lying in the primary strip must 
lie within the unit circle. 

Transferring the boundary of each of the other strips, referred to as comple­
mentary strips, from the s-plane to the z-plane generates the same unit circle. 
Hence, the boundary for stability is the perimeter of this circle and the circle of 
unit radius in the z-plane is thus equivalent to the imaginary axis in the 
s-plane. Roots within the circle give rise to decaying motions whi le the 
opposite is true for those that lie outside the unit circle. 

10.10 Routh-Hurwitz stability test 

The conventional procedure described in Section 8.3 was devised to determine 
whether the roots of a polynomial equation lie in the left or right half of the 
s-plane. The method must be adapted to permit testing whether roots lie 
within or outside the unit circle in the z-plane. To achieve thi s, a modification 
can be introduced that maps the interior of the unit circle onto the left half of 
a third complex plane. This transformation is achieved by use of the mapping 
function 

z- 1 
r=--

z+ l 
10.23 

where the complex variable 

r = (J, + jw, 10.24 
If this transformation in r is used, the conventional Routh- Hurwitz test can 

be applied to the polynomial equation in the variable r. 
As was illustra ted in Section I 0.8 the stability of a sa mpled data closed loop 

system is a function of both loop gain K and sampling interval T. The Routh­
Hurwitz test is a convenient procedure for locating the stability boundary 
linking T and K , and the following example illustrates this use. 

Example 10.6. Consider the arrangement of Fig. 9.8 modified to include a 
single sampler and a hold circuit as shown in Fig. 10.12. The open loop 

Set point 

R(s) 

Zero order hold Process 

Fig. 10.12 Block diagram for Example 10.6 

Process response 
C(s) 
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co ntinuo us da ta tra nsfe r fun ctio n is 

K 
G(s) = s2 + 4s + 8 

a nd the .?-t ra nsfo rm of the process together with the hold circuit is 

GhoG(z) =( I - ::: -
1
)5 L(s2 + ~s + 8J 

=( I - ::: - ' )5 {~ G-(s ~52;~ 22 - (s + 2~2 + 22)} 

Putt ing k = ~ , replac ing the groups in ' s' by the equi va lent groups in ·:::' using 
8 

T a ble 10.1, and rearranging gives : 

_ -{ ze - 2T(e 2T- sin 2T - cos 2T) + e - H(e - 2T +sin 2T - cos 2T)} 
GhoG(z) - f.;, 2 2T -1-T 

z - 22e - cos 2 T + e -

By definitio n the cha racte ri s tic equa ti o n is 

where 

a nd 

I + GhnG(:::) = 0 
t.e. 22 + ae - 2 '~'z + be - 2 r = 0 

a= k(e 2T- sin 2T - cos 2T)- 2 cos 2T 

b = k(e - 2T +sin 2T- cos 2T) + e - 2'1 

U . I . f . I + ,. . smg t 1e ma ppmg unctio n ::: = -- yield s 
1 - r 

( I + be - 2T- ae - 2 '~' )r 2 + 2(1 - be - 2T)r + ( I + ae - 2'1 +he - H ) = 0 

from which it can be see n tha t if loo p sta bility is to be achieved 

I + be - 2T - ae - 2T > 0 

t.e. k < k 1 

where 

a nd 

t.e. k < k 2 

where 

eH + e - 2T + 2 cos 2T 

eH - e 2T - 2 sin 2T 

I - be - 2T > 0 

e2'~' _ e - 2 r 

k2 = -~------­
e 2T+sin 2T - cos2T 
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and 

I + ae - 2 T + be - 2 T > 0 

or k(e 2
T + e - 2T- 2 cos 2T) > - (e 2 T + e - 2T- 2 cos 2T) 

t.e. k > k3 

where 

The profile of the stability region defined for vanatwns in K and T is 
presented in Fig. I 0.13 and this shows very clearly the loss of inherent stability 
present with the continuous-data system as a direct result of introducing the 
sample and hold device into the loop. 

Time response curves computed using the power series expansion procedure 
together with Eq. 10.21 to evaluate the steady state va lue are shown in 
Fig. 10.14 for a unit step input disturbance. These do confirm the expected 
change in dynamic behaviour with increasing values of T , as can also be 
predicted from Fig. I 0.13 for the fixed gain value K = I 0. The corresponding 
root locus diagram is given in Fig. 10.15. This figure can be made more 
informative if the contour lines for constant damping factor ~ are mapped 
across from the s-plane. 

K I 
100 

80 
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40 

20 
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- 20 

Fig. 10.13 Stability region tor Example 10.6 
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Using Fig. 4.6, it can be seen that a root on a constant damping factor (() 
line is given by 

s = -w tan {J + jw 

where fJ = 90 - lfJ. 
The mapping function from the s-plane to the z-plane is 

z = e( - wlanp+jw)T 

= e - wTtanfl(cos wT + j sin wT) 

Expressing this in polar coordinates, gives 

z = e- (2n tan {J)(w jw,)/2n(wfw.) 10.25 

after substitution ofT = 2nfw5 • Equation 4.22 gives ( = cos lfJ , hence ( = sin fJ 
and by using Eq. 10.25 the contour lines for constant damping factor can be 
mapped onto the z-plane. For most practical systems a sampling frequency is 
chosen such that the forward path transfer function introduces significant 
attenuation at frequencies higher than wsf2, hence only the poles in the strip 
between + jws/2 and - jws/2 in the s-plane need be mapped across. 

0.8 

0.6 

:; 
~ 0.4 
0 

0.2 

2 3 

Time (seconds) 

Fig. 10.14 Unit step responses with variation in T, for fixed gain value K = 10 
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lm 

Re 
- 1 

- 1 

Fig. 10.15 Root locus plot- K = 10, T varymg 

With the contour lines drawn for constant damping factor (, Fig. I 0.15 
indicates the change in transient response to be expected for increasing values 
ofT and does highlight the usefulness of this figure in control system design. 

10.11 Frequency response of sampled-data system 

All the properties and rules for the continuous-data system are still valid when 
applied to the open loop pulsed transfer function GH(z), if the bilinear trans­
formation in r is employed. The plot of GH(z) is made in terms of the magni­
tude and phase as a function of w,, as defined by Eq. 10.24. 

For example, consider the transfer function of Example 6.2, i.e. 

10 
G(s) = -----­

s(l + 0.5s)(l + O.ls) 

For the sampled process incorporating zero-order hold 

1)5 ( 10 ) 
s2(1 + 0.5s)(l + O.ls) 

I (I 0.0 6.0 2.85 0.15 ) 
=(l -z ),;2'" 7 - -;+(1 +0.5s)+(l +O.Is) 

10.26 
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From Table 10.1 

1 ( lOTz 6z 5.7z 1.5z ) 
GhoG(z) = (1 - z - ) (z- 1)2 - (z- 1) + (z- e - 2T) + (z- e - IOT) 

To ensure that the sampling frequency is at least 4 times the bandwidth of the 
continuous system, choose a value T of 0.3 seconds. Hence, rearrangement of 
the above equation gives 

1.2z3 
- 2.91z2 + 3.86z- 0.86 

GhoG(z) = ---------­
(z - 1)(z- 0.55)(z - 0.05) 

Employing the bilinear transformation yields 

( 
_ 1 + jw,) _ (1.29- 0.07w/)- jw,(8.83w/ + 0.59) 

10
_
27 GhoG z - . - 0 8 . 3 . )( . 1 - JW, . 6]w,(1 + .44Jw, 1 + l.11Jw,) 

If the gain of Eq. 10.26 is reduced by a factor of 5 the polar plot drawn in 
Fig. I 0.16 for this reduced gain value yields a phase margin of 44o and a gain 
margin of 16 db. These values suggest a marginally acceptable dynamic 
behaviour from the closed loop system incorporating this process , and this is 

- 1.0 - 0.5 °·~ 
0.28}' 

(1 .29- 0.07.J,) - jw~8.83ol, + 0.59) I 
G(jw,) = 0.24/ 

7. 05jw~1 + 3.44jw,)(1 + 1.11 jw,) 1 

. 2 
G(Jw)= jw(1 +0.5jw)(1 +0. 1jw) 

1.3 
I 

0.121 

0.2, 

I 

I 
I 

,-sampled system 

5.0 

-0.5 

- 1.0 

Fig. 10.16 Polar plots for continuous system and equivalent sampled system 
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confirmed from the step response shown in Fig. 10.17. By reducing the gain 
of Eq. 10.27 by a factor of 8.2 a phase margin of 45° and a gain margin of 9db 
can be achieved. With these values, a step response for the closed loop 
sampled system should be very similar to that of the continuous system, and 
this is confirmed in Fig. I 0.17. 

1.0 

0 2 

- - ,....-Sampled system 

' ' ' Continuous system 

' ' 
-----

G G(z) = 1.2z3- 2.91z2 + 3.86z- 0.86 
ho 8.2(z - 1 )(z- 0.55)(z - 0.05) 

G(s) = 2 
s(1 +0.5s)(1+0.1s) 

4 6 

Time (seconds) 

Fig. 10.17 Unit step responses 

8 

This result for an arbitrarily selected process demonstrates that the design 
rules used with the continuous-data system can be extended to the sampled­
data system if the bilinear transformation is employed. Hence expertise gained 
with continuous-data systems can be used in design studies of sampled-data 
systems. 

Similarly, the Bode diagram can be produced and used in the way outlined 
in Section 6.3 for the continuous-data system. 

The pseudo-frequency w, can be transformed into the real frequency w by 
using the mapping function of Eq. 10.23 and the transform definition z = e•T 

ejwT - 1 
i.e. jw, = ---:-. -=r-­

el"' + 1 

Using the exponential values of sin ()and cos () yields 

ejO - e - JB 
j tan () = .8 _ JB 

el + e 

ei2B _ 1 
ei2B + 1 
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and hence 
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. . wT 
JW, =J tan T 

2 
w = T tan - 1 w, 10.28 



11 
Design of Closed Loop 
Systems 

The engineer concerned with the design of a control loop will know from the 
project specifications the prime objectives which are to be attained, and the 
requirements for acceptable behaviour depend largely on the applications for 
which the system is to be designed . The aim of the earlier chapters of this book 
has been to impart an understanding of the nature of dynamic behaviour, to 
show the general advantages which can be gained by the use of feedback , and 
to describe some of the analytical techniques available to the design engineer. 
This final chapter is concerned with synthesis, where the requirement is one of 
determining what form of closed loop arrangement is necessary to yield a 
specific form of output response for a given input excitation. 

The first section discusses in general terms the principal ways by which 
systems can be designed in order to achieve specific performance requirements. 
There are two aspects, that of choosing a form of controller within the loop, 
and that of determining suitable parameter values for the controller. Sections 
11.2 to 11.4 describe the use of proportional, integral and derivative action ; 
the effect of each is explained and guidance is given on the selection of control­
ler settings. The following three sections describe how performance specifi­
cations can be ach ieved by the use of passive compensation networks. Section 
11.8 outlines some other forms of control scheme for continuous systems. This 
is followed by a section to discuss the design of sampled-data systems and 
digital controllers, and a section to introduce the ideas of state vector feedback 
control. Section 11.11 describes relay control, a form of control action which is 
widely used because of its simplicity and hence low cost, and which introduces 
non-linearity into the feedback loop and thus requires techniques that extend 
the design methods described earlier. The chapter concludes with a case study 
illustrating the application to a specific system of the many techniques present­
ed in this book. It describes, in outline, the derivation of a suitable mathemati­
cal model for the physical system, the analysis of the dynamic behaviour, and 
the design of appropriate compensation for the feedback loop. 

11.1 The general approach to design 

The requirements for a system will be described by some appropriate per­
formance specification, expressed ei ther as time domain requirements (defining 
the transient and steady state response for a step change or other forcing 
function) or as frequency domain requirements (phase margin, gain margin, 
bandwidth, peak magnification, etc.). Although there is no direct analytical 
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relationship between the two sets of performance characteristics for systems of 
order higher than two there is a broad correspondence between them . A 
system designed with a value of M r = 1.3 should have a relatively small rise 
time without large overshoot when subjected to a step input . 

There are two basic approaches to design. The older, but still very widely 
used one is an orderly trial and observation intuitive approach aimed at 
finding an acceptable, but not necessarily the best possible, design solution. 
Based on past experience a control loop configuration and form of controller 
is chosen at the outset and one or more of the analytical techniques described 
earlier is used to try to determine controller parameters which allow the 
system to meet the specifications. If the chosen arrangement is not satisfactory 
then other forms of controller must be investigated. The more complex the 
controller the greater the number of parameters which can be varied. Previous 
experience helps in obtaining a satisfactory solution within a reasonable time 
and within the economic constraints that normally exist in a design project . 
The alternative approach is one of true synt hesis, where an attempt is made to 
determine a unique solution in accord with a rigidly defined specification in 
some optimal way. To aim to achieve this is attractive in principle, but it 
requires a sound knowledge of the analytical methods of modern control 
theory. Also, the cost of the equipment necessary to implement the resulting 
control law may prove to be difficult to justify economically. on the grounds of 
dynamic performance a lone. 

The simplest and most widely used arrangement is series compensation 
where the controller or compensation device is positioned in the forward loop 
as shown in Fig. ll.la. Parallel or feedback compensation by means of a 

R 

(a) 

R c R 

(c) (d) 

Fig. 11.1 Control loop configurations (a) series or cascade compensation (b) 
feedback compensation (c) feedforward compensation (d) state feedback control 

subsidiary feedback loop (Fig. ll.lb) offers certain advantages; it may also be 
used in conjunction with series compensation. The next section collects 
together ideas presented earlier for studying the response of a closed loop 
system where the loop gain can be adjusted but where otherwise the dynamic 

c 

c 
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characteristics are fixed. Such an arrangement with a series controller which is 
simply a gain element gives what is termed proportional control action. Where 
no suitable value of gain can be found to achieve the specification, additional 
loop elements are needed. Section 11.3 looks at the use of integral action and 
derivative action, and describes how these modify the response and how the 
coefficients in the resulting 2-term or 3-term controller may be chosen. Section 
11.4 considers the practical side of control by introducing empirical methods 
used by engineers for select ing the correct amount of control action necessary 
to achieve a required performance on existing plant. The topic of system 
compensation is then discussed; this is a procedure whereby additional electri­
cal networks or mechanical elements are incorporated within the loop to 
modify the system behaviour in such a way that it more nearly sat isfies the 
required specification. As an example to illustrate the general features of 
system compensat ion, Section 11.6 considers in some detail one of these addi­
tional control actions, phase lead series compensation, and the next section 
discusses some of the differing characteristics of other compensation methods. 

The steady state accuracy requirement dictates the form of open loop trans­
fer function and the value of loop gain needed, as described in Section 8.2. 
Design in the time domain to achieve specific transient response characteristics 
is facilitated by studies of root locus plots for the system. The aim is to select 
physically achievable numerical values for the system parameters in such a 
way that the system poles are placed in suitable regions of the s-plane. The 
dominant poles are the most crit ical , and considerations of settling time and 
maximum overshoot in response to a step change dictate the area which 
should give acceptable behaviour as indicated in Fig. 11 .2. The response i , 
however, influenced both by secondary poles and by any system zeros which 
are present, and hence root locus studies must be supplemented by simulation 
studies to confirm that the specifications are satisfied. 

Where performance specifications are given as frequency domain character­
istics design will employ the analytical methods of Chapter 6. Although they 
are largely trial and error methods and the earliest ones devised these remain 
important since they have a number of advantages. They are eas. to under­
stand and to apply, they are independent of the order of the system transfer 
function , and indeed do not require the mathematical model to be known in 
transfer function form since experimentally obtained harmonic response data 
is equally acceptable. The Bode diagram is the most useful, with the Nichols 
chart being used to relate open loop and closed loop data when the system is a 
simple unity feedback system. 

11.2 Proportional control 

Consider the control of the output of a process with transfer function G(s) 
which utilizes feedback principles, and assume that the process characteristics 
cannot be altered by the designer (for example the speed regulating system 
shown in Fig. 9.2a). The simplest form of control is one in which the error 
signal e(t) is multiplied by a constant k 1 to yield a signal called the manipulated 
variable m(t) which is the input to the process ; the numerical value of this 
constant k1 determines the amount of corrective effort which is applied for a 



Line of constant wd 3 __ \_ _______ ~ _ 

....­-
Region of acceptable pole 
position (to left of hatched 
contour) 

--;:..-:::\1 

Poles far to the left give fast 
response but need large 
actuating signal 

~\ 
~ \ 
/ \ ;::t 

lm 

11.2 Proportional control 225 

Line of constant '; 
overshoot excessive 
if pole is to the right of this line 

Re 

Line of constant decay rate; 
settling time too long if poles 
to the right of this line 

Fig. 11.2 Acceptable region for dominant roots 

given magnitude of error. This arrangement is called proportional control, and 
by varying the value of k1 , the dynamic behaviour of the overall system can be 
altered. For very low values of k1 the corrective effort is small, and hence the 
response is likely to be sluggish (Fig. 9.2c); as k1 increases the response of the 
system for the same magnitude of error becomes more rapid and, if k1 is very 
large, instability is likely to result, or the oscillatory response would be so 
lightly damped that it would be unsatisfactory for all practical purposes. The 
significant variable is actually the loop gain KP, which is the product of k1 and 
the steady state gain of the process. 

If G(s) has no poles at the origin of the complex s-plane, then the overall 
system will always have a steady state positional error. This error, as shown in 

Section 8.2, is proportional to --
1
- , hence it can be reduced by increasing 

1 + KP 
the loop gain KP, and can be evaluated by application of the final value 
theorem for a constant input excitation. Increase in loop gain, however, causes 
the dominant complex roots (Fig. 9.2b) to move closer to the imaginary axis 
and to the instability associated with root positions in the right half of the 
complex s-plane. Provided a value of loop gain KP can be chosen which gives 
both an acceptable transient response and a small enough steady state error 
then the design problem is solved. If these requirements cannot be satisfied 
simultaneously then the loop must be modified by the inclusion of some other 
form of control action, of a compensation network, or of a subsidiary feedback 
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loop. If, however, G(s) does have a pole at the ongm (a factor s in the 
denominator) or if additional control action is included to introduce a pole at 
the origin of the root locus diagram, this reduces the positional error to zero 
and reduces the velocity error to a value which is inversely proportional to the 
loop gain. Similarly, a double pole at the origin would yield a positional error 
and a velocity error which are both zero, and an acceleration error which is 
inversely proportional to loop gain (Section 8.2). 

Example 11.1 . For the feedback system shown in Fig. 9.2a, can a suitable value 
of loop gain be found? 

At the limit of stability, the positional error is at the lowest value that it can 

attain, namely 
1 

= 0.073, 7%; this is at the limit of what would be 
1 + 315/25 

acceptable for a simple speed regulating system. A value of KP = 35 gives a 
suitable transient response with damping factor ( = 0.64 for the dominant 
roots ; however, the steady state error is excessive at a value of 42%. For this 
simple speed control system the design engineer would have to think seriously 
about the introduction of additional control action. 

11.3 Integral and derivative action 

(a) Integral action. A prime requirement of many control systems is that there 
should be no error or at worst a very small error in the steady state. It was 
shown in Section 8.2 that for a type 0 system, one with no factors of s in the 
denominator of the transfer function, a steady state error always exists for a 
steady input. This error can be decreased at the expense of a more oscillatory 
response by an increase in gain, but it may not be possible to attain simulta­
neously satisfactory steady state and dynamic behaviour (as discussed in 
Section 11.2). Zero steady state positional error would require the system to be 
of Type 1, and this can be achieved by introducing integral action within the 
controller. To the proportional term is added a signal proportional to the time 
integral of the error; i.e. the controller output m(t) is [k 1e(t) + k2fe(t)dt] and 
it is this signal which actuates the system. The block diagram is then of the 
form shown in Fig. 11.3. Since the error signal is integrated within the control-
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Fig. 11.3 Feedback system with P + I control action 
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ler, even the smallest error eventually produces a corrective signal of sufficient 
magnitude to actuate the system to eliminate the error. The system will, theo­
retically, only come to rest when the error has been reduced to zero. 

