

Durham E-Theses

Modelling tidal changes within the wash and Morecambe bay during the Holocene

Hinton, A.C.

How to cite:

Hinton, A.C. (1992) Modelling tidal changes within the wash and Morecambe bay during the Holocene, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/6130/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- $\bullet~$ the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107 http://etheses.dur.ac.uk The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged.

Modelling Tidal Changes Within The Wash and Morecambe Bay During The Holocene

Volume 2

by

A.C. Hinton

A Thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

Geography Department

The University of Durham 1992

27 APR 1993

The results contained in this thesis are all my own work. Information derived from other sources is acknowledged at the appropriate point in the text. Work presented here has not been published elsewhere.

Signed

Anne C. Hinton

Copyright © 1992 by A.C. Hinton

The copyright of this thesis rests with the author. No quotation from it should be published without A.C. Hinton's prior written consent and information derived from it should be acknowledged.

The copyright of the bathymetric and label data for the Liverpool Bay and Morecambe Bay tidal models for present sea-level conditions, presented in Appendix 6.1, is held by the Proudman Oceanographic Laboratory, Birkenhead.

SYMBOLS USED IN THE TEXT

Meaning (units)

Symbol

a, bReal and imaginary parts of a complex time-varying coefficient Speed of progression of the tidal wave (metres per second) С Phase speed (radians) c_g Dimensionless drag coefficient C_D D Total water depth $(h + \zeta)$ EMatrix consisting of values of elements predicted from the model f Nodal factor - adjustment of tidal amplitude made for the 18.61 year nodal cycle of lunar declination Coriolis parameter f_c Nodal factor of the Equilibrium Tide at time zero f_e FStress in the x direction F_B Bottom stress in the x direction Gravitational constant $(6.67 \times 10^{-11} \text{Nm}^2 \text{kg}^{-2})$ g G_e Phase lag of the Equilibrium Tide at Greenwich (radians) Stress in the y direction G_y G_B Bottom stress in the y direction h Mean water depth Maximum bathymetric value in model (metres) h_{max} Smallest model grid width h_{ws} Model grid width h_w Tidal amplitude Η H_e Tidal amplitude of harmonic constituent eHOMatrix consisting of values of amplitude and phase of harmonic constituents i, mNumber of points at which calculations are made in the latitudinal and longitudinal directions respectively An unspecified harmonic constituent Ι j, kConstants 1 Tidal wavelength Length of bay from sea mouth to head LMass of the earth $(5.97 \times 10^{24} \text{kg})$ m_e Mass of the moon $(7.35 \times 10^{22} \text{kg})$ m_l A point at the centre of the moon MNodal angle - adjustment of tidal phase made for the 18.61 year nnodal cycle of lunar declination Nodal angle of the Equilibrium Tide at time zero n_e A point at the centre of the earth 0 PHydrostatic pressure P_{A} Atmospheric pressure on the water surface P_{Z_d} Hydrostatic pressure at a point at depth z_d metres below the water surface

Symbol	Meaning (units)
q	Depth-mean current vector
R	Equatorial radius of the earth $(6,378 \text{ kilometres})$
R_l	Distance from the centre of the earth to the centre of the moon
	(384,400 kilometres)
S	Coefficient of bottom friction
s'	An element of space
t	Time
T(t)	Tidal level at time t
u	Latitudinal velocity
u_q	Component of the depth-mean current in the direction of increasing χ
U^{-}	A constant
v	Longitudinal velocity
v_q	Component of the depth-mean current in the direction of increasing ϕ
V_e	Phase angle of the Equilibrium Tide at time zero (radians)
x	Latitudinal distance
X, Y, Z	Points at the surface of the earth
y	Longitudinal distance
z	Sea surface elevation
z_d	Distance below water surface
z_0, Z_0	Mean sea-level
ΔS	Grid width
$\Delta t, \Delta T$	Timestep (seconds)
ζ	Displacement of water level from mean value
θ	North co-latitude (90°– latitude)
λ	Wavelength of the progressive wave
ρ	Water density (1025kg/m ³)
σ	Angular frequency (of a tidal constituent)
σ_e	Angular frequency at time zero of a tidal constituent e
$ au_b$	Bottom stress
ϕ	Angle of latitude
χ	East longitude
ω	Angular frequency of the earth's rotation
Ω	Gravitational potential at the surface of the earth
Ω_Y	Gravitational potential at a point Y on the surface of the earth

Harmonic Constituents

Constituent	Speed	Meaning
M	28 08/1	lunar comi diurnal tidal constituent
M ₂	20.9041 13 1761	lunar third-diurnal tidal constituent
M ₃ M ₄	57.9682	lunar quarter-diurnal tidal constituent
M ₆	86.9523	lunar sixth-diurnal tidal constituent
MS ₄	58.9841	generated by the interaction of M_2 and S_2
$2MS_2$ (or Meu ₂)	27.9682	in shallow water
S ₂	30.0000	solar semi-diurnal tidal constituent

