
Durham E-Theses

Iterated function systems and shape representation

Giles, Paul A.

How to cite:

Giles, Paul A. (1990) Iterated function systems and shape representation, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/6188/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/6188/
 http://etheses.dur.ac.uk/6188/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Iterated Function Systems
and Shape Representation

Paul A. Giles

Grey College, University of Durham.

Submitted as PhD thesis, October 1990.

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

ITERATED FUNCTION SYSTEMS

AND SHAPE REPRESENTATION

Paul A. Giles

School of Engineering and Applied Science

University of Durham

PhD. Thesis (October 1990)

ABSTRACT

We propose the use of iterated function systems as an isomorphic shape rep­

resentation scheme for use in a machine vision environment. A concise descrip­

tion of the basic theory and salient characteristics of iterated function systems is

presented and from this we develop a formal framework within which to embed

a representation scheme. Concentrating on the problem of obtaining automat­

ically generated two-dimensional encodings we describe implementations of two

solutions. The first is based on a deterministic algorithm and makes simplifying

assumptions which limit its range of applicability. The second employs a novel

formulation of a genetic algorithm and is intended to function with general data

input.

Keywords: Machine Vision, Shape Representation, Iterated Function Systems,

Genetic Algorithms.

ACKNOWLEDGEMENTS

I wish to thank my supervisors Roberto Garigliano and Alan Purvis for their

help and advice over the last three years and in the preparation of this work.

Thanks also to David and Duncan who helped with the mathematics, to Russell

for the pictures, and to Ian for giving me somewhere to live during the final few

weeks.

This research was made possible by a CASE studentship award with sponsorship

from British Aerospace.

CONTENTS

CHAPTER 1: INTRODUCTION

1.1 General Vision

1.2 Biological Vision

1.3 General System Properties

1.4 Geometric Representation

1.5 Rule-Based Representation

1.6 Pictorial/Iconic Representation

1.7 IFS Representation

1.8 Thesis Structure

CHAPTER 2: ITERATED FUNCTION SYSTEMS

2.1 Metric Spaces

2.2 The Space 7t(X) and its Metric

2.3 Mappings on a Metric Space

2.4 Mappings on 7t(X)

2.5 Iterated Function Systems and their Properties

2.6 Code Space

2. 7 Iterated Function Systems as Dynamical Systems

2.8 Summary .

_, -

1

1

4

7

9

13

14

16

18

20

20

26

33

37

39

44

50

55

CHAPTER 3: ITERATED FUNCTION SYSTEMS AND SHAPE .57

3.1 2D Shape Representation.

3.2 Compactness

3.3 Stability

3.4 Robustness

3.5 Attractor rendering

3.6 Summary

CHAPTER 4: IMPLEMENTATION OF IFS CODING

4.1 Coordinate Systems

4.2 Mappings

4.3 Encoding Algorithm

4.4 Program Performance

4.5 Conclusions

CHAPTER 5: GENETIC ALGORITHMS .

5.1 A Formal Framework

5.2 Schemata

5.3 Reproductive Plans

5.4 Genetic Operators

5.5 Intrinsic Parallelism

5.6 Robustness

5. 7 Limits on Implementations

-u -

57

64

6.5

68

71

78

80

82

8.5

89

100

110

113

115

118

119

122

125

129

130

5.8 An Alternative Plan: D 1

5.9 Summary

133

139

CHAPTER 6: IFS ENCODING BY GENETIC ALGORITHM 141

6.1 Program Parameters

6.2 Program Environment

6.3 Solution Representation

6.4 Implementation of D 1

6.5 Fitness Functions

6.6 Parameter Settings

6.7 Evaluation vs Population

6.8 Program Performance

6.9 Conclusion

CHAPTER 7: CONCLUSION .

7.1 Research Directions

141

143

144

146

151

154

156

160

173

176

177

REFERENCES . 180

BIBLIOGRAPHY

GLOSSARY

APPENDIX A

APPENDIX B

APPENDIX C

-Ill -

185

190

194

206

212

1 INTRODUCTION

This thesis addresses the problem of finding a suitable shape representation

scheme for a general purpose machine vision system and advocates the use of

iterated function systems (IFSs). To explain the motivation for this, we begin in

this chapter with a discussion of the fundamentals of vision and give a definition

of what we mean by a general purpose system. This leads to an examination of

the psychophysical data available on biological vision from which we extract a

list of properties that could be expected of an artificial system. We then briefly

review some contemporary representation schemes, and the systems in which they

have been implemented, making comparisons with the theoretical requirements.

In the light of the shortcomings of current representations we emphasise the need

for isomorphic, pictorial representations and hence introduce the idea of IFS en­

coding.

1.1 General Vision

Arbib and Hanson (Arbib and Hanson 1988) suggest that the purpose of bi­

ological vision is to provide an animal with the information required for it to

successfully interact with its environment, a definition which can be extended to

include artificial systems so long as the terms 'interact' and 'environment' are

given appropriate meanings. The concept of the task environment of a vision

system has been discussed by Nevatia (Nevatia 1978) who gives a qualitative

-1 -

definition of three distinct environment types based upon the number and com­

plexity of objects in a scene, the degree of constraint in the object orientations,

and the amount of a priori knowledge about the scene. The definitions are as

follows:

TYPE 1: The number and specific identities of the objects in a scene are known,

and their position and orientation are highly constrained.

TYPE 2: The set of all possible objects is small and known but the identity of

specific objects in a scene is unknown in advance, with positions and orientations

only weakly constrained.

TYPE 3: The number of objects m a scene is large and each is not explicitly

known. Objects may adopt any physically permissible position and orientation.

We claim that any general vision system will be required to work in complex

type three environments such as those presented by natural scenes in the real

world. However, before we can make any further statements as to the require­

ments of a such a system we must consider what is meant by the term 'successful

interaction'. If we take success to be the attainment of some goal or goals then

the purpose of vision becomes the interpretation of patterns of light intensities

and frequencies in order to form a rational plan of action which, according to

Tsotsos (Tsotsos 1984), is the definition of knowledge acquisition. Hence we ar­

rive at a definition of vision as the acquisition of world knowledge from images.

Bullock (Bullock 1978) suggests the definition of a general vision system as

one which has abilities as wide as those of the human visual system and which is

therefore consistent with the idea of a complex type three environment. However,

adopting Bullock's definition implies that a general artificial system should be

capable of extracting the same amount of knowledge from a scene as a human

-2 -

by utilising the same information. This in turn implies that the system must be

able to reason based upon the visual information it receives and thus requires

an internal representation or model of its environment (Koons and McCormick

1987).

Tsotsos (Tsotsos 1984) borrows terminology from the field of psychology to

divide the visual process into two stages. The first, called sensation, is the mere

acquaintance with a fact, such as the detection of a certain intensity pattern or

some similar intrinsic scene attribute. Perception on the other hand is defined

as the association of other knowledge with the information provided by sensa­

tion. Tsotsos gives the example of an 'edge' which in the context of sensation

is the presence in an image of one of a set of certain light intensities patterns,

whilst perceptually it is interpreted as a section of a physical entity (object).

'vVe therefore arrive at the conclusion that a general vision system cannot sim­

ply label sensation but must perceive the objects contained in a scene by the

interpretation of image data using model based reasoning.

It is known that the information contained in an image underconstrains scene

interpretation and that in general the problem is intractable (Tsotsos 1987). How­

ever, biological visual systems demonstrate that good approximate solutions are

attainable, and hence it might be assumed that the best way to proceed in de­

signing a machine vision system would be to model it as closely as possible on its

biological counterpart. However, it is not certain that biological systems present

the only possible solution to the vision problem, or even that they are the best.

Further, because of the disparity between the structure and complexity of the

human brain and current serial computers, it is entirely possible that the vision

-3 -

processmg ability of the former cannot be efficiently mimicked by the latter. De­

spite this, it seems justified to examine the way biological systems operate, specif­

ically the human visual system, with the aim of distilling some basic principles

(\Veisstein and Maguire 1978, Aviad and Lozinskii 198.5, Koons and McCormick

1987).

1.2 Biological Vision

Some properties of human visual information representation have been ob­

served by Kosslyn and Schwartz (Kosslyn and Schwartz 1978). They concentrated

attention on what they called 'visual images' or the kind of mental pictures we

use when imagining objects or scenes that are not currently available for scrutiny.

The suggestion is that such visual images are spatial representations in short term

memory that are not simply retrieved but are in some way constructed from more

fundamental representations in long term memory using conceptual knowledge. In

addition it is suggested that this visual imagery portrays information in an im­

plicit pictorial way and not in an explicit symbolic form. It is further suggested

that these visual images can be interpreted by processes similar to those used on

real images and thus act as an isomorphic representation, which is to say, "one

in which the laws and relationships governing the real world objects are inherent

m the data structures and operations of the representation" (Fischler 1978).

The evidence on which Kosslyn and Schwartz based these conclusions was

the result of a series of experiments on the extraction of information from visual

images. The claim that visual images are not retrieved as a whole but are con­

structed partwise using conceptual knowledge and more abstract representations

is supported by the increased time taken to imagine a scene as the complexity

-4 -

of the scene increases. If each visual image was stored as a whole then the time

required to extract it would be the access time of the representation library, and

would not depend on the image content. However, Kosslyn and Schwartz cite

evidence that this is not observed, and that subjects take longer to generate a

complex scene, implying a construction process. That this construction process

proceeds by combining objects or scene parts according to knowledge of permissi­

ble configurations is evidenced by the fact that we find it easy to imagine scenes

that we have not previously witnessed from just a simple verbal description.

Kosslyn and Schwartz demonstrated the spatial nature of visual images by

showing that they are bounded as if contained within some display matrix and

that if the images are expanded they will overflow the matrix limits. For example,

subjects were asked to imagine objects of various sizes viewed from a distance

and to visualise the change in the size of the image as it was brought closer.

They were then asked to estimate the distance to the object when it began to

overflow, that is, when all parts of the object were no longer clearly visible. The

findings were that larger objects seemed to overflow at greater distances, and

that the angle subtended by each visual image at overflow was constant - both

of which are consistent with the idea that the images are spatial entities that are

contained within a finite space. Koons and McCormick (Koons and McCormick

1987) cite similar results but give the additional information that the images are

approximately circular in extent, are three dimensional, and occupy a visual angle

of around twenty five degrees. Data concerning the time taken to expand, con­

tract or rotate visual images leads to the conclusion that they are transformed

gradually and pass through intermediate positions as if a given image is being

successively refined. Again Koons and McCormick give the quantitative informa-

-5 -

tion that visual Images are rotated at a rate of between 55 and 60 degrees per

second.

Evidence for the isomorphic nature of the representation was obtained by

Kosslyn and Schwartz by asking subjects to mentally scan between different pairs

of points on a visualised map. The findings were that as the distance between

the pairs of points increased so did the scan time. A second test involved the

use of schematic drawings of faces consisting of a pair of either dark or light eyes

at varying distances above a mouth. Subjects were shown a specific drawing and

asked to visualise it, with the focus of attention on the mouth. When asked the

question of whether the eyes were light or dark, the response time was found to

correlate strongly with the distance of the eyes above the mouth. If the subjects

were asked to shrink the image before being asked the question then response

times decreased, with the opposite effect being observed if the image was first

expanded. Kosslyn and Schwartz interpreted this as the subjects scanning up­

wards from the mouth to the eyes to retrieve the required information, evidence

both of the implicit nature of the representation and also, because of the direct

relationship between distance and scanning time, isomorphism.

Finally, that visual images can be interpreted by other processes is supported

by findings cited by Kosslyn and Schwartz concerning the visualisation of small

image parts. It is found that information relating to small parts of a visual image

take longer to recover than that for larger parts, regardless of how highly each of

these parts is associated with the imagined object, implying a search of the visual

Image. From their review of the psychophysical data of the human visual system

Koons and McCormick conclude that: "The internal representation of imagery

uses operations closely related to those operations used in the external or primary

perceptual system."

-6 -

Weisstein and l'vlaguire (Weisstein and Maguire 1978) have analyzed the high

level activity of the human visual system by examining the conditions under

which visual illusions such as false contours, perceived occlusion, and apparent

connectedness occur. They conclude that these phenomena are due to high level

processes overriding, filtering or enhancing low-level data and consequently that

feedback and top-down control are both present.

1.3 General System Properties

With the working definition that a general vision system must have the same

abilities as the human system, and assuming that it is permissible to try and

imitate its operation, we can identify the following properties that are required of

a shape representation scheme based on the psychophysical data of the previous

section:

1. reconstruction of spatial representations form more abstract forms;

11. models isomorphic with real world objects;

111. a conceptual partwise description of objects and scenes;

1 v. the ability to manipulate representations usmg processes analogous to those

in the real world;

v. the ability to create new models for previously unseen objects.

The need for spatial, isomorphic representations has been discussed by Fis­

chler (Fischler 1978) who emphasises their intrinsic information content. That is,

isomorphic representations contain more information than is made explicit. Fis­

chler gives the example of representing knowledge about the distance between

-7 -

towns in a given regiOn. A common non-isomorphic approach is to tabulate the

data as a mileage chart which explicitly gives the distance between each pair of

towns, and has the advantage of giving quick access to the required information.

However, an isomorphic representation such as a scale map of the region not

only contains the mileage information, although in a form which requires access

by making measurements on the map, but also data on the distribution of the

towns, such as which is farthest north. Such extra information cannot be derived

from the non-isomorphic representation and would need to be entered as a sep­

arate piece of knowledge. This is the fundamental problem with non-isomorphic

representations and as Fischler notes, "one cannot practically make explicit all of

the knowledge needed to create a system capable of general purpose vision".

Pentland (Pentland 1986, 1987) has discussed the use of partwise models

based upon 'lump of clay' primitives which give rough descriptions of object sub­

parts and their relative orientations whilst avoiding excessive detail, the basis

for this approach being the observation that humans use large scale structures

as a guide to perception and often overlook small features. Whilst also observing

that the partwise description must be isomorphic both metrically and structurally

with the object it models, Pentland asserts that the representation must allow

the recognition of objects and learn how to describe new objects.

The need for reasoning based on isomorphic models is described by Hayes

(Hayes 1985) who suggests that the correct approach to implementing a repre­

sentation system is that of 'Naive Physics' whereby the system is given 'common

sense' knowledge of general applicability. Further, Hayes argues that the often

used approach of assuming restricted environments or 'toy worlds' whilst produc­

ing working systems does not yield any information as to the requirements of

a general vision system and, as Bullock (Bullock 1978) points out, is thus not

-8 -

expandable to real world problems. Hayes proposes that a common sense rep­

resentation of knowledge should have breadth, in that it covers the full range

of physically observable properties such as rigidity, colour, reflectivity etc. whilst

also being dense in the sense of having a high information content. A final re­

quirement that Hayes imposes on such a representation scheme is that of unifor­

mity in that it is desirable that there is a common formal framework for each

type of information. This view is supported by Tsotsos (Tsotsos 1984) who crit­

icises past attempts at machine vision because of the lack of a formalism within

which to define, code and manipulate all of the knowledge of the system, with

particular reference to the different forms of knowledge representation for high

and low level procedures.

Currently, real world object representation schemes fall in to three basic cate­

gories namely, geometric, rule based, and pictorial/iconic. We now briefly discuss

examples of each representation type, give descriptions of vision systems that

have been based on them, and identify the degree to which they correspond with

the requirements of the this section.

1.4 Geometric Representation

One of the most common types of geometric representation schemes is that

of constructive solid geometry (CSG), in which an object is described as the

Boolean combination of a finite set of geometric shape primitives. Implementa­

tions usually take the form of a binary tree in which the nodes represent geo­

metric transformations or combining operations (such as union or intersection) to

be applied to child nodes, the terminal nodes being associated with volumetric

shape primitives (Anderson et al. 1988). Anderson shows that by using a set

-9 -

of constrained transformations a CSG tree gives a umque description of an ob­

ject, given a specific choice of primitives. However, it is the choice of primitives

that is the major problem with CSG representations. As Fischler (Fischler 1978)

notes, it is not possible to describe naturally occurring objects by the use of a

small set of simple primitives, and the use of more complex primitives leads to

exponentially increasing numbers.

Pentland (Pentland 1986) and Bajcsy and Solina (Bajcsy and Solina 1987)

have implemented CSG representation schemes using superquadrics - a family of

three dimensional forms, the surfaces of which are defined by the locus swept out

by the tip of a three-dimensional vector .:t'(v, w), where v and w are latitudinal and

longitudinal angles respectively. The shape of each superquadric is determined

by parameterising the length of .:t' in terms of two variables a and {3. The set

of shapes which comprises the family of superquadrics includes the sphere, cube

and cylinder, and so as Pentland points out, constitutes a superset of the more

typically used primitives. By using in effect only one parameterised primitive the

problem of a combinatorial explosion is reduced and the wide range of shapes

that are possible allow for reasonably realistic representations. Pentland takes

the process one step further by adding texture to the superquadric surfaces by

the use of random fractal techniques (Mandelbrot 1982, Pentland 1984).

A well known alternative to CSG representations is that of generalised cylin­

ders developed by Marr and Nishihara (Marr and Nishihara 1978). Marr (MatT

1978) describes the visual process as proceeding through three representational

phases starting with the primal sketch which consists of intrinsic image fea­

tures such as intensity changes and local geometry, then moving through the

2~D sketch which incorporates viewer centered depth information and surface

discontinuities, and finishing with a high level description in terms of geometric

-10 -

object models. It is at this final level that Marr proposes the use of generalised

cylinders. The motivation for the representation is the observation that many

objects have a natural coordinate axis and so can be well modelled by defin­

ing the variation of the objects cross-section along this axis. Hence a generalised

cylinder representation consists of a space curve and a cross-sectional template

of fixed shape but varying size. The surface of the modelled object is that which

is swept out by the boundary of the template as it is drawn along the curve,

the specific shape of the object being represented by variations in template size.

By describing each articulated subpart of a sh~pe by a generalised cylinder in its

own reference frame, a hierarchical part-wise description of objects is obtained. A

criticism of this representation scheme is given by Pentland who observes the ex­

treme degree of abstraction present in such models (and hence the motivation for

the work with superquadrics), and also by Marr who acknowledges that objects

with no obvious axis such as a crumpled newspaper "pose apparently intractable

problems".

The generalised cylinder representation is used in the ACRONYM system of

Brooks (Brooks 1981). ACRONYM is of interest because of its use of prediction

in the recognition process. Working from object descriptions entered by the user,

the system generates two graph representations. The first of these is the object

graph, the nodes of which are volumetric representations in the form of gen­

eralised cylinders, whilst the connecting arcs describe the relationships between

parts. The second graph is the restriction graph which has constraints on the vol­

umetric models as nodes, and sub-class inclusion rules as arcs. From these two

graphs ACRONYM produces a third, called the prediction graph, which contains

information as to the features that an instance of a given object may produce in

an image. The nodes of the prediction graph correspond to possible features, and

-11 -

the connecting arcs to their relationships. Thus the ACRONYM system makes

clear the distinction between models of object features and models of the ob­

jects producing these features, and uses the latter to produce the former. The

construction of the prediction graph requires the use of geometric reasoning tech­

niques and the understanding of the image formation process, and is thus a good

example of the use of na'ive physics and model-based reasoning as advocated by

Hayes.

The suggestive modelling system (SMS) developed by Fisher (Fisher 1987)

has a similar representational structure as that used in ACRONYM, but does not

use the generalised cylinder representation. Instead the representation scheme is

primarily motivated by the need to simplify object recognition and thus describes

objects in terms of one-, two-, and three-dimensional primitives chosen for their

'visual saliency'. These consist of space curves which mark shape and reflectance

discontinuities, surface patches which correspond to regions of constant principal

curvature and which are bounded by space curves, and finally volume elements

which are sub-divided into parameterised STICK, PLATE, and BLOB primitives

depending on the number of directions of spatial extent. A typical SMS represen­

tation of an object consists of a set of characteristic views, each described using

combinations of the primary primitive types, and constitutes an explicit model

of the information contained in a 2~ D sketch constructed from each of the char­

acteristic viewpoints. The limitations of the SMS system arise from the inability

to represent smoothly varying shapes other than a cone - other shapes being

modelled piecewise - and the difficulty of representing natural objects. However,

perhaps the greatest problem facing SMS is the large number of characteristic

views needed for typical objects. Fisher reports that many objects require more

than fifty characteristic views to be completely represented, but suggests the use

-12 -

of as few a.s five of the most significant v1ews to reduce complexity. Even so

Fisher acknowledges that SMS models are currently too complex to be imple­

mented efficiently.

To summarise the discussion of geometric representations, they are by their

very nature partwise descriptions and isomorphic to the extent that relative pro­

portions, distances, and relations are preserved. Further, implementations such

as ACRONYM and SMS demonstrate that they can support the model-based

reasoning that is required of a system if it is to emulate human vision. How­

ever, even with the use of superquadrics, geometric representations tend to have

too much of a 'cartoon' appearance and have difficulty in succinctly representing

natural or irregular forms. Finally, geometric representations suffer difficulty in

adding new models to a library because of the complexity inherent in deciding

which primitives to use in the decomposition.

1.5 Rule-Based Representation

Rule based representation schemes describe objects by listing their defining

properties. For example, a rule-based description of an object might consist of a

description of the features it produces in an image together with their relative

orientations. The prediction graphs produced by the ACRONYM system are rule

based descriptions of objects that have been derived from the geometric model.

A system that relies wholly on rule based representations is VISIONS developed

by Hanson and Riseman (Hanson and Riseman 1978). It employs a hierarchi­

cal data structure consisting of 'schemas' which are structures that contain all

the information necessary to describe a given entity. The highest level schemas

describe whole scenes such as streets, they include information about required

-13 -

contents like houses and roads, and give constraints on their sizes and locations.

The next level of schemas in the hierarchy describe objects, followed by ones for

volumes, surfaces, regions, segments, and finally at the lowest level, vertices. The

primary advantage of such a representation scheme over a geometrically based

one comes in its ability to model entities with poorly defined spatial extent, or

of an abstract nature. For example, VISIONS easily copes with concepts such as

sky and ground by giving their definitions in terms of permitted orientations with

respect to each other and other objects in a scene. It is impossible to conceive of

a general vision system that cannot cope with such concepts and so rule based

modelling must be at least part of a general representation scheme. However, the

rules used by VISIONS contain no more information than that explicitly given

and so every piece of knowledge that the system needs must be stated in this

way. This is clearly impractical for a. system working in anything but the simplest

of environments a.nd is demonstrated not to be the way the human vision system

works by the psychophysical data.. Further as Waugh {Waugh 1989) points out

there is a. fundamental problem in deciding just what set of rules will concisely

and unambiguously describe a.n object or scene.

1.6 Pictorial/lcoaic Representation

Pictorial or iconic models constitute the third and final category of repre­

sentation schemes in which information is portrayed either diagrammatically or

as pictures. The WHISPER system developed by Funt (Funt 1980) uses dia­

grammatic representations of information with which to reason about the real

world for as Funt describes, diagrams present information in a. particularly usable

form. The diagrams manipulated by WHISPER correspond to temporal snapshots

of configurations of objects in a. 'block world' and, using a basic knowledge of

-14 -

physics, the system is able to determine the stability of configurations and hence

the way they will develop with time. The diagrams take the physical form of

images in a rectangular pixel array. By inspecting the array WHISPER uses its

physics knowledge to update the diagram to represent the state of the system

after a small time step. Iterative applications of this procedure eventually pro­

duce a stable diagram which corresponds to the equilibrium position that would

be obtained by objects interacting in the real world. Whilst WHISPER embodies

many of the representational and reasoning abilities identified as necessary for a

general system, the object models are crude and not stored within the system

but given as input.

The Glimpse system of Koons and McCormick (Koons and McCormick 1987)

also employs pictorial representations but in the form of directed graphs. Each

node of the graph is a visual snapshot or 'glimpse' of an object taken from a

certain viewing position. Arcs of the graph specify the change in vtewmg po­

sition necessary to obtain the picture found at connecting nodes. In addition

to the purely pictorial information each glimpse also has associated knowledge

which Koons and McCormick suggest as a possible basis for a connection to a

more symbolic representation. The nature of the pictorial models ensures that the

Glimpse representations are truly isomorphic to the real world objects to which

they correspond and hence have a high intrinsic information content. However,

the need to store large numbers of glimpses limits the practicality of the ap­

proach, a problem that is basic to all pictorial representations.

-15 -

1. 7 IFS Representation

The review of VISion systems and representation schemes given m the last

three sections indicates that most of the concepts derived from the psychophysical

data such as isomorphic representations and model based reasoning have been

exploited to a greater or lesser extent. However, each basic type of representation

appears to have its own shortcomings. Geometric models tend to oversimplify

objects, especially ones with complex natural shapes, and experience difficulty

in defining a concise set of volumetric primitives. Rule based representations,

whilst being a necessary component of a representation scheme are inadequate

in themselves due to a lack of isomorphism and intrinsic information content.

Pictorial models, whilst being rich in intrinsic information are expensive to store

and difficult to manipulate. In an attempt to combine the positive features of

both CSG and pictorial models we propose the use of IFSs as a representation

scheme for the following reasons:

1. Owing to the work of Barnsley (Barnsley 1985, 1986, 1988, 1989) the theory

of IFSs is well understood and provides a firm foundation on which to build a

representation scheme. In particular, Barnsley has in theory solved the problem of

finding an IFS encoding of a given shape. (It should be noted at this stage that

what we are suggesting here is not the imitation of an image for the purposes

of data compression, as successfully attempted by Barnsley, but the geometric

modelling of individual objects to a resolution approaching picture quality).

2. An IFS representation exhibits similar properties to those observed for the

human visual system. For example object models are stored as a simple list of

numbers from which an isomorphic representation can be retrieved. (However we

make no claims as to the possibility of the IFS representation and that used by

-16 -

the human visual system being one and the same. Indeed, this is almost certainly

not the case since an IFS scheme does not require the gradual displacement of

a model in order to achieve rotation as the psychophysical data suggests for the

human system).

3. The encoding process decomposes a shape in terms of primitives which are

transformations of the shape itself. This results in an essentially recursive defini­

tion and avoids the need for a predefined set of primitives and thus avoids some

of the problems experienced by CSG schemes in this area.

4. Since the retrieved representations are geometric, they can be combined in

the same way as simple shape primitives in a CSG scheme and therefore be used

to encode both whole objects and subparts.

5. There is no restriction as to the type of shapes that can be encoded, both

natural and artificial objects being described to a level of accuracy limited only

by storage space restrictions. The modelled 'shapes' need not even be connected

allowing the representation of such things as cloud patterns. Hence IFS encoding

is more flexible than either generalised cylinders of superquadrics.

6. The retrieval procedure for a single code allows the rendering of the pictorial

representation in any desired orientation and at any scale thus facilitating the

manipulation of the models if used as the basis of an 'experimental' reasonmg

scheme such as that incorporated in the WHISPER system.

7. Owing to the high quality of the representation that is theoretically possible,

a single three-dimensional IFS representation of an object could be used to re­

place the set of images needed for use in pictorial scheme such as that employed

by the Glimpse system.

-17 -

1.8 Thesis Structure

The remainder of this thesis is devoted to an investigation of the practical­

ity of an IFS representation scheme with the primary intent of determining the

accessibility of automatically generated encodings. As a simplification we work

with only two-dimensional shapes but there is no reason why the techniques de­

veloped cannot be extended to three or more dimensions. The thesis structure is

as follows:

Chapter two details the mathematics of IFSs starting from basic principles in

order to provide a sound theoretical foundation for the rest of the work and to

introduce the terminology used. Specifically an IFS is defined and through the

theorems of Barnsley its properties are derived. Anyone with an understanding

of basic topology need only be concerned with section 2.5 onwards, whilst those

familiar with IFS theory and terminology may safely skip the entire chapter,

referring back to it as and when necessary.

Chapter three uses IFS theory to introduce a formal framework for the rep­

resentation of two-dimensional shapes and derives the properties of such a rep­

resentation scheme based on the mathematics of the previous chapter. Finally,

we give a description of how an IFS representation scheme could be used in a

vision system in such a way as to incorporate many of the features observed to

be present in the human visual system.

Chapter four describes an attempt at an approximate encoding technique

based primarily on the modelling of shape boundary information and aimed at

determining the ease with which representations can be automatically generated.

Included in this chapter is a discussion of the practicalities involved in imple­

menting an IFS representation scheme.

-18 -

Chapter five outlines the theory of genetic algorithms and gtves a discussion

of the problems encountered with practical implementations. A modification of

the standard algorithm is described which is designed to improve performance

and reduce computational complexity.

Chapter six implements the modified genetic algorithm described in chapter

five as an attempt at the automatic generation of accurate IFS representations

of arbitrary two-dimensional shapes. The performance of the algorithm is inves­

tigated and the success of the application is evaluated.

Chapter seven contains the overall conclusions of the thesis which at this

stage can be briefly summarised as follows:

1. Iterated function systems do, as suggested, possess the potential for use as

the basis of a powerful shape representation scheme.

2. The automatic generation of IFS encodings of general two-dimensional shapes

is a practical proposition using a genetic algorithm.

3. A highly efficient and non-arbitrary formulation of a genetic algorithm has

been developed.

-19 -

2 ITERATED FUNCTION SYSTEMS

In the preceding chapter we introduced the idea of usmg IFSs as a shape

representation scheme for a machine vision system. The purpose of this chapter

is to present a concise description of the theory and characteristics of an IFS and

to introduce the terminology required for later discussions on the properties of

the representation and the requirements of encoding implementations.

The mathematical concepts involved are not complex, although it is necessary

to make reference to many fundamental theorems of topology in order to give a

complete derivation. In the interest of completeness, all the theorems and proofs

necessary for an understanding of IFSs and the processes associated with them

have been included. Most of the theorems relating directly to IFSs and their

properties are clue to Barnsley (Barnsley and Demko 1985, Barnsley et al 1986),

and the content of this chapter is firmly based upon the first four chapters of

Barnsley's excellent book 'Fractals Everywhere' (Barnsley 1988), and in which a

more complete treatment of the following can be found.

2.1 Metric Spaces

To begin we recount the basic topological definitions of concepts such as

spaces, the points in a space, and the metric distance between points.

-20 -

Definition 2.1.1 A space, denoted by X, IS a set. The points of a space are

the elements of the set.

In future we use the standard notation of R 2 and R 3 to represent two- and

three-dimensional Euclidean space respectively. We shall usually denote points in

a space by single characters such as x or y, but occasionally use the longer nota­

tion of (x 1 ,x2 , ... ,xn), where n is the dimension of a space, when the coordinates

of a point need to be made explicit.

Definition 2.1.2 (X,d) denotes a metric space. d is a real-valued function

d : X x X t--> R which measures the distance between a pair of points x,y E X, and

is known as the metric. A metric obeys the following axioms:

(i) d(x, y) = d(y, x) V x,y EX;

(ii) 0 < d(x,y) < oo V x,y EX and x =f y;

(iii) d(x,x) = 0 V x EX;

(iv) d(x,y) ~ d(x,z)+d(z,y) V x,y, z EX.

Axiom (iv) IS often referred to a.s the triangle inequality for obvious reasons.

In general, these axioms permit the definition of more than one metric for a

g1ven space, a topic which we return to in chapter four. However, for the rest

of this chapter metrics are used primarily to determine whether a pair of points

has moved closer together or farther apart as a result of some operation, and

the exact form of the function is unimportant. The definitions and theorems of

the remainder of this section construct the vocabulary necessary to discuss the

properties of spaces and their subsets.

-21 -

Definition 2.1.3 Let (X,d) be a metric space with x EX. Let < > 0 be a given

real number, then define the set B(x,•) as:

B(x,c) = {y EX: d(x,y) ~ t}.

The set B(x, •) can be thought of as all the points contained within a 'ball'

of 'radius' • centered around the point x. Clearly the shape and dimension of the

ball will depend on the dimension of the space X and the form of the metric

function d.

Definition 2.1.4 A sequence of points {xn}~=l in a metric space (X,d) is called

a Cauchy sequence if, for any given real number < > 0, there is an integer N > 0

so that:

V n,m > N.

The above condition is all tha.t is required of a sequence of points in order

for it to be classified as a Cauchy sequence. There need not be any deterministic

relationship between successive points, nor is there any requirement that each

point be unique.

Definition 2.1.5 A sequence of points {xn}~=l in a metric space (X,d) is said

to converge to a point x E X if, for any given real number • > 0, there is an

integer N > 0 so that:

V n> N.