Consider analytically the effect of integral action on the system of Fig. 11.3 
when the process and measuring transducer have transfer function 

1 
Gt(s)Gis) = (sz + 4s + 8)(1 + s) . 

With proportional control (k 2 = 0) the closed loop transfer function is 

C(s) k1 

R(s) s3 + 5s2 + 12s + 8 + k1 

Hence the steady state error for a unit input is 

lim [1 k1 J 8 1 
- s-+ 0 s ~. s3 + 5s2 + 12s + 8 + k1 = 8 + k1 

With proportional plus integral (P + I) control 

C(s) 

R(s) 

and the steady state error for a unit input is 

lim [ 1 k 1 s + k 2 J _ 0 1 
- s-+ 0 s ~ s4 + 5s3 + 12s2 + (8 + k1)s + kz -

1l.l 

11.2 

One method by which numerical values for the parameters k1 and k2 can be 
selected is by use of a root locus or root contour plot. If a performance index 
based on the transient response characteristics, such as rise time, initial over­
shoot, etc. as described in Section 4.4 is used, then the roots on the dominant 
loci must lie in some region such as that bounded by the lines drawn for a 
damping factor of C = 0.4 and C = 0.5 (corresponding to transient responses 
shown in Fig. 4.7) . This is the hatched region shown in Fig. 11.4, the root 
contour plot for the system with P + I control. Inspection of this figure shows 
that values of k1 = 8 and k2 = 11 position the dominant roots in the centre of 
the hatched area; hence these values of k1 and k2 are likely to give the desired 
transient response. A simulation study would now be made to select better 
values for k1 and k2 that would more nearly give the response shown in Fig. 
4.7 for C = 0.5, since further adjustment of both these parameters may be 
necessary to make allowance for the effect of the secondary locus shown in 
Fig. 11.4 and for the zero in Eq. 11 .2. Because of this zero, the root locus 
pattern cannot be used in isolation during a design study, but must be supple­
mented by simulation data. The transient response for the parameters given 
above is shown in Fig. 11.7b. With P +I, the response shown for this typical 
speed control system would in engineering practice normally be considered 
'satisfactory', having a maximum overshoot of 23 %, a rise time of 1.5 seconds, 
and a settling time of 6 seconds. For the process alone, the overshoot would be 
zero, and the rise time and settling time would each be around 3 to 4 seconds. 



228 Design of Closed Loop Systems 

lm 
4 

I ; 0.4 

2 

- 3 , I I 
0 Re 

Fig. 11.4 Root locus diagram for variation of proportional action (k 1 ) and integral 
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action (k 2 ) G, (s)G 2 (s) = 
2 8 (s + 4s + ) (s + 1 ) 

(b) Derivative action. A form of control action which can increase the effective 
damping is derivative action ; this is not used by itself but in conjunction with 
proportional or proportional plus integral action. To the normal error signal 
is added a signal proportional to its derivative, giving a 2-term or 3-term 
controller (Fig. 11 .5). The 3-term controller has a transfer function GAs) = 
(k 1 + k2/s + k3 s). Alternatively, this is often expressed as 

GAs) = kc(l + -
1 

+ ~s) I;s 

in which k 1 = kc, k2 = kcf i; and k3 = kc ~- The derivative term contributes an 
anticipatory type of control action, where the output of the controller is modi­
fied when the error is changing rapidly, thus anticipating a large overshoot 
and making some correction before it occurs. When a system is moving 
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Fig. 11.7 Step responses for system shown in Fig 11 .3 and Fig . 11 5 : 
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towards a state of zero error e(t), Fig. 11.7b, then e(t) and e(t) have opposite 
signs; hence the derivative term reduces the magnitude of m(t) and thus 
reduces the signal that is accelerating the output response c(t) towards the ze ro 
error state. When the output response has overshot or undershot and is 
moving away from the zero error condition, then e(t) and e(t) have the same 
sign and the derivative term augments the decelerating signal. When the 
system comes to rest then e(t) is zero and the derivative term has no further 
influence. 

The effect of derivative action on the position of the roots of the character­
istic equat ion can be seen in Fig. 11.6, which shows that the addition of 
derivative action has as expected improved the relative stability of the system. 
This is always a highly desirable feature in the design of a control system, since 
any change in the values of plant parameters over a period of time is less likely 
to cause the system to drift into instability. The effect on the dynamic behav­
iour resulting from the additional closed loop zeros must, however, be investi­
gated before any decision on the suitability of, or the need for, derivative 
action can be taken with confidence. Inspection of Fig. 11.6 suggests that a 
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useful value for k 3 to reduce the overshoot, with minimum effect on the other 
dynamic characteristics, might be 0.9. However, a simulation study, Fig. 11.7c, 
indicates that k3 = 2.5 would be a better choice. This required change in the 
value of k 3 is the direct result of the presence of the closed loop zeros. The 
poles alone dictate the stability boundary, but both the poles and zeros con­
tribute to the dynamic behaviour of the closed loop system. 

(c) Rate feedback or negative velocity fe edback . To avoid mechanical failure or 
system malfunctioning, it is essential in all engineering situations to safeguard 
against the occurrence of large initial transient overshoots. The suppression of 
these overshoots must not, in general, be at the expense of the system accu­
racy ; therefore it becomes necessary in most designs to introduce additional 
control action to prevent this. An action similar to that of proportional plus 
derivative control can be achieved by incorporating within the control loop a 
minor feedback path which introduces control action known as velocity feed­
back. The block diagram, with velocity feedback included, is then as shown in 
Fig. 11 .8, from which it can be seen that a signal proportional to the derivative 
of the output rather than the derivative of the error signal is used. The numeri­
cal value of these two derivatives will be the same for all unity feedback 
systems except when adjustment is being made to the set point r(t). The change 
in the closed loop transfer function can be seen from the following two equa­
tions : 

C(s) k 1 + k 3 s 

R(s) s3 + 5s2 + (12 + k3)s + (8 + kd 
11.3 

for the system considered earlier with proportional plus derivative control, and 

C(s) k 1 

R(s) s3 + 5s2 + (12 + k4 )s + (8 + kd 
11.4 

for the system incorporating negative velocity feedback . In practice, Eq. 11.3 
would be modified as a result of a small additional time constant associated 
with the differentiation, necessary to avoid problems of noise amplification 
and of saturation with step changes of error. Fig. ll.9 shows that the use of 

Controller 
,----------- -- -, 
: Proportional 

I 

R(s) C(s) 

I 1

1 
1 (Derivative) 
I r----. I 

I L-..... kJS ~-- .J 
I L __ ...J 

Velocity feedback 
I 
L-------------' 

Fig. 11.8 System with negative velocity feedback 
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Fig. 11.9 Step responses for change in control action : 
1 

Time (seconds) 

G 1 (s) G 2 (s) = (s2 + 45 + 8) (s + 1 ) (a) P controller (b) P controller and negative velocity 

feedback (c) P + D controller 

negative velocity feedback instead of derivative action can give a smaller initial 
overshoot but would do so at the expense of an increase in rise time. 

Velocity feedback is chiefly of advantage for servomechanisms in which the 
output velocity can be measured directly by a tachogenerator or velocity 
transducer, thus avoiding the problem of noise amplification that can arise 
when trying to differentiate an error signal. It is always good engineering 
practice to avoid the use of differentiation, if at all possible, when choosing the 
type of control action to be incorporated in a design. 

11.4 Selecting controller settings on existing process plant 
As a result of empirical tests on a wide variety of process plant, Ziegler and 
Nichols (see Ref. 1, p. 278) propose a simple rule of thumb procedure for 
estimating the values of controller settings k1, k2, and k3 for existing operating 
plant in order to achieve an optimum transient response. There are two 
methods, one based on the step response of the open loop system and the 
other based on information obtained at the stability limit of the process under 
proportional control. 

In the first method, with the loop opened, the plant is subjected to a step 
change of manipulated variable and the resul ting output response curve is 
characterized by two measured parameters N and L, shown in Fig. 11.10. N is 
the maximum slope of the curve for a change M of manipulated variable, and 
L is the time at which the line of maximum slope intersects the time axi . The 
recommendations which Ziegler and Nichols put forward for the controller 
settings are : 

M 
kc = N L for P control 

M 
kc = 0.9 N L' T; = 3.3L for P + I control 11.5 

M 
kc = 1.2 NL' T; = 2L, ~ = 0.5L for P +I + D control 
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M 

Time 

Time 

Fig. 11 .10 Open loop response parameters for Zieg ler- Nichols f irs t method 

where kc, T;, and ~ are the parameter values of controller gain, integral action 
time and derivative action time respectively, as they appear in the control law 

Ge(s) = kc(1 +_I + Tds) 
T.s 

11.6 

The procedure of the second method is to determine experimentally the 
limiting condition of stability of the closed loop sys tem under proportional 
control only, and to use the resulting information to calculate controller set­
tings. If the limiting value of gain for stability is k eril and the time period of 
oscillation is P eril• Fig. 11.11 , then the Ziegler- Nichols recommended control­
ler se ttings are: 

ke = 0.5 k eril fo r P control ) 
ke = 0.45 keri" T; = 0.83 P eri l for P + I control 11 .7 

kc = 0.6 k eri" T. = 0.5 P e ri" ~ = 0.125 P e ril for P + I + D control 

Other workers (see Ref. 2, p . 278) have extended these ideas to show how the 
commonly used analogue controllers can be replaced by their digital equiva­
lents, and how the analogue settings of Ziegler- Nichols and others can be 
translated into settings for digital controllers, to achieve satisfactory loop 
tuning. Most controller manufacturers also provide more specific instruction 
for the adjustment of their instruments based on these ideas. The settings 
obtained using these instructions, however, only give a good first estimate and 
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P-controller gain increased until stability limit 
reached at k 1 = kc,;t 

C(s) 

Fig. 11.11 Oscillatory response parameters for Ziegler- Nichols second method 

further adjustment is still necessary to meet the control requirements of spe­
cific plant. 

11.5 System compensation 

Most feedback systems are required simultaneously to match performance 
specifications both for steady state accuracy and for relative stability. The 
former requires that the steady state error with a given type of input excitation 
should not exceed some specified value, and this defines a certain minimum 
value of loop gain, say K 1• To ensure that the system has adequate relative 
stability, it must have a specified minimum value of phase margin or gain 
margin, or a specified maximum value of M P' and this defines a certain 
maximum value of loop gain, say K 2 . If K 1 > K 2 , then the two requirements 
a re not compatible, and the specifications cannot both be satisfied unle s some 
form of phase compensarion is introduced. 

The way in which the addition of compensating networks can result in 
compatibility can be illustrated by considering the Nyquist diagram, Fig. 
11.12. The genera l objective is one of reshaping the open loop harmonic 
response plot so that the low frequency gain is high enough and, in addition, 
the plot avoids the critical (-I, jO) point with an adequate safety margin. The 
locus can be reshaped in the manner shown by 

(i) starting with gain K 1 for the system and introducing phase lead at high 
frequencies in order to attain the specified phase margin, gain margin, 
or M P (phase lead compensation), or 

(ii) starting with gain K 2 for the system and introducing phase lag at low 
frequencies to meet steady state accuracy requirements (phase lag 
compensation) or 

(iii) starting with a gain between K 1 and K 2 and introducing some pha e 
lead at high frequencies and some phase lag at low frequencies (lag-lead 
compensation). 

The design task of determining the transfer function required for a suitable 
compensating network can be carried out in the time domain or in the fre­
quency domain using one or more of the techniques of analysis described ·in 
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Fig. 11.12 Nyqu ist diagram for G(s) = k illustrating principle of compensation 
s(,s2 + 4s + 8) 

earlier chapters. Design by means of the Bode plot is particularly useful 
because of the ease with which the effect of compensation can be evaluated by 
noting the improvement to stabilit y margins resulting from the addition of 
magnitude and phase curves for the compensating network being investigated. 
The design procedures are orderly graphical trial and error procedures, and 
although this approach is among the earliest of design techniques it is prob­
ably still the best for systems with one or two feedback loops. The time 
domain characteristics are not directly apparent from the Bode plot but are 
related in a general way to the shape of the plot in the vicinity of the critical 
0 dB, - 180 degree point. Although a phase margin of 45°, with a gain margin 
of around 6 to 8 dB , provides no guarantee that the transient behaviour will 
be acceptable, conditions are not often encountered where it is not. The pro­
cedure is usually to establish a tentative design with the aid of a Bode plot, 
then to simulate the resulting system and, by trial and observation, make 
adjustments if necessary to achieve an appropriate transient response based on 
rise time, initial overshoot, etc. The design technique gives no clear guidance at 
the outset as to which type of compensation would be the best for any given 
system; hence the designer must use past experience to decide on a method, try 
it , and if no satisfactory design emerges try another. 
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11.6 Phase lead series compensation 

This section outlines the general features of phase lead series compensation in 
order to illustrate the procedure of designing a compensation network. The 
approach with phase Jag, lag-lead, or parallel compensation is broadly similar, 
although the details vary. The phase lead is provided by a compensating 
device which has a transfer fu nction 

1 1 + aTs 
G,(s) =- , where a > 1. 

a 1 + Ts 

It should be noted that with a passive device the phase lead provided by the 
zero at - l /aT cannot be obtained without including in addi tion a pole at 
-1 / T . Inherent also is the attenuation 1/a; hence, when used for com­
pensation, additional amplification is needed to restore the loop gain to the 
required value. 

c 

(a) 

(b) 

Fig. 11.13 Phase lead compensation networks (a) electncal (b) mechanical 

Such a transfer function is valid for the electrical circuit of Fig. 11 .13a. That 
R 1 + R 2 R 1R 2 C . 

this is so with a = , T = , can be shown by the analytical 
2 R 1 + R 2 

methods of Chapter 2, provided assumptions are made that any input imped­
ance presented to the circuit will be small, and that the circui t will always be 
connected to a high impedance output, thus maintaining the input-output 
properties of an open circuit. The mechanical arrangement sketched in Fig. 
11.13b can be shown to be analogous, with a= (K 1 + K 2 )/K 2 , and T = 
Cj(K 1 + K 2 ). The amount of phase lead, and the frequency band where it is 
effective, can be selected by appropriate choice of circuit components to obtain 
the required values of a and T. 

What are the characteristics of such a phase lead arrangement? In the 
s-plane a pole and a zero are introduced on the negative real axis with the zero 



11.6 Phase lead series compensation 237 

lying closer to the imaginary axis than the pole (Fig. 11.14a) ; the position and 
spacing of the roots is determined by the numerical values of a and T. The 
effect on a root locus diagram of introducing such a pair of roots, with the 
zero dominant, is to pull the dominant loci towards the left of the diagram 
and, as a consequence, improve the relative stability of the system. The extent 
to which the dominant loci are moved to the left of the diagram will be 
dictated by the values of a and T chosen at the design stage. On the polar plot, 

the locus of the unity gain function 1 + jroaT can readily be shown to be a 
I+ jroT 

semicircle in the 4th quadrant with a magnitude of I at low frequencies , rising 
to a maximum value of a at high frequencies (Fig. 11.14b). The phase is a lead 
which increases with increase of frequency from zero to a maximum value 
determined by the chosen value of ex, and then reduces to zero again as the 
frequency approaches infinity. The tangent drawn to this semicircle from the 
origin determines the maximum phase lead CfJm that is obtainable, and the 
frequency rom at which it occurs. The angle CfJm increases with increase of ex, and 
tends towards a maximum lead of 90° as a approaches infinity. On the Bode 
plot (Fig. 11.14c), the lead term has a break point at ro = !/ex T and thus starts 
to influence the response at about one tenth of this frequency; as frequency 
increases the effect of the lead term grows but is gradually opposed by the lag 
term which has its break point at ro = l / T. As a consequence of symmetry of 
the phase plot, the frequency rom at which the maximum phase lead occurs lies 
midway between the corner frequencies on the logarithmically scaled fre­
quency axis, hence 

I 
or ro =--

m T Jcx 
The maximum value of phase lead is given by 

Substituting 

yields 

or more conveniently 

CfJm = tan - 1 rom aT - tan - 1 rom T 

romaT- romT tan CfJm = _ _..:.:.:. ___ :.::___ 
I + (romcxT)(rom T) 

I 
rom= TJCi.' 

ex - I 
tan cp = - -

m 2 J a 

. a - I 
Sin CfJm = (X + I 11.8 

This equation is used to calculate the value of a needed to provide any specific 
value of phase lead CfJm· 
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The design procedure using the Bode diagram is as follows: 

I. Plot the Bode diagram for the uncompensated system with the gam 
chosen to achieve the steady state error requirements. 

2. Read from the plot the phase margin, a nd estimate the phase lead 
required to give acceptable system response. To make allowance for the 
increase in gain crossover frequency, caused by the magnitude contribution of 
the compensation network, approximately 5 degrees should be added to deter­
mine a trial design value for rp 01 • Calculate the required value of 'Y. using Eq. 
11.8. 

3. To ensure that rp
01 

is located at the new gain crossover frequency. calcu-

late the high frequency magnifica tion of the function 
1 + j~aT, find the fre-
1 +)CUT 

quency at which the uncompensated system has an attenuation of half this 
I 

value, and make wm equal to that frequency. Hence T = - J , and the break 
cum I'Y. 

points for the compensation network are at frequencies wmi~ ~ and wm ~. 
4. Increase the gain by a factor a, to correct for the attenua tion inherent in a 

practical compensation network, and draw the Bode diagram for the compen­
sated system. 

5. Check that the required performance specifications are sa tisfied and, if 
not, select a larger value of rpm and repeat the procedure. 

Example 11.2. A unity feedback system with open loop transfer function 

K is required to have a phase margin of at least 45 degrees and a 
(I + lOs)( I + s) 
steady state positional error which does not exceed I %. Determine the 
required value of K and, if the performance specifications cannot be satisfied 
by appropriate choice of K , design suitable phase lead series compensation for 
the loop. 

The value of K must be chosen to satisfy the steady state error require­
ments. For a unit step input the steady state error is given by 

s----+0 s----+ 0 K 
e,, = 0.01 = lim s£(s) = lim [ 

1 
] 

1 + (I + lOs)(! + s) 
K = 100, say. 

The Bode diagram for the uncompensated system is drawn by summing the 
contributions to magnitude and phase of the gain term, and of the two simple 
lag terms which have break points at frequencies of 0.1 and l rad/second: 

Magnitude(dB) = 201og 10 100- 20log 10 J(I + (10w) 2
)- 20log 10 J(I + w 2

) 

Phase = -tan - 1 I Ocu - tan - 1 w. 

From the Bode diagram (Fig. 11 .15) the phase margin is measured to be 19°; 
hence at least 26° of phase lead is required. To make some allowance for phase 
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Fig. 11 .15 Phase lead compensat ion- Bode diagram for Example 11 .2 

reduction resulting from increase of the gain crossover frequency, choose a 
tria l va lue of qJm = 30°. Applying Eq. 11.8 : 

a.- 1 
sin 30° = -- = 0.5 

a.+ l 

a.=3 

The transfer fu nction of the phase lead network is therefore 

( _ ~ 1 + 3Ts 
Gc s)- 3 l + T s 
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and the value of T must now be determined to ensure that the phase lead of 
30° is effective at the new gain crossover frequency. At high frequencies, the 

. d f h ~ f . I + 3Ts magmtu e o t e trans.er unctwn is 
I+ T s 

20 log 10 3 = 9.6 dB. 

To ensure that q>m is effective at the new gain crossover frequency, place wm at 
the frequency where the uncompensated system magnitude is - 0.5 (9.6) = 
- 4.8 dB. From Fig. 11.15 this is seen to give wm = 4.2 radjsecond. Hence the 
corner frequencies for the compensation network are 

I Wm 1 J - = J
3 

= 2.4 rad/second, and-= wm 3 = 7.3 radjsecond 
aT T 

Hence the transfer functions for the compensation network and the system are 
respectively 

I I + 0.42s 300 
G (s) = - and G(s) = -----

c 3 I+ 0.14s (l +lOs)(!+ s) 

Addition of the magnitude and phase curves for the compensation network 
and the uncompensated system in Fig. 11.15 confirms that this compensation 
network increases the phase margin to 45°, which is the value required . The 
gain margin is infinite since the system is of second order. 

