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Abstract 

Results are presented for quanta! close coupled calculations of the rotational ex

citation of NH3 and OH in collisions with both ortho and para-H2. For the lat

ter, these are the first calculations to include the rotational structure of the H2 

molecule, whilst for the former, previous NH3 - ortho-H2 calculations have been 

subject to sultd~ary approximations. 

The results from the NH3-H2 calculation show substantial qualitative changes 

in the cross-sections when ground state ortho-H~ (j = 1) replaces ground state 

para-H2 (j = 0) as the collision partner. In particular, cross-sections which were 

very small for NH3 - para-H2 collisions can be of a comparable magnitude with 

the other rotationally inelastic cross-sections for NH3 - ortho-H2 collisions. The 

changes in cross-sections are discussed in relation to the collisional pumping scheme 

for an astrophysical maser in the (j k = 33) inversion lines. 

From the OH-H2 calculations it is found that the propensities towards prefer

ential excitation of a given component of the A doublets are reduced in strength 

when ortho-H2 replaces ground state para-H2 as the collision partner, similarly 

when (j = 2) para-H2 replaces ground state para-H2 the propensities are weak

ened. 

In both cases, the results are discussed in the context of crossed beam mea

surements at energies of 605cm- 1 (NH3-H2) and 680cm-1 (OH-H2). It is found 

that discrepancies between the experimental results and theoretical calculations for· 

ground state para-H2 collisions can be explained, at least in part, by the neglect 

of the (j > 0) H2 rotational states in the latter. 
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Chapter I 

Introduction 

1.1 Motivation 

Over the past few decades a large number of different species of molecule have 

been observed in the space between the stars, ranging from diatomic molecules to 

complicated organic molecules. In particular, a large number of molecular radio 

and microwave lines are observed from dark dense regions of interstellar space. 

These dark clouds typically have a density of around 104 to 107 Hydrogen ato~s 

per cubic centimetre, and, in the absence of any internal heating sources, tem

peratures of 30K or less. In such regions molecule-molecule and atom-molecule 

collisions play an important role in determining the energy distribution within the 

cloud, and at such low temperatures vibrational transitions are highly unlikely, 

thus most collisionally induced transitions are purely rotational. 

The observed molecular spectra can be interpreted to yield information on 

the physical conditions (temperature and density) within the clouds ( eg Walmsley, 

1987). If collisions dominate the energy transfer within the cloud, the populations 

of the molecular energy levels will be in thermodynamic equilibrium with the 

surroundings and the relative level populations will be related to the local kinetic 

temperature, T, by the Boltzmann formula: 

1.1.1 

where gi, 9j are the statistical weights of the levels with energies Ei, Ej respec

tively, and kB is Boltzmanns constant. However, in many cases the molecular 

spectra show significant departures from local thermodynamic equilibrium. In 

such cases the energy distribution is determined by the balance between collisional 

and radiative processes, and in order to model the energy transfer, and to interpret 

the observed spectra, a knowledge of the collisional and radiative rates is required. 

1 
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The collisional rates are obtained by averagmg the collisional cross-sections 

over a velocity distribution, and the need for reliable astrophysical rates has lead 

to much interest in the low energy collisional cross-sections for inelastic rotational 

and rovibrational transitions. The most abundant elements are hydrogen and 

helium, with the former being about ten times more abundant than the latter. In 

the dark clouds, from which many observed molecular lines originate, it is thought 

likely that most of the hydrogen will be in its molecular form, thus the rates for 

inelastic collisions with H2 are important parameters. 

In this thesis, quanta} calculations to determine cross-sections for the rota

tional excitation of two astrophysically important molecules, ammonia (NH3) and 

OH in collisions with H2 are reported. Both OH and NH3 have been widely ob

served in the interstellar medium, and NH3 has been proposed as an interstellar 

thermometer (Walmsley and Ungerechts, 1983). NH3 level populations are often 

far from thermodynamic equilibrium with their surroundings but Walmsley and 

Ungerechts have shown that corrections can be made, if the collisional rates are 

known, to allow a determination of the kinetic temperature from the observed 

line intensities. Kinetic temperatures obtained in this way agree well with those 

derived from CO observations (Takano, 1986, Danby et al, 1988). 

In addition, cross-sections for both NH3 and OH in collisions with the spheri

cally symmetric ground state para-H2 molecule show strong propensities towards 

certain transitions, and these 'propensity rules' have been proposed as possible 

pumping mechanisms leading to maser emission in some transitions for both NH3 

(Walmsley and Ungerechts, 1983, Guilloteau et al, 1983, Johnston et al, 1989) and 

for the OH molecule. 

Previous fully quanta} calculations on both NH3 - H2 and OH - H2 collisions 

have neglected the rotational motion of the hydrogen molecule, and treated colli

sions with ground state para-H2 only, but the change in the symmetry properties 

of the collision when (j > 0) H2 is the collision partner, along with the non-zero 

quadrupole moment of rotationally excited H2, could make a qualitative difference 

to the results. 

The reasons for investigating this are two-fold. The existing NH3 - H2 and 

OH - H2 quanta! collisional rates are strictly only applicable if all the molecular 
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hydrogen is in its (j = 0) rotational ground state. Whilst this will be essentially 

true for para- H2 at the temperatures of the dark clouds, molecular hydrogen is 

believed to form on grains in a 3:1 ortho:para-H2 ratio, and under normal circum

stances radiative ortho to para conversion is strongly forbidden. The conversion 

can take place via proton exchange reactions, but the ortho:para-H2 ratio within 

the clouds is uncertain (Flower and Watt, 1984). At higher temperatures the in

fluence of ortho-H2 could become significant, and the way in which this may effect 

the collisional rates could be important. 

The most detailed experimental information on the cross-sections for rotation

ally inelastic NH3 - H2 and OH - H2 collisions comes from the molecular beam 

experiments of Seelemann et al (1988) and Ebel et al (1990) for NH3, and Andresen 

et al (1984) for OH. Both sets of experiments used normal (3:1 ortho:para-H2) as 

the collision partner, and both found significant differences between the experi

mental results and those predicted by theory for ground state para-H2 collisions. 

The aim of the work reported in this thesis was to answer the questions: 

• Do the collisional cross-sections change appreciably when (j > O)-H2 is consid

ered as the collision partner, and if so, how ? 

• Can this explain the discrepancies between theory and experiment? 

In the following sections the methods for obtaining collisional cross-sections 

and rate coefficients are reviewed. In chapter two the quantal calculations are 

discussed in more detail, and the algebra extended to that needed to treat the 

rotational motion of the hydrogen molecule. The results of the calculations are 

presented and discussed in chapters three and five, whilst chapter four considers 

a possible astrophysical application of the results. The work is summarised in 

chapter six along with suggestions for future work. 

1.2 Definition of Cross-Sections and Rate Coefficients 

The cross-section for a process ( i - j) is defined as the transition probability per 

unit time, per unit scatterer, per unit flux of incident particles with respect to the 

scatterer. It has the (classical) physical interpretation as an area centred on the 
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scatterer through which an incident particle must pass for the process (i ---. j) to 

occur. 

Quantum mechanically, the cross-section for single channel scattering is derived 

by considering an incoming plane wave, 1/Jinc and a scattered spherical wave, 1/Jsc· 
In the limit of large r, where r is the distance from the scatterer, assuming the 

plane wave is incident along the z-axis, the total wave function can be written: 

!Kl' 

= ei"'z + J(O, ¢)-e
r 

1.2.1 

where f( (), ¢) is the scattering amplitude, and the wave number K is related to the 

energy, E, and the reduced mass, J-L, through K
2 = 2J-LE/h2

. Under these conditions 

the incident flux is (hK/ J-L), and the scattered flux per unit solid angle is (hK/ J-L)IJI 2. 

The differential cross-section. ~n, is the ratio of the scattered flux per unit solid 

angle to the incident flux: 
da 2 
dO = If ( e, ¢)I 

The total cross-section can be obtained by integrating over all angles: 

a= j dadO 
dO 

1.2.2 

1.2.3 

In reality, the situation is complicated by the possibility of scattering into 

many different states (or channels). In many channel scattering, the wavefunction 

\IIi describing a particle incident in channel i can be written as: 

1.2.4 

where the sum runs over all possible channels, j. For N channels, N constants, Sij, 

are required to describe asymptotic behaviour of Wi. To describe the wavefunction 

of the whole system N x N constants are needed for all possible i's, and these con

stants constitute the scattering matrix of system at an energy, E. The scattering 

matrix determines the asymptotic behaviour of the wavefunction completely, and 
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the cross-sections for a given process can be derived from the scattering matrix (or 

S-matrix) elements. 

The cross-section, ai-j (E) gives the probability of the process ( i ---+ j) occur

ring for a mono-energetic beam. In the real world, however, interacting particles 

will have a range of energies depending on the conditions. The rate coefficient, 

Ctij(T), for a given process is obtained by averaging the cross-section over a range 

of energies, F(E, T) (or equivalently a velocity distribution F(v, T)): 

aiJ(T) = (Eaij(E)) = j aiJ(E) E F(E, T) dE 1.2.5 

1.3 Experimental Determination 

In principle, experimental methods provide the most accurate measure of the cross

sections or rate coefficients, and experiments are often used to probe the intermolec

ular potentials. However, experiments are often carried out at room temperature 

and extrapolation of the results to give collisional rates at low temperatures is un

reliable. The experimental measurements complement the theoretical calculations, 

providing tests for the theory that can then be extended to interstellar conditions. 

The most detailed information comes from the molecular beam experiments, 

which have been reviewed by Toennies (1976) and Buck (1988). The experimental 

set up consists of two molecular beams which intersect in the scattering region. 

The pressure is low, and multiple collisions are very rare, so provided the initial 

and final states distributions can be established, the measurements can give direct 

information on the state-to-state cross sections for inelastic scattering. 

The initial state can be selected by a variety of methods (Buck, 1988) but the 

simplest is to use supersonic nozzle beams. The nozzle beams are prepared by 

allowing the incident beam to expand supersonically from a high pressure source 

to a low pressure region, which can yield rotationally cold beams with essentially 

all the molecules in their ground rotational state. 

The final state distribution can be probed either by an energy change method, 

in which the final states are deduced indirectly from the change in relative velocity 

of the scattered beam (Buck, 1988), or by optical methods in which laser radiation 
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is used to probe the final population distribution through a variety of techniques 

(Dagdigian, 1988). The former relies on the principle of the conservation of energy, 

and can, in theory, be applied to any system, but it is limited in practice by the 

requirement of a high velocity resolution. The latter is not limited by velocity 

resolution but is only suited to molecules with relevant transitions at accessible 

frequencies. 

In addition to the state-resolved molecular beam measurements, a number 

of other experimental techniques have been useful in providing information on the 

cross-sections. Most other methods measure only an average over many transitions, 

and a range of energies, so give only indirect information on the collisional rates, 

however, they can provide useful checks on theoretical results. One indirect exper

imental method that has provided useful information on the collisional selection 

rules governing rotational transitions, is that of the double resonance experiments 

(Oka, 1973). In these experiments strong infrared or microwave radiation at a 

pumping frequency, vp, is used to saturate a given transition (level 1 to level 2). 

The non-Boltzmann population is the redistributed through transitions, and the 

change in population is monitored via a second transition (level 3 to level 4) using 

weak radiation at the signal frequency, v8 • The method is particularly suited to 

molecules with symmetrically split doublets as the equations relating the changes 

in intensity to the collisional rates simplify considerably if v.~ and Vp correspond to 

intradoublet transitions. Information on the relative sizes of the collisional rates 

between the levels can be extracted, which provide a good test of the theory. 

1.4 Theoretical determination: The Interaction Potential 

Whether treated classically, semi-classically or quantally, the collision calculation is 

essentially the solution of the equation of motion of the molecular nuclei moving on 

a predetermined potential surface. In general, the potential surface is a function of 

the co-ordinates describing the intermolecular vector, R, and the internal molecular 

co-ordinates giving the relative positions of the nuclei. 

The interaction potential, V, is defined within the bounds of the Born - Oppen

heimer separation of the electronic and nuclear motion. The Born-Oppenheimer 

approximation rests on the assumption that the electronic motion is very fast 

compared with the nuclear motion. Then the electronic motion is treated as if 
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the nuclei are fixed at some internuclear distance, R, and the nuclei move in the 

averaged field due to the electronic motion. 

The Schrodinger equation for the system of nuclei and electrons is: 

1.4.1 

where Ma is the mass of the o:th nuclei with co-ordinates Ra, and mi is the mass of 

the ith electron with co-orrlinates Ti. Expressing the dependence on the electronic 

and nuclear motion explicitly, the wavefunction can be written as a product of the 

electronic wavefunction, Un(Ra, ri), and a nuclear term, ¢n( Rn): 

w(Ra, Ti) = L ¢n(Ra)Un(Ra, ri) 1.4.2 
n 

If we then assume that Ra is fixed, or equivalently, that Ma is infinitely large, we 

obtain the Schrodinger equation for the motion of the electrons with fixed nuclei: 

Here c( Ra) is an effective electronic energy depending on the relative positions of 

the nuclei. 

Substituting equation 1.4.2 into the full Schrodinger equation gives: 

fi2 

- ~2Afa "lka(¢n(Ra)Un(Ra, Ti))+ 

{ (-~ 2~; V~, + V ( Ro, r;)) <l>n( Ra )U n( Rm ri)} = E </>,.( R0 )U ,.( Ra, r;) 

1.4.4 

where the term in the curly brackets is equal to c-(Ra)Un¢n· 

Using the product rule the first term can be rewritten as: 

"lkJ ¢n(Ra)Un( Ra, Ti)) =¢n( Ra)"lha Un( Ra, ri) + 2'\l Rc,¢n(Ra)'\l Ra Un( Ra, Ti) 

+ U n ( Ra, T i) '\l ho ¢n ( Ra) 

1.4.5 
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The Born - Oppenheimer approximation is obtained by assummg that the 

electronic part of the wavefunction, Un( R:n ri), is a slowly varying function of Rn. 

With this assumption the Schrodinger equation becomes: 

1.4.6 

Thus the Schrodinger equation has separated into two parts describing the 

electronic motion at fixed nuclear positions, and the nuclear motion in an effective 

potential given by c(Rn)· 

The interaction potential between two molecules is just the difference between 

the electronic energy at some intermolecular distance, R, and the electronic energy 

of the separated molecules ( R --> oo ). 

The methods of obtaining the potential surface range from completely ab initio 

theoretical treatments, through varying degrees of semi-empirical treatments, to 

direct inversion of experimental measurements. 

In principle, direct inversion of experimental data should give the most accurate 

description of the potential surface, however, such procedures are hampered by the 

fact that any measurement of the surface is indirect. What is in fact measured is 

the effect of the potential surface, and a theoretical model of the surface is usually 

needed. Inversion of experimental data is most suited to the isotropic part of the 

potential, but it is the anisotropic part that drives rotationally inelastic transitions. 

The most rigorous methods of obtaining theoretical potential surfaces is from 

ab initio calculations. The precise method used for ab initio calculations depend 

on the region of the interaction that is of interest and is convenient to divide the 

interaction into short range and long range contributions. 

Short range forces fall off exponentially with R, and are responsible for the 

strongly repulsive behaviour at very small distances. Long range forces fall off 

as R-n, where n is a positive integer. The main contributors to the long range 

behaviour are the electrostatic, induction and dispersion energies ( eg Buckingham 

1978). 
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The electrostatic energy is the interaction energy between the permanent elec

tronic charge distributions of the molecules, and can be expressed in a multipolar 

expansion in terms of dipole-dipole, dipole-quadrupole, quadrupole-quadrupole 

interactions etc. The induction energy is the interaction between the induced elec

tronic moment of one molecule with the permanent charge distribution of the other 

( eg induced dipole- quadrupole interactions), and the dispersion energy is the en

ergy due to a correlation in the fluctuations of the electronic co-ordinates of the 

interacting molecules. 

In the long range regime, where the probability of electron exchange between 

the two molecules is negligible, the molecules can be treated as non-overlapping 

charge distributions. In this limit, standard perturbation theory is applicable. Fol

lowing Buckingham (1978), the Hamiltonian of a pair of molecules can be written: 

1.4.7 

where Ha, Hb are the Hamiltonians of the separated molecules and H' is the in

teraction: 

H' = ( 471"€0 )-
1 L efej(rij )-1 

ij 
1.4.8 

with Tij being the distance between the charges ei associated with molecule a and 

ej associated with molecule b. 

With H' treated as a perturbation, the unperturbed wavefunction is an eigen

function of Ha + Hb, and can be expressed as a product of the separated molecule 

wavefunctions. Using perturbation theory, the perturbed wavefunction can be 

written as: 

where Pa, Pb are a complete set of normalised unperturbed states, and the sum runs 

over all states Pa, Pb, such that PaPb ::f mamb. The energy of the perturbed system 
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is then (Buckingham, 1978): 

E _ (1/JmamhjHj~1m-amb) 
rnam-b - (,/, ,,/, ) 

'f/m.a.Inb 'f/rna rnb 

= Ema + Emb + (mambjH'Imamb) 1.4.10 

+ ... 

The first order term,(mambjH'Imamb), is identified with the electrostatic energy, 

whilst the second order term comprises of the induction contribution, (Pa f:. ma, 

Pb = mb or Pa = ma, Pb f:. mb), and the dispersion contribution (Pa f:. ma, 

Pb f:. mb)· The above expression for the interaction energy can be related to the 

properties of the individual molecules by expanding the interaction term, H', in 

a multipolar series. Algebraic expressions for the long range interaction potential 

have been given in a cartesian form by Buckingham (1967), and in a spherical 

tensor form by Leavitt (1980) and Stone and Tough (1984). 

In the short range region there is significant overlap between the electron 

clouds, and an electron can no longer be assigned to any particular molecule. 

In this region a molecular orbital approach is more applicable. The collection of 

electrons and nuclei of the two molecules are treated as one 'supermolecule', and 

the interaction energy is the defined as the difference between the electronic en

ergy of the supermolecule, and the combined electronic energies of the separated 

molecules. 

A commonly used approach is the Hartree Fock - self consistent field (SCF) 

method. The Hartree Fock - SCF method is a variational method based on the 

variational principle which states that, for any approximate wavefunction, <flapprnx, 

the quantity: 
J dr <P~pproxH<Papprox 

Eapprox = , J dr <P ~pprox <P approx 
1.4.11 

(where His the true Hamiltonian) is always greater than the lowest true eigenvalue. 

Variational methods are based on choosing an initial wavefunction, <Papprox, with 

variable parameters, and minimising the quantity Eapprox, with respect to these 

parameters. 
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The true electronic Hamiltonian can be written as: 

1.4.12 

with the Schrodinger equation being: 

1.4.13 

In the Hartree Foch method, ci> is expanded a.s an antisymmetric product of single 

electron spin orbitals ( ¢>7° = l/J.iO:i or 7/Ji/3i where a and /3 represent spin wavefunc

tions for opposite spin electrons, and 7/Ji are the parameterized molecular orbitals). 

The antisymmeterized wavefunction for an electron system can be expressed (for 

even n) as a Slater determinant: 

7/Jt(1)o:(1) l/Jt(1)/3(1) 7/J2(1)o:(1) 7/;~(1)/3(1) 

ci> = (n!)-1/2 x 
7/Jt(2)o:(2) 7/Jt ( 2 )/3( 2) 7/J2( 2 )a( 2) 7/J !l ( 2 )/3( 2) 

2 1.4.14 

1/!1 ( n )a( n) 1flt(n)/3(n) 1/;2( n )a( n) 1/J!l ( n )/3( n) 
2 

The energy is minimised with respect to the ct>, and the condition imposed 

on ci> by requiring that E should be a minimum is embodied in the Hartree Fodi r-.,,.4 

equations (Roothaan, 1951). 

The 'best' ci> leading to a minimum energy can be calculated by solving the 

Hartree- Focl1 equations iteratively, and once the optimum ci> has been established, 

the Schrodinger equation can be solved to yield an upper bound to the electronic 

energy. 

For open shell molecules the method must be modified slightly. Two possibil-,. 
ities are the spin-resl(icted Hartree Focl1 method where some orbitals are doubly 

occupied, and some are only singly occupied with an electron of a spin, and the 

spin-unrestricted Hartree Focl1 method where different spatial orbitals, 7/J, are as

signed to electrons of a and /3 spin. The optimum ci> is calculated from the vari

ational principle a.s before, and an upper bound to the electronic energy may be 

derived in the same way. 
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The energy obtained thus is commonly called the SCF energy, the true Hartree 

Foeti energy being obtained in the limit n --> oo where n is the number of molecular 

orbitals included. 

The disadvantage of the SCF method is that, since it uses only a single determi

nant wavefunction, it cannot correctly treat the correlation between the electronic 

wavefunctions, and does not, therefore, contain the dispersion energy. 

An improvement on the single determinant methods is obtained using a con

figuration interaction calculation. The true wavefunction can be approached if the 

single determinant wavefunction of the Hartree Foch treatment is replaced by a 

linear sum of Slater orbitals of the form: 

4> = cocl>o + L c.~4>s 
s>O 

1.4.15 

The first determinant , cl>o, is just the Hartree Foch determinant, and further terms 

in the sum are obtained by replacing successive numbers of occupied orbitals in the 

determinant by virtual (unoccupied) orbitals (Hehre et al, 1986), The value of the 

coefficients, c8 , in equation 1.4.15 can be determined by a variational calculation. 

Because of the successive substitution of virtual orbitals, a full configuration in

teraction calculation can account for the dispersion energy, and indeed, in the limit 

n --. oo, s --> oo the true wavefunction is approached. In addition, a full configura

tion interaction calculation does not break down at intermediate distances where 

the assumptions of overlapping charge distributions at short range and completely 

non-overlapping charge distributions at long range fail. However, such calculations 

are very large, and impractical for most systems. 

An alternative method to deal with the short range dispersion contribution is 

to use a variant on perturbation theory and a number of such approaches have 

been developed ( eg Hehre et al, 1986). These perturbation approaches treat the 

correlation effects as a perturbation to the first order (Hartree Foch) Hamiltonian. 

All the potential surfaces that have been used in the present study (Danby et 

al, 1986, Billing and Diercksen, 1985, 1986, Kochanski and Flower, 1981) have 

been obtained with an SCF calculation supplemented by a dispersion contribution 

calculated from a variant on perturbation theory. 
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The data from potential calculations is obtained as the potential energy at a 

series of separations and relative orientations of the molecules. To convert this 

into a useful form the data is fitted to some angular function, and the angular 

coefficients fitted to some radial function allowing the potential to be evaluated 

at any point. The form of these fitting functions will be discussed in more detail 

later. 

1.5 Theoretical Determination: The Scattering Calculation 

Once the interaction potential has been established the problem reduces to solving 

the equation of motion of the molecular nuclei on the resulting potential surface. 

In the case of low energy rotational excitation it is usually adequate to neglect 

the vibrational degrees of freedom, and solve the equations of motion for two rigid 

rotors (spherical perturbers, linear rotors, symmetric tops or asymmetric tops). 

In low energy molecular collisions the collision energy is not much greater than 

the energy level splitting, so a classical treatment of the collision is not applicable, 

and some method of treating quanta! effects is required. 

The most rigorous treatment of the collision problem is a direct solution of 

the Schrodinger equation which, in the case of two rigid molecules moving in a 

potential V(R, 01, 02) can be written: 

where H[ 0 t is the rotational Hamiltonian for molecule i, 11- is the reduced mass 

related to the masses of the two molecules through 11- = m~~2 
' n.i is the set 

1n1 m2 

of Euler angles specifying the orientation of molecule i with respect to some co-

ordinate axes and E is the total kinetic energy (translational and rotational) of 

the system. 

However, there are practical problems with fully quantal methods which stem 

from the large number of molecular rotational states that need to be included in the 

calculation to correctly describe the system. The molecular rotation couples to the 

orbital angular momentum associated with the relative motion of the molecules, 

and this can lead to a very large number of coupled equations. The size of the 
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problem is reduced considerably if some part of the motion is treated classically so 

a number of semi-classical methods have been developed ( eg Child, 1976, Dickinson 

and Richards, 1982). 

Two common semi-classical methods are the semi-classical S-matrix method 

and the classical path approximation. 

The semi-classical S-matrix method (Miller, 1974) treats both the relative and 

the molecular internal motion classically using exact classical trajectories to ob

tain the classical limit of the S-matrix elements (or transition amplitudes), which 

contain all the dynamical information. Quanta! effects are introduced through 

the principle of superposition, thus, with a phase associated with each trajec

tory the transition probability is related to the S-matrix elements through (Miller, 

1974,1975): 

1.5.2 

The classical equivalent of equation 1.5.2 would be a simple sum of the squares 

of the S-matrix elements, and in a purely classical approach it is customary to 

calculate the transition probability directly, and the principle of superposition is 

not included. As quanta! effects such as interference are a direct result of the 

principle of superposition they are qualitatively included in the semi-classical S

matrix approach. 

Whilst semi-classical S-matrix calculations have shown reasonable agreement 

with quanta! calculations for atom- linear rotor collisions (Miller, 1971, Kreek et 

al, 1975), the method becomes increasingly less tractable with added degrees of 

freedom (Dickinson and Richards, 1982). 

The alternative approach which predates the S-matrix method and has been 

widely used in studies of rotational excitation is the classical path approximation 

( eg Child, 1976). In the classical path approximation the relative motion is cal

culated classically whilst the internal motion is treated quantally. The relative 

motion of the molecules is solved using standard classical trajectory methods to 

calculate the motion in some effective potential, Vet 1. In the simplest case the 

trajectory is a straight line (constant potential). Alternatively the isotropic part 

of the potential can be used, or, more correctly, the expectation value of the full 
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interaction potential in the time dependant internal states. The latter method has 

been widely used by Billing (1975). 

e 
The calculated classical trajectory gives rise to a time depend~nt perturba-

tion, V(R(t)), which is then used for solving the time depend~nt Schrodinger 

equation for the molecules internal motion.: 

8U(t,t0 ) in Bt =[Hint+ V(R(t))] U(t, to) 1.5.3 

where U(t, to) is the time development operator, and Hint is the Hamiltonian for 

the internal motion. The probability of a given transition can then be obtained 

from: 

P(i- f)= l(iiU(+oo, -oo)lf)l 2 1.5.4 

Equation 1.5.3 must be solved numerically and the calculations can be quite sub

stantial. A subsidiary approximation is to treat the system in a body fixed frame 

that rotates with the intermolecular axis, and neglect transitions that change the 

projection of the angular momenta on the body fixed z'-axis (the intermolecular 

axis). This approximation has been called the 'semi-classical coupled-states' ap

proximation by Billing (1976), and is the analogue of the quantal coupled states 

approximation (McGuire and Kouri, 1974, Pack, 1974). The latter has been very 

successful in quantal treatments and will be discussed further in chapter two. 

A number of calculations of rotationally inelastic molecular collisions have 

been reported using the classical path approximation, and, in general, the results 

are in reasonable qualitative agreement with the quantal results. In particular, 

calculations using this method have been reported for NH3 - He collisions (Davis 

and Boggs, 1978, Billing et al, 1984, 1985) and NH3 - H2 collisions (Billing and 

Diercksen, 1985, 1986, 1987, 1988). 

Semi-classical methods are most applicable where the intermolecular interac

tion is not too strong, and can provide useful insights into the physics, however, 

at the low temperatures found in the interstellar clouds, quantal effects become 

more important, and a semiclassical treatment is not always adequate. This is 

particularly true for transitions between states which are not directly coupled by 
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the potential and can only proceed v1a an intermediate state. For such transi

tions resonance structures can be important at low energies and such behaviour is 

not correctly treated by semi-classical methods (Danby et al, 1987). In addition, 

quantal calculations are required to assess the accuracy of computationally cheaper 

methods. For these reasons, the calculations reported in this thesis are quantal 

close coupled calculations. The close coupling method of solving the Schrodinger 

equation is reviewed in the following chapter. 
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Chapter II 

The Quantal Close Coupled Equations 

2.1 Introduction 

The quanta} formulation of rotational excitation of a linear rigid rotor in colli

sion with a spherically symmetric atom was first given by Arthurs and Dalgarno 

in 1960. Although the atom - linear rigid rotor represents the simplest molec

ular collision problem, the method remains essentially the same for any quanta} 

study of rotational and vibrational excitation. The molecules are treated in the 

Born - Oppenheimer approximation in which the coupling between the nuclear 

and electronic motion has been neglected, and the problem reduced to the motion 

of the molecular nuclei on a predetermined electronic potential surface, V. 

The most accurate treatment of the problem is solution of the quanta} close 

coupled or coupled channel (CC) equations. In principle, solution of the CC equa

tions amounts to a full numerical solution of the Schrodinger equation for the 

nuclear motion, with the accuracy being limited only by the accuracy of the po

tential surface used, and the amount of available computing resources. It is the 

CC equations that have been used in the present study, and the form of these 

equations is derived in the following section. 

In practice, the system of close coupled equations is often too large to be 

computationally tractable for anything but the simplest molecular systems, and 

a number of decoupling approximations have been developed. Foremost amongst 

these is the coupled states (CS) approximation of McGuire and Kouri (1974). In 

section three this is briefly reviewed. Numerical methods for the solution of the 

coupled equations are discussed in section four. 

The principal approximation in the treatment of rotational excitation by the 

CC method is the truncation of the rotational basis set to some finite number 

of states. A similar approximation is the assumption that the molecules behave 

as rigid rotors, and the vibrational degrees of freedom can be ignored. This is 
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equivalent to truncating the vibrational basis set to just one state and the effects 

of these approximations are discussed in section five. 

Finally, in section six, the theory is applied to the specific case of the rotational 

excitation of symmetric top molecules in collisions with linear rigid rotor molecules. 

2.2 The Close Coupled Equations 

The close coupled equations can be derived either in a space fixed frame 

(Arthurs and Dalgarno, 1960, Blatt and Biedenharn, 1952, Takayanagi, 1965) or 

in a body fixed frame that rotates with the collision system (Pack, 1974, Launay, 

1976). 

The body fixed frame is the natural system of reference in which to describe 

the interaction potential, and as a result the potential terms that appear in the 

equations are much simpler than their space fixed analogues. However, the body 

fixed frame rotates with time and the non-inertial nature of the body fixed frame 

leads to Coriolis effects that appear as off diagonal terms in the centrifugal po

tential. The centrifugal potential behaves as R-2 at large R and the off diagonal 

terms can persist after the interaction potential, V, has become very small. As 

a result, the space fixed frame is often preferred for full CC calculations, and the 

equations will be derived in this frame. 

The Schrodinger equation for the relative motion of two molecules in an arbi

trary space fixed frame is: 

(from hence forth, atomic units will be used throughout; 1i =me= e = 1.) 

In the general case the molecules have both vibrational and rotational degrees 

of freedom, but here they are treated as rigid rotors. The interaction potential 

is then V(R, Ot, 02) where R is the intermolecular vector and ni (= a, (3, !) are 

the Euler angles describing the orientation of molecule i with respect to the space 

fixed frame. The interaction potential is defined as the difference between the total 

electronic energy of the system at (R, 01, 02) and the total electronic energy as 
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IRI ____, oo . The energy E in equation 2.2.1 is the incident energy of the system and 

is equal to the total translational kinetic energy plus the initial rotational energy 

of the two molecules, and Hi is the rotational Hamiltonian of molecule i. The 

reduced mass of the system is f-L. 

The kinetic energy operator, (~ R 2 /2J.L) can be separated into angular and 

radial parts giving: 

2.2.2 

where 1 is the orbital angular momentum operator. 

The coupled equations are formed by expanding the total wavefunction in 

some basis set complete in the possible states of the separated molecules. Fol

lowing Arthurs and Dalgarno (1960), the basis set is chosen as a complete set of 

eigenfunctions of the total angular momentum J and its projection on the space 

fixed axis Jz. The potential cannot couple states of different total angular momen

tum so, with this choice of basis functions, the system of coupled equations that 

results decomposes into smaller blocks of equations that can be solved separately 

for each value of J. 

For two arbitrary molecules with angular momentum }I and j2, and relative 

orbital angular momentum, l, eigenfunctions of total angular momentum can be 

formed from: 

2.2.3 

Here kt, k2 are the projections of }1, h on the molecules symmetry axis, m1, m2 

and ml are the projections of ii, h and l on the space fixed axis, the C~\1 ~2 ?n are 

the Clebsch Gordan coefficients (eg Edmonds, 1960), and x.3k.i· m·(Oi) is the nor-,, ' 
malised rotational eigenfunction of molecule ( i). Y,!.

1 
( R) is a normalised spherical 

harmonic. 
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The total wavefunction may be expanded as: 

2.2.4 

where 

Substituting into the Schrodinger equation gives: 

2.2.5 

Here we have introduced the wave number Ken 

2.2.6 

and used the fact that: 

2.2.7 

Channels with K; 2: 0 are energetically accessible and are known as open channels. 

Channels with K; < 0 are known as closed channels and are classically inaccessible 

at the energy E. 

Multiplying equation 2.2.5 from the left by z~M *(R, {h, 02), integrating over 

all angles, and making use of the orthonormality properties of the Z's gives: 

[ 
d2 l' ( z' + 1) 2] J-r - "" 'I I ") J-r ( dR2 - R2 + Ka' G,, (R)- 2J.L ~(I VI G1 , R) ,, 2.2.8 

All the angular and rotational information on the problem is contained within 

the coupling matrix, (!'lVII"). This quantity can be evaluated by expanding the 
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potential as a linear combination of angular functions. In the most general case this 

is a product of rotation matrices (eg Secrest 1979). The angular integration can 

be done by standard methods (Edmonds 1960), and the coupling matrix elements 

reduce to algebraic expressions. 

The set of coupled equations (2.2.8) are the close coupled equations. Informa

tion on the observable properties of the system can be obtained by integrating the 

equations numerically, starting in the classically forbidden region where V > E, 

and propagating the solution out to the asymptotic region, V ---+ 0. 

In the limit (I'IVIt")---+ 0, the general solution of equation 2.2.8 can be written 

as a linear contribution of spherical Bessel functions of the first and second kind 

(Abramowitz and Stegun, 1965). The scattering matrix, S, can be derived in the 

asymptotic region by fitting the solutions to the long range form : 

where: 

and: 

GJ(R) = j(R)A- n(R)B 

GJ'(R) = j'(R)A- n'(R)B 

jij(R) =5ijKY2 Rjz(KjR) 

nij ( R) =5ij KY
2 
R nz( Kj R) 

for "'J ~ 0 

for K
2 < 0 } 

2.2.9a 

2.2.9b 

2.2.9c 

Here jz( KR) and nz( KR) are spherical Bessel functions of the first and second kind, 

and h1(1•2l(KR) are Hankel functions. 

The scattering matrix may be obtained from: 

2.2.10 
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where I is the unit matrix and K is the reactance matrix: 

2.2.11 

The relationship between the integral cross-sections and the scattering matrix is 

derived in appendix A, and is merely stated here as: 

( ') ""' J( ') 7r ""' ""' ( I J 1
2 

aa-a =L;'a a-a =(2h+1)(2]2+1)K?~7' '7: 2J+1)T,,, 
hzhz' 

2.2.12 

where TJ is the transmission matrix defined by: 

2.2.13 

The matrices sJ, KJ and TJ are all symmetric and a consequence of this is the 

detailed balance relation : 

9i K.r a(i- j) = 9j KJ a(j- i) 2.2.14 

where 9i, 9j are the statistical weight factors. This reflects the invariance of the 

dynamics of the system under time reversal. 

In theory, the system of CC equations is unbounded, and any required accuracy 

can be obtained by increasing the number of states in the basis set (equation 2.2.3 ). 

In reality, the coupling of the angular momentum results in a large number of cou

pled equations for even a modestly small number of states. As the CPU time 

required for any calculation increases by around N 2 to N 3 , where N is the number 

of coupled equations, the size of the calculation can rapidly become prohibitive. 

CC calculations remain feasible, however, for systems with relatively widely spaced 

energy levels or at a collision energy at which only a small number of states are 

energetically accessible. The CC approach remains by far the most accurate ap

proach to the solution of the coupled equations, and reliable CC calculations are 

important in evaluating the adequacy of the various approximate methods that 

have been developed. In addition, the region in which the CC calculations are 

easiest, low energies, is that region in which the decoupling approximations tend 

to fail. 
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2.3 Decoupling Approximations 

The most successful of the decoupling approximations in the regime of low energy 

collisions is the coupled states approximation of McGuire and Kouri (1974) and 

Pack ( 197 4). The derivation of the coupled states ( CS) approximation makes use 

of the fact that when the CC equations are formulated in the body fixed frame, the 

distinction between coupling due to I and coupling due to the interaction potential 

is made explicit. The body fixed frame is defined so that the z'-axis lies along the 

intermolecular vector (figure 2.1). 

" X 

--- -- -------1 

Figure 2.1: The Body Fixed Co-ordinate System 

The Hamiltonian in the space fixed frame can be rewritten: 

2.3.1 

where (3 indicates the set of indices (}I, k1, h, k2, h2) but not l. M is the projection 

of J on the space fixed z-axis. 

The space fixed wavefunction, 'II, and body fixed wavefunction, ci>, are related 

through the transformation: 

2.3.2 
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where 0 is the projection of J on the body fixed z'-axis, 0~ are the Euler angles 

describing the orientation of molecule i in the space fixed frame and ( o:, {3, 1) are 

the Euler angles taking the body fixed frame into the space fixed frame. 

We may choose to expand the body fixed wavefunction in eigenfunctions of 

J, lz,j12 and jl2,z' given by (Launay 1976): 

2.3.3 

where j12 = jl + j2 and J = j12 + 1. Note that in the body fixed frame the 

component of l along the body fixed z'-axis is zero because: 

l=JL(Rxv) 2.3.4 

where v is the relative velocity. As a result, the component of j 12 along the body 

fixed z'-axis is just n' the component of J along z'. 

