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Abstract 

 

Every year outcomes from public examinations in the UK rise: politicians 

congratulate pupils on their hard earned achievement; the media questions whether 

this achievement is real; those responsible for administrating the examinations 

defend their standards; various subject councils and employers decry the failings of 

candidates with high grades; admissions officers from the elite universities report 

their struggle with the decrease in discrimination in grades achieved; and academics 

debate what it means to compare standards from one year to the next. The debate 

cannot be easily resolved because examination results are put to many purposes 

some of which are more suited to certain definitions of comparability than others. In 

procedural terms, however, it should be relatively straightforward to evaluate the 

strength of the evidence that is put forward on the comparability of standards against 

various definitions. 

 

Broadly, solely in terms of discrimination, the statistical evidence in the maintenance 

of standards over time and between qualifications can be evaluated by reference to 

measures such as model fit, significance and effect size. An evaluation of the 

literature suggests that predictive statistical models, where employed in the 

maintenance of standards to meet definitions of cohort referencing, tend to be robust. 

Beyond discrimination, measures of performance standards are required to support 

inferences drawn from grades on what candidates can actually do. These are, and 

have been for many years, underpinned by processes reliant on human judgement. 

An evaluation of the literature suggests that judgement provides very weak evidence 

and is subject to unknown bias. The combination of statistical and judgemental 
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evidence is poorly specified, has no theoretical basis and is therefore impossible to 

evaluate. If anything more than pure cohort referencing is required from public 

examinations in the UK there is clearly a need to explore models with a sound 

theoretical basis whose evidence can be evaluated in terms of model fit, significance 

and effect size. 

 

The task of maintaining a performance standard can essentially be reduced under test 

theory to making comparisons between persons that are independent of the items on 

the basis of which these comparisons are made. Test theory however has been 

sparingly applied to comparability issues in UK public examinations. This study 

considers which test theory model would be most suited to the examinations in use in 

the UK, examines issues of model fit under frequentist and Bayesian frameworks, 

compares the results from different test equating methods and the practical issues of 

implementing a test equating design under the given constraints of the UK 

examination system. 

 

To begin with the Rasch model and the One Parameter Logistic Model were fitted to 

operational data gathered from examinations in a range of subject domains where 

marking reliability would not be considered as a potential confound. In this 

framework the Rasch model requirement of a single discrimination parameter across 

items appeared overly restrictive. Further, potential issues with model fit were 

highlighted related to dimensionality, guessing and weak local independence. More 

complex models were therefore pursued under a Bayesian framework. The Posterior 

Predictive Model Checking Procedures and Deviance Information Criterion 
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confirmed that a model which allowed discrimination to vary across items, such as 

the two-parameter Item Response Theory model, would produce better model 

predictions. Use of the Multi-Class Mixture Rasch Model suggested that 

multidimensionality due to a confounding speededness factor could result in 

misleading inferences being drawn from unidimensional models. The Testlet 

Response Theory model showed enhanced predictions where weak local 

independence was correctly specified; however it proved difficult to specify where 

this weak local independence was expected. When tests from one of the 

examinations particularly affected by speededness were equated OPLM proved more 

robust to the confounding speededness factor than the Rasch model. 

 

A Post-equating Non-Equivalent Groups Design was then set up as an experiment 

using a set of relatively simple Science examinations and candidates at a later stage 

in their programme of study than those who would take the live examinations in 

order to understand some of the practical issues involved in equating designs. The 

study found that item parameters were not stable across samples due to context 

effects, school effects and maturity effects. These results were partly due to the scale 

of study, which, though small, still produced reasonably sensible outcomes. It is 

suggested that more care paid to the context of linking items, their underlying 

construct, and the sampling of schools would yield more robust results. Finally, a 

qualitative exploration of views related to test equating designs suggested that 

teachers, pupils and examiners would not reject the possibility of embedding 

equating items into live tests. 
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For examinations where marking reliability is not considered an issue the results 

reported here suggest that the use of test theory could provide a unified theoretical 

framework for the maintenance of standards in UK public examinations which 

would allow the strength of the evidence presented to be evaluated. This would 

represent a substantial improvement over the current situation in which no 

comprehensive or coherent evaluation can be made. The time and investment 

required, however, to introduce such a framework is also substantial. A suitable 

technical infrastructure is required as well as psychometric expertise. The alternative 

is to revert to an examinations system that is essentially cohort referenced and 

focuses on discrimination between candidates in any one year rather than attempting 

to quality assure, as it cannot do, performance standards from one year to the next.
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1. The System of Public Examinations in England 

 

1.1 Overview 

 

This chapter describes the public examination system in England, and outlines some 

of the major challenges for this system. These include its multiple agency 

composition, the nature of the assessments and the multiple purposes of the 

examinations. It then considers what it means to maintain standards within this 

system and discusses the theoretical and practical difficulties that beset current 

approaches to maintaining standards. It concludes that these current approaches are 

inadequately specified and that there is a need to explore alternative models.   

 

1.2 The public examination system in England  

 

1.2.1 GCSEs and A-levels 

The public examination system in England is based around the Advanced level (A-

level) and the General Certificate of Secondary Education (GCSE). GCSE 

examinations were introduced in 1988 and are the principal means by which 16-year-

olds are assessed at the end of their compulsory education. Nearly all students in 

state maintained schools study for GCSE examinations. They are available in a wide 

range of subjects from traditional disciplines such as mathematics to more modern 

areas such as media studies and photography. Courses leading to GCSEs are 

intended to be followed for two years although some candidates take them after one 

year of study. 
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After gaining GCSEs a proportion of students will stay on at school or 

college for a further two years to study for A-levels, which act primarily as pre-

university examinations. As with GCSEs, A-levels are available in a wide range of 

subjects encompassing traditional and more modern subject areas. A-levels were 

introduced in the 1950s and were originally targeted at a fraction of the national 

cohort. In keeping with government objectives to increase participation in higher 

education they are now taken by over a third of the national total cohort. 

Apart from GCSEs and A-levels there are two other public qualifications 

worth noting. In 2010 the Diploma introduced a practical element to learning. It 

represents a portfolio qualification encompassing GCSEs and A-levels as well as 

specifically designed content in areas such as engineering, and health and beauty. 

From 2011 all pupils in England will also be expected to have passed Functional 

Skills qualifications in English, Mathematics and ICT. Functional Skills are practical 

skills intended to allow individuals to work confidently, effectively and 

independently in life, but they are largely examined through traditional test formats. 

 

1.2.2 How qualifications are developed 

The development and delivery of qualifications in England is a complex inter-agency 

process (Meyer, 2009b). Central government influences policy on education and 

qualifications through the Department for Children, Schools and Families (DCSF). 

The DCSF owns the national curriculum in England which applies to all pupils of 

compulsory school age in state maintained schools. The department decides which 

subjects are statutory for 14 to 16-year-olds and is responsible for the programmes of 

study that must be followed in those statutory subjects. Once decisions on 

examinations policy have been formulated within the DCSF the examination 
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regulator Ofqual is then charged with overseeing the quality and value for money of 

the qualifications system, while the Qualifications and Curriculum Development 

Agency (QCDA) may be commissioned to update programmes of study and subject 

criteria. 

 

Figure 1.1: Organisations involved in the development of qualifications in England 

(Meyer, 2009b) 

 

1.2.3 Qualifications criteria and subject criteria 

The Qualifications Criteria for A-level and GCSE give broad rules on the structure, 

assessment and grading of each qualification type. The subject criteria explain the 

general aims of studying the subject and outline the essential knowledge, skills and 

understanding that should be present for all qualifications in that subject. The subject 

criteria indicate the assessment objectives as well as the type of assessment that can 



1. The System of Public Examinations in England 

 

4 
 

be used within the qualification. The subject criteria for GCSEs and A-levels include 

descriptions of the standards of achievement that are expected to have been shown 

by candidates achieving specific grades. 

To establish the qualification criteria and the subject criteria, the regulators or 

QCDA as commissioned by the regulators, consult with teachers and lecturers, 

subject associations, teacher associations, professional associations, employer 

organisations, as well as the organisations that will develop and deliver 

qualifications, which are known as awarding bodies. Once the criteria and the 

regulations have been finalised and approved by Ofqual, awarding bodies can then 

use them to develop their qualifications. 

 

1.2.4 Awarding bodies 

Any institution from a large company to a small charity may become an awarding 

body as long as they satisfy certain statutory regulations. Codes of practice govern 

their operations and procedures and are intended to ensure that candidates get a fair 

deal irrespective of the awarding body that is delivering the qualification. Awarding 

bodies, once they have developed their qualifications, market them directly to 

schools and colleges who are free to choose those qualifications they feel will best 

meet the needs of their pupils. The largest organisations offering GCSEs and A-

levels in England are: the Assessment and Qualifications Alliance (AQA); EdExcel; 

Oxford, Cambridge and RSA (OCR); the Welsh Joint Education Committee 

(WJEC); and the Council for the Curriculum Examinations and Assessment (CCEA). 
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1.2.5 The structure of qualifications 

An A-level qualification consists of advanced subsidiary (AS) and A2 units. The AS 

is a stand-alone qualification and is worth half a full A-level qualification. It 

normally consists of two units (assessed at the standard expected for a learner half 

way through an A-level course) that together contribute 50 per cent towards the full 

A-level. The A2 is the second half of a full A-level qualification. It normally consists 

of two units (assessed at the standard expected for a learner at the end of a full A-

level course) that together are worth 50 per cent of the full A-level qualification. 

Units are available in January and June and candidates can re-sit units if they wish. 

A GCSE qualification consists of between two and four units, which may be 

available at different test levels known as tiers for different levels of ability. These 

units may be available in November and February as well as in January and June. 

Candidates are only allowed to re-sit each unit once. 

 

1.2.6 Assessment modes 

The majority of units at GCSE and A-level are externally assessed: they are set, 

marked, and graded by the awarding body. Most GCSE and A-level qualifications 

will include however one internally assessed unit. This may be a piece of 

coursework, a project or a practical assessment. These are marked and graded by 

teachers in schools and colleges. Traditionally external assessments have favoured 

the use of extended response items such as essays. Multiple-choice items were in 

fashion in the 1970s but have fallen into disfavour. More recently, constructed 

response item formats have tended to predominate. Questions often follow stimuli 

such as reading passages, diagrams, tables or pictures. Items may be ordered 
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thematically as well as in some notional order of difficulty. Pre-testing is rare and all 

items are made available to the public free of charge after use. 

 

1.2.7 How assessments are marked 

Most assessments are marked by subject experts following a period of training and 

standardisation on the mark schemes. Recent developments in technology have 

allowed an increasing proportion of this marking to be done on screen. While in the 

past one marker would be responsible for marking an entire script it is now possible, 

and indeed common practice, for an electronic script to be divided amongst markers. 

If a script is divided amongst enough markers it is now possible, for constructed 

response items, to make the assumption of random equivalence between markers 

(Maris & Bechger, 2007). 

 

1.2.8 Marks and grades 

In order to compensate for the variability in difficulty of tests that are presented to 

candidates over time, candidates' marks are converted into grades. A grade A in one 

unit taken in one session is primarily intended to be equivalent to a grade A that is 

achieved on that same unit taken in a previous session. Once a unit has been graded 

the candidates' raw marks are converted into a scaled score. When a candidate has 

accumulated enough units they may certificate for that qualification and their scaled 

score will be converted into a grade on the qualification. The A-level is graded from 

A* to E as well as fail, and the GCSE is graded from A*to G as well as fail. It is 

these grades that have public currency and which carry the weight of public 

expectation. 
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1.3 Expectations of the public examination system in England 

 

1.3.1 The purposes of public examinations 

Newton (2007, 2008) illustrates the variety of purposes to which examination grades 

can be put, and highlights three key purposes for public examinations: 

 

1. Qualification – in which individuals are judged as equipped to succeed in a 

certain job, course of instruction or role in life 

2. Selection – to provide information for future educational and vocational 

selection decisions 

3. Programme evaluation – in which results are used to judge the success of 

educational initiatives nationally and locally. 

 

These different purposes suggest different conceptions of comparability of 

examination grades both between subjects (Coe, 2007) and over time.  

 

1.3.1.1 Conceptions of comparability 

Coe (2007) distinguishes three conceptions of comparability. Performance 

comparability relates to the skills, knowledge and understanding required to achieve 

a certain grade. Under this conception of comparability it would be important to 

ensure that candidates who achieved certain grades, from one year to the next, knew, 

understood and could do the same things. This is reflected by comments such as the 

following: 
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‘I need to receive a consistent message over a number of years as to 

what a grade A or B represents in terms of knowledge, skills and 

competencies.’  (Binks, 2002, p.6) 

 

It is relatively easy to find evidence that grades awarded today do not, 

however, relate to the same skills as they did five or twenty years earlier (see, for 

example, Engineering Council, 2000). As the needs of society have changed so have 

the curriculum and the examinations. This has led some to conclude that maintaining 

(or comparing) standards over long periods of time is a futile effort (see, for 

example, Christie & Forrest, 1980). This conception of comparability clearly relates 

to the purposes of qualification and programme evaluation as defined above, and 

suggests the need for scrutiny of candidates’ achievements in the process of 

maintaining standards, which will be discussed later. 

Coe’s second conception of comparability is that of statistical comparability. 

Under this conception comparability holds when a typical candidate has an equal 

chance of achieving a particular level in successive examinations. Under this 

conception examinations are useful to the extent to which they successfully rank 

order candidates. If the key purpose of examinations is selection then statistical 

models such as regression or multilevel models would probably suffice in the 

maintenance of standards. 

Coe’s third and final conception of comparability is that of construct 

comparability. Under this conception two examinations are comparable if 

performance of typical examinees with the same latent ability leads to the same 

grade. The construct could be general aptitude, or something more specific such as 

reasoning. This conception relates to both qualification and selection as it could be 
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considered that candidates with, say, higher reasoning skills will be better at doing 

certain jobs and more likely to succeed in further study. This conception of 

comparability, which implies the use of measurement models or latent trait models, 

has been lesser explored in the maintenance of standards in the UK. 

 

1.3.1.2 Prioritisation of purposes 

If one or other purposes of examination results were to be prioritised then the task of 

maintaining standards would be a great deal simpler. Newton (2005a) calls this the 

diktat model. Perhaps the prime exponent of the diktat model is Cresswell (1997, 

2000). Drawing on historical precedent and a study of their most prevalent use he 

argues that the rationing process for future meritocratic educational and vocational 

selection decisions is the primary purpose of public examinations. In maintaining 

standards, therefore, we start by establishing the validity of the qualification by 

design, and then ensure parity of achievement by statistical means. The validity in 

the design of the assessments ensures we know what candidates can do, the statistics 

ensure that they are fairly rank ordered within a space of one to two years. This 

position is underpinned by both theoretical and pragmatic reasoning; it is neither 

theoretically tenable nor practically possible to award grades in a way that will 

satisfy the purpose of qualification to a certain performance standard. At the heart of 

this reasoning is the issue of whether or not, in awarding grades, we can provide any 

objective measure of performance. 
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1.4 Awarding grades 

 

1.4.1 The purpose of awarding grades 

The purpose of awarding grades is to ensure that candidates receive a fair result 

regardless of the difficulty of the question paper they have been set. This may mean, 

for example, trying to ascertain the mark that last year's borderline grade A candidate 

would have gained on this year’s paper. The complex structure of qualifications in 

England, however, can require certain adjustments to be made to this standard. This 

may be to bring the relative standards of qualifications offered by different awarding 

bodies into line, or to ensure, for example, that different routes to a qualification are 

of the same level of demand (Béguin, Wheadon, Meadows & Eggen, 2007). Two 

theoretical positions inform the process by which the borderline marks for key 

grades are determined: judgement and statistics. 

 

1.4.2 The theory behind judgement 

Judgemental approaches to determining grade boundaries in England draw on a 

strong criterion referencing approach. Strong criterion referencing finds its basis in 

the idea that a standard can be described and made explicit (Cresswell, 2000). 

Taking a set of observable, well defined qualitative characteristics of work at a 

certain level a judge is assumed to be able to synthesise an overall judgement of each 

script. Cresswell (2000) criticises this position on a number of levels. Firstly, 

drawing on Reader Response Theory he argues that we bring our own expectations 

to texts such as performance descriptions and impose these upon them. It is therefore 

linguistically naive to believe that performance descriptions can be objective. The 

reading of scripts generates a frame of reference which may then affect our 



1. The System of Public Examinations in England 

 

11 
 

interpretation of the scripts that follow but also retrospectively transforms our 

original understanding of those performance descriptions. Secondly, he argues that it 

is sociologically naive to believe that pure performance can be distilled from the 

context in which it is sampled. In this he draws on the literature of experts and 

novices which suggests that experts develop holistic skills specific to their area of 

expertise while non-experts need to apply rules to solve problems. The rules being 

applied by the non-experts can easily be disrupted by unfamiliar contexts in a 

manner which is unforeseen by the experts. Lastly, he draws on work in artificial 

intelligence to argue that it is psychologically naive to believe that an objective 

overall evaluation can be made from all possible quantitative judgements on various 

dimensions. 

The literature on human judgement would seem largely to support Cresswell. 

Nietzsche, for example, concluded that, 

 

The falsity of human judgement derives firstly from the condition of 

the material to be judged, namely very incomplete, secondly from the 

way in which the sum is arrived at on the basis of this material, and 

thirdly from the fact that every individual piece of this material is in 

turn the outcome of false knowledge, and is so with absolute 

necessity. (Nietzsche, trans. 2004, p. 28) 

 

More recent research has suggested that humans are better at comparative 

judgement than absolute judgement. Donald Laming’s (2004) work suggests that 

without some physical reference such as a ruler or a scale against which a 

comparison can be made, five categories of judgement is the pragmatic limit. 
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Comparison of one examination script with another falls far short of being such a 

ruler. They are a sample of incomplete linguistic artefacts which display inconsistent 

performance in the face of contextual difficulties that cannot be perceived by the 

experts judging them. 

The theory is only as good as the data that supports it. On criterion 

referencing there are plentiful examples of high profile failures. Baird (2007) 

recounts the introduction of criterion referenced examination into New Zealand in 

2004, following a significant teacher training programme to ensure that standards 

were widely understood. The pass rate in the scholarship examinations dropped to 

half that of the previous year and there was an outcry over the overall pass rate, as 

well as variability between subjects. The pass rate for physical education, for 

example, was 0 per cent. Throughout the 1980s in Britain there was a considerable 

amount of work done on the notion of grade criteria for public examinations. It 

became clear, however, that grades awarded by conventional procedures could not 

adequately be described by the criterion referenced performance descriptions (Baird, 

2007). 

 

1.4.3 The theory behind statistics 

Statistical approaches to the maintenance of standards in England have been 

concerned with calculating the probability of a group of examinees achieving the 

same distribution of grades had they taken a specific unit at a different time or with a 

different awarding body, for example. In order to calculate this probability a 

statistical model is required. A fundamental problem is therefore immediately 

apparent in that no statistical model can claim objectivity, as this extract from the 

theory of econometrics rehearses, 
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The false idol of objectivity has done great damage to economic 

science. Theoretical econometricians have interpreted scientific 

objectivity to mean that an economist must identify exactly the 

variables in the model, the functional form, and the distribution of the 

errors. Given these assumptions, and given a dataset, the econometric 

method produces an objective inference from the dataset, 

unencumbered by the subjective opinions of the researcher. 

 

This advice could be treated as ludicrous... the econometric art as it is 

practised at the computer terminal involves fitting many, perhaps 

thousands, of statistical models. One or several that the researcher 

finds pleasing are selected for reporting purposes (Poirier, 1988, p. 

183) 

 

In fitting a statistical model to examination outcomes it is conceivable that 

we may wish to control for factors such as prior ability, school type, gender, social 

and economic status, levels of preparation and motivation, as well as a host of other 

measurable and unmeasurable variables that may impact on examination outcomes. 

