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ABSTRACT 

Metal-Catalysed Cross-Coupling Reactions of Nitrogen Heterocycles 

 

Described herein are copper-catalysed N-C heteroarylations of benzimidazole, 1-

methylbenzimidazolone, imidazole and pyrrole. The products of these reactions then 

undergo palladium-catalysed C-C cross-couplings with aryl or heteroarylboronic acids 

under Suzuki-Miyaura conditions to provide a rapid entry to tris(hetero)aryl scaffolds 

comprising two or three N-heterocyclic rings. The sequential N-C and C-C couplings can 

be performed in a one-pot process.  

 

1,5-Di(hetero)arylated-pyridin-2(1H)-one derivatives have been synthesised in good yields 

starting from (2-fluoro-5-pyridyl)boronic acid. The sequence comprises three steps: (i) 

palladium-catalysed Suzuki-Miyaura reaction; (ii) basic hydrolysis; (iii) copper-catalysed 

C-N coupling. X-ray crystal structures are reported for selected pyridin-2(1H)-one 

derivatives. These compounds are of interest as new scaffolds for drug discovery. 

 

A one-pot synthesis of 2-chloro-3,4-diiodopyridine from 2-chloropyridine is described via 

a Directed ortho Metallation (DoM)/Halogen Dance (HD) mechanism in 26-28% yields. 

By performing sequential iterative Suzuki-Miyaura cross-couplings using a variety of 

functionalised heteroaryl and arylboronic acids, a series of novel 2,3,4-

triheteroarylpyridine scaffolds have been accessed in synthetically viable yields, including 

sterically hindered derivatives. An iterative two-fold Sonogashira/Suzuki-Miyaura reaction 

sequence gave access to 5-[3,4-bis(2-phenylethynyl)pyridine-2-yl]-2-fluoropyridine in 

48% overall yield. 

 

Disclosed is a novel route towards benzimidazolo[1,2-f]phenanthridines starting from 4-

tert-butyl-N-(2-iodophenyl)benzamide via a intermolecular palladium-catalysed N-C bond 

formation and dehydration to form 2-(4-tert-butylphenyl)-1-(2-bromophenyl)-1H-

benzo[d]imidazole. Performing an intramolecular C-H activation reaction on this provided 

6-tert-butylbenzimidazolo[1,2-f]phenanthridine. This compound could be of interest to 

materials science or as a new scaffold for drug discovery. 
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Synthesis of novel soluble, shielding auxiliary ligand 4-(4-(2-ethylhexyloxy)-2,6-

dimethylphenyl)pyridine-2-carboxylic acid (G1pic) has been achieved via a five step 

synthesis from commercially available starting materials utilising the Suzuki-Miyaura 

reaction on demanding substrates. A route towards a more shielded auxiliary ligand have 

been explored eventually providing 3-(4-pyridyl)-1,5-bis(4-(2-ethylhexyloxy)phenyl)-2,4-

dimethylbenzene as an intermediate for future work. Ir(III) complexes have been 

synthesised with G1pic and picolinic acid. 
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CHAPTER 1 - INTRODUCTION 
 

Convenience in the synthesis of families of multi-heteroaryl systems has been a goal for 

chemists seeking to create highly functionalised compounds to screen for pharmaceutical 

and agrochemical studies. Cross-coupling methodologies have, to an extent, addressed 

these needs by enabling functionality to be incorporated into starting materials to quickly 

create large families of highly functionalised compounds using few steps under mild, 

catalysed reaction conditions. Suzuki, Sonogashira, Heck, Stille, and Negishi carbon-

carbon cross-coupling reactions have been used to this effect by a number of groups by 

using known biologically active heterocycles as the skeleton for these compounds.1 

Carbon-heteroatom cross-coupling reactions have also experienced a renaissance of late 

thanks to pioneering work by Buchwald and Hartwig (palladium catalysed N & O-

arylations with aryl halides and nitrogen or oxygen nucleophiles),2 Buchwald (copper 

catalysed N-arylations with aryl halides)3 and the groups of Chan, Lam and Evans (copper 

catalysed N, O & S-arylations with aryl boronic acids and esters).4-6 

 

1.1 Cu-Catalysed C-N Cross-Coupling: Ullmann Reaction 

From the dawn of the 20th century, cross-coupling reactions have been studied and 

improved upon resulting in one of the most rapid growing fields in organic chemistry.7 In 

1901, Fritz Ullmann published work on the homo-coupling of nitro substituted aryl 

halides8 leading to many variations on the theme of Cu mediated C-C bond formation.7,9-11
 

Subsequently his 1903 publication on the condensation of amines with aryl halides12 and 

work on the amidation of aryl halides by Goldberg13 paved the way for future successes in 

C-N and C-heteroatom bond forming reactions.  

 

The Ullmann and Goldberg reactions rely usually (although not always) on stoichiometric 

use of copper powder or copper salts, strong bases and high reaction temperatures..  The 

limitations on functionality imposed by the reaction conditions, the low and often 

unpredictable yields and the associated problems in dealing with large amounts of copper 

waste limited widespread use. The ability to synthesise N-arylheterocycles, diarylamines, 

diarylamides, diarylethers and diarylthioethers in an efficient manner is of great 

importance considering their incorporation in a vast amount of natural products, 

biologically active compounds, drugs and agrochemicals.  
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Among the many reports of improvements in the Ullmann condensation reaction, the 

increased solubility of the copper source was thought to play a key role. Amide co-solvents 

such as DMF effectively solvate cuprous salts and purportedly increase stability of the 

catalyst.14-15 It was noted that the Ullmann condensation of potassium phenoxide with 

bromobenzene in diglyme suffered from reduced yields after treatment of the solvent with 

LiAlH4. Upon investigation, the source of the rate enhancement was found to be a diester 

impurity in the diglyme, absence of which not only reduced yields but resulted in the 

observed precipitation of copper.16 An observed rate enhancement in the Ullmann-type 

methanolysis of aryl bromides was attributed to an increased solubility of a catalytic 

copper species with esters, with a tentative assignment of a tetrahedral copper complex 1 

participating in the reaction (Scheme 1).17  

 

O

O + MeONa

- MeONa
O

O

O

Na
+ CuBr

-NaBr
O

O

O

Cu
ArBr

MeONa

ArOMe

1  

Scheme 1:  Ate complex 1.17   

 

The use of amines as ligands for copper mediated Ullmann-type reactions had been 

reported previously,18 although publications by Goodbrand,19 Buchwald20,3 (1,10-

phenanthroline) and Ma21
 (α-amino acids) are often credited as the genesis of the ligand-

accererated Ullmann reaction.22 Catalytic Ullmann-type reactions have been reviewed by 

Ley and Thomas,22 and  by Monnier and Taillefer.23  

 

1.1.1 Mechanism 

Both the copper-catalysed amination (Ullmann) and amidation (Goldberg) of aryl halides 

come under the banner of “Ullmann-like”, varying in the nature of the nitrogen 

nucleophile. These two reactions share common intermediates and in this work, both shall 

be assessed. 

 

The ligand-accelerated Ullmann reaction occurs between aryl halides or pseudohalides and 

heteroatom nucleophiles with the ipso-substitution of the halide with the nucleophile. The 

observed trend for reactivity of the electrophile is Ar-I > Ar-Br > Ar-Cl >> Ar-F, 

consistent with the increasing strength of the carbon-halogen bond as the group is 
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ascended. This is the opposite trend to that observed for  nucleophilic aromatic substitution 

(SNAr) reactions whereby increased rates are observed with the more electronegative 

halogens. The SNAr reaction occurs via a Meisenheimer intermediate (Scheme 2) where 

the increase in electron density from the ipso-addition of the nucleophile to the aryl halide 

is stabilised by the electron withdrawing ability of the halide and the resonance 

stabilisation of ortho and para nitro groups.24 

Cl

N

N

Nu

N

N

Nu Cl

N

Nu Cl

N

N

Nu Cl
N

N

Nu Cl

N

N

Nu Cl Nu

N

N

Meisenheimer Complex
OO

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

OO O

O

O

OO

O

N
O

O

-Cl

 

Scheme 2:  Meisenheimer Complex stabilisation in the SNAr reaction. 

 

Early work on the Ullmann reaction led to the proposal of a copper π-stabilisation of an 

ipso-substitution in a Meisenheimer-like transition state16 (Scheme 3, A) which was 

discounted after evaluation of the ring substituents on the aryl halide.25 Observations such 

as: the slight rate increasing effect of electron withdrawing groups on the aryl halide, the 

greater reactivity of more easily polarisable halogens, and a positive effect of ortho-

chelating groups indicated a copper insertion into the C-X bond (Scheme 3, B). 

 

 

CuY

X

Cu

Y

X

ArY + CuXArX + CuY

ArX: CuY
Y

X
Cu

A

B

 

Scheme 3:   Proposed π-stabilisation or copper insertion pathways in the Ullmann 

reaction.25 
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Recently Cristau et al.
26 proposed two alternative catalytic pathways (Scheme 4) for this 

reaction based on an initial activation of either the aryl halide (path A) or the nucleophile 

(path B). Significant progress has been made in elucidating the nature of the nucleophile 

activation and the aryl halide activation steps by determining the order of activation, the 

nature of the active catalytic species and the effect of the ligand.. 

Cu
precursor

[Cu]

[Cu]ArX

[Cu]ArNu

[Cu]Nu

ArX

NuH / base

NuH / base

ArX

ArNu

Path A

Path B

 

Scheme 4:  Two proposed catalytic cycles based on either an oxidative addition / 

nucleophilic substitution / reductive elimination cycle (Path A); or 

nucleophilic substitution / oxidative addition / reductive elimination cycle 

(Path B). 

 

1.1.2 Nucleophile Activation 

In 2005, Choudary et al.
27 proposed that imidazole coordination to copper exchanged 

fluorapatite (CuFAP) occurred prior to aryl halide activation and used XPS and FTIR 

studies to prove their claims.27-28 In 2007, Altman et al.
29 speculated on the formation of a 

Cu(II)L2 species in situ followed by coordination of the imidazole nucleophile and 

subsequent deprotonation . Aryl halide activation onto this is followed by reductive 

elimination steps. Whilst investigating a butadienylphosphine ligand for the arylation of 

phenols and pyrazole, a crystal structure of a Cu(II)L2
 
2 species was obtained by Kaddouri 

et al.
30 They conducted 31P NMR studies on the stoichiometric reaction of 2 with pyrazole 

and base and concluded that [Cu(II)LNu]-M+ species 3 was formed as a result, which led to 

100% yield of ArNu after treatment with PhBr (Scheme 5). They found no change in the 
31P NMR signal when reacting 2 with PhBr thereby adding evidence in favour of pathway 

B  (Scheme 4).  
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P

L2CuI

Pyrazole
Cs2CO3

MeCN
Cu

I

L N

N

Cs
-CsI

Cu

NCMe

L N

N
PhBr

Cu

NCMe

L Br
+

N

N

L =

2
3

 

Scheme 5:  31P NMR studies on the role of nucleophile coordination prior to aryl halide 

activation.   

 

For the amidation reaction, Strieter et al.
31-32 conducted kinetic studies and proposed that 

copper complex 4 is formed from CuI in high ligand concentrations, existing in an 

equilibrium with an isolable and characterisable iodo-bridging homo-dimer (see Scheme 

6). When depronated by a base, a nucleophile can displace the halide from 4 to generate 

active copper amidate 5. This allows the aryl halide activation step to become rate limiting. 

At lower concentrations of ligand, multiply amide ligated species 6 is formed which must 

dissociate and lose one amide via ligand coordination to give active amidate 5. They 

showed that the aryl halide activation step is always rate limiting at high ligand 

concentrations, but did not firmly conclude  the nature of the activation.  

 

 

[L2CuIX]

[L2CuINu]

[NuCuINu]-

Ar-NuNuH, B - ArI

L2 NuH, B-

Major species 
at low [L2]

Major species 
at high [L2]

4 5

6  

Scheme 6:  Proposed mechanism for generation of active amidate complex in amidation 

reaction. L2 = trans-N,N'-dimethylcyclohexane-1,2-diamine (DMCDA), 

NuH = amide, B- = base, X = I.32  

 

In 2008, Tye et al.
33 isolated crystals of imidate and amidate Cu(I) complexes from the 

room temperature reaction of [CuOtBu]4 with a ligand and either phthalidimide or 

pyrrolidinone in THF. These structures clearly show the presence of two species: 1) a 3-

coordinate L2CuINR2 complex 7 (where L2 = 1,10-phenanthroline and NR2 = 

phthalidimide) formed by sequential addition of L2 then Nu to the reaction and 2) an ionic 
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species 8 with one cationic tetrahedral [L2CuL2]
+ and one anionic 2-coordinate [Cu(NR2)2]

- 

(where L2 = 1,10-phenanthroline and NR2 = pyrrolidinone or L2 = 4,4’-di-tert-

butylbipyridine and NR2 = phthalidimide) formed by addition of L2 and NR2 to the reaction 

at the same time.  

 

 

Cu NR2

N

N

Cu
N

N
N

N
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Scheme 7:  Equilibrium and reactions of isolated ionic 8 and neutral 9 copper amidate / 

imidate complexes with aryl halides. 

 

They reported that aryl halide activation did not occur when the cation was changed to 

[nBu4N]+ (giving with [nBu4N][Cu(NR2)2] 9) but did occur from both [L2CuL2][Cu(NR2)2] 

8 and L2CuINR2 7. They conducted studies and concluded that L2CuINR2 7 is the active 

species with an equilibrium existing between L2CuINR2 7 and [L2CuL2][ Cu(NR2)2] 8 

(Scheme 7).  

 

1.1.3 Aryl halide Activation 

Cohen et al. proposed a Cu(III) intermediate in the Ullmann-like halogen exchange 

reaction, from which ArCl is reductively eliminated from ArCu(III)Cl2.
34 Much later, 

Cristau et al. discussed the mechanism of the ligand-accelerated Ullmann reaction.26 They 

disproved involvement of radical intermediates through experimental studies and proposed 

a Cu(III) intermediate and associated oxidative addition/reductive elimination pathways. 

They noted  that the ligands used in this study were σ–donor and π–accepting, thus 

potentially stabilising a Cu(III) transition state especially considering the high affinity 

expected for hard donor ligands (i.e. tertiary amines, etc.) to a hard acceptor such as 

Cu(III). Tye et al.
33 proposed three possible mechanisms for the reaction (Scheme 8) where 

the first (Path A) occurs via a direct activation of the aryl halide by [L2CuL2][ Cu(NR2)2] 

8.16 This was discounted as the reaction did not proceed when the counter-ion was 

exchanged (vide supra). Paths (B) and (C) both occur via the formation of L2CuINR2 7 
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followed by an aryl halide activation by either electron transfer followed by either 

dissociation of halide from the aryl halide radical anion, or by oxidative addition to Cu(III). 

They discard path (B) due to limited evidence of radicals, either free or in a solvent cage. 

Computational studies suggested that a Cu(III) intermediate was accessible under mild 

reaction conditions and they conclude path (C) is most likely to occur by either a concerted 

oxidative addition (10 to 11) or by an internal electron transfer process (10 to 12). 
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Scheme 8:  Three mechanisms proposed by Tye et al.
33 
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Scheme 9:  N-arylation reaction of structurally defined Cu(III)-aryl complex 12 with 

nitrogen nucleophiles. 

 

Zhang et al.
35 conducted a computational study on the copper-catalysed amidation of aryl 

halides by acetamide. They concluded that a trigonal L2CuINHAc was the most reactive 
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species in the reaction mixture for the oxidative addition of the aryl halide (especially 

when L2 = DMCDA) whilst the CuI(NHAc)2 complex (favoured with low concentrations of 

L2) is the least reactive and thereby retards oxidative addition. These conclusions support 

those reported experimentally by Strieter vide supra.31-32 

 

Until 2008, no firm conclusion as to the nature of the aryl halide activation step had been 

established due to the rarity of Cu(III) species.36-41 Huffman and Stahl42 reported that the  

square planar Cu(III)-aryl species 12
39 reacted at room temperature within 2 h with a 

variety of nitrogen nucleophiles (Scheme 9). This lends great support to the involvement of 

Cu(III) in the Ullmann reaction. In this case, the oxidative addition stage has essentially 

occurred before the nucleophile activation, but nevertheless shows that such species can 

exist and react. They reported that more acidic nucleophiles reacted faster, indicating that 

the nucleophilic substitution occurs first via a deprotonation of the nucleophile, rather than 

a bimolecular coordination followed by deprotonation sequence. Phipps et al. proposed a 

Cu(III) intermediate in an oxidative direct-arylation of indoles and argued that Cu(III) 

(formed from oxidation by iodine(III)) is d8 like  Pd(II) so ought to facilitate metalation 

like the electrophilic palladium species.43 Their proposal is that the nucleophilic indole 

attacks the electrophilic Cu(III) species and subsequent reductive elimination gives the C3-

arylated indole species (Scheme 10). This postulate does not, however, translate to 

Hartwig’s proposed pathway for the Ligand-Accelerated Ullmann reaction,33 where the 

nucleophile is added to the Cu(I) species via a nucleophilic substitution which then, by an 

oxidative addition step, gives the Cu(III) by reaction with the electrophile (Scheme 8, Path 

C). 
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Scheme 10:  Cu(III) participating in catalytic C-3 arylation of indole.43  
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1.1.4 Precatalyst 

In the early Ullmann reaction many copper sources have been applied from the Cu(0), 

Cu(I) and Cu(II) oxidation states including Cu bronze, CuI, CuBr, CuCl, CuCl2, 

(CuOTf)2.benzene and Cu(OAc)2.
8,12,44,13,3

 All sources seemed to promote the reaction, 

with Cu(I) salts giving slightly greater performances. Mansour et al.
45 published an 

electrochemical study on the activation of aryl halides by Cu(0) and 1,10-phenanthroline 

and concluded that electrochemically generated Cu0(phen) can be transformed into  

CuI(phen)S2
+ (where S = acetonitrile solvent) by the reduction of an aryl halide. The 

implication is that this complex is then free to undergo the catalytic Ullmann cross-

coupling as an active Cu(I) species, thereby explaining how Cu(0) can promote Ullmann 

reactions.  

 

1.1.5 Ligands 

A variety of ligands accelerate Ullmann-type reactions. Most recent examples tend to be 

bidenatate, although mono- and even polydentate ligands have been employed. 

Coordination to Cu is achieved via N, O or P atoms and many useful reviews have been 

published.1,7,22-23 No one ligand has been adopted for all transformations, indicating the 

challenges in the Ullmann reaction, as well as the breadth of substrate variety sought by 

modern chemistry.  

 

Esters have been reported as potential ligands16-17 vide supra, although utilisation of these 

in Ullmann reactions is impractical considering the strength of the base often required, but 

the idea of using ligating small molecules as ligands to solubilise the catalyst was further 

expanded on with examples of crown ethers giving increased yields in some cases.46  

A 1997 publication by Marcoux et al.
20 showed a strong rate acceleration effect in the 

formation of diarylethers from aryl iodides when using catalytic amounts of EtOAc in 

conjunction with  (CuOTf)2.benzene precatalyst. In this case, the employment of Cs2CO3 

as the base and toluene as solvent led to highly efficient conversion (Scheme 11). Aryl 

bromides and less nucleophilic phenols were active under these conditions when 1-

naphthoic acid was used as an additive, which is thought to aid the solubility of the copper 

catalyst by forming a copper-naphtholate complex. More recently, a three-component 

catalytic system based on CuI, oxalyldihydrazide, and hexane-2,5-dione has been found to 

promote the coupling of benzimidazoles with aryl bromides and iodides.47 
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Scheme 11:  Ligand acceleration by EtOAc in formation of diarylethers.  

 

Goodbrand and Hu published the synthesis of hole-conducting triarylamines using catalytic 

CuCl and 1,10-phenanthroline (phen) as a ligand which substantially lowered the 

temperature required for the conversion when compared to classic conditions, but was 

limited to aryl iodides at this lower temperature (Scheme 12).19 In the same year, 

Buchwald published the arylation of imidazoles and benzimidazole using 1,10-

phenanthroline as the ligand with his previously reported Cu(OTf)2.benzene20 complex as 

copper source.3 Of note are good yields using unactivated and sterically hindered ortho-

bromoxylene as electrophile when using dba as an additive (Scheme 13). Both authors 

proposed increased solubility as a key effect of the ligand but also emphasised the 

complexing ability of the two pyridyl nitrogens leading to a stabilisation of the active 

species. Buchwald also proposed that the phen ligand stops the multiple chelation of 

imidazole to the copper leading to inactive copper species.3  
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Scheme 12:  1,10-Phenanthroline as the ligand for double N-arylation of anilines. 
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Scheme 13:  1,10-Phenanthroline as the ligand for the N-arylation of imidazole. 

 

Gujadhur used preformed Cu(PPh3)3Br,48 Cu(phen)(PPh3)Br and Cu(neocup)(PPh3)Br49 

species (Scheme 14) in the coupling of aryl halides to aryl- and diarylamines. Although 

this system was compatible with unactivated aryl chlorides, yields were low and 

intolerance to ortho-steric hindrance was observed. A study of various ligands for the 
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arylation of arylamines was undertaken by Kelkar50 showing a good yields for 2,2’-

bipyridines, pyridine, monophosphines and some bisphosphines (Scheme 15).  
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Scheme 14:  Neocup as the ligand for the N-arylation of diarylamines with aryl halides. 
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Scheme 15:  N-Arylation of aniline showing yield improvement with certain chelating 

ligands.  

 

1,10-Phenanthroline and its derivatives have been widely employed for the arylation of 

NH-heterocycles, arylamines and amides. The 2,2’-bipyridine framework allows bidentate 

Cu coordination and isolation of these copper species has been accomplished.33 

Modifications to 1,10-phenanthroline have included neocup49 and 3,4,7,8-tetramethyl-1,10-

phenanthroline (Scheme 15).50 Buchwald demonstrated that 4,7-dimethoxy-1,10-

phenanthroline was superior to 1,10-phenanthroline in the arylation of imidazoles.29 Using 

this ligand and with optimised conditions, coupling at relatively low temperatures was 

achieved with imidazoles, benzimidazoles and hydroxypyridine derivatives.29,51-52  
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Scheme 16:  Copper complexes of Chxn-Py-Al involved in active catalyst formation.  

 

Along with Buchwald in 2002,53 the Taillifer  group reported breakthrough work on C-N 

cross-couplings using a ligand-accelerated Ullmann-reaction approach,54 demonstrating 

that the potentially tetradentate Schiff-base ligand (Chxn-Py-Al – name derived from 

cycohexanediamine and pyridine-2-carbaldehyde starting materials) was  effective  for the 

arylation of NH-heterocycles55,26 and phenols.56-58 When mixing CuI and Chxn-Py-Al in 

acetonitrile, an insoluble dicopper complex is formed (Scheme 16, A) which, being 

sparingly soluble, leads to solubilised species B which was then shown to form monomeric 

Cu(I) species C.59 Thus, the ligand is thought to act as: a) a solubilising agent for CuI, b) 

an aid to a ‘reservoir’ of Cu(I) (species A), and c) by adding electron density on Cu(I) due 

to the σ-donor ability of the  pyridine N atoms. This interplay between electronic 

manipulation of the catalytic species by different chelating groups was investigated in the 

arylation of phenols. Ligands with both imine and pyridyl nitrogen centres performed best, 

especially when the imine was more electron deficient and the pyridine more electron rich.  

These observations suggested that the more electron rich (pyridyl chelation dominating) 

the Cu(I) species, the  lower the oxidation potential of Cu(I) to Cu(II), thereby favouring 

the oxidative addition step. On the other hand, the more electron deficient the copper 

species (imine chelation dominating), the lower the reduction potential of Cu(II) to Cu(I) 

so stabilising the Cu centre when a more electrophilic species is needed, i.e. the 

nucleophilic substitution onto Cu(I) and reductive elimination from Cu(III). 
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At around the same time as Taillefer’s reports, the Buchwald group also reported    ligand-

accelerated Ullmann reactions.53 They based their work on diamine ligands and their initial 

publications (post patent) focused on ethylenediamine, cyclohexanediamine and 1,10-

phenanthroline giving rise to arylation of a wide variety of NH-heterocycles, amides, 

hydrazones, hydrazides and secondary amines.60-64 Their later work focuses on modifying 

1,10-phenanthroline and further mechanistic studies,  vide supra.  

Ma et al.
21 published a  paper in 1998 on the CuI catalysed arylation of α-amino acids 

indicating that the structure of the amino acid is key to rate acceleration. A Cu-amino acid 

chelate was postulated as an active catalytic species. Amino acids such as N-

methylglycine, L-proline and N,N-dimethylglycine increase the rate of arylation of various 

substrates.65 

 

Other ligands that have been effectively used in Ullmann-like reactions include oximes,26,55 

1,1'-bi-2-naphthol (BINOL),66 N-phenylhydrazone,67 diketones,68-69 phosphine-oximes,70 

phosphinidenes,71 benzotriazoles,72-73 8-hydroxyquinoline,74 ninhydrin,75 carbenes,76 N,N-

diethylsalicylamide77 and picolinic acid,78  to name a few. Catalytic systems utilising 

“ligand-free” conditions have been reported by various groups and generally incorporate 

sometimes large amounts of copper source79 with carbonate80 or phosphate bases.81 It is 

believed that in such systems either the base, the solvent, or both, behave as ligands to 

varying degrees but such systems can lead to inconsistent results.23 Other “ligand-free” 

systems include the use of CuFAP which can arylate heterocycles using aryl halides or 

arylboronic acids.27,82 Reusable catalysts have also been explored as greener methods for 

Ullmann-like reactions  using Cu nanoparticles83 or supported copper systems.84 

 

1.1.6 Base 

The deprotonation of the nucleophile at some stage in the catalytic cycle is required. 

Inorganic bases such as Cs2CO3, K2CO3, K3PO4 and KOH have been used in the arylation 

of N-heterocycles, amides, primary and secondary amines and other nitrogen 

nucleophiles.22 Cristau et al. found that Cs2CO3 was superior  to K2CO3 in the arylation of 

pyrazine with bromobenzene.55 They reasoned that this was, in part, due to the lesser ion-

pairing of Cs+ compared to K+ resulting in a greater nucleophilicity of the pyrazinyl anion. 

The greater solubility of Cs2CO3 in organic solvents was also regarded as a positive 

contributing factor. The use of CsOAc has been reported using ligand-free conditions for 

the intramolecular C-N coupling of secondary amines.85 This is probably a case where the 
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base and/or solvent are acting as ligands in the copper species. Strong organic bases such 

as KOtBu have been used  for the arylation of N-heterocycles and primary and secondary 

amines,69 although the strength of this base makes it unsuitable in the presence of sensitive 

functionality. As part of a study into the arylation of anilines to give triarylamines, 

NaOtBu, KOH, NaOMe and DBU were much less efficient than KOtBu.50 The soluble 

organic base bis(tetraethylammonium) carbonate (TEAC) has been successfully used to 

arylate benzimidazole and imidazole where it outperformed Cs2CO3 in comparable 

reactions (see Scheme 17).86 
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N

Me

Me

CuI

ligand

base

DMF, 110 oC, 60 h

base = Cs2CO3, ligand = phen;   yield = 20%

base = TEAC, ligand = DMCDA;   yield = 32%  

Scheme 17:  Arylation of benzimidazole using TEAC or Cs2CO3 bases.86  

 

For the Goldberg arylation of amides, Klapars et al.
64 found that the choice of base plays 

an important role. When using K3PO4, the reaction proceeded faster than with K2CO3 for 

the amidation of aryl iodides, while the reverse was true if the electrophile was changed to 

an aryl bromide.64 They also observed that by adding the strong base KHMDS slowly to 

the amidation of aryl iodides, the reaction proceeded well; however, when added in one 

portion, the reaction failed. They suggest that the rate of deprotonation of the amide should 

match the rate of the arylation reaction, otherwise the excess of deprotonated amide could 

form unreactive cuprate complexes (see Scheme 18). Aryl iodides will undergo oxidative 

addition more rapidly than aryl bromides (vide supra) therefore, stronger bases (K3PO4) 

can be used for aryl iodides but the decreased reactivity of aryl-bromides requires weaker 

bases (K2CO3). 
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Scheme 18:  Simplified reaction mechanism for Goldberg amide arylation showing 

deactivation of the catalyst with an excess of deprotonated amide.64  

 

1.1.7 Scope 

Buchwald et al.,87 (vide infra) significantly improved upon the classic Ullmann 

condensation reaction by employing (CuOTf)2·benzene as a catalyst with 1,10-

phenanthroline as a ligand for the N-arylation of imidazoles and benzimidazole88 and also 

for diaryl ether synthesis.29 N-arylations were carried out with stoichiometric amounts of 

Cs2CO3 base, catalytic amounts of Cu(OTf)2·benzene, stoichiometric amounts of 1,10-

phenanthroline, dba and xylenes at 110 - 125 oC under an argon atmosphere for up to 48 h. 

His paper gave the first N-arylbenzimidazole synthesised via modern copper-catalysed C-N 

cross-coupling (Scheme 19). 
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Scheme 19:  Conditions: A) 0.5 mol% Cu(OTf)2.PhH, Cs2CO3, phen, dba, xylenes, 125 
oC, 40 h, 91% yield;88 B) 10 mol% CuI, Cs2CO3, phen, DMF, 110 oC, 24 h, 

91% yield.89   

 

A variety of N-aryl indoles, indazoles, benzimidazoles and imidazoles were subsequently 

reported. The general procedure included CuI and either 1,10-phenanthroline or diamine 

ligands. In Scheme 19 1-(3,5-dimethylphenyl)-1H-benzo[d]imidazole 13, was synthesised 
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using 1,10-phenanthroline as the ligand and DMF as the solvent, affording the product in 

91% yield.89  

A study of the applicability of indoles for this reaction was performed by Buchwald using 

a series of diamine ligands. Various aryl bromides and aryl iodides were coupled to indole 

and substituted indoles. Aryl donors included 2- and 4-bromotoluene and 2-

isopropyliodobenzene.90 Toluene was used as the solvent for these reactions with CuI as 

copper source and K3PO3 as base. 

N,N’-Dimethylethylenediamne was used as the ligand for the  N-arylation of oxindoles 

using CuI, K2CO3 in acetonitrile. Electron-withdrawing and electron-donating groups on 

either oxindole or aryl donor gave products in reasonable yields.91 Sterically hindered aryl 

donors were examined using diamine ligands with catalytic amounts of CuI and Cs2CO3 in 

DMF or dioxane. N-Mesitylimidazole was synthesised in 54% yield and more hindered N-

arylations of 1-iodo-2,6-diisopropylbenzene proceeded  in lower yields. Reaction 

temperatures were high at 95 – 170 oC leading the authors to conclude that the Chan, Lam, 

Evans protocol was more suited to sterically hindered substrates. An optimisation study 

focusing on N-arylation of sterically hindered substrates with benzimidazole was 

undertaken by Alcalde. By comparing aryl halide substrates with arylboronic acid and 

aryltrifluroborate salts, the authors concluded that the ligand-accelerated Ullmann reaction 

was the most effective in these difficult N-arylation reactions.92 

Br
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H
N N

N

+
 Cu2O (5 mol%), Chxn-Py-Al (20 mol%)

Cs2CO3, acetonitrile, 82 oC

95 %  

Scheme 20:  Mild conditions for arylation of imidazoles with unactivated aryl bromides.   

 

Taillefer studied N-arylation of azoles under mild reaction conditions and described how 

Chxn-Py-Al performs especially well with a broad array of azoles and aryl donors.93 This 

ligand was also shown to catalyse O- and C-arylations using similar conditions. Cu2O was 

used as the copper source with best yields occurring with acetonitrile as solvent and 2.2 

equivalents of Cs2CO3 as base. Reaction temperatures were as low as 50 oC using both aryl 

iodides and aryl bromides. N-Phenylimidazole was formed in excellent yield by the 

reaction of imidazole with bromobenzene at 82 oC (see Scheme 20). The  trend in 

reactivity of azole substrates was shown to be:  
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A selection of aryl donors was used to assess the suitability of 4,7-dimethoxy-1,10-

phenanthroline as a ligand by Buchwald.51 Yields were typically very high with even 0.05 

mol % of Cu2O in butyronitrile at 110 oC. Functionalities tolerated in this study include 

free amines, alcohols, carboxylic acids and nitrile, with arylations occurring in very high 

yields with both iodo- and bromoaryl donors (Scheme 21). 8-Hydroxyquinoline86,94 was 

used as a ligand with 10 mol % CuI in DMF and (Et4N)2CO3 base for arylation of a 

selection of imidazoles and benzimidazoles (Scheme 22). Interestingly, by applying this 

methodology, two examples of arylation with aryl chlorides were observed after 60 h at 

130 oC. Although not the first report of N-arylation of an azole with aryl chlorides using 

copper,95-96 it was the first with a ligand-accelerated Ullmann procedure. 
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Scheme 21:  N-Arylation of imidazoles using 4,7-dimethoxy-1,10-phenanthroline as a 

ligand. 
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Scheme 22:  N-Arylation using 8-hydroxyquinoline. 

 

N-Arylation of pyrazoles with a variety of aryl donors was carried out to screen some 

potentially interesting ligands including  oximes55 (see Scheme 23). Yields for some of 

these arylations were very high (N-phenylpyrazole up to 96% GC yields). 
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Scheme 23:  N-Arylation using an oxime as ligand. 

 

Amino acids have been used in conjunction with catalytic amounts of CuI, base and a 

selection of solvents to arylate azoles in very high yields. L-Proline was used in the 

arylation of indoles and pyrrole with a selection of aryl iodides,97 while pipecolinic acid 

was used for arylation of indoles and imidazoles with aryl iodide, bromide and even 

chlorides.78 A solvent-free method for ligand-accelerated Ullmann N-arylations was 

published by Li.98 2-Aminopyrimidine-4,6-diol was used in conjunction with n-Bu4NF as 

base to provide a greener route to N-aryl benzimidazoles and imidazoles. It also provided a 

selection of interesting heteroarylated benzimidazoles including 1-(pyrimidin-2-yl)-1H-

benzimidazole and 1-(thiazol-2-yl)-1H-benzimidazole from 2-chloropyrimidine and 2-

bromothiazole in 100% and 55% yields, respectively (see Scheme 24).  
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Scheme 24:  Solvent-free N-arylations of benzimidazole. 

 

You99 also provided a synthesis of N-heteroarylated imidazoles with the employment of 

(S)-pyrrolidinylmethylimidazole ligands with catalytic amounts of CuI and an excess of 

Cs2CO3 in DMF. This protocol also used activated aryl chlorides as aryl donor in very 

good yields (4-chloronitrobenzene and 4-chlorobenzonitrile in 98% and 92% yields, 

respectively). Benzotriazole was recently reported as a good ligand for N-arylation of 

indoles and pyrroles.73  
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Exceptional functional group tolerance has been observed in ligand-free Cu-catalysed C-N 

coupling of azoles with aryl bromides containing thermally sensitive groups, as well as 

displaying chemoselective coupling to the NH-heterocycle in the presence of functionality 

that are known to undergo coupling to aryl halides in the presence of Cu catalysts, i.e. -OH, 

-C≡C-H, -CON(H)R and –NH2 groups (see Scheme 25).100 

N
H

N I R
N

N

R

CuI 

K3PO4

DMF, 35-40 oC

40 h

+

N

N

H

N

N

OH

N

N

NH2

N

N

NH

O

N

N

H
O

N

N

EtO
O

82% 93% 73% 98% 98% 91%  

Scheme 25:  Ligand-free N-arylation of imidazole under mild conditions. 

 “Ligand-free-like” synthesis of N-arylated benzimidazoles, indoles, imidazoles, pyrroles, 

pyrazoles and triazoles was achieved47 using Cu powder in a nitrile solvent.

The use of MeCN as solvent was crucial and was assumed to act as a monodentate 

ligand.79 

 

1.1.8 Conclusion 

In conclusion, ligand-accelerated Ullmann reactions provide an efficient route to the N-

arylation of NH-heterocycles. A large variety of conditions for such coupling reactions 

have been developed and good functional group tolerance is noteworthy. Despite the range 

of substrates and conditions covered there has been fairly limited investigation of the N-

heteroarylation of NH-heterocycles, a motif expected to be of great interest to 

pharmaceutical research.  
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1.2 Pd-Catalysed C-N Cross-Coupling: Buchwald-Hartwig Reaction 

While Ullmann and Goldberg type reactions utilise copper for the formation of C-N bonds, 

the Buchwald-Hartwig reaction uses palladium. Although a much more expensive metal,101 

there are many benefits to using this reaction. Firstly, unactivated aryl bromides and aryl 

chlorides can be successfully coupled to various amines and amides; substrates normally 

considered challenging for Ullmann-type reactions. Very low catalyst loadings can be 

achieved with palladium couplings: this reduces both costs and trace metal contamination, 

which are important factors to consider for active pharmaceutical ingredients (API’s) in 

GMP synthesis.  

 

The first report of a palladium catalysed method for the arylation of amines was in 1983 by 

Kosugi.102 The protocol required the use of nucleophilic tin-amides (c.f. the Stille 

reaction103) and aryl bromides using catalytic amounts of PdCl2(o-tol3P)2. This procedure 

was limited to electron neutral aryl bromides, with both electron rich and electron deficient 

electrophiles resulting in poor yields of the aryl amine. Iodobenzene and chlorobenzene 

failed to couple under the conditions presented. The authors rejected a radical or aryne 

mechanism through observations on reactivity.  

 

The earliest palladium-catalysed route to aromatic amides was by Schoenberg and Heck104 

in 1974 where aryl, heteroaryl and vinylic bromides were reacted with amines, including 

aniline, in a carbon monoxide atmosphere with either Pd(PPh3)2Br2 or Pd(PPh3)2(Ph)(Br) 

catalyst (Scheme 26). Although not a Carom-N bond forming procedure like the Ullmann 

reaction, it is an amidation process and provided the products in good yields under 

catalytic conditions.  
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tri-butylamine
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N
H
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Scheme 26:  Palladium-catalysed amidation of aryl halides by Schoenberg and Heck. 

 

1.2.1 Mechanism 

Like many other transition-metal catalysed cross-coupling reactions,105,103,22 the 

mechanism is based upon a combination of oxidative addition of the electrophile (in this 

case an aryl halide), transmetallation of the nucleophile (in this case an amine or amide) 
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and a reductive elimination of the cross-coupled product and regeneration of the catalytic 

species (Scheme 27). Many of the insights into the mechanism of the Buchwald-Hartwig 

reaction were based upon stoichiometric studies on either tin-mediated aminations or tin-

free aminations, although many catalytic studies have complimented these.  

LnPd

LnPd
Ar

X

LnPd
Ar

X

N

R'
R

H

LnPd
Ar

N
R

R'

Pdo of PdII precatalyst / L

ArX

R'

H
N

R
base

base HX

Ar
N

R

R'

OXIDATIVE 
ADDITION

AMINE
LIGATION

DEPROTONATION

REDUCTIVE
ELIMINATION

 

Scheme 27:  General catalytic cycle for Buchwald-Hartwig reaction. 

 

1.2.2 Oxidative Addition 

The oxidative addition step involves the addition of Ar-X to a Pd0 species, cleaving the Ar-

X bond and forming an oxidised PdII species with the general order of reactivity I > Br > 

Cl. Mechanistic investigations conducted by Hartwig106 in the early 1990s pointed to an 

active catalytic species of the form Pd(o-tol3P)2 which was confirmed by an X-ray 

molecular structure of the linear Pd(0) complex.107 This air-stable 14-electon species did 

not react with tin-amides but rapidly underwent oxidative addition with aryl bromides to 

afford an isolated dimeric palladium complex 14.106-107 It was shown (Scheme 28) that this 

process occurred by formation of the active catalytic species in situ by loss of a phosphine 

ligand giving 12-electron one-coordinate [PdL] either as free species, a solvated one or 

transient as the aryl halide displaces L.108 This finding was surprising as previous examples 

of oxidative addition had only occurred onto PdL2 species.109-110,103 
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Scheme 28:  Proposed oxidative addition pathways using (o-tol)3P as ligand with aryl 

bromides.  

 

More recently, studies have shown that the nature of the halide plays a key role in the 

oxidative addition palladium species (see Scheme 29).111 When using a variety of bulky 

alkyl mono-phosphine ligands, the general trend for the oxidative addition step was 

reversible reaction with mono-phosphine palladium(0) for aryl chlorides (dissociative 

substitution, Path A) and irreversible reaction with bis-phosphine Pd(0) for aryl iodides 

(associative substitution, Path B). Aryl bromides reacted by a combination of both 

pathways. The authors concluded that the more reactive aryl iodides reacted with the 

bisphosphine species while aryl chlorides require the more reactive monophosphine 

species to cleave the stronger Ar-Cl bond.  

 

 

 

 

 

 

 

 

Scheme 29:  Oxidative addition occurrs via different pathways depending on nature of 

halide. 

 

The same authors reported the oxidative addition with bulky phosphine complex 15.112 

They found the process for PhI, PhBr and PhCl occurred by three distinct pathways: for 

aryl iodides, via an associative displacement of a phosphine (Scheme 30, Path A); for aryl 

bromides, via a rate-limiting non-reversible dissociation of a phosphine from Pd0L2 
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followed by oxidative addition (Path B); for aryl chlorides, via a reversible dissociation of 

a phosphine from Pd0L2 followed by a rate-limiting oxidative addition step (Path C).112 
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Scheme 30:  Distinction between oxidative addition pathways of aryl chlorides, bromides 

and iodides using bulky ligand Q-Phos. 
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1.2.3 Transmetallation 

For tin-mediated reactions, the dimeric oxidative addition product 16 was found to exist in 

an equilibrium with its monomeric form 17, which then formed transmetallation product 

18 upon addition of Bu3SnNEt2.
113 The dimeric species 16 did not undergo 

transmetallation directly and the monomeric tetra-coordinate species 19 was also incapable 

of transmetallating (Scheme 31). Chelating ligands were ineffective in promoting the 

reaction in the same way as (o-tolyl)3P or PPh3, no doubt due to the requirement for mono-

phosphine-ligated palladium intermediates.114 These reactions are limited to secondary 

amines. The transmetallation step involves a reversible loss of trialkyltinbromide (the 

presence of which is inhibitory113) giving the three-coordinate species 18.  
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Scheme 31:  Transmetallation step occurs from monomeric species 17 in tin-mediated 

aminations. 

Hartwig proposed a mechanism for this reaction,106 which could be made catalytic 

(Scheme 32). This relied upon the Pd(o-tol3P) species 20 undergoing oxidative addition to 

the aryl bromide to give mono-palladium species 21 which exists in an equilibrium with 

the dimeric species 22. The next step would be a transmetallation with the tin-amide 

followed by a reductive elimination to afford the coupled product.  
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Scheme 32:  Mechanism for tin-mediated Pd-catalysed amination proposed by Hartwig. 

 

In the same year, Buchwald showed that the reaction could be carried out by in situ 

generation of the tin-amide.114 This reaction was found to be catalytic with loading as low 

as 1 mol% PdCl2(o-tol3P)2 and capable of coupling primary and secondary amines, 

including anilines, with both electron rich and electron deficient aryl bromides (Scheme 

33).  
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Scheme 33:  Amination of aryl bromides with in situ generation of aminostannanes. 

 

In tin-free aminations, transmetallation with a variety of amines is possible including 

primary amines and amides. The dimeric oxidative addition species 22 was shown to react 

with amines to give monomeric species 23 (Scheme 34, top).107 Deprotonation of the 

ligated amine by alkoxide or silylamide base occurred readily to give arylamine products 

with the  transient anionic species 24 being observed by NMR (Scheme 34, bottom).115 
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Scheme 34:  Cleavage of dimeric 22 by amine (top) and subsequent deprotonation in situ 

giving anionic species and eventual formation of arylamines (bottom).  

