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Abstract 

Simulation is one of the most important tools to analyse, design, and operate complex 

processes and systems. Simulation allows us to make a 'trial and error' in order to under­

stand a system and describe a problem. Therefore, it is of great interest to use simulation 

easily and practically. The advent of parallel processors a.nd languages help simulation 

studies. A recent simulation trend is distributed simulation which may be called discrete­

event simulation, because distributed simulation has a great potential for the speed-up. 

This thesis will survey discrete-event simulation and examine one particular algorithm. It 

will first survey simulation in general and secondly, distributed simulation. Distributed 

simulation has broadly two mechanisms: conservative and optimistic. The treatment of 

time in these mechanisms is different, we will look into both mechanisms. Finally, we will 

examine the conservative mechanism on a. network of transputers using Occam. We will 

conclude with the result of the experiments and the perspective of distributed simulation. 
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Chapter 1 

INTRODUCTION 

1.1 Motivation 

Simulation is one of the most important and useful tools for analysing the design and 

operation of complex processes and systems. Simulation enables people either to under­

stand the behaviour of a system or to evaluate the performance of a system. Simulation is 

suitable for many fields. Shannon (see [Shannon 75]) remarks that simulation receives its 

original impetus from the nuclear and aerospace programs. He indicates the broad field 

of present applications through books published on the use of simulation in business, eco­

nomics, marketing, education, politics, social science, behavioural science, international 

relations, transportation, law enforcement, urban studies, and global systems, to name 

only a few. 

Two separate classes of simulation exist: discrete and continuous. As the term suggests, 

in discrete simulation, a system instantaneously changes its state at discrete points in 

time, whereas in continuous simulation, changes occur smoothly and continuously over 

time. However, simulations are slow to develop and slow to run. A simulation model may 

become complicated, so it may be expensive in terms of manpower and computer power. 
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In order to be statistically significant, simulation has to generate a sufficient number of 

typical evolutions of the system. 

Discrete-event simulation changes its state only at a countable number of points in 

time. In practice, discrete-event simulations can be characterised as being event-driven 

systems. The discrete-event simulation advances simulated time in irregular intervals 

defined by the time of occurrence of each simulated event. Typical sequential implementa­

tions maintain an 'event list' which is a list of expected future events ordered in increasing 

order of expected time occurrence. The event is removed from the event list and the 

simulation clock is advanced to the time of the event. Simulating an event may change 

the values of variables that describe the state of the system, and may cause events to be 

added to or deleted from the event list. Distributed simulation attempts to reduce the 

time needed to perform a simulation by spreading its execution over multiple processors. 

It is accomplished by exploiting the parallelism inherent in discrete-event simulation al­

lowing the distributed processes to run asynchronously. The advent of inexpensive and 

increasingly powerful multi-computer systems could be used to create the parallelism. 

Discrete-event simulation mechanisms fall broadly into two categories: conservative 

and optimistic. Conservative approaches were historically the first to appear. In con­

servative approaches, messages are transmitted strictly in chronological order. These ap­

proaches rely on some strategy to determine when it is 'safe' to process an event (in other 

words, they must determine when all events that could affect the event in question have 

been processed). One of these approaches uses null messages when a process is blocked 

(see [Chandy 81]). There are several other approaches. An alternative to the null message 

approach is to send query or probe when a process is blocked and needs an improved clock 

time (see [Peacock 79a], [Misra 86], [Misra 83], and [Bain 88]). In optimistic approaches, 

on the other hand, messages may, or may not, be transmitted chronologically. When a 

message with an earlier time stamp is transmitted, the process 'rolls back' to an earlier 

virtual time. Work has been done on evaluating the performance of various conserva­

tive approaches, see [Fujimoto 88], [Reed 85], [Reed 88a], and [Reed 88b]. The empirical 

evidence to support the optimistic approach is shown in [Lomow 88], [Mitra 84], and 

[Gilmer 88]. In distributed simulation, however, many approaches have been researched 

thoroughly, though more empirical work needs to be done. Since it may be difficult to 

define an approach for general distributed simulation, empirical work should be carried 
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out to determine which approach is appropriate to which circumstances. 

In this thesis, we will examine deadlock avoidance using null messages. This will be 

evaluated using a transputer board and the Occam parallel programming language. Since 

distributed simulations are based on a process-interaction by passing messages, Occam is 

naturally suited to implementing this type of problem. It is reasonable to expect that 

process interaction models running in Occam on a transputer will perform well, because 

Occam is claimed to be an assembly language for the transputer. We will examine the 

performance of one transputer and a network of transputers. We will run the same program 

on both, and evaluate the effect of null messages, processing time, and the like. We will 

also observe the effect of the system structure, the process service time by various types 

of messages. 

I hope that this thesis will help those computer scientists who survey approaches in 

distributed simulation. 

1.2 Thesis Outline 

The rest of this thesis is divided into four Chapters. 

Chapter 2 surveys simulation in general. The terminology of simulation is intro­

duced and a classification is presented. Some techniques and possible implementation 

languages are surveyed. 

Chapter 3 focuses on distributed simulation. Five possible decomposition techniques 

are explained and examples given of each: parallelising compilers, distributed experiments, 

distributed simulation events, language function distribution, and model function distri­

bution. Two major approaches, conservative and optimistic, are analysed. 
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Chapter 4 examines deadlock avoidance using null messages introduced in conser­

vative approaches. A network of transputers and Occam are used. An attempt is made to 

determine the treatment of time, the effect of null messages, and the effect of the system 

structure, and the like. 

Chapter 5 summarises this thesis and talks about further work in distributed sim­

ulation. 

Appendix contains a list of a fork and merged network program on a network of 

transputers using the keyboard and the screen, and files, respectively. 
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Chapter 2 

SIMULATION 

2.1 The Concept of a System 

Simulation mimics a real system to let people understand how the system works, how 

to solve the problem, how to operate the system, and the like. Therefore, central to 

simulation study is the idea of a system. To model a system, one must first understand 

what a system is. The term system is used in a broad range of contexts with various 

meanings. In simulation the term is normally used to designate a collection of objects 

with a well defined set of interactions between the objects (see [Adkins 77]). We could 

choose one of the definitions according to our purpose. 

A system is defined as an aggregation or assemblage of objects joined in some 

regular interaction or interdependence (see [Gordon 78]). 

A system may take into consideration all external factors capable of causing a change in 

the system. These external factors form the system environment. A real-world object 

is called an entity, attributes are characteristics or properties of entities. The state of 
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a system is the minimal collection of information with which its future behaviour can 

be uniquely predicted in the absence of chance events. Since the inclusion of time in 

the consideration of a system implies that the state of a system changes, there must 

be an activity, either a process or event, which prompts this change. The system state 

may change in response to activities internal to the system or to activities external to the 

system. The term endogenous is used to describe activities occurring within the system and 

the term exogenous is used to describe activities in the environment that affect the system. 

Although it is convenient to distinguish between endogenous and exogenous activities, it is 

not always possible to do so. When one is defining a given system, it is not always apparent 

which factors are internal to the system and which are external. Furthermore, with a given 

system definition an exogenous activity may prompt a series of endogenous activities. The 

resulting system state may in turn trigger another exogenous activity. Thus in many cases 

very little distinction can be made between endogenous and exogenous activities. 

2.2 What is Simulation? 

Simulation is one of the most powerful techniques available for problem solving. It 

involves the construction of a replica or model of the problem, on which we experiment 

and test alternative courses of action. This gives us a greater insight into the problem and 

places us in a better position from which to seek a solution. 

We conduct experiments in a systematic way until we either get a satisfactory answer 

or give up through lack of progress. The greater our understanding of the problem the 

quicker we are able to produce an answer. We start from the point of present understanding 

of the problem and proceed, according to ability and application, to search for the best 

possible solution in the time available. This means that simulation can be laborious and 

expensive, and does not necessarily produce an acceptable answer, much less the optimum 

answer. 

Simulation forces us into observing and understanding the behaviour of the problem 

by identifying those factors which are important. This results in an appreciation of the 
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dynamics of the total system under study, and helps avoid bias towards solving special 

mathematical problems relating to one aspect of the system, which is a danger inherent 

in the analytical approach. 

Simulation is a 'trial and error' approach which allows us to describe a prob­

lem and gain understanding of the factors involved, by asking questions and 

observing the answers (see [Poole 77]). 

Though the literature gives many definitions for simulation, this definition seems to en­

compass the more important aspect of this problem solving process (see [Graybeal 80]). 

Simulation is essentially an experimental problem-solving technique. Many simulation 

runs have to be made to understand the relationships involved in the system, so the use 

of simulation in a study must be planned as a series of experiments. 

To simulate the system, the process of preparing a suitable model, modeling, is required. 

Modeling is the process of developing an internal representation and set of transformation 

rules which can be used to predict the behaviour and relationships between the set of 

entities composing the system. The internal representation requires identification of a 

sufficient set of variables to be used to describe system state; these variables are changed 

by the application of the transformational rules. 

Compared with analytical solution of problems, the main drawback of simulation is 

that it gives specific solutions rather than general solutions. An analytical solution gives 

all the conditions that can cause events. Each execution of a simulation tells only whether 

a particular set of conditions did or did not cause events. To try to find all such conditions 

requires that the simulation be repeated under many different conditions. The step-by­

step nature of the simulation technique means that the amount of computation increases 

very rapidly as the amount of detail increases. Coupled with the need to make runs to 

explore the range of conditions, the extra realism of simulation models can result in a very 

extensive amount of computing. 
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2.3 Development of Simulation 

The development of simulation involves six major steps: 

1. Preliminary analysis to determine if a simulation is worth developing. 

2. Formulation of the problem. 

3. Collection and analysis of pertinent information. 

4. Model construction. 

5. Computer programming. 

6. Validation. 

In most cases, the first two steps should be completed before anything else is done. Steps 

three through six are carried out in outlapping times, as dictated by the particular cir­

cumstances. A major factor in successful simulation development is the control of these 

overlapping activities to obtain a unified result. 

In the first step, preliminary analysis, the analyst should think about (1) What is 

the system really like? and (2) How much do we already know about it? The next step 

requires rough estimates of the resources that will be needed to simulate the system and a 

description of the ways that the simulation will be used. This work gives the analyst the 

best possible guess at the cost and the benefits of the simulation study. 

The essence of problem formulation is the detailed specification of the applications to 

be made of the simulation. A computer simulation must be designed to accommodate a set 

of specific applications. Since the simulation is usually intended to provide information for 

management, the best source for ideas of specific applications is management itself, at all 

levels. At this stage, the analyst must decide which problems the simulation will be able 

to help and which it will not. The analyst will also develop lists of the entities, attributes 

and activities to be included in the simulation. The choice of suitable measures of system 

effectiveness is very much a part of the formulation of the problem. Since measures often 

prove unsuitable or incomplete for a particular simulation development. 
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A model is validated by proving that the model is a correct representation of the real 

system. Validation should not be confused with verification. When a computer program 

is verified, for example, the program is checked to ensure that the logic does what it was 

intended to do. A verified computer program can in fact represent an invalid model. The 

program may do exactly what the programmer intended, but it may not represent the 

operation of the real system. 

Validation of computer simulation is a difficult task. 

It is improved by using models that are parametric in so far as possible. Parameters 

in a simulation are variables that denote the state of the environment and the underlying 

characteristics of a system. Use of parameters rather than constants wherever possible 

makes it easier to modify the system characteristics and the relation of the system to its 

environment and thus to increase the validity of the simulation during development. 

The tasks involved in development of a simulation are summarised as follows. The first 

stage of development is the planning and preparation. It includes the initial encounter 

with the system, the problem to be solved, and the factors pertaining to the system and 

its environment that are likely to affect the system of the problem. The second stage 

is the modeling. In this stage the programmer constructs a system model, which is a 

representation of the real system. The last stage is the validation and application. Once 

the model has been properly validated, it can be applied to solving the problem at hand. 

However, the development of the simulation model may still not be complete, observation 

of the model is needed. 

2.4 Advantages and Disadvantages of Simulation 

Simulation has been applied to wide field of human activity. There are, however, 

many cases in which it does not apply; there may be easier and cheaper ways of solving 

the problem. There are distinct advantages and disadvantages to simulation. 
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Advantages 

1. It permits controlled experimentation. A simulation experiment can be run a number 

of times with varying input parameters to test the behaviour of the system under a 

variety of simulations and conditions. 

2. It permits time compression. Operation of the system over extended periods of time 

can be simulated in only minutes with high speed computers. 

3. It permits sensitivity analysis by manipulation of input variables. 

4. It does not disturb the real system. This is a great advantage, since most managers 

would be reluctant to try experimental strategies on an on-line system. 

5. It is an effective training tool. 

Disadvantages 

1. A simulation model may become expensive in terms of manpower and computer time. 

This is not surprising if the magnitude of the problems being attempted is considered. 

For example, consider the simulation of message through a large-scale (1000-node) 

communication network. Just the book-keeping requirements for a problem of this 

magnitude are staggering. The cost of a simulation experiment can be minimised 

through in-depth understanding of the system being simulated before the model is 

developed and through careful design of the simulation experiment. 

2. Extensive development time may be encounted. Most simulation models are quite 

large and, like any large programming project, take time. Strategies such as the 

chief programmer team, top-down design, and modular programming, which have 

been applied to other large programming projects, are likely to be useful in the 

development of system simulations and could reduce the development time. 

3. Hidden critical assumptions may cause the model to diverge from reality. ldealy 

this phenomenon should be discovered in the validation phase of the simulation 

process, but it might go undetected, depending on the severity of the problem and 

the diligence with which the model is validated. 
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4. Model parameters may be difficult to initialise. These may require extensive time in 

collection, analysis, and interpretation. 

2.5 Classification 

2.5.1 Discrete and Continuous Systems 

The terms continuous and discrete applied to a system refer to the nature or behaviour 

of changes with respect to time in the system state. A system whose changes in state 

occur continuously over time are continuous systems; systems whose changes occur in 

finite quanta, or jumps, are discrete systems. Some of the system state variables may vary 

continuously in response to events while others may vary discretely. Such systems can be 

called hybrid systems. 

In continuous systems, the changes are predominantly smooth. The models of con­

tinuous systems generally consists of sets of differential equations; the description of a 

continuous system generally involves the specification of the rate at which certain at­

tributes change. Examples include fluid moving through a conduit or pipe, aircraft in 

flight, a spacecraft in orbit about the earth, and electrical circuits. 

In discrete systems, changes are predominantly discontinuous like the factory. Few 

systems are wholly continuous or discrete. An aircraft, for example, may make discrete 

adjustments to its trim as altitude changes, while, in the factory example, machining 

proceeds continuously, even though the start and finish of a job are discrete changes. The 

complete aircraft system might even be regarded as a discrete system. If the purpose of 

studying the aircraft were to follow its progress along its scheduled route, with a view, 

perhaps, to studying air traffic problems, there would be no point in following precisely 

how the aircraft turns. It would be sufficiently accurate to treat changes of heading at 

scheduled turning points as being made instantaneously, and so regard the system as 

being discrete. In addition, in the factory system, if the number of parts is sufficiently 
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large, there may be no point in treating the number as a discrete variable. Instead, the 

number of parts might be represented by a continuous variable with the machining activity 

controlling the rate at which parts flow from one state to another. This is, in fact, the 

approach of a modeling known as System Dynamics. However, in most systems one type 

of change predominates, so that systems can usually be classified as being continuous or 

discrete. 

The state of a system, either continuous or discrete, is usually expressed as a function 

of time. The simulation time refers to the period of time simulated by the model whatever 

interval the researcher is interested in. This simulation time is set to 0 at the beginning 

of the simulation run and acts as a counter to the number of simulation time units. 

Time management 

Simulation models have been used to model both static (time-independent) and dy­

namic (time-dependent) situations (see [Graybeal 80]). A static model shows the rela­

tionships between entities and attributes when the system is in a state of equilibrium. 

Most simulation models are dynamic models because a simulation must generally include 

a means for depicting a time change in the system. This is the time management. Two 

common ways are periodic scan and event scan. 

The periodic scan, or fixed-time increment, technique adjusts the simulation clock by 

one pre-determined uniform unit and then examines the system to determine whether any 

events occurred during that interval. If any occurred, the event or events are simulated; 

otherwise no action is taken. The simulation clock is then advanced another unit, and the 

process is repeated. An example of this time management is illustrated in Figure 2.1. 

El E2 E3 E4 ES E6 E7 EB 

t li t il It t i I I t 1.,. 
so s 1 52 53 54 55 56 57 58 59 

Figure 2.1: 
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In Figure 2.1 no event occurs in the first unit of simulated time, so the clock is im­

mediately advanced and .the system scanned. Then event E 1 occurs in the second time 

increment. This event would be simulated and the clock advanced again. Since there is 

no event to simulate during the third interval the clock is again advanced. During fourth 

interval two events are to be simulated, E 2 and E3 • Following their simulation the clock is 

again advanced. This process of advancing the clock, scanning the system, and simulating 

events if necessary is repeated until the duration of the simulation run is reached. With 

this method the exact time of the occurrence of particular events is largely ignored. All 

events that occur during a given interval are treated as if these events occurred at the end 

of that interval. 

In the event scan approach the clock is advanced by the amount necessary to trigger the 

occurrence of the next, most imminent, event, not by some fixed, predetermined interval. 

Thus the time advance intervals are of variable lengths. This approach requires a scheme 

for determining when events are to occur. When events are discovered or generated, they 

are generally stacked in a list, or queue, in time order. The length of the required time 

advance interval can then be determined merely by scanning the event lists to determine 

the next earliest event. The simulation clock is then advanced to that time, and occurrence 

of the event is simulated. 

