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Abstract

Results are presented for quantal close coupled calculations of the rotational ex-
citation of NH3 and OH in collisions with both ortho and para-Hy. For the lat-
ter, these are the first calculations to include the rotational structure of the Hs
molecule, whilst for the former, previous NH3 — ortho-Hj calculations have been

subject to suliidﬁa.ry approximations.

The results from the NH3-Hs calculation show substantial qualitative changes
in the cross-sections when ground state ortho-Hs (j = 1) replaces ground state
para-Hy (j = 0) as the collision partner. In particular, cross-sections which were
very small for NH3 - para-Hy collisions can be of a comparable magnitude with
the other rotationally inelastic cross-sections for NH3 — ortho-Hy collisions. The
changes in cross-sections are discussed in relation to the collisional pumping scheme

for an astrophysical maser in the (jk = 33) inversion lines.

From the OH-Hj calculations it is found that the propensities towards prefer-
ential excitation of a given component of the A doublets are reduced in strength
when ortho-Hy replaces ground state para-Hs as the collision partner, similarly
when (j = 2) para-Hjy replaces ground state para-Hs the propensities are weak-

ened.

In both cases, the results are discussed in the context of crossed beam mea-
surements at energies of 605cm~! (NH3-Hz) and 680cm™! (OH-H3). It is found
that discrepancies between the experimental results and theoretical calculations for-
ground state para-Hs collisions can be explained, at least in part, by the neglect
of the (j > 0) Hy rotational states in the latter.
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Chapter 1

Introduction

1.1 Motivation

Over the past few decades a large number of different species of molecule have
been observed in the space between the stars, ranging from diatomic molecules to
complicated organic molecules. In particular, a large number of molecular radio
and microwave lines are observed from dark dense regions of interstellar space.
These dark clouds typically have a density of around 10* to 107 Hydrogen atoms
per cubic centimetre, and, in the absence of any internal heating sources, tem-
peratures of 30K or less. In such regions molecule-molecule and atom-molecule
collisions play an important role in determining the energy distribution within the
cloud, and at such low temperatures vibrational transitions are highly unlikely,

thus most collisionally induced transitions are purely rotational.

The observed molecular spectra can be interpreted to yield information on
the physical conditions (temperature and density) within the clouds (eg Walmsley,
1987). If collisions dominate the energy transfer within the cloud, the populations
of the molecular energy levels will be in thermodynamic equilibrium with the
surroundings and the relative level populations will be related to the local kinetic

temperature, T, by the Boltzmann formula:

ni _ gi (Ei - Ej))
— ==—exp| ——— 1.1.1
nj g p( kgT

where g;, g; are the statistical weights of the levels with energies E;, E; respec-
tively, and kp is Boltzmanns constant. However, in many cases the molecular
spectra show significant departures from local thermodynamic equilibrium. In
such cases the energy distribution is determined by the balance between collisional
and radiative processes, and in order to model the energy transfer, and to interpret

the observed spectra, a knowledge of the collisional and radiative rates is required.




The collisional rates are obtained by averaging the collisional cross-sections
over a velocity distribution, and the need for reliable astrophysical rates has lead
to much interest in the low energy collisional cross-sections for inelastic rotational
and rovibrational transitions. The most abundant elements are hydrogen and
helium, with the former being about ten times more abundant than the latter. In
the dark clouds, from which many observed molecular lines originate, it is thought
likely that most of the hydrogen will be in its molecular form, thus the rates for

inelastic collisions with Hy are important parameters.

In this thesis, quantal calculations to determine cross-sections for the rota-
tional excitation of two astrophysically important molecules, ammonia (NH3) and
OH in collisions with Ho are reported. Both OH and NH3 have been widely ob-
served in the interstellar medium, and NHj has been proposed as an interstellar
thermometer (Walmsley and Ungerechts, 1983). NHj level populations are often
far from thermodynamic equilibrium with their surroundings but Walmsley and
Ungerechts have shown that corrections can be made, if the collisional rates are
known, to allow a determination of the kinetic temperature from the observed

line intensities. Kinetic temperatures obtained in this way agree well with those
derived from CO observations (Takano, 1986, Danby et al, 1988).

In addition, cross-sections for both NH3 and OH in collisions with the spheri-
cally symmetric ground state para-Hs molecule show strong propensities towards
certain transitions, and these ‘propensity rules’ have been proposed as possible
pumping mechanisms leading to maser emission in some transitions for both NHj3
(Walmsley and Ungerechts, 1983, Guilloteau et al, 1983, Johnston et al, 1989) and
for the OH molecule.

Previous fully quantal calculations on both NH3 — He and OH - H3 collisions
have neglected the rotational motion of the hydrogen molecule, and treated colli-
sions with ground state para-Hj only, but the change in the symmetry properties
of the collision when (j > 0) Hj is the collision partner, along with the non-zero
quadrupole moment of rotationally excited Hq, could make a qualitative difference

to the results.

The reasons for investigating this are two-fold. The existing NH3 — Hy and

OH - Hj quantal collisional rates are strictly only applicable if all the molecular
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hydrogen is in its (j = 0) rotational ground state. Whilst this will be essentially
true for para-Ha at the temperatures of the dark clouds, molecular hydrogen is
believed to form on grains in a 3:1 ortho:para-Hj ratio, and under normal circum-
stances radiative ortho to para conversion is strongly forbidden. The conversion
can take place via proton exchange reactions, but the ortho:para-Hg ratio within
the clouds is uncertain (Flower and Watt, 1984). At higher temperatures the in-
fluence of ortho-Hs could become significant, and the way in which this may effect

the collisional rates could be important.

The most detailed experimental information on the cross-sections for rotation-
ally inelastic NHs — Hy and OH - Hj collisions comes from the molecular beam
experiments of Seelemann et al (1988) and Ebel et al (1990) for NHj3, and Andresen
et al (1984) for OH. Both sets of experiments used normal (3:1 ortho:para-Hy) as
the collision partner, and both found significant differences between the experi-

mental results and those predicted by theory for ground state para-Hy collisions.
The aim of the work reported in this thesis was to answer the questions:

e Do the collisional cross-sections change appreciably when (j > 0)-Hj is consid-

ered as the collision partner, and if so, how ?
e Can this explain the discrepancies between theory and experiment?

In the following sections the methods for obtaining collisional cross-sections
and rate coefficients are reviewed. In chapter two the quantal calculations are
discussed in more detail, and the algebra extended to that needed to treat the
rotational motion of the hydrogen molecule. The results of the calculations are
presented and discussed in chapters three and five, whilst chapter four considers
a possible astrophysical application of the results. The work is summarised in

chapter six along with suggestions for future work.

Definition of Cross-Sections and Rate Coefficients

The cross-section for a process (i — j) is defined as the transition probability per
unit time, per unit scatterer, per unit flux of incident particles with respect to the

scatterer. It has the (classical) physical interpretation as an area centred on the



scatterer through which an incident particle must pass for the process (i — j) to

occur.

Quantum mechanically, the cross-section for single channel scattering is derived
by considering an incoming plane wave, ¥,,. and a scattered spherical wave, ¥,..
In the limit of large r, where r is the distance from the scatterer, assuming the

plane wave is incident along the z-axis, the total wave function can be written:

¥ = 'winc + wsc

- e’ir;r 1.2.1
= & 4 1(8,6)—

where f(6, ¢) is the scattering amplitude, and the wave number « is related to the
energy, E, and the reduced mass, p, through k= 2,uE/h2. Under these conditions
the incident flux is (%x/u), and the scattered flux per unit solid angle is (hx/p)|f|?.
The differential cross-section. g—g, is the ratio of the scattered flux per unit solid

angle to the incident flux:

do

70 - 1£(8,9) 1.2.2

The total cross-section can be obtained by integrating over all angles:

do
a—/gﬁdﬂ 1.2.3

In reality, the situation is complicated by the possibility of scattering into
many different states (or channels). In many channel scattering, the wavefunction

¥, describing a particle incident in channel 7 can be written as:

1
i3 r(4mv;)1/2

J

(e—mjr(sij _ S'_l:je‘i"'jr) 1.2.4

where the sum runs over all possible channels, j. For N channels, N constants, S;;,
are required to describe asymptotic behaviour of ¥;. To describe the wavefunction
of the whole system N x N constants are needed for all possible i’s, and these con-
stants constitute the scattering matrix of system at an energy, E. The scattering

matrix determines the asymptotic behaviour of the wavefunction completely, and
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the cross-sections for a given process can be derived from the scattering matrix (or

S-matrix) elements.

The cross-section, o;_.;( £) gives the probability of the process (i — j) occur-
ring for a mono-energetic beam. In the real world, however, interacting particles
will have a range of energies depending on the conditions. The rate coefficient,
a;;(T), for a given process is obtained by averaging the cross-section over a range

of energies, F(E,T) (or equivalently a velocity distribution F(v,T)):

@ij(T) = (Boy(E)) = /aij(E)EF(E,T) dE 1.2.5

Experimental Determination

In principle, experimental methods provide the most accurate measure of the cross-
sections or rate coefficients, and experiments are often used to probe the intermolec-
ular potentials. However, experiments are often carried out at room temperature
and extrapolation of the results to give collisional rates at low temperatures is un-
reliable. The experimental measurements complement the theoretical calculations,

providing tests for the theory that can then be extended to interstellar conditions.

The most detailed information comes from the molecular beam experiments,
which have been reviewed by Toennies (1976) and Buck (1988). The experimental
set up consists of two molecular beams which intersect in the scattering region.
The pressure is low, and multiple collisions are very rare, so provided the initial
and final states distributions can be established, the measurements can give direct

information on the state-to-state cross sections for inelastic scattering.

The initial state can be selected by a variety of methods (Buck, 1988) but the
simplest is to use supersonic nozzle beams. The nozzle beams are prepared by
allowing the incident beam to expand supersonically from a high pressure source
to a low pressure region, which can yield rotationally cold beams with essentially

all the molecules in their ground rotational state.

The final state distribution can be probed either by an energy change method,
in which the final states are deduced indirectly from the change in relative velocity
of the scattered beam (Buck, 1988), or by optical methods in which laser radiation

3
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is used to probe the final population distribution through a variety of techniques
(Dagdigian, 1988). The former relies on the principle of the conservation of energy,
and can, in theory, be applied to any system, but it is limited in practice by the
requirement of a high velocity resolution. The latter is not limited by velocity
resolution but is only suited to molecules with relevant transitions at accessible

frequencies.

In addition to the state-resolved molecular beam measurements, a number
of other experimental techniques have been useful in providing information on the
cross-sections. Most other methods measure only an average over many transitions,
and a range of energies, so give only indirect information on the collisional rates,
however, they can provide useful checks on theoretical results. One indirect exper-
imental method that has provided useful information on the collisional selection
rules governing rotational transitions, is that of the double resonance experiments
(Oka, 1973). In these experiments strong infrared or microwave radiation at a
pumping frequency, vy, is used to saturate a given transition (level 1 to level 2).
The non-Boltzmann population is the redistributed through transitions, and the
change in population is monitored via a second transition (level 3 to level 4) using
weak radiation at the signal frequency, v;. The method is particularly suited to
molecules with symmetrically split doublets as the equations relating the changes
in intensity to the collisional rates simplify considerably if v; and v, correspond to
intradoublet transitions. Information on the relative sizes of the collisional rates

between the levels can be extracted, which provide a good test of the theory.

Theoretical determination: The Interaction Potential

Whether treated classically, semi-classically or quantally, the collision calculation is
essentially the solution of the equation of motion of the molecular nuclei moving on
a predetermined potential surface. In general, the potential surface is a function of
the co-ordinates describing the intermolecular vector, R, and the internal molecular

co-ordinates giving the relative positions of the nuclei.

The interaction potential, V, is defined within the bounds of the Born -~ Oppen-
heimer separation of the electronic and nuclear motion. The Born-Oppenheimer
approximation rests on the assumption that the electronic motion is very fast

compared with the nuclear motion. Then the electronic motion is treated as if

6



the nuclei are fixed at some internuclear distance, R, and the nuclei move in the

averaged field due to the electronic motion.
The Schrodinger equation for the system of nuclei and electrons is:

h? h?

-3 mv%u - Z Q—mivfi + V(Ra,7i)| ©(Raymi) = E¥(Ry, i) 141
where M, is the mass of the ath nuclei with co-ordinates R, and m; is the mass of
the ith electron with co-ordinates r;. Expressing the dependence on the electronic

and nuclear motion explicitly, the wavefunction can be written as a product of the

electronic wavefunction, U, (R4, 7;), and a nuclear term, ¢,(R,):
U(Ra,7i) = Y én(Ra)Un(Ra, i) 1.4.2
n
If we then assume that R, is fixed, or equivalently, that M, is infinitely large, we
obtain the Schrodinger equation for the motion of the electrons with fixed nuclei:
K,
— Z 2—V,1. + V(Ra,7i)| Un{Ra,7i) = €(Ra)Un(Ra,Ti) 1.4.3

i <M

Here €(R,) is an effective electronic energy depending on the relative positions of

the nuclei.

Substituting equation 1.4.2 into the full Schrédinger equation gives:

h2
= 2oz Va($n(Ra)Un(Ra, i)+

2
{ (_ Z %VE, + V(RG’T‘i)) ¢1L(Ra)Un(Ra,ri)} = E¢7t(Ra)U71.(Ra, ri)
l 1.4.4

where the term in the curly brackets is equal to e(Rq)Undn.-
Using the product rule the first term can be rewritten as:
v%?u(qsn(Ra)Un(Ray Ti)) :¢1L(RG)V%uUn(Ra, Ti) + 2vRa¢n(Ra)vRa Un(Ra, T'i)

+ Un(Ra, i)V, 6n(Ra)
1.4.5



The Born - Oppenheimer approximation is obtained by assuming that the
electronic part of the wavefunction, U,,( Ry, 7;), is a slowly varying function of R,,.

With this assumption the Schrodinger equation becomes:

h2
=2 537 +£(Ra)| #n(Ra) = Eén(Ra) 1.4.6

e

Thus the Schrodinger equation has separated into two parts describing the
electronic motion at fixed nuclear positions, and the nuclear motion in an effective

potential given by e(R,).

The interaction potential between two molecules is just the difference between
the electronic energy at some intermolecular distance, R, and the electronic energy

of the separated molecules (R — o0).

The methods of obtaining the potential surface range from completely ab initio
theoretical treatments, through varying degrees of semi-empirical treatments, to

direct inversion of experimental measurements.

In principle, direct inversion of experimental data should give the most accurate
description of the potential surface, however, such procedures are hampered by the
fact that any measurement of the surface is indirect. What is in fact measured is
the effect of the potential surface, and a theoretical model of the surface is usually
needed. Inversion of experimental data is most suited to the isotropic part of the

potential, but it is the anisotropic part that drives rotationally inelastic transitions.

The most rigorous methods of obtaining theoretical potential surfaces is from
ab initio calculations. The precise method used for ab initio calculations depend
on the region of the interaction that is of interest and is convenient to divide the

interaction into short range and long range contributions.

Short range forces fall off exponentially with R, and are responsible for the
strongly repulsive behaviour at very small distances. Long range forces fall off
as R™", where n is a positive integer. The main contributors to the long range
behaviour are the electrostatic, induction and dispersion energies (eg Buckingham
1978).



The electrostatic energy is the interaction energy between the permanent elec-
tronic charge distributions of the molecules, and can be expressed in a multipolar
expansion in terms of dipole-dipole, dipole-quadrupole, quadrupole-quadrupole
interactions etc. The induction energy is the interaction between the induced elec-
tronic moment of one molecule with the permanent charge distribution of the other
(eg induced dipole — quadrupole interactions), and the dispersion energy is the en-
ergy due to a correlation in the fluctuations of the electronic co-ordinates of the

interacting molecules.

In the long range regime, where the probability of electron exchange between
the two molecules is negligible, the molecules can be treated as non-overlapping
charge distributions. In this limit, standard perturbation theory is applicable. Fol-

lowing Buckingham (1978), the Hamiltonian of a pair of molecules can be written:
H=H'+H' +H' 14.7

where H® H® are the Hamiltonians of the separated molecules and H' is the in-

teraction:
H' = (47meo)™ Z e r,J 1.4.8

with r;; being the distance between the charges e; associated with molecule a and

e; associated with molecule .

With H' treated as a perturbation, the unperturbed wavefunction is an eigen-
function of H* + H®, and can be expressed as a product of the separated molecule
wavefunctions. Using perturbation theory, the perturbed wavefunction can be

written as:

E <papb|Hl |mamb>

DaPb) + - .- 1.4.9
Ema+E1nb" pa_prla )

[Ymams) = [Mmams) +
Papp#Emamy,

where pg, pp are a complete set of normalised unperturbed states, and the sum runs

over all states pg, pp, such that p,py # mamy. The energy of the perturbed system



is then (Buckingham, 1978):

E _ <¢mth|HW’111,0171.,,>
et ('wm,,_mb I@bma my )
= Ema + Emb + (mamblHl|mamh)

1.4.10
l2

- ¥ |(paps| H'{mamy)

+ ...
Epa + EPb - Ema - Emb

PaPpFEMaty,

The first order term,(m,mp|H'|mymys), is identified with the electrostatic energy,
whilst the second order term comprises of the induction contribution, (p, # my,
Pp = My OF Py = Mg, Ppp # myp), and the dispersion contribution (p, # m,
py # mp). The above expression for the interaction energy can be related to the
properties of the individual molecules by expanding the interaction term, H', in
a multipolar series. Algebraic expressions for the long range interaction potential
have been given in a cartesian form by Buckingham (1967), and in a spherical
tensor form by Leavitt (1980) and Stone and Tough (1984).

In the short range region there is significant overlap between the electron
clouds, and an electron can no longer be assigned to any particular molecule.
In this region a molecular orbital approach is more applicable. The collection of
electrons and nuclei of the two molecules are treated as one ‘supermolecule’, and
the interaction energy is the defined as the difference between the electronic en-
ergy of the supermolecule, and the combined electronic energies of the separated

molecules.

A commonly used approach is the Hartree Fock — self consistent field (SCF)
method. The Hartree Fock — SCF method is a variational method based on the
variational principle which states that, for any approximate wavefunction, ®,pproz,

the quantity: [ dr ®* H®qpproz

approz

Eopproz =
pprozx
Jdr ‘I’prrozq’appror

1.4.11

b

(where H is the true Hamiltonian) is always greater than the lowest true eigenvalue.
Variational methods are based on choosing an initial wavefunction, ®4pproz, with
variable parameters, and minimising the quantity E,pproz, With respect to these

parameters.

10



The true electronic Hamiltonian can be written as:

h? Zoe? ZoZye?
Hy=— 2y _far ap 1.4.12
e ;27774 L ; |Ra—7',‘| (§3|R _RUl ; ‘T, 7‘]‘
with the Schrodinger equation being:
Hy®=E® 1.4.13

In the Hartree Foch method, ® is expanded as an antisymmetric product of single
electron spin orbitals (¢{° = ¥;a; or ¥;0; where a and 3 represent spin wavefunc-
tions for opposite spin electrons, and v¥; are the parameterized molecular orbitals).
The antisymmeterized wavefunction for a n electron system can be expressed (for

even n) as a Slater determinant:

Yi(Da(l) $1(1)B(1)  $a(Da(l) ... $2(1)8(1)
& = (n)"1? x Y1(2)a(2) ¥1(2)8(2) ¥2(2)a(2) ... ¥2(2)B(2)

Pi(n)a(n) d1(n)B(n) Yo(n)a(n) ... Pz2(n)B(n)

The energy is minimised with respect to the ®, and the condition imposed
on ® by requiring that E should be a minimum is embodied in the Hartree Fock

equations (Roothaan, 1951).

