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ABSTRACT 

A feasibility study was planned to determine the efficiency of immobilized algal cells growing in a packed bed 

for removing Cd from commercial effluents. To select appropriate material for an immobilized cell system, twenty 

five strains of algae isolated from heavy-metal contaminated environments of known water chemistry were tested for 

their ability to accumulate Cd. Before accumulation experiments were initiated, ion exchange resin was employed 

to demonstrate that EDTA in the medium did not complex Cd to a significant degree. Synechococcus D562 cells 

subcultured in Cd accumulated the most metal; little was bound to the cell wall. A continuous culture of steady

state Synechococcus D562 cells tolerated a lower maximum concentration of metal (3.4 mg 1-l Cd) than batch

cultured cells (5 mg 1-1 Cd), indicating that metabolic status influences the toxicity of Cd. 

When flasks of calcium-alginate beads were challenged with Cd, up to 60 % of the added metal was bound 

within 16 h; however, further incubation did not reduce the pollutant concentration. Two axenic strains which 

accumulated the metal to a high concentration were then immobilized and tested for their capacity to remove Cd 

from the circulating medium. A packed-bed reactor containing Mougeotia D536 cells proved more effective at 

metal removal than Svnechococcus D562, but both species grew to a lower cell density at the effluent end of the 

column. The medium was then aerated to overcome such growth-limiting conditions, but this treatment inhibited 

Cd accumulation. Column-immobilized cells reduced Cd levels more effectively than inoculated, alginate beads in 

stationary flasks or free cells. 

Energy dispersive X-ray microanalysis located Cd only in particular Synechococcus D562 polyphosphate 

bodies (those with a high Ca to K ratio); peaks for Zn, Pb, Fe, Mn and Ba were also detected in algae isolated from 

the field. Scanning proton microanalysis provided information on the distribution of macro- and micro-elements 

throughout the two strains of cyanobacteria and two strains of algae selected from the Durham Culture Collection 

and demonstrated the presence of Cd in Klebsormidium rivulare D537. 

Detergent-sensitive spheroplasts of Synechococcus D562 were produced by lysozyme and protease digestion, 

but were not viable for growth. To observe the extracellular mucilage of this strain by EM, lysozyme digestion 

proved imperative for effective ruthenium red staining to convert the material into an electron opaque material. 

From cultures of Synechococcus D562 grown with or without Cd a 14 kD plasmid was isolated, which contained 

two Eco RI, two Bam HI and five Hind III restriction sites. A radio labelled oligonucleotide probe based on part of 

the nucleotide sequence of a metallothionein from Synechococcus PCC 6301 did not bind to a genomic and plasmid 

blot of Synechococcus D562 DNA. 

The putative Cd-binding peptides ((yEC)nG's) that were discovered only bound significant quantities of the 

metal when cells were exposed to 6.17 mg 1-1 Cd for 2 days at the end of their log-growth phase. Indigenous 

peptides failed to bind substantial amounts of the metal and the presence of Cd throughout growth did not influence 

the quantity of chelated Cd, except for Mougeotia D536. The pH of half displacement for (yEC)nG's from this 

strain is comparable with that of other species. Reversed-phase HPLC of the pep tides from Mougeotia D536 

generated a thiol profile similar to that recorded for the Cd-binding peptides of Datura innoxia. 

The Cd-induced ultrastructural distortions that were recorded include potential Ca I PI Cd precipitates in 

Mougeotia D536, the loss of poly glucoside granules from Calothrix D 184 together with a relaxation of its thylakoid 

packing and a lack ofplastoglobuli in Cd-exposed Klebsormidium D537. The space between an immobilized cell 

and the matrix either represents shrinkage of the matrix during dehydration or mucilage which does not bind electron 

dense stains. 

Release of alkaline phosphatase into the medium by Synechococcus D562, provided suitable material to study 

the inhibitory effects of Cd upon P hydrolysis. Ultrafiltration membranes proved effective as initial step towards 

enzyme purification and for the determination of activity under sub-optimal pH conditions. At pH 7 .0, the activity 

of an enzyme concentrate was inhibited when 1 and 10 mg 1-1 Cd were added to the assay medium, but the presence 

of this metal in the growth medium did not reduce activity. One-dimensional SDS PAGE revealed only one protein 

difference between strains grown with or without Cd; a reduction in the staining intensity of a 17 kD band of 

Calothrix D184. 
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CHAPTER! 

INTRODUCTION 

1.1 General introduction 

The geological association of Cd with Zn was not only responsible for its discovery (in zinc carbonate 

deposits), but also forms the main source of extraction and environmental pollution. Because of useful 

electrophysical properties, this metal is extracted from mineral deposits (at a zero oxidation state) for its inclusion in 

many industrial commodities (Table 1.1 ). When these products reach the end of their life cycle and are discarded, 

the Cd may be released in a more concentrated form and at a higher oxidation level. As this metal is capable of 

replacing biologically essential ions without retaining their function and exerts such an effect at low concentrations, 

cell toxicity and environmental pollution quickly become a reality (Nriagu, 1980). 

As a corollary of such metal redistribution and change in valency, the maximum permissible levels of ingestion 

set by the World Health Organisation of 400 - 500 llg Cd per person per week are being approached in some member 

countries (drinking water limits = 5!lg J-1 Cd and sea food = 0.21J.g 1- 1 Cd). Consequently a proposal has been 

formulated by the EC (to be brought into effect by 30 June 1991) which bans the use of Cd in coloured and surface 

coated products that come into contact with man, encourages the recycling of Cd containing articles and initiates a 

drive to find alternatives for Cd loaded pigments and stabilisers. It also recommends the monitoring of industrial 

emissions, soil Cd content and the amount of this metal employed in fertilisers (European Council Directive, 1989). 

In response to the impending legislation designed to tackle the increasing burden of environmental Cd and the 

inevitable demand for metal-scavenging technology (either to treat aquatic habitats which are already loaded with 

the metal, or integrated into the industrial effluent stream of processes which cannot withstand a Cd substitute), this 

research project was designed to establish the viability of deploying immobilized algal cells for the removal of Cd 

from polluted water. 
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1.11 Environmental sources 

A knowledge of the background levels of Cd at various locations (in conjunction with toxicity tests) provides a 

bench mark against which the extent of industrial pollution can be measured. One tonne of the earths crust yields 

about 0.5 g Cd, igneous rock containing 0.2 ppm, limestone 0.035 ppm and soil typically 0.66 ppm. This metal 

occurs naturally as greenockite or is associated with lead and sulphide ores, with an abundance of 1(350 th of Zn. 

These minerals are liable to gradual weathering and the action of sulphur bacteria, resulting in a natural, low-level 

release of Cd into the environment (Chadwick, 1976). Volcanic action is the major source of atmospheric 

discharge, occurring as a combination of particulate matter and the condensation of vaporised Cd (Mount Etna 

released 2.8 x IQ-2 t d-1). Contributions from wind blown desert dusts, sea sprays and forest ftres are relatively 

insignificant. Apart from Carboniferous black shales, the weathering of crustal material does not normally lead to 

considerably elevated levels of soluble Cd (Hutton, 1982). Therefore, in most environments natural levels of this 

metal do not pose a toxic risk. 

1.12 Industrial sources 

Although currently employed in a wide variety of articles, it took 60 yr from discovery before Cd was 

commercially exploited, the first large scale application being for paint pigments. The evolution of new production 

methods prompted the incorporation ofCd in low-melting alloys, electroplating, glass making, photography, dying, 

calico printing and as a chemical reagent. Today, the metal fmds applications in automobile sleeve bearings, 

aircraft and marine engines, fire detector units, sprinkler systems, photography halides, pigments, storage batteries, 

paints, plastics, TV tubes, nuclear reactor control rods, radiation devices and photoconductive elements (Nriagu, 

1980; Hutton, 1982). 

Less than 25% of the Cd currently consumed by industry is recycled (Table 1.1). Because the metal is present 

in so many materials, the repercussion of this low recovery figure is that Cd accumulates in the environment, a 

process which in some regions project this metal onto the British Red List of Pollutants (Anon., 1988). 
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1.13 Environmental pollution 

The industrial release of Cd into the environment pervades all of the main environmental compartments (Table 

1.2), which if left unchecked will disrupt the species balance of the immediate habitat and migrate up the food chain 

until the metal is concentrated to toxic levels. Properly constructed landftll sites represent the best form of damage 

limitation, but metal inputs to water and the atmosphere are very difficult to contain. 

The majority of the waste Cd, is a by-product of non-ferrous metal smelting. The solid wastes from iron and 

steel manufacture (200 t yr-1) are not generally recycled and have to be disposed of in landfill sites. By the year 

2000 it is estimated that about 400 t yr-1 of Cd will be released in the form of solid wastes and atmospheric 

emissions (Hutton, 1982). 

Depending on it's origin, coal contains 0.02- 2.0 Jlg Cd g-1, which is volatilised when burnt (condensing on 

small fly ash particles) and is mainly deposited in landfill sites and ash ponds. Natural gas has negligible Cd 

content (future coal gasification will incorporate a cleaning process) and crude oil contains about 0.05 Jlg g-1. 

During refuse disposal, scrap metal, plastics, stabilisers and pigments are the main sources of metal release. Waste 

incineration results in a relatively high level of emission: 0.7 - 4.4 g Cd t-1 of waste, resulting in an atmospheric 

burden of 1.5 g Cd t-1; the Cd derived from burnt refuse is predominantly associated with submicron debris which is 

least effectively retained by particle control devices. It is assumed that Cd discharges from refuse disposal will 

remain constant over the next 10 yr due to restrictive legislation on incinerator emissions and the control of Cd 

deposition onto plated articles and plastics. 

The production of phosphoric acid for use in fertilisers releases Cd from one of the starting materials, gypsum 

(calcium sulphate). This results in a total EC discharge in 1980 of 34 t to landfill and 62 t to water, although the 

fabrication of phosphate fertilisers is not expected to rise significantly over the next decade (Hutton, 1982). 

Therefore, Cd pollution is a widespread problem, whose presence in a number of different environments 

requires a variety of solutions. 

1.14 Implications for human health 

A high priority is assigned to a particular pollution challenge when humans begin to act as the biomonitor for 

toxic concentrations of a particular substance; before this stage, polluted environments often remain unmonitored. 
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Upon exposure to this metal via contaminated food, ones place of work, drinking water, or the atmosphere (Table 

1.3), Cd is absorbed across the lungs or alimentary canal and transported throughout the body as a component of 

blood cells (erythrocyte MT binds the metal at about 1 ~g 100 ml -1 blood). Selective accumulation then occurs in 

the liver which supports 40 - 80 % of the body burden (largely bound to intracellular metallothionein with a half life 

of 10 to 50 yr, 5 times per unit weight more than other body tissues) and the kidney renal cortex tubules (50 times 

per unit weight). Cell damage may arise if the bound Cd exceeds 200 ~g g-1 net weight cortex, followed by an 

increase in urine Cd and associated proteinuria (characterised by the excretion of low Mr proteins e.g. ~ 2 

microglobulin). Aminoaciduria, phosphaturia and glucosuria will result if the metal exposure continues. The bone, 

central nervous system and circulating blood lipids can also be affected by Cd exposure, but lesions in these organs 

occur less frequently than in the kidneys (Lauwerys, 1979). 

Both mammary and placental tissue accumulate Cd to 10 times that of the surrounding maternal cells in order 

to protect offspring, resulting in foetal blood with a 30 - 50% lower Cd content (Nriagu, 1980; Cherian & Goyer, 

1978). Individuals with moderate Fe deficiency have significantly higher Cd adsorption rates than subjects with 

normal iron stores (Hutton, 1987a). The amount of ingested Cd required to induce elevated urinary ~2 

micro globulin excretion (an indicator of Cd toxicity) in 10% of the population (average body weight of 70 kg) over 

a 50 yr period is 150 ~g d-1 (the levels of Cd adsorbed by inhabitants of the EC are 2 - 8 times lower). As long as 

Cd-exposed workers do not accumulate more than 15 ~g Cd g-1 creatine, sufficient binding sites within the body 

remain unsaturated and kidney lesions should not develop (Hutton, 1982 ; Hutton, 1987b ; Lauwerys ~,ill., 1979). 

The symptoms of Cd toxicity may arise after an acute experience (high intake level over a short period) which 

is characterised by vomiting, myalgia, osteomalacia, liver, kidney and respiratory tract damage or during chronic, 

occupational exposure (long term challenge at lower levels) expressed as fatigue, dental caries and low blood 

haemoglobin levels. 

The Cd-induced testicular damage observed in mammalian germinal epithelium can be prevented by an 

administration of Zn, oestrogen, thiol compounds, cysteine, Se, Co or British anti-Lewisite. Above about 320 mg 

(the sublethal dose for Cd ingestion) individuals experience shock and collapse, followed by death within 24 h to 2 

weeks (Nriagu, 1980). 

The ubiquitous nature of Cd-containing products and low lethal doses, coupled with the toxic effects outlined 

above, demand that Cd is not released back into the environment and allowed to accumulate to concentrations at 

which health problems arise. 
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Table 1.1 Industrial applications of Cd and associated methods of disposal. The waste disposal pathway is 

estimated to receive a total of2 643 t Cd yr-1 (Nriagu, 1980; Hutton, 1982). 

Usage Products 

35 % electroplating of steel, iron, copper 

and brass for corrosion resistance 

25% 

15% 

15% 

pigments, widely employed in plastics, 

ceramics, paints, coated fabrics, textiles, 

rubber, glass, enamels and printing inks 

plastics stabilisers used in non-food 

grade flexible PVC 

NiCd rechargeable batteries 

10 % miscellaneous use in alloys, chemicals, 

nuclear reactor engineering and 

electronics industry 

Disposal of waste Cd 

10% lost to aqueous wastes, 50% of which delivered to 

the sewage system and 50 % landfilled. 

40 % of product Cd enters the scrap steel cycle and 

60 % is landfilled. 

no significant environmental pollution; all the Cd ultimately 

enters the waste disposal pathway. 

landftlled or enters the sewage system. 

50 % recycled; the remainder is sent to the 

sewage treatment plant. 



Table 1.2 Concentrations of Cd recorded in a number of environmental compartments throughout the EC 

(Nriagu, 1980; Vymazal, 1987) 

Compartment 

Lead refinery 

Urban atmosphere 

Rural atmosphere 

Ocean surface water 

Rain water 

Cd concentration 

0.5 Jlg m-3 

0.002-0.53 Jlg m-3 - deposited at 3.9-29.6 g ha-l yr-1 

0.001-0.003 Jl& m-3 - deposited at 82- 150 g ha-l yr-1 

4-70 ng rl 
0.2 - 2.8 Jlg 1-1 

21 

Sediments 

Street dust 

Household dust 

Agricultural soils 

Phosphate fertilisers 

Food plants 

1 Jl& g-1 - sediment I water interface important for metal mobilisation 

4.6 Jlg g-1 - abrasion of motor tyres 

10 Jl& g-1 - from the rubber backing of carpets 

0.1-2.0 Jl& g-1 

1.6-9.4 g ha-1 

0.05 - 0.2 Jl& g-1 - leafy vegetables accumulate more Cd 

Table 1.3 Concentrations of Cd in a variety of substances consumed by humans and the amount of metal absorbed 

from these sources (Hutton, 1982 ; Friberg~.!!!., 1971) 

Source Cd content I intake Cd absorbed 

Dietary 25 - 60 Jlg d-1 1.5- 3.6 Jlg d-1 

Cereals 0.02 J.Lg g-1 0.3 J.Lg d-1 

Vegetables 0.09 Jlg g-1 2.7 J.Lg d-1 

Japanese rice * 1 J.Lg g-1 30 J.Lg d-1 

Drinking water < 0.5 Jlg 1-1 < 1 Jlg d-1 

Inhalation 0.5 Jlg d-1 0.125- 0.25 Jlg d-1 

Smoking (20 d-1) 2- 4 Jlg 0.8- 1.4 Jlg d-1 

Dust and soil 0.4- 1 Jlg g-1 20 J.Lg d-1 

* this particular food source was heavily contaminated by Cd from industrial effluents 



1.2 Metal chemistry 

The toxicity of a particular metal is governed by its electron distribution, local pH, prevailing redox potential, 

available ligands and metal competition. 

1.21 Electron distribution 
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Heavy metals can be classified in terms of their co-ordination chemistry, a property which is dictated by the 

element's electron environment (Beveridge & Doyle, 1989 ; Collins & Stotzky, 1990) : 

1. Class A (hard acids)- oxygen seeking species which are biologically essential eg. K+, Na+, Mg2+ and Ca2+. 

2. Class B (soft acids)- bind to sulphur, are mainly non-essential and very toxic eg. Cd2+, Cu2+, Hg2+ and Pb2+. 

3. Borderline ions such as Fe2+, Fe3+, and Mn2+ with biological roles as well as toxic properties 

The individual characteristics exhibited by an element are influenced by : 

a) the charge to radius ratio : strongly polarized (high charge density) metal ions retain a potent ligand affinity, 

whilst the low charge-density alkali metals do not bind well. 

b) the number of electrons : ions with multiple electron shells (soft cations), eg. Cd (4d 10), are more easily 

polarized and form stable complexes with soft, biochemically active bases such as thiol groups. Hard cations 

are not easily polarized, (although they have a higher affinity for oxygen) and are readily displaced from 

their binding site by competing soft cations. 

c) Zn, Cu and Cd exhibit partly filled orbitals and bind ligands more strongly than the s-block elements. 

Once bound, the biological function of a metal is related to its electron activity; Zn2+ is a strong Lewis acid 

(has at least one vacant orbital and accepts electron pairs from ligands) and enhances the reactive potential of the co

ordinated molecule via the process of ligand-to-metal sigma bonding and metal-to-peripheral pi back-bonding. 

These bonds either enhance hydrolysis via polarization of a peptide group or deprotonation of a water molecule, 

acting as an effective nucleophile towards the substrate. In contrast, mild base centres require a weak Lewis acid 
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(eg. Mg2+) for hydrolytic and phosphate transfer enzymes (Hughes & Poole, 1989a). Since biochemical activity is 

ion sensitive, the intrusion of a foreign metal with a different electron environment will prohibit many biological 

processes. The intracellular toxicity assigned to Cd is an example of such invasion (Hughes & Poole, 1989b). 

1.22 Influence of pH 

The pH of an organisms environment controls the amount of metal bound and therefore regulates the damage 

incurred by cell metabolism : 

1. Solubility : Cd toxicity declines when the pH increases, because insoluble oxides and hydroxides predominate 

(Hem, 1972). Non-cytotoxic CdOH+ complexes are initiated at pH 7.0- 7.5 and peak at pH 8.2- 9.0, whilst the 

formation of Cd(OHh begins at pH 9.0 and attains a maximum at pH 11.0. Soluble Cd(OH)J- and Cd(OHk 

forms also exist, but only at non-environmental pH values (Babich & Stotzky, 1980). 

2. Cell-surface ligand competition : a high proton concentration will saturate cell-surface anionic groups, 

reduce the number of available metal-binding sites and lower the toxicity of Cd. The strength of 

this effect depends upon the pK values of the functional groups involved (Crist~& .• 1981 ; Peterson~ ill. .• 

1984 ; Peterson & Healey, 1985). 

3. Transmembrane electrical gradient : as the local pH drops, membrane proton pumps respond to maintain an 

internal negative charge, eventually leading to membrane depolarisation and a change in the metal affinity 

of the cell surface (Campbell & Stokes, 1985). 

1.23 Redox potential 

As the redox potential (Eh) of an organisms habitat is lowered, metal ions undergo valence shifts with a 

concurrent change in toxicity. For example, cr3+ is not toxic to Salmonella typhimurium but with a change in Eh 

the toxic and mutagenic Cr6+ predominates. Whereas anaerobic environments may convert so42- to (s2-) 

providing appropriate conditions for heavy-metal precipitation and thus a reduction in toxicity (Babich & Stotzky, 

1980). 
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1.24 Metal I ligand interaction 

When Cd-binding ligands are present, the metal's toxicity declines as the pool of free, reactive, divalent Cd is 

reduced: 

a) Inorganic ligands : in natural waters Cd may be bound to suspended(> 1 J.lm) and colloid particles ( < 1 Jlm), 

consisting of individual or mixed hydroxides, oxides, silicates, sulphides and chlorides. Chloride complexes 

are one of the most mobile and persistent agents, thus sea water provides some capacity for metal detoxification 

(Babich & Stotzky, 1980; Ahlf, 1988a). 

b) Chemical ligands: phosphate and cyanide must be present at a high concentration to complex Cd, similarly 

very high levels of carboxylic and hydrocarboxylic acids would be required to bind the metal 

(Gardiner, 1974 ; Frevert, 1987). 

c) Sewage effluent load: primary mechanical settling-treatment removes metals that are insoluble 

or adsorbed onto sewage particles, whilst the activated sludge process traps metals in sediment floes or 

adsorbs them onto bacterial extracellular polymers (Aiking m g!., 1982). But any microbial oxidation of 

these polymers will then result in a release of the metal (Brown & Lester, 1979). 

d) Organic ligands : Low Mr humic and fulvic acids are the most active fractions as they contain 

polyelectrolytes i.e. COOH, C = 0, phenolic, aliphatic and OH groups which bind considerable amounts 

of metal. These ligands exist in natural waters ranging from 0.1 (non-bioproductive fresh and sea-water) to 

10 mg 1-1 (lakes rivers, estuaries and moorland water). As ca2+ and Mg2+ are strong competitors for 

organic ligands, Cd is only significantly complexed by the carbon ligands of soft water. Sorption 

may occur via co-ordination bonding (chelation), covalent attachment (SH groups), or cation exchange 

(humic acid). The two amino acids which combine with metal ions most strongly are histidine and 

cysteine. Mid carbon carboxyl, imidazole and thiol groups have a stronger affinity for ions than 

the terminal coo- and NH 3 + of amino acids; the overall charge on a protein also influences how much 

metal is bound (Gurd & Wilcox, 1956). However, concentrations of amino acids as high as 100 Jlg 1-1 do 

not significantly interact with trace metals (Stumm & Morgan, 1981 ; Gadd & Griffiths, 1978). 

e) Clays and soil: exhibit a range of cation exchange capacities depending on the number and type of free anionic 

groups available (Babich & Stotzky, 1977a; 1977b). 
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f) Synthetic chelating agents : Both EDT A (non-biodegradable) and NT A are employed in commercial detergents 

to prevent the decomposition of perborate - 60 dare required for the disunion of a Cd-NT A complex 

(Nriagu, 1980 ; Rai ~ill,., 1981 ; Stokes, 1983). 

1.25 Metal competition 

The toxic effects of Cd are further diluted when ions of similar physical profiles compete for binding sites. Zn 

was found to reduce Cd toxicity for Euglena~ (Falchuck ill.& .• 1975a) and Coelastrum proboscideum, except 

that Zn did not protect the cells from Cd toxicity when grown in a light : dark cycle; whilst a low level of Cd (0.33 

mg I-1) actually stimulated growth (Miiller & Payer, 1980). 

Increasing the concentration of ca2+ in the medium thirty times, provided competitive alleviation of Cd 

toxicity for Chiarella oyrenoidosa, as both elements have similar ionic radii (Ca2+ = 99 pm, Cd2+ = 97 pm). The 

presence of 6 mg I-1 Fe at pH 8.0 co-precipitated the added Cd as ferric oxide, thus reducing metal toxicity. Fe may 

also protect the mitochondrial and chloroplast cytochrome systems as well as inhibiting Cd entry into the cells. The 

addition of Mn at 0.5 mg I-1 appeared to result in a slight rise in Cd toxicity and the effect of 1 mg 1-1 Zn, whilst 

toxic in itself, was additive to that of Cd (Gipps & Coller, 1982). The repression of nitrate assimilation by Cd in 

Anacystis nidulans is probably due to the inhibition of ATP dependent glutamine synthetase. Whilst the restoration 

of nitrate uptake rates by ca2+ and zn2+ may either be assigned to transport site competition or intracellular 

detoxification (Singh & Yadava, 1983; Singh & Yadava, 1984). 

When the euryhaline alga Dunaliella salina was exposed to increasing levels of sodium, the maximal uptake of 

5 mg I-1 Cd occurred at 0.5 to 1.0 M Na and declined at higher salt concentrations up to 4 .0 M Na (Rebhun & Ben

Amotz, 1986). 

Variations in the results of ionic competition from one species to another, probably reflects differences in their 

mechanisms of Cd uptake and storage. 

1.26 Media ligands 

Ionic algal media provide few chemical groups to which divalent Cd may bind, whilst more complex bacterial 

substrates contain ligands that significantly reduce the toxicity of added heavy-metals. Differential pulse 
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polarography, electronic absorption spectroscopy and electron spin resonance were employed to observe the effects 

of different media upon FeEDTA and cu2+ availability. Cu2+ appeared to be chelated by growth media at a 

concentration of 1 % (v/v), whilst a reactive FeEDTA complex persisted in up to 90% (v/v) media, indicating that 

anionic ligands predominate (Bird £a ill., 1985). When bacterial growth media were exposed to 20 ppm of a metal 

mixture, less than 0.80 ppm of Hg2+, Pb2+ and cu2+ remained as free cations (detected with ion specific electrodes), 

whilst Cd2+ proved more resistant to chelation. Media with a casamino acid content exhibited the highest binding 

activity (Ramamoorthy & Kushner, 1975). 

Media components which bind metals and therefore reduce the level of toxic cations are equivalent to the many 

different ligands present in the environment, which preclude ions from exerting a poisonous influence. 

1.3 Uptake of Cd 

Microorganisms display a variety of metal-binding sites which can be roughly categorised with respect to their 

position relative to the cell wall. Extracellular ligands provide metal precipitation points or bind individual ions 

without calling upon cell transport mechanisms. In contrast, Cd that is bound by intracellular groups must cross the 

cell wall and plasma membrane (mainly via ion transport proteins). Such a process consumes cell energy and 

increases the toxicity of the metal. 

1.31 Adsorption of Cd by bacterial cell-walls 

Due to a heterogeneity in composition, the complexing capacity of bacterial cell walls depends on the species 

concerned. Gram-negative bacteria have a lower surface charge density than Gram-positive cells, but possess a 

more intricate wall which binds a variety of metals and thus provides more protection. In general, actinomycetes 

are more tolerant to metals which have been added to the medium than eubacteria, among which the gram positives 

are more sensitive (Hughes & Poole, 1989a). 

The cell wall of Bacillus subtilis binds a variety of ions (Pb (II) 0.02 to Sc (III) 10.99 mol mg dw-1) and those 

whose atomic number is greater than 11 were visualised under the TEM (Beveridge & Murray, 1976). Lysozyme 

degradation of the cell wall diminished Mg2+ adsorption, but not that of Ca2+, Fe3+ or Ni2+, indicating that the 

peptidoglycan layer contributes specifically to Mg2+ binding. Areas of the wall also acted as nucleation sites for 
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the growth of small Au crystals. The teichoic acid phosphodiester groups, peptidoglycan carboxyl regions and to a 

lesser extent the sugar hydroxyls of the cell wall provided metal binding sites, but no simple correlation was 

observed between the ionic radii, heats of hydration or number of hydration shells of the metals and the amount 

bound. 

Characterisation of the type and number of bonds that metals form at a cell surface, permits calculations of the 

amount of cell material necessary for efficient metal removal and provides the information required to enhance 

uptake activity. The carboxyl groups of glutamic acid possess a high degree of rotational freedom (a feature which 

permits nucleation growth) and are probably more accessible than teichoic-acid radicals (which prove to be potent 

Mg2+ chelators). Monovalent ions require one acid group and divalent cations two teichoic acid residues for ligand 

formation (Beveridge & Murray, 1980). 

The modern molecular-imaging techniques of electron-nuclear double resonance and electron spin-echo 

envelope modulations were used to formulate a tentative model of Cu-binding to the cell wall histidine of Klebsiella 

pneumoniae. Of the two imidazole nitrogens, only the sp2 hybridized N acts as a donor site to which the cu2+ is 

co-ordinated bidentally, the remaining H20 molecules occupy axial and equitorial positions (Mohl ~ .!!! .• 1988). 

In addition to cell wall ligands, extracellular material may also display metal binding sites, for example the 

capsular polysaccharides of K. aerogenes complexed more of the supplemented Cu (54%) than Cd (9%) (Bitton & 

Freihoffer, 1978). These workers then showed that a non-capsulated, metal-sensitive strain could be afforded Cu 

protection by the addition of this metal chelating polysaccharide to the medium. 

An example of cell-surface modification for improving the amount of metal accumulated is provided by 

extracellular material from Arthrobacter viscosus (Scott~ ill., 1988). When treated with formaldehyde, an increase 

in the amount of adsorbed Cd was recorded, probably due to a suppression of the positive surface charges which 

would repel any metallic cation. 

1.32 Adsorption of Cd by algal ceO-walls 

Less attention has been spent on the surface complexation of metals by photosynthetic microorganisms 

compared with that expended upon bacteria, even though algae often predominate metal contaminated environments. 

The heterogeneity of heavy-metal binding sites present on the cell walls of Chlamydomonas reinhardtii was 

demonstrated by Xue ~ill. (1988). An excessive concentration of metals in the medium reduced the rate of surface 



complex formation as the high affinity binding sites became saturated first, forcing ions to bind to lower affinity 

groups, with each binding site contributing a different Langmuir isotherm. 
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An acidic heteropolysaccharide component of the extracellular sheath of Gloeothece was found to bind up to 

105 Jlg of Cd mg-1 of capsule and that cells grown with NaN03 bound more Cd than N2-fixing cultures, probably 

due to an increase in the number of sheath binding sites (Tease & Walker, 1987). Cu2+, zn2+ and Cd2+ bound 

rapidly to the sheath forming Chroococcus paris, with 90 % of the added metal complexed in 1 min. Further 

significant uptake occurred at a slower rate and nearly all the bound metal was found to be EDT A extractable (Les & 

Walker, 1983). 

Commercial attention has been drawn to Chlorella vulgaris which accumulates gold (I) and (II) from aqueous 

solutions; this metal is then slowly reduced to gold (0) (Greene!<!. ill., 1986). Tetrachloroaurate (Ill) and gold (I) 

sodium thiomalate were rapidly adsorbed over a high pH range, whilst dicyanoaurate (I) bound more slowly and in a 

highly pH-dependent manner, similar to the binding-site blockage exhibited by ~-mercaptoethanol, cyanide and 

thiourea. 

Algal cells which are killed by heat treatment often demonstrate an increase in their cell wall cation exchange 

capacity as more binding sites become exposed during heat shock. Dead Chlorella regularis cells adsorbed more Cd 

than living cells, whilst Na+, Ca2+, Mg2+, Mn2+, zn2+, Co2+ and Ni2+ tended to retard Cd2+ uptake (Sakaguchi!<!. 

ru., 1979). The metabolic inhibitors sodium azide and dinitrophenol had little influence on metal adsorption, as the 

majority of the complexed metal was extracellular. 

An energy-independent Langmuir isotherm described Cd uptake by Stichococcus bacillaris ; 80 % of the added 

Cd was removed from the medium (Skowronski, 1984); dead cells adsorbed more metal, probably due to extra 

binding sites being exposed during the killing process. The addition of ammonium ions reduced Cd toxicity by 

interfering with the surface adsorption and transport of Cd (Skowronski, 1986). 

Unlike conventional ion exchange resins, the cell wall of Chlorella vulgaris (Greene!<!. a!., 1987) provides hard 

and soft metal binding sites with little affinity for Mg2+ and ca2+ (and is thus insensitive to hard water). 

Electrostatic binding ligands that are present on cyanobacterial and algal cell walls (carboxylate, carbonyl, hydroxyl, 

amine, imidazole, phosphate, thiol and thioester groups) may be divided into three groups : 



class 1 metals are tightly bound at pH~ 5.0 but stripped out at pH :S 2.0 e.g. Cd2+, cu2+, AJ3+, zn2+, Ni2+ 

and Co2+, the cell wall ligand is negative but becomes more positively charged as the pH declines. 

class 2 : strongly bound at pH :S 2.0 and weak I unbound at pH 5.0 e.g. PtC142-, Cr042- and Se042-

- anionic sites which possess a positive charge only at low pH. 

class 3 : no discernible pH dependence eg. Ag+, Hg2+ and AuC14- the most strongly bound of all ions, 

they form covalent complexes with soft ligands which contain N and S. 
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Silica immobilized Chlorella pyrenoidosa and Spirulina were used to extract Cr from acidic electroplating 

waste; using the combination of a pH gradient and 0.5 M ~-mercaptoethanol, the selective cell-release of Zn (II), Cu 

(II), Hg (II) and AuC14 (III) was attained. Once regenerated, the cells were ready for more metal stripping. Non

living biomass may also possess reductive capacities i.e. Au (III) to Au (0) (Greene~& .• 1987). 

However, the cell wall of Chlamydomonas reinhardtii was found by Cain and Allen (1980) not to play a role in 

Cd exclusion, as mutants lacking a cell wall did not accumulate significantly less Cd than wild type cells. 

The main advantage of utilising cell walls for metal sequestration is their pH or chemical recyclability and 

independence of cell energy. 

1.33 Precipitation of Cd by algal cell-walls 

Cell-wall ligands are fmite in number thus limiting the amount of Cd chelated, whilst the process of 

precipitation produces metal aggregates with many more ions per unit surface area of the cell boundary. By 

diminishing the oxidation environment of the cell-wall sulphate reductase of Cyanidium caldarium, Ahlf (1988b) 

enhanced the quantity of Cd precipitated at the cell surface. The precipitation of this metal on the surface of cells 

has also been recorded in Citrobacter sp. (Macaskie ~ & .• 1987). 

1.34 Passive uptake 

Few species exhibit little control over the type and quantity of ions that cross into the cytoplasm, but for algae 
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which do not maintain concentration differentials, metals may accumulate internally without an energy debt. For 

Phaeodactylum tricornutum the rapid cell-surface adsorption of Hg2+ and Zn 2+ was followed by passive, diffusion

controlled transport at rates proportional to the concentration of cell-surface bound metal following a Langmuir type 

adsorption isotherm (Davies, 1978). For young cells, the cytoplasmic protein content is high, providing ligands to 

which the internalised metal bind, but as the cell ages, cytoplasmic protein levels decline and the released metal will 

move out of cells down the redirected concentration gradient. 

1.35 Cd accumulation 

Once past the cell wall and plasma membrane, Cd will prove cytotoxic unless it is bound by metal-insensitive 

cytoplasmic ligands. The amount of heavy metal internalised and efficiency of the intracellular binding 

mechanisms determine the Cd-tolerance of each strain (Table 1.4). 

Although cyanobacteria and algae have proved more sensitive to the toxic effects of Cd than bacteria and fungi 

(Trevors ~ l!J.., 1986) the concentrations of internalised Cd and associated concentration factors are not comparable 

between studies due to the variation in experimental conditions which influences the amount of Cd accumulated. 

As most cells do not require Cd for metabolism, no specific membrane transport protein has been discovered 

which imports the metal. Cell access is attained via an essential ion carrier protein, which usually proves to be the 

Mn2+ import channel. Evidence for this model was provided by Hart~ l!J.. (1979) who observed that an increase in 

the Mn2+ concentration of the growth medium of Chiarella oyrenoidosa increased competition for ion-transport sites 

and therefore inhibited the process of Cd accumulation. This treatment restored the growth rates of Cd-exposed 

cultures to that of untreated cells. 

It has been suggested that the Mn2+ active transport system in Cd-tolerant Bacillus subtilis had been altered by 

chromosomal mutation so that it no longer recognised Cd2+ as a Mn2+ analogue and thus lower levels of the toxic 

metal were accumulated (Laddaga ~ & .. 1985 ; Hughes & Poole, 1989a). 
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Table 1.4 Toxic concentrations of Cd and associated growth responses for a number of cyanobacteria and algae. 

Cdconc. 

(mg J-1) 

0.01 

0.013 

0.031 

0.06 

0.08 

0.10 

0.10 

0.4 

1 - 10 

1-2 

2-4 

4 

10.12 

response 

ceased growth after 20 - 30 h 

50 % reduction in growth 

reduced cell population 

significant growth inhibition 

complete growth inhibition 

58 % reduction in growth 

25 % reduction in growth 

reduced biomass 

up to 77 % reduction in growth 

inhibition of photosynthesis 

nitrogenase activity reduced 

50 % reduction in N03- uptake 

reduction in growth 

* = Svnechococcus PCC 6301 

organism reference 

Asterionella formosa Conway & Williams (1979) 

Anabaena flos-aguae Rachlin mill. (1984) 

Scenedesmus guadricauda Bringmann & Kiihn (1980) 

Scenedesmus sp. Klass m £!!. (1974) 

Selenastrum capricornutum Bartlett m £!!. (1974) 

Chlorella vulgaris Hutchinson & Stokes (1975) 

Haematococcus sp. Hutchinson & Stokes (1975) 

Chroococcus paris Les & Walker (1983) 

Chlamydomonas reinhardtii Cain & Allen (1980) 

Anabaena inaegualis Stratton & Corke (1979) 

Anabaena inaegualis Stratton & Corke (1979) 

Anacystis nidulans * Singh & Yadava (1983) 

Chlorella vulgaris Den Dooren delong (1965) 
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1.4 Cd removal 

Industrial-scale procedures for the eradication of Cd from polluted effluents have been developed along both 

chemical and biological lines. The factors which influence the choice of a particular system include process cost, 

lifetime, post-treatment residual effluent and methods of metal disposal. 

1.41 Chemical removal 

The majority of current waste-Cd disposal procedures involve chemical techniques which do not always reduce 

metal levels to those required by law. An example of efficient Cd extraction by a chemical approach was the 

coagulation of the metal with a blend of sodium sulphide (Na2S) or calcium polysulphide (CaS;!) and iron III 

chloride (FeCl3) followed by magnetite seeding and high gradient magnetic filtration to remove nearly 100 % of the 

polluting Cd2+ (Terashirna ~ i!l., 1986). 