2.5.2 Stochastic and Deterministic Systems 

A system may be regarded either as deterministic or stochastic, depending upon the 

causal relationship between input and output. The output of a deterministic system can 

be predicted completely if the input and the initial state of the system are known. That is, 

for particular state of the system, a given input always leads to the same output. However, 

a stochastic system in a given state may respond to a given input with any one among a 

range or distribution of outputs. For a stochastic system, it is possible to predict only the 

range within which the output will fall and the frequency with which various particular 

outputs will be obtained over many repetition of the observation. It is impossible to 

predict the particular output of a single observation of the system. 
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The randomness of stochastic activity would seem to imply that the activity is part 

of the system environment since the exact outcome at any time is not known. However, 

the random output can often be measured and described in the form of a probability 

distribution. If, however, the occurrence of the activity is random, it will constitute 

part of the environment. For example, in the case of the factory, the time taken for 

machining would be considered to be an endogenous activity. On the other hand, there 

may be power failures at random intervals of time. These would be the result of an 

exogenous activity. If an activity is truly stochastic, there is no known explanation for its 

randomness. Sometimes, however, when it requires too much detail or is just too much 

trouble to describe an activity fully, the activity is represented as stochastic. 

2.5.3 Open and Closed Systems 

A closed system is a system in which all state changes are prompted by endogenous 

activities. In contrast, open systems are systems whose states change in response to both 

exogenous and endogenous activities. It is sometimes difficult to distinguish between 

endogenous and exogenous activities, and even if the distinction can be made, they are 

handled in the same way in most simulation studies. Therefore, it is also difficult to 

distinguish between open and closed systems. 

2.6 Simulation Techniques 

2.6.1 Random-number Generators 

In many simulations events appear to occur at random or to involve attributes whose 

values must be assigned somewhat by chance. For instance, in many cases the duration 

of an event is known to fall within a certain range. Simulation of the event requires that 

a particular value be assigned. Consider the simulation of a general-purpose computer 

system. One event that must be modeled is the retrieval of a record from a direct-access 
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storage device. The duration of this event can be determined to fall within certain interval; 

the actual value, however, is influenced by chance variables such as the position of the 

record relative to the read head when the request is made. Another instance in which 

chance appears to play a part is in the widespread use of decision logic in simulation. For 

example, suppose that in the operation of a system, a given path is known to have taken 

a certain percentage of the time. Simulation of the system requires a method for selecting 

this path over others so that the long-run behaviour of the simulator is similar to that of 

the actual system. Since in most cases these decisions are nondeterministic, the choice is 

normally based on probabilistic relationships. For these reasons and others, almost any 

simulations model is required to generate random numbers. 

A number of techniques have been applied to overcome the inherent non-reproducibility 

of random sequences. The first approach is to generate the sequence by some means and 

to store it, say on tape. This approach is generally unsatisfactory because of the time 

involved. Each time a random number is required, a read operation must be initiated, and 

this is a time-consuming operation. This technique also potentially suffers from a short 

repeatability cycle unless a large sequence is stored. The second approach is to generate 

a random sequence and hold it in memory. This approach would overcome the speed 

problem of the previous technique, however, to store a list large enough to satisfy the 

requirements of many simulation studies would require an inordinate amount of memory. 

The third and most common approach is to use a specified input value to generate a 

random number using some algorithm. This technique overcome the problems of speed 

and memory requirements but suffers from potential problems with independence and 

repeatability. 

The use of an algorithm to generate random numbers seems to violate the basic prin­

ciple of randomness. For this reason numbers generated by an algorithm are called syn­

thetic or pseudo-random numbers. These numbers meet certain criteria for randomness 

but always begin with a certain initial value called the seed and proceed in a completely 

deterministic, repeatable fashion. Extreme care must be taken when using pseudo-random 

sequences to insure that a fair degree of randomness is present and that the repeatabil­

ity cycle is long enough. Random numbers are so important to simulation studies that 

much work has been done in devising and testing algorithms that produce pseudo-random 

sequences of numbers. 
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2.6.2 Queuing Theory 

Waiting lines, or queues, are encountered in nearly all aspects oflife. Queues range from 

waiting lines at the barber shop, supermarket, or filling station to a backlog of messages at 

a communication centre, or jobs at a computer centre. The reason that waiting lines form 

is quite simple: there are simply not enough serving facilities (or servers) to satisfy all 

the customers simultaneously. The reason for an inadequate number of servers is simple 

economics. Customers seem to arrive at random; thus to guarantee that there will be no 

waiting lines, the service station manager would have to hire as many servers as there are 

customers. This is not economically feasible, hence a fixed number of servers are normally 

hired with the hope that the waiting lines do not become intolerably long. Should the 

customers become discouraged and leave before being served, the manager would want 

to hire more servers to avoid losing business. A queuing system is a system in which 

customers arrive, wait if that service is not immediately available, receive the necessary 

service, and then depart. 

In the queuing model, the following items are concerned. 

1. Queue length. Both the maximum and the average queue lengths are useful in 

characterising the behaviour of a system. 

2. Time in the system. The expected length of time that a customer will spend in a 

system is of interest to the analyst as well as to the customer. 

3. Idle and busy time of the server. Optimal utilisation of the service facility is one of 

the aims of a system designed. 

Now let us see the queuing discipline that determines how the next entity is selected from 

a waiting line. 

1. A First-In, First-Out discipline or, as it is commonly abbreviated, FIFO, occurs 

when the arriving entities assemble in the time order in which they arrive. Service 

is offered next to the entity that has waited longest. 
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2. A Last-In, First-Out discipline, usually abbreviated to LIFO, occurs when service 

is next offered to the entity that arrived most recently. This is approximately the 

discipline followed by passengers getting in and out at a crowded train and lift. It 

is the precise discipline for records stored on a magnetic tape that are read back 

without rewinding the tape. 

3. A random discipline means that a random choice is made between all waiting entities 

at the time service is to be offered. Unless specified otherwise, the term random 

implies that all waiting entities have an equal opportunity of being selected. 

D. G. Kendall (see [Kendall 53]) developed a widely accepted notation with this con­

vention, a queuing system is described by a series of symbols separated by slashes. For 

example, 

A/B/C/D/E 

In this notation A represents the inter-arrival time distribution, B the service time distri­

bution, C the number of parallel servers, D the system capacity, and E the queue discipline. 

Some of the common inter-arrival distributions are M (exponential), D (deterministic), 

Ek(Erlang type k), and G (general). For example, M/M/1/oo/FIFO indicates a single-server 

with infinite system capacity, exponentially distributed inter-arrival times, exponentially 

distributed service times, and a first-in, first-out queuing discipline. 

Priority queuing systems 

In all the previous queuing disciplines, the next customer selected for service in the 

system was the one at the head of the line. In the priority system, certain customers are 

given precedence over others. One reason to use priority queue is to reduce the average 

cost of the system. It may be more expensive to have certain customers wait in line 

rather than others. It would seem reasonable then to serve the high-cost customers first 

and thereby reduce the average total cost to the system. Another motivation might be 

to reduce the average number of customers in the system. The required service time for 

certain customers may be considerably shorter than for other customers in the system. 
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By giving priority to customers who require the least service, it is possible to reduce 

the average number of customers in this system. Two general classes of priority queuing 

disciplines must be examined. 

Nonpreemptive. Once the service of a given customer has started, it cannot be inter­

rupted. If there are customers in the queue with different priorities, the next customer 

selected for service is the one with the highest priority. If there are customers in the queue 

with the same priority, some alternative discipline, normally first-in, first-out, is used to 

determine which customer is served next. 

Pre-emptive. In this scheme, if an arriving customer has a higher priority than the 

customer currently being served, service is interrupted for the current customer, and the 

higher priority customer gains control of the service facility. The interrupted customer 

rejoins the queue for service. The question is then, what happens when the interrupted 

customer is again selected for service? If the portion of service that the customer received 

is lost and service begins again, the discipline is known as a pre-emptive repeat discipline. 

If the service is resumed from the point of interruption, the discipline is known as a 

pre-emptive resume discipline. 

Whether a given discipline is pre-emptive or non-pre-emptive does not determine the 

priority of customers in the queue. Some techniques for assigning priorities to customers 

in the queue are given below: 

Shortest service first. This scheme requires that the required service of each 

customer be known. Customer are then assigned priorities based on the re­

quired service, and the customer requiring the least amount of service is given 

the highest priority. This technique is generally used in non-pre-emptive dis­

ciplines. 

Willingness to pay. In some systems, customers are allowed to buy a higher 

priority. Rates are set for various levels of priority, and a customer is charged 

according to the level of priority desired. This technique is normally used in 

non-pre-emptive systems. 

Round robin. Each customer in the queue is given some interval (quanta) of 
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service before any customer receives a second interval. If the quanta is not 

sufficient to complete the service on a given customer, service is interrupted 

and the customer rejoins the queue in a cycle fashion. A number of techniques 

have been used in order to handle the customer who has received only part of 

the service. The customer can rejoin the original queue, for example, or join a 

second queue. 

2. 7 Languages 

One of the most important decision a programmer must make in performing a simula­

tion study is the choice of an implementation language. Many simulations perform similar 

functions. 

Some of these functions are 

1. Generating random variates 

2. Managing simulation time 

3. Handling routines to simulate event executions 

4. Managing queues 

5. Collecting data 

6. Summarising and analysing data 

7. Formulation and printing output 

2.7.1 Multipurpose Languages 

Many programmers tend to select multipurpose languages such as FORTRAN, AL­

GOL, and PL/I for use in simulation. One of the main reasons is the widespread availabil-
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ity of these languages. Even a very small computer installation probably has a FORTRAN, 

ALGOL, or PL/1 compiler. However, these languages have no capability to generate 

random variates. Many installations have among their library routines a function that 

generates standard uniform variates. If they use the standard functions to generate the 

uniform variates, they must code the routines to transform the standard uniform variates 

to normal or exponential distributions. 

List programming in FORTRAN is wea.k and is usually implemented by arrays. This 

approach can cause problems, since the maximum size and dimension of the arrays must be 

determined and declared beforehand. Hence it is not really possible to simulate the opera­

tion, such as an M/M/1/oo/FIFO queuing system. Manipulation of pointers in FORTRAN 

is also inefficient, since pointers are normally included as a part of multidimensional array. 

Accessing a particular pointer can then become time-consuming. The actual penalty that 

results from FORTRAN's list-processing capability depends on the model. 

When using multipurpose languages, the programmer must consider the formatting 

and printing of results. Unlike the specialised languages, multipurpose languages have 

no automatic output. Input and output routines that are part of the implementation of 

multipurpose languages provide for flexible formatting, under programmer control. Many 

installations provide plot routines that may be invoked to provide a visual presentation 

of the output. However, some effort is required on the part of the programmer to define, 

interface, and initialise the parameters needed by these routines. 

Debugging aids in the multipurpose languages are somewhat limited. They all identify 

syntactic errors, such as the use of undefined variables and typing errors. Errors in logic, 

however, must be detected by the programmer. To do this, the programmer must have 

some idea of what results to expect from the model. The model is then run and its output 

compared with the expected results. Debugging in these languages is in many respects a 

trial-and-error process. The programmer finds one bug and eliminates it, only to expose 

another. 

Nevertheless, there are probably more simulation models written in FORTRAN than 

in any other language. Advantages of using multipurpose languages are as follows. 
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1. Most Programmers already know a multipurpose language, but this is often not the 

case with a simulation language. 

2. Multipurpose languages are available on virtually every computers, but a particular 

simulation language may not be accessible on the computer that the programmer 

wants to use. 

3. An efficiently written FORTRAN program may require less execution time than the 

corresponding program written in a simulation language. This may be because of 

systems with one set of building blocks, but a FORTRAN program can be tailored 

to the particular application. 

4. Multipurpose languages allow greater programming flexibility than certain simula­

tion languages. 

However, a number of programming languages have been produced to simplify the task of 

simulation programming. Let us see some common specialised languages. 

2.7.2 GASP IV 

GASP IV is an event-oriented simulation language for discrete-event simulation models 

consisting of more than thirty FORTRAN subroutines and functions, each of which per­

forms a required simulation activity. Since GASP IV is written in FORTRAN, it is very 

easy to learn and is usable on almost any computer with a FORTRAN compiler. GASP 

IV views a system as consisting of entities, their associated attributes, and files which 

contain entities with common characteristics. All files are stored in one master array. The 

language provides the user with an executive routine called GASP, which automatically 

performs such activities as determining the next event from the event list and advancing 

the simulation clock. On the other hand, the user must write a main program, an initial­

isation subroutine INTLC (option), a subroutine EVENTS, the usual event routines, and 

a report subroutine OTPUT (option). GASP IV automatically provides the user with a 

standard output report at the end of the simulation. If the user wants to obtain additional 

output data, they can be obtained by writing a subroutine called OTPUT. 
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2.7.3 SLAM (Simulation Language for Alternative Modeling) 

SLAM is an event-oriented or a process-oriented simulation language. The event ori­

entation in SLAM is similar to that in GASP IV. In the process orientation in SLAM, 

a programmer combines a set of standard symbols, called nodes and branches, into an 

inter-connected network structure. It affords the diversity of modeling approaches. The 

programmer can build discrete-event modeling using either the event or the process ori­

entation (or both), continuous models employing differential or difference equations, and 

combined models using all these elements. 

2.7.4 SIMSCRIPT 11.5 

SIMSCRIPT 11.5 is an event-oriented or a process-oriented simulation language con­

sidered by many to be the most powerful simulation language available today. General 

programming tasks can be done more efficiently than in FORTRAN, because of the power 

and diversity of the statements available in SIMSCRIPT. Furthermore, its English-like and 

free-form syntax makes SIMSCRIPT programs easy to read and almost self-documenting. 

SIMSCRIPT 11.5 is the only major simulation language with a package for performing 

statistical analyses of simulation output data. Continuous and combined discrete-event 

simulation can be performed in SIMSCRIPT 11.5. A SIMSCRIPT 11.5 model views a 

system as consisting of entities, attributes, and sets. Entities are of two types, permanent 

and temporary. Permanent entities correspond to objects in a system, for example, servers 

in a queuing system, whose number remains fairly constant during the simulation. Con­

versely, temporary entities represent objects in a system, for example, customers arriving 

to a queuing system, whose number may vary considerably during the simulation. At­

tributes are data values which characterise either type of entities, and sets are collections 

of entities with a common property. To construct a discrete event simulation model in 

SIMSCRIPT 11.5, the programmer must write a preamble, a main program, and the usual 

event routines. 
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2.7.5 GPSS (General-Purpose Simulation System) 

GPSS is a process-oriented simulation language particularly well suited for queuing 

systems. The principal appeal of GPSS is the ease and speed with which simulation models 

can be built. Since many projects operate against tight time deadline, this programming 

power can be a very important consideration. GPSS offers less programming flexibility 

than GASP IV or SIMSCRIPT 11.5. The programmer who wants to do complicated 

numerical calculations or obtain a special output report when using GASP IV will have to 

write a subroutine in, say, FORTRAN and interface it with his program by means of the 

GASP HELP statement. The GPSS consists of more than 40 standard statements, each 

of which has a corresponding pictorial representation (called a block) that is intended to 

be suggestive of the operation performed by a typical customer as it progresses through 

the system of interest. 

2.7.6 DYNAMO 

DYNAMO is a language specially developed for System Dynamics models. Variables 

in DYNAMO are represented by symbols from one to five characters, with some reserved 

names. The name TIME is reserved for reference to the time in the system model. The 

symbol DT designates the length of the constant interval which can be decided by the 

user. To simplify programming, DYNAMO defines a number of equation forms, each of 

which is a prototype. All equations must comply with these prototypes. The user selects 

the form of equation he desires to use, and completes the equation in accordance with the 

prototype structure, using the symbols of the particular variables to which the equation is 

applied. Each equation type defines a single variables on the left-hand side of the equation 

in terms of some combination of variables on the right-hand side. 

23 



Chapter 3 

DISTRIBUTED SIMULATION 

AND TIME TREATMENT 

3.1 Distributed Simulation 

A system simulation has the following repetitions: Fetch one event from a data struc­

ture, carry out one step of simulation, and update the data structure. However, such 

simulation is practical only when the number of events being simulated is modest. The re­

cent development of multiprocessors has resulted in demands for new tools for simulations; 

but simulation is proving to be inadequate for analysis because of the sheer magnitude of 

the problem. Highly detailed simulation models can be computationally taxing. Computer 

system simulations are particularly vexing because of the small time scale, milliseconds 

or microseconds. For instance, a telephone switch generates about 100 internal messages 

in completing a local call. Large telephone switches can handle 100 or more calls per 

second. Thus simulation of a telephone switch for 15 minutes of real time requires the 

simulation of nearly 10 million messages, which will require several hours on a very fast 

uniprocessor. And also simulation of complex (VLSI) digital circuits for logic verification 

and fault analysis, for example, can consume months of machine time but designers have 

24 



little choice; the alternative, untested designs are unacceptable. Moreover, simulation 

complexity continues to increase dramatically. 

One alternative is to exploit the cost benefits of cheap micro/minicomputers and high­

bandwidth lines by partitioning the simulation problem and executing the parts in parallel. 

Parallel processing is now an active area of research as interconnected arrays of micropro­

cessors are becoming available both commercially and in research laboratories. Therefore 

distributed simulation may be used. It attempts to reduce the time needed to perform a 

simulation by spreading its execution over multiprocessors. This is accomplished exploit­

ing the parallelism inherent in discrete-event simulation, allowing the distributed processes 

to run asynchronously. 

Distributed simulation models can mimic a distributed system closely, so we should 

have a definition of the distributed system. The distributed computing system consists of 

multiple autonomous processors. They are best suited for computation-intensive numerical 

applications. Multiprocessors consist of several autonomous processors sharing a common 

primary memory. These are well suited for running different subtasks of the same program 

simultaneously. Multicomputers are similar to multiprocessors, except that the processors 

do not share memory, but rather communicate by sending messages over a communication 

network. In the distributed system, the processors do not share memory, but cooperate 

by sending messages over a communication network. Each processor executes its own 

instructions and uses its own local data, both shared in its local memory. Distributed 

systems can be contrasted with microprocessors, in which processors communicate through 

a shared memory. 