The improvement to the transient behaviour resulting from compensation 
can be seen in the step response traces of Fig. 11.16. 

This example illustrates that phase lead compensation generally improves 
the rise time and reduces the amplitude of transient oscillations, but increases 
the bandwidth, and so may introduce undesirable effects resulting from noise 
transmission through the system. The compensation network acts as a high 
pass filter. Much noise is, however, usually suppressed due to the low pass 
characteristics of most physical systems. It should be noted that by no means 
all systems can be satisfactorily compensated by means of a phase lead 
network. A common situation in which the design method fail s is where the 
transfer function of the uncompensated system is of a form which causes the 
phase lag to increase rapidly near the gain crossover frequency ; any phase lead 
added is then nullified to a large extent by the marked decrease in phase of the 
uncompensated system at the new gain crossover frequency . The designer may 
also be constrained by the physical nature of components to be used , or 
limited by factors such as cost, weight, and space. It may not be possible, 
because of engineering difficulties, to achieve the large gain required to meet 
the steady state accuracy specification. Phase lead compensation is not advis­
able where the system gain must be so high that the uncompensa ted system is 
badly unstable. 

11.7 Phase lag, and lag-lead series compensation 
A phase lag compensation element has the transfer function 

I+ r:xTs 
Gc(s) = 

1 
+ Ts , where a < I 
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Fig. 11.16 Effect of phase lead compensation (a) root locus diagram (b) step responses 

This can be realized by the passive electrical network of Fig. 11 .17a provided 
that the input impedance is small and the output impedance is large ; a= 
R 2/(R 1 + R 2 ), which is less than unity, and T = C(R 1 + R 2 ). A spring and 
damper arrangement as in Fig. 11.17b is equivalent, with a = K J (K 1 + K 2 ) 

and T = C 2(K 1 + K 2)/K 1K 2 . At low frequencies the phase lag element has 
unity gain and at high frequencies there is an attenuation a. Introduction of 
such an element adds a real pole and a real zero in the s-plane, the pole being 
dominant and their position and spacing being determined by the numerical 



11 .7 Phase lag, and lag- lead series compensation 243 

x ; 

Vo -+0 
I I c I 

(a) 

(b ) 

Fig. 11 .17 Phase lag compensation networks (a) elect rical (b) mechanical 

1 
a. T 

s-plane 

lm 

--~~-------«·--~----Re 

Harmonic locus for a.=a.2 

(b ) 
(c) 

, ___ _ 
-- ' 
I 

W=_!_ 
a. T 

Fig. 11.18 Characterist ics of phase lag network 1 +a Ts/ 1 + Ts, a< 1 (a) root locus 
plot (b) po lar plot (c) Bode plot 

va lues of rx a nd T. T he domina nt loci of the roo t locus plo t are pushed 
towa rds the right , but the va lues of K for the compensated system a re lower 
giving improved rela ti ve sta bility. The characteri stics of a phase lag element, 
shown in Fig. 11 .18, a re the inverse of those fo r a phase lead element. Design 
of phase lag compensa ti o n does no t re ly on the phase shift of the network , 
ra ther it utilizes the characteri stic of a ttenuation a t high frequencies. 
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As with phase lead compensation the starting point in the design process is 
the uncompensated system with the value of the steady state gain chosen to 
meet the steady state error requirements. The phase curve of the Bode plot in 
the region of the gain crossover frequency is kept relatively unchanged a nd the 
magnitude is decreased in this region (and at higher frequencies) by means of 
the lag network so that the gain crossover frequency decreases to give an 
improved phase margin. (This contras ts with phase lead compensation where 
the magnitude curve is kept relatively unchanged in the region of the gain 
crossover frequency and phase lead is introduced to increase the phase margin , 
making due a llowa nce for the effect on phase margin of the accompanying 
increase in gain crossover frequency). The design procedure using the Bode 
diagram is as follows: 

I. Plot the Bode diagram for the uncompensated system with the gain 
chosen to achieve the steady state error requirements. 

2. Find the frequency eve corresponding to the desired phase margin plus 
about 5 . The magnitude plot must be altered so that it passes through 0 dB 
near this frequency. Measure the amplitude Gc of the uncompensated system 
at this frequency eve. The phase lag network must provide an attenua tion of 
Gc. 

3. Ca lculate the value of ct. to provide this attenuation from the relationship 
Gc = -20 log 10 ct. dB. Select T so that the phase lag effect is well below we, 
say 1/aT = 0.1 w<> in which case the phase lag introduced by the network at 
the gain crossover frequency is about 5°, which has already been allowed for in 
step 2. 

4. From the plots for the uncompensated sys tem and the compensation 
network with a and T chosen in step 3 draw the Bode plot for the compen­
sated system. 

5. Check that the required performance specifications are satisfied a nd if not 
adjust the selected values to try to atta in them. 

Example 11.3. A unity feedback system with open loop transfer function 

K is required to have a phase margin of at least 45 and 
( I + IOs)(l + s)(l + 0.5s) 
a steady state positional error which does not exceed I %. Determine the 
required value of K and design suitable phase compensation for the loop. 
(Note that this is the system of Example 11.2 with one additional time con­
stant of 0.5 seconds). 

The value of K must be chosen to sat isfy the steady state requirements, and 
remains identical to that for Example 11.2, i.e. K = 100. The Bode diagram for 
the uncompensated system is drawn, as in the previous example, by summing 
the contributions to the magnitude and phase of the constituent factors of the 
transfer function: 

Magnitude (dB)= 20 log1 0 100 - 20 log 10 .j(l + (10w)2) 

- 20 log10 .j(1 + w 2
)- 20 log10 .j(l + (0.5w)2) 

Phase= - tan - 1 (lOw)- tan - 1 w- tan - 1 (0.5w) 
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The magnitude and phase can be easily calculated with the aid of a hand 
calculator. The gain margin and phase margin are both negative (- 9 dB and 
-23°, Fig. 11.19) indicating that the uncompensated system with the gain set to 
achieve the required steady state error is unstable. It can readily be shown by 
applying the Routh-Hurwitz criterion that the limiting value of K before 
instability occurs is 34.65. 

Phase lead compensation is unlikely to succeed in meeting the stability 
requirements since the phase in the region of the gain crossover frequency is 
decreasing rapidly with increase in frequency. 

Investigate therefore the benefits of phase lag compensation. The phase is 
(180° - 50°) = 130° for the frequency we = 0.62 radjsecond. The magnitude at 
this frequency is found from the plot to be 22 dB. 

20 log 10 rx = -22 rx = 0.08 
1 

also - = 0.1 (0.62) T = 202 seconds 
rxT 

A suitable phase lag compensation network should therefore be 

G (s) = I + 16s 
c 1 + 202s 

which has magnitude and phase characteristics as shown in Fig. 11.19. Addi­
tion of these and the plots for the uncompensated system gives a plot for the 
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Fig. 11.19 Phase lag compensation- Bode diagram tor Example 11 .3 
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compensated system, and from this the phase margin is found to be 45° as 
required and the gain margin is now·13 dB. 

The resulting step response can be seen in Fig. ll.20b. The change to the 
root locus diagram, and to the position of the roots can be seen in Fig. 
11.20a- the dominant complex roots are brought from the right half of the 
s-plane to a position corresponding to ( = 0.36 and wn = 0.82 rad/second at 
the expense of introducing a real root close to the origin, which makes the 
response sluggish. 
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By replotting the harmonic response characteristics on a Nichols chart one 
can find the closed loop characteristics to be M P = 1.4, w P = 0. 7 radjsecond 
and bandwidth = 1.l rad/second. 

Study of the root locus plot suggests how this may be used for the design of 
phase lag compensation. Establish on the root locus for the uncompensated 
system a desirable root position, compare the value of K there with that 
required to satisfy steady state requirements, and call the ratio ex. Choose 1/cxT 
to be one order of magnitude at least smaller than the smallest pole of the 
uncompensated system; the exact location of the additional pole and zero is 
not critical, only the distance between them. 

This study illustrates that phase lag compensation improves the relative 
stability and reduces overshoot but usually at the expense of a longer rise time 
since the values of wP and bandwidth are decreased. This contrasts with phase 
lead compensation where the bandwidth is increased thus improving rise time, 
and perhaps giving problems of noise transmission. Each method has advan­
tages and disadvantages, and where a system cannot be designed to satisfy 
several requirements simultaneously by using one or the other the desired 
performance may be attainable by using the two together to gain advantages 
from each one. This is referred to as lag-lead compensation, and can be 
achieved either by use of separate lag and lead circuits in series, with a buffer 
amplifier between, or by the use of the single circuit of Fig. 11.21. 

R1 

(b) 

for (b) Gc(s) = 1+111 T1s 1 +cx2T2s 
H -T,s 1+T,2S 

where ex, T1 = R1C,,cx2T2 = R2C2 and 111112 = 1 

Fig. 11.21 Lag-lead compensation networks 

11.8 Pole cancellation and feedforward compensation 

Where the dominant roots of a system comprise a pair of complex conjugate 
poles which are close to the imaginary axis the behaviour will be excessively 
oscillatory and the amount of improvement available by phase compensation 
methods is limited. A technique which can sometimes be used is that of pole 
cancellation. In principle the aim is to introduce a compensation network with 
zeros which cancel the system poles, together with poles which are positioned 
more suitably in the s-plane. Figure 11 .22 shows two compensation networks 
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or 

Fig. 11.22 Compensation networks for pole cancellation 

referred to as 'bridged T networks' which can be used for this purpose. Cancel­
lation can seldom be exact since the system poles will not usually be known 
exactly due to practical limitations in modelling and due to slow changes of 
system parameters with time. The effect of inexact cancellation is that a pair of 
roots remains near to the system poles, but the effect is small since the coeffi­
cient associated with the roots has a small numerical value. 

A different design approach which may be useful if the expected unwanted 
disturbances are known to act at a specific point in the system is by using 
feedforward compensation in conjunction with the feedback loop (Fig. ll.lc). 
The disturbance signal is monitored and a control signal derived to cancel out 
much of the disturbance before it affects the system. The computation of the 
control action needed requires that a model of the system is available. The more 

D 

Process 
c 

Fig. 11.23 Additional example of feedforward control 

closely the disturbance can be monitored and the more accurate the system 
model, the better will be the control. The arrangement of Fig. 11.23, although 
apparently containing a minor feedback loop, is in fact another example of 
feedforward control, the disturbance D here entering at a different point in the 
system. 



11 .9 Compensation of sampled-data system 249 

11.9 Compensation of sampled-data system 

Compensation network design for a sampled-da ta system is similar to that 
described in Sections 11.5 to 11.7 for a continuous-data system, and can con­
veniently be carried out using a Bode diagram. 

R(s) 

Zero-order 
hold 

Compensat ion 
network Process 

G(s )= K 
(1 + 10s)(1 + s ) 

Fig. 11.24 Sampled-data system with continuous-data compensation 

C(s) 

Example 11.4. Consider a system with block diagram as in Fig. 11.24 where, 
for comparison , the open loop transfer function is as used in the continuous data 
system of Example 11.2. 

The z-transforrn of the uncompensated open loop can be written as 

GhoG(z) = (1 - z -
1
).2'[ .s(l + l~)(l + s)] 

K (z- 1) [9 10 I J 
= 9 - z- .2' ~ - (0.1 + s) +( I + s) 

From Table 10.1 

Inspection of Fig. 11.16b would suggest a sampling time of T = 0.2 seconds to 
give a good sampled-data representation of the continuous signal. 

K ( 9 10 I ) 
GhoG(z) = 9 (z- I) z- I - z- 0.9802 + z- 0.8187 

K ( 0.017z + 0.016 ) 
= 9 (z - 0.98)(z - 0.819) 

Rearranging Eq. 10.23 to make z the subject gives 

1 + r 
z= - -

1 - r 

Using this mapping function for z, the corresponding open loop r-transform of 
GhoG(z) is 



250 Design of Closed Loop Systems 

K(1 - 0.91r) 
~ ---'---,-------'-:--

(1 + 99r)(1 + lOr) 

and 

The break points needed to plot the Bode diagram for GhoG(jw,) occur at 
w, = 0.1 and very close to 0.01 and 1.0 radians per second. If a value of 
K = 40 is selected the phase margin is I 9o and a direct comparison with 
Example I 1.2 can be made. The Bode diagram for GhoG(jw,) is drawn in Fig. 
I 1.25. For a phase lead network 

I I+ arr 
Gc(r) = - where Cl > 1 

a I + rr 

As explained in Example 1 I .2, a suitable trial value for <fJm is 30°, resulting in 
the value a= 3. The new crossover frequency is positioned at a magnitude 
value of - 4.8 dB and this yields a value for wm = 0.26 rad/second. Hence the 
corner frequencies for the network are located at 

and 
1/ar = 0.26/J3 = 0.15 radjsecond 

1/r = 0.26 J3 = 0.45 radjsecond 

Frequency (rad/second) 

Fig. 11.25 Bode diagram for Example 11 .4 
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For the compensated system 

C(r) 40(1 - 0.97r)(l + 6.7r) 

E(r) (1 + 99r)(l + IOr)(l + 2.2r) 

and by making the appropriate substitution for r 

C(z) 40(0.03z + 1.97)(7.7z- 5.7)(z + 1) 

E(z) ( 1 OOz - 98)( 11 z - 9)(3.2z - 1.2) 

Multiplying the top and bottom of this equation by (z - 1) and separating into 
partial fractions gives 

C(z) ( z - I)( 42.5z 1.9z 0.52z 40z ) 
E(z) = - z - - (z - 0.98) + (z - 0.818) + (z - 0.375) + (z - 1) 

Using Table 10.1, and rearranging gives 

C(s) (1-e - sr)( 40(1+0.65s) ) 
E(s) = s (I + 10s)(l + s)(l + 0.2s) 

from which 

G (s) _ ..o..(1_+_0_. 6_5s-'-) 
c - (I + 0.2s) 

The realization of this transfer function can be achieved by use of the com­
pensation networks shown in Fig. ll.l3. 

The closed loop pulse transfer function is 

C(z) 9.24z3 + 609z 2 + 151 z - 449 

R(z) 3529z3
- 704lz 2 + 5347z - 1507 

z 
For a unit step disturbance in R(z), i.e. R(z) = -- , the output response is 

z-1 

9.24z4 + 609z3 + 15l z2 
- 449z 

C(z) = 3529z4 - 10 570z3 + 12 388z2 - 6854z + 1507 

From this equation the steady state value of c(t) can be computed as 0.976 by 
use of Eq. 10.21, and by means of long division the time response can be 
estimated. This output response is shown in Fig. 11 .26 and illustrates the 
improvement achieved by the addition of the phase lead compensation 
element. 

The compensated Bode diagram, Fig. 11.25, shows that a phase margin of 
39° and a gain margin of 10 dB have been achieved. However, the steep slope 
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Sample Intervals (0.2 second Interval) 

40 

Fig. 11.26 Effect of compensation on step response. Example 11 .4 

of the phase angle curve suggests that the sampled process is less amenable to 
phase lead compensation than the original continuous-data system. 

If alternatively a phase lag network is incorporated and the procedure 
described in Section 11.7 is followed, it can be seen that a phase margin of 45° 
can be realized if the gain crossover frequency is moved to 0.1 rad/second. 
Since the network does influence marginally the final phase lag, a lower fre­
quency of 0.08 will be used as the crossover value. Thus the network must 
produce 13 dB of attenuation at this frequency. 

Hence 
20 log a = - 13 dB 

a= 10 - 13/20 = 0.22 

and this fixes the distance between the two corner frequencies of the lag 
network. The upper corner frequency is located at 1/ 10 of the new crossover 
frequency 

Thus 

1 0.08 
i.e. - = -- = 8.0 x 10- 3 radjsecond 

IX! 10 

1 
and - = 0.22 x 8.0 x 10- 3 = 1.76 x 10- 3 rad/ econd 

r 

C(r) _ 40(1 - 0.97r)(l + 125r) 

E(r) - (1 + 99rX1 + 10rX1 + 568r) 
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and 

C(z) _ 3.78z3 + 248.28z2 + 0.22z- 244.28 

R(z)- 15651.28z3 - 43481.27z 2 + 40584.82z- 12746.63 

As would be expected the stability margin, Table 11.1, has been improved 
by use of the lag network but the reduced bandwidth results in a longer rise 
time as shown by the step response given in Fig. 11.26. 

Table 11.1 Harmonic response characteristics . 
Example 11 .4 

PM GM Bandwidth 

uncompensated 19 9 0 .20 

lead 
compensated 38 10 0 .37 

lag 
compensated 48 20 0 .11 

lead-lag 
compensated 43 16 0 .20 

A more practical and possibly more versatile approach to sampled-data 
system compensation may be found in the use of the lag-lead network (or its 
equivalent) shown in Fig. 11.21 since it contains advantages of both the phase 
lead and phase lag networks. 

The transfer function of a lag-lead network can be written as 

Gc(s) = ( 1 + cx 1r1s) x (1 + cx2r2s) 
1+r1s 1+r2 s 

where cx 1 cx 2 = I, cx 1 > 1 and cx 2 < 1 
The lag portion will first be established by selecting values for cx 2 and r 2 , a 

purely arbitrary choice in this case. 
If the crossover be moved to 0.15 radfsecond a phase margin of 30° will 

result. 

and 

i.e. 5 = -20 log cx 2 

cx2 = w-5120 = 0.5623 

1 0.15 
-- = - = 0.015 rad/second 
cx2r 2 10 

1 
- = 8.4 x 10 - 3 rad/second 
!2 
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Using the constraint 

gives 
I 

(:J. =--= 1.8 
I 0.5623 

The phase lead portion is positioned on the Bode diagram in the same way 
as described earlier. The attenuation of the lead network is 

20 log 10 1.8 = 5 dB 

hence wm = 0.23 

I 
- = 0.23 J 1.8 = 0.3086 
rl 

For the compensated system 

C(r) 40(1 - 0.97r)(l + 5.8r)(l + 67r) 

E(r) (I + 99r)(l + I Or)( I + 3.2r)( 1 + 1 19r) 

and the closed loop pulse transfer function is 

C(z) 

R(z) 

13.87z4 + 90 154z3 
- 629.97z2 

- 893.54z + 624.1 

13873.87z4
- 44910.26z3 + 55184.45z2

- 30479.94z + 6348.28 

The time response for this system is shown in Fig. 11.26 and a lthough an 
improvement is shown further tria ls would be necessary to determine if the 
gain margin could be increased while still maintaining a similar phase margin 
and bandwidth (Table II. I). 

This example illustrates that the ideas normally associated with continuous­
data system design can be extended in all aspects to the sampled-data system 
by use of z-transformation and the r-transform method. 

11.10 State vector feedback control 

An exposition of the design of linear systems using the classical methods of 
Bode diagrams and root locus plots has been given in the earl ier sections of 
this chapter. It will have been observed that in the classical method of design 
feedback is most generally obtained from one variable, the output. Only when 
inner feedback loops are used for system compensation is more than one 
variable employed for feedback control. The conventional controller incorpo­
rating P + D, P + l , phase lead or phase lag algorithms is generally unable to 
control independently all system poles, Fig. 11.6, si nce the number of free 
parameters availab le for adjustment is restricted to two or three in most cases. 
Therefore, if the process can be described in state vector form, it is logical to 
extend the power of the classical design approach by providing full state 
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Reference input Process input 
r(t) u(t) 

Process output 
y(t) 

x 4(t) I State variable (x(t) } 
-'-_.::_----1- - I I r- -, 

I I 
I I 
"'T-' 

0 

I 
0 

Feedback matrix H J --
Fig. 11.27 Block diagram for state vector feedback con trol 

feedback . This leads to the concept of state variable f eedback and is the basis of 
most design techniques in modern control theory. 

Many of the analytical design procedures reduce to problems of (a) finding a 
suitable variable to manipulate to enable the system output to be changed 
from some initial state to any other desired state in a finite time, and (b) being 
able to estimate, with confidence, the process state from observations made 
over a finite time of the output response. These two properties are classified in 
the literature as controllability and observability respectively. 