CONTENTS

Volume 1

Chapter 1. Introduction

1.1.	Subje	ct of the thesis	1
1.2.	Sea-le	evel indicators	2
1.3.	Past	work on tidal changes	8
	1.3.1.	Sedimentary analysis	8
	1.3.2.	Modelling	9
	1.3.3.	Unanswered questions	11
1.4.	Aims	of the project	11
	1.4.1.	What is the magnitude of tidal variations within embayments?	11
	1.4.2.	What effect does the shape of the coastline of an embayment have	
		on tidal variations?	12
	1.4.3.	What effect does the sea-bed morphology have on tidal variations?	12
	1.4.4.	What is the contribution of neotectonics and sediment compaction	
		to altitudinal variations of sea-level index points within the chosen	
		embayments?	12
	1.4.5.	What are the implications of answers to 1.4.1 to 1.4.4 above	
		for a rise of sea-level?	13
1.5.	Study	areas	13

Chapter 2. The Geological Development of the Field Areas

2.1.	Geology and pre-Quaternary history of the Fenland and Morecambe Bay	17
	2.1.1. Pre-Quaternary geology and structural history of the Fenland area	17
	2.1.2. Pre-Quaternary solid geology and structure of Morecambe Bay	19
	2.1.3. Comparison of the geological history of the Fenland and Morecambe Bay	21

.

2.2	. Pre-Holocene Quaternary geology of the field areas	22
	2.2.1. Quaternary geology of the Fenland before 10,000 years B.P.	22
	2.2.2. Quaternary geology of Morecambe Bay before 10,000 years B.P.	28
	2.2.3. Comparison of the pre-10,000 years B.P. Quaternary history of the two areas	32
2.3	. The Holocene development of the Wash Fenlands and Morecambe Bay	33
	2.3.1. The Wash Fenlands	33
	2.3.2. Morecambe Bay	41
	2.3.3. Comparison of the development of the Fenland and Morecambe Bay	
	during the Holocene	46
Ch	apter 3. Tidal Theory and Tidal Models	
3.1.	. Tidal theory	50
	3.1.1. Tidal generation	50
	3.1.2. Shallow water effects	55
	3.1.3. Resonance	58
	3.1.4. Kelvin waves	59
	3.1.5. Residual flow	59
	3.1.6. Tidal analysis	64
	3.1.6.1. Harmonic analysis of tides	64
	3.1.6.2. Response analysis of tides	66
3.2.	Tidal modelling	68
	3.2.1. Methods of tidal modelling	68
	3.2.1.1. Criteria for consideration in the development of a numerical model	69
	3.2.1.2. Numerical modelling	71
	3.2.1.2.1. Finite difference models	73
	3.2.1.2.1.1. Implicit schemes	74
	3.2.1.2.1.2. Explicit schemes	74
	3.2.1.2.1.3. Criteria to be satisfied by numerical models	75

Chapter 4. Palaeogeographic Maps

4.1.	Stratigraphic record	77
	4.1.1. The Wash Fenlands	78
	4.1.2. Morecambe Bay	83
4.2.	Chronostratigraphic record	83
	4.2.1. The Wash Fenlands	85
	4.2.2. Morecambe Bay	90
4.3.	Construction of palaeogeographic maps	90
	4.3.1. The Wash Fenlands	92
	4.3.2. Morecambe Bay	93

Chapter 5. Tidal Model Methodology

5.1.	Tidal models used	104
	5.1.1. North-east Atlantic Model	108
	5.1.2. Models for The Wash	108
	5.1.3. Models for Morecambe Bay	112
5.2.	Input data	112
	5.2.1. Bathymetric data	112
	5.2.1.1. Labels	118
	5.2.2. Tidal input	118
5.3.	Model program	124
5.4.	Harmonic analysis	130
	5.4.1. Constituents used	131