Expanding the body fixed wavefunction as: 

2.3.5 

where o: =}I, k1,h, k2, the body fixed CC equations can be obtained as before, 

multiplying the Schrodinger equation from the left by TtP.' * ( f2t1, 02) and integrat-
. At At · mg over ~ Gl, ~ G2 to give: 

[ ddR
2 

2 + K;,] FJ,~z(R) = 2/L L: (f3'0'IV(R, n~, n2)- 12 /2JLI!3"o")Fff,~&~(R) 
{3"U" 

2.3.6 

Equation 2.3.6 is exact, and is of the same dimensionality as the space fixed 

equivalent. It can be shown (eg Rabitz 1976) that (,B'OtiVI.B"O") is zero unless 

0' = 0". This is a consequence of the invariance of the interaction potential under 

rotations of the whole system about the intermolecular axis; V cannot change the 

projection of J (or j 12) along that axis. 
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However, unlike the space fixed equations, the centrifugal barrier operator, 12 

is no longer diagonal in 0'. Following Rabitz (1976), l can be expanded as: 

12 J2 ·2 2J2 J . J . = + J12 - z' - +J12.- - -J12.+ 2.3.7 

Here J ±, j12 ± are the raising and lowering operators, and their presence leads to 

non-vanishing coupling between O' and 0" = 0' ± 1. 

The essence of the CS method (also known as the centrifugal decoupling 

method) is to ignore the O' =f. 0 11 coupling. In this approximation the CS equations 

become: 

[d~2 - ~2 [J(J + 1) + j~2(j~2 + 1)- 20'2] + K~,,J F~,W!l(R) 
= 211 L:(,B'O'IV(R, n~, n~)lf3"0')F~,J!,l(R) 

;3" 

2.3.8 

As the interaction potential, V, does not couple states of different 0, the 

coupled equations separate into blocks that can be solved separately for each value 

of 0, with a subsequent saving in computer time. 

The CS equations can be solved in the same way as the CC equations and are 

subject to the same boundary conditions. The adequacy of the CS approximation 

is usually gauged by direct comparison with CC calculations. In general, the CS 

approximation is expected to give the best results in collisions dominated by short 

range forces, and at low values of total angular momentum. This is because the 

centrifugal potential terms fall off like R-2 at large R whilst the interaction poten

tial between two neutral molecules decreases as R-6, and the CS approximation 

will give the best results in regions where the interaction potential dominates the 

anisotropic terms. 
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2.4 Numerical Solution of the Coupled Equations 

The close coupled equations (2.2.8) can be written in matrix form as: 

[1 d~2 + W(R)l G(R) = 0 2.4.1 

where: 

W(R) = k2 -12 - V(R). 2.4.2 

Here V(R) is the potential coupling matrix, and k 2(R) is the wavevector matrix. 

Both k 2(R) and 12(R) are diagonal matrices, and G(R) is anN x N matrix where 

N is the number of channels. 

The equations are solved subject to the boundary conditions (appendix A): 

2.4.3a 

and 

2.4.3b 

as R-oo. 

The scattering matrix, S, can be obtained from the reactance matrix K through 

the relationship 2. 2.10. 

There are many different methods for integrating the coupled equations but the 

underlying principles behind the methods are similar. The integration is started 

in the classically forbidden region, where the potential energy is larger than the 

collision energy, at some minimum value of the intermolecular distance, Rmin· 

Rmin should be sufficiently far into the classically forbidden region that the final 

cross-sections are independent of its choice, but as far from the origin as the first 

condition allows. The reasons for this are twofold. Firstly, one does not want to 

waste time on unnecessary integration in the nonclassical region, and secondly, the 

solutions are all exponentially growing in the classically forbidden region. Strongly 

growing channels can dominate the solution matrix and lead to a loss of linear 
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independence of the solutions, and stabilisation problems for some integration 

methods (Secrest, 1979). 

The solution is propagated out to the asymptotic region where V ---+ 0 and 

fitted to boundary conditions of the form 2.4.3. In this region open channels give 

oscillating solutions, whilst closed channels decay exponentially. The period of 

oscillation and rate of decay is dependent on the collision energy (through ;{a.'). 

For the open channels, the rate of oscillation increases with increasing energy, 

and consequently more integration steps are required as the energy increases. In 

addition, more partial waves, and more channels are required for convergence and 

the problem grows rapidly. 

The methods of integration have been discussed in a recent revtew ( Alli

son, 1988), and can be divided into two classes; approximate solution techniques 

and approximate potential techniques (Secrest, 1979). 

The approximate solution techniques use the exact potential coupling matrix 

and employ numerical techniques to solve the resulting Schrodinger equation ap

proximately. In their simplest form G is propagated out from Rmin using some 

step routine to solve the equations in either their integral or differential forms. 

One such method is the DeVogelaere method (Lester, 1971), which integrates from 

Rn to Rn+l using an intermediate step, Rn+l/2. If we define the step size as 

h = Rn+l - Rn, the integration proceeds via the equations: 

h h2 

Gn+l/2 = Gn + 2G~l- 24 ( 4Wrz.Gn- W n-1/2Gn-lf2) 

h2 
Gn+l = Gn + hG~- 6(W nGn + 2W n+l/2Gn+l/2) 2.4.4 

I 1 h ( ) Gn+l = Gn- 6 W nGn + 4W n.+l/2Gn+l/2 + Wn+l Gn+l 

with the initial conditions: 

Go(Rruin) = 0 

G-1/2 = -hGo'(Rruiu) 2.4.5 
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Go' is an arbitrary non-singular matrix, usually taken as the identity matrix: 

Go'= I 2.4.6 

The solution following approximate solution methods such as this are inher

ently unstable, particularly in the classically forbidden region where G grows ex

ponentially, and stabilisation routines are required for all such techniques. 

The problem of stability can be overcome if the derivative of the natural log

arithm of G is propagated instead, that is: 

~(ln G)= G'G-1 

dR 
2.4.7 

Such log-derivative methods were first developed by Johnson (1973). They are 

very stable, and have been found to be particularly useful at short range where 

other methods are less satisfactory (Thomas et al, 1981). 

The alternative approach, embodied in the approximate potential methods, is 

to break the integration region down into small intervals, and approximate the 

potential within an interval by an analytic function, taking it as zero outside the 

interval. The Schrodinger equation is then solved analytically for each interval, 

with the step size been estimated from perturbation theory. The method requires 

the potential to be diagonalised at the centre point of each interval being consid

ered, and the solutions must be transformed into the appropriate space for each 

interval. As a result there is more work per step than for the approximate solution 

methods, but larger steps can be taken. The advantage of large step sizes is lost, 

however, if high accuracy is required, or in regions of rapidly changing potentials 

and consequently, the approximate potential methods are most applicable in the 

long range, slowly varying region of the potential. 

In addition to the methods outlined above, hybrid methods have been devel

oped that take advantage of the relatively good behaviour of the log-derivative 

methods at small R, and the economy of the approximate potential methods at 

large R (Thomas et al, 1981, Secrest, 1983, Allison, 1988). 
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The integration used in the bulk of the work reported in this thesis was the 

diabatic modified log-derivative method of Manolopoulos (1986), as implemented 

in the MOLSCAT computer code (Hutson and Green, 1986). 

2.5 Effect of Basis Set Truncation 

2.5.1 Rotational basis set truncation 

The space fixed close coupled equations were derived by expanding the total wave

function in the form: 

2.5.1 

In the general case, the vibrational wavefunctions of the molecules should also be 

included on the right hand side. For the equality to be exact, the sum over 1' 

should run over all possible states, leading to an infinite set of coupled equations. 

Clearly, some truncation is needed. The truncation of the basis set is the major 

approximation of the CC approach to the collision problem, and the effect of this 

truncation has to be considered. 

At any given collision energy, E, only those states with K;, > 0 are classically 

accessible. States with K;, < 0 have radial wavefunctions that are exponentially 

decaying with R, and the cross-sections for transitions to these states are identi

cally zero. However, these closed channels can still play an important role in the 

collision, especially in regions where the potential is strongly anisotropic. Indirect 

collisions proceeding through an intermediate state become increasingly important 

as the anisotropy increases. 

Even where cross-sections between the low j levels only are required, more 

anisotropic potentials require a larger basis set ( eg Green and Thaddeus, 1976). 

This can be seen by considering the form of the potential expansion. For simplicity, 
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consider the simplest atom - linear rotor collision system. The potential can be 

expanded as a series of Legendre polynomials: 

V(R,O') = L V>.(R)P>.(cosO') 
), 

2.5.2 

where e' is the angle between the linear rotor internuclear axis and the intermolec

ular axis. A true isotropic potential would have a non-zero contribution from the 

(A = 0) term only. Progressively more anisotropic potentials would have significant 

contributions to the sum over A from progressively larger values of A. Any term 

in the potential can couple states such that: 

lj - j'l ~ A ~ (j + j') 2.5.3 

thus strongly anisotropic potentials will directly couple states with larger t::.j than 

less anisotropic potentials. 

The effect of basis set truncation in calculations is usually investigated non

rigorously by comparing S-matrix elements or cross-sections from calculations with 

successively larger basis sets and examining how well the results converge. 

The results suggest that whilst it is necessary to include states that are directly 

coupled to the states of interest by strong anisotropies (Green and Thaddeus, 1976), 

it is not even always necessary to include all the open channels if only transitions 

between the lower j transitions are of interest. 

In general, basis set truncation does not seem to be too critical, provided the 

basis is chosen carefully with an eye to which cross-sections are of interest. Thus 

whilst it is usually necessary to include closed channels when all cross-sections 

are of interest, a certain amount of economy in basis set size can be obtained if 

only some of the cross-sections are required. The adequacy of the basis set chosen 

for any particular collision calculation is usually assessed by performing basis set 

convergence tests for the first few partial waves. 

2.5.2 Vibrational basis set truncation 

The assumption of a rigid rotor is equivalent to truncating the vibrational 

basis set to one state only. The empirical argument usually given to justify this 
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assumption is that the vibrational energy spacing is generally very much larger 

than the rotational energy spacing, so that the probability of the excited vibra

tional states intervening in a collision is very much smaller than the probability 

of the rotational states intervening. This assumption is harder to test than the 

truncation of the rotational basis, but tests have been carried out for rotational 

excitation of the H2 molecule ( eg Eastes and Secrest, 1972, Choi, Poe and Tang, 

1977). Eastes and Secrest found that the first excited vibrational state, a closed 

channel, did have an effect on the results, even when open rotational channels were 

neglected. However, Choi et al (1977) found the opposite, and suggested that the 

discrepancy could have been due to the fact that Eastes and Secrest compared 

S-matrix elements at low values of total angular momentum, whereas Choi et al 

compared converged cross-sections, by which time differences evident at low values 

of total angular momentum could have been rendered insignificant. It should be 

remembered that the H2 molecule is very light and therefore has a much smaller 

ratio of vibrational energy level spacing to rotational energy level spacing. It is 

expected that the rigid rotor approximation will generally be good at low collision 

energ1es. 

2.6 Formulation for Linear Rotor- Symmetric Top Collisions 

The closed coupled equations in their space fixed form are given by equation 2.2.8 

as: 

[ 
d

2 
l' ( l' + 1) 2] Jr - "( I I I ") Jr dR2 - R2 +""a' G,, (R) - 2!-L L..... I V 1 G1, (R) ,, 2.6.1 

Apart from the wavenumber, ""a' the left hand side of the equation is independent of 

the collision system. All information on the rotational properties of the particular 

collision system under consideration is contained in the coupling matrix: 

. I * ' . I ' l' ' • ' . ' l ' ' ' ' 
~~'m1 ,(01)~:';n2,(02)Ym1i(R)V xi~m1 (OI)Xi~m2 (02)Ymz{R) d01 d02 dR 

2.6.2 

The problem of formulating the equations for any particular collision system 

reduces to evaluating this integral. The form of the coupling matrix elements 
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for the atom - linear rotor, linear rotor - linear rotor, atom - symmetric top 

and atom - asymmetric top have been presented and discussed in the literature 

(AT-LR: Arthurs and Dalgarno, 1960, LR-LR: Green, 1975, AT-ST: Green, 1976, 

AT-aST: Garrison et al, 1976). Here the form of the coupling matrix element for 

the linear rotor - symmetric top collision problem is explicitly derived. 

2.6.1 Rotational Eigenfunctions 

A symmetric top molecule has equal moment of inertia about two of its principal 

axes, and a non-zero moment of inertia about the third, the symmetry axis, ie. 

2.6.3 

where lz" is the moment of inertia about the symmetry axis. 

For a symmetric top the total angular momentum, j, and its projection on 

the space fixed z-axis, j 111 , are constants of the motion, as always, and in addition 

the projection of the angular momentum on the molecular symmetry axis, jz", is 

also a constant of the motion. The rotational eigenfunctions are therefore labelled 

by IJkm), where j, k and mare all good quantum numbers and: 

j~jkm) = j(j + 1) ljkm) 

jzljkm) = m ljkm) 

jz"IJ km) = k IJ km) 

2.6.4 

It can be shown (Edmonds 1960) that the rotational eigenfunctions of a symmetric 

top are given by: 
. (2j + 1)1/2 j 

!Jkm) = S1r Dkm(a, /3, r) 2.6.5 

where D{m(a, (3, r) is a rotation matrix and (a, (3, r) are the Euler angles describing 

the rotation taking the space fixed axes into the internal molecule fixed axes. 

Edmonds definitions of the rotations matrices are used throughout: 

Dj ( f3 ) _ ikr dj (f3) imo: 
km a' ' 'Y - e km e 2.6.6 
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The rotational Hamiltonian of the symmetric top is given by: 

lx" ·2 ly" ·2 lz" ·2 
Hrot = -2 Jx11 + -Jy" + -2 Jz" 

~ 2~ ~ 2.6.7 
A ·2 B ·2 C ·2 = Jx11 + Jy" + Jz" 

With j 2 = j;, + j~, + j;, , the energy levels of the symmetric top follow from: 

Hrotlikm) = (Bi(j + 1) + (C- B) k2
) ljkm) = Elikm) 2.6.8 

The eigenfunctions, li km) are the primitive symmetric top eigenfunctions. For the 

description of a symmetric top molecule such as ammonia it is necessary to use 

symmetry adapted rotational eigenfunctions of the form (Green, 1980): 

likmE) = (2 (1 + ~ko))l/2 (likm) +Eli - km)) 2.6.9 

where k ~ 0 and E = ±1 if k > 0, f = +1 only if k = 0. 

The linear rotor molecule is equivalent to a symmetric top molecule with zero 

angular momentum about the molecule fixed z"-axis (Iz" = 0). The rotational 

properties of the linear rotor can be obtained from the symmetric top properties, 

to within a normalisation factor, by setting C = k = 0, thus: 

j21im) = i(j + 1)ljm), 

jzlim) = m lim), 

Hrotlim) = Bi(j + 1)lim) 

= Eljm). 

The rotational eigenfunction for the linear rotor is given by: 

lim) = Y~(l1, a) 
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where Y;U/3, o:) is a normalised spherical harmonic (Edmonds, 1960). The spherical 

harmonics are related to the rotation matrices by: 

2.6.12 

The close coupled equations were derived by expanding the total wavefunction 

in eigenfunctions of total angular momentum, J, and its projection on the space 

fixed z-axis. In the case of the linear rotor - symmetric top collision system the 

eigenfunctions are given by: 

2.6.13 

From henceforth, the subscript '1' refers to the symmetric top molecule, and the 

subscript '2' to the linear rotor. 

2.6.2 The Potential Expansion 

The form of the potential expansion has been discussed explicitly for atom - sym

metric top scattering (h = 0) (Green 1976) and for linear rotor - linear rotor 

scattering ( k = 0) Green, 1975) in both the body fixed and space fixed frames. 

These are all special cases of the most general invariant expansion for two poly

atomic molecules (eg Stone and Tough, 1984, Leavitt, 1980). In this section the 

potential expansion for the specific case of linear rotor - symmetric top scattering 

is discussed. 

Body Fixed Frame 

It is most natural to express the potential in the body fixed co-ordinate system 

introduced in section 2.2 where the z'-axis is taken to be the intermolecular axis. 

Ab initio potential data are usually derived in this frame. 

The body fixed co-ordinates were defined in figure 2.1. Here z' is the inter

molecular axis, ( ¢~, e~, 7/'~) are the Euler angles of the symmetric tops internal axes 
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with respect to the body fixed axes, and (B~, ¢~) are the polar angles describing 

the orientation of the linear rotor. 

From the figure several symmetries of the system are immediately obvious, and 

these should be echoed in the potential expansion. Namely, 

• the potential in invariant to rotations of both molecules around the z'-axis, and 

depends only on the difference ( ¢i - ¢~). 

• if the symmetric-top molecule has ann-fold axis of symmetry under rotations 

about the molecule fixed z"-axis, the potential is left unchanged by rotations 

of the molecule through 1/J~ = 21rpjn radians (p = 0, 1, 2 ... ). 

• if the linear rotor is a homonuclear diatomic molecule, the potential is left 

unchanged by rotations of the molecule through B~ = 1r. 

In addition, for an isolated system, the potential will be unchanged by inversion 

of all co-ordinates in the origin, and by rotation of the entire system through any 

angle (i.e. the space fixed potential expansion should be rotationally invariant, and 

unchanged by inversion). 

The potential expansion in the body fixed frame may be taken as: 

2.6.14 

where Oi = ( ¢i, BL 1/JD, R~ = { B~, ¢~) and R is the intermolecular distance. 

If we use equations 2.6.6 and 2.6.12 to express the potential expansion in terms 

of the reduced rotation matrices and exponential functions (Edmonds, 1960) we 

obtain: 

2.6.15 

Note that the ±v index ensures that the potential depends only on the differ

ence (¢i- ¢~) as required, and we may set ¢i (say) equal to zero. 
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The requirement that the potential must be invariant to rotations of the sym

metric top molecule through 2npfn for a molecule with an n-fold axis of symmetry 

is met if f-l is an integer multiple of n. 

Similarly, if the collision partner is a homonuclear molecule the requirement 

that the potential should be invariant to rotations of the molecule through an angle 

of 1r imposes the constraint that .\2 must be even, as: 

2.6.16 

An important property of the body fixed v's may be derived from the require

ment that the potential is real. Rewriting the body fixed expansion, we have: 

V(R, n~, n~) = L ( VJLVyfLV + v,,-vY,,_v + V-JL-vY-JL-V + V-J-LVY-JIV) 2.6.17a 
-'t -'2 
1'~0 
v~O 

where: 

2.6.17b 

Here we have dropped the .\ subscripts for clarity. 

Since all the terms in the expansion should be independent, the imaginary part of 

this expression should vanish: 

d~2__)8;) {d~~(8DvfLv(R)sin(ii1/J~ -v¢2) 

+ ( -1 t d~1-v( eD vfL -v( R) sin(ii1/J~ + v¢~) 

- ( -1 t d~~ -v( e~) V-JJ -v( R) sin(~L1P~ - v<P2) 

- d~~v(OD V-JJv(R) sin(ii1Pt + v¢2)} = 0 

making use of the property (Edmonds, 1960): 
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we have: 
d~~( 0~) sin(J.L1/1~ - v<,i>~ ){ vt,v - ( -1 )t'v-1, -v } 

+d~1ttv( 0~) sin(J.L1/1~ + v<,i>~){ v-1w - ( -1 )t'v1, -v } = 0 

As this must be true for all angles we obtain: 

Vttv(R) = (-1)t'v_1,-v(R) 

V-ttv( R) = ( -1 )tlvt£ -v( R) 

but we have no relation between vttv and v_ttv in the general case. 

Space Fixed Frame 

2.6.20 

2.6.21 

The potential expansion has been given in the body fixed frame. However, as was 

discussed in section 2.2, the fact that the body fixed z'-axis is rotating in space 

leads to off diagonal terms in the centrifugal potential. The coupled equations can 

be solved in both frames, but we choose to tackle the problem in the space fixed 

frame, sacrificing the relative simplicity of the body fixed coupling matrix elements 

in favour of a diagonal centrifugal contribution. 

As we wish to perform the integrals over angular functions to obtain the cou

pling matrix elements, 

the potential expansion should be expressed in the space fixed frame. The body 

fixed potential expansion can be transformed into the space fixed frame using the 

transformation: 

D~m'(Ls of c wrt a)= L D~~m"(Ls of a wrt b) D!nm"(Ls of c wrt b) 2.6.22 
nl11 

Transforming each term in equation 2.6.14 we have: 

Y!~(R2) = L D~~~2(0)Y~2 (R2) 
2.6.23 

nz 
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where 0 are the Euler angles that take the space fixed axes into the body fixed 

axes. 

The rotation matrices may be combined to give (Edmonds 1960): 

2.6.24 

Substituting equations 2.6.23 and 2.6.24 into the body fixed expanston (equa

tion 2.6.14) we obtain the space fixed potential expansion: 

v(R,{h, n2) = L: v>-1>-2>.1,( R) L: c~~ ~;~n;~tl (01 )Y,;2
2 

( k2)y;; *( k) 2.6.2.5 
A1 A2 11.1 n2 

.\,.,. 

where: 

2.6.26 

and Amin is the minimum of >.1 and >.2. 

Using the symmetry properties of the Clebsch Gordan coefficients, the rela

tionship between the space fixed and body fixed potential expansion coefficients 

can be rewritten with the sum running over positive values of v only: 

From equation 2.6.27 and the relationship 2.6.21, it can be seen that if J.L = 0 

(linear rotor -linear rotor scattering), then the sum, (>.1 + >.2 +>.)must be even for 

a non-vanishing space fixed coefficient. Similarly, there is no v = 0 contribution to 

the space fixed coefficient if the sum is odd. If J.L and v are both non-zero, however, 

the sum can be either even or odd, and this has important consequences for the 

propensity rules governing linear rotor - symmetric top collisions. 

The requirement for ( >.1 + >.2 + >.) to be even for linear rotor - linear rotor 

scattering, and for atom - symmetric top scattering, may be more rigorously de

rived by invoking the requirement that the potential is unchanged by reflection of 
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all co-ordinates in the origin. In the case of the linear rotor - symmetric top space 

fixed potential expansion given by equation 2.6.25 the same operation yields the 

symmetry properties of the space fixed potential expansion coefficients. Inversion 

of the co-ordinates in the origin is equivalent to the transformation: 

a--+a+7r, f3 ---+ 7r - {3, /- 7r- f• 2.6.28 

where a, f3 and 1 are the Euler angles. Under this transformation: 

A ' A A ' y 2 ( R2) ---+ ( -1) 2 y 2 ( R2 ) 
n2 n2 2.6.29 

thus inversion in the origin has the effect of changing J..L to - J..L and introducing 

a factor, ( -1 )A1 +A2+A+I'. The requirement that the potential remains unchanged 

thus imposes the restriction that: 

2.6.30 

Using this relation it is useful to rewrite the space-fixed expansion (2.6.25) as: 

where: 

rA1A2A~t = I: c~~~;~n;:t1 (fh)~~2 (R2)~; *(R) 2.6.31b 
nlnz 

2.6.3 Coupling Matrix Elements 

Armed with the space fixed potential expansion, and form of the wavefunction, 

we are now in the position to derive the form of the coupling matrix elements. 

The projection of the tops angular momentum on i{_g symmetry axis, k, takes 

a spectator role in the angular momentum coupling (Green 1976), and so it is 
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sufficient at this stage to perform the angular integration using only the primitive 

symmetric top functions ljkm) (eqn. 2.6.5). The angular integral then becomes: 

( ·'k''' ., l'· JMIVI. k . . l· JM)- !!! ((2h + 1)(2j1 + 1))1/2 h hh2 , ]1 ]2]12 , - 811' 

2.6.32 

Equation 2.6.32 can be evaluated by applying standard methods to perform 

the angular integrals (Edmonds, 1960) and summing the resultant Clebsch Gordan 

coefficients or equivalently, the 3-j symbols to give 6-j and 9-j symbols. Integration 

over dR gives: 

JdRY.z'i(R)Y."*(R)Y.z (R) = ((2t' + 1)(2.\+ 1))1/2 cz' "z cz'"z 
m1 n m1 411'(2/ + 1) m1nm1 000 

Integration over dR2 gives: 

Integration over df21 gives: 

·I 
h 

2.6.33a 

2.6.33c 

where ( :::) are the 3-j symbols and are related to the Clebsch Gordan coefficients 

by: 
]2 

2.6.34 

40 



Combining the three integrals and using the relation 2.6.34 to convert the 

Clebsch Gordan coefficients to 3-j symbols gives: 

vh = L v>'l>..2>..J1-(R) 
1' ( 411") 

X ( -1 )-}1 -h-h' +h'-}12-ll2
1 
+>..2->..1-k' +I' +l-v-mt2-mt2

1
-m!-m/ -M 

X [(2h + 1)(2)2 + 1)(2h2 + 1)(2/ + 1)(2J + 1)(2j~ + 1) 

X (2j~ + 1)(2j~2 + 1)(2/' + 1)(2J + 1)(2A2 + 1)(2A + 1)2]1
/
2 

2.6.35 

where the summation is over m1. m2, m12, mz, AI, A2, A, J.L, n1, n2, m~, m2, m~2 , mi. 
The 3-j symbols can be combined to yield 6-j and 9-j symbols giving as the final 

coupling matrix element: 

v~-r = " (2A + 1) (R) (-1)h'+h'-h2-k'-J 
1' ~ 411" V>..t>..2>..J1-

.Xt.X2 
.Xp. 

X [(2h + 1)(2)2 + 1)(2i12 + 1)(21 + 1) 

X (2A + 1)(2j~ + 1)(2j~2 + 1)(21' + 1)(2A2 + 1)] 112 
2.6.36 

x ( l' >. l ) ( j~ >.2 
0 0 0 0 0 

i2) ( ii 
0 -k' 

{ 
l' l A } { ~~2 

X . .1 J h2 
112 h2 A 

}2 h} ., ., 
h h 
A2 AI 

where ( :::) are the Wigner 3-j symbols, { :::} are the 6-j symbols, and {:::} is a 9-j 

symbol. The sum over J.L runs from -Al to +AI. 

41 



It can easily be verified that when k = 0 this reduces to the linear rotor- linear 

rotor expression (Green, 1975) and when 12 = 0, h2 = h the expression reduces 

to the atom - symmetric top expression (Green, 1976). 

The 3-j symbols impose the conditions that the sums, ( l' +l+.A) and (h+j~+.\2 ) 

must both be even for a nonvanishing coupling matrix element, and whilst the latter 

must be true if the linear rotor is a homonuclear diatomic molecule, the restriction 

is independent of any external constraints on ]2, j~ and .\2. 

2.6.4 Symmetry Adapted Coupling Matrix Elements 

Further 'selection rules' may be obtained by recalling that the symmetry adapted 

symmetric top wavefunction is given by equation 2.6.9. The coupling matrix ele

ments discussed above were derived using the primitive symmetric top eigenfunc

tions, ljkmE) but, as noted by Green (1976), k plays a spectator role in the angular 

momentum coupling, and the symmetry adapted coupling matrix element can be 

formed from a linear combination of terms of the form given by equation 2.6.36. 

Following Green (1976) we rewrite the potential as: 

where T,x 1 ,,x2 ,..x.11 is given by equation 2.6.31 b. With the 'true' symmetry adjusted 

symmetric top wavefunction: 

ljkmE) = ( ( 
1 

))l/2 (ljkm) + Elj- km)), 
2 1 + 8k0 

the coupling matrix elements can be rewritten as: 

2.6.38 

2.6.39 

The terms in equation 2.6.39 can be simplified by applying the symmetry properties 

of the coupling matrix elements ( eq. 2.6.36) and of the potential itself ( eq. 2.6.31 ). 
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Using the short-hand notation, jk) :::::} j]Ikhh2lE; J M) and Y~, :::::} Y,x
1

,,x
2
,,x.p we 

have: 

2.6.40 

thus: 

(-k'jYp + (-1)-Xl+-\2+-X+~y_~j- k) 

= ( -1)h+JI'-2k'+-X2+-X+~(k'jY~ + ( -1)-Xl+-\z+-X+t'Y-~jk) 2.6.41 

For any value of k and k', the properties of the 3-j symbols imply that there is 

only a non-zero contribution to the coupling matrix element if: 

k'- k = J.L 2.6.42 

thus for any given k, k', only one of the (kiY±~Ik') terms is non-zero, and it enters 

with a phase of ( -1 ),x 1 +-X2 +-\+t' if ( k' - k) = - J.L, or ( + 1) if ( k' - k) = J.L. 

Similarly, we can write: 

( -k'jY~ + ( -l).xl +-X2+-\+~y_~jk) 

= (- 1 )i~+h-2k'+-X2+-X+~(k'jY~ + (- 1 )-X1+-\z+-\+~y-~,j- k) 
2.6.43 

Here,as k, k' and J.L are all greater than zero, only the (kiY+~I - k) term can 

contribute to the coupling matrix element. 

Substituting 2.6.42 and 2.6.43 into equation 2.6.39, the symmetry adapted 

coupling matrix elements become: 

(j~k'j~jbl't:'; JMjVjitkhit2l; JM) = L L v,x 1 ,x 2 ,x~(R) 
.x1 .x2 ~~0 2[(1 + 6ko)(1 + 6k'o)]ll2 

.X 

X (1 + Et:
1
( -1)il+ii- 2k'+-X+-X2 +~) ((jik'j~j~2l'; JMIY±~Ihkhj12l; JM) X w 

2.6.44 

43 



where: 

w = ( +1) if ( k' - k) 2: 0 
2.6.45 

2.6.5 Separation into two non-interacting parity blocks 

From the symmetry properties of equation 2.6.44 it can be seen that the coupling 

matrix element vanishes unless: 

EE'( -1)1I+il'+·HAz+J.I = ( +1) 

( -1)A2+h+h' = ( +1) 

(-1)A+l+l' = (+1). 

2.6.46 

Eliminating A and .A2 from the above equations gives the condition for a non

vanishing coupling matrix element as: 

a'( _ 1)h+h'-h-h'-l-l'+J.I = ( +1) 2.6.47 

This can be simplified using the properties of the collision partners involved. If 

all the angular momenta are integer, then using the property J.L = ( k' - k), the 

condition for a non-vanishing coupling matrix element becomes: 

E(-1)h+k-h-l = E'(-1)h'+k'-h'-l' 2.6.48 

The problem therefore partitions out into two non-interacting parity blocks that 

can be solved separately, reducing the computational effort required for the calcu

lation. 

2.6.6 Body-fixed coupling matrix elements 

Although the CC equations will be solved in the space fixed frame, it is instructive 

to investigate the coupling matrix element in the body fixed frame, where the form 

of the angular momentum coupling is more transparent. As this is the natural 
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frame in which to describe the interaction potential, the form of the potential 

matrix element is simpler. 

The potential in the body fixed frame (eq. 2.6.14) is given by: 

2.6.49 

The total wavefunction can be expanded in the form: 

yJn(o' k ) = ( 2h + 1) 1/2 "' ch h h2 (DJI (0.' ) + E Dh (0.' ))Y.h (k) f3 1• 2 87!' ~ n1n2n k01 1 -kn1 1 n2 · 
n1n2 

2.6.50 

Using the primitive symmetric top functions, j]Ik01), the integral to be evaluated 

becomes: 

I I "' "' ((2]1 + 1)(2j~ + 1))1/2 cit Jz h2citl izl itz'Dhl * (n' )Yhl *(R, ') 
~ ~ 8 n1n2n n 10 10 1 k10 1 Hl n 1 

nn_A 7l' 12 1 2 
ap•2 1-'2 
n,'Sl~ ~-'" 

2.6.51 

Integrating over dOi, dR~ and using equation 2.6.34 to convert the Clebsch Gordan 

equations into 3-j symbols gives the result: 

( i1 -X1 h) ( i1 -X1 h) (j~ -X2 j;) X I k -Oi fh 0 0 -k J.L 1/ ( ., .X2 i2) ( h )2 JI2) ( i1 
., ib) )2 )2 

X I 
n2 o1 02 -0 Oi o~ -0' -02 -I/ 

2.6.52 

From here it can be seen that the I vi > 0 terms in the potential drive the change in 

the projection of the angular momenta h and i2 on the intermolecular axis. The 

value of 0 ( = 01 + 02) is unchanged by the body fixed interaction potential, but 

will be coupled to O' = 0 ± 1 by the off diagonal centrifugal terms. 
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2.6. 7 Extension to linear rotor - asymmetric top collisions 

Garrison et al (1976, 1977) have shown how the atom- symmetric top treatment 

can be extended to give the atom - asymmetric top coupling matrix elements, 

with regard to rotational excitation of H2 CO by He. The ease of the extension 

is a consequence of the fact that the asymmetric top rotational functions can be 

expressed as a linear combination of symmetric top functions. 

The rotational Hamiltonian for an asymmetric top is 

Hrot = Aj2 + (B- A)j~, + (C- A)j;, 2.6.53 

where none of the moments of inertia in the principal axes frame are equal. 

The asymmetric top differs from the symmetric top in that the projection of the 

total angular momentum on the molecule fixed z"- axis is no longer a constant of 

the motion. However, it is convenient to expand the asymmetric top wavefunctions 

in a basis of symmetric top wavefunctions which form a complete set in the space 

of the rotation of a rigid body: 

j 

ljrm) = L ajkrlikm)(ST). 2.6.54 
k=-j 

The fact that k is no longer a good quantum number leads to a mixing of the 

(2j + 1) asymmetric top states labelled by r. Consideration of the symmetries of 

the system (Garrison et al, 1976) lead to 'symmetry adapted wave functions' in 

the same form as those found in the case of the symmetric top molecule. Thus we 

may rewrite the asymmetric top wavefunction as: 

2.6.55 

The bjkT coefficients may be obtained by diagonalising the Hamiltonian in this 

basis. 

We have already noted that k plays a spectator role in the angular momentum 

coupling, and as a result of this, the asymmetric top coupling matrix elements 
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may be obtained from the linear rotor - symmetric top coupling matrix elements 

simply by taking the appropriate linear combinations of the latter: 

J 2.6.56 
= L bji:T(j~k'Aj~2l1 E 1 ; JMIVIhkhh2lE; JM) 

k=-j 
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Chapter III 

Rotational Excitation of NH3 in collisions with ortho and 
para-H2 

3.1 Introduction 

The ammonia (NH3) molecule was the first polyatomic molecule to be observed 

in the interstellar medium (Cheung 1968), and since then has been extensively 

observed in the microwave, radio and infrared regions (Ho and Townes, 1983). Its 

wide range of transitions have made it a valuable tool for deriving information on 

the physical conditions that prevail within the interstellar clouds. In particular, 

rotational-inversion transitions of para-NH3 have been used to obtain estimates of 

the temperature in the clouds (Walmsley and Ungerechts 1983, Danby et al1988), 

information on the density can also be deduced. In addition there have been obser

vations of maser emission in both non-metastable, and metastable states (Mauers

berger et al 1987, 1988, Guilloteau et al 1983, Johnston et al 1989). The latter 

will be discussed further in the next chapter. 

Molecular hydrogen is thought to be the major collision partner in regions of 

interest, and reliable information on the collisional rates are required to interpret 

the observations. 

Experimental work on this system is generally performed at room tempera

tures, and extrapolation to the low energies is very unreliable, especially as the 

low energy collisions sample different regions of the interaction potential than do 

high energy collisions. In addition, most experimental measurements give some 

average or ratio of the collision rates, and interpretation can be difficult. The 

experimental measurements do, however, provide some useful insights into the 

propensity rules governing the rotational transitions, and provide an important 

measure of the accuracy of the theoretical calculations. 

In order to gain a deeper understanding of the propensity rules, and to at

tempt to calculate reliable rates for the astrophysicists, there have been a number 
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of theoretical studies of the rotational excitation of NH3 in collisions with both H2 

and He. To date, the quanta! calculations have only treated collisions with He or 

para-H2 constrained to its rotational ground state, both of which act as spherically 

symmetric collision partners. Although there have been some limited semi-clas

sical calculations considering rotational excitation of NH3 by ortho-H2, the effect 

of replacing ground state para-H2 by rotationally excited H2 has not been fully 

investigated. 

Information on NH3 ortho-H2 collisions is also relevant to the astrophysical 

studies where, although it seems fair to assume most para-H2 is in the (j = 0) ro

tational ground state at molecular cloud temperatures of 10 to 30K, the ortho:para 

Hz ratio is not known, and could be anything up to 3:1 (Flower and Watt 1984). 

3.2 Introducing the NH3 Molecule 

The NH3 molecule (figure 3.1) is a typical example of a symmetric top molecule, 

with a three-fold axis of symmetry under rotation about the molecule fixed z"
axis. Its rotational wavefunction can be characterized by ljkm) (section 2.6.1), 

and, ignoring small corrections, the rotational energy levels are given by: 

Erot = Bj(j + 1) + (C- B) k2
. 3.2.1 

The energy is therefore dependent on j and jkj (through k2), giving jk levels which 

are degenerate, at least in so far as the rigid rotor approximation holds. 

Ammonia separates into two distinct species, depending on the direction of 

the spins of the H nuclei. Ortho-NH3 has all spins parallel whilst para-NH3 has 

two spins parallel and one anti-parallel. It can be shown by consideration of the 

symmetry under interchange of two hydrogen nuclei (Townes and Schawlow, 1955) 

that ortho-NH3 has allowed rotational states with k = 3n (n = 0,1,2,3 ... ) whilst 

para-NH3 has allowed rotational states with k # 3n. In the absence of a mag

netic field, collisional and radiative transitions cannot change the direction of the 

hydrogen spins, so transitions between ortho- and para-NH3 are forbidden. 

If the NH3 has no vibration perpendicular to the z"-axis, the dipole moment 

of the molecule lies entirely along this axis, thus radiative transitions obey the 
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Figure 3.1: The NH3 - H2 Collision Co-ordinates 

selection rules tl.k = 0 and tl.j = ±1. The energy levels form k-ladders (same k, 

different j ). The lowest level in each ladder (j = k) is a metastable state, whilst 

the other states (j > k) decay rapidly via the tl.j = ± 1 radiative transitions. 

·For collisions the presence of the three-fold axis of symmetry about the z" -axis 

leads to the collisional selection rule tl.k = 3n where n is an integer. This is a 

consequence of the constraints on the potential discussed in section 2.6.2 (J.L = 3n ). 

Collisions can therefore lead to transitions within a k-ladder and between k-ladders. 

It is collisions that are largely responsible for the latter although a slight coupling 

between the rotation and vibration can lead to slow radiative tl.k = 3 transitions 

even in the vibrational ground state (Oka et al, 1971). 

Implicit in this discussion is the assumption that NH3 is a 'rigid rotor' with no 

vibrational motion. In fact, the nitrogen nucleus can tunnel quantum-mechanically 
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through the plane of the hydrogen nuclei in a large amplitude inversion motion. 

This inversion motion splits the normally degenerate k doublets by ""' lcm-1. The 

rotational wavefunction can be written as: 

1 
jjkmE) = (2(1 + c5ko))l/2(1Jkm) + Ejj-km)) 3.2.2 

and the k doublets are split into a symmetric (lower) and antisymmetric (upper) 

state such that (Green 1980); 

E = ±( -l)j 3.2.3 

where the upper sign applies to the upper (a) state and the lower sign applies to 

the lower ( s) state. 