 

When using chelating ligands such as DPPF, a different mechanism for transmetallation is 

observed. When alkoxopalladium complex 26a (where R = 4-tert-buytlphenyl) was treated 

with primary and secondary amines and PPh3, with no base present, the corresponding 

coupled arylamine was formed indicating formation of an amide complex via a proton 

transfer mechanism not by external deprotonation. It was proposed that when using an 

alkoxide base and amine, the exchange of the halide from 25 for the alkoxide occurs first 

to give 26a which then exchanges with the amine to give 26b (Scheme 35). Reductive 

elimination then gives the arylamine. The exact mechanism in the case of chelating ligands 

is not clear but these results show that it is possible to access Pd-amido complexes from 

Pd-alkoxides.116  
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Scheme 35:  Catalytic cycle for DPPF-type ligands as proposed by Hartwig.116 
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For monophosphine ligands, Hartwig proposed two possible pathways, involving neutral or 

anionic processes.117 In the anionic pathway, alkoxide attack on 20 forms alkoxide-

palladium species 27 which facilitates oxidative addition with loss of halide as the sodium 

salt giving alkoxopalladium 28. Transmetallation has been observed previously on 

alkoxopalladium species in stoichiometric reactions.118 In the neutral pathway, the amine is 

deprotonated first by NaOtBu, then undergoes transmetallation (Scheme 36). 
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Scheme 36:  Anionic and neutral pathways proposed for aminations based on bulky 

monophosphine ligands (L = PtBu3). 

 

Many bases have been used in Buchwald-Hartwig reactions with the most common being 

NaOtBu (KOtBu tends to promote formation of palladium black and LiOtBu is a poor 

base);119 carbonate bases are also suitable when mild conditions are required.120 Buchwald 

proposed an alternative mechanistic pathway when the chelating BINAP (see 

Abbreviations) is employed as supporting ligand, where coordination of the amine to the 

Pd0(BINAP) complex occurs first, with oxidative addition accelerated by this pre-

coordination effect (Scheme 37).121 Also of note here is that the base deprotonates the 

bound amine without alkoxo-palladium intermediates as described in previous 

mechanisms.117 
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Scheme 37:  Alternative mechanism proposed by Buchwald when BINAP is used.  

 

1.2.4 Reductive Elimination 

In the reductive elimination stage, the Pd(II) species formed in the transmetallation step 

eliminates the arylamine and regenerates the Pd(0) species, which in catalytic systems 

rejoins the catalytic cycle. Studies have shown that, although both monomeric and dimeric 

Pd-amido complexes have been isolated, only monomeric species directly react to give 

reductive elimination products.122 Dimeric complexes 29 are first cleaved to give 3-

coordinate 14-electron species 30 which then undergos reductive elimination with C-N 

bond formation (Scheme 38).122 With monomeric species (i.e. 31) it was observed that the 

reaction occurred via two pathways: a 3-coordinate 14-electron species after ligand 

dissociation 33 or by 4-coordinate 16-electron species after trans-cis isomerism 32 (see 

Scheme 39). 
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Scheme 38:  Cleavage of dimeric transmetallation product affords 3-coordinate species 

from which reductive elimination occurs. R = tBu. 

 



Jamie S. Siddle           Metal-Catalysed Cross-Coupling Reactions of Nitrogen Heterocycles                  38 

Pd
Ar

Ph3P

PPh3

NAr'2

Pd
Ph3P

Ph3P

Ar

NAr'2

Pd
Ar

NAr'2

Ar-NAr'2 + Pd(0)

-PPh3

+PPh3

32

33

31

trans-cis
isomerism

ligand
dissociation

reductive 
elimination

reductive
elimination

Ph3P

 

Scheme 39:  Reductive elimination pathways for monomeric transmetallation species.  

 

These observations of a 4-coordinate intermediate led to the study of chelating phosphine 

ligands such as DPPF123 and BINAP,124 which both gave very good product yields with 

less hydrodehalogenated by-product (vide infra). The chelation forces the transmetallation 

product to be cis, therefore, the reductive elimination step goes via the 4-coordinate 16-

electron species without the need for trans-cis isomerism.125 When using DPPF, the 

general rule for reactivity is alkylamido > arylamido > diarylamido, suggesting that the 

more electron rich the amine, the better the reductive elimination, i.e. the amido group is 

acting as a nucleophile.122 Electronic effects of the electrophilic aryl group were probed 

leading to the conclusion that electron-withdrawing groups increase the rate of reductive 

elimination, again consistent with the amido moiety acting as a nucleophile and the aryl as 

the electrophile.126 

 

1.2.5 β-Hydride Elimination 

The major side-products from Buchwald-Hartwig type reactions are arenes, formed by a 

reductive β-hydride elimination pathway. For mono-phosphine ligands [i.e. (o-tol)3P] the 

β-hydride elimination was found to occur from the amido group leading to imine as well as 

arene formation.127 It was also shown that an alternative pathway can exist whereby arene 

formation occurs from the reduction of Pd(II) catalyst precursors when Pd(II) catalysts are 

employed. Exploration of electronic effects showed that electron deficient aryl halides 

gave less arene by-product, judged to be an effect of a more electrophilic aryl group (see 

“Reductive Elimination”). The β-hydride elimination pathway is in direct competition with 

the reductive elimination step and selectivity towards C-N bond formation can be 

controlled by using more sterically bulky ligands. β-Hydride elimination occurs from the 

amido leading to the arene and imine.128 The process involves either imine coordination 

(Scheme 40, path A), therefore increasing the coordination number on the Pd centre, or, if 
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the imine is not coordinated but extruded (Scheme 40, path B), then the coordination 

number remains the same. Larger ligands can force a lower coordination geometry onto the 

Pd centre which favours reductive elimination (Scheme 40, path C).116 For chelating 

ligands, the opposite trend was revealed, with the bulkier DTPF giving more arene by-

product than DPPF.129 The authors conclude that arene by-products are not formed by β-

hydride elimination, but by another unknown pathway. It was also noted that electron poor 

groups on the phosphine gave more arene by-product which was not expected as electron 

poor complexes tend to favour reductive elimination.130  
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Scheme 40:  Pathways for β-hydride elimination vs. reductive elimination. 

1.2.6 Ligands 

As described above, ligands serve an important role in the catalytic cycle. The original 

monophosphine ligands such as P(o-tol)3 and PPh3 afford cross-coupled products with aryl 

bromides and various amines.102,106,107,114,119,123,131-133 Buchwald demonstrated that aryl 

iodides133 and aryl bromides131 were able to undergo amination using P(o-tol)3 as the 

ligand with primary, secondary and cyclic alkylamines, anilines and N-alkylanilines. 

Primary alkylamines were shown to be unreactive using a similar system, as noted by 

Louie and Hartwig.
119 It has been noted that primary alkylamines are challenging 

substrates,134 presumably due to their tendancy to react further to form the tertiary 

amine.135 

 

The “second generation” monodentate PCy3 was one of the first reported ligands to be used 

in the amination of aryl chlorides.136 Using the bulkier tBu3P, Yamamoto et al. showed that 
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diarylamines could be arylated using excess chlorobenzenes in very high yields in low 

catalyst loadings134 at elevated temperatures when using a 1 : 4 ratio of Pd : ligand.137 In 

1999, Hartwig et al. showed that by carefully controlling the Pd : ligand ratio, tBu3P could 

provide aminations of aryl chlorides at room temperature.138 This catalytic system was also 

applied to amides and a selection of azoles at elevated temperatures (see Scheme 41). 

Azoles are reported to undergo reductive elimination slowly, with DPPF as the ligand and 

Cs2CO3 base being optimal to avoid low yields,139 therefore, making this study all the more 

interesting.138 
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Scheme 41:  N-Arylation of indole using aryl chlorides. 

 

Bulky trialkylphosphine 34 has been used very successfully for the coupling of primary 

and secondary alkylamines and anilines with unactivated and sterically hindered aryl 

chlorides, outperforming most other monodentate ligands tested over a series of reactions 

(Scheme 42).134  
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Yield(%) =    70    52         56        51             44                     45             54             2  

Scheme 42:  Coupling of sterically hindered aniline with deactivated and hindered aryl 

chloride using 34 as ligand. 

 

From initial study of the “first generation” of ligands (PPh3 and o-tol3P) by Buchwald140 

and Hartwig,119 both groups independently moved towards “second generation” chelating 

ligands. Buchwald and others have described BINAP as being a good ligand providing 

excellent yields141,124,142 while Hartwig found DPPF to be effective in many coupling 

scenarios.123,143 As described above, mechanistic insights have pointed to a 4-coordinate Pd 
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complex as oxidative addition complex, with PdL2 as the active catalyst where chelating 

ligands are used. The steric bulk associated with both BINAP and DPPF aid reductive 

elimination and it has been proposed that β-hydride elimination is reduced when using 

DPPF (vide supra). DPPF is also strongly electron rich, favouring oxidative addition.116 

Structurally related DtBPF (see Figure 1) has been very successful in coupling aryl 

chlorides.144 The authors speculated that the increased sterics could favour oxidative 

addition by allowing mono-phosphine dissociation to form a bent Pd0 species,129 while the 

increased electron density of the bis-alkylphosphine moiety, compared to DPPF, also 

favours oxidative addition. They also point out that more electron rich phosphines 

disfavour reductive elimination, and they reasoned that the increase in steric bulk 

attenuates for the negative effect of increased electron density.   

 

The monophosphine ligand 35 (see Figure 1) has been effective in the amination of aryl 

chlorides, arybromides and aryl iodides (Scheme 43, bottom). An oxidative addition 

complex containing two similar ligands with P-Pd bonds (36) and also a complex with one 

ligand but coordination via P-Pd and O-Pd bonds  (37) have been observed (Figure 1, 

top).145  
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Scheme 43:  Ambidentate ligand (35) used in the study of the amination of aryl chlorides 

with primary amines (bottom).145 

 

The Buchwald group have had much success with ligand design for the Buchwald-Hartwig 

reactions,146 as well as other cross-coupling protocols.147 Their ortho-

biphenyldialkylphosphine ligands (a selection is shown in Figure 1) have been shown to 

afford cross-coupling with deactivated substrates under mild conditions.148,146,149 They 

exist as LPd0 complexes in an equilibrium with the L2Pd0 complexes.150 Structurally, the 
tBu- and Cy- groups add bulk, as does the ortho-biphenyl moiety. Further substituents on 

the aryl rings, especially on the 2’,6’- positions, add bulk and favour oxidative addition and 

reductive elimination by forcing a reduction in coordination number (vide supra). The 

alkyl substituents on the phosphorus atom also allow the phosphine to donate more 

electron density to the Pd centre, aiding oxidative addition. There also exists a possibility 
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of Pd-arene interactions,151-154 as shown in Figure 1, which could stabilise oxidative 

addition (B) and reductive elimination species (C),152 and increase electron density on the 

palladium atom (A).146 
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Figure 1:  Bis-chelating, ambidentate ligands and Pd complexes of ambidentate 

ligands observed (top). Also, Buchwald’s ortho-biphenyldialkylphosphine 

ligands and proposed stabilisation via Pd-arene interactions for the 

amination of chlorobenzene (bottom). 

 

Primary alkylamines are problematic nucleophiles with many catalytic systems due to 

issues with bis-arylation if there is no ortho-substituent on the aryl halide or if there is not 

an excess of amine.135 This problem has been tackled effectively by using very bulky 

“fourth generation” ligands such as JosiPhos 38 (although Buchwald classes this as third 

generation and XPhos as fourth generation155).144,135,2 The steric bulk is thought to inhibit 

further coupling of the secondary amine product. Like DPPF and related chelating ligands 



Jamie S. Siddle           Metal-Catalysed Cross-Coupling Reactions of Nitrogen Heterocycles                  43 

(vida supra), the ferrocenyl moiety imparts strong electron richness, favouring oxidative 

addition. However, unlike DPPF, the rigid backbone of the JosiPhos ligand allows stronger 

binding to the metal centre with more preorganisation.2  Problems encountered previously 

of ligand displacement by basic N-heterocycles or even primary amine substrates107,156 

leading to deactivated catalyst, are thought to be negated through the binding affinity of the 

JosiPhos structure. Prior to Hartwig’s publication of the use of JosiPhos ligands, Buchwald 

studied the structurally similar Hayashi ligands and obtained very good results with 39 

(structures shown in Figure 1).128 

 

1.2.7 Scope 

The intolerance of Buchwald-Hartwig amination and amidation reactions initially to non-

activated aryl bromides, aryl chlorides, aryl iodides and bulky substrates led to a variety of 

different approaches as well as a better understanding of the reaction mechanism. The 

Buchwald-Hartwig reaction has been applied to heterocycles in a number of different 

ways, either by “decoration” of heterocycles,1 reactions of NH-heterocycles or by 

formation of heterocyclic ring systems.157 A few leading papers displaying the scope and 

limitations of the reaction in regards to N-heterocycles will now be considered. 

 

Coupling can occur between aryl and heteroaryl halides158 and pseudohalides,149 and 

vinylic halides in both an inter-159 and intra-molecular fashion.160 The choice of 

nucleophile is also vast, with primary and secondary alkylamines being tolerated (with 

secondary amines generally being better substates116) and cyclic secondary amines being 

particularly good. Amides, both primary and secondary (including cyclic) are good 

substrates.161 Aryl, diaryl and alkylarylamines are well tolerated substrates, as are various 

heteroarylamines.146 Sulfonamides,162 hydrazines,163 and hydrazones164 are also well 

tolerated. Routes to primary arylamines are also available through the Buchwald-Hartwig 

reaction utilising either “ammonia surrogates”165-167 or, more recently, gaseous ammonia168 

with optimised conditions. The N-arylation of NH-heterocycles is also achievable using 

Buchwald-Hartwig methodology with varying success.119 Intramolecular couplings to 

synthesise N-heterocycles are an interesting application of the Buchwald-Hartwig reaction 

with many examples in the literature.159,169  

 

Although generally accepted as superior electrophiles in many cross-coupling protocols, 

aryl iodides have been known as poor substrates in the Buchwald-Hartwig reaction.102 
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Several groups135,120 have shown that retardation by alkali metal iodides (one of the by-

products from the reaction) is a contributing factor. Buchwald succeeded in improving 

coupling of 4-iodoanisole with aniline by changing from DME to toluene, stating that the 

decreased solubility of sodium iodide in toluene facilitates a greater conversion.120 The 

authors postulate that inhibition could occur not only at the oxidative addition stage 

(Scheme 45, top) but also at the transmetallation stage (Scheme 45, bottom).   
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Scheme 45:  Iodide inhibition at either oxidative addition stage (top) or transmetallation 

stage (bottom). 

 

It has been proposed that the formation of reactive monomeric oxidative addition  

complexes by cleavage of the dimeric bridging complexes is endergonic with bridging 

iodides.140 The stability of these bridging dimers is believed to impede reactions of aryl 

iodides and prevention of their formation by using specialised ligands has been explored 

by Fors et al. (Scheme 46).120  
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Scheme 46:  Specialised ligands for the amination of heteroaryl iodides. 
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BrettPhos 40 and RuPhos 41 are designed to favour formation of monomeric oxidation 

complexes in solution, thereby aiding amine coordination and  transmetallation.120 Good 

yields have been obtained using deactivated heteroarylamines and heteroaryl iodides when 

combined with palladacyclic sources of precatalyst. Hartwig found that low catalyst 

loadings and high conversions can be accomplished in the reaction between primary 

amines and aryl iodides when utilising the JosiPhos ligand 38 (Scheme 47).158  
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Scheme 47:  Dichloropalladium-JosiPhos complex as efficient catalyst for heteroaryl 

iodide amination with primary amines (see Figure 1 for structure of 38). 

  

The synthesis of functionalised chloroindoles through cascade cyclisation of gem-ortho-

gem-dibromostyrenes has been achieved by Pd-catalysed amination with biarylphosphine 

ligand 42.159 An initial Suzuki cross-coupling allowed momo-arylation of the 

dibromoalkenyl moiety, followed by a tandem dual C-N amination with various primary 

amines and carbamates, which allowed cyclisation to provided the indole. This 

methodology allowed regiochemical control of the 4, 5, 6 or 7 chloro substituent (Scheme 

48). 
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Scheme 48:  The formation of indoles by cascade cyclisation utilising Pd-catalysed 

amidation step. 

 



Jamie S. Siddle           Metal-Catalysed Cross-Coupling Reactions of Nitrogen Heterocycles                  46 

The C-N coupling of 2-chloropyridine to various hydrazides using a JosiPhos/Pd2(dba)3 

catalytic system followed by a dehydrative cyclisation  gave access to functionalised 

triazolopyridines in good yields (Scheme 49).163 
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Scheme 49:  Sequential hydrazide C-N coupling / cyclisation route to triazolopyridines 

(microwave reactor power was not disclosed). 

 

Amidations of aryl- and heteroarylmesitylates have been achieved in high yields using 40 

as the ligand (Scheme 50).161  
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Scheme 50:  Amidation of heteroaryl mesylates. 

 

Amination of indoles (Scheme 51),170 indazoles (Scheme 52),171 pyridazinones (Scheme 

53),172 tetrahydroquinolines (Scheme 54)132 using various Pd catalyst systems highlights 

the useful role of the Buchwald-Hartwig reaction in the decoration of heterocycles relevant 

in the pharmaceutical sector. 
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Scheme 51:  Amination of an electron-rich indole derivative using sterically hindered 43. 
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Scheme 52:  Amination of selectively protected indazoles using BINAP. 
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Scheme 53:  Amination of iodopyridazinones using Xantphos as part of drug 

optimisation at Pfizer.  
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Scheme 54:  Intra-molecular cyclisation of tetrahydroquinoline.  

 

N-Arylation of azoles has been relatively under explored using the Buchwald-Hartwig 

reaction, compared to the Ullmann reaction, although progress has been made using DPPF 

and tBu3P ligands.139,138,173 Indoles and pyrroles can be arylated with aryl bromides and 

aryl chlorides in good yields when tBu3P is used (Scheme 55),138 and even carbazoles and 

imines have been arylated with DPPF (Scheme 56).139 Tris-coupling can be performed in 

reasonable yields to give tris-carbazole system 44 by employing a tBu3P / Pd(OAc)2 

catalyst system with K2CO3 as base (Scheme 57).173 
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Scheme 55:  Arylation of indole using 4-methylchlorobenzene. 
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Scheme 57:  Arylations of azoles. 

 

As described earlier, Hartwig found that reductive elimination of azolyl-palladium 

complexes required higher temperatures than the reductive elimination of anilines. The 

rationale for this observed difference in reactivity was the reduced nucleophilicity of azoles 

due to the nitrogen-lone pair electrons are delocalised within the heteroaromatic π-electron 

system.139 

 

1.2.8 Conclusion 

In conclusion, recent progress in the field of palladium-catalysed C-N coupling has made 

this a relevant reaction in modern synthetic chemistry. The range of designer ligands and 

optimised conditions allows for the coupling of substrates which are challenging for 

Ullmann-type protocols (primary alkylamines, aryl chlorides, etc.). Heterocyclic substrates 

are well tolerated; however, fewer examples of the amination of NH-heterocycles are 

shown in the literature than for the Ligand-Accelerated Ullmann reaction. Limitations 

include lower reactivity for aryl chlorides and the employment of often very expensive 

ligands and Pd-precatalysts.  
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1.3 Pd-Catalysed C-C Cross-Coupling: Suzuki-Miyaura Reaction 

The prevalence of biaryl systems in pharmaceuticals, agrochemicals, natural products and 

in materials science necessitates efficient procedures to form CSP2-CSP2 bonds. For biaryl 

formation, the Suzuki-Miyaura cross-coupling reaction is one of the most popular and 

versatile chemical transformations. The reaction involves the ipso-substitution of an aryl 

halide (or pseudohalide) by an arylboronic nucleophile, catalysed by palladium (or nickel) 

species. The identity of the nucleophile differentiates the type of C-C bond forming cross-

coupling reaction with a wide variety available to the synthetic chemist.7,174 These 

reactions include the Stille reaction (tin nucleophile), the Kumada or Kharasch reaction 

(magnesium nucleophile), Negishi (zinc nucleophile) and the Hiyama reaction (silicon 

nucleophile). A major drawback of the Stille reaction is the generation of toxic tin 

byproducts, although the generation of any stoichiometric metal-byproduct is common to 

these transformations and limits their industrial applications. Lack of substrate 

functionality, especially with the Kumada reaction of aryl Grignard nucleophiles is an 

issue, as is stability and ease of accessibility of these nucleophiles.  

 

In contrast to the above named reactions, the Suzuki-Miyaura reaction generates innocuous 

boronic by-products, maintains good functional group tolerance and the boronic 

nucleophiles are generally stable species. Aryl boronic acid and boronic esters are readily 

accessed through various simple protocols such as Directed ortho Metallation (DoM),175 

halogen-metal-exchange,176 Pd-catalysed coupling of B-B or B-H species to aryl halides177 

or catalytic C-H borylation by Ir catalysis.178  More recently, C-H activation by palladium 

or rhodium catalysis has provided atom efficient cross-coupling methodologies by either 

coupling of an arene/heteroarene/heteroaryl C-H with an aryl halide,179 or by oxidative 

coupling of two arene C-H groups.180 Metal-free cross-coupling of benzene with aryl 

iodides, aryl bromides and aryl chlorides using organocatalysts has been achieved with 

evidence of a radical mechanism.181 

 

1.3.1 Mechanism 

The catalytic cycle for the Suzuki-Miyaura reaction is essentially similar to many metal-

catalysed cross-coupling reactions. Like the Ullmann and Buchwald-Hartwig reaction (vide 

supra), it involves oxidative addition of the electrophile to a catalytic species, a 

transmetallation step of the nucleophile and a reductive elimination to generate the coupled 
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product and the active catalyst. In the Suzuki-Miyaura reaction the catalytic cycle has been 

extensively investigated experimentally112 and by DFT calculations,182 describing active 

catalytic species and intermediates. The general catalytic cycle is outlined in Scheme 58. 

The active Pd0Ln species undergoes oxidative addition with Ar-X to give trans 

LnPd0(Ar)X, observed by mass spectrometry.183 This species then undergoes 

transmetallation with the activated arylboronate [Ar’-B(OH)2OR]- (from the arylboronic 

activated by base) with loss of X-. This trans complex, also observable by mass 

spectrometry,183 then undergoes isomerisation to the cis PdII complex and the final step is 

the reductive elimination of Ar-Ar’ from the LnPdII(Ar)Ar’ species, generating Ar-Ar’ and 

the regenerated active catalytic species.  
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Scheme 58:  General catalytic cycle of the Suzuki-Miyaura reaction.183  

 

1.3.2 Oxidative Addition 

This stage of the catalytic cycle is essentially the same as the Buchwald-Hartwig reaction 

(vide supra) with non-bulky monophosphine ligands (such as PPh3) leading to the active 

L2Pd0 species. Practically, this is formed either by ligand dissociation from the commonly 

used Pd0 precatalyst Pd(PPh3)4 to give Pd(PPh3)2 (Scheme 59)184 or by activation of PdII 

precatalysts, such as Pd(PPh3)2Cl2 (Scheme 60),184 or Pd(OAc)2 (Scheme 61).185  
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Scheme 59:  Formation of active species from Pd(PPh3)4. 

Pd(PPh3)2Cl2 + Pd(PPh3) +OH2 O PPh3 + 2 Cl + H2O

 

Scheme 60:  Formation of active species from Pd(PPh3)2Cl2. 

 

Pd(OAc)2  + Pd(PPh3)n-1  + O PPh3 +  2AcOHn PPh3 +  H2O  

Scheme 61:  Formation of active species from Pd(OAc)2. 

 

The coordination number of the active Pd0 species depends upon the cone angle of the 

phosphine ligand with bulky phosphines reducing the coordination number.186 As either 

Pd0L2 or Pd0L can be the active catalytic species steric bulk (vide infra) on the ligand can 

force the formation of Pd0L.187-189 The trans-bisphosphine oxidative addition structure was 

observed for PPh3 ligands after isolation of intermediates in the Suzuki-Miyaura cross-

coupling of 2- and 4-bromopyridine derivatives.190 Based on 31P NMR studies, oxidative 

addition occurred faster at the C2 than the C4 position  

Generally, oxidative addition with bulky phosphines (i.e. tBu3P and o-tol3P), chelating 

ligands (BINAP, DPPF, JosiPhos) and ortho-biaryldialkylphosphines occurs as in the 

Buchwald-Hartwig reaction, with the active catalytic Pd0 species existing as a reactive 

monoligated 12-electron Pd0L species (vide supra). This was aptly demonstrated by Littke 

et al.
189 who observed only one phosphine species by 31P NMR during the Suzuki reaction 

with the L : Pd ratio of 1 : 1. This was assigned as the Pd(tBu3P)2 species which did not 

seem to participate in the reaction directly. They postulated that phosphine-free palladium 

(half the palladium in the reaction mixture) is present with the active species being 

monoligated Pd0L. As described in the Buchwald-Hartwig section previously, the nature of 

the oxidative addition complex is not only ligand dependent but also halide dependant.111 

For PPh3 as a ligand, it has been shown by 31P NMR that oxidative addition of PhBr occurs 

onto Pd(PPh3)2 leading to the PdL2Ph(Br) oxidative addition complex.191 More recently, 

DFT calculations have countered this argument and have shown that, although endergonic, 

the dissociative loss of a phosphine from both Pd(tBu3P)2 and Pd(PPh3)2 leads to much 

more reactive 12-electron Pd0L species, able to participate better in the oxidative addition 

of aryl halides.192 It was shown that the oxidative addition transition state for Pd0L2 is very 
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high energy when L = PPh3 and does not even exist when L = PtBu3. Lam et al.
193 have 

reported similar conclusions based on DFT calculations: the aryl bromides and chlorides 

require a monoligated-Pd pathway with electronic effects on the electrophile not altering 

the necessity for a dissociative pathway. They concluded that bulky or hemilabile ligands 

are required to enable oxidative addition of aryl bromides and chlorides. They also found 

that with bisphosphine-palladium complexes, oxidative addition occurred much more 

slowly due to the high energy barriers involved. Bisphosphine-palladium complexes do 

play a significant role in the oxidative addition of aryl iodides, however, with electron-

withdrawing groups favouring a PdL2Ar(I) transition state and electron-donating groups 

favouring a PdLAr(I) transition state. Apart from the steric effect and chelating vs. mono-

ligating effects, the electronics of the phosphine also greatly affect the oxidative addition 

capability of the Pd0 complex, with more electron rich species accelerating oxidative 

addition due to increased electron density on the Pd centre.189  

 

1.3.3 Transmetallation 

Owing to the low nucleophilicity of organoboron compounds, transmetallation does not 

generally occur; however, activation by negatively charged base can dramatically increase 

the rate of the reaction. This quaternisation of the organoboronic species to generate 

negatively charged ‘ate’ complexes, increases the nucleophilicity, thereby aiding 

transmetallation. For example, [RB(R’)(OR’’)2]Li readily undergoes transmetallation.194 

Matos et al.
191 have shown that transmetallation occurs with retention of stereochemistry 

(Figure 62) owing to a β-hydroxybridged transition state, either by reaction of a 

hydroxypalladium intermediate (path A) or by a quaternised boronate (path B). 
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Scheme 62:  Transmetallation occurring by quaternisation of the boronic acid. 

 

This alternative transmetallation step (Scheme 58, transmetallation B) in the catalytic cycle 

is also widely accepted whereby the oxidative addition complex 45 undergoes ligand 
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exchange with either an alkoxide or a hydroxide anion to form the alkoxy- or hydroxy-

palladium complex.195  

 

The oxidative addition step is generally rate limiting, especially for aryl chlorides and 

deactivated aryl bromides with the reactivity of the aryl halide decreasing as the group is 

descended (vide supra). The transmetallation step, however, follows the opposite reactivity 

order;  Cl > Br > I  in line with the greater Pd-X bond strength as the group is descended, 

due to the required ligand exchange of the halide form the PdII complex. 

 

Due to the base-promoted quaternisation of the boronic acid, the nature of the base plays a 

significant role in the rates of the reaction. Generally, increasing the base strength (i.e. 

MOH > M3PO4 > M2CO3 > MHCO3) increases the concentration of the ate complex in the 

reaction system, with cesium bases generally being stronger than the corresponding sodium 

bases.196 However, the affinity of the counter cation for displaced halide also plays a large 

effect, whether transmetallation occurs via Path A or Path B (Scheme 62). The observed 

rates are in line with the stability constants for the halides: Ag+ > Tl+ >> Ba+ > Cs+ > K+.197 

When employing sterically bulky arylboronics the reactivity follows the order: TlOH > 

Ba(OH)3, Tl2CO3 > NaOH > Cs2CO3, K3PO4 > Na2CO3 > NaHCO3 and can be attributed to 

the concentration of the ate complex and stability of the MX species, as outlined above. In 

another study, bulky arylboronic acids coupled best when the base strength was increased 

with the reactivity order: KOtBu > NaOEt > NaOH > Na2CO3.
198 It has been speculated 

that the large size of the K+ counter cation could template the boronate attack of the 

alkoxypalladium intermediate (Scheme 63) so increasing the rate of reaction.199 Other 

methods for increasing the reaction rates of sterically hindered boronic acids are outlined 

in chapter 6.  
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Scheme 63:  Possible intervention of K+ cation as template for nucleophilic attack of 

boronate to alkoxypalladium intermediate.199 

 

In the presence of base sensitive functionality, the use of KF as a mild base for the Suzuki-

Maiyura reaction has been explored. The high affinity of F- for boron is responsible for the 

formation of ate complexes of the type [RB(OR’’)2F]K.200 Electron deficient boronic 

species transmetalate slower due to their decreased nucleophilicity and, therefore, can 

decompose under the reactions conditions.  

 

1.3.4 Reductive Elimination 

After the transmetallation step, trans-cis isomerisation occurs, bringing the aryl groups 

from the electrophile and nucleophile into the required geometry for reductive elimination. 

This could occur via three possible mechanisms: a 3-coordinate transition state by loss of a 

phosphine ligand (LPdR(R’)); a 4-coordinate tetrahedral intermediate; or a 5 coordinate 

transition state by association of a phosphine or solvent molecule.182 As with the 

Buchwald–Hartwig reaction, more electron deficient ligands promote reductive elimination 

by lowering the energy barrier for the reduction of the PdII species. However, as the 

oxidative addition step is generally the rate limiting step, the employment of electron rich 

ligands that favour oxidative addition has little impact on the reaction rates.  
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1.3.5 Improved Ligands and Conditions 

As described above (oxidative addition), PPh3 performs well as a ligand; however, it is not 

effective when employing electron rich aryl chlorides. Bulky and electron rich 

alkylphosphines enable oxidative addition of electron rich aryl chlorides by increasing 

electron density on the Pd centre and favouring more reactive monophosphine complexes. 

It seems, however, less bulky phosphines can improve sluggish reactions using aryltriflates 

as electrophiles, with PCy3 providing more stable complexes at higher temperature than the 

corresponding PtBu3 ligand.189 

Using ortho-biphenylbisalkylphosphines,151 bulky substrates coupled in higher yields when 

less bulky phosphines 46-48 were used compared with the bulky 49.201 For electron 

deficient heteroarylboronic acids and challenging heteroaryl halides, XPhos 50 is 

particularly effective, providing coupled products in excellent yields.202  
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Figure 2:  ortho-Biphenylphosphine ligands.  

 

The pyrophoric nature of alkylphosphines, such as tBu3P, serves to limit the usefulness of 

this very active ligand in cross-coupling procedures. This issue has been addressed by the 

use of HBF4
203 salts of the phosphines. 

The use of water as a reaction solvent has been achieved by employing phase-transfer 

agents, enabling insoluble aromatics and heteroaromatics to couple effectively.204-206 

Coupling of electron deficient boronic acids207-208 or boronic acids with an α-heteroatom209 

often give protodeboronation byproducts due to the slow transmetallation of the ate 

species. Protodeboronation occurs under Suzuki-Miyaura reaction conditions via a base 

promoted mechanism, although HCl, Zn2+ and Cd2+ ions also catalyse this reaction.210 

Methods of combating these sluggish reactions and side-reactions have included modified 

ligand design, with RuPhos capable of coupling 3-pyridylboronic acids in excellent 

yields.211 
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1.3.6 Conclusions 

As a method for forming aryl-aryl bonds, the Suzuki-Miyaura reaction is unchallenged in 

its versatility and widespread applications. Many different conditions have been 

investigated to improve on yields for sluggish systems, tolerate sensitive functionality and 

to reduce catalyst loadings. Heterocyclic systems, especially heteroarylboronic acids are 

challenging substrates and methods used to couple such species are therefore of interest. 

The wide choice of ligands and conditions can be overwhelming, however choosing 

logically based on the electronics of the nucleophile or electrophile, steric considerations 

and the sensitivity of any functionality in situ, a good starting point can be made.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Jamie S. Siddle           Metal-Catalysed Cross-Coupling Reactions of Nitrogen Heterocycles                  57 

CHAPTER 2 - SEQUENTIAL CROSS-COUPLINGS ON AZOLES 
 

2.1 Introduction  

Arylated heterocycles are key structural motifs in a wide range of pharmaceuticals, 

agrochemicals, and organic functional materials; hence, great effort has been devoted to 

their synthesis by a range of metal-catalysed protocols.22,179,212-216 Contemporary 

procedures can be readily performed with low catalyst loadings and good functional-group 

tolerance, as reviewed in Chapter 1. These include C–heteroaryl bond formation by 

palladium catalysed Suzuki–Miyaura cross-coupling reactions of arylboronic acids/esters 

with heteroaryl halides,176,217 or by direct functionalisation of heterocyclic C–H bonds with 

aryl halides214 catalysed by palladium or copper species.218 For heterocyclic N-arylation, 

which is relevant to the present work, the classical copper-promoted Ullmann reaction has 

been improved by the addition of a variety of ligands, such as diamines, 26,55,61-62,219 

pipecolinic acid,78 sterically hindered phosphanes,220 a mixture of 1,10-phenanthroline and 

dibenzylideneacetone,3 4,7-dimethoxy-1,10-phenanthroline,51 (S)-

pyrrolidinylmethylimidazole,99 N-hydroxyimides221 or ninhydrin.75 A CuCl-catalysed N-

arylation of imidazole with arylboronic acids has been developed in the absence of an 

additional chelating ligand.222 Combined N(1)- and C(3)-arylations of 3-iodoindazole using 

boronic acids and Cu(OAc)2 have been reported.223 However, these methods require 

additional steps to synthesise the arylboronic acid. You et al. have recently shown that 

imidazoles can be N-arylated with aryl and heteroaryl halides in the presence of base and a 

catalytic amount of CuI: an excess of imidazole improved the product yield and it was 

noted that the imidazole substrate may also function as a ligand in this process.224 The 

CuOAc-mediated N-arylation of indoles and carbazole with aryl iodides under base-free 

and ligandless conditions has been reported.225 Developments in iron-catalysed226 N-

arylations have also been reported although warnings over the possible role of trace Cu 

contamination in these catalysts have been noted recently.227 

While many important results have been achieved for N-arylations, it is notable that much 

less progress has been made for N-heteroarylations, i.e. analogous reactions with heteroaryl 

halides.224 The development of this methodology is, therefore, of considerable interest. To 

this end, we undertook a series of heterocyclic N-heteroarylation reactions and then 

exploited further reaction at an active halide site in the products via Suzuki–Miyaura cross-

coupling reactions, leading to the expedient construction of tris(hetero)aryl scaffolds 
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comprising two or three N-heterocyclic rings. Tris(aryl) compounds containing two or 

three heteroaryl rings have found applications in medicinal chemistry,228 fluorophores229 

and liquid crystals230 (see Figure 3).  

N
NH

N

O

O
O

H2N

O
O

CF3

F3C

N

N

N

MeO

Me

Me

N

OMe

N
N N

R R

R =

(A)

(B) (C)

-O2C-C6H4-OC16H39

 

Figure 3:  Tris(aryl)systems containing three heteroaryl rings. A potential 

neurogenesis agent for the treatment of neurodegenerative diseases (A); a 

fluorophore (B); and a liquid crystalline material (C). 

 

N-aryl azoles have seen potential applications in a variety of drugs (see Figure 4) such as: 

platelet derived growth factor inhibitors as anticancer agents 51,231 nephritis treatment 

52,232 immunosuppression drugs 53,233 potential antitumour drugs 54,234  potential cancer 

treatment agent 55
235 and as treatments for obesity 56.236 The bioactivity of benzimidazole 

and its analogues is not surprising considering the similarity in structure of natural 

compounds such as histidine and the purines. As direct analogues to histidine, 

benzimidazoles and related indoles, oxindoles and benzimidazolones have been used to 

create multi-ring compounds for a variety of biological studies.237-239  
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Figure 4:  N-(Hetero)aryl azoles investigated as potential drug molecules.  

 

2.2 Results and Discussion 

2.2.1 Ligand-accelerated Ullmann-Reactions 

We chose benzimidazole 57 and 1-methylbenzimidazolone 58 as starting reagents for the 

optimisation of our strategy for two reasons: (i) their derivatives are widespread in 

structures of biological and medicinal importance;240-244 (ii) their arylation reactions have 

been relatively neglected compared to other NH heterocycles; imidazole is most commonly 

used in this context. 3,75,99,224,245,246 To confirm the versatility of the procedures, analogous 

reactions were also performed for imidazole 59 and pyrrole 60. The general concept of 

sequential N–C and C–C couplings leading to tris(hetero)aryl systems is depicted for 

benzimidazole in Scheme 64. The higher reactivity of iodides compared to bromides was 

exploited for selectivity in the reactions of the dihaloarenes in step 1. Scheme 65 depicts 

the N–C couplings and the specific examples are shown in Table 1.  

N
H

N

N

N

Het

Br

N

N

Het

Het

Step 1:
N-C coupling

Step 2:
C-C coupling

[Pd], Het-B(OH)2
[Cu], I-Het-Br

 

Scheme 64:  Construction of tris(hetero)aryl scaffolds by sequential N–C and C–C 

couplings. 

HetNH HetN-(Het)Ar
(Het)Ar-X

conditions
57-60 66-74  

Scheme 65:  Synthesis of 66-74. For conditions see Table 1.  
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Table 1:  Copper catalysed C-N cross-couplings.a   

Entry Het-NH (Het)Ar-X Product 
Conditions, Isolated 

Yield (%)B 

1 N
H

N

57

 

N

N

X

61a X = I
61b X = Br

 

N

N

N

N

66

a 

b 

50 (X=I) 

78 (X=BR) 

2 N
H

N

57

 

N

N

I

62

 

N

N

N

N

67

a 

 

70 

 

3 N
H

N

57

 

N

I

63

Br

 

N

N

N

68
Br

 

c 

 

90 

 

4 N
H

N

57

 

N

N

I

64

Br

 

N

N

N

N

69
Br

 

c 

 

57 

 

5 N
H

N

58

Me

O

 

N

I

63

Br

 

N

N

N

70

Br

Me

O
c 

 

94 

 

6 N
H

N

58

Me

O

 

N

N

I

64

Br

 

N

N

N

N

71

Br

Me

O

 

c 

 

76 

 

7 N
H

N

58

Me

O

 

I

65

Br

 

N

N

72

Br

Me

O

 

d 

 

81 

 

8 N
H

N

59
 

N

N

I

64

Br

 

N

N

N

N

73
Br

 

c 65 

9 
N
H

60

 

N

N

I

64

Br

 

N

N

N

74
Br

 

c 84 

a Reaction Conditions: (a) 61a, Cs2CO3, CuI, 1,10-phenanthroline, DMF, 110 °C, 6 h; (b) 61b, Cs2CO3, 

Cu2O, Chxn-py-al, acetonitrile, 87 °C, 64 h; (c) Cs2CO3, CuI, 1,10-phenanthroline, DMF, 70 → 80 °C, 18 → 

24 h; (d)  Cs2CO3, CuI, 1,10-phenanthroline, DMF, 80 → 110 °C, 24 → 65 h. b The quoted yields are for 

isolated product after purification by chromatography and/or recrystallisation.  
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In test reactions benzimidazole 57 reacted smoothly with 2-iodopyrimidine 61a and 2-

iodopyrazine 62 under modified Ullmann conditions (Cs2CO3, CuI, 1,10-phenanthroline, 

DMF, 110 °C)60 to afford the N-heteroarylated products 66 and 67 in 50% and 70% 

isolated yields, respectively (Table 1, Entries 1 and 2). The comparable reaction of 57 with 

2-bromopyrimidine 61b using the conditions developed by Cristau, Taillefer, et al.
26 

(Cs2CO3, Cu2O, Chxn-py-al, acetonitrile, reflux) gave 66 in 78% yield. These workers 

found that the reaction of imidazole with 4-bromo-1-iodobenzene (1 equiv.) took place 

with complete regioselectivity at the iodine site. We have found that for reactions of the 

dihalo reagents 63 and 64 with the NH heterocycles 57-60 the optimum conditions to 

achieve selective displacement of the iodo substituent247 are: 57-60 (1.2 equiv.), 63 or 64 

(1.0 equiv.) Cs2CO3 (2.0 equiv.) CuI (10 mol-%) and 1,10-phenanthroline (10 mol-%) in 

DMF at 80 °C (Table 1, Entries 3–6, 8 and 9). Other ligands that were trialed using these 

conditions for the reaction of benzimidazole and 2-iodopyrimidine included 8-

hydroxyquinoline74 and DMCDA61 however, lower conversions were noted upon 

completion check by GCMS, qualitatively.  Higher reaction temperatures (e.g. 110 °C as 

used in Entries 1 and 2) resulted in considerably lower product yields for reactions of 63 

and 64. The reaction of the less activated 4-bromo-1-iodobenzene (65) with 

benzimidazolone 58 (Entry 7) required a higher temperature (100 °C) to drive the reaction 

to completion to form 72. Table 1, Entries 3–9, show that moderate to high isolated yields 

were obtained for all the products 68-74, which possess a bromo substituent suitable for a 

subsequent C–C (hetero)arylation reaction. The reactions of 5-bromo-2-iodopyridine (63) 

were especially efficient (Entries 3 and 5).  

 

2.2.2 Suzuki-Miyaura Reactions 

To accomplish step 2 of our strategy (Scheme 64) the compounds 68-74 were treated with 

the commercially available methoxyphenylboronic acid derivatives 75 and 76, and the 

previously synthesised248 pyridylboronic acid derivative 77 in Pd-catalysed Suzuki–

Miyaura reactions176,249,217,250 to obtain the tris(hetero)aryl scaffolds 78–87 comprising two 

or three N-heterocyclic rings (Scheme 66). 

HetN-Ar-Br
Ar'-B(OH)2

conditions
HetN-Ar-Ar'

 

Scheme 66:  Synthesis of 78-87. For conditions see Table 2. 
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Table 2:  Palladium catalysed C-C cross-couplings.a 

Entry 
Het-N-

Ar-Br 
Ar-B(OH)2 Product 

Conditions, 

isolated 

yield (%)b 

1 68 

(HO)2B

OMe
75  

N

N

N

OMe

78

 

a 74 

2 68 (HO)2B

MeO

76  

N

N

N

OMe

79

 

 

a 

 

 

96 

 

3 68 (HO)2B

N

EtO

77  

N

N

N

N

OEt

80

 

 

a 

 

 

96 

 

4 69 (HO)2B

N

EtO

77  

N

N

N

N

N

OEt

81

 

 

a 

 

 

79 

 

5 70 

(HO)2B

OMe
75  

N

N

N

Me

OMe

O

82

 

 

a 

 

 

76 

 



Jamie S. Siddle           Metal-Catalysed Cross-Coupling Reactions of Nitrogen Heterocycles                  63 

Entry 
Het-N-

Ar-Br 
Ar-B(OH)2 Product 

Conditions, 

isolated 

yield (%)b 

6 
70 (HO)2B

N

EtO

77  

N

N

N

N

Me

O

OEt
83

 

a 0 

7 
71 (HO)2B

N

EtO

77  

N

N

N

N

N

Me

O

OEt
84

 

a 

b 

0 

43 

8 
72 (HO)2B

N

EtO

77  

N

N

N

Me

O

OEt

85

 

a 

b 

30 

83 

9 
73 (HO)2B

N

EtO

77  

N

N

N

N

N

OEt
86

 

a 48 

10 
74 (HO)2B

N

EtO

77  

N

N

N

N

OEt

87

 

a 78 

a Reaction conditions, (a) Pd(PPh3)2Cl2, 1,4-dioxane, aq. Na2CO3 (1 M), 80 °C; (b) Pd(PPh3)4, 1,4-dioxane, 

Na2CO3 (1 M), 80–90 °C; (c) [Pd2(dba)3], 1,4-dioxane, aq. K3PO4 (1.27 M), 100 °C. b The quoted yields are 

for the isolated product after purification by chromatography and/or recrystallisation. 
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There is considerable current interest in the cross-coupling of pyridylboronic acids.251-254 

The alkoxy substituents on the aryl/heteroaryl boronic acids were chosen to ensure good 

solubility of the products. The results are collated in Table 2. Standard conditions using 

Pd(PPh3)2Cl2 (ca. 5 mol-%) as catalyst, Na2CO3 (1 M) as base, in dioxane at 80 °C gave 

the products 78-82 in high yields (Entries 1–5). The molecular structure of 78 determined 

by X-ray crystallographic analysis is shown in Figure 5.  A dihedral twist between 

benzimidazole-pyridine (30.7 o) and pyridine-benzene (27.2 o) resulted in an out-of-plane 

geometry with the pyridyl nitrogen lone pair facing toward the benzene ring of 

benzimidazole. 