The arrangement shown in Fig. 11.27 is a block diagram representation of a 
system in which each state variable is fed back through a fixed gain. The state 
vector {x(r)} for the n-dimensional process is fed back through a constant 
I x 11 matrix H, and the system describing equations can be written 

u(r) = r(t) - H{ x(t) } 

Substituting thi s in Eq. 5.16, yields 

{x(r) } =(A- BH){x(t) } + Br(t) 

From the analytical results of Section 5.3, the characteristic equation for thi s 
closed loop system is 

I sf - A + BH I = 0 11.9 

If the system can be shown to be controllable, i.e. if it is possible to change 
the system state from some initial state {x(O)} to a desired equilibrium state in 
a finite time interval by means of the process input u(t), then the roots of Eq. 
11.9 can be chosen arbitrarily. This gives rise to a design procedure known as 
pole-placement. 

Although most physical systems are controllable, there are some exceptions 
and care must be taken in making all-inclusive general statements. In particu­
lar, lack of controllability may not be apparent when a transfer function 
description is used to model a process. The necessary and sufficient condition 
for controllability is that the composite matrix 

S=[BABA 2B .. .... A" - 1B] 
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has a rank of n. The rank of matrix S is the order of the largest non-singular 
matrix (defined in Appendix C) contained in S. For example, if the matrix is 

[1 2 3] 
S= 2 3 4 

3 5 7 

then Sis of rank 2 because 

I ~ ~ I = - 1 and det S = 0 

Consider a process described by the state variable Eq. 5.7, i.e. 

then 

{i(t)} = [~ 
1 
0 

- 8 

S = [BABA 2BJ=[~ _! -i8]=-l 

(5 .7) 

which satisfies the controllability requirement of this process, i.e. that S is of 
order 3 since n = 3. It should be noted that Eq. 5.7 is of a special type, known 
as 'phase-variable canonical form ' and as such will always be state controllable 
(Appendix C, Section (j)). 

Example 11 .5. For the engine speed regulating system of Fig. 9.2, re-drawn in 
modified form in Fig. 11.28, derive a state-vector control law that will give 

Selected engine 
speed 

r(tl 

Engine and Tachometer 
,..-.--------'"--------....._Measured engine 

speed 

{x } = A {K) + Bu 
y(t) 

Fig. 11.28 Speed regulating system, Example 11.5 

zero steady state error for a step change in selected engine speed and that will 
also give minimal initial overshoot to this step-input disturbance. 

To quicken the process response and reduce the steady state error a gain 
value of 100 is taken, hence for this example the forward loop transfer function 
is 

Y(s) 100 

U(s) - (s 2 + 9s + 25X1 + s) 
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Fig. 11.29 State variable diagram for 1 00/ (s" + 9s + 25) (1 + s) 

and the state variable diagram can be drawn as shown in Fig. 11.29. From 
inspection of Fig. 11.29 the state variable equations are: 

that is 

.k1(t) = x 2(t) 

.X 2(1) = X 3(1) 

.k 3(1) = - 25x 1 (1) - 34x 2(t) - lOx 3(1) + IOOu(l) 

y( l) = x 1(t) 

A= [ ~ 
-25 

I 
0 

-34 
~ ] . B = [ ~ ] · C=[l 

- 10 100 

The constant feedback matrix H can be written 

H=[h 1 h2 h3 ] 

Using Eq. 11 .9, the characteristic equation is 

0 0] 

Is/ - A + BHI = s3 + (10 + 100h3)s2 + (34 + I00h 2 )s + (25 + IOOhd = 0 

Since zero steady state error is a design requirement 

25 + 100h 1 = 100 

hi = 0.75 

The second requirement of minimal overshoot suggests, by inspection of Fig. 
9.2b, that two roots positioned at - 2 ± 2j will help achieve thi s end. Hence 

s3 + (10 + 100h3)s2 + (34 + 100h 2)s + 100 = (s + 2- 2j)(s + 2 + 2j)(s + p) 

= s3 + (4 + p)s2 + 4(p + 2)s + 8p 

Inspection of this equatio n and equating coefficients yields 

100 
p= 8 = 12.5 

34 + 100h2 = 4(12.5 + 2) 

h2 = 0.24 

10 + 100h3 = 4 + 12.5 

h3 = 0.065 
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The closed loop transfer function is then 

Y(s) 100 

R(s) - s3 + 16.5s2 + 58s + 100 

The complex roots of the characteristic equation have a damping factor of 
0.707 and are dominant since the third root is far to the left. Hence the 
required specifications have been satisfied and the response (shown in Fig. 11.30) 
is very similar to that of a second order system. 

1.0 

'5 
0. 
'5 
0 

2 

With state vector feedback 

4 6 
Time (seconds) 

Fig. 11.30 Step response 

A weakness of state-vector feedback control in practice is that not all of the 
state variables will be readily accessible directly from the system, or the cost of 
monitoring these might be prohibitive. For a high order system there are many 
state variables and hence many transducers are needed. These problems can be 
surmounted by estimating individual unavailable state values by use of the 
state observer algorithm. Luenberger (Ref. 3 , p . 278) showed that an nth order 
process with q independent outputs can be observed by using an (n - q) order 
linear dynamic system. This condition of observability is defined in a manner 
analogous to controllability and indicates that an unobservable system will 
have dynamic modes of operation which do not influence the measured output 
response in any way. 

If the rna trix 

Q = [C'" ATCT(AT)2C'" ...... (AT)" -l C'"] 

is of rank n, the system is observable and the state vector can be constructed 
from linear combinations of the output {y(t)} , input { u(t)} and derivatives of 
these variables. Intuitively, the observer should have the same form of state 
equation as the original process. The estimated state vector is designated as 
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{x } =A {x) +Bu 
{ y(t) } 

Fig. 11.31 Control loop incorporating observer 

{x(t)} and is used to generate the control variable { u(t)} through the feedback 
matrix H, Fig. 11.31, since the observer will be shown to have the capacity to 
minimize the error between the actual states and the observed states. These 
requirements can be embodied into a mathematical algorithm that enables the 
observer block, Fig. 11.31, to be specified in detail. Based on this premise, the 
appropriate mathematical equations are now presented together with an 
example to illustrate how these might be used in the design of a state observer. 

Defining the observer algorithm as 

{ i(t)} = E{ z(t)} + F{y(t)} + G{ u(t)} 11.10 

an estimate of the process states can be achieved by use of the linear relation 

{ z(t) } = L{ x(t) } 11.1 I 

The orders of the vectors and coefficient matrices, yet to be chosen, are: 

{z(t)} = (n- q) x I vector; {y(t)} = q x 1 vector; {u(t)} = p x I vector 

and 
E = (n- q) x (n- q) matrix ; F = (n- q) x q matrix ; 

G = (n- q) x p matrix ; L = (n- q) x n matrix. 

To be able to use an observer with confidence it is essential that { x(t)} be 
driven as close to { x(t)} as possible, hence an error vector { .:.,(t)} is defined 
as, 

{.:.,(t)} = {x(t)}- {x(t)} 

Substituting from Eq. 11.12 into Eq. 11.11 gives 

{z(t)} = L{x(t)} + L{.:.,(t)} 

Differentiating each term with respect to time in Eq. 11.13 gives 

{i(t)} = L{.t(t)} + L{t.,(t)} 

Replacing {.t(t)} from Eq. 5.16 yields 

{i(t)} = LA{x(t)} + LB{u(t)} + L{t.,(t)} 

11.12 

11.13 

11.14 

11.15 

Substituting Eq. 11.13 and Eq. 11.15 into Eq. 11.10, and replacing {y(t)} with 
Eq. 5.17 (matrix D = 0), gives on rearrangement 

L{t.,(t)} = EL{.:.,(t)} + (EL + FC- LA){x(t)} + (G- LB){u(t)} 11.16 
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The solution of this equation is dictated by the constraints imposed, therefore 
to ensure that { ~:At)} decays with time, Eq. ll.l6 will be constrained to be 

L{ t .. (t)} = EL{ Ex(t)} 11.17 

and hence the estimated vector { x(t)} will converge onto the actual vector 
{x(t)} . From Eq. 5.34 the solution of Eq. 11.17 is 

L{ E..(t)} = eE• L{ ~:;,:(0)} ll.l8 

Now the value of the observer output at time t = 0 cannot readily be evalu­
ated because the observer output at the time instant immediately before is not 
known. It is most simple, therefore, to assume that {x(O)} is zero, hence 

{ ~:..(0)} = -{x(O)} 

Thus, the error vector at any time instant can be obtained from a knowledge 
of the initial states of the plant. 

For Eq. 11.17 to be true 

and 

LA - EL = FC 

G = LB 

ll.l9 

11.20 

In order to implement the observer, values must be assigned to the matrices E, 
F, G and L which are related according to Eq. 11.19 and Eq. 11 .20. The 
approach adopted here is to specify E and F and solve Eq. 11.19 for L and Eq. 
11.20 for G. 

The observer described is of a reduced order because the information con­
tained in the plant output is utilized to formulate the estimated state vector. 
Hence by forming an adjoined equation from Eq. 11.13 and Eq. 5.17, with 
matrix D = 0, yields 

t{z(t)} j [LJ [Lj ----- - = -- - {x(t)} + --- {1: (t) } 
{y(t) } c 0 X 

and since { ~: .. (t)} decays with time, an estimate of the state vector is obtained 
from 

A [Ll-1[{z(t)} J 
{xCt)} = -c] Tr{t)f 11 .2 1 

Example 11.6. Design a state observer suitable for use with the speed regulat­
ing system shown in Fig. 11 .28. 

To confirm that the system is observable the matrix Q = [CT" ATCT (AT)2CT] 
must have rank 3. 

Now 

cr = [t 0 O]T 

(AT)2 = [! 0 -25]
2 

[0 0 - 34 = 0 
1 - 10 1 

-25 
-34 
-10 

250] 
315 
66 
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and 

det Q = b ~ ~ I = 1, 
0 0 I 

hence the necessary condition is satisfied. 
If the dependence of the estimated errors upon the observer dynamics is to 

be accounted for, a number of restrictions must always be imposed on 
matrices E and F in order to reduce the number of independent variables. In 
this example, these restrictions will be: 

(a) E is a diagonal matrix 
(b) the elements ofF are made equal to unity, that is the plant output is fed 

directly into the observer. 

Since the roots of the characteristic equation are at - 2 ± 2j and - 12.5, the 
elements of E will be arbitrarily chosen to be - 3 and -2. 

From Eq. 5.37 

hence 

~(eE') = adj (sf- E) 
Is/- El 

= [(< 3) _:_] 

(s + 2) 

(' ~ J 
hence Eq. 11 .18 gives the error vector 

The largest state error is less than 2% of the initial value after 2 seconds, 
therefore these values for the elements of E will be used in the observer design 
for this speed regulating system. 

Expressing 
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then 

Similarly 

and 

LA _ EL = [ - 25 /3 + 3 11 11 - 34 /3 + 3 /2 / 2 - 10 /3 + 3 /3 ] 

-25 16 + 2 /4 / 4 - 34 /6 + 2 Is Is - 10 /6 + 2 /6 

FC=[~}1 0 0] = [~ ~ ~] 
By equating the individual elements of Eq. 11.19 

From Eq. 11.20 

Now 

From Appendix C 

and 

L _ [0.93 0.5 0.07] 
- 1.64 0. 73 0.09 

[ 

0 0 - 0.0061] 
Adj [~] = 0.09 - 0.07 0.0311 

c -0.73 0.50 -0.1461 

det [~j = - 0.0061 

[~J - l = [ - 1~.75 
L c J 119.67 

1~.48 - ~.1] 
- 81.97 24 
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Input disturbance 
Engine and Transducer 

Output response 

I 
I 

I 

I 

r (t) JC'>t. u (t) 100 y(t) 

y (s2+9s +25)(1+s) 

Observer - - - -l Estimated 
r 

F= [~] I 
I I 

1 state 
vector 

[if[_,'.,. 0 _:,] G= [~] ~ ~ (Z(t)} I J' 
{z(t)} (k(t) ) 

~ v 11 .48 

119.67 - 81 .97 24 

E=[- 3 OJ 
I .....__ 

~ _ _j 0 - 2 

- -
Controller 
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Fig. 11.32 Block diagram for complete system 

From Eq. 11.21 , the estimated state vector is 

[
xl(t)J [ o o 
X2(t) = - 14.75 11.48 
x3(r) 119.67 - 81.97 

1 ][z1(t)J -5.1 z2(t) 
24 y(t) 

With this information the complete system diagram can be drawn as shown in 
Fig. 11 .32. The time response for this arrangement is almost identical to that 
shown in Fig. 11.30 for the system with state vector feedback indicating the 
power of this approach in control algorithm design. 

11.11 Relay control 

A simple low cost form of feedback control action that makes use of a 
switched relay has found wide industrial application. The magnitude of the 
corrective action is independent of the size of the error, but the sign of this 
constant corrective action is directly dependent on the sign of the error signal. 
The most familiar relay control system is a room temperature control 
(Fig. 11.33) ; this employs a thermostat to switch the heat on when the tem­
perature is too low and off again when the temperature exceeds the desired 
value (cooling would be needed where the desired temperature is below that of 
the prevailing ambient temperature). 

Inherent within all relay elements is a certain amount of dead-band, and this 
is used to ensure that as long as the error magnitude is less than some defined 



264 Design of Closed Loop Systems 

Thermostat temperature 
setting 

r(t) e(t) 

+ - m* --·· e(t) 

Relay 

Heat input 

m(t) 

Fig.11.33 Relay contro l of room temperature 

Room temperature 

Room c(t) 
temperature 
dynamics 

value there is no correct ive action. In an electrical relay this dead-band arises 
because the coils require a finite amount of current to actuate the relay con­
tacts; in a hydraulic system valve overlap may be present to reduce fluid 
leakage at porting, and this creates a dead-band. The presence of dead-band 
may cause the system to exhibit self-sustained oscillations of constant ampli­
tude and frequency, referred to as limit cycles. Control over the size of the 
dead-band to prevent limit cycles can only be exercised if the magnitudes of 
the signals within a system are known. A change to a set-point could, for 
example, be responsible for the onset of a limit cycle oscillation. However, 
analytical methods do exist which enable the engineer to predict the dead­
band widths for given signal magnitudes which wou ld cause limit cycle condi­
tions. The limit cycle phenomenon can be used to advantage in certain indus­
trial situations to overcome problems of valve stiction which may otherwise 
lead to malfunction and component failure. 

The dynamic behaviour of systems such as those above, which include 
straight-forward non-linearities, can be analysed by three techniques ; these are 
extensions of the linear techniques described earlier in this book, and are no 
more difficult to understand . The system can be simulated on an analogue 
computer using appropriate non-linear units, and the output response noted 
for different fo rcing functions. Tn the time domain, the step response can be 
studied by means of the phase plane technique, where a phase trajectory 
(similar to Fig. 2.1 0, but with discontinuities of slope arising from the 
switching) is drawn by graphical or analytical means. This method is limited to 
second order systems since higher order trajectories cannot be drawn on 
paper. Phase trajectories can be obtained directly from an ana logue simulation 
and are particularly useful for giving a physical insight into the form of the 
transient behaviour and the effect of the non-linearity. The third technique is a 
frequency domain method, suitable for any order of system but restricted to a 
si ngle group of non-linearities, in which the non-linearity is approximated by a 
describing function . This is a function analogous to G(jw) but whose magnitude 
and phase are, in general , functions of input amplitude in addition to fre­
quency (they are the amplitude and phase of the first harmonic component of 
the output, it being assumed that higher harmonics are attenuated in their 
passage round the loop). 

In contrast to linear systems, the response of a non-linear system to an input 
excitation of known magnitude and form is no guide to its behaviour for other 
input signals, since the principle of superposition no longer holds. The stability 
of linear systems is determined solely by the location of the roots of the 
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characteristic equation; for non-linear systems the situation is not so clear and 
is very much dependent on the input signal and the initial system state. 

It can be concluded that in the design of a nonlinear system, information is 
required about the type and amplitude of all anticipated inputs, and the initial 
operating condition of the system about which the design study takes place, in 
addition to the usual detailed knowledge of the physical process from which 
the mathematical model is derived. With this information a full analytical and 
simulation study can be conducted and results obtained which can be used 
with confidence. 

11.12 Case study of electrohydraulic servomechanism 

As a conclusion to the book, this final section attempts to improve the reader's 
physical understanding of the rather abstract concepts of system modelling, 
analysis, and control, and to further illustrate the interrelationship between the 
many different topics by describing a case study of a specific practical system. 
The study outlines the analysis and design of an electrohydraulic servo­
mechanism used for positioning the slideway of a numerically controlled 
machine tool. The first stage is concerned with obtaining a mathematical 
model suitable for analysis. This is followed by the determination of system 
accuracy and dynamic response, and the design of appropriate compensation 
to achieve a performance which is deemed to be 'satisfactory'. 

(a) Modelling of system. With a numerically controlled machine tool, the 
required machining operations are specified by a set of coded instructions read 
from paper tape or other storage medium. The machining is then carried out 
by moving the workpiece relative to the cutting tool in the appropriate direc­
tion at the required feed rate by means of positional servomechanisms; the 
servomechanisms convert electrical signals specifying the desired position into 
an actual position. The subject of this study is a milling machine (shown 
schematically in Fig. 11.34) in which the cutter rotates about a fixed axis and 
the workpiece is moved relative to it. The workpiece is mounted on a slideway 
which has three axes of movement, and the movement is effected for each axis 
by a ram (or rams) controlled by an electrohydraulic servovalve. To achieve 
accurate positioning and hence accurate machining, feedback is essential; thus 
the actual position of the slideway is compared with the desired position to 
generate an error signal ; this is amplified and acts as input signal to the 
servovalve. A simple block diagram representation is shown in Fig. 11.35, 
omitting at this stage any minor loop or other compensation feature. The 
control loops for all three axes are similar, except that the masses to be moved 
and the actuating ram areas have different numerical values; hence for illustra­
tive purposes only one of the loops need be studied. 

The system chosen is one in which, for a preliminary study, the nonlin­
earities inherently present can be ignored, and small perturbation analysis can 
be employed to derive a linear model. Once a general understanding of the 
form of the behaviour of the linearized system has been obtained, then the 
model can if required be refined to include certain of the non-linearities and 
the less dominant effects. To enable an analysis to be carried out, a transfer 
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Fig. 11.35 Block diagram of electrohydraulic servomechanism (without compensation) 

function description must be determined for each of the blocks in the loop, the 
transfer functions being obtained on the basis of theoretical considerations, 
experimental testing, or a combination of the two. It is likely that the dynamic 
characteristics of the mechanical components will be dominant, and that the 
transducer and amplifier can effectively be thought of as having constant gains 
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and negligible phase shifts within the bandwidth of the remainder of the 
system. 