For para-NH3 the potential matrix element is invariant to simultaneous changes 

of the symmetry of the levels (a +-t s ), but this is not true for ortho-NH3 where 

only one of the inversion doublets exists for k = 0. 

The effect of neglecting the inversion motion of NH3 in the theoretical calcula

tions has been discussed by Green (1976) and by Davis and Boggs (1978). Green 

argued that the period of the inversion motion ( "'50ns) is very much larger than 

the typical collision time at thermal energies ("' 1 ns). Davis and Boggs gave the 

conditions under which the rigid-rotor approximation may be expected to be valid. 

If it is assumed that the inversion barrier is sufficiently high that the upper and 

lower inversion state wavefunctions may be represented as symmetric and antisym

metric combination of some normalised function, f, then the wavefunction can be 

written as: 

j±) = 2-1
/

2 (!(he- h)± J(he +h)) 3.2.4 

where h is the distance of the N nucleus from the plane of the H nuclei, and he is 

the equilibrium distance. 

Davis and Boggs showed that if f is sharply peaked , and the potential ex

pansion coefficients (section 2.6.2) are slowly varying functions of h, then the rigid 

rotor approximation can be justified. Effectively, the rigid rotor approximation 

assumes f can be modelled as a linear combination of delta-functions centred at 

the equilibrium positions of the nitrogen. 
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3.3 The Story So Far 

Because of the astrophysical importance of the NH3 molecule, there have been 

many experimental and theoretical studies of the rotational excitation of NH3 
in collisions with H2 and He. The experimental studies of NH3 - H2 collisions 

include pressure broadening (Broquier et al, 1985, 1987, 1988), microwave double 

resonance experiments (Daly and Oka, 1970, Fabris and Oka, 1972, Oka, 1973), 

double resonance microwave beam maser studies (Klaasen et al, 1982, 1983) and 

molecular crossed beam measurements (Seelemann et al, 1988, Ebel et al, 1990). 

Ideally, to provide a stringent test of theory, direct measurements of state-to

state collision cross-sections are needed. Many experimental measurements give 

information only on the sums of state-to-state cross-sections for many transitions, 

and the averaging can destroy much of the detailed information needed to fully 

test the theoretical results. 

The earliest experiments to approach this ideal were the microwave double 

resonance experiments of Oka et al (1970, 1972, 1973). In these experiments a 

mixture of NH3 and its collision partner were pumped by strong microwave ra

diation at a pumping frequency, lp· The frequency was chosen so as to produce 

virtual saturation of one of the NH3 inversion doublets (j' k'). The non-Boltzmann 

distribution was transferred to other levels by collisions and a second level, the 

signal level (j, k), was monitored by weak microwave radiation at the signal fre

quency, Is· Oka has shown that to first order, the change in intensity of absorption 

at the signal frequency is related to the collisional rates by: 

AI= _IP (a(jks--+ j'k'a)- a(jks--+ j'k's)) 
I Is O:tot 

3.3.1 

where a(j ks --+ j' k' s( a)) are the rate constants for the symmetry preservmg 

(changing) transitions, and O:tot is the total rate for transitions out of both the 

signal doublet lines plus the interdoublet rate (counted twice). 

Thus the microwave double resonance technique provides a measure of the 

difference between parity changing and parity preserving transitions. The non 

zero values of £}l found in the experiments yields information on the 'propensity 

rules' governing the transitions. 
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Collisions of NH3 with a number of collision partners were studied, including 

collisions with He, para-H2 and normal H2 and the experiments were performed 

at 300K. The results may be split into two cases. 

Firstly, !:ik = 0 transitions. For all collisions with H2, as for collisions with 

all polar and non-polar molecules, the dipole allowed transitions dominated when 

!:ij = 1 (i.e. '11 was positive, parity changing transitions were preferred). For all 

!:ij = 2, quadrupole allowed transitions dominated, and '11 was negative. However, 

for collisions with rare gas atoms (He, Xe, Ar ... ), no clear propensity rule was found. 

This was explained by the fact that rare gas atoms have zero electric multipole 

moment, and only short-range forces were contributing, whereas for molecules, the 

long-range dipole quadrupole interactions were drowning out all other information. 

The relevance of this discussion to the current work becomes obvious, when 

it is recalled that ground state para-H2 (j = 0) is expected to act like He in 

collisions (Green, 1980), as its average electric multipole moment vanishes. Thus 

the behaviour of cross-sections for collisions of NH3 with ground state para-H2 

might be expected to be very different from that for collisions with rotationally 

excited Hydrogen. 

For !:ik = 3 transitions (Fabris and Oka, 1972), a close parallelism was found 

for collisions with H2 and collisions with He. This was explained by proposing that 

!:ik = 3 transitions were driven by short range forces which were similar in both 

cases. 

The microwave double resonance results of Oka et al have been widely used to 

probe the accuracy of the theoretical potential used in quantal and semi-classical 

calculations for both NH3-He collisions (Davis and Boggs, 1978, Green, 1979, 

1980, Billing, Poulsen and Diercksen, 1985) and NH3-H2 collisions (Billing and 

Diercksen, 1986, Danby et al, 1987, Danby and Valiron, 1989). 

For the NH3-He collisions it was found that, whilst all potentials gave reason

able agreement with the experimental data for !:ik = 0 transitions, only the most 

sophisticated of the potentials (Billing, Poulsen and Diercksen, 1985) could predict 

the correct '11 for A.k = 0 transitions. 
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The most rigorous experimental test of the theory is provided by the recent 

crossed molecular beam measurements of Seelemann et a! (1988) and Ebel at al 

(1990), which were the first to give direct information on state-to-state cross

sections for ~j > 1, ~k > 1 transitions. The molecular beams were rotationally 

cooled giving an initial NH3 beam consisting almost entirely of ground state ortho

NH3 (jkt = 00+) or ground state para-NH3 (jkt = 11±). They studied collisions 

with normal H2 (3: 1 ortho:para-H2 ratio) and helium, and were able to detect the 

excited states with complete state sensitivity. The results obtained were inter

preted as relative state-to-state integral cross-sections. No absolute measurement 

could be made, but detailed information on collisional propensities could be ex

tracted. 

There have been a number of theoretical studies of NH3-H2 collisions using 

both quanta! methods (Danby et al, 1986, 1987) and semi-classical approaches 

(Billing and Diercksen, 1985, 1986, 1987, 1988). Much of the theoretical work 

has treated collisions of NH3 with para-H2 constrained to its rotational ground

state (h = 0). In this limit the problem reduces to the collision of a symmetric 

top molecule with a spherically symmetric perturber. This is formally the same 

as collisions between NH3 and helium which have been widely studied, and the 

theory for treating such a system has been presented by Green (1976). 

Quanta} calculation of NH3-H2 collisions have been presented by Danby et al 

(1986, 1987) who treated collisions of NH3 with (h = 0) para-H2 only. They 

employed a potential consisting of an SCF part complemented by a dispersion 

contribution calculated from second order perturbation theory. Using full CC 

calculations they treated collisions with both ortho (1986) and para-NH3 (1987). 

They compared their para-NH3 rates with the results of Oka et al, and found rea

sonable agreement for !:l.k = 0, !:i.j = 0 transitions where theory correctly predicted 

that dipole allowed ( s ~ a) transitions are preferred. The ~k = 3 theoretical re

sults were found to agree well with the NH3-He double resonance data, as would 

be expected if ground state para-H2 behaves in a similar way to He as a collision 

partner. 

Billing and Diercksen (1985, 1986, 1988) have performed semi-classical cal

culations with both para-H2 (h = 0, (2)) and ortho-H2 (h = 1). They used a 
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potential consisting again of an SCF contribution but with the dispersion terms 

coming from a many body perturbation theory (MBPT) treatment, and solved the 

coupled equations using the semi-classical classical path method where the rota

tion of the target molecule is treated quantally, whilst the relative motion of the 

molecules is treated classically. At higher energies, where this became impractical, 

they used a form of the semi-classical coupled-states approximation, formulated 

by neglecting changes in the projection of h on the intermolecular axis. These 

calculations were more complete than the quantal calculations in that they took 

some account of the rotational structure of the H2 molecule and Billing and Dier

cksen were able to demonstrate the importance of including some (h = 2) terms 

in the para-H2 basis set. However, they employed a number of approximations in 

addition to that of using semi-classical physics. In particular, they expanded the 

interaction potential in the form (Billing and Diercksen, 1986): 

3.3.2 

where R1(2) are the polar angles of NH3 (H2) with respect to the body fixed 

frame. They interpreted the role of "71 as coupling k and k', whilst "72 couples 

!12 and !1~, the projection of the H2 angular momentum on the intermolecular 

axis. Comparison of the above potential expansion with the body fixed potential 

expansion derived in chapter two ( eq 2.6.15) shows that the two only correspond 

when "72 = v = 0. The significance of this difference will be discussed further in 

section 3.5. 

Very recently, Ebel et al (1990) have presented results using a quantal coupled 

states approximation derived from the potential expansion of Billing and Diercksen 

(1985), for the rotational excitation of para-H2 (j = 0) and (j = 2) and ortho

H2 (j = 1). 

Throughout all these calculations a consistent feature found for NH3 collisions 

was the propensity rules : 

a(ll± -t 22=F) >> a(ll± -t 22±) 3.3.3a 
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for para-NH3 and: 

o-(00+ - j3-) > > o-(00+ ___. j3+) 3.3.3b 

for ortho-NH3, where o-(j kE __. j' k' E ') is the cross-section for transitions from 

the NH3 rotational states labelled by j, k and E to the state labelled by j', k' and 

E '. However, this is at variance with the results of the experimental crossed beam 

measurements of Seelemann et al and Ebel et al. In the experiments, although 

there is a slight propensity in favour of (00+ __. 33-) transition for ortho- NH3, 

the cross-sections for (00+ __. 33+) and (00+ __. 33-) are of similar magnitude. 

For para-NH3 such a comparison is not possible, because both the 11+ and 11-

rotational levels are present in the initial beam. 

Although some account has been taken of the rotational structure of the H2 

molecule in more recent calculations it has not previously been treated fully. The 

question arises, would a proper treatment of the rotational structure of H2 solve 

the discrepancy between theory and experiment? 

3.4 Numerical Calculations 

3.4.1 The Interaction Potential 

An important element of any scattering calculation is the form of the potential 

used. The present calculations employed two separate ab initio potentials. Both 

potential surfaces contained the same SCF contribution, but differed in the disper

sion terms. Long range terms were calculated from the analytic formulae discussed 

in section 1.3. 

As discussed m chapter one, the SCF analysis treats the molecules as two 

overlapping charge distributions and is therefore applicable at short range. It 

includes the short range overlap, electrostatic and induction terms, but not the 

dispersion which is due to correlation effects and must be added in separately. 
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The potential is then fitted to the body fixed potential expansion discussed in 

chapter two: 

V(R, 0~, R~) = L V)qp,\ 2 v(R)D;~(O~)Y!~(R~) 
.\l.\2 

lUI 

3.4.1 

In the present calculation the SCF part of the potential has been taken from 

the ab initio large basis set SCF calculation of Diercksen (Billing and Diercksen, 

1985, 1986). The ab initio data has been given for angles of e~ = 0(22.5)180, 1/A = 

0(20)60 and 02, ¢2 = (0, 0), (90, 0), (90, 90). 

The first few spherical harmonics that enter the body-fixed potential expansion 

( eq 3.4.1) are: 

( 
15) 1/2 

Yfl(O,¢) = =f 
8

11" sinOcosOexp(±i¢) 

3.4.2 

( 
15 ) 1/2 

Yf2(8,¢) = 
32

11" sin2 0exp(±2i¢) 

thus with 02,¢2 = (0, 0), (90, 0) and (90, 90}, there is only sufficient angular data to 

obtain terms with 11 = 0, ±2. Previous calculations have only considered collisions 

with ground state para-H2 (h = i2 = .A2 = 112 = 0), and have averaged the 

potential over the three hydrogen orientations ( eg Danby et al, 1986}, so the fact 

th~t the 11 = ±1 terms cannot be obtained was unimportant. However, the physical 

significance of the 11 = ± 1 terms to the linear rotor - symmetric top case can be 

seen by reference to figure 3.2. 

In the absence of the Y1
2(82, ¢2) term in the expansion: 

v ( e~) = v ( 1r - e;) 3.4.3 

(which is not true for the general case of a symmetric top - linear rotor in an 

arbitrary orientation) it is clear that in order to give a reasonable representation 

of the behaviour of the potential with 82, additional terms are needed. 
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Figure 3.2: Significance of the v = ±1 terms 

The additional terms have been taken from computations with cosO~= ±3-t, 
and ¢2 = ±7r/4 (Valiron, 1988), enabling v = ±1 terms to be evaluated. A 

smaller basis set was used in these calculations and they are not strictly compatible 

with the large basis set SCF data, so when the potential was fitted to obtain the 

expansion coefficients, the two sets of data were treated separately so as not to 

degrade the accuracy of the large basis set calculations. 

Most of the calculations have been performed with a dispersion contribution 

taken from the second order perturbation theory calculations discussed by Danby 

et al (1986). The data has been supplemented by additional terms enabling the 

v = ±1 terms to be evaluated (Valiron 1988). The additional data points are fully 

compatible with the earlier data points. Following the notation adopted by Danby 

and Valiron (1989) this potential will be refered to as the SCF+EK potential. 

To complement these calculations, additional calculations were performed us

ing the fourth order many body perturbation theory (MBPT) dispersion potential 

ofBilling and Diercksen (1985). The difference between the two potentials has been 

discussed in detail by Danby and Valiron (1989). In principle the SCF+MBPT 

potential is more accurate than the SCF+EK potential used for most of the cur

rent work, however, there is insufficient angular information to obtain the v = ±1 

terms from the MBPT data. The MBPT potential coefficients were therefore 

supplemented by the relevant terms taken from the second order perturbation 

theory (EK) dispersion data. 

In fitting the potential, the SCF part is forced to fall off exponentially, and 

the information about the long range electrostatic and induction terms tends to 

58 



3.1: Leading long range terms when f.L = 0 

.:\1 J1 .:\2 v electrostatic induction 

0 0 0 0 - ( 47r) 1/2 CX2f.LI R-6 

0 0 2 0 - ( 47r I 45) l/2 Aa2J.LI R-6 

1 0 0 0 rv R-7 

1 0 2 0 - (367r 15) 112e2J.L1 R-4 

1 0 2 1 - ( 121r 15 )112e2J.Ll R-4 

2 0 0 0 -( 47r)l/2a2f.LI R-6 

2 0 2 0 +(247r )1l 2e2e1 R-5 - ( 47r 15 )1/2 ACX2f.LI R-6 

2 0 2 1 +( 647r 1 s) 112e2e1 R-5 -(167r I 45 )112 ACX2Jlt R-6 

2 0 2 2 +( 47r l5)112e2e1R-5 - ( 47r I 45) 112 Aa2J1t R-6 

Here: 

f.Ll: dipole moment of NH3 = 0.589au (Diercksen and Sadlej, 1986) 

81: quadrupole moment of NH3 = -2.210au (Diercksen and Sadlej, 1986) 

a2: polarizability of H2 = 5.18au (Kolos and Wolniewicz, 1967) 

82: quadrupole moment of NH3 = 0.478au (Karl, Poll, Wolniewicz, 1975) 

Aa2: quadrupole polarisability of the H2 molecule. 

get lost in the numerical manipulation. In particular, long range terms due to the 

interaction of the molecular multipole moments are not included in the expansion. 

At large values of the intermolecular distance, R, where the molecules can be 

treated as non-overlapping charge distributions, analytical expressions for the long 

range electrostatic and induction terms may be obtained from perturbation theory 

(Buckingham, 1967, Leavitt, 1980). When f.L = 0, the linear rotor- symmetric 
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top potential terms reduce (to within a factor) to that found for linear rotor -

linear rotor collisions, and the form of the long range terms for the latter have 

been discussed by Floweret al (1979). The linear rotor- linear rotor analysis uses 

the body fixed potential expansion : 

This is equivalent to the linear rotor - symmetric top body fixed potential expan

sion ( 3.4.1) when f.L = 0 if: 

3.4.5 

Thus the leading f.L = 0 terms in the linear rotor - symmetric top perturbation 

expansion are just the leading terms in the linear rotor - linear rotor expansion 

multiplied by the factor ((1 + 8vo)(2,\l + 1)(27r))112 . The leading long range terms 

are given in table 3.1. 

3.4.2 Fitting of the Potential 

SCF: 

The ab initio data has been calculated at intermolecular distances of R = 4 to 9 

atomic units in steps of one atomic unit, with a few selected terms at 10, 11 and 

12 atomic units. To obtain the potential at intermediate R, and to extrapolate 

beyond R=9au, a fitting routine must be used. Following Danby et al (1986), we 

use the fact that the SCF contribution is expected to fall off exponentially with 

R, and scale the energies by a scaling function A exp( a( R - Ro)) where A is the 

potential at Ro. This reduces the rapid variation with R at small intermolecular 

distances and renders the data more amenable to spline fitting. 

In the present work the value of a was optimized by taking an initial value 

from the first two data points, and varying a until a trial fit agreed, to within some 

given tolerance, with the value of the nth data point V(R), where R > 5au. 
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A spline was fitted to the scaled function using the NAG routine E02BAF. 

To allow extrapolation beyond the maximum value of R it was necessary to set 

V = 0 at some appropriately large value of R. Extrapolation beyond Rmax will 

not, of course, be reliable, but the fitted SCF potential is rapidly killed off by the 

exponential scaling in this region. 

A rough check on the reliability of the fitting function can be obtained by 

fitting to, say, all but two of the data points for a given angular configuration, and 

checking the extrapolated points against the known data points. The results of 

two such tests are shown in table 3.2. It can be seen that the fit is adequate at 

intermediate values of R but, as expected, it falls off too rapidly beyond R111ax and 

all long range information is lost. 

As suggested earlier, this problem can be largely overcome by including the 

long range induction and electrostatic terms explicitly. It was decided to include 

those terms falling off as R-n where n ~ 5, plus the isotropic R-0 term. 

The following algorithm was used to introduce these terms: 

1: A quantity f ( R) equal to the numerical value oft he induction and electrostatic 

long range expressions evaluated at R was subtracted from the data terms 

n: The modified data points were fitted as before 

m: The quantity subtracted in (i) was added back to all values of R. 

The leading long range induction and electrostatic terms are thus included 

explicitly, and are no longer 'killed off' by the exponential scaling procedure. The 

results of tests on this fitting method are shown in table 3.2. The behaviour of the 

interaction potential with R appears to be satisfactory. 
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3.2:SCF fit with and without explicit long range terms 

The potential at ( R, OJ., 1/JJ., 02, ¢2) is given in units of inverse centimetres. 

0~ = 22.5, l/J~ = 20.0, 0~, ¢~ = 0.0 0~ = 112.5, 1/J~ = 40.0, 0~, ¢~ = 0.0 

data SCF fit SCF fit data SCF fit SCF fit 

R points without with R points without with 

LR terms LR terms LR terms LR terms 

9.0 -51.893 -51.893 -51.893 8.0 29.805 29.805 29.805 

9.2 -4 7.407 -47.201 8.2 25.477 25.645 

9.4 -43.273 -42.927 8.4 22.024 22.404 

9.6 -39.417 -39.047 8.6 19.198 19.823 

9.8 -35.804 -35.534 8.8 16.830 17.721 

10.0 -32.414 -32.414 -32.361 9.0 15.534 14.807 15.974 

11.0 -20.696 -17.554 -20.617 10.0 9.896 7.837 10.223 

12.0 -13.724 - 8.392 -13.628 15.0 0.150 1.881 

15.0 - 0.591 - 4.909 20.0 0.001 0.561 

20.0 - 0.004 - 1.418 

Bold face entries indicate the given data points 
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Dispersion Energy: 

Bearing in mind that the dispersion energy can be expressed as a sum of terms 

falling off as R-n with n ~ 6, the dispersion energy was fitted to the functional 

form: 

3.4.6 

(Danby et al, 1986).tt.wat3 pnhraud: using the NAG routine F04ATF. The calcu

lated dispersion data again covers R = 4 ~ 9au, with a few additional long rangf' 

terms at 25, 40 and 80au which can be used to provide a check on the fit. 

Fitting the function to the 4 --+ 9au data points introduced an error of a 

factor of two at 25au, and three at 80au. However, it was found that the fit could 

be greatly improved by setting E = 10-12cm-1 (or zero) at R=lOOOau. ·with this 

modification the results agreed to around 2% at 25au, and 25% at 40au (table 3.3). 
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3.3:Dispersion fit for the long range values 

The potential at ( R, Oi, 7Pi, 0~, ¢~) is given in units of inverse centimetres. 

V(R)=4,5,6,7 and 9 are given 

e1,7Pl,e2,¢2 = (9o,o,9o,o) e1,7Pl,e2,¢2 = (18o,o,o,o) 

R data fit data fit 

8.0 -36.888 -36.914 -39.846 -39.937 

8.2 -31.326 -33.960 

8.4 -26.700 -28.999 

8.6 -22.855 -24.864 

8.8 -19.644 -21.404 

9.0 -16.953 -16.953 -18.496 -18.496 

10.0 - 8.571 - 9.391 

15.0 - 6.760 - 6.964 - 0.753 - 0.755 

25.0 - 0.030 - 0.030 - 0.032 - 0.034 

40.0 - 0.0018 - 0.0015 - 0.0015 - 0.0020 

bold face entries indicate given data points 

64 



3.4.3 Fitting to the body fixed potential coefficients. 

The body fixed potential expansion ( eqn 2.6.14) can be rewritten as: 

V(R, n~, R~) = L L V)IJ/l>.2v(R) 

>.1 >.2v J.L;:::o 

X 

3.4.7 

Thus for each value of R there is a set of I simultaneous equations, where 

I is the number of angles for which data is available. The set of simultaneous 

equations can be solved using standard methods to yield the expansion coefficients, 

V>,1J.L>.2v· In the current work the expansion coefficients were evaluated using the 

NAG routine F04JAF. 

For the SCF potential, the data for the geometries a~ = ± cos- 1(3- 112), ¢2 = 
±1r /4 was fitted separately to the B2, ¢2 = (0, 0), (90, 0), (90, 90) data (Billing 

and Diercksen, 1985) so as not to degrade the accuracy of the latter. Thus the 

v = 0, ±2 terms were taken from a fit to the large basis set data, and these 

were then supplemented by a fit to the additional geometries from which only the 

v = ± 1 terms were retained. 

There was no such problem with the second order perturbation theory (EK) 

dispersion data where the number of geometries was sufficient to give all four 

H2 spherical harmonics with .\2 ~ 2, but the MBPT fit yielded only those with 

v = 0, ±2. The v = ± 1 terms used in the MBPT calculation were taken directly 

from the EK dispersion energy fit. 
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Having obtained the body fixed potential expansion coefficients, it remains 

only to convert them to the space fixed frame. This may be done using the con

version already derived (eqn 2.6.27). The space fixed V>. 1 >.2 >.Jl,(R) are given in 

appendix D. The number of angles at which data was available was sufficient to 

yield all V>. 1 >.2 >.f,(R) with A1 s; 6, and A2 = 0, 2, giving 55 non-vanishing space 

fixed coefficients. 

3.4.4 Integration of the Coupled Equations 

The coupled equations for NH3 - H2 collisions take the form: 

[ 
d

2 
l'(l' + 1) 2] J-y( "( I I ") J-y 

dR2 - R2 + "'n' c,, R) = 2j.L L... ' IV' c," (R) ,, 3.4.8 

where r =}I, k,]2,]I2, l, and (r'IV!r") is given by equation 2.6.36. 

The coupling of )I and h to form h2 increases the number of coupled equations, 

the size of arrays and the CPU time needed dramatically in comparison with the 

atom- symmetric top problem, and the calculation can become very unwieldy at 

all but the lowest energies. 

The coupled equations were solved using the MOLSCAT computer code (Hut

son and Green, 1986), once the necessary modifications had been made to treat 

linear rotor -symmetric top collisions. These changes are detailed in appendix B. 

The calculations were done partly on the Amdahl 5860 at Durham, and partly on 

the CRA Y XMP at Rutherford. Typical CPU time per partial wave was 830 Cray 

CPU seconds for the low energy ortho- NH3 - H2 collision which used a maximum 

of 2176312 eight-byte words of storage with the basis set used. This was largely 

due to the size of the array that stores the individual terms in the coupling matrix 

element sum. This is of dimension N 2 x Mxlam, where N is the number of channels 

considered, and Mxlam is the number of potential expansion coefficients ( 55 here 

). The wavevector array is smaller due to the summation over AI, A2, A and J.l· 

The potential expansion coefficients were fed into Molscat using the VSTAR 

mechanism. The program requires the value of V>. 1 >. 2>.t'(R) at a given R. To this 

end a spline was fitted to the V>. 1 >.2 >.1/s from which V>. 1 >.2 >.Jl.(R) could be obtained 

for any R such that 2.1A s; R ~ 52.92A. 
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The changes made to Molscat were checked by running the program with h = 0 

and comparing with the para-H2 (h = 0) results of Danby et al (1985, 1986). The 

only difference between the analysis of Danby et al and that used here when h = 0 

only is the method of averaging over the H2 orientations. In the former this was 

done by giving each H2 orientation a weight of 1/3 and simply adding the weighted 

values, in the latter it was done by the fitting the potential to an expansion that 

explicitly takes account of the H2 orientations. 

Table 3.4: 

Using potential of Danby et al, for the first two partial waves, ltot = 0, 1 only, 

at an energy of 200cm- 1 above the respective ground state, and with a NH3 basis 

consisting of the first six rotational levels of ortho-NH3. Units are 10- 16cm2 . 

l f ai~=O ah=l 

10+ 00+ 0.747 E-1 0.621 E-1 

20+ 00+ 0.886 E-2 0.737 E-2 

30+ 00+ 0.117 E-1 0.970 E-2 

33+ 00+ 0.159 E-6 0.229 E-6 

33- 00+ 0.437 E-1 0.363 E-1 

At this point a further test was done. Using the potential with .\2 = 0 terms 

only, collisional calculations were done using both ortho (h = 1) and para (h = 

0) H2 and ortho-NH3. These were performed with a small NH3 basis set (j, k ~ 3), 

and only considering the first three partial waves. Some results are shown in 

table 3.4. It can readily be seen that the two cases exhibit very similar behaviour, 

which would be expected given that the only terms in the potential are those 

with no dependence on the H2 orientation , but, when taken in conjunction 

with the later results, they underline the importance of proper treatment of the 

H2 rotation in these collisions. 
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3.5 Ortho-NH3 - H2 Collisions. 

3.5.1 Low Energy Calculations: 125cm-1 

It has already been mentioned that calculations for the linear rotor - symmetric 

top type problem rapidly become very large as the energy increases, so the energy 

was chosen to be as low as possible whilst still high enough to illustrate the basic 

differences between excitation by ground state H2 (j = 0) and H2 with j > 0. 

The energies of the first few rotational levels of NH3 (calculated using the 

symmetric top formula with B = 9.9402, C = 9.3044 (Green, 1976)) are: 

J k E 

0 0 + 
1 0 + 

20+ 

Energy 

O.OOOOcm- 1 

19.8805cm-1 

59.6414cm-1 

3 0 + ............... 119.2828cm-1 

3 3 ± ... ... ... ... ... 86.5601cm- 1 

4 0 + ............... 198.8046cm-1 

4 3 ± ............... 166.0819cm-1 

5 0 + ............... 298.2068cm-1 

5 3 ± ............... 265.4841cm- 1 

6 0 + ............... 417.4895cm- 1 

6 3 ± ............... 384. 7668cm-1 

6 6 ± ............... 286.5989cm-1 

It was decided to choose an energy of 125cm-1 (0.0155 eV) as this includes the 

first of the k-doublet levels, but the calculation has no yet become too unmanage

able. The collision energy of 125cm-1 is with respect to the ground state of both 

molecules. 

The major approximation in the use of the close coupled equations is the 

truncation of the basis set. For NH3 - H2 collisions there are two basis sets to 
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consider, that on the NH3 and that on the H2. In the calculations of rotational 

excitation NH3 by ground state para - H2 it is implicitly assumed that one ro

tational state in the H2 basis is adequate. The argument for this is that the 

molecular Hydrogen rotational levels are widely spaced with respect to the energy 

(Ej=2 - Ej=O = 354cm- 1 ). 

For the low energy H2 - NH3 collision, calculations were performed using para

H2 basis sets of both (12 = 0) and (12 = 0, 2). The ortho-H2 calculations used only 

a basis of (12 = 1). Tests were done to assess the effect of neglecting the (12 = 3) 

level, and it was found to be small (table 3.5). 

The rotational spacing between the first two ortho-H2 levels is larger than for 

the first two para-H2 levels (E3 - E1 = 587cm-1 ), and in addition, the (]2 = 3) 

state of ortho-H2 might be expected to behave in a similar way to the (h = 1) 

state. It therefore seems likely that the neglect of (h = 3) collisions can be 

justified, especially when the great increase in computer time which would result 

from the inclusion of the (h = 3) level is taken into account. 

The basis set on the NH3 is more critical. Basis set convergence tests were 

performed for NH3 - para-H2 (i2 = 0) collisions and the results are given in 

table 3.6. A B14 basis set was chosen for the calculations, including the fourteen 

energetically lowest states ( Ejk ::S E66)· In these calculations no account was taken 

of the energy splitting between the inversion doublets, as this has been shown to 

have only a negligible effect on the results (Green, 1980, Billing and Diercksen, 

1985). 

The calculations were performed using both the potentials (SCF+MBPT, 

SCF+EK), and with H2 basis sets of (h = 0), (h = 0, 2) and (h = 1). Twenty

one partial waves were included to give convergence with respect to total angular 

momentum of three significant figures. The results are given in table 3. 7. 
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3.5:The effect of neglecting the first excited levels of ortho and para-H2 

Calculations used a B9 basis for ortho-H2 and a B12 basis for para-H2. The 

calculations were for an energy of 125cm-1, and considered the first two partial 

waves (ltot = 0, 1), cross-sections are given in units of 10- 16cm2 . 

J kf. ---+ j' k1 
E 

1 (Jh=l (Jh=l.3 (Jh=O (7}2=0.2 

00+---+ 00+ 1.26 1.20 1.80 1.14 

00+---+ 10+ 0.14 0.09 0.30 0.61 

00+---+ 20+ 0.13 0.15 0.05 0.03 

00+---+ 33+ 0.085 0.078 0.000 0.000 

00+---+ 33- 0.055 0.057 0.24 0.19 

00+---+ 30+ 0.025 0.030 0.043 0.049 

10+---+ 20+ 0.11 0.10 0.17 0.35 

10+---+ 33+ 0.042 0.044 0.16 0.13 

10+---+ 33- 0.075 0.068 0.016 0.034 

10+---+ 30+ 0.051 0.059 0.020 0.040 

20+---+ 33+ 0.058 0.056 0.013 0.022 

20+---+ 33- 0.050 0.053 0.049 0.056 

20+---+ 30+ 0.13 0.13 0.089 0.32 

33+---+ 33- 0.43 0.40 0.051 0.13 

33+---+ 30+ 0.025 0.027 0.028 0.042 

33----+ 30+ 0.041 0.045 0.006 .017 
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3.6:0rtho-NH3 - H2 convergence tests 

Convergence tests were performed at 125cm-1, using a (h = 0) H2 basis set, 

and considering the first two partial waves ( ltat = 0 -----> 2), cross-sections are given 

in units of 10-16cm2. 

Transition NH3 basis 

jkE----->j 1k 1
E

1 B6 B9 B12 B14 B16 B17 

00+-----> 10+ 0.640 0.663 0.663 0.658 0.658 0.658 

00+-----> 20+ 0.119 0.115 0.119 0.119 0.119 0.119 

00+-----> 33+ 0.000 0.000 0.000 0.000 0.000 0.000 

00+-----> 33- 0 .. 502 0.526 0.525 0.549 0.551 0.551 

00+-----> 30+ 0.069 0.082 0.082 0.081 0.082 0.083 

10+-----> 20+ 0.439 0.436 0.446 0.442 0.442 0.442 

10+-----> 33+ 0.397 0.419 0.420 0.440 0.440 0.440 

10+- 33- 0.049 0.038 0.039 0.040 0.040 0.040 

10+- 30+ 0.017 0.042 0.043 0.042 0.043 0.043 

20+- 33+ 0.072 0.061 0.062 0.065 0.065 0.065 

20+- 33- 0.217 0.257 0.261 0.272 0.272 0.272 

20+- 30+ 0.382 0.361 0.368 0.366 0.368 0.369 

33+- 33- 0.458 0.410 0.413 0.407 0.408 0.408 

33+- 30+ 0.072 0.081 0.085 0.089 0.088 0.089 

33-- 30+ 0.044 0.040 0.040 0.042 0.042 0.042 
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3. 7: Ortho-NH3 - H2 converged cross-sections at 125cm-1 

Cross-sections are given in units of 10- 16cm2 . The calculations were done using 

the Manolopoulos integrator and a basis set consisting of the energetically lowest 

14 rotational states of NH3. 

Transition SCF+EK potential SCF + MBPT potential 

J kf --> J1 k1 
€ I h = 1 )2 = 0 h = 0,2 h = 1 h = 0 h = 0,2 

00+- 10+ 36.8 10.3 25.5 40.5 4.13 13.0 

00+- 20+ 10.9 2.90 2.30 9.93 7.59 4.91 

00+- 30+ 0.444 0.588 0.357 0.478 0.406 0.511 

00+--> 33+ 3.05 0.118 0.0465 3.15 0.0237 0.0570 

00+- 33- 1.77 5.57 4.71 1.50 4.98 5.04 

10+- 20+ 17.7 6.23 15.6 17.6 3.75 9.99 

10+- 30+ 0.993 0.363 0.361 0.972 0.694 0.533 

10+- 33+ 2.33 4.82 3.93 1.96 3.76 3.62 

10+- 33- 3.06 0.351 0.602 3.00 0.114 0.300 

20+- 30+ 3.81 3.30 4.58 3.81 1.29 3.57 

20+- 33+ 3.31 1.59 1.48 3.20 0.241 0.496 

20+- 33- 3.20 3.18 2.95 2.95 2.24 2.32 

30+- 33+ 10.9 8.27 5.03 6.62 2.32 2.39 

30+- 33- 9.33 2.74 3.09 7.40 0.686 1.33 

33+- 33- 43.7 16.1 37.3 49.4 4.37 19.7 
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3.5.2 Discussions: 

Para-H2 (j = 0) versus Para-H2 (j = 0, 2) 

We first discuss the comparison between the results for collisions with para-H2 

confined to its rotational ground state (h = 0 only) and the results for calculations 

using a (]2 = 0, 2) basis set. 

It can be seen from table 3.7 that the inclusion of (h = 2) in the basis set has an 

appreciable effect on the cross sections, even at energies well below the threshold 

energy of the (h = 2) H2 state. In particular, the dipole allowed transitions, 

D..j = 1, t::..k = 0, are enhanced when (h = 2) is included in the basis set. 

It should be noted that the basis convergence tests indicated that the inclusion 

of the (h = 3) rotational state in the ortho-H2 basis set had a far smaller effect 

than the inclusion of the (h = 2) state in the para-H2 basis set. Although the 

difference could be explained by the fact that the energy spacing of the rotational 

levels is greater for ortho-H2 than for para-H2, it may also be partly due to the 

fact that rotationally excited hydrogen molecules have nonvanishing quadrupole 

moments whereas ground state para-H2 molecules are spherically symmetric. Thus 

the first excited state of para-H2 may be needed to obtain a good convergence with 

respect to basis set size because it enables the H2 and NH3 molecules to interact via 

potential terms that are not available if spherically symmetric collisions partners 

(h = 0) are considered. In contrast, the first two rotational levels of ortho-H2, 

(h = 1) and (h = 3) will behave similarly as collision partners. 

The conclusion that the (h = 2) level should be included in the basis set is 

in agreement with the conclusions drawn by Billing and Diercksen (1985) from 

a semi-classical study of the NH3 - H2 collision system, and contrasts with the 

findings of Brechignac et al (1980) for the CO - H2 collision system. The CO 

molecule has a weak dipole moment, and the latter reported that for the CO -

H2 system the inclusion of the (h = 2) level had less than a 10% effect on the 

rotational cross-sections. 
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Ortho-H2 versus Para-H2 

From table 3. 7 it can be seen that, in general, the ortho-H2 cross-sections are larger 

than the corresponding para-H2 cross sections. In particular, the dipole allowed 

transitions are very much larger for transitions with (h = 1) ortho-H2. This is 

particularly clear in the comparison between the results for the (j = 0) H2 and 

(j = 1) H2 calculations using the SCF+MBPT potential. The jkE = (00+ _, 10+) 

cross-section increases by a factor of ten for the (}2 = 1) calculations, and the 

j kE = (10+ _, 20+) cross-section increases by a factor of six. The enhancement 

of the dipole allowed transitions is less marked in calculations using the SCF + EK 

potential, but it remains substantial. It should be noted here that the SCF+MBPT 

potential is probably the most reliable of the two potentials used, although the 

SCF + EK is more complete, in so far as all the dispersion expansion coefficients 

were obtained from the same data set. 

When the (}2 = 2) rotational level is included in the para-H2 basis set there is 

still an appreciable enhancement of the dipole allowed cross-sections for collisions 

with ortho (j = 1) H2 when compared with the para (j = 0, 2) H2 results. 

The physical reason for this enhancement can be seen by dividing the results 

into t::J.k = 0 and t::J.k = 3 transitions. In the limit k --+ 0 the linear rotor -

symmetric top problem reduces formally to the linear rotor- linear rotor problem 

and comparisons can be drawn with previous work on H2 - linear rotor collisions. 

Table 3.8 gives the ratio of cross-sections for excitation with (j = 1) H2 to cross

sections for excitation with (j = 0) H2 for both HCl- H2 collisions (Green, 1977) 

and NH3 - H2 collisions (this work). 