There are two types of communication networks: closely coupled and loosely coupled 

distributed systems. Closely coupled distributed systems use a communication network 

consisting offast, reliable point-to-point links, which connect each processor to some subset 

of the other processors; such as hypercubes and transputer networks. Communication 

costs for this type of systems used to be on the order of a millisecond, but are expected 

to drop to less than a microsecond in the near future. Loosely coupled systems are slow 

and suffer unreliable communication between processors that are physically dispersed; 

such as the local-area network (LAN). LAN allows direct communication between any two 

processors. Communication cost is typically on the order of milliseconds. In many LANs, 
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communication is not totally reliable. A message could be damaged, arrive out of order, 

or not arrive at its destination at all, so software protocols must be used to implement 

reliable communication. 

Distributed simulation offers a radically different approach to simulation. Shared data 

objects of sequential simulation such as the clock and event list are discarded. In fact, there 

are no shared variables in this algorithm, so a speed-up of the entire simulation process 

is possible. It also offers another advantage in that it requires little additional memory 

compared to sequential simulation. There is little global control exercised by any machine. 

Simulation of a system can be adapted to the structure of the available hardware; for 

instance, if only a few machines are available for simulation, several physical processes may 

be simulated (sequentially) on one machine. Although, distributed simulation has several 

problems. It depends on the existence of multi-microcomputer networks. These networks 

are currently in the design stage and are not commercially available. And assignment of 

server/ queue pairs to processors can be difficult. Only limited performance analyses have 

been taken, no comprehensive investigation of the expected performance gains has yet been 

done. Only a subset of all discrete event simulation models are amenable to distributed 

simulation. Events depending on the global system state are disallowed. Finally, deadlock 

can occur. Several distributed simulation algorithms have appeared in the literature. They 

all employ the same basic mechanism of encoding physical time as part of each message. 

Various distributed simulation algorithms differ in the way they resolve the deadlock issue. 

We will see them in the Section 3.4. 

3.2 Programming Support 

Since a distributed simulation could consist of more than one processor, it is possible 

to have more than one part of a program running at the same time. This is what we 

mean by parallelism. To obtain a faster simulation means to dedicate more resources to 

it. In particular, we may be able to speed up a simulation by using a multiprocessor 

system instead of a single processor. Since most simulations are of systems which consist 

of many components operating in parallel, it seems reasonable to suppose that the inherent 
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parallelism in the system can be exploited by the simulation. In addition, independent 

simulation runs may be required to obtain accurate performance measures of stochastic 

systems, and these can be done efficiently in parallel. Also, many simulation tasks, such as 

statistical collection and processing, can be done in parallel with the rest of the simulation. 

In distributed simulation processors communicate with one another by message pass­

ing. Sending the message involves describing who sends h, what is sent, to whom is it sent, 

is it guaranteed to have arrive at the remote host, is it guaranteed to have been accepted 

by the remote process, is there a reply (or replies), and what happens if something goes 

wrong. Reception of the message involves examining for which process or processes on the 

host, if any, is the message intended; is a process to be created to handle this message; if 

the message is intended for an existing process, what happens if the process is busy -is 

the message queued or discarded; and if a receiving process has more than one outstanding 

message waiting to be serviced, can it choose the order in which it services messages -

be it FIFO, by sender, by some message type or identifier, by the contents of the message, 

or according to the receiving process' internal state. 

Many methods to send messages are introduced. The major design issue for a point­

to-point message-passing system is the choice between synchronous and asynchronous 

message passing. 

With synchronous message passing, the sender is blocked until the receiver has ac­

cepted the message. Thus, the sender and receiver not only exchange data, but they also 

synchronise. In the synchronous message passing, there can be only one pending message 

from any process S to a process R. Usually, no ordering relation is assumed between mes­

sages sent by different processes. Buffering problems are less severe in the synchronous 

model, as a receiver needs buffer at most one message from each sender, and additional 

flow control will not change the semantics of the primitive. On the other hand it does have 

disadvantages. Synchronous message passing is less flexible than asynchronous message 

passing, because the sender always has to wait for the receiver to accept the message, even 

if the receiver does not have to return an answer. With asynchronous message passing, 

the sender does not wait for the receiver to be ready to accept its message. Conceptually, 

the sender continues immediately after sending the message. In the asynchronous message 

passing, there are some semantic difficulties to be dealt with. Since the sender S does 
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not wait for the receiver R to be ready, there may be several pending messages sent by 

S, but not yet accepted by R. If the message-passing primitive is order preserving, R will 

receive the messages in the order they were sent by S. The pending messages are buffered 

by the language run-time system or the operating system. The problem of a possible 

buffer overflow can be dealt with in one of two ways. Message transfers can simply fail 

whenever there is no more buffer space. Unfortunately, this makes message passing less 

reliable. The next option is to use flow control, which means the sender is blocked until 

the receiver accepts some messages. This introduces a synchronisation between the sender 

and receiver and may result in unexpected deadlocks. 

Many interactions between processors, however, are essentially two-way in nature. 

Next, we will look at the two way point-to-point message passing. For example, in the 

client/server model the client requests a service from a server and then waits for the result 

returned by the server. This behaviour can be simulated using two point-to-point mes­

sages, but a single higher level construct is easier to use and more efficient to implement. 

Let us examine such a construct, rendezvous. With rendezvous, two processes come to­

gether, and pass information after which they proceed on their separate ways in parallel. 

No buffer is required to hold the information as it is passed directly between the processes. 

If there are no parameters it corresponds to the sending and receiving of a signal between 

• two processes. Whichever process encounters its input or output command first must wait 

for the other process to reach its corresponding output or input command in which the 

waiting process is named. Only then both processes will execute their communication 

statement, that is, rendezvous takes place and the information is passed. The processes 

are first synchronised after which message can be passed. It is also possible for input pa­

rameters to be assigned directly to variables. We will show this example in the following 

statements using the Ada programming language: 

For example, there are processes P and Q, and they can contain accept statements, 

which look like subroutines, with parameters and bodies of instructions. 

P reaches the statement: 

accept R(X: in; Y: out) 
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do any process 

end 

It is waiting until Q reaches the statement: 

R(Z, W) 

Similarly, if Q reaches its calling statement first, it is waiting until P reaches a cor­

responding accept statement. If and when both are ready, a rendezvous occurs. First 

Q delivers its value Z to P's variable X, just like a parameters in a subroutine. Then P 

proceeds to carry out its body 'any process' which should eventually set Y to some value. 

Finally, P delivers the final value of its Y to Q. Q in turn receives it in W, much as some 

subroutines return values. The rendezvous then ends and both processes continue their 

normal execution. 

Distributed simulation could be supported by languages (see [Bal 89]). It is diffi­

cult to determine exactly how many languages exist; such as Communicating Sequential 

Processes (CSP) (see [Hoare 78]), Occam (see [Inmos 88b], [Jones 88], [Galletly 90], and 

[Pountain 88]), Ada, Concurrent C, Concurrent PROLOG, and Linda, and the like. These 

languages are distinguished according to how that parallelism is expressed in the language 

and how parallel units are mapped onto processors, that is, the communication and syn­

chronisation primitives. We have already seen some languages in the previous Chapter, 

so let us see only Occam in this Section, because we use this language later. Occam is 

modeled on Hoare's CSP and was designed for programming Inmos' transputers. Occam is 

essentially the assembly language of the transputer. This language does not have standard 

features in most modern programming languages, such as records, recursive procedures, 

and modules. There are three basic actions in Occam: assignment, input and output. The 

input and output operate via channels and provide inter-process communication between 

concurrent processes. A channel is a one-way communications link between two concurrent 

processes. The channel is used to pass data from one concurrent process to another. A 

channel is shared between only two communication processes- one process may output 

on the channel, the other may input. 
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The input process allows a value to be input from a channel and that value to be 

assigned to a named variable. The input process has the form 

I channel ? variable I 

where channel is an Occam channel identifier, and variable is an Occam variable which 

receives the named variable. 

The output process outputs the value of an expression along a named channel. It has 

the form 

I channel ! expression I 

where channel is an Occam channel identifier, and expression is an Occam expression. 

Suppose that the system consists of process 1 and 2. Process 1 has a procedure I A ! 2l, 

and process 2 has a procedure I A ? B I. This will be read as 'output 2 to A' and 'input 

from A to B'. Since process 1 and 2 are independent, they might well be executed at 

different times. The act of transferring a value from one end of the channel to the other 

can only happen when both processes are ready. In other words, if the output in process 

1 is executed before the input in process 2 executes, process 1 will automatically wait for 

process 2 before sending a value, and vice versa, that is, the processes synchronise. 

Both parallel and sequential execution of a group of processes must be explicitly stated, 

by heading the group with a PAR or SEQ, respectively. Occam provides a facility for assign­

ing processes to processors. Parallel processes may be prioritised by prefixing the group 

with PRI PAR. The first process in the group is given highest priority; the second, second 

priority; and so on. Occam also provides an ALT construction to express nondetermin­

.ism. The constituents of this construction can be prioritised. If input is available more 

than one channel, the one with the highest priority will be accepted. In Occam, parallel 

processes communicate indirectly through channels. A channel is a one-way link between 

two processes. Channel communication is fully synchronous. Only one process may be 
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allowed to input from, and output to, a channel at a given time. Channels are typed, 

and their names can be passed as parameters to process, PROC. The current time can be 

read from an input-only channel declared as a TIMER. A delay until a certain time can 

be made with the 'WAIT AFTER t' construction. This can be used as a constituent of 

an ALT construction, for example, to prevent a process from waiting forever if no input is 

forthcoming. 

It is worth mentioning some special languages briefly which are DEMOS, SAMOA 

and MAY (see [Misra 86]). DEMOS is a discrete-event modeling package implemented 

in SIMULA. It provides an extensive list of features for event scheduling, data collection, 

and report generation. SAMON uses Ada as the base language. MAY (see [Bagrodia 87]) 

provides a very small set of constructs for message communication: these features have 

been used to build an extensive library for simulations of computer and communication 

networks. It includes constructs to create and terminate processes, to send messages, and 

to wait for messages to arrive or for simulation time to elapse. The minimality of MAY 

makes it possible for it to be implemented even on personal computers. 

3.3 Possible Approaches in Distributed Simulation 

There are five possible approaches of simulations on multiple processors. 

Parallelising Compilers can be used to compile a sequential simulation, written 

in a conventional sequential language to run on a sequential uni-processor, so that it will 

run on a multi processor hardware. 

Distributed Experiments may be conducted by running separate simulations on 

separate processors in parallel. 

Distributed Simulation Events uses a global event list, as in sequential simula­

tion, to schedule available processors to process the next event on the list. 
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Language Function Distruibution involves different sub-routines or tasks of a 

simulation being placed on separate processors. For instance processors may be dedicated 

to random number generation, event list processing, statistics collection, etc. 

Model Function Distribution involves decomposing the system model into loosely 

coupled components and simulating each with a process. One or more processes are then 

allocated to each processor. 

We could have a sixth alternative by using some combination of the others. We show 

the merits and drawbacks of these approaches in turn. 

3.3.1 Parallelising Compilers 

A possible approach is to apply a parallelising compiler to a sequential simulation 

program. The compiler takes a conventional sequential high-level language as its input, 

and produces the object code to run on each of the multi processors as its output. Thus, 

the compiler has the responsibility to recognise sequences in the source code which can 

be executed in parallel and scheduled to run on separate processors. The advantage is 

that the approach is largely transparent to the user. A new parallel language does not 

have to be learned, the structure and existing sequential software may be ported. The 

disadvantage is that the problem has been coded in sequential form, thus ignoring any 

parallelism in the structure of the problem. This results in relatively small portions of the 

available parallelism in the problem being exploited and, hence, the speed-up in moving 

to a multi processor architecture is generally disappointing. 

3.3.2 Distributed Experiments 

An obvious approach for using N processors to do stochastic simulation is to do inde­

pendent replications of the simulation on separate processors, and then take an average of 

the results at the end. This approach seems extremely efficient because no coordination 
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is required between processors, except for the averaging. Hence, with N processors, the 

speed up is virtually N. In general, if the run length is long or if the initial transient is 

weak, then replications will be statistically more efficient than distributed simulation in 

estimating steady state quantities. Heidelberger (see [Heidelberger 86]) gives conditions 

on the bias and variance of estimates of steady state performance measures obtained from 

simulations. This paper concludes that distributed simulation will be statistically more 

efficient than replications for short runs, for systems with a. strong initial transient or if 

a. large number of processors are available. It also says that distributed simulation has 

the potential for greater statistical speed-up. In general, distributing experiments will be 

more efficient if the system quickly reaches steady state, and if the simulation run times 

are long. 

However, distributing experiments may not be possible because it requires that all 

processors have enough memory to contain the entire simulation program a.s well a.s the 

memory to run it. This may be a. severe restriction since for many distributed message 

passing systems, the memory for each individual processor is small. Even in shared mem­

ory systems there may not be enough memory for each processor to run a.n independent 

simulation. Nevertheless, when these deficiencies are overcome, the distributed experi­

ments approach will be efficient and can use existing sequential simulation programs. 

3.3.3 Distributed Simulation Events 

Another approach is to maintain a. global event list, as in traditional sequential simu­

lation. Protocols to preserve consistency are required, since the next event on the list may 

be affected by events currently being processed. This approach is particularly appropriate 

for shared memory systems, since the event list can be accessed by all processors. Jones 

(see [Jones 86]) uses 'limit times' of currently executing events to determine whether the 

next event can be safely executed. During the event scheduling phase of the simulation, 

the limit time is always the same a.s the simulated time of the most recently scheduled 

event. This event can be used a.s a. record of the limit time. The distributed events ap­

proach may be reasonable when there are a. small number of processes and when there is 

a. large amount of global information used by components of the system. 
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3.3.4 Language Function Distribution 

The next approach is to design the simulation support tasks for individual processors. 

For example, a processor or set of processors are used for random variable generation, 

event set processing, statistics collection, and the like. The advantage is that it avoids 

deadlock problems and is transparent to the user. Its disadvantage is that it does not 

exploit any of the parallelism in the system being modeled. Krishnamurthi et al. (see 

[Krishnamurthi 85]) describe an implementation using a Motorola 68000 based architec­

ture, a master/slave type configuration, shared memory communication, and the GASP 

IV simulation language. They use a similar method to the one processed by Chandy and 

Misra (see the Section 3.5.4). The difference to the C-M algorithm is that the successor 

process maintains and updates the clock value of its predecessors while processing the 

messages. The advantage of this approach is that it avoids deadlock that arises due to 

total absence of messages along any link. When deadlock occurs, for example, the blocked 

node, say P1 sends an awakening signal to one blocking node, say Pn to require Pn to 

update its clock. This awakening signal is propagated until it reaches the predecessor 

having the greater local clock value than P1 does. If no such predecessor exists the signal 

is transmitted back to P1 which detects deadlock and avoids by not considering the clock 

value of Pn in computing its forward simulation time. If such a predecessor, say Pk exists 

Pk sends its latest message to P1 as a reaction to the awakening signal which then can pro­

cess all messages with a time stamp less than or equal to the message from Pk. Since the 

clock values are not maintained for links all the similar messages from various predecessors 

are enqueued in a single buffer. Multiprocessor simulation systems based on distributing 

the simulation language functions are also considered by Comfort (see [Comfort 84] and 

[Comfort 88]). A master/slave approach is described in [Comfort 84] in which all non­

event set processing is performed by the principle processor (called the host), event set 

processing is coordinated by a front-end processor (the master) and actually performed by 

several other functionally identical processors (the slaves). The results are that a consid­

erable improvement in run time is obtained by using two or more slave processors; a speed 

up is between 1.2 to 1.3; more than three such processors produce no incremental benefit. 

In [Comfort 88], Comfort uses transputers and Occam to simulate an M/M/k/c queuing 

system. The maximal efficiency is about 60% on a two processor (host plus one network 

processor) system, with the network processor doing the random number generation. He 
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concludes that environment partitioned simulation promises an effective way to reduce the 

cost of performing large simulations. The transputer is applicable to distributed simula­

tion but certain hardware and methodological limitations must be overcome before that 

promise is realised. It seems that Comfort's approach produces the significant speed-up 

when only a few processors are used but the marginal speed-up with additional processors 

drops off rapidly as processors are added. 

3.3.5 Model Function Distribution 

The final approach is to decompose the model into loosely coupled components and 

assign the simulation of each component to a process, where several processes could be run 

on the same processor. For example, a process might simulate a machine for a manufac­

turing application. Depending on the definition of the objects, an object-oriented program 

might use the distributed model approach for decomposing the simulation. Model func­

tion distribution is a promising approach for the system which does not require a lot of 

global information and control, since it has the ability of inherent parallelism. In dis­

tributed simulation, the processes communicate by message passing. Usually, messages 

include time stamps which represent the simulated time of an event. The system is usually 

modeled as a directed graph in which nodes represent processes and links represent pos­

sible interactions or message paths. For fixed topology systems, such as queuing network 

type systems, the most natural way to model is to assign a process to each station and 

let the messages represent the movement of customers. A message from one process to 

another would represent the arrival of a customer from the station, simulated by the first 

process, to the station, simulated by the second, and would probably include a time stamp 

representing the simulated time of arrival. An alternative approach is to have processes 

simulate the customers as well, and a message from a station process to a customer process 

might represent a change in status of the customer. For dynamic topology systems, such 

as battlefield scenarios or mobile radio systems, processes could represent the components 

that are interacting, such as tanks or cars. Messages between processes would represent 

the interactions between the components being simulated. 

The model function distribution requires care in synchronisation. We show the syn-
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chronisation for model function distribution in more detail in the following Section. 