The point x E X to which the sequence converges IS known as the limit of the

sequence, and is written as:

X= lim Xn·
n-oo

-22 -

In terms of definition 2.1.3 this means that all points x,. for n > N are con-

tained within B(x, <).

Theorem 2.1.1 If a sequence of points {xn}~= 1 in a metric space (X,d) con-

verges to a point x EX, then {x,.} ~= 1 is a Cauchy sequence.

Proof - Since the sequence {x,.}~= 1 1s convergent, gtven < > 0 we can find an

integer k > 0 such that:

f
d(x,., x) < 2 'V n > k.

Using the triangle inequality:

d(x,.,xm) :S d(xn,x)+d(x,xm) < f 'V n, m > k;

and so { x,.} ~= 1 1s a Cauchy sequence.

Definition 2.1.6 A metric space (X,d) IS complete if every Cauchy sequence

{xn}~= 1 in X has a limit x EX.

Definition 2.1. 7 Let S c X be a subset of a metric space (X,d). A point x EX

is called a limit point of S if there is a sequence of points {x,.}~=l and with

Xn E s \{x} such that limn-oo Xn =X.

Definition 2.1.8 Let S c X be a subset of a metric space (X,d). The closure

of S, denoted by S, is defined to be S = S U {limit points of S}. S is closed if it

contains all of its limit points, that is to say, S = S.

-23 -

Definition 2.1.9 LetS c X be a subset of a metric space (X,d). Sis compact

if every infinite sequence {xn};:=t in S contains a subsequence having a limit in

S.

The important concept here is that the infinite sequence need not converge

or even be a Cauchy sequence; it could simply be a sequence of points chosen at

random from S. A subsequence is a set of points {xN.}~ 1 such that xN, = Xn for

some n, and such that for a pair of points XN, = xn and XNi = Xm, then N; > N1

implies n > m. As an analogy consider trying to pack a long thin piece of string

into a finite box. The longer the string is made the tighter it must be packed

and the more often it must wind back upon itself. Eventually, the string is so

tightly packed that it frequently passes close to any chosen point in the box so

that starting from one end of the string and following along its length, marks

can be made that are successively closer to the chosen point.

Definition 2.1.10 Let S c X be a subset of a metric space (X,d). S is totally

bounded if, for all real < > 0, there is a finite set of points {Yt, Y2 •... , Yn} c S

such that for all x E S, d(x, y;) < < for some y; E {y1, y2 , ... , Yn}. The set of points

{Yt, Y2, ... , Yn} is called an <-net.

Theorem 2.1.2 Let (X,d} be a. complete metric space and let S c X. Then S

is compact if a.nd only if it is closed a.nd totally bounded.

Proof - First suppose S is closed and totally bounded. Let {x; E s}:1 be an

any infinite sequence of points in S. We construct an <-net, {Yt, y2, ... , Yn} C S,

-24 -

with c = 1. It follows from definitions 2.1.3 and 2.1.10 that:
n

S c U B(yj, 1).
j=l

The c-net contains a finite number of points yet {x;}~ 1 is infinite and so there

must be a point Yk in the c-net for which B(yk.1) = B 1 contains infinitely many

points of the sequence. Choose N 1 so that xN, E B1. Clearly S n B 1 is totally

bounded so we can construct for it an c-net with f = 1/2. Again one point, Ym, of

this c-net must contain infinitely many points of the sequence. With B(ym, 1/2) =

B2 choose a point xN, E B 2 such that N2 > N 1 • Continuing in this way, halving

the value of c each time, we generate the subsequence {xNn }~= 1 of the initial

sequence {x;}~ 1 . Since,

and given that the radius of the set B,. is 21-r then:

Vk~l.

Given a real number 8 > 0,

V k > (2 -ln(8)/ln(2)),

so {xNn}~=l is a Cauchy sequence which, using the closure of S, has a limit xES.

Therefore, S is compact if it is closed and totally bounded.

To complete the proof, suppose S is compact but that for c > 0 there does not

exist an c-net for S. Then there is an infinite sequence of points {x; E S}~ 1 with

d(x;,xj) ~ c for all if:; j. However, due to the compactness of S this sequence

must possess a convergent subsequence with limit in S, and so we can find a

pair of integers Ni and Ni with N; f:; Ni for which d(xN,,XNi) <c. We therefore

have a contradiction and so an c-net does exist and hence S is closed and totally

bounded. We now have the required result that S is compact if and only if it is

closed and totally bounded.

-25 -

2.2 The Space 'H(X) and its Metric

We now introduce the idea of the space 'H(X), the points of which are subsets

of the space X, because this is the space in which iterated function systems are

defined and later we will show that 'H(R2) is the space which contains the images

used by a machine vision system. 'vVe begin by giving a definition of 'H(X) and

its metric. There follows a derivation of some of the properties of the metric

function, and finally we give the proof for the compactness of 'H(X).

Definition 2.2.1 Let (X,d) be a complete metric space. Then 'H(X) denotes

the space whose points are the compact subsets of X other than the empty set.

Definition 2.2.2 Let (X,d) be a complete metric space with x E X, and let

B E 'H(X). Define:

d(x,B) = min{d(x,y): y E B}.

Then d(x, B) is the distance from the point x to the set B.

Definition 2.2.3 Let (X,d) be a complete metric space and let A,B E 'H(X).

Define the distance from the set A to the set B as:

d(A,B) = max{d(x,B): x E A}.

Definition 2.2.4 Let (X,d) be a complete metric space. Then the Hausdorff

distance between points A and B in 'H(X) is defined by:

h(A, B)= d(A, B) V d(B, A).

-26 -

Theorem 2.2.1 The Hausdorff distance is a metric on the space 1-l(X).

Proof - With reference to the axioms of definition 2.1.2, and introducing the

binary operator 'v' as taking the maximum of two real numbers, let A, B, C E

'Ji(X). Clearly from its definition h(A, B) = h(B, A) and so axiom (i) is satisfied.

h(A, B)= d(a, b) for some a E A and bE B and, since A and B are compact, then

0 S h(A, B)< oo, and so axiom (ii) is satisfied. We have:

h(A, A)= d(A, A) V d(A, A)= d(A, A)= max{d(x, A): x E A}= 0.

which satisfies axiom (iii). Finally, if A :f. B then we can assume that there is a.

point a E A such that a fl. B. Then h(A, B) 2: d(a, B) > 0. Therefore, for any a E A

we have:

This gives:

d(a, B)= min{d(a, b) :bE B};

S min{d(a, c)+ d(c, b): bE B}

S d(a, c)+ min{d(c, b) :bE B}

V cE C;

V c E C.

d(a, B) S min{d(a, c): c E C} + max{min{d(c, b): bE B}: c E C};

= d(a, C)+ d(C, B);

and so d(A, B) S d(A, C)+ d(C, B). Similarly d(B, A) S d(B, C)+ d(C, A). Therefore:

h(A, B)= d(A, B) V d(B, A);

:S; d(B, C) V d(C, B)+ d(A, C) V d(C, A);

:S; h(B, C)+ h(A, C);

so satisfying the fourth and final metric axiom.

We now g1ve some properties of the Hausdorff metric that will be neeeded

for future proofs.

-27 -

Lemma 2.2.1 For a.ll B, C, D and E in 7-l(X):

h(BUC,DUE) ~ h(B,D)Vh(C,E).

Proof - For A E 7-l(X) we have:

d(A U B, C)= ma.x{d(x, C): x E AU B} = max{d(x, C): x E A} V max{d(x, C) : x E B};

and so,

d(A U B, C)= d(A, C) V d(B, C).

Also we have:

d(A, B U C)= max{min{d(x, y) : y E B U C}: x E A};

and we get both d(A, B u C) ~ d(A, B), and d(A, B u C) ~ d(A, C). Consider the

distance d(B u C, DuE). Using the above this becomes:

and finally:

as required.

d(B U C, DUE)= d(B, DUE) V d(C, DUE)~ d(B, D) V d(C, E).

h(B U C, DuE)= d(B U C, DUE) V d(D U E, B U C);

~ d(B, D) V d(C, E) V d(E, C) V d(D, B);

~ h(B, D) V h(C, E).

Definition 2.2.5 Let S c X and let (~ 0. Then:

S + f = {y EX: d(x, y) ~ c} for some xES.

Lemma 2.2.2 Let A, BE 7-l(X) where (X,d) is a metric space. Let a real (> 0

be given. Then:

h(A,B)~f {::} AcB+f and BcA+c

-28 -

Proof - h(A, B) ~ (_ implies that d(A, B) ~ (_ and d(B, A) ~ €. Consider d(A, B)

and suppose we have:

d(A, D)= max{d(a, B) :a E A} ~f.

This implies d(a, B) ~ (_ for all a E A and so a E B + (_ for all a E A and hence

A c B + c Alternatively, suppose A c B + L Then for any a E A there is a bE B

such that d(a, b):::; L Hence d(a, B):::;(_ and so d(A, B):::; L The same argument can

be applied to d(B, A) to obtain the required result.

In order to prove that (1i(X), h) is a complete metric space it is necessary

first to give what Barnsley calls the 'extension lemma' which is concerned with

a property of Cauchy sequences in 1i(X).

Lemma 2.2.3 Let (X,d) be a metric space. Let {An}~= 1 be a Cauchy sequence

of points in (1i(X),h). Let {11i }]:1 be an infinite sequence of integers such that

0 < 111 < 112 < 113 ...• Suppose we have a Cauchy sequence {xn 1 E An)j; 1 in (X,d),

then there is a Cauchy sequence {x~ E An}~= 1 such that x~1 = xn1 for all j.

Proof - The lemma is obtained by g1vmg a construction for the sequence

{x~}~= 1 and then proving it has the above properties. For each 11 E {1, 2, ... , 111}

choose x~ E {x E An : d(x, xn,) = d(xn,, An)}. Hence, x~ lS the closest point, or one

of the closest points, in An to xn,. Similarly choose:

'r/ j E {2, 3, ... } and each n E {nj + 1, ... , 11i+d·

Clearly from the construction, x;,
1

= xn1 and x~ E An. Let a real f > 0 be given,

then we can find a number N 1 for which d(xnk, xn1) ~ 1 for all 111.:. ni > N1. Similarly,

-29 -

there is a number N2 for which d(Am, An):=:; 3 for all m, n > N2 • Let N = max{N1 , N2 }

so that for m, n ~ N we have:

where mE{nj_ 1 +.l, ... ,nj} and nE{nk-t+l, ... ,nk}. Since h(Am,AnJ:=:;! we have

d(x;,,xn1) :=:; i and similarly d(xn.,x~) :=:; i· This gives d(x;,,x~) :=:; < for all m,n > N

and hence the sequence is a Cauchy sequence.

Theorem 2.2.2 Let (X,d) be a. complete metric space. Then (1-l(X),h) 1s a.

complete metric space. Moreover, if {An E 7-l(X)}~=L is a. Cauchy sequence then

A = limn-oo An with An E 7-l(X) can be characterised a.s follows:

A = { x E X : there ts a Cauchy sequence { Xn E An} that converges to x}.

Proof - Given that A is defined a.s above, the proof involves showing that

convergence occurs, and that A is a non-empty compact set. We first show that

A is non-empty. Take a sequence of integers N 1 < N2 < Na < ... < N,. < ... such

that:

'rl m,n~ N;.

We now have h(AN1 , AN,) < l/2 and so from the definition of the Hausdorff metric

we can find a pair of points XN 1 E AN1 and XN2 E AN2 for which d(xN1 , xN,) < 1/2.

Hence, we can construct an sequence of points {xN, E AN.} such that d(xN,, XN;+ 1) <

2-i. Then for m > n ~ k we have:

-30 -

By choosing k large enough, we can make the right hand side of the above equa­

tion as small as needed, and hence {xN,} is a Cauchy sequence. Using the previ­

ous lemma we can construct a Cauchy sequence {x: E A;} with x'tv, = xN,· Since

X is complete, this sequence has limit in X which by definition belongs to A.

Hence A is non-empty and consists of the set of all points which are the limits

of Cauchy sequences, {x; E A;}.

To show that A is compact it is sufficient to show that it is closed and totally

bounded. Suppose {a; E A} is a sequence that converges to a point a. For A to be

closed we need to show that a EA. For each a; there exists a sequence {x;,n E An}

such that limn-oo x;,,. =a;. \Ve can now choose the subsequences, {aN.} such that

d(aN,, a) < i- 1 and {xN,,m, E Am.} such that d(xN,,m,, aN.) < i- 1
. Hence we arrive at

d(xN,,m,, a) :::; 2i- 1 which tends to zero as i --+ oo. Therefore, we can construct a

convergent sequence of points {z; E A;} with limit a, which by definition means

a E A, and hence that A is closed.

Let a real f > 0 be given. Then for m, n 2:: N we have:

h(An, Am) :Sf ¢::> Am CAn+ f for m > n.

For a E A we have a sequence {x; E A;} that converges to a. Assume that N IS

large enough so that we also have:

d(xm, a) < f V m 2:: N.

We have Xm E An+ f since Am C An+ f. An IS complete and therefore closed so

we also have a E An which gives A c An+ f for large enough n. Assume that A

is not totally bounded and hence that no finite E-net exists. This means we can

find an infinite sequence {a; E A} such that d(a;,ai) 2:: f for i '# j. However, we can

find an n for which A c An+ f/3, and for each a; E A there is a point y; E An such

-31 -

that d(a;,yi) :S </3. An is compact so some subsequence {Yn.l of the sequence {y;}

converges and so we can choose points in {y .. ,} as close together as we wish. In

particular we choose the points Yn; and Yni such that d(yn,, YnJ :S </3 and we get:

This contradicts our initial assumption that d(a;, ai) 2: < and hence A ts totally

bounded. It has already been shown that A is closed, and so now we have that

it is compact.

Finally we show that lim,._ 00 A,. = A. Let < > 0 be gtven. Then we can find a

sequence of integers N 1 < N 2 < ... < Nk < ... such that:

We choose n < N 1 such that h(An, AN,) < t. Taking y E A,. there is a point

xN, E AN, such that d(y, XN,) :S t· Similarly there is a point XN2 E AN, such that

Clearly the Cauchy sequence {xNk} converges to a point a E A for which d(y,a) :S <.

vVe thus have An c A + < for a. sufficiently large n. Combining this with the

previous result that A c A,. + < for a large enough n, we have that h(A, An) :S <

for large n. Thus as n ___.. •)(), An converges to A and the proof is complete.

This also completes the discussion of the properties of the space 7-l(X) and its

metric which has shown that (7-l(X), h) can be treated like any normal complete

metric space.

-32 -

2.3 Mappings on a Metric Space

vVe now introduce the idea of transforms on a metric space. Again we be­

gin with some basic definitions and then go on to give the definition of a spe­

cial group of transforms, called contraction mappings, and describe some of their

properties.

Definition 2.3.1 A function f : Xt f-;. X 2 from a metric space (Xt, dt) into a

metric space (X2 , d2) is continuous if, for each real number f > 0 and x E X 1 ,

there is a real number o > 0 so that:

di(x, y) < fJ =? d2(f(x),f(y)) <f.

Definition 2.3.2 Let (X,d) be a. metric space. A transformation on X is a

function f: X f-;. X which assigns exactly one point f(x) EX to each point x EX.

If S c X then f(S) = {f(x): xES}. f is one-to-one if x,y EX with f(x) = f(y)

implies x = y. f is onto if f(X) =X . f is invertible if it is one-to-one and onto

and it is then possible to define a. transformation f- 1 : X ._.... X called the inverse

of j, defined by f- 1 (y) = x, where x EX is the unique point such that y = f(x).

As the name suggests an IFS is concerned with the iterative application of

functions, for which we give the definition below using Barnsley's notation.

Definition 2.3.3 Let f : X f-;. X be a transformation on a metric space. The

forward iterates of f are transformations r" : X~---> X defined by:

V n=0,1,2, ...

-33 -

If f is invertible then the backward iterates of f are transformations r(-m)(x):

X f---- X defined by:

V m=1,2,3, ...

'vVe introduce at this point the definition of a two-dimensional affine transfor­

mation since we adopt their use in the implementation of IFS encoding programs

as described in chapters four and six.

Definition 2.3.4 A transformation w : R 2 ~---+ R 2 of the form,

where a, b, c, d, e and f are real numbers, is called a two-dimensional affine trans­

formation. In future the alternate matrix notation will be used. That is:

The definitions and theorems in the remainder of this section describe the

effects of iterative application of transformations to pairs of points in a metric

space and introduces the concept of a contractivity factor which is of fundamental

importance both to the theory and as it turns out, to the practice of IFSs.

Definition 2.3.5 Let f: X~---+ X be a transformation on a metric space. A point

x 1 E X such that f(x 1) = x 1 is called a fixed point of the transformation.

Definition 2.3.6 A transformation f :X~---+ X on a metric space (X,d) is called

contractive or a contraction mapping if there is a constant 0 ~ s < 1 such

-34 -

that:

d(f(x),f(y)) ::=; sd(x, y) V x,y EX.

The number s. is called a contractivity factor of f.

Lemma 2.3.1 Let tv : X ~---+ X be a contraction ma.ppwg on the metric space

(X,d). Then tv is continuous.

Proof- vVith reference to definition 2.3.1, let a real (. > o be given. Let s > o

be a contractivity factor for tv. Then:

d(w(x),w(y)) ::=; sd(x,y) <f.;

whenever d(x,y) < 8 where 8 = ;.

Theorem 2.3.1 Let f: X~---+ X be a. contraction mapping on a. complete metric

space (X,d). Then f possesses exactly one fixed point x1 EX a.nd further, for a.ny

point X EX, the sequence {f 0 n(x): n = 0, 1, 2, ... } converges to x,. That is:

'r/ X EX.

Proof - Let x EX and let 0:::; s < 1 be a contractivity factor for f. Then:

V n, m = 0, 1, 2, ... ,

(The notation ml\n denotes the minimum of the two real numbers.) In particular

after repeated application of the triangle inequality we obtain:

d(x, rk(x)):::; d(x, f(x)) + d(f(x), r 2 (x)) + ... + d(fo(k-l)(x), rk(x));

::=; (1 + s + s 2 + ... + sk-l)d(x,f(x));

::=; (1- s)- 1 d(x, f(x)) for k = 0, 1, 2, ...

-35 -

Substituting into the above we obtain:

from which it immediately follows that {f0n(x)}~=O is a Cauchy sequence. Since

X is complete, this Cauchy sequence possesses a limit x1 E X, and we have

limn oo rn(x) = x1. Since ! is contractive it is continuous and hence:

f(x,) =!(lim rn(x)) = lim r(n+ll(x) = x,.
n-co n-oo

and so x 1 is a fixed point of f. Finally, we show there can be no more than one

fixed point. Suppose the opposite. Let x1 and YJ be two fixed points of f. Then

which implies d(x1 , YJ) = 0 and hence x1 = YJ·

Lemma 2.3.2 Let (X,d) be a complete metric space. Let f : X r-+ X be a

contraction mapping with contra.ctivity factor 0::; s < 1, and let the fixed point of

f be x 1 EX. Then:

'V X EX.

Proof - The distance function d(a, b) for fixed a E X is continuous m b E X.

Hence:
d(x, Xj) = d(x, lim rn(x)) = lim d(x, rn(x));

n-oo r&-oo
n

::; lim ""'d(fo(m-l)(x), rm(x));
n-co L...J

m=l

::; lim (1 + s + ... + sn-l)d(x,f(x));
n-oo

::; (1- s)- 1d(x,f(x)).

-36 -

2.4 Mappings on 1l(X)

vVe now describe the extensions that are made to the definitions of the pre­

vious section so that they can be applied to the space 1l(X), and prepare for the

definition of an IFS by considering mappings which are themselves the union of

sets of contraction mappings.

Lemma 2.4.1 Let w : X f-> X be a continuous mapping on the metric space

(X,d). Then w maps 1l(X) into itself.

Proof- Let S be a nonempty compact subset of X. Then clearly the set w(S) =

{w(x): xES} is nonempty. Hence it is just needed to show that w(S) is compact.

Let {Yn = w(xn)} be an infinite sequence of points in w(S). Then {xn} is an infinite

sequence of points in S. Since S is compact there is a subsequence {xNn} which

converges to a point xES. The continuity of w implies that {YNn = f(xNn)} is a

subsequence of {Yn} which converges to iJ = f(x) E w(S). Thus w(S) is compact.

Lemma 2.4.2 Let w :X f-> X be a contraction mapping on the metric space

(X,d) with a contractivity factor s. Then w: 1l(X) f-> 1l(X) defined by:

w(B) = {w(x): x E B} 't/ BE fl(X);

is a contraction mapping on (1l(X),h) with contractivity factor s.

Proof - From lemma 2.3.1 it follows that w :X~--+ X is continuous. Hence by

lemma 2.4.1, w maps 1l(X) into itself. Now let B,C E 1l(X). Then:

d(w(B), w(C)) = max{rnin{d(w(x), w(y)): y E C}: x E B};

:::; max{min{sd(x, y): y E C}: x E B} = sd(B, C).

-37 -

Similarly, d(w(C), w(B)) :S sd(C, B). Hence:

h(w(B), tv(C))= d(w(B), w(C)) V d(w(C), w(B));

:S s(d(B, C) V d(C, B));

:S sh(B, C).

Lemma 2.4.3 Let (X,d) be a metric space. Let {tun : n = 1, 2, ... , N} be a set of

contraction mappings on (1i(X),h). Let the contractivity factor for tun be denoted

by sn for each n. Define W : 1i(X) ~ 'H(X) by:

W(B) = Wt(B) u lli2(B) u ... u tvN(B);
N

= U w,(B) V BE 1i(X).
n=l

Then W is a contraction mapping with contractivity factor given by:

s = max{sn : n = 1, 2, ... , N}.

Proof- vVe give a proof by induction. Let B, C E 1i(X) and assume the lemma

is true for some W with N = m mappings. Then consider the addition of an extra

transform wm+l to construct W' given by:

m+l m
W'(B) = U W71 (B) = U tvn(B) U Wm+l(B) = W(B) U Wm+t(B).

n=l n=l

vVe now have:

h(W'(B), W'(C)) = h(W(B) U Wm+t(B), W(C) U Wm+t(C)).

Using lemma 2.2.1 this becomes:

h(W'(B), W'(C)) :S h(W(B), W(C)) V h(tvm+t(B), Wm+l(C)).;

:S sh(B, C) V Sm+th(B, C);

:S max{s, Sm+dh(B, C);

-38 -

and so if the lemma is true for m transforms it is also true for m + 1. Consider

now the case for m = 2. Using the same argument as above we obtain:

::=; max{s 1,s2}h(B,C).

Thus the lemma is true for m = 2 and hence for all m ~ 2.

2.5 Iterated Function Systems and their Properties

We are now in a position to define exactly what is meant by an iterated

functon system and to give a description of some of its properties.

Definition 2.5.1 (Barnsley 1988) An iterated function system consists of a

complete metric space (X,d) together with a finite set of contraction mappings

wn :X~ X with respective contractivity factors sn for n = 1, 2, ... , N. The notation

for an iterated function system is:

{X, Wn : n = 1, 2, ... , N};

and its contractivity factor is;

s = 1nax{s71 : n = 1, 2, ... , N}.

Theorem 2.5.1 Let {X, w 11 : n = 1, 2, ... , N} be an iterated function system with

contractivity factor s. Then the tra.nsformation W: 7-l(X) ~ 7-l(X) defined by:

N

W(B) = U W 71 (B) V BE 7-l(X);
n=l

-39 -

is a contraction mapping on the complete metric space (1t(X),h) with contractivity

factor s. That is:

h(W(B), W(C)) :S sh(B, C) '</ B, C E 1i(X).

The unique fixed point A E 'H(X) obeys

N

A= W(A) = U Wn(A),
n=l

a.nd is given by A= limn-oo won(B) for any BE 7-i(X).

Proof- The proof of the above theorem follows directly from those of theorem

2.3.1 and lemma 2.4.:3.

Definition 2.5.2 The fixed point A E 1i(X) as described m theorem 2.5.1 IS

called the attractor of the iterated function system.

The attractor of an IFS is what we are really interested in since it is a subset

of a metric space which is uniquely defined by a set of contraction mappings

which in turn can be described by a simple list of numbers. The use that we

make of at tractors is discussed in more detail in the next chapter. The next two

lemmas are used to show that small changes made to the mappings of an IFS

result in correspondingly small changes in the attractor.

Lemma 2.5.1 Let (P,dp) and (X,d) be metric spaces, the latter being complete.

Let w : P x X f-.> X be a family of contraction mappings on X with contractivity

factor 0 ::; s < 1. That is, for each p E P and x E X, w(p, x) is a contraction mapping

-40 -

on X. For each fixed x E X let w be continuous on P. Then the fixed point of w

depends continuously on p. That is x1 : P 1--- X is continuous.

Proof- Let x 1 (p) denote the fixed point of w for fixed pEP. Let pEP and a

real < > 0 be given. Then for all q E P,

:::; d(w(p 1 XJ(p)) 1 w(q 1 XJ(P))) + d(w(q 1 XJ(P}) 1 w(q 1 Xj(q})) 1

which implies,

d(xJ(P) 1 XJ(q)):::; (1- s)- 1d (w(p 1 XJ(P}) 1 w(q 1 XJ(P))).

Since w is continuous on P we can choose q to give 0 < dp(P~ q) < 6 and so that:

d(w(p 1 x) 1 w(q 1 x)):::; cdp(p1 q) v X EX;

which gives,

and so x 1 is continuous.

Lemma 2.5.2 Let (X,d) be a metric space. Suppose we have mappings wn :

P x X X for n = 11 21 ••• 1 N depending continuously on a parameter p E P, where

(P ,dp) is a compact metric spa.ce. That is wn (p 1 x) depends continuously on p for

fixed x E X. Then the transformation W : 7t(X) 7t(X) defined by:

N

W(p 1 B)= U wn(P~ B) V BE 7t(X);
r>=l

-41 -

is also continuous in p. That is, W(p,B) is continuous in p for each BE ?t(X) m

the metric space (1i(X),h).

Proof - Consider the case N = 1. For B E ?t(X) with p, q E P, and given a real

f > 0,

d(wt(P, B), Wt(q, B))= max{min{d(w1(p, x), w 1(q, y)): y E B}: x E B},

:::; max{min{d(wt(P, x), Wt(P, y)) + d(wt(P, y), Wt(q, y)) : y E B}: x E B}.

P x B is compact and w 1 : P x B ~----X is continuous. Hence there is a real number

6 > 0 so that d(w1(p, y), w1(q, y)) < < V y E B, whenever dp(p, q) < 6. So assuming

dr(P, q) < 6 we have:

d(wt(P, B), Wt(q, B))< max{min{d(tut(P, x), Wt(P, y) + c}: y E B}: x E B};

:::; d(wt(P, B), tut(P, B))+<= c.

similarly,

d(wt(q, B), Wt(P, B))<< v dp(p, q) < 6,

and so,

h(wt(P, B), Wt(q, B))<< v dp(p, q) < 6.

Hence W(p, B) is continuous for N = 1. Using lemma 2.2.1 it can be seen that for

N > 1:
h(W(p, B), W(q, B)) :S max{h(wn(P, B), wn(q, B))}= <1

;

< f
1 V dp(p,q) < 6.

Theorem 2.5.2 Let (X,d) be a metric space a!,ld let {X, wn : n = 1, 2, ... , N} be

an iterated function system of contractivity s. Let all wn depend continuously

on a parameter p E P, where P is a compact metric space. Then the at tractor

A E 1i(X) depends continuously on pEP with respect to the Hausdorff metric.

-42 -

Proof- The proof of this theorem follows directly from those of lemmas 2.5.1

and 2.5.2.

The next theorem is of fundamental importance to the possibility of usmg

IFSs as a shape representation scheme since it describes how it is possible to

find an IFS encoding of any shape.

Theorem 2.5.3 (The Collage Theorem - Barnsley 1985) Let (X,d) be a complete

metric space. Let L E 1t(X) and a. real t: ~ 0 be given. Choose an iterated function

system {X, wn : n = 1, 2, ... , N} with contractivity factor 0 ~ s < 1 so that:

N

h(L, U tvn(L)) ~ t:;

n=l

where h 1s the Hausdorff metric. Then:

where A 1s the attractor of the iterated function system. Equivalently:

N

h(L,A) ~ (1- s)- 1 h(L, U tvn(L)) V L E 1t(X).
n=l

Proof - The proof is the same as that for lemma 2.3.2 with the appropriate

substitutions.

The implications of this theorem can be best appreciated by considering the

case for a two-dimensional space. Each mapping of a set can then be thought

of as being a reduced size cut-out copy which is placed over the original. Many

such mappings make a rough collage of the original set - and hence Barnsley's

name for the theorem. Arranging the collage so that it covers the original set

-43-

with no holes or overlaps ensures that the attractor of an IFS consisting of the

mappings in the collage will be an exact copy of the set. Any holes or overlaps

will cause the attractor to differ from the original set by an amount determined

by the contractivity factor of the collage. Thus given a set the problem of finding

an IFS which has that set as its attractor reduces to the problem of finding a

suitable collage. More on this subject is given in the following chapters.

2.6 Code Space

In order to understand iterated function systems more fully, and to be able

to explain the methods of obtaining pictures of their attractors used in the next

chapter, it is now necessary to introduce the idea of code space. This leads to

a method of labeling each point on an attractor, and ultimately lets us view an

IFS as a dynamical system.

Definition 2.6.1 Let :E be the code space on N symbols where N is a positive

integer. The symbols are the integers {1, 2, 3, ... , N}. A point in the space :E is a

semi-infinite string of symbols. In general we write a point u E :E as:

where u; E {1,2,3, ... ,N}.

Theorem 2.6.1 For x,y E :E the function,

-44 -

is a metric on the space ~-

Lemma 2.6.1 We show tha.t de obeys the axioms of definition 2.1.2. lx;- y;i =

IY;- x;i and so dc(x, y) = dc(Y, x). Since x;, Yi E {1, 2, ... , N} then the maximum value

of lx;- Yd is N- 1. Hence, the maximum value of dc(x,y) 1s:

(N- 1) f 1 . = (N- 1);
i=l (N + 1)

1
N

and so;

'r/x,yE~.

If x; = Yi V i, then dc(x, y) = 0 and so dc(x, x) = 0. Finally,

lx; - y;j ::; lx; - zd + lz; - y;l V x;,y;,z; E {1,2, ... ,N},

and hence:

dc(x, y) ::; dc(X, .:) + dc(z, y) V x,y,z E ~-

Consider the at tractor of an IFS and imagine its collage (as defined in the

collage theorem) superimposed upon it. For N mappings (and assuming for the

moment no overlapping bet·ween mappings) the at tractor is divided up into N

regions and each can be labelled according to the mapping that covers it. For

example, mapping w 1 maps all the points of the attractor into region one, and w 2

maps all the points into region two. If we then consider the sequence of mappings

used to generate a point of the attractor we produce a list of numbers n 1n 2 n3 .. .•

This list of numbers is called an address of that point of the attractor and,

from the preceding definitions, can be seen to be a point in the code space of N

symbols. The rest of this section is dedicated to a description of how this idea is

formalised and to the properties of point addresses. First however, the following

lemma is needed which allows the redefinition of the space underlying an IFS.

-45 -

Lemma 2.6.2 Let (X,d) be a complete metric space. Let {X, wn : n = 1, 2, ... , N}

be an IFS and let K E 1i(X). Then there exist a set K' E 1i(X) such that K c K'

and Wn: K' K' for n = 1,2, ... ,N. That is, {K',wn: n = 1,2, ... ,N} is an IFS for

which the underlying space is compact.

Proof - 'vVe have defined W : 1i(X) 1i(X) as:

N

W(B) = U w,(B) V BE 1i(X).
n=l

Therefore if we construct K' as:

K' = K U W01 (K) U W02 (K) U ... U W 0 "(K) U

It Is immediately clear that K c K' and that W(K') c K'.

Definition 2.6.2 Let {X, w, : n = 1, 2, ... , N} be an IFS. The code space (!:,de)

associated with the IFS is the code space on N symbols, with the metric de as

defined earlier.

Lemma 2.6.3 Let (X,d) be a complete metric space. Let {X, wn : n = 1, 2, ... , N}

be an IFS with a contra.ctivity factors s and attractor A. Let (E,de) denote the

code space a.ssociated with the IFS. For each (1 E !:, n EN, x EX, define:

<jJ(C1, n, x) = w.,.l o Wu2 o ... o Wun(x).

Let K denote a. nonempty compact subset of X. Then there is a real constant D

such that:

V C1 E :!: m, n EN and x 1, x2 E K.