Both the HCl- H2 collisions and the NH3 - H2 collisions show ortho-H2 cross

sections that are appreciably larger than the para-H2 results. The model HCl- H2 

potential used by Green (1977) explicitly included long range dipole- quadrupole 

type interactions, but did not include any long range quadrupole- quadrupole type 

interactions, and the enhancement of the tl.j = 2 transitions is correspondingly 

smaller. 
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3.8: Comparison between the ratios a(j 2 = 1)/a(j2 = 0) for NH3 - H2 

collisions and HCl - H2 collisions (Green, 1977) 

Transition HCl- H2 NH3- H2 

. ·/ 
J- J 200cm- 1 300cm- 1 12.5cm-1 

SCF+MBPT SCF+EK 

0-1 3.5 2.6 9.8 3.6 

0---->2 1.2 1.1 1.3 3.8 

0---->3 1.0 1.0 1.2 0.8 

1-2 3.0 2.6 4.7 2.8 

1---->3 1.1 1.0 1.4 2.7 

2---->3 1.9 2.1 3.0 1.2 

In the NH3- H2 potential, both long range dipole- quadrupole and quadrupole 

-quadrupole type interactions were included. For the SCF+MBPT potential the 

behaviour is qualitatively similar to that of the HCl - H2 results, in that the 

dipole allowed transitions ( b.j = 1) are much enhanced, and the enhancement 

falls off rapidly with increasing b.j. For the SCF + EK potential there is a much 

larger enhancement of the quadrupole allowed transitions (b.j = 2). The difference 

between the SCF + MBPT and SCF + EK potentials here can be explained by the 

fact that the latter has a smaller v2020 term so the boost given to the b.j = 2 
loy 11'\clwa•on of ti-le >-1. > 0 i"er-ms 

transitions,\is relatively larger than was the case for the former. 

The most striking difference between the ortho and para-H2 results is for the 

b.k = 3 transitions, in particular the behaviour of the j kE = ( 00+ ----> 33±) cross

section. The para-H2 results clearly show the propensity rule: 

a(OO+ ____. 33+) < < a(OO+ ----> 33-) 
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However, for collisions with ortho-H2 this is no longer case, and there is a slight 

propensity in the opposite direction. 

The reason for this change can be seen by examination of the form of the 

coupling matrix elements. 

We have: 

-\2 h) ( j~ 
0 0 -k1 

Consider the transition (j k± +---+ 00+ ). For collisions with ground state para-H2, 

h and 12 are both zero. If we consider transitions out of the ortho-NH3 ground 

state, the 3-j symbols give: 

\ ·I 
/\=)I only. 

Thus, with J.l = 3, the coupling matrix element is proportional to: 

3.5.2 

3.5.3 

For k = 3 the coupling matrix element vanishes if E = E 
1
• Thus the transi

tion (j3+ --+ 00+) can only take place through indirect coupling. The transition 

(j3- --+ 00+) proceeds through direct coupling. 

For transitions with ortho- H2 (j = 1) we have: 

or 
{ 

-\2 = 2 

,\ = (]1 ± 2), (]1 ± 1),j 
3.5.4 

We now have non-zero contributions for both a 1 = + 1 and EE 
1 = -1. 

The difference in propensities for the (00+ --+ 33±) transition found here 

between the results for collisions with ground state para-H2, and the results for 
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collisions with ground state ortho-H2 is at variance with the results of Billing and 

Diercksen (1988) and Ebel et al (1990) for the same system. Their calculations 

predict qualitatively similar behaviour in this transition for collisions with both 

ortho-H2 and ground state para-H2. The physical reason for this discrepancy can 

be most clearly seen with reference to the body-fixed formulation (section 2.6.6). 

In the body fixed frame, the potential expansion can be written as: 

3.5.5 

Working in the coupled states approximation for simplicity, the coupling matrix 

elements take the form: 

CME oc ( j~ )'1 h) ( j~ >.1 h) (j~ >.2 j;) 
-k' J1 k -o~ II o1 o 0 

3.5.6 

( ·/ >.2 )2) ( h JI2) ( Ji 
., 

Ji2 ) h ]2 h 
X I 

o2 o1 o2 -o o~ o' -O' -02 -II 2 

where 01 is the projection of h on the intermolecular axis, and 02 is the projection 

of }2. In the coupled states approximation, 0( = 01 + 02), is assumed constant, 

although 01 and 02 may change within this constraint, 

3.5.7 

In a full close coupled calculation, 0 is coupled toO' = ±1 through the Coriolis 

term (Rabitz, 1976): 

(f2IZ2/ R2lf2 ± 1) =- ~2 ((J ± o + 1)(J =F O)(il2 =F O)(h2 ± o + 1))112 

x ((1 + 8n0 )(1 + 8n±I.o))112 

but if }2 = 0, then 0 must be conserved if }I(= i12) and 01 are zero. 
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Billing and Diercksen ( 1986) introduce a potential expansion of the form: 

V(R, R~, k2) = L VAlJLA21J(R)(YJl" 1 (RUY;: 2 (Er2)). 
-\1-\2 

1'-'7 

The equivalent of equation 3.5.6 is then: 

CME cc ( ji I AI h) ( j~ AI 
-k J1 k -Oi 0 

( ., .\2 h) ( h )2 
X I 

o2 o1 -02 TJ 

h) (j2 .\2 j;) 
o1 o 0 

h2 ) ( ji 
., 

jb ) ]2 12 
02 -0 Oi o~ -01 

3.5.9 

3.5.10 

With the potential expansion, 3.5.9, the value of 01 cannot change, as there is 

no term in the potential to affect such transitions (although note that now 0 is not 

fixed if TJ > 0). In the version of the coupled states approximation used by Billing 

and Diercksen, and by Ebel et al, the average over ¢2 is taken, setting TJ = 0, so 

that 02 (and 0) are conserved. In this limit the potential expansion, 3.5.9, is the 

same, to within a constant, as the expansion 3.5.6 with 11 = 0 only. 

Returning to equation 3.5.6, we see that with the potential expansion ( eq 3.5.5 ), 

the principal difference between (h = 0) and (h > 0) collisions, is that in the latter 

01 and 02 may change, as .\2 > 0, 11 > 0 are allowed. From the body fixed to 

space fixed conversion (eq 2.6.27): 

3.5.11 

along with the relation: 

3.5.12 

it can be seen that if the sum, (.\1 +.\2+.\+J.l), is odd, only 11 > 0 terms contribute 

to v,x
1

,x
2
,xw Space fixed expansion terms with (.\1 + .\2 +.X+ J.l) odd are the very 
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terms which drive the ortho-NH3 transitions that are 'forbidden' by symmetry 

when )2 = 0, thus ortho-NH3 transitions such as (00+ ___. j3+) are driven only by 

body fixed terms with v > 0. 

The body fixed terms with v > 0 in the potential expansion 3.5.5 are the terms 

that change the projection of )1 and }2 on the intermolecular axis, and are present 

regardless of whether or not the coupled state approximation is used. 

In contrast the potential expansion 3.5.9 does not contain these terms, and the 

behaviour of the NH3 cannot be not fully represented with this expansion. 

SCF+MBPT versus SCF+EK 

The para-H2 results are noticeably affected by the change in the potential. In 

particular, transitions with ~j = 1, ~k = 0 are smaller with the MBPT potential, 

whilst terms with ~j = 2, ~k = 0 are larger. The former transitions are driven 

by the v1010 term in the space fixed potential expansion whilst the latter are 

driven by the v2020 term. The differences between the two potentials have been 

discussed by Danby and Valiron (1989). They conclude, after comparison of the 

theoretical results with the double-resonance data, that the v2020 term could have 

been underestimated by the SCF + EK potential. 

The ortho-H2 results are far less affected by the change in potential. This may 

be due to the effect of the number of additional terms contributing to the coupling 

matrix element for each transition. It may also be due in part to the fact that the 

v = ± 1 terms in the body fixed expansion could not be obtained from the MBPT 

data and had to be taken from the EK potential surface with which comparison is 

now been made. 

3.5.3 Experimental Energy: 605cm-1 

In view of the change in the ( 00+ -+ 33±) propensity rules found for collisions with 

ortho-H2 (j = 1) it is interesting to run calculations at the energy of the cross

beam measurements of Seelemann et al (1989) and Ebel et al (1990), to see if the 

inclusion of rotationally excited H2 states could explain the discrepancy between 

the theoretical and experimental results. 
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The major problem for such a calculation is the size of the basis set that would 

be required to treat the system fully. At an energy of 605cm-1 seventeen NH3 
rotational states are energetically accessible. In addition, the (h = 2) rotational 

state of para-H2 is also energetically allowed. The CPU time per partial wave 

increases as E 112 , as does the number of partial waves needed for convergence, 

so even with the same basis sets as previously, the calculation takes five times as 

long at 605cm- 1 than at 125cm-1. If we wish only to make a comparison with the 

experiment and if we are, therefore, only interested in the relative behaviour of the 

cross-sections, it seems reasonable to truncate the basis set to a manageable size, 

and look only at the transitions between the energetically lower states, making the 

assumption that for these states the convergence is adequate ( eg the discussion in 

section 2.5.1). 

For this reason it was decided to use the same B14 basis set on the NH3 as had 

been used for he lower energy calculation. For collisions with ortho-H2, h = 1 only 

was included. Tests including the lilkhE) = 1003+) and 1103+) states in the basis 

showed that their inclusion made very little difference to the relevant cross-sections 

( < 10% for the first three partial waves). For para-H2 an incomplete basis set 

was used, including ]2 = 2 for the 1002+) and 1102+) states only. This will not 

give excellent convergence with respect to basis set size, but, for comparison with 

the experiment, the cross-sections are weighted to allow for the 3:1 ortho:para

H2 ratio. Thus the final results are dominated by the ortho-H2 results, and the 

reduced para-H2 basis set should be adequate. 

The calculations were performed on the CRAY XMP at Rutherford using the 

Manolopoulos method for integrating the coupled equations. Thirty-eight partial 

waves were necessary to give convergence of the relevant cross-sections. 

The experimental results are quoted as relative cross-sections, and are nor

malised with respect to previous theoretical cross-sections. Results for the present 

calculation are presented in table 3.9. 

The crossed-beam experiments of Seelemann et al and Ebel et al yielded infor

mation on the relative sizes of the inelastic cross-sections for rotational transitions 

out of the rotational ground state for collisions of NH3 with normal (3:1 ortho:para) 

H2. In table 3.10 the experimental and current theoretical results are compared. 
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3.9: Ortho-NH3 results at 605cm- 1 

Cross-sections in units of 10-16cm2 for the rotational excitation of ortho-NH3 

from its jkE = 00+ ground state in collisions with ortho and para-H2 at 605cm- 1. 

Final state Ortho-H2 Para-H2 

10+ 16.4 14.4 

20+ 6.97 0.314 

30+ 1.59 0.586 

40+ 0.738 0.211 

33+ 2.39 0.0165 

33- 3.07 5.29 

43+ 1.12 0.0018 

43- 1.65 3.65 

The results are normalised so that the sum of the inelastic cross-sections given in 

table 3.9 is one. 

The experiment studied collisions of rotationally cooled NH3 with a beam of 

normal H2, so for comparison with the experiment the results were weighted in a 

3:1 ortho:para ratio. The 3:1 ratio is appropriate if the hydrogen molecules are 

exclusively in their respective rotational ground states. For a room temperature 

distribution approximately half the para-H2 is in excited rotational states, and 

under such conditions it might be more appropriate to assume the (j > 1) H2 

behaves more like (j = 1) H2 than (j = 0) H2, and weight the results in a 7:1 

ortho:para ratio. 

From table 3.10 it can be seen that, despite the inadequacy of the basis set used, 

the agreement between the experimental and theoretical results is very satisfactory. 

The potential used for the calculation was the SCF + EK potential and, following 
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3.10: Comparison with experiment 

Relative cross-sections for excitation from the 00+ ground state into the final 

state, j 1 k1 
E 

1
. All results are normalised so that the sums of the given cross-sections 

are one. 

Final state experiment theory 

J1 k1
E 

1 Seelemann Ebel Current Ebel Billing 

et al et al work et al 

10+ 0.38 0.44 0.50 0.44 0.70 

20+ 0.23 0.21 0.17 0.13 0.05 

30+ 0.05 0.05 0.04 0.06 0.02 

40+ 0.03 0.02 0.02 0.01 0.02 

33+ 0.09 0.08 0.06 0.00 0.00 

33- 0.14 0.12 0.12 0.24 0.08 

43+ 0.04 0.04 0.03 0.00 0.00 

43- 0.05 0.04 0.07 0.13 0.13 

the discussion of Danby and Valiron ( 1989), it is thought that the v2020 term could 

have been underestimated by the SCF + EK potential. In line with the 125cm -l 

results, one might expect that a(OO+ ~ 10+) would be smaller and a(10+ ---> 20+) 

would be larger if a more reliable potential surface was used. 

Thus it appears that the discrepancy between the experimental results and 

earlier theoretical calculations can be explained by the neglect of the hydrogen 

rotation in the latter. 

A cautionary note might be added here. Whilst the above explains the discrep

ancy between the ortho-NH3 - H2 results, a similar discrepancy remains between 

the NH3 - He results (Seelemann et al 1989). 
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For the NH3 - H2 collisions, we note in passing that for the higher energy 

calculations the cross-sections for the j kf: = (00+ -+ 10+) transitions are of a 

similar magnitude for collisions with both ortho (h = 1) H2 and para (h = 0) H2, 

whereas there were substantial differences between these cross-sections at 125cm-1. 

At high energies the collisions sample small impact parameters, and probe further 

into the short range region of the interaction. As small impact parameters the 

short range forces dominate the interaction, and they may be much the same for 

(h = 0) and (h = 1) H2. In this region the effects of the long range interactions 

are drowned out, and the effects of the different multipole interactions are less 

prominent. 

3.6 Para-NH3 Collisions 

3.6.1 Details of the Calculations 

The energy of the first few rotational levels of para-NH3 are: 

jk± 

11± 

21± 

22± 

31± 

32± 

0.000 

36.532 

28.765 

99.402 

88.495 

Again, no account has been taken of the inversion splitting of the (otherwise) 

degenerate k-doublets. 

An energy of 60cm -l was chosen to give the basic features of the behaviour 

of the cross-sections. At this energy there are six energetically accessible levels. 

Basis set convergence tests were performed with respect to the NH3 basis set 

(table 3.11a), and the H2 basis set (table 3.11b) for both ortho and para-H2. It 

can be seen that the inclusion of the (h = 3) state in the ortho-H2 basis had a 
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less than 10% effect on the cross-sections for the first three partial waves, whilst 

the inclusion of the para-H2 (j = 2) state introduces a factor of two or more. 

A basis consisting of the lowest ten rotational levels was chosen for the NH3, 

with H2 basis sets of (h = 0), (h = 0, 2) and (h = 1). For the bulk of the calcula

tion the Manolopoulos method was used to solve the coupled equations. However, 

for ltot = 2 the integrator became unstable and failed to produce results with the 

correct symmetry or even reproducible results. No satisfactory explanation was 

found for this, and the gaps were filled in using the R-matrix propagator. The 

problem might have gone unnoticed if there were no parity symmetry. The results 

are presented in table 3.12. 

3.6.2 Discussion 

Para-H2 (j = 0) versus para-H2 (j = 0, 2) 

The para-H2 (j = 0, 2) inelastic rates are larger than those obtained using the (h = 

0) only basis set. The difference is more pronounced here than it was for ortho

NH3 despite the fact that a lower relative collision energy is being considered. In 

addition, the magnitude of the change seems to depend on the inversion symmetry 

of the two states. 

For example, labelling the states by j, k and symmetry, where the symmetry 

is related to E by equation 3.2.3, we see: 

O'J=0•2(11s-+ 2la) 0')=0•2(11s-+ 2ls) 
--~---------- > --~~------~ 
O'J=D(lls-+ 21a) O'j=O(lls-+ 21s) 

3.6.la 

O'J=0·2(11s-+ 22a) O'j=0.2(11s-+ 22s) 

O'j=O(lls-+ 22a) > O'J-0(11s-+ 22s) 
3.6.1b 

O'j=0,2(21s-+ 22a) O'j=0.2(21s-+ 22s) 

O'j=0(21s -+ 22a) > O'i=D(21s -+ 22s) 
3.6.lc 

To study these trends systematically, a far larger calculation would be needed 

at a series of collision energies, but it appears that in every case the symmetry 

changing collision is most effected by the inclusion of (h = 2) states in the H2 basis 

set. In particular, for case (a) above it is the dipole allowed transition that has 
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3.11a: Basis convergence wrt NH3 basis 

Calculations were done at an energy of 60cm- 1, using an ortho-H2 (h = 1 

only) basis, and the first four partial waves. Cross-sections are given in units of 
10-16cm2. 

Transition NH3 basis 

J kf ---+ j' k1 
E 

1 B8 B10 B14 B16 

11+---+ 11+ 10.4 10.4 10.4 10.4 

11+ ---+ 11- 0.9 0.8 0.9 0.9 

11+---+ 21+ 1.4 1.5 1.5 1.5 

11+---+ 21- 1.3 1.2 1.2 1.2 

11+---+ 22+ 0.3 0.3 0.4 0.4 

11+ ---+ 22- 0.3 0.3 0.3 0.3 

21+ ---+ 21+ 30.1 29.0 29.9 29.8 

21+---+ 21- 2.7 2.5 2.5 2.6 

21+---+ 22+ 0.7 0.9 0.9 1.0 

21+ ---+ 22- 1.1 1.1 1.1 1.1 

22+ ---+ 22+ 20.0 19.8 19.7 19.5 

22+ ---+ 22- 3.6 3.3 3.3 3.3 
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3.11h: Basis convergence, wrt H2 basis 

Calculations were done at an energy of 60cm- 1, using a para-NH3 basis con

sisting of the energetically lowest ten rotational states, and the first three partial 

waves. Cross-sections are given in units of 10-16cm2. 

Transition H2 basis 

jkE-----> j 1k1
E

1 h = 1 h = 1,3 h = 0 h = 0,2 

11+ ____.. 11+ 5.34 5.42 7.11 5.77 

11+ ____.. 11- 0.52 0.44 0.56 1.13 

11+ ____.. 21+ 0.71 0.69 0.51 1.29 

11+ ____.. 21- 0.64 0.69 0.14 0.23 

11+ ____.. 22+ 0.15 0.15 0.006 0.063 

11+ ____.. 22- 0.15 0.16 0.37 0.25 

21+- 21+ 14.37 14.51 20.96 13.96 

21+ ____.. 21- 1.32 1.26 0.28 0.45 

21+ ____.. 22+ 0.29 0.32 0.44 0.61 

21+ ____.. 22- 0.55 0.57 0.07 0.46 

22+-- 22+ 9.46 9.44 11.62 8.04 

22+-- 22- 1.65 1.56 0.92 2.77 
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3.12: Para-NH3 results 

Inelastic cross-sections (in units of 10-16cm2) at a relative collision energy of 

60cm -l, using the SCF + EK potential. Cross-sections for transitions from the 

E = -1 state can be obtained from the relation: 

CJ(jk+ ~ j'k'±) = CJ(jk- ~ j'k'f"-) 

Transition ortho-H2 para-H2 

jkE ~ j'k1
E

1 h = 1 h = 0 h = 0,2 

11+ ~ 11- 28.4 7.18 20.5 

11+- 21+ 12.6 4.15 14.3 

11+- 21- 9.97 1.67 2.81 

11+- 22+ 1.74 0.0457 0.229 

11+ ~ 22- 1.70 2.86 2.72 

21+- 21- 23.8 4.67 19.8 

21+- 22+ 3.59 2.93 3.76 

21+- 22- 4.55 0.411 1.59 

22+- 22- 44.2 15.2 48.1 
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increased the most, supporting the hypothesis that it is indeed indirect transitions 

involving dipole - quadrupole type interactions that are responsible for the change 

in behaviour. 

Ortho-H2 versus Para-H2 

Once again it is clear that the ortho-H2 cross-sections are in general larger than 

the corresponding para-H2 results. This is true for all but the jkE = (11+ __, 22-) 

cross-section if only (h = 0) is included in the hydrogen basis set, but if (]2 = 2) is 

included it is no longer true for the dipole allowed transition, jk€ = (21+ __, 11+ ). 

Comparing the results in more detail, the para-NH3 analogue of the (00+ __, 

j3±) propensity rules can be seen. We have that: 

3.6.2 

In the case of the ( 11 + __, 22±) transition we have for para-H2: 

. ·I 0 
)2 = 12 = 

. 1 ·I 2 
)l = ,)} = 3.6.3 

only ,\1 = 3 allowed 

thus we have: 

3.6.4 

which is identically zero if E = E 
1

• 

With ortho-H2 the additional terms in the potential contribute to a non-zero 

coupling matrix element for this transition. 

3.7 Summary 

In this chapter, the results of the first fully quanta! close coupling calculations on 

rotationally inelastic collisions of NH3 with (j > 0) H2 have been reported. The 

consequences of including (j > 0) states in the hydrogen basis set are summarised 

below: 
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• Cross-sections for rotational excitation of both para and ortho-NH3 in collisions 

with ground state ortho-H2 are qualitatively different from those for collisions 

with ground state para-H2. 

• In particular, the transitions that are 'forbidden' by symmetry for collisions 

with ground state para-H2 are allowed in collisions with rotationally excited 

(j > 0) H2. 

• In calculations of rotational excitation in collisions with ground state para-

Hydrogen it is necessary to include (j = 2) in the para-H2 basis set to obtain 

converged results, however, it is not so important to include the (j = 3) state 

in an ortho-H 2 basis set where (j = 1) and (j = 3) H 2 might be expected to 

behave similarly as collision partners. 

• The change in propensities for collisions with ortho-H2 can explain, at least in 

part, the discrepancies between theory and experiment for rotationally inelastic 

collision of ortho-NH3 with H2. 

Previous semi-classical coupled states calculations (Billing and Diercksen, 1988) 

and other quanta! coupled states calculations (Ebel et al, 1990) have failed to pre

dict the change in propensities discussed above, but this can be explained by the 

fact that the potential expansion used in their calculations (Billing and Dierck

sen, 1985) does not include the potential terms that are directly responsible for 

the different behaviour found in collisions with rotationally excited H2. 

A possible implication of the change in behaviour of the cross-sections for 

(j > 0) H2 will be discussed in the following chapter. 
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Chapter IV 

An Application The jk = 33 Maser 

4.1 Introduction 

Ammonia is widely observed in the interstellar medium through a range of transi

tions in the infrared, microwave and radio frequencies ( eg Ho and Townes, 1983 ). 

In particular, the Aj = 0, Ak = 0 inversion transitions, which fall in the mi

crowave region of the spectrum, have been particularly well documented, and the 

observations can provide valuable information on the physical conditions within a 

cloud. 

Walmsley and Ungerechts (1983) showed how observations of the para-NH3 

inversion transitions could be used to obtain an estimate of the kinetic tempera

ture, T, within a cloud by solving the relevant statistical equilibrium calculations, 

to derive a relationship between the relative level populations for para-NH3 and 

the local kinetic temperature. The ammonia thermometer was recal,iibrated by 

Danby et al (1988) using quantal NH3 - H2 calculations, and was shown to give 

good agreement with results obtained from CO observations. 

For ortho-NH3, the possibility of collisional pumping leading to population 

inversion in the (j kE = 33±) doublet was first mentioned in the same paper of 

Walmsley and Ungerechts (1983). They calculated the NH3 level populations un

der typical molecular cloud conditions. Their calculations showed population in

version in the 33 inversion doublet for a narrow range of densities. Observationally 

Guilloteau et al (1983) made a tentative identification of maser emission in the 

33 inversion doublet towards the continuum source DR21. Their deduction was 

based on observations of the (1,1),(2,2) and (3,3) inversion transitions. Assuming 

that the ortho:para-NH3 ratio was the same in the area of the (1,1) and (2,2) ab

sorption as in the area of the (3,3) emission line lead to the conclusion that the 

excitation temperature (section 4.2.) across the 33 doublet was greater than lOOK, 

or even negative (implying population inversion). They explained the anomaly 

90 



using the collisional rates of Green, concluding collisional excitation could produce 

the observed excitation temperatures. 

Johnston et al (1989) published results confirming the existence of (jk=33) 

maser emission in 15 NH3 towards NGC7538-IRS1 where the kinetic temperature 

in the core of the NH3 region was believed to be ~ 170K, with a molecular 

hydrogen density of nH
2 

"' 5 x 107cm-3. They discussed both the collisional 

pumping scheme of Walmsley and Ungerechts (1983) and alternative schemes in

volving transfer of population to vibrationally excited NH3 levels (Mauersberger 

et al, 1988). The latter was suggested by Mauersberger et al to explain masers in 

non-metastable states and in reality there are probably a number of mechanisms 

leading to inversion depending on the local conditions. 

Previous work has used the calculated ground state para-H2 collisional rates, 

however, the ortho:para ratio is not known. It is thought that H2 is probably 

formed in excited rotational states on grains resulting in a 3:1 ortho:para ratio. 

The ortho:para ratio may vary with time (Flower and Watt 1984) through proton 

exchange reactions of the form: 

H2(ortho) + H+ - H2(para) + H+ + 170.5K 

H2(ortho) + Ht- H2(para) + Ht + 170.5K 
4.1.1 

with a rate of~ 2.2 x 10-10cm3s-1. Thus the ortho:para-H2 ratio would fall from 

the initial value of 3:1 to the thermodynamic equilibrium value given by: 

n(o-H2)_ (-170.5) 
n(p- H2) - 9 x exp T 4.1.2 

The factor or nine in the equation is correct if all the ortho and para-hydrogen 

molecules are in their respective ground states, and comes from the statistical 

weight factor (2/ + 1)(2j + 1), where I is the nuclear spin. In this chapter the effect 

of including ortho-H2 collisions is investigated using a simple model calculation. 
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Figure 4.1: Rotational energy levels of ort ho-NH3 

and the proposed collisional pumping mechanism 

A necessary condition for (j k = 33) maser emission is population inversion in the 

33 doublet. A schematic energy level diagram for the first few rotational states 

of ortho-NH3 is given in figure 4.1. In general, both radiative and collisional 

transitions between the levels occur, with the relative importance of the two being 

determined by the local molecular hydrogen density. However, transitions between 

the k-ladders are almost entirely due to collisional processes. 

The simple model for producing population inversion in the metastable 33 

doublet that was proposed by Walmsley and Ungerechts (1983) was based on the 

NH3- He collisional rates of Green {1982). In the temperatures applicable to dark 

interstellar clouds most of the NH3 molecules will be in their rotational ground 
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state, at least for moderate molecular Hydrogen densities. Collisions between 

ground state ortho-NH3 and ground state para-H2 preferentially excite the E = 

-1 (upper) component of the 33 doublet leading to population inversion in that 

doublet. Maser emission can then follow. As the H2 density increases the maser 

will be quenched by the increasing population in the non-metastable rotational 

states. 

To investigate how this scheme is effected if ortho-H2 is included, a model for 

the level population is needed. For a cloud in statistical equilibrium the number of 

transitions into a state i per unit time must be equal to the number of transitions 

out of state i per unit time. If molecular formation and destruction effects and any 

convective effects are neglected, and if only collisional and radiative excitations 

and de-excitations are considered, then, denoting the population density in level i 

by ni/ cm3 we have, at some point in the cloud, ( eg Spitzer 1978) 

d;j = -nj (I)ncajk + BjkUv) + L_ Ajk) 
k k<J 

+ Lnk (ncakj + BkjUv) + L nkAkj 4.2.1 
k k>j 

= 0. 

Here Aij, Bij are the Einstein probability coefficients for spontaneous and induced 

emission (absorption) respectively, and aij is the collisional rate for transitions 

from state i to j. The number density of the collision partners is nc ( = nH2 here), 

and Uv is the local radiant energy density at the frequency, llij, of the transition. 

U v can be obtained from a consideration of the transfer of radiation within the 

cloud. 

In general, the statistical equilibrium equations and the equations of radiative 

transfer have to be solved simultaneously. The size of U v depends on how readily 

the emitted photons can escape from the cloud. If the probability of reabsorption is 

relatively high emitted photons can become trapped within the cloud decreasing 

the radiant energy density. 

A simplifying assumption that is often used is to assume that there is a large 

velocity gradient within a cloud (eg de Jong et al (1975)). Under these conditions 
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a photon travelling a distance greater than l ~ dV}dr, where V is a typical large 

scale velocity and Vt is the thermal velocity, can escape because photons cannot 

be absorbed by molecules more than a Doppler width away. This simplifies the 

physics considerably and expressions for U v can be obtained for various cloud 

models allowing the equation to be solved in the radiative trapping case. 

In the limit where all photons escape, Uv is just the black body radiation field 

and under these conditions BijUv << nc(r)aij for a typical nH2 of 105cm-3 , and 

the induced emission (absorption) terms can be neglected for T-'6 lOK. 

With an appropriate approximation for the radiative transfer term, the equi

librium system including N rotational levels leads to N - 1 linearly independent 

equations which can be solved to give the ratio of the level populations. 

A useful quantity in discussing the level populations is that of the excitation 

temperature, Tex( ij ), defined by: 

4.2.2 

where 11 is the frequency of the transition i ~ j, h is Plancks constant and kn 

is Boltzmanns constant. If the level populations have their local thermodynamic 

equilibrium values, Tex is just the kinetic temperature. This condition is reached 

in the limit of high density, where ncO:ij / Aij > > 1. The excitation temperature is 

related to the observable quantity, the brightness temperature, Tb, by: 

4.2.3 

where rv is the optical depth at the frequency 11, and Tbg is the temperature of the 

background radiation. r,, can be deduced from the observations. 

4.3 Collisional and Radiative Rates 

The necessary molecular constants required for solving the statistical equilibrium 

equations are the radiative and collisional rates. 
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The radiative rates can be calculated from: 

4.3.1 

where c denotes the velocity of light and II-Li/ 12 is the square of the dipole matrix 

element, /-Lif = J'I/JiJL'I/JtdT, where JL is the molecular dipole moment. For a sym

metric top molecule the non-vanishing IJLif 1
2 are {Townes and Schawlow, 1955): 

Aj = +1, 6k = 0: 
2 2 (j + 1 )2 - k2 

IJLitl =JL U + 1)(2j + 1) 

Aj = +0, 6k = 0 : 
2 2 k2 

IJLif I =JL j(j + 1) 4.3.2 

Aj = -1, 6k = 0 : 
·2 k2 

2 2 J -
IJLiJI =11 j(2j + 1) 

Here we are assuming that the very slow Ak = 3 transitions (Oka et al, 1971) 

can be ignored. The radiative rates were calculated from the above equations 

with JL = 0.589au (Diercksen and Sadlej, 1986). 

The collisional rates are more problematical due to the variation of the col

lisional cross sections with energy. In the general case the collisional rates are 

obtained from the cross-sections by averaging over a Maxwellian velocity distribu

tion (eg Spitzer 1978): 

4.3.3 

where v is the velocity corresponding to the collision energy, E, and m1, m2 are 

the masses of the collision partners. 

Although, for a Maxwellian velocity distribution, the maximum contribution 

from O'iJ(E) (::: O'iJ(v)) is that when E = knT, the contribution from E =/= knT can 

be non-negligible, especially as the cross-sections may be increasing with Energy. 

However, with results available at a single collision energy only, an ad hoc 

method of obtaining rates from cross-sections must be found. Danby et al (1986) 

have published a full set of rates for the rotational excitation of NH3 in collisions 
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with para (j = 0) H2, using essentially the same potential as was used here 

(SCF+EK). It was therefore decided to scale the new cross-sections (obtained 

with the SCF + EK potential) to the published rates using the expression: 

4.3.4 

where ai=0(T) are the rates of Danby et al (1986) at some temperature, T, af2°(T) 

are the 'new' scaled rates at the same temperature, ai=0(E) are the cross-sections 

computed for (j = 0) collisions in the present work and ai~0 ( E) are the cross

sections computed for (j = 1) and (j = 0, 2) H2 collisions. 

Implicit in this scaling method is the assumption that ai~0 (E) varies in the 

same way with energy as ai=0(E), at least in the region of interest. Whilst this 

may be a reasonable assumption for most transitions, it is unlikely to be true 

for the (j h = 00+ ~ 33+) transition. As discussed in chapter 3, this transition 

proceeds only by indirect couplings when the collision partner is ground-state para

H2, but is coupled directly for collisions with ground state ortho-H2. For this 

reason the ortho-H2 (00+ ~ 33+) cross-section was scaled to the ground state 

para-H2 (00+ ~ 33-) rates. The scaled rates for a temperature of 50K are given 

in table 4.1. 

It should be bourne in mind that, for collisions at interstellar temperatures 

(~ 30K), the principal contributions to the collisional rates come from low energy 

collisions. Such collisions tend to sample long range forces, and it is expected that 

it is in the large R region that the interactions between ground-state para-H2 and 

NH3 differ most from the interactions between ground-state ortho-H2 and NH3. 
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4.1: Scaled rates at 50 Kelvin 

Rates are given in units of cm3s- 1. Numbers in parenthesis are powers of ten. 

J kf. --> J 1 k1 
€

1 Danby et al scaled (j = 0, 2) scaled (j = 1) 

00+--> 10+ 0.76{-10) 0.188(- 9) 0.272(- 9) 

00+--> 20+ 0.94(-11) 0.746(-11) 0.353(-10) 

00+--> 33+ 0.34{-12) 0.134( -12) 0.657(-11) 

00+--> 33- 0.12( -10) 0.101(-10) 0.381(-11) 

00+--> 30+ 0.85(-12) 0.516(-12) 0.642(-12) 

10+--> 20+ 0.29(-10) 0.726(-10) 0.824(-10) 

10+--> 33+ 0.15( -10) 0.122(-10) 0. 725( -11) 

10+--> 33- 0.14{-11) 0.240(-11) 0.122(-10) 

10+--> 30+ 0.96( -12) 0.955(-12) 0.263(-11) 

20+--> 33+ 0.67(-11) 0.624(-11) 0.139(-10) 

20+- 33- 0.21(-10) 0.195(-10) 0.211(-10) 

20+--> 30+ 0.14(-10) 0.193(-10) 0.162(-10) 

33+- 33- 0.13(- 9) 0.296(- 9) 0.346(- 9) 

33+--> 30+ 0.81(-11) 0.493( -11) 0.107(-10) 

33---> 30+ 0.38{-11) 0.429{-11) 0.130( -10) 

Rates for de-excitation may be obtained from the detailed balance relation: 
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4.4 Level Population Calculations 

In their 1983 paper, Walmsley and Ungerechts solved the statistical equilibrium 

calculations using a total of 38 ortho-NH3 levels with the collisional rates of Green 

(1982). In addition they included the effects of radiative trapping using a large 

velocity gradient approximation. They noted however, that the role played by 

radiative trapping in exchange between k ladders was relatively unimportant, as 

k changing transitions are largely driven by collisions. In the case of the excitation 

temperature between the j k = 33 inversion doublet it is the difference between 

the collisional rates for (jO+ ~ 33+) and the A33 Einstein coefficient that is the 

critical parameter. 

Schilke (1989) has performed similar multilevel statistical equilibrium calcula

tions using the para (j=O) Hz rates of Danby et al (1986). In addition he performed 

similar calculations scaling the (00+ -t 33+) rates to the experimental results of 

Seelemann et al (1988). The latter calculation then contained some of the features 

found when ortho-Hz is included in the calculation. 

These calculations all showed population inversion in the 33 doublet, charac

terised by negative Tex(33). This behaviour was found in a range of densities, 

nH
2 

= 104 
-t 105 , but Schilke found that the extent of the population inversion 

was markedly reduced when the theoretical collisional rates were modified by the 

experimental results as described above. 

These calculations are all, however, essentially considering only excitation with 

ground state para-Hz. Walmsley and Ungerechts (1983) discuss the possible effect 

of ignoring collisions with ortho-Hz, but they suggest that collisions with rota

tionally excited H2 might enhance the dipole allowed transitions, whilst leaving 

the k changing transitions, which are dependent on short range forces, largely un

changed. However, it was shown in chapter three that, whilst this is generally true 

for transitions driven by similar terms in the potential, it is not true for transitions 

such as the (00+ -t 33+) transition which are forbidden by symmetry selection 

rules when the collision partner is ground-state para-H2, but allowed for collisions 

with ground-state ortho-H2. 
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Using the approximate rates obtained in the previous section we are now in a 

position to get some idea of how the level populations might change for an arbitrary 

ortho:para-H2 ratio. 

Given that reliable cross-sections have only been calculated at one energy that 

is below the threshold of levels with j 2: 4, and given the ad hoc nature of the 

rate scaling procedure, a large scale statistical equilibrium calculation of the type 

described above, would not be justified. However, a qualitative estimate of the 

behaviour could be obtained using a reduced statistical equilibrium calculation, 

and restricting detailed examination of the results to the regions in which they 

might be expected to be valid. 

It was decided to perform the calculations using only the first six rotational 

levels for which the scaled rates could be obtained, ignoring any radiative effects. 

This is clearly only an approximate model, but it will be shown (figure 4.2) that 

it reproduces the main features of the more complete calculations when the same 

rates are used. 

The statistical equilibrium calculations are obtained by equating the rates of 

transitions into a given rotational level, j kE, with the rate of transitions out of the 

level, thus: 

n· J 4.4.1 

Here we are assuming collisions with collision partners other than molecular hy

drogen are negligible. 

It can be seen from this equation that radiative transitions dominate for low 

nH2 , whilst collisions dominate at high nH2 • The quantities O:kj and O:jk are related 

by detailed balance: 

4.4.2 
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where 9i is the statistical weight of level i, and Ei is its energy. Thus if radiative 

transitions are negligible, local thermodynamic equilibrium level populations are 

reached: 

4.4.3 

Dividing the set of equations 4.4.1 by the population density in level 1, n1, 

gives N - 1 coupled equations in the N - 1 unknowns, here N = 5 and the 

five unknowns are njk€/noo+, (jkE = 10+, 20+, 30+, 33+ and 33- ). In the current 

work these equations were solved using the NAG routine F04JAF. The 0.7962cm- 1 

energy splitting between the 33± levels, which had previously been ignored, was 

introduced explicitly. 

Thus results for n33-/n33+ and the excitation temperature, Tex(33), could 

be obtained as a function of kinetic temperature, molecular hydrogen density or 

ortho:para-H2 ratio. 