 

 

 

Figure 5:  X-ray molecular structure of compound 78 (50% thermal ellipsoids). 

Dihedral angles [°]: benzimidazole/pyridine 30.7, pyridine/benzene 27.2, 

benzene/methoxy 10.2. Courtesy of Dr. Andrei S. Batsanov (Durham). 

 

To our surprise, applying these conditions to attempted reactions of 70 and 71 with boronic 

acid derivative 77 failed to yield any product – unreacted 70 and 71 were recovered in 83% 

and 88% yield respectively (Entries 6 and 7, conditions a). When the catalyst was changed 

to Pd(PPh3)4 (with Na2CO3 as base) or [Pd2(dba)3] (with K3PO4 as base)255 product 83 was 

obtained in 67 and 54% yields, respectively (Entry 6, conditions b, c). Similarly, conditions 

b gave 84 in 43% yield. Pd(PPh3)4 is a more active catalyst than Pd(PPh3)2Cl2, being a Pdo 

pre-catalyst, therefore, explaining the increased yields. The low yields when using 

Pd(PPh3)2Cl2 could be as a result of phosphine ligand displacement by the 

benzimidazolone substrate.107,156 
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ii) 2-ethoxypyridin-3-yl-boronic acid (77)

5 mol% Pd(PPh3)4
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i) 5-bromo-2-iodopyrimidine (64)

10 mol% CuI
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Overall yields for
one-pot couplings:

        67%

       52%

Overall yields for
sequential couplings:

       68%

       60%

57

58 84

81

 

Scheme 67:  One-pot C-N/C-C cross-coupling protocol vs. sequential procedure. 

 

A general trend was that the Suzuki–Miyaura reactions were less efficient in the 

benzimidazolone series, especially Entries 6–8, compared to benzimidazole, imidazole and 

pyrrole analogs (Entries 1–4, 9, 10). Analogous one-pot, two-stage procedures gave 

compounds 81 and 84 starting from benzimidazole (57) and 1-methylbenzimidazolone (58) 

in 67% and 52% overall yields, respectively (Scheme 67).  

 

2.3 Conclusions 

In summary, this work256 established a series of reactions which constitute expedient and 

powerful methodology for the synthesis of new multi-heteroaryl scaffolds by a 

combination of N–C heteroarylation and C–C cross-couplings. Functionalised 

benzimidazole, benzimidazolone, imidazole and pyrrole derivatives were thereby obtained. 

This protocol complements existing strategies which are of great importance in diverse 

areas of heterocyclic chemistry, especially the development of new molecular templates for 

drug discovery and materials chemistry applications. The practical benefits include readily-

available and inexpensive starting materials, substrate versatility, experimentally 

straightforward procedures and good product yields. One significant aspect of the work is 

that the sequential N–C and C–C couplings can be performed in a one-pot process in >50% 

overall yields.  
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CHAPTER 3 - PYRIDIN-2(1H)-ONES 
 

3.1 Introduction 

Functionalised pyridones are of continued interest due to their prevalence in naturally 

occurring compounds,257-259 bioactive compounds and drugs,260-270 coordination 

chemistry271 and also for their catalytic acitivity.272 New routes for the synthesis and 

functionalisation of pyridones continue to be developed.273-274 Metal-catalysed cross-

coupling reactions have revolutionised the modification of pyridones275 and related 

heterocycles, with C-C, C-N, C-O bond forming processes now widely utilised.22,1 As 

reviewed in Chapter 1, Suzuki-Miyaura, Buchwald-Hartwig and Ullmann-type reactions 

have become ubiquitous in the post-functionalisation of heterocycles. Access to N-

arylpyridones was traditionally achieved using harsh Ullmann-Goldberg conditions276 

resulting in low yields and poor functional group tolerance. Ligand-accelerated and 

copper-catalysed approaches have led to much milder coupling conditions. 26,52,277-280, 

Other methods for N-arylating pyridones and related heterocycles include: copper mediated 

coupling with arylboronic acids,278,4-5 lead-mediated coupling to aryl halides281-282 and 

HATU-mediated coupling of arylamides to 4-hydroxyquinazolines.283 Following our work 

in Chapter 2, and in the light of general interest in sequential metal-catalysed routes to 

functionalised heteroaryl systems, 284-285,256,286,254,252 we set out to develop an efficient 

divergent route to tri-(hetero)aryl systems based on the pyridin-2(1H)-one framework, 

starting from the commercially-available 2-fluoro-5-pyridylboronic acid 88.287 This work 

is described in this Chapter, along with related reactions of 2,6-difluoro-5-pyridylboronic 

acid 117. 

 

3.2 Results and Discussion 

3.2.1 Suzuki-Miyaura Cross-Coupling and Hydrolysis 

An overview of our methodology is shown in Scheme 68. Suzuki-Miyaura cross-coupling 

of 2-fluoro-5-pyridylboronic acid 88 with (hetero)aryl bromides 89-91 furnished 

compounds 92-94 under standard conditions288-289 in high isolated yields (Table 3). 

Conversion of 92-94 into the 2-pyridone derivatives 95-97 was achieved in high yields by 

hydrolysis under basic conditions (Table 3). Acidic hydrolysis of 2-fluoropyridines to yield 

2-pyridones has been utilised by Cheng et al.253 Compounds 93 and 94 reacted faster than 
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92 (see Table 3), presumably due to the increased electrophilicity imparted by the electron 

withdrawing effect of the quinolyl and pyridyl substituents, respectively.  

N
H

(het)Ar

O

(het)Ar'-X

N

(het)Ar

O

(het)Ar'

95-97

N

(het)Ar

F

92-94

N

B(OH)2

F

(het)Ar-Br
89-91

88

Pd catalysis Hydrolysis Cu catalysis

KOH

99-109  

Scheme 68:  Protocol for the three-step synthesis of 1,5-di(hetero)arylpyridin-2(1H)-one 

derivatives.  

Table 3:  Pd-catalysed cross-coupling of 88 with (hetero)arylbromides 89-91 and 

subsequent basic hydrolysis.  

Entry (het)Ar-Br 
Cross-coupling 

productc 

Yield 

(%)a 
Hydrolysis producte 

Yieldb 

(%) 

1 

Br

OMe

 

89 

 

NF

OMe

 

92 

 

98 

N
H

OMe

O
 

95
f 83 

2 

N

Br  

90 

N

N

F  

93
d
 89 

N
H

N

O
 

96 88 

 3 

N OMeBr

 

91 

NF

N OMe

 

94 97 

N
H

N

O

OMe

 

97 92 
a The quoted yields are for isolated product after purification by chromatography and/or recrystallisation. b 

The quoted yields are for isolated product after purification. c Reagents and conditions: 88 (1.2-1.5 equiv), 

(hetero)arylbromide (1.0 equiv), Pd(PPh3)2Cl2, (2.5 mol%), aq. Na2CO3 (1 M), 1,4-dioxane, reflux, 1-20 h 

under argon. d 1.5 mol% Pd(PPh3)2Cl2 used. e Reagents and conditions: compound 92, 93 or 94, aq. KOH (1 

M), 1,4-dioxane, reflux, 24 h. f 66 h reaction time. 
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3.2.2 Ligand-Accelerated Ullmann Cross-Coupling 

It has previously been observed that the copper-catalysed coupling of 2-pyridones can lead 

to both C-N and C-O arylated products.52,74 To explore this reaction in our system, 

pyridone derivative 95 was reacted with 2-bromo-5-(trifluoromethyl)pyridine 98 (Scheme 

69). After isolation and full analysis (vide infra) of the N-heteroarylated product 99a, a 

comparison with the crude 1H NMR spectrum and GC-MS traces confirmed that 99a was 

the major product. The other product displayed an identical m/z in the GCMS trace and 

was presumed to be 99b, but could not be obtained pure. An initial screening was 

undertaken utilising commonly employed conditions and ligands for the C-N coupling of 

2-pyridones, 2-pyridazinones and NH-heterocycles (Table 4). Using 1,10-phenanthroline 

(phen) with conditions used previously for the N-heteroarylation of benzimidazole and 

other NH-heterocycles,256 conversion was complete after 24 h with a 79:21 ratio of 

99a:99b (Table 4, entry 1). Buchwald’s 4,7-dimethoxy-1,10-phenanthroline ligand has 

proved to be effective for the copper-catalysed N-arylation of 2-pyridone;52 however, the 

high cost of the ligand led us to try cheaper alternatives. Whilst keeping the same base 

(Cs2CO3), the solvent was changed to dioxane, 8-hydroxyquinoline (8-HQ) was employed 

as the ligand and PEG was added as a solid-liquid transfer catalyst.51 However, despite 8-

HQ being previously used to N-arylate pyridones74 and pyridazinones,280 these conditions 

resulted in a low conversion and a reduced ratio of 99a:99b (Table 4, entry 2). When N,N’-

dimethylcyclohexane-1,2-diamine (DMCDA) was employed using K2CO3 in toluene279 

(Table 4, entry 3) the conversion was complete with a high ratio (95:5) of 99a:99b and 99a 

was isolated in 80% yield (Table 5, entry 3). By changing the solvent to DMSO,52 99a was 

the sole product observed (Table 4, entry 4). It has been observed previously that more 

polar solvents favour the 2-(1H)pyridone tautomer.26 Utilising the potentially tetradentate 

Schiff base ligand Chxn-Py-Al with conditions developed by Cristau et al., for the N-

arylation of 2-pyridone,26 conversion was improved compared to 8-HQ with an enhanced 

99a:99b ratio of 50:11 (Table 4, entry 5).  

 

N
H

O

OMe
Cu source
ligand

base
solvent

NO

N

OMe

CF3

N

Br

CF3

+ N

OMe

O

N

CF3

+

95 98

99a 99b (not purified)  

Scheme 69:  Coupling of 95 and 98. For conditions see Table 4. 
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Table 4:  Screening conditions for Cu-catalysed cross-coupling of 95 with 98.a 

Entry 
Cu 

source 
Ligand Base Solvent 

GC-MS analysisc 

98 : 99a : 99b 

1 CuI phen Cs2CO3 DMF 0 : 79 : 21 

2 CuI 8-HQ Cs2CO3 dioxaneb 69 : 20 : 11 

3 CuI DMCDA K2CO3 toluene 0 : 95 : 5 

4 CuI DMCDA K2CO3 DMSO 3 : 97 : 0 

5 Cu2O Chxn-Py-Al Cs2CO3 MeCN 39 : 50 : 11 

a Conditions and reagents: 95 (0.735 mmol), 98 (0.700 mmol), Cu source (0.07 mmol), ligand (0.140 mmol), 

base (1.40 mmol), anhydrous solvent (2 mL), 100 oC, 36 h under argon. b PEG (43 mg) additive used. c A 

sample (0.2 mL) of the stirred reaction mixture was diluted with dioxane (5 mL), filtered through a pipette 

with a cotton wool plug and injected directly into the GCMS. Ratios calculated based upon integrations of 

the GC traces of 98, 99a and 99b. 

 

4-Bromoanisole 89 was chosen as a more challenging substrate to couple with pyridone 95 

as it is a deactivated halogen due to the para-methoxy group. Using the best conditions 

from Table 4 (entry 3: CuI, DMCDA, K2CO3 in toluene) gave clean conversion to 100, 

which was isolated in 82% yield: no other product was detected by GC analysis (Table 5, 

entry 2) (Scheme 70). However, when changing the ligands to those used in the previous 

screening (Table 4, entries 1, 2 and 5), no reaction of 95 with 89 was observed. The 

structure of 100 was confirmed by single crystal X-ray analysis (Figure 6) showing a large 

torsion angle between the pyridone and C-N bound anisole ring (68.6 o) and a much 

smaller angle between the pridone and the C-C bound anisole ring (28.7 o). IR observation 

of a strong C=O stretching band at 1662 cm-1, a 1H NMR signal at 6.7 ppm for the proton 

ortho- to the carbonyl and the crystal structure all clearly indicate the C-N and not the C-O 

isomer. 2D NMR (NOESY) analysis did indicate an interaction between the proton ortho- 

to the pyridone nitrogen and the protons of the C-N bound anisole ring, an interaction not 

expected for the C-O isomer. 



Jamie S. Siddle           Metal-Catalysed Cross-Coupling Reactions of Nitrogen Heterocycles                  70 

N
H

O

OMe CuI  (10 mol%)

DMCDA (20 mol%)

K2CO3

toluene

100 oC, 20 h

NO

OMe

OMe

Br

OMe

+

95 89

100 82% yield

 

Scheme 70:  Coupling of 95 and 89 to yield 100. 

 

 

 

 

Figure 6:  X-ray molecular structure of 100. Interplanar angles (o): i/ii 68.6, i/iii 28.7. 

 

Having found suitable conditions for N-arylation, 2-pyridone derivatives 95, 96 and 97 

were coupled with a variety of aryl and heteroaryl halides to give the functionalised 2-

pyridones 99-107 (Table 5, entries 1-12 and Scheme 71). High yields were also obtained 

when using more activated heteroaryl bromides (Table 5, entries 1, 3 and 4). Pyridone 96 

coupled with both 4-bromoanisole 89 and 2-bromo-5-(trifluoromethyl)pyridine 98 giving 

103 (66%) and 104a (72%), respectively (Table 5, entries 5 and 6). Alongside the major 

product 104a, the C-O coupled product 104b was isolated in low yield (Table 5, entry 6). 

A comparison of IR stpectra indicate a lack of strong C=O stretching band in 104b as 

observed in 104a (1609 cm-1). A comparison of 1H NMR signals shows that the signal for 

the proton ortho- to the C-O/C=O is 7.27 ppm for 104b and 6.81 ppm for 104a indicating a 
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much more aromatic, deshielded environment for the C-O isomer. Coupling of 97 was also 

performed with 91 giving 105 in a good yield. Pyridone 97 coupled to 89 under the same 

conditions, giving 106 in 74% isolated yield. Coupling at the iodo site of 112 afforded 107 

(entry 10) leaving an active bromo group for further functionalisation. Aminopyrazine 

derivative290 113 coupled to 97 to give 108 in 40% yield (entry 11). 2-Bromo-5-

nitrothiophene 114 coupled to 97 to give 109 in 60% yield. Functional group tolerance is 

notable, with fluoro, trifluoromethyl, methoxy, primary amino and nitro-substituted 

(hetero)aryl bromides coupling in good yields.  

 

N
H

(het)Ar

O
+   (het)Ar'-X

N

(het)Ar

O

(het)Ar'

95 - 97 99 - 109  

Scheme 71:  Coupling of 2-pyridones 95-97 to (hetero)aryl halides. 

Table 5:  Cu-catalysed cross-coupling of 2-pyridones leading to C-N and C-O 

coupled products.  

Entry Pyridone (het)Ar-X Product 
Yield 

(%)a 

1 

N
H

OMe

O
 

95 

N

CF3

Br

 

98 

N

OMe

O

N

CF3

99a  80 

2 

N
H

OMe

O
 

95 

Br

OMe

 

 

89 

N

OMe

O

OMe 100  82 
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Entry Pyridone (het)Ar-X Product 
Yield 

(%)a 

3 

N
H

OMe

O
 

95 

N

F

Br

 

110 

N

OMe

O

N

F
 

101 77 

4 

N
H

OMe

O
 

95 

N

NO2

Br

 

111 

N

OMe

O

N

NO2

102 83 

5 

N
H

N

O
 

96 

Br

OMe

 

 

89 

N

N

O

OMe
103 66 

N

N

O

N

CF3

104a 72 

 

 

 

6 

N
H

N

O
 

96 

N

CF3

Br

 

98 

N

N

O

N

CF3 104b 5 
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Entry Pyridone (het)Ar-X Product 
Yield 

(%)a 

7 

N
H

N

O
 

96 

N

OMe

Br

 

91 

N

N

O

N

OMe
105 70 

9 

N
H

N

O

OMe

 

97 

Br

OMe

 

 

89 

N

N

O

OMe

OMe
106 74 

10 

N
H

N

O

OMe

 

97 

N N

Br

I

 

112 

N

N

O

OMe

N N

Br
107 51 

11 

N
H

N

O

OMe

 

97 

N

N

NH2

Br

 

113 

N

N

O

OMe

N

N

NH2

108 40 

12 

N
H

N

O

OMe

 

97 

S

NO2

Br

 

114 

N

N

O

OMe

S

NO2
109 60 

a The quoted yields are for isolated product after purification by chromatography and/or recrystallisation. 

Conditions and reagents: Pyridone, (hetero)aryl halide, CuI (10-20 mol%),  DMCDA (20-40 mol%), K2CO3, 

anhydrous toluene, 100 oC, 20-88 h under argon. 

 

Two-fold coupling of 95 with 2,6-dibromopyridine 115 (2.2 equiv) provided the penta-aryl 

system 116 in 69% yield (Scheme 72) with no mono-coupled product isolated or observed 
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in the crude 1H NMR spectrum. X-ray crystallographic analysis of 116 confirmed the bis-

C-N coupled structure, with both amide carbonyls lying parallel to each other, facing away 

from the lone pair of the pyridyl nitrogen and out of the plane of the pyridine ring (Figure 

7). Being a highly π-conjugated molecule it displayed blue luminescence under UV-

irradiation. An attempt to protonate the pyridyl nitrogen using HBF4 gave a solution with 

red-shifted emission (qualitative observation). Attempts to grow crystals of this protonated 

116 of suitable form for X-ray structure determination failed due to the instability of the 

crystals. It was thought that by protonating the central ring, a 3-point hydrogen bonding 

system could form, planarising the molecule and, therefore, red-shifting the emission 

(Scheme 73).  

95

N
H

O

OMe

CuI, DMCDA

K2CO3

toluene 88 h

100 oC

N

O

N

OMe

N

O

OMe

116  69% yield

NBr Br
+

115 (2.2 equiv.)

 

Scheme 72:  Synthesis of penta-aryl 116 from 95 and 115. 

 

Figure 7:  X-Ray molecular structure of 116. Interplanar angles (o): i/ii 36.0, ii/iii 25.1, 

iii/iv 34.6, iv/v 10.9, i/v 4.3. 

 

 



Jamie S. Siddle           Metal-Catalysed Cross-Coupling Reactions of Nitrogen Heterocycles                  75 

N

O

N

O

N

O

O

HBF4

H
N

O

N

OMe

N

O

OMe

116 116-H+

Et2O

Strong "blue" fluorescence in EtOAc Weak "green" fluorescence in EtOAc

BF4

 

Scheme 73:  Possible product from acidification of 116 with HBF4 in Et2O, explaining 

the change in fluorescence intensity and colour.  

 

3.2.3 Fluoropyridine-2(1H)-ones 

3-Aryl-2,6-difluoropyridines 119 and 120 were synthesised via Suzuki cross-coupling of 

2,6-difluoro-3-pyridylboronic acid 117 with 89 and 118 in good yields (Scheme 74 and 

Table 6). Hydrolysis of 119 gave a 1:1.4 ratio of 121a and 121b, as judged by 1H NMR 

analysis of the crude mixture, indicating a slight preference for nucleophilic attack by the 

hydroxide anion at the less hindered C(6) site of 119. The isolated crude yield of 

121a+121b was ca. 80%. Separation was very difficult and samples of each of the two 

isomers were isolated pure in 10 and 8% yields, respectively after successive 

chromatography. To test C-N coupling reactions on these fluoropyridones (vide infra) 

without exhausting supplies of 121a and 121b, the parent compound 123
291 was 

synthesised from 2,6-difluoropyridine 122 via basic hydrolysis; the reaction was sluggish, 

giving 123 in 62% yield after 114 h at reflux (Scheme 75). 

N
H

(het)Ar

O

121a

N

(het)Ar

F

119, 120

N

B(OH)2

F

(het)Ar-Br
89 or 118

117

Pd catalysis Hydrolysis

KOH

F F F N
H

(het)Ar

F O
+

121b  

Scheme 74:  Two-step synthesis of 3- and 5-((hetero)aryl-6-fluoro-2-pyridones. 

N
H

O

123

NF

122

dioxane
reflux 114 h
62% yield

aq. KOH (6 M)

F F

 

Scheme 75:  Synthesis of 6-fluoropyridin-2(1H)-one 123 via basic hydrolysis of 2,6-

difluoropyridine (122). 
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Table 6:  Pd-catalysed cross-coupling of 117 with (hetero)aryl bromides and 

subsequent basic hydrolysis. 

Entry (het)Ar-Br 

Cross-coupling 

product / 

difluoropyridine 

Yield 

(%)a 

Hydrolysis 

productd 

Yield 

(%)a 

N
H

OMe

O F

121a
 

(80) 

10  

 

 

 

1 

Br

OMe

 

 

89 

N

OMe

F F

119 

 

 

 

 

 

76b 

N
H

OMe

F O

121b 

8 

2 

NBr

H2N

 

118 

N

NF F

H2N

 

120 

83c 
- - 

a The quoted yields are for isolated product after purification by chromatography and/or recrystallisation. 

Yield in parenthesis refers to combined isolated yield of both isomers 121a and 121b before purification.  
b Reagents and conditions: 117 (1.2 equiv), 89 (1.0 equiv), Pd(PPh3)2Cl2, Na2CO3 (3 equiv, 1 M in H2O), 1,4-

dioxane, reflux, 1 h under argon. 
c Reagents and conditions: 117 (1.5 equiv), 118 (1.0 equiv), Pd2(dba)3, PCy3, Na2CO3 (3 equiv, 1 M in H2O), 

1,4-dioxane, reflux, 22 h under argon. 
d Reagents and conditions: KOH (1 M in H2O), 1,4-dioxane, reflux, 16 h. 

 

Related 2- and 5-arylpyridone derivatives have been synthesised by Cheng et al.
253 

Fluoropyridones have been reported as potential bioactive compounds in previous 

studies.261,292  
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Figure 8:  5-Arylpyridin-2-one synthesis by Gallagher (top); Antibacterial fluoro 

pyridine-4-one (bottom left); Thyroid hormone analogue with 6-

fluoropyridin-2-one core (bottom right) 

 

X-ray crystal structure determinations of fluoropyridone derivatives 121b and 123 (Figure 

9) revealed that both exist as lactim (2-hydroxypyridine) tautomers. In both structures, 

pairs of hydroxypyridine groups related by a crystallographic inversion centre and 

practically coplanar, are linked together by pairs of strong linear hydrogen bonds O-H/N, 

with the proton unequivocally localised at the oxygen. Tautomerism of 2-pyridones has 

been extensively investigated.293-298 In the solid state, the parent 2-pyridone exists as the 

lactam tautomer as do 5-chloro-2-pyridone, 2-thiopyridone, 4-hydroxy-2-pyridone and 5-

nitro-2-pyridone.297,296 Functionalisation of 2-pyridones at C-6 with inductively electron 

withdrawing groups affects the acidity of the O-H group (in the 2-hydroxypyridine form) 

and the N-H group (in the 2-pyridone form) via a bimolecular proton transfer mechanism 

leading to the lactim tautomer.297 Polar solvents favour the lactam tautomer and interaction 

with another nonsolvent species can have an effect on the tautomeric equilibrium.272,298  
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123

121b

 

Figure 9:  X-ray molecular structures of 121b and 123, showing independent 

molecules, their inversion equivalents (primed) and hydrogen bonds 

(dashed lines). Interplanar angle i/ii 50.1o. Bond distances (Å): C(2)-O(2) 

1.337(2), N-C(2) 1.339(2), N-C(6) 1.323(2), O(2)/N0 2.758(2), O(2)-H 

0.92(2) in 121b; C(1)-O(1) 1.330(1), N(1)-C(1) 1.342(1), N(1)-C(5) 1.320, 

C(6)-O(2) 1.335(1), N(2)-C(6) 1.342(1), N(2)-C(10) 1.323(1), O(1)/N(10) 

2.735(1), O(1)-H 0.88(2), O(2)/N(20) 2.760(1), O(2)-H 0.89(2) in 123 

indicate 2-hydroxypyridine tautomeric structures. 

 

Arylation of 6-fluoro-2-pyridone 123 was attempted using the optimised conditions for the 

arylation of 2-pyridone 95 (Table 4, entry 3). However, no reaction was observed after 72 

h at reflux and starting material was recovered. Copper-catalysed arylation of amides is 

known to be very dependent on base strength with the optimal pKa below that of the 

amide.64 Although the solubility of K2CO3 in toluene is expected to be low, if the acidity of 
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the 6-fluoro-2-pyridone is significantly greater than 2-pyridone (pKa=17.0 in DMSO),299 

then deprotonation could occur faster than arylation leading to inactive cuprate complexes. 

A screening of different bases was carried out whilst keeping all other conditions 

unchanged. Despite changing to weak inorganic bases such as KHCO3 and weak organic 

bases such as Et3N (pKa=9.0 in DMSO)300 and pyridine (pKa=3.4 in DMSO),300 no reaction 

was observed after 48 h at reflux. On the basis of these results it is more likely that the 

steric effect of a 6-fluoro substituent hampers the arylation of 123, as well as the electron 

withdrawing effect of the fluorine atom resulting in a reduced nucleophilicity.74 An attempt 

to arylate 123 by copper-catalysed coupling with phenylboronic acid (DCM, room 

temperature, 48 h)278 gave an intractable reaction mixture.  

(a)

N

N

N

O

O

H

H

N

O

F

H

124 123 (b) 123 

Figure 10:  (a) Possible hydrogen bonding interactions between 124 and 123. (b) DFT 

(B3LYP-/6-31G*) derived electrostatic potential map for compound 123. 

 

On the premise that a compound with complementary hydrogen bonding sites could form 

host-guest complexes with 123, we have investigated the interaction of this compound with 

diaminopyridine derivative 124 (Figure 10a). DFT calculations on structure 123 performed 

in Dr. G. Cooke’s group at Glasgow University (Figure 10b) predict that although the 

carbonyl oxygen possess a significantly larger negative electrostatic potential than the 

fluoride, this derivative could have the propensity to form complementary hydrogen bonds 

with 124 (principally through the carbonyl oxygen and NH components of the pyridinone 

moiety with the amide N-H and pyridyl nitrogen of 124, respectively).301 The ability of 123 

to form hydrogen bonding interactions with 124 was assessed in Dr Cooke’s group using 
1H and 19F NMR spectroscopy in CDCl3. A 1:1 admixture of 123 and 124 resulted in a 

broadening and a small downfield shift (0.2 ppm) of the pyridinone NH resonance in the 
1H NMR spectra, which is characteristic of weak hydrogen bonding interactions. The 

proton-decoupled 19F spectrum of the admixture revealed a 2 ppm shift from -75 ppm to -

73 ppm in the single fluorine resonance,300 suggesting that weak F/H-N interactions may 

HN

O

F
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be occuring.302 Thus, the data are consistent with the formation of a low-affinity complex 

between 123 and 124 in CDCl3. 

 

3.3 Conclusion 

We have established efficient and flexible procedures that afford a range of 1,5-

di(hetero)arylated-pyridin-2(1H)-one derivatives starting from the readily-available 2-

fluoro-5-pyridylboronic acid 88.303 These protocols should be amenable to further 

exploitation in the synthesis of libraries of functionalised heterocycles of high diversity 

derived from 88, especially compounds of potential utility as new pharmacophores and 

scaffolds for drug discovery. 

 

Although 121a, 121b and 123 proved unreactive towards N-arylation, one could envisage 

that the pyridine tautomer could be converted to, for example, a triflate. This would 

provide a very active leaving group capable of being deisplaced in metal-catalysed 

processes (see scheme below). Access to ethers or thioethers could be achieved using 

alcohols or thiols in conjunction with Buchwald-Hartwig or Ullmann conditions. Using 

these conditions, displacement by amines or amides could be achieved. Utilising boronic 

nucleophiles (Suzuki-Miyaura reaction) access to an aryl/heteroaryl, alkyl or alkenyl 

moieties could be possible. Also, by using the Sonogashira reaction, alkynes could be 

incorporated into the fluoropyridine structure. Variation of 121a, 121b, 123 or other 

anologues which could be synthesised would make a wide ranging study and provide novel 

compound of interest to pharmaceutical/agrochemical research. 
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Scheme 76:  Possible routes towards novel fluoropyridines through modification of 121a 

to the triflate and subsequent metal-catalysed coupling with various nucleophiles.  
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CHAPTER 4 – 2-CHLORO-3,4-DIIODOPYRIDINE 
 

4.1 Introduction 

Highly-substituted pyridine scaffolds are of contemporary interest due to their prevalence 

in bioactive compounds,304-306 as ligands for organometallics307 and in materials chemistry 

applications.308 As discussed in Chapter 1, metal-catalysed cross-coupling methodologies 

have considerably expanded the scope of substitutions on heteroaryls by giving access to 

aryl–aryl, aryl–alkyl, aryl–alkenyl, aryl–alkynyl and aryl–heteroatom bond 

formations.1,22,215,309 These substitutions have also been achieved via rhodium catalysed 

CH activation310 and iridium catalysed borylations,311 as well as palladium catalysed direct 

arylations. 179,213 The more commonly used coupling reactions, require pre-activation in the 

form of a halide or other leaving group on the electrophilic substrate. Many such 

halogenated heteroaryl compounds are commercially available; however, the 2,3,4-

trihalopyridine substitution pattern is not well exploited. 4-Bromo-2-chloro-3-iodopyridine 

has recently been employed in the synthesis of potential drug treatments for rheumatoid 

arthritis312 and 2-chloro-3-fluoro-4-iodo-5,6-dimethylpyridine has been used in the 

synthesis of Streptonigrin analogues.313  

Organometallic bases regioselectively deprotonate aryl rings by Directed ortho Metallation 

(DoM) allowing electrophilic halogenation and access to a range of halogenated 

products.314,315 It has been well documented that ‘halogen dance’ (HD) reactions are 

amenable to the regioselective synthesis of multihalogenated pyridines.316-319 For example, 

Rocca et al.
320 reported that 2-chloro-3-iodopyridine 125 can be selectively deprotonated 

ortho to iodine with LDA leading to the 4-lithio species 126. Subsequent isomerism (HD) 

gave the 3-lithio species 127 (with stability imparted by a strongly inductive electron 

withdrawing effect of chlorine and chelation of the lithium to chlorine in the intermediate 

127).319-321 Electrophilic attack by molecular iodine on 127 then leads to 2-chloro-3,4-

diiodopyridine 128 in 71% yield (Scheme 76).320  

We were interested in developing metal-catalysed cross-couplings of halogenated 

pyridines. Previous work in our laboratory322 had established that 128 could be synthesised 

in an unoptimised one-pot reaction from cheap and readily available323 2-chloropyridine 

using combined DoM and HD methodology. It was, therefore, timely to build on this initial 

result. We first sought to optimise the synthesis of 128, and to demonstrate the utilisation 

of 128 in metal-catalysed cross-couplings for the first time. This has been achieved, 



Jamie S. Siddle           Metal-Catalysed Cross-Coupling Reactions of Nitrogen Heterocycles                  83 

resulting in the regioselective synthesis of novel 2,3,4-triheteroarylpyridines, as described 

in this Chapter. 

 

N NCl

I

Cl

I

Li

LDA

THF

-78 oC

125 126

isomerisation

N Cl

Li

I

N Cl

I

I

I2

-78 oC

127 128 71%

 

Scheme 76:   Synthesis of 128 by Rocca et al.
320

 

 

4.2 Results and Discussion 

4.2.1 Synthesis of 2-Chloro-3,4-diiodopyridine 

The overview of our synthetic strategy is shown in Scheme 77. Lithiation of 2-

chloropyridine 129 at -78 oC or -100 oC using 2 equiv. of LDA (prepared in situ from n-

butyllithium or n-hexyllithium and diisopropylamine) followed by addition of iodine (2.9 

equiv.) and aqueous workup reproducibly afforded 2-chloro-3,4-diiodopyridine 128 in 26–

28% yields for ca. 4–5 g batches of product. This was achieved on three occasions, and we 

believe this to be the optimal yield for our one-pot protocol. Lower yields of 128 were 

obtained under the following conditions: (i) scale-up of the reaction; (ii) use of 2,2,6,6-

tetramethylpiperidine as base at -100 to -85 oC. It is presumed that initial directed ortho 

lithiation of 2-chloropyridine 129 gives the 3-lithio intermediate 130 and electrophilic 

attack by I2 then gives 2-chloro-3-iodopyridine 125. In the GC–MS analysis of the crude 

product mixture, along with the signal for 128, two smaller signals were observed both of 

m/z 238.9 which are consistent with 2-chloro-3-iodopyridine 125 and 2-chloro-4-

iodopyridine as minor products. Subsequent directed lithiation and HD as reported 

previously320 and a final electrophilic attack affords product 128 (Scheme 78).While the 

route of Rocca et al. gives a greater yield, our method uses much cheaper 2-chloropyridine 

as a starting material. In order to obtain 125 to use in Rocca’s protocol, it will inevitably 

have to be synthesised from 2-chloropyridine via a DoM and iodination protocol. Due to 

these factors our route is potentially more cost effective and has fewer steps in the 

synthesis.  
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Scheme 77:   Our general strategy for the synthesis of 2,3,4-tri(heteroaryl)pyridines.  
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Scheme 78:  Our synthesis of 128 from readily available 129 in one pot. 

 

4.2.2 Suzuki-Miyaura Cross-Coupling at C4 

With stocks of 128 in hand we explored Suzuki–Miyaura176,217 cross-coupling reactions on 

128 using a variety of heteroarylboronic acids to give a range of functional mono-

heteroarylated products 131–134 (Scheme 78 and Table 7). The formation of heteroaryl–

heteroaryl bonds is of great interest to many areas of synthetic chemistry, including the 

synthesis of pharmaceuticals.234,324-325 Cross-couplings of heteroarylboronic acids are often 

complicated by lower yields than arylboronic acids due to deactivation and instability. 

When using Pd(PPh3)4, aq. Na2CO3 in dioxane at reflux and less than 1 equiv of the 

boronic acid 135 a mixture of unreacted 128, mono- and bis-coupled products was 

obtained. In attempts to optimise the conversion of 128 (Table 7, entries 2 and 3) by using 

2.5 equiv. of boronic acids 136 and 88, products 132 and 133 were obtained in 38% and 

50% yields, respectively, along with bis-coupled side-products observed via GC–MS. 

When using 0.75 equiv. 137, 134 was isolated in a low yield of 13% using Pd(PPh3)2Cl2 as 

the catalyst. This low yield prevented further reactions on 134, although further trials using 

more active catalysts could have been carried out in a bid to optimise the reaction.  
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N Cl

I

I

128

B(OH)2

77, 135-137   131-134

"Pd/L"

Base
1,4-dioxane

Het 1

+

N

Het 1

I

Cl

 

Scheme 79:  Synthesis of 131-134 via Suzuki cross-coupling reactions. For conditions 

see Table 7. 

Table 7:   Suzuki-Miyaura cross-coupling of 2-chloro-3,4-diiodopyridine 128 with 

heteroarylboronic acids yielding mono-coupled products. 

Entry R-X Boronic acid Product Yield (%)a 

1 128 
135

N

MeO

B(OH)2  

 

(0.9 equiv.) 

131 N Cl

I

N

MeO

 

 

44b 

22 c 

2 128 

N

OMe

B(OH)2136  

(2.5 equiv.) N Cl

I

N

OMe

132  

38b 

3 128 

N

F

B(OH)288  

(2.5 equiv) 
N Cl

I

N

F

133  

 

50b 

4 128 

N

B(OH)2137  

(0.75 equiv.) N Cl

I

N

134  

13c 

a Isolated yields after purification via chromatography and/or recrystallisation. 
b Reagents and conditions: Pd(PPh3)4, Na2CO3, 1,4-dioxane, reflux, 20–24 h. 
c Reagents and conditions: Pd(PPh3)2Cl2, Na2CO3, 1,4-dioxane, reflux, 19–70 h. 
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The increased yield for the more electron deficient fluoropyridylboronic acid 88 compared 

to the methoxypyridylboronic acid 136 (see Table 7, entries 2 & 3) is counter-intuitive as 

electron deficient boronic acids tend to transmetallate slower due to their lower 

nucleophilicity (vide supra). A higher isolated yield of 131 was obtained for the reaction of 

128 when using Pd(PPh3)4 as catalyst rather than the air stable Pd(PPh3)2Cl2 (Table 7, entry 

1), a phenomenon noted in Chapter 2.  

 

4.2.3 Suzuki-Miyaura Cross-Coupling at C3 

Performing the Suzuki–Miyaura reaction on 128 using 2.5 equiv of 135 yielded the bis-

coupled product 142 in 47% yield (see Table 8, entry 1) with 131 also observed via GC–

MS analysis of the product mixture. The activated 4-position of 128 reacts first, followed 

by reaction at the less electronically active and more sterically hindered 3-position.247 X-

ray diffraction studies confirmed the regioselectivity for mono- and bis-coupled products 

131 and 146 (see Figure 10).  

Twofold cross-coupling of the boronic acids 135, 136 or 75 at both the 4- and 3-positions 

of 128 gave 142–144 in optimised yields of 47– 64% (Scheme 80 and Table 8, entries 1–

3). Tris-coupled products were not observed in any of the reactions shown in Schemes 80–

81. Entries 4–6 in Table 8 show the products of stepwise reactions where the pyridyl 

substituents at C3 and C4 are different in each case. This was achieved by further reaction 

of 131–133 with a selection of pyridylboronic acids under Suzuki-Miyaura conditions (see 

Table 8) furnishing compounds 145–147 in variable yields. The inherent regioselectivity, 

vide supra, led to the second coupling occurring exclusively at the 3-position giving 

excellent control over the substitution pattern on the pyridine core. When using boronic 

acid 135, the resulting product 146 was obtained in only 23% yield (Table 8, entry 5) 

presumably due to the added steric hindrance of the ortho-methoxy group on 135. The X-

ray molecular structure of 146 is shown in Figure 10 showing the expected regioselectivity 

and large dihedral angles between the central pyridine ring and the rings at C3 and C4. 

N Cl

I

I

128

B(OH)2

135, 136, 75

"Pd/L"

Base
1,4-dioxane

Het 1

+

N Cl

Het 1

Het 1

142-144

 

Scheme 80:  Synthesis of 142-144 via Suzuki-Miyaura cross-coupling. For conditions 

see Table 8. 
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131-133

+

135-136 145-147

"Pd/L"

Base
1,4-dioxaneN

Het 1

I

Cl

Het 2

B(OH)2
N Cl

Het 1

Het 2

 

Scheme 81:  Synthesis of 145-147 via Suzuki-Miyaura cross-coupling. For conditions 

see Table 8.  

Table 8:     Suzuki-Miyaura cross-coupling with pyridylboronic acids to yield bis-

coupled products. 

Entry R-X Boronic acid Product 
Yield 

(%)a 

1 128 
135

N

MeO

B(OH)2  

(2.5 equiv.) N Cl

N

MeO

N

OMe142  

47b 

2 128 

N

OMe

B(OH)2136  

(2.0 equiv.) N Cl

N

N

143

OMe

OMe

 

50b 

3 128 

 
OMe

B(OH)275  

(2.0 equiv.) 
N Cl144

OMe

OMe

 

64b 

4 133 

N

OMe

B(OH)2136  

(1.5 equiv.) N Cl

N

F

N

OMe

145
 

90c 
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Entry R-X Boronic acid Product 
Yield 

(%)a 

5 132 
135

N

MeO

B(OH)2   

(1.5 equiv.) 
N Cl

N

OMe

N

OMe
146  

23c 

6 131 

N

OMe

B(OH)2136  

(1.1 equiv.) 
N Cl

N

MeO

N

OMe

147  

74d 

a Isolated yields after purification via chromatography and/or recrystallisation. b Reagents and conditions: 

Pd(PPh3)4, Na2CO3, 1,4-dioxane, reflux, 20 h. c Reagents and conditions: Pd(PPh3)2Cl2, Na2CO3, 1,4-dioxane, 

reflux, 18–70 h. d Reagents and conditions: Pd2(dba)3, P(t-Bu)3.HBF4, 1,4-dioxane, KF, 80 oC, 7 h.   

 

Compound 133 does not suffer this steric interference and furthermore, the electron 

withdrawing 5-yl-2-fluoropyridine substituent at C4 of 133 would be expected to enhance 

reactivity at C3, thus explaining the high yield in this case (Table 8, entry 4). In attempts to 

mitigate anticipated low yields for the coupling of the sterically encumbered 131 with 

boronic acid 136, Fu’s conditions (which have been reported to provide excellent yields for 

sterically crowded substrates)189 were employed. Using 136 (1.1 equiv) we were gratified 

to obtain 147 in 74% yield (Table 8, entry 6). 
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Figure 10:  X-ray molecular structures of 131 (left) and 146 (right). Dihedral angles 

between pyridyl rings: 72.4o in 131, i/ii 85.3o and i/iii 52.8o in 146.  

 

4.2.4 Suzuki-Miyaura Cross-Coupling at C2 

As stated above, on no occasion was a tris-coupled product observed via GC-MS in the 

reactions shown in Schemes 80–81 (Tables 7 and 8). This provided the opportunity to 

introduce regioselectively a third heteroaryl substituent into the pyridine core by reactions 

of the remaining 2-chloro functionality.326-327 For this purpose a selection of the bis-

coupled products (145, 146 and 147) were reacted with a range of aryl and 

heteroarylboronic acids to gain access to 2,3,4-tri(hetero)arylpyridines 148–151 in 23–51% 

yields (Scheme 82 and Table 9).  

145-147

N Cl

Het 1

Het 2

+

148-151

"Pd/L"

Base
1,4-dioxaneB(OH)2

Het 3

N

Het 1

Het 2

Het 3

 

Scheme 82:  Synthesis of 148-151 via Suzuki-Miyaura cross-coupling. For conditions 

see Table 9.  
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Table 9:    Suzuki-Miyaura coupling of arylboronic acids and heteroarylboronic acids 

with compounds 145, 146 and 147. 

a Isolated yields after purification via chromatography and/or recrystallisation. b Reagents and conditions: 

Pd2(dba)3, PCy3, 1,4-dioxane, K3PO4, 100 oC, 2-20 h. c Reagents and conditions: Pd(PPh3)4, Na2CO3, 1,4-

dioxane, reflux, 24 h. 

 

The reactions were performed using the conditions designed for coupling heteroaryl 

chlorides with nitrogen-containing heteroarylboronic acids255 [viz. Pd2(dba)3, PCy3, K3PO4, 

1,4-dioxane, H2O, reflux]. However, a similar yield of 151 was obtained on the one 

occasion when Pd(PPh3)4/Na2CO3 was used (Table 9, entry 4). Suzuki–Miyaura reactions 

Entry R-X Boronic acid Product 
Yield 

(%) a 

1 145 

OMe

B(OH)275  

(1.2 equiv.) 
N

N

F

N

OMe

OMe
148  

30b 

2 145 

NN

NH2

B(OH)2
153  

(1.2 equiv.) 
N

N

F

N

OMe

N

N

NH2
149

 

23b 

3 146 

N

F

B(OH)2
88  

(1.2 equiv.) 
N

N

N

N F

OMe

OMe

150
 

45b 

4 147 

N

F

B(OH)2
88  

(1.2 equiv.) 
N

N

MeO

N

OMe

N F
151

 

51b 

50c 
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are known to be tolerant to unprotected amine functionality,328 and accordingly, coupling 

of 2-aminopyrimidin-5-yl-5-boronic acid 152 with 145 gave 149 in 23% yield. With all of 

these third couplings (Scheme 82) a varying amount of dechlorinated side-product was 

observed via GC–MS, thus accounting for the modest yields of 148-151. This can be 

explained by the steric crowding in the bis-coupled substrate 145-147 inhibiting 

transmetallation of the boronic acid in the transition state leading to competing 

protodechlorination. It is noteworthy that, to our knowledge, compounds 149-151 represent 

the first reported 2,3,4-triheteroarylpyridine derivatives.  