3.4 Distributed Simulation Models 

The model function distribution requires explicit schemes for synchronisation and dead­

lock handling. How these issues are resolved, depends on whether the simulation time 

advances in fixed increments or is moved from one event time to the next, and whether 

simulation is synchronous or asynchronous. Simulation time is the abstraction of real 

time, in that the state of the real system at any real time will corresponding simulated 

time. The values assumed by simulation time must be discrete since we are interested 

in discrete simulations. If the simulation is synchronous there is a global clock and all 

processes must have the same simulation time. Contrary, in the asynchronous simulation 

each process has its own local clock and the simulated time for different processes may 

be different. There are number of aspects to be considered in the characterisation of a 

simulation methods. Each link is associated with a sequence of events which are in mono­

tonic non-decreasing simulation time order. This means that the events arriving on input 

links are in the correct time sequence. It follows that nodes must generate events for their 

output links in non-decreasing simulation time order. Another aspect is the availability 

of one or more processors. The idea of mapping each component of a simulated system 

onto a separate processor has great intuitive appeal, since the processors are manipulated 

as the components of the real system, and parallelism inherent the simulation may be 

exploited. Also, the interactions between the components of the system must be reflected 

in the interactions between processors. We show synchronisation issues in more detail in 

turn. 

3.4.1 Time-driven Simulation 

In time-driven simulation, simulated time advances in fixed increments, called ticks, 

and each process simulates its component over each tick. The clock ticks must be short 

to guarantee accuracy, but shorter ticks imply longer simulation time, because it is more 
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likely that nothing will happen during a tick. The simulation may be synchronous or 

asynchronous. Hit is synchronous all processes must finish simulating a tick before any can 

start simulating the next tick. In this case, the simulation of a tick typically proceeds in two 

phases, a simulation or computation phase, and a state update and communication phase. 

When clocks are local and simulation is asynchronous a process can begin simulating the 

next tick as soon as its predecessors have finished the last tick. Synchronisation for local 

clocks is implicitly provided by sending messages from a processor to its successors. 

There are many possible implementations of a global clock. A centralised approach 

requires a dedicated process to act as synchroniser. In a message passing system a global 

clock could be implemented in a distributed fashion with an appropriate broadcast algo­

rithm. A global clock could be implemented in a shared memory system in which a counter 

would be decrement by a process when it finishes simulating the current tick. There could 

also be a separate synchronisation bus to provide the global clock. Peacock et al. (see 

[Peacock 79a]) describe a possible implementation. They say that a method is scaled if it 

has the property that 

s = int (k * r I q) * q, 

where s is simulation time, r is real time, q is the quantum step size of simulation time, and 

k is the time scaling factor. With this property, observation of the dynamics of a system 

with a constant rate of simulation time passage relative to real time is possible. They call 

this method the Scaled Real Time Method, and it strongly resembles analogue computing. 

Its advantages are that arbitrary specification offunctions is possible, and hence non-linear 

components are easily modelled; high accuracy is attainable; and digital electronics are 

exploited. One problem is that the simulation may be indeterminate, in other words, if 

the same simulation is run twice, the results may be different. Since each processor uses 

a different clock, and it is unlikely that these clocks are in complete synchronisation. 

Asynchronous simulation seems to permit greater concurrency, but it may increase 

communication costs, depending on the application. In a message passing system with 

local clocks, messages must be sent on all paths for each tick. Since a processor cannot 

simulate the next tick until it knows its predecessors are finished simulating the last 

37 



tick, it must receive a message from each of its predecessors for each tick even if the 

predecessor does not change state or there is no interaction with the predecessor for that 

tick. On the other hand, if simulation is synchronous, once the global clock is synchronised, 

only messages signaling interactions or state updates need to be transmitted. In general 

synchronising the global clock can be done more efficiently than by sending messages on 

all paths. Hence, if state changes or interactions occur much less frequently than every 

tick, a global clock may be more efficient. 

Time-driven simulation seems less efficient than event-driven simulation since there 

may be ticks, during which no events occur, that must still be simulated. However, time­

driven simulation avoids the extra synchronisation overhead required for synchronous and 

asynchronous event-driven simulation. Thus, time-driven simulation may be particularly 

appropriate for dynamic topology systems, and for systems in which many things are 

happening at the same time. To improve the efficiency of time-driven simulation, it may 

be advantageous to vary the tick size so that large ticks would be used in simulating a 

time when there is little activity in the system, although this would increase the overhead. 

3.4.2 Event-driven Simulation 

In event-driven simulation simulated time is incremented from one event time to the 

next, where an event represents a change in state. Thus, event-driven simulation may have 

greater potential speedup than time-driven simulation. As with time-driven simulation, 

the computation may be either synchronous or asynchronous. If it is synchronous, the 

global clock is sent to the minimum time of next event for all processes, whereas if it is 

asynchronous, the local clock for each process is set to the minimum next event time for 

that process. 

1. Synchronous event-driven simulation 

As in time-driven simulation, the implementation of a global clock can either be cen­

tralised, with a dedicated process to act as synchroniser, or distributed. In the centralised 
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approach, the global clock is the minimum simulation time of the next event that involves 

an interaction between processes that are being executed on different processors. This 

scheme requires a control processor to maintain the global clock. Venkatesh et al. (see 

[Venkatesh 86]) propose centralised synchronous approach. They introduce the Acceler­

ated Time Advancement algorithm. This algorithm does not require the channels to be 

FIFO and it also optimises the propagation of test messages (reducing overhead) by accu­

mulating evaluation results at each process from an optimal set of predecessor processes 

before a new test result is generated and forwarded from that process. Each sender process 

retains minimal and precise information about the simulation times of the stimuli sent on 

every outgoing channel. This enables each process perform the evaluation only once in 

a test iteration. Distributed algorithms could be implemented by the hierarchical tree 

architecture. In the tree architecture, the lowest levels are processing elements that actu­

ally simulate the events, and the highest levels are coordinators used for synchronisation 

and message routing. Processors send their next event times to the coordinators at the 

level above them. Each coordinator determines the minimum next event time for the level 

below it and sends this time to the coordinator above it. The coordinator at the top or 

root of the tree determines the minimum next event time for all processing elements (i.e., 

the global clock) and propagates the time back down the tree. 

Another possibility is to use a single one-bit synchronisation bus. Each processor 

computes the next event time for the processes. They then put the first, or leftmost, bit of 

that time on the bus. The output is the logical AND of all the inputs, in other words, the 

minimum. Those processors whose input matches the output, repeat the procedure with 

the next bit. The rest of the processors, those whose most significant bit was greater than 

the global clock, drop out until the next global clock update. The procedure is repeated 

for each bit, and the total output is the time of the next event for all processors, in other 

words, the global clock. This procedure is constant in the number of processors and can be 

implemented efficiently with a hard wired-logical AND gate. It is also possible to combine 

time-driven and event-driven simulations. The global clock is set to the next event time 

for all processes, as in event-driven simulation, but processes may simulate events within 

a time interval or tick of the global clock, as in time-driven simulation. The performance 

of algorithms for synchronous event-driven simulation has not been evaluated. 
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2. Asynchronous event-driven simulation 

Asynchronous event-driven simulation has received the greatest attention due to its 

potentially high performance. Since processes spend less time waiting for other processes 

than that in time-driven simulation or synchronous event-driven simulation. Events that 

do not affect one another can be simulated simultaneously even if they occur at different 

simulated times. It is assumed that processes communicate by sending messages to each 

other with time stamps, (t, m), either using actual messages in a message passing system, 

or passing pointers to message queues in a shared memory system. Two implementations 

are proposed: conservative and optimistic. In conservative approaches a process' clock 

can never exceed the clocks of its incoming links, insuring correct chronology for all event 

processing. In the optimistic Time Warp approach, a process' clock may run ahead of the 

clocks of its incoming links and, if errors are made in the chronology, time must be 'rolled 

back' to correct them. Lamport (see (Lamport 78]) works on the definition of clocks in 

distributed simulation. He uses logical clock and defined that the concept of 'happening 

before'. He shows that the times 'happens before' and 'happens after' are operationally 

definable within a distributed system form only a partial order instead of a total order. 

And he further shows an algorithm for extending that partial ordering to a somewhat 

arbitrary total ordering. We show two approaches in detail in the following Sections. 

3.5 Conservative Approach 

Physical systems are simulated by partitioning them into physical processes (pps) that 

communicate by messages. The logical process (lp) depends only upon the pp that is 

simulated. There is a communication line from the ith lp to the jth lp in the logical 

system if and only if the ith pp sends messages to the jth pp, in the physical system. 

Hence, there is no central process, logical messages synchronise without a global clock. 

When the pp sends a message at time t, it cannot be influenced by messages transmitted 

to it after t. This is called realisability. Realisability says merely that a pp cannot guess 

any message it will receive in the future. Predictability is lookahead to be the amount 

of time that a pp can look into the future. For example, the local clock time is t, and 
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the process determine all messages it will send with time stamps less than t + E, E > 0. 

Predictability guarantees that the system is well defined, because the output of every pp 

up to any time t can be computed given the initial state of the system. 

3.5.1 Conservative Approach Algorithm 

In conservative approaches, messages from any process to any other process are trans­

mitted in chronological order according to their time stamps. A message m from PPi to 

PPi at time t is simulated by lpi sending lpj a message (t, m). For example, the sequence 

of messages sent by lpi to lpj is (tt,mi), (t2,m2), (t3,m3),···. It must follow that 0 

~ it ~ t2 ~ t3 · · · are monotonically increasing. It also implies that PPi must have sent 

the message mk to PPi at time tk, k=1, 2, 3, ... , and PPi must have sent no other messages 

to PPi besides m 1 , m 2 , ••• , mk, ... in other words, the sequence of messages sent by an lp 

must correspond exactly to the actual sequence of messages sent by the corresponding pp. 

During the simulation, if lpi sends lpj a message (tk, mk) it is implied that all messages 

from PPi to PPi have been simulated up to time tk. A message is transmitted from lpi to 

lpj only if lpi is waiting to send the message to lpj and lpj is waiting to receive a message 

from lpi, in other words, the processes synchronise. If there is a non-zero size of buffers 

between lpi and lpj, then lpi may transmit messages until the buffer is full. 

An example of such a system is shown in Figure 3.1, it consists of a source, a sink, and 

two queues. 

queue/ queue2 stnk 

Figure 3.1: 

Each queue is a First-Come First-Served discipline, all components are simulated by 

distinct lp's. Assume that queue1 has service time (stl) 5, queue2 has service time (st2) 
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10. Now suppose that the source (LPO) generates the message (3, mt), and sends it to 

queue1 (LP1). Upon receipt of this message, LP1 can determine that this message will 

depart at time 8 (arrival time + service time). Therefore, LP1 can now send the message 

(8, m!) to queue2 (LP2). Upon receipt of this message, LP2 can determine that this 

message will depart at time 18. It will send the message (18, m1 ) to the sink simulated by 

LP3. Meanwhile, LPO would have sent the message (5, m 2 ) to LPl. Since LP1 can process 

this message after sending the previous message (8, m1 ), LP1 will send the message (13, 

m2) to LP2 (where 13 =last departure+ service time). Upon receipt of this message LP2 

will send (28, m2) to LP3. Note that all the LPs could work in parallel. 

3.5.2 Waiting Rules For Logical Processors (Ips) 

The lp would determine which set of lines it should wa.it either to receive the message 

or to transmit the message according to following two wait rules; the first, an lp waits to 

receive messages on input lines whose clock values equal the lp clock value; the second, an 

lp waits on all output lines on which there is a message to be sent. 

Suppose that there is a pp as shown in Figure 3.2. The pp consists of two input lines 

out 

Figure 3.2: 

(int and in2) and an output line (out), these lines are First-Come First-Served queues. 

Assume that the pp's service time is 5. Initially the clock values for all lines are 0 and 

lp clock value = 0. The lp is waiting for messages on in1 and in2 and is not waiting to 

output, since there is no message to be output. Now suppose that the lp receives the 

message (5, mt) on int, but the lp cannot process this message. Since it is waiting for 

the message on in2 according to the waiting rulel. Assume that (3, m2) is received on 
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m2. Then the lp can guarantee that no other message will arrive at pp before time 3 and 

the next output will occur at 3 + 5 = 8 corresponding to m2 • The lp clock value is now 

3. The lp waits to input on in2 , since the link time for in2 = lp clock value and waits to 

output (8, m2), since it has something to output. 

3.5.3 System Deadlock 

Deadlock can occur in a simulation. Consider the following example shown in Fig­

ure 3.3. The system consists of the source, sink, and 4 servers (P1 to P4). P1 is a fork 

stJ = J 

Figure 3.3: 

consisting of a single input line and two output lines, and P4 is a merge consisting of two 

input lines and a single output line. Suppose that the servers P1 to P4 have service time 

2, 4, 3, and 5, respectively. Now assume that the source sends the message (1, mt) to 

Pl. P1 would process it and send the message (3, m1 ) to P2, P2 would process it and 

send the message (7, mt) to P4, and P4 would receive it and then wait to receive the 

message on P3-P4 (which is a link between P3 and P4), according to the waiting rules. 

Now the P1 clock value is 1, the P2 clock value is 3, the both P3 and P4 clock values are 0. 

Meanwhile, the source would have generated the next message (5, m 2 ). P1 would process 

and send (7, m2) to P2, P2 would process and try to send (11, m2) to P4. However, P4 

is not waiting for the message on P2-P4 but on P3-P4. P2 must wait because it has the 

message to be output. When the source generates the messages and P1 sends all to P2 
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(see Table 3.1), eventually it would happen that P4 waits to receive the message on P3-P4, 

P3 waits to receive the message on P1-P3, P2 waits to send the message on P2-P4, and 

P1 waits to send the message on P1-P2. In Table 3.1, the number is the time component 

of the message to be sent, W implies that the link between processes does not have any 

message to be sent, and the number with W implies that the process has a message to 

be sent on its output link but the destination process is not waiting for it, so the process 

must wait to send. 

LINK JOB 
2 I 3 4 

source- P1 1 5 15 20W 
P1- P2 3 7 17W w 
P1- P3 w w w w 
P2- P4 7 llW w w 
P3- P4 w w w w 

Table 3.1: 

In other words, P3 blocks P4, P1 blocks P3, P4 blocks P2, and P2 blocks P1, in other 

words, deadlock occurs. Deadlock occurs when there is a cycle of waiting (W) - not 

waiting (N) arcs that are assumed to go from W to N (see Figure 3.4). 

N 

Figure 3.4: 
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3.5.4 Deadlock Avoidance (Chandy and Misra Algorithm) 

One scheme for breaking deadlock is to send the null message (t, null) proposed by 

Chandy and Misra (see [Chandy 81]). The procedure that lpi sends (t, null) to lpj implies 

that PPi does not have the message to be transmitted to PPi in the time interval between the 

last message along line (i, j) and t. The null message does not correspond to any message 

in the physical system. Reception of a null message is treated in the same manner as the 

reception of any other message. Therefore, it causes the lp to update its internal state, 

including the clock value, and to send messages. We use the previous example to explain 

the deadlock avoidance by null messages. 

In the previous example, P1 could send a message (t, null) along an outgoing line every 

time it sends a message (t, m) on the other outgoing line. This is shown in Table 3.2 in 

which numbers marked with a * are null messages. For instance, P1 sends (3, null) to P3, 

LINK 

source- P1 1 5 15 20 
P1- P2 3 7 17 22 
P1- P3 3* 7* 17* 22* 
P2- P4 7 11 21 26 
P3- P4 6* 10* 20* 25* 

Table 3.2: 

P3 can then predict that it does not have a message to send P4 until time 6 and hence 

it will send (6, null) to P4. Note that the merge P4 will output a stream of messages (6, 

null), (7, mt), (10, null), (11, m2), etc. Thus deadlock is avoided. 

With the C-M algorithm deadlock cannot occur. Deadlock occurs if there is a cycle 

of blocked processes. Suppose that there is such a cycle, in which P1 is blocking P2, P2 

is blocking P3, and so on to Pn and Pn is blocking Pl. Assuming that ti is the Pi clock 

value. Then if Pi is blocking Pj, Pj is waiting for the message from Pi and its clock value 

ti must equal the link clock value Pi - Pj. However, if Pi is also blocked, it must have 

updated its output link clocks to be greater than or equal to Pi clock value, ti. Hence 

tj ~ ti and therefore, t1 ~ t 2 ~ • • • ~ tn ~ t1 • By the predictability assumption, at least 
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one process in the cycle, say Pi has output link clocks that are strictly greater than its 

local clock, i.e., ti > ti+I· Hence this simulation has t1 > t 1 , a contradiction. Therefore, 

deadlock cannot occur. It is interesting to note that the simulator never deadlocks; even 

if the system being simulated does. During the simulation of the deadlock null messages 

will be only transmitted. 

3.5.5 Deadlock Detection and Recovery 

Another approach to break deadlock is to detect deadlock and recover it. Various 

methods are proposed. Chandy and Misra present (see [Chandy 81]) two phase schemes in 

which simulation proceeds until deadlock then deadlock is detected and corrected. Chandy 

and Misra use a 'controller' (see [Chandy 81]) which monitors for deadlock and control 

deadlock recovery. Misra proposes the use of a 'marker' (see [Misra 83]). The marker cir­

culates among all processes to detect deadlock. The marker records the number of blocked 

processes and the minimum of next event times. When the marker detects deadlock, it 

knows the next event time and the lp at which this next event occurs. 

Peacock et al. (see [Peacock 79a] and [Peacock 79b]) and Bain and Scott (see [Bain 88]) 

propose the use of probe messages. When a process is blocked it sends a probe message 

time-stamped with its local clock to some of its predecessors in order to obtain information 

on their clocks. A process that received this probe message will send its local clock value 

to the requesting process if it is later than the requesting processes local time. Otherwise 

it sends probes to its predecessors. This approach could require that the probe messages 

contain the path it has traversed and the local clocks of the processes in the path in order 

to detect and correct a deadlock. Therefore, messages grow in length as they are passed 

along. Bias and Scott use three types of probe messages, YES, NO, and RYES. RYES is 

reflected yes or conditional yes. This algorithm requires that each process keeps its probe 

messages it has received, and the path length is fixed. Therefore, the message includes a 

process identification from the originating process and the requested time. 

Groselj and Tropper (see [Groselj 88]) propose an algorithm for computing the greater 

lower bound of the time stamps of the next events to arrive at all empty links of lps 
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located in one processor. This algorithm is based on the shortest path computation. The 

algorithm helps to unblock the blocked lps and therefore increases the parallelism of a 

simulation. However, this algorithm does not include the global deadlock problem so it 

must be used in conjunction with one of the other methods. 