4.5 Discussion 

4.5.1 Variation of Tex(33) with density. 

Figure 4.2 shows the results of a calculation of the 33 excitation temperature as a 

function of the molecular hydrogen density at a kinetic temperature of 50K. Here 

the results are given using the scaled (j = 1) and (j = 0, 2) rates for ortho:para-H2 

ratios of 0,1,2 and 3. In addition, results are given using the (j = 0) H2 rates 

of Danby et al, in the same six level model calculation, for comparison with the 

results obtained by Schilke using the same rates in a full (multilevel including the 

effects of radiative trapping) calculation. The latter comparison provides some 

measure of the adequacy of the model calculations being performed here. In par

ticular, it can be seen that the model calculation fails to reproduce the behaviour 

of the more complete calculation above nH2 ~ 5 x 105cm-3. At higher densi

ties, levels with higher j become appreciably populated, and the influence of the 

higher rotational levels, ignored here, causes the system to reach local thermody

namic equilibrium populations sooner. However, at the lower molecular hydrogen 

densities, the qualitative behaviour seems to be well reproduced. 
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Figure 4.2a 

The variation of Tez(33) with nH2 with varying ortho:para-H2 ratios. (Triangles: 

pure para-H2, squares: ortho:para ratio of one, crosses: ortho:para ratio of two, 

circles: ortho:para ratio of three). 
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Figure 4.2b 

The variation of Tex(33) with nn
2 

for pure para-H2 from the model calculation 

with (12 = 0, 2) rates (squares), with the (12 = 0) rates of Danby et al (crosses) 

and the results of the more complete calculation of Schilke ( 1989) with the same 

(h = 0) rates (solid line). 
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Figure 4.3a 

The variation of ln( 1133
-) with ortho:para-H2 ratio 
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The variation of ln(n33
-) with ortho:para-H2 ratio 

n33+ 

for a density of nH
2 

= .5 x I05cm-3. 

SOK 

0 0·5 

104 



From the figure that it can be seen that there is no population inversion for 

ortho:para-H2 ratios greater than unity. This conclusion should be relatively inde

pendent of the simplicity of the model used. The probable effect of a more complex 

model would be to reduce n33-ln33+· 

4.5.2 Variation of n33-ln33+ with ortho:para-H2 ratio 

Given that the levels are expected to be formed with an ortho:para-H2 ratio of 3:1 

which is gradually depleted with time it is instructive to investigate the variation 

of the ratio of the population in the 33- level to the population in the 33+ level 

with the ortho:para-H2 ratio for a given kinetic temperature. 

The results of two such calculations, for T = 30K and T = 50K, with nHz 

5 x 104 and 5 x 105cm-3, are shown in figure 4.3. As expected, the value of 

log( n33- I n33+) falls off rapidly with increasing ortho:para- H2 ratio. In both cases, 

population inversion is only found for values of ortho:para-H2 ratios less than about 

unity. Thus, if the 33 maser is indeed caused by collisional pumping, the efficiency 

of the pumping is heavily dependent on the local ortho:para-H2 ratio, and through 

the variation of the ortho:para-H2 ratio with time, it is also dependent on the age 

of the cloud (Flower et al, 1990). 

To investigate this further requires solving a model for the chemical compo

sition of the cloud to derive the variation of the ortho:para-H2 ratio with time. 

This can be done by solving the statistical equilibrium equations for the various 

molecular species, which, under stationary state conditions, take the form: 

:/ nmod = rate of production of mol - rate of destruction of mol 4.5.1 

where the rate for the production I destruction process A + B ---t C + D is given 

by the product of nA, ns and the rate coefficient for the process. The change in 

the ortho:para-H2 ratio with time is obtained in a similar way from: 

d _ rate of production of H2 ( ) 
dt npara Hz -

4 
+ northo H2 0: 0 ---t P 

4.5.2a 
- npara Hz o:(p ---t o) - nparaH2 X (rate of destruction of H2) 
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4.5.2b 

The evolution of the molecular abundances with time is extracted by solving the 

equations for a brge number nf molecular formation and destruction processes. 

Using a reaction network of ,....., 400 chemical reactions (Pineau des Forets et 

al, 1990) plus the spin changing reactions (eqn 4.1.1), the equations can be solwd 

using the .l\IHD computer code (HeLl'- et al, 1990). 

Calculations at a grain temperature of 30K and a density of nH
2 

= 5 x 10-! with 

non-ionized initial conditions, gave an ortho:para.-H2 ratio that dropped sharply 

from around 3:1 to very much less than 1, passing through unity at around 106 

years (Flower and \Vatt, 1984, Floweret al, 1990). 

The models here presented are very simple, but in principle observations of the 

33 maser could yield information on the ortho:para-I-12 ratio in a cloud, if estimates 

of the density were available and more reliaUe NH3 - ortho-H2 rates could be 

established. The latter would probably need coupled state calculations, once the 

validity of the coupled state approximation for this system had been checked. 

Meanwhile, a preliminary investigation using data from the source NGC 7538 has 

been performed by Schilke (Flower et al, 1990). 
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Chapter V 

Rotational Excitation of OH in collisions with ortho and 
para-Hydrogen 

5.1 Introduction 

The electronic ground state of the astrophysically important 0 H molecule is a 
2II state, with rotational levels labelled by half integer angular momentum. In 

the notation of Hunds coupling case (a) the rotational states are split by the spin 

orbit interaction into two rotational ladders labelled by Sl = 1/2 and Sl = 3/2, and 

these rotational states are further split into A doublets. Because of the complex 

nature of the rotational coupling in OH, collisions with other molecules lead to an 

unequal excitation of the A doublets in collisions, and this preferential excitation 

has been widely investigated as a possible pumping mechanism for the observed 

OH masers. 

Pumping by collisions with H2 was proposed by Gwinn et al ( 1973), and early 

work on OH - H2 collisions suggested that collisional pumping could lead to pop

ulation inversion in the 2II3; 2 rotational ladder (Bertojo et al, 1976, Dixon and 

Field, 1979, Dewangan and Flower, 1981, 1983). Although this was subsequently 

discounted when phase errors were corrected (Alexander and Dagdigian, 1984, 

Dixon et al, 1985), collisional pumping may be responsible for masers in the 2II 1; 2 

states (Andresen, Hausler, Liilf and Kegel, 1984), and under some conditions col

lisional pumping could lead indirectly to inversion in the j = 3/2, Sl = 3/2 ground 

state, via a scheme involving the infra-red relaxation of Sl = 1/2 states (Andresen, 

1986). 

Rotational transitions of OH have been observed in relatively dense regions of 

the interstellar gas and it is likely that the major collision partner in such regions 

is molecular hydrogen. Previous theoretical calculations of OH- H2 collisions have 

looked at collisions with ground state para-H2 only, and in view of the change in 

behaviour found in NH3 - H2 collisions when (j > 0) H2 is used as the collision 
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partner, it is interesting to investigate how the propensity rules found in OH - H2 

collisions change when a similar substitution is made. In addition, the available 

experimental data (Andresen, Hausler and Liilf, 1984) is for collisions of OH with 

normal H2, and a more complete treatment of the rotational structure of the H2 
molecule is needed to fully compare experimental and theoretical results. 

The rotational wavefunction of X 2IT OH can be expanded as a linear com

bination of rotation matrices and, as such, the algebra needed to tn:at 0 H - H2 

collisions is structurally the same as that required for linear rotor - asymmetric 

top collisions. However, the collision systems are not identical and it is not dear 

how the propensity rules will change if rotationally excited Hydrogen molecules 

are included in the H2 basis set. 

In this chapter, the treatment of linear rotor - symmetric top molecules, m

troduced in chapter two, is extended to treat OH - H2 collisions, and the results 

are presented at 190cm-1 and at 680cm- 1 for comparison with the experimental 

cross-beam measurements (Andresen et al, 1984) 

5. 2 The OH molecule 

5.2.1 Angular momentum coupling 

OH, with three 1C' electrons in its valence shell, has a non-zero electronic angular 

momentum about the internuclear axis. The ground state of the OH molecule is 

designated X 2II in standard spectroscopic notation (A = 1, where A is the compo

nent of the electronic orbital angular momentum, L, along the internuclear axis). 

It has three electrons in the valence shell one of which is unpaired, giving a total 

electronic spin angular momentum, S, of 1/2. The spin angular momentum cou

ples to the orbital and nuclear rotational angular momentum to form a resultant, 

j, the total molecular angular momentum (ignoring nuclear spin). 

The correct form of angular momentum coupling for the OH molecule is in

termediate between Hunds coupling cases (a.) and (b). Hunds coupling cases are 

described in standard texts (Herzberg, 1950, Townes and Scha.wlow, 1955), but the 

relevant cases are reviewed here. 

108 



N 

A 
~-----0------~ 

Figure 5.1: Hunds coupling case (a) 

Hunds coupling case (a) 

B 

The case (a) limit (figure 5.1) is approached at low total angular momentum where 

the magnitude of the spin orbit coupling is greater than the coupling between the 

spin, S, and the nuclear rotation, N. (I.e. when jAAj >> BJ, where A is the spin 

orbit constant and B is the rotational constant.) 

In Hunds coupling case (a) the interaction of the orbital angular momentum, L, 

and the electronic spin, S, with the nuclear rotation, N, is assumed to be weak. 

The orbital angular momentum is strongly coupled to the internuclear axis, and 

its projection on this axis, A, is well defined. S is also strongly coupled to the 

axis (via its interaction with L through spin-orbit coupling) and its projection, E, 

is also a good quantum number, as is the quantity 0 = IE + Aj. The case (a) 

limit is approached for the OH molecule at low total angular momentum where 

the magnitude of the spin orbit coupling is greater than the coupling between S 

and N. 

The total angular momentum is formed by vector addition of 0 and the nuclear 

rotational angular momentum: 

j =!l+N 5.2.1 

where here j includes both spin and rotational angular momentum. 
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For OH, E = ±1/2 and A = ±1, giving n = ±1/2, ±3/2. This results in a 

separation of the energy levels into two n ladders labelled by 21It/2 and 2II3/21 

with an energy given by: 

Erot = B(j(j + 1)- 0 2 + S(S + 1)- E2) 5.2.2 

(LefeH,yte-Brion and Field, 1986). 

The quantity n has the same relation to j as k has to j in the symmetric 

top coupling, and the wavefunction for case (a) molecules can be expressed as a 

linear sum of products of a wavefunction embedding the vibrational and electronic 

motion, and a rotational eigenfunction: 

liflm)lvASE) 5.2.3 

where 
2. 1 1/2 

liflm) = ( 
1
8
: ) Dhm(a~l) 5.2.4 

where v is the vibrational quantum number and (a,~, 1) are the Euler angles 

(Edmonds 1960). 

Suppressing the index S, and treating the OH as a rigid rotor, the parity 

adapted wavefunction for OH can be written as: 

lim11e) = 2-112(limfl)IA = 1, E = n- A) 

+ eljm- O)IA = -1,E = -n- A)) 

= 1/J~)(J) 
5.2.5 

where E = ±1 and from henceforth, n = IOI (Alexander 1982). A spectroscopic 

notation that is often employed is to use the notation 'f to refer to the E = + 1 

states and 'e' to refer to the E = -1 states. The quantity E is related to the parity, 

p, of the state by (Alexander and Dagdigian, 1984): 

p = E (-1)i-s. 5.2.6 
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Figure 5.2: Hunds coupling case (b) 

Hunds coupling case (b) 

At high values of j, the nuclear rotation increases to the point where S is only 

weakly coupled to the internuclear axis. In this limit BJ > > IAAj, and Hunds 

case (b) is approached (figure 5.2). In Hunds case (b) Land N couple to give the 

total angular momentum neglecting spin, K, 

K=L+N 5.2.7 

The total angular momentum, j, is then the resultant of K and S, 

5.2.8 

where each level for a given K consists of 2S + 1( = 2) components. 

Intermediate coupling 

In reality the 'correct' coupling case for OH lies between case (a) and (b) (Dous

manis et al, 1955, Bertojo et al, 1976), the case (b) limit being approached as j 

increases. It is usual to express the intermediate coupling wavefunction as a linear 

combination of case a wavefunctions, (Dousmanis et al, 1955, Lefeb'v~-Brion and 
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Field, 1986). In the notation applicable to case (a) the intermediate wavefunction 

can be written: 

where: 

.T, · · ) ( 11) · · ) b (a) ( · · 
't'J/2U = ai1/J3;2U - rz/J1;2 J) 

w1/2(j) = bjw1j~(j) + ajwij~(j) 

aJ· = [X -(A- 2)]1/2 b = [X+ (A- 2)]1/2 
2X 1 2X 

x = [4u + 1/2)2 +A( A_ 4)f
12 

A= A 
B 

.j.2.9a 

.j,2.9b 

,j, 2.9c 

here A is the ratio of the spin orbit constant, A, to the rotational constant. B. 

Case (a) is regained in the limit (A ....... oo), and the case (b) wavefunctions are 

obtained as (A ....... 0). Thus departures from the case (a) limit manifest themselves 

as a mixing of the 0 = 1/2 and 0 = 3/2 states. 

The value of A used in the work reported here is A = -7.501 (Poynter and 

Beaudet, 1968). Schinke and Andresen (1984) used a value of A= -7.44 (Dieke 

and Crosswhite, 1961) in their coupled states calculations. 

5.2.2 Lambda Doubling 

In addition to the splitting of the energy levels of different j and 101, the levels are 

further split by A doubling. The physical cause of the splitting is the interaction of 

the nuclear rotational angular momentum with the electronic orbital angular mo

mentum which splits the otherwise degenerate € = ±1levels by around 0.55cm- 1, 

the magnitude of the splitting increasing with j. The splitting is much smaller than 

the separation of the energy levels and is ignored in the collisional calculation, but 

it is the preferential excitation of one of the components of the A doublets, with 

respect to the other, that leads to the population inversion or anti-inversion that 

has caused so much interest. For pure case (a) coupling both components of the 

A doublets are equally populated, the preferential excitation is a direct result of 

the departure from the case (a) ideal. 
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Figure 5.3: Ordering of the OH rotational energy levels 
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Note that in the n = 1/2 ladder (using the nomenclature applicable to H unds 

case (a) ) , the ordering of the E levels reverses for j 2: 9/2 as the case (b) limit is 

approached. 
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5.2.3 Energy Level Ordering 

ln order to interpret the results of collisional calculations, the energetic ordering 

of the ,\ doublets is important, and has been much discussed (Alexander and 

Dagdigian 1984). The ordering of the rotational levels, using the nomenclature of 

Hunds coupling case (a), is shown in figure 5.3, with the splitting of the;\ doublets 

greatly exaggerated. At high j values where the coupling approximates to Hunds 

case (b), theE= +1 (e) levels are higher than theE= -1 (f) levels for the r2 = 1/2 

ladder, and vice versa for the r2 = 3/2 ladder. As j decreases the case (a) limit 

is approached, and the ordering of the A-doublets in the r2 = 1/2 ladder reverses. 

For values of j of 7/2 or less, the E = -1 (f) level is higher than the E = + 1 (e) 

level for both the n = 1/2 and the n = 3/2 ladder. 

Alexander and Dagdigian (1984) have shown that, in so far as the levels tend 

towards case (b), thee level in the 2II3; 2 ladder, and the flevel in the 2II 1; 2 ladder 

are symmetric with respect to reflection in the plane of rotation of the molecule, 

whilst the other two states are antisymmetric. 

5.3 The Story So Far 

There have been a number of theoretical treatments of the excitation of OH m 

low energy collisions with H2 molecules and, to date, they have exclusively treated 

collisions with para-H2 constrained to its rotational ground state. 

The first work on OH - H2 collisions was the semi-quantitative treatment of 

Bertojo et al (1976), who treated the collision as occurring either along the V(A') 

potential surface or the V(A") surface, with the latter leading to a higher cross

section. They interpreted the preferential excitation of the A doublets in terms 

of the change in moment of inertia caused by the finite mass of the electrons. 

Although the argument was not correct (Alexander and Dagdigian, 1984), they 

correctly predicted anti-inversion in the n = 3/2 ladder. The treatment of OH -

spherical perturber type collisions in the case (a) limit has been discussed in detail 

by Alexander (1982, 1985) and close coupled calculations of OH - ground state 

para-H2 in the case (b) limit using the potential of Kochanski and Flower ( 1981) 

have been reported by Dewangan and Flower (1981). 
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The CC equations for the intermediate coupling case can be formulated using 

either case (b) wavefunctions (d. Dixon and Field, 1979), or case (a) wavefunctions. 

For the work reported here the nomenclature of Hunds case (a) coupling has been 

used, and the formulation of the equations with case (a) wavefunctions has been 

discussed by Dewangan and Flower (1983), Schinke and Andresen (1984) and Corey 

and Alexander (1988). The extent to which one level will be excited in preference 

to the other is governed by the amount by which the coupling deviates from pure 

case (a) coupling, and by the signs and relative magnitudes of the 1-L = 2 terms 

in the potential expansion (equation 5.4.5). In particular it has been found that 

collisions with ground state para-H2 have a tendency to invert doublets in the 

n = 1/2 ladder (for j ::; 7 /2) and anti-invert doublets in the n = 3/2 ladder 

(Schinke and Andresen, 1984, Dewangan and Flower, 1985, Corey and Alexander, 

1988). There was initially some confusion over phase factors which lead to the 

opposite conclusion in earlier work, but this has since been resolved (Alexander and 

Dagdigian, 1984, Andresen, Hausler and Lulf, 1984, Dixon, Field and Zare, 198.5, 

Dewangan and Flower, 1985). 

The most complete experimental information on the system comes from the 

cross-beam measurements of Andresen, Hausler and Liilf (1984). They studied 

inelastic collisions between the molecules in a rotationally cold OH beam, in which 

essentially all OH was in the 2I13; 2, j = 3/2 ground state, and the H2 molecules 

from a pulsed nozzle beam, at a collision energy of approximately 680cm -l. The 

final level population of the beam was probed by laser induced fluorescence, and 

results were interpreted as relative integral cross-sections. 

The results were presented as summed and averaged cross-sections (Schinke 

and Andresen, 1984) defined by: 

1 
a(h = 3/2, n = 3/2 --+ j~ n') = 2 ~ a(h = 3/2, n = 3/2, € --+ j~ n' € ') 5.3.1 

For n' = n = 3/2 transitions the experimental results showed cross-sections falling 

off rapidly with increasing t:l.j' whilst for n' =I= n transitions the decrease was much 

slower. The large difference between t:l.j = 1 and t:l.j = 2 transitions for the former 

case was explained by the polar nature of the OH molecule. 
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In addition, Andresen et al ( 198-4) also investigated the extent of preferential 

excitation of the A doublet substates by defining the quantity O"± j O"=t= where: 

(J±u~rn = ~ 'LO"(h = 3/2,o = 3/2,E __. j~O'E' = ±) .s .. 1.2 
~ 

Their results showed anti-inversion in the 0 = 3/2 manifold ( O"+ > O"-) and 

inversion in the 0 = 1/2 manifold ( O"- > O"+ ). 

In order to compare with the experimental results, Schinke and Andresen 

(1984) performed calculations at the approximate experimental energy of680cm-l. 

They used the ab initio potential of Kochanski and Flower ( 1981), and employed 

the coupled states approximation (section 2.3). Their results showed qualitative 

agreement with the experiment concerning the A doublet populations, but the cal

culations predicted a much stronger preference for one of the A doublets than was 

found experimentally, especially for the 0' = 0 = 3/2 transitions. They suggested 

that the discrepancy could be caused by an over estimation of the J.l = 2 term in 

the potential of Kochanski and Flower. 

Dewangan et al (1986) performed close coupled calculations of the same system 

but used a potential in which the J.l = 2 term was smaller than the 'true' value 

by a factor of two. When comparing the average of their results at 556cm- 1 and 

834cm -l with the experimental results they found better quantitative agreement 

with the experiment than was found for the calculations of Schinke and Andresen 

which used the larger J.l = 2 term. In particular, the quantity O"+ fa- gave much 

better agreement with experiment for transitions within the 0 = 3/2 ladder, al

though the calculations still over estimated the extent of population inversion for 

transitions to the n = 1/2 ladder. 

In view of the fact that an erroneous value of the v22 term gave a better quanti

tative agreement with experiment (Dewangan et al 1986), subsequent calculations 

to determine the rate coefficients at low (interstellar) energies (Dewangan, Flower 

and Alexander, 1987) used a V>.,,_,. = v22 coefficient scaled by a factor of one half. 

This 'doctored' potential was also used by Corey and Alexander (1988) in a study 

of collision induced transitions between the hyperfine levels. 
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Following the results of the NH3 - H2 (j > 0) calculations which showed 

significant changes in the propensities towards certain transitions when rotationally 

excited H2 replaced (j = 0) H2 as the collision partner, it is interesting to extend 

this work to see how the OH - H2 propensity rules are affected by inclusion of 

rotationally excited H2, and whether the inclusion of ortho-H2 can improve the 

agreement between theory and experiment. 

5.4 Extension to OH - H 2 (j > O) 

5.4.1 Rotational Wavefunction 

The rotational eigenfunctions for the OH in the intermediate coupling regime were 

given by equation 5.2.9a as: 

l{lfl=3/2(j) = app~a23/2(j) - bj1J;g~l/2(j) 

l{lfl=l/2(j) = aj1bha21/2(j) + bjlj;ha23/2(j) 
5.4.1 

with aj and bj given by equation .5.2.9b. The case (a) rotational eigenfunctions 

are related to the primitive symmetric top functions IJOm) by: 

.5.4.2 

Like the asymmetric top eigenfunctions (section 2.6.7), the intermediate coupling 

case eigenfunctions are linear combinations of primitive symmetric top eigenfunc

tions, and the coupling matrix elements are best evaluated using the ljOm) from 

which the true coupling matrix elements may be formed by a linear combination 

of the simple coupling matrix elements. 

The eigenfunctions of total angular momentum (excluding the electronic com

ponent) can then be formed as before from: 

IJ. ("))"2)
0 2l·JM)- " c 31 i2 il2 Cll 2 I J IJ"l(")m )IJ"2m2)llm) 1H 1 ' - L..J mt m2m12 ffi12m1M H 1 5.4.3 

mlm2 
"'12m I 

where the subscript (1) refers to the OH molecule and the subscript (2) to the H2 

molecule. 
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5.4.2 Potential Expansion 

The body fixed potential expansion for OH -ground state para-H2 can be written 

as: 

V(R,B') = l:vA11(R)D;0(0,B',O) .).4.4 
-'11-

This is of the same form as that used in the discussion of the atom -symmetric top 

problem except that now the potential expansion is independent of the angle, ti'~, 

which, in the case of 0 H, relates to the orientation of the electronic wavefunction 

about the internuclear axis. Thus the body fixed and molecule fixed frames are 

defined in such a way that the molecule fixed y" and body fixed y1 axes coincide, 

and the x" z" and x' z1 planes are parallel. 

The form of equation 5.4.4 was derived for the general case of a 2n molecule in 

collision with a spherical perturber by Alexander ( 1985 ), and it is readily extended 

to give the potential expansion for linear rotor - OH collisions: 

V(R,B~,02,4>2) = L V,\ 1 /1-,\ 211 (R)D;~(O,O~,O)Y!~(02,4>2) 5.4.5 
.\1 . .\2 

IJ.V 

The Euler angles appearing in equation 5.4.5 define a rotation taking the body 

fixed frame into the internal molecule fixed frame. 

It is convenient to rewrite equation 5.4.5 by expressing the rotation matrix 

and spherical harmonics as products of reduced rotation matrices and exponential 

functions ( cf eq. 2.6.15 ). Summing over the positive values of J.L and v only this 

g1ves: 

( (R)dAl (n' )d..\2 (n') -i11<P; + (R)d-'1 (nl )d..\2 (n') i11<P; 
X V,\111-..\211 !J-11 17 1 0-11 172 e V,\1/1-..\2-11 11--v 17 1 Ov 172 e 

(R)d ,\1 (n')d,\2 (fl') -iv<P; + (R)d,\1 (n')d,\2(8') i11<P~) + V,\1-1-'..\211 -~JV 171 0-v 172 e V,\1-IJA2-v -~J-11 17 1 Ov 2 e 

5.4.6 
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For even J-L we have the relationships: 

d~vun = ( -1td~11-vUn 
Y,;((1,¢>) = (-1tY~~(O,¢>) 

using these, equation 5.4.6 can be rewritten as: 

or alternatively: 

.).4. i' 

( ) 

1/2 
L'(R nt nt ,+,1) = " 2.\2 + 1 V>qJl>.2v(R) d>.1 (n' )d>.2 (nt) ( -+-') 
v 1 ul, u2, '+'2 ~ 41!' ( 1 + b ) JLV ul 0-v u2 COS V'+'2 .5.-!.8b 

-\1 -\21' vO 
v;:::o 

Further use will be made of the above expressions in subsection .5.5.2. 

5.4.3 The Coupling Matrix Elements 

Combining the rotational wavefunction ( eqn 5.4.2 and 5.4.3) and the space fixed 

potential expansion ( eq 5.4.5), the coupling matrix elements required for solving 

the close coupled equationsarea linear combination of functions of the form: 

.5.4.9 
X (l'm'l(j~m21Ui n'm~ I(A'E'IVIAE) l)lOmt) 112m2) llm) 

The potential cannot couple states of different E, being spin independent, and the 

innermost term becomes: 

(A'E'IVIAE) = 8EE' 8JJ(A'-A) L V>. 1 ~-'>.2 vD~:,(o, Oi, O)Y~~(8~, <P2) 
,\1 ,\2 

J'V 

The possible n transitions are thus limited to the following eight: 
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0 O' J1. 0 0' J1. 

~ = +1/2 -1/2 -1/2 0 3/2 -1/2 -2 

3/2 3/2 0 -1/2 3/2 2 

~ = -1/2 1/2 1/2 0 -3/2 1/2 2 

-3/2 -3/2 0 1/2 -3/2 -2 

The selection rules reflected in equation .5.4.10 limit the possible values of 11. 

to 0, ±2. 

The expression for the coupling matrix element for case (a) coupling is then 

the same as that given by equation 2.6.36, with the added restrictions on the value 

of 11.: 

( -1)h'+h'-h2-J-!1' 
UU~Ji21'0'E';JMIVIhhh210E;JM) = L 

>.1 >.2>. S7r 

X (1- EE
1(-1)jl+h'+>.+>. 2 )((2}1 + 1)(2)2 + 1)(2}12 + 1){21 + 1) 

X (2ji + 1)(2j~ + 1)(2j~2 + 1)(211 + 1)(2,\2 + 1)(2,\ + 1)2)1
/
2 

~~) (1 - 8nn') V>.1>. 2>.2] 

).~ ~~ } 
12 h 
,\2 ,\1 

( 
12 ,\2 h ) ( l' ,\ I ) { ,\ 
0 0 0 000 J 

5.4.11 

The minus sign in the parity factor is a consequence of the fact that n is now half 

integer. 

It was shown in chapter two that the coupling matrix element vanishes unless: 

EE'{-1)il-J2-l+i1'-h'-l'-2!1'+J.L = (+1) 5.4.12 

In the current case 2n' is always odd, and J.1. is always even so this condition reduces 

to: 

5.4.13 
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In addition we now have that ( -1 )S+S' = ( -1) where S is the electronic spin of the 

OH molecule and S = S' = 1/2. Thus the condition for a non-vanishing coupling 

matrix element becomes: 

E( -1 )h-Jz-l+S = E '( -1)h'-h'-I'+S' .5.4.14 

The two non-interacting parity blocks can be solved separately. 

The coupling matrix element, equation 5.4.11 was derived using Hunds case (a) 

wavefunctions but, as discussed in section 5.2, the correct angular momentum 

coupling scheme for the OH molecule is intermediate between Hunds cases (a) 

and (b). Using the notation (r2'1Volr2) to refer to the terms in the case (a) coupling 

matrix element with f..L = 0, coupling n and n', E (r2'IV2In) to refer to the terms 
- - -

with f..L = 2, and introducing nl, n2 where n1(2) f:. n1(2)• the coupling matrix 

element in the intermediate coupling regime becomes: 

a1a/ (r2'1Volr2) + ( -1 )bib/ (O'IVoiO) 

+E( -l)n'+l/2aib/(r2'IV2IO) + e( -1)n+112bia/(O'IV2In) 
5.4.15a 

when n = n' and: 

w 1a/ (n'IV2In) + ( -1)eb1b/ (O'IV2IO) 

+( -l)n'+l/2aib/ (n'IVoiO) + ( -1)n+l/2bia/ (O'IVolr2) 
5.4.15b 

when n f:. n'. 

The magnitude of the intermediate case coupling matrix element (eq 5.4.15) is 

dependant on the sign of E, which leads to the unequal excitation of the A doublets. 

5.5 Interaction Potential 

5.5.1 Details of the Potential Used 

The interaction potential used in the present study is the OH- H2 potential energy 

surface of Kochanski and Flower ( 1981 ). The potential data is available at a 
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Figure 5.4: Geometries at which potential data was available 

total of seven geometries, detailed in figure 5.4. The symmetry of the two collinear 

geometries correspond to the point group Cx, whilst the remaining five correspond 

to the point group C9 , and give rise to two distinct potential curves, V(A') and 

V(A"). The V(A') surface is the least repulsive surface. It is symmetric with 

respect to reflection in the x' z' plane, and corresponds to the surface with the 

unpaired 1r electronic wave function preferentially parallel to the x' z' plane. The 

V(A") surface is antisymmetric, and corresponds to the unpaired 1r electronic wave 

function lying perpendicular to the x' z' plane. 
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The twelve separate potential energy curves that result, enable twelve v~ 1 ~~2v 
coefficients to be found, however only eleven are independent: 

voooo V2Q22 = V202-2 

VlQQO V2200 

V2000 V2210 

VQ020 V2220 

V1Q20 V2222 

V2020 V222-2 • 

There are insufficient geometries to allow the v = 1 terms in the expansion to be 

evaluated, thus terms allowing the projection of the molecules rotational angular 

momentum on the intermolecular axis to change by ±1 are omitted. The physical 

significance of this omission was discussed in chapter three. 

5.5.2 Relationship between V(A'), V(A") and the potential coefficients 

To utilize the ab initio potential data, a relationship between the V(A') and V(A") 

surfaces and the potential expansion must be found. 

In the OH molecule fixed frame the z"-axis is defined as lying along the inter

nuclear axis, but the orientation of the x" and y" axes depend on the convention 

used. With the Euler angles used in equation 5.4.5 the OH molecule fixed x" z" 

plane coincides with the body fixed x' z' plane. Following Alexander (1985), a re

lationship between the body fixed v coefficients and the V(A'), V(A") potential 

surfaces can be obtained by considering definite symmetry molecular electronic 

wavefunctions of the form: 

5.5.1 

where here A = IAI, and TJ = ±1. When TJ = +1 this is antisymmetric with 

respect to reflection in the xz plane, when TJ = -1 it is symmetric (Alexander and 

Dagdigian, 1984). 
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The matrix elements of the interaction potential ( eq 5.4.5) in the IAry) basis 

can be written: 

(.\'77
1IVIA77) =~((A'I + 17

1
(-1\.1

1) L VA 1 ttA 2 v(R)D~t(O,B~,O)Y!~(B~,¢~) 
.\1 ,\2 

.5 .. ).2 

(lA) + 771 -A)) 

Using equation 5.4.10 we have that: 

(A11VIA) = L V,x 2 (A'-A)A2 v(R)Dt~'-A)v(O, 0~, O)Y!~(02, ¢~) 
A1A2v 5.5.3 

:::: FA'-A 

In the case of a 2 n molecule, IAI = 1' thus: 

-r, 'I 1- ) Fo 1 Fo 77 ( 1 
(1\ 1J VAT] = 2 + 771J 2 + 2 F2 + 7777 F-2) .5.5.4 

Adding (A+ lVI A+) to (A- lVI A-), and using equation 5.4.8a to rewrite Fo we 

have: 

1/2((i\ +!VIA+)+ (A -!VIA-)) 

= """ (2.\2 + 1) 112 
V,\10A2v(R) d,\1((11 )d,\2 ((}~ )( iv</12

1 + -iv<Pz') 
~ 41!' 2 Ov 1 0-v 2 e e 

A1A2v 
5.5.5 

Subtracting (A- lVI A-) from (A+ !VIA+), and using equation 5.4.8b gives: 

1/2( (A+ !VIA+)- (A- !VIA-)) 

The lA+) states are antisymmetric under reflection in the x' z' plane and the 

lA-) are symmetric so one can identify: 

(A+ !VIA+) = V(A") 

(?\- !VIA-) = V(A') 
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Explicitly, for the coefficients .-\1 = 0, 1, 2, .-\2 = 0, 2, and v = 0, 2 this gives: 

.) .. ).8a 

where <P2 = 0, 11' /2, and: 

1/2(V(A")- V(A')) = [v22
1°1°2 + (_2_)

112

v?22o(3cos2 8~- 1)] d;0 (8~) 271' 1671' - - . 

15 1/2 
+ (

32
71') v22222sin2 82 cos(292)d~2 (8D 5.5.8b 

15 1/2 
( ) 

· 2 I I 2 I + 
32

71' V222-2 2 Sill 82 cos(2<h) d2-2 ( 81) 

From henceforth the potential expansion coefficients obtained in this way will be 

referred to as the 'true' potential. 

5.5.3 The 'doctored' potential 

For the OH- ground state para-H2 collision system Dewangan, Flower and Danby 

( 1986) found that better agreement with the experimental data was obtained using 

a J.L = 2 term smaller by a factor of two than that which would be obtained using 

the above argument. Subsequent calculations on the OH ground state para-H2 

collision problem used this 'doctored' potential. The smaller J.L = 2 term was 

originally obtained by expanding the OH - spherical perturber potential in the 

form: 

V(R,e~,l/JD = 2:vA~'(R)Y;(el,l/JD 5.5.9 
AI' 

This differs from that derived by Alexander (1985) in that the angle describing the 

orientation of the OH electronic wavefunction, 1/Ji, is explicitly included (Dewangan 

et al, 1986). To relate equation 5.5.9 to the V(A1
) and V(A") potential surfaces, 

the V(A1
) surface is identified with "tPi = 11' /2, and the V(A") surface is identified 

with 1/Ji = 0 expansion. 
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Whilst this does not correctly represent the system ( Dewangan et al, 198 7), 

the smaller J.L = 2 terms that resulted from this treatment gave better agreement 

with the experimental data than did the 'true' J.L = 2 terms. 

For a full comparison with previous results both the 'doctored' potential and 

the true potential were used in the present calculation, and for consistency, the 

derivation of the 'doctored' potential for the OH -linear rotor case is given here. 

The OH - linear rotor equivalent of equation 5 . .5.9 is: 

V(R, 0~, 1/J~, 0~, ¢~) = L VAwA2 v(R)D;~(O,O~, 1f!~)Y!~(O~, dl~). 
.l.l.l.2 

iJ.V 

Making the identification 

v(A") = vA = o V(A') := 1/J~ = 1rj2 

we can write: 

V(A")(R, O!, 0~, ¢~) = L V,x 1 1',x 2 v(R)D~~(O, 01, O)Y!~(O~, ¢~) 
A1.X2 

iJ.V 

V( A')( R, Ol, 0~, 4>2) = L v,x 11',\ 2v( R)D~~( 0, 0~, 7r /2) Y!~( 0~, ril2) . 
At .X2 

"'" 
From the definition of the rotation matrices (equation 2.6.6), 

D~~(0,01.1r/2) = D~~(0,01,0) 

n;~(O,Ol,rr/2) = -D;~(0,01.0) 

Substituting 5.5.13 into 5.5.12 gives: 

{ ~((~:))} = L V,x 1 oA2v(R)D~~(O, 01, O)Y!~(02, 4>2) 
A1A2v 

± L [v,x 1 2A2 v(R)Di~(O, 01, O)Y!~(02, 4>2) 
At-\211 

+ V,x 1 2A2 -v(R)Di~11 (0, 01, O)Y-:~(02, ¢2)] 
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where we have made use of the relationships summarized by equation .5.4. 7. Here 

the upper sign refers to Y(A") and the lower sign to V(A'). Adding V(A") and 

V( A') gives the same result as equation 5.5.5 but subtracting gives: 

1/2(V(A")- V(A')) = L V,\ 1 2,\2v(R) ( 2A~: 1) 
112 

d~t(B~)d~:_v((J~) 2cos(v¢~) 
,\1 ,\2v 

.5 .. 5.1.5 

Thus when this derivation is used all the p, = 2 terms are smaller by a factor of 

two. 

5.5.4 Fitting of the potential surface 

The method used for interpolation and fitting of both the SCF and dispersion 

energy surfaces was basically the same as that discussed for the NH3 - H2 collision 

so the method will only be described in outline here. 

The potential data points were given at intermolecular distances of 4 to 10au, 

in steps of 0.5au, with an additional long range dispersion data point at 80au. The 

analytical form of the long range electrostatic terms included in the SCF fitting 

procedure, were taken from the paper of Kochanski and Flower (1981) and include 

terms proportional to 1-L(l)ezz(2)/ R4
, 8zz(l)e(2)/ R5 and (8xx - 8_r;y)( 1)8( 2)/ R5

, 

where 1-'-(l) is the dipole moment of the OH molecule, (8xx, 8yy, ezz)(l) are the 

diagonal elements of the OH quadrupole moments, and 8( 2) is the H2 quadrupole 

moment. Values of 1-'-(l) = 0.87, (8xx - 8yy)(l) = 1.37, ezz(l) = 1.20 and 8( 2) = 
0.42 atomic units were used (Kochanski and Flower, 1981). Again we note that, 

in contrast to NH3 - H2 collisions this does not include the 11 = 1 terms. 

The dispersion surface was fitted using an expansion of the form given by 

equation 3.4.6, but including fourteen terms, and fitting using the NAG routine 

F04JAF. 

The potential expansion coefficients were calculated by fitting the average of 

the two potential surfaces, V(A") and V(A'), and half the difference to functions 

of the form given by equations 5.5.8 or 5.5.15. For the collinear geometries the two 

potential surfaces are degenerate, and only the average is non-zero. 
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The angular functions appearing in equation .5.5.8 are given in table .).1. In the 

first case, for 1/2(V(A")+V(A')), there are seven equations for seven unknowns, 

but when the difference of the two potential surfaces is taken there are five available 

pieces of information for only four unknowns. 