The ‘best’ ¢ leading to a minimum energy can be calculated by solving the
Hartree — Focl equations iteratively, and once the optimum ® has been established,
the Schrodinger equation can be solved to yield an upper bound to the electronic

energy.

For open shell molecules the method must be modified slightly. Two possibil-
ities are the spin-resiicted Hartree Foci method where some orbitals are doubly
occupied, and some are only singly occupied with an electron of a spin, and the
spin-unrestricted Hartree Foch method where different spatial orbitals, ¥, are as-
signed to electrons of o and 3 spin. The optimum @ is calculated from the vari-
ational principle as before, and an upper bound to the electronic energy may be

derived in the same way.

11
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The energy obtained thus is commonly called the SCF energy, the true Hartree
Focl energy being obtained in the limit n — oo where n is the number of molecular

orbitals included.

The disadvantage of the SCF method is that, since it uses only a single determi-
nant wavefunction, it cannot correctly treat the correlation between the electronic

wavefunctions, and does not, therefore, contain the dispersion energy.

An improvement on the single determinant methods is obtained using a con-
figuration interaction calculation. The true wavefunction can be approached if the
single determinant wavefunction of the Hartree Foch treatment is replaced by a

linear sum of Slater orbitals of the form:

® =cobo+ D ci®, 1.4.15
$>0

The first determinant , ®, is just the Hartree Foch determinant, and further terms
in the sum are obtained by replacing successive numbers of occupied orbitals in the
determinant by virtual (unoccupied) orbitals (Hehre et al, 1986), The value of the

coeflicients, cg, in equation 1.4.15 can be determined by a variational calculation.

Because of the successive substitution of virtual orbitals, a full configuration in-
teraction calculation can account for the dispersion energy, and indeed, in the limit
n — 00, § — 0o the true wavefunction is approached. In addition, a full configura-
tion interaction calculation does not break down at intermediate distances where
the assumptions of overlapping charge distributions at short range and completely
non-overlapping charge distributions at long range fail. However, such calculations

are very large, and impractical for most systems.

An alternative method to deal with the short range dispersion contribution is
to use a variant on perturbation theory and a number of such approaches have
been developed (eg Hehre et al, 1986). These perturbation approaches treat the
correlation effects as a perturbation to the first order (Hartree Foch) Hamiltonian.
All the potential surfaces that have been used in the present study (Danby et
al, 1986, Billing and Diercksen, 1985, 1986, Kochanski and Flower, 1981) have
been obtained with an SCF calculation supplemented by a dispersion contribution

calculated from a variant on perturbation theory.

12
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The data from potential calculations is obtained as the potential energy at a
series of separations and relative orientations of the molecules. To convert this
into a useful form the data is fitted to some angular function, and the angular
coeflicients fitted to some radial function allowing the potential to be evaluated
at any point. The form of these fitting functions will be discussed in more detail

later.

Theoretical Determination: The Scattering Calculation

Once the interaction potential has been established the problem reduces to solving
the equation of motion of the molecular nuclei on the resulting potential surface.
In the case of low energy rotational excitation it is usually adequate to neglect
the vibrational degrees of freedom, and solve the equations of motion for two rigid

rotors (spherical perturbers, linear rotors, symmetric tops or asymmetric tops).

In low energy molecular collisions the collision energy is not much greater than
the energy level splitting, so a classical treatment of the collision is not applicable,

and some method of treating quantal effects is required.

The most rigorous treatment of the collision problem is a direct solution of
the Schrédinger equation which, in the case of two rigid molecules moving in a
potential V (R, Q;,2) can be written:

h2

—-2—v§2 + H + H5 + V(R, 1, ) | ¥(R, O, 2) = E¥(R,(y, ), 151
7

where H[ is the rotational Hamiltonian for molecule i, p is the reduced mass
related to the masses of the two molecules through p = %, (2; is the set
of Euler angles specifying the orientation of molecule ¢ with respect to some co-
ordinate axes and E is the total kinetic energy (translational and rotational) of

the system.

However, there are practical problems with fully quantal methods which stem
from the large number of molecular rotational states that need to be included in the
calculation to correctly describe the system. The molecular rotation couples to the
orbital angular momentum associated with the relative motion of the molecules,

and this can lead to a very large number of coupled equations. The size of the
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problem is reduced considerably if some part of the motion is treated classically so
a number of semi-classical methods have been developed (eg Child, 1976, Dickinson
and Richards, 1982).

Two common semi-classical methods are the semi-classical S-matrix method

and the classical path approximation.

The semi-classical S-matrix method (Miller, 1974) treats both the relative and
the molecular internal motion classically using exact classical trajectories to ob-
tain the classical limit of the S-matrix elements (or transition amplitudes), which
contain all the dynamical information. Quantal effects are introduced through
the principle of superposition, thus, with a phase associated with each trajec-
tory the transition probability is related to the S-matrix elements through (Miller,
1974,1975):

PG — j) = |i[? 15.2

The classical equivalent of equation 1.5.2 would be a simple sum of the squares
of the S-matrix elements, and in a purely classical approach it is customary to
calculate the transition probability directly, and the principle of superposition is
not included. As quantal effects such as interference are a direct result of the
principle of superposition they are qualitatively included in the semi-classical S-

matrix approach.

Whilst semi-classical S-matrix calculations have shown reasonable agreement
with quantal calculations for atom - linear rotor collisions (Miller, 1971, Kreek et
al, 1975), the method becomes increasingly less tractable with added degrees of
freedom (Dickinson and Richards, 1982).

The alternative approach which predates the S-matrix method and has been
widely used in studies of rotational excitation is the classical path approximation
(eg Child, 1976). In the classical path approximation the relative motion is cal-
culated classically whilst the internal motion is treated quantally. The relative
motion of the molecules is solved using standard classical trajectory methods to
calculate the motion in some effective potential, V,fs. In the simplest case the
trajectory is a straight line (constant potential). Alternatively the isotropic part

of the potential can be used, or, more correctly, the expectation value of the full
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interaction potential in the time dependant internal states. The latter method has
been widely used by Billing (1975).

<
The calculated classical trajectory gives rise to a time dependdnt perturba-
tion, V(R(t)), which is then used for solving the time dependént Schrodinger

equation for the molecules internal motion.:

3U(t, to)

A
A7

= [Himt + V(R())] U(t, o) 1.5.3
where U(t,tg) is the time development operator, and Hj,; is the Hamiltonian for
the internal motion. The probability of a given transition can then be obtained

from:

P(i — f) = |(i)|U (400, —00)| )2 1.5.4

Equation 1.5.3 must be solved numerically and the calculations can be quite sub-
stantial. A subsidiary approximation is to treat the system in a body fixed frame
that rotates with the intermolecular axis, and neglect transitions that change the
projection of the angular momenta on the body fixed 2'-axis (the intermolecular
axis). This approximation has been called the ‘semi-classical coupled-states’ ap-
proximation by Billing (1976), and is the analogue of the quantal coupled states
approximation (McGuire and Kouri, 1974, Pack, 1974). The latter has been very

successful in quantal treatments and will be discussed further in chapter two.

A number of calculations of rotationally inelastic molecular collisions have
been reported using the classical path approximation, and, in general, the results
are in reasonable qualitative agreement with the quantal results. In particular,
calculations using this method have been reported for NH3 — He collisions (Davis
and Boggs, 1978, Billing et al, 1984, 1985) and NH3 — Hj collisions (Billing and
Diercksen, 1985, 1986, 1987, 1988).

Semi-classical methods are most applicable where the intermolecular interac-
tion is not too strong, and can provide useful insights into the physics, however,
at the low temperatures found in the interstellar clouds, quantal effects become
more important, and a semiclassical treatment is not always adequate. This is

particularly true for transitions between states which are not directly coupled by
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the potential and can only proceed via an intermediate state. For such transi-
tions resonance structures can be important at low energies and such behaviour is
not correctly treated by semi-classical methods (Danby et al, 1987). In addition,
quantal calculations are required to assess the accuracy of computationally cheaper
methods. For these reasons, the calculations reported in this thesis are quantal
close coupled calculations. The close coupling method of solving the Schrodinger

equation is reviewed in the following chapter.
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Chapter II

The Quantal Close Coupled Equations

2.1 Introduction

The quantal formulation of rotational excitation of a linear rigid rotor in colli-
sion with a spherically symmetric atom was first given by Arthurs and Dalgarno
in 1960. Although the atom - linear rigid rotor represents the simplest molec-
ular collision problem, the method remains essentially the same for any quantal
study of rotational and vibrational excitation. The molecules are treated in the
Born - Oppenheimer approximation in which the coupling between the nuclear
and electronic motion has been neglected, and the problem reduced to the motion

of the molecular nuclei on a predetermined electronic potential surface, V.

The most accurate treatment of the problem is solution of the quantal close
coupled or coupled channel (CC) equations. In principle, solution of the CC equa-
tions amounts to a full numerical solution of the Schrédinger equation for the
nuclear motion, with the accuracy being limited only by the accuracy of the po-
tential surface used, and the amount of available computing resources. It is the
CC equations that have been used in the present study, and the form of these

equations is derived in the following section.

In practice, the system of close coupled equations is often too large to be
computationally tractable for anything but the simplest molecular systems, and
a number of decoupling approximations have been developed. Foremost amongst
these is the coupled states (CS) approximation of McGuire and Kouri (1974). In
section three this is briefly reviewed. Numerical methods for the solution of the

coupled equations are discussed in section four.

The principal approximation in the treatment of rotational excitation by the
CC method is the truncation of the rotational basis set to some finite number
of states. A similar approximation is the assumption that the molecules behave

as rigid rotors, and the vibrational degrees of freedom can be ignored. This is
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2.2

equivalent to truncating the vibrational basis set to just one state and the effects

of these approximations are discussed in section five.

Finally, in section six, the theory is applied to the specific case of the rotational

excitation of symmetric top molecules in collisions with linear rigid rotor molecules.

The Close Coupled Equations

The close coupled equations can be derived either in a space fixed frame
(Arthurs and Dalgarno, 1960, Blatt and Biedenharn, 1952, Takayanagi, 1965) or
in a body fixed frame that rotates with the collision system (Pack, 1974, Launay,
1976).

The body fixed frame is the natural system of reference in which to describe
the interaction potential, and as a result the potential terms that appear in the
equations are much simpler than their space fixed analogues. However, the body
fixed frame rotates with time and the non-inertial nature of the body fixed frame
leads to Coriolis effects that appear as off diagonal terms in the centrifugal po-
tential. The centrifugal potential behaves as R~2 at large R and the off diagonal
terms can persist after the interaction potential, V', has become very small. As
a result, the space fixed frame is often preferred for full CC calculations, and the

equations will be derived in this frame.

The Schrédinger equation for the relative motion of two molecules in an arbi-

trary space fixed frame is:
—%;v%; + Hi + Hy + VR, {1, 9) | ¥(R, O, Q) = E¥(R,1,Q2) 221

(from hence forth, atomic units will be used throughout; A =m, =e =1.)

In the general case the molecules have both vibrational and rotational degrees
of freedom, but here they are treated as rigid rotors. The interaction potential
is then V(R, 4, Qz) where R is the intermolecular vector and € (= a,0,7) are
the Euler angles describing the orientation of molecule ¢ with respect to the space
fixed frame. The interaction potential is defined as the difference between the total

electronic energy of the system at (R, Ql, Qz) and the total electronic energy as
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|R| — oo . The energy F in equation 2.2.1 is the incident energy of the system and
is equal to the total translational kinetic energy plus the initial rotational energy
of the two molecules, and H; is the rotational Hamiltonian of molecule ;. The

reduced mass of the system is u.

The kinetic energy operator, (Vg?%/2u) can be separated into angular and
radial parts giving:
1 d? 12

"R Bt oup Tt VR, Q1, ) - E| ¥R, 0,Q2) =0 222

where 1 is the orbital angular momentum operator.

The coupled equations are formed by expanding the total wavefunction in
some basis set complete in the possible states of the separated molecules. Fol-
lowing Arthurs and Dalgarno (1960), the basis set is chosen as a complete set of
eigenfunctions of the total angular momentum J and its projection on the space
fixed axis J,. The potential cannot couple states of different total angular momen-
tum so, with this choice of basis functions, the system of coupled equations that
results decomposes into smaller blocks of equations that can be solved separately

for each value of J.

For two arbitrary molecules with angular momentum j; and jj, and relative
orbital angular momentum, [, eigenfunctions of total angular momentum can be

formed from:

Zj{%jzkzjlzl(k’ﬂl’ﬂﬂ = mlz":lz Czilllg'zlzgfllizcg;ltizf"f& X{-,llml(Ql)Xi§1n2(Q2)nyq(R)
miz™
2.2.3
Here ki, ks are the projections of ji, j2 on the molecules symmetry axis, mj, msy
and m; are the projections of jj,jo and [ on the space fixed axis, the C{;gliﬁzgn are
the Clebsch Gordan coefficients (eg Edmonds, 1960), and X'};:i,-,m,-(ﬁi) is the nor-
malised rotational eigenfunction of molecule (7). Y,f,l(R) is a normalised spherical

harmonic.
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The total wavefunction may be expanded as:

JM A A Gﬁ(R) IMi B @, &
\p,y (R, Ql,Qg) = Z TZ7" (R,Ql,ﬂ:z) 224
"

where

Y= (jl?kli.jZ)kZ’jl?)l)'

Substituting into the Schrodinger equation gives:

d2 l"( l” + 1) )

JIMiD O. A J
2’;27,, (R,Q1,Q2) B~ Kgn | Gl (R)
v , - 2.2.5
= —2uV Y G I (R)ZJM (R, 4, )
7II
Here we have introduced the wave number «,
K/Z’ = 2u(E - Ejiky — Ejpi,) 2.2.6
a = (jla kl:j?) k2)
and used the fact that:
PZIM(R, 0, Q) = 11+ 1)ZIM(R, Oy, Qa) 2.2.7

Channels with k2 > 0 are energetically accessible and are known as open channels.
Channels with k2 < 0 are known as closed channels and are classically inaccessible

at the energy E.

Multiplying equation 2.2.5 from the left by Z;{,M*(R, 1, Q) integrating over

all angles, and making use of the orthonormality properties of the Z’s gives:

2 rl'+1)
dR?  R?

+ 52| G (R) = 2u Y (Y [V IW")GII(R) 2.2.8
7//

All the angular and rotational information on the problem is contained within

the coupling matrix, (¥'|V|y"). This quantity can be evaluated by expanding the
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potential as a linear combination of angular functions. In the most general case this
is a product of rotation matrices (eg Secrest 1979). The angular integration can
be done by standard methods (Edmonds 1960), and the coupling matrix elements

reduce to algebraic expressions.

The set of coupled equations (2.2.8) are the close coupled equations. Informa-
tion on the observable properties of the system can be obtained by integrating the
equations numerically, starting in the classically forbidden region where V > FE,

and propagating the solution out to the asymptotic region, V' — 0.

In the limit (¥'|V|¥") — 0, the general solution of equation 2.2.8 can be written
as a linear contribution of spherical Bessel functions of the first and second kind
(Abramowitz and Stegun, 1965). The scattering matrix, S, can be derived in the

asymptotic region by fitting the solutions to the long range form :

G’(R) = j(R)A - n(R)B

. , , 2.2.9a
G”(R) = /(R)A - n'(R)B
where: 1/2
jij(R) ::5,'ij le(lin)
1/2 for K]2' >0 2.2.9b
n,-_]-(R) =5,']‘K,j Rnl(K,jR)
and:
- 1+2 { &5 172 (2)
Jij(R) =6i(=1)"F (7) Rh;”(k;R)
for n‘? <0 2.2.9¢

nij(R) =8;1'** (ﬁ

1/2
)" R (xR

Here ji(xR) and n;(xR) are spherical Bessel functions of the first and second kind,
and hy(1?)(kR) are Hankel functions.

The scattering matrix may be obtained from:

s7 = (1 +:K’)(I - iK/)™! 2.2.10
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where I is the unit matrix and K is the reactance matrix:
K = BA™! 2.2.11

The relationship between the integral cross-sections and the scattering matrix is

derived in appendix A, and is merely stated here as:

o) = - 1)\ T2
ola - d) = ZJ:O' a—-ad)= (2]1+1)(2]2+1 ZZ %; (2J + )Ty,

112112

2.2.12

where T is the transmission matrix defined by:
T/ =1-5/ 2.2.13

The matrices S/, K’ and T7 are all symmetric and a consequence of this is the

detailed balance relation :

gikla(i— j)=g; n?a(j—*i) 2.2.14
where g;, g; are the statistical weight factors. This reflects the invariance of the

dynamics of the system under time reversal.

In theory, the system of CC equations is unbounded, and any required accuracy
can be obtained by increasing the number of states in the basis set (equation 2.2.3).
In reality, the coupling of the angular momentum results in a large number of cou-
pled equations for even a modestly small number of states. As the CPU time
required for any calculation increases by around N2 to N3, where N is the number
of coupled equations, the size of the calculation can rapidly become prohibitive.
CC calculations remain feasible, however, for systems with relatively widely spaced
energy levels or at a collision energy at which only a small number of states are
energetically accessible. The CC approach remains by far the most accurate ap-
proach to the solution of the coupled equations, and reliable CC calculations are
important in evaluating the adequacy of the various approximate methods that
have been developed. In addition, the region in which the CC calculations are
easiest, low energies, is that region in which the decoupling approximations tend
to fail.
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2.3 Decoupling Approximations

The most successful of the decoupling approximations in the regime of low energy
collisions is the coupled states approximation of McGuire and Kouri (1974) and
Pack (1974). The derivation of the coupled states (CS) approximation makes use
of the fact that when the CC equations are formulated in the body fixed frame, the
distinction between coupling due to [ and coupling due to the interaction potential
is made explicit. The body fixed frame is defined so that the z'-axis lies along the

intermolecular vector (figure 2.1).

Figure 2.1: The Body Fixed Co-ordinate System

The Hamiltonian in the space fixed frame can be rewritten:
HSF"I"UI (R, 91,92) E‘I’w (R, QI,QQ) 2.3.1

where 3 indicates the set of indices (j1, k1, j2, k2, 712) but not [. M is the projection

of J on the space fixed z-axis.

The space fixed wavefunction, ¥, and body fixed wavefunction, ®, are related

through the transformation:

‘I’ (R Q],Qz ZDQM ,6 ’)’ /ﬂ (R Q,,QI) 2.3.2
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where 2 is the projection of J on the body fixed 2’-axis, Q’L are the Euler angles
describing the orientation of molecule ¢ in the space fixed frame and (o, 3,v) are

the Euler angles taking the body fixed frame into the space fixed frame.