N
N

I +
NiBr2(dppe)

MeCN, Zn

80 oC, 20 min

86% yield

N N

N

X

NX

X

N

Br

X = CH  yield = 77%
X = N    yield = 68%

[RuCl2(C6H6)]2
4PPh3

K2CO3

NMP, 120 oC, 20 h

(i)

(ii)

N

N

N

(iii)
N

Me B(OH)2

I

N

N

N

Me

Me

Me

Br

Br

(iv)

 

Figure 11:  (i) Triphenylpyridine synthesised by Ni catalysed annulation; (ii) 

triheterarylbenzene synthesised by Ru catalysed ortho-metalation; (iii) 

tripyridylbenzene used as electron transport material; and (iv) linear 

tripyridyl synthesised in sequential manner using the Suzuki-Miyaura 

reaction. 

 

Related structures in the literature include the following examples (see Figure 11): (i) 

2,3,4-triphenylpyridine has been synthesised by the nickel catalysed annulation of 2-

iodobenzaldimine;329 (ii) 2-(2,6-di(pyridin-3-yl)phenyl)pyridine and 5-(2-(pyridin-2-yl)-3-

(pyrimidin-5-yl)phenyl)pyrimidine were synthesised via the ruthenium catalysed ortho-

arylation of 2-phenylpyridine;330 (iii) the phenyl core analogue 3-[2,3-di(pyridin-3-
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yl)phenyl]pyridine has been used as an electron transport material in electroluminescent 

devices;331 and (iv) related bis(pyridyl)pyridines and linear quaterpyridines have recently 

been synthesised via Suzuki–Miyaura reactions by Burzicki et al. starting from 

dihalopyridines.332  

 

4.2.5 Sonogashira Cross-Coupling 

 

N

1.2 equiv. 88
5 mol% Pd(PPh3)4

1M Na2CO3
Dioxane, reflux, 18 hN Cl

I

I

128

N Cl

N F

5 mol% Pd(PPh3)2Cl2
5 mol% CuI

Et3N, 50 oC, 24 h

2.05 equiv. phenylacetylene

72% 66%153 154
 

Scheme 83:  Synthesis of 154 via sequential two-fold Sonogashira and Suzuki-Miyaura 

reactions. 

 

To extend further the scope of 128 in cross-coupling reactions, a Sonogashira 

reaction105,286 was performed (Scheme 83). Compound 128 reacted with phenylacetylene 

(2.05 equiv) under standard conditions [5 mol % Pd(PPh3)2Cl2, 5 mol % CuI, Et3N] to give 

153 in 72% yield. No dehalogenation was observed in this case. A subsequent Suzuki–

Miyaura reaction of 88 on the remaining 2-chloro substituent of 153 gave 154 in 66% 

yield. The higher yield in this case when comparing to the reaction of the same boronic 

acid 88 with the chloro substituent of 147 (Table 9, entry 4) can be attributed to the 

reduced steric hindrance in 153 compared to 147. We note that (arylethynyl)pyridines have 

been synthesised for pharmacological applications333 and bis(arylethynyl)pyridines are of 

interest for their optoelectronic properties.334 

 

4.3 Conclusions 

We have described a new one-pot synthesis of 2-chloro-3,4-diiodopyridine 128 in 4–5 g 

batches from 2-chloropyridine via a Directed ortho Metallation–Halogen Dance–iodination 

sequence. Utilising 128 as a starting material has led to a versatile range of mono-, bis- and 

trisheteroarylpyridine derivatives in a series of iterative and regioselective Suzuki–Miyaura 

cross-coupling reactions.285 These procedures have provided the first examples of pyridine 

derivatives bearing heteroaryl units in the 2, 3 and 4 positions. The yields of the products 
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are synthetically viable, even for the more sterically hindered derivatives, especially in 

view of the known challenges of cross-coupling heteroaryl halides with heteroarylboronic 

acids/esters.202,255,326-327 We have also established that compound 128 is a suitable reagent 

for Sonogashira reactions. These protocols are versatile and can be further exploited in the 

synthesis of libraries of small molecules derived from 128 for drug discovery and for 

materials chemistry applications. 
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CHAPTER 5 - BENZIMIDAZOLO[1,2-F]PHENANTHRIDINE 

5.1 Introduction   

Fused N-heterocyclic ring systems are prevalent in biologically active compounds, 

especially marine alkaloids.132,335 Of the myriad structures investigated, azolo[1,2-

f]phenanthridine structures have only been noted on a few occasions (see Scheme 84 and 

Figure 11).336-337 Indolophenanthridines have been synthesised via a palladium catalysed 

process from arylindoles and an in situ generated aryne (Scheme 84).337 Disadvantages to 

this process are the lack of functionality available on the aryne, difficulties in accessing 

unsymmetrical arynes and incorporating this regioselectivly into the product. The 

employment of benzimidazolophanthridines as ligands for blue electrophosphorescent 

OLED materials were disclosed in a patent in 2007 (Figure 11).336  

N
Br

TfO

TMS

Me

Me
N

Me

Me+

Me Me
Pd2(dba)3

dppp

CsF

MeCN/toluene

110 oC  

Scheme 84: Indolo[1,2- f]phenanthridine synthesised by Pd catalysed process. 

N

N

Ir

3  

Figure 11:  Azolophenanthridines reported in literature. 

   

Many palladium-catalysed routes to fused N-heterocyclic rings have been reported leading 

to three or four fused rings338-344 and also routes where palladium does not play any 

role.345-347  

 

Routes to new heterocyclic structures based upon sequential metal-catalysed processes is 

of interest in the context of this work, both as a proof of concept as well as a possible 

convenient synthesis of elusive structures. Based upon work by Zheng et al.
169 (see 

Scheme 85, top) a route was devised whereby construction of an ortho-haloacetanilide 

precursor was followed by the palladium catalysed amination using a functionalised aniline 
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followed by a dehydradive cyclisation to form the benzimidazole structure. This 1,2-

diarylbenzimidazole could then be cyclised by an intramolecular direct arylation (see 

Scheme 86) modified from the intermolecular protocols championed by the late, great 

Keith Fagnou (see Scheme 85, bottom).348  

 

H
N

Br
O

NH2

N

N
+

Me
Me

Pd2(dba)3

RuPhos

K3PO4

tBuOH

120 oC

Br

+

Pd(OAc)2

DavePhos

K2CO3

PivOH

DMA

120 oC

Me

Me

81% yield

Me

Me

86% yield

 

Scheme 85:  Palladium-catalysed amination/dehydrative cyclisation to make 1,2-

bisarylbenzimidazoles “Zheng method” (top) and intermolecular direct 

arylation reactions “Lafrance method” (bottom). 

 

 

H
N

I
O

NH2

N

N

Br
Br

N

NPd/RuPhos
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Scheme 86:  Our proposed route to benzimidazolo[1,2-f]phenanthridine. 
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5.2 Results and Discussion 

As outlined in Scheme 86 above, ortho-haloacetanilides were required as precursors. 

Iodine was chosen as the halogen in this instance due to the complication of site selectivity 

in the amination step. Although Pd-catalysed amination of aryl iodides is known, it is often 

slow and low yielding (vide supra).  In a bid to circumvent the expected solubility issues in 

the final product and to give us a fairly electronically neutral starting point, 4-tert-

butylbenzoylchloride 155 was used to form the anilide 157 using 2-iodoaniline 156 after 

refluxing in EtOAc for 24 h (see Scheme 87).169  

H
N

X
O

O

Cl
H2N

X
+

EtOAc
reflux, 24 h

157: X = I, 46%
160: X = Br, 82%

155 156, X = I
159, X = Br

 

Scheme 87:  Synthesis of 157 and 160.   

 

Compound 157 was then reacted with 2-bromoaniline using RuPhos/Pd2(dba)3 catalyst 

system (see Scheme 88).169 The desired product 158 was obtained after dehydrative 

cyclisation in 4 M HCl in only 14% yield. The de-halogenated arene by-product from the 

starting material 157 was observed by GC-MS. Attempts to improve the yield of 158 by 

using the ortho-bromoacetanilide 160 [from 2-bromoaniline 159 (see Scheme 87)] failed to 

give any product with starting materials recovered in quantitative yield.  

NH2

N

N

Br

Br

+

i) Pd2(dba)3

RuPhos 41

K3PO4,
tBuOH 110 oC

82 h

ii) 4M HCl

1,4-dioxane

100 oC, 16 h

14% yield over 2 steps 158

159

157
N

N

161

Pd(OAc)2

DavePhos

K2CO3

PivOH, DMA

130 oC, 16 h

62% yield

PCy2
N

DavePhos

 

Scheme 88:  Synthesis of 161 by Buchwald-Hartwig amination/dehydrative cyclisation 

and intramolecular direct arylation reactions. 
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A reaction was carried out using Lafrance’s method348  for direct arylation, forming a C-C 

bond between the Ar-Br and Ar-H of 158 (see Scheme 88). This was achieved giving 161 

in 62% yield. The structure 161 was assigned based on ES+ mass spectrometry (M++H 

peak), 1H, 13C and COSY/HMBC/HSQC NMR analysis and C, H, N elemental analysis 

which were all consistent with 161. Efforts to grow a single crystal suitable for X-ray 

structural analysis were unsuccessful with all solvents tried (including 

perfluorobenzene/hexane combinations) resulting in fine needles.  

 

 

 

5.3 Conclusions 

Due to the low yielding amination/cyclisation step only one reaction was taken through to 

the desired benzimidazolo[1,2-f]phenanthridine system. Efforts to improve the yield failed. 

Should this route be pursued further, the use of masked halides (i.e. alcohols) on the aniline 

component could be tried to allow the supposedly more reactive aryl bromide to react first 

in the amination step. Unmasking of the halide (by creating –OTf or bromination) could 

then lead to a good system for the ring closing direct activation step (Scheme 89). One-pot 

methodologies could also be investigated. 
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Scheme 89: Proposed route to benzimidazol0[1,2-f]phenanthridine using masked halide. 
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CHAPTER 6 – PHOSPHORESCENT IRIDIUM(III) COMPLEXES 

 

6.1 Introduction 

OLEDs or “organic light emitting diodes” are an emerging lighting technology based upon 

singlet or triplet emission from organic materials under an applied voltage. A device is 

composed of layers of charge transporting materials sandwiched between a metal cathode 

and a transparent anode (usually indium tin oxide, ITO) to allow the generated light to 

escape (Figure 12).  

 

Figure 12:   A simplistic OLED device architecture. 

 

IrIII complexes are widely used in these devices as triplet emitters, whereby a triplet excited 

state is generated on the complex. There is the potential for 100% internal device quantum 

efficiency (photons emitted : electrons injected) and colour tunability.349 With an aim of 

producing efficient white lighting technology based on printing methodology, a 

collaboration between industry partners and Durham University has been investigating 

various components for these devices. White light requires blue, green and red components 

which are provided from the differing band-gap energies of the materials. Blue triplet 

emission is challenging due to the high band-gap energy associated with blue emitters.  

Blue Emitter Green Emitter Red Emitter 

Emitted Light 

Electroluminescent / 
electrophosphorescent  
layer 

Charge transport layer 

Cathode 

Charge transport layer 

Transparent Anode 
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Ir
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163162  

Figure 13:  Blue phosphorescent IrIII complexes 162 - 164. 

 

The complex 162 (FIrpic) is promising due to its near blue emission;349 however, its use in 

printed devices is limited due to its insolubility. Bluer complexes such as 163 are 

available.350 One major challenge is to inhibit triplet-triplet annihilation pathways that 

reduce device efficiency. These occur when the phosphorescent emitters interact with each 

other and so ways of shielding these interactions have been investigated by the use of 

dendritic systems.351-352 Simpler systems have been envisioned in our group by the use of 

shielding units which are shown below. 

N

N

F

F

Ir

2

N

OO

R

R

 

Figure 14:  Proposed IrIII complex with sterically twisted aryl groups on both ligands 

and auxiliary picolinic acid ligand where R = solubilising group. 

 

Our recent unpublished work353 on the blue emitting complex 164 (Figure 13) 

demonstrated the positive effect of aryl shielding on the external quantum efficiency 

(EQE) of devices. The aryl shielding groups must be “twisted” out of the plane of the 

phenyl-pyridine moiety using a 2,6-dimethyl system in order to reduce π-conjugation and 

placement at the position para- to the Ir results in a bluer colour. Issues affecting these 

complexes are low solubility in organic solvents and a desire for bluer emission. By 

functionalising the picolinic acid auxillary ligand with shielding substituents (see Figure 

14), it was hoped that EQEs could be raised further, while retaining the blue colour. 
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6.2 Results and Discussion 

6.2.1 Scale-up of “G0” Complex 

Scale-up synthesis of “G0” complex “G0PyF2-Ir-pic” 164 was required by our industrial 

partners, so 2-chloro-4-iodopyridine 165 was reacted with mesitylboronic acid using 

K3PO4 and a Pd2(dba)3 / PCy3 catalyst system with the yield of 166 increased to 85%, (see 

Scheme 88) compared to previous yields of 57% using aqueous Na2CO3 in DME at 85 oC 

with Pd(OAc)2 / PPh3.
353 Coupling with 2,6-difluoropyridin-3-yl-3-boronic acid to the 

chloro site of 166 led to poor yields353 of 168, so MIDA protected boronic acid 167 was 

used (this has previously been used to couple this electron deficient boronic acid).353 

MIDA protection has been shown to allow a slow release of boronic acid into the reaction 

medium when performed at <60 oC.354 As the transmetallation of this electron deficient 

boronic acid will be slow, having an excess of boronic acid in solution leads to 

protodeboronation pathways (vide supra). By using 167, SPhos and Pd(OAc)2 we had 

previously made 168 in 68% yield.353 When changing to Pd2(dba)3 and PCy3 this was 

reduced to 46% yield (see Scheme 90) showing these couplings to be highly sensitive to 

the catalyst system. 
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Scheme 90:  Synthesis of 164. Conditions: i) Mesitylboronic acid / Pd2(dba)3 / PCy3 / 

K3PO4 (1.27 M) / dioxane, 80 – 100 oC, 20 h; ii) 2,6-difluoropyridin-3-yl-3-

boronic acid MIDA ester 167 / Pd2(dba)3 / PCy3 / K3PO4 (3 M) / dioxane, 

60 oC, 88 h; iii) IrCl3.3H2O / 2-ethoxyethanol / H2O, 110 oC, 16 h; iv) 

picolinic acid / 2-ethoxyethanol, 110 oC, 16 h.  

 

Compound 168 was reacted with IrCl3.3H2O in water with ethoxyethanol to furnish the 

dichloro-bridged complex 169 (see Scheme 90) which was then reacted with an excess of 

picolinic acid in ethoxyethanol to give the complex 164 in 46% yield after 

chromatography. An X-ray molecular structure of 164 (see Figure 15) shows a twist of 

85.1o between the shielding G0 group and the phenyl-pyridine moiety. The structure also 
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shows that the picolinic acid ligand is exposed, leading us to begin work on shielding this 

area of the complex. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: X-ray molecular structure of 164. Mesitylene units twisted as shown in “poles” 

of the complex and unshielded picolinic acid moiety in the “equator” of the complex. 

 

6.2.2 Preparation of “G1pic” Auxiliary Ligand 

To enhance the solubility of the complexes, 2-ethylhexyloxy groups were installed on the 

phenyl rings (Scheme 91). Bromophenol 170 was alkylated using 2-ethylhexylbromide in 

DMF with K2CO3 as the base at 75 oC overnight. The resulting oil 171 was isolated in 89% 

yield. The conversion of 171 to a boronic acid was low yielding with debrominated by-

product observed but not isolated. These reactions were carried at -78 oC using nBuLi to 

form the lithio intermediate with electrophilic trapping by triisopropyl borate. Acidic 

aqueous work-up gave 172 in up to 40% yield as a white solid. Subsequently, a Suzuki-

Miyaura cross-coupling reaction of 172 with 4-bromopyridine hydrochloride using 

Pd(PPh3)4 and K3PO4 giving 173 in 91% yield. To access the picolinic acid motif, a route 

from 173 via the 2-cyano intermediate 174 was devised.355 Treatment of 173 with mCPBA 

at room temperature provided the N-oxide which was not purified but used directly in the 

subsequent cyanation reaction. The crude oil was treated with TMS-CN and N,N-

dimethylcarbamoyl chloride to afford the cyanated product 174 in 33% yield.  

N

OO

Ir

NN

F

F
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F
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Scheme 91:  Synthesis of 177. Conditions: i) 2-ethylhexylbromide / K2CO3 / DMF, 78 
oC, 15 h; ii) nBuLi / B(OiPr)3 / THF, -78 oC, NH4Cl work-up; iii) 4-

bromopyridine hydrochloride / Pd(PPh3)4 / K3PO4 / dioxane / H2O, 100 oC, 

48 h; iv) mCPBA / DCM, room temp., 24 h; v) TMS-CN / 

dimethylcarbamyl chloride / anhydrous DCM, room temp. 16 h; vi) 6 M 

HCl / dioxane, reflux, 48 h; vii) 176 / Na2CO3 / ethoxyethanol, 130 oC, 16 h. 

 

This was hydrolysed under acidic conditions and “G1pic” 175 was isolated in 47% yield. 

Reaction of 175 with dichloro-bridged iridium complex 176 synthesised by other members 

of the group353 in ethoxyethanol and Na2CO3 at 130 oC for 48 h led to a complex mixture 

of compounds from which 177 was isolated in 9% yield after two successive purifications 

by chromatography. The batch of 175 was not pure due to the possible presence of amide 

by-product. A better work-up procedure for 175 resulted in pure compound; however, there 

was insufficient time available to process this to the iridium complex.  
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6.2.3 Preparation of “G2pic” Auxilary Ligand 

In a bid to further shield these complexes, a larger group was required on both the phenyl-

pyridine ligand and the auxillary ligand. To reduce π−conjugation between the shielding 

group and the picolinic acid moiety, the G2 unit was chosen as the best group. The methyl 

substituents should achieve a twist between the picolinic acid and the phenyl ring as well 

causing the two alkoxyphenyl rings to be twisted with respect to the central phenyl ring. 

This would allow a larger, bulkier shielding unit with no impact on the electronics of the 

system and afford more solubility with more alkyl groups per ligand. To gain access to the 

triaryl bromide unit 183, 180 was prepared in a two step process; firstly, bromination of 

178 in AcOH using Br2 to give 179 (previously synthesised by a different bromination 

approach356), then by a Sandmeyer reaction357 to convert the amine to an iodo group giving 

180.358
 This then underwent a Hart reaction359 when reacted with excess of the Grignard 

derivative of 181
360 (formed from the product of the Williamson etherification of 182) to 

give 183. Attempts to make the boronic acid from this led predominantly to dehalogenation 

byproducts when attempted by other members of the group when using halogen-metal 

exchange reaction at -78 oC using nBuLi and B(OiPr)3. To circumvent this problem, 4-

pyridylboronic acid pinacol ester 185 was synthesised by the two-step literature process 

from 4-aminopyridine; namely,  a Sandmeyer reaction to give 4-iodopyridine then reaction 

with nBuLi and B(OiPr)3 at -78 oC and a pinacol / AcOH quench to give 185.361 The 

Suzuki-Miyaura reaction of 183 with 185 using the highly active Pd2(dba)3 / P
tBu3.HBF3 / 

K3PO4 catalytic system gave 184 in 63% yield. Due to time constraints the remainder of 

the synthesis towards G2pic and complexes containing G2pic was carried out by other 

members of the group.  
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Scheme 92:  Synthesis of 184. Conditions: i) Br2 / AcOH / 0 oC; ii) NaNO2 / HCl then 

KI; iii) 2-ethylhexylbromide / K2CO3 / DMF, 70 oC, 15 h; iv) Mg turnings / 

I2 / THF, 50 oC, 2h; v) 180 / THF, reflux, overnight; vi) 185 / Pd2(dba)3 / 

PtBu3.HBF4 / K3PO4 / dioxane / water, 100 oC 24 h. 
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Scheme 93:  Synthesis of 185 using the method of Coudret.361 
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6.3 Conclusions 

The synthesis of novel and soluble aryl-shielded picolinic acid derivative has been 

achieved. These compounds show promise as auxillary ligands in IrIII complexes in OLED 

applications. The routes described are not optimised although some issues have been 

circumnavigated such as the low yielding formation of the boronic acid of 183. Complex 

164 has been successfully scaled up to provide ca. 0.5 g to our industrial partners. Two 

novel complexes have been synthesised, incorporating 175 ligand. The synthesis of 184 

has been accomplished successfully and is being taken towards the picolinic acid 

derivative and subsequent IrIII complex by other members of the Bryce research group. 
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Scheme 94: Proposed route to modify 184 towards G2Pic and the associated IrIII 

complex. This work is being carried out by other members of the Bryce 

research group.  
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CHAPTER 7 - EXPERIMENTAL PROCEDURES 

 

7.1 General Considerations 

All reactions were performed under an argon atmosphere, which was dried by passage 

through a column of phosphorus pentoxide. Glassware was flame dried prior to use for 

moisture sensitive reactions. All reagents used were of standard reagent grade, used as 

supplied unless otherwise stated and purchased from Sigma–Aldrich or Alfa Aesar, except 

for methoxypyridylboronic acid derivatives 135
248,329 and 136

248,329 which were supplied 

by Vertellus Specialities UK Ltd., 2-fluoro-5-pyridylboronic acid 88
287 2-amino-5-

pyrimidylboronic acid 152
362 Pd(PPh3)4 and Pd(PPh3)2Cl2,

363 which were prepared in-

house. 2-Amino-5-bromopyrazine 113
364 and 5-bromo-2-iodopyrimidine 64

365 were 

prepared in our group by literature methods. Anhydrous THF, toluene, DMF and DCM 

were dried through a HPLC column on an Innovative Technology Inc. solvent purification 

system. Anhydrous triethylamine was dried over calcium hydride, distilled and stored 

under dry nitrogen prior to use. All other solvents were used without prior purification. 

Solvents were degassed by bubbling dry argon at a steady rate through the solvent for ca. 

20 min. Column chromatography was carried out using 40–63 mm mesh silica. Thin-layer 

chromatography (TLC) was performed on 20 mm pre-coated plates of silica gel (Merck, 

silica gel 60F254), visualisation was made using ultraviolet light (254 nm). NMR spectra 

were recorded on: a Bruker Avance-400 spectrometer [δH (400 MHz), δC (100 MHz)], a 

Varian Inova-500 spectrometer [δH (500 MHz), δC (125 MHz)] and a Varian NMR system 

700 MHz spectrometer using deuterated solvent as a lock. Chemical shifts are quoted in 

ppm, relative to the residual solvent as internal reference for 1H and 13C. The following 

abbreviations are used in listing NMR spectra: s=singlet, d=doublet, dd=doublet of 

doublets, t=triplet, ddd=doublet of doublet of doublets, dt=doublet of triplets, td=triplet of 

doublets, m=multiplet, br=broad. J values are quoted in Hz. Melting points were 

determined on a Stuart Scientific SMP3 melting point apparatus and are uncorrected. 

Electron Impact (EI) mass spectra were recorded on a Thermo-FinniganTrace mass 

spectrometer with positive ionisation mode. Electrospray (ES+) mass spectra were recorded 

on a Thermo-Finnigan LTQ FT mass spectrometer or a Micromass Autospec LCT mass 

spectrometer. High resolution ES+ mass spectra were recorded on a Thermo-Finnigan LTQ 

FT mass spectrometer. High resolution atmospheric pressure chemical ionisation (APCI+) 

mass spectra were obtained courtesy of Mr Liam Brady of Waters Ltd on a Waters LCT 
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Premier XE using atmospheric pressure chemical ionisation with an ASAP probe or on a 

Waters Xevo QToF equipped with Atmospheric Pressure Gas Chromatography (APGC). 

Elemental analyses were obtained on an Exeter Analytical Inc. CE-440 elemental analyser. 

IR spectra were recorded on a Perkin-Elmer Paragon FT-IR spectrometer as a film using 

“golden-gate” setup.  

 

7.2 Experimental Details for Chapter 2 

 

General procedure for Ligand-accelerated Ullmann Reactions 

The azole/azolone, base and copper source (5 – 20  mol% relative to the aryl halide) were 

added to an argon purged, flame-dried, round-bottom flask. To this was added degassed 

solvent via syringe followed sequentially by the aryl halide and ligand. The reaction 

mixture was stirred and heated under a blanket of argon until TLC monitoring showed the 

reaction was complete (approximately 24 h). The reaction mixture was diluted with EtOAc 

(10 mL) and washed through a short silica pad with EtOAc (40 mL). The collected eluent 

was concentrated under reduced pressure and the product was either recrystallised or 

further purified by chromatography on silica. 

 

1-(Pyrimidin-2-yl)-1H-benzimidazole 66 

Procedure A: Benzimidazole 57 (0.284 g, 2.4 mmol), Cs2CO3 (1.304 g, 4 

mmol), CuI (0.038g, 0.2 mmol, 10 mol%), DMF (4 mL), 2-iodopyrimidine 

61a (0.412 g, 2 mmol) and 1,10-phenanthroline (0.072 g, 0.4 mmol) were 

reacted at 110 oC for 6 h. Filtration and concentration yielded a white solid which was 

purified by column chromatography on silica (eluent EtOAc : Et2O 9:1 v/v) yielding 66 as 

a white powder (0.196 g, 50%). mp 149.1-150.1 oC; δH
  (400 MHz, CDCl3) 9.03 (1H, s, 

C(2)Hbenzimidzole), 8.66 (2H, d, J 4.8, C(3+5)Hpyrimidyl), 8.53 (1H, d, J 6.8, C(4)Hbenzimidazole), 

7.81 (1H, d, J 7.3, C(7)Hbenzimidazole), 7.39-7.31 (2H, m, C(5+6)Hbenzimidazole), 7.09 (1H, t, J 

4.8, C(4)Hpyrimidyl); δC (100 MHz, CDCl3) 158.7 (C(2) pyrimidyl), 156.5 (2C, C(4+6)Hpyrimidyl), 

145.3 (C(2)Hbenzimidazole), 142.0 (C(3)benzimidazole), 132.1 (C(8)benzimidazole), 124.8 

(C(5)Hbenzimidazole), 124.0 (C(6)Hbenzimidazole), 120.6 (C(4)Hpyrimidyl), 118.2 (C(4)Hbenzimidazole), 

115.9 (C(7)Hbenzimidazole); m/z (EI) 196 (M+, 100%); Anal. Calcd. for C11H8N4: C, 67.34; H, 

4.11; N, 28.55. Found: C, 67.12; H, 4.07; N, 28.74; νmax (film)/cm-1 3127, 3066, 1570, 

1463, 1440, 1300, 742.   

N

N

N
N
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Procedure B: Benzimidazole 57 (0.260 g, 2.2 mmol), Cs2CO3 (1.303 g, 4 mmol), Cu2O 

(0.014g, 0.1 mmol, 5 mol%), acetonitrile (4 mL), 2-bromopyrimidine 61b (0.318 g, 2 

mmol) and the ligand Chxn-Py-Al (0.123 g, 0.4 mmol), were reacted at 87 oC for 64 h. 

Work-up as for Procedure A yielded 66 (0.275 g, 78%) spectroscopically identical to the 

sample prepared by procedure A.  

 

1-(Pyrazin-2-yl)-1H-benzimidazole 67 

Benzimidazole 57 (0.144 g, 1.22 mmol), Cs2CO3 (0.660 g, 2.025 mmol), CuI 

(0.019 g, 0.10 mmol, 7 mol%), DMF (2 mL), 2-iodopyrazine 62 (0.309 g, 

1.50 mmol) and 1,10-phenanthroline (0.037 g, 0.20 mmol), were reacted at 

110 oC for 65 h. Filtration and concentration yielded a white solid which was 

purified by chromatography using a silica column (eluent EtOAc : Et2O 9:1 v/v) yielding 

67 as a white powder (0.228 g, 70%). mp 149.5-150.8 oC; δH
 (400 MHz, CDCl3) 9.03 (1H, 

d, J 1.6, C(2)Hbenzimidazole), 8.63-8.58 (3H, m, C(3+4+5)Hpyrazinyl), 8.11 (1H, dd, J 6.8, 1.6, 

C(4)Hbenzimidazole), 7.90 (1H, dd, J 5.2, 2.4, C(7)Hbenzimidazole), 7.46-7.38 (2H, m, 

C(5+6)Hbenzimidazole); δC (100 MHz, CDCl3) 147.1 (C(2)pyrazinyl), 145.1 (C(6)Hpyrazinyl), 143.6 

(C(2)H benzimidazole), 142.6 (C(5)Hpyrazinyl), 140.9 (C(3)benzimidazole), 136.5 (C(3)Hpyrazinyl), 

129.6(C(8)Hbenzimidazole), 125.2 (C(6)Hbenzimidazole), 124.3 (C(5)Hbenzimidazole), 121.4 

(C(4)Hbenzimidazole), 113.0 (C(7)Hbenzimidazole); m/z (EI) 196 (M+, 100%); Anal. Calcd. for 

C11H8N4: C, 67.34; H, 4.11; N, 28.55. Found: C, 67.11; H, 4.13; N, 28.33; νmax (film)/cm-1 

3082, 2975, 1501, 1478, 1305, 748.   

 

1-(5-Bromopyridin-2-yl)-1H-benzimidazole 68  

Benzimidazole 57 (0.523 g, 4.8 mmol), Cs2CO3 (2.608 g, 8.0 mmol), CuI 

(0.076 g, 0.2 mmol, 5 mol%), DMF (4 mL), 5-bromo-2-iodopyridine 63 

(1.160 g, 4.1 mmol) and 1,10-phenanthroline (0.1440 g, 0.80 mmol), were 

reacted at 80 oC for 22 h. Filtration and concentration yielded a pale yellow 

solid which was purified by chromatography on silica (9:1 EtOAc : Et2O v/v) yielding 68 

as a white solid (1.008 g, 90%). m.p 159.6-160.5 oC; δH (400 MHz, CDCl3) 8.62 (1H, d, J 

2.3 C(6)Hpyridyl), 8.52 (1H, s, C(2)Hbenzimidazole), 8.03-7.95 (2H, m, C(4)Hbenzimidazole + 

C(4)Hpyridyl), 7.88-7.84 (1H, m, C(7)Hbenzimidazole), 7.45 (1H, d, J 8.6, C(3)Hpyridyl), 7.34-

7.25 (2H, m, C(5+6)Hbenzimidazole); δC (100 MHz, CDCl3) 150.4 (C(2)pyridyl), 148.5 

(C(6)Hpyridyl), 144.7 (C(2)Hbenzimidazole), 141.4 (C(3)Hbenzimidazole), 141.0 (C(4)Hpydridyl), 131.9 

(C(8)benzimidazole), 124.5 (C(6)Hbenzimidazole), 123.6 (C(5)Hbenzimidazole), 120.8 (C(3)Hpyridyl), 

N

N

N
N

N

N

N

Br
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117.6 (C(5)Brpyridyl), 115.2 (C(4)Hbenzimidazole), 112.6 (C(7)Hbenzimidazole); m/z 273 (M+ [79Br], 

100%), 275 (M+ [81Br], 97%); Anal. Calc. for C12H8N3Br: C, 52.58; H, 2.94; N, 15.33. 

Found: C, 52.53; H, 2.83; N, 15.19. 

 

1-(5-Bromopyrimidin-2-yl)-1H-benzimidazole 69 

Benzimidazole 57 (0.284 g, 2.4 mmol), Cs2CO3 (1.304 g, 4.0 mmol), CuI 

(0.038 g, 0.20 mmol, 10 mol%), DMF (4 mL), 5-bromo-2-iodopyrimidine 64 

(0.570 g, 2.0 mmol) and 1,10-phenanthroline (0.072 g, 0.40 mmol), were 

reacted at 70 oC for 24 h. Filtration and concentration yielded a white solid 

which was purified by column chromatography on silica (eluent EtOAc : Et2O 9:1 v/v) 

yielding 69 as a white solid (0.230 g, 57%). mp 189.1-189.6 oC; δH
 (400 MHz, CDCl3) 9.03 

(1H, s, C(2)Hbenzimidazole), 8.80 (2H, s, C(4+6)Hpyrimidyl), 8.52 (1H, dd, J 7.2, 1.6 

C(7)Hbenzimidazole), 7.85 (1H, dd, J 6.8, 1.2, C(4)Hbenzimidazole), 7.45-7.37 (2H, m 

C(5+6)Hbenzimidazole); δC
 (125 MHz, CDCl3) 159.4 (C(2)pyrimidyl), 154.9 (2C, C(4+6)pyrimidyl), 

145.4 (C(2)Hbenzimidazole), 142.1 (C(3)benzimidazole), 132.0 (C(8)benzimidazole), 125.2 

(C(5)Hbenzimidazole), 124.4 (C(6)Hbenzimidazole), 120.9 (C(4)Hbenzimidazole), 115.83 

(C(7)Hbenzimidazole), 115.77 (C(5)pyrimidyl); m/z 274 (M+ [79Br], 100%), 276 (M+ [81Br], 97%); 

Anal. Calcd. for C11H7N4Br: C, 48.02; H, 2.56; N, 20.37. Found: C, 47.86; H, 2.52; N, 

20.37; νmax (film)/cm-1 3124, 3022, 1462, 1439, 1298, 747.   

 

1-(5-Bromopyridin-2-yl)-3-methyl-1H-benzo[d]imidazol-2(3H)-one 70 

1-Methyl-2-benzimidazolone 58 (1.305 g, 8.8 mmol), Cs2CO3 (5.213 g, 16 

mmol), CuI (0.152g, 0.8 mmol, 10 mol%), DMF (20 mL), 2-iodo-5-

bromopyridine 63 (2.271 g, 8.0 mmol) and 1,10-phenanthroline (0.288 g, 1.6 

mmol) were reacted at 80 oC for 24 h. Filtration and concentration yielded a 

pale brown solid which was purified by column chromatography on silica 

(eluent DCM : EtOAc 9:1 v/v) yielding 70 as a white solid (2.27 g, 94%). mp 148.2-148.6 
oC; δH

 (500 MHz, CDCl3) 8.59 (1H, d, J 2.0, C(6)Hpyridyl), 8.16 (1H, d, J 8.5, C(4)Hpyridyl), 

8.10 (1H, d, J 8.0, C(8)Hbenzimidazolone), 7.94 (1H, dd, J 8.5, 2.5, C(3)Hpyridyl), 7.23-7.14 (2H, 

m, C(6+7)Hbenzimidazolone), 7.03 (1H, d, J 8.0, C(5)Hbenzimidazolone), 3.48 (3H, s, N-CH3); δC 

(125 MHz, CDCl3) 153.3 (C(2)=Obenzimidazolone), 149.5 (C(2)pyridyl), 149.1 (C(6)Hpyridyl), 

141.0 (C(4)Hpyridyl), 130.5 (C(9)benzimidazolone), 127.6 (C(4)benzimidazolone), 123.4 

(C(7H)benzimidazolone), 122.4 (C(6)Hbenzimidazolone), 118.7 (C(3)Hpyridyl), 116.9 (C(5)pyridyl), 

113.7 (C(8H)benzimidazolone), 107.8 (C(5)Hbenzimidazolone), 27.5 (N-CH3); m/z 303 (M+ 79Br], 
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100%), 305 (M+ [81Br], 97%); Anal. Calcd. for C13H10BrN3O: C, 51.34; H, 3.31; N, 13.82. 

Found: C, 51.13; H, 3.20; N, 13.67; νmax (film)/cm-1 3057, 3013, 1727, 1493, 1472, 1392, 

746.   

 

1-(5-Bromopyrimidin-2-yl)-3-methyl-1H-benzo[d]imidazol-2(3H)-one 71 

1-Methyl-2-benzimidazolone 58 (0.652 g, 4.4 mmol), Cs2CO3 (2.607 g, 8 

mmol), CuI (0.076g, 0.4 mmol, 10 mol%), DMF (10 mL), 2-iodo-5-

bromopyrimidine 64 (1.134 g, 4.0 mmol) and 1,10-phenanthroline (0.144 g, 

0.8 mmol) were reacted at 80 oC for 18 h. Filtration and concentration 

yielded a yellow solid which was chromatographed on a silica column 

(eluent DCM : EtOAc 3:1 v/v) yielding 71 as a white solid (0.92 g, 76%). mp 175.4-176.7 
oC; δH (400 MHz, CDCl3) 8.87 (2H, s, C(4+6)Hpyrimidyl), 7.93 (d, 1H, J 9.4, 

C(8)Hbenzimidazolone), 7.23-7.11 (2H, m, C(6+7)Hbenzimidazolone), 7.01 (d, 1H, J 7.8, 

C(2)Hbenzimidazolone), 3.46 (s, 3H, N-CH3); δC (125 MHz, CDCl3) 159.4  (C(2)pyrimidyl), 155.1 

(C(4+6)Hpyrimidyl), 152.3 (C(2)=Obenzimidazolone), 130.6 (C(9)benzimidazolone), 127.2 

(C(4)benzimidazolone), 123.9 (C(7)Hbenzimidazolone), 122.3 (C(6)Hbenzimidazolone), 116.2 

(C(5)pyrimidyl), 113.4 (C(8)Hbenzimidazolone), 107.0 (C(5)Hbenzimidazolone), 27.6 (N-CH3); m/z 304 

(M+ [79Br], 100%), 306 (M+ [81Br], 97%); Anal. Calcd. for C12H9N4BrO: C, 47.24; H, 2.97; 

N, 18.36. Found: C, 47.27; H, 2.98; N, 18.43; νmax (film)/cm-1  3060, 3031, 1735, 1498, 

1413, 1384, 745.   

 

1-(4-Bromophen-2-yl)-3-methyl-1H-benzo[d]imidazol-2(3H)-one 72 

 1-Methyl-2-benzimidazolone 58 (0.593 g, 4.0 mmol), Cs2CO3 (3.37g, 7.3 

mmol), CuI (0.076g, 0.40 mmol, 10 mol%), DMF (5.5 mL), 1-bromo-4-

iodobenzene 65 (1.136 g, 3.6 mmol) and 1,10-phenanthroline (0.072 g, 0.4 

mmol) were reacted at 80 oC for 16 h, then at 90 oC for 6 h and finally at 100 
oC for 2 h to drive to completion by TLC monitoring. Filtration and 

concentration yielded a white solid which was chromatographed on a silica column (eluent 

DCM : EtOAc 3:1 v/v) yielding 72 as a white solid which was recrystallized from 

DCM/hexane mixture to give white crystals (0.893 g, 81%). mp 157.7-158.6 oC; δH (400 

MHz, CDCl3)  7.65 (d, 2H, J 8.8, C(3+5)Hphenyl), 7.44 (d, 2H, J 8.8, C(2+6)Hphenyl), 7.20-

7.04 (m, 4H, C(5+6+7+8)Hbenzimidazolone), 3.49 (s, 3H, N-CH3); δC (125 MHz, CDCl3)  153.6 

(C(2)=Obenzimidazolone), 134.2 (C(1)phenyl), 133.0 (C(9)benzimidazolone), 130.5 (2C, 

C(3+5)Hphenyl), 129.2 (C(4)benzimidazolone), 127.8 (C(7)benzimidazolone), 122.6 (C(6)benzimidazolone), 
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N

N

N
N

Br

121.9 (2C, C(2+6)phenyl), 121.4 (C(8)benzimidazolone), 108.9 (C(5)benzimidazolone), 108.2 

(C(4)phenyl), 27.6 (N-CH3); m/z 302 (M+ [79Br], 100%), 304 (M+ [81Br], 97%); Anal. Calcd. 

for C14H11BrN2O: C, 55.47; H, 3.66; N, 9.24; Found: C, 54.95; H, 3.60; N, 9.62; m/z (ES+) 

305.01087 (M++H, C14H11BrN2O+H requires 305.01071);  νmax (film)/cm-1 3056, 2932, 

1712, 1501, 1400, 1204, 745.   

 

5-Bromo-2-(1H-imidazol-1-yl)pyrimidine 73 

Imidazole 59 (0.150 g, 2.2 mmol), Cs2CO3 (1.303 g, 4 mmol), CuI (0.038 g, 

0.2 mmol, 10 mol%), DMF (5 mL), 5-bromo-2-iodopyrimidine 64 (0.570 g, 

2.2 mmol) and 1,10-phenanthroline (0.072 g, 0.4 mmol) were reacted at 80 
oC for 18 h. Filtration and concentration yielded an off-white solid which was 

chromatographed on a silica column (eluent EtOAc : Et2O 9:1 v/v) yielding 73 as a white 

solid (0.292 g, 65%). mp ca. 160 oC (dec.); δH (400 MHz, CDCl3) 8.72 (s, 2H, 

C(4+6)Hpyrimidyl), 8.56 (s, 1H, C(2)Himidazole), 7.83 (t, 1H, J 1.2, C(5)Himidazole), 7.17 (m, 1H, 

C(4)Himidazole);
 
δC (125 MHz, CDCl3) 159.6 (C(2)pyrimidyl), 153.5 (2C, C(4+6)Hpyrimidyl), 

136.6 (C(2)Himidazole), 131.4 (C(4)Himidazole), 116.9 (C(5)Himidazole), 116.7 (C(5)pyrimidyl). m/z  

223.9 (M+ [79Br], 100%), 225.9 (M+ [81Br], 97%); Anal. Calcd. for C7H5BrN4: C, 37.36; H, 

2.24; N, 24.90. Found: C, 36.99; H, 2.22; N, 24.61; νmax (film)/cm-1 3134, 1557, 1471, 

1446, 754, 648.   

 

5-Bromo-2-(1H-pyrrol-1-yl)pyrimidine 74 

Pyrrole 60 (0.295 g, 4.4 mmol), Cs2CO3 (2.607 g, 8 mmol), CuI (0.076 g, 0.4 

mmol, 10 mol%), DMF (10 mL), 5-bromo-2-iodopyrimidine 64 (1.140 g, 4.4 

mmol) and 1,10-phenanthroline (0.144 g, 0.8 mmol) were reacted at 80 oC for 

18 h. Filtration and concentration yielded an off-white solid which was 

chromatographed on a silica column (eluent EtOAc : hexane 1:9 v/v) yielding 74 as a white 

solid (0.756 g, 84%). mp ca. 217 oC (dec.); δH (400 MHz, CDCl3)  8.63 (s, 2H, 

C(4+6)Hpyrimidyl), 7.71 (t, 2H, J 2.0, C(2+5)Hpyrrole), 6.35 (t, 2H, J 2.4, C(3+4)Hpyrrole);
 
δC 

(125 MHz, CDCl3) 159.2 (C(2)pyrimidyl), 153.3 (2C, C(4+6)Hpyrimidyl), 119.9 (2C, 

C(2+5)pyrrole), 114.8 (2C, C(3+4)pyrrole), 112.6 (C(5)pyrimidyl); Anal. Calcd. for C8H6BrN3: C, 

42.88; H, 2.70; N, 18.75. Found: C, 42.49; H, 2.81; N, 18.82; m/z (ES+) 223.98210 (M++H, 

C8H6N3Br+H requires 223.98178); νmax (film)/cm-1 3150, 1555, 1470, 1443, 735, 610.   
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General method for Suzuki–Miyaura cross-coupling reactions 

To an argon purged flask was added the (het)aryl halide, boronic acid, palladium source 

and additional ligand (when applicable). Degassed solvent and base were added and the 

mixture was heated to reflux, with stirring. The reaction was monitored by TLC and on 

completion (2–70 h) the reaction was cooled to room temperature and the solvent was 

removed in vacuo. The residue was extracted into EtOAc and washed with brine. The 

organic layers were dried over Na2SO4, filtered and then concentrated in vacuo. 