5.1: Numerical value of the Angular Functions 

coefficient Configuration 

/\1 ji,\211 1 2 3 4 5 6 7 

0 0 0 0 0.282 0.282 0.282 0.282 0.282 0.282 0.282 

1 0 0 0 -0.282 -0.282 0.282 0.282 0.000 0.000 0.000 

2 0 0 0 0.282 0.282 0.282 0.282 -0.141 -0.141 -0.141 

0 0 2 0 -0.315 0.631 -0.315 0.631 0.000 0.000 0.000 

1 0 2 0 0.315 -0.631 -0.315 0.631 -0.316 0.158 0.1.58 

2 0 2 0 -0.315 0.631 -0.315 0.631 -0.316 0.158 0.158 

2 0 2 2 0.000 0.000 0.000 0.000 0.000 0.473 -0.4 73 

2 2 0 0 0.000 0.000 0.173 0.173 0.173 

2220 0.000 0.000 0.387 -0.193 -0.193 

2 2 2 2 0.000 0.387 0.000 0.097 -0.097 

2 2 2-2 0.387 0.000 0.000 0.097 -0.097 

divide the Jl = 2 terms by two for the 'doctored' potential 

To evaluate the potential expansion coefficients, the simultaneous equations 

were solved using the NAG routine F04JAF and a final check on the adequacy 

of the potential fit was carried out by reversing the process, using the calculated 

potential coefficients to regain the potential surfaces. The results for two of the 

configurations, 2 and 7', are given in table 5.2a and b. The agreement between the 

data and fit is clearly better for configuration 2, which used only the V(A")+V(A') 
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fit, than for configuration 7'which makes use of the V(A")- V(A') fit. However, 

the latter is not necessarily less accurate, and may give a closer representation of 

the true potential as extra information is available. 

5.2(a) and (b ):SCF fits for configurations 2 and 7' (long range) 

configuration 2 configuration 71 

R fit data Eiuduction R fit data Einduct.iou 

8.0 2.760 2.760 8.0 -0.223 -0.256 

8.5 2.138 2.138 8.5 -0.142 -0.153 

9.0 1.756 1.756 9.0 -0.066 -0.088 -0.107 

9 .. 5 1.466 1.466 9.5 -0.040 -0.054 

10.0 1.237 1.237 1.399 10.0 -0.022 -0.035 -0.063 

15.0 0.256 0.256 15.0 -0.527 

20.0 0.078 0.078 20.0 -0.001 -0.002 

The body fixed potential coefficients were converted into their space fixed form 

using the conversion 2.6.27, and the calculated potential coefficients are given in 

appendix E. 

5.6 Low Energy Calculation (190cm- 1
) 

5.6.1 Integration of the coupled equations 

The rotational constant of the OH molecule in its ground state is Bo = 18.52cm- 1 

(Poynter and Beaudet, 1968). This compares to Bo = 9.94cm- 1 for the NH3 

molecule (Green, 1976), thus the OH molecule, with wider spaced energy levels, 

is more amenable to a full close coupled treatment than is the NH3 molecule. 

However, for collisions with a linear rotor molecule it is still a sizeable calculation. 
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The energies of the first few rotational levels can be calculated using the for

mula (Bertojo et al, (1976)): 

Erot = Bo { (j (j + 1) - i) ± ~} 5.6.1 

where the'+' sign gives the fl = 1/2 state and the'-' sign gives the fl = 3/2 

state. X is given by equation 5.2.9c. 

With Bo = 18.52 and ..\ = -7.501 the energies in inverse centimetres relative 

to the ground state are: 

J Erl=l/2 Er2=3/2 

1/2 126.06 

3/2 187.28 0.0 

5/2 288.63 83.85 

7/2 429.39 202.37 

9/2 608.94 356.18 

A collision energy of 190.0cm-1 was chosen for the calculations. 

Once again, the problem of basis set size has to be considered. For the OH 

basis, basis set convergence tests were done using basis sets consisting of the en

ergetically lower 12, 14 and 16 rotational levels, and a fourth basis set of 14 levels 

with the (9/2,1/2,±) states replaced by the (7/2,3/2,±) states. The results of 

the tests are shown in table 5.3, a B16 basis set was chosen for the full calculation. 

For collisions with ortho-H2 a basis set consisting of only the (j = 1) level 

was employed on the H2 molecule. The rationale for this being that the studies 

of rotational excitation of the NH3 molecule reported in chapter three suggested 

that the results were not significantly altered if the (jz = 3) level was included in 

the basis set. 

For collisions with para-H2 a number of approaches were used. Initially, to 

draw a clean comparison between the ortho-H2 results and those that would be 

obtained by treating the Hydrogen molecules as spherically symmetric collision 

partners, a (h = 0) only basis set was used. These calculations were supplemented 

130 



5.3: OH basis convergence tests 

Basis set convergence tests at an energy of 190cm -l, using the first two partial 

waves ( ltot = 1/2. 3/2), and a (j = 0) only basis set on the H2 . 

Transition Basis Set 

JE---+ J1
E

1 B10 B12 B14 B14a B16 

n = n' = 3/2 

3/2+ ---+ 3/2- 0.12 0.12 0.12 0.12 0.13 

3/2+ --+ .5/2+ 0.20 0.20 0.21 0.20 0.21 

3/2+ ---+ 5/2- 0.02 0.02 0.02 0.02 0.02 

3/2- ---+ 5/2+ 0.07 0.07 0.07 0.07 0.07 

3/2- ---+ 5/2- 0.17 0.18 0.18 0.18 0.18 

5/2+ ---+ 5/2- 0.02 0.02 0.01 0.02 0.02 

n = n' = 1/2 

1/2+ ---+ 1/2- 0.02 0.03 0.03 0.04 0.04 

1/2+ ---+ 3/2+ 0.37 0.33 0.33 0.34 0.34 

1/2+ ---+ 3/2- 0.09 0.10 0.10 0.10 0.10 

1/2- ---+ 3/2+ 0.03 0.02 0.02 0.02 0.02 

1/2- ---+ 3/2- 0.33 0.27 0.27 0.28 0.28 

3/2+ ---+ 3/2- 3.40 4.23 4.19 4.08 4.03 

continued overleaf... 
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table 5.3 continued: S1 changing transitions 

Transition Basis Set 

JE---->j'E 1 810 812 814 B14a 816 

S1 = 3/2, O' = 1/2 

3/2+ - 1/2+ 0.001 0.001 0.001 0.001 0.001 

3/2+- 1/2- 0.046 0.050 0.049 0.051 0.050 

3/2+- 3/2+ 0.023 0.027 0.027 0.028 0.028 

3/2+- 3/2- 0.047 0.040 0.044 0.047 0.047 

3/2- - 1/2+ 0.035 0.040 0.041 0.040 0.041 

3/2-- 1/2- 0.010 0.013 0.012 0.012 0.012 

3/2-- 3/2+ 0.016 0.021 0.021 0.021 0.021 

3/2-- 3/2- 0.045 0.054 0.053 0.055 0.055 

5/2+- 1/2+ 0.017 0.019 0.021 0.019 0.021 

5/2+- 1/2- 0.019 0.022 0.024 0.023 0.024 

5/2+- 3/2+ 0.006 0.008 0.008 0.007 0.007 

5/2+- 3/2- 0.042 0.045 0.046 0.049 0.049 

5/2-- 1/2+ 0.008 0.010 0.011 0.011 0.010 

5/2-- 1/2- 0.010 0.014 0.015 0.015 0.015 

5/2-- 3/2+ 0.060 0.064 0.067 0.067 0.070 

5/2-- 3/2- 0.015 0.013 0.014 0.014 0.015 
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by calculations with a more complete (h = 0, 2) hydrogen basis set. In addition, 

calculations were performed with a (h = 2) only basis set. The implicit assumption 

made is then that the (h = 2) rotational state of H2 is not significantly coupled 

to the other para-H2 rotational states at the collision energy used. This is an 

equivalent assumption to that implicit in the use of a (]2 = 0) only basis set. 

The calculations with the (]2 = 0) and (]2 = 1) hydrogen basis sets were per

formed using both the 'true' potential expansion obtained by fitting the potential 

to a potential expansion of the form given by equation 5.4 .. 5, and the 'doctored' 

potential, obtained by fitting the potential an expansion of the form of equa

tion 5.5.10, in which the f..L = 2 terms are smaller by a factor of two. For the large 

basis set para-H2 collision and the (]2 = 2) collision only the 'true' potential was 

used. 

The coupled equations were integrated with the Manolopoulos integrator using 

the MOLSCAT computer code (Hutson and Green, 1986). The alterations that 

were necessary to treat the OH - H2 collision are detailed in appendix C. In 

particular, it was necessary to adapt MOLSCAT to deal with half integral angular 

momentum. The alterations were checked at every stage both by comparing para 

(j = 0) H2 results with those of Dewangan and Flower (1983), and by comparing 

results for a model system with integer angular momentum and pure case (a) 

coupling with results obtained using the symmetric top - linear rotor program 

which it then resembles. 

The ortho-H2 and ground state para-H2 calculations were performed on the 

Amdahl 5860 at Durham. Typical times per partial wave were 308 cpu seconds for 

para-H2 and 4900 cpu seconds for one of the two non-interacting symmetry blocks 

for ortho-H2. A maximum of 300000 eight byte words of storage were required 

for the ortho-H2 collisions. The remaining para-H2 calculations were integrated 

on the CRA Y XMP at Rutherford where typical CPU times per partial wave were 

1000 CPU seconds for the ]2 = 0, 2 calculation. 
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5.4:Inelastic cross-sections at 190cm- 1 

Cross-sections (in units of 10-16cm2 ) for both potential surfaces. 

Transition 'true' potential 'doctored' potential 

Jf.--+ j'E' (h = 0) (h = 0,2) (]2 = 2) (]2 = 1) (]2 = 0) (h = 1) 

n = n' = 3/2 

3/2+--+ 3/2- 10.6 12.1 21.4 22.9 9.93 23.5 

3/2+--+ 5/2+ 3.91 4.26 7.95 7.08 3.19 6.70 

3/2+--+ 5/2- 1.58 1.16 5.22 4.36 1.08 3.82 

3/2-- 5/2+ 4.56 2.56 5.96 5.21 2.18 4.10 

3/2-- .5/2- 3.34 3.74 7.38 7.07 3.00 6.64 

5/2+- 5/2- 7.99 8.29 18.9 23.0 7.06 24.0 

n = n' = 1/2 

1/2+ --+ 1/2- 10.6 10.3 18.8 22.7 12.3 14.4 

1/2+ --+ 3/2+ 0.450 1.01 1.55 1.48 0.731 2.53 

1/2+ --+ 3/2- 0.198 0.237 1.39 1.00 0.204 1.77 

1/2- --+ 3/2+ 0.0651 0.335 1.14 0.980 0.0431 1.65 

1/2- --+ 3/2- 0.284 0.647 1.56 1.54 0.602 2.49 

3/2+ --+ 3/2- 2.19 5.63 27.8 35.7 7.98 43.0 

continued overleaf. .. 
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table 5.4 continued :Inelastic cross-sections at 190cm- 1 for 0 changing transitions. 

Transition 'true' potential 'doctored' potential 

JE-+j'E 1 h = 0 h = 0,2 h = 2 h = 1 h = 0 h = 1 

0 = 3/2, O' = 1/2 

3/2+ _, 1/2+ 0.296 0.230 1.37 1.20 0.272 0.595 

3/2+ _, 1/2- 2.32 1.98 2.14 1.94 0.97.5 0.9.56 

3/2+- 3/2+ 0.268 0.268 0.251 0.179 0.0865 0.0814 

3/2+- 3/2- 0.324 0.447 0.212 0.242 0.135 0.126 

3/2-- 1/2+ 2.38 2.12 2.07 1.97 0.749 0.874 

3/2- - 1/2- 0.439 0.527 1.30 1.24 0.273 0.677 

3/2-- 3/2+ 0.184 0.305 0.169 0.220 0.0591 0.127 

3/2-- 3/2- 0.399 0.375 0.237 0.241 0.177 0.136 

5/2+- 1/2+ 1.11 0.956 1.33 1.31 0.400 0.625 

5/2+- 1/2- 0.927 0.804 1.28 1.37 0.359 0.685 

.5/2+- 3/2+ 0.0252 0.119 0.209 0.249 0.0311 0.142 

5/2+- 3/2- 0.360 0.559 0.318 0.432 0.144 0.201 

5/2-- 1/2+ 0.739 0.747 1.38 1.26 0.413 0.603 

5/2-- 1/2- 0.868 1.01 1.60 1. 74 0.377 0.867 

5/2-- 3/2+ 0.745 0.807 0.463 0.522 0.201 0.201 

5/2-- 3/2- 0.0816 0.172 0.301 0.316 0.0389 0.348 
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5.5: a+, a- and their ratio, R, for all results. 

a+, a- and their ratio, R = a 111ax I amin, for all results. For each Hydrogen 

basis set the first entry was obtained with the 'true' potential and the second with 

the 'doctored' potential. 

., 0.' 
h· h = 1 h =0 h = 0,2 

a+ a - R a+ a - R a+ - R a 

112, 112 1.59 1.59 1.00 1.34 1.18 1.26 1.18 1.26 1.07 

0.74 0.82 1.11 0.51 0.63 1.22 

112,312 .20 .25 1.22 .23 .36 1.60 .29 .41 1.43 

.11 .13 1.26 .08 .16 2.14 

512,312 6.15 5.70 1.08 4.23 2.46 1.72 3.41 2.45 1.39 

5.40 5.25 1.03 2.69 2.04 1.32 

5.6.2 Discussion 

In order to study the trends in behaviour, it is useful to discuss the quantity a+ I a

( or a- I a+ for interladder transitions) as defined by equation 5.3.2. Table 5.5 

gives the values of a+, a- and their ratio for all the rotational levels accessible 

at i90cm-1. The table gives some indication of the strength of the preferential 

excitation of the A doublets for each set of results. 

We first briefly compare the results obtained with the 'doctored' potential with 

those obtained using the 'true' potential. It is clear from table 5.5 that for both 

(h = 1) and (]2 = 0) collisions, the propensities toward preferential excitation of 

one or other of the A doublets are greater with the 'doctored' potential for 0. ::/= 0.' 

transitions, and greater with the 'true' potential for n = n' transitions. This is to 

be expected in view of the fact that the J..L = 2 terms in the potential expansion 
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act as the interference terms for D = D' transitions, whilst they directly drive the 

D =f D' transitions. In the latter the 11 = 0 terms act as interference terms, and 

these are relatively larger in the 'doctored' potential. In previous OH - para-H 2 

collisions (Dewangan, Flower and Danby, 1986) the 'doctored' potential was found 

to give better agreement with experimental results than the 'true' potential and 

it is noteworthy that when the 'doctored' potential was used it was the D ::::: D' 

transitions that showed improved agreement with the experiment. 

We now compare results obtained with different H2 basis sets. 

Para (j = 0) H2 versus Ortho (j = 1) H2 

As might be expected, the cross-sections for ortho-H2 transitions are in general 

larger than the corresponding para-H2 cross-sections at least for 0 ::::: D' transitions. 

From table .5 .. 5. it can be seen that the overall effect of replacing ground state 

para-H2 by ground state ortho-H2 as the collision partner is to reduce the strength 

of the propensities leading to preferential excitation of the A doublets. This is 

a consequence of the additional number of terms contributing to the coupling 

matrix element sum for each transition, leading to a reduction in the propensities. 

In particular, the potential matrix now contains terms allowing the projection of }1 

on the intermolecular axis to change. As this is principally a damping effect caused 

by the increased number of terms contributing to the coupling matrix element sum, 

it is independent of the relative magnitudes of the J.L = 0 and J.L = 2 terms, and 

decreases the propensities for both 0 changing and n conserving transitions. 

A more direct comparison between the ortho and para-H2 collisions can be 

made by considering the ratio of the cross-sections obtained with a (h = 1) calcu

lation to cross-sections for the same transition with a (h = 0) calculation. Such a 

comparison is made in table 5.6, and it can be seen that the crtho-H2 cross-sections 

are consistently larger than the ground state para-H2 cross-sections. 

For the n =/; O' transitions the cross-sections tend to be of a similar magni

tude for both ortho and para-H2 collisions however some qualitative differences 

in behaviour are evident. In particular, cross-sections for the transitions (hOE = 

j ~ ± -+ (j ± 1)! ±)are consistently larger for ortho-H2 collisions than for para-H2 

collisions. This is analogous to the strong propensity rules noted for NH3-para-H2 
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5.6: Comparison between results with different hydrogen basis sets 

Transition a(j = 1)/a(j = 0) a(j = 0, 2)/a(j = 0) 

JE~j'E 1 'true' potential 'doctored' potential 'true' potential 

rl = rl' = 3/2 

3/2+ ~ 3/2- 2.1.5 2.37 1.14 

3/2+ ~ 5/2+ 1.81 2.10 1.09 

3/2+ ~ 5/2- 2.76 3.54 0.73 

3/2- ~ 5/2+ 1.14 1.88 0.85 

3/2- ...... 5/2- 2.12 2.21 1.00 

5/2+ ~ 5/2- 2.87 3.40 1.38 

rl = rl' = 1/2 

1/2+ ...... 1/2- 2.14 1.17 0.97 

1/2+ ...... 3/2+ 3.29 3.46 2.24 

1/2+ ...... 3/2- 5.05 8.68 1.19 

1/2- ...... 3/2+ 15.1 38.3 5.15 

1/2- ...... 3/2- 5.22 4.14 2.28 

3/2+ ...... 3/2- 16.3 5.39 2.57 

continued overleaf... 
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table 5.6 continued: Comparison between results with different hydrogen basis sets 

for n changing transitions. 

Transition O"(j = 1)/0"(j = 0) O"(j = 0, 2)/0"(j = 0) 

JE-j'E 1 'true' potential 'doctored' potential 'true' potential 

n = 3/2, n' = 1/2 

3/2+- 1/2+ 4.05 2.19 0.777 

3/2+- 1/2- 0.836 0.981 0.853 

3/2+- 3/2+ 0.668 0.941 1.00 

3/2+- 3/2- 0.747 0.933 1.38 

3/2-- 1/2+ 0.828 1.17 0.891 

3/2- - 1/2- 2.82 2.48 1.20 

3/2-- 3/2+ 1.20 2.14 1.66 

3/2-- 3/2- 0.604 0.768 0.940 

5/2+- 1/2+ 1.18 1.56 0.861 

5/2+- 1/2- 1.48 1.91 0.867 

5/2+- 3/2+ 9.88 4 .. 57 4.72 

5/2+- 3/2- 1.20 1.39 1.55 

5/2-- 1/2+ 1. 71 1.46 1.01 

5/2-- 1/2- 2.00 2.30 1.16 

5/2-- 3/2+ 0.701 1.00 1.08 

5/2-- 3/2- 3.87 8.95 2.11 
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collisions (sections 3.5.2 and 3.6.2), but the effect is heavily damped here by the 

mixing of the n = 3/2 and n = 1/2 states. 

For interladder transitions the major contribution to the coupling matrix el

ement comes from the I.L = 2 terms. The parity factor in the coupling matrix 

element is: 

.).6.3 

For 6.j = 1 transition, ()I + i1) is always an even integer. From the 3-j symbols, 

/\ = /\1, and: 
.X.1 = lh - i~ I· .. U1 + iD 

= 1, 2, ... , (h + i~ - 1), (h + iD 
.).6.4 

For I.L = 2 terms, .\1 2: 2. With the potential employed here, .\1 ::; 2 only terms are 

present, and the parity factor vanishes if E = E 
1

. With ortho-H2 as the collision 

partner, however, .X. may take all values between .\1 - 2 and .\1 + 2, and the parity 

factor no longer vanishes for all terms in the sum. A more complete potential 

including terms with .\1 > 2 would, presumably, reduce this difference. It should 

be noted here that this does not directly affect the mechanism of preferential 

excitation of the lambda doublets as it effects transitions to the E = ±1 levels 

equally. 

Para (j = 0) H2 basis set versus Para (j = 0, 2) H2 basis set 

The ratio a(j = 0, 2)/a(j = 0) is given in table 5.6 for the 'true' potential only. It 

is evident that the coupling between the (h = 0) and (h = 2) states is important. 

However, the change in cross-sections found for this collision is less than the corre

sponding change found for NH3 - H2 collisions where the dipole allowed transitions 

were appreciably enhanced. In contrast, with a few exceptions, the tendency is for 

the cross-sections to be of a similar magnitude. However, we note that, once again, 

the propensity towards preferential excitation of the A doublets is damped by the 

inclusion of the )2 = 2 states in the H2 basis set. 
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(j 2 = 2) versus (j 2 = 0) and (j 2 = 1) 

The use of a (jz = 2) only basis gives the cross-section for rotational excitation 

of OH in collisions with rotationally excited (]2 = 2) hydrogen molecules. This 

information cannot be obtained by using a (jz = 0, 2) basis set at this energy 

because H2 and OH are treated equally and (]2 = 2) is a clost>d channel. However, 

it should be remembered that the use of this basis assumes that coupling between 

the (h = 0) and ()2 = 2) channels can be neglected. 

From table .5.4 it can be seen that the cross-section for collisions with ()2 = 2) 

H2 are quantitatively very similar to those obtained for collisions with (h = 1) 

H2 as might be expected given that similar terms in the potential expansion are 

contributing. 

Thus it would seem that an assumption that (h > 0) H2 behaves in the same 

way as (j = 1) H2 as a collision partner could be justified at least in so far as the 

coupling to other H2 rotational states can be neglected. However, in reality there 

will be coupling with the h = 0 state as was seen from the comparison of results 

obtained with a (j = 0) and (j = 0, 2) hydrogen basis set. How this would effect 

the cross-sections is not easy to say. 

In conclusion, the low energy results appear to suggest that the (j = 0) para-H2 

basis set is the 'worst case' basis set leading to the strongest preferential excita

tion of the A doublets. As more potential terms contribute to the coupling the 

propensities are increasingly damped. 

141 



Finally ... 

An additional calculation for para-H2 was performed at 192.3cm-1 to compare 

against the results of Dewangan and Flower ( 1983 ). The calculations here are 

essentially the same apart from differences in the fitting of the potential surface 

and the different integrators used. The results of this calculation are given in 

table .5.7. It can be seen that, when compared with the 192.3cm- 1 calculation the 

190cm- 1 cross-section for the (3/2, 3/2+ ~ 1/2, 1/2+) transition is much larger 

than its value at the sightly higher energy. To a lesser extent this is also true for 

the (3/2, 3/2+ ~ .5/2, 3/2-) and the (5/2, 3/2- ~ 1/2, 1/2+) cross-section. The 

difference can be attributed to a resonance phenomenenoccurring for partial waves jo" 

with total angular momentum in the range ( ltot = 11/2) to ( ltnt = 15/2). This 

comparison serves as a useful reminder of the perils of placing too much weight 

on conclusions drawn from just one calculation, especially at low energies where 

resonances might be lurking. 
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5. 7: Comparison with calculations at 192.5cm- 1 

Transition Present Work Dewangan and Flower 

(1983) 

jE-j'E 1 190cm- 1 192.5cm- 1 192 .. 5cm- 1 

0 = O' = 3/2 

3/2+- 3/2- 9.93 9.73 9.80 

3/2+- 5/2+ 3.19 2.89 2.86 

3/2+- 5/2- 1.08 0.561 0.550 

3/2-- .5/2+ 2.18 1.91 1.93 

3/2-- .5/2- 3.00 2.74 2.78 

5/2+- 5/2- 7.06 6.46 6.61 

0 = O' = 1/2 

1/2+ -+ 1/2- 12.26 11.7 11.7 

1/2+- 3/2+ 0.731 0.797 0.642 

1/2+- 3/2- 0.204 0.200 0.176 

1/2-- 3/2+ 0.0431 0.0396 0.0445 

1/2-- 3/2- 0.602 0.659 0.526 

3/2+- 3/2- 7.98 4.53 5.28 

continued overleaf... 
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table 5. 7 continued: Comparison with calculations at 192.5cm- 1 for 0 changing 

transitions. 

Transition Present Work Dewangan and Flowe! 

. ·I I 
JE--+ J E 190cm- 1 192.5cm- 1 192 .. 5cm- 1 

S1 = 3/2, Sl' = 1/2 

3/2+- 1/2+ 0.272 0.0815 0.0817 

3/2+- 1/2- 0.975 0.765 0.777 

3/2+- 3/2+ 0.0865 0.0987 0.0975 

3/2+- 3/2- 0.135 0.151 0.148 

3/2- ---- 1/2+ 0.749 0.585 0.600 

3/2- ---- 1/2- 0.273 0.221 0.218 

3/2-- 3/2+ 0.0591 0.0607 0.0601 

3/2---+ 3/2- 0.177 0.208 0.209 

5/2+--+ 1/2+ 0.400 0.397 0.403 

5/2+ --+ 1/2- 0.359 0.288 0.282 

5/2+- 3/2+ 0.0311 0.0255 0.0233 

5/2+- 3/2- 0.144 0.188 0.189 

5/2---+ 1/2+ 0.413 0.159 0.161 

5/2---+ 1/2- 0.377 0.271 0.266 

5/2-- 3/2+ 0.201 0.273 0.276 

5/2---+ 3/2- 0.0389 0.0563 0.0589 
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5. 7 Experimental Energy ( 680 cm- 1
) 

5. 7.1 Motivation 

The experimental results of Andresen et al (1984) have already been reviewed 

in section 5.3. In their paper they gave experimental results for the summed and 

averaged cross-sections for transitions from the rotational ground state defined as: 

a(]I = 3/2, D. = 3/2 - j~ D.') = ~ L: a(h = 3/2, D. = 3/2, E ----+ Ji D.' E ') .5. i.l 
u' 

and in addition, gave results for the quantity 0'+ / 0'- where 0'± is defined as: 

O'±(j~D.1 ) = ~ L:O'()I = 3/2,0. = 3/2,E----+ j~D. 1 E 1 = ±) 5.7.2 
2 € 

Theoretical coupled states results of Schinke and Andresen gave cross-sections 

for rotational excitation of OH in collisions with ground state para-H2 that seri

ously over estimated the extent to which the A doublets were preferentially ex

cited. They suggested that the discrepancy could be explained if the potential 

of Kochanski and Flower over estimated the value of the v22 (or v2022) coefficient. 

This hypothesis was supported by the comparison made by Dewangan, Flower and 

Danby (1986) who used the 'doctored' potential in which the offending coefficient 

is reduced by a factor of two. 

However, the experiment was performed using normal hydrogen at room tem

perature where approximately three quarters of the hydrogen molecules are ortho

H2 molecules. In view of the reduction in propensity shown by the 190cm-1 results 

when ortho-H2 (j = 1) is the collision partner, it is interesting to repeat the calcu

lation at 680cm -l using the 'true' potential to give a direct comparison with the 

experiment. 

5.7.2 Basis set 

At 680cm-1 the first twenty rotational levels of OH are energetically accessible. 

These include levels up to j = 9/2 in the D. = 1/2 ladder and j = 11/2 in the 

D. = 3/2 ladder. In addition the first excited states of both ortho and para-H2 
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are available. Clearly a close-coupled calculation fully converged with respect to 

OH and H2 basis sets would be very large and a certain amount of economy is 

needed. For a comparison with experiment only cross-sections for transitions out 

of the ground state are required, and as lower j transitions converge faster with 

respect to basis set size, a smaller basis set can be used than would otherwise be 

required. Basis set convergence tests were carried out with basis sets consisting 

of the energetically lowest 20, 24, 26 and 28 rotational states using ground state 

para-H2 as the collision partner, and including the first three partial waves ( ltot = 

1/2 ~ 5/2). The results of these tests are given in table 5.8. A basis consisting of 

the lowest 24 levels (a B24 basis) was chosen for the calculations. 

For both ortho and para-H2 collisions only the lowest rotational state was in

cluded in the H2 basis. Whilst this can be justified for ortho-H2 where the inclusion 

of additional rotational states in the basis does not introduce extra couplings, it 

is less adequate for para-H2 collisions. However, the purpose of the calculation is 

to compare with an experiment performed at room temperature. Normal H2 has 

a 3:1 ortho-H2:para-H2 ratio, so the results were weighted in a 3:1 (j = 1):(j = 0) ? 

ratio. With this weighting the comparison will be largely dominated by the ortho-

H2 collision rates, and the precise behaviour of the para-H2 collision rates will be 

less critical. 

5. 7.3 Integration of the Coupled Equations 

The para-H2 (j = 0) equations were integrated on the Amdahl at Durham, 

whilst the CRAY XMP at Rutherford was used for the ortho-H2 (j = 1) calcula

tions. Integration of the ortho-H2 equations typically took 1850 CPU seconds per 

partial wave on the CRA Y. 

To economise on computing time, the calculations were performed for every 

other partial wave (Jtot = 1/2,5/2, 9/2 ... ). At higher energies the cross-sections 

are more slowly varying with total angular momentum, and the likelihood of sharp 

resonances is much reduced. Comparisons of the results using alternate partial 

waves with results of the same calculation performed at every sixth partial wave 

imply that the cross-sections should be adequately represented by the former. 
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5.8: 680cm- 1 basis convergence tests 

Basis set convergence tests for OH basis at 680cm- 1, with a (j = 0) basis set 

for the H2 molecule, and including first three partial waves ( ltot = 1/2 to .S /2). 

J1 E-->j'E
1 B20 B24 B26 B28 

0 = 0' = 3/2 

3/2+ __. 3/2+ 0 . .56 0.57 0.56 0.56 

3/2+ __. 3/2- 0.010 0.013 0.013 0.013 

3/2+ __. 5/2+ 0.076 0.070 0.070 0.069 

3/2+ __. 5/2- 0.017 0.018 0.018 0.018 

3/2+ __. 7 /2+ 0.0078 0.0056 0.0058 0.0057 

3/2+ __. 7/2- 0.0028 0.0035 0.0033 0.0034 

3/2+ __. 9/2+ 0.052 0.057 0.059 0.059 

3/2+ __. 9/2- 0.0029 0.0023 0.0022 0.0027 

3/2+- 11/2+ 0.011 0.011 0.013 0.013 

3/2+- 11/2- 0.0003 0.0005 0.0005 0.0006 

3/2-- 3/2- 0.56 0.55 0.55 0.55 

3/2-- 5/2+ 0.033 0.030 0.031 0.031 

3/2-- 5/2- 0.022 0.026 0.025 0.026 

3/2-- 7/2+ 0.076 0.076 0.077 0.076 

3/2-- 7/2- 0.011 0.011 0.011 0.011 

3/2-- 9/2+ 0.015 0.019 0.017 0.017 

3/2-- 9/2- 0.016 0.016 0.016 0.017 

3/2-- 11/2+ 0.0058 0.0091 0.010 0.010 

3/2-- 11/2- 0.0017 0.0022 0.0022 0.0023 

continued overleaf. .. 
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table .5.8 continued: 680cm-1 basis convergence tests for 0 changing transitions 

(0 = 312, O' = 112) 

JE-j'E 1 B20 B24 B26 B28 

0 = 3 I 2' O' = 1 I 2 

312+- 112+ 0.0012 0.0012 0.0011 0.0012 

312+- 112- 0.013 0.011 0.010 0.0098 

312+ ___. 312+ 0.022 0.019 0.018 0.018 

312+- 312- 0.052 0.049 0.048 0.047 

312+- 512+ 0.037 0.036 0.035 0.036 

312+- .512- 0.013 0.010 0.010 0.011 

312+- 712+ 0.0050 0.0046 0.0047 0.0048 

3/2+- 7/2- 0.039 0.044 0.044 0.045 

3/2+- 9/2+ 0.00082 0.0012 0.0013 0.0013 

3/2+- 912- 0.0073 0.0074 0.0074 0.0086 

312-- 1/2+ 0.021 0.019 0.018 0.018 

312-- 112- 0.00061 0.00093 0.00096 0.00083 

3/2-- 3/2+ 0.047 0.044 0.044 0.043 

3/2-- 3/2- 0.012 0.012 0.012 0.011 

3/2-- 5/2+ 0.0078 0.0080 0.0076 0.0076 

3/2-- 5/2- 0.069 0.067 0.067 0.067 

312-- 712+ 0.0096 0.0098 0.0098 0.010 

3/2-- 7/2- 0.013 0.016 0.016 0.015 

3/2-- 9/2+ 0.00091 0.0011 0.0011 0.0012 

3/2-- 9/2- 0.0055 0.0071 0.0071 0.0081 
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The results of these calculations are shown in table .5.9. Partial waves up to a 

total angular momentum of 8912 were included in the calculation. At this point 

all the relevant inelastic cross-sections were judged to be converged with respect 

to the number of partial waves. 

5. 7.4 Discussion of results 

The experimental results (Andresen, Hausler and Li.ilf, 1984, Schinke and An

dresen, 1984) for the transitions (j = 312,0. = 3I2,E = ±1---+ j',O.',E') are given 

in the form of graphs showing the variation of a+ I a- (for 0.' = 112) or a- I a+ 

(for 0.' = 312) with j', where a± is defined by equation 5.7.1, and the variation 

of the summed and averaged cross-sections (equation 5. 7.2) with j'. For ease of 

comparison the same format is used here. 

Variation of the summed and averaged cross-section with j' 

The numerical results of the summed and averaged cross-sections for each (j'O.') 

are given in table 5.10 for both the results of the present calculation and the earlier 

results of Schinke and Andresen. The latter employed the same potential as here, 

but used the coupled states approximation to integrate the equations, with a larger 

basis set consisting of the 32 rotational states up to }1 = 1512 in both the 0. = 312 

and 0. = 112 manifolds. 

For comparison with the experiment all results are normalised to coincide with 

the para-H2 value for the (jO. = 3/2,312 ---+ 5/2, 312) cross-section. The result 

of the comparison is shown in figure 5.5. The 3:1 (j = 1):(j = 0) results show 

remarkably good agreement with the experimental results for the D' = 312 tran

sitions. The agreement is less good at low j' for the n' = 1/2 transitions, but in 

view of the uncertainties in the potential it is still satisfactory, and is certainly 

better on the whole than the para (j = 0) H2 results. 
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5.9: Inelastic Cross-Sections at 680cm- 1 

Cross-sections in units of 10- 16cm+ 2 are quoted for transitions out of the OH 

rotational ground state for both ortho and para-H2 collisions. For the ortho-H2 

collisions results are given with calculations using alternate partial waves ( Jstep= 

2) and every sixth partial wave (Jstep= 6). The final column shows the results of 

Schinke and Andresen, 1984. 

transition ortho (j = 1) H2 para (j = 0) H2 

JE->J
1
E

1 Jstep= 2 Jstep= 6 Jstep= 2 CS calc., 84 

n = 312, n' = 312 

312+- 512+ 5.71 .5.69 4.61 4. 72 

312+- 512- 2.40 2.38 0.551 0.47 

312+- 712+ 1.52 1.50 0.873 0.94 

312+- 712- 0.892 0.882 0.404 0.27 

312+- 912+ 0.856 0.832 1.28 1.43 

312+- 912- 0.177 0.168 0.0357 0.04 

312+- 1112+ 0.159 0.153 0.104 0.19 

312+- 1112- 0.043 0.040 0.0074 0.05 

312-- 512+ 3.51 3.47 2.35 2.46 

312-- 512- 5.03 5.04 2.44 2.15 

312-- 7/2+ 1.97 1.93 3.08 3.36 

312-- 7/2- 1.19 1.18 0.332 0.21 

3/2-- 9/2+ 0.608 0.590 0.219 0.32 

312-- 9/2- 0.224 0.221 0.247 0.16 

312-- 1112+ 0.153 0.145 0.137 0.13 

312-- 1112- 0.0596 0.0579 0.0195 0.02 

continued overleaf ... 
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_;,[e .S.9 continued: Inelastic Cross-Sections at 680cm- 1 for 0 changing tra:nsitions 

tr )f the jO = 3/2,3/2 rotational ground state (in units of 10-16cm2). 

transition ortho (j = 1) H2 para (j = 0) H2 

jE-j'E 1 Jstep= 2 Jstep= 6 Jstep= 2 CS calc, 84 

n = 3/2, o' = 1/2 

3/2+ --> 1/2+ 0.790 0.767 0.0690 0.08 

3/~+ --> 1/2- 1.71 1.68 2.30 2.26 

3/2+ ---> 3/2+ 1.40 1.40 1. 75 1.46 

3/2+ ---> 3/2- 1.30 1.31 1.76 1. 71 

3/2+--> .5/2+ 0.680 0.666 0.828 1.02 

3/2+ ---> 5/2- 0.856 0.844 0.626 0.46 

3/2+ ---> 7 /2+ 1.33 1.28 0.0525 0.12 

3/2+ ---> 7/2- 0.466 0.453 0.852 0.60 

3/2+ ---> 9/2+ 0.0172 0.0163 0.0136 0.01 

3/2+- 9/2- 0.0564 0.0524 0.0591 0.0.5 

3/2- ---> 1/2+ 1.62 1.59 2.43 2.12 

3/2-- 1/2- 0.788 0.772 0.0729 0.01 

3/2-- 3/2+ 1.17 1.17 1.15 1.31 

3/2-- 3/2- 1.65 1.65 2.03 2.00 

3/2-- 5/2+ 0.532 0.531 0.327 0.26 

3/2----> 5/2- 1.03 1.00 2.06 1.92 

3/2-- 7/2+ 1.62 1.58 0.161 0.20 

3/2-- 7/2- 0.254 0.247 0.173 0.21 

3/2-- 9/2+ 0.0163 0.0151 0.00864 0.02 

3/2-- 9/2- 0.0598 0.0572 0.0879 0.01 
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5.10: Summed and Averaged Cross-Sections 

The summed and averaged cross-sections are defined by equation 5. i.l, and 

are given here in units of 10- 16cm2 . 

·'n' J ortho-H2 para-H2 Schinke and 

Andresen, 1984 

.5j2, 3/2 8.29 4.98 4.91 

7/2,3/2 2.79 2.34 2.39 

9/2,3/2 0.93 0.89 0.97 

11/2,3/2 0.21 0.13 0.20 

1/2,1/2 2.45 2.44 2.24 

3/2,1/2 2.76 3.35 3.24 

5/2,1/2 1.55 1.92 1.80 

7/2,1/2 0.51 0.62 0.56 

9/2,1/2 0.075 0.085 0.04 
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Figure 5.5 

Comparison with experiment: The summed and averaged cross-sections 

Computed and measured values of the A doublet summed and averaged cross

sections (equation 5.7.1) normalised at CJ(3/2, 3/2 --+ .5j2, 3/2). (Circles: The 

measurements of Andresen et al, x 's: the computed values with para- H2 (h = 0 ), 

+'s: the computed values for normal H2 (3:1 ortho:para-H2 ratio)). 
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Variation of a± I a=F with j' 

The numerical values of a± are shown in table 5.11. For transitions within the 0 = 
312 ladder a+ is larger than a-, whereas the reverse is true for transitions between 

the 0 = 312 and S1 = 112 ladders. The comparison with the experimental results 

is shown in figure .5.6. The agreement with experiment is again very encouraging. 