The form of the transfer function for the hydraulic ram and slideway can be 
determined theoretically by application of the appropriate physical 
equations- in this case Newton's second law of motion, and a flow continuity 
equation. Allowing for the presence of leakage, and for a fluid which is not 
completely incompressible, the transfer function can be derived (Section 2.5, 
Eq. 2.36) in the form 

X(s) 

Q(s) 
s - - s + --+-- s+ --+A { 

Mv 2 (KLM J1V ) (KLJ1 )} 
K 8 A A K 8 A A 

11.22 

where X(s) and Q(s) are the Laplace transforms of the actual position and the 
fluid volumetric flow rate respectively, M is the total mass being moved, A the 
effective ram area, K 8 the bulk modulus of the fluid, v the volume of fluid 
between the servovalve and the ram, KL a leakage coefficient (flow/unit press­
ure difference), and 11 a friction coefficient (force/ unit velocity). A is constant 
and M nearly so (varying only by virtue of the different masses of work pieces); 
K 8 is dependent on the type of fluid used and the amount of entrained air 
which is assumed to be present ; v varies with ram position; K L and 11 are likely 
to be unknown, but order of magnitude estimates can probably be made. If 
leakage is assumed to be negligible for a first study, then the transfer function 
simplifies to 

X(s) 

Q(s) 
s -- s2 + -- s + A { 

Mv J1V } 
K 8 A K 8 A 

_!__ (K 8 A2
) 

A Mv 
11 .23 

{ 
2 11 K 8 A

2
} s s +-s+--

M Mv 

The relationship between slideway velocity and ram input flowrate is thus of 

JK A 2 

second order with undamped natural frequency W 0 = ~v , damping factor 

( = 
2

11 J-v- , and gain = _!__ .The 'spring' effect arises from the compress-
A MK 8 A K A2 

ibility of the fluid giving an effective stiffness = -
8
-. It can also be seen that 
v 

W 0 is a function of ram position and will be a minimum when v is a maximum, 
i.e. when the ram is in the mid position with equal volumes of fluid at each side. 
The damping which is assumed to arise primarily from viscous drag in the 
lubricating film will be small, and an accurate assessment of ( can only follow 
from experimental testing. Comparing the two transfer functions, the effect of 
any leakage can be seen to be to increase W 0 , increase the effective (, and 
reduce the gain. 

The flow to the ram is controlled by an electrohydraulic servovalve. A 
typical valve is shown schematically in Fig. 11.36, and its mode of operation is 
described briefly in this paragraph, with terminology as used in the diagram. 
The valve is designed to give an output flow rate proportional to input current 
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Fig. 11 .36 Schemat ic arrangement of servovalve (Dowty Senes 4551) 

and to have a 'good' dynamic response (one that is fast relative to the system) ; 
it utilizes the principle of feedback to achieve this . The input signal , the 
current flowing through the coil, induces an electromagnetic force on the 
armature which tilts the armature-flapper assembly slightly about an effective 
pivot provided by the flexure tube, thus causing an increase of flow area at one 
nozzle and a decrease at the other. This creates a differential pressure across 
the ends of the spool valve, and results in spool displacement which, in turn, 
causes a restoring torque to be applied to the armature assembly via the 
feedback spring. Spool movement continues until the feedback torque balances 
the input signal torque, and the armature-flapper assembly, with forces in 
eq uilibrium, returns to its null position with the flapper mid-way between the 
nozzles, the pressure difference across the spool dropping to zero. The 
resulting spool position is then proportional to the input current. If the press­
ure difference between the supply pressure and the ram pressure is substan­
tially constant, then the output flow rate is proportional to the input current. 

Any attempt at deriving a transfer function for such a valve, using the 
fundamental physical equations, would require many assumptions to be made 
about magnitudes of effective inertias, damping forces, etc. It would therefore 
be essential to validate the theoretical model by experimental testing. A model 
derived by this means would probably be more complex than necessary, and 
would include dynamic effects that are only of significance at frequencies 
beyond the system bandwidth. For such a component, therefore, direct practi­
cal testing and fitting of an appropriate low order transfer function to the test 
results would probably be more relevant. Typical harmonic response informa­
tion (Fig. 11.37), together with parameters for an equivalent second order 
transfer function , are provided on the manufacturer's data sheet. A first 
order transfer function can give a reasonable approximation for frequencies 
up to about 40Hz (Fig. 11.37a) which could be useful if the system bandwidth is 
less than this and if a very simple model is needed. The second order transfer 
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function suggested by the manufacturer (w" = 140 Hz, ( = 0.9) can be seen to 
provide a very good fit to both the magn itude and the phase curves over the 
fu ll frequency range for which harmonic informa tion is given (Fig. 11.37b). The 
transfe r function of the servova lve can thu s be written as 

Q(s) _ k ( I ) 
/( s) - v I + 0.00t6s 11.24 

Q(s) kvt175 000) 

l(s) - s2 + 1580s + 775 000 
or 11 .25 

where kv is the valve sta tic gain a t zero load pressure, a lso available fro m the 
data sheet as 2.5 in 3/ second/ mA. The valve harmonic information and the 
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transfer function derived from it relates to a current input. If the error ampli­
fier is a voltage amplifier, then an additional block relating current /(s) to 
voltage V(s) must be included in the block diagram. The dynamics of this arise 
from the inductance of the coil of the servovalve torque motor, and it can 
easily be shown that the transfer function is 

/(s) R 

V(s}- L 
1+-s 

R 

11.26 

where R and L are the resistance and inductance respectively. For the valve 
used , R = 200 n and L = I H , hence the gain term is 5 rnA/volt and the time 
constant is 0.005 seconds. This is larger than the primary time constant of the 
valve, Eq. 11.24, and would thus dominate. In practice, the error amplifier 
would normally be a power amplifier in which case the time constant relating 
current output and voltage input is likely to be very small in comparison to 
the effective time constant of the ram and slideway ; thus the amplifier will 
have a flat response to a frequency well above the system bandwidth, will have 
negligible ·phase shift, and can be considered to have a transfer function which 
is a constant k •. Similarly the position transducer can be assumed to be a pure 
gain term k,. 

To confirm the form of the ram and slideway transfer function, to check the 
estimated value of W 0 , and to determine the value of C it is necessary to carry 
out some practical testing. Testing can be carried out with the loop opened, by 
applying a forcing voltage to the amplifier input or directly to the servovalve 
using a separate drive amplifier, and recording slideway position or velocity 
with the existing transducer or with a test transducer. To eliminate errors 
arising from non-linearities caused by Coulomb friction , and to avoid the 
danger of damage to the bearing surface which might result from long testing 
with small amplitudes close to any given position, the testing is best carried 
out by superimposing steps and sine waves on slow ramp inputs, and taking 
measurements at a fixed point as the slideway passes it, while moving between 
two limiting positions on either side. Typical results for step response tests 
(Fig. 11.38) and frequency response tests (Fig. 11.39) confirm the existence of 
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Fig. 11.39 Typical harmonic response of velocity 

the very lightly damped second order component of response expected from 
the considerations above. A good estimate of the value of wn for the ram and 
slideway can be obtained directly from the step response trace and, as the 
damping is very small, the damping factor ( can be determined by application 
of the logarithmic decrement method. As a consequence of the averaging 
inherent in frequency response testing, these values can be estimated more 
accurately from the harmonic response curves, and the value of the servovalve 
time constant confirmed, by seeking asymptotes on the magnitude plot and by 
trial and error curve fitting. At this stage, a digital computer program for 
evaluating the harmonic response for a known transfer function can be of 
great help, and would be used in conjunction with some appropriate criterion 
of 'goodness of fit' , to determine a transfer function whose harmonic response 
is a good fit to the experimental curves (e.g. Levy's method (see ref. 4, p. 278)). 
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Study of the phase plot in relation to the ga in plot will show whether any 
significa nt nonminimum phase effects are present. The corresponding polar 
diagram (Fig. 11.40) is of interest and highlights the rapid phase change which 
occurs in the region of the resonant frequency, and the nominally flat response 
up to about 20 Hz. 

(b) Analysis of response and design of compensation. From a combination of 
theoretical analysis, experimental testing and manufacturers' published data, a 
linearized mathematical model can thus be developed . If it is assumed that the 
amplifier is a power amplifier with negligible time constant, that the servovalve 
can initially be represented by the first order approximation derived above, 
and that the transducer gain k, is lumped with the amplifier gain (i.e. the 
desired position signal becomes the actual desired position) then the block 
diagram Fig. 11.35 takes the form shown in Fig. 11.41. The dynamic 
behaviour of the system can now be investigated theoretically with a view to 
determining how parameter variations or higher order transfer function 
representations affect the system behaviour, and how different forms of com­
pensation might change this behaviour. 

Thought must be given at this stage to what type of response is required, 
bearing in mind that the end result is a machining operation. Qualitatively, the 
desired form of behaviour can be described as one which responds rapid ly to 
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Fig.11.41 Simpl if ied block d iagram of system 

any change of desired position, with negligible overshoot and with a very 
small steady state error. The positional error should be zero and the velocity 
error as small as conveniently possible to allow accurate contouring at fast 
feed rates. It is thus desirable to undertake an in vestigation into transient 
response and steady state accuracy for the basic system, and for the system 
with various forms of compensa tio n. The transient behaviour can conveniently 
be determined by means of an analogue computer simulation or a digital 
computer simulation (Chapter 3) , using root locus plots to aid the interpretation 
of the results (Chapter 9) . The corresponding steady state accuracy can be 
determined by application of the final value theorem of Laplace transform theory 
(Chapter 8). 

Consider first the basic system (Fig. 11.41) in which there is scope for 
alteration of the value of the loop gain. The positional error is zero as a 
consequence of the presence of the integration term inherent in the operation 
of the ram, and the velocity error is inversely proportional to Kr . The root 
locus diagram (Fig. 11.42a) can be sketched relatively quickly by hand using 
the a ids to construction described in Section 9.3 or can be computed accu­
rately if a digital computer package is available. Its form suggests that for very 
low values of K P (and hence large velocity errors) the response will be very 
sluggish because of the dominance of the real root very close to the origin. As 
K r increases, the very lightly damped superimposed oscillation soon becomes 
dominant , and for a relatively small loop gain the response will become 
unstable (Fig. 11.43). The limiting value of KP can be found by using the 
Routh-H urwitz criterion; it determines the smallest achievable velocity error. 
No value of gain appears to be suitable. It is clear that the very lightly damped 
ram and slideway poles present a problem, and that any compensation used 
should have the effect of moving these portions of locus further from the 
imaginary axis towards the left of the s plane. Representation of the servovalve 
by the second order transfer function , which is valid over a wider frequency 
range (Fig. 11.42b), makes negligible difference to the result, since the appro­
priate poles are so far to the left that they cause no marked alteration to the 
dominant portions of the root locus. 

There is little scope, even at the design stage, for altering the physica l 
parameters of the ram and slideway in order to move the complex poles 
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farther to the left, and hence increase the damping of the osci llation which 
dominates the transient response, and allow the loop gain and hence accuracy 
to be increased. T he poles can, however, effect ively be moved by introducing a 
minor feedback loop around the block whose transfer function contains them; 
this can conveniently be done by feeding back some function of velocity as 
shown in Fig. 11 .44. The aim is to choose the form of inner loop compensation 
H(s), the parameter values of H(s), and the inner loop gain variab le K" to be 
such that the roots of the inner loop (velocity loop) which lie near to the ram 
and slideway poles, and which are poles of the main loop (position loop), are 
positioned as far to the left as possible. For any given form of transfer function 
H(s), a root locus diagram for the velocity loop wi ll show whet her any 
improvement is possible, and step response traces for the simulated velocity 
loop ca n be used to confirm the expected changes in transient behaviour. 

Three forms of transfer function H(s) are probably worth investigating­
negative ve locity feedback , H(s) =constant= k 1, negative acceleration feed-



276 Design of Closed Loop Systems 

• I 
I 
I 
I 
I 
I 

\ 

)(- - - - J. - -- --« ____ ..... __ _ 

'-.(3 = O.Q1 
....... 

1000 - 800 - 600 - 400 - 200 

lm 

400 

Re 
0 

Fig. 11.46 Root locus plot for velocity loop with negative transient acceleration 
feedback 

' ' ' ' ' ' ' \: 
(a) (3 = 0.004, k 3 = 0.15 (--) 

(b) (3 = 0.004, k3 = 0.3 (-- -) 

- 400 - 200 

lm 

-
200 

Re 
0 

Fig. 11.47 Root locus plot for pos1tion loop with NTA compensation 

back, H(s) = k2 s, and negative transient acceleration feedback , H(s) = k3 5
{3
2 

. 
I + s 

A root locus diagram for the velocity loop immediately shows that, with 
negative velocity feedback , the dominant roots move towards the right in the 
s-plane (Fig. 11.45a). causing the behaviour to be even more oscillatory. For 
negative acceleration feedback , however, the corresponding portions of root 
locus move towards the left, suggesting that some degree of improvement is 
possible (Fig. 11.45b). The root locus plot for negative transient acceleration 
feedback is more complicated, since a different set of loci arises for each value 
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of the time constant fJ (Fig. 11.46). There appears to be an optimum value of fJ 
where the damping factor of the dominant roots increases most rapidly with 
increase in gain. For any of the forms of compensation with given parameter 
values, the root locus plot for the position loop can now be drawn, the poles of 
this plot being the roots of the velocity loop instead of those used in Fig. 11.42 
(e.g. Fig. 11.47). If H(s) has been chosen well, then the result is a much 
improved transient response (Fig. 11.48). Other forms of compensation can 
also be investigated, such as the possible use of phase compensation within the 
minor loop or in the forward loop, and the potential available in a cancel­
lation compensation approach. 
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Fig. 11.48 Step response curve for system with NTA compensation with 
parameters chosen to give fast well damped response 

For any of the compensation methods studied, some study of the effect on 
gain and phase margin will improve understanding of system harmonic 
response, and the relationship between transient and harmonic response. 
Analysis of system accuracy in terms of loop gains and forms of compensation 
will fill in a further part of the picture, and will highlight the conflict between 
achieving good dynamic behaviour and good steady state accuracy. In a 
design situation it would then be necessary to attempt to choose a good and 
realizable compensation method, and to optimize the system parameters with 
respect to the chosen performance criteria. The large numerical values, which 
tend to occur here, highlight the scaling which commonly is necessary or 
desirable when analysing a real system, as opposed to a hypothetical system, 
where convenient numerical values are chosen. 

A full and detailed description of the analysis of this system, comparison of 
different compensation methods, and design of suitable compensation, requires 
more space than is available here. The reader is therefore left to carry out such 
an investigation, for the model given in Fig. 11.41, as an exercise to consoli­
date the material learnt in this book. 
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Appendix A 
Problems 

l ln a hydraulic spool va lve leakage occurs in an axial direction through the 
na rrow gap between the va lve a nd the housing. Such flow is normally laminar 
and the flow rate q can be evalua ted by applying the Poiseuille eq ua tion. This 
can be written as 

ndh 3 PI - P2 
q=--

12'1 I 

where p 1 - p2 is the pressure difference between the inlet and outle t of the 
leakage gap, '1 is the fluid viscosit y, I the length of the leakage path, d the valve 
diameter and h the leakage gap (the radial clearance). If d and h are constant 
obta in a linearized eq uation for the flow rate in terms of the remaining va ri­
ables and the co nstants. What is the significance of this equation, and why is it 
used? 
2 Determine the transfe r functions re lating the applied force .f to the position 
y, and the applied torque T to the angu lar position 8 for the transla tio nal a nd 
rotational mechanica l sys tems shown in Fig. Pl. K 1, K 2 , K 3 , and K are 
stiffness coefficients, C is a damping coeffi cient , M is a mass, a nd J 1 and J 2 a re 
moments of inertia. State what assumptions are made. 

~ f 

T K 

Fig. P1 

3 Fig. P2 shows three passive electrical networks which can be used for 
sys tem compensation. On the assumption that the input impedance is ze ro and 
the output impedance is infinite derive the transfer function relating input and 
output voltages (relative to ea rth potential) fo r each circuit. 
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c, 

R, R, 

c, 

(a) (bl 

Fig. P2 

4 A thermometer of thermal capacity W1 (joulest C) is inserted in a mercury 
filled protective pocket of thermal capacity W2 (joulest C). If the overall coeffi­
cient of heat transfer from the mercury in the pocket to the fluid in the 
thermometer is HI (joules/second oq and from the external fluid to the 
mercury in the pocket is H 2 (joules/second 0 C}, determine the transfer function 
relating indicated temperature to actual temperature. 
5 Fig. P3 shows schematically a component of a hydraulic system in which oil 
at pressure p is used to obtain angular movement () of a lever. Explain the 
significance of the expression 'small perturbation analysis ' with particular ref­
erence to this arrangement. Hence derive the transfer function , assuming the 
piston to be frictionless and leak-free, and the fluid to be incompressible. What 
effect would leakage past the piston and viscous drag on the piston have on 
the derived transfer function? 

Fig. P3 

6 With the aid of a schematic diagram describe briefly the principle of oper­
ation of a hydraulic positional servomechanism. Derive the form of the trans­
fer function assuming that account must be taken of the effects of fluid 
com pressibility, fluid leakage, and inertia. Derive also the simplified form of 
transfer function which results if these effects are neglected. 
7 Fig. P4 shows schematically an arrangement for controlling the temperature 
of a steam-heated oven, utilizing temperature sensitive bellows and a hydraulic 
servomechanism. The desired temperature is set by adjustment of the position 
x of a pointer attached to one end of the bellows. An increase in oven tem­
perature () causes the bellows to expand, the movement being the input signal 
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to the hydraulic servomechanism whose output y actuates a valve to decrease 
the steam inlet flow. Determine the transfer function relating valve position y 
to oven temperature e. Assume servo valve flow for unit displacement is Q., 
area of ram is A, overall coefficient of heat transfer across bellows wall is H, 
specific heat and mass of bellows fluid are c and m respectively, and bellows 
extension is L for unit temperature rise of bellows fluid. Neglect fluid com­
pressibility, fluid leakage, and inertia of moving parts. Suggest briefly the way 
in which the transfer function would differ if secondary effects such as the 
above were included. 

Oven 
temperature 

8 

Servomechanism --+ 
oil supply 

Fig. P4 

Desired 
temperature 

Oil return 

i 
Heat supply 
valve y 

8 What is an analogue computer, and in what main ways does it differ from a 
digital computer? Two variables y and x are both functions of time and are 
related by the differential equation 

d4y d3y d2y dy 
dt4 + 5.8 dt 3 + 0.03 dt2 + 12 dt + 120y = 20x 

Derive an analogue computer circuit diagram for this equation, and explain 
how it could be used. Assume that the operational amplifiers available have 
two inputs with a gain of 10 and two inputs with a gain of unity. 
9 The output of a system component whose transfer function is known to be 

20 
G1(s) = s2 + l.2s + 0.2 

is monitored by means of a transducer with transfer function 

0.06 
G2(s) = 1 + O.ls 

as shown in Fig. P5. 

Input System component Actual output Transducer 

G (s) = 20 G
2

(s) = .....Q,Q§_ 
U(s) 1 s2 + 1.2s + 0.2 C(s) 1 + O.ls 

Fig. P5 

Measured output 

Cm(s) 
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Write down the differential equations for the system component and for the 
transducer, and derive an analogue computer circuit diagram which could be 
used to study the response of the system component and the effect of the 
transducer dynamic behaviour on the measured response. Explain how the 
circuit might be used. How would the circuit differ to permit investigation of 
the effect of a change of transducer time constan t to 0.04 seconds? 
10 The feedback system shown in block diagram form in Fig. P6 controls the 
output variable c(t) of a plant. The plant dynamic behaviour is thought to be 
adequately described by the linear differential equation 

c"(t) + 5.2c(r) + !7.5c(t) + 0.77c(t) = u(t) 

The amplifier has an adjustable ga in K and a negligible time constant, and the 
transducer is known to approximate to a second order linear system com­
ponent with unity gain, damping factor 0.3, and undamped natural frequency 
5 rad/ second. Draw an analogue computer circuit diagram which could be 
used to investigate the dynamic behaviour of this system. What studies might 
be carried out, and what checks could be made to ensure the validity of the 
results? Use operational amplifier nota tion and assume that amplifier input 
gains of I and 10 are available. 

r(t) 

R(s) 

Fig. P6 

h(t) 
H(s) 

Amplifier 
c(t) 

Plant 
C(s) 

Transducer 

II Draw an analogue computer circuit diagram for a dynamic process rep­
resented by the overall transfer function 

Y(s) 4.2(s + 3.4) 

U(s)- s5 + 8.6s4 + 0.15s 3 + 10.3s2 + IOOs + 5 

Assume that the amplifiers available have three inputs with gain I and two 
inputs with gain 10. What are the limitations of this diagram, and what 
additional information is needed to enable a more useful diagram to be pre­
pared? 
12 For the block diagram shown in Fig. P7 obtain an a nalogue computer 
circuit diagram which could be used to investigate the effect on transient 
behaviour of the system of changes in settings of the proportional plus integral 
plus derivative governor. Use operational amplifier notation and a ume that 
amplifiers are available only with inputs of gain l or 10. 
13 Write a digital computer program which could be used to investigate the 
dynamic behaviour of the system of Problem 9. (This requires familiarity with 
Fortran, Pascal or some other high level programming language.) 
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Governor Plant 

6m (s) 3.5 

(s + 1) (s2 + 4s + 8) 
K(1 + ~ +bs) 

1 + 0.2s 

Fig. P7 

14 Write a program usmg the simulation language CSMP to simulate the 
system of Problem 10. (A program with the correct general form can be 
written with the information in Section 3.9, but to ensure freedom from errors 
a CSMP reference manual or textbook is required.) 
15 'A component part of a physical system when tested experimentally was 
found to be closely approximated by a first order transfer function with time 
constant 10 seconds.' 

