
Durham E-Theses

Simulation and analysis of adaptive routing and �ow

control in wide area communication networks

Nichols, S. J.

How to cite:

Nichols, S. J. (1990) Simulation and analysis of adaptive routing and �ow control in wide area

communication networks, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/6153/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/6153/
 http://etheses.dur.ac.uk/6153/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

SIMULATION AND ANALYSIS OF
ADAPTIVE ROUTING AND FLOW CONTROL IN

WIDE AREA COMMUNICATION NETWORKS

S. J. Nichols, B.Sc.

School of Engineering and Applied Science,

Durham University,

South Road,

Durham DHI 3LE,

UK.

;' ...- I•IM •i991 /. ':) J U I'll I. ,.

A thesis submitted in partial fulfillment

of the Requirements of the University

of Durham for the Degree of Doctor of

Philosophy {Ph.D.).

March 1990

Abstract

Simulation and Analysis of

Adaptive Routing and Flow Control

Wide Area Communication Networks

S.J. Nichols

This thesis presents the development of new simulation and analytic models for the

performance analysis of wide area communication networks. The models are used

to analyse adaptive routing and flow control in fully connected circuit switched

and sparsely connected packet switched networks. In particular the performance

of routing algorithms derived from the LR-1 linear learning automata model are

assessed for both types of network.

A novel architecture using the INMOS Transputer is constructed for sim­

ulation of both circuit and packet switched networks in a loosely coupled multi­

microprocessor environment. The network topology is mapped onto an identically

configured array of processing centres to overcome the processing bottleneck of

conventional Von Neumann architecture machines.

Previous analytic work in circuit switched work is extended to include

both asymmetrical networks and adaptive routing policies. In the analysis of

packet switched networks analytic models of adaptive routing and flow control

are integrated to produce a powerful, integrated environment for performance

analysis

The work concludes that routing algorithms based on linear learning au­

tomata have significant potential in both fully connected circuit switched networks

and sparsely connected packet switched networks.

Declaration

I hereby declare that this thesis is a record of work undertaken by myself, that

it has not been the subject of any previous application for a degree, and that all

sources of information have been duly acknowledged.

In the course of this research the following were included in an approved

programme of advanced studies:

1. Advanced lectures and examination in the subjects of Digital Systems,

Digital Signal Processing and Semiconductor Devices, October 1986-July

1987.

2. A working visit to the Network Services Division of Reuters Int., London,

September-October 1988.

Simon Nichols, March 1990

Copyright

The copyright of this thesis rests with the author. No quotation from it should

be published without his written consent and information derived from it should

be acknowledged.

11

Acknowledgements

First and foremost I would like to express my thanks and appreciation to

my supervisor Professor Philip Mars for his guidance, encouragement, enthusiasm

and support throughout this project.

Many people have contributed to this work through their discussions,

support and encouragement. My thanks to all those who have helped, notably Dr.

Ian Me Phee during his temporary lectureship at Durham University, Dr. Frank

Kelly and Richard Gibbens, both of Cambridge University Statistical Group, not

forgetting all my friends, colleagues and aquaintances who have made my time at

Durham a thoroughly enjoyable experience.

My thanks also to Brian Lander and his staff at Durham University Com­

puter Centre whose services enabled much of this work to take place. Finally I

would like to thank the Science and Engineering Research Council and Reuters

International for their financial support.

lU

This work is dedicated to my parents

lV

Table of Contents

Abstract . 1

Declaration . 11

Acknowledgements . 111

Dedication . IV

Contents . v

Chapter 1 Introduction

1.1 Communication Networks . 1

1. 2 Adaptive Routing . 2

1.3 Network Performance . 3

1.4 Thesis Outline . 4

Chapter 2 The Design of a Distributed Simulation Envi­

ronment For Wide Area Communication Networks

2.1 Introduction . 8

2.2 Distributed Simulation Architectures . 8

2.2.1 Review of Distributed Simulation . 8

2.2.2 The Transputer and Occam - An Overview 12

2.3 Simulator Software Environment . 15

2. 3.1 Environment Overview . 15

2.3.2 Simulation Process . 18

2.3.3 Nodal Process . 18

2.4 Simulator Hardware Environment . 20

2.5 Distributed Constructs 22

2.5.1 Master-Slave Constructs . 22

2.5.2 Interface Access . 23

2.5.3 Synchronisation . 23

2.6 Network Partitioning . 27

2.7 Summary . 29

v

Chapter 3 Analytic and Simulation Models for Dynamic

Routing Strategies in Fully Connected Circuit Switched

Networks

3.1 Introduction . 45

3.2 Evolution of Circuit Switched Networks . 46

3.2.1 Network Architecture . 46

3.2.2 Switching Exchanges and Call Connection 48

3.3 Routing Strategies in Circuit Switched Networks 50

3.3.1 Classification of Routing Strategies . 50

3.3.2 Review of Current Routing Strategies 52

3.3.3 Network Protection Mechanisms . 55

3.4 Simulation Model Specification 57

3.4.1 Network Characteristics 57

3.4.2 Software Implementation 59

3.5 Analytic Models Of Dynamic Routing 61

3.5.1 Model Assumptions . 61

3.5.2 Single Source Models . 63

3.5.3 Multiple Source Models . 64

3.5.4 Application to Dynamic Routing Strategies 67

3.6 Summary . 72

Chapter 4 Comparitive Analysis of Learning Automata

Performance as a Dynamic Routing Strategy in Fully Con­

nected Networks

4.1 Introduction . 85

4.2 Single Source Experiments 85

4.2.1 Two Path Problem 85

4.2.2 Multiple Path Models 88

4.3 Multiple Source Models And Limitations . 89

4.3.1 Network Models . 89

4.3.2 Model Limitations 92

vi

4.4 Routing in Unprotected Networks 94

4. 4.1 Routing Algorithm Performance . 94

4.4.2 Network Instability 100

4.5 Routing in Protected Networks . 102

4.5.1 Trunk Reservation Parameter Selection 102

4.5.2 Routing Algorithm Performance . 104

4.5.3 Network Instability and TRP 106

4.6 Conclusions . 107

Chapter 5 Analytic Modelling Techniques and the De­

sign of a Simulation Environment for the Study of Packet

Switched Networks.

5.1 Introduction . 148

5.2 Packet Switched Network Architecture . 149

5.3 Routing Strategies and Congestion Control

5.3.1 Classification of Routing Strategies

155

155

5.3.2 Routing Techniques in Packet Switched Networks 157

5.3.3 Congestion and Flow Control Techniques 172

5.4 Packet Switched Simulation Model 182

5.4.1 Layered Nodal Model 182

5.4.2 Model Implementation 186

5.4.3 Implementation of Learning Automata Algorithms 189

5.5 Summary . 190

Chapter 6 Comparitive Analysis of Learning Automata

Based Routing Algorithms in Sparsely Connected Packet

Switched Networks

6.1 Introduction . 208

6.2 Analytic Implementations

6.3 Introductory Experiments

6.4 Multiple Source Routing and Flow Control

vii

209

214

219

6.4.1 Routing Strategy 220

6.4.2 Flow Control . 221

6.4.3 Routing and Flow Control . 227

6.5 International Network . 228

6.6 Conclusions 231

Chapter 7 Conclusions And Further Work

7.1 Introduction . 264

7.2 Multi-processor Simulation

7.3 Circuit Switched Networks

7.4 Packet Switched Networks

264

267

269

References . 272

Appendix A Learning Automata 280

Appendix B Recovery of Circuit Switched Code 286

Appendix C Recovery of Packet Switched Code 287

Vlll

Chapter 1

Introduction

1.1 Communication Networks

Whenever a large number of geographically, or even locally, distributed

centres wish to communicate with each other, a direct link between each party

quickly becomes impractical. To provide such a communication facility networks

are constructed, the nodes of which provide centres for users of the network to

connect terminal equipment. A classical example of such terminal equipment is

the humble telephone with which two suitably equipped sites can communicate

in any part of the world. Because initially all network traffic was voice based,

the first telephone networks using analogue technology, were designed specifically

for that purpose. The basic characteristic of these networks is that a dedicated

frequency band is reserved for the duration of any call between two users. With

the advent of modern technology digital techniques have been introduced into the

design of the network switching nodes. This has expanded the range of applica­

tions for networks. Previously binary data could only be transmitted using multi­

plexers/demultiplexers (MODEMs) at the terminating connections over standard

channels. Digital switches allow much greater capacity channels to be allocated

and provide a greater range of potential services to the users. Today it is possible

to transmit both voice and data based traffic over the same network. However the

basic characteristic of dedicated bandwidth remains unchanged and the technique

is given the name circuit switched to reflect this fundamental idea.

This change to digital technology has led to another, more fundamen­

tal, change in networks and the transmission of data across them. Since binary

data in particular does not have to be transmitted in real-time, dedicated band­

width no longer has to be made available at all times. Instead bandwidth can be

made available dynamically on request by the data itself. If local bandwidth is

temporarily unavailable the data can be stored locally within each node. These

networks were originally termed message switched, the key feature being that the

message was retained as a single stream through the network. More recently the

1

technique of dividing the message into a number of smaller basic transmission

units called packets, before passing it over the network, has been widely used and

the term packet switched used to describe the resulting networks.

Nat ural evolution in this digital environment has led to attempts to com­

bine circuit and packet switched networks to give a single medium for voice or data

transmission, matching the most efficient manner of transmission to the needs of

the traffic. This involves the ability to both assign bandwidth for the duration of a

circuit orientated session with the flexibility to dynamically assign the remainder

of the link capacity to packet based transfers. Systems of this type fall under the

broad title of Integrated Services Digital Networks (ISDN). More recently the use

of optical fibre communication link technologies has led to intensive research into a

new generation of networks known as broadband ISDN. The enormous data rates

now possible suggest a whole host of new applications such as real-time video

transmission and new generations of sound and data transmission capabilities.

1.2 Adaptive Routing

To provide and manage the complex needs of network users sophisticated

software techniques have had to be developed which shield the users from the

rigours of the particular technology and transmission media being used to transmit

the information between the source and destination sites. This has inevitably led

to the definition of standards for network architectures to introduce consistency

and define interfaces for the design of network access equipment. However these

standards are not definitive and allow a degree of freedom in the design of many of

the key network features. One important example of such a feature is the routing

strategy within the network by which information at a source or traffic originating

node is directed to its destination.

The path by which information is routed over a network can have a pro­

found affect on the performance of the network. If the network is considered as a

limited pool of distributed transportation components, the efficiency in the utili­

sation of these components depends on the distribution of the traffic over each of

the sites. Invariant routing techniques, formulated using projected traffic forecasts

may be simple to implement but suffer from serious drawbacks. Sustained traffic

2

fluctuations or component failures may compromise network performance by over­

loading sections of the network while leaving other areas relatively lightly loaded.

Equally, static routing techniques, if they are to remain efficient necessitate, by

definition, regular recalculation off line at each major event in the networks life­

time, such as new subscribers or component installation.

Alternatively an algorithm which can automatically adapt to such changes

can be proposed. This is achieved by modifying the routing tables, based on cur­

rent network status in accordance with some performance index. In this way

traffic patterns will automatically be adjusted in the event of a new traffic injec­

tion or capacity modification by nothing more than the secondary effect of the

accompanying change in performance in the affected areas. Of particular interest

in this work is the potential use of simple distributed routing strategies based

on a class of algorithms known as linear learning automata. In this thesis in­

vestigations into their suitability for implementation in both circuit and packet

switched networks are carried out with comparisons of their performance against

other popular strategies and mathematical bounds.

1.3 Network Performance

To investigate the potential benefits in the introduction of adaptive rout­

ing strategies and compare and contrast different adaptive policies, a performance

environment is required. This can be provided using one of two techniques. The

most elegant method is the formulation of mathem~tical models of the communi­

cation networks for each strategy. These can then be solved to give exact solutions

for predicted network behaviour, subject to the approximations invariably made

in the models. When the solutions to these models prove too computationally in­

tensive or the approximations made are considered unrealistic another technique

must be used.

The second .method of performance evaluation is the construction of a

discrete simulation model of the communication networks. This has the advan­

tage that a more faithful reproduction of the target network can be constructed.

Alternatively it does not produce the exact performance figures of a mathematical

model and a mean figure and confidence interval must be extracted from multiple

3

measurements using the simulation model. This unfortunately leads typically to

long and therefore expensive execution times for these simulation models. As the

size of the network, the traffic intensity over the network and the complexity of

the simulation models all increase conventional simulation becomes increasingly

costly. The basic problem stems from an inherent mismatch between the se­

quential, Von Neumann processor architecture and the highly parallel simulation

problem. In this work a way forward is suggested using a new multi-processor

simulation environment designed to exploit this parallelism.

1.4 Outline of Thesis

Following this chapter the rest of the thesis is arranged into six further

chapters 2 to 7. Chapter 2 discusses the design and implementation of a new

multi-processor simulation environment for wide-area communication networks.

Initially previous work in this field is outlined and discussed with particular at­

tention to limitations and bottlenecks in the proposed architectures. The heart

of the new environment the Transputer and its associated programming language

Occam are then introduced. Building on both the previous work and the Trans­

puter as a parallel processing component, the hardware and software specification

of the new simulation environment are then presented. The key concept is the

mapping of the network topology onto an identically configured array of process­

ing components. The design of a nodal architecture for the software of such a

processing component is presented. In particular the steps taken to prevent such

code deadlocking are discussed. Special problems associated with distributed sim­

ulation are identified and the solutions used in the work presented. These include

synchronisation and access to the simulation. Finally the range of ways in which

a network topology can be mapped onto the processing surface are investigated

with specific examples.

Chapter 3 concentrates on circuit switched networks and the performance

modelling of routing strategies in fully connected networks, an important subset of

the possible topological configurations. The impact ofVLSI and digital technology

on circuit switched networks is explained, concentrating on the areas relevant to

this work, specifically signalling and network architecture. The advances in these

4

areas have allowed much greater flexibilty in the way in which a path through the

network can be established. To take advantage of this a number of different mech­

anisms for path selection have been proposed or implemented. To clarify these

schemes a classification system is introduced and the algorithms identified within

its structure. In addition the concept of flow control is introduced to avoid exces­

sive use of inefficient paths and the relationship between routing and flow control

discussed within the selection process of a path through the network. Following

this the simulation and analytic models that are used to analyse some of the more

interesting schemes both with and without flow control are presented. The sim­

ulation model, based on a simple signalling protocol, is designed specifically for

implementation in the environment discussed in chapter 2. The analytic work

presents new work based on a well known simple, symmetrical, Poisson model.

Extensions to the model allow the analysis of adaptive strategies with well defined

mathematical behaviour for asymmetrical trunk and traffic distributions for both

single and multiple traffic sources.

Chapter 4 reports on the application of the analytic and simulation mod­

els to fully connected circuit switched networks. Initially simple, analytic, single

source experiments are carried out to investigate the equilibrium behaviour of a

range of strategies, including some of the learning automata based algorithms,

to highlight the differences or similarities in behaviour. Having established this

base more complex analytic models, involving the interaction of traffic sources are

examined. Criteria for the structured introduction of asymmetry are outlined to

facilitate the comparison of different networks. In addition the accuracy of the

analytic model itself is examined, based on the underlying assumptions implicit

in its formulation, and criticisms made on its validity over an important range of

operational values. Both simulation and analytic models are then applied to net­

works with and without flow control using different strategies. Two main features

are examined in each case, performance and instability. Performance analysis uses

average blocking probability and individual grade of service as indexes. The insta­

bility work is based on previous analytic work which has suggested the existence

of multiple solutions for the performance of fully connected, alternatively routed

networks over a certain range of traffic loads.

5

Chapter 5 discusses the development of packet switched networks and the

analytic work done on the performance evaluation of different routing strategies

used by these networks. The basic mechanisms of a packet switched network are

defined and discussed in the context of the evolution of layered architectures to

provide a transparent transmission medium across the network for user appli­

cations. Describing the functions of the lower layers, those most important to

the network rather than the specific application, the summary concentrates on

the network layer, that part of the architecture responsible for routing and flow

control. As in circuit switched networks a plethora of different approaches to

the routing problem exist. A classification of routing strategies is carried out to

categorise the major approaches and techniques. This is followed by a comprehen­

sive and critical overview of existing and proposed routing techniques. Whenever

possible analytic models which have been developed to investigate strategies are

summarised. Analagous with circuit switched networks, packet switched networks

also need flow controls to limit entry of traffic on a network. Following a brief

classification of the different positions in which flow control can be administered

in the architecture, a survey of the main techniques is performed. Once again

a summary of mathematical models is included and the major findings reported.

Finally in this chapter the specification for the packet switched simulation package

constructed for execution on the multi-processor environment is presented. It is

provided in the form of a series of flow diagrams outlining the major component

functions of the network architecture reproduced by the simulation.

In chapter 6 a series of experiments are presented on the application of

a selection of routing strategies and flow control procedures in packet switched

networks. A number of the analytic models for the performance evaluation of

these strategies, described in the previous chapter, are implemented using iter­

ative techniques based on shortest path routing and window based flow control

schemes. These models are first applied to a series of introductory experiments

using a simple network configuration. The results are compared with simulations

of the same network configurations using the model also detailed in the previous

chapter. This enables the validity of the mathematical assumptions made in the

formulation of both the generalised network model and the additional assumptions

6

made in the analysis of some of the adaptive work to be evaluated by comparison

of the two sets of results. A more complex and representative network is then

presented and a series of detailed experiments formulated to investigate the per­

formance of learning automata routing and delay based flow control. Optimum

routing and flow control models are used to provide an upper bound, while traffic

insensitive procedures provide a deterministic lower bound on the performance of

the strategies. Finally a special case of network is analysed, using an asymmetric

traffic matrix to investigate the performance of an international network under

the same variety of adaptive and non-adaptive policies.

Finally chapter 7 draws together the major findings and conclusions from

this work. The chapter is broken into three major areas, the design and im­

plementation of the multi-processor simulator on an array of suitable configured

Transputers, the application of dynamic routing and flow control in fully connected

circuit switched networks and the application of the same class of strategies to

sparsely connected packet switched networks. In addition, based on the findings

of the work done, future avenues of promising work are suggested, existing bot­

tlenecks and unresolved problems are identified and the results of this work are

discussed in relation to their applicability to the performance of real networks.

7

Chapter 2

The Design of a Distributed Simulation

Environment for the Performance Evaluation

of Wide Area Communication Networks

2.1 Introduction

This chapter presents the design of a dedicated simulation environment

for the performance evaluation of wide area communication networks. The archi­

tecture of the simulator exploits the parallelism available in network simulation

to maximise the execution rate of the simulation models. To do this the simulator

adopts a multi-processor approach. Multi-processor architectures have already

attracted considerable attention for such work and some of the more notable at­

tempts to construct such simulators are first outlined. This takes the form of a

short review section which includes some comments on each authors approach, its

applicability and limitations. A new tool for parallel simulation, the Transputer, is

then introduced and the special features which suit it for such a task are discussed

along with the form of its natural programming language, Occam. Following on

from these summaries the hardware and software structures of the simulation en­

vironment and operator interfaces are outlined. Included in these sections are

discussions on some of the major difficulties in writing a simulation package for

execution in a distributed environment. Constructions which were adopted to

solve problems such as synchronisation and data access are presented along with

additional requirements to overcome inherent hardware limitations. Finally the

variety of ways in which the software can be organised on the available hardware

are presented. This flexibility arises from the power of the Transputer to act as a

building block for parallel processes and allows the operator a number of options.

The option of which software and hardware configuration to adopt depends on

the availability of Transputer boards and the requirements of the operator.

2.2 Distributed Simulation Architectures

2.2.1 Review of Previous Architectures

8

It is generally recognised that the evaluation of communication systems

by analytic means alone is inadequate for the majority of criteria sought in mod­

ern, large complex networks[l]. Fortunately digital simulation techniques provide

an alternative method by which performance figures can be derived. However

conventional simulation programming environments provide a poor base on which

to model highly parallel network environments. The limitations imposed by Von

Neumann architectures on the performance of simulation models for communi­

cation networks has led to interest in the development of alternative, dedicated

environments. Early work in the closely related area of road traffic analysis led

to the construction of special purpose hardware simulators[2] using digital cir­

cuitry to implememt the various elements of the queueing system. However in

recent years there has been considerable advances in microprocessor technology

and software tools, languages and techniques. These advances combined with

the flexibility of software modelling has led to the majority of work concentrat­

ing on the development of distributed arrays of processors which can share the

simulation workload. A number of different approaches have been investigated

for the construction of these distributed environments to optimise performance

and/ or flexibility. In this section some of the major architectures which have al­

ready been developed are discussed and attempts are made to assess their relative

strengths and limitations.

Before considering architectures developed specifically for the purpose of

network simulation it is worth mentioning a more general approach proposed and

adopted by M. Papazoglou. In his paper(3] he outlines a 'parallel Simula ma­

chine' for the concurrent execution of processes defined within Simula-67. Such

instances of parallelism are determined by a pre-processing stage. The machine

then operates a master-slave topology with a central microprocessor controlling a

series of satellite processors with both common and private memory. A complex

arrangement of interrupt controllers and bus structures allows process interaction

with other satellite processes and the central controller. The master processor

synchronises the processes, allocating tasks to them and adjudicating when con­

tention arises between two or more of the tightly coupled microprocessors.

Although no performance figures are quoted, the method of farming out

9

processes and the use of both bus and shared memory architectures in an interrupt

driven environment shows promise if a sufficiently intelligent kernel accompanies

the environment hardware to direct the processes. However for the specialised

task of network simulation, a more specialised approach to the architecture ques­

tion has been developed by many authors, creating a 'test-bed' for evaluation by

simulation.

Within the subject area of 'test-bed' design two distinctly different ap­

proaches have received attention. In the first approach the act of simulating the

network is divided into major tasks. Special purpose units are constructed for

the implementation of each of these tasks. These tasks are then undertaken by

programming each unit in languages not dissimilar to special purpose simulation

languages like GPSS and SIMSCRIPT. These modules and their interconnection

define the machine architecture. This approach has been adopted specifically in

the development of two special purpose simulators for the analysis of queueing

networks at the Technical University of Aachen[4,5]. The first simulator divides

the simulation into the tasks of random number generation, queueing network

management and statistical calculation of the network state. These modules are

arranged in a pipeline and discrete time techniques used for the simulation clock

allowing the definition of a simple language for network construction and defini­

tion. The construction of this specialised environment allows the efficient analysis

of simple queueing networks, although for more general problems the architecture

lacks flexibility and for large systems the queueing module would doubtless pro­

duce a processing bottleneck. In its favour, as the authors point out, it provides

a cheap alternative to expensive mainframe computation for this class of problem

with comparable performance.

The second architecture developed at Aachen, some time later, divides

network simulation into a similar set of tasks, but implements each task in a more

distributed fashion. The simulator now contains arrays of special units, each ar­

ray dedicated to the task of either list processing, random number generation

or statistical analysis arranged in a mesh structure and controlled from a single

simulation execution unit connected to all list processing modules. Each module

is implemented using a specialised processor for each particular task, connected

10

to other modules between which data streams arise during execution of simula­

tions. The structure represents a hybrid between the Simula-67 special purpose

machine mentioned earlier and the previous network analysis environment devel­

oped at Aachen. The decomposition of tasks continues to divide the simulation

into random number generation, list processing and statistical analysis but now

uses a single processor to control the progress of the simulation and arrays of in­

terconnected special purpose modules to which tasks are delegated. Performance

evaluation of the architecture, implemented in TTL, NMOS, etc. technology pro­

duced approximately 0.5 MIPS which compared favourably with figures achieved

on a mainframe for a fraction of the cost. Interestingly the author claims at the

end of the article that improvement in performance depended not now on the ex­

ploitation of further parallelism within the simulation but on the clock rates and

transmission rates of available technology. Further performance improvements up

to 10 MIPS were suggested if the clock rate could be increased by an order of

magnitude.

The second major approach seeks to exploit the parallelism in commu­

nication network simulation by constructing arrays of connected microprocessors

which each undertake the task of simulating a single node of the network. In

this way an N node network is modelled by N coupled microprocessors. The

control and interconnection of these processors has been tackled in a number of

different ways enabling the construction of cheap, useful, 'test-bed' networks for

distributed simulation. R.Kain et al[6] developed just such a structure as a tool

for distributed system design. Serial links connect nodal microprocessors in a

topology identical to the network under consideration. Each of the nodes is also

attached to a single control node by a shared bus. This master node controls the

timing, network modification and result gathering via the bus.

Constructed using 'off-the-shelf' components and modules the system has

been designed to maximise its flexibility and minimise cost rather than to optimise

performance. Typically the basic unit is a 6502 processor board and nodes are

built up using an intra-node bus to connect serial interface boards and additional

memory.

A similar master/slave architecture has also been developed for traffic

11

simulation by A. Toda et al[7]. NEWTS (Network Traffic Simulator) uses a two

layer hierarchical common bus structure to connect the individual microprocessors.

This enables a degree of concurrency in communication over the bus structure as

each local bus can operate independently, allowing the transmission of information

between two nodes attached to the same bus. In addition communication between

two nodes on different buses can also take place via the global bus. However

contention still arises when more than one pair of nodes wishes to access the

global bus. Seperate control lines to and from each node lead to a master node

which implements the system clock using a simple stop-and-wait protocol.

Finally an interesting variation on the interconnection problem is sug­

gested by M. Geary[8] using a grid array of nodal processors each connected by

bi-directional links to their four neighbours. Each processor has a central CPU

and four surrounding buffers with a bus structure which can route transmissions

to, from and around the CPU. Using the buffers to queue calls any message can be

transmitted across the grid from any node to any other node allowing a great deal

of flexibility in the topologies that can be investigated with appropriate routing

tables.

2.2.2 The Transputer and Occam - An Overview

In 1985 lnmos launched its attempt to fulfil Barrons prophesy made al­

most a decade earlier[9]. In his discussion paper on distributed computing he

made the observation that the effective implementation of distributed techniques

would require a radical change in the architecture of computers, the design of

their programming languages and the style of programming. lnmos's offering, the

Transputer, developed in a.sssociation with its natural programming language Oc­

cam, allow the design and implementation of multiprocessor solutions for a wide

range of applications from image processing to distributed databases, [10-14,17].

The rest of this section describes the design of the Transputer, concentrating on

the features which have been included to optimise it for use as a component in

a multiprocessor array, and the language which allows such systems to be easily

realised.

The Transputer family currently consists of the T2, T4 and T8 series

12

chips. These chips consist of a 16 bit processor, a 32 bit processor and a 32 bit

processor with floating point unit respectively. More detailed information can

be found in product overviews[15] and other lnmos reference material[16]. Each

Transputer is a complete microprocessor implemented as a VLSI chip using 1.2

micron technology[l7]. The chip integrates processor, a small amount of internal

memory, external serial communication links and a comprehensive set of signal

lines to its external interface A block diagram identifying these major sections

and the main bus connections between them is shown in figure 2.1 The external

memory interface can be used to access up to 4 Gigabytes of external RAM and

comes with a set of configurable timing signals.

To enable efficient communication between Transputers each chip has

four, high speed, autonomous, link interfaces[18]. A link consists of two unidirec­

tional connections which provide serial point to point communication between

Transputers using DMA with processor cycle stealing to minimise overheads.

Communications over a single link consist of asynchronously transmitted byte

transfers. Confirmation of each bytes arrival is provided by small acknowledge­

ment packets which are interleaved with data packets on the same link in the

opposite direction.

As well as providing links for concurrent communication with other Trans­

puters, allowing communication between concurrently executing code, a single

Transputer also has the ability to internally emulate the execution of concurrent

code. A microcode driven scheduler maintains a list of both active and inactive

processes where each process requires concurrent execution. Each active process

is then time-sliced to share the processor and remains on the active -list until it is

required to communicate with another, unready process or is placed in a wait state

by a specific delay action when it is made inactive. In this way processes waiting

for communication or in specially constructed delay states do not waste processor

time and remain idle until reactivated. The microcode instruction set itself is

very compact and has been compared to RISC architectures. The chip supplies

only three arithmetic registers in the form of an evaluation stack, removing the

need of operators to define registers and allowing a large range of operations to

be executed using single byte instructions.

13

To facilitate the programming of multiprocessor systems and the Trans­

puter in particular, a new parallel language was developed. The design of the new

language, Occam, was based on C.Hoares concept of Communicating Sequential

Processes or CSP[19-21] which provides a model for concurrency and communi­

cation in a concurrent environment. The basic element of the language is the

process. A process simply performs a series of actions and then terminates. The

design of Occam and the Transputer were linked so the Transputer could directly

implement the concept of an Occam process. Simple processes are then combined

by structures known as constructors into larger processes which themselves are

linked by further constructors to form larger processes still and so on building

into a hierarchical program structure. The language is introduced in a paper by

its designer D.May[22] and largely reprinted with some additions to highlight its

use as a design formalism in a later joint paper[23]. The present state of the

language, Occam2, is outlined in an introductory tutorial available from Inmos

which includes a formal language definition[24].

It is possible to divide Occam into two parts, those features which the

language uses to define parallelism and communication between parallel processes,

and those which are used to direct sequential processes. Before highlighting the

primitive (i.e. fundamental) processes and constructors which allow Occam to

support concurrent code execution, it is useful to outline the range of constructs

which are more familiar to the programmer from sequentially based languages.

As well as supporting assignment (the first primitive process), Occam supports

conventional sequential code execution by the use of a SEQ construct and branch­

ing for conditional execution of processes by using the IF construct, with boolean

conditions preceding each process. The structure of these constructs is shown in

figure 2.2(a). The SEQ construct executes the following processes from top to

bottom and then terminates. The IF construct executes the process associated

with the first boolean statement which is evaluated as true and then terminates.

Again the order of evaluation is top to bottom.

Equivalent constructs for the execution of concurrent processes can be

identified, but first the concept of a channel must be introduced. A channel is a

one way, point to point communication link between two parallel processes. Two

14

primitive processes are used to communicate over the channel, the output pro­

cess which offers information to the channel and the input process which accepts

it. Communication between the two processes is also synchronised, taking place

only when both processes are ready. The two constructs analagous to the SEQ

and IF constructs, using channels are the PAR construct and the ALT construct

respectively. The PAR construct, short for parallel, defines each of the following

processes to be concurrent with the other processes in the construct. When all

component processes of the PAR construct have terminated the PAR construct

terminates. Communication between processes, for synchronisation, data transfer

or both is carried out exclusively by channels as variables may not be shared be­

tween components of a parallel process. The ALT construct, short for alternative,

has a number of channel input processes with a further process associated with

each input. The first channel to synchronise with its corresponding output pro­

cess completes its communication, its associated process is then executed and the

whole process terminated. The analogy between the channel input process and

the boolean construct in the IF process is evident. The form of the concurrent

constructs are outlined in figure 2.2(b).

In addition each of the constructs can be used to form a construct replica­

tor, equivalent to a list of processes with suitable subscripts under the constructor.

This is particularly useful for the manipulation of arrays of variables or channels.

Finally a WHILE statement is included to provide a loop construct with termina­

tion on the evaluation of a boolean flag as false, similar to the PASCAL command.

2.3 Simulator Software Organisation

2.3.1 Environment Overview

The design of the simulation environment was based on a simple six stage

conceptual model. The first stage is initialisation of the system. The next three

stages cooperate to modify, simulate and retrieve information for the duration

of the simulation. Finally the information retrieved must be stored for future

analysis and possibly used at that time for on-line reporting. During the initial

discussions on the development of the simulation environment, in addition to this

15

basic breakdown, it was decided an additional important consideration should

be the ability of the final product to be used both as a research tool and also

as an instrument for network investigation. In its second capacity an important

attribute the environment must possess is the flexibility to allow an operator to

construct and analyse conditions of interest without detailed knowledge of the

products internal implementation or operation. To accomplish this input and

output interfaces were constructed around the main simulation process. These

interfaces can then pass information to and from the simulation in a formally

defined format, freeing that portion of the code from direct communication with

the operator. The interfaces can then be separately designed to present and

accept information to and from the operator with as much flexibility as desired.

Figure 2.3 shows how the conceptual model is mapped onto the two interface

processes and the enclosed simulation process by the definition of each process as

one of three components of a PAR construct. It also shows the major interprocess

communication during the simulations progress and the final post processing stage

carried out external to the environment. This is done to take advantage of various

graphical and analytic software readily available.

Based on the preceding description, each of the interface processes can be

further broken down into the areas of initialisation, the period during simulation

and the period immediately after simulation. The input interface, has a number

of processes which cope with the demands of the operator and the environment

during each of these periods. The first process allows the operator to construct a

network topology and furnish all the necessary information for the particular net­

work simulation desired, i.e. capacities, traffic, operation parameters, protocols

etc. When the simulation definition stage is complete this process then transfers

the portion of information required by the result processing stage, for its on-line

calculations, to the output process. It then uses the operators definition of the

network topology to configure the simulator hardware into the necessary simula­

tion topology (see section 2.4) and loads each Transputer card in the topology

with its relevant block of code, according to its function in the simulation (see

section 2.6). Finally when the simulation software has been successfully exported

to its hardware the the process initialises the simulation and terminates.

16

Two processes, running concurrently, make up the second component of

a sequential construction within the input process. The first of these processes

undertakes the control and implementation of modifications to the simulation

process. It has two major functions, first to interact with the operator allowing

him to define a set of interruptions in the simulation through which modifications

can be introduced, and secondly the transmission of these interruptions at the

appropriate time to the simulation process. The modifications range from a simple

pause in the simulation, through extraction of results, to the modification of traffic

levels through the network or even variation in network topology by the simulation

of component failure. Injection of these modifications to the network is done by

periodically synchronising with the simulation process at the time scheduled for

the next interruption ~nd transmitting modifications labelled for that time.

The second process runs concurrently with the modification process. It

accepts input directly from the keyboard and passes it to the modification process.

However it also communicates with the result processor both during and after the

simulation. This is necessary because the operator's input has to be divided

between the modification process residing in the input interface and the on-line

analysis residing in the output interface. It acts as a simple input demultiplexor,

accepting input and forwarding it to one of these two processes according to the

purpose of the instructions.

The output processes, the complement of the input process, can be con­

sidered as a combination of three simple processes arranged in the same form as

the input process The initial process collects data on the particular network un­

der investigation. This allows a number of network parameters to be defined for

subsequent use in the calculation of network statistics. The remaining functions

can then be most simply divided into the two main areas of data collection and

manipulation. When the first process receives data from the simulation process

in the form of a result dump it is filed for future analysis and a copy passed to the

second process. This second process then performs any on-line processing required

and together with instructions relayed through the input interface to the output

interface, maintains a graphical and numerical display of the simulations progress

up to its last reported state.

17

Finally, between these two processes is the simulation process. In the

next section this process is considered in more detail. In particular a second layer

of concurrency is introduced within this process to optimise execution time.

2.3.2 Simulation Process

The simulation process which lies at the heart of the software model in­

terfaces to the input and output processes via single channels into and out of the

process respectively. Internally the simulation process models a N node network

. by the construction of N identical parallel processes known as nodal processes.

These processes are connected by pairs of channels to allow two way communica­

tion and organised so that the resulting topology reproduces the topology of the

network defined by the operator. Figure 2.4 shows the simulation process as it

appears to the interfaces and its internal decomposition into the nodal processes

and connecting channel structure for the simple example of a 5 node fully inter­

connected network. Two of the nodes in the network have a single additional

channel each. These map onto the external input and output interface channels

and act as communication gateways for the network.

In general sequential simulation times are functions of both network size

and average traffic density at a node. By dividing the simulation process into N

parallel processes, a degree of concurrency equal to the size of the network has been

produced. If fully exploited by the accompanying hardware the execution times

of network simulations using this structure should theoretically be independent of

network size. The rate of progress the simulator makes should then be dictated

by the most heavily loaded nodal process, as other processes cannot proceed at

a greater rate than the slowest member of the structure if synchronisation is to

be preserved. In reality the simulation rate is also dependant on the availability

and fundamental limitations of the hardware on which the nodal processes are

implemented and the full benefit of such a division is not always available. This is

discussed in a later section, after the hardware environment has been introduced.

2.3.3 Nodal Process

Each of the nodal processes, configured in the software model to reproduce

18

the desired network topology, replicates an identical process which executes a

data processing algorithm used to simulate the operation of a network node. In

addition it also contains two other processes which allow it to communicate with

neighbouring nodal processes to accept, forward and transmit information through

the network. The first process allows initialisation information, defining each

nodes characteristics and local traffic details, to pass through and be accepted by

each node. The second process accepts, implements and forwards modification

information which may introduce changes into the network model and request

network status updates. The relationship between the three processes is shown

in figure 2.5. After each node has received its own initialisation information it

alternately executes either the simulation process or the result access process,

modelling the network or accessing the present network status for modification or

extraction.

We now consider the core process within each of the nodal process which

executes the call processing algorithm. The process has to meet two major con­

ditions. First the process must implement the data transfer protocols defined for

the connection, transmission and termination of calls across the network, accord­

ing to the networks type and operational parameters. In addition each process

must also support concurrent communication between themselves and their neigh­

bouring processes in such a way as to avoid the introduction of conditions where

two or more processes could deadlock. Figures 2.6(a) and 2.6(b) shows how the

implementation of code in a single sequential process or the division of the process

into three separate parallel processes, separating the input and output processes

from the data processing stage, fail to meet the second of these requirements. In

each case the inherent synchronisation of channel communication provides suit­

able ronditions for deadlock between two neighbouring nodal processes. In the

case of a single sequential process, two nodes may both be either waiting for in­

put or trying to output to each other. Deadlock similarly occurs in the parallel

implementation when two nodes wish to communicate to each other but find their

reciprocal input process on each others node already occupied. The inability to

complete the communication prevents these processes from accepting further in­

formation and leads to local deadlock. Both examples can easily be expanded to

19

to larger examples involving a larger number of processes.

A solution to deadlock avoidance was constructed by adopting a nodal

architecture of the form shown previously in figure 2.5. The simulation process

has four parallel processes, arranged to form three subsidiary processses which

communicate with the fourth through an ALT structure. The fourth process

maintains the nodal data structure. The three interface processes control input to

the process, transmission from the process and the internal generation of traffic for

injection into the network. The input and output also multiplex and demultiplex

calls from and to neighbouring nodes over input and output channels. Each of

the three processes competes for the attention of the central process via the ALT

structure if it is active, i.e. still has processing to perform. On selection by the

central process data transfer takes place between the two processes. In the case of

the input and generate processes, data is transferred into the central process, while

the output process accepts data from the central process after initial exchange of

an access token from the output to the central process. In this way if one of the

input or output processes is waiting to synchronise over an external channel, the

other two interface processes are free to communicate with the central process

independent of the state of the third processes progress.

2.4 Simulator Hardware Environment

The simulation hardware can be separated into three component sections

with two interfaces linking them together. The connection arrangements of the

three components are shown in figure 2. 7. The operator interface, an IBM PC­

AT is linked to the simulator, a programmable array of Transputer cards, to

form a bidirectional data path. In addition the simulator drives a separate high

resolution graphical display unit which can be used to display information about

the simulators progress. Returning to the operator interface, the PC-AT performs

a number of functions throughout the simulation. Initially it holds the compiled

simulation code on its hard disk and executes a kernel program to allow access to

the code and the simulator environment. Functions within the kernel allow the

operator to load the simulators component processes from the hard disk and allow

20

certain of these processes access to keyboard input and the ability to direct output

to the screen. Both the keyboard anf the screen are effectively treated as parallel

processes running in parallel with the simulator. Furthermore the kernel also

allows the simulator access to the DOS illing system to create files in DOS format

and store data within them. These illes then become accessible on termination of

the kernel process.

The section of the hardware responsible for the execution of the simulation

code can be further divided into two areas, a front end and a configurable array

of Transputer cards linked by programmable crossbar switches as shown in figure

2.8. The front end is made up of several Transputer cards, in a fixed topology,

including the special purpose !NMOS B004 and B007 cards. The B004 card resides

in one of the PC's expansion slots and contains a Transputer, one of whose links

is interfaced via a serial-to-parallel converter to the IO bus of the host, providing

the link used by the kernel program and the simulator. The B007 card contains

a Transputer card onto which is memory mapped i of a MByte of video RAM

which drives a video controller which drives the display unit mentioned earlier.

These cards and their neighbours in the fixed front end execute the input and

output interface processes, leaving the actual simulation process to be executed

on the second section.

Communications between the two sections of the simulator hardware are

carried out over two further links connecting the fixed front end to a C004 switch,

the first to control it and the second to send and receive data to and from it. The

!NMOS C004 switch is a 32 input by 32 output crossbar switch[25). Programmable

from a Transputer link it allows any of its 32 inputs to be uniquely connected to

any of its 32 outputs, preserving the concept of point-to-point communication

introduced by Occam and the normal connectivity of Transputer links by retaining

a 1 : 1 mapping over the input and output sets. One C004 has sufficient inputs and

outputs for a maximum of only 8 Transputers (4 links on each Transputer, with

an input and an output on each link). So in order to provide sufficient switching

capability to support 32 Transputers, a second set of 4 C004's are arranged to

form the second layer of a two layer hierarchy using the primary C004 as a master

controller.

21

Four links from the master C004 are used to control the operation of the

slave C004s by forwarding instructions from the front end, through the master

switch. Another set of four links connect the master C004 to each slave C004 to

provide a data path between the front end and every slave switch. The remaining

input and output pins of each slave are connected to the output and input pins

of an array of Transputers, each of which sits in a card with 1 Mbyte of external

RAM. The links on each of these Transputers are paired, links 0 and 1 forming

one pair and links 2 and 3 the other pair. An input from each pair and its partners

output are fed into each of the slaves, each of the four slaves accepting the same

duo from each Transputer. This allows the C004s to be programmed in such a way

that any Transputer in the array can be configured to communicate directly with

any other Transputer (including itself) over either of the two pairs of links. For

example a Transputer using link 1 can communicate with any Transputer over its

link 0. Compare this with full connectivity where any Transputer could communi­

cate with any other over any link pairings and this may seem restricted, however

this arrangement provides an economic, flexible approach using the minimum of

switching hardware.

2.5 Distributed Constructs

2.5.1 Master-Slave Constructs

When connecting a network of Transputers into a topology suitable for the

mapping of an arbitrary network model a major consideration is the availability of

the point-to-point serial links. At present each member of the Transputer family

provides only four links. This poses a problem for highly connected networks

where the number of immediate neighbouring nodes is considerably larger than the

number of serial links provided. The solution lies in the formation of Transputer

modules incorporating two or more Transputers in a linear chain. This provides

a total of 2 + (2 x n) links for an n Transputer chain. The link availability of a

single Transputer and chains of two and three Transputers are compared in figure

2.9. In any one module, one of the Transputers is declared the master. This

Transputer controls the execution of the nodal process and contains the bulk of

22

the code to impleme~t it. The remaining Transputers are referred to as slaves and

execute small processes which multiplex incoming calls down a single link toward

the master Transputer. In the opposite direction they also accept outward bound

calls from the same link, demultiplex them and transmit them to neighbouring

processes. Distributing the input and output processes over several Transputers in

this way effectively provides the nodal process with the link availability it needs. In

addition it does so without increasing the load on the master processor above that

which would normally be applied, for the equivalent traffic density, over a network

which could be accomodated by single Transputer nodal processes. However,

it does tie up Transputer cards with the relatively menial task of forwarding

messages, squandering much of its processing ability.

2.5.2 Interface Access

An important function of the simulation environment is its ability to

interact with the operator as it progresses through the simulation . run. This

enables the operator to control the rate at which the simulation reports on its

progress, access the results produced so far and introduce modifications. To do

this the interface processes and the simulation process must establish a protocol

to introduce, extract and incorporate information into and out of the simulation

process at the correct time and place. This is done by first establishing a path

through the simulation process. The path consists of a chain of nodal processes,

linked at one end to the input process and linked at the other end to the output

process, which passes through every nodal process once and only once. Using

this path in conjunction with the access process on each nodal process, data

can be introduced at the input process, travel down the chain and be finally

received at the output process. At the end of every interruption of this form, the

final data stream contains the time of the next interruption which provides the

information necessary for each nodal process to synchronise its termination for

the next interruption.

2.5.3 Sychronisation

An essential part of any simulation is the construction of a clock mecha-

23

nism which can be used to schedule future events in the correct sequence. Broadly

speaking clock mechanisms for discrete simulation techniques fall into one of two

mechanisms, asynchronous discrete event and synchronous discrete event. Each

mechanism characteristically contains list structures with forthcoming events and

the times at which they are scheduled, this is known as the 'event list'. In an

asynchronous mechanism the time at which any one event occurs is referred to as

an event epoch and no two event epochs are allowed to occur simultaneously. The

simulation typically jumps from epoch to epoch, skipping over the intervening

periods in which no event has been scheduled. The alternative clock mechanism,

using a synchronous discrete event mechanism divides simulation time into incre­

mental steps. All event epochs falling within a step are grouped together and

are assumed to have taken place simultaneously. The simulation progresses by

incrementing the simulation clock at each step and scanning the list structures for

scheduled events within that step.

In general an asynchronous discrete event approach is favoured in con­

ventional simulations because of limitations in the flexibility and performance

of synchronous implementations under certain conditions. In particular priority

problems can arise when the order in which events falling in the same incremental

slot are executed affects the course of the simulation. The limiting factor on the

simulators performance arises as a product of attempts to increase the accuracy

of the simulation by reducing the size of the incremental step. Increasingly this

wastes processing time scanning data structures in which no events are currently

scheduled, in direct contrast to the asynchronous approach which skips over such

periods to the next epoch. In their favour synchronous schemes allow easy imple­

mentation of structures involving constructions of the ' ... if not done by ... then

do ... instead' form, by simple checking of the data structure on each increment un­

til either the condition is fulfilled or a sufficient time has elapsed for the alternative

event to occur. Purely asynchronous structures have more difficulty in implement­

ing such conditional statements as the clocks progression is only between event

epochs into which constructs involving alternative action after specific delays do

not easily fit.

The implementation of such clock mechanisms in conventional simulations

24

running on machines using sequential architectures requires only a global variable

location in which to store its current value. When constructing equivalent clock

mechanisms in a distributed environment such a convenient implementation is not

available and an alternative approach must be adopted. Equally in the absence

of a central data structure each independent process must maintain its own local

event list, communicating with neighbouring processes to maintain synchronisa­

tion across the distributed system.

An asynchronous discrete event mechanism in a distributed network sim­

ulation could require that each communication between processes carry an explicit

time-stamp identifying the time of their arrival. These time-stamps can then be

used to schedule the event associated with each arrival, interleaving them correctly

with communications from other processes and locally generated events. Such a

system works, however, only if each process generates sufficient communications

to each of its neighbouring processes. Idle processes or those processes which are

required to communicate only infrequently with some of their neighbours can fall

out of synchronisation with one or more of those neighbours. A neighbouring

process will lose synchronisation if it finds itself without a time-stamped com­

munication to schedule from a process with a direct connection. Unfortunately

the guilty process may have no communication to offer and no idea as to when

the next event may be generated by it, this being dependant on the arrival of an

event from its own neighbouring processes. A more complex interrogative protocol

would have tobe adopted to find the oldest event in the network for execution to

ensure no event occurred out of synchronisation. This of course destroys the very

parallelism which we wish to exploit.

To overcome this a standard time unit can be declared. Synchronisation is

then maintained if each process is required to generate a null communication every

standard unit of time over each link not already involved with communications

generated by its event list. Each process then always has, in its event list, the

next scheduled arrival over each link. In return for a solution to the scheduling

problem the simulation has to be content with a limitation that is introduced as

a consequence of this definition of a standard unit. Because each process only

checks for a communication once every standard unit, an event which can be

25

generated and communicated completely within a single unit on an otherwise

idle connection will not be executed at the correct time on the neighbouring

process. Instead its arrival time will be approximated by the arrival time of the

next scheduled communication. Out of this arises the usual trade-off between

accuracy and overhead in determining the size of the standard time unit.

A synchronous discrete event mechanism also requires a communication

overhead to maintain synchronisation. Each node again has an event list of future

operations and their scheduled time for implementation. When the simulation

is active each nodal process carries out all the operations scheduled within that

time interval and then increments their clocks and re-examine their event lists

for the next series of operations. Neighbouring nodes inform each other of such

increments by the transfer of special communications at the end of the stream

of data packets associated with each increment. A simple protocol to implement

such a scheme is described in figure 2.10(a) Result and modification access simply

consists of comparing each nodes simulation clock against the value assigned to

the next interruption at each increment.

This mechanism will maintain synchronisation over the network as long

as nodes are not considered to be transparent and generate further transmission

events within the same time interval as the original event. In such a case a

receiving node may receive a communication from an initiating node and generate

its own communication, where that communication was scheduled for transmission

in the same time interval as the original communication. If the receiving node

has already scanned its event lists for scheduled events and found none, prior to

this arrival, it may already have decided that it has no transmissions to complete

in this interval and informed its neighbours of this fact. It cannot then send the

communication, created by the subsequent arrival, in the correct interval. Neither

however could it wait indefinitely for such an arrival as it may not have existed and

the node may indeed have no further processing to complete within the interval.

To limit the frequency of such occurrences a simple protocol can be im­

plemented across each pair of channels connecting the nodal processes which post­

pones the actual clock increment until the protocol has been complete. The pro­

tocol defines the number of pairs of end-of-increment transmissions that must be

26

received without an interleaved data communication before a link is said to be safe

to close for the remainder of that increment. Thus if a node scans its data struc­

ture and finds no more events, it can transmit communications to its neighbours

informing them of the fact knowing that if it later receives a communication from

one of them, that link will automatically be re-opened for a possible reply. In

addition if the node forwards the message it may find a link in a similar position

and be able to transmit it straight away. Obviously the greater the number of

re-attempts defined in the protocol the greater the probability of catching such

sequences of events, but correspondingly the greater the overhead associated with

each increment of the clock.

Which of the two approaches to adopt depends on the specific require­

ments of the simulation. A packet switched simulation, if it is to be meaningful,

must produce a high degree of accuracy so that the delay a packet experiences can

be assessed and compared to many similar delays incurred by other packets. The

circuit switched package has a greater degree of flexibility as the major criteria

under investigation is path availability. Each call experiences either the presence

or absence of a resource. Factors such as set-up times and packet interleaving

are less critical· and can therefore be modelled more generally. For this work an

asynchronous clock mechanism, ensuring a highly accurate simulation environ­

ment was chosen for the packet switched simulator. The obvious choice for the

standard unit of time is related to the transmission time across the network links

as shown in figure 2.10(b). The more general synchronous approach was used in

the circuit switched package, relying more on the statistics of bulk arrivals than

the elegance of individual treatment.

2.6 Network Partitioning

The software has been constructed to allow a degree of flexibility in the

way it is mapped onto the available hardware. This allow a number of options, or

, modes, which the operator can select from to tailor the simulations performance

and output to his individual needs. As mentioned before, a single Transputer has

the ability to successfully support any number of parallel processes by using its

27

microcode scheduler and a time-slicing arrangement. Indeed this is a necessary

function the Transputer must support to execute even a single nodal process

successfully. Thus given M Transputer cards on which to model the network and

an N node network, the allocation of nodal processes can be undertaken in a

number of different ways to create a variety of simulation processes with varying

characteristics.

First, if there are sufficient Transputer cards, the M cards can be grouped

into N master-slave combinations (if slaves are necessary) to produce a sufficient

number of modules with sufficient connectivity to completely recreate the network

topology in hardware. Each Transputer will execute code for a single master or

slave process and all topological links will be mapped onto hardware links between

Transputers. An example of such a network is shown in figure 2.11, showing an

array of processes mapped onto a hardware array of identical topological arrange­

ment. In this configuration the simulation will proceed at its maximum execution

rate, exploiting the full parallelism of the network. Unfortunately, although this

method produces the greatest performance, for large networks or networks with

densely connected nodes, the number of Transputer cards required to reproduce

the entire network or to act as slaves to produce the required connectivity for each

module may greatly exceed the number available.

In cases of insufficient or impractical hardware requirements for a one-to­

one mapping of hardware modules to nodal processes, a solution lies in reducing

the parallelism of the problem by network partitioning. Here the network is di­

vided into node clusters of one or more nodal processes. Each cluster is then

implemented as a number of nodal processes running in parallel on each Trans­

puter module, made up as before. To retain the entire network topology, local

switching processes on each module act as interfaces. Each switching process

multiplexes software channels from each nodal process onto the hardware links·

of the Transputer module with an extended data protocol enabling the messages

ultimate destination to be determined on arrival at an appropriate cluster.

Extending the idea of network partitioning to its logical conclusion it is

also possible to run the entire N node simulation on a single Transputer. In this

case N nodal processes will run in parallel with a single topology generator which

28

maps the software channels from each nodal process onto each other to once again

create the desired topology. For a single Transputer there is obviously no parallel

execution of code but concurrency of a different form can be introduced. Assum­

ing each of the M Transputer cards has sufficient memory, each card can execute

the same network model on each card with independent random number seeds

to produce M independent result files of the same model at the same time. A

mapping of this form is shown in figure 2.12 for the same network as the previous

example. This has obvious benefits in the subsequent analysis when calculating

such parameters as variance and confidence intervals for the simulation results.

Solutions of an intermediate nature are also possible where a network of Transput­

ers could be configured to run a nmpber of independent simulations, where each

simulation is partitioned over a section of the network. The resulting performance

would produce a trade-off between execution rate and result accuracy.