3.6 Optimistic Approach 

For an optimistic approach, Time Warp was proposed by Jefferson (see [Jefferson 85]). 

Time Warp is a generallookahead-rollback algorithm. Whenever a conflict is discovered 

after the fact, the offending process( es) are rolled back to just before the conflict, no 

matter how far back that is, and then executed forward again along a revised path. All 

messages consist of four values: the name of the server, the virtual send time, the name 

of the receiver, and the virtual receive time. The virtual send time is the virtual time 

at the moment the message is sent, and likewise the virtual receive time is the virtual 

time at the moment the message is received. The virtual receive time is the same as the 

time stamp of the conservative approaches. The send time is used for implementation 

of the Time Warp algorithm. The Time Warp approach maintains two clocks; the local 

virtual clock (LVT) and the global virtual clock (GVT). The LVT of a process is set to 

the minimum receive time of unprocessed messages. Processes can execute events and 

proceed in local simulated time whenever they receive any event on any input link. This 

is in contrast to the conservative approach which requires the process to receive an input 

from all of its predecessors to execute. Therefore, the LVT of a process may be ahead 

of its predecessors' LVTs, and it may receive the message with a lower time stamp, in 

other words, before its LVT. If this happens, the process 'rolls back' to an earlier virtual 

time, cancelling all intermediate side effects, and then executes forward again, this time 

receiving the later message in its proper sequence. The process is constantly gambling 

that no message will arrive with a virtual receive time less than the one stamped on 

the message it is currently processing. As long as it wins this bet, execution proceeds 

smoothly, however, whenever the bet is lost the process pays a performance penalty by 

rolling back. GVT is the minimum of the LVT in all processes and the send times of all 

messages sent but unprocessed. Hence, GVT is the states of the each process since the last 
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'correct' time in order to enable rollback. Assuming infinite memory, and assuming the 

system being simulated does not deadlock, the Time Warp algorithm will not deadlock. 

This is because individual processes do not deadlock as long as they have some inputs 

and GVT can be shown to always eventually increase. GVT must be estimated so often 

during the execution. High frequency of estimation produces faster response time and 

better memory space utilisation, but it also uses processor time and network bandwidth, 

and thus slows progress. A disadvantage of Time Warp is that it requires a large amount 

of memory. One way to limit the amount of memory needed is to estimate GVT often, 

and to remove outdated messages from the input queues and outdated states from the 

state queue. In addition, states with time stamps greater than LVT, which arise because 

of rollback, may be discarded. The Time Warp approach has potentially greater speed­

up than conservative approaches, but it requires the greater memory size. An advantage 

of Time Warp over conservative approaches is that the topology of possible interactions 

between processes need not be known. In addition, Time Warp does not require that 

messages be received in the order sent along links. To implement Time Warp each process 

must maintain the following: its process name; its LVT; its current state; a state queue 

containing copies of its previous states, with at least one state before GVT; an input queue 

containing all received messages with sent times greater than or equal to GVT, in receive 

time order; and an output queue containing copies of all messages sent with send times 

greater than or equal to GVT, in send time order. Messages sent forward in simulated 

time have a positive (+)sign; the copies that are kept in the sender's output queue for use 

in case the rollback are antimessages and have a negative (-) sign. Whenever a message 

and its antimessage are in the same queue they immediately 'annihilate' one another. 

Let us see the example shown in Figure 3.5. Ordinarily, when the process receives a 

send time 
receive time 
sign 

processed unprocessed 
messages LVT messages 
.....-----.. ! .---. 

15 30 40 55 72 
19 34 41 62 75 

+ + + + + 
input queue 

Figure 3.5: 

19 34 41 
20 40 45 
- - -

output queue 

message with the time stamp greater than its LVT, the message is simply enqueued, and 
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the running process continues. Suppose that the message is received at clock value 35 by 

the process, say P1, whose LVT is 62. P1 must roll back since it receives a message with a 

time stamp less than its LVT. Such a message is called a 'straggler'. At first, P1 searches 

the state queue for the last state of P1 saved before the straggler, that is before 35, and 

then restores 35 as the value of its LVT. After this, all the states saved after the straggler 

on the state queue must be discovered and P1 starts executing forward again. However, 

the simulation is incorrect between 35 and 62, so P1 sends the antimessages to cancel the 

transmitted messages within that time. Figure 3.6 shows the rollback for the example in 

Figure 3.5. 

15 
19 
+ 

new message 

30 
34 
+ 

l 

5 

+ 

40 
41 
+ 

input queue 

i 
55 72 
62 75 
+ + §§1 

45 
-

output queue 

Figure 3.6: 

When a process receives an antimessage several things may happen. If the positive 

message has arrived, but it has not processed yet, its receive time must be greater than 

the receiver's LVT. Then, the antimessage, having the same receiver time, will not cause 

a rollback, but will be enqueued. However, it will cause an annihilation. Therefore, 

both messages disappear from the input queue. If the positive message arrives first, its 

antimessage arrives next, and the LVT of the process is less than both receive times when 

the antimessage arrives (so the messages are in the simulated future of the process), then 

they will annihilate each other and the process will proceed. If the positive message 

arrives first, its antimessage arrives next, and the LVT of the process is greater than 

the antimessage's receive time when the antimessage arrives, then the process must roll 

back. It sets its current state to the last state saved with simulated time of the message. 

The positive message and its antimessage will annihilate each other, and the process will 

proceed. As a consequence of the rollback, more antimessages may be sent to other 

processes. 

The procedure we have seen so far is called aggressive cancellation since when a process 

rolls back, it immediately sends antimessages cancelling messages sent at simulation times 
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later than its new LVT. An alternative is lazy cancellation, in which antimessages are 

not sent immediately after the rollback. Instead, the process resumes executing forward 

in simulation time from its new LVT. When the process produces a message it compares 

it with the messages in its output queue. Therefore, only positive messages that have 

not previously been sent are transmitted, and only antimessages that are produced in the 

forward computation are transmitted. Under aggressive cancellation a process may send 

a message to a successor, then send its antimessage, and then send the same message 

again. Under lazy cancellation the message would be sent just once. Thus, under lazy 

cancellation a rollback at the successor may be avoided. On the other hand, if messages 

are not reproduced, then rollbacks at successor processes will be required under both 

mechanisms, and they will occur sooner with aggressive cancellation. States may be saved 

less frequently, at the expense of greater overhead for rollback. However, lazy cancellation 

requires more memory than aggressive cancellation. 

Lomow et al. (see [Lomow 88]) study the performance of Time Warp. They conclude 

that lazy cancellation can achieve better speed-ups compared to aggressive cancellation on 

a large number of processors, but when the number of processors approaches the number 

of processes the speed-up declines markedly. Poor assignment of processes to processors 

and feedback in the simulation model makes the simulation slow down. 

The performance of Time Warp has been studied analytically by Mitra and Mitrani 

(see [Mitra 84]). They use two processors whose speeds are different. They find that it 

is sometimes advantageous to slow down the faster processor, but this analysis cannot be 

extended to more than two processes. The empirical work promises that Time Warp is an 

efficient approach to synchronisation in distributed simulation. 

Gilmer (see [Gilmer 88]) obtains efficiencies as high as 90%. He finds that the number of 

processes per processor and the load balance has significant impact on performance. When 

there are 8 processes per processor for all 128 processors, an efficiency of 91% is achieved. 

However, below a ration of 8 processes per processor, the number of antimessages starts to 

increase rapidly because each roll back causes increased number of message cancellations. 
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3. 7 Previous Performance Studies 

Various methods have been proposed using the conservative approach in order to speed­

up, resolve deadlock problems, distribute the processes on to processors, and the like. So 

far we have seen some proposed algorithms. We have also seen some empirical work. How­

ever, very little empirical work has been done to determine the performance of conservative 

schemes. 

Fujimoto (see [Fujimoto 88]) simulates deadlock avoidance and deadlock detection and 

recovery, on a shared memory multiprocessor, the BBN Butterfly. He assumes a toroid 

system topology (a two-dimensional mesh with warp-around). He obtains efficiencies as 

high as 75% for the null message scheme, where the speed-up is computed relative to a 

single processor simulation using a single event as opposed to a single processor distributed 

simulation. He shows that the poor (or good) speed-up is caused by high (or low) overhead 

in the simulation strategy. He finds that a process with poor lookahead will lead to poor 

performance. Since in conservative approaches, messages are sent in non-decreasing order, 

if lookahead is poor, the process may not even be able to determine the proper time 

stamp of the message very far in advance. Therefore, poor lookahead causes a delay in 

the sending of messages, effectively decreasing the message population and the available 

parallelism. He also shows 'message avalanche'. There exists a critical message population 

level, above that the performance improves dramatically, below that performance is poor 

and relatively constant. He concludes that conservative approaches can obtain significant 

speed-ups for some, but not all workloads earring moderate to high degrees of parallelism. 

Reed (see [Reed 85]) simulates a central server closed queuing network on a unipro­

cessor. He finds that the queue management is the dominant overhead in distributed 

simulation and that hardware queue support could reduce simulation time. He also finds 

that the deadlock detection and recovery is superior to the deadlock avoidance, particularly 

when there is a feedback mechanism and small job populations in the networks. 

Reed, Maloney, and McCredie (see [Reed 88a] and [Reed 88b]) simulate the conserva­

tive approach using shared memory on a Sequent Balance 21000 containing 20 processors. 

In a shared memory implementation, all node state information, including input message 
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queues, resides in shared memory. Each node communicates with each other node by 

messages via shared access to the message queues of each node. Each message queue is 

protected by a synchronisation lock to guarantee mutual exclusion. Before transmitting a 

message, a node must first acquire a free message from a shared free message list. A lock is 

necessary to prevent simultaneous access to the free message list. After retrieving the free 

message, the node time stamps it and writes it to the destination node's message queue. A 

message is returned to the free message list once it has been processed by the destination 

node. They obtain the maximal speed-up of about five relative to a uniprocessor run­

ning the distributed simulation. They find that a single processor implementation of the 

C-M algorithm is usually slower than the equivalent sequential, event-driven simulation. 

Networks with cycles require deadlock avoidance or recovery techniques, and the inability 

to lookahead limits parallelism. They conclude that the C-M algorithm is not a viable 

approach to parallel simulation of queuing network models, but may be appropriate for 

other models. 

52 



Chapter 4 

STUDIES 

4.1 Motivation 

In this Chapter we study the conservative approach using null messages on transput­

ers. The C-M algorithm is the so-called 'conservative' approach developed by Chandy and 

Misra (see [Chandy 81] and [Misra 86]). This algorithm is based on deadlock avoidance us­

ing null messages. As we have seen in the previous Chapter, some people have studied this 

algorithm by various methods. Although, there are no definite results as to whether this 

algorithm is reasonable, it may be evaluated under certain conditions; such as the system 

structure, the number of reasonable processors, the number of processes per processor, the 

data size, and the like. More empirical work is required for use of this algorithm, despite 

it having been thoroughly developed. It is therefore important to examine its applicability 

in distributed simulation. 

Transputers were developed by Inmos (see [Inmos 88a]). Since 1985, the IMS T414 

32-bit transputer has been introduced, as well as further developments which increase 

the memory, processing performance and communication performance. The floating point 

transputer, IMS T800, was first introduced in 1987. The transputer is a microprocessor 
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with its own local memory and with links for connecting one transputer to another. Ini­

tially, the transputer consists of memory, processor and communication systems connected 

via a 32-bit bus. The transputer uses point-to-point serial communication links for direct 

connection to other transputers. It supports the scheduler which in turn supports two 

priority levels-high priority and low priority. It can run several processes consisting of a 

sequence of instructions in parallel. 

Occam has also been developed by Inmos (see the previous Chapter for the details 

of Occam). An entire system can be designed and programmed in Occam, from system 

configuration down to low level I/0 and real time interrupt. It is also possible to program 

the transputer in several high level languages such as C, Fortran, Pascal and Ada for 

which compilers have been written, but Occam programs run a good deal faster than these 

because they are translated into machine language with greater ease. The transputer and 

Occam should be powerful enough to examine the C-M algorithm, and recent developments 

in user-friendly environments have caused more people to use them. 

4.2 The Simulation Algorithm 

For studies of the conservative approach we used an algorithm based on the C-M 

algorithm introduced in [Chandy 81) and [Misra 86). We will examine deadlock avoidance 

using null messages. The C- M algorithm is totally asynchronous so each process maintains 

its own local clock; global synchronisation, such as a global clock, is not used. Every 

process communicates with each other by passing messages which keep strict chronological 

order and which are transmitted synchronously. Also, every process works in parallel with 

no shared variables (see details in the previous Chapter). 

In the experiments we used the link time in order to send real messages and null 

messages to each node evenly. Consider the following example shown in Figure 4.1. 

Suppose that P1's service time (st1) is 3, st2 is 4, st3 is 3 and st4 is 2. Assume that 

the source sends (1, m1 ) to P1, P1 then sends (4, mt) to P2 and (4, null) to P3. P2 
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(9, null) II 
~ 

Figure 4.1: 

and P3 receive messages and send their messages to P4, respectively. Now the link time 

between Pl to P2 (lt 1_2) is 4 and lt1_3 is 0 because the null message does not advance the 

link time. Meanwhile, the source generates the message (6, m2) and sends it. Pl then 

predicts that the next message output is (9, m2), checks lt, and sends the real message on 

the link having the smallest link time. In this example (9, m 2 ) is transmitted to P3 and 

(9, null) is transmitted to P2. Actually, in this example the fork has two branches so real 

messages are transmitted alternately. When the merge receives messages on all its input 

links, it processes the smallest time component message so that the chronological message 

passing is kept. This method is the same as one making use of waiting rules. 

If we do not care about link time and send messages, all real messages could be 

transmitted to P2 and all null messages could be transmitted to P3. Deadlock may 

be avoided but this implies that during simulation P3 does not actually work, and only 

increases its clock value by receiving null messages, that is, P3 is idle. This system may 

be expensive. However, if the link time is used, it will increase the amount of parallelism. 

4.3 Experimental Environment 

We used the FAST4 board consisting of four IMS T800s, each with lMbyte of memory. 

The board is plugged into an IBM PC. The link layout on this board is shown in Figure 4.2. 
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Links 0 and 1 from each processor are taken to the rear connector. The remaining 

links are pre-wired into a square with link 2 of each processor connected to link 3 of the 

next processor. The FAST4 board is supplied with a pre-wired connector to attach the 

host link to link 0 of processor 0. For completion, it also connects the spare links 1 in a 

cross: TO to T2 and T1 to T3. 

Occam is the programming language used in the Transputer Development System 

(TDS). It was designed to provide both high- and low-level transputer facilities, and allows 

development of concurrent programs and distributed systems. The TDS was developed to 

support transputer networks in Occam. The TDS comprises integrated editor, file man­

ager, compiler and debugging system. The TDS allows Occam programs to be written, 

compiled and then run from within it. Programs may also be configured to run on a target 

network of transputers. The TDS includes an interactive programming environment, com­

pilation utilities and other programming tools, a number of libraries to support program 

development, and an extensive set of examples in source form. We will concentrate on 

examining the C-M algorithm using one transputer to one transputer physical links rather 

than logical links using the multiplexer, since we are examining the C-M algorithm and 

not the transputer itself. As we have seen in the previous Chapter the C-M algorithm may 

be affected by the number of branches. So to easily observe the fork and the merge it 

should be better to put the branches all together. Therefore, we will map some processes 

on a transputer keeping one input and one output physical links. 
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4.4 Experiment I 

4.4.1 Topologies 

We have a transputer board on which all the processor links are fixed, so the number of 

different topologies is somewhat limited. We use five node types: source, sink, server, 

fork, and merge. A source generates various messages except the null message. A sink 

accepts all incoming messages and does not send them anywhere. It does not make null 

messages. Therefore, the source and sink never cause deadlock in the simulation. A fork 

accepts messages from a single input and distributes messages across N outputs. Upon 

receiving a real or null message a fork transmits messages to the selected output node 

and creates N-1 null messages, each with the same time stamp as the message processed. 

One null message is transmitted to each destination node not selected. A merge accepts 

messages on N inputs and transmits them in chronological order to a single output. A 

server accepts messages on a single input and sends them to a single output. When the 

time of last message arrival is greater than the time of last message departure, and the 

nodes fork, merge, and server have no real messages to process, they produce a null 

message with a time stamp equal to the minimum time of the next message departure. 

We have made three topologies: tandem network with 4 nodes, forked network, and 

fork and merged network. The tandem network shown in Figure 4.3 includes a source, 

sink and servers. 

SOURCE SERVER SERVER SINK 

Tl T2 
TO TJ 

Figure 4.3: 

The host transputer (TO), running the TDS, acts as a source, two transputers (Tl 

and T2) in the network act as servers, and another one (T3) in the network acts as a 
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sink. 

The forked network shown in Figure 4.4 consists of a source, fork and two servers. 

TO acts as a source, Tl acts as a fork, and T2 and T3 are attached to the branches of 

T2 

T3 

Figure 4.4: 

the fork and act as both a server and sink, respectively. 

The fork and merged network shown in Figure 4.5 consists of a source, fork, merge, 

sink and servers. TO acts as both a source and fork, Tl and T3 act as servers, 

T3 

Figure 4.5: 

respectively, and T2 acts as both a sink and merge. 
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4.4.2 Input and Output 

First of all, input and output are considered. Messages are input from the keyboard 

and output on the screen. Whenever the user inputs the message, it is received by TO. 