Explain clearly the significance of this statement, in particular 
(i) what is meant by a 'first order transfer function with time constant I 0 

seconds', 
(ii) in what ways the system component could have been tested , 

(iii) how it would have been shown to be approximated by a first order trans­
fer function, 

(iv) how the numerical value of time constant could have been obtained. 
16 A step change of magnitude unity is applied to a dynamic system consist-

! 1 
ing of two elements in series with transfer functions -

1
-- and 2 7 10 +s s + s+ 

respectively. Obtain an expression for the output response as a function of 
time. Hence find the steady state value of the output , and check the result 
using the final value theorem. Find also the maximum overshoot and the 
approximate time taken to settle within 5'Y., of the steady value. 
17 A system component has a transfer function 

I 
G(s) = ---..,-- --

(s + I )(s2 + s + I) 

Obtain an expression for the output as a function of time resulting from a unit 
step change of input. Plot the response curve for the transient. Explain the 
significance of the result with reference to the values of the poles of the transfer 
function . Sketch also the likely form of the step response for 

1 
G(s) = ----=-----

(s + l)(s 2 + 4s + 16) 

18 For the simple closed loop system represented by the block diagram of Fig. 
P8 determine the response c as a function of time t for (a) a unit step change of 
input (b) a steadily changing input r = 4t for t ;:::: 0. Hence determine the initial 
rates of change of c{t), the approximate times to settle within 5% of steady 
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R(s) E(s) 0.8 C(s) 
-----{+ 

s(1 + 0.2s) 

Fig. P8 

state, and the steady state errors. How would the response differ if the forward 
loop gain were increased? 
19 What is the 'principle of superposition' and why is it important in control 
systems analysis? 

A thermocouple mechanically strengthened by encapsulation is used to 
measure the temperature of the fluid flowing in a pipe. It has been establ ished 
by experimental testing that the response of the encapsulated thermocouple is 
closely represented by a first order transfer function with time constant of 
magnitude 2 seconds. The fluid temperature rises suddenly by 20 ~c from a 
constant temperature, and thereafter rises at a constant rate of 2 C per second 
for 20 seconds before becoming constant again. Sketch the form of the output 
response of the thermocouple. Obtain an equation expressing indicated tem­
perature as a function of time, and hence determine the maximum error in the 
reading and the time at which the error first becomes less than I C and 
remains less than this value. 
20 A system component is known to be represented by the transfer function 

10 
G(s)-----­

(1 + s)( I + 4s) 

The input signal to the component increases suddenly from a datum value to a 
new value I 0 units higher, and then 4 seconds later changes sudden ly back to 
the datum va lue. Sketch approximately to scale the general form of the 
response of the output which you would expect and explain in some detail 
why you have drawn it a you have. Derive an analytical expression for the 
output as a function of time. 
21 Fig. P9 shows the output responses recorded when two different system 
components were subjected in turn to a unit step input function. Estimate the 
transfer funct ions of the components, and indicate on a sketch the position of 
the roots in the s-plane. 
22 Describe in state variable form a system characterized by the differential 
equation 

d3y d2 y dy 
-d 3 + 4.6 - 2 + 39.6 -d + 36y = 36u 

t dt t 

Draw the block diagram representation of the state model. 
23 A feedback control system has transfer function 

s2 + 3s + 2 
G(s) - ----,----

- s(s2 + 7s + 12) 
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Component A 

Component B 

5 10 15 

T ime (seconds) 

Derive two different state models for thi s system and give the state va ria ble 
diagra m for each. 
24 A multit a nk sys tem co nsists of four ta nks with cross-sectiona l areas a1, a2 , 

a3 , and a 4 inte rconnected by pipes with flow resistances R 1, R 2 , and R 3 . F lu id 
is normally supplied to tanks I and 4 a t flow rates q1(t) a nd q4 (t) , a nd dra wn 
from tank s 2 a nd 3 a t flow ra tes q 2(t) a nd q3(1) as shown in Fig. PIO. These 

Tank 1 Tank 2 Tank 3 Tank 4 
a, a2 aJ - a4 

= -= -
h 3 (t) h4 (t) 

R , R 2 R3 

i q, (t) 1 q 2 (t) 1 qJ(t) 

Fig. P10 

flow ra tes are independent of the liquid levels in the tanks, while the fl ow ra te 
fr om one tank to another is equa l to the difference in liquid levels di vided by 
the flow resistance va lue. If the contro lled or output va riables are stated to be 
h2 (1) a nd 11 3(t) derive the state equations for the three situations when the 
manipulated or input variables a re defined as 

(a) q 1 (1), q2(t), q3(t) a nd q4 (1) 
(b) 11 1(1), 114 (1), q2(1) a nd q3(t) 
(c) h1(t) and h4 {t), with q2(t) = q3(t) = 0 

25 Wha t is the transfer function matrix of a process ? Derive the transfer 
function matrix of the multitank a rra ngement of Problem 24(c). Assume that 
a1 = a2 = a3 = a4 =a and that R 1 = R 2 = 2R 3 = R. 
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26 Describe the system represented by the transfer function 

G(s) _ 10(1 + s) 
- s2 + 7s + 10 

using a first order set of state equations in matrix form. Discuss briefly the 
uniqueness of your realization and derive the analytical expression for the 
sys tem output response when a unit step is applied to the input. 
27 Explain what you understand by a transition matrix and how it is used in 
the solution of a state vector differential equation. Derive the transition matrix 
and hence the solution for a unit step input for the following state vector 
equation 

. [ 0 {x(t)} = 
-I 

28 A linear time invariant system is represented by the state equation 

[

- I 
{x(t)} = ~ 

0 
- 4 

0 
JJ (x(r)} + [!] "(r] 

Evaluate the solution matrix, and hence obtain the solution of the state equa­
tion for an input u(t) = I and an initial state 

(x(Ol} ~m 
Confirm the result by means of the Laplace transform method of so lution. If 
the output is 

[
I 2 

{y(t)} = 0 1 

what is the system matrix transfer function? 
29 Given that the coefficient matrix of a process is 

A= [ -~ - ~J 
evaluate the solution matrix e,., using the first five terms of the series expan­
sion. Calculate numerical values for the elements of the solution matrix for the 
discrete cases when t = I second and when t = 0.5 second, and say whether 
the series expansion approximation seems sufficiently accurate. 
30 Obtain by calculation the harmonic response characteristics for system 
components with transfer functions 

(a) 
100 

G(s) = (s + 1)(s + 2)(s2 + 3s + 16) (b) 
G(s) = 1 + O.ls 

s(l + 0.02sXI + 0.01s) 

Plot the results on a polar diagram, and explain their significance. 
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31 Using straight line approximations draw Bode diagrams for the transfer 
functions of Problem 30. Sketch also more accurate estimates of the harmonic 
response curves. 

32 The informa tion given in Table PI is harmonic data obtained by frequency 
response testing a practical system. It is known that the transducer used to 
measure the output has second order characteristics with w" = 100 rad/ 
second, damping factor = 0.1, and gain = 30. Magnitude and phase informa­
tion for a second order system with damping factor 0.1 is given in Table P2. 

Display the test data on a Bode diagram and obtain the harmonic informa­
tion for the system itself. Hence derive an approximate transfer function for 
the system. Explain clearl y the significance of any curves drawn. 

Table P1 

Frequen cy ( rad/ s) 0 .1 0.2 0.4 0.7 1.0 2 4 
Amplitude rat io 98 .5 47 .3 24 .5 13.8 8 .92 3.55 1.08 
Phase lag (deg) 90 95 103 111 11 9 1 35 1 55 

Freque ncy (rad/ s) 7 10 20 40 60 80 
Ampl itude rati o 0.38 0.19 0 .05 0 .014 0 .008 0 .0075 
Phase lag (deg) 166 170 180 185 192 205 

Table P2 

w 
0 .2 0 .4 0 .6 0 .8 1.0 

W n 

Mag ni tude 1 04 1.19 1.49 2.54 5 

Phase (deg) 0 - 5 - 14 - 24 - 90 

33 Table P3 lists the experimentally obtained harmonic response information 
for a component part of a system. Estimate from this the component transfer 
function , explaining clearly how you obtain your result. Describe the signifi­
cance of the data tabulated and of the transfer function obtained. 

TableP3 

Frequency ( Hz) 0.0 1 002 0.04 0.07 01 0 .15 0 .2 0 .3 0.5 
Magnitude (dB) - 8.5 -8 1 -7 .4 - 6.0 -4.4 -2 .0 - 0 .5 1 0 2.0 
Phase (deg) 11 16 24 29 33 34 31 22 12 

Frequency (Hz) 0 .7 1 2 3 5 7 10 20 30 
Magni tude (dB ) 2.6 3.0 5.3 6.0 2.3 -5.0 - 12 .7 -25 -32 
Phase (deg) 7 2 - 23 -5 3 - 11 3 - 134 -1 50 - 158 -1 61 

34 Define the term 'autocorrelation function' and explain its role in system 
identification. List the most important properties of such a function and 
outline the significance of each. 
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Obtain the autocorrelation funct ion of the variable 

y = A sin w t + B cos ( 3wt + ~) + C 

where A, B, and Care constants. 
35 Derive expressions for the autocorrelation function of 
(a) a sine wave A sin (wt + cp) 
(b) white noise with a band limit of we 
Hence sketch the form of autocorrelation function which you would expect 
when signal (a) is contam inated by signal (b), indicating qualitatively the differ­
ences which would arise with different ratios of wJ w. 
36 Determine the waveform of a pseudo random binary sequence of length 3 1 
bits, and confirm that it satisfies certain laws of randomness. Sketch the form 
of the autocorrelation function and of the power spectral density for such a 
sequence with period 6.2 seconds, and explain the significance of each plot. 
37 Describe clearly what is meant by the term 'pseudo random binary 
sequence', and why it is useful for system identification. A practical sys tem has 
been tested using a PRBS input signal consisting of a 15 bit sequence with a 
bit interval of 10 seconds. After the initial transient had died out, the input and 
output traces were recorded ; the va lues of the output measured at the mid­
point of each bit interva l are given in Table P4. Determine from these the 
impulse response of the system, and suggest the form of transfer function 
which the system is likely to have, with values of parameters where these can 
be estimated . 

Table P4 

Input +1 + 1 +1 +1 -1 -1 -1 + 1 -1 -1 +1 +1 -1 +1 -1 

Output 11 10 9 8 8 11 14 14 10 3 0 4 11 11 10 

38 Determine the steady state error which would be present with different 
forms of input excitation for a unity feedback system in which the forward 
loop transfer function is 

15 
(a) G(s) = s(s + 3)(s 2 + 5s + 10) 

1 
(b) G(s) = s3 + 5s2 + 6s + 10 

Describe how this error could be reduced in each case and explain what side 
effects result. 
39 A feedback control system incorporating a 3-term controller has the block 
diagram representation shown in Fig. P11. Determine by means of the Routh­
Hurwitz criterion the ranges of values of the gain K for which the system is 
stable 

(i) when a = b = 0 (proportional control} 
(ii) when a = 1, b = 0 (proportional + integral control) 

(iii) when a = b = 1 (proportional + integral + derivative control) 
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Obtain al so the frequencies of sustained oscillations where these occur. Wha t 
would be the magnitude of the lowest achievable steady sta te error in each of 
the above cases for a step input and for a ramp input ? 

R(s) 

~ K(1 +f+bs) 
M(s) 1 C(s) 

(s + 1) (s2 + 5s + 9) 

Fig. P11 

40 A temperature controller is represented schematically by the block diagram 
of Fig. Pl 2. All components are assumed to be linear a nd to have transfer 
functions as shown. Draw a Bode diagram for the system and hence determine 
the va lues of ga in ma rgin and phase margin. Straight line approximations may 
be used but, in assessing the gain and phase margin, an estimate should be 
made of the inaccuracy arising from the difference between the true curves and 
the straight line a pproximations. Discuss the significance of the values 
obtained. 

Phase advance Motorized Controlled 
Amplifier network valve system 

T;(s) 
1 + 5s 0 .01 5 

T
0

(s) 

1 + 0.5s s(1 + s) 1 + 5s 

Transducer 

0.1 

1 + 0.1 s 

Fig. P12 

41 The open loop harmonic response data obtained experimentally for the 
forward pa th of a unity feedback control sys tem a re given in Table P5. By 
plotting the magnitude information on a Bode diagram, estimate the likel y 
form of the system tra nsfer function. Plot a N yquist diagram for the range 2 to 
20 rad/ s and use it to obtain a plot of closed loop magnification against 
frequency. Hence determine the values of peak magnification and bandwidth, 
and explain the significance of the va lues obtained. 

Table P5 

Frequency (rad/ s) 0.3 0 .6 1.0 2 3 4 5 6 
Magnitude (d B) 26 .5 20.5 16 0 9.5 6.0 1.0 - 2 2 -5.0 
Phase lag (deg) 95 100 109 124 135 147 156 164 

Frequency (rad/ s) 8 10 15 20 30 40 60 80 
Magnitude (dB) -9 .0 -1 3.0 -20.0 -27 .0 -36.0 -42 .5 -51 .5 - 59 0 
Phase lag (deg) 176 18 5 230 252 
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42 A feedback system with H(s) = 1 has forward loop transfer function given 
by 

35 
G(s) = -s(-3s_+_1-)(s-=-2-+-2s_+_1_0) 

Determine the open loop frequency response by any appropriate method and 
hence estimate the values of gain margin and phase margin. Sketch the form of 
the closed loop magnitude against frequency relationship. Comment on the 
significance of the results. 
43 The open loop transfer function of a unity-feedback control system is given 
by 

K 
G(s) = --:--~----

s(1 + O.lsX1 + 0.01s) 

Evaluate the gain margin and phase margin in terms of K , and hence find the 
limiting value of K for stability. Check the result by means of the Routh­
Hurwitz criterion. What are the magnitudes of the gain and phase margins 
when K is half of the limiting value? 
44 A unity feedback servomechanism has an open loop harmonic response 
described by 

G(jw) = - 200{1 + 0.1jw) 
w2(1 + 0.01jwX1 + 0.02jw) 

By plotting the harmonic response information on a Nichols chart evaluate 
the gain and phase margins, and the values of M P' wP, and bandwidth. Plot 
also the overall magnitude and phase of the servomechanism against an 
abscissa of frequency. Explain the significance of the results. 
45 The regulator system shown in Fig. P13 controls the output response c(t) 
of a process plant. The harmonic response characteristics of the plant alone, 

R(s) E(s) I Plant C(s) 
-+' 

I 
K G(s) -

1 - -
1 + 0.5s 

Fig. P13 

obtained experimentally, are given by the values listed in Table P6. There is a 
simple lag with time constant 0.5 second associated with the measurement of 
the system output c(t), and a gain term K operating on the error signal. Draw 

TableP6 

w ( radj second) 
IG(jw)l 
LG(jw ) 

0.3 0.5 0.8 1.0 1.2 1.5 2 3 5 
1.48 1.65 1.88 1.75 1.25 0.73 0.41 0.18 0.06 
- 15° -28° -61 ° - 93° -1 15° -1 36° - 152° -1 62° - 170° 
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the open loop Nyquist diagram for the system and from the plot determine the 
value of K required for a gain margin of 8 dB. For this value of K determine 
the variation of closed loop magnification with frequency. Discuss what effect 
the transducer time constant has on the steady state and dynamic behaviour of 
the overall system. 
46 Sketch the form of the root locus plot corresponding to each of the follow­
ing open loop transfer functions G(s)H(s), determining as appropriate the 
numerical values of the salient fea tures which indicate the shape of each plot. 
Describe in a short paragraph for each how the transient response of the 
closed loop system might be expected to change with variation of gain 
constant K . 

(i) 
K 

s(s + 4)(s2 + l6s + 100) 
(ii) 

K 

s(s + 20)(s2 + l6s + l 00) 

(iii) 
K(s + 3) 

(iv) 
K(l + lOs) 

(s + l)(s + 2)(s + 6) s2
( I + 5s)(l + s) 

K(l + 2s + 3/s) K 
(v) 

( l + 0.5s)( l + s)( l + 3s) 
(vi) 

s( l + O. ts)2 

(vii) 
K(s + 5) 

(viii) 
K(s 2 + 2s + 16) 

s2(s + 20) s(s + 1)(s2 + 4s + 16) 

47 Sketch the general form of the root locus plot for the temperature control 
system shown in Fig. Pl2 for variation of the amplifier gain K, indicating 
clearly the important features. Draw accurately sufficient of the plot to permit 
determination of the value K required to give a damping factor of 0.7 for the 
dominant roots, and to determine the value of w" for these roots. Mark on the 
plot the approximate positions of the remaining roots, and comment on the 
significance of their contribution to the transient response. 
48 A feedback system has 

K I 
G(s) =( I+ s)(t + 0.08s)(s2 + 4s + 5) ' H(s) = l + O.l s 

By plotting a root locus diagram, determine the approximate value of K 
required to ensure that the dominant mode of oscillation has a damping factor 
of 0.7. For this value of K write down an expression for C(s), the Laplace 
transform of the output response, when the input is subjected to a step change 
of magnitude unity. By studying the root locus plot to decide which roots have 
negligible influence, write down a simplified expression for C(s) from which a 
good approximation to c(t), the output response, could be obtained by Laplace 
inversion. Estimate the value of the settling time. 
49 Fig. Pl4 shows the block diagram representation of a temperature control 
loop for an exothermal reaction process. Draw a root locus diagram indicating 
clearly the important features of the plot. Describe fully what the plot shows 
about the transient behaviour and stability of the system, and hence determine 
approximately what is likely to be the most suitable value of controller gain 
K c. State clearly your criterion for suitability. 
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R(s) 

Fig. P14 

Heater 

2.5 

2s + 1 

Transducer 

1 

1 + s 

Process 

0.8 

5s -1 

C(s) 

50 The open loop transfer fu nction of a un ity feedback posit ional servomecha­
nism wit h the gain adjusted so that the maximum allowable steady state error 
is not exceeded is 

20 
G(s) = ------

s(i + O.ls)(l + 0.2s) 

Sketch the root locus plot and determine the undamped natural frequency and 
damping factor of the dominant roots. Show how the plot is modified by the 
introduction in the forward loop of a series compensating network with trans-

!+ 4s 
fer function . What are the new values of natural frequency and 

I + 30s 
damping factor for the dominant roots? Explain the significance of the result s. 
51 A feedback sys tem, Fig. P 15, has open loop transfer function 

K(i + T s) 
G(s)H(s) = s( I + 0.1 s)( I + 0.02s) 

Sketch a root locus diagram to show the variation of the values of the roots of 
the characteristic equation as the magnitude of the lead term time constant T 
is altered from zero to a very large va lue, for a constant value of gain K = 50. 
D raw on the same plot the corresponding loci for va lues of K = 20 and 
K = 100. 
52 A closed loop system (Fig. P 15) has feed forward and feedback transfer 
function s given by 

100(1 + s) I 
G(s) = and H(s) = --

(I + 2s)( 1 + 4s) I + rs 
Sketch the form of the root locus plot for variation of the time constant r. 
Comment on the significance of the plot. 

R(s) E(s) C(s) 
-t' G(s) 

-

H(s) 

F1g. P1 5 
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53 What role does the z-transform serve in the analysis of sampled-data 
systems? Obtain the z-transform of the transfer function 

s+2 
G(s) = 2 4 8 

s + s + 
54 For the error sampled unity feedback arrangement shown in Fig. P16 
obtain 

(i) the z-transform of the output response, C(z) 
(ii) the output response c*(t) up to the 5th sampling instant, and 

(iii) the final value of the output response 

when the input disturbance is a unit step. 