We may choose to expand the body fixed wavefunction in eigenfunctions of

J,Jz,J12 and 9,/ given by (Launay 1976):

TR0 = 5 CREE < dia e @) 208
Q109
where ji2 = j1 +jo and J = ji2 + 1. Note that in the body fixed frame the

component of [ along the body fixed z'-axis is zero because:
1= (R xv) 2.3.4

where v is the relative velocity. As a result, the component of j,, along the body

fixed z'-axis is just {1, the component of J along 2'.

Expanding the body fixed wavefunction as:

JQpal
F,UHQII(R) JQ” ~

IR, 0, Q%) = Y 7 T (Q4, %) 2.3.5

/jll S)Il

where a = ji, k1, jo, k2, the body fixed CC equations can be obtained as before,
multiplying the Schrodinger equation from the left by T‘m *( '1, Q'2) and integrat-
ing over €, () to give:

d? !
[?1727 +n§] Fod(R) = 2u 3 (AQV|V(R, ), %) — 12/2u]8"Q") Futii (R)
,[3”52"

2.3.6

Equation 2.3.6 is exact, and is of the same dimensionality as the space fixed
equivalent. It can be shown (eg Rabitz 1976) that (3'Q'|V'|3"Q") is zero unless
' = Q". This is a consequence of the invariance of the interaction potential under
rotations of the whole system about the intermolecular axis; V cannot change the

projection of J (or j12) along that axis.
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However, unlike the space fixed equations, the centrifugal barrier operator, 12

is no longer diagonal in €. Following Rabitz (1976), 1 can be expanded as:
P =02+, - 232 - Jijra- - I jias 2.3.7

Here J4,j12+ are the raising and lowering operators, and their presence leads to

non-vanishing coupling between Q' and 2" = Q' + 1.

The essence of the CS method (also known as the centrifugal decoupling

method) is to ignore the ' # Q" coupling. In this approximation the CS equations

become:
d2 1 YU 12 2 JQ3
i ~ gl 1) 00 +1) = 207 + ko) Fou (R)
A, oA 2.3.8
= 2u S (BVIV(R, O, 0)|8" Q) P (R)

/jll

As the interaction potential, V, does not couple states of different 2, the
coupled equations separate into blocks that can be solved separately for each value

of 2, with a subsequent saving in computer time.

The CS equations can be solved in the same way as the CC equations and are
subject to the same boundary conditions. The adequacy of the CS approximation
is usually gauged by direct comparison with CC calculations. In general, the CS
approximation is expected to give the best results in collisions dominated by short
range forces, and at low values of total angular momentum. This is because the
centrifugal potential terms fall off like R=2 at large R whilst the interaction poten-
tial between two neutral molecules decreases as R~%, and the CS approximation
will give the best results in regions where the interaction potential dominates the

anisotropic terms.
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2.4 Numerical Solution of the Coupled Equations

The close coupled equations (2.2.8) can be written in matrix form as:

d2
[IW + W(R)] G(R)=0 2.4.1
where:
W(R) =k? - 12 - V(R). 2.4.2

Here V(R) is the potential coupling matrix, and k?(R) is the wavevector matrix.
Both k?(R) and 1(R) are diagonal matrices, and G(R) is an N x N matrix where

N is the number of channels.

The equations are solved subject to the boundary conditions (appendix A):

GI'(R)=0 at R=0 2.4.3a
and
- l I
G,‘if’(R) - na,1/2 [sin (&aR — %r) Sy + K,‘,I.Y, cos (na:R - ?ﬂ-)] 2.4.3b
as R — oo.

The scattering matrix, S, can be obtained from the reactance matrix K through
the relationship 2.2.10.

There are many different methods for integrating the coupled equations but the
underlying principles behind the methods are similar. The integration is started
in the classically forbidden region, where the potential energy is larger than the
collision energy, at some minimum value of the intermolecular distance, Rpyy.
Rpin should be sufficiently far into the classically forbidden region that the final
cross-sections are independent of its choice, but as far from the origin as the first
condition allows. The reasons for this are twofold. Firstly, one does not want to
waste time on unnecessary integration in the nonclassical region, and secondly, the
solutions are all exponentially growing in the classically forbidden region. Strongly

growing channels can dominate the solution matrix and lead to a loss of linear
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independence of the solutions, and stabilisation problems for some integration
methods (Secrest, 1979).

The solution is propagated out to the asymptotic region where V' — 0 and
fitted to boundary conditions of the form 2.4.3. In this region open channels give
oscillating solutions, whilst closed channels decay exponentially. The period of
oscillation and rate of decay is dependent on the collision energy (through . ).
For the open channels, the rate of oscillation increases with increasing energy,
and consequently more integration steps are required as the energy increases. In
addition, more partial waves, and more channels are required for convergence and

the problem grows rapidly.

The methods of integration have been discussed in a recent review (Alli-
son, 1988), and can be divided into two classes; approximate solution techniques

and approximate potential techniques (Secrest, 1979).

The approximate solution techniques use the exact potential coupling matrix
and employ numerical techniques to solve the resulting Schrodinger equation ap-
proximately. In their simplest form G is propagated out from R,,j, using some
step routine to solve the equations in either their integral or differential forms.
One such method is the DeVogelaere method (Lester, 1971), which integrates from
Ry to Rpyy using an intermediate step, R,y /0. If we define the step size as

h = Rp41 — Ry, the integration proceeds via the equations:

h h?
Gny12 = Gn t §G:z - ﬁ(‘lwnGn — Wo_1/2Ga-1/2)
h2
Gpy1 = G + hG:, - 'E(WnGn + 2Wn+l/2Gn+1/2) 24.4
h

C“"n+1 = G:z - (WnGn + 4Wn.+1/2Gn+1/2 + W1L+1Gn+1)

6
with the initial conditions:

GO(Rmin) =0

G_1/2 = —hGo'(Ruin) 2.4.5
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Gy’ is an arbitrary non-singular matrix, usually taken as the identity matrix:

Gy =1 2.4.6

The solution following approximate solution methods such as this are inher-
ently unstable, particularly in the classically forbidden region where G grows ex-

ponentially, and stabilisation routines are required for all such techniques.

The problem of stability can be overcome if the derivative of the natural log-

arithm of G is propagated instead, that is:

d -1

JpInG)=GG 2.4.7
Such log-derivative methods were first developed by Johnson (1973). They are
very stable, and have been found to be particularly useful at short range where

other methods are less satisfactory (Thomas et al, 1981).

The alternative approach, embodied in the approximate potential methods, is
to break the integration region down into small intervals, and approximate the
potential within an interval by an analytic function, taking it as zero outside the
interval. The Schrodinger equation is then solved analytically for each interval,
with the step size been estimated from perturbation theory. The method requires
the potential to be diagonalised at the centre point of each interval being consid-
ered, and the solutions must be transformed into the appropriate space for each
interval. As a result there is more work per step than for the approximate solution
methods, but larger steps can be taken. The advantage of large step sizes is lost,
however, if high accuracy is required, or in regions of rapidly changing potentials
and consequently, the approximate potential methods are most applicable in the

long range, slowly varying region of the potential.

In addition to the methods outlined above, hybrid methods have been devel-
oped that take advantage of the relatively good behaviour of the log-derivative
methods at small R, and the economy of the approximate potential methods at
large R (Thomas et al, 1981, Secrest, 1983, Allison, 1988).
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2.5

2.5.1

The integration used in the bulk of the work reported in this thesis was the
diabatic modified log-derivative method of Manolopoulos (1986), as implemented
in the MOLSCAT computer code (Hutson and Green, 1986).

Effect of Basis Set Truncation

Rotational basis set truncation

The space fixed close coupled equations were derived by expanding the total wave-

function in the form:

Jv
G ! (R) - -1 3 -7 ’
JM oo _ 0 Ji1 J2 he pha U J
\I”Y (R’ QlQ?) - Z Z Cm’ m!m! Cm' miM
7 R e 1M My MMy
1'me
myg'my! 2.5.1

, " .t N I ~
X xf],ml,(Ql)xfz,mz,(ﬂz)yml;(R)

In the general case, the vibrational wavefunctions of the molecules should also be
included on the right hand side. For the equality to be exact, the sum over +'
should run over all possible states, leading to an infinite set of coupled equations.
Clearly, some truncation is needed. The truncation of the basis set is the major
approximation of the CC approach to the collision problem, and the effect of this

truncation has to be considered.

At any given collision energy, E, only those states with n?t, > 0 are classically
accessible. States with h',g; < 0 have radial wavefunctions that are exponentially
decaying with R, and the cross-sections for transitions to these states are identi-
cally zero. However, these closed channels can still play an important role in the
collision, especially in regions where the potential is strongly anisotropic. Indirect
collisions proceeding through an intermediate state become increasingly important

as the anisotropy increases.

Even where cross-sections between the low j levels only are required, more
anisotropic potentials require a larger basis set (eg Green and Thaddeus, 1976).

This can be seen by considering the form of the potential expansion. For simplicity,
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2.5.2

consider the simplest atom - linear rotor collision system. The potential can be

expanded as a series of Legendre polynomials:

V(R,8') = vA(R)P(cos8") 2.5.2

A
where ' is the angle between the linear rotor internuclear axis and the intermolec-
ular axis. A true isotropic potential would have a non-zero contribution from the
(A = 0) term only. Progressively more anisotropic potentials would have significant
contributions to the sum over A from progressively larger values of \. Any term

in the potential can couple states such that:
i=d'1<A<G+5) 2.5.3

thus strongly anisotropic potentials will directly couple states with larger Aj than

less anisotropic potentials.

The effect of basis set truncation in calculations is usually investigated non-
rigorously by comparing S-matrix elements or cross-sections from calculations with

successively larger basis sets and examining how well the results converge.

The results suggest that whilst it is necessary to include states that are directly
coupled to the states of interest by strong anisotropies (Green and Thaddeus, 1976),
it is not even always necessary to include all the open channels if only transitions

between the lower j transitions are of interest.

In general, basis set truncation does not seem to be too critical, provided the
basis is chosen carefully with an eye to which cross-sections are of interest. Thus
whilst it is usually necessary to include closed channels when all cross-sections
are of interest, a certain amount of economy in basis set size can be obtained if
only some of the cross-sections are required. The adequacy of the basis set chosen
for any particular collision calculation is usually assessed by performing basis set

convergence tests for the first few partial waves.

Vibrational basis set truncation

The assumption of a rigid rotor is equivalent to truncating the vibrational

basis set to one state only. The empirical argument usually given to justify this
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assumption is that the vibrational energy spacing is generally very much larger
than the rotational energy spacing, so that the probability of the excited vibra-
tional states intervening in a collision is very much smaller than the probability
of the rotational states intervening. This assumption is harder to test than the
truncation of the rotational basis, but tests have been carried out for rotational
excitation of the Hy molecule (eg Eastes and Secrest, 1972, Choi, Poe and Tang,
1977). Eastes and Secrest found that the first excited vibrational state, a closed
channel, did have an effect on the results, even when open rotational channels were
neglected. However, Choi et al (1977) found the opposite, and suggested that the
discrepancy could have been due to the fact that Eastes and Secrest compared
S-matrix elements at low values of total angular momentum, whereas Choi et al
compared converged cross-sections, by which time differences evident at low values
of total angular momentum could have been rendered insignificant. It should be
remembered that the Hy molecule is very light and therefore has a much smaller
ratio of vibrational energy level spacing to rotational energy level spacing. It is
expected that the rigid rotor approximation will generally be good at low collision

energies.

2.6 Formulation for Linear Rotor — Symmetric Top Collisions

The closed coupled equations in their space fixed form are given by equation 2.2.8

a2 I(l'+1 J ;
[dRZ A R2 ) + "?x'] G77(R) = 2u 2;(’7’|V|’7")G7,7(R) 2.6.1
2

Apart from the wavenumber, k4, the left hand side of the equation is independent of
the collision system. All information on the rotational properties of the particular

collision system under consideration is contained in the coupling matrix:

[T : _ 71 32 Ji2 jiz2 U J .71 .72 ]12 .712 I J
<a ]121 ’V|a]12l> - ///lem2"1120mlzml Cm ""2"’1207"12'"1M

()t ()Y RV Xy ()X, (2)ih (R) s ds dR
2.6.2

The problem of formulating the equations for any particular collision system

reduces to evaluating this integral. The form of the coupling matrix elements
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2.6.1

for the atom - linear rotor, linear rotor — linear rotor, atom - symmetric top
and atom - asymmetric top have been presented and discussed in the literature
(AT-LR: Arthurs and Dalgarno, 1960, LR-LR: Green, 1975, AT-ST: Green, 1976,
AT-aST: Garrison et al, 1976). Here the form of the coupling matrix element for

the linear rotor — symmetric top collision problem is explicitly derived.

Rotational Eigenfunctions

A symmetric top molecule has equal moment of inertia about two of its principal

axes, and a non-zero moment of inertia about the third, the symmetry axis, ie.
[1.// = -[y” I:.'" >0 2.6.3

where [,» is the moment of inertia about the symmetry axis.

For a symmetric top the total angular momentum, j, and its projection on
the space fixed z-axis, j,, are constants of the motion, as always, and in addition
the projection of the angular momentum on the molecular symmetry axis, j,», is
also a constant of the motion. The rotational eigenfunctions are therefore labelled

by |jkm), where j, k and m are all good quantum numbers and:

jAjkm) = j(j + 1) [jkm)
izljkm) = m|jkm) 2.6.4

jz” |]km> =k |]km>

It can be shown (Edmonds 1960) that the rotational eigenfunctions of a symmetric

top are given by:

, 2j + 1\ _;
|_71cm)=( JS7r ) Di_(a,B,7) 2.6.5

km

where D{,m(a, B,7) is a rotation matrix and (a, 3, y) are the Euler angles describing
the rotation taking the space fixed axes into the internal molecule fixed axes.

Edmonds definitions of the rotations matrices are used throughout:

Di (a,B,7) = e*' di_(8)e™ 2.6.6
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The rotational Hamiltonian of the symmetric top is given by:

lel 2 Iyll .2 Izll .2
Hrot = E;_]zn -+ Ejyn + E‘]zu

= Ajin + Bj?lu + ngu

2.6.7

With j2 = jin + jf,u + jfn , the energy levels of the symmetric top follow from:
Hyot|jkm) = (Bj(j + 1) + (C — B) k?)|jkm) = E|jkm) 2.6.8

The eigenfunctions, |jkm) are the primitive symmetric top eigenfunctions. For the
description of a symmetric top molecule such as ammonia it is necessary to use
symmetry adapted rotational eigenfunctions of the form (Green, 1980):

1
(2(1+ 5k0))1/2(|

|7kme) = jkm) + €|lj — km)) 2.6.9

where k >0ande=x1ifk>0,e=+1onlyif £k =0.

The linear rotor molecule is equivalent to a symmetric top molecule with zero
angular momentum about the molecule fixed z"-axis (I,» = 0). The rotational
properties of the linear rotor can be obtained from the symmetric top properties,

to within a normalisation factor, by setting C' = k = 0, thus:

Plim) = j(G + 1)|im),

iz|jm) = m|jm),

. . : 2.6.10
Hyot|jm) = Bj(j +1)|jm) '
= E|jm).
The rotational eigenfunction for the linear rotor is given by:
lim) = Y2 (8, a) 2.6.11
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2.6.2

where Y}/, (8, ) is a normalised spherical harmonic (Edmonds, 1960). The spherical

harmonics are related to the rotation matrices by:

j 4 1/2 j .
D01n(aaﬂa7) = 2 + 1 Ym(IBaa) 2.6.12

The close coupled equations were derived by expanding the total wavefunction
in eigenfunctions of total angular momentum, J, and its projection on the space
fixed z-axis. In the case of the linear rotor - symmetric top collision system the

eigenfunctions are given by:

JM R Oy 6 J1 j2 Jiz izl J 2;1+1 1/2
Zj1kljzjlzel(R, Ql, Q?) = Z le ma "1-12017?:2 mM (4—7r)
i 2.6.13
] A 1 2 2. ol l ~
[Di'lml (Ql) +e D]—1k1m(ﬂl) ]Y7{122(R2) Y,,”(R)

From henceforth, the subscript ‘1’ refers to the symmetric top molecule, and the

subscript ‘2’ to the linear rotor.

The Potential Expansion

The form of the potential expansion has been discussed explicitly for atom — sym-
metric top scattering (j2 = 0) (Green 1976) and for linear rotor - linear rotor
scattering (k = 0) Green, 1975) in both the body fixed and space fixed frames.
These are all special cases of the most general invariant expansion for two poly-
atomic molecules (eg Stone and Tough, 1984, Leavitt, 1980). In this section the
potential expansion for the specific case of linear rotor — symmetric top scattering

is discussed.
Body Fixed Frame

It is most natural to express the potential in the body fixed co-ordinate system
introduced in section 2.2 where the z'-axis is taken to be the intermolecular axis.

Ab initio potential data are usually derived in this frame.

The body fixed co-ordinates were defined in figure 2.1. Here 2’ is the inter-

molecular axis, (4], ], 9] ) are the Euler angles of the symmetric tops internal axes
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with respect to the body fixed axes, and (65, ¢5) are the polar angles describing

the orientation of the linear rotor.

From the figure several symmetries of the system are immediately obvious, and
these should be echoed in the potential expansion. Namely,

e the potential in invariant to rotations of both molecules around the 2’-axis, and

depends only on the difference (@] — ¢5).

e if the symmetric-top molecule has an n-fold axis of symmetry under rotations
about the molecule fixed z"-axis, the potential is left unchanged by rotations
of the molecule through 9] = 27p/n radians (p = 0,1, 2...).

e if the linear rotor is a homonuclear diatomic molecule, the potential is left

unchanged by rotations of the molecule through 65 = .

In addition, for an isolated system, the potential will be unchanged by inversion
of all co-ordinates in the origin, and by rotation of the entire system through any
angle (i.e. the space fixed potential expansion should be rotationally invariant, and

unchanged by inversion).

The potential expansion in the body fixed frame may be taken as:

V(Rv Qllv h'2) = Z vz\lﬂz\zu(R)Dﬁ}/(Qll)Y-i\z(RIZ) 2.6.14
A1dg
py

where Qf = (¢1,61,9!), Ry = (63, ¢5) and R is the intermolecular distance.

If we use equations 2.6.6 and 2.6.12 to express the potential expansion in terms
of the reduced rotation matrices and exponential functions (Edmonds, 1960) we

obtain:

V(R By) = 3 vapagn(R)

A1Ag
wy

(2A24—1

1/2 L, L, ]
Ratl) T e ayen e e g, (0)

2.6.15
Note that the +v index ensures that the potential depends only on the differ-
ence (¢] — ¢4) as required, and we may set ¢} (say) equal to zero.
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The requirement that the potential must be invariant to rotations of the sym-
metric top molecule through 27p/n for a molecule with an n-fold axis of symmetry

is met if 4 is an integer multiple of n.

Similarly, if the collision partner is a homonuclear molecule the requirement
that the potential should be invariant to rotations of the molecule through an angle

of 7 imposes the constraint that Ay must be even, as:

dy? ,(62) = (—1)*2dQ2 (82 + ) 2.6.16

An important property of the body fixed v’s may be derived from the require-

ment that the potential is real. Rewriting the body fixed expansion, we have:

VRO, = 3 (v Xuw + vp—sTucw + v pms Voo + vl ) 2.6.17a
P
v2>0

where:
T o d33(81) 432, (65) exp(ind} — ivdh) 2.6.17b

Here we have dropped the A subscripts for clarity.