TO works as the interface between the host machine and the transputer network, and acts 

as a node, in parallel. Therefore, TO does not miss any input message. The processed 

messages on each processor appear on the screen, so that the user can make sure how 

each processor works. In the C-M algorithm, the null message could be sent to announce 

absence of the real message. In order to decide when creation of null messages should take 

place we use the clock, TIMER provided in Occam. A node waits for the next message 

for 6 seconds, if there is no message it produces the null message. Each transputer works 

with its own clock value and all are working in parallel. Every transputer receives the 

message, processes and sends it to the destination node(s). In Occam, it is not allowed to 

use the screen in parallel, and in FAST4 only TO can access to the screen. Therefore, all 

results must be sent back to TO. Hence, the result is sent both to the destination node 

and to TO. This restriction causes an inconvenience to the keyboard input. While the user 

types at the keyboard he/she cannot see the message until the terminator (<RETURN>) 

is sent, since there may be the result from any node to the screen. Hence, TO controls the 

keyboard and screen, and processes messages in parallel. The remaining transputers in 

the network act as nodes and send results to TO. 

4.4.3 Termination 

It is necessary to decide when simulation terminates. When deadlock occurs, simula­

tion is 'hung up' but does not terminate. Consider the example in Figure 4.1. Suppose 

that the source does not generate messages any more, simulation is finished. Although, 

P4 still has the message (8, m1 ) to send, an extra message with a t component exceeding 

8 must be sent to 'flush out' this message. We will make this extra message (INFINIT, 

Z). When the message Z is sent from the source all nodes realise that the simulation 

has terminated. Every node then outputs its remaining messages. For correct output, 

INFINIT must be greater than any input message. Furthermore, the message (INFINIT, 

Z) must be the last output along all lines and after sending (INFINIT, Z) the clock value 
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on the every line is INFINIT. 

4.5 Testing 

We first examined the tandem network. The link topology of transputers' is shown 

in Figure 4.6, light arrows indicating the message flow and bold arrows indicating results 

sent back to TO. 

3 2 

3 Tl 

0 
2 3 

HOST TO T2 
0 

3 2 

T3 

2 

Figure 4.6: 

We tested changing each node's service time and used real and null messages. The 

system did not deadlock and it was not necessary to consider the link time since it did not 

have a fork and merge. This particular topology is probably the best possible configura­

tion for the distributed approach to be successful. 

The next test included a fork and was carried out in the same way as the tandem 

network. The link topology is shown in Figure 4. 7. In this topology, deadlock did not 

occur, and the link time algorithm was used at the forlt node, which sent real messages 

alternately. 

The last link topology example is shown in Figure 4.8, including a fork and merge. 
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3 Tl 

0 
2 3 

HOST TO T2 
0 

3 

T3 

2 

Figure 4.7: 

In this topology the link time is fully used at the fork, and the merge processed messages 

3 2 

3 Tl 

2 
0 

3 

HOST TO T2 
0 

3 2 

T3 

3 

Figure 4.8: 

in chronological order. It was supposed that the C-M algorithm could be implemented 

using a bounded buffer, even with buffer size 0 (see [Chandy 81]), so we did not use any 

buffer. Therefore, messages are transmitted synchronously, for instance, when TO has a 

message to send to T1 and T1 is not ready to receive the message from TO, TO has to wait 

until T1 is ready. In our last example with buffer size 0 and synchronisation, the merge 

node was blocked, that is, deadlock occurred. For simplicity, we suppose that the fork 

and merge do not have the service time (stO = st2 = 0), so TO receives the input message 

from the keyboard and simply branches them, and T2 receives messages from both T1 and 
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T3, in chronological order and does not send them to any node. Table 4.1 shows message 

transmissions in the simulation of the last example and deadlock, where each horizontal 

row is a time slice and each entry corresponds to a single activity of one of the processes. 

It is evident that several activities may happen concurrently. Suppose that st1 is 2, 

st3 is 10, and input messages are shown in Table 4.1. Messages marked with a t are those 

received and messages marked with a* are those waiting to be sent. Deadlock is caused by 

T2, since T2 cannot receive the message (33, m4 ) from T3, T3 cannot receive the message 

(27, null) from TO, and TO cannot receive the message (35, m6 ) from the keyboard. In 

this example, deadlock occurs when all links are in the situation where a message is on 

the output line and the destination node also has a message to be output on the output 

line. We also observed the overhead of null messages. In Table 4.1 the sink receives 5 null 

messages and 4 real messages until deadlock occurs. A similar example, Table 4.2, shows 

the sink receiving 4 null messages and 4 real messages until deadlock. 

Most of the null messages are created at fork. The fork creates a null message for a 

node whenever it sends a real message to another node. Therefore, the merge processes 

about twice the number of messages that the source produces. It seems that the number 

of null messages created is caused by the number of forks and by the number of branches 

on the fork. In (Chandy 81] the authors say that if there is a feedback path from the 

output of T2 to the input of TO, a large number of 'null job' will be created at TO for every 

'real job' entering TO. Every message entering TO will cause a null message to be sent 

along at least one of the two outgoing edges although there is no mechanism to annihilate 

the null job. 
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I step I key I TO I T1{2) I u--T3{10) I T2 u---1 
---------- -------- ------ ---

send rec key send T1 send T3 recTO send T2 recTO send T2 rec T1 rec T3 send sink I 
1 2,nullf 10,nullf I 

2 2, M1 . 2, M1 2,nullf 10,nullf. 
3 9, M2 2, M1t 2, nullf 2,null 
4 9, M2 2, M1 2, null 
5 9,nullt 9, J\-hf 4, M1t 12, nullf 
6 20,M3 9, null 4, M1f 
7 11, nul If 4, M1 
8 11, nullf 
9 20, M3 9, M2 12, nullf · 10, null 
10 23, M4 20, M3t 20, nullf 19, M2t 11, null 
11 20, M3 
12 22, M3t 
13 22, M3t ' 
14 23, M4 20,null 19, M2t 12, null 
15 27,Mr. 23, nullf 23, J\14 t 30, nullt 19, M2 
16 27, Afr. 23, null 23, M4 30, null• 
17 35, M6• 27, Mr.t 27, null• 25, nullf 33, M4• 22, M3 
18 2i, Mr. 25,nullf 
19 29, Mr.t 25,null 
20 29, Mr.t 
21 

- L__ 
29, Mr. 

Table 4.1: 

M 
<:0 



I step I key--~ To I T1(2) I T3(10) I T2 I 
----

send rec key send T1 send T3 recTO send T2 recTO send T2 rec T1 .rec T3 send sink I 
1 2, nullt 10,nullt I 

2 7, .Ml 7, Mi 2,nullt 10,nullt I 
3 11, .M, 7, Mit 7, nullf 2,null i 

4 11, .M, 7,AlJ . 7, null 
5 11, nullf 11, M:zt 9, M1 t 17;nullf 
6 15, M3 11, null 9, Mtt 
7 13,nullf 9, M1 I 

8 13,nullf 
9 19, Mt 15, .M3 11, .M, 17,nullt 10, null 
10 15, M3t 15, nullt 21, M:zt 13,null 
11 15, M3 
12 17, M3t 
13 23, M5 17, M3t 
14 19, Mt 15, null 21, M:zt · 17, M3 
15 19, nullf 19, M4 t 25, nullf 
16 19, null 
17 27, M6 21, nullf 
18 21,nullf 
19 23, M5 19, Mt 25, nullt 21, M:z 
20 23, M5t 23, nullf 31, Mtt •. 

21 23, M5 
22 31, Mr• 25, M5t 
23 25, M5t 
24 27, Ms 23, null 31, Mt• 25, M5 
25 27, nullf 27, 1\16• 33, null• 
26 27, null 
27 .. 29,nuUt 
28 29,nullt 
29 29, null 

Table 4.2: 

-.:!' 
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4.6 Deadlock Avoidance 

In previous Sections we performed experiments of deadlock avoidance using the C-M 

algorithm. In spite of this, deadlock still occurred. In this Section we will study deadlock 

avoidance once more. We made two hypotheses to avoid deadlock: one was that we 

may need buffers; the other was that we may have to control input messages. We used 

three methods for the treatment of time to observe the simulation more generally, and 

examined the fork and merged network. First, the fork checks the link time and sends 

the real message to the smaller link time's node used in the previous Section. Secondly, 

the fork sends all real messages to the node having the smaller service time. Finally, the 

fork sends all real messages to the node having the greater service time. 

4.6.1 Deadlock Avoidance by Input Messages 

We first examined deadlock avoidance by messages shown in Figure 4.9. 

st3 = 1 o 

Figure 4.9: 

We did not use buffers, instead we controlled input messages and made the merge 

receive all messages from each branch node, so that deadlock may be avoided. For sim­

plicity, we supposed that the fork (Pl) and merge (P4) did not have the service time (stl 

= st4 = 0), st2 was 2 and st3 was 10. Deadlock seemed to occur because of the time gap 
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(gt) of messages and each node's service time. We examined the following three gts: 

gt1 > max(st2, st3) : gt1 = 11 

gt2 = max(st2, st3) : gt2 = 10 

gt3 < ist2 - st31 : gt3 = 9 

We did not set the start value. For example, messages may be generated (3, ml), (14, m2 ), 

(25 m3) ... etc. for gt1 • In this experiment we only changed the fork program leaving 

others the same. We first examined all real messages that were received by the node (P2) 

having the smaller service time and all null messages that were received by the node (P3) 

having the greater service time. The second experiment was to use link time so that real 

messages were received alternately. In the first and second experiments deadlock did not 

occur for all gts. We finally examined all real messages that were received by P3 and all 

null messages that were received by P2. In the last experiment gt1 and gt2 were successful 

but deadlock occurred at gt3. 

That is the first of two cases which have the smaller likelihood of deadlock. The 

reason for deadlock is the different treatment of null messages from that of real messages. 

When a node receives a null message its local clock advances and the node sends a null 

message with that advanced time. However, if the node receives only null messages the 

output time is different to if it had processed a real message, since a null message does 

not change the output link time. In the last example of gt3, P2 never waits to output 

a message but P3 waits for all output. P3 receives (3, m1 ) and sends (13, ml) (13 = 
arrival time + service time). When it receives the next message (12, m2 ) it sends (23, 

m2) but not (22, m2) because the real message changes the last departure time i.e. 23 

= 13 + 10. Therefore, some extra waiting time may be accumulated upon receiving the 

real message. In addition P3 has a greater service time so the merge could receive the 

smaller time component of the message from P2. This causes deadlock. Since there is no 

buffer, messages to be output are stored in variables, and each process has one variable 

to output. Therefore, if the number of server nodes between the fork and the merge 

(one in this example) is greater, deadlock could occur later. To avoid deadlock the input 

message should be greater than the maximum service time in the branches. Then no node 

accumulates waiting time. Although, this simulation is too restricted, the time component 
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of messages must be increased monotonically. However, it should not be increased as much 

as the maximum service time, and if the time gap is always greater than the maximum 

service time, one of the processors in the branches will be always idle. Therefore, this 

simulation will be expensive. We should think about other ways to avoid deadlock. Let 

us examine how to use a buffer so that all messages are transmitted immediately. 

4.6.2 Deadlock A voidance by Buffers 

We put buffers into the system so that when a message is sent it is received immediately. 

Buffers may be put into either the fork or the merge. If put into the fork, any message 

from the fork will be placed into the buffer which will wait until the destination node is 

ready. If put into the merge, any message sent there will be stored in the buffer and not 

transmitted until the merge is ready. We decided to put buffers into the merge since when 

the system does not have a merge (for example in a forked network) their case is avoided. 

Hence, we altered the merge program. 

The altered merge consists of three processes: receiver, event queue, and simulator. 

The receiver receives messages from all input links which are attached to the merge, 

and sends them to the event queue. The event queue has two processes: one is for the 

receiver, the other is for the simulator. Each input link has its own event queue. The 

event queue maintains all queues which are on a First-Come First-Served basis. It receives 

messages from the receiver, adds messages on the queue according to their input links, and 

increments the pointer which indicates the next space on the queue. It also communicates 

with the simulator, sends the message when the simulator requires, decrements the pointer, 

and shifts all messages on the queue forward. The event queue does not allow the simulator 

and the receiver access to the same queue at the same time, since we do not know whether 

it is after incrementing the pointer, or while adding a message (in other words, before 

incrementing the pointer), that the simulator accesses. In order to make sure we use the 

ALT construction. The simulator performs like the previous system. The difference is that 

it first sends the request signal to the event queue when it is ready, gets a message from 

the event queue, and processes it. All processes are running in parallel. In the program, 

the receiver has two SEQ constructions in parallel, each of which is used for a forthcoming 
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link. The event queue has two ALT constructions in parallel, and the simulator inputs, 

processes, and outputs sequentially. We examined deadlock avoidance with buffers by 

various messages using a smaller time gap than the maximum service time. Deadlock did 

not occur. When the last message (INFINIT, Z) is received, it flushes out all messages on 

the queue. Therefore, when simulation terminates the queue is empty. 

It is important to decide on the number of buffer spaces because on the system memory 

is usually bounded. The system may have as many buffer spaces as the number of input 

messages. The null message (t, null) means that there is no message before time t, so 

the null message can be annihilated in the following rule. Any messages (both real and 

null) put in the buffer after a null message annihilate any null messages ahead of it still 

in the buffer, since messages must have greater time components. The null message does 

not affect the number of buffer spaces. Therefore, the number of buffer spaces is the 

number of real messages plus one (where the one is used to store the null message until 

it is annihilated). It was found in our system that if the fork has two branch nodes, the 

one having the greater service time needs the buffer whilst the other does not. When 

the number of buffer spaces is reduced to one, the event queue acts as a pipeline so that 

the messages are added on the queue and removed immediately. In fact the merge never 

reads messages continually from the greater service time node. When the number of buffer 

spaces is reduced to zero, processors communicate synchronously, that is the sender has 

to wait until the receiver is ready. This implies that the sender may spend a considerable 

amount of time in waiting. On the other hand, it was found in [Misra 86] that in the 

simulation of a certain class of queuing networks, performance improved rapidly until the 

number of buffer spaces on a channel approached ten, increased less rapidly until twenty, 

and remained essentially unchanged thereafter. These numbers may depend on the type 

of problem and the speeds of processors and communication lines. 

Null messages are also annihilated at the merge. For example, when the merge receives 

messages (30, null) and (30, mk), the merge does not have to process (30, null), but only 

process (30, mk ). The annihilation of null messages on the merge and the buffer depends 

on the system, so it is difficult to tell how many null messages can be annihilated. However, 

it may be true that the number of null messages transmitted to the sink, and the number 

of annihilations, is smaller than those created. 
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4. 7 Experiment II 

4. 7.1 Input and Output 

In this experiment, the ke):'board input and screen output is discarded. Instead we 

used input and output from a file. Two distinct classes of file may be accessed on the 

TDS. Fold files which are part of the fold structure of the development system, and host 

files which are not. The TDS provides various user file interfaces according to whether 

the program is running inside the TDS, loaded directly by the TDS server or loaded by 

another server, either written by the user or, for example, the host file server supplied with 

the TDS. Files to be read may be created as folds using the editor, or by another program. 

New files may be created within the bundle and written into. Such files are readable by 

the user. All access to filed folds is sequential, and procedures are designed to facilitate 

the reading of existing files as if they were a source of characters like a keyboard, and the 

writing of new files as if they were a simple screen or printer. 

When the file is used the results are saved so all messages are checked afterwards to 

see if they are correct. All messages are read continually so null messages are made once 

at the beginning at all nodes and only the fork continues to make null messages during 

simulation. The time-out to make a null message is still used and although messages are 

read before time-out (every six seconds), it does not make null messages. To measure the 

process time ticks are used. The result of the ticks is also saved to the file. 

4.7.2 Experiments 

Experiments were carried on using fork and merged network as in the previous Section. 

As before, the fork and the merge do not have any service time. The service time on one 

server is 2, the other 10. However, one more branch is added so that the fork has 3 

servers, shown in Figure 4.10, and the new node's service time is 5. 
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st4 = 1 o 

Figure 4.10: 

This topology is mapped onto one transputer. To make a good comparison between 2 

servers and 3 servers, we have transferred the 2 servers' program onto one transputer. 

The difference in programming between using a network of transputers and one transputer 

is that on the network hardware channels are used but on one transputer all channels are 

software channels. The software channels may be declared into an array and implemented 

by loops, but the hardware channels may not. In this experiment, in order to make an 

accurate comparison, we did not declare software channels in the array. Therefore, we 

have examined 3 topologies: two servers in a network, two servers and three servers 

on a transputer. 

The program with three servers on one transputer is based on that of the two servers 

on one transputer. But we had to put more parameters and loops into some functions. It 

could be difficult to implement the three servers network on our transputer board because 

its hardware links are fixed, and one processor would have to have two nodes. To maintain 

the load balance, we must consider the structure of the system, the service time, and 

data flow. When the load balance is not maintained, the parallelism may be fulfilled less 

efficiently, may cause more null messages to be made and the process time may take longer. 

On the other hand, when all nodes are mapped onto one transputer the development 

time takes longer. The SC (a 'Separate Compilation' unit) may be used to develop the 

system on one transputer, although all SCs must be linked whenever the program changes. 

In the network, the programming of the host transputer is separated from that of the 

network. Therefore, when the program on the host transputer changes only the EXE 
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(an 'Executable' program) is compiled, and when the program on the network changes 

only the PROGRAM (a program intended to run on a network of transputers, including 

configuration information) is compiled. 

All messages are first loaded into an array, processed, and saved into a file. After 

loading the file the tick is read, and before saving the tick is read again, the process time 

being measured by subtracting the first tick from the second tick. The loading and saving 

time depends on the empty spaces on the disk so it should not be included in the process 

time. The screen output may help the user observe how the system works during simulation 

although it makes an extra job in parallel and causes an extra interrupt. Therefore, it is 

not used in this experiment. 

Three types of messages are used: gt1 is constantly 9, gt2 is random and smaller than 

the maximum service time, and gt3 is random and greater than maximum service time. 