The decision on the way the available processing power should be or­

ganised is dependant entirely on the operators requirements. If for example the

simulator was being used as a network design aid or as part of a real time decision

support system where the order of magnitude is more important than the confi­

dence implied by the result then the most profitable option would most probably

lie in maximising the parallelism and so performance. In contrast, many aspects

of research into network performance often requires multiple repetitions of identi­

cal simulation models (with independent seeds) to reduce statistical noise which

may swamp any single set of results. These areas include topics such as the in­

teraction of routing and flow control, transient behaviour on component failure

or traffic fluctuation, parameter optimisation and network instability effects with

no overload protection. In these cases the simultaneous execution of independent

simulations can provide the ideal medium for such investigations.

2.7 Summary

In this chapter the major design principles in the construction of a high

speed simulation environment are extracted from a review of previous architec­

tures. A hybrid of these principles is then applied to the construction of a new

29

environment using the Transputer as a parallel component, programmed in its

associated language Occam. Design features arising from the use of a loosely

coupled array of processing elements to simulate communication networks are dis­

cussed and solutions outlined to problems such as access and synchronisation.

Finally the variety of modes in which the simulation engine can be configured

are presented and the advantages of each orientation explained in terms of the

trade-off between performance and accuracy. In the next chapter analytic and

simulation models are presented for the performance analysis of fully connected

circuit switched networks. The simulation model is designed in such a way that

it can use the Transputer surface just descibed to optimise execution times.

30

---,

system
services

2K or 4K of
internal

RAM

External
memory

interface

64 bit floating point
unit (optional}

16 or 32 bit
processor

Link interface 0

Link interface 1

Link interface 2

Link interface 3 ~

Event (interrupt} ~~

1 6/32 bit bus

Figure 2.1 Schematic of the INMOS Transputer

SEQ IF
X

y

(a)

z

ALT
?

PAR

(b)

Figure 2.2 Occam Constructs

Modify
and

control

Modify
and

control

I nltialise

Simulation

Process and
Display

Gather
Results

Figure 2.3: OCCAM Mapping

•
~

I

•
' • •

' • •

I

•

• • •
' • •

I

•

•
' •

I

•
' •

Simulation
process

• • • •
... ~

• • •
I
I

• • w

• •

•
' •

• •
I
I

I

• I
I

•
• • • • •

Figure 2.4 Simulation process decomposition

Accept
Data

Pass
Data On

Accept
Command

Forward
Command

Input

Generate

Output

Initialise

Implement
Command

Sink

Insert
Call

Source

Figure 2.5 Nodal Structure

Input

Process

Output

Sequential Nodal
Process

either

~?~

or

figure 2.6(a) Sequential deadlock

Call 1 Call 2 Call 3

Parallel decomposition of processes

Call 3

Call 2 Call 2

Call 3

Figure 2.6(b) Parallel Deadlock

o;
I iiil I Ill II I I~

rrrrrrr

rrrrrrr

rrrrrrr

Figure 2. 7 EHternal Uiew

Input

Simulation

Output

eyboard --It\
Screen

FiHed

Filer

Graphics

Figure 2.8 Hardware Mapping

i l
i l

.. • Master

~ ~

• ~
Master

~ ~ iJ D
i 1 ~ ~

Slave
4 ~

i l

i l i l i l
• q q • Master Slave Slave

~ ¢=J ¢=J ~

i l i l i l
Figure 2.9 1 ,2 and 3 Transputer modules

Synchronous
Discrete

Time
Simulation

PROTOCOL OUT:

{O .. N} Data Packet + Finish Packet

PROTOCOL IN:

IF Finish Packet

ELSE

IF ALL FINISHED

TIME := TIME + 1
ELSE

NOTE LINK FINISHED

PROCESS DATA

Figure 2.1 O(a): Synchronous Discrete Time Model

T

• T = transmission time of fundamental
data unit between nodes

• transmission at time t reaches neighbouring
node at t+T

• events at a node cannot affect events at a
neighbouring node within time T of

generation

• to retain synchronization a timing packet need
only be sent every T seconds if no other

communication is scheduled

IMPLEMENT AS ASYNCHRONOUS
DISCRETE EVENT SIMULATION WITH

MAXIMUM INTER-EVENT TIME T

Figure 2.1 O(b) Asynchronous Discrete Time Model

Figure 2.11 1:1 Mapping

Figure 2.12 N: 1 Mopping

Chapter 3

Analytic and Simulation Models For Dynamic

Routing Strategies in Fully Connected

Circuit Switched Networks

3.1 Introduction

Since their introduction on a commercial scale telephone links, using cir­

cuit switched technology, have provided the primary source of point to point com­

munications in the world. The obvious impracticalities of a permanent, dedicated

telephone link between every pair of subscribers quickly lead to the construction

of networks to concentrate and transmit calls practically and efficiently between

communicating exchanges. Technological limitations led to the design of hierar­

chically structured networks in the 1950's which enabled the growing networks

to implement crude alternative routing strategies, allowing multiple paths for call

transmission and networks engineered to provide a predictable grade of service

(GOS).

Today, with the development of digital techniques, semiconductor tech­

nology leading to LSI and VLSI implementation of complex transistor circuits and

software engineering many of the previous limitations have been removed. Mod­

ern switching exchanges are now capable of performing a multiplicity of functions

unparalleled in the history of telecommunications. Such advances have led to a

revolution in the design of circuit switched networks, both in architecture and

management. Not least among these advances has been work generated from in­

terest in new forms of routing algorithms, themselves only made feasible by these

same advances, to maximise the performance of the new network architectures.

An important class of these new routing strategies use adaptive algorithms which

seek to optimise their behaviour by modifying their route selection according to

information on the state of the network.

In this chapter adaptive routing and its place in the newly emerg~ng

network architectures is reviewed. Analytic and simulation models are then intro­

duced to examine the behaviour of a wide variety of strategies in fully connected

45

networks, where every node is connected to every other node by a full duplex

connection. Section 2 identifies the major innovations which have brought about

these changes and describes the effects they have had on the type and way in

which information is carried across the network. Section 3 describes the routing

strategies which have been developed to route calls across the networks. A classi­

fication system is introduced to categorise strategies according to their method of

operation. Finally some additional techniques which have been developed to pro­

tect networks components from degradation under overload, and which are used

in conjunction with these routing strategies are also mentioned. Section 4 out­

lines the specification of the circuit switched simulation package which was used

to analyse the comparative performance of these routing strategies. It was de­

signed to incorporate a number of features which allow it to model the processing

capability of the nodal exchanges, giving it a degree of flexibility in its operational

characteristics. Finally in section 5 analytic models, based on Markov chain the­

ory, are derived to calculate the performance of different routing strategies for the

case of single and multiple traffic sources in a network.

3.2 Evolution of Circuit Switched Networks

3.2.1 Network Architecture

Historically circuit switched telecommunication networks employed elec­

tromechanical switching exchanges arranged in a hierarchical structure[26]. This

guaranteed loop free connection paths under a routing strategy which used a

fixed sequence of routing alternatives at each node to form a path through the

network. This limitation in route selection was a product of the lack of available

network status information and the hardware limitations imposed by the hard

wired switching arrays used in these exchanges. In addition the administration

of a hierarchical network and the engineering of trunk capacities for peak traffic

conditions were found to be relatively simple in comparison to non-hierarchical

networks. An example of such a structure, based on the old AT&T toll network

is reproduced in figure 3.1. It shows a section of a five layer hierarchical network

connecting two end offices. Two distinct classes of link can be identified. The

46

dashed connections show some of the possible high usage links which may connect

exchanges and which form preferred routes between the two ladders of the hierar­

chy along which a call can be routed. The solid lines indicate final trunk groups

and together form the route a call would attempt last before finally being blocked

by the network. Some or all of the high usage trunk groups exist between all end

offices depending on their relative locations geographically and their importance.

A call would first attempt the direct path between the two end offices (if

such a link existed). If that path is unavailable it is routed up to the next exchange

in the hierarchy where there may be further high usage trunk groups. The call

will attempt to find a path on one of these in order of ascending connection up the

hierarchy. If these paths are unavailable the call progresses to the next exchange

up the hierarchical ladder. This process of climbing the hierarchy continues until

the call is successfully routed over a high usage trunk group or a final trunk group

between two exchanges is unavailable whereupon the call is blocked. On traversing

the hierarchy to the destination ladder the call is routed down the ladder, making

use of any high usage trunk groups, to the end offfice. Again the call may be

blocked at any stage if a final trunk group is unavailable when the call tries to

acquire a link on it.

Advances in signalling and switching systems and the rapid growth of

teletraffic have lead to a good deal of research into network efficiency. It has

been demonstrated[27,28] that considerable performance benefit can achieved by

replacing some of the layers in the hierarchical network by a densely connected

mesh structure with an appropriate routing policy. This allows the network to

make effective use of spare capacity within the network caused by stochastic traffic

fluctuations, forecast errors and non-coincidence of peak traffic across the network

(especially in continental and world-wide networks). A hierarchically structured

network is unable to do this because of its inherently static nature where each area

must be dimensioned for peak traffic levels as it is unable to share its resources with

the rest of the network. In comparison consider the small mesh network shown

in figure 3.2. In the network two exchanges A and B (which may serve an area

with a hierarchically based network beneath them) wish to communicate. The

most direct path would be attempted first. If the call was blocked an alternative

47

path will then be attempted using one or more tandem nodes in the network.

The details of the path selected will vary with the routing policy adopted but

the essential feature is the equal importance of each node to each of the other

nodes and the ability this gives it to share transmission bandwidth to create a

path between the originating and destination nodes.

3.2.2 Switching Exchanges and Call Connection

The switching exchanges in circuit switched networks have to deal with

the closely coupled tasks of providing dedicated bandwidth on the transmission

links over which the calls are routed in and out of the exchanges and providing

a dedicated connection between these two links. Before the arrival of modern

digital telephone exchanges such a service was provided by frequency division

multiplexing the transmission link bandwidth into separate frequency bands and

connecting them via cross-point switching arrays using relays or semiconductor

connections. Figure 3.3(a) shows how the transmission bandwidth is divided be­

tween two exchanges on a connecting trunk. In this example N channels are

carried in a frequency band of fHz beginning at f sHz. Considerable research

went into the formulation of cascaded cross-point switching arrays to provide

non-blocking and low blocking switching array combinations for large exchanges.

In contrast modern telephone exchanges contain dedicated processor controlled

systems and the transmission information is digitised for transmission using time

division multiplexing. Calls are sampled and transmitted in pre-defined order to

form a transmission frame. A typical frame is shown in figure 3.3(b) showing

24 channels transmitted in a 125j.tsec frame. This is the standard format used

in America, Canada and Japan providing a bandwidth of 64kps to each channel.

Switching from input to output channels can be simply achieved by reading the

data frames into local memory at each exchange and reading back out the relevant

sample into a suitable slot in the output frame. In switching networks such as the

AT&T ESS No4™ a combination of digital and analogue switches are cascaded

to give large handling capacities.

The introduction of digitisation and the installation of sophisticated

switching exchanges in modern circuit switched networks also enables the net-

48

work to offer new functions not previously available with the previous analogue

systems. Functions such as call forwarding, automatic re-dial, priority access and

free-phone services can all be coded into the call connection signalling at the in­

ception of a call. In addition the use of high frequency digital transmission allows

the efficient transmission of digital data over the telecommunication networks.

Although voice traffic stills accounts for the majority of the service, the ability of

the network to handle digital data is greatly enhanced and transmission rates of

64kps plus the growth in the use of optical fibres provide greater incentives for

the network to be used for these purposes. Modern systems can provide order of

magnitude improvements over the analogue 14.4kps or 9.6kps bandwidth links.

As was briefly mentioned above the increasing power and sophistication

of the switching exchanges has lead to changes in the manner in which a call is

established between two parties wishing to communicate across the network. In

any circuit switched call a dedicated path must first be established over which the

call can take place. This is described as a circuit. The circuit may take a direct

path between exchanges or may pass through one or more intermediate exchanges.

However at each stage a channel between the two communicating exchanges must

be secured for a successful connection. In all circuit switched networks this is

done by the transmission of control messages between the exchanges. Conven­

tionally these messages are transmitted on the same channels as are to be used

to transmit the information carried over the network on successful completion

of the connection. This form of call connection is known as in-band signalling.

With the digitisation of the telephone networks, however, a second method of

call connection has been developed, this is known as common channel signalling

(COS) or common channel interoffice signalling (CCIS). In COS the connection

information is carried on dedicated channels (time slots in each frame) or on a

separate COS network alongside the circuit switched network. As the information

carried by the CCS network is in the form of short packets of information it can

use packet switched technology. This greatly reduces call connection times and

increases the network signalling capacity as the data can be efficiently transmit­

ted over dedicated, high bandwidth links. A great deal of network flexibility is

also introduced with CCS methods as additional information can also be carried

49

over the signalling system in digitised form, enabling the implementation of the

advanced network functions mentioned earlier, network management operations

and advanced routing techniques.

3.3 Routing Strategies in Circuit Switched Networks

3.3.1 Classification of Routing Strategies

With the advent of non-hierarchical networks the fixed sequence of routes

via high usage trunk groups, followed by the final trunk group engineered to

give the required grade of service, is no longer the only option open to network

designers. The upper layers of the hierarchical networks are now being replaced

by densely connected mesh networks with peer nodes requiring a new type of

routing. Let a path between two nodes be defined as a collection of trunk groups

which connect two nodes, possibly via one or more intermediate nodes. Then

any routing strategy in a non-hierarchical structure must provide one or more

paths through the network for calls in that network from the calls origin to the

destination and some method for selecting amongst them.

Each of these paths can be considered as a route. The way in which these

routes are determined by a particular strategy can be used to classify the strategy.

This enables us to build up an understanding of the fundamental similarities and

differences between algorithms under comparison. The following classification is

adapted from Grandjean's paper on the introduction of non-hierarchical routing in

telecommunication networks(29] and the approach of Gerla(30]. A diagrammatic

breakdown of the classification of a routing mechanism of operation is given in fig­

ure 3.4. Fundamentally a routing strategy is said to be dynamic if the mechanism

by which the routes are selected allows the selection to change its form according

to some function of a variable or set of variable parameters. If a routing strategy

does not meet this criteria it is said to be fixed. Dynamic routing strategies can be

further sub-divided into adaptive and time-dependent schemes. In a time depen­

dent strategy the selection of routes through the network, or the criteria by which

they are judged, uses time as the variable parameter. In a purely adaptive strat­

egy the decision of route selection depends on information about the state of the

50

network available to the strategy at the time the route selection is made. Adaptive

routing can be divided again into schemes which use information on the global

state of the network to make their decisions and those who base their decisions

on locally gathered information. This may entail neighbouring nodes exchanging

special 'routing'packets to acquire the information necessary to formulate their

selections. The special case where no information of this type is exchanged, each

node making their decisions on information contained exclusively within the node

is known as an 'isolated' routing algorithm. In general routing strategies using

global information use special purpose network routing centres in which to gather

and process network information and are referred to as centralised. The alter­

native, which allows each node to make its own routing decisions is known as a

distributed routing strategy. An interesting combination of these two extremes is

the hybrid routing policy which combines the two forms of algorithm[31]. Here

a centralised routing centre would periodically inform each node of a selection

of actions which were most favourable. Each node would then be free to choose

from amongst selections as it saw fit until the next update. A possible implemen­

tation derived from work in packet switched networks is described in work done

by Girard and Hurtubise[32]. Policies of these form combine information from

a centralised global optimising algorithm with a distributed component allowing

each node freedom to react to traffic fluctuations between updates.

Finally one important distinction between routing strategies not covered

by this classification is the mode of path selection, which is defined as deterministic

or stochastic. A routing strategy is said to be stochastic if the choice of a route

is governed by a probabilistic method. The complement of stochastic routing is

deterministic routing where the selection of routes is made in a pre-defined order.

As an aside from the classification of routing strategies, but worthy of

mention as a distinction in operation, is the method of control used during the

call connection phase. In originating office control (OOC) the origin node ensures

a path has been established to the destination node before routing the call. This

can be done using CCS with control being returned to the origin node in the

event of blocking at a tandem node. In sequential office control (SOC) the path

is established on a node-by-node basis. If a call at a tandem node is unable to

51

locate a route to the destination the call is blocked at the tandem node and lost.

3.3.2 Review of Current Routing Stategies

In this section the routing strategies currently employed by the major

telecommunication companies are described and the research they and others have

undertaken to further the understanding of routing in circuit switched networks

summarised. All the algorithms described here are for implementation on non­

hierarchical networks and can be classified under the scheme described in the

previous section.

Fixed routing

Fixed routing describes any routing policy which is invariant to external

influences and can be either deterministic or stochastic. A deterministic, fixed

routing policy is also known as automatic alternative routing (AAR) and is a

direct analogy of a fixed hierarchical routing strategy. In this strategy the call first

attempts the direct link and, failing that, attempts one or more routes via tandem

nodes in a fixed sequence. If a path has still not been found at the exhaustion of

the sequence the call is blocked. An example of such a strategy is implemented

on the European AUTOVON network which forms part of the worldwide Defence

Communication System (DCS). This network uses OOC with spill forward which

enables tagged tandem nodes to act as origin nodes to increase the range of paths

available for calls[33]. The task of optimising a network using fixed, deterministic

routing for forecast traffic is discussed in a paper by A.Girard[31], who defines

the problem for a fixed network configuration and introduces heuristic methods

for accelerating the calculation time for the iterative solution.

The second form of fixed routing, fixed stochastic routing, uses an invari­

ant probability distribution to select an alternative path if a call is blocked on the

direct path. If all outgoing links have equal probability of selection, regardless of

network parameters, the strategy is known as random routing. If however the dis­

tribution of selection probability is modified according to the trunk capacity the

stochastic strategy falls into a category broadly labelled as proportional routing.

An example of this strategy occurred in the Bell-Northern toll network during the

transition from analogue to digital exchanges(27] to route overflow traffic from an

52

unintelligent analogue node to an intelligent digital node for selection of a route

to the calls destination.

Time-Dependent Dynamic Routing

Dynamic Non-Hierarchical Routing (DNHR) is AT&T's dynamic routing

strategy implemented in its intercity toll telecommunication network. It is sub­

stantially a centralised, time-dependent, deterministic, dynamic routing policy

and is used to route calls in a densely connected mesh network of 'tandem offices'.

Each tandem office is then serviced by many smaller exchanges using hierarchical

routing which concentrate the traffic for destinations across the network and feed

it to their local tandem office. Within the DNHR section of the network calls are

routed between tandem nodes using direct links or tandem paths with crank-back

(OOC) using stored program control (SPC) exchanges utilising CCIS. These will

contain N o4 ESS exchanges or those with similar specifications. The alternate

routes to each destination are selected in fixed order and the call only blocked if

all alternatives are exhausted. The algorithm varies from a fixed, deterministic

policy by dividing the day into 10 periods and providing a separate sequence of

alternate paths for each period. In addition further alternate paths are provided

by a real time algorithm on exhaustion of the sequence. These enable the net­

work to take advantage of the stochastic fluctuations in traffic on the network and

are only provided if sufficient spare capacity is detected on the outgoing links.

The sequences of alternate links are calculated from the solution of a large linear

programming algorithm designed to provide optimal routing patterns to minimise

network cost for forecast traffic in each time period. This allows the network to

take advantage of the non-coincidence of peak traffic in. the network and utilise

spare capacity(34]. The program is run once a year for the main network design

and weekly to correct forecast errors with solutions which not only meet the grade

of service (GOS) required but also represent least cost deviations from the present

network state[35].

Adaptive Dynamic Routing

In adaptive, dynamic routing it is the state of the network itself rather

than any external factors which control the selection of alternative routes between

origin-destination pairs. Bell-Northern have developed an adaptive, dynamic, cen-

53

tralised, stochastic routing strategy in which a central network processor collects

data from the network nodes and transmits a suggested selection of tandem nodes

for the call overflowing its direct link. A weighting factor is also transmitted for

each suggested tandem node informing the origin node of the expected number of

free links on the path incorporating the tandem node. If the direct link between

two nodes is unavailable a route through a tandem node is selected by the origin

node. The call is controlled by a SOC process and if blocked on either link the

call is lost. The probability of a tandem node being selected is proportional to the

expected number of free links on that path. The predicted number of free links

is calculated by linear extrapolation of the most recent data on the state of each

path using the total arrival rate of traffic to each node, the number of free trunks

and the average call holding time.

While the central processor allows the best potential paths to be identi­

fied for each traffic source it suffers from the vulnerability of central control and a

delay in processing and transmitting the data back to the network. The following

routing strategies adopt a distributed, stochastic approach in which a node makes

its own routing decisions based on local information. They have the advantage of

being simple and effective, requiring only a small amount oflocal processing and

memory to store the state information. The first strategy is the stochastic learning

automata approach. In this strategy each routing alternative or action is given a

selection probability. If the direct link is inaccessible, one of the actions is stochas­

tically selected. Depending on the outcome of the call attempt using the selected

action, the probability of that action is updated. Reward and penalty schemes ex­

ist to increase and decrease the probability of selecting the action again, according

to various formulae. Different combinations of reward and punishment schemes

have been developed. In this work we focus on the extensive work has that has

been done on the application of stochastic learning automata with linear update

mechanisms in hierarchical networks[36] and small mesh networks[37,38] where

it compared favourably with fixed, deterministic and fixed, stochastic (random)

strategies, especially under focused overload and failure conditions. A summary

of automata theory is outlined in Appendix A.

A second strategy falling into the same category has been developed by

54

R.Gibbens and F.Kelly at Cambridge University[39] for British Telecom's trunk

network with the introduction of their new digital exchanges. Dynamic Alterna­

tive routing (DAR) attempts the direct link first, and if blocked then attempts

to route the call via a tandem node, the identity of which it has stored in local

memory. If the call is blocked on either link of this alternative route the call is lost

and the identity of the tandem node is re-selected stochastically from among all

the possible tandem nodes. If the call is successfully completed on the alternative

path the identity of the tandem node is retained and subsequent calls overflowing

the direct link attempt the same alternate path until a call is blocked. Simulations

on small overloaded networks have been carried out[40] but no direct comparisons

against other dynamic strategies are available in the published literature.

3.3.3 Network Protection Mechansims

When a network becomes overloaded, that is attempts to carry traffic

in excess of its engineered load, its performance can deteriorate. This can oc­

cur as a result of trunk blocking, switch blocking or a combination of the two.

Trunk blocking is the inability of the call to find a path through the network from

the origin to the destination. Mathematical analysis of non-hierarchical, sym­

metrical[39,41,42] and small non-hierarchical, asymmetrical networks with fixed

deterministic routing strategies[43), under overload conditions, produce multiple

solutions suggesting bi-stable blocking behaviour with high and low congestion

states. Further work on simulation models of real engineered networks[43] found

no evidence of the manifestation of this behaviour but did find high blocking

probabilities in networks using alternative routing at loads exceeding their engi­

neered specification. This behaviour arises from the competition between directly

and alternately routed traffic for transmission bandwidth. An alternately routed

call, because it occupies more than one link in the network, ties up more network

resources than its direct counterpart. When the network contains spare capac­

ity this is acceptable and network blocking is reduced. However, under overload

conditions the spare capacity is not available and the additional expense of alter­

natively routed calls compounds the blocking problem in the network. In overload

two states, corresponding to the mathematically observed states of congestion can

55

be envisaged. Low congestion would occur if there is little alternative routing, the

majority of the calls accepted by the network being routed directly, efficiently util­

ising the network resources. States of higher congestion are possible when there

are sizeable proportions of alternative routing in the network and much of the

trunk capacity is used for less efficient multiple link calls. The proposed solution

is the use of a trunk reservation parameter (TRP} to reserve a number of chan­

nels on each link for directly routed traffic only. With the selection of a suitably

sized value for this trunk protection scheme the bi-stable behaviour diasppears

from the model and lower blocking probabilities are generated in the analytic and

simulation models for overload conditions.

The second cause of deterioration in network performance which occurs

some time after the network enters a congested state is caused by calls being

blocked at the switching exchanges as the demand for call connection exceeds

the capacity of the switching exchanges processing power[44]. In this form of

blocking the congested state ·of the network causes increasing delays in the time

taken to process a call and a reduced probability of success. This causes multiple

attempts at call connection from the end offices compounding the problem and

eventually leading to the release of common-control components in the exchanges,

necessary for call connection, due to built in time-outs and the subsequent loss of

calls. Here dynamic overload control (DOC} can be used to control the amount

of traffic offered to a node, causing the busy tone to be automatically returned

to a proportion of the calls into the node, without attempting call connection.

Heanschke, in his paper on network management in the U.S.(44] describes TRP

and DOC in the AT&T network and describes a two-level implementation. Calls

with a low completion probability based on real-time measurements are labelled

as hard-to-reach (HTR). These labels are distributed to affected parties by CCIS

signalling methods and trunk reservation and DOC are selectively applied to these

destinations when certain congestion levels are reached. The remainder of the

network is not subject to the same restrictions until a second, higher, level of

congestion develops.

56

3.4 Simulation Model Specification

3.4.1 Network Characteristics

The definition of a nodal model is complicated by the differences in the

way that nodal exchanges of circuit switched exchanges can approach the task

of call connection using different technologies. In order to develop a simulation

model capable of mimicing the effects of these different approaches a generalised

structure was developed for the nodal design which incorporates a number of

variable features. By careful choice of these variables it is possible to tailor the

model to reflect the processing capabilities of the exchanges in a range of networks.

The structure of the nodal model is shown in figure 3.5. The processing

centre at the heart of the model implements the call connection protocol. Its

performance is determined by a number of parameters and the availability of the

processing centre is determined by the state of the 'sender' pool. There are three

parameters which characterise the processing center; the 'acquisition time', the

'release time' and the 'maximum waiting time'. The acquisition time defines the

delay a new call connection message or 'initiate' packet experiences on arrival at

the processing centre before it can be retransmitted out on the next link of its

circuit. The release time is defined as the additional processing overhead the

node incurs when an initiate packet acknowledges its safe reception at its tandem

or destination node. These delays represent the time taken by the exchange in

the assignment and subsequent processing time required by a common control

component, or sender, at the initiation of a new call and its release when it is no

longer required.

If a sender is not available the initiate message is stored in a FIFO queue

until one is released. To prevent queues building up during times when the node is

overloaded a third parameter, the maximum waiting time, defines the maximum

period a message spends in the queue before it is automatically rejected. Other

connection transmissions do not require a sender to be available as the bulk of the

necessary processing for the call connections are considered to have been carried

out and these messages are processed independently of the availability of the

common control components

57

Connection Protocol

To model the exchange of call connection messages involved in establish­

ing and clearing of calls in a circuit switched network, the simple protocol in figure

3. 6 was adopted. A node acting as the origin for the call attempts to establish a

circuit to the destination node by transmitting an 'initiate' packet. The receiving

node transmits an 'ack' back and if the receiving node is the destination follows

it with a 'accept' packet. If the node is a tandem node on a two link path, as

shown, the tandem node attempts to retransmit the 'initiate' packet on its link

to the destination. If it is unsuccessful it transmits a 'reject' packet, but if it is

successful it receives an 'ack' followed by an 'accept' packet which it retransmits

to the origin node and the connection is established. At a later date the origin

node transmits a 'finish' packet which terminates the connection.

Traffic Statistics

The arrival rate of each source is modelled as a Poisson process, where

the probability Pn(t) of n calls arriving in a time interval tis given by

where ..\ is the average arrival rate. This leads to a probability density function

for the inter-arrival timex, fx(x), defined by

This is the memoryless exponential function which is also used to describe the

distribution of the hold time or call duration t, g(t) where

g(t) = !e-tfp.
J.l.

and where 1/ p. is the average call duration. This form of traffic arrival and service

statistics use the same mathematical functions as the analytic models discussed in

the next section, allowing direct comparison of the simulation and analytic results,

within the limits of the other analytic approximations.

58

3.4.2 Software Implementation

We can now combine the connection protocol with the model of the node

processing centre to give a complete specification of the software model used to

simulate circuit switched networks. For clarity the protocol skeleton is broken

down into three sections in figure 3.7(a)- (c) corresponding to the procedure for a

node acting as an origin, tandem or destination node. Each of the nodes contains

code to assume any one of these identities according to the traffic source. In

the flow diagrams a number of well defined states can be identified in which the

node may find itself at any one time. These states are represented by labelled

boxes. The algorithm moves from state to state on the fulfillment of the Boolean

conditions, shown in bold type, or the arrival of a packet. The states Waiting,

Routing, Sender and Progressing all have timing variables associated with them,

these being the maximum waiting time, acquisition time, release time and hold

time respectively which were defined earlier. Overtime is then defined as a Boolean

variable which is always false when any of these states is entered and is only set

to true after the node has resided in that state for a period of time equal to its

assigned timing variable.

Beginning with the origin node, each call request is dealt with in the

following manner. Initially the node is said to be in a Null state before the request

is generated. On generation the node enters the queue waiting for attention from

the processing centre and if a sender is available within the allowed time interval

the call proceeds to the routing stage. If no sender is made available the call

is blocked and the node returns to the Null state. Assuming the Routing state

has been successfully reached, but a free trunk is not found the node moves into

a Sender state, and after an appropriate delay moves back to a Null state with

the release of a sender. On discovery of a free trunk however, the node enters a

Free state with the transmission of an initiate packet after the acquisition delay.

An incoming ack packet causes an extra Sender state which behaves in exactly

the same way as the Sender state described earlier, for the case of failure of the

routing algorithm to find a free trunk. The node then continues to wait for a

further packet indicating the overall failure or success of the attempt to establish

a circuit and on reception clears the call entry or moves to the Progressing state

59

respectively. On successful call connection and expiry of a period of time equal to

the hold time for the call a finish packet is dispatched along the circuit and the

call cleared.

Nodes used as tandems in a two-link path undergo transitions from Null to

Waiting states on reception of an initiate packet. Again the absence of a sender in

the defined interval causes rejection of the call, with the origin node being informed

by an ack, reject packet sequence. Successful acquisition of a sender is reported

by a single ack transmission and the node enters the Routing stage. Failure to

find a free trunk on the destination link causes the transmission of a reject packet

and a sender state to be introduced. If a trunk is found then an initiate packet

is transmitted and a Free state entered to await an ack packet, whereupon an

independent Sender state is created. The Free state is then resumed to wait for a

second packet informing the node of the circuits completion. For a two-link path

this will always be an accept packet as the destination node is considered non­

blocking. However in a network where multiple path routing is allowed a reject

packet could be returned if the circuit was prevented from reaching its destination

by the unavailability of a link on a trunk further down the chain. The node then

remains in a Free state until a finish packet arrives, is retransmitted, and clears

the call.

The protocol followed by a node acting as destination to a traffic source

follows a simple protocol involving a fixed sequence of received and transmitting

packets. On receiving an initiate packet the node transmits ack and accept packets

to accept the call and enters a Free state. A sender is not required as there is no

further network processing to be done, the call has reached its destination. The

node then remains in the Free state until a finish packet clears the call entry.

Calls are prevented from interfering with each other by the assignment of

unique identifiers to each call at each of the exchanges which make up the nodes

of their circuit. These identifiers are carried by the connection messages and used

as subscripts to identify the correct data items at each node in a similar way to

the establishment of Virtual Circuits in packet switched networks. The packet

format is reproduced in figure 3.8. Packets initiating new call connections inform

nodes in the circuit of the address, at the previous node, where data relevant

60

to the call can be found. The local acknowledgement packets carry the return

address back to these nodes to complete a two-way path. This path is then

used to direct the packets informing the circuit of the success or failure of each

connection and the termination packet used to clear the call. The model presented

here has been implemented using the OCCAM language on an IBM PC-AT with a

B004 expansion card using the D700C Transputer development system from Inmos

Ltd. A copy of the source code developed and used to carry out the subsequent

simulation experiments presented in the next chapter has been included on the

diskette accompanying this work. Full instructions on how to retrieve this code

are detailed in Appendix B.

Data Structure

The data structure for each node maintains a complete picture of the

nodes present state plus information on past events to reconstruct desired results.

The structure can be separated into the three main component areas identified in

figure 3.9, Call Progress, Node State, and Node History. The Call Progress section

uses a series of linked lists to store each currently active calls progress. There is

a separate list for each state a call may enter during its attempt to establish and

hold a circuit. Node State variables keep track of link and sender availability

for new calls and in the case of dynamic routing algorithms, the present routing

strategy state. Finally the History section of the data structure stores a summary

of the nodes response to traffic since the beginning of the simulation, especially

where and how successfully calls have been routed. The links between the various

components of the data structure indicate the main paths of data manipulation.

The Call Progress is central to these manipulations requesting, accessing and

modifying the nodal resources stored in the Node State data area and updating

the routing algorithm in the case of adaptive routing strategies In contrast the

History section passively collects statistics from the other sections of the data

structure for extraction and use in the calculation of network performance.

3.5 Analytic Models of Dynamic Routing

3.5.1 Model Assumptions

61

In order to make the mathematical models for the behaviour of call block­

ing in circuit switched networks mathematically tractable it is necessary to make a

number of assumptions about the network and traffic characteristics. The follow­

ing assumptions are made in virtually all analytic treatments of the problem[33]

and enable the formulation of the models which follow them.

1. Call arrivals for each origin-destination pair have a Poisson distribution.

2. Call holding times for each origin-destination pair have a negative expo­

nential distribution

3. Link blocking probabilites are statistically independent. This is obviously

an approximation when using paths of more than one link but allows

each link of the network to be considered by a simple Markov model by

decoupling it from the states of other links in the network.

4. Nodes are non-blocking. In the model we assume that blocking is caused

only by the inability of the routing algorithm to find an available path

through the network and is in no way constrained by the processing ability

of the node.

5. Blocked calls are not reattempted. This preserves the Poisson statistics

of the call arrival function.

6. The network is in statistical equilibrium. This allows the Markov models

to be applied to the network.

7. Call connection times are considered to be negligible and a path is es­

tablished instantaneously with no nodal processing delays. Again this

allows a simple model to be constructed for call occupancy, ignoring the

connection times which are small compared to the holding time of the

call. ·

8. Overflow traffic is also considered to have a Poisson arrival distribution

function. Again this is a mathematical approximation as the actual over­

flow traffic will not have a Poisson distribution. However this simpli­

fication allows the total traffic offered to a node to be considered as a

single Poisson arrival stream with mean equal to the sum of the direct

and overflow arrival rates.

62

3.5.2 Single Source Model

In general the analysis of dynamic routing algorithms is difficult because

of the manner in which they stochastically divide the traffic overflowing the direct

link amongst the alternative paths according to the network occupancy. The

calculations involved in investigating their behaviour must therefore be solved

iteratively as the two sets of variables, network occupancy and traffic division

over the alternative paths, are so closely linked with each other. In order to

explore the operation of different routing strategies in the simplest environment

it is instructive to simplify the network to a point where the analysis becomes

relatively straight forward. This can be accomplished by carrying out studies on

a network with a single origin-destination pair and a number of alternative paths

of fixed capacity to the destination.

By the introduction of the assumptions outlined in the previous section

the blocking probability on any path in the network can be calculated by the

application of the Erlang-B formulae[45], E(T, C), which defines the blocking

probability when T Erlangs of traffic are offered to a link of trunk capacity C and

is given by the formulae,

E(r, c) = rc tel j tor /i! (3.1)

This formulae comes from the treatment of the link occupancy as a Markov chain

birth-death model with state independent arrival rate T. Now returning to the

simple model, consider A Erlangs of traffic offered to an originating node for

transmission across a network with trunk capacities on its direct and M alternate

paths of N and Nt ... N M respectively. The overflow traffic from the direct link
. I

will be given by A where

I

A = E(A,N)A.

This traffic is then divided amongst the M paths according to the partie-
I

ular algorithm such that over any alternative path, Pm, a traffic intensity of Am

Erlangs is offered where

63

and

M

L O:m = 1 O:m ~ 0, m = 1 ... M
m=l

I

giving a path blocking probability of E(Am, Nm) for each path and an end-to end

blocking probability, B, of

M I

B = L E(Am, Nm)O:m
i=l

3.5.3 Multiple Source Model

(3.2)

In a network with multiple sources using a routing strategy which offers

alternate paths for calls blocked by the direct trunk group there will be compe­

tition between directly and alternately routed calls on some or all trunks of the

network. In these cases the total traffic offered to a link will be a combination

of the directly offered load and the overflow traffic from the other parts of the

network, sharing the transmission bandwidth. The analysis of the problem, in­

troduced here for the dynamic adaptive routing strategies, uses an extension of

models used in the investigation of symmetrical[41,42] and asymmetrical networks

. with fixed, deterministic routing[43] and limits alternate routing to two link paths

through a single tandem node. The notation follows Yum's treatment and is

presented in full, repeating some of the earlier work for completeness.

Consider an M node fully interconnected network with trunk capacities,

Ni,j, between any two nodes i and j such that Ni,j = Ni,i ~ 0 for all i, j =

1 ... M, i ':/; j. In addition let each link have a trunk reservation parameter,

ri,j = ri,i ~ 0 for all i, j = 1 ... M, i ':/; j such that overflow traffic is rejected if

there are riJ or fewer trunks available on link (i,j). Now let the directly offered

traffic intensity between each of the nodes in the network be A i,j erlangs. Two

different types of traffic can be identified as candidates for each link, labelled A;,11
'

and A~2 . A~1 is defined as the sum of the directly routed traffic Ai,j and the

64

overflow traffic offered to the link (i,j) as part of a tandem path from the other

network traffic sources. This traffic is offered to the link if there are more than

ri,j free links available on the trunk group {i,j). A~2 is just the directly offered

traffic Ai,j which is offered if there are ri,j or fewer free trunks.

From these definitions a simple Markov chain model of each trunk group

can be formulated. The subscript for each trunk group is dropped for the first

part of this derivation. Now forming a birth death model where each state in

the chain reflects the trunk group occupancy, the birth rate of calls offered to the

trunk group is state dependent (compare with to the state independent Erlang-B

model) and in state i is defined by bi where

bi = Ar,1J.L1 for i = 0 ... N - r - 1

bi = Ar,2J.L1 for i = N - r . .. N - 1

and the death rate, eli, is given by

di = i J.L 1 for i = 1 ... N

where 1/ J.L is the average holding time of a call. The model is reproduced dia­

grammatically in figure 3.10 with the Erlang-B model for comparison. Assuming

statistical equilibrium (assumption 6) the probability of n trunks being occupied,

Pn is,

{3.3)

where
N
E Pi= 1. {3.4)
i=O

Calls will be blocked if the link is found in state PN i.e. no available trunk groups,

so if y is defined as the blocking probability on a link then

AN-r Ar
P D T,1 T,2

Y = N = ro N!
(3.5)

Similarly the probability of a link accepting overflow traffic is the proba­

bility that it is has no more than N - r - 1 occupied trunk groups, which is the

probability of finding it in one of the states Po ... PN-r-1· So if we define Xr as

the probability of accepting overflow traffic with a TRP of r then

65

N-r-1 N-r-1 Ai

Xr = L Pi = L ;•1
Po {3.6)

i=O i=O t.

where Po can be calculated by summing the terms defined in eqn{3.3) with respect

to eqn{3.4) andis given by

[

N-r Ai N AN-r Ai-(N-r)] _ 1
Po = L ;·1 + L T,1 .~·2

i=O 't. i=N-r+1 't.

The difference between offered traffic and overflow traffic now requires

some distinction. The overflow traffic on a link (i,j) is the summation of the traffic

overflowing each direct trunk group in the network and alternatively routed over

a path containing the link (i,j). However the traffic offered to a link (i,j) is only

that fraction of the overflow traffic which is capable of completing the tandem

path to its destination. Because call set-up time is negligible (assumption 7),

traffic blocked on the second link of the alternative path, at the tandem node, can

be ignored and the offered traffic considered as only that fraction of the traffic

which will complete its connection by successful trunk acquisition in this link. As

an example if X erlangs of traffic overflowed from link (i,k) onto (i,j) as a link

in its alternative path, then only X x?•k Erlangs of traffic would be considered as

offered to the link (i,j), the remaining X(1 - xt•k) erlangs being blocked at the

tandem node j in the alternative path from ito k.

Returning to superscripted variables, we can now formulate an expression

for A~1 , the traffic offered to link (i,j) if it has more than ri,j free trunks. Let

the proportion of traffic overflowing link (l,m) and offered to the tandem path

containing node n be defined as almn where,

and

,..lmn = ,...mln ~ 0 l 1 M .../. .../. l
.... \A n, m, = . . . n r m r

M
L: a'mn = 1
n=l

n¢m,l

and similarly let the blocking probability and the probability of accepting overflow

traffic onto link (l,m) be defined such that

ylm = yml m, l = 1 ... M l ¥= m

66

and

xlm = xml m, l = 1 ... M lf:. m

Now consider a node kin the network and the traffic offered to link (i,j)

due to traffic overflowing direct paths between node k and these nodes. Two

terms arise from node k. One term arises due to traffic being blocked on link

{i,k) and routed over (i,j) and (j,k). The overflow traffic is given by Aikyiko:ikj

and the traffic offered to the link (i,j) is then given by Aikyiko:ikixik. Similarly

direct traffic blocked on link (j ,k) causes the second term, giving an offered traffic

of Aikyiko:ikixik erlangs on link (i,j). The traffic paths producing these three

terms are illustrated in figure 3.11 for a single alternate node Summing over all

the nodes in the. network adding the direct traffic over the link the traffic A~1 is

given by

N N
A~l = AiJ + L A{ky'ikx'ika'iki + L A~iky'ikx'ika'ikj (3.7)

k=l k=l
k¢i,j k¢i,j

Solving the series of equations defined by eqn(3. 7) for each link in the

network by iteration allows the end-to-end blocking probability for each link,

E E B pi,j to be calculated as,

EEBPi,j = yi,j L o:iik(l _ x'ikx'ik)
k=l

k¢i,j

{3.8)

from which the total network blocking probability, BP, can be calculated as

E ~.;. EEBpiJ AiJ
BP = '<1 ••

" .. A'" ~ ·'<·1. 1
I 1

3.5.4 Application to Dynamic Routing Strategies

(3.9)

By using the single and multiple source models, and in particular by

manipulation of the a: parameters it is possible to apply the model to a number

of different algorithms to produce numerical solutions for comparison both with

each other and with simulation results using the same routing strategies. In this

67

section the conditions for the application of this model are defined for the range

of algorithms studied. In the single source model a: is a vector of size M with

components,a:m, which defines the probability of selecting alternative path m. In

the multiple source model a: is a three dimensional matrix, M x M x M whose

components a:ijk define the probability of selecting node k as a tandem node for

traffic overflowing from link (i,j).

Random Routing

This is the simplest routing strategy which can be modelled using the

formulae derived in the previous sections. In this routing strategy each path has

an equal chance of selection to carry traffic overflowing a direct path. For a single

source model, random routing is analysed by assigning each of the traffic splitting

parameters O:m in an M node network, the value 1/ M. Equally simple allocation

of overflow traffic in the case of a multiple source M node network is modelled by

defining the matrix elements of a: as

a:ijk = { 1/(M- 2) for all ~,j,k where i =f. j =f: k
0 otherwiSe

Proportional Routing

In this strategy the probability of selecting a path is directly proportional

to the number of free trunks on this path. For a single source with no interfering

traffic the problem is trivial and similar to random routing. However when there

are multiple sources with alternative routing which will interfere with each other

the problem is less trivial. It can easily be seen that a global knowledge of the

network is required to calculate each paths availability through the network for

all alternative routes through tandem nodes. Here we develop equations which

allow us to solve the analytic models for both cases.

In the single source model, for M alternative paths with trunk capacities

M1 ... MM, the traffic is divided stochastically with probability of selecting path.

m, O:m given by,

Mm
O:m = M m = 1 ... M

Ei=l Mm

In the case of multiple sources the components of a: can be calculated in the

68

following manner. For each link (i,j),first calculate the average trunk occupancy,

Ti,j = Ti,i, given by

Ni,j

riJ = L iPi
i=O

where Pi is the probability of exactly i trunks being occupied defined by eqn(3.3).

The spare capacity for this link is then given by SiJ, where

The spare capacity over each path from i to j via k, S pijk, is then given by

Finally the proportion of alternatively routed calls via node k, overflowing the

direct link (i,j) is given by

This gives an expression for a in terms of the traffic flowing in the network,

which can be substituted into the series of equations defined in eqn(3. 7). The

mathematical solution applying the model to proportional routing is then the

solution to these modified equations.

This strategy encapsulates an idealistic form of the adaptive, centralised

Bell-Northern algorithm[27}. It uses a centralised routing processor which enables

it to gather all the information it requires to implement a global strategy. As

can be seen for the model above this is necessary as the selection probabilities

depend on the entire network state. Extrapolation of the network state, as is

done in the network algorithm to allow for the processing and transmission delays

is not required here as the network is in equilibrium and this solution could either

be thought of as the performance of the algorithm under continuous call-by-call

update with zero delay or, as is the case for calculation of mathematical solutions

to all of these models, the network operating in statistical equilibrium with no

traffic fluctuations.

69

Learning Automata

Simple analytic analysis of linear stochastic learning automata[46] backed

up by extensive simulation studies[47] have shown that in steady state conditions,

if each automata actions is defined as the selection of an alternative path, the al­

gorithms act in such a way as to converge to give a probability distribution which

is a function of the blocking probabilities on those paths. In particular the linear

reward-inaction (L R-1) strategy and the linear reward-penalty (L R-P) strategy

have been extensively studied. These algorithms update their probability distri­

butions on a successful action and an unsuccessful action respectively, according

to the formulae

with

Pi(n + 1) = Pi(n) + L(1- A)PJ(n),
j:/;i

0.0 <A< 1.0 (3.10)

(3.11)

for a successful action, i, where A is known as the reward parameter and the

summation is over the set of actions, and

Pi(n + 1) = BPi(n) (3.12)

with

P·(n + 1) = P·(n) + (1- B)Pi(n)
1 1 L-1 ' 0.0 < B < 1.0 (3.13)

for an unsuccessful action i where B is the penalty parameter and L is the number

of actions. In each case Pi(n) is defined as the probability of selecting action i

at stage n. These forms of stochastic learning automata are found to converge

to equalise the blocking probabilites on each path and the blocking rates on each

path for (LR-I) and (LR-P) respectively.

Using these relationships it is easy to construct a set of equations for the

single source models which can then be solved by numerical iteration to find the

proportion of traffic flowing over each path. For M alternative paths and overflow

traffic of A Erlangs a series of equations of the form

70

can be solved to find the probability distribution over the alternative paths for

the LR-1 algorithm with the constraint, as always, that Ef'!1 Oi = 1.

For the same case the LR-P converges to give a steady state probability

distribution which can be found by the solution, to the series of equations

with E~1 ai = 1.

In the multiple source model the algorithm at each node will again equalise

the blocking probability or rate for each traffic source. This can be expressed by

a set of equations relating the blocking probabilities and rates over each alternate

path, for each source. For LR-1 the equations are of the form

(1- x'ik3_/ik) = Ki,; for i,j, k = 1 ... M, k "I i =/:- j.

and for LR-P the equation take the similar form

where K is two dimensional matrix M x M whose components Ki,j are independent

constants in each case.

Dynamic Alternative Routing

A simple analysis of DAR[39] has shown that it acts to equalise the block­

ing rates on each alternative path, for each traffic source. This means the solution

to the analytic model for DAR is identical to the solution for LR-P· It also sug­

gests that LR-P and DAR should, in steady state conditi.ons, perform equally

well in networks

Optimum Routing

This is not a real routing strategy but an attempt to formulate, within

the limits of the model, the optimum traffic splitting probability distribution for

71

the single source models. Optimum in this context refers to the minimisation of

the overall blocking probability of the network with no regard for individual GOS

constraints.

For the single source model the optimum routing probability distribution

can be found by solving

M
mjn(L amE(amA, Nm))

a m=l

I.e. minimising the total blocking probability,B, over the probability distribution

Calculating the optimum routing strategy for the multiple source model

is more complex because of the larger number of degrees of freedom in the variable

space and its non-linearity, but can be simply stated as finding

E _i,j. EEBPiJ AiJ
• (•<1) mm .. .

a "' .. A'" LJ '•1 1
i<i

where the expression to be minimised is just the overall blocking probability of

the network, BP, as defined in eqn(3.9).

3.6 Summary

Recent developments in circuit switched technology, which have allowed

the implementation of advanced routing policies to be considered, have been dis­

cussed. The most important of these emerging policies are then described and

categorised. In order to evaluate the affects of such routing strategies on the per­

formance of networks in this category both simulation and analytic models are

then formulated for their investigation. The analytic models allow network block­

ing probabilites to be calculated for each strategy under classical mathematical

approximations. The simulation models, using the same statistical distributions

as the analytic models, include several user definable parameters to allow the

model to be tailored to model specific classes of switching exchanges. In the next

chapter the analytic and simulation models introduced here are applied to both

single and multiple source networks for the comparative performance evaluation

of a number of fixed and adaptive routing strategies.

72

····· I
I
I
I

I

I
I
I
I
I
I

........... ' __ ..
....... , , , -..•. , .. --..... ,-···,1" , , ..• ,, ..•

, , .. - ··•··· -,, ·· .. , , ...
•" ·~ , - .. .

....... __ -.... - -4 ••••••••••• -·

--- __

--- .. -- -..........
-- ·;::·····························::••

·---- ,, .. •"
----- ___ -- --":•:' _, .. , ,, ,,,.. ..,,_

, , 1111' ,.. ..,

.........

,...... __

·····································~-----J •• •• ••
••

Regional Centre

Sectional Centre

Primary Centre

Toll Centre

End Office

Figure 3.1 Hierarchical Network Structure

········
... ~ v

..

8

..

~-..

··. ' • •

.....
• •

figure 3.2 Alternate routing in a non-hierarchical network

fs

fs+f/N

fs+2f/N

fs+(N-1)f/N

fs+f

Figure 3.3(a) Schematic of Frequency Division Multiplexing

0-t 1 2•. 23 24

125usec

Figure 3.3(b) Frame format for Time Division Multiplexed Channel

.......... ~...,··~-~·~~---··--------_._.. ... ______________ ~ ----------~-------------·---- ---- --·---~--~ ··-·· -· ··- ----------------------

Routing Strategy

I

Fixed

Adaptive

I

Distributed Hybrid

Mode

I
Deterministic

Dynamic

I

Time
Dependent

Centralised

I
Stochastic

Figure 3.4 Classification of routing strategies

I

1-:!i~ Processing

Locally
Generated

Traffic

Centre

Figure 3.5 Nodal Model

Origin Tandem Destination

INIT~l!Jl.

INITIATE CONNECTION

INITIIJJ

t----0
FORWARD REQUEST

ACCEPT CALL

FINISH~~~

CLEAR CIRCUIT

Figure 3.6 Four stages in the connection protocol

generate

sender

overtime
and success

overtime

overtime

overtime
and failure

>FINISH)

overtime

ove rtl me----;~

(REJECT<

Figure 3.7(a). Origin Flow Diagram

sender overtime

REJECT

overt 1m

vertlm

REJECT

Figure 3.7(b) En-Route Flow Diagram

>FINISH>

Figure 3.7(c) Destination Flow Diagram

state box

0 packet arrival or production

"--> ~> forward packet

<---~< backward packet

boolean statement event condition

1 0 D 8888

2 FFFFF 8888

3 0 D BBBB

4 0 D 8888

5 0 D FFFFF

~[i'i1cd]®}(: 0 - Origin

D - Destination

8 - Address at previous node

F - Address at Next Node

Figure 3.8 Packet Formats

Report

Node
Data

Node
History

Call
Data

History
Files

D

request

Report

Figure 3.9 Data Structure

ERLANG-B FORMULAE MODEL

b b b b

Birth rate, b = Arrival rate of offered traffic, A.u

Death rate, d i = i.u

STATE DEPENDENT MODEL WITH TRP OF rTRUNKS

b b b' b'

d N- r

Birth rate, b = Arrival rate of direct and overflow traffic, A .u
T,1

b' = Arrival Rate of direct traffic only, Ar-,2 .u

Death rate, d i = i.u

Where 1 /u is the are rage call hold time

Figure 3.10 Markov Chain Models for Trunk Occupancy States

Traffic terms

1. Direct Traffic

2. Overflow traffic from i <-> k

3. Overflow traffic from j <-> k

A(total) = A(direct) + L, (i,k) terms + L, (j,k) terms

E(A(totai),C) = Overflow on (i,j)

v
For each link in the network

figure 3.11 Sources of traffic over link (i,j)

Chapter 4

Comparative Analysis of Learning Automata

Performance as a Dynamic Routing Strategy

in Fully Connected Networks

4.1 Introduction

In the previous chapter both analytic and simulation models were devel­

oped for the analysis of fully connected circuit switched networks using a variety

of adaptive routing algorithms. In this chapter the models are applied to a se­

ries of problems for comparative performance analysis of the strategies under a

variety of network conditions. The initial work involves single source problems to

demonstrate the fundamental techniques used by each of the strategies in estab­

lishing stable traffic patterns. The next section establishes a framework for the

generation of network models of different sizes and varying topological and traffic

asymmetry. The assumptions applied to the analytic solution of these network

models are then analysed using a simple example of two interfering traffic streams

to establish criteria for the limitations of such models

The remainder of the chapter then draws upon the initial work and the

multiple source models to investigate both the performance and potential insta­

bility of dynamic routing algorithms, both with and without the application of a

trunk reservation parameter. Two major examples are examined in detail. The

first example examines the effect of unequal traffic loading over a symmetrical

network. The second example investigates the performance of a balanced traffic

matrix over an increasingly asymmetrical traffic matrix

4.2 Single Source Experiments

4.2.1 Two Path Problem

In this section the simplest possible routing problem is examined in an

effort to develop an understanding of the fundamental processes involved in each

of the routing strategies under examination. The problem consists of a single

traffic source generated at a particular node for transmission to a neighbouring

85

node. Each call can be routed to the destination over one of two possible paths.