1.42 Algal removal 

An illustration of the in situ regulation of metal pollution by biological means is provided by the treatment of 

Ph-contaminated water at Viburnum Mine, Missouri, U.S. A.. The effluent containing the Pb was passed through a 

series of shallow ponds about 1 metre deep, favouring the growth of benthic flora that trap particulate and dissolved 

heavy-metals. These meanders emptied into a fmal settling pond with baffled weirs to prevent algal overflow. 

This system proved to be more than 99% efficient (Hassett~ lli,.,1981 ; Jennett~ ill,., 1979; Jennett mill,., 1980). 

1.5 Immobilized cells 

Biocatalysts that are restrained in a matrix exhibit the following advantages : the biomass is easily recovered 

for recycling, a high cell density is achieved, cell I product separation can be automatic and a resistance to shear is 

provided. Whilst the problems that arise from restraining cells by entrapment or surface adsorption include nutrient 

and product diffusion-limitation, localised peripheral growth, cell leakage and decomposition of the matrix. 
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1.51 Matrices and applications 

Because of the benefits outlined above, a number of matrices have been employed (Table 1.5) in a variety of 

bioprocesses (Table 1.6). Cell immobilization procedures fall into the following categories : matrix adhesion I 

adsorption, cell cross linking, gel entrapment I encapsulation (beads, plates or fibres) and composite matrices. One 

of the most popular matrix materials for algal immobilization is alginate, a linear co-polymer of D-mannuronic acid 

and L-guluronic acid linked by ~-1,4 and a-1,4 glucosidic bonds. When two guluronic acid residues are adjacent, 

they form a binding pocket of four oxygen co-ordination sites (egg box model) for calcium ions, the density and 

proximity of these groups determines the gels strength and stability; the highest breaking strengths are obtained with 

alginate composed of multiple guluronic acid polymers (Cheetham~ ill,., 1979 ; Grant~ ill,., 1973). 

The properties of a particular matrix are often species dependent, alginate extracted from Laminaria contains 

many L-guluronic acid blocks, which when gelled by Ca2+, produces a strong matrix, whilst the carbohydrate from 

Macrocystis is low in L-guluronic acid units and produces weak gels. The water-soluble Na form of alginate can be 

complexed by ca2+, sr2+ or Al3+ (Cheetham~ ill,., 1979). A thin layer of highly cross-linked alginate occurs on 

the surface of most gels when a drop of sodium-alginate hits the surface of a CaC12 solution; the periphery of the 

sphere is complexed instantly, whilst the inside of the bead is much more porous, as it is formed by a slow diffusion 

of ca2+ into the bead. 

A high concentration of P in the medium competes with the bound Ca2+ and results in gel disintegration, this 

problem can be avoided by substituting Sr2+ for ca2+. The matrix integrity may also be reduced by alginate lyase, 

an enzyme found in a variety of organisms (Cheetham & Bucke, 1984). The production of gas within 

immobilization matrices prompted a study on the tensile strength of gels. Alginate was found to be more stress 

resistant thanK-carrageenan and matrices which are gelled internally have different surface layer properties than the 

bulk phase (Krouwel ~ill,., 1982). Externally gelled matrix fractures never extend entirely to the surface because of 

a denser outer layer, although the addition of cells will reduce the strength of the matrix. 

A comparison of the methods used to cross link matrices revealed that internally gelled cylinders released ten 

times more cells into the medium during growth than externally complexed beads. However, an increase in the 

alginate concentration of the cylinder from 2 to 4% (wlv) reduced cell loss by 50% (Johansen & Flink, 1986). 

Regardless of a higher matrix density at their periphery, the C02 generated by cell metabolism split the beads in 

half, but only formed gas pockets in the cylinders. 
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Table 1.5 Examples of matrices used for cell immobilization and appropriate methods of polymerization 

Matrix 

Polyacrylamide 

Alginate 

Polyurethane foams 

k -Carrageenan 

Glutaraldehyde 

Formaldehyde 

Microporous exchange resin 

Dialysis tube photobioreactor 

Cellulose triacetate fibres 

polymerization process 

chemical cross linking 

ionic gelling 

cooling plus KCl 

X-linked with 25 % gelatin on glass 

20 % gelatin at 40 °C, cooled, lyophilized 

and treated with cold formaldehyde in ethanol 

reference 

Cheetham ~ill,. (1979) 

Klein ~ill,. (1983) 

Muallem ~ ill,.,1983 

Cheetham & Bucke (1984) 

Dale~ ru. (1985) 

Gianfreda ~ill,. (1980) 

Daugulis ~ill,. (1985). 

Vincenzini ~ &. (1986) 

Ghose & Kannan (1978) 
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Table 1.6 Examples of immobilized cyanobacteria and algae, the matrix employed to retain the cells and associated 
products 

Organism matrix product reference 

Anacystis nidulans * & agar hydrogen Weetall & Krampitz (1980) 
Rhodospirillum rubrum 

Chlorella vulgaris & agarose a.-keto acid Wikstrom£<! ill. (1982) 
Providencia sp. 

Chlorella calcium alginate P removal Robinson£<! ill.. (1988) 

Clostridium butvricum polyurethane ammonia Rao & Hall (1984) 

Anabaena azOllae calcium alginate ammonia Brouers & Hall (1986) 

Mastigocladus polyvinyl foams ammonia Brouers & Hall (1986) 
laminosus 

Scenedesmus acutus & k -carrageenan N andPfrom Chevalier & de la Nolie (1985) 
,S,. obliquus waste water 

Bacillus subtilis & calcium alginate a.-amylase Chevalier & de Ia Nolie (1988) 
Scenedesmus obliquus 

Phormidium luridum & glutaraldehyde I cryoprotection Papageorgio & Lagoyanni (1986) 
Anacystis nidulans * albumin 

Dunaliella tertiolecta alginate glycerol Grizeau & Navarro (1986) 

Anabaena cylindrica alginate ammonia Jeanfils & Loudeche (1986) 

Anabaena variabilis alginate ammonia Kerby ~ill- (1986) 

Anabaena ATCC 27893 alginate ammonia Musgrave~ ill. (1982) 

Kluveromyces marxianus alginate ethanol Kierstan & Bucke (1977) 

Anabaena N-7363 k -carrageenan hydrogen Karube ~ill. (1986) 
alginate & agar 

Botrvococcus braunii alginate hydrocarbons Bailliez ~ill- (1985) 

* = Synechococcus PCC 6301 
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1.52 Metal removal 

The process of cell immobilization has been selected for the removal of heavy-metal pollutants so that the 

metal laden biomass may be effectively retained. Silica was chosen as an immobilization matrix for Chiarella 

vulgaris in favour of polyacrylamide (which was prone to fracture) for the removal ofU022+, Hg2+, Zn2+, Cu2+ 

and Au2+ (Darnall~ ill. .• 1986). The product proved stable after 3 months storage and could be recycled thirty 

times (by a pH gradient or ~-mercaptoethanol) without loss of efficiency or hard-ion interference. 

Lewis and Kiff (1988) grew Rhizonus arrhizus biomass in polyester foam cubes, transferred them to glass 

columns and exposed the cells to a variety of metals. From this study, a removal hierarchy was established: Pb2+ 

> Fe3+ > cu2+ > Cd2+ > zn2+ > Mn2+, whilst the addition of ea2+, Mn2+, Cu2+ and zn2+ dramatically reduced 

Cd2+ uptake. The column was regenerated with a 0.1 M HCI wash (which removed 95% of the bound metal) and 

could be reused for a maximum of six cycles with retention of up to 85 % of it's activity. The initial removal of Cd 

was 92 %, but after 24 litres of effluent passage this figure declined to 44 %. 

Uranium recovery was effectively demonstrated with polyacrylamide immobilized Streptomyces 

viridochromogenes and Chiarella in a 7 ml bed volume column, fluxed with sea water. In this study the alga proved 

more effective in stripping the metal from the challenge flow even though ,S.. viridochromogenes bound more 

uranium as free cells (Nakajima~ ill.., 1982). 

The Cd-binding capacity of extracellular polysaccharides was harnessed by Scott~ ill.. (1986) who 

immobilized two species of bacteria in a 1.06 x 0.055 m fluidized bed of sand . Arthrobacter viscosus (a strain that 

excretes polysaccharides) bound more metal than~ globiformis (little extracellular carbohydrate released), 

although the runs were not axenic. 

Probably the most in depth study of metal accumulation by immobilized organisms was that carried out over a 

number of years by Macaskie and Dean, whose model organism, Citrobacter sp., was selected from a screen of 174 

bacterial strains (Macaskie & Dean, 1982). The addition of glycerol2-phosphate to the medium ensured that Cd 

adsorption was maximised throughout the growth cycle and not as a discrete peak at mid-exponential phase. Cells 

at stationary phase tolerated a higher level of Cd exposure and immobilized cells removed 65 % of the added Cd 

from the medium (Macaskie & Dean, 1984a). It was discovered that a cell surface phosphatase (which continues to 

function in resting cells) cleaves glycerol2-phosphate and the leaving P then precipitates Cd from the medium 

(Macaskie & Dean, 1984b). 
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After the passage of 1litre of medium containing 200 mg 1-1 Cd, activity was lost very slowly and at Slitres 

the removal efficiency was still 58% (Macaskie & Dean, 1984b). At 20- 30 l elution, activity was lost rapidly with 

the appearance of large amounts of Cd2+ in the effluent. Accumulated Cd was evident as a dense white precipitate 

in the gel which actually generated a resistance to pumping of the medium. Doubling the volume of the column 

failed to enhance metal uptake, but linked columns reduced the level of metal to O.Ql mg 1-1; still double the 

maximum permissible concentration for drinking water. 

An increase in pregrowth temperature from 20 to 30 ° C increased the removal efficiency by 7 %, this rise in 

entropy probably enhanced the rate of P cleavage. The cell-bound Cd was then removed from the column with 0.5 

M citrate pH 5 (Macaskie & Dean, 1984b). 

Stationary phase cells immobilized in shredded cylinders of polyacrylamide (packed into 13 x 1.75 em 

columns) retained their activity over severallitres of eluate from 1 to 100 11M Cd and the metals in two synthetic 

effluents were stripped out at an efficiency of 56 - 65% (Macaskie & Dean, 1984c). Linking three columns 

together resulted in 99.86% extraction of the added Pb and 99.95% of the supplemented Cd. Unlike Pb and Cd, Cu 

exhibited concentration sensitivity with a loss in column activity at high Cu concentrations. The solubility of the 

metal phosphate under test may prove to be the limiting factor in metal extraction. At higher proton concentrations, 

less Cd was precipitated and 10 mM ~-mercaptoethanol or 100 mM CI- were found to reduce Cd adsorption, 

probably due to binding of these molecules to the SH groups at the active site of the enzyme (Macaskie & Dean, 

1984a). 

For Citrobacter sp. grown in carbon-limited continuous culture and immobilized in polyacrylamide gel the 

percentage of Cd accumulated declined as the medium flow rate increased (from 100 to 500 ml h-1), fulfilling the 

predictions ofMichaelis-Menten kinetics (an inverse log-relationship between column activity and flow rate) 

(Macaskie ~ &., 1986). As a doubling of the biomass load had no effect on metal removal, the enzyme is in excess 

over the substrate. No temperature effect was recorded from 20 - 40 ° C, but above 45 ° C, enzyme half lives were 

first order log-decaying up to 48 ° C. Phosphatase activity remained relatively constant from pH 5-9, but Cd 

uptake was dramatically reduced below pH 6.5 due to the solubility of Cd phosphate. The cyanide from 

electroplating wastes severely curtailed metal accumulation at 5 mM CN- (equivalent in effect to 250 mM CI-) 

probably due to the extraction of the bound metal from the phosphatase metalloenzyme by CN-. The addition of 

equimolar ca2+ and 10 times excess zn2+ did not affect Cd uptake. As polyacrylamide is expensive and toxic, 

columns of cells adsorbed to glass were tried, with metal-removal activites of up to 80 % in the first 5 litres which 
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then declined to 70 %after the passage of 16litres of medium. 

Resting cells pre-grown in glycerol-limiting continuous culture accumulated Cd to 40 %of the bacterial dry 

weight after 5 h exposure to 200 mg r 1 (Macaskie ~ill.., 1987). From X-ray microanalysis data, the Cd : P ratio 

of the cell wall precipitates was found to be 1 : 1 and 31p magnetic angle spinning NMR confirmed that the 

precipitate was not Cd2P207 but was probably CdHP04. 

When Citrobacter sp. were immobilized in 60 ml columns of shredded polyacrylamide, 96 % of the challenge 

Cd was precipitated. This value was enhanced to almost 100 % when three linked columns were employed. Metal

removal activity was invariable up to a total loading of 3 - 4 g Cd2+ per column, but after 300 h the columns 

became blocked by the accumulated Cd2+. Use of the cheaper substrates trimethyl and triethyl phosphate produced 

oscillating growth indicative of a toxic challenge, therefore these P sources could not be employed to culture the 

required density and quality of biomass (Michel~ ru., 1986). Although the alkyl phosphates (10 times cheaper than 

glycerol2-phosphate) reduced column activity by a factor of 2.5, Cd precipitation was recovered by the substitution 

of alkyl P with glycerol2-phosphate. 

When tested for their ability to remove Pb from the eluant, immobilized Citrobacter cells could not precipitate 

the metal (Macaskie & Dean, 1987b). Glass-helix immobilized biomass removed 87.4% of the added uranium and 

polyacrylamide gel91.6% (turning the gel opaque with the metal precipitate). The storage of cells before 

immobilization for 1 week at 4 ° C resulted in enhanced activity. Such a phenomenon can probably be assigned to 

low-temperature cell decomposition, which exposes U022+_binding ligands (Macaskie & Dean, 1987a). From this 

extensive investigation of one organism, the precipitation of metals upon a cells surface has proved to be a very 

effective and regenerative method for the removal of metals from effluent streams. 

1.53 Gel stabilization 

Under certain conditions (Eikmeier & Rehm, 1987; Johansen & Flink, 1986) calcium-alginate gels will 

dissolve and release their entrapped cells. Such incidents prompted the development of appropriate stabilization 

procedures. The treatment of alginate beads with Al(N03)3 (a trivalent cross-linking agent) (Rochefort~ ill. .. 1986) 

or Ba2+ (Dainty~ ru., 1986) prevents Ca2+ displacement when the matrix is incubated in medium containing a high 

concentrtaion of P. 

The choice of chelating ion also influences cell activity. Calcium alginate retained the photosynthetic activity 
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of Euglena~ for at least 2 years, whilst Ba2+ fanned gels conserved cell viability for a few months and Mn 2+ 

partially inhibited the energy capture process (Tamponnet ~ W,., 1988). Micrographs of immobilized cells 

demonstrated the absence of a direct physical link between cells and their matrix. 

Furthennore, chemical treatments (polyethyleneimine treatment. carbodiimide and periodate activation)of a 2 

% w/v alginate matrix containing Saccharomyces cerevisiae cells have been devised to enhance gel stability 

(Birnbaum~ W,., 1981). 

Alginate may also be gelled internally, when mixed with tri-calcium-citrate followed immediately by glucano

o-lactone, Ca2+ ions are released inside the gel and bind alginate molecules without the need for ion diffusion across 

a cross-linked outer layer of alginate. Such a process pennits the casting of solid fonns with a variety of shapes, 

whose strength increases during fennentation (in comparison with the resilience of externally gelled beads which 

declines with time) and does not exhibit the dense matrix layer present at the surface of alginate spheres which have 

been complexed from the outside (Flink & Johansen, 1985). 

1.54 Diffusion coefficients for immobilization matrices 

Cell growth-rates and product removal are parameters susceptible to diffusion limitations within 

immobilization matrices. The rate-controlling steps in a packed-bed reactor include external substrate mass 

transfer, partition effects at the fluid I matrix interface, pore diffusion and cellular uptake. Externally gelled 

alginate is not a homogeneous material and the diffusion resistance varies tangentially (Bucholz, 1982). For media 

of low viscosity, the fluid flow in a packed-bed reactor can be described by an axial, dispersed, plug flow model; 

infonnation often requested by process engineers for system optimisation (Ching & Ho, 1984). 

Assuming negligible surface-binding, the diffusion resistance of a matrix is a product of it's pore diameter and 

the substrate dimensions. The molecular diameters of glucose (0.72 nm) and ethanol (0.45 nm) are about ten times 

smaller than the surface pores of an alginate membrane and forty times that of the internal pores. These molecules 

thus experience little resistance to diffusion within the gel (Hannoun & Stephanopoulos, 1986). Free diffusion was 

also observed for a-lactoalbumin (Mr = 1.56 X 104) and !-tryptophan (Mr = 204) but not BSA (Mr = 6.9 x 104) or 

the higher Mr substrates albumin, y-globulin and fibrinogen (Tanaka~& .• 1984). 

An example of the effect of diffusion resistance upon immobilized-cell systems is provided by the lack of 

growth observed at the centre of alginate beads which had been inoculated with Chlorella emersonii cells; this 



phenomenon was attributed to C02 diffusion limitation (raised levels of C02 permitted growth throughout the 

beads) (Day & Codd, 1985 ; Robinson~&., 1986). 
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Therefore the ions present in algal growth medium and divalent Cd are not diffusion restricted in alginate beads 

as only high molecular weight products are withheld by the matrix material. 

1.6 Cd localisation 

An ability to determine sites of metal accumulation within the cell, yields evidence which can be used to build 

a definition of the metal-uptake mechanisms involved . These details may then be employed to maximise the 

amount of Cd sequestered in metal scavenging systems. 

1.61 Energy dispersive X-ray microanalysis 

Specimens irradiated by the beam of an EM, emit X-rays of discrete energy values which are unique for each 

element, as their displaced electrons drop back to a lower energy state. An energy dispersive, lithium drifted silicon 

X-ray detector plus beryllium window attached to an EM specimen stage, permits the subcellular analysis of 

elements with atomic numbers greater than 11. In addition, this technique indicates the chemical fonn of each 

element and can be engaged to determine the metabolic status of individual cells. The 1 J.l.m resolution of a TEM 

beam is suited to probing particular organelles, whilst a complete elemental map of the cell can be generated by 

SEM (albeit at a lower resolution). A number of specimen treatments have been developed, which require different 

quantification approaches : 

a) Unstained thin sections embedded in a resin containing peripheral standard elements yield relatively 

good TEM resolution. But the sample elements are not effectively immobilized (Roomans ,1979). 

b) Air-dried whole cells may be viewed under SEM or TEM to provide bulk tissue for elements present at 

low concentrations - although the cell components are not secured and it is difficult to reproduce 

the matrix for effective sample-peak integration (Baxter & Jensen, 1980) 

c) Cryomicrotomed and cool-stage viewed specimens with peripheral standards provide effective 

quantification, specimen cooling and element immobilization (Gupta & Hall, 1981). 
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Specimens which are not protected from the damaging influence of a TEM beam suffer cell degradation. The 

loss of elements during X -ray exposure was shown for microdroplets of inorganic fluid (in terms of beam stability 

Ca, Mg and Co > P > Na > K > S >> Cl) where the onset of chemical volatilization was found to be a direct function 

of the current delivered per unit area (Morgan & Davies, 1982). Elements were less stable in 3 Jlm diameter drops 

than those with a diameter of l1.1.m probably due to a greater diffusion volume; local specimen heating being the 

most likely cause of volatilization during electron irradiation. 

Freeze-dried samples on an uncooled specimen stage lost most mass (assessed by monitoring the spectrum 

continuum (background radiation)), whilst embedded sections appeared to retain mass stability and freeze-dried I 

fixed samples on a cooled stage exhibited a uniform continuum (and therefore insignificant mass loss) (Hall & 

Gupta, 1973). 

The problems associated with specimen embedding and staining were highlighted during a study of the 

polyphosphate bodies of Plectonema boryanum. An Os shoulder from the Os04 stain interfered with the P peak and 

a foreign Cl signal was attributed to the embedding medium (Sicko-Goad mill,., 1975). In this work EDXMA 

demonstrated that the elemental composition of PP bodies was dependent on the strain employed and the medium 

chosen for growth. 

Examples of the application of EDXMA to the cellular localisation of heavy metals include a 0.2 1.1.m layer of 

uranium fibrils on the surface of Saccharomyces cerevisiae cells (32 % of the population), formation of dense 

intracellular deposits in 44 % of Pseudomonas aeruginosa organisms (Strandberg m ru., 1981) and electron dense 

granules (300 - 1200 nm in diameter) on the coenobial wall of Scenedesmus granulatus salina and the cell wall of 

S iderocelis minor (Crawford & Heap, 1978). The granules contained Fe and Mn, whilst smaller particles were 

composed chiefly of Cd and are believed to be liberated from lake sediments in the top oxic layer as Fe and Mn 

hydroxides or crystalline deposits. 

The influence of cell P status on metal uptake was demonstrated when P-rich Saccharomyces cerevisiae cells 

took up more Ca and Sr than P-deficient cells. The metals were sequestered in PP bodies and small amounts were 

found bound to lipids (Roomans, 1980). Thin cryosections of the cyanobacterium Anabaena cylindrica 

demonstrated rapid Al uptake into PP bodies and cell walls, but not in the cytoplasm. With a high concentration of 

P in the medium more Al was bound; however, this metal may be released during PP body metabolism (Petterson tl 

ru .. 1985). 
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For P-starved A. variabilis cells at least two small intracellular bodies per cell were recorded, with strong K 

peaks and weaker Mg and Ca peaks. Cu, Pb and Zn were accumulated in PP bodies within 18 h, including a 

concomitant reduction in the K and an increase in the Ca peak. The cell wall proved to bind and thus detoxify the 

majority of the Pb that had been accumulated by the cell. Although Zn was not detected in P-starved cells, the 

metal was located in cells grown in complete medium after 4 h. In all cases Cd exposure did not disturb the 

elemental composition and no Cd was detected in the organelles, although many of the cells were lysed at 10 11g g-1 

Cd (Jensen~ ill_., 1986). 

The ultrastructural localisation of Pb in Stigeoclonium tenue revealed electron-dense precipitates on the cell 

wall, pinocytotic vacuoles and Ph-binding sites within the two large peripheral vacuoles. Dense metal-deposits 

were never observed in mitochondria, plastids or nuclei, but at 0.15- 0.5 mg I-1 Pb, alterations in the fine structure 

of the chloroplast were noted (Pb inhibits photosystem 11 and redirects lipid stores from thylakoid membranes to 

plastoglobuli) (Silverberg, 1975). 

EDXMA also proved effective in charting the Hg-induced loss of K+ from yeast cells (Saccharomyces 

cerevisiae). Such a response suggests that Hg may interact with the yeast membrane thiol groups resulting in H+ 

and K+ leakage (Kuypers & Roomans, 1979). 

The negatively-charged polysaccharides from the cell walls of brown algae (alginate and fucoidan) are claimed 

to be responsible for the uptake of certain metals by ion exchange. When exposed to 0.1 mM CdCl2 Fucus 

vesiculosus deposited the metal in its physodes (and bound by phenol groups), middle lamellae and cell walls 

(complexed by polysaccharides), but no ultrastructural damage was recorded. For specimens collected near an iron 

works, AI, Ti, Fe, Cu and Zn X-ray peaks were discovered. The distribution of metals in laboratory cultures closely 

matched those of algae from the environment, except that low levels of Cd were not detected by EDXMA of field 

samples (Lignell ~ al., 1982). 

Cells may therefore be divided up into elemental compartments (as metabolic and metal sequestration 

categories), whose composition fluctuates in response to the prevailing chemical status of the cell and environmental 

conditions. However, metals accumulated to low levels (for whatever reason) are not detectable by this approach. 
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1.62 Scanning proton microanalysis 

The detection limitations of EDXMA may be overcome by the use of SPM, which fires a beam of protons at 

the specimen to yield element-specific X-rays. For cells of Closterium moniliferum exposed to a range of Ba 

concentrations, a pixel map of metal distribution demonstrated that during cell division, the crystals of Ba are 

distributed between the progeny (Brook~ a!., 1988). A useful quantitative comparison between the two 

microanalytical techniques has not been discovered in the literature. 

1.7 Production of spheroplasts 

The incentive to remove the algal cell wall (protoplast formation) or degrade its components (spheroplast 

production) derives from an interest in the influence of this layer upon substrate uptake and cell-cell interactions, to 

prepare cells for transformation or isolate shear-sensitive cell organelles. In order to generate viable cells, the 

manipulator must find enzymes with effective but restricted activity and an efficacious osmoticum. The range of 

cell-wall complexity between organisms is reflected in the diverse types of enzymes employed. TEM confirmed the 

loss of the peptidoglycan layer for Anabaena variablis and A. azollae that had been incubated in lysozyme, a 

treatment which resulted in a 50 %cell-wall-less, intensively fluorescing population (upon safranin 0 staining), with 

greater than 75 %viability (Berliner sa aJ.., 1986). Lysozyme also proved appropriate for the creation of 

spheroplasts from Synechococcus PCC 7942 and PCC 6301 (Delaney, 1984; Stone~~!.. 1988). N

acetylmuramidase SG was found to effectively digest layers II and IV of the cell wall of Anabaena cylindrica, to 

yield viable protoplasts (Yoshida & Toyama, 1987). 

For algae with more complex cell-wall structures, a number of catalytic reactions are required. Protoplasts 

were produced in large quantities (particularly with young tissue) from the meristematic regions and adjacent stipes 

of the brown alga Sargassum muticum (Yendo) with 2% cellulase and 10% limpet acetone powder I in 0.6 M 

sorbitol. Cells which excluded Evans Blue Stain were assumed to be viable and complete degradation of the cell 

wall was demonstrated with calcofluor white (Fisher & Gibor, 1987). 

Of the twelve strains incapable of producing 2° carotenoids and thus lacking the enzyme-resistant 

sporopollenin layer, only Chlorella ellipsoidea and C. saccharophila formed osmotically-labile protoplasts (with 4% 

cellulase, 2 % maceroenzyme and 1 % pectinase treatment) whose consummate lack of a cell wall was 
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demonstrated by calcofluor staining and EM (Yamada & Sakaguchi, 1981). 

The ten-fold difference in accumulated metal observed between Cd-resistant and Cd-sensitive protoplasts of 

Bacillus subtilis, indicates that the cell wall was not providing a detoxification barrier to the passage of Cd (Surowitz 

~ill., 1984). In contrast, Cd exerted a greater toxic threat to cell-wall deficient cells of Chlamydomonas reinhardtii; 

this mutant strain could tolerate only half the Cd concentration in which wild-type cells survived (Collard & 

Matagne, 1990). 

The enzymes used to produce protoplasts and the contribution that the cell wall affords to Cd tolerance is thus 

very dependent upon the molecular constituents of the cell wall in each species. 

1.8 Tolerance mechanisms 

If a cell population is to survive exposure to toxic metals either the offending ions should be excluded, or an 

intracellular mechanism must be in place to bind foreign metals before they disrupt cell structure and metabolism. 

For cells that bind heavy-metals with cytoplasmic proteins or possess cell-membrane ion-export molecules, plasmid

borne metal tolerance genes may prove to be more easily disseminated amongst metal-sensitive cells than genomic 

based elements. The particular detoxification processes that an organism exhibits is probably influenced by the 

prevailing metabolic pathways that evolution has generated. 

1.81 Genomic and plasmid encoded resistance 

Although plasm ids have been isolated from a variety of cyanobacteria (Rebiere ~ill., 1986 ; Potts, 1984 ; 

Ciferri ~ill.., 1989) the association of heavy-metal tolerance with plasmid-encoded factors has only been probed for 

in bacteria. The products of such mobile genes are believed to operate mainly as part of a metal removal 

mechanism. 

The intial association of the presence of plasmids in Staphylococcus aureus with the ability to exclude Cd 

(Tynecka tl ill. .• 1975) prompted a more in-depth study of this particular tolerance mechanism. The accumulation of 

Cd by .S.. aureus 17810R was found to occur via a chromosomally-determined Mn2+ port, in response to a 

respiratory-generated membrane potential (via the reversible ATPase). Internalised Cd then blocked respiration by 

binding to enzyme thiol groups (Tynecka ~ill., 1981a) and converted the ATPase from oxidative phosphorylation to 
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proton-pump mode, thus increasing the membrane potential and prompting further Cd2+ uptake (Beveridge & Doyle, 

1989). The biphasic nature of accumulation suggests the presence of both a Mn2+ carrier with a high Cd2+ affmity 

(influenced by the membrane potential) and a low affinity, Mn2+ independent system. 

Cd resistance in this bacterium is in fact provided by two genes resident on the penicillinase plasmid. The 

cadA gene product is an electroneutral, 2H+ driven Cd2+_efflux pump capable of ejecting the metal up to an 

extracellular level of 100 I!M Cd. Whilst the cadB protein may prove to exhibit cytosolic, metal chelating 

properties (Tynecka sa ill_., 1981b; Chopra, 1971; Chopra, 1975; Hughes & Poole, 1989a). At high Cd2+ 

concentrations this Cd2+ I H+ exchange system is converted to that of a Cd2+ I Cd2+ pump, therefore increasing 

metal influx. When the external Cd2+ concentration is lowered, the antiporter seemed to revert to its normal 

function of exchanging H+ for Cd2+. Metal-sensitive bacteria do not exhibit a Cd2+ efflux pump and succumb to 

respiratory difficulties at low Cd concentrations (Tynecka ~ & .. 1981a; Silver, 1983). When exposed to Hg, this 

bacterium employs enzymes to convert the metal into an innocuous form rather than attempting to export it (Kondo 

sa ill_., 1974). The energetics of resistance may influence the type of mechanism that is selected for a particular 

toxicant. 

The metal-tolerance element of Alcaligenes eutrophus CH34 was found (by Tn 5 mutagenesis restriction 

nuclease analysis and Southern blotting) to be resident on a 9.1 kb Eco RI fragment of a 238 kb plasmid . When 

cloned into the broad-host range plasmid pRK290 and transferred to a plasmid free derivative of CH34, the Eco RI 

restrict provided the same degree of resistance as the parent plasmid (Hambuckers-Berhin & Remacle, 1987). In 

two other Alcaligenes strains the hybrid plasmid was expressed, but at a lower level (Nies ~ & .. 1987). A further 

example of gene-encoded metal endurance is provided by the pD188 138 kb plasmid from Rhodococcus fascians 

which conveyed tolerance when conjugatively transferred to sensitive strains (Desomer ~ & .. 1988). 

The dissection of tolerance plasmids has been carried out for a number of plant pathogenic strains. A cosmid

library subclone of plasmid DNA from Pseudomonas svringae pv.!Q!!!.&Q Cur, only hybridised to cur plasmids and 

showed no homology with Cu8 strains (Bender & Cooksey, 1987). Whilst the 35 kb plasmid (pPT23D) conserved 

amongst 12 Cur strains of Pseudomonas svringae pv. tomato showed identical restriction patterns and the cloned cur 

gene from one strain hybridised to the same location on the 35 kb plasmid of all other strains (Cooksey, 1987). A 

second plasmid pPSII (isolated from a foliar blight causative organism) conveyed resistance to a copper sensitive 

strain and shared 20 kb of homogeneous DNA with pPT23D (Cooksey, 1990). 

Although the spatial location of metal-tolerance genes is in the process of being mapped, the protein sequence 
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and detoxification mechanisms of their products have yet to be elucidated. 

1.82 Cd-binding peptides 

If the metal exclusion I removal mechanisms available to cells fail to maintain a low level of intracellular 

Cd2+, cytotoxic symptoms will develop unless the ion is deactivated. A second defence tactic is to bind the 

troublesome metal to molecules without hindering cell catalytic or structural functions. In many cases the Cd 2+ is 

complexed by one or more of the following metal-inducible metallothioneins : 

Class I - proteins with cysteine locations closely resembling those of equine renal MT 

Class II - proteins with cysteine locations distantly related to horse MT 

Class III - non-translationally synthesized polypeptides: ()€C)nG's, cadystins or phytochelatins 

The Cd-binding peptides,poly gamma-glutamylcysteinylglycines (()€C)nG's), were first isolated from 

Schizosaccharomyces ~(Kondo~ aJ.., 1984) and later from higher plants (Grill £a a! .. 1985). The presence of 

a carboximide bond (degraded by y-glutamyl transpeptidase, but insensitive to Edman degradation or V8 protease), 

the absence of ('J€C)nG mRNA in Cd-tolerant Datura innoxia cells and retention of Cd resistance in the presence of 

cycloheximide (Robinson~ aJ.., 1988), indicate that the peptides are constitutive, metabolic products rather than 

transcriptional molecules . The synthesis of these pep tides either involves the condensation of glutathione 

molecules with the release of glycine, or the sequential addition of glutamyl cysteine moieties to a single terminal 

glutathione. 

Cells resistant to the toxic effects of Cd may either increase the activity of ("(EC)nG biosynthesis enzymes 

(chiefly a low Mr carrier concerned with assimilatory so42- reduction), enhance the s2- saturation of metal I 

(yEC)nG complexes, modify compartrnentation of (yEC)nGs or commute the rates of ()€C)nG turnover (Robinson, 

1989). When potential metal binding sites on the glutathione molecule were probed with 13c NMR, Cd2+ and 

zn2+ were found attached to both SHand NH2 groups, with some binding to glutamyl and glycyl carboxylic acids 

(at certain pH values). The sulphydryl group proved to be the main co-ordination site at pH 6.59 (Fuhr & 

Rabenstein, 1973 ; Perrin & Watt, 1971). 
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The molecular distinction between Cd-resistant and sensitive Q. innoxia cells is related to their ability to form 

Cd complexes rather than differential rates of peptide formation (the total amounts of ()£C) nG synthesized by CdR 

and Cd5 cell lines were equivalent). Tolerant strains produced longer chain, sulphide varieties of the peptide which 

bound 95 - 100% of the cellular Cd within 24 h (Jackson~ ill .• 1989 ; Delhaize ~ill., 1989). 

This requirement for inorganic sulphide has also been documented in Schizosaccharomyces ~as peptides 

containing the s2- complex Cd more tightly than those lacking this charged group (Murasugi ~ill., 1981 ; 

Murasugi ~ ill.,1983). For Scene<lesmus acutiformis and Chlorella ~ Cd2+, Pb2+, Zn2+, Ag2+, Cu2+ and Hg2+ 

induced ( "f£C)nG synthesis, but only Cd2+ and Cu2+ were found to bind to the peptides. The addition of BSO (a 

glutamyl cysteinyl synthetase inhibitor) increased the toxicity of Cd to these algal cells (Robinson, 1989) and 

rendered Cd-tolerant tomato cells incapable of growth in the presence of the metal (Steffens~ ill., 1986), suggesting 

that resistance was due to enhanced y-glutamyl cysteinyl synthetase activity. However,the peptides did not prove to 

be the main source of metal tolerance in CdR tobacco cells; although BSO treatment caused a significant decline in 

(yEC)nG levels and an increase in free cytoplasmic Cd, cell growth in the presence of Cd continued. BSO exposure 

also failed to regulate Zn and Cu toxicity as the metals did not bind to ()£C)nG's (Reese & Wagner, 1987). 

Cells of Datura innoxia in plant suspension culture were also used to investigate the formation of the peptide I 

metal complex. When shocked with Cd, the glutathione sulphur content of Q. innoxia declined, transferring 

completely to the ("f£C)nG pool, indicating a Cd-induced metabolic shift But the ()£C)iJ species were not used to 

form (')£C)3G. Once co-ordinated with Cd, the peptides are probably blocked from further elongation (Berger~ 

ill., 1989). As an alternative to reverse phase HPLC, triple quadropole mass spectrometry was used to show that the 

accumulated Cd in resistant tomato cell suspensions was complexed by ()£C)J and 4 G (Steffens ~ill_., 1986). 

Further evidence of the widespread distribution of these peptides emanates from a screen of seven of the ten 

classes of Phycophyta, which revealed evidence of phytochelatin synthesis after exposure to Cd2+ and also induction 

by p~+, zn2+, Ag2+, Cu2+ and Hg2+. For Euglena gracilis, the ()£C)2G form predominated (Gekeler ~ill., 1988). 

Cells often rely upon more than one mode of heavy-metal detoxification, for example the exposure of S.. 

mQ!is. to Cd induces the synthesis of two Cd-binding molecules (CdBP I and JD. The amino acid composition of 

CdBP II is identical to (')£C)3G, whilst CdBP I resembles the type II Cu and Cd binding MTs of yeast, with low cys 

and high asx and glx. The important role that sulphide ions play in Cd detoxification was again demonstrated, for 

removal of the s2- from metal complexing peptides produced a low Mr species which bound only 20 % of the Cd 

complexed by s2- containing peptides (Shaw~& .• 1988). 
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When the yeast, Schizosaccharomvces ~ was treated with Cd, phytochelatins n = 2 - 8 were detected; the 

addition of BSO abolished peptide induction, but not growth. Although Cd proved the most effective metal for 

prompting peptide synthesis, other ions (Cu2+, Hg2+, Pb2+, zn2+, Ag+, Au+, Bi3+, Sb3+, Sn2+, Ni2+, Aso43- and 

Se032-) also resulted in (yEC)nG production; alkaline and alkali earth ions however, failed to elicit a peptide 

response (Grill~& .• 1986 ; Grill~& .• 1987). 

Further evidence for the role of these peptides in metal tolerance was provided by mutants of .S.. ~ that are 

unable to synthesize (yEC)nG. These cells were found to be hypersensitive to Cd due to the inhibition ofy-glutamyl 

cysteine synthetase (EC 6.3.2.2) or glutathione synthetase (EC 6.3.2.3) and other enzymes (Mutoh & Hayashi, 1988). 

Employing the fission yeast, Hayashi~&. (1988) found preferential synthesis of the smaller cadystin CdBP 2 

species in the early stages of induction and Cd BP 1 at the later stages. Values for their associated binding affinities 

indicated that the larger peptides complex Cd more fmnly than the smaller molecules, coinciding with a higher 

internal Cd content recorded later on in growth. 