-46 -

Proof - Construct the set K' as in the previous lemma. Without loss of gen-

erality we can take m < n. We then have:

where w=<Tm+l<Tm+2 ... <Tn ... E~. Let x3 =¢(w,n-m,x2), then x3 belongs to K'. VIe

can then write:

:S sd(w'72 o ... o Wum(x!),Wu 2 o ... o Wum(x3)); ..

:S smd(x1, x3) :S sm D;

where D = max{d(x 1, x3): x1, x3 E K'}, and is finite since K' IS compact.

Theorem 2.6.2 Let {X, w, : n = 1, 2 N} be an IFS on the metric space (X,d).

Let A denote the attractor of the IFS and let (:E. de) denote the associated code

space. Then for <T E :E, n EN, and x EX,

cP(<T) = lim c;!>(<T, n, x),
n-oo

exists, is contained in A, and is independent of x. The function ¢: :E i--' A defined

in this way is continuous.

Proof - Let K E ?i(X) such that x E K. Construct the enclosing set K' defined

previously. \Vith W defined as before we have:

A= lim W0 "(K).
n-oo

In particular {W0"(K)}~= 1 IS a Cauchy sequence in (1i(X),h) and, since it is clear

that ¢(<T,n,x) E W0 "(K), it follows that if limn-oocP(<T,n,x) exists it must belong to

A. The limit can be seen to exist since it has been shown that:

V xE K;

-47-

and by letting m and n tend to infinity the right hand side can be made arbi-

trarily small. To prove ¢J is continuous observe that:
00 N 1

dc(u,w) < L (N + 1)m = (N + 1)".
m=n+l

That is, by choosing u and w to agree through the first n terms we can limit the

value of de. Suppose f > 0 is given, then we can choose an n such that d0 (u,w) <c.

It follows that we can then write:

d(¢(u, m, x), ¢(w, m, x)) = d(¢(u, n, xt), ¢(w, n, x 2));

for some pau of points x 1 , x 2 E K'. Using the result of the previous lemma and

taking the limit m---. oo we obtain:

d(¢J(u), ¢J(w)) < s" D;

and so ¢ IS continuous.

Definition 2.6.3 Let {X, wn : n = 1, 2, ... , N} be an IFS with associated code

space :E. Let ¢J : :E ~----> A be a continuous function from code space onto the

attractor of the IFS as defined above. An address of a point a E A is any

member of the set:

¢- 1(a) ={wE :E: ¢(w) =a}.

This set is called the addresses of a. An IFS is totally disconnected if each

point on its attractor has a unique address. An IFS is just touching if it is not

totally disconnected yet its attractor contains a nonempty set B which is open

in the metric space A and such that:

(i) w;(B) n wi(B) = {} V i,jE{1,2, ... ,N} with i::fj;

(ii) U:: 1 w;(B) C B.

An IFS that is neither disconnected nor just touching IS overlapping.

-48 -

Lemma 2.6.4 Let {X,wn: n = l.2, ... ,N} be a.n IFS with invertible maps a.nd

attractor A. The IFS is totally disconnected if and only if:

V i,jE{1,2, ... ,N} with if.j.

Proof - If an IFS is totally disconnected then every point of the attractor

has a unique address. Consider two addresses that differ in only the kth digit.

These two addresses agree completely before and after the kth digit but must

correspond to two different points. Hence we must have that:

V xEA and i:j:.jE{1,2, ... ,N};

which implies the condition g1ven above. Finally, assume the given condition is

true, but that the IFS is not totally disconnected and that some point on the

attractor has more than one address. Consider the digit at which the two ad­

dresses first differ. This time we require w;(x) = wi(x) for some if. j E {1, 2, ... , N}

and some x E A, which gives a contradiction and hence there cannot be two

points with the same address.

Having established what we mean by the address of a point on the attrac­

tor, and thereby having obtained a way of classifying an IFS, we now go on to

examine some properties of addresses.

Definition 2.6.4 Let A be the at tractor of an IFS {X, wn : n = 1, 2, ... , N}. A

point a E A is called a periodic point of the IFS if there is a finite sequence of

numbers {u(n) E {1,2, ... ,N}}~=l such that:

a= w17 (p) o w 17(p-l) o w 17 (p- 2) o ... o w 17(l)(a).

-49 -

If a is periodic then the smallest integer p such that the above condition is true

is called the period of a.

Definition 2.6.5 A point in code space whose symbols are periodic is called

a. periodic address. A point in code space whose symbols are periodic after a.

finite initial sequence is omitted is called eventually periodic.

Theorem 2.6.3 The a.ttractor of an IFS is the closure of its periodic points.

Proof - The code space associated with an IFS is the closure of the set of

periodic codes. The mapping ¢ is a continuous mapping from the code space to

the attractor, hence A is the closure of the set of periodic points of the IFS.

2. 7 Iterated Function Systems as Dynamical Systems

The code space terminology introduced in the last section is now used to

make the connection between an IFS and a dynamical system. This is necessary

in order to understand the workings of Barnsley's algorithm for quickly calculat­

ing the attractor of an IFS. Once again we begin with some basic definitions.

Definition 2.7.1 A dynamical system is a transformation f :X~ X on a.

metric space (X,d). It is denoted by {X;!}. The orbit of a point x E X is the

sequence {r"(x)}~=a·

Definition 2.7.2 Let {X;!} be a dynamical system. A periodic point off is

a. point X EX such that r"(x) =X for some positive integer, n, called the period

-50 -

of x. The smallest such integer is called the minimum period of x. The orbit

of a periodic point of f is called a cycle of f. The minimum period of a cycle

is the number of distinct points it contains.

Definition 2. 7.3 Let {X;!} be a dynamical system. A point x EX is called an

eventually periodic point of f if rm(x) is periodic for some positive integer

m.

Definition 2.7.4 Let (X,d) be a metric space. A sequence {xn}~=l of points in

X is said to be dense in X if for each point x EX there is a subsequence {xNJ~o

which converges to x. In particular, an orbit {xn}~=l of a dynamical system {X;!}

is said to be dense in X if the sequence {xn}~=l is dense in X.

Lemma 2.7.1 Let {X,wn: n = 1,2, ... ,N} be an IFS with attractor A. If the

IFS is totally disconnected then for each n E {1, 2, ... , N} the mapping wn :A._. A

is one-to-one.

Proof- Take two points a 1 ,a2 EA. Assume that wn(at) = wn(a2) =a for some

n E {1, 2, ... , N}. This would mean that the point a has two addresses, which is

impossible unless a 1 = a 2 , since the IFS is totally disconnected. Hence wn is onto

for all n.

This last lemma now permits the following association between an IFS and

a dynamical system to be made.

-51 -

Definition 2.7.5 Let {X,wn: n = 1,2, ... ,N} be an IFS with attractor A. The

associated shift transformation on A is the transformation S : A A defined

by:

V a E Wn(A).

The dynamical system {A; S} is called the shift dynamical system associated

with the IFS.

The next two theorems concernmg the accuracy of the calculation of orbits

and the number of cycles with a given minimal period are the important results

that this section has been aiming for.

Theorem 2.7.1 Let {X,wn: n = 1,2, ... ,N} be an IFS with a contractivity factor

s where 0 < s < 1. Let A denote the attractor of the IFS and suppose that each

of the transformations wn : A A is invertible. Let {A; S} denote the associated

random shift dynamical system. Let {x~};;"= 0 c A be an approximate orbit of S

such that:

VnE{0,1,2, ... };

for some fixed constant () with 0 ~ () ~ Diam(A). Then there exists an exact orbit

given by {xn = S 0"(xo)};;"=O for some Xo E A such that:

'V nE {0,1,2, ... }.

(Diam(A) = max{d(x, y): x, yEA}).

Proof:- For n = 1,2,3, ... let O",. E {1,2, ... ,N} be chosen so that w;,1 ,w;l1 ,w;
3

1
, ...

is the actual sequence of inverse maps used to compute S(x~), S(xl.), S(x2), Let

-52 -

~ : I:...__. A denote the code space map associated with the IFS. Then define:

Hence the exact orbit of the point x 0 is given by:

For some large positive integer AI both xM and S(x~1 _ 1) belong to A and we can

write:

d(S(x,u _ d, S(x~1 _ 1)) ~ Diam(A);

which is finite since A is compact. S(xM-d and S(x~u- 1) are both found usmg

the same inverse map and so it follows that:

d(xM-l,X~u-d ~ sDiam(A).

We now have:
d(S(xM-2),S(x~u- 2)) = d(xM-l,S(x~I- 2));

~ B + sDiam(A).

Again the same inverse map is used to calculate each point so:

d(xM-2, x~1 _ 2) ~ s(B + sDiam(A)).

,,
Applying the above argument k times we obtain:

and so for any 0 < n < M we have:

d(1) < n ?n M-n-ln M-n D" (A) Xn, Xn _ su + s-u + ... + s u + s 1am .

Taking the limit as M -+ oo we get the result:

1 (2 sO
d(xn,xn)~sB l+s+s + ...)=-(--)

1-s
V nE{l,2, ... }.

Finally, we derive an expression for the number of cycles of minimum period

p that lie on the attractor of an IFS.

-53 -

Lemma 2. 7.2 Let {A; S} be the shift dynamical system associated with a to­

tally disconnected IFS, {X, wn : n = 1, 2, ... , N}. Let N(p) denote the number of

distinct cycles of minimal period p, for pE {1,2,3, ... }. Then:

N(p) = [-NP - I: kNP(k)l
p k=l

k divide• p

V p E {1, 2, ... }.

Proof- Every point on a cycle of minimum period p is the fixed point of some

transform n given by:

That is, the application of p mappings brings us back to the starting point. For

a given p there are NP possible ways of constructing n using N mappings. Since

each n is a contractive mapping it has a unique fixed point which lies on a cycle

of period p. Hence NP is the number of points that lie on a cycle of period p.

However, not all these cycles will be of minimum period p, and those that are

not must be of a minimum period that is a factor of p. If k is a factor of p and

C(k) denotes the number of points that lie on cycles of minimum period k, then

the number of points on cycles of minimum period p is

p-1

NP- L C(k).
lr::l

k divide• p

Since there are p points on every cycle of period p, then the number of dis-

tinct cycles of minimum period p is 1/p times the number of points on cycles of

minimum period p. Therefore:

[

NP
N(p) = P-

k

c;k)]
divide• p

p-l

L:: V pE{1,2, ... } .
.k:l

-54 -

Clearly we have that C(k) = k/V(k) and substituting this into the above gives the

required result. Finally, we have /V(l) = N since points of period one must be the

fixed points of the individual mappings of the IFS.

This final lemma shows that the number of cycles of period p increases rapidly

with p, and so it becomes likely that a point chosen at random on the attractor

will be part of a cycle of long period. Further, since the attractor is compact,

we can expect the orbit of such a point to be dense in the attractor.

2.8 Summary

In this chapter we have, starting from basic topological principles, related a

concise derivation of IFS theory and introduced the terminology required for the

discussions in the remainder of this work. Specifically, we have given Barnsley's

definition of an IFS as being a set of contraction mappings on a complete metric

space with the property that when the union of these mappings is applied itera­

tively to an arbitrary subset of the space, the resulting sequence of sets converges

to a non-empty limit set, called the attractor. Important properties of IFSs have

been described such as the continuous dependence of the attractor on the map­

ping parameters, and Barnsley's collage theorem has been stated which allows

the calculation of an IFS for a given subset of the space on which it is defined.

1i.(X) has been defined as a space with points corresponding to non-empty

compact subsets of an underlying metric space, (X, d), and proved to be complete

if X is complete. The Hausdorff distance, h(d), has been used as the metric on

1i.(X) and thus an IFS based on (1i.(X),h(d)) has a non-empty compact subset

A E 1i.(X) as its attractor.

-55 -

Finally, we have included the proofs which demonstrate that an IFS can be

considered as a dynamical system based upon its inverse mappings, and have

described how this leads to an alternate definition of an attractor as the closure

of the periodic points of such a system.

The following chapter uses these concepts to formalise the proposed shape

representation scheme and to explain its properties.

-56 -

3 ITERATED FUNCTION SYSTEMS AND SHAPE

Using the theory of the previous chapter we now describe a formal framework

within which a two-dimensional shape representation scheme can be constructed.

We then discuss, with examples, the theoretical properties of such a representa-

tion scheme emphasising those that correspond to features identified as beneficial

to a general machine vision system. Finally we give an explanation of the ran-

dom iteration algorithm (RIA) as developed by Barnsley which allows the rapid

rendering of the attractor of an IFS.

3.1 2D Shape Representation.

We begin with a pair of our definitions which make clear what we mean by

a two-dimensional shape and how we propose to represent one using an IFS.

Definition 3.1.1 Let (R2 ,d) be a metric space consisting of the Euclidean

plane, R 2 , and a suitable metric function, d. Let a shape be any set S E 1i(R2).

Definition 3.1.2 Let {R2 ,wn: n = 1,2, ... ,N} be an iterated function system

with the two-dimensional Euclidean plane as the underlying metric space. Then

a shape S is represented by the IFS if:

lim W 00 (B) = S
n-+oo

-57 -

where W IS as defined m theorem 2.5.1. That IS to say, S IS the attractor of the

IFS.

The interpretation of such a representation is obvious. The set of points con­

stituting the attractor are the same set of points occupied by the shape in the

plane. There are however, two questions that need answering. Firstly, are shapes

as just defined useful for study in a machine vision context, and secondly does

there exist an accessible representation for any given shape? To answer these

questions we make a couple of reasonable assumptions about the environment

and image formation process of a hypothetical vision system. vVe assume that

any real-world objects that we may wish our vision system to work with, such as

man-made machine parts or naturally occurring flowers and trees, will be com-.

pact subsets of three-dimensional Euclidean space, R 3 . Also, we assume that the

system will produce a two~dimensional image of a three dimensional scene, and

that the image formation process - the mapping from R 3 to R 2 - is continuous.

Using these assumptions we state the following lemmas.

Lemma 3.1.1 Let 0 E 'Ji(R3) be a three-dimensional object. Let 1j; be a con­

tinuous transformation 1j; : R 3 ._.. R 2 • Then:

,P(O) = {1/J(y): y E 0} = S;

1s the image of 0 such that S E H(R2).

Proof- Let {Yn}~=l be an infinite sequence of points in 0. Then {xn = rP(Yn)}~=l

is an infinite sequence of points in S. Since 0 is compact, there exists a subse­

quence {YNJ~=l of the initial sequence that has limit y E 0. Since 1j; is continuous

-58 -

the sequence {xN, = ti>(YN,)}/V,= 1 has limit x = 1/;(y) which IS contained m S, and

hence S is compact.

This implies that visual information about the real world gathered by a con­

tinuous image formation process takes the form of shapes in the image plane,

and hence the study of shape encoding is certainly worthwhile.

Next we show that for any shape, no matter how complex, we can always

find a good IFS representation. This is a consequence of the collage theorem

(2.5.3) which tells us how to find an IFS given the attractor.

Lemma 3.1.2 For any shape S, and given a real number ~: > 0, there exists

an iterated function system {R2 ,wn: n = 1,2, ... ,N} with attractor A for which,

h(S, A) :S L

Proof- From the collage theorem we have:

h(S, A) :S (1- s)- 1h(S, W(S))

where W and s have their usual meanings. Since S is compact it is closed and

totally bounded, and so there exists a finite ~:-net, {y1 , y2 , ... , YN }. Since an ~:-net

contains only a finite number of points it is closed and totally bounded and hence

we have {yn} E 1i(R2). From its definition an ~:-net has the property:

h(S, {Yn}) :Sf.

We now choose mappings such that:

Wn(x) = Yn V xES and n = 1, 2, ... , N.

-59 -

Hence W(S) = {yn} with contractivity factor s = 0. Finally then:

h(S,A) ~ l- 1h(S,{yn});

This method of constructing an IFS code is clearly inefficient, smce it re­

quires one mapping for every point in the c-net, and so will produce a very large

number of mappings for small c. However, the proof only serves to show that

a high resolution (small c) code can always be found, and does not claim that

this code, or the method employed to find it, should be the basis of a practical

implementation.

In general the encoding of a shape will involve the search for a collage com­

prising of a small number of 'large' mappings, which is to say those that map

points over a large area. The process of collage construction is similar to decom­

posing a shape into a set of primitives, the difference being that we are using

only the one fundamental primitive, that of the shape itself. The advantage of

this is that it is not required to define and store the description of a set of shape

primitives prior to encoding, and no reference need be made to any data source

external to the IFS code in order to render a picture of the encoded shape. (This

is explained in more detail in the section on attractor rendering). Hence we are

able to describe complex shapes using a complex primitive without the prob­

lem of the exponential increase in the number of primitive types as described

by Fischler (Fischler 1978). Further, we can be sure that our primitive is of a

suitable type since a shape has just the right morphology with which to describe

itself. For example, an angular shape will have an angular primitive, a smoothly

rounded shape will have a rounded primitive, and a fractal shape will have a

fractal primitive.

-60 -

Still it is possible that for very complex shapes it will not be possible to

obtain a high resolution encoding without recourse to multiple 'small' mappings.

In this case it may be necessary to subdivide the shape into smaller and less

complex subshapes, and then to encode each one separately, similar to the repre­

sentation by parts scheme suggested by Pentland (Pentland 1987). The inherent

problem is that of finding an algorithm that will produce high resolution collages

without human intervention. Ideally, given a fixed number of mappings, the al­

gorithm should find a close to optimal arrangement that minimises the Hausdorff

distance between the collage and the shape it is intended to represent. The de­

velopment of such an algorithm is discussed primarily in chapter six.

The foregoing has illustrated the point that although a given IFS has a

unique attractor, there are an infinite number of IFSs that share the same shape

for their attractors. This is a consequence of the fact that there are an infinite

number of perfect (< = 0) collages that can be made of a given shape. For exam­

ple, if we have a perfect collage we can construct another by replacing one of its

mappings with a mapping of the whole collage.

This is demonstrated in figure 3.1 where the collages depicted have exactly

the same attractor. The multiplicity of codes for each shape can be used to

ad vantage for several reasons as will be discussed later.

-61 -

Figure 3.1 A sequence of collages all having the same fern-like attractor

shown in the top left-hand corner. The first collage, top right, is the sim­

plest possible, consisting of just three mappings. The second, bottom left,

is comprised of five mappings, the result of replacing the largest mapping

of the first collage with its mapping of the whole collage. The final collage,

bottom right, has replaced two of the mappings found in the original, and

hence contains a total of seven mappings.

The discussion so far has assumed that the image plane is a continuous space,

whereas in reality the image presented to a computer vision system is represented

as a two-dimensional pixel array. This does not however, affect our assertion that

a good IFS code can be found as our following lemma demonstrates.

-62 -

Lemma 3.1.3 Let P E ?i(X) be a finite rectangular array of points in the metric

space (R 2 , d) such that (P ,d) is a complete metric space. Let S' = {Pn E P : n =

1, 2, ... , N} be a set of points in P such that S' is the discrete approximation of

a set S E 1l(R2). Then there exist an IFS {P, wn: n = 1, 2, ... , N} with an attractor

A' for which: h(A', S') = 0.

Proof- We choose wn such that:

Wn(x) = Pn V xES' and n=1,2, ... ,N.

The resulting set of mappings { w,.} has contractivity s = 0 and W(S') = S'. Hence,

by the collage theorem we have:

h(A', S') = 1- 1h(S', W(S')) = h(S', S') = 0.

It would seem that we can represent exactly any shape defined on a pixel

array. However, such an exact encoding amounts to nothing more than a pixel

map - a list (albeit in terms of mappings) of the position of every pixel that

constitutes the shape. In general we still expect to be able to find high resolution

codes, using the collage theorem, that significantly improve upon this.

To summarise this section we have shown that, under some reasonable as­

sumptions, the image of objects in a real-world scene consists of compact subsets

of the Euclidean plane and hence are representable as the attractors of two­

dimensional IFSs. Further, there exists an IFS representation for every conceiv­

able shape formed in the image plane, and the resolution to which the shape

may be encoded is limited only by the number of mappings used.

-63 -

3.2 Compactness

We now look at the physical form that an IFS representation of a shape

would take. Basically an IFS is just a set of mappings which in turn are sim­

ply a set of numbers. Hence an IFS code will have the physical form of a list

of numbers, and as such has the potential for being a compact way of storing

information. The extent of the compactness is dependent on two parameters,

the number of mappings used in the IFS, and the number of coefficients re­

quired to specify each one. The contractivity term in the bounds on resolution

derived from the collage theorem suggests th.at if we restrict our attention to

just-touching IFSs then in general an increase in the number of mappings will

produce a corresponding increase in the resolution of the representation, and so

in a practical implementation the number of mappings used will be determined

by the accuracy to which the system must work. However, we are still free to

choose any mappings we want, the only restriction imposed by the mathematics

is that they be contractive. Obviously it is desirable to keep the form of the

mappings as simple as possible without introducing too many constraints on the

range of collages that they are capable of producing. Further, there is nothing in

theory to prevent the use of several different types of mapping in the same IFS,

although this would needlessly add to the complexity of the resulting code and

require more complex decoding algorithms.

a b c d e f

Wt 0.50 0.00 0.00 0.50 0.00 18.00

W2 0.50 0.00 0.00 0.50 -15.00 -8.00

W3 0.50 0.00 0.00 0.50 15.00 -8.00

Table 3.1 The IFS code for a Sierpinski triangle.

-64 -

An example of an IFS code for N = 3 is given in table 3.1. We have used two­

dimensional affine transformations as described in definition 2.3.4. and hence the

code consists of three sets of six coefficients. In general, if we require n cofficients

to describe each mapping, an IFS will consist of nN floating point numbers.

Figure 3.2 The attractor of the IFS given in table 3.1.

The attractor of figure 3.2 is a well known fractal called the Sierpinski trian­

gle. Since we already know its IFS representation this and shapes like it will be

used to test the collage generating ability of the encoding algorithm described in

chapter six.

3.3 Stability

An important property of an IFS coding scheme is stability during the en­

coding process since, in order for the scheme to be practical, it is necessary that

as long as the collage we find is close to the optimum, then the attractor will

be similarly close. By defining the term 'close' as meaning close under the Haus­

dorff metric, we can appeal directly to the collage theorem. It states that if the

Hausdorff distance between a shape and its collage is less than or equal to £,

-65-

then the distance between the attractor of the IFS associated with the collage

and the shape is less than (1 - s)- 1
f, where s is a contractivity factor for the

IFS. The stability implied by this can be easily visualised by recalling lemma

2.2.2 which can be interpreted as follows. If the Hausdorff distance between two

shapes, B and C, is f then the shape, created by drawing a circle (for the two­

dimensional case) of radius f around every point in B, contains the shape C,

and vice versa. In terms of the collage theorem this means that there is an en­

velope of size (1- s)- 1 f around the coded shape S which is guaranteed to contain

the attractor. Remembering that the Hausdorff distance between two shapes is

simply the distance between some pair of points within the shapes, then it is ap­

parent that not all changes to the collage need change the size of the envelope,

indeed most small changes will simply result in some shift of the attractor within

the existing envelope. Hence, there exists a large number of collages all within

a short distance of the optimum that yield a good attractor. This is demon­

strated by the following sequence of pictures in which the attractors are shown

for collages of varying quality and contractivity. We have adopted the method

of representing a mapping as used by Horn (Horn 1989) in which we show the

effect of a mapping on the bounding rectangle of a shape. Although this does

not make clear the operation of reflections, it does adequately depict rotations,

scalings and translations.

-66 -

Figure 3.3 Illustration of how approximate collages give recognizable at­

tractors. (Top left) The attractor obtained with a perfect collage. (Top cen­

tre) The attractor for the same collage but with a slight skew introduced

into each mapping. (Top right) The effects of slightly translating each map­

ping. (Bottom left) The attractor for a collage with both skew and transla­

tion added to each mapping. (Bottom centre) Skew, translation, and scaling

effects. (Bottom right) One of the mappings has been replaced with three

smaller mappings which have been skewed, translated and rotated - notice

that although the magnitude of the adjustments are the same as before the

effects are smaller.

-67 -

3.4 Robustness

A further . useful property of an IFS code is its robustness with respect to

errors introduced into the mapping coefficients. This is predicted by theorem 2.5.2

which states that if the mapping coefficients of an IFS. are continuous in some

parameter p then the attractor of the IFS is also continuous in p. In practice this

means that if a small change is made to one or more of the mapping coefficients,

it will produce a correspondingly small change in the attractor. More specifically,

if an error in the code means that the maximum value of h(wn(S),w~(S)) where w~

denotes an inaccurate mapping, is 6, then the distance between the attractor of

the inaccurate code and the exact code is less than or equal to 6. For example,

consider the set of IFS codes on the following page and compare their attractors.

-68 -

a b c d e f

tvl 0.60 0.00 0.00 0.60 0.00 -15.00

'W2 0.35 0.20 -0.20 0.35 8.00 0.00

'WJ 0.35 -0.20 0.20 0.35 -8.00 0.00

Table 3.2 The exact, error free code consisting of three two-dimensional

affine transformations.

a b c d e f

tvl 0.60 0.00 0.01 . 0.60 0.00 -15.00

'W2 0.35 0.20 -0.20 0.35 8.03 0.00

'WJ 0.35 -0.22 0.20 0.35 -8.00 0.00

Table 3.3 The same code as in table 3.2 but with small (second decimal

place) numerical errors introduced into one coefficient of each mapping. The

changed digits are printed in bold type.

a b c d e f

'Wl 0.62 0.03 0.12 0.57 -0.20 -15.31

'W2 0.32 0.18 -0.21 0.30 7.92 -0.81

'WJ 0.38 -0.22 0.25 0.36 -8.04 0.29

Table 3.4 The code of table 3.2 with all of the coefficients affected by

small errors.

a b c d e f

'Wl 0.65 0.19 0.14 0.04 -0.32 -18.15

W2 0.28 0.21 -0.29 0.21 4.53 -3.16

WJ 0.42 -0.29 0.28 0.22 -12.15 2.09

Table 3.5 The code containing numerous large errors.

-69 -

A A
4~ A
4~ A

~~

~ "' ~\.
'~

~\
,,~~
~ , ,.

J
I~~ rf~ 1"! l~ ~~ .. ~

..o--, •

Figure 3.4 A demonstration of the robustness of the attractor of an IFS

with respect to errors introduced into the mapping coeflicients. Top left is

the attractor for the exact code given in table 3.2. Top right is the attractor

for the code in table 3.3 which has several small errors introduced. Bottom

left is the attractor for the code in table 3.4 with many small errors, and

bottom right is the attractor for the code in table 3.5.

-70 -

Clearly a few small errors can be tolerated causmg almost no perceptible

change in the attractor. Even the introduction of numerous such errors gives

results that are, to the human eye at least, recognizable. However, increasing

the errors too far results in the break-up of the attractor as a recognizable unit.

Since the effect of an error on the attractor is bounded by the size of the effect

it has on the mapping in which it appears, less damage is done when errors

occur in small mappings. Hence it is possible to build in the desired degree of

robustness by limiting the maximum size of the mappings used.

3.5 Attractor rendering

Up to this point we have discussed the use and properties of the attractor of

an IFS without describing how to obtain a rendering (picture) of one. This is of

crucial importance since it is the attractor and not the IFS itself which displays

the stored information in useful form. From the definition of an IFS (definition

2.5.1) we see that the at tractor is the limit of the iterative application of the

mapping W to an arbitrary starting region. The obvious method of obtaining the

attractor then would be to start with some easily defined shape, such as a single

point, and iteratively map it under W until the difference between successive

iterations became negligible. This illustrates the self-contained nature of an IFS

since, due to the recursive way in which it describes shape, there is no need to

decode it with reference to any other data.

The method just described has several obvious drawbacks. Firstly, there is

no guarantee of the rate of convergence and so it could take a prohibitively large

number of iterations before a good approximation to the attractor is obtained.

Secondly, even if convergence were to occur quickly, an IFS consisting of a large

-71 -

number of mappings, or one for which the attractor contained a large number

of points, would result in slow rendering. Both these problems would severely

restrict the use of an IFS coding scheme in a machine vision system, since we

require quick and easy access to stored information.

A much better algorithm is that devised by Barnsley (Barnsley 1988, Barnsley

and Sloan 1988). It is based upon the idea of an IFS as a dynamic system and

requires the definition of a modified IFS for which a probability is associated

with each of the mappings.

Definition 3.5.1 An iterated function system with probabilities consists of an

IFS {X, wn : n = 1, 2, ... , N} together with a set of real numbers {p; : i = 1, 2, ... , N}

such that:

P1 + P2 + P3 + · ·· + PN = 1 and Pi> 0 v i.

The notation for an iterated function system with probabilities Is:

{X,(wn,Pn): n = 1,2, ... ,N}.

The rendering method is called the random iteration algorithm (RIA), or as

Barnsley sometimes calls it, the chaos game. The algorithm is as follows:

1. Choose an initial point x0 EX.

2. Choose one of the mappings of the IFS, wn, with probability Pn·

3. Apply the selected mapping to the point x0 and so generate and store the

point x1.

4. At random, select a second mapping, wm with probability, Pm and apply it to

x1 to generate x2.

5. Continue in this manner to generate the set of points {xo, xll x2, ... , xK }.

-72 -

6. The set L = {xn}~=o for large K is, to a very high probability, a good

approximation to the attractor of the IFS.

If the initial point x 0 lies on the attractor then so will all subsequent points.

However, if x 0 lies off the attractor it will take several iterations of the algorithm

before the points converge onto the a.ttractor, so it is normal practice to discount

the first few points of the sequence. To explain why the RIA works, and that

almost without exception, it produces a. very good approximation of the attra.ctor,

we refer back to some IFS theory.

In chapter two we introduced the idea of an IFS as a shift dynamical system

on its attractor - that is a. dynamical system for which the transformation is

defined as w;;- 1(x) for all x E wn(A). Theorem 2.6.3 demonstrated that the a.ttractor

of an IFS is the closure of all the periodic points of the shift dynamical system.

In other words, every point on the attractor lies on a periodic orbit, or cycle.

Consider a cycle of minimal period p, and let p tend to infinity. The orbit of this

cycle consists of an infinite sequence of points on the attractor, and since the

a.ttractor is compact, the orbit possess a convergent subsequence. Therefore, we

expect cycles of large minimal period to be dense, as defined in definition 2.7.5,

and so pass close to every point on the atttactor. Hence we can approximate the

attractor of an IFS by the orbit of a. cycle of large minimal period, I<.

Theorem 2. 7.3 showed that the number of cycles of minimal period p for the

shift dynamical system associated with an IFS of N mappings is given by by the

equation:

[
NP p-l kNP(k)l

N(p)= -p- ~ VpE{l,2, ... }.

A: divide• p

If we calculate the number of cycles of period p = 1, 2, ... for the first few

values of N we obtain the data given in the following table.

-73 -

Period (p)
1 2 3 4 5 6 ... 15

2 2 1 2 3 6 9 ... 2182
(N) 3 3 3 8 18 48 116 ... 956577

4 4 6 20 60 204 670 ... 71582784
5 5 10 40 150 624 2580 ... 2034505921

Table 3.6 The number of cycles of minimal period p for the shift dynam-

ical system associated with an IFS of N mappings.

The figures of table 3.6 show that any cycle of period]{, where [(is a large

number, has a very high probability of being a cycle of minimal period K, and

so its orbit will consist of I< unique points on the attractor. For example, with

N = 2 and for p as small as 15 there is a 99.56% chance that any cycle of period

15 we care to construct is a cycle of minimal period 15.

By definition a point on a cycle of period p of a dynamical system {X;!} is

a fixed point of rP. For a shift dynamical system associated with an IFS, this

means that we return to the starting point after the application of a sequence of

p inverse mappings. That is:

However, it 1s clear that we will also arrive back at the starting point after p

applications of reverse-order forward mappings. That is:

() -1 -1 -1() Wop 0 Wo(p-1) 0 ... 0 Wo1 X =Wop 0 Wo(p-1) 0 ... 0 Wo1 0 W 0 1 0 W 0 2 0 ... 0 W 0 p X =X.

Hence a sequence of forward mappings is equivalent to the reverse order sequence

of inverse mappings and so we can say that a sequence of forward mappings also

represents a cycle.