Such a statistical definition has become known as the catch-all definition (Baird, 

Cresswell & Newton, 2000). Cresswell (2000) reports on the conceptual difficulties 

of controlling for varying proportions of male and female candidates entering for 

specific examinations. It could be argued that the association of any of the control 

variables with examination outcomes reflect bias in those examinations rather than 

genuine differences in the general ability of the candidates (Baird et al., 2000).  
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1.5 Maintaining examination standards in practice 

 

The practice of maintaining standards in England draws on both judgement and 

statistics. Every time an examination paper has been sat and new grade boundaries 

need to be determined to compensate for changes in the difficulty of that paper, 

awarding meetings are held. In these meetings a committee of the senior examiners, 

who have written and overseen the marking of examination papers - known as the 

awarding committee, or awarders - compare candidates’ work from the current year 

in comparison with work archived from the previous year and in relation to the 

published descriptors of the required attainment at particular grades (Meyer, 2009a). 

The committee is also advised of the relevant statistical indicators such as the actual 

distribution of marks achieved and the details of the entry pattern from year to year, 

as well as more sophisticated data in the form of a predicted distribution of 

candidates’ achievement (Meyer, 2009a). Their task is to combine their qualitative 

judgement with the statistical evidence to arrive at final recommendations for the 

new grade boundaries. 

 

1.5.1 The practice of using judgement to maintain standards 

Cresswell (1997) drew on a dataset of grade boundaries that were set purely by a 

process of qualitative judgement of candidates’ work on successive occasions in a 

broad range of A-level examinations which attracted over 500 candidates. 

Attempting to explain the variation in outcome over these years he considered the 

possibility that each cohort was a sample from a population of all candidates who 

had taken that examination over its lifetime. Applying a standard z test he concluded 

the difference in outcomes between the two years could not reasonably be viewed as 
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the results of random variations between successive groups of candidates. The 

distribution of z statistics was clearly dominated by extremes at either end. 

Investigating subgroups of candidates by gender and centre type he was then able to 

dismiss the possibility that changes were due to variations in the relative proportions 

of these subgroups. Subsequent work has shown that large variations in the relative 

proportion of subgroups have little impact on the distribution of expected grades 

(Eason, 2010). As the entries from one year to the next were relatively stable he 

could also dismiss the explanation that a subgroup who were previously missing 

from the sample had entered the examination. Finally, he showed that while there 

were no year-on-year trends related to gradual improvement or deterioration in the 

work of candidates there was a clear relationship between changes in marks and the 

position of the final grade boundaries. The strong suggestion was that the examiners’ 

qualitative judgement takes insufficient account of changes in the difficulty of the 

examination papers and/or their marking. He concluded that the use of judgement in 

maintaining standards will lead to year-on-year fluctuations in outcomes that cannot 

be justified. 

This finding is consistent with earlier research that the judgement of subject 

experts is susceptible to bias dependent on the difficulty of those tests, 

 

The awarders tended to consider fewer candidates to be worthy of any 

given grade on harder papers or, alternatively, that more candidates 

reached the required standards on easier papers. (Good & Cresswell, 

1988b, p. vii) 
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Subsequent research on expert judgement has not been encouraging. In one 

experiment (Baird & Dhillon, 2005) eight GCSE English and ten A-level Physics 

awarders were given fourteen mark-free scripts in a seven mark range from around a 

grade boundary and were asked to rank order them: mean correlations were low at 

grade A for both subjects (0.16 and 0.21 respectively) and slightly better for GCSE 

English at grade C (0.42 and 0.20 respectively). Even at their best, in GCSE English 

grade C, 25 per cent of the judgementally determined boundaries were more than 

two marks away from the actual boundary. While these differences may seem small, 

a recent natural experiment related by Stringer (2010) highlights the potential 

deviation from the true standard that may occur when judgemental evidence is weak. 

In a recent examination series a change in entry pattern led to a number of A-level 

committees being provided with statistically recommended boundaries that were 

higher than they ought to have been. One committee, perhaps because the work they 

scrutinised seemed to be of a very high standard or perhaps because the marks were 

so high, spotted the mistake, and triggered an investigation. Other committees were 

less successful.  It emerged that one committee had recommended a grade E 

boundary of 37 out of 80, which it transpired was 17 marks, or 21.3 per cent of the 

total marks – from the statistically recommended boundary. If the mistake had not 

been spotted 14.7 per cent more candidates would have failed the examination than 

should have. The committee’s decision was approximately two grades out. 

Laming (2004) suggests that when faced with weak evidence people are 

unable to resist extraneous suggestion. In this case the extraneous suggestion came 

from the statistical evidence, which was misleading. It is quite conceivable therefore 

that committees are susceptible to a range of extraneous influences, some more valid 

than others, when making their judgement on scripts. These practical problems in 
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discerning the standards of examination scripts are consistent with judgemental 

approaches in a variety of disciplines. Laming’s comprehensive (2004) review finds 

examples where judgement, in the absence of clear evidence, is found lacking in the 

appraisal of art and literature, the identification of children at risk of abuse, 

eyewitness identification and criminal investigations. Human judgement, he 

concludes, is much poorer than is generally supposed. In public examinations there is 

evidence that judgement of scripts is biased in favour of the candidates (Stringer, 

2008); that this judgement is unaffected by comparisons with the work archived from 

previous years (Baird, 2000); and that this judgement is inappropriately affected by 

the consistency of a candidate’s performance (Scharaschkin & Baird, 2000). 

 

1.5.2 The practice of using statistics to maintain standards 

Since 2000 predictions based on candidates' prior achievement have been routinely 

produced to provide statistical guidance in the process of standard setting for A-

levels in England. At AQA they have increasingly been used for GCSEs. Currently, 

the predictions for Year(x) are generated using the following rules paraphrased from 

Eason (2003): 

 

1. For a given A-Level specification, match each candidate’s Year(x-1) A-Level 

grade with their Year(x-3) mean GCSE grade. 

2. For each A-Level subject, subdivide the Year(x-1) A-Level entry population 

into ten distinct categories based on candidates' mean GCSE grades; the first 

category containing candidates with the best mean GCSE grades and the 

tenth category containing candidates with the worst mean GCSE grades. 
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3. Separately for each of the ten categories created in step 2, generate the 

achieved Year(x-1) A-Level distribution of grades. 

4. For the AQA Year(x) specifications, match candidates with their Year(x-2) 

mean GCSE grades. 

5. Subdivide these candidates into the same ten distinct categories as described 

in step 2. For each category assume the Year(x) AQA A-Level grade 

distribution will be the same as that achieved by the Year(x-1) all awarding 

body A-Level candidates. 

6. Calculate an overall predicted grade distribution for the Year(x) A-Level 

specifications by weighting the category-by-category expected grade 

distributions by the numbers of candidates in each category in Year(x). 

 

Fitting a surrogate parametric proportional odds model, Pinot de Moira (2008) 

explored the limitations of the predictions supplied to awarding meetings. She found 

that the size of the entry, the skew of the independent variable (for example, mean 

GCSE category) and the actual value of the predicted grade outcome are of 

importance in assessing the worth of the predictions in an awarding situation; but 

that predictions for A-levels with entries of over 5000 candidates were accurate to 

within 2 per cent in every case at grade E and in 87 per cent of cases at grade A. For 

GCSEs the accuracy was slightly lower. The model assumes of course that outcomes 

for candidates of a given prior ability should remain the same year on year, and that 

the baseline remains stable. Where there are doubts regarding the stability of the 

baseline the baseline measure can be standardised to ensure that stability. 

 

  



1. The System of Public Examinations in England 

 

19 
 

1.5.3 Combining judgement and statistics 

As has already been described the standard practice in maintaining standards in 

public examinations in England is to present awarders with the task of combining 

their judgement with the statistical indicators. This model has been called weak 

criterion referencing (Baird et al., 2000). In essence the awarders are required to 

compare the performance of candidates having taken into account the relative 

difficulty of the items they have answered. This practice has not been without its 

detractors, 

 

No estimate of the cost of these mechanisms and their various 

procedures to institutions (and the taxpayer) has yet been done but it 

is likely to run into millions every year. These processes are 

compounded by assessment models that combine the goals and 

processes of outcomes and criterion-referencing with remnants of 

norm-referencing. Not only is this arcane and complicated, even for 

those inside assessment systems, but the overall effect is to create an 

ideological, epistemological and technical quagmire around standards 

and confusion about how to measure validity and reliability. 

(Ecclestone, 2006, p. 8) 

 

Stringer (2008) describes the practical problems of this combined approach 

as follows: 

 

Informing examiners of the average difference in prior attainment 

between two cohorts cannot help them to make comparisons between 
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individual scripts from the two cohorts because the examiners do not 

know anything about the individuals whose scripts they are 

comparing. Even if the examiners had access to the necessary 

information about each of the candidates whose work they scrutinised 

and a computer to analyse these data, such an underpowered analysis 

would be unhelpful for quantifying the effect, and possibly unreliable 

at indicating even its sign. The statistical and judgemental evidence, 

rather than converging on the same concept of difficulty, point at 

distinct concepts. (p.3) 

 

Rather than converging on the same solution, the statistics and the 

judgement may point in different directions or be of a different magnitude. In 

the short term this may produce the sort of unexplained variation that 

Cresswell isolated; in the longer term the impact may be more damaging. 

Figure 1.2 shows overall AQA A-level final outcomes and predicted 

outcomes at grade A between 2002 and 2007. Attempting to explain the 

apparent increase over this period Stringer (2008) considers the role of both 

predictions and judgement in this increase. He concludes that even when 

baseline measures for the predictions are standardised, the predictions are 

cumulatively inflated by small adjustments made every year to the grade 

boundaries according to the awarders’ judgement. It is of course impossible 

to discount the possibility that the standard of work may actually have 

improved to this extent over this period, but given the finding that awarders 

cannot distinguish between scripts within a small range of marks and their 

tendency to give candidates the benefit of the doubt, Stringer's conclusion 



1. The System of Public Examinations in England 

 

21 
 

that the current awarding procedures do not adequately maintain standards 

seems justified. Stringer finds corroboration in Tymms and Fitz-Gibbon who 

quote a report by SCAA/Ofsted1 from 1996, which acknowledges that “the 

emphasis given to awarders’ judgement of the quality of candidates’ work 

rather than to statistical data, coupled with a tendency to choose the lower of 

two scores when there is a decision to be made about setting the minimum 

mark for a grade, may have allowed small, unintended but cumulative 

reductions in grade standards in successive years” (SCAA/Ofsted, 1996 cited 

in Tymms & Fitz-Gibbon, 2001, p.166). 

 

Figure 1.2: Overall AQA GCE final outcomes and predicted outcomes at 

grade A between 2002 and 2007 

 

The situation is reminiscent of the fatal swim that Laming (2004) recounts in 

which a coach refused to allow her swimmer to abandon her attempt to swim the 

English Channel. Despite the advice of the official observer and the skipper of the 

support vessel that the swimmer was in extreme distress the coach believed that the 

swimmer would succeed and should carry on. Laming’s analysis is that the coach has 

been watching her swimmer constantly throughout the swim, searching for signs of 

                                                      
1 School Curriculum and Assessment Authority (SCAA)/Office for Standards in Education (Ofsted) 
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deterioration in her condition. The very fact that she has been paying such care 

means she does not notice the very small but continual increases in distress from one 

instant to the next. The official observer and the skipper of the trawler were not 

constantly observing the swimmer so the cumulative increases in the distress were 

more apparent. The swimmer drowned. Year after year, chairs of examiners testify to 

the fact that their recommended grade boundaries carry forward standards over time 

in as much good faith as the swimmer's coach. The danger is that the incremental 

changes have created extreme distress in the system of public examinations. 

Even if it is accepted that these increases represent genuine improvements in 

performance the way in which judgement and statistics are combined may differ 

between awarding bodies and lead to quite different definitions of standards. The 

regulators' Code of Practice is silent on how judgement and statistics should be 

combined (Jones, 2009a). This inadequate specification is not conducive to 

producing consistent standards (Cresswell, 2010). 

 

1.6 Discussion 

 

It is clear that the public examination system in England carries the expectation that 

in maintaining standards the actual performance of candidates in terms of their 

knowledge, skills and competencies is clearly described, considered and maintained. 

In order to meet this expectation qualitative judgement has been employed despite 

the weight of evidence that suggests it is unable to make the fine discriminations that 

are required of it. As a result of incremental year-on-year changes made on the basis 

of the recommendations derived from this judgement, examination outcomes over 

time have appeared to increase in a manner which is hard to defend. Reliance on 
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statistics alone however would open the system up to charges that the process of 

maintaining standards is a statistical illusion. 

Baird, adapting Fawcett’s (2005) criteria for evaluation of theories, suggests 

that a definition of examination standards should ideally meet the following criteria: 

 

1. It should have a theoretical underpinning, referring explicitly to the 

educational intentions of standards and comparability. The theory should be 

consistent, as opposed to predicting more than one outcome for any particular 

case. 

2. The definition should be testable and supported by evidence. 

3. As with any good theory, the definition should be parsimonious. 

4. The definition should be practically useful in our educational culture. 

 

According to Baird (2007), all of the definitions that have been adopted in 

England have fallen short of these criteria. Cresswell (2010) is less concerned with 

the theory and has set out a requirement for an agreed measure between awarding 

bodies for the comparability of standards which is credible and objective. Having 

shown that both statistical models and judgement are subjective measures it is time 

to consider whether Item Response Theory could contribute to providing an 

objective comparison of actual performance standards. 
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2. Item Response Theory and Test Equating 

 

2.1 Overview 

 
This chapter considers a range of test theory models that may be appropriate for use 

with public examinations in the UK. It then examines why an equating design is 

required, the various equating designs available and how they are used in the US and 

the Netherlands. Finally it considers the equating methods that are available. It 

concludes that an IRT approach theoretically holds great promise, but that IRT 

approaches must be tested in the practical context of public examinations in the UK 

to determine how useful they are. 

 

2.2 The Rasch model and Item Response Theory 

 
The essential problem in grading is deciding the mark that candidates would have 

gained on previous versions of the same test. This is essentially a problem for test 

theory which was developed in the 1960s in order to assess performance and 

achievement across groups in which not all persons had responded to all items. 

Under this frame of reference, this year's test could be considered a subset of items 

from a larger pool. The application of test theory, however, is complicated by the 

existence of two paradigms: the traditional approach represented by Item Response 

Theory and the models of Lord and Novick (1968) and Birnbaum (1968); and the 

Rasch model (Rasch, 1960). 
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2.2.1 The Rasch paradigm 

The Rasch model is derived from the epistemic principle that comparisons between 

objects of interest should be carried out independently of the set of agents which are 

instrumental for the comparisons, and vice versa (Fischer, 2007). In test theory this 

means that the comparison between any two persons should be independent of the 

items on the basis of which this comparison is made (Andrich, 2004). Rasch termed 

this principle Specific Objectivity (Rasch, 1977). This insight occurred to Rasch 

following a discussion with Ragnar Frisch, a Norwegian economist and later Nobel 

Prize winner in which he described how the person parameter had fallen out of one 

of his mathematical derivations, 

... Until this point Frisch had only listened politely... on seeing [the 

elimination of parameters] Frisch opened his eyes widely and 

exclaimed: “ it... was eliminated, that is most interesting!” And this he 

repeated several times during our further conversation. To which I of 

course agreed every time - while I continued reporting the main 

results of the investigation and some of my other work. 

 

Only some days later I all of a sudden realised what in my exposition 

had caused this reaction from Ragnar Frisch. ... 

 

What Frisch's astonishment had done was to point out to me that the 

possibility of separating two sets of parameters must be a fundamental 

property of a very important class of models. (cited in Andrich, 2004, 

p. 149) 
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Specific Objectivity is more commonly known as invariance. For dichotomously 

scored items, the Rasch model resulting from the condition of invariance is: 
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As there is no information in a person's pattern of responses their total score is 

sufficient for the parameter beta. This condition of sufficiency means that equation 

(2.1) can be rewritten as follows: 

Pr {response to i  is positive and to j negative, given only one is positive} =  

 

 

 

which does not contain the person parameter, and characterises comparisons of items 

which are invariant relative to the locations of persons (Andrich, 2004). 

It is the realisation of the concept of sufficiency that Rasch felt was his 

substantial contribution to the theory of knowledge (Andrich, 2004). Sufficiency is 

not merely a nice concept, it allows axiomatic, fundamental, measurement, known as 

additive conjoint measurement compatible with the laws of physics (Andrich, 2004). 

Sufficiency is not easily realised, however. The Rasch model is extremely restrictive. 

It requires, among other things, unidimensionality, no guessing, items with the same 

discrimination and items that perform consistently with respect to variables such as 

gender, age and education (Fischer, 2007). 

 

2.2.2 The traditional paradigm 

In the traditional paradigm a model is chosen to account for data which are given 

(Andrich, 2004). If the model does not fit more parameters may be added or the 

(2.1) 
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model discarded. If the Rasch model does not fit the data, therefore, then a more 

general model is fitted: 
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where alpha characterises the discrimination of item i. This is known as a two-

parameter (2-pl) IRT model. While it may seem reasonable to model the 

discrimination of items discretely, the loss of sufficiency means that, under Item 

Response Theory models, certain assumptions regarding person parameters have to 

be made (Bock & Moustaki, 2007). Further parameters can be added to deal with 

other restrictions on the Rasch model. Parameters can be added to relax the 

requirement for conditional independence of responses to items (Wainer, Bradlow & 

Wang, 2007); for guessing (Lord & Novick, 1968); and for multiple dimensions 

(Reckase, 1985). In all cases a candidate’s summed score is no longer a sufficient 

statistic. 

 

2.2.3 The Rasch controversy 

The requirement for all items to share the same discrimination parameter has led to a 

great deal of misunderstanding of the purpose of the Rasch model, 

 

... the Rasch model... includes only one free item parameter, that for 

difficulty. ... items that fit a one-parameter model all have the same 

discrimination parameter ... 

 

(2.3) 
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These assumptions about items fly in the face of common sense and a 

wealth of empirical evidence accumulated over the last 80 years. 

(Traub, 1983, p. 64) 

 

The Rasch model is not, however, an omnibus method for the analysis and 

scoring of all sorts of tests. Rather, it is a guideline for the construction or 

improvement of tests; an ideal to which a test should be gradually approximated, so 

that measurement can profit from the unique properties of the Rasch model (Fischer, 

2007). Having derived his model Rasch found that the second test he attempted to fit 

to his model showed substantial misfit. Rather than adapting the model, however, he 

sought to understand the cause of the misfit. He discovered that the increased 

discrimination of items towards the end of the test which were causing the misfit was 

due to an unintended speeded dimension to the test. Once this speeded dimension 

had been removed, he found that the model showed satisfactory fit (Andrich, 2004). 

 

2.2.4 Generalisations from the Rasch model 

2.2.4.1 The Partial Credit Model 

Most assessments delivered at GCSE and A-level require structured answers. Within 

the Rasch family of models the Partial Credit Model (Wright & Masters, 1982) 

extends the dichotomous model so that partial credit can be given to ordered 

responses to a single stimulus. 

 

2.2.4.2 OPLM 

The ‘One Parameter Logistic Model’ (OPLM) relaxes the assumption of equal 

discrimination between items as it posits that each item belongs to one of a few 
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classes of items with different discrete rational discrimination parameters. Each item 

is first assigned to one of the classes by means of a heuristic procedure, then its 

discrimination is considered as fixed and given (Verhelst & Glas, 1995). Under the 

2-pl model item discrimination parameters are free, while in OPLM they are fixed a 

priori. This allows items with different discrimination values to be modelled while 

preserving the mathematical and theoretical advantages of the Rasch model derived 

from the use of total score as the sufficient statistic for ability (Verhelst & Glas, 

1995). 