Input R(s) 

Fig. P16 

Zero order hold 

1- e -sT 
s 

Process 

9 
(1+10s) (1+s) 

Output C(s) 

55 Explain why the transformation z = r + 1 
is used in the analysis of 

r - I 
sampled-data systems. Show by application of the Routh-Hurwitz criterion 
that the limiting conditions for stability of the system shown in Fig. P17 are 
given by 

K > 0, 

R(s) 

Fig. P17 

Process 

1 
G(s) = s(s+ 1 I 

C(s) 

56 The open loop pulse transfer function of a unity feedback sampled-data 
control system is given by 

G(z) = K(z + 3) 
z(z 2 + 2z + 2)(z + 5)(z + 6) 

Sketch the root loci of the system indicating clearly all important features and 
determine the marginal value of K for stability. 
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57 The open loop pulsed transfer function for an error sampled control system 
IS 

GH(z) = 0.792zK 
(z - I )(z - 0.208) 

where K = 1.57. Use the bilinear transformation z = ~and plot the polar 
r- l 

diagram for this system. From the diagram estimate the phase margin, the 
gain margin , and the limiting value of K for stabil it y. Comment on the suit­
ability of the system. 
58 Explain why proportional, integral and derivative action are of use in a 
controller in a closed loop system, and how each affects the response of the 
system. A process consists of four non-interacting stages in series, these being 
closely represented by simple lags of time constant 3, 5, l, and 5 minutes and 
gains of 1, 0.4 , 1, and 5 respectively . The process is controlled by a proportional 
controller of gain 2.5 in a unity feedback system. Is the system stable or 
not ? If integral action time with T; = I 0 minutes is added, will the system be 
stable ? If for simulation purposes the time constants and integral action time 
are considered to be in seconds, what is the effect on stabil ity ? 
59 Sketch the root locus plot for the process of Problem 58 under the action 
of a proportional controller of gain K . Show how the plot differs when a 
2- term or 3-term controller is used, by sketching qualitative ly the form of the 
plot for various orders of magnitude of integral action time T; and derivative 
action time Jd. 
60 A regulator system employs rate feedback, as shown in block diagram form 
in Fig. Pl8. For the transfer functions shown, and assuming in the first 
instance that the time constant T is negligible, determine the values of K and k 
required for the following specification: the steady state error for a step change 
of input should not exceed 4%, and any dominant complex roots should have 
a damping factor as large as possible, but not greater than 0.8. How different 
are the results if T = 0.05 seconds? 
61 A closed loop system employing minor loop compensation has a block 
diagram of the form shown in Fig. Pl8 but with 

K 0.02s 
G1(s) = and H 1(s) = ---

s( l + O. ls) I + 0.02s 

Determine the value of forward loop gain K required to ensure that the peak 
magnification has a value in the range 1.3 to 1.4. What are the values of 
resonant frequency , bandwidth, gain margin and phase margin? 
62 A feedback system incorporates acceleration feedback , and has a block 
diagram of the form shown in Fig. P 18 with transfer fu nctions 

GJ(s) = s(s + l)(s8~ 2}(s + 4) ' H.(s) = ks2 

Draw a root locus diagram which shows the vanatwn in the roots of the 
characteristic equation with variation of the constant k. What information 
does the plot give about the dynamic performance of the system? 
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Fig. P18 

G (s)= K 
1 (s+ 1)(s + 2)(s + 10) 

ks 
H, (s) = 1 + Ts 

Problems 295 

C(s) 

63 Draw the Bode diagram for the servomechanism of Problem 50 both 
without and with the compensation element in the loop. What effect does the 
given phase lag series compensation network have on the values of gain 
margin and phase margin ? 
64 Design a phase lead series compensation network in order that the closed 
loop system shown in Fig. P 15, with 

K 
G(s) = s( 1 + 0.25s) ' H(s) = 1 

has a velocity error constant of at least 100 second - 1
, and a phase margin of 

at least 45°. Draw a block diagram for the compensated system, showing the 
transfer function of each block. 
65 A servomechanism (Fig. Pl5) has forward path transfer funct ion 

( ) 
0.05 

Gs =---­
s(l + 1.25s) 

and feedback path transfer function 

10 
H(s) - -1 -+-0-.0-1-s 

It is required that the velocity error coefficient K. be 15 second - 1 and the 
phase margin be 45° minimum. Design a phase lead series network to enable 
this specification to be met. Compare the values of gain margin and phase 
margin before and after compensation, and comment on the significance. 
66 For the system used in Example 11.3, design a state variable feedback loop 
so that the maximum overshoot does not exceed 20% of a step input di s­
turbance and the steady state error does not exceed 1%. Take a value of 
K = 10. 
67 A regulator system using state variable feedback is described by the follow­
ing state equations 

{x} = G -~}x} + [~} 
u = -[h 1 h2]{x} 
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Find the equation relating h 1 to h2 when 

(i) the system has an undamped natural frequency of 2 rad/second 
(ii) the system has a damping factor of 0.707. 

Evaluate the coefficients of the feedback matrix if the system has a natural 
frequency of 2 rad/ second and a damping factor of 0.707. 
68 Describe the adva ntages to be gained by employing feedback in con trol 
systems, give the reasons why analysis is necessary in the design stage, and 
outli ne the general form which such analysis could take for any given physical 
system. 
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Introduction to Matrix Algebra 

This appendix presents definitions of some terms used in matrix algebra and of 
elementary matrix operations, and provides a foundation for understanding 
the mathematical material included in Chapter 5 and Section 11.10, for those 
readers unfamiliar with matrix algebra . 

(a) Matrix. A matrix is a set of elements conststmg of real or complex 
numbers, functions or operators, arranged in a rectangular formation of rows 
and columns which is denoted by square brackets and is of the form 

This matrix with m rows and n columns is said to be a matrix of order m x n, 
and the symbol aii is used to denote the element located in the ith row and the 
jth column. If n = 1, the matrix has only one column and is known as a 
co lumn vector ; if m = I it is called a row vector. When m = n the matrix is 
described as sq uare, and of order n. 

For the special case when m = n, and all the off-diagonal elements are equal 
to zero (aii = 0 for i =F j), the matrix reduces to a diagonal matrix of the form 

all 0 0 0 0 
0 a22 0 0 0 
0 0 a33 0 0 
0 0 0 a44 0 

0 0 0 0 ann 

A diagonal matrix, where all the diagonal elements have the value unity (ali = 
1), is ca lled a unit matrix or an identity matrix and given the symbol / . 

(b) Determinant. For any square matrix, a determinant can be evaluated from 
the elements of the matrix. For example, if 

[

3 - 2 
A= 1 5 

2 I 
then 
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det A = I A I = 31 ~ ~ 1- (- 2) I ~ ~ I + 41 ~ ~ I 
= 3(29) + 2( - 5) + 4( - 9) = 41 

When the determinant of a matrix is zero, the matrix A is called singular. 

(c) Transpose of a matrix. The transpose of matrix A , denoted by AT, is the 
matrix formed by interchanging rows and columns of A. If the original matrix 
is an m x n matrix, its transpose is an n x m matrix. 

al2 a21 
a21 a22 a22 am2 

AT= . ["" a:· = a:
2 

"'"J [" 
a., l 

ami am2 amn aln a2n amn 

The transpose of a column vector is a row vector and vice versa. 

(d) Multiplication of a matrix by a scalar quantity. A matrix ts said to be 
multiplied by a scalar K if all elements aii are multiplied by K . 

(e) Addition and subtraction qf matrices. Addition and subtraction of two 
matrices can only be performed if the two matrices have the same order. 
Addition of two matrices A and B results in a new matrix C with its elements 
cii equal to the sum of the corresponding elements aii and bii. Further 

(A + B)T =AT+ BT 

Similar arguments apply for subtraction of matrices. 

(f) Multiplication of matrices. The multiplication of two matrices is possible 
only if the number of columns of the first matrix is equal to the number of 
rows of the second. If an m x n matrix A is post multiplied by an n x p matrix 
B, then the result will be a matrix C of order m x p. For example, 

la
11 

a
12 

a
13 J a21 a2 2 a23 

a31 a32 a33 
a41 a42 a43 

(4 x 3 matrix) (3 x 2 matrix) 

lallbll + a12b21 + a13b31 a11b12 + a12b22 + a13b32J 
a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32 
a31b11 + a32b21 + a33b31 a31b12 + a32b22 + a33b32 
a41b11 + a42b21 + a43b31 a41b12 + a42b22 + a43b32 

(4 x 2 matrix) 

That is, the elements cii are found by multiplying the elements of the ith row of 
A with the elements of the jth column of B and then summing these element 
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products. It is important to note that generally in matrix multiplication 

ABi:-BA 

hence it is always necessary to specify the relative position of the matrices to 
be multiplied. Multiplication of any matrix by a unit matrix results in the 
original matrix (AI= A). The transpose of the product of two matrices is the 
product of their transposes in reverse order, i.e. 

(A Bf = B7 A 1. 

(g) Cofactor and adjoint of a matrix. The cofactor Aii of a matrix A is defined as 
Aii = ( -l)i +jMii 

where Mii is the minor determinant of the A matrix. The minor Mii of an 
11 x n matrix is the determinant of the (n - I) x (n- I) matrix formed by 
deleting the ith row and jth column of the n x n matrix. 

The adjoint matrix is found by replacing each element a;i of matrix A by its 
cofactor Aii and then transposing. For example, 

-2 

5 

I ~ ~ 1-1 ~ ~I I~ ~IT 
~]~ -1- ~ ;1 I~ ; 1-1 ~ - ~ 1 

~ -~ :1-1~ :1 I ~ - ~ 1 
[ 29 5 -1 [ 2; 18 

= 18 13 - 7 13 
- 32 - 14 17 - 9 - 7 

(h) Inverse, or reciprocal, of a matrix. The inverse of a square 
written as A - 1 and defined by 

AA - 1 = A - 1A =I 

-32] - 14 
17 

matrix A IS 

The inverse of matrix A is evaluated numerically by dividing its adjoint matrix 

by its determinant A _ 
1 

= adj A 

det A 

(i) Matrix Calculus. The derivative of an m x n matrix A(t) is defined to be 

d d d 
- a 11 (t) -d au(t) - a 1"{t) 
dt t dt 

d d 
- A(t) = dt a2l(t) 
dt 

d d 
dt an(t) dt a2n(t) 
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Similarly the integral of an m x n matrix A(t) is defined as 

f A(t) dt = 

J a 11 (t) dt f a 12(t) dt 

f a 21 (t) dt f a 22(t) dt 

(j) Phase-variable canonical form 

f a 1,(1) dt 

f a 2 ,( t) dt 

Consider the linear time invariant system described by the nth order differ­
ential equation : 

d"c(t) d" - 1c(t) 
-- + a 1 d _1 + ... + a,c(t) = r(t ) 

dt" t" 

For this equation it is possible to define the sta te variables as: 
x 1(t) = c(l) 

x (I) = dc(t) 
2 dt 

d" - 1c(t) 
x,(l) = dt" - I 

a nd write the nth order differential equation as a set of 1st order equations, viz 
.X 1(t) = x 2(t) 

.X 2(t) = X 3(1) 

.Xn - l(t) = X11{1) 

.Xn(t) = -a11 x 1(t) - a 11 _ 1x 2(1) ... - a 1x11
(t) + r(t) 

Writing these in the concise form of Eq. 5.16 yields 

0 I 0 0 0 0 
0 0 I 0 0 0 
0 0 0 I 0 0 

A= B = 

0 0 0 0 0 
- a" - (/n - I -an - 2 - a, - 3 -a t I 

With the coefficient matrix of the process and its driving matrix arranged in 
this way, Eq. 5.16 is said to be written in 'phase-variable canonical form' . 

The matrix operations presented in this appendix can readily be carried out on a 
digital computer using the standard sub-routine programs available on most 
commercial machines . 
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Answers to Problems 

1 

where all variables are relative to a datum, and with constants 

c 1 = [ ~~~;1. c2 = [ ndh
3

~~2~ Pz)l· C 3 = [ ndh
3

{~~~~ Pz)l 
where [ ] 0 indicates that the expressions are evaluated using absolute values 
of d, h, rJ etc. for the datum condition. 

2 

3 

4 

5 

CMs3 + (K 2 M + 2K 3 M)s2 + K 2 Cs + 2K 2 K 3 ' 

J 2 s2 + K 

M (J.l A
2 

) 
K s

2 
+ K + K(C

1 
+ KL) s + l 

where A is piston area, 
K is spring stiffness, 
KL and J.l are leakage and viscous drag coefficients, 

and C 1 and C2 are coefficients in linearized orifice and lever equations. 
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6 

--s + --- +-- s + -+-- s+ I vM 3 (2KLM vp ) 2 (2A 2K LJ1) 
AK 8 C AC AK 8 C C AC 

where the symbols are as defined on pages 22-26 . 

7 

8 

9 

JO 

Y(s) 

8(s) 

L 

0.12 

2A em 
wherer 1 = -, r 2 =-

Q,. H 

- c(t) 

-~ - --- 10 10 

For T = 0.04 change 0.06 
1 

transducercircuitto : ~ 

Amplifier 

Pots and gains set to 

- h (t) give gain of K 

0.77 
Transducer 

c(t) 
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J J 

12 

---- ---- Plant -- -

Comparator 

16 c(t) = /o- ie -' + ie - 2r - toe -sr 
c( oo) = 0.1. No overshoo t. 3.9 seconds 

J7 

c 

18 

c(t) =I - e - ' - 1.1 55e - 0
·
5

' sin 0.866t 

X 

• 
10 t Wn = l 

( = 0.5 

(a) c(t) = I - !e_, + j-e - 41 

(b) c(t) = 4t - 5 + 1
3
6 e _, - j-e - 41 

zero ; 3.3 seconds; 0 and 5. 

" 

~=0 . 5 



19 
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6 + 2t- 6e - 0
·
5

' for 1 .:::;; 20 

50 - 4e - o.su - 20 ' for 1 > 20 

Maximum error is I 0° a t t = 0. Error < 1 o when t > 22.8 second s. 

20 

21 

22 

23 

100( 1 - 1.33e - 0 · 25 ' + 0.33e - ') for 0 .:::;; t .:::;; 4 

100(2.29e - 025
' + 17.87e - ') fort ;:::>: 4 

4 0.8 

(s + l)(s2 + 0.6s + 4)' ( I + 3.5s)(1 + 0.8s) 

{i } = [ ~ 
- 36 

y = [ 36 

{i} = [~ 
)' = [2 

I 
0 

-39.6 

0 

I 
0 

- 12 

3 

~ J{x} + [~Ju 
- 4.6 I 

OJ {x} 

- ~}x} + [~} 
I] {x} 

Y(s) 
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24 

(a) 

~ - a, ~, 
I 

A = a2Rt 

0 

0 

{i} = [~
0 

y = [i 

[4 {i} = ~ 

)' = [ - 2 

0 
- 3 

0 

- t 

-2 
- 3 

0 

- 2 

J}x) + [l} 
!J {x} 

l}x} + [~} 
I] {x} 

{i(t)} =A{x(t)} +B{u(t)} 
{y(t)} = C{x(t)} + D{u(t)} 

r(f)} C'J} {x(t)} = h2(t) {u(t)} = q2(t) , 
h3(t) , q3(t) 
h4(t) q4(t) 

a1 R 1 

0 

- c2
1

R, + a2~J a2R2 

a3R 1 - c3~1 + Cl3~J 
0 

a4R3 

0 

0 

a3R3 

a4R3 



B= [~ 

(b) 

(c) 

25 

0 0 
- l 0 

0 - 1 
0 0 
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~l C= [~ ~ ~ n D=O 
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26 

27 

28 

29 

Appendix D 

{.i:(t)} = [- ~0 _ ~}x(t)} + [~}(t), y(t) = [10 lO]{x(t)} 

or [ - 5 {.i:(t)} = 0 -~}x(t)} + C}(t), y(t) = [430 - lf]{x(t)} 

or [ -5 {.i:(t)} = 0 ~~}x(t)} + [~}(t), y(t)=[ - 4 IO]{x(t)} 

or [-2 {.i:(t)} = 0 ~~}x(t)} + [~}(t), y(t) = [ - I IO]{x(t)} 

c(t) = 1 + 1e-2r _ !e- sr 

[
e - 0

·
5 '(cos () + 0.577 sin fJ) e - 0

·
5 '(1.155 sin fJ) J 

cp(t) = e- 0 ·5'( - 1.555 sin fJ) e - 0 ·5'(COS fJ - 0.577 Sin fJ) 

where e = 0.866t 

x l(t) = 1 - 1.155e- 0
·
5

' sin ( 0.866 + ~} x it) = xl (t) 

[

e - • 0 0 J 
cp(t) = 0 e - 4

' 0 
0 0 e - 2

' 

x 1(t)= 1-e- • 

x it) = i - le - 4
' 

X3(t) = t + te - l r 

[ 

.4s
2 

+ 14s + 14 ] 

( ) = (s + lXs + 2Xs + 4) 
G 

5 
2(s + 3) 

(s + 2Xs + 4) 

e.4 [ 1 - 2t
2 + !t

3 + . .. t - t
2 + tt4 + .. . J 

cp(t) == = -4t + 4t2 - !t4 + .. . l - 2t + !t3 - ft 4 + .. . 

For t = 1 second this gives poor accuracy since further terms could make a 
significant difference, but for t = 0.5 second it is a reasonable approximation, 
since the terms reduce rapidly in magnitude. 
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30 
0.04 

7 2 

2 

0.3 

(a) 

10 

(b) 

31 Same information as Problem 30 plotted on a Bode diagram. 

32 

33 

34 

35 

0.33 The transducer bandwidth is significantl y 
G(s) = ---

s(l + O.Ss) higher than that of the system . 

220( I + 2.6s) 
G(s) - ---------==-----­

- (I + 0.65s)(s 2 + 20s + 580) 

Az Bz 
rp,.>.(T) = -cos cvt + - cos 3cvr + C2 

. 2 2 

Az 
(a) 2 COS W T 

B 
(b) -Sin ever 

nr 

36 I I I I I 0 0 0 I I 0 I I 0 I 0 I 0 0 0 0 I 0 0 I 0 I I 0 0 

37 

1 
31 

6.2s 

Relatively flat (within 3 dB) to frequency 5/ 3 Hz 

Smallest frequen cy component -iT Hz 

Spacing o f spectral lines __!___Hz 
6.2 

_JJJIL_-=::::~-=====~~;_w 
0 5 10Hz 

G(s) = Ke - o ss ( 
40 

) with time in minutes. 
s2 + 2s + 40 ' 
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38 0 and :? with steady unit input ; 2 and oo with unit ramp ; oo for both with 
acceleration input. 

39 (i) 0 < K < 75, 3.74, 0.107, oo 
(i i) 0 < K < 45, 3, 0, 0.2 

(iii) 0 < K < oo, - , 0, 0 

40 I I dB, 42° (from straight line approximation) 
13.4 dB, 50.4° (by calculation) 

6.3 
41 G(s) = . M P = 1.9, bandwidth = 7 rad/seco nd . 

s( I + 0.25s)( 1 + 0.05s) 

42 I dB. 2.5". Close to instability. 

43 110 
20 log 10 K; 

where w 1 is given by 

_ 1 (J - O.OOl w/) tan 
O.llw 

4 2 K 2 
0.00000lw 1 + O.O!Ol w 1 + 1 = -

2
; I 10 ; 6 dB, I r 

w, 

44 14.5 dB, 30 ; 6 dB, 0.2 rad/second , 0.45 rad/second. Ra ther poor stabilit y, 
little improvement possible by change in gain alone. 

45 K = 0.8. Transducer time constant is significant. With lag GM = 8 dB, 
PM = 45" for K = 0.8, e,, is 50%~. Without lag GM = , PM = 45 for 
K = 1.37, e., is 37'%. 