Chapter 6. Tidal Changes within The Wash and Morecambe Bay

6.1.	Procedure adopted to obtain results	134
6.2.	Limitations of the analysis	137

	6.2.1. Ocean/ shelf boundary tidal changes	137
	6.2.2. Sea bed friction	138
	6.2.3. Eustatic sea-level changes	139
	6.2.4. Isostatic bathymetry changes	139
	6.2.5. Sediment movements	140
6.3	. Presentation of results	141
6.4.	Accuracy of model results	146
	6.4.1. The Wash	146
	6.4.2. Morecambe Bay	154
	6.4.3. Comparison of The Wash and Morecambe Bay	160
6.5.	Robustness of the tidal models	160
	6.5.1. Modification 1 - Introduction of a spit	162
	6.5.1.1. The Wash	162
	6.5.1.2. Morecambe Bay	163
	6.5.2. Modification 2 - Depth changes within the embayments	164
	6.5.2.1. The Wash	164
	6.5.2.2. Morecambe Bay	165
	6.5.3. Comparison of results	166
6.6.	Reduced sea depth simulations	168
	6.6.1. The Wash	169
	6.6.2. Morecambe Bay	175
	6.6.3. Comparison of The Wash and Morecambe Bay	182
6.7.	Coastline modifications	183
	6.7.1. The Wash	183
	6.7.2. Morecambe Bay	187
	6.7.3. Comparison of The Wash and Morecambe Bay	189
6.8 <i>.</i>	Palaeogeographic reconstructions	190
	6.8.1. The Wash	191

6.8.2. Morecambe Bay	196
6.8.3. Comparison of The Wash and Morecambe Bay	200
6.9. Discussion	203
6.9.1. The Wash	204
6.9.2. Morecambe Bay	206
6.9.3. Comparison of The Wash and Morecambe Bay	208
Chapter 7. Neotectonics and Sediment Compaction	
7.1. Neotectonic movements	209
7.2. Sediment compaction	212
7.3. Other factors	214
Chapter 8. Conclusions	
8.1. The magnitude of tidal variations within embayments	215
8.2. The effect of the shape of the coastline of an embayment on tidal variations	216
8.3. The effect of sea-bed morphology on tidal variations	216
8.4. The contribution of neotectonics and sediment compaction to the altitudinal	
variations of sea-level index points within the chosen embayments	216
8.5. The implications of the results of this study for a rise of sea-level	217
8.6. Recommendations for further research	218
8.7. Conclusions of the research with regard to sea-level change studies	218
References	220
Admiralty Chart References	244
Appendices relating to Chapter 4	
Appendix 4.1. Stratigraphic data sources for The Wash Fenlands	245

Appendix 4.2. Stratigraphic data sources for Morecambe Bay246

Appendix 4.3. Wash Fenland radiocarbon dates	247
Appendix 4.4. Radiocarbon dates from the Morecambe Bay area	251
Appendices relating to Chapter 6: Data on diskettes	
Appendix 6.1. Bathymetric and label data for model simulations	254
Appendix 6.2. Tidal input for model simulations	257
Appendix 6.3. Maximum sea-level elevations from model simulations	260

Volume 2

Figures relating to Chapter 6

1

Figures relating to Chapter 6

This Volume contains the figures relating to Chapter 6 in Volume 1 of the thesis. The figures are presented consecutively on the following pages.

Figure 6.1. EAST COAST 3 MODEL

Maximum Tidal Altitudes (m.)

Present Sea-Level

Key

RG	Rough Gas Field	5	Dreguess
NS	North Star Big	4ZQ	4ZQ
W	Withernsea	S-E	Shell - Esso
WS	West Sole	GP	Gibraltar Point
Im	Immingham	LB	Leman Bight
E	Easington	\mathbf{TH}	Tabs Head
236	OSTG 236	H	Hunstanton
BSF	Bull Sand Fort	Cr	Cromer
C		RM	Roaring Middle
67347	6734	WSt	West Stones
02W 97V	02 W	Ca	Caister
021 ID		G	Gorleston
	Inner Dowsing	276	OSTG 276
1	Indetatigable	13WC	13WC
B8 1	Station B81	1246	1944.0

C1.

Figure 6.2. EC3 Model Grid Showing the Locations from which the Data in Table 6.5 are taken.

Figure 6.3. EC3 Model Histogram: Present Sea-Level with data from Table 6.5.

×

Figure 6.4. EC3 Model Data from Table 6.6. The bars represent the maximum and minimum extents of the data, whilst the line within each bar gives the standard deviation of the data about the mean value. The standard deviation is not shown to exceed the maximum or minimum value of the data, although this does occur in some cases.

Key

Present Sea-Level Simulation

Modification 1

Modification 2

0

M1 M2

Figure 6.5. WASH MODEL Present Sea-Level

Maximum Tidal Heights (m.)

ABOVE 4.00 3.75 - 4.00 3.50 - 3.75 3.25 - 3.50 3.00 - 3.25 2.75 - 3.00 BELOW 2.75

Figure 6.6. WASH Model Grid Showing the Locations from which the Data in Table 6.7 are taken.

Figure 6.7. WASH Model Data from Table 6.8. The bars represent the maximum and minimum extents of the data, whilst the line within each bar gives the standard deviation of the data about the mean value. The standard deviation is not shown to exceed the minimum or maximum value of the data, although this does occur in some cases.