Cd-binding peptides have also been detected in the field, HPLC profiles of Acer pseudoolatanus from a mining 

refuse area (28 g Zn kg-1 soil) showed typical (yEC)nG profiles, but these molecules were not detected in roots from 

uncontaminated forest Acer. The same pattern was discovered in Silene cucubalus roots except that~ 

accumulated four times more Zn and synthesized fifteen times more PCs than Silene (Grill~& .• 1988). The 

contribution that these metal binding peptides make towards cell tolerance depends on the species concerned, in 

addition their sulphide component appears to exert a controlling influence. Although the storage of Cd in plant cells 

as phosphate or oxalate precipitates has been documented (Jackson~ a!.. 1990), there is no evidence for such a 

pathway in algae. Preliminary work has been carried out on this system of metal detoxification via a number of 

organisms, but a picture of the kinetics and molecular architecture of intracellular peptide binding is very incomplete 

at the moment. 

1.83 Cd-binding proteins 

The selection of particular molecules for cytosolic metal-detoxification may be related to the metabolic 

pathways that are utilised by a species at the time of metal exposure. The physical dissimilarities between algal 

metal binding proteins (18 % cys residues 3, his, 2, tyr and 7 long chain aliphatics) (Kagi & Nordberg, 1979) (Table 

1.7) and mammalian MTs (32% cys (binding twice the amount of Cd) with no his, tyr or aliphatic residues) may 
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imply that they carry out different functions. But scant evidence is available to decide whether these molecules are 

metal transport proteins which have been adapted for a detoxification role, or are deliberately designed as metal 

scavengers. 

When E.. gracilis was exposed to Cd, all the cytosolic metal was bound to two high Mr species - Cd-binding 

protein (BP)I and II. Cells incubated in Cu produced a CuBP, but a ZnBP was not found (Gingrich tl ill. .• 1986). 

Acid-labile sulphide was detected in CdBP II, although the inefficient induction by low levels of Cd, the kinetic 

lability of the bound Cd2+ and the thermodynamically weaker bond indicate that this protein is not as highly evolved 

as mammalian MT (Weber tl & .• 1987). 

Table 1.7 Cd-binding proteins isolated from both cyanobacteria and algae. The Mr quoted are variable 

depending on the extraction conditions and the quantification method, t = not determined 

Species 

Anacystis sp. 

S ynechococcus PCC 6301 

Chiarella pwenoidosa 

Chiarella pwenoidosa 

Scenedesmus obliguus 

Dunaliella bioculata 

Chiarella ellipsoidea 

!:;hlamydomona~ r~inhru:dt!i * 

* for the sensitive strain only 

Mr 

(kD) 

10-12 

8.1 - 10 

12.8 

12.6 

12 

10 

8.5-9 

25 

induction Cd 

UJM) 

0.01 

25 

4.5 

t 

t 

4.4 

8.9 

49.8 

%Cd 

bound 

65 

t 

84 

40-50 

40-50 

t 

3.2 

67 

reference 

Maclean tl ilJ.. (1972) 

Olafson tl ru. (1988) 

Hart & Bertram (1980) 

Hong-Yu & Huan-Xiao (1985) 

Hong-Yu & Huan-Xiao (1985) 

Heuillet tl ill. (1988) 

Nagano tl ill. (1984) 

Collard & Matagne (1986) 

Investigations into the structure and regulation of the Synechococcus PCC 6301 MT revealed a 

transcriptionally controlled protein with two aromatic residues near the centre of the molecule, making it the most 
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hydrophobic MT yet discovered (Olafson~ a!., 1979 : Olafson~ ru., 1980; Olafson, 1984). The metals Cd and Zn 

were found to induce MT synthesis, but Cu failed to elicit a response (Olafson, 1986). Further investigation of the 

molecular structure of this protein revealed a large number of variants which did not exhibit significant homology 

with mammalian and fungal MTs (Olafson~ a! .• 1988). 

For Pseudomonas l2!!1!illl40 % of the cytoplasmic Cd was associated with PP bodies and the rest with a high

Mr Cd binding protein during a 6 h lag phase (Higham~ ru.,1984). At the end of the lag phase the PP bodies had 

been metabolized and the first low-Mr CdBP isolated. CdBP1 was produced throughout exponential growth, whilst 

small amounts of CdBP2 occurred for a short period at the end of exponential phase. Both proteins persisted during 

a brief stationary phase, followed by CdBP3 production. Amino acid analysis revealed large amounts of cysteine, 

but not enough for all metals to be singly or double sulphydryl bridged, so it is proposed that His and Glu residues 

also play a role. Studies of this manner begin to portray the fate of cytosolic Cd2+ throughout a culture's lifetime 

rather than the static records made at a particular stage of development 

1.84 Cd-binding polysaccharides 

Only cell bound and extracellular polysaccharides appear to bind metals. Such carbohydrate fractions from 

Chi orella stigmatophora LB993 possessed three times more uronic acid (free coo- groups) than that of the non

metal complexing carbohydrate of C.~ (Kaplan~ ru.,1987). However, the 10 % sulphur component of these 

molecules did not play a major role in heavy-metal chelation. A significant number of uronic acid groups were also 

detected in the extracelluar, mucilaginous cell wall material ofKlebshormidium ~(sic) (isolated from acidic 

mine-water drainage in Papua New Guinea), which bound a variety of metals at pH 3 (Strong~ ru., 1982). 

Metal bound outside the cell probably incurs less demand upon metabolism than cytosolic detoxification. No 

records were found to suggest that species which excrete polysaccharides possess secondary intracellular binding 

mechanisms to anticipate conditions under which all the extracellular ligands have been saturated. 
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1.85 Polyphosphate accumulation 

Cellular P stores fluctuate in response to the nutrient status of an organisms environment and it's metabolic 

requirements (Grillo & Gibson, 1979; Rigby~& .• 1980; Lawry & Jensen, 1979; Nissen~ ill. .• 1987). As a Cd

complexing ligand, PP bodies exhibit three types of binding site: polyphosphate molecules with a negative surface 

charge, lipids (although not a major contributor) and proteins (Vymazal, 1987). These inclusion bodies may 

represent the fmal storage-site for toxic metals after peptide or protein transport within the cell. But literature 

concerning the fate of released metal at times of P limitation and PP body degradation has not been discovered. 

1.9 Cell disorders 

If tolerance mechanisms are absent (as with some sensitive cells) or the intracellular levels of Cd so high that 

all metal-binding ligands are saturated, the following cell chaos will ensue. 

1.91 Ultrastructural damage 

Cytotoxic, divalent Cd can disrupt organelles because of its avidity for free carboxyl and thiol groups. A 

variety of ultrastructural defects have been recorded in TEM sections of algae grown in the presence of Cd (Table 

1.8). 

1.92 Biochemical impairment 

Because of favourable biochemical properties, SH groups are exploited throughout the cell. But their 

frequency ensures that Cd toxicity is expressed at many points in the metabolic pathways of an organism (Table 

1.9). For Chiarella cells the observed leakage of intracellular K+ was attributed to an attack on cell-membrane thiol 

groups by Cd2+ ions (De Fillippis, 1979). Above 0.05 mM Cd the amount of K+ lost by Saccharomyces cerevisiae 

was independent of the external Cd2+ concentration, indicating widespread SH damage (Gadd & Mowll, 1983 ; 

Norris & Kelly, 1977). Ca2+ ions were found to shield yeast cells from the toxic effects of Cd2+, whilst Mg2+ 

provided only slight protection against the deficit of K+ (Kessels ~ill. .• 1985). 



52 

The cytotoxic effects of Cd have also been observed to block substrate supply (Passow mill., 1981). Cell

surface enzymes which split non-permeating substances (phosphoric acid, esters or sucrose) are affected, whilst 

inside the cell Cd is known to inhibit mitochondrial Krebs cycle enzymes and interrupt protein synthesis. 

In addition to the inhibition of photosynthesis and acetylene reduction recorded by Stratton & Corke (1979) in 

Anabaena inaegualis, Cd exposure also resulted in some cell lysis, induced an increase in filament length and 

heterocyst frequency together with a loss of the cellular contents from apical cells. Other molecules which are 

susceptible to Cd replacement include the SH active sites of Calvin cycle enzymes, the Fe atoms in PSI I PSII 

cytochromes and the Mn2+ centre of the 0 2 evolution reaction (Hart & Scaife, 1977). 

In mitochondria the toxic effects depend on the type of metabolism in progress. For C-heterotrophic 

organisms Cd inhibits respiration (relieved by the addition of excess cysteine), whilst inC-autotrophic species Cd 

stimulates respiration as photophosphorylation is reduced and a demand for ATP arises (via oxidative 

phosphorylation) (Nriagu, 1980). If the Zn from E. coli surface alkaline phosphatase (Applebury mill .. 1970) is 

replaced with Cd at the same ser residue, the enzyme will bind one phosphate molecule per enzyme dimer. 

However, it then forms a stable complex which does not yield free P. 

Cytosolic Cd was also observed to influence the energy-charge values and adenylate contents of Euglena 

gracilis which decreased in the presence of 500 J.LM Cd, resulting in enhanced cell size and protein content. 

Photosynthesis and lactate consumption were similarly repressed, suggesting that respiration was the main point of 

Cd2+ interaction. These symptoms disappeared during the adaptation of Euglena cells to Cd (Bonaly mill .. 1986). 

From this catalogue of extensive cell damage (due to the prevalent number of sites for Cd attack) it is clear that 

the amount of cytosolic Cd2+ must be suppressed by intracellular ligands if a cell population is to remain viable in 

the presence of the metal. 

1.93 Cd I DNA interactions 

When Cd binds to the nucleic acids of a cell disturbances of DNA transcription, translation and replication are 

evident. This outcome was used to explain the loss of control over growth and division for Euglena cells exposed to 

cytotoxic levels of Cd (Falchuck m a!.. 1975b; Bonaly m l!l .. 1980). 
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Table 1.8 Cd-induced ultrastructural disorders in a selection of microorganisms and the concentration of Cd in 

the medium 

Species 

Anabaena flos-aquae 

Anki~trog~smys f!!lclillY~ 

Anki~l!OQ~~my~ lmu!!!ii 
Anabaena cylindricl;} 

Qillm vulgaris 

Chiarella pvrenoidosa 

Euglena~ 

Euglena gracilis 

Plectonema boryanum 

ProrQcenl!Ym micl;}ns 

P~eydomQnru~ putida 

Skeletonema costa1Jlm 

Cdconc. 

(mg 1-1) 

0.013- 13 

1.0 

1.12 

2.0 

0.009-

0.023 

0.05 

56.2 

1.12 

100 

0.01-0.1 

337 

0.05 

disorder reference 

thylakoid, PP body volume, lipid inclusion, Rachlin mill,. (1984) 

cyanophycin & cell wall changes 

vacuolation & cell membrane damage Burnison mal. (1975) 

electron dense cells produced Massalski mill,. (1981) 

increase in % heterocysts & cell malformations Delmotte (1980) 

microfibril rearrangement, lamellar wall 

disintegration & starch grain loss Heumann (1987) 

swelling & mitochondrial vacuolation Silverberg (1976) 

mitochondrial whorls, thylakoid rupture & 

increase in pyrenoid I plastoglobuli number Duret ~ill.. (1986) 

multinucleate cells with fragmented endosomes, Falchuck ~ill.. (1975a) 

abnormal paramylon & inhibited cell division 

intracellular whorls & enlarged PP bodies Rachlin~ ill,. (1982) 

vacuolated mitochondria & diminished cristae Sayer & Prevot (1981) 

extensive blebbing of the outer membrane 

& Cd detected in PP bodies Higham ~ill,.(1986) 

swollen granules, vacuolated cytoplasm & 

multivesiculated bodies Smith~ ill.. (1983) 

Table 1.9 Influence of Cd upon enzyme activity and the inhibitory concentrations of Cd employed 

Enzyme inhibitory Cd effect reference 

cone. (J.i.M) 

malate dehydrogenase 500 50 % reduction Ernst (1980) 

nitrate reductase 2.5 50 % reduction Ernst (1980) 

alkaline phosphatase 50 strong inhibition Hughes (1987) 

carbonic anhydrase 1.35 18% reduction Nriagu (1980) 

succinate oxidation 5 complete inhibition Jacobs~ ill.. (1956) 

~-galactosidase 1.3 m mole g-1 50% inhibition Katayama ( 1986) 

dehydrogenase 0.16 m mol g-1 50% inhibition Katayama (1986) 

DNA polymerase I 10 complete inactivation Mitra & Bernstein (1977) 

NADPH -oxidoreductase 0.1 strong inhibition DeFilippis~ ill,. (1981) 
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Utilising proton NMR, Eichhorn g g!. (1970) demonstrated that Cu2+ binds to the N7 of 5'AMP and S'GMP, to 

N1 of 5'CMP but does not complex 5'TMP. Bound Cu2+ thus disrupts nucleotide hydrogen bonds resulting in 

weaker DNA strands, whilst other metals eg. Mg2+ which attach to the backbone P groups, reduce their negative 

charge and strengthen the double helix. A cu2+ denatured double helix can be returned to the native state upon 

cooling and the addition of NaN03, whereas Zn2+ does not bind so tightly to bases and the presence of salt is not 

required for recoiling. 

For cultured myotubules, exposure to 100 llM Cd or 3 llM Hg, led to an accumulation of DNA strand breaks. 

DNA repair was partially inhibited at 100 llM Cd and nearly completely blocked at 300 llM Cd. At 0 ° C, DNA 

strand breaks still occurred but at a slower rate (Burkart & Ogorek, 1986). 

Preliminary studies by Mitra g gl. (1975) suggested that~. m!l cells cultured in the presence of Cd must 

undergo a period of DNA repair before the cells may proliferate. Further studies showed that single-strand DNA 

breakage (with no detectable increase in double strand breaks) was observed for cultures of E. coli grown in 3j.I.M 

Cd2+, as a result, 85 - 95% of the cells lost their colony-forming ability, whilst at 10 llM Cd2+ irreversible double

strand fractures of DNA may have occurred (Mitra & Bernstein, 1977). 

The Cd-mediated interference of DNA translation was demonstrated for polyriboadenylic acid, which at pH 6 

produced a double helical molecule in the presence of zn2+, a single coil when Ni 2+ was added and a random coil 

with Cu2+. The addition of Cd2+ to poly A at pH 7.0 converted a single helical molecule into a random coil. 

Cleavage of the RNA phosphodiester bond occurs because metal ions can withdraw electrons from a P group to 

produce a positive dipole, this species attracts a negative oxygen atom to yield pentavalent P which is then 

dismembered at it's weakest point. If the adjacent base to this bond is uracil there is a high tendency to cleave, if 

guanine, then a weak inclination. Such breakage is not found in DNA as 2' OH groups are required (Eichhorn g g!., 

1970; Hughes & Poole, 1989a). 

As a result of the many industrial applications of this metal, the regulation of Cd disposal into the biosphere is 

difficult to enforce. To stem the accumulation of Cd in the environment (if not to protect individual habitats, at 

least prevent Cd from building up along the human food chain) substitutes must be introduced for metal bearing 

commodities, or Cd scavenging systems deployed for both industrial effluents and regions already contaminated 

with the metal. 



AIMS 

1. In response to increasing levels of Cd in the environment from industrial processes and the disposal of 

Cd-containing products, the main aim of this research was to identify photosynthetic microorganisms which 

accumulate Cd to a high concentration and to then harness this ability in a packed-bed of immobilized cells, 

for the removal of the metal from polluted effluents. Waterways that have been contaminated with 

heavy metals were used to select microorganisms which exhibit strong metal-accumulating characteristics. 
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2. A second objective was the cellular localization of Cd by EDXMA and SPM. Such information can be used to 

enhance metal-uptake by identifying the mechanisms of detoxification used by each strain and then promoting 

conditions which maximise metal-accumulation via particular pathways. 

3. The third aim was to investigate the tolerance mechanisms that are used by strains to ensure their survival 

in heavy-metal contaminated environments; once identified, the production of molecules used to detoxify Cd 

may be manipulated to enhance the concentration of metal that cells can accumulate without suffering toxic 

effects. 

4. A study of the cell damage which often accompanies growth in the presence of relatively high concentrations 

of Cd provided the fourth aim. Disorders in cyanobacterial and algal ultrastructure, enzyme activity and protein 

profile were investigated to determine the extent to which cell function (and in particular their metal-removal 

efficiency) is imparied by the presence of intracellular Cd. 
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CHAPTER2 

MATERIALS AND METHODS 

2.1 Algal origins 

Strains of algae from heavy-metal contaminated environments were screened for their ability to accumulate Cd 

to a high level, two strains each of cyanobacteria and algae (originating from heavy-metal sites) were chosen from 

the Durham University Culture Collection as suitable material for immobilization and Cd uptake. Synechococcus 

sp. D562 was isolated from a mine tailings pond (5.9 mg 1-1 Zn, 0.024 mg 1-1 Cd) in the Old Lead Belt of Missouri, 

USA (Whitton ~ill.. 1981), Klebsormidium rivulare D537 originates from a stream near a zinc smelter at Viviez, 

France (3840 mg 1·1 Zn, 345 mg 1·1 Cd) (Say & Whitton, 1982), Mougeotia sp. D536 from Caplecleugh Low Level, 

Nenthead, England (7 mg 1·1 Zn, 0.012 mg 1·1 Cd) (Patterson, 1983) and Calothrix oarietina D184 came from a 9 mg 

1-1 Zn laboratory tank of algae. 

2.2 Media and culture techniques 

2.21 Algal growth media 

Growth media were freshly prepared for each experiment I subculture and used within 24 h. Gilson pipettes 

were employed to dispense the correct volumes of stock mineral salts (Tables 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6) which 

were dissolved in 18 Mn cm·1 resistivity water dispensed from a Milli-Q Reagent Water System (Millipore, 

Watford, U.K.), that was fed with distilled water. Buffering capacity was provided by 2.5 mM (0.6 g 1-1) HEPES 

(Sigma Chemical Co. Ltd, Poole, U.K.), made up in 500 ml of 18 Mn water and adjusted to pH 7.0 with a known 

volume of 1.0 M NaOH. HEPES exhibits a suitable pKa of 7.55, is not toxic at low levels (Smith & Foy, 1974; 

Eley, 1988) and does not complex metals to a significant extent (Good~ ill..,, 1966). Stocks were stored in the dark 

at4 ° C. 
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During the course of research modifications were made in the media to create comparable growth conditions. 

Synechococcus D562, originally maintained in ACM pH 7.6 (Table 2.1), was grown in a new PPJ medium designed 

to enhance doubling times. Calothrix D184 was switched from AD P (1.0) Fe (0.4) pH 7.6 to PPJ- N pH 7.0 and 

the DMG buffer employed in CHU 10E pH 6.6, replaced with 2.5 mM HEPES pH 7.0. The total element 

concentrations stated in the media tables, include contributions by the microelements and the chemicals employed 

throughout this investigation were AnalaR grade (BDH Ltd, Poole, England) unless otherwise stated. 

2.22 Heavy-metal stocks 

To ensure accurate metal additions to media, fresh Cd stocks of 1000 and 100 mg 1-1 were formulated in 18 

MQ water from 3CdS04 8H20 and au toe laved. The precision of the Gilson pipettes employed to deliver volumes 

of these stocks was checked periodically by determining the weight of a known volume of dispensed water. 

2.23 Bacterial test-media 

Cultures contaminated with bacteria were detected when grown on the following media which were formulated 

in 1000 ml of 18 Mn water (except e)) and autoclaved as 500 ml volumes in 1-litre flasks : 

a) Nutrient Broth 

b) SST 

c) Peptone-glucose 

d) Yeast 

e) Growth medium 

25 g Nutrient broth No.2 (Oxoid Laboratories, Hampshire, England), 10 g agar 

(Difco Laboratories, USA) 

10 g glucose, 10 g tryptone (Oxoid Laboratories, Hampshire, England), 

5 g yeast extract (Oxoid Laboratories, Hampshire, England), 10 g agar 

1 g glucose, 1 g peptone (Difco Laboratories, USA), 10 g agar 

5 g yeast extract, 10 g agar 

1 g glucose, 0.1 g casamino acids (Difco Laboratories, USA), 10 g agar, 

in 1000 ml growth medium 

Sterile Petri dishes were poured with 40- 50 ml of media in a laminar airflow cabinet and allowed to solidify 

before storage in cling film at 4 ° C. For bacterial tests, the plates were dried in the airflow cabinet near the flame 
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of a Bunsen burner to drive off condensation on the lid of the Petri dishes and samples streaked across a quartile of 

each plate with a flamed inoculating loop. Plates were incubated in the dark at 32 ° C for at least 1 week to 

authenticate culture axenicity. 
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Table 2.1 Mineral salt composition of ACM medium pH 7.0, microelements = 1.0 ml AC (low Mn) 

Compound/ molecular I stock cone. medium cone. total element cone. 

element atomic weight (g 1-1) (mg 1-1) (mM) (mg 1-1) (mM) 

CaC12 2H20 147.020 19.860 19.860 0.135 

Ca 40.080 5.414 5.414 0.135 

Cl 35.453 9.578 24.072 0.679 

Na2EDTA 372.240 1.667 1.667 0.005 

Na 22.989 0.206 28.800 1.253 

EDTA 326.262 1.461 1.461 0.005 

FeC13 6H20 270.300 1.210 1.210 0.005 

Fe 55.847 0.250 0.250 0.005 

Cl 35.453 0.476 

K2HP043H20 228.230 131.030 13.103 0.057 

K 39.098 4.489 197.834 5.060 

p 30.974 1.778 1.778 0.057 

KNOJ 101.110 100.000 500.000 4.945 

K 39.098 193.344 

N 14.007 69.266 69.266 4.945 

MgS04 7H20 246.470 50.000 250.000 1.014 

Mg 24.305 24.653 24.653 1.014 

s 32.060 32.519 32.559 1.015 

NaCl 58.440 46.000 23.000 0.394 

Na 22.989 9.048 

Cl 35.453 13.953 

Buffering NaOH 40.000 40.000 34.000 0.850 

Na 22.989 19.541 



Table 2.2 Mineral salt composition of 1.0 mll-1 AC (low Mn) microelements 

Compound/ 

element 

H3B03 

B 

MnCl24H20 

Mn 

Cl 

ZnS04 7H20 

Zn 

s 

CuS045H20 

Cu 

s 

CoS04 7H20 

Co 

s 

Na2Mo04 2H20 

Na 

Mo 

molecular I 

atomic weight 

61.830 

10.810 

197.920 

54.938 

35.453 

287.550 

65.380 

32.060 

249.680 

63.546 

32.060 

281.100 

58.933 

32.060 

241.950 

22.989 

95.940 

stock cone. medium cone. 

(mM) 

2.86 2.8600 0.0463 

0.5000 

0.181 0.1810 0.0009 

0.0502 

0.0648 

0.222 0.2220 0.0008 

0.0505 

0.0248 

0.079 0.0790 0.0003 

0.0201 

0.0101 

0.042 0.0420 0.0002 

0.0088 

0.0048 

0.027 0.0270 0.0001 

0.0051 

0.0107 

60 

total element cone. 

(mM) 

0.5000 0.0463 

0.0502 0.0009 

0.0648 0.0018 

0.0505 0.0008 

0.0397 0.0012 

0.0201 0.0003 

0.0088 0.0002 

0.0051 0.0001 

0.0107 0.0002 
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Table 2.3. Mineral salt composition of CHU10 E medium pH 7.0 ,microelements = 0.25 ml AC (low Mn) 

Compound/ molecular I stock cone. medium cone. total element cone. 

element atomic weight (g I-1) (mg 1-1) (mM) (mg 1-1) (mM) 

Ca(N03h 4H20 236.150 57.600 57.600 0.244 

Ca 40.080 9.776 9.776 0.244 

N 14.007 6.833 6.833 0.488 

Na2EDTA 372.240 13.358 3.340 0.009 

Na 22.989 0.413 22.123 0.962 

EDTA 326.262 2.927 2.927 0.009 

FeCl3 6H20 270.300 9.700 2.425 0.009 

Fe 55.847 0.501 0.501 0.009 

Cl 35.453 0.954 0.970 0.027 

KH2P043H20 136.090 7.820 3.910 0.029 

K 39.098 1.123 1.123 0.029 

p 30.974 0.890 0.890 0.029 

MgS04 7H20 246.470 25.000 25.000 0.101 

Mg 24.305 2.465 2.465 0.101 

s 32.060 3.252 3.262 0.102 

NaHC03 84.010 7.925 7.925 0.094 

Na 22.989 2.169 

c 12.011 1.133 1.133 0.094 

Buffering NaOH 40.000 40.000 34.000 0.850 

Na 22.989 19.541 



Table 2.4 Mineral salt composition of PPJ medium pH 7.0 microelements = 1.0 ml BG 11 

Compound/ 

element 

CaCI2 2H20 

Ca 

Cl 

Na2EDTA 

Na 

EDTA 

FeCl3 6H20 

Fe 

Cl 

K2HP04 

K 

p 

NH4Cl 

N 

Cl 

MgS04 7H20 

Mg 

s 

KCl 

K 

Cl 

Buffering NaOH 

Na 

molecular I 

atomic weight 

147.020 

40.080 

35.453 

372.240 

22.989 

326.262 

270.300 

55.847 

35.453 

228.230 

39.098 

30.974 

53.490 

14.007 

35.453 

246.470 

24.305 

32.060 

74.550 

39.098 

35.453 

40.000 

22.989 

stock cone. medium cone. total element cone. 

(mM) (mM) 

73.360 73.360 0.499 

19.999 19.999 0.499 

35.381 71.359 2.013 

13.358 3.340 0.009 

0.413 20.028 0.871 

2.927 2.972 0.009 

9.700 2.425 0.009 

0.501 0.501 0.009 

0.954 

131.030 13.103 0.057 

4.489 14.488 0.371 

1.778 1.778 0.057 

76.370 38.185 0.714 

9.999 10.004 0.714 

25.309 

50.706 202.82 0.8229 

20.000 20.000 0.8229 

26.368 26.409 0.8237 

19.067 19.067 0.256 

9.999 

9.067 

40.000 34.000 0.850 

19.541 
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Table 2.5 Mineral salt composition of AD P (1.0) Fe (0.4) medium pH 7.0, microelements = 1.0 ml BG 11 stock 2 

Compound/ 

element 

CaC122H20 

Ca 

Cl 

Na2EDTA 

Na 

EDTA 

FeCl3 6H20 

Fe 

Cl 

K2HP04 3H20 

K 

p 

MgS04 7H20 

Mg 

s 

NaCl 

Na 

Cl 

KCl 

K 

Cl 

Buffering NaOH 

Na 

molecular I 

atomic weight 

147.020 

40.080 

35.453 

372.240 

22.989 

326.262 

270.300 

55.847 

35.453 

228.230 

39.098 

30.974 

246.470 

24.305 

32.060 

58.440 

22.989 

35.453 

74.55 

39.098 

35.453 

40.000 

22.989 

stock cone. medium cone. total element cone. 

(mM) (mM) 

132.4 66.200 0.450 

18.047 18.047 0.450 

31.927 182.143 5.1376 

13.358 3.340 0.009 

0.413 110.505 4.807 

2.927 2.972 0.009 

9.700 2.425 0.009 

0.501 0.501 0.009 

0.954 

7.36 7.36 0.032 

1.261 14.488 0.371 

0.999 0.999 0.032 

50.000 200.000 0.8115 

19.723 20.000 0.8229 

26.015 26.056 0.8127 

46.000 230.000 3.936 

90.477 

139.531 

1.91 19.100 0.256 

10.017 

9.083 

40.000 34.000 0.850 

19.541 



Table 2.6 Mineral salt composition of 1.0 mll-1 BG 11 stock 2 microelements 

Compound/ molecular I 

element atomic weight 

H3B03 61.830 

B 10.810 

MnCl24H20 197.920 

Mn 54.938 

Cl 35.453 

ZnS04 7H20 287.550 

Zn 65.380 

s 32.060 

Na2Mo04 2H20 241.950 

Na 22.989 

Mo 95.940 

CuS04 5H20 249.680 

Cu 63.546 

s 32.060 

Co(N03h 6H20 291.030 

Co 58.933 

N 14.007 

s 

280.760 

58.700 

32.060 

stock cone. medium cone. 

2.86 

1.81 

0.222 

0.390 

0.079 

0.049 

0.048 

2.8600 

0.5000 

1.8100 

0.5024 

0.6484 

0.2220 

0.0505 

0.0248 

0.3900 

0.0741 

0.1547 

0.0790 

0.0201 

0.0101 

0.0490 

0.0099 

0.0047 

0.0480 

0.0100 

0.0055 

(mM) 

0.0463 

0.0092 

0.0008 

0.0016 

0.0003 

0.0002 

0.0002 

total element cone. 

0.5000 

0.5024 

0.6484 

0.0505 

0.0406 

0.0741 

0.1547 

0.0201 

0.0099 

0.0047 

0.0100 

(mM) 

0.0463 

0.0092 

0.0183 

0.0008 

0.0013 

0.0032 

0.0016 

0.0003 

0.0002 

0.0003 

0.0002 
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2.24 Changes in the volume of media 

Five flasks were filled with 50 ml of PPJ medium and weighed before and after autoclaving to ascertain 

deviations in fluid volume. The evaporation of medium from conical flasks incubated in a shaken water tank, was 

also determined over a period of 26 d. 

2.25 Glassware and plastic preparation 

Borosilicate glassware was utilised to reduce extraneous Cd addition I removal. Before use, glass and plastic 

apparatus were soaked in a phosphate free detergent - 2% Decon 90, for 12 h (Decon Laboratories Ltd, Hove), 

scrubbed with a nylon brush, washed in distilled water and soaked in 4% HN03 for at least 12 h to remove all traces 

of bound metal. The acid was displaced by rinsing the utensils six times in 18 Mn water, which were subsequently 

dried at 105 ° C for 12h (plastic and rubber items were dried at 40 ° C). Equipment composed of rubber was not 

acid washed. 

2.26 Sterile technique 

Procedures which required sterile conditions were carried out in a 98 % alcohol sprayed, Micro flow Pathfinder 

vertical laminar flow cabinet (B.S. 5295 class 1) (M.D. H. Ltd, Hampshire, U.K.). Autoclavable media and 

equipment were sterilised at 121 ° C, 10 5 Pascal for 20 min (fluid volumes greater than 1litre were treated for a 

longer period) and equilibrated to room-temperature for 6 h. Heat labile components were filter-sterilised through a 

0.22 j.llll nitrocellulose membrane into empty, autoclaved and cooled receptacles. Sterilised media were stored in 

the dark to reduce EDT A photoreduction and used within 48 h. 

Cultures grown on agar-solidified media were observed under a Nikon SMZ-2 Stereoscopic Zoom Microscope 

housed in a horizontal laminar air-flow cabinet. 
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2.27 Algal subculture and experimental conditions 

Stocks of Cd-resistant Synechococcus 0562, Calothrix 0184, Mougeotia 0536 and Klebsonnidium 0537 were 

maintained in metal-amended medium, by batch subculture of log-phase algae under sterile conditions in 100 ml 

conical flasks holding 50 ml of media and enclosed with silicon rubber stoppers (Sanko Plastics Co., Japan). A 2.5 

% inoculum of Synechococcus 0562 and Mougeotia 0536 was dispensed with a Gilson P 5000 Pipetman, whilst 

Klebsorrnidium 0537 and Calothrix 0184 were transferred as a clump on a sterile (flamed) inoculating loop. These 

stocks were maintained under the following growth conditions (with no agitation or C02 addition) : 

Table 2. 7 Culture conditions for the cyanobacteria and algae employed in this study 

Strain 

Synechococcus 0562 

Calothrix 0184 

Mougeotia 0536 

Klebsonnidium 0537 

average air temperature 

32 

25 

25 

25 

* Phillips warm white fluorescent tubes 

average incident light intensity * Cd cone. 

{J.tmol photon m-2 s-1) (mg J-1) 

35-40 

25-30 

25-30 

25-30 

0, 1,2 

0, 1 

0, 0.5 

0, 0.5 

Back up stocks were also maintained on agar at 10 ° C, 151J.mol photon m-2 s-1 and subcultured every six 

months. Media volumes of less than 100 ml, were incubated in a thermostatically controlled, Gallenkamp shaker 

tank, illuminated from below with Phillips warm white fluorescent tubes and shaken 64 times min -1 through a 

distance of 27 mm. To ensure that the flasks were exposed to an average light flux,their positions in the tank were 

changed each day. Growth media greater than 100 ml in volume were incubated on a rotary shaker (110 revolutions 
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min-1) at the appropriate temperature and light levels (Appendix 1.). Cultures of Synechococcus D562 greater than 

500 ml in volume were grown up in stationary flasks sparged with air. 

Homogeneous inocula were obtained for all strains (except Calothrix D184 which was sterilely fragmented by 

passage through a 1-mm diameter hypodermic needle prior to subculture), as growth on a rotary shaker produced 

small filaments equally distributed throughout the media. 

2.28 Cell harvesting 

The filamentous green algae were collected on 0.8 Jlil1 polycarbonate, Nucleopore filters under vacuum 

filtration, Calothrix D184 was harvested on muslin cloth and Synechococcus D562 centrifuged in 40 ml 

polycarbonate Oak Ridge tubes at 30 000 x g relative centrifugal force in the SS34 rotor of a Sorvall RC-5B 

temperature controlled machine. For 10 litre volumes of Synechococcus D562 an MSE Continuous Action Rotor 

running on an MSE high speed 18 centrifuge (Measuring and Scientific Equipment Ltd, Crawley, England) was 

employed to harvest the cells. When sterile cell-recovery was required, all apparatus (except the muslin cloth) were 

autoclaved. 

2.3 General procedures 

2.31 Mass determination 

Chemicals, centrifuge tubes and media were weighed to an accuracy of two decimal places on a Sartorius 1474 

top-pan balance whilst more accurate mass determination was carried out on an Oertling R51 balance. An objects 

weight refers to the amount of mass present, measured under the force of the earths gravity. 

2.32 Cell dry weight 

At least 5 - 10 ml of Calothrix D184, Mougeotia D536 and Klebsormidium D537 culture or 50 ml of 

Synechococcus D562 were spun out of their salt media and resuspended in 18 Mn water. The samples were 

pi petted into preweighed 20 ml snap cap vials, dried at 110 ° C for 48 h, cooled in a desiccator, then reweighed and 
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the dry weight of algae expressed in mg 1-1. Weight determinations were carried out on the Oertling R51 balance 

and the relative humidity of the weighing chamber containing the snap cap vials, reduced by the presence of recently 

dried silica gel. 

2.33 Cell density 

25 Ill of a uniform cell suspension were pipetted onto a Weber cell-counting slide, the number of fields which 

contained 400 cells was recorded and the culture density expressed as the number of cells ml-1 . 

2.34 pH 

The proton concentration of fluid volumes greater than 2 ml were measured with an Ingold type E 50 I SK 

combination electrode and ElL 7050 pH meter, 150 Jll of smaller volumes were sampled and applied to the 

electrode of a Cardy compact pH meter (Horiba Ltd., Japan). Standard buffers of pH 4.0, 7.0 and 9.2 (BDH Ltd, 

Poole, U. K.) were employed at room temperature to calibrate the meters in the sample pH range. 

2.35 Light 

Measurements of the incident photosynthetically active radiation (400 nm- 700 nm) at the surface of culture 

vessels were carried out with a Macam Q101lightmeter plus PAR sensor head (Macam Photometries Ltd, Scotland) 

and recorded as Jlmol photon m -2 s-1. 

2.36 Total protein assay 

To estimate the protein content of samples, a microtitre-well Bradford protein assay (Bradford, 1976) was 

developed. 10 ml of the reagent (Bio-Rad Protein Assay Dye Concentrate 500-0006) was diluted with 40 ml of 18 

Mil water, 100 Ill of this stock was added to 200 Jll of sample and the absorbance of the resulting blue colour 

recorded at 595 nm. To convert absorbance readings into protein concentrations, two stock solutions of 15 and 150 
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J.Lg mi-l of BSA were made up in buffer (50 mM HEPES pH 7.0) and the following volumes added to 100 J.Ll of 

reagent : 

Table 2.8 Reagent volumes used to formulate a standard curve for the Bradford protein assay 

Solution 

15 J.Lg mt-1 BSA stock 

150 J.Lg mi-1 BSA stock 

buffer 

Final BSA cone. (J.Lg mt-1) 

Volumes (J.Ll) 

0 10 

200 190 

0 0.5 

2.37 Flame atomic absorption spectrophotometry 

20 40 

180 160 

1 2 

60 80 

140 120 

3 4 

100 

100 

5 

20 40 

180 160 

10 20 

60 80 

140 120 

30 40 

The soluble metal component of samples was analysed with a Perkin-Elmer 5000 Atomic Absorption 

Spectrophotometer and Automatic Burner Control Unit using an air- C2H2 flame (gas box settings = 35 : 35) and 

deuterium-arc lamp background correction. The sensitivity of the spectrophotometer was enhanced by replacing the 

flow spoiler with an impact bead, and concentrations of Cd below 0.2 mg I-1 were detected on a chart recorder with 

expansion factors of 1 to 12. The machine was calibrated with standards made from 1 000 mg I-1 solutions (BDH 

"Spectrosol", Poole, England) and the burner position I nebulizer operation optimised with a 10 mg I-1 Cd standard. 

The metal accumulated by algae, was determined by digesting a known dry weight of material in 3 ml of 18 MQ 

water plus 1 ml of concentrated AAS grade HN03, heated to 120 ° C for 60 min on a Tecam DB3H heating block 

and analysed against matrix-matched standards. The residual organic matter not released by acid digestion was 

filtered off, sonicated to a fine suspension and also analysed for Cd. 
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2.38 Computing 

The text for this thesis was processed with Microsoft Word V 5.0 running on an IBM PS I 2 model 30. The 

graphs were produced with Sigmaplot V 3.10 and alkaline phosphatase data-conversion carried out with Quattro Pro 

Spreadsheets. A database of the Durham University Culture Collection was held as Superflle records (Southdata, 

London) on an RM Nimbus X16 PC running MS-DOS V 3.10. 

2.4 Strain selection and Cd uptake 

2.41 Isolating Cd-accumulating algae from the environment. 

Four heavy-metal contaminated streams were visited on 07.06.88 and the pH, temperature and conductivity of 

the water recorded. Two, 10 ml water samples were taken, one was syringed across a 0.2 J.l.m filter whilst the other 

constituted a total sample, both were acidified with 1 J.!.l mJ·1 AAS grade HN03 and stored in teflon bottles. Large 

growths of algae were sampled for their Cd content and probed with EDXMA, whilst water, mud and soil specimens 

were collected for the isolation of Cd accumulating algae. 