Since all the terms in the expansion should be independent, the imaginary part of

this expression should vanish:

dg2,(8) {d2L(8}) vuw (R) sin(uyh} — v)

+ (=1)d)",(81) vu—u(R) sin(ue] + veh)

2.6.18
= (=1)"d, _,(8)) v—p—v(R) sin(uy] — véh)
— 42, (01) v-p(R) sin(uy +ve) } =0
making use of the property (Edmonds, 1960):
dh, () = (-1)F7dA,_(0) 2.6.19
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we have:

d;)},(ﬂ'l)sin(uw'l - V¢,2){ V= (1) vy }

N ) 2.6.20
+dZ u(g )Sln(/“wl + V¢2){ Ve — (-1) Uy —v } =0
As this must be true for all angles we obtain:
v (R) = (=1)*v—p—(R)
2.6.21

v—pu(R) = (=1)}*vu —v(R)

but we have no relation between v,, and v_,, in the general case.
Space Fixed Frame

The potential expansion has been given in the body fixed frame. However, as was
discussed in section 2.2, the fact that the body fixed z'-axis is rotating in space
leads to off diagonal terms in the centrifugal potential. The coupled equations can
be solved in both frames, but we choose to tackle the problem in the space fixed
frame, sacrificing the relative simplicity of the body fixed coupling matrix elements

in favour of a diagonal centrifugal contribution.

As we wish to perform the integrals over angular functions to obtain the cou-

pling matrix elements,
(J1k'J2J121' JM|V|j1kjajral; JM)

the potential expansion should be expressed in the space fixed frame. The body
fixed potential expansion can be transformed into the space fixed frame using the

transformation:

Dfnm,(ls of cwrta)=)_ D'Znt"lu s of awrt b) D) ., (/sofcwrtb) 2.6.22

mm/

Transforming each term in equation 2.6.14 we have:

Dy (2 =2 DAY (Q) D, ()
2.6.23
Y22(R Z DX (Y2 (Re)
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where ) are the Euler angles that take the space fixed axes into the body fixed

axes.
The rotation matrices may be combined to give (Edmonds 1960):

. . 4 1/2 .
DAID%,, () = S ed o) () Y (R 2.6.24
A

Substituting equations 2.6.23 and 2.6.24 into the body fixed expansion (equa-

tion 2.6.14) we obtain the space fixed potential expansion:

VR, Q1,0) = 3 vapan(R) Y Cataza DL (Q)Yi2(Re)Y,) *(R)  2.6.25
A Ag ning
Ap

where:

2.6.26

+’\min Ao A 47r 1/2
vaeaw(R) = Y uama(RICT 50 (2/\“)

v=—Anin
and Ay is the minimum of A1 and As.
Using the symmetry properties of the Clebsch Gordan coefficients, the rela-

tionship between the space fixed and body fixed potential expansion coefficients

can be rewritten with the sum running over positive values of v only:

1/2
) ( Uz\wr\zu(R) + (_1)/\1+/\2+/\'U/\1w\2 -v(R))

2.6.27

WNWIHEDY

50 (1460

C’[}liz,,()\ ( 4
y\2x+1

From equation 2.6.27 and the relationship 2.6.21, it can be seen that if ux = 0
(linear rotor - linear rotor scattering), then the sum, (A; + A2 + A) must be even for
a non-vanishing space fixed coefficient. Similarly, there is no ¥ = 0 contribution to
the space fixed coefficient if the sum is odd. If 4 and v are both non-zero, however,
the sum can be either even or odd, and this has important consequences for the

propensity rules governing linear rotor — symmetric top collisions.

The requirement for (A; + A2 + A) to be even for linear rotor — linear rotor
scattering, and for atom — symmetric top scattering, may be more rigorously de-
rived by invoking the requirement that the potential is unchanged by reflection of

38



2.6.3

all co-ordinates in the origin. In the case of the linear rotor - symmetric top space
fixed potential expansion given by equation 2.6.25 the same operation yields the
symmetry properties of the space fixed potential expansion coefficients. Inversion

of the co-ordinates in the origin is equivalent to the transformation:
a—a+m, g — -3, N =T - . 2.6.28
where a, 8 and v are the Euler angles. Under this transformation:

D1, (@) = (~)MHeDY,, (D)

prny —pny

A Az A
Yoz (Re) = (=1 Y2 (Ry) 2.6.29
AT AVAIT
Y (R) = (-1)"Y(R)
thus inversion in the origin has the effect of changing x4 to —u and introducing
a factor, (—1)M+%2+X+#  The requirement that the potential remains unchanged
thus imposes the restriction that:

Vapagru(R) = (1) TA et ey, s u(R) 2.6.30

Using this relation it is useful to rewrite the space-fixed expansion (2.6.25) as

A o v R
V(R, Q1;92) = Z ;\_]1‘,\_:’_/\%(2[7,\1,\2,\” + (—1)'\1+'\2+A+”TA1,\2,\_H} 2.6.31a
ALAzA 10

u20
where:
_ A A*/ T
Tarorw = 2 CaldzaDis ()Y, (Ry)Y,M(R) 2.6.31b
nyiny
Coupling Matrix Elements

Armed with the space fixed potential expansion, and form of the wavefunction,
we are now in the position to derive the form of the coupling matrix elements.
The projection of the tops angular momentum on it5 symmetry axis, k, takes

a spectator role in the angular momentum coupling (Green 1976), and so it is
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sufficient at this stage to perform the angular integration using only the primitive

symmetric top functions |jkm) (eqn. 2.6.5). The angular integral then becomes:

g S 231 + 1)(25! + 1))1/2
(Jik'JéJigl';JM|V|J1k121121;JM)=///(( It )g: )

§ z E E: J1 d2 e vz L J 01 s Jiz pdiz UJ oA g A
X C7nl77727n1207”127n1 C'nl ""anIZC”L I'II.IMCHIH')'/L
M2 my mz' A1Ag MIT2
mi2my

myg ml Ap

x D Q)Y (Ra)Vh(R) DL, ()Y, 2 (Ra) Y *(R)

ma! my uny

X DRy (Y2 (R2)Yy, (R) d dR2 dR

mo

2.6.32

Equation 2.6.32 can be evaluated by applying standard methods to perform
the angular integrals (Edmonds, 1960) and summing the resultant Clebsch Gordan
coefficients or equivalently, the 3-j symbols to give 6-j and 9-j symbols. Integration

over dR gives:

ch AL clAl 2.6.33a

mynmy

(2 +1)(2) + 1))1/

/dRY“ Y“(R)Y’LI(R):( 4m(20 + 1)

Integration over d Ry gives:

J2 A2J2 vi2Ae) ]2
sz ny m;iC

(252 + 1)(2Xg +1)>1/2

A i () =
[ 4B Yz (Ra)Yiz (Ra)Y i (Be) = ( 4n(22 + 1)

2.6.33b

Integration over df2; gives:

/dQl kal(Ql)D[tnl( )D.’l‘}'yn*l (Ql)

o . . 2.6.33
1 g /\1)(11 7 /\1) €

2 k!
= 871' (—1)m1 ( k _k, L

my -mp mn

where (:::) are the 3-j symbols and are related to the Clebsch Gordan coeflicients
by: . . .
Cit d2 . — (Z1)e=imm(g; 4 1)1/ ( neon ) 2.6.34

m m
17z my me —-m
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Combining the three integrals and using the relation 2.6.34 to convert the

Clebsch Gordan coefficients to 3-j symbols gives:

V«{‘Y — Z v/\1/\2/\u(R)
(4m)
x (_1)—jl~jz—j1'+J‘2'—j12—j12'+)\z-/\1—k'+l'+l—v—m12—m12'—m1—mz'—M

x [(271 + 1)(272 + 1)(2712 + 1)(20 + 1)(2J + 1)(257 + 1)

x (275 + 1)(2719 + D)2V + 1)(2J + 1)(2h2 + 1)(2X + 1))}/
(]1 j2 o Jrz ) (j12 LJ ) (ji ja Uiz ) 2.6.35
my m2 —mio mis my —-M my my —miy
il Mo A oAl
(mlz m; —]VI')( ng —n) (—m; n ml)
ja Ae Ja jo A2 Je
( 0)( ~-my ng m2)(0 0 0)
i1 Aoq i1 M 5
( -my m ml) (—k' I k)
where the summation is over my, mg, mi2, my, A1, A2, A, g, 11, ng, my, mh, mhy, mj.

The 3-j symbols can be combined to yield 6-j and 9-j symbols giving as the final

coupling matrix element:

J 22 +1 et e
VT = Z( 3 )kuwx—nh k=
AAg T
Ap

x [(271 + 1)(2j2 + 1)(2712 + 1)(20 + 1)

x (271 + 1)(27% + 1)(271p + 1)@ + 1)(202 + 1)]'/2

xl'/\l ih A2 j2 it M o5
00 0/\o 0 o)\=¥¢ 4 &

2.6.36

Jiz2 J2 N

rooroay )t
e iy Jf)72 2
12 A A M

where (:::) are the Wigner 3-j symbols, {:::} are the 6-j symbols, and {:::} is a 9-]

symbol. The sum over g runs from —\; to +A;.
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2.6.4

It can easily be verified that when & = 0 this reduces to the linear rotor - linear
rotor expression (Green, 1975) and when j; = 0, jj2 = j; the expression reduces

to the atom - symmetric top expression (Green, 19786).

The 3-j symbols impose the conditions that the sums, (I'+{+X) and (jo+75+A2)
must both be even for a nonvanishing coupling matrix element, and whilst the latter
must be true if the linear rotor is a homonuclear diatomic molecule, the restriction

is independent of any external constraints on jg, 75 and As.

Symmetry Adapted Coupling Matrix Elements

Further ‘selection rules’ may be obtained by recalling that the symmetry adapted
symmetric top wavefunction is given by equation 2.6.9. The coupling matrix ele-
ments discussed above were derived using the primitive symmetric top eigenfunc-
tions, |jkme) but, as noted by Green (1976), k plays a spectator role in the angular
momentum coupling, and the symmetry adapted coupling matrix element can be

formed from a linear combination of terms of the form given by equation 2.6.36.

Following Green (1976) we rewrite the potential as:

A A Ua g au( R
V(R,Q,) = Y > _ﬁ'g(_) [Magapap + (mD)MFAeddteyy 0 ] 2637
Aidz p20 10

where T, A, is given by equation 2.6.31b. With the ‘true’ symmetry adjusted
symmetric top wavefunction:

1
(2 (1 + 6ro))1/2 (

ljkme) = Jkm) + €|j — km)), 2.6.38

the coupling matrix elements can be rewritten as:

R) , |
VJ'Y UAI/\QI\#( ,k, / + ' _ k,m,
:4:'1 uz>:0 1+ 6,0)[(1 + Sro)(1 + 6k,0)]1/2((] m| +e'(j )

X (T’\I/\Z/\# + (—1)/\1+/\2+/\+#T1\1Azz\—p)(ljkm> + E‘] - km))
2.6.39
The terms in equation 2.6.39 can be simplified by applying the symmetry properties
of the coupling matrix elements (eq. 2.6.36) and of the potential itself (eq. 2.6.31).
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Using the short-hand notation, |k) = [j1kj2jiale; JM) and 7, = Taidoapu We
have:
(k' |T] = k) = (=130 =20 ) 2.6.40

thus:

(k|7 + (“1)/\1+/\2+/\+“T—#| - k)

P 2.6.41
_ J1 =2k +A4+A Ar+Az+A
= (_1)11+11 tAzt +u<k’|]ﬁ# +(=1) 1+A2+ +“T—u|k>

For any value of £ and &', the properties of the 3-j symbols imply that there is

only a non-zero contribution to the coupling matrix element if:

K —k=pu 2.6.42
thus for any given k, k', only one of the (k|T,|k') terms is non-zero, and it enters
with a phase of (—1)M1+A2FA+k if (k' — k) = —p, or (+1) if (k' — k) = p.

Similarly, we can write:

(=K| Ty + (1Mt k)

L ’ 2.6.43
_ (_1)J1+]1_2k +’\2+’\+”<k’|Tp + (_1)/\1+,\2+,\+#T_“| — k>

Here,as k,k' and p are all greater than zero, only the (k|T},| — k) term can

contribute to the coupling matrix element.

Substituting 2.6.42 and 2.6.43 into equation 2.6.39, the symmetry adapted

coupling matrix elements become:

AR Lo . vz\l/\gr\p(R)

J1k'jainal' €5 IM|V |jrkjogiel; JM) =

ik 2 AIZAZ g:o 2[(1 + 6r0)(1 + bxr0)] /2
Y

X (14 €/ (=12 dbiny (ot jo it s TM| Tl jrkjanaly JM) x w

+ e(j1 K 5a510l"s IM T plirkjodial; TM))
2.6.44
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where:
w = (=1)MHretd e fy <0

2.6.45
w = (+1) if('—k)>0
2.6.5 Separation into two non-interacting parity blocks

From the symmetry properties of equation 2.6.44 it can be seen that the coupling

matrix element vanishes unless:

ee'(—l)j1+j"+’\+’\2+” = (+1)
(—1)etiti = (41) 2.6.46
(_1)/\+l+l' — (+1)

Eliminating A and Ag from the above equations gives the condition for a non-

vanishing coupling matrix element as:
GE'(_1)]'1+j1'-]'2—1'2'—1—l'+# = (+1) 2.6.47

This can be simplified using the properties of the collision partners involved. If
all the angular momenta are integer, then using the property pu = (k' — k), the

condition for a non-vanishing coupling matrix element becomes:
e(—1)ith=i=l o ()i +K =R 2.6.48

The problem therefore partitions out into two non-interacting parity blocks that
can be solved separately, reducing the computational effort required for the calcu-

lation.

2.6.6 Body-fixed coupling matrix elements

Although the CC equations will be solved in the space fixed frame, it is instructive
to investigate the coupling matrix element in the body fixed frame, where the form

of the angular momentum coupling is more transparent. As this is the natural
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frame in which to describe the interaction potential, the form of the potential

matrix element is simpler.

The potential in the body fixed frame (eq. 2.6.14) is given by:

V(R, S, B) thmu ) DALY 2 (RY) 2.6.49

A1
uy

The total wavefunction can be expanded in the form:

IO R = 2j1+1 1/2 Ci dz dizepit (@ J1 A J2(7

5 (9, Ry) = . QXS; 0,6,0° (D, (1) + € DTy (7)) YEL(R).
1942

2.6.50

Using the primitive symmetric top functions, |j1£82;), the integral to be evaluated

becomes:

2]1+1(2]1+1))1/2 Ty .
[/ 2 CH A ChL A Dl )V (R)
Qlﬂz AL
n‘llg uy

~ A : A ~ ~
Dy (Y22 (R) Dig, ()YFL(R') a2 dRy
2.6.51
Integrating over dY}, dR’Z and using equation 2.6.34 to convert the Clebsch Gordan

equations into 3-j symbols gives the result:

VJ’Y § : VA pudqv (471') 1/2( )Jl_j2+jll‘j2’—k,—9l
AL Ag
By
FaE- I X Py

x [(271 + 1)(252 + 1)(2512 + 1)(25] + 1)(275 + 1)(2575 + 1)(2Xa + 1))/
x(ji A jl)(ii A jl)(jé A2 jz)
K u kJ\- v 2 /\0 0 o0
X(J'é A2 j2)<j1 Jj2 j12)(j'1 2 J'iz)
- —v W)\ 0 -Q/)\Q 9 -«
2.6.52

From here it can be seen that the |v| > 0 terms in the potential drive the change in
the projection of the angular momenta j; and js on the intermolecular axis. The
value of Q (= Q; + Q2) is unchanged by the body fixed interaction potential, but
will be coupled to ' = 2 + 1 by the off diagonal centrifugal terms.
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2.6.7 Extension to linear rotor — asymmetric top collisions

Garrison et al (1976, 1977) have shown how the atom — symmetric top treatment
can be extended to give the atom - asymmetric top coupling matrix elements,
with regard to rotational excitation of Hy CO by He. The ease of the extension
is a consequence of the fact that the asymmetric top rotational functions can be

expressed as a linear combination of symmetric top functions.

The rotational Hamiltonian for an asymmetric top is
Hrot = Aj*+ (B - A)j2 + (C - A)ji 2.6.53

where none of the moments of inertia in the principal axes frame are equal.

The asymmetric top differs from the symmetric top in that the projection of the
total angular momentum on the molecule fixed z”- axis is no longer a constant of
the motion. However, it is convenient to expand the asymmetric top wavefunctions
in a basis of symmetric top wavefunctions which form a complete set in the space
of the rotation of a rigid body:

j
irm) = > ajpr|ikm) ST 2.6.54
k=—j

The fact that k is no longer a good quantum number leads to a mixing of the
(27 + 1) asymmetric top states labelled by 7. Consideration of the symmetries of
the system (Garrison et al, 1976) lead to ‘symmetry adapted wave functions’ in
the same form as those found in the case of the symmetric top molecule. Thus we

may rewrite the asymmetric top wavefunction as:

. b'kr . ST) . (ST)
ljTm) = 1 (|7em) 5T 4 €j — km)ST)] 2.6.55
% (2(1 + &ro)) "

The bj, coeficients may be obtained by diagonalising the Hamiltonian in this

basis.

We have already noted that k plays a spectator role in the angular momentum

coupling, and as a result of this, the asymmetric top coupling matrix elements
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may be obtained from the linear rotor — symmetric top coupling matrix elements
simply by taking the appropriate linear combinations of the latter:

(17 dag1el € s I MV 17251206, TM)
2.6.56

J
= 3 b (K Ghital e s IM|V jikjagiale; J M)
k=—j
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Chapter 111

Rotational Excitation of NH; in collisions with ortho and
para-H;

3.1 Introduction

The ammonia (NHj3) molecule was the first polyatomic molecule to be observed
in the interstellar medium (Cheung 1968), and since then has been extensively
observed in the microwave, radio and infrared regions (Ho and Townes, 1983). Its
wide range of transitions have made it a valuable tool for deriving information on
the physical conditions that prevail within the interstellar clouds. In particular,
rotational-inversion transitions of para-NH3 have been used to obtain estimates of
the temperature in the clouds (Walmsley and Ungerechts 1983, Danby et al 1988),
information on the density can also be deduced. In addition there have been obser-
vations of maser emission in both non-metastable, and metastable states (Mauers-
berger et al 1987, 1988, Guilloteau et al 1983, Johnston et al 1989). The latter

will be discussed further in the next chapter.

Molecular hydrogen is thought to be the major collision partner in regions of
interest, and reliable information on the collisional rates are required to interpret

the observations.

Experimental work on this system is generally performed at room tempera-
tures, and extrapolation to the low energies is very unreliable, especially as the
low energy collisions sample different regions of the interaction potential than do
high energy collisions. In addition, most experimental measurements give some
average or ratio of the collision rates, and interpretation can be difficult. The
experimental measurements do, however, provide some useful insights into the
propensity rules governing the rotational transitions, and provide an important

measure of the accuracy of the theoretical calculations.