Purification was achieved by flash chromatography on a silica gel column followed in 

some cases by recrystallisation. 

 

1-(5-(4-Methoxyphenyl)pyridin-2-yl)-1H-benzo[d]imidazole 78 

Compound 68 (0.139 g, 0.505 mmol), 4-methoxybenzeneboronic acid 

75 (0.085 g, 0.561 mmol), Pd(PPh3)2Cl2 (0.020 g, 0.03 mmol, 6 mol%), 

1,4-dioxane (5 mL) and Na2CO3 (1 M, 1.7 mL) were reacted at 80 oC 

for 24 h. Standard work-up and evaporation yielded a white solid which 

was chromatographed on a silica column (eluent DCM : EtOAc 1:1 v/v) 

to yield 78 which was recrystallized from hexane as large white crystals 

(0.112 g, 74%). mp 155.0-156.2 oC; δH (400 MHz, CDCl3) 8.75 (1H, d, J 2.5, C(6)Hpyridyl), 

8.58 (1H, s, C(2)Hbenzimidazole), 8.07 (1H, dd, J 7.0, 1.8, C(4)Hpyridyl), 7.98 (1H, d, J 8.5, 

C(4)Hbenzimidazole), 7.88 (1H, d, J 7.1, C(7)Hbenzimidazole), 7.56-7.52 (3H, m, 

C(5+6)Hbenzimidazole+ C(3)Hpyridyl), 7.41-7.33 (2H, m, C(2+6)Hphenyl), 7.02 (2H, d, J 8.6, 

C(3+5)Hphenyl), 3.85 (3H, s, O-CH3); δC (100 MHz , CDCl3) 160.3 (C(4)Ophenyl), 148.6 

(C(2)pyridyl), 147.4 (C(6)Hpyridyl), 145.0 (C(2)Hbenzimidazole), 141.6 (C(3)benzimidazole), 136.9 

(C(5)pyridyl), 134.9 (C(8)benzimidazole), 132.5 (C(4)Hpyridyl), 129.3 (C(1)phenyl), 128.3(2C, 

C(2+6)Hphenyl), 124.5 (C(5)Hbenzimidazole), 123.5 (C(6)Hbenzimidazole), 120.9 (C(4)benzimidazole), 

115.0 (C7)Hbenzimidazole), 114.3 (C(3)Hpyridyl), 112.9 (C(3+5)Hphenyl), 55.7 (O-CH3); m/z (EI) 

301 (M+, 100%); Anal. Calcd. for C19H15N3O: C, 75.73; H, 5.02; N, 13.94. Found: C, 

75.39; H, 4.97; N, 13.84; νmax (film)/cm-1 3056, 2933, 2833, 1598, 1487, 1455, 1245, 830, 

740.  
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1-(5-(2-Methoxyphenyl)pyridin-2-yl)-1H-benzo[d]imidazole 79 

Compound 68 (0.493 g, 1.8 mmol), 2-methoxybenzeneboronic acid 76 

(0.304 g, 2.0 mmol), Pd(PPh3)2Cl2 (0.07 g, 0.1 mmol, 6 mol%), 1,4-

dioxane (8 mL) and Na2CO3 (1 M, 4 mL) were reacted at 80 oC for 4 h. 

Standard work-up and concentration yielded a white solid which was 

chromatographed on a silica column (eluent EtOAc : DCM 10:1 v/v) 

yielding 79 as a white solid (0.519 g, 96%). mp 69.1-72.0 oC; δH (500 MHz, CDCl3) 8.77 

(1H, d, J 2.0, C(6)Hpyridyl), 8.62 (1H, s, C(2)Hbenzimidazole), 8.12-8.09 (2H, m, C(4)Hpyridyl), 

7.89 (1H, d, J 7.0, C(4)Hbenzimidazole), 7.61 (1H, dd, J 8.5, 0.5, C(7)Hbenzimidazole), 7.44-7.36 

(4H, m, C(5+6)Hbenzimidazole+ C(3+5)Hphenyl), 7.12-7.04 (2H, m, C(4+6)Hphenyl), 3.88 (3H, s, 

O-CH3); δC (125 MHz, CDCl3) 156.9 (C(4)Ophenyl), 150.0 (C(2)pyridyl), 148.6 (C(6)Hpyridyl), 

145.0 (C(2)Hbenzimidazole), 141.8 (C(3)benzimidazole), 140.1 (C(5)pyridyl), 133.0 (C(8)benzimidazole), 

132.5 (C(4)Hpyridyl), 130.8 (C(5)Hphenyl), 130.2 (C(3)Hphenyl), 126.2 (C(2)phenyl), 124.5 

(C(5)Hbenzimidazole), 123.6 (C(6)Hbenzimidazole), 121.5 (C(4)Hphenyl), 121.0 (C(4)Hbenzimidazole), 

113.9 (C(7)Hbenzimidazole), 113.0 (C(3)Hpyridyl), 111.7 (C(6)Hphenyl), 55.9 (O-CH3); m/z (EI) 

301 (M+, 100%);  Anal. Calcd. for C19H15N3O: C, 75.73; H, 5.02; N, 13.94. Found: C, 

75.45; H, 4.98; N, 13.95; νmax (film)/cm-1 3099, 3054, 2833, 1597, 1505, 1480, 1245, 746.   

 

1-(5-(2-Ethoxypyridin-3-yl)pyridin-2-yl)-1H-benzo[d]imidazole 80 

Compound 68 (0.493 g, 1.8 mmol), 2-ethoxypyridin-3-yl-3-boronic acid 

77 (0.304 g, 2 mmol), Pd(PPh3)2Cl2 (0.07 g, 0.1 mmol, 6 mol%), 

degassed 1,4-dioxane (8 mL), degassed 1 M Na2CO3 (4 mL), were 

reacted at 80 oC for 4 h. Standard work-up and concentration yielded a 

white solid which was purified by chromatography using a silica column 

(10:1 EtOAc : DCM v/v) yielding 80 as a white solid  (0.519 g, 96%). m.p. 106.9-107.7 oC; 

δH (400 MHz, CDCl3) 8.80 (1H, d, J 2.0, C(6)Hpyridyl-A), 8.63 (1H, s, C(2)Hbenzimidazole), 8.23 

(1H, dd, J 5.1, 1.8, C(6)Hpyridyl-B), 8.15 (1H, dd, J 8.5, 2.4, C(4)Hpyridyl-A), 8.11 (1H, d, J 

7.3, C(7)Hbenzimidazole), 7.89 (1H, d, J 7.1, C(4)Hbenzimidazole), 7.69 (1H, dd, J 7.3, 2.0, 

C(4)Hpyridyl-B), 7.63 (1H, d, J 8.1, C(3)Hpyridyl-A), 7.45-7.34 (2H, m, C(5+6)Hbenzimidazole), 

7.04-7.01 (1H, m, C(5)Hpyridyl-B), 4.40 (2H, q, J 7.1, O-CH2), 1.31 (3H, t, J 7.1, CH2-CH3); 

δC (100 MHz , CDCl3) 160.6 (C(2)Opyridyl-B), 149.4 (C(2)pyridyl-A), 148.7 (C(6)pyridyl-B), 147.0 

(C(6)pyridyl-A), 144.8 (C(2)Hbenzimidazole), 144.4 (C(3)Hbenzimidazole), 139.4 (C(5)Hpyridyl-A), 

138.2 (C(8)benzimidazole), 132.2 (C(4)Hpyridyl-B), 131.0 (C(4)Hpyridyl-A), 124.3 (C(3)pyridyl-B), 

123.3 (C(5)Hbenzimidazole), 120.7 (C(6)Hbenzimidazole), 120.0 (C(4)Hbenzimidazole), 117.1 
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(C(3)Hpyridyl-A), 113.5 (C(7)Hbenzimidazole), 112.7 (C(5)Hpyridyl-B), 63.0 (O-CH2), 15.2 (CH2-

CH3); m/z (EI) 316 (M+, 100%); Anal. Calc. for C19H16N4O: C, 72.14; H, 5.10; N, 17.71. 

Found: C, 70.68; H, 5.08; N, 17.21. 

 

1-(5-(2-Ethoxypyridin-3-yl)pyrimidin-2-yl)-1H-benzo[d]imidazole 81 

Procedure A: Compound 69 (0.113 g, 0.41 mmol), 2-ethoxypyridin-3-

yl-3-boronic acid 77 (0.076 g, 0.46 mmol), Pd(PPh3)2Cl2 (0.016 g, 0.02 

mmol, 5 mol%), 1,4-dioxane (5 mL) and Na2CO3 (1 M, 1.4 mL) were 

reacted at 80 oC for 18 h. Standard work-up and concentration yielded a 

white solid which was purified by column chromatography on silica 

(eluent chloroform : EtOAc 1:1 v/v) followed by recrystallization from hexane to yield 81 

as a white solid (0.098 g, 79%). mp 229.0-230.2 oC; δH (400 MHz, CDCl3) 9.14 (1H, s, 

C(2)Hbenzimidazole), 9.00 (2H, s, C(4+6)Hpyrimidyl), 8.66 (1H, d, J 7.6 ,C(7)Hbenzimidazole), 8.25 

(1H, dd, J 5.2, 1.6, C(6)Hpyridyl), 7.87 (1H, d, J 7.6, C(4)Hbenzimidazole), 7.71 (1H, dd, J 7.2, 

2.0, C(4)Hpyridyl), 7.47-7.37 (2H, m, C(5+6)Hbenzimidazole), 7.05 (1H, dd, J 4.8, 7.2, 

C(5)Hpyridyl), 4.49 (2H, q, J 7.2, O-CH2), 1.43 (3H, t, J 6.8, CH2-CH3); δC (175 MHz, 

CDCl3) 160.9 (C(2)pyrimidyl), 158.5 (C(2)Opyridyl), 155.4 (2C, C(4+6)Hpyrimidyl), 148.0 

(C(6)Hpyridyl), 145.4 (C(2)Hbenzimidazole), 142.3 (C(3)benzimidazole), 138.2 (C(4)Hpyridyl), 132.2 

(C(8)benzimidazole), 127.8 (C(5)pyrimidyl), 125.0 (C(3)pyridyl), 124.2 (C(5)Hbenzimidazole), 120.8 

(C(6)Hbenzimidazole), 117.6 (C(4)Hbenzimidazole), 117.5 (C(7)Hbenzimidazole), 110.4 (C(5)pyridyl), 

62.7 (O-CH2), 15.0 (CH2-CH3); m/z (EI) 317 (M+, 100%); Anal. Calcd. for C18H15N5O: C, 

68.13; H, 4.76; N, 22.07. Found: C, 68.02; H, 4.40; N, 22.42; νmax (film)/cm-1 3128, 2983, 

2922, 1587, 1480, 1448, 1300, 735.   

 

Procedure B (one-pot): To a mixture of benzimidazole 57 (0.284 g, 2.4 mmol), Cs2CO3 

(1.304 g, 4.0 mmol), CuI (0.038 g, 0.20 mmol, 10 mol%) in dry degassed DMF (4 mL) 

was added 5-bromo-2-iodopyrimidine 64 (0.570 g, 2.0 mmol) and 1,10-phenanthroline 

(0.072 g, 0.40 mmol). The mixture was stirred and heated under argon at 80 oC for 17 h, 

until TLC monitoring showed the reaction was complete. To this was added, under argon, 

2-ethoxypyridin-3-yl-3-boronic acid 77 (0.367 g, 2.2 mmol), Pd(PPh3)2Cl2 (0.084 g, 0.12 

mmol, 6 mol%), 1,4-dioxane (10 mL) and Na2CO3 (1 M, 4.4 mL) and the mixture reacted 

at 80 oC for 17 h. The reaction was cooled to room temperature and the solvent removed in 

vacuo. The residue was extracted with EtOAc (100 mL) and the organic phase was washed 

with brine (3 x 50 mL). The combined organics were dried (MgSO4) and concentrated in 
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vacuo. The product was purified by column chromatography on silica (eluent DCM : 

EtOAc 1:1 v/v) to yield 81 as a white solid (0.425 g, 67 %) spectroscopically identical to 

the sample prepared by procedure A. 

 

1-(5-(4-Methoxyphenyl)pyridin-2-yl)-3-methyl-1H-benzo[d]imidazol-2(3H)-one 82 

Compound 70 (0.366 g, 1.20 mmol), 4-methoxybenzeneboronic acid 

75 (0.228 g, 1.50 mmol), Pd(PPh3)2Cl2 (0.053 g, 0.08 mmol, 7 

mol%), degassed 1,4-dioxane (6 mL) and degassed Na2CO3 (1 M, 5.7 

mL) were reacted at 80 oC for 24 h. Standard work-up and 

concentration yielded a white solid which was chromatographed on a 

silica column (eluent DCM : EtOAc 1:1 v/v) yielding 82 as a white 

solid (0.300 g, 76 %). mp 195.9-196.7 oC; δH (500 MHz, CDCl3)  8.74 (1H, dd, J 2.5, 0.5 

Hz, C(6)Hpyridyl), 8.17 (1H, dd, J 8.5, 0.5, C(3)Hpyridyl), 8.09 (1H, dd, J 8.0, 1.0, 

C(5)Hbenzimidazolone), 8.01 (1H, dd, J 8.5, 2.5, C(4)Hpyridyl), 7.57 (2H, d, J 9.0, C(2+6)Hphenyl), 

7.22-7.15 (2H, m, C(3+4)Hbenzimidazolone), 7.06-7.02 (3H, m, C(2)Hbenzimidazolone + 

C(3+5)Hphenyl), 3.88 (3H, s, O-CH3), 3.50 (3H, s, N-CH3); δC (125 MHz, CDCl3) 160.1 

(C(4)Ophenyl), 153.5 (C(2)pyridyl), 149.2 (C(2)Obenzimidazolone), 146.1 (C(6)Hpyridyl), 134.1 

(C(4)Hpyridyl), 130.5 (C(9)benzimidazolone), 130.1 (C(4)benzimidazolone), 128.4 (C(1)phenyl), 128.1 

(2C, C(2+6)Hphenyl), 123.0 (C(5)pyridyl), 122.2 (C(7)Hbenzimidazolone), 117.6 

(C(6)Hbenzimidazolone), 144.9 (C(8)Hbenzimidazolone), 113.3 (2C, C(3+5)Hphenyl), 110.0 

(C(5)Hbenzimidazolone) 107.7 (C(3)Hpyridyl), 55.7 (O-CH3), 27.4 (N-CH3); m/z (EI) 332.2 

((M+H)+, 100 %), 354.2 ((M+Na)+, 72 %), 684.9 ((2M+Na)+, 96 %); Anal. Calcd. for 

C20H17N3O2: C, 72.49; H, 5.17; N, 12.68; O, 9.66. Found: C, 72.26; H, 5.14; N, 12.62; νmax 

(film)/cm-1 3065, 2935, 2837, 1711, 1607, 1483, 1382, 824, 745.   

 

1-(5-(2-Ethoxypyridin-3-yl)pyridin-2-yl)-3-methyl-1H-benzo[d]imidazol-2(3H)-one 83 

A mixture of 70 (0.401 g, 1.315 mmol), 2-ethoxypyridin-3-yl-3-boronic 

acid 77 (0.278 g, 1.46 mmol), Pd(PPh3)4 (0.085 g, 0.07 mmol, 5 mol%), 

degassed 1,4-dioxane (6 mL) and degassed Na2CO3 (1 M, 2.9 mL) were 

reacted at 80 oC for 19 h. Standard work-up and concentration yielded a 

white solid which was chromatographed on a silica column (eluent 

DCM : EtOAc 6:1 v/v) yielding 83 as a white solid (0.304 g, 67 %). mp 

183.6-184.1 oC; δH (400 MHz, CDCl3) 8.77 (1H, d, J 1.6, C(6)Hpyridyl-A), 8.21-8.19  (2H, m, 

C(6)Hpyridyl-B+ C(3)Hpyridyl-A), 8.14 (d, 1H, J 8.0, C(8)Hbenzimidazolone), 8.09 (1H, dd, J 7.2, 
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2.0, C(4)Hpyridyl-A), 7.68 (1H, dd, J 5.6, 1.2, C(4)Hpyridyl-B), 7.23-7.16 (2H, m, 

C(6+7)Hbenzimidazolone), 7.05 (d, 1H, J 5.2, C(5)Hbenzimidazolone), 7.01 (dd, 1H, J 5.6, 4.0, 

C(5)Hpyridyl-B), 4.46 (q, 2H, J 5.6, O-CH2), 3.51 (s, 3H, N-CH3), 1.41 (t, 3H, J 5.6, CH2-

CH3); δC (125 MHz, CDCl3) 161.0 (C(2)Opyridyl-B), 153.5 (C(2)pyridyl-A), 149.6 

(C(2)Obenzimidazolone),  148.3 (C(6)Hpyridyl-B), 147.0 (C(6)Hpyridyl-A), 139.0 (C(4)Hpyridyl-A), 

138.7 (C(4)Hpyridyl-B), 130.5 (C(9)benzimidazolone), 130.4 (C(4)benzimidazolone), 128.0 (C(3)Hpyridyl-

B), 123.1 (C(5)Hpyridyl-A), 122.3 (C(7)Hbenzimidazolone), 120.9 (C(6)Hbenzimidazolone), 117.4 

(C(8)Hbenzimidazolone), 117.1 (C(5)Hbenzimidazolone), 113.4 (C(3)Hpyridyl-A), 107.8 

(C(5)Hbenzimidazolone), 62.4 (O-CH2), 27.5 (N-CH3), 15.0 (CH2-CH3); m/z 347.3 ((M+H)+, 

100 %); m/z (ES+) 369.1319 (M++Na, C20H18N4O2+Na requires 369.1322); νmax (film)/cm-1 

3058, 2988, 2932, 1723, 1447, 1400, 739.   

 

1-(5-(2-Ethoxypyridin-3-yl)pyrimidin-2-yl)-3-methyl-1H-benzo[d]imidazol-2(3H)-one 

84 

Procedure A: A mixture of 71 (0.458 g, 1.50 mmol), 2-ethoxypyridin-

3-yl-3-boronic acid 77 (0.278 g, 1.67 mmol), Pd(PPh3)4 (0.0965 g, 0.08 

mmol, 5 mol%), degassed 1,4-dioxane (10 ml) and degassed Na2CO3 (1 

M, 3.3 mL) were reacted at 90 oC  for 78 h. Work-up as described for 83 

and column chromatography (eluent EtOAc : DCM 10:1 v/v) yielded 84 

as a white solid (0.223 g, 43%). mp 197.1-198.5 oC (decomp.); δH (400 MHz, CDCl3)  9.10 

(s, 2H, C(3+5)Hpyrimidyl), 8.24 (dd, 1H, J 5.2, 2.0, C(6)Hpyridyl), 8.03 (d, 1H, J 6.8 

C(8)Hbenzimidazolone), 7.70 (dd, 1H, J 7.5, 2.0, C(4)Hpyridyl), 7.25-7.21 (m, 2H, 

C(6+7)Hbenzimidazolone), 7.06-7.02 (m, 2H, C(5)Hbenzimidazolone+C(5)Hpyridyl), 4.48 (q, 2H, J 

7.2, O-CH2), 3.51 (s, 3H, N-CH3), 1.41 (t, 3H, J 7.2, CH2-CH3); δC (100 MHz, CDCl3) 

161.0 (C(2)pyrimidyl), 158.4 (C(2)Opyridyl), 155.5 (2C, C(4+6)Hpyrimidyl), 152.6 

(C(2)Obenzimidazolone), 148.0 (C(6)Hpyridyl), 138.4 (C(4)Hpyridyl), 130.7 (C(9)benzimidazolone), 

127.8 (C(4)benzimidazolone), 127.7 (C(3)pyridyl), 123.6 (C(7)Hbenzimidazolone), 122.2 

(C(6)Hbenzimidazolone), 117.6 C(5)pyrimidyl), 117.5 (C(8)Hbenzimidazolone), 113.3 (C(5)Hpyridyl), 

107.8 (C(5)Hbenzimidazolone), 62.7 (O-CH2), 27.5 (N-CH3), 14.6 (CH2-CH3); m/z 348.2 

((M+H)+, 41 %), 370.2 ((M+Na)+, 33 %), 717.1 ((2M+Na)+, 100 %); Anal. Calcd. for 

C19H17N5O2: C, 65.69; H, 4.93; N, 20.16. Found: C, 65.38; H, 4.88; N, 20.09; νmax 

(film)/cm-1 3060, 2984, 2928, 1723, 1423, 1385, 747.   
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Procedure B (one-pot): To a mixture of 1-methyl-2-benzimidazolone 58 (0.163 g, 1.1 

mmol), Cs2CO3 (0.652 g, 2 mmol), CuI (0.019 g, 0.1 mmol, 10 mol%) in dry degassed 

DMF (4 mL) was added 5-bromo-2-iodopyrimidine 64 (0.284 g, 1.0 mmol) and 1,10-

phenanthroline (0.036 g, 0.2 mmol). The mixture was stirred and heated under argon at 80 
oC for 24 h, until TLC monitoring showed the reaction was complete. To this was added, 

under argon, 2-ethoxypyridin-3-yl-3-boronic acid 77 (0.129 g, 1.1 mmol), Pd(PPh3)4 

(0.058 g, 0.05 mmol, 5 mol%), 1,4-dioxane (5 mL) and Na2CO3 (1 M, 2.2 mL) and the 

mixture reacted at 80 oC for 24 h. The reaction was cooled to room temperatrue, solvent 

removed in vacuo and EtOAc (100 mL) was added to the residue which was washed with 

brine (3 x 50 mL). The combined organic layers were dried over MgSO4 and concentrated 

in vacuo. The product was purified by column chromatography on silica (eluent DCM : 

EtOAc 3:1 v/v) to yield 84 as a white solid (0.179 g, 52%) spectroscopically identical to 

the sample prepared by procedure A. 

 

1-(4-(2-Ethoxypyridin-3-yl)phenyl)-3-methyl-1H-benzo[d]imidazol-2(3H)-one 85 

Procedure A: A mixture of 72 (0.294 g, 0.97 mmol), 2-ethoxypyridin-

3-yl-3-boronic acid 77 (0.165 g, 1.08 mmol), Pd(PPh3)2Cl2 (0.038 g, 

0.05 mmol, 5 mol%), 1,4-dioxane (5 mL) and Na2CO3 (1 M, 3.2 mL) 

were reacted at 80 oC for 40 h. Filtration and concentration yielded a 

white solid which was chromatographed on a silica column (eluent 

hexane : EtOAc 1:1 v/v) to yield 85 as a white solid (0.101 g, 30%). mp 

186.6-187.2 oC; δH (500 MHz, CDCl3) 8.17 (dd, 1H, J 5.0, 2.0, C(6)Hpyridyl), 7.74 (d, 2H, J 

9, C(5+3)Hphenyl), 7.67 (dd, 1H, J 7.5, 2.0, C(4)Hpyridyl), 7.59 (d, 2H, J 9.0, C(2+6)Hphenyl), 

7.19-7.16 (m, 2H, C(6+8)Hbenzimidazolone), 7.11-7.06 (m, 2H, C(5+7)Hbenzimidazolone), 6.98 (dd, 

1H, J 7.0, 5.0, C(5)Hpyridyl), 4.47 (q, 2H, J 7.0, O-CH2), 3.52 (s, 3H, N-CH3), 1.41 (t, 3H, J 

7.0, CH2-CH3); δC (125 MHz, CDCl3)  160.9 (C(2)Opyridyl), 153.9 (C(2)Obenzimiazolone), 146.3 

(C(6)Hpyridyl), 139.0 (C(1)phenyl), 136.5 (C(9)benzimidazolone), 134.3 (C(4)Hpyridyl), 130.6 

(C(4)benzimidazolone), 130.5 (2C, C(3+5)Hphenyl), 129.6 (C(7)Hbenzimidazolone), 125.8 (C(4)phenyl), 

124.0 (C(3)pyridyl), 122.4 (C(6)Hbenzimidazolone), 121.8 (C(8)Hbenzimidazolone), 117.3 5 (2C, 

C(2+6)Hphenyl), 109.2 (C(5)Hbenzimidazolone), 109.0 (C(5)Hpyridyl), 62.3 (O-CH2), 27.6 (N-

CH3), 15.0 (CH2-CH3); m/z 346.3 ((M+1)+, 50 %), 368.2 ((M+Na)+, 67 %), 712.9 

((2M+Na)+, 100 %); m/z (ES+) 368.13715 (M++Na, C21H19N3O+Na requires 368.13695); 

νmax (film)/cm-1 3056, 2989, 2920, 1723, 1450, 1407, 734.   
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Procedure B: A mixture of 72 (0.294 g, 0.97 mmol), 2-ethoxypyridin-3-yl-3-boronic acid 

77 (0.165 g, 1.08 mmol), Pd(PPh3)4 (0.062 g, 0.05 mmol, 5 mol%), 1,4-dioxane (5 mL) 

and Na2CO3 (1 M, 3.2 mL) were reacted at 80 oC for 40 h. Work-up as described above 

gave 85 as a white solid (0.808 g, 83%) spectroscopically identical to the sample prepared 

by procedure A. 

 

5-(2-Ethoxypyridin-3-yl)-2-(1H-imidazol-1-yl)pyrimidine 86 

A mixture of 73 (0.132 g, 0.59 mmol), 2-ethoxypyridin-3-yl-3-boronic 

acid 77 (0.109 g, 0.65 mmol), Pd(PPh3)2Cl2 (0.023 g, 0.03 mmol, 5 

mol%), 1,4-dioxane (4 mL) and Na2CO3 (1 M, 2.0 mL) were reacted at 

80 oC for 22 h. Filtration and concentration yielded a white solid which 

was recrystallized once from hexane and once from toluene as white 

crystals of 86 (0.091 g, 48%). mp 155.5-156.6 oC; δH (400 MHz, CDCl3) 8.91 (s, 2H, 

C(3+5)Hpyrimidyl), 8.66 (t, 1H, J 1.2, C(2)Himidazole), 8.24 (dd, 1H, J 5.2, 1.6, C(4)Hpyridyl), 

7.93 (t, 1H, J 1.6, C(5)Himidazole), 7.67 (dd, 1H, J 7.6, 1.6, C(6)Hpyridyl), 7.20-7.19 (m, 1H, 

C(4)Himidazole), 7.04 (dd, 1H, J 7.6, 5.2, C(5)Hpyridyl), 4.47 (q, 2H, J 7.2, O-CH2), 1.41 (t, 

3H, J 6.8, CH2-CH3); δC (125 MHz, CDCl3)  160.9 (C(2)pyrimidyl), 158.6 (C(2)Opyridyl), 

153.8 (2C, C(4+6)Hpyrimidyl), 148.1 (C(6)Hpyridyl), 138.2 (C(2)Himidazole), 136.6 (C(4)Hpyridyl), 

131.1 (C(5)pyrimidyl), 128.6 (C(4)Himidazole), 117.6 (C(3)Hpyridyl), 117.2 (C(5)Himidazole), 116.9 

(C(5)Hpyridyl), 62.7 (O-CH2), 14.9 (CH2-CH3); m/z (ES+) 268.11953 (M++H,  C14H13N5O+H 

requires 268.11929); νmax (film)/cm-1 3130, 3114, 2974, 1586, 1436, 769. 

 

5-(2-Ethoxypyridin-3-yl)-2-(1H-pyrrol-1-yl)pyrimidine 87 

A mixture of 74 (0.132 g, 0.59 mmol), 2-ethoxypyridin-3-yl-3-boronic 

acid 77 (0.109 g, 0.65 mmol), Pd(PPh3)2Cl2 (0.023 g, 0.03 mmol, 5 

mol%), 1,4-dioxane (4 mL) and Na2CO3 (1 M, 2.0 mL) were reacted at 

80 oC for 22 h. Filtration and concentration yielded a white solid which 

was chromatographed on a silica column (eluent hexane : EtOAc 4:1 

v/v) to yield 87 which was recrystallized once from hexane and once from toluene as 

crystals (0.122 g, 78%). mp 109.7-110.1 oC; δH (400 MHz, CDCl3) 8.85 (s, 2H, 

C(3+5)Hpyrimidyl), 8.21 (dd, 1H, J 4.8, 2.0, C(4)Hpyridyl), 7.82 (t, 2H, J 2.0, C(2+5)Hpyrrole), 

7.66 (t, 1H, J 5.2, 2.8, C(6)Hpyridyl), 7.02 (dd, 1H, J 5.2, 4.8, C(5)Hpyridyl), 6.37 (t, 2H, J 2.0, 

C(3+4)Hpyrrole), 4.46 (q, 2H, J 7.2, O-CH2), 1.41 (t, 3H, J 6.8, CH2-CH3); δC (125 MHz, 

CDCl3)  160.9 (C(2)pyrimidyl), 158.4 (C(2)Opyridyl), 153.6 (2C, C(4+6)Hpyrimidyl), 147.6 
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(C(6)Hpyridyl), 138.0 (C(4)Hpyridyl), 126.7 (C(3)Hpyridyl), 119.4 (2C, C(2+5)Hpyrrole), 117.9 

(C(5)pyrimidyl), 117.5 (2C, C(2+5)Hpyrrole), 112.4 (C(5)Hpyridyl), 62.6 (O-CH2), 15.0 (CH2-

CH3); m/z 266.1 (M+, 100%); Anal. Calcd. for C15H14N4O: C, 67.65; H, 5.30; N, 21.04. 

Found: C, 67.39; H, 5.33; N, 20.81; νmax (film)/cm-1 3100, 1985, 1588, 1479, 1442, 730. 

 

7.3 Experimental Details for Chapter 3 

 

2-Fluoro-5-(4-methoxyphenyl)pyridine 92 

In accordance with the general method for Suzuki-Miyaura cross-

coupling reactions outlined above was reacted (2-fluoro-5-

pyridyl)boronic acid 88 (1.18 g, 8.40 mmol), 4-bromoanisole 89 (1.31 

g, 7 mmol), Pd(PPh3)2Cl2 (0.122 g, 0.18 mmol, 2.6 mol%) and Na2CO3 (21 mL, 21 mmol, 

1 M in water) in 1,4-dioxane (50 mL) at reflux for 14 h. Standard work-up and 

concentration gave a brown solid which was purified via column chromatography (SiO2, 

eluent 5: 1 EtOAc: hexane v/v) yielding 92 as a white solid (1.39 g, 98%). mp 69.8-70.9 
oC; δH (400 MHz, CDCl3) 8.35 (1H, d, J 1.9, C(6)Hpyridyl), 7.91 (1H, dt, J 8.1, 2.8 

C(4)Hpyridyl), 7.45 (2H, d, J 8.9, C(2+6)Hphenyl), 6.98 (2H, d, J 8.9, C(3+5)Hphenyl), 6.95 

(1H, dd, J 8.5, 2.6, C(3)Hpyridyl), 3.84 (3H, s, CH3); δC (126 MHz, CDCl3) 162.9 (d, JCF 

238.4, C(6)Fpyridyl), 159.9 (C(4)phenyl), 145.5 (d, JCF 14.7, C(2)Hpyridyl), 139.5 (d, JCF 7.8, 

C(4)Hpyridyl), 134.7 (d, JCF 4.6, C(3)pyridyl), 129.3 (C(1)phenyl), 128.4 (2C, C(2+6)Hphenyl), 

114.8 (2C, C(3+5)Hphenyl), 109.5 (d, JCF 37.5, C(5)Hpyridyl), 55.6 (O-CH3); Anal. Calcd for 

C12H10FNO: C, 70.93; H, 4.96; N, 6.89. Found: C, 70.99; H, 4.94; N, 6.85; m/z (EI) 203 

(M+, 100%); νmax (film)/cm-1 2939, 2833, 1612, 1594, 1518, 1476, 1373, 1246, 1187, 1047, 

1013, 1000, 826, 813, 796. 

 

3-(6-Fluoropyridin-3-yl)quinoline 93 

 In accordance with the general method for Suzuki-Miyaura cross-

coupling reactions outlined above was reacted (2-fluoro-5-

pyridyl)boronic acid 88 (2.03 g, 14.4 mmol), 3-bromoquinoline 90 

(2.40 g, 12.0 mmol), Pd(PPh3)2Cl2 (0.126 g, 0.180 mmol, 1.5 mol%) and Na2CO3 (36 mL, 

36 mmol, 1 M in water) in 1,4-dioxane (65 mL) at reflux for 20 h. Standard work-up and 

concentration yielded an off-white solid which was purified via column chromatography 

(SiO2, eluent 1: 1 EtOAc: hexane v/v) yielding 93  as an off-white solid (2.39 g, 89%). mp 
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265 oC (decomp.); δH (700 MHz, CDCl3) 9.10 (1H, d, J 2.1, C(2)Hquinolyl), 8.55 (1H, d, J 

1.9, C(6)Hpyridyl), 8.30 (1H, s, C(4)Hquinolyl), 8.16 (1H, d, J 8.4, C(8)Hquinolyl), 8.10 (1H, td, J 

8.4, 2.8, C(4)Hpyridyl), 7.90 (1H, d, J 8.1, C(5)Hquinolyl), 7.77 (1H, t, J 7.7, C(6)Hquinolyl), 7.62 

(1H, t, J 7.5, C(7)Hquinolyl), 7.10 (1H, dd, J 8.4, 2.6 C(3)Hpyridyl); δC (175 MHz, CDCl3) 

163.8 (d, JCF 241.1, C(6)Fpyridyl), 149.1 (C(2)Hquinolyl), 147.7 (C(10)quinolyl), 146.5 (d, JCF 

15.1, C(2)Hpyridyl), 140.2 (d, JCF 8.1, C(4)Fpyridyl), 134.0 (C(4)Hquinolyl), 132.0 (d, JCF 4.7, 

C(3)pyridyl), 130.4 (C(3)quinolyl), 129.8 (C(8)Hquinolyl), 129.5 (C(9)Hquinolyl), 128.2 

(C(5)quinolyl), 128.0 (C(6)Hquinolyl), 127.8 (C(7)Hquinolyl), 110.3 (d, JCF 37.6, C(5)pyridyl); m/z 

(EI) 224 (M+, 100%); Anal. Calcd for C14H9FN2: C, 74.99; H, 4.05; N, 12.49. Found: C, 

74.97; H, 4.13; N; νmax (film)/cm-1 3041, 2921, 2845, 1597, 1583, 1570, 1491, 1394, 1345, 

1298, 1255, 1124, 1052, 1023, 954, 913, 825, 788, 741, 668. 

 

2-(6-Fluoropyridin-3-yl)-6-methoxypyridine 94 

 In accordance with the general method for Suzuki-Miyaura cross-

coupling reactions outlined above was reacted (2-fluoro-5-pyridyl)boronic 

acid 88 (1.69 g, 12.0 mmol), 2-bromo-6-methoxypyridine 91 (1.88 g, 10 

mmol), Pd(PPh3)2Cl2 (0.176 g, 0.25 mmol, 2.5 mol%) and Na2CO3 (30 

mL, 30 mmol, 1 M in water) in 1,4-dioxane (60 mL) at reflux for 14 h although completion 

by TLC noted after 10 min at reflux. Standard work-up and concentration gave a black 

residue which was purified via column chromatography (SiO2, eluent 5: 1 EtOAc: hexane) 

yielding 94  as a white solid (1.98 g, 97%). mp 67.2-67.7 oC; δH (700 MHz, CDCl3) 8.83 

(1H, d, J 1.6, C(6)Hpyridyl-A), 8.42 (1H, td, J 8.5, 2.5, C(4)Hpyridyl-A), 7.64 (1H, dd, J 8.2, 7.5, 

C(4)Hpyridyl-B), 7.29 (1H, d, J 7.5, C(3)Hpyridyl-B), 6.99 (1H, dd, J 8.5, 2.9, C(3)Hpyridyl-A), 

6.73 (1H, d, J 8.2, C(5)Hpyridyl-B), 4.00 (3H, s, O-CH3);
 
δC

 (175 MHz, CDCl3) 164.2 

(C(6)Opyridyl-B), 164.1 (d, JCF 240.5, C(6)Fpyridyl-A), 151.2 (C(2)pyridyl-B), 146.4 (d, JCF 1`5.3, 

C(2)Hpyridyl-A), 139.7 (d, JCF 8.1, C(4)Hpyridyl-A), 139.6 (C(4)Hpyridyl-B), 133.0 (d, JCF 4.7, 

C(3)Hpyridyl-A), 112.8 (C(5)Hpyridyl-B), 110.5 (C(3)Hpyridyl-B), 109.5 (d, JCF 37.5, C(5)Hpyridyl-

A), 53.56; m/z (EI) 204 (M+, 68%), 203 (100, M+ - H); Anal. Calcd for C11H9FN2O: C, 

64.70; H, 4.44; N, 13.72. Found: C, 64.82; H, 4.50; N, 13.63; νmax (film)/cm-1 2957, 1607, 

1579, 1494, 1463, 1434, 1372, 1329, 1291, 1245, 1165, 1029, 797, 685. 
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5-(4-Methoxyphenyl)pyridin-2(1H)-one 95 

To 92 (1.40 g, 6.89 mmol) was sequentially added 1,4-dioxane (26 

mL) and KOH (1 M, 40 mL) and the resulting mixture was heated at 

reflux and judged complete by TLC (SiO2, eluent 2: 1 hexane: 

EtOAc) after 66 h. The mixture was cooled to room temperature and 

acidified to pH 6 with 4 M HCl. The precipitate was filtered and washed with hexane (2 x 

50 mL), water (2 x 50 mL) and acetone (2 x 20 mL) followed by drying in vacuo yielding 

95 as a white solid (1.145g, 83%). mp 191 oC (decomp.); δH (400 MHz, CDCl3) 13.04 (1H, 

s, NH), 7.72 (1H, dd, J 9.4, 2.6, C(4)Hpyridone), 7.52 (1H, d, J 2.6, C(6)Hpyridone), 7.32 (2H, 

d, J 8.7, C(2+6)Hphenyl), 6.94 (2H, d, J 8.7, C(3+5)Hphenyl), 6.66 (1H, d, J 9.4, C(3)Hpyridone), 

3.82 (3H, s, O-CH3); δC (175 MHz, d6-DMSO) 161.6 (C(4)Ophenyl), 158.3 (C(2)Opyridone), 

140.0 (C(4)Hpyridone), 131.8 (C(1)phenyl), 128.6 (2C, C(2+6)Hphenyl), 126.4 (C(5)Hpyridone), 

119.9 (C(6)Hpyridone), 117.7(C(3)Hpyridone), 114.3 (2C, C(3+5)Hphenyl), 55.1; m/z (APCI+) 

202 (M+ + H, 100%), 201 (69, M+); Anal. Calcd for C12H11NO2: C, 71.63; H, 5.51; N, 6.96. 

Found: C, 71.47; H, 5.89; N, 6.78; νmax (film)/cm-1 2843, 1738, 1657 (C=O), 1622, 1514, 

1468, 1283, 1244, 1183, 1037, 1020, 950, 881, 821. 

 

5-(Quinolin-3-yl)pyridin-2(1H)-one 96 

 To 93 (2.24 g, 10 mmol) was sequentially added 1,4-dioxane (26 

mL) and KOH (1 M, 50 mL) and the resulting mixture was heated at 

reflux and the reaction was Judged complete by TLC (SiO2, eluent 2: 1 

hexane: EtOAc, Rf = 0) after 24 h. The mixture was cooled to room temperature and 

acidified to pH 6 with 4 M HCl. The precipitate was filtered and washed with hexane (2 x 

50 mL), water (2 x 50 mL) and acetone (2 x 20 mL) followed by drying in vacuo yielding 

96 as an off-white solid (1.95 g, 88%). mp 290 oC (decomp.); δH (700 MHz, d6-DMSO) 

12.03 (1H, s, NH), 9.17 (1H, d, J 2.3, C(2)Hquinolyl), 8.52 (1H, d, J 2.2, C(4)Hquinolyl), 8.06 – 

7.99 (3H, m, C(4+6)Hpyridone + C(8)Hquinolyl), 7.97 (1H, d, J 7.9, C(5)Hquinolyl), 7.73 (1H, t, J 

7.6, C(6)Hquinolyl), 7.62 (1H, t, J 7.4, C(7)Hquinolyl), 6.52 (1 H, d, J 9.5, C(3)Hpyridone); δC 

(176 MHz, d6-DMSO) 161.7 (C(2)Opyridone), 148.5 (C(4)Hpyridone), 146.3 (C(10)quinolyl), 

139.9 (C(2)Hquinolyl), 133.8  (C(4)Hpyridone), 130.7 (C(4)Hquinolyl), 129.1 (C(3)quinolyl), 129.1 

(C(8)Hquinolyl), 128.6 (C(5)quinolyl), 128.0 (C(6)Hpyridone), 127.6 (C(9)Hquinolyl), 127.0 

(C(6)Hquinolyl), 120.4 (C(5)pyridone), 114.8 (C(3)Hpyridone); m/z (APCI+) 223 (M++H); Anal. 

Calcd. for C14H10N2O: C, 75.66; H, 4.54; N, 7.20. Found: C, 75.56; H, 4.53; N, 7.03; νmax 
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(film)/cm-1 2823, 1659 (C=O), 1618, 1590, 1435, 1316, 1297, 1258, 1122, 952, 866, 832, 

784, 752, 672. 

 

5-(6-Methoxypyridin-2-yl)pyridin-2(1H)-one 97 

To 94 (2.04 g, 10 mmol) was sequentially added 1,4-dioxane (26 mL) and 

KOH (1 M, 40 mL) and the resulting mixture was heated at reflux and the 

reaction was Judged complete by TLC (SiO2, eluent 2: 1 hexane: EtOAc, 

Rf = 0) after 24 h. The mixture was cooled to room temperature and 

acidified to pH 6 with 4 M HCl. The precipitate was filtered and washed with hexane (2 x 

50 mL), water (2 x 50 mL) and acetone (2 x 20 mL) followed by drying in vacuo yielding 

97 as a white solid (1.85 g, 92%). mp 277 oC (decomp.); δH (400 MHz, d6-DMSO) 11.92 

(1H, s, NH), 8.17 (1H, dd, J 2.7, 9.6, C(4)Hpyridone), 8.15-8.07 (1H, m, C(6)Hpyridone), 7.70 

(1H, dd, J 8.2, 7.5, C(4)Hpyridine), 7.38 (1H, d, J 7.5, C(3)Hpyridine), 6.67 (1H, d, J 8.2, C(5)H 

pyridine), 3.96 (3H, s, O-CH3); δC (125 MHz, CDCl3) 165.4 (C(6)Opyridine), 164.0 

(C(2)Opyridone), 150.8 (C(2)pyridine), 140.2 (C(4)Hpyridone), 139.6 (C(4)Hpyridine), 133.8 

(C(6)Hpyridone), 119.9 (C(5)pyridone), 119.7 (C(3)Hpyridone), 110.9 (C(5)Hpyridine), 109.5 

(C(3)Hpyridine), 53.5 (O-CH3); m/z (ES+) 202 (M++H, 100%), Anal. Calcd. for C11H10N2O2: 

C, 65.34; H, 4.98; N, 13.85. Found: C, 65.47; H, 5.04; N, 13.66; νmax (film)/cm-1 2842, 

1666 (C=O), 1576, 1466, 1433, 1327, 1263, 1123, 1077, 1029, 790, 745, 693. 

 

General proceedure for pyridone C-N cross-coupling 

To an argon purged flask was added pyridone, aryl halide, copper source, ligand, additive 

(where applicable), base and dry degassed solvent. The mixture was heated to 100 oC 

under argon and monitored by TLC. Upon completion, the reaction mixture was allowed to 

cool to room temp. and passed through a silica plug, eluting with EtOAc. The concentrated 

residue was purified via column chromatography. 