Given the intensity of the traffic source and the trunk capacity of each link it is

then possible to calculate the division of traffic over each path using the simple

Erlang-based models developed in the previous chapter. From the traffic allocation

the performance of each strategy can then be calculated. Initially each of two

alternative paths were given the same capacity, 40 trunks, and the applied load

was 65 Erlangs. This load is engineered to give a blocking probability of 1% if

it were applied to a single link of 80 trunks, this being the sum of the two path

capacities. Figure 4.1(a) is a plot of values calculated from the application of the

models to this problem. It shows the total blocking probability for traffic at the

origin node together with the blocking probabilities and blocking rates over each

of the two paths, plotted against the probability of selecting path one, p (and

therefore a probability of selecting path two of 1 - p).

Clearly the minimum blocking probability and equalisation of both the

blocking probabilities and rates over each path occurs at a selection probability

of 0.5 for each path. For this problem Random and Proportional routing also

produce this traffic division, the former by definition and the latter by assignment.

In addition tlie graph shows a well defined minimum value for the total network

blocking function, increasing sharply away from the equal division of traffic.

The problem is now modified by the introduction of asymmetry into the

allocation of trunk capacity over the two paths. Retaining the total trunk capacity

and generated traffic, the trunk capacities of the two paths are altered to 30 and

50 trunks for paths 1 and 2 respectively and the models used to recalculate the

same parameters as in the previous problem. Figure 4.1(b) re-plots the same five

functions against the probability of selecting path 1, the path of smaller capacity.

The total blocking probability of the incident traffic now reaches its minimum

value at a new path selection probability and, as before, increases sharply to

either side of the value. However, unlike the first example the point at which

the blocking rates and blocking probabilities equalise are no longer equal and no

longer coincide with the optimum selection probability, which lies between them.

To emphasise the differences in the two problems each of the trunk al­

locations was repeated for a new traffic source of 135 Erlangs, representing an

86

overload of 100% from the engineered value. Figures 4.2(a) and 4.2(b) plot the

results of the models for the symmetric and asymmetric cases. The point of mini­

mum blocking and equalisation of individual blocking and blocking rates over each

path coincide once again in figure 4.2(a). The divergence from this equalisation

is clearly visible in the overloaded asymmetric case where the two functions over

each path equalise once again to either side of the optimum selection probability,

but at different values than for the case of an engineered load. In addition the

minimum function is seen to be much less sharply defined, suggesting at this traf­

fic level a wide range of traffic division probabilities would yield similar overall

blocking probabilities.

Having established that the adaptive routing policies diverge from the

optimum selection for asymmetrical trunk allocation, the next problem seeks to

look into the way in which the selection probabilities differ and the effect this has

on the blocking experienced by the traffic source. Returning to the asymmetrical

trunk allocation of the previous problem, the path selection probability of the

major trunk group is calculated for each of the routing policies studied over 'a range

of traffic intensities from 1 to 135 Erlangs and plotted in figure 4.3. Random and

Proportional routing are invariant in their division of the traffic and route calls

over the major trunk group with probabilities of 0.5 and 0.625 (5/8) respectively.

In comparison the two adaptive policies LRI and DAR follow closely the optimum

path selection but fall away to either side as the traffic intensity increases. At

large overload the selection probability of path 1 for each of the three adaptive

strategies, LRI, DAR and the optimum routing policy begin to flatten out. The

LRI plot forms the steepest gradient followed by optimum routing and then DAR.

Each of the routines tends asymptotically toward a selection probability o£0.5 as T

approaches infinity, but do so in accordance with their governing equations. LRI,

which equalises blocking, quickly falls towards 0.5 with increasing traffic as the

blocking probability over each path quickly rises towards 1.0 with traffic overload

in accordance with the Erlang function. The blocking rates over each path are

more sensitive to traffic levels over different paths and capacities and therefore

approaches equal selection probabilities less quickly with increasing traffic.

Finally the routing probabilities can be converted into blocking probabil-

87

ities to compare the invariant, adaptive and optimum routing strategies for this

problem over the same range of traffic arrival rates. Figure 4.4 shows the block­

ing probability for each routing strategy applied to the asymmetrical network.

Random routing aside, which behaves poorly at anything other than low traffic

intensities, the performance of all the other strategies are almost indistinguish­

able. For this simple two path problem the introduction of any of the adaptive

algorithms would seem to provide an admirable, near optimum, solution.

4.2.2 Multiple Path Models

An extension of the model described in the previous section can be formed

by simply increasing the number of possible paths between the origin and desti­

nation. The probability distribution over the available trunk groups and the

resulting performance of the routing strategy can be determined using the simple

models outlined in the previous chapter. In the following experiment a pool of

360 trunks was divided between a total of N paths, for values of N from 2 to

10. The assignment of trunks in each case was made as asymmetrical as possible

to create the most challenging environment for the routing strategies. A load of

336 Erlangs was then introduced, which was calculated to give a blocking prob­

ability of 1% over a single link of 360 trunks. The importance of selecting an

intelligent probability distribution for traffic allocation over the set of paths can

be demonstrated by comparing the performance of the optimal routing strategy

over a range of traffic loadings from the engineered load (336 Erlangs) up to a

10% traffic overload in figure 4.5 with the same load applied to the models using

random routing shown in figure 4.6. In each case the blocking probability using a

single path is also plotted as a lower bound.

Proportional routing, LRI and DAR strategies are compared with opti­

mum routing at the engineered load in figure 4. 7. The plot shows the degradation

in performance produced by the adoption of each strategy in comparison to the

optimum models performance for each of the divisions of trunk capacity from 2

to 10. Proportional routing produces a consistent performance over this range

while DAR and LRI become progressively worse as N increases. However for even

the worst case of N = 10 all the routing strategies provide a performance that

88

lies within 0.002 of the optimum solutions blocking probability. Once again it

appears that the introduction of any intelligent routing algorithm with an appre­

ciation of trunk capacities produces a near optimum performance for the problem

of multiple path selection.

4.3 Multiple Source Models and Limitations

4.3.1 Network Models

In order to generate meaningful results on the application of dynamic

routing strategies to circuit switched networks it is first necessary to define a set

of test networks over which the strategies can be applied. These test networks will

then provide a structured set of conditions over which each of the routing strategies

can be assessed. Three areas of interest where identified; traffic distribution over

the network; trunk distribution over the network and the size of the network

itself. All networks within these three areas can be thought of as derived from the

same basic reference network shown in figure 4.8(a), four nodes, fully connected

and symmetrical with respect to traffic and trunk capacity. Each pair of nodes

is connected by a trunk with capacity C and generates a traffic of intensity T

Erlangs between them. From this primary reference a series of secondary reference

networks can be built up of larger size. Each of these reference models is also a

fully connected network with a number of nodes equal to an integer multiple of

the number of nodes in the primary reference model. As before each link in the

network has a capacity C and traffic between each node pair of T Erlangs. Both

the primary and secondary reference models can then be used to define network

models to investigate the effects of each of the other two axes of freedom, traffic

and trunk allocation. For the following work C was given a value of 500 trunks

and T then calculated to be 4 7 4 Erlangs, the traffic intensity required to produce

a blocking probability of 1% over the direct path between two nodes.

The first area of interest, traffic distribution, is concerned with the effect

of different traffic patterns on a network with fixed trunk capacities. A sym­

metrical network trunk distribution is used for all experiments involving traffic

distribution to avoid complications involving additional effects due to asymmet-

89

rical trunk distribution. To define the traffic patterns the links in the network

are divided into two groups, labelled '+'and '-'. The labelling is carried out in

the following manner for each reference network. A list is made in which every

link of the network appears labelled by their connecting nodes. The list is sorted

using the identity of the smallest connecting node into ascending order. Links

are then assigned'-' or'+' labels alternatively. The process is demonstrated for a

four node network in figure 4.8(b), beginning with a '-'label on the (1,2) trunk.

Having assigned each link a label, a set of network models are calculated with

asymmetrical traffic patterns based on these labels. An asymmetry parameter,

12, is defined which modifies the traffic on each link according to its label. Links

with a'+' are assigned a traffic source of {1.0 + 12).T Erlangs while sources whose

direct path lies over a link with a '-'label generate a reduced traffic arrival rate of

(1.0 -12).T. Clearly 12 takes values over the range 0.0 ~ 12 ~ 1.0 for the generation

of meaningful traffic arrival rates. This retains the same global traffic density

across the network but provides a simple way of redistributing the traffic over

each link. In the same way it is equally simple to form a set of test networks to

investigate the effects of asymmetrical trunk distribution over a network. Given

an asymmetrical trunk parameter 1J, the trunk capacity of each link in the network

can be redefined as I(1.0±1J).CI for'+' and '-'labelled links. To avoid asymmetri­

cal traffic affects interfering with the effects of the redistribution of trunk capacity,

the traffic over each link is then redefined as the value which would give the same

blocking probability as T Erlangs -or traffic prod_uces over C trunks.

Having decided to adopt this policy for the generation of network models,

an important step can then be made to simplify the analysis and understanding of

the generated results. Consider each of the labelled links in the four node network

in figure 4.8(b). H we assume that the overflow traffic from each of the sources

is routed independently of all the other traffic sources, then all sources with the

same environment will react in the same way. By application of equation (3. 7) to

the network it can be shown that the set of equations defining the traffic over the

network reduce to a single pair of non-linear equations. H labelling begins with a

'-'link the total traffic over each type of link is given by

90

T(-) = T- + 2T_y_x_p __ + 2T+~+X+P-+

where T(-) is the traffic over each link with a '-'label and

T(+) = T+ + 2T_y_x+P++ + 2T+Y+X-P-+

where T(+) is the traffic over each link with a '+'label. Alternatively if labelling

begins with a '+ 'link the total traffic over each type of link is given by the

formulae

and

In each case T + and T _ are the directly routed traffic arrival rates over each type

of link and both x and y have the same meaning as in the original formulation with

subscript substitution. p represents the probability of selecting an alternative path

of a type consisting of two links described by its dual subscript. By inspection the

value of P-+ niust be 1/(N- 2), where N is the number of nodes in the network,

as all overflow traffic from a '+' link must flow over one of (N - 2) identical paths

each with probability P-+·

All that remains is to calculate the remaining traffic splitting probability

P++ and P-- using the equilibrium conditions of each of the network routing

strategies. More important than the simplification of the four node model just

described are the implications this simplification in calculation has for the analysis

of larger networks. The mathematical computation for a four node network and

a dynamic routing strategy lies within the storage and computational ability of

reasonably powerful computers. However as the size of the networks increase the

resources required to calculate the full model quickly exceed their availability.

However for larger networks whose traffic and trunk asymmetry are defined in the

same manner as those above these equations will also provide the solutions to those

routing probabilities, from which the network performance can be calculated. To

91

show this consider a network of size N, equal to an integral number of primary

reference models. In this case the multiplier 2 will be replaced by N - 2 in each

of the terms above. Equally P-+, presently 0.5, will be replaced by 1/(N - 2)

cancelling out the change in the multiplier in the terms in which it appears. P++

and P-- will have new values, but if these are taken to be the values calculated

for the four node network, divided by the multiplication factor appropriate for

the network, the multiplier and new probabilities will cancel out again. This

arrangement will therefore lead to the same overall traffic over each link and from

that the same blocking values in x and y, leading directly to a solution for the

equations and constraints and therefore valid routing configurations. The results

generated here can therefore be directly applied to larger networks without the

computational effort of evaluating the larger topologies.

4.3.2 Model Limitations

In the formulation of the multiple source model for fully connected net­

works in the previous chapter a number of assumptions were introduced in order to

make the model mathematically tractable. In general none of these assumptions

are strictly true for a real network, however the magnitude of the approximations

created by these assumptions will vary.

The mathematical approximations can be divided into one of two broad

categories. The first category contains those approximations which are of little sig­

nificance to this work or which, while limiting the solution, provide a valid solution

for an equivalent real network under the same conditions. These assumptions are

that of Poisson traffic arrival rates, exponential service call hold times, no block­

ing due to insufficient nodal resources, no multiple call connection requests and

instantaneous connection times. The second category of approximations include

those which again are necessary for tractability but which are clearly untrue and

which cannot be as easily dismissed as acceptable. Within this category lie the

approximation of independent blocking on each link of the network and the ap­

proximation that traffic overflowing direct links onto tandem paths does so with a

Poisson distribution. The former approximation is invalid because of the presence

of alternatively routed calls which acquire and release links at the same time, in-

92

traducing a component of weak interaction between each link and every other with

which it is able to form an alternative path. The second more important approx­

imation of Poisson overflow traffic has been mathematically demonstrated to be

invalid[48] but is necessary to remove constraints on the mathematical derivation

of blocking models.

In comparison the simulation model of a circuit switched network does

not need to conform to the assumptions imposed on its analytic counterpart. The

model has a number of degrees of freedom which can be exploited to create a range

of environments. On the one hand this ability can be used to create an environ­

ment which is closely related to the analytic model, or alternatively the simulation

can introduce more realistic components and more closely emulate a real network

environment. This ability to control the degree of approximation, and more im­

portantly in this example to implement many of the mathematical restrictions

forms a powerful tool for the investigation of the effects of approximations on the

accuracy of the mathematical models.

In order to investigate the effects of the necessary but unrealistic approx­

imation of Poisson overflow traffic outlined above, at various levels of overflow,

the simple problem outlined in figure 4.9 was devised. In the problem two traffic

sources at nodes X andY route traffic to destination Z. Node Y attempts to route

its calls directly to node Z and if unsuccessful drops the call and records it as

blocked. The second traffic source at node X also tries to route traffic directly

to Z, however if this is unsuccessful it then attempts the path XYZ. The result

is competition between direct and overflow traffic over the link connecting nodes

Y and Z. In the experiment the capacities of the links between nodes X and Y

and between nodes Y and Z was fixed at 500 trunks and the traffic arrival rate

at node Y for node Z was 500 Erlangs. In contrast the trunk capacity of the

link between nodes X and Z was varied from 0 to 500 trunks. For each value of

the trunk capacity between X and Y, the directly offered traffic over the link was

calculated to give an overflow intensity of 5 Erlangs or 1% of the directly offered

traffic between Y and Z. This generates overflow traffic onto the alternative path

XYZ with probabilities between 1.0 for zero capacity on link XZ down to 0.01 for

a capacity of 500 trunks. In the mathematical model, assuming Poisson statistics,

93

the two traffic sources should combine and act as a single source to give a blocking

probability for both sources of 0.042 for all overload probabilities.

The actual simulation results of blocking probability for overflow traffic

on the link connecting Y and Z are plotted against percentage overflow in figure

4.10 with 90% confidence intervals. For large levels of overflow traffic the simu­

lated points compare favourably with their predicted behaviour, demonstrating a

blocking probability comparable with that of the major, direct, traffic source be­

tween Y and Z. However as the overflow traffic is made up of a smaller percentage

of the directly routed traffic from X to Z the blocking probability it experiences

begins to rise sharply. For overflow percentages below 15% the two traffic sources

show markedly different blocking characteristics. This rise in blocking for the

overflow traffic is due entirely to its arrival characteristic. Rather than the over­

flow from the direct link XZ being statistically independent, it tends to arrive in

bursts whenever the direct link is saturated, separated by pauses as the arrival

rate dips below the level necessary to fill the link. This leads to only a small

number of any one burst having the chance to acquire an alternative path and

the almost certain rejection of those arriving later in any burst. This behaviour

leads to a higher than predicted blocking probability, under the assumption of

independent arrivals, which increases as the traffic is increasingly concentrated

into short bursts.

4.4 Routing in Unprotected Networks

4.4.1 Routing Algorithm Performance

In this section the analytic and simulation based models that have been

developed are used to examine the performance of routing strategies under var­

ious asymmetrical conditions. The first model examines the performance of the

dynamic routing strategies over a four node, fully connected network with traffic

imbalance using an asymmetrical traffic parameter over the range 0.0 < (} < 0.5.

In this example labelling began with a '+'link. Figure 4.11(a) shows the theo­

retical blocking probability predicted by the analytic models for random, propor­

tional, DAR/LRP and LRI strategies. The symmetrical reference model used to

94

generate the traffic patterns assigned each link a capacity of 500 trunks and each

traffic source an arrival rate of l.lT where T Erlangs is sufficient to generate a

blocking probability of 1% using direct routing.

Random, proportional and DAR strategies all exhibit similar blocking

behaviour, the value increasing steadily as the traffic distribution is made pro­

gressively more unbalanced. Further, there is no real gain in using either of the

more intelligent algorithms in preference to the simple random strategy until the

traffic asymmetry has reached a significant value. LRI on the other hand displays

a fundamentally different behaviour which can be separated into two distinct

regions. For a low value of g, analysis of LRI suggests that it will produce a

performance exactly equal to that of any the routing strategies for the case of a
'

completely symmetrical traffic distribution. Beyond this region it is found that

no valid solution could be found for the allocation of traffic over alternative paths

that would satisfy the constraints laid down by the mathematical model. The cri­

teria for the model was then changed to find the solution which would minimise

the deviation from the constraints rather than satisfy them and the results using

this criteria form the second region which is labelled LRI Routing. This represents

a 'best fit' solution under highly asymmetrical conditions and produces noticeably

better average blocking performance than its counterparts over the same region.

Figure 4.12(a) plots the individual end-to-end blocking probabilities, or

grade of service (GOS) that each of the sources in the model experiences for specific

traffic parameter values. Again random, proportional and DAR strategies show

similar behaviour, their traffic sources experiencing one of two possible grades

of service. Links labelled '+'with increasing direct traffic show an increasing

blocking probability in comparison with those labelled '-'from which direct traffic

is removed. In each case the divergence increases with g. LRI, while in the region

where it is able to satisfy its analytic constraints, produces identical GOS values

for each source, obviously equal to the average blocking probability. Beyond this

region the grade of service on links with different labels does diverge in the same

way as the other strategies although the difference remains considerably smaller.

In comparison with the analytic work, figures 4.11(b) and 4.12(b) show

the simulated results for the same network model over the same range of traffic

95

asymmetry. Both average blocking and individual blocking values show a good

agreement with the predicted values at high values of the traffic asymmetry pa­

rameter, but return lower blocking probabilities for the more symmetrical network

configurations. The form of the plots is similar throughout, with the exception

of LRI routing near the point where the mathematical model is unable to find an

exact solution as the asymmetry parameter is increased.

The first deviation from the analytic predictions can be explained by ref­

erence to the single source experiment discussed earlier, where it was shown that

the assumption of overflow traffic having a Poisson distribution leads to an over

estimation of the success of alternatively routed traffic for small overflow probabil­

ities. As there is no network protection in these networks alternative routing will

generally lead to interference and high blocking probabilities. Over-estimation of

this effect by the analytic model will lead to it predicting a higher blocking per­

formance than actually materialises. As the asymmetry is increased the resulting

traffic imbalance will lead to greater overflow from the larger traffic sources, the

main contributors to alternatively routed traffic, and a closer approximation to

the conditions defined in the analytic model. The second area of interest, where

LRI rises unexpectedly can be explained by reference to the algorithm itself. In

this area several of the sources divide the traffic predominantly over one of the

two available paths at equilibrium in the analytic model. However the algorithm

LRI does not have a punishment component, only a reward for successful com­

pletion of a call over a tandem path. If therefore the algorithm rewards a path

to the point where it is selected with probability 1.0, the algorithm cannot then

continue to adapt, it is effectively locked in to that path. In the case' outlined

here, the algorithm overshot its predicted value, due to statistical fluctuations,

became locked at unity and was unable to recover, giving a different GOS. One

solution is always to retain a very small component of punishment, retaining the

ability to recover from deterministic selections. However this can lead to a change

in behaviour to a DAR/LRP based mechanism. A second solution might be to

introduce a threshold to the selection probability over any one path. This would

ensure the remaining paths always had some chance of route selection.

A second experiment was then formulated using the same reference net-

96

work and labelling technique, with a trunk asymmetry parameter over the range

0.0 ~ iJ ~ 0.5 to define a series· of networks with increasing topological imbalance.

In this case labelling began with a '-'link. The trunk capacity of each link in the

reference network was 500 trunks and the traffic sources were 1.1T where Twas

again engineered to give a blocking probability of 1%. As the trunk capacities

were modified the traffic for each value was recalculated to maintain the refer­

ence value of T for each link which would produce 1% blocking using a simple

direct routing policy. The mathematical models of the previous section were used

once again to calculate analytic solutions for each of the routing strategies. The

average blocking probability for each strategy over the range in which the trunk

asymmetry parameter was investigated is plotted in figure 4.13(a). In contrast

to the previous example involving traffic asymmetry, random, proportio:nal and

DAR strategies all show improved average blocking probabilities as trunk asymme­

try increases. Random routing actually outperforms the two dynamic strategies,

with an increasingly superior average value as asymmetry increases. LRI main­

tains a constant performance while the model is able to satisfy the mathematical

constraints. When this becomes impossible the criteria was again changed to cal­

culate the probability distribution and the resulting blocking probability which

provided the minimum deviation from the constraints. These values, plotted as

the LRI routing curve fall away in a similar manner to the other strategies, while

maintaining a higher average blocking probability.

Figure 4.14(a) shows the end-to-end blocking probabilities for each of the

sources in the model. The pattern is similar to the traffic asymmetry experiment

with two clearly defined, different grades of service for traffic directly routed over

'+'and '-'links for all strategies except LRI. Traffic routed over '+ 'links see a

lower blocking probability than their '-'counterparts. For LRI, in the region where

the model is able to produce a solution which satisfies the strategies equilibrium

criteria, the traffic is routed to achieve a consistent grade of service for each source.

Where this relationship breaks down the familiar split in GOS appears but at a

significantly reduced magnitude in comparison with the other strategies.

Simulation results for the average blocking probability and individual

GOS for each of the traffic sources are shown as points in figures 4.13(b) and

97

4.14(b) with 90% convergence intervals. Figure 4.13(b) also reproduces the ana­

lytic results as curves for comparison. The simulation points show the same basic

behaviour as predicted but once again return a lower blocking rate than suggested

by the mathematical models.

The results from both the traffic and trunk based experiments can be

explained in terms of the simplified formulae derived from examination of the

labelling technique for the introduction of asymmetry. As was noticed earlier, if

each source acts independently, that is without some sort of co-operation with

the other sources in the network, overflow traffic from half of the links has no

real choice in its division over the alternative routes and calls are routed equally

between the possible paths. This leaves only the overflow traffic from the other

links with a choice between a path consisting of either two'+' links or two'-' links.

For the case of traffic asymmetry the alternative path involving two '­

,links appear more and more attractive as the direct traffic is reduced over them.

However in this overloaded network a significant proportion of the traffic is still

routed over via the overcrowded path involving the two '+'links. This causes

the overall depreciation in average performance. This effect is shown clearly by

the results in that despite the fact that '-'links in the network shows a rapid

decrease in blocking probability with traffic asymmetry, the average performance

is dominated by the traffic over the '+' links.

Examination of the LRI results and the routing probabilities show a fun­

damentally different type of behaviour in the allocation of traffic to alternative

paths which cannot be explained by this approach. No solution can be found using

the simplified models which will fulfil the mathematical constraints of the LR-1

model and the full four node model must be invoked. The equalisation of GOS,

and therefore traffic, for the topologically symmetrical network, is accomplished

by 'co-operative' rather than 'competitive' action. The division of overflow traffic

from '-'links does not show the same impotence as that found with each of the

other strategies. Instead there is no repeated pattern and each source divides the

overflow traffic from its direct path in such a way as to equalise its GOS with

all of the other sources in the network. Secondly the algorithm directs traffic

over the underused path with a greater selection probability than its rivals. At

98

a certain point in the introduction of traffic asymmetry the mathematical model

for this action can only be solved by the introduction of values for some routing

probabilities outside of the range (0, 1), and so with no realisable implementation.

Instead the 'engineered' solution calculates the minimum perturbation from the

mathematical solution within the range of realisable probabilities. Traffic over­

flowing from a '-'link is routed in a deterministic manner over the preferred route,

i.e. involving two '-'links, with probability 1.0. The remaining sources then route

their traffic to achieve equalisation of individual blocking over each path. This is

achieved by similar traffic splitting by each of the sources involved.

The explanation of the results for the asymmetrical trunk experiment

follow a similar outline. The effect of shifting trunk capacity from '-'to '+'links

can be examined by reference to the simplified mode~ for each type of link, given an

independent, competing routing strategy. Overflow traffic from a'+' link is faced

with decision between two equivalent paths and always directs equal proportions

along each path. In this experiment it is overflow traffic from the smaller link

capacity trunks which are faced with a choice of paths between two high capacity

'+'links or two low capacity '-'links. Random routing, which divides the traffic

equally between each of the two paths, achieves the best average performance

but, as the GOS measurements show, does so at the expense of traffic routed

over the links of smaller capacity, which are given increasingly poor service as the

asymmetry increases. DAR and proportional routing, recognising the different

paths, route more traffic down the path with greater capacity. This causes more

traffic on '+'links, the dominant traffic carrying trunks, and so a poorer average

performance. However the difference in GOS between the different types of links

is reduced in compensation, giving a fairer overall service.

Once again the LRI routing strategy approaches the problem from a global

rather than local viewpoint, and while possible gives each source equal GOS over

the network, allocating least traffic to the overcrowded '-'links. The equality of

service eventually becomes impossible as the solution to the probability distribu­

tion lies outside its allowed solution set. In these cases the engineered solution

results in the split in GOS and the accompanying drop in average blocking prob­

ability as the majority traffic carrying links experience fewer overflow calls than

99

the strict solution to the routing strategy would assign to them. These 'engi­

neered' solutions involve a similar distribution of traffic as in the previous experi­

ment. Those sources which cannot achieve equalisation of blocking probability opt

for deterministic routing down the most favourable path, leaving the remaining

sources with an opportunity to equalise their blocking. In these cases each source

again divides its traffic in a similar fashion.

Another feature of routing using the LRI strategy, contributing to its

more balanced performance, is the severity of the division of traffic over alternative

paths. It consistently adopts a heavier weighting to more favoured paths than the

other strategies, demonstrated by the adoption of deterministic routing at high

levels of asymmetry in both experiments. This is consistent with the single source

results which showed LRI as being the most responsive to changes in traffic density,

quickly rejecting paths as the blocking increased. Indeed the policy over reacts in

comparison to the optimum solution and further over-selects the favoured path

in comparison to then less responsive DAR/LRP policy which acts upon the less

severe function of blocking rate for a given traffic density.

4.4.2 Network Instability

The classical instability characteristic reported by Krupp among oth­

ers[41,43] for a symmetrical network with alternative routing is reproduced in

figure 4.15. The plots show blocking probabilities associated with the analytic

solution to the traffic assignment problem over a region of traffic arrival rates

between 97% and 100% of a load engineered to give a blocking probability of

1% using direct routing. Within the region of instability the blocking probabil­

ity clearly has up to three distinct solutions. On either side of this region the

model returns a single monotonically increasing solution for increasing traffic ar­

rival rates. Interestingly simulation results for the same network also plotted on

the graph show no signs of instability or sudden increase in blocking over this

region. They suggest a much lower) monotonic, steadily increasing blocking rate.

This can again be attributed to the mismatch in actual and assumed behaviour

of overflow traffic over this region.

Using the analytic model figure 4.16 traces the relationship between the

100

call blocking probability and the traffic intensity, over the region of instability

identified by the symmetrical model, as the traffic distribution is made progres­

sively more asymmetrical. Figure 4.16(a) shows the instability behaviour over the

same region of traffic arrival rate as the symmetrical model for each of the routing

strategies random, proportional, DAR and LRI with a traffic asymmetry factor of

0.05. For each strategy the region over which instability is present has been re­

duced. In addition the region over which multiple solutions exist has moved. The

upper and lower bounds have retreated in each strategy to lower arrival rates,

the upper bound showing the more significant reduction. The plot also shows

the strategies beginning to diverge. Random routing has retreated by the great­

est factor, followed by proportional routing and DAR which show very similar

characteristics, and finally LRI which retains the greatest instability region.

The traffic asymmetry parameter was increased to 0.1 and the analytic

results plotted in figure 4.16(b). The blocking probability of the network using

random routing no longer displays any form of instability over this region, in­

creasing monotonically as the arrival rate increases. Extending the region over

which the model was investigated showed no signs o(the reappearance of instabil­

ity at lower traffic intensities. DAR and proportional strategies remained almost

inseparable in terms of their performance and retained the narrowest of instabil­

ity bands which had further retreated to 97% of the engineered workload. LRI

showed a similar narrow band of instability near the original lower bound in the

symmetrical model. Increasing the asymmetrical parameter to 0.2 eliminates all

forms of instability as shown in figure 4.16(c). Examining the performance of

each of the routing strategies for traffic arrival rates values below those plotted

confirmed that the instability effect did not return at a lower point on the per­

formance curve. Instead each of the strategies showed a progressive decrease in

blocking with reduction in traffic intensity down to a point of inflection where the

gradient smoothly levelled off.

In a complementary experiment figure 4.17 traces the effects of introduc­

ing trunk asymmetry into the network over the region of instability identified for a

symmetrical network. Figures 4.17(a) to 4.17(c) show the instability of networks

constructed using asymmetrical trunk parameters of 0.2, 0.4 and 0.6 respectively.

101

The sequence shows a general reduction in the region of instability for each of

the routing algorithms as the asymmetry increases. Random routing is the strat­

egy most affected by the topological variations, and has all but lost any unstable

behaviour at {} = 0.6. DAR and proportional routing are affected to a lesser

extent and follow each other closely in each of the plots. Only LRI is compara­

tively unaffected by the topological variations and retains a significant region of

instability up to this point. In this experiment the reduction in the region over

which instability is found is caused entirely by an increase in the lower bound

at which the behaviour begins, the upper bound remaining constant throughout

the topological variations. Finally with an asymmetrical trunk factor of 0.8 the

unstable behaviour disappears as figure 4.17(d) demonstrates. All the routing

algorithms show well behaved functions with a knee in their performance curves

at the point representing the upper bound for instability. Interestingly the per­

formance curves show the opposite behaviour to those of the highly asymmetric

traffic curves. For highly asymmetric trunk topologies the lower curve of the un­

stable region dominates, whereas for traffic distributions the higher valued curve

replaces the unstable region.

Notably the LRI algorithm undergoes a drastic change in behaviour be­

tween{} equal to 0.6 and 0.8. Its large unstable region has disappeared and been

replaced by a shallow curve which outperforms the other strategies, having been

the most expensive policy. Examination of the routing probabilities reveals that

the extreme topological variation of the network does not allow the LRI mathe­

matical constraints to be satisfied over this region. Further the actual solution is

so far removed from any real implementation that the engineered solution leads

to a strategy in which alternative paths are deterministically selected by each of

sources, and it is this form which leads to the performance displayed in the final

plot.

4.5 Routing In Protected Networks

4.5.1 Trunk Reservation Parameter Selection

The addition of a trunk reservation parameter to each link of the network

102

results in two major advantages. First it prevents the routing of calls blocked on

their direct path down alternative paths which would be better employed carrying

direct calls. Secondly it eliminates the unstable behaviour suggested by analytic

models at certain levels of traffic. The natural question which arises is how to

select the value of the trunk reservation parameter (TRP). R. Gibbens suggested

criteria for TRP selection[49} based on guaranteed levels of protection for each

link or optimal traffic throughput based on the maximisation of a cost function

for known levels of direct and overflow traffic. The actual selection is a simple

trade-off between these two factors, protection and performance. A low value

for the TRP will allow alternative paths to be used for directly blocked calls and

maximise performance when those paths are made up of idle capacity. A high TRP

will limit allocation of those same paths, reducing throughput if the network is

lightly loaded but providing much needed protection if that capacity could also be

used by direct traffic. The value chosen should allow sufficient flexibility to take

advantage of spare capacity caused by unbalanced traffic patterns but discourage

alternate routing over overloaded or busy sections of the network.

A slight complication arises in the selection of a TRP for a network when

the trunk capacities in the network are unequal. To simplify this problem the net­

work TRP is defined as the percentage of each links capacity set aside for direct

traffic only, once the rest of the link is full. In this way a single number can be

used to describe the protection applied to any network. Using this notation the

effects of a variety of network TRPs have been evaluated over a series of traffic

overload values at the two extreme topological configurations already introduced.

Figure 4.18(a) shows the blocking over a fully symmetrical four node network with

trunk capacities of 500 on each link when subjected to traffic overloading of up to

10% above the engineered value, T Erlangs on each link, where T Erlangs gives a

blocking probability of 1% using direct routing. Figure 4.18(b) shows the results

for an asymmetrical network subjected to the same series of traffic overload values

over each link. In this example the trunk capacities in the network were 250 and

750 on alternate links, an asymmetrical trunk factor of 0.5. Both plots have a

very similar form, clearly showing the advantage of a using a TRP over an unpro­

tected network with an alternative routing strategy. After the initial fall each of

103

the curves level out at the same blocking probabilities that direct routing would

produce as the larger values of the TRP increasingly discourage any alternative

routing. For larger overload values the value of the TRP is irrelevant above a

certain value but for the lower traffic levels there is a minima corresponding to

improved performance for a range of values where the blocking probability falls

below that of fixed routing alone. From these curves a value for the network TRP

can be selected based on forecast or projected imbalances in traffic to optimise

potential performance gains.

4.5.2 Routing Algorithm Performance

Using the plots in figure 4.18 and the preceding discussion a trunk reser­

vation parameter of 0.03 was selected. This level was felt to combine a judicious

level of protection against traffic overload while retaining sufficient flexibility to

develop alternative routing in the presence of asymmetrical traffic distributions.

The basic models of traffic and trunk distribution outlined in section 4.3.1 were

reformulated with the addition of this TRP to examine the effects, both on the

performance of the dynamic schemes and their characteristics. Figure 4.19(a)

shows the results of the analytic model applied to a four node network with C

set to 500 trunks, T engineered to give a direct blocking probability of 1% and

a traffic asymmetry parameter range of 0.0 ~ 12 ~ 0.5. The performance of a

direct routing strategy is included for comparison with the alternative routing

algorithms. The alternative strategies clearly give superior average performance

in comparison to the direct policy for asymmetrical traffic and the benefit of such

a strategy grows with the asymmetry. In addition the dynamic strategies out­

perform random routing consistently, although the difference is not substantial in

comparison, demonstrating the gain in intelligent stochastic rather than entirely

stochastic path selection.

Figure 4.20(a) shows how this performance is split between the two types

of trunk group, with a clear division in the GOS of the two components which make

up the network. Traffic routed directly over the lightly loaded or '-'links have

excellent blocking characteristics with minimal blocking. Traffic over overloaded

links are able to benefit from the opportunity to attempt alternative routes, sub-

104

ject to link availability and the TRP over that path. Fixed routing on the other

hand suffers a rapidly increasing blocking probability over the overloaded links

and the average performance deteriorates. In this case the TRP successfully al­

lows alternative routing to improve the performance of the network when faced

with spare capacity.

The major change in the form of the solutions for traffic asymmetry with a

TRP in comparison to the unprotected network occurs in the behaviour of the LRI

algorithm. There is no longer a region where the algorithm equalises GOS and all

solutions must instead be engineered to produce the minimum perturbation from

this ideal behaviour. In each case the alternatively routed traffic overflowing from

the major traffic sources is routed deterministically over the path consisting of

two '-'links. The other traffic sources divide their considerably smaller overflow

traffic evenly over the two paths available to them, just as the other dynamic

algorithms do. This is similar to LRI Routing which occurs in the unprotected

network when the algorithm is unable to divide traffic is such a way as to satisfy

the mathematical constraints.

Figure 4.19(b) and figure 4.20(b) plot the simulated results for the aver­

age performance and individual blocking probabilities for the same networks. The

agreement between mathematically predicted and simulated results is extremely

good. For this series of network configurations the assumption of overflow traffic

with a Poisson distribution appears to be accurate. This is justified when it is

considered that the models do involve large overflows, especially from the dom­

inant '+'links. The effect of a TRP may also have helped to smooth out peaks

of overflow traffic at the lower levels and present alternative paths with more

statistically independent overflow components.

Figure 21 shows analytic and simulated results for a four node, fully con­

nected network with initial trunk capacity C, equal to 500, and a traffic intensity

over each link of 1.1 T modified by a topological asymmetry parameter over the

region 0.0 ~ e ~ 0.5 with the addition of a TRP of 3%. over each link. The

plot shows how despite the increasing topological imbalance the TRP prevents

major changes in network performance. Each of the adaptive strategies maintains

a performance only marginally worse than that of fixed routing in the generally

105

overloaded environment. The simulated points are within 1% of the analytic

predictions suggesting that the alternatively routed traffic and direct traffic are

modelled more accurately with the TRP once more. Figures 22{a) and 22(b)

plot the individual GOS of direct traffic sources over '+ 'and '-'links. The GOS

throughout the series of points is limited to a range of 2%, demonstrating how

effective trunk reservation prevents excessive routing on alternative paths and

divergence in the GOS of the two types of link.

Interestingly LRI behaves in a similar manner as outlined for traffic asym­

metry, with deterministic routing down the preferred path by half of the traffic

sources and similar traffic splitting to equalise blocking over alternative paths by

the remaining sources.

4.5.3 Network Instability and TRP

Previous authors have already pointed out that the introduction of a

TRP not only improves the performance of a routing strategy using alternative

paths through a network, but also eliminates instability effects. This is clearly

demonstrated in figure 4.23 where the instability curve of figure 4.15 is reproduced

along with curves calculated over the same region and network configuration with

a TRP. The second curve on the plot shows the predicted blocking behaviour for

a TRP of 0.01 ,in which the last 1% of the trunk capacity of a link is reserved for

direct traffic only. The plot shows no sign of instability and returns a much lower

blocking probability than the average blocking probability of the unprotected

network for traffic intensities above the lower limit of the onset of instability.

The final curve on the plot shows the results of the mathematical ·model for a

trunk reservation actor of 0.002. This corresponds to only the final trunk in each

link of 500 trunks being reserved for direct traffic. Instability again disappears

completely and is replaced by a smooth curve which follows the same form as

the more protected networks performance plot, diverging to a higher blocking

probability as the traffic intensity increases.

The fact that the reservation of a single channel in a large trunk group

can make so much difference to the performance of a network can be explained by

examining the way in which paths are allocated in the network. If the link is being

106

highly utilised, at any one time there may only be a small number of the channels

in any one trunk group available to carry a new call. It is the competition for

these free channels which determines the performance of the network. Reservation

of the last trunk for direct calls ensures that as the trunk group spends a greater

proportion of the time full, these direct calls will receive increasingly preferential

treatment over alternatively routed traffic.

4. 7 Conclusions

To explain the way in which each of the routing strategies behaves in

an unconstrained environment we return to the conditions under which each is

governed. Random routing directs traffic equally over all the alternative routes at

each node. Each node selection is isolated and does not react to trunk or traffic

imbalances. In this work it represents an upper bound, or least intelligent option.

Proportional routing assigns traffic according to trunk availability, calcu­

lated using the set of probabilities Po to PN defined in eqns(3.3) and (3.4). DAR

uses not trunk availability but trunk blocking rate as criteria for traffic splitting,

defined as the blocking probability over a link multiplied by the probability of

using that link. Both strategies involve very different ways of selecting routing

probabilities but produce very similar solutions under asymmetrical conditions.

In both cases the routing policy at each node makes identical routing decisions as

its network neighbours faced with the same environment. From the single source

models in figures 4.1 and 4.2 blocking rate can be seen to be a convex function

of selection probability. Similarly the plot of normalised spare capacity vs selec­

tion probability is also found to be convex. In the multiple source model this

produces an array of constraints based on convex functions over the multidimen­

sional routing space. This suggests that any solution will be unique and therefore

by definition requires identically situated sources to behave in an identical manner

to prevent multiple solutions by simply swapping indicies in the network.

LRI routing involves the equalisation of blocking over each of the alter­

native paths to a destination from each node. The blocking function is a strictly

increasing but non-convex function of selection probability. Therefore it will form

a non-convex set of constraint equations and the argument outlined for DAR and

107

proportional routing cannot be applied. Multiple solutions can and do exist in

the solutions to the network models used. In each case a new and equally valid

solution can be formed by relabelling the nodes in the model. Configurations

can be found which maintain identical traffic levels over each link while the se­

lection probabilities of each of the sources over alternative paths are re-arranged.

However a full explanation as to why the equalisation of the individual blocking

probabilities for each source leads to an equalisation of the GOS of each source re­

mains an open problem. Despite this the result remains one of the most important

conclusions of this work.

The behaviour of the strategies when a TRP is applied is also quite dif­

ferent. Both proportional routing and DAR rearrange themselves according to

their new environment, splitting the overflow traffic over the available alternate

pathways in the same way as in the case of the unconstrained network. In each

case the function used to select the traffic distribution over the alternative paths

for each source, i.e. spare capacity or blocking rate, covers a range of values for

the variable of path selection probability sufficient to allow an exact solution. In

contrast the blocking probability over a link is relatively unaffected by the selec­

tion probability of a single traffic source using that link as an alternative route.

In consequence LRI is often unable to equalise blocking over all its paths for all

its sources, especially those with very different alternative paths to a destination

and this gives rise to the LRI Routing solutions. The imposition of a TRP further

inhibits this ability, by inhibiting the traffic and therefore the influence any one

source may have on a link. Again this drives the LRI strategy to deterministic

routing for traffic sources in which the maximum allowed traffic overflow is insuffi­

cient to equalise blocking, but in this instance the asymmetry required to initiate

such action is very small.

The work on instability has two important results. First, it is clear from

both the analytic and simulation models that the addition of even a small trunk

reservation results dramatically improves the performance of the network. How­

ever, without such a device instability is predicted by the analytic models of all the

dynamic strategies to varying degrees over a range of traffic and trunk distribu­

tions. In contrast the simulation models for a four node network over the affected

108

regions suggest only a gradual increase in blocking producing a significantly better

performance. This and other work at higher traffic intensities suggest that the an­

alytic assumptions are not valid over these regions for small networks. For further

work in this area the reader is referred to the recent thesis of N. Eshragh from

Durham University[50]. In the next two chapters routing and flow control over

another form of network is considered, a packet switched network, where traffic is

divided into small segments and transmitted independantly. Although their basic

function is very similar, the way in which each type of network operates is very

different and the two are considered quite separately. Chapter 5 develops analytic

and simulation based tools for the performance evaluation of generalised packet

switched networks which are then applied to specfic examples in chapter 6.

109

Key BLed: I ng on path 1

0. 35

0. 30

(tJ
> 0. 25

'­
Q)
~
Q)
E
~ 0. 20
(tJ

a..

0. 15

0. 10

0. OS

--- Blocking on path 2

- - - - Rate of blocking on path

--------- Rate of blocking on path 2

----- Total blocking

0. 0 0. 1 o. 2 0. 3 o. 4 0. 5 0. 6 o. 7 0. 8 0. 9 1 • 0
probabl llty of selecting path 1

f I gure 4. 1 (a)

performance criteria In a symmetrical network

; I

Key Blocking on path 1

--- Blocking on path 2

- - - - Rate of blocking on path

---- Rate of bloclr~lng on path 2

----- Total blocking

0.60 +

(I)
Q)

0. 55

0.50

0.45

..3 0. 40
(0

>

~ 0. 35
~
Q)
c
~ 0. 30
(0

a..
0. 25

0. 20

0. 15

0. 10

0. OS

\

\\
'\ \\

~ ~
0. 0 0. 1 0. 2 0. 3 o. 4 0. 5 o. 6 o. 7 0. 8 0. 9 1 • 0

probabl llty of selecting path 1

f I gure 4. 1 (b)

performance criteria In an unsymmetrical network

: I

Key Blocking on path

--- Blocking on path 2

- - - - Rate of blocking on path

--------- Rate of blocking on path 2

----- Total blocking

0. 70 +

0. 6S

0. 60

o.ss

(0 0. so
Q)

:J

(1) 0. 4S
>
'-
Q) 0. 40
.1->
Q)
E
~ 0. 3S
(1)
a_

0. 30

0. 2S

0. 20

0. 1S

0. 10

0. OS

0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 o. 7 0. 8 o. 9 1 . 0
probabl llty of selecting path 1

f I gure 4. 2 (a)

performance criteria In an overloaded symmetrical network

! I

Key Blocking on path 1

--- Blocking on path 2

- - - - Rate of blocking on path

---- Rate of blocking on path 2

----- Total blocking

0.8 +

(1.)
Q)

::J
_,J

0. 7

0.6

(1)
> 0. 5

'­
Q)
~
Q)

E
~ 0. 4
(1J

0...

0. 3

0.2

0. 1

/~
/I

\ II

\ I

\ I

\ I

\ ;'(
. I \

\(\
I .

I \ \

II \ \

I ' \

/
I'

I '\. \

/// ·""':"

I
I

I

I .

I
I

I
I

0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 o. 7 0. 8 o. 9 1 . 0
probabl llty of selecting path 1

f I gure 4. 2 (b)

performance criteria In an overloaded unsymmetrical network

i I

Key Optimum routing

--- LRI Rout lng

- - - - OAR rout I ng

----- Proport I ona l Rout I ng

----- Random Rout tng

1. 0 +

~ 0. 7

...0
(1J

...0
0
'-a_

0.6

§ 0. 5

~

0
Q)

.....J 0. 4
(I)
(/)

.J::.
~
(1J
a_

0.3

0.2

0. 1

-~-=--.;; =- ,__
-....: -- -----.:;;::=-::::::--:-::-=:~-::=:=-:-:::::=~-~::::-=:::::-:_ ----------------~· --- --- ---

0.0 ~~~~--~--~---+---+---r---r---r--;---~--+---+

1 0 20 30 40 50 60 70 80 90 1 00 11 0 120 130
traffic arrival rate (erlangs)

figure 4.3

path selection probabl llty as function of traffic

; I

Key Optimum routing

0. 40

0. 35

_J 0. 30

...0
(0

...0
0

~ 0.25
m
c

..:.I.
0
0 0. 20

...0

(0

0 0. 15

0. 10

0. 05

--- LRI Rout lng

- - - - DAR rout I ng

----- Random Rout I ng

----- Proportional Routing

'I ,

I ,

I ,

I ,

I ,

I ,

I ,

I ,

I ,

I
I ,

I ,

I ,

I
I

0 1 0 20 30 40 50 60 70 80 90 1 00 11 0 120 130
traffic arrival rate (erlangs)

figure 4.4

single traffic source performance

! I

call blocking probabt ltty
p p p p p p p p p p p p p p
0 0 0 0 0 0 0 0 0 _. 7'\

CD - 1\.) (.).1 ~ lJl 0.. ""-.! (X) -o 0 1\.) (.).1 ~ '<
0 .

0 0 . I I I
I I l -o 0 \ .

rt \ . \ . I . I I - 0 \ \ . I .
3 .

\ -
I

I . . I I c 0 \ \ \ '
. - I 3 \ \

. . I I

\ . \
rt p

\ \ \ . o o o o o r , \ - ""0 ""0 ""0 ""0 ""0 0
Q) 0 \

. . C"t C"t C"t C"t ·.-t .::
rt 1\.) \

.
-n \ \ \ - - - - - CD

-n , \ . 3 3 3 3 3 ,
- Q) p \

.
\ c c c c c

0 \ .
\ - 3 3 3 3 3 CD

"""'o \
. 0

~""' \ \ \ , , , , , c
a.. . 0 0 0 0 0 :I

\
. - 0 0 \ \ . \ c c c c c 0.

(j) \
. C"t C"t C"t C"t C"t

0 • ' - - - - - -rt -n \ \ \ :I :I :I :I :I , - < 0 \ . (0 (0 (0 c.o (0

- (Q co ~ \ . . \
cr c , 0 \ \ \ \

. ,...., ,......, ,......, ,......, ,......,

c , \ (X) 0.. ~ 1\.)
r- • - 0 ~ ~ '-',

rt co 0 0 \ \ - Q) lJl
.

\ \
0 ~ a.. \ \ \ .
:J . . \

Ln 0 \ \ -. \
.

\ 0 -o 0 \ \ < co 0..
.

co , \ \ \ \ , 0 0 . . \ co • \ \ \ \ 3 :J 0 \ c rt ""-.! \ \ - . .
r- \ \ \ \ rt p \ - \ . \ -o 0 \ (X) \ .
r- \ \ \ co .

p \ \ \ \ -o
\ \

.
Q) 0 \

.
\ -o \ rt \ :r \ \

(j) 0 I \
. . . I I I I I I . I I 'I I' I . + -0

Key

0. 22

0. 20

~ 0. 18

..0
(I)

..0
0
L
a..
0')
c
~

0. 16

0. 14

g 0. 12
-J

..0

~ o. 10
(I)
0

0. 08

0. 06

0. 04

0. 02

Lower Bound

--- Random Routing [2]

---- Random Routing [4]

----- Random Routing [6]

----- Random Routing [8]

-----·- Random Routing [1 Q]

---·---.. ------·--- .. ----~ -- --::::::---. - .. -- -- :.=:::::- ... ----·--- ----=----· ___ --- -------~--- .. -- ... ---- . ---.. ----.. ------~-~-~ ---- ---::::::::------- ---------

-- --
--------- ----

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
traffic overload (percent)

figure 4.6

randon traffic distribution over multiple paths

i I

Key Proportional Routing ~ Proportional Routing

0.0020

0.0018

m
5>.0016

...:.L
0
0

-'0.0014
E
:J
E

~.0012
0

E
t.

._8).0010

c
0

~.0008
(U

>
Q)

'b.0006

0.0004

--- LRI Rout 1ng

- - - - OAR Rout t ng

I
I

I

--r

+ LRI Rout 1 ng

1111 OAR Rout 1 ng

-- .a­-

+

I --+---I -+--
1 --1 +--

1 /
I /

18[/
/ /

/ /
// /

/ /
/ /

/ /
0. 0002 ~7""----~;E-------~:------~-----.::r.r

0. 0000 +---1-------i---+----t----f----+---+-----+

2 3 4 5 6 7 8 9 10
number of paths

figure 4. 7

sub-optimal performance of adaptive strategies

i I

T T
T

figure 4.8(a)

(1 ,4) {2,3)
c{?

{3,4)
c{?

figure 4.8(b)

Overflow
XYZ

Direct Traffic
xz

Figure 4.9

Direct Traffic
vz

Key •)(Over flow B lod: I ng

12 +

11

10

>-.
~

~ 9
..0

ro
..0
0 8 L.
a.
0)
c 7

.:.I.
0
0
~

..0 6

f ~

~

ro

f f f
0 5

f
: I

4

3

2

10 20 30 40 so 60 70 80 90 100

overflow percentage

figure 4. 10

blocking probability of overflow traffic

Key------ Random Routing [4]

DAR [4]

0.240

0.235

>-.
.j..) o. 230 -....J

...0

~ 0. 225
0
c...
c...

g>o. 220 -
~

0
0 :c; 0. 215

(I)
en
ro
t.0.210
Q)

>
ro

0.205

0.200

0. 195

LRI [4]

LR I RoutIng [4]

Proportional Routing [4]

/

/
/

I
I

+

I
I

I

0.190 +--~-~--+--~-~--+--~-~--+---+

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
traffic asymmetry factor

f I gure 4. 11 (a)

analytic results for traffic asymmetry

; I

Key Random Routing (4]

DAR [4]

x Random Routing [4]

+ DAR [4]

LRI [4] 1111 LRI [4]

0.230

0.225 -

0.220 /!
/

>-. lr ~ 0. 215
-J

- I ...(]
(U 0. 210 I ...(]
0

If' '-
I+

a..O. 205
0) I Eo. 200 I
~ j I
0 I 0
~ 0. 195 I /' Q) I

Jf ~.190
'-
Q) I
~ 0. 185 I

0. 180 /
'I

0. 175 /A" + ____ (
0. 170 -+;;
0. 165

0.160 +---~--~----+---~--~~--+---~--~~--4----+

0.00 0.05 0.10 o. 15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
traffic asymmetry factor

f I gure 4. 11 (b)

simulated results for traffic asymmetry

i I

Key •)(Random Routing [4]

+ DAR [4]

181 LRI [4]

• LRI Routing [4]

181 Proportional Routing [4]

0.28

)i(

)i(+
0. 26)i(+

~

>..)i(+ ~
.j...) +

--1)i(181
0. 24 + 181

_()
)(ro + ~

_()

0
)(+ ~

'-
c.. 0. 22 +

~

m)i(~ c
i ~

0
0 0. 20 ~

--1

_() ~
181 ~

--1

ro
:J

-o 0. 18 181
> + ~

-o)(+ ~
181

! I c 181 ~ ~ + 181
0. 16)i(+ + +

)(+ + +

0. 14)!(

)!(

)!(

0. 12)(

)(

0.05 0. 10 0. 15 0.20 0.25 0.30 0.35 0.40 0.45 0. 50
traffIc asymmetry factor

figure 4. 12 (a)

analytic GOS results for traffIc asymmetry

Key •

0. 28

0. 26

>-.
~ -....J 0. 24 -

...0
(0

...0
0)I(

)I(

~ Random Routing [4]

+ OAR [4]

1111 LRI [4J

* *)I(+

+
+

+
)I(

+

~ 0. 22
)I(+

0)
c -

...ll.
0
0

....J

...0

....J

(0
:J

-o -> -c -

t + * + + 0. 20
)I(t

+ +
0. 18

* * * Ill

t t f t t t
0. 16 f T T f

* t 0. 14

+
+ t t t t f *
* 0. 12

*
0.10 +---4---~---+---4--~~--~--+---4---~--~

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
traffic asymmetry factor

f I gure 4. 1 2 (b)

simulated GOS results for traffic asymmetry

: I

Key Random Routing (4]

DAR [4]

LRI [4]

---- LRI Routing [4]

----- Proport I anal Rout I ng [4]

0.200 +

0. 198

0. 196

>.. 0. 194

.:0 0. 192
«J

_o

~ 0. 190
CL

g>o. 188

~

g 0. 186
......J

_o
Q) 0. 184
m
«J
'- 0. 182
Q)

>
«J 0. 180

0. 178

0. 176

0. 174

0. 172

------ ----

0. 170 +---+---+-"'---+---+-----+---+-----+---+----+
2 3 4 5 6 7 8 9 10

network pattern

f I gure 4. 1 3 (a)

analytic results for trunk asymmetry

; I

Key

0.20

0. 19

>...
~ 0. 18
--'

....()

<0 0. 17()
0
'-a_

g> 0. 16

..u
0
0

--' 0. 15
....()

Q)
0)
(tJ

'- 0. 14
Q)

>
<0

0. 13

0. 12

0. 11

0. 10

Random Routing (4])(Random Routing (4]

--- DAR [4] + OAR [4]

---- LRI [4] 1111 LRI [4]

---- LRI Routing (4]

----- Proportional Routing [4]

+

r---........ ;;;;;,Q~ - - - - - - - - -
~~-=-== ... -- .. -----------

2 3

simulated

4 5

network

figure

-- ------:::...:...--- ----- ·--- ---- ------- --.......