2.42 Small-scale screening 

Sterile microtitre plates (Nunc, Denmark) were used to screen large numbers of Cd-tolerant, single-celled 

cyanobacteria on a small scale. The ensuing range of Cd concentrations (mg 1·1) were created from an au toe laved 

100 mg 1·1 stock in a total well-volume of 250 J.!.l of sterile AC medium : 0, 5, 10, 15, 20, 25, 30, 35, 40. The 

total incubation volume included 80 J.!.l of one of each of the following strains of Synechococcus : D562, D767, 

D768, D769, D772, D773, D797 and D799. An ACM medium blank was pipetted into the first column of wells 

and the algae grown up for 10 d at 32 ° C in a sterile box containing filter-sterilised 18 MQ water (to reduce 

evaporation). All wells were then scanned at 620 nm to determine the concentration of pigment in each culture. 



2.43 Procedures employed to render Synechococcus 0562 axenic 

A number of physical methods were selected to remove the bacterial contaminant from cultures of 

Synechococcus D562, before resorting to the use of antibiotics. All culture samples were 10 d old : 

i) Spray plating - A Synechococcus D562 culture was diluted in a series from 10-1 to 10-10 in 2 ml of 

medium (5 % (v/v) inoculation volume). Once shaken, the contents of each tube was sampled with a sterile 

syringe plus needle and injected into a flow of sterile air to nebulise the culture onto an open, vertical Petri 
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dish containing solidified ACM (Fig. 2.1). Each dilution was plated out five times in this manner, all plates 

were incubated at 32 ° C and inspected ten days later for the growth of bacteria-free colonies. Any colonies 

which appeared to be axenic were transferred to 2 ml ofliquid medium, grown for 10 d then plated on bacterial 

test media. No axenic colonies were obtained on agar, even at the theoretical dilution factor of 1 cell per sample 

- at these cell densities S ynechococcus D562 did not grow. 

ii) Liquid dilution - The cell density of a culture collected on a 0.22 JliTl nitrocellulose filter was determined 

to calculate the number of dilutions required to yield one cell per test tube. Five, 15 ml test tubes containing 

4.5 ml of sterile ACM were inoculated with 0.5 ml of Synechococcus and 0.5 ml transfer volumes used to 

form five replicates of a 10-1 to 10-10 dilution series. Mter 10 d growth at 32 ° C samples of each dilution 

were plated onto solidified ACM and bacterial test media, then grown up to screen for axenic cultures. Bacteria 

proved capable of growing at lower cell densities than Synechococcus D562. Thus no axenic colonies were 

found with this technique. 

iii) The bacterial contaminant of Synechococcus D562 would not form dense streak patterns on SST substrate, 

so an experiment was designed to use SST as a selective medium for Synechococcus D562. Solid plates of SST 

made with ACM medium rather than just 18 MQ water were formed and three replicates streaked with a 10 d old 

culture of Synechococcus D562. Although this medium inhibited the growth of contaminating bacteria, algal 

growth was also repressed and no bacteria-free colonies obtained. 

iv) Centrifugation - 10 ml of culture were added to six, sterile Oak Ridge type tubes which were spun at different 
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Fig 2.1 Apparatus used in an attempt to plate out bacteria-free colonies of Synechococcus D562 

ai = air inlet f = filter s = inoculum syringe p = petri dish 

n = needle a = aerosol m = solid medium 

p 

a 

ai 

f 

m 

Fig 2.2 Apparatus used to filter and wash a sample of SynechococcusD562 

s = inoculum syringe f = filter w = to waste 

c = clamp m = sterile medium inlet 
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I 

~ 

,...-

-=-- ~ w--
I 

w 

-

I H c I 1-1 c 

m m 



73 

speeds (120, 480, 1070, 1910 and 2990 x g, relative centrifugal force) in a Sorvall RC 5B centrifuge and SS34 

angle head rotor. One tube, the control, was not spun. The supernatant was then sampled with a flamed 

inoculating loop, streaked on ACM plates then poured off to allow access to the algal pellet which was 

streaked in the same manner. The pellet was washed three times in sterile ACM medium by resuspension I 

centrifugation and after each spin both the supernatant and the pellet were plated out. But none of the pellet or 

supernatant samples produced axenic algal cultures. 

v) Microaerobic growth - the observation that cultures submerged in agar produced a brighter colony 

colour indicated that pour plating might prove a successful technique. Hence 50 ml of a culture was sterilely 

concentrated by centrifugation, the pellet resuspended in 5 ml of medium and I ml added to each of five sterile 

Petri dishes, into which was quickly poured 40 ml of cool ACM medium plus 1 % agar. The plates were gently 

swirled to form an even cell suspension, allowed to set, then grown up for 20 d. Following growth throughout 

the solidified medium, 1 cm3 cubes of agar were sterilely cut from the middle of the plate and transferred to 

100 ml flasks containing 50 ml sterile ACM and incubated for 15 d. The resulting liquid culture was sampled 

and streaked out on bacte~al test plates. Reducing the amount of oxygen available for bacterial 

metabolism did not result in cell death. 

vi) Diluted medium - the nutrients of the growth medium were depleted by the addition of 18 Mn water to known 

volumes of medium, resulting in the following strengths: 100 %, 80 %, 75 %, 50% and 25 % (v/v). 

Samples of Synechococcus D562 from each dilution were streaked on agar plates and incubated at 32 ° C for 

10 d. As this approach failed to yield an axenic culture of Svnechococcus D562, there must have been enough 

carbon in the culture sample to maintain bacterial growth on a simple dilute medium. 

vii) Filtration - the dimensions of the alga and contaminant were determined from EM photomicrographs 

and suitable filters chosen for the separation of bacteria from algae : 1.0 flm poly carbonate l.2flm 

nitrocellulose, 2.0 flm glass fibre, 3.0 flm polycarbonate, 8.0 flm nitrocellulose and polycarbonate. 

Each filter was checked for it's ability to retain some algal cells by placing them in a Swinnex filter 

holder, syringing a 5 ml sample of culture across the membrane and observing the density of retained cells 

by epifluorescent microscopy. Appropriate filters were then housed in a Swinnex holder and connected 
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to apparatus which facilitated filter backwashing (Fig. 2.2) and autoclaved. After five forward 

and five backward passages across the filter, the washed inoculum was spray plated onto ACM medium, 

whilst each filter was sterily extracted and placed on the surface of an ACM plate. This approach failed to 

render an algal culture without bacteria, probably due to the relatively low pore density on the filters employed. 

viii) Antibiotics - 200 Jll of a Synechococcus 0562 culture was spread over the surface of each of six ACM I PG 

plates and incubated in the dark at 32 ° C for 1 h to grow up a lawn of bacteria. Three replicates of 

two types of Oxoid Multodisks (30-1 Hand 30-12 L, see Appendix 2) (Oxoid, Basingstoke, U.K.) were sterily 

placed on each plate and grown up at 32 ° C without illumination for 6 d. Algal lawns were also formed 

on six ACM plates after two days growth, the two types of antibiotic selection discs were then applied and the 

plates grown in the light for a further 5 d to determine the algal toxicity of the antibiotics under test. 

From initial tests 10, 50 and 100 Jlg ml-1 final concentration of the following antibiotics were chosen to 

render Synechococcus 0562 axenic, both singly and in combination : oxytetracycline, chlortetracycline 

and neomycin. Antibiotic stock solutions of 1 mg ml-1 were made up in 18 MQ water (oxytetracycline having 

been predissolved in 5 ml of methanol), 0.2 Jlm nitrocellulose fllter sterilised and used immediately, 

together with a filter sterilised 5 %glucose solution (to provide organic C for bacterial growth). 

The correct volume of antibiotics was added to Pyrex boiling tubes containing sterile medium together with 

0.5 ml of a culture and 0.5 ml of 5 % glucose to create a final incubation volume of 5 ml. All treatments 

were duplicated three times and included three controls with no antibiotic. The tubes were incubated 

overnight in the dark at 32 ° C then spun down in a bench top centrifuge (Heraeus Christ GMBH), 

resuspended, spun in fresh, sterile medium three times to remove most of the antibiotics and grown up 

for 10 d. The resulting cultures were then streaked out on medium and bacterial test plates and cell growth 

assessed after 20 d for the alga and 5 d for the bacteria. Having determined the most appropriate 

concentrations and mixture of antibiotics, the above procedure was carried out with 70 Jll of chlortetracycline 

plus 30 Jll of an oxytetracycline I neomycin mixture and 80 Jll of chlortetracycline plus 40 Jll of oxytetracycline 

1 neomycin. Cultures which had been exposed to, then freed from antibiotics were spray plated with 10 -1 

to 10 -3 dilutions and also streaked onto ACM and bacterial test plates. Cultures from spray plates which 

appeared clean were selected, transferred to liquid ACM, grown up for 15 d then tested for axenicity on 

bacterial test plates. Apart from penicillin and streptomycin, all the antibiotics under test 
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inhibited the growth of bacteria but pennitted the growth of Synechococcus 0562 (except for sulphafurazole, 

furazolidone and chloramphenicol). Antibiotic-exposed cultures also required one spray plate treatment 

before bacteria-free cultures were obtained. 

2.44 Cd complexed by the medium 

The following treatments were replicated five times, with 20 ml of autoclaved media in 125 ml conical flasks. 

Half the contents of each flask were stored in snap cap vials and 0.3 g of Oowex 2-X8 (CI) 18-52 mesh standard 

grade anion exchange resin (washed in buffered 18 Mn water (2.5 mM HEPES pH 7.0)) added to the remaining 

solution and incubated on an orbital shaker at 32 ° C for 20 min. The medium was poured off from the resin, stored 

in vials and all samples analysed for Cd and iron by FAAS : 

i) Buffered (2.5 mM HEPES, pH 7.0) 1 mg 1-1 Cd vi) 1 mg 1-1 Cd + EOTA 

ii) 1 mg 1-1 Cd and 0.5 mg 1-1 Fe (as FeEOTA) vii) PPJ medium 

iii) PPJ + 1 mg t-1 Cd- FeEOTA viii) 2.9 mg t-1 EOTA 

iv) PPJ + 0.5 mg t-1 Fe- EOTAix) PPJ medium used to grow Synechococcus 0562 for 8 d 

v) PPJ + 1 mgl-1 Cd 

2.45 EDT A washing 

Ten, 50 ml replicates of Synechococcus 0562 were grown in PPJ medium plus 2 mg I-1 Cd in 250 ml flasks 

and grown up for 5 d in a 32 ° C shaking water bath. The cells were harvested, washed three times in PPJ medium 

minus Cd and FeEOT A and exposed to 25 and 0.25 mM Na2EOTA pH 7.0 (five flasks each) for 2 h, then finally 

immersed in 18 Mn water. The Cd accumulated by the cells and that of the chelator supernatant were detennined. 
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2.46 Dead cell uptake 

Five replicates of Synechococcus D562 were grown in PPJ medium, 0 mg 1-1 Cd for 5 d, then heated at 70 ° C 

for 1 h, spun down, resuspended in 50 ml PPJ medium plus 2 mg 1-1 Cd and incubated at 32 ° C for 2 h. The cells 

were centrifuged, washed three times in PPJ medium without Cd or FeEDTA and once in 18 MQ water. The dry 

weight and concentration of Cd accumulated by the organism were then determined. 

2.47 Physiological response to dilute medium 

As part of the efforts to obtain an axenic strain of Svnechococcus D562, 2.5 ml of a 10 d old culture were 

transferred to 50 ml of sterile 18 MQ water and grown up for 6 d at 32 ° C and 85 Jlmol photon m-2 s-1. Then 0.5 

ml of this cell population were added to 5 ml of sterile 18 MQ water and cultured up for 14 d. 50 Jll of the resulting 

culture were dried on a 200 mesh CuI Ru grid and viewed under the TEM. 

2.48 Fermentation 

A 2-litre LH air lift fermenter was engaged to study the growth of algae provided with a continuous supply of 

nutrients. Five batch runs at different light intensities were instigated to ensure that luminance was a limiting factor 

which could be used to control continuous-fermentation. Fifteen hundred ml of PPJ pH 7.0 (0.6 g 1-1 HEPES) 

medium was autoclaved in the fermenter with a 500 ml medium overflow flask on line, to replace medium which 

had evaporated during autoclaving and provide an air expansion route. 

The fermenter temperature of 32 ° C was maintained by a water jacket, the air inlet and off gas ports were 

fitted with 37 mm diameter, 0.3 J.Lm bacterial air vents (Gelman Sciences, Northampton, U.K.) and the medium 

aerated through a sparger at 0.51 min-1. The air outlet was condensed to prevent filter wetting and as a buffer was 

incorporated in the medium, the culture pH was not monitored. Algal samples of 10 ml were taken with a sterile 20 

ml syringe and hypodermic needle via a silicon septa. 

Once the post autoclaved fermenter had cooled down to room temperature, it was connected up to the inoculum 

flask in an air-flow hood, transferred to the light bank and attached to the water jacket and air-outlet condenser 



supply. The light level was adjusted and the medium aerated for at least four hours before pumping 200 ml of 

bubble grown inoculum into the fermenter (Fig. 2.3). Successful runs were sampled every 12 h. 
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The batch fermenter was then adapted (Fig. 2.4) to culture organisms continuously. Additions included a medium 

reservoir with injectable silicon septa, containing 15 Iitres ofPPJ medium agitated by a magnetic stirrer bar and 

covered in high density, black polythene to resist FeEDTA photoreduction. A 10 ml pipette was included to check 

the medium-feed flow rate, which was provided by a Watson Marlow 101 U I R peristaltic pump (Watson Marlow, 

Cornwall, U.K.) through 1-mm diameter silicon tubing to provide a dilution rate of 0.068 h-1. Grow back was 

prevented with a positive-pressure glass trap provided with 0.3 J.Lm filtered air. 



Fig. 2.4 2-litre air-lift fermenter run in continuous mode. Additional apparatus 

mi = medium inlet ai = anti grow-back air inlet 

at = anti grow-back trap mf = medium reservoir covered in black plastic 

fp = flow rate pipette p = peristaltic pump 

pr = to product receiver vessel t = 1-mm diameter tubing 

Fig. 2. 3 2-litre air-lift fermenter run in batch mode. 

ao = air outlet ai = air inlet 

c = air outlet condenser m = medium addition line 

s = culture sampling septa i = inoculum connection line 

h = head plate wo = 32 ° C water outlet 

-..J 
00 
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2.5 Immobilized cells 

2.51 Immobilized-cell matrices 

A variety of immobilization matrices were evaluated to select the most appropriate method of cell retention : 

i) A block of polyurethane foam was cut into 0.5 cm3 cubes, ten cubes were added to each of two flasks 

of ACM and CHU10E media and the contents autoclaved. When cool, a 1.5 ml inoculum of 

Synechococcus D562 and syringe-homogenised Klebsormidium D537 were added to each flask. 

ii) Low melting point Sea Plaque agarose at 3% (w/v) was autoclaved, cooled and a 25 % (v/v) inoculum 

of Synechococcus D562 and Klebsormidium D537 added, poured into a sterile Petri dish and allowed to set. 

Small cubes (0.5 cm3) of inoculated agarose were then cut and transferred to two flasks per species containing 

50mlof ACM. 

iii) Sodium alginate was autoclaved, cooled and inoculated with Synechococcus D562 and Klebsormidium D537 to 

form a final alginate concentration of 4% (w/v), pipetted into sterile 0.1M CaCl2, allowed to harden in this 

solution for 30 min and washed in sterile medium. 

iv) A 5 % (w/v) k-carrageenan solution was sterilised and inoculated with Synechococcus D562 and 

Klebsormidium D537, then pipetted into 100 ml of 4 % (w/v) KCl to form beads and washed with sterile 

medium. 

v) 10 ml of media were added to 15-cm lengths of dialysis tubing, autoclaved in flasks containing 50 ml of 

media (the open end of the tubing was held by the flask's bung), allowed to cool and inoculated with 

Synechococcus D562 and Klebsormidium D537. 

All immobilized cultures were maintained under appropriate growth conditions and assessed by eye for variations in 

growth rate until cells started to escape from the matrix. 
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2.52 Optimising calcium-alginate bead formation 

The following sodium alginate solutions (10 ml) were fonnulated in 50 ml boiling tubes : 0.1, 1, 2 and 4% 

(w/v) and to separate flasks, 100 ml of the appropriate CaC12 solutions added : 0.01, 0.1, 0.3 and 1.0 M. All 

liquids were autoclaved and the sodium-alginate sterily pipetted into each CaC12 solution. The beads thus fanned 

were assessed in tenns of their resistance to squashing, translucence and ease of fonnation. 

2.53 Production of micro beads 

To ascertain whether diffusion-resistance inhibited the growth of immobilized Synechococcus D562, a 

nebuliser (similar in design to that used for spray plating (Fig. 2.1)) was constructed to produce beads with diameters 

less than 1 rom. An inoculated 4% (w/v) sodium-alginate solution was pumped (with a Watson Marlow 101 U/R 

peristaltic pump) through the nebuliser orifice into a stream of 0.21.1.m nitrocellulose filter, sterilised air. The 

resulting microdroplets fell into a stirred 0.1 M CaCl2 solution and were allowed to harden for 30 min. 

2.54 Fluidised-bed reactor 

The 2-litre air-lift fennenter was fitted with an overflow weir tube and connected to a 1.5-litre closed-loop 

reservoir of 18 MQ water. To this reactor 500 ml of calcium-alginate beads (4% (w/v) sodium alginate) were 

added, the fennenter air-flow and closed-loop pump activated and the system run for 2 weeks. 

2.55 Toxicity of sodium alginate 

Initial experiments showed that although the two single-celled cyanobacteria, Synechococcus D33 and 

Svnechococcus D767 grew well in alginate beads, Synechococcus D562 productivity was inhibited. Hence a 

number of investigations were initiated to ascertain which step of the alginate immobilization procedure proved 

toxic to Synechococcus D562 : 



i) 50 ml of ACM were supplemented with sodium alginate (two replicates per treatment) to create 

the following final alginate concentrations - 0, 0.1, 0.5, 1.0, 2.0 and 4.0% (w/v). The flask 

contents were autoclaved, cooled and inoculated with 1.5 ml of Synechococcus D562. All flasks 

were assessed for growth after 10 don a visual basis. 

ii) Synechococcus D562 was grown in 50 ml of medium in the presence of the following final sodium 

concentrations: 10, 50, 100, 1000,2000 and 5000 mg 1-1. (NaCl stock concentration = 46 g l-1) 

iii) The sodium content of native alginate was determined by FAAS using 1 ml of a 4 % (w/v) alginate 

solution dissolved in 1 litre. 
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iv) Citrate was employed as a sodium-free chelator to reduce the toxicity of a 4 % (w/v) sodium alginate 

solution, at the following citrate concentrations : 0.5, 5, 10, 20, 40, 100 g 1-1. 

v) Alginate solutions were supplemented with K, Mg and Zn, inoculated with Synechococcus D562, 

immobilized with CaCl2 and cell growth assessed after 5 d : 

Ionic constituents of AC medium 

Supplemented alginate 

: 5 mM K, 1 mM Mg, 0.0008 mM Zn 

: 5 mM K, 1 mM Mg, 0.031 mM Zn 

10 mM K, 4 mM Mg, 0.031 mM Zn 

100 mM K, 25 mM Mg, 0.031 mM Zn 

When the growth medium for Synechococcus D562 was changed from ACM to PPJ, Zn no longer afforded 

protection from the high Na concentrations, but it was discovered that K at 5 mM was effective in alleviating the Na 

toxicity. 
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2.56 Influence of aeration 

Zones of reduced growth were noted for packed-bed, immobilized Synechococcus 0562 and Mougeotia 0536 

strains - the cell density at the medium-inlet end of the columns was much higher than that at the outlet. To test 

whether cells at the top of the reactor experienced lower, growth-limiting gas concentrations in the medium at this 

point, a number of runs were aerated (by bubbling air into the medium reservoirs) to enhance C02 levels. 

2.57 Free versus immobilized cells 

A closed-loop reactor (Fig. 2.7) was autoclaved with the top bung loosened, but enclosed in aluminium foil. 

The 400-ml medium reservoir was weighed to determine the volume of fluid post-autoclaving and the appropriate 

volume of 100 mg 1·1 Cd stock sterily added to form the desired Cd concentration. Ten litres of Synechococcus 

0562 were grown in a 20-litre carboy, sparged with sterile air and agitated via a magnetic stirrer, whilst 8litres of 

Mougeotia 0536 were generated in 16 x 500 ml of CHU lOE on a rotary shaker. After 6 d (Synechococcus 0562) 

and 20 d (Mougeotia 0536) growth, the cultures were sterily centrifuged in a continuous rotor (Synechococcus 

0562) or 250 ml bottles (Mougeotia 0536) and resuspended in 3 ml of sterile medium. 

Six ml of 500 mM K (as KCl) were injected into the matrix flask containing 590 ml of 4 % (w/v) sodium 

alginate pH 7.0 (Figs 2.5 and 2.6) and shaken. Two ml of the culture concentrate were injected into the alginate 

flask, mixed by shaking, then pumped into the magnetically stirred flask containing 1litre of 0.1 M CaCl2pH 7.0. 

The resulting beads were left to stir harden for 0.5 h, washed twice in PPJ medium and transferred as a slurry to each 

of 4 glass columns (length = 240 mm, internal diameter = 28 mm) to form a 100 ml packed-volume of matrix per 

tube. Four, 100 ml clusters of beads were also added to 4 x 400 ml ofPPJ medium in 1-litre flasks. In addition, 

0.25 ml of free cells were added to 4 x 400 ml PPJ medium. 

The columns were connected to a 502S Watson Marlow 4-channel peristaltic pump and run continuously on 

setting 50 at the appropriate temperature and light intensity. Samples (5 ml) were extracted from the immobilized 

cell columns each day with a sterile syringe and 0.5 mm hypodermic needle (via the silicon septa). The medium of 

non-immobilized cells was sterily removed by Gilson pipette. All samples were acidified with 

1111 mi-l FAAS grade HN03, stored at 4 ° C and subsequently analysed for Cd. The concentration of Cd in the 

medium was monitored until cells escaped from the matrix and began to grow in the medium. 
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Fig. 2.5 Closed-system apparatus used to form calcium-alginate beads which have been 

inoculated with algae 

s = Na alginate reservoir 

p = peristaltic pump 

n = alginate injection nozzle 

ms = magnetic stirrer 

m = medium wash flask 

t = silicon tubing 

i = inoculum injection port 

c = CaCI2 flask 

g = gale clamp 

e = air exhaust port 

w = waste flask 

Fig. 2.6 Close up of the alginate bead-forming head with 13 injection nozzles. 

s = Na alginate inlet tube 

n = nozzles 

sd silicon distribution membrane 



85 



86 

Fig. 2.7 Closed-loop, packed-bed immobilized cell columns used to accumulate Cd from 

the circulating medium 

m = medium reservoir 

p = 4 channel peristaltic pump 

i = medium inlet 

s = sampling septa 

a = bacterial air vent 

c = immobilized cell columns 

o = medium outlet 

Fig. 2.8 Continuous dehydration apparatus for removing the water from EM samples 

e = 100 % ethanol 

b = ethanol bridge 

p = peristaltic pump 

s = sample bottles 

w = 18 Mn water 

m = magnetic stirrer 

i = ethanol inlet tube 

wa = towaste 
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The immobilized algae were then released from the alginate with 0.5 M sodium citrate, 0.6 g 1-1 HEPES pH 

7.0, washed three times in 18 Mn water, resuspended and their dry weight and Cd-content determined. 

2.6 Microscopy 

2.61 Light Microscopy 

Light and fluorescence microscopy were performed with a Nikon Fluophot type 109 microscope fitted with a 

Nikon M-350 automatic exposure camera and loaded with Kodacolor Gold ASA 400 film. 

For Synechococcus D562 fluorescence photography the cells were vacuum filtered onto a 0.2 J.l.m nitrocellulose 

membrane (prestained with a 2 g 1-1 of irgalan black in 2% (vlv) acetic acid solution) and washed briefly in 18 Mn 

water. The filter was transferred to a refrigerated slide which had been breathed upon (to ensure filter I slide 

cohesion) and a drop of low-fluorescent, immersion oil added to the centre of the filter. A cover slip was then 

applied and finally another drop of oil. 

2.62 Energy dispersive X-ray microanalysis 

Bovine serum albumin was initially employed as a background matrix for standards, but did not dissolve easily 

and produced a strong sulphur peak upon analysis. Dextran proved to be a more suitable matrix and was used at a 

concentration of 5% (vlv) in 18 Mn water, for all EDXMA standards. 

To ensure that the cytosolic Cd was immobilized, algal cells were cryomicrotomed. Ten-ml samples of 

Svnechococcus D562 and Mougeotia D536 were spun down at a relative centrifugal force of 11 950 x g, fixed in 

glutaraldehyde I formaldehyde I PIPES for 2 h, (see Section 2.81) washed twice in 0.05 M PIPES pH 7.0 and 

resuspended in a 5 % dextran, 1 M Cd solution (as Cd (N03)2 ). A small volume was then quickly frozen on the 

end of a copper cryostub by plunging it in liquid-nitrogen cooled Arcton 22 {ICI Mond Division, Cheshire, U.K.) 

and transferred to a Sorvall cryokit, attached to a Sorvall MT2-B ultramicrotome (DuPont Instruments, Connecticut, 

U.S.A.). Thin frozen-sections were cut, transferred to liquid nitrogen cooled grids, dried for at least 1 h in solid 

C02 chilled Petri dishes, then analysed by EDXMA. 
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Due to the complexity of cryomicrotoming, a simpler technique was developed at the expense of analysing 

only cell inclusions in air-dried cells and not immobilizing unbound, cytosolic Cd. A small volume of culture 

(about 20 J.Ll) was washed in 18 Mn water, pipetted onto coated Cu-grids (not CuI Rh) and allowed to dry at room 

temperature. Samples were then probed with a Link QX200 X-ray analyser attached to a Phillips EM 400 TEM, 

employing a live time of 100 s, 2000- 2500 counts per second and spot size 2. The Be specimen holder was tilted 

at 12 ° and the diffraction aperture was removed. Five readings were taken from each grid, the peak integrals 

averaged and then converted into % elemental contribution with efficiency factors and Quantem software (peak I 

background ratio method). 

Five replicate samples of Synechococcus D562 grown in 4 mg J-1 Cd were taken each day for 14 d and 

analysed to follow Cd accumulation. 

2.63 Determination of machine efficiency-factors 

The response of an X-ray detector is not linear across the elemental mass-range, hence there is a need to 

generate figures for the detection efficiency of individual elements. A number of elements (as sulphates) were 

sprinkled onto formvar I carbon-coated grids and the X-rays from five small crystals were read at 100 kV with a 

livetime of 100 sand a specimen tilt of 12 °. Values for Si and Ni were determined from the mineral olivine, an AI 

figure from orthoclase, whilst P and Cl values were interpolated from a plot of % ratio of the efficiency factors with 

respect to S against X-ray energy (KeY) (Appendix 5). A peak stripping routine was utilised to obtain net-integral 

values for the buried peaks of K ~ and Zn I X -ray energies. The resulting spectra were averaged and the efficiency 

factors calculated from their net peak-integrals with respect to S. 

2.64 Scanning proton microanalysis 

Metal-loaded algal material was generated by growing the following strains to mid-log phase in the presence of 

the following Cd concentrations: Synechococcus D562 (4 mg 1-1), Calothrix D184 (2 mg 1-1), Mougeotia D536 (0.5 

mg 1-1) and Klebsormidium D537 (0.5 mg 1-1). All cultures were harvested, washed with 18 Mil water on 47-mm 

diameter, 0.2 and 3J.Lm polycarbonate filters and a sub-sample air-dried onto SPM holders. The mounted specimens 

were then submitted to the University of Oxford Scanning Proton Microprobe Unit for analysis. 
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2.7 Tolerance mechanisms 

2.71 Production of Synechococcus 0562 spheroplasts 

Thirty ml of Synechococcus D562 cultured in 2 mg 1-1 Cd for 8 d was spun down, sterily resuspended in a 

microfuge tube with 300 Ill of enzyme buffer (50 mM Tris.CI pH 8.0, 20 mM EDT A) , together with 500 !J.) of 1 M 

osmotica (sucrose, mannitol or proline) made up in the same buffer. The cell concentrate was incubated with 100 Ill 

of 0.221J.m filter-sterilised 20 mg ml-1lysozyme (Sigma L-6876 E.C. 3.2.1.179) (formulated in the above enzyme 

buffer) for 1 hat 37 ° C, then exposed to 100 Ill of self digested (42 ° C for 2 h) 20 mg ml-1 protease (in the above 

TrisiEDTA buffer) (SigmaP-5147 type XIV) at 37 °C for 1 h. 

Enzyme-treated cells were stained with ten-times dilute, auromine 0 (Gurr stains, BDH, Poole, U. K.) and 

calcofluor white (Sigma, Poole, U.K.) to determine the extent of cell-wall removal. Spheroplasts were also washed 

free of all the added enzymes with sterile medium and resuspended in PPJ medium plus 0, 0.5, 1.0 and 2.0 mg 1-1 Cd 

with and without 0.5 M sucrose, to assess the viability of spheroplasts and their resistance to Cd. 

2. 72 Plasmid extraction 

4 litres of Synechococcus D562 were grown up in PPJ medium with 0 and 2 mg 1-1 Cd (from a 5 % inoculum 

volume) to mid I late log-phase. The cells were then spun down in a siliconised, sterile Corex tube and resuspended 

in 1300 Ill of enzyme buffer (50 mM Tris.Cl pH 8.0, 20 mM EDTA) plus 100 Ill of a freshly 0.2 11m filtered, 20 mg 

mt-1lysozyme, Tris I EDTA solution. These components were incubated for 1 hat 37 ° C in a shaking water bath. 

100 Ill of self digested (42 ° C for 2 h) 20 mg ml-1 protease solution (dissolved in the same enzyme buffer) was 

added, together with 500 Ill of 3.2 % sodium-lauryl-sarcosine solution and reacted for a further hour at 37 ° C. 

The resulting suspension was transferred to ice for 30 min, amended with 2000 Ill of fresh, 0.21J.m filter 

sterilised 0.2 M NaOH I 1% SDS solution, mixed gently by inversion and retained on ice for a further 5 min. 

1500 Ill of 3M Na acetate pH 4.8 was added, the sample thoroughly mixed and kept on ice for 30 min, 

agitating every 5 min. The cells were spun down and the clear supernatant retained. This solution was 

supplemented with an equal volume of distilled phenol, vortex mixed and centrifuged for 2 min. The top aqueous 

layer was withheld, 1000 !J.) ofTE buffer (10 mM Tris.Cl pH 7.4, 1 mM EDTA) added to the phenol, vortex mixed, 
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centrifuged and the aqueous layers combined. To this aqueous phase, 1000 Jll phenol plus 1000 Jll isoamyl 

chloroform (24 : 1 chloroform : isoamyl alcohol saturated with 1 ml TE buffer) were added, vortex mixed, 

centrifuged and the aqueous layer extracted. 2000 Jll chloroform were then added, vortex mixed, centrifuged and 

the aqueous layer with the extracted nucleic acids retained. 

The DNA was precipitated with isopropanol at- 20 ° C for 30 min, the precipitate spun down and redissolved 

in 300 Jll of 0.3 M Na acetate pH 4.8. Two volumes of ethanol were added and the DNA precipitated at- 20 ° C for 

30 min, the pellet was washed twice in 70% alcohol and vacuum dried, then redissolved in 100 Jll sterile 18 MQ 

water and stored at- 20 ° C. pUC19 was extracted via the above plasmid purification protocol (without the protease 

digestion-step), from a 10 ml overnight culture of E. gill DHS grown in the presence of an antibiotic selection 

pressure (50 Jll of 10 mg ml-1 ampicillin in ethanol). The plasmid was purified to ensure that the procedure 

employed for the extraction of plasmids from Synechococcus D562 was effective and to act as a gel electrophoresis 

marker. 

2. 73 Genomic extraction 

Restriction quality, genomic DNA from Synechococcus D562 was prepared by the above plasmid extraction 

protocol, except that the alkali I acid precipitation step was omitted. The quantity and purity of extracted DNA was 

determined by the sample absorbance ratio of 260 nm : 280 nm (DNA : protein) in a quartz cuvette and Philips 

UV I VIS PU 8740 scanning spectrophotometer. 

2.74 DNA restriction 

DNA samples were digested for 2 hat 37 ° C with Eco RI, Hind III and Bam HI (North umbria Biologicals Ltd, 

Cramlington, U.K.) in the following standard reaction mixture : 

1 )lg of ethanol precipitated sample DNA 

1 Jll of0.5 U Jll-1 ofRNAase 

1 Jll of 10 x restriction buffer 

2 Jll of 8 - 12 U Jll -1 of restriction enzyme 
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Restricted DNA was then run on 0.7% agarose gels (containing 2.51!1 of 10 mg ml-1 ethidium bromide and 5 

ml of 10 x TBE buffer) in a TBE electrophoresis buffer (plus 51!1 of 10 mg ml -1 ethidium bromide) (Sam brook ,m 

ru., 1989). To estimate the size of DNA fragments, 3 Ill of a commercially prepared lambda Hind III I Eco RI 

marker (Northumbria Biologicals Ltd, Cramlington, U.K.), were also included. 

2. 75 Southern blotting 

TheN and C terminal amino-acid sequences of Svnechococcus PCC 6301 (= TX20) MT (Olafson ,m ru., 1988) 

were used to design 20-mer oligonucleotide probes (Appendix 3) for hybridization to algal MT genes. Genomic 

and plasmid DNA from Synechococcus D562 were hydrolysed with Eco RI, Hind lli and Bam HI, run together with 

native DNA on a maxigel and Southern blotted onto a nylon membrane. The oligonucleotides were labelled and 

deployed to probe the membrane-bound DNA for MT terminus sequences (Sambrook ~ al., 1989). 

2.76 Gel permeation HPLC of Cd-binding peptides 

To provide enough material for (yEC)nG detection by gel chromatography, the following culture and 

harvesting procedures were adopted. All media were buffered to pH 7.0 and either run without metal addition or 

supplemented with 0.5 mg 1-1 Cd : 

After 10 d growth of Synechococcus D562 and 20 d growth of Calothrix D184, Mougeotia D536 and 

Klebsormidium D537, 6.17 mg r 1 Cd (Gekeler ~ ~. 1988) was sterilely added and the cultures grown for a further 

2 d. All cultures were flushed twice after harvesting with ice cold wash buffer (10mM Tris.Cl pH 7.4, 10 mM KCl, 

1.5 mM MgCl2), centrifuged in a microfuge tube, then resuspended in an equal volume of extraction buffer (wash 

buffer plus 50 mM ~-mercaptoethanol). Samples of Mougeotia D563, Klebsormidium D537 and Calothrix D184 

were sonicated on ice at 30 s intervals for 1 min (allowing the samples to cool between periods of disruption) whilst 

Synechococcus D562 was exposed to 5 min disruption. The material was then spun down twice to remove all traces 

of cell debris and 4 x 100 Ill overlaid samples were injected via a Rheodyne port (Rheodyne Inc., Cotati, California, 

U.S.A.) into a Gilson HPLC system (302 pump and 802 C pressure regulator) (Gilson, Villiers le Bel, France). 
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Table 2.9 Culture conditions that were employed to screen cyanobacteria and algae for the presence of (yEC)nG's 

Strain 

Svnechococcus D562 

Calothrix D184 

Mougeotia D536 

Klebsormidium D537 

medium 

41 ofPPJ 

400 ml ofPPJ- N 

400 ml of CHUlO E 

400 ml of CHU10 E 

conditions 

bubbled 

orbital shaker 

orbital shaker 

orbital shaker 

total duration of growth 

(d) 

12 

22 

22 

22 

Material was transported at 0.5 ml min-1 in equilibration buffer (50 mM Tris.Cl pH 7.2, 150 mM NaCI), passed 

down a TSK guard column, then through a G 3000 SW gel permeation matrix (300 x 7.5 mm) (Anachem, Luton, U. 

K.) and partitioned into 1 min volumes on a fraction collector. The samples were analysed for their Cd content by 

F AAS, an average of three absorbance readings were taken due to the small volume of buffer in each fraction. A 

total protein assay was conducted with the remaining solution. 

(yEC)nG's were also screened for in Synechococcus D562 and Mougeotia D536 grown in the presence of 0.5 

mg 1-1 Cd without a metal shock at the end of the growth period. In addition, the presence of constitutive peptides 

was determined for algae grown without Cd addition, cytoplasmic material was extracted from these cells and 

exposed to the equivalent level of cytosolic Cd that is found in peptide binding samples. pH displacement curves at 

an absorbance value of 250 nm were obtained with pooled fractions of Mougeotia D536 (yEC)nG in 100 mM tris pH 

7.5 titrated with dilute HCI. All peptide experiments were duplicated. 

2.77 Reversed-phase HPLC of Cd-binding peptides 

A 500 ml culture of Mougeotia D536 grown in the presence of 0.5 mg 1-1 Cd and shocked with 6.17 mg 1-1 Cd 

for 2 d (Gekeler ~ &,, 1988), was spun down at 30 000 x g relative centrifugal force, washed in medium three times 
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by centrifugation I resuspension and the cell pellet transferred to a 1.5 ml microfuge tube. Extraction buffer (lOmM 

Tris.Cl pH 7 .4, 10 mM KCl, 1.5 mM MgC12, 50 J.LM ~-mercaptoethanol) was added in the ratio 1 volume of buffer : 

1 volume of cells and sonicated on ice for 1 min at a power of 143J.L. To each 670 Jll volume of sample, 580 Jll of 1 

N HCL were added to acidify the solution and the cell-debris spun down in a microcentrifuge. 