Model Simulation

Key

- 0* Present Sea-Level Simulation excluding Points 1 to 5 from Table 6.7
- 0 Present Sea-Level Simulation
- 3p 3,000 Years B.P. Palaeogeography
- 4p 4,000 Years B.P. Palaeogeography
- 5p 5,000 Years B.P. Palaeogeography

Figure 6.9. LIVERPOOL BAY MODEL Present Sea-Level

Maximum Tidal Heights (m.)

Key

Cr	Creetown	G	Glasson Docks
35	35 Irish Sea	\mathbf{Fl}	Fleetwood
W	Workington	Std.	Std. Irish Sea
R	Ramsay	10	10 Irish Sea
34	34 Irish Sea	\mathbf{F}	Formby
L	Lowsy Point	Q	Queens Channel
D	Douglas	OSTG	OSTG
Ba	Barrow	NB	New Brighton
HP	Hawes Point	WH	Wylfa Head
М	Morecambe	Α	Amlwch
HS	Halfway Shoals	HI	Hilbre Island
H	Heysham	$\mathbf{L}\mathbf{l}$	Llandudno
WT.	Wyre Light	В	Beaumaris

Figure 6.10. LBM Model Grid Showing the Locations from which the Data in Table 6.9 are taken.

Figure 6.11. LBM Model Histogram: Present Sea-Level with data from Table 6.9.

Model Simulation

Figure 6.12. LBM Model Data from Table 6.10. The bars represent the maximum and minimum extents of the data, whilst the line within each bar gives the standard deviation of the data about the mean value. The standard deviation is not shown to exceed the minimum or maximum value of the data, although this does occur in some cases.

13

Figure 6.13. MORECAMBE BAY MODEL Present Sea-Level

Maximum Tidal Heights (m.)

WL	Wyre Light	4
G	Glasson Docks	5

Figure 6.14. MBM Model Grid Showing the Locations from which the Data in Table 6.11 are taken.

Point 5

Figure 6.15. MBM Model Data from Table 6.12. The bars represent the maximum and minimum extents of the data, whilst the line within each bar gives the standard deviation of the data about the mean value. The standard deviation is not shown to exceed the minimum or maximum value of the data, although this does occur in some cases.

Figure 6.16. MBM Model Histogram: Present Sea-Level with data from Table 6.11.

Figure 6.17. EAST COAST 3 MODEL

Maximum Tidal Altitudes (m.) Modification 1

Figure 6.18. EAST COAST 3 MODEL

Maximum Tidal Altitudes (m.) Present Sea-Level Minus Modification 1

ABOVE 0.20 0.10 - 0.20 0.00 - 0.10 BELOW 0.00

Figure 6.19. EC3 Model Histogram: Modification 1 with data from Table 6.5.

Present Sea-Level (metres above mean sea-level)

.

Figure 6.21. LIVERPOOL BAY MODEL Modification 1

Maximum Tidal Heights (m.)

Figure 6.22. LIVERPOOL BAY MODEL Present Sea-Level Minus

Modification 1

Maximum Tidal Heights (m.)

ABOVE 0.10 0.00 - 0.10 -0.10 - 0.00 BELOW -0.10

Figure 6.24. LBM Model Scatter Plot: Present Sea-Level against Modified Simulations with data from Table 6.9.

Present Sea-Level (metres above mean sea-level)

25

Figure 6.25. EAST COAST 3 MODEL

Maximum Tidal Altitudes (m.) Modification 2

Figure 6.26. EAST COAST 3 MODEL

Maximum Tidal Altitudes (m.)

Present Sea-Level Minus Modification 2

ABOVE 0.05 0.00 - 0.05 -0.05 - 0.00 BELOW -0.05 Figure 6.27. EC3 Model Histogram: Modification 2 with data from Table 6.5.

Figure 6.28. LIVERPOOL BAY MODEL Modification 2

Maximum Tidal Heights (m.)

4.0 - 4.5 3.5 - 4.0 3.0 - 3.5 2.5 - 3.0 BELOW 2.5

ABOVE 4.5

Figure 6.29. LIVERPOOL BAY MODEL Present Sea-Level Minus

Modification 2

Maximum Tidal Heights (m.)

Figure 6.30. LBM Model Histogram: Modification 2 with data from Table 6.9.

Figure 6.31. EAST COAST 3 MODEL

Maximum Tidal Altitudes (m.)

2 Metres Bathymetric Reduction

Figure 6.32. EAST COAST 3 MODEL

Maximum Tidal Altitudes Difference (m.)