-74 -

The RIA then works in the following way. It selects a long random sequence

of K mappings and takes them as representing a cycle of period [{. Since J(

is large there is a high probability that this random sequence of mappings con­

stitutes a cycle of minimum period [{ and so its calculated orbit consists of J(

unique points dense in the attractor. The RIA calculates the points of the or­

bit according to the algorithm given earlier. To plot the exact orbit denoted by

the sequence generated it would appear to be necessary to start with its fixed

point. Fortunately this is not true since we are calculating the orbit in terms of

forward mappings which are contractive so that any starting point, whether on

the attractor or not, will converge very quickly onto the chosen orbit. This is the

reason why it may be necessary to discard the first few points generated.

Clearly the RIA is a more efficient algorithm than iterative shape mapping

since, (neglecting the first few), every point generated belongs to the attractor,

and so the number of points that are rendered is determined by the size of the

orbit chosen - in effect the number of iterations of the RIA that we choose to

run. With proper implementation it is also possible to obtain rendering rates

(pixels per second) that are independent of the number of mappings in the IFS

(neglecting program overheads).

A disadvantage of the RIA IS that smce it is a random process it cannot

guarantee to plot any given point. However, we can manipulate the density of

points plotted in each region of the attractor by varying the probabilities as­

sociated with each mapping. Although a rigorous explanation of this requires a

discus~ion of measures on Borel sets (Barnsley 1985, 1988), it can be seen in­

tuitively that the more often a given mapping is chosen during rendering, the

more points that are going to be plotted in the region of the attractor that it

covers, and hence the higher the density of points is going to be. However, for

-75 -

representing shape we are only concerned with whether or not a point belongs

to the attractor and so we want an even distribution of points to be produced.

To this end we normally select mapping probabilities in proportion to the area

of the shape that each mapping covers.

The operation of the random iteration algorithm is shown by the sequence

of pictures below. They show the rendering of the attractor of an IFS using

increasing values of I<. Notice that the basic shape of the at tractor is apparent

for small values of I< and further increases serve only to fill in the fine detail.

.. ' ..

. :·-. -..... :-_--:-.

· ·.·:.:··-
. ~.:: ·::: . :

·-·. :·. ,-~~- -::
~ =~ .: :-.

Figure 3.5 A circle of renderings of the attractor of an IFS consisting

of just two mappings. Starting at the nine o'clock position and moving

clockwise they correspond to J(values of 50, 250, 1000, 4000, 16000, and 64000

respectively.

The importance of theorem 2.7.1 is now apparent. It states that if there is

an error of up to 8 in the calculation of each successive point using the ran-

dom iteration algorithm, then there is always an exact orbit which 'shadows' the

-76 -

inaccurate one at a distance less than or equal to sfJ(l- s)- 1 . This means that

we do not have to be concerned with small rounding or truncation errors when

rendering an attractor, since even if we are not plotting the orbit of the cycle

that we intended, we are guaranteed to be plotting the orbit of a cycle that is

equally good.

A final very important property of the RIA is that it can render a transfor­

mation of an attractor almost as easily as it can the basic attractor itself. For

example, instead of plotting the set of points {xm} it can instead plot the set

{ 1/l(xn)} where 1/J is the desired transformation. In effect this allows the system to

manipulate the representation and obtain any desired view of the encoded infor­

mation. In two-dimensions this means shapes can be easily rotated or translated,

or even scale to see how they would appear from a greater distance. If work­

ing in three dimensions, it would allow the construction of any two-dimensional

view of a given object. It is this ability to manipulate information in a way iso­

morphic to that of the real world quantities that has been stressed before as a

central requirement of a pictorial representation scheme and it is the relative ease

with which this can be achieved using IFS encodings and the RIA that is one of

the major advantages of the application. A demonstration of the possibilities of

transforming rendered points can be seen by the following picture:

-77 -

Figure 3.6 The at tractor of the 'fern' IFS as it was originally encoded

is shown in the top right-hand corner. The montage of shapes in the cen­

tre was constructed entirely from affine transformations of the original at­

tractor, and wa.s produced using the RIA with extra. transformations as

described in the text.

3.6 Summary

We have introduced a formal framework in which to embed a two-dimensional

IFS shape representation scheme in which shapes are defined as compact sub­

sets of the Euclidean plane produced by images of three-dimensional real world

objects. It has been shown that within this scheme every two-dimensional IFS

-78 -

corresponds to a shape, and further that any shape can be represented by an

IFS to an accuracy limited only by the permitted size of the code.

The properties of such a representation scheme such as compactness, stability,

robustness, and ease of manipulation have been discussed, and the near picture

quality of the encodings demonstrated. Further, we have given an explanation of

the operation of the RIA and indicated how this enables the quick rendering of

code attractors and enables their easy manipulation.

Regardless of the suitability of an IFS representation scheme based upon its

theoretical properties, the question of fundamental importance to the practical­

ity of an implementation is that of the accessibility of automatically generated

encodings. This is the problem to which we now turn attention, starting in the

next chapter with an attempt at a simplified encoding technique.

-79 -

4 IMPLEMENTATION OF IFS CODING

We now address what is often described as the 'inverse problem' (Barnsley

et al. 1986), which is that of finding an IFS representation for a given shape.

Barnsley first proposed a solution based on the moment theory of p-balanced

measures (Barnsley and Demko 1985) which relied on a manual approximation of

the measures of digitised images, but which was only applicable to a restricted

set of shapes (Levy-Vehel and Gagalowicz 1987). With the formulation of the

collage theorem, Barnsley developed a technique of general applicability and has

employed it in the area of image compression, although the only published work

describes an interactive process whereby a tracing of a shape is placed over a

computer screen and a software collage construction tool is used by an operator

to find the mappings.

Levy-Vehel and Gagalowicz use the collage theorem for shape generation in a

computer graphics environment, and employ an optimisation algorithm starting

with an essentially random collage and involving the iterative minimisation of

some distance function between that collage and the desired shape. Using the

Hausdorff distance as the metric they achieved a good result on the single test

shape presented, although it was reported that their algorithm failed unless all

the mappings of the initial collage intersected the shape. To ensure this condition

was satisfied the starting collage was created by hand.

Another attempt at the inverse problem employed the concept of skeletonisa­

tion from mathematical morphology (Libeskind-Hadas and Maragos 1987). The

-80 -

skeleton of a shape is the set of all points which are centres of disks maximal

with respect to that shape. (A disk centered at x of radius r is maximal with

respect to a shape S if it is contained in S and is not properly contained in any

other disk contained in S). Libeskind-Hadas and Maragos describe an interactive

system based on the displayed skeleton of a shape which enables the user to iden­

tify mappings useful for a collage. The system works well for perfect self-similar

fractals, (those which display the same structure at all scales), by enabling the

discovery of collages that fit to the shape boundary. However, the system is not

intended for use with arbitrary shapes. A simple 'plugging' scheme is proposed to

fill shape interiors using circular primitives. The authors suggest that it should

be possible to develop a fully automated system, the main difficulty being the

detection of useful skeleton branch points.

It appears that the problem of developing a completely automated IFS en­

coding system is unsolved in that all the above implementations rely on human

interaction to a greater or lesser extent. From their results however, we can iden­

tify the prime objective of such a system to be the construction of shape collages

and, because of the close association between a collage and the IFS it determines,

the two terms will often be used interchangeably in the following discussion.

We now describe the implementation of our own algorithm designed for the

automatic calculation of shape collages, which is a development of that pre­

sented in the paper, (Giles et al. 1989). Following the methodology of Libeskind­

Hadas and Maragos, (although not using their skeletonisation technique), the

approach taken was to reduce the collage construction process to an essentially

one-dimensional problem by looking for mappings which matched to shape bound­

aries only, thus significantly reducing the search space complexity. The goals of

the implementation were thus threefold. Firstly, to determine the practicality of

-81 -

automatic generation of boundary matching collages assessed upon the criteria

of encoding speed, accuracy, and compactness. Secondly, to evaluate the degree

to which subsequent plugging of a shape's interior to produce full encodings was

possible, and finally to evaluate the use of the implementation as the basis of an

IFS shape representation scheme.

To begin, we describe the decisions that need to be made relating to the

practical choices presented in selecting coordinate systems, mappings, and an en­

coding standard.

4.1 Coordinate Systems

In order to calculate mappmg coefficients we must first adopt a coordinate

system, or frame. We have two basic choices, either to use a space fixed frame

such as that provided by the image plane, or a body fixed frame where the

coordinates are taken relative to an origin and an axis system defined by the

shape itself. This second option is further complicated when we describe shapes

in terms of subshapes - should we choose to refer each subshape in a single

frame, or should each subshape have its own?

We choose to use body fixed coordinates for the following reason. If the max­

imum diameter of a given shape is calculated to be D, and the origin of our co­

ordinate system lies somewhere on that shape, then the maximum translational

component of a mapping it would ever be necessary to use would be D. This is

because we never want a point contained in a shape S to be mapped onto a point

outside S, and since the origin always gets displaced by an amount exactly equal

to the translation parameters (the constant terms) of any mapping, this would

occur for any mapping of non-zero contractivity and translation of vector length

-82 -

greater than or equal to D. Thus we put an upper bound on the amount of

translation allowed and significantly reduce the search space of possible collages

by removing from consideration mappings known to be of no value.

As to the problem of subshapes, Marr (Marr 1978) suggests that the second

approach (separate coordinate systems for each articulated subpart) is to be pre­

ferred. This has the advantage of allowing the natural description of the relative

movements of subparts, and strengthens the isomorphism between the real world

object and its representation. However, the current implementation is aimed at

encoding only single shapes and so we propose a Cartesian coordinate system

with origin at the observed centroid of the shape. The orientation of the axes

is not critical, but for simplicity, we take them in the same directions as those

of the image plane. The choice of the centroid as origin seems natural since it

is easily calculated, relatively stable, and further, corresponds to the centre of

mass for uniform planar objects and hence is the point about which they would

naturally rotate.

Once the position and orientation of axes are decided, we still have the free­

dom of choice as to the scale we use. It could be argued that the scale should be

taken as 1 : 1 with that of the image plane so that rendering of the attractor of

the IFS yields the same sized shape as the original. Alternatively, a normalised

frame could be chosen in which we set D = 1 and hence limit translation pa­

rameters to the range [-1, 1] which, as shown later, results in all the mapping

parameters being less than unity and giving the code an aesthetic symmetry.

This second option is probably more suited to a system working with complex

objects and employing subshape coding since a single scale factor stored as part

of each code would ensure that they were rendered in the correct proportions

to one another. The first option is more suited to an application where shapes

-83 -

are simple enough to be represented by a single code and it would be benefi-

cial to have their relative sizes reflected m those of their representations. Due

to the simplicity of the shapes encoded in this implementation, and the extra

computational complexities of using normalised coordinates, we adopt the first

option.

The choice of reference frame will not affect the collage or the attractor of the

associated IFS, and so it is tempting to think that it will be possible to change

the frame of reference, if for example a more natural one was discovered, and

simply modify the mapping coefficients so that the IFS is preserved. In general

if ¢J is an invertible change of coordinate transformation such that, 1/J(x) = x'

where primes denote the new coordinate system, then given an IFS {X, wn : n =

1, 2, ... , N} in the original coordinate system with at tractor A, we have:

N

U ¢Jwn¢J- 1(A') =A';
n=l

g1ves the collage of the attractor in the new coordinate system. Unfortunately

the set of mappings {1/Jwni/J- 1 } does not constitute an IFS since they are not in

general contractive (see figure 4.1 for a graphic example) unless we have the extra

constraint:

d(¢J(x),¢J(y)) = d(x',y') = kd(x,y) 0 < k < 00.

That is to say that no independent rescaling of the axes is permitted. Since

normalisation of the coordinate system will in general require such rescaling, (as

described later), it is not possible to mix easily codes of this format with ones

encoded at their natural scale. Should mixing of the two formats be required, all

that can be done is to check the mappings produced by the coordinate transfor-

mation and ensure that they are all contractive.

-84 -

A

Figure 4.1 For change of coordinate tnwslormaUon ¢ the distance A' B' is

greater tl1an the distance AD and so t.hc mapping t/Jwt/J- 1 is not contractive.

\Ve leave a. discussion of the metric to be used until the next section since it will

be shown to have an effect on the size of mappings we can use.

4.2 Mappings

Once the coordinate system is fixed, we turn attention to the type of map­

pings to be used. As stated earlier, the only restriction we have is that each

must be contractive, and there is no reason why we could not use many differ­

ent mapping types. However, mixing types within an IFS adds unnecessarily to

the complexity of the encoding and rendering algorithms and it is difficult to see

what compensating benefits there might be. Obviously we want to keep the form

of the tnappings as simple as possible since this will both reduce the amount of

storage ~equired and improve program speeds, but we must ensure that we have

a rich enough palette of maps to produce satisfactory collages.

-85 -

vVe propose the use of two-dimensional affine transformations as described in

chapter two (definition 2.3.4) and as used by Barnsley. They permit scalings, ro-

tations, reflections, and translations of a shape in the plane, and should therefore

provide a broad enough set of collages for our purposes. The general form of an

affine transformation requires the use of six coefficients:

However, the matrix component of the transformation can be expressed m a

different form using the four parameters, rh r 2 , 81 and 82 as follows:

() _ (Xt) _ (1'tCOS8t
WX-W - .

8 x2 . rtsln 1

where x0 and y0 are the translation parameters. The value of this alternative

notation will become apparent in the following discussion where we examine the

limits imposed on parameters by the requirement that a mapping be contractive.

We know from the previous section that the translation parameters can be

confined to the range [-D, D] (without axis rescaling) but we can do better than

this. If we calculate the extent of the shape in the x- and y-directions relative to

the body-fixed reference frame then, because we must not map the origin outside

this envelope, we can limit the x and y translations to these values. That is to

say, if the shape is bounded by the interval [x 1 , x2) in the x-direction and [Yt, Y2J in

the y-direction, then we can restrict xo a.nd Yo such that xo E [xt, x2] and Yo E [Yt. Y2]·

For normalised axes we now scale in the x-direction by an amount max{lxtl, lx2l}

and in the y-direction by max{lytl, IY2I}. As for the values of lh and 82, we allow

them to take values in the range [0, 21r). The case for r 1 and r2 is not quite so

simple since all we know is that they scale the shape and so must be bounded

by the requirement that the mapping is contractive. Hence we need to derive a

contractivity factor for a two-dimensional affine mapping in terms of r1 and r2.

-86 -

We have from definition 2.3.6 that for a contractive mapping, w:

d(w(x), w(y)):::; sd(x, y) where 0:::; s < 1.

For a two-dimensional affine transformation we have:

and

and using the Euclidean metric we obtain:

condition:

d(w(x), w(y)):::; l1·,llx1 - Y1l + hllx2- Y21·

Now let 1· = max{l1·,1, lr2l} so we have:

Imposing the contractivity constraint gives the condition:

The left hand side has its maximum when lx1- y11 = lx2- Y2l and so we get:

r.../2:::; 1.

Thus we can guarantee an affine transformation 1s contractive by making the

restriction, 1·1 , r 2 E (-0.707, 0.707), since then the minimum contractivity factor is

given by, s = max{lr11, lr21}. However, this does not mean that all contractive affine

mappings need to satisfy this condition since it makes the assumption of the

worst case values for fh and 02 • For example, a mapping for which 01 = 02 has

(ab + cd) = 0 and then r 1 ,r2 E (-1, 1) satisfies the contractivity condition.

-87 -

The Manhattan metric defined as dm(x,y) = Jx 1 -y1 J+Jx2-y2J is a less expensive

function to evaluate than the Euclidean equivalent and so it would appear good

sense to adopt this as our working metric. However, if we calculate the contrac­

tivity factor for an affine mapping under the Manhattan metric we arrive at the

following:

dm(w(x), w(y)) = (JaJ + JcJ)J(xl- yt)J + (JbJ + JdJ)J(x2- Y2)J.

Now,

JaJ + JcJ = j1·tJJcosBtJ + hJJsinBtJ ~ JrtJJ2,

and similarly (JbJ + JdJ) ~ Jr2 JJ2. With r = max{JrtJ, Jr2J} we get:

dm(w(x),w(y)) ~ rJ2 dm(x,y).

Hence, to ensure contractivity we have the requirement that r1 , r2 E (-0.707, 0.707)

for all mappings. Therefore the choice of metric determines the range of scale

factors that can be used and hence the range of collages that can be made.

In order to maximise the chances of obtaining a good collage, we decide to use

the Euclidean metric and the larger range of scale factors it makes possible. Also,

since 0 ~ cosx, sinx ~ 1 for all x, we have a, b, c, d strictly less than unity and with

normalised coordinates we have all the six mapping coefficients less than unity as

promised earlier. The full significance of the limits on mapping scale factors will

become apparent in chapter six where we are concerned with generating random

contraction mappings.

An additional property of two-dimensional affine mappings that makes them

useful for the current implementation is that the area which they cover is easily

calculable from their coefficients. This is of relevance to the random iteration

algorithm for which it has been stated that the probabilities associated with each

mapping should be in proportion to their area. If the area of a shape is A then

-88 -

the area of that shape under an affine transformation is given by lad- bcjA. Thus

we take the probability for each mappmg as:

Of course, this solution is only strictly applicable to totally disconnected or just-

touching iterated function systems, but can still be applied to slightly overlap-

ping ones without a significant degradation in the distribution of points over the

attractor. In any case, overlapping codes are inefficient from the information stor-

age point of view and so we will normally be looking for totally disconnected or

just touching representations and the overlap problem will not become apparent.

The only care that need be exercised with such probability assignments is that

each value of Pn does not fall below the minimum non-zero number that can

be represented in the system. If a probability is ever set to zero the associated

map is effectively removed from the IFS and the representation is degraded as a

consequence.

4.3 Encoding Algorithm

We now give a detailed description of the proposed collage constructing al­

gorithm. The data on which it works takes the form of digitised binary images

of simple geometric shapes contained within a 512 by 512 pixel array. To begin

we give an overview of the structure of the algorithm.

1. The boundary points of the input shape are detected usmg a simple edge

tracking algorithm. An arclength value is assigned to each point on the boundary

and the centroid of the shape is calculated. (The arclength value for a point is

its linear distance along the boundary from a chosen origin).

-89 -

2. The curvature, ,.., is calculated at each boundary point by the convolution of

the raw edge data with derivatives of a Gaussian function, G(O", s), where s is the

arclength parameter.

3. The boundary is segmented into a number of arcs, the endpoints of which

correspond to zero crossings of curvature.

4. Any arcs of less than five pixels in length are treated as spurious and merged

with surrounding arcs.

5. The equation of an interpolating arc, parameterised in terms of arclength, is

calculated using a least squares method. Each arc is classified as either linear,

concave, or convex by inspection of the equation coefficients, and then placed in

a data queue.

6. Contractive affine transformations are calculated which map arcs of the same

curvature type onto each other. Only mappings with contractivity factors less

than 0.8 are considered so as to avoid the value of (1- s)- 1 becoming too large.

The quality of each generated mapping is tested by evaluating an error function

given by:

E= Ea
(r 2 + r~) 1 - .

2 '

where Ea is a measure of the area of the mapping that does not overlay the

shape, and r1 and r2 are the mapping parameters introduced earlier. All error

values are normalised to the range (0, 100).

7. If the best error value obtained for mappings to a given arc is less than a set

threshold, or if the arc becomes shorter than one pixel, then the corresponding

mapping is accepted as part of the IFS and is output to a file. The matched arc

is then removed from further consideration. If no suitable match is found then

-90 -

the unmatched arc IS halved and the two new arcs produced are added to the

back of the queue.

8. The search continues, considering each arc m the queue m turn, until the

queue is empty.

Boundary detection is achieved by an edge tracking algorithm that works by

finding points (pixels) adjacent to a known starting edge point. It makes the

assumption that the boundary it is following is continuous, closed, and relatively

smooth. It makes its traversal in an anticlockwise direction, (so determining the

direction of increasing arclength, and thus giving meaning to the terms concave

and convex), so that it moves in the sense of increasing angle subtended at the

centroid, as usually reckoned in mathematics. The eight possible directions In

which an adjacent point may lie are labelled as in the following table.

0 1 2

7 * 3
6 5 4

Table 4.1 The possible search directions relative to the pixel marked *

as used by the boundary tracking algorithm.

We make the assumption that the shape to be coded is contained within a

known rectangular area of interest (AOI), and is of such a size that it intercepts

the main diagonal. (This is equivalent to knowing the extent of the shape in the

x- and y-directions which in any case is necessary for putting the bounds on the

translation component of mappings). Starting from the top left-hand corner of

the AOI, the algorithm samples each successive point along the leading diagonal

until it detects one that is part of the shape - a 'foreground' point. This is

taken as the first boundary point and is assigned a zero arclength value. The

-91 -

search direction at which this point was found is taken as the step direction from

the previous 'background' point as defined in table 4.1. The eight surrounding

points are then checked in an anticlockwise direction, starting with the one in the

position 'most opposite' (see later) to the search direction. When one of these

points is detected as also being part of the foreground, it is taken as the second

boundary point. With the location of this second point it is possible to make an

assumption, based on the supposed smoothness of the boundary, as to the local

direction in which the boundary is progressing, and so the following routine can

be used for the rest of its points.

From the 'old' search direction, the 'new' search direction is calculated using

the formula new= (old+ 5) · (mod 8), which is the definition of the 'most opposite'

direction. Starting in this direction each surrounding point is checked in a clock­

wise direction until a background point is detected. The last foreground point

before this one is taken as the next boundary point, its step direction is taken

as the 'old' direction from which the new one is calculated. Repeating this pro­

cess tracks the remainder of the boundary. The algorithm terminates when the

last found point is adjacent to the initial point, so long as the boundary contains

more than three points.

As an example consider the section of pixel array represented below where the

shaded points represent the shape (foreground). The search starts at the point

in the top left-hand corner of the array. Moving in direction 4 the fifth point it

checks (a) is determined to lie on the boundary and is taken as the initial point.

The new search direction is set as 7 and so, starting with the pixel in direction

7 and moving anti clockwise, (decreasing numerical search directions), each point

adjacent to (a) is tested. The first such point tried is (b) and it is also found to

be part of the foreground and is taken as the second boundary point. The new

-92 -

search direction is calculated to be 4 = (7 + 5) (mod 8). Searching clockwise from

(b) and starting in direction 4, the last foreground point is found to be (c). The

new starting search direction yields (d) as the next boundary point. Continuing

in this fashion, the tracking stops when it reaches the point (z).

~ v t/'
v /-/ '/ v:• [/ .. · / I/ .

[Z r/· -·/ /''
b' ra:

c
;./> d'
/ /

/
I

t:%·•
I I
l

Figure 4.2 An example of the operation of the boundary tracking algo­

rithm.

For each boundary point the approximate arc-length distance from the pre-

ceding one is calculated and stored. Points in the step directions 0, 2, 4, and 6

are taken as being v'2 units away, whilst those in directions 1, 3, 5. and 7 are

one unit away. From this information we can associate an arc-length value, s, to

each point along the boundary.

The required end result of the segmentation process is a set of boundary arcs

between which it will be possible to find contractive mappings. We refer to this

mapping process as 'matching' one arc to another. Clearly better matches are

possible between arcs of the same structure - ie. smooth or angular - and so we

choose to segment at points of curvature zero crossings. This means that along

its length each arc will have either zero curvature, or else a non-zero curvature

-93 -

of a constant stgn. The concept of segmentation on curvature values is widely

accepted because of the high perceptual information associated with points of

high curvature - see for example Asada and Brady (Asada and Brady 1986).

Curvature, ,.,, is defined as the rate of change of a curve's gradient with

arclength. That is:

dljJ
K.=­

ds
with

dy
tani/J = -.

dx

Following the boundary detection phase, we have an arclength value associated

with each point (x,y), and so it is natural to express curvature in terms of the

derivatives of x and y with respect to s. This is the same approach as that taken

by Mokhtarian and Mackworth (Mokhtarian and Mackworth 1986). We begin

with the expression for ¢J and differentiate both sides with respect to s.

d(tani/J) =sec2 1/Jdi/J = ..!!._ (dy).
ds ds ds dx

Making the substitutions x = dxjds, iJ = dyjds, x = d2xjds2 and jj = d2 yjds2 , and

expressing dyjdx in terms of x and iJ, we obtain:

d¢J 2 d (il)
"' = ds = cos 1/J ds "f ·

Expanding the differential we get,

..!!._ (~) = xii- xiJ
ds x x2 '

and substituting for the cos ¢J term using:

-1 . 2
cos2

A.- (1 + (y"jx) 2
) - x

'+'- - :i;2 +y2'

we arrive at the result:

:i:ii- xy
,.;,= "2 "2"

X +y

This differs from the result that Mokhtarian and Mackworth obtained, in that

they have the denominator raised to a power of 3/2. We claim that our result is

-94 -

the correct one, arguing that the introduction of a fractional power introduces an

ambiguity as to the sign of the curvature. However, the error is unimportant with

respect to Mokhtarian and Mackworth's work on scale-space representation since

the denominator is dimensionless and their erroneous values are only scalings of

the correct ones.

Due to the discrete nature of a digitised image, and the effects of nmse,

calculation of "' based on the raw data would contain too many spurious zero

crossmgs to be of any use. Hence we smooth the data by convolution with a

Gaussian function defined by,

' 1 (2/ 2 G(a, s) = ~exp -s 2a),
av 21r

and make the substitutions:

X= x(s) * dG(a, s)
ds

with }~ and Y defined similarly.

v () d2G(a, s)
A = x s * ds2 ;

The boundary is now segmented into a number of arcs, the endpoints of

which correspond to curvature zero crossings. The next stage of the algorithm

is to find a parameterised equation for each of these arcs which requires that

an arc contain at least three boundary points. Therefore to ensure a meaningful

amount of data in each arc, and to weed out any spurious ones that have evaded

the smoothing filter, arcs of less than five boundary points in length are merged

with surrounding arcs.

Each arc is represented as a quadratic function of s since it is known that

each arc has a constant curvature sign and, by inspection of the curvature equa-

tion just derived, so must such a parameterisation. Explicitly we make the as-

signments:

-95 -

sign of curvature is given by:

Hence each arc IS classified as either linear, concave, or convex, depending on

whether its curvature is zero, negative, or positive. This labeling convention is

determined by the choice of arclength increasing in an anticlockwise direction

around the boundary. The coefficients a0 , a 1 , a 2 , b0 , b1 , b2 are found using a least

squares method. That is, for each arc the sums:

i=N

~1 = L(x;- a2s~- a1si- a0)
2

;

i=1

are minimised where (x;,y;) are data points on the arc for i = 1,2, ... ,N. The

solution to the minimisation of ~ 1 is given by the following matrix equation:

where subscripts have been dropped for clarity. The solution for ~2 IS obtained

by the same equation with the replacement of x by y throughout.

The matching of two arcs is achieved by calculating a number of points along

the length of each and finding the best fit transformation that maps one set of

points onto the other. This is a further reason for parameterising everything m

terms of s since any number, m, of points may be chosen along the length of

each arc depending only on the resolution required. If the points along the first

arc are denoted by the set of coordinates (u(s), v(s)), and those along the second

arc by (x(s), y(s)), then the required mapping, w, is given by,

and Vn = CXn + dyn + f,

-96 -

and IS found by the minimisation of

m m

D.3 = L(un- axn- byn- e) 2 and D.4 = L(vn- CXn- dyn- /)2.
n=l i=n

The following matrix equation (again without subscripts) giVes the solution for

(a,b,e) whilst the replacement of u by v gives (c,d,f).

The quality of a given mapping is decided by an error function defined by:

E= Ea

where r1 and r2 are the scaling coefficients g1ven by)a2 + c2 and)b2 + d2 re-

spectively, and Ea is the fraction of points in the whole of the shape that get

mapped onto the background. A good mapping is one which correspond to a. low

error value. There are several reasons for the use of this form of error function

over the others that immediately present themselves. Firstly, it is not enough

to use the values of ~3 and ~4 a.s the error measure since they only relates to

how well two arcs match each other and do not give any information a.s to how

/ good the mapping is a.s part of a. collage. There is not even any reason why

their values should be used a.s a.n element of the error function since it is only

required that the mapping produced be the best possible (for a. least squares fit)

between two given arcs - it is only the possibility of a. match between the arcs

that is of concern. Secondly, the Hausdorff distance is not included in the er-

ror measure for two reasons. The most important is that it is only of use when

applied to the difference between the shape and the whole of the collage. It is

possible that the Hausdorff distance between a shape and a single mapping could

be quite large but that the mapping still be a valuable component of a collage.

Also, by concentrating collage construction around the boundary of a shape we

-97 -

are resigned to the fact that our final collage may be a poor representation of

the whole shape, and that there will be a large Hausdorff distance between the

two. Thirdly, the evaluation of Ea determines not only how good the match is

at the site of interest, but also globally. It will penalise mappings that produce

overspill of the shape at other points of the boundary other than that currently

being considered.

The use of the Pythagorean sum of scale factors mitigates the effect of over­

spill by scaling it to the 'size' of the mapping. For this factor to be small it

reqmres that both 1· 1 and 1·2 be independently small, and thus avoids the ac­

ceptance of long thin mappings which may have a very small area but which

protrude from the shape and cause the associated at tractor to form 'whiskers'.

The value of Ea is scaled so that possible error values are in the range (0, 100].

The overall effect of the error function is to favour mappings that maximise the

number of points that they map onto the shape (the foreground) whilst minimis­

ing the number they map onto the background.

Matchings are not considered between all possible pairs of arcs, in fact each

arc is only tested for a match with those of the 'matching set'. This is the set

of arcs accepted after the initial segmentation of the boundary. This restriction

is employed to prevent a rapid increase in the size of the search space, and also

to guarantee that most of the possible matchings will be contractive. Further,

only matches between arcs of the same type are considered in order to maximise

the possibility of a good fit. The order in which arcs are tested is determined by

their position in the arc queue. At the start each of the arcs from the boundary

segmentation is placed in the queue in an arbitrary order. The first arc is then

considered, and a match looked for with arcs of the same curvature type in the

matching set. If the error value for the best mapping for a given arc is less

-98 -

than the set threshold value, or if the length of the arc has become less than

one pixel, the mapping will be accepted as part of the IFS, and the arc will

be deleted from the queue. However, if no suitable mapping is found then the

arc is halved to produce two child segments which are placed at the back of the

queue. The next arc in the queue is then taken, and the process continues until

the queue is empty.

When an arc is halved the equations and types of the two new arcs are recal-

culated if they are of a length greater than five pixels, otherwise they inherit the

equation and type of their parent. This ensures that the best possible equation is

used for each arc and that arcs that are too short for the least squares matching

process still have a meaningful equation. We can be sure that the algorithm will

terminate since successive halvings of arcs ensures that their lengths must even-

tually become less than one pixel at which point the best mapping is accepted

regardless of the error threshold.

Finally we demonstrate that the algorithm has an upper bound of O(n2)

where n is the number of boundary points. Consider the segmentation of the

boundary to result in m arcs each of length ain for i = 1, 2, ... , m such that:

i=m

L ai = 1.
i=l

An arc of length a;n can be halved until each child is less than or equal to one

pixel in length. Thus an upper bound on the number of times an arc can be

halved is h = log2 (2a;n) and so an upper bound on the number of children it can

produce is given by:
i=h
L 2i = 2h+t - 1 = 4a;n- 1.
i=O

Neglecting overheads, the execution time of the algorithm is proportional to the

the total number of matches it considers. In the worst case every arc produced

-99 -

is matched to each arc m the matching set and so we have the total number of

matches given by:

i=m i=m

L m(4ain -1) = 4mn L ai- m 2 = 4mn- m2
.

i=l i=l

However, we restrict the minimum length of an initial arc to five pixels, and

so the maximum value of m is n/5. Hence an upper bound on the number of

matches made is 19n2 /25 and so the algorithm is at worst O(n2).

4.4 Program Performance

We now present the results produced by a program of the algorithm described

in the previous section. To test the program's performance we used a set of four

simple shapes containing different combinations of the three arc types. The test

set is shown in figure 4.1 and, labeling from left to right, we shall refer to them

as shapes one, two, three, and four respectively.

F

Figure 4.3 The set of test shapes used to test the performance of the

encoding algorithm.

Whilst quantitative results are supplied for encoding speeds and compression

ratios, the fidelity of the representations are discussed only qualitatively. This is

-100 -

due to the problem inherent in calculating perceptually meaningful values for the

'difference' between two shapes. Mumford (Mumford 1987) discusses this problem

and gives examples of shapes which demonstrate that the use of metrics such as

the Hausdorff distance quantify the 'closeness' of two shapes in a way that does

not in general correspond to human classification, indicating that the shape of

an object is a complex and context dependent perceptual entity. We therefore

make the assumption that a good encoding is one that appears of high quality

to the human eye and base our assessment of program performance upon this

evaluation.