All input messages are shown in Table 4.3. 

gt1 = 9 II gt2 < max st II gt3 > max st I -
3a 5a 1 a, 

12 b 7b llb 
21 c 13 c 23 c 
30 d 18 d 35 d 
39 e 21 e 45 e 
48 f 25 f 56 f 
57 g 30 g 70 g 
66 h 33 h 81 h 
75 i 35 i 93 i 
84 j 36 j 105 j 
93 k 41 k 116k 
1021 471 127 l 
111m 52 m 140m 
120 n 57 n 150 n 
129 0 60 0 162 0 

138 p 66 p 173 p 
147 q 73 q 188 q 
156 r 77r 199 r 
165 s 80s 210 s 
174 t 84 t 220 t 

INFINIT Z INFINIT Z INFINIT Z 

Table 4.3: 
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We experimented on the following systems. On the network, the fork has two nodes 

and sends real messages; alternately to two nodes, all to the node having the smaller 

service time, and all to the node having the greater service time, both with and without 

buffers, that is six cases. On the transputer, with the two node fork, real messages are 

sent; alternately to two nodes, with and without buffers, all to the node which has the 

greater service time, and all to the node which has the smaller service time. The last two 

with buffers. Finally, on the transputer using the three node fork, real messages are sent; 

alternately to three nodes with and without buffers, all to the node which has the smaller 

service time, all to the node which has the middle service time, and all to the node which 

has the greater service time. The last three all using buffers. Therefore, there are nine 

cases on one transputer. 

4.7.3 Itesults 

The results are shown in Table 4.4 and Table 4.5. 

NETWORK II gtl gt2 gta 
II null ticks null ticks null ticks 

alter, no buf, 2, 10 23 123 DEADLOCK 23 122 
small, no buf, 2, 10 23 123 DEADLOCK 23 122 
great, no buf, 10, 2 DEADLOCK DEADLOCK 23 116 

alter, with buf, 2, 10 22 122 10 116 22 123 
small, with buf, 2, 10 21 121 8 107 22 121 
great, with buf, 10, 2 20 127 19 146 22 124 

Table 4.4: 

As before deadlock occurs when the system does not have a buffer, and input messages 

have a time gap smaller than the branch node's maximum service time. Therefore on 

the two server system, when no buffer with gt2, deadlock will occur, and when the fork 

sends all real messages to the node having the greater service time with gt1, deadlock will 

occur. When the system has buffers, deadlock may not occur unless the buffer space is 

too small. 
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ONE TRANSPUTER gtl gt2 gta 
null ticks null ticks null ticks 

alter, no buf, 2, 10 22 224 DEADLOCK 22 224 
alter, with buf, 2, 10 12 266 10 265 12 283 
small, with buf, 2, 10 9 257 6 251 9 257 
great, with buf, 10, 2 20 298 19 307 22 298 
alter, no buf, 2, 5, 10 42 339 DEADLOCK 43 341 

alter, with buf, 2, 5, 10 15 379 13 374 16 378 
small, with buf, 2, 5, 10 4 378 5 379 5 379 

middle, with buf, 5, 2, 10 5 382 5 382 6 383 
great, with buf, 10, 2, 5 5 383 11 397 6 384 

Table 4.5: 

It seems that the buffered system has less chance to send null messages as they may 

be annihilated in the buffer. However, on the system in which the fork has two servers 

and sends all real messages to the node having the greater service time, the number of 

null messages can not be annihilated. Since all null messages are sent to the node having 

the smaller service time and this node has the size of one buffer space, most of the null 

messages are sent immediately after having been stored in the buffer. On the system in 

which the fork has three servers, all nodes have the size of ten buffer spaces, so a greater 

annihilation of null messages occurs. When one more branch is added on the unbuffered 

system, the number of null messages is increased to nearly as many as the number of 

input messages. It implies that the fork handles most of the null messages, and that the 

number of branches affects the overhead of null messages with the result that the process 

time is increased. 

When the network of transputers is used, four transputers work in parallel. When 

all processes are mapped onto one transputer, all processes (in other words, fork, merge, 

server, main program inputting results assigning arrays) are working in the PAR construc­

tion. It would be expected that those two programs work exactly the same, although, the 

one transputer version takes more than twice the processing time. It may imply that when 

the transputer has many PAR constructions it does not work in parallel for all, and some 

inefficient parallel process causes the longer processing time. For example, when the fork 

alternately sends real messages to servers with buffers, on one transputer, the merge 

program has three PAR constructions; receiver, event queue, and simulation. In the event 

queue, the receiver has high priority access to the event queue, and while the receiver is 
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accessing the simulator is not allowed to access to the event queue. For this the ALT con­

struction is used. The ALT performs the process associated with a guard which is ready. 

It is a first-past-the-post race between a guard of channels, with only the winner's process 

being executed. We expected that the receiver would access the event queue first and add 

one message. Then the simulator would alternately access the event queue and remove a 

message. It seems, however, that on the one transputer system the receiver and the event 

queue are working in parallel but the simulator is not, so that the simulator can access 

the event queue when the receiver finishes storing messages on the buffer. Therefore, the 

buffer is often filled with messages and null messages could be annihilated further. In fact, 

on the one transputer system, the processing time is longer but some null messages are 

annihilated in the buffer. 

4.8 Summary 

In this Chapter we have observed deadlock, the process time and the null message. 

Deadlock is avoided either by the control of input messages or by using buffers. The 

process time may be shorter when each processor has less work to do. The number of 

null messages is increased by the number of branches in the fork, and some null messages 

may be annihilated in the buffer and at merge. In addition all these results are related 

to each other. For example, on the buffered one transputer system, the processing time is 

longer but many null messages are annihilated in the buffer. In the network of transputers 

the system works a good deal faster but there is an overhead of null messages. The best 

implementation may depend on the system structure, the service time on each node, input 

messages, the size of buffer spaces, data flow, the number of processors, and the like. In 

our experiments, the buffered network of transputers system uses input messages. These 

are random and have a time gap smaller than the maximum service time. The result is 

that the system works a great deal faster and has little overhead of null messages. 
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Chapter 5 

CONCLUSIONS 

The design, planning, improvement, and operation of complex systems are each very 

difficult to perform since they are based on unrealistic assumptions and require many 

approximations. Hence, simulation is the viable means for obtaining accurate measure­

ments of performance for very complicated systems. Currently, however, simulations are 

extremely slow. Distributed simulation seems to be a promising approach for speeding up 

simulations, although more work needs to be done to determine the extent of its promise. 

The advantage of distributed simulation will depend on the system being simulated, the 

available multiprocessor system, and the approach used. The type of application is also 

an important consideration in determining an appropriate approach to distributed simu­

lation. For instance, time-driven simulation may be better than event-driven simulation if 

there are many interactions at the same time, or if the simulation is to be combined with 

on-line graphics. Synchronous simulation may be more appropriate than asynchronous 

simulation for more tightly coupled systems in which global information is used. More­

over if the system is very tightly coupled, distributing the model will look less attractive 

relative to other decomposition approaches. The architecture of the processing system, in 

particular the number of processors, the amount of memory, and whether the memory is 

shared or not, will also determine the approach to be used for distributed simulation. 
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We have studied the conservative approach and examined its viability in distributed 

simulation. This approach requires less memory than the optimistic approach, but when 

more memory is available for buffering messages, more null messages could be annihilated. 

In the conservative approach the simulation processes the events in time stamped order. 

Suppose that the simulation is distributed over several processors, it becomes possible for 

a processor to process an event which is not the earliest. Also, in processing this event 

the simulation may affect conditions for earlier, as yet un-simulated events. Thus the 

future is affecting the past. This is known as a causality error. The conservative approach 

avoids causality errors. Therefore, the implementation of the conservative approach may 

be simpler and easier. The assignment of processes to processors may degrade simulation 

performance. If the load is unbalanced some processors will have so much work to be 

done that the amount of parallelism would be decreased and the simulation time would be 

increased. Even if there is some information, the assignment problem would be complex, 

and the relative load would change during the simulation. To summarise, the conservative 

approach can achieve good performance with the system which has a rather simple system 

structure and with a certain amount of memory for buffering. Transputers work a good 

deal faster so they are suitable for implementing distributed simulation. 

Many approaches are proposed in distributed simulation, although very little empirical 

work has been done. Empirical and analytical studies need to determine the relative 

advantages of different approaches and which are best under what circumstances. More 

tools are required to empirically measure the performance of a simulation. For example, 

the TDS which is used to develop a program using Occam is somewhat difficult to operate 

and it does not have utilities such as graphics. Neither the conservative nor the optimistic 

approach has yet adequately addressed real-time applications. There are some issues to 

be solved if distributed simulation is to be a viable alternative to uniprocessor simulation, 

but the approach is promising and impressive. 
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Appendix 

Program Listings 

VAL string.length 
PROTOCOL Message 
PROTOCOL TMessage 
PROTOCOL lewHessage 

PROTOCOL letters 
CASE 

letter; IIT 
end.of.letters 
terminate 

VAL return 
VAL ft. del. chl 
VAL ft.del 
VAL tt.left 
VAL tt.stop.ch 
VAL space 

IS 5: 
IS IIT; [string.length]BYTE: 
IS IIT; INT; [string.length]BYTE: 
IS INT; INT; [string.length]BYTE; 

IS IIT '*c': 
IS #CD: 
IS #CE: 
IS 8: 
IS 256: 
IS IMT '*s': 

VAL lumber.of.transputers IS 4: 
VAL lULL IS BYTE '0': 
VAL EOF IS BYTE 'Z': 
VAL YES 
VAL 10 
VAL linkoutO IS 0: 
VAL linkout1 IS 1: 
VAL linkout2 IS 2: 

IS 1: 
IS 0: 
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VAL linkout3 IS 3: 
VAL linkinO IS 4: 
VAL linkin1 IS 6: 
VAL linkin2 IS 6: 
VAL linkin3 IS 7: 
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This program is for a source and fork (root transputer) 
The root receives the message from the keyboard, 
sends it to the Transputer 1 and 3 
receives the acknowledgement from T1, T2, T3, and 
sends the ack to the screen 

#USE cheader 
#USE userio 
#USE strings 

VAL Branch IS 2: 

CRAB OF TMessage inputO, input1, input2, result: 
CRAB OF TMessage out1, out2: 
[Bumber.of.transputers]IBT time: 
[Bumber.of.transputers]IBT pro.time: 
[Bumber.of.transputers][string.length]BYTE message: 
IBT char, x, y, up.time: 
[Branch]IBT out.time: 

PLACE out1 AT linkout2: -- MES to Transputer 1 
PLACE out2 AT linkout3: -- MES to Transputer 3 
PLACE inputO AT linkin2: ACK from Transputer 
PLACE input1 AT linkin1: ACK from Transputer 
PLACE input2 AT linkin3: ACK from Transputer 

#USE cheader 

PROC keyboard.handler (IBT st, 

#USE userio 
#USE ioconv 

CRAB OF IBT in, 
IBT in.time, 
[]BYTE message, 
IBT up.time) 

BOOL going, next: 
[string.length]BYTE string: 
IBT char, length, pro.time: 

SEQ 
PAR i = 0 FOR string.length 

string[i] := '*s' 
going := TRUE 
next := TRUE 
length := 0 
string[length] := BYTE st 
length := length + 1 
WHILE going 

SEQ 
in 1 char 
CASE char 

space 
BOOL err: 
SEQ 

IF 
next 
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SEQ 
STRINGTOINT(err, in.time, string} 
IF 

err 
SEQ 

TRUE 

PAR i = 0 FOR string.length 
string[i] := '*s' 

SKIP 
length := 0 

TRUE 
SKIP 

return 
SEQ 

IF 
(length <> 0) AND (in.time > 0) 

SEQ 
IF 

up.time >= in.time 
in.time := up.time + 1 

TRUE 
SKIP 

[message FROM 0 FOR string.length] := string 
going := FALSE 
up.time := in.time 

TRUE 
SKIP 

ft.del. chl 
IF 

ELSE 
IF 

length > 0 
SEQ 

length := length - 1 
string[length] := '*s' 

TRUE 
SKIP 

length < string.length 
SEQ 

TRUE 

string[length] := BYTE char 
length .- length + 1 

SKIP 

#USE cheader 

PROC goto.screen(INT x, y, pro.time, time, 
[]BYTE message, 

#USE strings 
#USE userio 

SEQ 

CHAN OF ANY out) 

goto.xy (out, 0, y) 
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write.full.string(out, 
" 
goto.xy (out, 
y := y + 1 
IF 

y >= 24 
SEQ 

y := 0 
TRUE 

SKIP 

x, y) 

write.int(out, pro.time, 6) 
right(out) 
write.int(out, time, 6) 
right(out) 
write.full.string(out, message) 

#USE cheader 

VAL Branch IS 2: 

CHAN OF TMessage input: input channel from former channel 
CHAN OF TMessage output1, output2: next output channel 
CHAN OF Message result: output channel to display the result 
INT in.time: time component 
receive the message from input, process, and 
output it to otput1, output2, and result; 1 INPUT to 2 OUTPUT 

PROC fork(CHAN OF TMessage output1, output2, 
[] INT out. time, 
INT in.time, 
[]BYTE strings) 

#USE userio 
#USE strings 

VAL INFINIT IS 10000: 
[Branch]INT time: 
[Branch][string.length]BYTE message: 
INT dep.time, dummy: 
INT mflag, min, bnumber: 

SEQ 
PAR i = 0 FOR Branch 

time[i] := 0 
PAR i = 0 FOR Branch 

PAR j = 0 FOR string.length 
message[i] [j] := '*s' 

mflag := char.pos(EOF, strings) 
dummy := 0 
IF 

mflag < 0 
SEQ 

not the last message 

dep.time := in.time 
since this node does not have its service time 

min := out.time[O] 
bnumber := 0 
SEQ i = 0 FOR Branch -- choose the smaller time component 
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SEQ 

IF 
min > out.time[i] 

SEQ 
min := out.time[i] 
bnumber := i 

TRUE 
SKIP 

PAR i = 0 FOR Branch -- send the message to both 
IF 

(i = bnumber) AND (strings[O] <> NULL) -- real message 
SEQ 

message[i] := strings 
IF 

out.time[i] > in.time 
SEQ 

time [i] : = out. time [i] 
TRUE 

SEQ 
time[i] := dep.time 

out.time[i] := time[i] 
TRUE -- null message 

SEQ 
message[i][O] :=NULL 
IF 

out.time[i] > dep.time 
SEQ 

time[i] .- out.time[i] 
TRUE 

SEQ 
time[i] := dep.time 

TRUE -- terminate 
PAR i = 0 FOR Branch 

PAR 
time[i] := INFINIT 
message[i] := strings 

PAR -- output: process local time; time component; message component 
outputl ! dummy; time[O]; message[O] 
output2 ! dummy; time[l]; message[l] 
in.time := time[bnumber] 
[strings FROM 0 FOR string.length] := message[bnumber] 

y := 0 
PAR i = 0 FOR Branch 

out.time[i] := 0 
PARi = 0 FOR Number.of.transputers 

pro.time[i] := 0 
PAR 

INT flag: 
SEQ -- fork (source) process 

flag := -1 
up.time := 0 
WHILE flag < 0 

SEQ 
keyboard ? char -- input the message (t, m) 
keyboard.handler (char, keyboard, time[O], message[O], up.time) 
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fork (out1, out2, out.time, time[O], message[O]) 
flag := char.pos (EOF, message[O]) 

INT flag: 
SEQ -- screen process 

flag := -1 -- each link receives: local clock; output time; output message 
WHILE flag < 0 

ALT 
inputO? pro.time[1]; time[1]; message[!] --Transputer 1 

SEQ 
IF 

pro.time[1] < 0 -- branch! echo back input data 
X := 0 

TRUE 
X := 16 

goto.screen(x, y, pro.time[1], time[!], message[!], screen) 
input!? pro.time[2]; time[2]; message[2] --Transputer 2 

SEQ 
X := 36 
goto.screen(x, y, pro.time[2], time[2], message[2], screen) 

input2? pro.time[3]; time[3]; message[3] --Transputer 3 
SEQ 

IF 
pro.time[3] < 0 -- branch2 echo back input data 

X := 0 
TRUE 

SEQ 
X := 60 
flag := char.pos (EOF, message[3]) 

goto.screen(x, y, pro.time[3], time[3], message[3], screen) 

keyboard ? char 

89 



CHAN OF TMessage input1, input2: input channel from former channels 
CHAN OF TMessage result: next output channel 
VAL !NT ser.time: process service time 
This program is for a merge 
The merge inputs on two stream of messages, compares them, 
and outputs the smaller time message on one stream of messages 
; 2 INPUT to 1 OUTPUT 

MODIFIED!: there are 3 processes running in parallel 
Receiver: whenever the message comes it inputs all and sends them to the event queue 
Event queue: inputs messages from the receiver, outputs them to the simulator 
Simulator: processes messages and sends to the next processor 

#USE cheader 

PROC merge (CHAN OF TMessage input1, input2, 
CHAN OF TMessage result, 
VAL !NT ser.time) 

#USE userio 
#USE strings 

PROC key.in (CHAN OF TMessage input, 
[]BYTE message, 

SEQ 

!NT dummy, in.time, 
VAL !NT pro.time, 
BOOL nflag, 
IRT now, 
VAL !NT timeout, 
TIMER clock) 

PAR i = 0 FOR string.length 
message[i] .- '*s' 

clock ? now 
ALT 

input ? dummy; in.time; message 
SEQ 

IF 
in.time < pro.time --message error 

SEQ 
-- STOP 
in.time := pro.time 

TRUE 
SKIP 

nflag := FALSE 
NOT (nflag) a clock ? AFTER now PLUS timeout 

SEQ 
in.time := pro.time 
nflag := TRUE 
message[O] := NULL 

make the next message 
!NT time: process local time 

PROC process ([]BYTE message, 
IRT pro.time, in.time, time, 
VAL IRT ser.time, 
!NT real, out.time) 
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SEQ 
pro.time := in.time 
time .- pro.time + ser.time 
real := char.pos(NULL, message) 
IF 

real < 0 
SEQ 

IF 
out.time > pro.time 

SEQ 
time := out.time + ser.time 

TRUE 
SKIP 

out.time := time 
TRUE 

IF 
time < out.time 

SEQ 
time := out.time 

TRUE 
SKIP 

sort chronologically 

PROC sort.queue([]INT pro, time, 
[] 0 BYTE message, 
INT pt) 

SEQ i = 0 FOR pt 
PAR 

pro[i] := pro[i + 1] 
time[i] := time[i + 1] 
message[i] := message[i + 1] 

VAL INFIIIT IS 10000: 
VAL SEC IS 100000: 
VAL Merge 
VAL Buf1 
VAL Buf2 

IS 2: 
IS 1: 
IS 10: 

CHAN OF TMessage ch.in1, ch.in2: 
CHAN OF TMessage ch.out1, ch.out2: 
CHAN OF ANY signal1, signal2: 

PAR 

[Merge]INT pro.time, in.time: 
[Merge][string.length]BYTE message: 
PAR -- receiver 

INT mflag: 
SEQ 

mflag := -1 
WHILE mflag < 0 

SEQ 
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input1? pro.time[O]; in.time[O]; message[O] 
ch.in1 ! pro.time[O]; in.time[O]; message[O] 
mflag .- char.pos(EOF, message[O]) 

IRT mflag: 
SEQ 

mflag := -1 
WHILE mflag < 0 

SEQ 
input2? pro.time[1]; in.time[1]; message[!] 
ch.in2 ! pro.time[1]; in.time[1]; message[!] 
mflag := char.pos(EOF, message[!]) 