Present Sea-Level Minus 2 Metres Bathymetric Reduction

0.00 - 0.15

Figure 6.33. EC3 Model Histogram: 2 Metres Bathymetric Reduction Simulation with data from Table 6.5.

Present Sea-Level (metres above mean sea-level)

ંઝુ

Figure 6.35. EAST COAST 3 MODEL

Maximum Tidal Altitudes (m.)

5 Metres Bathymetric Reduction

Figure 6.36. EAST COAST 3 MODEL

Maximum Tidal Altitudes Difference (m.)

Present Sea-Level Minus 5 Metres Bathymetric Reduction

37

0.50 - 0.75 0.25 - 0.50 0.00 - 0.25 -0.25 - 0.00 BELOW -0.25

ABOVE 0.75

Figure 6.37. EAST COAST 3 MODEL

Maximum Tidal Altitudes Difference (m.)

2 Metres Minus 5 Metres Bathymetric Reduction

ABOVE 0.50 0.25 - 0.50 0.00 - 0.25 -0.25 - 0.00 BELOW -0.25

Figure 6.38. EC3 Model Histogram: 5 Metres Bathymetric Reduction Simulation with data from Table 6.5.

39

Figure 6.39. EAST COAST 3 MODEL

Maximum Tidal Altitudes (m.)

10 Metres Bathymetric Reduction

Figure 6.40. EAST COAST 3 MODEL

Maximum Tidal Altitudes Difference (m.)

Present Sea-Level Minus 10 Metres Bathymetric Reductin

ABOVE 0.60 0.45 - 0.60 0.30 - 0.45 0.15 - 0.30 0.00 - 0.15 BELOW 0.00

Figure 6.41. EAST COAST 3 MODEL

Maximum Tidal Altitudes Difference (m.) 5 Metres Minus 10 Metres Bathymetric Reduction

Figure 6.42. EC3 Model Histogram: 10 Metres Bathymetric Reduction Simulation with data from Table 6.5.

43

Figure 6.43. EAST COAST 3 MODEL

Maximum Tidal Altitudes (m.)

15 Metres Bathymetric Reduction

Figure 6.44. EAST COAST 3 MODEL

Maximum Tidal Altitudes Difference (m.)

Present Sea-Level Minus 15 Metres Bathymetric Reductin

ABOVE 1.0 0.5 - 1.0 0.0 - 0.5 BELOW 0.0

Figure 6.45. EAST COAST 3 MODEL

Maximum Tidal Altitudes Difference (m.)

10 Metres Minus 15 Metres Bathymetric Reduction

0.50 - 0.75 0.25 - 0.50 0.00 - 0.25

Figure 6.46. EC3 Model Histogram: 15 Metres Bathymetric Reduction Simulation with data from Table 6.5.

Maximum Tidal Heights (m.)

-2 Metres Sea-Level

Maximum Tidal Heights (m.)

ABOVE 0.30 0.15 - 0.30 0.00 - 0.15 -0.15 - 0.00 BELOW -0.15

Figure 6.49. LBM Model Histogram: 2 Metres Bathymetric Reduction Simulation with data from Table 6.9.

Figure 6.50. LBM Model Scatter Plot: Present Sea-Level against Reduced Sea Depth Simulations with data from Table 6.9.

Present Sea-Level (metres above mean sea-level)

51

Figure 6.51. LIVERPOOL BAY MODEL -5 Metres Sea-Level

Maximum Tidal Heights (m.)

ABOVE 3.5 3.0 - 3.5 2.5 - 3.0 BELOW 2.5

Figure 6.52. LIVERPOOL BAY MODEL Present Sea-Level Minus

-5 Metres Sea-Level

Maximum Tidal Heights (m.)

0.75 - 1.00 0.50 - 0.75 0.25 - 0.50 0.00 - 0.25 BELOW 0.00

ABOVE 1.00

Figure 6.53. LIVERPOOL BAY MODEL -2 Metres Sea-Level Minus

-5 Metres Sea-Level

Maximum Tidal Heights (m.)

ABOVE 0.75 0.50 - 0.75 0.25 - 0.50 BELOW 0.25 Figure 6.54. LBM Model Histogram: 5 Metres Bathymetric Reduction Simulation with data from Table 6.9.

55

Figure 6.55. LIVERPOOL BAY MODEL -10 Metres Sea-Level

Maximum Tidal Heights (m.)

3.0 - 3.5 2.5 - 3.0 2.0 - 2.5

-10 Metres Sea-Level

Maximum Tidal Heights (m.)

Figure 6.57. LIVERPOOL BAY MODEL -5 Metres Sea-Level Minus

-10 Metres Sea-Level

Maximum Tidal Heights (m.)

Figure 6.58. LBM Model Histogram: 10 Metres Bathymetric Reduction Simulation with data from Table 6.9.