 

1-(5-(Trifluoromethyl)pyridin-2-yl)-5-(4-methoxyphenyl)pyridin-2(1H)-one 99a 

In accordance with the general procedure for pyridone C-N cross-

coupling, 95 (0.211 g, 1.05 mmol), 2-bromo-6-

(trifluoromethyl)pyridine 89 (0.226 g, 1.00 mmol), CuI (0.038 g, 

0.200 mmol, 20 mol%), DMCDA (0.057 g, 0.400 mmol) and K2CO3 

(0.276 g, 2.00 mmol) in toluene (6 mL) were reacted for 20 h.  
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Standard work-up and column chromatography (SiO2, eluent 1: 1 EtOAc: hexane v/v) 

yielded 99a as a white solid (0.276 g, 80%). mp 101.1-102.7 oC; δH (500 MHz, CDCl3) 

8.40 (1H, d, J 3.0, C(6)Hpyridyl), 8.01 (1H, d, J 8.9, C(4)Hpyridyl), 7.97 (1H, dd, J 2.7, 

C(6)Hpyridone), 7.66 (1H, dd, J 9.5, 2.7, C(4)Hpyridone), 7.56 (1H, dd, J 8.9, 3.0, C(3)Hpyridyl), 

7.38 (2H, d, J  8.9, C(2+6)Hphenyl), 6.94 (2H, d, J 8.9, C(2+5)Hphenyl), 6.71 (1H, d, J 9.5, 

C(3)Hpyridone), 6.72 (1H, dd, J 9.5, 0.7), 3.83 (4H, s, O-CH3); δC (175 MHz, CDCl3) 161.6 

(C(2)Opyridone), 159.6 (C(4)Ophenyl), 154.5 (C(4)Hpyridone), 146.1 (q, J 4.1, C(6)Hpyridyl), 141.0 

(C(2)pyridyl), 135.3 (q, J 3.2 C(4)Hpyridyl), 131.2 (2C, C(2+6)Hphenyl), 128.8 (C(1)phenyl), 127.3 

(C(5)pyridone), 126.0 (q, J 33.6, C(5)pyridyl), 123.4 (q, J 272.4, CF3), 122.4 (C(3)Hpyridone), 

121.4 (2C, C(3+5)Hphenyl), 120.9 (C(6)Hpyridone), 114.7 (C(4)Hpyridyl), 55.6 (O-CH3); m/z 

(APCI+) 347.1006 (M++H, C18H13F3N2O2 requires 347.1007); νmax (film)/cm-1 3056, 2801, 

1659 (C=O), 1600, 1587, 1269, 1248, 1297, 1156, 1001, 809. 

 

1,5-Bis(4-methoxyphenyl)pyridin-2(1H)-one 100 

 In accordance with the general procedure for pyridone C-N cross-

coupling, 95 (0.211 g, 1.05 mmol), 4-bromoanisole 89 (0.187 g, 1.00 

mmol), CuI (0.019 g, 0.100 mmol, 10 mol%), DMCDA (0.029 g, 

0.200 mmol) and K2CO3 (0.276 g, 2.00 mmol) in toluene (3 mL) were 

reacted for 20 h.  Standard work-up and column chromatography 

(SiO2, eluent EtOAc) yielded 100 as a white solid which was recrystallised from 

hexane/DCM (0.251g, 82%). mp 147.0-148.2 oC; δH (400 MHz, CDCl3) 7.64 (1H, dd, J 

9.5, 2.7, C(4)Hpyridone), 7.46 (1H, d, J 2.7, C(6)Hpyridone), 7.33 (2H, d, J 8.9, C(2+6)Hphenyl-

B), 7.32 (2H, d, J 8.7, C(2+6)Hphenyl-A), 6.99 (2H, d, J 8.9, C(3+5)Hphenyl-B), 6.92 (2H, d, J 

8.7, C(3+5)Hphenyl-A), 6.71 (1H, d, J 9.5, C(3)Hpyridone), 3.83 (3H, s, O-CH3 phenyl-B), 3.81 

(3H, s, O-CH3 phenyl-A); δC (176 MHz, CDCl3) 162.1 (C(2)Opyridone), 159.7 (C(4)Ophenyl-A), 

159.4 (C(4)Ophenyl-B), 139.9 (C(4)Hpyridone), 135.0 (C(3)Hpyridone), 134.2 (C(1)phenyl-B), 129.0 

(2C, C(2+6)Hphenyl-B), 127.9 (2C, C(2+6)Hphenyl-A), 127.2 (C(1)phenyl-A), 121.8 

(C(3)Hpyridone), 120.0 (C(5)pyridone), 114.8 (2C, C(3+5)Hphenyl-B), 114.7 (2C, C(3+5)Hphenyl-A), 

55.8 (O-CH3 phenyl-A), 55.6 (O-CH3 phenyl-B); m/z (EI) 307 (M+, 100%); Anal. Calcd. for 

C19H17NO3: C, 74.25; H, 5.58; N, 4.56. Found: C, 74.34; H, 5.60; N, 4.49; νmax (film)/cm-1 

3058, 2834, 1662 (C=O), 1610, 1598, 1514, 1275, 1249, 1180, 1026, 818. 
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1-(5-Fluoropyridin-2-yl)-5-(4-methoxyphenyl)pyridin-2(1H)-one 101 

 In accordance with the general procedure for pyridone C-N cross-

coupling, 95 (0.423 g, 2.10 mmol), 2-bromo-5-fluoropyridine 110 

(0.352 g, 2.00 mmol), CuI (0.038 g, 0.200 mmol, 10 mol%), DMCDA 

(0.057 g, 0.400 mmol) and K2CO3 (0.553 g, 4.00 mmol) in toluene (6 

mL) were reacted for 20 h.  Standard work-up and column 

chromatography (SiO2, eluent EtOAc) yielded 101 as a white solid (0.533, 77%). mp 

140.9-142.2 oC; 
δH (500 MHz, CDCl3) 8.40 (1H, ddd, J 2.6, 1.2, 0.9, C(6)Hpyridine), 8.01 

(1H, ddd, J 8.9, 7.9, 4.0, C(4)Hpyridyl), 7.98 (1H, dd, J 2.7, 0.6, C(6)Hpyridone), 7.66 (1H, dd, 

J 9.5, 2.7, C(4)Hpyridone), 7.56 (1H, ddd, J 8.9, 7.5, 3.0, C(3)Hpyridyl), 7.38 (2H, d, J 8.9, 

C(2+6)Hphenyl), 6.94 (2H, d, J 8.8, C(3+5)Hphenyl), 6.71 (1H, dd, J 9.5, 0.6 C(3)Hpyridone), 

3.82 (3H, s, O-CH3); δC (125 MHz, CDCl3) 161.6 (C(2)Opyridone), 159.4 (C(4)Ophenyl), 158.8 

(d, JCF 257.1, C(5)Fpyridyl), 148.0 (d, JCF 2.9, C(2)pyridyl), 140.8 (C(4)Hpyridone), 136.9 (d, JCF 

25.8, C(6)Hpyridyl), 132.6 (C(1)phenyl), 129.0 (C(5)pyridone), 127.3 (2C, C(2+6)Hphenyl), 125.0 

(d, JCF 19.8, C(4)Hpyridyl), 122.9 (d, JCF 5.0, C(3)Hpyridyl), 122.2 (C(3)Hpyridone), 120.7 

(C(6)Hpyridone), 114.7 (2C, C(3+5)Hphenyl), 55.6 (O-CH3); m/z (EI) 296 (M+, 100%); Anal. 

Calcd. for C17H13FN2O2: C, 68.91; H, 4.42; N, 9.45. Found: C, 69.07; H, 4.39; N, 9.21; 

νmax (film)/cm-1 3076, 2940, 2834, 1674 (C=O), 1619, 1514, 1473, 1394, 1286, 1248, 1184, 

1024, 819. 

 

5-(4-Methoxyphenyl)-1-(5-nitropyridin-2-yl)pyridin-2(1H)-one 102 

In accordance with the general procedure for pyridone C-N cross-

coupling, 95 (0.211 g, 1.05 mmol), 2-bromo-5-nitropyridine 111 

(0.203 g, 1.00 mmol), CuI (0.019 g, 0.100 mmol, 10 mol%), DMCDA 

(0.028 g, 0.200 mmol) and K2CO3 (0.276 g, 2.00 mmol) in toluene (2 

mL) were reacted for 20 h. Standard work-up yielded 102 as a yellow 

solid which was purified by an EtOAc slurry and filtration (0.268, 

83%). mp 184.9-185.5 oC; δH (400 MHz, CDCl3) 9.38 (1 H, dd, J 2.7, 0.6, C(6)Hpyridine), 

8.60 (1H, dd, J 9.0, 2.7, C(4)Hpyridine), 8.44 (1H, dd, J 9.0, 0.6, C(3)Hpyridine), 8.22 (1H, dd, 

J 2.6, 0.6, C(6)Hpyridone), 7.68 (1H, dd, J 9.5, 2.6, C(4)Hpyridone), 7.40 (2 H, d, J 8.9), 6.96 

(2H, d, J 8.9), 6.73 (1H, dd, J 9.5, 0.6, C(3)Hpyridone), 3.84 (3H, d, J 3.7, O-CH3); δC (125 

MHz, CDCl3) 161.6 (C(2)Opyridone), 159.7 (C(4)Ophenyl), 155.6 (C(2)Npyridyl), 149.1 

(C(4)Hpyridone), 144.7 (C(6)Hpyridyl), 141.3 (C(4)Hpyridyl), 133.3 (C(5)Npyridyl), 131.1 (2C, 

C(2+6)Hphenyl), 128.6 (C(1)phenyl), 127.4 (C(5)pyridone), 122.6 (C(3)Hpyridone), 121.4 (2C, 
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C(3+5)Hphenyl), 121.3 (C(6)Hpyridone), 114.8 (C(3)Hpyridyl), 55.6 (O-CH3); m/z (APCI+) 323 

(M+, 100%); Anal. Calcd. for C17H13N3O4: C, 68.16; H, 4.05; N, 13.00. Found: C, 68.06; 

H, 4.19; N, 12.70; νmax (film)/cm-1 3073, 2839, 1680 (C=O), 1610, 1576, 1513, 1464, 1393, 

1348, 1298, 1248, 1230, 1191, 1142, 1119, 1038, 1019, 858, 814, 770.  

 

1-(4-Methoxyphenyl)-5-(quinolin-3-yl)pyridin-2(1H)-one 103 

 In accordance with the general procedure for pyridone C-N cross-

coupling, 96 (0.355 g, 1.60 mmol), 4-bromoanisole 89 (0.285 g, 1.52 

mmol), CuI (0.058 g, 0.304 mmol, 20 mol%), DMCDA (0.087 g, 

0.609 mmol) and K2CO3 (0.421 g, 3.04 mmol) in toluene (4.5 mL) 

were reacted for 72 h.  Standard work-up and column chromatography 

(SiO2, eluent 1: 1 hexane: EtOAc v/v) yielded 103 as a yellow solid 

which was purified by an EtOAc slurry and filtration (0.328 g, 66%). mp 179.8-181.2 oC; 

δH (500 MHz, CDCl3) 9.05 (1H, d, J 2.3, C(2)Hquinolyl), 8.19 (1H, dd, J 2.3, 0.9, 

C(4)Hquinolyl), 8.15 (1H, d, J 8.1, C(9)Hquinolyl), 7.87 (1H, d, J 7.8, C(6)Hquinolyl), 7.83 (1H, 

dd, J 9.5, 2.8, C(4)Hpyridone), 7.79 – 7.72 (2H, m, , C(6)Hpyridone + C(8)Hquinolyl), 7.61 (1H, 

ddd, J 7.8, 7.0, 0.9, C(7)Hquinolyl), 7.41 (2H, d, J 9.0, C(2+6)Hphenyl), 7.06 (2H, d, J 9.0, 

C(3+5)Hphenyl), 6.86 (1H, dd, J 9.5, 0.6, C(3)Hpyridone), 3.89 (3H, s); δC (125 MHz, CDCl3) 

162.1 (C(2)Opyridone), 159.9 (C(4)Ophenyl), 148.6 (C(4)Hpyridone), 147.5 (C(10)quinolyl), 146.4 

(C(2)Hquinolyl), 141.1 (C(4)Hquinolyl), 139.5 (C(6)Hpyridone), 136.5 (C(8)Hquinolyl), 133.8 

(C(3)quinolyl), 132.0 (C(9)Hquinolyl), 129.8 (C(5)quinolyl), 129.5 (C(6)Hquinolyl), 128.0 

(C(1)phenyl), 127.9 (2C, C(2+6)Hphenyl), 127.6 (C(7)Hquinolyl), 122.6 (C(5)Hpyridone), 117.0 

(C(3)Hpyridone), 115.0 (2C, C(3+5)Hphenyl), 55.8 (O-CH3); m/z (EI) 328 (M+, 100%); Anal. 

Calcd. for C21H16N2O2: C, 76.81; H, 4.91; N, 8.53. Found: C, 77.08; H, 4.99; N, 8.32; νmax 

(film)/cm-1 3061, 2830, 1650 (C=O), 1613, 1587, 1510, 1282, 1247, 1175, 1020, 809. 

 

 

1-(5-(Trifluoromethyl)pyridin-2-yl)-5-(quinolin-3-yl)pyridin-2(1H)-one 104a and  

3-(6-(5-(Trifluoromethyl)pyridin-2-yloxy)pyridin-3-yl)quinoline 104b 

In accordance with the general procedure for pyridone C-N cross-coupling, 96 (0.233 g, 

1.05 mmol), 2-bromo-5-(trifluoromethyl)pyridine 89 (0.226 g, 1.00 mmol), CuI (0.038 g, 

0.200 mmol, 20 mol%), DMCDA (0.057 g, 0.400 mmol) and K2CO3 (0.276 g, 2.00 mmol) 

in toluene (3 mL) were reacted for 48 h.  Standard work-up and column chromatography 
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(SiO2, eluent 4: 1 EtOAc: hexane v/v) yielded 104a as a white solid (0.264g, 72%) 

followed by 104b as a white solid (0.017 g, 5%). 

104a mp.156.0-157.8 oC; δH (700 MHz, CDCl3) 9.04 (1H, d, J 2.3, 

C(2)Hquinolyl), 8.37 (1H, d, J 2.6, C(6)Hpyridyl), 8.28 (1H, d, J 8.6, 

C(9)Hquinolyl), 8.19 (1H, d, J 2.3, C(4)Hquinolyl), 8.13 – 8.04 (2H, m, 

C(4)Hpyridyl + C(6)Hpyridone), 7.83 (1H, d, J 8.1, C(6)Hquinolyl), 7.79 (1H, 

dd, J 9.5, 2.7, C(4)Hpyridone), 7.71 (1H, ddd, J 8.3, 6.9, 1.3, C(8)Hquinolyl), 

7.61 – 7.54 (2H, m, C(3)Hpyridyl + C(7)Hquinolyl), 6.81 (1H, d, J 9.5, 

C(3)Hpyridone); δC (175 MHz, CDCl3) 161.4 (C(2)Opyridone), 154.1 (C(10)quinolyl), 148.5 

(C(2)Hquinolyl), 147.6 (C(4)Hpyridone), 146.2 (q, JCF 4.1, (C(4)Hpyridyl), 140.3 (C(4)Hquinolyl), 

135.5 (q, JCF 3.2, (C(6)Hpyridyl), 133.3 (C(2)pyridyl), 132.3(C(5)pyridone), 129.9 (C(8)Hquinolyl), 

129.5 (C(3)quinolyl), 129.2 (C(9)Hquinolyl), 127.98 (C(5)Hquinolyl), 127.95 (C(6)Hquinolyl), 127.6 

(C(7)Hquinolyl), 126.4 (q, JCF 33.6, (C(5) pyridyl), 123.3 (q, JCF 272.4, (CF3), 123.2 

(C(6)Hpyridone), 121.3 (C(3)Hpyridone), 118.0 (C(3)Hpyridyl; m/z (APCI+) 367 (M+, 100%); 

Anal. Calcd. for C20H12F3N3O: C, 65.40; H, 3.29; N, 11.44. Found: C, 65.73; H, 3.50; N, 

11.42; νmax (film)/cm-1 3023, 2836, 1628 (C=O), 1555, 1304, 1281, 1257, 1220, 1183, 

1002. 

 

104b mp 127.8-128.3 oC; δH (700 MHz, CDCl3) 9.13 (1H, d, J 2.2, 

C(2)Hquinolyl), 8.65 (1H, d, J 2.2, C(4)Hquinolyl), 8.54 (1H, d, J 2.2, 

C(6)Hpyridyl-B), 8.30 (1H, d, J 2.6, C(6)Hpyridyl-A), 8.14 (1H, d, J 8.7, 

C(9)Hquinolyl), 8.13 (1H, dd, J 8.1, 2.6, C(4)Hpyridyl-A), 8.00 (1H, dd, J 

8.6, 2.2, C(4)Hpyridyl-B), 7.89 (1H, d, J 8.1, C(3)Hpyridyl-A), 7.75 (1H, 

t, J 7.5, C(8)Hquinolyl), 7.60 (1H, t, J 7.5, C(7)Hquinolyl), 7.28 (1H, d, J 8.4, C(6)Hquinolyl), 7.23 

(1H, d, J 8.6, C(3)Hpyridyl-B); δC (175 MHz, CDCl3) 164.4 (C(2)Opyridyl-A), 161.0 

(C(2)Opyridyl-B), 149.33 (C(2)Hquinolyl), 147.9 (C(10) quinolyl), 147.0 (C(6)Hpyridyl-A), 145.9 (q, 

JCF 4.3, C(4)Hpyridyl-B), 138.9 (C(4)Hquinolyl), 137.3 (q, JCF 3.2, C(6)Hpyridyl-B), 133.7 

(C(4)Hpyridyl-A), 131.4  (C(3)quinolyl), 130.2 (C(5)pyridyl-A), 130.1 (C(8)Hquinolyl), 129.6 

(C(9)Hquinolyl), 128.2 (C(5)quinolyl), 128.0 (C(6)Hquinolyl), 127.6  (C(7)Hquinolyl), 123.7 (q, JCF 

271.7, CF3), 123.3 (q, JCF 33.4, C(5)pyridyl-B), 115.2 (C(3)Hpyridyl-A), 113.7 (C(3)Hpyridyl-B); 

Anal. Calcd. for C20H12F3N3O: C, 65.40; H, 3.29; N, 11.44. Found: C, 65.48; H, 3.20; N, 

11.09; νmax (film)/cm-1 3033, 2858, 1609, 1583, 1299, 1280, 1235, 1177, 1016. 
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1-(6-Methoxypyridin-2-yl)-5-(quinolin-3-yl)pyridin-2(1H)-one 105 

In accordance with the general procedure for pyridone C-N cross-

coupling, 96 (0.233 g, 1.05 mmol), 2-bromo-6-methoxypyridine 91 

(0.188 g, 1.00 mmol), CuI (0.038 g, 0.200 mmol, 20 mol%), DMCDA 

(0.057 g, 0.400 mmol) and K2CO3 (0.276 g, 2.00 mmol) in toluene (6 

mL) were reacted for 20 h.  Standard work-up and column 

chromatography (SiO2, eluent EtOAc) yielded 105 as a white solid (0.230 g, 70%). mp 187 
oC (decomp.); δH (700 MHz, CDCl3) 9.07 (1H, d, J 2.3, C(2)Hquinolyl), 8.28 (1H, d, J 2.6, 

C(6)Hpyridone), 8.19 (1H d, J 2.3, C(4)Hquinolyl), 8.11 (1H, d, J 8.5, C(9)Hquinolyl), 7.84 (1H, d, 

J 8.0, C(6)Hquinolyl), 7.77 (1H, dd, J 9.5, 2.7, C(4)Hpyridone), 7.76 – 7.73 (1H, m, 

C(8)Hquinolyl), 7.71 (1H, ddd, J 8.3, 6.9, 1.4, C(7)Hquinolyl), 7.62 – 7.53 (2H, m, C(4)Hpyridyl + 

C(3)Hpyridone), 6.85 – 6.76 (2H, m, C(3)Hpyridyl + C(5)Hpyridyl), 3.94 (3H, s, O-CH3); δC (175 

MHz, CDCl3) 164.1 (C(6)Opyridyl), 161.6 (C(2)Opyridone), 148.9 (C(10)Hquinolyl), 148.7 

(C(4)Hpyridone), 147.5 (C(2)pyridyl), 140.5 (C(4)Hpyridyl), 139.5 (C(2)Hquinolyl), 134.2 

(C(4)Hquinolyl), 132.1 (C(3)quinolyl), 129.8 (C(8)Hquinolyl), 129.7 (C(5)quinolyl), 129.6 

(C(6)Hquinolyl), 128.1 (C(9)Hquinolyl), 128.0 (C(7)Hquinolyl), 127.6 (C(5)pyridone), 123.1 

(C(6)Hpyridone), 117.1 (C(3)Hpyridone), 113.7 (C(5)Hpyridyl), 110.6 (C(3)Hpyridyl), 54.0 (O-

CH3); m/z (APCI+) 330.1252 (M++H, C20H16N3O2 requires 330.1243); νmax (film)/cm-1 

2983, 2892, 1680 (C=O), 1620, 1574, 1470, 1434, 1414, 1321, 1286, 1249, 1215, 1148, 

1073, 918, 821, 739. 

 

1-(4-Methoxyphenyl)-5-(6-methoxypyridin-2-yl)pyridin-2(1H)-one 106 

In accordance with the general procedure for pyridone C-N cross-

coupling, 97 (0.302 g, 1.49 mmol), 4-bromoanisole 89 (0.266 g, 1.42 

mmol), CuI (0.054 g, 0.285 mmol, 20 mol%), DMCDA (0.081 g, 0.569 

mmol) and K2CO3 (0.393 g, 2.85 mmol) in toluene (4.5 mL) were reacted 

for 72 h.  Standard work-up and column chromatography (SiO2, eluent 

EtOAc) yielded 106 as a white solid (0.326 g, 74%). mp 62.9-64.0 oC; δH 

(500 MHz, CDCl3) 8.13 (1H, d, J 2.5, C(6)Hpyridone), 8.02 (1H, dd, J 9.6, 2.6, C(4)Hpyridone), 

7.57 (1H, dd, J 8.1, 7.6, C(4)Hpyridyl), 7.34 (2H, d, J 8.9, C(2+6)Hphenyl), 7.07 (1H, d, J 7.4, 

C(5)Hpyridyl), 7.00 (2H, d, J 8.9, C(3+5)Hphenyl), 6.71 (1H, d, J 9.6 C(3)Hpyridone), 6.62 (1H, 

d, J 8.2, C(3)Hpyridyl), 3.92 (3H, s, O-CH3 pyridyl), 3.84 (3H, s, O-CH3 phenyl); δC (126 MHz, 

CDCl3) 164.0 (C(6)Opyridyl), 162.7 (C(2)Opyridone), 159.8 (C(6)Ophenyl), 151.0 (C(2)pyridyl), 

139.7 (C(4)Hpyridone), 138.5 (C(4)Hpyridyl), 137.5 (C(6)Hpyridone), 134.1 (C(1)Nphenyl), 127.9 
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(2C, C(2+6)Hphenyl), 121.3 (C(5)pyridone), 118.5 (C(3)Hpyridone), 114.9 (2C, C(3+5)Hphenyl), 

111.1 C(5)Hpyridyl), 109.2 (C(3)Hpyridyl), 55.8 (O-CH3 pyridyl), 53.5 (O-CH3 phenyl); m/z (EI) 

308 (M+, 100%); Anal. Calcd. for C18H16N2O3: C, 70.12; H, 5.23; N, 9.09. Found: C, 

70.27; H, 5.39; N, 9.34; νmax (film)/cm-1 3010, 2949, 1736, 1664 (C=O), 1588, 1575, 1506, 

1409, 1314, 1244, 1124, 1023, 901, 830, 799. 

 

1-(5-Bromopyrimidin-2-yl)-5-(6-methoxypyridin-2-yl)pyridin-2(1H)-one 107 

 In accordance with the general procedure for pyridone C-N cross-

coupling, 97 (0.202 g, 1.000 mmol), 5-bromo-2-iodopyrimidine 112 

(0.313 g, 1.10 mmol), CuI (0.042 g, 0.220 mmol, 20 mol%), DMCDA 

(0.063 g, 0.440 mmol) and K2CO3 (0.304 g, 2.22 mmol) in toluene (4 mL) 

were reacted for 28 h.  Standard work-up and column chromatography 

(SiO2, eluent 1: 1 hexane: EtOAc) yielded 107 as an off-white solid (0.203 

g, 51%). mp 172.3-173.9 oC; δH (400 MHz, CDCl3) 9.06 (2H, s, C(4+6)Hpyrimidyl), 8.38 

(1H, d, J 2.6, C(6)Hpyridone), 8.06 (1H, ddd, J 9.7, 2.6, 1.7, C(4)Hpyridone), 7.58 (1H, td, J 7.4, 

3.7 C(4)Hpyridyl), 7.10 (1H, ddd, J 7.4, 1.0, 0.6, C(5)Hpyridyl), 6.73 (1H, ddd, J 9.7, 1.7, 0.7, 

C(3)Hpyridyl), 6.64 (1H, dt, J 8.2, 0.7, C(3)Hpyridone), 3.94 (3H, s, O-CH3); δC (126 MHz, 

CDCl3) 164.8 (C(2)Npyrimidyl), 164.0 (C(6)Opyridyl), 161.6 (C(2)Opyridone), 161.6 (2 C, 

C(4+6)Hpyrimidyl), 160.0 (C(6)pyridyl), 150.5 (C(4)Hpyridone), 139.6 (C(4)Hpyridyl), 139.2 

(C(5)pyridone), 134.4 (C(6)Hpyridone), 122.3 (C(3)Hpyridone), 118.9 (C(5)Hpyridyl), 111.2 

(C(3)Hpyridyl), 109.6 (C(5)Brpyrimidyl), 53.5 (O-CH3); m/z (EI) 358 (M+ [79Br], 60%), 360 

(M+ [81Br], 55%), 279 (100, M+ - Br); Anal. Calcd. for C15H11BrN4O2: C, 50.16; H, 3.09; 

N, 15.60. Found: C, 50.44; H, 3.30; N, 15.37; νmax (film)/cm-1 2937, 2899, 1707, 1645 

(C=O), 1573, 1549, 1509, 1387, 1234, 1100, 1094, 1006, 914, 824. 

 

1-(5-Aminopyrazin-2-yl)-5-(6-methoxypyridin-2-yl)pyridin-2(1H)-one 108 

 In accordance with the general procedure for pyridone C-N cross-

coupling, 97 (0.425 g, 2.10 mmol), 2-amino-5-bromopyrazine 113 (0.348 

g, 2 mmol), CuI (0.076 g, 0.400 mmol, 20 mol%), DMCDA (0.114 g, 

0.800 mmol) and K2CO3 (0.553 g, 4.00 mmol) in toluene (6 mL) were 

reacted for 42 h. The reaction mixture was quenched by stirring in 

saturated ammonium chloride solution (50 mL) for 1 h then the organic 

component was extracted into EtOAc (3 x 250 mL), the combined extracts were washed 

with brine (2 x 50 mL). After drying over Na2SO4, filtration, concentration and a 
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precipitation from EtOAc, the yellow solid was purified twice consecutively by column 

chromatography: (SiO2, eleuent 20: 1 EtOAc: MeOH v/v) then (SiO2, eluent 20: 1 DCM : 

MeOH v/v) yielding 108 as a yellow solid (0.238 g, 40%). mp 169 oC (decomp.); δH (500 

MHz, d6-DMSO) 8.48 (1H, d, J 2.4, C(6)Hpyridone), 8.28 – 8.24 (2H, m, C(6)Hpyrazinyl + 

C(4)Hpyridone), 7.85 (1H, d, J 1.3,  C(3)Hpyrazinyl), 7.72 (1H, t, J 7.8, C(4)Hpyridyl), 7.43 (1H, 

d, J 7.5, C(6)Hpyridyl), 6.81 (2H, br s, NH2), 6.70 (1H, d, J 8.1, C(3)Hpyridyl), 6.61 (1H, d, J 

9.6, C(3)Hpyridone), 3.88 (3H, s, O-CH3); δC (126 MHz, d6-DMSO) 163.1 (C(6)Opyridyl), 

161.0 (C(2)Opyridone), 155.6, (C(2)pyridyl), 150.3 (C(4)Hpyridone), 140.3 (C(5)Npyrazinyl), 140.1 

(C(2)Npyrazinyl), 138.8 (C(4)Hpyridyl), 137.5 (C(3)Hpyrazinyl), 136.3 (C(6)Hpyrazinyl), 129.8 

(C(5)pyridone), 120.1 (C(6)Hpyridone), 117.2 (C(3)Hpyridone), 111.4 (C(5)Hpyridyl), 108.6 

(C(3)Hpyridyl), 52.9 (O-CH3); m/z (APCI+) 295 (M+, 100%), 296 (69, M++H); Anal. Calcd. 

for C15H13N5O2: C, 61.01; H, 4.44; N, 23.72. Found: C, 61.33; H, 4.60; N, 23.65; νmax 

(film)/cm-1 3333, 3174, 1666 (C=O), 1577, 1538, 1465, 1398, 1331, 1269, 1156, 1125, 

1013, 826, 788. 

 

5-(6-Methoxypyridin-2-yl)-1-(5-nitrothiophen-2-yl)pyridin-2(1H)-one 109 

 In accordance with the general procedure for pyridone C-N cross-

coupling, 97 (0.212 g, 1.05 mmol), 2-bromo-5-nitrothiophene 114 (0.208 

g, 1.00 mmol), CuI (0.038 g, 0.200 mmol, 20 mol%), DMCDA (0.057 g, 

0.400 mmol) and K2CO3 (0.276 g, 2.00 mmol) in toluene (6 mL) were 

reacted for 20 h.  Standard work-up and column chromatography (SiO2, 

eluent 3: 2 hexane: EtOAc) yielded 109 as a yellow solid (0.196 g, 60%). 

mp 227 oC (decomp.); δH (400 MHz, d6-DMSO) 8.93 (1H, d, J 2.1, C(6)Hpyridone), 8.38 

(1H, dd, J 9.6, 2.1, C(4)Hpyridone), 8.21 (1H, d, J 5.0, C(4)Hthiophenyl), 7.94 (1H, d, J 5.1, 

C(3)Hthiophenyl), 7.87 – 7.76 (1H, m, C(4)Hpyridyl), 7.70 (1H, d, J 7.4, C(5)Hpyridyl), 6.90 (1H, 

d, J 9.6, C(3)Hpyridone), 6.79 (1H, d, J 8.1, C(3)Hpyridyl), 3.96 (3H, s, O-CH3); δC (126 MHz, 

CDCl3) 164.2 (C(6)Opyridyl), 162.9 (C(2)Opyridone), 160.2 (C(2)Hpyridyl), 

149.2(C(2)Nthiophenyl), 144.3 (C(4)Hpyridone), 139.9 (C(4)Hpyridyl), 138.3 (C(5)Nthiophenyl), 

130.4 (C(5)Hpyridone), 126.1 (C(4)Hthiophenyl), 121.5 (C(2)Nthiophenyl), 121.4 (C(6)Hpyridone), 

114.4 (C(3)Hpyridone), 111.8 (C(5)Hpyridyl), 110.6 (C(3)Hpyridyl), 53.6 (O-CH3); m/z (APCI+) 

329 (M+ 66%), 330 (100, M++H); Anal. Calcd. for C15H11N3O4S: C, 54.71; H, 3.37; N, 

12.76. Found: C, 55.00; H, 3.56; N, 12.40; νmax (film)/cm-1 2924, 2848, 1667 (C=O), 1611, 

1575, 1542, 1494, 1460, 1425, 1334, 1284, 1258, 1017, 800, 701. 
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2,6-Di(5-(4-methoxyphenyl)-2-oxopyridin-1(2H)-yl)pyridine 116 

 In accordance with the general procedure for pyridone C-N 

cross-coupling, 95 (0.460 g, 2.28 mmol), 2,6-dibromopyridine 

115 (0.246 g, 1.04 mmol), CuI (0.079 g, 0.415 mmol, 20 

mol%), DMCDA (0.118 g, 0.830 mmol) and K2CO3 (0.574 g, 

4.15 mmol) in toluene (12 mL) were reacted for 88 h.  

Standard work-up and column chromatography (SiO2, eluent 

19: 1 EtOAc: Et3N v/v) yielded 116 as a white solid which was 

recrystallised from refluxing EtOAc/hexane (0.340 g, 69%). 

mp 229.9-231.1 oC; δH (700 MHz, CDCl3) 8.06 – 7.98 (3H, m, C(3+4+5)Hpyridyl), 7.96 (2H, 

d, J 2.5, C(6+6’)Hpyridone), 7.68 (2H, dd, J 9.5, 2.7, C(4+4’)Hpyridone), 7.35 (4H, d, J 8.8, 

C(2+2’+6+6’)Hphenyl), 6.92 (4H, d, J 8.8, C(3+3’+5+5’)Hphenyl), 6.74 (2H, d, J 9.5, 

C(3+3’)Hpyridone), 3.80 (6H, s, 2 x O-CH3); δC (176 MHz, CDCl3) 161.5 (2C, 

C(6+6’)Opyridone), 159.5 (2C, C(4+4’)Ophenyl), 151.3 (2C, C(2+6)Npyridyl), 140.8 (2C, 

C(4+4’)Hpyridone), 139.8 (C(4)Hpyridyl), 132.5 (2C, C(1+1’)phenyl), 128.8 (4C, 

C(2+2’+6+6’)Hphenyl), 127.3 (2C, C(5+5’)pyridone), 122.2 (2C, C(3+3’)Hpyridone), 121.1 (4C, 

C(3+3’+5+5’)Hphenyl), 120.7 (2C, C(6+6’)Hpyridone), 114.7 (2C, C(3+5)Hpyridyl), 55.5 (2C, 

O-CH3); m/z (APCI+) 478 (M+, 100%); Anal. Calcd. for C29H23FN3O4: C, 72.94; H, 4.85; 

N, 8.80. Found: C, 73.02; H, 4.5.13; N, 8.69; νmax (film)/cm-1 2959, 1683 (C=O), 1610, 

1516, 1436, 1295, 1246, 1205, 1181, 1025, 821, 798. 

 

2,6-Difluoro-3-(4-methoxyphenyl)pyridine 119 

In accordance with the general method for Suzuki-Miyaura cross-

coupling reactions outlined above was reacted (2,6-difluoro-3-

pyridyl)boronic acid 117 (0.953 g , 6 mmol), 4-bromoanisole 89 

(0.935 g, 5 mmol), Pd(PPh3)2Cl2 (0.175 g, 0.25 mmol, 5 mol%) and Na2CO3 (15 mL, 15 

mmol, 1 M in water) in 1,4-dioxane (40 mL) at reflux for 1 h. Standard work-up and 

concentration followed by column chromatography (SiO2, eluent 1: 3 EtOAc: hexane) 

yielded 119 as a white solid (0.839 g, 76%). mp 33.4-34.9 oC; δH (700 MHz, d6-DMSO) 

8.18 (1H, dd, J 17.9, 8.0, C(4)Hpyridyl), 7.48 (2H, dd, J 8.6, 1.2, C(2+6)Hphenyl), 7.14 (1H, 

dd, J 8.1, 2.6, C(5)Hpyridyl), 7.02 (2H, d, J 8.8, C(3+5)Hphenyl), 3.80 (3H, s, O-CH3); δC (176 

MHz, d6-DMSO) 157.8 (C(4)Ophenyl), 157.6 (dd, J 243.2, 13.9, C(2)Fpyridyl), 155.3 (dd, J 

245.4, 14.5, C(6)Fpyridyl), 144.0 (C(1)phenyl), 128.2 (2C, C(2+6)Hphenyl), 122.9 (d, J 4.8, 

C(4)Hpyridyl), 118.3 (dd, J 25.4, 5.8, C(3)pyridyl), 112.5 (2C, C(3+5)Hphenyl), 105.3 (dd, J 
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40.1, 9.3, C(5)Fpyridyl), 53.5 (O-CH3); m/z (EI) 221 (M+, 100%), Anal. Calcd. for 

C12H9F2NO: C, 65.16; H, 4.10; N, 6.33. Found: C, 65.05; H, 4.11; N, 6.20; (film)/cm-1 

3095, 1642, 1602, 1589, 1511, 1370, 1245, 1176, 1053, 1004, 995, 831, 780. 

 

2-(2,6-Difluoropyridin-3-yl)-3-aminopyridine 120 

 In accordance with the general method for Suzuki-Miyaura cross-

coupling reactions outlined above was reacted (2,6-difluoro-3-

pyridyl)boronic acid 117 (1.50 g , 9.44 mmol), 3-amino-2-bromopyridine 

118 (1.09 g, 6.29 mmol), Pd2(dba)3 (0.144 g, 0.157 mmol, 5 mol% Pd), PCy3 (0.088 g, 

0.315 mmol) and Na2CO3 (18.9 mL, 18.9 mmol, 1 M in water) in 1,4-dioxane (45 mL) at 

reflux for 22 h. Standard work-up and concentration followed by column chromatography 

(SiO2, eluent 2: 1 EtOAc: hexane v/v) yielded 120 as a white solid (1.09 g, 83%). mp 

156.9-157.7 oC; δH (400 MHz, d6-DMSO) 8.16 (1H, dt, J 9.5, 8.1, C(4)Hpyridyl-A), 7.86 (1H, 

dd, J 4.2, 1.8, C(6)Hpyridyl-B), 7.25 (1H, ddd, J 8.1, 2.5, 0.8, C(5)Hpyridyl-A), 7.18 – 7.03 (2H, 

m, C(4+5)Hpyridyl-B), 5.25 (2H, s, NH2); δC (126 MHz, d6-DMSO) 160.0 (dd, J 243.0, 14.0, 

C(2)Fpyridyl-A), 157.7 (dd, J 245.4, 14.6, C(6)Fpyridyl-A), 147.8 (dd, J 8.0, 5.1, C(4)Hpyridyl-A), 

143.2 (C(3)Npyridyl-B), 137.2 (C(6)Hpyridyl-B), 135.8 (d, J 4.1, C(2)pyridyl-B), 124.3 

(C(5)Hpyridyl-B), 121.8 (C(4)Hpyridyl-B), 118.7 (dd, J 28.7, 5.6, C(3)pyridyl-A), 106.8 (dd, J 34.6, 

5.3, C(5)Hpyridyl-A); m/z (APCI+) 208 (M+ + H, 100%); Anal. Calcd. for C10H7F2N3: C, 

57.97; H, 3.41; N, 20.28. Found: C, 58.31; H, 3.77; N, 20.08; νmax (film)/cm-1
 3384, 3308, 

3201, 1640, 1602, 1587, 1478, 1458, 1444, 1402, 1307, 1274, 1254, 1226, 1211, 1106, 

1023, 997, 972, 846, 834, 804, 736. 

 

6-Fluoro-5-(4-methoxyphenyl)pyridin-2(1H)-one 121a and  6-fluoro-3-(4-

methoxyphenyl)pyridin-2(1H)-one 121b 

 To 119 (0.481 g, 2.17 mmol) was 

sequentially added 1,4-dioxane (4 mL) and 

KOH (1 M, 11 mL) and the resulting mixture 

was heated at reflux and judged complete by TLC (SiO2, eluent 2: 1 hexane : EtOAc v/v) 

after 16 h. The mixture was cooled to room temperature and acidified to pH 6 with 4 M 

HCl. The mixture was extracted into EtOAc, dried over Na2SO4, filtered and concentrated. 

The crude mixture was purified by column chromatography (SiO2, eluent 2: 1 hexane : 

EtOAc v/v) to give a mixture of 121a and 121b as a white solid (0.383 g, 80%, judged as 

ratio 1 : 1.4 121a : 121b  by 1H NMR). The mixture was separated by column 
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chromatography (SiO2, eluent 3: 1 hexane : EtOAc v/v) followed by preparative TLC 

(SiO2, eluent 3: 1 hexane : EtOAc v/v) giving 121b as a white solid which was 

recrystallised from hexane (0.036 g, 8%). Further column chromatography provided 121a 

as a white solid which was recrystallised from hexane (0.046 g, 10%). The remaing 

material was recovered from chromatography as mixed product fractions. 

121a mp 195 oC (decomp.); δH (400 MHz, CDCl3) 7.80 (1H, dd, J 10.1, 8.2, C(4)Hpyridone), 

7.42 (2H, dd, J 8.9, 1.5, C(2+6)Hphenyl), 6.96 (2H, d, J 8.9, C(3+5)Hphenyl), 6.72 (1H, dd, J 

8.2, 0.9, C(4)Hpyridone), 3.84 (3H, s, O-CH3); δC (176 MHz, d6-DMSO) 161.4 (d, J 15.7,  

C(2)Opyridone), 158.6 (C(4)Ophenyl), 157.7 (d, J 238.1, C(6)Fpyridone), 143.4 (d, J 4.6, 

C(4)Hpyridone), 129.4 (d, J 3.0, C(2+6)Hphenyl), 126.0 (d, J 5.1, C(1)phenyl), 114.1 

(C(3+5)Hphenyl), 112.4 (d, J 27.0, C(5)pyridone), 106.9 (d, J 4.8, C(3)Hpyridone), 55.1 (O-CH3); 

m/z (APCI+) 220 (M++H, 100%), Anal. Calcd. for C12H10FNO2: C, 65.75; H, 4.60; N, 6.39. 

Found: C, 65.70; H, 4.60; N, 6.41; νmax (film)/cm-1 2936, 1613, 1591, 1509, 1448, 1390, 

1290, 1200, 1192, 1104, 1003, 855, 817, 760, 707. 

121b mp 200 oC (decomp.); δH (700 MHz, CDCl3) 10.32 (1H, s, NH), 7.73 (1H, t, J 8.0, 

C(5)Hpyridone), 7.53 (2H, d, J 8.9, C(2+6)Hphenyl), 6.97 (2H, d, J 8.8, C(3+5)Hphenyl), 6.53 

(1H, dd, J 8.0, 1.7, C(4)Hpyridone), 3.84 (3H, s, O-CH3); δC (126 MHz, CDCl3) 160.5 (d, J 

244.7, C(6)Fpyridone), 159.4 (C(4)Ophenyl), 159.4 (d, J 11.2, C(2)Opyridone), 143.9 (d, J 8.1, 

C(4)Hpyridone), 130.3 (2C, C(2+6)Hphenyl), 127.8 (C(1)phenyl), 120.3 (d, J 5.3, C(3)pyridone), 

114.2 (C(3+5)Hphenyl), 100.4 (d, J 32.3, C(5)Hpyridone), 55.6 (O-CH3); m/z (APCI+) 220 

(M++H, 100%), Anal. Calcd. for C12H10FNO2: C, 65.75; H, 4.60; N, 6.39. Found: C, 65.89; 

H, 4.87; N, 6.23; νmax (film)/cm-1 2927, 1613, 1590, 1516, 1448, 1379, 1285, 1253, 1217, 

1178, 1100, 1034, 1019, 841, 806, 773, 742. 

 

6-Fluoropyridin-2(1H)-one 123 

 To 2,6-difluoropyridine 122 (2.24 g, 10 mmol) was sequentially added 1,4-

dioxane (26 mL) and KOH (6 M, 50 mL) and the resulting mixture was heated 

at reflux and judged complete by TLC (SiO2, eluent 1 : 1 hexane : EtOAc v/v) after 114 h. 

The mixture was cooled to room temperature, concentrated in vacuo and acidified to pH 6 

with 4 M HCl. After extraction into DCM (2 x 200 mL) and the combined organic layers 

were washed with brine (2 x 50 mL) and dried over Na2SO4, filtered and concentrated. The 

resulting residue was recrystallised from a mixture of DCM and hexane yielding 123 as 

white needles (0.703 g, 62%). mp 127.2-128.2 oC; δH (400 MHz, CDCl3) 11.87 (1H, s, 

NH), 7.71 (1H, dd, J 16.2, 8.1, C(4)H), 6.73 – 6.53 (1H, m, C(3)H), 6.53 – 6.35 (1H, m, 
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C(5)H); δC (101 MHz, CDCl3) 163.7 (d, JCF 11.7, C(2)O), 161.8 (d, JCF 245.7, C(6)F), 

144.6 (d, JCF 8.7, C(4)H), 107.4 (d, JCF 5.0, C(3)H), 99.5 (d, JCF 31.6, C(5)H); m/z (APCI+) 

114 (M++H, 100%), 113 (35, M+); Anal. Calcd. for C5H4FNO: C, 53.10; H, 3.57; N, 16.80. 