PAR -- event queue 
INT mflag, pt, req: -- pt: queue pointer 
[Bufl]INT pro.buf, time.buf: 
[Bufl][string.length]BYTE mess.buf: 
SEQ 

mflag := -1 
pt := 0 
WHILE (mflag < 0) OR (pt > 0) 

input from the link 
output to the bufffer 

input from the link 
output to the buffer 

-- run until the last message araival and the queue is empty 
PRI ALT 

(pt > 0) t signal1 ? req -- request from the simulator 
s~ 

ch.out1 ! pro.buf[O]; time.buf[O]; mess.buf[O] 
pt := pt - 1 
IF -- sort the queue 

pt > 0 
SEQ 

sort.queue(pro.buf, time.buf, mess.buf, pt) 
TRUE 

SKIP 
(pt < Buf1) t ch.in1? pro.buf[pt]; time.buf[pt]; mess.buf[pt] 
s~ 

mflag := char.pos(EOF, mess.buf[pt]) 
IF -- check if previous message is null 

(pt > 0) AND (mess.buf[pt- 1][0] =NULL) 
PAR -- ignore null messages 

pro.buf[pt - 1] := pro.buf[pt] 
time.buf[pt - 1] := time.buf[pt] 
mess.buf[pt - 1] := mess.buf[pt] 

TRUE -- add the message on the queue 
pt := pt + 1 

INT mflag, pt, req: -- pt: queue pointer 
[Buf2]INT pro.buf, time.buf: 
[Buf2][string.length]BYTE mess.buf: 
SEQ 

mflag := -1 
pt := 0 
WHILE (mflag < 0) OR (pt > 0) 

-- run until the last message arrival and the queue is empty 
PRI ALT 

(pt > 0) t signal2 ? req -- the request from the simulator 
SEQ 
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ch.out2 ! pro.buf[O]; time.buf[O]; mess.buf[O] 
pt := pt - 1 
IF -- sort the queue 

pt > 0 
SEQ 

sort.queue(pro.buf, time.buf, mess.buf, pt) 
TRUE 

SKIP 
(pt < Buf2) & ch.in2? pro.buf[pt]; time.buf[pt]; mess.buf[pt] 

SEQ 
mflag := char.pos(EOF, mess.buf[pt]) 
IF -- check previous message is null 

(pt > 0) AND (mess.buf[pt- 1][0] =NULL) 
PAR 

pro.buf[pt - 1] := pro.buf[pt] 
time.buf[pt - 1] := time.buf[pt] 
mess.buf[pt - 1] := mess.buf[pt] 

TRUE add the message on the buffer 
pt := pt + 1 

[Merge]BOOL nflag: 
IRT pro.time, out.time, time, id: 
IIT mflag, timeout, real1, real2, min, mnumber: 
[Merge]IRT in.time, pre.pro, now: 
[Merge][string.length]BYTE message: 
[Merge]TIMER clock: 
SEQ -- simulator 

pro.time := 0 
out.time := 0 
time := 0 
mflag := -1 
PAR i = 0 FOR Merge 

PAR 
in.time[i] := 0 
nflag[i] := FALSE 

timeout := 1 
WHILE mflag < 0 

SEQ 
PAR 

SEQ 
IF 

in.time[O] = pro.time 
SEQ 

signal1 ! YES 
key.in(ch.out1, message[O], pre.pro[O], in.time[O], 

pro.time, nflag[O], now[O], timeout, clock[O]) 
TRUE 

SKIP 
SEQ 

IF 
in.time[1] = pro.time 

SEQ 
signal2 ! YES 
key.in(ch.out2, message[1], pre.pro[1], in.time[1], 

pro.time, nflag[1], now[1], timeout, clock[1]) 
TRUE 
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SKIP 
timeout := SEC 
min : = INFilliT 
SEQ i = 0 FOR Merge 

IF 
Find smaller service time 

min > in.time[i] 
SEQ 

min := in.time[i] 
mnumber := i 

TRUE 
SKIP 

mflag := char.pos(EOF, message[mnumber]) 
IF 

mflag < 0 
SEQ 

Process the messages 

id := NO 
process (message[mnumber], pro.time, in.time[mnumber], time, 

ser.time, real1, out.time) 
IF -- If the mesage is real it's sent 

real1 < 0 -- real message 
result ! pro.time; time; message[mnumber] 

TRUE -- null message 
SKIP 

-- Check whether time components are the same 
SEQ i = 0 FOR Merge 

IF 

IF 
(i <> mnumber) AND (in.time[i] = in.time[mnumber]) 

SEQ 
process (message[i], pro.time, in.time[i], time, 

ser.time, real2, out.time) 
IF -- If the mesage is real it's sent 

real2 < 0 -- real message 
SEQ 

id := YES 
result ! pro.time; time; message[i] 

TRUE 
SKIP 

TRUE 
SKIP 

If no equal time components and the message is null 
or all are null messages, one null message is sent 

(id = NO) AND (rea11 >= 0) 
result ! pro.time; time; message[mnumber] 

TRUE 
SKIP 

TRUE -- terminate 
SEQ 

time : = INFINIT 
pro.time := INFIIIT 
result ! pro.time; time; message[mnumber] 
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CHAN OF TMessage input1: input channel from former channels 
CHAN OF TMessage result: next output channel 
VAL INT ser.time: process service time 
This program is for a server. 
The server inputs one stream of messages and 
outputs one stream of messages; 1 INPUT to 1 INPUT 

#USE cheader 

PROC slave (CHAN OF TMessage input, output, result, 
VAL INT ser.time) 

#USE userio 
#USE strings 

PROC key.in (CHAN OF TMessage input, output, 
[]BYTE message, 

SEQ 

IBT pre.pro, in.time, 
VAL INT pro.time, 
BOOL nflag, 
IllT now, 
VAL IBT timeout, 
TIMER clock) 

PAR i = 0 FOR string.length 
message[i] := '*s' 

clock ? now 
ALT 

input ? pre.pro; in.time; message 
SEQ 

output ! -1; in.time; message 
IF 

in.time < pro.time -- message error 
SEQ 

-- STOP 
in.time := pro.time 

TRUE 
SKIP 

nflag := FALSE 
NOT (nflag) t clock ? AFTER now PLUS timeout 

SEQ 
in.time := pro.time 
nflag := TRUE 
message[O] := NULL 

VAL INFINIT IS 10000: 
VAL SEC IS 100000: 
BOOL nflag: 
INT pro.time, out.time, in.time, time, pre.pro: 
IIT ch.pos, mflag, real, now, timeout: 
[string.length]BYTE message: 
TIMER clock: 

SEQ 
nflag := FALSE 
pro.time .- 0 
out.time .- 0 
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time := 0 
in.time := 0 
mflag := -1 
real := -1 
timeout := 1 
WHILE mflag < 0 

SEQ 
key.in(input, result, message, pre.pro, in.time, pro.time, nflag, now, 

timeout, clock) 
timeout := SEC 
mflag := char.pos(EOF, message) 
IF 

mflag < 0 
SEQ 

pro.time := in.time 
time := pro.time + ser.time 
real := char.pos(NULL, message) 
IF 

real < 0 -- real message 
SEQ 

IF 
out.time > pro.time 

SEQ 
time := out.time + ser.time 

TRUE 
SKIP 

out.time := time 
TRUE -- null message 

IF 
time < out.time 

SEQ 
time := out.time 

TRUE 
SKIP 

TRUE -- terminate 
SEQ 

time := INFINIT 
pro.time := IIFINIT 

output pro.time; time; message 
result ! pro.time; time; message 
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-- This is a configuration file. 

VAL Se.timel 
VAL Se.time2 
VAL Se.time3 

IS 2: 
IS 0: 
IS 10: 

[Number.of.transputers]CHAR OF TMessage link: 
[Number.of.transputers]CHAN OF TMessage result: 

PLACED PAR 
PROCESSOR 1 TS 

PLACE link[O] AT linkin3: 
PLACE link[l] AT linkout2: 
PLACE result[O] AT linkout3: 
slave (link(O], link[l], result(O], Se.timel) 

PROCESSOR 2 TS 
PLACE link[l] AT linkin3: 
PLACE link[2] AT linkin2: 
PLACE result[!] AT linkoutl: 
merge (link[l], link[2], result[!], Se.time2) 

PROCESSOR 3 TS 
PLACE link(3] AT linkin2: 
PLACE link[2] AT linkout3: 
PLACE result[2] AT linkout2: 
slave (link[3], link[2], result[2], Se.time3) 
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This program is for a source and fork(root transputer) 
The root inputs the message from the file, 
sends it to the Transputer 1 and 3 
receive acknowledgement from T1, T2, T3, and 
outputs results to the file. 

#USE cheader 
#USE userio 
#USE interf 
#USE strings 

VAL Branch IS 2: 
PROTOCOL W.FILE IS IIT; IIT; [string.length]BYTE; IRT: 

CHAR OF TMessage inputO, input1, input2: 
CHAR OF TMessage out1, out2: 
CHAN OF TMessage in.fork: 
CHAR OF W.FILE output: 
[Number.of.transputers]IRT time: 
[Rumber.of.transputers]IRT pro.time: 
[Rumber.of.transputers][string.length]BYTE message: 
INT char, tr.number: 

PLACE out1 AT linkout2: -- MES to Transputer 1 
PLACE out2 AT linkout3: -- MES to Transputer 3 
PLACE inputO AT linkin2: ACK from Transputer 1 
PLACE input1 AT linkin1: ACK from Transputer 2 
PLACE input2 AT linkin3: ACK from Transputer 3 

#USE cheader 
PROTOCOL W.FILE IS IRT; INT; [string.length]BYTE; INT: 

PROC finput (CHAI OF TMessage f.data, 
CHAN OF AIY from.file, to.file) 

#USE uservals 
#USE userio 
#USE interf 

SEQ 
IIT input.error: 
[string.length]BYTE message, string: 
SEQ 

CHAR OF IRT filekeys: 
PAR 

keystream.from.file (from.file, to.file, 
filekeys, 1, input.error) 

-- check input.error when real screen accessible again 

IIT kchar: 
IIT time, len: 
SEQ 

kchar := 0 
len := 1 
WHILE kchar <> ft.terminated 

SEQ 
read.char (filekeys, kchar) 
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IF 

IF 

IF 
kchar < 0 

SKIP 
TRUE 

IRT k: 
SEQ 

read.int (filekeys, time, kchar) 
PAR i = 0 FOR string.length 

message [i] : = ' ' 
read.text.line(filekeys, len, string, kchar) 
k := 0 
WHILE string[k] <> '*c' 

SEQ 
message[k] := string[k] 
k := k + 1 

IF 
kchar = ft.terminated 

SKIP 
TRUE 

SEQ 
IF 

kchar = ft.number.error 
f.data ! -2; time; message 

TRUE 
SKIP 

f.data ! -1; time; message 

(kchar >= 0) OR (kchar = ft.number.error) 
keystream.sink (filekeys) 

consume the rest of the keyboard file 
TRUE 

SKIP keyboard file has terminated or failed 

input.error <> 0 
SEQ 

f.data ! -3; input.error; message 
TRUE 

SKIP 

PROC foutput (CHAN OF W.FILE f.data, 
CHAN OF ANY from.file, to.file) 

#USE uservals 
#USE userio 
#USE interf 

IIT st, et: 
TIMER clock: 

SEQ 
clock ? st 

CRAB OF ANY echo: 
PAR 
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INT time, pro.time, tr.number: 
[string.length]BYTE message: 
SEQ 

message[O] := ' ' 
tr.number := 0 
WHILE (message[O] <> EOF) OR (tr.number <> (Number.of.transputers - 1)) 

-- WHILE not the last message & not the last transputer 
SEQ 

f.data? pro.time; time; message; tr.number 
SEQ i = 0 FOR (80 I lumber.of.transputers) • tr.number 

vrite.char (echo, ' ') 
vrite.int (echo, pro.time, 0) 
vrite.char (echo, ' ') 
vrite.int (echo, time, 0) 
vrite.char (echo, ' ') 
vrite.full.string (echo, message) 
-- write.char (echo, ' ') 
-- write.int (echo, tr.number, 0) 
newline (echo) 

clock ? et 
write. full. string (echo, "run time ticks = ") 
write.int (echo, et - st, 0) 
write.endstream (echo) -- terminate scrstream.sink 

INT fold.number, result: 
SEQ 

scrstream.to.file (echo, from.file, to.file, 
"output data", fold.number, result) 

-- write on the file 

#USE cheader 

VAL Branch IS 2: 

CHAN OF THessage input: input channel form former channel 
CHAN OF THessage output!, output2: next output channel 
CHAN OF Message result: output channel to display the result 
VAL INT ser.time: process service time 
receive the message from input, implement by slave time, and 
output it to otput1, output2, and result; 1 INPUT to 2 OUTPUT 

PROC fork(CHAI OF THessage output!, output2, 
CHAN OF THessage input) 

#USE userio 
#USE strings 

VAL IIFINIT IS 10000: 
[Branch]INT time, out.time: 
[Branch][string.length]BYTE message: 
[string.length]BYTE strings: 
IIT dep.time, pro.time, in.time: 
IIT mflag, min, bnumber: 

SEQ 
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PAR i = 0 FOR Branch 
out.time[i] := 0 

strings [0] : = ' ' 

-- WHILE loop 

WHILE strings[O] <> EOF 
SEQ 

input ? pro.time; in.time; strings 
PAR i = 0 FOR Branch 

time[i] := 0 
PAR i = 0 FOR Branch 

PAR j = 0 FOR string.length 
message [i] [j] : = '•s' 

pro.time := 0 

mflag := char.pos(EOF, strings) 
IF 

mflag < 0 
SEQ 

dep.time := in.time 
min := out.time[O] 
bnumber := 0 
SEQ i = 0 FOR Branch 

IF 
min > out. time [i] 

SEQ 
min := out.time[i] 
bnumber := i 

TRUE 
SKIP 

PAR i = 0 FOR Branch 
IF 

(i = bnumber) AND (strings[O] <> NULL) -- real message 
SEQ 

message[i] := strings 
IF 

out.time[i] > in.time 
SEQ 

time [i] : = out. time [i] 
TRUE 

SEQ 
time[i] := dep.time 

out.time[i] := time[i] 
TRUE -- null message 

SEQ 
message[i] [0] := NULL 
IF 

out.time[i] > dep.time 
SEQ 

time [i] . - out. time [i] 
TRUE 

SEQ 
time[i] := dep.time 

TRUE -- terminate 
PAR i = 0 FOR Branch 

PAR 
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SEQ 

time[i] := INFINIT 
message[i] := strings 

PAR -- output messages to all branches 
output! pro.time; time[O]; message[O] 
output2 ! pro.time; time[!]; message[!] 

write.full.string (screen, "start") 
newline (screen) 
PAR 

finput (in.fork, from.user.filer[1], to.user.filer[1]) 
-- input data from file 

foutput (output, from.user.filer[2], to.user.filer[2]) 
-- output data to file 

fork (out1, out2, in.fork) 
-- distribute to branches 

INT flag: 
SEQ 

flag := -1 
WHILE flag < 0 

ALT 
inputO? pro.time[O]; time[O]; message[O] --Transputer 1 

SEQ 
IF 

pro.time[O) < 0 
SEQ 

tr.number := 0 
write.full.string (screen, "transputer 0") 
right (screen) 
write.int (screen, time[O], 0) 
right (screen) 
write.full.string (screen, message[O]) 
newline (screen) 

TRUE 
SEQ 

tr.number := 1 
write.full.string (screen, "transputer 1") 
right (screen) 
write.int (screen, time[O], 0) 
right (screen) 
write.full.string (screen, message[O]) 
newline (screen) 

output ! pro.time[O]; time[O]; message[O]; tr.number 
input!? pro.time[1); time[1]; message[!] --Transputer 2 

SEQ 
tr.number := 2 
write.full.string (screen, "transputer 2") 
right (screen) 
write.int (screen, time[!], 0) 
right (screen) 
write.full.string (screen, message[!]) 
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newline (screen) 
output ! pro.time[l]; time[l]; message[l]; tr.number 

input2? pro.time[2]; time[2]; message[2] --Transputer 3 
SEQ 

IF 
pro.time[2] < 0 

SEQ 
tr.number := 0 
write.full.string (screen, "transputer 0") 
right (screen) 
write.int (screen, time[2], 0) 
right (screen) 
write.full.string (screen, message[2]) 
newline (screen) 

TRUE 
SEQ 

tr.number := 3 
write.full.string (screen, "transputer 3") 
right (screen) 
write.int (screen, time[2], 0) 
right (screen) 
write.full.string (screen, message[2]) 
newline (screen) 
flag := char.pos (EOF, message[2]) 

output ! pro.time[2]; time[2]; message[2]; tr.number 

write.full.string (screen, "process ends type ANY to return to TDS") 
keyboard ? char 
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