6
pattern

4. 13 (b)

+

*

7

8 9 10

results for trunk asymmetry

i I

Key •)(Random Routing (4]

+ OAR [4]

1!!1 LRI [4]

• LRI Routing [4]

1!!1 Proportional Routing [4]

0.26 +

0. 25

)!(

>-. 0. 24 * ~

)!(+ 181 --'

..0 0.23
)!(181 (0 +

..0
181 0)!(+ 5_ 0. 22

181 + 0))!(
181 c

0. 21 +
~)!(181
0 ~

~
0

~ --'
..0 0. 20
--' I

(0
181 181 181 • :J

"U 0. 19 I -> ~ ~

-a)(~ ; I c 0. 18 181
)!(+ 181

)!(+ 181
0. 17 + 181

)(181 + 181)(+ 0. 16 -
)(+

)l(

0. 15 -
)(

0. 14

2 3 4 5 6 7 8 9 10
network pattern

figure 4. 14 (a)

analytic GOS results for trunk asymmetry

Key •

0. 22

0. 21

>...
+.) --J 0. 20 -

..0
(1)

..0
0
a_ o. 19

0)
c -
~

0 0. 18
0

-J

..0

-J

(1) 0. 17 :J -u -> --u
0. 16 c

0. 15

0. 14

0. 13

* *

' T
f

2 3 4 5
network

figure

t
t

+

6

)(Random Rout r ng [4]

+ OAR [4]

1111 LRI [4]

* *
t * t

t
+ +

t
+

* +

* 7 8 9
pattern

4. 14 (b)

simulated GOS results for trunk asymmetry

+

f

f

T

o I -

f

+
10

Key a x AnalytIc Model

+ Simulated Network [4]

o. 10 +

0.09

>-..
~ 0. 08
--'

...0
(0 0. 07 ..0
0
'-a...

~ o. 06

..:.L
0
0

--' 0. OS
...0

Q)
)(m

(0

'- o. 04)!(
Q)

>
(0)(! I

0. 03

0.02)(t t)!(

)(

o. 01
)()(+ +)()()!(i +

+ + +)()(
0. 00

0.970 0.975 0. 980 0.985 0. 990 0.995 1. 000
traffIc Loading factor

figure 4.15

I nst ab I L I t y In a symmetrical network

Key •

0. 10

0.09

>..
~ 0. 08

-
....0

~ 0. 07
0
c..
a..

g' 0. 06

~

0
0
~ 0. 05

Q)
0')
(0

c.. 0. 04
Q)

>
(0

0. 03

o. 02

0. 01

)(

)I(

)(

••• Ill •

)(

)(Random RoutIng [4]

+ Proportional Routtng[4J

IBI DAR [4]

• LRI Rout 1 ng [4]

+

+ ••• 0.00 ~~~~~La~~~~--~~-----4-------+-------+

0.970 0.975 0.980 0.985 0. 990 0.995 1. 000
traffic loading factor

f I gure 4. 1 6 (a)

asymmetrical traffic loading= 0.05

' I

Key •

0. 10

0. 09

>-.
~ 0. 08

....J

..0
(U 0.07 ..0
0
'-a...

g> 0. 06

~

0
0

....J 0. OS

..0

Q)
0')
(U

'- 0. 04
Q)

>
(U

0. 03
Ill

0. 02

~

0. 01

Ill

0. 00

0.970 0.975 0.980 0.985

x Random Routing [4]

+ Proprtlonal Routing [4]

1111 DAR [4J

• LRI [4J

+

0.990 0.995 1. 000
traffic Loading factor

f I gure 4. 1 6 (b)

asymmetrical traffic Loading = 0. 1

; I

Key •

0. 11

o. 10

>..
~

__,)

0. 09
..0

(0 ,,
..0
0
c...

x Random Rout I ng [4]

+ Proportional Routing [4]

181 DAR [4J

• LRI [4]

+

MM
Jii!M -

l!iiiM
l!illl\il

llflllfl ,,
~

~
~ •' c.. o. 08 •' ~

~

•'
0') ~~ c -· ~
~ ~
0 ,~ ~
0 ~

__,) o. 07 ~
..0 ¥' ~

~ m x¥¥ ~ 0')
(0 ~
c... X!il ~
m 0. 06 '

~
> • (0 • ~ • •

0.05 • • ~

• •
0.04 ~

~

0.03 +-------+-------r-----~~----_,-------+-------+

0.970 0. 975 0.980 0.985 0.990 0.995 1. 000
·traffic Loading factor

f I gure 4. 1 6 (c)

asymmetrical traffic paramter = 0.2

i I

Key a

0. 10

0. 09

>..
~ 0. 08
--'

...0
ro 0. 07 ...0
0
'-a...

g> 0. 06

..ll.
0
0

--' 0. OS
...0

Q)
m
ro
'- 0. 04
Q)

> ro

0. 03

0. 02

0. 01

x Random RoutIng [4]

+ Proportional Routing [4]

1!!1 DAR [4J

• LRI Rout 1 ng [4]

+

0.00 ~~~~ .. ~~~~~~~~~~4-------+-------+

0.970 0.975 0.980 0.985 0.990 0.995 1. 000
traffic loading factor

f I gure 4. 1 7 (a)

asymmetrical trunk paramter = 0.2

i I

Key •

0. 10

0.09

>-..
~ 0. 08
-J

..a
<0 0. 07 ..a
0
'-a_

~ 0.06
Jl.
0
0

-J 0. 05 ..a
Q)
m
<0
'- 0. 04
Q)

>
<0 ~

0. 03

0.02 ~

0. 01

0. 975

~

~
~

~
~

~
~

~ II
~

1!1!1
1!1!1

~ 1!1!1
~ Ill!!

~ 1!1!1
)!(

1!1!1
)!(

)!(
1!1!1

)!(

1!1!1)!(

)(

II)(

0.980 0.985

)I(Random Rout I ng [4]

+ Proportional Routing [4]

1111 OAR [4J

• LRI Routing [4]

+

~~
~~

~
~~

~ 1!1!11!1!1
~

1!1!11!1!1 ~
~ 1!1!1

~ 1!1!1 -
Ill!!)!(

1!1!1
)!(

1!1!1
)!(

)!(Ill!!)!(
Ill!!)!(

1!1!1)!(
)!(

)!(
)!(

)!(
)!(

0.990 0.995 1. 000
traffic Loading factor

f I gure 4. 1 7 (b)

asymmetrical trunk parameter

: I

Key a

0. 10

0. 09

>-..
+> 0. 08
-J

...!)
(U 0.07 ...!)
0
'-a..

~ 0. 06

~

0
0

-J 0. 05 ...!)

Q)
m ~
(U

'- 0. 04 ~
Q)

> ~
(U

~

0. 03
~

0. 02 ~

0. 01

~
~

~
~

x Random RoutIng [4]

+ Proportional Routing [4]

1111 DAR [4]

+ LRI [4J

+

~~
~~

~~
~

~ + ~ +-~ +181181 ~
~ +181

+181
+181

+181
+181

+181
+181)!(

+181)!(

+181)(
)!(+181)!(

+181)(

+181)!(

)!(
+181)(

181
)(

)!(

0.00 ~.-~~~~~~H&~~~~~~4-------+-------+

0.970 0.975 0.980 0.985 0. 990 0.995 1. 000
traffic Loading factor

f I gure 4. 1 7 (c)

asymmetrical trunk parameter= 0.6

; I

Key •

0. 10

0.09

>.. 0. 08
~

....()
(IJ 0.07()

0
(_
a..

~ 0. 06
....:lL
0
0
~ 0.05
....()

Q)
0)
(IJ
(_
Q)

0.04
>
(IJ

0. 03

0. 02

0. 01

x Random RoutIng [4]

+ Proportional Routing [4]

aa DAR (4]

• LRI [4J

+

0.985 0.990 0.995 1. 000
traffic Loading parameter

f I gure 4. 1 7 (d)

asymmetrical trunk parameter= 0.8

; I

Key 0% Overload

--- 2.5% Overload

---- 5% Overload

---- 7.5% Overload

----- 10% Overload

0. 10 +

0.09

\ .
0. 08

>-..
~

-J

....0 0. 07
(1J

....0

1\ \
I \
I .\ \,,
I_,

0
c...
a.. 0. 06

\ \. ·--------------------------
m
c
~

0
0

-J

....0
-J

-J

(1J
0

0. OS

0. 04

0. 03

0. 02

0. 01

\ \
\ \

\ \

\\
\
\
\
\

"

"-.... --------------------------

~~-------------------

.......... -----------------

0.00 +----+---r----r--~r---;---+----+----r----r---~

0. 00 0. 01 o. 02 0. 03 o. 04 0. 05 0. 06 o. 07 0. 08 0. 09 o. 1 0
trunk reservation paramter

f 1 g4. 18 (a)

trunk reservation appLied to symmetrical network

; I

Key 0% Overload

---- 2.5% Overload

---- 5% Overload

--- 7.5% Overload

----- 10% Overload

0. 10 +
\ .

0. 09 \ .
I \

0. 08 I \
>-.. ..., -

-J

....0 0. 07
(I)

....0
0
'-

I\ \
I . \,
\ \ ·,
\ . ----------------------------------

CL 0. 06 \ \
OJ
c -
~

0
0

-J

....0
-J

-J

(I)
0

0. 05

0. 04

0. 03

0. 02

0. 01

\\ \
\ \ "-1\ ~----------------~

I '
\ ',
\ '-

~~------------------\
\
\ ' --------­----------

0.00 +---r-_,--+---r--~r--+----r--~r---+----+

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
trunk reservation parameter

f I gure 4. 1 8 (b)

trunk reservation appLied to asymmetrical network

; I

Key ..----- Random Routing [4]

OAR [4]

0.22

0. 20

>..
~

--J 0. 18

...0
(Q

...0 0. 16 0
'-a..
m
c 0. 14
~

0
0

--J 0. 12
...0

Q)
m
(Q o. 10 '-Q)

>
(Q

0. 08

0.06

0. 04

0.02

LRI Routing E4J

Proportional Routing [4]

Fixed Routing [4]

I. I

/
/

/
/

/
/

/
/

/

/

/

/
/

/ //,;
/ ::;· -

/ /
/ ~~

/ ~~ ,r/
/ ~~

/ ~/
Afl(: /. /f/

./ ~~
/- _,.r/
~~;'

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
traffic asymmetry parameter

f I gure 4. 1 9 (a)

anlaytlc results for traffic asymmetry with TRP

; I

Key

0.22

0. 20

~ 0. 18

...0
(1)

...0 0. 16
0
L
a.
m 0. 14
c
~

g 0. 12
-J

...0

Q)

m 0. 10
(1)
L
Q)

>
(1) 0. 08

0. 06

0. 04

0. 02

--·-

Random Routing

DAR [4)

LRI [4]

Fixed Routing

/

/
J'

/

[4]

[4]

/
;I

/ /.Ar

,/ ~
/ /

/

)(

+

1111

•

/

Random Routing [4]

DAR [4)

LRI [4]

Fixed Routing [4)

/
/

/

/

/
/

I

~

0. 05 0. 10 0. 15 o. 20 0. 25 0. 30 0. 35 0. 40 o. 45 0. 50
traffic asymmetry parameter

f I gure 4. 19 (b)

simulated results for traffic asymmetry with GOS

; I

>-..
......
-J

..0
(0

..0
0

Key •

0.30

0.28

0.26

0. 24

0. 22

)(Random RoutIng [4]

+ DAR [4]

1B1 LRI Rout 1 ng [4]

• Proportional Routing [4]

1!!1 Fixed Rout lng [4]

a_ 0. 20

CJ)

c
~

0
0

-J

..0

-J

(0
:J

-u
>

-u
c

0. 18

0. 16

0. 14

0. 12

0. 10

0.08

0. 06

0. 04

0. 02

)!(

);(•);(

il
)!(

i
);(

i
)!(i

)!(i
)(i

)!(~
181 a
I

0. 00 0. OS 0. 1 0 · 0. 15 0. 20 0. 25 0. 30 0. 35 0. 40 0. 45 0. 50
traffic asymmetry parameter

f I gure 4. 20 (a)

analytic GOS results for traffic asymmetry with TRP

: I

>-..
~

-J

_Q
(U

..0
0

Key •

0. 30

0.28

0. 26

0. 24

0.22

x Random Routing [4]

+ DAR (4]

a~~ LRI (4J

• Frxed Rout rng (4]

•

a_ 0. 20

m
c

...::.1.
0
0

-J

..0

-J

(U
:J

-a ->
-a
c

0. 18

0. 16

0. 14

0. 12

0. 10

0. 08

0. 06

0. 04

0.02

)!{

)I(

' *)(+
)(• •)(

m
)I(

'*')(Iii

)1('*' • Ill

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
traffic asymmetry parameter

f I gure 4. 20 (b)

simulated GOS results for traffic asymmetry with TRP

' I

Key

0. 10

0.09

>..
.j..) 0. 08

..0

~ 0.07
0
(._
a.

g> 0. 06

~

0
0
~ 0.05

Q)

m
(1)

(._ 0. 04
Q)

>
(1)

0. 03

0. 02

0. 01

--·-

--·--·-

Random Routing [4])(Random Routing [4]

DAR [4J + DAR [4J

LRI Routing [4] llll LRI [4]

Proportional Routing [4]

Frxed Routing [4]

+

0.00 +---~-----r----~--~r----+----~--~r----+----~

2 3 4 5 6 7 8 9 10
network pattern

figure 4.21

Joint results for trunk asymmetry with TRP

; I

Key •

0. 10

0. 09

(/)
Q)

~ 0. 08
....J

..a
ro 0. 07 ..a
0
L I I a.. I I I

I •

)(Random RoutIng [4]

+ DAR [4J

aa LRI [4]

• Proportional Routing [4]

+

-
I • • II

I i i g> 0.06 •
~

0
0

....J 0. 05 ..a

....J

ro
::J

0. 04 ""0

> -""0
c

0. 03

0. 02

0. 01

0.00 +----+----~---;----~---1----~---1----~----+

2 3 4 5 6 7 8 9 10
network pattern

f I gure 4. 22 (a)

analytic GOS results for trunk asymmetry wtth G05

; I

>..
~

-J

..0
ro

..0
0
L
0..

0')
c
~

0
0

-J

..0

-J

ro
:J

"'U

> -"'U -c

Key •

0. 10

0. 09

0.08

0. 07

' 0. 06

0. 05

0. 04

0. 03

0. 02

0. 01

' '

x Random RoutIng (4]

+ OAR [4J

1111 LRI [4J

+

0.00 +----+----+----4----4----4----4----4----4-----+

2 3 4 5 6 7 8 9 10
network pattern

f I gure 4. 22 (b)

simulated GOS results for trunk asymmetry with TRP

; I

Key •

0. 10

0. 09

>-..
~ 0. 08
-J

..0
(I) 0.07 ..0
0
'-a...

~ 0.06
~

0
0

-J 0.05
..0

Q)
m
(I)

'- 0.04
Q)

>
(I)

0.03

0. 02

0. 01

)(

)(

0.975

)(

)(

)(

0.980 0.985

x No TRP

+ 1% TRP (5 l 1 n ks)

1111 0. 2 % TRP (1 lt n k)

+

0. 990 0.995 1. 000
traffic Loading factor

figure 4.23

lnstabl Llty In a symmetrical network with TRP

i I

Chapter 5

Analytic Modelling Techniques and the Design

of a Simulation Environment for the Study

Of Packet Switched Networks

5.1 Introduction

In the same way that digital technology revolutionised circuit switched

networks, the same advances in software and transmission technology also allowed

the development of new ways to transmit information, especially non-real time

data. Rather than occupying a dedicated slot for the duration of a conversation

between two users, it was realised that data need only occupy bandwidth for the

period of time needed to transmit it. In this way data for different destinations

could occupy the same bandwidth as and when it was required, rather than occa­

sionally using a piece of bandwidth which had been permanently reserved for its

use. Given this dynamic allocation of bandwidth, a routing strategy for this type

of network has the task of directing each item of traffic over a series of links to its

eventual destination.

In this chapter the workings of such a 'packet switched network' are out­

lined, describing the way in which technological advances have been used to imple­

ment the complex operations necessary for the efficient function of such a facility.

The way in which the routing strategy directs traffic over the network is then cat­

egorised to identify the different techniques for traffic allocation. This is followed

by a critical review detailing many of the routing strategies proposed in the liter­

ature, although few have been implemented in real networks to date. The review

includes coverage of 'optimum' routing, defined by the minimisation of a delay

based performance index, for both centralised and distributed implementation.

Following this is a review of flow control procedures in packet switched networks

which serve to limit the traffic within the network at any one time, to prevent

a deterioration in the average performance. Wherever possible analytic work on

the performance of both routing and flow control is summarised and important

conclusions included.

148

The review highlights the way in which many current routing strategies

fail to capitalise on potential network performance through inefficient traffic dis­

tribution over the network. Theoretical modelling work is presented to show how

optimal performance requires the use of adaptive, bifurcated routing and adap­

tive flow control which react to traffic conditions. Finally the review suggests

how simple algorithms, based on delay measurements, may be formulated to pro­

vide such adaptive behaviour using decentralised techniques with the minimum of

transmission overhead.

The chapter concludes with a description of a simulation model which

was constructed to capture the essential elements of a packet switched network

and the operation of various routing policies within it. The model was designed to

allow implementation on a distributed environment such as the Trnasputer based

network simulator mentioned within this work.

5.2 Packet Switched Network Architecture

A packet switched network can be considered as a collection of nodes

sparsely connected by a mesh of point to point links. Each node represents ei­

ther an Interface Message Processor (IMP), a host computer to which customer

computer equipment may communicate directly, or a Terminal Interface Proces­

sor (TIP) which combines the job of the IMP and customer machine. The bi­

directional links between each node are supplied by full duplex communication

channels, using either land-line, microwave or satellite technology. An example of

such a small network of IMP's is shown in figure 5.1. Associated with each IMP

is a host computer, attached to which terminals and other application equipment

will communicate locally. These local customers will submit requests to the host

for use of the network for some application. The host acts as a multiplexor for

all its customers requests and submits the resulting traffic to the interface IMP

for transmission across the network. In the same way the host machines acts as

demultiplexors when traffic is fed to them from their associated IMP after it has

been received from the network, and passes the traffic on to its customers. To

complicate the picture further an IMP may have several host computers associated

with it and may even act as a gateway to an entirely separate network.

149

Returning to the the simple problem, suppose that two hosts in the net­

work, A and B, wish to communicate with each other. They are not directly

connected and therefore must establish communication via the network. This in­

volves host A first transferring the information it wishes to communicate to IMP

A. IMP A will then initiate communication with IMP B over the network, and

only then can IMP B transfer the information to its intended recipient, host B.

The three distinct stages in this process are shown in figure 5.2 where the pro­

tocols adopted for information transfer at the interfaces and within the network

are separatly identified. A communication system which allows two customers to

transmit error free information between them, over large geographical distances,

via a wide area network with multiple intermediate nodes is obviously a complex

problem. In order to separate the problem into a manageable number of stages

the concept of a layered architecture is introduced into the design of such sys­

tems. A layered architecture defines a number of distinct stages in the transfer

of information between two locations, arranged in a vertical stack with well de­

fined interfaces between each layer of the architecture and the layers immediately

above and below them. Information is passed conceptually down the protocol

stack in the node sending the information, to the bottom physical layer where

it is transmitted. On reception of the raw data, it passes up the protocol stack

through each layer. Each of the layers is responsible for certain features of the

transmission process and peer layers (layers at the same vertical height in the

stack) communicate with each other through peer protocols at each of the layers.

These peer protocols together define completely how information is represented,

processed and transmitted between any two points.

One important property of each of these peer layers is that its implemen­

tation should be independent of the other layers in the architecture, allowing it

to be replaced or modified without affecting the remaining layers. This is ac­

complished automatically by requiring that any implementation of a layer in the

architecture complies with the definition of the interfaces between each of the lay­

ers around it. In order that each implementation does not affect the way in which

the data is treated, each layer does not modify the information passed down to

it from a higher layer, but adds a header to the data it receives before passing it

150

down to the next layer. The header contains information its peer layer requires

for the implementation of the particular protocol between them. On each peer

layer at the receiving node, the header is removed, the appropriate action taken

according to the headers contents and the remainder of the transmission passed

up to the next layer in the hierarchy. Figure 5.3 shows how such a transmission is

built up as it descends the protocol stack at the transmitting node, through three

layers; the User layer, the Network layer and the Data Link layer, before being

transmitted over the lowest Physical layer, acquiring headers at each stage. Once

at the receiving node the data climbs the stack and the header attached at each

stage is removed as it ascends.

Different architectures have been designed for commercial networks, good

examples being IBM's Systems Network Architecture (SNA) and DEC's Digital

Network Architecture (DNA), however the International Standards Organisiations

model for Open Systems Interconnection (OSI)[51] is becoming the accepted stan­

dard for network communication. The OSI model defines a protocol stack with

seven layers which may be broadly divided into two groups. The first three layers

of the OSI architecture known as the network service protocols are designed to

transport the information across the network and deliver it to its destination in an

ordered fashion. The remaining four layers which form the second, higher group

of protocols, are concerned with the end-to-end interactions of the information in

which the network is seen as a transparent communication medium, governed by

the network service layers. Figure 5.4 represents this layered concept for a pair of

host machines A and B communicating over a network via IMP's A and B. The

diagram is a direct mapping of a layered architecture onto figure 5.2 which de­

scribes the physical path data takes between hosts. Two distinct sets of protocols

are defined in the diagram. The first, outer set of protocols, control the transfer of

information over the higher layers of the protocol and the network layers over the

IMP-host interface. The second set of protocols occur at the network layer only

and control the passage of information between the source and destination IMP's

over the network. The path the information traverses as shown by a bold line,

demonstrating how the layers are traversed form source to sink. The higher layers

have been grouped into a single layer representing the peer end-to-end commu-

151

nication for simplicity. These layers can be thought of as collectively providing a

traffic arrival rate to the network at a rate which can be accommodated by the

hosts at the opposite side of the networks via their peer protocols. This then

defines the load which is presented to the lower network layers for transmission.

The networks service group is divided into the three layers; Physical, Data

Link and Network in ascending order. The Physical layer is responsible for the

transmission of the actual data bits between neighbouring nodes in the network

or across the IMP-host interface along a communication link. The communica­

tion link is characterised by a number of parameters such as transmission speed,

propagation delay and bit error rate. The processing centres at each IMP or host

will also have finite memory for data storage and certain response times to service

interrupts for packet arrivals which must be considered in the design of interfaces

for the physical layer. The major function can be summarised as the translation of

data bits into electrical signals, their transmission over a communication channel

and their reconstitution back into binary form at the opposite end. These data

bits are passed down from and returned to the Data Link layer at the sending and

receiving nodes respectively.

The Data Link layer uses packets of information, a term first used by the

early workers on store-and-forward networks of this type. A packet is a unit of

information which is handed down from the network layer for transmission over

the communication link. The Data Link layer adds a header and passes it to the

physical layer. When it is received at the other end of the communication channel

the Data Link layer is able to use the additional information included by the peer

layer at the sending station to interpret whether the packet has been successfully

transmitted error free, or whether retransmission is necessary. Other information

carried by the header includes previously received packet acknowledgements, flow

control information, priority information, etc. Error free packets of information

are then passed up to the receiving stations Network layer. Parameter selection at

this layer can have pronounced affects on the performance of the link. The size of

the data packet, flow control restrictions and type of retransmission scheme used

can be critical especially if the physical layer characteristics limit the capacity of

the link in some way, e.g. a long propagation delay over a satellite link or a noisy

152

link with a high error rate causing frequent packet retransmissions.

The third and highest layer in the network services group, the Network

layer combines the joint functions of routing and flow control. The flow control

at this level is over the entire network rather than the single link at the Data link

layer. The flow control attempts to prevent the destination being overrun with

packets and the onset of network performance degradation by the admission of

too much traffic to the network at any one time. The routing algorithm guides the

traffic between the source and the destination IMP's over the network in the most

efficient possible way. Two main routing types can be identified, datagram routing

and virtual circuit routing. In datagram routing each packet is treated by the

routing algorithm as an individual and routed using only the desired destination

held within the Network layer header. Virtual circuit routing recognises packets

from a particular customer and establishes a single route over which they are all

sent. A small end-to-end acknowledgement packet is generated on the safe arrival

of each packet at the destination station. This packet is then transmitted back

over the route taken by the packet to the source. This allows packets which fail to

arrive a chance to be retransmitted over the whole network. Datagram routing is

much simpler and relies on the higher protocol layers to implement this end-to­

end acknowledgement function. Each datagram packet carries a header identifying

the destination node and a sequence number so that the entire message may be

reconstituted at the other end of the network. Local error checking is provided

by acknowledgement packets generated at each hop by the transmission protocol

at the Data Link layerfor both datagram and V.C. traffic.

The Network layer can also be thought of as the multiplexing level where

messages for different destinations and arriving from different sources are identified

and separated before being passed up to the higher layers at their destinations

and labelled before being passed down for transmission to the Data Link layer

at originating nodes. The concept of a logical link is used by the OSI model

to describe the relationship in th Network layer between packets with the same

source and destination and the network layer itself. Each packet over a logical

link is considered part of the same session. Thus while the Data Link layers are

connected by a single link in figure 5.4 it is more correct to show the Network

153

layers connected by multiple virtual links to represent these multiple logical links.

The additional layers of architecture, represented by the top layer of the

figure 5.4 combine to form a complete communication environment which can

then be used directly by application packages by interface to the highest layers.

The higher layers provide functions such as session control, code conversion and

security. Such functions are not required within the network as they relate to the

way in which the customers at each end of the network perceive and manipulate the

information transported to and from them. The most important of these higher

functions from the networks point of view takes place at the Transport layer,

the fourth layer of the architecture, which provides a secure end-to-end network

connection function for the layers above it. It has the job of breaking down the

messages passed to it into the packets referred to in the Network layer. If virtual

circuit routing is used the packets from a single message or stream of messages

from a single session make up the packets sent over a logical channel. For simpler

datagram routing the transport layer may be called upon to provide virtual circuit

end-to-end acknowledgement packets and other error recovery procedures.

This simplified model of the communication architecture provides a good

representation of the system, but is complicated by the presence of two separate

protocol stacks; the host-IMP interface protocol stack and the network IMP to

IMP architecture within the network. It is possible to further simplify the model

without losing information on the part of the structure we wish to explore, specif­

ically flow control and routing procedures in the network layer of the wide area

network. Both these functions are completely defined within the network services

layers of the IMP to IMP protocol layers. The IMP-host interface protocol serves

only to provide traffic to each IMP of the network at a controlled rate and accept

it at the other end. If the assumption is then made that the limiting factor for the

acceptance and removal of traffic to and from the network is the network itself,

rather than the interface protocols, then modelling the IMP-host interface be­

comes unnecessary. Introducing this simplification the model can be redefined as

shown in figure 5.5. Here only the network service layers of the network are shown

with an implied traffic arrival rate at the interface IMP's. The first two layers are

unchanged but the third layer has been expanded into two separate sections. The

154

first section covers the routing strategy, where the protocol is responsible for the

selection of the outgoing link for each packet arriving at the node. The second

section contains the flow control procedures which may be local or, as shown, may

extend over the whole network between the source and destination nodes in the

network.

5.3 Routing Strategies and Congestion Control

5.3.1 Classification of Routing Strategies

Just as routing strategies in circuit-switched networks were classified in

Chapter 3, an analogous division of routing techniques can be identified in al­

gorithms designed for use in packet switched environments. The algorithm is

categorised in terms of its method of selection of routes, a route being defined as

a path over which traffic is directed from its source node in the network to its

destination node, also in the network. To complete the definition, a path con­

sists of the links and intermediate nodes a packet traverses in its journey between

the two terminal nodes. The categories into which these routing algorithms are

divided are shown in figure 5.6. The structure bears some ressemblence to its

circuit-switched counterpart, but also differs in several important ways, reflecting

the different natures of the two architectures. An important distinction in the def­

inition of a packet switched routing algorithm's operation is in the way in which a

path is selected. In a circuit-switched environment the routing algorithm selected

a path which consisted of either a direct connection to the destination node or a

tandem path involving an intermediate node. In both cases the path was defined

completely by the source node's selection of an outgoing link. In general a packet

switched network does not enjoy the connectivity of such networks and forms a

much more sparsely connected mesh topology. Many pairs of nodes do not share

a direct link and some may be separated by several intermediate nodes over even

the route involving the shortest number of hops. If follows therefore that routing

cannot be controlled directly from the originating node, but must be implemented

as a series of steps, one at each stage of the path to the destination. The task of

the routing algorithm is therefore to provide an outgoing link at each stage in the

155

path of each traffic source to each destination.

A routing algorithm is said to be fixed if the paths over which traffic

traverse the network and the proportion of traffic flowing over each of the paths

are invariant. The routing algorithm is therefore unaffected by both the level of

traffic flowing from the source over the prescribed paths or the traffic encountered

from other sources flowing throughout the network. Alternatively if the paths or

proportion of traffic flowing over them are modified by either of these two factors,

the algorithm is termed adaptive.

Adaptive strategies are further divided into three sub-categories, dy­

namic, quasi-static and hybrid, the latter simply being a combination of the

two former techniques. In a quasi-static scheme the key feature is the concept of

periodically updating the paths and traffic allocation over them. The modifica­

tions at each update are based on measurements taken over the period since the

previous update took place. Dynamic strategies operate on a much smaller time

interval and typically the routing configuration is re-evaluated for each packet

that uses the algorithm to select a path through the network. The hybrid scheme,

as was mentioned above, seeks to combine the two operations. Periodic updates

using a quasi-static process would form the basis for the major routing decisions

affecting traffic flow in the network at each iteration. However some degree of free­

dom would also be included for the dynamic part of the network to exploit local

fluctuations over the interval between each update from the quasi-static process.

Finally the question of how a particular algorithm is implemented can be

used to divide algorithms into distributed or centralised form. In a centralised

implementation complete paths for each traffic source in the network are formu­

lated at a single location. The necessary information about network status must

therefore be gathered from the network and the routing algorithms decisions trans­

mitted back to each node. In a distributed implementation the components of each

path through the network, for each traffic source, are calculated by the network

components throughout the paths themselves. Within distributed routing two

techniques can be identified. If the routing algorithm bases its decisions on infor­

mation available purely within the node itself, it is termed an 'isolated' policy. The

alternative is an algorithm which exchanges information with its nearest neigh-

156

hours to provide a greater appreciation of the surrounding environment. Dynamic

algorithms would seem to fall naturally into the distributed, isolated category as

the requirement for a rapid response to local events, like individual packet arrivals,

precludes dialogue with other nodes for every decision. Alternatively quasi-static

algorithms have the choice of distributed or centralised implementation as the

periodic updating could equally possibly be carried out via a central location or

across the network.

Another, quite separate, but equally important, way in which algorithms

can be divided concerns the form of the paths produced rather than the method

of formulation. Specifically, for each source-destination pair an algorithm can

generate either a single or multiple paths between the nodes at any one time.

Algorithms which generate single paths are known as shortest path strategies.

Typically the algorithm assigns a value to each link of the network and then

calculates the path, through the network, of least cost for each traffic source. If all

links are assigned equal values or values based on the inverse of their transmission

speed, then the algorithms used to generate the routing tables are known as

minimum hop and minimum delay techniques respectively. Notice how algorithms

falling into this category could also be classified as deterministic as all the traffic

from a particular traffic source follows the same 'shortest' path at any one time.

Algorithms which generate multiple paths are known as bifurcated strategies, a

generalisation of the strict definition of the term suggesting only a binary division.

Each time a route is established, a selection is made at each stage of the network

over the set of outgoing links (or a subset of them) to form the path. The selection

at each stage is based on a probability distribution over each set of links, the

distribution being determined by the specific algorithm. The bifurcated selection

procedure is therefore basically stochastic in nature.

5.3.2 Routing Techniques In Packet Switched Networks

As the preceding section suggests the actual routing scheme in a store and

forward network forms only a very small part of the overall network architecture.

The development of advanced architectures for such networks represents a highly

complex and integrated feat of engineering. Because of this the design of real

157

networks has tended to concentrate more on the technical standards for component

interface and the establishment of protocols for peer communications. Ultimately

this has lead to the development of standardised architectures such as SNA, DNA

and the emerging ISO and CCITT standards[51-53]. In the earlier stages of

development the question of routing was often solved by the adoption of a fixed

routing policy, where packets from each source were routed over an invariant path

to the destination. Alternative paths were only considered in the event of a failure

of some topological component. The SITA network, connecting airline reservation

computers with agent's terminals was an example of an early network where just

such a policy was implemented[54]. This policy is still used today in software

for many small private networks where performance optimisation is sacrificed for

simplicity. The best projected routing tables are calculated from predicted traffic

levels using an off-line optimisation program to produce the routing tables at

each node, usually based on some shortest path criteria. Other fixed policies
..

which should be mentioned include a process known as 'flooding' where a message

is transmitted on all outgoing links from a ·node. This technique can be especially

useful when information has to be broadcast throughout a network of some general

topology. The additional overhead caused by the reception of multiple identical

messages at each node is often offset by the advantages in simplicity and speed

of distribution flooding offers. Another useful technique is random routing, where

paths are established through the network according to some off-line technique

and each assigned a proportion of the traffic. Such a policy provides a useful bound

for comparison with adaptive bifurcated strategies, whose selection probability of

each path may be modified by the state of the network.

The fixed policy of this type will provide a balanced routing policy for the

traffic levels for which it was designed. However such invariant schemes cannot

modify their behaviour to react to traffic fluctuations or more seriously, sustained

traffic patterns which were not envisaged at the design stage of the network. In

these cases simulation studies have produced substantial evidence to substanti­

ate the claim that a more flexible approach is required if the performance of the

network is not to be severely compromised[55,56]. Various networks and network

architectures have emerged which have developed adaptive strategies which re-

158

tain the simplicity of shortest path strategies but include the ability to adapt

to changes in the network environment. An excellent review paper by Schwartz

and Stern[57] outlined the approach of some of better known examples including

ARPANET,TYMNET,DATAPAC as well as the SNA and DNA architectures.

Similarities are found in the way the routing strategies are formulated in each

case. All the strategies use the shortest path concept but each has its own scheme

to identify the cost assigned to each link. The functions vary from the simple as­

signment of a fixed cost based on the capacity of a link up to complex algorithms

which try to assign a cost to the link based on the congestion measured over the

link.

One of the best documented examples of the development of a network

routing policy is that of the ARPANET packet switched network. Originated in

1969 ARPANET was one of the pilot packet switched networks in the United

States. Its initial routing algorithm fell into the adaptive, distributed and short­

est path category. Every node in the network maintained a delay table which

assigned a value for the delay from this node to each destination over each of the

possible outgoing links. The delay table was used to construct a minimum delay

table and a routing table. These tables stored the minimum delay value to each

destination and the link to which that delay was assigned. Every J seconds each

node would sychronously exchange minimum delay tables with each of their near­

est neighbours. Each entry in the received minimum delay tables from the nearest

neighbours is added to the local delay from the receiving node to that neighbour­

ing node. This provides the receiving node with a new estimate of the total delay,

via the transmitting node, to each of the destinations and the delay table can then

be updated with this information. The local value for the delay to each of nearest

neighbours was derived from the instantaneous queue size in the output buffer of

each link[58]. This implementation suffered from a number of problems concerned

with the response of the routing tables to certain network events, especially 'bad

news' such as component failure, and caused instability in some routing patterns

subjected to traffic fluctuations. The short period of time between table updating

combined with the simple method of local delay measurement compounded by the

synchronous exchange of information caused a number of identifiable problems.

159

In addition the distributed nature of the algorithm led to problems in the main­

tenance of consistent routing tables throughout the network, causing looping and

misdirection of packets. The algorithm was modified a number of times before

eventually being completely replaced by a new scheme[59]. The new scheme still

formulated shortest paths via an adaptive, quasi-static algorithm, but no longer

used an entirely distributed approach. Each node in the network maintained a

complete database of the network topology and the measured delay associated

with each link in the network. Each node then calculated the current shortest

path to every other node and formed a routing table directing traffic for each des­

tination over the appropriate outgoing link using a centralised algorithm based on

a Dijkstra's technique[60]. The average time to queue and transmit a packet over

a 10 second time interval was used to calculate the link metric for the algorithm.

If the latest calculated value differed from the last by greater than a threshold

value, the new value is transmitted to every node in the network via a flooding

algorithm and used to update each node's database. The threshold value was re­

set to an initial maximum value after each update and decreased linearly to zero

after a period of 60 seconds guaranteeing at least one update every minute and

allowing more frequent updates to take place in response to considerable traffic

fluctuations.

Other authors have continued to refine the original algorithm in an at­

tempt to overcome the problems identified in the initial investigations[61-63]. All

of these later algorithms seek to reduce looping problems (by far the most persis­

tent problem) by the introduction of more intelligence into the updating proce­

dures at each node. A comprehensive description of their modifications is given in

a paper by Schwartz[64] who analyses their relative performances by calculation

of their convergence times and the overhead generated by each process.

Shortest path routing offers a simple methodology which seeks out the

single least cost path between two nodes for each source in the network. However

consider the following simple problem: over which path does a traffic source route

its information when it is presented with a choice of two routes of equal cost?

The algorithm must select a single path and yet intuitively common sense tells

us the source would be better served by some division of the traffic over the two

160

equally available routes. A variation on shortest path routing, bifurcated shortest

path routing, does just this and assigns equal portions of traffic to each path of

mimimum cost with improved performance over its restricted alternative. It is a

short step to suggest that better performance over the network should be available

if all sources were allowed to route their traffic over multiple paths through the

network. This step leads us directly to the concept of bifurcated routing strategies.

Shortest path algorithms, by definition, calculate the minimum cost path for each

source, subject to some metric over the links of the network. The technique

can therefore be criticised as myopic in that there is no element of co-operation

between the traffic sources. Each source seeks out the shortest path, based on the

link metrics, regardless of the path taken by other sources. In fact the solution to

the shortest path problem can easily be shown to result in the linear optimisation

problem

mm I: fili
all links

i

where li is the metric for link i and fi is the total flow assigned to that link.

Notice how the penalty function of using any link only increases linearly with

traffic allocation. Bifurcated strategies allow the implementation of schemes which

allow traffic to be allocated across a wider bandwidth of the network, allowing

better utilisation of the network. In particular they allow the solution of more

complex and representative network performance criteria. The classic approach

used to optimise network performance using this strategy has been the formulation

and solution of the objective function given by the minimisation of the average

network delay, E(T),

1
E(T) = -I: over all Dik(fik),

"(links(i,k)
(5.1)

where Dik(·) is the delay over the link connecting nodes i and k, expressed as a

function of fik, the total traffic flowing over the link in bits per second, calculated

from the traffic arrival rate Aik, the transmission rate in packets per second J.Lik

and the link capacity in bits per second Cik. -y, the summation of the traffic

arrival rates Aik, is a constant and can be dropped from the objective function.

161

In addition each traffic source between any two nodes i and j, Tij bits per second,

generates a flow conservation equation at node l of an N node network of the form

N N { -r·· 1·f 1-1· . • .. I] -

L f~z - L fz'~ = Tij if l=j
m=l n=l 0 otherwise

(5.2)

where f~{n is the flow on link (m,n) specifically associated with traffic flowing

between nodes i and j where all f:Jn ~ 0 and f:Jn = 0 if there is no direct link

between nodes n and m. This is simply a statement of conservation of flow in,

out and around the network through each node. The additional constraint that

lik < cik where cik is the capacity of link (i,k) is usually omitted as for the class

of function used D(fik) --+ oo as fik --+ Cik·

This problem is known as a constrained optimisation, multicommodity

flow problem. The object is to find a set of flows f:Jn which minimises the objective

function defined in equation 5.1, within the constraints imposed by equation 5.2. A

number of approaches have been reported in the literature which have used various

numerical techniques to solve this problem[65-68]. Each of these techniques uses a

form of the delay function based on Kleinrock's classic formulae derived from the

M / M /1 queuing model[69]. The model assumes Poisson arrival streams to the

network and independent exponential service times at each node a packet traverses

in the network. This leads to Dik(fik) being defined as

where the final term, which is sometimes dropped, represents the delay introduced

by a constant propagation delay. More complex models have been formed to in­

clude features such as nodal processing[70] but add little to the basic problem

of path allocation and shall not be considered here. Dik(fik) is a strictly con­

vex function which ensures that E(T), a combination of convex functions, is also

convex. This guarantees that any algorithm which finds a local minimum has

also found the single global minimum. The algorithms used to find the minimum

fall loosely into one of two categories. The first technique determines necessary

and sufficient conditions for optimisation within the variable space defining the

problem. The algorithm then modifies the flow on each link iteratively toward the

162

fulfillment of these conditions and so the optimisation of the objective function.

The second technique tackles the optimisation directly using gradient techniques

subject to the constraints. Some of the more notable algorithms using these two

techniques are outlined below for comparison.

Fratta et al[65] show that for the optimum flow allocation, /,which min­

imises D([), the total delay function, traffic from each source will only flow over

paths with the same marginal delay, where that marginal delay is less that that

of all other possible paths through the network. Marginal delay over a path 7r

is defined as the sum of the marginal delays over each link in the path k, km,

defined as 8DT/8fkl the partial derivative of the total delay over the network,

DT with respect to the flow over link k, fk· Successive iterations converge to

produce the optimal flow by the 'flow deviation method'. At each iteration traffic

is transferred at each stage from paths with high marginal gain to those with a

lower value. Specifically each iteration replaces the set flows fn by Jn+ 1 which

satisfies

D(fn+l) =min D[(l- >..)J" + >..v]
A

where vis the shortest route flow calculated under the metric lk, lk = 8DT/8fk·

This results in an algorithm which converges using the steepest descent method.

In contrast the gradient projection method of Schwartz et al[66] also used the

derivative of the objective function with respect to link flow but incorporates a

projection operator. The projection operator is calculated for each iteration of

the algorithm and projects the gradient onto the set of constraint hyperplanes,

modifying it to eliminate all directions incompatible with the constraints defined

by the conservation equations. The set of flows f_ at each iteration is given by the

formulae

i+1 = i- hPVT

where VT is the gradient matrix, P is the projection matrix and h is a scalar

constant. h is bounded by the minimum value which would create a negative flow

over one or more links after the iteration and is chosen to produce the smallest

163

value of the objective function within that limit. When PVT = 0 then no feasible

move can be made in the direction of minimisation and the optimal solution has

been found. Notice how gradients are used not only to find a feasible direction

but also, in conjunction with the projection operator to determine optimisation

directly, rather than through necessary conditions. Cantor et al[67) cleverly com­

bined the two schemes by noting that any feasible multicommodity flow within the

network could be made up of a convex combination of 'extremal' or shortest route

flows. The optimal route flow can therefore be generated by a combination of up

to NA shortest route flows, where NA is the number of arcs in the network. The

metric used to generate such flows is once again the marginal delay with respect

to the flow on each link. The problem is now reduced, or decomposed, into one

of finding the set of extremal flows and the fraction of each flow which minimises

the objective function. The Kuhn-Tucker theorem[71] is used to show that if an

extremal flow forms part of the solution set it must produce the same, minimal

marginal delay as other shortest flows within the solution set or alternatively a

flow /i is only part of the optimum set if

where cp is the set of extremal flows. On each iteration of the algorithm the

optimum combination of N A extremals flows is calculated using the gradient pro­

jection method. The marginal link costs for this scheme are then used to calculate

the minimum cost flow. If this cost is equal or greater than the extremal flows

used in the solution the optimum flow allocation has been found and the algorithm

terminates. If not the new extremal flow is added to the solution set of extremal

flows and the algorithm continues to its next iteration.

In an alternative approach Gallagher[72] in 1977 published a paper out­

lining a method which modified not the path flows, but the routing variables at

each node directly. The algorithm was also suitable for distributed implementa­

tion in a network. Marginal delays with respect to routing variables at each node,

for commodities flowing to each destination, were used to formulate conditions for

a stationary point using Lagrange multipliers. This required the equalisation of

164

all marginal delays hDT/¢>ik(j) where ¢>ik(j) is the probability of routing traffic

from i to k, where a direct link (i,k) is present, for traffic destined for j I i for

all ¢>ik(j) > 0. In addition this marginal delay must be less than or equal to

hDT/h¢>ik(j) for links on which ¢>ik(j) = 0. Or put more concisely

1>ik(j) > 0
1>ik(j) = 0

where Aij is a constant and DT is the total network delay once more. However

this does not guarantee optimisation, as the stationary point could represent a

point of inflection and so an additional set of constraints are introduced for all

links (i,k) and i I j,

, hDT hDT
DikUik) + h (') ~ ~(') Tk J UTi J

with equality for ¢>ik(j) > 0, where D~k(fik) is the marginal delay over link (i,k).

This is simply a statement that, at the optimum solution, the marginal delay for a

traffic source is minimised and all paths which carry traffic from this source have

the same value. All other paths have a higher marginal cost associated with this

traffic and are unused. Finally the inequality can be rewritten in the form

, () h DT . [, () h DT]
D ik fik + ~ (.) - m~n Dim lim + c (.) ~ 0 urk J m:(l,m) urm J

(5.3)

In this form it is used in an iterative algorithm developed by Gallagher to

find the optimum flow. At each iteration the nodes exchange marginal delays for

each destination hDT/hrk. From this information and their own locally measured

D~k(fik) a series of values for each outgoing link can be formed from equation 5.3.

The magnitude of these values can then be used, via a scaling factor, to reduce the

probability of selecting a non-optimal link and increasingly the probability of links

which currently have the lowest marginal cost. The scaling factor determines the

trade off between speed of convergence and accuracy of the solution. More recently

work has been done on functions which use the second derivative of the objective

function to scale the descent direction in an effort to improve convergence rates. In

these algorithms step size becomes a function of these second derivatives and the

original algorithm has been shown to be a special case of these much more general

165

techniques known as projected Newton methods[73]. To finish off this review of

techniques for solving the optimal assignment of flow in a packet switched network

Stern[68] produced a paper outlining his own algorithm for a distributed solution.

The nodes exchanged the same information as in the Gallagher algorithm but

Stern's algorithm used relaxation techniques to solve the flow assignment, from

which routing tables were generated. One of the advantages claimed by Stern was

that his algorithm was asynchronous and therefore more flexible.

The model has also been expanded by several authors to include the

problem of capacity assignment. Ng and Fratta et al[65,74] both show that the

basic routing model could be modified to determine not only the optimum flow

allocation in the network for a given topology, but also the capacity to be assigned

to each of the links. Ng formulated a model based on m- M I M ll link queues to

minimise the capacity and optimise flow allocation to produce an average message

delay below a design threshold. The link queue model ensures that once again

the objective function is convex and is justified by the concept of multiple, low

capacity trunks between nodes rather than a single high capacity link as in the

M I M ll models. Fratta et al use a linear cost function for the capacity assigned

to a link and defines a maximum total capacity allocation for the network which

introduces an additional constraint function. They then go on to show how the

flow deviation technique can be used to calculate the optimum non-bifurcated

flow in large, balanced networks. This technique can then be used as a heuristic

method for the generation of routing tables for implementation in operational

networks which still favour non-bifurcated solutions.

Another similar heuristic method based on minimisation of delay has

been suggested by Frank and Chow[75] and compared with the optimum solution,

capturing much of the benefit of the exact solution. The algorithm first locates

traffic between directly connected nodes and always allocates it to the direct

path. The algorithm then considers routing traffic which can reach its destination

via multi-hop paths, beginning with a single intermediate node and increasing

the path length at each iteration. Traffic is allocated paths according to link

utilisation, or residual capacity. Any link which is considered to have been allotted

its maximum traffic allocation according to a pre-defined threshold is removed

166

from the possible selections. This continues until all traffic is allocated or no more

paths can be found through the network in which case the traffic requirements

are unable to be satisfied for the present network and threshold values.

In terms of the applicability of the algorithms described above to actual

implementation in a packet switched network, the most important dividing factor

is their ability to support centralised or distributed execution. The centralised

algorithms necessitate, by definition, a central controller to gather, process and

inform each of the nodes of the algorithms solution. Similar arguments to those

developed in the discussion on circuit switched routing algorithms can be invoked

again. Centralised control introduces vulnerability by placing the responsibility

at a central location and generates an overhead, either in cost if separate lines are

used to the controller, or in link utilisation if the network itself is used to commu­

nicate with the network management. In addition there is also the question of the

applicability of the centralised algorithms decisions. In a rapidly changing envi­

ronment, the delay in collecting, solving and distributing the routing algorithm's

solution may produce outdated solutions to the immediate traffic requirements.

The distributed approach offers a more responsive technique as the rout­

ing variables can be updated at every iteration of the algorithm, either explicitly or

via calculation from the flows at each stage. However there are two inter-related

problems which arise from the basic quasi-static nature of the algorithm's for­

mulation. First the algorithm requires an accurate measurement of the marginal

delay over each link in order to calculate the modifications to the flows and/ or

routing variables. Second, in order to operate efficiently the algorithm must con­

verge to the optimum solution and then constantly modify the routing tables to

keep in step with changes in the traffic pattern across the network. The problem

is immediate and obvious. The more often the algorithm iterates the more quickly

it will respond to traffic fluctuations. Failure to do so would clearly lead to in­

correct routing patterns and a degradation in performance. However the smaller

the time interval between iterations and calculation of the marginal delays, the

less accurate the estimation of link utilisation will be, again leading to inaccurate

traffic patterns. For successful management of network resources the algorithms

require a 'quasi-static environment' in which traffic fluctuates gradually allowing

167

the algorithms time to gather accurate link utilisation measurements and track

the traffic patterns.

These limitations in the flexibility of 'quasi-static' strategies leads to the

consideration of the final class of algorithm, dynamic routing, most notable for its

distributed, continuous monitoring and updating of its local environment. This

last property allows it to react quickly to rapid changes in a way more static al­

gorithms may find hard to emulate. In the remainder of this section a number

of schemes for such implementations are reported along with some suggestions

for others based on existing work. Dynamic routing strategies have been sug­

gested for as long as the problem of routing has been under discussion. Baran[76]

suggested the simplest of schemes in his key paper on the development of dis­

tributed store-and-forward networks. His 'hot potato' algorithm was based on

the method of telegraph operators who routed messages through switching ex­

changes by hand. The operators technique involved routing the call over the best

free link or failing that the first available outward link in the general direction

of the destination. For a packet switched network the 'first available link' can be

thought of as the link with the shortest queue, and the output set of links can be

determined by observing the hop count of packets arriving at the node from each

destination. The basic algorithm can be refined by the addition of constant values

associated with each link for a particular destination. This leads to a 'shortest

queue + bias' algorithm, which directs the traffic over prefered routes, especially

under light or balanced traffic patterns. This idea of using packets travelling the

opposite direction was also used by Fultz[55] in his 'backward learning' technique

to formulate an algorithm based on delay rather than hop count. The time a

packet from a particular source spends in the network before arriving at the node

is used as a measure of congestion over the link on which the packet arrives. This

is used to calculate a value associated with the delay for a packet travelling to

the source. The algorithm was presented in shortest path form where the delay

tables formed and updated by each packet are periodically used to update the

routing tables for each destination. However exactly the same algorithm could be

used in a dynamic algorithm by using the delay tables directly to select the most

favourable link for each packet when it requests an outgoing link.