 

2.3 Test equating 

 

2.3.1 Indeterminacy 

Rasch and Item Response Theory scales have a location indeterminacy which 

depends on where the zero point is set. Usually magnitudes of item difficulties are 

reported relative to the mean calibration of a particular set of items. In order to place 

two items from two tests on the same scale of difficulty or two cohorts on the same 

scale of ability a test equating design needs to be in place. 

 

2.3.2 Criteria for equating 

Equating, according to the ‘crude and intuitive theory of test equating’ (Holland, 

Dorans & Petersen, 2007, p. 173) requires the following: 

 

a) The equal construct requirement. The two tests should both be measures of 

the same construct (latent trait, skill, ability). 
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b) The equal reliability requirement. The two tests should have the same 

reliability. 

c) The symmetry requirement. The equating transformation for mapping the 

scores of Y to those of X should be the inverse of the equating transformation 

for mapping the scores of X to those of Y. 

d) The equity requirement. It should be a matter of indifference to an examinee 

to be tested by either of the tests that have been equated. 

e) The population invariance requirement. The equating function used to link 

the scores of X and Y should be the same regardless of the choice of (sub) 

population from which it is derived. 

 

In practice, a) and b) mean that the tests need to be built to the same content 

and statistical specifications. Requirement c) is a technical concern that, for example, 

excludes regression as a possible equating technique. Requirement d) is primarily 

theoretical and hard to evaluate empirically. Lord (1980) shows that property d) only 

holds if Form X and Form Y are perfectly reliable or Form X and Form Y are strictly 

parallel. Requirement e) may be just as unattainable in practice (Livingston, 2004) 

but it is easier to test empirically (Holland et al., 2007). Quantitative measures can be 

developed that indicate the degree to which equating functions depend on the 

subpopulations used to estimate them (Dorans & Holland, 2000). 

 

2.3.3 Equating designs 

Béguin (2000) distinguishes between two classes of test equating design (data 

collection procedures). The first class contains designs with a single group or 

randomly equivalent groups. The assumption of randomly equivalent groups entails 
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that the groups in the design are drawn from the same population and, as a 

consequence, they have the same statistical properties. The second class contains 

designs for which the assumption of randomly equivalent groups may not hold. In 

these non-equivalent groups the respondents are assumed to be drawn from different 

populations. It is this latter design which is useful for equating examinations since 

their performance standard may change from year to year. 

For non-equivalent groups to be equated some proportion of the candidates in 

each group must have taken some proportion of items in common. Figure 2.1 

illustrates the anchor test non-equivalent groups design. In addition to their 

designated test form each group takes the same linking test which is referred to as an 

‘anchor test’. The anchor test can be internal, in which case the scores on the test 

contribute to the candidates' overall score or the anchor test can be external, in which 

case the scores do not contribute to the candidates' overall score. 

 

 

Figure 2.1: Anchor-test non-equivalent groups design (Béguin, 2000, p. 7) 

 

Figure 2.2 illustrates a pre-equating non-equivalent groups design in which 

the reference form of the test is administered together with subsets of new items. Not 

all of the new items need to be selected for the new form nor do all items of the new 

form have to be administered with the reference test. The new items are administered 

in such a way that the test takers cannot distinguish between the pre-test items and 
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the items of the actual examination. Again, candidates may or may not be given 

credit for their answers to the new items. 

 

Figure 2.2: Pre-equating non-equivalent groups design (Béguin, 2000, p. 8) 

 

Figure 2.3 illustrates the post-equating non-equivalent groups design in 

which the reference and new form are presented simultaneously to different linking 

groups. In pre-equating, the new form is administered before it is to be used 

operationally, while in post-equating, the new form may have been administered 

operationally before equating data has been collected. The post-equating design is, 

therefore, the most secure design as there is no risk of operational items being leaked 

through the equating design. The major challenge of the post-equating design is to 

find a suitably motivated cohort who will undertake the equating test forms. 
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Figure 2.3: Post-equating non-equivalent groups design (Béguin, 2000, p. 9) 

 

2.3.4 Practical issues for test equating designs 

In the context of high-stakes testing test security is paramount. In order to disguise 

items that are being used for equating of pre-testing they are often embedded within 

sections of scored operational items. This makes the item parameters susceptible to 

change due to context effects. If they are placed in different positions in the test their 

relative proximity to other items or the start or end of the test may affect their 

difficulty or discrimination. There is also pressure to minimise the number of new 

items that any candidate is exposed to. This may make anchor portions relatively 

unreliable. As noted above only a proportion of the new items on a test form need to 

be pre-tested, and security concerns would dictate that this proportion is as low as 

possible. Without pre-testing of the items, however, problems in their content or 

level of difficulty cannot be detected and the resulting dataset may be less amenable 

to equating. Finally, unrepresentative or unmotivated samples undermine equating. 

Special study data collections may minimise security concerns but appropriate 

incentives for performance need to be in place. 
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2.3.5 Some case studies in test equating 

2.3.5.1 The National Assessment of Educational Progress (NAEP) 

The most extensive application of Item Response Theory at present in the US is the 

National Assessment of Educational Progress (NAEP), a nationwide survey of 

educational outcomes reporting to the States and the general public. During each 

assessment year a probability sample of schools is drawn in the participating states; 

within each school, a random sample of students is then drawn at each of several 

grade levels. In group testing sessions, each of the students is randomly assigned a 

form of a multiform assessment instrument appropriate to his or her grade level. The 

instrument is constructed by assigning items covering several areas of the curriculum 

to forms in a balanced incomplete block design in which each area of all forms share 

an equal number of items in common. There are too few items in each form to 

support reliable reporting of achievement scores of individual students; rather, the 

purpose is to give dependable estimates of average achievement at the state and 

national level. This method of obtaining item data from individual respondents in 

more than one area of item content to assess outcomes at the group level is called 

multiple matrix sampling (Bock & Moustaki, 2007). The assessment forms also 

include a certain number of items held over from previous assessment years so that 

the results can be expressed on the same scale from year to year (Bock & Moustaki, 

2007). 

 

2.3.5.2 The National Assessment of Educational Progress (NAEP) anomaly 

The cornerstone of IRT is the property of invariance of item and person parameters 

(Lord, 1980). This property implies that the parameters that characterise an item do 

not depend on the ability distribution of the examinees and the parameters that 
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characterise an examinee do not depend on the set of items. When the IRT model fits 

the data, the same item parameters are obtained for the item regardless of the 

distribution of the ability in the group of examinees used to estimate the item 

parameters. An extension of this property is the assumption that item parameters are 

invariant across different test forms. Until 1986, the prevailing view was that item 

parameters are robust to changes in context. Following the NAEP anomaly in 1986, 

however, that view was substantially revised (Beaton & Zwick, 1990). 

Designed to measure changes over time the NEAP suffers from the tension 

between keeping its content relevant while following the well-rehearsed maxim that 

to measure change you should not change the measure. To compensate for changes 

in the measure deemed necessary to keep content relevant, an IRT test equating 

design was used. An anchor was constructed that was repeated over time, but 

following a major overhaul for the 1986 session the anchor items were administered 

in tests that differed in length, composition, timing and administration conditions. 

The result was catastrophic: the original analysis showed a dramatic decline in 

standards of 9- and 17-year-old students, but an increase in performance of 13-year-

olds. Such anomalous results defied credibility and a major investigation was 

launched. The finding was that although many of the same items were used in both 

the 1984 and the 1986 assessments, student performance on these items differed 

substantially when the items were administered in different contexts. In particular, 

there was no assurance that the time available for the common items was held 

constant over administrations, and analysis showed that the percentages of 

candidates who failed to reach certain items were substantially different between 

administrations (Zwick, 1991). The warning signs were there in the original data as 

the item facilities had changed greatly, but only a carefully designed counter-
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balanced experimental design could tease out the proportion of the change that was 

due to the change of context of the items. IRT could not compensate for the changes 

in the assessment instrument. 

The NAEP anomaly is clearly a cautionary tale. Under all test equating 

designs it is now common practice for anchors to be delivered as discrete blocks so 

that their administration and the time available for their completion can be 

standardised across different sessions. This approach would be suited to assessment 

designs that administer blocks of questions around specific stimuli such as a passage 

of text or a diagram. To accommodate this design e-assessment delivery should 

therefore be able to facilitate the delivery of discrete blocks within a test, each with 

its own time limit. It then becomes the key responsibility of the test agency to 

monitor the performance of items that are re-used over time for evidence of drift in 

any of their key parameters. 

 

2.3.5.3 College admissions testing in the US 

Two batteries of tests are used for large-scale college admissions testing in the US: 

the SAT and the ACT. The SAT consists of a number of sections intended to 

measure developed verbal and mathematical reasoning skills as well as critical 

reading and writing. Item types are predominantly multiple-choice. The ACT 

includes a battery of four mandatory multiple-choice tests: English, Mathematics, 

Reading, and Science. These tests are intended to measure a student’s readiness for 

college and the extent to which a student is prepared to profit from college 

experience (Schmeiser, 2004). 

The following account of the equating procedures used comes from Liu, 

Harris and Schmidt (2007). The SAT programme uses two types of equating design: 
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the non-equivalent groups anchor test design and the random/equivalent groups 

design. New forms are introduced in pairs. The first new form is equated through the 

NEAT design, while the second new form is equated to the first one through an EG 

design. These two forms are distributed randomly (spiralled) amongst candidates to 

ensure equivalent groups in the same administration. 

The ACT equating design uses a carefully selected sample of examinees from 

one of the national test dates and administers a spiralled set of forms to that sample. 

One of the forms, an anchor form, has already been equated, and serves as the link to 

their scaled score. The use of randomly equivalent groups allows the use of the 

relatively simple equipercentile equating methodology. In equipercentile equating, a 

score on form X of a test and a score on form Y are considered to be equivalent if 

they have the same percentile rank in a given group of examinees. 

Two types of pre-testing are employed by the SAT and the ACT to facilitate 

the equating designs. Pre-test items can be embedded within operational sections so 

that examinees are not sure if they are responding to an operational item or a pre-test 

item. This method provides optimal item statistics for the pre-test items; however the 

time and energy that the pre-test items require may impact on the examinee’s score. 

Items are not usually appended to the end of a test where they may have less impact 

on a candidate’s scores as fatigue and lack of time may affect the item statistics. The 

pre-test items do not contribute to the examinees’ scores. 

Pre-testing may also occur in a separately timed section of the test packaged 

along with the operational test and given at the same administration. The SAT test 

book consists of operational sections containing operational items, and a variable 

section containing either equating or pre-test items. The variable section can appear 

in any of the sections of the tests, so that test takers do not know which section 
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contains pre-test items (or equating items) and which sections contain operational 

items. Use of a separate section ensures the item data is gained from a representative 

and motivated test taking population working under realistic conditions. 

Operationally, it is also a very inexpensive way to collect data. 

 

2.3.5.4 Equating in the Netherlands 

The following account is extracted from Alberts (2001). The concerns in the Dutch 

assessment system are similar to those in England. Candidates progressing to 

university or other forms of tertiary education take a profile of subjects that 

constitute a diploma. In every subject a single pass/fail cut-off score is set each year 

to ensure that performance in different years is equally valued and that examination 

outcomes remain relatively stable year on year regardless of the difficulty of the tests 

that have been set. Until 1994 these cut-off scores were set to ensure that the same 

percentage of candidates would pass each subject every year. Concerns over the 

equivalence of performance standards, however, using this equipercentile approach, 

led to a series of experimental equatings which revealed that these performance 

standards were not being maintained.  

The post-equating design was very similar to Figure 2.3 above. As there are 

four different streams of education in the Netherlands, each with its own teaching 

programme to match the ability and work pace of the pupils, a cohort from a 

different stream was chosen for the post-equating. To minimize security concerns the 

equating took place after the examinations had been administered. New cut-off 

scores were determined and presented to the committees responsible for the 

examinations. From discussions with these committees, it appeared that they found it 

difficult to understand how the equivalent cut-off scores were arrived at. They were 
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also very reluctant to accept the use of within-group comparisons carried out using 

non-equivalent groups. 

A further study followed, and in the face of continuing resistance from the 

committees responsible for the examinations, the equatings were replicated in three 

different ways. A first replication made use of pupils from the educational type the 

exam was meant for, instead of a non-equivalent group, one month before the exam. 

A second replication re-analysed the data using a different equating method. In a 

third replication 1000 pupils from the authentic examination population were added 

to the design. The results revealed that the equatings were indeed robust. The author 

concludes, 

 

The results suggest, rather, a tendency in standard setting to use the 

score distribution and set the cut-off score at an acceptable percentage 

of passes, without taking into consideration the possibility that the 

whole population might be performing better or worse than before. 

The Cito researchers considered that the equating procedure allowed 

estimation of the difficulty of a particular exam independent of the 

performance level of the population that took it in the year concerned 

(Alberts, 2001, p. 364) 

 

As a result, in 1994, a post-equating non-equivalent group design was introduced to 

operational standard setting procedures for 11 secondary school examinations. 
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2.3.6 Linking designs 

In order to maintain standards over a succession of testing sessions a linking design 

that minimises the difference between equatings must be considered. Kolen and 

Brennan (2004) suggest four rules by which these designs can be evaluated: 

 

Rule 1: Avoid equating strains by minimising the number of links that affect 

the comparison of scores on forms at successive times. 

Rule 2: Use links to the same time of the year as often as possible. 

Rule 3: Minimise the number of links connecting each form back to the initial 

form. 

Rule 4: Avoid linking back to the same form too often.  

 

The design must also take into account practical considerations such as re-take 

candidates. 

Figure 2.4 illustrates a linkage plan that initially ties three sessions to an 

established standard. There is no attempt to link tests taken at different times of year 

(rule 2) and each new link carries forward the new standard (rule 4). It does mean 

that the standards of the test sessions within any year could slowly drift apart. Figure 

2.5 attempts to address this problem by introducing a double link: one link to the 

previous test one year prior and one to the original reference test. Double links, 

however, could prove logistically complex.  
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Figure 2.4: A single link plan 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: A double linking design 
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2.3.7 Item Response Theory equating methods 

Once data has been collected the technical process of equating tests can be 

undertaken. A distinction can be made between two types of equating methods based 

on IRT models. In IRT true score equating (Lord, 1980), equivalence is directly 

based on the latent ability scale. In IRT observed score equating (Lord & Wingersky, 

1984) and IRT observed score equating of number-correct scores (Zeng & Kolen, 

1995) equivalence is defined in terms of properties of observed scores. 

 

2.3.7.1 IRT true score equating 

In IRT true score equating, equivalence is obtained through the expected number 

correct score under the IRT model, which is also called the number correct true score 

(Kolen & Brennan, 2004) or true score (Lord & Wingersky, 1984). The true score on 

a test form is defined as the sum of probabilities of correct answers under the IRT 

model at given levels of ability. Scores on different forms are considered equivalent 

if they are associated with the same ability. 

IRT number correct score equating consists of three steps: 

 

1. Estimation of the parameters of the IRT model 

2. Estimation of the distribution of scores on the form each group were not 

administered using the parameters of the IRT model 

3. Equipercentile equating between the distribution of scores on the form each 

group were administered and the estimated distribution of scores on the form 

each group were not administered 
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ConstTestBTestB +='   

while measures that are common to both tests are represented by: 

2/)]([ ConstLinkBLinkALink ++=   

 

Before items are placed on a common scale, however, the relationship 

between the parameter estimates of link items in LinkA and LinkB should be 

examined. If the relationship is close to identity then the invariance of the item 

parameters across the test forms holds. Where this does not hold link items may have 

to be removed. Rasch equating is the simplest form of equating but has the built-in 

rigid assumption of equal discrimination between items which may not hold in 

practice. 

  

2.3.7.3 OPLM equating 

The OPLM equating procedure is built on the concept of booklets. Each booklet 

contains items which may be shared across other booklets. These common items 

allow scores on the different booklets to be compared. CML estimation is then used 

to calibrate the difficulty and discrimination parameters across all booklets 

concurrently. Once the item parameters have been estimated they can then be fixed 

so that the population parameters can be assessed using the marginal maximum 

likelihood (MML) method. These population parameters can in turn be used to 

establish expected score and estimated latent ability distributions. 

 

2.3.8 Evaluating the quality of equating 

Equating quality is determined largely by the quality of the tests (including anchors) 

that are to be equated. Concepts from Classical Test Theory such as item test 

(2.5) 

(2.6) 
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correlations, item facilities and item discriminations are important measures of this 

quality (Holland et al., 2007). When an Item Response Theory model is fitted further 

checks need to be made on the fit of the model and violations of assumptions such as 

the conditional independence of the responses and unidimensionality (Kolen & 

Brennan, 2004). Any violation of these assumptions does not necessarily, however, 

rule out the use of an IRT model. Béguin (2000), for example, found that the 

equating procedure based on the Rasch model used in the Netherlands for 

examinations of language comprehension were robust against violations of 

unidimensionality and guessing. 

Returning to equating theory, it is also important to evaluate how well the 

tests to be equated operate together. The need for an equal construct between the 

tests can be evaluated through correlations, differential item functioning statistics 

and measures of overall model fit (Holland et al., 2007). The reliability of the tests 

should be compared. The symmetry of the equating function is most easily checked 

within the Rasch equating through a line of best fit that is drawn through the 

calibrations of item parameters within each test form (Wright & Stone, 1979). An 

identity line means the equating transformation for mapping the scores of Y to those 

of X is the inverse of the equating transformation for mapping the scores of X to 

those of Y. The further the line departs from this idea the further the symmetry of the 

equating function will be degraded. Finally the invariance of the equating function to 

the representation of subgroups can be calculated (Dorans & Holland, 2000). 
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2.4 Discussion 

 

This chapter has examined the potential of IRT in delivering an objective measure of 

performance standards for the public assessment system in England. A consideration 

of the models available suggests that only the Rasch model aspires to provide an 

objective measure of performance. This aspiration is supported by the principle of 

specific objectivity: that comparisons between objects of interest should be carried 

out independently of the set of agents which are instrumental for the comparisons. 

To achieve this specific objectivity the Rasch model removes the person parameter 

in comparisons of performance on test items. As a result the ability of persons on a 

latent trait scale can be compared regardless of the selection of items against which 

this ability was measured. This would seem to be a powerful argument for the use of 

the Rasch model in attempting to derive an objective measure of performance. 

However, the Rasch model is an idealisation, a template for test construction, which 

is unlikely to hold in practice. 

If the Rasch model shows poor fit to the data then the data can be improved 

or an alternative, more traditional, paradigm can be adopted. Under this paradigm the 

model is adapted until it shows reasonable fit and delivers successful predictions. 

Claims can no longer be made, however, for its objectivity. Subjective decisions 

need to be taken regarding which parameters will be added to the model. Relaxation 

of the requirement for equal discrimination between items seems an obvious first 

step; however there are many other parameters that could be considered. Relaxation 

of the requirement for conditional independence of responses to items may seem 

equally necessary where tests are organised by theme, and those themes are 

introduced by specific stimuli. 
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Once a model has been fitted to the data, its fit and observance of the 

assumptions of the model need to be examined. Most work within test theory has 

taken place on unidimensional IRT models. The extent to which the test data support 

the assumption of unidimensionality needs to be examined. Violations of the 

assumption of unidimensionality do not necessarily mean, however, that the test 

equating will not yield accurate predictions. 

Apart from the statistical concerns of fitting models to data or data to models 

IRT test equating requires a test equating design to be in place. These designs need 

to ensure that high quality, reliable and representative samples of test data are 

collected. In the US test equating designs are built into the operational procedures for 

the major college entrance examinations. This ensures that the candidates taking 

equating items are highly motivated and representative of the population and the 

process is operationally very efficient. The designs, however, raise significant ethical 

issues as they may interfere with the performance of candidates on their live tests. 