The supernatant was ultrafiltrated across an Am icon 30 kD membrane (Amicon Centricon C30 and ClOO, 

Amicon, Stonehouse, U.K.) and the filtrate run on a Hi-pore RP 318, c18 Reversed-phase HPLC column (250 x 4.6 

mm) (Bio-Rad, Watford, U.K) with a 0- 20% acetonitrile gradient in 0.1 % trifluoroacetic acid. Fractions were 

analysed for thiol groups by the addition of 150 J.Ll of Ellman's reagent (50 mM KH2P04 pH 7.6, 75J.LM 5,5'

dithiobis (2-nitrobenzoic acid)) to 150 Jll of sample in a microtitre plate and the absorbance of the resulting yellow 

colour read at 415 nm (Ellman, 1959). 

2.8 Ultrastructural, enzyme and protein damage 

2.81 Electron Microscopy 

Samples of Synechococcus D562 were spun out of the growth medium at a relative centrifugal force of 30 000 

x g for 10 min and resuspended in fixative for 12 h (2.5% (v/v) glutaraldehyde, 1.5% (v/v) paraformaldehyde, 

O.OSM PIPES pH 7 .6). The cells were centrifuged out of the fixative (which was discarded), incubated in O.OSM 

PIPES pH 7.6 for 15 min and the resulting pellet of fixed algae microinjected (with a flame drawn, pasteur pipette) 

into cooling 1 % agar droplets formed in the base of a Petri dish. The encapsulated specimens were then cut down 

to blocks of about 1 mm3. 

The other laboratory strains (Mougeotia D536, Klebsormidium D537 and Calothrix Dl84) formed ftlamentous 

colonies which did not require concentration and embedding steps. All samples were then transferred to specimen 

bottles containing 2 ml of 18 MQ water and stained for 1.5 h by the addition of 2 ml of 2% osmium tetroxide. The 

material was then washed three times in 18 Mn water, taken through a continuous alcohol dehydration series from 0 

to 100% over 12 h (Fig. 2.8) and finally rinsed four times in dry ethanol. The inlet tube on each sample bottle was 

covered with a small square of plastic mesh to prevent samples moving from one bottle to the next. 
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The fixed cyanobacteria and algae were then transferred to a carefully mixed 1 : 1 Spurr I 100% ethanol 

solution (vlv) and incubated for 12 h on a rotator. The resin I alcohol mix was replaced with 100% resin and 

incubated for a further 12 h (Spurr, 1969). Polymerization of the specimens was performed in a mould containing 

fresh resin at 70 ° C for 12 h. 

Ultrathin sections (80 - 100 nm) were cut from prepared block faces on an LKB microtome (4801 A 

Ultrotome and 4802 A control unit) (LKB, Stockholm, Sweden) with glass knifes. Algal sections were 

collected over freshly-filtered 18 MQ water on uncoated CuI Ru 200 mesh grids (Taab Laboratories, 

Reading, U.K.) and stained for 15 min with ethanolic uranyl acetate (freshly made and filtered through a 

0.2 11m nitrocellulose membrane) by floating the samples on a droplet of the stain which had been deposited 

upon a sheet of parafilm. 

The samples were then carefully dipped into a large beaker of distilled water, counterstained with lead 

citrate as above (Reynolds, 1963), given a final wash in 18 MQ water and allowed to dry. The grids were 

only manipulated with clean, alcohol washed forceps and stored in plastic Petri dishes. A Phillips EM 400 

TEM was used to view the sections and photographs of suitable specimens taken on Kodak EM 4489 plate 

film. Five grids containing at least three sections from different regions of a fixed sample were observed 

for each strain. 

2.82 Grid coating 

To optimise resolution, most sections were mounted on uncoated grids. But for air-dried samples and 

EDXMA standards a 0.7 % (wlv) formvar in chloroform solution was employed to form a thin film over the 

supports, which were then carbon coated to reduce the charge build up experienced under an electron beam. 

2.83 Electron microscopy of immobilized cells (modification of Casson & Emery, 1986). 

Calcium-alginate beads were fixed for 1 hat room temperature (4% (vlv) glutaraldehyde in 0.1 M cacodylate 

buffer pH 6.5 plus 25 mM CaC12 (to maintain matrix integrity)). The beads were then washed twice in the above 

buffer (2 x 10 min) and secondarily fixed with 1 % (vlv) osmium tetroxide in CaC12 / cacodylate buffer. Samples 
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were dehydrated via a continuous alcohol series, embedded in resin, sectioned, then stained with lead citrate and 

uranyl acetate. 

The extracellular material produced by Synechococcus D562 may account for the intercellular spaces observed 

in immobilized cells and could be one of the components hydrolysed during exposure to lysozyme. To visualize the 

effect of enzyme action, before and after incubation in 2 mg ml-1lysozyme (with equivalent incubation conditions 

as those employed for the production of spheroplasts) a sample of cells air-dried onto an EM grid were stained for 2 

min by floating their support on a drop of ruthenium red, which had been deposited on a piece of parafilm in a Petri 

dish. The residual metal was then carefully washed off with 18 Mn water and the cells observed under TEM. 

2.84 Alkaline phosphatase activity 

The influence of Cd upon AP A in Synechococcus D562 (PME and PDE) was studied using a modification of 

the protocol described in the Sigma Technical Bulletin 104 (Sigma, Poole, U.K.) and carried out in non-sterile Nunc 

InterMed 96 well microtitre plates (Nunc, Denmark). Cells (from a 2.5% (v/v) inoculum) were grown up in 50 ml 

of PPJ medium at 0.5 mg 1-1 P for 5 d, spun off from the medium and a pH response curve mapped for two groups of 

buffers (designated A and B) to compensate for buffer inhibition of APA (Table 2.12). For each enzyme assay the 

following reagents were added to the microtitre plate wells : 

i) PME activity : 

ii) PDE activity 

70 Jll of buffer made up in sterile medium 

140 Jll of 0.25 mM PME substrate (disodiurn p-nitrophenyl phosphate) 

(Sigma, Poole, UK) formulated in sterile assay medium (Tables 2.10 and 2.11) 

20 Jll of alga or extracellular enzyme 

90 Jll of buffer made up in sterile medium 

180 J.Ll of0.25 mM PDE substrate (sodium bis-p-nitrophenyl phosphate) 

(Sigma, Poole, UK) formulated in sterile assay medium (Tables 2.10 and 2.11) 

30 J.Ll of alga or extracellular enzyme 
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Reactions were run for 1 h at 32 ° C then terminated with 100 ~1. 4.95 M NaOH for PME and 30 ~1. 0.3 M 

NaOH for PDE. The absorbance of the resultant yellow colour was read at 405 nm and converted into ~mol p

nitrophenol hydrolysed mg-1 h-1 by means of the following calibration procedure. A stock p-nitrophenol standard 

of 10 ~mol ml-1 in 0.02 N NaOH was formulated and diluted with 0.02 N NaOH to generate the ensuing p

nitrophenol concentrations (~M) in the microtitre wells : 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5. The range of 

yellow solutions produced were recorded for absorbance at 405 nm (Appendix 4). 

To determine the optimum harvest time for this enzyme the release of alkaline phosphatase into the medium 

was related to specific points along the growth curve, 50 ml cultures (PPJ, 0.5 mg 1-1 P medium and a 2.5 % (v/v) 

inoculum) were sampled each day after inoculation for 8 d. 

As a preliminary step towards purification and a concentration process for pH 7.0 assays, 10 ml of extracellular 

enzyme (including growth medium) was centrifuged through both 30 and 100 kD ultrafiltration membranes. Both 

the filtrate and retentate were tested for activity. The influence ofCd upon Synechococcus D562 PME activity was 

determined for a range ofCd concentrations from 0.1 to 10 mg 1-1 Cd (with 33 ~1 of 100, 10 and 1 mg 1-1 Cd stocks 

replacing 33 ~1 of the buffer in a total reaction volume of 330 ~1) at pH 10.3 and pH7.0. When assays were 

conducted at pH 7.0 a low level of activity was recorded, so the enzyme was concentrated as above before ali quoting 

to the microtitre plate. 

2.85 SDS polyacrylamide gel electrophoresis 

Cultures of Synechococcus D562, Calothrix D184, Mougeotia D536 and Klebsormidium D537 were grown in 

400 ml of medium with (0.2 - 0.8 mg l-1) and without Cd. The cells were harvested in mid-log phase by vacuum 

and muslin filtration, resuspended in buffered detergent (0.2 M Tris.Cl pH 6.8, 2% SDS, 10% sucrose), sonicated 

on ice for 30 s (algae) or 2 min (cyanobacteria) and boiled for 10 min in a water bath. 

The Bradford protein assay is complexed by SDS and could not be used to determine the protein content of the 

samples, so their absorbance at 280 nm was read and calibrated with a standard BSA solution (Sigma, Poole, U. K.) 

(Appendix 7). The sample with the lowest protein content constituted the maximum loading volume (150 ~1) and 

appropriate volumes of the other algal preparations were added to provide comparable levels of protein on the gel. 

Both 10 and 17% (w/w) polyacrylamide gels were run (acryl : bisacryl = 30 : 0.8 pH 8.8) with a 5% (w/w) pH 
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6.8 stacking gel. Molecular weight markers in the range 70k - 14k (Sigma Dalton Mark VII-L MWS-877L) were 

included in one of the outside lanes of each gel (see Appendix 9). 

Table 2.10 Mineral salt composition of APA assay medium, microelements = 0.25 ml AC (high Mn) 

Compound/ 

element 

CaC12 2H20 

Ca 

Cl 

MgS04 7H20 

Mg 

s 

NaHC03 

Na 

c 

KCl 

K 

Cl 

Na2EDTA 

Na 

EDTA 

FeCl3 6H20 

Fe 

Cl 

molecular I 

atomic weight 

147.020 

40.080 

35.453 

246.470 

24.305 

32.060 

84.010 

22.989 

12.011 

74.550 

39.098 

35.453 

372.240 

22.989 

326.262 

270.300 

55.847 

35.453 

stock cone. medium cone. total element cone. 

(mM) (mM) 

35.870 35.870 0.2440 

9.778 9.778 0.2440 

17.2997 19.513 0.5504 

25.000 25.000 0.1014 

2.465 2.465 0.1014 

3.252 3.262 0.1017 

15.850 15.850 0.1887 

4.337 4.351 0.1893 

2.266 2.266 0.1887 

4.270 4.270 0.057 

2.239 2.239 0.0573 

2.031 2.031 0.0573 

1.667 0.208 0.0006 

0.013 0.013 0.0006 

0.182 0.182 0.0006 

1.210 0.151 0.0005 

0.031 0.031 0.0006 

0.020 0.020 0.0006 



Table 2.11 Mineral salt composition of 0.25 mll-1 AC (high Mn) microelements 

Compound/ 

element 

H3B03 

B 

MnCl24H20 

Mn 

Cl 

ZnS04 7H20 

Zn 

s 

CuS045H20 

Cu 

s 

CoS04 7H20 

Co 

s 

Na2Mo04 2H20 

Na 

Mo 

molecular I 

atomic weight 

61.830 

10.810 

197.920 

54.938 

35.453 

287.550 

65.380 

32.060 

249.680 

63.546 

32.060 

281.100 

58.933 

32.060 

241.950 

22.989 

95.940 

stock cone. medium cone. 

(mM) 

2.86 0.7150 0.0116 

0.1250 

1.810 0.4525 0.0002 

0.1256 

0.1621 

0.222 0.0555 0.0002 

0.0126 

0.0062 

0.079 0.0198 0.00008 

0.0050 

0.0025 

0.042 0.0105 0.00004 

0.0022 

0.0012 

0.027 0.0068 0.00003 

0.0013 

0.0027 

99 

total element cone. 

(mM) 

0.1250 O.Qll6 

0.1256 0.0023 

0.1621 0.0045 

0.0126 0.0002 

0.0062 0.0003 

0.0050 0.00008 

0.0022 0.00004 

0.0013 0.00006 

0.0027 0.00003 



Table 2.12 Buffers employed to investigate the pH profile of APA in Synechococcus D562 

(fmal assay buffer cone. = 50 mM). 

Reaction pH buffer group buffering range pKaat25 °C 

7.0 DMG-NaOH A 3.2 - 7.6 3.66 & 6.20 

7.0 HEPES-NaOH B 6.8 - 8.2 7.50 

8.0 TES-NaOH A 6.8 - 8.2 7.50 

8.0 HEPES-NaOH B 6.8 - 8.2 7.50 

9.0 AMeP-NaOH A 9.0 - 10.5 9.69 

9.0 glycine-NaOH B 8.6 - 10.6 2.35 & 9.60 

10.0 AMeP-NaOH A 9.0 - 10.5 9.69 

10.0 glycine-NaOH B 8.6 - 10.6 2.35 & 9.60 

10.3 AMeP-NaOH A 9.0 - 10.5 9.69 

10.3 glycine-NaOH B 8.6 - 10.6 2.35 & 9.60 

11.0 CAPS-NaOH A 9.8 - 11.1 10.40 

11.0 Na2C03-NaHCOJ B 9.2 - 10.8 10.33 

100 
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RESULTS 

CHAPTER3 

3. Strain selection 

3.1 Introduction 

In order to select strains of cyanobacteria and algae suitable for heavy-metal removal in the form of an 

immobilized-cell column, two criteria were used : the chosen microorganisms should accumulate Cd to a high 

concentration without suffering toxic symptoms and exhibit good growth rates when immobilized in calcium-

alginate beads. 

The following photosynthetic microorganisms were screened for their ability to accumulate Cd, having 

originated from aquatic sites contaminated with a high concentration of the metal. 

3.2 Culture collection strains 

The concentration of Cd accumulated by four clonal, axenic strains isolated from heavy-metal environments 

and deposited in the Durham Culture Collection was determined. Cultures of Synechococcus D562 accumulated the 

metal to a high concentration (see Table 3.4 for the Cd content of all four strains) in proportion to the amount of Cd 

present in the medium and tolerated up to 5 mg 1-1 Cd (although cells grown at this concentration of Cd exhibited a 

long lag-phase, a visible culture was obtained). Mougeotia D536 displayed reduced growth at 

1 mg 1-1 Cd (observed visually), but the metal was accumulated to a relatively high concentration. The figure for 

accumulated Cd in Klebsormidium D537 was relatively low and this strain was found to be sensitive to 1 mg 1·1 Cd. 

Calothrix D184 proved capable of growth in the presence of2 mg 1·1 Cd and excluded most of the metal added to 

the medium. 
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3.3 Strains recently isolated from the field 

As an extension of the screening process, four aquatic sites affected by mining activity (see Table 3.1) were 

sampled to determine the concentration of Cd that a variety of taxa from each site had accumulated (Table 3.2) for 

comparison with the axenic strains listed above. The Zn and Cd measured at each site were not associated with 

particles greater than 0.2 Jll1l in diameter (Table 3.1) or complexed by precipitates which form under alkaline 

conditions (all sites exhibited a neutral pH). These observations suggest that most of the metal is available for 

uptake by the resident microorganisms. The Cd content of strains sampled from these field sites was assessed 

(Table 3.2), whilst algae isolated from water and soil samples taken from each area , were grown in the presence of 

0.25 mg 1-l Cd and the concentration of accumulated metal determined (Table 3.3). Due to a small data set, no 

correlation can be drawn between the conductivity of the water at each field site and the concentration of Cd 

accumulated; a reduction in the overall ionic concentration of the environment should reduce the competition for ion 

adsorption and transport sites and thus increase the concentration of Cd accumulated. Large, visible colonies of 

algae from each site did not accumulate more Cd than cultures of algae isolated from soil and water samples. 

Except for a strain of Stichococcus, none of the field isolates or samples proved to accumulate as much Cd as 

Synechococcus D562 and Mougeotia D536. Considerable time is also required to render bacteria-free cultures of 

the algae sampled from these heavy-metal sites. The two strains obtained from the Durham Culture Collection were 

therefore selected for immobilization and investigation of the molecular response to intracellular Cd; the toxic 

effects of this metal and resultant tolerance mechanisms were also studied for Klebsormidium D537 and Calothrix 

D184. 
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Table 3.1 Water chemistry at four heavy-metal contaminated field sites inN. E. England, sampled on 07.06.88 

T = total metal, F = 0.2 J.Uil filterable metal 

Site grid ref. water 

pH conductivity temperature Zn Cd 

(J.i.S cm-1) (OC) (mg I-1) (mg I-1) 

Bolts Burn NY957497 7.3 240 12 T 0.421 < 0.002 

F 0.411 < 0.002 

Rampgill Level NY 781434 7.2 718 10.2 T 7.840 0.023 

F 7.783 0.022 

Caplecleugh NY 781434 7.2 630 9.8 T 3.307 0.010 

Low Level F 3.217 0.008 

Gillgill Burn NY 795440 7.0 170 13.9 T 3.231 0.059 

F 3.201 0.057 

Table 3.2 Concentration of Cd accumulated by algae which formed visible colonies at the following heavy-metal 

contaminated field sites 

Site taxon width accumulated Cd 

(J.i.m) (J.i.g g-1) 

Bolts Burn KlebsQrmi!liY!!! 39.48 

Mougeotia 7 138.00 

Rampgill Level Stigeoclonium 26.34 

Caplecleugh Low Level Mougeotia 59.03 

Kl~bsQrmi!ligm 112.35 

Gillgill Burn Kl~sgrmi!liym 150.00 

Spimgyra 16- 18 36.53 
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Table 3.3 Concentration of Cd accumulated by clonal, non-axenic field strains grown in the presence of 0.25 mg I-1 

Cd for 1 week at 25 ° C and 25J.I. mol photon m-2 s-1. These strains were isolated on solidified medium 

from water and soil samples taken from the following heavy-metal contaminated sites 

Strain 

Anabaena sp. 

Chlorella sp. 

Kleb8ormidium rivulare 

Kleb8ormidium subtile 

Klebsormidium ~ 

Klebsormidium sp. 

Lyngbyasp. 

Lyngbya sp. 

Oscillatoria sp. 

Oscillatoria sp. 

Plectonema sp. 

Stichococcus bacillaris 

Stichococcus sp. 

Wothrix sp. 

site 

Gillgill Burn 

Caplecleugh Low Level 

Caplecleugh Low Level 

Caplecleugh Low Level 

Bolts Burn 

Caplecleugh Low Level 

Gillgill Burn 

Gillgill Burn 

Gillgill Burn 

Gillgill Burn 

Caplecleugh Low Level 

Gillgill Burn 

Gillgill Burn 

Gillgill Burn 

Cd accumulated 

ij!g g-1) 

206.5 

136.6 

67.4 

136.9 

9.3 

223.0 

303.0 

228.4 

453.9 

220.0 

340.2 

65.9 

510.7 

151.1 

Table 3.4 Concentration of Cd accumulated by axenic strains from the Durham Culture Collection, * n = 5 

Strain Cd in the medium Cd accumulated 

(mg 1-1) ij!g g-1) 

Svnechococcus 0562 0 < 1 

2 1797 ± 122 * 
3 2207 ± 68 * 
4 10266 ± 1391 * 

Calotbrix 0184 1 60 

Mougeotia 0536 1 800 

Klebsormidium 0537 1 129 
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CHAPTER4 

4. Accumulation of Cd 

4.1 Introduction 

In order to maximise the amount of metal removed by an immobilized-cell system, the concentration of 

divalent Cd present in the medium was determined; only free cationic Cd is believed to be capable of crossing cell 

walls and membranes. In addition, the partitioning of Cd within the cell and pretreatment of the inoculum were 

investigated so that the optimum growth conditions for Cd accumulation could be defined. 

4.2 Concentration of divalent Cd in the medium 

The free ionic challenge which microorganisms experience is not always related to the concentration of metal 

originally added to a system. Hence changes in the Cd content of the medium due to autoclaving, evaporation 

during incubation at 32 ° C and EDT A chelation were tested, with the following results : 

Loss of medium during autoclaving (5 replicates of 50 ml) 

Therefore increase in a 1 mg 1-1 Cd solution 

Loss of medium during 32 ° C incubation for 26 d (5 replicates of 50 ml) 

Therefore increase in a 1 mg 1-l Cd solution 

= 1.55 ± 0.023 g 

= 3.09 ± 0.045 % 

= 0.0309 mg 1-1 Cd 

= 0.147 ± O.Ql5 g d-1 

= 0.30 ± 0.03 % 

= 0.003 mg 1-1 Cd 

EDT A is included in media to ensure that the added Fe (III) chloride remains in solution before being 

photoreduced to the more soluble Fe (II) form which is then available for cellular uptake (Finden ~ & .• 1984). 

Unoccupied EDTA binding-sites (created when the accumulation of Fe by microorganisms prompts further 
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photoreduction of Fe (liD to Fe (II)) may chelate Cd, thereby reducing its ionic concentration and toxicity. The 

amount of metal bound by EDT A was effectively determined by the removal of any negatively charged metal

chelator complexes with an anion-exchange resin and determining the concentration of metal before and after 

incubation with the exchange material. 

The majority of the Fe added to PPJ medium as a metal I chelate complex or a 0.5 mg 1-1 Fe-EDT A solution 

were removed by the resin (Table 4.1). A reduction (by the ion exchange material) in the Fe concentration of 

medium without added EDTA suggests that in the absence of a chelating agent, negative Fe complexes are still 

formed. When incubated with ion-exchange resin, all solutions containing added Cd did not experience a reduction 

in Cd concentration, indicating that most of the metal was present in a free, unchelated, divalent form. The 

concentration of endogenous Cd present in PPJ medium and the EDT A solution were low. Any free EDT A made 

available during the uptake of Fe by Synechococcus D562 did not significantly chelate the Cd which had been added 

to the medium. 

Table 4.1 Removal of EDTA-chelated metals from PPJ medium or 18 MQ solutions by ion exchange resin at 

25 ° C and 80 ll mol photon m-2 s-1, n=5, t =not determined,* buffer= 2.5 mM HEPES pH 7.0 

< = value below the detection limit 

Treatment Cd (mg 1-1) relative to ion exchange Fe (mg 1-1) relative to ion exchange 

before after before after 

Buffered Cd * 0.829 ± 0.010 0.811 ± 0.022 < 0.008 < 0.008 

Cd+FeEDTA 0.992 ± 0.003 0.900 ± 0.0005 0.561 ± 0.007 0.030 ± 0.003 

PPJ - FeEDTA + Cd 0.913 ± 0.014 0.858 ± 0.010 0.006 ± 0.002 0.011 ± 0.002 

PPJ +Fe -EDTA < 0.002 < 0.002 0.574 ± 0.004 0.132 ± 0.011 

PPJ +Cd 0.958 ± 0.007 0.872 ± 0.009 0.494 ± 0.017 0.009 ± 0.003 

Cd+EDTA 0.994 ± 0.011 0.964 ± 0.009 0.029 ± 0.004 0.004 ± 0.001 

PPJ 0.002 ± 0.0007 0.003 ± 0.0005 0.412 ± 0.008 0.0142 ± 0.004 

EDTA 0.004 ± 0.0010 0.005 ± 0.002 0.033 ± 0.003 < 0.008 

PPJ + 0562 growth 0.772 ± 0.026 0.615 ± 0.008 t t 
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4.3 Small-scale screening 

Although microtitre plates proved appropriate for culturing unicellular microorganisms, the concentration of 

Cd which could be tolerated in each well, was much greater than that of larger scale cultures (50 ml). In addition, 

the absorbance values for each culture could not be correlated with the concentration of added Cd (Table 4.2); the 

low absorbance readings for cells at intermediate levels of Cd indicate the variability in growth conditions between 

microtitre wells. When cultivated in 50 ml of medium plus metal, none of the strains grew in the presence of 

1 mg 1-l Cd except Synechococcus D562. 

Table 4.2 Microtitre-plate absorbance readings at 620 nm for a number of Synechococcus strains grown in the 

presence of Cd in order to select Cd-tolerant strains from low-volume cultures 

Strain 

0 5 10 15 20 

Synechococcus D562 0.150 0.091 0.124 0.077 0.078 

Synechococcus D767 0.105 -O.Oll -0.007 -0.013 0.001 

Synechococcus D768 0.021 0.149 0.006 0.017 0.025 

Synechococcus D769 0.119 0.037 0.122 0.026 0.036 

S ynechococcus D772 0.306 0.114 0.269 0.082 0.015 

S ynechococcus D773 0.168 0.136 0.019 0.012 0.030 

S ynechococcus D797 0.039 -0.066 0.031 -0.014 -0.066 

Syne~hos;;Q~cy~ D799 0.161 0.032 0.115 0.002 0.013 
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4.4 Physiological response to dilute medium 

As part of the drive towards obtaining a bacteria-free culture of Synechococcus D562, cells were transferred to 

the nutrient-poor environment of 18 Mn water. Mter two transfers in this medium, cells exhibited a reduction in 

the volume of their polyphosphate bodies and up to a doubling in cell length compared with cultures maintained in 

PPJ medium (Figs 4.1 and 4.2). Cells that were exposed to a third transfer in sterile 18 Mn water did not survive, 

presumably because the medium carry-over effect was further diluted and the energy stores of each cell were 

reduced to a level which could not support growth. 

4.5 Cd adsorbed by the cell wall 

When Synechococcus D562 cells were exposed to 25 mM Na2EDT A, a large quantity of Cd was released, 

resulting in a high figure for the potential cell-wall bound metal (Table 4.3). Cells which had been treated with this 

chelator did not exhibit detectable concentrations of intracellular Cd; such treatment probably permeabilises the cells 

resulting in a loss of most of the cytosolic metal. At the lower level of 0.25 mM Na2EDT A, a reduced value for 

adsorbed Cd was obtained. Heat treated cells were found to adsorb about one-hundredth of that normally 

accumulated by Synechococcus D562. 

The quantity of metal accumulated by a culture of Synechococcus D562 is dependent upon the concentration of 

Cd present in the inoculum (Table 4.4). This strain requires only one subculture in medium without added metal to 

dilute out most of the Cd, a further subculture did not reduce the concentration of accumulated Cd to that of 

unexposed cells. Cells which had been grown with Cd, then passed through one culture cycle in the absence of the 

metal, did not attain the same levels of accumulated Cd when recultured in metal-amended medium, in comparison 

with cells which are continuously maintained on Cd. 



109 

Fig. 4.1 Electron micrograph of air-dried Synechococcus 0562 cells cultured in 

PPJ medium at 32 ° C and 80 Jlmol photon m-2 s-1. Scale bar= lJlm 

pb = PPbody c = cytoplasm 

Fig. 4.2 Electron micrograph of air-dried Synechococcus 0562 cells transferred twice 

in 18 Mn water from a PPJ medium inoculum, grown at 32 ° C and 80 Jlmol photon m-2 s-1. 

Scale bar = 2 llm 

dpb = diminished PP body c = cytoplasm 
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Table 4.3 Cd content of Na2EDT A washed and heat treated (70 ° C for 1 h) Synechococcus D562 cells which have 

been exposed to 2 mg 1-1 Cd for 2 h, n = 5, t =not determined,< = value below the detection limit 

Treatment 

25 mM EDTA wash 

0.25 mM EDT A wash 

Heat treated cells 

cell-bound Cd (J.i.g g-1) 

230.79 ± 4.15 

14.57 ± 1.05 

11.06 ± 0.97 

internalised Cd (llg g-1) 

<1 

t 

< 1 

Table 4.4 Influence of the Cd concentration of the inoculum and culture medium upon the metal accumulated 

by Synechococcus D562 cells, n = 5, * =with an intermediate subculture at 0 mg 1-1 Cd 

Cd in the inoculum 

(mg 1-1) 

0 

0 

2 

2 

2 

2 

experimental Cd 

(mg l-1) 

0 

0.5 

0* 

2* 

0 

2 

Cd accumulated 

0.21 ± 0.758 

53.35 ± 7.08 

3.52 ± 2.26 

558.00 ± 21.87 

4.68 ± 3.199 

1342.08 ± 380.97 



4.6 Batch and continuous culture 

Batch culture does not provide stable conditions for the selection of metal-tolerant cells, so a culture of 

Synechococcus D562 (a strain amenable to culture in an air-lift fermenter) grown under photon limitation but 

receiving a constant supply of minerals, was exposed to the selective-agent Cd. 
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Batch, axenic cultures were run without Cd under different light intensities at the surface of the vessel, to 

ensure that photon availability was a growth-limiting parameter capable of controlling continuous culture. A rise in 

growth rate of the Synechococcus D562 culture was observed with increasing light intensity up to 140 )lmol photon 

m-2 s-1; when illuminated at 180 Jlmol photon m-2 s-1 the growth rate was suppressed. From the values of photon 

concentration used in this investigation (Fig. 4.3), 100 )lmol photon m-2 s-1 was selected as an appropriate level of 

restraint for continuously cultured cells (Table 4.5). 

A sterile, 34 d continuous culture of Synechococcus D562 was maintained with an initial Cd concentration of 2 

mg 1-1. Both the cell density and whole cell absorbance at 626 nm remained stable during Cd addition, until a 

medium concentration of 3.4 mg 1-1 Cd was attained, from that point on, both growth parameters declined rapidly 

(Figs 4.4 a and b). When the medium pump was activated the prevailing cell density was not perturbed, unlike 

some bacterial cultures. 



Fig. 4.3 Influence of light intensity on the growth rate of Synechococcus 0562 in 2-litre batch culture at 

20 (•). 60 (•), 100 (0), 140 (6) and 180 (+) J.lffiOl photon m-2 s-1 and 32 ° C 
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Table 4.5 Specific growth rates (calculated from the above graph) of Synechococcus 0562 in 2-litre, 

PPJ medium batch-culture at different values of light intensity 

Light intensity 

(J.tmol photon m-2 s-1) 

20 

60 

100 

140 

180 

specific growth rate 

0.0495 

0.0644 

0.0683 

0.0848 

0.0642 

113 

144 
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Fig. 4.4 Influence of Cd concentration (D) on a) whole cell absorbance at 626 nm (•). b) cell density <•) 
of a continuous culture of Synechococcus D562 in PPJ medium, light intensity= 100 IJ.mOl photon m-2 s-1, 
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CHAPTERS 

5. Immobilized cells 

5.1 Introduction 

A system of immobilized algae was developed as a first step towards combating the release of industrial 

effluents into the environment which contain high concentrations of Cd. The efficiency of metal removal from the 

growth medium was investigated in the two axenic strains which had proved to accumulate Cd to the highest 

concentration. Cells were immobilized in calcium-alginate beads and contained in a packed-bed reactor. 

5.2 Accumulation of Cd by the matrix 

To determine the contribution that the immobilization matrix affords towards the binding ofCd, 150 alginate 

beads were incubated in CHU IOE pH 7.0 medium containing three concentrations of Cd. The glass surface of 

flasks used in this study did not bind Cd to a significant degree (Fig. 5.1a), but when calcium-alginate beads were 

added, a fast initial accumulation of the metal was observed followed by a slower uptake (Figs 5.1b, 5.2a and b). 

When FeEDT A was omitted from the medium more Cd was removed, except for flasks without beads. 

5.3 Accumulation of Cd by immobilized cells 

Initial experiments showed that at a Cd concentration of 0.5 mg 1-1 (Fig. 5.3) Synechococcus D562 cells could 

not perceptibly reduce the concentration of metal added to the medium. Therefore 0.05 and 0.1 mg 1-1 Cd were 

chosen as appropriate concentrations of metal for investigation. Operating conditions for the immobilized-cell 

columns appear in Table 5.1. The observed gradation of growth up the immobilized cell column (with highest 

biomass at the point of medium inlet and reduced growth at the top of the bead column) prompted a column run 

whose medium reservoir was aerated to determine if the C02 partial pressure of the circulating medium was a 

limiting factor. The process of bubbling the medium inhibited Cd removal (Fig. 5.3) and did not encourage uniform 
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growth up the height of the column, so subsequent runs were not aerated. Four closed-loop reactors, alginate beads 

in flasks and flasks without beads were run at 0.1 mg 1-1 Cd for 20 d as a control in order to determine the 

concentration of metal removed by the apparatus alone. Over this period, little Cd was removed from the medium 

(Fig. 5.4) except for the rapid binding of metal which occurs (Figs 5.1b and 5.2a and b) before the first sampling 

point on these graphs (no algae were introduced at this stage). 

Synechococcus 0562 cells immobilized in a packed-bed column (Figs 5.5 and 5.6), reduced the Cd 

concentration of the medium by 42 % (0.1 mg r 1 Cd) and 73 % (0.05 mg 1-1 Cd) after 20 d, whilst immobilized 

Mougeotia 0536 cells (Figs 5.7 and 5.8) proved more effective and reduced the Cd by 95 % (0.1 mg r 1 Cd) and 83 

% (0.05 mg 1-1 Cd) of the original concentration. For Mougeotia 0536 cells, the packed-bed reactors removed 

more Cd than immobilized cells in free suspension, which in turn sequestered more Cd than free algae. Such a 

heirarchy of metal removal was less evident in Synechococcus 0562. Cells recovered from these experiments 

exhibited the highest Cd concentration when grown in the packed-bed immobilized reactor (fable 5.2), whilst 

immobilized cells in stationary flasks accumulated less metal than free algae. Although Synechococcus 0562 cells 

accumulated more metal than Mougeotia 0536 when expressed in terms of ~g of Cd g-1 dry weight, the total amount 

of Cd accumulated by Mougeotia 0536 was greater than Synechococcus 0562, resulting in a lower fmal 

concentration of Cd in the medium. 



117 

Fig. 5.1 Reduction in the initial Cd concentration (0.05 mg I-1) ofCHU 10E pH 7.0 medium at 25 ° C and 

80 11-mol photon m-2 s-1 in the presence (t) and absence <2?) of Fe EDT A, a) without alginate beads, 

b) with 150 alginate beads . The beads were not inoculated with cells 
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Fig. S.2 Reduction in the initial Cd concentration of CHU IOE pH 7.0 medium at 2S ° C and 

80 ~mol photon m-2 s-1 in the presence <t) and absence <8) of Fe EDTA, a) with ISO alginate beads 

at O.I mg 1-1 Cd, b) with ISO alginate beads at 1.0 mg 1-1 Cd . The beads were not inoculated with cells 
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Fig. 5.3 Reduction in the Cd concentration ofPPJ medium pH 7.0 at 32 ° C and 20 Jl mol photon m-2 s-1 by aerated 

C!) and non-aerated (2) immobilized Synechococcus D562 cells at a) 0.05, b) 0.1 and c) 0.5 mg t-1 Cd 
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Fig. 5.4 Reduction in the initial Cd concentration (0.1 mg 1-1) over 20 d ofPPJ medium pH 7.0 at 32 ° C and 

20 ~mol photon m-2 s-1 a) packed-bed alginate beads; b) beads in free suspension and 

c) medium without beads 
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Fig. 5.5 Reduction in the initial Cd concentration (0.1 mg 1-1 ) of PPJ medium pH 7.0 at 32 ° C and 

a) 

..... 
I 

bD 
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'-" ., 
u 

20 ~mol photon m-2 s-1 by Synechococcus 0562, a) packed-bed immobilized cells, b) immobilized cells 

in free suspension, c) free cells, error bars = sem 
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Fig. 5.6 Reduction in the initial Cd concentration (0.05 mg 1-1) ofPPJ medium pH 7.0 at 32 ° C and. 2011 mol 

photon m·2 s·l by Synechococcus 0562, a) packed-bed immobilized cells, b) immobilized cells in free 
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Fig. 5.7 Reduction in the initial Cd concentration (0.1 mg 1-1) of CHU IOE medium pH 7.0 at 25 ° C and 

20 ll mol photon m-2 s-1 by Mougeotia 0536, a) packed-bed immobilized cells, b) immobilized cells 

in free suspension, error bars = sem 
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Fig. 5.8 Reduction in the initial Cd concentration (0.05 mg 1-1) ofCHU lOE medium pH 7.0 at 25 °C and 

20 Jl mol photon m-2 s-1 by Mougeotia D536, a) packed-bed immobilized cells, b) immobilized cells 

in free suspension, c) free cells, error bars = sem 
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Table 5.1 Physical parameters of the immobilized cell columns used in this study, n = 4 

Parameter value ± sem 

Bead diameter (mm) 3.27 ± 0.12 

Gel volume per column (ml) 88.00 ± 2.52 

Void volume per column (ml) 49.75 ± 2.59 

Total volume per column (ml) 144.80 ± 2.34 

Number of beads in a 100 ml packed bed 5418 ±100 

Flow rate with beads (ml min-1) 4.008 ± 0.058 

Flow rate without beads (ml min-1) 4.013 ± 0.089 

Table 5.2 Concentration of Cd accumulated by two immobilized strains and free cells exposed to 0.1 and 

0.05 mg 1-1 Cd, t =not determined, values of dry weight are from each culture vessel, n = 4 
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Strain Cd treatment dry weight ± sem accumulated Cd ± sem 

(mg 1-1) (mg) 

S~!;<~hQ~Ql<£1!:1 D562 0.1 immobilized in columns 14.08 ± 0.66 1167.00 ± 36.96 

0.1 immobilized in flasks 3.69 ± 1.04 210.47 ± 8.33 

0.1 free cells 4.54 ± 0.37 519.64 ± 30.21 

S~es.;h~Qs.;CU§ D562 0.05 immobilized in columns 14.34 ± 2.30 1430.00 ± 51.82 

0.05 immobilized in flasks 8.18 ± 2.60 70.78 ± 12.96 

0.05 free cells 2.61 ± 0.17 293.45 ± 38.29 

Mougeotia D536 0.1 immobilized in columns 68.95 ± 5.11 492.94 ± 22.77. 

0.1 immobilized in flasks 51.64 ± 0.77 250.40 ± 14.00. 

0.1 free cells t t 

Mougeotia 0536 0.05 immobilized in columns 24.65 ± 0.74 312.12 ± 17.77. 

0.05 immobilized in flasks 11.75 ± 2.36 85.00 ± 21.44. 

0.05 free cells 36.77 ± 3.69 178.35 ± 4.56. 
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CHAPTER6 

6. Microscopy and Cd localisation 

6.1 Introduction 

Light microscope and EM photomicrographs of immobilized cells were taken to check that cells immobilized 

in calcium-alginate did not exhibit abnormal morphology, a condition which may reduce the concentration of heavy

metal accumulated. EDXMA and SPM were employed to determine the cellular sites of Cd accumulation; this 

information indicates part of the pathway used to detoxify intracellular Cd and may, in some circumstances, be used 

to increase the concentration of metal accumulated and therefore enhance the Cd-removal efficiency of immobilized 

cell columns. 