.

59

Figure 6.59. LIVERPOOL BAY MODEL -15 Metres Sea-Level

Maximum Tidal Heights (m.)

3.0 - 3.5 2.5 - 3.0 2.0 - 2.5
-15 Metres Sea-Level

Maximum Tidal Heights (m.)

ABOVE 0.75 0.50 - 0.75 0.25 - 0.50 0.00 - 0.25 BELOW 0.00

Figure 6.61. LIVERPOOL BAY MODEL -10 Metres Sea-Level Minus

-15 Metres Sea-Level

Maximum Tidal Heights (m.)

-0.50 - -0.25 -0.75 - -0.50 -1.00 - -0.75 -1.25 - -1.00 BELOW -1.25

Figure 6.62. LBM Model Histogram: 15 Metres Bathymetric Reduction Simulation with data from Table 6.9.

ရွှ

Υ.

Figure 6.63. EAST COAST 3 MODEL 3,000 Years B.P. Coastline

Maximum Tidal Altitudes Difference (m.)

64

Figure 6.64. EC3 Model Histogram: 3,000 Years B.P. Coastline Simulation with data from Table 6.5.

Figure 6.65. EAST COAST 3 MODEL 4,000 Years B.P. Coastline

Maximum Tidal Altitudes Difference (m.)

Figure 6.66. EC3 Model Histogram: 4,000 Years B.P. Coastline Simulation with data from Table 6.5.

Figure 6.67. EAST COAST 3 MODEL 5,000 Years B.P. Coastline

Maximum Tidal Altitudes Difference (m.)

Figure 6.68. EC3 Model Histogram: 5,000 Years B.P. Coastline Simulation with data from Table 6.5.

Figure 6.69. EAST COAST 3 MODEL

Maximum Tidal Altitudes Difference (m.) Present Sea-Level Minus 3,000 Years B.P. Coastline

0.75 - 1.00 0.50 - 0.75 0.25 - 0.50 0.00 - 0.25

Figure 6.70. EAST COAST 3 MODEL

Present Sea-Level Minus 4,000 Years B.P. Coastline Maximum Tidal Altitudes Difference (m.)

ABOVE 0.75 0.50 - 0.75 0.25 - 0.50 0.00 - 0.25 BELOW 0.00

Figure 6.71. EAST COAST 3 MODEL

Maximum Tidal Altitudes Difference (m.) Present Sea-Level Minus 5,000 Years B.P. Coastline

72

ABOVE 0.75 0.50 - 0.75 0.25 - 0.50 0.00 - 0.25 BELOW 0.00

Figure 6.72. EC3 Model Scatter Plot: Present Sea-Level against Palaeocoastline Simulations with data from Table 6.5.

Present Sea-Level (metres above mean sea-level)

73

Figure 6.73. EAST COAST 3 MODEL 3,000 Years B.P. Coastline

Maximum Tidal Altitudes Difference (m.) Minus 4,000 Years B.P. Coastline

74

0.25 - 0.50 0.00 - 0.25 -0.25 - 0.00 -0.50 - -0.25 BELOW -0.50

ABOVE 0.50

Figure 6.74. EAST COAST 3 MODEL 4,000 Years B.P. Coastline

Maximum Tidal Altitudes Difference (m.) Minus 5,000 Years B.P. Coastline

75

ABOVE 0.5 0.0 - 0.5 -0.5 - 0.0 BELOW -0.5

Figure 6.75. LIVERPOOL BAY MODEL 5,000 Years B.P. Coastline

Maximum Tidal Heights (m.)

Figure 6.76. LBM Model Histogram: 5,000 Years B.P. Coastline Simulation with data from Table 6.9.

Figure 6.77. LIVERPOOL BAY MODEL 8,000 Years B.P. Coastline

Figure 6.76. LBM Model Histogram: 8,000 Years B.P. Coastline Simulation with data from Table 6.9.

79

Figure 6.79. LIVERPOOL BAY MODEL Present Sea-Level Minus

5,000 Years B.P. Coastline

Maximum Tidal Heights (m.)

0.30 - 0.40 0.20 - 0.30 0.10 - 0.20 0.00 - 0.10 **BELOW 0.00**

Figure 6.80. LIVERPOOL BAY MODEL Present Sea-Level Minus

8,000 Years B.P. Coastline

Maximum Tidal Heights (m.)

Figure 6.81. LBM Model Scatter Plot: Present Sea-Level against Palaeocoastline Simulations with data from Table 6.9.

Present Sea-Level (metres above mean sea-level)

Figure 6.82. LIVERPOOL BAY MODEL 5,000 Years B.P. Coastline

Minus 8,000 Years B.P. Coastline

Maximum Tidal Heights (m.)