We start with the output from the boundary detection and segmentation

routine which is dependent on the smoothing parameter u. The effect on the

number and position of the arcs into which the boundary is divided as u is

increased IS demonstrated for shape two by the sequence of pictures in figure

4.4.

-101 -

~~-!_]

I ~ j•-.:
r ____:::,

F

F

F

c ,--;::=. J

l
l_s,
rJ

c'~:J

Figure 4.4 A sequence of boundary segmentations of shape two for in­

creasing values of (j, Arc endpoints are represented by the breaks in the

shape outline. The values of the smoothing parameter are: (top left) 1.0,

(top right) 2.2, (bottom left) 8.0, and (bottom right) 32.0. For each picture

the graph at the bottom is the curvature plot on which the segmentation

is based.

Clearly, for an angular shape such as that used, the boundary of which could

be accurately described using only linear arcs, a low value of (j is required to ob-

tain an optimal segmentation since the high sharp peaks produced at the corners

maximise the length of the linear sections. However, as described in the previ-

ous section, in order for the program to have some degree of robustness when

used on noisy images, any arcs of less than five pixels in length are treated as

spurious and are merged with surrounding arcs. Hence, as the results for (j = 1.0

-102 -

demonstrate, if the smoothing parameter is made too small then the curvature

peaks at corners become so sharp that the small concave and convex arcs that

they represent fall below the minimum length and cause linear arcs to be joined.

Since the typing of each arc is left until its parameterised equation has been

calculated, linear arcs joined in this way become classified as curves. The best

segmentation of shape 2 is achieved with a smoothing parameter of u = 2.2, the

broader curvature peaks being accepted as individual arcs, and thus allowing the

correct classification of the whole of the boundary. As u is increased further, the

peaks become still broader resulting in the shortening, and in some cases the

disappearance of, the linear segments. This IS demonstrated by the results for

u = 8.0 where it can be seen that some of the shorter linear segments detected

with smaller smoothing parameters have joined with adjacent curves due to the

coalescence of curvature peaks, as clearly visible in the graph. For u = 32.0 as

shown in the final picture of the sequence, the curvature plot is smoothed to

such a degree that the boundary is segmented into only four arcs, resulting m

the loss of all fine detail of the boundaries structure and its subsequent repre­

sentation as four long curves. Although not shown, if the smoothing is continued

any further curvature becomes positive along the boundary's entire length and

no segmentation occurs.

It was determined experimentally that a value of u = 2.2 gave useful segmen­

tations of all the shapes in the test set. This is demonstrated by the following

figure.

-103 -

F
c;-;==.]

I L~ ~~
c'~:J

Figure 4.5 Boundary detection and segmentation for the set of test shapes

with a smoothing parameter of, u = 2.2. The input shape appears on the

left of each picture, and the segmentation points are denoted by the breaks

in the boundaries on the right.

A vv

The segmentations found for each test shape in figure 4.5 were used to define

the initial arcs for the collage construction process. At this stage we have the

error threshold, t:, as the free parameter and demonstrate its effect on the quality

of the output collages by the following figure.

-104-

Figure 4.6 The effects on collage construction due to increasing the error

threshold, c. The values of£ are: (top left) 1.0, (top right) 2.0, (bottom left)

4.0, and (bottom right) 16.0. For ea.ch picture the four test shapes appear

on the top row with their collages directly beneath them. The collages are

represented differently from usual, being shown as mappings of the whole

shape to give a. better idea. of their space filling qualities. The bottom row of

each picture shows the a.ttra.ctors for the IFSs associated with each collage.

In general it appears that lower error thresholds result in better collages with

more mappings (table 4.2) as is to be expected from theory. However, there are

some exceptions, notably cases where an increase in the error threshold produces

a better collage. First, consider the results for shape two which closely follow ex­

pectations. With the lowest threshold setting the collage consists of 138 mappings

which match the boundary well and coincidentally fill the interior of the shape.

-105 -

Hence the attractor of the IFS not only has a good boundary, but serves as an

acceptable representation of the whole shape. For t = 2 the number of mappings

used drops to 103 and the resulting collage fits less well to the boundary, although

the interior is still well filled. Further increases result in progressive deterioration

of collage quality until the attractor for t = 32 is unrecognizable.

[shape 1 shape 2 shape 3 shape 4

1 19 138 74 63
2 15 103 34 41
4 13 73 15 31
16 11 43 12 28

Table 4.2 The number of mappings used to construct a collage for each

shape at a given erro1· threshold.

The other three test shapes each show a departure from the expected norm.

vVith shape four as input~ the output is poor even for low error threshold val-

ues, with numerous 'whiskers' present in the collage and hence the attractor.

This is due partly to the inherent difficulty of matching sharply pointed cor-

ners, and partly to the algorithm used. In an attempt to find mappings with

below-threshold error measures, boundary arcs in the region of sharp corners are

repeatedly halved. Since matching in such regions is difficult due to the narrow

angle into which the shape must be mapped, this process continues until the

one pixel arc length limit is reached, at which point the best mapping is ac­

cepted irrespective of its absolute error value. It is therefore possible for high

error mappings to be accepted into the collage and to produce the thin penin­

sulas that are so apparent. A positive aspect of the collages produced for shape

four is the degree to which the interior of the shape has been filled, even at low

-106 -

error thresholds. However, this is due to a fortuitous combination of the geome­

try of the shape and the relative length of the linear arcs which enable the use

of some large mappings with very low error values.

Shape one begins to display the same effect since the boundary of the collage

for t. = 1.0 is slightly inferior to that obtained with t. = 2.0. If we take into account

the quality of the collage in the interior of the shape, then both can be considered

inferior to the result obtained using a threshold of 4.0 since, for a small trade-off

of boundary fidelity, it achieves greater overall shape coverage. This is simply

due to the use of larger mappings which naturally occupy a greater area.

Finally, shape three demonstrates several unwanted effects of the current Im­

plementation. The most noticeable is the 'migration' of collages towards the

boundary as the error threshold decreases. This is not altogether unexpected

since by looking only for mappings along the boundary it must be accepted that

when the mappings become very small they will provide little coverage of the

interior. However, in this case the effect is exacerbated by the symmetry of the

shape which has the effect of producing only two distinct arcs in the match­

ing set - one corresponding to a long convex section, and the other to a short

concave one. The resulting lack of variation in the types of possible mapping,

combined with the similarity of all the child arcs produced by halving, means

that if no acceptable mapping can be found for an arc of given length, then it is

unlikely that one can be found for another arc of similar length. In practice, this

means that the program will keep searching until all the arcs get small enough

for an acceptable mapping to be found. Hence for a low error threshold, nearly

all the mappings are very small and the boundary of the attractor approaches

one pixel in width. This is apparent in the collage for t. = 1.0 where there is only

one mapping of significant size. As the error threshold is increased further large

-107 -

transforms are accepted but at the expense of degrading the boundary informa­

tion. A further effect of the symmetry of shape three is the spurious structure

that is apparent in the attractors of the iterated function systems produced by

error thresholds of 4.0 and 16.0, which would prove misleading if used as a repre­

sentation of the shape.

By selection of different (O", e) parameters for each test shape, it was possible

to Improve upon the results of figure 4.6. The following figure depicts the best

collage that was found for each shape (using the parallelogram representation

scheme) and, to demonstrate the fidelity of the information encoded in each IFS,

the boundary of the associated at tractor.

F D

Figure 4. 7 The collages (left) and the at tractor boundaries (right) pro­

duced for the best combination of parameters for each shape. The param­

eters are (4.0, 4.0) for shape one, (2.2, 1.0) for shape two, (1.5, 2.25) for shape

three, and (1.0, 0.5) for shape 4.

To the eye, the quality of these 'best' encodings reflects the problems specific

to each shape, that of shape two for example, is of a high standard but the

pnce we pay is the use of 138 mappings. The representation of shape one was

achieved with the use of just 11 mappings but the boundary contains several

significant imperfections. The encodings of shapes three and four required 19 and

-108 -

97 mappmgs respectively, but also contain significant boundary errors. However,

making the assumption that a conventional representation of shape boundaries

would need to make explicit the coordinates of each point and thus require the

storage of two numbers per pixel, the following table shows the compression ratios

that were obtained. The figures were calculated based on the number of pixels in

each shape boundary and the number of mappings used in the encodings, each

of which is taken to be described by six coefficients.

shape boundary number compressiOn
number length of maps ratio

1 306 11 0.108
2 449 138 0.922
3 297 27 0.273
4 383 63 0.493

Table 4.3 Compression ratios for the best encoding of each test shape.

To complete the results, we g1ve the following table of approximate execu-

tion times using the parameters (2.2, 16.0) for a program running on a SUN 3/75

workstation. Clearly, as the number of mappings becomes very small as in the

case for shapes one and three, our assumption that program overheads can be

neglected is invalidated. The output of the RIA implementation is demonstrated

by all the attractors that appear throughout this work, which were rendered at

a rate of approximately one thousand pixels per second (one one- thousandth the

rate achieved by Horn (Horn 1989) using an AMT DAP machine with 1024 pro-

cessing elements).

-109 -

shape boundary number number runtime
number length of arcs of maps (cpu s)

1 306 6 11 62
2 449 18 43 354
3 297 6 12 84
4 383 16 28 288

Table 4.4 Program execution times for u = 2.2 and t: = 16.0.

4.5 Conclusions

We have demonstrated that automatically generated boundary collages are

accessible using the O(n2) algorithm described in this chapter. For the set of

test shapes used, runtimes were in the range of sixty seconds to half an hour

depending on boundary length and complexity. Data compression ratios of nearly

10 : 1 were achieved for the simpler shapes, and even the most complex produced

codes more compact than a simple list of pixel coordinates. Qualitatively, the

best encodings produced attractors which, whilst far from perfect, gave good

approximations of shape boundaries. Taken together these results indicate that

the encoding method is practical so long as absolute code fidelity and encoding

times are not of critical importance. For example, the technique could find an

application in computer graphics such as that initially suggested by Levy-Vehel

and Gagalowicz.

The results further indicate that the plugging of holes m boundary collages

to produce full shape encodings is not as simple as suggested by Levy-Vehel and

Gagalowicz. The use of small mappings to produce accurate boundary matches

can result in minimal interior overlap and hence holes which are not significantly

-110-

smaller than the original shape, and which have a more complex boundary. Fun­

damentally this returns us to the problem of finding full two-dimensional collages,

which is the problem that boundary matching was employed to avoid.

With reference to the use of this implementation as a basis for a machine

vision shape representation scheme we make the two following observations:

1. The algorithm is applicable only to the set of shapes possessing a well de­

fined and relatively smooth boundary. In general however, we cannot expect an

tmage of a real world object to have such a boundary for as Marr illustrates

(MalT 1978), there exists a large set of shapes for which even though a clear

'perceptual' boundary exists, a well defined physical one does not. For example,

we find it easy to draw the outline of an imaginary leafy tree whilst there is no

physical boundary around a real tree to which our drawing corresponds. Clearly

just because we perceive most shapes to have a well defined boundary it cannot

be assumed that the low level processing of a machine vision system will also

find them to have one. Even if such a boundary were to exist, it is unlikely to

be as continuous or as smooth as those of the shapes in the test set, due to the

presence of noise. A possible solution would be to take the convex hull (see for

example Bailey and Cowles 1987) of a shape· as its boundary, but even this is

unnecessarily restricting the scope of the IFS representation scheme since, as was

shown earlier, it should be possible to encode any given shape.

2. The whole algorithm depends critically on the smoothing factor u and the

error threshold f, it having been demonstrated that each shape requires it own

specific values of each of these parameters to achieve satisfactory results. The

value of u in particular has been shown to determine the number of initial arcs

into which the boundary ts segmented and therefore to determine the range of

possible mappings.

-111 -

The general conclusion that we can draw from the results of this chapter

1s that whilst the current implementation has possible applications in computer

graphics, the limitations imposed on the type of shapes that can be encoded

and the lack of robustness of the algorithm make it unsuitable for use as the

basis of a general shape representation scheme. Specifically, we have shown that

the problem of finding a full two-dimensional collage cannot be avoided by this

boundary matching approach, and that it is necessary to develop an algorithm

for directly obtaining full collages.

The construction of such an algorithm poses a complex problem. Even usmg

a normalised representation scheme, and restricting the mapping coefficients to

an accuracy of two decimal places, we have a set of mappings numbering in the

region of one hundred million, from which to choose. Further, there is no known

method for finding the optimal collage other than 'try all cases' (Aho et al. 1983)

which is clearly impractical. Hence, as for the vision problem in general, we are

forced to look for approximate solutions. Fortunately we know that a IFS does

not have to be perfect to be of use and that we can easily determine the quality

of a given IFS using the collage theorem.

The situation just described is the type of problem domain for which adaptive

algorithms were developed. Hence we devote the next chapter to the description

of a special type of adaptive algorithm, the genetic algorithm, and go on m

chapter six to implement an IFS encoding scheme based upon one.

-112 -

5 GENETIC ALGORITHMS

For any search algorithm intended to function in a large and complex domain,

there exists a fundamental trade-off between two competing strategies, those of

exploration and exploitation. That is, whether to focus attention in the direction

of the locally best solutions or to perform a more exhaustive search of the whole

space, regardless of local qualities. The first approach is exemplified by random

search techniques such as that of 'try all cases' which, although eventually guar­

anteed to produce the optimal result, are too inefficient to be of any practical use

(Aha et al. 1983). Hill climbing algorithms employ the second type of strategy

in that they adopt the best solution currently available and as a consequence are

easily trapped in local maxima, possibly leaving large areas of the search space

unsampled. A feature of both random search and hill climbing algorithms is that

they discard much of the information presented to them during the course of a

search. It has been shown (Holland 1975) that a genetic algorithm (GA) achieves

a near optimal trade-off between exploration and exploitation and also makes

good use of past experience. Genetic algorithms have been demonstrated to have

superior performance over hill-climbing types in some large search domains such

as those of the NP class of problems (DeJong 1987), and find particular use in

domains for which no theory exists to act as a guide. Recent applications have

included uses in AI for machine learning (DeJong 1987), and in vision processing

(Fitzpatrick and Grefenstette 1988)

-113 -

A GA is a simplified model of the operation of population genetics (Dawkins

1976, 1982, Ridley 1983). in that it 'evolves' a set of successively better solutions.

It makes the basic heuristic assumption that the optimum solution in a search

space is to be found in a region containing a high proportion of good sub-optimal

ones. \Vith a view to the application of a GA t9 the solution of the inverse

problem, this is clearly a sound hypothesis based on the inherent stability of the

collage construction process as demonstrated in chapter three.

In outline, the basic structure and operation of a GA can be described as

follows. In the same way that the complete set of chromosomes (or genotype)

specifies the properties of the organism (the phenotype), and as such can be

regarded as an encoding of that organism by a string of chemical bases, so a GA

represents all possible solutions in a problem domain by fixed length strings of

numbers. The solutions themselves need not be numeric since it is the way m

which each string is interpreted that determines the solution's structure. However,

a necessary constraint of the mapping from numeric string to solution is that it

be one-to-one and onto. Employing such a representation, an initial set of trial

solutions, called a population, is produced by the random generation of numeric

strings. A performance measure, (or to use the language of population genetics,

a 'fitness' measure), is calculated for each of the trial solutions in the population.

Each solution is then allocated a number of 'offspring' proportional to its relative

fitness value. The exact offspring numbers are scaled so that the total number

is equal to the number of original solutions thus maintaining a fixed population

size from generation to generation. Each of the offspring is then modified using

a set of genetic operators which are designed to mimic the effects of biological

gene recombination. This is achieved by the swapping of sections of the strings

between pairs of solutions. The procedure which governs how many offspring are

-114-

to be allocated to each solution, and which of the set of genetic operators are to

be applied, is called the reproductive plan. The new set of solutions generated by

the reproductive plan then replace the parent population and the whole process

is repeated a number of times with the result of a progressive increase in the

average fitness of the population.

For the next few sections we turn to a description of the work of Holland

(Holland 1975) on the development of the theory of GAs and formalise the above

outline. We then discuss some of the problems encountered with practical imple­

mentations of GAs, and go on to present our own ideas for a reproductive plan

that attempts to alleviate some of them.

5.1 A Formal Framework

Holland (Holland 1975) identifies the following four components as reqmre-

ments of an adaptive system:

1. an environment of the system, E;

2. a set of structures, K;

3. an adaptive plan, T, which modifies the system structures;

4. a measure, JJ, of the performance of each structure.

The purpose of an adaptive system is to update iteratively a subset of struc­

tures, I< c K:, based on the information it receives from its environment, so that

the average performance of individual structures k E I< improves. In general, the

form of the performance measure will depend on the environment, and so we

should adopt Holland's notation of writing J.lE(k) to represent the performance of

a structure in the environment, E E £, where £ is the set of all possible envi­

ronments. However, this notation becomes cumbersome when we start to talk of

-115-

the nth structure in a set at a time t, and because we normally have a fixed

environment, we leave out explicit reference to it and write J.lnt as shorthand for

J.1E(k,(t)), but bear in mind the proper meaning. Following Holland we make the

definition:

Definition 5.1.1 Let K(t) be the set of structures at time t. Let the environ­

ment produce a signal I(t) which consists of the performance measures J.lnt for the

structures kn(t) E K(t), then the adaptive plan produces a new set of structures

K(t + 1) and can be represented as a function:

r:IxK~-->K.

As Holland observes, the relationship between K(t) and K(t + 1) may not be

deterministic since r can be a stochastic process. That is, instead of constructing

a unique set of structures, K(t + 1), from I(t) and K(t), a range of new sets of

structures, {Kj}, is produced and a probability, Pi, associated with each one. The

next set of structures to be evaluated is then selected with probability Pi.

The effect of iterative applications of r to is to produce a sequence of suc­

cessively fitter sets of structures which can be thought of as a trajectory, or

path, through K. Alternatively, the individual structures that comprise I< can be

thought of as a parallel set of trajectories through K. (Parallel in the sense that

they progress through K at the same time). The ability of the system to discrimi­

nate between structures is limited by the range of stimuli, I, that it receives from

its environment and hence this range is a limiting factor on the improvement in

average performance that is possible.

-116 -

It 1s clear that a G A 1s an adaptive system smce we can make the assoCia­

tions:

environment = search environment

set of structures = population

structures = solutions

performance measure = fitness

adaptive plan = reproductive plan

which are consistent with the outline of a GA's operation and with the previous

definitions. In future when referring to GAs we will use the terminology on the

right since it is more descriptive, although we will always intend the meaning

formally associated with the terms on the left. In addition we make two further

terminological definitions. Firstly, we will refer to each successive population that

is generated during the iteration of the algorithm as a generation, for example

the initial random population is the first generation, and so on. Secondly we call

the fittest solution that has been found by the nth generation the best-so-far

solution. The term indicates that although the solution is the best that has been

found to date, it does not preclude the possibility that a few more generations

would yield a better one. The best-so-far solution is important as it is the result

we are interested in from a practical point of view, the average fitness of the final

generation being of incidental importance, although providing a useful measure

of the algorithms performance.

The set of solutions, I<(t), serves a double purpose, being not only the data

on which the algorithm is currently working, but also a coded history of all

the structures tried to date. How this is possible is described in the following

-117 -

sections, but first it reqmres the specification of exactly what we mean when we

talk of data strings, reproductive plans, and genetic operators.

5.2 Schemata

In the analysis of Holland it was shown that best results can be expected

from a GA when solutions are represented as binary strings and, since any set

of solutions which can be represented by a string of numbers can obviously be

represented by a binary string, it is unusual for anything else to be used. Hence,

the following discussion assumes the use of binary strings in all cases.

Borrowing the terminology from genetics, the use of a binary representation

means that each point (or locus) on the string can be occupied by one of only

two 'alleles'. This simply means that there can be either a '1' or a '0' at each

point of the string. We can then represent a section of a string as follows:

... 1-0-0-1-1-*-*-*-*-0-1 ...

where the * stands for a locus at which the allele value is of no importance to

the current discussion. Holland gives the following definitions.

Definition 5.2.1 A schema is an n-tuple of defining positions along a binary

string.

That is to say we vtew each solution string as a compound entity consisting

of a combination of different loci groupings. The groupings are allowed to overlap

and a single locus is permitted to be a member of more than one distinct schema.

Thus a string of length I loci contains 21 different possible schemata. A specific

-118 -

association of allele values to the defining positions of a schema IS called an

instance or realisation of that schema. The previously illustrated section of a

binary string can be interpreted as a instance of a schema with seven defining

positions, and is just one of the 2i possible realisations.

Definition 5.2.2 Let a schema, £, have n defining positions it, i2, i3, ... , in along

a binary string. The length of the schema is defined to be:

Hence the schema of our example has a length of ten units.

Schemata are treated as the random variables in a population and as the real

entities being evaluated when the fitness of a solution is calculated. For example,

the observed average fitness of an instance of a schema is taken as the average

fitness of all the solutions in which it appears. An analysis of the change in the

relative proportions of schema instances leads to an explanation of the power of

a GA, but first we must consider the way in which schemata are modified from

generation to generation.

5.3 Reproductive Plans

Two possible reproductive plans are described by Holland, and are labeled R1

and R2 respectively. Plan R1 updates only one solution during each generation

and is defined as follows.

-119 -

Reproductive Plan R 1

1. Set t = 0 and initialise the population randomly.

2. Calculate and store the fitnesses, /Jno, for n = 1, 2, ... , N.

3. Increment t by one.

4. Select a solution with probability, Pi= /Ji(r-1)/NP.r-1,

where [1.1 is the average population fitness.

5. Apply genetic operators to produce a. child solution.

6. Choose a second solution at random from the population.

7. Replace the chosen solution with the new child and calculate its fitness.

8. Repeat steps three to seven until t = T, where T is the runtime allocated.

The second algorithm, R 2 , uses a. time-step during which all the solutions are

updated, and for which each individual solution is replaced deterministically.

Reproductive Plan R 2

1. Set t = 0 and initialise the population randomly.

2. Calculate and store the fitnesses, /Jno, for n = 1, 2, ... , N.

3. Increment t by 1.

4. For each solution, ki, generate ni offspring by selecting ni choices of genetic

operators with ni = /Ji(t-1)/[1. 1_ 1 where [1.1 is the average fitness.

5. Place all the offspring in the next generation.

6. Replace the parent generation with the child generation.

7. Repeat steps three to six until t = T, where T is

the number of generations to be run.

-120 -

Based upon these reproductive plans, Holland states the following theorem.

Theorem 5.3.1 (Holland 1975) If a.t any time-step, t, there is probability p 1

that a structure, kn(t), produces an offspring during that time-step, and there is

a probability p2 that kn(t) is deleted during that time-step, then the expected

number of offspring of kn(t) is Pt!P2·

Proof- The probability of kn(t) E I<(t) surviving a time-step is (1- p2), so the

probability of kn(t) being deleted during the Tth time-step is its probability of

surviving T- 1 time-steps multiplied by its probability of being deleted during

the Tth. That is

The expected number of offspring during this interval is simply JlnT = p1T. There­

fore, the expected number of offspring during the lifespan of kn Is:

00 00

LP(i)fint = LPtP2i(l- P2)t-l
t=l t=l

00

= P1P2 L t(I- P2) 1
-

1·
t=l

However:

f:t(1- P2) 1
-

1 = 1 + 2(1- P2) + 3(1- P2)2 + ... = (1- (1- P2))-
2 = i-.

t=l p

and so,
00

'"""' - P1 P2 P1 L...p(t)J-lnt = -2 = -.
t=l P2 P2

For plan R1 we have:

m=N

Pl = 1-'nt/ L 1-'mt
m=l

and

-121 -

1
P2=­

N
'V kn(t);

whilst for R 2 we have:

and P2 = 1.0

Then, if the total fitness of the population changes negligibly over the expected

lifetime, the expected number of offspring for k11 (t) under either plan 1s:

m=N m=N

Pt/P2 = Np,nt/ L Jl.mt = Jl.nt/ L Jl.;:/
m=l m=l

where flt 1s the mean fitness of all solutions m the population at time t.

Thus for a reproductive plan of type R, which is to say either R1 or R2 , the

number of offspring allocated to each solution is dependent on its relative fitness.

Solutions with above average fitness clearly get allocated more offspring whilst

those of below average fitness get fewer. Since only integer numbers of offspring

are actually possible, Holland suggests scaling the value of JJ.nt/Jt 1 •

5.4 Genetic Operators

Holland describes several genetic operators such as mutation, crossover, inver-

sion, dominance, modification, translocation, and deletion, but shows that just

mutation and crossover are adequate for a robust and general purpose set of

operators.

To discuss the use of these operators we represent a solution string as k =

a1a2aa ... at where a; denotes the allele value at each locus, and is thus either a '1'

or a '0', and I is the length of the string. Holland then describes the crossover

operator as the following three step process:

-122 -

1. Two structures, k=a 1a2 ... a, and k'=a;a~ ... a;, are selected at random

from the current population.

2. A crossover point is selected by choosing a random number, x,

from { 1, 2, 3, ... , I - 1}.

3. Two new structures are formed by exchanging the alleles of k and k' to the

right of position x which results in the new structures:

The effect of a crossover operation on the schemata pool is twofold. Firstly

there is the generation of new instances of a schema already in the pool. For

example, the structure k given above is an instance of the schema a 1a2 ... * * ... *

but after crossover with k' we get a new instance of a1a2 ... ** ... * namely that of

a1a2 ... a..,a~+l ... a;, always assuming that a; i= ai for some i > x. Each new instance

of a schema c is equivalent to another trial of the random variable associated with

c, and so increases the the likelyhood that the observed mean performance fl,t of

the schema c is a good approximation of the expectation of the random variable

c. Crossover also generates completely new schemata for trial. The crossover be-

tween k and k' produces an instance of the schema * ... * a..,a~+l * ... * which was

present in neither of the two initial strings, again assuming that a..,+l i= a~+ 1 • Hal-

land gives the following theorem for the number of instances of new and already

existing schemata that are generated by a crossover operation.

Theorem 5.4.1 (Holland 1975) Let k = a1a2 ... a1, and k' = a;a2 ... a;, differ in

attribute values at n 1 positions to the left of x + 1 and by n2 positions to the

right. Then either resultant of crossover between k and k' will be an instance of

-123 -

21 - 2/-n, - 2/-no + 21-n,-n, 'new' schemata and an instance of 2/-n, + 2l-n,- i-n,-n,

schemata already instanced by k or k', assuming n 1 f. 0 and n2 f. 0.

Proof - After crossover any schema which is defined at one or more of the n 1

positions to the left, and at one or more of the n2 positions to the right, will

have neither k nor k' as an instance. The number of such schemata is the number

of 'new' schemata instanced by the crossover. There are 2n, combinations that

can be made of the n 1 positions to the left. However, this includes the 'null'

combination in which none of the n 1 positions are defined and so the number

of combinations including at least one positions is 2n, - 1. Similarly to the right

there are 2n,- 1 combinations. The remaining I- (n1 + n2) positions can have any

allele and so there are 21-n,-n, combinations possible. The total number of 'new'

schemata is then:

Since n1 ,n2 > 0 the remainder of the 21 schemata will have new instances. Thus

the number of existing schemata getting new instances will be:

Clearly the application of the crossover operator allocates new trials to existing

schemata whilst simultaneously introducing new schemata for trial. This is where

the GA manages the trade-off between exploitation and exploration since further

trials of existing schemata represent a more thorough examination of regions of

the search space already identified as containing above average solutions, whilst

the new schemata represent a speculative investigation of as yet unexplored areas.

-124 -

We now consider the second of Holland's genetic operators, that of mutation.

This is a single step process for each loci of a string whereby the allele value

is inverted with probability Pm. For example, if the binary string of structure k

begins with the sequence,

1-0-1-1-0- ... ,

then a mutation at the third locus will transform it to:

1-0-0-1-0-

The mutation probability, Prn, is the same for each locus and has a fixed value.

The purpose of mutation is to ensure that no schemata are permanently lost

from the pool and is usually kept as a background process in that the value of

Pm is made very small.

5. 5 Intrinsic Parallelism

We are now in a position to give Holland's analysis of the operation of the

reproductive plans described earlier using just the two genetic operators. This

will lead to the concept of 'intrinsic parallelism' which is responsible for the ef-

fectiveness of GAs. To begin, Holland concentrates on the effect of crossover

alone.

Theorem 5.5.1 (Holland 197.5) Let P(f, t) be the probability of a given solution

kn(t) being an instance of schema f a.t time t. Given a reproductive plan of type

R, and using only the crossover operator, the expected change in P(f, t) over one

generation is bounded by:

P(1) (1 - (1- P(f,t)]Pcl(f)) p.,, P(t)·
f,t+ :2: {1-1) P.t f, '

-125 -

where Pc is the probability of individuals undergoing crossover during a gener-

ation, and fl 1 is the observed a.verage performance of all the schemata in the

population.

Proof- It has already been shown that during one generation each individual

in a population is expected to produce 1-lnt! fl 1 offspring under a reproductive plan

of type R. Let B<(t) be the set of individuals that are instances of the schema L

The total number of offspring expected for the set B<(t) is:

where N<(t) is the number of instances of schema c at time t and jj<t is the average

performance of all individuals that are instances of c. If Pc is the probability of

crossover selection, and /(c) is the length of c, then a proportion Pcl(c)f(l-1) of the

schema offspring will have .a crossover falling within its defining positions. When

an instance of c is crossed with another instance of c the result is also an instance

of c, otherwise the result may or may not be an instance of L The probability of

c crossing with cis just P(t:,t) so no more than a proportion (1-P(t:,t))Pcl(t:)/(1-1)

of the modified offspring of c can be expected to be instances of schemata other

than t:, the remainder, [1- (1- P(c, t)Pcl(c)f(l-1)], will be instances of c Therefore,

if N is the number of solutions in the population and N;(t + 1) is the number of

instances of c that survive into the next generation:

P(1)= N;{t+1) (1 - [1-P(c,t)]Pcl(c)) N<(t+1)
c, t + N ~ (/- 1) N

> (1 _ -=-[1_-_P....,.('-t: ,--'t)'-=-] P_c_.l (c...._)) jj<t N < (t)
- (/-1) JJtN

> (1 _ [1- P(t:, t)]Pcl(c)) ~<t P(c, t).
- (I- 1) Jlt

-126 -

Of course, it is possible that some instances of t could form from the crossover of

two solutions that did not contain t but this would only strengthen the inequality.

As Holland points out, instances of a schema will increase so long as:

(1
_ [1 - P(f, t)]Pcl(f)) Jt,t > 1.

(1- 1) p, -

Therefore, a schema will become more populous if:

Jl<t 2 () . 1 _ [1-P(<,l)]Pcl(•)
(1-1) .

The denominator of this expression is equal to 1 - c where c is the product of

three probabilities and soc:::; 1. Also, 1/(1-c) 2 (1+c) since (1-c)(l+c) = (1-c2):::; 1

which gives:

_ _ ([1- P(f,t)]Pcl(f))
J.l<t 2 J.lt 1 + (l - 1) .

Taking the worst case with Pc = 1 and assuming that P(f, t) is small for any given

f since the number of schemata is in general very large, then to ensure increase

it is required that:

- - (/(f))
J.l<t 2 J.lt 1 + (l- 1)

This demonstrates the intrinsic parallelism of the genetic algorithm in that the

proportions of each schema increase or decrease according to the above, indepen-

dently of what is happening to all the other schemata in the population. Further,

the relative proportions with which a schema appears in the population is depen-

dent on its past performance and thus serves as a record of that performance.

The effect of mutation on this result is given by the following lemma.

-127 -

Lemma 5.5.1 (Holland 1975) For a reproductive plan of type R, usmg both

the crossover and mutation operators, the expected change in P(f, t) over one

generation is bounded by:

Where Pm is the probability of a mutation occurring at any given locus, and L

is the number of defining positions for schema c

Proof - From the previous proof we know that the term,

(
_ [1- P(€, t)]Pcl(€))

1 (/-1) '

is the probability of an instance off surviving crossover. The probability of one of

the defining loci being mutated is Pm, so the probability of each defining position

being unchanged is (1 - Pm), and the probability of all L loci being unchanged

is (1- Pm)L. Hence the proportion of instances of schema f in a population after

crossover and mutation Is:

(1 _ [1- P(E,t)]Pcl(€)) (1 - p)L
(/-1) m .

Substituting for this term n theorem 5.5.1 gives the desired result.

Clearly mutation is a constant source of loss of schemata, and hence the

reason for keeping the value of Pm small. However, some mutation is necessary

to maintain diversity and lessen the chance of entrapment in false maxima.