6.2 Light microscopy 

The light microscope was employed to follow the formation of spheroplasts and ascertain cell growth patterns 

within alginate beads. Unlike some organisms eg. Asoergillus niger and Chlorella emersonii (Eikmeier ~ £!1, 1984 

; Day & Codd, 1985), diffusion limitations did not appear to restrain cell growth in alginate beads, as colonies grew 

throughout the matrix (Figs 6.1 a and b). 

6.3 Lysozyme hydrolysis and ruthenium red staining 

As the first step in plasmid isolation, lysozyme was employed to degrade the cell wall of Synechococcus D562 

cells. Although spheroplasts were not produced, the incubation of Synechococcus D562 with 2 mg ml-1 lysozyme 

resulted in cell clumping, older cells aggregating more readily than young cultures. In order to determine the site of 

hydrolysis, Synechococcus D562 cells which had been exposed to lysozyme were stained with Ru red and viewed 

under the TEM as air-dried cells. It was discovered that the extracellular mucilage of this strain could only be 

viewed under the TEM after enzyme treatment and Ru staining, whilst the extracellular material of undigested cells 
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did not bind Ru (Figs 6.2a and b). Lysozyme sensitive NAG-NAM regions must exist within the mucilage which, 

upon hydrolysis, provide Ru binding-sites. A requirement for the lysozyme step in the production of spheroplasts, 

indicates that components of the cell wall are probably also attacked in addition to the extracellular mucilage. 

6.4 Immobilized cells 

In order to ensure that the process of immobilization did not produce cell deformations, 1EM sections were 

taken of Synechococcus 0562 and Mougeotia 0536 cells that had been cultured in alginate beads. No physical 

attachment was observed between cell and matrix after 10 d and 15 d growth, but the strains were not completely 

encased in alginate, even for samples sectioned immediately after immobilization (Figs 6.3a and b, 6.4a and b). 

Neither of these strains exhibited ultrastructural changes as a result of their immobilization. 
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Fig. 6.1 a) Light micrograph of Mougeotia D536 cells immobilized in calcium-alginate 

beads after 10 d growth. Scale bar = 1 mm 

b) fluorescence micrograph of Synechococcus D562 cells immediately after 

immobilization in a calcium-alginate bead. Scale bar = 10 1.1m 

s = surface of microscope slide em = calcium alginate matrix 

f = fluorescing Svnechococcus D562 cells 



129 

.. 
·- _.; ' 

"' 
" I 

i ' 
• :,r. ' 

• 
•• , 

.~ •• 
··~ . . ·' :. • . . ,.., I .,. 

•-1 • ' ~ ' • ' 
. 

• ' , -.. 
' 

• • , ,., 
" ~ '.-• ... . , . I • •• I. , • . ~ .\.; ~ .. ~ ' I , .. 

" jl .. . 
.. t. t • . . I f I t ,.. • • ~ .... \, -



130 

Fig. 6.2 a) Ru red staining of a Synechococcus D562 cell without lysozyme treaunent 

Scale bar= O.S11m 

pb=PPbody c = cytoplasm 

b) A Synechococcus D562 cell incubated with 2 mg mi-1 lysozyme for 1 hat 

37 ° C then stained with Ru red. Scale bar= 0.5 11m 

e =extracellular mucilage 

c = cytoplasm 

pb=PPbody 
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Fig. 6.3 a) Electron micrograph of Synechococcus D562 cells immobilized in 4% (w/v) 

calcium alginate after 10 d growth. Scale bar= 0.5J.Lm 

em = calcium-alginate matrix 

pb = space previously occupied by a PP body 

c = cytoplasm 

cw = cell wall 

ca = carboxysome 

e = extracellular space 

b) Electron micrograph of Mougeotia D536 cells immobilized in 4 % (w/v) 

calcium alginate after 15 d growth. Scale bar= 5 Jlffi 

em= calcium-alginate matrix 

th = thylakoid membrane 

e =extracellular space 

py = pyrenoid 

cw = cell wall 

s = starch deposit 

v =vacuole 
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Fig. 6.4 a) Electron micrograph of a Synechococcus 0562 cell immobilized in 4 % (w/v) 

calcium alginate and immediately processed for EM. Scale bar= 0.25 Jlm 

em= calcium-alginate matrix 

pb = space previously occupied by a PP body 

e =extracellular space 

cw = cell wall 

c = cytoplasm 

b) Electron micrograph of Mougeotia 0536 cells immobilized in 4 % (w/v) 

calcium alginate and immediately processed for EM. Scale bar = I Jlm 

em = calcium-alginate matrix 

th = thylakoid membrane 

e = extracellular space 

py = pyrenoid 

cw = cell wall 

s = starch deposit 

c = cytoplasm 
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6.5 Energy dispersive X-ray microanalysis 

If the Cd storage sites within a cell can be defmed, then the mechanism of metal accumulation used by a 

particular strain may be manipulated to amplify the concentration of metal stored in the cell and therefore increase 

the removal of Cd from the effluent stream. The search for Cd within individual cells by EDXMA and associated 

shifts in their elemental composition proved elusive. Background counts obtained from the formvar support film 

were low and no contaminating peaks occurred (Fig. 6.5a). Cryosections of algae were not successful as thin, 

stable sections were never cut. Dextran microdroplet standards did not yield peaks that were reproducibly 

proportional to the concentration of the element under study (note the maximum full scale number of counts for each 

scan) (Fig. 6.5b, c and d). In addition, the rate of beam-induced element loss for samples analysed at room 

temperature, would not be equivalent to that of the standards due to the variation in electron diffusion volume from 

one area of the cell to another. 

Quantification of the EDXMA peaks was obtained by determining the machine efficiency-factor with respect 

to S, for all the elements detected (Table 6.1) and scaling individual net integrals to yield the percentage contribution 

that each element makes to the total scan. Cu peaks (k a= 8.041 keV and k ~ = 8.907 keV) emanating from the grid 

bars are not labelled, as the majority of the Cu counts derive from the support material and 1EM column rather than 

the specimen. The total net-integrals of each profile is a measure of the signal strength recorded from each area that 

was probed. EDXMA proflles for algae that were not exposed to Cd appear in Appendix 6. 

The elemental composition of PP bodies in Synechococcus D562 varied in the size of the P peak and K to Ca 

ratios (Figs 6.6b and c). The cytoplasm contained equivalent proportions of Mg and P but higher S values were 

recorded; the total net-integral for this region of the cell is inherently low as the cytoplasm is a dilute ionic matrix. 

PP granules which did yield Cd spectra, consistently exhibited a high Ca to K ratio but at a frequency of less than 

one granule in 25. The metal was not restricted to these inclusion bodies as Cd was also discovered in cytoplasmic 

regions (Fig. 6.6d). In addition, cellular levels of Fe appeared elevated for Cd-exposed cells compared with the 

metal-free, control cultures. Fe precipitates were observed on the surface of Synechococcus D562 cells only after 

about 5 d of growth (Fig. 6.7a). When Cd was present in the medium a relatively large concentration of this metal 

was observed in association with the surface Fe-granules (Fig. 6.7b). An increase in the Mn concentration of the 

medium 
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(5 mg 1-1) did not improve the detection ofCd in Svnechococcus D562 PP bodies (Fig. 6.7c), but the appearance of 

Ba in the profiles may be related to a change in the concentration of Mn transported into the cells. 

When daily samples of a Synechococcus D562 culture grown with 4 mg 1-1 Cd were taken, no changes in the 

Cd concentration of the PP bodies or cytoplasm was observed throughout the growth curve (data not shown). 

Calothrix Dl84 cells exhibited characteristically high concentrations of Cain PP bodies and strong Cl peaks 

from cytoplasmic readings (Figs 6.8 and 6.9). Even though theCa to K ratio was high for many PP granules of this 

strain (a similar metabolic state to the Cd binding PP bodies of Synechococcus D562), no Cd was detected. 

Scans of Mougeotia D536 (Fig. 6.10) were delineated by a strong K signal and consistently lower Ca peaks. 

However, no X-ray peak for Cd was ever recorded in this strain. 

Prominent Cl, K and Fe peaks were recorded in Klebsormidium D537 (Fig. 6.11) but neither Ca nor Cd spectra 

were generated. 

When the X-ray spectra of cells grown in the presence of Cd were compared with control cultures which did 

not receive added metal (Appendix 6), no major Cd-induced differences in the elemental profile of each cell 

compartment were observed 

A number of other heavy metals were located in field material extracted from contaminated streams (fable 

3.2), but X-ray peaks for Cd were not observed. As laboratory experiments involving relatively high concentrations 

of Cd (0.8 to 4 mg l-1) failed to yield X-ray spectra for this metal, the lower concentrations of Cd normally found in 

the environment would have to be accumulated by field isolates to very high levels if they are to be detected by 

EDXMA. Zn and Fe were sequestered to a high degree in algae sampled from Rampgill Level and Caplecleugh 

Low Level, with K and Ca contributing many of the X-ray counts in Stigeoclonium (Figs 6.12 and 6.13); Mg peaks 

are also relatively high for this strain. The inclusion bodies of a moss protonema found in association with a colony 

of algae, proved to contain high levels of Zn and Fe (Fig. 6.14) with lower quantities of Zn recorded in a 

Klebsormidium strain isolated from Caplecleugh Low Level (Fig. 6.15). Cell-surface precipitates of Ba proved a 

significant feature of Spirogyra scans (Fig. 6.16) and indicates a high Ba load in Gillgill Burn. Cells of 

Klebsormidium rivulare (Fig. 6.17) from Low Gillgill Burn reflect pollution by a different metal as cell inclusions 

and walls containing Pb were prominent. A strain of Stichococcus isolated from Gillgill Burn accumulated large 

quantities of Cd when grown under laboratory conditions with 0.25 mg 1-1 Cd (fable 3.3), but this metal was not 

successfully located by the EDXMA probe (Fig. 6.18). 
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Therefore, of all the strains scanned for accumulated Cd, only particular PP bodies (with a high Ca to K peak 

integral ratio) of Synechococcus D562 grown in the presence of 4 mg 1-l Cd produced X-ray peaks for this metal. 



Table 6.1 Channel-energy widths employed to semi-quantify the elemental composition of EDXMA profiles 

and associated machine efficiency-factors,* efficiency-factors interpolated from the graph in 

Appendix 5 

Element start keY end keY no. of channels efficiency factor 

(k or llines) 

Naka 0.88 1.16 15 12.26 

Mgka 1.18 1.34 9 3.61 

Alka* 1.42 1.60 10 2.63 

Sika 1.54 2.08 28 2.05 

Pka 1.84 2.14 16 1.27 

Ska 2.16 2.38 11 1.00 

k~ 2.40 2.48 4 

Clka* 2.50 2.74 12 0.86 

k~ 2.76 2.92 8 

Cd1a 1 2.98 3.26 15 0.42 

Kka 3.06 3.48 21 0.72 

k~ 3.50 3.86 9 

Caka 3.50 3.86 18 0.71 

k~ 3.88 4.18 15 

Ba1 a 1 4.14 4.66 26 0.34 

1 b 1 4.68 5.02 17 

1 b2 5.04 5.30 13 

1 g 1 5.38 5.66 14 

1 g 2 5.68 6.08 20 

Mnka 5.72 6.08 19 0.57 

Feka 6.24 6.62 37 0.55 

k~ 6.64 7.52 32 

Znka 8.26 8.98 36 0.50 

k~ 9.26 9.94 34 

1 a 1 & 2 0.88 1.16 15 

Pb 1 a 1 10.10 10.90 40 0.62 

1 b 1 &2 12.06 13.12 53 

1 g 1 14.50 14 .. 98 24 

139 
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Fig. 6.5 EDXMA profiles of a grid support ftlm and Cd standards, peak integrals not determined 

a) background scan of a 0. 7 % formvar ftlm on a Cu I Rh grid 

b) 10 mM Cd standard in 5 % dextran 

c) 100 mM Cd standard in 5% dextran 

d) 1000 mM Cd standard in 5 % dextran 
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Fig. 6.6 EDXMA profiles of Synechococcus 0562 grown with 4 mg 1-1 Cd 

a) whole cell. Total net-integral ofproflle = 11239 

Element % contribution element 

Na 43.20 Cd 

Mg 8.86 K 
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Fig. 6.7 Further EDXMA profiles of Synechococcus D562, peak integrals not determined 

a) Precipitates of Fe recorded on the surface of Synechococcus D562 cells grown in 0 mg I-1 Cd 

b) Precipitates of Fe recorded on the surface of Synechococcus D562 cells grown in 4 mg I-1 Cd 

c) PP body of Synechococcus D562 grown in the presence of 4 mg 1-I Cd and 5 mg I-1 Mn 
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Fig. 6.8 EDXMA profiles ofCalothrix DI84 grown with I mg 1-1 Cd. 

a) inclusion body. Total net-integral ofproftle = 17339 
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Fig. 6.9 EDXMA profiles of Calothrix D184 grown with 1 mg 1-1 Cd. 

a). cell wall. Total net-integral of profile= 1001 
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Fig. 6.10 EDXMA profiles of Mougeotia D536 grown with 0.8 mg 1-1 Cd. 

a) inclusion body. Total net-integral ofproflle = 20036 
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Fig. 6.11 EDXMAprofiles ofKiebsonnidium D537 grown with 1 mg 1-1 Cd. 

a) inclusion body. Total net-integral of profile= 46221 
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Fig. 6.12 EDXMA profiles of Stigeoclonium from Rampgill Level a) (Caplecleugh High Level). 

a) inclusion body. Total net-integral ofproftle = 18021 
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Fig. 6.13 EDXMA profiles of Stigeoclonium from Rampgill Level b) (Caplecleugh High Level). 

a) inclusion body. Total net-integral of profile= 71759 
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Fig. 6.14 EDXMA scan of moss protonema from Caplecleugh Low Level. 

a) inclusion body. Total net-integral ofproflle = 19827 
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Fig. 6.15 EDXMA profiles of Klebsonnidium rivulare from Caplecleugh Low Level. 

a) inclusion body. Total net-integral of profile= 32588 
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Fig. 6.16 EDXMA profiles of Spirogyra from Gillgill Bum. 

a) photomicrograph of Spirogyra surface precipitates. 

b) surface precipitates. Total net-integral of profile= 18028 

Element % contribution element 

Na 14.35 Ca 

Mg 10.42 Ba 

s 37.54 Fe 

K 1.66 

c) inclusion body. Total net-integral of profile= 37509 

Element % contribution element 

Na 17.87 Ca 

Mg 16.28 Ba 

p 6.17 Mn 

s 14.60 Fe 

CI 3.75 Zn 

K 1.47 

d) cell wall. Total net-integral of profile= 21139 

Element % contribution element 

Na 32.81 K 

Mg 17.12 Ca 

p 1.04 Fe 

s 6.74 Zn 

Cl 2.95 

e) cytoplasm. Total net-integral of profile= 834.68 

Element 

s 
% contribution 

14.31 

element 

Ca 

% contribution 

9.48 

25.10 

1.45 

% contribution 

31.35 

1.35 

0.75 

3.19 

3.21 

% contribution 

1.03 

28.96 

7.21 

2.15 

% contribution 

85.69 



163 

b) 

:-RAY 
. i ve: 100 s Preset: 100 s Rema. in i ng: 
~ea.1: 111 s 10% Dead 

Os 100 s Pr·Het: 100 s Ro::ma in i ng: 
130s 23% Dead 

Os 

s 

d) 

X-RAY X-RAY 
Live: 100s Preso;;t: 100s Remaining: Os Live: 100s Preset: 100:;: R >::ITo a i n i n g: Os 
Rea\: 112s 11% Dead Rea\l 106s 6% Do:: ad 

c s 
1~ ' 

" A 

< .0 5.120 keiJ 10.2 > 
FS= 2K ch 266= 20 cts 
~1H11 :GILL GILL 8 OR CYTO 1001(1J SS2 



164 

Fig. 6.17 EDXMA profiles of Klebsormidium rivulare from Low Gill gill Burn. 

a) inclusion body- high Pb. Total net-integral of profile= 81913 
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Fig. 6.18 EDXMA scan of Stichococcus sp. D835 grown in 0.25 mg I-1 Cd from Gillgill Burn. 

a) inclusion body. Total net-integral of profile= 11555 
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6.6 Scanning proton microanalysis 

Due to a relatively high detection limit, the technique of EDXMA localised intracellular Cd only in 

Synechococcus D562 grown in the presence of 4 mg 1-1 Cd. Therefore, in an attempt to chart the cellular position 

of this metal and provide a map of other elements, samples of cyanobacteria and algae grown in the presence of Cd 

were analysed by the more sensitive technique of SPM. 

As the pixel maps of each element do not discriminate between background and signal, the X-ray spectra and 

associated peak-integrals (not shown) were used to calculate the composition of the sample in terms of the areal 

density for each map (ng element cm-2 of algae). The figures quoted for elemental content are dependent on the 

estimations made during peak processing for the target thickness, density and composition. The map of captured 

secondary-electrons yielded information on the surface topology, akin to the scans of an SEM and the pixels 

representing back-scattered electrons were used for elements which cannot be detected in the form of X-ray 

emissions across the detector's beryllium window. The Rutherford backscattering map showed that the carbon 

content of algae cannot be assessed, since the specimen support material contributed a large background count 

Elemental scans of the four strains from the Durham Culture Collection revealed intracellular Cd only in 

Klebsormidium D537 cultured in the presence of 0.5 mg 1-1 Cd for 15 d, but even then only at a low concentration. 

The predominant signals for this strain were obtained from P and K, with significant quantities of Fe, S, Si, Mg, Al 

and Cl detected. The trace elements Al, Cr, Cu, Mn, Ti and Zn, which were not recorded by EDXMA, also appear 

on SPM spectra of this strain. 

Due to resolution limitations, the elemental distribution in individual cells of Synechococcus D562 grown for 5 

din the presence of 4 mg 1-1 Cd, is not easily assessed; AI, K, Mg, P, and Si were found in high concentrations with 

lower levels of Ca, Cl, and S, whilst Fe was only detected at discrete positions on the scan. Small peaks for Mn, Ni, 

Ti and Zn, present at low concentrations within the cell were also obtained. 

Although high levels of Cl, K and Si were detected in Calothrix D184, a strong signal for P was not obtained, 

this may be due to a reduction in the concentration of P in the medium during growth and subsequent utilisation of 

cellular P stores. The trace elements AI, Ba, Cr, Cu, Ni, and Zn were also detected, peaks that were not available 

from EDXMA scans. 

For Mougeotia 0536 cells cultured for 15 din the presence of 0.5 mg 1-l Cd, K, Ca, Cl, and P were the main 

constituents, followed by S, Na, Mg and Fe. 
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Fig. 6.19 SPM pixel map of Synechococcus 0562 cells grown at 32 ° C and 40 1.1. mol photon m-2 s-1 

with 4 mg 1-1 Cd for 5 d; M =maximum counts per pixel, C =%of the maximum count 

represented by the yellow colour, SE_M = secondary electron image, RBS3 =Rutherford 

backscattering map, PIX2 = X-ray data channel. Elements detected at a low concentration 

are not shown as pixel maps 

Element areal density element areal density 

(ng element em alga -2) (ng element em alga -2) 

AI 118.87 Mn 0.77 

Ca 27.09 Na 19.37 

Cl 73.06 Ni 0.67 

Cr 0.31 p 280.75 

Cu 2.87 s 84.55 

Fe 42.03 Si 153.84 

K 134.46 Ti 2.73 

Mg 125.43 Zn 1.87 
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Fig. 6.20 SPM pixel map of Calothrix D184 grown at 25 ° C and 25 ll mol photon m-2 s-1 for 15 d 

with 2 mg 1-1 Cd 

Element areal density element areal density 

(ng element em alga -2) (ng element em alga -2) 

AI 26.68 Mg 24.83 

Ba 27.17 Na 720.83 

Ca 961.10 Ni 5.94 

Cl 5138.19 p 385.06 

Cr 76.40 s 572.96 

Cu 16.70 Si 1250.66 

Fe 201.46 Zn 19.90 

K 4195.57 
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Fig. 6.21 SPM pixel map of Mougeotia D536 grown at 25 ° C and 25 ll mol photon m-2 s-1 

for 15 d with 0.5 mg 1-1 Cd 

Element areal density element areal density 

(ng element em alga -2 ) (ng element em alga -2) 

AI 183.61 Mn 153.06 

Ca 2417.869 Na 893.70 

Cl 1832.89 p 2001.89 

Cu 14.07 s 1537.16 

Fe 448.47 Si 309.71 

K 4452.24 Zn 83.85 

Mg 532.97 
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Fig. 6.22 SPM of Klebsonnidium D537 grown for 15 d with 0.5 mg 1-l Cd 

Element areal density element areal density 

(ng element em alga -2) (ng element em alga -2) 

AI 309.78 Mg 354.68 

Ca 106.94 Mn 3.84 

Cd 20.40 Na 38.44 

Cl 262.21 p 1115.05 

Cr 5.44 s 601.29 

Cu 8.07 Si 377.52 

Fe 665.98 Ti 2.89 

K 1023.71 Zn 15.15 
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CHAPTER 7 

7 Tolerance mechanisms 

7.1 Introduction 

The intracellular tolerance mechanisms employed by microorganisms to ensure their survival in the presence of 

high concentrations of metal is of interest in this research; the biochemistry of metal storage could be manipulated to 

enhance the concentration of metal removed by cyanobacteria and algae that have been immobilized in a packed-bed 

column. The relatively high concentrations of Cd tolerated by Synechococcus D562, may possibly be attributed to 

the presence of a plasmid or genome encoded MT gene, whose product has the potential to reduce the cytotoxic 

concentration of Cd. Enhancing the number of transcripts of this gene may increase the concentration of 

accumulated Cd. To determine the presence of covalently-closed circles of DNA in Synechococcus D562, 

spheroplast production and plasmid purification protocols were developed. Potential MT encoding regions in the 

extracted plasmid and genomic DNA were probed for on Southern blots with a radiolabelled probe; a conserved 

sequence from the ·synechococcus PCC 6301 MT gene (see Appendix 3). This approach assumed that any MT 

produced by Synechococcus D562 exhibits a similar amino acid sequence to the regions of MT DNA from 

Synechococcus PCC 6301 that were selected to model the probe. 

7.2 Production of Synechococcus D562 spheroplasts 

The first step in DNA purification involves gentle cell lysis (frequently yielding spheroplasts or protoplasts), 

often with the use of enzymes that catabolise cell-wall constituents. Although lysozyme treatment resulted in some 

cell degradation (Fig. 7.lb) the cell wall was not sufficiently hydrolysed to allow subsequent detergent solubilisation 

of the plasma membrane; cells appeared intact after the addition of sodium-lauryl sarcosine. The cell clumping 

observed immediately after the addition of lysozyme, suggests that either the cell wall or extracellular mucilage was 

hydrolysed by this enzyme. The fact that Ru red (which reacts with exposed anionic acidic groups) would only 

stain the mucilage of enzyme treated cells, indicates that this material is one of the main sites of hydrolysis. Further 
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treatment with the non-specific protease from Streptomyces ~ produced a large number of spherical cells 

which were sodium-lauryl sarcosine sensitive and upon detergent treatment released a high percentage of their 

genomic and plasmid DNA (Fig. 7 .2a). Protease digestion alone did not result in spherical, detergent sensitive cells 

(micrograph not shown). 

Enzyme degradation failed to strip away all of the cell-wall material as auramine 0 bound to some ligands on 

the surface of Synechococcus D562, giving rise to orange fluorescence at the periphery of the spheroplasts (Fig. 

7.2b). As this particular digestion protocol did not yield viable cells even in the presence of an osmoticum, a study 

of the uptake of Cd by cell-wall degraded Synechococcus D562 was not possible. 



Fig. 7.1 a) Fluorescence photomicrograph of untreated Synechococcus D562 cells grown at 32 ° C 

and 40 ~mol photon m·2 s·l, note non-fluorescent PP bodies. Scale bar= 5 ~m 

b) Fluorescence photomicrograph of lysozyme treated (final concentration= 2 mg 1·1) Synechococcus 

D562 cells, note cell aggregation, but maintainence of rod-shaped conformation. Scale bar= 5 ~ 

181 



Fig. 7.2 a) Fluorescence photomicrograph of lysozyme and protease treated (final concentration= 2 mg 1-1) 

Synechococcus D562 cells, note efficient production of spherical cells. Scale bar = 5 11m 

b) Fluorescence photomicrograph of Synechococcus 0562 spheroplasts stained with aurarnine 0 . 

Scale bar = 2.5 ).l.m 
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7.3 DNA extraction and restriction 

Both plasmid and genomic DNA was purified from Synechococcus D562 cells to determine the presence of a 

Cd-binding MT. Cells cultured with or without Cd harboured a plasmid of about 14 kb in length (Figs 7.3a and b) 

(although Eco RI fragments are not accurately sized on 0. 7 % agarose gels) with common nuclease digestion sites 

(Table 7.1) (see Appendix 8 for typical size marker calibration). The third band which appears between the two Eco 

RI fragments is the result of a partial digestion. 

A Southern blot of both plasmid and genomic material did not reveal any homology between the 

oligonucleotide probe and the Synechococcus D562 DNA, except for the positive control at the edge of the filter 

(data not included). It therefore appears unlikely that an MT gene with a sequence that is complementary to primers 

based on the Synechococcus PCC6301 MT protein, is present either in the plasmid or genomic DNA of 

Synechococcus D562. 

Table 7.1 Restriction fragments of the Synechococcus D562 plasmid, * the two smallest fragments 

were visible on the original gel photograph 

Restriction enzyme 

EcoRI 

Hind III* 

Bam HI 

fragment sizes (bp) 

12589,5754 

5039,4120,2035,1504,1360 

7930,5862 
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Fig. 7.3 Agarose-gel electrophoresis of the plasmid isolated from Synechococcus D562 which 

was restricted by three endonucleases, gel calibration markers are the number of base 

pairs in each fragment of A. DNA 

a) Lane 2. Eco RI I Hind III A. markers 

b) Lane 

4. Eco RI digested pUC19 

6. Eco RI digested D562 plasmid DNA from cells grown without Cd 

8. Eco RI digested D562 plasmid DNA from cells grown with 2 mg I-1 Cd 

10. Undigested pUC19 

12. Eco RI I Hind III A. markers 

2. 

4. 

5. 

6. 

7. 

8. 

9. 

Eco RI I Hind III A. markers 

Hind III digested pUC19 

Bam HI digested pUC19 

Hind III digested D562 plasmid DNA from cells grown without Cd 

Bam HI digested D562 plasmid DNA from cells grown without Cd 

Hind III digested D562 plasmid DNA from cells grown with 2 mg I-1 Cd 

Bam HI digested D562 plasmid DNA from cells grown with 2 mg 1-1 Cd 

10. Eco RI I Hind III A. markers 
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7.4 Cd-binding peptides 

In Cd-resistant cell lines of Qa1ym innoxia (')EC)nG's bind nearly all of the cytoplasmic metal (Jackson~&., 

1987), thus permitting cultures to grow in the presence of very high concentrations of Cd (300 J.LM). The 

identification of Cd-binding peptides in cyanobacteria I algae and the extent to which they contribute towards metal 

detoxification, provides part of the information required to optimise another tolerance mechanism (in addition to the 

binding of Cd by MT) for the efficient removal of Cd from contaminated effluents. 

Putative Cd-binding peptides were discovered in all of the four culture collection strains close to the same 

elution volume as those extracted from .!1Ul.!m innoxia (Fig. 7.7 c from Robinson SUl!!.. 1990), although the 

concentration of bound Cd varied between strains. 

For Mougeotia D536, cells cultured in the presence of 0.5 mg 1-1 Cd exhibited more Cd bound to peptides than 

cells which were only exposed to Cd in mid log-phase (Figs 7.5 a and b), this effect was not observed in the other 

strains. Without the Cd shock (6.17 mg 1-1 ), cells cultured in the presence of 0.5 mg 1-1 Cd did not produce any Cd 

peaks on the gel permeation HPLC proftle (Fig. 7.5 c). A cell extract exposed to equivalent concentrations of Cd as 

that bound by the putative (')EC)ng's, only produced a peak for Cd at the ~-mercaptoethanol volume, no peptide I 

metal complex was observed (Fig. 7.5 d) 

Cultures of Synechococcus D562 grown in the presence of both 0 and 0.5 mg 1·1 Cd produced similar metal 

proftles (Figs 7.4 a and b). The Cd accumulated by cells that were not shocked with metal in mid log-phase was 

diluted to such an extent by the elution buffer that the metal proftle was devoid of peaks for Cd at either the ~

mercaptoethanol or peptide elution volumes (Fig. 7.4 c) For cells which had not been shocked with Cd but were 

exposed to the metal after extraction, no peptide-bound peak was observed, all of the added metal was collected at 

the same elution volume as ~-mercaptoethanol (Fig. 7.4 d). 

The gel permeation HPLC proftle for Klebsormidium D537 cultures grown in the presence and absence of Cd 

did not reveal different peak integrals for the putative (')EC)nG-bound Cd (Fig. 7.6 a and b) 

Even though Calothrix D184 did not accumulate Cd to a high concentration, (yEC)nG's complexed a significant 

proportion of the internalised metal (Fig. 7.6 c and d). 

The peak for the peptide I Cd complex did not always elute to the same position for all samples, this may 

represent complexes composed of different chain lengths rather than a variation in the column retention time from 

one strain to the next. 
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For eucaryotes, the main protein peak at 5.5 ml elution volume did not coincide with chelated Cd, whilst 

procaryotes demonstrated a broader protein distribution amongst the fractions including a peak at the same elution 

point as the metal binding peptides. Further evidence that the Cd-binding peak with a variable elution volume of 8 

to 11.25 ml is composed of ('yEC)nG's emanates from the pH titration profile of Mougeotia D536 peptides (Fig. 7.7 

a), which exhibits a pH of half dissociation of 5.0 in common with metal binding peptides of other species (Weber m 

ill.. 1987 and Reese ~ill.. 1988). 

The reversed-phase HPLC profile of a Mougeotia D536 cell extract exhibited peaks at the correct retention 

time for oxidised glutathione, (')EChG. (')EC)]G and (')£C)4G (Fig. 7.7 b). Such a profile provides further evidence 

that the Cd which elutes upstream of the ~-mercaptoethanol-associated metal is complexed by (yEC)nG's. 
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Fig. 7.4 Gel permeation HPLC profiles of Synechococcus D562 cells grown at 32 ° C, 

40 ~mol photon m-2 s-1 and exposed to a number of Cd treatments, elution buffer 

= 50 mM Tris.Cl pH 7.2, 150 mM NaCI. All plots share common axis and peak labelling 

• = Cd concentration of eluant. 0 = protein concentration of eluant 

a) 10 d growth without Cd, followed by exposure to 6.17 mg 1-1 Cd for 2 d, 

Cd bound by putative (yEC)nG's = peak 1, Cd bound by ~-mercaptoethanol = peak 2 

b) 10 d growth in 0.5 mg 1-1 Cd, followed by exposure to 6.17 mg 1-1 Cd for 2 d 

c) 12 d growth solely with 0.5 mg 1-1 Cd 

d) 10 d growth without Cd, then the cell extract was exposed to 17.1 mg 1-1 Cd 
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Fig. 7.5 Gel permeation HPLC profiles of Mougeotia D536 cells grown at 25 ° C, 

25Jl mol photon m-2 s-1 and exposed to a number of Cd treatments, elution buffer 

=50 mM Tris.Cl pH 7.2, 150 mM NaCI. All plots share common axis and peak labelling 

• = Cd concentration of eluant, o = protein concentration of eluant 

a) 20 d growth without Cd, followed by exposure to 6.17 mg 1-1 Cd for 2 d, 

Cd bound by putative ('}'EC)nG's = peak 1, Cd bound by ~-mercaptoethanol = peak 2 

b) 20 d growth in 0.5 mg 1-1 Cd, followed by exposure to 6.17 mg 1-1 Cd for 2 d 

c) 20 d growth solely with 0.5 mg 1-1 Cd 

d) 20 d growth without Cd, then the cell extract was exposed to 31.35 mg 1-1 Cd 
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Fig. 7.6 Gel permeation profiles ofKiebsormidium D537 (a and b) and Calothrix D184 (c and d) 

grown at 25 ° C, 25 Jl mol photon m-2 s-1 and exposed to a number ofCd treatments, 

elution buffer= 50 mM Tris.CI pH 7.2, 150 mM NaCl. All plots share common axis and 

labelling • = Cd concentration of eluant, 0 = protein concentration of eluant 

a) 20 d growth without Cd, followed by exposure to 6.17 mg r 1 Cd for 2 d, 

Cd bound by putative ()EC)nG's = peak 1, Cd bound by ~-mercaptoethanol = peak 2 

b) 20 d growth in 0.5 mg 1-1 Cd, followed by exposure to 6.17 mg 1-1 Cd for 2 d 

c) 20 d growth without Cd, followed by exposure to 6.17 mg 1-l Cd for 2 d 

d) 20 d growth with 0.5 mg 1-1 Cd, followed by exposure to 6.17 mg 1-1 for 2 d 
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Fig. 7.7 Data used to further characterise the Cd-binding proteins from the cyanobacteria and algae 

used in this study and calibrate the gel permeation HPLC column 

a) pH displacement-profile for Mougeotia D536 (yEC)nG pooled fraction 

b) reversed-phase thiol profile of Mougeotia D536 grown in the presence of 0.5 mg 1-1 Cd 

followed by exposure to 6.17 mg 1-1 Cd. The correct retention times for: 

oxidised glutathione = peak 1, (yEC)2G = peak 2, (yEC)3G = peak 3 and (yEC)4G = peak 4 

c) Gel permeation HPLC profile of Datura innoxia exposed to 14 mg 1-l Cd for 24 h 

at the end of log-phase, elution buffer = 50 mM Tris.Cl pH 7.2, 150 mM NaCl, 

• = Cd concentration of eluant, Cd bound by (yEC)nG's = peak 1, 

Cd bound by ~-mercaptoethanol = peak 2 
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CHAPTERS 

8 Ultrastructural, enzyme and protein damage 

8.1 Introduction 

The structural damage that Cd inflicts upon a cell can often be visualised by EM photomicrographs (Delmotte, 

1980 ; Duret ~ &., 1986 ; Heumann, 1987). Cyanobacteria and algae which are susceptible to the cytotoxic action 

of this metal will not accumulate Cd to the same extent as strains which possess intracellular, non-exporting Cd 

detoxification mechanisms, therefore it is necessary to identify any ultrastructural defects caused by Cd entering the 

cytoplasm which may reduce the metal accumulating ability of the cells. 

By replacing biologically active metal ions or affecting the synthesis and operation of cell membranes, Cd 

proves toxic at low concentrations. To determine which cell sites suffer ion replacement, two methods of protein 

analysis (enzyme activity and SDS PAGE) were selected. When faced with limiting levels of inorganic Pin the 

environment, microorganisms synthesise enzymes to hydrolyse molecules containing organic P . The Cd 

substitution of Zn atoms resident in such enzymes, has been used in X-ray diffraction to obtain information on the 

position of the three Zn atoms at each active site (Wyckoff, 1987). It was anticipated that such a metal exchange 

either during enzyme synthesis or in the medium used to assay enzyme activity, may reflect the biotoxicity ofCd by 

a reduction in the rate of hydrolysis. 

In addition, SDS PAGE was utilised to record the membrane disruption potentially caused by cytosolic Cd, a 

phenomena which has been documented in electron micrographs (Duret ~ ru.., 1986) and any other sub

ultrastructural toxic effects. 

8.2 Ultrastructural defects 

Electron micrographs were produced to search for any membrane damage or loss I induction of inclusion 

bodies caused by the presence of Cd in the cytoplasm. All of the strains analysed by TEM were sampled in mid-log 

phase, having been cultured in concentrations of Cd which inhibited growth. The micrographs presented are 
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representative of at least five similar sections. No obvious ultrastructural changes were observed in Synechococcus 

0562 cells grown for 5 din the presence of2 mg 1-1 Cd (Figs 8.1 a and b). Calothrix 0184 cultured for 15 d with 1 

mg 1-1 Cd exhibited suppressed polyglucoside granules and collapsed thylakoids, resulting in Cd exposed cells with 

a less granular appearance (Figs 8.2 a and b). When 15 d old cells of Mougeotia 0536 were grown in the presence 

of 0.8 mg 1-1 Cd, electron-dense material was observed around the periphery of the cytoplasm which was much less 

frequent in control samples (Figs 8.3 a and b). The plastoglobuli recorded in Klebsormidium 0537 cells that had 

been cultured without added Cd, were infrequently observed in Cd-exposed cells (15 d growth in 1 mg 1-1 Cd). 