In order to gain a deeper understanding of the propensity rules, and to at-

tempt to calculate reliable rates for the astrophysicists, there have been a number
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3.2

of theoretical studies of the rotational excitation of NHj3 in collisions with both Hs
and He. To date, the quantal calculations have only treated collisions with He or
para-Hj constrained to its rotational ground state, both of which act as spherically
symmetric collision partners. Although there have been some limited semi-—clas-
sical calculations considering rotational excitation of NH3 by ortho-Hg, the effect
of replacing ground state para-Hg by rotationally excited Hy has not been fully

investigated.

Information on NH3 ortho-Hs collisions is also relevant to the astrophysical
studies where, although it seems fair to assume most para-Hj is in the (j = 0) ro-
tational ground state at molecular cloud temperatures of 10 to 30K, the ortho:para

Hj ratio is not known, and could be anything up to 3:1 (Flower and Watt 1984).

Introducing the NH; Molecule

The NH3 molecule (figure 3.1) is a typical example of a symmetric top molecule,
with a three-fold axis of symmetry under rotation about the molecule fixed z"-
axis. Its rotational wavefunction can be characterized by |jkm) (section 2.6.1),

and, ignoring small corrections, the rotational energy levels are given by:
Erot = Bj(j +1) + (C — B) k2 3.2.1

The energy is therefore dependent on j and |k| (through k?), giving jk levels which

are degenerate, at least in so far as the rigid rotor approximation holds.

Ammonia separates into two distinct species, depending on the direction of
the spins of the H nuclei. Ortho-NHj3 has all spins parallel whilst para-NHj has
two spins parallel and one anti-parallel. It can be shown by consideration of the
symmetry under interchange of two hydrogen nuclei (Townes and Schawlow, 1955)
that ortho-NH3 has allowed rotational states with £ = 3n (n = 0,1,2,3...) whilst
para-NHj3 has allowed rotational states with ¥ # 3n. In the absence of a mag-
netic field, collisional and radiative transitions cannot change the direction of the

hydrogen spins, so transitions between ortho- and para-NHj are forbidden.

If the NH3 has no vibration perpendicular to the z”-axis, the dipole moment

of the molecule lies entirely along this axis, thus radiative transitions obey the
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Figure 3.1: The NH3 — Hy Collision Co-ordinates

selection rules Ak = 0 and Aj = +1. The energy levels form k-ladders (same &£,
different j). The lowest level in each ladder (j = k) is a metastable state, whilst
the other states (j > k) decay rapidly via the Aj = £1 radiative transitions.

-For collisions the presence of the three-fold axis of symmetry about the z"-axis
leads to the collisional selection rule Ak = 3n where n is an integer. This is a
consequence of the constraints on the potential discussed in section 2.6.2 (u = 3n).
Collisions can therefore lead to transitions within a k-ladder and between k-ladders.
It is collisions that are largely responsible for the latter although a slight coupling
between the rotation and vibration can lead to slow radiative Ak = 3 transitions

even in the vibrational ground state (Oka et al, 1971).

Implicit in this discussion is the assumption that NHj3 is a ‘rigid rotor’ with no

vibrational motion. In fact, the nitrogen nucleus can tunnel quantum-mechanically
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through the plane of the hydrogen nuclei in a large amplitude inversion motion.
This inversion motion splits the normally degenerate k£ doublets by ~ 1cm~!. The

rotational wavefunction can be written as:

1
(2(1 + o)) /2

[7hkme) = (ljkm) + €|j—km)) 3.2.2

and the k doublets are split into a symmetric (lower) and antisymmetric (upper)
state such that (Green 1980);
€ =+(-1) 3.2.3

where the upper sign applies to the upper (a) state and the lower sign applies to

the lower (s) state.

For para-NHj3 the potential matrix element is invariant to simultaneous changes
of the symmetry of the levels (a «— s), but this is not true for ortho-NH3 where

only one of the inversion doublets exists for k£ = 0.

The effect of neglecting the inversion motion of NH3 in the theoretical calcula-
tions has been discussed by Green (1976) and by Davis and Boggs (1978). Green
argued that the period of the inversion motion (~50ns) is very much larger than
the typical collision time at thermal energies (~1ns). Davis and Boggs gave the
conditions under which the rigid-rotor approximation may be expected to be valid.
If it is assumed that the inversion barrier is sufficiently high that the upper and
lower inversion state wavefunctions may be represented as symmetric and antisym-
metric combination of some normalised function, f, then the wavefunction can be

written as:

|4£) = 27 Y2 (f(he — B) £ f(he + R)) 3.2.4

where h is the distance of the N nucleus from the plane of the H nuclei, and A, is

the equilibrium distance.

Davis and Boggs showed that if f is sharply peaked , and the potential ex-
pansion coeflicients (section 2.6.2) are slowly varying functions of h, then the rigid
rotor approximation can be justified. Effectively, the rigid rotor approximation
assumes f can be modelled as a linear combination of delta-functions centred at

the equilibrium positions of the nitrogen.

51



3.3 The Story So Far

Because of the astrophysical importance of the NH3 molecule, there have been
many experimental and theoretical studies of the rotational excitation of NHj
in collisions with He and He. The experimental studies of NHy - Hy collisions
include pressure broadening (Broquier et al, 1985, 1987, 1988), microwave double
resonance experiments (Daly and Oka, 1970, Fabris and Oka, 1972, Oka, 1973),
double resonance microwave beam maser studies (Klaasen et al, 1982, 1983) and

molecular crossed beam measurements (Seelemann et al, 1988, Ebel et al, 1990).

Ideally, to provide a stringent test of theory, direct measurements of state-to-
state collision cross-sections are needed. Many experimental measurements give
information only on the sums of state-to-state cross-sections for many transitions,
and the averaging can destroy much of the detailed information needed to fully

test the theoretical results.

The earliest experiments to approach this ideal were the microwave double
resonance experiments of Oka et al (1970, 1972, 1973). In these experiments a
mixture of NH3 and its collision partner were pumped by strong microwave ra-
diation at a pumping frequency, f,. The frequency was chosen so as to produce
virtual saturation of one of the NH3 inversion doublets (j'4'). The non-Boltzmann
distribution was transferred to other levels by collisions and a second level, the
signal level (j, k), was monitored by weak microwave radiation at the signal fre-
quency, fs. Oka has shown that to first order, the change in intensity of absorption

at the signal frequency is related to the collisional rates by:

Al fp (a(jks — j'k'a) — a(jks — j’k's)) 331

I fs atOt

where a(jks — j'k's(a)) are the rate constants for the symmetry preserving
(changing) transitions, and as is the total rate for transitions out of both the

signal doublet lines plus the interdoublet rate (counted twice).

Thus the microwave double resonance technique provides a measure of the
difference between parity changing and parity preserving transitions. The non
zero values of %i found in the experiments yields information on the ‘propensity

rules’ governing the transitions.
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Collisions of NH3 with a number of collision partners were studied, including
collisions with He, para-H; and normal Hy and the experiments were performed

at 300K. The results may be split into two cases.

Firstly, Ak = 0 transitions. For all collisions with Hs, as for collisions with
all polar and non-polar molecules, the dipole allowed transitions dominated when
Aj =1 (ie. ATL was positive, parity changing transitions were preferred). For all
Aj = 2, quadrupole allowed transitions dominated, and %—I was negative. However,
for collisions with rare gas atoms (He, Xe, Ar...), no clear propensity rule was found.
This was explained by the fact that rare gas atoms have zero electric multipole
moment, and only short-range forces were contributing, whereas for molecules, the

long-range dipole quadrupole interactions were drowning out all other information.

The relevance of this discussion to the current work becomes obvious, when
it is recalled that ground state para-Hg (j = 0) is expected to act like He in
collisions (Green, 1980), as its average electric multipole moment vanishes. Thus
the behaviour of cross-sections for collisions of NH3 with ground state para-Hs
might be expected to be very different from that for collisions with rotationally

excited Hydrogen.

For Ak = 3 transitions (Fabris and Oka, 1972), a close parallelism was found
for collisions with Hs and collisions with He. This was explained by proposing that
Ak = 3 transitions were driven by short range forces which were similar in both

cases.

The microwave double resonance results of Oka et al have been widely used to
probe the accuracy of the theoretical potential used in quantal and semi-classical
calculations for both NH3-He collisions (Davis and Boggs, 1978, Green, 1979,
1980, Billing, Poulsen and Diercksen, 1985) and NH3-Hj, collisions (Billing and
Diercksen, 1986, Danby et al, 1987, Danby and Valiron, 1989).

For the NH3—He collisions it was found that, whilst all potentials gave reason-
able agreement with the experimental data for Ak = 0 transitions, only the most
sophisticated of the potentials (Billing, Poulsen and Diercksen, 1985) could predict

the correct %1 for Ak = 0 transitions.
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The most rigorous experimental test of the theory is provided by the recent
crossed molecular beam measurements of Seelemann et al (1988) and Ebel at al
(1990), which were the first to give direct information on state-to-state cross-
sections for Aj > 1, Ak > 1 transitions. The molecular beams were rotationally
cooled giving an initial NH3 beam consisting almost entirely of ground state ortho-
NH3 (jke = 00+) or ground state para-NHj (jke = 11+). They studied collisions
with normal Hjy (3:1 ortho:para-Hj ratio) and helium, and were able to detect the
excited states with complete state sensitivity. The results obtained were inter-
preted as relative state-to-state integral cross-sections. No absolute measurement
could be made, but detailed information on collisional propensities could be ex-
tracted.

There have been a number of theoretical studies of NH3-Hy collisions using
both quantal methods (Danby et al, 1986, 1987) and semi-classical approaches
(Billing and Diercksen, 1985, 1986, 1987, 1988). Much of the theoretical work
has treated collisions of NH3 with para-Hs constrained to its rotational ground-
state (jo = 0). In this limit the problem reduces to the collision of a symmetric
top molecule with a spherically symmetric perturber. This is formally the same
as collisions between NHj and helium which have been widely studied, and the

theory for treating such a system has been presented by Green (1976).

Quantal calculation of NH3-Hj collisions have been presented by Danby et al
(1986, 1987) who treated collisions of NH3 with (jo = 0) para-Hy only. They
employed a potential consisting of an SCF part complemented by a dispersion
contribution calculated from second order perturbation theory. Using full CC
calculations they treated collisions with both ortho (1986) and para-NHg (1987).
They compared their para-NHj rates with the results of Oka et al, and found rea-
sonable agreement for Ak = 0, Aj = 0 transitions where theory correctly predicted
that dipole allowed (s — a) transitions are preferred. The Ak = 3 theoretical re-
sults were found to agree well with the NH3-He double resonance data, as would
be expected if ground state para-Hy behaves in a similar way to He as a collision

partner.

Billing and Diercksen (1985, 1986, 1988) have performed semi-classical cal-
culations with both para-Hz (j2 = 0,(2)) and ortho-Hz (j2 = 1). They used a
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potential consisting again of an SCF contribution but with the dispersion terms
coming from a many body perturbation theory (MBPT) treatment, and solved the
coupled equations using the semi-classical classical path method where the rota-
tion of the target molecule is treated quantally, whilst the relative motion of the
molecules is treated classically. At higher energies, where this became impractical,
they used a form of the semi-classical coupled-states approximation, formulated
by neglecting changes in the projection of jo on the intermolecular axis. These
calculations were more complete than the quantal calculations in that they took
some account of the rotational structure of the Ho molecule and Billing and Dier-
cksen were able to demonstrate the importance of including some (ja = 2) terms
in the para-H basis set. However, they employed a number of approximations in
addition to that of using semi-classical physics. In particular, they expanded the

interaction potential in the form (Billing and Diercksen, 1986):

V(R, Rl, RQ) = Z v/\1111/\2112(R)Yn/}1(Rl)ynéz(kz) 3.3.2
A1Ag
7177

where Rl(g) are the polar angles of NH3 (Hz) with respect to the body fixed
frame. They interpreted the role of 7; as coupling & and k/, whilst 7y couples
22 and ), the projection of the Hy angular momentum on the intermolecular
axis. Comparison of the above potential expansion with the body fixed potential
expansion derived in chapter two (eq 2.6.15) shows that the two only correspond
when 79 = v = 0. The significance of this difference will be discussed further in

section 3.5.

Very recently, Ebel et al (1990) have presented results using a quantal coupled
states approximation derived from the potential expansion of Billing and Diercksen
(1985), for the rotational excitation of para-Hz (j = 0) and (j = 2) and ortho-

Hy (j =1).

Throughout all these calculations a consistent feature found for NH3 collisions

was the propensity rules :

o(11+ — 22F) >> o011+ — 22+) 3.3.3a

55



3.4

3.4.1

for para-NHj3 and:

o(004+ — j3—) >> o(00+ — j3+) 3.3.3b

for ortho-NHg, where o(jke — j'k'e’) is the cross-section for transitions from
the NHj rotational states labelled by j, & and € to the state labelled by j', ¥’ and
¢'. However, this is at variance with the results of the experimental crossed beam
measurements of Seelemann et al and Ebel et al. In the experiments, although
there is a slight propensity in favour of (00+ — 33—) transition for ortho- NHj,
the cross-sections for (00+ — 33+) and (00+ — 33—) are of similar magnitude.
For para-NHj such a comparison is not possible, because both the 11+ and 11—

rotational levels are present in the initial beam.

Although some account has been taken of the rotational structure of the Hg
molecule in more recent calculations it has not previously been treated fully. The
question arises, would a proper treatment of the rotational structure of Hy solve

the discrepancy between theory and experiment?
Numerical Calculations

The Interaction Potential

An important element of any scattering calculation is the form of the potential
used. The present calculations employed two separate ab initio potentials. Both
potential surfaces contained the same SCF contribution, but differed in the disper-
sion terms. Long range terms were calculated from the analytic formulae discussed

in section 1.3.

As discussed in chapter one, the SCF analysis treats the molecules as two
overlapping charge distributions and is therefore applicable at short range. It
includes the short range overlap, electrostatic and induction terms, but not the

dispersion which is due to correlation effects and must be added in separately.
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The potential is then fitted to the body fixed potential expansion discussed in

chapter two:

V(R Ry) = Y vaunnn(R)DIL(Q)Y22(RY) 3.4.1
,\1/\2
v

In the present calculation the SCF part of the potential has been taken from
the ab initio large basis set SCF calculation of Diercksen (Billing and Diercksen,
1985, 1986). The ab initio data has been given for angles of 8] = 0(22.5)180, ¢} =
0(20)60 and 6}, ¢, = (0,0), (90, 0), (90, 90).

The first few spherical harmonics that enter the body-fixed potential expansion
(eq 3.4.1) are:

o= (1)

5 \1/2
Y£(9,9) = (16_7r) 3cos? 6
3.4.2

15 1/2
Y2 (0,6)=F (g;) sin 0 cos 0 exp(+ig)

2 15\2 ., :
Yio(8,9) = (5—2?) sin” § exp(£2i¢)

thus with 6%, ¢5 = (0,0), (90, 0) and (90, 90), there is only sufficient angular data to
obtain terms with v = 0, £2. Previous calculations have only considered collisions
with ground state para-Hz (j2 = j5 = A2 = vy = 0), and have averaged the
potential over the three hydrogen orientations (eg Danby et al, 1986), so the fact
that the v = £1 terms cannot be obtained was unimportant. However, the physical
significance of the v = £1 terms to the linear rotor - symmetric top case can be

seen by reference to figure 3.2.

In the absence of the Y?(65, ¢%) term in the expansion:
V() =V(r —6) 3.4.3

(which is not true for the general case of a symmetric top - linear rotor in an
arbitrary orientation) it is clear that in order to give a reasonable representation

of the behaviour of the potential with 65, additional terms are needed.
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Figure 3.2: Significance of the v = £1 terms

The additional terms have been taken from computations with cos 8y = +377,
and ¢5 = *m/4 (Valiron, 1988), enabling » = +1 terms to be evaluated. A
smaller basis set was used in these calculations and they are not strictly compatible
with the large basis set SCF data, so when the potential was fitted to obtain the
expansion coeflicients, the two sets of data were treated separately so as not to

degrade the accuracy of the large basis set calculations.

Most of the calculations have been performed with a dispersion contribution
taken from the second order perturbation theory calculations discussed by Danby
et al (1986). The data has been supplemented by additional terms enabling the
v = +1 terms to be evaluated (Valiron 1988). The additional data points are fully
compatible with the earlier data points. Following the notation adopted by Danby
and Valiron (1989) this potential will be refered to as the SCF+EK potential.

To complement these calculations, additional calculations were performed us-
ing the fourth order many body perturbation theory (MBPT) dispersion potential
of Billing and Diercksen (1985). The difference between the two potentials has been
discussed in detail by Danby and Valiron (1989). In principle the SCF+MBPT
potential is more accurate than the SCF+EK potential used for most of the cur-
rent work, however, there is insufficient angular information to obtain the v = *1
terms from the MBPT data. The MBPT potential coefficients were therefore
supplemented by the relevant terms taken from the second order perturbation

theory (EK) dispersion data.

In fitting the potential, the SCF part is forced to fall off exponentially, and

the information about the long range electrostatic and induction terms tends to
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3.1: Leading long range terms when x4 =0

Al 4 A9 v electrostatic induction
0000 —(4m) 2 aqu? R~
0020 —(4m/45) 2 Acau? R~6
1000 ~ R7T

102 0| —(36n/5)1/20u, R~

102 1| —-(127/5)20,u;R*

2000 —(4m) 2 ayu}R-6
20 20| +(24m)/20901R~% | —(47/5)/2Acyu?R™6
2 0 2 1|4(647/5)1/20901R~% | —(167/45)/2Acgud RS
20 2 2| +(47/5)1/20,01R™5 | —(47/45) 2 Aaypu? RO

Here:

p1: dipole moment of NH3 = 0.589au (Diercksen and Sadlej, 1986)

©1: quadrupole moment of NH3 = —2.210au (Diercksen and Sadlej, 1986)
ajy: polarizability of Hy = 5.18au (Kolos and Wolniewicz, 1967)

©2: quadrupole moment of NH3 = 0.478au (Karl, Poll, Wolniewicz, 1975)

Aas: quadrupole polarisability of the Hy molecule.

get lost in the numerical manipulation. In particular, long range terms due to the

interaction of the molecular multipole moments are not included in the expansion.

At large values of the intermolecular distance, R, where the molecules can be
treated as non-overlapping charge distributions, analytical expressions for the long
range electrostatic and induction terms may be obtained from perturbation theory
(Buckingham, 1967, Leavitt, 1980). When g =0, the linear rotor — symmetric
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3.4.2

top potential terms reduce (to within a factor) to that found for linear rotor -
linear rotor collisions, and the form of the long range terms for the latter have
been discussed by Flower et al (1979). The linear rotor - linear rotor analysis uses

the body fixed potential expansion :

VA, Aov A A / Ay Dt Ao 1
Ay 4 Y 1 2 Y 1 Y’ 2 4.
=~ 21+ 8,0)12 (YU(R)YZ2(RY) + Y2 (RDY, (RY)) 3.4.4

ON

2

This is equivalent to the linear rotor — symmetric top body fixed potential expan-

sion (3.4.1) when p = 0 if:

1/2
uPST = (14 6,0)(20 + 1)(2m)) /2uf - LR 3.4.5

Thus the leading x4 = 0 terms in the linear rotor — symmetric top perturbation
expansion are just the leading terms in the linear rotor — linear rotor expansion
multiplied by the factor ((1 + 8,0)(2A\1 +1)(27))1/2. The leading long range terms

are given in table 3.1.