46 

47 60 ; 0.52 rad/second ; - 2.3, - 10, negligible effect. 

I 
I 

---~\-»-0 

\ 
(. , \ 

I 

( t 
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48 l 78 C(s) - 225 
· ; - s(s2 + 2.17s + 2.4)(s + 2.9)(s + lO)(s + 12.5) 

1.78 

~ s(s 2 + 2.17 s + 2.4)(s + 2.9) 

3.7 seconds. 

49 Conditionally stable ; stable for 0. 5 < Kc < 1.8, approximately second 
order. For Kc=0.57 dominant roots have t=0.7 . 

50 Unstable. 3.3 rad/second, 0.47 (with compensation). 

51 

52 

53 

54 

- 14 

' I : 

I 
I 

I 

--~~~~~x~•-___._--~~·--~j~ • ._~~~~~r; ~~,--
T increasing 

--- ---- - ---------------

- 12 - 2 

z 2 - ze - 2T cos 2 T 
G(z) = . 

z2 - 2ze - 2T cos 2T + e - 4 T 

0.02z2 + 0.01 z 
C(z) = ; 

z3 
- 2.78z2 + 2.59z - 0.8 1 

c*(t) = 0.02(t - T) + 0.07(t - 2T ) + O.l4(t - 3T) + 0.224(t - 4T) 

+0.317(t-5T)+ .... ; 1. 
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56 Unstable for all K 3 

' 

- 3 0 
/ 

/ 
/ 

/ 
- 3 

57 PM = 38°, GM = 5.76 dB ; limiting K = 3.05. 

58 Stable; uns table ; no effect. 

59 

P + D action 

~4 =~--4 
P + I + D action 

60 For T= 0, K = 480 for 4% error , k = 0.26 gives a maximum C of 0.40 for 
the dominant roots. For T = 0.05 , K = 480 as before, but maximum attainable ? is 
0.16 fork= 0.18. 

61 K =50 gives M P ~ 1.22, and 20 radfsecond, 33 rad/second, oo, 4r. 
Required M P is not attainable by change in K alone. 
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Answers to problems 315 

' ' \ 

k=20 

k= 3.5 
I I 

k= 3.5 I k=3.5 I - -·---'-+---- ...,. ____ ,.._- -1--
- 4 - 2 I 

I 

2 
/ 

/ 

k=BO 

63 - I dB, - 5° (unstable) improved to 16 dB, 45°. 

64 1 (I + 0.070s) 420 
GAs)= 4.2 I + 0.017s ' G(s) = s(l + 0.25s) 

65 I (I + 0.41 s) 5.5 
Gc(s) = 3.7 1 + O.ll s ' G(s) = s(l + 1.25s) 

17 dB, II o improved to 24 dB, 45" 

66 
{x} = [ ~ 6 

- 0.2 - 2.3 
~ J{x} + [~} 

- 3.1 2 

H = [0.89 0.94 0.55] , Overshoot= 16% 

67 



Index 

acee le rati o n error coe ffici e nt . 157 
acceleration feedb ac k . 275- X 
acce le ration input. 60. 157 
accuracy 

of simulation. 29 . 30. 44 . 49 .50 
steady sta te. 4 . 154- 7 

ACF. see autocorrelation function 
adaptive control, 7 1 
addition 

o f ma trices. 89. 30 1 
of po le s and zeros. I X2-3 

ad jo int matrix. 89 . 92. 26 1 . 302 
aids to construction o f root locus 

diagram , 177-82 
algorithm, 48 , 50 , 94. 128 , 139 .258 
a li asing . 13R 
allowable e rror. 156-7 
amplifier. 30--33 . 270 
amplifie r gain . 30- 32. 43- 4 
amplitude ratio . 99 

see also magnitude 
amplitude scaling. 42-7 
analogues. 7. 29 
analogue compute r. 7. 29. 126 . 264 

elements. 30-33 . 40 
a nalys is 

need for. 4 
ri1e thods of. 6--R 

angle condition for root loci . 176 . I HO 
angle of departure of root loci . 180 
asymptotes to root loci. 178 
asymptotic approximation. 106. 109. II L 

116 
attenuation. 236. 239 
autoco rrelatio n functi o n ( ACF). 12 1 

properties. 124--5 
ofPRBS , 145- 6.149 
of various signals. 122-6. 129. 137 

auxiliary equation. 160-6 1 
auxiliary feedback loo p . 154 . 162 .275 

backlash . 14 
band limit ed white no ise. 13 1- 2 
bandwidth . 11 7. 128 . 1611. 19LI. 241 
Bartle tt window . 141 - 2 
bit interval. 148, 150 
black box problem . 6. 7. 72 
block diagram . 4- 5. 10. 152- 4 . 204- 5.265 

reducti o n. 17- 18 
Bode plo t (or diagra m) . 106- 14 . 116 . 136. 

237- 9.244 
brea kaway point o f roo t loci. 17l) 
break point o n Bode plot. I OLI. 111 . 11 3 
bridged T network . 246 
bulk~ mod ulus . 26.266 

CCF. see cross correlation functi o n 
characte ristic eq uatio n. 18 . 66 . 6LI. 154 . 

158 . 170-7 1. 174 
characteristic function . 162 
circuit diagram. 33-4.42- 7 
classical methods of anal ys is . 6 . 8 
classification of syste ms. sec type o f 

feedback system 
closed loop control , 3-4 . 153-5 
closed loop freque ncy response. 165- 9 
closed loop magnitude . src magnifica ti o n 
closedloopzeros , 187 . 1X8 . 231J--3 1 
coefficient matri x. 86 
coefficient potentio meter. 32. 31\ 
coherence function. 137 
column matrix . 83 
column vector. 86. 29R 
compa rator rel ay. 40 
compensation network , 236,241 -3.247 
compensation , 165. 234--5 , 249 
complementary function. 63. 100 
complex s plane . 66--7. 69-70 
compressibility. 26 
compute mode . Jl) 
computer time . sec machine time 
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conditio nal frequency, 67 
conditi o ns of randomness, 143 
conjugate roots, 69-70, 110, 178 
controllability, 255-6 
cont ro lled output , 152 
controller settings. 232-4 
control vector, 86 
convolutio n integral, 77- 9, 92 , 126 , 135 
corn er frequency, see break point 
corre lation , 120-2 I 
correlatio n fun ction, see autocorrelation 

function , cross correlation fun ction 
correlato r, I 28 
correlogram, 139 
cova riance , 121 
cova ri ance function. 121 
critically damped system , 65 
critical point , 162- 3, 171 
cross corre latio n function , 125 , 126--9 , 

150-51 
crossover frequency, 164 
cross power spectral density, 131 
CSMP. 54-9 
cut-off rate. I 18 

damped natural freq uency , 67 
damper, see hydraulic damper 
damping factor , 20 , 65- 7. 103-4 , 11 0--11 
data reconstruction , 207 
datu m conditi on (datum point) , ll - 14 
dB , 106 
deadband,40 , 263 
dead time, 73 
decade of freq uency, I 09- 11 
decibel , 106 
degree of stabi lity, 161 
derivative act ion , 224 , 228-30 
derivative of matrix , 302 
derivative te rm , 108 
describing fun ctio n, 264 
design, 154, 182- 3. 220 
desired output , 3-4, 152-3, 155 
determinant of matri x, 90, 93 , 300 
deterministic signals, 119 
difference equat ions, 48, 94 
differential equation , 6 , 7-8, I 0, 16, 33 
differentiation , on analogue computer, 40 
digitalcomputer , 30 , 47 . 94, 128, 137 , 170 
digital si mulation , 47 
diode function generator, 40 
discrete sys tem, 94. 97 
discrete time model , 94 
discrete time se ries , 137 

discrete time solution, 96 
distributed parameter system , 21 
disturbance , 7, 60 , 77 , 119 
dominant locus (loci), 183 , 227 , 237 
dominant pole, 69 
dominant root , 67 , 170 , 174 , 227 
dominant time constant , 73 , 75 , 195 
driving matrix , 86 

energy distribution of signal, 131 
environment , 1, 4 
error criterion , 73 
e rror signal, I 53-4 
e rror vector , 259-60 
e rrors with straight line approxi mations, 

109 , Il l, 113 
estimated state vector, 258, 259 
E uler method , 48, 50 
even function , 125 , 130 
exclusive or , 144 
expected val ue , 121 
experim ental testing , 6, 61 , ! !4, 266, 268 
experimental ve rification , 7 
exponential lag , see simple lag 

Fast Fourier Transform , 134, 139-40 
feedback control, see closed loop control 
feedback matrix, 255,259 
feedforward compensation , 247-8 
FFT, see Fast Fourier Transform 
filter , 138, 240 
final value theorem , 15 , 69 , I 55 , 207 
first order hold , 207 
first order system, 61, 71, 73, 90, 102 

see also si mple lag 
flow continuity equation, 24-6 , 87,267 
fo rci ng function , 27 , 60-61, 264 
Fourier ana lysis , 133 
Fourier transform , 130, !40 
frequency response, 99 , 2 18 

testing, 114-16 
fun ctions, in simulat ion language , 55-6 

gain , 69, 99, 107 
ga in crossover frequency , 164, 239 
gain margin , 163- 5 , 168- 9 
gain phase plot , see Nichols chart 
gate function , I 40 
generalized state equat ions, 86 
governor , 12, 173 

Hanning window, 141- 2 
harmonic locus, 102- 5 



harmonic re spo nse , see frequency 
response 

higher order syste ms, 68 , 75 , 105 
HOLD mode, 39 
human being , 47 , 155 
Hurwitz , see Routh-Hurwitz crite ri o n 
hybrid computer, 30, 39 
hydraulic da mper, 19 
hydraulic ram , 24-6 , 104 , 267 
hydraulic servomechanism, 22, 61 , 63 
hysteresis , 14, 40 

IC mode , 38- 9 
ideal sampling function, 195 
identification , see system identification 
impulse function , 60 , 77 
impulse response, 64, 66,77-8, 120, 

126--9. 197 
inertia , 24--5 
initial condition vector .. 89 
initial condition voltages , 33, 34, 38 
input function , see forcing function 
input vector, 86 
instability , 69 , 158 , 161-2 
integral action , 183 , 185 , 226--8 , 232-4 
integra l functions of error , 72 , 116 
integral term , harmonic response , 108 
integrating amplifier or integrator , 31-2 
integration algorithm, 48- 51 
integration step size (or interval). 49-51 
integrator , idea l, 81-6, 104 
interpretation of root loci , 182-8 
inverse Laplace transform, 14, 16 , 68, 

92-3 
inverse matrix , 89, 92,302 
inverse z transformation , 206 

lag. lOY . 110. 154 
see also simple lag 

lag- lead compensation, 247,253 
Laplace transforms. table of. 15 
Laplace transform technique. 14 
lead . 109. 110 . IR3 
leakage, 24 
limit cycles, 264 
linearit y, 10 , 72 . 99 
linea rization . 11 - 14 
line spectrum. 146 
loci o n real axis. 17R 
loga rithmic decrement me th od. 74.27 1 
loop gain. 4 7, 225- 6. 236 
lumped parameters, 21 

machine time . 43- 4 
magnification . 11 7. 165 
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magnitude (magnitude ratio) , YY- 1 0 I . 
106 

magnitude condition for root loci . 176. 
182 

manipulated variable, 224 . 232 
marginal stability . 174 . 17Y 
mass-spring-damper , 19-20.64. 171 
mathematical model, 6, 10 , 72, 265- 72 
matrix addition and subtraction . 30 I 
matrix inversion. 97. 302 
matrix multiplication , 86 , 30 I 
matrix notatio n. !D. 86 
matrix transfer function. 8Y 
maximum le ngth seq uence , 144 
M cont o urs. 166--9 
mean power (mean square value). 125. 

131 
minor feedback loop , 23 1, 275.277 
mode control, 40 
mode l. see mathe matical model 
modern control theorv. 8. 223 
modulo two addit ion : 144 
M" . see peak magnification 
multi-input-multi-ou tput syste m , 86--8 
multiplication o f matrices. 86. 301 
multiplie r. 40 
multivariable system, 8 1. 86. 97 

natural frequency. see unda mped natural 
frequency 

N contours, 166--9 
Nichols. 232-4 
Nicholschart, 168-9 
noise , 7 , 41. 76, 77. 119. 127- 9. 137. 138 
non-determini stic function . II Y 
non-linearity, 11- 14.40. 72,99 , 264 
non-minimum phase, 116 
non-parametric model. 6 , n 
Nyquist diagra m (Nyquist plot). 161. 165 . 

234 
Nyquist stability criterion. 161-2 

observability, 255 
observer. see state observer 
octave of frequency. 109 
offset. 156 
o n-line testing , 119 
open loo p control, 3, !52 
operating modes of analogue computer, 

38-9 
operational amplifier. 32. 35 
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optimum response, 232 
see also performance criteria 

order 
of matrix, 83,86 
of system, 18, 68,83 

orifice, 11 , 13 
oscil lations, number of, 71 
oscillatory response , 51. 53, 58, 132 
output matri x, 71 
output response, 6--7,54,67, 102 
output vector, 71 
ove rall transfer function, 16 
ove rcorrection , 4. 132 
overdamped response. 5 1, 60 
overshoots , 58-60, 132, 178 

P + l , see proportional plus integral 
control 

P + 1 +D. see three term controller 
parabolic function, 60 
parameter va riations, 7, 34 , 153 , 189 ,272 
parametric model , 6, 73 
partial fraction expansion, 16 , 62, 68 , 82, 

100, 206,250 
particular integral , 63, 100 
patch panel, 34 
peak magnification , 118 
performance characteristics. time 

domain , 69, 71,220 
performance criteria . frequency domain 

ll7- 18, 220 
perfo rmance index, 72, 227 
periodic white noi se, 129, 142 
phase, 99, 101 , 106 
phase crossover frequency, 164 
phase lag , 101,103,105 
phase lag compensation, 234, 24i-7 
phase lead, 110 
phase lead compensation, 236-4L 250 
phase margin , 163-5 , 168-9 
phase plane technique, 264 
phase variable canonical form, 256, 303 
polar plot , 101-6, 116, 199-201 
pole cancellati on, 245 
pole placement , 255 
pole position in s plane , 69-70 
poles of transfer function , 18 , 69 , 107- 11 , 

176 
positional error , 157, 226, 273 
positional error coefficient (constant) , 

156 
potentiometer , 32, 34 , 38 
POT SET mode , 38 

power density spectrum , 130 
power device , 154 
power series expansion. 206, 209 
power spectral density, 137-42 

of PRBS , 146, 151 
practical testing , 72, 114-16, 119, 270 
PRBS , see pseudo random binary 

sequence 
principle of superposition , 10-11, 77 , 91, 

264 
problem time , 43 
proportional control , 224-6 
proportional plus integral control. 35 , 

183,226--8,232-4 
pseudo random binary sequence (PRBS) , 

8, 142-7, 148 
pulse (rectangular) , 60-61, 195 
pulse transfer function , 202, 205 
pulsed time response. 196 

quadratic lag (lead). 110- 11 
quadratic resid ue code, 145 

r, complex variable , 214 
ram. see hydraulic ram 
ramp function, 60 , 63, 65. 77. 156 
random binary function . 123. 132-3 

see also pseudo random binary 
sequence 

rate feedback, 31, 23 1-2 
real time simulation, 43 , 47 
record length , 137, 140-42 
reference input , 152-4 
reference voltage , 38, 43, 44 
regulator, 154-5 
relative stabi lity, 163 
relay control, 263-4 
repetitive operation (' REP OP') , 39. 44 
RESET mode , 38-9 
response vector, 86 
rise time , 71 , 241 
root contours, 189-93, 227-8 
root locus plots (diagrams), 170-88, 

227-8,242,273-7 
root position , 182 
roots of characteristic eq uation, 18 , 66, 

69 , 157-9, 170 
Routh-Hurwitzcriteri on, 157-61, 179, 

214-15,273 
Runge- Kutta method, 50, 55 

sample function , 140 
sampler, 194 



sampled data process (or sc heme). 194 
sampling, 95 , 137-il. 195 
sampling inte rval (or freq ue ncy) , 48 . 

95- 7. 137 
sa turati on. II. 40 
sca ling ,35. 42-7 
sched uling control. 3. 152 
schematic diagram. 5, 266 
secondary factors , 23- 6 
secondary feedback path. 162 
secondary loci. 227 
second o rde r system. 64-8,90. 103-4. 

147.200.267 
servomechanism (servo). 22. 154-5. 

265-77 
se rvova lve . 267-70 
se t point. 155. 183. 194 
set tlin g time. 71 
shift register, 144 
signal flow graph. 6 
signal- no ise ratio. 35 . 42. 129 
simple lag . 23 . 62. 109 

see also f1rst order svstem 
simulat io n . 29. 35. 47. 174. 187 . 181\ 
simulatio n languages. 53 
single- input-single-o utput system. 3. 4. 

81. 127 
sinusoidal signals. 7. 99. 122- 3 
small perturbation analysis . II . 119. 265 
sol ution of differential equ at ion . 28. 33. 

60 
solution of state equation. 90-94 
solutio n matrix . 92-4 
solution time , 43-4 
spectral density. see power spect ral 

density 
s-plane. 66.69- 70 
spoo l va lve. 22-3. 268 
spring. 1 L 18-19 .267 
stabilit y, 154. 157-65 
stabilit y boundary. 69 , 2 14 
staircase approx ima tion , 95-6 
starting points ofroot loci. 177 
state equations. 27.81-8 
state observer , 258- 60 
state space technique, 6. 80 
state variable di agrams. Hl- 6 
state variable feedback control, 255 
state variables. 26. 80--8 1 
state vector . 27-8. 83, 86 
state vector feedback controL 254-5 
statements. in simulation language. 54-6 
statistical testing. 7 , 8 . 127 
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steady state erro r . 63. 66 . 71. 155- 7 
steady state gain. 69 
steady state response. 62 . 100 
step change (step function). 7. 60. 76. 156 
step response . 62-3.65 . 68- 'J 
step response testing. 72- 6 
stra ight line approx imati on . 107. IO'J. Ill 
summing amplifier (summ e r). 30--32. 34 
summing junction. 31. 33.38 
superposition int egral. 78 
synthesis. 22 1 
system. 1-2. 4 
svstem identificati on . II 'J- 20 . 126-9. 

134-7 
see also practical testing 

system representation. -1-6. 10 
system response . 6-8 

termini o f root loci. 178 
testing. see practical tes tin g. system 

identification 
thermometer . 20-21 . 6 1. 63 
thermostat. 3. 263 
three term contro ll er ( P + I + D) . 224. 

228-9. 232-4 
tim e constant. 23 . 62. 7 1. 73.75-6 
time scaling. 42-3. 47 
time series represe ntatio n. 4H. 137 . 139 
transducer, 38. IIH . 153. I'JI. 266 
transfer fun ction . 6. 16. 68 . 100 . 136-7. 

268-9 
of sampled-data e lement. 196 

transfe r fun ction analyser. 11 5 
transient response. 62-3 .66-7 . 69. IOU 
transition matrix. 92 
transmission matrix . 86 
transpo rtation lag. 73, 76 
transpose of a matrix . 299 
two term contro lle r. 223. 226-7 
type of feedback system. 157. 225 

undamped na tural frequ ency (natural 
frequency). 20. 66-7 , Ill 

underdamped response. 65. 71.73 
unit circle . 214 
unit impulse. 64. 66. I'J5 
unit matrix . 88. 89 . 300 
unit ramp . 63, 65. 96 
unit step. 60. 61.64 

variables , absolute and re lative . 12. 14 
velocity error coefficient (velocity error) . 

157 .226,273 
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velocity feedback , 231-3,275--6 
virtual earth , 31, 33 
viscous leakage, 24 
viscous load , 19, 25 

weighting function, 78, 126--7 
white noise , 124, 127-9, 131 , 142 

window function , 140--42 

zeros, 100, 107-10, 174-80 
zero order hold , 207 , 214, 218 
Ziegler, 232-4 
z-plane , 213,214 
z transform , 95 , 201-4 