Found: C, 52.86; H, 3.39; N, 17.11; νmax (film)/cm-1 3320, 2696, 1632, 1596, 1574, 1486, 

1456, 1344, 1242, 1143, 1070, 1017, 996, 787, 744, 723. 

 

7.4 Experimental Details for Chapter 4 

 

2-Chloro-3,4-diiodopyridine 128. 

 Method A. A solution of diisopropylamine (12.33 mL, 88 mmol) and anhydrous 

THF (100 mL) was cooled to -10 oC under an argon atmosphere. To this n-

hexyllithium (2.3 M in hexane, 35.2 mL, 88 mmol) was added dropwise over 10 

min. Following the addition, the mixture was stirred at 0 oC for 0.5 h, yielding a clear 

yellow solution. The solution was cooled to -78 oC and treated dropwise over 0.5 h with 2-

chloropyridine 129 (4.2 mL, 44 mmol) in THF (50 mL). The solution was stirred for 1 h 

and became clear orange. To this solution iodine (32.4 g, 128 mmol) in THF (100 mL) was 

added over 45 min, after which the reaction was stirred at -78 oC for a further 30 min. The 

solution was allowed to warm to 0 oC before quenching with water (200 mL), followed by 

addition of saturated aqueous sodium sulfite (100 mL). The layers were separated and the 

aqueous layer was extracted with EtOAc (3 x 400 mL). The combined organic extracts 

were dried over MgSO4, filtered and then concentrated to yield a dark brown crude solid 

(10.4 g). This product was dried and slurried in acetonitrile. Filtration yielding 2-chloro-

3,6-diiodopyridine 128 as a white solid (4.42 g, 28%). mp 161.1–162.5 oC; δH (700 MHz, 

CDCl3) 7.96 (1H, d, J 5.0, C(6)H), 7.67 (1H, d, J 5.0, C(5)H); δC (176 MHz, CDCl3) 155.0 

(C(2)Cl), 148.4 (C(6)H), 133.2 (C(5)H), 122.5 (C(4)I), 110.5 (C(3)I); m/z (EI) 365 (M+), 

238 (62%, M+-I). Anal. Calcd. for C5H2ClI2N: C, 16.44; H, 0.55; N, 3.83. Found: C, 16.32; 

H, 0.56; N, 3.68; νmax (film)/cm-1 2359, 2337, 1535, 1408, 1331, 1180, 1141, 1001, 828. 

Method B. The experimental procedure of Method A was followed using nbutyllithium 

(2.5 M in hexane, 35.2 mL, 88 mmol) instead of n-hexyllithium. The crude solid (13.1 g) 

was recrystallised from acetonitrile yielding 128 as a white solid (4.18 g, 26%). Scale-up 

using diisopropylamine (24.67 mL, 180 mmol), n-butyllithium (70.50 mL, 176 mmol), 2-

chloropyridine 129 (8.30 mL, 88 mmol), iodine (65.0 g, 260 mmol), THF (350 mL) gave 

128 (5.50 g, 17%). Analytical data were consistent with those obtained by Method A.  
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Method C. Method B was followed but with the temperature maintained between -100 and 

-85 oC during the addition of 2-chloropyridine and iodine. Iodine was added over 1.25 h. 

This gave 128 as a white solid (4.16 g, 26%). Analysis was consistent with that obtained 

by Method A. 

 

3-(2-Chloro-3-iodopyridin-4-yl)-2-methoxypyridine 131. 

 Method A. The general method for Suzuki–Miyaura cross-couplings was 

followed. A mixture of compound 128 (2.0 g, 5.5 mmol), 135 (0.754 g, 4.9 

mmol), Pd(PPh3)4 (0.316 g, 0.27 mmol, 5 mol%), 1,4-dioxane (20 mL), 

Na2CO3 (1 M, 10.94 mL, 10.94 mmol) was stirred at reflux for 24 h. 

Standard work-up and concentration gave a brown residue which was purified by 

chromatography (SiO2, hexane/EtOAc, 4:1 v/v) yielded 131 as a white solid (0.75 g, 44%). 

A sample was recrystallised from hexane and EtOAc for mp determination and CHN 

analysis. mp 169.5–171.0 oC; δH (500 MHz, CDCl3) 8.32 (1H, d, J 4.8, C(6)Hpyridyl-A), 8.26 

(1H, dd, J 5.1, 1.9, C(6)Hpyridyl-B), 7.37 (1H, dd, J 7.3, 1.9, C(4)Hpyridyl-B), 7.04 (1H, d, J 

4.8, C(5)Hpyridyl-A), 6.99 (1H, dd, J 7.3, 5.1, C(4)Hpyridyl-B), 3.91 (3H, s, O-CH3); δC (125 

MHz, CDCl3) 159.8 (C(2)Opyridyl-B), 156.0 (C(6)Clpyridyl-A), 154.9 (C(4)pyridyl-A), 148.5 

(C(6)Hpyridyl-A), 148.1 (C(6)Hpyridyl-B), 138.4 (C(4)Hpyridyl-B), 125.9 (C(3)pyridyl-B), 123.7 

(C(5)Hpyridyl-A), 116.8 (C(5)Hpyridyl-B), 101.6 (C(3)Ipyridyl-A), 53.9 (O-CH3); m/z (EI) 346 

(M+, 45%), 219 (100, M+-I). Anal. Calcd. for C11H8ClIN2O: C, 38.12; H, 2.33; N, 8.08. 

Found: C, 38.14; H, 2.34; N, 7.97; νmax (film)/cm-1 3032, 2993, 2949, 1581, 1463, 1402, 

1342, 1017, 840, 783. 

 

Method B. The general method for Suzuki–Miyaura cross-couplings was followed. A 

mixture of compound 128 (5.80 g, 16 mmol), 135 (2.20 g, 14 mmol), Pd(PPh3)2Cl2 (0.557 

g, 0.79 mmol, 5 mol%), 1,4-dioxane (30 mL), Na2CO3 (1 M, 29.0 mL, 29 mmol) was 

stirred at reflux for 19 h. Standard work-up and cconcentration gave a brown residue which 

was purified by chromatography (SiO2, hexane/EtOAc, 4:1 v/v) yielded 128 (1.05 g, 22%). 

Analytical data were identical to those obtained in method A.  
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5-(2-Chloro-3-iodopyridin-4-yl)-2-methoxypyridine 132.  

 The general method for Suzuki–Miyaura cross-couplings was followed. A 

mixture of compound 128 (3.0 g, 8.0 mmol), 136 (3.10 g, 21 mmol), Pd(PPh3)4 

(0.474 g, 0.41 mmol, 5 mol%,), 1,4-dioxane (30 mL), Na2CO3 (1 M, 41 mL, 41 

mmol) was stirred at reflux for 20 h. Standard work-up and concentration gave a 

brown residue which was purified by chromatography (SiO2, hexane/EtOAc, 3:1 

v/v) yielded 132 as a cream solid (1.05 g, 38%), used in subsequent reactions without 

further purification. A sample was recrystallised from hexane and EtOAc for mp 

determination and CHN analysis. mp 130.1–130.6 oC; δH (700 MHz, CDCl3) 8.31 (1H, d, J 

4.8, C(6)Hpyridyl-A), 8.13 (1H, dd, J 2.5, 0.6, C(6)Hpyridyl-B), 7.57 (1H, dd, J 8.5, 2.5, 

C(4)Hpyridyl-B), 7.07 (1H, d, J 4.8, C(5)Hpyridyl-A), 6.82 (1H, dd, J 8.5, 0.6, C(3)Hpyridyl-B), 

3.98 (3H, s, O-CH3); δC (175 MHz, CDCl3) 164.5 (C(2)Opyridyl-B), 156.6 (C(2)Clpyridyl-A), 

155.6 (C(4)pyridyl-A), 148.7 (C(6)Hpyridyl-A), 146.5 (C(6)pyridyl-B), 139.1 (C(4)pyridyl-B), 131.6 

(C(5)pyridyl-B), 123.3 (C(5)Hpyridyl-A), 110.7 (C(3)pyridyl-B), 100.8 (C(3)Ipyridyl-A), 54.0 (O-

CH3); m/z (EI) 346 (M+); Anal. Calcd. for C11H8ClIN2O: C, 38.12; H, 2.33; N, 8.08. 

Found: C, 38.07; H, 2.32; N, 7.90; νmax (film)/cm-1 3038, 3012, 2950, 1599, 1490, 1372, 

1061, 1002, 828.  

 

5-(2-Chloro-3-iodopyridin-4-yl)-2-fluoropyridine 133.  

 The general method for Suzuki–Miyaura cross-couplings was followed. A 

mixture of compound 128 (1.61 g, 4.4 mmol), 88 (1.60 g, 11 mmol), Pd(PPh3)4 

(0.255 g, 0.22 mmol, 5 mol%), 1,4-dioxane (20 mL), Na2CO3 (1M, 22 mL, 22 

mmol) was stirred at reflux for 24 h. Standard work-up and concentration gave a 

brown residue which was purified by chromatography (SiO2, 0–50% EtOAc in 

hexane) yielded 133 as a white solid (0.740 g, 50%), used in subsequent reactions without 

further purification. A sample was recrystallised from hexane and DCM for mp 

determination and CHN analysis. mp 152.9–153.9 oC; δH (700 MHz, CDCl3) 8.36 (1H, d, J 

4.8, C(6)Hpyridyl-A), 8.19 (1H, dd, J 2.5, 1.5, C(6)Hpyridyl-B), 7.78 (1H, ddd, J 8.4, 2.5, 2.3, 

C(4)Hpyridyl-B), 7.09 (1H, d, J 4.8, C(2)Hpyridyl-A), 7.04 (1H, dd, J 8.4, 2.5, C(3)Hpyridyl-B); δC 

(175 MHz, CDCl3) 163.7 (d, JCF 242.5, C(2)Fpyridyl-B), 156.8 (C(2)Clpyridyl-A), 154.2 

(C(4)pyridyl-A), 148.9 (C(6)Hpyridyl-A), 147.3 (d, JCF 15.4, C(4)Hpyridyl-B), 141.6 (d, JCF 8.3, 

C(6)Hpyridyl-B), 136.2 (d, JCF 4.8, C(5)pyridyl-B), 123.2 (C(5)Hpyridyl-A), 109.6 (d, JCF 37.6, 

C(3)Hpyridyl-B), 100.6 (C(3)Ipyridyl-A); m/z (EI) 334 (M+, 32%), 207 (15, M+ - I), 127 (100, 
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M+ - C10H5ClFN2). Anal. Calcd. for C10H5ClFIN2: C, 35.90; H, 1.51; N, 8.37. Found: C, 

35.73; H, 1.50; N, 8.31; νmax (film)/cm-1 3048, 1588, 1485, 1376, 1260, 850, 828. 

 

3-(2-Chloro-3-iodopyridin-4-yl)quinoline 134.   

The general method for Suzuki–Miyaura cross-couplings was followed. A 

mixture of compound 128 (2.80 g, 7.7 mmol), 137 (0.994 g, 5.75 mol), 

Pd(PPh3)2Cl2 (0.269 g, 0.383 mmol, 5 mol%), 1,4-dioxane (30 mL), Na2CO3 (1 

M, 11 mL, 11 mmol) was stirred at reflux for 67 h. Standard work-up and 

concentration gave a brown residue which was purified by chromatography 

(SiO2, EtOAc/hexane, 4:1 v/v) and recrystallisation from hexane / DCM yielded 134 as a 

white solid (0.277 g, 13%). mp 199.1–199.9 oC; δH (700 MHz, CDCl3) 8.90 (1H, d, J 2.3, 

C(2)Hquinolyl), 8.40 (1H, d, J 4.7, C(6)Hpyridyl), 8.17 (1H, d, J 8.5, C(9)Hquinolyl), 8.11 (1H, d, 

J 2.3, C(4)Hquinolyl), 7.88 (1H, d, J 8.1, C(6)Hquinolyl), 7.81 (1H, ddd, J 8.5, 6.9, 1.2, 

C(8)Hquinolyl), 7.63 (1H, ddd, J 8.1, 6.9, 1.2, C(7)Hquinolyl), 7.19 (1H, d, J 4.7, C(5)Hpyridyl); 

δC (175 MHz, CDCl3) 156.7 (C(2)Clpyridyl), 155.5 (C(4)pyridyl), 149.7 (C(6)Hpyridyl), 148.9 

(C(2)Hquinolyl), 148.0 (C(10)quinolyl), 135.7 (C(4)Hquinolyl), 135.5 (C(3)quinolyl), 130.8 

(C(9)Hquinolyl), 129.8 (C(8)Hquinolyl), 128.4 (C(5)quinolyl), 127.8 (C(6)Hquinolyl), 127.2 

(C(7)Hquinolyl), 123.5 (C(5)Hpyridyl), 100.6 (C(3)Ipyridyl); m/z (ES+) 366.94959 (M+ + H, 

C14H9
35Cl127IN2 requires 366.94935); vmax (film)/cm-1 3060, 3036, 1565, 1329, 850, 786. 

 

3-[2-Chloro-3-(2-methoxypyridin-3-yl)pyridin-4-yl]-2-methoxypyridine 142.  

 The general method for Suzuki–Miyaura cross-couplings was 

followed. A mixture of compound 128 (2.00 g, 5.5 mmol), 135 2.09 g, 

13.69 mmol), Pd(PPh3)4 (0.316 g, 0.274 mmol, 5 mol%), 1,4-dioxane 

(20 mL), Na2CO3 (1 M, 10.95 mL, 10.95 mmol) was stirred at reflux 

for 20 h. Standard work-up and concentration gave a brown residue which was purified by 

chromatography (SiO2, hexane/EtOAc, 2:1 v/v) yielded 142 as a pale yellow waxy solid 

(0.897 g, 47%). A sample was recrystallised from hexane and EtOAc for mp determination 

and CHN analysis. mp 111.5–112.2 oC; δH (500 MHz, CDCl3) 8.42 (1H, d, J 5.0, 

C(6)Hpyridyl-A), 8.05 (1H, dd, J 5.0, 1.9, C(4)Hpyridyl-B), 8.03 (1H, dd, J 5.0, 1.9 C(4)Hpyridyl-

C), 7.29–7.25 (2H, m, C(6)Hpyridyl-B + C(6)Hpyridyl-C), 7.23 (1H, d, J 5.0 C(5)Hpyridyl-A), 6.78–

6.75 (2H, m, C(5)Hpyridyl-B + C(5)Hpyridyl-C), 3.77 (3H, s, O-CH3 pyridyl-B), 3.69 (3H, s, O-CH3 

pyridyl-C); δC (125 MHz, CDCl3) 160.9 (C(2)Opyridyl-BA), 160.0 (C(2)Opyridyl-C), 151.8 

(C(6)Hpyridyl-A), 148.6 (C(4)pyridyl-A), 148.5(C(6)Hpyridyl-B), 147.5 (C(6)Hpyridyl-C), 147.3 
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(C(2)Clpyridyl-A), 139.7 (C(4)Hpyridyl-B), 138.8 (C(4)Hpyridyl-C), 131.7 (C(3)Hpyridyl-A), 124.3 

(C(3)pyridyl-B), 121.4 (C(3)pyridyl-C), 119.7 (C(5)Hpyridyl-A), 116.5 (C(5)Hpyridyl-B), 116.3 

(C(5)Hpyridyl-C), 53.6 (O-CH3 pyridyl-B), 53.5 (O-CH3 pyridyl-C); m/z (EI) 327 (M+, 60%), 292 

(100, M+-Cl). Anal. Calcd. for C17H14ClN3O2: C, 62.30; H, 4.31; N, 12.82. Found: C, 

62.19; H, 4.32; N, 12.78; vmax (film)/cm-1 2989, 2952, 1578, 1468, 1400, 1366, 1300, 1188, 

1017. 

 

2-Chloro-3,4-bis(6-methoxypyridin-3-yl)pyridine 143.  

 The general method for Suzuki–Miyaura cross-couplings was followed. 

A mixture of compound 128 (0.500 g, 1.37 mmol), 136 (0.419 g, 2.74 

mmol), Pd(PPh3)4 (0.081 g, 0.07 mmol, 5 mol%), 1,4-dioxane (20 mL) 

and Na2CO3 (1 M, 5.5 mL, 5.5 mmol) was stirred at reflux for 20 h. 

Standard work-up and concentration gave a brown residue which was 

purified by chromatography (SiO2, petroleum ether/EtOAc, 1:1 v/v) yielded 143 as a white 

powder (0.255 g, 50%). mp 145.6–147.9 oC; δH (400 MHz, CDCl3) 8.44 (1H, d, J 5.0, 

C(6)Hpyridyl-A), 7.97 (1H, d, J 2.7, C(2)Hpyridyl-B), 7.91 (1H, d, J 2.5, C(2)Hpyridyl-C), 7.39 

(1H, dd, J 2.5, 8.6, C(4)Hpyridyl-C), 7.29 (1H, d, J 5.0, C(5)Hpyridyl-A), 7.20 (1H, dd, J 2.7, 

8.6, C(4)Hpyridyl-B), 6.73 (1H, d, J 8.6, C(5)Hpyridyl-C), 6.60 (1H, d, J 8.6, C(5)Hpyridyl-B), 3.93 

(3H, s, O-CHpyridyl-B) 3.90 (3H, s, O-CHpyridyl-C); δC (100 MHz, CDCl3) 163.8 (C(6)Opyridyl-

B), 163.5 (C(6)Opyridyl-C), 152.3 (C(6)Hpyridyl-A), 149.0 (C(4)pyridyl-A), 148.7 (C(2)Clpyridyl-A), 

148.2 (C(2)Hpyridyl-B), 147.0 (C(2)Hpyridyl-C), 140.6 (C(4)Hpyridyl-B), 139.1 (C(4)Hpyridyl-C), 

131.9 (C(3)pyridyl-A), 127.7 (C(3)pyridyl-B), 126.9 (C(3)pyridyl-C), 124.8 (C(5)Hpyridyl-B), 123.7 

(C(3)Hpyridyl-C), 110.6 (C(5)pyridyl-A), 53.6 (O-CH3 pyridyl-B), 53.5 (O-CH3 pyridyl-C); m/z (ES+) 

328.08469 (M+, C17H14
35ClN3O2 requires 328.08473); νmax (film)/cm-1 3039, 3010, 2945, 

1602, 1560, 1498, 1456, 1359, 1302, 1289, 1257, 1188, 1012, 830, 776. 

 

2-Chloro-3,4-bis(4-methoxyphenyl)pyridine 144.  

 The general method for Suzuki–Miyaura cross-couplings was followed. 

A mixture of compound 128 (0.500 g, 1.37 mmol), 75 (0.416 g, 2.74 

mmol), Pd(PPh3)4 (0.081 g, 0.07 mmol, 5 mol%), 1,4-dioxane (20 mL) 

and Na2CO3 (1 M, 5.5 mL, 5.5 mL) was stirred at reflux for 20 h. 

Standard work-up and concentration gave a brown residue which was purified by 

chromatography (SiO2, petroleum ether/EtOAc, 3:2 v/v) yielded 144 as a white crystalline 

powder (0.288 g, 64%). mp 126.4–129.9 oC; δH (400 MHz, d6-acetone) 8.37 (1H, d, J 5.0, 
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C(6)Hpyridyl), 7.39 (1H, d, J 5.0, C(5)Hpyridyl), 6.80 (2H, d, J 8.8, C(2+6)Hphenyl-A), 7.10 (2H, 

d, J 8.8, C(2+6)Hphenyl-B), 6.88 (2H, d, J 8.8, C(3+5)Hphenyl-A), 6.80 (2H, d, J 8.8, 

C(3+5)Hphenyl-B), 3.78 (3H, s, O-CHphenyl-B), 3.75 (3H, s, O-CHphenyl-C); δC (100 MHz, d6-

acetone) 160.4 (C(4)Ophenyl-A), 160.1 (C(4)Ophenyl-B), 152.6 (C(4)pyridyl), 152.4 (C(6)Hpyridyl), 

148.8 (C(2)Clpyridyl), 135.6 (C(3)pyridyl), 132.5 (C(1)phenyl-A), 131.6 (2C, C(2+6)Hphenyl-A), 

131.4 (2C, C(2+6)Hphenyl-B), 129.8 (C(1)phenyl-B), 125.0 (C(5)Hpyridyl), 114.4 (2C, 

C(3+5)Hphenyl-A), 114.3 (2C, C(3+5)Hphenyl-B), 55.5 (O-CH3 phenyl-D), 55.5 (O-CH3 phenyl-C); 

m/z (APCI+) 326.0938 (M+ + H, C19H17
35ClNO2 requires 326.0948); νmax (film)/ cm-1 2963, 

2838, 1606, 1577, 1511, 1454, 1371, 1289, 1246, 1173, 1110, 1060, 1027, 998, 812, 767. 

 

5-[2-Chloro-3-(6-methoxypyridin-3-yl)pyridin-4-yl]-2-fluoropyridine 145.  

 The general method for Suzuki–Miyaura cross-couplings was followed. 

A mixture of compound 133 (0.480 g, 1.43 mmol), 136 (0.330 g, 2.2 

mmol), Pd(PPh3)2Cl2 (0.0504 g, 0.072 mmol, 5 mol%), 1,4-dioxane (20 

mL), Na2CO3 (1 M, 4.0 mL, 4.0 mmol) was stirred at reflux for 18 h. 

Standard work-up and concentration gave a brown residue which was 

purified by chromatography (SiO2, hexane/EtOAc, 2:1 v/v) yielded 145 as a yellow oil 

(0.410 g, 90%). δH (700 MHz, CDCl3) 8.45 (1H, d, J 5.0, C(6)Hpyridyl-A), 7.97 (1H, d, J 2.2, 

C(6)Hpyridyl-B), 7.84 (1H, d, J 1.8, C(6)Hpyridyl-C), 7.42 (1H, ddd, J 8.4, 2.5, 2.2, C(4)Hpyridyl-

B), 7.33 (1H, dd, J 8.5, 2.4, C(4)Hpyridyl-C), 7.27 (1H, d, J 5.0, C(5)Hpyridyl-A), 6.79 (1H, dd, J 

8.4, 2.6, C(3)Hpyridyl-B), 6.68 (1H, dd, J 8.5, 0.5, C(6)Hpyridyl-C), 3.88 (3H, s, O-CH3); δC 

(175 MHz, CDCl3) 163.8 (C(6)Opyridyl-C), 163.2 (d, JCF 242.3, C(2)Fpyridyl-B), 152.7 

(C(6)Hpyridyl-A), 149.1 (C(4)pyridyl-A), 148.3 (C(2)Clpyridyl-A), 147.8 (d, JCF 15.2, C(4)Hpyridyl-

B), 147.8 (C(2)pyridyl-C), 141.8 (d, JCF 8.2, C(6)Hpyridyl-B), 140.6 (C(4)Hpyridyl-C), 132.4 

(C(3)pyridyl-A), 131.9 (d, JCF 4.8, C(5)pyridyl-B), 124.4 (C(3)pyridyl-C), 123.8 (C(5)pyridyl-C), 111.0 

(C(5)Fpyridyl-A), 109.6 (d, JCF 37.6, C(3)Hpyridyl-B), 53.8 (O-CH3); m/z (APCI+) 315.05770 

(M+, C16H11
35ClFN3O requires 315.05692); νmax (film)/cm-1 2950, 1594, 1498, 1362, 1286, 

1250, 1017, 830.  

 

 

 

 

 

 

N Cl

N

N

OMe

F



Jamie S. Siddle           Metal-Catalysed Cross-Coupling Reactions of Nitrogen Heterocycles                  140 

5-[2-Chloro-3-(2-methoxypyridin-3-yl)pyridin-4-yl]-2-methoxypyridine 146.  

 The general method for Suzuki–Miyaura cross-couplings was followed. A 

mixture of compound 132 (0.680 g, 1.96 mmol), 135 (0.450 g, 2.9 mmol), 

Pd(PPh3)2Cl2 (0.0689 g, 0.0981 mmol, 5 mol%), 1,4-dioxane (20 mL), 

Na2CO3 (1 M, 6.0 mL, 6.0 mmol) was stirred at reflux for 70 h. Standard 

work-up and concentration gave a brown residue which was purified by chromatography 

(SiO2, diethyl ether/petroleum ether, 2:1 v/v) yielded 146 as a white solid (0.146 g, 23%). 

A sample was recrystallised from hexane and EtOAc for mp determination and CHN 

analysis. mp 149.6–150.2 oC; δH (500 MHz, CDCl3) 8.42 (1H, d, J 5.0, C(6)Hpyridyl-A), 8.13 

(1H, dd, J 5.0, 1.9, C(6)Hpyridyl-C), 7.93 (1H, d, J 2.5, C(6)Hpyridyl-B), 7.30 (1H, dd, J 7.3, 

1.9, C(4)Hpyridyl-C), 7.25 (1H, d, J 5.0, C(5)Hpyridyl-A), 7.20 (1H, dd, J 8.6, 2.5, C(4)Hpyridyl-

B), 6.84 (1H, dd, J 7.3, 5.0, C(5)Hpyridyl-C), 6.55 (1H, d, J 8.6, C(3)Hpyridyl-B), 3.86 (3H, s, O-

CH3 pyridyl-B), 3.78 (3H, s, O-CH3 pyridyl-C); δC (125 MHz, CDCl3) 164.0 (C(2)Opyridyl-B), 

161.0 (C(2)Opyridyl-C), 152.3 (C(6)Hpyridyl-A), 149.4 (C(4)pyridyl-A), 148.9 (C(6)Hpyridyl-C), 

147.6 (C(2)Clpyridyl-A), 146.6 (C(6)Hpyridyl-B), 140.2 (C(4)Hpyridyl-C), 138.7 (C(4)Hpyridyl-B), 

130.9 (C(3)pyridyl-A), 127.3 (C(3)pyridyl-C), 123.5 (C(5)Hpyridyl-B), 119.7 (C(5)Hpyridyl-A), 116.8 

(C(5)Hpyridyl-B), 110.5 (C(3)Hpyridyl-B), 53.8 (O-CH3 pyridyl-B), 53.8 (O-CH3 pyridyl-C); m/z (EI) 

327 (M+), 292 (100, M+-Cl). Anal. Calcd. for C17H14ClN3O2: C, 62.30; H, 4.31; N, 12.82. 

Found: C, 62.32; H, 4.37; N, 12.73; νmax (film)/cm-1 2978, 2939, 1574, 1492, 1464, 1376, 

1287, 1016, 784.  

 

3-[2-Chloro-3-(6-methoxypyridin-3-yl)pyridin-4-yl]-2-methoxypyridine 147. 

 The general method for Suzuki–Miyaura cross-couplings was 

followed. A mixture of compound 131 (2.00 g, 5.77 mmol), 136 

(0.970 g, 6.3 mmol), Pd2(dba)3 (0.159 g, 0.173 mol, 3 mol%), P(t-

Bu)3.HBF4 (6 mol %, 0.100 g, 0.346 mmol) 1,4-dioxane (20 mL), 

KF (1.10 g, 19 mmol) was stirred at reflux for 6 h. Standard work-up and concentration 

gave a brown residue which was purified by chromatography (SiO2, hexane/EtOAc, 4:1 

v/v) yielded 147 as a white solid (1.40 g, 74%). mp 102.7–105.3 oC; δH (700 MHz, CDCl3) 

8.41 (1H, d, J 4.9, C(6)Hpyridyl-A), 8.06 (1H, dd, J 5.0, 1.8, C(4)Hpyridyl-B), 7.83 (1H, s, 

C(6)Hpyridyl-C), 7.35 (1H, d, J 7.4, C(4)Hpyridyl-C), 7.30 (1H, dd, J 7.2, 1.7, C(6)Hpyridyl-B), 

7.22 (1H, d, J 4.9, C(3)Hpyridyl-A), 6.82 (1H, dd, J 7.2, 5.0, C(5)Hpyridyl-B), 6.62 (1H, d, J 7.4, 

C(3)Hpyridyl-C), 3.86 (3H, s), 3.68 (3H, s); δC (175 MHz, CDCl3) 163.6 (C(6)Opyridyl-C), 

159.8 (C(2)Opyridyl-B), 151.8 (C(6)Hpyridyl-A), 148.6 (C(4)pyridyl-A), 148.4 (C(6)Hpyridyl-B), 
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147.7 (2C, C(2)Clpyridyl-A + C(2)Hpyridyl-C), 140.4 (C(2)Hpyridyl-C), 139.1 (C(4)Hpyridyl-B), 

133.3 (C(4)Hpyridyl-C), 125.3 (C(3)pyridyl-B), 124.6 (C(3)pyridyl-C), 121.5 (C(5)Hpyridyl-A), 116.8 

(C(5)Hpyridyl-B), 110.1 (C(5)Hpyridyl-C), 53.7 (O-CH3 pyridy-C), 53.5 (O-CH3 pyridy-B); m/z (ES+) 

328.08494 (M++H, C17H15
35ClN3O2 requires 328.08473); νmax (film)/cm-1 2952, 1469, 

1400, 1375, 1284, 1016, 839, 788.  

 

2-Fluoro-5-[2-(4-methoxyphenyl)-3-(6-methoxypyridin-3-yl)pyridin-4-yl]pyridine 148.  

 The general method for Suzuki–Miyaura cross-couplings was followed. 

A mixture of compound 145 (0.175 g, 0.554 mmol), 75 (0.100 g, 0.67 

mmol), Pd2(dba)3 (0.010 g, 0.011 mmol, 2 mol%), PCy3 (4.8 mol%, 

0.008 g, 0.027 mmol) 1,4-dioxane (7 mL), K3PO4 (1.27 M, 0.74 mL, 

0.94 mmol) was stirred at reflux for 20 h. Standard work-up and 

concentration gave a brown residue which was purified by chromatography (SiO2, 

EtOAc/hexane, 3:1 v/v) yielded 148 as a pale yellow solid (0.0640 g, 30%). mp 139.2–

140.2 oC; δH (700 MHz, CDCl3) 8.72 (1H, d, J 5.0, C(6)Hpyridyl-A), 7.98 (1H, d, J 1.9 

C(6)Hpyridyl-B), 7.63 (1H, d, J 2.3, C(2)Hpyridyl-C), 7.40 (1H, dd, J 8.5, 2.3, C(4)Hpyridyl-C), 

7.25 (1H, d, J 5.0, C(5)Hpyridyl-A), 7.17 (2H, d, J 8.7, C(2+6)Hphenyl), 7.04 (1H, dd, J 8.5, 

2.4, 1.9, C(4)Hpyridyl-B), 6.79 (1H, dd, J 8.5, 2.6, C(3)Hpyridyl-B), 6.73 (2H, d, J 8.8, 

C(3+5)Hphenyl), 6.50 (1H, d, J 8.5, C(5)Hpyridyl-C), 3.83 (3H, s), 3.74 (3H, s); δC (175 MHz, 

CDCl3) 163.1 (C(6)Opyridyl-C), 163.0 (d, JCF 241.2, C(2)Fpyridyl-B), 159.6 (C(4)Ophenyl), 159.2 

(C(2)pyridyl-A), 149.0 (C(6)Hpyridyl-A), 148.8 (C(4)pyridyl-A), 147.9 (d, JCF 15.0, C(4)Hpyridyl-B), 

145.8 (C(3)pyridyl-A), 142.0 (d, JCF 8.0, C(6)Hpyridyl-B), 141.3 (C(4)Hpyridyl-C), 133.1 (d, JCF 

4.7, C(5)pyridyl-B), 132.3 (C(1)phenyl), 131.4 (2C, C(2+6)Hphenyl), 130.9 (C(3)Hpyridyl-C), 126.1 

(C(2)pyridyl-C), 123.3 (C(5)Hpyridyl-A), 113.7 (2C, C(3+5)Hphenyl), 110.8 C(5)Hpyridyl-C, 109.4 

(d, JCF 37.5, C(3)Hpyridyl-B), 55.4 (O-CH3 pyridy-C), 53.6 (O-CH3 phenyl); m/z (EI) 387 (M+, 

85%), 386 (100, M+-H). Anal. Calcd. for C23H18FN3O2: C, 71.31; H, 4.68; N, 10.85. 

Found: C, 70.88; H, 4.74; N, 10.67; νmax (film)/cm-1 3030, 2940, 1604, 1499, 1252, 1178, 

1016, 836. 
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5-[4-(6-Fluoropyridin-3-yl)-3-(6-methoxypyridin-3-yl)pyridin-2-yl]pyrimidin-2-amine 

149.   

The general method for Suzuki–Miyaura cross-couplings was followed. 

A mixture of compound 145 (0.175 g, 0.5543 mmol), 152 (0.0920 g, 

0.67 mmol), Pd2(dba)3 (0.0102 g, 0.011 mmol, 2 mol%), PCy3 (4.8 

mol%, 0.00750 g, 0.027 mmol) 1,4-dioxane (7 mL), K3PO4 (1.27 M, 

0.742 mL, 0.942 mmol) was stirred at reflux for 2 h. Standard work-up 

and concentration gave a brown residue which was purified by 

chromatography (SiO2, EtOAc/methanol, 4:1 v/v) yielded 149 as a white solid (0.0470 g, 

23%). mp 200.2–202.5 oC; vmax (film)/cm-1 3454 and 3305 (NH2), 3184, 1638, 1585, 1487, 

1410, 1285, 1251, 828; δH (700 MHz, CDCl3) 8.76 (1H, d, J 4.9, C(6)Hpyridyl-A), 8.24 (2H, 

s, C(4+6)Hpyrimidyl), 7.99 (1H, d, J 1.6, C(2)Hpyridyl-B), 7.72 (1H, d, J 1.8, C(2)Hpyridyl-C), 

7.40 (1H, ddd, J 8.5, 2.4, 1.6, C(4)Hpyridyl-B), 7.30 (1H, d, J 4.9, C(5)Hpyridyl-A), 7.12 (1H, 

dd, J 8.5, 2.6, C(5)Hpyridyl-B), 6.81 (1H, dd, J 8.4, 2.6, C(4)Hpyridyl-C), 6.60 (1H, d, J 8.5, 

C(5)Hpyridyl-C), 5.20 (2H, br s, NH2), 3.86 (3H, s); δC (175 MHz, CDCl3) 163.6 (C(6)Opyridyl-

C), 163.2 (d, JCF 242.0, C(6)Fpyridyl-B), 161.5 (C(2)pyridyl-A), 159.2 (2C, C(3+6)Hpyrimidyl), 

154.1 (C(2)Hpyrimidyl), 149.7 (C(6)Hpyridyl-A), 148.8 (C(4)Hpyridyl-A), 147.9 (d, JCF 15.1, 

C(4)Hpyridyl-B), 146.3 (C(5)Npyrimidyl), 141.9 (d, JCF 8.0, C(2)Hpyridyl-B), 141.0 (C(2)Hpyridyl-C), 

132.6 (d, JCF 5.0, C(3)pyridyl-B), 131.1 (C(4)Hpyridyl-C), 125.1 (C(6)Hpyridyl-A), 124.2 

(C(3)pyridyl-C), 123.9 (C(5)Hpyridyl-A), 111.5 (C(5)Hpyridyl-C), 109.5 (d, JCF 37.5, C(5)Hpyridyl-B), 

53.8 (C(5)Hpyridyl-C); m/z (ES+) 375.13660 (M++H), C20H15FN6O+H requires 375.13641.   

 

5-[2-(6-Fluoropyridin-3-yl)-3-(2-methoxypyridin-3-yl)pyridin-4-yl]-2-

methoxypyridine 150.  

The general method for Suzuki–Miyaura cross-couplings was followed. A 

mixture of compound 147 (0.100 g, 0.31 mmol), 88 (0.052 g, 0.37 mmol), 

Pd2(dba)3 (0.0056 g, 0.0061 mmol, 2 mol%), PCy3 (4.8 mol%, 0.0041 g, 

0.015 mmol) 1,4-dioxane (5 mL), K3PO4 (1.27 M, 0.4 mL, 0.052 mmol) 

was stirred at reflux for 5 h. Standard work-up and concentration gave a 

brown residue which was purified by chromatography (SiO2, 

EtOAc/hexane, 3:1 v/v) yielded 150 as a clear colourless oil (0.0540 g, 45%). δH (700 

MHz, CDCl3) 8.73 (1H, d, J 5.0, C(6)Hpyridyl-A), 8.07 (1H, d, J 1.8, C(2)Hpyridyl-D), 8.01 

(1H, dd, J 5.0, 1.8, C(6)Hpyridyl-C), 7.93 (1H, d, J 2.4, C(6)Hpyridyl-B), 7.66 (1H, ddd, J 8.4, 

2.4, 1.8, C(4)Hpyridyl-D), 7.33 (1H, d, J 5.0, C(5)Hpyridyl-A), 7.16 (1H, dd, J 8.4, 2.5, 
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C(5)Hpyridyl-D), 7.09 (1H, dd, J 7.3, 1.8, C(4)Hpyridyl-C), 6.76 (1H, dd, J 8.4, 2.4, C(4)Hpyridyl-

B), 6.70 (1H, dd, J 7.3, 5.0, C(5)Hpyridyl-C), 6.55 (1H, d, J 8.4, C(3)Hpyridyl-B), 3.87 (3H, s, O-

CH3 pyridyl-C), 3.56 (3H, s, O-CH3 pyridyl-B); δC (176 MHz, CDCl3) 163.9 (C(2)Opyridyl-B), 

163.0 (d, JCF 240.4, C(6)Fpyridyl-D), 160.7 (C(2)Opyridyl-C), 155.3 (C(2)pyridyl-A), 149.3 

(C(6)Hpyridyl-A), 148.2 (d, JCF 15.1, C(4)Hpyridyl-D), 147.8 (C(4)pyridyl-A), 147.5 (C(6)Hpyridyl-

C), 146.6 (C(6)Hpyridyl-B), 141.8 (d, JCF 8.0, C(2)Hpyridyl-D), 140.9 (C(4)Hpyridyl-B), 138.8 

(C(4)Hpyridyl-C), 134.4 (d, JCF 4.6, C(3)pyridyl-D), 130.3 (C(3)pyridyl-A), 127.7 (C(3)pyridyl-C), 

124.2 (C(5)pyridyl-B), 120.3 (C(5)Hpyridyl-A), 117.0 (C(5)Hpyridyl-C), 110.4 (C(3)Hpyridyl-B), 

108.7 (d, JCF 37.4, C(5)Fpyridyl-D), 53.8 (O-CH3 pyridyl-C), 53.5 (O-CH3 pyridyl-B); m/z (ES+) 

389.14105 (M++H, C22H18FN4O2 requires 389.14083); νmax (film)/cm-1 2963, 1592, 1488, 

1462, 1397, 1369, 1286, 1257, 1097, 1015, 827, 797, 732.  

 

3-[2-(6-Fluoropyridin-3-yl)-3-(6-methoxypyridin-3-yl)pyridin-4-yl]-2-

methoxypyridine 151.  

 Method A. The general method for Suzuki–Miyaura cross-

couplings was followed. A mixture of compound 146 (0.500 g, 1.5 

mmol), 88 (0.260 g, 1.8 mmol), Pd2(dba)3 (0.0279 g, 0.0305 mmol, 

2 mol%), PCy3 (4.8 mol%, 0.0205 g, 0.073 mmol) 1,4-dioxane (15 

mL), K3PO4 (1.27 M, 2.04 mL, 2.59 mmol) was stirred at reflux for 17 h. Standard work-

up and concentration gave a brown residue which was purified by chromatography (SiO2, 

EtOAc/hexane, 3:1 v/v) yielded 151 as a clear colourless oil (0.302 g, 51%). δH (700 MHz, 

CDCl3) 8.69 (1H, d, J 4.9, C(6)Hpyridyl-A), 8.06 (1H, d, J 2.2, C(2)Hpyridyl-D), 8.04 (1H, dd, J 

5.1, 1.8, C(6)Hpyridyl-B), 7.71 (1H, dd, J 8.4, 2.4, 2.2, C(4)Hpyridyl-D), 7.61 (1H, s, 

C(2)Hpyridyl-C), 7.32 (1H, dd, J 7.2, 1.8, C(4)Hpyridyl-B), 7.27 (1H, d, J 4.9, C(5)Hpyridyl-A), 

7.02 (1H, d, J 7.5, C(4)Hpyridyl-C), 6.81 (1H, dd, J 7.2, 5.1, C(5)Hpyridyl-B), 6.77 (1H, dd, J 

8.4, 2.5, C(5)Hpyridyl-D ), 6.43 (1H, d, J 7.2, C(5)Hpyridyl-C), 3.76 (3H, s, O-CH3 pyridyl-B), 3.60 

(3H, s, O-CH3 pyridyl-C); δC (175 MHz, CDCl3) 163.1 (C(6)Opyridyl-C), 162.9 (d, JCF 240.8, 

C(6)Fpyridyl-D), 159.9 (C(2)Opyridyl-B), 154.4 (C(2)pyridyl-A), 149.1 (C(6)Hpyridyl-A), 149.0 (d, 

JCF 15.1, C(4)Hpyridyl-D), 148.1 (C(6)Hpyridyl-B), 147.4 (C(4)pyridyl-A), 146.8 (C(2)Hpyridyl-C), 

142.6 (d, JCF 8.0, C(2)Hpyridyl-D), 140.5 (C(4)Hpyridyl-B), 139.1 (C(4)Hpyridyl-C), 134.1 (d, JCF 

4.4, C(3)pyridyl-D), 132.5 (C(3)pyridyl-B), 125.9 (C(3)pyridyl-A), 124.8 (C(3)pyridyl-C), 121.9 

(C(5)Hpyridyl-A), 116.8 (C(5)Hpyridyl-B), 110.3 (C(5)Hpyridyl-C), 108.9 (d, JCF 37.4, C(5)Hpyridyl-

D), 53.5 (O-CH3 pyridyl-C), 53.3 (O-CH3 pyridyl-B); m/z (ES+) 389.14105 (M++H, 
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C22H17FN4O2+H requires 389.14083); νmax (film)/cm-1 2949, 1592, 1463, 1400, 1285, 

1249, 1016, 830. 

 

Method B. The general method for Suzuki–Miyaura cross-couplings was followed. A 

mixture of compound 146 (0.250 g, 0.763 mmol), 88 (0.130 g, 0.92 mmol), Pd(PPh3)4 

(0.0441 g, 0.038 mmol, 5 mol%), 1,4-dioxane (12 mL), Na2CO3 (1 M, 1.8 mL, 1.8 mmol) 

was stirred at reflux for 24 h. Standard work-up and concentration gave a brown residue 

which was purified by chromatography (SiO2, EtOAc/hexane, 3:1 v/v) yielded 151 as a 

clear colourless oil (0.150 g, 50%).  

 

2-Chloro-3,4-bis(2-phenylethynyl)pyridine 153.  

 To a flask fitted with a septum was added 2-chloro-3,4-diiodopyridine 

128 (1.500 g, 4.11 mmol), Pd(PPh3)2Cl2 (0.144 g, 0.21 mmol, 5 mol%) 

and CuI (0.039 g, 0.21 mmol, 5 mol%). The flask was evacuated and 

backfilled with dry argon three times. Dry, degassed triethylamine (40 

mL) was added via a cannula and phenylacetylene (0.860 g, 8.42 mmol) 

was added via syringe. The reaction mixture was heated to 50 oC for 18 h by which time 

the reaction was complete by TLC. The reaction was cooled to room temperature, 

triethylamine was removed in vacuo and the residue was passed through a silica plug 

eluting with EtOAc (300 mL). After concentration, the residue was purified by flash 

chromatography (SiO2, DCM/hexane, 1:1 v/v) followed by recrystallisation from methanol 

yielding 153 as a white solid (1.01 g, 72%). mp 100.5– 101.7 oC; δH (400 MHz, CDCl3) 

8.26 (1H, d, J 5.1, C(6)Hpyridyl), 7.63–7.53 (4H, m, C(2+2’+6+6’)Hphenyl-A+B), 7.44–7.31 

(7H, m, C(6)Hpyridyl-A + C(3+4+5)Hphenyl-A + C(3+4+5)Hphenyl-B); δC (175 MHz, CDCl3) 

152.9 (C(2)Clpyridyl), 147.3 (C(6)Hpyridyl), 136.2 (C(4)pyridyl), 132.3 (2C, C(2+6)Hphenyl-A), 

132.0 (2C, C(2+6)Hphenyl-B), 129.9 (2C, C(3+5)Hphenyl-A), 129.5 (2C, C(3+5)Hphenyl-B), 128.8 

(C(4)Hphenyl-A), 128.7 (C(4)Hphenyl-B), 124.1 (C(5)Hpyridyl), 122.7 (C(1)phenyl-A), 122.11 

(C(3)pyridyl), 122.07 (C(1)phenyl-B), 101.0 (C≡C-PhA), 99.5 (C≡C-PhB), 85.9 (C≡C-PhA), 84.1 

(C≡C-PhB); m/z (ES+) 314.07294 (M++H, C21H12
35ClN+H requires 314.07310); νmax 

(film)/cm-1 3046, 2365, 2323, 2235, 2202, 1596, 1567, 1519, 1490, 1442, 1389, 1279, 

1160, 901, 841, 754.  