168

In the same way other isolated algorithms, such as those described by

Chou at al[77], could be used as a basis for a dynamic routing policy which

continuously update the link selection based on the most recently available in­

formation. Chou considered a class of algorithm which can be considered as an

extension of the shortest queue + bias scheme. The queue length at each node

was used to calculate a value associated with each outgoing link using a metric

of the form ao + a1 Q + a2Q2 where Q is the queue size and ao, a1 and a2 are

constants where ao ~ a1 ~ a2. By careful selection of the metric coefficients

Chou was able to develop algorithms that tended to produce near deterministic

behaviour at light loads and progressively more adaptive behaviour as the load

increased. Chou concluded from comparative studies between deterministic and

adaptive polices of this type that the best routing policy depended on the traf­

fic patterns to which it was subjected. Deterministic policies were superior for

balanced networks, but adaptive policies performed equally well in unbalanced

networks and networks in which traffic surges were introduced. Furthermore in

a chaotic environment, defined as extremely unbalanced, adaptive policies proved

more efficient at preventing congestion than their deterministic counterparts.

Rudin[78) suggested combining the global perspective of a centralised

scheme with the flexibility of dynamic link selection to produce a hybrid or con­

strained dynamic algorithm known as 'delta routing' . The centralised part of

the algorithm periodically collects statistics on the network performance over the

update period and calculates the n shortest paths through the network for each

traffic source. The central controller then compares the delay associated with

each path for a traffic source. If the delay associated with a path is greater then

the path of minimum delay by an amount o then the path is discarded, otherwise

it is retained. The network is then informed of all paths surviving this selection

procedure. The o parameter defines the degree of control the centralised network

controller has over the network. If o is small, the routing strategy will tend to a

shortest path, minimum cost routing policy. If o is made larger, the individual

nodes will have more choice in the selection of outgoing links. The selection of

links from amongst the allowed subset is controlled by the dynamic part of the

algorithm which assigns traffic to the outgoing link with the smallest queue. The

169

algorithm was compared with a scheme utilising the purely centralised part of the

algorithm and 'proportional routing' another centralised scheme where the divi­

sion of traffic over outgoing links is incrementally updated according to reported

delays over each path. 'Delta routing' performed well over a range of networks

and traffic patterns. Significantly Rudin also noted that the optimum value of

delta depended on the environment, which agrees with Chou's observation that

the usefulness of adaptability is determined by its necessity.

In a later paper Rudin[79] took up the analysis of his dynamic routing

agam, comparing his delta routing strategy with minimum cost and minimum

delay shortest path strategies in simulation studies including window based flow

control. Delta routing behaved admirably at intermediate loads but there was

a case for its suppression at high loads where non-minimum cost paths lead to

inefficient use of resources. It was also demonstrated that flow control can have a

profound effect on the performance of routing algorithms in networks and compar­

isons made without such schemes can be misleading. In conclusion the algorithm

has much to recommend it, especially the ability to limit the dynamic content of

the algorithm to prevent the inefficient use of network resources, a trait associated

with purely dynamic policies. Unfortunately in order to achieve this, a centralised

component has had to be introduced into the network and 'optimised' for the en­

vironment.

The problem associated with these isolated routing strategies is obviously

their lack of appreciation of the global network state. In general the flows gener­

ated by such algorithms are inferior to those associated with global policies and

tend only to be efficient within their locality. This leads to the generation of longer

paths utilising more network resources which can lead to a degradation in per­

formance, especially at high loads when minimum hop paths become increasingly

attractive. Another problem is often the algorithm's reliance on instantaneous

measurements like queue sizes which are prone to stochastic fluctuations leading

to the formation of loops which can only increase congestion. The final algorithm

introduced here is fully distributed and isolated in that neighbouring nodes do

not communicate routing information explicitly. However the protocol does use

information supplied by network protocols to update its route selection. The al-

170

gorithm uses the delay over each link to the destination as a parameter to update

the probability of selecting that link using learning automata at each node(80].

The reported delay over a link i, di is used to calculate a normalised penaJty

parameter p where

p = ~(dmin)
di

and dmin is the minimum reported delay, which is continuously updated to keep

track of network changes such that

{
d·

dmin = (i - >.)dmin + >.di

The penalty parameter, p, is then used to update the probability distri­

bution, r, over the set of output links according to the functions

Ti = Ti + a(l.O - p)(1.0- ri)

and

where a is a constant, 0 < a< 1.0, and N is the number of outgoing links. The use

of delay to the destination as an update parameter introduces global information

to the local decision process which tends to smooth out local stochastic fluctua­

tions but track changes in traffic patterns. Work done on the characteristics of

such schemes has suggested that the traffic patterns converge to generate and route

traffic through the network over paths of equal delay for each source[65,81]. As

Agnew demonstrated[82] in his comparison of equilibrium and optimum routing,

the equalisation of delay over paths through a network falls short of the criteria

for optimal routing and tends to route too much traffic over some paths. More

recently Mason[83] has applied the Kleinrock delay formulae to work done by

Dafermos[84] who showed that the solution to the flow over each link of the net­

work for the equalisation of path delays can also be formulated as the optimisation

of a multicommodity flow problem.

Dafermos described the equalisation of delay by each source as 'user opti­

mised' rather than 'system optimised'. The cost function over each link, Di(fi), is

171

shared by each of the users of the link, leading to a concept of price/unit flow or

mean link cost equal to Di(li)/ /i seen by each unit of flow over the link. Equali­

sation of delay is achieved when all paths carrying traffic for a source have equal

mean cost, which is the sum of the mean link costs for each path. Dafermos goes

on to show that this condition can be reformulated as an optimisation of a mul­

ticommodity flow problem of the same form as the 'system optimisation' problem

using a modified link cost function Dt(/i), where

The mean link cost function for the M / M /1 model, dz, becomes dz = 1/(Cz- fz),

leading to an objective function for the equalisation problem using the Kleinrock

model given by

. """" l Ci nun LJ n------
1 all links ci - li

i

which can be solved using any of the ways previously discussed. The direct opti­

misation methods uses the objective function, while the techniques based on iter­

ation to necessary and sufficient conditions use the equalisation of delay (rather

than marginal delay) as criteria for optimisation of the function indirectly. Mason

calculated the performance of several networks for both optimal and equalising

routing policies and found the two schemes produced very similar results at con­

vergence. In conclusion the learning automata scheme, although converging to

equalise delays rather than marginal delays, produces a performance very close to

that of an optimal strategy, without recourse to any centralised component.

5.3.3 Congestion and Flow Control Techniques

Both circuit and packet switched networks can be considered as a set of

distributed resources; transmission links, nodal buffers and processors, all of finite

capacity. However the way in which these resources are managed is quite different.

In a circuit switched network resources are allocated for the duration of a call. For

the case of an overloaded network this method of allocation results in an increase

in the probability that a customer will be unable to make a connection over the

172

network. However, once a connection is established the customer will not suffer

any further reduction in performance. In a packet switched network resources

are shared dynamically between those customers who request their use. When a

packet switched network is overloaded customers are not blocked automatically

and the resources of the network can be depleted leading to a degradation in the

performance seen by all customers using the network. The point at which this

takes place marks the onset of congestion, typified by an increase in the delay of

traffic through the network and a decline in throughput. The typical response

curves of delay and throughput vs. load are shown in figure 5. 7 for such an

unprotected network.

The network routing algorithm is an important parameter in determining

the onset of congestion, generally accepted to be the point at which the maximum

occurs in the plot of throughput vs. load. A good algorithm will make good

use of available resources, however no matter how efficiently the routing algo­

rithm manages the network, the resources represent a finite quantity. If the traffic

level increases it will inevitably reach a point, no matter what scheme is employed,

where these resources cannot accommodate the demands made upon them, result­

ing in congestion. To avoid this problem flow control and congestion avoidance

techniques have been developed to limit access to the network as congestion ap­

proaches in an effort to prevent the exhaustion of resources. A number of excellent

review papers have been published which discuss the various techniques[85-88].

In this section some of the more promising techniques and conclusions generated

from these reviews will be discussed and the models they refer to expanded from

their original sources to cover some of the analytic work that has been developed

to assess the impact of introducing flow control. The remainder of the section will

then concentrate on the work done on the interaction between routing algorithms

and flow control procedures.

The various techniques can be classified according to a number of criteria,

but for this review the Gerla and Kleinrock system is adopted[85]. The conges­

tion control technique is identified by reference to the position in the network

architecture at which it operates. The different areas of interest are labelled on

a sketch of the network architecture in figure 5.8. Four different areas of interest

173

are identified within the hierarchical structure; hop level, network level, network

access, and transport level. A network may use a combination of some or all of

these mechanisms to provide congestion but they will be considered in isolation

here to clarify their effects.

Beginning at the bottom of the hierarchy, flow control may be exercised

between each of the nodes in the network at the Data Link layer of the proto­

col structure. Control at this level prevents local congestion by management of

buffer resources in individual nodes. Irland[89) showed that by selection of ap­

propriate thresholds for the number of buffers that could be allocated to a single

output queue at any one time, busy paths can be prevented form 'hogging' buffer

capacity to the detriment of other customers. A two dimensional Markov model

was developed to calculate the loss probability of traffic under a number of sug­

gested schemes including the optimum buffer allocation, for both balanced and

unbalanced traffic patterns. The analytic results suggested that the performance

produced by the optimal strategy for each traffic pattern could be approximated

by the the adoption of a simple heuristic scheme. The scheme allocated a thresh­

old of B / .fN buffers to each output queue where B is the total buffer capacity

and there are N output queues.

An alternative approach, rather than limit the allocation of buffers to

the output queues, is the use of virtual circuits between adjacent nodes for each

source. Notice this requires a virtual circuit implementation at the network level

to provide the path for the traffic between the source and destination nodes. The

maximum allocation of buffers given to an individual end-to-end virtual circuit at

each node in the network is defined by the window size of the virtual circuit over

the link between each node and the former node in the path. This technique was

studied by Pennotti and Schwartz[90] who developed an analytic model of a single

logical link in the network based on the queue in figure 5.9. Two traffic types are

identified contributing to the input stream, the traffic associated with the logical

link under analysis,>.1, and the traffic from external logical links entering and

leaving each queue, >.2. The logical link was modelled by a series of finite queues

and servers of this type, the buffer sizes given by the size of the window at each

stage of the path. The effect of external traffic is introduced by the reduction of the

174

servers capacity by a factor equal to the external traffic arrival rate. Congestion

caused by the presence of the link is then measured as the increase in queueing

time experienced by the external users due to the prescence of the logical link.

The resulting model is reproduced in figure 5.10. The service rate of each stage

has been cut to Jl.n - An where Jl.n and An are the total service rate capability

and external traffic intensity of node n respectively. The queueing system can

be solved iteratively by considering each queue as an independent finite M / M /l

queue of size Nn whose server has a probability of being blocked given by the

probability that the succeeding stage is full. If the final server's probability of

being blocked is taken as zero then the probability that the buffers at each stage

in the chain upstream are full can be calculated. All that is required for this

calculation is an assumed throughput A and the probability that the next stage

is full. A new estimate of the throughput can be calculated from the final stage

where A = AOPl where Ao is the link arrival rate and Pl is the probability the

first queue is full. This value can then be used in the next iteration until the

difference between successive iterations is less than some threshold value. Steady

state results suggest that such a scheme provides similar protection levels for the

external users as an equivalent end-to-end scheme which will be discussed next.

However the question of how long such a scheme would take to throttle the source

by backward pressure is not investigated.

At the next level in the network hierarchy, flow control can be introduced

between the source and destination nodes of the network. This is done by the

implementation of an end-to-end window protocol which places a maximum on

the number of unacknowledged packets in transit over any virtual circuit at any

time. Primarily this prevents the destination being flooded by the source if the

ability to accept information arriving is insufficient to cope with the demand, as for

example in the case of a slow local loop to the customer. In addition the window

protocols also limit global congestion by limiting the number of packets traversing

the network at any one time. During times of high network throughput the time

for a packet to traverse the network will increase and this will automatically reduce

the ability for each source to introduce new packets as the number of acknowledged

packets will be equal to the virtual circuits window size for increasing amounts

175

of time. An analytic model was developed by Pennotti and Schwartz for an end­

to-end protocol of this type based on the queue in figure 5.9 and using the same

concepts of external traffic interference and congestion as previously discussed for

the case of hop level flow control. The model formed a closed queueing system of

the type shown in figure 5.11 in which N customers cycle around the loop, where

N is the window size of the virtual circuit and >. is the arrival rate of traffic for

introduction to the network. The balance equations can be solved using a product

form solution and used to determine the congestion produced by circuits of varying

sizes under various external load conditions. In a later paper by Schwartz[64]

the problem was simplified by considering only the end-to-end performance of a

homogeneous link. A logical link of M identical queues with service rate J-L can

then be replaced by its 'Norton equivalent' which is simply a single queue with a

state dependent service rate p(n, lvf) where there are n packets in the queue and

n
J-L(n, M) = n + (M- l)JL·

Using the concept of 'power' which is the ratio of throughput to delay,

Schwartz showed that for this model, the optimum window size, generating max­

imum power at a load >. = J-L, is equal to the number of hops in the link, i.e. M.

Interestingly for >. - oo the optimum window size was found to be only lv1 - 1

and neither of these values proved to be critical for effective flow control. This

last point has important repercussions for adaptive and dynamic strategies where

effective flow control can be applied without detailed knowledge of path lengths

for the virtual circuits through the network.

The next class of congestion control, network access protocols, takes place

at the entry point of the network. Although this appears similar to the end-to­

end procedures discussed earlier, schemes that fall into this category determine

the accessibility of traffic based on some measure of congestion in the network

as a whole. End-to-end schemes limit flows from specific sources to congested

destinations, aiding network congestion as a consequence rather than directly.

Two main schemes have been identified in the literature, one global and the other

based on purely local congestion levels at each origin node. The global scheme,

known as isarithmic control, was developed at the National Physics laboratory

176

in the United Kingdom[91,92]. The scheme introduces a number of 'permits',

dispersed throughout the network. To transmit a packet a source node must

first obtain one of these permits. The permit is then carried with the packet

and released at the destination node, where it can be reused for traffic from

that destination. It was also recognised that permits must be prevented from

collecting at a few monopolising nodes, starving the rest of the network of access

permission. A maximum on the number of permits a node can possess at any one

time was proposed. Additional permits arriving at a destination would then be
()

re-distributed over the network. Clearly this scheme imposes a maximum on the

number of packets that can be in transit over the network at any one time, however

no satisfactory scheduling mechanism has been developed for the dispersion of

packets round the network and additional problems that have been highlighted,

such as the maintenance of permit integrity, have prevented this scheme evolving

from the simulation stage. The second congestion control technique uses the

occupancy of the buffers at each node as a measure of traffic congestion. The

input of traffic into the node is then regulated as a function of this local congestion.

The node recognises two types of traffic, transit traffic from other nodes in the

network, and new traffic from local customers trying to gain access to the network.

The model of the queue arising from such a division is shown in figure 5.12. Both

new and transit traffic compete for the finite buffer space and are blocked with

probabilities P1 and PT respectively. In addition a portion of the transit traffic,

Px leaves the network at the node, having reached its destination. Considering a

symmetrical, homogeneous network made up of queues of this form the throughput

1 is simply equal to the transit traffic accepted by the queue, given by

For the conservation of traffic as many packets must leave the network

as arrive. Equally this must also be true for each of the identical nodes in the

network. Therefore

177

from which the simple relationship IT = II/ Pr can be derived connecting the

transit and input throughput rates. If we first assume that no flow control is

imposed and both input traffic and transit traffic are treated equally, the model

further simplifies to a single offered traffic term .X and a throughput ..X(l - PB)

where PB is the probability that the buffer is full. Plotting this function against

load produces the classic throughput function sketched in figure 5. 7. Lam and

Reiser[93] proposed a strategy to eliminate this downturn in performance by the

introduction of the input buffer limit scheme. The scheme limits the number of

buffers input traffic can occupy in a queue of buffer capacity Nr, to a maximum

value N11 where 0 < N1 < Nr. No limit is placed on the number of transit packets

in the buffer at any one time and they are allowed to fill all empty buffers whether

input traffic is limited or not.

Tlus scheme can be analysed by the formulation of a 2-D birth-death

process(94] defining the balance equations satisfied by the probability distribution

p(n1, nr), where n1 and nr represent the number of buffers occupied by input

traffic and transit traffic respectively. The equations use state-dependent ser­

vice rate for both transit and input packets to differentiable between the relative

amounts of time they each spend being serviced and from this a product form

solution can be derived which shows that as N1 is reduced from Nr a downturn

in performance is prevented at some value. Tighter control produced the same

effect with a degradation in throughput across the range of applied load. Lam

and Reiser used a more complex analysis and showed that N1 should be selected

to satisfy the design criteria

NJ/N < l/n+ 1

where n is the average hop count. This result agrees with the observa­

tions of the simpler model. Saad and Schwartz[95] later showed that the ratio

of throughput to end-to-end delay could be improved by implementing a differ­

ent scheme known as additional buffer allocation similar to the concept of trunk

reservation in circuit switched networks. In this scheme new input traffic and

transit traffic are both accepted up to the point where there are fewer than N1

buffers free where 0 ~ N1 ~ Nr. While the buffer is in a state where the number

178

free buffers, n, are less than N1, input traffic is rejected and only transit traffic

is allowed access to the node. Thus input traffic is refused entry to the network

when

The final layer in the hierarchy of congestion control techniques occurs at

the transport layer. This is usually based on a window type mechanism similar to

those described for end-to-end control at the network layer. These flow control

procedures generally control the rate at which two applications communicate,

providing pacing between the sending and receiving customers. Once again they

have a secondary effect of controlling input to the network as delays increase

by imposing a maximum window size on unacknowledged packets. However the

effect at this level is much less pronounced because of the remote position of the

control and this secondary function is not usually significant if sufficient control

is exercised lower in the hierarchy.

In this section flow control schemes have been outlined and analytic mod­

els have been used to formulate performance criteria based on single logical links

or local measurements at individual nodes. In the previous section routing algo­

rithms were discussed, categorised and once again models formulated to analyse

their behaviour. In each case the influence of one upon the other was not included

in the analysis. Routing is discussed in terms of well defined traffic sources be­

tween origin and destination nodes, while flow control was analysed using fixed

paths and well defined external traffic interfering with the progress of a sources

traffic. In a network implementation the routing strategy and flow control inter­

act strongly to define the performance of the network[96]. The routing strategy

defines link utilisation from the allocation of traffic across the network. From this

buffer occupancy and end-to-end delays result. The flow control algorithms will

use these parameters to determine the level of traffic from each source that is

allowed entry to the network. This will affect the amount of traffic over each path

which will in turn affect the selection of paths and allocation of traffic assigned to

them using the adaptive strategy. The importance of this relationship was shown

by Rudin, Chou, Gerla[56,77,79] and others who carried out simulations which

179

clearly showed the importance of selecting the correct algorithm and the use of

suitable flow control.

More recently there have been a number of attempts to extend the mathe­

matical modelling of routing algorithms to include flow control in the formulation

of the objective function. Gerla et al(97] examined the problem of a network

whose traffic sources were each throttled by end-to-end windows of fixed size.

An iteration procedure using the flow deviation method is used to derive the op­

timum routing strategy for the minimisation of the average network delay. The

complexity of solving the problem in a closed network, necessary to introduce

the effects of flow control, is approximated by dividing each iteration into two

stages. First the routing tables of the network are frozen and the throughput

and end-to-end delay of each session are evaluated using mean value analysis[98],

an approximate recursive technique which is computationally feasible for realis­

tic networks in comp~rison with the exact product form solution which can only

be realistically implemented for trivial networks. The end-to-end windows are

then removed leaving the open network and each session is replaced with a traffic

source equal to the calculated throughput. This is another approximation as the

magnitude of the throughput has been retained but the window function limiting

the number of packets on the network from one source at any one time has been

removed. The flow deviation technique is then used to calculate the new routing

pattern, and this is then used in the next iteration until no significant change is

observed at each iteration. The results are instructive and can be used to propose

a limit on the number of sessions that can operate with a given window size with­

out causing congestion on the network, if they were each to use the full capacity

of the window assigned to them.

Gallagher and Golestanni[99] proposed a more dynamic approach to the

problem and introduced the concept of dynamic window sizes based on congestion

levels as a natural partner to Gallaghers distributed routing algorithm. The ob­

jective function for the joint routing and flow control strategy is a summation of

the routing cost function used in the optimisation of open networks and a second

term representing the cost of rejecting traffic by the introduction of flow control.

The objective function J(f, r), where f and r represent the vectors of flows around

180

the network and into the network respectively, is therefore given by

all link11
I

all traf fie
pair11 (i,j)

subject to usual the conservation 'and capacity constraints and 0 ~ TiJ ~

rf,j where rf.J is the input rate desired by the customer. Applying the Kuhn­

Tucker theorem to the objective function once again produces the result that

traffic flows only over paths of equal and minimum incremental cost. In addition

the solution produces the result that -E~j(rij), termed the incremental gain for

the allocation of traffic Tij, assumes a value as close to the incremental cost of

traffic Tij, D~j(rij), as possible within the limits of the constraints on Tij and

is independent of rf;, within these limits. To develop an algorithm to solve this

problem it is then reformulated as a quasi-static routing problem by assigning the

traffic rejected by the flow control to a fictional link and assigning a cost function

to this link Dz' (Jzt) where

Dzt(fz') is a convex function in tz, compared to Eij(Tij) which is a strictly·

decreasing function of Tij. This reduces the cost function to the form Ez Dz(fz)

over all links real and ficticious. The paper goes on to prove that window size can

be expressed as a fu~ction of the session rates in the network and that from this

changes in the size of a session window lead to well defined changes in the rates of

sessions in the network. By formulation of J in terms of session rates and routing

it demonstrates that the effect of such incremental changes on the objective func­

tion can be used in a distributed algorithm to reduce the value of that objective

function based on local measurements of the marginal cost of the session. Thaker

and Cain[lOO] covered much of the same ground in their thorough paper on the

interaction of routing and flow control procedures. The paper presents results

for both simple and bifurcated shortest path routing and compares them with

an optimum routing policy with and without window flow control. The effect of

flow control was evaluated by the use of Little's formulae to calculate the allowed

throughput for each session based on the window size. This simple approximation

181

appears to work well for loads which exceed the allowed throughput. An adaptive

window size based on the incremental delay for each session, oDTfori; is then

proposed. A penalty function defining the maximum rate for a session for a given

incremental delay is formulated and shown to be of the same form but slightly

more flexible than the Gallagher scheme and much more successful than a scheme

based a simple marginal delay threshold to turn the traffic on and off. Using an

adaptive scheme of this form is shown to have the important attribute of prevent­

ing network performance deteriorating as the number of sessions increase, unlike

fixed window size schemes. The penalty function is used to produce a formulae

for the calculation of the window size for each session based on Littles formulae

once more. The window size turns out to be a function of the marginal delay and

the end-to-end delay of the session. Finally Thaker and Cain suggest a variation

of the scheme where marginal delay is replaced by the simple average delay /hop

and results suggest that the performance of this scheme only undergoes a slight

degradation when at high loads in comparison to optimal control.

The work outlined in this section allows considerable progress to be made

in the analysis of packet switched flow control and routing strategies using ana­

lytic methods. However there are many examples where analytic treatment is not

applicable or the approximations made insufficient. Many of these problems arise

from the assumptions made by the mathematical models to allow tractable prob­

lems to be formulated. Alternatively results can be generated by the introduction

of simulation techniques to create a more realistic environment for network anal­

ysis. In the next section the design of such a packet switched network simulator

constructed on the Transputer simulation environment is presented.

5.4 Packet Switched Simulation Model

5.4.1 Layered Nodal Model

The simulation model of the packet switched network node is based on

the first three layers of the network protocol architecture outlined in figure 5.5. A

physical model was first designed defined the queueing and transmission charac­

teristics of the input and output interfaces and the main data paths between them

182

and the processing areas. Within this physical model the data link and network

layers of the layered communication protocol where then designed to control the

passage of packets between each of the queueing systems from the source to the

destination nodes.

Physical Layer

The major physical components of the network node model are shown in

figure 5.13. The node consists of a central area where packets are processed and

a number of associated input and output data paths to and from this area. The

input paths come from two different sources; transit packets from the incoming

links of neighbouring nodes and packets generated from messages originated at

that node. A message source generates virtual circuits for transmission across the

network which are stored in a group of buffers assigned for local transmission.

Packets from these virtual circuits compete both with other and incoming pack­

ets for the processors attention on a first-come-first-served (FCFS) basis. The

central processing area contains the upper layers of the communication protocols

for accepting, processing and redirecting packets from the input paths over the

output paths. The output from the processing stage is linked into the output

queue for each outgoing link according to its priority. Each queue has a server

and a second area of storage beyond the server. When a packet reaches the head

of the queue it is held in the server for a time equivalent to its transmission time

and then released into the second area. The packet is then stored in the second

area for a further period of time equal to the propagation delay over the outgoing

transmission link. The packet is then sent to the next node in the path where it

is accepted over the appropriate incoming path.

Data Link Layer

The remaining model characteristics depend on the protocols that are

chosen for the Data Link and Network layers. The model does not explicitly

consider the individual bits that make up packets, rather the protocols are built

around the smallest important fundamental building block, which is considered

to be the end-to-end acknowledgement packet in the Network layer of a virtual

circuit routing policy. The Data Link layer, which provides an error free packet

transmission service for these fundamental units of data, between neighbouring

183

nodes, was constructed to be complex enough to cope with corruption of packets

over a link to provide a good model for error recovery. However much of the

fine detail of real protocols, aimed at unusual conditions or optimization can be

ommitted without the loss of a good appreciation of the protocols behaviour.

The Data Link layer chosen is a simplified form ofthe Go-Back-N strategy

outlined in Tanenbaums text on computer networks[lOl]. The essential features

of the strategy include

- acknowledgement packets transmitted to the sending node on successful

acceptance of a packet at a receiving node. The acknowledgement packet

is sent with the highest priority to minimise delay.

- packets are discarded if there is insufficient buffer capacity for their stor­

age on the output queue selected or if the packet has been corrupted on

transmission over the incoming link.

- nack packets, or negative acknowledgements are transmitted at the high­

est level of priority to the sending node if a packet is discarded. This is

the only mechanism used to inform the sending node of a packets failure

to be accepted. No timeout scheme is implemented.

- both ack and nack packets are never corrupted by transmission over a

link and are considered to be of zero size.

- multiple transmission of unacknowledged packets over each link. This al­

lows the transmitting link to keep sending data packets over the outgoing

link without incurring a round trip delay for each packets acknowledge­

ment from the receiving node.

- on reception of an nack packet a copy of the packet that was lost at

the receiving node is retransmitted, followed by all the packets that were

transmitted following it.

- packets are only accepted in the correct order, i.e. all packets following a

lost packet are automatically rejected until the lost packet is resent. The

retransmission of all packets following a lost packet preserves the order

of transmission across the link. This removes the need for resequencing

and simplifies the protocol. The retransmission also introduces a trans­

mission overhead caused by the rejection of correctly transmitted packets

184

following the lost packet.

Network Layer

The network layer protocol, with its two main components of routing and

flow control will vary according to the particular models under analysis. The

routing strategy will select an outgoing path for each packet but how the path

is selected will depend on the algorithm, type of routing and type of packet. A

range of algorithms have been implemented, consisting of

- random routing. The outgoing link is selected at each node from a se­

lection of possible outgoing links which form a subset of the possible

outgoing links. The scheme directs the traffic over a number of preferred

paths with equal probability of selecting each of the allowed links at each

node.

- learning automata. Once again the outgoing link is selected at each node

from a subset of the nearest neighbour connections. However in this

scheme the probability of selecting each of the outgoing links is modified

by the history of the traffic routed through the node. This is accomplished

by updating the link probabilities based on the reported delay experienced

by packets using each of the links.

- shortest path strategies. Routing strategies using minimum hop and min­

imum delay techniques are implemented. Minimum hop routing finds the

path for each traffic source which minimises the number of intermediate

nodes packets have to traverse. Minimum delay routing finds the route

to each destination of least value, where the value assigned to each link

is the inverse of its transmission capacity.

- bifurcated shortest path strategies and optimal routing.

In addition to the actual algorithm used, both virtual circuit and data­

gram routing are implemented using each of the strategies. In datagram routing

each data packet is routed independently of all the packets and uses the algo­

rithm at each node to direct it to the next node in its path to the destination.

No explicit end-to-end acknowledgement takes place, although each packet still

generates an acknowledgement packet between each node at the Data Link layer.

Virtual circuit routing for a message involves the specific creation of a route to the

185

destination using a special 'Trace' packet. This packet uses the algorithm at each

node to traverse the network to the destination. When an end-to-end acknowl­

edgement packet reports the successful creation of such a path, data packets are

transmitted to the destination over the path formed by the 'Trace' packet. Each

data packet is acknowledged by its own network acknowledgement until the entire

message has been successfully sent. Another special packet, a 'Finish' packet is

sent down the path to break down the virtual circuit.

The second part of the network layer function, flow control, is imple­

mented with a number of options which can be applied according to the form of

the routing technique. The options allow

- a limit on the number of traffic sources from any node at any one time.

- the window size of each traffic source to be defined. This limits the

number of unacknowledged packets on the network for each traffic source.

- input buffer limiting and buffer allocation. This allows the number of

buffers to be assigned to transit traffic only and the number of buffers to

be assigned to any one output link at any one time to be defined.

The first two parameters allow the formulation of virtual circuit routing algorithms

using end-to-end acknowledgements to control input to the network. Datagram

strategies do not generate end-to-end acknowledgements and so the network flow

control has to be controlled via buffer availability, although this form of flow

control can also be used for virtual circuit routing strategies as well.

5.4.2 Model Implementation

The implementation of code for the packet switched network simulation

uses the architecture defined in chapter 2 The nodal process representing each

node in the network is reproduced in figure 5.14. Each nodal process is composed

of six major procedures which form four parallel processes, consisting of three

satellite processes which compete for the attention of the fourth process. This

fourth process controls access to the data structure. The sequence in which a call

travels through these processes from its generation to its arrival at its destination is

shown in figure 5.15. Initially a message is generated which subsequently generates

individual packets. Once a packet has been admitted to the network, a route is

186

selected and the packet inserted on the appropriate output queue where it stays

until it is transmitted to the neighbouring node selected by the routing strategy. If

a packet is still in transit it goes through the same sequence of processes at the new

node. Alternatively if the destination has been reached it will either generates an

end-to-end acknowledgement packet if part of a virtual circuit strategy or simply

terminate if the network routing strategy is of a datagram type. The protocol

layer at which each major operation takes place is shown along side each. stage

with the title of the operation.

Figures 5.16 to 5.20 analyse each of the processes more closely with re­

spect to the major operations outlined in figure 5.15. Figure 5.16 gives details of

the peripheral routines corresponding to the implementation flow control within

the network layer and the generation of traffic from the customers and its sub­

sequent introduction into the network. Figures 5.16(a)-(c) describe the process

Generate, and routines in the processes Call Origin and Sink which control the

end-to-end behaviour of a message send over the network by a virtual circuit. The

Generate process, outlined in figure 5.16(a), is initialised by calculation of the first

message arrival for each destination node from each node from which traffic orig­

inates. The process then introduces the messages in the form of virtual circuits

at appropriate times in the simulation. New virtual circuits are subsequently

generated according to arrival statistics defined in the simulation. As each new

virtual circuit is generated its progress over the network is controlled by the Call

Origin process at the originating node and additonal code at the destination node

to form a simple communication protocol. The basic form of the two halves of

the protocol are presented in figures 5.16(b) and 5.16(c). Together they operate a

scheme similar to that outlined earlier in the discussion on network layer protocols.

Each V.C. initially transmits a 'Trace' packet. On successful acknowledgement of

this packet from the destination node, data packets are transmitted across the

network. When all the data packets have been successfully acknowledged a 'Fin­

ish' packet is transmitted to terminate the connection. At the destination node,

code implementing the other half of the peer protocol receives a 'Trace' packet

and generates an end-to-end acknowledgement packet. Subsequent data pack­

ets are acknowledged in a similar fashion until the reception of a 'Finish' packet

187

which terminates the connection. When the model is used with datagram rout­

ing, each of the virtual circuits become a permanent session between the origin

and destination nodes. End-to-end acknowledgements are not generated and so

these initialisation procedures are not required. In their place sessions are initially

defined prior to the beginning of a simulation and these sessions generate packets

continuously as the simulation progresses.

Figure 5.17 shows the two halves of the window flow control mechanism

used for virtual circuit studies which make up the protocol layer 3(ii) labelled in

figure 5.15. Figure 5.17(a) shows the decision process made on the arrival of each

packet of a V.C. If a Trace packet arrives a new window is generated, otherwise

the packet is only accepted if there is sufficient room in the window assigned

to its parent message. Dropped packets are not re-attempted and are reported

in the results generated by the simulation in the form of the percentage of traffic

unable to gain entry to the network because of flow control. Figure 5.17(b) simply

removes the packet entry from the end-to-end window on successful reception of

a network acknowledgement packet. Figure 5.18 completes the implementation of

layer 3 of the protocol stack by defining the procedures for both virtual circuit

routing (a) and the much simpler datagram technique (b). Again data packets

which are unable to continue because of insufficient buffer capacity are dropped.

If this occurs at the originating node these packets will be added to those which

form the statistics reporting on entry to the network. Otherwise the protocol at

the Data Link layer will schedule retransmission of the dropped packets

Figure 5.19 shows the implementation of the Go-Back-N strategy used in

the Data Link protocol layer. A new packet, when it is added to a queue generates

an local acknowledgement packet if it is within the network. The packet then waits

until it reaches the head of the queue. It is held for its combined transmission and

propagation delay and transmitted over to the next node. If it is successful a local

acknowledgement packet is returned and the packet can be deleted. If the packet

is not accepted a 'nack' is transmitted back to the node, which causes the pointer

defining the packet at the head of the transmission queue to be re-defined. The

pointer is reset to transmit the rejected packet followed by all those which followed

it before continuing with the transmission of new packets. Figure 5.20 shows the

188

physical layer processes Input (a) and Output (b) which act as multiplexors and

demultiplexors and the Data Link layer operations of the Sink process. The code

sorts packets according to their type and position in the network for appropriate

action.

A copy of the source code developed to implement this model and used to

carry out the subsequent simulation workis included on a diskette accompanying

this thesis. The code was written in OCCAM using an IBM PC-AT equipped

with a D700C Transputer Development System and a B004 Transputer plug-in

card, both from INMOS Ltd. Instructions for recovering the source code from

this diskette are detailed in Appendix C.

5.4.3 Implementation of Learning Automata Algorithms

As discussed previously the learning automata algorithms use the delay

experienced by traffic routed over an outgoing link to a destination in the cal­

culation of the probability distribution for the selection of those outgoing links.

This section outlines the way in which nodes in the network could acquire this

information under both Virtual Circuit and Datagram based network protocols.

In establishing a Virtual Circuit through a network an initial packet is

first dispatched to determine a route to the destination. For a learning automata

routing scheme the next link is selected stochastically according to the probability

distribution over the set of outgoing links. When the packet arrives at the destina­

tion its arrival is confirmed by the creation of an end-to-end acknowledge packet

which is sent over the return path. This interchange of packets which serves to

establish a route for the data packets to follow is also sufficient for the implemen­

tation of the learning automata algorithms. Each time the initial packet arrives at

a node the time of arrival is recorded and the call forwarded as described above.

When the end-to-end acknowledgement is generated, it is also time-stamped.

When this packet arrives a node in the chain, the delay experienced by the ini­

tial packet from this node to the destination is simply the difference between the

time-stamp carried by the acknowledgement packet and the recorded time of the

initial packets arrival.

Datagram strategies route each packet individually and do not include

189

overhead packets such as the initial or end-to-end acknowledgement packets in­

cluded in Virtual Circuits. Such features are often implemented at higher layers

in the protocol stack for flow control and packet re-assembly functions. However

each item is still treated individually for the purposes of routing at the Network

layer and this is consequently of little use. To construct a learning automata

based routing algorithm it is therefore necessary for each node to communicate

packet delays using the local acknowledgement packets generated by the data link

protocol layer for each packet arriving at a node. In addition, because these com­

munications are local each node must also maintain an array of average measured

delay to each destination node over each outgoing link as well as the minimum

average delay at any time, dmin, for each destination. To explain how the algo­

rithm works consider a packet arriving at a node i. Its arrival time is recorded, an

outgoing link selected and the packet placed on the correct output queue. When

the packet is safely received by the next node j, the packet is processed, placed on

the next output queue and an acknowledgement packet generated and sent back to

node i at high priority. The acknowledgement packet carries the average measured

delay from node j to the destination node over the outgoing link selected. When

the acknowledgement packet is received by node i this- average value is added to

the local delay, defined as the time between the data packets arrival at node i and

the acknowledgement packets arrival, to give a total figure for the packet delay.

In addition the total delay is used to update the average measured delay to the

destination over the outgoing link using a weighting formulae of the sort defined

in eqn(5.4).

The total delay form each node is then normalised and used to calculate

a suitable value for updating the probability distribution over the set of outgoing

links as previously described.

5.5 Summary

In this chapter the major operations and performance criteria of a packet

switched network have been presented with particular reference to those areas

associated with routing and flow control. The current state of analytic modelling

has been detailed in both these areas and a simulation model presented which

190

will enable the comparison of predicted and measured performance for a range

of different policies. In the next chapter examples of some typical industrial

strategies (l.nd lower bound calculations are compared with network preformance

using learning automata based routing strategies both with and without flow

control. A variety of different network configurations are studied to highlight

some of the properties of traffic allocation, :flow control and the interaction between

these functions in packet switched networks.

191

terface
otocol

D

0

Host
Computer

Interface
Message
Processor

Full Duplex
Link

Figure 5.1: Wide Area Communication Network

Host A Host 8

J----8
Subnet Protocols

Figure 5.2: Stages In Communcation Between Hosts

Interface
Protocol

data

'IIIII
,

data

'iiiii
.,

data

User Layer

-----------------------------~

Network Layer

R ------------------------------------~ data

•

Data LinkLayer
R TH ... ~ data

IIIII ..
Physical Layer

R - Routing and flow control Information

TH g Transmission header for error detection,
status information and link flow control

Figure 5.3 Packet Formation

~

' ·-. --· .-- ·:· ·:7·-··-·.··•. ·---- .-.-- ·- - .. ·- ... ···:

data

.. ~

R

R TH

Host A Imp A Imp 8 Host 8

4' ~~---··-~' ~)' 4'

3' :::::::::: 3'

2' 2'

1' t----11'

Imp A

3(i i)

\ 3 (i)

1-------+

I 2

1

-=)\
-"' ~--··············; \

3 3
~ ··········•••••···

\ : : '
~c :,'

- -
2 ~::- ············-:: 2

~ .

1 4 ~ 1 ..

Figure 5.4 : Layered Architecture

0

3' ::::::::::: 3'

2' 2'

1'1---11'

Of A Communications Network

Imp 8

3(i i)

Intermediate Imps

3 (i) 3 (I) 3 (i)

2 2 2

1 1 1

Figure 5.5 Network Architecture

l ... ----- --.. -

Routing Strategy

I

Fixed Adaptive

I

Quasi-Static Hybrid Dynamic

I

Centralised Distributed

Bifrucated
(Stochastic)

Mode

I
Shortest Path

(Deterministic)

Figure 5.6 Classification of routing strategies

delay

0
0

throughput

0
0

I

applied load

.--~

applied load

region of
congestion

Deadlock

Figure 5. 7 Performance curves with insufficient flow control

Network
Access

Customer
Equipment

Hop
Level

Transport Layer

Network Level

Hop
Level

Network Nodes

Hop.
Level

Figure 5.8: Hierarchy of Flow Control

etwor

Customer
Equipment

Jl

Figure 5.9: Queueing model of a single
node in a logical link

Figure 5.10 M Node logical link model with hop level
window flow control

AT

t
ATPT

Figure 5.11: Closed

•} 'YT

~
AI~

Queuing Model
Window

Nr buffers

•} 'YI

N circulating
packets

of End-to-End

Jl

Figure 5.12: Queueing model of single node for buffer
analysis

'Y

Incoming
Links

Processing "
Centre ~--......

~
Transmission

Messages and

Message
Generator

Figure 5.13: Physical Nodal Model

Propagation

Input

Virtual
Circuit/Message

Generator

Output

Sink

Call
Origin

Source

Figure S.14: Node Structure

Data
Structure

generate

Generate new
messages

Call Origin generate
packets

Call Origin
end-to-end

flow control
3 (i i)

Ill. ~ ,. ...

Sink route 3 (i)

Source queuing 2

Output transmit 1

generate
acknowledge

Input receive 1

Sink
process
packet 2

Sink flow control
across network

at destination
3 (i i)

at origin

Figure 5.15: Call Progress

(a)

(c)

Initialise calls

I
Send next v.c.

I
Calc. next v.c.

Send
Acknowledge

Send Data
Acknowledge

~

~
(b)

Send Trace

Drop Send Data

Send Finish

Figure 5.16: Virtual Circuit Control Layer

(a)

Trace

New Window

(b)

Add To Window

Sink 3(i)

Remove From
Window

Figure 5.17: Window Control Routines

Drop

{a)

Route

Set Up Call

(b)

Drop/
Generate Nack

Drop/Generate
Nack

Source

Route

Source

Look up

Remove Call

Drop

Figure 5.18: Routing Procedures

. - -- ~':-·:; ·-:·,.,... .. , - ., _ .. ,., .. -:·· ,:·. .

Send local
Acknowledge

Add To Queue

Internal
Acknowledge

Transmission
Delay

Replace Head of
Queue by Store

_ Receive

Propagation
Delay

Output

Erase Packet
Copy

Figure 5.19: Transmission Protocol

(a)

Demultiplex

Send over link

(c)

~r--

Update
queue

Sink 3(i)

(b)

Origin

Sink 3(ii)

Multiplex

Sink

Drop/Generate
Nack

Sink 3(ii)

Figure 5.20: Interface And Arrival Processes

·•··-~······~-··· ····-·---·-·.--·--:-------··.-•.••-..••••:•·,· ••··•· •-. ···-' , •... ••:·•.• ~"'- ····-··•,·:-·-· ·.:;,-.·•••·• .-.· , ,··- .-, :• • ::,-.'z'''_"· . .-·.·.

Chapter 6

Performance of Learning Automata Based Routing

Algorithms in Sparsely Connected Packet

Switched Networks

6.1 Introduction

In this chapter a number of experiments are conducted to analyse and

highlight some of the features of adaptive routing and flow control in packet

switched networks. Analytic results are supported by simulation studies to justify

the assumptions inherent in the mathematical models. Work concentrates on the

performance of routing and flow control algorithms which use delay as a perfor­

mance metric and compares the results with optimum routing and flow control

which use marginal delay as a performance metric. The delay based algorithm is

formulated to route traffic over paths of minimum and equal delay through the

network, while the delay based flow control policy uses a window based procedure

to limit access to the network using the traffic's average transmission delay. The

routing algorithm models the predicted behaviour of the LR-1 algorithm which

uses network delay as a parameter to update the routing probabilities assigned

to each route. The delay based flow control procedure was selected as a comple­

mentary algorithm because it uses the same information as the routing algorithm

to form its performance metric. This combination of strategies using pure delay

is shown to give almost optimal performance for a generalised topology and sub­

optimal but extremely good performance for at least one special class of network.

In the next section flow diagrams are presented which outline the algo­

rithms used to calculate the performance of the various routing strategies which

are examined in the rest of the chapter. Using algorithms based on the flow de­

viation method, the adaptive routing policies are solved by iterative techniques

based on the repeated calculation of the shortest path strategy which use perfor­

mance metrics based on link utilisation. The calculation of network performance

using various flow control techniques, both fixed and adaptive, are included in

the models and criteria formed for the design of suitable penalty functions. A

208

number of introductory experiments are then conducted to examine some of the

key features associated with the selection of an appropriate routing function and

flow control strategy. The intention of this section is to analyse simple examples

to explain the basic functionality of the processes involved in each strategy. A

series of more complex examples are then conducted on a ten node, sparsely con­

nected network. The analysis of uncontrolled routing is followed by the analysis of

flow control using fixed routing tables before the combination of the two adaptive

policies are assessed. Finally the combination of adaptive routing and flow con­

trol are analysed over a simplified model of an international network where, due

to its geographical distribution, asymmetrical traffic loading occurs which creates

regions of spare capacity.

6.2 Analytic Implementations

In order to evaluate the performance of learning automata based routing

algorithms in packet switched networks a number of analytic models selected from

those detailed in the previous chapter were implemented. In addition a variety

of fixed and adaptive window based flow control algorithms were also included to

form a suite of possible combinations with the routing strategies.

The simplest routing strategy implemented was shortest path routing us­

ing the basic centralised algorithm attributed to Dijkstra[60] outlined in figure

6.1. In the algorithm each of the nodes in turn is designated as the destination

node for the remaining nodes in the network. A shortest path tree is then con­

structed connecting each of the remaining nodes to the destination by the route

of least cost. This is done by sequentially adding the node with the minimum

cost path to the destination node, using the present partly connected tree. The

cost of reaching the destination from each of the nodes not yet in the tree, based

on the new nodes connectivity is then updated. These shortest path trees are

then used to build routing tables for each destination, from each node. A minor

modification to the algorithm, in which all minimum cost paths to a destination

are recorded rather than just a one of the possibilities, can be used to produce

bifurcated shortest path routing tables using the same basic scheme.

Shortest path and bifurcated shortest path routing strategies provide ex-

209

cellent single and multiple path lower bounds on performance. The obvious upper

bound on the performance of a routing strategy is an optimum strategy which

minimises the performance index used for the comparison, in this case average de­

lay across the network. Fratta's flow deviation method[65] was used to calculate

the optimum allocation of traffic over the network. The basic form of the algo­

rithm, reproduced in figure 6.2, uses the shortest path calculation as a building

block. On each iteration the shortest path is calculated using the current delay

over each link, due to its present traffic allocation, as a metric. The resulting

routing scheme is then combined with the present path allocation in such a way

as to minimise the overall objective function until the algorithm converges. By

simply changing the metric used to calculate the shortest path algorithm and the

objective function to those proposed by Dafermos[84] this same technique can also

be used to calculate the routing strategy which equalises the delay of each path

taken by each of the traffic sources.

The effect of flow control on the performance of each of the routing strate­

gies can be calculated using an approximate technique described by Thaker and

Cain[lOO] The algorithm is based on Little's formulae, N = >..T, which relates

the average number of packets in the network for each source at any one time,

N, to the arrival rate).. and the average network delay, T, each traffic source

experiences. Figure 6.3 shows the algorithms implementation for both fixed and

dynamic routing policies. If the routing strategy is dynamic, on each iteration

the new routing tables are calculated based on the current traffic rates for each

source. If fixed routing is being used this section is omitted as the traffic allocation

is fixed by the initialisation procedure. The utilisation of each link in the network

is then derived and used to calculate the throughput of each traffic source. H

the flow control strategy is dynamic then the window size defining the maximum

throughput for each traffic source is recalculated using the present throughput

and Little's formulae. The traffic from each source is then modified based on the

current throughput and the allowed throughput until convergence is achieved.

Three flow control procedures have been implemented. The simplest pol­

icy uses a fixed window size for each traffic source on the network. This pol­

icy acts as an unintelligent deterministic comparison for the other two dynamic

210

strategies. The remaining policies are derived from the marginal delay 6 D / 6r and

actual delay based policies introduced by Gallagher[99] and Thaker & Cain[lOO]

respectively. Each uses its form of delay. as a performance index of the network

congestion seen by each traffic source. A penalty function is then constructed

defining the maximum allowed level of network congestion, using the appropriate

performance index, given any particular capacity allocation for the traffic source.

The suggested form of the penalty function, L(r), where r is the traffic level or

capacity allocation, is given by the formulae

afc
L(r) = (b + r/c)n + djc 6.1

where L(r) is the maximum permissable congestion level for a traffic allocation of

r, C is the average link capacity and a,b,c and d are constants defining the shape

of the function.

To select an appropriate function for L(r) it is useful to consider the

application of flow control to a traffic source over a single link in the ,network of

capacity C for the two extreme cases of high link utilisation and very low loading.

Let Pm define the maximum link utilisation desired. This figure can then be

used to calculate the point on the penalty function, L(O), at which the traffic's

capacity allocation is reduced to zero. Secondly let R0 be the zero-load source

allocation. This is the allowed throughput rate a traffic source would be assigned

if the performance index over the traffic's path was at its minimum possible value;

i.e. when there is no traffic over the path. Allo~ation of traffic over the link by

the flow control mechanism will of course always produce a penalty value greater

than the minimum possible value and so any traffic source will therefore always be

assigned a throughput r < Ro, however this simple concept produces a convenient

intercept for the definition of the penalty curve.

A further complication arises when this principle is expanded to include

traffic which travels over paths of more than a single hop. A crude but simple

solution which can be introduced to allow for this feature is to simply multiply

both L(O) and L(Ro) by the hop count of the route through the network before

computing the constants associated with the penalty function. This is not entirely

satisfactory as it removes the protection on each link of the network, which guar-

211

anteed its maximum loading. It is replaced by a guarantee that the average link

penalty per link over the entire path will not exceed the value associated with the

maximum link loading, which is a much weaker statement. However if the perfor­

mance index used to define the penalty function is sufficiently sensitive to small

changes in link utilisation at high loads, a relatively small change in link loading

on one of the links in the multi-hop path beyond the maximum proposed should

cause a sufficient change in the performance index to still introduce effective flow

control.

Another problem arising from the the previous extension to this form of

adaptive flow control arises when it is combined with an adaptive routing policy.

In this case the path lengths for each of the traffic sources often cannot be defined

as there may be several possible paths through the network of different lengths.

In this work the minimum hop path is calculated for each traffic source and used

as the multiplier. This was felt to give a good approximation as an intelligent

routing strategy would naturally route the majority of the network strategy over

shortest path routes to minimise network utilisation, all other factors being equal.

In a reasonably well connected network, the traffic which was directed over longer

paths should not have a hop count considerably larger than the shortest path and

would traverse links which were, by definition, less congested than the otherwise

more favourable links of the shorter path. Excessive flow control should therefore

be avoided despite the increased hop count.

As was mentioned earlier the penalty function can be expressed as a

window function by the application of Little's formulae to produce an adaptive

window size for traffic allocation to the network. This results in a formulae for

the window size, N, of the form

6.2

where T is again the end-to-end delay in transmission across the network.

The optimum flow control strategy of Thaker & Cain, based on the work

done by Gallagher and using marginal delay as a performance index, can be ex­

pressed in terms of the penalty function as

212

8D a
CL(r) = CT; = (b + rfC)n + d

and from the definition of D, the link delay, ~~ = (C~r)2 which can be used to

write down the first equality which must be satisfied, namely

h a
CL(O) = 2 = -b +d.

(1- Pm) n
6.3

By selecting R0 the second equality can be defined as

a
CL(Ro) = h = bn + Ro/C + d

or

{_a_}l/n -b = R0

h-d c. 6.4

Alternatively if delay is chosen as the performance parameter instead of

marginal delay then the penalty function becomes

a
CL(r) =CD= (b + rfC)n + d

and from the definition of D once again and Pm the first equality becomes

h a
CL(O) = () = -b +d. 1- Pm n

6.5

while the second equality is

a
CL(Ro) = h = bn + Ro/C + d 6.6

which is identical to the previous example.

These equalities still leave a degree of freedom in the potential form of the

penalty function. In this work the function was simplified by the selection of values

of 0 and 1 ford and n respectively. This leads to to a penalty function of a simple

reciprocal form shown in figure 6.4. No claim to the optimality or otherwise of

this functional form is made, but it was felt that a curve of this form did fulfil the

major objective of its design, to quickly reduce traffic as congestion started while

still trying to maintain some service until extreme conditions occurred. Selection

213

of suitable values for Pm and R 0 which lead directly to the derivation of suitable

values for a and b for each of the dynamic strategies are left to the next section

where a series of introductory experiments are presented.

6.3 Introductory Experiments

In order to investigate some of the key features of both adaptive routing

and :How control strategies a series of simple experiments were formulated. In each

of the experiments the network link capacities are defined in terms of a reference

transmission capacity of C data units/time interval. Similarly traffic arrival rates

are also defined in terms of C data unit/time interval. The first of these experi­

ments analysed the performance of different routing strategies applied to a single

traffic source between the two nodes 1 and 4 in the simple network configuration

shown in figure 6.5. The data can travel over two distinct paths to the destination,

via either node 2 or node 3. The path via node 2 consists of two links, each with

a transmission capacity 2.0C, twice that of the two links forming the second path

via node 3. This presents each of the routing strategies with an obvious preferred

and secondary route to the destination. Shortest path routing and the two adap­

tive strategies under study, which either equalise marginal delay over each path or

equalise delay directly on each path across which data is transmitted, are applied

to the network. Figure 6.6 shows the predicted average transmission delay, in

time intervals/data unit, produced by each routing strategy as the traffic arrival

rate is increased. At some point on each curve the network saturates and the

transmission delay increases asymptotically to infinity. The graph also includes

simulation results for average packet delay for both shortest path and LR-1 rout­

ing algorithms. Figure 6. 7 plots the power of the network, defined as the ratio of

throughput to delay, for each strategy over the same range of traffic arrival rates

and includes simulated results for network power derived from the measurement

of average delay for both shortest path and the LR-1 strategy.

The shortest path strategy, using the inverse of link capacity as a metric,

selects the preferred path via node 2 and directs traffic exclusively over these links.

In consequence as the traffic arrival rate approaches 2C this path saturates and the

transmission del~y rapidly increases. In contrast the two adaptive strategies have

214

the power to divide the traffic over both paths to minimise their respective objec­

tive functions. The resulting delay curves are almost identical and both strategies

comfortably handle traffic arrival rates approaching 3C before network saturation

occurs. At saturation there is a similar sharp increase in the transmission delay

of traffic over the network.