Fitting of the Potential
SCF:

The ab initio data has been calculated at intermolecular distances of R = 4 to 9
atomic units in steps of one atomic unit, with a few selected terms at 10, 11 and
12 atomic units. To obtain the potential at intermediate R, and to extrapolate
beyond R=9au, a fitting routine must be used. Following Danby et al (1986), we
use the fact that the SCF contribution is expected to fall off exponentially with
R, and scale the energies by a scaling function A exp(a(R — Rp)) where A is the
potential at Rp. This reduces the rapid variation with R at small intermolecular

distances and renders the data more amenable to spline fitting.

In the present work the value of @ was optimized by taking an initial value
from the first two data points, and varying « until a trial fit agreed, to within some

given tolerance, with the value of the nth data point V(R), where R > 5au.
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A spline was fitted to the scaled function using the NAG routine E02BAF.
To allow extrapolation beyond the maximum value of R it was necessary to set
V = 0 at some appropriately large value of R. Extrapolation beyond R,,., will
not, of course, be reliable, but the fitted SCF potential is rapidly killed off by the

exponential scaling in this region.

A rough check on the reliability of the fitting function can be obtained by
fitting to, say, all but two of the data points for a given angular configuration, and
checking the extrapolated points against the known data points. The results of
two such tests are shown in table 3.2. It can be seen that the fit is adequate at
intermediate values of R but, as expected, it falls off too rapidly beyond Ry, .x and

all long range information is lost.

As suggested earlier, this problem can be largely overcome by including the
long range induction and electrostatic terms explicitly. It was decided to include

those terms falling off as R~™ where n < 5, plus the isotropic R~9 term.
The following algorithm was used to introduce these terms:

i: A quantity f(R) equal to the numerical value of the induction and electrostatic

long range expressions evaluated at R was subtracted from the data terms
ii: The modified data points were fitted as before
ili: The quantity subtracted in (i) was added back to all values of R.

The leading long range induction and electrostatic terms are thus included
explicitly, and are no longer ‘killed off’ by the exponential scaling procedure. The
results of tests on this fitting method are shown in table 3.2. The behaviour of the

interaction potential with R appears to be satisfactory.
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3.2:SCF fit with and without explicit long range terms

The potential at (R, 6, ¥/, 85, $5) is given in units of inverse centimetres.

0} = 22.5,v) = 20.0,6, ¢y = 0.0 | 6] = 112.5, ¢} = 40.0,6}, ¢, = 0.0

data SCF fit  SCF fit data SCF fit SCF fit
R | points without with R | points without with
LR terms LR terms LR terms LR terms

9.0 {-51.893 -51.893 -51.893 | 8.0 |29.805 29.805 29.805

9.2 -47.407  -47.201 | 8.2 25.477 25.645
9.4 -43.273 -42.927 | 8.4 22.024 22.404
9.6 -39.417  -39.047 | 8.6 19.198 19.823
9.8 -35.804  -35.534 | 8.8 16.830 17.721

10.0[-32.414 -32.414 -32.361 | 9.0 |15.534 14.807 15.974
11.0}-20.696 -17.554 -20.617 |10.0| 9.896 7.837 10.223

12.0{-13.724 -8.392 -13.628 |15.0 0.150 1.881
15.0 - 0.591 - 4.909 ]20.0 0.001 0.561
20.0 - 0.004 - 1.418

Bold face entries indicate the given data points
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Dispersion Energy:

Bearing in mind that the dispersion energy can be expressed as a sum of terms
falling off as R™™ with n > 6, the dispersion energy was fitted to the functional
form : 0ol
Vaisp(R, Q1 RY) = S —LR11—2—) 3.4.6
n=>6
(Danby et al, 1986) i was pesfesmed using the NAG routine FO4ATF. The calcu-

lated dispersion data again covers R = 4 = 9au, with a few additional long range

terms at 25, 40 and 80au which can be used to provide a check on the fit.

Fitting the function to the 4 — 9au data points introduced an error of a
factor of two at 25au, and three at 80au. However, it was found that the fit could
be greatly improved by setting E = 107!2cm™! (or zero) at R=1000au. With this
modification the results agreed to around 2% at 25au, and 25% at 40au (table 3.3).
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3.3:Dispersion fit for the long range values

The potential at (R, 81, ¥, 85, ¢5) is given in units of inverse centimetres.

V(R)=4,5,6,7 and 9 are given
81,91, 02, d2 = (90,0,90,0) | 81,%1,62, 62 = (180,0,0,0)
R data fit data fit
8.0 |-36.888 -36.914 -39.846 -39.937
8.2 -31.326 -33.960
8.4 -26.700 -28.999
8.6 -22.855 -24.864
8.8 -19.644 -21.404
9.0 |-16.953 -16.953 -18.496 -18.496
10.0 - 8.971 - 9.391
15.0 | - 6.760 - 6.964 - 0.753 - 0.755
25.0 [ - 0.030 - 0.030 - 0.032 - 0.034
40.0 |- 0.0018 - 0.0015 - 0.0015 - 0.0020
bold face entries indicate given data points
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3.4.3 Fitting to the body fixed potential coefficients.

The body fixed potential expansion (eqn 2.6.14) can be rewritten as:

VIRQLRY) = 5 3 vy (R
ALdgr p2>0

x (D (QDY2E(Ry) + (1) DN, (0)Y,(RY))

3.4.7

1/2
_ UAlp,\zu 2/\2 +1
> 3 el (2

A1 A v 20
X d(61)dy?,(85)(2 cos(pyp — vh))

Thus for each value of R there is a set of I simultaneous equations, where
I is the number of angles for which data is available. The set of simultaneous
equations can be solved using standard methods to yield the expansion coefficients,

Ya,uhgv- In the current work the expansion coefficients were evaluated using the

NAG routine FO4JAF.

For the SCF potential, the data for the geometries 85 = + cos™1(371/2), ¢} =
+7/4 was fitted separately to the 65,45 = (0,0), (90,0), (90,90) data (Billing
and Diercksen, 1985) so as not to degrade the accuracy of the latter. Thus the

= 0,%2 terms were taken from a fit to the large basis set data, and these
were then supplemented by a fit to the additional geometries from which only the

v = %1 terms were retained.

There was no such problem with the second order perturbation theory (EK)
dispersion data where the number of geometries was sufficient to give all four
Hs spherical harmonics with As < 2, but the MBPT fit yielded only those with
v = 0,4+2. The v = %1 terms used in the MBPT calculation were taken directly
from the EK dispersion energy fit.
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3.4.4

Having obtained the body fixed potential expansion coefficients, it remains
only to convert them to the space fixed frame. This may be done using the con-
version already derived (eqn 2.6.27). The space fixed vy x,a,(R) are given in
appendix D. The number of angles at which data was available was sufficient to
yield all vy a,au(R) with Ay < 6, and Ay = 0,2, giving 55 non-vanishing space

fixed coeflicients.

Integration of the Coupled Equations

The coupled equations for NH3 — Hy collisions take the form:

&+
dR? R?

2GR _2uz VIV GI(R) 3.4.8

where v = j1, k, j2, 712, 1, and (¥'|V|y") is given by equation 2.6.36.

The coupling of j; and j2 to form ji2 increases the number of coupled equations,
the size of arrays and the CPU time needed dramatically in comparison with the
atom — symmetric top problem, and the calculation can become very unwieldy at

all but the lowest energies.

The coupled equations were solved using the MOLSCAT computer code (Hut-
son and Green, 1986), once the necessary modifications had been made to treat
linear rotor — symmetric top collisions. These changes are detailed in appendix B.
The calculations were done partly on the Amdahl 5860 at Durham, and partly on
the CRAY XMP at Rutherford. Typical CPU time per partial wave was 830 Cray
CPU seconds for the low energy ortho-NHj — H» collision which used a maximum
of 2176312 eight-byte words of storage with the basis set used. This was largely
due to the size of the array that stores the individual terms in the coupling matrix
element sum. This is of dimension N2 x Mzlam, where N is the number of channels
considered, and Mzlam is the number of potential expansion coefficients ( 55 here

). The wavevector array is smaller due to the summation over Aj, A9, A and .

The potential expansion coeflicients were fed into Molscat using the VSTAR
mechanism. The program requires the value of vy y,,(R) at a given R. To this
end a spline was fitted to the vy, ;a,'s from which vy x,0.(R) could be obtained
for any R such that 2.1A < R < 52.924A.
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The changes made to Molscat were checked by running the program with jo = 0
and comparing with the para-Hj (j2 = 0) results of Danby et al (1985, 1986). The
only difference between the analysis of Danby et al and that used here when j3 = 0
only is the method of averaging over the Hs orientations. In the former this was
done by giving each Hy orientation a weight of 1/3 and simply adding the weighted
values, in the latter it was done by the fitting the potential to an expansion that

explicitly takes account of the Hy orientations.

Table 3.4:

Using potential of Danby et al, for the first two partial waves, Ji,x = 0,1 only,
at an energy of 200cm™! above the respective ground state, and with a NH; basis

consisting of the first six rotational levels of ortho-NHj. Units are 10~ '6cm?.

i f| on0 ol2=1
10+ 00+ 0.747 E-1| 0.621 E-1
20+ 00+ 0.886 E-2| 0.737 E-2
30+ 00+ 0.117 E-1| 0.970 E-2
33+ 00+ 0.159 E-6| 0.229 E-6
33- 00+ 0.437 E-1| 0.363 E-1

At this point a further test was done. Using the potential with A3 = 0 terms
only, collisional calculations were done using both ortho (j2 = 1) and para (jz =
0) Hz and ortho-NHj. These were performed with a small NHj basis set (j, k < 3),
and only considering the first three partial waves. Some results are shown in
table 3.4. It can readily be seen that the two cases exhibit very similar behaviour,
which would be expected given that the only terms in the potential are those

with no dependence on the H; orientation | but, when taken in conjunction
with the later results, they underline the importance of proper treatment of the

Hj rotation in these collisions.
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3.5 Ortho-NH; — H, Collisions.

1

3.5.1 Low Energy Calculations: 125cm™

It has already been mentioned that calculations for the linear rotor — symmetric
top type problem rapidly become very large as the energy increases, so the energy
was chosen to be as low as possible whilst still high enough to illustrate the basic

differences between excitation by ground state Ha (7 = 0) and Hz with j > 0.

The energies of the first few rotational levels of NHj (calculated using the
symmetric top formula with B = 9.9402, C = 9.3044 (Green, 1976)) are:

jk e Energy

00+ ...... ... ... ... 0.0000cm™1
104 ... ... 19.8805cm™!
20+ oo ve o ... 59.6414cm™!
30+ .o oo ... 119.2828cm™!
334+ .o ... 86.5601cm™!
40+ .............198.8046cm™!
434+ ......... ..166.0819cm™!
50 4 .o . ... 298.2068cm ™!
53+ ..o ... 265.4841cm™!
604+ ...............417.4895cm™!
63+ ......... ... ... 384.7668cm ™!
66+ ......o.........286.5989cm™?

It was decided to choose an energy of 125cm™! (0.0155 eV) as this includes the
first of the k-doublet levels, but the calculation has no yet become too unmanage-
able. The collision energy of 125cm™! is with respect to the ground state of both

molecules.

The major approximation in the use of the close coupled equations is the

truncation of the basis set. For NH3 — Hg collisions there are two basis sets to
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consider, that on the NH3 and that on the Hy. In the calculations of rotational
excitation NH3 by ground state para - Hg it is implicitly assumed that one ro-
tational state in the Hj basis is adequate. The argument for this is that the
molecular Hydrogen rotational levels are widely spaced with respect to the energy
(EJ‘=2 — E]‘=0 = 354cm_1).

For the low energy Hs — NHj collision, calculations were performed using para-
Hj basis sets of both (j2 = 0) and (j3 = 0,2). The ortho-Hjy calculations used only
a basis of (j2 = 1). Tests were done to assess the effect of neglecting the (j; = 3)
level, and it was found to be small (table 3.5).

The rotational spacing between the first two ortho-Hgy levels is larger than for
the first two para-Hg levels (F3 — Ey = 587cm™!), and in addition, the (j3 = 3)
state of ortho-Hs might be expected to behave in a similar way to the (j2 = 1)
state. It therefore seems likely that the neglect of (ja = 3) collisions can be
justified, especially when the great increase in computer time which would result

from the inclusion of the (j = 3) level is taken into account.

The basis set on the NH3 is more critical. Basis set convergence tests were
performed for NH3 — para-Hy (j2 = 0) collisions and the results are given in
table 3.6. A B14 basis set was chosen for the calculations, including the fourteen
energetically lowest states (E;; < Eg6). In these calculations no account was taken
of the energy splitting between the inversion doublets, as this has been shown to
have only a negligible effect on the results (Green, 1980, Billing and Diercksen,
1985).

The calculations were performed using both the potentials (SCF+MBPT,
SCF+EK), and with Hj basis sets of (j2 = 0), (j2 = 0,2) and (j2 = 1). Twenty-
one partial waves were included to give convergence with respect to total angular

momentum of three significant figures.The results are given in table 3.7.
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3.5:The effect of neglecting the first excited levels of ortho and para-H,

Calculations used a B9 basis for ortho-Hy and a B12 basis for para-Hy. The

calculations were for an energy of 125cm™!, and considered the first two partial

waves (Jior = 0,1), cross-sections are given in units of 10~ 16cm?.

]ke — j’k’e’ 0-.72:1 O‘]2=13 0-.72:0 0'.72=0~2

00+ — 00+ | 1.26 1.20 1.80 1.14
00+ — 10+ | 0.14 0.09 0.30 0.61
00+ — 20+ | 0.13 0.15 0.05 0.03
00+ — 33+ | 0.085 0.078 0.000 0.000
00+ — 33— 0.055 0.057 0.24 0.19
00+ — 30+ | 0.025 0.030 0.043 0.049

104+ — 20+ | 0.11 0.10 0.17 0.35
10+ — 33+ | 0.042 0.044 0.16 0.13
104+ — 33— | 0.075 0.068 0.016 0.034
10+ — 30+ | 0.051 0.059 0.020 0.040

20+ — 33+ | 0.058 0.056 0.013 0.022
20+ — 33— ] 0.050 0.053 0.049 0.056
20+ — 30+ | 0.13 0.13 0.089 0.32

33+ — 33— 0.43 0.40 0.051 0.13
33+ — 30+ | 0.025 0.027 0.028 0.042

33— — 30+ | 0.041 0.045 0.006 017
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3.6:0rtho-NHj3; — Hy convergence tests

!, using a (jo = 0) Hy basis set,

Convergence tests were performed at 125cm™
and considering the first two partial waves (J;t = 0 — 2), cross-sections are given

in units of 10~ 6cm?.

Transition NHj3 basis
jke — j'k'e’| B6 B9 B12 B14 B16  B17
00+ — 10+ | 0.640 0.663 0.663 0.658 0.658 0.658

00+ — 20+ | 0.119 0.115 0.119 0.119 0.119 0.119
00+ — 33+ | 0.000 0.000 0.000 0.000 0.000 0.000
00+ — 33— 0.502 0.526 0.525 0.549 0.551 0.551
00+ — 30+ | 0.069 0.082 0.082 0.081 0.082 0.083

10+ — 204 | 0.439 0.436 0.446 0.442 0.442 0.442
10+ — 33+ | 0.397 0.419 0.420 0.440 0.440 0.440
10+ — 33— | 0.049 0.038 0.039 0.040 0.040 0.040
10+ — 30+ | 0.017 0.042 0.043 0.042 0.043 0.043

20+ — 33+ | 0.072 0.061 0.062 0.065 0.065 0.065
20+ — 33— | 0.217 0.257 0.261 0.272 0.272 0.272
20+ — 30+ | 0.382 0.361 0.368 0.366 0.368 0.369

33+ — 33— | 0.458 0.410 0.413 0.407 0.408 0.408
33+ — 30+ | 0.072 0.081 0.085 0.089 0.088 0.089

33— — 30+ | 0.044 0.040 0.040 0.042 0.042 0.042
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3.7: Ortho-NHj3; — Hs converged cross-sections at 125cm™?

0~1%cm?. The calculations were done using

Cross-sections are given in units of 1
the Manolopoulos integrator and a basis set consisting of the energetically lowest

14 rotational states of NHj.

Transition SCF+EK potential SCF+MBPT potential

jke = j'ke’ | ja=1 ja=0 j2=0,2] ja=1 j2=0 jp=0,2

00+ — 10+ | 36.8 10.3 25.5 40.5 4.13 13.0
00+ — 20+ | 10.9 2.90 2.30 9.93 7.59 4.91
00+ — 30+ | 0.444 0.588 0.357 0.478 0.406 0.511
00+ — 33+ | 3.05 0.118 0.0465| 3.15 0.0237  0.0570
004+ — 33— 1.77 5.57 4.71 1.50 4.98 5.04

10+ — 20+ | 17.7 6.23 15.6 17.6 3.75 9.99
104+ — 30+ | 0.993 0.363 0.361 0972 0.694 0.533
10+ — 33+ | 2.33 4.82 3.93 1.96 3.76 3.62
10+ — 33— | 3.06 0.351 0.602 3.00 0.114 0.300

204+ — 30+ | 3.81 3.30 4.58 3.81 1.29 3.57
20+ — 33+ 3.31 1.59 1.48 3.20 0.241 0.496
20+ - 33— 3.20 3.18 2.95 2.95 2.24 2.32

30+ — 33+ | 10.9 8.27 5.03 6.62 2.32 2.39
30+ — 33— 9.33 2.74 3.09 7.40 0.686 1.33

33+ — 33— | 43.7 16.1 37.3 49.4 4.37 19.7
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3.5.2 Discussions:
Para-H; (j = 0) versus Para-H; (j = 0, 2)

We first discuss the comparison between the results for collisions with para-H»
confined to its rotational ground state (j» = 0 only) and the results for calculations

using a (j3 = 0,2) basis set.

It can be seen from table 3.7 that the inclusion of (j2 = 2) in the basis set has an
appreciable effect on the cross sections, even at energies well below the threshold
energy of the (jo = 2) Hj state. In particular, the dipole allowed transitions,

Aj =1, Ak = 0, are enhanced when (j2 = 2) is included in the basis set.

It should be noted that the basis convergence tests indicated that the inclusion
of the (j2 = 3) rotational state in the ortho-Hs basis set had a far smaller effect
than the inclusion of the (j2 = 2) state in the para-Hg basis set. Although the
difference could be explained by the fact that the energy spacing of the rotational
levels is greater for ortho-Hg than for para-Hs, it may also be partly due to the
fact that rotationally excited hydrogen molecules have nonvanishing quadrupole
moments whereas ground state para-Hs molecules are spherically symmetric. Thus
the first excited state of para-Hs may be needed to obtain a good convergence with
respect to basis set size because it enables the Hy and NHj molecules to interact via
potential terms that are not available if spherically symmetric collisions partners
(j2 = 0) are considered. In contrast, the first two rotational levels of ortho-Hg,

(j2 = 1) and (j2 = 3) will behave similarly as collision partners.