0.10 - 0.20 0.00 - 0.10 -0.10 - 0.00 -0.20 - -0.10 BELOW -0.20

ABOVE 0.20

Figure 6.83. EAST COAST 3 MODEL

Maximum Tidal Altitudes (m.) 3,000 Years B.P.

Figure 6.84. EAST COAST 3 MODEL

Maximum Tidal Altitudes Difference (m.)

Present Sea-Level Minus 3,000 Years B.P. Palaeogeography

Figure 6.85. EC3 Model Histogram: 3,000 Years B.P. Palaeogeography Simulation with data from Table 6.5.

Figure 6.86. EC3 Model Scatter Plot: Present Sea-Level against Palaeogeographic Simulations with data from Table 6.5.

Present Sea-Level (metres above mean sea-level)

87

Figure 6.87. WASH MODEL 3,000 Years B.P. Palaeogeography

Maximum Tidal Heights (m.)

2.50 - 2.75 2.25 - 2.50 2.00 - 2.25 1.75 - 2.00 Figure 6.88. WASH MODEL Present Sea-Level Minus 3,000 Years B.P.

Palaeogeography

Maximum Tidal Heights (m.)

0.75 - 1.00 0.50 - 0.75 0.25 - 0.50 0.00 - 0.25 BELOW 0.00

ABOVE 1.00

Figure 6.89. WASH Model Histogram: 3,000 Years B.P. Palaeogeography Simulation with data from Table 6.7.

Figure 6.90. WASH Model Scatter Plot: Present Sea-Level against Palaeogeographic Simulations with data from Table 6.7.

16

Figure 6.91. EAST COAST 3 MODEL

Maximum Tidal Altitudes (m.) 4,000 Years B.P.

2.5 - 3.0 2.0 - 2.5 1.5 - 2.0 1.0 - 1.5 0.5 - 1.0

Figure 6.92. EAST COAST 3 MODEL

Maximum Tidal Altitudes Difference (m.)

Present Sea-Level Minus 4,000 Years B.P. Palaeogeography

1.0 - 1.5 0.5 - 1.0

Figure 6.93. EAST COAST 3 MODEL

Maximum Tidal Altitudes (m.)

3,000 Years B.P. Minus 4,000 Years B.P. Palaeogeography

0.20 - 0.30 0.10 - 0.20 0.00 - 0.10 Figure 6.94. EC3 Model Histogram: 4,000 Years B.P. Palaeogeography Simulation with data from Table 6.5.

.

Figure 6.95. WASH MODEL 4,000 Years B.P. Palaeogeography

Maximum Tidal Heights (m.)

ABOVE 3.25 3.00 - 3.25 2.75 - 3.00 2.50 - 2.75 BELOW 2.50
Figure 6.96. WASH MODEL Present Sea-Level Minus 4,000 Years B.P.

Palaeogeography Maximum Tidal Heights (m.)

0.50 - 0.75 0.25 - 0.50 0.00 - 0.25 BELOW 0.00

ABOVE 0.75

Figure 6.97. WASH MODEL 3,000 Years B.P. Minus 4,000 Years B.P.

Palaeogeography

Maximum Tidal Heights (m.)

-0.25 - 0.00 -0.50 - -0.25 -0.75 - -0.50

data from Table 6.7.

۰.

Figure 6.99. EAST COAST 3 MODEL

Maximum Tidal Altitudes (m.) 5,000 Years B.P.

Figure 6.100. EAST COAST 3 MODEL

Maximum Tidal Altitudes Difference (m.)

Present Sea-Level Minus 5,000 Years B.P. Palaeogeography

Figure 6.101. EAST COAST 3 MODEL

Maximum Tidal Altitudes (m.)

4,000 Years B.P. Minus 5,000 Years B.P. Palaeogeography

Figure 6.102. EC3 Model Histogram: 5,000 Years B.P. Palaeogeography with data from Table 6.5.

Figure 6.103. WASH MODEL 5,000 Years B.P. Palaeogeography

Maximum Tidal Heights (m.)

ABOVE 3.25 3.00 - 3.25 2.75 - 3.00 2.50 - 2.75 2.25 - 2.50 BELOW 2.25 Figure 6.104. WASH MODEL Present Sea-Level Minus 5,000 Years B.P.

Palaeogeography

Maximum Tidal Heights (m.)

105

ABOVE 1.00 0.75 - 1.00 0.50 - 0.75 0.25 - 0.50 0.00 - 0.25 BELOW 0.00 Figure 6.105. WASH MODEL 4,000 Years B.P. Palaeogeography Minus

5,000 Years B.P. Palaeogeography

Maximum Tidal Heights (m.)