In ord~r to examine the different processes involved in the two adaptive

routing strategies, which return a very similar delay function, further information

can be derived from figure 6. 7 which shows the power of the network for each

strategy over the same range of traffic arrival rates as the previous delay curve.

Power, measured in (data units)2 /(time interval)2 has been used extensively as a.

measurement of the tradeoff between the two performance functions of throughput

and delay. The plot of power for shortest path routing is useful as a reference for

the two adaptive policies. The power of the single path routing strategy increases

steadily up to a traffic arrival rate of l.OC a.nd then falls away symmetrically as

the traffic arrival rate continues to increase. Finally at a tra.:ffi.c arrival rate of

2.0C the power reaches a value of zero, which corresponds to a. transmission delay

of infinity. Each of the dynamic strategies generate a.n identical power value for

low traffic arrival rates. As the arrival rate increases each of the strategies diverge

from the shortest path plot, increase to a. maximum value for a traffic arrival rate

of 1.5C and then also fall away to a value of zero for a traffic arrival rate of 3.0C.

The significant difference in the two plots of power for the dynamic strate­

gies is the point at which divergence occurs from the shortest path routing curve.

This point corresponds to the traffic arrival rate at which the adaptive strategies

begin to split the total traffic between the two paths, rather than being routing in

a deterministic manner over the preferred route. This point occurs when the un­

loaded, low capacity path becomes equally attractive to the routing policy as the

partially loaded, high capacity path. For this single source, simple network con­

figuration the point at which this occurs can easily be calculated for each strategy.

For the Gallagher routing strategy, or optimum strategy which minimises the total

average delay over the network, only paths with identical and minimum marginal

delay are used over a network. Therefore the low capacity path will begin to be

used when the marginal delay of the high capacity path is equal to the marginal

215

delay of the unused low capacity path or

1 20
0- (20- X)2

where X is the traffic arrival rate. Solving this equality, X has a valid solution in

the range 0 ~ X ~ 2.00 when

X= /2(/2 -1)0 ~ 0.560

Equally when the routing strategy selects paths of equal and minimum delay for

each traffic source in the network, the routing strategy will begin to select the low

capacity path with a finite probability for traffic arrival rates above the point at

which the delay over the high capacity path exceeds the delay over the unloaded

low capacity path. This occurs when

1 1
0 20-X

or

which is also the point of maximum power for the transmission of traffic over the

high capacity path alone. Expanding on the last point it is simple to show that

more generally, the maximum power will occur over a path of any number of links

of equal capacity when the traffic over that path is equal to exactly half of the link

capacities. This point will be used later to define the adaptive window penalty

functions for flow control of the network.

The simulated results show good agreement with the form of both the

shortest path and bifurcated LR-I routing strategies. However there are two

important ways in which the simulated results diverge from their analytically pre­

dicted behaviour. First, all simulated results for shortest path routing and those of

LR-1 routing below 2.70 return an average delay below that predicted, leading to

a power greater than calculated. This is due to the assumption in the formulation

of the analytic model that the packets are transmitted through two independent

M/M/1 queues. But because each packet in the simulation has a fixed size, the

two service times are in fact identical for each individual packet. This leads to a

close correlation between the inter-arrival time of packets into the second queue

and their service times, leading to little queueing in the second stage. In the

216

second departure from analytic predictions, the average packet delays for traffic

intensities of 2.7C and above using the LR-1 algorithm were found to be much

higher than suggested from the mathematical modelling. Observations of simula­

tions over these traffic ranges revealed oscillatory behaviour and a tendency to go

through periods where the selection became deterministic, effects not observed at

lower traffic intensities. The effect was found to be due to the value of the update

constant, a, introduced in the definition of the learning algorithm in chapter 5,

which had been set at a value of 0.01. The constant was redefined as 0.002 and

the experiments rerun. The average delay under these conditions for high traf­

fic arrival rates closely agreed with predicted results. Clearly the previous value

for the learning parameter had been sufficient to produce equilibrium at low and

medium traffic loads but was too large for arrival rates approaching saturation,

when it produced unstable behaviour leading to deterministic link selection.

The second introductory experiment examines the effect of flow control

over a two link path for a single traffic source. Each link of the path has a

capacity of 2C and the effect of various window sizes on the performance of the

link as the traffic rate increases are shown in figures 6.8-6.10. The graphs plot

the delay, throughput and power generated by the traffic source for window sizes

of 2C,4C,8C and 16C. In each case simulation results are included for the four

window sizes on each graph. For each window size the analytic results for average

delay and power characteristics at low loading are identical to those produced by

the traffic when no flow control is applied. Under these conditions the throughput

matches the offered traffic exactly. For all traffic arrival rates above those at which

the window begins to constrict traffic the delay is held at a constant value. The

effect on the throughput as the traffic arrival rate increases can be clearly seen in

figure 6.9 for the various window sizes. The power of the traffic source, the allowed

throughput over the delay, is plotted in figure 6.10 along with the plot of power

for an unbounded arrival rate for reference. Clearly the optimum window size for

power transfer is 2C which begins to assert itself at the point of maximum power

in the curve. As the window size increases the point at which the flow control

asserts itself moves to a greater traffic arrival rate and consequently a lower value

of power. Analysing the window using Little's formulae reveals, not surprisingly,

217

that the window size of 2C over the link pair produces an average link utilisation

of 50%.

The simulation results of delay, throughput and from these power sug­

gest that the application of flow control is not as sharp and well defined as the

analytic model suggests. This is by no means unexpected as the model of flow

control was made deliberately simple to enable the analytic modelling of multiple

source packet switched networks. The simulation work suggests that application

of window based flow control results in a rejection of traffic earlier than predicted

and to a greater extent, although there is more agreement on the degree of control

at higher arrival rates. This results in a reduction of expected throughput which

leads to a reduction in the end-to-end delay, compounded by the mathematical

assumptions of independent service rate. These two effects combine to produce

higher than predicted power over the network for each of the window sizes. How­

ever despite this obvious divergence from predicted behaviour, the mathematical

models capture the key effects seen in the simulation results. These effects can be

summarised as a decline in throughput with increasing incident arrival rate and a

levelling off of average packet delay which causes the network power to approach

a fixed level determined by the window size of the flow control strategy.

Finally a third experiment was formulated to investigate the fairness in

the application of flow control for traffic sources which traverse the network over

a different number of links. Using the basis of the second experiment, two addi­

. tional traffic sources where added to the network. Each of the new traffic sources

competed for transmission bandwidth with the original traffic source on one or

other of the two links in the original traffic sources path. Two series of experi­

ments were then carried out. In the first all three traffic sources were given equal

window sizes. Figure 6.11 plots the analytic curves and simulation results for the

lost throughput of both the single hop traffic sources and the double hop source

for window sizes of one and two. From the analytic curves it is clear that assigning

equal window sizes to traffic which travels over paths with unequal hop counts

produces an unequal grade of service. The traffic sources with the lower hop count

gain an advantage over those with more remote destinations. In the second set of

experiments the traffic source travelling over the two hop path is given a window

218

of twice the size of the single hop sources. The lost throughput of both single and

double hop sources are plotted in figure 6.12 along with the simulated results of

the same network configurations over a range of traffic arrival rates. These ana­

lytic curves suggest a simple remedy to the problem of unfair flow control. In this

simple example, basing the window size on a multiple of the hop count produces

identical performance for the competing single and double hop traffic sources.

As in the previous experiment the simulation results show that flow con­

trol is more active than the analytic models suggest, especially at low traffic arrival

rates. In addition the results support the analytic result that equal window sizes

for traffic travelling over different path lengths produces unequal performance.

Equally importantly it confirms that the two single hop traffic sources introduced

in this experiment have similar throughput and therefore delay characteristics.

This result infers that the two sources are interfering with the primary traffic

source, across both links, to an equal extent. This is a result of the mixing of

traffic sources at each queue which increases the validity of the independence

assumption made by the mathematical models. The second experiment, where

window size is made a multiple of hop count, shows similar results. At low traffic

arrival rates flow control is greater than predicted and also unequal, favouring

the traffic source over the two links. However as the traffic arrival rate increases

the simulation results agree more closely both with the analytic results and each

other. In general the results suggest that the analytic models are able to captures

the same form of behaviour as the simulation work suggests, especially at high

traffic arrival rates.

6.4 Multiple Source Routing and Flow Control

In this section the various routing and flow control strategies which have

been identified in the previous work are applied to the 10 node sparsely connected

mesh topology reproduced in figure 6.13. Each link has the same capacity, defined

simply as l.OC. All traffic and capacity measurements in the work are based on

this reference value, using the same units defined in the introductory experiments.

This topology was selected for a number of reasons. First the topology has been

used by Rudin, Chrystal! and others as a test bed for the comparative analysis

219

of routing strategies in previous work. This aided in the verification of some of

the analytic work by comparison with previously published work. Secondly it is

small enough to be analytically tractable and large enough to be interesting as an

example of a realistic network configuration. Lastly it fulfilled the criteria sought

for the work presented here, namely a sparsely connected network topology with

nodes of various connectivity and minimum hop count from the rest of the nodes

in the network.

6.4.1. Routing Strategy

In the first example shortest path routing and bifurcated shortest path

routing strategies were evaluated for the network using hop count as a metric

(equally the reciprocal of capacity would return the same answer in this network

as all link capacities are identical). The performance of these routing strategies

was then evaluated using a full 90 source traffic matrix in which each source

destination pair was assigned an identical traffic intensity. This was carried out

for a range of traffic intensities up to the point at which the network saturated

and returned an average delay which rapidly approached infinity. In addition

the solution to the allocation of traffic, for both optimum performance and for the

equalisation of delay over each path used by a source was determined at each traffic

intensity up to the point where saturation occurred. The results of these models

are presented graphically in figures 6.14 and 6.15. Figure 6.14 plots the average

delay over the network for the 90 sources as the traffic arrival rate increases.

Shortest path routing clearly gives the least desirable performance and saturates

at a traffic arrival rate of 0.09C. Bifurcated routing performs considerably better,

demonstrating the usefulness of multiple path routing and saturates at O.llC.

Finally both optimal routing and the adaptive routing policy based on delay

produce near identical performance curves and route traffic successfully up to a

traffic intensity above 0.120 for each source. This result identifies the further gain

in performance possible by the intelligent selection of traffic division over multiple

paths.

Figure 6.15 ,plots the average network power developed, defined as the

average network delay divided by the average throughput. The new performance

220

metric confirms the conclusions of the previous plot, demonstrating again the ad­

vantages in traffic bifurcation and the similarity in the treatment of traffic by

both the adaptive strategies throughout the traffic range. From the plot it is also

possible to identify more easily the point at which deterioration in network per­

formance begins due to traffic loading, i.e. the point at which there is a downturn

in the network power developed.

To highlight the way in which each strategy routes traffic through the

network, the individual delay of each of the traffic sources where plotted in figure

6.16 for a traffic intensity sufficient to generate an average network delay of 6.0

time intervals/data item in each case. Each of the plots displays the total trans­

mission delay for each source divided by the minimum hop count between the

source and destination nodes against a list of source identity numbers. Shortest

path has a number of significant spikes, most notably traffic source 57 (origin 5,

destination 7). The link connecting these two nodes clearly has a high utilisation

and as the traffic increases further it is this traffic source which is instrumental

in the saturation of the network. Bifurcated routing produces a more balanced

picture with fewer and less severe spikes, a product of traffic splitting. The dy­

namic routing strategies show an even more balanced picture with very similar

delay characteristics over the range of traffic sources. Significantly no single or

small group of sources dominate, suggesting an even spread of traffic.

6.4.2. Flow Control

In the second experiment flow control was introduced into the 90 source,

10 node network topology. Each source is assigned a window size limiting the

maximum traffic throughput across the network at any time. Both optimal flow

control using marginal delay and true delay based flow control algorithms are used

to modify the size of each individual traffic source. The introductory experiments

demonstrated that maximum power over a link is generated when the utilisation

of the link reaches 50%. Therefore the flow control in the network should prevent

links exceeding a utilisation of 50% to maximise the power generated by the

network. However a generalised network is unlikely to be evenly loaded at high

levels of traffic. Inevitably some links will find themselves a member of several

221

paths between different sources and destinations, while others in more remote

parts of the network may only be used by a few sources. This may lead to

situations where traffic is rejected because one link used to reach the destination

is heavily loaded while others are relatively lighted loaded and are some way from

generating their maximum power utilisation.

Examining the curve of figure 6. 7 it is clear that there is actually a band

of link utilisation over which optimal or near optimal power is generated. Beyond

this band power falls off increasingly rapidly as traffic intensity moves further

from its optimal value. In order to generate a network flow control strategy which

would allow as many links as possible to enter the region of high power generation

is was define Pm as 0.60 or 60% utilisation, this being the nominal definition of

the boundary of the high performance band. In fact it is easy to show that the

power has dropped by a factor of C2 /100 from its optimal power level of C2 /4,

that is 4%. The selection of Ro is less critical. In general Ro must be large enough

to allow a traffic level which generates a near minimum performance index to flow

relatively freely. The general shape of the penalty curve with its shallow curve at

high traffic levels ensures that as the performance index rises, flow control will be

quickly applied. In this work Ro/C was given a value of 10.0.

Applying the selected values of Pm and Ro to equations (6.3)-(6.6) and

assuming values of n = 1 and d = 0, the two remaining variables, a and b, can be

resolved as

a
t;=X.h and

a
-- b = 10
h

where X is the result of inserting Pm into the definition of the performance metric

defined in equ(6.3) and equ(6.5) for optimum and delay based routing strategies

respectively and h is the minimum hop count between the source and destination

nodes. Solving these simultaneous equations gives values of

X
a= X .10h

-1
and b = 10

X-1

Resolving the equation for optimum routing where, X = 1/(1- Pm)2 leads to

222

a= 11.9h and b = 1.9

Similarly using delay based flow control where X = 1/(1 - Pm), a and b assume

the values

a= 16.67h and b = 6.67.

The results of applying both optimal and delay based flow control, using the pa­

rameter values calculated above, to the 10 node network topology with a. full 90

source uniform traffic matrix are presented in figures 6.17 and 6.18. In both cases

bifurcated shortest path routing was used to assign traffic over the network, and

plots of the performance of this routing strategy without any flow control are in­

cluded for comparison. Figure 6.17 shows the average source delay for the three

configurations over a traffic arrival rate incident on the network over the range

0.0 to 0.3C for each source. The performance curves of both dynamic strategies

follow closely the curve of the uncontrolled network up to a traffic intensity of

approximately 0.07C. Beyond this point the delay of the bifurcated routing strat­

egy alone begins to increase sharply. Both dynamic strategies diverge from the

uncontrolled routing curve at this point and level out as the traffic intensity con­

tinues to increase to levels up to and beyond those at which uncontrolled routing

saturates.

Figure 6.18 plots the average power generated in the network by the traffic

throughput for each network combination. Bifurcated routing alone reaches a

maximum power at a traffic intensity of approximately 0.07C and then falls away

rapidly as the traffic increases. Both adaptive policies follow the uncontrolled

curve to its maximum power and then diverge at the same traffic intensity as in

the previous figure. As the traffic increases both the optimal and delay based

flow controls develop additional power from the network, above that generated

at the peak of bifurcated routing alone. This corresponds to an increase in the

number of links whose utilisation is increasing towards the maximum permissable

by the application of the flow control procedures. Those links already at the

maximum utilisation prevent traffic sources routed over those links from increasing

223

their traffic and thereby reducing the power generated by the link. As the traffic

increases fewer links remain under-utilised and more traffic sources are throttled

by the imposition of a maximum throughput value less than the traffic incident

on the network. As this occurs the power levels off as both the throughput and

average delay tend towards fixed values.

The introduction of adaptive flow control demonstrates two major ad­

vantages. First it enables the network to cope effectively with incident traffic in

excess of its maximum working load. Secondly, by selective entry into the network

of those traffic sources whose routes remain relatively uncongested it can increase

the average power of the network considerably, in this example by 30%.

To investigate the effect of flow control at the individual source level, the

individual delay for each source was recorded at an incident traffic arrival rate of

O.lC for each of the three configurations. At this point the unprotected network

is nearly saturated and the two flow control strategies are exerting a considerable

influence on the average network performance. The delay per hop for each source

is plotted against individual source identity in figure 6.19. Bifurcated shortest

path routing alone produces several traffic sources with high delay /hop values.

In addition there are a wide number of sources which return much lower delay

values. This confirms that many of the paths are still under-utilised throughout

the network, while the average delay value is a result of a relatively small number

of sources, routed over heavily used links. On the application of either flow control

procedure, all peaks of value greater than 2.5 time intervals/data unit disappear

in an almost identical manner, to be replaced by values of 2.5 or less. Significantly

2.5 time intervals/data unit is the maximum delay/hop defined by the introduc­

tion of flow control based on a maximum link utilisation of 60%. Traffic sources

with delays less than 2.5 before the application of flow control remain unaffected,

their throughput at the present traffic arrival rate being less than the maximum

throughput allocated to the source over the network.

Finally figure 6.20 plots the throughput of each traffic source under ap­

plication of each flow control strategy at the same incident traffic arrival rate of

O.lC. Both optimum and delay based flow control procedures select the same

range of traffic sources to whom access is limited and reduce the throughput to

224

the same degree in all but a small number of cases. In these exceptions delay

based routing is marginally less severe, nevertheless the overall pattern is obvi­

ously similar. Interestingly, comparing figures 6.20 and 6.19, there is no obvious

direct correlation between the selection of the sources to be inhibited, the mag­

nitude of control imposed and the delay of the same source under uncontrolled

conditions. Clearly the limiting of one source will result in less traffic over one

or more network links, which may affect the performance of a number of other

traffic sources using affected links. The argument suggests a complex and highly

integrated relationship between link utilisation and the selection of sources to be

restrained.

In the next experiment a fixed window flow control strategy was added to

the adaptive strategies studied. In this strategy each source is given a fixed window

size equal to a global constant multiplied by the minimum hop count between the

origin and destination nodes of each source. The experiment was then conducted

in two phases. In the first phase all the traffic sources were switched off except for

those with origins at nodes 1,10 and 5. This reduced the number of traffic sources

from 90 to 27. Optimum and delay based flow control strategies using bifurcated

shortest path routing were then applied to the network using the reduced traffic

matrix for inci,dent traffic arrival rates of up to 0.3C for each source. A fixed

window multiplier was then selected which, when applied to the reduced traffic

matrix, produced a similar average network delay as the two dynamic strategies

for the top end of the traffic range studied. By trial and error this value was found

to be approximately 0.4C.

The full 90 source uniform traffic matrix was then reintroduced and the

performance of the fixed window strategy calculated using the same incident traf­

fic intensity of 0.4C. The average network delay for both the reduced traffic

matrix and the full traffic matrix using fixed routing are plotted in figure 6.21.

Plots of both dynamic flow control strategies for the two traffic matrices are also

included for comparison. Several interesting points can be extracted from this

graph. Clearly the application of the fixed flow control strategy to the full traffic

matrix results in a greater average delay than the same flow control applied to
•

the reduced traffic matrix. The poor performance of the fixed policy is further

225

highlighted by comparison with the two dynamic flow control policies when they

are applied to the full traffic matrix. Here there is a substantial difference in the

average delay of network traffic between the fixed and adaptive policies for a wide

range of traffic values up to and beyond the point where an unprotected network

would saturate.

Additionally, the dynamic flow control procedures applied to the full traf­

fic matrix limit the entry of traffic to the network much more rapidly than when

applied to the reduced matrix. The full traffic matrix introduces three times as

much traffic as the reduced matrix for the same value of incident traffic intensity

for each source. Link utilisation will therefore be much greater for the full traffic

matrix and the network will reach its maximum input capacity on the application

of flow control more quickly. The reduced traffic matrix will be able to continue

to admit traffic from at least some sources over a much greater traffic range and

so continue to produce a positive performance gradient as the incident traffic in­

creases. Finally the adaptive flow control policies return a lower average delay for

the full traffic matrix than in the reduced case. This is a result of the selection of

the active set of sources in the reduced traffic matrix. By including nodes 1 and

10 in the active set many of the longer paths through the network are utilised.

Because of this the average end-to-end delay in the reduced traffic matrix will be

greater than in the full traffic matrix with its more even spread of path lengths.

Figure 6.22 plots the power generated by the application of the same six

network configurations shown in the previous figure over the same traffic range

incident on the network. Both adaptive policies return similar powers to each

other for the two cases of full and reduced traffic matrices. The power generated

by the full traffic matrix is lower than that generated by the reduced traffic matrix

as a result of the greater average throughput the reduced number of sources can

generate for the same average delay value, given the same network topology and

capacities. The two curves of the fixed flow control's performance demonstrate the

degradation in performance in comparison to adaptive policies when the traffic

matrix is significantly different from the one used to engineer the flow control

strategy.

The experiment has highlighted the problem of assigning fixed flow con-

226

trol policies when the number of active sessions over the network may vary signifi­

cantly. When the number of sessions is equal to the number for which the scheme

has been evaluated, near optimal performance can be engineered for high arrival

rates. However as the number of sessions varies the efficiency of the network is

reduced. As was shown above if the number of sessions increase, the flow control

policy is insufficient and average delay increases. Alternately if the number of ses­

sion reduce, flow control may prove too severe and traffic may be restricted that

could have been accomodated. In addition the plots also show that by engineering

the fixed policy for worst case conditions, the performance over the range of traf­

fic arrival rates above uncontrolled network saturation but below high overload is

inferior to the adaptive strategies, even for the engineered traffic matrix. This is

a function of the adaptive policies ability to selectively control sources according

to the state of the network rather than apply blanket restrictions which may be

inappropriate in conditions less severe than gross overload.

6.4.3. Routing and Flow Control

Having looked at dynamic routing and adaptive flow control in isolation,

the performance of combining the two techniques is evaluated in this section. In

particular the combination of delay based flow control and a dynamic routing pol­

icy which routes traffic over paths of equal and minimum delay is compared with

the use of optimum routing and optimum flow control based on the measurement

of marginal delay. The performance of both dynamic routing strategies with and

without flow control are plotted in figures 6.23 and 6.24. Both adaptive policies

return near identical delay and power characteristics without flow control. With

the application of their respective flow control policy the delay curve of each policy

quickly levels out to give an average delay of approximately 4.5 time intervals/data

unit. The optimal combination returns a fractionally lower value at the higher

traffic arrival rates which is translated into a higher power level, approximately

3% greater than the purely delay based alternative. Comparing these result with

figure 6.17 in which both flow control strategies are applied to bifurcated routing,

it is interesting to observe that only a small advantage in performance has been

gained by the introduction of an adaptive routing policy of either form.

227

Two important points can be made from this experiment. The first point

is that the application of a dynamic routing strategy and flow control combina­

tion based on the performance metric of delay rather than the mathematically

optimum metric of marginal delay can give a near optimum performance. This

is significant because of the implications for the implementation of such dynamic

strategies embedded in real networks. It has been shown that the class of learning

algorithms using LR-1 techniques can be used to form simple distributed rout­

ing algorithms which converge to equalise the delay over the paths selected for

the transmission of traffic over the network. In addition it has been shown that

combining this form of algorithm with an equally simple delay based flow con­

trol procedure provides adaptive flow control. The important connection between

these two techniques is that they use the performance metric of delay, a metric

readily available within networks already due to timeout features invariably built

into transmission protocols. In contrast the performance metric of marginal delay,

which involves estimating the derivative of the network delay with respect to the

traffic arrival rate is a much more difficult parameter to measure with the same

degree of confidence.

The second point clear from experiments on this network is there is only

a small improvement in the performance of the network using an adaptive routing

strategy over the unintelligent but multiple path algorithm, bifurcated shortest

path routing. This is for two major reasons. First the nodes of the network

topology are well connected and a significant portion of the traffic travelling over

multiple links is able to be divided over two or more paths, spreading the traffic

over the available capacity. Secondly a full uniform traffic matrix was used for

the comparative performance of the routing algorithms. This limited the spare

capacity in the network, reducing the availability of alternative paths for the more

intelligent algorithms to discover. This second point is pursued in the next section

which introduces a particular class of network for which this is often untrue.

6.5 International Network

In this section a particular type of network is highlighted whose properties

make it an interesting candidate for a dynamic traffic-sensitive routing policy.

228

A typical example of such a network is the international network which spans

several time zones or even the entire globe. The key difference between this type

of network and a more geographically localised network is that at any one time of

the day significant parts of the network may not be generating or receiving traffic,

while subscribers to the rest of the network are actively communicating with each

other. As an example consider the network in figure 6.25. This network is divided

into three regions representing different time zones. Each region has three fully

connected nodes, two of which also act as gateways to one of the other regions.

The third node in each region is not directly connected to the other two regions

and so must communicate over a path via one of the gateway nodes. Once again

all trunk capacities are assigned equal capacity which will be referred to as l.OC.

To investigate a typical scenario of the type described above, regions 1 and

2 were defined to be active while region 3 was defined as inactive. A traffic matrix

was then constructed to reflect this in which nodes 1 to 6 generated uniform traffic

to all nodes in regions 1 and 2 except themselves. Nodes 7 to 9 neither generated

or received traffic, but were allowed to act as transit nodes in a path between any

origin and destination nodes between which traffic was being transmitted.

The average delay for this traffic matrix using shortest path, bifurcated

shortest path, optimum and the delay based adaptive routing strategies are pre­

sented in figure 6.26 as the traffic arrival rate of the active sources increases. Both

the traffic independent algorithms based on shortest paths show similar delay

characteristics, saturating at a traffic arrival rate around O.llC. Little benefit is

gained by the use of the unintelligent bifurcated strategy in the network because

of the sparse connectivity between the active regions. Few bifurcated paths can be

identified for the set of active traffic sources, leading to a very similar performance

profile for the two algorithms. Both the adaptive policies on the other hand are

able to take advantage of longer paths through the inactive region, largely un­

used by the shortest path strategies. In this way the adaptive strategies are able

to double the traffic intensity which the network can support before saturation

occurs.

Figure 6.27 plots the power generated in the network by each of the

routing strategies applied to the traffic matrix. Optimum routing, shortest path

229

routing and bifurcated shortest path routing all follow familiar curves consistent

with the previous plot of delay, however the plot of the delay based routing pol­

icy shows anomalous behaviour. As the traffic intensity increases the equalising

routing policy rises smoothly to a maximum and begins to fall away up to a traf­

fic intensity of approximately 0.13C. At this point its behaviour changes and it

begins to trace a new arc only to be replaced by a third curve. In each case the

gradient of the new curve at the crossover point is less severe than the original,

improving the overall characteristic curve of power vs. traffic intensity. At each

crossover point a major change in the routing tables takes place. At the first

crossover nodes 1 and 5 become increasingly utilised as links between nodes 2

and 3 and nodes 4 and 6 become congested. At the second crossover point node

9 is used for the first time as a node in paths through the network as the link

between nodes 7 and 8 becomes congested. Because delay is used as a metric, the

traffic intensity at which these two major changes in traffic distribution occur do

not correspond to the optimum points of changeover, behaviour which produces

the smooth optimum curve instead. This is simply a more complex example of

the behaviour already seen in the introductory experiments and displayed in the

single source plot of figure 6.7.

Two important issues arise out of this simple experiment. First the use of

traffic-sensitive dynamic routing is shown to very useful when spare capacity in

the network becomes available due to asymmetric traffic loading over the network.

Secondly, it has been shown that under conditions where ordinary bifurcated

routing strategies are unable to capitalise upon alternative routes, an adaptive

routing strategy which uses delay as a metric can find these routes and return a

close to optimal performance.

Finally the network was analysed using a variety of routing and flow

control combinations. The average delay for optimum routing and flow control,

delay based routing and flow control and bifurcated shortest path routing with

optimum flow control are presented in figure 6.28. There is a close correlation

between the two dynamic routing strategies for traffic loads up to approximately

0.12C. At this point the delay based curve flattens out before the optimum curve,

returning a slightly better average delay for the remaining traffic interval. The

230

optimally controlled bifurcated strategy begins poorly, producing a high delay

at low loads. Later it recovers to return the lowest average transmission delay

of the three combinations. These results on their own are misleading and must

be considered in conjunction with figures 6.29 and 6.30 which plot the power

generated in the network and the average source throughput over the same traffic

range. The throughput and from this the power of the bifurcated strategy can

be seen to be significantly suboptimal. Traffic which enters the network under

the bifurcated scheme has a low average delay at high traffic loads, but this is

at the expense of network access. The other point these graphs demonstrate is

that the introduction of adaptive flow control has drawn the performance of the

two adaptive strategies together, despite their differences in routing policies. The

flow control has limited the traffic to an extent where the performance of the two

strategies are comparable.

6.6 Conclusions

The introductory experiments clearly show the·need for traffic bifurca­

tion to successfully utilise the full network capacity. In addition, delay is shown

to be a useful but somewhat insensitive index of performance. Power, the ratio of

throughput to delay, proves to be not only good at differentiating between routing

strategies with similar delay characteristics, but is also of a form in which the mag­

nitude of the index gives a direct representation of the performance. Its usefulness

is demonstrated clearly by its ability to not only differentiate between the perfor­

mance of the two adaptive routing strategies applied to the single traffic source,

but also by the amount of additional information that can also be extracted con­

cerning the details of the traffic splitting between the two paths. The experiments

in simple flow control confirm the need for tight control to preserve the power gen­

erated by the network, and the individual sizing of windows determined by the

separation of the nodes communicating over the network, if each traffic source is

to be treated as fairly as possible. Additionally these simple experiments identify

the link utilisation which generates the maximum power and provide information

for the formulation of a suitable penalty function for the restriction of traffic entry

into an overloaded network.

231

The simulation work shows how the concept of independent service rate,

the heart of the mathematical assumptions necessary for the routing models for­

mulation, is invalid in single source experiments because of the fixed size of a

data packet. However when two or more traffic streams interfere the assumption,

although still strictly not valid, provides an excellent approximation. The accom­

panying simulation work on flow control shows how the simple model for window

based mechanisms captures the major effects of limiting traffic accepted into the

network. The model proves to be a little simplistic at low arrival rates but pro­

vides good agreement as the arrival rate increases and flow control is increasingly

applied.

Moving on to full network topologies, the experiments demonstrate a

number of interesting points. Obviously the adaptive policies consistently outper­

form the static shortest path policies, although the bifurcated shortest path policy

performs admirably considering its simplicity in the generalised 10 node network.

This was helped by the connectivity and even spread of traffic in the models

examined. In the international network the difference in performance between

the adaptive and static policies increases as the traffic asymmetry increases and

the network topology becomes more sparsely connected. Under these conditions

the traffic-sensitive adaptive policies are able to exploit unused traffic capacity

not considered by the less intelligent alternatives. The second major area of the

work considers the impact of flow control on network performance and demon­

strates the importance of effective access control as traffic rates increase. The

work demonstrates how network performance can be enhanced by the selective

admission of traffic from the incidence matrix to utilise the full capability of the

network. Just as in the case of selection of a suitable routing strategy, the use of

adaptive flow control is shown to be a powerful tool for maximising network per­

formance over a wide range of traffic levels, independent of the number of active

sessions. Finally the work has demonstrated that a routing strategy that directs

traffic over paths of equal and minimum delay returns a performance very similar

and in some cases inseparable from that attained by the use of the mathematically

optimal s~rategy. Evidence suggests that the LR-1 strategy may be such a policy.

Used in conjunction with delay based flow control, the natural partner to such a

232

strategy, the two adaptive strategies produce a combination with a performance

again comparable to that optimally attainable. But, unlike its optimal compan­

ions, these delay based strategies are implementable using current protocols and

measurements already available within existing packet switched architectures.

233

Input topology
Node= 0

Node = Node + 1
Initialise metrics

Find minimum cost
new node for tree

Add node to tree and
update metrics

N

N

Derive routing
tables

Figure 6.1

r------1-f>

Input topology
traffic and initial

routing

Evaluate link
metrics based on

traffic

Calculate shortest
path using metrics

l=ind combination of old
and new to minimise
objective function

N

Update routing
tables and link

flow

Convergance

y

Figure 6.2

Input topology
traffic and initial

routing

Calculate link
utilisation

Calculate indavidual
throughput

N

Calculate new
window size if
dynamic policy

Update traffic
rates for each

source

Figure 6.3

Calculate new
routing tables

Key Maximum penalty

2.0 +

1.8

1.6

0 - 1.4 L
.!-)

Q)
E

Q) 1. 2 0
c
(U
E
L
0 1.0

"'"" L
Q)
(L

0.8

: I

0.6

0.4

0.2

0.0 +----+----+----+----+----+----+----+----+----+----+

0 2 3 4 5 6 7 8 9 10

traffic Intensity

figure 6.4

pemalty function of the form L(r) = 1.0/(0.S+r)

1.0C

2.0C 2.0C

Figure 6.5: Simple four node network

Key---- Shortest path

LRI

x Short est path

+ LRI

50

45

40

35

30

25

20

15

10

5

Optimum Routing 111 LR I (0. 002>

0. 0 o. 2 o. 4 o. 6 0. 8 1. 0 1. 2 1. 4 1. 6 1. 8 2. 0 2. 2 2. 4 2. 6 2. 8 3. 0
traffic Intensity

figure 6.6

analytic and simulated single source delay

'-
Q)
:1
0
a...

Key Shortest path power x Sh.ort est path

+ LRI

0.60

0.55

0. 50

0. 45

0.40

0.35

0.30

0.25

0.20

0. 15

o. 10

o. 05

o. 00

--- lrl power

- - - - Opt I mum Power II LR I (Q. 002)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
traffic Intensity

figure 6. 7

analytic and simulated single source power

Key

10

9

8

7

>-.
(ij

-J

Q) 6
""0

5

4

3

2

'Window (2) x 'W 1 ndow (2)

--- 'Window (4) + 'WIndow (4)

---- 'Window (8) a 'WIndow (8)

----- 'Window (16) • lrllndow (16)

----- No f Low cont ro l

+

~---------
'

I

I
I

I
..

~

~

~------------

~ 181

----~------

+ +

)!()()(

0. 0 0. 2 0. 4 0. 6 0. 8 1 . 0 1 . 2 1 . 4 1. 6 1 • 8 2. 0 2. 2 2. 4 2. 6 2. 8 3. 0
traffic Intensity

figure 6.8

analytic and simulated results foe single source flow control

.jJ

:J
()_

..c.
m
:J
0
L

..c.
.jJ

Key

1. 00

0. 95

0.90

0. 85

0. 80

0. 75

0. 70

0.65

0.60

0. 55

0. so

0. 45

0. 40

0. 35

0.30

Throughput (2)

--- Throughput (4)

---- Throughput (8)

--- Throughput (16)

+

+

)(

x \11 ndow (2)

+ \11 ndow (4)

a IJ 1 ndow (8)

• \11 ndow (2)

\ ~~-\ I

\ \ .
\ \ \
~ \ ~
\ \ .
\ \ \
\ \ .
\ ~, \
\ \ \ ~

+ \ \ .

\ ', ~ .
\ \ \

+

.}\ \\ '\
\ ' '

\ ' ""
\ + ', "\ ,-)!(

•

"' " " " ~

0. 0 o. 2 0. 4 0. 6 0. 8 1 • 0 1 • 2 1 . 4 1. 6 1 • 8 2. 0 2. 2 2. 4 2. 6 2. 8 3. 0
traffic Intensity

figure 6.9

analytic and simulated throughput with flow control

: l

L
Q)

::l
0
0....

Key

0. 8

0. 7

0. 6

0.5

0. 4

0.3

0.2

0. 1

Power (2)

Power (4)

Power (8)

Power (16)

Shortest path power

+

);(

+

x \J I ndow (2)

+ \Jindow (4)

181 \J I ndow (8)

• \J I ndow (16)

+

181

'------------.
\ .
\ .
\ .
\

o. 0 0. 2 0. 4 0. 6 o. 8 1. 0 1. 2 1. 4 1. 6 1. 8 2. 0 2. 2 2. 4 2. 6 2. 8 3. 0
traffic Intensity

figure 6. 10

analytic and simulated power with flow control

I.

; I

c
0

...
0
Q)
~

Q)

'-
0

4-
4-

Key

1.0

0. 9

0.8

0. 7

~ 0. 6 ...
4-
0
>- 0.5 ...

...0 0. 4
ro

..0
0
'-0... 0.3

0.2

0. 1

Srngle hop (1)

Srngle hop (2)

Double hop (1)

Double hop (2)

x \11 ndow (1)

+ \11 ndow (2)

aa \It ndow (1)

• \lt.ndow (2)

+

- ---­........ -- ~-
.,.. ---

// ~-/·
/ .

/ /
/ .

/181 /
I .

I /
I ,

I I
I . ~

I I ~
181 I .

/ I
I I

~I •

• I
,' I

:* I
I .

I
I

I
I

I
I

I
I

/
/

/=*=
I

I

/
/

// i
/

/

.,..... ..
/

0. 0 0. 2 0. 4 0. 6 o. 8 1 • 0 1 • 2 1 • 4 1. 6 1. 8 2. 0 2. 2 2. 4 2. 6 2. 8 3. 0
traffic Intensity

f tgure 6. 11

Lost throughput using equal window sizes

; I

Key

1.0

0.9

c
0

.j..) 0.8
0
Q)
.......
Q)

c.. 0. 7
0 -......

......
(0 0.6 c..

.j..)

......
0

>... 0.5
.j..)

-J

..0 0. 4
(0

..0
0
c..
a..

0.3

Single hop (1 per hop) x \.Jindow (1 /hop)

--- Single hop (2 per hop) + \.Jindow (2/hopl

---- Double hop (1 per hop) IBI \.Jindow (1 /hop)

--·- Double hop (2 per hop) • \.Jindow (2/hopl

+

* ~

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
traffic Intensity

figure 6.12

lost throughput using weighted window sizes

i I

Figure 6.13 : 10 node test network

>-.
(1)

-J

Q)

"lJ

Q)
CJ)
(1)
c...
Q)

>
(1)

Key Mlnumum hop routing

Blfrucated minimum hop

Equalising routing

--- Opt I mum Rout tng

20 +

18

16

14

12

10

8

6

4

2

0

-.
I .
,-.
f_

0. 00 0. 01 0. 02 o. 03 0. 04 0. 05 0. 06 o. 07 0. 08 o. 09 0. 1 0 0. 11 o. 12
traffic Intensity

fIgure 6. 14

average delay In 10 node network

0

Key Mlriumum hop routing

0.030

0.028

0.026

0.024

0.022

0.020

fu 0. 018
:;,
0 a..o. 016

0. 014

0.012

0.010

0.008

0.006

0.004

0.002

0.000

----- Bl frucated minimum hop

- - - - EquaLIsIng rout I ng

--- Optimum Routing

+

0. 00 0. 01 o. 02 0. 03 0. 04 o. 05 o. 06 0. 07 0. 08 0. 09 0. 1 0 0. 11 0. 12
traffic Intensity

figure 6. 15

power In 10 node network

Key Shortest path routing

--- 81 frucated shortest path

- - - - Equa L Is I ng rout I ng

--- Optimum routing

13 T
12 -
11 +
10 -
9 ..1.

8 t"
7 -
6 + -
5 T ~ A ."\ • -
4- ·"' J. /r\-· :' f./\ 1_A - ,... -
~ tr·'"".J .J· '--'-'_ '-\.J ·'V.v. v ·v· . ~.r ~/ \;
13 .1:. - - - -· - - - - - ,_ - - - - - - - -.- - -·- --
12 ± -i b ± 20 30 40 50 60 70 80 90 1 00 -

~ ±
~ ± 1\ \ ,. f\ I
4 ± · I "" -3 r..., I\. 1 .\.\ \ 1'-\'\ 1/., j\1 \ !vi /'- (\ _
2 I I \ -' -' 1 \

1
\1 I 1 l

' ./ \. ./ .J ' 13 --.-------·----------
12
11
10
9
8

20 30 40 50 60 70 80 90 100

~ V ~"'\ I f\ r. _
~ ..j 1\..f"\A ,JJ 0\J "'j'\,J,/ \f'"'\./\,_J \ \=
13 +--------------------------------------~--~ 12
11
10
9
8
7
6
5
4

~
1

20 30

20 30

'40 50 60 70 80

40 50 60 70 80
source number

90 100

90 100

ftgure 6. 16 a Individual source delay/hop

; I

Key Blfrucated minimum hop

20

18

16

14

12

10

8

6

4

2

--- Opt lmlslng flow control

- - - - Equa L Is I ng flow cant ro L

I · I +

0. 000. 020. 040. 060. 080. 1 00. 120. 140. 160. 180. 200. 220. 240. 260. 280. 30
traffic Intensity

figure 6.17

adaptive flow control with blfrucated routing

: I

Key Blfrucated minimum hop

--- Equalising flow control

---- Opt lmlslng flow control

0.030 +

0.028

0.026

0.024

0.022

0.020

~ 0. 018
::l
0
C..0.016

0.014

0.012

0.010

0.008

0.006

0.004

0.002

----..-------
~-=---

/'
/

0.000 +--+--;-_,---r--r--+--+--+--+--;--,_~r--r--r--+

0.000.020.040.060.080. 100.120.140.160.180.200.220.240.260.280.30
traffic Intensity

fIgure 6. 18

power with adaptive flow control and blfrucated routing

; I

Key Brfrucated shortest path

--- Equalising flow control

- - - - Opt I mum flow cant ro l

8.0

7.5

7.0

6.5

6.0

CL s.s
0

...r:.

..........
>- 5.0
(I)

-J

Q)
"'U 4.5

4.0

3.5 ..
; I

3.0

2.5
('\A A ~1~ 1 ,/'

2.0

1.5

1.0

20 30 40 so 60 70 80 90 100
source number

figure 6. 19

Individual delay with adaptive flow control

Key Equalising flow control

~

:J
a..

0. 10

0.09

0.08

0. 07

-§, 0.06
:J
0
c...

_c
~ 0. OS

0. 04

0. 03

0. 02

0. 01

--- Opt 1 mum fLow contra L

lr r-1 r-lrl, r+ r-f.-- _._
r-

v
II
~

0.00 ~--;---~-----r----r----+-1 ---+----;---~-----r----
20 30 40 so 60 70 80 90 100

traffic Intensity

figure 6.20

Individual throughput with adaptive flow control

; I

>-.
(1J

-.J

Q)
-o

Key

7.0

6.5

6.0

5.5

5.0

4. 5

4. 0

3.5

3.0

2.5

2.0

1.5

1.0

- - --

Optimum flow control, reduced traffic

EquaLising flow control, reduced traffic

Fixed window (0.4) 1 reduced traffl~

Optimising flow control

EquaLising flow control

Fixed window (0.4)

.... __
-.-.... ... __

+

I

I
... ___ _

I .

I .
I .
I .

,..~----
/ - - - - ..::::- c::::-

/ _.....-
/ /

I ..,.-/

I /.-/
' I

/

0.000.020.040.060. 080.100.120.140.160.180.200.220.240.260.280.30
traffic Intensity

figure 6.21

comparison of fixed and adpative flow control policies

: I

Key Optimum Flow control, reduced traffic

0.040

0.035

0.030

0.025
L
Q)

:::l
0
0..

0.020

0.015

0. 010

0.005

--- Equallsln.g flow control, reduced traffic

Fixed window (0.4), reduced traffic

Optimising flow control

EquaLising flow control

Fixed window (0.4)

-

+

--- ----------------::.... --

0.000.020.040.060. 080.100.120.140.160.180.200.220.240.260.280.30
traffic Intensity

figure 6.22

network power using fixed and adaptive flow control

Key Optimum Routing

16

14

12

10

8

6

4

2

--- Equalising rout lng

- - - - Opt 1 mum Rout I ng + Opt I mum Flow controL

------- Equalising routing and delay based flow control

0. 000. 020. 040. 060. 080. 1 00. 120. 140. 160. 180. 200. 220. 240. 260. 280. 30

traffic Intensity

ftgure 6.23

delay ustng adaptive routing and adaptive flow control

Key Optimum Routing

--- Equalising rout lng

- - - - Opt I mum Rout I ng + Opt I mum F low cant ro L

------ EquaLising routing and delay based flow control

0.030 +

0.028

0.026

0.024

0.022

0.020

fu 0. 018
::l
0
o....o. 016

0.014

0.012

0.010

0.008

0.006

0.004

0.002

0.000 +--+-4-~-~-~-+-+--+-+--4-~~~~-r--+

0.000.020.040.060.080. 100.120.140.160.180.200.220.240.260.280.30
traffic Intensity

figure 6.24

power with adaptive routing and adaptive flow control

! I

Figure 6.25 : time varying network

Key Optimum routing

100

90

80

70

50

40

30

20

10

--- Equalising rout lng

- - - - Br frucated shortest path rout rng

----- Short est path rout I ng

I .
I .
I .
I .
I .
I I
• I

I I
, I

/,/
~-

o. 00 0. 02 o. 04 o. 06 0. 08 0. 1 0 0. 12 0. 14 o. 16 o. 18 0. 20 0. 22
traffic Intensity

figure 6.26

delay In an International network

i I

Key Optimum routing

--- EquaLIsIng rout I ng

- - - - B I frucat ed short est path rout I ng

---- Shortest path rout lng

0. 040 +

0.035

0.030

0.025
L
Q)

:l
0
a..

0.020

0.015

0.010

0.005

0. 00 0. 02 o. 04 o. 06 0. 08 0. 1 0 0. 12 o. 14 0. 16 0. 18 0. 20 0. 22
traffic Intensity

figure 6.27

power In an International network

; I

Key Optimum routing and flow control

--- EquaLIsIng rout I ng end de Ley based flow centro L

- - - - 8 I frucat ed rout I ng and opt I mum flow centro L

5.0 +

4.5

4.0

3.5

3.0
I

2.5

2.0

1.5

I
I

J
I

I
I

/--.._-------- ..;....:::::.- - _ ---- -----

1.0 +-~--~--r--+--~~~~--+-~--~--~-r--+-~---+

0.000.020.040.060.080. 100.120.140.160.180.200.220.240.260.280.30
traffic Intensity

figure 6.28

delay In an International network with flow control

Key Optimum routing and flow control ~

0.060

0.055

0.050

0.045

0.040

L

~ 0. 035
0
0..

0.030

0.025

0.020

·o.o15

0.010

0.005

--- EquaL IsIng rout I ng and fLow centro L

- - - - B I frucat ed rout I ng and opt I mum fLow centro L

L · I

/
/

/
/

+

0.000 +--+--+-~--;-~--,_~--,_~--~~r-~~r--r--+

0.000.020.040.060.080. 100.120.140.160.180.200.220.240.260.280.30
traffic Intensity

figure 6.29

power In an International network with flow control

Key Optimum routing and flow control

--- Equalising rout lng and flow contorl

- - - - B I frucat ed rout I ng and opt I mum flow cant ro L

0.20

0. 18

0. 16

-..,
6._ 0. 14

/c.
m
:J
0

1 0. 12

Q)
m
~ 0. 10
Q)

>
(0

0. 08

0. 06

0. 04

0. 02

/

~ // v /
/

0.00 +--+--+--+--+--4--4--4--4--4--4--4--4--4--~--+

0.000.020.040.060.080. 100.120.140.160.180.200.220.240.260.280.30
traffic Intensity

ftgure 6.30

throughput In an International network wtth flow control

Chapter 7

Conclusions and Suggestions for

FUrther Work

7.1 Introduction

This chapter, like the detailed description of the work carried out which

precedes it, can be split into three distinct sections. The first section summarises

the major points of interest arising from the design and construction of the multi­

processor simulator. The important differences and difficulties of simulating in a

parallel environment in comparison with a sequential alternative are highlighted

and the solutions adopted outlined. The major limitations and dependencies on

the performance of the simulator are discussed with some comments on the opti­

misation of execution times for individual simulations and definitions of suitable

indexes of performance for the comparison of code running on the simulator. In

the second section the work done in modelling adaptive routing in fully connected

circuit switched networks is summarised. Particular attention is given to the new

results for the behaviour of multiple learning automata acting as routing con­

trollers for the selection of alternatively routed traffic through the network, and

their implications from the customers viewpoint. Suggestions are then made for

the continued development of work in this area to consider features such as tran­

sient response to network changes and to broaden the range of networks to which

the algorithm could be applied. Finally the work performed on the modelling of

packet switched networks is summarised, the major conclusions drawn from the

networks investigated re-iterated and areas of further work identified.

7.2 Multi-processor Simulation

In an attempt to overcome the simulation bottleneck in the modelling

of wide area communication networks through simulation, given the analytic in­

tractability of many networking problems, a multi-microprocessor solution was

identified as a potential solution. By the effective utilisation of an array of pro­

cessing elements, the conventional limitations of a single processors capability

264

could be circumvented. This proposal was further strengthened by the appear­

ance of the !NMOS Transputer, a novel high speed processor which was designed

specifically to communicate efficiently with other processing elements of the same

family, in an arbitrary topological configuration. From studies of previous work

in multi-processor architectures and by analysis of the problem for which the en­

vironment was to be designed, a hardware configuration was developed for the

simulation environment. The key element in the design consisted of an array of

Transputers each linked into an array of configurable cross-point switches. The

switches could be dynamically programmed to connect the Transputers into a

wide variety of topologies and produced a flexible medium into which the sim­

ulation code could be exported. A number of different ways were examined in

the literature for the optimum distribution of the simulation code between the

processors. The method chosen, as potentially the most profitable, was the allo­

cation of one parallel task to each of the communication nodes in the network.

At most therefore, the code for the simulation can be distributed amongst the

same number of processing centres as there are nodes in the network. However

this allocation also allows the network to be partitioned over a smaller number

of processing centres, with each centre responsible for one or more parallel tasks.

In its most concurrent state the code requires the simulation hardware to be con­

figured in the same topological pattern as the original network. Communication

between nodes in the simulation then takes place exclusively over the Transputers

high speed, serial, point-to-point communication links.

The distribution of a network simulation over an array of distinct, loosely

coupled microprocessors introduces a number of problems not usually encountered

in a sequential equivalent, which uses only a single process on a single processor.

The major areas identified from the work were access to the simulation when un­

der execution, synchronisation between processes to maintain event ordering and

the development of a software architecture within each process to avoid deadlock

developing as the processes communicated. Access was achieved by the adoption

of a 'snapshot' technique. The simulation code within each process runs up to

a pre-arranged point where access was then allowed through a linear chain of

communication links which linked each node in the network. Synchronisation was

265

maintained by one of two methods, comparable to synchronous and asynchronous

clock mechanisms in sequential simulations. Each generates a transmission over­

head to synchronise the nodes at either end of every link, which becomes more

significant as the traffic loading on that link becomes lighter. Deadlock between

two processes is avoided by separating the input and output routines which initiate

transmission over the communication links from the simulation code which im­

plements the model of a switching exchange. The interface routines generate the

equivalent of software interrupts when they wish to access or be accessed by the

model code, and wait to be serviced .. The model code then consists of a number

of subroutines which are executed whenever the relevant interrupt is generated.

As previously mentioned the fundamental reason for the adoption of a

multi-processor architecture was to reduce the execution time of wide area com­

munication network simulations. Conceptually the approach adopted offered the

advantage of producing simulations which were independent of the size of the net­

work itself and instead a function only of traffic density and the distribution of

traffic over the network. However the extent to which this performance is realised

is dependent on the relative loadings of the processor and communication links. If

the processor is heavily utilised in relation to link communication, termed proces­

sor limited, such communication is transparent as cycle stealing DMA techniques

are employed. Under these conditions the CPU processing rates of the network

nodes may be used to form a summation defining the total processing power going

into the simulation. Alternatively if the reverse is true and the process is com­

munication limited, each processor will be idle for a percentage of the simulation

while it waits for the next transmission. In this case full CPU utilisation is not

taking place and the execution times will fall below that expected. The question of

whether a simulation is processor or communication limited depends on a number

of factors including processor and communication link speeds, model complex­

ity, data transfer demand and synchronisation overheads. Work is currently in

progress to evaluate the effect of each of these constituents, which it is hoped will

lead to the design of a second generation of simulator which will further improve

simulation execution times.

266

7.3 Circuit Switched Networks

The work done involving the performance analysis of fully connected cir­

cuit switched networks can be divided into two major components which can be

treated separately. The first component covers the development of analytic mod­

els for the prediction of network performance under a range of fixed and dynamic

algorithms. The second component consists of the conclusions drawn by applica­

tion of the models to specific network configurations and the relative performance

of the routing algorithms under these conditions.

By extending previous analytic modelling on purely symmetrical fully

connected networks, including trunk reservation, a model was formulated to cal­

culate the performance of an asymmetrical network of arbitrary traffic and trunk

capacity for fixed routing strategies such as random routing or automatic alter­

native routing. The model allowed the calculation of the major parameters of

interest in the network, trunk utilisation and individual traffic source blocking

probabilities. This basic model was then extended to produce further models for

a number of adaptive routing policies, namely DAR, LR-1 and proportional rout­

ing, the latter being derived from the Bell-Northern global routing strategy. For

each strategy a set of equations are formulated for each traffic source connect­

ing the distribution of overflow traffic over alternative paths with a performance

measure of the success for each selection. The performance measure, different

in each case, is a result of the algorithm directly or of mathematically predicted

behaviour.