The conclusion that the (j2 = 2) level should be included in the basis set is
in agreement with the conclusions drawn by Billing and Diercksen (1985) from
a semi-classical study of the NH3 — Hq collision system, and contrasts with the
findings of Brechignac et al (1980) for the CO - Hj collision system. The CO
molecule has a weak dipole moment, and the latter reported that for the CO -
Hj system the inclusion of the (jo = 2) level had less than a 10% effect on the

rotational cross-sections.
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Ortho-Hs versus Para-H;

From table 3.7 it can be seen that, in general, the ortho-Hy cross-sections are larger
than the corresponding para-Hg cross sections. In particular, the dipole allowed
transitions are very much larger for transitions with (j2» = 1) ortho-Hs. This is
particularly clear in the comparison between the results for the (; = 0) Hy and
(j = 1) Ha calculations using the SCF+MBPT potential. The jke = (00+ — 10+)
cross-section increases by a factor of ten for the (jo = 1) calculations, and the
jke = (10+ — 20+) cross-section increases by a factor of six. The enhancement
of the dipole allowed transitions is less marked in calculations using the SCF+EK
potential, but it remains substantial. It should be noted here that the SCF+MBPT
potential is probably the most reliable of the two potentials used, although the
SCF+EK is more complete, in so far as all the dispersion expansion coefficients

were obtained from the same data set.

When the (j2 = 2) rotational level is included in the para-Hj basis set there is
still an appreciable enhancement of the dipole allowed cross-sections for collisions

with ortho (j = 1) Ha when compared with the para (j = 0,2) Hy results.

The physical reason for this enhancement can be seen by dividing the results
into Ak = 0 and Ak = 3 transitions. In the limit ¥ — 0 the linear rotor —
symmetric top problem reduces formally to the linear rotor — linear rotor problem
and comparisons can be drawn with previous work on Hy — linear rotor collisions.
Table 3.8 gives the ratio of cross-sections for excitation with (j = 1) Hy to cross-
sections for excitation with (j = 0) Hy for both HCI - Hz collisions (Green, 1977)
and NH3z — Hj collisions (this work).

Both the HCI - Hj collisions and the NH3 — Hy collisions show ortho-Hy cross-
sections that are appreciably larger than the para-Hs results. The model HCl - Hy
potential used by Green (1977) explicitly included long range dipole — quadrupole
type interactions, but did not include any long range quadrupole — quadrupole type
interactions, and the enhancement of the Aj = 2 transitions is correspondingly

smaller.
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3.8: Comparison between the ratios o(j, = 1)/0(j, = 0) for NH3 — Hy
collisions and HC1 - H; collisions (Green, 1977)

Transition HCIl - Hy NHj; - Hy

j— 3 | 200cm™! 300cm™! 125¢cm™ L
SCF+MBPT SCF+EK

0—-1 3.5 2.6 9.8 3.6
0— 2 1.2 1.1 1.3 3.8
0—3 1.0 1.0 1.2 0.8
1 —2 3.0 2.6 4.7 2.8
1—-3 1.1 1.0 1.4 2.7
2—-3 1.9 2.1 3.0 1.2

In the NH3 — Hs potential, both long range dipole — quadrupole and quadrupole
— quadrupole type interactions were included. For the SCF+MBPT potential the
behaviour is qualitatively similar to that of the HCl — Hg results, in that the
dipole allowed transitions (Aj = 1) are much enhanced, and the enhancement
falls off rapidly with increasing Aj. For the SCF+EK potential there is a much
larger enhancement of the quadrupole allowed transitions (Aj = 2). The difference
between the SCF+MBPT and SCF+EK potentials here can be explained by the
fact that the latter has a smaller vygg9 term so the boost given to the Aj = 2

by inciusion of the X3 > © +terms
transitionsfis relatively larger than was the case for the former.

The most striking difference between the ortho and para-Hj results is for the
Ak = 3 transitions, in particular the behaviour of the jke = (00+ — 33=%) cross-

section. The para-Hjy results clearly show the propensity rule:

o(004+ — 33+) << o(00+ — 33—)
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However, for collisions with ortho-Hz this is no longer case, and there is a slight

propensity in the opposite direction.

The reason for this change can be seen by examination of the form of the

coupling matrix elements.

We have:

o TR VR T V"
' 1 1 J1
d\% ~ (14 €e!(=1)1HiiHAetApy (T2 222 3.5.1
(7' /\1/\2/\/1,‘7) ( ( ) ) 0 0 0 _kl m k

Consider the transition (jk+ < 004+). For collisions with ground state para-Hj,
j2 and jj are both zero. If we consider transitions out of the ortho-NH; ground

state, the 3-j symbols give:

A2 =0

N = A=3ji only. 3.5.2
1=

Thus, with ¢ = 3, the coupling matrix element is proportional to:

(1+ ee'(—l)jl‘”{*‘k)
3.5.3
— (14 ec'(=1)")

For k = 3 the coupling matrix element vanishes if ¢ = €¢’. Thus the transi-
tion (j3+ — 00+) can only take place through indirect coupling. The transition

(j3— — 00+) proceeds through direct coupling.

For transitions with ortho-Hy (7 = 1) we have:

Ay =0 Ay =2
. or i . . 3.5.4
A=]1 >\=(]1:i:2),(]1:t1),]
We now have non-zero contributions for both ee’ = +1 and e’ = —1.

The difference in propensities for the (00+ — 33%) transition found here

between the results for collisions with ground state para-Hj, and the results for
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collisions with ground state ortho-Hj is at variance with the results of Billing and
Diercksen (1988) and Ebel et al (1990) for the same system. Their calculations
predict qualitatively similar behaviour in this transition for collisions with both
ortho-Hy and ground state para-Hy. The physical reason for this discrepancy can

be most clearly seen with reference to the body-fixed formulation (section 2.6.6).

In the body fixed frame, the potential expansion can be written as:

V(R, = 3 v g (R)(DAL() Y22 (RY)). 3.5.5

A1 Ag
wy

Working in the coupled states approximation for simplicity, the coupling matrix

elements take the form:

CME o it A on (]i M1 (Jé A2 jz)
-k H k —Q’l v Ql 0 0 0

y jo A de\ (1 J2 g2\ {J1 J2 J"12)
Q- )\ 9 -0/ \q o -

where §; is the projection of j; on the intermolecular axis, and €3 is the projection

3.5.6

of jo. In the coupled states approximation, (= ; + §22), is assumed constant,

although ©; and Q2 may change within this constraint,

A -U=W-Q%=v 3.5.7

In a full close coupled calculation, € is coupled to €' = +1 through the Coriolis
term (Rabitz, 1976):

— % (J2Q+ DT F D012 F D012+ 1))1/2

x (14 6q0)(1 + 8gz10))*/?

(QE/REQ £ 1) =
3.5.8

but if jo = 0, then 2 must be conserved if j1(= j12) and §2; are zero.
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Billing and Diercksen (1986) introduce a potential expansion of the form:

V(R R, Ry) = Y vaungn(R)YM(R)Y 2 (R))). 3.5.9
A Ag
wn

The equivalent of equation 3.5.6 is then:

-7 A . .f A . 1Y} A .
CME o VAl 1 N WAl 1 N Jo 2 J2
—k! u k —Q’l 0 0 0 O

x(ié A2 jz)(]i 72 J'12)<J'i Ja 712
— 7 )\ 0 -0/l @ -o

With the potential expansion, 3.5.9, the value of ) cannot change, as there is

3.5.10

no term in the potential to affect such transitions (although note that now 2 is not
fixed if » > 0). In the version of the coupled states approximation used by Billing
and Diercksen, and by Ebel et al, the average over ¢2 is taken, setting n = 0, so
that Qg (and ) are conserved. In this limit the potential expansion, 3.5.9, is the

same, to within a constant, as the expansion 3.5.6 with v = 0 only.

Returning to equation 3.5.6, we see that with the potential expansion (eq 3.5.5),
the principal difference between (ja = 0) and (ja > 0) collisions, is that in the latter
Q; and {2 may change, as A2 > 0, v > 0 are allowed. From the body fixed to

space fixed conversion (eq 2.6.27):

CArhz A 4r N\ 112
VA u(R) =3 (1151,3) ( )

— 2\ + 1
3.5.11
X (Uapagw(R) + (= 1)M 22 Ay _au(R))
along with the relation:
Ua udgr(R) = (=1)Fox, —pa,—o(R) 3.5.12

it can be seen that if the sum, (A1 + X2+ A+ pu), is odd, only v > 0 terms contribute
to vx,a,au- Space fixed expansion terms with (M + A2 + A + i) odd are the very
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3.5.3

terms which drive the ortho-NHj transitions that are ‘forbidden’ by symmetry
when j2 = 0, thus ortho-NHj3 transitions such as (004 — j3+) are driven only by
body fixed terms with v > 0.

The body fixed terms with v > 0 in the potential expansion 3.5.5 are the terms
that change the projection of j; and j2 on the intermolecular axis, and are present

regardless of whether or not the coupled state approximation is used.

In contrast the potential expansion 3.5.9 does not contain these terms, and the

behaviour of the NH3 cannot be not fully represented with this expansion.
SCF+MBPT versus SCF+EK

The para-Hy results are noticeably affected by the change in the potential. In
particular, transitions with Aj = 1, Ak = 0 are smaller with the MBPT potential,
whilst terms with Aj = 2, Ak = 0 are larger. The former transitions are driven
by the w910 term in the space fixed potential expansion whilst the latter are
driven by the vgggg term. The differences between the two potentials have been
discussed by Danby and Valiron (1989). They conclude, after comparison of the
theoretical results with the double-resonance data, that the vgg9g term could have
been underestimated by the SCF+EK potential.

The ortho-Hy results are far less affected by the change in potential. This may
be due to the effect of the number of additional terms contributing to the coupling
matrix element for each transition. It may also be due in part to the fact that the
v = +1 terms in the body fixed expansion could not be obtained from the MBPT
data and had to be taken from the EK potential surface with which comparison is

now been made.

Experimental Energy: 605cm™!

In view of the change in the (00+ — 334) propensity rules found for collisions with
ortho-Hy (j = 1) it is interesting to run calculations at the energy of the cross-
beam measurements of Seelemann et al (1989) and Ebel et al (1990), to see if the
inclusion of rotationally excited Hy states could explain the discrepancy between

the theoretical and experimental results.
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The major problem for such a calculation is the size of the basis set that would
be required to treat the system fully. At an energy of 605cm™! seventeen NHj
rotational states are energetically accessible. In addition, the (jo = 2) rotational
state of para-Hj is also energetically allowed. The CPU time per partial wave
increases as E'/? as does the number of partial waves needed for convergence,
so even with the same basis sets as previously, the calculation takes five times as
long at 605cm ™! than at 125cm™~!. If we wish only to make a comparison with the
experiment and if we are, therefore, only interested in the relative behaviour of the
cross-sections, it seems reasonable to truncate the basis set to a manageable size,
and look only at the transitions between the energetically lower states, making the
assumption that for these states the convergence is adequate (eg the discussion in

section 2.5.1).

For this reason it was decided to use the same B14 basis set on the NH3 as had
been used for he lower energy calculation. For collisions with ortho-Hg, jo = 1 only
was included. Tests including the |j1kjz2¢) = |003+) and |103+) states in the basis
showed that their inclusion made very little difference to the relevant cross-sections
(< 10% for the first three partial waves). For para-Hp an incomplete basis set
was used, including j; = 2 for the |{002+) and |102+) states only. This will not
give excellent convergence with respect to basis set size, but, for comparison with
the experiment, the cross-sections are weighted to allow for the 3:1 ortho:para-
Hs ratio. Thus the final results are dominated by the ortho-Hy results, and the
reduced para-Hg basis set should be adequate.

The calculations were performed on the CRAY XMP at Rutherford using the
Manolopoulos method for integrating the coupled equations. Thirty-eight partial

waves were necessary to give convergence of the relevant cross-sections.

The experimental results are quoted as relative cross-sections, and are nor-
malised with respect to previous theoretical cross-sections. Results for the present

calculation are presented in table 3.9.

The crossed-beam experiments of Seelemann et al and Ebel et al yielded infor-
mation on the relative sizes of the inelastic cross-sections for rotational transitions
out of the rotational ground state for collisions of NH3 with normal (3:1 ortho:para)

Hy. In table 3.10 the experimental and current theoretical results are compared.
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3.9: Ortho-NHj; results at 605cm™"

Cross-sections in units of 107%cm? for the rotational excitation of ortho-NHj

from its jke = 00+ ground state in collisions with ortho and para-H; at 605cm™!.

Final state| Ortho-Ho Para-H
10+ 16.4 14.4
20+ 6.97 0.314
30+ 1.59 0.586
40+ 0.738 0.211
33+ 2.39 0.0165
33— 3.07 5.29
43+ 1.12 0.0018
43— 1.65 3.65

The results are normalised so that the sum of the inelastic cross-sections given in

table 3.9 is one.

The experiment studied collisions of rotationally cooled NH3 with a beam of
normal Hs, so for comparison with the experiment the results were weighted in a
3:1 ortho:para ratio. The 3:1 ratio is appropriate if the hydrogen molecules are
exclusively in their respective rotational ground states. For a room temperature
distribution approximately half the para-H; is in excited rotational states, and
under such conditions it might be more appropriate to assume the (j > 1) Hq
behaves more like (j = 1) Hp than (j = 0) Hg, and weight the results in a 7:1

ortho:para ratio.

From table 3.10 it can be seen that, despite the inadequacy of the basis set used,
the agreement between the experimental and theoretical results is very satisfactory.

The potential used for the calculation was the SCF+EK potential and, following
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3.10: Comparison with experiment

Relative cross-sections for excitation from the 00+ ground state into the final

state, j'k’e’. All results are normalised so that the sums of the given cross-sections

are one.
Final state experiment theory
7'k'e! Seelemann  Ebel | Current Ebel Billing
et al et al work et al
10+ 0.38 0.44 0.50 0.44 0.70
20+ 0.23 0.21 0.17 0.13 0.05
30+ 0.05 0.05 0.04 0.06 0.02
40+ 0.03 0.02 0.02 0.01 0.02
33+ 0.09 0.08 0.06 0.00 0.00
33— 0.14 0.12 0.12 0.24 0.08
43+ 0.04 0.04 0.03 0.00 0.00
43— 0.05 0.04 0.07 0.13 0.13

the discussion of Danby and Valiron (1989), it is thought that the vggg¢ term could
have been underestimated by the SCF+EK potential. In line with the 125cm™!
results, one might expect that ¢(00+ — 10+) would be smaller and o(10+ — 20+)

would be larger if a more reliable potential surface was used.

Thus it appears that the discrepancy between the experimental results and
earlier theoretical calculations can be explained by the neglect of the hydrogen

rotation in the latter.

A cautionary note might be added here. Whilst the above explains the discrep-
ancy between the ortho-NH3 — Hg results, a similar discrepancy remains between
the NH3 — He results (Seelemann et al 1989).
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3.6

3.6.1

For the NH3 - Hjy collisions, we note in passing that for the higher energy
calculations the cross-sections for the jke = (004+ — 10+) transitions are of a
similar magnitude for collisions with both ortho (j2 = 1) Ha and para (j2 = 0) Ho,
whereas there were substantial differences between these cross-sections at 125cm™1.
At high energies the collisions sample small impact parameters, and probe further
into the short range region of the interaction. As small impact parameters the
short range forces dominate the interaction, and they may be much the same for
(j2 = 0) and (j2 = 1) Hy. In this region the effects of the long range interactions
are drowned out, and the effects of the different multipole interactions are less

prominent.

Para-NH; Collisions

Details of the Calculations

The energy of the first few rotational levels of para-NHj are:

ki Facsgy
11+ ... ... ... ... 0.000
21+ ... ... ... ... 36.532
22+ .. ... ... 28765
31+ ... ... 99.402
32+ ... ... ... ... 88.495

Again, no account has been taken of the inversion splitting of the (otherwise)

degenerate k-doublets.

An energy of 60cm™! was chosen to give the basic features of the behaviour
of the cross-sections. At this energy there are six energetically accessible levels.
Basis set convergence tests were performed with respect to the NHj basis set
(table 3.11a), and the Hy basis set (table 3.11b) for both ortho and para-Hz. It
can be seen that the inclusion of the (j2 = 3) state in the ortho-Hj basis had a
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less than 10% effect on the cross-sections for the first three partial waves, whilst

the inclusion of the para-Hy (j = 2) state introduces a factor of two or more.

A basis consisting of the lowest ten rotational levels was chosen for the NHj,
with Hy basis sets of (j2 = 0),(j2 = 0,2) and (j2 = 1). For the bulk of the calcula-
tion the Manolopoulos method was used to solve the coupled equations. However,
for Jiot = 2 the integrator became unstable and failed to produce results with the
correct symmetry or even reproducible results. No satisfactory explanation was
found for this, and the gaps were filled in using the R-matrix propagator. The
problem might have gone unnoticed if there were no parity symmetry. The results

are presented in table 3.12.

3.6.2 Discussion
Para-H; (j = 0) versus para-H; (j = 0, 2)

The para-Hy (j = 0, 2) inelastic rates are larger than those obtained using the (j, =
0) only basis set. The difference is more pronounced here than it was for ortho-
NHj3 despite the fact that a lower relative collision energy is being considered. In
addition, the magnitude of the change seems to depend on the inversion symmetry

of the two states.

For example, labelling the states by j, £ and symmetry, where the symmetry

is related to € by equation 3.2.3, we see:

09=02(11s - 21a)  07=02(11s — 21s)

. c 3.6.1
o7=0(11s = 21a) ~ o9=9(1ls — 21s) ¢
09=02(11s — 22a) _ 0?=%2(11s — 22s)

- . 3.6.1b
07=0(11s — 22a) oi=0(11s — 22s)

7=0,2 — 7=0.2 - 22
o (21s - 22a) o (21s s) 3.6.1c

0i=0(21s — 22a) 01=0(21s — 22s)

To study these trends systematically, a far larger calculation would be needed
at a series of collision energies, but it appears that in every case the symmetry
changing collision is most effected by the inclusion of (j3 = 2) states in the Hs basis

set. In particular, for case (a) above it is the dipole allowed transition that has
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3.11a: Basis convergence wrt NHj basis

! using an ortho-Hj (ja =1

Calculations were done at an energy of 60cm™
only) basis, and the first four partial waves. Cross-sections are given in units of

10~ 6cm?.

Transition NHj basis

jke — j'k'e’l B8 B10 B14 B16

11+ — 11+| 104 10.4 10.4 10.4
11+ —- 11— 0.9 0.8 0.9 0.9
11+ — 21+ 14 1.5 1.5 1.5
11+ — 21— 1.3 1.2 1.2 1.2
114+ — 224| 0.3 0.3 0.4 0.4
114+ — 22—} 0.3 0.3 0.3 0.3

21+ — 214} 30.1 29.0 29.9 29.8

21+ — 21— 2.7 2.5 2.5 2.6
214+ — 22+ 0.7 0.9 0.9 1.0
21+ — 22— 1.1 1.1 1.1 1.1

22+ — 224 20.0 19.8 19.7 19.5
224+ — 22— 36 3.3 3.3 3.3

85



3.11b: Basis convergence, wrt Hy basis

1

Calculations were done at an energy of 60cm™ ", using a para-NHj basis con-

sisting of the energetically lowest ten rotational states, and the first three partial

waves. Cross-sections are given in units of 10~ 1%cm?.