106

0.25 - 0.50 0.00 - 0.25 -0.25 - 0.00 -0.50 - -0.25 BELOW -0.50

ABOVE 0.50

5,000 Years B.P. Palaeogeography (metres above mean sea-level)

Maximum Tidal Heights (m.)

5,000 Years B.P. Palaeogeography Maximum Tidal Heights (m.)

Figure 6.109. LBM Model Scatter Plot: Present Sea-Level against Palaeogeographic Simu-

lations with data from Table 6.9.

Present Sea-Level (metres above mean sea-level)

Table 6.9.

Figure 6.111. MORECAMBE BAY MODEL 5,000 Years B.P. Palaeogeography

Maximum Tidal Heights (m.)

ABOVE 5.0 4.5 - 5.0 4.0 - 4.5 3.5 - 4.0 BELOW 3.5

Figure 6.112. MORECAMBE BAY MODEL Difference Present Sea-Level

Minus 5,000 Years B.P. Palaeogeography

Maximum Tidal Heights (m.)

ABOVE 0.40 0.20 - 0.40 0.00 - 0.20 -0.20 - 0.00 BELOW -0.20 Figure 6.113. MBM Model Scatter Plot: Present Sea-Level against Palaeogeographic Simulations with data from Table 6.11.

Present Sea-Level (metres above mean sea-level)

Figure 6.114. MBM Model Histogram: 5,000 Years B.P. Palaeogeography with data from Table 6.11.

Higher Sea-Level

Maximum Tidal Heights (m.)

LIVERPOOL BAY MODEL Present Sea-Level Minus Figure 6.116.

8,000 Years B.P. Palaeogeography (Higher Sea-Level) Maximum Tidal Heights (m.)

ABOVE 0.50 0.25 - 0.50 0.00 - 0.25 BELOW 0.00 Figure 6.117. LIVERPOOL BAY MODEL 5,000 Years B.P. Palaeogeography

Minus 8,000 Years B.P. Palaeogeography Higher Sea-Level Maximum Tidal Heights (m.)

Figure 6.118. LBM Model Histogram: 8,000 Years B.P. Palaeogeography - Higher Sea-Level with data from Table 6.9.

8,000 Years B.P. Palaeogeography - Higher Sea-Level (metres above mean sea-level

Figure 6.119. MORECAMBE BAY MODEL 8,000 Years B.P. Palaeogeography

Maximum Tidal Heights (m.)

Higher Sea-Level

ABOVE 3.75 3.50 - 3.75 3.25 - 3.50 3.00 - 3.25 2.75 - 3.00 BELOW 2.75

Figure 6.120. MORECAMBE BAY MODEL Difference Present Minus 8,000

Years B.P. Palaeogeography Higher Sea-Level Maximum Tidal Heights (m.)

ABOVE 1.20 0.80 - 1.20 0.40 - 0.80 BELOW 0.40

Figure 6.121. MORECAMBE BAY MODEL Difference 5,000 Minus

8,000 Years B.P. Palaeogeography

Maximum Tidal Heights (m.)

0.20 - 0.25 0.15 - 0.20 0.10 - 0.15 **BELOW 0.10**

Figure 6.122. MBM Model Histogram: 8,000 Years B.P. Palaeogeography - Higher Sea-Level with data from Table 6.11.

8,000 Years B.P. Palaeogeography – Higher Sea-Level (metres above mean sea-level

123

Figure 6.123. LIVERPOOL BAY MODEL 8,000 Years B.P. Palaeogeography

Lower Sea-Level

Maximum Tidal Heights (m.)

Figure 6.124. LIVERPOOL BAY MODEL Present Sea-Level Minus

8,000 Years B.P. Palaeogeography Lower Sea-Level Maximum Tidal Heights (m.)

125

ABOVE 0.75 0.50 - 0.75 0.25 - 0.50 0.00 - 0.25 BELOW 0.00

LIVERPOOL BAY MODEL 5,000 Years B.P. Palaeogeography Figure 6.125.

> Minus 8,000 Years B.P. Palaeogeography Lower Sea-Level Maximum Tidal Heights (m.)

126

0.50 - 0.75 0.25 - 0.50 0.00 - 0.25 **BELOW 0.00**

Figure 6.126. LIVERPOOL BAY MODEL 8,000 Years B.P. Palaeogeography

Higher Sea-Level Minus Lower Sea-Level Simulations Maximum Tidal Heights (m.)

ABOVE 0.40 0.20 - 0.40 0.00 - 0.20 -0.20 - 0.00 BELOW -0.20 Figure 6.127. LBM Model Histogram: 8,000 Years B.P. Palaeogeography - Lower Sea-Level with data from Table 6.9.