These organelles were replaced by larger, more electron-opaque lipid bodies which predominated both inside and 

outside the chloroplasts (Figs 8.4 a and b); the relaxed thylakoid packing shown in Fig. 8.4 b was also common in 

samples which were grown without Cd and are probably not a result of Cd toxicity. 
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Fig. 8.1 a) Electron micrograph of a Synechococcus D562 cell grown in PPJ medium 

for 5 d at 32 ° C and 80 jlmol photon m-2 s-1, without added Cd. Scale bar= 0.5jlm 

cw = cell wall co = contaminant 

ca = carboxysome c = cytoplasm 

pb = space previously occupied by a PP body 

b) Electron micrograph of Synechococcus D562 cells grown in PPJ medium for 5 d 

as above in the presence of2 mg 1-1 Cd. Scale bar= 0.5jlm 

cw = cell wall c = cytoplasm 

ca = carboxysome 
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Fig. 8.2 a) Electron micrograph of a Calothrix Dl84 cell grown in PPJ- N medium for 15 d 

without added Cd at 25 ° C and 80 J.Lmol photon m-2 s-1. Scale bar= 1 J.Lm 

cw = cell wall 

ca = carboxysome 

cy = cyanophycin granule 

s =sheath 

pg = polyglucoside granules 

c = cytoplasm 

th = thylakoid 

b) Electron micrograph of a Calothrix D184 cell grown in PPJ- N medium for 15 d 

as above in the presence of 1 mg 1-1 Cd. Scale bar= 0.5 J.Lm 

cw = cell wall s =sheath 

ca = carboxysome c = cytoplasm 

th = thylakoid membrane nu = nucleoplasmic area 

p =space previously occupied by a cyanophycin granule 
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Fig. 8.3 a) Electron micrograph of a Mougeotia D536 cell grown in CHU IOE medium at 

25 ° C and 80 jlmol photon m-2 s-1 for 15 d without added Cd. Scale bar= 0.5 llm 

cw = cell wall c = cytoplasm 

th = thylakoid membrane 

b) Electron micrograph of a Mougeotia D536 cell grown in CHU IOE medium for 

15 d as above in the presence of 0.8 mg 1-1 Cd. Scale bar = 1 jlm 

cw = cell wall 

th = thylakoid membrane 

p = electron dense precipitates 

lb = lipid body 

c = cytoplasm 
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Fig. 8.4 a) Electron micrograph of a Klebsormidium D537 cell grown in CHU 10E medium 

for 15 d without added Cd at 25 ° C and 80 1J.mol photon m-2 s-1. Scale bar= 1 1J.ffi 

cw = cell wall 

s = starch deposits 

pi = plastoglobuli 

py = pyrenoid 

c = cytoplasm 

th = thylakoidmembranes 

b) Electron micrograph of a Klebsormidium 0537 cell grown in CHU IOE medium for 

15 d as above in the presence of 1 mg I-1 Cd. Scale bar= liJ.m 

cw = cell wall 

s = starch deposits 

th = thylakoid membranes 

py = pyrenoid 

c = cytoplasm 

lb = lipid body 
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8.3 Alkaline phosphatase activity 

The release of alkaline phosphatase into the medium by Synechococcus D562, provided suitable material to 

ascertain the inhibitory effects of Cd upon P hydrolysis. The extracellular PME activity throughout the growth 

curve, optimum operating pH and appropriate buffer were determined for this enzyme (Figs 8.5 and 8.6). In 

addition, the influence of Cd on PME activity during growth and in the assay medium was resolved (Table 8.1). 

Buffer group A facilitated slightly higher PME activity and the proton response curve was relatively sharp, with an 

optimum at pH 10.0. For all studies extracellular material was collected after five days of growth (Fig 8.6) and 

most assays conducted at pH 10.3 (the standard proton concentration for APA enzyme assays in this laboratory). 

An average value (n = 8) for the detection limit of this assay was generated with an incubation time of 1 h, dry 

weights of 50 - 60 mg and blank absorbance figures of0.017 - 0.033. 

Although Cd is most cytotoxic when in a divalent, cationic form at neutral pH, phosphatase activity at pH 7.0 is 

low. To enhance enzyme activity at this pH and as a preliminary step towards purification, ultrafiltration 

membranes were employed to concentrate the protein (Table 8.1 ). The addition of Cd to the growth and assay 

media resulted in slightly higher activity except when the assay pH was held at 7.0, conditions which reduced the 

enzyme activity by 30% at 10 mg 1-1 Cd. Cells grown in 4 mg 1-1 Cd exhibit a long lag phase and reduced dry 

weight, producing a high value for enzyme activity which is not comparable with cultures grown at lower (non 

growth-supressing) Cd concentrations. Both 30 kD and 100 kD ultrafiltration membranes retained the majority of 

the enzyme, with a small quantity passing across the 100 kD screen, but not detectable in the filtrate. 

The levels of cell-bound PME, PDE and extracellular PDE activity were below the detection limit of the assay 

used in this study (0.0126!lmol pNP mg d.w. -1 h-1). However, when the samples were run through a protein 

concentration step, absorbance readings above the detection limit were obtained, thereby facilitating the calculation 

of enzyme catalysis rates (Table 8.1). A significant level of hydrolysis was exhibited by 0.2j.l.m-filtered culture 

medium, indicating that aggregations of extracellular mucilage which are witheld by the filter, do not bind all the 

enzyme. 

Preliminary tests for PME activity in Mougeotia D536 with a 1 h incubation period, did not yield a positive 

result for either extracellular or cell bound activity. 
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Fig. 8.5 Influence of pH (buffer groups A 0 , B e ) on the extracellular PME activity of Synechococcus D562 

cells grown for 5 din PPJ medium pH 7.0, 0.5 mg 1-1 Pat 32 ° C and 80 J.l. mol photon m-2 s-1 
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Fig. 8.6 Induction of Synechococcus D562 extracellular PME activity in batch culture, cells were grown in 

PPJ medium pH 7.0, 0.5 mg 1-1 Pat 32 ° C and 80 J.l. mol photon m-2 s-1, the enzyme assay pH = 10.3 
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Table 8.1 Influence ofCd and filtration procedures on Synechococcus D562 extracellular APA, P = 0.5 mg 1-1, all 

assays were maintained at pH 10.3 unless stated otherwise, n = 8, < = value below the detection limit 

Treatment 

Cd in the medium = 

Cd in the assay = 

Cd in the assay = 

30 kD ultrafiltration filtrate 

30 kD retentate 

100 kD filtrate 

100 kD retentate 

Unfiltered extracellular PME 

Unfiltered cellular PME 

Unfiltered extracellular PDE 

Unfiltered cellular PDE 

30 kD cellular PME 

30 kD extracellular PME 

30 kD cellular PDE 

30 kD extracellular PDE 

0.2 J.1lll nitrocellulose filtrate 

0 mg 1-1 

2 mg 1-1 

4 mg 1-1 

0 mg 1-1 

1 mg 1-1 

5 mg 1-1 

10 mg 1-1 

0 mg 1-1 pH 7.0 

0.1 mg 1-1 pH 7.0 

1.0 mg 1-1 pH 7.0 

10 mg 1-1 pH 7.0 

enzyme activity ± sem 

ijl.mol pNP mg d.w. -1 h-1) 

4.795 ± 0.191 

5.389 ± 0.153 

13.957 ± 1.138 

4.795 ± 0.191 

5.068 ± 0.124 

4.911 ± 0.232 

5.337 ± 0.170 

2.002 ± 0.038 

1.994 ± 0.089 

1.550 ± 0.251 

1.370 ± 0.032 

< 0.0126 ± 0.00123 

1.166 ± 0.029 

< 0.0126 ± 0.00123 

0.944 ± 0.009 

2.589 ± 0.043 

< 0.0126 ± 0.00123 

< 0.0126 ± 0.00123 

< 0.0126 ± 0.00123 

2.269 ± 0.202 

2.910 ± 0.059 

2.826 ± 0.097 

2.196 ± 0.061 

3.058 ± 0.165 
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8.4 SDS polyacrylamide gel electrophoresis 

Unbound, cytoplasmic Cd may complex with free thiol and carboxyl groups, thus blocking protein subunit 

concatenation, or inactivate the enzymes employed in post-translational modification. Such toxic consequences 

should be detectable as changes in the high Mr protein-profile of cyanobacterial and algal extracts on SDS gels. Of 

the four strains that were examined by SDS PAGE, only one Cd-induced disruption to the protein profiles was 

observed. The staining intensity of a 17 kD band present in Calothrix D 184 cells grown in the absence of Cd, 

declined as the concentration of Cd in the growth medium was increased (Figs 8.7 and 8.8). Samples of 

Synechococcus D562 that were exposed to increasing concentrations of Cd exhibited a general decline in their total 

protein content with an increase in metal, but no specific differences in the protein banding pattern was observed. 

The two eucaryotic strains failed to exhibit any change in their gross protein content when grown in the presence of 

toxic concentrations of Cd, in addition these gels revealed many proteins that were common to both strains (Figs 8.9 

and 8.10) (see Appendix 9 for a description of the proteins used as Mr markers). 
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Fig. 8.7 17% SDS PAGE of extracts from two algal strains (Synechococcus D562 

and Mougeotia D536) grown in the presence of the following Cd concentrations (mg 1-1) 

(Mr markers are in kD): 

Lane 1 562 Cd (0) 8 536 Cd (0) 

2 562 Cd (0.1) 9 536 Cd (0.2) 

3 562Cd (0.5) 10 536 Cd (0.4) 

4 562 Cd (1.0) 11 536 Cd (0.6) 

5 562 Cd (1.5) 12 536 Cd (0.8) 

6 No sample 13 Mrmarkers 

7 No sample 

Fig. 8.8 17 % SDS PAGE of cell extracts from two algal strains (Calothrix D184 

and Klebsormidium D537) grown in the presence of the following Cd concentrations 

(mg 1-1) (Mr markers are in kD): 

Lane 1 Mrmarkers 7 No sample 

2 184 Cd (0) 8 537 Cd (0) 

3 184 Cd (0.2) 9 537 Cd (0.2) 

4 184 Cd (0.4) 10 537 Cd (0.4) 

5 184 Cd (0.6) 11 537 Cd (0.6) 

6 184 Cd (0.8) 12 537 Cd (0.8) 
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Fig. 8.9 10% SDS PAGE of cell extracts from two algal strains (Synechococcus D562 

and Calothrix D184) grown in the presence of the following Cd concentrations (mg 1-1) 

(Mr markers are in kD): 

Lane 1 Mrmarkers 7 184 Cd (0) 

2 562 Cd (0) 8 184 Cd (0.2) 

3 562 Cd (0.1) 9 184 Cd (0.4) 

4 562 Cd (0.5) 10 184 Cd (0.6) 

5 562 Cd (1.0) 11 184 Cd (0.8) 

6 562 Cd (1.5) 12 Mrmarkers 

Fig. 8.10 10% SDS PAGE of cell extracts from two algal strains (Mougeotia D536 

and Klebsormidium D537) grown in the presence of the following Cd concentrations 

(mg 1-1) (Mr markers are in kD): 

Lane 1 Mrmarkers 7 537 Cd (0) 

2 536 Cd (0) 8 537 Cd (0.2) 

3 536 Cd (0.2) 9 537 Cd (0.4) 

4 536 Cd (0.4) 10 537 Cd (0.6) 

5 536 Cd (0.6) 11 537 Cd (0.8) 

6 536 Cd (0.8) 12 Mrmarkers 
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CHAPTER9 

DISCUSSION 

9.1 Introduction 

As a result of metal smelting or the discard of Cd-containing commodities, the concentration of Cd in 

particular areas may increase, with consequent bioaccumulation or geochemical precipitation (Section 1.1). The 

additional Cd released to the environment may enter the food chain, can sometimes become concentrated during its 

transport up the chain and enhance the low levels of metal normally encountered by humans. A toxic threat is 

exerted when Cd replaces metals at the active site of metalloenzymes or disrupts cell-membrane integrity. Current 

EC directives demand a reduction in the use of this metal in products (European Council Directive, 1989), but until 

the objectives of this legislation are fully executed Cd-contaminated effluents will continue to flow, creating pools 

of metal concentrate in the environment; both Cd-laden products which have been abandoned and industrial waste 

streams require attention. 

Inserting columns of immobilized cells in the path of an effluent provides one method of reducing the Cd load 

of industrial waste or polluted sites below proscribed limits (levels at which chemical precipitation procedures are 

often ineffective). In order to improve the operational efficiency of immobilized cells, additional interactions were 

examined between microorganisms and Cd that influence the concentration of the metal accumulated : two 

techniques were employed to record the distribution of Cd in microorganisms, the toxic consequences of Cd 

exposure was analysed and potential detoxification mechanisms were investigated. 

9.2 Selection of strains for study 

The selection process used to identify strains of microorganisms for immobilization was based upon the fact 

that organisms which exhibit tolerance to the presence of heavy metals in their environment often internalise these 
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metals to a high concentration as long as the most of the metal is not bowtd by the cell wall and the necessary ion 

transport-proteins are present; a relationship between the concentration of metal in the environment and that 

accumulated by cells has been demonstrated in a number of aquatic organisms (Kelly & Whitton, 1989). Because 

of the variation in cell-wall components, membrane transport proteins and detoxification mechanisms, not all 

microorganisms accumulate Cd to the same level for a particular environmental concentration, hence the need for a 

screening program. To obtain appropriate photosynthetic microorganisms for immobilization, environments which 

have received heavy-metal inputs from mining activity were sampled for the isolation of algae and cyanobacteria 

which accumulate Cd to a high concentration. In addition, the strains that are selected should be axenic so that no 

other organisms contribute towards Cd accumulation. 

The concentration of Cd accumulated by two axenic strains from the Durham Culture Collection 

(Synechococcus D562 and Mougeotia D536) was considerably higher (1797 J.l.g g-1 and 800 J.l.g g-1 Cd from 2 and 1 

mg 1-1 respectively (sections 3.2 and 3.3)) than strains that were recently isolated from the environment However, 

when these concentrations are compared with values from the literature they were found to represent average 

examples (Cain~ aJ.., 1980; Sakaguchi~&., 1979; Khummongkol ~ aJ.., 1981). Investigations were therefore 

focused upon these two strains. Although the process of removing bacterial contaminants from a culture can prove 

time-consuming, the concentration of Cd accumulated by a strain of Stichococcus isolated from Gillgill Burn (Table 

3.3) suggests that this organism is worth rendering axenic. 

A majority of the Cd and Zn at the five metal-polluted sites were not complexed to particles greater than 0.2 

J.l.m in diameter (Table 3.1) and were therefore probably available for microbial uptake. The concentration of Cd 

accumulated by the algae and cyanobacteria from these sites was species rather than concentration dependent, 

reflecting a variety of metal-ion transport mechanisms that exist in different strains. When cultured in the 

laboratory, these strains could not tolerate more than 0.25 mg 1-1 Cd in the medium, if the maximum concentration 

of metal tolerated by these strains is enhanced by repeated subculture to the same level as that tolerated 

Swechococcus D562 and Mougeotia D536, then the concentration of metal accumulated by the field strains is 

expected to rise. 

Although algae sampled from the field (Table 3.2) were exposed to lower concentrations of Cd (4 to 20 times) 

than that of strains isolated from the same sites but cultured in the laboratory at 0.25 mg 1-1 Cd, they accumulated 

the metal to similar concentrations. At higher concentrations of Cd, these strains will either reveal a maximum 

threshold for internalised Cd or out-perform those from the Durham Culture Collection. 
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9.3 Cd accumulation 

A number of factors regulate the concentration of Cd accumulated by microorganisms and the location of the 

metal in the cell, these include the concentration of free, divalent metal available, the type of metal-binding ligands 

at the cell surface and the number of metal-transport proteins present in the cell membrane. These components 

merit investigation if statements are to be made which relate the concentrations of metal accumulated by 

microorganisms to that present in the environment. Assuming that complexes of Cd (hydroxides, chlorides and 

chelates) are not bound to or transported across the cell wall, the concentration of divalent Cd2+present in the 

medium should reflect the toxicity of the metal. The experimental procedures that were adopted resulted in 

concentrations of free Cd2+ which were within 4 % of the intended value (Section 4.2) this figure was judged an 

acceptable level of error and no additional procedures were taken to adjust the concentration of Cd in the growth 

media. 

The accumulation of Fe by microorganisms results in free EDT A remaining in solution with a potential for 

chelating other metal ions in the medium and therefore reducing their toxicity. To determine the chelating power of 

the uncomplexed EDT A sites, ion-exchange material was used to assess the amount of Cd bound by EDT A. 

Results from anion-exchange resin experiments indicate that nearly all of the Fe in the medium is complexed by 

EDT A, whilst most of the added Cd apparently remains in solution as a divalent cation either with free EDT A, Fe

EDTA or PPJ medium. 

The small reduction in Cd concentration for all treatments after ion exchange can be attributed either to Cd

anion complexes at a low level or binding of the metal to the glass flasks used to contain the solutions. Without 

EDT A, anionic forms of Fe appear to be present in PPJ medium but not necessarily in a form which is suitable for 

algal utilisation. It is important to note that the results obtained with anion-exchange resin provide a temporally 

static picture of what is a dynamic system, where chelated ions may also be released I adsorbed, changing the 

concentration of metal in the medium. 

When the medium used to culture Synechococcus D562 was tested for Cd complexes, little bound metal was 

detected (assuming any Cd complex will have a negative charge and thus bind to the exchange resin). Such an 

observation supports the view that any EDTA with unbound sites does not appear to significantly chelate the Cd that 

is added to PPJ medium (the valency of the Cd added to CHU lOE and AD P(l.O) Fe(0.4) also needs to be tested). 

Because EDT A has been used to remove metals that are bound to the cell-surface and is known to increase the 
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toxicity of heavy metals in the environment, the low concentration of Cd I EDT A complexed by the exchange resin 

was not expected. Therefore, further research is required in this area, because the adsorption of chelated ions with 

exchange resin relies upon the assumption that Cd I EDT A complexes are not fully saturated with the metal and 

retain a negative charge. Cd-EDT A complexes which are neutral or positively charged are not removed from the 

medium by anion-exchange material and cannot be used to describe the concentration of Cd bound by EDT A. As 

the levels of contaminating Cd and Fe in PPJ medium are close to the detection limits of flame atomic absorption 

spectrophotometry, the metal added to the medium constitutes most of the total metal present. Therefore, the 

growth conditions employed in this study allow the full cytotoxic effects of Cd to be experienced by 

microorganisms. 

Sterile microtitre plates were used to screen microorganisms for Cd tolerance (Section 4.3). Although the 

wells of these plates provided a suitable environment in which to culture at least 12 strains of photosynthetic 

microorganisms in each container, they have proved inappropriate for toxicity studies as many of the strains tested 

apparently grew in very high concentrations of Cd and no direct correlation could be drawn between the 

concentration of metal in the medium and the culture absorbance reading after a period of growth. This 

phenomenon may be attributed to the binding of Cd by the plastic wells and hence a reduction in the toxicity of the 

metal. The reproducibility of culturing algae on this small scale may also be unreliable. 

A decline in the P status and increase in cell length of Synechococcus D562 was observed when cells were 

transferred to 18 Mn water, grown up to form a visible culture and transferred a second time to fresh 18 Mn water 

(forming a culture with a much reduced cell-density) (section 4.4). Such a change in morphology following nutrient 

stress may prove useful for obtaining bacteria-free cultures of small unicellular cyanobacteria by enhancing the 

difference in size between the desired strain and its contaminant. It is not known if an inoculum of cells in this 

condition would be capable of producing a culture in PPJ medium of comparable cell density with that of cells 

which have never been transferred to a nutrient-poor environment. 

Before developing an immobilized cell system, the subculture conditions of Synechococcus D562 cells were 

investigated. A regime of fluctuating concentrations of Cd in the medium may activate Cd detoxification 

mechanisms which are not fully operational in cells that are continuously exposed to a high concentration of the 

metal. Such a hypothesis does not appear to apply to this cyanobacterial strain because the maximum concentration 

of Cd internalised by a population of Synechococcus D562, was recorded when the cells were subcultured 

continuously in the highest level of Cd which did not significantly reduce the resulting biomass (Section 4.5). Since 
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4.5). Since the cellular location of Cd deposition influences the rate of metal uptake (faster for cell-wall adsorption 

than the active transport of Cd into the cell) and the concentration of Cd that can be bound, cultures of 

Svnechococcus D562 were analysed to determine where the accumulated Cd is partitioned. In order to assess the 

concentration of cell-wall complexed metal of cultures that had been grown in 2 mg 1-1 Cd a chelating agent was 

utilised to bring the surface-complexed Cd into solution. Washing cells with 25 mM EDTA proved an effective 

treatment for the permeation of cell-walllayers and membranes resulting in the release of cytoplasmic ions, as no Cd 

was detected in Synechococcus D562 cells after incubation with the chelating agent. This result is analagous to a 

previous ion permeability study which recorded the loss of intracellular K+ from Saccharomyces cerevisiae as a 

result of the damage that Cd exerted upon the cell walls (Gadd & Mowll, 1983). 

The observation that Bacillus ~cells use Mg2+ to stabilise the structure of the cell wall (Beveridge & 

Murray, 1976) provides evidence for the hypothesis that the periphery of Synechococcus D562 contains EDT A

extractable ions which play an important role in maintaining cell-wall integrity. Although a lower concentration of 

EDT A was subsequently employed (0.25 mM) resulting in a lower figure for the concentration of extracted Cd, 

restricted cell-wall damage may still have occurred (albeit on a reduced scale to that caused by 25 mM EDT A 

treatment) with the release of cytoplasmic Cd, in addition to that bound by the cell wall. This approach would 

generate an artificially high value for surface-complexed metal and therefore only organisms with a cell wall that is 

resistant to the disruptive effects of EDT A treatment are suitable for investigation by this particular chelating agent. 

The walls of heat-killed cells did not exhibit a high capacity for binding Cd, hence the majority of the 

accumulated metal must be detoxified intracellularly (Section 4.5); this result adds weight to the suspicion that data 

from the EDT A experiments do not reflect the concentration of Cd complexed so ley by the cell wall. In fact, the 

process of heat treatment might be expected to increase the number of Cd-binding sites available on the cell wall as 

its components are broken down at elevated temperatures and reactive anionic groups exposed. Microorganisms 

that bind most of the accumulated metal to their cell walls are probably the best material for removing toxic heavy 

metals from solution; dead cultures of Paracoccus sp. and Arthrobacter globifoonis bound more Cd at the cell walls 

than live cells (Bollag & Duszota, 1984). The metal adsorbed onto the periphery of the cell can then be easily 

removed by a change in the surrounding redox potential or pH (Greene~ ill., 1987). 
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9.4 Batch and continuous culture 

As an alternative to the step-wise selection of metal tolerant microorganisms via batch culture (Whitton & 

Shehata, 1982), a continuous culture run was carried out; a technique which has been used to remove Cd from the 

medium rather than as a means of cell selection (Houba & Remacle, 1984). This environment was used to create a 

continuous selection pressure in order to obtain a population of cells which withstood the presence of more Cd in the 

growth medium than those cultured under batch conditions (Section 4.6). The metal-tolerant population would then 

have to be checked for the concentration of Cd accumulated as growth in the presence of high levels of Cd is not 

necessarily associated with an expansion in the concentration of internalised Cd. Light intensity demonstrated a 

controlling influence over the specific growth rate of Svnechococcus D562 and was thus employed to govern 

continuous culture. The photon flux experienced by this strain at Elvins Tailings (the site of isolation) is far higher 

than the 180 J.Lmol photon m-2 s-1 laboratory conditions which were found to inhibit growth (Whitton pers comm.). 

However, because the growth conditions in vitro and in vivo differ markedly, comparisons of the response to 

changes in illumination between the two environments are not valid. 

A relatively constant cell-density maintained during the increase in Cd concentration of the medium, followed 

by a sharp decline in cell numbers at 3.4 mg r1 Cd, delineates the toxicity threshold for Synechococcus D562 when 

grown by this continuous-selection protocol (Fig. 4.4). Hence the Cd concentration tolerated by batch cultures is 

higher than cells grown by continuous culture; this difference may be due to the production of extracellular mucilage 

(with metal-binding capabilities) towards the end of the exponential phase of growth. Alternatively, a reduction in 

the ionic concentration of the medium may influence the competition by other ions for the Cd transport sites, 

therefore reducing the concentration of Cd accumulated. As continuous culture does not provide such late

exponential conditions, the full effect of Cd toxicity is exerted throughout the duration of selection. However this 

approach did not prove effective in yielding a population of cells with a Cd-tolerance greater than that of batch 

cultures. With a change in the rate of Cd addition, light intensity and flow rate of the medium, more time would be 

provided for the population to adapt to the rising Cd challenge and improve the potential of this approach. 
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9.5 Immobilized cells 

Once efficient Cd-accumulating photosynthetic microorganisms had been identified, an appropriate 

immobilization matrix was required to ensure that the metal-laden cells were retained and not lost to the medium 

flowing past the cells (a process that would release the metal back into the environment in a more concentrated 

form). Although immobilization has been applied to the production of a variety of cell metabolites, the use of 

matrices to retain metal accumulating microorganisms has been limited (Codd, 1987) 

A packed-bed, closed-loop reactor was employed to accumulate the metal, as the efficiency of these 

immobilized strains for the removal of Cd had never been investigated and an open, single-pass system would have 

failed to lower the concentration of Cd in the effluent Any swelling or contraction of the bead material throughout 

a run was not significant, so that the head space made available at the top of the column could have been filled with 

more calcium-alginate beads. 

The initial adsorption of the toxicant by the alginate matrix over the first 16 h (Figs 5.1 and 5.2) may involve a 

cation exchange process between the Ca2+ ions which cross link the alginate molecules and the added Cd2+; 

changes in the Ca2+ concentration of the medium in the system would provide evidence for such a theory. Alginate 

beads that were exposed to medium without FeEDT A removed more Cd than those incubated in the presence of the 

chelating agent. Although data from anion-exchange resin experiments suggest that EDT A does not chelate Cd to 

form a negative complex, it appears that the presence of FeEDT A inhibits the uptake of Cd by the alginate matrix. 

Some complicated ion-exchange process may occur in this environment which either competes for the alginate 

heavy-metalligands or inhibits the Cd from binding to the matrix. Therefore the Cd-binding sites provided by the 

apparatus are rapidly saturated and reduce the concentration of Cd in the medium by up to 60 %. However, they do 

not contribute to the long-term accumulation of the metal carried out by immobilized algae or reduce the 

concentration of the pollutant to that obtained by columns of immobilized Mougeotia 0536. 

Initial experiments revealed that a Cd concentration of 0.5 mg 1-1 was too high for the immobilized-cell system 

as no reduction in the pollutant concentration was recorded (Fig. 5.3). Attempts to negate the growth gradient 

observed along the length of each column by aeration of the medium, did not encourage a uniform cell density and 

actually inhibited Cd removal (Fig. 5.3); an analysis of medium sampled at the top of the column may indicate a 

growth-limiting concentration of a particular ion at this point due to its uptake by cells near the medium inlet of the 

column. Although the medium is buffered, Cd hydroxide compounds may form during aeration; such complexes 
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inhibit uptake of the metal and thus reduce the efficiency of the column. 

Control experiments with alginate beads devoid of cells did not reduce the concentration of Cd in the 

k
circula.tin~ m~~m, but resulted in an initial reduction in Cd over the first 24 h (Fig. 5.4). When the beads were J 
--r...f!J. ~v{riil' \. t' ~'-'j 
~ith cells, Synechococcus 0562 accumulated more Cd per unit dry weight than Mougeotia 0536, but did 

(, 

not reduce the Cd concentration in the medium to the same extent as Mougeotia 0536 because the latter produced 

more cells per column for metal accumulation (Table 5.2). A similar distinction between the concentration of metal 

accumulated per unit mass and the ability to remove U from the medium was observed by Nakajima~&. (1982). 

Both strains removed the most Cd from the medium when grown in packed-bed immobilized columns. This is 

probably due to the exhausted medium surrounding each cell being replenished faster than unshaken beads or free 

cells, resulting in the production of more Cd-accumulating cells per bead. 

Photosynthetic microorganisms that actively transport Cd across the cell membrane were immobilized in 

packed-bed columns in preference to strains that bind the metal at their surface, because it was believed that using 

cells which actively accumulated the metal would prove more effective in reducing the concentration of Cd in 

polluted effluents below the level of 0.005 mg 1-1 Cd required for drinking water. For Mougeotia 0536 cells 

immobilized in alginate beads this approach has proved correct, the Cd concentration of the medium was reduced 

from 0.1 to 0.002 mg 1-1 over 25 d, lower than the figure for cells that bind the metal to the cell wall, although the 

experiments were run for a longer time period (Macaskie and Dean, 1984c). Immobilized Synechococcus 0562 

cells reduced the concentration of Cd in the medium to levels comparable with those of organisms which bind the 

Cd at their surface. 

The majority of immobilized systems for the removal of heavy metals from effluents employ the process of cell 

surface I extracellular precipitation (Macaskie ~ill.. 1986; Kuhn & Pfister, 1989) which often removes the metal (at 

an efficiency of up to 99 %) within hours rather than weeks; the bound metal is then easily recovered by a change in 

medium pH or redox potential and the cells are recyclable (Greene~& .• 1987). Such a system is appropriate for 

toxic heavy-metals, as cell viability does not decline until the cell surface becomes saturated with the pollutant and 

exponentially growing cells, together with the constituents of the growth medium, are not usually required. 

However, there may be some merit in including another column containing immobilized cells that reduce the 

concentration of Cd further, below the designated limits that defme polluted effluents. It is also recognised that 

industrial effluents invariably contain an assortment of compounds inhibitory to algal growth, so that the chemical 

approach of surface precipitation is probably more favourable than that of intracellular accumulation. Cd is not the 
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only heavy-metal which either acts as a pollutant or has commercial value. The technique of immobilizing live 

cyanobacteria or algae may have applications in accumulating high-value metals from environments which contain 

dilute concentrations of the element (Greene~ & .• 1986 ; Macaskie & Dean, 1987a ; Nakajima~& .• 1982) or 

remove radioactive waste from contaminated aquatic sites. 

Thin sections of immobilized cells exhibited normal morphology (Figs 6.3 and 6.4). The space between cells 

and the surrounding alginate matrix is either filled with extracellular mucilage (cells sectioned immediately after 

immobilization do not retain intimate contact with the matrix material), or the matrix may contract during the 

process of fixation I dehydration creating a gap between the cells and surrounding alginate. Incubating cell-sections 

on droplets of lysozyme, followed by Ru (or even perhaps Pb and U) staining would indicate whether or not the 

extracellular space observed between the immobilization matrix and the cells is due to the presence of mucilage. 

As Svnechococcus 0562 is a unicellular microorganism with greater packing potential, less free-space is 

evident in electron micrographs of immobilized cells than that observed for immobilized filaments of Mougeotia 

0536, which are not amenable to close packing. Alternatively a difference in the amount of extracellular mucilage 

produced by each strain may account for the heterogeneous cell density. 

9.6 Energy dispersive X-ray microanalysis 

Information concerning the cellular location of heavy metals can also be used to identify the final storage sites 

for toxic ions and, once determined, contribute towards modelling the mechanisms of metal accumulation used by 

these cells. Ultimately this data could be employed to enhance the concentration of internalised Cd in 

microorganisms by redirecting the metabolic pathways associated with metal deposition. It is with this potential in 

mind that samples of algae and cyanobacteria that had been cultured in the presence of Cd were processed for 

EOXMA to probe cells for accumulated Cd and record any macroelement shifts caused by heavy-metal exposure. 

In addition, whilst the acid digestion and subsequent flame atomic absorption spectrophotometry of large quantities 

of cell material grown in the presence of Cd reflects an average figure for internalised metal throughout a cell 

population, the analysis of individual cells provides information on the variation of accumulated metal within a 

population, reflecting different metabolic states. However, EOXMA is more readily restricted by machine detection 

limits, due to inherently small quantities of the element in question being available for analysis. 
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To maximise the resolution ofEDXMA so that individual cell organelles may be analysed, exploratory samples 

were first cryosectioned and viewed under the TEM as dried films; the process requires some skill and much time, 

little cell detail was revealed and good sections were infrequent. Air-dried whole cells were then probed and 

although fewer structural details were observed, the processing time for each sample before viewing by TEM is 

shorter and toxic elements which are only accumulated to a low level are present in higher concentrations than the 

heavy-metals in thin sections. 

Initial attempts to quantify the peak integrals obtained from the analysis of individual cells, involved spraying 

microdroplets of elements at a known concentration in 5% dextran (to mimic the matrix-prompted bremstrahlung 

background-radiation). Unfortunately the resulting peak integrals were not proportional to the quantity of element 

present, as little control was possible over the droplet volume (only dextran standards of equivalent circumference 

were analysed) and thus the amount of element deposited (Fig. 6.5). To provide some measure of the contribution 

that each element affords to the whole spectrum, a semi-quantitative approach was taken which applies a machine 

efficiency-factor to the peak integral of each element. 

However, if the profiles of heavy-metal exposed cyanobacteria and algae are to be effectively compared, a fully 

quantitative procedure is required to convert peak integrals into concentrations. A more rewarding approach to 

achieving this aim might be via the production of a standard, synchronous continuous culture whose cells contain 

equivalent concentrations of each element. With an accurate determination of cell density and analysis of the 

elemental content of large volumes of culture (about 50 ml), the peak integrals of elements from single cells of this 

uniform population may be used to calibrate EDXMA profiles. 

The only background peak recorded from the specimen support was that of Cu signals emanating from both the 

EM column and the specimen support. Although the use of nylon grids would negate Cu signals obtained from the 

specimen support and facilitate the cellular location of this metal, it is not known if components of the TEM column 

generate detectable Cu X-rays which would prove inseparable from those originating from the sample. 

Readings from the cell wall and inclusion bodies of air-dried cells (which present a thick section to the electron 

beam) always included a cytoplasmic component, but the number of counts from the cytoplasm indicate that this 

region of the cell makes a small contribution to the overall peak integrals. 

EDXMA profiles of the polyphosphate bodies observed in air-dried samples of Synechococcus D562 revealed 

differences in metabolic states, signified by the size of the P peak and K to Ca peak-integral ratios (Fig. 6.6). The 

occurence of strong Ca signals in polyphosphate bodies that had accumulated heavy-metals was also observed by 
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Jensen~ ru. (1986); the presence of a high concentration of Cain these bodies may exert control over the capacity 

of individual organelles to store toxic metals. The association between polyphosphate-bound Cd and a high Ca to K 

ratio (recorded at a frequency of less than one granule in 25) suggests that scope exists to synchronise the metabolic 

profile of a cell culture in order to enhance the concentration of Cd bound by polyphosphate bodies. It is possible 

that the number of polyphosphate bodies which exhibit a strong Ca signal may be increased by a change in the ionic 

components of the medium, but further work is required with cultures grown in a variety of ion concentrations. Cd

binding organelles may represent the final storage site for this metal after transport across the cell by Cd-binding 

peptides or proteins (these ligands potentially contribute towards the Cd peak obtained from a cytoplasmic reading 

(Fig. 6.6)) and therefore warrant further study as the Cd accumulating ability of these P stores may determine the 

maximum concentration of cytosolic Cd that can be tolerated. 

An example of the control which is possible to attain over the metal composition of a cell is the appearance of 

Ba peaks for cultures grown in medium with a ten fold increase in the Mn concentration of PPJ medium. Because 

peaks for Ba were only observed for cells grown in high Mn medium, the observed Ba may be co-transported by the 

Mn2+ cell membrane pump (although a Mn I Cd symport similar to that found in yeast (Tynecka ill; l!!., 1981a) does 

not appear to exist, confrnnatory flame atomic absorption spectrophotometry evidence is required). As Ba was not 

deliberately added to PPJ medium, the element may have originated from glass flasks used to culture the 

cyanobacteria or impurities in the salts used to formulate stock solutions for the medium. 

Although the concentration of Cd detected in the polyphosphate bodies of cells grown in high Mn medium was 

not amplified (in comparison with cultures from unamended PPJ medium), EDXMA profiles of Synechococcus 

D562 cells grown in PPJ medium with a reduced concentration of Mn are worth generating, because the 

concentration of accumulated Cd may be enhanced if the number of Mn2+ ions available for cell-membrane 

transport are limited and Cd2+ ions take their place. 

Precipitates of Fe formed on the surface of Synechococcus D562 cells also co-precipitated Cd, but it is not 

known whether the process of Cd precipitation enhances or reduces the amount of Cd accumulated internally. Such 

surface precipitation was not always observed and may be related to a particular stage of growth in which Fe3+ 

becomes insoluble. 

Although Calothrix D184 samples are characterised by a much higher Ca content in their polyphosphate bodies 

than those analysed in Synechococcus D562 (high peaks for Ca from polyphosphate bodies may be linked with the 

accumulation of Cd to detectable concentrations in these organelles), no Cd was observed in cells of this strain (Fig. 
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6.8 and 6.9). As flame atomic absorption spectrophotometry samples of Calothrix D184 proved to contain low 

concentrations of Cd, the absence of a Cd signal from EDXMA is not unexpected. The strong Cl signal obtained 

from the cytoplasm ofCalothrix D184 is unique to this strain (Fig. 6.9); however, further biochemical studies are 

required to identify its role in cellular metabolism. 

Potential Cd-induced shifts in the elemental profile of microorganisms cannot be separated from variations in 

the metabolic status of individual cells; many more scans are required to record the variation in elemental 

composition of unexposed cells before the influence of this metal upon the cell constituents can be demonstrated. 

Mougeotia D536 is characterised by a strong K peak in all scans, the Ca to K ratio was consistently low and once 

again, no peaks for Cd were ever recorded (Fig. 6.10). Although an AI peak was conspicuous in Cd-free cells and 

absent from formvar film spectra, flame atomic absorption spectrophotometry data are needed as further evidence 

for the presence of AI within these strains. Since Al was not a planned constituent of the medium, the element is 

probably present as an impurity in the inorganic salts used to formulate the medium (the limits for both Ba and AI in 

these chemicals are about 0.002 % ). 

Prominent Cl, K and Fe peaks were recorded in Klebsormidium D537, but no Ca or Cd (Fig. 6.11). Therefore, 

the Cd accumulated by laboratory strains was not detected by EDXMA except when sequestered to a high 

concentration, reflecting the poor detection limits of this technique. The search for Cd has also proved elusive 

during the analysis of thin sections (Heuillet ~ ID_., 1986); thus the limiting factor in the detection of Cd is the 

number of X-rays emitted from the sample (and hence the concentration of element present), rather than a specimen 

adsorption phenomenon which may have reduced the number of X-rays reaching the detector from thick, air-dried 

specimens. 

After the description of a sample's elemental profile the compound nature of intracellular inclusion bodies I 

surface precipitates can be attempted only if two or three major peaks are present (assuming that complexes possess 

a stoichometric relationship). The scan of precipitates of what is presumably BaS04 on the surface of Spirogyra is 

an example of such extrapolation (Fig. 6.16). 