There are also security concerns related to the pre-testing of live items under these 

designs. Further, they may only be feasible for multiple-choice style tests delivered 

to large, relatively stable populations. 

In the Netherlands the ethical and security concerns involved with test 

equating designs were solved through equating after the live examinations have 

taken place. While initial studies showed the results of this design to be robust there 

was substantial resistance to using statistical inferences that had been drawn from a 

different population. Nevertheless, the strong suggestion is that this post-equating 

design has delivered an objective measure of performance standards. 

Theoretically, an IRT approach seems to hold up against Baird’s (2007) 

criteria for the definition of examination standards. It has a theoretical underpinning 
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explicitly related to the educational intentions of standards and comparability if that 

is understood as ranking candidates consistently regardless of the specifics of their 

assessment session (Lord & Novick, 1968). IRT models are testable and supported 

by evidence as the model may or may not predict the data (Hambleton, Swaminathan 

& Rogers, 1991). The definition of IRT is parsimonious as it consists of two 

postulates: the underlying performance of an examinee on a test item can be 

predicted by a set of factors called traits, latent traits, or abilities; and the relationship 

between examinees’ item performance and the set of traits underlying item 

performance can be described by a monotonically increasing function (Hambleton et 

al., 1991). The final criteria, however, is whether it can practically useful in an 

educational culture. This is, as yet, untested. The first step in testing the usefulness of 

IRT is to examine how the data fit the models. 
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3. Model Fit in a Frequentist Framework 

 

3.1 Overview 

 

From a theoretical perspective IRT appears to offer a framework within which an 

objective measure of performance standards can be generated. By extracting ability 

from the specific set of items that examinees have taken it solves the problem, which 

is currently poorly addressed by expert judgement, of how to adjust test scores for 

the difficulty of each individual test. In order to implement IRT models, however, 

and for the inferences derived from these models not to be misleading, some strong 

mathematical and statistical assumptions must be met. The purpose of this chapter is 

to examine the methods of assessing how well those mathematical and statistical 

assumptions are met and to apply those methods to response data from a number of 

tests. 

 

3.2 Two paradigms of model fit 

The study of model fit is complicated once again by the existence of two paradigms: 

the Rasch paradigm and the IRT paradigm. Under the Rasch paradigm the model is 

given so the purpose of fit analysis is to consider how the quality of the data can be 

improved. In building a valid test, for example, the question could be asked whether 

all the responses stimulated by the test items create a coherent description of the 

latent variable. Under the IRT paradigm the data is given so the purpose of fit 

analysis is to consider whether any model fits well enough or whether more complex 

models need to be explored. 
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The different paradigms give rise to different emphases in tests of model fit. 

The Rasch paradigm prioritises descriptive and diagnostic item level statistics over 

global statistical tests, 

 

The Rasch model is an idealization, never achieved by real data. 

Accordingly, given enough data, we expect to see statistically 

significant misfit to the model. If the current data do not misfit, we 

merely have to collect more data, and they will! In essence, the null 

hypothesis of this significance test is the wrong one! We learn 

nothing from testing the hypothesis, "Do the data fit the model 

(perfectly)?" Or, as usually expressed in social science, "Does the 

model fit the data (perfectly)?" Perfection is never obtained in 

empirical data. What we really want to test is the hypothesis "Do the 

data fit the model usefully?" And, if not, where is the misfit, and what 

is it? Is it big enough in size (not "statistical significance") to cause 

trouble? This is the approach used in much of industrial quality-

control, and also in Winsteps (Linacre, 2008, p. 402). 

 

The IRT paradigm prioritises statistical tests of global hypotheses that 

indicate whether more complex models are needed, 

 

As can be observed from the table, model fit is unsatisfactory. A 

normal way to proceed would be to fit other models… (van Rijn, 

Verstralen & Béguin, 2009, pp. 11-12) 
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Under the IRT paradigm measures of item fit are primarily required because the 

items may be re-organised into different test forms. 

 

3.3 Assessing model fit 

 

The following two steps are recommended for assessing model fit: 

 

(i) Checking the underlying assumptions such as unidimensionality 

(ii) Assessing the agreement between observations and model predictions 

 

There are a large number of potential tests which check the underlying assumptions 

of the model and the agreement between observations and model predictions so only 

a small subset will be explored here. A comprehensive description of the tests 

available can be found in Swaminathan, Hambleton, and Rogers (2007). 

 

3.4 Checking the underlying assumptions of unidimensionality 

 

3.4.1 Linear factor analysis 

While multidimensional IRT models have been developed their use is not yet 

operational. For this reason, testing whether the complete latent space is 

unidimensional is critical. Under the IRT paradigm a popular approach is the use of 

linear factor analysis. In this approach, 

 

(i) the matrix of inter-item correlations is obtained 
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(ii) the percent of variance explained by the largest eigenvalue along with the 

point where a break occurs in the plot of the eigenvalues, or the scree 

plot, are examined; 

(iii) based on the above considerations a determination is made regarding the 

dimensionality of the item response data. 

 

This approach has several drawbacks. When the item responses are discrete, 

the inter-item correlations will be small. The discrete item responses may have non-

linear relationships with the underlying ability continuum. Simulation studies have 

shown that in unidimensional Item Response Theory applications, the largest 

eigenvalue of the matrix of tetrachoric correlations will typically account for only 

about 25 to 35 per cent of the variance. Drasgow and Lissak (1983) propose 

examining the latent dimensionality of dichotomously scored item responses through 

the second eigenvalue of the tetrachoric correlations matrix of the dichotomous 

items. This has been implemented in R (R Development Core Team, 2010) by 

Rizopoulos (2006) through a Monte Carlo procedure which is used to approximate 

the distribution of the second eigenvalue statistic under the null hypothesis (the IRT 

model). 

 

3.4.2 Rasch Principal Components Analysis of residuals  

If all the data is explained by the Rasch model then the residuals would be random 

noise, independent of each other. Principal Components Analysis of the standardised 

residuals identifies characteristics in items which could indicate secondary structures 

or sub-dimensions within the data (Linacre, 2008). Principal Components Analysis is 
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not effective, however, if there are two dimensions with an equal number of items, 

and these are interlaced in difficulty (Tennant & Pallant, 2006). 

 

3.5 Assessing the agreement between observations and model 

predictions 

 

The second stage in checking model fit is to check the model predictions. 

Verification of a theory is most directly carried out by examining the predictions 

made by the theory. In Item Response Theory model predictions can be compared 

with the observed data. These comparisons can be made at the test or at the item 

level. 

 

3.5.1 Assessment of model fit at the test level 

3.5.1.1 The R0 test 

OPLM and IRT models make specific assumptions regarding the distribution of 

ability as part of MML estimation. These assumptions can be tested using the R0-test 

(Verhelst & Glas, 1995). In the MML framework, the theoretical distribution of 

scores is a function of both the item parameters and the parameters of the ability 

distribution, which have to be estimated from the data, and the observed frequency 

distribution of the respondents' sum scores will in general not match the predicted 

frequency distribution. The R0 test measures this deviation.  

Since a person’s sum score is a sufficient statistic for the ability parameter, 

the statistic is based on evaluating the difference between the observed and expected 

score distribution given the MML estimates of the item and population parameters. 

Let the random variable Nsb, with realisations nsb, denote the count of score s in 
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3.5.2 Assessment of model fit at the item level 

3.5.2.1 Residual analysis 

The most useful tool for comparing model predictions and what was actually 

observed at the item level are, under the Rasch paradigm, the Item Characteristic 

Curves (ICC) or, under the IRT paradigm, the Item Response Functions (IRF). The 

ICC illustrates the estimated or predicted probability of a correct response at any trait 

level. This probability can be compared with the proportion of correct answers 

achieved by examinees at that trait value. Under the Rasch model (and OPLM) the 

number correct score is a sufficient statistic for the trait theta so this comparison can 

be done directly. Under IRT models few individuals will have identical trait 

estimates except in the case of the one-parameter model. In this case artificial trait 

intervals must be constructed (Swaminathan et al., 2007). 

 

3.5.2.1.1 Rasch mean squares 

3.5.2.1.1.1 Calculation  

The discrepancy between the observed and expected frequencies can be analysed 

using chi-square item fit statistics. According to the Rasch model, for each 

observation, there is an expectation and a model variance of the observation around 

that expectation. So, 

 

where zni is the residual, xni is the observed response of person n on item i, pni is the 

probability of a correct response of person n on item i. 

As the residuals will have a different variance the residuals are typically 

standardised so that each score residual is divided by its standard deviation. For 

dichotomous responses this is equivalent to: 

(3.9) 
ninini pxz �=
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As the residuals will sum to zero, they are then usually squared. Early studies 

revealed that these statistics were sensitive to outliers particularly on tests that have a 

wide range of item difficulties and person abilities. To counteract this sensitivity to 

outliers weighted version of the fit statistics were developed. 

The unweighted Infit calculation and weighted Outfit calculations for 

Winsteps (Linacre, 2008) are as follows. 

Two observations: Model p=0.5, observed=1. Model p=0.25, observed =1. 

( ) ( )

2
75.025.0

25.01
5.05.0

5.01 22

×
�+

×
�

=Outfit   = 2 

( ) ( )
( ) ( )75.0*25.05.0*5.0

25.015.01 22

+
�+�=Infit   = 1.86 

The off-target observation has less influence on the Infit statistic. 

 

3.5.2.1.1.2 Interpretation 

The mean square statistics reported by Winsteps can be interpreted as chi-squares. 

As the degrees of freedom vary the chi-squares are usually divided by their degrees 

of freedom so general guidelines can be set. Consequently their expected value is 

close to 1.0. Values greater than 1.0 (underfit) indicate unmodelled noise or other 

sources of variance in the data which degrade measurement. Values less than 1.0 

(overfit) indicate that the model predicts the data too well. Overfit is not necessarily 

a problem, but it reveals that summary statistics, such as reliability measures, may be 

inflated. This overview of fit is detailed in Figure 3.1. 

 

(3.10) 

(3.11) 

(3.12) 
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Outfit  Interpretation 

>2.0  Distorts or degrades the measurement system. 

1.5 - 2.0 Unproductive for construction of measurement, but not degrading. 

0.5 - 1.5 Productive for measurement. 

<0.5 Less productive for measurement, but not degrading. May produce 

misleadingly good reliabilities and separations. 

 

Figure 3.1: Interpretation of parameter-level mean-square fit statistics (Linacre, 

2008) 

 

The likelihood of these mean squares can be calculated and reported as t-

statistics or z-statistics, with critical values set that have equal Type I error rates 

across a variety of conditions, including sample size (Smith, 2004). Simulation 

studies (Smith, Schumacker and Bush, 1998) have shown that the standardised fit 

indices have more consistent distributional properties in the face of varying sample 

size than do the mean square statistics. 

As well as these general guidelines for fit, the combined use of infit and 

outfit can lead to quite detailed diagnosis of problems. As outfit is more sensitive to 

unexpected observations by persons on items that are relatively very easy or very 

hard for them (and vice-versa) then it is related to issues such as guessing and 

carelessness. High infit requires a closer look at the validity of the test as it is less 

easy to explain why candidates of the same ability appear to perform erratically on 

an item. 
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3.5.3 Additional considerations for polytomous items 

When considering the fit of polytomous items, poor fit may be explained by 

disordered categories or disordered category thresholds. A higher category should 

imply more of the latent variable; if it does not then the category will exhibit large 

misfit. Apart from differing in order, categories may also differ in their probability of 

being observed. This results in disordered thresholds. This does not necessarily 

degrade measurement, but implies that a category discriminates across a very narrow 

range of the latent variable (Linacre, 2004b). If there are very few observations then 

the estimation of the category parameters can only be approximate. As the Rasch 

method of test equating depends on the estimation of the category parameters poor 

estimation of these parameters can pose technical difficulties. 

 

3.6 Method 

 

3.6.1 Design 

Rasch and OPLM models were fitted to a selection of GCSE tests. Then, some 

summary statistics were calculated in order to verify that the items appeared to 

contribute to a coherent measurement instrument. Model fit was then investigated 

using the following steps: 

 

(i) Routine analysis 

Firstly, a routine examination of classical indices such as facility values (p-

values), item total correlations and the distribution of scores at both test and item 

level. 
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(ii) Unidimensionality 

Secondly, the dimensionality of the tests was examined using: 

(a) Drasgow and Lissak’s (1983) linear factor analysis approach as 

implemented by Rizopoulos (2006). All items were dichotomised and a 

maximum sample of 1,000 candidates was used to minimise processing 

time.  

(b) Principal Components Analysis of residuals (PCAR) as implemented in 

Winsteps 

 

(iii) Test level measures of fit 

Then test level measures were obtained using: 

(a) R0 and R1M tests (Verhelst & Glas, 1995) as implemented in OPLM 

(b) Graphical comparisons between the observed score distribution and the 

predicted score distribution as suggested by Swaminathan et al. (2007) 

and implemented in R (R Development Core Team, 2010). The person 

parameters under the Rasch model were estimated using the MML 

procedure from eRm (Mair & Hatzinger, 2007). A maximum sample of 

1,000 candidates was used to minimise processing time.  

 

(iv) Item level measures of fit 

Finally misfit was examined at the item level using: 

(a) Standardised Infit and Outfit statistics as implemented in Winsteps 

(b) M-statistics as implemented in OPLM 

(c) IRFs from both Winsteps and OPLM 
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3.6.2 Components 

Thirteen tests were selected so that a variety of item-types, response lengths, subject 

areas and difficulties were selected. They were also chosen with test equating in 

mind, so they have common items between levels and a coursework element 

common to both tiers that can be used for cross-validation purposes. Tests with 

longer response items such as essays or tests with optional items were excluded as 

these introduce assumptions about marking and choice that do not hold.  

 

3.6.2.1 Science (Biology, Chemistry, Physics) 

The Science tests have two primary objectives. The first is to assess candidates’ 

knowledge and understanding of science and how science works. The second is to 

assess the application of their skills, knowledge and understanding of science and 

how science works. At foundation tier the candidates answer 5 matching items (four 

pieces of information matched to four stimuli) and 16 multiple choice items (with 

four response categories and only one correct answer). The test is divided into 9 

sections, each preceded by a stimulus. The stimulus may be in the form of a graph, a 

table, a paragraph, or some combination of all three. At higher tier candidates answer 

2 matching items and 28 multiple choice items. 

 

3.6.2.2 Mathematics 

Mathematics assesses: use and application of mathematics; number and algebra; 

shape, space and measures; handling data. The foundation tier has 63 and 56 items in 

Papers 1 and 2 respectively, both with a total mark of 100. The higher tier has 47 

items and 50 items in Papers 1 and 2 respectively, both with a total mark of 100. For 



3. Model Fit in a Frequentist Framework 

 

64 
 

all papers the items vary from single mark items through to four mark items. Very 

few of the items are multiple-choice. 

 

3.6.2.3 Geography 

For Geography, candidates are expected to: show knowledge of places, environments 

and themes at a range of scales from local to global; show understanding of some 

specified content; apply their knowledge and understanding in a variety of physical 

and human contexts; select and use a variety of skills and techniques appropriate to 

geographical studies and enquiry. Paper 1 comprises a series of short answer items 

and two structured items on the United Kingdom. The paper also includes one or 

more items based on a UK Ordnance Survey map. Both tiers have a maximum mark 

of 75, with 33 items on the foundation tier and 28 items on the higher tier. The 

maximum mark for an item is 6 for both tiers. Paper 2 comprises four sections. 

Section A comprises a series of short answer items taken from: The European Union; 

The Wider World; Global Issues. The remaining sections each comprise a structured 

item on one of those same three areas. Both tiers have a maximum mark of 120; the 

foundation tier has 47 items while the higher tier has 31 items. The maximum mark 

for an item is 6 on the foundation and 9 on the higher. No items are multiple-choice. 

 

3.6.2.4 Mathematics Functional Skills 

Mathematics Functional Skills aims to assess how well candidates demonstrate their 

mathematical skills in a range of contexts for a range of purposes. The items 

therefore embed the mathematics within authentic contexts. Paper 1 is comprised of 

30 short response dichotomous items, some of which are multiple-choice. 

 



3. Model Fit in a Frequentist Framework 

 

65 
 

3.7 Results 

 

3.7.1 Classical test statistics 

The alpha coefficients of the longer tests were, with one exception, above 0.8 (Table 

3.1). This implies that: the tests are long enough; reasonably well-targeted; and the 

proportions of error variance are low relative to systematic differences in the abilities 

being measured. The alpha coefficients of the shorter Science tests were low, and 

low relative to the Mathematics Functional Skills paper of a similar length. The 

means of the Science tests are not much higher as a proportion of the total mark than 

the Mathematics Functional Skills test, but the standard deviations are relatively low. 

This suggests the Science tests do not discriminate as well as the Mathematics 

Functional Skills test. The differences in coefficient alpha on these shorter tests 

could be due to: poor discrimination; guessing; construct irrelevant variance; other 

clear dimensions than the main latent variable. As the Science tests are entirely 

multiple-choice the most obvious explanation is that the items are liable to guessing. 

 

3.7.2 Classical item statistics 

The classical item statistics highlight a wide range of item-test correlations and item 

difficulty. This suggests that a discrimination parameter in the IRT model would 

improve its fit. The minimum values of the item facilities for the Science tests are 

relatively high; this would suggest that they are indeed liable to guessing and may 

show poor fit to both the Rasch and the OPLM models. If this is the case then a more 

complex model may be preferred. 
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Table 3.1: Classical test statistics 

Test Level N Items Max Score Mean SD 

Grade C / Level 2 

boundary Alpha 

Biology Foundation 6902 21 36 26.06 4.74 31 0.68 

  Higher 11283 30 36 24.76 5.94 23 0.79 

Chemistry Foundation 4679 21 36 19.32 6.11 25 0.69 

  Higher 7935 30 36 22.58 6.25 20 0.80 

Physics Foundation 7636 21 36 22.80 5.83 29 0.71 

  Higher 10412 30 36 23.05 4.98 21 0.72 

Mathematics Paper 1 Foundation 10000* 63 100 53.31 19.63 70 0.94 

  Higher 10000* 47 100 48.97 21.83 28 0.94 

Mathematics Paper 2 Foundation 10000* 56 100 52.03 19.66 69 0.93 

  Higher 10000* 50 100 51.20 20.37 30 0.93 

Geography Paper 1 Foundation 1192 33 75 32.98 9.28 42 0.79 

  Higher 2042 28 75 45.37 10.49 37 0.83 

Geography Paper 2 Foundation 1176 47 120 50.03 14.48 67 0.87 

  Higher 2044 31 120 59.80 17.32 48 0.89 

Mathematics Functional Skills Level 2 15907 30 30 19.56 6.39 19 0.89 

*Samples of 10000 were taken from larger populations  
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Table 3.2: Classical item statistics 

  

Test 

  

Level 

Correlations Facility 

Minimum item-test Maximum item-test Average inter-item Minimum Maximum 

Biology  Foundation 0.15 0.54 0.11 0.12 0.98 

  Higher 0.20 0.49 0.12 0.39 0.91 

Chemistry  Foundation 0.24 0.54 0.11 0.22 0.82 

  Higher 0.18 0.52 0.12 0.30 0.89 

Physics  Foundation 0.26 0.52 0.12 0.25 0.95 

  Higher 0.14 0.45 0.08 0.10 0.98 

Mathematics Paper 1 Foundation 0.14 0.68 0.21 0.07 0.97 

  Higher 0.23 0.68 0.26 0.08 0.91 

Mathematics Paper 2 Foundation 0.23 0.68 0.20 0.03 0.98 

  Higher 0.13 0.68 0.22 0.10 0.99 

Geography Paper 1 Foundation 0.12 0.53 0.11 0.10 0.87 

  Higher 0.10 0.63 0.14 0.23 0.95 

Geography Paper 2 Foundation 0.14 0.56 0.14 0.07 0.99 

  Higher 0.26 0.66 0.20 0.05 0.84 

Mathematics Functional Skills Level 2 0.20 0.62 0.21 0.25 0.96 
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3.7.3 Unidimensionality 

A one factor model specified for the Principal Components Analysis accounted for a 

large proportion of variance for the Mathematics tests. Figure 3.2, for example, 

highlights clearly that there is one dominant factor in the higher tier paper for 

Mathematics Paper 1. The first factor accounts for over nine times as much of the 

score variability as the second factor. Variance in the test scores in the other tests is 

less clearly dominated by a single factor model. The low factor scores could be due, 

however, to a non-linear relationship between items and the underlying latent trait. 