-128 -

5.6 Robustness

The ultimate level of robustness that could be required of a GA 's repro-

ductive plan is for it to converge to the optimal solution under any conditions.

However, as Holland points out, this is a pointless performance measure since

searches based on exhaustive evaluation will converge but are useless in practice.

Further, Holland states that when data can be represented by no more than a

population of N trial solutions, where N is less than the number of all possi-

ble solutions, then no plan can be guaranteed to yield convergence. Specifically,

Holland gives the condition that for any N < IK:I there exists 6(N) > 0 such that:

T

lim -T
1

'L,P(I*,t) = 1- 6(M).
T-oo

t=l

where J(• is a subset of K: consisting of one or more structures with optimal

performance which is to say structures k* E A such that the mean of Jl.(k*) is at

least as high as the mean for any k E K:.

This occurs because for any finite number of trials of a sub-optimal solution

there is a non-zero probability that its observed average performance will exceed

that of the observed value for the optimal solution(s). There is thus a non-zero

probability that enough sub-optimal solutions could be wrongly observed to lead

to the deletion of data pertaining to the optimal solutions(s). Thus it cannot

be expected for a genetic algorithm to produce optimal solutions even given an

arbitrary large number of generations.

However, 6(N') < 6(N) for N' > N even when N' is less than the number of all

possible solutions. This is because:

1. More copies of sub-optimal solutions in a population enables the average per-

formance to be calculated with more accuracy. If the variance of J.l(k) is smaller,

then there is less chance that it will be observed that jj(k) > ji(k*).

-129 -

2. The bigger the population the more generations that are required to com­

pletely displace optimal solutions which means that ji(k) has to exceed p(k*) over

a longer period which is less likely.

To summanse the results of the last few sections, during each generation a

G A evaluates and updates a large number of schemata in an intrinsically par­

allel way, the current generation acting both as the set of best solutions found

to date as well a history of the search, represented by the relative proportions

m which each schema appears. Whilst this makes for an algorithm capable of

quickly finding good solutions, it will not in general find optimal ones in do­

mains with an infinite or unmanageably large number of possible solutions due

to practical constraints on population size.

5. 7 Limits on Implementations

Holland identifies some of the factors that can adversely affect the performance

of a G A as follows:

- K is large resulting m many alternatives to test.

- The solutions k E K are complicated so that it is difficult to determine

which schema or components are responsible for good performance.

- p.(k) is a complicated function containing many interdependent

parameters and hence can be non-linear and discontinuous.

- p.(k) can be a time and space varying function.

- E presents the adaptive plan, T, with a great flux of information.

These problems are however purely theoretical in that they identify limita­

tions on a GA 's performance due to the search domain, fitness function, and

reproductive plan, but do not consider the practical limitations imposed by an

-130 -

implementation. Booker (Booker 1987) has addressed such problems and identifies

the main one to be that of the population converging prematurely to solutions

that are far from optimal. This is due to a combination of the effect described

in the last section in which inferior solutions can be observed to out-perform su­

perior ones, and the fact that any practical implementation of a GA must have

a finite population size and hence cannot allocate an arbitrarily small number

of offspring to each solution. For example, only an integer number of offspring

can be generated, and for a population of fixed size, this means that some solu­

tions must necessarily get allocated zero offspring. This complete loss of solutions

never occurs in the theoretical formulation, the proportions of inferior solutions in

the population simply become very small but still significant should one of their

number eventually be transformed into a much fitter solution. The divergence of

the search trajectory from that predicted and the domination of far from optimal

solutions is termed genetic. drift, after its analogue in population genetics.

The problem is aggravated if, during the early generations, a solution should

appear that is significantly better than the average although not particularly good

in absolute terms. Due to the way offspring are allocated, such a solution con­

tributes a large proportion of offspring to the next generation which in turn are

likely to be of above average fitness. After a few generations the descendants

of an abnormally good solution have completely dominated the population by

pushing out all other solutions. The resulting lack of diversity ensures that the

population will converge prematurely. The fraction of the next generation which

are descended from a single solution is defined by Baker (Baker 1987) as the

'percent involvement' and can be used as an early warning of premature conver­

gence.

-131 -

Several approaches to alleviating the problem are discussed by Booker, the

simplest of which is to simply increase the population size to allow for the rep­

resentation of smaller shares of the space available. This is limited by efficiency

considerations since larger populations require more memory and take longer to

evaluate. In addition this detracts from the appeal of a GA - that of achiev­

mg near optimal solutions without recourse to mammoth evaluation. Initially,

increasing the mutation rate would appear to prevent premature convergence

by increasing the amount of disruption m the system, however, mutation af­

fects good and bad solutions equally and as v~rified in the next chapter increas­

ing its probability above a background level has an overall detrimental effect on

the performance of the algorithm. Booker briefly mentions other techniques for

delaying convergence but they involve such ideas as introducing extra rules to

the adaptive plan that weigh in favour of exploration over exploitation. Book­

ers preferred approach is to improve performance by careful implementation of

the crossover operator. The three techniques suggested are the use of two-point

crossover (DeJong 1975), variable crossover rates, and the maximising of change

during crossover operations.

Two-point crossover is a slightly modified versiOn of the operator described

by Holland, in that both crossover endpoints are chosen at random. The imple­

mentation of two-point crossover is explained in more detail in the next chapter.

The crossover rate is the frequency with which the operator is applied and by

varying this inversely with changes in the percent involvement Booker is able to

reduce the influence of well above average solutions and thus lessen the risk of

premature convergence. Bookers final modification of crossover involves ensuring

change from each application of the operator. For example, when the crossover

sections of two solutions are the same no new schemata are generated for trial

-132 -

and the hence the process is ineffectual. By deriving 'reduced surrogates' which

is to say the sections of each solution containing non-matching alleles, and forc­

ing the choice of crossover endpoints to lie in these sections, Booker ensures that

the crossover operator always produces new schemata for trial. Of these three

techniques we will make use of two-point crossover since Booker reports a signif­

icant improvement in best-so-far performance at very little extra computational

expense. However, ensuring change on crossover is reported as having little or no

effect on best-so-far solutions, and varying the crossover rate adds computational

expense to what proves to be an already slow program and so neither of these

techniques will be used.

One aspect of GA implementation that appears to be have been overlooked

1s that of the exact numbers of offspring to be assigned to each solution. Theory

suggests that the numbers should be proportional to the fitness of each solution

but what should the proportionality factor be? The question is important since

the number of offspring allocated to the best solution will determine the fitness

level at which solutions start to get zero offspring and as the foregoing discussion

indicates this can lead to loss of diversity, genetic drift and subsequent premature

convergence.

In the next section we propose a reproductive plan for a GA involving no

arbitrary choices in the allocation of offspring and which attempts to keep to a

minimum the advantage given to above average solutions.

5.8 An Alternative Plan: D 1

The problem with offspring allocation in a population of fixed size would ap­

pear to be that as soon as one solution is given more than a single offspring

-133 -

another solution must necessarily get zero. However, we propose that this prob­

lem is illusory and caused by the focusing of attention on the wrong quantity -

that of the number of offspring - and that the correct factor to consider is the

total amount of genetic material each solution imparts to the next generation.

This is justified when we realise that after the use of a. crossover operator the

resulting child solution should be counted a.s a.n offspring for both parents.

From the definition of crossover it can be seen that the resulting child con­

tains genetic material from both parents to an extent depending on the selected

crossover length. Since the crossover length is permitted to be anything between

zero and the full length of a. solution, it is impossible to tell from an inspection

of the child and its parents exactly which of the parents was selected due to its

superior fitness, and which simply as a. randomly selected mate. Hence the only

consistent way of classifying the child is a.s the offspring of both parents and not

simply the above averagely fit one.

If we then consider each parent as having one of two shares in each child it

is involved in producing, then we have the child generation containing a total of

2N shares where N is the population size. Clearly now every parent solution is

able to be allocated at least one share in the next generation whilst there being

adequate capacity for allocating extra shares on the basis of relative fitness. Fur­

ther, this allocation can be achieved in a natural way by the use of the following

reproductive plan which we will call D 1 .

-134 -

Reproductive Plan D 1

1. Set t = 0 and initialise the population randomly.

2. For each solution, kn(t), select at random a set of r· solutions, Kr(t),

from the current population, K(t), where r > 1.

3. Select the fittest solution, k*(t) E Kr(t).

4. Apply the crossover operator to kn(t) and k*(t) and

store the result in the next generation as kn(t + 1).

5. Apply the mutation operator to kn(t + 1} with probability Pm.

6. Increment t by one.

7. Repeat steps two to six until t = T where T is the number

of generations to be run.

To analyze the performance of this plan we need the following definition.

Definition 5.8.1 Let the number of solutions in a population at time t with

fitness values between J.l and J.l + 6J.l be N1(J.l). Then define:

where N is the population size and 1-'nt has its usual meaning. (We have assumed

here that the J.lnt are positive, real numbers, but in general the lower limit of the

integration is the lower limit of the range of fitness values.)

From its definition lint is clearly the probability that solution kn(t) is fitter

than any other single solution chosen at random from the current population. We

now state the following theorem concerning the number of shares each solution

can expect to get in the next generation.

-135 -

Theorem 5.8.1 For a reproductive plan of type D1 , the expected number of

population shares allocated to each solution is bounded by:

N(kn(t), r):::: 1 + (Nr + (N- 1)r) (V~t r- 1
.

where N 1s the population size.

Proof - The probability of a given solution kn(t) not being selected at all in

a random sample of r solutions from a population of size N is (N- 1)" jNr, and

so the probability of it being chosen at least once is 1 - (N - 1)" jNr. At worst

there can be only r- 1 other distinct solutions in the random sample and so the

probability of kn(t) being the fittest is better than v,{- 1 • Therefore the number

of shares allocated to kn (t) by random selection over N trials is greater than or

equal to:

N (1- (N ;r1)") v~~~ = (Nr + (N -1)") (~~r-t.
Finally, each solution, kn(t), is guaranteed one share in kn(t + 1) and so its total

number of expected shares is:

N(kn(t), 1·) :::: 1 + (Nr + (N- 1n (~~) r-t.

For brevity we shall henceforth write c(r) = N 1-r(Nr - (N- 1Y) which gives the

number of population shares for each solution as 1 + c(r)v~~~

Lemma 5.8.1 The condition necessary for a schema to increase its probability

from one generation to the next under reproductive plan D1 is:

-136 -

where (v;,- 1
) 1s the a.verage value of v~;- 1 for all kn(t) that are instances of e.

Proof - The effect of plan D 1 can be interpreted in Holland's terms as al-

locating at least c(r)v~;- 1 offspring to each solution, where the mate is chosen

deterministically rather than at random, thus ensuring that all solutions get a

share in the next generation. Following the same procedure as in theorem 5.5.1,

the expected number of offspring for the set of solutions containing schema e is:

n:kn(t)EB,(t)

Even though the mate for each solution is chosen deterministically, the proba­

bility that it will be an instance of c is still P(c, t), and since the crossover and

mutation operators of D1 are the same as those for R1 and R2 , the probability

that a given crossover will contain new instances of c is the same as in theorem

5.5.1 but with Pc = 1. Hence:

For increase we need the factors on the right hand side to be greater than one.

Once again re-expressmg the terms in brackets and assuming P(c, t) is small for

any gtven e we obtain:

However, the mutation probability is usually very low and so by assummg that

(1- Pm)-L:::::: 1 we obtain the required result.

The advantages of reproductive plan D 1 are as follows:

-137 -

1. Each solution gets a share in at least one solution in the next generation

regardless of how low its fitness value may be. This guarantees that no solution

gets completely neglected during a. single generation.

2. Each solution gets a total number of shares in the next generation dependent

on its relative fitness ensuring that better solutions still donate more genetic

material than do poorer ones.

3. There is no need to make a.n arbitrary choice of the exact numbers of off-

spring to allocate to each solution since this is handled automatically.

4. By choosing r to be small the advantage of good solutions over poor ones can

be reduced so encouraging exploration over exploitation and lessening the risk of

premature convergence. For example, with r = 2 the expected number of shares

for solution kn(t) is:

1
(2N- 1)llnt ,..,

1 2
.

+ N """ + lint,

if N is large. Clearly no matter how much better a particular solution is than

the rest it can have lint = 1 at best and so contribute on average only three

shares to the next generation. A reproductive plan in which offspring numbers

are allocated proportional to J-Jnt/[1.1 could have the best structure contributing to

nearly all of the offspring.

5. Since only the fitnesses of the r solutions in the randomly chosen set need be

known at any one time, it is only necessary to evaluate a solution if it is chosen

as part of one of these sets. Hence, a solution that never gets selected need not

be evaluated. For example, consider again the case when r = 2. The probability of

selection for each structure is 1/ N each time. In total there are 2N selections and

so the probability of a structure not being picked at all during one generation

is (1- 1/N)2N. Typically N is of the order 100 and gives a 0.134 probability of a

-138 -

solution not being evaluated. For complex fitness functions their evaluation is the

major time consuming component of a GA and so any reduction in the number

of evaluations that are necessary will result in improved run times.

6. Since it is the best solution from the random subset of the whole popula­

tion that IS required, it is not necessary to completely evaluated the fitness of

each solution but only to be able to determine which is the better of two given

solutions permitting the use of approximate evaluation techniques.

Of course, there are also certain disadvantages associated with a reproductive

plan of type D 1 , namely:

1. The use of very small sample sizes makes it possible that a good solution

could be allocated fewer shares than it warrants or that it could be allocated

just its single share. However, this is the price we pay to reduce the effects of

over exploitation.

2. Since not all trial solutions get evaluated the best-so-far performance will

be degraded, especially for programs employing large populations and a small

number of generations.

5.9 Summary

In this chapter we have presented a summary of Holland's work on the the­

ory of genetic algorithms and introduced the characteristics that make them suit­

able for the intended application to collage construction. Namely, the ability to

conduct efficient searches resulting in the attainment of near optimal solutions

in large and complex domains for which no guiding theory is available, but in

which trial solutions are readily evaluated.

-139 -

The terminology of genetic algorithms has been introduced and their power

explained by the way in which they allocate exponentially increasing numbers of

trials to above average solutions in an intrinsically parallel fashion.

We have further presented a discussion of the problems encountered with

practical implementations such as genetic drift and premature convergence, and

have suggested our own reproductive plan, D1 , in an attempt at improving pro­

gram performance and efficiency.

The next chapter concerns the implementation of a genetic algorithm incor­

porating a reproductive plan of type D 1 , and with the purpose of constructing

full shape collages.

-140 -

6 IFS ENCODING BY GENETIC ALGORITHM

In this chapter we describe the implementation and testing of a GA designed

to automatically generate IFS representations of general shape input, and which

incorporates a reproductive plan of type D 1 . The main aim of the implementation

is to assess the practicality of the encoding method rather than an investigation

of the properties of genetic algorithms or reproductive plans in themselves. How­

ever, some of the issues discussed include the determination of practical program

parameters, the trade-off between the accuracy of fitness evaluation and popu­

lation size, and the effect of different fitness functions on best-so-far program

performance. A notated listing of the C source code for the program can be

found in appendix A.

6.1 Program Parameters

The search domain for a GA intended to solve the inverse problem is a space

m which the points correspond to sets of contraction mappings. Regardless of

practical considerations, the purely theoretical limitations of GAs discussed m

the last chapter indicate that it would be nai've to expect anything like opti­

mal solutions from such a search. However, we can simplify the problem, and

hopefully increase the chance of obtaining near optimal solutions, by fixing the

number of mappings to be used, which is to say fixing the 'size' of the collages.

We can justify this by referring to the discussion of chapter three in which it was

-141 -

stated that, in general, increasing the number of mappings in a collage increases

the resolution of the representation and it was suggested that the resolution to

which an encoding program is required to work should be the determining factor

in deciding collage size. Thus we would normally expect an encoding program to

search for the best collage possible with a fixed number of mappings.

We therefore take collage size as one of six program parameters to be deter-

mined at runtime, the full set being:

POP - population size.

GEN - number of generations to run.

MAP - collage size.

XLN - crossover length.

MUT - mutation probability.

SUB - subsampling factor.

Apart from MAP, SUB is the only parameter whose use 1s not obvious from

the discussion of the previous chapter. Its value is a measure of the accuracy

to which the fitness of each solution is evaluated and will be discussed in detail

later.

Clearly trying to optimise six independent variables is a difficult task in itself,

complicated in this case by the stochastic nature of a GA and the difficulty of

assessing the performance of each parameter combination. As a simplification we

impose constraints on the amount of computer resource that we are prepared

to spend on the encoding of each shape, the practical result of which is that

we place a limit on program runtimes. By doing this we necessarily reduce the

maximum performance that it may be possible to extract from the program,

but in exchange we have a useful framework within which to make comparisons.

-142 -

Further, there is little point in achieving good results if an exorbitant amount of

resources are required.

In terms of the g1ven parameters, and for a fixed value of MAP, we have

approximately:

t (X (GEN X POP);

where t is the program runtime. The proportionality is only approximate since

the other parameters, (especially SUB), complicate the relation as discussed more

fully in a later section. However, what we can achieve by fixing the value of

(POP x GEN) is a baseline runtime from which we expect small variations as

the other parameters are changed. Specifically, we take POP = GEN = 100 as

our standard values. Some justification for this is provided by Fitzpatrick and

Grefenstette (Fitzpatrick and Grefenstette 1988) who report that these are typical

values and ones for which useful results can be expected, since they allow the

evaluation of ten thousand trial solutions. With MAP, POP, and GEN fixed there

are now only three other parameters that need to be set which constitutes a

much simpler problem. The determination of values for MUT, X LN, and SUB is

covered in sections 6.6 and 6.7, but for the present we proceed by describing the

implementation of the G A components given in the last chapter in terms of the

above parameters.

6.2 Program Environment

The environment of a GA is the source of information on which the fitness

of trial solutions is evaluated and hence it determines the future evolution of

the initial population. In theory therefore, we must associate it with a specific

shape input which is to say, E = S E 1-l(R2) and hence, E = 1-l(R2), since we make

-143 -

no restrictions as to the type of shapes on which the program can operate. In

practice though, we take the environment to be an image file created by a simple

image processing program and which contains the following information:

1. The number of pixels that constitute the shape.

2. The coordinates of the centroid of the shape in the image plane.

3. The coordinates of each pixel relative to the centroid.

4. The maximum extent of the shape in the x- and y-directions.

The information in the image file in addition to the minimum requirement of the

pixel positions is a necessary consequence of the conventions adopted in chapter

four, and which we have retained for the current implementation. The value of

all coordinates in the image file are scaled by a factor of 1024 to allow the use

of integer arithmetic thus increasing execution speed without loss of accuracy.

Since the environment is time independent, the information in the Image file is

invariant and need only be read once at the beginning of a program run.

6.3 Solution Representation

Following convention we use a binary representation for the solution strings,

and as a result of the discussion of chapter four we continue to use affine trans­

formations. We are able to keep the representation scheme simple because an

IFS is basically a list of mapping coefficients which can be translated directly

into a binary string. Since two-dimensional affine transformations requires six

numbers to be completely specified, solution strings consist of (6 x MAP) sections

each containing a. fixed number of bits which represent one mapping coefficient.

The number of bits used is important since it determines the resolution to which

-144 -

mappmg coefficients can be calculated and hence limits the accuracy to which

the program works.

The work of Barnsley (Barnsley 1988) indicates that a coefficient accuracy

of two decimal places is sufficient to produce accurate collages, and this is sup-

ported by the demonstration of code robustness in chapter three which shows

that changes made in the second decimal place have little effect on the attractor

as a whole. Using the C programming language on our system, the 'char' data

type is of length eight bits and consequently takes signed values in the range

[-128, 127). This makes it convenient for use sil'lce it gives a coefficient resolution

of 1/128 :::::: 0.008. Using one eight bit byte for each mapping parameter results in

the length of each solution string being 48 x MAP bits.

For the choice of coordinates and metric made, the range of values that each

mapping parameter may take are as follows:

1'1,r2 E (-0.707,0.707) fh,02 E [-11',71'),

xo E [xmin, xmax] Yo E [ymin, ymax].

where xmm, xmax, ymm, ymax, are the shapes extent as gtven m the image

file. The restricted range for the scale factors, r 1 and r 2 , ensures that any legal

combination of parameters results in a strictly contractive mapping.

The solution strings are decoded in the following way. If the value of the nth

byte of a group of six is denoted by en, then the values of r 1 and r 2 are given

by:

rl = 128.ov'2 r 2 = 128.0v'2 ·

The next two bytes are taken as the angle parameters, 01 and 82 and their values

are obtained from the following:

-145 -

Of course, the fact that a value of +11' can never be attained is unimportant

since a value of -11' produces exactly the same effect. The final two bytes of a

group represent the translational components of the mapping and are decoded as

follows:

(c+128.0) (.) .
xa =

2
* xmax - xmm + xmm;

5500

(c + 12800) 0 0
Yo=

25500
* (ymax- ymm) + ymm;

which gives them their proper full range. Clearly such a solution representation

scheme satisfies the condition of being one-to-one and onto, in that every legal

string represents a contractive collage, and every possible strictly contractive col­

lage defined to two decimal places of accuracy has a representation by a string.

6.4 Implementation of D 1

Theorem 5.8.1 tells us the number of shares in the next generation that can

be expected for each solution under a reproductive plan of type D 1 given a ran­

dom sample size or r. If we consider these numbers at the extremes of the per-

mitted range of r we find the following:

(2N- 1)
N(kn(t), 2) = 1 + N Vnt :::::: 1 + 2Vnt (assuming large N);

and
lim N(kn(t), r) = N + 1

r-oo
if Vnt = 1.0

= 1 if Vnt < 1.00

This clearly demonstrates that as the sample size is increased the best solution

gets a greater proportion of the 'quota' shares until in the limit it is allocated

them all and the other solutions only get their one guaranteed share. (Notice

that in both extremes the total number of shares is still equal to 2N)., The limit

case corresponds to the fittest solution always being chosen as the mate and will

-146 -

clearly result in that solutions descendants dominating the population. With r = 2

however, the average number of extra shares the best solution can hope to get

is two, hence restricting its ability to become dominant too quickly. This is just

the effect required to prevent premature convergence and it is therefore proposed

to adopt the use of a sample size of 1· = 2 henceforth. By combining such a small

sample size with the ability to use approximate evaluation, and only evaluating

solutions as and when necessary, the implementation of plan D 1 is made highly

efficient.

The decision to take r = 2 is further supported by noticing that for large N

the result of lemma .5.8.1 now simplifies to the condition:

where iift is the average fitness of all the instances of schema t at time t. The

interpretation of this is that for even the shortest schemata to increase their

population share, it is necessary that, on average, solutions containing their in-

stances be more likely to be chosen in preference to any other randomly selected

solution. It should be noted at this point that although setting r = 2 gives a the-

oretical minimum advantage to above average solutions, it is possible that this

goes to far and results in adverse effects on the algorithms performance. An ex-

tensive investigation of the effects of sample size is however beyond the scope of

the current work, and we rely instead of the satisfactory algorithm performance

described later as an indication that r = 2 is not too small.

With the size of r set, we now describe the implementation of the crossover

and mutation operators. As mentioned in chapter five, we do not use the sim-

ple crossover algorithm described by Holland, but a slight variant introduced by

DeJong (DeJong 1975) called two-point crossover, the difference being that now

-147 -

both the start and end points of a crossover section are determined at random.

The rationale for this algorithm becomes apparent if the solution strings are con­

sidered to be joined at their ends to form loops. A crossover section can now

be any segment of a loop and is not restricted to the arbitrary choice of one

bit being the fixed endpoint. This different crossover technique does not change

the result of theorem 5.4.1 since we simply associate positions inside the two

crossover points with those to the right of the single crossover point, and points

outside with those to the left, or vice-versa, and the mathematics remains the

same. However, two-point crossover differs in effect to the standard algorithm

since it has a less disruptive effect on long schemata. For example, with a fixed

crossover endpoint, even for short crossover lengths, any schemata with a defin­

ing position at this endpoint is nearly always disrupted. By varying the position

of the crossover endpoint this effect is distributed more evenly amongst all the

schemata in the population and results in improved performance (Booker 1987).

Using the string representation scheme given in the previous section, the sim­

plest crossover implementation would be one in which two bytes along a string

were chosen at random and the intervening bytes swapped between two solutions.

However, this only allows crossovers in lengths of multiples of eight bits and

would rather circumvent the use of a binary representation. To ensure crossovers

of any length, masks are created for the end bytes of a crossover section. Thus

the algorithm used to implement two-point crossover is:

1. Select a random integer, x 1 , between one and 6 x MAP.

2. Select a second random integer, x2 , between zero and XLN.

3. Starting at the x1 th byte, crossover x2 bytes between parents.

4. Place the child solution m the next generation.

-148 -

.5. Generate a random left-end mask byte.

6 Apply to the byte to the left of the childs crossover section.

7. Generate a random right-end mask byte.

8. Apply to the byte to the right of the childs crossover section.

We choose to determine the endpoint of the crossover in terms of a distance

from the start point, since then the parameter X LN controls the amount of ge­

netic information that is inserted into each deterministically selected solution and

so will affect the speed with which good solutions become dominant. The range

of permitted values for X LN is between zero and 6 x MAP- 2. At the lower limit

the amount of crossover is determined by the end masks alone and so the total

crossover length cannot be greater than two bytes. When X LN has its maxi­

mum value, it is possible for nearly the whole length of two solutions to undergo

crossover.

As an example of the operation of the end masks, let the bytes immediately

to the left of the crossover section for two solutions be c and c' respectively. If

the bit values in these bytes are represented by a 1 ,a2 , ... ,a8 and a~,a~, ... ,a;,, and

the mask byte, m, is 00000111, then the operation:

(c 1\ m) + (c' 1\ (...,m));

results in a byte with the structure:

hence adding three more bits to the crossover length to the left. The left-end

masks are generated by choosing a random number, x E {0, 1, ... , 7}, and setting

their value equal to 2" - 1. The same operation handles the right most byte of

-149 -

the crossover usmg masks consisting of the binary values of -2"' for x chosen at

random as before. With the endpoint crossover defined in this way, the minimum

number of bits that are exchanged is one, corresponding to the left-end mask

having a value of zero, and the right-end mask being -128. The maximum number

of bits that the end mask can exchange is fifteen when the values are 127 for

the left-end, and -1 for the right-end. Thus the minimum and maximum total

lengths of a crossover section are one bit, and the length of the string minus one

bit respectively.

Mutation is handled in a similar way to crossover by the use of masks. Each

child solution is given a probability of MUT of undergoing mutation. If mutation

IS selected then the following algorithm is employed:

1. Select a random integer, x, between one and 6 x MAP.

2. Generate a random mask.

3. Apply the mask to xth byte of the child solution.

A mutation mask is generated by setting its value to 2Y where y is chosen

at random from {0, 1, ... , 7}. If c is the byte selected to undergo mutation and

00100000 is the mask then the operation:

(c 1\ (•m)) + ((•c) 1\ m);

would change a byte 01101101 to 01001101. This is a slightly different form of

mutation to that described in the last chapter since it ensures that at most one

bit of a solution is changed, however this is not of great significance since the

very low mutation rates usually employed make multiple mutations of a single

solution an extremely rare occurrence. The chance of any given bit of a solution

being mutated is MUT/(48xMAP) which is the value that is intended by the factor

-150 -

Pm in lemma 5.5.1 so and the value of MUT will typically be much larger than

is normal for a mutation parameter. The advantage of implementing mutation in

this way is that only two calculations need to be made per solution rather then

the 48 x MAP needed if each bit were to be selected for mutation individually.

6.5 Fitness Functions

The obvious choice of fitness function for testing trial solutions ts that pro-

vided by the collage theorem, and so we could write:

h(S, Wnt(S))
f.lnt = (1- Snt) .

where S is the input shape and s111 and Wnt are the minimum contractivity factor

and the union of mappings for solution k11 (t) respectively. However, the value

of this function tends to infinity as the contractivity factor approaches unity

which is fine theoretically, but unacceptable in practice. Also, although a minor

point, the function decreases as the solutions improve and so it would require the

minimisation of average population fitness. Taking the reciprocal of the function

ensures that fitness needs to be maximised but now its value tends to infinity as

the Hausdorff distance tends to zero. We therefore define the first of the fitness

functions we consider to be:

A _ (1- Snt)

nt - 1 + h(S, Wnt(S))

Adding one to the denominator dramatically changes the behaviour of the func-

tion when h < 1, but this is of no importance since by working in the discrete

space of the pixel plane, unity is the smallest non-zero value that h can take.

The advantage of this modification is that fitness values are always finite, and

moreover are normalised to be in the range [0, 1].

-151 -

Using Ant the fitness of a solution is calculated as follows:

1. Decode the solution string, kn(t), and calculate the mapping coefficients.

2. Calculate the contractivity factor Snti for each mapping,

Wnti, where i = 1, 2, ... , MAP.

:3. Calculate the contractivity factor for the collage,

Snt = max{snti : i = 1, 2, ... , At!A.P}.

4. Calculate the set of distinct points produced by the mapping Wnt(S).

5. Calculate the Hausdorff distance, h(S, Wn1(S)).

6. Evaluate Ant as defined above.

Referring back to the definition of the Hausdorff metric in chapter two, it

can be seen that the main computational burden is the calculation of the mini­

mum distance between a point and a set, and the obvious algorithm to achieve

this, that of exhaustive evaluation, is 0(m) where m is the number of points in

the set. For a shape consisting of a finite number of points and with a collage

of MAP mappings, there are a maximum possible number of m x MAP points in

the mapping of the shape under the collage. Hence, the evaluation of h(S, Wnt(S))

requires the calculation of 2m2 x MAP distances and is thus 0(m2). Since even

very small shapes can contain many thousands of points we require a more ef­

ficient method of calculating Hausdorff distances or else a good approximation

technique.

Shamos and Hoey (Shamos and Hoey 1975) state that if no preprocessing 1s

permitted then O(m) is both upper and lower bound for the calculation of the

distance from a point to a set. That is, we will not be able to find an algorithm

that will give an exact evaluation of h(S, Wn1(S)) that is better than 0(m2). As for

an approximation technique, it is known that the Hausdorff distance between two

sets is just the distance between a pair of points, one in each set. This sensitive

-152 -

dependence on just two points, and the fact that we make no restrictions on the

type of shapes to be used as input, means that no useful approximations can be

made and we must accept that evaluation of function A will be slow.

Although the Hausdorff metric appears in the theory of iterated function sys-

terns, we are not bound to its use in a GA. We therefore define the second of

our fitness measures as:

(
ffint

Bnt = 1- Snt)-.
m

where mn1 is the number of distinct points of S generated by Wn 1(S). Using B

the fitness of a solution is found by the following algorithm:

1. Decode the solution string, k,.(t), and calculate the mapping coefficients.

2. Calculate the contractivity factor Snti for each mapping,

Wnti, where i= l,2, ... ,MAP.

3. Calculate the contractivity factor for the collage,

Snt = max{snti: i = 1, 2, ... , MAP}.

4. Determine the number of distinct points in S that are

produced by the mapping W,. 1(S).

5. Evaluate Bnt.

Clearly B only performs a maximum of m x MAP calculations and is thus O(m),

which gives it a significant speed advantage over A.

The final fitness function we will investigate is defined as:

C _ ffint(1- Snt) .

nt - m(1 + h(S, Wnt(S))'

which is just a hybrid form of Ant and Bnt· The performance of each of these

fitness functions is discussed in section 6.8.

-153 -

6.6 Parameter Settings

We now focus on the experimental determination of suitable values for the

MUT and XLN parameters. We take POP= GEN = 100 and use the Sierpinski

triangle as the test shape which sets the value of M A.P at three. In order to

first investigate the effects of varying MUT we set SUB = 1 and X LN at 6 x

M A.P- 2 which allows for exact evaluation and maximum crossover. Fitzpatrick

and Grefenstette (Fitzpatrick and Grefenstette 1988) use the average fitness of

the best fifty solutions in a population after a fixed number of generations as a

performance measure for a GA, using this rather than the average fitness of the

whole population to equalise the evaluation time for populations of different sizes.

However, since we vary population size little, we measure program performance

as the average fitness of all the solutions. Also, because we are not concerned at

present with absolute performance, we use the cheapest of our fitness functions,

B, but with a slight modification. Since we are using a shape with a known IFS

we can calculate the fitness of the optimal collage - which is clearly less than

unity and dependent on the contractivity factor. By dividing through by this

value we can better see the changes in performance.