Field samples also failed to yield Cd in their spectra, probably due to the relatively low concentrations of 

environmental Cd which these strains experience. The only EDXMA peaks obtained for Cd were from 

Synechococcus D562 cells cultured in the presence of 4 mg 1-l Cd - a metal concentration which is about 100 times 

higher than the Cd recorded at each field site. However, a variety of other metals were detected either as surface 

precipitates or stored in intracellular inclusion bodies. Zn and Fe were accumulated to high a concentration in 
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samples of Stigeoclonium from Rampgill Level (exhibiting the highest Zn concentration of all four sites) and 

Klebsonnidium from Caplecleugh Low Level; although K and Ca contributed many of the X-ray counts for 

Stigeoclonium, Mg peaks were also relatively high for this strain (Figs 6.12 and 6.13). In addition, large peaks for 

Ba and Pb recorded in algae sampled from Gillgill Bum (the site with the highest Cd concentration) (Figs 6.16, and 

6.17). These profiles demonstrate the application of EDXMA to environmental monitoring; the metals that have 

been precipitated on the surface of the algae are a record of the heavy-metal contamination that the stream has 

experienced as a result of mining in the area. There have apparently been no previous studies that relate the 

concentration of metal in microorganisms as defmed by EDXMA, to the fluctuation in environmental metal. 

Laboratory investigations which utilise a mixture of metals in an attempt to produce scans equivalent to those 

obtained with field material, may indicate that the complex chemical and microbial environments of waterways 

cannot be mimicked by in vitro models. 

A quest for the cellular localisation of potentially toxic metals by EDXMA is hampered by the relatively high 

detection-limits of this machine. Thin sections do not contain enough of the element to yield peaks above the 

background radiation and the variable diffusion volume of air-dried cells (which contain Cd at detectable levels) 

makes quantification very difficult. Metals that are sequestered to a high concentration in intracellular bodies or 

precipitated on the surface of the cell provide the best material for this type of analysis. 

The original reason for generating EDXMA profiles of cyanobacteria and algae that had been exposed to Cd 

was to gain control over the concentration of metal accumulated, but as the only strain to produce a detectable Cd 

peak was Synechococcus 0562, efforts to control the process of Cd accumulation from a knowledge of the pathways 

of metal uptake should be focused on this strain 

9.7 Scanning proton microanalysis 

The same rationale that prompted an investigation of the cellular location of heavy metals by EDXMA applies 

to the decision made to employ SPM for the localization of Cd; the ultimate aim was to gain control over the 

maximum concentration of metal that each cell can accumulate. Due to the low number of EDXMA spectra 

showing Cd peaks, samples were analysed with SPM because the higher energy (3 MeV compared with 0.1 MeV) 

and larger particle size of the incident proton beam induces more X-rays from the specimen than the stream of 

electrons used in EDXMA. The scan area of 30 ~m2 represents the minimum sample dimensions that the proton 



227 

probe can discriminate, whilst EOXMA has an effective scan area of 0.1 J.Lm 2 and facilitates the investigation of 

subcellular organelles. As a result, the colour scans produced by SPM cannot be used to identify individual cell 

components, thus limiting the resolution of this technique. 

The pixel map obtained for Cd in a sample of Klebsormidium 0537 (a strain which does not accumulate Cd to 

high concentrations) suggests that SPM has a lower detection limit for the metal (Fig. 6.22). No Cd peaks were 

recorded for Synechococcus 0562, probably because the polyphosphate bodies which accumulated the metal to a 

high concentration (organelles with a high Ca to K ratio) were not scanned (Fig. 6.19). The quantities of Mn and Ni 

(metals not detected by EOXMA in this study) observed in all four strains, provide further evidence that the 

technique of SPM is suitable for the detection of elements which are accumulated to low concentrations. 

A strong Cl signal from Calothrix 0184 cells recorded by EOXMA (Fig. 6.20) is substantiated by SPM scans; 

a high Cl concentration was also recorded in Mougeotia 0536 (Fig. 6.21) but no attempt has been made to assign an 

explanation to these high Cl profiles. Although Cd was not successfully localized by SPM, additional Synechoccus 

0562 scans might generate positive results for Cd; the heterogeneous distribution of Cd amongst polyphosphate 

bodies of different cells has been demonstrated by EOXMA and only a few SPM scans of Synechoccus 0562 were 

made. Frequent records of AI peaks (probably present as impurities in the stock solutions used to prepare the 

media) for all strains suggest that the AI detected by EOXMA is not an artefact and reinforces the view that all 

observations should be supported by evidence from a variety of sources. An attempt to compare the data obtained 

by these two scanning techniques (in terms of% composition of equivalent elements) would prove erroneous due to 

the difference in probe resolution, sampling time and mode of analysis. 

Therefore, although this approach can be used to detect the microelements accumulated by algae, substantial 

sample degradation must occur due to the long scanning times {up to 20 min) and little subcellular information is 

generated. With an increase in detection limits, EOXMA should prove to be the method of choice for the 

examination of cell components in the future. 

Whilst the original aim of manipulating the concentration of Cd accumulated by these strains via information 

obtained on the cellular partitioning of heavy-metals (from EOXMA and SPM techniques) has not been achieved, 

some guidelines for probing heavy-metal contaminated cultures have been delineated. 
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9.8 Screening for a MT gene 

In addition to the accumulation of Cd by polyphosphate bodies, the ubiquitous cysteine-rich MT proteins 

isolated from many different species have also proved to be effective ligands for reducing the toxicity of free, 

divalent intracellular Cd (Kligi & Nordberg, 1979). If MT were discovered to bind a significant proportion of the 

cytosolic Cd accumulated by Synechococcus D562, an increase in the transcription rate of this protein (either 

invoked by promoter control or multiple gene inserts) may increase the Cd accumulating capacity of this organism. 

The extent to which enhanced levels of MT within a cell increase the concentration of Cd accumulated, 

depends on the function of the protein; more metal may be detoxified if the MT acts as a metal storage site rather 

than a transport molecule. With this target in view, plasmid and genomic DNA extracted from Synechococcus 

D562 was probed for the occurrence of DNA sequence homologous to that from Synechococcus PCC 6301 MT, 

currently the only strain of cyanobacteria shown to produce a MT (Olafson ~ al .• 1988). 

As a frrst step in DNA isolation somewhat destructive treatments were employed to degrade the cell wall, for 

although a high yield of spheroplasts was attained, medium inoculated with these emasculated cells did not produce 

viable cultures. The sequential requirement of lysozyme followed by protease may indicate that the extracellular 

mucilage protects the cells from protease action and must be partially degraded by the NAG-NAM specific enzyme 

before the cell wall can be attacked (Figs 7.1 and 7 .2). An enzyme with a more restricted action than that of the 

general protease (isolated from Strej)tomyces ~ that was employed in this investigation, may result in viable 

spheroplasts; a knowledge of the composition of the cell wall would help to identify the types of catalytic 

mechanism required. Once intact spheroplasts have been generated, the constituents of the medium must be 

reorganised to inhibit cell wall-growth before Cd uptake studies can be recorded. Differences in cell-wall 

composition between cyanobacteria are highlighted by the fact that some strains of Synechococcus form spherical 

cells after incubation with lysozyme and no further treatment (Delaney, 1984). 

As an extension of the cell disruption observed during the plasmid extraction protocol for Synechococcus 

D562, the effect of lysozyme digestion upon the cells was investigated. The heavy-metal stains of Os, U and Pb 

employed in TEM sections did not stain the native mucilage and neither did Ru (Figs 6.2 and 8.1). However, the 

action of lysozyme on the mucilage of cells, exposed ligands (probably free acidic-groups) which bound Ru ions, 

revealing an extensive extracellular matrix. The EM image of this stained carbohydrate may appear distorted as a 

result of lysozyme digestion and the process of drying the cells on grids. Either the action of protease is dampened 
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by untreated mucilage, or sections of the cell wall also possess NAG-NAM groups which must be split before 

protease can act; for a single step digestion of Synechococcus D562 cells with this second enzyme did not produce 

spherical shaped units. Results from the EDT A experiments and a lack of binding by Ru to an undigested matrix, 

suggest that this mucilage does not bind Cd. 

The large volume of culture required for Synechococcus D562 plasmid extraction indicates that the DNA is not 

present at a high copy number (only 10 ml of an E . .kQll pUC19 culture was required to produce a high concentration 

plasmid sample, compared with 4 litres of cyanobacteria). Although the phenol/ chloroform extraction procedure 

proved adequate for the isolation of DNA, pulsed gel alternating field electrophoresis of whole cells may prove a 

faster, more productive method for generating restriction quality, plasmid DNA. Plasmid number and size varies 

from one species of photosynthetic microorganism to another (Cifferi ~ l.ll., 1989), but few genes have been 

assigned to these regions of DNA and no reference to plasmid encoded, metal-tolerance factors have been found in 

cyanobacteria. Strains of Synechococcus D562 grown in the presence and absence of Cd proved to contain 

plasmids of similar size and restriction sites, showing that Cd does not operate as a selective pressure for these 

circular strands of DNA in the same manner as antibiotics (Fig. 7 .3). 

A blot of genomic and plasmid DNA with probes designed to hybridize with the MT from Synechococcus PCC 

6301 did not bind the labelled oligonucleotides. This result is not conclusive as the binding stringency of the probe 

may have been too high if sequence heterogeneity exists between the probe and target DNA which does not favour 

an oligonucleotide match under these strict binding conditions. 

An alternative approach would be to use the MT probe sequences as primers for a polymerase chain reaction to 

amplify any MT-like genes present in Synechococcus D562. A positive result in this area would then facilitate 

investigations of the influence of Cd upon the regulation of gene transcription and identification of metal regulatory 

elements. 

If this strain does not prove to contain a MT then the process of Cd detoxification may be restricted to 

intracellular transport via Cd-binding peptides and storage in polyphosphate bodies with a relatively high Ca 

content. A search of the available literature reveals information on detoxification pathways in bacteria but no in

depth studies on cyanobacteria or algae. 
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9.9 Cd-binding peptides 

Another mechanism for the detoxification of cytosolic Cd that has been identified in a variety of 

microorganisms and higher plants is the utilization of poly(y-glutamylcysteinyl)glycine peptides for the binding of 

intracellular Cd (Reese~&., 1988 ; Robinson, 1989 ; Rauser, 1990). As the detection of such peptides in the 

cyanobacteria and algae used in this study would provide another cell process for manipulation to raise the 

efficiency of metal accumulation, samples of these strains exposed to the appropriate Cd concentrations for eliciting 

peptide-bound Cd were analysed. 

If the concentration of toxic metal bound by these molecules is to be enhanced, then metabolic rather than 

genomic (appropriate for manipulating the concentration of Cd bound by MT) perturbation will have to be designed 

to increase the amount of ligand synthesised, as {"fEC)nG's are not transcriptional products. From experiments 

carried out on the four laboratory strains, putative (yEC)nG's were found to bind intracellular Cd, but only when a 

high concentration of Cd was added to the medium at the end of the log -phase of growth (Figs 7.4, 7.5 and 7 .6). 

Mougeotia 0536 appears to bind more Cd with (yEC)nG's than Synechoccus 0562 when grown in 0.5 mg 1·1 (Fig 

7 .5); this may reflect a higher utilization of the S-transport molecules for metal detoxification. 

As the HPLC proflles depict only one point of the growth curve and one level of added Cd, little can be 

inferred about the role of (yEC)nG's in heavy metal detoxification from the data produced by this study. In order to 

record these potential Cd-induced fluctuations in peptide production more easily, glutathione labelled with 

radioactive carbon could be employed as an effective tracer compound for use in the rather more dynamic technique 

of nuclear magnetic resonance. Complete reducing conditions cannot be guaranteed during the extraction of algal 

cells, therefore the ratio of Cd bound to the putative peptides and that complexed by ~-mercaptoethanol does not 

necessarily reflect the concentration of metal bound in vivo by (yEC)nG's. In addition, the process of extraction may 

also disrupt regions of the cell which contain the metal, resulting in free Cd which may then bind to (yEC)nG's which 

were not originally intended for Cd detoxification. If the predominant role of these peptides is that of S transport 

(Robinson~&., 1990) the extent to which the S metabolism of the cell is disrupted by high levels of free cytosolic 

Cd, has yet to be elucidated. The common protein profiles that were recorded show peaks at the (yEC)nG retention 

time for the cytosolic fractions of the procaryotes {broad distribution of protein) but not eucaryotes (most protein 

concentrated at the void volume), indicating that additional Cd-binding proteins may also be present in the 

cyanobacteria. 
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Cyanobacteria and algae grown in the presence of Cd at a low concentration do not yield putative (yEC)nG 

peaks; an acetone precipitation step could be used to overcome the detection limits of Cd analysis to search for low

level indigenous peptides. The requirement for the high concentration of Cd required to visualise the ligand, may 

be due to the induction of peptide synthesis or a redirection of their metabolic direction from S transport to Cd

binding. 

As endogenous peptides were not found to bind significant amounts of the metal, the process of Cd 

sequestration by peptide ligands must be under some form of inducible control. Cells which have undergone this 

treatment, partition about 20 - 40 % of the cytosolic Cd into one HPLC peak with the residual either weakly bound 

to intracellular components or as the free divalent ion. But cells which were not shocked with Cd failed to produce 

peaks for the metal-bound peptide. Therefore Cd-binding peptides may act as a secondary level of defence in these 

strains after the usual detoxification mechanisms have been saturated, because only a high concentration of Cd in the 

medium elicits peaks for (yEC)nG's. 

Alternatively Cd-binding peptides may contribute a transitory role in metal detoxification by providing ligands 

for the safe transport of the pollutant from the cell wall to polyphosphate bodies (or other sites of deposition eg. lipid 

bodies) where they are bound in a more permanent manner. 

The data collected for these strains of algae should be augmented by other studies to certify that the peaks 

obtained on gel permeation HPLC profiles represent Cd bound by (yEC)nG's: characterisation of the amino acid 

content of the metal-binding peaks, determination of the distribution of peptide chain lengths and the number of 

peptides chelating each Cd2+ ion. 

If a MT is shown to bind cytosolic Cd in Synechococcus D562, then three mechanisms of detoxification (by 

polyphosphate, protein and peptide ligands) will have been demonstrated. Therefore, the spatial and temporal 

contribution that each mechanism affords to the complexation of Cd is the next step in building a model of the 

complete molecular response exhibited by this strain to a Cd challenge. 

9.10 Ultrastructural, enzyme and protein damage 

For cells which do not possess the heavy-metal detoxification mechanisms outlined above, the presence of Cd 

in the cytosol can result in wide-ranging cell damage (fables 1.8 and 1.9); consequently, the maximum 
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concentration of Cd that a cell population can accumulate is reduced. In order to detennine the extent to which Cd 

limits the efficiency of metal uptake in strains of cyanobacteria and algae, investigations were launched into the 

ultrastructural and protein defects which arise from growth in the presence of toxic concentrations of Cd. 

The affinity exhibited by this metal for thiol groups can lead to the collapse of membranes which contain these 

molecules (Duret ~ al. 1986) or the production of intracellular inclusion bodies which store the toxic metal (Heuillet 

51&. 1986). Such ultrastructural changes are often documented by TEM sections of microorganisms cultured with 

heavy-metals (Table 1.8). Although Calothrix D184 did not accumulate Cd to a high concentration, cells cultured 

in 1 mg 1-1 Cd suppressed polyglucoside granule fonnation and showed disordered thylakoid membranes (Fig. 8.2). 

In conjunction with the low levels of Cd-binding peptide discovered in this strain and the small quantity of 

accumulated Cd, these observations suggest that Calothrix D184 relies upon an exclusion process to combat the 

toxic effects of the metal and does not possess extensive intracellular defence-mechanisms. Therefore if the metal 

is transported into the cell, a low concentration of cytoplasmic Cd will elicit a toxic, ultrastructural response. 

Mougeotia D536 cells grown in the presence of 0.8 mg 1-1 Cd displayed small Ca I P precipitates (determined 

by EDXMA) (Heuillet tl al., 1986) around the periphery of the cytoplasm (Fig. 8.3). These granules may contain 

Cd below the detection limit of EDXMA and could represent a final detoxification site which is serviced by Cd

transporting ()EC)nG's. 

When cultured in the presence of 1.0 mg 1-1 Cd cells ofKlebsonnidium D537 did not exhibit any of the heavy

metal disruption associated with Cd bound to the thiol groups of membranes (Vymazal, 1987), but the heavily

stained plastoglobuli observed in control cultures without added Cd were absent from Cd-exposed samples (Fig. 8.4a 

and b) and appeared to be replaced by more opaque lipid-bodies. This result is in contrast to the heavy-metal 

response exhibited by Stigeoclonium tenue; an increase in plastoglobuli number was recorded for cells that had been 

exposed to 0.5 mg 1-1 Pb (Silverberg, 1975). The explanation given for this ultrastructural change is that the 

damage inflicted upon the thylakoid membranes resulted in an excess of cytoplasmic lipids, which were therefore 

accumulated as plastoglobuli. In contrast, the apparent conversion of plastoglobuli into larger lipid bodies in 

Klebsonnidium D537 may have occurred to provide Cd-binding sites in the chloroplast by changing the molecular 

configuration of the plastoglobuli lipids. The two different mechanisms outlined above for the detoxification of Cd 

require further explanation as to why a common ligand (components of plastoglobuli) does not provide the same role 

(binding cytosolic Cd). 

The lack of ultrastructural disorders in Synechococcus D562 (Figs 8.1a and b) grown in the presence of a 
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relatively high level ofCd (4 mg 1-1) presumably indicates an ability to reduce the free divalent cytosolic metal 

content to non-toxic concentrations, although the limited number of organelles visible in this strain diminishes the 

possibility of observing Cd-induced ultrastructural defects by EM. A reduction in the dry weight of cultures that 

were grown in the presence of high concentrations of Cd for EM investigation indicates that a toxic effect is being 

exerted by the metal, but it appears that only healthy cells are available for ultrastructural studies in the exponential 

phase of growth. Therefore, 1EM sections of cell populations at different stages of growth (especially within the 

ftrst few hours following Cd addition) may reveal more severe ultrastructural damage to particular cells. 

The reason for taking electron micrographs of Cd-exposed cells was to determine the extent of metal-induced 

ultrastructural disorders, as this may influence the maximum concentration of Cd that can be accumulated by each 

strain. The Cd that was employed for EM investigation was deliberately high to maximise the probability of 

recording defects in cell ultrastructure, however the changes in cell organisation that were observed as a result of Cd 

exposure cannot be related to a ceiling for the amount of Cd accumulated because only viable cells were sampled 

and it is difficult to relate ultrastructural defects to restrictions on metal accumulation efficiency without more 

analysis. But since the concentration of Cd employed in ultrastructural studies was an order of magnitude higher 

than that used for the immobilized cell columns, the cytotoxic effects exerted by this metal are probably not a 

limiting factor in the amount of Cd accumulated by packed-bed columns. 

The enzyme inhibitory properties of Cd were demonstrated with the extracellular alkaline phosphatase from 5 d 

old Svnechococcus 0562 (Table 8.1). At concentrations of 1 and 10 mg 1-1, Cd reduced the phosphatase activity of 

ultraflltered enzyme at an assay pH of 7 .0, but had no effect in assays run at pH 10.3, probably because most of the 

Cd was present as hydroxide complexes rather than in a toxic, divalent form. Cultures grown in the presence of Cd 

also failed to exhibit alkaline phosphatase inhibition; this indicates that the bound Zn atoms responsible for the 

correct active-site electron environment, are ftrmly attached to the protein before export from the cytoplasm and not 

easily replaced by competing cations. Even if Cd can enter the active-site domain of this extracellular enzyme, no 

toxic effects were recorded. 

The high activity of Svnechococcus 0562 material grown in 4 mg 1-1 Cd, is probably a result of an extended 

growth period and concurrent accumulation of extracellular enzyme. Therefore, no comparisons of enzyme activity 

can be made between this and lower concentrations of Cd because the cultures were sampled at different time 

intervals. The loss of medium due to evaporation over the long period of incubation required for cells growing in 

the presence of 4 mg 1-1 Cd may also concentrate the enzyme and therefore contribute to the high rate of catalysis. 
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The retention of enzyme activity after the passage of growth medium across a 100 kD membrane, indicates that 

Synechococcus 0562 excretes a high Mr form of the protein which is not associated with the extracellular mucilage 

normally retained by 0.2 J.l.m nitrocellulose filters. This enzyme is therefore suitable for further purification because 

of its lack of association with other cell components. Ultrafiltration also proved effective in enhancing the 

hydrolytic capability of samples with inherently low cell-bound alkaline phosphatase activity i.e. cell-bound PME 

and POE. Protein concentration by the use of Mr cut-off membranes also has applications in reducing the extensive 

incubation times required by samples which exhibit a low enzyme activity (eg. Mougeotia 0536). Other enzymes 

whose active-site metal is more readily replaced by Cd2+ may prove to be a better indicator of Cd toxicity in both 

growth and assay media. 

If intracellular protein damage is caused by cytosolic Cd, then one-dimensional SOS PAGE is not 

discriminatory enough to reveal its toxic effects (Figs 8.7, 8.8, 8.9 and 8.10). Although common banding patterns 

were observed between cyanobacteria and algae, no low Mr Cd-response proteins or dissociated subunits were 

stained and the loss of protein bands as a result of transcriptional interference was not observed. The protein 

resolution of these gels may be enhanced either by running samples in a second dimension, or by fractionating the 

cells before electrophoresis to reduce the density of the main protein bands. This step may increase the sensitivity 

of the technique for Cd-inducible I sensitive proteins which are not present in high concentrations within the cell. 

Alternatively, silver staining would be appropriate for proteins at a low concentration in cell sub-fractions. 

The main aim of this research was to determine the feasibility of employing immobilized, growing 

cyanobacteria and algae which accumulate Cd to high concentrations for the removal of the metal from polluted 

effluents. The two strains of algae selected for such a system cannot be recommended in isolation, as the rate of Cd 

removal was slow in comparison with immobilized microorganisms that precipitate toxic metals at the surface of the 

cell. In addition, metal-laden effluents that contain algicidal compounds (as do many complex industrial wastes) 

cannot be treated by a live cell system. However, immobilized, growing cells may prove effective as a final step in 

the process of dealing with Cd, by reducing the levels of this heavy metal below legal limits following an intial 

treatment with cell-surface ligands that bind the pollutant. 

The use of EOXMA and SPM for the cellular localisation of toxic heavy-metals is only applicable to cells that 

accumulate the metal to a high concentration, particularly at the surface of the cell or when combined with 

intracellular inclusion bodies. But with an improvement in the detection limits and accurate methods of quantifying 

profiles, this technique will prove valuable for formulating heavy-metal detoxification mechanisms. 
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TEM sections of Cd-exposed algae will only demonstrate ultrastructural damage if affected cells with few 

tolerance mechanisms are sampled,. In order to avoid the analysis of cells that have been selected for heavy-metal 

tolerance by growth in metal-amended media, the culture should be sampled after the addition of Cd and throughout 

the growth phase. 

The other areas of investigation covered by this thesis require further work if the mechanisms of heavy-metal 

tolerance utilised by the Durham Culture Collection strains are to be identified: appropriate conditions for the 

continuous selection of Cd-tolerant algae have yet to be defined, whilst the sequencing of Cd-induced shock proteins 

from isoelectrofocusing I SDS PAGE gels and changes in the metabolism of (;£C)nG's during a variety of heavy

metal exposure regimes would yield useful information. 
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SUMMARY 

1. The ftrst step towards realising the main aim of this research (employing growing, immobilized cyanobacteria 

and algae for the removal of Cd from polluted effluents), was to screen microorganisms from heavy-metal 

environments that accumulated Cd to a high concentration. Strains of cyanobacteria and algae from the 

Durham Culture Collection and heavy-metal contaminated sites were investigated for this property. Two 

strains, Synechococcus D562 and Mougeotia D536 proved to be the best accumulators of the metal and were 

therefore used throughout this research. The toxic effects of the Cd added to the growth medium of Calothrix 

D184 and Klebsormidium D537 were also investigated. 

2. In order to determine the toxicity of Cd which has been added to media, a number of factors which influence Cd 

activity were investigated. The process of au toe laving media, evaporation during incubation and the presence 

of EDTA increased the original target values for the Cd concentration that cells were exposed to by only 4 %. 

When Synechococcus D562 cells were washed with 25 mM EDTA, all internalised Cd was removed; a lower 

concentration of 0.25 mM EDT A was then used to determine the amount of metal adsorbed by the cell wall. 

Although less Cd was extracted by this treatmeitt, the metal that was chelated was not necessarily derived 

exclusively from the cell wall. Dead cells of Svnechococcus D562 (killed by heat treatment) did not exhibit 

many Cd-binding ligands on their surface, therefore the majority of the Cd accumulated by this strain is to be 

found inside the cell. 

3. As an alternative approach to the step-wise selection of Cd-tolerant cells by batch culture, the process of 

continuous culture was employed in an attempt to obtain cells which tolerated high concentrations of Cd with 

enhanced levels of accumulated metal. Using batch cultures of Synechococcus D562, a light intensity of 100 

11mol photon m-2 s-1 was chosen to control a continuous cell-culture in the presence of 2 mg 1-1 Cd. A rise in 

the Cd concentration of the medium feed up to 3.4 mg 1-1 Cd did not inhibit growth, but above this Cd 

concentration a rapid decline in whole cell absorbance and cell density were observed. In comparison, batch 

cultured cells tolerated 5 mg 1-1 Cd (albeit with a long lag-phase). 
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4. After an intial investigation of a number of immobilization matrices, calcium alginate was selected as the most 

appropriate material for the retention of cells that accumulate Cd. The Cd-binding sites of calcium alginate 

became saturated within 16 h, complexing about 60% of the added Cd when FeEOTA was omitted and 10 to 35 

% in the presence of FeEOTA, depending upon the concentration of Cd employed. Synechococcus 0562 and 

Mougeotia 0536 were immobilized in calcium alginate beads and operated in packed-bed columns to remove 

Cd from the medium. Aeration of the system did not relieve the limited growth conditions observed at the top 

of the column and actually inhibited Cd removal, whilst 0.5 mg 1-l Cd proved the upper limit of added metal for 

this system. The additional biomass generated by immobilized Mougeotia 0536 extracted more Cd from the 

medium stream than Synechococcus 0562. Immobilized stationary cells and free cells did not remove Cd as 

efficiently as packed-bed columns. 

5. The localization of Cd within cyanobacterial and algal cells was studied in order to generate information about 

the mechanisms of intracellular accumulation that are adopted by these strains, with the ultimate aim of devising 

procedures to enhance the concentration of Cd accumulated. Initial attempts to analyse frozen, algal sections 

with EDXMA proved technically intractable. Therefore the simpler procedure of probing air-dried cells was 

adopted. A high Cd detection limit for this machine became apparent, as only Synechococcus 0562 cells (with 

a high Ca content to their PP bodies) displayed Cd peaks above the background radiation. Evidence that the 

manipulation of the metal content of a cell is possible by a change in the ionic composition of the growth 

medium was provided by Ba peaks, which were only observed in cells that had been cultured in medium with a 

high Mn concentration. None of the other strains of algae that were tested produced scans containing X-ray 

counts from Cd. Algae collected from field sites contaminated with mined metal residues, accumulated Ba as 

surface granules and Pb, Zn, Fe, Mn and Ba in intracellular inclusion bodies. 

6. In order to overcome the resolution problems associated with EOXMA, samples were subjected to SPM. Peaks 

for Cd were recorded only in Klebsormidium 0537, a species which does not accumulate the metal to high 

concentrations. The other strains that were subjected to this technique failed to yield X-ray signals for Cd even 

though these microorganisms intemalise Cd to higher concentrations, however, other elements which are 

account for minor cell components (and not detected by EOXMA) were observed by this technique. 
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7. The degradation of the cell wall of Synechococcus D562 was carried out to investigate the role played by the cell 

wall in Cd detoxification and as a preliminary step towards DNA extraction. Both the cell wall and 

extracellular mucilage of Synechococcus D562 contained lysozyme digestion sites, which when stained with Ru 

red and viewed under the TEM could be visualized as a tortuous mesh of fibrils surrounding air-dried cells. 

Subsequent attack by the enzyme protease resulted in detergent-sensitive spheroplasts which were suitable for 

DNA extraction, but not viable for growth. 

8. The presence of Cd-detoxifying MT proteins in cyanobacteria and algae was investigated because of the 

potential for increasing the amount of MT produced by the cell to enhance the concentration of accumulated Cd. 

In order to ascertain whether or not the MT gene is present and localize its position, the DNA of Synechococcus 

D562 was analysed. A 14 kb plasmid was isolated from this strain when grown in the presence and absence of 

Cd. The plasmids isolated from both cell lines exhibited identical restriction sites for three nucleases, but a 

radiolabelled probe modelled upon conservative regions of the MT from Synechococcus PCC 6301 did not bind 

to Southern blots of Synechococcus D562 genomic or plasmid DNA, indicating that the MT gene may not be 

present in this cyanobacterium. 

9. Another detoxification mechanism was observed in all four strains from the Durham Culture Collection. 

Putative Cd-binding peptides (poly(y-glutamylcysteinyl)glycine) were detected when cultures were exposed to 

Cd at 6.12 mg 1-1 for 2 d at the late log-phase of growth. Indigenous poly(y-glutamylcysteinyl)glycines did not 

yield a peak at the correct elution volume when Cd was added to a cytoplasmic extract and no metal-binding 

peptides were observed for cells grown in the presence of 0.5 mg 1-1 Cd but not shocked with the metal at the 

end of their exponential growth-phase. The half dissociation pH of 5.0 (the pH at which half the original metal 

is bound by the ligand) for Mougeotia D536 Cd-binding peptides is in the same range as that for peptides in 

other species and a reversed-phase profile of the putative apopeptides (cell extracts treated with acid) produced 

thiol peaks similar to the well characterised poly(y-glutamylcysteinyl)glycines from Datura innoxia. 

10. An analysis of the ultrastructural damage caused by the presence of cytosolic Cd was intiated, to assess a 

potential reduction in the Cd accumulating ability of the strains used in this study. TEM ultra-thin sections of 

Calothrix D184 cells exposed to Cd revealed a loss of polyglucoside granules and collapse of the ordered 
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structure of the thylakoid membranes. Metal-treated Mougeotia D536 cultures exhibited heavily stained 

precipitates around the periphery of the cytoplasm which may bind Cd. Cell sections of Klebsormidium D537 

grown in the presence of Cd exhibited an inhibition of plastoglobuli formation, the released lipids may then be 

stored in larger, more opaque lipid bodies whilst Svnechococcus D562 failed to reveal any ultrastructural 

disorders when exposed to the heavy metal. 

11. A second indicator of cell toxicty, that of enzyme inhibition, was used to determine the influnce of Cd upon the 

rate of enzyme catalysis. No cell-bound alkaline phosphatase activity was recorded in Svnechococcus D562, 

nearly all of the activity was extracellular. The enzyme was not inhibited by a range of Cd concentrations 

either in the assay or growth media at pH 10.3. However, when the protein was concentrated and run at pH 7.0, 

the presence of Cd in the assay medium reduced activity. No enzyme inhibition was recorded for cells grown 

in the presence of Cd. The use of 30 kD ultrafiltration membranes proved effective in concentrating the 

enzyme and may be appropriate as part of an enzyme purification procedure. 

12. A further technique that was used for the assessment of Cd-induced damage involved the analysis of cell 

proteins by one dimensional SDS PAGE. The protein bands observed on the gels did not reveal any differences 

between cells exposed to Cd and those grown without the metal, except for a reduction in the staining intensity 

of a 17 kD band in Calothrix D184, although the procedure did yield common banding patterns between 

cyanobacteria and algae. 

13. Although Cd reduced the cell density of the four strains used in this study, no severe ultrastructural or 

biochemical defects were recorded; it is therefore assumed that the heavy-metal accumulating capacities of the 

cells that survive Cd exposure are not significantly damaged by the presence of Cd in the growth medium. 

Microorganisms which generate a high concentration of biomass and thus provide more Cd-binding sites are the 

most suitable types of cell for Cd accumulation as immobilized cells. The localization of toxic metals in 

individual cells proved difficult due to the low concentration of metal accumulated and the only metal

detoxification mechanism recorded in the cyanobacteria and algae used in this study were Cd-binding peptides. 
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APPENDICES 

Appendix 1 : Intensity of illumination for various culture environments 

Apparatus region 

Orbital shaker periphery 

centre 

Growth tank periphery 

centre 

Permenter top 

middle 

bottom 

Immobilized cell columns top 

middle 

bottom 

Appendix 2 : Amount of antibiotic present on each arm of the Oxoid Multodisks 

Code 30-12L code 30- 1 H 

ijl.g) 

chlortetracycline 10 chloramphenicol 

chloramphenicol 10 erythromycin 

furazolidone 50 sulphafurazole 

sulphafurazole 100 penicillin G 

neomycin 10 streptomycin 

penicillin G 1.5 units tetracycline 

streptomycin 10 

oxytetracycline 10 

incident light intensity 

ijunol photon m-2 s-1) 

20 

20 

80 

60 

40 

100 

100 

21 

20 

19 

ijl.g) 

10 

10 

100 

1.5units 

10 

10 
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Appendix 3 : Oligonucleotide sequence of the 20-mer primers used to probe Synechococcus 0562 genomic and 

plasmid DNA for the MT gene, based upon the Synechococcus PCC 6301 MT 

(Olafson~ ill.., 1988) 

MT amino acid sequence (underlined amino acids are the primer target regions) : 

TSTTLVKCACEPCLCNVDPSKAJDRNGLYYCCEACADGHTGGSKGCGHTGCNC 

Amino acid sequence of target regions : 

Nucleotide sequence of target regions : 

Primers 

A = adenosine T = thymidine 

N terminus : VAL - L YS - CYS - ALA - CYS - GLU - PRO 

C terminus : GL Y - HIS - THR - GL Y - CYS - ASN - CYS 

N terminus 3' : CACTTCACACGTACGCTGGG 

C terminus 3' : GT AAAGGTGGGTCAAACGGG 

N terminus primer : GTIAA YTGXGCITGXGAICC 

C terminus primer : CA YTTYCAICCIGTYTGICC 

C = cytidine G = guanosine I = inosine 

X = thymidine or deoxycytidine incorporated into the primer without preference 

Y = adenosine or deoxyguanosine incorporated into the primer without preference 



Appendix 4 : APA calibration curve of pNP concentration versus absorbance at 405 nm, with eight 

well-replicates per concentration 

264 

pNP concentration absorbance at 405 nm ± sem pNP concentration absorbance at 405 nm ± sem 

ijl.M) 

100 1.581 ± 0.0036 30 0.502 ± 0.0028 

90 1.451 ± 0.0063 20 0.327 ± 0.0021 

80 1.296 ± 0.0091 10 0.165 ± 0.0008 

70 1.148 ± 0.0040 7.5 0.130 ± 0.0008 

60 0.973 ± 0.0049 5 0.081 ± 0.0008 

50 0.833 ± 0.0019 2.5 0.047 ± 0.0009 

40 0.652 ± 0.0027 1 0.014 ± 0.0010 

Regression line : Y = 0.01602 X+ 0.00933 r2 = 0.9997 

Appendix 5 : Plot of % ratio (S = 1.0) of efficiency factors against ka X -ray energy (Ke V) for EDXMA of 

elements at 100 kV, 100 s livetime and 12 ° specimen tilt. 

2.0 Zn 

Ca 
1.5 

0.0+---------.---------.---------.--------.---------. 
0.0 2.0 4.0 6.0 8.0 10.0 

Kcx KeV 
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Appendix 6 : EDXMA profiles of strains from the Durham Culture Collection which were not 

exposed to Cd 

Fig. 6.1 EDXMA profile of Synechococcus 0562 grown without added Cd 

a) PP body, high Ca. Total net integral of profile= 6184 
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0.09 
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element 
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Ca 

b) PP body, high K. Total net-integral of profile= 60925 

Element 

Na 

Mg 

p 

c) whole cell. 

Element 

Na 

Mg 

AI 

Si 

d) cytoplasm. 
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Fig. 6.2 EDXMA profiles ofCalothrix D184 grown without added Cd. 

a) inclusion body. Total net-integral of profile= 5365 

Element % contribution element % contribution 
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b) inclusion body. Total net-integral of profile= 13388 
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c) cell wall. Total net-integral of profile= 3150 

Element % contribution element % contribution 

Mg 11.15 Cl 9.58 

AI 8.52 K 16.46 

p 2.54 Ca 43.01 

s 17.75 

d) cytoplasm. Total net-integral of profile= 897 
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Fig. 6.3 EDXMA profiles of Mougeotia 0536 grown without Cd. 

a) inclusion body. Total net-integral of profile= 24047 
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Fig. 6.4 EDXMA profiles of Klebsormidium D537 grown without Cd. 

a) inclusion body. Total net-integral of profile = 50870 
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Appendix 7 : Ultraviolet protein assay for SDS PAGE samples, relating BSA concentration with absorbance 

at280nm 

BSA concentration absorbance at 280 nm 

(mg ml-1) 

5.00 

2.50 

1.00 

0.50 

2.810 

1.362 

0.607 

0.308 

Regression line : Y = 0.5544 X + 0.02362 

BSA concentration absorbance at 280 nm 

(mg ml-1) 

0.25 

0.10 

0.05 

0.025 

r2 = 0.9993 

0.226 

0.093 

0.022 

0.010 
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Appendix 8 : Typical agarose-gel Mr -marker calibration relating the number of base pairs of each DNA fragment 

with the distance migrated, the regression line has been calculated with the log 10 values 

Base pairs log10 base pairs 

21226 4.32686 

5148/4973 3.71164 

4268 3.63022 

3530 3.54778 

2027 3.30685 

1904 3.27967 

1709 3.23274 

1375 3.13830 

947 2.97635 

831 2.91960 

Regression line : Y = -17.9844 X+ 84.9229 r 2 = -0.9763 

migration distance 

(mm) 

10 

16.5 

18 

19 

24.5 

25.5 

27 

29 

33 

34 
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Appenidx 9 : Protein composition of the standards used to calibrate SDS PAGE runs 

Protein Mr(kD) 

Albumin, bovine 66 

Albumin, egg 45 

Glyceraldehyde 3-P dehydrogenase 36 

Carbonic anhydrase 29 

Trypsinogen 24 

Trypsin inhibitor 20.1 

a-lactalbumin 14.2 