The simulations of the factor structure reveal that most of the tests have a 

substantial second factor that is not predicted by the Rasch model. This is 

particularly apparent for the Geography papers. Paper 1 on both tiers is split into two 

sections. The first section is a traditional test of knowledge and understanding; while 

the second section requires candidates to undertake practical exercises using an 

Ordinance Survey map. The factor analysis reveals a significant second factor that is 

not predicted by the Rasch model for both of the tiers. Paper 2 is split into several 

sections but each section is a more traditional test of knowledge and understanding. 

Neither tier shows a significant second factor. 

A comparison between Figures 3.2 and 3.3 illustrates an interesting point 

regarding dimensionality. Both of the factor structures have a significant second 

factor that is not predicted by the Rasch model. The size of the second factor in the 

Mathematics test is proportionally much smaller than the size of the second factor in 

the Geography test. Clearly, the second factor may be more disruptive to 

measurement for the Geography test than for the Mathematics test. 

The factor analysis generally agrees with the Rasch Principal Components 

Analysis of the residuals (Table 3.3). A high proportion of the variance explained by 
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the principal Rasch measure tends to correspond with a high proportion of the score 

variability being explained by a single factor model. The one exception is for 

Mathematics Functional Skills, the reasons for which will be explored later. 
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Table 3.3: Tests of Unidimensionality 

Test Level 

Principal 

Components 

Analysis 

Second Eigenvalue PCAR 

Observed Simulated p 

Variance explained by 

measures (per cent) 

Biology Foundation 0.28 1.08 0.84 0.10 0.47 

  Higher 0.24 1.93 0.72 0.01 0.30 

Chemistry  Foundation 0.22 0.81 0.54 0.01 0.36 

  Higher 0.24 0.96 0.69 0.01 0.38 

Physics Foundation 0.25 1.16 0.59 0.01 0.46 

  Higher 0.20 1.50 1.91 0.75 0.39 

Mathematics Paper 1 Foundation 0.40 3.50 2.06 0.01 0.60 

  Higher 0.43 2.11 1.28 0.01 0.57 

Mathematics Paper 2 Foundation 0.39 3.53 2.84 0.02 0.53 

  Higher 0.41 3.43 2.68 0.04 0.59 

Geography Paper 1 Foundation 0.21 1.75 0.74 0.01 0.46 

  Higher 0.26 1.40 0.75 0.01 0.52 

Geography Paper 2 Foundation 0.25 2.35 2.60 0.59 0.50 

  Higher 0.30 1.39 1.21 0.50 0.44 

Mathematics Functional 

Skills 
Level 2 0.41 1.42 0.84 0.03 0.35 
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Figure 3.2: Observed and simulated factors for Mathematics Paper 1 higher tier 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Observed and simulated factors for Geography Paper 1 higher tier  
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Rasch model. This could be due to any number of factors: guessing; violation of 

conditional independence of item scores; or the significant presence of a second 

factor that explains the variance in the test scores. Figure 3.5 shows the more 

successful modelling of the observed score distribution under the Rasch model for 

the Mathematics higher tier Paper 1. 

The effect sizes derived from the R0 test correlate well (0.7) with the effect 

sizes derived from equation 3.1, which suggests that neither the different model used 

(OPLM rather than Rasch) nor the different statistic tell an entirely different story. 

The R0 test under OPLM does show, however, a statistically significant deviation 

between the observed and the expected score distributions for all but two of the tests 

and higher effect sizes. The Geography tests again appear to give most cause for 

concern. 

  Finally, the R1M statistics suggest that in every case the severity of the misfit 

invalidates the use of a person's sum score as a measure of ability. Under the IRT 

paradigm it would be time to investigate more complex models; under the Rasch 

paradigm, however, the source of this misfit is more interesting. 
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Table 3.4: Test level measures of fit 

 

Test 

  

  

Level N 

Rasch 
OPLM 

JML MML 

Items Outfit mnSq > 1.3 Chi Square df p w R0 df w R1M df w 

Biology Foundation 6902 2 63.92 35 0.00 0.10 199 103 0.17 652 248 0.31

  Higher 11283 0 38.92 35 0.30 0.06 321 97 0.17 1414 242 0.35

Chemistry Foundation 4679 0 47.27 35 0.08 0.10 102* 81 0.15 478 221 0.32

  Higher 7935 2 34.02 35 0.52 0.07 476 97 0.24 2164 242 0.52

Physics Foundation 7636 0 47.45 35 0.08 0.08 142 93 0.14 522 238 0.26

  Higher 10412 2 53.36 35 0.02 0.07 865 101 0.29 2548 246 0.49

Mathematics Paper 1 Foundation 10000 17 102.58 99 0.38 0.10 1413 276 0.38 11615 677 1.08

  Higher 10000 9 93.08 99 0.65 0.10 413 266 0.20 3622 667 0.60

Mathematics Paper 2 Foundation 10000 8 67.03 99 0.99 0.08 1409 253 0.38 7425 654 0.86

  Higher 10000 10 71.63 99 0.98 0.08 838 281 0.29 4243 682 0.65

Geography Paper 1 Foundation 1192 0 61.13 74 0.86 0.23 310 189 0.51 784 478 0.81

  Higher 2042 0 92.50 117 0.95 0.21 4768 206 1.53 5174 507 1.59

Geography Paper 2 Foundation 1176 2 63.03 74 0.82 0.23 664 287 0.75 1578 760 1.16

  Higher 2044 1 87.86 117 0.98 0.21 281* 321 0.37 933 798 0.68

Mathematics Functional Skills Level 2 15907 6 28.90 29 0.47 0.04 154 83 0.10 796 199 0.22

 *p>0.05 
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Figure 3.4: Observed and expected score distributions for Biology foundation tier 

based on trait-estimates for the Rasch model 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Observed and expected score distributions for Mathematics Paper 1 

higher tier based on trait-estimates for the Rasch model  
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3.7.5 Rasch person-item maps 

Poor discrimination could be the reason for the acute peak in the score distribution 

and the particularly low coefficient alpha for the foundation tier Biology test. Figure 

3.6 shows the Rasch item-person map for this paper. The solid dots represent the 

item location while the hollow dots represent the Rasch-Andrich thresholds, the 

point on the latent ability scale at which each category has the same probability of 

being observed. With only one exception the item difficulty is lower than the modal 

person ability. This will result in poor discrimination amongst the higher performing 

candidates and reduce the information available at higher levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Person-item map for Biology foundation tier 
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While the other Science papers are better targeted, their lack of information 

compares unfavourably with the Geography and Mathematics papers. Figure 3.7 

illustrates the wide range of discrimination achieved by the higher tier Geography 

Paper 2. Most item locations are close to the modal level of ability, but the category 

thresholds spread out across the ability range. This paper contains far more 

information on candidates at all levels of ability. 

 

3.7.6 Item measures of fit 

3.7.6.1 Mathematics Functional Skills  

While the alpha coefficient was high for Mathematics Functional Skills, the variance 

explained was low and there were a number of misfitting items. The OPLM 

measures appeared relatively low, however, in comparison with the other tests, 

suggesting a reasonable fit. The further investigation at item level revealed that the 

same items were identified as most misfitting items by both the Outfit Mean Squares 

and the M statistic when the Rasch model was fitted (Table 3.5). The indices from 

the Classical Test Theory model reveal that three of these four most misfitting items 

are too easy (p>0.7) for this population, which could explain the low item-test 

correlations. The mean squares values are not exceptional and could be explained by 

poor discrimination. This suggestion is corroborated by the OPLM M3 statistic 

which is positive in each case, suggesting that a shallower item characteristic curve 

would show better fit.  
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Figure 3.7: Person-item map for Geography Paper 2 higher tier  
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Table 3.5: Misfitting items for Mathematics Functional Skills  

 Model 

 CTT Winsteps 

OPLM 

(Rasch) OPLM (OPLM) 

Item Facility 

Item-

test B 

Outfit 

(MnSq) B M3* A B M3* 

28 0.49 0.35 1.02 1.49 0.99 35.14 1 0.49 -4.64 

11 0.81 0.26 -0.98 1.65 -0.95 26.98 1 -1.07 -3.42 

2 0.90 0.21 -1.86 1.90 -1.80 21.49 1 -1.81 -3.05 

4 0.79 0.31 -0.84 1.37 -0.81 20.58 2 -0.35 8.31 

 

When OPLM was fitted the M statistic for three of these items fell relative to 

the other items so that items 28, 11 and 2 all became among the best fitting rather 

than the worst. Item 4, however, remained the worst fitting item under OPLM. The 

better fit for the other items is illustrated visually for item 28 in Figures 3.8 and 3.9. 

The observed performance is depicted as the solid black line while the modelled 

performance is depicted as the solid blue line with its associated confidence 

intervals. A cross shows agreement (or fit) of the modelled and empirical item 

performance while a dot shows deviation. The flexibility of OPLM in allowing the 

discrimination of the items to vary means that, in this case, a model which fits the 

majority of ability levels can be fitted to the data. 
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Rel. item #: 28  Abs. item #: 28  Label: Item_28  [:1]

-1.2 2.8

Rel. item #: 28  Abs. item #: 28  Label: Item_28  [:1]

-.5 1.2

 

 

 

 

 

 

 

 

 

Figure 3.8: Item 28 fitted with the Rasch model2 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Item 28 fitted with OPLM 

                                                      
2 The observed performance is depicted as the solid line intersected by dots and crosses while the 
modelled performance is depicted as the curve with its associated confidence intervals. A cross shows 
agreement (or fit) of the modelled and empirical item performance while a dot shows deviation. 
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Under OPLM, therefore, only item 4 (from these 4 items) remains a concern. 

Item 4 asks for the difference in temperatures between a maximum temperature of 11 

degrees C and a minimum of -3 degrees C. An inspection of the ICC reveals that 

while the most able and the least able perform well on this item, those of middling 

ability perform less well than expected. The item does not represent a difficult 

concept, and the concept can presumably be drilled into the less able. For those of 

medium ability it may be assumed that they will get this item right, when they could 

have benefited from practice. 

The Rasch Principal Components Analysis suggests that this item is central 

to the first contrasting dimension in the test, and that all these most misfitting items 

load negatively on the main Rasch factor (Table 3.6). It is worth considering, 

therefore, whether the cause of the misfit is the substantial second factor that can 

explain the variance in the test scores which was highlighted in Table 3.3.  

Item 28 asks for 8786 to 1 significant figure, an area of notorious confusion, 

and there is a dip in performance amongst those of middling ability similar to that 

observed for item 4. Item 16 asks for one perspective of a 3D model, and again 

shows the same empirical response curve, with a dip in the middle. Item 11, 

however, which requires the candidates to name a solid from its net, shows the most 

able at an unexpected advantage and a different shape to the empirical responses. It 

would be hard to argue, therefore, that there is any clear dimension represented by 

the first contrast other than poor modelling of the responses by the Rasch model. The 

high proportion of misfitting items (6 out of 30) could, in this way, explain the 

discrepancy between the factor analysis and the Rasch Principal Components 

Analysis of residuals. A single factor can explain the variance in the test scores, but 

this single factor is poorly accounted for by the Rasch model. 
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It is worth also returning to the other most misfitting item under the Rasch 

model, item 2, which requires simple addition of two numbers. The table in which it 

is presented (Figure 3.10) does not make it sufficiently clear whether the number of 

pupils in each cell needs multiplication. While OPLM models the item better than 

the Rasch model, it is the poor presentation of the item that has resulted in its poor 

discrimination. There is no doubt that OPLM models the empirical response curves 

better than the Rasch model, which is useful if the data is assumed to be given. 

However, adjusting the discrimination parameter can hide quality problems with the 

items. If test quality is the most important reason for the model fitting, then the rigid 

assumptions of the Rasch model, in this case, are useful. 

 

Table 3.6: Principal Components Analysis of residuals: first contrasting factor 

 Item Loading B 

Infit 

(MnSq) 

Outfit 

(MnSq) 

4 -0.35 -0.84 1.18 1.37 

28 -0.34 1.02 1.31 1.49 

11 -0.34 -0.98 1.24 1.65 

16 -0.31 -0.23 1.14 1.28 

 

 

 

 

 

 

 

Figure 3.10: Item 2 from Mathematics Functional Skills  
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3.7.6.2 Geography Paper 1 higher tier 

The assumption of unidimensionality for Geography Paper 1 for both foundation and 

higher tiers was not supported. The hypothesis was that the practical component of 

this paper loaded on a different factor. This is borne out by the Rasch Principal 

Components Analysis of the residuals. Table 3.7 shows the loadings on the main 

Rasch factor for those items based on a map extract. The consistently negative 

loadings suggest that the responses to these items comprise a separate and coherent 

dimension in the data. 

 

Table 3.7: Rasch Principal Components Analysis of residuals: loadings on the main 

Rasch factor for items based on a map extract 

Item Id 

Max 

Mark Loading Difficulty Infit Outfit 

6 a i 1 -0.17 -0.24 1.02 1.05 

6 a ii 1 -0.17 0.93 1.07 1.09 

6 a iii 4 -0.32 0.56 1.08 1.09 

6 a iv 4 -0.12 0.01 1.03 1.03 

6 b i 6 -0.32 -0.10 1.07 1.09 

6 b ii 4 -0.27 -0.19 1.03 1.04 

 

The Rasch analysis revealed no misfitting items, although one 3 mark item 

displayed disordered categories. The candidates obtaining three marks on this item 

showed slightly less ability overall than the candidates obtaining two marks. Even 

OPLM, with its more powerful measures of item fit found significant levels of misfit 

in only 7 out of the 75 response categories. In all but two instances the misfit was 

caused by very few responses being observed in specific categories. Missing 

response categories can be an issue for test equating using separate calibration, as the 
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basis of the equating is the category thresholds. When there are few responses in a 

category the thresholds need to be estimated. 

One dichotomous item showed misfit according to OPLM. This item showed 

excellent fit according to the Rasch fit analysis, although it did load negatively on 

the main Rasch factor according to the Principal Components Analysis. It is unlikely, 

however, that a single misfitting item would degrade any use of the model. 

 

3.7.6.3 Physics higher tier 

The Physics higher tier paper was one of the Science tests in which the modelling of 

the observed score distribution was poor (p=0.02). The classical item statistics 

revealed some demanding items with low item-test correlations. Neither the Rasch 

nor OPLM could model these items adequately as they showed response levels little 

above chance even for the brightest candidates. 

Under OPLM the worst fitting items were not these items that did not 

discriminate. Rather, the item characteristic curves of the worst fitting items all 

appeared to have a lower asymptote suggestive of guessing. The comparison 

between the observed and expected scores for the item reproduced in Figure 3.12 

under OPLM is illustrated in Figure 3.11. This is obviously quite a difficult item as it 

only appears to discriminate at the very highest level of ability. For all the other 

levels of ability the proportion of observed scores correct is fairly stable at between 

0.3 and 0.4. The item requires candidates to select the relevant information from the 

table and enter it into the equations presented. It is actually quite hard, using the 

equations presented, to get a result of either £1.50 or £1500 so unsurprisingly the 

middle two options attracted 70 per cent of the responses; the other values may also 

seem implausibly high or low. Either of the middle options would therefore seem a 
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good bet. Neither OPLM nor the Rasch model explicitly includes a guessing 

parameter so they cannot model this item, or the others displaying this same pattern, 

accurately.  

 

Figure 3.11: Observed and expected scores for Item 7C from Physics higher tier 
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The table compares data for two types of lamp. 

 Filament lamp 
Compact fluorescent 

lamp (CFL) 

Cost 80p £3.00 

Efficiency 0.2 0.8 

Expected life 1000 hours 8000 hours 

 

Energy transferred  =      power    x   time 

(kilowatt-hour, kWh)  (kilowatt, kW)  (hour, h) 

 

Total cost = number of kilowatt-hours x cost per kilowatt-hour 

 

Electricity costs 15p per kWh 

 

7C What will be the cost of using a 100W filament lamp during its expected 

life? 

 

1 £1.50 

2 £15.00 

3 £150.00 

4 £1500.00 

 

Figure 3.12: Item 7C from Physics higher tier   
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In an attempt to quantify exactly how much guessing affects the modelling of 

the Physics paper the expected scores (derived from OPLM) of the lowest ability 

group were plotted against their observed scores (Figure 3.13). Where the expected 

score is lower than the observed score this could be due to guessing. At least four 

items, all of them relatively difficult, displayed this pattern. Guessing could, 

therefore, contribute to the poor modelling of the observed score distribution, but it 

appears to be a small effect in a small number of items. 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: Expected performance compared to observed performance for the 

lowest ability group on Physics higher tier.  
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3.7.6.4 Mathematics Paper 1 foundation tier 

Although the reliability and the variance explained for the Mathematics Paper 1 

foundation tier was high (as it generally was for all the Mathematics papers) there 

appeared to be a large proportion of misfitting items. Some of the misfit could be due 

to the second dimension highlighted in Table 3.3 although both the factor analysis 

and the Rasch Principal Components Analysis reveal a substantial dominant factor. 

The paper does, nevertheless, appear to test a wide range of skills and concepts. 

Candidates are expected, for example, to perform tasks which vary from basic 

calculation to extrapolating from 3D diagrams to justifying the use of the median. A 

number of the most misfitting items were very easy; in this case the high outfit mean 

square is characteristic of carelessness. 

There is a further potential explanation for the misfit: the Mathematics mark 

schemes allow multiple routes to a mark in order to reward positive achievement 

wherever possible. Evidence of mathematical worth, regardless of the answers given, 

can be rewarded with marks. The various categories under which marks can be 

awarded are detailed in Figure 3.14. 
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Category Reason 

M Method marks are awarded for a correct method which could lead to a 

correct answer. 

A Accuracy marks are awarded when following on from a correct method. 

It is not necessary to always see the method. This can be implied. 

B Marks awarded independent of method. 

M dep A method mark dependent on a previous method mark being awarded. 

B dep A mark that can only be awarded if a previous independent mark has 

been awarded. 

ft Follow through marks. Marks awarded following a mistake in an earlier 

step. 

SC Special case. Marks awarded within the scheme for a common 

misinterpretation which has some mathematical worth. 

oe Or equivalent. Accept answers that are equivalent. eg, accept 0.5 as well 

as ½ 

 

Figure 3.14: Categories for Mathematics marks 

 

Figure 3.15 shows the empirical category probability measures for the item in 

Figure 3.16. Category measure 1 discriminates poorly and shows disordered 

thresholds. Part of the reason for this could be the two different ways in which a 

score of 1 can be achieved. A mark of 1 could be achieved for calculating a third of 

six hundred pounds or for decoding the words of the item into mathematical 

symbols. These are potentially two different facets of mathematical ability. A score 

of 2 was highly unlikely, which suggests that there were very few candidates who 
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could write out the calculation but then fail to perform it. For those who did, 

however, the safety net of mathematical worth was there to catch them.  

The partial credit model assumes that more of a category implies more 

ability; this incline in difficulty in the category marks is not reflected in the thinking 

in the Mathematics mark schemes. A third mark of three, for example, may be 

gained simply by adding the correct units to a complex calculation. One solution that 

is often used is to collapse the categories, particularly where there are few candidates 

in a category or the category does not appear to discriminate well. Ideally, were the 

information available, each mark could be modelled separately. 