The results of varying the mutation probability through the range zero to

one is demonstrated in graphs C.l-C.5 in appendix C. We take the graph for

MUT = 0 as our reference point since this shows the effect of having no disruption

in the system. As expected the average fitness shows an initial smooth increase

with an eventual leveling off at around the eighty-ninth generation to a value of

approximately 56% of the optimal. An inspection of the attractors of the solutions

in the final generation reveal almost complete convergence to a single highly sub­

optimal solution and due to the lack of variation introduced into the system,

there is no chance of any further improvement.

-154 -

Introducing a mutation probability of 0.25, which is to say that on average

25% of the solutions in the population will have one bit changed each generation,

produces the results of graph C.2. There is evidence of much greater fluctuation

between the average fitness of successive generations but the final value is slightly

higher than the previous result at around 65% of optimal. Graph C.3 shows the

effect of setting MUT = 0.5 and now the deleterious effect of such a high mutation

rate are clearly apparent, the fluctuations in average fitness are more pronounced,

and the value after one hundred generations is approximately two-thirds of that

achieve with MUT = 0. Inspection of the solu~ions in the final generation reveal

large amounts of variation but clearly the tendency for improvement is becom­

ing swamped by mutation effects. This trend continues with increasing values of

MUT as depicted in graphs C.4 and C.5, and when finally MUT = 1 the popu­

lation enters into an equilibrium between the opposing forces of refinement and

disruption, with average fitness values fluctuating around 0.12. Graph C.6 shows

the results obtained with a mutation probability of 0.01 which proved to give best

results within the one hundred generation time limit.

Graphs C.7-C.l2 show the effect of varying the value of XLN whilst keep­

ing all other parameters fixed. With MAP set at three, the permitted range of

X LN is integer values between zero and sixteen. For X LN = 0 Graph C. 7 exhibits

similar behaviour to that obtained with a one hundred percent mutation rate, in

that fitness values fluctuate from generation to generation, and there is little dis­

cernible trend towards a steady rate of increase. This is probably to be expected

since the exchange of very short string sections is little different from a mutation

operation because early on at least, there is little correlation between a solutions

fitness and the short schemata of which it is an instance. For XLN = 2 as de­

picted in C.S the fluctuations are more pronounced, but there is an underlying

-155 -

increase in the fitness of successive populations. As X LN is increased the absolute

values of population fitnesses rise, the graphs become smoother, and the rate of

increase higher. Best results are clearly obtained when crossover is allowed up to

the full length of each solution string thus enabling the exchange of significant

amounts of genetic information between parents and child.

The results of this section indicate that within the bounds we have imposed

the values MUT = 0.01 and X LN = 6 x MAP- 2 give best results. However, the

indication is that in general the effects of mutation and crossover length have a

sensitive dependence on each other and the remaining parameters such as POP

and GEN. A more extensive investigation of this relationship is beyond the scope

of this work and so we adopt the above values for all future program runs and

now turn attention to the possibility of trading-off the accuracy of fitness evalu­

ation for population size.

6. 7 Evaluation vs Population

Fitzpatrick and Grefenstette (Fitzpatrick and Grefenstette 1988) have exam­

ined the benefits of trading accuracy in the evaluation of the fitness of each

solution for an increase in population size and have shown that this can result

in improved program performance in some cases. They assume that the runtime

of a program is limited and hence that by making a quicker, more approximate

fitness evaluation a larger population can be accommodated. Ignoring the over­

heads, they give the runtime of a GA as:

t ~ (o: + cf3)GN.

where G is the total number of generations to be run, and N is the population

size. The constant o: is dependent on the amount of computation required to

-156 -

produce each generation due to the operation of crossover and mutation. cf3 is

the cost of evaluating the fitness of each solution, where c is the number of

sample points taken during the evaluation. It is assumed that the function being

evaluated depends on the sampling of some quantity and that the accuracy to

which the evaluation is made depends on the size of this sample. In practice

though, all that is necessary is that the fitness function can be approximated

and that c is a factor which represents the degree of approximation, decreasing

as the evaluation becomes less precise.

For our implementation the runtime equation IS modified to become:

t::::: (a+ cf3)M AP x GEN x POP.

the only significant change being the introduction of the MAP term which makes

explicit the effect of increasing solution string length. The evaluation functions

we use take as their data the pixels of the input shape, and so an approximate

evaluation is achieved by taking only a fraction of the available data points.

Therefore, rather than refer to the absolute number of samples for an evaluation

we set c = m/SU B where m is the number of pixels that constitute the input

shape and so corresponds to the maximum number of samples possible, and SUB

is the subsampling factor. Clearly for a given value of MAP, if SUB is increased

then the values of POP and GEN can be increased either individually or jointly

without affecting the overall runtime. In general however, increasing the number

of generations produces little improvement clue to population convergence and so

it is preferred to increase the value of POP alone. Fitzpatrick and Grefenstette

point out that the amount of population increase that can be accommodated

depends on the ratio of afc/3. For example, if a is negligible and hence a/cf3 is

small, which is to say that the major burden on the program is the evaluation

of fitness, then POP varies inversely with SUB and large increases in population

-157 -

are possible. However, if nf3 IS small then POP IS effectively fixed regardless of

the value of SUB.

Graphs C.13-C.16 show the effects of increasing the subsampling factor whilst

keeping the population size constant and using the values for mutation and

crossover determined earlier. With SUB = 1 we obviously get the the same re-

sults as before with the quick rise to high averages fitness values with that of

the final generation being around 70% of optimum. Taking alternate data points

produces the result of graph C.14 which shows a flattening of the rate of fitness

increase and a leveling off at a slightly lower value of approximately 60% of opti­

mum. Taking every fifth point significantly reduces the final average population

fitness to 30% after one hundred generations whilst the graph for a subsampling

factor of ten shows a rapid converges to a very low fitness value in the region

of 15%. These results, whilst demonstrating the effect of inaccurate evaluation do

not in themselves determine whether subsampling is detrimental. Graph C.15 in

particular still shows an increasing fitness tendency right to the' last generation

and it is possible that given a larger population size it could perform as well as

for more accurate evaluations. The following timings were obtained for each of

the runs just described:

subsampling runtime
factor (cpu seconds)

1 981
2 533
.5 332
10 274

Table 6.1 Runtimes for a GA demonstrating the effect of increasing the

subsampling factor.

-158 -

Using these timings we are able to calculate approximate values for a and (3 to

be:

a = (5.22 ± 0.44) x 10- 3 fJ = (3.55 ± 0.12) X 10- 5
.

Even though (3 is very small we are typically working with numbers of points m

the region of one thousand and so significant increases in population size are still

possible. For each of the three subsampling factors used, the possible population

increase was calculated and the results of using these larger populations can be

seen in graphs C.l7-C.20. A subsampling factor of two allows seventy-five extra

solutions in the population, but the resulting fitness plot does not vary signif­

icantly for that obtained with the standard population size. A set of 310 trial

solutions with SUB = 5 and 417 for SUM = 10 give only marginal improvements

to the program performance over one hundred generations, although both show

the averages fitness to be still rising at that point which might indicate that

more generations would give still better results. However, increasing the num­

ber of generations would require a further trade-off of between population and

evaluation accuracy in order to keep the total runtime fixed, which would rein­

troduce the complexities of trying to optimise several different parameters. Our

results indicate that for the types of fitness function used trading accuracy for

the number of evaluations does not produce any benefit, and in the case of large

subsampling factors, significantly reduces performance even when population sizes

are increased to the maximum allowable. Unless otherwise stated the following

parameters are now set for each program run:

POP= 100 GEN = 100 MUT = 0.01 XLN = 6 x MAP- 2 SUB= 1.

The value of MAP is of course determined by the size of the optimal collage for

each input shape.

-159 -

6.8 Program Performance

Having set suitable values for the program parameters we now examme the

best-so-far performance for each of the fitness functions. We have used another

set of test shapes consisting of the attractors of known iterated function systems.

These codes can be found in appendix B together with pictures of their collages

and attractors. The set includes some well known fractals such as the Sierpinski

triangle and the 'twin dragon' as used by Barnsley (Barnsley 1986), but also con­

tains six 'random' fractals which were generated by choosing arbitrary mapping

coefficients. Although the exact codes for each of the test shapes are known, we

do not use this information to normalise the fitness values to fractions of the

optimum but instead show absolute values.

Since it is the quickest and simplest of the functions defined, we start with

function B which keeps average runtimes down to approximately 1800 seconds. Its

performance in encoding each of the test shapes is demonstrated by graphs C.21-

C.31 which plot average population fitnesses, and by figures 6.1 and 6.2, which

show the collages and attractors of the best-so-far solutions after one hundred

generations.

-160 -

Figure 6.1 The best-so-far solutions (at tractors and collages) for encodings

of the first five shapes of the test set using fitness function 8 The layout is

the same as that for figure B.l so a direct comparison can be made.

-161 -

,

D •
•

' ..
.. ,

D
0

0
&

Figure 6.2 The best-so-far solutions for encodings of the six randomly

generated shapes of the test set using fitness function B. Again, the layout

is the same as that for figure B.2 in appendix B so that a direct comparison

with the original shapes can be made.

-162 -

The quality of these encodings is in general very poor and especially so for

the random fractals. One reason for this as demonstrated well by the attempted

encodings for the fern and square shapes. The fitness function is simply too

greedy, and insensitive to shape structure. For shapes such as the square where

a slight modification in one of the mappings will make little difference to the

number of points it covers, once solutions start to appear for which the number

of pixels is near the maximum, little extra improvement is then made. This is

seen clearly in graph C.28 which shows a good rate of average fitness increase

due to the initial ease with which mappings can be made to cover the shape,

but convergence is almost complete by the 75th generation. A similar trend is

shown in the graph for the fern (C.27) but here the problem is aggravated by

the tapering of the shape which results in the mappings clustering in regions of

high point density. It is the more distributed nature of the points of the ran­

dom fractals that result in their poor representations, with mappings migrating

towards high density areas and neglecting the overall form of the shape.

The tendency for mappings to cluster at high point densities is not the only

factor in the poor performance of function B. By examining the dimensions of

the collage mappings in figures 6.1 and 6.2 it becomes apparent that there is

a tendency for the mappings to be small and square, that is, the contractivity

of the collages are kept low and in general r1 ~ r2 , 81 ~ 82 , and the mappings

approximate similitudes, thus preserving the interior angles of the bounding rect­

angle. The reasons for these two effects are closely linked and easily explained

by considering what happens when a relatively good solution occurs in an early

generation. Bearing in mind that function B rewards low contractivity and high

shape coverage, it is likely that an good early solution will consist of some small

mappings which all map onto the shape. The solution thus has a high fitness

-163 -

and is allocated an above average number of offspring which find it easy to im­

prove upon their parents fitness value by simply expanding the area of the shape

covered by each mapping. This is possible since the area of a mapping is given

by:

Area(w(S)) = 1· 1r2 (cos 81 cos 82 +sin 81 sin 82)Area(S).

and the contractivity factor for the whole collage is simply the maximum lrl

value of any of the mappings. Thus each mapping can increase its values of r 1

and r 2 up to the contractivity factor without imposing any negative effect on

the fitness of the whole collage. In fact, such action is almost guaranteed to

increase the fitness of the collage since a larger area is extremely likely to cover

more shape points. Hence it is understandable that r1 = r2 = s frequently occurs.

The reason that similitudes are favoured is that the cos 81 cos 82 +sin 81 sin 82 term

of the area equation is a maximum for 81 = 82 and so again the area of each

mapping can be increased· without any negative effects. Naturally, this process

of improvement takes place over many generations, but there is a good chance

that these continually improving solutions will always be above average and will

eventually dominate the whole population with the result that by the time the

limits of improvement have been reached there is insufficient genetic variation for

further general improvement and hence the poor results.

Of all the encoding attempts with function 8 perhaps the best is that ob­

tained for the Sierpinski triangle since, although the attractor is visually poor,

the collage is close to one of the optimal. The reason for this above average per­

formance is clear in the light of the above explanation. The Sierpinski triangle

is a 'compact' shape in the sense that it has no thinly tapering parts or jutting

peninsulas, and has a uniform point density over its whole surface. This alone

would probably be enough to ensure that its results were above average, but we

-164 -

must also consider that its collage consists of three 'square' mappmgs which are

identical apart form their translational components, and each of which has three­

fold rotational symmetry. The effect of this is that there are at least 27 distinct,

perfect, three mapping collages. Hence in this case the preference for centralised

square mappings is beneficial and the number of optimum collages improves the

chances of getting a near optimal result.

As a demonstration of the search processes that occur during the running

of the program, the next figure shows a sequence of the best-so-far attractors

found using function 8 on the Sierpinski triangle. They represent a sample of

the thirty-nine best-so-far solutions that were generated and, to demonstrate the

convergence better, more examples of early results are shown since the last few

attractors are all very similar. Also, as a check on whether the poor performances

of 8 might be a flaw in the program, we used a population size of five hundred

with the expectation of much improved results.

-165 -

..: rr ~ , ,..
P.-

~~ '-... t

...,:.~ ,. ~

'~ '~ ;.a .. { ~ ~ ' tl ~ f _:
l'la"' ~ f ~ \")

tJ h /I Jr ... I ~
= ;;\ ~' ".;

~~ ~ \lr-
~ ... ~ .,.

< , ::. ~ ~
,.,VJJ r,;

~ ~..,. ';'~
~

Figure 6.3 A sequence from the set of best-so-far solutions generated

during a run of the GA using fitness function B, the Sierpinski triangle test

shape, and a population size of five hundred.

-166 -

A final unexpected result obtained with function B is the production of col­

lages for some of the random fractals with fitnesses better than could be achieved

by the optimal solution. In retrospect however, this can be seen as another effect

of the tendency of mappings to prefer areas of high point density where they can

cover the majority of points yet remain small. This is demonstrated by the result

for the fifth random fractal in figure 6.2. If it is compared with the ideal collage

in figure B.2 it can be seen that the two small mappings correspond with the

centres of the streamer-like halves of the shape and thus cover a high percentage

of points whilst the collage has a contractivity factor of only 0.469. The ideal

collage naturally covers all points but consists of two large mappings with a con­

tractivity factor of 0.882 and so has a maximum fitness of 0.118. The best-so-far

solution actually covered just 30% of the whole shape but this is enough to give

it a fitness of 0.159.

vVe now turn attention to fitness function A which incorporates the evaluation

of the Hausdorff metric. The results of using this function on five shapes of the

test set can be seen in the following figure and graphs C.32-C.36.

-167 -

D [] .,
"' .

0

0 D
\

Figure 6.4 The results of encoding (from top left to bottom right) the

Sierpinski triangle, rand2, rand3, rand4, and rand5 using fitness function A.

The choice of shapes was based on the number of points contained in each

in order to minimise runtimes and also on which were good comparisons for

the results of function B.

-168 -

Paradoxically, the more sophisticated fitness function gives worse results than

those obtained previously. In general the collages consist of very small mappings

distributed evenly over the shapes and resulting in sparse, poor quality attrac­

tors. The average fitness plots show a tendency for rapid convergence with little

possibility of improved results coming from extended runs. The reason for these

results would appear to be the form of the Hausdorff metric itself. As its defi­

nition reveals its value is ultimately just the distance between a pair of points,

with one in the input shape and the other in the collage, or more specifically,

in one mapping of the collage. Thus we get bad results similar to those of func­

tion B but for the opposite reason. It is now possible that the offspring of good

solutions can improve their fitness by reducing the sizes of their constituent map­

pings since there is a good chance that this will not affect the one collage point

that is determining the value of the Hausdorff distance, but is guaranteed to de­

crease the contractivity factor and hence improve fitness. Again, by the time the

limit of this process has been reached, genetic variation has been lost and sub­

optimal solutions result. Since the area of each mapping is now under pressure

to be minimised there is less requirement for similitudes and this is confirmed

by the presence of more skewed and elongated mappings in figure 6.4. Although

the mapping size is clearly the dominant factor the effect of the Hausdorff term

is apparent by the positioning of the mappings on the shapes. This is shown

well in the results for the second, fourth and fifth random fractals of figure 6.4

where the centres of the mappings in the best-so-far solutions correspond well

with those of the optimal solutions. The effect of using A is not the generation

of shape filling collages as might be expected considering the derivation of the

function, but something akin to a minimum spanning of the input shape by MAP

number of points.

-169 -

The opposite pressures applied by functions B and A are demonstrated clearly

by the results for the Sierpinski triangle. As just mentioned this shape gives the

best result for function B but as figure 6.4 shows probably the worst result for

A. Graph C.38 indicates an extremely early and rapid convergence confirmed by

the best-so-far result after one hundred generations having been found during the

sixteenth.

The definition of function C is obviously an attempt at combining the two

previous functions to balance their opposed forces. Results obtained are shown

in the figure on the following page and in appendix C, graphs C.37-C.41.

-170 -

~''t\ ,
'

~
.t•
~ ~

~

~ Q ~ ~

t'11J~

l~~J
...

w-'
!;.~., J-

& 8
Figure 6.5 Results obtained usmg fitness function C for the same test

shapes as in figure 6.4.

-171 -

These results are an improvement on those of both previOus sets although

m absolute terms the quality of representation is still not good. The reappear-

ance of large square mappings indicates that of the two competing terms the

contractivity is stronger although the effects of the Hausdorff distance are appar-

ent by their better distribution. The graphs show higher rates of average fitness

growth, and in some cases sustain them up to the last generation indicating the

were more computer resource available, better results would follow. As a test of

this the following figure shows the collage and attractor obtained for the second

random fractal using a population size of one thousand and a runtime of three

hundred generations. Although the result is a great improvement on any yet

achieved, (see the following figure and graph C.42), the runtime for the program

was approximately sixty hours.

J..E\._.
''-

I
p--A \ .. ,,

I

Figure 6.6 The representation obtained for the second random fractal

using fitness function C, a population size of one thousand and a runtime

of three hundred generations.

-172 -

Since the poor performance of fitness functions A and 8 is in part attributed

to their contractivity terms it could be suggested that this be dropped from their

definitions. However, this would allow collages consisting of large mappings with

contractivity factors approaching unity. It is easy to see that any large mappings

that are not penalised for their size will be able to achieve high fitness values

under any of the fitness functions considered and will hence quickly dominate

the population. This is what in fact happens when the contractivity factors are

removed from the fitness measures, with the best-so-far solution invariably includ-

'
ing one of more near 'full size' mappings. Although the collages accurately cover

the shapes, the attractors are still poor because of the very high contractivity

factors.

6.9 Conclusion

The results of this chapter have demonstrated the use of a GA in the calcula-

tion of fixed size IFS encodings of whole two-dimensional shapes. No restrictions

were placed upon the type of shapes used, with both complex natural forms and

figures of Euclidean geometry being present in the set of test shapes upon which

the program performance was evaluated. With reference to this specific applica-

tion we can draw the following conclusions:

1. Once suitable program parameters are set to give best results within the

constraints imposed by computer resource limitations, the form of the fitness

function becomes of critical importance determining through its discriminatory

power the speed of population convergence and ultimately the value of the best-

so-far solution.

-173 -

2. The term derived in the collage theorem which relates the distances of a

collage and its associated attractor from the initial shape is inadequate in itself

as a fitness function.

3. The presence of a contractivity term in the fitness function is necessary to

prevent the use of large mappings and the subsequent weak bound that is placed

upon the quality of the attractor.

4. The presence of a metric distance term in the fitness function is necessary

to provide the required degree of discrimination for cases where the input shape

consists of widely distributed and sparse points.

5. The use of the Hausdorff distance as the metric requues that the fitness

function include a greedy term which rewards collages with high shape coverage.

As for the reproductive plan D~, its has demonstrated high quality perfor­

mance by producing smoothly increasing average population fitnesses for correctly

set program parameters. The use of non-arbitrary offspring allocation, and the

guaranteeing of at least one population share to each solution, has been shown

to have the desired effect of maintaining population diversity, whilst the use of

an r = 2 sample size has not adversely effected program performance, and has

enabled a highly efficient implementation.

In terms of the general practicality of using a GA for collage construction, we

have shown that the program is basically 0(n 2) in the number of pixels contained

in the shape but that the expense of evaluating the Hausdorff distance and the

size of typical shapes results in extended runtimes. For example, using fitness

function C which incorporates the properties described above, average runtimes

for one hundred generations using a population size of one hundred solutions were

of the order of eight hours, whilst sixty hours of processor time were required for

-174 -

the attainment of results of a qualitatively high standard. The length of such

runtimes and the stochastic nature of a GA which obstructs exact program anal­

ysis renders the extensive investigation of encoding performance impractical with

the current implementation.

Despite the current speed and accuracy limitations we believe that the basic

principle of using a GA for the construction of full shape collages is sound, and

that no theoretical barriers exist to the future development of the present imple­

mentation and its ultimate incorporation into a machine vision system as part of

a shape representation scheme.

-175 -

7 CONCLUSION

We began with a brief discussion of the requirements of a general machine vi­

sion system, concentrating in particular on the representation schemes that such

a system could be expected to employ, based upon a study of the available psy­

chophysical data. Following this and a review of the representation schemes em­

ployed by past systems, we suggested the use of iterated function systems as a

fusion of conventional geometric and pictorial schemes. ,

After a presentation of the theory of IFSs we introduced a formal frame­

work within which to construct a two-dimensional shape representation scheme

and derived the theoretical properties such a scheme would possess, giving ex­

amples. We then tackled the fundamental problem of obtaining automatic shape

en co dings.

The work of chapter four on an encoding scheme based upon the simplifica­

tion of concentrating on a shapes boundary led to the conclusion that, whilst the

program developed may have applications in computer graphics, the limitations

on the range of shapes that could be successfully encoded, and the inescapable

requirement of constructing full shape collages, meant that the implementation

was inadequate as a basis for a general shape representation scheme.

An adaptive algorithm was identified as necessary to cope with the complex

search domain presented by the problem of full collage generation, and a specific

-176 -

type, the genetic algorithm, was selected. A discussion of the theoretical proper­

ties and practical limitations of GAs was presented in chapter five, culminating

in the introduction of a new reproductive plan, D 1 , designed to improve program

performance and increase implementation efficiency.

An implementation of a G A incorporating a highly efficient verswn of D 1

was described in chapter six, and its performance in automatically calculating

full collages for general shape input was assessed. The conclusions of this chapter

gave guidelines to the requirements of a GA intended for IFS encoding, including

the importance of the form of the fitness function and the characteristics that it is

required to display. The cost of evaluating the Hausdorff metric for typical sets

was found to be prohibitive using the current hardware, resulting in extended

program runtimes. However, the general conclusion was that the application of a

GA to the collage construction problem is fundamentally sound.

In general we conclude that iterated function systems have the potential to

form the foundation of a powerful shape representation scheme, combining the

positive attributes of conventional geometric and pictorial models used in con­

temporary machine vision systems. The GA encoding technique has been shown

to be a possible basis for a practical implementation of such a scheme, with the

capability of automatically generating shape encodings.

7.1 Research Directions

The work presented here suggests the following areas for future research:

1. The extended runtimes produced by the current implementation are an ef­

fect of the large amounts of data that must typically be processed and not the

-177 -

inherent complexity ~f the algorithm itself, which is basically 0(n 2) with respect

to the number of data points. Therefore, the conclusions of chapter six can be

confirmed by the use of faster hardware so enabling more exhaustive investiga­

tion of program performance. The fundamental nature of a GA and the minimal

evaluation and communication required by the reproductive plan D 1 suggest that

the current program would transfer well onto a parallel architecture. An order

of magnitude increase in encoding speed would make the assessment of the pro­

gram based on code fidelity a practical proposition. A further order of magnitude

increase would result in encoding times down to a matter of minutes at which

point machine vision applications would start to become practical.

2. The reproductive plan D 1 avoids the need for arbitrary scaling of offspring

numbers and, by requiring only the relative evaluation of a subset of the whole

population, enables highly efficient implementations. It therefore has possible ap­

plication to genetic algorithms in general and as such warrants further evaluation,

especially with reference to the effects of varying the sample size. Even if D 1 is

proved to have performance not significantly different from more conventional re­

productive plans, its improved efficiency and integrity will prove highly valuable.

3. From the definitions of chapter two it is apparent that the theory of IFSs

1s applicable to n-dimensional spaces, and thus the logical progression of the

current work is the extension of the encoding technique to three-dimensional

forms, thereby permitting the direct modelling of real world objects. This can

be achieved by reformulating the formalism of chapter three for the space 1i(R3).

This will not however affect the properties of the representation such as stabil­

ity and robustness since these are inherent in IFSs of any dimension. The RIA

algorithm can be simply extended to the three-dimensional case thus preserving

the ease of model manipulation. Finally, the GA described in chapter six can, in

-178 -

theory, be simply modified to handle three-dimensional input, the only problems

foreseen being those of increased search domain complexity and the difficulty of

working with three dimensional data.

-179 -

REFERENCES

Aho A.V., Hopcroft J.E., Ullman J.D., Data Structures and Algorithms,

Addison-Wesley, 1983.

Anderson J.A.D.W., Sullivan G.D., Baker K.D., "Constrained Constructive Solid

Geometry: A Unique Representation of Scenes", Proceedings: Fourth Alvey

Vision Conference, Manchester, 91-96, (August 1988).

Arbib M.A., Hanson A.R., "Vision, Brain, and Cooperative Computation: An

Overview", in Vision, Brain and Cooperative Computation, ed. M.A.Arbib

and A.R.Hanson, (1988).

Asada H., Brady M., "The Curvature Primal Sketch", IEEE Transactions

on Pattern Analysis and Machine Intelligence vol. PAMI-8, no.l, 2-14,

(January 1986).

Bailey T., Cowles J ., "A Convex Hull Inclusion Test", IEEE Transactions on

Pattern Analysis and Machine Intelligence vol. PAMI-9, no.2, 312-317,

(March1987).

Bajcsy R., Solina F., "Three Dimensional Object Representation Revisited",

IEEE First International Conference on Computer Vision, 230-240, (1987).

Barnsley M.F., Demko S., "Iterated Function Systems and the Global

Construction of Fractals", Proceedings of the Royal Society of London A399,

243-275, (1985).

-180 -

Barnsley M.F., Ervin V., Hardin D., Lancaster J., "Solution of an Inverse

Problem for Fractals and Other Sets", Proceedings of the National Academy

of Science USA vol.83, 1975-1977, (April 1986).

Barnsley M.F., Sloan A.D., "A Better Way to Compress Images", BYTE,

215-223, (January 1988).

Barnsley M.F., Fractals Everywhere, Academic Press, 1988.

Barnsley M.F., "Fractals and Chaos", Proceedings of the BCS seminar on

Fractals and Chaos, 1-21, (December 1989).

Booker L., "Improving Search in Genetic Algorithms", m Genetic Algorithms

and Simulated Annealing, ed. L.Davis, (1987).

Brooks R.A., "Symbolic Reasoning among 3D Models and 2D Images", Artificial

Intelligence 17, 285-348, (1981).

Bullock B.L., "The Necessity for a Theory of Specialized Vision", in Computer

Vision Systems, ed. A.Hanson and E.Riseman, (1978).

DeJong K.A., An Analysis of the Behaviour of a Class of Genetic Adaptive

Systems, PhD. Thesis, University of Mitchigan, 1975.

DeJong K.A., "Learning with Genetic Algorithms: An Overview", Machine

Learning, 3, 121-138, (1988).

Fischler M.A., "On the Representation of Natural Scenes", in Computer Vision

Systems, ed. A.Hanson and E.Riseman, (1978).

-181 -

Fisher R., "SMS: A Suggestive Modelling System for Object Recognition",

Image and Vision Computing vol.5 no.2, 98-104, (May 1987).

Fitzpatrick M.J., Grefenstette J.J., "Genetic Algorithms in Noisy Environments",

Machine Learning, 3, 101-102, (1988).

Funt B.V., "Problem-Solving with Diagrammatic Representations", Artificial

Intelligence 13(3), 201-230, (1980).

Giles P.A., Purvis A., Waugh D., Garigliano R., "Iterated Function Systems and

2-D Shape Representation", Proceedings: Fifth Alvey Vision Conference,

Reading, 49-53, (September 1989).

Hanson A.R., Riseman E.M., "VISIONS: A Computer System for Interpreting

Scenes", in Computer Vision Systems, ed. A. Hanson and E.Riseman,

(1978).

Hayes P.J., "The Second Nai've Physics Manifesto", in Formal Theories of the

Commonsence World, Ablex Publishing Corp., ed. J.R.Hobbs, R.C.Moore,

(1985).

Holland J.H., Adaptation in Natural and Artificial Systems, University of

Mitchigan Press, 1975.

Horn A.N ., "IFSs and the Interactive Design of Tiling Structures", Proceedings

of the BCS seminar on Fractals and Chaos, 22-39, (December 1989).

Koons D.B., McCormick B.H., "A Model of Visual Knowledge Representation",

IEEE First International Conference on Computer Vision, 365-372, (1987).

-182 -

Kosslyn S.M., Schwartz S.P., "Visual Images as Spatial Representations

in Active Memory", in Computer Vision Systems, ed. A.Hanson and

E.Riseman, (1978).

Levy-Vehel J., Gagalowicz A., "Shape Approximation by a Fractal Image",

Eurographics 1987, North Holland, 159-180, (1987).

Libeskind-Hadas R., Maragos P., "Application of Iterated Function Systems and

Skeletonization to Synthesis of Fractal Images", Visual Communication and

Image Processing II, SPIE vol.845, 277-285, (1987).

Mandelbrot B.B., The Fractal Geometry of Nature, W.H. Freeman and Co.,

1982.

Marr D., "Representing Visual Information", m Computer Vision Systems, ed.

A.Hanson and E.Riseman, (1978).

Marr D., Nishihara K., "Representation and Recognition of the Spatial

Organization of Three-Dimensional Shapes", Proceedings of the Royal

Society of London B200, 269-294, (1978).

Mokhtarian F., Mackworth A., "Scale-Based Description and Recognition of

Planar Curves and 2- D Shapes", IEEE Transactions on Pattern Analysis

and Machine Intelligence vol. PAMI-8, no.l, 34-43, (January 1986).

Mumford D., "The Problem of Robust Shape Descriptors", IEEE Ist

International Conference on Computer Vision, 602-606, (1987).

-l83 -

Nevatia R., "Characterization and Requirements of Computer Vision Systems",

in Computer Vision Systems, ed. A.Hanson and E.Riseman, (1978).

Pentland A.P., "Fractal-Based Description of Natural Scenes", IEEE

Transactions on Pattern Analysis and Machine Intelligence vol. PAMI-6,

no.6, 661-674, (November 1984).

Pentland A.P., "Perceptual Organization and the Representation of Natural

Form", Artificial Intelligence 28, 293-331, (1986).

Pentland A.P., "Recognition by Parts", IEEE First International Conference on

Computer Vision, 612-620, (1987).

Tsotsos J.K., "Knowledge and the Visual Process: Content, Form, and Use",

Pattern Recognition, vol. 17, no. 1, 13-27, (1984).

Tsotsos J.K., "A Complexity Level Analysis of Vision", IEEE First International

Conference on Computer Vision, 346-355, (1987).

Waugh D.A., "Assessment and Comparison of Existing Approaches to Computer

Vision", Internal Report, Dept. Computer Science, Durham University,

1-24, (August 1989).

Weisstein N., Maguire W., "Computing the Next Step : Psychophysical

Measures of Representation and Interpretation", m Computer Vision

Systems, ed. A.Hanson and E.Riseman, (1978).

-184 -

BIBLIOGRAPHY

Aloimonos J.Y., Shulman D., "Learning Shape Computations", Proceedings:

DARPA Image Understanding Workshop, 862-873, (February 1987).

Arbib M.A., Hanson A.R., (eds.), Vision, Brain and Cooperative Computation,

MIT Press, 1988.

Aviad Z., Lozinskii E., "On a Conceptual Description of Images", Pattern

Recognition Letters, North Holland, 51-57, (1985).

Aviad Z., "A Discrete Scale-Space Representation", IEEE First International

Conference on Computer Vision, 417-421, (1987).

Baker J.E., "Reducing Bias and Inefficiency in the Selection Algorithm",

Proceedings: Genetic Algorithms and Their Applications - The Second

International Conference on Genetic Algorithms, 14-21, (1987).

Ballard D.H., Brown C.M., Computer Vision, Prentice Hall, 1982.

Barrow H.G., Tenenbaum J.M., "Recovering Intrinsic Scene Characteristics

from Images", in Computer Vision Systems, ed. A.Hanson and E.Riseman,

(1978).

Beard.N ., "Ratio Revolution", Image Processing, 16-17, (May/June 1990).