The 0 i= O' calculations give a a± I a=F that rises too quickly with increasing j' 

but for n = O', the calculations give nuch better agreement with experiment than 

pure ground state para-H2 results which grossly over estimate the propensity for 

preferential excitation of the A doublets. 

Ratios of cross-sections, a± (cf equation 5.7.2) weighted 3:1 for excitation by 

ortho (j = 1), and para (j = 0) H2. The measured values are taken from Andresen 

et al (1984). 

j'D' a+ Ia- a-la+ Measured 

512,3/2 1.4 1.0±0.1 

7/2,3/2 2.1 1.4 

9/2,3/2 4.0 2.6 

11/2,3/2 3.5 4.6±1.2 

1/2,1/2 1.0 1.1±0.2 

3/2, 1/2 1.2 

5/2, 1/2 1.7 1.6 

7/2,1/2 2.9 1.8 

9/2,1/2 3.4 2.0±0.5 
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Figure 5.6 

Comparison with experiment: a± ja~ 

Computed and measured values of the ratio a± j a~ defined by equation .5. 1.2. 

(Crosses: the measurements of Andresen et al, open squares: the computed values 

with para-H2 (h = 0), coloured squares: the computed values for normal H2 ( 3:1 

ortho:para-Hz ratio)). The dashed lines are for S1 = 3/2, D' = 3/2 transitions, the 

solid lines are for S1 = 3/2, D' = 1/2 transitions. 
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5.8 Summary 

The calculations reported here are the first quanta! calculations to include the 

rotational structure of the Hz molecule in the OH - Hz collision calculation. The 

principal conclusions are 

• collisions with rotationally excited Hz lead to reduced propensities for prefer

ential excitation of the A. doublets when compared to collisions with ground 

state para-H2 

• Agreement between the experimental and theoretical results can be improved 

by the treatment of the rotational structure of the hydrogen molecule neglected 

in earlier calculations. 
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Chapter VI 

Summary and Conclusion 

In this thesis the results of an investigation into the effect of including the 

rotational structure of the hydrogen molecule in the quanta! calculation for NH 3 -

H2 and OH - H2 collisions have been reported. These are the first full close 

coupled calculations to include rotationally excited H2 molecules for both NH 3 and 

OH collisions, although there have been some limited coupled states calculations 

for NH3 - H2 (Billing et al, 1987, 1988, Ebel et al, 1990). 

The results of both NH3 - H2 and OH - H2 collisions calculations suggest 

that the introduction of the (j > 0) H2 levels can have a qualitative effect on the 

collisional propensities governing the transitions. The effects can be divided into 

two types. 

Firstly, there are the changes, seen for NH3 - H2 collisions, where transitions 

that are 'forbidden' for ground state para-H2 collisions are allowed, and even pre

ferred, when ortho-H2 is the collision partner. 

These changes are a direct result of the 'symmeterization' of the symmetric 

top, (or OH), wavefunction that leads to the parity factor, 

6.1 

appearing in the coupling matrix element (equation 2.6.44 ). Such changes are 

potential independent in so far as they can be qualitatively deduced from the alge

bra alone, and are relatively uneffected by the finer details of the potential surface 

used for the calculation. The fact that the transitions are allowed in collisions with 

(j > 0) H2 is a result of the presence of the v > 0 terms in the potential expansion 

(equation 2.6.14 ), which, in the limit of the coupled states approximation, allow 

the projection of the NH3 or OH angular momentum on the intermolecular axis to 

change. Transitions suppressed by the parity factor for collisions with (j = 0) H2 
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but allowed for collisions with rotationally excited H2 were present for :\TH3 - H2 

collisions and included the transitions: 

(00+---> j3+) 

(00+ ---> j6-) 

( 11± ---> 22±). 

6.2 

The changes were not predicted by the semi-classical treatment of Billing et al 

(1987, 1988) and the associated quanta} treatment of Ebel et al (1990) but this 

can be attributed to the absence of the v > 0 terms in the form of potential 

expansion used (equation 3.5.9). 

Secondly there are the changes linked to the limitations imposed on the cou

pling matrix elements by the 3-j symbols: 

(~ >. l)(j2 
0 0 0 

>.2 h) ( Jt 
0 0 -k' 

6.3 

These are present regardless of whether the molecular wavefunction has been 'sym

meterized', and are linked to the constraints imposed by the angular terms present 

in the potential expansion, and the conservation of angular momentum. 

For molecule - H2 collisions, >.2 = 0 only is allowed if (h = }2 = 0), but 

if (j > 0) H2 is included in the hydrogen molecule basis set, >.2 > 0 terms are 

permitted. The additional couplings that result lead to the increased cross-sections 

for dipole allowed transitions in NH3- H2 collisions (and also for HCl- H2 collisions 

(Green, 1977)). The damping of the propensities towards preferential excitation of 

the A doublets found for OH - H2 collisions is also attributable to this cause. The 

effect of the additional terms on the cross-sections is harder to predict qualitatively 

from the algebra alone, although they may be predicted by physical arguments, 

and the changes are more dependent on the precise potential used. 

It might be noted here that approximating normal H2 cross-sections by a (j = 

0) H2 only calculation appears to be a better approximation for OH- H2 collisions 

than for NH3 - H2 collisions. For the former, the changes in the cross-sections are 

'type two' changes, and collisional propensities are in the same sense, if slightly 
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damped. For the latter, both 'type one' and 'type two' changes are evident, and 

the cross-sections show a qualitatively different behaviour in collisions with ortho 

and para-H2. 

In addition to the qualitative changes in the collision cross-sections found when 

a (j > O) H2 basis replaced a (j = 0) H2 basis, the results of the calculations also 

showed that the cross-sections can be quantitatively changed by the inclusion of 

the (j = 2) H2 state in a ground state para-H2 collision calculation. For NH3 - H2 
collisions it was found that this was less true when (j = 3) H2 was included in a 

ground state ortho-H2 collision calculation, and it was tentatively suggested that 

this may be due to the fact that (j = 2) H2 and (j = 0) H2 collisions lead to a 

qualitatively different behaviour, for the reasons outlined above, whilst (j = 1) H2 

and (j = 3) H2 might be expected to behave similarly. At any rate, it is dear that 

para-H2 cross-sections obtained with a (j = 0) H2 basis set should be treated with 

some caution, although the inaccuracy is probably no greater than that introduced 

by uncertainties in the interaction potential. 

The changes in propensities found when ortho-H2 is included in the collision 

calculation could have consequences in the field of astrophysics where inelastic 

molecular collision rates are used in interpreting observations, and one such possi

ble application was discussed in chapter three. In addition these changes can help 

explain discrepancies between experimental and theoretical data for both N H3 - H 2 

and OH - H2 collisions. Comparison between theory and experiment involves a 

certain amount of averaging and normalisation, so such comparisons are perhaps 

less sensitive to the features of the potential surface than they are to the effects of 

changes in the algebra pertaining to the collision. 

The calculations presented in this thesis constitute preliminary investigation 

of the effect of including rotationally excited H2 in the basis set. Calculations 

have been performed at only a single low energy in each case, with additional 

limited calculations at the experimental energies of 605cm-1 for ortho-NH3 and 

680cm- 1 for OH. To extend this work, and produce the astrophysical rate coeffi

cients, calculations at a large range of energies are needed. Such calculations would 

be computationally expensive, but would be feasible if the coupled states approxi

mation was used, once the accuracy of the coupled states approximation for these 
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collisions had been checked numerically. From the algebra there does not appear 

to be any reason why full CS calculations should not satisfactorily reproduce the 

close coupled cross-sections. 

In conclusion, the results of the calculations show that the inclusion of rota

tionally excited Hz does have an effect on the collisional cross-sections, and whilst 

the effect is most marked for NH3 - Hz collisions, it is also appreciable for OH - Hz 

collision calculations. The changes can help explain discrepancies between theory 

and experiment and could have interesting astrophysical consequences. However, 

further study of the latter must await calculations at a wider range of energies. 
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Appendix A 

The Relationship between the S-matrix and the Integral 
Cross-Sections 

The close coupled equations may be written; 

[ 
d

2 
l' ( l' + 1) 2] J-y - " ( 'I I II) J-y dR2 - R2 + "'n' G'Y, (R)- 21J. L...J I VI G-y" 

-y" 

A1 

In the limit V ~ 0 the general solution to equation A1 can be written as a 

linear sum of spherical Bessel functions of the first and second kind (jl("'R) and 

nz("'R)), 
A2 

In equation A 1, G~7 ( R) is the radial part of the wavefunction, and is related 

to the full wavefunction, "Ill by: 

A3 

where z:{tM (R, fh, 02) is given by equation 2.2.3. 

The asymptotic behaviour of the spherical Bessel functions as R ~ co is given 

by: 
il("'R)--+ ("'R)-1 sin("'R -l7r/2) 

= ("'R)_1 ( exp(i("'R- lTr/2)) ~iexp( -i("'R- lTr/2))) 

nz("'R)--+ -("'R)-1 cos("'R- lTr/2) 
A4 

= -("'R)_1 ( exp(i("'R -lTr/2)) +
2
exp( -i("'R -lTr/2))) 
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Substituting A4 into A2 yields the asymptotic solution: 

where: 

bJ = [-A~+ iB~l 
I 2i 

A6 

Here a~ is the amplitude of an incoming spherical wave, and b~ is the amplitude 

of an outgoing wave. The Scattering matrix is defined by (Lester, 1976): 

A7 

With this definition of the scattering matrix, the solution to the CC equations as 

R--+ oo can be written (Takayanagi, 1965): 

The relationship between the S-matrix elements, S~_.1,, and the scattering 

amplitude, fam1m2 _.0,m~m~(R), can be derived by expressing the full wavefunction, 

w~M, in terms of an incoming (incident) plane wave in channel/, and an outgoing 

(scattered) spherical wave thus as R--+ oo: 

A9 

+ I: 

where xim(n) are the molecular rotational eigenfunctions. 

The first term on the right hand side of equation A9 can be expanded in a 

standard plane wave expansion: 

A10 
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Using the transformation : 

All 

we obtain in the limit R - oo: 

'l!JM(R n n ) """""'(-il+1) (2z + 1)1/2 7rl/2 
I ' 1, 2 - ~ ~ /'i, R 

JM h2l 0 

Gil i2 i12 Gi12l J zJM(R, A A ) 
X m1 mzM MOM 1 'Hl, ~'2 

A12 

Equating the coefficients of the incoming and outgoing waves in equation All 

with those in the asymptotic form of the wavefunction given by equations A3 

and A8, we have: 

and: 

fom1mz-o1m~m~(R) = L L (~) 
112 

il-l'+
1
(2l + 1)112 

J . . 'll' /'i,o/'i,o 
}12}12 

A13 

x Gil 12 h2Gh2l J Gil' h' i12' Gil/ z' J A14 
m1m2M MOM m 1

1m 2'M m~2 mt'M 

l' ' J x Ymi(R)(b11,- S1 _.1 ,) 

The differential cross-section is obtained from the scattering amplitude through 

(Lester, 1976): 

d ( ~ 1 1 1 IRA ) _ scattered flux 
-A a o:m1m2 o: m1m 2 - . 'd fl 
~ ~~~ u A15 
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For most applications the cross-sections are averaged over the initial ( 2)1 + 1) 

x(2h + 1) possible values of m1, m2, and summed over the final values: 

The integral cross-sections are obtained by integrating over all angles, R, to give 

(Takayanagi, 1965): 

a(a--+ o:') = L:aJ(o:--+ o:') = (2j + l)(~j + 1)K2 L L (2J + 1)IT1..,,12 
J 1 2 ·~ J JI2i~2ll' 

.417 

where the aJ (a _,. a') are the partial cross-sections, and the matrix, T, is the 

transmission matrix defined by: 

A18 

To avoid the use of complex algebra, in practice the R _,. oo boundary condi

tion that is often used in place of equation A8 takes the form: 

where K is the reactance matrix related to the scattering matrix by: 

.420 
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Appendix B 

Modifications to Molscat for NH3-H2 collisions 

The program MOLSCAT (Hutson and Green, 1986) provides template subroutines 

BAS9IN and CPL9 that facilitate the addition of an extra collision type (labelled 

ITYPE= 9). In the case of NH3-H2 collisions the extension is fairly straight 

forward, and the additional subroutines used are given below. 

c 

c 

1 

2 

1 

SUBROUTINE BAS9IN(PRTP,IBOUND) 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

CHARACTER*S PRTP(4),QNAME(10) 

LOGICAL LEVIN,EIN,LCNT 

DIMENSION ROTI(10),ELEVEL(200),JLEVEL(400) 

DIMENSION JLEV(l),VL(1),IV(1),J(1),L(1),CENT(l),LAM(1) 

DIMENSION WT(2),ALPHAE(2),BE(2),DE(2),A(2),B(2),C(2) 

EQUIVALENCE (ROTI(l),BE(l),A(1)),(ROTI(3),ALPHAE(l),B(1)), 

(ROTI(5),DE(l),C(l)),(JMIN,J1MIN),(JMAX,J1MAX), 

(JSTEP,JlSTEP) 

COMMON/CMBASE/ROTI,ELEVEL,EMAX,WT,SPNUC,JMIN,JMAX,J2MIN, 

J2MAX,JSTEP,J2STEP,NLEVEL,JLEVEL,IDENT 

IF (IDENT.GT.O.OR.IBOUND.GT.O) STOP ' IDENT/IBOUND > 0 ' 

PRTP(l) = ' SYMMETR' 

PRTP(2) = 'IC TOP -' 

PRTP(3) = ' LINEAR ' 

PRTP(4) = 'ROTOR. 

RETURN 

Entry 'SET9' sets up the arrays JLEVEL, ELEVEL (if these are not given as 

input data) and JLEV. The latter holds the channel indices, j},i2,k,e,j12 and 
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I where I labels the channel. The ELEVEL array contains the energies of the 

rotational levels which may be calculated from equation 2.6.8, and the JLEVEL 

array contains the indices, )I, )2, k and E( = ( -1 )1P) for each level included in the 

basis set. 

ENTRY SET9(LEVIN,EIN,NLEV,JLEV,NQN,QNAME,MXPAR,NLABV) 

C Number of indices to describe each term in potnl expansion 

C i.e. NLABV(9) 

NLABV = 4 

C Format statements: 

310 FORMAT('SYM.TOP LEVELS COMP. FROM J1MIN=' ,I3,', J1MAX=', 

1 I3,', J1STEP=' ,I2/' LINEAR ROTOR LEVELS COMPUTED' 

2 'FROM J2MIN =' ,I3,', J2MAX =',I3,', J2STEP =' ,I2) 

603 FORMAT('O SYM. TOP ENERGY LEVELS COMPUTED USING ' 

1 ROTL CONSTS: ',12X,' A= B =' ,F12.4,', C =' ,F12.4) 

631 FORMAT('O ENERGY LEVELS TAKEN FROM (ELEVEL) INPUT') 

632 FORMAT('O ROTL LEVELS TAKEN FROM JLEVEL INPUT NLEVEL=' 

1 , I3) 

633 FORMAT('O LINEAR ROTOR ENERGY LEVELS CALCULATED' 

1 FROM B(E)=' ,F12.6) 

634 FORMAT(27X,' CORRECTED FOR ALPHA(E) = ',F10.6) 

635 FORMAT(27X,' CORRECTED FOR D(E) = ',F12.8) 

C Set QNAME values: 

QNAME(l) = J1 

QNAME(2) = J2 

QNAME(3) = K 

QNAME(4) = PRTY ' 

QNAME(5) = J12 

MXPAR = 2 

NQN = 6 

c 
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c 

IF(.NOT.LEVIN) THEN 

WRITE(6,310)J1MIN,J1MAX,J1STEP,J2MIN,J2MAX,J2STEP 

J1MIN = MAXO(J1MIN,O) 

J1MAX = MAXO(J1MIN,J1MAX) 

J1STEP = MAXO(J1STEP,1) 

J2MIN = MAXO(J2MIN,O) 

J2MAX = MAXO(J2MIN,J2MAX) 

J2STEP = MAXO(J2STEP,1) 

NLEVEL=O 

I = 0 

DO 910 JJ1 = J1MIN,J1MAX,J1STEP 

DO 910 JJ2 = J2MIN,J2MAX,J2STEP 

DO 910 KVAL= O,JJ1 

IMP = 1 

IF (KVAL.EQ.O) IMP = 0 

DO 910 IP = IMP,0,-1 

JLEVEL(I+1) = JJ1 

JLEVEL(I+2) = JJ2 

JLEVEL(I+3) = KVAL 

JLEVEL(I+4) = IP 

I = I + 4 

NLEVEL = NLEVEL + 1 

910 CONTINUE 

ELSE 

WRITE(6,632)NLEVEL 

END IF 

JMIN = IABS(JLEVEL(1) - JLEVEL(2)) 

JMAX = JMIN 
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C Sort out in the same way as for SET3 

NLEV = 0 

DO 920 I=1,NLEVEL 

JJ1 = JLEVEL(4*I-3) 

JJ2 = JLEVEL(4*I-2) 

DO 920 J12 = IABS(JJ1-JJ2),(JJ1+JJ2) 

JLEV(6*NLEV+1) = JJ1 

JLEV(6*NLEV+2) = JJ2 

JLEV(6*NLEV+3) = JLEVEL(4*I-1) 

JLEV(6*NLEV+4) = JLEVEL(4*I) 

JLEV(6•NLEV+5) = J12 

JLEV(6*NLEV+6) = I 

NLEV = NLEV + 1 

JMIN = MINO(JMIN,J12) 

JMAX = MAXO(JMAX,J12) 

920 CONTINUE 

C Rearrange to the proper order 

JK = 6*NLEV 

DO 930 I = 1,NLEV 

DO 930 IB = 0,5 

JLEV(JK+(IB*NLEV)+I) = JLEV(6*I-(5-IB)) 

930 CONTINUE 

C Copy back 

DO 940 I = 1,JK 

JLEV(I) = JLEV(JK+I) 

940 CONTINUE 

C Set ELEVEL values: 

IF (.NOT.EIN) THEN 

WRITE(6,603) B(1),C(1) 
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WRITE(6,633) BE(2) 

IF (ALPHAE(2).NE.O.DO) WRITE(6,634) ALPHAE(2) 

IF (DE(2).NE.O.DO) WRITE(6,635) DE(2) 

DO 950 I = 1,NLEVEL 

FJ1 = DFLOAT(JLEVEL(4•I-3)) 

FJ2 = DFLOAT(JLEVEL(4•I-2)) 

FK = DFLOAT(JLEVEL(4•I-1)) 

C Symmetric top characterized by A(1)=B(1),C(1) 

C Linear rotor by A(2)=BE,B(2)=ALPHAE,C(2)=DE 

ELEVEL(I) = ((BE(2)-ALPHAE(2)*0.5DO)•FJ2•(FJ2+1)) 

1 - DE(2) * FJ2 * FJ2 + 

2 B(1)*(FJ1*(FJ1+1)) + (C(1)-B(1))•FK•FK 

950 CONTINUE 

ELSE 

WRITE(6,631) 

END IF 

RETURN 

Entry BASE9 sets the range of orbital angular momenta, l, for a given calculation 

lmiu = J- i12, lmax = J + ]12, and splits the calculation into two non-interacting 

parity blocks (cf equation 2.6.28). 

c 

ENTRY BASE9(LCNT,N,JTOT,ICODE,JLEV,NLEV,NQN,J,L) 

N=O 

IPAR=ICODE-2•(ICODE/2) 

IEXCH=(ICODE+1)/2 

8002 LMAX=JTOT+JMAX 

LMIN=JTOT-JMAX 

IF (LMIN.GE.O) GO TO 4101 

LMIN=JMIN-JTOT 

176 



c 

c 

IF (LMIN.LT.O) LMIN=O 

4101 DO 4201 LI=LMIN,LMAX 

JK=IABS(JTOT-LI) 

JTOP=JTOT+LI 

DO 4201 I=1,NLEV 

9009 JI=JLEV(4•NLEV+I) 

LPJ=JLEV(I)+JLEV(NLEV+I)+JLEV(2•NLEV+I)+ 

1 JLEV(3•NLEV+I)+LI+JTOT 

IF ( (LPJ-2•(LPJ/2)) .NE. IPAR) GO TO 4201 

IF (JI.LT.JK .OR. JI.GT.JTOP) GO TO 4201 

N=N+1 

IF (LCNT) GO TO 4201 

J(N)=I 

L(N)=LI 

4201 CONTINUE 

RETURN 

Entry DEGEN9 gives the degeneracy factor ((2h + 1)(212. + 1))-1 that appears in 

equation 2.2.12. 

ENTRY DEGEN9(J1,J2,RESULT) 

JI1 = JLEVEL(4•J1-3) 

JI2 = JLEVEL(4•J1-2) 

RESULT = DBLE((2•JI1+1)•(2•JI2+1)) 

RETURN 

END 
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Subroutine CPL9 provides returns an array containing the values of the individual 

terms in the coupling matrix element sum: 

The linear rotor - symmetric top routine given here closely follows the atom -

symmetric top routine (ITYPE=5) implemented in the MOLSCAT computer 

code. 

c 

SUBROUTINE CPL9(N,ICODE,NPOTL,LAM,MXLAM,NLEV,JLEV,J,L, 

1 JTOT,VL,IV,CENT,IBOUND,IEXCH,IPRINT) 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

DIMENSION LAM(1),JLEV(NLEV,2),J(1),L(1) 

DIMENSION VL(1),IV(1) 

DATA EPS/1.D-10/ 

SQRTHF=SQRT(.5DO) 

C loop over lambda1,lambda2,lambda and mu: 

DO 1519 LL = 1,MXLAM 

NNZ = 0 

I = LL 

LM1 = LAM(4*LL-3) 

LM2 = LAM(4*LL-2) 

LM = LAM(4*LL-1) 

MU = LAM(4*LL) 

C loop over j1,j2,k,j12 and epsilon: 

DO 1529 !COL= 1,N 

J1 = JLEV(J(ICOL),1) 

J2 = JLEV(J(ICOL),2) 

K = JLEV(J(ICOL),3) 

IS1 = JLEV(J(ICOL),4) 
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J12 = JLEV(J(ICOL),S) 

C loop over jl' ,j2' ,k' ,j12' and epsilon': 

DO 1529 IROW = 1,ICOL 

J1P = JLEV(J(IROW),1) 

J2P = JLEV(J(IROW),2) 

KP = JLEV(J(IROW),3) 

IS2 = JLEV(J(IROW),4) 

J12P= JLEV(J(IROW),5) 

IV(I) = LL 

VL(I) = O.DO 

C PARFCT is the parity factor in the symmetry adapted CME. 

1 

2 

1 

2 

PARFCT=(1.DO+PARITY(J1+J1P+LM+LM2+MU+IS1+IS2))/2.0 

IF (PARFCT.GE.EPS) THEN 

IF (K.EQ.O) PARFCT=PARFCT*SQRTHF 

IF (KP.EQ.O) PARFCT=PARFCT*SQRTHF 

KDIF = KP - K 

IF (IABS(KDIF).EQ.MU) THEN 

WPAR = 1.DO 

IF (KDIF.LT.O) WPAR = PARITY(MU+LM+LM1+LM2) 

VL(I) = VL(I) + WPAR * PARFCT * 

FLRST(J1,K,J2,J12,L(ICOL),J1P,KP,J2P,J12P, 

L(IROW),LM1,LM2,LM,KDIF,JTOT) 

END IF 

KSUM = K + KP 

IF (IABS(KSUM).EQ.MU) THEN 

VL(I) = VL(I) + PARFCT * PARITY(IS1) * 

FLRST(J1,-K,J2,J12,L(ICOL),J1P,KP,J2P,J12P, 

L(IROW),LM1,LM2,LM,KSUM,JTOT) 

END IF 
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IF (VL(I).NE.O.DO) NNZ = NNZ + 1 

END IF 

C End of loops over angular momentum indices: 

1529 I = I + NPOTL 

IF (NNZ.EQ.O) WRITE (6,612) JTOT,LL 

612 FORMAT(' ***FOR JTOT=' ,I4,', ALL COUPLING COEFFS.' 

1 'ARE ZERO FOR POTNL SYMMETRY ',I4,' * * * ') 

C End of loop over lambda1,lambda2,lambda,mu: 

1519 CONTINUE 

RETURN 

END 

The angular functions appearing in the coupling matrix element ( eqn 2.6.36) are 

calculated by a call to the function FLRST which utilizes the MOLSCAT func

tions THRJ, THREEJ, SIXJ and NINEJ to calculate the relevant 3-j, 6-j and 9-j 

functions. 

1 

FUNCTION FLRST(J1,K,J2,J12,L,J1P,KP,J2P,J12P,LP, 

LAM1,LAM2,LAM,MU,JTOT) 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

DOUBLE PRECISION NINEJ 

F(J)=DFLOAT(2*J+1) 

PI=3.1415926535897932384626433 

FACTOR=DSQRT(F(J1)*F(J1P)*F(J2)*F(J2P)*F(J12)*F(J12P)* 

1 F(L)*F(LP)*F(LAM)*F(LAM)*F(LAM2)) 

C If K1-K2+MU does not equal zero then COUPLE=O 

IF ((K-KP+MU).NE.O) THEN 

CAR=O.DO 

ELSE 

C1=((-1.DO)**(J1P+J2P+KP-J12-JTOT))*FACTOR/(4.DO*PI) 

C2=THREEJ(L,LP,LAM)*THREEJ(J2,J2P,LAM2) 
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C3=THRJ(DFLOAT(J1),DFLOAT(J1P),DFLOAT(LAM1), 

1 DFLOAT(K),DFLOAT(-KP),DFLOAT(MU)) 

C4=SIXJ(LP,L,J12P,J12,LAM,JTOT) 

C5=NINEJ(J12,J2,J1,J12P,J2P,J1P,LAM,LAM2,LAM1) 

CAR=C1*C2*C3*C4*C5 

END IF 

FLRST=CAR 

~T~N 

END 
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Appendix C 

Modifications to Molscat for OH-H2 collisions 

For the case of OH-H2 collisions the modifictaion was made more complex by the 

fact that h, n, h2 and the total angular momentum, J are all half integer. The 

problem can be largely overcome by carrying 2 x ]1 (or ]2, h2, n, l or J) in the 

integer arrays, JLEV and JLEVEL. However, some of the MOLSCAT routines 

assume that the j's are integral. In particular care must be taken with the 3-j, 

6-j, and 9-j routines, and with the output routine where the value of (2ltat + 1) is 

required. 

c 
c 

OH-H2 case. 

C As j1,j12,0mega, and Jtot are now half integer 

C values stored in integer array jlevel,jlev are 

C twice the real value. 

c 
c 

SUBROUTINE BAS9IN(PRTP,IBOUND) 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

CHARACTER*8 PRTP(4),QNAME(10) 

LOGICAL LEVIN,EIN,LCNT 

DIMENSION ROTI(10),ELEVEL(200),JLEVEL(400) 

DIMENSION JLEV(1),VL(1),IV(1),J(1),L(1),CENT(1),LAM(1) 

DIMENSION WT(2),ALPHAE(2),BE(2),DE(2),A(2),B(2),C(2) 

EQUIVALENCE (ROTI(1),BE(1),A(1)),(ROTI(3),ALPHAE(1),B(1)), 

1 (ROTI(5),DE(1),C(1)),(JMIN,J1MIN),(JMAX,J1MAX), 

2 (JSTEP,J1STEP) 

COMMON/CMBASE/ROTI,ELEVEL,EMAX,WT,SPNUC,JMIN,JMAX,J2MIN, 

1 J2MAX,JSTEP,J2STEP,NLEVEL,JLEVEL,IDENT 
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IF (IDENT.GT.O.OR.IBOUND.GT.O) STOP ' IDENT/IBOUND > 0 ' 

c 
PRTP(1) = ' OH MOLE' 

PRTP(2) = 'CULE AND' 

PRTP(3) = ' LINEAR ' 

PRTP(4) = 'ROTOR. 

RETURN 

c 

c ********************************************* 
c 

ENTRY SET9(LEVIN,EIN,NLEV,JLEV,NQN,QNAME,MXPAR,NLABV) 

c 
C No. of indices to describe each term in potnl expansion: 

C i.e. NLABV(9) 

NLABV = 4 

c 
C Format statements: 

c 
310 FORMAT('O OH LEVELS COMPUTED FROM J1MIN =',I3,'/2,J1MAX=', 

1 I3,'/2, J1STEP=' ,I2/' LINEAR ROTOR LEVELS COMP. ' 

2 'FROM J2MIN =' ,I3,', J2MAX =',I3,', J2STEP =',I2) 

603 FORMAT('O OH ENERGY LEVELS COMPUTED USING ROTL CONST: '/ 

1 12X,' B =' ,F12.4) 

631 FORMAT('O ENERGY LEVELS TAKEN FROM (ELEVEL) INPUT') 

632 FORMAT('O ROTL LEVELS TAKEN FROM (JLEVEL) INPUT ... NLEVEL=' 

1 J I3) 

633 FORMAT(' LINEAR ROTOR ENERGY LEVELS CALC. FROM B(E)=', 

1 F12.6) 

634 FORMAT(27X,' CORRECTED FOR ALPHA(E) = ',F10.6) 
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635 FORMAT(27X,' CORRECTED FOR D(E) = ',F12.8) 

c 
C Warning message: 

c 

c 
c 

c 

WRITE(6,6999) 

6999 FORMAT ( ' 1 '2 X j1,j2,k C 

Set QNAME values: 

QNAME(1) = 2xJ1 

QNAME(2) = 2xJ2 

QNAME(3) = 2xOM 

QNAME(4) = PRTY ' 

QNAME(5) = 2xJ12 

MXPAR = 2 

NQN = 6 

IF(.NOT.LEVIN) THEN 

WRITE(6,310)J1MIN,J1MAX,J1STEP,J2MIN,J2MAX,J2STEP 

J1MIN = MAXO(J1MIN,O) 

J1MAX = MAXO(J1MIN,J1MAX) 

J1STEP = MAXO(J1STEP,1) 

J2MIN = MAXO(J2MIN,O) 

J2MAX = MAXO(J2MIN,J2MAX) 

J2STEP = MAXO(J2STEP,1) 

NLEVEL=O 

I = 0 

DO 910 JJ1 = J1MIN,J1MAX,(J1STEP•2) 

DO 910 JJ2 = J2MIN,J2MAX,(J2STEP•2) 

DO 910 KVAL= O,JJ1,2 

184 



c 
c 

c 

c 

c 

IMP = 1 

IF (KVAL.EQ.O) IMP = 0 

DO 910 IP = IMP,0,-1 

All J levels = 2 x their real value 

JLEVEL(I+1) = JJ1 

JLEVEL(I+2) = JJ2 

JLEVEL(I+3) = KVAL 

JLEVEL(I+4) = IP 

I = I + 4 

NLEVEL = NLEVEL + 1 

910 CONTINUE 

ELSE 

WRITE(6,632)NLEVEL 

END IF 

JMIN = IABS(JLEVEL(1) - JLEVEL(2)) 

JMAX = JMIN 

C Sort out in the same way as for SET3 

c 

c 
c 

NLEV = 0 

DO 920 I=1,NLEVEL 

JJ1 = JLEVEL(4•I-3) 

JJ2 = JLEVEL(4•I-2) 

DO 920 J12 = IABS(JJ1-JJ2),(JJ1+JJ2),2 

All j values 2 x their real values: 
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c 

c 
c 
c 

c 

920 

JLEV(6*NLEV+1) = JJ1 

JLEV(6•NLEV+2) = JJ2 

JLEV(6*NLEV+3) = JLEVEL ( 4* I -1) 

JLEV(6•NLEV+4) = JLEVEL(4•I) 

JLEV(6•NLEV+5) = J12 

JLEV(6•NLEV+6) = I 
NLEV = NLEV + 1 

JMIN = MINO(JMIN,J12) 

JMAX = MAXO(JMAX,J12) 

CONTINUE 

Rearrange to proper order 

JK = 6•NLEV 

DO 930 I = l,NLEV 

DO 930 IB = 0,5 

JLEV(JK+(IB•NLEV)+I) = JLEV(6•I-(5-IB)) 

930 CONTINUE 

C Copy back 

c 

c 

DO 940 I = l,JK 

JLEV(I) = JLEV(JK+I) 

940 CONTINUE 

C Set ELEVEL values: 

C These were just used when checking the program, 

C final Energy levels were read in from the input data 
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c 

c 
c 

c 

c 
c 

c 

IF (.NOT.EIN) THEN 

WRITE(6,603) 8(1) 

WRITE(6,633) BE(2) 

IF (ALPHAE(2) .NE.O.DO) WRITE(6,634) ALPHAE(2) 

IF (DE(2).NE.O.DO) WRITE(6,635) DE(2) 

DO 950 I = 1,NLEVEL 

FJ1 = DFLOAT(JLEVEL(4•I-3))/2.DO 

FJ2 = DFLOAT(JLEVEL(4•I-2))/2.DO 

OM = DFLOAT(JLEVEL(4•I-1))/2.DO 

OH characterised by 8(1)(J(J+1) - OMEGA x OMEGA ) 

to first order. 

Linear rotor by A(2)=BE,B(2)=ALPHAE,C(2)=DE 

ELEVEL(I) = ((BE(2)-ALPHAE(2)•0.5DO)•FJ2•(FJ2+1)) -

1 DE(2) * FJ2 * FJ2 + 

2 B(1)*(FJ1•(FJ1+1) - OM * OM ) 

950 CONTINUE 

ELSE 

WRITE(6,631) 

END IF 

~T~N 

c ************************************************ 

c 
ENTRY BASE9(LCNT,N,JTOT,ICODE,JLEV,NLEV,NQN,J,L) 

c 
N=O 
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c 

IPAR=ICODE-2•(ICODE/2) 

IEXCH=(ICODE+1)/2 

C L values will be 2 x true L values 

c 

c 

c 

8002 LMAX=JTOT+JMAX 

LMIN=JTOT-JMAX 

4101 

9009 

IF (LMIN.GE.O) GO TO 4101 

LMIN=JMIN-JTOT 

IF (LMIN.LT.O) LMIN=O 

DO 4201 LI=LMIN,LMAX,2 

JK=IABS (JTOT-LI) 

JTOP=JTOT+LI 

DO 4201 I=1,NLEV 

JI=JLEV(4•NLEV+I) 

C parity blocks ... cf equation 5.4.14 

C LPJ = j1 + 2 * Omega + j2 + 1 + Jtot + IS1 

c 

1 

c 

LPJ=(JLEV(I) + JLEV(NLEV+I) + JTOT + LI) I 2 

+JLEV(3•NLEV+I) + JLEV(2•NLEV+I) 

IF ( (LPJ-2•(LPJ/2)) .NE. IPAR) GO TO 4201 

IF (JI.LT.JK .OR. JI.GT.JTOP) GO TO 4201 

N=N+1 

IF (LCNT) GO TO 4201 

J(N)=I 

L(N)=LI/2 
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c 

c 
c 

c 

IF (LI .NE.(L(N)*2))STOP 'ERROR IN L(I)' 

4201 CONTINUE 

RETURN 

**************************************** 

ENTRY DEGEN9(J1,J2,RESULT) 

C Degeneracy factor: 

c 

c 

JI1 = JLEVEL(4•J1-3) 

JI2 = JLEVEL(4*J1-2) 

C Degen factor= (2j1+1)(2j2+1) 

C ... but j's are 2x real values: 

C (2*JTOT + 1 ) problem dealt with in OH.OUTPUT 

c 
RESULT - DBLE((JI1+1)*(JI2+1)) 

RETURN 

END 

CPL9 returns the individual elements in the coupling matrix element sum ( equa

tion 5.4.15). The coefficients X (equation 5.2.9c) are returned from the function 

XCOE, and the angular functions are returned from the function FOHH2. 

SUBROUTINE CPL9(N,ICODE,NPOTL,LAM,MXLAM,NLEV,JLEV,J,L, 

1 JTOT,VL,IV,CENT,IBOUND,IEXCH,IPRINT) 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

DIMENSION LAM(1),JLEV(NLEV,2),J(1),L(1) 

DIMENSION VL(1),IV(1) 

DATA EPS/1.D-10/ 
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c 
C Statement function to convert J array values to real j 

c 

c 

c 

c 

G(I)=DFLOAT( I )/2.DO 

SQRTHF=DSQRT(.5DO) 

XJTOT = G( JTOT ) 

DO 1519 LL = 1,MXLAM 

NNZ = 0 

I = LL 

LM1 = LAM(4•LL-3) 

LM2 = LAM(4•LL-2) 

LM = LAM(4•LL-1) 

MU = LAM(4•LL) 

C Loop over initial state ... 

c 

c 

DO 1529 !COL = 1,N 

LO = L(ICOL) 

J1 = JLEV(J(ICOL),1) 

J2 = JLEV(J(ICOL),2) 

!OM= JLEV(J(ICOL),3) 

IS1 = JLEV(J(ICOL),4) 

J12 = JLEV(J(ICOL),5) 

XJ1 = G(Jl) 

C Loop over final state: 

c 
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DO 1529 !ROW = 1, !COL 

LP = L(IROW) 

J1P = JLEV(J(IROW),1) 

J2P = JLEV(J(IROW),2) 

IOMP = JLEV(J(IROW),3) 

IS2 = JLEV(J(IROW),4) 

J12P= JLEV(J(IROW),5) 

XJ1P= G(J1P) 

c 
C Initialize VL array: 

c 

c 

IV(I) = LL 

VL(I) = O.DO 

C Parity factor: ... Note minus sign for OH-H2 problem 

C enters from the 2x0mega power of one. 

c 

c 

IPWR = (J1 + J1P + 2 * IOMP )12 

PARFCT=(l.DO + PARITY(IPWR+LM+LM2+IS1+IS2))12.DO 

IF (PARFCT.GE.EPS) THEN 

C Now sum over omega ... 

c 

c 

DO 2222 KOM = 1,3,2 

OM = DFLOAT(KOM) I 2.DO 

DO 2224 KOMP = 1,3,2 

OMP = DFLOAT(KOMP) I 2.DO 

C Values of Aj,Bj,Aj and Bj returned from 

191 



C function as XCOE 

c 

XCOEF = XCOE(J1P,IOMP,KOMP)*XCOE(J1,IOM,KOM) 

c 
C Note for OH ... mu = 0 terms have Omega = Omega' only 

C hence, kom - komp only here. 