Analysis of a simple four node network without a trunk reservation pa­

rameter, using the analytic models, divides the routing algorithms into two cat­

egories. The first category labelled 'competitive' includes DAR, random routing

and proportional routing. In each algorithm the routing process dividing traffic

for each source acts independently of all other routing processes in the network,

reacting only to trunk utilisation. The second category, into which the LR-1

algorithm falls, labelled 'co-operative' routing, exhibits different behaviour. No

independent solution can be found which satisfies the mathematical constraints.

Instead the network routing processes act together to produce a solution in which

each individual process is a component. The results further show that in acting

267

in this manner the algorithm serves to equalise, or minimise the deviation in, the

grade-of-service of each individual traffic source. This is unique in the algorithms

studied in this work. The 'competitive' algorithms make no attempt to intro­

duce fairness in this way, consequently the GOS for each source is determined by

the position of that source in the network. This often leads to large differences

between individual GOS and the average value of the network. Simulation re­

sults agree broadly with the conclusions drawn from the analytic models although

there are numerical disagreements which derive from the validity of some of the

approximations in the mathematical models.

As is widely known, the addition of a suitable trunk reservation param­

eter greatly improves the performance of the network under overload conditions,

This is achieved by the reduction of bandwidth available to alternatively routed

calls. This does not change the fundamental behaviour of the algorithms, but in

particular reduces the ability of the LR-1 algorithm to reach its equilibrium, max­

imising fairness in the network. In the examples of structured asymmetry studied

all of the adaptive algorithms displayed very similar behaviour under tight flow

control and again simulation studies of the same network configurations produced

the same broad agreement, strengthening the case for the validity of the models

for comparative analysis.

The third area of study, instability in the blocking probability of the net­

work gave interesting but conflicting results. The analytic work suggests that there

exists a well defined band of instability for symmetric and a range of asymmetric

network configurations. However the region over which this behaviour occurs is

one in which the mathematical assumptions made by the model are not valid.

Simulation results for the four node symmetrical network suggest only a gradual

rise in blocking probability over the region concerned, with no clear evidence of

unstable behaviour. This does not mean that predicted instability does not occur,

merely that the analysis of the simulation done in this work did not find proof of

its presence.

The work has presented both analytic and simulation based modelling

of the behaviour of a number of adaptive routing algorithms for fully connected

circuit switched networks in dynamic equilibrium. In particular the behaviour

268

of a network using a routing algorithm based on learning automata theory has

been explored. New results have been discovered into the algorithm's method

of operation which suggests direct benefit network customers by attempting to

equalise service. Two areas of directly related work in circuit switched networks

suggest themselves for further investigation. The first is the study of dynamic

routing algorithms, such as these studied, in a transient environment. Important

questions such as the ability of an algorithm to track traffic fluctuations and react

to step changes in network patterns require detailed investigation to determine

the factors affecting the convergence rate and methods for its optimisation. In

considering the LR-I algorithm, one key factor is the reward parameter used to

update the probability distribution on each successfully routed call. There is an

obvious trade-off in using a fixed value between accuracy and convergence speed

and suggestions have been made for the use of an adaptive step size, however this

area is still open for much further study.

The second area of study is in the development of a suitable adaptive

routing algorithm for sparsely connected circuit switched networks of arbitrary

topology. In a network there is often no direct link between the originating and

destination nodes in the network and the problem becomes one of finding a sen­

sible multi-hop path through the network. Algorithms for either path-based or

link-based algorithms incorporating learning automata theory can be formulated

based on the same concepts as their fully connected relations. The analytic com­

plexity of networks of this type is formidable and the initial path in the analysis

of adaptive algorithms within this sphere may well lie in the further development

of the simulation environment to encompass networks of this type and allow such

studies to be undertaken.

7.4 Packet Switched Networks

In the work covering packet switched networks attention was focused on

the application of an adaptive routing algorithm based on learning automata the­

ory to sparsely connected network topologies. The work then went on to consider

the interaction and overall performance of the algorithm with the addition of a

269

simple adaptive flow control policy to the routing strategy. Much of the work

consisted of analytic modelling of the packet switched networks with simulation

used as a tool to validate the assumptions made in both the queueing models and

the models used to predict the behaviour of the learning automata. To construct

the models work was brought together from a several authors and integrated into

a number of related mathematical models covering a wide range of routing and

flow control mechanisms including fixed, adaptive and optimum policies. This

powerful modelling capability was then applied to generalised examples of typical

packet switched networks for the comparative analysis of network performance

under the different strategies.

The network modelling demonstrated that, for the networks studied, the

use of a learning automata based routing algorithm gave almost identical perfor­

mance to the mathematically optimum strategy. Further when it was combined

with a simple delay based flow control strategy, the resulting performance was,

once again, almost equivalent to the combination of optimal routing and optimal

flow control. The advantage of such a combination over its optimal counterpart is

that both parts of the overall strategy are easy to implement using trivial numer­

ical calculation in an entirely distributed environment. The information required

for the implementation of the algorithms is already present, or can be easily em­

bedded, in existing network protocols. Simulation studies included in the work

support the models validity and suggest that the comparisons made between the

various mathematical models can be translated into real measures of network

performance.

As with the work on fully connected circuit switched networks, these

results cover only the behaviour of packet switched networks in dynamic equilib­

rium. Given the highly statistical nature of packet switched traffic characteristics,

it is important that both routing and flow control algorithms can react quickly to

changes in traffic distribution and magnitude. Once again the behaviour of the

learning automata will depend critically on the selection of the learning parameter

embedded within the algorithm. However another possibility for the enhancement

of such transient conditions is attracting increasing interest. A hybrid strategy,

incorporating a centralised component with a global knowledge of the network

270

state, could provide invaluable information to the distributed portion of the rout­

ing algorithm, accelerating the convergence of an adaptive algorithm to major

changes. Typically the centralised component would present each node with a

selection of routes to each destination, these being a subset of all those possible.

If this is done periodically, either synchronously or asynchronously, this could op­

timise much of the initial work in finding the viable subset of routes for a given

network configuration. Once this was accomplished the distributed portion of the

algorithm could optimise the network performance by selecting the division of

traffic over each of the preferred routes.

Finally the work done on packet switched networks provides a basis for

research into the emerging broadband ISDN network architectures. Work is al­

ready progressing in this area at the University of Durham, in conjunction with

both British Telecom Research Laboratories and several European partners in a

RACE initiative. The work centres on the use of Transputer arrays for the simu­

lation and emulation of Asynchronous Transfer Mode (ATM) transmission within

B-ISDN. This field promises to be an exciting area of research in the near future

and one in which Durham is well positioned to make a significant contribution.

271

References

[1] H.T. Mouftah and K.S. Shanmugan, Computer Aided Techniques for

Communications Systems Engineering, IEEE Communications, Vol. 25,

No. 7, July 1987, pp 48-54.

[2] M.G. Hartley (Editor), Digital Simulation Methods, lEE Monograph Se­

ries 15, Peter Peregrinus Ltd., 1975, ISBN: 0-901223-50-6.

[3] M.P. Papazoglou et al., Designing a Parallel Simula Machine, Computer

Design, October 1983, pp 125-132.

[4] R. Lehnert, A Special Processor for Fast Simulation of Queueing Net­

works, ITC-9, Spain, 1979.

[5] M.Barel, A Flexible High-Performance Multiprocessor for Data Network

Simulation, ITC-10, Session 3.3, Paper 9, 1982.

[6] R. Kain et al., CHIMPNET: A Networking Testbed, Computer Networks

3, December 1979, pp 447-457.

[7] A.Toda et al., A Parallel Processing Simulator for a Network System

Using Multimicroprocessors, Micoprocessors and Microsystems, Vol. 6,

No. 1, January/February 1982, pp 15-20.

[8] M.J. Geary, The hardware Development of a Multi-Microcomputer Net­

work Simulator, Modelling and Simulation on Microprocessors, San

Diego.CA.USA, 1983, pp 140-144.

[9] I.M. Barron, Intercommunication Within Distributed Systems, Small Sys­

tems Software, Vol. 1, No. 2, pp 6-10.

[10] R. Taylor, Graphics with the Transuter, Compurt Gaphics '84, 1984.

[11] T. Mano et al., OCCAM To CMOS. Experimental Logic Design Support

System, Computer Hardware Description languages, Eds. C.J. Koomen

and T. Moto-oka, North-Holland, 1985.

[12] D.S. Broomhead et al., A Practical Comparison ofthe Systolic and Wave­

front Array Processing Architectures, 2nd Proc. IEEE Conf. on Acous­

tics, Speech and Signal Processing, March 1985, pp 8.7.1-8.7.4.

[13] D. Fay, Working with OCCAM: A Program for Generating Display

272

Images, Microprocessors and Microsystems, Vol. 8, No. 1, Jan­

uary /February 1984, pp 3-15.

[14] P. Wilson, Highly Concurrent Systems Using the Transputer, Proc.

Northon '84, Seattle, October 2-4, 1984, pp 13/2 1-11.

[15] -, IMS T800, IMS T400 and IMS T200 Transputer Product Overviews,

Inmos Ltd.

[16] -,Transputer Reference Manual, Inmos Ltd.

[17] C. Whitby-Stevens, The Transputer, 12th Int. Symposium on Computer

Architecture, Boston, June 17-19, 1985. pp 292-300.

[18] R. Taylor, Transputer Communication Link, Microprocessors and Mi­

crosystems, Vol. 10, No. 4, 1986, pp 211-215.

[19] C.A.R. Hoare, Communicating Sequential Processes, Comms. of the

ACM, Vol. 21, No. 8, August 1978. pp 666-677.

[20] D. Fay, Comparison of CSP and the Programming Language OCCAM,

Australian Computer Science Communications, Vol. 6, No. 1, 1984.

[21] D. May and R. Shepherd, The Transputer Implementation of Occam,

Proc. of the Int. conf. on 5th Generation Computer Systems, 1984.-

[22] D. May, OCCAM, SIGPLAN Notices, Vol. 18, No. 4, April 1983.

[23] D. May and R. Taylor, OCCAM - An Overview, Microprocessors and

Microsystems, Vol. 8, No. 2, March 1984, pp 73-79.

[24] D. Pountain, A Tutorial Guide to OCCAM Programming, Inmos Ltd.

[25] -, IMS C004 programmable Link Switch {Preliminary Data), Inmos Ltd.

[26] J .J. Pilliod, Fundamental Plans for Toll Telephone Plant, Bell Sytems

Technical Journal, Vol 31, 1952, pp832-850.

[27] E. Szybicki, A.E. Bean, Advanced Traffic Routing in Local Telephone Net­

works; Performance of Proposed Call Routing Algorithms, ITC-9, 1979.

[28] G.R. Ash, A.H. Kafker, K.R. Krishman, Intercity Dynamic Routing Ar­

chitecture and Feasibility, ITC-10, Session 3.2, Paper 2, 1982.

[29] C. Grandjean, Call Routing Strategies in Telecommunication Networks,

ITC-5, June 1967, pp 261-269.

[30] M. Gerla, Deterministic and Adaptive Routing Policies in Packet­

Switched Computer Networks, Proc IEEE 3rd Data Commission Sym-

273

posium, November 1973, pp 23-28.

[31] A. Girard and Y. Cote, Sequential Routing Optimization for Circuit

Switched Networks, IEEE Trans. on Comms., COM-32, No 12, Dec 1974,

pp 1234-1242.

[32] A. Girard and S. Hurtubise, Dynamic Routing and Call Repacking in

Circuit Switched Networks, IEEE Thans. on Comms., COM-31, No 12,

Dec 1983, pp 1290-1294.

[33] P.M. Lin, B.J. Leon, C.R. Stewart, Analysis of Circuit Switched Networks

Employing Originating-Office Control with Spill-Forward, IEEE Trans.

on Comms., COM-26, No 6, June 1978, pp 754-765.

[34] G.R. Ash, R.H. Cardwell, R.P. Murray, Design and Optimization of Net-
"'

works with Dynamic Routing, Bell System Technical Journal, Vol 60, No

8, Oct 1981, pp 1787-1820.

[35] G.R. Ash, A.H. Kafker, K.R. Krishman, Servicing and Real-Time Control

of Networks with Dynamic Routing, Bell System Technical Journal, Vol

60, Oct 1981, pp 1821-1845.

[36] P. Mars and M. Chrystall, Real-Time Telephone Traffic Simulation Using

Learning Automata Routing, Yale University Technical Report, S & IS

No 7907, November 1979.

[37] K.S. Narendra, P. Mars and M. Chrystall, Simulation Study of Telephone

Traffic Routing Using Learning Algorithms ~ Part II, Yale University

Technical Report, S & IS No. 7907, October 1979.

[38] K.S. N arendra and P. Mars, The Use of Learning Algorithms In Telephone

Traffic Routing- A Methodology, Automatica, Vol. 19, No. 5, 1983, pp

495-502.

[39] R. Gibbens, F. Kelly and P.B. Key, Dynamic Alternative Routing- Mod­

elling and Behaviour, ITC 12, June 1988, Thrin, Italy.

[40] R.Gibbens, Some Aspects of Dynamic Routing In Circuit Switched

Telecommunication Networks, Rayleigh Prize Essay, University of Cam­

bridge, January 1986.

[41] R.S. Krupp, Stabilization of Alternate Routing Network, IEEE Int. Com­

mun. Conf., Philadelphia, PA, 1982, No 31.2.

274

[42] T.G. Yum and M. Schwartz, Comparison of Routing Procedures for

Circuit-Switched Traffic in Nonhierarchical Networks, IEEE Trans. On

Comms., COM-35, No 5, May 1987, pp 535-544.

[43] J .M. Akinpelu, The Overload Performance of Engineered Networks with

Nonhierarchical and Hierarchical Routing, AT&T Bell Laboratories Tech­

nical Journal, Vol. 63, No. 7, September 1984.

[44] D.G. Haenschke, D.A. Kettler and E.Oberer, Network Management and

Congestion in the U.S. Telecommunications Network, IEEE Trans. On

Comms., COM-29, No. 4, April 1981.

[45] L. Kleinrock, Queueing Systems. Volume !:Theory, John Wiley and Sons,

New York, 1975.

[46] K.S. Narendra and M.A.L. Thathachar, On the Behaviour of a Learning

Automaton in a Changing Environment with Application to Telephone

Traffic Routing, IEEE Trans. On Systems, Man and Cybernetics, SMC-

10, No. 5, May 1980, pp 262-269.

[47] M.S. Chrystal!, Adaptive Control of Communication Networks Using

Learning Automata, Ph.D Thesis, Robert Gordon's Institute of Tech­

nology, Aberdeen, March 1982.

[48] R.I. Wilkinson, Theories For Toll Traffic Engineering in the U.S.A., Bell

System Technical Journal., Vol. 35, No. 2, pp 421-514, 1956.

[49] R. Gibbens, Dynamic Routing in Circuit Switched Networks: The Dy­

namic Alternative Routing Strategy, Ph.D Thesis, University of Cam­

bridge, July 1988.

[50] N. Eshragh, Dynamic Routing in Non-Hierarchical Circuit Switched

Networks, Ph.D Thesis, University of Durham, December 1989.

[51] H. Zimmermann, OSI Reference Model- The ISO Model of Architecture

for Open Systems Interconnection, IEEE Trans. On Comms., COM-28,

No. 4, April 1980, pp 425-432.

[52] Systems Network Architecture, Special Issue, IBM Systems Journal, Vol

22, No. 4, 1983, 295-466.

[53] S. Wecker, DNA: The Digital Network Architecture, IEEE Trans On

Comms., COM-28, No. 4, April1980, pp 510-526.

275

[54] M. Schwartz, Computer-Communication Network Design and Analysis,

Prentice-Hall, Englewood Cliffs, New Jersey, 1977.

(55] G.L. Fultz and L. Kleinrock, Adaptive Routing Techniques in Store and

Forward Computer Communication Networks, Proc. IEEE Int. Conf. on

Communications, Montreal, Canada, 1973, pp 23-28.

[56] M. Gerla, Deterministic and Adaptive Routing Policies m Packet­

Switched Computer Networks, Proc. IEEE 3rd Data Commission Sym­

posium, Nov. 1973, pp 23-28.

[57] M. Schwartz and T.Stern, Routing Techniques in Computer Communica­

tion Networks, IEEE Trans. On Comms., COM-28, No. 4, April 1980,

pp 539-552.

[58] J.M. McQuillan et al., A review of the Development and Performance of

the ARPANET Algorithm, IEEE Trans. On Comm., COM-26, No. 12,

Dec 1978, pp 1802-1811.

[59] -, The New Routing Algorithm for the ARPANET, IEEE Trans. On

Comms., COM-28, No.5, May 1980, pp 711-719.

[60] E.W. Dijkstra, A Note on Two Problems in Connection with Graphs,

Numerical Mathematics, Vol. 1, 1959, 269-271.

[61] M. Schwartz amd T-K. Yum, Distributed Routing In Computer Com­

munication Networks, 21st IEEE Conference On Decision and Control,

Orlando, Florida, Dec. 1982, pp 600-603.

[62] T.E Stern, An Improved Routing Algorithm for Distributed Computer

Networks, IEEE Int. Symp. on Circuits and Systems, Workshop on

Large-Scale Networks and Systems, Houston, Texas, April 1980.

(63] A Fail Safe Distributed Routing Protocol, IEEE Trans. On Comms.,

COM-27, No. 9, Sept. 1979, pp 1280-1287.

[64] M.Schwartz, Routing and Flow Control in Data Networks, NATO Ad­

vanced Studies Institute: New Concepts in Multi-User Communications,

Norwich, U.K., August 4-6, 1980, Sijthoof and Norohoof, Netherland.

[65] L. Fratta et al., The Flow Deviation Method: An Approach to Store and

Forward Communication Network Design, Networks, Vol. 3, Part 3, 1973,

pp 97-133.

276

[66] M. Schwartz and C.K. Cheung, The Gradient Projection Algorithm

for Multiple Routing in Message Switched Networks, IEEE Trans. On

Comms., COM-25, April 1976, pp 449-456.

[67] D.G. Cantor and M. Gerla, Optimal Routing in a Packet Switched Com­

puter Network, IEEE Trans. On Comms., COM-23, No. 10,· Oct 1974,

pp 1062-1068.

[68] T.E. Stern, A Class of Decentralised Routing Algorithms Using Relax­

ation, IEEE Trans. On Comms., COM-25, No. 10, Oct 1977, pp 1092-

1102.

[69] L. Kleinrock, Communication Nets: Stochastic Message Flow and Delay,

McGraw-Hill, New York, 1964; reprinted Dover Publications 1972.

[70] B. Meister, H.R. Mueller and H. Rudin, On the Optimization of Message

Switched Networks, IEEE Trans. On Comms., COM-20, No. 1, Feb.

1972, pp 8-14.

[71] D. Wismer and R. Chattergy, Introduction to Non Linear Programming,

North Holland, 1978.

[72] R.G Gallagher, A Minimum Delay Routing Algorithm Using Distributed

Communication, IEEE Trans. On Comms., COM-25, No. 1, Jan. 1977,

pp 73-85.

[73] D. Bertsekas and R. Gallagher, Second Derivative Algorithms for Mini­

mum Delay Distributed Routing in Networks, IEEE Trans. On Comms.,

COM-32, No. 8, August 1984, pp 911-919.

[74] T.M. Ng and D.B. Hoang, Joint Optimization of Capacity and Flow as­

signment in a Packet Switched Communications Network, IEEE Trans.

On Comms., COM-35, No. 2, Feb 1987, pp 202-209.

[75] H. Frank and N. Chou, Routing In Computer Networks, Networks, Vol.

1, 1971, pp 99-112.

[76] P. Baran, On Distributed Communication Networks, IEEE Trans. On

Comm. Systems, CS-12, Part 1, Marcg 1964, pp 1-9.

[77] W. Chou et al, The Need For Adaptive Routing in the Chaotic and Un­

balanced Traffic Environment, IEEE Trans. On Comms., COM-29, No.

4, April 1981, pp 481-490.

277

[78] H. Rudin, On Routing and 'Delta Routing': A Taxonomy and Perfor­

mance Comparison of Techniques for Packet Switched Networks, IEEE

Trans. On Comms., COM-24, No. 1, Jan 1976, pp 43-59.

[79] H. Rudin and H. Mueller, Dynamic Routing and Flow Control, IEEE

Trans. On Comms., COM-28, No. 7, July 1980, pp 1030-1039.

[80] K. Narendra and R. Wheeler Jr., Routing In Communication Networks­

A Case Study of Learning in Large Scale Systems, Large Scale Systems­

Theory and Applications, Vol 8, No. 3, June 1985, pp211-222.

[81] M. Chrystal! and P. Mars, Learning Automata Routing in Message

Switched Communication Networks, Tech. Report No. 8101 , Robert

Gordon Institute of Technology, School of Electronic and Electrical En­

gineering, Feb 1981.

[82] C.E. Agnew, On Quadratic Adaptive Routing Algorithms, Communica­

tions of the ACM, Vol. 19, No. 1, Jan. 1976, pp 18-22.

[83] L.G. Mason, Equilibrium Flows, Routing Patterns and Algorithms for

Store and Forward Networks, Large Scale Systems, Vol. 8, 1985, North

Holland

[84] S.C Dafermos and F.T. Sparrow, The Traffic Assignment Problem for a

General Network, Jounal of the Natioal Bureau of Standards-B. Mathe­

matical Science 73b, Vol. 2, 1969.

[85] M. Gerla and L. Kleinrock, Flow Control: A Comparative Survey, IEEE

Trans. On Comms., COM-28, No. 4, April 1980, pp 553-567.

[86] L. Pouzin, Methods, Tools and Observations on Flow Control in Packet­

Switched Data Networks, IEEE Trans. On Comms., COM-29, No. 4,

April 1981, pp 413-426.

[87] M. Reiser, Performance Evaluation of Data Communication Sytems, Pro­

ceedings of the IEEE, Vol. 70, No. 2, February 1982, pp 171-196.

[88] M. Schwartz and S. Saad, Analysis of Congestion Control Techniques in

Computer Communication Networks, Proc. Symp. on Flow Control in

Computer Networks, Versailles, France, Feb. 1979.

[89] M. Irland, Buffer Management in a Packet Switch, IEEE Trans. On

Comms., COM-26, No. 3, March 1978, pp 328-337.

278

[90] M. Pennotti and M. Schwartz, Congestion Control in Store and Forwad

Tandem Links, IEEE Trans. On Comms., COM-23, No. 12, Dec 1975,

pp 1434-1443.

[91] D.W. Davies, The Control of Congestion in Packet Switched Networks,

IEEE Trans. On Comms., COM-20, No. 3, June 1972, pp 546-550.

[92] W.L. Price, Data Network Simulation Experiments at the National Phys­

ical Laboratory, Computer Networks, Vol. 1, 1977, p 199-210.

[93] S. Lam and M. Reiser, Congestion Control of Store-and-Forward Net­

works by Input Buffer Limits-An Analysis, IEEE Trans. On Comms.,

COM-27, No. 1, Jan. 1979.

[94] M Schwartz, Telecommunication Networks: Protocols, Modelling and

Analysis, Addison-Wesley, 1987, ISBN 0-201-16423-X.

[95] S. Saad and M. Schwartz, Input Buffer Limiting Mechanisms for Conges­

tion Control, International Communications Conference, Seattle, June

1980, pp 32.1-23.5.

[96] J.M. McQuillan, Interaction Between Routing and Flow Control in Com­

puter Networks, Proc. Int. Symp. on Flow Control in Computer Net­

works, Versailles, France, Feb. 1979, pp 63-75.

[97] M. Gerla and P.O. Nilsson, Routing and Flow Control Interplay in Com­

puter Networks, Proc. Int. Conf. on Computer Comms., Altanta, Oct

1980, pp 84-89.

[98] M. Reiser, A Queueing Network Analysis of Computer Communication

Networks with Window Flow Control, IEEE Trans. On Comms. COM-

27, No. 8, August 1979, pp 1199-1209.

[99] R.G. Gallagher and S.J. Golestanni, Flow Control and Routing Algo­

rithms for Data Networks, Proc. Int. Conf. on Comp. Comms., Atlanta,

Oct. 1980, pp 779-784.

[100] G. Thaker and J. Cain, Interactions Between Routing and Flow Control

Algorithms, IEEE Trans. On Comms., COM-34, No. 3, March 1986, pp

269-277.

[101] A. Tanenbaum, Computer Networks, Prentice-Hall, 1981.

279

Appendix A

Learning Automata

Classical control theory assumes that a complete mathematical model can

be formulated for the process whose outputs are to be monitored. The model is

then used to control the inputs in some fashion. Uncertaintly can be managed

by the use of stochastic control theory only if the probability of the uncertainty

can be characterised. If such characteristics cannot be formulated then control

must be implemented by observation and deduction of the system in operation.

This can be thought of as a learning process, defined as a relatively permanent

change in behaviour, based on past experience. Mathematically it is interesting to

consider the problem as one of optimization of a function which is not explicitly

known. One approach to the solution, using stochastic automata, attempts to

find the optimal action out of the set of all allowed actions and works in the

following manner. Initially each allowed action is assigned an equal probability

of selection. One of those actions is then randomly selected and the response of

the environment is observed. Based on this response the selection probabilities of

each of the actions are then updated. This process of selection and the subsequent

updating of the selection probabilities is then repeated on the selection of every

action. Stochastic automata, operating in this way to satisfy some performance

index, are also known as learning automata.

Stochastic Automata

A stochastic automata is a sextuple { x, ¢,a, p, A, G} where x is the input

value, ¢is a set of s internal states, a is a set of r outputs or actions with r ~ s, p

is a probability vector governing the choice of internal states at each stage, i.e. at

stage n, p(n) = {Pl(n), ... ,p8 (n)}. A is an algorithm known as a reinforcement

scheme which maps p(n) --+ p(n + 1) and G : ¢ --+ a is the output function,

mapping the internal states onto to the action set. Often there is a deterministic

one-to-one mapping between ¢ and a in which case the two become synonymous.

This arrangement is shown schematically in figure A.l.

The environment can be considered as a similar black box with an input

280

vector at a point n, a(n), where a(n) = {a1(n), .. . ,ar(n)} and an output value x

as shown in figure A.2. x lies in the range (0,1) and can either take purely binary

values (0 or 1, true or false, yes or no, etc) in which case it is referred to as a

P-model; discrete quantised values, when it is known as a Q-model; or any value

in the range, when it is known as a continuous or 8-model. Within each of these

models the probability of a particular output, given an input i is given by Ci the

penalty probability. For a simple Q-model these penalty probabilities are random

variables, but for the more complex models they take the form of distribution

functions for each input. Further if Ci are independent of n, the environment is

said to be stationary, otherwise it is known as non-stationary.

Figure A.3 shows the connection between the two environments. The

actions of the automata form the inputs to the environment and the response of

the environment is fed into the automaton to update the internal states via the

reinforcement algorithm.

Behaviour

In this section some of the basic definitions are outlined for the analysis

and classification of learning schemes based on the automaton. Given that the

basic operation of the automaton is to update the action probabilities on the

response of the environment to a particular action, a useful quantity to examine

is the average penalty' which such an automaton can be expected to receive. At a

time n, if an action ai(n) is selected with a probability Pi(n), the average penalty,

M(n) is given by

r

M(n) = E{x(n) I p(n)} = LPi(n)ci
i=l

For a completely random response where each possible action is selected with

equal probability the average penalty is given by Mo where

A process of learning can be said to have occurred if the average penalty

incurred by an automaton is asymptotically less than Mo. In this case the learning

automaton is said to be expedient. Formally

281

Def 1: A learning automaton is called expedient if

li~ E[M(n)] < Mo
n---+inf

More desirable then merely outperforming a random environment would be an au­

tomaton which minimised the average penalty. This is termed optimal behaviour

and is defined as

Def 2: A learning automaton is called optimal if

li~ E[M(n)] = m~nci =: cz
n---+mf 1

This suggests that the automaton would converge to the action with the minimum

penalty with probability one. If this action is not desirable for reasons other than

performance a sub-optimal scheme would have to be used. An important class of

sub-optimal scheme is the £-optimal learning automata, defined as

Def 3: A learning automaton is called £-optimal if

li~ E[M(n)] < cz + e
n---+mf

for any £ > 0 by suitable choice of reinforcement scheme paramters. This suggests

such a scheme can be made asymptotically as close to an optimal scheme as desired

without the selection of any one action in a deterministic manner.

Other useful properties of a learning automata scheme would be a mono­

tonic decrease in the value of E[M(n)] with time and the ability to produce a

desirable performance over the whole range of possible Ci rather than just a cer­

tain range (in which case the scheme is referred to as conditional). This leads to

the final definition of a scheme which can be said to be absolutely expedient.

Def 4: A learning automata is absolutely expedient if

E[M(n + 1) I p(n)] < M(n)

for all n,p(n) and all Ci. If M(n)::; Mo then absolute expediency implies expedi­

ency. Further it can be shown that absolute expediency implies £-optimality in a

stationary random environment.

282

Reinforcement

The reinforcement scheme is the means by which the environmental re­

sponses are used to update the selection probabilities. In general terms the scheme

can be represented by an operator T, where

p(n+ 1) = T(p(n),a(n),x(n))

The scheme itself can be classified in terms of its behaviour using the definitions

above and in terms of the form of the functions used in the scheme itself, in the

simplest case linear or non-linear. For any reinforcement scheme there are three

basic functions it can perform, reward, punishment and inaction. According to

the particular scheme an action ai(n) will modify the action probability Pi(n)

according to the response of the environment x(n). Whether a particular scheme

rewards, punishes or leaves unchanged the probability selection may depend on

the value of the response. In general for an action ai at n the probability vector

p(n + 1) will be defined by a series of equations

and

Pj(n + 1) = Pj(n)- /j(p(n)) for reward

P;(n + 1) = Pj(n) + g;(p(n)) for punish

(j t i)

Pi(n + 1) = Pi(n) + li(p(n)) for reward

Pi(n + 1) = Pi(n)- 9i(p(n)) for punish

where both /;(·), the reward function and 9j(·), the punishment function map

Pk(n)c(O, 1) onto Pk(n + 1)c(O, 1) for all k = 1 ... r. If either the reward or

punishment sections of the reinforcement algorithm wish to leave the selection

probabilities unchanged (i.e. inaction) then /(·) or g(·) is simply replaced by

zero.

Convergence

Two types of convergence behaviour have been identified for the learning

automata. In the first case the sequence of action probabilities, Pi(n), generated

from the ergodic Markov process converges to give a distribution function over

all points of continuity. These are expedient schemes with no absorbing barrier.

283

In the second type of convergence scheme, seen in e--optimal automaton, each of

the action probabilities converge to a limiting random variable with probability

one. These schemes result in an ergodic Markov process with two or more ab­

sorbing barriers, only one of which actually corresponds to the minimum penalty

probability. One can only then say that the automata will converge to the desired

penalty probability with a positive probability.

284

Input
x(0,1)

------1-f)

Input
(action)

Action

-I>

Stochastic
Automaton

Figure A.1

Penalty Probability
Set (C)

Environment

Figure A.2

Penalty Probability
Set (C)

Environment

{p,A}

Stochastic
Automaton

Figure A.3

Action
(output) C>

Output
(response)

fO
Input

Appendix B

Recovery of Circuit Switched Code

The code written for the implementation of the circuit switched algo­

rithm for each node of a full connected network has been copied onto the diskette

included with this thesis. The code is written in Occam2 using the D700C Trans­

puter development system compiler from !NMOS Ltd. A full version of the code

is provided, except for the subroutines called directly from libraries supplied with

the development system. Where these have been used a short comment is included

within the code defining the subroutines function. The software is available in two

forms, DOS file format and in TDS file format. The listing in DOS file format is

in the directory \ CIRCUIT\DOS in a single files called CIRCUIT .LIS. The

file can be examined using any conventional screen editor or listed sequentially to

the screen by inserting the diskette in drive a: and typing

A:<CR>

TYPE A:\CIRCUIT\DOS\CIRCUIT.LIS II MORE <CR>

from the > prompt. Similarly a hard copy can be made by directing the file to a

printer attached to the PC directly or over a network. The instructions for this

will be dependent the configuation of the particular machine being used. The

version of the code in TDS format is in the directory \CIRCUIT\ TDS in a

series of files of the form filename. TSR. The code can be examined by accessing

it through the file CIRCUIT.TSR via a transputer development system (TDS).

The advantage of this method is that the fold structure used to develop the code

is maintained and the operator is able to move around within the file and examine

it with greater ease than via a standard sequential listing.

286

Appendix C

Recovery of Packet Switched Code

The code written for the implementation of the packet switched algorithm

for each node of a sparsely connected network has been copied onto the diskette

included with this thesis. The code is written in Occam2 using the D700C Trans­

puter development system compiler from INMOS Ltd. A full version of the code

is provided, except for the subroutines called directly from libraries supplied with

the development system. Where these have been used a short comment is included

within the code defining the subroutines function. The software is available in two

forms, DOS file format and in TDS file format. The listing in DOS file format ~

in the directory \PACKET\DOS in a single file called PACKET.LIS. The file

can be examined using any conventional screen editor or listed sequentially to the

screen by inserting the diskette in drive a: and typing

A:<CR>

TYPE A:\PACKET\DOS\PACKET.LIS II MORE <CR>

from the > prompt. Similarly a hard copy can be made by directing the file to

a printer attached to the PC directly or over a network. The instructions for

this will be dependent the configuation of the particular machine being used. The

version of the code in TDS format is in the directory \PACKET\ TDS in a series

of files of the form filename. TSR. The code can be accessed through the single file

PACKET.TSR via a transputer development system (TDS). The advantage of

this method is that the fold structure used to develop the code is maintained and

the operator is able to move around within the file and examine it with greater

ease than via a standard sequential listing.

287

Presented at 5th U.K. Teletraffic Symposium, University of Aston, July 1988

STUDY OF DYNAMIC ROUTING ALGORITHMS
USING A HIGH-SPEED MULTIPROCESSOR SIMULATOR

S.J. Nichols, R.T.Clarke and P.Mars

Abstract

This paper reports on the progress in the development of a high speed
transputer based network simulator and presents simulation results for fully
connected circuit switched networks. Both hardware and software design
strategies are outlined and future work on packet-switched networks described.

l. INTRODUCTION

The analysis of wide area communication networks to determine the
performance of dynamic routing strategies rapidly becomes analytically
intractable as the complexity of the problem increases. In addition behaviour
under• transient conditions such as traffic fluctuations o= component failures
are difficult to express mathematically. Under such conditions the use of
simulation techniques to determine relevant network parameters becomes
necessary. The conventional, sequential simulations, r~nning on mainframe
computer systems suffer from limitations imposed by the excessive use of CPU
time required to achieve the required depth of information and is further
compounded by the statistical nature of the results. These problems increase
as functions of traffic intensity across the network and size of the network
itself leading to detailed simulations of large networks often becoming
economically and even physically impossible to implement. In this paper the
design of a network simulator is presented which seeks to avoid the mainframe
implementation limitations by the introduction of concurrent processing into
the simulation environment and discusses the major features of the software
design in terms of their implementation requirements over the loosely coupled
multiprocessor system.

Previous attempts to develop high performance simulatio~ environments
discussed in the literature have introduced pipelined p2ocessors , distributed
environments controlled form a central control unit

3
or hierarchical bus

structures connecting processors simulating network nodes These structures
suffer from bottlenecks at some point in their division of the workload or
introduce bus contention between processors requiring communication which
limits their potential performance. The basis of this new design is to
capitalise on the advantages of multiprocessor implementation highlighted by
these previous attempts but avoid the degradation in performance caused by
insufficient communication bandwidth or unequal division of processing
requirements between independant hardware modules.

In the simulator transputers are used to represent the nodes in a
communications network and the links are used to mimic the connections between
the nodes. By using the computational power provided by each transputer and
its serial links, a powerful simulation tool has been constructed from an array
of these devices, the code of which is written in the computer language Occam.
This language uses all the standard declarations of variable types found in
languages like PASCAL and C, with the addition of a channel type which allows

S.J.Nichols, R.T.Clarke and P.Mars are with the School of Engineering and
Applied Science, University of Durham.

5/1

communication between processes that are executing concurrently. It is these
software channels which map onto the transputers serial data links. Programs
are constructed from four basic building blocks: SEQ for sequential processing,
PAR for parallel processing, IF for conditional processing, and finally ALT
which is used for alternative processing. The SEQ construct allows the
programmer to define a block of code which will be executed in order. The PAR
construct is used to define blocks code which are to be executed concurrently.
Logical conditional processing is accomplished by use fo the IF construct where
the execution of a block of code is dependent on the result of a Boolean
expression. The most complex construct is the ALT. This construct is similar
to the IF, however instead of using a logical condition as the test for
executing a block of code, a guard is used. A guard being simply an input from
a channel, with an optional condition. A block of code in an ALT construct
will only be executed if data is received down the channel which forms its
guard. This construct is very important to many of the operations of the
simulator software.

In man~ other respects, Occam is like any other computer language. It
allows both procedures, functions, loop constructs, matrix manipulation, and
logical operations, and also has a full set of standard arithmetic operators.
The language is relatively straightforNard to use once the programmer has
mastered the problems which can arise when programming a parallel problem. All
the software which runs on the simulator is coded in Occam.

2. SIMULATOR HARDwARE

The hardware of the network simulator is made up from three basic units
(Figure 1), a user front-end and file server, a graphical front-end, and a
'black box' transputer ba~ed simulator. It was the aim of the overall design
strategy to produce a simulation tool that requires the end-user to have little
or no knowledge of the software or hardware on which the simulation is carried
out, and this is achieved by careful use of these three basic units.

The user front-end and the file server is an IBM-AT (or. compatible) which
contains a plug-in transputer board. Its main use outside the simulation
environment is as a software development tool, supporting the transputer
development system and the Occam compiler. During a simulation run it is used
to draw up the net~ork topology graphically, enter initial conditions for the
simulation, and allow the user to program modifications into the simulation at
run-time. The results from the simulation are stored on the IBM-AT in MS-DOS
format files. These MS-DOS files can then be used for post simulation
statistical analysis and result processing on a main frame computer system.

The graphical front-end is used to display results on-line, making it
possible to investigate transients on a network during a simulation by
introducing modifications such as lost-links, failed nodes and traffic
fluctuations at run time. The graphic front-end enhances the power and
increases the usability of the simulator as a network support tool.

The 'black box' simulator is a reconfigurable array of transputers which
are used to model nodes within a communications network. The basic structure
of the hardware can be divided into two halves based on the operational tasks
which each individual transputer performs (Figure 2). The first half consists
of the four devices which perform, control and result handling tasks. There is
an IBM plug-in card (IMS B004) which files the results, an IMS 8007 graphics
card to display re5ults, a T414 transputer which handles the user interface
software, and a TSOO floating point transputer which generates the on-line
results. The other half of the hardware consists of the T414 transputer cards

5/2

which actually perform the simulation. Between these halves lie the
programmable link switches which are controlled by the transputer that handles
the user interface software. These switches are used to configure the
simulation transputers to the network topology under investigation before the
simulation begins.· Although the limit on the size of the network which can be
simulated is dependent on the arrangement of the link switches and the number
of transputers available, it is possible to simulate networks of any
conceivable size using this basic structure for the simulator.

These three units are interconnected to form the simulator itself
together with the software discussed below, produced the simulation
presented in this paper.

3. SOFTT..J'ARE DESI·G~

which,
results

The conceptual design of the simulation environment can be separated into
six major areas and mapped directly into Occam using the SEQ and PAR
programming concepts to produce a three-stage pipeline. By their concurrency
the processes allow on-line modification and network parameter calculation to
allow the operator to trace and direct the simulation during execution. The
transformation is reproduced in Figure 3 identifying the parallel processes and
the major points of data exchange between the processes. The central
simulation process can then be further divided into a number of concurrent
processes each corresponding to a nodal process and connected by channels
recreating the network topology. This combination of pipelined and mesh
topologies, implemented on dedicated hardware, in a multiprocessor environment,
assigning one or more processors to each concurrent process, leads to a
powerful and flexible simulation structure which can be expanded to encompass
networks of arbitrary topological size and complexity. Connectivity
difficulties, which arise due to more links terminating at a node than are
available in a single processor mapping, are accommodated by dividing the nodal
interface routines into independant processes feeding into a central control
process. This is divided in such a way as to ensure the connectivity of each
process does not exceed the implementation limit on the processors.

The distributed nature of the network simulation, isolating nodal data
structures from both each other and equally the interface processes requires
special software constructs to enable the simulation to process effectively.
Most important of these constructs are those which enable nodal synchronization
within the simulation process and allow access to the nodal processes from the
result and modification procedures.

Conventional discrete - event simulators can be divided into those which
use synchronous and asynchronous clock mechanisms. Asychronous discrete
event simulators are based on a linked list of events and their time of
occurrence. The simulation jumps from event epoch to event epoch inserting new
events in chronological sequence within the list as they are created by the
events presently being processed. Synchronous schemes divide the simulation
period into time slots and process all events occurring in a particular slot as
if they occurred simultaneously before moving to the next slot by incrementing
the timing mechanism. In general asynchronous techniques are favoured for
accurate modelling as the synchronous grouping of events in time slots can
produce problems for large slots and reduction in step size can lead to
inefficient code. However, for non-critical models and sensible selection of
time increment sync~ronous models are viable, especially if the model ensures
no bias toward exec~tion of certain events in preference to others of the same
priority within the interval.

5/3

The implementation of an asynchronous timing mechanism within a
distributed environment is made difficult by the lack of a central data
structure in which to store the linked list of forthcoming events. Interaction
between local queues, swapping next event times is a possible solution but
would require a large transmission overhead and reduce concurrency within the
system to virtually nil since only the event at the head of all the combined
queues would undergo execution at any time. The synchronous approach, while
less flexible for the reasons mentioned above, acts to create concurrency
through event epoch approximation and grouping and was used as the clock
mechanism in the model. Each nodal process scans their data structures for
events falling within the time slot, implements them and then broadcasts flags
to each neighbour informing them of the nodal processes clock increment.

In addition the lack of a central data structure also prevents the
storage of simulated call information in an easily accessible form and it must
be retrieved from the distributed network processors. This information is
periodically sampled and the nodal position updated by the same structure. The
simulation process on each node is momentarily suspended and a second process
activated. This second process allows the flow of information to and from the
interface processes controlling the results and network condition respectively,
and acts as one link of a linear chain between the interfaces made up of all
the nodal processes. The results are passed out as a summary of each nodes
history up to the moment of simulation suspension and builds into a picture of
the simulations progress the detail of which can be controlled by the operator.

The individual nodal processes must perform the normal functions of such
units in a circuit switched simulation with the added complication that they
must also support concurrent communication with their neighbours. A continuous
block of sequential code with input and output statements buried within it is
too inflexible to select interface operations appropriate to its neighbours
requirements and would cause lock-up. Similarly, separating the input and
output processes into independant parallel processes leads to deadlock
conditions under certain circumstances without the provision of shared buffers
which are difficult to implement in Occam. The actual structure of the nodal
process is reproduced in Figure 4, in which three parallel procedures are
connected to a central process by channels and this central process accesses
the data structure for each of them. The node operates on a two-level
interrupt mechanism. The first layer multiplexes and demultiplexes the input
and output channels to and from the network. The second layer feeds requests
for process recognition to the central processing section. The generator joins
the input and output processes at this point with requests for new calls to the
network. When a process is selected by the central process the channel
communication is initiated and this is followed by execution of the relevant
code segment in the central process for that particular interruption. The
structure is implemented in the form of ALT structures and operates in a way
similar to conventional interrupt mechanisms with the advantage of simultaneous
data transfer over the links.

This summarizes the major details of the simulation package developed for
the dedicated multiprocessor hardware. It has been designed to take advantage
of the concurrent nodal execution while minimising the problems of distributed
data structures in a loosely coupled environment. The code was written
throughout in Occam 2 using the beta 2.0 release of the language from INMOS
Ltd.

5/4

4. SIMULATION RESULTS

To obtain initial results from the simulator a number of simulations have
been carried out on the network shown in Figure 5. The aim of these
simulations is to show how the routing algorithms LRI and DAR perform under
differing traffic conditions. To achieve this four traffic patterns have been
devised (Figure 6), which have the following properties:

Pattern A - is underloaded by 2.18% and has a balanced traffic
distribution.

Patten B - is overloaded by 2.18% and has a balanced traffic
distribution.

Pattern C - is overloaded by 2.18% and has an unbalanced traffic
distribution.

Pattern D - is underloaded by 2.18% and has an unbalanced traffic
distribution.

These patterns are merged into each other in such a way as to move from traffic
pattern A to B, B to G, C to D and D to A. Mixing the traffic patterns at
equally spaced intervals. As the traffic is varied from one pattern to another
eleven simulation points are obtained which show how the routing algorithms
behave. These points are plotted against blocking probability. Each
simulation consists of 3/4 million calls and takes

1
approximately 85 minutes on

a single 10 MIP T414 transputer and represents 24 hours of simulation time.
The t~o sample result graphs (Figures 7 and 8) show some of the preliminary
results from the simulator for this experiment. The first graph shown in Figure
7 traces the blocking probability bet~een the network traffic distribution B,
the overloaded net~ork, and network C, the overloaded and unevenly distributed
network. The second graph given in Figure 8 plots the same parameter for a
decreasing traffic rate in the most unevenly distributed example. In each case
the lower bound on blocking performance is given by the Erlang blocking
probability formulae using the summation of both the traffic and trunk
capacities to provide the calculation parameters. This bound has been recently
shown to outperfor~ a linear programming solution despite its simplicity. This
can be attributed to the power of the Poisson/negative exponential model over
the deterministic counterpart.

It is also .possible to theoretically calculate the exact blocking
probability using fixed routing with no alternative paths by simple summation
using standard for~ulae. This is also shown for each traffic range to provide a
comparison for its dynamic opponents. The first plot also shows simulation
data for the fixed strategy superimposed on the curve and a least squares
polynomial curve of the points for comparison and validation of the simulator
code.

Finally, each plot shows simulated results for DAR and LRI routing in the
network with no TRP. Each set of points are connected by least squares
polynomial fitted curves and include 95% confidence interval error bars. The
results clearly sho~ that both algorithms are outperformed by the fixed routing
when there is no or little spare capacity in the net~ork although the dynamic
strategies do not show the same degradation in performance as the fixed routing
when the distribution is non-ideal. This results in a narrowing of the gap
between the fixed and dynamic strategies which continues as capacity becomes
available, but is s~ill insufficient to compensate for the cost of tandem links
to route overflow traffic.

5/5

5. CONCLUSIONS

The paper has described the hardware and software design strategy for a
high-speed multiprocessor network simulator using transputers. Initial results
on circuit switched networks have been presented. The simulator is expected to
provide high-speed/low-cost simulations for realistic network modelling and
convenient sensitivity analysis.

Leading on from the work in circuit switched networks, and using exactly
the same hardware system, a packet switched model is being developed for the
analysis of flow control and congestion avoidance in these store-and-forward
networks. These networks are even more taxing to simulate than their circuit
switched counterparts as the time scales involved are orders of magnitude
smaller and the transfer of information generally has to be reproduced more
accurately as it involves the interlacing of data packets rather than merely
the reservation of dedicated trunk capacity. The software currently being
constructed implements a simplified form of the first four protocol layers of
the OSI model developed by the ISO. The model concentrates on the third layer
controlling the routing of packets across the network and flow control within
t:he network. It is hoped to carry out simulation studies into the interaction
of dynamic routing strategies and network flow control mechanisms as tools to
d~lay congestion within heavily loaded networks by traffic bifrucation.

6. ACKNOWLEDGEMENTS

The authors wish to thank the SERC for supporting the work described in
this paper.

L REFERENCES

1. KAIN, R.: "CHIXPNET
pp 447-457.

A Net·..rork Testbed", Computer Networks, 3, Dec 1979,

2. BAREL, M.: "A Flexible High Performance Multiprocessor for Data Net•..;ork
Simulation", ITC-190, Session 3.3 Paper No.9.

3. TODA, A, et: al.: "A Parallel Processing Simulat:or for a Network System
using Multimicroprocessors", Microprocessors and Microsystems, Jan/Feb
1982, pp 15-20.

5/6

lJl
'­
-...1

''\.·J.
=·

11&1

lllllllllllll
File server

and Initiator.
Graphical
Front End.

FIGURE 1. HARDWARE SCHEMATIC DIAGRAM

. ~

Simulation
Network.

lJl
........
CD

,

IMS
8004

IBM-AT

p.

.... ~

~ T414

i a -::
-::: 1MByte

T414
1MByte ~

~ -:: T414

Links
~· -::
a -::: 1MByte

p. to slave C004s' .. control links
!..... !.....
.i

~

~ -:: T414
~ -::
~

~ -::: -:: 1MByte
--,.

SLAVE
.

C004's
~

Links to !..... .
TBOO MASTER simulation NElWOR< ...d "1: T414

~

.::l -::

4MByte C004 network SWITCHING ... -:: 1MByte

SWITCH -...

~ -:: ARRAY

,. L..i ..:. -:::
- .. .

~ t: T414

·""'"
~
::l -:: 1MByte

-:::
t

:;z -:: ..
.... ~

..l -:: T414
~ -::

1MByte :;z -...

.IMS

..... 8007
GRAPHICS

....
...J. -~ T414
::l -::
..:. 1MByte -..

Control Transputers Switching Array Simulation Transputers

FIGURE 2. HIGH-SPEED TRANSPUTER BASED NETWORK SIMULATOR
- HARDWARE CONFIGURATION

. '

I
I

Conceptual
Software Design

Modify
and

control

Initialise

Simulation

Process

OCCAM Mapping

Figure 3

5/9

Gather
Results

Accept
Data

Pass
Data On

Accept
Command

Transmit
Response

Input

Generate

Output

FIGURE .t.

Initialise

Implement
Command

Sink

Insert
Call

Source

5/10

..
•

FIGURE 5. NETWORK UNDER STUDY

5/11

---------- ----------------

.. . .

Key , Fixed Routing (Bound) x Fixed Routing

+ LRI 8 TO C

o. 20

o. 18

o. 16

>-..
u o. 14

-
.0
(1)

.0
~ 0.12

:::l...

en
c

~ 0.10
0

:0

...... __,
(1)

u

---- Frxed Rout lng (Theory)

Fixed Routing

LRI 8 TO C
OAR 8 TO C

1ii1 OAR 8 TO C

+

-+ -± 1--·+·-t--1 .-t---+---t-· -·r· r·-·r __
J.- *-. __...,..-.--'-.-. _j_.-. +.-. t-.-·t-.-+---.,. --, ,. ' -

o. 00 -1---+---+---+---+---+----1------lf------l----+---+-
0. 0 .. O. I 0.2 0.3 0. 4 o. 5 0.6 o. 7 o. 8 o. 9 1.0

Traffic Mixing Proportions

DYNAMIC ROUTING IN AN INCREASINGLY UNBALANCED NETVORK

FIGURE 7

5/13

.. .

-
.0
<0
.0
0
c..

::l..

en c
.loC
u
0

...J

D
...J

...J

<0
:..J

Key •---- Fixed Routing (Bound)

Fixed Routing (Theory)

OAR C TO 0

X LRI c TO 0
+ DAR C TO 0

LRI C TO 0

0. 20 +

o. 18

o. 16 ·-r·---.1
- -l_ - c·:r---+-.-L

-- t--- ·---!---· +-- i ---:- .

i - -1-=:t=:·+---j
-t-- -+

o. 14

0. 12

0. 10

0.06 -----------------------. 0. 06

0.04

0.02

0.00+----~----~----4-----~----~----~-----+-----+-----+-----+

o.o 0. I 0.2 o. 3 o. 4 o. 5 0.6 o. 7 o. 6 o. 9 I. 0

Traffic Nixing Proportions

DYNAMIC ROUTING VITH VARIABLE, UNBALANCED TRAFFIC

ITGtl\E 8"

5/14

.. , .· ..

PRESENTED AT EUROMICRO 88 ZURICH

DESIGN OF A HIGH SPEED SIMULATION TOOL FOR WAN USING PARALLEL PROCESSING

S.J. Nichols, R.T. Clar!ce and P. Hars

University of Durnam, School of Engineering and Applied Science,
Science Laboratories, Sou~h Road, Durham, DHl 3LE, U.K.

This paper presents the design stra~egy behind a high speed net~ork simulation
machine developed at Durham University. The simulator uses configured arrays
of transputers to create a multiprocessor environment for the modelling of
circuit and packet swi~ched networks, taking advantage of the transputers
unique features for parallel implemen~ation of such models. Some interesting
results gathered from a software prototype of a circuit switched model are
presented and the proposed implemen~ation of a packet s~~tched model is outlined.

1. INTRODUCTION

. . I rhe analysis of wide area commun~cat~on.

networks to determine the performance of;
dynamic routing strategies rapidly becomes:
analytically intractable as the complexity of
the problem increases. In addition behaviour;
under transient conditions such as traffic~
fluctuations or component failures are'
difficult to express mathematically. Under.
such conditions the use of simulation!
techniques to determine relevant network:
parameters becomes necessary. The;

. I
conventional, sequential simulations, running•
on mainframe computer systems suffer from:
limitations imposed by the excessive use of·
CPU time required to achieve the requiredj
depth of information and is further:
compounded by the statistical nature of the·
results. These problems increase as,
functions of traffic intensity across the:
network and size of the network itself,:
leading to detailed simulations of large
networks often becoming economically and even!
physically impossible to implement. In this;
paper the design of a network simulator is!
presented which seeks to avoid the mainframe;
implementation limitations by the;
introduction of concurrent processing into a;
dedicated simulation environment. and'
discusses the major features of the software!
design in terms of their implementation!
requirements over the loosely coupled!
multiprocessor system.