 

 

Figure 3.15: Empirical category probability curves for a GCSE Mathematics item 

with method marks 
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Figure 3.16: The GCSE Mathematics item and mark scheme modelled in Figure 

3.14 

 

3.8 Discussion 

 

The purpose of this chapter was to examine the statistical and mathematical 

assumptions that lie behind Rasch and IRT models and consider how well they are 

met for a selection of GCSE tests. Failure to meet these assumptions could mean that 

the conclusions drawn from the models are erroneous. Tests of model fit from both 

the descriptive Rasch paradigm and the restrictive statistical IRT paradigm were 

used, but they could necessarily only represent a small subset of the available tests. 

Tests of model fit are designed to have power against specific model violations. 

Molenaar’s M tests, for example, indicate whether the discrimination of an item is 

set too high or too low. Perhaps the biggest omission from the tests applied here is 
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any checking of the invariance of item parameters across sub-groups of examinees. 

These subgroups may be based, for example, on gender, ethnicity or language 

groups. Although it is recognised that this testing is important the categorical 

variables on which such an analysis must be based are difficult to obtain, and often 

represent variables that are easy to collect rather than those which would be of 

specific interest and may explain a high proportion of variance. Some subgroup 

analysis based on levels of ability is attempted in a later chapter. 

The underlying assumption of unidimensionality was examined using linear 

factor analysis. This approach does have limitations, as it is subjective, and relies on 

a linear relationship between items and the underlying latent trait. The magnitude of 

the eigenvalue of the second factor was generally greater in the observed data than in 

the simulations derived from the unidimensional models. This implies that the 

unidimensionality assumption is unlikely to hold. 

Under the Rasch paradigm the next step would be to reorganise the tests so 

that they measure clearly separated unidimensional constructs. In Geography, for 

example, the test of map skills could be separated from the tests of knowledge and 

understanding and reported on a separate subscale. Several practical concerns 

present themselves in this respect. Firstly, it is not always possible to separate a 

coherent second factor in the data. Secondly, if a coherent factor is separated it too 

may prove to be multidimensional. There is no reason to believe that map-reading, 

for example, does not involve elements of different skills and abilities. Thirdly, in 

public examinations, subscales have no currency. The value of reporting them 

separately is therefore diminished. This approach, therefore, may have more use in a 

formative assessment setting. 
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Under the IRT paradigm the next step would be to fit a multidimensional IRT 

model. These models, however, are not yet operational. So, while they may be of 

theoretical interest, they are at present of little practical use. The third possibility is 

to proceed with the fitting of IRT models and to rely on the results of simulations 

that suggest whether or not the specific uses to which the models will be put are 

robust to violations of unidimensionality. The strong suggestion is, for example, that 

test equating is robust to violations of unidimensionality. 

The assumptions regarding distributions of ability under MML were 

examined using both statistical tests and more descriptive measures. For the shorter 

tests there appeared to be substantial deviations between the observed score 

distributions and the expected score distributions based on trait estimates for the 

Rasch model. For the Science tests, for example, the acute peaks in the score 

distributions were not predicted by the model. There could be many reasons for this, 

which include: guessing; violation of the conditional independence of responses to 

items; or the measurement of different dimensions causing scores to regress to the 

mean. Where there are deviations between the observed score distributions and 

expected score distributions then conclusions based on these frequency distributions 

could be misleading. For example, if the Rasch model is used to measure 

classification accuracy or consistency, the proportions of candidates achieving 

different scores is critical. In this scenario the interpretation of results based on the 

Rasch model could be problematic. 

At the item level various issues with fit were highlighted. In Mathematics 

Functional Skills the axiom of monotone increasing Item Response Functions did not 

seem to hold for a number of items. Carelessness or drilling of the less able could 

explain this finding. A poor and confusing stimulus appeared to be responsible in 
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one case. In the Physics test poor distractors were responsible for misfit in at least 

one case and quite probably some others. In Mathematics the mark schemes resulted 

in uneven distributions of scores between mark categories and the associated 

disordered item thresholds. Again, according to the Rasch paradigm, the next step 

would be to examine the quality of the misfitting items with a view to improving 

their quality. More carefully worded questions, better quality stimuli, better 

distractors and more coherent mark schemes could improve the quality of items and 

improve the fit of the Rasch model. According to the IRT paradigm, categories could 

be collapsed and guessing or carelessness parameters added to the model. 

It is certainly possible and valuable to pursue the Rasch paradigm to a certain 

extent. Item writers can receive training on sources of difficulty in test items, for 

example, and better item quality screening can be put in place. However, without 

pre-testing, it is inevitable that items will vary in difficulty and discrimination. For 

this reason the Rasch model would seem overly restrictive for operational practice 

without routine pre-testing. OPLM would appear to be an attractive alternative as it 

allows discrete item discrimination parameters in the model. All the tests, however, 

showed substantial levels of misfit to the OPLM model. In particular, the Science 

tests proved difficult to model. It was not possible, however, within these analyses, 

to isolate the reason for that misfit. Two obvious hypotheses are worth dismissing: 

that the misfit is due to guessing, or that the misfit is due to violations of the 

conditional dependence of the item responses. The purpose of the next chapter is to 

fit more complex models in order to test these hypotheses. 
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4. Model Fit in a Bayesian Framework 

 

4.1 Overview 

 

The previous chapter highlighted potential issues with the fit of the Rasch model and 

OPLM for certain GCSE tests. The assumption of a single discrimination parameter 

for the Rasch model appeared overly restrictive for all of the tests measured; and 

poor test and item fit for a number of the tests highlighted potential issues with 

dimensionality, guessing and weak local independence. In the Rasch paradigm these 

issues would be addressed through a reorganisation of the data and improvements 

made to the quality of the test items. This approach, while it has much to recommend 

it, has certain limitations. Difficulty will always be hard to control without pre-

testing, tests will always be multidimensional to a degree, guessing will always be 

possible on multiple-choice items and weak local independence may be inevitable 

when groups of questions follow a stimulus. This chapter will instead, therefore, 

pursue the IRT paradigm and fit more complex models to the data in a Bayesian 

framework. 

 

4.2 Why use Bayesian estimation? 

 

Bayesian estimation procedures for IRT models were first proposed by Swaminathan 

and Gifford (1982). Recently, the approach has been adopted to the estimation of 

IRT models with a correlational structure of latent abilities (de la Torre, 2009), multi-

level structures with clustering of respondents by background variables (Fox & 

Wyrick, 2008), multiple raters structured by covariates such as training (Mariano & 
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4.4 Posterior Predictive Model Checking (PPMC) 

 

A posterior predictive distribution is a replicate set of observations conditional on the 

distribution of model parameters given the observed data. In a Bayesian framework, 

Markov Chain Monte Carlo (MCMC) techniques can be used to generate these sets 

of replicate observations. Once generated, any discrepancy statistic of interest can be 

calculated across these replicate observations and compared against the same statistic 

in the observed data. If a large percentage of the discrepancy statistics observed for 

replicated data sets (say 95 per cent) exceed those in the observed data, or a large 

percentage are lower than those in the observed data, then it would seem that the 

feature in the data corresponding to the statistic is not being replicated by the model 

(Kim & Bolt, 2007). 

The discrepancy statistics used depend on the structural information required 

from the model. A basic requirement of all test models is that they preserve the rank 

order of individuals. For this purpose the comparison of observed and expected 

scores produced in the previous chapter provides a useful descriptive measure 

(Béguin & Glas, 2001). At the item level, the following tests are suggested 

(Sinharay, 2005; Sinharay, Johnson & Stern, 2006): 

 

1. The point biserial correlation coefficients show the extent to which items 

are consistent with a test, and are closely linked to the discrimination 

indices in the 2- and 3- parameter IRT models. 
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2. Item-interdependence caused by a test not being truly unidimensional can 

be tested using the odds ratio (Chen & Thissen, 1997). The odds ratio is 

represented as, 

1001

1100

nn
nn

OR =
 

 

where n represents the number of examinees obtaining a given sequence of 

examination scores and the subscripts identify the pattern (e.g. n10 indicates 

the number of examinees answering the first item in the pair correctly and 

the second item incorrectly). 

 

3. The Mantel-Haenszel statistic which compares odds ratios across slices 

of ability (Sinharay, 2005). The comparison across slices of ability gives it 

more power than the odds ratio. 

 

4.5 Exploring different models 

 

Under the IRT paradigm poor model fit leads to an exploration of more complex 

models. This approach risks naïve empiricism as the number of model parameters 

could be increased until the model ‘fits’ (Feyerabend, 1988). It is a well known 

theorem of mathematics that an N-degree polynomial can fit N data points exactly 

(provided none is exactly on top of any other). Just as well-known is Occam’s razor: 

the fewer adjustable parameters required to explain something the better. The 

challenge therefore is to use the simplest model possible that captures the 

information of interest and fits well enough. If a model overfits then all the noise and 

idiosyncrasies in the data will be modelled and the predictions degraded (Hitchcock 

(4.2) 
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& Sober, 2004). If it underfits, however, then the model is no longer an adequate 

representation of the data and the predictions will again be degraded. 

Any assessment of the relative worth of different models is complicated 

when more complex models are nested inside simpler models. The more complex 

model will always show better fit, but at the cost of some simplicity of interpretation. 

In an IRT context, for example, a two-parameter IRT model will show better fit than 

a one-parameter IRT model, but the Item Response Functions are no longer parallel. 

This means that the order of difficulty of items may vary according to ability. A 

mathematical estimation of the compromise between fit and complexity was 

formulated by Akaike (1973) who showed that an unbiased estimate of the predictive 

accuracy of a model can be obtained by combining a measure of fit with a measure 

of simplicity. 

Akaike’s procedure is as follows. A model is first fitted to the data at hand 

and then the fitted model is used to predict new data drawn from the same 

underlying distribution. The fit of the model to these data are estimated using the 

logarithm of the likelihood. This process is then repeated: data are drawn, the 

likeliest member L(M) of the model M determined, and L(M) evaluated in predicting 

new data. The average (expected) fit of L(M) to new data defines M’s predictive 

accuracy. Given certain assumptions, an unbiased estimate of the predictive accuracy 

of model M can be represented by, 

( )( )[ ] kMLDataM �� |Prlog   

where k represents the number of adjustable parameters. For the complex model to 

have higher estimated predictive accuracy the data must fit the data sufficiently 

better to compensate for the loss in simplicity it represents. While Akaike’s 

formulation applies to parameters estimated using maximum likelihood estimation, 

(4.3) 
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analogous measures have been developed for use with other forms of estimation. 

Simulation studies have shown that the Bayesian model selection method, the 

Deviance Information Criterion (DIC), based on a posterior mean deviance and a 

penalty for model complexity, appeared to be stable and accurate in model 

identification (Jones, 2002). 

 

4.6 Beyond the Rasch model  

 

There are many models that could be fitted to the data examined in Chapter 3. Four 

models suggest themselves, however, from that analysis. The 2-parameter IRT 

model (Birnbaum, 1968; Lord & Novick, 1968) would address the poor fit of the 

Rasch model that was due to different levels of item discrimination. The 3-parameter 

IRT model (Birnbaum, 1968; Lord & Novick, 1968) would address the issue of poor 

fit due to guessing that could be an issue for the Science tests. The Multi-Class 

Mixture Rasch Model (MMRM) for Test Speededness (Mroch, Bolt & Wollack, 

2005) could explain some of the poor fit due to a speeded dimension appearing late 

in the tests. All of the tests suggested a second substantial factor could explain some 

of the variance in the test scores. It was not always obvious what that factor was. 

Finally, a Testlet IRT model (Wainer, Bradlow & Wang, 2007) may explain poor fit 

due to weak local independence. This is particularly an issue for the Science tests 

that are explicitly designed with a testlet structure. 

 

4.6.1 The 2-parameter item response model 

Critics of the Rasch model argue that the parallel Item Response Functions of the 

Rasch model restrict its application to relatively homogenous items (Hambleton, 
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This equation is similar to that for the Rasch model, with the key difference 

being the subscript g which indexes each latent class. Equality constraints are placed 

on the difficulty parameters for all unspeeded items across classes as well as for all 

speeded items across classes. This means that there exist two difficulty parameters 

for each potentially speeded item, one for its speeded condition and one for its non-

speeded condition. Further, an ordinal constraint is applied to each speeded item 

such that the speeded item difficulty is always higher than it is for the same item in 

the non-speeded condition. As a result, an examinee's response pattern can be said to 

exhibit effects of speededness when the relative difficulties of items at the end of the 

test are higher than the relative difficulties of items at the beginning. The model has 

proved useful in recovering item parameters from simulated speeded test data, 

although it tends to underestimate the ability of examinees affected by test 

speededness (Mroch et al., 2005).  

The MMRM does, however, have several drawbacks (Wollack et al., 2007). 

The designation of which items will be modelled as speeded is arbitrary and must be 

done in advance of the modelling. The model is sensitive to examinees whose 

performance on end-of-test items is appreciably worse than on the rest of the test; 

therefore, it requires examinees to have achieved a certain level of performance prior 

to becoming speeded. Consequently, the mixture model is biased against identifying 

low-ability candidates who have run out of time. The mixture model approach is also 

extremely time-consuming. 

 

4.6.4 Testlet Response Theory (TRT) 

A testlet is defined as a group of items that may be developed as a single unit that is 

meant to be administered together (Wainer et al., 2007). An example of a testlet is 
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model. A multidimensional IRT model, however, suggests the presence of disparate 

coherent constructs in a test which should be reported as separate subscales. This 

description would not seem to suit the Science and reading comprehension tests 

described above. The advantage of the TRT model is that it allows the requirement 

of conditional independence to be relaxed in a unidimensional IRT framework 

(Wainer et al.). 

Although designed under the IRT paradigm, TRT models can prove useful in 

the test design process rather than simply improving the fit of models. The amount of 

dependence that testlet structures introduce is an interesting topic for test designers. 

Further, TRT models have been used to model internal structures within tests such as 

speededness (Wollack et al., 2007). Speededness can be described by greater 

conditional dependence than would be expected within each half of a test. The major 

disadvantage with TRT models is that they are computationally intensive and time-

consuming. 

 

4.7 Method 

 

4.7.1 Application 1: The Multi-Class Mixture Rasch model (MMRM) for test 

speededness 

4.7.1.1 Design 

To examine the impact of test speededness on the estimation of item parameters the 

Multi-Class Mixture Rasch Model (MMRM) was estimated for a number of tests. 

For each test an arbitrary decision was taken on the number of latent classes to 

distinguish and the number of items that would be designated as potentially speeded. 

All items that were not designated as speeded were constrained across classes to the 
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4.7.1.3 Components 

Speededness is only really an issue for item parameter estimation if the items are 

located in different places on different test forms. Common items are used as a 

measure of comparative performance between tiers on certain GCSE tests. For 

certain test forms, these common items are located towards the end of the foundation 

tier and towards the beginning of the higher tier. This design is typical of both 

Mathematics and Science. As the speededness is therefore likely to affect the item 

parameters of the foundation tier papers in these subjects, these tests were selected 

for analysis. As the analysis is computationally intensive samples of 1000 candidates 

were taken from each test. The analysis was replicated across two separate samples. 

Due to the complexity of the models the responses were all dichotomised. An 

algorithm was used for this dichotomisation which split the responses around their 

median value. 

 

4.7.2 Application 2: The testlet model 

4.7.2.1 Design 

To examine the amount of dependence that testlet structures introduce, a 1-

parameter, 2-parameter, 3-parameter and 2-parameter testlet model were fitted to a 

number of tests which use a testlet design. This allowed model fit to be examined 

using the Deviance Information Criterion (DIC) (Spiegelhalter, Best, Carlin & van 

der Linde, 2002). The model with the smallest DIC is estimated to be the model that 

would best predict a replicate dataset of the same structure as that currently 

observed.  If the DIC is lower for a 2-parameter model than the 2-parameter testlet 

model, for example, then it may be concluded that the testlet structure is not a key 

feature of the data. 
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For examinee 22 there was no doubt regarding the classification. With a 

strong finish of three correct answers it seems safe to assume that this candidate was 

not under time pressure. As long as the underlying assumption of the model that the 

candidate attempts the final questions in order is taken as given, the classification as 

unspeeded seems secure. It cannot be known, however, whether time pressure caused 

the candidate to skip two of the last six items. 

For examinee 23 the pattern is less secure. Ending with two wrong answers 

despite a relatively strong start could place the candidate in anything from class 1 to 

5. The median value of class 4 seems a reasonable approximation, although the 2.5 

per cent to 97.75 sampling intervals are 1 to 4. Finally, examinee 3 has a strong start 

so the final 5 incorrect answers would seem to suggest time pressure. Although the 

median class value is 5, which would seem correct, the 2.5 per cent to 97.75 

sampling intervals are between 1 and 7. 

As the median values seemed to represent a fair representation of the data 

convergence was assumed. It is, of course, impossible to assert that convergence has 

been reached; it is much easier to state when it has not been reached (Spiegelhalter et 

al., 2003). Other parameters were also checked to ensure that no residual upward or 

downward trends in the sampled values remained. 
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gmem[22]

iteration

5001 5025 5050 5075 5100

    0.0

    0.5

    1.0

 

Examinee: 22 

Pattern: 

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,0,0,1,1,1,0,1,1,1,1,0,1,1,1,0,0,1,0,1,1,1,1,1,1,1,

1,1,1,1,1,0,1,1,0,1,0,0,1,0,0,1,1,1 

Median Class: 1 

 

gmem[23]

iteration

5001 5025 5050 5075 5100

    1.0

    2.0

    3.0

    4.0

    5.0

 

Examinee: 23 

Pattern: 

1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,0,0,1,1,0,1,1,1,1,1,0,1,1,0,1,1,1,1,1,1,0,1,1,0,1,0,0,1,1,0,

1,1,1,1,1,0,1,1,1,1,1,0,1,0,1,1,0,0 

Median class: 4 
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gmem[3]

iteration

5001 5025 5050 5075 5100

    0.0

    2.0

    4.0

    6.0

    8.0

 

Examinee: 3 

Pattern: 

1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,1,1,1,1,0,0,

1,1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0 

Median class: 5 

 

Figure 4.1: Sampling traces for the latent class parameter for iterations 5001 to 

5100: Mathematics Paper 1 foundation tier 

 

4.8.1.2 Stability of samples 

The stability of estimations of speeded class was checked across the three samples of 

1,000 candidates taken from the Mathematics tests. Tables 4.1 and 4.2 show that the 

estimated proportion of candidates classified as unspeeded seems relatively 

consistent for both papers. The last classes, which distinguish the point at which time 

pressure begins, are the most unstable. There is clearly uncertainty in determining 

the exact point at which time pressure begins for a candidate. This is not 

unreasonable, as time pressure is likely to build rather than be an automatic switch 

from unspeeded to speeded. It would appear, however, that the time pressure builds 

from 5 and 6 items from the end on Paper 1 and 6 to 7 items from the end on Paper 

2. All further analysis is based on the first sample. 
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Table 4.1: Class membership compared across three samples (N=1,000) candidates 

for Mathematics Paper 1. 1 = Unspeeded, 7 = speeded 6 items from the end. 

Class 1 2 3 4 5 6 7 

Sample 1 558 17 36 84 180 125 0 

Sample 2 543 32 14 119 16 276 0 

Sample 3 546 2 0 54 382 16 0 

 

Table 4.2: Class membership compared across three samples (N=1,000) candidates 

for Mathematics Paper 2. 1= Unspeeded, 7 = speeded 6 items from the end. 