C mu = 2 terms have Omega <> Omega' only. 

c 

c 
c 
c 

c 

2224 

2222 

1 

1 

IF (MU.EQ.O .AND. IABS(KOM-KOMP).EQ.O) THEN 

F1 = FOHH2(J1,KOM,J2,J12,LO,J1P,KOMP,J2P, 

J12P,LP,LM1,LM2,LM,O,JTOT,LL) 

ELSE IF(MU.EQ.2.AND.IABS(KOM+KOMP).EQ.4) THEN 

F1 = FOHH2(J1,-KOM,J2,J12,LO,J1P,KOMP,J2P, 

J12P,LP,LM1,LM2,LM,2,JTOT,LL) 

F1 = F1 * PARITY(IS1) 

ELSE 

F1 = O.DO 

END IF 

VL(I) = VL(I) + PARFCT * F1 * XCOEF 

End of summation over omega's 

CONTINUE 

CONTINUE 

END IF 

IF (VL(I).NE.O.DO) NNZ = NNZ + 1 

1529 I = I + NPOTL 

IF (NNZ.EQ.O) WRITE (6,612) JTOT,LL 
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612 FORMAT('*** FOR JTOT =',I4,'/ 2 ,ALL COUPLING', 

1 'COEFFS. = 0 FOR LAMBDA INDEX ',I4,' *** ') 

1519 CONTINUE 

RETURN 

END 

The routines DSIXJ and DNINEJ that are called from the function FOHH2, are 

modified versions of the MOLSCAT routines SIXJ and NINEJ, modified to accept 

real arguments. The subroutine DNINEJ calls DJ9J, a modified version of J9J 

that does not assume that the angular momentum indices are integer. 

FUNCTION FOHH2(J1,K,J2,J12,L,J1P,KP,J2P,J12P,LP, 

1 LAM1,LAM2,LAM,MU,JTOT,LL) 

c 

C WORKS OUT COUPLING MATRIX ELEMENTS 

c 

1 

c 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

DOUBLE PRECISION NINEJ 

F(J)=DFLOAT(2•J+1) 

H(J)=DFLOAT( J+1) 

G(J)=DFLOAT(J)/2.DO 

PI=3.1415926535897932384626433 

EPS=0.1D-5 

FACTOR=DSQRT(H(J1)•H(J1P)*H(J2)*H(J2P)•H(J12)*H(J12P)* 

F(L)*F(LP)•F(LAM)•F(LAM)•F(LAM2)) 

C if K1-K2+MU does not equal zero then COUPLE=O 

c 
IF ((K-KP+(2 * MU)).NE.O) THEN 

CAR=O.DO 

PRINT•,'LL =',LL,' WHAT AM I DOING HERE??? ' 
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c 

ELSE 

C1=((-1.DO)**((J1P+J2P-KP-J12-JTOT)/2))*FACTOR/(4.DO*PI) 

C2=THREEJ(L,LP,LAM)*THREEJ(J2/2,J2P/2,LAM2) 

C3=THRJ(G(J1),G(J1P),DFLOAT(LAM1), 

1 G(K),G(-KP),DFLOAT(MU)) 

C4=DSIXJ(DFLOAT(LP) ,DFLOAT(L),G(J12P), 

1 G(J12),DFLOAT(LAM),G(JTOT)) 

C5=DNINEJ( DFLOAT(LAM),DFLOAT(LAM2),DFLOAT(LAM1), 

1 G(J12),G(J2),G(J1) ,G(J12P),G(J2P),G(J1P)) 

CAR=C1•C2*C3*C4•C5 

END IF 

FOHH2=CAR 

RETURN 

END 

c *********************************************************** 

c 

c 

c 

c 

FUNCTION DSIXJ(XJ1,XJ2,XJ5,XJ4,XJ3,XJ6) 

IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

DIMENSION XJ6J(200) 

CALL J6J(XJ2,XJ3,XJ4,XJ5,XJ6,IVAL,XJ1MIN,XJ6J) 

IND= 1 + (INT(2.DO*XJ1+0.1DO)-INT(2.DO*XJ1MIN +0.1D0))/2 

DSIXJ = O.DO 

IF (IND.GE.1.AND.IND.LE.IVAL) DSIXJ = XJ6J(IND) 

RETURN 

END 
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c ************************************************************ 
c 

c 

c 

FUNCTION DNINEJ(X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3) 

IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

DIMENSION XJ9J(200) 

CALL DJ9J( X1,Y1,X2,Y2,Z2,X3,Y3,Z3,IVAL,Z1MIN,XJ9J) 

IND= 1 + (INT(2.DO•Z1+0.1DO)-INT(2.DO•Z1MIN+0.1D0))/2 

DNINEJ = O.DO 

IF (IND.GE.1.AND.IND.LE.IVAL) DNINEJ = XJ9J(IND) 

RETURN 

END 

Note that the 9-j J9J routine implemented in MOLSCAT also needs slight editing 

(gi'iiing DJ9J here), as it too assumes that the j's are integer. 

The value of the coefficient X defined by equation 5.2.9c is returned from the 

function XCOE: 

FUNCTION XCOE(J,IOM,K) 

IMPLICIT REAL•B (A-H,O-Z) 

DATA TWO/ 2.DO /, EPS / l.D-05 I 

DATA RATIO I -7.501DO I 

c 
c 

CONST = RATIO * (RATIO - 4.DO) 

FJ = DFLOAT(J)/2.DO 

OMEGA = DFLOAT(IOM)/2.DO 

FK = DFLOAT(K)/2.DO 

c 

c 
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FJPH = FJ + 0.5DO 

X = DSQRT( 4.DO * FJPH * FJPH + CONST ) 

c 
C Case where omega :1 k 

c 

c 

IF (DABS(OMEGA-FK) .GT. EPS) THEN 

SJJ = X - TWO + RATIO 

IF (DABS(SJJ) .LE. EPS) THEN 

SJ = O.DO 

ELSE 

SJ = DSQRT( SJJ I ( TWO * X ) ) 

END IF 

IF (OMEGA .LT. 1.45DO ) THEN 

SJ = -SJ 

END IF 

C Case where omega = k 

c 
ELSE 

SJJ = X + TWO - RATIO 

IF (DABS(SJJ) .LE. EPS) THEN 

SJ = O.DO 

ELSE 

SJ = DSQRT( SJJ I (TWO * X) ) 

END IF 

END IF 

XCOE = SJ 

RETURN 

END 
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Appendix D 

NH3-H2 space fixed potential coefficients 

SCF+EK potential 

The potential coefficients are given in units of cm- 1 at selected intermolecular 

distances. 

V,.\1..\2..\11 4.0ao 4.4ao 4.8ao 5.2ao 5.6ao 6.0ao 

voooo 74375.063 35458.883 15531.074 6102.250 1868.738 101.099 

VQ220 2277.437 960.354 328.689 63.867 -35.759 -65.194 

VlQlO -12876.395 -6505.680 -3193.224 -1549.452 -743.686 -352.559 

V!210 5201.809 3095.042 1999.412 1369.350 968.332 702.750 

V!230 -1085.176 -587.739 -331.537 -200.823 -133.704 -95.386 

V2Q20 -9440.414 -3863.168 -1397.266 -393.042 -27.858 76.349 

V2200 -12481.793 -7027.191 -4249.199 -2716.202 -1795.615 -1217.265 

V2220 3530.340 1946.488 1177.016 754.112 496.607 333.364 

V2240 -788.225 -432.854 -244.559 -143.989 -93.725 -66.623 

V3Q30 11566.574 5637.688 2671.778 1231.759 539.902 213.904 

V3Q33 -13711.836 -6717.406 -3202.722 -1493.427 -670.110 -280.143 

V3210 4391.113 2058.423 967.816 481.053 264.249 159.906 

V3213 -1248.817 -564.430 -292.702 -168.427 -102.755 -64.341 

V3223 -311.300 -151.175 -65.977 -28.116 -13.538 -7.849 

V3230 -1723.172 -772.251 -365.723 -186.368 -102.442 -59.658 

V3233 945.640 404.399 196.634 106.244 60.196 34.101 

V3243 675.135 328.211 153.048 73.541 39.491 23.966 

V3250 548.021 224.040 139.268 99.017 65.896 40.333 

V3253 -2732.359 -1318.324 -679.583 -377.888 -222.745 -136.367 

V4040 326.792 68.746 -7.673 -23.819 -22.188 -16.847 

V4043 4936.992 2264.956 1031.896 467.076 205.707 83.900 

V4220 671.510 278.174 144.695 85.288 49.114 25.953 

V4223 1384.184 577.783 263.203 132.982 73.902 43.474 

V4233 -1008.150 -491.983 -246.550 -130.937 -74.337 -44.832 
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V >.1 >.2 AI-£ 4.0ao 4.4ao 4.8ao 5.2ao 5.6ao 6.0ao 

'V4240 -125.366 -52.044 -29.423 -19.546 -12.715 -7.721 

'V4243 -724.527 -283.380 -122.070 -60.242 -33.761 -20.133 

'V4253 1082.667 521.373 261.314 139.917 80.361 49.158 

'V4260 -125.512 -18.159 0.673 3.254 5.099 6.284 

'V4263 1341.479 592.365 279.557 144.734 81.753 48.624 

V5050 -1975.918 -773.190 -312.659 -129.665 -52.523 -18.751 

V[JQ53 212.687 82.074 32.552 11.681 2.441 -1.573 

'V5230 -1890.052 -756.101 -319.972 -146.921 -75.430 -42.965 

V[i233 733.951 347.601 164.992 82.553 4.5.208 26.791 

'V5243 861.468 395.086 181.372 88.160 47.382 27.805 

'V5250 553.688 197.335 79.639 36.877 19.089 10.500 

'V5253 -213.597 -96.378 -46.512 -25.178 -15.418 -10.237 

'V5263 -833.166 -385.332 -174.589 -83.160 -44.232 -26.051 

'V5270 9.920 26.598 10.575 -0.451 -3.121 -2.021 

'V5273 -326.874 -166.328 -80.963 -41.533 -24.043 -15.666 

V6Q60 562.150 187.093 61.760 20.930 7.315 2.333 

V6Q63 -1009.280 -345.546 -121.582 -44.950 -17.246 -6.439 

V6Q66 1065.404 376.473 134.679 49.519 18.771 6.923 

'V6240 340.419 98.271 28.638 8.231 1.075 -1.876 

'V6243 -1153.609 -453.644 -185.688 -82.793 -41.430 -22.735 

'V6246 1110.423 405.223 154.655 65.868 31.812 16.275 

'V6253 -175.510 -93.255 -48.177 -25.913 -15.012 -9.179 

'V6256 -56.709 -24.046 -9.952 -4.458 -2.424 -1.418 

'V6260 -154.827 -40.411 -10.828 -3.160 -0.606 0.498 

'V6263 241.965 71.420 17.311 2.995 0.444 0.401 

'V6266 -339.055 -108.237 -37.427 -15.015 -7.022 -3.559 

'V6273 183.185 100.196 49.464 25.762 15.451 10.287 

'V6276 -135.130 -51.360 -20.888 -9.452 -4.607 -2.170 

'V6280 224.175 82.328 32.716 15.176 8.642 5.749 

'V6283 -87.242 -6.976 3.510 2.761 1.926 1.559 

'V6286 99.492 34.462 7.406 -0.903 -1.294 0.068 
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VAtA2A/-L 6.4ao 6.8ao 7.2ao 7.6ao 8.0ao 8.4ao 

voooo -538.04 7 -686.900 -643.288 -539.561 -430.563 -335.925 

VQ220 -66.270 -56.426 -44.24 7 -33.293 -24.623 -18.221 

VlQIO -166.299 -79.980 -41.105 -23.792 -15.750 -11.560 

Vl210 528.114 405.668 316.396 252.365 206.337 171.347 

V1230 -68.699 -51.630 -40.970 -33.072 -26.494 -21.292 

V2Q20 84.394 63.624 40.066 21.696 9.710 3.002 

V2200 -853.815 -615.641 -453.230 -342.200 -265.521 -209.935 

V2220 231.212 165.616 121.993 92.184 71.243 56.074 

V2240 -46.780 -34.064 -26.397 -20.805 -16.092 -12.302 

V3Q30 67.090 6.371 -1.5.116 -19.618 -17.677 -14.096 

V3Q33 -102.731 -27.671 0.412 8.739 9.732 8.343 

V3210 100.542 64.828 43.103 30.459 23.182 18.282 

V3213 -40.535 -26.040 -17.235 -12.092 -9.067 -6.980 

'V3223 -4.456 -2.385 -1.326 -0.849 -0.645 -0.535 

V3230 -35.584 -21.685 -13.620 -9.085 -6.556 -4.974 

V3233 19.094 11.021 6.865 4.675 3.407 2.595 

V3243 14.876 9.226 5.809 3.875 2.817 2.144 

V3250 25.009 16.045 10.402 6.841 4.622 3.221 

V3253 -86.472 -56.960 -38.899 -27.803 -20.811 -15.983 

V4040 -11.831 -7.960 -5.400 -3.815 -2.805 -2.129 

V4043 27.689 3.715 -5.144 -7.007 -6.067 -4.572 

V4220 14.159 8.798 6.136 4.053 2.255 1.171 

V4223 25.747 15.345 9.158 5.620 3.718 2.615 

V4233 -28.391 -18.616 -12.655 -9.014 -6.696 -5.106 
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VA1A2AJ.1 6.4ao 6.8ao 7.2ao 7.6ao 8.0ao 8.4ao 

V4240 -4.796 -3.114 -2.050 -1.294 -0.746 -0.407 

V4243 -11.820 -6.825 -3.863 -2.287 -1.545 -1.130 

V4253 31.677 21.122 14.505 10.446 7.894 6.108 

V4260 5.109 3.183 1.633 0.798 0.471 0.279 

V4263 29.237 17.746 10.844 6.948 4.847 3.542 

V5Q50 -4.430 1.023 2.643 2.487 1.762 1.147 

V5Q53 -3.044 -3.212 -2.845 -2.287 -1.695 -1.172 

V5230 -24.886 -14.647 -9.045 -5.816 -3.848 -2.633 

V5233 16.222 9.917 6.117 3.985 2.871 2.214 

V5243 16.742 10.329 6.550 4.362 3.123 2.335 

V5250 5.742 3.152 1.773 1.090 0.772 0.588 

V5253 -6.944 -4.694 -3.135 -2.155 -1.599 -1.259 

V5263 -15.734 -9.578 -5.837 -3.797 -2.790 -2.153 

V5270 -1.377 -1.067 -0.708 -0.549 -0.530 -0.473 

V5273 -10.765 -7.601 -5.451 -4.113 -3.275 -2.600 

Vfi060 0.277 -0.561 -0.796 -0.657 -0.413 -0.252 

VfiQ63 -1.974 -0.147 0.571 0.600 0.339 0.144 

VfiQ66 1.782 -0.246 -0.943 -0.923 -0.595 -0.330 

Vfi240 -2.601 -2.314 -1.759 -1.344 -1.127 -0.967 

Vfi243 -12.924 -7.582 -4.503 -2.810 -1.955 -1.438 

V6246 8.435 4.741 2.817 1.671 1.010 0.650 

V6253 -5.702 -3.677 -2.444 -1.683 -1.233 -0.942 

Vfi256 -0.678 -0.362 -0.308 -0.223 -0.096 -0.023 

V6260 0.814 0.694 0.431 0.249 0.183 0.159 

Vfi263 0.378 0.169 -0.100 -0.107 0.060 0.153 

Vfi266 -1.810 -0.952 -0.484 -0.249 -0.166 -0.133 

Vfi273 6.984 4.852 3.400 2.478 1.935 1.546 

Vfi276 -0.946 -0.529 -0.433 -0.295 -0.118 -0.012 

Vfi280 3.894 2.575 1.720 1.276 1.052 0.870 

Vfi283 1.184 0.847 0.523 0.316 0.253 0.230 

Vfi286 0.405 0.136 -0.156 -0.140 0.043 0.135 

200 



VAIA2AJ.£ 9.0ao 10.0ao 1.5.0ao 20.0ao 25.0ao 35.0ao 

voooo -228.113 -120.253 -8.974 -1.483 -0.363 -0.042 

VQ220 -11.753 -5.816 -0.242 -0.033 -0.008 -0.001 

V1Q1Q -7.699 -3.601 0.156 0.035 0.009 0.001 

V121Q 128.904 76.785 7.616 2.246 0.957 0.254 

VI230 -16.802 -14.337 -6.052 -1.985 -0.793 -0.204 

V2020 -0.832 -1.047 0.111 0.018 0.004 0.001 

V2200 -14 7.211 -77.207 -1.825 -0.236 -0.138 -0.033 

V2220 39.635 21.978 1.110 0.213 0.086 0.018 

V2240 -9.267 -8.360 -3.797 -0.969 -0.296 -0.053 

V3Q30 -9.219 -4.117 -0.019 0.003 0.001 0.000 

V3Q33 5.525 2.249 0.042 0.007 0.002 0.000 

V3210 12.085 4.940 0.502 0.088 0.008 -0.000 

V3213 -4.461 -1.725 -0.103 -0.045 -0.009 -0.000 

V3223 -0.331 0.011 -0.020 -0.024 -0.005 -0.000 

V3230 -3.212 -1.347 -0.140 -0.025 -0.003 -0.000 

V3233 1. 741 0.857 0.046 0.014 0.003 0.000 

VJ243 1.282 0.264 0.014 0.026 0.005 -0.000 

V3250 2.025 1.013 -0.266 -0.049 -0.004 0.000 

V3253 -10.566 -4.781 0.021 0.021 0.004 0.000 

V4Q40 -1.443 -0.731 -0.042 -0.011 -0.003 -0.000 

V4Q43 -2.864 -1.345 0.055 0.015 0.003 0.000 

V4220 0.780 1.037 -0.098 -0.084 -0.015 -0.000 

V4223 1.484 0.380 -0.074 -0.018 -0.002 0.000 

V4233 -3.383 -1.577 -0.048 -0.019 -0.004 0.000 
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V_xl A2A1t 9.0ao lO.Oao 1.5.0ao 20.0ao 25.0ao 35.0ao 

V4240 -0.200 -0.164 0.027 0.019 0.003 0.000 

V4243 -0.644 -0.129 0.013 0.003 0.000 -0.000 

V42il3 4.053 1.810 0.042 0.019 0.003 -0.000 

V4260 -0.025 -0.388 0.055 0.050 0.009 0.000 

V4263 2.129 0.774 0.074 0.017 0.002 0.000 

V5050 0.675 0.362 -0.026 -0.007 -0.002 -0.000 

V5Q53 -0.614 -0.144 0.033 0.004 0.001 0.000 

V5230 -1.571 -0.743 -0.344 -0.107 -0.016 -0.000 

V5233 1.469 0.621 0.020 0.013 0.003 0.000 

V5243 1.432 0.461 -0.001 0.001 -0.001 -0.000 

V52::.0 0.376 0.164 0.087 0.025 0.005 0.000 

V5253 -0.866 -0.394 0.000 -0.000 0.000 0.000 

V5263 -1.277 -0.262 0.008 -0.001 0.001 0.000 

v::.210 -0.287 -0.063 0.177 0.062 0.008 -0.000 

V5273 -1.651 -0.538 0.024 -0.004 -0.001 0.000 

V6Q60 -0.196 -0.197 -0.018 -0.004 -0.001 -0.000 

V6Q63 0.117 0.239 0.039 0.005 0.001 0.000 

V6066 -0.203 -0.205 0.000 -0.000 -0.001 -0.000 

V6240 -0.676 -0.204 0.016 -0.008 -0.000 0.000 

V6243 -0.786 -0.065 0.087 0.025 0.005 0.000 

V6246 0.363 0.121 -0.180 -0.063 -0.011 -0.000 

V6253 -0.610 -0.235 0.041 0.013 0.002 0.000 

V6256 -0.027 -0.061 -0.015 -0.007 -0.001 -0.000 

V6260 0.108 0.019 0.001 0.002 0.000 -0.000 

V6263 0.058 -0.155 -0.028 -0.006 -0.001 -0.000 

V6266 -0.081 -0.010 0.026 0.010 0.002 0.000 

V6273 1.013 0.366 -0.054 -0.016 -0.003 -0.000 

V6276 -0.027 -0.129 0.011 0.008 0.002 0.000 

V6280 0.553 0.128 -0.019 0.004 -0.000 -0.000 

V6283 0.135 -0.032 -0.042 -0.016 -0.003 -0.000 

V6286 0.040 -0.131 0.131 0.045 0.008 0.000 
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SCF+MBPT potential 

The potential coefficients are given in unit of em -l at selected intermolecular 

distances. 

v ~1 ~2>./L 4.0ao 4.4ao 4.8ao .5.2ao .5.6ao 6.0ao 

voooo 78615.188 37400.164 16720.395 6701.949 2088.711 123.946 

VQ220 2834.602 1213.932 495.008 1.54.530 2.429 -56.162 

V1Q1Q -12305.445 -6052.965 -3034.048 -1493.101 -708.292 -317.791 

VI210 4832.926 2774.621 1841.841 1285.220 911.782 657.911 

VI230 -789.410 -330.831 -205.200 -133.369 -88.363 -59.435 

V2020 -7587.293 -2532.885 -577.814 96.550 265.527 254.658 

U2200 -12375.191 -6862.793 -4193.422 -2705.043 -1792.906 -1212.014 

V2220 3166.391 1739.052 1064.450 698.393 470.059 319.979 

U2240 -603.340 -295.163 -180.266 -117.293 -81.819 -59.408 

VJQ30 11404.188 5412.234 2608.800 1219.002 530.654 199.890 

VJQ33 -13505.785 -6399.422 -3113.534 -1476.023 -657.118 -259.237 

V3210 4376.551 2018.802 974.714 496.596 274.526 164.051 

V3213 -1022.986 -352.728 -214.699 -142.392 -89.908 -53.512 

VJ223 -302.492 -107.054 -54.518 -25.918 -11.530 -5.032 

VJ230 -1584.496 -693.981 -329.847 -171.700 -97.130 -58.106 

VJ233 842.580 338.086 171.169 101.338 62.222 36.881 

VJ243 679.287 349.010 158.449 74.577 40.438 25.294 

VJ250 499.177 180.405 132.090 102.591 69.569 41.990 

VJ253 -2586.044 -1190.207 -632.069 -363.102 -216.776 -131.655 

V4Q40 -165.502 -358.327 -247.771 -146.209 -85.958 -54.037 

V4043 5115.793 2382.152 1126.913 529.174 241.558 103.517 

V4220 510.602 149.904 76.225 56.217 39.445 24.031 

V4223 1316.036 555.906 256.225 129.057 70.534 40.548 

V4233 -945.458 -429.681 -220.291 -119.643 -68.100 -40.626 
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VAv\2 A/l 4.0ao 4.4ao 4.8ao 5.2ao 5.6ao 6.0ao 

V4240 -28.038 26.650 13.049 -2.698 -8.677 -8.549 

V4243 -768.421 -343.363 -150.444 -72.905 -40.143 -23.824 

V4253 1118.030 556.516 276.127 146.288 83.879 51.530 

V4260 -247.364 -115.556 -51.427 -18.587 -1.796 5.299 

V4263 1309.947 593.066 281.961 145.309 81.188 47.696 

V5Q50 -2183.285 -889.899 -385.974 -175.597 -80.829 -35.968 

V5Q53 202.002 71.916 24.630 6.679 -0.365 -3.029 

V5230 -2053.895 -837.928 -360.981 -168.131 -86.738 -49.113 

V5233 653.292 303.851 140.121 68.381 37.112 22.121 

V5243 868.969 399.320 183.854 89.590 48.193 28.261 

V5250 598.160 216.114 87.013 40.024 20.621 11.316 

V5253 -318.459 -156.630 -80.513 -44.386 -26.407 -16.646 

V5263 -828.448 -382.669 -173.028 -82.261 -43.722 -25.764 

V5270 -110.189 -32.714 -18.751 -15.488 -11.109 -6.361 

V5273 -361.159 -184.264 -91.208 -47.403 -27.393 -17.585 

V6Q60 605.171 216.049 79.554 30.951 12.651 5.067 

V6Q63 -1075.684 -388.273 ·148.458 -60.725 -26.089 -11.260 

V6Q66 1135.972 420.662 163.228 67.075 29.185 12.977 

V6240 355.591 105.523 32.334 10.064 1.939 -1.498 

V6243 -1133.838 -443.441 -180.764 -80.290 -40.048 -21.911 

V6246 1154.587 428.245 167.118 72.589 35.414 18.200 

V6253 -111.332 -56.783 -27.255 -13.915 -8.084 -5.123 

V6256 -69.637 -30.335 -12.605 -5.517 -2.831 -1.567 

V6260 -156.023 -40.918 -11.668 -3.875 -1.075 0.227 

V6263 326.727 115.344 40.653 15.4 78 7.168 4.063 

V6266 -336.532 -107.268 -37.648 -15.495 -7.427 -3.832 

V6273 226.634 124.888 63.628 33.885 20.141 13.033 

V6276 -143.883 -55.618 -22.684 -10.169 -4.883 -2.271 

V6280 235.384 87.675 35.539 16.626 9.347 6.069 

V6283 -87.141 -6.956 3.160 2.480 1.799 1.542 

V6286 131.111 51.003 16.486 4.054 1.387 1.511 
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V_.\1..\2..\ll 6.4ao 6.8ao 7.2ao 7.6ao 8.0ao 8.4ao 

voooo -596.990 -766.946 -717.204 -597.814 -471.950 -362.608 

VQ220 -70.622 -65.369 -53.525 -41.176 -30.641 -22.463 

V1Ql0 -131.163 -47.012 -12.166 0.429 3.868 3.975 

Vl210 490.430 373.876 289.906 230.594 188.639 1.57.069 

V1230 -38.484 -26.140 -19.731 -1.5.616 -12.304 -9.844 

V2Q20 194.689 133.097 84.594 .50.702 28.886 1.5.850 

V2200 -844.886 -604.486 -441.402 -330.763 -255.056 -200.687 

V2220 223.062 159.241 116.098 86.419 65.613 50.679 

V2240 -40.600 -27.929 -20.252 -14.837 -10.483 -7.171 

V3Q30 50.572 -9.611 -28.820 -30.464 -25.761 -19.814 

V3Q33 -77.188 -2.140 23.096 27.464 24.439 19.477 

V3210 100.809 63.281 41.021 28.489 21.584 17.113 

V3213 -29.997 -16.264 -8.759 -5.134 -3 . .583 -2.792 

V3223 -1.618 -0.163 0.048 -0.283 -0.731 -1.091 

V3230 -35.358 -21.803 -13.730 -9.091 -6.457 -4.797 

V3233 20.569 10.916 5.514 2.522 0.833 -0.124 

V3243 16.213 10.273 6.457 4.141 2.776 1.881 

V3250 25.079 15.289 9.369 5.834 3.774 2.569 

V3253 -81.520 -51.926 -34.159 -23.600 -17.236 -13.029 

V4040 -37.369 -28.199 -22.831 -19.334 -16.708 -14.530 

V4Q43 38.485 10.096 -0.841 -3.645 -3.138 -1.876 

V4220 14.457 9.105 5.787 3.016 0.705 -0.687 

V4223 23.428 13.671 8.058 4.977 3.411 2.543 

V4233 -25.436 -16.663 -11.522 -8.521 -6.669 -5.396 
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li,Xl.X2.XJ.1 6.4ao 6.8ao 7.2ao 7.6ao 8.0ao 8.4ao 

V4240 -6.655 -4.510 -2.600 -1.063 0.063 0.770 

V4243 -14.084 -8.165 -4.551 -2.511 -1.449 -0.827 

V4253 33.343 22.224 15.144 10.724 7.909 5.945 

V4260 .5.730 3.700 1.548 0.106 -0.673 -1.141 

V4263 28.345 17.034 10.330 6.606 4.636 3.426 

V&050 -14.803 -5.172 -1.016 0.363 0.563 0.504 

Vfi053 -3.752 -3 .. 535 -2.983 -2.342 -1.719 -1.187 

V5230 -28.246 -16.458 -9.980 -6.253 -4.002 -2.630 

V&233 13.483 8.274 5.103 3.339 2.444 1.921 

V5243 16.999 10.474 6.633 4.409 3.150 2.352 

Vfi250 6.174 3.351 1.822 1.044 0.669 0.453 

V5253 -10.768 -7.032 -4.603 -3.102 -2.225 -1.684 

'V5263 -15.573 -9.487 -5.785 -3.768 -2.772 -2.142 

V5270 -3.746 -2.337 -1.353 -0.837 -0.614 -0.445 

V5273 -11.878 -8.259 -5.853 -4.367 -3.443 -2.716 

V6Q60 1.636 0.098 -0.483 -0.506 -0.335 -0.203 

V6063 -4.560 -1.521 -0.158 0.209 0.122 0.015 

V6066 5.267 1.751 0.200 -0.268 -0.220 -0.113 

V6240 -2.454 -2.271 -1.759 -1.357 -1.141 -0.978 

V6243 -12.404 -7.242 -4.275 -2.656 -1.850 -1.368 

V6246 9.465 5.295 3.117 1.837 1.104 0.706 

V6253 -3.282 -2.201 -1.520 -1.088 -0.840 -0.674 

V6256 -0.729 -0.377 -0.311 -0.224 -0.097 -0.024 

V6260 0.670 0.622 0.397 0.233 0.175 0.154 

V6263 2.403 1.310 0.559 0.286 0.303 0.309 

V6266 -1.976 -1.048 -0.537 -0.277 -0.180 -0.139 

V6273 8.622 5.852 4.026 2.881 2.201 1.727 

V6216 -0.980 -0.539 -0.436 -0.296 -0.118 -0.013 

V6280 4.025 2.618 1.726 1.269 1.043 0.863 

V6283 1.221 0.903 0.577 0.362 0.288 0.254 

V6286 1.181 0.553 0.071 -0.015 0.114 0.177 
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VA1A2A1-t 9.0ao 10.0ao 15.0ao 20.0ao 25.0ao 35.0ao 

voooo -238.578 -116.738 -4.360 -0.247 0.004 0.008 

VQ220 -13.903 -5.993 0.256 0.109 0.035 0.005 

V1Q1Q 2.941 1.807 0.205 -0.018 -0.014 -0.003 

VI210 118.641 70.893 7.143 2.183 0.945 0.253 

VI230 -8.572 -9.613 -5.673 -1.935 -0.783 -0.203 

V2Q20 6.371 1.833 0.141 0.009 0.001 -0.000 

V2200 -139.822 -72.379 -1.263 -0.141 -0.116 -0.030 

V2220 34.770 18.189 0.382 0.056 0.043 0.012 

V2240 -4.936 -5.275 -3.319 -0.874 -0.271 -0.050 

VJQ30 -12.275 -4.690 0.503 0.157 0.048 0.007 

'V3033 12.463 4.954 -0.390 -0.149 -0.049 -0.007 

V3210 11.477 4.909 0.677 0.138 0.023 0.002 

V3213 -1.797 -0.616 -0.234 -0.096 -0.026 -0.003 

'V3223 -1.295 -1.120 -0.365 -0.106 -0.028 -0.003 

'V3230 -2.972 -1.101 -0.079 -0.012 0.001 0.000 

'V3233 -0.879 -1.255 -0.352 -0.069 -0.019 -0.003 

VJ243 0.828 -0.269 -0.149 -0.013 -0.006 -0.001 

'V3250 1.643 0.923 -0.195 -0.027 0.002 0.001 

VJ253 -8.421 -3.584 0.073 0.020 0.002 -0.000 

'V4Q40 -11.740 -8.042 -1.221 -0.251 -0.066 -0.008 

V4Q43 -0.417 0.679 0.530 0.124 0.034 0.004 

'V4220 -1.233 -0.775 -0.508 -0.175 -0.040 -0.004 

'V4223 1.619 0.635 0.017 0.004 0.004 0.001 

V4233 -3.939 -2.240 -0.249 -0.067 -0.017 -0.002 
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v~l~2~JL 9.0ao 10.0ao 1.5.0ao 20.0ao 2.5.0ao 3.5.0ao 

V4240 1.225 1.211 0.360 0.094 0.024 0.003 

V4243 -0.178 0.382 0.159 0.038 0.010 0.001 

V4253 3.740 1.436 -0.071 -0.008 -0.004 -0.001 

V4260 -1..597 -1.826 -0.275 -0.023 -0.012 -0.002 

V4263 2.103 0.810 0.095 0.022 0.004 0.000 

V5Q50 0.473 0.417 0.010 0.000 0.000 0.000 

V5Q53 -0.631 -0.170 0.020 0.001 0.000 0.000 

V5230 -1.460 -0.598 -0.309 -0.099 -0.014 -0.000 

V5233 1.291 0.529 0.007 0.010 0.002 -0.000 

V5243 1.441 0.465 -0.001 0.001 -0.001 -0.000 

V5250 0.225 0.026 0.055 0.018 0.003 0.000 

V5253 -1.116 -0.509 -0.009 -0.002 -0.000 0.000 

V5263 -1.272 -0.259 0.009 -0.001 0.001 0.000 

V5270 -0.181 0.063 0.207 0.068 0.010 0.000 

V5273 -1.723 -0.578 0.017 -0.006 -0.001 0.000 

V6Q60 -0.159 -0.159 -0.002 0.000 0.000 0.000 

V6Q63 0.046 0.193 0.023 0.000 0.000 -0.000 

V6Q66 -0.107 -0.177 0.005 0.001 0.000 0.000 

V6240 -0.680 -0.201 0.019 -0.007 -0.000 0.000 

V6243 -0.748 -0.053 0.084 0.024 0.005 0.000 

V6246 0.393 0.137 -0.176 -0.061 -0.011 -0.000 

V6253 -0.451 -0.159 0.048 0.014 0.002 0.000 

V6256 -0.029 -0.063 -0.015 -0.007 -0.001 -0.000 

V6260 0.103 0.013 -0.002 0.001 -0.000 -0.000 

V6263 0.148 -0.111 -0.020 -0.004 -0.001 -0.000 

V6266 -0.083 -0.011 0.025 0.009 0.002 0.000 

V6273 1.120 0.418 -0.049 -0.015 -0.003 -0.000 

V6276 -0.028 -0.131 0.011 0.008 0.002 0.000 

V6280 0.551 0.132 -0.016 0.005 0.000 -0.000 

V6283 0.148 -0.030 -0.045 -0.017 -0.003 -0.000 

V6286 0.062 -0.119 0.135 0.046 0.008 0.000 
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Appendix E 

OH-H2 space fixed potential coefficients 

Listed below are the potential coefficients (in units of ctn -l) at selected inter-

molecular distances. To obtain the coefficients for the 'doctored' potential divide 

the J.L = 2 terms by two. 

v.xl.x2.x/-l 4.0ao 4.5ao 5.0ao 5.5ao 6.0ao 6.5ao 

voooo 36940.867 11987.973 2886.357 -117.835 -881.374 -886.353 

VQ220 2061.999 592.895 125.009 -8.199 -36.292 -36.884 

V1Q1Q 18875.215 6627.762 2141.568 480.843 -64.220 -184.136 

Vl210 -5689.590 -2483.585 -1273.895 -737.067 -466.906 -315.309 

Vl230 4561.824 1991.298 1021.387 590.968 374.357 252.810 

V2020 11716.332 4075.677 1349.012 353.410 13.171 -79.523 

V2022 8060.168 3313.802 1283.388 442.927 113.066 -1.767 

V2200 4520.785 1851.037 897.058 492.934 298.451 192.735 

V2202 -2470.259 -1413.341 -857.481 -541.588 -353.263 -236.124 

V2212 -241.851 -107.633 -48.059 -19.795 -6.999 -1.818 

V2220 -2268.848 -894.208 -412.828 -217.129 -126.676 -79.040 

V2222 295.106 243.957 182.099 132.285 96.039 69.323 

V2232 -79.164 -35.231 -15.731 -6.480 -2.291 -0.59.5 

V2240 2354.956 949.749 451.719 244.170 145.840 93.029 

V2242 -893.199 -542.335 -343.241 -223.989 -150.165 -102.509 
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VA1A2A1J 7.0ao 7.5ao 8.0ao 8.5ao 9.0ao 9.5ao 

voooo -689.036 -479.301 -314.188 -202.708 -128.714 -84.405 

VQ220 -30.293 -22.409 -15.167 -9.196 -6.109 -3.538 

V1Ql0 -173.017 -132.849 -92.702 -61.041 -37.314 -21.285 

Vl210 -222.894 -162.577 -120.767 -91.813 -71.491 -56.500 

V1230 178.713 130.352 96.829 73.614 57.320 45.301 

V2Q20 -88.694 -74.594 -54.868 -36.666 -23.291 -14.529 

V2Q22 -29.332 -26.284 -16.596 -7.050 -4.600 -2.254 

V2200 129.057 86.451 59.269 40.556 31.164 22.580 

V2202 -159.963 -108.879 -74.457 -51.718 -37.174 -27.619 

V2212 -0.083 0.372 0.408 0.253 0.222 0.140 

V2220 -50.650 -33.694 -22.523 -15.646 -10.515 -8.068 

V2222 49.216 33.897 22.785 16.367 10.686 7.739 

V2232 -0.027 0.122 0.134 0.083 0.073 0.046 

'V2240 61.345 40.995 27.865 19.165 14.098 10.402 

V2242 -70.384 -48.073 -32.710 -22.945 -16.043 -11.836 
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V,\1,\2,\IL 10.0ao 15.0ao 20.0ao 25.0ao 30.0ao 40.0ao 

voooo -55.098 -3.554 -0.214 0.073 0.066 0.024 

VQ220 -2.329 -0.071 0.024 0.018 0.010 0.003 

V1Q1Q -11.583 -0.184 0.113 0.074 0.040 0.012 

V1210 -45.476 -9.661 -3.069 -1.260 -0.608 -0.193 

Vl230 36.462 7.746 2.461 1.010 0.488 0.155 

V2Q20 -8.447 -0.210 0.024 0.025 0.015 0.005 

V2Q22 -1.209 0.086 0.074 0.036 0.017 0.005 

V2200 17.870 2.842 0.686 0.228 0.092 0.022 

V2202 -20.992 -2.656 -0.614 -0.197 -0.078 -0.018 

v2212 0.123 0.017 0.009 0.004 0.002 0.000 

V2220 -5.860 -0.775 -0.183 -0.061 -0.025 -0.006 

V2222 5.824 0.703 0.160 0.051 0.020 0.005 

V2232 0.040 0.006 0.003 0.001 0.001 0.000 

V2240 8.014 1.209 0.290 0.096 0.039 0.009 

V2242 -8.972 -1.121 -0.258 -0.083 -0.033 -0.008 

211 