Bennett B.M., Hoffman D.D., Prakash C., "Perception and Computation", IEEE

First International Conference on Computer Vision, 356-364, (1987).

-185 -

·Besl P.J., Jain R.C., "Three-Dimensional Object Recognition", ACM Computing

Surveys, vol.17, no.l, 74-145, (March 1985).

Bixler J.P., Watson L.T., Sanford J.P., "Spline-Based Recognition of Straight

Lines and Curves in Engineering Line Drawings", Image a.nd Vision

Computing, vol.6, no.4, 262-269, (1988).

Brisdon K., Sullivan G.D., Baker K.D., "Feature Aggregation in Iconic Model

Evaluation", Proceedings: Fourth Alvey Vision Conference, Manchester,

19-22, (August 1988).

Chein C.H., Aggarwal J.K., "Shape Recognition from Single Silhouettes", IEEE

First International Conference on Computer Vision, 481-490, (1987).

Cyganski D., Orr J.A., Cott T.A., Dodson R.J., "Development, Implementation,

Testing and Application of an Affine Invariant Curvature Function", IEEE

First International Conference on Computer Vision, 496-500, (1987).

Dawkins R., The Selfish Gene, Oxford University Press, 1976.

Dawkins R., The Extended Phenotype, Oxford University Press, 1982.

Dewdney A.K., "Mathematical Recreations - How to Transform Flights of Fancy

into Fractal Flora or Fauna", Scientific American, 9Q-93, (May 1990).

Ettinger G.J., "Large Hierarchical Object Recognition using Libraries of

Parameterized Model Sub-Parts", Proceedings of the Computer Society

-186 -

Conference on Computer Vision a.nd Pattern Matching, Ann Arbor,

Michigan, 32-41, (June 1988).

Gleick J., Chaos, Cardinal Press, 1987.

Gregory R.L., The Intelligent Eye, McGraw-Hill, New York, 1970.

Lamdan Y., Schwatz J.T., Wolfson J., "Object Recognition by Affine Invariant

Matching", Proceedings of the Computer Society Conference on Computer

Vision and Pattern Matching, Ann Arbor, Michigan, 335-344, (June

1988).

Leavers V., "Use of the Radon Transformation as a Method of Extracting

Symbolic Representations of Shape in Two Dimensions", Proceedings:

Fourth Alvey Vision Conference, l';fanchester, 273-279, (August 1988).

Levine M.D., "A Knowledge-Based Computer Vision System", m Computer

Vision Systems, ed. A.Hanson and E.Riseman, (1978).

Osbourn G.C., "A New Approach to Machine-Based Perception of Monocular

Images", Proceedings: IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, Ann Arbor, Mitchigan, 864-870, (June

1988).

Peitgen H.O., Richter P.R., The Beauty of Fractals, Springer-Verlag, 1988.

Reynolds G., Beveridge J.R., "Searching for Geometric Structure in Images of

Natural Scenes", Proceedings: DARPA Image Understanding Workshop,

257-271, (February 1987).

-187 -

Ridley M., The Problems of Evolution, Oxford University Press, 1983.

Shamos M.l., Hoey D., "Closest-Point Problems", Proceedings: 16th. Annual

Symposium Of the Foundation for Computer Science, 151-162, {1975).

Tanimoto S.L., "Regular Hierarchical Image and Processing Structures

in Machine Vision", in Computer Vision Systems, ed. A.Hanson and

E.Riseman, (1978).

Teh C., Chin R.T., "A Scale-Independant Dominant Point Detection Algorithm",

Proceedings of the Computer Society Conference on Computer Vision and

Pattern Matching, Ann Arbor, Michigan, 229-234, (June 1988).

Todd H.S., "A Descriptive Pattern Recognition System Applied to Pictorial

Patterns where the Discriminating Information is carried in the Object

Shape", Proceedings: IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, Ann Arbor, Mitchigan, 430-436, (June

1988).

Van Hove P., "Model-Based Silhouette Recognition", Proceedings: IEEE

Computer Society Workshop on Computer Vision, 88-93, (1987).

Wang Y.F., Magee M.J., Aggarwal J.K., "Matching 3-D Objects usmg

Silhouettes", IEEE Transactions on Pattern Analysis and Machine

Intelligence vol. PAMI-6, no.4, 513-518, {July 1984).

Weiss I., "Curve Fitting using a Varying Mesh", Proceedings: IEEE Computer

Society Workshop on Computer Vision, 311-314, (1987).

-188 -

Wolfson H., "On Curve Matching", Proceedings: IEEE Computer Society

Workshop on Computer Vision, 307-310, (1987).

Zucker S.W., "Vertical and Horizontal Processes in Low-Level Vision", m

Computer Vision Systems, ed. A.Hanson and E.Riseman, (1978).

-189 -

GLOSSARY OF TERMS

ACRONYM - a VISion system incorporating model based reasonmg and a

generalised cylinder object representation scheme.

Adaptive Algorithm - a class of algorithm in which a set of structures Is

iteratively updated, and of which a genetic algorithm is an example.

Arc - a section of a shapes bounding contour produced by segmentation at

curvature zero crossings.

Attractor - the limit point of an iterated function system.

Collage - the name given to any shape specific set of contraction mappmgs

for which the union of the mappings is equal to the shape itself.

Crossover - an operator on the population of a genetic algorithm which

exchanges information between solutions.

CSG - an acronym for Constructive Solid Geometry, a geometric

representation scheme in which an object is described by the Boolian

combination of volumetric shape primitives.

D1 - a reproductive plan that avoids arbitrary allocation of offspring and

allows efficient implementation of genetic algorithms.

Fitness Function - a measure of the value of each solution in the population

of a genetic algorithm.

-190 -

GA - an abbreviation for Genetic Algorithm, a search algorithm based upon

a simple model of population genetics.

GEN - a program parameter specifying the number of generations for which

a genetic algorithm is to be run.

Generalised Cylinder - The volume described by a cross-sectional area of

fixed shape but varying size as it is swept along a space curve. Used as a

volumetric shape primitive in some geometric representation schemes.

Generation a time period equal to one iteration of a genetic algorithm.

Also used to refer to the population during such a time period.

Glimpse - a v1s1on system incorporating pictorial representations or 'glimpses'

of objects.

IFS - an abbreviation for Iterated Function System, a set of contraction

mappings on a metric space which, when applied iteratively to an any subset of

the space, always produce the same subset in the limit.

MAP - a program parameter for the implementation of a genetic algorithm

that specifies the number of mappings to be used in the collages.

Matching Set - a set of arcs used to find mappings onto the boundary of a

shape.

MUT - a program parameter specifying the mutation probability 111 a genetic

algorithm.

-191 -

Mutation - an operator on the solutions 111 the population of a genetic

algorithm that introduces random changes.

Offspring - the children allocated to a solution on each iteration of a genetic

algorithm.

POP - a program parameter specifying the population size for a genetic

algorithm.

Population - the set of solutions (structures) modified by a genetic algorithm.

Population Share - the number of times a solution contributes genetic

material to the next generation. Since each child has two parents, there are 2N

share allocations in each population of size N.

Reproductive Plan - the rules controlling the allocation of offspring and the

use of genetic operators in a genetic algorithm.

RIA - an abbreviation for Random Iteration Algorithm, used for obtaining

the attractor of an iterated function system.

Schemata - bit patterns treated as formal random variables for the purpose

of analysis the behaviour of genetic algorithms.

Shape - defined to be any compact subset of the Euclidean plane.

SMS - an acronym for Suggestive Modelling System, an object representation

scheme motivated by the need for 'visual salient' primitives.

-192 -

Solution - one of the trial solutions that constitute the population of GA.

More formally a structure that represents a solution in some search domain

which undergoes iterative adaptation.

String - a string of binary digits that represent a trial solution m a GA.

Structure - a data element that undergoes successive modification m an

adaptive system.

Superquadrics - a family of three-dimensional shapes defined by the surface

swept out by the tip of the parameterised vector .l'(v,w), where v, and w are

latitudinal and longitudinal angles respectively. Used as the primitives in some

CSG implementations.

VISIONS - a VISion system based on rule based knowledge representation.

WHISPER - a VISion system incorporating diagrammatic reasomng.

XLN - a program parameter specifying the maximum crossover length m a

genetic algorithm.

-193 -

APPENDIX A

We present here the C object code for the genetic algorithm described in

chapter six. The text in normal type is explanatory material and is not part of

the code itself. C key-words appear in bold type.

#include < stdio.h >

#include < math.h >

MACRO DECLARATIONS

MAP

SUB

POP

GEN

MUT

XLN

#define MAP 3

#define SUB 1

#define POP 100

#define GEN 100

#define MUT 0.01

#define XLN (6 *MAP)- 2

-194 -

number of mappings.

subsampling factor.

. . population size.

number of generations.

mutation probability.

maximum crossover length.

FUNCTION DECLARATIONS

The explanation of the operation of each function can be found at the head of

its definition.

int rand();

void medical();

void propagate();

void read_image();

void initialise();

void write_best();

GLOBAL VARIABLES

clx[], ely[]

cen[J

pixels

best .

colour

oldfit, newfit

data[] . . .

parentJit[]

childJit[J

shape[][]

mapped[][]

array[][]

parents[][]

children[][]

oldgen, newgen

extent of shape in x and y directions.

. . . . centroid of shape.

. the number shape pixels.

fitness of best-so-far solution.

highest pixel value in array[][].

pointers to fitness values.

powers of 2.

fitness of parents.

fitness of children.

co-ordinates of shape pixels.

co-ordinates of mapped pixels.

array representation of image.

bit-string representation of generation (n).

bit-string representations of generation (n+l).

. pointers to populations.

-195 -

float dx[2], dy[2];

int cen[2], pixels;

int best = 0, colollr = 1;

int *oldfit, *new fit, *dummy fit;

char data[8] = {1,2,4,8,16,:32,64,128};

int parenLfit[POP], chi/d_fit[POP];

int shape(5000][2], mapped[5000][2], array[512][512];

char parents[POP][6 *MAP], children[POP][6 *MAP];

char (*newgen)[6*MAP], (*oldgen)[6*MAP], (*dummygen)[6*MAP];

MAIN

The program takes the following combination of parameters:

image-file [population-file].

IMAGE_FILE is the output file of the image processor and must contain the

following information: the number of pixels in the shape; the position of the

centroid of the shape in the image plane; and the extent of the shape in the x

and y directions. POPULATIQN_FILE is optional. If present it must contain a

population of solutions compatible with the current program parameters. No

checks for compatibility are made. If the population file is not present then a

random starting population is generated by INITIALISE(). The image file is

read by the function READ-IMAGE(). Calculation of successive generations IS

handled by the function PROPAGATE().

main(argc,argv)

int argc;

char * * argv;

-196 -

{register int t,J;

if ((argc < .2) II (argc > 3)) {printJ("inco1-rect argument number \n"); exit(O);}

read_image(argv[1]);

initialise(argv [2]);

oldgen =parents; oldfit = parent_fit;

newgen =children; newfit = child_fit;

for (i = 0; i < GEN; i + +)

{propagate();

dummygen = oldgen; dummy/it = oldfit;

oldgen = newgen; oldfit = newfit;

newgen = dummygen; new fit = dummyfit;}}

READ-IMAGE

Reads image data from output file of image processor. Initialises the global

arrays shape[)[) and array[][). The position values in the imagefile are scaled

by 1024 to allow use of integer maths without loss of accuracy. Other values are

scaled to match.

filename

void read _image(! ilename)

char *filename;

{int x, y;

FILE *in;

register int i;

. file from which image data 1s read.

-197 -

if ((in= fopen(filename,",.")) ==NULL) {printf("image file error \n"); exit(O);}

fread(&pixels, 4, 1, in);

fread(&cen[O], 4, 1, in); fread(&cen[1], 4, 1, in);

fread(&dx[O], 4, 1, in); f1·ead(&dx[1], 4, 1, in);

fread(&dy[O], 4, 1, in); f7·ead(&dy[1], 4, 1, in);

for (i = 0; i <pixels; i + +)

{!read(&shape[i][O], 4, 1, in); fread(&shape[i][1], 4, 1, in);

x = (cen[O] + shape[i][0))/1024; y = (cen[1) + shape[i][1])/1024;

array[x][y] =colour;}

cen[O]* = 256; cen[1)* = 256;}

INITIALISE

Initialises the first population. If a filename is given then the initial population

is read from that, otherwise a random starting population is generated.

filename name of file containing initial population.

void initialise(fi/ename)

char *filename;

{FILE *in;

register int z,J;

if (filename == NULL)

{for (i = 0; i < POP; i + +)

{for (j = 0; j < 6 *MAP; j + +)

{parents[i][j] =(char) rand(-128,127);}}}

else if((in = fopen(Jilename, ",·")) ! =NULL)

-198 -

{for (i=O; i<POP; i++)

{for (j = 0; j < 6 *!vi AP; j + +) f1·ead(&parents[i)[j], 1, 1, in);

fread(&parenLfit[i], 4, 1, in);}

fclose(in);}

else {printf("population file error \n"); exit(O);}}

PROPAGATE

Produces a child for each 'mother' solution within the population. A pair of

possible mates is chosen at random, and the fitter of the two is selected as the

'father'. A crossover point and length are chosen at random. The bits between

the endpoints of the crossover are copied from the father into the mother to

create the child, which is then placed in the next generation. Masks are created

for the end bytes of the crossover so that crossover length is not restricted to a

whole number of bytes. One bit of the child is altered with probability MUT.

mut . bit of string to be mutated.

mask

mate

void propagate()

{int mut;

char mask;

int mate, k, I, m;

register int i,j;

for (i = 0; i <POP; i + +)

template for crossover.

. . . . chosen mate.

{for (j = 0; j < 6 *MAP; j + +) newgen[i][j] = oldgen[i][j];

newfit[i] = 0;

-199 -

l = 1·and(O, POP- 1); if (oldfit[l] == 0) medical(/);

k = rand(O, POP- 1); if (oldfit[k] == 0) medical(k);

mate= (oldfit[l] > o/dfit[k]) ? l: k;

I= rand(O, (6 *MAP- 1)); k = 1'and(O, X LN);

for (j =I; j <(I+ k); j + +) newgen[i][j%(6 *MAP)]= o/dgen[mate][j%(6 *MAP)];

m = (/- (1 + 6 * MAP))%(6 * AIAP);

mask= data[rand(O, 7)]- 1;

newgen[i][m] = (o/dgen[mate][m] & mask)+ (o/dgen[i][m] & C mask));

m = (/ + k)%(6 *MAP);

mask= -data[rand(O, 7)];

newgen[i][m] = (o/dgen[mate][m] & mask)+ (o/dgen[i][m] & C mask));

if (rand(O, 10000) < 10000 * MUT)

{mask= data[rand(O, 7)];

mut = rand(O, (6 *MAP- 1));

newgen[i][mut] = (newgen[i][mut] & C mask))+ (C newgen[i][mut]) & mask);}}}

-200 -

MEDICAL

Evaluates the fitness of a structure m the current population. The bit-string

is decoded into MAP mappings each with five coefficients, sx, sy, 0, x0 , Yo· These

values are then used to find the six parameters needed to define each affine

mapping. When the fitness of a structure exceeds that of any previously found,

the IFS it represents is output by the function WRITE_BEST.

n

smax

tmp[]

map[]

points

n11ll

maxl, max2

void medical(n)

int n;

{int x, y;

float smax;

register int j, k;

int map[M AP](6];

float tmp[B];

int dummy[2], points;

int min, max1, max2, dist;

for (j = 0, smax = 0.0; j < 6 * MAP; j+ = 6)

{tmp[O] =(float) (oldgen[n][j]) * 1.414;

if (tmp[O] > smax) smax = tmp[O];

else if (-tmp[O] > smax) smax = -tmp[O];

-201 -

the current structure.

. contractivity factor.

contains sx,sy,O,xo,Yo values.

. . . mapping coefficients.

number of mapped points.

minimum distance between points.

. Hausdorff measures.

tmp(1] =(float) (oldgen[n](j + 1]) * 1.414;

if (tmp(1] > smax) smax = tmp[1];

else if (-tmp(1] > smax) smax = -tmp(1];

tmp(2] =sin((float) (oldgen[n](j + 2]) * M _PJ/128.0);

tmp[3] = cos((float) (oldgen[n](j + 2]) * /'vLPI/128.0);

tmp[4] =sin((float) (oldgen[n](j + 3]) * M _PI/128.0);

tmp[5] = cos((float) (oldgen[n](j + 3]) * M_PJ/128.0);

tmp[6] =((float) (oldgen[n][j + 4]) + 128.0) * (dx[O]- dx(1]) + 255.0 * dx[1];

tmp[7] =((float) (oldgen[n][j + 5]) + 128.0) * (dy[O]- dy(1]) + 255.0 * dy(1];

map(j/6](0] = (int)(tmp[O] * tmp(3]);

map(j/6](1] = (int)(-tmp[1] *tmp(4]);

map(j/6](2] = (int)(tmp[O] *tmp[2]);

map(j/6](3] = (int)(tmp[1] * tmp(5]);

map(j/6](4] = (int)(tmp[6] * 1024.0);

map(j/6](5] = (int)(tmp[7] * 1024.0);}

for (k = 0, max2 =points= oldfit[n] = 0; k <MAP; k + +)

{for (j = 0; j <pixels; j+ = SUB)

{x = (map[k][O] * shape[j][O] + map[k][1] * shape[j][l] + map(k](4] + cen(0])/262144;

y = (map[k][2] * shape[j][O] + map[k][3] * shape[j][1] + map[k][5] + cen(1])/262144;

if ((array[x][y] > 0) && (array[x][y] <=colour))

{oldfit[n] + +; array[x][y] =colour+ 1;

mapped(points][O] = x * 1024- cen(0]/256;

mapped(points][1] = y * 1024- cen(1]/256;

points++;}

else if ((array[x][y] <= 0) && (array[x][y] >-colour))

{ anay[x][y] = -colour;

-202 -

mapped[points][O] = x * 1024- cen(0]/256;

mapped[points][l] = y * 1024- cen[l]/256;

points++;}}}

for (k = 0, max 1 = 0; k <pixels; k+ =SUB)

{for (j = 0, min= 262144; j <points; j + +)

{dist = (shape[k][O]- mapped[j][O]) * (shape[k][O]- mapped[j][0])/262144;

+ (shape[k][l]- mapped[j][l]} * (shape[k][l]- mapped[j](l])/262144;

if (dist < max1) {min= maxl; break;}

if (dist <min) min= dist;}

maxi= min;}

for (k = o, max2 = o; k <points; k + +)

{for (j = 0, min= 262144; j <pixels; j+ =SUB)

{dist = (shape[j][O]- mapped[k][O]) * (shape[j][O]- mapped[k][0])/262144;

+ (shape(j](1]- mapped[k][l]) * (shape[j][1]- mapped(k](1])/262144;

if (dist < max2) {min= max2; break;}

if (dist <min) min= dist;}

max2 =min;}

colour++;

if (max2 > maxl) maxi= max2;

oldfit[n] = (int) (oldfit[n] * (256.0- smax)/(256.0 *pixels* (1.0 + sqrt((Jloat) maxl))));

if (oldfit[n] >best) {best= oldfit[n]; write..best(best, map);}}

-203 -

WRITE-BEST

Outputs the best-so-far solution in two different formats. IMAGE is an ascii file

and gives the code and its fitness in a readable form. IMAGE.IFS contains just

the raw IFS data and could be used directly by a pattern recognition program

as one of its library codes.

value

data(]

void write_best(value,data)

int value; int (*data)[6];

{int i,j;

FILE * outl, *Out2;

short numbe1' =MAP;

outl = fopen("image", "w");

out2 = fopen("image.ifs", "w");

fp1'intf(out1, "%s", ''image \n");

fw1'ite(&numbe1', 2, 1, out2);

for (i=O; i<MAP ;i++)

fitness value of best solution.

. . . - mapping coefficients.

for (j = 0; j < 4; j + +) fp1'intf(out1, "%/",(float) (data[i][j])/256.0);

for (j = 4; j < 6; j + +) fp1'intf(outl, "%!",(float) (data[i][j])/262144.0);

fp1'intf(out1, "%s", ''\n");

for (j = 0; j < 6; j + +) fw,·ite(&data[i][j],4, 1,out2);}

fp1'intf(out1, "%d\n", value);

fclose(out2); fclose(outl);}

-204 -

RAND

Generates pseudo-random integers in the range (a, b].

seed

int rand(a, b)

int a, b;

{float c;

static short seed;

{seed= ((int) seed* 25173 + 13849)%65536;

c =(float) seed/32768.0;

c = 0.5 * (b * c- a* c + c + b +a+ 1.0);

return ((int) c);}

-205 -

seed of number generator.

APPENDIX B

The following IFS codes are those used to test the GA implementation in

chapter six. Using the normalised fitness functions as described in the text, the

fitness of each of these exact codes is dependent on its minimum contractivity

factor, s, and so this quantity is given for each case. 'vVe also supply the

probabilities, p(i) for i = 1, 2, ... , N, used in the rendering of the codes, together

with the number of points, n, that were produced.

Renderings of the attractors and representations of the collages for the set of

test IFS's are given in the figures that follow directly after the tables of codes.

a b c d e f p(i)

W1 0.50 0.00 0.00 0.50 0.00 18.00 0.333

W2 0 .. 50 0.00 0.00 0.50 -15.00 -8.00 0.333

W3 0.50 0.00 0.00 0.50 15.00 -8.00 0.333

Table B.l The IFS code for a Sierpinski triangle with s = 0.500 and n = 779.

a b c d e f p(i)

wl 0.50 0.00 0.00 0.50 15.00 15.00 0.250

W2 0 .. 50 0.00 0.00 0.50 15.00 -15.00 0.250

W3 0.50 0.00 0.00 0.50 -15.00 15.00 0.250

w4 0.50 0.00 0.00 0.50 -15.00 -15.00 0.250

Table B.2 The IFS code for a. square with s = 0.500 and n = 3291.

-206 -

a b c d e f p(i)

Wt 0.20 -0.26 0.23 0.22 0.00 24.00 0.111

w2 -0.1.5 0.28 0.26 0.24 0.00 6.60 0.116

WJ 0.8.5 0.04 -0.04 0.8.5 0.00 24.00 0.773

Table B.3 The IFS code for a fern with s = 0.851 and n = 4030.

a b c d e f p(i)

Wt 0.59 -0.:37 0.:37 0 . .59 60.00 0.00 0.500

w2 0 . .59 -0.37 0.37 0.59 -60.00 0.00 0.500

Table B.4 The IFS code for the twin-dragon fractal with s = 0.696 and p = 1809.

a b c d e f p(i)

Wt 0.00 0.50 0.50 0.00 15.00 15.00 0.333

W2 0.50 0.00 0.00 0.50 15.00 -1.5.00 0.333

WJ -0 .. 50 0.00 0.00 0.50 -15.00 -15.00 0.333

Table B.5 The IFS code for the 'L' shaped fractal with s = 0.500 and p = 1128.

a b c d e f p(i)

Wt 0.32 -0.16 0.2.5 0.49 5.60 19.96 0.236

w2 0.53 -0.25 0.13 0.68 -12.43 16.98 0.472

WJ -0.18 -0.83 0.33 0.18 14.25 10.14 0.292

Table B.6 The IFS code for random fractal, randl, with s = 0.849 and n = 880.

-207 -

a b c d e f p(i)

Wt 0.01 -0.07 0.18 0.27 30.00 34.00 0.038

W2 0.40 0.43 -0.53 0.22 24.00 -21.00 0.768

-w3 -0.03 0.51 -0.15 -0.12 -1.5.00 20.00 0.194

Table B.7 The IFS code for random fractal, rand2, with s = 0.664 and n = 346.

a b c d e f p(i)

Wt 0.34 -0.21 0.21 0.34 -8.92 13.43 0.274

w2 0.36 0.37 0.37 -0.36 20.41 6.29 0.456

W3 0.39 0.07 -0.07 0.39 -23.61 -2.52 0.270

Table B.8 The IFS code for random fractal, rand.3, with s = 0.500 and n = 508.

a b c d e f p(i)

W1 0.65 0.33 -0.12 0.56 13.45 -34.21 0.523

W2 0.33 -0 .. 50 0.66 0.11 -15.89 6.53 0.477

Table B.9 The IFS code for random fractal, rand4, with s = 0.738 and n = 1316.

a b c d e f p(i)

Wt 0.25 0.33 -0.72 0.56 1.45 -14.21 0.538

W2 0.33 -0.35 0.16 0.81 -15.89 16.53 0.462

Table B.lO The IFS code for random fractal, randS, with s = 0.882 and n = 1102.

-208 -

a b c d e f p(i)

W[-0.34 0.21 -0.42 -0.40 5.63 -14.31 0.37.5

W2 0.23 -0.55 0.21 0.66 -23.77 29.40 0.448

WJ -0.33 0.59 -0.09 -0.16 :30.12 -6.51 0.177

Table B.ll The IFS code for random fractal, rand6, with s = 0.859 and n = 1032.

-209 -

EB

Figure B.l The collages and attractors for the first five IFS codes of the

test set. (Top line from left) - The Sierpinski triangle, a square, and a fern.

(Bottom left) - The twin-dragon fractal used by Barnsley. (Bottom right) - an

'L' shaped fractal.

-210 -

Figure B.2 The collages and attractors for the randomly generated fractals in

the test set. They are labelled randl to rand6 from top left to bottom right.

-211 -

Average
Fitness
(jit)

1.00

0

APPENDIX C

100
Generation (g)

Graph C.l The increase in average population fitness over one hundred
generations for zero mutation a.nd other parameters fixed as described in the
text. -

Average
Fitness
(jit)

1.00

0 100
Generation (g)

Graph C.2 The effect on average population fitness of introducing a mutation
probability of 0.25 whilst keeping all other parameters fixed.

-212 -

Average
Fitness
(jjt)

1.00

0 100
Generation (g)

Graph C.3 Increasing mutation rate to MUT = 0.5 shows severe impairment of
performance.

Average
Fitness
(jjt)

0.50

0 100
Generation (g)

Graph C.4 The effect of setting MUT = 0.75. (Notice the change of scale).

-213 -

Average
Fitness

(iit)

0.25

0 100
Generation (g)

Graph C.5 When all solutions are mutated the algorithm becomes little better
than a random search.

Average
Fitness

(iit)

1.00

0 100
Generation (g)

Graph C.6 The finally selected value of MUT = 0.01 which maintains diversity
without impairing the smooth increase of average fitness.

-214 -

Average
Fitness

(ilt)

0.25

0 100
Generation (g)

Graph C.7 The result of setting X LN = 0 whilst retaining a mutation rate of
one percent.

Average
Fitness
(ilt)

0.25

0 100
Generation (g)

Graph C.8 Inreasing the crossover length to two gives only slightly improved
performance.

-215 -

Average
Fitness

(Pt)

0.25

0 100
Generation (g)

Graph C.9 XLN = 4 and the underlying increase in average fitness starts to
become apparent.

Average
Fitness
(jjt)

0.50

0 100
Generation (g)

Graph C.lO With the crossover length set at half of the full string length, the
graph begins to smooth out and the absolute fitness values rise appreciably.

-216 -

Average
Fitness
(jit)

1.00

0
Generation (g)

Graph C.ll XLN= 12 and a. smoothly increasing plot emerges.

Average
Fitness
(fit)

1.00

0
Generation (g)

100

100

Graph C.12 Allowing crossover to extend over the whole length of a solution
clearly leads to the best performance within the imposed constraints.

-217 -

Average
Fitness
(fit)

1.00

0 100
Generation (g)

Graph C.13 A vera.ge population fitness increase using accurate evaluation for
each solution.

Average
Fitness
(fit)

1.00

0 100
Generation (g)

Graph C.14 The effect of subsa.mpling the input shape by a. factor of two.

-218 -

Average
Fitness
(jjt)

0.50

0
Generation (g)

Graph C.15 SUB= 5 and detrimental effects become apparent.

Average
Fitness
(jjt)

0.25

0
Generation (g)

100

100

Graph C.16 Taking only every tenth image point results in rapid convergence
to a low average fitness population.

-219 -

Average
Fitness
(p,t)

1.00

0 100
Generation (g)

Graph C.17 Fitness increase for accurate evaluation with a population size of
one hundred.

Average
Fitness

(P,t)

1.00

0 100
Generation (g)

Graph C.18 The change in performance obtained using a population of 175
with a subsampling facto1· of 2.

-220 -

Average
Fitness
(Jtt)

0.50

0
Generation (g)

Graph C.19 Results of using POP= 310 and SUB= 5.

Average
Fitness
(Jtt)

0.25

0
Generation (g)

100

100

Graph C.20 The performa.nce obtained with a population of 417 and a
subsampling factor of 10.

-221 -

,,

Average
Fitness
(Jtt)

{).50

0 100
Generation (g)

Graph C.21 Average population fitness as a function of generation for the first
random fractal and fitness function B.

Average
Fitness
(Jtt)

0.25

0 100
Generation (g)

Graph C.22 Average population fitness as a function of generation for the
second random fractal and fitness function B.

-222 -

Average
Fitness
(jit)

0.50

0 100
Generation (g)

Graph C.23 A vera.ge population fitness as a function of generation for the
third random fractal and fitness function B.

Average
Fitness
(iid

0.25

0 100
Generation (g)

Graph C .24 Average population fitness as a function of generation for the
fourth random fractal and fitness function B.

-223 -

Average
Fitness

(P,t)

0.25

0 100
Generation (g)

Graph C.25 Average population fitness as a function of generation for the fifth
random fractal and fitness function B.

Average
Fitness
(jjt)

0.25

0 100
Generation (g)

Graph C.26 Average population fitness as a function of generation for the
sixth random fractal and fitness function B.

-224 -

Average
Fitness
(jjt)

0.50

0 100
Generation (g)

Graph C.27 Average population fitness as a function of generation for the fern
fractal and fitness function B.

Average
Fitness
(jjt)

0.50

0 100
Generation (g)

Graph C.28 Average population fitness as a function of generation for the
square test shape a.nd fitness function B.

-225 -

Average
Fitness
(Jit)

0.50

0 100
Generation (g)

Graph C.29 Average population fitness as a function of generation for the
Sierpinski triangle a.nd fitness function B.

Average
Fitness
(Jit)

0.50

0 100
Generation (g)

Graph C.30 Average population fitness as a function of generation for the
twin-dragon fractal and fitness function B.

-226 -

Average
Fitness

(fit)

0.50

0 100
Generation (g)

Graph C.31 Average population fitness as a function of generation for the 'L'
test shape and fitness function B.

-227 -

Average
Fitness
([tt)

0.05

0 100
Generation (g)

Graph C .32 Average population fitness a.s a. function of generation for the
second ra.ndom fra.cta.l a.nd fitness function A.

Average
Fitness
(iid

0.10

0 100
Generation (g)

Graph C .33 A vera.ge population fitness a.s a. function of generation for the
third random fractal a.nd fitness function A.

-228 -

Average
Fitness
(pt)

0.05

0 100
Generation (g)

Graph C.34 A vera.ge population fitness a.s a. function of generation for the
fourth random fra.cta.l a.nd fitness function A.

Average
Fitness
(Pt)

0.05

0 100
Generation (g)

Graph C .35 Average population fitness as a. function of generation for the fifth
random fra.cta.l a.nd fitness function A.

-229 -

Average
Fitness
(fit)

0.04

0 100
Generation (g)

Graph C.36 Average population fitness as a function of generation for the
Sierpinski triangle and fitness function A.

Average
Fitness
(fit)

0.01

0 100
Generation (g)

Graph C.37 Average population fitness as a function of generation for the
second random fractal and fitness function C.

-230 -

Average
Fitness
(jjt)

0.02

0 100
Generation (g)

Graph C.38 Average population fitness as a function of generation for the
third random fractal and fitness function C.

Average
Fitness
(jjt)

0.02

0 100
Generation (g)

Graph C.39 Average population fitness as a function of generation for the
fourth random fractal and fitness function C.

-231 -

Average
Fitness

(flt)

0.01

0 100
Generation (g)

Graph C.40 Average population fitness as a function of generation for the fifth
random fractal and fitness function C.

Average
Fitness
(fit)

0.05

0 100
Generation (g)

Graph C.41 Average population fitness as a function of generation for the
Sierpinski triangle and fitness function C.

-232 -

Average
Fitness
(jlt)

0.02

0 300
Generation (g)

Graph C .42 Average population fitness as a function of generation for the
second random fractal, fitness function C, and a population size of 1000.

-233 -