Class 1 2 3 4 5 6 7 

Sample 1 457 22 30 24 13 434 20 

Sample 2 450 24 13 32 11 89 381 

Sample 3 489 15 13 32 11 407 33 

 

4.8.1.3 Effect of speededness 

Table 4.3 summarises the proportions of candidates that were identified as belonging 

to the unspeeded class. The Science tests showed the lowest propensity for 

speededness, with ability estimations showing little evidence of decline at the end of 

the test. Higher proportions of candidates taking the Mathematics tests showed a 

decline in ability estimations consistent with running out of time. 

 

Table 4.3: The proportions of candidates that were identified as ‘unspeeded’ 

 Test Level 

Designated 

Unspeeded 

Designated 

Speeded 

Unspeeded 

Class 

Total (all 

classes) 

Proportion 

unspeeded 

Biology F 17 4 1000 1000 1.00 

Chemistry F 17 4 621 1000 0.62 

Physics F 17 4 858 1000 0.86 

Maths 1 F 12 6 558 1000 0.56 

Maths 2 F 12 6 457 1000 0.46 
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Tables 4.4 to 4.7 show the numbers and the mean ability estimates for each of 

the (un)speeded classes. For the Mathematics tests the ability declines in line with 

the speeded class with only one exception. This is to be expected for two reasons. 

Firstly, candidates have to show a certain level of ability for a decline in ability 

estimation throughout the test to be perceptible. Secondly, these ability estimates are 

determined by candidates’ performance on the whole test. The true ability estimate 

of the speeded candidates will be higher than suggested here. Figures 4.2 and 4.3 

show the ability estimates calibrated on their responses to the first 20 items. These 

figures suggest that only the most able candidates can complete Paper 1 in time, 

while candidates of all ability struggle to complete Paper 2 in time. 

For Biology, no candidates appear to be under time pressure. For the other 

two Science tests the majority of the candidates show no decline in their ability 

estimation on the designated speeded portion of the test. For these tests there are a 

small proportion of able candidates who appear to run out of time or energy. 

 

Table 4.4: Mean ability by speeded class: Mathematics Paper 1 foundation tier  

Class n  theta 

1 558 0.33 

2 17 -0.58 

3 36 -0.53 

4 84 -0.94 

5 180 -1.09 

6 125 -1.14 

7 0 NA 
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Table 4.5: Mean ability by speeded class: Mathematics Paper 2 foundation tier  

Class n  theta 

1 457 0.28 

2 22 0.05 

3 30 -0.13 

4 24 -0.12 

5 13 -0.63 

6 434 -0.96 

7 20 -0.19 

 

Table 4.6: Mean ability by speeded class: Physics foundation tier 

class n theta 

1 858 0.71 

2 36 -0.81 

3 26 -0.61 

4 80 0.15 

5 0 NA 

 

Table 4.7: Mean ability by speeded class: Chemistry foundation tier 

class n theta 

1 621 0.20 

2 127 -0.55 

3 193 -0.13 

4 38 0.53 

5 21 0.87 
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Figure 4.2: Ability estimations on the first 20 items across speeded classes: 

Mathematics Paper 1 foundation tier 
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Figure 4.3: Ability estimations on the first 20 items across speeded classes: 

Mathematics Paper 2 foundation tier 

The item parameter estimations by class are shown in tables 4.8 to 4.11. 

These estimations are drawn from the posterior distribution of the class estimations 

and are therefore based on larger samples than the summary of the median values of 

the classes in tables 4.4 to 4.7 suggest.  

Extreme values for a number of the Mathematics Paper 1 items in their 

speeded condition are suggestive of a high proportion of missing data. Candidates 

appear to be able to solve the first designated speeded question, 6 from the end in its 

speeded condition, but from thereon in they are very unlikely to get a question 

correct in a speeded condition. For Mathematics Paper 2, the values do not decline in 

line with their speeded condition. This suggests that candidates running out of time 

do not finish the test in a linear fashion, but choose which items to complete. The 

difficulty parameters for the second, third, fourth and six items in their speeded 

condition are relatively close to their unspeeded condition. The Science tests share 

this same erratic pattern. 

Overall, therefore, it would seem that a substantial proportion of candidates 

run out of time on Mathematics Paper 1. Nearly half of the candidates have an 

unexpectedly low probability of answering the last five questions correctly. On 

Mathematics Paper 2 a large proportion of the candidates appear to struggle with the 

relatively difficult penultimate item due to its positioning in the test. 

Most of the Science candidates are unaffected by speededness. In Physics a 

small proportion find 2 out of the last 4 questions disproportionally difficult, while in 

Chemistry a slightly larger proportion appears to run out of time on 2 out of the last 

4 questions. 
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Without any external information it is difficult to determine the extent to 

which the item parameter estimation has been purified in its unspeeded condition. 

The next chapter will consider evidence from the equivalent items on the higher tier 

and attempt to make some judgement on how much the item parameters can be 

considered purified. It is also, of course, possible, that the decline in ability 

estimations could be due to a dimension other than speededness emerging late in the 

test. This could be an analogous construct such as fatigue, or a change in content 

area. 

In an equating context there are two possible courses of action that could be 

prompted by these findings. The first course of action is to exclude the items that 

display considerable different item parameter estimations under their two conditions. 

This has the disadvantage of reducing the item parameter information available to 

the equating. The alternative is to select a sample of candidates for the equating 

based on their speeded class. Only candidates whose ability estimates do not decline 

towards the equating portion of the test would be used. This has the advantage of 

using all the available item parameter estimates, but reduces the sample size. The 

former solution would appear to be most appropriate for Mathematics Paper 1 and 

the Science tests as a high proportion of candidates are classified as unspeeded, and a 

high proportion of items show a considerably raised parameter estimation in their 

speeded condition. A combination could be used for Mathematics Paper 2; 

candidates in classes 1 and 2 with item 2 removed would offer a relatively stable 

solution. 
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Table 4.8: Item parameter estimations across classes: Mathematics Paper 1 

foundation tier  

Item 1 2 3 4 5 6 

Unspeeded 0.27 2.27 2.07 0.57 -0.09 3.81 

Speeded 0.53 5.41 60.66 2.83 9.28 11.58 

 

Table 4.9: Item parameter estimations across classes: Mathematics Paper 2 

foundation tier  

Item 1 2 3 4 5 6 

Unspeeded 1.64 1.48 0.95 -0.02 3.40 -0.70 

Speeded 26.34 1.77 1.16 0.08 64.89 0.00 

 

Table 4.10: Item parameter estimations across classes: Physics foundation tier 

Item 1 2 3 4 

Unspeeded 2.15 -0.72 0.57 -0.05 

Speeded 2.86 5.61 8.44 0.31 

 

Table 4.11: Item parameter estimations across classes: Chemistry foundation tier 

Item 1 2 3 4 

Unspeeded 0.83 0.46 1.15 0.07 

Speeded 7.02 0.60 5.20 0.56 

 

4.8.2 The testlet model 

4.8.2.1 Convergence 

Convergence was estimated visually from the sample traces of the parameter 

estimation. Evidence of stabilisation was taken to mean the absence of any upward 

or downward trend in the parameter values. It is much easier to say, however, 

whether convergence has not been achieved than with any certainty that convergence 

has been achieved (Spiegelhalter et al., 2003) 

 



4. Model Fit in a Bayesian Framework 

 

122 
 

4.8.2.1.1 The one and two-parameter models 

Convergence appeared to have been reached within 500 iterations for the one and 

two-parameter models. The standard deviation for most of the beta parameters was 

within about 0.1 while the standard deviation for the theta parameters was generally 

within 0.5. These levels of precision are similar to those achieved under ML or 

MML estimation. 

 

4.8.2.1.2 The two-parameter testlet model 

Figures 4.4 to 4.6 show the sampling history for three of the parameters for the 

Chemistry foundation tier paper under the testlet model from iterations 6001 to 7000. 

For all three parameters the sampling does appear to have converged as there is no 

upwards or downwards trend remaining. The beta parameters appear to be estimated 

with reasonable precision, with the beta parameter for item 1, for example, 

oscillating within a band of -0.8 to -0.6 with a standard deviation of 0.08. The theta 

parameter for person 1 is less precisely estimated, oscillating within a band of 0 to 2, 

with a standard deviation of 0.56. The eta parameter for that same person is 

estimated with the least precision, oscillating within a band of -2 to +1.5, with a 

standard deviation of 0.91. The same pattern was repeated across items and persons. 

The Biology paper showed a similar pattern, with poor estimation of the eta 

parameter. The Physics paper, however, showed more precision in the estimates of 

the eta parameter, with a standard deviation of the samples closer to 0.7. Further 

iterations had a small but negligible impact on the precision of estimation. 
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4.8.2.1.3 The three-parameter model 

The three-parameter model took the longest to converge, and even then the evidence 

of convergence was the weakest of all the models. The sample trace of the beta 

parameter in Figure 4.8, for example, appears to shows an upward trend suggestive 

of non-convergence even after 6000 iterations. The pseudo-guessing parameter was 

also quite volatile (Figure 4.9). 

b[1]

iteration

695069006850

   -1.0
   -0.8

   -0.6
   -0.4

 

Figure 4.4: Sampling history for testlet parameters in Chemistry foundation tier: The 

beta parameter for item 1 

 

theta[1]

iteration

695069006850

   -2.0
    0.0

    2.0
    4.0

 

Figure 4.5: Sampling history for testlet parameters in Chemistry foundation tier: The 

theta parameter for examinee 1 

 

eta1[1]

iteration

695069006850

   -4.0
   -2.0
    0.0
    2.0
    4.0

 

Figure 4.6: Sampling history for testlet parameters in Chemistry foundation tier: The 

eta parameter for examinee 1 on test section 7 
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Table 4.12: Means and standard deviations of the samples from Figures 4.3 to 4.5 

over iterations 6001 to 7000 

Node  mean  sd 2.50% 97.50% 

b[1] -0.71 0.08 -0.87 -0.57 

eta1[1] -0.31 0.91 -2.17 1.43 

theta[1] 0.98 0.56 -0.02 2.10 

 

c[5]

iteration

5000 5500 6000

    0.0

    0.1

    0.2

    0.3

    0.4

Figure 4.7: The pseudo-guessing parameter over iterations 5000 to 6000 

 

b[3]

iteration

5000 5500 6000

    0.6

    0.8

    1.0

    1.2

    1.4

Figure 4.8: The beta parameter for item 3 over iterations 5000 to 6000 

 
a[3]

iteration

5000 5500 6000

    0.4

    0.6

    0.8

    1.0

Figure 4.9: The alpha parameter for item 3 over iterations 5000 to 6000 
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difference appears to be for the Physics paper. This result is consistent with the more 

precise model estimations and the higher testlet effect observed. The worst model of 

all appears to be the 3 parameter model. This may be related to the poor estimation 

of the pseudo-guessing parameter and the lack of strong evidence of convergence 

noted above. It was noted in Chapter 3 that these multiple-choice items are relatively 

easy. The pseudo-guessing parameter is very difficult to estimate under these 

conditions (Bock & Moustaki, 2007). 

 

Table 4.14: Deviance Information Criterion (DIC) 

  1PL 2PL 2PLT 3PL 

Biology 33383 33226 32967 35952 

Chemistry 34638 34221 34267 38402 

Physics 32132 31809 31403 35442 

 

4.8.2.4 Posterior Predictive Model Checking (PPMC) 

While the summary statistics such as the magnitude of the testlet effect and the DIC 

are of interest, and useful in guiding model selection, they are of limited diagnostic 

use. They do not reveal, for example, why the testlet model is most appropriate for 

Physics or which items display conditional dependence. For this more detailed 

diagnostic information PPMC methods are useful. 

 

4.8.2.4.1 Observed score distributions 

The analysis in Chapter 3 suggested that the observed score distributions for the 

GCSE Science tests were not accurately predicted under the Rasch model. In the 

frequentist framework the deviation can be measured using a chi-square statistic 

(Béguin & Glas, 2001); however, the model predicted deviations from the observed 
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distributions may not follow a chi-square distribution (Sinharay et al., 2006). The 

replications produced in the Bayesian framework provide the relevant frequency 

distribution. Figure 4.10 illustrates the observed score distributions for the Physics 

test against the model replicated distributions. The observed score distribution is 

represented as the dark solid line. 

The three-parameter model clearly provides the worst predictions for the 

observed score distribution. The presence of guessing to the extent predicted by the 

model creates an acute peak in the predicted distributions.  At the other extreme, the 

one-parameter model under-predicts the density of the scores around the mean. The 

two-parameter models provide a better prediction of the density, but the location of 

the mean is misplaced. The difference between the score distributions predicted by 

the two-parameter models is interesting. The testlet model predicts a less acute peak 

than the standard two-parameter model. The testlet parameter appears to have a 

dampening effect on the discrimination parameter; this is not intuitive. 

 

4.8.2.4.2 Point biserial correlations 

The correlation of examinee scores with the binary outcomes on a particular item, 

the point biserial correlation coefficient, has been used to show the inadequacy of the 

Rasch models due to its lack of a discrimination parameter (Albert & Ghosh, 2000; 

Sinharay et al., 2006). Data simulated from the two-parameter model will have more 

extreme point biserial correlation coefficients than predicted by the Rasch model 

(Sinharay et al., 2006). Figure 4.11 highlights with a solid dot the observed 

correlations against 100 of the replicated datasets for the 1-pl model and the 2-pl 

model for the Physics test. For the 1-pl model the observed correlations are often at 

the extremes of the replicated correlations, and in several cases, beyond the extreme. 
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The 2-pl model accurately models the correlations. This pattern is consistent across 

the three tests.  

 

 

 

 

 

 

 

 

1-parameter model     2-parameter model 

 

 

 

 

 

 

 

 

2-parameter testlet model    3-parameter model 

Figure 4.10: Observed score distributions against model predicted distributions 
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The 1-pl model 

 

 

The 2-pl model 

Figure 4.11: Point-biserial correlations  
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4.8.2.4.3 Odds ratios (OR) 

Unidimensional IRT models require local independence between items. The odds 

ratio (Agresti, 2002) measures the associations between item pairs in terms of the 

observed and expected ratios of: correct – correct, correct – incorrect, incorrect – 

correct and incorrect – incorrect. If local independence does not hold between two 

items then the observed OR will be larger or smaller than expected under 

unidimensional IRT models (Chen & Thissen, 1997). Chen and Thissen found the 

standardized log-OR not to have a N(0,1) null distribution so once again the PPMC 

method is useful as it provides a relevant frequency distribution. 

The testlet response model is designed to allow the relaxation of local 

independence between items in testlets. The first section within the Physics test 

showed the greatest magnitude of a testlet effect. The odds ratios are a useful way of 

understanding why this testlet effect occurs and how the testlet response model deals 

with it. 

Tables 4.15 and 4.16 illustrate the odds ratios for the first two questions of 

the first Physics section under the two-parameter model and the two-parameter 

testlet model. The observed odds show the odds of repeating response patterns 

within the observed data for pairs of items (correct-correct, incorrect-incorrect, 

correct-incorrect, incorrect-correct). A high value reveals that the odds of repeating 

response patterns are high. So, the odds ratio of 8.42 between the question pair of 

question one and two shows that there is a high likelihood that candidates will have 

the same pattern of responses on both (0,0 or 0,1 or 1,0 or 1,1). Obviously, if both 

questions are particularly easy then the odds would be expected to be high (most 

candidates would get 1). In itself therefore, a high odds ratio is not indicative of loss 
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of local independence. The PPMC methods provide a relevant frequency distribution 

against which to judge whether local independence has been lost. 

Under PPMC, therefore, replications are made under the relevant model. The 

first 10 replications are given in the table. It is clear, even from the first 10 

replications, that the odds ratio between question one and two is unusually high 

compared to the odds ratio expected under a two-parameter model, which assumes 

local independence. In 1000 replications none were higher than the observed odds 

ratio. This leads to a PPP value of zero. A similar pattern is observed between 

questions one and three. The odds ratio between questions one and four is more 

suggestive of local independence as 59 per cent of the replications produced a higher 

odds ratio than that observed. This implies that the model is sampling around the 

observed value. 

The two-parameter testlet model relaxes the requirement for local 

independence within testlets by allowing a testlet parameter to explain some of the 

variance of responses within each testlet. This leads to higher odds ratios in the 

replicated data between questions within testlets than observed under the 2-

parameter IRT model. This can be observed in the final three columns of Table 4.15. 

For the question pair one and two, the replications under this model are now more 

successful in reproducing the odds ratios. 24 per cent of the replications of the 

replicated odds ratios are now higher than the observed odds ratios for this question 

pair. For the question pair one and three the model predictions are now sampling 

around the observed value, with a PPP value close to 0.5. For the question pair one 

and four, however, the model predictions are now higher than the actual odds ratios 

in the observed data. This is because the testlet parameter is assumed to be constant 

across all items in a section. While the first three items appear to share this testlet 
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parameter, the fourth item does not. The testlet parameter therefore degrades the 

model predictions for the relationship between the first three items and the fourth 

item. The second example, given in Table 4.16, shows how the testlet model leads to 

a similar degradation in the prediction of the odds ratios for the question pair two 

and four.  

The general increase in odds ratios within testlets under the testlet model is 

shown in Figure 4.12. Under the two-parameter model the odds ratios are generally 

under predicted. This suggests the presence of conditional dependence. Under the 

two-parameter testlet model the odds ratios for those questions that did not display 

conditional dependence under the two-parameter model are generally over predicted. 

The two-parameter model produces better predictions for questions which are locally 

independent within testlets, while the two-parameter testlet model produces better 

predictions for questions which are conditionally dependent within the testlet. 

Clearly these results are valuable to test designers. If the testlet design is 

deliberate and intended to enhance validity then loss of local independence may be 

sacrificed for the purpose of that validity. If a testlet model fits well that may be 

taken as evidence that each testlet is coherent. In this context, items that display local 

independence may be unrelated to the stimulus, which is indicative of poor test 

design (Pollitt, 1985). Candidates may seek to find some connection between the 

question and the stimulus which may lose them time or result in confusion. Of 

course the local independence may be due to a valid source of difficulty such as the 

introduction of a mathematical element or specific knowledge element to the test. 

Only inspection of the test items can reveal whether the local independence is 

justified. 



4. Model Fit in a Bayesian Framework 

 

133 
 

Further, successful modelling under the testlet model is no guarantee of the 

quality of the items. Local independence may be violated in ways which are invalid. 

The most obvious example of this is known as cross information where the answer to 

one question is given in a subsequent question. Unexpected conditional dependence 

can therefore be as informative as unexpected local independence. 

If the primary goal is to produce valid predictions from a set of given data 

then the fit of the testlet model could be improved by knowledge of which items are 

conditionally dependent. In this example, the testlet for the first section would be 

defined as the first three items, with the fourth item being modelled as independent. 

Overall, the evidence suggests that the testlet model could produce some 

improvement in model predictions for tests with an explicit testlet design. This will 

impact on the predicted score distributions which could have practical implications. 