 

 

 

N Cl
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5-[3,4-Bis(2-phenylethynyl)pyridin-2-yl]-2-fluoropyridine 154.  

 The general method for Suzuki–Miyaura cross-couplings was followed. 

A mixture of compound 153 (0.400 g, 1.38 mmol), 88 (0.216 g, 1.53 

mmol), Pd(PPh3)4 (0.074 g, 0.06 mmol, 5 mol%), 1,4-dioxane (20 mL), 

Na2CO3 (1 M, 2.55 mL, 2.55 mmol) was stirred at reflux for 18 h. 

Standard work-up and concentration gave a brown residue which was 

purified by chromatography (SiO2, EtOAc/hexane, 1:2 v/v) followed by 

recrystallisation from hexane and DCM yielded 154 as white needles (0.314 g, 66%). mp 

124.3–124.9 oC; δH (700 MHz, CDCl3) 8.95 (1H, d, J 2.4, C(6)Hpyridyl-B), 8.58 (1H, d, J 5.0, 

C(6)Hpyridyl-A), 8.50–8.37 (1H, m, C(4)Hpyridyl-B), 7.65–7.51 (2H, m, C(2+6)Hphenyl-A + 

C(2+6)Hphenyl-B), 7.50–7.28 (9H, m, C(2+3+4+6)Hphenyl-A + C(2+3+4+6)Hphenyl-B + 

C(5)Hpyridyl-A), 7.04 (1H, dd, J 8.5, 2.7, C(3)Hpyridyl-B);  δC (175 MHz, CDCl3) 163.9 (d, JCF 

241.2, C(2)Fpyridyl-B), 156.1 (C(2)pyridyl-A), 148.8 (d, JCF 15.4, C(4)Hpyridyl-B), 148.2 (C(6) 

pyridyl-A), 142.3 (d, JCF 8.0, C(6)Hpyridyl-B), 135.6 (C(4)pyridyl-A), 133.4 (d, JCF 4.6, C(5)pyridyl-

B), 132.2 (2C, C(2+6)Hphenyl-B), 131.7 (2C, C(2+6)Hphenyl-A), 129.8 (C(4)Hphenyl-B), 129.4 

(C(4)Hphenyl-A), 128.80 (2C, C(3+5)Hphenyl-B), 128.77 (2C, C(3+5)Hphenyl-A), 124.4 

(C(5)Hpyridyl-A), 122.6 (C(1)phenyl-B), 122.3 (C(1)phenyl-A), 119.8 (C(3)pyridyl-A), 108.9 (d, JCF 

37.4, C(3)Hpyridyl-B), 99.8 (C≡C-PhB), 98.9 (C≡C-PhA), 86.4 (C≡C-PhB), 85.9 (C≡C-PhA); 

m/z (APCI+) 375.1294 (M++H, C26H15N2F+H requires 375.1298); νmax (film)/cm-1 3056, 

2360, 2339, 2212, 1590, 1552, 1491, 1442, 1408, 1367, 1256, 1130, 1023, 899, 831, 740, 

684. 

 

7.5 Experimental Details for Chapter 5 

 

4-tert-Butyl-N-(2-iodophenyl)benzamide 157 

To a stirred solution of 2-iodoaniline 156 (6.571 g, 30 mmol) in 

EtOAc (60 mL) at room temperature was added 4-tert-butylbenzoyl 

chloride 155 (12.98 g, 66 mmol) dropwise, giving a cloudy white 

mixture which was heated to reflux for 24 h. The resulting homogeneous solution was 

cooled to room temperature and adjusted to pH 8 with 3 M NaOH. The organic 

components were separated and sequentially washed with water (50 mL), sat. aq. NaHCO3 

(50 mL) and brine (100 mL), dried over MgSO4, filtered and concentrated, the residue was 

purified by column chromatography (SiO2, eluent 8: 1 hexane: EtOAc v/v) yielding 157 as 
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a white solid (5.20 g, 46%). mp 157.1-158.0 oC. δH (400 MHz, CDCl3) 8.68-8.59 (1 H, m, 

C(3)Hphenyl-A), 8.01 (1 H, br s, NH), 7.91 (2 H, d, J 8.5, C(2+6)Hphenyl-B), 7.57-7.44 (1 H, m, 

C(6)Hphenyl-A), 7.53 (2 H, d, J 8.5, C(3+5)Hphenyl-B), 7.46 – 7.35 (1 H, m, C(5)Hphenyl-A), 6.99 

– 6.90 (1 H, m, C(4)Hphenyl-A), 1.35 (9 H, s, C(CH3)3); δC (100 MHz, CDCl3) 164.9 (C=O), 

155.0 (C(4)phenyl-B), 136.7 (C(1)Nphenyl-A), 131.6 (C(3)Hphenyl-A), 131.3 (C(1)phenyl-B), 128.3 

(C(5)Hphenyl-A), 127.6 (2 C, C(2+6)Hphenyl-B), 126.4 (C(4)Hphenyl-A), 125.3 (2 C, 

C(2+6)Hphenyl-B), 124.6 (C(6)Hphenyl-A), 122.1 (C(2)Iphenyl-A), 41.0 (C(CH3)3), 31.4 (3 C, 

C(CH3)3); m/z (ES+) 380.3 (M+ + H); Anal. Calcd. for C17H18INO: C, 51.84; H, 4.78; N, 

3.69. Found: C, 51.99; H, 4.50; N, 3.41. 

 

4-tert-Butyl-N-(2-bromophenyl)benzamide 160 

Dropwise addition of 4-tert-butylbenzoyl chloride 155 (4.72 g, 24 

mmol) to a stirred solution of EtOAc (120 mL) and 2-bromoaniline 

157 (3.44 g, 20 mmol) at room temperature gave a cloudy white 

mixture which was heated to reflux for 24 h. The homogeneous solution was cooled to 

room temperature and adjusted to pH 8 with 3 M NaOH. The organic components were 

separated and washed with brine (50 mL). The collected organic layer was dried over 

MgSO4, filtered and concentrated and the residue was purified by column chromatography 

(SiO2, eluent 10: 1 hexane: EtOAc v/v) yielding 160 as a white crystalline solid (5.45 g, 

82%). mp 121.9-123.0 oC; δH (400 MHz, CDCl3) 8.55 (1 H, dd, J 8.3, 1.5, C(3)Hphenyl-A), 

8.44 (1 H, br s, NH), 7.86 (2 H, d, J 8.5, C(2+6)Hphenyl-B), 7.56 (1 H, dd, J 8.0, 1.5, 

C(6)Hphenyl-A), 7.52 (2 H, d, J 8.5, C(3+5)Hphenyl-B), 7.40 – 7.31 (1 H, m, C(5)Hphenyl-A), 7.03 

– 6.96 (1 H, m, C(4)Hphenyl-A), 1.35 (9 H, s, C(CH3)3); δC (100 MHz, CDCl3) 166.0 (C=O), 

154.3  (C(4)phenyl-B), 137.3 (C(1)Nphenyl-A), 131.8 (C(3)Hphenyl-A), 131.4 (C(5)Hphenyl-A), 

128.1 (C(1)phenyl-B), 127.7 (2C, C(2+6)Hphenyl-B), 126.5 (C(4)Hphenyl-A), 125.0 (2C, 

C(3+5)Hphenyl-B), 124.1 (C(6)Hphenyl-A), 122.0 (C(2)Brphenyl-A), 41.0 (C(CH3)3), 31.4 

(C(CH3)3); m/z (ES+) 333.3 (M+ + H); Anal. Calcd. for C17H18BrNO: C, 61.46; H, 5.46; N, 

4.22. Found: C, 61.27; H, 5.50; N, 64.31. 
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2-(4-tert-Butylphenyl)-1-(2-bromophenyl)-1H-benzo[d]imidazole 158 

4-tert-Butyl-N-(2-iodophenyl)benzamide 157 (3.03 g, 8.00 mmol), 

2-bromoaniline 159 (2.06 g, 12.0 mmol), K3PO4 (5.10 g, 24.0 

mmol), RuPhos 41 (0.299 g, 0.640 mmol) and Pd2(dba)3 (0.073 g, 

0.080 mmol, 1 mol%) were added to an argon purged round-bottom 

flask fitted with a condenser. To this, degassed t-butanol (24 mL) was added via syringe 

and the mixture was stirred under argon at reflux. The reaction was judged complete by 

TLC after 82 h. The mixture was allowed to cool to room temperature and passed through 

celite eluting with DCM: EtOAc 3:1 v/v (400 mL). The eluent was concentrated in vacuo 

and redissolved in 1,4-dioxane (30 mL). To this was added 4 M HCl (32 mL) and the 

stirred mixture was heated to 100 oC for 16 h, allowed to cool to room temperature and 

followed by slow addition of 3 M NaOH (53 mL). The 1,4-dioxane was removed in vacuo 

and the residue was extracted into EtOAc (3 x 150 mL) and washed with NaHCO3, the 

combined organic organic layers were dried over Na2SO4, filtered and concentrated to 

yield a black residue which was purified by chromatography (SiO2, 3 : 1 hexane : EtOAc 

v/v) and recrystallised from hexane/DCM to give 158 as colourless crystals (0.45 g, 14%). 

mp 100.9-101.6 oC; δH (700 MHz, d6-acetone) 7.91 (1H, d, J 8.0, C(7)Hbenzimidazole), 7.77 

(1H, d, J 8.0, C(3)Hphenyl-B), 7.70 – 7.62 (2H, m, C(2+6)Hphenyl-A), 7.60 – 7.56 (3H, m, 

C(5+6+8)Hbenzimidazole), 7.40 (2H, d, J 8.5, C(3+5)Hphenyl-A), 7.31 (1H, dd, J 8.0, 7.6, 

C(5)Hphenyl-B), 7.25 (1H, dd, J 8.0, 7.6 C(4)Hphenyl-B), 6.98 (1H, d, J 8.0, C(6)Hphenyl-B), 1.30 

(9H, s, C(CH3)3); δC (175 MHz, d6-acetone) 152.6 (C(4)phenyl-A), 151.9 (C(2)benzimidazole), 

143.2 (C(1)Nphenyl-B), 137.2 (C(4)benzimidazole), 136.7 (C(11)benzimidazole), 134.0 (C(3)Hphenyl-B), 

131.3 (C(4)Hphenyl-B), 130.9 (C(5)Hphenyl-B), 129.4 (C(1)phenyl-A), 128.3 (2C, C(2+6)Hphenyl-

A), 127.6 (C(6)Hphenyl-B), 125.2 (2C, C(3+5)Hphenyl-A), 123.1 (C(5)Hbenzimidazole), 122.7 

(C(6)Hbenzimidazole), 122.6 (C(4)Hbenzimidazole), 119.5 (C(7)Hbenzimidazole), 110.3 (C(2)Brphenyl-B), 

34.4 (C(CH3)3), 30.5 (3C, C(CH3)3); m/z (ES+) 405.3 (M+), 407.2 (M++H); Anal. Calcd. for 

C23H21BrN2: C, 68.15; H, 5.22; N, 6.91. Found: C, 68.19; H, 5.28; N, 6.88. 
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6-tert-Butylbenzimidazolo[1,2-f]phenanthridine 161 

To a Schlenk tube was added 158 (0.200 g, 0.4934 mmol), 

Pd(OAc)2 (0.0033 g, 0.0148 mmol, 3 mol%), DavePhos (0.0058 g, 

0.0148 mmol), pivalic acid (0.0151 g, 0.1480 mmol) and K2CO3 

(0.1705 g, 1.234 mmol). The tube was evacuated and backfilled 

twice with argon. Degassed DMA (10.5 mL) was added and the 

mixture was stirred at 130 oC under argon for 16 h whereupon TLC 

analysis showed completion. The reaction mixture was 

concentrated in vacuo and the residue filtered through a silica plug 

with EtOAc (350 mL). The filtrate was concentrated in vacuo and purified via column 

chromatography (SiO2, 13 : 1 toluene : EtOAc v/v) to give 161 as a white solid (0.099 g, 

62%). mp 144.5-145.1 oC; δH (400 MHz, CDCl3) 8.81 (1 H, d, J 8.4, C(6)H), 8.61 (1 H, d, 

J 7.9, C(9)H), 8.57 (1 H, d, J 7.0, C(4)H), 8.42 (1 H, d, J 1.8, C(19)H), 8.38 (1 H, d, J 7.7, 

C(12)H), 8.10 – 7.98 (1 H, m, C(10)H), 7.77 (1 H, dd, J 8.5, 1.8, C(17)H), 7.76 – 7.68 (1 

H, m, C(11)H), 7.60 – 7.42 (3 H, m, C(3+5+6)H), 1.50 (9 H, s, C(CH3)3); δC (100 MHz, 

CDCl3) 153.0 (C(18)), 149.8 (C(1)), 138.5 (C(2)), 137.7 (C(14)H), 135.6 (C(7)), 131.0 

(C(8)), 129.4 (C(10)H), 129.0 (C(9)H), 128.9 (C(16)H), 127.8 (C(12)H), 127.6 (C(11)H), 

125.0 (C(17)H), 124.4 (C(13)), 123.3 (C(19)H), 123.1 (C(4)H), 123.0 (C(5)H), 118.1 

(C(15)), 115.4 (C(3)H), 115.3 (C(6)H), 40.9 (C(CH3)3), 31.1 (3C, C(CH3)3); m/z (ES+) 

325.2 (M++H), 309.2 (M+-CH3); Anal. Calcd. for C23H20N2: C, 85.15; H, 6.21; N, 8.63. 

Found: C, 85.26; H, 5.97; N, 8.60. 

 

7.6 Experimental Details for Chapter 6 

 

2-Chloro-4-mesitylpyridine 166 

 In accordance with the general method for Suzuki-Miyaura cross-coupling 

reactions outlined above was reacted mesitylboronic acid (1.39 g , 5.05 mmol), 

2-chloro-4-iodopyridine 165 (1.20 g, 5.00 mmol), Pd2(dba)3 (0.023 g, 0.025 

mmol, 0.5 mol%), PCy3 (0.017 g, 0.060 mmol) and K3PO4 (3.7 mL, 8.50 

mmol, 1.27 M in water) in 1,4-dioxane (13.5 mL) at 80 oC for 16 h then at 100 oC for a 

further 4 h. Standard work-up and concentration gave a yellow oil which was purified via 

column chromatography (SiO2, eluent 1 : 5 EtOAc: hexane v/v) followed by vacuum 

distillation (Kugel Rohr, 120 oC, 0.27 mbar) yielding 166 as a colourless oil (0.990 g, 85% 
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yield). δH (400 MHz; CDCl3) 8.46 (1H, d, J 5.1, C(6)Hpyridyl), 7.18 (1H, d, J 1.4, 

C(3)Hpyridyl), 7.06 (1H, dd, J 1.4, 5.1, C(5)Hpyridyl), 6.97 (2H, s, C(3+5)Hphenyl),  2.02 (6H, s, 

2 x CH3), 2.35 (3H, s, CH3; δC (125 MHz; CDCl3) 153.1 (C(4)pyridyl), 152.1 (C(6)Hpyridyl), 

150.1 (C(2)Clpyridyl), 138.3 (C(4)phenyl), 135.19 (C(1)phenyl), 135.16 (2C, C(2+6)phenyl), 128.7 

(2C, C(3+5)Hphenyl), 125.4 (C(5)Hpyridyl), 123.9 (C(3)Hpyridyl), 21.3 (2 x CH3), 20.8 (CH3); 

m/z (EI) 230.9 (M+), 196.0 (M+-Cl); m/z (APCI+) 231.0808 (M+, C14H14NCl requires 

231.0815). 

 

2,6-Difluoro-3-(4-mesitylpyridin-2-yl)pyridine 168 

 In accordance with the general method for Suzuki-Miyaura cross-

coupling reactions outlined above was reacted 2,6-difluoropyridin-3-yl-

3-boronic acid MIDA ester 167 (2.10 g , 7.77 mmol), 166 (1.50 g, 6.47 

mmol), Pd2(dba)3 (0.089 g, 0.097 mmol, 1.5 mol%), PCy3 (0.065 g, 

0.233 mmol) and K3PO4 (16.2 mL, 48.6 mmol, 1.27 M in water) in 1,4-

dioxane (80 mL) at 60 oC  h. Standard work-up and concentration gave a brown solid 

which was purified via column chromatography (SiO2, eluent EtOAc: hexane 1: 4 v/v) and 

recrystallisation from methanol yielding 168 as a white solid (0.69 g, 34% yield). mp 74.5-

75.9 oC; δH (400 MHz, CDCl3) 8.96 – 8.65 (2 H, m, C(6)Hpyridyl-A + C(4)Hpyridyl-B), 7.71 (1 

H, d, J 1.5, C(3)Hpyridyl-B), 7.18 (1H, dd, J 5.0, 1.5, C(5)Hpyridyl-A), 7.03 (1H, dd, J 8.2, 3.0, 

C(5)Hpyridyl-B), 7.00 (2H, s, C(3+5)Hphenyl), 2.37 (3H, s, (2 x CH3)), 2.06 (6H, s, (CH3)); δC 

(125 MHz, CDCl3) 164.8 (dd, JCF 244.0, 13.6, C(2)Fpyridyl-B), 163.5 (dd, JCF 246.3, 14.7, 

C(2)Fpyridyl-B), 151.9 (C(2)pyridyl-A), 151.0 (C(4)pyridyl-A), 148.5 (C(6)pyridyl-A), 145.0 (d, JCF 

4.4, C(4)Fpyridyl-B), 138.9 (C(4)phenyl), 138.0 (C(1)phenyl), 137.2 (2C, C(2+6)phenyl), 128.1 (2C, 

C(3+5)Hphenyl), 120.8 (dd, JCF 26.2, 5.7, C(3)pyridyl-B), 118.7 (C(3)Hpyridyl-A), 114.3 

(C(5)Hpyridyl-A), 107.7 (dd, JCF 35.5, 5.2, C(3)pyridyl-B), 24.7 (CH3), 18.1 (2 x CH3); m/z (ES+) 

311.3 (M+ + H); Anal. Calcd. for C19H16F2N2: C, 73.53; H, 5.20; N, 9.03. Found: C, 73.70; 

H, 5.09; N, 9.12. 
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G0PyF2-Ir-pic 164 

To a round bottom flask was added 168 (1.20 g, 3.88 

mmol), IrCl3.3H2O (0.583 g, 1.65 mmol) followed by 2-

ethoxyethanol (32 mL) and water (12 mL). The mixture 

was stirred at 110 oC under argon for 16 h then water (130 

mL) was added and the resulting yellow precipitate was 

collected by filtration and washed sequentially with water 

(100 mL) and a mixture of ethanol and acetone (1: 1 v/v 80 mL). The yellow solid was 

transferred to a reaction flask along with picolinic acid (0.952 g, 7.733 mmol) and 

ethoxyethanol (20 mL) and stirred at 110 oC under argon for 16 h and purified by 

chromatography (SiO2, 2 : 1 hexane : EtOAc v/v), (SiO2, 4 : 1 DCM : EtOAc v/v), (SiO2, 5 

: 1 v/v DCM : EtOAc) to yield 164 as a pale yellow solid (0.708 g, 46%). mp > 300 oC;  δH 

(400 MHz, CDCl3)  8.81 (1H, d, J 5.8), 8.42 (1H, d, J 7.7), 8.17 – 8.02 (3H, m), 7.89 (1H, 

dd, J 5.4, 0.5), 7.61 – 7.51 (1H, m), 7.46 (1H, d, J 5.8), 7.16 (1H, dd, J 5.8, 1.6), 7.08 – 

6.87 (5H, m), 5.81 (1H, t, J 1.7), 5.55 (1H, t, J 1.7), 2.34 (6H, s), 2.13 (3H, s), 2.10 (3H, s), 

2.07 (3H, s), 1.95  (3H, s); δC (125 MHz, CDCl3) 172.7, 171.7 – 169.5 (2C, m), 163.9, 

162.4 (d), 162.3 – 161.5 (2C, m), 160.1 (d, J 67.6), 159.0, 157.5 – 156.0 (3C, m), 153.8 (d, 

J 3.9), 151.5, 148.9, 148.6, 148.2, 139.5, 138.9 (d, J 5.8), 135.5, 135.1 (d, J 36.1), 134.8 (d, 

J 3.6), 129.1 (dd, J 35.1, 17.7), 125.8 – 124.1 (2C, m), 109.6 (t, J 31.7), 31.9, 21.3, 21.1, 

20.9; m/z (MALDI+) 933.2 (M+); m/z (ES+) 932.23382 (M++H, C44H35O2N5F4Ir requires 

932.23274). 

 

5-(2-Ethylhexyloxy)-2-bromo-1,3-dimethylbenzene 171 

A mixture of 4-bromo-3,5-dimethylphenol 170 (53.80 g, 267.6 mmol), 2-

ethylhexylbromide (62.02 g, 321.1 mmol) and K2CO3 (55.47 g, 401.4 mmol) 

in DMF (300 mL) was reacted at 78 oC overnight. The mixture was allowed 

to cool to room temperature and filtered, washing the filtercake with Et2O (3 

x 300 mL). The filtrate was diluted with water (900 mL) and the layers were 

separated. The aqueous layer was extracted with Et2O (2 x 300 mL) and the combined 

organic layers were washed with brine, dried over MgSO4, filtered and concentrated in 

vacuo . The oil was purified by washing through a SiO2 plug with 4 : 1 v/v hexane : EtOAc 

(ca. 1L) to give 171 as a clear oil (74.24 g, 89% yield). δH (400 MHz; CDCl3) 6.66 (2H, s, 

C(4+6)Hphenyl), 3.80 (2H, dd, J 5.6, 1.6, O-CH2), 2.39 (6H, s, 2 x CH3 phenyl), 1.71 (1H, 

heptet, J 6.1, CH), 1.37 - 1.54 (4H, m, 2 x CH2CH2), 1.28 - 1.37 (4H, m, 2 x CH2CH3), 

N
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0.93 (3H, t, J 7.6, CH2CH3), 0.92 (3H, t, J 7.0, CH2CH3); δC (100 MHz; CDCl3) 157.9 

(C(5)Ophenyl), 139.0 (2C, C(1+3)phenyl), 117.9 (C(2)Brphenyl), 114.4 (2C, C(4+6)Hphenyl), 70.6 

(O-CH2), 39.4 (CH), 30.5 (CH-CH2), 29.1 (CH2-CH2), 24.0 (CH2-CH3), 23.9 (CH2-CH3), 

23.0 (CH2-CH3), 14.1 (CH2-CH3), 11.1 (2C, 2 x CH3 phenyl); m/z (APCI+) 314.1093 (M+, 

C16H25BrO requires 314.1068). 

 

4-(2-Ethylhexyloxy)-2,6-dimethylphenylboronic acid 172 

To a stirred solution of 5-(2-ethylhexyloxy)-2-bromo-1,3-dimethylbenzene 

171 (20 g, 63.84 mmol) in dry THF (400 mL) at -78 oC under argon was 

added nBuLi (2.5 M in hexane, 29.88 mL, 74.7 mmol) dropwise, maintaining 

the reaction temperature at  -78 oC. The resulting solution was stirred for 1.5 

h followed by slow addition of triisopropyl borate (22.1 mL, 95.76 mmol). 

The resulting mixture was allowed to react for 1 h. The reaction was quenched at -78 oC 

with sat. aq. NH4Cl (700 mL) and stirred at room temperature overnight. The organics 

were extracted into EtOAc (3 x 600 mL), dried over MsSO4, filtered and concentrated in 

vacuo. The resulting crude oil was purified by chromatography (SiO2, hexane : EtOAc 2 : 

1 v/v) followed by recrystallisation from hexane to give 172 as a white solid (7.11 g, 40%). 

mp 36.2-37.9 oC; δH (400 MHz; d6-acetone) 6.56 (2H, s, C(4+6)Hphenyl), 3.85 (2H, dd, J 

5.8, 0.8, O-CH2), 2.90 (2H, s, B(OH)2), 2.25 (6H, s, 2 x CH3 phenyl),  1.70 (1H, heptet, J 6.0, 

CH), 1.39 – 1.58 (4H, m, 2 x CH2CH2), 1.28 – 1.39 (4 H, m, 2 x CH2CH3), 0.94 (3H, t, J 

7.4, CH2CH3), 0.92 (3H, t, J 7.2, CH2CH3); δC (125 MHz; d6-acetone) 159.5 (C(5)Ophenyl), 

140.9 (2C, C(1+3)phenyl), 112.3 (2C, C(4+6)Hphenyl), 69.8 (O-CH2), 39.6 (CH), 30.7 (CH-

CH2), 29.1 (CH2-CH2), 23.1 (CH2-CH3), 23.4 (CH2-CH3), 21.9 (CH2-CH3), 13.7 (CH2-

CH3), 10.8 (2C, 2 x CH3 phenyl); Anal. Calcd. for C16H27BO3: C, 69.08; H, 9.78. Found: C, 

69.40; H, 9.98 

 

4-(4-(2-Ethylhexyloxy)-2,6-dimethylphenyl)pyridine 173 

In accordance with the general method for Suzuki-Miyaura cross-coupling 

reactions outlined above was reacted 4-bromopyridine hydrochloride (4.667 

g, 24 mmol), 4-(2-ethylhexyloxy)-2,6-dimethylphenylboronic acid 172 (6.677 

g, 24 mmol), Pd(PPh3)4 (0.2773 g, 0.24 mmol, 1 mol%) and K3PO4 (33.92 g, 

108 mmol) in degassed dioxane/H2O (170 mL / 54 mL) at 100 oC for 48 h. 

Standard work-up conditions and purification via chromatography (SiO2, 2 : 1 

v/v hexane : EtOAc) provided 173 as a yellow oil (6.80 g, 91%). δH (400 MHz; d6-acetone) 

O

B(OH)2
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N
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8.65 (2H, d, J 6.0, C(2+6)Hpyridyl), 7.16 (2H, d, J 6.0, C(3+5)Hpyridyl), 6.75 (2H, s, 

C(3+5)Hphenyl), 3.93 (2H, d, J 5.6, O-CH2), 2.00 (6H, s, 2 x CH3 phenyl), 1.75 (1H, heptet, J 

6.0, CH), 1.42 – 1.61 (4H, m, 2 x CH2CH2, 2 x CH2CH2), 1.29 – 1.42 (4H, m, 2 x 

CH2CH3), 0.97 (3H, t, J 7.6, CH2CH3), 0.93 (3H, t, J 7.2, CH2CH3); δC (100 MHz; d6-

acetone) 158.8 (C(5)Ophenyl), 149.9 (2C, C(2,6)Hpyridyl), 148.9 (C(4)pyridyl), 136.3 (2C, 

C(1+3)phenyl), 131.6 (C(2)phenyl), 128.7 (C(5)Ophenyl), 113.5 (2C, C(4+6)Hphenyl), 69.9 

(C(5)Ophenyl), 39.4 (CH), 30.4 (CH-CH2), 29.1 (CH2-CH2), 23.7 (CH2-CH3), 22.8 (CH2-

CH3), 20.0 (CH2-CH3), 13.4 (CH2-CH3), 10.5 (2C, 2 x CH3 phenyl); m/z (APCI+) 312.2324 

(M+H+, C21H30NO+ requires 312.2327). 

 

2-Cyano-4-(4-(2-ethylhexyloxy)-2,6-dimethylphenyl)pyridine 174 

To 4-(4-(2-ethylhexyloxy)-2,6-dimethylphenyl)pyridine 173 (6.6 g, 21.19 

mmol) in DCM (220 mL) was added meta-chloroperoxybenzoic acid (16.07 

g, 4.40 mmol) and the resulting mixture stirred at room temperature with TLC 

monitoring. After 24 h,  NaOH (200 mL, 3M) was added and the organic 

layer was separated, washed with brine and the organics dried over MgSO4, 

filtered and concentrated in vacuo. The resulting residue, presumed to contain 

4-(4-(2-ethylhexyloxy)-2,6-dimethylphenyl)pyridine-N-oxide (ca. 8 g), was dissolved in 

dry DCM (33 mL) under dry argon. To this stirred mixture was added TMS-CN (3.5 mL, 

27.65 mmol) slowly via syringe followed by N,N-dimethylcarbamyl chloride (2.5 mL, 

27.55 mmol) slowly via syringe. The reaction was stirred at room temperature under argon 

with TLC monitoring. After 24 h, the reaction was quenched with K2CO3 (21.2 mL, 1 M) 

and stirred open to the air for ca. 1 h. The mixture was separated, washing with DCM (2 x 

150 mL) and the combined organic fractions were dried over Na2SO4, filtered and 

concentrated in vacuo. The resulting residue was purified via column chromatography 

(SiO2, 1 : 1 v/v hexane : EtOAc) yielding 174 as a yellow oil (2.35 g, 33%). δH (400 MHz, 

CDCl3) 8.73 (1 H, dd, J 5.0, 0.9, C(5)Hpyridyl), 7.50 (1 H, dd, J 1.6, 0.9, C(3)Hpyridyl), 7.31 

(1 H, dd, J 5.0, 1.6, C(6)Hpyridyl), 6.67 (2 H, s, C(3+5)Hphenyl), 3.94 – 3.76 (2 H, m, O-CH2), 

1.97 (6 H, s, 2 x CH3 phenyl), 1.70 (1 H, heptet, J 6.0, CH), 1.60 – 1.30 (8 H, m, 4 x CH2), 

0.91 (6 H, 2 x d, J 10.9, 7.1, 2 x CH2CH3); δC (175 MHz, CDCl3) 159.6 (C(5)Ophenyl), 

151.4 (C(4)pyridyl), 151.4 (C(6)Hpyridyl), 136.6 (2C, C(1+3)Hphenyl), 134.5, (C(2)CNpyridyl), 

130.3 (C(2)phenyl), 129.4 (C(3)Hpyridyl), 128.8 (C(5)Hpyridyl), 117.5 (C≡N), 114.1 (2C, 

C(4+6)Hphenyl), 70.6 (C(5)Ophenyl), 39.6 (CH), 30.8  (CH-CH2), 29.3 (CH2-CH2), 24.1 (CH2-

O

N CN
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CH3), 23.3 (CH2-CH3), 21.1 (CH2-CH3), 14.3 (CH2-CH3), 11.3 (2C, 2 x CH3 phenyl); m/z 

(APCI+) 337.2267 (M+ + H, C22H29N2O requires 337.2280). 

 

4-(4-(2-Ethylhexyloxy)-2,6-dimethylphenyl)pyridine-2-carboxylic acid “G1pic” 175 

To a solution of 2-cyano-4-(4-(2-ethylhexyloxy)-2,6-

dimethylphenyl)pyridine 174 (2.20 g, 6.54 mmol) in 1,4-dioxane (50 mL) 

was added HCl (82 mL, 6 M) and the resulting mixture was stirred at reflux 

for 48 h with TLC monitoring. The reaction was allowed to cool to room 

temperature and remaining starting material was carefully extracted into 

hexane (2 x 50 mL). The product was then extracted from the aqueous layer 

with EtOAc (2 x 150 mL) and the organic extracts were dried over Na2SO4, 

filtered and concentrated. The yellow solid was recrystallised from a mixture of hexane 

and EtOAc to yield 175 as white, plate-like crystals (1.10 g, 47%). mp 150.4-151.6 oC; δH 

(500 MHz, CDCl3) 8.65 (1H, d, J 5.0, C(6)Hpyridyl), 8.03 (1H, s C(3Hpyridyl), 7.37 (1H, d, J 

5.0, C(5)Hpyridyl), 6.65 (2H, s, C(4+6)Hphenyl), 3.87 – 3.77 (2H, m, O-CH2), 1.95 (6H, s, 2 x 

CH3 phenyl), 1.70 (1H, hept, J 5.9, CH), 1.57 – 1.18 (8H, m, 4 x CH2), 0.97 – 0.82 (6H, m, , 

2 x CH2CH3); δC (125 MHz, CDCl3) 164.4 (C(O)OH), 159.4 (C(5)Ophenyl), 153.0 (C(4) 

pyridyl, 148.3 (C(6)Hpyridyl), 146.5 (C(2)pyridyl), 136.7 (2C, C(1+3)phenyl), 130.1 (C(2)phenyl), 

129.8 (C(5)Hpyridyl), 125.6 (C(3)Hpyridyl), 114.0 (2C, C(4+6)Hphenyl), 70.5 (COAlk), 39.7 CH 

C(5)Ophenyl), 30.8  (CH-CH2), 29.3 (CH2-CH2), 24.1 (CH2-CH3), 23.3 (CH2-CH3), 21.2  

(CH2-CH3), 14.4 (CH2-CH3), 11.4 (2C, 2 x CH3 phenyl); m/z (ES+) 356.2233 (M+ + H, 

C22H30NO3 requires 356.2226). 

 

“G0PhF2-Ir-G1Pic” 177 

A mixture of 176 (0.100 g, 0.059 mmol), 

175 (0.126 g, 0.355 mmol) and Na2CO3 

(0.038 g, 0.355 mmol) in ethoxyethanol (12 

mL) was stirred at 130 oC under argon for 

16 h. After cooling to room temp., the 

product mixture was purified by 

chromatography (SiO2, DCM : EtOAc 10 : 

1 v/v), (SiO2, DCM : EtOAc 15 : 1 v/v) to yield 177 as a yellow solid (0.012 g, 9%). mp > 

300 oC; δH (700 MHz, CDCl3) 8.85 (1H, d, J 5.1), 8.18 (1H, s), 8.13 (1H, s), 8.06 (1H, s), 

7.87 (1H, d, J 4.9), 7.58 (1H, d, J 5.1), 7.25 (1H, s), 7.06 (1H, d, J 5.0), 6.99 (4H, t, J 
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22.8), 6.84 (1H, d, J 5.0), 6.66 (2H, d, J 13.6), 6.47 (1H, t, J 10.2), 6.40 (1H, t, J 10.4), 

5.86 (1H, d, J 8.6), 5.71 (1H, d, J 8.3), 3.83 (2H, s), 2.35 (6H, s), 2.18 (3H, s), 2.13 (3H, s), 

2.11 (3H, s), 1.91 (3H, s), 1.75 – 1.68 (1H, m), 1.54 – 1.29 (8H, m), 0.97 – 0.86 (6H, m); 

δC (175 MHz, CDCl3) 173.0, 165.9 (d, J 6.3), 164.3 (d, J 7.5), 162.3 (ddd, J 266.5, 258.3, 

9.8), 162.2 (ddd, J 355.9, 257.5, 9.0), 159.3, 152.9 (d, J 11.6), 152.6, 152.3 (d, J 8.5), 

151.7, 151.3 (d, J 7.3), 148.5, 148.0, 147.8, 138.2 (d, J 11.2), 136.1 (4C), 135.3 (d, J 3.0), 

135.1 (dd, J 99.6, 48.0), 130.1 (d, J 30.7), 129.5 (4C), 129.0 – 128.1 (6C, m), 124.9 – 

123.3 (3C, m), 114.4 (t, J 18.6), 113.8 (2C), 98.1 (t, J 27.2), 97.7 (t, J 26.9), 70.3, 39.4, 

30.5, 29.1, 23.9 (2C), 23.0 (2C), 21.0 (2C), 20.9, 20.6, 20.5, 20.3, 14.1, 11.1; m/z (ES+) 

1098.36872 (M++H, C62H61F4IrN3O3 requires 1098.36898). 

 

2,4,6-Tribromo-3,5-dimethylbenzenamine 179
356   

To a solution of 3,5-dimethylaniline 178 (19.42 g, 160 mmol) in AcOH (340 

mL) at 0 oC was added Br2 (26 mL, 500 mmol) dropwise. After the addition, 

the reaction was allowed to warm to room temp. and H2O (500 mL) added. 

The precipitate was filtered and washed with H2O (2 x 500 mL). The pink 

solid was triturated with MeOH to afford the desired product as a light pink solid (53.9 g, 

94%). mp 195.7-196.7 oC; δH (400 MHz, CDCl3) 4.69 (2H, br s, NH2), 2.57 (6H, s, 2 x 

CH3); δC (101 MHz, CDCl3) 141.50 (C(1)N), 136.91 (2C, C(3+5)), 114.83 (C(4)Br), 

108.90 (2C, C(2+6)Br), 25.79 (6C, 2 x CH3); m/z (EI) 356.7 (100%, [79Br2][
81Br]M+), 

358.7 (97%, [79Br][81Br2]M
+); Anal. Calcd. for C8H8Br3N: C, 26.85; H, 2.25; N, 3.91. 

Found: C, 26.44; H, 1.78; N, 3.51. 

 

1,3,5-Tribromo-2-iodo-4,6-dimethylbenzene 180
358

 

To a solution of 179 (40 g, 111.8 mmol) dissolved in conc. HCl (320 mL) at 

0 oC was added NaNO2 (8.799 g, 127.5 mmol) dissolved in H2O (64 mL) 

dropwise whilst maintining the temp at 0 oC. The reaction was stirred at 0 oC 

for 90 min then the mixture was carefully poured through glass wool into a stirred solution 

of KI (128.0 g, 771.1 mmol). The mixture was stirred at 60 oC for 1 h then allowed to cool 

to room temp. The solution was extracted into DCM (3 x 1 L) and dried over MgSO4, 

filterd and concentrated to afford the desired product as a beige solid (36.8 g, 70%). mp 

244.0-245.6 oC; δH (400 MHz, CDCl3) 2.76 (6H, s, 2 x CH3); δC (101 MHz, CDCl3) 138.7 

(2C, C(4+6)), 130.6 (2C, C(1+3)), 128.2 (C(5)Br), 111.1 (C(2)I, 9.3 (6C, 2 x CH3); m/z 

NH2

Br Br

Br
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Br Br

Br
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(APCI+) 467.7 (100%, [79Br2][
81Br]M+) 469.7 (97%, [79Br][81Br2]M

+); m/z (APCI+)  

465.7055 (35%,  [79Br3]M
+, C8H6

79Br3
127I) requires 465.7064. 

 

1-(2-Ethylhexyloxy)-4-bromobenzene 181
360

  

 A mixture of 4-bromophenol 182 (90.0 g, 520.2 mmol), 2-

ethylhexylbromide (120.6 g, 624.3 mmol) and K2CO3 (107.8 g, 401.4 

mmol) in DMF (500 mL) was reacted at 78 oC overnight. The mixture was 

allowed to cool to room temperature and filtered, washing the filtercake 

with Et2O (3 x 500 mL). The filtrate was diluted with water (500 mL) and 

the layers were separated. The aqueous layer was re-extracted with Et2O (2 x 500 mL) and 

the combined organic layers were washed with brine, dried over MgSO4, filtered and 

concentrated in vacuo . The oil was purified by washing through a SiO2 plug with hexane 

(ca. 5 L) to give 181 as a colourless oil (106 g, 71% yield). δH (400 MHz, CDCl3) 7.34 

(2H, d, J 9.0, C(3+5)H), 6.76 (2H, d, J 9.0, C(2+6)H), 3.78 (2H, dd, J 5.8, 1.0, 

(C(1)Ophenyl)), 1.69 (1H, ddd, J 12.2, 6.1, 5.9, CH), 1.55 – 1.21 (8H, m, 4 x CH2-CH2), 0.93 

– 0.84 (6H, m, 2 x CH2CH3); δC (101 MHz, CDCl3) 158.7 (C(1)Ophenyl), 132.4 

(C(5)Hphenyl), 116.5 (C(2+6)Hphenyl), 112.7 (C(4)Brphenyl), 71.0 C(5)Ophenyl), 39.5, 30.7, 

29.3, 24.0, 23.3, 14.3, 11.3; m/z (APCI+) 284.1 (100%, [79Br]M+).  

 

3-Bromo-1,5-bis(4-(2-ethylhexyloxy)phenyl)-2,4-dimethylbenzene 183 

 Magnesium turnings (2.837 g, 116.7 mmol) were 

activated under argon in a flame dried flask with a 

few crystals of I2 by heating until purple vapours 

formed. To this was added 181 (33.74 g, 118.30 

mmol) dissolved in dry THF (200 mL) dropwise 

over 40 min. and the resulting solution was stirred 

at 50 oC for 2 h. To this, 180 (18.49 g, 39.44 mol) 

dissolved in dry THF (260 mL) was added dropwise and the resulting mixture was stirred 

at reflux overnight. The mixture was allowed to cool to room temp and quenched with 2M 

HCl (200 mL). The mixture was concentrated in vacuo and extracted into DCM (200 mL). 

The aqueous layers were re-extracted with DCM (2 x 200 mL) and the combined organic 

layers were washed with Na2SO3, dried over MgSO4, filtered and concentrated in vacuo. 

Purifacation made by chromatography (SiO2, 20 : 1 v/v hexane : DCM) to give 183 as a 

yellow oil (9.82 g, 42%); δH (400 MHz, CDCl3) 7.19 (4H, d, J 8.7), 7.06 (1H, s), 6.91 (4H, 

O

Br

Br

OO
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d, J 8.7), 3.85 (4H, d, J 5.6), 2.38 (6H, s), 1.80 – 1.64 (2H, m), 1.52 – 1.19 (16H, m), 0.98 

– 0.80 (12H, m); δC (101 MHz, CDCl3) 158.7, 140.7, 134.8, 134.1, 130.7, 130.6, 130.4, 

114.3, 70.8, 39.64, 30.8, 29.3, 24.1, 23.3, 22.3, 14.3, 11.4; m/z (APCI+) 593.3 (100%, 

[79Br]M+), 595.3 (97%, [81Br]M+). 

 

3-(4-Pyridyl)-1,5-bis(4-(2-ethylhexyloxy)phenyl)-2,4-dimethylbenzene 184 

 In accordance with the general method for Suzuki-

Miyaura cross-coupling reactions outlined above 

was reacted 187 (4.75 g, 8.00 mmol), 4-(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine 185 

(2.29 g, 11.2 mmol), Pd2(dba)3 (0.073 g, 0.08 

mmol, 1 mol%), PtBu3.HBF4 (0.056 g, 0.024 mmol) 

and degassed fresh aqueous K3PO4 (21.4 mL, 1.27 

M, 27.2 mmol) in degassed dioxane (50 mL) at 100 
oC for 24 h. Standard work-up conditions and purification via chromatography (SiO2, 8 : 1 

v/v hexane : EtOAc) provided 184 as a yellow oil (3.00 g, 63%); δH (400 MHz, CDCl3) 

8.74 (2H, s), 7.32 – 7.24 (6H, m), 7.23 (1H, s), 6.99 – 6.93 (4H, m), 3.89 (4H, d, J 5.9), 

1.95 (6H, s), 1.82 – 1.71 (2H, m), 1.62 – 1.31 (16H, m), 1.02 – 0.90 (12H, m); δC (101 

MHz, CDCl3) 158.7, 150.1, 148.5, 140.6, 140.0, 134.0, 131.7, 131.6, 130.6, 125.0, 114.4, 

70.8, 39.7, 30.8, 29.3, 24.1, 23.3, 19.1, 14.3, 11.4; m/z (APCI+) 592.4 (100%, M++H), 

591.4 (15%, M+); m/z (APCI+) 591.4087 (15%, M+, C41H53NO2 requires 591.4076). 
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