Transition Hs basis
jke — j'k'e’l g2 =1 j2=1,3 j2=0 j2 =0,2
11+ — 11+ 5.34 5.42 7.11 5.77
11+ — 11— 0.52 0.44 0.56 1.13
114+ — 21+ 0.71 0.69 0.51 1.29
114 — 21— 0.64 0.69 0.14 0.23
11+ — 22+ 0.15 0.15 0.006 0.063
11+ — 22— 0.15 0.16 0.37 0.25
214+ — 21+ 14.37 14.51 20.96 13.96
21+ — 21— 1.32 1.26 0.28 0.45
214+ — 22+ 0.29 0.32 0.44 0.61
214+ — 22— 0.55 0.57 0.07 0.46
22+ — 22+ 9.46 9.44 11.62 8.04
22+ — 22— 1.65 1.56 0.92 2.77
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3.12: Para-NH3; results

Inelastic cross-sections (in units of 107'%m?) at a relative collision energy of
60cm™!, using the SCF+EK potential. Cross-sections for transitions from the

e = —1 state can be obtained from the relation:

o(jk+ — j'k'x) = o(jk— — j'k'F)

Transition ortho-Hs para-Hs

jke — j'k'e! je=1 je=0  j2=0,2
114 — 11— 28.4 7.18 20.5
11+ — 21+ 12.6 4.15 14.3
11+ — 21— 9.97 1.67 2.81
114+ — 22+ 1.74 0.0457 0.229
11+ — 22— 1.70 2.86 2.72
214+ — 21— 23.8 4.67 19.8
214+ — 22+ 3.59 2.93 3.76
214 — 22— 4.55 0.411 1.59
224 — 22— 44.2 15.2 48.1
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increased the most, supporting the hypothesis that it is indeed indirect transitions
involving dipole — quadrupole type interactions that are responsible for the change

in behaviour.
Ortho-H; versus Para-H-

Once again it is clear that the ortho-Hg cross-sections are in general larger than
the corresponding para-Hs results. This is true for all but the jke = (11+ — 22-)
cross-section if only (j2 = 0) is included in the hydrogen basis set, but if (72 = 2) is
included it is no longer true for the dipole allowed transition, jke = (21+ — 11+).

Comparing the results in more detail, the para-NH3 analogue of the (00+ —
73+) propensity rules can be seen. We have that:

CME ~ (1 + ee/(—1)Matittiita 3.6.2

In the case of the (114 — 22+) transition we have for para-Hs:
j2=j4=0 = A2=0
n=Lj= =  A&=123 3.6.3

only A; =3 allowed
thus we have:
CME ~ (1 4 ee'(=1)*+3+3) 3.6.4
which is identically zero if e = €.

With ortho-Hy the additional terms in the potential contribute to a non-zero

coupling matrix element for this transition.

3.7 Summary

In this chapter, the results of the first fully quantal close coupling calculations on
rotationally inelastic collisions of NH3 with (j > 0) Hy have been reported. The
consequences of including (j > 0) states in the hydrogen basis set are summarised

below:

88



e Cross-sections for rotational excitation of both para and ortho-NHj in collisions
with ground state ortho-Hy are qualitatively different from those for collisions

with ground state para-Hj.

e In particular, the transitions that are ‘forbidden’ by symmetry for collisions
with ground state para-Hjy are allowed in collisions with rotationally excited
(] > 0) Hs,.

e In calculations of rotational excitation in collisions with ground state para-
Hydrogen it is necessary to include (; = 2) in the para-Hy basis set to obtain
converged results, however, it is not so important to include the (7 = 3) state
in an ortho-Hj basis set where (j = 1) and (j = 3) Ha might be expected to

behave similarly as collision partners.

e The change in propensities for collisions with ortho-Hs can explain, at least in
part, the discrepancies between theory and experiment for rotationally inelastic
collision of ortho-NH3 with Ho.

Previous semi-classical coupled states calculations (Billing and Diercksen, 1988)
and other quantal coupled states calculations (Ebel et al, 1990) have failed to pre-
dict the change in propensities discussed above, but this can be explained by the
fact that the potential expansion used in their calculations (Billing and Dierck-
sen, 1985) does not include the potential terms that are directly responsible for

the different behaviour found in collisions with rotationally excited Hs.

A possible implication of the change in behaviour of the cross-sections for

(7 > 0) Hy will be discussed in the following chapter.
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Chapter IV

An Application : The jk = 33 Maser

4.1 Introduction

Ammonia is widely observed in the interstellar medium through a range of transi-
tions in the infrared, microwave and radio frequencies (eg Ho and Townes, 1983).
In particular, the Aj = 0,Ak = 0 inversion transitions, which fall in the mi-
crowave region of the spectrum, have been particularly well documented, and the
observations can provide valuable information on the physical conditions within a

cloud.

Walmsley and Ungerechts (1983) showed how observations of the para-NHj
inversion transitions could be used to obtain an estimate of the kinetic tempera-
ture, T, within a cloud by solving the relevant statistical equilibrium calculations,
to derive a relationship between the relative level populations for para-NH3 and
the local kinetic temperature. The ammonia thermometer was recalfibrated by
Danby et al (1988) using quantal NH3 - Hy calculations, and was shown to give

good agreement with results obtained from CO observations.

For ortho-NHj3, the possibility of collisional pumping leading to population
inversion in the (jke = 33%) doublet was first mentioned in the same paper of
Walmsley and Ungerechts (1983). They calculated the NH3 level populations un-
der typical molecular cloud conditions. Their calculations showed population in-
version in the 33 inversion doublet for a narrow range of densities. Observationally
Guilloteau et al (1983) made a tentative identification of maser emission in the
33 inversion doublet towards the continuum source DR21. Their deduction was
based on observations of the (1,1),(2,2) and (3,3) inversion transitions. Assuming
that the ortho:para-NH3 ratio was the same in the area of the (1,1) and (2,2) ab-
sorption as in the area of the (3,3) emission line lead to the conclusion that the
excitation temperature (section 4.2) across the 33 doublet was greater than 100K,

or even negative (implying population inversion). They explained the anomaly
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using the collisional rates of Green, concluding collisional excitation could produce

the observed excitation temperatures.

Johnston et al (1989) published results confirming the existence of (jk=33)
maser emission in °NHj towards NGC7538-IRS1 where the kinetic temperature
in the core of the NHj3 region was believed to be > 170K, with a molecular
hydrogen demsity of ng, ~ 5 x 107cm™3. They discussed both the collisional
pumping scheme of Walmsley and Ungerechts (1983) and alternative schemes in-
volving transfer of population to vibrationally excited NHj levels (Mauersberger
et al, 1988). The latter was suggested by Mauersberger et al to explain masers in
non-metastable states and in reality there are probably a number of mechanisms

leading to inversion depending on the local conditions.

Previous work has used the calculated ground state para-Hs collisional rates,
however, the ortho:para ratio is not known. It is thought that Hs is probably
formed in excited rotational states on grains resulting in a 3:1 ortho:para ratio.
The ortho:para ratio may vary with time (Flower and Watt 1984) through proton

exchange reactions of the form:

Hj(ortho) + HY — Hy(para) + HT + 170.5K

4.1.1
Hs(ortho) + Hf — Ha(para) + Hf + 170.5K

3

with a rate of ~ 2.2 x 107 %m3s~!. Thus the ortho:para-Hj ratio would fall from

the initial value of 3:1 to the thermodynamic equilibrium value given by:

n(o — Hy)

T2 4.1.2
n(p — H2)

—170.5)

=9><exp( T

The factor or nine in the equation is correct if all the ortho and para-hydrogen
molecules are in their respective ground states, and comes from the statistical
weight factor (21 +1)(2j + 1), where I is the nuclear spin. In this chapter the effect

of including ortho-Hy collisions is investigated using a simple model calculation.
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Figure 4.1: Rotational energy levels of ortho-NHj3
and the proposed collisional pumping mechanism
4.2 Theory

A necessary condition for (jk = 33) maser emission is population inversion in the
33 doublet. A schematic energy level diagram for the first few rotational states
of ortho-NHj3 is given in figure 4.1. In general, both radiative and collisional
transitions between the levels occur, with the relative importance of the two being
determined by the local molecular hydrogen density. However, transitions between

the k-ladders are almost entirely due to collisional processes.

The simple model for producing population inversion in the metastable 33
doublet that was proposed by Walmsley and Ungerechts (1983) was based on the
NHj3 - He collisional rates of Green (1982). In the temperatures applicable to dark
interstellar clouds most of the NH3 molecules will be in their rotational ground
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state, at least for moderate molecular Hydrogen densities. Collisions between
ground state ortho-NHs and ground state para-Ho preferentially excite the e =
—1 (upper) component of the 33 doublet leading to population inversion in that
doublet. Maser emission can then follow. As the Hy density increases the maser
will be quenched by the increasing population in the non-metastable rotational

states.

To investigate how this scheme is effected if ortho-Hs is included, a model for
the level population is needed. For a cloud in statistical equilibrium the number of
transitions into a state 7 per unit time must be equal to the number of transitions
out of state 7 per unit time. If molecular formation and destruction effects and any
convective effects are neglected, and if only collisional and radiative excitations
and de-excitations are considered, then, denoting the population density in level i

by n;/cm® we have, at some point in the cloud, (eg Spitzer 1978)

dn;
k k<j
+ an (ncakj + Bij,,) + Z ng A 4.2.1
% k>

=0.

Here A;j, B;j are the Einstein probability coefficients for spontaneous and induced
emission (absorption) respectively, and a;; is the collisional rate for transitions
from state 7 to j. The number density of the collision partners is n. (= ng, here),
and U, is the local radiant energy density at the frequency, v;;, of the transition.
U, can be obtained from a consideration of the transfer of radiation within the

cloud.

In general, the statistical equilibrium equations and the equations of radiative
transfer have to be solved simultaneously. The size of U, depends on how readily
the emitted photons can escape from the cloud. If the probability of reabsorption is
relatively high emitted photons can become trapped within the cloud decreasing

the radiant energy density.

A simplifying assumption that is often used is to assume that there is a large

velocity gradient within a cloud (eg de Jong et al (1975)). Under these conditions
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4.3

a photon travelling a distance greater than [ ~ d_t})/‘ﬁ’ where V is a typical large
scale velocity and v; is the thermal velocity, can escape because photons cannot
be absorbed by molecules more than a Doppler width away. This simplifies the
physics considerably and expressions for U, can be obtained for various cloud

models allowing the equation to be solved in the radiative trapping case.

In the limit where all photons escape, U, is just the black body radiation field

3

and under these conditions B;;U, << n.(r)a;; for a typical ng, of 10°cm™3, and

the induced emission (absorption) terms can be neglected for Ts 1OK.

With an appropriate approximation for the radiative transfer term, the equi-
librium system including N rotational levels leads to N — 1 linearly independent

equations which can be solved to give the ratio of the level populations.

A useful quantity in discussing the level populations is that of the excitation

temperature, T, (i), defined by:

n,; —hl/.,'j )
— =exp| ——F— 4.2.2
nj P (k’BTez(l])

where v is the frequency of the transition : — j, h is Plancks constant and kp
is Boltzmanns constant. If the level populations have their local thermodynamic
equilibrium values, T,  is just the kinetic temperature. This condition is reached
in the limit of high density, where n.c;;/A;; >> 1. The excitation temperature is

related to the observable quantity, the brightness temperature, T}, by:
Ty = (1 — exp(—7y)) Tex + exp(—7u) Thg 4.2.3

where 7, is the optical depth at the frequency v, and Tj, is the temperature of the

background radiation. 7, can be deduced from the observations.

Collisional and Radiative Rates

The necessary molecular constants required for solving the statistical equilibrium

equations are the radiative and collisional rates.
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The radiative rates can be calculated from:

647T4Vv?f| . |2
k3 S

Aif = 4.3.1
where ¢ denotes the velocity of light and [,u,-f|2 is the square of the dipole matrix
element, u;; = [ upsdr, where p is the molecular dipole moment. For a sym-

metric top molecule the non-vanishing |u;|? are (Townes and Schawlow, 1955):

. 74+ 1)2 — k2
Aj =418k =0: ugl :“2(J('+1)22j+1)
k2
Aj =+0,Ak=0: Y L L — 4.3.2
0 j2_k2

Aj=-1,Ak=0: 2 =pte———
j || = EES)
Here we are assuming that the very slow Ak = 3 transitions (Oka et al, 1971)

can be ignored. The radiative rates were calculated from the above equations
with 4 = 0.589au (Diercksen and Sadlej, 1986).

The collisional rates are more problematical due to the variation of the col-
lisional cross sections with energy. In the general case the collisional rates are
obtained from the cross-sections by averaging over a Maxwellian velocity distribu-
tion (eg Spitzer 1978):

20

a;f(T) = /

2
A c7,~f(v)v3 exp (— mma ) dv 4.3.3

2(my + ma) kT
where v is the velocity corresponding to the collision energy, E, and m;, my are

the masses of the collision partners.

Although, for a Maxwellian velocity distribution, the maximum contribution
from 0;4(E) (= 0,4(v)) is that when E = kgT, the contribution from E # kpT can

be non-negligible, especially as the cross-sections may be increasing with Energy.

However, with results available at a single collision energy only, an ad hoc
method of obtaining rates from cross-sections must be found. Danby et al (1986)

have published a full set of rates for the rotational excitation of NH3 in collisions
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with para (j = 0) Ha, using essentially the same potential as was used here
(SCF+EK). It was therefore decided to scale the new cross-sections (obtained
with the SCF+EK potential) to the published rates using the expression:

. : i20(E)
i20(T) = =0 71
o= T)=7N(T) X === 4.3.4
( ) ( ) a]:O(E)
where o/ =%(T') are the rates of Danby et al (1986) at some temperature, T, a/29(T)
are the ‘new’ scaled rates at the same temperature, ¢/=%(E) are the cross-sections
computed for (j = 0) collisions in the present work and 0¢/2%(E) are the cross-

sections computed for (j = 1) and (j = 0, 2) Hj collisions.

Implicit in this scaling method is the assumption that ¢’ 20(E) varies in the
same way with energy as 0/=0(E), at least in the region of interest. Whilst this
may be a reasonable assumption for most transitions, it is unlikely to be true
for the (jke = 00+ — 33+) transition. As discussed in chapter 3, this transition
proceeds only by indirect couplings when the collision partner is ground-state para-
Hg, but is coupled directly for collisions with ground state ortho-Hg. For this
reason the ortho-Hy (00+ — 33+) cross-section was scaled to the ground state
para-Hy (004+ — 33—) rates. The scaled rates for a temperature of 50K are given
in table 4.1.

It should be bourne in mind that, for collisions at interstellar temperatures
(= 30K), the principal contributions to the collisional rates come from low energy
collisions. Such collisions tend to sample long range forces, and it is expected that
it is in the large R region that the interactions between ground-state para-Hs and

NHj differ most from the interactions between ground-state ortho-Hs and NHj.
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4.1: Scaled rates at 50 Kelvin

Rates are given in units of cm3s~1. Numbers in parenthesis are powers of ten.

jke — j'k'€| Danby et al scaled (j = 0,2) scaled (j = 1)
00+ — 104 0.76(-10) 0.188(- 9) 0.272(- 9)
00+ — 20+ 0.94(-11) 0.746(-11) 0.353(-10)
00+ — 334 0.34(-12) 0.134(-12) 0.657(-11)
00+ — 33| 0.12(-10) 0.101(-10) 0.381(-11)
00+ — 30+ 0.85(-12) 0.516(-12) 0.642(-12)
104 — 204  0.29(-10) 0.726(-10) 0.824(-10)
104 — 334 0.15(-10) 0.122(-10) 0.725(-11)
104 — 33| 0.14(-11) 0.240(-11) 0.122(-10)
10+ — 30+ 0.96(-12) 0.955(-12) 0.263(-11)
20+ — 334| 0.67(-11) 0.624(-11) 0.139(-10)
20+ — 33— 0.21(-10) 0.195(-10) 0.211(-10)
20+ — 304 0.14(-10) 0.193(-10) 0.162(-10)
33+ — 33— 0.13(- 9) 0.296(- 9) 0.346(- 9)
33+ — 304 0.81(-11) 0.493(-11) 0.107(-10)
33— — 304 0.38(-11) 0.429(-11) 0.130(-10)

giaii(T) = gjaj_i(T)exp (—
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Rates for de-excitation may be obtained from the detailed balance relation:




4.4 Level Population Calculations

In their 1983 paper, Walmsley and Ungerechts solved the statistical equilibrium
calculations using a total of 38 ortho-NHj levels with the collisional rates of Green
(1982). In addition they included the effects of radiative trapping using a large
velocity gradient approximation. They noted however, that the role played by
radiative trapping in exchange between k ladders was relatively unimportant, as
k changing transitions are largely driven by collisions. In the case of the excitation
temperature between the jk = 33 inversion doublet it is the difference between
the collisional rates for (j0+ « 33+) and the Aj3 Einstein coefficient that is the

critical parameter.

Schilke (1989) has performed similar multilevel statistical equilibrium calcula-
tions using the para (j=0) Hj rates of Danby et al (1986). In addition he performed
similar calculations scaling the (00+ — 33+) rates to the experimental results of
Seelemann et al (1988). The latter calculation then contained some of the features

found when ortho-Hsz is included in the calculation.

These calculations all showed population inversion in the 33 doublet, charac-
terised by negative 7T¢.(33). This behaviour was found in a range of densities,
nH, = 10* — 10%, but Schilke found that the extent of the population inversion
was markedly reduced when the theoretical collisional rates were modified by the

experimental results as described above.

These calculations are all, however, essentially considering only excitation with
ground state para-Hz. Walmsley and Ungerechts (1983) discuss the possible effect
of ignoring collisions with ortho-Hg, but they suggest that collisions with rota-
tionally excited Ho might enhance the dipole allowed transitions, whilst leaving
the k& changing transitions, which are dependent on short range forces, largely un-
changed. However, it was shown in chapter three that, whilst this is generally true
for transitions driven by similar terms in the potential, it is not true for transitions
such as the (00+ — 33+) transition which are forbidden by symmetry selection
rules when the collision partner is ground-state para-Hg, but allowed for collisions

with ground-state ortho-Hs.
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Using the approximate rates obtained in the previous section we are now in a
position to get some idea of how the level populations might change for an arbitrary

ortho:para-Hj ratio.

Given that reliable cross-sections have only been calculated at one energy that
is below the threshold of levels with 7 > 4, and given the ad hoc nature of the
rate scaling procedure, a large scale statistical equilibrium calculation of the type
described above, would not be justified. However, a qualitative estimate of the
behaviour could be obtained using a reduced statistical equilibrium calculation,
and restricting detailed examination of the results to the regions in which they

might be expected to be valid.

It was decided to perform the calculations using only the first six rotational
levels for which the scaled rates could be obtained, ignoring any radiative effects.
This is clearly only an approximate model, but it will be shown (figure 4.2) that
it reproduces the main features of the more complete calculations when the same

rates are used.

The statistical equilibrium calculations are obtained by equating the rates of
transitions into a given rotational level, jke, with the rate of transitions out of the

level, t