The PPMC reveals, however, that the greatest gain appears to be derived from 

moving from a one-parameter to a two-parameter model as the two-parameter model 

correctly predicts item point biserial correlations. 
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Table 4.15: PPP values for odds ratios under the 2 parameter and 2 parameter testlet models for Question 1 in Physics 

    2 parameter   2 parameter testlet 

  Question Question 

  2 3 4 2 3 4 

Question 1 Observed odds 8.42 5.52 1.75 8.42 5.52 1.75 

  

Replications [1,] 3.07 2.74 2.31 5.41 4.44 1.89 

  [2,] 2.62 1.66 2.16 6.41 7.18 2.08 

  [3,] 3.13 2.61 1.68 6.21 5.26 1.82 

  [4,] 3.24 2.41 2.47 8.92 4.36 2.66 

  [5,] 2.51 2.05 1.68 7.21 5.99 2.04 

  [6,] 2.93 2.46 1.51 7.70 4.44 2.75 

  [7,] 2.64 1.99 1.80 5.60 6.29 1.76 

  [8,] 2.41 1.81 1.70 5.64 7.16 2.18 

  [9,] 1.83 1.93 1.70 10.28 5.70 1.84 

  [10,] 1.94 1.77 1.30 5.70 7.18 2.03 

  … … … … … … 

Proportion of replications above observed odds 0.00 0.00 0.59 0.24 0.47 0.80 

 



4. Model Fit in a Bayesian Framework 

 

135 
 

Table 4.16: PPP values for odds ratios under the 2 parameter and 2 parameter testlet models for Question 2 in Physics 

    2 parameter   2 parameter testlet 

  Question Question 

    1 3 4 1 3 4 

Question 2 Observed odds 8.42 7.02 1.55 8.42 7.02 1.55 

  

Replications [1,] 3.07 2.83 2.08 5.41 5.58 2.47 

  [2,] 2.62 2.62 1.67 6.41 8.30 2.33 

  [3,] 3.13 3.34 2.08 6.21 5.16 1.95 

  [4,] 3.24 2.02 2.08 8.92 6.03 2.41 

  [5,] 2.51 2.01 1.88 7.21 5.89 2.05 

  [6,] 2.93 2.19 1.60 7.70 4.33 2.44 

  [7,] 2.64 2.20 1.90 5.60 7.08 2.00 

  [8,] 2.41 2.24 1.73 5.64 5.25 2.30 

  [9,] 1.83 2.40 2.24 10.28 7.97 2.43 

  [10,] 1.94 1.90 1.87 5.70 6.42 3.17 

  … … … … … … 

Proportion of replications above observed 0 0 0.88 0.24 0.34 0.97 
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2-parameter model 

 

2-parameter testlet model 

 

Figure 4.12 Odds ratio 

 

4.9 Discussion 

 

The purpose of this section of was to attempt to fit different models to the GCSE test 

data, to examine their fit, and review the implications suggested by these models. In 

order to increase understanding of the dimensionality that was highlighted by the 

analyses in Chapter 3, the Multi-Class Mixture Rasch Model (MMRM) for Test 

Speededness was fitted to explore whether some part of the dimensionality was due 

to time pressure affecting responses towards the end of certain tests. The two-

parameter IRT model was fitted to improve the fit for tests where the item 

discrimination showed great variation. The three-parameter IRT model was fitted to 
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investigate guessing. Finally, the two-parameter Testlet Response Theory model was 

fitted to investigate weak local independence between responses. DIC and PPMC 

checks were then undertaken to examine how well the models performed in short 

term predictions. 

Results from the MMRM suggested that one of the GCSE Mathematics tests 

is taken under time pressure. Estimations of the ability of candidates on the last six 

items of this test declined relative to estimations of the ability of candidates on the 

first 12 items for a large proportion of the cohort. If this is a general pattern for this 

test it represents construct irrelevant variance and should be dealt with. Candidates 

should be allowed more time or the number of items they are expected to complete 

should be reduced. 

Even in those tests where the evidence for candidates working under time 

pressure was less compelling, the MMRM analysis revealed that the item parameters 

of certain items towards the end of a test are overestimated. The latent class 

approach of the MMRM allows an unspeeded cohort to be identified. This cohort can 

then be used to purify item parameters. 

The MMRM analysis is however dependent on certain assumptions. It 

assumes that candidates take tests in a linear fashion when this is unlikely to be the 

case under time pressure. It also requires an arbitrary designation of which items are 

likely to be speeded. Nevertheless, it seems to offer a relatively intuitive summary of 

the pattern of responses that occur towards the end of a test. Unfortunately, the item 

parameters for the tests studied here are not available in any purified form so these 

results are difficult to validate. As some of the items are used on the higher tier 

forms of these tests, and appear towards the beginning of these forms, it may be 
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possible, in the next chapter, to make some judgement as to whether the parameters 

have indeed been purified through an MMRM approach.  

DIC indices and PPMC checks suggested that the two-parameter IRT model 

would provide better short term predictions than a one-parameter model for the tests 

studied here. The two-parameter model preserves the item point biserial correlations 

observed in the data. The DIC indices and PPMC checks suggested that the three-

parameter IRT model would produce degraded predictions, and greatly over-predict 

the peak in the distribution of scores around the mean. This may be due to poor 

convergence of the model or poor identification of the pseudo-guessing parameter. 

The Testlet Response Theory model showed varying degrees of success on 

the three GCSE tests studied here. The odds ratios of some of the items showed 

patterns indicative of weak local independence within each testlet. The testlet model 

was able to reproduce these patterns, but in applying a testlet parameter across each 

testlet, odds ratios for those items within the testlet that were locally independent 

were over predicted. 

The results from the Testlet Response Theory model are clearly useful to test 

designers and in any study of validity. Unexpected local independence or local 

dependence can both reveal elements of construct irrelevant difficulty. While 

coherent testlets, as indicated by successfully fitting a Testlet Response Theory 

model, can be used to defend the validity of a test, weak local independence may be 

caused by construct irrelevant easiness such as cross information. The model fitting 

can only support an inspection of the actual test, not replace it. 

The PPMC methods showed great power in identifying aspects of the 

observed data that were preserved by the models. Unlike the results from statistical 

tests of fit they lend themselves to intuitive graphical interpretation. The simplicity 
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of their interpretation, however, belies the complexity of their calculation. The 

results reported here required the use of three different programming languages: R, 

WinBUGS and C++. For this reason, despite their power and appeal, they are 

unlikely to be used by the casual researcher. The more complex models under the 

MCMC framework are relatively easy to estimate; however they can be extremely 

time-consuming. This in itself is a recommendation for the simplest possible model 

that successfully produces the prediction of interest. 

While the PPMC methods revealed some practical aspects of misfit, for 

example, on predicted summed score frequency distributions, the full impact of the 

use of different models which display different levels of fit and have different levels 

of success in their various predictions can only be assessed in context of particular 

applications of those models. The next two chapters will therefore attempt to assess 

whether the fit of models analysed in these last two chapters is good enough for IRT 

methods of test equating to make a contribution to the maintenance of standards in 

public examinations in England. 
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5. Vertical Test Equating 

 

5.1 Overview 

 

Two findings seem worth pursuing from the previous chapters. Analysis from these 

chapters suggests that modelling the discrimination of items discretely can improve 

the fit of IRT models and produce better short term predictions. Results from a 

mixed Rasch model, the MMRM, suggested that item parameters towards the end of 

certain GCSE tests were overestimated as candidates were under time pressure. The 

MMRM can be used to purify the item parameters from this nuisance factor. The 

analyses so far, however, have not been able to estimate the practical consequences 

of using one model or another or item parameters that have been poorly estimated. 

The question could be re-phrased as follows: how much difference does it make in 

practice if a Rasch model is used as the basis for test equating with little care paid to 

the quality of the item parameters? Obviously, the answer will depend on specific 

features of the tests being modelled; but should the differences appear generally 

small then it would seem preferable to favour the simplest model that gives about the 

right result in most cases. As equating would never be done in isolation from other 

statistical indicators, these indicators could be relied upon to highlight potential 

problems, and the need for more complex modelling. 

The practical scenario in which this question will be asked is in equating the 

tiers of GCSEs. The foundation and higher tiers of tiered GCSEs share common 

grades. These grades are intended to be equivalent, so a grade C on foundation tier 

Mathematics is intended to have the same currency as a grade C on higher tier 

Mathematics. No distinction is made when these grades are reported. Grade C in the 
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GCSE still carries the important connotation that it represents a pass. It is therefore 

critical that this equivalence is maintained. Technically, it is extremely difficult to 

establish or maintain this equivalence, however. This is an area, therefore, in which 

test equating potentially has a great deal to offer. 

 

5.2 What is tiering? 

 

A tiered GCSE is a GCSE that is available at more than one level, or tier, of 

difficulty. Currently, only two tiers are available for GCSE: foundation tier, which is 

of lower demand; and higher tier, which is of higher demand. Candidates who take 

the foundation tier have access to lower grades, while candidates who take the higher 

tier have access to higher grades (Figure 5.1). Tiering was introduced primarily to 

ensure that GCSEs could discriminate across a wide range of ability, and can in this 

regard be compared to multi-stage tests (Wheadon & Béguin, 2010).  

 

 

 

 

 

Figure 5.1: The GCSE grades available to different tiers of entry 

 

According to the parallel drawn with multi-stage tests, the first stage of a test 

is a teacher’s judgement on how well a candidate is likely to perform while the 

second is the test itself. The teacher judgement routes a candidate to a level 

(Wheadon & Béguin, 2010). Where this metaphor breaks down, however, is that in a 
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multi-stage test all levels are accessible to a candidate taking a test on the day; that is 

not necessarily the case with tiering. While candidates can choose on the day which 

tier they will take, it is possible that they won’t have been prepared for some of the 

material on one or other tier. 

Tiering is designed to ensure that the level of demand on candidates is 

appropriate. As Pollitt, Ahmed, and Crisp (2007) have clarified, however, it is not 

always clear in the context of assessment whether differing demand relates to the 

level of difficulty of items or to the cognitive demands of the syllabus. This 

distinction is pertinent to the technical question of tiering: if candidates on different 

tiers have studied syllabuses of different demand or are expected to progress from 

one tier to the next then vertical scaling may be a more appropriate framework for 

tiering than multi-stage testing. If the candidates have followed the same syllabus 

then the comparison with multi-stage testing, where items differ in difficulty alone, 

holds. Whether tiers are differentiated by syllabus content or item difficulty affects 

the interpretations of the outcome from any comparability study, whether it uses 

incumbent or equating procedures. 

 

5.3 Tiers with different syllabus content 

 

As is often the case in assessment in the UK, the answer to the question of whether 

different demand relates to different content or different item difficulty varies by 

subject. The reasons for the differences are to be found in the educational and 

assessment history leading up to the inception of the GCSE in 1988. The original 

GCSE criteria stated that: 
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All examinations must be designed in such a way as to ensure proper 

discrimination so that candidates across the ability range are given 

opportunities to demonstrate their knowledge, abilities, and 

achievements – that is, to show what they know, understand and can 

do. Differentiated papers or differentiated questions within papers 

will be required accordingly in all subjects (cited in Good & 

Cresswell, 1988a, p. 2). 

 

The statement does not clarify whether the papers should be differentiated by content 

or by difficulty or both. 

In mathematics, the interpretation was placed quite squarely with the need for a 

differentiated syllabus. The Cockcroft report (1982) was an influential state of the 

nation report that argued the case for reform in mathematics assessment and laid 

some part of the foundation for the GCSE. On differentiation Cockcroft reported on 

the failures of the incumbent system to differentiated by content, a failure that had 

dire educational consequences, 

 

Examiners have a duty to set papers which cover as much of the 

syllabus as possible. Because they are aware that many low-attaining 

candidates will attempt the papers, they feel obliged to include within 

them a number of trivial questions on those topics in the syllabus 

which are conceptually difficult so that low-attaining candidates may 

find some questions which they are able to attempt. Teachers in their 

turn feel obliged to cover as much of the syllabus as possible so that 

their low-attaining pupils may be able to answer such questions, even 
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though some of the topics which are included are conceptually too 

difficult for these pupils. This leads to teaching of a kind which, 

instead of developing understanding, concentrates on the drilling of 

routines in order to answer examination questions. We therefore have 

a 'vicious circle' which is difficult to break (Cockcroft, 1982, para. 

445). 

 

This sentiment was echoed in the white paper which signalled the intention of the 

government to introduce a single system of assessment. It stated that in some 

subjects such as mathematics or foreign languages, 

 

certain concepts are within the grasp of some candidates but beyond 

the reach of others (cited in Cockcroft, 1982, para. 520) 

 

Mathematics is a clear example of a subject that has, since the introduction of a 

single system of assessment in 1988, differentiated by syllabus content. In the AQA 

GCSE Specification this is made quite clear, 

 

the subject content unique to the Foundation tier is based on the 

Foundation Programme of Study; the subject content common to both 

tiers and of the Higher tier only is based on the Higher Programme of 

Study; in general, the Higher tier content of the specification 

subsumes the Foundation tier content. (Assessment and 

Qualifications Alliance, 2008, p. 18) 
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As the higher tier subsumes the foundation tier, the structure would appear similar to 

that of progression through stages of learning over time. The other subjects that have 

quite clear differentiation by programme of study are modern foreign languages. 

 

5.4 Tiers with the same syllabus content 

 

At the other end of the syllabus spectrum from mathematics in terms of 

differentiation by content is english language. For english language it was felt that 

the same questions could be asked of candidates of all abilities; their answers would 

differentiate them, not the task. This has become known as differentiation by 

outcome. The current AQA syllabus makes no distinction between the programme of 

study for the two tiers and both tiers use a common mark scheme (Wheadon, 

Spalding & Tremain, 2008). Most other subjects lie in between these extremes, but 

with the exception of mathematics and modern foreign languages, there is no 

differentiated programme of study. In AQA Science, for example, there is no 

distinction made in the programme of study, but there is reference to higher level 

skills required to respond to items on the higher tier question papers. In AQA 

Geography there is no distinction noted at all, simply a reference to the different 

grades available. With the exception of mathematics and modern foreign languages, 

therefore, the differentiation is intended to be on item difficulty rather than subject 

content. 
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5.5 Current approaches to maintaining standards across tiers 

 

The current approach to maintaining standards across tiers is based on the weak 

criterion referencing approach that was described in Chapter 1. Using a combination 

of judgement and statistics examiners arrive at a recommendation for the grade C 

boundaries on the higher tier and the foundation tier separately. Some attempt is 

made to focus the examiners' minds on a common grade C standard by determining 

the order in which the grades are considered. According to The Code of Practice 

(Qualifications and Curriculum Authority, 2009) examiners are required to consider 

grade C on the higher tier directly after considering grade C on the foundation tier. 

The standard is therefore presumed to be fresh in their minds. Some statistical 

guidance may also be available on the item facilities gained by candidates on 

common items on the two tiers. Reference can also be made of course to 

performance descriptors. 

There are substantial problems with this judgemental approach. Firstly, the 

examiners are making holistic judgements on two papers in which the items differ. 

According to the Good and Cresswell effect (Good & Cresswell, 1987) examiners 

will find it easier to reward performance on the relatively easier questions posed on 

the foundation tier. Secondly, no direct scrutiny or comparison is made of the 

performance on the common items. To isolate this comparison from the Good and 

Cresswell effect the comparison of the common items would have to be undertaken 

in isolation from the other items in the question paper. Apart from the practical 

difficulties of doing this, the lack of scrutiny of the remaining items in the question 

paper directly contradicts the underlying purpose of their scrutiny which is to make 

holistic judgements. The statistical guidance is of little help as there is no way in 
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which performance on the common items can be extrapolated to performance on the 

papers as a whole. 

Black & Bramley (2008) suggest that a rank-ordering method could be used 

to solve the between-tier comparability issue. According to this method subject 

experts put sets of (usually 10) scripts into rank order of perceived quality. The sets 

of paired comparisons that result can then be analysed by fitting a Rasch model. If 

this were done on the entire scripts then it would be liable to the Good and Cresswell 

effect. If it were done on only the common items then the information in the rest of 

the scripts would be wasted. 

Turning to the statistical guidance, for tiering there is the particular issue that 

statistical models that draw on prior achievement assume that the allocation of 

candidates to tiers has no effect on their progress towards their outcomes. There is 

some evidence that students of similar ability achieve higher GCSE grades when 

they are placed in higher sets (Ireson, Hallam & Hurley, 2005). If this were generally 

true then candidates with the same level of prior achievement would be expected to 

achieve different outcomes depending on which set they were entered into. The 

assumption of equal value-added required by a regression model therefore no longer 

holds. So called school compositional effects are, however, notoriously hard to pin 

down (Harker & Tymms, 2004). 

It is of course possible to predict outcomes for a tier based on prior results for 

that tier only, and this is often done in practice. Issues arise, however, when the 

relative entry between tiers changes. Further, this approach does not solve the 

problem of how to set the relative standards between tiers in the first place or how to 

evaluate whether the relative standard is correct. 
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Given the judgemental and statistical limitations inherent in current 

approaches to comparability between tiers it is hardly surprising that a thorough 

review of tiering (Baird et al., 2001) found a number of areas of concern. On the 

issue of comparability the study suggested that potentially large differences in 

standards existed in some subjects at the overlapping grade C at GCSE. This study 

used general linear models and predictive methodologies that are, however, 

constrained for the reasons noted above. A subsequent study using OPLM methods 

of test equating (Wheadon & Béguin, 2010) found that differences in standards do 

exist, but these are not as large as suggested by the previous study. 

 

5.6 Potential IRT test equating approaches to tiering 

 

5.6.1 Common item non-equivalent groups design 

The ability of the populations on the different tiers obviously differs. This requires 

the use of a non-equivalent groups design. The performance is linked by means of 

the common items that are taken by each tier. 

 

5.6.2 Scaling or equating 

The problem of maintaining standards across tiers can be conceived of as either a 

vertical scaling or a vertical equating issue (Kolen & Brennan, 2004). The equating 

methodology is identical, but the inferences drawn are different. Under vertical 

scaling equated scores are not considered equivalent. So, according to the 

mathematics example given above where the syllabuses for the tiers differ, the same 

equated score is no guarantee that candidates know and can do the same level of 

mathematics. Under vertical equating the same equated score is intended to represent 



5. Vertical Test Equating 

 

149 
 

the same level of performance. The scores from vertical equated test forms are 

therefore considered to be equivalent. 

 

5.6.3 Separate or concurrent estimation 

Separate estimation sets the ability (theta) scale for the foundation tier as the base 

scale, and the common items are used to place item parameter estimates, examinee 

ability estimates, and estimated ability distributions on the base scale using linking 

methods (such as the Rasch shift constant method described in Chapter 2). All the 

item parameters and estimated ability distributions are then on the base (foundation) 

scale. The mean and standard deviation of the estimated ability distributions thus 

transformed can be used to compare the difference in mean ability and variability on 

the different tiers. 

The alternative to separate estimation is concurrent estimation. Under 

concurrent estimation items that are not common between tests are effectively coded 

as missing or not reached. Under MML estimation it is critical that the estimation 

program allows for multiple groups so that separate ability distributions can be 

specified for each tier of entry (Kolen & Brennan, 2004). OPLM (Verhelst & Glas, 

1995) allows for this distinction to be made. 

Kolen and Brennan (2004) suggest that, in theory, concurrent estimation uses 

all available information for parameter estimation and is therefore expected to be 

more stable than separate estimation. In practice, however, they recommend separate 

estimation, as it allows the item parameter estimates from the separate estimations to 

be compared. This comparison can reveal items that are performing differently 

across levels and are not suitable as linking items. Where a population parameter is 

included in the concurrent estimation, as it is under OPLM, this comparison is also 
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readily made. The authors also note that multi-dimensionality is likely to be more of 

an issue if different levels of achievement are calibrated concurrently. Separate 

calibration is therefore characterised as the safer option. 

 

5.7 Potential issues in equating across tiers 

 

5.7.1 Groups of different ability 

Although vertical test equating is designed to measure the difference in the ability 

between groups, when the difference in the ability is too large, the results from 

different equating procedures can differ. This has been taken to indicate that the 

equating is no longer robust (Dorans, Pommerich & Holland, 2007; Kolen & 

Brennan, 2004). Kolen and Brennan’s recommendations on the points at which the 

methods differ are reproduced in Figure 5.2. In addition, it is noted that ratios of 

group standard deviations on the common items of less than 0.8 or greater than 1.2 

tend to be associated with substantial differences among methods (Kolen & 

Brennan). It is acknowledged, however, that in these situations IRT methods might 

function more adequately than other methods. Why the results differ is, however, 

unclear. Cook and Paterson (1987) suggest that poor correlations between item 

difficulties for two separate groups under these conditions can indicate that the 

constructs being assessed are different.  

 

 

 

 

 
















































































































































































































































































