Previous attempts to develop high performance
simulation environments discussed in the:
literature [1-3] have introduced pipelined:
processors, distributed environments:
controlled~ from a central control unit or=
common bus structures connecting processors!
simulating network nodes. These structures!
suffer from bottlenecks at some point in
their division of the workload or introduce
bus contention between processors
communication which limits their

requiring
potential

I

performance.: The basis of this new design is
i to capitalise on the advantages of
!multiprocessor implementation highlighted by
these previous accempcs but avoid the
degradation in performance caused by
insufficient communication bandwidth or
unequal division of processing requirements
between independant hardware modules.

In the simulator, transputers are used to
represent the nodes in a communications
network and the links are used to mimic ~~e
connections between the nodes. By using the
computational power provided by each
transputer and its serial links, a powerful
simulation tool has been conscructed from an
array of these devices. The models are
written in Occam [4}, a special purpose
language written for the transputer. Based
on CSP [5}, the language allows code to be
separated into independant groups,
communicating with each other through
point-to-point channels. This allows
concurrent execution of these groups ·with
synchronisation and data transfer using the
channels between them.

2. SIHUIATOR HARDYARE

The INMOS transputer is a high speed
processor which has been designed to form the
fundamental building block of parallel
computers of tomorrow. Each device in the
transputer· family bas a RISC based processor
capable of processing up to ten million
instructions in a single second and four high ·
speed serial links which transfer data at 20
Mbitjs. These links are used to communicate
with other transputers to produce parallel
computing arrays. These devices form the
heart of the high speed simulator, providing
it with processing power to carry out
detailed investigations into network
behaviour under varied conditions.

..

~ hardware of the network simulator is made
from three basic units, a user front-end

i file server, a graphical results unit and
'black box' transputer based simulator

igure 1). These units are used to produce
simulation tool which requires the end-user

have little or no knowledge of the
ftware or hardware on which the simulation:
executed.

EJ D s-c

.

CAAPHICS OISPI.AY FIESU.TS 181.1-AT
PRXESSCfl

(USER FRONT·ENO

(SIMULATION 'BLACK BOX')

FIGURE 1. SCHEMATIC DIAGRAM OF THE
HIGH-SPEED TRANSPUTER-BASED SIMULATOR

.e user front-end and the file server is
sed around an IBM-AT computer which
ntains a transputer that interfaces onto
.e PG-bus. During a simulation run it is
ed as a tool for drawing up the network
·pology graphically, entering the initial
nditions for a simulation, and to introduce
·difications at run-time. A further
.nction of the IBM-AT is to act as a result
:ore for the data produced during a
mulation run. A graphical results unit is
ed to display results during the simulation
.n, making it possible to investigate the
haviour of a network after introducing
·difications such as lost links, failed
des and traffic fluctuations at run time .
. e graphical results unit both enhances the
wer and increases the usability of the
.mulator as a network support tool. The
lack box' simulator is constructed from a'
configurable array of transputers which are ~
ed to model the · nodes · within a .
mmunication network by adopting the same
pology as the network under investigation.
.e array consists of a number of 32 bit
,cerger transputers (IMS T414-20) which are
,ter-connected via programmable cross point

:switches {IMS C004). These switches are used
to reconfigure the array under software

. control to any given network topology using a
master/slave arrangement for nodes with more
than four links. Although the limit on the
size of the network •hich can be simulated is
dependent on the link switches and the number
of transputers available, it is possible to
model a network of any conceivable size using
the arrangement adopted for the hardware
presented in this paper.

3. SOFTWARE DESIGN

The conceptual design of the simulation
environment can be separated into five. major ·
areas and mapped directly into Occam using
the SEQ and PAR programming concepts to
produce a three-stage pipeline. By their
concurrency the processes allow on-line
modification and network parameter
calculation, enabling the operator to trace
and direct the simulation during execution.
The transformation is reproduced in Figure 2
identifying the parallel processes and the
major points of data exchange between these
processes. The central simulation process •

MODIFY
AND

CONTROL

INITIALISE

SIMULATION

PROCESS

GATHER
RESULTS

FIGURE 2. SOFTWARE ARCHITECTURE

,can then be further divided into a number of
concurrent processes each corresponding to a
nodal process and connected by channels
recreating the network topology. This
combination of pipelined and mesh topologies,
implemented on dedicated hardware, in a

'
.ltiprocessor environment, leads to a :l
werful and flexible simulation structure
ich can be expanded to encompass networks
' arbitrary topological size and complexity.

.e distributed nature of the network

.mulation, isolating nodal data structures
·om both each other and equally the
1terface processes requires special software
•nstructs to enable the simulation to
·oceed effectively. Most important of these
•nstructs are those which enable nodal
~chronization within the simulation process
1d allow access to the nodal processes from
1e result and modification procedures.

tnventional discrete - event simulators can
divided into those which use synchronous

1d asynchronous clock mechanisms. The
1plementation of an asynchronous timing
~chanism within a distributed environment is
Lde difficult by the lack of a central data
:ructure in which to store the linked list
: forthcoming events. Interaction between
1cal queues, swapping next event times,
1uld require a large transmission overhead
1d reduces concurrency within the system to
;sentially zero since only the event at the,
!ad of all the combined queues would undergo:
cecution at any time. The sjnchronous;
1proach, while less flexible for the reasons ·
!ntioned above, creates concurrency through·
rent epoch approximation and grouping and :
lS used as the clock mechanism in the model. !

I
1 addition the lack of a central data I
:ructure also prevents the storage of l
lmulated call information in an easily .

1 :cessible form and it must be retrieved from .
I

1e distributed network processors. This !
lformation is periodically sampled and the ·
ldal position updated by the same structure.
1e simulation process on each node is
lmentarily suspended and a second process
:tivated. This second process allows the
Low of information to and from the interface
~ocesses controlling the results and network'
lndition respectively, and acts as one link
f a linear chain between the interfaces made
' of all the nodal processes. The ~esults
~e passed out as a summary of each nodes
lstory up to the moment of simulation
1spension and builds into a picture of the
1e simulations progress the detail of which!
1n be controlled by the operator.

1e individual nodal processes must perform
1e normal functions of such units in a
lrcuit switched simulation with the added
Implication that they must also support;
1ncurrent communication with their!
lighbours without deadlocking. The actual
:ructure of the nodal process is reproduced

Figure 3, in which three parallel

SINK

INSERT
CALL

FIGURE 3. NODAL ARCHITECTURE

procedures are connec:ed to a central process
by channels while this central process
accesses the data s:=ucture for each of them.
The node operates on a two-level interrupt
mechanism. The firs: layer multiplexes and
demultiplexes the input and output channels
to and from the ne~*ork. The second layer
feeds requests for p=ocess recognition to the
central processing section. When a
peripheral process is selected by the central
process the channel communication . is
initiated and this is followed by execution
of the relevant code segment in the central
process for that particular interruption.
The structure operates in a way similar to
conventional interrupt mechanisms with the
advantage of simultaneous data transfer over
the links.

4. SIMULATION RESULIS

Initial work has concentrated on sof~~are
development of a fully connected circuit
circuit switched model, llSing a sophisticated
call modelling algorithm which seeks to

_capture the effects of nodal processing
ability as well as trllnk availability. These
models are especially suitable for the
multiprocessor environment as the necessary
processing for each call is distributed
throughout the calls path. The results
presented . . here compare the blocking
probabilities of dynamic routing strategy DAR
[6], chosen by British Telecom for
implementation in system X, with another
dynamic algorithm LRl [7), based on learning
automata theory and on which work has been
done by Bell [8], for the five node, fully

7

..

FIGURE 4.
NETWORK UNDER STUDY

:erconnected, asymmetrical network;
?roduced in Figure 4. Each point is the:
sult of over 3/4 of a million ·calls and:
k • h d • I l Just over two ours to pro uce us4ng a·
~gle transputer to execute the code. This:
rformance is comparable with similar code,;
itten in Fortran, if ran on a dedicated
dahl 470fV8 mainframe. Yhen exported to an
ray of transputers it is projected that a
rformance benefit of O(N) will be achieved
r an N node network. The experiment
vestigated the performance of the two
gorithms as the offered traffic matrix.
.oothly progresses from an overloaded andl'
balanced situation to the underloaded but
:ill unbalanced case. This is done by.
'rming composite traffic matrices between!
Le two extremes and plotting the result of
Lese simulations. The aim is to compare the
:rformance of the two algorithms as capacity
tr alternative routing becomes increasingly
railable. Figure 5(a) shows the results for
1e case where each call is allowed to seek
1 alternative path if the direct path fails,
lth no restrictions and is only blocked if
lis attempt also fails. The second graph,
Lgure S(b), shows the effect of including a!
:unk reservation factor (TRP) of 2% over
lch network link to prevent excess use of
lndem paths. Each graph includes two
leoretical curves, which calculate the
Locking probability using the direct path
r~ly (Theory) and a. lower bound on
erformance calculated using Erlangs formulae',
or a single trunk with capacity and traffic
qual to the sum of the individual components .
n the network (Bound). It is easy to show
his gives a lower bound on the performance
f any routing strategy.

I I,-, •

J::ey • FIxed Rou~ lng, IBoundl x DAR
flxad Rou~lng (Thaoryl • LRl
DAR

:>.

-
~

.D ..

.D
0 ...

0..

en
~
" ~

CD

• u

LRI

0.20 I ' I +

0.18

0.16

0.14

0. 12

0.10

0.08

0.06 -----------------------~
0.04

0.02

0. 00 ~-+---+-~-+---~::::==+=~=T
0. 0 0. I 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. B 0. 9 I. 0

Traffic Mixing Proportlone

DYNAMIC ROUTING VITH ~~ OVERFLOV PROTECTION

TIGURE 5 (a)

l::ey • FIxed Rou~ I "9 IBoundl x OAR
flxad Routing CThao.-yl • LRI
DAR

:>. ..
..:;
.D • .D
0 ...

0..

en

=
" .2

CD

• u

LRI

0.10
+

0.09

0.08

~--- -
0.07

' ' -----...::~::f.' ----- . -'=k --0.06 -- ',-L -{. ---'""'-' -
0. OS ·-~·i:.::} ':1.: -t- ,,

-* 0.04

0.03

0.02

0.01

o.oo~-+--~~--~~--~--~-+--~~

0. 0 0. I 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 I. 0

Traffic Mixing P.-opo.-tlona

DYN.UUC ROUTING VITH TRU!« RESERVATlClli

TIGURE 5 (b)

r

:wo important results can be extracted from
~ese results. First the inclusion of a TRP
.s important when considering dynamic routing
Llgorithms as traffic approaches its
~ngineered load to restrict overflow traffic
:o those paths where true spare capacity
1ccurs. Secondly, in this important case,
~I consistently outperformed DAR in these
;imulation results. Further work is
:ontinuing to extend these simulation results
Lnd develop analytic models to study these
Lnd other algorithms.

; . CONCLUSIONS

rhe paper has described the hardware and
;oftware design strategy for a high-speed
~ultiprocessor network simulator using
:ransputers and when complete the simulator
Ls expected to provide high-speed/low-cost
;imulations for realistic network modelling
lnd convenient sensitivity analysis. In
lddition some interesting initial and thought
1rovoking results on circuit switched
1etworks have been presented.

Jeading on from the work in circuit switched
1etworks, and using exactly the same hardware
;ystem, a packet switched model is being
leveloped for the analysis of flow control
lnd congestion avoidance in these
;tore-and-forward networks. These networks
lre even more taxing to simulate than their
:ircuit switched counterparts as the time
;cales involved are orders of magnitude
;maller and the transfer of information:
~enerally has to be reproduced more;
lccurately as it involves the interlacing of!
lata packets rather than merely the~
~eservation of dedicated trunk capacity. The:
;oftware currently being constructed:
~mplements a simplified form of the first!
:our protocol layers of the OSI model!
leveloped by the ISO [9]. The model'
:oncentrates on the third layer controlling!
:he routing of packets across the ne~~ork andi
:low control within the network. It is hoped!
:o carry out simulation studies into thel
.nteraction of dynamic routing strategies and!
letwork flow control mechanisms as tools tol
lelay congestion within heavily loaded!
1etworks by traffic bifrucation. I

,CKNOWLEDGEMENTS
' :,

be authors wish to thank the SERC for !·
;upporting the work described in this paper ..

REFERENCES

[1] Lehnert, A., "A Special Processor for
Fast Simula:ion of Queueing Networksw
(IIC-9 Lehner: 1·7).

1 [2] Barel, M., "A Flexible High
Performance M~ltiprocessor for Data
Network s:oulation", (ITC-190,
Session 3.3 Paper No.9).

[3] Toda, A., e: al. "A Parallel

[4]

. [5]

[6]

Processing Siculator for a Ne~.rork

System using Multimicroprocessors",
(Microprocessors and Microsystems,
Jan/Feb 1982) pp 15-20.

Pountain, D. • "Occam Reference
Manual", (I~""XOS Lc:d. I March
1987).

Hoare, C.A.R., "Colll!ilunicating
Sequential Processes", (Comms of the
ACM, Vol 21, No 8, Aug.l978) pp
666-677.

Gibbens, R., "Some Aspects of
Dynamic Routing in Circuit Swic:ched
Telecommunica:ion Ne~.rorks",

Rayleigh P::-i::e Essay, (Statistical
Laboratory of the University of
Cambridge, Jan.l986).

[7] Narendra K.S., et al., "Learning
Automata: A Survey", (IEEE Trans on
Systems Man and Cybernetics, Vol
SMC-24, No.4, July 1974).

[8] Ash G.R., et al., "Servicing and
Real Time Control of Networks with
Dynamic Routing", (Bell System
Tech.Journal, Vol.60, No.8,
Oct:.l981).

[9] Zimcerman.'l, H., "OS! Reference Model
The ISO Model of Architecture for

Open Systems Interconnect:ion", (IEEE
Trans on Comms., Vol. COM- 28, No.4,
April 1980) pp 425-432.

·-·----------- ------ ··-···- ... __ -·-==----'

North-Holland
Microprocessing and Microprogramming 25 (1989) 327- 332

Design of a High Speed Simulation Tool for WAN Using Parallel Processing

S.J. Nichols, R. T. Clarke and P. Mars

University of Durham, School of Engineering and Applied Science,
Science Laboratories, South Road, Durham, DHl 3LE, U.K.

This paper presents the design strategy behind a high speed network simulation
machine developed at Durham University. The simulator uses configured arrays
of transputers to create a multiprocessor environment for the modelling of
circuit and packet switched networks, taking advantage of the transputers
unique features for parallel implementation of such models. Some interesting
results gathered from a software prototype of a circuit switched model are
presented and the proposed implementation of a packet switched model is outlined.

1. INTRODUCTION

The analysis of wide area communication
networks to determine the performance of
dynamic routing strategies rapidly becomes
analytically intractable as the complexity of
the problem increases. In addition behaviour
under transient conditions such as traffic
fluctuations or component failures are
difficult to express mathematically. Under
such conditions the use of simulation
techniques to determine relevant network
parameters becomes necessary. The
conventional, sequential simulations, running
on mainframe computer systems suffer from
limitations imposed by the excessive use of
CPU time required to achieve the required
depth of information and is further
compounded by the statistical nature of the
results. These problems increase as
functions of traffic intensity across the
network and size of the network itself,
leading to detailed simulations of large
·~etworks often becoming economically and even
physically impossible to implement. In this
paper the design of a network simulator is
presented which seeks to avoid the mainframe
implementation limitations by the
introduction of concurrent processing into a
dedicated sireulation environment and
discusses the major features of the software
design in terms of their implementation
requirements oYer the loosely coupled
multiprocessor s:·stem.

Previous attempts to develop high performance
simulation environments discussed in the
literature [1-3] have introduced pipelined
processors, distributed environments
controlled from a central control unit or
common bus structures connecting
simulating network nodes. These
suffer from bo~tlenecks at some
their division of the workload or
bus contention between processors
communication which limits their

processors
structures
point in
introduce
requiring
potential

performance. The basis of this new design is
to capitalise on the advantages of
multiprocessor implementation highlighted by
these previous attempts but avoid the
degradation in performance caused by
insufficient communication bandwidth or
unequal division of processing requirements
between independant hardware modules.

In the simulator, transputers are used to
represent the nodes in a communications
network and the links are used to mimic the
connections between the nodes. By using th~
computational power provided by each
transputer and its serial links, a powerful
simulation tool has been constructed from an
array of these devices. The models are
written in Occam [4], a special purpose
language written for the transputer. Based
on CSP [5], the language allows code to be
separated into independant groups,
communicating with each other through
point-to-point channels. This allows
concurrent execution of these groups with
synchronisation and data transfer using the
channels between them.

2. SIMULATOR HARDWARE

The !NMOS transputer is a high speed
processor which has been designed to form the
fundamental building block of parallel
computers of tomorrow. Each device in the
transputer family bas a RISC based processor
capable of processing up to ten million
instructions in a single second and four high
speed serial links which transfer data at 20
Mbit/s. These links are used to communicate
with other transputers to produce parallel
computing arrays. These devices form the
heart of the high speed simulator, providing
it with processing power to carry out
detailed investigations into network
behaviour under varied conditions.

327

. '

328 S.J. Nichols eta/. I High Speed Simulation Tool for WAN

The hardware of the network simulator is made
up from three basic units, a user front-end
and file server, a graphical results unit and
a 'black box' transputer based simulator
(Figure 1). These units are used to produce
a simulation tool which requires the end-user
to have little or no knowledge of the
software or hardware on which the simulation
is executed.

...

EJ o• C::
::::: ~' .
. . .~:'

I iii IIIII ~I <·

GRAPHICS DISPLAY la;SU.TS MEA!' ACE IBM-AT
PRX:ESSCJI HN<Ill£A

(RESULTS UNIT) (USER FRONT-END)

1

l\/I\lZ1
(SIMULATION 'BLACK BOX')

FIGURE 1. SCHEMATIC DIAGRAM OF THE
HIGH-SPEED TRANSPUTER-BASED SIMULATOR

The user front-end and the file server is
based around an IBM-AT computer which
contains a transputer that interfaces onto
the PC-bus. During a simulation run it is
used as a tool for drawing up the network
topology graphically, entering the initial
conditions for a simulation, and to introduce
modifications at run-time. A further
function of the IBM-AT is to act as a result
store for the data produced during a
simulation run. A graphical results unit is
used to display results during the simulation
run, making it possible to investigate the
behaviour of a network after introducing
modifications such as lost links, failed
nodes and traffic fluctuations at run time.
The graphical results unit both enhances the
power and increases the usability of the
simulator as a ne~~ork support tool. The
'black box' simulator is constructed from a
reconfigurable array of transputers which are
used to model the nodes within a
communication network by adopting the same
topology as the net~ork under investigation.
The array consists of a number of 32 bit
interger transputers (IMS T414-20) which are
inter-connected via programmable cross point

·switches (IMS C004). These switches are used
to reconfigure the array under software
control to any given network topology using a
master/slave arrangement for nodes with more
than four links. Although the limit on the
size of the network which can be simulated is
dependent on the link switches and the number
of transputers available, it is possible to
model a network of any conceivable size using
the arrangement adopted for the hardware
presented in this paper.

3. SOFTWARE DESIGN

The conceptual design of the simulation
environment can be separated into five major
areas and mapped directly into Occam using
the SEQ and PAR programming concepts to
produce a three-stage pipeline. By their
concurrency the processes allow on-line
modification and network parameter
calculation, enabling the operator to trace
and direct the simulation during execution.
The transformation is reproduced in Figure 2
identifying the parallel processes and the
major points of data exchange between these
processes. The central simulation process

MODIFY
AND

CONTROL

INITIALISE

SIMULATION

PROCESS

FIGURE 2. SOFTWARE ARCHITECTURE

,can then be further divided into a number of
concurrent processes each corresponding to a
nodal process and connected by channels
recreating the network topology. This
combination of pipelined and mesh topologies,
implemented on dedicated hardware, in a

.
(

.-.

S.J. Nichols et at. I High Speed Simulation Tool for WAN 329

multiprocessor environment, leads to a
powerful and flexible simulation structure
which can be expanded to encompass networks
of arbitrary topological size and complexity.

The distributed nature of the network
simulation, isolating nodal data structures
from both each other and equally the
interface processes requires special software
constructs to enable the simulation to
proceed effectively. Most important of these
constructs are those which enable nodal
synchronization within the simulation process
and allow access to the nodal processes from
the result and modification procedures.

Conventional discrete - event simulators can
be divided into those which use synchronous
and asynchronous clock mechanisms. The
implementation of an asynchronous timing
mechanism within a distributed environment is
made difficult by the lack of a central data
structure in which to store the linked list
of forthcoming events. Interaction between
local queues, swapping next event times,
would require a large transmission overhead
and reduces concurrency within the system to
essentially zero since only the event at the
head of all the combined queues would undergo
execution at any time. The synchronous
approach, while less flexible for the reasons
mentioned above, creates concurrency through
event epoch approximation and grouping and
was used as the clock mechanism in the model.

In addition the lack of a central data
structure also prevents the storage of
simulated call information in an easily
accessible form and it must be retrieved from
the distributed network processors. This
information is periodically sampled and the
nodal position updated by the same structure.
The simulation process on each node is
momentarily suspended and a second process
activated. This second process allows the
flow of information to and from the interface
processes controlling the results and network
condition respectively, and acts as one link
of a linear chain between the interfaces made
up of all the nodal processes. The results
are passed out as a summary of each nodes
history up to the moment of simulation
suspension and builds into a picture of the
the simulations progress the detail of which
can be controlled by the operator.

The individual nodal processes must perform
the normal functions of such units in a
circuit switched simulation with the added
complication that they must also support
concurrent communication with their
neighbours without deadlocking. The actual
structure of the nodal process is reproduced
in Figure 3, in which three parallel

FIGURE 3. NODAL ARCHITECTURE

procedures are connected to a central process
by channels while this central process
accesses the data structure for each of them.
The node operates on a two-level interrupt
mechanism. The first layer multiplexes and
demultiplexes the input and output channels
to and from the network. The second layer
feeds requests for process recognition to the
central processing section. When a
peripheral process is selected by the central
process the channel communication is
initiated and this is followed by execution
of the relevant code segment in the central
process for that particular interruption.
The structure operates in a way similar to
conventional interrupt mechanisms with the
advantage of simultaneous data transfer over
the links.

4. SIMULATION RESULTS

Initial work has concentrated on software
development of a fully connected circuit
circuit switched model, using a sophisticated
call modelling algorithm which seeks to
capture the effects of nodal processing
ability as well as trunk availability. These
models are especially suitable for the
multiprocessor environment as the necessary
processing for each call is distributed
throughout the calls path. The results
presented here compare the blocking
probabilities of dynamic routing strategy DAR
(6), chosen by British Telecom for
implementation in system X, with another
dynamic algorithm LRI [7), based on learning
automata theory and on which work has been
done by Sell (8), for the five node, fully

. i

___ . _______ --:.,..._ ___ J

330 S.J. Nichols eta/. I High Speed Simulation Tool for WAN

FIGURE4.
NETWORK UNDER STUDY

interconnected, asymmetrical network
reproduced in Figure 4. Each point is the
result of over 3/4 of a million calls and
took just over two hours to produce using a
single transputer to execute the code. This
performance is comparable with similar code,
written in Fortran, if ran on a dedicated
Amdahl 470fV8 mainframe. When exported to an
array of transputers it is projected that a
performance benefit of O(N) will be achieved
for an N node network. The experiment
investigated the performance of the two
algorithms as the offered traffic matrix
smoothly progresses from an overloaded and
unbalanced situation to the underloaded but
still unbalanced case. This is done by
forming composite traffic matrices between
the two extremes and plotting the result of
these simulations. The aim is to compare the
performance of the two algorithms as capacity
for alternative routing becomes increasingly
available. Figure S(a) shows the results for
the case where each call is allowed to seek
an alternative path if the direct path fails,
with no restrictions and is only blocked if
this attempt also fails. The second graph,
Figure S(b), shows the effect of including a
trunk reservation factor (TRP) of 2% over
each network link to prevent excess use of
tandem paths. Each graph includes two
theoretical curves, which calculate the
blocking probability using the direct path
only (Theory) and a lower bound on
performance calculated using Erlangs formulae
for a single trunk with capacity and traffic
equal to the sum of the individual components
in the network (Bound). It is easy to show

•this gives a lower bound on the performance
of any routing strategy.

Key • F1xed Routing IBoundl x OAR
F1xad Routing CThaoryl • LRI
OAR

....
p

;;;

il
.D
0
L

0..

g>
...
~
CD

..
u

LRI

0.20
+

0.18

0.16

0.14

0.12

0.10

0.08

0.06 -----------------------~
0.04

0.02

0. 00 .~---. _ __,___, ___-+=:;:=:=+=:=:;::~

0. 0 0. I 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. B 0. 9 I. 0
Traffic Mixing Proportions

DYNAMIC ROUTING VITH NO OVERFLOV PROTECTION

FIGURE 5 (a)

Key • F1xed Routing IBoundl w OAR
F1xad Routing ITheoryl • LRI
OAR

!-
;;;

il
1!
d:
g>

..M
u

..!!
CD

• u

LRI

0.10 +

0.09

0. 08

0.07

0.06

0.05

0.04

_:.t __ _
~.~ ::.:. .::-4:--------- .

;-..;.. ~ ~ i~ ----
·-.+::.::.:t- '.... ----:.

·--r-=-t:.::t-:::t ~' -
.......

0.03

0.02

0.01

0. 00 -1----+--1---t----<--+--+--+---+-::;:::==+

0. 0 0. I 0. 2 0. 3 0. 4 0. 5 O. 6 0. 7 0. B 0. 9 I. 0
Traffic Mixing Proportlona

DYNAHIC ROUTING VITH TRUNK RESERVATION

FIGURE 5 {b)

.J

f

. ----- ---- .. -.. ---- -· ----- -....... -·-···1
...... ·'· ·_ '

..
;.;:

S.J. Nichols et al. I High Speed Simulation Tool for WAN

Two important results can be extracted from
these results. First the inclusion of a TRP
is important when considering dynamic routing
algorithms as traffic approaches its
engineered load to restrict overflow traffic
to those paths where true spare capacity
occurs. Secondly, in this important case,
LRI consistently outperformed DAR in these
simulation results. Further work is
continuing to extend these simulation results
and develop analytic models to study these
and other algorithms.

5. CONCLUSIONS

The paper has described the hardware and
software design strategy for a high-speed
multiprocessor network simulator using
transputers and when complete the simulator
is expected to provide high-speed/low-cost
simulations for realistic network modelling
and convenient sensitivity analysis. In
addition some interesting initial and thought
provoking results on circuit switched
networks have been presented.

Leading on from the work in circuit switched
networks, and using exactly the same hardware
system, a packet switched model is being
developed for the analysis of flow control
and congestion avoidance in these
store-and-forward networks. These networks
are even more t~~ing to simulate than their
circuit switched counterparts as the time
scales involved are orders of magnitude
smaller and the transfer of information
generally has to be reproduced more
accurately as it involves the interlacing of
data packets rather than merely the
reservation of dedicated trunk capacity. The
software currently being constructed
implements a simplified form of the first
four protocol layers of the OS! model
developed by the ISO [9). The model
concentrates on the third layer controlling
the routing of packets across the network and
flow control within the network. It is hoped
to carry out simulation studies into the
interaction of d)~amic routing strategies and
network flow control mechanisms as tools to
delay congestion within heavily loaded
networks by traffic bifrucation.

ACKNOWLEDGEMENTS

The authors wish to thank the SERC for
supporting the work described in this paper.

REFERENCES

[1) Lehnert, A., "A Special Processor for
Fast Simulation of Queueing Networks"
(ITC-9 Lehnert 1-7).

[2) Barel, M., "A Flexible High

[3)

[4)

[5)

Performance Multiprocessor for Data
Network Simulation•, (ITC-190,
Session 3.3 Paper No.9).

Toda, A.' et al. "A Parallel
Processing Simulator for a Network
System using Multimicroprocessors•,
(Microprocessors and Microsystems,
Jan/Feb 1982) pp 15-20.

Pountain, D.' "Occam Reference
Manual". (!NMOS Ltd., March
1987).

Hoare, C.A.R., "Communicating
Sequential Processes•, (Comms of the
ACM, Vol 21, No 8, Aug.l978) pp
666-677_

[6) Gibbens, R., "Some Aspects of
Dynamic Routing in Circuit Switched
Telecommunication Networks",
Rayleigh Prize Essay, (Statistical
Laboratory of the University of
Cambridge, Jan.l986).

[7] Narendra K. S. , et al. , "Learning
Automata: A Survey", (IEEE Trans on
Systems Man and Cybernetics, Vol
SMC-24, No.4, July 1974).

[8) Ash G.R., et al.' "Servicing and
Real Time Control of Networks with
Dynamic Routing", (Bell System
Tech.Journal, Vol. 60, No.8,
Oct.l981).

[9) Zimmermann, H.' "OSI Reference Model
The ISO Model of Architecture for

Open Systems Interconnection", (IEEE
Trans on Comms., Vol.COM-28, No.4,
April 1980) pp 425-432.

331

Transputer-based simulation
tool for performance

evaluation of wide area
telecommunications networks

Highly concurrent wide area networks are best simulated by parallel
multiprocessor implementations. R T Clarke, S J Nichols and P Mars
present a transputer-based simulator that improves performance over

conventional sequential simulation techniques

The paper presents the design of a high-speed network
simulation machine, developed at Durham University. The
simulator uses configured arrays of transputers to create a
multiprocessor environment for the modelling of circuit
and packet switched networks, taking advantage of the
unique features of the transputer for parallel implemen­
tation of such models. The design divides easily into
hardware and software considerations and the paper
concludes with some initial results on performance and
projec.tions for the fully populated system.

microsystems
transputers

simulation telecommunications networks

Analysis of wide area communication networks to
determine performance parameters rapidly becomes
mathematically insolvable as the detail and complexity of
the problem increase. This is compounded when the
effects of transient events are taken into account to
investigate phenomena such as traffic fluctuation or
component failure. The solution here lies i~ the use. of
simulation techniques to produce the deta1led require­
ments of such models. Sequential simulations, running on
mainframe or personal systems, are limited by the
excessive use of CPU time required to achieve the
required depth of information. This is beca~se of the
inherent mismatch between the conventional Von
Neumann architecture on which they are constructed and

the highly concurrent operation of the wide area networks
themselves. These problems increase as the traffic
intensity across the network rises and as the size of the
network grows, so that detailed simulations of large
networks often become economically and even physically
impossible to implement. In this paper the design of a
network simulator is presented for use in avoiding these
implementation limitations by the introduction of con­
current processing into a dedicated simulation environ­
ment The paper outlines the major features of both the
hardware and software design, highlighting the most
important considerations for the implementation of th~
simulation requirements over the loosely-coupled multi­
processor system.

In previous attempts to develop high performance
simulation environments1- 3, concurrency has been
introduced in the form of pipelined processors, distributed
environments controlled from a central control unit and
hierarchical bus structures connecting processors simulat­
ing network nodes. All these structures suffer from
bottlenecks at some point caused by their division of the
workload or by the introduction of bus contention
between processors requiring communication, which
limit their potential performance. The basis of this new
design is to capitalize on the advantages of multi­
processor implementation highlighted by these previous
attempts, at the same time avoiding the degradation in
performance caused by insufficient communication
bandwidth or unequal division of processing require­
ments between independent hardware modules.

In the simulator, transputers are used to represent the
nodes in a communications network and the links are

School of Engineering and Applied Science, University of Durham, South used to provide the connections between the nodes. By
Road Durham DHl JLE, UK . h t t' I ower provided by each trans-Pape; received: 12 August 1988. Re,ised: 5 December 1988 USing t e compu a 10na P

0141-9331/89/03173-06 $03.00© 1989 Butterworth & Co. (Publishers) Ltd

Vol13 No 3 April 1989 173

puter and its serial links, a powerful simulation tool has
been constructed from an array of these devices. Many
applications exist for a low cost/high speed simulation
tool within the telecommunications industry. Three areas
which are of particular interest are network design,
performance evaluation of network routing and flow
control, and the use of a simulator as a realtime support
tool for existing networks. The potential use of the
simulator as a network support tool has greatly influenced
the design of both the software and the hardware used to
obtain a performance increase over conventional
sequential simulation techniques. This has ultimately
resulted in a machine which models networks in pre­
ference to carrying out n individual simulations on n
transputers to obtain ann-fold speed increase. This paper
describes some of the software and hardware aspects of a
transputer application which has generated great interest
within the telecommunications industry.

SIMUlATOR HARDWARE

The hardware of the network simulator is made up from
three basic units: a user front-end and file server, a
graphical results unit, and a 'black box' transputer based
simulator(see Figure 1}. These units are used to produce a
simulation tool which requires the end user to have little
or no knowledge of the software or hardware on which
the simulation is executed.

The user frontend and the file server are based around
an IBM-AT personal computer which contains a trans­
puterthat interfaces onto the PC bus. During a simulation
run it is used as a tool for drawing up the network topology
graphically, entering the initial conditions for a simulation,
and to introduce modifications at run time. A further
function of the IBM-AT is to act as a result store for the
data produced during a simulation run. These results files
are stored in MS-DOS format text files which can be
analysed outside the simulation environment on either
the IBM-AT or on a larger computer system. The graphical
results unit is used to display results during the simulation

Graphics display Results
processor

Interface
handler

IBM-AT

I Results unit j I User front-end I

l J

I Simulation 'black box' I

Figure 1. Schematic of the high-speed transputer-based
simulator

174

run, making it possible to investigate the behaviour of a
network after introducing modifications such as lost links,
failed nodes and traffic fluctuations at run time. The
graphics unit is based around a commercially available
product which has a display resolution of 51 2 X 51 2
pixel using a 24-bit colour data field to display any
number of 1 6 M possible colours. The graphical results
unit both enhances the power and increases the usability
of the simulator as a network support tool.

The 'black box' simulator is constructed from a
reconfigurable array of transputers which are used to
model the nodes within a communication network by
adopting the same topology as the network under
investigation. The array consists of up to 32 integer
T414-20 transputers4 which are interconnected via five
lnmos programmable cross point switches (IMS C004}.
These switches are used to reconfigure the array under
software control to any given network topology using a
master/slave arrangement for nodes with more than four
links. Although the limit on the size of the network which
can be simulated is dependent on the link switches and
the number of transputers available, it is possible to
model a network of any conceivable size using the
arrangement adopted for the hardware. Two types of
board have been specifically developed within the
university for the network simulator: a transputer board
and a switching card.

The same transputer board design is used for the user
interface, the results unit and the simulption nodes. The
board is based around the T414-20 transputer which
allows it to be upgraded by simply replacing the T 41 4 with
a TB00-20 floating-point transpute,.S. Each board can
address up to 16 Mbyte of 5-cycle dynamic memory using
1 Mbyte memory modules or 4 Mbyte of dynamic
memory using 256 kbyte memory modules. In addition to
the memory, an 8-bit 1/0 expansion bus has been
included within the design to allow each board to access
various types of peripheral devices. The serial transputer
links are buffered to allow error-free transmission over
short distances and their transmission rates are switch
selectable. To reduce the number of ICs on the board,
extensive use has been made of programmable logic
arrays to provide all the required signals for the memory
devices and the lnmos subsystem of daisy-chained reset,
error and analyse. The cost of these boards is relatively
low compared with similar sized boards on offer in the
commercial sector and, because of the design techniques
used in their construction, they have a wide number of
applications in other fields. The design of the board is
tracked onto a double sided printed circuit board of 6U
Eurocard size and has a neat and professional appearance.

The switching cards which are used to reconfigure the
array of transputers which form the simulator are based
around the lnmos C004 cross point switches6• Five of
these devices are arranged so that an array of 32
transputers can be completely interconnected. Four of
the switches are used to connect the transputers while the
fifth acts as a master controller for the other switches (see
Figure 2}. The design of the switching card allows two
C004s to be placed with their link buffers on a single card
of 6U Eurocard size, once again using double-sided PCB
technology. The simulator requires three of these cards,
the arrangement of which allows the user interface and
the results unit access to the array for the collection of
simulation results. The control of the switches is under­
taken by the user interface.

Microprocessors and Microsystems

Node 0 Node 1 Node 31

• • • • • • • • •

-< ;::,. L ~ 1
~

Nodal transputer links

"' J l j
7

C004-1 C004-2 C004-3 COOIJ-IJ

Link 0 in Link 0 out Link 2 in link 2 out
Link 1 out Link 1 in link 3 out Link 3 in

t t
.~ •.

Simulation
Master

User
results interface

processor Results trans fer link C004 Master control (master)

• ..
Slave control

Figure 2. C004 switching arrangement

- TII11J
""!"" 1 Mbyte

1

T414
1 ~lbyte TlJllJ

1 Mbyte
7. 2

1
To slave COOIJs
control links

Tli11J
1 Mbyte

....- ~ Slave
3

COO lis
~

links to Network TIJ14

iMS
Master simulation switching 1 Mbyte

TSOO C004 array lJ
8004 ~ Mbyte switch

network

~ (!"

T414

l
~ ~ 1 Mbyte

n -1

Graphics
card T414

1 Mbyte
n

Control transpu:ers Switching array Simulation transputers

Figure 3. High-speed transputer-based network simulator- hardware configuration

Vol 13 No 3 April 1989 175

The transputers are interconnected, as shown in
Figure 3, to form the network simulator. The transputers to
the left on this diagram are the masters, or control, devices
and those to the right the simulation nodes, while
switching array is in the centre. At present there are ten
simulation nodes and four masters, these being the filing
unit, the graphical unit, the results unit and the user
interface. Using the present arrangement of the switching
array, the number of simulation nodes can be expanded
up to 32. The hardware is cased in a box about the size of a
standard filing cabinet which can accommodate up to 16
simulation nodes, two of the master devices and three
switching cards in three 6U Eurocard size racks. The
remaining two master devices are resident within the
IBM-AT. Each rack has its own 60 A power supply and
three cooling fans are provided to dissipate the heat
generated by the transputer boards. An additional box will
be required to house the two racks which allow the
expansion of the prototype simulator up to 32 trans­
puters. However, as mentioned above, the addition of
further switching cards results in the simulator being
infinitely expandable. It is onto this transputer hardware
that the simulation packages discussed below directly
map.

SOFTWARE DESIGN

The conceptual design of the simulation environment can
be separated into six major areas and mapped directly
into OCCAM to produce a three-stage pipeline. By
introducing concurrency at this point the processes allow
online modification and network parameter calculation,
enabling the operator to trace and direct the simulation
during execution. The transformation is reproduced in
Figure 4 identifying the parallel processes and the major

Conceptual software
design

Modify
and

control

Process

OCCAM mapping

Figure 4. System design strategy

176

Gather
results

points of data exchange between these processes. The
central simulation process can then be further divided
into a number of concurrent processes each corresponding
to a nodal process and connected b)' channels recreating
the network topology. This combination of pipelined and
mesh topologies, implemented on dedicated hardware,
in a multiprocessor environment, leads to a powerful and
flexible simulation structure which can be expanded to
encompass networks of arbitrary topological size and
complexity.

The distributed nature of the network simulation,
isolating nodal data structures both from each other and
also from the interface processes, requires special software
constructs to enable the simulation to proceed effectively.
Most important of these constructs are those which
enable nodal synchronization within the simulation
process and allow access to the nodal processes from the
result and modification procedures.

Node synchronization

Conventional discrete event simulators can be divided
into those which use synchronous and those using
asynchronous clock mechanisms, with asynchronous
techniques being favoured in many cases because of their
superior handling of event ordering and clock updates.

The implementation of an asynchronous timing
mechanism within a distributed environment is made
difficult by the lack of a central data structure in which to
store the linked list of forthcoming events. Interaction
between local queues, swapping next event times, would
require a large transmission overhead and reduce the
efficiency of the code. In addition, an asynchronous
timing mechanism would reduce concurrency within the
system to almost zero, since, even if global information
could be made available, only the event at the head of all
the combined queues would undergo execution at any
one time.

The synchronous approach, while less flexible for the
reasons mentioned above, creates concurrency through
event epoch approximation and grouping and was used
as the clock mechanism in the model. Each nodal process
executes the events occurring within a time interval and
signals the completion of this task to its neighbours.
When a nodal process has received final confirmation
from its surrounding processes of the completion of their
respective processing within a time interval, the local
clock can be incremented. This function is complicated
by the possibility of events at one node generating further
events within the same time interval at a second node. If
this second event involves a communication destined for
a third node which has already incremented its local
clock, this communication cannot be delivered on time.
To minimize the probability of this occurring, redundancy
is added to the synchronization overhead to 'second
chance' communications on each of the channels,
effectively double checking that a node is idle before
moving on the next time period.·

Result access

The lack of a central data structure also prevents the
storage of simulated call information in an easily accessible
form, and this must be retrieved from the distributed

Microprocessors and Microsystems

,.

Initialize

Results and
modifications

Nodal
process

Figure 5. Process interleaving to access system state

network processors if online processing is to be possible.
The information is retrieved by periodically sampling the
nodal structures. The simulation process on each node is
momentarily suspended and a second process activated.
This second process allows the flow of information from
the interface process through the simulation nodes to the
result gathering process. This structure is also used for the
implementation of simulation modifications to investigate
traffic fluctuations and component failure. The inter­
leaving of processes is shown in Figure 5. In this
arrangement each node acts as one link of a linear chain
between the interfaces. The results are passed out as a
summary of the history of each node up to the moment of
simulation suspension and builds up a picture of the
progress of the simulations, the detail of which can be
controlled by the operator.

Node structure

The individual nodal processes must perform the normal
functions of such units in a circuit switched simulation
with the added complication that they must also support
concurrent communication with their neighbours without
deadlocking. The basiC structure of the nodal process is
reproduced in Figure 6, showing the main subroutines and
the channel structure between them. Three peripheral
parallel subroutines each communicate with a section of a
central subroutine which in turn accesses the data
structure. The node operates a two level interrupt
mechanism. The first layer multiplexes and demultiplexes
the 1/0 channels to and from the rest of the network using
ALT arrays. In addition a third peripheral routine generates
new calls for injection to the network.

In the second layer the peripheral routines request
recognition from the central subroutine, again through an

Vol 13 No 3 April 1989

ALT structure. When a peripheral routine is selected by
the central subroutine, the portion of code within the
central subroutine is initiated. With this implementation
either the input or output routines can be engaged in
external channel communication independently without
interfering with the access to the central subroutine by the
other peripheral processes.

Hardware limitations

One additional problem arises at the last stage - the
transfer of the software model to a suitably configured
array of transputers. This arises because of the limited
number of hardware links on the present range of
transputer chips, restricting the connectivity of the
network. Using the nodal model described earlier on its
own, it is impossible to map the software onto a network
in which any member has more than four nearest
neighbours. This can be overcome by the definition of a
'slave process', which runs on a separate transputer and
acts as a multiplexer/demultiplexer for the 1/0 stages of
the 'master nodal process' and which can be duplicated
to provide whatever link availability is required.

RESULTS AND FURTHER WORK

The initial work has been concerned mainly with the
development of a simulation package to a model circuit
switched telecommunications networks, and it is this
which the software section describes above. This software
has been extensively tested by comparing theoretical
results for various traffic patterns on a four node, fully
interconnected network with those produced by simu­
lations carried out on a single transputer model of the
simulator. The results from the simulator showed a close
correlation to those produced from the theoretical
calculations giving a high degree of confidence in the
software package which has been developed for the
transputer. Work then progressed to comparing learning
algorithms7 with dynamic alternative routing8 which is
used within British Telecom's trunk network.

Both these algorithms simply attempt to redirect·
blocked telephone calls by chasing an alternative route
for the call. To achieve this, a five node, fully inter­
connected network was devised which was given various
traffic patterns which either exceed the capacity of the
network or spread the traffic in an uneven distribution.

Figure 6. Nodal process structure

177

The results from these simulations were as expected. Both
algorithms performed well by reducing the number of
blocked calls on the network, with the learning algorithms
producing a slightly lower number of blocked calls.

The performance of any simulation package and the
hardware on which it is executed is difficult to measure
since much depends on the complexity of the model
which is used. The model used for the circuit switched
package is definitely complex, and models such things as
the time taken to set up and break down a call through a
telephone exchange. However, in an attempt to give a
performance figure, it can be said that a single transputer
will process half a million telephone calls in one hour of
CPU time. Thus ten transputers can process 5 M calls in
one hour.

At the time of writing, work is under way to develop a
software package for the simulation of packet switched
networks. This package uses the first four layers of the
open systems interconnection (OS I) model developed by
by the International Standards Organization (ISO) to allow
analysis of flow control and congestion avoidance in this
type of network. The problems involved in modelling this
type of network are far more complex than for circuit
switched networks since the timescales involed are
several orders of magnitude lower. However, the required
development time for this package will be reduced by
reusing some of the parts of the circuit switched package.
The packet switched software will use the same hardware
configuration, which allows the user to draw simply a
network, simulate it, and receive the results at run time via
an extensive results processing package, while still
retaining the ability to carry out post-simulation analysis of
the results. The packet switched package will be used
within the university environment to investigate dynamic
routing strategies and flow control mechanisms in heavily
loaded packet switched networks.

CONCLUSIONS

This paper has described the hardware and software
designs behind a high-speed multiprocesor tele­
communications network simulator based around the
transputer. The applications of such a machine have been
described and the initial results from the circuit switched
simulation package have been mentioned together with
the forthcoming work on packet switched networks.
The simulator is expected to provide a high-speed
simulation of realistic network models and convenient
sensitivity analysis of communication networks at low
cost.

ACKNOWLEDGEMENTS

The authors wish to thank SERC for supporting the work
described in this paper.

REFERENCES

1 Lehnert, R 'A special processor for fast simulation of
queueing networks' lTC 9 (1985) 1-7

178

2 Barel, M 'A flexible high performance multiprocessor
for data network simulation' lTC 10 session 3.3 paper
No 9 (1986)

3 Toda, A et a/. 'A parallel processing simulator for a
network system using multimicroprocessors' Micro­
processors Microsyst Vol 6 No 1 Oan./Feb. 1 982)
pp 15-20

4 IMS T414 transputer lnmos, Bristol, UK (February
1987)

5 IMS TBOO transputer lnmos, Bristol, UK (February
1987)

6 IMS C004 programmable link switch lnmos, Bristol,
UK (April1987)

7 Narendra, K S and Mars, P The use of learning
algorithms in telephone traffic routing- a
methodology' Automatica Vol 1 9 No 5 (1 983)
pp 495-502

8 Gibbens, R J, Kelly, F P and Key, P B 'Dynamic
alternative routing - modelling and behaviour' ITC12,
Turin, Italy (June 1988) ·

Roy Clarke graduated from
Brighton Polytechnic, UK, in
1986 with an MSc in
microprocessor, control and
application. He is currently a
research assistant at Durham
University. He is studying for
a PhD in high speed
simulation of telecommuni­
cation networks.

Simon Nichols graduated in
1986 with a first class
honours degree in applied
physics and electronics from
Durham University. He is
currently studying for a PhD.
His areas of interest include
routing in circuit and packet
switched networks, learning
automata and distributed
systems.

Phil Mars is chairman of the
School of Engineering and
Applied Science and
Professor of electronics at
the University of Durham. He
is the author of a research
monograph and over 80
research papers in stochastic
systems, learning algorithms
and communications net­
works.

Microprocessors and Microsystems

Presented at 7th U.K. Teletraffic Symposium, University of Durham, 4th April 1990

ANALYTIC MODELLING OF ASYMMETRICAL CIRCUIT

SWITCHED NETWORKS USING DYNAMIC ROUTING

S. J. Nichols and P. Mars

In this paper the classical model of blocking in a symmetrical, fully
connected circuit switched network which has been used extensively by such
authors as Yurn, Krupp and others (1) (2) is extended to cover asymmetrical
networks. The steady state convergence characteristics of a number of
different dynamic routing schemes are incorporated into the model as sets of
non-linear equations over the routing space to enable these schemes to be
modelled under asymmetrical traffic and trunk distributions. Two major
areas are studied, the performance of networks under overload and the
phenomena of network instability, both with and without the inclusion of a
trunk reservation parameter over the network trunk groups (3) (4).

The presentation considers the following routing disciplines; random
routing (as a lower bound on performance), a form of proportional routing
based on a global strategy used by Bell-Northern, Dynamic Alternate Routing
(DAR) installed in British Telecom's System X and the automata based
algorithm LRI (5) (6). In each case the algorithm is used to select a
single alternative path via a tandem node if the call is blocked on the
direct path. Analytic results for a fully connected four node network,
subject to structured asymmetry, are presented and shown to be equally valid
for larger network configurations subject to a similar structure. The
results suggest that proportional routing and DAR adopt a very similar
approach to the allocation of overflow traffic to alternative paths.
However LRI displays a more complex behaviour which leads to an interesting
deviation 1n its behaviour in comparison to the other strategies, resulting
in the equalisation of the GOS seen by each of the traffic sources, or the
minimisation of the deviation from this state.

To explain the way in which each of the routing strategies behaves in
an unconstrained environment we return to the conditions under which each is
governed. Random routing directs traffic equally over all the alternative
routes at each node. Each node selection is isolated and does not react to
trunk or traffic imbalances. In this work it represents an upper bound, or
least intelligent option.

Proportional routing assigns traffic according to trunk availability.
DAR uses not trunk availability but trunk blocking rate as ·criteria for
traffic splitting, defined as the blocking probability over a link
multiplied by the probability of using that link. Both strategies involve
very different ways of selecting routing probabilities but produce very
similar solutions under asymmetrical conditions. In both cases the routing
policy at each node makes identical routing decisions as its network
neighbours faced with the same environment. From single source models
blocking rate can be seen to be a convex function of selection probability.
Similarly the plot of normalised spare capacity vs selection probability is
also found to be convex. In the multiple source model this produces an
array of constraints based on convex functions over the multidimensional
routing space. This suggests that any solution will be unique and therefore

The authors are with the School of Engineering and Applied Science,
University of Durham.

by definition requires identically situated sources to behave in an
identical manner to prevent multiple solutions by simply swapping indicies
in the network.

LRI routing involves the equalisation of blocking over each of the
alternative paths to a destination from each node. The blocking function is
a strictly increasing but non-convex function of selection probability.
Therefore it will form a non-convex set of constraint equations and the
argument outlined for DAR and proportional routing cannot be applied.
Multiple solutions can and do exist in the solutions to the network models
used. In each case a new and equally valid solution can be formed by
relabelling the model in a suitable fashion to maintain identical traffic
over each link while rearranging the selection probabilities of each of the
sources over their alternative paths. However a full explanation as to why
the equalisation of the individual blocking probabilities for each source
leads to an equalisation of the GOS of each source remains an open problem.
Despite this the result remains one of the most important conclusions of
this presentation.

The behaviour of the strategies when a TRP is applied is also quite
different. Both proportional routing and DAR rearrange themselves according
to their new environment, splitting the overflow traffic over the available
alternate pathways in the same way as in the case of the unconstrained
network. In each case the function used to select the traffic distribution
over the alternative paths for each source, i.e. spare capacity or blocking
rate, covers a range of values for the variable of path selection
probability sufficient to allow an exact solution. In contrast the blocking
probability over a link is relatively unaffected by the selection
probability of a single traffic source using that link as an alternative
route. In consequence LRI is often unable to equalise blocking over all its
paths for all its sources, especially those with very different alternative
paths to a destination and this gives rise to the LRI Routing solutions.
The imposition of a TRP further inhibits this ability, by inhibiting the
traffic and therefore the influence any one source may have on a link.
Again this drives the LRI strategy to deterministic routing for traffic
sources in which the maximum allowed traffic overflow is insufficient to
equalise blocking, but in this instance the asymmetry required to initiate
such action is very small.

The work on instability has two important results. First, it is clear
from both the analytic and simulation models that the addition of even a
small trunk reservation results dramatically improves the performance of the
network. However, without such a device instability is predicted by the
analytic models of all the dynamic strategies to varying degrees over a
range of traffic and trunk distributions. In contrast the simulation models
for a four node network over th affected regions suggest only a gradual
increase in blocking producing a significantly better performance. This
and other work at higher traffic intensities suggest that the analytic
assumptions are not valid over these regions for small networks.

Acknowledgements

The authors wish to acknowledge the support of the SERC for
this work. Simon Nichols also wishes to thank Reuters and the
European RACE programme for financial support.

References

1. KRUPP, R. S . :
IEEE Int.Conf.
31.2.5.

"Stabilisation of alternate routing networks",
on Comm. Philadelphia, June 1982, pp.31.2.1,

2. YUM, T.G. and SCHWARTZ, M.: "Comparison of routing procedures
for circuit-switched traffic in non-hierarchical networks",
IEEE Trans.on Comms, COM-35, May 1987, pp.535-544.

3. AKINPELU, J.M.: "The overload performance of engineered
networks with non-hierarchical and hierarchical routing", AT
& T Bell Lab Tech.J., 63, 7, Sept.l984, pp.l261-1281.

4. ACKERLEY, R.G.: "Hysteresis-type behaviour in networks with
extensive overflow", Br.Telecom J., 5,4, Oct.l987, pp.42-50.

5. NARENDRA, K.S. and MARS, P.: "The use of learning algorithms
in Telephone Traffic Routing- A methodology", Automatica,
19, 5, pp.495-502, 1983.

6. GIBBONS, R.J, KELLY, F.P. and KEY, P.B.: "Dynamic alternative
routing -modelling and behaviour", ITC 12 Torino, Italy,
June 1988, Paper 3.4 A3.

